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Résumé en Français 

PRÉSENTATION  DU  PROJET  

La nutrition est un phénomène complexe pour lequel non seulement le type et la quantité de 

macro-/micro- nutriments, mais aussi le taux auquel ces nutriments sont apportés à l'organisme 

ont été considérés comme des facteurs importants, en particulier dans le cas des glucides. 

L'importance du taux de digestion pose un nouveau défi : développer des stratégies de 

promotion de la santé pour atteindre des régimes alimentaires équilibrés sur le plan 

nutritionnel, mais ayant aussi des profils de digestion adéquats. En parallèle, ce défi ouvre de 

nouvelles opportunités au niveau scientifique et a été le point de départ de mon projet de thèse. 

Ce projet pluridisciplinaire associe des compétences dans les domaines des sciences de 

l'alimentation, de la nutrition, de la santé et de l'imagerie médicale, dans le cadre d'un travail 

conjoint entre deux groupes de recherche français : (1) GMPA, unité mixte de recherche 

d'AgroParisTech et de l'INRA (Grignon), et (2) IR4M, unité mixte de recherche de l'Université 

Paris Sud et du CNRS (Orsay). Au total, 5 études ont été menées (4 études in vitro et 1 étude à 

deux branches chez l’homme). Trois de ces études ont déjà été publiées dans des revues à 

comité de lecture.  

 

ÉTAT  DE  L’ART  

Nous passons tous plus des trois quarts de notre vie dans l'état postprandial (Vors, Nazare, 

Michalski, & Laville, 2014).  Cependant, si le lien entre le métabolisme à jeun et la santé a fait 

l'objet d'études approfondies, moins d'attention a été accordée à l'étude de l'état postprandial. 

Bien que les recherches sur l'état postprandial attirent de plus en plus l'attention de la 

communauté scientifique depuis les années 1970, au moment de la rédaction de ce manuscrit, 

il existe encore deux fois plus d'articles traitant de sujets liés au métabolisme à jeun. L'état 

postprandial est un état dynamique résultant de l'ingestion et de la digestion d'un repas qui dure 

de 4 à 5 heures selon le type de nutriment. Il se distingue de l'état post-absorptif (qui correspond 

à la période de 6h suivant l'état postprandial) et de l'état à jeun (qui suit l'état post-absorptif, 

10-12 heures après le dernier repas). Ces états se succèdent et peuvent aussi se superposer 

(Vors, Nazare, Michalski, & Laville, 2014).  

 

Dans notre société actuelle, la consommation de 3 à 4 repas par jour signifie que nous quittons 

rarement l'état postprandial (Vors, Nazare, Michalski, & Laville, 2014). De plus, comme 

conséquence des déséquilibres entre besoins nutritionnels et la consommation d’aliments, 
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l’alimentation est le deuxième facteur de risque de décès au niveau mondial (Gakidou, et al., 

2017). Il est également devenu clair que non seulement le type et la quantité de nutriments 

ingérés sont importants, mais aussi leurs taux de digestion et d'absorption. Ceci est valable pour 

les protéines, par exemple, car leur résistance à la digestion et leur taux de digestion peuvent 

influencer les mécanismes qui déclenchent les allergies alimentaires (Bøgh & Madsen, 2016) et 

l'efficacité du métabolisme protéique post-prandial (Dangin, Boirie, Guillet, & Beaufrère, 2002; 

Koopman, et al., 2009; Walrand, et al., 2016). Il en va de même pour les glucides, avec de 

nombreux travaux qui mettent en évidence un lien entre l'augmentation du taux de glucose 

postprandial et un risque accru de diabète de type 2 (Bhupathiraju, et al., 2014), les maladies 

cardiovasculaires chez les femmes (Dong, Zhang, Wang, & Qin, 2012; Mirrahimi, et al., 2012), le 

cancer du sein (Mullie, Koechlin, Boniol, Autier, & Boyle, 2016), ainsi que les complications liées 

à l'obésité (Schwingshackl & Hoffmann, 2013). 

 

Les glucides jouent un rôle clé dans l'alimentation humaine, fournissant jusqu'à 45% des besoins 

énergétiques dans les pays développés et jusqu'à 85% dans les pays en développement. On les 

trouve sous forme de sucres (monosaccharides et disaccharides) et polysaccharides (amidon ou 

polysaccharides non-amylacés) (Stylianopoulos, 2012). L'amidon est un glucide clé dans 

l'alimentation humaine. Comme l'amidon est exclusivement composé de résidus de glucose et 

représente 20 % à 50 % de l'apport énergétique total (Stylianopoulos, 2012), le glucose dérivé 

de l'amidon est un déterminant majeur des concentrations sanguines postprandiales de glucose 

(glycémie postprandiale) suscitées par nos régimes alimentaires. Il existe des évidences 

scientifiques qui démontrent que la prise en compte de l'impact glycémique des aliments 

consommés, plutôt que seulement leur teneur en glucides, est un élément essentiel pour 

atteindre un régime alimentaire optimal pour la santé (Blaak et al., 2012; Livesey, Taylor, 

Hulshof, & Howlett, 2008). Des exemples concrets sont fournis dans des études récentes 

soulignant l'impact bénéfique de la réduction de la réponse glycémique sur la diminution du 

risque (Miao, Jiang, Cui, Zhang, & Jin, 2013) et l'amélioration du contrôle (Russell et al., 2016) 

du diabète de type 2, son potentiel à promouvoir la satiété (Miao et al., 2013) et éventuellement 

la perte de poids (Juanola-Falgarona et al., 2014). Le taux d'hydrolyse de l'amidon pendant la 

digestion semble avoir un impact prédominant sur la réponse glycémique provoquée par les 

aliments riches en amidon. En effet, la relation positive entre la vitesse à laquelle l'amidon des 

aliments est hydrolysé dans des conditions contrôlées in vitro et le degré auquel il augmente la 

glycémie a été établie plusieurs fois (Goñi, Garcia-Alonso, & Saura-Calixto, 1997; Granfeldt, 



ix 
 

Hagander, & Björck, 1995; Jenkins et al., 1982). Toutefois, le processus de digestion de l'amidon 

reste à bien comprendre car la contribution de chaque phase digestive n'est pas claire.   

Deux enzymes clés participent à la digestion de l'amidon : l’α-amylase salivaire humaine (HSA) 

et la α-amylase pancréatique. L’HSA initie le processus amylolytique dans la cavité buccale 

(Bornhorst & Singh, 2012) et peut rester actif dans l'estomac (Bornhorst & Singh, 2012; S. S. 

Gropper & J. L. Smith, 2013) jusqu'à son inactivation due à l'acidification gastrique, entre pH 3.0 

et 3.8 (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b; M. Fried, S. Abramson, & J. H. Meyer, 

1987). l’α-amylase pancréatique et les enzymes de la bordure en brosse terminent ensuite la 

digestion de l'amidon dans l'intestin grêle, où le glucose, le produit final de la digestion de 

l’amidon, est finalement absorbé (S. S. Gropper & J. L. Smith, 2013). Le rôle de l’HSA pendant la 

digestion orale de l'amidon est relativement bien établi, par contre, son impact pendant la phase 

gastrique de la digestion est méconnu. De nombreux travaux ont été menés in vitro afin de 

mieux comprendre le processus digestif de l'amidon. (Berti, Riso, Monti, & Porrini, 2004; Goñi, 

Garcia-Alonso, & Saura-Calixto, 1997; Yvonne Granfeldt, Hagander, & Björck, 1995; Jenkins, et 

al., 1982; Woolnough, Bird, Monro, & Brennan, 2010), mais la phase orale est soit ignorée (Berti, 

Riso, Monti, & Porrini, 2004; Goñi, Garcia-Alonso, & Saura-Calixto, 1997) soit suivie d'une phase 

gastrique à un pH acide, généralement entre 1,5 et 3 (Yvonne Granfeldt, Hagander, & Björck, 

1995; Jenkins, et al., 1982; Minekus, et al., 2014a; Woolnough, Bird, Monro, & Brennan, 2010). 

Par conséquent, même lorsqu’elle est prise en compte dans ces protocoles, l’HSA est 

immédiatement inactivée au début de la phase gastrique, et la plupart de l'amidon est donc 

hydrolysé pendant la phase intestinale. Par ailleurs, comme ces études sont généralement en 

très bon accord avec les données in vivo (Bohn, et al., 2017), une analogie entre la cinétique de 

l'hydrolyse intestinale et la réponse glycémique est souvent établie, renforçant ainsi l'idée que 

la grande majorité de l’amidon est hydrolysée par l’amylase pancréatique (des Gachons & 

Breslin, 2016).  Touefois, la simulation de la digestion gastrique à un pH acide fixe n'est pas 

représentative de la dynamique in vivo, car il a été observé que l'acidification postprandiale du 

contenu gastrique peut prendre entre 60 et 200 min (Dressman et al., 1990; Gardner, Ciociola, 

& Robinson, 2002; Kalantzi et al., 2006; Malagelada, Go, & Summerskill, 1979; Troost, Steijns, 

Saris, & Brummer, 2001). Il semble donc qu'il y ait une grande fenêtre de temps durant laquelle 

l'amylase d'origine salivaire peut rester active pendant la digestion gastrique. Ceci corrobore des 

études selon lesquelles l'action du HSA peut continuer longtemps après la phase orale, et même 

atteindre la lumière intestinale sous sa forme active (M. Fried, S. Abramson, & J. H. Meyer, 1987; 

Skude & Ihse, 1976). Ces observations suggèrent que l’HSA peut jouer un rôle plus important 

dans la digestion de l'amidon que celui qui lui est couramment attribué. La littérature 
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scientifique à ce sujet est rare, mais des évidences que l’HSA peut hydrolyser en maltose jusqu'à 

76% de l'amidon de la purée de pommes de terre et 59% de celui du pain, dans l'estomac, 

remontent au début du 20ème siècle (Bergeim, 1926).  

L'inhibition des amylases digestives peut ralentir la digestion de l'amidon, ce qui constitue une 

opportunité pour retarder l'absorption du glucose dérivé de l'amidon et améliorer les réponses 

glycémiques postprandiales. Une stratégie diététique simple, visant à réduire la réponse 

glycémique par des effets d’inhibition pourrait être bénéfique tant pour les personnes en bonne 

santé que pour celles qui ont une régulation altérée de leur glycémie. En effet, cette stratégie a 

été jugée efficace dans des contextes où le contrôle de la glycémie représente un défi encore 

plus grand que dans des populations saines. Un exemple est le traitement du diabète de type 2 

par l'administration d'acarbose, qui inhibe les enzymes amylolytiques dans le tube digestif 

(Salvatore & Giugliano, 1996). Une stratégie diététique, visant à associer des aliments ou repas 

riches en amidon à des produits alimentaires susceptibles d’exercer un effet inhibiteur pourrait 

donc constituer une approche intéressante. 

Les différents sites d'action des enzymes amylolytiques dans le tube digestif sont déterminants 

pour comprendre leur vulnérabilité. L’HSA, par exemple, est présente pendant les phases orale 

et gastrique. Elle est donc directement exposée aux aliments tels qu’ils sont ingérés, ce qui inclue 

leur pH et leurs caractéristiques structurelles. Quant à l’α-amylase pancréatique, elle est 

principalement susceptible d'être affectée par la composition des aliments, puisque le pH du 

chyme est rapidement neutralisé dans le duodénum et la structure des aliments a déjà été 

largement modifiée à ce stade. En toute logique, la contribution réelle de chaque enzyme au 

processus digestif influencera également l'ampleur des effets qui peuvent être obtenus.  
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OBJECTIFS   

L'objectif principal de cette recherche a été la clarification du processus digestif des aliments 

riches en amidon et la proposition de solutions efficaces et faciles à mettre en œuvre pour 

améliorer l'impact glycémique des aliments riches en amidon en ralentissant leur cinétique 

digestive. Cinq sous-objectifs spécifiques peuvent être distingués :  

1. Examiner des boissons (thé, café, vin, jus de citron) et des condiments (vinaigre) 

couramment consommées, pour évaluer leur capacité à inhiber l'amylase salivaire et 

pancréatique. 

2. Vérifier si l'effet de la consommation d'aliments riches en amidon avec une boisson 

acide (jus de citron) ou une boisson riche en polyphénols (thé) peut réduire le taux de 

digestion de l'amidon in vitro comparativement à l'eau. 

3. Déterminer si le jus de citron et le thé peuvent atténuer efficacement la réponse 

glycémique au pain chez l’homme. 

4. Déterminer si le fait d'abaisser la réponse glycémique d'un repas sans en modifier la 

composition nutritive peut influencer les perceptions liées à la satiété et à l'appétit 

et/ou à la consommation énergétique lors du repas suivant. 

5. Étudier les caractéristiques de la digestion gastrique (surtout la vidange gastrique) d'un 

repas de pain avec de l'eau, du jus de citron ou du thé, par imagerie par résonance 

magnétique. 
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AP P R O C HE  EX P E R IM E N TA L E  

Un résumé des principales étapes expérimentales est présenté dans la Figure 1.  

La première partie du travail a consisté en une série d'expériences in vitro qui ont été réalisées 

pour : 

- déterminer l'impact des niveaux de pH rencontrés par l'amylase salivaire dans 

l'ensemble du système digestif sur son activité ; 

- étudier les mécanismes de digestion de l'amidon à différents stades du processus 

digestif ; 

- déterminer l'effet des boissons et condiments de consommation courante sur l'activité 

des amylases digestives et sur la digestion de l'amidon.  

Ces travaux ont nécessité l'élaboration et l'optimisation de protocoles de laboratoire. 

 

Les connaissances issues des études in vitro ont été appliquées à la conception d'une étude chez 

l'homme visant à évaluer l'impact de 3 repas riches en amidon sur la réponse glycémique, 

l'appétit, la consommation calorique et aussi la vidange gastrique (étudié par Imagerie par 

Résonance Magnétique). La planification, la préparation et la mise en œuvre de cette étude ont 

été assurées grâce aux collaborations avec l'unité de recherche IR4M (Imagerie par Résonance 

Magnétique Médicale et Multi-Modalités, UMR8081 Université Paris Sud - CNRS, Orsay, France), 

le Service Hospitalier Frédéric Joliot à Orsay et le CEFRED (Centre d'exploration fonctionnelle et 

de rééducation digestive) de l'Hôpital Avicenne. Un protocole de recherche clinique a également 

été préparé et soumis pour approbation éthique.  

Figure 1 - Approche experimentale. 
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PRINCIPAUX  RÉSULTATS  

 

I .  RÉÉVALUATION  DE  LA  CONTRIBUTION  DE  CHAQUE  ÉTAPE  DIGESTIVE  À  L'HYDROLYSE  DE  

L'AMIDON  À  PARTIR  D'ALIMENTS  ASSOCIÉS  À  UNE  FORTE  VS.  UNE  FAIBLE  RÉPONSE  

GÉCÉMIQUE 

 

Pour comprendre la contribution de l’HSA à la digestion de l'amidon, il est important de 

déterminer dans un premier temps son comportement dans la gamme de pH qu'elle rencontre 

pendant la digestion. L'évolution de l'activité de l’HSA en fonction du pH est présentée à la Figure 

41. L'activité amylolytique la plus élevée correspondait à 352 ± 41 U/mL et a été observée entre 

pH 6 et 7. Aux alentours de pH 4, 50 % de l'activité maximale était encore observée et l'inhibition 

complète a eu lieu entre pH 3,0 et 3,5.  

 

 

Ces résultats sont bien en accord avec la littérature sur la salive et les propriétés de l’HSA. Le pH 

optimal de l’HSA (à la fois dans la salive et sous forme purifiée) a été rapporté entre 6,5 et 7,0 

(Peter Bernfeld, 1955; P Bernfeld, Staub, & Fischer, 1948; Walker & Whelan, 1960) et l'activité 

amylolytique maximale de 352 U/mL obtenue pour la salive est très proche des 410 U/mL 

précédemment rapportée pour de la salive centrifugée (Peter Bernfeld, 1955) en utilisant le 

même protocole de dosage que dans cette étude. 
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Figure 2 - Activité amylolytique de la salive en fonction du pH. L'activité maximale, mesurée à 

pH 6,2, a été de 352 ± 41 U/mL de salive (1 unité a libéré 1,0 mg de maltose de la fécule de 

pomme de terre en 3 minutes à pH 6,9 à 20°C). 
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Au total, 6 aliments riches en amidon ont été étudiés : 3 pains blancs au blé (2 baguettes et 1 

pain sandwich) et 3 types de pâtes (pâtes perlées, spaghetti au blé et spaghetti sans gluten). Le 

pain blanc au blé suscite généralement une réaction glycémique élevée, tandis que les pâtes 

alimentaires suscitent habituellement une réaction glycémique faible. Toutes les digestions ont 

comporté une phase orale avec de la salive humaine suivie d'une phase gastrique et, dans 

certains cas, d'une phase intestinale. Les phases gastrique et intestinale ont été réalisées dans 

un système dynamique (DiDGI®) et les conditions digestives ont été définies en fonction de la 

littérature publiée rapportant des observations d'études humaines. Trois cinétiques 

d'acidification gastrique ont été reproduites in vitro : de 6 à 2 en (1) 30 min, (2) 60 min ou (3) 90 

min. Les résultats obtenus dans chaque condition sont présentés dans la Figure 76 A, B et C, 

respectivement, et reflètent un large spectre de conditions digestives allant d'une collation 

légère à un repas plus copieux. L'amidon libéré lors de la digestion des trois types de pains est 

présenté dans la Figure 76. Le premier point de chaque graphique correspond à la fin de la phase 

orale qui, malgré sa courte durée, montre que près de 20% de la teneur totale en amidon a été 

libérée à ce stade. Les points suivants correspondent à la phase gastrique. Quel que soit le type 

de pain ou la cinétique de réduction du pH, la même cinétique de libération d'amidon a été 

observée, avec un plateau final entre 70 et 85%, atteint pendant les 15-20 premières minutes 

de la digestion. 

 

 

Figure 3 – Digestion oro-gastrique du pain in vitro. Relargage d'amidon (symboles complets) et pH du 

chyme (lignes pointillées) lors de la digestion de trois pains. Le premier point de chaque graphique 

correspond à la phase orale, les autres correspondent à la phase gastrique. Différents symboles illustrent 

les résultats obtenus avec différents pains. Deux baguettes ( and ) et un pain de mie ont été étudiés 

().Moyenne ± SD, 3 rpt. 

A          B          C   
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D'autres analyses ont été effectuées pour déterminer le niveau d'hydrolyse de l'amidon, en 

particulier la proportion d'amidon qui avait été hydrolysée en oligosaccharides pendant la 

digestion des trois pains étudiés dans les mêmes conditions expérimentales. Les résultats sont 

présentés dans la Figure 77. On a observé que l'hydrolyse en oligosaccharides suivait également 

une progression exponentielle, avec un plateau atteint quelques minutes plus tard que pour le 

relargage de l’amidon (Figure 77 vs. Figure 76C). Plus important encore, la quantité 

d'oligosaccharides libérés au plateau était remarquablement élevée, représentant 60 à 65% de 

l'amidon libéré pour tous les pains.  

Pour ce qui concerne les pâtes (données non présentées), la digestion de l'amidon était plus 

lente. Le plateau de libération de l'amidon était atteint après 45 à 50 minutes de digestion et 

était, en moyenne, environ 2,5 fois inférieur à celui du pain (environ 30%). Néanmoins, 60 à 70 

% de l'amidon libéré l’était de nouveau sous la forme d’oligosaccharides.  

 

Dans certains cas, les digestions oro-gastriques ont été suivies d’une phase intestinale. Comme 

la plupart de l'amidon du pain avait déjà été libéré pendant la phase gastrique, quand une phase 

intestinale a été incluse dans les expériences, les augmentations supplémentaires de l'amidon 

et des oligosaccharides libérés n'étaient que d'environ 5-8% et 15-20%, respectivement. 

Inversement, comme seule une fraction de l'amidon des pâtes alimentaires avait été libérée lors 

Figure 4 - Digestion dynamique in vitro du pain. Oligosaccharides libérés (symboles ouverts) et pH du chyme 

(ligne pointillée) au cours de la digestion oro-gastrique de trois pains. Le premier point de chaque graphique 

correspond à la phase orale, les autres correspondent à la phase gastrique. Différents symboles illustrent les 

résultats obtenus avec différents pains. Deux baguettes ( and ) et un pain de mie ()ont été étudiés . 

Moyenne ± SD, 3 rpt.  
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de la digestion gastrique, la majeure partie de sa libération et de son hydrolyse s'est produite 

pendant la phase intestinale.  

Bien que l'amylase pancréatique ait été très efficace pour poursuivre l'hydrolyse de l’amidon 

pendant la phase intestinale, nos études in vitro ont démontré que le rôle de l’amylase salivaire 

pendant les phases digestives précédentes ne doit pas être négligé. Ceci est d’autant plus vrai 

que sa contribution à l'hydrolyse de l'amidon pendant la phase gastrique semble plus élevée 

pour des aliments associés à une réponse glycémique élevée, comme le pain.  

Étant donné le rôle important de l’HSA dans la digestion de l'amidon, il est fort probable que des 

facteurs influant sur sa performance amylolytique, autres que les propriétés structurelles d'un 

aliment, puissent se traduire par une réponse glycémique modifiée. Cela pourrait mener à de 

nouvelles possibilités et stratégies pour atténuer la réponse glycémique élevée de certains 

féculents. 

 

I I .  L'EFFET  DE  BOISSONS  COURAMMENT  CONSOMMÉES  (THÉ,  CAFÉ,  VIN,  JUS  DE  CITRON)  

ET  DE  CONDIMENTS  (VINAIGRE)  SUR  L'ACTIVITÉ  AMYLOLYTIQUE  DES  AMYLASES  SALIVAIRE  

ET  PANCRÉATIQUE,  SUR  LA  DIGESTION  DE  L ’AMIDON IN  VITRO   

 

Sur la base de nos premiers résultats, nous avons émis l'hypothèse qu'il y avait une forte 

probabilité que des facteurs influençant la performance amylolytique de l’α-amylase salivaire, 

autres que les propriétés structurelles d'un aliment, puissent se traduire en une réponse 

glycémique modifiée. C'est pourquoi nous avons mené des expériences préliminaires simulant 

la digestion oro-gastrique de pain blanc au blé, et de pâtes alimentaires (au blé et sans gluten) 

avec du jus de citron ou de l'eau. Comme prévu, le jus de citron a provoqué une acidification 

prématurée du chyme. Par conséquent, la digestion gastrique a été initiée à un pH inférieur au 

seuil d'inactivation de la α-amylase salivaire (< pH 3,5) et l'amylolyse a été complètement 

interrompue après la phase orale. La proportion d'amidon et oligosaccharides libérés a été 

significativement plus faible pour tous les aliments en présence de jus de citron, comme 

présenté dans la Figure 48. Un effet plus accentué a été observé avec le pain, pour lequel le rôle 

de l'amylase salivaire lors de la digestion gastrique est plus prépondérant, que pour les pâtes. 
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Des expériences ultérieures visaient à mieux comprendre ces mécanismes et à étudier l'impact 

d'autres aliments sur l'activité des amylases salivaires et pancréatiques.  

Du jus de citron, des thés, des cafés, des vins et des vinaigres ont été étudiés pour leurs capacités 

d'inhibition amylolytique avec des tests enzymatiques à pH neutre. Les résultats sont présentés 

dans la Figure 49. La réduction de l'activité amylolytique de la salive par les aliments à pH neutre 

a augmenté dans l'ordre suivant : cafés (5-10%), thés verts (20-45%) et noirs (30-70%) (Figure 

49A). Des niveaux similaires d'inhibition ont été observés pour l'activité amylolytique de la 

pancréatine dans chaque catégorie de produits (Figure 49B). Des niveaux similaires d'inhibition 

ont été observés pour l'activité amylolytique de la pancréatine dans chaque catégorie de 

produits (figure 6B). L'effet des aliments acides (vins, vinaigres et jus de citron) sur l'activité 

amylolytique de la salive a également été étudié à leur pH naturel (Figure 49A). Dans ces 

conditions, les aliments acides étudiés ont montré une capacité inhibitrice quasi totale (90-

100%). 

  

Figure 5- Surface sous les courbes de l'amidon (AUCStarch) et des oligosaccharides (AUCOligosaccharides) 

libérés lors de la digestion gastrique in vitro de pain blanc au blé et des pâtes alimentaires au blé 

(Pasta) et sans gluten (GF Pasta) avec de l'eau ou du jus de citron. Moyenne ± SD, 3 rpt. Les 

astérisques (*) indiquent des différences statistiquement significatives : * p < 0,05, ** p < 0,01, 

*** p < 0,001, **** p < 0,0001.  
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Sur la base de ces résultats, une nouvelle série d'expériences de digestion in vitro a été conçue 

pour évaluer l'impact de la présence d'aliments à fort pouvoir inhibiteur sur la digestion de 

l'amidon du pain et des pâtes. Des digestions in vitro de pain ont été reproduites pour simuler 

sa consommation avec de l'eau, du jus de citron et avec le thé noir ayant le plus fort pouvoir 

inhibiteur (thé I de la Figure 49A). Les résultats de ces expériences sont résumés à la Figure 52. 

 

Figure 6 - Impact des boissons et des condiments. Activité amylolytique (% du maximum) de la 
salive (A) et de la pancréatine (B) en présence d'eau distillée, de cafés, de thés verts et noirs, de 
vins, de vinaigres et de jus de citron (LJ) à leur pH naturel (barres colorées) et neutralisé (barres 
blanches). Des lettres différentes dans chaque catégorie de produits correspondent à des marques 
différentes. L'activité amylolytique maximale, mesurée avec de l'eau distil lée, a été de 345 ± 37 
U/mL pour la salive et de 24 ± 1 U/ mg pour la pancréatine. Moyenne ± SD, 3 rpt.  
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En présence de thé, l'hydrolyse de l'amidon en oligosaccharides a atteint un plateau inférieur 

d'environ 10% à celui observé avec l'eau pendant la phase gastrique. Pendant la phase 

intestinale, l'hydrolyse en oligosaccharides est restée limitée, stagnant à environ 50% de 

l'amidon total. L'impact limité du thé lors des expériences de digestion, comparé à la forte 

capacité inhibitrice observée avec les tests d'activité enzymatique, est très certainement dû aux 

différentes conditions employées dans ces expériences telles que le rapport amidon/thé 

supérieur. Comme l'effet du thé est, en partie, dû à une inhibition compétitive, il est très 

probable qu'il ait été partiellement inversé par la concentration plus élevée de substrat. Si l'on 

en juge par la plus faible proportion d'amidon hydrolysé en oligosaccharides dans la phase 

intestinale, il semble que le thé ait quelque peu limité les derniers stades de l'amylolyse, mais il 

reste à déterminer si cela suffit à produire un effet in vivo. 

 

En présence de jus de citron, l'hydrolyse en oligosaccharides a été totalement interrompue après 

la phase orale. Les résultats étaient en fait comparables à ceux obtenus lors d'expériences 

témoins sans amylase salivaire (données non présentées). Pendant la phase intestinale, 

l'hydrolyse en oligosaccharides est restée proche de celle obtenue en présence de thé, c'est-à-

dire légèrement inférieure au niveau observé avec l'eau.   

 

Dans l'ensemble, les résultats de nos expériences in vitro ont fourni une base biochimique 

robuste pour le développement de nouvelles stratégies qui pourraient être efficaces pour 

améliorer la réponse glycémique induite par les aliments riches en amidon. 
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Figure 7 - Digestion in vitro du pain. Oligosaccharides libérés au cours des digestions oro -

gastro-intestinales de portions égales de pain avec de l'eau () du thé () ou du jus de 

citron (). Le premier point de chaque courbe correspond à la fin de la phase orale et au 

début de la phase gastrique. Les phases gastrique et intestinale ont duré 120 min chacune. 

Toutes les valeurs sont moyenne ± SD, 3 rpt.  
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I I I .  TESTER  LES  STRATÉGIES  QUI  SE  SONT  MONTRÉES  EFFICACES  LORS  D'ÉTUDES  DE  

DIGESTION  IN  VITRO  CHEZ  L'HOMME  

L'objectif suivant était de tester ces stratégies dans le cadre d'une étude humaine, composée de 

deux parties, comme le montre la Figure 8. Dans les deux parties de l'étude, les volontaires ont 

consommé des portions égales de pain avec de l'eau (témoin), du thé noir ou du jus de citron. 

 

 

 

PA R T IE  1:  

L'inhibition des enzymes digestives qui participent à la digestion de l'amidon pourrait constituer 

une opportunité pour ralentir la libération du glucose de l'amidon et d'améliorer l'impact 

glycémique des aliments riches en amidon. Des approches diététiques simples consistant à 

associer ces aliments à des boissons ayant la capacité d'inhiber ces enzymes pourraient être une 

stratégie facile à mettre en œuvre.  L'objectif de cette partie des études chez l’homme était de 

tester l'impact de l'ajout de thé noir ou de jus de citron à un repas riche en amidon sur la 

glycémie postprandiale et sur la consommation énergétique chez les sujets sains. 

 

Une étude croisée randomisée a été menée. Des portions égales de pain (100 g) plus 250 mL 

d'eau, de thé noir ou de jus de citron ont été consommés au petit-déjeuner après un jeûne de 

10 heures dans un ordre aléatoire. Les concentrations de glucose dans le sang capillaire ont été 

auto-surveillées par piqûre de doigt à des moments prédéfinis pendant 180 minutes.  Dans cette 

partie de l'étude, les volontaires étaient libres de suivre leur quotidien normal pendant les 3 

Figure 8 - Récapitulatif schématique de l'étude humaine.  
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heures suivant la consommation du repas test. Après cette période, la consommation 

énergétique ad libitum a été évaluée. 

Les réponses glycémiques postprandiales suite à la consommation des repas associés à de l'eau, 

du thé et du jus de citron sont présentées à la Figure 58. Les données se rapportent à 17 

participants (les données d'un participant ont été exclues pour des problèmes de non-

conformité avec le protocole expérimentale). Il n'y a pas eu de différence significative dans les 

concentrations glycémiques à jeun entre les trois repas testés (p = 0,81). Aucune différence 

significative n'a été observée entre l'eau et le thé, mais la consommation de pain avec du jus de 

citron a entraîné une baisse de la glycémie, avec des différences statistiquement significatives 

entre 15 et 45 minutes. Le jus de citron a réduit de 33% (p = 0,03) les concentrations maximales 

de glucose dans le sang. De plus, il a aussi retardé significativement (P < 0,01) de plus de 30 min 

(78 contre 41 minutes, en moyenne) le temps pour atteindre le maximum de concentration de 

glucose dans le sang. La surface sous la courbe pour le repas de jus de citron a été 

significativement plus faible jusqu'à 90 min (p = 0,03), mais pas après 3 heures (p = 0,76), ce qui 

suggère une absorption retardée, plutôt qu'incomplète, du glucose du repas. En raison de la 

nature semi-contrôlée de cette étude, il est suggéré que la combinaison d'une boisson acide 

avec un repas riche en amidon pourrait être une stratégie efficace pour réduire la réponse 

glycémique aux aliments riches en amidon dans la vie quotidienne. 
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Les résultats obtenus avec le jus de citron concordent avec de nombreuses études cliniques 

portant sur l'effet d'autres aliments acides (notamment le vinaigre, le pain au levain et les 

conserves au vinaigre) sur la réponse glycémique aux aliments riches en amidon. D'après les 

articles de revue qui se sont intéressés à ce sujet, il semblait clair que le principal mécanisme 

était lié à l'acidité, bien que l'effet réel de l'acidité n'ait pas été identifié. L'effet sur les enzymes 

amylolytiques, en particulier l'amylase salivaire, a rarement été mentionné et une autre 

explication possible, bien que non encore totalement acceptée ni rejetée, a été avancée, à savoir 

le fait que l'acidité pourrait retarder la vidange de l'estomac. 

 

L'indice glycémique, les concentrations maximales de glucose et le temps pour atteindre le pic 

sont présentés dans le Table 12, ainsi que les changements correspondants sous forme de 

pourcentage de l'expérience témoin (repas avec de l'eau). Encore une fois, aucune différence 

n'a été trouvée pour aucun de ces paramètres entre l'eau et les repas de thé (0,66 ≥ P ≤ 0,96). 

Malgré l'absence de différences significatives au niveau de la valeur de l'indice glycémique (P = 

0,76), le jus de citron a permis d'abaisser de 33 % (P = 0,03) les concentrations maximales de 

Figure 9 – (A) Repas test. (B) Réponses glycémiques postprandiales. Changements incrémentiels ( Δ) 
moyens (±SEM) des concentrations de glucose en réponse à des quantités égales de glucides provenant 
d'un pain blanc au blé consommé avec soit de l'eau (), du thé () ou du jus de citron (). Les points 
pour lesquels des différences significatives ont été identifiées (ANOVA suivie d'un test-t par paires) sont 
identifiés par les symboles # et *. # indique une différence statistiquement significative entre le jus de 
citron et l'eau (P<0,01; P=0,051 entre le jus de citron et le thé). * indique des différences 
statistiquement significatives entre le jus de citron et les deux autres boissons, eau et thé, à 30 min (P 
< 0,0001 et 0,001) et à 45 min (P = 0,014 et 0,019). n = 17 adultes sains  

A B 
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glucose sanguin. De plus, il retarde significativement (P < 0,01) le temps nécessaire pour 

atteindre le pic glycémique, de plus de 30 min en moyenne (78 contre 41 min). 

 

Table 1 – Indice glycémique (IG), concentration glycémique maximale et temps pour atteindre 

le peak de glycemie après les repas tests composés de 100 g de pain blanc au blé et de 250 mL 

d'eau, de thé ou de jus de citron 

 

La consommation d'énergie ad libitum (kJ) après les repas d'eau, de thé et de jus de citron a été 

de 2051 ± 193, 1764 ± 216 et 2168 ± 182 (x ̄± SEM), respectivement. Ces résultats sont également 

présentés à la Figure 60. Les effets du repas (P = 0,34) et du jour de la session d'étude (P = 0,70) 

sur la consommation énergétique ont été statistiquement non significatifs (données non 

présentées). 

  Eau Thè Jus de citron 

IG 2 

 100 ± 9 107 ± 12 77 ± 7 

Variation %3 - 8 -23 

Pic  
mmol/L 2.7 ± 0.3 2.9 ± 0.2 1.8 * ± 0.3 

Variation %3 - 7 -33 

Temps pour 
atteindre le pic 

min 41 ± 4 43 ± 3 78 * ± 9 

Variation %3 - 5 90 
1Toutes les valeurs sont x ̄ ± SEM. Les valeurs à l'intérieur d'une même rangée identifiées par * sont 
significativement différentes (ANOVA suivie d'un test-t par paires) de celles du repas pain+eau. La 
concentration maximale de glucose dans le sang (P < 0,05) et le temps avant le pic (P < 0,01) ont été 
significativement plus faibles pour le jus de citron que pour l'eau et le thé. n = 17 adultes sains.  
2 Calculé à partir de la surface sous la courbe (0 à 120 min) et en utilisant le repas pain + eau comme 
référence. 

3 Variation exprimée en pourcentage de la valeur obtenue pour le repas de référence pain + eau. 

Figure 10 - Consommation ad libitum. Consommation énergétique (n=16, x ̄± SEM) 3 heures 

après un repas test composé de 100 g de pain blanc au blé et de 250 mL d'eau, de thé ou de 

jus de citron. 
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PA R T IE  2:  

L'objectif principal de la deuxième partie de l'étude chez l’homme était de déterminer si les 

mécanismes de vidange gastrique sont ou non les mêmes quand un repas de pain est associé à 

de l'eau, du thé ou du jus de citron. En utilisant les mêmes repas que dans la partie 1, la digestion 

gastrique a été étudiée par imagerie par résonance magnétique (IRM) lors d'une étude contrôlée 

et randomisée à laquelle 10 volontaires ont participé. Afin d'assurer la comparabilité avec les 

résultats précédents, des mesures de la glycémie ont également été incluses. Les réponses 

glycémiques obtenues ont été similaires à celles obtenues dans la première partie de l'étude. 

Comme on peut l'observer à la Figure 65, le contenu de l'estomac (orange) présentait 

suffisamment de contraste pour délimiter ses contours. Comme les sujets étaient allongés sur 

leur côté droit (en décubitus droite), le chyme était sur leur côté droit et l'air était confiné dans 

des "poches" au-dessus, sur leur côté gauche. Ainsi, sur les images, ce schéma apparait inversé 

et donc le chyme apparaît à gauche et l'air à droite. 
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Figure 11 - Exemples des images obtenues par résonance magnétique de la région abdominale 

d'adultes sains qui ont ingéré des quantités égales de pain blanc au blé, 20 petits pois et 250 mL 

d'eau (A), de jus de citron (B) ou de thé (C). Les sujets étaient allongés sur le côté droit et les 

images ont été extraites de scans effectués 30 à 45 minutes après le repas. Le repas / chyme 

apparaît dans l’estomac à gauche en différents niveaux de gris et l'air apparaît en noir du côté 

droit. Les boli sont visibles à l'intérieur du chyme, ils apparaissent plus foncés que la phase 

environnante, dispersés ou en agglomérats. La flèche bleue épaisse en haut à gauche indique la 

direction de la gravité.  
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Quel que soit le type de repas consommé (Figure 65) deux catégories de contenu peuvent être 

distinguées : (1) une phase plus solide composée de boli individuels ou d'agglomérats de boli et 

(2) une phase plus liquide contenant les boissons et les sécrétions gastriques et probablement 

des particules de pain. Les agglomérats de boli se sont concentrés près du côté droit de 

l'estomac en raison du positionnement des sujets, mais les boli individuels sont apparus quelque 

peu dispersés. Au fur et à mesure que la digestion progressait, les boli individuels semblaient 

être pour la plupart unifiés en agglomérats plus gros qui semblaient présenter des nuances de 

gris de plus en plus claires. (Figure 67). A la fin des sessions d'étude, le volume total de l'estomac 

avait été réduit et contenait surtout des sécrétions (qui apparaissent en blanc). 

 

En délimitant individuellement le chyme et l'air dans l'estomac, il a également été possible 

d'obtenir des reconstructions 3D qui illustrent la position relative et la proportion de chaque 

composant (comme le montre la Figure 66). Comme souhaité, l'air est resté confiné dans les 

régions gastriques supérieures pendant toute la durée du suivi par IRM. De plus, en suivant la 

taille des zones bleues et rouges (correspondant au chyme et à l'air), ces reconstructions 

indiquent également que le rapport air/chyme dans l'estomac augmente au fur et à mesure que 

la digestion avance. 

Figure 12 - Exemples des images obtenues par résonance magnétique de la région abdominale 

d'adultes sains qui ont ingéré 100 g de pain blanc au blé, 20 petits pois et 250 mL d'eau. Les 

images correspondent à des coupes axiales dans la même région anatomique et ont été extraites 

des scans anatomiques de volume effectuées 30, 45, 75, 105, 135 et 165 minutes après le début 

du repas. Le chyme apparaît à gauche dans l'estomac contenant des boli individuels ou des 

agglomérats de boli qui semblent plus foncés que le chyme environnant et l'air apparait noir sur 

le côté droit. Le sujet était allongé sur son côté droit. La flèche bleue en haut à gauche indique la 

direction de la gravité. 
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Les volumes postprandiaux du contenu gastrique sont présentés à la Figure 71.  

Les résultats obtenus avec les repas contenant de l'eau et du thé ont été similaires pour tous les 

paramètres étudiés. Le volume postprandial du contenu gastrique 30 min après le début du 

repas était environ 50% plus élevé lorsque le pain était consommé avec du jus de citron par 

rapport au repas d'eau (454,0 ± 18,6 vs 298,4 ± 19,5 mL, x ̄± SEM). Le taux de vidange gastrique 

global était également environ 50% plus rapide pour le jus de citron (1,8 ± 0,2 pour l'eau contre 

2,7 ± 0,1 mL/min pour le jus de citron, x ̄± SEM). Ces deux différences étaient statistiquement 

significatives avec P < 0,00001 et P < 0,01, respectivement. En effet, le taux de vidange gastrique 

(significativement plus élevé avec du jus de citron) semble avoir été ajusté pour assurer un taux 

d'apport nutritif au duodénum similaire à celui des autres repas. 

 

 

  

Time (min)    30 105 165 

Figure 13 - Exemple d'une reconstruction 3D de l'estomac. De gauche à droite, les images 

correspondent aux examens effectués 30, 105 et 165 minutes après le début du repas.  Les 

couleurs bleu et rouge illustrent la position et les volumes relatifs du chyme et de l'air, 

respectivement. 
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Les résultats de l'évaluation préliminaire des volumes des phases solides et liquides dans 

l'estomac sont présentés à la Figure 72. Les volumes des phases solides ont été très similaires 

pour les trois repas étudiés tout au long de la digestion. Les volumes de la phase liquide 

présentaient quelques différences. Pour l'eau et le thé, la phase liquide semble avoir eu un 

comportement similaire. Pour le repas de jus de citron, le volume de la phase liquide a eu 

tendance à être beaucoup plus élevé que dans les autres repas pendant la majeure partie de la 

période étudiée. Cependant, comme on peut l'observer, avec le jus de citron, le volume du 

contenu liquide a diminué à plus rapidement de sorte que, après 180 minutes, le volume 

gastrique restant était le même que pour les deux autres repas. 

 

 

 

Figure 14- Volume post-prandial du contenu gastrique. Volumes moyens (±SEM) après 

consommation de trois repas de volume égal contenant des quantités égales d'amidon 

provenant de pain et d'eau (), de thè () au de jus de citron ().  Le symbole * indique des 

différences significatives (ANOVA suivie d'un test-t par paires) entre le repas contenant du  jus 

de citron et les deux autres repas. n = 10 adultes sains.  
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Le volume de liquide plus élevé après le repas de jus de citron peut provenir d'un niveau plus 

élevé de sécrétions salivaires et/ou gastriques. De plus, une courte phase de latence 

immédiatement après la consommation du repas pourrait également avoir contribué à 

l'augmentation initiale du volume de liquide. Dans tous les cas, il est important de souligner 

qu'après 3 heures, les volumes gastriques étaient les mêmes pour tous les repas. Par 

conséquent, nos résultats n'appuient pas vraiment l'hypothèse selon laquelle les repas à faible 

pH atténuent la réponse glycémique aux repas riches en amidon en raison d'un ralentissement 

de la vidange gastrique. Ils sont plus conformes à l'idée que cet effet sur les concentrations de 

glucose dans le sang est, au moins en partie, une conséquence de l'état auquel le chyme arrive 

dans l'intestin grêle. Comme nous l'avons observé dans nos études in vitro, l'acidification 

précoce du chyme gastrique par le jus de citron, et l'inhibition prématurée de la α-amylase 

salivaire qui en résulte, auraient grandement réduit l'hydrolyse gastrique de l'amidon. Par 

conséquent, en contraste avec les autres repas, après le repas contenant du jus de citron, le 

chyme vidangé dans l'intestin grêle aurait eu une proportion plus élevée d'amidon pas- et/ou 

peu-hydrolysé, ce qui aurait exigé un travail d’hydrolyse supplémentaire pendant les étapes 

suivantes et retardé le relargage du produit final de la digestion, le glucose. 

  

Figure 15 - Estimation du volume postprandial des phases solide (lignes pleines) et liquide (lignes 

pointillées). Volumes moyens (±SEM, marqueurs SEM plus petits que la taille du symbole pour 

la phase solide) après consommation de trois repas de volume égal contenant la même quantité 

de pain et le même volume d'eau (), de thè () ou de jus de citron (). 

Solid 

Liquid 
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CONCLUSIONS  E T  PERSPECTIVES  

 

Ce travail a clarifié des aspects importants du processus digestif de l'amidon, un nutriment clé 

de la nutrition humaine. Il confirme le rôle prépondérant joué par l’HSA lors de la digestion 

gastrique in vitro et la littérature montre que son rôle in vivo semble tout aussi important. De 

plus, en présence d’HSA, des courbes quasi-superposables ont été obtenues quelle que soit la 

cinétique de réduction du pH gastrique imposée. Ceci, révèle la grande efficacité de cette 

enzyme et justifie la nécessité de réévaluer sa contribution au processus digestif de l'amidon.  

Différentes stratégies d'atténuation du taux d'hydrolyse de l'amidon ont aussi été testées in 

vitro, permettant d'élaborer des stratégies diététiques visant à améliorer la réponse glycémique 

provoquée par ces aliments, qui ont ensuite été testées dans une étude humaine. Les résultats 

de la première partie de cette étude confirment que l'abaissement du pH d'un repas riche en 

amidon peut atténuer significativement la réponse glycémique. En raison de la nature semi-

contrôlée de cette partie de l’étude, nos résultats suggèrent fortement que cette stratégie 

simple et efficace pourrait facilement être adoptée dans les repas de la vie quotidienne. De plus, 

à la suite d'une étude IRM réalisé dans la deuxième partie de cette étude, avec les mêmes repas, 

la réduction de la réponse glycémique due à l'acidité des repas semble provenir (au moins en 

partie) de l'inhibition de la α-amylase salivaire, et non d'un ralentissement de la vidange 

gastrique.  

 

En conclusion, ce travail a mis en évidence le rôle de l’α-amylase salivaire dans la digestion des 

aliments riches en amidon, et a fait émerger de nouvelles perspectives pour le développement 

de stratégies visant à améliorer la réponse glycémique aux aliments riches en amidon. Une 

stratégie simple basée sur l'abaissement du pH d'un aliment ou d'un repas riche en amidon (en 

réduisant le pH de l’aliment ou du repas, en combinant des aliments riches en amidon avec des 

boissons acides par exemple) pourrait constituer une approche simple et efficace pour atténuer 

la réponse glycémique aux repas riches en amidon. 
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L IST OF ABBREVIATIONS  

 

AUC  Area under the curve of glucose concentration versus time 

eSGF   Simulated Gastric Fluid electrolyte solution 

eSIF  Intestinal Fluid electrolyte solution 

GF Gluten-free 

GI  Glycemic Index 

GL  Glycemic load 

HSA  Human salivary α-amylase 

MRI  Magnetic Resonance Imaging 

RDS Rapidly digested starch 

RS Resistant starch 

SDS Slowly digested starch 
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INTRODUCTION 
 

All of us spend over three quarters of our lives in the postprandial state (Vors, Nazare, Michalski, 

& Laville, 2014). However, if the link between the fasting metabolism and health has been 

extensively investigated, less attention has been dedicated to the study of the postprandial 

state. A PubMed search for articles containing the terms “fasting” or “postprandial” in the title 

reveals the current gap between studies of these two states (Figure 16). Although research on 

the postprandial state has drawn increasing attention since the 1970’s, at the time of writing 

this manuscript, there are still twice as much articles addressing fasting-related subjects. 

 

The postprandial state is a dynamic state resulting from the ingestion and digestion of a meal, 

and lasting 4 to 5 hours depending on the type of nutrient. It is distinguished from the post-

absorptive state (which corresponds to the 6h period following the postprandial state) and the 

fasted state (which follows the post-absorptive state, 10-12 hours after the last meal). These 

states succeed and can overlap each other (Vors, Nazare, Michalski, & Laville, 2014).  

If we think about it, our skill of precisely sourcing each nutrient from the miscellanea in our 

plates is, by itself, a fascinating field of research. In our current society, the consumption of 3 to 

4 meals per day means that we rarely leave the postprandial state (Vors, Nazare, Michalski, & 
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Figure 16 - Published research about the fasting and postprandial states. Results 
of a PubMed search for articles containing the term "fasting" () (total of 12131 
articles) and/or "postprandial" () in the title (total of 6054 articles). Retrieved 
on September 10 th 2018. 
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Laville, 2014), and the mismatch between nutrient need and supply has placed diet as the 

second-leading global risk factor for deaths (Gakidou, et al., 2017). It has also become clear that 

not only the type and quantity of nutrients ingested are important, but also their rates of 

digestion and absorption. This is valid for proteins, for instance, as their resistance to digestion 

and digestion rate can influence the mechanisms that trigger food allergies (Bøgh & Madsen, 

2016) and the efficiency of post-prandial protein metabolism (Dangin, Boirie, Guillet, & 

Beaufrère, 2002; Koopman, et al., 2009; Walrand, et al., 2016). The same holds true for 

carbohydrates, with a growing body of evidence relating increased postprandial glucose levels 

with an increased risk of type-2 diabetes (Bhupathiraju, et al., 2014), coronary heart disease in 

women (Dong, Zhang, Wang, & Qin, 2012; Mirrahimi, et al., 2012), breast cancer (Mullie, 

Koechlin, Boniol, Autier, & Boyle, 2016), as well as obesity related complications (Schwingshackl 

& Hoffmann, 2013). 

Carbohydrates play a key role in human nutrition, supplying up to 45% of the energy 

requirements in developed countries, and up to 85% in developing countries. They  can be found 

in the form of sugars (monosaccharides and disaccharides), starch or non-starch polysaccharides 

(Stylianopoulos, 2012). Starch is the most important, abundant, and digestible polysaccharide. 

It is exclusively made up of glucose residues, and accounts for 20 % to 50 % of the total energy 

intake (Stylianopoulos, 2012), therefore playing a major role in the post-prandial glycaemic 

responses elicited by our diets. 

THE  OVER A LL  A I M OF  T H I S  PHD  PRO JE CT WA S :  

T O  S T U D Y  T H E  D I G E S T I O N  O F  S T A R C H - R I C H  M E A L S  W I T H  D I F F E R E N T  

D I G E S T I O N  K I N E T I C S  I N  V I T R O  A N D  I N  H U M A N S   

More precisely, my work has mostly focused on the following two objectives: 

I .  Re-evaluate the contribution of salivary α-amylase to the hydrolysis of starch-rich 

meals using semi-dynamic in vitro digestions.  

I I .  Test some of our working assumptions in humans and assess some physiological 

responses associated to the consumption of starch-rich meals through blood 

glucose measurements, visual analogue scales, and magnetic resonance imaging 

(MRI). 
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THE  PHD  PR OJE CT  –  CO LLABO RA T IONS  A ND FUND IN G  

This PhD was a multidisciplinary project carried out at the GMPA research unit (Génie et 

Microbiologie des Procédés Alimentaires, UMR782 INRA - AgroParisTech, Thiverval-Grignon, 

France) in collaboration with the IR4M research unit (Imagerie par Résonance Magnétique 

Médicale et Multi‐Modalités, UMR8081 Université Paris Sud ‐ CNRS, Orsay, France), the SHFJ 

(Service Hospitalier Frédéric Joliot, Orsay France) and the Avicenne Hospital - CEFRED (Centre 

d'exploration fonctionnelle et de rééducation digestive, Service de gastro-entérologie, Hôpital 

Avicenne, Bobigny Cedex, France). My PhD was financed by the 2015 IDEX (Excellence Initiative) 

of the Paris-Saclay University. 

During my master studies in Food Innovation and Product Design I completed my final internship 

in the GMPA lab, studying the influence of bread formulation and production process on its 

digestion profile. This work was the starting point of the PhD and part of the results presented 

in the first article in this manuscript were obtained during my internship and then completed 

during the PhD.   

ORG ANI ZA TI ON OF  T HE  M ANUS CRI PT  

This manuscript is organized into 4 parts: 

I. State of the art – a bibliographic review addressing key fundamental aspects of the 

subject of study namely: an overview of the properties of starch, its digestion 

process, the tools that can be employed in the study of digestion (in vitro and in 

vivo), with a focus on MRI studies, and an overview of the postprandial impact of 

starch rich foods. In order to draw the reader’s attention to specific topics that were 

studied within this PhD project, paragraphs that contain important related 

information were identified with a vertical banner as exemplified below: 

Paragraph text 
 

II. In vitro studies – this section is divided into 4 chapters, each consisting of a research 

article reporting the results of in vitro experiments that were conducted in 

preparation of the in vivo studies. 

III. In vivo studies – this section starts with a brief description of the preparatory steps 

that preceded the clinical study and of the configuration of this study. The 

presentation of the results is then divided into two chapters.  

IV. Conclusions and perspectives. 
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1. THE PROPERTIES OF STARCH AND STAPLE STARCH-RICH FOODS -  AN 

OVERVIEW 

1.1. COMPOSITION OF STARCH  

Starch is made up of two types of polymers, amylose and amylopectin. Both polymers can be 

found in cereals and other common foods, with amylose comprising 15-20% and amylopectin 

80-85% of total starch (as reviewed by Stylianopoulos, 2012). The structural differences between 

these two polymers (Figure 17) contribute to significant differences in starch properties and 

functionality. Amylose is considered an essentially linear polymer composed almost completely 

by α-1,4-linked glucose residues (D-glucopyranose). It often has a helical structure. The interior 

of its helix is hydrophobic and therefore has the ability to form complexes with free fatty acids, 

fatty acid components of glycerides, some alcohols and iodine. Another well-known property of 

amylose is its capability of forming a gel after the starch granule has been cooked. Amylopectin 

is much larger and branched. It is composed of α-1,4-linked glucose residues in linear segments 

and α-1,6-linked glucose residues at branch points.  (as reviewed by Tomas & Atwell, 1999).  

  

Amylose Amylopectin 

Figure 17 - Basic structural motifs of amylose and amylopectin and extension of the basic motifs 
to macromolecular structures. Extracted from (Pérez & Bertoft, 2010). 
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1.2. STRUCTURAL CLASSIFICA TION OF STARCH  

1.2.1.  NAT IVE  ST AR CH AND  ST AR CH GRANU LE S  

Amylose and amylopectin do not exist free in nature, they occur as components of aggregates 

called starch granules. Even though these molecules are always the main constituents of starch 

granules, there is great diversity in the structure and characteristics of the native granules from 

different botanical sources. The arrangement of amylose and amylopectin within the starch 

granule is not yet fully understood, but, it is known that their configuration in the native granule 

is not random. (as reviewed by Tomas & Atwell, 1999) 

Native starch granules are semi-crystalline. They consist of concentric rings alternating 

amorphous regions, largely composed of amylose and the branch-sections of amylopectin, and 

semi-crystalline regions, formed from the linear and more closely packed sections of 

amylopectin. Granules from cereal starches have surface pores that open onto channels with 

diameters that range from 5 to 400nm. (as reviewd by Butterworth, Warren, & Ellis, 2011) An 

illustration of this organization is presented in Figure 18. 

 

Figure 18 - Schematic representation of the several levels of ultrastructure of starch. (a) 
Ultrathin section of a waxy maize starch granule treated to exhibit the concentric rings 
alternating semi-crystalline and amorphous regions. (b) Alternation of semi-crystalline and 
amorphous rings; (c) clustered model of amylopectin. Extracted from (Pérez & Bertoft, 2010) 
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1.2.2.  NON-N AT IVE  S T ARC H  

Most of the starch consumed by humans will have been submitted to a cooking step and/or 

other processes capable of disrupting, to a greater or lesser extent, the native structure of the 

starch granule (Butterworth, Warren, & Ellis, 2011). 

G E L A T I N I Z E D  S T A R C H  

When heated in the presence of water, starch undergoes an irreversible order-disorder 

transition called gelatinization. Various changes can be observed in the starch granule during 

this process. Globally, the granules swell, absorb water, lose crystallinity, and leach amylose. (as 

reviewed by Donald, 2004) 

Initially, swelling can be reversible, but as heating proceeds and the native granule structure is 

progressively altered, this process becomes irreversible. As temperature rises, the starch 

polymers undergo strong vibratory motion breaking intermolecular bonds and allowing their 

hydrogen bonding sites to engage additional water molecules further promoting the separation 

of the starch chains. (as reviewed by Cauvain & Young, 2007). Water uptake is initiated in the 

amorphous regions, and since amylopectin molecules in the edges of crystalline regions bond 

with the constituents of the amorphous regions, the swelling of the amorphous areas imposes 

a stress upon the amylopectin crystallites. Ultimately, this will cause the dissociation of the 

corresponding amylopectin double helixes, further impairing the granule integrity. (as reviewed 

by Donald, 2004) Continuous heating and water penetration result in an increased randomness, 

eventually causing complete loss of crystallinity (as reviewed by Cauvain & Young, 2007). 

R E T R O G R A D E D  S T A R C H  

Starch retrogradation starts upon cooling of a gelatinized system. It is a process of structural 

change during which the starch molecules that have been dispersed during gelatinization 

randomly re-associate to form double helix crystalline structures. Both amylose, which tends to 

re-crystallize faster, and amylopectin retrograde. (as reviewed by Cauvain & Young, 2007) 

1.3. STARCH IN FOODS  

Starch is the main nutrient in common staple foods. Wheat flour, barley flour, rice, oats and 

potatoes are composed of 68%, 56%, 53%, 30% and 15% starch, respectively (CIQUAL, 2017). 

Wheat derived foods such as bread and pasta are major sources of starch in our diets. The study 

of the dietary habits of over half a million European adults has revealed that these foods can 

contribute with up to 32.6% of the total carbohydrate intake (Wirfält, et al., 2002). Traditional 

wheat bread and pasta products share the same basic ingredients (water and wheat flour), and 

therefore the same main caloric nutrients (starch and protein). However, the different 
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processing steps that are employed in producing the ready-to-eat final products, result in two 

types of foods with clear structural differences. 

The main constituent of flour is starch. It accounts for approximately 65% of the total materials 

in traditional wheat flour (14% moisture basis) and plays a crucial role in bread’s structure, 

physical and nutritional properties and quality (as reviewed by Cauvain & Young, 2007). In wheat 

flour, the size of the starch granules varies from 1-45 µm and two types of shapes, round and 

lenticular, can be found (as reviewed by Tomas & Atwell, 1999). Wheat starch comprises about 

23% amylose and 73% amylopectin (equivalent to 15% and 50% of the flour weight, 

respectively), and appears predominantly in the intact granular form with a high degree of 

crystallinity (as reviewed by Cauvain & Young, 2007). 

1.3.1.  STAR C H I N  W HE AT  BRE AD  

Starch is the main component of bread, a loaf of bread consists of about 50% starch, 40% water 

and 7% protein. The main ingredients of bread are flour and water, with small quantities of fat, 

salt, possibly dough improvers and yeast. (Cauvain & Young, 2007) 

During the course of bread production, starch undergoes several changes. During the baking 

step gelatinization occurs but the small quantity of water available in the dough limits the 

swelling of starch granules, which therefore retain their identities as discrete particles by the 

end of this step. Nonetheless, upon swelling, the linear amylose fraction becomes more soluble 

and diffuses into the aqueous phase, forming a concentrated solution. Immediately after baking, 

when bread starts to cool, the amylose molecules in this solution rapidly retrograde, re-

associating by hydrogen bonding, to set up an insoluble gel that contributes to the loaf structure. 

(as reviewed by Cauvain & Young, 2007) 

At a macroscopic level, bread is characterized as a solid foam. At a molecular level, the solid 

continuous phase is composed in part of an elastic network of cross-linked gluten molecules 

and, in part leached starch polymers, both non-complexed and complexed with polar lipid 

molecules. The discontinuous phase is made up of entrapped, gelatinized, swollen, deformed 

starch granules. These starch granules are partly fused with neighbouring granules. (J. Gray & J. 

Bemiller, 2003; Hug-Iten, Handschin, Conde-Petit, & Escher, 1999). The microstructure of bread 

dough and baked bread crumb is presented in Figure 19. 
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Figure 19 -Light micrograph of a cross-sections of proofed dough and bread crumb stained with 
Light Green and Lugol's solution. the native starch granules stain slightly violet, amylose and 
amylopectin stain blue and brown/violet, respectively, with iodine the prot ein fraction 
appears green as coloured with Light Green (1) Proofed dough (bar = 25 μm), the starch 
granules show the characteristic shape of native wheat starch granules. (2) Bread crumb at 
two different magnifications (a) (bar = 50 μm) starch granules ap pear swollen and elongated, 
but still retain their granular identity, (b) (bar = 10 μm) shows that starch granules partly fused 
with neighbouring granules (Hug-Iten, Handschin, Conde-Petit, & Escher, 1999). 

 

1.3.2.  STAR C H I N  W HE AT  P AST A  

According to the French table of food composition (2017), cooked wheat pasta is composed of 

about 68% of water, 22% of starch and 4% of protein. The interior of raw spaghetti strands 

present a homogeneous somewhat porous structure where starch granules (with a visibly 

retained shape) embedded in a protein network. Cooked wheat spaghetti exhibits a more 

heterogeneous microstructure where three concentric zones containing starch that is 

progressively more gelatinized from the interior to the surface of the strand have been identified 

(Cunin, Handschin, Walther, & Escher, 1995; Fardet, et al., 1998). The most inner layer contains 

un- or partially- gelatinized starch granules and a continuous dense protein network still remains 

(Cunin, Handschin, Walther, & Escher, 1995). The progression of starch gelatinization is 

prevented in that inner layer because of a limited water absorption in the centre of the strand. 

The most outer layer consists of a film that contains small openings and cracks. It is made of 

protein and starch that are no longer discernible from one another with greatly swollen starch 

granules and leached starch,  in close interaction with a diffuse coagulated protein matrix (Cunin, 

Handschin, Walther, & Escher, 1995; Fardet, et al., 1998). The middle layer consists of an 

intermediate zone with incompletely swollen starch granules, no leaching and a dense protein 
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network  (Cunin, Handschin, Walther, & Escher, 1995). The microstructure of raw and cooked 

spaghetti is visible in Figure 20. 

 

 

 

2. STARCH IN HUMAN NUTRITION –  D IGESTION AND PHYSIOLOGICAL RESPONSE 
Because starch is exclusively made up of glucose residues, and accounts for 20 % to 50 % of the 

total energy intake (Stylianopoulos, 2012), starch-derived glucose is a major determinant of the 

post-prandial blood glucose concentrations (postprandial glycaemia) elicited by our diets. 

Maintaining plasma glucose concentration within narrow limits is essential to provide energy 

and prevent damages to our organs and tissues. Additionally, a growing body of evidence is 

relating diets that elicit elevated postprandial responses with increased risk of type-2 diabetes, 

cardiovascular disease and some types of cancer (Bhupathiraju, et al., 2014; Mirrahimi, et al., 

2012; Mullie, Koechlin, Boniol, Autier, & Boyle, 2016; O’Keefe & Bell, 2007). Accordingly, there 

is scientific evidence to support that an optimum diet for health requires consideration of the 

glycaemic impact of eaten foods in preference to consideration of carbohydrate content alone 

(Blaak, et al., 2012; Livesey, Taylor, Hulshof, & Howlett, 2008).  

Blood glucose concentrations are normally maintained between approximately 3.3 and 8.3 

mmol/L throughout the day. This is ensured by a dynamic regulation mechanism. After a meal, 

Figure 20 - Micrographs of cross-sections of spaghetti. (1) Scanning electron micrograph, dry 
spaghetti. Homogeneous and porous structure with starch deeply embedded in a protein matrix is 
observed (2) Light micrographs, pasta cooked for: (A) 5 min; (B) 13 min (al dente time). Cooked 
pasta was stained with Light Green and Lugol's solution. Three concentric zones are visible.  
Obtained from  (Cunin, Handschin, Walther, & Escher, 1995) . 

1 2 2B 
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blood glucose concentration increases. In healthy persons, the peak postprandial concentration 

is usually reached within the first hour and seldom exceeds 8.3 mmol/L. In response to this rise, 

the pancreas increases its secretion of insulin and suppresses the release of glucagon. As a result, 

glucose uptake by the muscle and fat tissues is promoted, and glucose release by the liver is 

limited. Therefore, after consumption of a starch-rich food, blood glucose concentration is the 

result of (1) the influx of starch-derived glucose, (2) the appearance of endogenously produced 

glucose, and (3) the rate of glucose removal from the blood stream. The influx of glucose derived 

from the meal, is generally considered the main factor influencing postprandial glucose 

response. (Priebe, Eelderink, Wachters-Hagedoorn, & Vonk, 2018). The cause-effect relationship 

has been well summarized as follows: “the degree to which blood glucose loading exceeds blood 

glucose clearance determines the acuteness of the net increase in blood glucose 

concentrations”(Mishra, Hardacre, & Monro, 2012).  

Major determinants of the rate of glucose absorption are the gastrointestinal transit kinetics, as 

well as the rates of starch hydrolysis and starch-derived glucose absorption (Priebe, Eelderink, 

Wachters-Hagedoorn, & Vonk, 2018). The rate of starch hydrolysis appears to be a predominant 

factor. Indeed, the positive relationship between the rate at which foods’ starch is being 

hydrolysed in controlled in vitro conditions, and the degree to which they raise blood glucose 

has been repeatedly acknowledged (Goñi, Garcia-Alonso, & Saura-Calixto, 1997; Yvonne 

Granfeldt, Hagander, & Björck, 1995; D. Jenkins, et al., 1982). It is therefore clear that attention 

should not only be given to the starch content in our diets, but also to its susceptibility to 

digestive enzymes. 

 

2.1. D IGESTION -  AN OVERVIEW WITH A FOCUS ON STARCH HYDROLYSIS  

The following sections present a brief overview of the digestive process with a focus on aspects 

that are relevant for the comprehension of the research work that is presented in the 

subsequent parts of this manuscript. The oral and gastric phases are described in more detail 

than the later stages of digestion, and more attention is given to the process of starch release 

and hydrolysis than to other nutrient sources. Some specific features associated to the digestion 

of breads and pastas, which have been studied during the thesis, are also provided. 

2.1.1.  ORA L PHASE  

Oral food processing can be divided into 4 steps: (1) transportation of the ingested food from 

the front of the mouth to the teeth; (2) breakdown of food particles through crushing/grinding 

action of the teeth; (3) as particles are broken down to appropriate size, they are gradually 
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moved to the back of the oral cavity and manipulated with the tongue to form a bolus; (4) 

transportation of the bolus to the back of the tongue in preparation for swallowing (Bornhorst 

& Singh, 2012). During this process, ingested food is not only reduced in size but also lubricated 

with saliva. Saliva secreted in the oral cavity plays a key role in making chewed food particles 

adhere to each other as they begin to form a bolus (Bornhorst & Singh, 2013). 

Moreover, it is in the oral cavity, as saliva is mixed with the food particles, that the enzymatic 

degradation of starch is initiated by salivary α-amylase (HSA), the main enzyme in saliva. This 

enzyme breaks down amylose and amylopectin into maltose, maltotriose and α-limit dextrins 

by cleaving their α-1-4 glycosidic bonds in (Bornhorst & Singh, 2012).  

Researchers who have studied the oral phase of white-wheat bread digestion have observed 

that chewing times range between 18 and 41 seconds (Hoebler, Devaux, Karinthi, Belleville, & 

Barry, 2000; Jourdren, et al., 2016), with an average of 27-28 s for 3 g of bread servings (Hoebler, 

Devaux, Karinthi, Belleville, & Barry, 2000). By the end of this process, salivary impregnation is 

about 220 g/kg of fresh bread consumed, and chewed bread particles have no clearly defined 

shape with diameters bi-modally distributed around 30 and 620 µm (range: 5-1500 µm) 

(Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000; Hoebler, et al., 1998). The smaller particles 

correspond to starch granules and the larger to fragments of the protein network (Hoebler, et 

al., 1998). 

Investigations of the oral processing of 5.4-g servings of pasta (spaghetti and tortiglioni, with 

similar dry weight as 3 g of bread) have revealed that mastication times tend to be shorter and 

saliva impregnation to be lower than for bread: 19-20 s of chewing time and 39 to 70 g of saliva 

per kg of pasta. The characteristics of pasta boluses appear to be influenced by the shape of 

pasta and particle size tends to be higher than for bread, with characteristic sizes between 

approximately 1 to 5-7 mm (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000).  

Specific characteristics of saliva before (basal) and after (activated) chewing of bread and pasta 

are presented in Table 2, showing significant differences in salivary flow and osmolarity 

(Hoebler, et al., 1998). 
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Despite its short duration, the oral processing of bread results in about 31% of starch granules 

being released from the gluten network (and therefore more susceptible to enzymatic action), 

and in the hydrolysis of 13% of bread starch into oligosaccharides. For pasta, the lower salivary 

impregnation and the higher particle size are less favourable to amylolysis. Therefore, hydrolysis 

is limited mostly to the surface of particles and results in the hydrolysis of about 9% of the total 

starch into oligosaccharides. (Hoebler, et al., 1998) 

 

2.1.2.  GAST RI C  D I GES TI ON AND  E MP TY ING  

When they are swallowed, the food boli formed in the mouth reach the stomach via the 

oesophagus. The gastric phase of digestion has been less studied than the oral phase due to the 

limited accessibility. However, expanding knowledge on this digestive step is essential to assess 

the bioavailability of nutrients in the gastrointestinal tract. (Kong & Singh, 2008) 

 

Four anatomic regions can be distinguished in the stomach: fundus, body, antrum and pylorus 

(Figure 21). The term proximal stomach is often used in reference to the fundus and body 

regions, and distal stomach is used in reference to the antrum and pylorus. (Kong & Singh, 2008) 

 

 

 

 

 

 

 SALIVA BREAD COOKED SPAGHETTI  

OUTFLOW 
(G/MIN)  

Basal 0.9 ± 0.1 0.8 ± 0.1  
Activated 1.3* ± 0.1 1.1*± 0.1  

PH 
Basal 7.1  ± 0.1 7.1± 0.1  

Activated 7.4  ± 0.1 7.4± 0.1  

OSMOLARITY  
(MOSMOL/KG)  

Basal 66.3 ± 4.5 61.4± 3.0  
Activated 80.8* ± 5.7 59.3* ± 2.7  

AMYLASE 
ACTIVITY  
(ΜKAT/L) 

Basal 3122  ± 5.14 4587 ± 737  

Activated 3500  ± 823 3983 ± 647  

Asterisk (*) denotes statistically significant different from basal saliva for 
a given parameter, p < 0.05. 

 

Table 2- Characteristics of saliva (mean ± SEM) before (basal) and after 
(activated) chewing starch-rich foods (Hoebler, et al., 1998).  
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Figure 21 - Diagram of the stomach showing the different regions (Kong & Singh, 2008) 

 

The main function of the stomach is to store the food ingested during a meal and to regulate its 

release into the duodenum (M. E. Smith & Morton, 2011) but also to churn and mix the food 

with gastric secretions forming a multiphase slurry called chime (Kong & Singh, 2008; M. E. Smith 

& Morton, 2011). Additionally, the stomach has also range of other functions (M. E. Smith & 

Morton, 2011): 

- exocrine: secretions of digestive juices, collectively known as gastric juice, into the 

stomach lumen, 

- paracrine: mainly through the secretion of histamine that stimulates gastric acid secretion, 

- endocrine: the major endocrine secretion is gastrin, an hormone which acts both locally 

on the stomach smooth muscle and mucosa to stimulate gastric motility and acid 

secretion, and distally on the intestines, pancreas and liver.  

In the fasted state, resting gastric volume is close to 20 mL (Grimm, et al., 2018), and the pH is ≤ 

2 (Dressman, et al., 1990; Gardner, Ciociola, & Robinson, 2002; Kalantzi, et al., 2006; Malagelada, 

Go, & Summerskill, 1979; Troost, Steijns, Saris, & Brummer, 2001). During consumption of a 

meal, the stomach expands to accommodate the boluses that enter the stomach and the gastric 

juice that is secreted. The volume expansion is adjusted as a function of the gastric contents 

(Kwiatek, et al., 2009) and it is this flexibility that confers the stomach its reservoir function (Kong 

& Singh, 2008). Depending on the properties of the meal, postprandial pH increases to the range 

of 4.5 to 7 (Dressman, et al., 1990; Gardner, Ciociola, & Robinson, 2002; Kalantzi, et al., 2006; 

Malagelada, Go, & Summerskill, 1979; Troost, Steijns, Saris, & Brummer, 2001). 
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Mixing of gastric contents can result in the formation of a homogeneous mass or in the 

formation of layers (Mackie, Rafiee, Malcolm, Salt, & van Aken, 2013; Marciani, et al., 2013). The 

occurrence of layering effects depends on the properties of the meal. It is possible to distinguish 

at least 3 behaviors: non-dissociated boluses that gather in the lower part of the stomach (Figure 

22A), separation of high water from high fat phases (Figure 22B), and sedimentation of food 

particles (Figure 22C) (Mackie, Rafiee, Malcolm, Salt, & van Aken, 2013; Marciani, et al., 2013). 

Simultaneously, the pH is lowered and food keeps being broken down both physically and 

chemically, due to the peristaltic movements of the stomach walls and presence of gastric 

secretions.  

 

Two key components of gastric juice secreted into the stomach are gastric acid, and digestive 

enzymes (human gastric lipase and pepsin) (Rumsey, 2005).  

The gastric acid (HCl) has a maximum concentration of 160 mmol/L (pH 0.8) (Koziolek, Garbacz, 

Neumann, & Weitschies, 2013). Its secretion causes acidification of the gastric contents, and the 

resulting pH reduction kinetics is dependent on the buffering capacity of the meal. It has been 

observed that it can take anywhere from 60 to 200 min to reach pH ≤ 2 (Dressman, et al., 1990; 

Gardner, Ciociola, & Robinson, 2002; Kalantzi, et al., 2006; Malagelada, Go, & Summerskill, 1979; 

Troost, Steijns, Saris, & Brummer, 2001). Typical examples of gastric pH reduction kinetics are 

presented in Figure 23A for a liquid and a solid meal. 

The gastric lipase has an optimal pH at 5.4 and is therefore more active during the first half of 

gastric digestion. It initiates the hydrolysis of ingested lipids, with extents up to about 10 to 25% 

depending on the meal and lipid types (Carriere, Barrowman, Verger, & René, 1993). The gastric 

C 

Figure 22 - Examples of MRI scans of the abdominal region showing intra -gastric layering 
effects. The gastric region is contoured by a white line in (A) and (B) and identified by white 
arrows in (C). In (A) it is possible to observe individual boluses of cheese tha t appear as dark 
regions. In (B) the separation of two liquid phases is visible with aqueous and high fat layers 
that appear as bright and darker regions, respectively. Figure (C) illustrates the layering of a 
semi-solid rice pudding meal resulting in the formation of a particulate sediment (darker layer 
at the bottom) below a more homogeneous, higher water content phase (brighter layer at the 
top). (A) and (B) were obtained from (Mackie, Rafiee, Malcolm, Salt, & van Aken, 2013), (C) was 
obtained from (Marciani, et al., 2013). 
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protease, pepsin, is responsible for a limited extent of protein hydrolysis, typically up to 10% of 

the peptide bonds (Norton, Wallis, Spyropoulos, Lillford, & Norton, 2014). It is secreted into the 

lumen in an inactive form (pepsinogens) which is then activated in the presence of HCl (Rumsey, 

2005).  HCl  has a double action, it causes proteins to unfold or uncoil due to the breakage of 

hydrogen and electrostatic bonds, and enables the activation of two pepsin molecules (S. 

Gropper & J. Smith, 2013; Piper & Fenton, 1965). Human pepsin starts being active below pH 5.5 

and exhibits maximum activity at pH 2 (Piper & Fenton, 1965). The products of gastric proteolysis 

consist of a mixture of large polypeptides, oligopeptides and only few free amino acids (S. 

Gropper & J. Smith, 2013). 

During gastric digestion, starch hydrolysis by salivary amylase can continue until the gastric acid 

penetrates the food bolus and lowers the pH sufficiently to inactivate the enzyme (S. Gropper & 

J. Smith, 2013). This occurs at pH values ranging from less than 3.0 and up to 4.0 both in vivo 

and in vitro, depending on factors such as the type of meal (M. Fried, S. Abramson, & J. H. Meyer, 

1987). Considering the gastric acidification rates reported above, reaching this inactivation 

threshold might take well more than one hour. Accordingly, data from human studies show that 

HSA can remain active in the stomach long after the short oral processing phase, and can even 

contribute to about 14% of the total amylolytic activity at the small intestine stage over a 3h 

post-prandial period (M. Fried, S. Abramson, & J. H. Meyer, 1987). This is also consistent with 

another human study conducted with a liquid test meal showing that gastric pH can be as high 

as 5.0 at half-emptying time (Figure 23B) (Carrière, Renou, Ville, Grandval, & Laugier, 2001). 

These data clearly indicate that HSA can be responsible for hydrolysing an important fraction of 

starch before, and even after, the chime is emptied from the stomach. An interesting work from 

the early 20th century, also conducted in humans, led to the conclusion that up to 76% of the 

starch in mashed potatoes and 59% of that in bread is hydrolysed into maltose by HSA in the 

stomach (Bergeim, 1926). Since no other amylase is present at this stage, only that of salivary 

origin can be responsible for the enzymatic hydrolysis of starch during gastric digestion 

(Bornhorst & Singh, 2012). Nonetheless, these works seem to have been forgotten, or missed, 

within the scientific community, considering that the extent of HSA’s contribution to starch 

digestion remains unclear (Butterworth, Warren, & Ellis, 2011) and that the final digestive stage 

(which occurs in the small intestine) is often considered of higher importance (des Gachons & 

Breslin, 2016).  
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Figure 24 - Postprandial volume of gastric contents after a solid meal (dashed line) and a 
homogenized meal (full line) of equivalent nutrient content. Mean ± SEM, n=6. Obtained from  
(Malagelada, Go, & Summerskill, 1979). 

 

 

 

Gastric emptying is a gradual process that is influenced by both the physical and chemical 

properties of the meal. Regarding the physical properties of the meal, key aspects include the 

state of the meal (liquid vs. solid) (Marciani, et al., 2013; Siegel, et al., 1988) and the size of food 

particles (Olausson, et al., 2008; Vincent, et al., 1995). Typical examples of gastric emptying 

patterns obtained with liquid and solid meals are presented in Figure 24.  

  

A B 

Figure 23 – Postprandial intragastric pH. (A) - Gastric pH after a solid meal (dashed line) and a 
homogenized meal (full line) of equivalent nutrient content. Mean ± SEM, n=6.  (Malagelada, Go, 
& Summerskill, 1979) (B) Variations in the pH of the gastric contents after the ingestion of the 
liquid test meal as a function of gastric emptying. Experimental values from ten individual 
experiments () and model (full line) (Carrière, Renou, Ville, Grandval, & Laugier, 2001) . 
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Generally, it has been observed that the liquid phase is emptied faster than the solid phase 

(Marciani, et al., 2013; Siegel, et al., 1988), and that particles are usually emptied with fluids 

when they have been degraded to a diameter of about 2 mm or less  (S. Gropper & J. Smith, 

2013). Nonetheless, even for particles smaller than 2 mm, variations in particle size appear to 

influence the rate of gastric emptying (Vincent, et al., 1995). Additionally, for large particles (> 2 

mm), increased resistance to fracture (breaking strength > 0.65N) has also been linked with a 

delayed exit from the stomach (Marciani, Gowland, Fillery-Travis, et al., 2001). Other physical 

properties such as meal viscosity (Marciani, et al., 2000) and volume (Kwiatek, et al., 2009) are 

of minor relevance. The chemical properties of meals, however, appear to exert a predominant 

impact, particularly the nutrient density. Overall, it seems that the stomach adapts to the 

physical and chemical properties of the meals to maintain a constant rate of nutrient delivery to 

the small bowel (Calbet & MacLean, 1997; Hunt, Smith, & Jiang, 1985; Kwiatek, et al., 2009).  In 

this context, it is caloric density that appears most relevant, while the nature of calories seems 

to play a minor role (Calbet & MacLean, 1997).  

During my PhD we have gathered gastric emptying data from numerous studies. A plot of gastric 

emptying, expressed in calories per minute as a function of caloric density of the meal, is 

presented in Figure 25 to illustrate this effect: regardless of meals properties, gastric emptying 

rate fall between 1.5 and 3 kcal per min for almost all meals. A total of 15 studies were included 

in this analysis. They cover a wide range of physical and chemical meal properties as well as 

methods for gastric volume determination (Cecil, Francis, & Read, 1999; French & Read, 1994; 

Fruehauf, et al., 2009; Grimm, et al., 2018; Jones, et al., 1997; Kunz, Feinle, Schwizer, Fried, & 

Boesiger, 1999; Kwiatek, et al., 2009; Kwiatek, et al., 2006; Lavin, French, & Read, 2002; Mackie, 

Rafiee, Malcolm, Salt, & van Aken, 2013; Marciani, Gowland, Spiller, et al., 2001; Mourot, et al., 

1988; K. Murray, et al., 2014; Toepfer, et al., 1999; Vesa, et al., 1997; Vesa, Marteau, Briet, 

Boutron-Ruault, & Rambaud, 1997). We did not apply any filter in this selection although we 

excluded studies that resorted to invasive methods to monitor gastric volumes.  

An interesting description of the process of gastric emptying was presented by the team of 

Kwiatek (Kwiatek, et al., 2009). Their results appeared to suggest that the early phase of gastric 

emptying provides a meal sample to the small intestine in conditions (amount and speed) 

determined by the meal volume. This would influence the small intestine’s feedback response 

so that, after a short delay, subsequent nutrient delivery is adapted as a function of the caloric 
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density of the emptied chime (i.e. a greater volumic emptying flux for chime with lower caloric 

density). 

 

A brief overview of some of the findings of researchers who assessed the gastric emptying and 

the pH during digestion of starch-rich meals can be found in Table 2.  

 

2.1.3.  IN TEST IN A L D I GES TI ON  

The key functions of the small intestine are the hydrolysis and absorption of nutrients. This organ 

is over 6 m in length and has a luminal diameter of approximately 4 cm. Starting from the pyloric 

region, three regions are distinguished: the duodenum (first 20 cm), the jejunum (approximately 

2.5 m), and the ileum. (Rumsey, 2005) 

As the chime reaches the duodenum, the pH of the digested material is neutralized quickly by 

the secretions coming from the Brunner’s glands (located in the duodenum) and the pancreas.  
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Figure 25 - Emptying rate in kcal/min plotted as a function of caloric density of the 
meal. Results from 15 studies investigating different meals with distinct physical and 
chemical properties and using non-invasive methodologies to determine gastric 
volume. (Cecil, Francis, & Read, 1999; Feinle, Kunz, Boesiger, Fried, & Schwizer, 1999; 
French & Read, 1994; Fruehauf, et al., 2009; Grimm, et al., 2018; Jones, et al., 1997; 
Kwiatek, et al., 2009; Kwiatek, et al., 2006; Lavin, French, & Read, 2002; Mackie, Rafiee, 
Malcolm, Salt, & van Aken, 2013; Marciani, Gowland, Spiller, et al., 2001; Mourot, et 
al., 1988; K. Murray, et al., 2014; Toepfer, et al., 1999; Vesa, et al., 1997; Vesa, 
Marteau, Briet, Boutron-Ruault, & Rambaud, 1997). 
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Table 3- Summary of findings on the GER and pH variation after consumption of bread-rich meals 

 

Secretions from Brunner’s gland have a pH of approximately 8.2 to 9.3. (S. Gropper & J. Smith, 

2013). Pancreatic juice is a solution of sodium bicarbonate containing lipolytic, proteolytic and 

amylolytic enzymes (Rumsey, 2005). Pancreatic lipase is the main source of lypolytic activity in 

the small intestine and its action is supported by bile salts, which emulsify dietary lipids and 

facilitate their absorption at the water-oil interface. Pancreatic proteases (mostly trypsin and 

chymotrypsin) and α-amylase are the proteolytic and amylolytic enzymes that act in the 

Test meal Measured 
parameter  and 
method 

Results 
(Source) Composition Macronutrients 

1 cup of tea +  
15 g sugar + 
70 g white bread 

(not available) 

Gastric pH using a 
radiocapsule 
ingested with the 
test meal 

Gastric pH range after test meal 
First min.: 4.0 - 5.0; at 30 min.: 
1.6 - 2.5  
1-1.5h: 1.3 - 1.7;  
1.5-3h: 1.0 - 1.5 
(Dedlovskaya, 1968) 

170 g hamburger + 2 
slices of bread + 57 g 
hash brown potatoes + 1 
tbsp each of ketchup and 
mayonnaise + 28 g each 
of tomato and lettuce + 
227 g milk 

1000 kcal 
(macronutrient 
profile not 
available) 

Gastric pH 
monitored with a 
radiocapsule 

Gastric pH after test meal: 
First min.: 5 
28 min.: 4 
56 min.: 3 
107 min.: 2 
(Dressman, et al., 1990) 

125 g steak + 200-250 g 
boiled potatoes + 200-
250 g vegetables + 50 g 
salad; 200 mL dessert; 
200 mL water 

(not available) 

Gastric pH using a 
pH recording 
system with 
eletrodes 

Gastric pH after test meal: 
First min.: 4.5 
1h: ≈3.5 
2h: ≈1.5 
(Gardner, Ciociola, & Robinson, 
2002) 

155 g whole meal barley 
bread + 8.8 g butter + 
18.9 g cheese; 250 ml 
water; 150 ml coffee or 
tea 
 

Carbohydrates 
50 g 
Protein 15 g 
Fat 12 g 

Antral cross-
sectional area 
using  
ultrasonography 

Median antral cross sectional 
area (mm2): 
0 min: 257, 15 min: 973 , 30 min: 
766 ; 
105 min: 355 ; 120 min: 340 
Half gastric emptying time: 54 
min. 
(Darwiche, et al., 2001) 

150 g whole-meal rye 
bread + ham + 300 ml 
fun light fruit drink 

Carbohydrates 
63 g 
Protein 13 g 
Fat 5 g 

Antral cross-
sectional area 
using  
ultrasonography 

Median antral cross sectional 
area (mm2): 
15 min: 660 , 90 min: 416; 
(Hlebowicz, et al., 2009) 

150 g white bread + ham 
+ 300 ml light fruit drink 

Carbohydrates 
52 g 
Protein 14 g 
Fat 0 g 

Antral cross-
sectional area 
using  
ultrasonography 

Median antral cross sectional 
area (mm2): 
15 min: 963 , 90 min: 523; 
(Hlebowicz, et al., 2009) 

190 g whole meal bread 
+ 34 g raspberry jam; 100 
g orange juice 

Carbohydrates 
98 g 
Protein 22 g 
Fat 6 g 

Gastric volumes 
with MRI 

Half gastric emptying time: 132 
min 
Baseline gastric volumes at 270 
min 
(Marciani, et al., 2013) 
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intestinal lumen. The role of these enzymes is to complete, almost entirely, the hydrolysis of 

nutrients, so that they are ready to be absorbed at the intestinal wall.  

Similarly to salivary amylase, pancreatic α-amylase hydrolyses the α-1-4 glycosidic bonds in the 

amylose and amylopectin molecules, but cannot cleave the α-1-6 bonds at branch points in 

amylopectin (Lentle & Janssen, 2011). The products of starch digestion in the small intestine 

lumen are a mixture of maltose, maltotriose and α-limit dextrins (Lentle & Janssen, 2011). α-

limit dextrins are resistant to α-amylase action because they are made of 3 to 4 glucose units 

that contain α-1,6 glycosidic bonds that were located at branch points in the original starch 

polysaccharides (McGuire & Beerman, 2013). Therefore, starch digestion is not completed in the 

lumen, the final step of this process occurs along the intestinal wall. 

The other proteolytic and amylolytic enzymes present during intestinal digestion (namely 

peptidases and disaccharides) are not free in the intestinal lumen, they are fixed to the 

enterocytes membranes on the side that faces the interior of the small intestine (Rumsey, 2005). 

The cell membrane area where these enzymes are located exhibits numerous protrusions, 

termed microvilli, that extend from the cell into the interior of the small intestine (increasing 

surface area and consequently promoting efficiency of the digestive process) creating what is 

called the “brush border”. Thus, enzymes located here are referred to as “brush border 

enzymes”. It is here that the final step of starch hydrolysis takes place. Maltose and maltotriose 

are hydrolysed by maltase, and α-limit dextrins by α-dextrinase, into the same final product: 

glucose(S. Gropper & J. Smith, 2013). 

Glucose is then absorbed into the blood through the intestinal mucosa due to two important 

mechanisms: active transport (which requires energy input) and facilitated transport (which     is 

triggered when the glucose concentration in the lumen exceeds the blood concentration) (S. 

Gropper & J. Smith, 2013). The starch that is not digested in the small intestine (resistant starch) 

ends in the large intestine where it will be fermentated by the intestinal microbiota (Higgins, 

2004).  

A schematic view of the digestive process of digestible starch is presented in Figure 26. 
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B. Digestion of amylose 

and amylopectin 

continues in the 

stomach due to salivary 

Amylose: Digestion of amylose continues in the 

stomach until gastric acid penetrates the bolus and 

the pH lowers enough to inactivate salivary α-

amylase. 

Amylose: Digestion of amylopectin continues in the 

stomach until gastric acid penetrates the bolus and 

the pH lowers enough to inactivate salivary α-

amylase. 

 

Figure 26- Schematic view of starch digestion. This scheme is originally from (S. Gropper & J. Smith, 
2013), the description of the processes that occur in the stomach was modified according to other 
bibliographic sources.  
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2.2. STARCH DIGEST ION RATE  –  INFLUENCING FACTORS  

The rate of starch digestion can vary greatly between different foods (Goñi, Garcia-Alonso, & 

Saura-Calixto, 1997; D. Jenkins, et al., 1982). Given the relationship between the starch digestion 

kinetics and the glycaemia response, extensive work has been dedicated to the understanding 

of the factors that influence starch digestion rate and to the development of strategies to slow 

it down. The differences between the structural properties of foods can have a major influence 

because of the potential effects on the accessibility of digestive enzymes. Additionally, there are 

also factors that can have a direct impact on digestive enzymes (ex.: the presence of inhibitors 

or the pH). 

 

2.2.1.  THE  S TRUC TUR A L P ROPE R T IES  OF  FOOD S  

The structural properties of foods can be examined in numerous ways and at different levels 

from the molecular scale (ex.: level of starch gelatinization) to the macroscopic scale (ex.:  

particle size or porosity of foods).  

2.2.1.1.  EXAM P LES  AT  A  M OLE CU LAR TO  M IC ROS CO PI C  S CA LE  

Amorphous areas of the starch granules are generally degraded more easily by α-amylases than 

crystalline areas (Tomas & Atwell, 1999). Overall starch digestibility is favoured when (Tester, 

Karkalas, & Qi, 2004): (a) it is in an amorphous state (especially physically damaged or 

gelatinized); (b) freely accessible to digestive enzymes rather than entrapped in food particles; 

(c) not associated with other molecules forming associations or complexes (such as amylose-

lipid complexes); (d) not chemically modified in a form that prevents it from acting as a substrate 

for amylases.  

N A T I V E  S T A R C H  

The native starch granules are semi-crystalline due to their high degree of organization. This, in 

association with the presence of a protein and lipid coating at the granule surface, increases the 

resistance to α-amylase action; this explains the slow digestion rate of native starch. Different 

studies have shown that native starch granules appear to be digested from the inside out. This 

can be explained by the presence of surface pores, which are entrances of channels that reach 

the near centre (hilum) of the granules, and allow the penetration of water and enzymes into 

the centre of the granules (Mishra, Hardacre, & Monro, 2012; Naguleswaran, Li, Vasanthan, 

Bressler, & Hoover, 2012). An example of the progression of hydrolysis of wheat starch granules 

is illustrated in Figure 27. 
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G E L A T I N I Z E D  A N D  R E T R O G R A D E D  S T A R C H  

As mentioned before, starch gelatinization can be controlled and involves a dramatic loss of 

structural organization parallel to an increase of amorphous material. As shown in Figure 28, as 

the swelling and dispersion of starch polysaccharides progresses with the level of gelatinization, 

the starch therefore becomes increasingly more accessible and less resistant to α-amylase 

action. (Mishra, Hardacre, & Monro, 2012) 

During retrogradation, amylose chains tend to re-crystalize in an almost irreversible way, hence 

becoming again very resistant to amylase digestion. Amylopectin’s retrogradation is slower and 

more reversible, so that its digestion by amylase is retarded less than in the case of retrograded 

amylose (Mishra, Hardacre, & Monro, 2012). 

 

  

Figure 27 - Scanning electron micrographs of wheat starch granules hydrolyzed by granular starch 

hydrolyzing enzyme at 55 ◦C for 0 h (A) and 1 h (B), and at 30 ◦C for 24 h (C). Obtained from 
(Naguleswaran, Li, Vasanthan, Bressler, & Hoover, 2012)  

Figure 28 - Effect of structural change in starch granules as a function of hydration during 
cooking (10 min, 95 °C), on in vitro digestion. Digested starch as a % of total starch for seven 
starches at progressively increasing degrees of hydration (A. Maize; B. Hig h amylose maize; C. 
Mazaca; D. Pea; E. Potato; F. Rice; G. Tapioca; H. Wheaten corn flour. Obtained from(Mishra, 
Hardacre, & Monro, 2012) 
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O C C L U D E D  S T A R C H  

In the mature endosperm of most cereals, the cell walls are largely destroyed and the 

endosperm becomes a protein matrix with implanted starch granules. The density and sealing 

effect of the protein matrix reduces water uptake during cooking preventing the swelling of the 

starch granules, which in turn impairs accessibility to digestive enzymes. In species with hard 

endosperm, the protein matrix is almost continuous, whereas in others, with a soft endosperm, 

there are discontinuities through which water and enzymes can penetrate into the endosperm. 

As a result, soft endosperm wheat variants hydrate quicker and present a greater internal 

surface area of starch for water absorption and enzymatic digestion than hard varieties. (Mishra, 

Hardacre, & Monro, 2012) 

C O M P L E X E S  

Starch may also form complexes with other molecules that may lead to a structure associated 

with a reduced digestibility. An example is amylose-lipid complexes, formed when starch is 

gelatinized in the presence of lipids, which are considered as crystalline and therefore exhibit a 

lower digestion rate than amylose (but greater than retrogradated amylose). (Mishra, Hardacre, 

& Monro, 2012) 

2.2.1.2.  EXAM P LES  AT  A  M AC ROS C OPI C  SC ALE  

Food processing can modify the structure of the food matrix in numerous ways. This, in turn, 

can influence the digestibility of foods by, for example, modulating the accessibility of the 

enzymes to their substrates. Numerous criteria can be used to categorize foods according to 

their structural properties. An interesting relationship between a global qualitative classification 

(according to the level of structuration and porosity of foods) and the digestibility of starch has 

been reported (Mishra, Hardacre, & Monro, 2012). These researchers have quantified the 

proportions of rapidly digestible starch, slowly digestible starch and resistant starch in a range 

of foods divided into four categories: (A) little structured porous foods (ex.: extruded and puffed 

cereal products), (B) somewhat structured, minimally processed foods (ex.: rolled oats), (C) 

dense structure, low porosity foods (ex.: pasta), and (D) mostly intact, with starch in native tissue 

structure (ex.: pulses). Their results show that highly processed, little structured and porous 

foods such as extruded or puffed cereals contain the highest proportion of rapidly digestible 

starch. This proportion decreases with increased structuration and/or density, and they 

observed the lowest rapidly digestible starch content for foods in which starch is mostly found 

in native food structures.  
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2.2.2.  D IET AR Y  FA CT ORS  T HAT C AN D IR EC T LY INF LUEN CE E NZY MES INVO LVED IN  S T A RC H 

DIGES TI ON  

A simple dietary strategy to achieve a lower glycaemic response is to pair starch-rich foods, or 

meals, with food products that can somehow exert an inhibitory effect on amylases.  Indeed, a 

similar type of approach been considered effective in contexts where glycemia management 

represents an even bigger challenge than in healthy populations. An example is the treatment 

of type 2 diabetes via the administration of acarbose, an inhibitor of amylolytic enzymes and 

brush-border glucosidases in the digestive tract (Salvatore & Giugliano, 1996). Some beverages 

or condiments that are commonly consumed could provide such an opportunity.  

Some interesting results have indeed been found in vitro for coffee and tea. For coffee, some 

substances isolated from coffee beans have been reported to exert an inhibitory effect on 

pancreatic amylase (Funke & Melzig, 2005; Narita & Inouye, 2009). Teas also might be a suitable 

option as some of them can inhibit salivary (Y. Hara & Honda, 1990; Kashket & Paolino, 1988; 

Zhang & Kashket, 1998) and pancreatic (Kwon, Apostolidis, & Shetty, 2008; Quesille-Villalobos, 

Torrico, & Ranilla, 2013; Striegel, Kang, Pilkenton, Rychlik, & Apostolidis, 2015) α-amylases in 

vitro. The same has been observed for tea extracts and purified tea polyphenols (Fei, et al., 2014; 

Forester, Gu, & Lambert, 2012; K. Hara, et al., 2012; Miao, Jiang, Jiang, Zhang, & Li, 2015; Sun, 

Gidley, & Warren, 2018; Sun, Warren, Netzel, & Gidley, 2016; Yilmazer-Musa, Griffith, Michels, 

Schneider, & Frei, 2012).  

However, results of in vivo studies with teas and coffees is unclear. Consumption of caffeinated 

coffee for example might in fact be linked with impaired blood glucose management (Moisey, 

Kacker, Bickerton, Robinson, & Graham, 2008). Moreover, investigations on the effect of tea 

seem to show different effects. In some studies, it has been reported that polyphenols and fibre 

present in fruits, together with a cup of green tea, have a pronounced lowering effect on 

postprandial glucose and insulin to bread (Nyambe-Silavwe & Williamson, 2016). In others, as it 

can be observed in Figure 29, consumption of green tea with a bread-based meal for breakfast, 

for example, appears to have no glucose lowering effect (Josic, Olsson, Wickeberg, Lindstedt, & 

Hlebowicz, 2010), and adding green-tea extracts to a starch based confection produced similar 

results (Sapper, et al., 2016). 

 Other studies have investigated the effect of condiments. Cinnamon, for example has been 

reported to attenuate the postprandial glycaemic response to instant cereal (Magistrelli & 

Chezem, 2012). Another example is cayenne chili, which appears to have no effect on the 
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glycaemic response but can improve postprandial insulinaemia (Ahuja, Robertson, Geraghty, & 

Ball, 2006). 

 

One particular strategy that has been gaining increased attention is pairing a starch-rich 

food/meal with an acidic food (ex.: vinegar). Research in this area has consistently shown that 

this enables to reduce the glycaemic response in normal subjects by 20% to 50% (Brighenti, et 

al., 1995; Carol S Johnston & Buller, 2005; Carol S Johnston, Steplewska, Long, Harris, & Ryals, 

2010; Leeman, Östman, & Björck, 2005; H. Liljeberg & Björck, 1998; Elin Östman, Granfeldt, 

Persson, & Björck, 2005; Sugiyama, Tang, Wakaki, & Koyama, 2003). The same holds true for 

processes that result in the acidification of the food itself (ex: sourdough bread fermentation) 

(Bo, et al., 2017; Lappi, et al., 2010; H. Liljeberg & Björck, 1996; H. G. Liljeberg, Lönner, & Björck, 

1995; Maioli, et al., 2008; Scazzina, Del Rio, Pellegrini, & Brighenti, 2009). Additionally, this type 

of strategy has also proved effective for insulin resistant (Carol S Johnston, Kim, & Buller, 2004), 

and diabetic subjects (Liatis, et al., 2010; Mitrou, et al., 2010). In Figure 30, two examples are 

presented to show the attenuation of the glycaemic response in healthy individuals (Figure 30A) 

and in individuals with type-2 diabetes (Figure 30B). 

The consistency of the results obtained in different studies by different research teams has 

drawn the attention of different research teams who have investigated the possible underlying 

mechanisms.   

Figure 29 – Effect of green tea on postprandial blood glucose concentrations.  Mean (± SEM) 
incremental postprandial plasma glucose concentrations after ingestion of a meal containing 

bread and tea (•) and a reference meal without tea (▲).* Indicates significant difference 
between the meals (n = 14). Obtained from (Josic, Olsson, Wickeberg, Lindstedt, & Hlebowicz, 
2010)  
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A number of reviews have been published on this subject and, as illustrated in Figure 31, several 

mechanisms have been proposed, including a decreased gastric emptying rate or a suppression 

of the activity of intestinal disaccharides, but no clear conclusions have been reached so far 

(Gobbetti, Rizzello, Di Cagno, & De Angelis, 2014; Lim, Henry, & Haldar, 2016; Petsiou, Mitrou, 

Raptis, & Dimitriadis, 2014; Poutanen, Flander, & Katina, 2009). There are, however, some 

factors that have been identified as essential to preserve this effect, particularly the low pH and 

the presence of starch. Whenever vinegar was compared with a neutral-pH equivalent, the 

effect on the glycaemic response was lost, as it can be observed in Figure 30A (Brighenti, et al., 

1995; Carol S Johnston, Steplewska, Long, Harris, & Ryals, 2010). The same was observed when 

starch was replaced with dextrose (Carol S Johnston, Steplewska, Long, Harris, & Ryals, 2010). 

Relating these key factors with some of the possible underlying mechanisms, it could be possible 

that acidity delays gastric emptying (Hunt & Knox, 1962, 1969, 1972), but research is not 

conclusive (Brighenti, et al., 1995; H. Liljeberg & Björck, 1996, 1998), and this would not explain 

the loss of effect when starch was replaced with dextrose. Also, since the pH of the chime is 

rapidly neutralised in the duodenum (section 2.1), it seems unlikely that the effect of low pH 

meals would derive from a limitation of intestinal enzymes.  

Interestingly,  an impairment of amylolysis by HSA in the early stages of digestion (oral and 

gastric phase), which are the steps of starch digestion most likely to be altered by meal acidity, 

is hardly addressed (Gobbetti, Rizzello, Di Cagno, & De Angelis, 2014; Lim, Henry, & Haldar, 2016; 

A B 

Figure 30 –Effect of meal supplementation with vinegar on plasma glucose concentration.  (A) 
Results obtained with a group of healthy subjects following consumption of a meal without 
vinegar (, full line), with vinegar (, dotted line) or with sodium acetate (, dashed line). Mean 
± SEM, n=5. (B) Results obtained with a group of subjects with type-2 diabetes following 
consumption of a high glycemic index meal without vinegar (full line) or with vinegar (dashed 
line). *Indicates statistically significant differences between treatments. Mean values, n=8.  
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Poutanen, Flander, & Katina, 2009), or is not even considered (Lim, Henry, & Haldar, 2016; 

Petsiou, Mitrou, Raptis, & Dimitriadis, 2014), as shown in Figure 31. As explained previously 

(section 2.1), this enzyme initiates starch digestion during mastication and can continue active 

in the stomach until it is inactivated due to increasing acidity. Because postprandial gastric pH 

usually rises to 4.5 – 6.7 and is decreased at a steady pace (taking 75-107 min to reach pH ≤ 2) 

(Dressman, et al., 1990; Gardner, Ciociola, & Robinson, 2002; Malagelada, Go, & Summerskill, 

1979), there is a large time window during which HSA can continue active, possibly hydrolysing 

important starch fractions as previously reported (Bergeim, 1926). It would therefore seem 

reasonable to hypothesize that a premature acidification by vinegar would influence the 

performance of HSA, slowing down amylolysis and ultimately attenuating postprandial 

glycaemia. Overall, further work is therefore needed to pinpoint the mechanism(s) behind the 

effect of lowering the pH of starch-rich meals. This could indeed open new opportunities to 

improve the glycaemic impact of starch-rich diets. 

 

  

Figure 31 - Proposed underlying mechanisms of the effects of vinegar on glucose 
metabolism. Extracted from (Petsiou, Mitrou, Raptis, & Dimitriadis, 2014). 
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3. IN VIVO  APPROACHES TO STUDY DIGESTION 

3.1. ANIMAL MODELS   

Different animal models have been used to expand our knowledge on food digestion. Using 

animals as human models has even been considered crucial to study extremes conditions, used 

for instance for the discovery of essential nutrients, or tolerance levels for excessive nutrient 

intake (Baker, 2008). They have been, and still are, very useful in the study of nutrient 

interactions, bioavailability, or fate within the host. 

Depending on the objectives of each study, different species can be considered. The rat 

(Cameron-Smith, Collier, & O'dea, 1994; Sigalet & Martin, 1999; Ton, Chang, Carpentier, & 

Deckelbaum, 2005) and dog (Graham, Maskell, Rawlings, Nash, & Markwell, 2002; S. Murray, et 

al., 1999) are examples of some species that have been commonly used. But other than 

monkeys, it is pigs that are often considered as the best animal model of humans for digestion 

studies (Miller & Ullrey, 1987; Tumbleson, 1986). Among the different species of pigs, miniature 

pigs (weighing between 20 and 30kg) are among the most commonly used models because less 

space is required, and lower amounts of feed and test product are needed (Gaudichon, et al., 

1994; Le Feunteun, et al., 2014; Moeller, Sewing, Geisbe, & Schmolke, 1974). 

3.2. HUMAN STUDIES  

The study of digestion in the human body is essential for an integrated comprehension of all the 

processes involved, the responses triggered and their consequences. This is, however, a complex 

task due, in one part, to the difficulty of access to the digestive system, and, in the other, to the 

miscellany of physical (ex.: rheological properties, liquid vs. solid phase, molecular interactions) 

and chemical (ex.: molecular and macromolecular composition, water content and minerals) 

properties of the meal which in turn determine the characteristics of the bolus and chime 

(Gaudichon, 2013). There are various methods available, each with its specific applications and 

limitations, advantages and disadvantages. Knowing them is important when selecting the tools 

for a human study, combining them is key for achieving a thorough and integrated 

understanding of the digestive system.  

A summary of existing methods, as well as their applications, advantages and disadvantages or 

difficulties is presented in Table 3.  It is possible to classify the available methods into two main 

categories, direct and indirect. Direct methods are those that enable the evaluation of the 

specific parameter(s) under study. In contrast, indirect methods are based on the analysis of a 

given tracer for the parameter under study (ex.: accessing gastric emptying through the rate of 

arrival of a given substance to the bloodstream) (Gaudichon, 2013; Kim, Myung, & Camilleri, 

2000). Additionally they can be invasive (requiring intubation for example) or non-invasive 
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(through medical imaging). Finally, it is important to highlight that in most cases these methods 

can also be adapted to animal studies even though some of them require anesthetizing the 

animals. 

For the particular purpose of the study of gastric function in the postprandial state, different 

mechanisms may be investigated, including intragastric meal distribution and gastric 

accommodation, motility, and emptying. As shown in Table 3, there are at least 6 methods that 

can be employed for such purposes. Two of them (Paracetamol absorption test, and stable 

isotope breath test) can be specifically used in gastric emptying studies. They have the important 

advantages of avoiding exposure to radiation or being of relatively simple application, but they 

appear to have only been validated for one type of meal (solid or liquid) and the gastric emptying 

is assessed through an indirect measurement. The four other methods can provide direct 

measurements of parameters related with gastric function but some present significant 

limitations. It is the case of intubation techniques, which can provide very precise information 

about the digestibility of nutrients, but which are also invasive and might thus cause discomfort 

to the participants and alter the gastric function. The three remaining methods are non- invasive, 

and mostly based on direct measurements. These are Scintigraphy, Ultrasonography and 

Magnetic Resonance Imaging (MRI). Scintigraphy is considered as the golden standard for gastric 

function studies. The fact that this technique has a high temporal resolution and that it allows 

to monitor gastric emptying of the liquid and solid components of a meal, independently, are 

among its strongpoints. Interesting results were reported by the team of Siegel and colleagues, 

who studied the gastric emptying patterns of a meals composed water with either an egg 

sandwich or chicken liver (Siegel, et al., 1988). The liquid (water) and solid (egg or liver) 

components of the meals were labelled differently, and this enabled the researchers to study 

what they have defined as the biphasic nature of gastric emptying. They have observed that 

emptying of water started immediately and at a fast rate, while the solid phases had initial lag 

phases, ranging from approximately 30 min for the egg sandwich up to almost 1h with the liver 

meal. After 30 min of digestion, at least 90% of the solid phase was still in the stomach, while 

only about 50% of the liquid phase remained. Their results are presented in Figure 32. 

 

 

 

 



I State of the art  

34 
 

Table 4 - Summary of approaches employed in the study of digestion.  

Approach 

Applications 

Procedure/Assessed 
parameters 

Advantages 
Disadvantages/ 
Difficulties 

Ileostomized patients 
Analysis of intestinal 
effluents 

Sampling of intestinal effluents is 
possible in patients who have 
undergone ileostomy (ileum is 
diverted through an opening in 
the abdomen)  

Direct access to the 
chime 
Acceptable 
correlation with 
healthy individuals 

Patients suffer from 
digestive pathologies: 
results not  fully 
representative of 
healthy individuals 

Gastroduodenojejunal intubation 

Characterization of 
digestion products 
along the digestive 
tract  
 
Motor function  

Intubation via the nasogastric 
passage enables the collection of 
samples from precise locations 
(ex.: stomach, ileum, jejunum) 
 
Tubes equipped with a barostat 
and polyethylene balloon can be 
used to monitor reflex  motor 
function in the proximal stomach 

Direct access to the 
chime 
Considered the only 
method to obtain 
precise digestibility 
information 

Invasive, causes 
discomfort  
May impact motor 
activity and intragastric 
meal distribution 
Intubation required 
Difficulty to estimate 
dilution by secretions 
(some methods 
require successive 
removal and 
reintroduction of the 
chime) 

Scintigraphy 

Gastric emptying and  
contraction patterns 
Intragastric meal 
distribution  
Gastrointestinal 
transit 

Based on the ingestion of a meal 
containing a radio-isotope and 
subsequent detection of 
radioactivity using a gamma-
camera 

Gold standard in 
the evaluation of 
gastric motor 
function 
Independent 
monitoring of liquid 
and solid transit 

Exposure to 
radioactivity – not 
eligible for studies 
without a direct 
benefit for the 
individual (France) 

Ultrasonography 

Gastric emptying 
Antral wall motion 
Transpyloric flow 
Gastric 
accommodation 

Changes in the diameter of 
specific stomach regions 
(relative to anatomic landmarks) 
and volume determinations, 
advanced techniques enable 3D 
analyses 

No exposure to 
radiation  
Safety 
Availability 
Cost 
 

May be technically 
suboptimal in the 
presence of air 
Impractical for 
prolonged 
observations 
Needs a skilled 
observer  

Magnetic Resonance Imaging (MRI) 

Intragastric  meal 
accommodation, 
dilution by secretions 
and layering, 
detection of boluses 
and food particles  
Gastric emptying, 
and motility 
Small intestine water 
content 

After ingestion of a meal 
(containing a tracer element or 
not) the study region is scanned 
as a succession of individual 
planes, called “slices”, each of 
which constitutes an 
independent image in the final 
scan.  Various image processing 
techniques can then be 
employed according to the aim 
of the study. 

Currently the 
imaging technique 
with the most 
potential 
applications 
No exposure to 
radiation  
Safety  

High cost and low 
availability  
Requires skilled 
operators 
Image analysis is 
complex and time-
consuming 
Positioning may alter 
intragastric meal 
distribution 

Information obtained from (Caride, et al., 1984; Gaudichon, 2013; Kim, Myung, & Camilleri, 2000; Marciani, Gowland, 
Fillery-Travis, et al., 2001; Marciani, Gowland, Spiller, et al., 2001; Marciani, et al., 2013). 
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Table 3 - Summary of approaches employed in the study of digestion (continued). 

 

Approach 

Applications 

Procedure/Assessed 
parameters 

Advantages 
Disadvantages/ 
Difficulties 

Postprandial blood concentration of a given nutrient 

Digestion kinetics 
Physiological 
response 

Monitoring the incremental 
concentration of a given 
nutrient (aminoacids, 
tryglicerides, glucose) 
following a meal is a 
commonly used technique 
providing an indirect measure 
of its digestion kinetics  

The only method to 
understand the 
metabolism and 
physiologic response 
to certain nutrients 

Requires repeated 
sampling 
Results can be 
influenced by certain 
drugs 

Paracetamol absorption test 

Gastric emptying Based on the principle that 
gastric emptying is the rate-
limiting step in the absorption 
of paracetamol because its 
absorption is fast and 
complete in the small 
intestine. Plasma paracetamol 
concentrations provide a 
measure of the gastric 
emptying rate 

Simple test 
Well tolerated by 
participants 
Validated against 
scintigraphic and 
duodenal intubation 
studies for liquid 
foods 
Relatively easily 
available because 
many laboratories 
perform the 
paracetamol assay 

May be less sensitive 
than other 
approaches to assess 
emptying of solids 
Requires repeated 
blood sampling 
Interactions with 
commonly used drugs 
(ex.: oral 
contraceptives)  may 
alter the metabolism 
of paracetamol 
leading to erroneous 
results 

Stable isotope breath test 

Gastric emptying The solid component of a 
meal can be labelled using a 
substrate containing the 
stable, nonradioactive isotope 
13C. 
13C-labeled substrate is 
absorbed in the duodenum, 
metabolized in the liver and 
excreted as 13CO2 to the 
breath. Which can then be 
measured by isotope ratio 
mass spectrometry or laser 
infrared spectroscopy. 

No exposure to 
radiation 
Mathematical 
modelling can enable 
to simulate the 
kinetics of gastric 
emptying 

Very indirect because 
it is based on a 
measurement made 
at the final stage of 
the product’s 
metabolism  

Water / Nutrient drink test 

Noninvasive 
alternative to 
intragastric 
barostat  

Subjects ingest water or a 
liquid nutrient meal at a 
defined rate, and the maximal 
tolerated volume is 
determined. Postingestion 
symtoms can be measured for 
up to 30 min  

Simple 
Inexpensive 

Possible impact of 
psychological factors 
Satiation or reduced 
tolerated volume 
may reflect impaired 
accommodation or 
hypersensitivity of 
the stomach 

Information obtained from (Caride, et al., 1984; Gaudichon, 2013; Kim, Myung, & Camilleri, 2000; Marciani, 
Gowland, Fillery-Travis, et al., 2001; Marciani, Gowland, Spiller, et al., 2001; Marciani, et al., 2013). 
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However, the use of scintigraphy exposes the examined person to radioactivity and therefore 

alternative tools are needed. Ultrasound and MRI are safer alternatives which do not involve 

exposure to potentially harmful radiation. Ultrasound imaging has the advantages of being more 

available and cheaper than MRI. However, the higher resolutions of MR images (Figure 33) can 

enable a more accurate and detailed study of gastric digestion parameters. This methodology 

will be discussed in more detail in the following section. 

   
Ultrasound MRI 

Glucose 
solution 

Energy 
bar + 
water 

Figure 33 – Images of the abdominal region. Examples of images obtained through ultrasound (left) and 
MRI (right). The gastric regions are identified by white arrows. Ultrasound and MRI images obtained from 
(Okabe, Terashima, & Sakamoto, 2017) and (Marciani, et al., 2013), respectively. 

Figure 32 - The mean ± SEM fractional meal retention values for 24 subjects receiving 
either Tc-99m-egg sandwich (n = 14) orTc-99m in vivo  labelled chicken liver (n = 10) 
and In-111 DTPA water on a semilogarithmic plot. (Siegel, et al., 1988) 
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3.2.1.  ASSESS MEN T OF  T HE  PHY S IO LO GI CA L I MP AC T OF  S TA RC H  

 Regarding the study of starch, and carbohydrates in general, one of the parameters that is 

regarded is the glycaemic response. Recently, an international consensus has led to a 

harmonized definition of the glycaemic response as the post-prandial change in  blood glucose 

concentration following consumption of a food or meal that contains carbohydrate (Augustin, 

et al., 2015). The glycaemic response elicited by different foods is highly variable, therefore, it is 

useful to have a simple tool to distinguish foods according to the glycaemic response they elicit. 

A commonly used classification system is the Glycaemic Index (GI), a concept initially proposed 

by Jenkins and his team in the 1980s (DJ Jenkins, et al., 1981). It is defined as the total 

incremental area under the blood glucose response curve (AUC - area under the curve of glucose 

concentration versus time) in the 2 hour period immediately subsequent to the consumption of 

a portion of food containing 50g of available carbohydrates relative to that of a standard food 

(glucose or white bread) also containing 50g of available carbohydrates (DJ Jenkins, et al., 1981; 

Thomas M Wolever, et al., 1985). Although there has been some controversy associated with 

this tool, scientific evidence from the analysis of over 1000 foods clearly demonstrates that it 

constitutes a good summary of postprandial glycaemia, predicting important attributes of the 

glucose response curve, namely the peak or near peak response and the maximum glucose 

fluctuation (J. C. Brand-Miller, Stockmann, Atkinson, Petocz, & Denyer, 2009). An international 

standard for the determination of the GI has been proposed, and according to it, it is also 

possible to classify the GI of foods as low, medium or high, Table 5 (ISO, 2010).  

 

 

 

 

 

To account for the glycaemic response to different amounts of foods, the glycaemic load (GL) 

can be used.  Still according to the recent international scientific consensus establishing 

harmonized descriptions of these terms, the GL is defined as the product of the GI and the total 

available carbohydrate content in a given amount of food.  Because available carbohydrates can 

be expressed in different ways (for ex.: g/serving or g/ 100g of food), the units of the GL will 

have corresponding units (for example g/serving or g/100g of food). (Augustin, et al., 2015)

Table 5 - Categories of GI 

Level Glycaemic Index 

Low GI ≤ 55 

Medium 55 < GI ≤ 70 

High GI > 70  

(ISO, 2010)  
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4. D IGESTION STUDIES USING MAGNETIC RESONANCE IMAGING (MRI) 
How fascinating is it to think that we can actually see beyond sight? The first chapter of a book 

dedicated to this topic (McRobbie, Moore, Graves, & Prince, 2006), starts as follows:  

“H OW  W OU L D  YOU  IM P R E S S  A  S TR A N G E R  Y OU  M E E T  A T  A  P A R TY  W I TH  Y OU R  

IN TE L L IG E N C E ?  Y OU  M IG HT  C L A IM  T O B E  A  B R A IN  S U R G E O N  OR  A  R OC K E T  S C IE N T IS T .   

WE L L  MA G N E TI C  RE S ON A N C E  IS  N OT  R OC K E T  S C IE N C E ,  I T ’S  B E TTE R !”  

Impossible to disagree! It involves an amazing combination of advanced sciences, engineering 

and technologies, as the authors put it: “a lifetime is not enough to become an expert in all 

aspects of it” (McRobbie, Moore, Graves, & Prince, 2006). By now the reader might have realized 

that, with my primary training in Nutrition and Food Sciences, I am not, nor will I pretend to be 

any sort of MRI expert, neither at any party, nor here. A basic knowledge of the underlying 

principles is however important in order to be capable of interpreting the results of MRI studies. 

4.1. MRI  PRINCIPLES  

4.1.1.  BAS IC  NO T IONS  

The nuclei of atoms are made up of protons and neutrons, both of which have spins. In odd-

numbered nuclei, that is nuclei that contain an odd number of protons or neutrons, their spins 

do not cancel each other out, conferring a net spin to the nuclei. In a simplified fashion, the 

“spin” property of odd-numbered atomic nuclei can be conceived as the nucleus rotating around 

its own axis. This motion induces a magnetic field with north and south poles, and so these 

atoms behave like bar magnets or dipoles. Such atoms, can therefore interact with other 

magnetic fields and it is this property that enables magnetic resonance techniques to work. 

(Bitar, et al., 2006; Grover, et al., 2015; Sands & Levitin, 2004) 

In clinical MRI, hydrogen (1H) atoms are the most commonly used nuclei because of their spin 

properties and their abundance in the body. Although other atoms such as carbon-13, fluorine-

19 and phosphorous-31 also possess net spins, usual MRI can be basically defined as the imaging 

of hydrogen atoms, from now on simply referred to as protons, in free water and in association 

with macromolecules such as proteins, lipids, etc. (Sands & Levitin, 2004)  

When protons are exposed to a dominant magnetic field (B0), such as what is obtained with a 

powerful superconducting electromagnet built into the bore of an MR scanner, their spins tend 

to align with the magnetic axis of B0. In contrast with bar magnets, which would orientate 

perfectly parallel or antiparallel to the external field, protons rotate in a cone-shaped fashion, 

termed precession. The frequency of precession, called the Larmor frequency, is in the 

radiofrequency domain (RF, in MHz) and depends on the strength of the external magnetic field 
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(measured in teslas [T]) and a constant (the gyromagnetic ratio) unique to each atom. The 

cumulative effect of all the magnetic moments of the nuclei is referred to as the net 

magnetization vector, which is the source of signal for image generation. (Bitar, et al., 2006; 

Grover, et al., 2015; Sands & Levitin, 2004) 

4.1.2.  MAGNE TI C  RES ON ANCE  -  P ROPER T IES  AND S IG NA L CR EAT ION  

The application of a second magnetic field (B1) lasting microseconds and oscillating at the Larmor 

frequency (RF domain) causes the net magnetization vector to flip by a certain angle, thereby 

temporarily displacing the net magnetization from the axis of the dominant magnetic field. At 

this point, two magnetization vector components can be defined: longitudinal and transverse 

magnetization. In the absence of an RF energy source, the system returns to its thermodynamic 

equilibrium in the magnet. This process, called relaxation, occur at different rates along 

(longitudinal magnetization) and perpendicularly (transversal magnetization) to the static 

magnetic field. (Bitar, et al., 2006; Grover, et al., 2015; Sands & Levitin, 2004)  

This recovery of longitudinal magnetization and decay of transversal magnetization can be 

described with relaxation times: 

 The longitudinal relaxation time (or spin-lattice relaxation time) is denoted T1, and 

corresponds to the time it takes to recover 63% of the initial longitudinal magnetization 

after an RF pulse. This phenomenon is basically caused by the transfer of the energy 

initially transmitted to the protons by the RF pulse back to the surroundings (lattice). 

 The transverse relaxation time (or spin-spin relaxation time) is denoted T2, and 

corresponds to the time it takes to dissipate 63% of the transverse magnetization after 

an RF pulse. This phenomenon is basically caused by the dephasing of nuclei 

orientations as energy is transferred between them, resulting in a more random overall 

alignment and a reduction of the net transverse magnetization. (Bitar, et al., 2006; 

Grover, et al., 2015; Sands & Levitin, 2004) 

An additional phenomenon generally contributes to the transverse relaxation: inhomogeneities 

of the dominant magnetic field (which is not exactly the same everywhere due to the presence 

of air, impurities, or limitations of the magnet construction for example). This is why in practice, 

the effective (observed) transverse relaxation, denoted T2*, is generally shorter than the 

theoretical T2  (Bitar, et al., 2006) 

The transverse component of the net magnetization vector can be measured because it induces 

electromotive forces (emf) in receiver antenna coils (built into separate pieces of hardware). As 
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transverse magnetization decays, the signal induced in the coil decreases. This signal, called the 

free induction decay, corresponds to the measurements performed in all MR techniques. (Bitar, 

et al., 2006; Sands & Levitin, 2004). 

4.1.3.  MANI PULA TI ON OF  T HE  S I GNA L TO  D IS CERN  T IS SUE S  WI T H D IFFERE NT PR OPER T IES  

For a useful image to be formed it is necessary to somehow differentiate each tissue in the 

scanned area. According to the above description of MR principles, the amplitude of the signal 

is a function of the density of protons, and since water has a very high proton density compared 

to other molecules, proton-density-weighed MRI is one obvious tool to distinguish between 

tissues with different water contents. Additionally, the local proton environment is also 

important. Small molecules in solutions, and their protons, are in rapid thermal motions, which 

contrast with what happens in macromolecules, gels or solids. This is why different biological 

tissues, or types of material (ex: water vs. fat) have different T1 and T2 values. These differences 

in relaxation times can thus be used to generate different contrasts in MR images. (Sands & 

Levitin, 2004)  

There are a vast number of ways to manipulate the longitudinal and transversal magnetization, 

using different RF-pulse sequences, with the purpose of emphasizing different properties of the 

tissues. A simple option may be only to vary the amount of time between the start of two 

consecutive acquisitions (repetition time, or TR). Another option is to vary the time between the 

start of the sequence and the formation of signal (echo) (echo time or TE). Figure 34 illustrates 

the evolution of the longitudinal and transversal magnetizations for fat and water with time, and 

the consequences of the duration of TR and TE, respectively. As schematically represented, short 

TR will enable to distinguish products/tissues with different T1, whereas long TE are useful to 

distinguish products/tissues with different T2. It is said that MR images are either T1 weighted 

and/or T2 weighted.  

In summary, and although other types of contrast can be used, three basic types of image 

contrast can be obtained by varying the duration of the TR and TE in an RF-pulse sequence, these 

are presented in Table 6. 
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4.1.4.  SPAT I AL  LOC A LIZ A TI ON OF  T HE  S IGN A L AND IM AGE  F ORM A TI ON  

A basic explanation of the relationships between tissue properties, sequence parameters and 

magnitude of the signal and contrast between tissues in an MR image was explained above. To 

obtain images, i.e. a spatially encoded signal, one needs to apply three magnetic field gradients, 

which consist of linear variations of the magnetic field in the three-dimensional space (x, y, z) 

(Bitar, et al., 2006). These gradients create ordered variations in a specific property of the 

protons’ spins (spin frequency or phase), so that the frequency and phase of a spin is indicative 

of its spatial location (Bitar, et al., 2006; Sands & Levitin, 2004).  

The three steps in the localization of a signal are: (1) the selection of a slice, (2) phase encoding 

and (3) frequency encoding. These are explained bellow to obtain the most common type of 

image (a cross sectional slice). 

( 1 )  S E L E C T I O N  O F  A  S L I C E  –  A first magnetic field gradient is applied, causing the 

protons’ precession frequencies to increase gradually along the gradient axis (e.g. the z-axis). 

TABLE 6 - EFFECT OF TR AND TE ON MR IMAGE CONTRAST 

IMAGING TECHNIQUE TR TE 
T1 WEIGHING Short Short 
T2 WEIGHING Long Long 
PROTON-DENSITY WEIGHING Long Short 

FROM (BITAR, ET AL., 2006) 

Figure 34 - Graphs show T1 recovery (recovery of longitudinal magnetization [Mz]) and the 
T2 decay (the decrease of transverse magnetization [Mxy]), as a function of time (in 
milliseconds [msc]) for fat and water. The effects of short and long TR (left) and short and 
long TE (right) correspondingly on T1 recovery and T2 decay in fat and water  are illustrated 
by the blue bars: TR relates to T1 and affects T1 weighting, whereas TE relates to T2 and 
affects T2 weighing.(Bitar, et al., 2006) 
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Then, a slice is selected by applying an RF-pulse, with known band-width, at the frequency of 

precession of the protons in a particular location(Ridgway, 2010; Sands & Levitin, 2004).  

(2) P H A S E  E N C O D I N G  – By applying another gradient field along the y-axis, protons will 

acquire a gradually higher frequency of precession along this axis, and as a result, will also 

constantly change their relative phase (according to their precession frequency) along the 

gradient. When this gradient is switched off, the precession frequency becomes again the same 

across the y-axis, but the relative phases of the protons will have changed according to their 

location along this axis. (Ridgway, 2010; Sands & Levitin, 2004)  

(3) F R E Q U E N C Y  E N C O D I N G  – Finally, a third gradient is applied along the x-axis. 

Similarly to the phase-encoding gradient, it causes the protons to precess at different 

frequencies, along this axis. But now, the signal is measured at the same time and so the position 

along the x-axis is discernable according to the different frequencies at the time of 

measurement. (Ridgway, 2010) 

This is the process used while imaging a cross section perpendicular to the position of a person 

on the bed of and MRI (a transverse or axial slice) (Figure 35). Other slice orientations are 

obtained by re-assigning each of the gradients (slice, phase and frequency encoding) to a 

different axis. Additionally, by manipulating the characteristics of the gradients and the RF 

pulses, it is possible to modify other properties of the slice that is imaged such as its thickness, 

and number of points with distinct phases/frequencies (which will influence the level of detail 

or resolution of the final image). (Ridgway, 2010) In summary, at the end of an MR imaging 

sequence, a complex cluster of data containing information about the intensity of signals 

(related with proton density, T1 and T2), and the frequencies and phases of these signals is 

produced (Ridgway, 2010). What emerges is an analysis of how much signal (amplitude, 

obtained by the emf induced in the receiver coil following excitation RF-pulse) is present in a 

specific location (assigned by the frequency and phase) of the slice selected. The amplitude of 

each signal is finally displayed as a shade of gray (Figure 35) at its relative spatial position on the 

imaged portion of a person. (Sands & Levitin, 2004) 
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4.2.5.  H IGH S PA T IA L OR H IG H TEM POR A L RE SO LUT IO N  

Finally, it is important to note that imaging an organ such as the stomach requires a compromise 

between the desired contrasts within the images, as well as the spatial and temporal (speed of 

acquisition) resolutions. According to the objectives of the study, different compromises may 

thus be chosen. If the aim is to study anatomic or structural features, then spatial resolution is 

favoured to allow the abdominal area to be scanned once in a given amount of time (often within 

one single breadth hold, to avoid artefacts due to respiratory motion). If, on the other hand, the 

aim is to study motion or motility features, then it will be necessary to scan the studied area 

several times in a short time, meaning that the spatial resolution needs to be decreased.  

Figure 35 – Anatomical planes and image projection in shades of gray. The 3 main types 
of slice orientations which are selected by the magnetic gradient coils are illustrated by 
the blue planes. The resulting anatomical slices are presented and are also illustrativ e 
of the projection of signal intensity as shades of gray. Image obtained from  (McRobbie, 
Moore, Graves, & Prince, 2006). 
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4.2. THE STUDY OF DIGESTIO N WITH MRI 

The first published study of digestive function by MRI was conducted about 30 years ago 

(Stehling, et al., 1989). When studying the functions of the digestive system, spatial resolution 

(image quality) must be high so that small and thin walled structures can be delineated and 

distinguished. Additionally, high spatially resolved images should be acquired fast because the 

organs are in constant movement, so temporal resolution needs to be adapted to the 

physiological range of the digestive events under study. Valuable progress was made in this 

context in the past 30 years. Important innovations to the MR system and external components, 

as well as the development of acquisition techniques (new sequences, parallel imaging of 

individual slices…) resulted in significant improvements of imaging speed and/or image quality. 

Moreover, since then the use of this technique was extended to other organs involved in 

digestive processes such as pancreas and the small and large intestine.  (Schwizer, Fox, & 

Steingötter, 2003)  

The focus of this brief review of the literature is gastric digestion and the knowledge inputs from 

MRI studies. Assessments are usually based on standard measurements of gastric activity to 

assess its global function (ex. gastric emptying rate) or individual components (ex. layering 

effects, particle size) and their influence on the global function (ex. the effect of layering effect 

or particle size on gastric emptying). The most commonly measured variable in studies of gastric 

digestion is the gastric emptying kinetics, generally summarized by a half time (t1/2 or t50%) when 

the gastric volume reaches 50% of the initial volume, and a lag time (tlag) which refers to the 

initial postprandial period before significant emptying is initiated (Schwizer, Fox, & Steingötter, 

2003). A key advantage of MRI is that multiple parameters can be assessed simultaneously 

(Schwizer, Fox, & Steingötter, 2003). The main disadvantages of MRI studies are the high cost 

and the low availability of MR equipment, the concerns about the impact of the position of the 

subject on normal digestive function, and the complexity of sequence adjustment and image 

analysis, both of which are time-consuming task (Table 3). Regarding the potential impact of the 

positioning in the MR scanner on gastric function, the measurement of gastric emptying of solid 

and liquid meals with MRI has been validated against scintigraphy (Feinle, Kunz, Boesiger, Fried, 

& Schwizer, 1999; Schwizer, et al., 1994), and potential biases inducing the formation of air 

pockets in unusual parts of the stomach can be limited by adopting the right decubitus position 

(Treier, et al., 2006).  

Overall, MRI has provided the grounds for some unique findings about the digestion of foods in 

the stomach. The work of Marciani and his team on the patterns of dilution by gastric secretions 

and emptying rate for nutritive and non-nutritive meals with different viscosities is one example 
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(Marciani, Gowland, Spiller, et al., 2001). They have observed that although a 500 Pa.s increase 

in meal viscosity produced an increased half gastric emptying time, by 9-14 minutes, the 

presence of nutrients exerted a predominant effect by almost doubling the half-gastric emptying 

time (30-35 min longer) for a given viscosity. Inversely, meal dilution by gastric secretions has 

been shown to be more influenced by viscosity than the presence of nutrients. Furthermore, 

they were able to map gastric meal dilution by gastric secretions, revealing that a high viscosity 

meal (though less viscous than many real meals) remains heterogeneous long after ingestion, 

with gastric secretions only poorly penetrating the center of the food bolus (Figure 36). This 

challenges the traditional model of rapid and complete meal homogenization upon ingestion, 

showing that for some meals, gastric contents can be rather poorly mixed. 

 

Figure 36 - Color-coded dilution maps acquired at different times after consumption of 500 mL 
of a viscous locust bean gum meal. The transverse relaxation time T2 of the meal was 
calibrated against dilution in vitro. T2 maps of the stomach contents were then acquir ed in 
vivo, translated to dilution values using the calibration curve, and color coded. A transverse 
EPI image is also shown as an anatomic road map (L, left; R, right). Gastric secretion made the 
outer boundaries of the viscous meal more diluted (in red) at an early time, whereas the inner 
bolus remained viscous (in  green) for longer. As time progressed, the viscous meals appeared 
more diluted and mixed. Obtained from (Marciani, Gowland, Spiller, et al., 2001). 

Another interesting finding was published by Kunz and colleagues who studied the effect of the 

order of ingestion of the fat component of a solid meal on the kinetics of gastric emptying of fat. 

By mapping intragastric fat distribution when the fat component was consumed first (Figure 37, 

F-NF) and last (Figure 37, NF-F), they have concluded that the order of ingestion strongly 

influences intragastric distribution of fat as well as layering behaviour, and thus the emptying 

from the stomach. In this study fat emptied significantly faster when consumed first. (Kunz, et 

al., 2005) 
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Several other interesting results could be referenced. One example is the apparent adaptation 

of the frequency of contraction in the first 15 min after ingestion of a solid meal in comparison 

with a liquid meal (Feinle, Kunz, Boesiger, Fried, & Schwizer, 1999). Another is the estimation of 

the maximum force exerted by the gastric antrum (0.65 N) from the observation that the half 

gastric emptying time of test meals containing beads with different forces to fracture (from 0.15 

N to 0.9 N) was significantly increased for bead strengths > 0.65N (Marciani, Gowland, Fillery-

Travis, et al., 2001).  

The parallel assessment of gastric emptying by MRI and of blood glucose concentrations would 

be particularly interesting in the context of starch-rich foods. Two studies combining these 

measurements to compare different porridge breakfasts have been published so far, 

demonstrating the feasibility and interest of such approaches (Alyami, Ladd, Pritchard, et al., 

2017; Alyami, Whitehouse, Pritchard, 2018).

Figure 37 - Frontal view of the three-dimensional reconstruction of the stomach illustrating 
intragastric fat distribution (in green) immediately (top), 90 minutes (middle) and 180 minutes 
(bottom) after meal ingestion, when the fat component preceded the  nonfat component (F-NF, 
left) and when the fat component followed the nonfat component (NF -F, right). Obtained from 
(Kunz, et al., 2005). 
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5. IN VITRO  APPROACHES TO STUDY DIGESTION  
Although in vivo studies produce more accurate results than in vitro approaches (Hur, Lim, 

Decker, & McClements, 2011), they can be time consuming, expensive (Hur, Lim, Decker, & 

McClements, 2011; Minekus, et al., 2014b), they require many subjects with specific attributes 

(Dona, Pages, Gilbert, & Kuchel, 2010) and are sometimes considered ethically disputable 

(Minekus, et al., 2014b). Comparatively, in vitro studies have the strongpoints of reproducibility, 

choice of controlled conditions, and ease of sampling at the site of interest (Minekus, et al., 

2014b).  

Ideally, in vitro digestion models should provide accurate results in a short time and could thus 

serve as a tool for rapid screening of foods or delivery systems with different compositions and 

structures. In practice, the complexity of the digestion process dictates an inevitable inability to 

perfectly replicate it in vitro (Hur, Lim, Decker, & McClements, 2011). Among the most important 

limitations, the impossibility to take into account mechanisms related with hormonal responses, 

neuronal reflexes and cellular activity is clear. This reflects the importance of acquiring a deep 

understanding of the digestive process before designing an in vitro experiment but also during 

the analysis of the results.  

Categorize in vitro methods can be a complex task because the protocols are often adapted to 

the purpose of the studies. One recurring point of divergence is the number of digestive stages 

included in each protocol. In general, the gastric and intestinal phases are always reproduced 

(K. N. Englyst, Englyst, Hudson, Cole, & Cummings, 1999; Goñi, Garcia-Alonso, & Saura-Calixto, 

1997; Y Granfeldt, Bjorck, Drews, & Tovar, 1992; Minekus, et al., 2014b; Woolnough, Bird, 

Monro, & Brennan, 2010), but the oral phase is sometimes omitted (K. N. Englyst, Englyst, 

Hudson, Cole, & Cummings, 1999; Goñi, Garcia-Alonso, & Saura-Calixto, 1997). Overall, in vitro 

approaches can nevertheless be divided into two main categories: static and dynamic methods  

Because the oral phase is an important step of starch digestion but is not common to all 

protocols, a first subsection (5.1) is included with information about the study of this digestive 

phase in vitro. Then, because gastro-intestinal phases generate the bulk of the data from in vitro 

experiments, and they are commonly included both in static and dynamic protocols, the two 

succeeding subsections (5.2.1 and 5.2.2) will focus on each of these approaches individually. 

5.1. ORAL DIGESTION  

Oral digestion is not always considered in in vitro studies. Some current in vitro methods include 

the actual chewing of sample foods by volunteers (Y Granfeldt, Bjorck, Drews, & Tovar, 1992; 

Woolnough, Bird, Monro, & Brennan, 2010). However, because this procedure involved a human 
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fluid, it may need to be approved by an ethics committee. Moreover, because chewing and 

salivary amylase activity are highly variable between individuals, some researchers consider this 

as an irregular method, not suitable for routine in vitro digestion studies (Hoebler, Devaux, 

Karinthi, Belleville, & Barry, 2000). As a result, alternative in vitro approaches have been 

proposed. There are three major components that should be considered when mimicking oral 

digestion: mastication time, level of saliva impregnation and particle size. 

Mastication times and levels of saliva impregnation for certain foods can be found in the 

literature (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000; Jourdren, et al., 2016) and can be 

considered easy to replicate. It is however important to note that, for practical reasons, the 

duration of oral phases almost always vary from 2 to 15 minutes (Woolnough, Monro, Brennan, 

& Bird, 2008), which differs largely from the average 27-28 s chewing times observed in vivo for 

bread samples for example (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000). 

There is also detailed information about the bolus particle size for a wide range of foods such as 

bread, pasta, carrots, cake, cheese, olives among others (Flynn, et al., 2011; Hoebler, Devaux, 

Karinthi, Belleville, & Barry, 2000; Jalabert-Malbos, Mishellany-Dutour, Woda, & Peyron, 2007; 

Jourdren, et al., 2016). However, reproduction of the particle size distribution found in an in vivo 

formed bolus can be more difficult as it implies the simulation of the mechanical disruption that 

occurs during chewing. Literature shows that this might not be a limitation to the study of certain 

foods since comparisons of the digestive patterns of in vivo and artificially (chopping, sieving and 

mincing) chewed foods  have shown that foods with lack a robust structure, such as bread, does 

not display sensitivity to the method of chewing (Woolnough, Monro, Brennan, & Bird, 2008). A 

number of different methods, such as mincing, grinding, milling, homogenizing, the use of 

sieves, food processors or choppers have been proposed (Hoebler, Devaux, Karinthi, Belleville, 

& Barry, 2000; Minekus, et al., 2014b; Woolnough, Monro, Brennan, & Bird, 2008). A meat 

mincer equipped with a plate pierced with 6-mm diameter holes was found to satisfactory 

reproduce the distribution of the particle size of bread obtained after in vivo mastication when 

it was used to process freshly cooked pasta or bread crumb moistened with water (100g dry 

matter/79ml of water) (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000).  

5.2. GASTRIC AND INTESTINAL DIGESTION  

Different methods have been described to study gastro-intestinal digestion. Major differences 

between these methods are the number of steps and the way these steps are interrelated. 

Considering the number of steps, three models have been proposed: single, two-, or three-steps 

respectively simulating digestion at gastric, gastric/small intestinal, gastric/small intestinal/large 

stages. Regarding the articulation of each step, two approaches have been used, static and 
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dynamic. At least four key criteria should be taken into consideration for the design a realistic 

gastro-intestinal tract model: (1) sequential use of digestive enzymes; (2) appropriate pH, co-

factors, co-enzymes, bile salts, etc.; (3) appropriate mixing in each step of the digestive process; 

(4) respect for the physiological residence times for each digestive step.  

5.2.1.  STA TI C  MODE LS  

This type of model is the most often described in literature and has been employed in a wide 

variety of studies focusing on questions such as the digestibility and bio-accessibility of 

pharmaceuticals, mycotoxins, and macronutrients, including carbohydrates, as well as the 

matrix release of minerals, trace elements and secondary plant compounds. In the static 

approach, the steps of digestion are simulated using a batch system in which the test material 

is sequentially exposed to a particular simulated digestive fluid at 37°C and at a fixed pH 

(Venema, Havenaar, & Minekus, 2009).  

The problem of the persistence of significant variations between the different parameters of the 

static models described in literature has raised the need for a standardized method (Minekus, 

et al., 2014b; Woolnough, Monro, Brennan, & Bird, 2008). Recently, an international consensus 

has been reached in the framework of the European INFOGEST COST action, which gathered 

about 200 scientists in the field of digestion. A step-by-step static protocol, including a frameset 

of parameters for oral, gastric and small intestinal digestion was proposed, and an extensive list 

of recommendations, justifications and possible limitations was also presented (Minekus, et al., 

2014b). Even though this protocol is still being subjected to further testing and validation by 

different research groups, it certainly seems advisable to take it as guidance when designing a 

research work to study food digestion in vitro with a static model.  

Although static models are simple and easy to use, they are not always considered as sufficiently 

physiologically relevant. As a result, these models are considered essentially as screening 

techniques to identify key parameters that may affect the hydrolysis of macronutrients, and as 

valuable means to study mechanisms at the molecular level (Ménard, et al., 2014). 

 

5.2.2.  DYNA M IC M ODELS  

A more accurate simulation of in vivo conditions can be obtained using dynamic digestion 

models, which allow the simulation of dynamic aspects of digestion such as transport of digested 

meals, variable enzyme concentration and pH changes over time (Ménard, et al., 2014; Minekus, 

et al., 2014b). As an example, gastric juice can be secreted into a vessel while the gastric contents 
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are gradually removed from that vessel to simulate gastric emptying. Similarly, gastric pH is not 

kept at a fixed value, but can be manipulated to replicate the changes occurring during in vivo 

digestion by the addition of hydrochloric acid (Venema, Havenaar, & Minekus, 2009). Examples 

of three of these models are presented below:  

( 1 )  T I M - 1 ®  gastrointestinal tract model consisting of four compartments simulating the 

stomach, duodenum, jejunum and ileum developed by the Netherlands Organisation for Applied 

Scientific Research (TNO) (Venema, Havenaar, & Minekus, 2009). 

( 2 )  D Y N A M I C  G A S T R I C  M O D E L  ( D G M ® )  consisting of two stages simulating the main 

body of the stomach and the lower part of the stomach (antrum) developed by the English 

Institute of Food Research (IFR) (Wickham, Faulks, & Mills, 2009).  

( 3 )  D I D G I ®  -  gastrointestinal model composed of two compartments, stomach and small 

intestine developed by the French Institute of Agronomic Research (INRA) (Ménard, et al., 2014). 

The DiDGI® model is common to several INRA labs and was used in in vitro digestion conducted 

during my PhD. For this reason, it is the only model for which a more detailed description is 

provided. 

DiDGI® (Figure 38) was developed in order to monitor food deconstruction and hydrolysis 

kinetics occurring during simulated digestion. This is a computer-controlled system in which 

gastric and intestinal transit times, kinetics of gastric and intestinal pH, sequential addition of 

digestive secretions, and gastric and intestinal stirring can all be defined. As previously 

mentioned, DiDGI® consists of two consecutive compartments simulating the stomach and small 

intestine. Between the gastric and intestinal compartments, there is a Teflon membrane with 2 

mm holes that mimics the sieving effect of the pylorus in Humans. Each compartment is 

Figure 38- DiDGI® dynamic digestion system(Ménard, et al., 2014)  



5. In vitro approaches to study digestion  

 

51 
 

surrounded by a glass jacket filled with water pumped using a temperature controlled water 

bath. Temperature, pH and redox sensors are connected to the system and the flow rate of meal, 

HCl, Na2CO3, bile and enzymes is regulated by computer-controlled peristaltic pumps. It is also 

possible to simulate anaerobic conditions by purging the air with nitrogen. The system is 

controlled by the software “StoRM” (Stomach Regulation and Monitoring). This software was 

designed to accept parameters and data obtained from in vivo studies, such as the quantity and 

duration of a meal, the pH curves for the stomach and small intestine, the secretion rates into 

the different compartments and the gastric and small intestine emptying. (Ménard, et al., 2014) 

5.3. ANALYSIS OF DIGEST ION  PRODUCTS AND STARCH FRACTIONS IN FOODS  

5.3.1.  PRODUCT S OF  IN  V I TRO  D I GEST IO N OF  ST AR CH -R IC H FOODS  

Procedures to monitor starch digestion can be direct or indirect, measuring the amount of 

digested or undigested starch respectively. When undigested starch is measured, digested 

starch can be estimated from the difference between total and undigested starch. An approach 

that is common to a number of in vitro starch digestion procedures is the complete hydrolysis 

of all the products of starch digestion into glucose (via an additional incubation with 

amyloglucosidase, for example), which is then quantified and from this, the digested starch can 

be estimated glucose x 0.9 (Goñi, Garcia-Alonso, & Saura-Calixto, 1997). Additionally it is also 

possible to separate different fraction of digestion products, and then quantify them separately. 

An example is the quantification of oligosaccharides with degrees of polymerization up to 10, 

after selective precipitation of larger fractions via an incubation with 80% aqueous ethanol (v/v) 

(Hoebler, et al., 1998). The most widely used methodology to determine glucose concentration 

is based on spectrophotometry. More recently studied for in lab-use, glucometry is another 

technique that has been proposed as a quick, inexpensive, readily-available and easy to use 

alternative to screen samples for starch digestibility; it is suitable for semi-continuous 

measurement of glucose concentration and, as such useful for the understanding of time-course 

changes of digested starch. (Sopade & Gidley, 2009) 

5.3.2.  QUAN TIF IC A TI ON OF  D IF FE RENT ST AR CH FRA CT I O NS I N  FOODS  

For nutritional purposes, starch fractions can be classified into three categories depending on 

their rate and extent of digestion; three main categories have been defined: rapidly digested 

starch (RDS), slowly digested starch (SDS) and resistant starch (RS). RDS is the starch fraction 

responsible for the rapid increase in blood glucose concentration following ingestion of 

carbohydrates, however, it is not to be confused with the total sugar content of a meal which 

also contributes to the rate of increase in blood glucose concentration. SDS is the fraction of 

starch that is digested slowly but completely in the human small intestine. RS is the fraction of 
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starch that escapes digestion in the small intestine and may be subject to bacterial fermentation 

in the large intestine. Under standard in vitro conditions of substrate and enzyme concentration, 

RDS can be defined as the amount of starch digested in the first 20 minutes, SDS as the fraction 

of starch digested after the RDS but in no longer than 120 minutes and RS as the remaining 

fraction of undigested starch. (H. N. Englyst, Kingman, & Cummings, 1992)  

5.4. IN VITRO  PROTOCOLS –  COMPLEMENTARITY TO IN VIVO  STUDIES  

In vitro digestion models can be an important complement to in vivo studies by allowing 

investigations on processes that are otherwise not accessible, and enabling to pre-screen 

products and conduct preliminary tests on a given hypothesis (Minekus, et al., 2014b).  This type 

of studies can be of particular importance for the study of specific nutrients or nutrient fractions 

that trigger allergic responses (Petitot, Abecassis, & Micard, 2009; F. Smith, et al., 2015). 

Additionally, in vitro protocols have also been used to predict some parameters of the 

physiological response to foods. An example is the prediction of the GI of foods (K. N. Englyst, 

Englyst, Hudson, Cole, & Cummings, 1999; Gibson, Schönfeldt, & Pretorius, 2011; Goñi, Garcia-

Alonso, & Saura-Calixto, 1997). Depending on the protocols used, some discrepancies have been 

reported between in vivo and in vitro studies of the digestion of starch-rich foods (Berti, Riso, 

Monti, & Porrini, 2004; J. Brand-Miller & Holt, 2004; Casiraghi, Brighenti, & Testolin, 1992). 

However, both static (Araya, Contreras, Alvina, Vera, & Pak, 2002; Ells, Seal, Kettlitz, Bal, & 

Mathers, 2005; H. N. Englyst, Veenstra, & Hudson, 1996; Ferrer-Mairal, et al., 2012; Goñi, Garcia-

Alonso, & Saura-Calixto, 1997; D. Jenkins, et al., 1982; John A Monro & Mishra, 2010; J. A. Monro, 

Mishra, & Venn, 2010; Seal, et al., 2003) and dynamic (Ballance, et al., 2013; Bellmann, et al., 

2010) in vitro protocols are generally considered as reliable indicators of the digestive profiles 

of these foods in vivo (specifically the glycaemic response). As it has recently been concluded, 

considering the practicality of in vitro assays, and their highly significant correlations with in vivo 

data, it certainly seems wise to continue optimizing these techniques and take advantage of 

them in research and early stages of product development (Bohn, et al., 2017).  
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OBJECTIVES 

In the previous section, we have discussed the relevance of starch in human nutrition, and seen 

that beyond the amount of starch within our diet or consumed foods, it is also very important 

to consider their digestion rates to better understand their overall glycaemic impact. Moreover, 

it is of common knowledge that the two main enzymes that participate in starch digestion are: 

salivary amylase, which is active in the mouth and stomach, and pancreatic amylase, which is 

active in the small intestine. However, their respective contribution to the digestive process of 

starch seems to remain unclear. The potential contribution of the oral and gastric phases of 

digestion is frequently overlooked, and it is often considered that most starch is digested in the 

small intestine by pancreatic amylase. However, we have found hints in the literature that this 

might not always be the case. In fact, because postprandial acidification of gastric contents can 

take anywhere from 60 to 200 min to reach pH ≤ 2 (Dressman, et al., 1990; Gardner, Ciociola, & 

Robinson, 2002; Kalantzi, et al., 2006; Malagelada, Go, & Summerskill, 1979; Troost, Steijns, 

Saris, & Brummer, 2001), it seems that there is a large time window during which amylase of 

salivary origin can remain active during gastric digestion. A first objective of my PhD work was, 

thus, to re-evaluate the role of salivary α-amylase in starch digestion. We were also interested 

in understanding what the extent of its contribution was: does it only release large starch 

fractions, or does it also hydrolyse them more extensively, into smaller fractions with low 

degrees of polymerization? 

We have also highlighted that a simple strategy to reduce the glycaemic response, based on 

pairing starch-rich foods with a beverage or condiment that can inhibit amylolytic enzymes, 

could be easy to adopt by the general population. We have analysed the reports of clinical 

studies showing that lowering the pH of starch-rich meals, with vinegar for example, consistently 

attenuated the glycaemic response to these meals (Figure 30). The mechanism is clearly related 

to acidity, but its exact nature remains a controversial topic (Figure 31). Taking into account the 

long kinetics of gastric pH acidification observed in vivo, it seems that any means of accelerating 

pH reduction could limit the contribution of salivary α-amylase to starch hydrolysis, possibly 

influencing its overall digestion rate and the glycaemic response. Could a premature 

acidification, and thus inhibition, of salivary amylase during gastric digestion explain the results 

of these clinical studies? Would similar results be achievable with other acidic foods or 

beverages? Could other non-acidic food items produce similar effects? Are such strategies 

effective in vivo? 
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Finally, related with the possible attenuation of the glycaemic response to a meal by lowering 

its pH, two other aspects can been debated. The first is the possible impact of the attenuation 

of the glycaemic response per se (that is, without modifying the nutritional content of the meal) 

on satiety/appetite-related sensations? This has been difficult to ascertain because lowering the 

glycaemic response of a meal often implies changing its nutritional content which adds 

confounding factors that are difficult to account for. The hypothesis that the attenuation of the 

glycaemic response to acidic starch-rich meals is explained by a delayed gastric empting has also 

been put forward. This has been investigated by some research teams, but different results were 

obtained (Brighenti, et al., 1995; H. Liljeberg & Björck, 1996, 1998). It is known that the rate of 

gastric emptying can be influenced by numerous factors, including the pH (Hunt & Knox, 1962, 

1969, 1972), but literature shows that caloric density appears to be a major determinant of 

gastric emptying (Figure 25). So, which factor is predominant, the pH or caloric density?  

The research work was designed to provide some answers to the main questions summarized 

above, which can be translated into the following main objectives: 

6. To evaluate the role of salivary α-amylase during oro-gastric digestion of starch and to 

assess the extent of its contribution to the hydrolysis of starch during the digestion of 

high- and low-GI foods in vitro. 

7. To screen commonly consumed beverages (tea, coffee, wine, lemon juice) and 

condiments (vinegar), for their capacity to inhibit salivary and pancreatic amylases. 

8. To test if the effect of consuming starch-rich foods with either water, an acidic drink 

(lemon juice), or a polyphenol-rich drink (tea) could reduce the digestion rate of starch 

in vitro. 

9. To determine whether lemon juice and tea could effectively attenuate the glycaemic 

response to bread in a real-life setting. 

10. To investigate if lowering the glycaemic response of a meal without modifying its 

nutrient composition could influence satiety/appetite related perceptions and/or 

energy intake at the next meal. 

11.  To study the gastric digestion patterns (mostly gastric emptying) of a bread meal paired 

with either water, lemon juice, or tea by magnetic resonance imaging. 
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IN T HI S PART  O F T HE  M ANUSC RIP T T HE  RE SULT S  OF  THE  IN  V IT RO  

ST UD IES  WILL  BE  P RE S ENT ED .   

THE MAIN GO AL W AS TO ANSWER T HE FOLLOWI NG  QUE ST IONS :  

W H A T  I S  T H E  C O N T R I B U T I O N  O F  E A C H  D I G E S T I V E  S T A G E  

T O  T H E  D I G E S T I O N  O F  S T A R C H - R I C H  F O O D S ?  

C A N  T H I S  K N O W L E D G E  B E  U S E D  T O  D E S I G N  S T R A T E G I E S  

T O  S L O W  D O W N  S T A R C H  D I G E S T I O N ?  

 

This work is presented in the form of four articles: 

 Chapter I - The important role of salivary α-amylase in gastric 

digestion of wheat bread starch  

 

 Chapter II -Oro-gastro-intestinal digestion of starch in white bread, 

wheat-based and gluten-free pasta: unveiling the contribution of 

human salivary α-amylase  

 

 Chapter III - Acid induced reduction of the glycaemic response to 

starch-rich foods: The salivary α-amylase inhibition hypothesis 

 

 Chapter IV - Inhibitory effect of black tea, lemon juice, and other 

beverages on salivary and pancreatic amylases: What impact on 

bread starch digestion? A dynamic in vitro study. 

 

An informal text summarizing the reasoning behind the work presented 

as well as a scientific abstract were included at the start of each 

chapter. At the end of each chapter the key results are recapitulated in 

written and schematic form.  
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Informal presentation  

As explained in the introduction, part of the results presented here 

were obtained during my internship in the GMPA lab in the fulfilment 

of the requirements of my master studies. The laboratory work was 

then completed during the PhD. 

Nutrition is a complex process in which not only the type and quantity 

of nutrients ingested are important, but also their rates of digestion 

and absorption. Because of the positive correlation between the rate 

of starch hydrolysis for a certain food and the corresponding glycaemic 

response extensive work has been dedicated to identify ways of 

slowing down starch digestion. 

However, some aspects of its digestive process remain unclear. It is 

clear that two key enzymes participate in this process, salivary amylase 

(present during the oral and gastric phases) and pancreatic amylases 

(present during the intestinal phase). The role of salivary amylase is 

often considered of little significance, and it is often thought that most 

starch is digested in the small intestine by pancreatic amylase and 

brush border enzymes but some hints in the literature point to the 

opposite. Research addressing this matter is scarce, but essential: how 

can one define strategies to improve the digestive profile of starch-rich 

foods if there are pieces missing in the puzzle?  

T H E  F I R S T  Q U E S T I O N  W A S :  W H A T  I S  T H E  C O N T R I B U T I O N  O F  

T H E  S A L I V A R Y  A M Y L A S E  T O  T H E  O R A L  A N D  G A S T R I C  P H A S E S  

O F  S T A R C H  D I G E S T I O N ?   
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A B S T R A C T  

The role of salivary α-amylase (HSA) in starch digestion is often overlooked in favour of that of 

pancreatic α-amylase due to the short duration of the oral phase. Although it is generally 

accepted that amylase of salivary origin can continue to be active in the stomach, studies 

ascertaining its contribution are lacking. This study aimed to address this issue by coupling in 

vitro oral processing with an in vitro dynamic system that mimicked different postprandial 

gastric pH reduction kinetics observed in vivo following a snack- or lunch-type meal. Digestion 

of both starch and protein from wheat bread, as well as the interplay between the two processes 

were studied. We have observed that the amylolytic activity of saliva plays a preponderant role 

hydrolysing up to 80 % of bread starch in the first 30 min of gastric digestion. Amylolysis evolved 

exponentially and nearly superimposing curves were obtained regardless of the acidification 

profiles, revealing its high efficiency. 
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1. INTRODUCTION  

Nutrition is a complex process in which not only the type and quantity of nutrients ingested are 

important, but also their rates of digestion and absorption, particularly for carbohydrates and 

proteins. The most frequently used reference tool to classify the rate of carbohydrates digestion 

and absorption is the Glycaemic Index (GI) (Dona, Pages, Gilbert, & Kuchel, 2010). Different 

meta-analysis studies have found evidence of an association between high GI diets and an 

increased risk of type-2 diabetes (Bhupathiraju, et al., 2014), coronary heart disease in women 

(Dong, Zhang, Wang, & Qin, 2012; Mirrahimi, et al., 2012), breast cancer (Mullie, Koechlin, 

Boniol, Autier, & Boyle, 2016), as well as obesity related complications (Schwingshackl & 

Hoffmann, 2013). Likewise, protein resistance to digestion and the rate at which it is digested, 

can influence the mechanisms that trigger food allergies(Bøgh & Madsen, 2016) and the 

efficiency of post-prandial protein metabolism (Dangin, Boirie, Guillet, & Beaufrère, 2002; 

Koopman, et al., 2009; Walrand, et al., 2016), respectively. 

The association between carbohydrates and proteins forms the elementary structure of many 

cereal-based staple foods such as wheat bread, one of the main sources of carbohydrates in the 

human diet (Wirfält, et al., 2002). One loaf of bread consists of about 50 % starch, 40 % water 

and 7 % proteins by weight (Pateras, 2007). Wheat starch consists of around 23 % amylose 

(essentially linear) and 73 % amylopectin (larger and branched) (Stauffer, 2007). These polymers 

are made up of α-1,4-linked glucose residues in linear segments and α-1,6-linked glucose 

residues at branch points (Stauffer, 2007). 

Given that starch is generally the main source of digestible carbohydrate in the human diet 

(Butterworth, Warren, & Ellis, 2011), the physiological impact of its digestion kinetics has been 

widely studied, and slowly digestible starch has been linked to beneficial effects on common 

diet-related chronic diseases such as diabetes and pre-diabetes, cardiovascular diseases and 

obesity (Miao, Jiang, Cui, Zhang, & Jin, 2015). 

Starch digestion starts in the oral cavity (when saliva is mixed with food particles) due to the 

action of human salivary α-amylase (HSA) which  breaks down amylose and amylopectin by 

cleaving their α-1-4 glycosidic bonds (Bornhorst & Singh, 2012). Its role is often considered of 

little significance due to the short duration of the oral phase, but this line of thought can be 

challenged after analysing some bibliographical data. Indeed, bread boli are typically formed 

within 16 to 50 seconds, depending on the type of bread and the characteristics of the individual 

(Jourdren, et al., 2016; Panouillé, Saint-Eve, Déléris, Le Bleis, & Souchon, 2014). However, once 

boli are swollen, HSA can continue hydrolysing starch in the stomach (Bornhorst & Singh, 2012; 
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S. S. Gropper & J. L. Smith, 2013) until the pH lowers bellow 4.0 and the enzyme is inactivated 

(M. Fried, S. Abramson, & J. H. Meyer, 1987). 

As postprandial gastric acidification is a gradual process, it can take over 45 min to reach this pH 

level (Malagelada, Go, & Summerskill, 1979). Data from human studies showing that HSA can 

remain active in the stomach long after the short oral processing phase, and might even reach 

the small intestine without becoming inactive, indicate that this enzyme can be responsible for 

hydrolysing an important fraction of starch (M. Fried, S. Abramson, & J. H. Meyer, 1987). 

Additionally, according to an interesting article from the early 20th century, also reporting results 

of an in vivo human study, up to 76 % of the starch in mashed potatoes and 59 % of that in bread 

is hydrolysed into maltose by HSA in the stomach (Bergeim, 1926). Since no other amylase is 

present, only that of salivary origin can be responsible for the enzymatic hydrolysis of starch 

during gastric digestion (Bornhorst & Singh, 2012). Nonetheless, this work seems to have been 

forgotten within the scientific community, considering that the extent of HSA’s contribution to 

starch digestion remains unclear (Butterworth, Warren, & Ellis, 2011) and the final digestive 

stage is often considered of higher importance. The last stage of starch digestion occurs in the 

small intestine, where pancreatic α-amylase and brush border enzymes complete amylolysis, 

and the ultimate product of this process, glucose, is finally absorbed into the blood stream (S. S. 

Gropper & J. L. Smith, 2013). 

Proteins in wheat bread consist of about 25 % of soluble proteins and 75 % of insoluble gluten 

proteins (Belderok, Mesdag, & Donner, 2000). Contrarily to the digestion of starch, proteolysis 

only begins in the stomach with the combined action of hydrochloric acid (HCl) and pepsin, the 

gastric protease (S. S. Gropper & J. L. Smith, 2013) HCl  has a double action, it causes proteins to 

unfold or uncoil due to the breakage of hydrogen and electrostatic bonds (S. S. Gropper & J. L. 

Smith, 2013) and enables the activation of pepsin (S. S. Gropper & J. L. Smith, 2013; Piper & 

Fenton, 1965). Human pepsin starts being active below pH 5.5 and exhibits maximum activity at 

pH 2 (Piper & Fenton, 1965). The products of gastric proteolysis consist of a mixture of large 

polypeptides, oligopeptides and free amino acids (S. S. Gropper & J. L. Smith, 2013). Protein 

digestion is completed in the small intestine by the action of different proteases and peptidases 

before the absorption of small peptides and free amino acids (S. S. Gropper & J. L. Smith, 2013). 

At a macroscopic level, bread is characterized as a solid foam (J. A. Gray & J. N. Bemiller, 2003). 

At a molecular level, the bread foam contains a continuous and a discontinuous phase. The 

continuous phase is formed by an elastic network of cross-linked gluten molecules and leached 

starch polymers that may integrate starch-gluten associations (starch-gluten fibrils) (J. A. Gray 
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& J. N. Bemiller, 2003). The discontinuous phase consists of gelatinized, swollen, deformed 

starch granules entrapped in the continuous phase (J. A. Gray & J. N. Bemiller, 2003). Given the 

intricate association of starch and gluten in bread, an interdependence of their digestive 

processes can be expected. This was recently shown  using an in vitro static digestion model 

where the pH during each digestive stage was kept stable (F. Smith, et al., 2015). Expanding our 

understanding of the digestive process of starch, and how this influences the digestion of 

proteins, is an important step towards the development of food products with potential health-

supporting digestion rates. However, to preserve the biological relevance of the results, it is 

important that the digestive conditions reproduce as closely as possible those found in vivo. 

Therefore, our purpose was to re-evaluate the role of HSA in the form in which it is found in the 

human digestive tract (i.e. in saliva, non-purified), and to study the digestion kinetics of bread 

starch and proteins during oral and gastric processing using DiDGI®, an in vitro model capable of 

mimicking key dynamic aspects of our digestive environment. Bread was selected as a model 

food due to its macronutrient profile and the importance it has in our diet. 
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2. MATERIALS AND METHODS  

2.1. MATERIALS  

The bread used in this study was a French wheat baguette supplied by Lesaffre (Marcq-en-

Baroeul, France) that has been characterized during previous studies carried out in our 

lab(Jourdren, et al., 2016). Only the crumb of the baguette was used in all the experimental 

work. 

Human saliva from one non-smoker volunteer was used for the determination of HSA activity as 

a function of pH and for the preparation of saliva-based boli after informed consent was 

obtained. The subject was asked to abstain from tooth brushing, food and drinks for at least two 

hours prior to saliva collection. On each trial day, mechanically stimulated saliva was collected 

at 9 AM, aliquoted and conserved at 4 ºC until usage (for a maximum period of 6 hours). Saliva 

was used in all experiments requiring HSA. Given that HSA's activity can be influenced by the 

salts naturally present in saliva,(P Bernfeld, Staub, & Fischer, 1948) no pre-treatments (excluding 

freezing and thawing) were employed in order to reinforce the physiological relevance of the 

results. Immediately before each digestion experiment, saliva aliquots were placed in a water-

bath for 5 min and brought to 37 ºC. The commercial enzymes used in this study were: 

amyloglucosidase from Aspergillus Niger (ref 10 102 857 001, from Roche, Switzerland), pepsin 

from gastric mucosa (P-6887) and pancreatic α-amylase (A-3176), both of porcine origin (Sigma-

Aldrich, France). The substrate used for the determination of HSA activity was potato starch (ref. 

101 253, from Merck, Germany).  

2.2. BREAD CHARACTERIZATIO N  

P R O T E I N :  Total protein content was determined by an independent laboratory (ABIOPOLE - 

Groupe Qualtech, France) using the Kjeldahl method. 

S T A R C H :  Total and resistant starch determination assays were carried out in our laboratory in 

triplicate. 

T O T A L  S T A R C H  was determined according to a modified version of Goñi’s method (Goñi, 

Garcia-Alonso, & Saura-Calixto, 1997). Bread crumb samples (50 ± 5 mg) were dispersed into 10 

mL of 2 M KOH solution and mixed (150 rpm) at room temperature for 30 min before 5.7 mL of 

2 M HCl and 3 mL of sodium acetate buffer were added and the pH adjusted to 4.75 ± 0.1. This 

resulted in solutions of solubilized starch which were subsequently hydrolysed into glucose by 

adding 60 µL of undiluted amyloglucosidase and incubating in a shaking water-bath (60 °C, 150 

rpm, 45 min). After centrifugation (4 °C, 3000 g, 10 min) glucose concentration in the 

supernatant was determined using an enzymatic kit (D-Glucose kit, ref. 103.21, BioSenTec; 
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Toulouse, France) followed by absorbance measurements (340 nm) in 1 cm plastic cuvettes with 

a UV-Vis spectrometer (Evolution 201, Thermo Scientific). Total starch content was then 

calculated from the measured glucose as mg of glucose × 0.9. 

R E S I S T A N T  S T A R C H  was determined according to a modified version of the method of Goñi 

(Goñi, Garcia-Diz, Mañas, & Saura-Calixto, 1996). Bread crumb samples (250 ± 5 mg) were 

incubated with 10 mL of HCl-KCl buffer (pH 1.5) and 0.2 mL of a 2.5×105 U/mL pepsin solution 

in a shaking water bath (40 ºC, 150 rpm) for 60 min. Then, 9 mL of tris-maleate buffer (pH 6.9) 

and 5 mL of a 0.52 U/mL pancreatic α-amylase solution were added. A 16 h incubation at 37 ºC 

under agitation (150 rpm) followed. After centrifugation (4 ºC, 3000 g, 15 min) and supernatant 

removal, the starch remaining in the pellet (resistant starch) was quantified using the procedure 

described above for total starch. 

D I G E S T I B L E  S T A R C H  was calculated as the difference between total and resistant starch. 

2.3. HSA  ACTIVITY AS A FUNCTI ON OF PH   

An adapted version of Bernfeld’s method (Peter Bernfeld, 1955) was used to estimate the 

activity of HSA as a function of pH. Human saliva, collected as described in section 2.1, was 

diluted 10 folds (w/w) with deionized water. 13 solutions of 1% (w/v) starch and 5.8 mM NaCl 

were prepared in the range of pH 2 to 7.5 using HCl or NaOH for pH adjustments. For each pH 

level, four glass tubes containing 0.5 mL of the corresponding starch solution were incubated at 

20 ºC for 3 min with different volumes of diluted saliva (0, 50, 70 or 100 µL). Immediately after, 

solutions with a pH < 6.5 were neutralized to 7 with pre-determined volumes of NaOH solutions, 

and the amylolytic activity was interrupted by adding 0.5 mL of a DNS solution (containing 96 

mM 3, 5-Dinitrosalicyclic Acid, 0.5 M NaOH and 0.16 M of potassium tartrate). The saliva content 

of each tube was then standardized to 100 µL. All tubes were placed in a boiling water bath for 

15 min and cooled to room temperature in ice, before adding 4.95 mL of a Na3PO4 buffer solution 

and adjusting at pH 6.9. Absorbance was then read at 540 nm, and the maltose concentration 

was determined from a previously established calibration curve obtained using a series of 

maltose solutions (0.005 % to 0.2 % w/v). Enzymatic activity was defined as follows: 1 unit 

liberated 1.0 mg of maltose from potato starch per mL of saliva in 3 min, at pH 6.9 and 20ºC. 

2.4. IN VITRO  D IGESTION :  ORAL AND GASTRIC PHASES  

All digestion experiments were carried out with bread crumb only. The crumb was separated 

from the crust with the help of a round, 3 cm diameter cookie cutter, used to cut crumb cylinders 

from bread slices 1.5 – 2 cm thick. 
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O R A L  P H A S E :  After cutting each crumb cylinder into four (lengthwise), a standard volume of 

baguette crumb was artificially chewed using a domestic kitchen food chopper (Multi-

moulinette 400W, Moulinex, France) during 4 segments of 5 s to simulate food comminution 

through human mastication (no liquid was added at this stage). Individual portions of 3 g were 

kept in an air-tight container at 20 ºC until usage (maximum of 4 hours). Each saliva-based bolus 

was formed by transferring one artificially chewed bread portion into an individual plastic 

syringe with a cut end, and mixing in 1.5 g of saliva for 30 s with a spatula. Mixing time was set 

in accordance with in vivo data from a previous work with the same bread (Jourdren, et al., 2016) 

and other results from the literature (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000), both 

reporting chewing times between 18 and 41 s for white wheat bread. Particular attention was 

paid to prevent an overestimation of HSA’s role by defining a bolus hydration level at 0.5 mL of 

saliva per gram of crumb, just below the 0.6 – 1.0 mL/g range previously reported as the optimal 

saliva level for wheat bread bolus (Bornhorst & Singh, 2013).  

The suitability of our in vitro boli to appropriately mimic the textural and digestive properties of 

in vivo boli was preliminarily assessed. In vivo boli were produced by the volunteer who donated 

the saliva by chewing 3 g crumb portions for 30 s. Texture profile analyses (TPA) were conducted 

using a TA-XT2 texture analyser (Stable Micro Systems Ltd., Godalming, UK) equipped with an 

ebonite 60-mm-diameter cylindrical probe. Each sample was compressed twice at 4ºC and a 

speed of 0.83 mm.s-1, up to 65 % of deformation (rest period of 1 s between each cycle) to 

determine its hardness, adhesiveness and cohesiveness (3 replicates). Figure 39shows that only 

hardness was significantly different (higher for in vitro formed boli). As presented in Figure 40, 

the digestion profiles of both types of bolus were also highly comparable, with a plateau being 

reached in about 15 min in all cases. 

 

  

Figure 39 - Texture Profile Analysis of in-vitro (grey columns) and in-vivo (white 
columns) formed boli. Different letters (a -b) denote statistically significant 
differences (p<0.05) between the two types of bolus for each parameter (cohesion, 
hardness and adhesiveness) according to one-way ANOVA. 
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G A S T R I C  P H A S E :  Bread boli were submitted to individual dynamic gastric digestions using 

DiDGI®, a dynamic digestion system. This system is controlled by a software (STORM®) that 

allows one to continuously add pepsin and HCl solutions to an in vitro chime (henceforth simply 

called chime) and also to monitor and control its pH, temperature and stirring conditions 

(Ménard, et al., 2014). Immediately after being prepared, each bolus was introduced in the 

gastric compartment of DiDGI® (capacity ~ 600 mL), previously set-up with an operating 

temperature of 37 ºC, and a pre-meal water volume of 50 mL to ensure that the pH probe was 

properly submerged and facilitate sample collection. After a 30 s stirring period followed by a 

30 s sedimentation step (no stirring), the first sample was collected from the supernatant and 

the in vitro gastric digestion was initiated by activating the influx of pepsin and HCl using the 

software. Due to practical experimental limitations (ex. need to stir for 30 s before the first 

sample), a total of 2.5 min passed between the start of bolus formation and the beginning of 

gastric digestion. This was the shortest possible time to complete all the preparatory tasks and 

initiate the gastric phase. Temperature (37 ºC), stirring conditions with an anchor blade (10 rpm, 

to obtain homogeneous mixing) and pepsin flux (5000 U/min) were equal in all experiments. 

Other parameters were selectively modified to investigate the respective influences of HSA, 

pepsin and gastric pH reduction kinetics, leading to 4 different types of trials.  

( 1 )  “Snack-type digestion of a Water-based Bolus” (SWB): saliva was replaced by water during 

the bolus preparation (i.e. a condition with no HSA), and gastric digestion lasted 60 min. The pH 

was gradually reduced from 6.0 to 2.0 by continuously adding 0.5 M HCl during the first 30 min 

Figure 40 - Assessment of the in vitro  boli’s ability to reproduce in vivo  conditions. Proportion 
of starch released during digestion of in vivo and in vitro formed bread boli. (A) ―▲― SSB - 
Snack-type digestion of an in vitro Saliva-based bolus (average ± SD, 3 rpts.), ―*― Snack -
type digestion of an in vivo Saliva-based bolus (1rpt). (B) ―― CSB - Constant pH Digestion 
of an in vitro Saliva-based-bolus (1rpt), ―+― Constant pH Digestion of an in vivo  Saliva-based-
bolus (1rpt).  
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of gastric digestion, and kept constant (pH 2) during the last 30 min. This pH reduction kinetics 

was intended to reproduce the evolution of human gastric pH following ingestion of a bread-

based snack-type meal (Dedlovskaya, 1968), and could be classified as a physiologically fast pH 

reduction kinetics. SWB served as a control trial for starch digestion. 

( 2 )  “Snack-type digestion of a Saliva-based Bolus” (SSB): SSB trials only differed from SWB in 

the type of bolus used as in SSB saliva-based boli were used.  

( 3 )  “Lunch-type digestion of a Saliva-based Bolus” (LSB): these trials only differed from SSB in 

the duration of the gastric phase and the pH reduction kinetics. This digestive stage lasted 90 

min and the pH reduction from 6.0 to 2.0 was performed in a 60 min period (vs. 30 min in SSB). 

This was done to simulate human gastric pH conditions following ingestion of a lunch bread-

based meal (Malagelada, Go, & Summerskill, 1979). 

( 4 )  “Constant pH (pH 6) digestion of a Saliva-based Bolus” (CSB): CSB was carried out to assess 

the maximum amylolytic capacity of HSA under favourable activity conditions (pH ≈ 6.0) upon 

digestion of bread. This trial only differed from SSB trials in the pH conditions used, and served 

as a control for protein digestion as pepsin activation was not enabled. 

In addition to the first sample collected right before initiating gastric digestions, during the 

gastric phase samples were also collected at 3, 9, 12, 15, 20 and 30 min, and every 15 min after 

this. The sampling process consisted in interrupting stirring for 30 s (to allow for particle setting) 

immediately before collecting a 1 mL sample from the supernatant and placing it in a dry bath 

(ThermoMixer C, Eppendorf) (99 ºC, 5 min) for enzyme inactivation. Samples were conserved at 

-20 ºC until required for further analysis. Assays SSB and LSB were performed in triplicate, while 

the others were conducted once. 

 

2.5. SAMPLE ANALYSIS  

After thawing (12-15 hours, 4 ºC) and centrifugation (10 min, 3000 g, 4 ºC), the supernatant of 

in vitro chime samples was analysed for partially hydrolysed starch and solubilized protein 

fractions.  

R E L E A S E D  S T A R C H :  samples were treated as solutions of solubilized starch as described in 

section 2.2 for the determination of total starch. This method accounts for both solubilized 

starch fractions and products of starch hydrolysis. The rate of starch digestion was expressed as 

the percentage of total starch released as a function of time for each type of trial. 
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R E L E A S E D  P R O T E I N :  the percentage of total protein in the chime was estimated by direct 

UV spectrophotometry (λ=280 nm) using quartz cuvettes (Evolution 201, Thermo Scientific 

spectrophotometer). The mass attenuation coefficient of wheat flour proteins at 280 nm (Ɛ280, 

L.g-1.cm-1) was estimated according to their amino acid composition (Juhász, Békés, & Wrigley, 

2014) and the following equation adapted from Pace and colleagues (Pace, Vajdos, Fee, 

Grimsley, & Gray, 1995):  

Ɛ280 = 5,500 × nTrp + 1,490 × nTyr + 125 × ncystine 

where nTrp, nTyr, and ncystine are the quantity (mol) of tryptophan, tyrosine, and cystine residues 

per gram of protein. The mass of solubilized wheat proteins was estimated using the absorbance 

at 280 nm corrected from pepsin absorbance, and the volume content in the gastric 

compartment of DiDGI®. 

  



Chapter 1. The important role of salivary amylase in gastric digestion of wheat bread 

 

71 
 

3. RESULTS AND D ISCUSSION  

3.1. BREAD CHARACTERIZATIO N  

The studied baguette contained 43.4 ± 1.3 g of starch per 100 g of crumb as eaten, of which 95.9 

± 0.6 % of was digestible and 4.1 ± 0.6 % was resistant to digestion. Protein content amounted 

to 5.4 g per 100 g of crumb as eaten. As mentioned above, a loaf of bread generally consists of 

about 50% starch, 40% water and 7% protein (Pateras, 2007). The higher water content of the 

bread used in our study (49.1 ± 0.2) (Jourdren, et al., 2016) explains the slightly inferior starch 

and protein in comparison with values reported in the literature. 

 

3.2. AMYLOLYTIC ACTIVITY O F SALIVA AS A FUNCTI ON OF PH 

To understand the contribution of HSA to starch digestion, it is important to first determine its 

behaviour within the range of pH values it encounters throughout digestion. The evolution of 

human HSA’s activity as a function of pH is presented in Figure 41. The highest amylolytic activity 

corresponded to 352 ± 41 U/mL, and was observed between pH 6 and 7. At around pH 4, 50 % 

of the maximum activity was still observed, and complete inhibition occurred between pH 3.0 

and 3.5.  

 

These findings are well in accordance with the literature on saliva and HSA’s properties. The 

optimum pH of HSA (both in saliva and in purified form) has been reported to be between 6.5 
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Figure 41 - Amylolytic activity of saliva as a function of pH. Maximum activity, found at pH 
6.2, was 352 ± 41 U/mL of saliva (1 unit liberated 1.0 mg of maltose from potato starch in 
3 min at pH 6.9 at 20ºC).  
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and 7.0 (Peter Bernfeld, 1955; P Bernfeld, Staub, & Fischer, 1948; Walker & Whelan, 1960) and 

the maximal amylolytic activity of 352 U/mL obtained for saliva is very close to the 410 U/mL 

previously reported for centrifuged saliva(Peter Bernfeld, 1955) using the same assay as in the 

present study. Both HSA in saliva and in purified form have also been reported to be inactivated 

at around pH 3.5, although it seems that the amylolytic activity of saliva decreases slower when 

approaching this inactivation threshold than that of pure HSA (P Bernfeld, Staub, & Fischer, 

1948; Walker & Whelan, 1960). Indeed, it was demonstrated that saliva’s amylolytic activity was 

preserved in human gastric juice at pH 5, and that there was a steady decrease of activity to 50 

% of the initial levels after 120 min exposure to gastric juice at pH 4.3 (M. Fried, S. Abramson, & 

J. H. Meyer, 1987). This somehow contrasts with the activity of pure HSA which was shown to 

decrease by about 80-90 % when approaching pH 4 (P Bernfeld, Staub, & Fischer, 1948; Walker 

& Whelan, 1960). 

 

3.3. DYNAMIC IN VITRO  D IGESTION  

The role of HSA on starch digestion and the possible interplay between its action and proteolysis 

were studied by performing a series of in vitro digestions varying in oral and gastric conditions. 

A total of three distinct trials were carried out with saliva-based boli to investigate protein and 

starch hydrolysis when simulating snack- (SSB) and lunch-type (LSB) gastric acidification kinetics, 

and when keeping pH constant at 6 (favourable to HSA and unfavourable to pepsin) (CSB). CSB 

also served as a protein digestion control. For the starch digestion control study, a water-based 

bolus (free from HSA) was used and in vitro gastric digestion (SWB) was carried out under the 

same conditions as in SSB trials. The results obtained are presented in Figure 42, B, C and D for 

trials SWB, SSB, LSB and CSB, accordingly. These graphs show the proportion of starch (black 

symbols) and total protein (white symbols) released over time, as well as the pH conditions 

(dotted line) during each trial. The first point in each graph corresponds, simultaneously, to the 

end of the oral phase (t = 2.5 min) and the beginning of gastric digestion. 

 

3.3.1.  D IGES T ION OF  S TA RC H (F I GURE 42,  B LA CK SY MB O LS )  

In the absence of amylase (SWB trial, Figure 42A), it can be observed that at the start of the 

gastric phase (first point in the graph), about 5 % of the total starch was solubilized in the chime. 

This fraction of solubilized starch increased to 10 % in about 5-6 min, when a plateau was 

reached. The plateau lasted around 15 min and was followed by another rise starting at around 

t = 20 min. This second rise lasted approximately 5 min, until a second plateau, corresponding 
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to around 20 % of the total starch, was reached. Because there was no amylase in this 

experiment, the first plateau can be attributed to the solubilisation of starch. The second 

increase started immediately after pepsin activation (at pH ≈ 4) suggesting that more starch was 

released during the breakdown of the protein network.  

HSA was present in all other trials (SSB, LSB and CSB). Matching its activity at different pH levels 

(Figure 41) with the pH conditions imposed, inhibition of its activity by 50 % was anticipated at 

around t = 15 min and t = 30 min during snack-type (SSB, Figure 42B) and lunch-type (LSB, Figure 

42C) digestions, accordingly. In the last type of trial (CSB, Figure 42D) amylolytic activity was 

expected to be preserved at all times. Surprisingly, the starch digestion profiles in all types of 

digestions were equivalent, showing an exponential evolution up to a plateau just under 80 % 

of the total starch released, reached within the first 20 min of digestion. Amylolysis did not seem 

to be impaired through early HSA inhibition (SSB trials), nor promoted through the extension of 

its activity period (LSB, and CSB trials). In fact, no matter the pH conditions, and therefore the 

time HSA remained active, starch hydrolysis evolved exponentially into nearly superimposable 

curves with similar plateaus always being reached before HSA inactivation (Figure 42). This 

suggests that the process had already been completed within the first 20 min of digestion, 

demonstrating the effectiveness and relevance of this enzyme. 

By considering the first data points in Fig. 3B, C and D (dark symbols, SSB and LSB digestions), 

we found that 18.5 ± 3.6 % (mean ± std, 9 replicates) of starch were released at the start of the 

gastric phase. By comparing these results with those obtained in the absence of HSA (SWB trial) 

(Figure 42A), it is possible to deduce that this enzyme was responsible for hydrolysing at least 

13 % of bread starch by the end of the oral phase and an additional 50 % within the first 30 min 

of gastric digestion. 
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Starch hydrolysis during the oral phase has been investigated before. The team of Woolnough 

and colleagues, for example, found that 13 % of bread starch was hydrolysed (either completely 

to glucose, or partially to dextrins) by HSA during a typical chewing cycle in vivo (Woolnough, 

Bird, Monro, & Brennan, 2010) which is close to the results obtained in our study. Furthermore, 

despite possible intra-individual variations (Neyraud, Palicki, Schwartz, Nicklaus, & Feron, 2012) 

the similarity between the oral phases containing HSA (first point in SSB, LSB and CSB graphs) 

indicates that any possible variations in saliva’s amylolytic profile were minimal. The same team 

also concluded that the presence of this enzyme did not influence the starch digestion profiles 

during in vitro intestinal digestions, questioning its relevance to the digestive process 

(Woolnough, Bird, Monro, & Brennan, 2010); However, they used a method that simulated an 

instantly acidified gastric phase (Woolnough, Bird, Monro, & Brennan, 2010) leading to 

immediate inhibition of amylolytic activity after the oral phase, which, as discussed above, does 

Figure 42 - Starch and protein digestion during in vitro oral-gastric digestion of bread. Proportion 
of total starch (black symbols) and protein (white symbols) released into the chime throughout 
digestion.  (A) SWB - Snack-type digestion of a Water-based Bolus (1 rpt.).  (B) SSB - Snack-type 
digestion of a Saliva-based Bolus (average ± SD, 3 rpts.). (C) LSB - Lunch-type digestion of a Saliva-
based Bolus (average ± SD, 3 rpts.). (D) CSB - Constant pH (pH 6) Digestion of a Saliva-based Bolus 
(1 rpt.). In all graphs, dotted lines (- - -) correspond to gastric pH conditions. In graphs A, B and C, 
up arrows (↑) denote the moment when pH conditions start enabling the activation of pepsin 
(porcine origin) (pH ≈ 4). In graphs B and C, down arrows (↓) denote the moment of complete 
HSA inactivation (pH ≈ 3).  
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not represent human biological reality (Dedlovskaya, 1968; M. Fried, S. Abramson, & J. H. Meyer, 

1987; Malagelada, Go, & Summerskill, 1979).  

The similarity between our results and those from Bergeim‘s in vivo studies (Bergeim, 1926), 

both showing hydrolysis levels of at least 50 % at the end of gastric digestion of bread, 

strengthens the biological significance of our study as well as the usefulness and importance of 

using dynamic digestion models in such studies. To the best of the authors’ knowledge, this was 

the first time that the contribution of HSA to starch digestion during the gastric phase was 

quantitatively assessed with a dynamic digestion model. Our results support not only its 

relevance in the process, but also highlight its efficiency as, overall, the process was not affected 

by the pH reduction kinetics. 

Around 20 % of the starch remained intact by the end of all trials containing HSA. If the limiting 

factor here were enzymatic inactivation, the degradation of this starch fraction would have 

proceeded when amylolytic activity was preserved (CSB), which was not the case (Figure 42D). 

Our findings appear to reveal the existence of some form of starch resistance to gastric 

digestion. The concepts of resistant and digestible starch used to characterize the bread studied 

here are well defined in the literature and refer to the whole process of digestion (Dona, Pages, 

Gilbert, & Kuchel, 2010). The initial bread characterization revealed that only around 4 % of the 

total starch in bread was resistant to digestion. Our present results thus suggest that there is a 

larger fraction of starch, of about 20%, that resists digestion up to the gastric phase. As further 

discussed in section 3.3.3., this is possibly due to the in vivo chronology of salivary amylase and 

pepsin actions, and the fact that starch is embedded in the gluten network of bread. 

3.3.2.   D IGE ST ION  OF  PRO TE IN (Figure 42,  W HITE  S YM BO LS )  

In the protein digestion control trial (CSB, Figure 42D), no proteolysis was expected to occur 

according to the constant pH of 6. Similarly to the starch digestion control trial (Figure 42A), we 

have observed that by the end of the oral phase there was already a fraction of protein 

solubilized in the chime and, after the start of gastric digestion, protein concentration increased 

rapidly, reaching a plateau in less than 3 min. Around 20-25 % of the total protein was solubilized 

in the chime. Because no protein fractions from the insoluble gluten network could have been 

hydrolysed nor solubilized, the increase in protein concentration in the chime is likely to 

correspond to the dispersion of the soluble protein fraction from wheat flour and was followed 

by a plateau that lasted until the end of the trial. Indeed, soluble proteins represent around 25 

% of the total wheat protein (Belderok, Mesdag, & Donner, 2000), which is consistent with our 

findings.   
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In the other in vitro digestions, proteolysis was enabled through an acidification of the chime to 

levels that supported pepsin activation (SSB, SWB and LSB trials). Porcine pepsin, the type of 

pepsin used in our experiments, starts being active at pH below 4 and exhibits maximum activity 

at around pH 2 (Kondjoyan, Daudin, & Santé-Lhoutellier, 2015; Pletschke, Naudé, & Oelofsen, 

1995). In SSB, SWB and LSB digestions, and similarly to the CSB control, during the first minutes 

of gastric digestion, while the pH was above 5, there was an increase of the protein 

concentration followed by a plateau at around 25 % of the total protein solubilized. This plateau 

lasted only until the pH lowered to about 4, enabling proteolysis. At this transition point, a 

second rise was initiated. In LSB trials (Figure 42C) the pH reduction was twice as slow as in SSB 

and SWB, explaining the twice as long duration of the initial plateau. By the end of all the trials, 

65 % to 75 % of the total protein in bread had been released. 

Considering it appears safe to presume that the initial plateau in the SSB, LSB and SWB trials 

corresponds to the soluble protein fraction, the transition from this plateau to the second rise, 

representing about 45 % of the total protein, resulted from the release of protein fractions from 

the insoluble gluten network (equivalent to about 50 % thereof). Peptic digestion was relatively 

slow and incomplete. This result is in accordance with findings reported by other researchers 

indicating that gluten proteins can be quite resistant to in vitro gastric digestion (F. Smith, et al., 

2015); Additionally, our protein quantification method accounted for all solubilized protein 

fractions indiscriminately, therefore, it is possible that large fragments resisted proteolysis as 

demonstrated in the work of Smith and colleagues (F. Smith, et al., 2015).  

3.3.3.  IN TERP LAY BET WEEN PRO T EIN AND S T ARC H D IGE ST IO N  

Provided that some of the starch in bread is entrapped within the gluten network, and possibly 

participates in the formation of starch-gluten interactions(J. A. Gray & J. N. Bemiller, 2003), there 

is a possible interdependence between amylolysis and proteolysis. In the absence of amylolytic 

activity, starch-gluten interactions could certainly cause the delay in the initial protein 

solubilisation (Figure 42A) but they did not seem to impair peptic hydrolysis of the insoluble 

gluten fraction. Other researchers have observed that bread gluten proteins were digested 

rapidly only in the presence of pancreatic amylase during an in vitro duodenal digestion(F. Smith, 

et al., 2015), which confirms the intricate nature of starch-gluten interactions and their capacity 

to influence the digestive process. In their work, an immediate gastric acidification restricted 

starch hydrolysis to the intestinal phase mainly. However, physiological reality determines that, 

under normal conditions, HSA is active before any protease and our results show that starch is 

already extensively hydrolysed when proteolysis is initiated. 
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By comparing the CSB results (Figure 42D) with those from SSB and LSB, we can observe that 

starch hydrolysis did not seem to be impaired in the absence of proteolytic activity. However, as 

previously stated, the second rise in the starch release profile in the absence of HSA (Figure 42A) 

can be attributed to the effect of pepsin action, thereby reflecting starch-gluten interactions. 

Indeed, this increase coincided with pepsin activation and degradation of the gluten network, 

what probably could have led to the release of starch fractions initially entrapped within it. 

Moreover, these molecular arrangements can also explain, at least in part, the fact that the 

proportion of starch remaining intact by the end of the gastric digestion trials was about 5 times 

higher than the fraction of resistant starch found in this bread. This explanation is supported by 

the distinct protocols used in the resistant starch and digestion experiments. To determine the 

resistant starch fraction (section 2.2.3) foods are first incubated with a pepsin solution for one 

hour and amylolysis is initiated only after this process is complete. Due to this inversion of the 

proteolytic and amylolytic processes, by the time amylolysis starts, protein was already digested 

and the gluten network disrupted, facilitating the hydrolysis of starch which may explain finding 

a smaller fraction of resistant starch. 
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CONCLUSION  

We have demonstrated that HSA plays a preponderant role in the 

digestion of bread starch during gastric digestion in vitro and literature 

shows that its role in vivo appears equally important. Moreover, in the 

presence of HSA, nearly superimposing exponential curves were 

obtained regardless of the pH reduction kinetics imposed, which 

reveals its high efficacy and justifies the need to re-evaluate the 

relevance of this enzyme in the digestive process of starch. 

Approximately 20 % of the starch was resistant to gastric digestion, 

and the initial stages of protein digestion appeared to be impaired in 

the absence of HSA. Both of these observations could be related with 

starch-gluten interactions. A specific analysis of the starch and/or 

protein fractions produced during digestion can provide further insight 

into the extent of hydrolysis, and it is recommended for future studies. 

Finally, our results offer key insight into the digestive process of 

starchy foods and show the need for accurately replicating the 

dynamic character of digestive conditions in in vitro studies in order to 

correctly determine the contribution of each mechanism. 
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KEY-MESSAGES  

 

 

 We studied oral-gastric bread digestion mimicking dynamic postprandial conditions  

 Salivary α-amylase hydrolysed up to 80 % of starch in the first 30 min of digestion  

 20% of starch resisted gastric digestion, possibly due to starch-gluten interactions 

 Up to 75 % of protein was hydrolysed to some extent during gastric digestion   

 A close relationship between starch and protein digestion was observed and could be 
due to molecular interactions.  
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Informal presentation  

The preceding chapter provided first results regarding the role of each 

digestive stage on the digestion of starch from bread. Can these results 

be confirmed with other breads? And what about other starch-rich 

foods? Even when they have similar compositions, starch-rich foods 

often exhibit different patterns of starch digestion.  It is the particular 

case of wheat-based bread and pasta which are important sources of 

starch our diets. Their basic ingredients are the same, but the 

differences in the processing steps lead to two distinct products that 

generally impact glycaemia differently. Additionally, alternative 

formulations are often developed to suit particular dietary needs. An 

example is gluten-free pasta, which can sometimes have a higher 

glycaemic impact.  

W E  H A D  M O R E  Q U E S T I O N S :  

C A N  T H E  P R E V I O U S  R E S U L T S  B E  T R A N S P O S E D  T O  O T H E R  

P R O D U C T S ?   

W H A T  I S  T H E  C O N T R I B U T I O N  O F  T H E  O R A L ,  G A S T R I C  A N D  

I N T E S T I N A L  P H A S E S  T O  T H E  D I G E S T I O N  O F  S T A R C H  F R O M  

F O O D S  T H A T  E L I C I T  D I F F E R E N T  G L Y C A E M I C  R E S P O N S E S ?  
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A B S T R A C T  

Starch is a major determinant of the glycaemic responses elicited by our diets, but the exact 

contribution of the two main amylolytic enzymes (salivary and pancreatic α-amylases) remains 

a matter of debate. Our aim was to investigate the contribution of the oral, gastric and intestinal 

phases to the hydrolysis of starch in bread and pasta during dynamic in vitro digestions using 

DiDGI®. Before its inactivation by the low gastric pH, salivary α-amylase released about 80 % of 

the starch in bread and 30 % of that in pasta, hydrolysing over half of it into oligosaccharides. 

Accordingly, the contribution of pancreatic α-amylase during the intestinal phase was lower for 

bread than pasta. Our results are well correlated with in vivo data, and demonstrate the 

importance of salivary α-amylase during oro-gastric processing of starchy foods. This finding is 

discussed in relation with observations regarding salivary α-amylase from other fields of 

knowledge.  
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1. INTRODUCTION  

Starch is the most important, abundant and digestible polysaccharide in human nutrition. Being 

exclusively made up of glucose residues, and accounting for 20 % to 50 % of the total energy 

intake (Stylianopoulos, 2012), it plays a major role in the post-prandial glycemic responses 

elicited by our diets. The positive relationship between the rate at which foods are digested and 

the degree to which they raise blood glucose has been repeatedly acknowledged (Goñi, Garcia-

Alonso, & Saura-Calixto, 1997; Yvonne Granfeldt, Hagander, & Björck, 1995; Jenkins, et al., 

1982). It is therefore clear that attention should not only be given to the starch content in our 

diets, but also to its digestive process, which remains to be fully understood.  

There are two key enzymes that participate in the digestion of starch: human salivary α-amylase 

(HSA) and pancreatic α-amylase. HSA initiates the amylolytic process in the oral cavity 

(Bornhorst & Singh, 2012) and can remain active in the stomach (Bornhorst & Singh, 2012; S. S. 

Gropper & J. L. Smith, 2013) until it is inactivated due to the increasing acidity, between pH 3.0 

and 3.8 (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b; M. Fried, S. Abramson, & J. H. 

Meyer, 1987). Pancreatic α-amylase and brush border enzymes then complete starch digestion 

in the small intestine, where glucose is finally absorbed (S. S. Gropper & J. L. Smith, 2013). The 

role of HSA during oral digestion of starch is somewhat well established, but little attention is 

given to its impact during the gastric phase of digestion. Extensive work has been conducted in 

vitro with the aim of better understanding the digestive process of starch (Berti, Riso, Monti, & 

Porrini, 2004; Goñi, Garcia-Alonso, & Saura-Calixto, 1997; Yvonne Granfeldt, Hagander, & Björck, 

1995; Jenkins, et al., 1982; Woolnough, Bird, Monro, & Brennan, 2010), but the oral phase is 

either ignored (Berti, Riso, Monti, & Porrini, 2004; Goñi, Garcia-Alonso, & Saura-Calixto, 1997) 

or followed by a gastric phase at an acidic pH, usually between 1.5 and 3 (Yvonne Granfeldt, 

Hagander, & Björck, 1995; Jenkins, et al., 1982; Minekus, et al., 2014a; Woolnough, Bird, Monro, 

& Brennan, 2010). Consequently, even when taken into account in these protocols, HSA is 

immediately inactivated at the beginning of the gastric phase, and therefore most starch is 

hydrolysed during the intestinal phase. Moreover, because such studies are generally in very 

good agreement with in vivo data (Bohn, et al., 2017) an analogy between intestinal hydrolysis 

kinetics and glycemic response is repeatedly established, thereby reinforcing the idea that the 

great majority of starch is digested by pancreatic amylase (des Gachons & Breslin, 2016).   

However, simulating gastric digestion at a stable acidic pH is not representative of the in vivo 

dynamics, as it has been observed that it takes 75-107 min to reach pH ≤ 2 after a meal 

(Dressman, et al., 1990; Gardner, Ciociola, & Robinson, 2002; Malagelada, Go, & Summerskill, 

1979). This is in line with the reports that the action of HSA can continue long after the oral 



Chapter 2. Oro-gastro-intestinal digestion of starch: unveiling the contribution of salivary amylase 

 

85 
 

phase, and even reach the intestinal lumen in its active form (M. Fried, S. Abramson, & J. H. 

Meyer, 1987; Skude & Ihse, 1976). These observations suggest that HSA may play a more 

significant role in starch digestion than often considered. The scientific literature on this topic is 

scarce, but evidences that HSA can hydrolyse as much as 76 % of mashed potatoes’ starch and 

59 % of that in bread into maltose, within the stomach, date back to the beginning of the 20th 

century (Bergeim, 1926). More recently, we obtained similar results with an in vitro protocol 

that closely mimicked in vivo gastric pH reduction kinetics after a snack- or lunch-type meal and 

showed that HSA could hydrolyse up to 80 % of bread starch within the first 30 min of gastric 

digestion (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b). In the present study, we intended 

to confirm that the amylolytic activity of saliva plays a preponderant role in the digestion of 

starch in bread and to widen our investigations to the intestinal phase of digestion, to the 

kinetics of starch hydrolysis into oligosaccharides, and to other highly consumed starchy foods: 

wheat and gluten free (GF) spaghetti. Our hypothesis is that HSA can significantly contribute to 

the digestion of starch before it is inactivated during the gastric phase, and therefore plays a 

more important role than generally considered.  
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2. MATERIALS AND METHODS  

2.1.  MATERIALS  
The three test foods were purchased from a supermarket: freshly baked white wheat French 

baguette (common baguette, Auchan, Plaisir, France), no. 5 wheat spaghetti (Barilla Alimentari, 

Parma, Italy), and no. 5 gluten-free (GF) spaghetti (Barilla Alimentari, Parma, Italy) in which the 

wheat flour was replaced by a mixture of 95 % maize and 5 % rice flours. Whole saliva pool from 

10 human donors (Normal saliva in 5 mL aliquots, ref. 991-05-P-5) was acquired from Lee 

Biosolutions (Maryland Heights, United States) and conserved at -80 °C. Pepsin from gastric 

mucosa (P-6887), pancreatin (P-1750) and pancreatic α-amylase (A-3176), all of porcine origin, 

were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France). Amyloglucosidase from 

Aspergillus Niger (ref. 10 102 857 001) was obtained from Roche (Rotkreuz, Switzerland) and 

was always used undiluted. The amyloglucosidase activity provided by the manufacturer (14 

U/mg of protein) was used as reference, whereas the activities of saliva (345 ± 37 U/mL), pepsin 

(3319 ± 70 U/mg) and pancreatin (Trypsic activity of 3.42 ± 0.04 U/mg) were all measured in our 

lab according to previously described methods (Minekus, et al., 2014b). D-Glucose kits (ref. 

103.21) from BioSenTec (Auzeville Tolosane, France) were also used. 

2.2. FOOD PREPARATION AND CHARACTERIZATION  
2.2.1.   FO OD PRE PA RA T ION  

Only the crumb of the bread, separated from the crust using a 3-cm diameter cookie cutter 

cylinder, was used for the experiments. Both types of pasta were prepared in a Thermomix food 

processor (Thermomix TM 31, Vorwek, Nantes, France) following the same procedure: pasta 

was cooked in pre-heated salted (7 g/L of NaCl) mineral water (Evian, Évian-les-bains, France) 

for 11 min at 90 °C under the lowest speed (spoon function). Immediately after, the cooking 

water was drained and the pasta rinsed 3 times with mineral water. The ratio of pasta to water 

was kept at 17/100 (w/w) both during cooking and rinsing. 

2.2.2.   WA TER CON TEN T  

The water content of food samples (5 g ± 0.5 g) was determined in triplicate by measuring the 

weight loss after drying at 110 ºC for 24 hours in an oven (UF160, Memmert, Büchenbach, 

Germany). 

2.2.3.   STA RC H  

Total and resistant starch contents were determined in triplicate and used to estimate digestible 

starch. 

T O T A L  S T A R C H  was quantified using a modified version of a previously described method 

(Goñi, Garcia-Alonso, & Saura-Calixto, 1997). Food samples (50 ± 5 mg of bread crumb or cooked 
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pasta) were dispersed in 10 mL of a 2 M KOH solution at 4°C for 16 h to allow for complete 

solubilisation. 5.7 mL of 2 M HCl and 3 mL of 0.4 M sodium acetate buffer were then added and 

the pH was adjusted to 4.75 ± 0.1. Their solubilised starch was subsequently hydrolysed into 

glucose by adding 60 µL of amyloglucosidase and incubating for 45 min in a shaking water-bath 

(SW22, Julabo, Seelbach, Germany) (60 °C, 150 rpm). After centrifugation (Centrifuge 5804 R, 

Eppendorf, Hamburg, Germany) (4 °C, 3000 g, 10 min), glucose concentration in the supernatant 

was determined using a D-Glucose kit followed by absorbance measurements (340 nm) in 1 cm 

plastic cuvettes using a UV-Vis spectrometer (Evolution 201, Thermo Fisher Scientific, 

Massachusetts, United States). The total starch content was calculated as mg of glucose × 0.9. 

R E S I S T A N T  S T A R C H  was determined using a modified version of Goñi’s method (Goñi, 

Garcia-Diz, Mañas, & Saura-Calixto, 1996). Bread crumb (250 ± 5 mg) and cooked pasta (350 ± 5 

mg) samples were incubated with 10 mL of HCl-KCl buffer (pH 1.5) and 0.4 mL of a 1.25×105 

U/mL pepsin solution in a shaking water bath (40 °C, 150 rpm, 60 min). Then, 9.5 mL of tris-

maleate buffer (pH 6.9) and 1 mL of a 0.52 U/mL pancreatic α-amylase solution were added and 

samples were incubated for 16 h at 37 °C under agitation (150 rpm). After centrifugation (4 °C, 

3000 g, 15 min) and supernatant removal, the pellet was washed with 10 mL of distilled water 

and re-suspended in 6 mL of 2M KOH where they were left for 30 min under constant shaking 

(150 rpm) at 20 °C. 5.5 mL of 2M HCl and 3 mL of 0.4 M sodium buffer acetate (pH 4.75) were 

added. These samples were then incubated with amyloglucosidase, centrifuged and the starch 

content of the pellet suspension (i.e. resistant starch) was quantified as glucose using the same 

conditions as previously provided for the total starch determination. 

D I G E S T I B L E  S T A R C H  was calculated as the difference between total and resistant starch. 

2.2.4.   PROTE IN  

The protein content of the spaghetti was determined by the Kjeldahl method in an independent 

laboratory (ABIOPOLE - Groupe Qualtech, Vandœuvre, France) with a conversion factor of 5.7 

between nitrogen and protein contents. The protein content of bread was estimated from the 

French Table of Food Composition corrected for the nitrogen conversion factor (5.7 instead of 

6.25) and adjustment for the measured starch content (Hawkins & Johnson, 2005). 

2.3. DYNAMIC IN VITRO  D IGESTION  
Dynamic in vitro digestions were conducted in triplicate for each food. Each digestion comprised 

an oral phase followed by gastrointestinal digestion in DiDGI® (INRA, Grignon, France), a 

computer controlled dynamic system (Ménard, et al., 2014). The STORM® (INRA, Grignon, 

France) software was used to continuously monitor digestive conditions and control the fluxes 

of secretions according to pre-set parameters. The composition of the simulated secretions used 



II In vitro studies 

88 
 

during the gastric and intestinal phases of digestion are described below and were defined in 

order to remain close to the recommendations provided in the standardized static in vitro 

digestion method (Minekus, et al., 2014b). Whenever possible, data from human studies were 

used as reference to define the experimental conditions. 

2.3.1.   ORA L  P HA SE  

For practical reasons, food comminution and saliva incorporation were dissociated.  

C O M M I N U T I O N :   Different procedures were followed for bread and pasta. Bread crumb was 

fragmented using a domestic kitchen food chopper (Multi-moulinette 400 W, Moulinex, Ecully, 

France) using 4 segments of 5 s separated by intervals of 5 s. We have previously shown that 

this enables to accurately replicate the starch digestion kinetics obtained using bread boli 

formed in vivo (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b). This procedure was 

unsuitable for pasta. As most masticated spaghetti pieces have been reported to be between 5 

to 30 mm long (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000), pasta was comminuted by 

manually chopping spaghetti strands into 10 mm long pieces with a knife. Individual portions of 

comminuted bread (6.4 ± 0.5 g) and wheat (11.0 ± 0.5 g) and GF (10.8 ± 0.5 g) pasta, equivalent 

to 3 g of total starch, were kept in an air-tight container at 20 °C until saliva incorporation 

(maximum of 1 hour).  

S A L I V A  I N C O R P O R A T I O N :  Saliva was heated to 37 °C in a water-bath for 10 min 

immediately before each digestion experiment. One portion of comminuted food was mixed 

with saliva for 30 s using a spatula at a saliva/food mass ratio of 0.2 and 0.05 for bread and pasta, 

respectively. Saliva incorporation levels and mixing times were based on the results of Human 

studies with the same types of foods (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000; 

Jourdren, et al., 2016). 

2.3.2.   GAS TR IC  PHASE  

The gastric compartment of DiDGI® was prepared with an operating temperature of 37 °C and a 

stirring speed of 10 rpm. The fasted gastric content consisted of 20 mL of a Simulated Gastric 

Fluid electrolyte solution (eSGF), 10 µL of 0.3 M CaCl2, and a predetermined volume of water. 

The composition of all electrolyte solutions was based on the literature (Minekus, et al., 2014b), 

the only difference being that eSGF was prepared at a neutral pH so that the kinetics of gastric 

pH reduction in vivo could be mimicked. To standardize digestive conditions of all foods and 

ensure adequate immersion of the pH probe, the water volume was adjusted according to the 

bolus volume so that the initial volume of the gastric contents was always 40 mL after the bolus 

addition. Each bolus was introduced into the gastric compartment immediately after 

preparation where it was mixed with the gastric contents for 30 s. At this point, stirring was 
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interrupted for another 30 s to allow for particle sedimentation before collecting the first sample 

(2 mL) from the supernatant. Stirring was then resumed and the gastric phase was initiated by 

activating the influx of HCl (0.1 M in eSGF) and pepsin (4700 U/mL in eSGF). Practical constraints, 

imposed by the sample collection and gastric phase preparation procedures, resulted in a 2 min 

lag between the end of the oral phase and the start of gastric digestion. This was the shortest 

time possible to complete all the experimental steps. The influx of HCl was automatically 

controlled by STORM® to reduce the pH from 6 (initial pH of chime ~ 5.9) to 2 in 90 min and keep 

it at 2 for the following 30 min. This was intended to replicate the pH evolution observed during 

the digestion of main meals (comparable to a lunch or dinner) (Dressman, et al., 1990; Gardner, 

Ciociola, & Robinson, 2002; Malagelada, Go, & Summerskill, 1979). The flow rate of the pepsin 

solution (4705 U/mL), also controlled by STORM®, was constant and pre-set to achieve a 

concentration of ≈ 2000 U/mL within 90 min. The total volume of the HCl and pepsin solutions 

added during the gastric phase was 22 ± 2 mL. This was defined after preliminary tests in order 

to compensate the volume withdrawn by sampling. A total of 11 more samples were indeed 

collected from the supernatant at 3, 6, 9, 15, 20, 30, 45, 60, 75, 90 and 120 min using the above-

described procedure (interruption of stirring for 30 s immediately before collecting a 2 mL 

sample). Collected samples were immediately placed in a dry bath (ThermoMixer C, Eppendorf, 

Hamburg, Germany) (99 °C, 150 rpm, 5 min) for enzyme inactivation, cooled down on ice, and 

conserved at -20°C until further analysis.  

2.3.3.  IN TEST IN A L P HASE  

Intestinal digestion was conducted in the same DiDGI® compartment. 22 mL of a Simulated 

Intestinal Fluid electrolyte solution (eSIF), 10 mL of water and 80 µL of 0.3 M CaCl2 were added 

to the chime remaining after the gastric phase (38 ± 2 mL). The pH of the mixture was adjusted 

to 7.0 with 1M NaOH and the intestinal phase was initiated by adding 10 mL of a pancreatin 

solution in eSIF (trypsic activity of 800 U/mL) that ensured a trypsin activity of 103 U/mL ± 3 

U/mL and a total volume close to 80 mL at the start of the intestinal phase. STORM® was 

programmed to automatically maintain the pH at 7.0 by adding 0.02 M NaOH (also prepared in 

eSIF). Supernatant samples were collected at 4, 9, 15, 20, 30, 60, 90 and 120 min employing the 

same procedure described in section 2.3.2. 

2.4.  D IGESTION MONITORING AND CHEMICAL ANALYSE S  
All digestion experiments were monitored qualitatively (visual analysis of the devolution of food 

macrostructure) and quantitatively (dry mass and proportions of starch released and hydrolysed 

into oligosaccharides). Before analysis, samples were thawed at 4 °C and centrifuged (10 min, 

3000 g and 4 °C) to separate the suspended fine particulate fragments released during food 
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disintegration from the liquid medium containing starch hydrolysis products, including 

oligosaccharides. Both the fine particle pellets and supernatants were recovered and kept at -

20 °C until further analysis. All the analyses of the centrifuged fractions were performed after 

thawing (4 °C). 

2.4.1.  DEVOLU TI ON OF  FOOD  M A CROS TRU CTU RE AND F I N E  PAR T IC LE  PE LLE TS  D R Y MA SSES  

The devolution of food macrostructure was followed through camera pictures taken at the end 

of the oral phase, and after 60 min and 120 min of both the gastric and intestinal phases of 

digestion (i.e. t = 0, 60, 120, 180 and 240 min of gastro-intestinal digestion). Additionally, the dry 

masses of the fine particle pellets (18h at 110 °C in an oven) were used as a quantitative indicator 

of food degradation throughout digestion and to correct for losses of undigested/unreleased 

starch during sampling assuming that the fraction of starch in the fine particle pellet was 

inversely proportional to the fraction of released starch (section 2.4.2). Undigested starch in the 

fine particle pellets was estimated as follows: 

𝑈𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑠𝑡𝑎𝑟𝑐ℎ 𝑙𝑜𝑠𝑡 (𝑔) =
 𝑇𝑆 𝑑𝑟𝑦 𝑓𝑜𝑜𝑑

100
× 𝑑𝑟𝑦 𝑝𝑒𝑙𝑙𝑒𝑡 ×

𝑆 𝑝𝑒𝑙𝑙𝑒𝑡

100
  

where TS dry food is the proportion (%) of total starch in the dry food sample, dry pellet is the 

dry mass of fine particle pellet (g) obtained after centrifugation of the digestion sample, and S 

pellet is the proportion of starch in the fine particle pellet (%), estimated as 100 – % of total 

starch released (determined after analysis of the corresponding supernatant fraction as 

described in section 2.4.2.). 

2.4.2.  STAR C H RE LEA SE  FRO M T HE FOOD MA TR IX  

Released starch refers to all solubilised starch fractions and products of starch hydrolysis. This 

starch fraction was measured as glucose after incubation with amyloglucosidase and 

centrifugation, as previously described (section 2.2.3). Released starch was expressed as the 

percentage of total starch released over time, after correction for starch losses during sampling 

(section 2.4.1). 

2.4.3.   OL IG OS AC CHAR IDES  RELE ASE  

The proportion of starch hydrolysed into oligosaccharides, with degrees of polymerization of up 

to 10 (Hoebler, et al., 1998), was estimated as follows. 50 µL of supernatant were added to 400 

µL of 80 % (v/v) ethanol and an overnight incubation followed (16 h, 4 °C) (Ballance, et al., 2013; 

Hoebler, et al., 1998; Mishra, Hardacre, & Monro, 2012). After centrifugation (10 min, 1000 g, 4 

°C), the oligosaccharide fraction, recovered in the supernatants was quantified as glucose after 

incubation with amyloglucosidase and centrifugation, as previously described (section 2.2.3). 

The oligosaccharide content of the samples was calculated as mg of glucose × 0.9. The 
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oligosaccharide release was expressed as the percentage of total starch over time, after 

correction for starch losses during sampling (section 2.4.1).  

2.5.  IN VITRO  PREDICTION OF THE GLYCEMIC INDEX  
The glycemic index (GI) of each food was estimated using the in vitro procedure described by 

(Goñi, Garcia-Alonso, & Saura-Calixto, 1997). Briefly, 50 mg of food samples were incubated (1 

h, pH 1.5, 37 °C) with pepsin (5531 U/mL in the final mixture) to simulate gastric proteolysis, 

their pH was then adjusted to 6.9 and they were incubated at 37 °C for 180 min with pancreatic 

α-amylase (0.43 IU/mL in the final mixture) to simulate intestinal amylolysis. During this second 

incubation, 1 mL samples were collected from the supernatant every 30 min and immediately 

transferred to a boiling water bath to inactivate α-amylase (100 °C, 5 min). All samples were 

stored at 4 °C for 24 h before being analysed using the procedure described in section 2.2.3 for 

solutions of solubilised starch. Partially hydrolysed starch was calculated as mg of glucose × 0.9. 

The rate of starch digestion was expressed as the percentage of total starch released as a 

function of time and the predicted GI was calculated based on the % of starch released at 90 

min (H90)  using the equation GI = 39.21 + 0.803 (H90). Each food was analysed in triplicate.  
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3. RESULTS  

3.1. FOOD CHARACTERIZATION  
The water, starch and protein contents of each food is presented in Table 7. Globally, bread 

contained less water (45.7 %) than wheat and gluten-free pasta (65-69 %), but had a higher 

starch content (47.2 vs. 27-28 %). The proportions of resistant starch in bread and GF pasta were 

similar (between 3.4 % and 4.2 % of total starch) and about three times lower than in wheat 

pasta (13.4 %). The protein content of wheat spaghetti (≈ 5 %, w/w) was about twice that of GF 

spaghetti. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. DYNAMIC IN VITRO  D IGESTION  
Dynamic digestions of bread, wheat and GF spaghetti comprising oral (2.5 min), gastric and 

intestinal phases (120 min each) were carried out in triplicate. Both qualitative and quantitative 

methods were employed to monitor (1) the devolution of food macrostructure, (2) the starch 

release from the food matrix, and (3) its hydrolysis into oligosaccharides. 

3.2.1.  DEVOLU TI ON OF  FOOD  M A CROS TRU CTU RE  

The visual appearance of the chimes during the digestion experiments is presented in Figure 43. 

The digestion of bread was characterized by a somewhat homogeneous chime. Individual 

particles could hardly be distinguished in the beginning and were completely dissolved by the 

end of the gastric phase. In contrast, particles of both types of pasta were clearly identifiable 

until the end of gastric digestion even though their degradation evolved differently. Despite 

equivalent initial particle size and shape, wheat pasta tended to be degraded faster during 

gastric digestion. During the first 60 min, wheat pasta particles were broken down into 

Table 7- Composition of the studied foods. All values were experimentally 
obtained except for the protein content of bread which was estimated from the 
French food composition table (French Agency for Food Environmental and 
Occupational Health & Safety, 2017).  

 Bread 
Wheat 

spaghetti 
 

Gluten-free 
spaghetti 

 

Water  
(g/100 g of food) 

45.7 ± 0.4 65.4 ± 0.1  68.8 ± 8.8  

Protein 
(g/100 g of food) 

7.4 5.0  2.4  

Total starch  
(g/100 g of food) 

47.2 ± 1.1 27.4 ± 1.3  27.9 ± 0.2  

Digestible starch 
(g/100 g of total starch) 

96.6 ± 0.6 86.6 ± 1.1  95.6 ± 0.7  

Resistant starch  
(g/100 g of total starch) 

3.4 ± 0.6 13.4 ± 1.1  4.4 ± 0.7  
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numerous, visibly smaller, pieces, with only a few remaining at 120 min. Particles of GF pasta 

seemed more resistant with many particles having retained their shape and size after 60 min, 

and some relatively large pieces were still visible at 120 min. During the intestinal phase, the 

opposite trend was observed. The remaining particles of GF pasta were rapidly disintegrated 

leading to a macroscopically homogenous solution, comparable to the bread chime, whereas 

the particles of wheat pasta appeared to be more resistant to intestinal digestion, with a number 

of them still visible at the end of the experiments.   

Figure 43- Devolution of food macrostructure. Pictures taken at the end of the oral phase/start 
of the gastric phase (G0), and 60 and 120 min of after the start of both the gastric (G) and 
intestinal (I) phases of digestion (t = 0, 60, 120, 180 and 240 min).  

3.2.2.  DRY MA SS OF  T HE  F INE  PA RTI CU LA TE  FR AC T ION  

The dry masses of the fine particulate material recovered in the 3000 g pellets from the liquid 

phase of the digestion, presented as percentages of the total dry mass of the corresponding 

food at the start of digestion, are presented in Figure 44 (white circles) and can be used as a 

complementary indicator of the rate of food degradation. For bread, there was a steep rise 

during the very first minutes of digestion up to ≈ 1.4 %, followed by a reduction between 30 and 

60 min that stabilised at about 0.7 % resulting in a plateau that lasted until the end of the gastric 

phase. The data for wheat and GF pasta showed a more steady increase during the first 60 min 

up to a plateau that lasted until the end of gastric digestion. The plateau reached with wheat 
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pasta was close to the first one observed for bread, at about 1.5 %, whereas it was lower than 1 

% for GF pasta. The results obtained during the intestinal digestions were similar for both types 

of pasta and close to those obtained for bread, with stable plateau values in the range of 0.3 - 

0.7 %.  

The cumulative fine particle pellet mass is also represented in Figure 44 (dashed line) for two 

main purposes. First, it clearly illustrates the overall tendency that can be drawn from these 

measures: the rate of bolus disintegration into small pieces (small enough to be sampled out but 

large enough to be recovered in the fine particle pellet upon centrifugation) during gastric 

digestion seemed to increase in the following order: GF pasta < wheat pasta < bread, a finding 

that correlates well with the previously described visual observations (Figure 43). Second, it 

shows that a significant amount of food was sampled out during the course of the experiments 

(from 10 to 16 %) and represented loss of substrate that needed to be taken into account in the 

calculations of released starch and oligosaccharides.  

  

Figure 44 - Dry masses of fine particle pellets. Incremental (--, left hand y-axis) and cumulative (- 
- -, right hand y-axis) dry mass of the fine particle pellet of centrifuged samples, expressed as 
percentage of the initial dry mass of food, during the course of oro-gastro-intestinal digestions in 
vitro: (A) Bread, (B) Wheat spaghetti and (C) Gluten-free spaghetti. Average ± SD, 3 rpt.  
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3.2.3.  STAR C H RE LEA SE  AND HY D ROLYS IS  IN TO  O LI GO S A CC HARIDE S  

Figure 45 shows the kinetics of starch release and hydrolysis into oligosaccharides during 

digestion of bread (A), wheat pasta (B) and GF pasta (C).  Released starch refers to the proportion 

of starch that was released from the food matrix into the chime and recovered in the sample 

supernatants regardless of its level of degradation. In contrast, released oligosaccharides reflect 

an extensive hydrolysis of starch, constituting a good indicator of the extent of the amylolytic 

process. The first point in each graph (t = 0 min) corresponds, simultaneously, to the end of the 

oral phase (2.5 min) and the beginning of gastric digestion, and the point at 120 min marks the 

transition to the intestinal phase. Starch release and its hydrolysis into oligosaccharides were 

initiated during the oral phase. During the gastric phase both phenomena exhibited “rise-

plateau” profiles, with a 30-45 min long initial increase followed by a plateau that lasted until 

the start of the intestinal phase (t = 120 min). Immediately after the addition of pancreatin, the 

release of starch and oligosaccharides showed a second rise before new plateaus were reached. 

While these “rise-plateau” digestion profiles during gastric and intestinal processing were 

common to all foods, the contribution of each digestive phase differed: bread starch was mainly 

released and hydrolysed during the gastric phase (Figure 45A), whereas most of that in pasta 

was digested during the intestinal phase (Figure 45B and C). 

 

According to the starch release curves (dark squares), oral digestion caused the release of 24 % 

of bread starch, a value that increased to 80 % within only 20 min of gastric digestion. Oral and 

Figure 45- Starch digestion. Released starch ( --), oligosaccharides (--), and pH of the chime 
(    ) during the course of in vitro oro-gastro-intestinal digestions: (A) Bread, (B) Wheat 
spaghetti, (C) Gluten-free spaghetti. Average ± SD, 3 rpt.  
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gastric digestion of both pastas appeared slower and less extensive. Starch released during the 

oral phase amounted to around 3.5 % of the total, and the plateau, reached later than for bread, 

corresponded to only ≈ 30 % of the total starch. Consequently, intestinal digestion of bread 

starch was characterized by a very slight increase, of about 7 % (final plateau at 87 %), whereas 

intestinal digestion of both pastas showed a fast and intense release of the remaining starch 

(measured at 94 and 100 % of total starch in wheat and GF pasta, respectively, at the end of the 

experiment). 

According to the results in Figure 45 (white squares), 16 % of bread starch and almost all of the 

starch released from both pastas, was hydrolysed into oligosaccharides during the oral phase. 

During gastric digestion, more than half of the starch released from all foods was hydrolysed 

into oligosaccharides within 30-45 min. During intestinal digestion, starch hydrolysis into 

oligosaccharides was resumed and progressed rapidly for all foods, leading to plateaus 

corresponding to about 67-95 % of the total starch. 

3.3.  IN V ITRO  PRED ICT IO N O F THE GLYCEM IC INDEX (GI)  

The starch release kinetics obtained using the in vitro protocol for GI prediction (Goñi, Garcia-

Alonso, & Saura-Calixto, 1997) are presented in Figure 46 (white symbols). According to these 

results, bread exhibited the highest hydrolysis rate with a plateau corresponding to 

approximately 83 % of the total starch reached within 60 min. Despite the different 

compositions of wheat and gluten-free pastas, no differences were observed between their 

starch digestion rates. In both cases, almost linear curves were obtained and starch was released 

slowly. More than 75 % of the starch had not yet been released after 180 min. The predicted GIs 

estimated from these data were 100 ± 1.9, 47.6 ± 4.0 and 47.4 ± 1.6, for bread, wheat and GF 

pastas, respectively.  

The starch release kinetics during the gastric phase of our digestions, obtained using the same 

sample analytical procedures, are also plotted in Figure 46 (grey symbols) for comparison 

purposes. Although the enzymes and experimental conditions are not the same, the results were 

highly comparable, being possible to observe, in both cases, a much faster starch release for 

bread, and a similar (much lower) rate for both types of spaghetti. 
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Figure 46 - Comparison of digestion protocols. Kinetics of starch obtained during our gastric 
digestions (grey symbols), and with the protocol of Goñi et al. (1997) commonly used to 
predict the GI of foods (white symbols). Starch r elease during digestion of white wheat 
bread (-- and --), wheat spaghetti (-- and --) and gluten free spaghetti (-- and --
). 
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4. D ISCUSSION  

The role of Human salivary α-amylase (HSA) in starch digestion is often overlooked in favour of 

that of pancreatic α-amylase. Conducting in vitro digestions that mimic in vivo reality in terms 

of gastric pH and chronology of enzymatic action, we have recently shown that salivary amylase 

can, in fact, play a preponderant role in the gastric digestion of bread starch before being 

inactivated by acidity (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b). In the present study, 

we intended to widen our investigations to complementary sample analyses and to other highly 

consumed starchy foods (spaghetti) throughout the course of semi-dynamic oro-gastro-

intestinal in vitro digestions.  

4.1. GENERAL CONSIDERATION S  

We may first highlight the good agreement between the different methods used to monitor the 

digestion experiments. For example, bread particles were the smallest after the oral phase 

(Figure 43), rapidly becoming small enough to be sampled with 1 mL graduated pipettes (inner 

diameter of 1.5 mm) during the gastric phase. This explains the faster increase of the fine particle 

pellet dry mass (Figure 44), and is also in agreement with the much higher starch release and 

hydrolysis rates observed for bread than for wheat and GF spaghetti during gastric digestion 

(Figure 45). The overall behaviour of both types of pasta was similar but a close inspection of 

the slight differences between them appears to show consistent trends among the different sets 

of results. Wheat pasta particle size was visibly reduced faster than that of GF pasta during 

gastric digestion, accordingly, the dry fine particle pellet mass for wheat pasta tended increase 

faster at this stage. The reverse tendency was then observed during the intestinal phase, only 

wheat pasta fragments were still visible at the end of the experiments what correlates well with 

the lower extents of starch release and hydrolysis observed for this food (Figure 45B). 

4.2.  GASTRIC AND INTESTINA L CONTRIBUTIONS TO STARCH DIGESTION  
The shape of the starch and oligosaccharide release kinetics (Figure 45), with 2 successive 

increases for all foods, is explained by the chronology of enzymatic activity. The first rise 

corresponds to the action of HSA before it is completely inactivated by the increasing acidity of 

the chime. Indeed, we have previously shown that the amylolytic activity of saliva is completely 

lost bellow pH 3.5, but is still close to 50 % of its optimal activity at pH 4.0 (Freitas, Le Feunteun, 

Panouillé, & Souchon, 2018b). According to the gastric pH reduction kinetics used here, based 

on in vivo data following a full meal (Malagelada, Go, & Summerskill, 1979), pH 4.0 was reached 

at 45 min, and pH 3.0 at 67 min. Therefore it seems that the released starch and oligosaccharides 

plateaued slightly before complete HSA inactivation, suggesting that the limiting factor could be 

the impaired accessibility of the remaining starch to HSA. Porcine pepsin, in turn, starts to be 
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active below pH 4.0 (Kondjoyan, Daudin, & Santé-Lhoutellier, 2015; Pletschke, Naudé, & 

Oelofsen, 1995), when HSA is about to be totally inactivated. The hydrolysis of the protein 

network that entraps the remaining starch can therefore be considered to take place during the 

second hour of gastric digestion only. During this period, the amount of released starch tended 

to increase slightly for pasta (Figure 45B and C) but our results indicate that pepsin action had 

limited consequences. The second rise, observed during the intestinal phase, can be attributed 

to the presence of pancreatic enzymes. Pancreatic α-amylase further advances the amylolytic 

process and benefits from the preceding (pepsin) and concomitant (pancreatic proteases) 

hydrolysis of the protein network that improves the accessibility to starch. According to these 

considerations, the ratio between the two plateaus is therefore indicative of the gastric and 

intestinal contributions to the digestion of starch from each of the studied foods. 

The fastest starch hydrolysis rate was observed for bread. We had recently shown that as much 

as 80 % of bread starch can be released during the first 20 min of gastric digestion (Freitas, Le 

Feunteun, Panouillé, & Souchon, 2018b). Our current results therefore confirm that HSA can be 

responsible for an extensive amylolysis before the chyme is emptied into the small intestine. 

Moreover, they also show that starch hydrolysis was more important during the gastric phase, 

where ≈ 60 % of starch was degraded into oligosaccharides, than during intestinal digestion (a 

further increase of ≈ 20 %). Between our current and previous investigations, conducted with 

different salivas, breads and pH reduction kinetics, we have covered a wide range of scenarios 

from what could be considered physiologically fast to slow gastric pH reduction kinetics (from 

pH 6 to 2 in 30 to 90 min) and low to high levels of saliva incorporation in the bolus (from 0.2 to 

0.5 mL per gram of bread crumb). We may therefore confidently state that the contribution of 

HSA to the digestion of bread starch is highly relevant in a wide range of conditions. 

Wheat pasta elicited a lower starch digestion rate than wheat bread, in agreement with previous 

in vitro (Berti, Riso, Monti, & Porrini, 2004) and in vivo (Packer, Dornhorst, & Frost, 2000) studies. 

The contribution of HSA during the gastric digestion of wheat pasta, although not negligible, was 

considerably lower, representing a little more than a third of that for wheat bread. A first, and 

obvious, cause lies in the distinct saliva contents of the boluses that, with the intention of 

replicating those found in vivo (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000; Jourdren, et 

al., 2016), were 4 times higher for bread than pasta. But the different saliva incorporation levels 

and amylolysis rates of each food can be related to their structural properties. At a macroscopic 

level, the porous structure of bread facilitates water infiltration (Mathieu, et al., 2016), and thus 

impregnation of saliva and secretions carrying digestive enzymes. In contrast, pasta is a densely 

packed product through which water penetration is limited, even during boiling (Cunin, 
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Handschin, Walther, & Escher, 1995). At a molecular level, the starch in bread crumb is found in 

a rather uniform gelatinization state, forming a continuous network that contains swollen starch 

granules and starch that leached out from the granules (J. A. Gray & J. N. Bemiller, 2003). In turn, 

the level of starch gelatinization in cooked wheat spaghetti decreases progressively towards the 

centre of the spaghetti strand, and the density of the protein network is increasingly higher 

(Cunin, Handschin, Walther, & Escher, 1995; Fardet, et al., 1998). Because granule swelling and 

dispersion of starch polysaccharides during gelatinization render starch increasingly more 

accessible to α-amylase action (Mishra, Hardacre, & Monro, 2012), starch in bread crumb is 

much more accessible than starch in pasta for which the vulnerability to hydrolysis  gradually 

lowers towards the centre of spaghetti strands.  

The rate of starch hydrolysis during gastric digestion of wheat spaghetti was similar to that of 

GF spaghetti, but it was slightly lower during the intestinal phase. In parallel, despite the same 

initial particle size and digestive conditions, particles of wheat pasta were degraded faster than 

those of GF pasta in the gastric phase, whereas the opposite was observed in the intestinal phase 

(Figure 43). The gluten network has been reported to slowdown enzymes’ accessibility to starch 

(Fardet, et al., 1998). Therefore, one could have expected a constantly higher digestion rate from 

GF pasta, as previously observed in vitro (Jenkins, et al., 1987)   and in vivo (Jenkins, et al., 1987; 

Johnston, Snyder, & Smith, 2017)   . The recommended cooking times are slightly different for 

wheat (9 min) and GF pasta (10 min). By cooking both foods at the same temperature for 11 

minutes, it is possible that starch gelatinization in wheat pasta was slightly higher, further 

disrupting the surrounding gluten network. This might be the reason why we observed a faster 

degradation of wheat pasta during the gastric phase. However, wheat spaghetti had twice as 

much protein as GF spaghetti and, as mentioned above, it is also known that the density of the 

gluten network increases towards the interior of wheat spaghetti strands. As a consequence, 

wheat pasta could be expected to exhibit an increasing resistance to degradation, as we 

observed during the intestinal phase. There are, however, other relevant factors, such as 

product formulation and processing techniques, that can counterbalance the potential effects 

of wheat protein removal (Pellegrini & Agostoni, 2015) to generate GF formulations that do not 

affect the glycemic response adversely, as it was previously found in vitro (Berti, Riso, Monti, & 

Porrini, 2004) and in vivo (Packer, Dornhorst, & Frost, 2000). 

4.3.  IN VIVO  DATA SUPPORTING OUR FINDINGS  
On the one hand, it is clear that the structural properties of food can strongly impact the rate of 

starch digestion and consequently the glycemic indexes. On the other hand, it is also evident 

that food structure can be extensively disrupted in the digestive stages that precede intestinal 
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digestion, hence diminishing potential differences derived from the structural properties of each 

food. This is indeed what our results show: important differences in the extent of oro-gastric 

starch digestion for bread and pasta that nearly vanished within 30 min of intestinal digestion 

only. As it was shown above, these results are consistent with both in vitro digestibility assays 

to predict the glycemic response and in vivo data. One may therefore question the assumption 

that pancreatic amylase always plays the predominant role in the digestion of starchy foods 

driving the attention to HSA, which is the most susceptible of being influenced by food structure. 

To the best of our knowledge, the main arguments serving as a justification for the limited extent 

of HSA’s contribution to starch digestion are the short duration of the oral phase and the 

erroneous idea that this enzyme is quickly inactivated once food boluses are swollen. Although 

HSA has been extensively studied, its usefulness to digestion is still questioned (des Gachons & 

Breslin, 2016; Fernández & Wiley, 2017) even though strong hints that its role is more relevant 

than what is generally considered can be recurrently found. Oral food processing is indeed brief 

but, as we have discussed above, HSA can continue hydrolysing starch in the stomach for long 

periods of time. For instance it has been observed that after the consumption of a liquid meal, 

the pH was still above 5.0 at half-gastric emptying time (48 ±28 min.) and reached 3.0 only after 

more than 80 % of the gastric contents were emptied (Carrière, Renou, Ville, Grandval, & 

Laugier, 2001). This can explain Bergeim’s findings, who found that more than half of the starch 

in mashed potatoes and bread was extensively digested in the stomach (Bergeim, 1926). 

Additionally, it has also been shown that swallowing high- (ex. potato or corn) but not low-starch 

(apple) foods without chewing resulted in the reduction of starch digestibility, and the 

associated glycemic response (Read, et al., 1986). This is also in line with a number of 

evolutionary concepts suggesting that increased HSA expression would have improved the 

efficiency of starch digestion, constituting a fitness advantage that drove a positive selection 

phenomenon in at least some high starch-populations (Perry, et al., 2007). Accordingly, a 

positive association between a high HSA activity and populations consuming a diet consisting 

predominantly on carbohydrates, has been repeatedly highlighted (des Gachons & Breslin, 2016; 

Perry, et al., 2007; Squires, 1953). Our observations, together with the work of all these research 

teams, undeniably strengthen HSA's role in the digestive process and also imply that this 

enzyme’s contribution to gastric digestion is highly likely to play a part in the definition of the 

glycemic response elicited by starchy foods.  
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CONCLUSION  

The present study not only confirms the important role played by HSA 

during the gastric digestion of bread, but also demonstrates that, 

despite the more compact structure of pasta and a much lower level 

of saliva incorporation during bolus formation, the contribution of 

salivary amylase to the digestion of starch in pasta is far from being 

negligible. The starch digestion rates during gastric digestion were well 

correlated with a widely used in vitro protocol to estimate the GI of 

foods and with other in vivo studies. Given HSA’s relevant role in starch 

digestion, it is highly likely that factors influencing its amylolytic 

performance, other than the structural properties of a food, may 

translate into an altered glycemic response. This could open new 

opportunities and strategies to attenuate the high glycemic response 

to some starchy foods by inhibiting HSA. 

 

A C K N O W L E D G M E N T S  

We would like to thank David Forest and Thomas Cattenoz for their 

technical help in the laboratory. We would like to acknowledge the 

IDEX-Paris Saclay consortium for partially supporting this research 

through a PhD grant and we are grateful to François Boué and Evelyne 

Lutton for their important help in obtaining this doctoral grant and 

helpful discussions. 

 

C O N F L I C T  O F  I N T E R E S T  

The authors have no conflict of interest to declare. 

  



Chapter 2. Oro-gastro-intestinal digestion of starch: unveiling the contribution of salivary amylase 

 

103 
 

 

KEY MESSAGES  

 

 We studied starch hydrolysis during dynamic in vitro digestions of bread and pasta 

 The contribution of salivary α-amylase (HSA) and pancreatic α-amylase was assessed 

 HSA released 30 % (pasta) to 80 % of starch (bread) during the gastric phase 

 50 % of the released starch was hydrolysed into oligosaccharides by HSA 

 Amylolysis by HSA is likely to influence the glycaemic response to starchy foods 
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Informal presentation  

Our previous results demonstrated the importance of salivary amylase 

in the digestion of different starch-rich foods, and its level of 

contribution was well correlated with the predicted glycaemic 

response. For example, its role was more preponderant in the gastric 

digestion of bread than of pasta, and accordingly, the predicted 

glycaemic response was higher for bread than pasta. 

This was intriguing...  

C A N  W E  S L O W D O W N  T H E  D I G E S T I O N  O F  S T A R C H  B Y  

P R E M A T U R E L Y  I N H I B I T I N G  T H I S  E N Z Y M E ?   

C O U L D  T H I S  B E  P A R T  O F  T H E  L I N K  B E T W E E N  M E A L  A C I D I T Y  

A N D  T H E  A T T E N U A T I O N  O F  T H E  G L Y C A E M I C  R E S P O N S E  T O  

S T A R C H - R I C H  F O O D S ?   

L E T  U S  M A K E  A  F I R S T  T E S T  I N  T H E  L A B !  

  



Chapter 3. Acid-induced reduction of the glycaemic response to starch-rich foods 

 

107 
 

 

A B S T R A C T  

Numerous studies have reported that the glycaemic response to starch-rich meals can be 

reduced by 20-50% with acidic drinks or foods. A number of candidate explanations have been 

put forward, but this phenomenon still remains vaguely understood. This study intends to 

demonstrate the remarkable effect of acid inhibition of salivary α-amylase during oro-gastric 

hydrolysis of starch, shedding light on this often overlooked mechanism. 

Oro-gastric digestions of bread, wheat and gluten-free pastas, combined with either water or 

lemon juice were performed using a dynamic in vitro system that reproduces gastric acidification 

kinetics observed in humans. In the presence of water, large proportions of starch (25-85%) and 

oligosaccharides (15-50%) were released from all foods within the first hour of gastric digestion 

(pH > 3.5). In the presence of lemon juice (pH < 3.5 at all time), starch release was about twice 

as low, and amylolysis into oligosaccharides was completely interrupted.  

Acid-inhibition of salivary α-amylase may explain, at least in part, the reduction of the blood 

glucose response through acidification of starch-rich foods/meals. This offers new perspectives 

for the development of strategies to improve the glycaemic response elicited by starch-rich 

diets. 
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1. INTRODUCTION  

A growing body of evidence relating high glycaemic index diets with increased risk of type-2 

diabetes, coronary heart disease and some types of cancer (Bhupathiraju, et al., 2014; 

Mirrahimi, et al., 2012; Mullie, Koechlin, Boniol, Autier, & Boyle, 2016) has fuelled research on 

the development of strategies to reduce the glycaemic response to certain foods. Starch-rich 

foods have been drawing special attention because they supply up to 50% of our energy intake 

(Stylianopoulos, 2012), thereby playing a major role in the post-prandial glycaemic responses 

elicited by our diets. Because of the positive correlation between the rate of starch hydrolysis 

for a certain food and the corresponding glycaemic response (Goñi, Garcia-Alonso, & Saura-

Calixto, 1997; Yvonne Granfeldt, Hagander, & Björck, 1995; D. J. A. Jenkins, et al., 1982), 

extensive work has been dedicated to identify ways of slowing down starch digestion.  

An efficient strategy to  reduce the glycaemic response to a starchy meal in normal (Brighenti, 

et al., 1995; Carol S Johnston & Buller, 2005; Carol S Johnston, Steplewska, Long, Harris, & Ryals, 

2010; Leeman, Östman, & Björck, 2005; H. Liljeberg & Björck, 1998; Elin Östman, Granfeldt, 

Persson, & Björck, 2005; Sugiyama, Tang, Wakaki, & Koyama, 2003), insulin resistant (Carol S 

Johnston, Kim, & Buller, 2004), and diabetic subjects (Liatis, et al., 2010; Mitrou, et al., 2010) is 

to lower its pH by pairing it with an acidic food or drink (typically vinegar). The same holds true 

for processes that result in the acidification of the food itself, sourdough bread fermentation for 

example (Bo, et al., 2017; Lappi, et al., 2010; H. Liljeberg & Björck, 1996; H. G. Liljeberg, Lönner, 

& Björck, 1995; Maioli, et al., 2008; Scazzina, Del Rio, Pellegrini, & Brighenti, 2009). According to 

the above studies, vinegar supplementation and sourdough fermentation of bread can reduce 

the postprandial glycaemic response by 20-50% and 20-30%, respectively. The underlying 

mechanism has naturally intrigued researchers and various hypotheses have been put forward. 

In our view, starch hydrolysis by salivary α-amylase (HSA) is the mechanism most likely to be 

altered by meal acidity, but in recent reviews, this hypothesis is hardly addressed (Gobbetti, 

Rizzello, Di Cagno, & De Angelis, 2014; Lim, Henry, & Haldar, 2016; Poutanen, Flander, & Katina, 

2009), or is not even considered (Lim, Henry, & Haldar, 2016; Petsiou, Mitrou, Raptis, & 

Dimitriadis, 2014). 

To understand the basis of this hypothesis it is important to remind that the process of starch 

digestion relies on the action of two key enzymes: HSA and pancreatic α-amylase. HSA initiates 

amylolysis in the mouth and can remain active in the stomach until it is inactivated by the 

increasing acidity (S. S. Gropper & J. L. Smith, 2013), between pH 3 and 4 (Freitas, Le Feunteun, 

Panouillé, & Souchon, 2018b; M. Fried, S. Abramson, & J. H. Meyer, 1987). For purified HSA, 

inactivation appears to be gradual in the presence of starch, as other researchers have observed 
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that it can have a protective effect, preserving up to 56% of its activity after 1 h at pH 3 

(Rosenblum, Irwin, & Alpers, 1988). Pancreatic α-amylase and brush border enzymes then 

complete amylolysis in the small intestine, where glucose is finally absorbed (S. S. Gropper & J. 

L. Smith, 2013). Because of the short duration of the oral phase and the general assumption that 

post-prandial gastric acidification is fast, among others, it is generally believed that HSA plays a 

minor role and that most starch is digested by pancreatic α-amylase (des Gachons & Breslin, 

2016). If this was the case, however, there would be a very limited margin to influence enzymatic 

performance through increased meal/food acidity: any effect on HSA would be of minor 

relevance, meanwhile it is unlikely that pancreatic amylase activity would be affected as the pH 

of the chime is rapidly neutralised in the duodenum. The physiological reality is that after 

consumption of a meal, gastric pH rises to 4.5 – 6.7 and it is reduced steadily, taking 75-107 min 

to reach pH ≤ 2 (Dressman, et al., 1990; Gardner, Ciociola, & Robinson, 2002; Malagelada, Go, & 

Summerskill, 1979). This implies that there is a large time window during which HSA can 

hydrolyse starch. By the end of the gastric phase of digestion, hydrolysis of 59% (Bergeim, 1926) 

to 80% (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b) of bread starch has indeed been 

observed in vivo and in vitro, respectively. According to these considerations, it is 

straightforward that any means of prematurely acidifying gastric contents will influence the 

performance of HSA and can constitute an opportunity to slow down amylolysis and ultimately 

improve the glycaemic responses elicited by starchy foods. The aim of the present study was to 

demonstrate this effect through dynamic in vitro digestions of white bread, wheat and gluten-

free pastas, combined with either water or lemon juice. 
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2. MATERIALS AND METHODS  

All experimental methods and analytical procedures have been described and justified in detail 

in one of our previous studies. Therefore, only the main experimental steps, their principles, and 

relevant adaptations will be described here. Interested readers are invited to refer to (Freitas & 

Le Feunteun, 2018b) for further details.  

2.1.  MATERIALS  
Three starchy foods were studied: French wheat baguette supplied by Lesaffre (France), wheat 

pearl pasta (Cerealis, Portugal) and n°5 gluten-free (GF) spaghetti (Barilla Alimentari, Italy). 

Mineral water (Evian, France) and lemon juice (Polenghi Group, Italy) were bought at a local 

supermarket.  

Frozen human saliva pooled from 10 donors (Normal saliva in 5mL aliquots, ref. 991-05-P-5) was 

purchased from Lee Biosolutions (United States), and porcine pepsin (P-6887) from Sigma-

Aldrich (France). Amyloglucosidase from Aspergillus Niger (ref 10 102 857 001, Roche, 

Switzerland) and D-Glucose kits (ref. 103.21, BioSenTec, France) were used in the analysis of 

digestion samples. 

2.2.  PREPARATION  
The same bread was previously studied by our team and only the crumb, separated from the 

crust as described in (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b), was used. Wheat pearl 

pasta was cooked for 25 min and GF spaghetti for 11 min.  

2.3.  ORO-GASTRIC IN VITRO DIGESTION  
Saliva was thawed at 4°C, and warmed to 37°C in a water bath for 10 min before use. Oral 

processing was manually performed to produce boli that were submitted to gastric digestions 

in DiDGI®, a computer-controlled dynamic in vitro system (Ménard, et al., 2014). The 

composition, volumes and enzyme concentrations of gastric solutions were based on the 

standardized method for static in vitro digestions (Minekus, et al., 2014a) with the exception 

that simulated gastric fluid electrolyte solution (eSGF) was prepared at a neutral pH. Neutralized 

eSGF was used so that the pattern of gastric acidification in humans could be mimicked 

(Malagelada, Go, & Summerskill, 1979). Two different digestions were carried out in triplicate 

for each food with either (1) water or (2) lemon juice (pH = 2.3).  

O R A L  P H A S E .  Bread was processed in a food chopper (Multi-moulinette 400 CW, Moulinex, 

France), GF spaghetti strands were chopped into 1 cm long pieces and wheat pasta beads (3-5 

mm diameter) were left intact. Each bolus was formed by mixing for 30 s bread or pasta (the 

equivalent to 3 g of starch) with 20% or 5% of saliva (mass of saliva / mass of food), respectively. 
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The amylolytic activity of the pooled saliva sample, as determined by Bernfeld’s method (Peter 

Bernfeld, 1955), was 345 ± 37 U/mL. 

G A S T R I C  P H A S E .  DiDGI’s gastric compartment was set-up with an operating temperature of 

37 ºC, a stirring speed of 10 rpm, 20 mL of eSGF, 10 µL of 0.3 M CaCL2 and 7 mL of either mineral 

water or lemon juice. A pre-determined volume of deionised water was then added to reach a 

final volume of 40 mL after introducing the bolus.  

Immediately after being prepared, each bolus was introduced in the gastric compartment where 

stirring continued for 30 s before it was interrupted for another 30 s and a first sample (2mL) 

was collected from the supernatant. Stirring was then resumed and the gastric phase was 

initiated 2 min after the introduction of the bolus by activating the fluxes of HCl (0.1 M in eSGF) 

and pepsin (4705 U/mL in eSGF). The flux of HCl was automatically adjusted to reduce the initial 

pH of the chime to 2.0 by decreasing it 1 unit every 22.5 min, and keep it constant thereafter. 

The initial pH of the chimes was 6.0 ± 0.5 with water and 2.5 ± 0.5 with lemon juice. The pepsin 

flux was set to reach ≈2000 U per mL of chime at 90 min of gastric digestion in both cases. 

Additional samples, 2 mL each, were collected from the chime’s supernatant at 3, 6, 9, 15, 20, 

30, 45, 60, 75, 90 and 120 min, after a 30 s interruption of stirring to allow particles to sediment. 

Immediately after being collected, samples were transferred to a dry bath (99 ºC, 150 rpm, 5 

min) for enzyme inactivation and kept at -20 ºC until required for further analysis. 

2.3.1.  ANA LYS IS  OF  D YNA M IC D I GEST IO N S AM P LES  

After centrifugation (10 min, 3000 g and 4 °C), sample supernatants were analysed for released 

starch and oligosaccharides. Released starch was quantified as glucose equivalent (D-Glucose 

kits) after complete hydrolysis with amyloglucosidase.  Oligosaccharides with degrees of 

polymerization of up to 10 (Hoebler, et al., 1998) were quantified the same way after selective 

precipitation of polysaccharides in an 80% (v/v) ethanol solution. 

2.4.  STATIST ICAL ANALYSIS  
The proportions (% of total starch) of starch released and hydrolysed into oligosaccharides were 

plotted against time. The incremental area under the curves (AUC) was calculated using the 

trapezoidal method. Single factor ANOVAs were performed to evaluate if replacing water with 

lemon juice produced statistically significant differences on AUC and at each time-point of the 

curves. Statistically significant effects were accepted at the 95% confidence interval. All data are 

presented as means ± SDs. 
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3. RESULTS  

Figure 47 shows the kinetics of starch release and hydrolysis into oligosaccharides during in vitro 

oro-gastric digestions of bread (A), wheat pearl pasta (B) and GF spaghetti (C) with either water 

(left column) or lemon juice (right column). Released starch refers to all the starch fractions 

released during digestion regardless of their level of degradation. Conversely, released 

oligosaccharides refer to short chain amylolysis products. The first point in each graph (t = 0 min) 

marks the beginning of the gastric phase of digestion launched 2.5 min after the food was 

brought into contact with saliva, and  2 min after the bolus was introduced in the gastric 

compartment containing either water or lemon juice. The incremental AUCs are presented in 

Figure 48. 

C O N S U M P T I O N  O F  S T A R C H - R I C H  F O O D S  W I T H  W A T E R  (Figure 47, left column) 

Starch release and hydrolysis were initiated during the oral phase for all foods. At the beginning 

of the gastric phase, bread starch was about three times more degraded (29% of released starch, 

70% thereof in the form of oligosaccharides) than that of wheat and GF pasta (about 7 and 3% 

of released starch, respectively, with oligosaccharides representing more than 80% thereof). 

After 30 to 60 min of gastric digestion, amylolysis reached a plateau that was about 3 times 

higher for bread (84% of released starch) than for wheat and GF pastas (25-27% of released 

starch). In all cases, 60-70% of the starch released had been hydrolysed into oligosaccharides by 

HSA.  

 

C O N S U M P T I O N  O F  S T A R C H - R I C H  F O O D S  W I T H  L E M O N  J U I C E  (Figure 47, right 

column)  

Released starch and oligosaccharides were significantly lower for all foods in the presence of 

lemon juice, as it is indicated by the respective AUCs in Figure 48. As indicated in Figure 47, the 

reduction of the proportion of released starch and oligosaccharides with lemon juice was also 

statistically significant (α = 0.05) at most time-points (62 over the 72), with p-values ranging from 

0.04 down to 0.000006. This was already observable at t = 0 for bread (16% of released starch), 

less than 2 min after the bolus had been introduced in the gastric compartment containing 

lemon juice. The effect of this beverage became more obvious during the course of gastric 

digestion, particularly with bread, for which the starch release plateau remained at around 35%, 

i.e. approximately 2.5 times lower than in the presence of water. The interruption of amylolysis 

as soon as the bolus was brought into contact with lemon juice was also evident, and led to 

oligosaccharide release plateaus about 3 times lower than with water for all foods.  
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Figure 47- Oro-gastric in vitro digestions of starchy foods. Release of starch () and 
oligosaccharides () during gastric digestion of bread (A), wheat pasta (B) and GF-pasta (C) with 
either water (left column) or lemon juice (right column). Average ± SD, 3 rpt . The dotted line 
represents the pH evolution, and down arrows () denote HSA inactivation (pH ≤ 3.5). Asterisk (*) 
symbols indicate the points on the starch and oligosaccharide release curves for which the effect 
of lemon juice was statistically significant (α = 0.05).  
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Figure 48- Incremental area under the curves of released starch (AUC Starch) and oligosaccharides 
(AUCOligosaccharides) during gastric in vitro  digestion of bread, wheat and GF pasta paired with 
water or lemon juice. Average ± SD, 3 rpt. Asterisk (*) symbols indicate  statistically significant 
differences: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.  
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4. D ISCUSSION  

The optimum pH of HSA in saliva is close to 6, and its activity is progressively lost as pH lowers, 

with approximately 50% left at pH 4, and complete inactivation below pH 3.5 (Freitas, Le 

Feunteun, Panouillé, & Souchon, 2018b; M. Fried, S. Abramson, & J. H. Meyer, 1987). This 

explains the relevant contribution of HSA to starch digestion in presence of water, as pH 

conditions enabling amylolytic activity persisted for about one hour (Figure 47, left column). The 

previously reported protective effect of starch on HSA (Rosenblum, Irwin, & Alpers, 1988) 

(preserving up to 56% of its activity after 1 h at pH 3) was not observed under our experimental 

conditions. Actually, despite the presence of starch, amylolysis was clearly interrupted as soon 

as the bolus was introduced in the gastric compartment containing lemon juice (Figure 47, right 

column).  

The results obtained with water are very consistent with our previous study in which we 

analysed the differences between similar types of starch-rich foods (Freitas & Le Feunteun, 

2018b). Although such comparisons are outside the scope of the present study, it remains 

important to emphasize here the important contribution of HSA to the amylolysis of starch in 

bread and, though less extensive, also in pasta, during gastric digestion. The novelty of our 

current results lies in the demonstration that because HSA plays an important role in starch 

hydrolysis, the consequences of its premature inhibition due to meal/product acidification 

should be revaluated. This mechanism is likely to explain, at least in part, the attenuation of the 

glycaemic response observed in the following 15 studies (Bo, et al., 2017; Brighenti, et al., 1995; 

Carol S Johnston & Buller, 2005; Carol S Johnston, Kim, & Buller, 2004; Carol S Johnston, 

Steplewska, Long, Harris, & Ryals, 2010; Lappi, et al., 2010; Leeman, Östman, & Björck, 2005; 

Liatis, et al., 2010; H. Liljeberg & Björck, 1996, 1998; H. G. Liljeberg, Lönner, & Björck, 1995; 

Maioli, et al., 2008; Mitrou, et al., 2010; Elin Östman, Granfeldt, Persson, & Björck, 2005; 

Scazzina, Del Rio, Pellegrini, & Brighenti, 2009; Sugiyama, Tang, Wakaki, & Koyama, 2003). The 

possibility that this effect results from a reduced rate of starch digestion and/or impaired 

enzymatic activity has been investigated before, but the results were sometimes contradictory 

and conclusions unclear (H. G. Liljeberg, Lönner, & Björck, 1995; EM Östman, Nilsson, Elmståhl, 

Molin, & Björck, 2002; Scazzina, Del Rio, Pellegrini, & Brighenti, 2009). This is most probably due 

to the protocols used, which tend to standardize the pH in a way that is not always 

representative of human physiology. Amylolysis by HSA during oro-gastric digestion is the 

digestive process most likely to be affected by the pH of a food or meal. However, this enzyme 

is rarely considered in experimental protocols, and even when protocols comprise an oral phase, 

an immediate acidification is almost always used to simulate the gastric phase at a constant pH 
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of 3 or less. Consequently, almost all of the starch is digested during the intestinal phase that is 

not influenced by the initial pH of the food. Enzymatic performance is thereby always 

conditioned in a way that is not representative of the chronology of enzymatic actions in vivo 

nor accounts for the possible influence of the pH of the food item itself.  

Still, it is possible to find hints that strengthen our results and hypothesis in the literature. For 

example, it has been observed that the pH of common breads is in the range of 5.6-6, whereas 

that of acid breads eliciting a reduced glycaemic response is typically between 3.9 and 4.6 (Lappi, 

et al., 2010; H. Liljeberg & Björck, 1998; H. G. Liljeberg, Lönner, & Björck, 1995; Maioli, et al., 

2008). Moreover, whenever comparisons were made between meal supplementation with a 

source of acetic acid, like vinegar, and a neutral-pH equivalent, the effect on the glycaemic 

response was lost (Brighenti, et al., 1995; Carol S Johnston, Steplewska, Long, Harris, & Ryals, 

2010). Additionally, it has been reported that the effect observed with increased acidity is lost 

in three other cases: (1) when vinegar was consumed 5 h before the test meal (Carol S Johnston, 

Steplewska, Long, Harris, & Ryals, 2010), and when the starch-rich food was substituted with (2) 

a low glycaemic index one (Liatis, et al., 2010), or (3) dextrose (Carol S Johnston, Steplewska, 

Long, Harris, & Ryals, 2010). Each of these cases reflects a situation in which any effect on HSA 

activity would be: (1) irrelevant due to the obvious chronological mismatch, (2) less significant 

because of the lower contribution of HSA to starch hydrolysis (as shown for pasta in Figure 1), 

or (3) not applicable at all.  

To conclude, it is also important to evaluate the viability of applying these results in real-life 

settings. Our experiments were conducted with 7 mL of water or lemon juice, and bread portions 

containing the equivalent to 3 g of starch. Considering that bread is composed of about 50% of 

starch (Stauffer, 2007), for a 50 g serving of an ordinary bread (approximate weight of two 

regular-sized slices of sandwich bread), 58 mL of lemon juice, would be needed to maintain the 

proportion used in this study, i.e. close to a fifth of a 250 mL glass. This seems to be a reasonable 

volume to consume as part of a meal. Additionally, there are other widely consumed foods, such 

as such as vinegars, grapefruit juice, and wine which have similar acidity levels (all classically 

showing pH ≤ 3.5) that can be suspected to exert a significant effect on starch hydrolysis by HSA. 

Achieving acidity levels similar to those in this study therefore appears viable in real-life settings. 

This strongly supports the feasibility of designing strategies, based on this approach, which 

should be applicable to both in in-vivo feeding situations and in the context of product 

development. 
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CONCLUSION  

We have demonstrated that pairing starch-rich foods with an acidic 

drink (lemon juice) results in an important reduction of starch 

hydrolysis at the gastric level due to HSA inhibition by premature 

gastric acidification. It is highly likely that this mechanism can explain, 

at least in part, the attenuation of the glycaemic response with 

increased meal/food acidity that is persistently observed in vivo. This 

work also offers new perspectives for the development of strategies 

aiming at improving the glycaemic response elicited by starch-rich 

diets. 
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 Key messages 

 

 

 

 

 

 

 

 

 

 It is unclear how acid drinks/foods lower the glycaemic response to starchy meals 

 We compared oro-gastric in vitro digestion of starchy foods with/without lemon juice 

 Gastric release and hydrolysis of starch were largely reduced with lemon juice 

 Acid inhibition of salivary amylase has a greater effect than generally considered 

 This mechanism, often overlooked, can help explaining related in vivo observations 
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Informal presentation 

A strategy as simple as matching starch rich foods with others would 

be easy to adopt by the general population.  

We have compared water with lemon juice, and our first tests strongly 

suggest that this might be a suitable strategy to slowdown starch 

digestion during the gastric phase, and it seems that it could also 

explain the outcomes of numerous clinical studies.  

B U T  W H A T  I S  T H E  E X T E N T  O F  T H E  E F F E C T  O F  L E M O N  J U I C E  O N  

A M Y L O L Y T I C  E N Z Y M E S ?  A N D  W H A T  A B O U T  O T H E R  B E V E R A G E S  

O R  C O N D I M E N T S  W H I C H  C O U L D  A L S O  I N F L U E N C E  T H E  

A C T I V I T Y  O F  T H E S E  E N Z Y M E S ?  

A L S O ,  W H A T  I S  T H E  O V E R A L L  I M P A C T  O F  T H I S  T Y P E  O F  M I X -

A N D - M A T C H  S T R A T E G I E S  O N  D I G E S T I O N  ( I . E .  I N C L U D I N G  T H E  

I N T E S T I N A L  P H A S E ) ?  
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A B S T R A C T  

 

The inhibition of digestive amylases can slow down starch digestion, thereby constituting an 

opportunity to delay the uptake of starch-derived glucose and improve postprandial glycaemic 

responses. Certain properties of foods such as their acidity or polyphenols can confer them such 

inhibitory capacity. 

The aim of this work was twofold: (i) to screen some commonly available beverages and 

condiments for their capacity to inhibit the amylolytic activity of saliva and pancreatin, and (ii) 

to study the effect of two of them, in comparison with water, on the starch hydrolysis kinetics 

during dynamic in vitro digestion of a commercial sandwich bread. 

Beverages and condiments screened for their inhibitory capacities were: instant coffees (2), 

green (2) and black (9) teas, wines (rosé, red and white wine), vinegars (from white wine, red 

wine and apple cider), and lemon juice. A black tea and lemon juice were then selected and their 

impact on bread starch digestion was investigated in dynamic in vitro oro-gastro-intestinal 

conditions. 

Coffees, green and black teas reduced the amylolytic activity of saliva by 5-10%, 20-45% and 30–

70%, correspondingly. At their native pHs, wines, vinegars and lemon juice exhibited a strong 

inhibitory capacity (from 90% to 100%). Upon pH neutralisation, these acidic solutions largely 

lost their inhibitory capacity, with the exception of red wine, which still inhibited > 80% of 

salivary amylase’s activity. Similar levels of inhibition were found on the amylolytic activity of 

pancreatin for each product category. In vitro digestions performed in the presence of black tea 

and water (control experiment) led to similar results with the interesting exception that the 

proportion of released oligosaccharides was about 20% lower with black tea by the end of the 

intestinal phase. Lemon juice had a very strong effect on both released starch and 

oligosaccharides during the gastric phase, and also led to a ≈ 20% reduction of the proportion of 

oligosaccharides by the end of the intestinal phase.  

These results provide a strong biochemical rationale for the development of dietary strategies 

aiming at improving the glycaemic response elicited by starch-rich foods that could be tested in 

vivo. 
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1. INTRODUCTION  

Hyperglycaemia has been associated with a higher risk of developing metabolic diseases such as 

obesity, type 2 diabetes mellitus and cardiovascular disease (Blaak, et al., 2012). Tight glycaemic 

control is therefore necessary to maintain health and prevent disease (Blaak, et al., 2012). 

Starch-rich foods constitute a key source of exogenous glucose. By supplying up to 50% of our 

energy intake (Stylianopoulos, 2012), they can play a determinant role on postprandial 

glycaemic excursions. The digestion of starch is initiated in the mouth by salivary α-amylase 

(HSA), which starts hydrolysing starch molecules (S. S. Gropper & J. L. Smith, 2013). This enzyme 

can carry on the amylolytic process in the stomach until it is inactivated by the increasing acidity, 

between pH 3 and 4 (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b; M. Fried, S. Abramson, 

& J. H. Meyer, 1987). Pancreatic α-amylase and brush border enzymes then resume amylolysis 

in the small intestine, where glucose, the final product of starch digestion, is finally absorbed (S. 

S. Gropper & J. L. Smith, 2013).  

The inhibition of digestive amylases can slow down starch digestion, thereby constituting an 

opportunity to delay the uptake of starch-derived glucose and improve postprandial glycaemic 

responses. Indeed, this strategy has been considered effective in contexts where glycaemia 

management represents an even bigger challenge than in healthy populations. An example is 

the treatment of type 2 diabetes via the administration of acarbose, which inhibits amylolytic 

enzymes in the digestive tract (Salvatore & Giugliano, 1996). A simple dietary strategy to achieve 

a lower glycaemic response by pairing starch-rich foods, or meals, with food products that can 

somehow exert similar inhibitory effect might therefore benefit both healthy individuals and 

those for whom glycaemia management poses a challenge.  

We have previously hypothesised that pairing starch-rich foods with an acidic food product 

could slow down starch digestion by premature acid inhibition of HSA (Freitas & Le Feunteun, 

2018a), and that this mechanism could even contribute to elucidate  a number of results from 

clinical studies in which the glycaemic response to starch-rich meals was reduced in presence of 

an acidic product (Brighenti, et al., 1995; Carol S Johnston & Buller, 2005; Carol S Johnston, 

Steplewska, Long, Harris, & Ryals, 2010; Leeman, Östman, & Björck, 2005; H. Liljeberg & Björck, 

1998; Elin Östman, Granfeldt, Persson, & Björck, 2005; Sugiyama, Tang, Wakaki, & Koyama, 

2003). Additionally, there are other properties of foods which can confer them such inhibitory 

properties. An example is the reported effect of tea and tea extracts due to their polyphenolic 

composition (Y. Hara & Honda, 1990; Kashket & Paolino, 1988; Kwon, Apostolidis, & Shetty, 

2008; Quesille-Villalobos, Torrico, & Ranilla, 2013; Striegel, Kang, Pilkenton, Rychlik, & 

Apostolidis, 2015; Zhang & Kashket, 1998). 
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The different sites of action of amylolytic enzymes in the digestive tract are determinant to their 

vulnerability. HSA for example is present during the oral and gastric phases. It is therefore 

exposed not only to the food components, but also to their pH and structural characteristics. In 

turn, pancreatic α-amylase, is more likely to be affected by the composition of food only, since 

the pH of the chime is rapidly neutralised in the duodenum and the structure of the food has 

already been largely disrupted at this stage. Logically, the extent of their contribution to the 

digestive process will also influence the magnitude of the effects that can be achieved. 

The aim of this work was to screen commonly available beverages and condiments for their 

capacity to inhibit the amylolytic activity of saliva and pancreatin, before studying the effect of 

two of them (selected for their observed inhibitory capacity) during dynamic in vitro digestions 

a commercial sandwich bread. 
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2. MATERIALS AND METHODS  

2.1. MATERIALS  
Crustless, white, wheat-based sandwich bread (Harry’s 100% mie Nature, Barilla France S.A.S, 

Boulogne-Billancourt, France), 2 instant coffees, 3 green teas, 9 black teas, 1 rosé wine, 1 white 

wine, 1 red wine, and 3 vinegars (from white wine, red wine and apple cider), 1 lemon juice and 

mineral water were bought at a local supermarket. For simplification purposes, all products 

were coded with randomly allocated letters that do not reflect the brand of the products. All 

these details can be found in the Supplementary data - Table 1. 

Frozen human saliva pooled from 10 donors (Normal saliva in 5 mL aliquots, ref. 991-05-P-5) was 

purchased from Lee Biosolutions (Maryland Heights, United States). Porcine pepsin (P-6887) and 

pancreatin (P1750, 4USP) were from Sigma-Aldrich (Saint-Quentin Fallavier, France). 

Amyloglucosidase from Aspergillus Niger (ref 10 102 857 001) was from Roche (Rotkreuz, 

Swizerland). The substrate used for the determination of HSA activity was potato starch (ref. 101 

253, from Merck, Darmstadt, Germany). All other chemical reagents were of classical analytical 

grade. 

2.1.1.  CHAR AC TER IST I CS  OF  BR E A D AND ENZ Y MES  

The composition of bread is presented in Table 8. The water, total, digestible and resistant starch 

contents of the bread used in the digestion experiments was determined as previously described 

(Freitas, Le Feunteun, Panouillé, & Souchon, 2018b). The product label was used as reference 

for the other components. 

Table 8- Composition of the white, wheat-based sandwich 
bread used in the study.  

Fat1 (g/100g of bread) 4.3 

Water2 (g/100g of bread) 36.1 ± 0.7 

Total Starch2 (g/100g of bread) 38.7 ± 4.2 

Digestible starch2 (% of total 
starch) 

94.4 ± 1.5 

Resistant starch2 (% of total 
starch) 

5.6 ± 1.5 

Fibre1 (g/100g of bread) 3.8 

Protein1 (g/100g of bread) 7.0 
1 According to the label of the product 
2 Experimentally determined in our lab as previously described (Freitas, 
Le Feunteun, Panouillé, & Souchon, 2018b) 
  

 

The amyloglucosidase activity provided by the manufacturer (14 U/mg of protein) was used as 

reference. The activities of saliva (345 ± 37 U/mL), pepsin (3319 ± 70 U/mg) and pancreatin 

(Trypsic activity of 3.42 ± 0.04 U/mg), measured in our lab according to previously described 
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methods (Minekus, et al., 2014), were used as a reference for digestion experiments and 

analytical assays. D-Glucose kits (ref. 103.21) were acquired from BioSenTec (Auzeville Tolosane, 

France). 

2.2. PRE PA RA TION OF BE VERA GE S A ND COND IME NTS  

Teas and coffees were freshly brewed (1% w/v) with mineral water (100 °C). Teas were infused 

for 15 min before the tea bags were removed. Teas, coffees, all other beverages and the vinegars 

were used at room temperature. 

2.3. IMPA CT OF BEVE RA GE S A ND C ONDIMENTS ON THE  AMYLOLYTIC  A CTIVITY OF 

SA LIV A A ND PA NC REATIN  

The amylolytic activity of salivary α-amylase in saliva, of porcine pancreatin in simulated 

intestinal fluid electrolyte solution (eSIF) (Minekus, et al., 2014b),  as well as the inhibitory 

effects of the products listed in table 1 (supplementary data) were determined using an adapted  

version of Bernfeld’s method (Peter Bernfeld, 1955), as further described.   

2.3.1.  AMY LO LYT IC  A CT IV IT Y  O F  SA LIV A AND P AN CRE A T IN  

A 2% (w/v) starch solution was prepared in 0.32 M sodium acetate buffer (pH = 4.75). Four glass 

tubes were prepared with 0.25 mL starch solution and 0.25 mL of deionized water. Each tube 

was then incubated (3 min, 20 °C) with a different volume (0, 50, 70 or 100 µL) of either saliva 

(10-fold diluted (w/w) in deionized water), or pancreatin (a 0.75 mg/mL solution prepared in 

eSIF). The enzymatic reaction was interrupted by adding 0.5 mL of DNS solution (consisting of 

96 mM 3, 5-Dinitrosalicyclic Acid, 0.5 M NaOH and 0.16 M of potassium tartrate). The content 

of enzymatic solution of each tube was then standardized to 100 µL, and all tubes were placed 

in a boiling water-bath for 15 min. After cooling to room temperature on ice, 4.95 mL of water 

was added. Finally, a spectrophotometric measurement at 540 nm (UV-Vis spectrometer 

Evolution 201, Thermo Fisher Scientific, Massachusetts, United States) was performed and the 

concentration in maltose equivalents was determined from a previously established calibration 

curve. Enzymatic activity was defined as follows: 1 unit liberated 1.0 mg of maltose equivalents 

in 3 min at pH 6.9 at 20 °C. 

2.3.2.  IN HI BI TO RY  EFFECT  OF  BE VERAGES  A ND C ONDI MEN T S ON T H E AM Y LO LY T IC  AC T IV I T Y  

OF  SA L IVA  AND  P ANC RE A TI N  

The impact of each of the 21 beverages and condiments listed in section 2.1 on the amylolytic 

activity of saliva and pancreatin was investigated by substituting the 0.25 mL of deionised water 

by 0.25 mL of each product in the previously described procedure. Coffees and teas (pH 6.5 ± 

0.5), were used as prepared. Acidic products (wines, vinegars and lemon juice) were studied in 

both acidic and neutralised forms with saliva, but only in the neutralised form with pancreatin. 
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Indeed, the pH of the chime is quickly neutralized in the duodenum, so that it is unlikely that 

pancreatic enzymes are affected by the initial pH of a food.  

 

2.4. STA BIL ITY OF HSA  IN SA LIV A A FTE R EXPO SURE  TO A CID  ENV IRONME NT  

The enzymatic activity of HSA following exposure of saliva to acidic environments was 

investigated as follows. Seven tubes containing 4 mL of simulated gastric electrolyte fluid (eSGF) 

(Minekus, et al., 2014b) at different pHs were prepared (using diluted HCl), and incubated at 

37°C. 1 mL of saliva (10 fold diluted in deionised water), pre-warmed to 37°C, was then added 

to each tube, the final ph of the mixtures ranged from 1.5 to 3.9. Samples (750 µL) were collected 

from each tube at 30 s and at 15, 30, 60 and 120 min. 750 µL of NaOH solutions of pre-calibrated 

concentrations were immediately added to neutralize the pH of the samples to 6.9 ± 0.5. 

Samples were conserved at -20 °C until analysis was carried out using the control assay for 

determination of the amylolytic activity of saliva. 

2.5. ORO-GA STROINTE STINA L  IN V ITRO  DIGE STION  

Bread digestion protocols can be divided into two groups: (1) control digestions, which aimed at 

studying the respective contributions of the two amylolytic enzymes to starch hydrolysis, and 

(2) experimental digestions, conducted to assess the impact of tea and lemon juice on starch 

hydrolysis. With the exception of the control digestion with no saliva nor pancreatin, all 

digestion experiments were performed in triplicate. They comprised a manual oral phase that 

immediately preceded gastrointestinal digestions performed with a dynamic in vitro system, 

DiDGI® (INRA, Grignon, France), controlled and monitored by the software STORM® (INRA, 

Grignon, France). A standardized static in vitro digestion method (Minekus, et al., 2014a) was 

used as reference to define the composition and activities of the gastrointestinal secretions, and 

the volumes were set to preserve the enzymatic activities and electrolyte concentrations 

recommended in the same standardized protocol. We have previously described our dynamic 

digestion protocol and the sample analysis procedure in detail, therefore, only the main 

experimental steps, key principles and adaptations are presented here. Interested readers are 

invited to refer to (Freitas & Le Feunteun, 2018b) for further information. The digestion protocol 

was the following. 

O R A L  P H A S E .  Bread was processed in a food chopper (Multi-moulinette 400 CW, Moulinex, 

Ecully, France) and each bolus was formed by mixing bread (6 g) with saliva (1.2 mL, pre-heated 

to 37 °C) for 30 s with a spatula.  
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G A S T R I C  P H A S E .  Immediately after preparation, each bolus was introduced in DiDGI®’s 

gastric compartment containing 20 mL of neutralised eSGF, 10 µL of 0.3 M CaCL2 and 12.8 mL 

of deionized water and set-up, beforehand, with an operating temperature of 37 °C and a stirring 

speed of 10 rpm. The chime was stirred for 30 s, stirring was interrupted for another 30 s and a 

first sample (2 mL) was collected from the supernatant. Stirring was then resumed and the 

gastric phase was initiated by activating the fluxes of pepsin (4705 U/mL in eSGF) and HCl (0.1 

M in eSGF). The pepsin flux was set to reach ≈2000 U per mL of chime at t = 90 min, and was 

stopped afterwards. The flux of HCl was automatically adjusted to decrease the pH of the chime 

by 1 unit every 22.5 min until pH 2 was reached, and keep it constant thereafter, in order to 

replicate the kinetics of gastric acidification observed in humans (Malagelada, Go, & 

Summerskill, 1979). The gastric phase lasted 120 min. 

I N T E S T I N A L  P H A S E .  22 mL of eSIF, 10 mL of deionised water and 80 µL of 0.3 M CaCl2 were 

added. The pH of the chime was adjusted to 7.0 with 1M NaOH and the intestinal phase was 

initiated by adding 10 mL of a pancreatin solution in eSIF to reach twice the final volume of the 

gastric chime and a trypsin activity of 100 U/mL. DiDGI® was programmed to automatically 

maintain the pH at 7.0 by adding 0.02 M NaOH (also prepared in eSIF) and preserve stirring (10 

rpm) and temperature (37 °C) settings. The intestinal phase lasted 120 min. 

S A M P L I N G . In addition to the first sample (collected from the gastric compartment 1 min after 

the oral phase, and approximately 30 s before gastric digestion started), additional samples were 

collected from the chime’s supernatant at 5, 15, 30, 60, 120, 125, 135, 150, 180 and 240 min. 

Each sample (2 mL) was collected after interrupting stirring for 30 s to allow particles to 

sediment, and was immediately transferred to a dry bath (ThermoMixer C, Eppendorf, Hamburg, 

Germany)  (99 °C, 150 rpm, 5 min) for enzyme inactivation. Samples were kept at -20 °C until 

required for further analysis.  

2.5.1.  BREAD ST AR CH DI GEST IO N  -  CON TRO L EX PER IMEN TS .   

Three different experiments were carried out: (1) with no saliva nor pancreatin, (2) with saliva 

but without pancreatin, (3) without saliva but with pancreatin. To do so, saliva and the 

pancreatin solution were replaced with deionised water and eSIF, respectively, when needed.  

2.5.2.  BREAD ST AR CH DI GEST IO N  IN  PRESE NCE OF  W AT E R ,  BLACK  TE A AND LE MON  JU I CE .   

Three different digestions were carried out. In each experiment, 7.4 mL of deionised water out 

of the 12.8 mL added at the start of the gastric phase were replaced with the same volume of 

either (1) mineral water, (2) black tea, or (3) lemon juice (pH = 2.3).  

2.5.3.  ANA LYS IS  OF  D YNA M IC D I GEST IO N S AM P LES  
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All samples were centrifuged (Centrifuge 5804 R, Eppendorf, Hamburg, Germany) (10 min, 3000 

g and 4 °C), and their supernatants were analysed to quantify the released starch and 

oligosaccharides. Released starch was quantified as glucose equivalents (D-Glucose kits) after 

complete hydrolysis with amyloglucosidase.  Oligosaccharides with degrees of polymerization of 

up to 10 (Hoebler, et al., 1998) were quantified in the same way after selective polysaccharide 

precipitation in an 80% (v/v) ethanol solution. 
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3. RESULTS AND D ISCUSSION  

3.1. INHIBITORY E FFECT  OF BEVERA GE S A ND COND IM E NTS ON THE  AMYLOLYT IC  

ACTIVITY OF SA LIVA A ND  PANC REATIN  

The amylolytic activity of saliva was 345 ± 37 U/mL this is close to the results that we (352 U/mL) 

(Freitas, Le Feunteun, Panouillé, & Souchon, 2018b) and other researchers (410 U/mL) (Peter 

Bernfeld, 1955) have previously found. The amylolytic activity of pancreatin was 24 ± 1 U/ mg. 

The inhibitory effect of the tested products on the amylolytic activity of saliva is presented in 

Figure 49A. Starting with the neutral pH products, coffees, green teas and black teas reduced 

HSA’s activity by 5-10%, 20-45% and 30–70%, correspondingly, in our assay conditions. When 

tested at their native pHs, wines, vinegars and lemon juice exhibited a very high inhibitory 

capacity, which ranged between 90% and 100% of inhibition. With the exception of red wine 

and red wine vinegar, which still inhibited ≈ 82% and 45% of HSA's activity in their neutralised 

form, acidic foods largely lost their inhibitory capacity upon pH neutralisation, thereby reflecting 

a major effect of acidity. As it can be observed in Figure 49B, comparable inhibitory effects were 

obtained with pancreatin in terms of levels of inhibition within each product category.  

Coffee did not influence the activity of neither of these amylolytic enzymes. To the best of our 

knowledge, there are no studies about the effect of coffee itself, but there is some evidence in 

the literature showing that some substances isolated from coffee beans exert an inhibitory 

effect on pancreatic amylase (Funke & Melzig, 2005; Narita & Inouye, 2009). It is possible that 

the concentration of such substances in the coffees tested was too low for an inhibitory effect 

to be produced.  The effect of tea and tea extracts on the amylolytic activities of salivary α-

amylase and pancreatic α-amylase has been widely studied by different teams of researchers. 

Most have found similar results to ours, confirming the capacity of different teas to inhibit 

salivary (Y. Hara & Honda, 1990; Kashket & Paolino, 1988; Zhang & Kashket, 1998) and 

pancreatic (Kwon, Apostolidis, & Shetty, 2008; Quesille-Villalobos, Torrico, & Ranilla, 2013; 

Striegel, Kang, Pilkenton, Rychlik, & Apostolidis, 2015) α-amylases in vitro, and reporting that 

black teas have a higher capacity to inhibit both of these enzymes (Quesille-Villalobos, Torrico, 

& Ranilla, 2013; Zhang & Kashket, 1998). The same has been observed for tea extracts or purified 

tea polyphenols (Fei, et al., 2014; Forester, Gu, & Lambert, 2012; K. Hara, et al., 2012; Miao, 

Jiang, Jiang, Zhang, & Li, 2015; Sun, Gidley, & Warren, 2018; Sun, Warren, Netzel, & Gidley, 2016; 

Yilmazer-Musa, Griffith, Michels, Schneider, & Frei, 2012). This reduction of the catalytic activity 

can be characterized as a mixed-type inhibition as both competitive inhibition (by binding to the 

active site) (Sun, Warren, Netzel, & Gidley, 2016) and non-competitive inhibition (by binding 

with the enzyme-substrate complex) have been identified (Y. Hara & Honda, 1990). It is also 
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interesting to note that some teams have observed that this inhibitory capacity is generally 

higher for the brush-border enzyme α-glucosidase (Kwon, Apostolidis, & Shetty, 2008; Striegel, 

Kang, Pilkenton, Rychlik, & Apostolidis, 2015; Yilmazer-Musa, Griffith, Michels, Schneider, & Frei, 

2012) and that it can also impair intestinal glucose uptake as it also applies to specific 

transporters in the intestinal epithelial wall (Shimizu, Kobayashi, Suzuki, Satsu, & Miyamoto, 

2000). Recently, however, some contradictory results have been published, showing that the 

inhibitory effect of tea polyphenols and tea extracts can either be lost or enhanced below a 

certain polyphenol concentration (Tong, Zhu, Guo, Peng, & Zhou, 2018; Yang & Kong, 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49 - Impact of beverages and condiments. Amylolytic activity (% of maximum) of saliva 
(A) and pancreatin (B) in the presence of coffee, green and black teas, wines, winegars and 
lemon juice (LJ) at their native (full bars) and neutralized (open bars) pH.  The maximum 
amylolytic activity of saliva was 345 ± 37 U/mL, and for pancreatin it was 24 ± 1 U/ mg. Data 
are mean ± SD, 3 rpt.  
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Acidic foods were tested at their native pHs and after pH neutralization. For acidic foods, 

experiments conducted at their native pH intended to reflect the influence these might exert 

during processes that are most likely to be affected by the pH of foods (specifically oral and 

gastric activity of HSA). Neutralisation of the pH of acidic foods intended to reproduce intestinal 

conditions. 

The almost complete inhibition of HSA with wines, vinegars and lemon juice at their native pH 

shows the predominant effect of acidity over other factors, such as their polyphenol content, on 

its activity for such acidic beverages or condiments. The optimum pH of HSA in saliva is close to 

6, and as the pH is lowered, its activity is progressively lost, with approximately 50% left at pH 

4, and complete inactivation below pH 3.5 (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b; 

M. Fried, S. Abramson, & J. Meyer, 1987). With the exception of red wine (pH = 3.7), all other 

investigated acidic solutions’ pH was below this inactivation threshold (between 2.3 and 3.2), 

hence explaining their capacity to almost completely inactivate HSA, even after being mixed with 

the starch solution at a 1:1 volume ratio. We may remind here that pancreatic α-amylase is likely 

to be largely protected from this effect because of the rapid neutralisation of the pH once the 

chime is propelled into the duodenum, reason why the impact of acidic foods on the amylolytic 

activity of pancreatin was only tested after pH neutralisation. Red wine was the only product 

that preserved almost its inhibitory capacity almost completely at neutral pH, suggesting an 

important effect of its polyphenol content. Important losses of inhibitory capacity were 

observed for all other acidic foods showing the predominant effect of acidity over other factors 

such as the polyphenol content for example.  Research on the other tested products is less 

abundant, but the observed inhibitory effect of grape seed extracts on HSA (Yilmazer-Musa, 

Griffith, Michels, Schneider, & Frei, 2012) and of wine on pancreatic α-amylase (Kwon, 

Apostolidis, & Shetty, 2008) is also in agreement with our results.  

 

3.2. RESIDUA L AMYLOLYTIC  A CTIV ITY OF SA LIV A A F TE R EX POSU RE TO A N A C ID 

ENVIRONMENT  

These experiments aimed at evaluating the residual amylolytic activity of saliva at neutral pH 

after exposure to in vitro gastric conditions at different pHs. During digestion, saliva is exposed 

to an increasing acidic environment within the stomach before being emptied in the small 

intestine. It is therefore uncertain how much of the amylolytic activity of saliva can be restored 

during the intestinal phase of digestion, and thus contribute to the intestinal hydrolysis of starch. 



II In vitro studies 

132 
 

According to the results, presented in Figure 50, 3 cases can be distinguished: pH > 3.5, pH ≈ 3.0, 

and pH < 2.5. When HSA was exposed to pH 3.6 or 3.9, the amylolytic activity of saliva was fully 

recovered after pH neutralisation, regardless of the period of incubation. When the pH was close 

to 3 (2.9 or 3.1), the residual amylolytic performance was dependent on exposure time. For short 

(30 s) exposure, 90% to 100% of activity was still observed after incubation at pH 2.9 and 3.1, 

correspondingly. For longer exposures, the amylolytic activity was progressively, and 

irreversibly, lost at a pH dependent rate. Finally, for pH < 2.5, HSA activity was irreversibly lost, 

regardless of exposure time.  

 

 

Our results are in agreement with the findings of Bernfeld and colleagues (1948) who conducted 

similar experiences with purified HSA, exposing it to pH ranging from 3 to 12 for 30 min, 2 h and 

20 h. They observed that between pH 4 and 11, 100% of activity was recovered, regardless of 

exposure time. Between pH 3 and 4, the activity of HSA was still recovered after 30 min but as 

exposure time increased, an increasing proportion of HSA was irreversibly lost. It has previously 

been shown that the optimum pH of HSA in saliva is close to 6-7, and its activity declines as the 

pH lowers, with approximately 50% of the maximum activity left at pH 4 and complete 

inactivation found below pH 3.5 (Freitas, Le Feunteun, Panouillé, & Souchon, 2018b; M. Fried, 

S. Abramson, & J. Meyer, 1987). The results of our stability assays, in agreement with the 

available literature, point towards the existence of an irreversible, time-dependent inactivation 

Figure 50 – Impact of exposure of saliva to acidic environments. Residual amylolytic 
activity of saliva after exposure to pH > 3.5 (all circles), pH ≈ 3.0 (all squares), and pH < 
2.5 (all triangles).  Each sample was analysed 3 times for remaining HSA activity at pH 6.9. 
Plotted values refer to mean ± SD.  
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threshold around pH 3. However, they also show that despite an impaired amylolytic activity at 

acidic pH, whenever HSA is not exposed to pH ≈ 3 or below, this effect is reversible. This may be 

particularly relevant in the context of human carbohydrate digestion. Depending on the 

properties of the meal, it can take more than 45 min to lower the pH of the gastric chime to 4, 

and close to 1 h to further reduce it to 3 (Malagelada, Go, & Summerskill, 1979). Therefore, HSA 

in the gastric chime propelled into the small intestine in the first 45 – 60 min of digestion might 

fully recover its enzymatic activity and resume amylolysis in combined action with pancreatic α-

amylase. This is indeed consistent with previous reports that HSA comprised as much as 14% of 

the total amylase in the jejunum over a 200 min period after meal consumption (M. Fried, S. 

Abramson, & J. Meyer, 1987). 

3.3. DYNAMIC IN V ITRO  DIGE STION OF BREAD S TA RCH  IN PRESE NCE OF  W ATE R ,  

BLAC K TE A A ND LE MON JUICE  

3.3.1.  BREAD  STAR CH D IGE ST IO N  -  CO NTROL  DIGE ST IO NS  

The results of the control digestions carried out with no saliva nor pancreatin, with saliva alone, 

and with pancreatin alone are presented in Figure 51A, B and C, correspondingly. In the absence 

of amylolytic activity (Figure 51A), about 15% of the total starch was solubilised in the chime 

within the first minutes of gastric digestion. As the pH progressively decreased, the proportion 

of total starch released into the chime increased within the first 15 min reaching a plateau at 25-

30% that lasted until the end of the intestinal phase. This starch release profile can be attributed 

to a rapid disintegration of bread particles within the gastric medium (Freitas & Le Feunteun, 

2018b) and the subsequent hydrolysis of the gluten network by pepsin as the pH lowers (Freitas, 

Le Feunteun, Panouillé, & Souchon, 2018b). Indeed, pepsin is inactive in the initial pH conditions 

of the gastric phase so that only the effects of mixing and starch diffusion towards the 

surrounding can explain the initial rise of about 15%. The second increase of about 15% may, 

however, be essentially akin to the pepsin action as previously showed (Freitas, Le Feunteun, 

Panouillé, & Souchon, 2018b). Since pepsin is inactive at pH 7 and pancreatin was not used, the 

extent released starch remained stable throughout the intestinal phase. The oligosaccharide 

fraction, estimated between 4% and 9% of the total starch content of the bread throughout 

digestion (Figure 51A), corresponds to the signal arising from the bread content in simple sugars 

since no amylase was used in this control experiment.   

When HSA was the only amylolytic enzyme present (Figure 51B), considerably more starch and 

oligosaccharides were released. After 15 min, released starch and oligosaccharides plateaued at 

about 60-65% and 37%, correspondingly.  A further increase of 4-5% seemed to occur within in 

the first minutes of intestinal digestion. More experiments would be needed to confirm this 
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small apparent increase, which was unexpected according to our results showing an irreversible 

inactivation of HSA after exposure to pH < 3 and the pH = 2.0 conditions set for the last stage of 

our gastric digestion. We may nevertheless note that the presence of starch has been reported 

to have a protective effect on HSA, preserving up to 56% of the activity of purified amylase after 

1 h at pH 3 (Rosenblum, Irwin, & Alpers, 1988). It is therefore possible that part of HSA activity 

was recovered during the intestinal phase. 

In the absence of saliva but in presence of pancreatin (Figure 51C), the gastric starch and 

oligosaccharide release profiles were the same as those already described for the experiment 

free from amylolytic enzymes (Figure 51A). As soon as the intestinal phase was initiated, the 

proportion of total starch released into the chime increased almost instantaneously, plateauing 

close to 85% within 15 min with almost all of it hydrolysed into oligosaccharides. This experiment 

therefore clearly illustrates the great efficiency of pancreatin to rapidly and extensively 

hydrolyse starch present in the chime emptied from the stomach. 

 

Figure 51 - Dynamic in vitro digestion of bread – control experiments. Proportion of total 
starch released (full symbols) and hydrolysed into oligosaccharides (open symbols) during the 
course of control in vitro oro-gastro-intestinal digestions of equal portions of bread performed 
with no saliva nor pancreatin (A), with saliva but without pancreatin (B), and without saliva 
but with pancreatin (C). The first point in each curve corresponds to the end of the oral p hase 
and the start of the gastric phase. The gastric and intestinal phases lasted 120 min each. 
Average ± SD, 3 rpt. 

 

 

3.3.2.  BREAD  STAR CH D IGE ST IO N IN  PRESE NCE  O F W AT ER ,  BLACK  TEA  AND  LEMO N J U ICE   

The effect of pairing water, lemon juice or tea with bread on starch digestion is shown in Figure 

52A, B and C, respectively. In the presence of water (Figure 52A), approximately 15% of the total 
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starch was released into the form of oligosaccharides after the oral phase. After the start of the 

gastric phase, amylolysis proceeded and plateaued after about 30 min to 72% of the total starch, 

with more than half thereof in the form of oligosaccharides. During the intestinal phase, starch 

release appeared to have only slightly increased close to 80% of the total starch, and most of 

the amylolytic activity consisted in hydrolysing into oligosaccharides the polysaccharides 

released during the gastric phase. This “rise-plateau-rise-plateau” profile was preserved when 

water was replaced with black tea and lemon juice (Figure 52B and C) but with different patterns. 

In presence of tea (Figure 52B), released starch and oligosaccharides plateaux were about 10% 

lower during the gastric phase. During the intestinal phase, released starch reached the same 

level as with water, but hydrolysis into oligosaccharides remained impaired, stagnating at about 

50% of the total starch. In presence of lemon juice (Figure 52C), released starch corresponded 

to about 40% of the total bread starch at the gastric stage, and hydrolysis into oligosaccharides 

was totally interrupted after the oral phase. During the intestinal phase, the proportion of total 

starch released rapidly matched that of the other two experiments. Hydrolysis into 

oligosaccharides remained close to that obtained in the presence of tea, i.e. slightly lower the 

level observed with water.   

Starch hydrolysis during the digestion of bread with water was similar to the results we obtained 

previously with other types of bread (Freitas & Le Feunteun, 2018a, 2018b). We have previously 

highlighted the important contribution of the gastric phase to the digestion of starchy foods, 

(Freitas & Le Feunteun, 2018a, 2018b; Freitas, Le Feunteun, Panouillé, & Souchon, 2018b) and 

present results provide further confirmation of this. The replacement of water with tea and 

lemon juice slowed down starch hydrolysis, in agreement with the capacity of these beverages 

to inhibit the amylolytic activity of HSA and pancreatin (section 3.1.).  

This effect was more noticeable with lemon juice (Figure 52C), which almost reproduced the 

digestive pattern of the control digestion containing only pancreatin (Figure 51C, noting that the 

early increase of released starch during the gastric phase is probably due to an earlier pH-

activation of pepsin) with limited starch release and no hydrolysis into oligosaccharides. The 

magnitude of the effect of lemon juice during the gastric phase therefore directly reflects its 

inhibitory capacity Figure 49A). Indeed, the initial pH of the chime at the start of the gastric 

phase was 2.5 in presence of lemon juice, hence inducing a complete inhibition of HSA. These 

results are in agreement with our previous work showing that pairing 3 starch-rich foods with 

lemon juice caused an important reduction of starch hydrolysis at the gastric level because of 

an early acid-induced inhibition of HSA (Freitas & Le Feunteun, 2018a). It is therefore very likely 

that similar results would have been obtained with the other acidic foods such as vinegar that 
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exhibited an inhibitory capacity equivalent to that of lemon juice (Figure 49A). In our view, this 

could indeed explain, at least in part, the effectiveness of the widely studied strategy of 

supplementing a starch-rich meal with an acidic product (often vinegar) to reduce the glycemic 

response in vivo (Brighenti, et al., 1995; Carol S Johnston & Buller, 2005; Carol S Johnston, 

Steplewska, Long, Harris, & Ryals, 2010; Leeman, Östman, & Björck, 2005; H. Liljeberg & Björck, 

1998; Elin Östman, Granfeldt, Persson, & Björck, 2005; Sugiyama, Tang, Wakaki, & Koyama, 

2003).  

In the presence of tea, only about 33 % and 41 % of the amylolytic activity of saliva and 

pancreatin was preserved with the assays we used to investigate the inhibitory capacity of 

beverages and condiments (Figure 49). During the dynamic in vitro digestion black tea did not 

influence the kinetics of starch and oligosaccharide release in the gastric phase and in the 

intestinal phase there were no differences for starch release either, but there was a 20% 

reduction in the proportion of oligosaccharides (Figure 52B). The limited impact of tea in the 

digestion experiments in most certainly due to the differences between the conditions 

employed between these experiments (section 2.5) and the enzymatic assays (section 2.3). In 

particular, 3 conditions of the in vitro digestion experiments could have contributed to such 

results: (1) the temperature was higher (37 °C vs. 21 °C in the enzymatic assays), (2) the tea was 

more diluted (≈ 50% vol. in the enzymatic assay vs. 32% vol. at the start of the gastric phase and 

less than 15% at the start of the intestinal phase), and  (3) the enzyme activity greater (saliva 

was ≈ 1.5 times more concentrated at the start of the gastric phase, and pancreatin > 80 times 

more concentrated during the intestinal phase). In parallel, starch concentration during the 

gastric phase was similar to that in the enzymatic assay, and in the intestinal phase it was 

reduced to about half. Considering the level of tea dilution in the digestion experiments, the 

ratio of starch to tea was higher.  Because the effect of tea is partly due to competitive inhibition 

(Sun, Warren, Netzel, & Gidley, 2016), it is very likely that it was partly reversed by the higher 

substrate concentration (Blanco & Blanco, 2017). Judging by the lower proportion of starch 

hydrolysed into oligosaccharides in the intestinal phase, it did seem that tea might have 

somewhat limited the later stages of amylolysis, but it is unsure whether this would be enough 

to produce an effect in vivo. The masses of tea and starch in the meal digested in vitro would 

correspond to approximately 125 mL tea (1% w/v) for one portion of bread containing 50 g of 

starch (≈100 g of bread). In vivo human studies testing food portions containing 50g of 

carbohydrates are also in agreement with our results. Investigations of the effect of 300 mL of 

green tea (3% w/v) with a starch-rich breakfast (Josic, Olsson, Wickeberg, Lindstedt, & 

Hlebowicz, 2010), or of including green tea extract (2% w/w) in a starch confection (Sapper, et 
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al., 2016) did not observe any effect on postprandial glucose. It seems that higher 

concentrations of tea/tea extracts or higher proportions of tea to starch would be needed to 

achieve a relevant inhibitory effect during digestion.  

Figure 52 - Dynamic in vitro digestion of bread. Released starch (full sy mbols) oligosaccharides 
(open symbols) and pH of the chime (grey line) during the course of oro -gastro-intestinal 
digestions of equal portions of bread combined with either water (A) tea (B) or lemon juice  
(C). The first point in each curve corresponds to  the end of the oral phase and the start of the 
gastric phase. The gastric and intestinal phases lasted 120 min each. Average ± SD, 3 rpt.  
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CONCLUSION  

We have shown that green and black teas, red, white and rose wines, 

vinegars and lemon juice can inhibit the amylolytic activity of both 

human saliva and porcine pancreatin in vitro. The effects were similar 

in both cases with the pH-neutralised form of these beverages and 

condiments. However, because saliva is secreted at the very beginning 

of the digestive system, its amylolytic performance is more susceptible 

to be impaired by the consumption of inhibitory products, or by the 

pH of acidic beverages or foods. Our results emphasize the 

vulnerability of HSA to the pH of tested foods, which resulted in an 

almost complete inhibition by acidic products such as wines, vinegars 

and lemon juice at their native pH. These findings were confirmed 

during dynamic in vitro digestions of bread starch in presence of either 

water, black tea or lemon juice. Both black tea and lemon juice 

enabled to reduce starch hydrolysis during digestion, but lemon juice 

exerted a more significant effect than tea, in particular during the 

gastric phase of digestion. These results provide a biochemical 

rationale for the development of dietary strategies aiming at 

improving the glycaemic response elicited by starch-rich foods that 

could be tested in vivo.  
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SUPPLEMENTARY DATA  

Supplementary data - Table 1 – Detailed information about the beverages and condiments 
screened for their capacity to inhibit the amylolytic activity of saliva and pancreatin.  

Products Codes 
Brand-type (Country if 
available) 

Producer (or, if not available, 
distributor), City, Country 

pH 

Coffees 
A Nescafé - Nes - instant coffee 

Nestlé France, Marne la Vallée, 
France 

6.6 

B Auchan instant - Extra filtre 
Auchan production, Villeneuve 
d’Ascq, France 

6.2 

Green 
teas 

A 
Twinings of London -  Simply 
pure 

Twinings, Andover, United 
Kingdom 

7.2 

B 
Désir de Vrai - Gunpowder vert 
(China) 

Destination, Bordeaux, France 7.2 

C Gorreana (Portugal) 
Plantações de Chá Gorreana, 
Azores, Portugal 

7.1 

Black 
teas 

A 
Twinings of London -  Yunnan 
tea (China) 

Twinings, Andover, United 
Kingdom 

6.8 

B Auchan - Organic Breakfast 
Auchan production, Villeneuve 
d’Ascq, France 

7.0 

C 
Tetley - English breakfast 
(Africa/Asia/South America) 

Tata Global Beverages GB Limited, 
Middlesex, England 

6.7 

D Auchan breakfast tea 
Auchan production, Villeneuve 
d’Ascq, France 

6.8 

E 
Twinings of London -  Original 
English Breakfast 
(Africa/India/China) 

Twinings, Andover, United 
Kingdom 

6.9 

F 
Désir de vrai – Breakfast (Sri 
Lanka) 

Destination, Bordeaux, France 6.8 

G 
Auchan - Organic from China 
(China) 

Auchan production, Villeneuve 
d’Ascq, France 

6.9 

H Auchan - Organic 
Auchan production, Villeneuve 
d’Ascq, France 

7.1 

I Lipton yellow label 
Unilever France, Rueil Malmaison, 
France 

6.7 

Wines 

W 
Touraine Sauvignon 2016 
(France) 

Pierre Chainier, Amboise, France 3.2 

Re 
Les Fées Pays d'OC -Cabernet 
Sauvignon 2016 (France) 

Jean d'Alibert, Rieux, France 3.7 

Ro Cabernet d'Anjou 2016 (France) 
Les caves des perrières, 
Mouzillon, France 

3.2 

Vinegars 

W 
Auchan - White wine vinegar 
Champagne-Ardenne Region 
(France) 

Charbonneaux Barbant, Reims, 
France 

2.7 

Re 
Auchan - Red wine vinegar 
aged 2 months in casks 7% 
acidity 

Auchan production, Villeneuve 
d’Ascq, France 

2.6 

AC 
Auchan - Cider vinegar 5% 
acidity 

Auchan production, Villeneuve 
d’Ascq, France 

3.1 

Lemon 
Juice 

LJ Lazy lemon Polenghi, Milan, Italy 2.4 
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KEY MESSAGES  

 

 

 We screened 21 beverages and condiments for their capacity to inhibit salivary and pancreatic 

amylases 

 Coffees, green teas and black teas (all with neutral pH) reduced their activity by 5-10%, 20-45% and 

30–70%  

 Wines, vinegars and lemon juice (all with acidic pH) inhibited the activity of salivary amylase by 90% 

to 100%  

 Black tea and lemon juice reduced starch hydrolysis during the digestion of bread 

 Lemon juice exerted a much more significant effect, in particular during gastric digestion. 
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IN T HI S PART  O F T HE  M ANUSC RIP T T HE  RE SULT S  OF  THE  IN  V IV O  

ST UD IES  WILL  BE  P RE S ENT ED .   

THE MAIN GO AL W AS TO ANSWER T HE FOLLOWI NG  QUE ST IONS :  

D O  T H E  F O O D  P A I R I N G  S T R A T E G I E S  T E S T E D  I N  V I T R O  

T R A N S L A T E  I N T O  M E A S U R E A B L E  D I F F E R E N C E S  I N  V I V O ?  

I S  T H E R E  A N  I M P A C T  O N  T H E  G L Y C A E M I C  R E S P O N S E  

A N D / O R  S A T I E T Y ?  

I F  S O ,  C A N  W E  P I N P O I N T  T H E  M E C H A N I S M ?   

 

This work is presented in the form of two extended articles, preceded 

by an introductory section: 

 Introductory section - Preparation of the clinical study 

 

 Chapter I - Lemon juice lowers the postprandial plasma glucose 

response to bread in healthy volunteers  

 

 Chapter II - Reduction of the glycaemic response to bread in the 

presence of lemon juice: MRI investigations on gastric 

processing and emptying  

 

 

An informal text summarizing the reasoning behind the work 

presented as well as a scientific abstract were included at the start of 

each chapter. At the end of each chapter the key results are 

recapitulated in written and schematic form.  
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I I I .  I N  V I V O  S T U D I E S  

OUTLINE AND PREPARATION 
OF THE  

CLINICAL STUDY 
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1. STUDY OUTLINE  
The outline of the clinical study, which was a 2-branch investigation, is presented in Figure 54. 

Detailed information about each part of the study can be found in the next two chapters.  

The objective of part 1 was to determine the effect of pairing a starch-rich food with water, black 

tea or lemon juice on postprandial plasma glucose and energy intake in healthy humans. This 

study was conducted in semi-controlled conditions in our research unit (UMR GMPA, Grignon). 

The objective of part 2 was to study the gastric emptying patterns, blood glucose response and 

satiety perceptions following the consumption of bread with water, tea or lemon juice. This 

study was conducted at the Service Hospitalier Frédéric Joliot in Orsay, in collaboration with the 

IR4M research unit (Imagerie par Résonance Magnétique Médicale et Multi‐Modalités, 

UMR8081 Université Paris Sud ‐ CNRS, Orsay, France). 

Volunteer recruitment for each part of the study was conducted independently. The test meals 

were similar, except that the meals were supplemented with 20 peas in part 2, at the very end 

of the meals, to use them as stomach motility and gastric mixing tracers in MRI images. The data 

collected in each part of the study was analysed independently. 

 

 

 

 

 

 

Figure 53 – Schematic description of the clinical study  
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1.1. NOTES ON THE PREPARAT ION OF THE CLINICAL STUDY  
Before detailing the clinical trials and corresponding results, it is worth noting that this was the 

first clinical trial conducted by our research unit (UMR GMPA). Therefore, in the beginning of my 

PhD we did not have all the necessary knowledge to be able to plan and execute this project. 

This was also the first collaboration of our laboratory with both UMR IR4M, specialized in 

medical and multi-modal MRI, and the CEFRED (Centre d'Exploration Fonctionnelle et de 

Rééducation Digestive) from the Avicenne Hospital. The design of this study and the recruitment 

of volunteers were thus complicated by the geographical locations of the different partners, in 

particular providing that there was a medical visit mandatory at CEFRED (UMR GMPA ~ 40 km 

west of Paris, UMR IR4M ~ 25 km south of Paris, CEFRED in the north of Paris).  

Moreover, during the preparation of this study, the regulations that apply to clinical studies in 

France were in a process of being changed, with a new law in June 2016 and new decrees 

becoming effective in November 2016 and May 2017 (Levy, Rybak, Cohen, & Jung, 2017). The 

new law modified numerous aspects of the process such as the categories of clinical studies, the 

randomization of the assignment of an ethics committee, among others. Altogether, our initial 

lack of experience and the changes in the law have created difficulties that could only be 

surmounted with the support of other teams. A timeline of the project is presented in Figure 54. 

Figure 54- Timeline. Preparation and execution of the clinical study.  
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Concerning the knowledge I acquired and the help received for the preparation of the dossier, I 

have spent 3 months within the Obesity Research Group at the Department of Exercise Sports 

and Nutrition of the University of Copenhagen where I followed clinical trials that were being 

conducted by Thea Hansen and Professor Anders Sjödin (Figure 54). They have given me files 

that I used as examples and I have learned with them all the steps that are involved in all the 

stages of a clinical project, from planning and volunteer recruitment to conducting study 

sessions. In France, we have collaborated with Robert Benamouzig (Pr., MD, and Principal 

Investigator), Mourad Benallaoua (PhD.) and Georghe Airinei (MD) from CEFRED (Centre 

d'Exploration Fonctionnelle et de Rééducation Digestive), Avicenne Hospital. They have 

extensive experience with the clinical research environment in France, and their help was 

essential to be able to complete this project. They gave us many advices related with the writing 

of the research protocol and the new French regulations. They have also proofread the final 

version of the dossier, and organized all the medical visits for the volunteer recruitment.  

Concerning the MRI investigations, we received critical help from the IR4M research unit, in 

particular from Luc Darrasse (PhD) and Xavier Maître (PhD), who developed the MRI protocol, 

from Laurène Jourdain (MSc), for her daily support during the MRI sessions, and Rose-Marie 

Dubuisson (MSc), who coordinated the schedule of all the MRI sessions. Vincent Lebon (PhD, 

MD, and Co-Investigator), who is at the head of the Service Hospitalier Frédéric Joliot (SHFJ) in 

Orsay, was the co-investigator in the study-site where we did the MRI sessions. The exams were 

performed by Laurence Tavassoli, Brigitte Mansalier, Beatrice Lhuillery and Laure Miche from 

the team of MRI technologists of the Medical Imaging team of the Groupe Hospitalier Nord-

Essone Orsay Hospital.  

This collaborative work between three different institutions was initiated by François Boué, my 

PhD supervisor, who was also the Scientific Coordinator of this clinical research protocol. 

1.1.1.  NOTES ON T HE MRI  P RO T OCO L AND RESU LTS  

During the development of the MRI protocol, different sequences, which allowed for different 

spatial and time resolutions, and other meals have been tested. Initially, we intended to include 

3 bread meals and 3 pasta meals in our clinical study. Considered pasta meals were composed 

of both pearl-shaped pasta and peas.  Pearl pasta were selected to try monitoring the evolution 

of their particle size during gastric digestion, and peas were planned to be used as particle 

tracers of the stomach motility and of the gastric mixing, knowing that very good MRI contrasts 

(i.e. white peas and black pasta) could be achieved in high temporal resolution scans. However, 

following initial feedback from the Ethics Committee considering the level of constraints too 

elevated for the volunteers, we had to limit the number of meals and decided to keep the 3 
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bread meals. As these pasta meals could no longer be investigated, we provide two examples of 

what we could observe with such meal in Figure 55. In this figure, slices of anatomic (A) and 

motility (B) scans of the gastric region obtained 15 min after consumption are presented. It is 

possible to observe that in the anatomic scans both individual pieces of pasta and peas, of 3 mm 

and 5 mm of diameter, respectively, were observed in different shades of grey. In the motility 

scan the pasta appeared in grey and no individual pieces were discerned, however the peas were 

clearly discernable and appeared in white. The parameters of the sequences used are presented 

in Table 9. 

  

Figure 55- Example of magnetic resonance imaging from the abdominal region of a healthy 
adult who ingested 150  g of pasta, 20  peas and 250 mL of water. The diameter of pasta and 
peas was 3 mm and 5 mm, respectively. The subject was lying in supine position and was 
holding his breath. (A) The image was extracted from an anatomic volume scan performed 15 
minutes after the meal was initiated. The meal  appears in different shades of grey and the air 
appears dark at the top. Red and green circles indicate discernable pieces of the p earl-shaped 
pasta and peas, respectively. (B) The image was extracted from a motility volume scan 
performed 15 minutes after the meal was initiated. The pasta appears in grey and the peas 
(indicated by green arrows) appear in white.  
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Another point that may be highlighted in here is the influence of the volunteer position within 

the MRI. By doing 3D reconstructions of the stomach during the MRI protocol development, one 

issue that was identified was the persistence of air pockets in the lower part of the stomach, 

close to the pyloric region, due to the position of the subjects (supine) (Figure 56A). This had 

previously been described and has been related with potential differences in the gastric 

emptying rate in comparison with the seated position, being suggested that the right decubitus 

position was more suitable for MRI studies (Treier, et al., 2006). As shown in Figure 56B, our 

preliminary MRI tests confirmed that the right decubitus position enabled to confine air pockets 

to the upper region of the stomach. 

Taking into account all the developmental work, it was decided to:  

Table 9- Selected parameters of the MRI sequences used during acquisition of the scans 
illustrated in Figure 55. 

Imaging parameters Anatomic volume scan Motility volume scan 

Weighing T2 T1 
Repetition time  “shortest” “shortest” 
Echo time  60 ms “shortest” 
Slice thickness  2 mm 2.6 mm 
Number of 
slices/orientation 

90/axial 50/axial  
(16 scans in total) 

Gap 0 mm 0 mm 
Matrix 344 x 264 188 x 178 
Voxel size 0.90 x 0.90 x 2 mm3 ≈ 1.62 mL 0.98 x 0.98 x 2.6  mm3 ≈ 2.5 mL 
Flip angle 90 ° 30 ° 

Figure 56- Influence of subject positioning in the MRI on intragastric meal/air distribution. Examples 
of 3D reconstructions of the stomach from magnetic resonance imaging exams performed on  the 
abdominal region of two healthy adults in the postprandial state. Images correspond to examinations 
conducted 30 minutes after the meal started in the supine (A) and right decubitus (B) positions.  Blue 
and red colors illustrate the position and relative volumes of chime and air, correspondingly. Air 
pockets were present in the lower part of the stomach in the supine position, and in right decubitus 
they were confined to the upper part.  

A B 
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 Limit breath holding times to  25 s; 

 Preserve one anatomic volume scan (high spatial resolution) in each exam for volume 

reconstructions; 

 Include motility volume scans (high temporal resolution) in each exam in which peas 

have a different contrast, to obtain information about intragastric mixing; 

 Include one long motility scan under free-breathing conditions, the spatial resolution 

was highly compromised but the intent was to try to observe motility patterns over a 

longer period of time than what would be achievable under breath-holding conditions.  

Finally, due to time constraints, not all of these scans could be analysed in time for the results 

to be included in the thesis manuscript. The postprandial anatomic volume scans were 

quantitatively analysed and the motility scans (breath hold) were qualitatively analysed. No 

analysis was yet performed on the long motility scans (free breathing). 
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Informal presentation 

We mix and match foods every day. Availability, tradition, taste and 

our perception of the nutrients we need are probably the main authors 

of our menus.  

B U T  W H A T  I F  T H E S E  C H O I C E S  T H A T  W E  M A K E  E V E R Y  D A Y  C A N  

A L S O  B E  A N  O P P O R T U N I T Y  T O  O P T I M I Z E  T H E  P H Y S I O L O G I C A L  

I M P A C T  O F  T H E  F O O D S  W E  E A T ?  

The results of the in vitro studies highlighted the contribution of the 

oral and gastric phases for the digestion of starch due to the action of 

salivary α-amylase, especially in foods associated with elevated 

postprandial responses, such as bread.  

We have also investigated the capacity of a number of food products 

to inhibit this enzyme. Tea and lemon juice exhibited promising 

results. Subsequently, we have observed that simulating the 

consumption of bread with lemon juice vs. water was an effective 

strategy to slow down starch digestion in vitro because of a premature 

acid inhibition of salivary amylase. The consumption of bread with tea 

was also simulated but the effect on the extent of starch digestion was 

less obvious. 

Numerous clinical studies have reported an association between 

lowering the pH of a starch-rich food/meal (with vinegar for example) 

and an attenuation of the glycaemic response. However, the 

underlying mechanisms are still not very clear. We hypothesized that 

the observations of our in vitro studies could explain, at least in part, 

this effect.   

C O U L D  T H E  F O O D - P A I R I N G  S T R A T E G I E S  T E S T E D  I N  V I T R O  

( C O N S U M P T I O N  O F  B R E A D  W I T H  L E M O N  J U I C E  O R  W I T H  T E A )  

B E  E F F E C T I V E  I N  A  R E A L - L I F E  S E T T I N G ?  A N D  A R E  T H E  R E S U L T S  

S I M I L A R  T O  T H O S E  O B T A I N E D  W I T H  O T H E R  L O W - P H  F O O D S ?  

It has also been debated whether attenuating the glycaemic response 

per se could have an impact on appetite/satiety levels. Therefore, if 

the above-described strategies effectively reduce the glycaemic 

response,  

D O E S  T H I S  H A V E  A N Y  I M P A C T  O N  S A T I E T Y  O R  S U B S E Q U E N T  

F O O D  I N T A K E ?   
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A B S T R A C T  

The inhibition of digestive enzymes that participate in starch digestion could constitute an 

opportunity to slow down the release of glucose from starch and improve the glycaemic impact 

of starch-rich foods. Simple dietary approaches consisting in pairing these foods with beverages 

that have the capacity to inhibit such enzymes could be an easily implementable strategy.  

The objective of this work was to test the impact of adding black tea or lemon juice to a starch-

rich meal on postprandial plasma glucose and energy intake in healthy humans. 

A randomized crossover study was conducted with equal portions of bread (100 g) and 250 mL 

of either water, black tea or lemon juice. These meals were consumed as breakfast after a 10-h 

fast in a randomised order. Capillary blood glucose concentrations were self-monitored using 

the finger-prick method at pre-defined time-points during 180 min.  Ad libitum energy intake 

was assessed 3 hours later. 

The glycaemic response was similar with the water and tea meals, but was reduced in the 

presence of lemon juice. Both the AUC0-90min and the peak blood glucose concentration were 

significantly lowered by about 30% (P < 0.05) with lemon juice compared to water. The peak 

blood glucose concentration was also reached significantly later (78 vs. 41 min, P < 0.01) with 

lemon juice. 

Our results confirm previously reported in vitro findings showing that lowering the pH of a 

starch-rich meal can attenuate the glycaemic response. This could be a simple and effective 

strategy to reduce the glycaemic response to starch-rich foods in everyday-life meals. 
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1. INTRODUCTION  

High glycaemic index diets have been correlated with increased risk of type-2 diabetes, coronary 

heart disease and some types of cancer (Bhupathiraju, et al., 2014; Mirrahimi, et al., 2012; 

Mullie, Koechlin, Boniol, Autier, & Boyle, 2016). Starch-rich foods supply up to 50 % of our energy 

intake (Stylianopoulos, 2012), and therefore play a major role in the post-prandial glycaemic 

responses elicited by our diets. Actually, the glycaemic response to a certain food can even be 

predicted from in vitro experiments aiming at determining the rate of starch hydrolysis by 

pancreatic amylase (Goñi, Garcia-Alonso, & Saura-Calixto, 1997; Yvonne Granfeldt, Hagander, & 

Björck, 1995; D. J. A. Jenkins, et al., 1982), and extensive work has thus been dedicated to 

identify ways of slowing down starch digestion. Inhibiting the digestive enzymes that participate 

in starch hydrolysis is a strategy that has been considered effective for the treatment of type 2 

diabetes, via the administration of acarbose to inhibit amylolytic enzymes (Salvatore & 

Giugliano, 1996). A simple dietary strategy to achieve a lower glycaemic response could 

therefore consist in pairing starch-rich foods, or meals, with food products susceptible to exert 

similar inhibitory effects.  

Using in vitro enzymatic assays, we have investigated the inhibitory capacity of different 

beverages and condiments on the activity of salivary and pancreatic α-amylases (Freitas & Le 

Feunteun, unpublished), which both play a major role during the digestive process of starch. As 

previously reported by others (Y. Hara & Honda, 1990; Kashket & Paolino, 1988; Kwon, 

Apostolidis, & Shetty, 2008; Quesille-Villalobos, Torrico, & Ranilla, 2013; Striegel, Kang, 

Pilkenton, Rychlik, & Apostolidis, 2015), tested products that have a high polyphenol content 

such as tea, red wine, and were found to inhibit the amylolytic activities of both saliva and 

pancreatin. The inhibition was in the range of 30 to 80% in our experimental conditions. 

Moreover, because salivary α-amylase is completely inactivated below pH 3.5 (Freitas, Le 

Feunteun, Panouillé, & Souchon, 2018; Fried, Abramson, & Meyer, 1987), the acidic products 

we tested (vinegars, wines, lemon juice) prevented its action almost completely. Dynamic in 

vitro digestions aiming at evaluating the influence of pairing a bread meal with water, lemon 

juice and a black tea on starch hydrolysis kinetics were also conducted (Freitas & Le Feunteun, 

unpublished). In comparison with water, black tea showed no clear effects on starch hydrolysis 

by HSA during gastric digestion. The quantity of released oligosaccharides was slightly reduced 

(by ~ 20%), however, during intestinal digestion. The lemon juice drink showed, as expected, a 

drastic impact during the gastric phase of digestion as the premature acidification of the gastric 

content resulted in a total inactivation of HSA. The effect of lemon juice during the intestinal 
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phase of digestion was more subtle, but also led to a slightly reduced amount of released 

oligosaccharides, as observed with black tea. 

The objective of the present work was to determine the effect of consuming a starch-rich food 

with black tea or lemon juice on postprandial plasma glucose, and on the energy intake in 

healthy humans, in order to evaluate the potential of the above described strategy in a semi-

controlled setting.  

Regarding the inhibitory effect of tea on digestive enzymes, and despite encouraging 

epidemiologic findings and in vitro data, two studies have reported that green tea was 

ineffective in reducing the glycaemic response associated to bread based meals (Josic, Olsson, 

Wickeberg, Lindstedt, & Hlebowicz, 2010; Sapper, et al., 2016). Nevertheless, our in vitro results 

suggested black teas have a higher capacity to inhibit both salivary and pancreatic α-amylases, 

as others before us (Quesille-Villalobos, Torrico, & Ranilla, 2013; Zhang & Kashket, 1998). To the 

best of our knowledge, the effect of lemon juice has not yet been investigated in humans. There 

are numerous reports that the postprandial glycaemic response to starch-rich meals can be 

reduced by 20-50% via an acid-related mechanism, as for example through vinegar 

supplementation, acid bread fermentation or combination with pickled foods (Bo, et al., 2017; 

Brighenti, et al., 1995; Carol S Johnston & Buller, 2005; Carol S Johnston, Kim, & Buller, 2004; 

Carol S Johnston, Steplewska, Long, Harris, & Ryals, 2010; Lappi, et al., 2010; Leeman, Östman, 

& Björck, 2005; Liatis, et al., 2010; H. Liljeberg & Björck, 1996, 1998; H. G. Liljeberg, Lönner, & 

Björck, 1995; Maioli, et al., 2008; Mitrou, et al., 2010; Elin Östman, Granfeldt, Persson, & Björck, 

2005; Scazzina, Del Rio, Pellegrini, & Brighenti, 2009; Sugiyama, Tang, Wakaki, & Koyama, 2003). 

In our view, a premature acid inhibition of HSA during gastric digestion is a good candidate 

mechanism (Freitas & Le Feunteun, 2018a, unpublished) but the debate on the underlying 

causes remains open (Gobbetti, Rizzello, Di Cagno, & De Angelis, 2014; Lim, Henry, & Haldar, 

2016; Petsiou, Mitrou, Raptis, & Dimitriadis, 2014; Poutanen, Flander, & Katina, 2009).  

Another potentially beneficial effect of slowing down starch digestion is a prolonged satiety, and 

thus a reduced energy intake during the next meal. Research in this field has not been conclusive 

(Blaak, et al., 2012), and interestingly, reviews of the literature conducted at the same time have 

reached contrary conclusions (Pawlak, Ebbeling, & Ludwig, 2002; Raben, 2002). It is possible that 

it is difficult to conceive test meals that elicit distinct glycaemic responses and are controlled for 

all the possible factors that may affect satiety. These results are, therefore, often confounded 

by a lack of control of all the variables (Thomas MS Wolever, Leung, Vuksan, & Jenkins, 2009). If 

adding tea or lemon juice to a meal without changing its macronutrient or ingredient content 
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effectively slows down starch digestion in vivo, it should also be possible to provide some 

answers to this matter.  

2. SUBJECTS AND METHODS  

2.1. PARTICIPANTS  
Eighteen volunteers (7 men and 11 women), participated in the study. The number of subjects 

was determined by using power calculations on the basis of a previous work (Arvaniti, Richard, 

& Tremblay, 2000). We calculated that n = 15 would allow us to detect a minimum difference of 

260 kJ in energy intake with α = 0.05 and β = 0.1 and assuming SD = 200 kJ. A total of 18 

participants were recruited, what allowed for a dropout rate close to 20%. 

They were recruited through email and poster advertisements. Interested subjects were asked 

to answer an online pre-screening questionnaire for preliminary assessment of compliance of 

the following criteria: age, BMI, gender, weight stability, eating habits, medication, food 

allergies, smoking history, and previous participation in a clinical study < 6 m. Respondents 

whose answers were in compliance with the eligibility criteria were invited to an information 

meeting where they received oral and written information about the study. Individuals who 

attended this meeting and expressed interest in trial participation were scheduled for a medical 

appointment, at a later date. During the medical appointment they could clarify any eventual 

questions arising from the information session and sign the consent form. Their physical health 

and eligibility were confirmed according to the pre-defined inclusion and exclusion criteria, and 

they received training on self-measurement of blood glucose (SMBG) (Table 10). 

Subjects were not aware of the real objectives of the study but were informed that we intended 

to better understand the digestion of starch-rich meals when ingested in combination with 

commonly consumed beverages. 

The study protocol has been approved by the Ethics Committee Lyon Sud-Est IV, and the study 

has been registered in the Clinical Trial Registry (clinicaltrials.gov; NCT03265392). All volunteers 

gave their written informed consent after being provided with oral and written information 

about the aims and protocol of the study. 

This study was one part of a 2-branch investigation. The other part of the study was conducted 

with the same test meals but with different participants and different measurements were 

performed. The participant characteristics, study details and results presented in this publication 

are for this part of the study only. 
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Table 10 –Selection criteria 

  

Inclusion Criteria: 

 To be overall healthy 

 To be between 18 and 60 years old 

 BMI between 18 and 25 (lean) 

 No eating disorders 

 No major weight changes (> 3kg in previous 3 months) 

 Structured eating habits (3 main meals/day, everyday) 

 Not using corticoid drugs, or antidepressives known to influence food consumption, 
appetite and/or mood. 

 Not using medication known to influence glucose tolerance: acetylsalicylic acid or 
thyroxin, vitamin or mineral-based dietary supplements, and drugs to control 
hypertension or osteoporosis are acceptable 

 No allergies to the foods in the test-meals and ad libitum meal 

 No abusive alcohol consumption 

 No intensive exercising habits 

 No participation in a clinical study within the previous 6 months 

 To enjoy the foods in the test-meals and ad libitum meals 

 To be affiliated to a social security system 

 To be available to participate in study sessions 

 To have read and signed the Informed consent form 

Non-inclusion criteria: 
 History of diabetes, use of antihyperglycaemic drugs or insulin to treat diabetes or 

associated conditions 

 Major medical interventions or surgeries requiring hospitalization within the previous 3 
months 

 Any medical condition that affects digestion and/or nutrient absorption 

 Use of steroids, protease inhibitors and/or antipsychotic drugs 

 Use of anticoagulation drugs 

 To be participating in another clinical trial, or to be within the exclusion period of a 
previous clinical trial 

 Having started or stopped smoking within the previous 3 months 
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2.2. STUDY OUTLINE  
The study compared the effects of 3 different meals, each of which consisting of sandwich bread 

paired with a different beverage, on blood glucose and energy intake. Test meals were 

consumed at breakfast and the participants were free to pursue their usual routines during 

consumption of the test meal and glucose monitoring. 

2.3. TEST MEALS  
Three test meals were studied: Water, Tea and Lemon juice. Each test meal consisted of 4 slices 

(100 g) of crustless, wheat sandwich bread (Harry’s 100% mie Nature, Barilla S.A.S, Boulogne-

Billancourt, France) with 250 mL of either spring water (Mont Roucous, Lacaune-Les-Bains, 

France), tea or lemon juice. Tea (Lipton Yellow label black tea, Unilever France, Rueil Malmaison, 

France) was freshly brewed (1% w/v) with spring water (100 °C) and was infused for 15 min 

before the tea bag was removed. Lemon juice was prepared by mixing 125 mL of commercial 

lemon juice (Lazy lemon, Polenghi, Milan, Italy) with 125 mL of spring water. The energy and 

nutrient content of the meals (estimated from the products’ labels) is presented in Table 11. 

 

 

 

 

 

 

 

 

 

 

 

2.4. STUDY DESIGN  
A randomized crossover design was used. All subjects consumed were then studied on the 3 test 

meals for breakfast in a random sequence on 3 different days. 

Table 11 - Energy and nutrient content of the meals.  Each 
meal contained equal amounts of white-wheat-bread and 
250 mL of either water, tea or lemon juice. 

 Water Tea Lemon juice 

Energy content (kcal) 262.0 262.0 295.8 

Energy density (kcal/g) 0.7 0.7 0.8 

Energy content (kJ) 1096 1096 1237 

Total fat (g) 3.9 3.9 3.9 

Total carbohydrate (g) 48.3 48.3 50.8 

 Sugar (g)  6.0 6.0 8.5 

Fibre (g)  2.0 2.0 2.0 

Total protein (g) 7.5 7.5 8.0 
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It is known that insulin sensitivity (Pulido & Salazar, 1999), appetite control and eating behaviour 

(Dye & Blundell, 1997) can vary during the menstrual cycle in healthy women. Additionally, 

variations in stress levels of both men and women can influence the glucose metabolism (Wing, 

Blair, Epstein, & McDermott, 1990) and the production of Human salivary α-amylase (Nater, et 

al., 2006; Takai, et al., 2004). To try to minimize the biases potentially induced by all these 

factors, the 3 study sessions of each participant were all scheduled within 4 consecutive days in 

the same week. 

The study visits took place at the Sensory Analysis Department of our research unit (UMR GMPA, 

AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval- Grignon, France). 

2.5. PROTOCOL OF THE STUDY  SESSIONS  
An overview of the study protocol is provided in Figure 57. Participants were asked to refrain 

from excessive alcohol consumption and any unusual exercise and activity the night before the 

study sessions. They were instructed to eat their last meal at least 10 h before the study session 

and to refrain from ingesting anything but water until breakfast. All subjects were provided with 

a check-list to verify compliance with pre-session requirements, a capillary blood glucose 

monitoring kit (more details in the “Blood glucose” part of the Measurements section below) 

and breakfast. They were asked to start answering the check-list and make two baseline blood 

glucose measurements between 0900 and 0915. Breakfast was to be consumed at a steady pace, 

within 12 to 15 min, between 0915 and 0930. Subjects were then asked to measure blood 

glucose again 15, 30, 45, 60, 90, 120, 150 and 180 min after the breakfast starting time. 

Participants were free to choose the location where breakfast was consumed (they were given 

the option to consume it at the study site if they desired). They were free to maintain their usual 

Figure 57- Overview of the study protocol.  
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routines in the mornings of the study, but were asked not to consume anything between the 

breakfast and the ad libitum lunch, 3 h after the test-meal (1230). Subjects arrived at the study 

site (sensory Analysis Department of UMR GMPA) between 1215 and 1230 and were served an 

ad libitum meal consisting of a rice salad and spring water.  

 

2.6. MEASUREMENTS  
B L O O D  G L U C O S E  

Each participant self-monitored their capillary blood glucose with the finger prick method, using 

a capillary blood glucose monitoring kit provided by the research team. The kit was composed 

of single-use Accu-Chek Safe-T-Pro Plus lancets (Roche Diabetes Care France, Meylan, France), 

a glucose meter (Accu-Chek Performa Blood glucose Meter, Roche Diabetes Care France, 

Meylan, France) and corresponding test strips (Accu-Chek Performa test strips, Roche Diabetes 

Care France, Meylan, France), a paper form to register the measurements times and values and 

instructions. Sterile compresses and antibacterial spray (Apaisyl Asept, Merck Médication 

Familiale, Lyon, France) were also provided for cleaning the skin after each measurement. 

Capillary blood glucose was measured with the Accu-Chek Performa glucose meter, 

corresponded to plasma concentration.  

Participants performed two repeated measurements at baseline, and then single measurements 

15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the test meal. They reported the meal 

consumption time and the blood glucose concentrations and measurement times in the 

standard form provided with the glucose measuring kit. Blood glucose concentrations and 

measurement times were later verified in the memory of the glucose meter. 

Time-response curves were constructed and the areas under the glucose response curves (AUC) 

(mmol · min/L) were calculated using the trapezoidal rule with fasting values as baseline and 

truncated at zero. Negative areas (below the fasting baseline value) were ignored. Peak values 

(mmol/L) and time-to-peak (min) were also determined. 

A D  L I B I T U M  M E A L S  A N D  E N E R G Y  I N T A K E  

The ad libitum meal consisted of a store-bought ready to eat rice salad with tuna and vegetables 

(Riz à la Provençale au thon & basilic, Bonduelle, Villeneuve-d'Ascq, France) and a 250 mL bottle 

of spring water (Mont Roucous, Lacaune-Les-Bains, France). According to the label, 100 g of the 

ad libitum meal provided 132 kcal (553 kJ), 4.5 g of fat, 18 g of carbohydrates (1.5 g of sugars) 

and 4 g of protein. Participants were provided with one single serving of the ad libitum meal 
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weighing 1200 g, and were instructed to drink all the water served and eat until they were 

comfortably full. In order to prevent social influences that could affect food intake, the ad 

libitum meal was consumed in individual sensory cabins and all participants were instructed to 

stay in the room for a minimum of 30 min, even if they had already finished the meal. 

The amount eaten (g) was determined by weighing the ad libitum meal before and after 

consumption. The nutritional information provided by the manufacturer was used as reference 

to calculate the energy (kJ) consumed.  

P A L A T A B I L I T Y  O F  T H E  A D  L I B I T U M  M E A L   

Palatability ratings (pleasantness, visual appeal, smell, taste and aftertaste) were obtained for 

the ad libitum meal immediately after consumption. Validated VAS questionnaires (Flint, Raben, 

Blundell, & Astrup, 2000) consisting of 100 mm visual lines with descriptors anchored at each 

end describing the extremes (e.g. “How would you rate the smell of this meal? Not good at all/ 

Extremely good”) were used. Participants rated each characteristic by placing a mark across each 

line on paper, and participants were not able to refer to their previous ratings when completing 

the VAS. Analysis of the VAS was conducted by measuring the horizontal distance from the left-

hand end of the line to the mark indicated by the participant. 

2.7. STATISTICAL ANALYSIS  
All statistical analyses were conducted using the Statistics Toolbox of Excel. Single factor 

ANOVAs were performed to evaluate the following effects:  

 test meals × blood glucose concentration at each time point  

 test meals × energy intake 

 test meals × palatability ratings 

 study day × palatability ratings  

 study day  × energy intake 

Whenever significant effects were detected, paired sample t-test comparison was performed to 

identify the test meals that elicited the significantly different values.  Statistically significant 

effects were accepted at the 95% level. Data are presented as means ± SEMs unless otherwise 

specified. 

3. RESULTS  

3.1. PA RTICIPA NTS ’  CHA RA CTERISTIC S  
Participants’ mean age was 32.8 ± 10.4 (range 20-55). All of them were healthy, with no history 

of diabetes and no medical condition or use of medications known to affect energy intake, 
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appetite, gastrointestinal function or blood glucose, as confirmed by means of a full medical 

history and examination. All subjects had normal body mass indexes (23.0 ± 1.8 kg/m2; x ̄± SD) 

and normal fasting glucose (5.0 ± 0.06 mmol/L; x ̄± SEM). 

All data from one participant have been excluded due to failure to comply with the pre-session 

requirements. Another participant failed to attend one of the ad libitum meals, therefore the 

corresponding data (palatability ratings and energy intake) was excluded from the ad libitum 

meal associated results and comparative analyses. 

3.2. POSTPRA ND IA L BLOOD  GL UC OSE RE SPONSE S  
Postprandial blood glucose responses elicited by the water, tea and lemon juice meals are 

presented in Figure 58. Data refers to 17 participants. There was no significant difference in 

baseline blood glucose concentrations between the three test-meals (P = 0.81). Consumption of 

bread with lemon juice elicited a lower response than when the same quantity was consumed 

with water or tea, with statistically significant differences from t = 15 to t = 45 min (Figure 58). 

No significant differences were found between water and tea.  

 

 

 

 

 

 

The 

glycaemic index (GI), peak glucose concentrations, time-to-peak, and mean AUCs (0-90 min and 

Figure 58 – Postprandial blood glucose responses. Mean (±SEM) incremental 
changes (Δ) in glucose concentrations in response to equal amounts of 
carbohydrate from a white-wheat-bread consumed with either water (), tea () 
or lemon juice (). Time points at which significant differences were found 
(ANOVA followed by paired t-test) are identified by # and * symbols. # indicates a 
statistically significant difference between lemon juice and water (P<0.01, 
P=0.051 between lemon juice and tea). * indicates statistically significant 
differences between lemon juice and both water and tea at 30 min (P < 0.0001 
and 0.001) and at 45 min (P =0.014 and 0.019). n = 17 healthy adults  
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0-180 min) are presented in Table 12, together with the equivalent changes as percentage of 

the control experiment (W meal). Again, no differences were found for any of these parameters 

between the water and tea meals (0.66 ≥ P ≤ 0.96). Despite no significant differences in the GI 

(P = 0.76), lemon juice significantly lowered the peak blood glucose concentrations by 33 % (P = 

0.03). Moreover, it also significantly (P < 0.01) delayed the time to reach the blood glucose 

concentration peak, by more than 30 min on average (78 vs. 41 min). There were no significant 

differences in the AUC over the 3-hour monitoring period (P = 0.76). It can, however, be 

interesting to note that a comprehensive analysis of the AUCs at different time points showed 

that the AUC of the lemon juice meal was significantly lower during the first 90 min (P = 0.03), 

suggesting a delayed, rather than incomplete absorption of glucose from the meal. 

Table 12 –Glycemic Index (GI), peak blood glucose concentration, time -to peak, and 
incremental postprandial areas under the curve (AUC) from 0 to 90 min and 0 to 180 min, after 
test-meals composed of 100 g of wheat bread and 250 mL of either water, tea or lemon juice 1 

 

3.3. AD L IB ITU M  MEA L  
An ad libitum meal was served 3h after the test meal to analyse whether there was any effect 

of the test-meals on subsequent energy intake. To rule out a potential saturation effect, due to 

repeated consumptions of the same meal, participants were asked to evaluate this meal by 

rating 5 palatability-related attributes using VAS questionnaires during each study session. 

3.3.1.  PALAT A BI L IT Y   

The palatability results are presented in Figure 59. Overall, ratings of pleasantness, visual appeal, 

smell, taste and aftertaste over the 3 study days (n=16) were respectively 6.1 ± 0.4, 7.1 ± 0.4, 

  Water Tea Lemon juice 

GI 2 

 100 ± 9 107 ± 12 77 ± 7 

Change %3 - 8 -23 

Peak  
mmol/L 2.7 ± 0.3 2.9 ± 0.2 1.8 * ± 0.3 

Change %3 - 7 -33 

Time-to-peak 
min 41 ± 4 43 ± 3 78 * ± 9 

Change %3 - 5 90 

AUC 0-90 min  
mmol · min/L 145 ± 13 157 ± 18 102 * ± 13 

Change %3 - 8 -30 

AUC0-180 min 
mmol · min/L 212 ± 18 226 ± 26 199 ± 31 

Change %3 - 8 -30 
1All values are x ̄ ± SEM. Values within the same row identified with * are significantly different 
(ANOVA followed by paired t-test) from the water meal. Peak blood glucose concentration (P < 0.05) 
and time to peak (P < 0.01) was significantly lower for the lemon juice than for the water and tea 
meals. AUC0-90min was significantly lower for the lemon juice meal than for the water meal (P < 0.05). 
n = 17 healthy adults. 
2 Calculated from AUC (0 to 120 min) and using the bread + water meal as a reference.  

3 Change as a percentage of the bread + water reference meal. 
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6.3 ± 0.4, 6.2 ± 0.5 and 6.1 ± 0.5 (x ̄± SEM). Single factor ANOVA (α=0.05) did not reveal any 

significant effect of the test meal (0.27 ≥ P ≤ 0.97) nor of the study day (0.76 ≥ P ≤ 0.91) on 

palatability ratings.  

  

3.3.2.  ENERG Y I NT AKE  

Ad libitum energy intake (kJ) following the water, tea, and lemon juice meals was 2051 ± 193, 

1764 ± 216 and 2168 ± 182 (x ̄± SEM), respectively. These results are also presented in Figure 

60. The effect of the meal (P = 0.34) and of the study day (P = 0.70) on ad libitum energy intake 

were both statistically insignificant.  

 

4. D ISCUSSION 
Our results show that a lemon juice drink, but not tea, can significantly lower the glycaemic 

response to a bread meal. The tea used in this study was previously found to inhibit over 60 % 

of the amylolytic activity of both human saliva and porcine pancreatin, exhibiting the strongest 

inhibitory capacity out of 9 commercially available black teas (Freitas & Le Feunteun, 

Figure 59 – Palatability of the ad libitum meal. Ratings of pleasantness, visual appeal, smell, 
taste and after-taste from all participants (n=16) over 3 study sessions ± SEM.  

Figure 60 - Ad libitum intake. Energy intake (n=16, x ̄ ± SEM) 3 hours after a test-meal 
composed of 100 g of wheat bread and 250 mL of either water, tea or lemon juic e. 
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unpublished). During dynamic oro-gastro-intestinal in vitro digestions of the same bread paired 

with the same tea, we have observed that the starch release kinetics remained similar to that of 

a control meal (bread with water), but that the hydrolysis of starch into oligosaccharides was 

reduced by about 20% during the simulated intestinal phase.  In the present study, we have 

doubled the ratio of tea to substrate (250 mL of tea 1% w/w and 100 g of bread), but no effect 

could be observed on the postprandial blood glycaemia. Our present findings therefore show 

that our rather encouraging in vitro results, although of limited extent, do not transpose into 

measurable consequences in in vivo conditions. This is in line with previous reports that pairing 

300 mL of green tea (3 % w/v) with a starch-rich breakfast, or incorporating green tea extract (2 

% w/w) within a starch food did not exert any effect on postprandial blood glycaemia (Josic, 

Olsson, Wickeberg, Lindstedt, & Hlebowicz, 2010; Sapper, et al., 2016). A great number of 

possible causes could be put forward to reconcile the in vitro literature on the inhibitory capacity 

of some teas and the lack of observable influence on in vivo glycaemic responses, but the most 

probable explanation is that one would have to consume an unreasonable quantity of tea to 

obtain significant effects. It has indeed been reported that the inhibitory effect of tea 

polyphenols and tea extracts can be lost, or may even enhance the catalytic activity of digestive 

amylases, below a certain polyphenol concentration (Tong, Zhu, Guo, Peng, & Zhou, 2018; Yang 

& Kong, 2016). 

Despite a 3.5% increase in the carbohydrate quantity (Table 11), the effect of lemon juice 

significantly delayed and lowered the peak blood glucose concentration, with a mean reduction 

of the AUCs of about 30%. Based on semi-dynamic in vitro digestion results with realistic gastric 

acidification kinetics, we have previously reported that human salivary α-amylase (HSA) can 

remain active for a long period within simulated gastric conditions, hydrolysing significant starch 

quantities from bread (≈ 50%) or pasta (≈ 15-20%) into oligosaccharides, before it is inactivated 

by the increasing acidity of the gastric content (Freitas & Le Feunteun, 2019; Freitas, Le 

Feunteun, Panouillé, & Souchon, 2018a). In our view, the contribution of HSA to starch digestion 

is thus more important than generally considered. The corollary is that acidic foods or meals 

should lower the contribution of HSA to starch digestion because of a premature acid-induced 

enzyme inactivation. This is indeed what we observed when studying in vitro digestions of starch 

rich foods paired with lemon juice: the hydrolysis of bread’s and pasta’s starch into 

oligosaccharides by HSA was totally prevented during the gastric phase (Freitas & Le Feunteun, 

2018a, unpublished).  According to our previous results and interpretation, the influence of 

lemon juice on the glycaemic response would therefore more likely results from its impact on 

the amylolytic activity of saliva at the gastric stage than from intestinal-related phenomena.  
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Assuming that the amylolytic activity of saliva was drastically reduced by the low pH of lemon 

juice (pH ≈ 2.3), as observed in vitro, the chime emptied from the stomach should contain a large 

quantity of non-hydrolysed starch, hence delaying the overall starch digestion and absorption 

process. This could provide more time for the blood glucose regulation metabolism to be 

effective, thereby lowering the blood glucose concentration peak and the overall glycaemic 

response. In other words, the reduction of about 30% we observed on the AUCs could essentially 

reflect the contribution of HSA to the glycaemic response to bread starch. As a matter of course, 

other mechanisms could be involved, in particular a delayed gastric emptying. This possibility 

will be investigated in a short future. 

As detailed in the introduction, lowering the pH of a starchy meal (either by adding an acidic 

component or lowering the pH of the food items) has been proven to effectively reduce the 

glycaemic response in numerous clinical trials (Bo, et al., 2017; Brighenti, et al., 1995; Carol S 

Johnston & Buller, 2005; Carol S Johnston, Kim, & Buller, 2004; Carol S Johnston, Steplewska, 

Long, Harris, & Ryals, 2010; Lappi, et al., 2010; Leeman, Östman, & Björck, 2005; Liatis, et al., 

2010; H. Liljeberg & Björck, 1996, 1998; H. G. Liljeberg, Lönner, & Björck, 1995; Maioli, et al., 

2008; Mitrou, et al., 2010; Elin Östman, Granfeldt, Persson, & Björck, 2005; Scazzina, Del Rio, 

Pellegrini, & Brighenti, 2009; Sugiyama, Tang, Wakaki, & Koyama, 2003). These studies 

investigated starch-rich meals in which the pH was lowered through vinegar supplementation, 

acid bread fermentation or combinations with pickled foods. Although none of them has tested 

a meal supplemented with lemon juice, the attenuation of postprandial glycaemia ranged from 

20–50%, and is therefore in good agreement with the 30 % we observed. As previously discussed 

(Freitas & Le Feunteun, 2018a), the work of these research teams also provides important hints 

that support our interpretation. For example, the pH of common breads was in the range of 5.6-

6, whereas that of acid breads eliciting a reduced glycaemic response was typically between 3.9 

and 4.6 (Lappi, et al., 2010; H. Liljeberg & Björck, 1998; H. G. Liljeberg, Lönner, & Björck, 1995; 

Maioli, et al., 2008). Additionally, the effect was lost when vinegar was (1) replaced with a 

neutral-pH equivalent (Brighenti, et al., 1995; Carol S Johnston, Steplewska, Long, Harris, & 

Ryals, 2010), (2) not consumed at the same time as the starch-rich food (Carol S Johnston, 

Steplewska, Long, Harris, & Ryals, 2010) or (3) when the starchy food  was substituted with 

dextrose (Carol S Johnston, Steplewska, Long, Harris, & Ryals, 2010). These cases reflect 

situations in which (1) HSA would not be inhibited, (2) any effect on its activity would be 

irrelevant due to the mismatched consumption times or (3) not applicable at all.  

With regards to the energy intake 3 hours after the test meal, we did not observe any effect of 

tea or lemon juice.  The aforementioned studies investigating the effect of low pH meals did not 
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study energy intake, but satiety perceptions were analysed through visual analogue scales in 

four of them. The results were inconclusive with 2 studies reporting increased satiety (Bo, et al., 

2017; Elin Östman, Granfeldt, Persson, & Björck, 2005) and 2 others finding no effect (H. Liljeberg 

& Björck, 1996; H. G. Liljeberg, Lönner, & Björck, 1995). A possible explanation is that the extent 

of the decrease of the glycaemic response was not of sufficient. For instance, the European Food 

Safety Agency requires a GI reduction of at least 45 units for an increased satiety claim for 

carbohydrates with a low glycaemic index (EFSA, 2010). As previously reported, it is also possible 

that lowering the GI per se is not  a good indicator of an increased satiety, and that the effects 

observed in other studies are due to other factors (Thomas MS Wolever, Leung, Vuksan, & 

Jenkins, 2009). 
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CONCLUSION  

We have investigated the blood glucose response and energy intake 

following the consumption of equal portions of bread with either water, 

tea or lemon juice at breakfast. No effect was observed on energy 

intake. The glycaemic response was similar between the water and tea 

meals, but the peak blood glucose concentration was significantly lower 

and delayed in the presence of lemon juice, leading to a 30% reduction 

of the area under the glycaemic curve. Our results confirm that lowering 

the pH of a starch-rich meal can attenuate the glycaemic response. 

According to some of our previous works, it is likely that this commonly 

observed phenomenon can be explained, at least partly, by an early 

acid-induced inhibition of the amylolytic activity of saliva.  Moreover, 

because of the semi-controlled nature of this study, our results strongly 

suggest that pairing an acid drink with a starchy meal could be a simple 

and effective strategy to reduce the glycaemic response to starch-rich 

foods in everyday-life meals. 
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KEY MESSAGES  

 

 

 We investigated the impact of pairing bread with black tea or lemon juice on 

postprandial plasma glucose and energy intake in healthy humans 

 The glycaemic response was similar between the water and tea meals, but was reduced 

in the presence of lemon juice.  

 The peak blood glucose concentration was significantly lowered by about 30% (P < 0.05) 

with lemon juice compared to water.  

 The peak blood glucose concentration was also reached significantly later (78 vs. 41 min, 

P < 0.01) with lemon juice. 

 This could be a simple and effective strategy to reduce the glycaemic response to starch-

rich foods in everyday-life meals. 
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REDUCTION OF THE GLYCAEMIC RESPONSE TO 

BREAD IN THE PRESENCE OF LEMON JUICE:  MRI  

INVESTIGATIONS ON GASTRIC PROCESSING AND 

EMPTYING   
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Informal presentation 

We have compared the postprandial glycaemic response to equivalent 

portions of bread consumed with either water, lemon juice or tea, and 

have observed that lemon juice significantly attenuated it. Our results 

were similar to those of numerous other clinical studies investigating 

the effect of vinegar, sourdough bread fermentation or pickled 

vegetables consumed with starch-rich foods.  It has been reported that 

a delayed gastric emptying could be part of the explanation for these 

observations, but despite several investigations, this candidate 

mechanism remains controversial.  

I S  T H E  L E M O N  J U I C E  E F F E C T  I N D U C E D  B Y  A  D E L A Y E D  O R  

S L O W E R  G A S T R I C  E M P T Y I N G ?  O R  C A N  I T  B E  M O R E  L I K E L Y  

E X P L A I N E D  B Y  A  S L O W E R  S T A R C H  D I G E S T I O N  R A T E  W I T H I N  

T H E  S T O M A C H ?   

 

By the way, about that question in the state of the art… Perhaps that 

was not the right choice of words: 

H O W  F A S C I N A T I N G  I S  I T  T O  T H I N K  T H A T  W E  C A N  A C T U A L L Y  

S E E  B E Y O N D  S I G H T ?  
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A B S T R A C T  

 

We have observed that lemon juice significantly attenuates the glycaemic response to bread. 

Our results are in line with numerous clinical studies reporting that the postprandial glycaemic 

response to starch-rich meals can be reduced by 20-50% by lowering the pH of a meal (through 

supplementation with vinegar, acid bread fermentation or combination with pickled foods). 

Despite extensive reviews on this subject, the underlying mechanism remains to be clarified. 

Based on our previous in vitro findings, we hypothesized that such effects could, at least in part, 

be due to a premature acid-induced inhibition of salivary amylase. However, a potential delay 

of gastric emptying could also be part of the explanation. 

The main objective of the present work was therefore to investigate whether the gastric 

emptying patterns remain, or not, the same when a bread meal is paired with water, tea, and 

lemon juice.  

Three meals, containing portions of bread and 250 mL of either water, tea or lemon juice were 

included in this study. All meals were supplemented with 20 peas, which the subjects were asked 

to swallow at the end (with half of the beverage provided) without chewing. We have studied 

the gastric phase of digestion by MRI. To ensure comparability with previous findings we have 

also included measurements of blood glucose concentrations and assessed satiety perceptions.  

Overall, the blood glucose measurements were comparable to those in our previous study, and 

no effect was observed on satiety perceptions. The meals containing water and tea produced 

similar results for all the studied parameters. The postprandial volume of gastric contents 30 

min after the start of the meal was about 50% higher when bread was consumed with lemon 

juice compared with the water meal (454.0 ± 18.6 vs. 298.4 ± 19.5 mL, x ̄± SEM). The overall 

gastric emptying rate was also about 50% faster for the lemon juice meal (1.8 ± 0.2 for water vs. 

2.7 ± 0.1 mL/min for lemon juice, x ̄± SEM). Both of these differences were statistically significant 

with P < 0.00001 and P < 0.01, respectively.  

The reduction of the glycaemic response when the pH of a meal is lowered is more likely to 

derive from an interruption of starch hydrolysis during the gastric phase of digestion (due to 

premature inhibition of salivary α-amylase) than from a lower gastric emptying rate. 
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1. INTRODUCTION  

The present study corresponds to the second part of a 2-branch clinical study. In the first part of 

this work, we have investigated the impact of pairing bread with water, tea or lemon juice on 

blood glucose response and energy intake. We observed no effect of the drink on energy intake, 

and the glycaemic response was similar between the water and tea meals. However, the peak 

blood glucose concentration was significantly lower and reached later in the presence of lemon 

juice, leading to a 30% reduction of the area under the glycaemic curve. Numerous studies have 

already reported similar findings, with reductions of the postprandial glycaemic response of 20-

50% obtained by lowering the pH of starch-rich meals through vinegar supplementation, acid 

bread fermentation or combination with pickled foods. The literature on the underlying causes 

of this effect is extensive, but there is no clear consensus yet (Gobbetti, Rizzello, Di Cagno, & De 

Angelis, 2014; Lim, Henry, & Haldar, 2016; Petsiou, Mitrou, Raptis, & Dimitriadis, 2014; 

Poutanen, Flander, & Katina, 2009). As gastric emptying rates influence the appearance of 

nutrients within the blood stream, a reduced and/or delayed gastric emptying with acidic meals 

has been identified as a good candidate explanation (H. Liljeberg & Björck, 1998). However, 

other researchers who investigated this possibility, reached the conclusion that the effect of 

native vinegar on blood glucose is to be explained by a mechanism related to acidity but not to 

gastric emptying (Brighenti, et al., 1995). In our previous works (Freitas & Le Feunteun, 2018a, 

unpublished), we brought light to the idea that such effects could, at least in part, be due to a 

premature acid-induced inhibition of salivary amylase. Using magnetic resonance imaging (MRI), 

the main objective of the present work was therefore to determine whether the gastric 

emptying patterns remain the same, or not, when a bread meal is paired with water, tea, and 

lemon juice. The blood glucose response and satiety perceptions were also measured at 

different intervals to confirm that previously observed effects were preserved during the MRI 

investigations. 
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2. SUBJECTS AND METHODS  

2.1. PARTICIPANTS  
Ten male volunteers, participated in the study. The number of subjects was determined by using 

power calculations on the basis of previous work (Deane, et al., 2010; Feinle, Kunz, Boesiger, 

Fried, & Schwizer, 1999; Kwiatek, et al., 2009; Marciani, Gowland, Spiller, et al., 2001; Marciani, 

et al., 2013). We calculated that a sample size of 7 participants would allow us to detect a 

minimum difference of 15 min in the half-gastric emptying time with α = 0.05 and β = 0.10, 

assuming a standard deviation (SD) of 7 min. We increased the sample size to 10 to allow for a 

25% dropout rate.  

Because insulin sensitivity (Pulido & Salazar, 1999), appetite control and eating behaviour (Dye 

& Blundell, 1997) can vary during the menstrual cycle in healthy women, only men were 

recruited. Recruitment was initiated through email and poster advertisements. Interested 

subjects were asked to answer an online pre-screening questionnaire for preliminary 

assessment of compliance of the following criteria: age, body mass index (BMI), gender, weight 

stability, eating habits, medication, food allergies, smoking history, and previous participation in 

a clinical study < 6 months. Respondents whose answers were in compliance with the eligibility 

criteria were invited to an information meeting where they received oral and written 

information about the study. Individuals who attended this meeting and expressed interest in 

trial participation were scheduled for a medical appointment, at a later date. During the medical 

appointment they could clarify any eventual questions arising from the information session and 

sign the consent form, and their physical health and eligibility were confirmed according to the 

pre-defined inclusion and exclusion criteria (Table 13). 

Subjects were not aware of the real aim of the study as this could affect the outcome of the 

study. They were informed that the aim was to understand better the digestion of starch-rich 

meals when ingested in combination with commonly consumed beverages. 

The study protocol was approved by the French “Ethics Committee Lyon Sud-Est IV” and the 

study was registered in the Clinical Trial Registry (Clinicaltrials.gov; NCT03265392). All 

volunteers gave their written informed consent after being provided with oral and written 

information about the aims and protocol of the study. 

This study was one part of a 2-branch investigation. The other part of the study was conducted 

with the same test meals but with different participants and different measurements were 

performed. The participant characteristics, study details and results presented in this publication 

are therefore specific to this part of the study. 
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Table 13 – Selection criteria  

Inclusion Criteria: 
 To be overall healthy 

 To be between 18 and 60 years old 

 BMI between 18 and 25 (lean) 

 No eating disorders 

 No major weight changes (> 3kg in previous 3 months) 

 Structured eating habits (3 main meals/day, every day) 

 Not using corticoid drugs, or antidepressives known to influence food consumption, 
appetite and/or mood. 

 Not using medication known to influence glucose tolerance: acetylsalicylic acid or 
thyroxin, vitamin or mineral-based dietary supplements, and drugs to control 
hypertension or osteoporosis are acceptable 

 No allergies to the foods in the test-meals and ad libitum meal 

 No abusive alcohol consumption 

 No intensive exercising habits 

 No participation in a clinical study within the previous 6 months 

 To enjoy the foods in the test-meals and ad libitum meals 

 To be affiliated to a social security system 

 To be available to participate in study sessions 

 To have read and signed the Informed consent form  

 To be a male  

 Ability to be in an MRI scan without moving  

 Ability to hold breath for 25s (a requirement for certain MRI exams) 
 

Non-inclusion criteria: 
 History of diabetes, use of antihyperglycemic drugs or insulin to treat diabetes or 

associated conditions 

 Major medical interventions or surgeries requiring hospitalization within the previous 3 
months 

 Any medical condition that affects digestion and/or nutrient absorption 

 Use of steroids, protease inhibitors and/or antipsychotic drugs 

 Use of anticoagulation drugs 

 To be participating in another clinical trial, or to be within the exclusion period of a 
previous clinical trial 

 Having started or stopped smoking within the previous 3 months 

 Any contraindications to an MRI exam: claustrophobia, tattoos, presence of 
ferromagnetic elements, having a pacemaker, metallic prosthesis, cochlear implants, 
vascular clips, insulin pumps 

 Any condition or disease that might affect the results of MRI exams. 
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2.2. STUDY  
The study compared the effects of 3 different meals, each of which consisting of sandwich bread 

paired with a different beverage, on gastric emptying, blood glucose and appetite perceptions.  

2.2.1.  TES T MEA LS  

Three meals were studied: Water, Tea and Lemon juice. Each test meal consisted of 4 slices (100 

g) of crustless, wheat sandwich bread (“Harry’s 100% mie Nature”, Barilla France S.A.S, 

Boulogne-Billancourt, France) with two 125 mL glasses of either spring water (Mont Roucous, 

Lacaune-Les-Bains, France), tea or lemon juice. The water meal was the reference meal. Tea 

(Lipton Yellow label black tea, Unilever France, Rueil Malmaison, France) was freshly brewed (1 

% w/v) with spring water (100 °C) and was infused for 15 min before the tea bag was removed. 

Lemon juice was prepared by mixing 125 mL of commercial lemon juice (Lazy lemon, Polenghi, 

Milan, Italy) with 125 mL of spring water.  

All test meals were supplemented with 20 frozen peas (Petits pois extra fins surgelés, Auchan 

Production, Villeneuve-d'Ascq, France), which were intended to be used as tracers of the chime 

homogenization. The energy and nutrient content of the meals (estimated from the products’ 

labels) is presented in Table 14.  

 

 

 

 

 

 

 

 

 

2.2.2.  STUDY DES IGN  

A randomized crossover design was used. Subjects went to a first medical appointment for 

examination of complete health history and overall health status, and confirm absence of MRI 

contraindications. All subjects participated in 3 study sessions, separated by ≥ 2 weeks, in which 

they received the 3 test meals for breakfast in a random sequence. As per their request, two 

volunteers had 2 sessions scheduled within a 2 week period due to availability constraints. The 

study visits took place at the Service Hospitalier Frédéric Joliot (Orsay, France). 

 

Table 14 - Energy and nutrient content of the meals.  Each meal 
contained equal amounts of white-wheat-bread, 20 peas and 
250 mL of either water, tea or lemon juice (lemon juice). 

 
Water Tea 

lemon 
juice 

Energy content (kcal) 265.4 265.4 299.1 

Energy density (kcal/g) 0.75 0.75 0.84 

Energy content (kJ) 1110 1110 1251 

Total fat (g) 3.9 3.9 3.9 

Total carbohydrate (g) 48.6 48.6 51.1 

 Sugar (g)  6.2 6.2 8.7 

Fiber (g)  2.3 2.3 2.3 

Total protein (g) 7.8 7.8 8.3 
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2.2.3.  STUDY PRO TO CO L  

An overview of the study protocol is provided in Figure 61. Participants were asked to refrain 

from excessive alcohol consumption and any unusual exercise and activity the night before the 

study sessions and throughout the study period. On each study day, each participant was 

scheduled to arrive at the study facilities at 07:30 am after a 10-h overnight fast. Compliance 

with pre-session requirements was verified and participants were asked to answer an MRI safety 

form, and a Visual Analogue Scale (VAS) to evaluate appetite perceptions.  A baseline capillary 

blood glucose concentration measurement was performed twice and followed by a first MRI 

exam initiated at 08:30 am. 

Volunteers were asked to eat the bread and drink 1 glass of the beverage first, and to swallow 

the peas at the end, without chewing, with the second glass of beverage. Meals were consumed 

between 08:45 am and 09:00 am, and subjects were instructed to eat at a steady pace, and finish 

the meal in 12 to 15 min. For 3 hours after the start of the breakfast, MRI exams, blood glucose 

measurements and Visual analog scales (VAS) evaluation of hunger and satiety were completed 

at pre-defined time-points, as presented in Figure 61.  

  

Figure 61- Overview of the study protocol.  
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2.3. DATA ACQUISITION AND MEASUREMENTS  

2.3.1.  MRI  ACQU IS IT I ON  

All MRI acquisitions were performed in a clinical, whole-body 1.5 T system 

(Achieva, Philips Healthcare, Best, The Netherlands) using a 32-channel SENSE 

torso/cardiac coil (Phillips Healthcare, Best, The Netherlands). Participants were also equipped 

with earplugs to reduce noise. A respiratory sensor (Phillips Healthcare, Best, The Netherlands) 

was secured under the top antenna, on the epigastric region, with a Velcro strap. This sensor, 

connected to a wireless transmitter (Phillips Healthcare, Best, The Netherlands), was used to 

monitor respiratory movements. All subjects were examined in the right decubitus position, 

feet-in-first, in order to minimize the differences with the seated position (Treier, et al., 2006). 

Each MRI exam was composed of a series of 6 acquisitions, all covering the complete gastric 

region (volume scans): 1 survey, 1 anatomic scan (25 s, breath-hold), 3 motility scans (22 s, 

breath hold) and another motility scan (1 min 25 s, free breathing). An overview of the scans 

performed within each MRI exam is presented in Figure 62, and the MRI parameters applied in 

both types of scan are presented in Table 9.  

 

 

 The first MRI exam was conducted before meal consumption, and 6 others were performed 30, 

45, 75, 105, 135, and 165 min after the start of the meal (Figure 62). The volunteers exited the 

MRI after each exam (except between the 30 and 45 min exams) for blood glucose 

Table 15- Selected parameters of the MRI sequences used for imaging of the gastric 
region. 

Imaging parameters Anatomic volume scan Motility volume scan – 
breath hold; motility volume 
scan – free breathing 

Weighing T2 T1 

Repetition time  345 ms (single-shot 2D mode) 2.8 ms 

Echo time  60 ms 0.89 ms 

Number of slices/orientation 72/axial 3D 

Matrix 192 x 148 x 1 (RL x AP x FH)  108 x 86  x 36 (RL x AP x FH) 

Voxel size 1.7 x 1.7 x 3 mm3 ≈ 8.6 mL 3.0 x 3.0 x 6.0 mm3 ≈ 54 mL 

Scan time 24.8 s 3.5 s 

Flip angle 90 ° 5 ° 

Figure 62- Magnetic resonance imaging. Sequence of the scans performed during each exam.  
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measurements and/or answering a VAS to evaluate appetite perceptions, after which they had 

a 15-20 min break. The coils were removed from their bodies for at least 2 of the breaks, unless 

the participant preferred to keep them. Participants were free to stand and take short walks 

within the facilities of the study centre but were asked to refrain from smoking, eating, drinking 

or doing any activities related to food or exercise. 

 

A N A T O M I C  V O L U M E  S C A N  –  B R E A T H  H O L D .  A set of contiguous 2D slices of the 

abdominal region of the subject, with a high spatial resolution, was acquired to enable a 3D 

volume reconstruction of the stomach. Echo-planar images were obtained using a single-shot 

turbo spin echo (TSE) sequence (effective echo time of 60 ms, acquisition bandwidth of 

702 Hz/pixel). Parallel imaging sensitivity encoding (SENSE) with an acceleration factor of 2 and 

half-scanning with a factor of 0.71 in the fold-over (anterioe-posterior) direction were used to 

increase the slice acquisition rate. Interleaved acquisition mode was used to acquire a total of 

72 axial slices covering a field of view of 320 x 253 x 216 mm3 (right- left x anterior-posterior x 

feet-head), with no gap, within a single 25 s breath hold. The acquisition matrix size was 192 x 

148 thus a native in-plane resolution (pixel size) of 1.67 x 1.71 mm2 and slice thickness of 3 mm. 

Following interpolation, reconstructed voxel size was 0.83 x 0.83 x 3 mm3. 

 

M O T I L I T Y  V O L U M E  S C A N  –  B R E A T H  H O L D .  A dynamic series of 6 consecutive 3D images 

of the abdominal region of the subject, with a high temporal resolution, was acquired to assess 

gastric motility. A multi-shot turbo field echo (TFE) fast imaging mode was used (TFE factor of 

18, effective echo time of 0.89 ms, acquisition bandwidth of 500 Hz/pixel), along with SENSE 

acceleration factors of 2 x 2 in the anterior-posterior and feet-head directions 2 respectively. 

Each 3D set covered a field of view of 320 x 261 x 216 mm3 (right-left x anterior-posterior x feet-

head), with no gap. Each 3D image was scanned in 3.5 s, leading to a total duration of 22 s for 

the whole dynamic series, within a single breath hold. The matrix size was 108 x 86 x 36 and the 

native voxel size was of 2.96 x 3.03 x 6 mm3. Following interpolation, reconstructed voxel size 

was 1.4 x 1.4 x 3.0 mm3. 

 

M O T I L I T Y  V O L U M E  S C A N  –  F R E E  B R E A T H I N G .  The only difference with the Motility 

volume scan – breath hold, is that 24 consecutive 3D images were acquired instead of 6, leading 

to a total duration of 1 min and 25.3 s (free breathing). 



Chapter 2 - Reduction of the glycaemic response in the presence of lemon juice: MRI investigations 

183 
 

 

D A T A  A N A L Y S I S  Anatomic volume scans were used to determine the volume of the gastric 

contents, as illustrated in Figure 63. MATLAB (MathWorks, Massachusetts, United States) was 

used to manually define regions of interest (ROI) around the gastric contents in each image of a 

multislice set. The area of each ROI was then multiplied by the slice thickness and the results of 

all slices were summed to determine the total volume of gastric contents. 

 

To avoid unwanted biases during data treatment, the correspondence between the MRI exams 

of each study session and the experimental conditions (that is, the test meal consumed by the 

volunteer on that day) was established only after determination of all the gastric volumes.  

Within the above described ROIs, highly contrasted zones could often be observed, with voxel 

intensities varying by a factor 10 or more, as illustrated in Figure 64. According to the round 

shape of these dark zones, and because bread is a rather dry food filled of air, these areas of low 

MRI signal (T2-weigthed) were attributed to bread boli that were still poorly filled with water by 

the beverage, saliva and/or gastric secretions. Although we did not use any reference material 

that would have enabled us to correct the MRI signal for inter-exam or daily signal variations, 

we performed a preliminary analysis of these contrasted zones using a relatively homogeneous 

Figure 64 - Example of MRI extracted from an anatomic volume scan showing variations in 
pixel intensity within the stomach.  

Figure 63 - Determination of the volume of gastric contents using anatomic volume scans.  
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fraction of the raw MRI data. To do so, signal intensity within the ROIs was segmented into two 

using a threshold of 400. This threshold was defined by a visual appreciation of segmented 

images, and it corresponds, approximately, to the mode of the ROI’s intensity histogram 

distributions 30 min after the start of the meal. For the sake of simplicity, the so-recovered dark 

and white zones will be further referred to as the solid and liquid phases of the chime. A total of 

19 over the 30 study sessions were analysed because the others had abnormally low average 

intensities, approximately 100 times lower, we did not have time to solve this issue yet, but this 

will be done in the near future.  

The motility volume scans acquired under breath hold can later be used to study the 

homogenization of the chime in more detail. For the purpose of the current work, only a 

qualitative description of our main observations will be provided. The motility volume scans 

acquired under free breathing conditions turned out to be extremely blurry. Therefore, these 

data have not been analysed so far. 

 

2.3.2.  BLOOD GLU COSE  

Capillary blood samples obtained by finger prick were used to measure plasma glucose 

concentration with a glucose meter (Accu-Chek Performa Blood glucose Meter, Roche Diabetes 

Care France, Meylan, France). Two consecutive measurements were performed in the fasted 

state to establish a baseline, and single measurements were then repeated 15, 55, 85, 145 and 

180 min after the start of the test meal. 

Time-response curves were constructed and the area under the curve (AUC) (mmol · min/L) was 

calculated using the trapezoidal rule with fasting values as baseline. Negative areas (below the 

fasting baseline value) were ignored. Peak values (mmol/L) and time-to-peak (min) were also 

determined. 

2.3.3.  APPET I TE  PE RCE PT ION S  

Perceptions of hunger, satiety, fullness and prospective food consumption were quantified with 

validated VAS questionnaires (Flint, Raben, Blundell, & Astrup, 2000). Thirst and nausea were 

also assessed. VAS were composed of 100-mm lines with descriptors anchored at each end 

describing the extremes (e.g. “How hungry are you? Not at all/Extremely”). Participants rated 

each characteristic by placing a mark across each line on paper, and they were not able to refer 

to their previous ratings when completing the VAS. Analysis of the VAS was conducted by 

measuring the horizontal distance from the left-hand end of the line to the mark indicated by 

the participant. 
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2.3.4.  STA TI ST IC A L A NA LYS IS  

All statistical analyses were conducted using the Statistics Toolbox of Excel (Microsoft 

Corporation, Washington, United States). Single factor ANOVAs were performed to evaluate the 

effect of the test meals on the volume of gastric contents, blood glucose, and appetite 

perceptions at each time point. Whenever significant meal x volume of gastric contents or meal 

x blood glucose effects were detected, paired sample t-test comparison was performed to 

identify the test meals that elicited the significantly different values. Statistically significant 

effects were accepted at the 95% level.  
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3. RESULTS  

 

3.1. PARTICIPANTS ’  CHARACTERISTICS  
Participants’ mean age was 26.8 ± 6.7 (range 18 - 47). All participants were healthy, with no 

history of diabetes and no medical condition or use of medications known to affect energy 

intake, appetite, gastrointestinal function or blood glucose, as confirmed by means of a full 

medical history and examination. All subjects had normal fasting glucose (4.9 ± 0.1 mmol/L; x ̄± 

SEM) and normal body mass indexes (20.7 ± 18.3 kg/m2; x ̄± SD). 

 

3.2. GASTRIC CONTENTS –  QUALITAT IVE ANALYSIS   
Slice-images extracted from anatomic scans of different participants (each also a different meal) 

are presented in Figure 65.  All gastric contents (contoured in orange) provided enough contrast 

without the need for contrast enhancers. Because the subjects were lying down in the right 

decubitus position, the chime was on their right side and the air was confined into “pockets” 

above, on their left side. Therefore, on the images, the chime appears on the left and the air on 

the right side. The contrast was similar for all meals, so that that it was not possible to distinguish 

the meals during the image analysis. It is however possible to discern some boli from the 

surrounding liquid phase of the chime. These appear darker probably because of a lower 

hydration level or a shorter T2. They can be distinguished individually, and either appeared 

relatively scattered (Figure 65A), or in the form of agglomerates (Figure 65B and C) that tended 

to fall upon gravity towards the bottom of the stomach (right-side of the stomach, but on left 

side in the images).  
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Figure 65 - Examples of magnetic resonance imaging from the abdominal region of healthy adults who 
ingested equal amounts of white-wheat-bread, 20 peas and 250 mL of either of water (A), lemon juice 
(B) or tea (C). Subjects were lying in right decubitus and the ima ges were extracted from scans conducted 
a 30 to 45 min after the time the meal was initiated. The meal/chime appears left in the stomach in 
different levels of grey and the air appears dark at the right side. Boli are visible within the chime, they 
appear darker than the surrounding phase scattered or in agglomerates. The thick blue arrow on the top 
left indicates de direction of gravity.  
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By individually delineating the chime and the air within the stomach, it was also possible to 

obtain 3D reconstructions which are illustrative of the relative position and proportion of each 

component (as presented in Figure 66).  As intended, air remained confined to the upper gastric 

regions throughout the MRI monitoring. Additionally, by following the size of the blue and red 

areas (corresponding to the chime and air) these reconstructions also indicate that the ratio of 

air to chime within the stomach increased as the digestion progressed. 

 

 

3.2.1.  V ISU AL  A NA LY SI S  OF  T H E  C HI ME  

 

I N T R A G A S T R I C  C H I M E  D I S T R I B U T I O N .  As it can be observed in Figure 65 and Figure 67, 

intragastric chime distribution was not homogeneous. Regardless of the type of meal consumed 

(Figure 65) two phases were distinguished: (1) a more solid phase composed of single boli or boli 

agglomerates and (2) a more liquid phase containing the beverages and gastric secretions and 

probably particles of bread. Boli agglomerates concentrated near the right-side of the stomach 

because of the positioning of the subjects, but single boli appeared somewhat scattered. As 

digestion proceeded, single boli appeared to be mostly unified into larger agglomerates that 

seemed to have increasingly lighter grey shades (Figure 67). By the end of the study sessions, 

the total volume of the stomach had been reduced and contained mostly secretions (that appear 

in white).  

M I X I N G .  Examples of the images obtained with the motility volume scans are presented in 

Figure 68. These scans allowed for a good contrast of the peas in the meal, which appear white 

within the grey chime. They also allowed to observe, in few cases, the gastric contractions, as 

Time (min)    30 105 165 

Figure 66 - Examples of a 3D reconstruction of the stomach from magnetic resonance 
imaging exams performed on the abdominal region of a healthy adult in the postprandial  
state. From left to right, images correspond to examinations conducted 30, 105 and 165 
minutes after the meal started (or 15 to 20 min after it ended).  Blue and red colors 
illustrates the position and relative volumes of chime and air, correspondingly.  
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previously described by others (Feinle, Kunz, Boesiger, Fried, & Schwizer, 1999). The data 

presented in Figure 68 is mostly aimed at qualitatively illustrating the mixing of peas, consumed 

at the very end of the meal, as a function of digestion time. At 30 min (i.e. 15-20 min after the 

meal ended), most peas seemed to be concentrated in the lower-mid region of the stomach. In 

most cases, they were observed in the bottom half of the stomach according to the position of 

the subject (in Figure 68, this is indicated at 30 and 75 min by the white arrows pointing to peas 

discernable on the left side and middle of the stomach). Because the peas were consumed last, 

one could indeed have expected to see most peas confined to the upper part of the stomach, 

especially at 30 min. Our data therefore show that a layering effect did not occurred. Instead, it 

suggests that that the mixing of peas with the bread chime was rather efficient. We may also 

notice that some peas retained their shape until the late stages of the digestive process, 

preserving also their contrast properties (Figure 68, 135 and 165 min).  

  

Figure 67 - Examples of magnetic resonance imaging of the gastric region of one healthy adult who 
ingested 100 g of white-wheat-bread, 20 peas and 250 mL of water. The images correspond to 
axial slices in the same anatomical region were extracted from anatomic volume scans performed 
30, 45, 75, 105, 135 and 165 min after the time the meal was initiated. The chime appears left in 
the stomach containing visible boli or boli agglomerates that appear  darker than the surrounding 
chime and the air appears black at the right side. Subject was lying in right decubitus . Blue arrow 
on the top left indicates de direction of gravity.  
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165 min           

135 min           

75 min           

30 min           

Figure 68 - Examples of magnetic resonance imaging of one healthy adult who ingested 100 g of 
white-wheat-bread, 20 peas and 250 mL of water. The images were extracted from motility volume 
scans  performed 30, 75, 135 and 165 min after the meal. Slices shown on the 2 left colums 
correspond to the lower-mid region of the stomach, those in the right colum correspond to the mid -
upper part of the stomach. The chime appears in shades of grey with white dots that correspond t o 
peas and is visible in all slices. The air appears in black and is visible on the right side of the stomach 
in the slices presented on the right column.  White arrowns (↓) point towards regions were peas are 
discearneable. The thick blue arrow on the top left indicates de direction of gravity.   
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3.3. GASTRIC EMPTYING AND BLOOD GLUCOSE RESPON SES  
All meals were consumed in a similar amount of time. Consumption times (x ̄± SEM) for the water 

tea and lemon juice meals were 12 ± 1, 13 ± 1 and 13 ± 1 min, respectively. 

3.3.1.  QUA LI T AT IVE  ANA LYS IS  OF  IND IV IDU AL  RESU LT S  

The time course of the volume of gastric contents and blood glucose response for each 

participant is presented in Figure 69.  

 

  

Figure 69- Case-by-case results. Variation of the volume of gastric contents (solid lines) and glucose 
response (dotted lines)  for each participant after consuming equal amounts of starch from a white-
wheat-bread consumed with either water (), tea () or lemon juice (). 
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A summary of the trends observed for the lemon juice and tea meals in comparison with the 

water meal is presented in Figure 70.  The numbers next to each symbol indicate how many 

subjects showed an increased (Upward arrows), similar (almost equal symbol), or decreased 

(downward arrows) gastric volume or glucose peak, in comparison with the water meal’s results. 

Interestingly, during the early postprandial phase (up to 45 min), the volume of the gastric 

contents following the lemon juice meal was higher than for the water meal with all subjects. As 

the digestion progressed, this initial difference in gastric volumes tended to vanish, with 7 

participants showing gastric volumes similar to those observed with the water meal at 165 min. 

The evolution of the gastric volumes following the tea meal was very similar to those observed 

for the water meal for most subjects, as previously illustrated in Figure 69.   

The highest glucose concentration was observed at approximately t= 60 min for after all meals. 

At the individual level, the highest glycaemia was alternatively obtained with the water (3 

subjects), tea (4) or lemon juice (3) meals at this time-point (Figure 69). Thus, the consistently 

higher volume of gastric contents observed during the first 45 min with lemon juice did not seem 

to be directly correlated to these blood glucose concentrations.  

  

Figure 70 - Summary of the trends observed in the case-by-case analysis of the volume of 
gastric contents and glucose peak after consuming equal amounts of starch from a white -
wheat-bread with either tea or lemon juice compared to water. “Upward arrows”, 
“downward arrows” and the “almost equal to” symbols indicate a higher, lower or similar 
result for a specific parameter (volume of gastric contents or peak blood glucose 
concentration) of the tea (green) or lemon juice (yellow) meal s compared to the 
corresponding parameter for the water meal at a given time. The numbers next to each 
symbol indicate for how many subjects that was observed.  
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3.3.2.  QUAN TI T AT IVE  ANA LYS IS  OF  ME AN RESU LTS  

 

V O L U M E S  O F  T H E  G A S T R I C  C O N T E N T .  The volume of beverage was 250 mL. The volume 

of the bread serving (100g) was about 452 mL however, it is not easy to estimate the final volume 

that this food would have represented in the chime. About 3/4 of its weight is air, but because 

of its porous structure of it is compressed during mastication, and it also absorbs saliva (0.2-0.4 

g /g of bread, so 20-40g in total). Globally it seems reasonable to expect its final volume to be 

between 100-150 mL, what would lead to a final meal volume between 350 – 400 mL. The time-

course of the average gastric volume for each meal is presented in Figure 71. Overall, they were 

significantly higher with the L J meal until 135 min, and were not statistically different between 

the tea and water meals.  

Figure 71- Postprandial volume of gastric contents. Mean (±SEM) volumes after consumption 
of three meals with equal volume containing equal amounts of starch f rom a white-wheat-
bread and of water (), tea () or lemon juice ().  The * symbol indicates significant 
differences (ANOVA followed by paired t -test) between the meal containing lemon juice and 
the other two meals. n = 10 healthy adults.  

The postprandial volume of gastric contents 30 min after the start of the meal was about 50 % 

higher when bread was consumed with lemon juice compared with the water meal (454.0 ± 18.6 

vs. 298.4 ± 19.5 mL, x ̄± SEM). The overall gastric emptying rate (as estimated from the changes 

in the volume of gastric contents at t=30 and t=165) was about 50 % faster for the lemon juice 

meal (1.8 ± 0.2 for water vs. 2.7 ± 0.1 mL/min for lemon juice, x ̄± SEM). Both of these differences 

were statistically significant with P < 0.00001 and P < 0.01, respectively. Using the gastric volume 

measured at 30 min as reference, the half-gastric emptying time was similar for all meals (78 to 

85 min). This information is summarized in Table 16. 
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V O L U M E S  O F  T H E  S O L I D  A N D  L I Q U I D  P H A S E S .  The results of the preliminary 

assessment of the volumes of the solid and liquid phases within the stomach are presented in 

Figure 72. The volumes of the solid phase were very similar for the three test meals throughout 

digestion. For water and tea, the liquid phase appears to have behaved similarly, and it between 

30-45 min there was a reduction in volume. For the lemon juice meal however, the volume of 

the liquid phase tended to be much higher than in the other meals throughout the monitored 

period. 

 

B L O O D  G L U C O S E  R E S P O N S E S .  Postprandial blood glucose responses elicited by the water, 

tea and lemon juice meals are presented in Figure 73. There were no significant differences in 

baseline blood glucose concentrations between the three test-meals (P = 0.79). Lemon juice 

tended to elicit a lower response but statistical significance was only found in comparison with 

the tea meal at t = 55 min (P = 0.02) (between lemon juice and water P = 0.12). No significant 

Figure 72- Estimated postprandial volume of the solid (full lines) and liquid (dashed lines) 
phases. Mean (±SEM, smaller than symbol size for the solid phase) volumes after consumption 
of three meals with equal volume containing equal amounts of starch from a white -wheat-
bread and of water (), tea () or lemon juice (). 

Solid 

Liquid 



Chapter 2 - Reduction of the glycaemic response in the presence of lemon juice: MRI investigations 

195 
 

differences were found between water and tea.  Mean AUC under the blood glucose curve 

(range 0-85 min and 0-165 min), and the equivalent changes as percentage of the corresponding 

results obtained with the water meal are presented in Table 16. 

 

No statistically significant differences were found between water and tea. The AUC for the 

lemon juice meal was significantly lower between 0 and 85 min (P = 0.03 with water, and < 0.01 

with tea) with a reduction of about 40%. The AUC between 0 and 165 min tended to be 30% 

lower for the lemon juice meal but this was not statistically significant (P = 0.14 ). We must add 

that the peak value and time-to-peak for the glycaemic response were not analysed because of 

a lack of measurements in the adequate time-windows. Indeed, we have previously shown, 

using the same test-meals, that the blood glucose peak is reached around 30-45 min for both 

water and tea (Freitas, et al., unpublished), i.e. a period during which we did no analyses of the 

glycaemia in the present study.  

  

Figure 73 - Postprandial blood glucose responses. Mean (±SEM) incremental changes (Δ) in 
glucose concentrations in response to equal amounts of starch from a white -wheat-bread 
consumed with water (), tea () or lemon juice ().  The # symbol indicates significant 
differences were found (ANOVA followed by paired t -test) statistically significant difference 
between lemon juice and tea (P = 0.02). n = 10 healthy adults  
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Table 16 - Gastric emptying and glucose responses for the water, tea and lemon juice meals. 
Initial volume of gastric contents, estimated gastric emptying rate (up to blood glucose peak 
and total) and half emptying time (T50%), postprandial areas under the curve ( AUC) from 0 to 
85 min and 0 to 165 min, for the three studied meals1  

 

3.4. APPETITE PERCEPTIONS  
The results of the participants’ ratings for hunger, satiety, fullness, prospective food 

consumption, thirst and nausea are presented in Figure 74. There were no differences in 

baseline ratings. There was also no statistically significant effect of the three meals at any given 

time-point. Hunger, thirst and prospective food consumption scores lowered immediately after 

the meal, increasing steadily afterwards. The opposite was observed with the satiety and 

fullness ratings, which increased immediately after the meal and progressively declined after. 

As it can be observed in Figure 75, the relationship between hunger, satiety, fullness and 

prospective food consumption and the volume of gastric contents tended to be linear.  

  

  Water Tea Lemon juice 

Volume of gastric 
contents at T=30 min  

mL 298  ± 20 307  ± 26 454*± 19 

Change %2 - 3 52 

Total emptying rate 
mL/min 1.8 ± 0.2 2.0 ± 0.2 2.7* ± 0.1 
Change %2 - 12 50 

T50% 
min 84 ± 5 78 ± 5 85 ± 5 
Change %2 - -7 1 

Glucose AUC (0-85 min) 
mmol · min/L 140 ± 18 150 ± 13 82* ± 11 

Change %2 - 7 -41 

Glucose AUC (0-165 min) 
mmol · min/L 198 ± 23 232 ± 31 159 ± 21 
Change %2 - 17 -31 

1All values are x ̄± SEM. Values followed by an asterisk (*) are significantly different from that 
obtained with water for the same row (ANOVA followed by paired t-test). Initial volume of 
gastric contents, total emptying rate and AUCs (0-85 min) for the lemon juice meal were 
significantly different than for the water meal (P < 0.00001, < 0.01 and = 0.03, respectively).  
n = 10 healthy adults. 
2 Change as a percentage of the bread + water reference meal. 
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Figure 74 – Appetite perceptions. Mean (±SEM) incremental changes in ratings of hunger, satiety, 
fullness, prospective food consumption, thirst and nausea in response to equal amounts of starch 
from a white-wheat-bread consumed with either water (), tea () or lemon juice ().   n= 10 
healthy adults 

Figure 75 – Relationship between appetite perceptions plotted against volume of gastric 
contents for the sense for three meals composed of equal portions of white -wheat-bread 
consumed with either water (), tea () or lemon juice (). Data were grouped by time 
point of measurement with a 5-10 min difference between time of VAS and of volume of 
gastric contents. The sense of hunger and prospective food consumption decreased 
linearly, the senses of satiety and fullness increased linearly.  n= 10 healthy adults  
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4. D ISCUSSION 
The water and tea meals yielded similar results both in terms of gastric emptying and blood 

glucose response. Marked differences were observed with the lemon juice meal, after which the 

volume of the gastric contents was higher, gastric emptying was faster and the blood glucose 

response lower. The reduced glycaemic response with the lemon juice meal is in very a good 

agreement with the more accurate measurements that we performed in the first part of this 

clinical study with the same meals, 17 participants, and more frequent blood glucose 

measurements (Freitas, et al., unpublished). In that part of the study, corresponding data 

showed a glucose peak lowered by 30 % (P < 0.05), reached on average 35 min later (P <0.01), 

with the lemon juice meal in comparison with the water meal. Our present results therefore 

show that our previously observed effect of lemon juice did not disappear with the lying position 

of the subjects in the MRI.  

In a first analysis of our data, one could deduce that a constantly higher volume of gastric 

contents (Figure 71) indicates a longer intragastric retention of the chime for the lemon juice 

meal, which would explain the lower glycemic response, as previously suggested in another 

study on a bread meal supplemented with vinegar (H. Liljeberg & Björck, 1998). This 

straightforward interpretation is easy to conceive as it could directly relate our two main 

observations in the presence of lemon juice: higher initial gastric volumes and a reduced blood 

glucose response. However, this reasoning is not be sufficient to explain all our data, in particular 

the fact that the higher gastric volumes with lemon juice seemed to result from differences in 

the amount of the liquid phase (Figure 72). The higher citric acid content of this meal could have 

led to a combination of changes including an increase in salivary and/or gastric secretions and/or 

an initial lag phase of the liquid phase (Hunt & Knox, 1962, 1969, 1972) which could explain the 

higher liquid volume. In any case, it is worth noting that the rate of gastric emptying of the lemon 

juice meal was also significantly higher (by about 50%) leading to similar overall durations of 

gastric emptying whatever the meal, as shown by the very close gastric volumes at 165 min 

(Figure 71 and Figure 72). This contrasts with classically observed lag phases in gastric emptying 

kinetics, for which the initial delay is never recovered, hence leading to parallel gastric emptying 

patterns (Malagelada, Go, & Summerskill, 1979).  

To better understand all of our observations, specifically the relationship between gastric 

volume patterns and the blood glucose response, it is necessary to discuss them with the 

available literature in these research fields.  
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4.1. AN ANALYSIS OF THE GA STRIC EMPTYING PATTERNS  

As shown in Figure 65 and Figure 67, none of the meals exhibited homogeneous intragastric 

distributions, and it is known that inhomogeneous intragastric chimes impact gastric emptying 

patterns (Marciani, et al., 2013; Siegel, et al., 1988). Siegel and colleagues used scintigraphy to 

study the gastric emptying patterns of the solid and liquid components of a meal somewhat 

similar to that in our study. In their study, the meal was composed of an egg sandwich (solid) 

and water (liquid). The egg and water were labeled differently and monitoring was initiated 

immediately after the meal was consumed. They observed that emptying of water started 

straightaway and at a fast rate, while the solid phase had an initial 31-min-long lag phase. After 

30 min, at least 90% of the solid phase was still in the stomach, while only about 50% of the 

liquid phase remained (Siegel, et al., 1988). Although we had no measurements of the volume 

changes during the first 30 min, considering the similarities between the composition of our 

meals and those in Siegel’s article, the inhomogeneity observed (Figure 65), and the differences 

between the solid and liquid volumes at 30 min (Figure 72), it is likely that our meals behaved in 

a similar manner. During this period, a faster emptying of the liquid phases of the water and tea 

meals than the lemon juice meal, due to different acidity levels, could explain the difference 

between the first meal volumes (about 30% lower for the water and tea meals). The pH of the 

lemon juice was about 2.2 whereas that of the other beverages was neutral. Thus, the higher 

acidity of the lemon juice meal is likely to have initially impaired the emptying of the liquid phase 

(Hunt & Knox, 1962, 1969, 1972). This effect, together with the reported higher salivary flow 

during consumption of acidic foods (Watanabe & Dawes, 1988) may explain the higher volume 

at 30 min.  

Pioneer gastric emptying studies were conducted by the team of Hunt who observed that 

solutions of citric acid were emptied from the stomach slower than water due to a feedback 

mechanism activated by acidity receptors in the duodenum (Hunt & Knox, 1972). As a matter of 

course, there are other factors that regulate gastric emptying rate and the subsequent work of 

his team (Hunt, Smith, & Jiang, 1985) along with that of other research groups (Calbet & 

MacLean, 1997; Kwiatek, et al., 2009) has pointed out the major importance of caloric density. 

They have observed that the stomach adapts to the physical and chemical properties of the 

meals to maintain a constant rate of calorie delivery to the small bowel (Calbet & MacLean, 

1997; Hunt, Smith, & Jiang, 1985; Kwiatek, et al., 2009). This also seems to have been the case 

here. Indeed assuming equal lag phases for the solid fraction of all meals, the differences in 

volumes derived from variations in the liquid phase. Therefore, at 30 min, the caloric density of 

the chime for the lemon juice meal, would be approximately 30% lower than for water (Table 
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17), and the gastric emptying rate seems to have been adjusted accordingly as it was significantly 

higher for this meal (Table 16). 

In other words, if the caloric density of the chime at 30 min is used to estimate the gastric 

emptying rate in terms of kcal/min (still assuming a common lag phase for all meals’ solid 

fractions), very similar results are obtained (from 1.7 to 1.9 kcal/min) (Table 17).  

  

 

 

 

 

 

Remarkably, a recent MRI study has even reported that grapefruit juice (pH=3.3) and a glucose 

solution (pH=7.8) with equal caloric density were emptied from the stomach at the same rate 

(Grimm, et al., 2018). The effect of caloric density seems to surpass that of meal acidity, what 

support the assumptions and interpretations presented above. 

 

4.2. BLOOD GLUCOSE RESPONS E  
According to the above-described literature and associated interpretation of our results, it is 

therefore likely that the delivery of nutrients to the small intestine occurred at approximately 

the same rate, hence discarding a gastric emptying based explanation for the differences in the 

glycaemic response. Numerous studies have reported the effect of lower pH meals on 

attenuating the glycaemic response in healthy adults, but only three of them assessed gastric 

emptying and blood glucose concentrations concurrently (Brighenti, et al., 1995; H. Liljeberg & 

Björck, 1996, 1998). In two of these, no differences were observed in the gastric emptying rates 

despite confirmation of a lower glycaemic response the for the lower pH meals (Brighenti, et al., 

1995; H. Liljeberg & Björck, 1996). In the third study, the gastric emptying was evaluated 

indirectly be monitoring blood paracetamol concentrations. In the presence of lemon juice, the 

glycaemic response was lowered by 36%, while the area under the blood paracetamol curve was 

lowered by 20%. (H. Liljeberg & Björck, 1998).  In this study the paracetamol was in the bread 

loaf, so this opens the question as to whether the lower paracetamol concentrations actually 

Table 17 – Estimated caloric density of the meal at 30 min and gastric 
emptying rate as a function of caloric density. 
 Water Tea Lemon Juice 

Caloric density of the chime 
at 30 min (kcal)1 

1.0 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 

Emptying rate (kcal/min)2 1.7 1.9 1.8 
1Estimated mean (± SEM) considering a 30 min lag phase n= 10. 
2Estimated according to caloric density at 30 min and the total gastric 
emptying rate (Table 16). 
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derived from a delayed emptying rate or were the consequence of a slower digestion of the food 

and consequently slower release of the marker.  

We may therefore support a mechanism related with the premature acid-induced inhibition of 

salivary amylase, which we have previously put forward, and that can be recapitulated as 

follows. It is expected that the lemon juice meal causes a premature acidification of the gastric 

contents, resulting in an early inactivation of salivary α-amylase. This is the only amylolytic 

enzyme that could be affected by meal acidity, since it is the only one present during gastric 

digestion. Therefore, nutrient delivery to the small intestine, although quantitatively equivalent 

in terms of caloric content, is likely to be qualitatively different because the extent to which 

nutrients have been digested is not the same. According to our previous in vitro studies, after 

20-30 min of gastric digestion, as much as 70% of starch from the same bread and water meal 

can be released, with 45% thereof in the form of oligosaccharides. For the lemon juice meal, 

only about 40% of the starch was released, with approximately 10% thereof in the form of 

oligosaccharides at the gastric stage (Freitas & Le Feunteun, unpublished). A number of recent 

reviews have focused on the analysis of the factors leading to the attenuation of the glycemic 

response by low pH meals. Although the salivary hypothesis is hardly addressed (Gobbetti, 

Rizzello, Di Cagno, & De Angelis, 2014; Lim, Henry, & Haldar, 2016; Poutanen, Flander, & Katina, 

2009), or not at all (Lim, Henry, & Haldar, 2016; Petsiou, Mitrou, Raptis, & Dimitriadis, 2014), in 

our view, the acid-inhibition of starch amylolysis by salivary α-amylase appears as the main 

contributor to those results.  

4.3. APPETITE PERCEPTIONS  
Despite differences in the blood glucose response we did not observe any effect of the test meals 

on satiety perceptions. It has been suggested that slower starch digestion leading to lower 

glucose concentrations could prolong satiety (Blaak, et al., 2012). Satiety perceptions were also 

evaluated in four of the aforementioned studies reporting lower glycaemic responses for lower 

pH meals. The results were contradictory, with 2 studies reporting an increase (Bo, et al., 2017; 

Elin Östman, Granfeldt, Persson, & Björck, 2005), and 2 others finding no effect (H. Liljeberg & 

Björck, 1996; H. G. Liljeberg, Lönner, & Björck, 1995). This study was not powered for this 

parameter and this can explain why we failed to observe an effect, but in any case, research on 

the effect of the glycaemic response per se on appetite and satiety has been inconclusive (Blaak, 

et al., 2012). As explained by Wolever and colleagues, it is difficult to conceive test meals which 

elicit distinct glycaemic responses and are controlled for all the possible factors which could 

affect satiety, and so results are often confounded by lack of control of variables which could 

lead to an increased satiety, other than the glycaemic response (Thomas MS Wolever, Leung, 
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Vuksan, & Jenkins, 2009). To better understand this, Wolever and colleagues have compared 

the effect of different glycaemic responses to the exact same meal on satiety perceptions and 

found no relationship. This is in agreement with our results. 
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CONCLUSION  

We have studied the gastric phase of digestion, blood glucose response 

and perceptions of satiety following the consumption of equal portions 

of bread with water, tea or lemon juice at breakfast. No effect was 

observed on satiety perceptions. The glycaemic response was similar 

between the water and tea meals, but in the presence of lemon juice 

the peak blood glucose concentration tended to be lower. Gastric 

volumes were similar following consumption of the water and tea 

meals. In the presence of lemon juice, the overall gastric volume, but 

also the gastric emptying rate were higher. The higher volume seemed 

to be explained by a higher volume of the liquid part of the chime, for 

which emptying could have been delayed in comparison with the other 

meals because of the higher acidity. Nevertheless, the higher gastric 

emptying rate compensated for these differences in volume and 

appears to have ensured similar rates of nutrient delivery to the small 

intestine. In light of these results, we support the idea that the reduction 

of the glycaemic response due to meal acidity derives from the 

inhibition of salivary α-amylase, and not from a reduction or delay of 

gastric emptying. 

 

  



III In vivo studies 

 

204 
 

KEY MESSAGES  

 

 We have studied gastric digestion following the consumption of equal portions of bread 

with water, tea or lemon juice.  

 Gastric volumes were similar following consumption of the water and tea meals.  

 In the presence of lemon juice, the overall volume of gastric contents was higher, probably 

due to a higher volume of the liquid part. 

 The gastric emptying rate was significantly higher with lemon juice, what appears to have 

ensured similar rates of nutrient delivery to the small intestine. 

 The hypothesis that the reduction of the glycaemic response due to meal acidity derives 

from the inhibition of salivary α-amylase, and not from a reduction or delay of gastric 

emptying is supported. 
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GENERAL CONCLUSIONS  
The results obtained have been discussed in detail in each of the previous chapters. In this 

section, only a short overall analysis will be presented, focusing on the key findings and the 

relationships between them.  

1. THE CONTRIBUTION OF SALIVARY AMYLASE TO STARCH DIGESTION 
A total of 6 starch-rich foods were studied: 3 white wheat breads, and 3 types of pasta (wheat 

pearl shaped pasta, wheat spaghetti, and gluten-free spaghetti). All of these foods were digested 

in an in vitro dynamic system, comprising an oral phase with real saliva and a gastric phase with 

acidification kinetics that replicated in vivo observations. In some cases an intestinal phase was 

also included.  

Considering all the experiments conducted with bread (Figure 76), we have studied 3 gastric 

acidification kinetics in which the pH of the in vitro chime was reduced from 6 to 2 in either: (1) 

30 min, (2) 60 min or (3) 90 min. For all breads, the quantity of released starch was significant at 

the end of the oral phase, despite its short duration (2.5 min), with a mean close to 20% of the 

total starch content. Moreover, regardless of the pH reduction kinetics, the same exponential 

pattern of starch release was observed during the gastric phase, with a plateau in the range 70-

85% reached within the first 15-20 min of digestion.  

When the analyses were conducted to determine the proportion of starch that had been 

hydrolysed into oligosaccharides, we observed that this also followed an exponential evolution, 

with a plateau reached a few minutes later than for starch release (Figure 77). More importantly, 

Figure 76 - Dynamic in vitro digestion of bread. Released starch (full symbols) and pH of the 
chime (dashed lines) during the course of oro-gastric digestions of three breads. Different 
symbols illustrate the results obtained with different breads. Two baguettes ( and ) and 
one sandwich bread were studied (). Average ± SD, 3 rpt. 
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the quantity of released oligosaccharides at the plateau appeared to be remarkably high, as it 

corresponded to 60-65% of the released starch.  

 

 

 

With pasta, which is commonly associated with lower glycaemic responses than bread, starch 

digestion progressed at a slower pace. The starch release plateau was reached after 45-50 min 

of digestion and was, on average, about 2.5 times lower than with bread (at about 30%). In all 

cases, 60-70% of the released starch had been hydrolysed into oligosaccharides by HSA. 

As most bread starch had already been released during the gastric phase, when a subsequent 

intestinal phase was used, the further increases in released starch and oligosaccharides were 

only of about 5-8% and 15-20%, respectively. Conversely, as only a fraction of pasta starch had 

been released during gastric digestion, most of its release and hydrolysis was performed during 

the intestinal phase.  

Overall, the combined action of pancreatic amylase and proteases appeared to be very efficient 

in resuming the hydrolysis into oligosaccharides of the large starch fractions that had been 

released during the gastric phase. However, the results of our in vitro studies demonstrated that 

the role of salivary α-amylase should not be neglected. HSA indeed seems to play an important 

role in the hydrolysis of starch during the gastric phase, and more particularly for foods that are 

commonly associated with a higher glycaemic response, such as bread.  

Figure 77 - Dynamic in vitro digestion of bread. Released oligosaccharides (open symbols) and 
pH of the chime (dashed line) during the course of oro-gastric digestions of three breads. 
Different symbols illustrate the results obtained with different breads. Two baguettes ( and 
) and one sandwich bread were studied (). Average ± SD, 3 rpt. 
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2. COMPLEMENTARITY BETWEEN ENZYMATIC ASSAYS ,  IN VITRO  AND IN VIVO  

STUDIES  
Based on our first results, we hypothesized that it was highly likely that factors influencing the 

amylolytic performance of salivary α-amylase, other than the structural properties of a food, 

could translate into a modified glycaemic response. This is why we conducted preliminary 

experiments simulating the digestion of wheat bread, wheat pasta and gluten-free pasta with 

either lemon juice or water. As anticipated, the premature acidification of the chime by the 

lemon juice caused the complete interruption of enzymatic amylolysis after the oral phase, 

leading to a more pronounced effect with bread, for which the role of salivary amylase during 

gastric digestion is more preponderant, than with pasta. 

Subsequent experiments aimed at obtaining a better understanding of these mechanisms and 

at investigating the impact of other food items on the activity of both salivary and pancreatic 

amylases. In addition to lemon juice, teas, coffees, wines, and vinegars were studied for their 

amylolytic inhibitory capacities using enzymatic tests. The reduction of the amylolytic activity of 

saliva by neutral pH foods increased in the following order: coffees (5-10%), green (20-45%) and 

black teas (30–70%). Similar levels of inhibition were found on the amylolytic activity of 

pancreatin for each product category. The effect of acidic foods (wines, vinegars and lemon 

juice) on the amylolytic activity of saliva was also studied at their native pH, and all of them 

exhibited a quasi-total inhibitory capacity (90-100%).  

By repeating in vitro digestion experiments of bread in the presence of lemon juice we not only 

confirmed our preliminary findings, but also proved that comparable results could be obtained 

in control experiments with no salivary amylase. In vitro digestions of bread with the tea that 

had exhibited the strongest inhibitory effect in the enzymatic tests (a black tea) only showed a 

modest effect. For most of the experiment, starch was indeed digested at a similar rate as with 

water, and a small differentiation was only apparent during the intestinal phase with a 

proportion of released oligosaccharides about 20% lower.  

Altogether, the results of our in vitro experiments provided a strong biochemical rationale for 

the development of dietary strategies that could be effective at improving the glycaemic 

response elicited by starch-rich foods. Providing that starch-rich foods are widely consumed, 

such strategies, based on pairing them with others that can inhibit amylolytic enzymes could be 

easy to adopt. Therefore, the next goal was to test these strategies in a clinical study, composed 

of two parts. 
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In both parts of the study, the volunteers consumed equal portions of bread with either water 

(control), black tea or lemon juice. The first part of the study was conducted in semi controlled 

conditions, as volunteers were free to follow their normal daily routines between two blood 

glucose measurements. The water and tea meals elicited similar glycaemic responses, but the 

lemon juice attenuated it significantly (Figure 78A). Both the AUC0-90min and the peak blood 

glucose concentration were significantly lowered by about 30% (P < 0.05) with lemon juice 

compared to water. Because of the semi-controlled nature of this study, it is suggested that 

pairing an acid drink with a starchy meal could be an effective strategy to reduce the glycaemic 

response to starch-rich foods in everyday-life. 

Overall, our in vitro digestion experiments appeared to have successfully predicted the effect in 

vivo. The positive relationship between in vivo (Figure 78A) and in vitro (Figure 78B) observations 

therefore illustrates the potential of (semi-)dynamic digestion experiments as a complementary 

(or pre-screening) tool to clinical studies. It is however noteworthy that our enzymatic tests 

designed to estimate the inhibitory capacity of different beverages or condiments were only 

partially relevant. In fact, they provided useful tendencies for the acidic drinks that could be 

confirmed with lemon juice during both in vitro and in vivo digestions. However, the inhibitory 

effect estimated for black tea was of little consequences during in vitro digestions, and did not 

translated into measurable differences in humans. This discrepancy is probably due to the large 

A B 

Figure 78 – Comparison of in vivo and in vitro results obtained with the same meals. Meals were 
composed of equal amounts of carbohydrate from a white-wheat-bread consumed with either 
water (), tea () or lemon juice (). (A) Postprandial blood glucose responses. Mean (±SEM) 
incremental changes (Δ) in glucose concentrations. # indicates a statistically significant 

difference between lemon juice and water (P<0.01). * indicates statistically significant 

differences between lemon juice and both water and tea at 30 min (P < 0.0001 and 0.001) and 
at 45 min (P =0.014 and 0.019). n = 17 healthy adults. (B) Released starch during the course of 
oro-gastro-intestinal digestions of the same meals in vitro. Average ± SD, 3 rpt. 
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gap between the dilution ratios used during the enzymatic tests, during our in vitro digestion, 

and those achieved in humans. This might in fact be a good example showing the importance of 

thoroughly considering the relevance of a simplified method that aims at predicting outcomes 

in the in vivo reality. 

 

3. ATTENUATION OF THE GLYCAEMIC RESPONSE IN THE PRESENCE OF LEMON 

JUICE –  UNDERLYING MECHANISMS  
The results obtained with lemon juice were consistent with numerous clinical studies 

investigating the effect of other acidic foods (namely vinegar, sourdough bread and pickled 

foods) on the glycaemic response to starch-rich foods. According to the review articles that 

analysed the possible underlying causes for the effects of vinegar, it seemed clear that the main 

mechanism was related to acidity, though the actual effect of acidity was not pin pointed. The 

effect on amylolytic enzymes, particularly salivary amylase, was rarely mentioned, and the 

question of the potential impact of other types of acidic foods was never raised. Indeed, it 

appears that the results obtained with different acidic foods had not necessarily been related 

with each other. According to the study of the literature, we had initially hypothesized that they 

could share a common mechanism (premature amylase inhibition) and that the same effect 

could be obtained with other acidic foods. Nevertheless, a another candidate explanation, still 

not fully accepted nor rejected so far, is that acidity could delay gastric emptying .    

The second part of the clinical study was designed to investigate this possibility, using the same 

meals as in Part 1, and a MRI monitoring of the gastric phase. The meal was also supplemented 

with 20 peas, which the subjects were asked to swallow without chewing at the end of the meal, 

to evaluate how good the gastric mixing is. A comparison of the glycemic responses obtained 

for each meal in Part 1 and Part 2 is presented in Figure 79. Due to constraints imposed by the 

MRI protocols in Part 2, the time-points of blood glucose measurements were slightly different, 

what explains the small variation in peak times. However, as it can be observed, the glycaemic 

responses elicited by the water, tea and lemon juice meals were similar in both parts of the 

study. This shows that the periods that the subjects spent lying down for the MRI scans did not 

seem to influence their glycaemic response, and that the results of the MRI exams can be put in 

relation with the glycaemic responses observed in the first part of the study. 
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The MRI exams comprised anatomic (high spatial but low temporal resolution) and motility (low 

spatial but high temporal resolution) scans. Due to time constraints, only the anatomic scans 

were quantitatively analysed, so far, to determine the gastric volume at each time point. In the 

presence of tea and water the results were similar. With lemon juice, the gastric volume was 

overall higher. According to our interpretation, this appeared to be a consequence of a longer 

initial retention of the liquid phase because of the high acidity of lemon juice. Indeed, the gastric 

emptying rate (significantly higher with lemon juice) appeared to have been be adjusted to 

ensure a similar nutrient delivery rate to the small intestine as for the other meals. Therefore, 

our findings do not really support the hypothesis that low pH meals attenuate the glycaemic 

response to starch-rich meals because of a delayed or decreased gastric emptying rate. They are 

more in line with the idea that this effect on blood glucose concentrations is, at least in part, a 

consequence of a premature inhibition of salivary α-amylase due to early acidification of the 

chime during gastric digestion. 

In conclusion, the present work has highlighted the role of salivary α-amylase in the digestion of 

starch-rich foods, and offered novel insights into the development of strategies aiming at 

improving the glycaemic response elicited by starch-rich diets. A simple strategy based on 

matching starch-rich foods with acidic beverages could be easily integrated in dietary advice and 

adopted by the population.

Figure 79 – Comparison of the glycemic responses in the two branches of the clinical study. 
Glycaemia response to equal amounts of carbohydrate from a white -wheat-bread consumed 
with either water (), tea () or lemon juice () in Part 1 (full symbols, full lines) and Part 2 
(open symbols, dashed lines) of the clinical study.  
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PERSPECTIVES  
 

1. RE-EVALUATION OF THE PROCESS OF STARCH DIGESTION 
1.1. CONTRIBUTION OF EACH DIGESTIVE STAGE  
Where is starch actually digested in our digestive system? The results of our in vitro digestion 

experiments contradict the traditional idea that almost all starch in foods is digested in the small 

intestine by pancreatic amylase. They clearly show that a considerable fraction of starch is 

digested by salivary α-amylase in the stomach, particularly for foods such as bread, which are 

linked with high postprandial glycaemia. Evidence from our in vitro studies should be enough to 

question current views of this process and at least reformulate the way it is described to 

highlight the potential contribution of the gastric phase. Additionally, the results of our in vivo 

studies with lemon juice are also strong indicators of the importance of salivary α-amylase. Our 

findings would now need to be confirmed, ideally with studies in which this enzyme would be 

selectively inhibited by other means than pH. Maybe part of the answer can already be found in 

the literature? An interesting example is the reported correlation between the number of chews 

with the glycaemic response to rice (Tan, et al., 2016). Another one was provided by Read N. W. 

and co-workers in 1986, who found that swallowing without chewing reduced the glycaemic 

response to diced starch-rich foods (corn, potato and rice) but not to a low-starch food (apple). 

The authors have pointed out that one of the reasons for the higher glycaemic response in the 

chewing situation could be an enhancement of salivation, which would increase digestion of 

food in the mouth and stomach. There are however other possible explanations. The absence 

of effect with apple may, indeed, also results from its lower glycaemic index and/or from 

differences in particle sizes (Read, et al., 1986). It would thus be interesting to design a similar 

experiment in which rich-starch foods are compared with lower-starch foods of similar 

glycaemic responses. And to account for the possible influence of the particle size, it could be 

appropriate to serve the foods for the non-chewing day chopped to a level that replicates the 

food particle size in a food bolus. 

1.2. IS THERE A RELAT IONSH IP BETWEEN SALIVARY AMYLASE AND OVERALL HEALTH? 
There is currently a debate about the relationship between salivary α-amylase activity in saliva 

and health. In one study, taken as an example, it was found that people with a higher salivary 

amylase activity had a lower postprandial blood glucose response to starch, but not to glucose 

compared to others with a low activity (Mandel & Breslin, 2012). This could also be related with 

the findings of a recent systematic review showing that there is a higher prevalence of 

xerostomia (subjective complaint of dry mouth), and possibly of subjects with hyposalivation, in 

diabetes mellitus (DM) patients in relation to non-DM population (López-Pintor, et al., 2016). 
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However, in other studies, no relationship was found between the salivary amylase levels and 

the postprandial glycaemic response (Tan, et al., 2016). 

The results obtained by the team of Mandel were the opposite of the hypothesis initially 

formulated by the authors (Mandel & Breslin, 2012). Indeed, it can be counterintuitive, 

especially considering our results. Their findings appeared to be linked not necessarily with a 

higher starch digestion rate, but with an increased plasma insulin concentration observed at the 

beginning of the session in individuals with higher salivary amylase activity. But what is the 

relationship between the amylolytic activity of saliva and blood insulin concentration? The 

specific process by which a higher salivary amylase concentration stimulates early insulin 

concentrations and affects glucose homeostasis is not clear. However, this early insulin release 

could be part of anticipatory metabolic responses that prepare the digestive system to digest 

food, as well as absorb and metabolize nutrients. There were a total of 14 overall healthy 

participants in this study, selected for their salivary amylase activity. In part 1 of our clinical study 

there were 17 participants, who were overall healthy, but no considerations were made 

regarding the concentration of α-amylase in saliva. It would be interesting to do the opposite 

experiment and now determine the amylolytic activity of their saliva and see whether there will 

be any correlation with their postprandial glycaemia. This can be done in the future as all these 

participants provided one sample of saliva (which was not yet analysed due to time constraints).  

1.3. IS THERE ANY RELEVANC E OF THE TESTED STRA TEGIES FOR PUBLIC HEALTH? 
The results of the first part of our clinical studies were encouraging. Could this effect be 

sustained in the longer term? That is, would there be any benefit for the metabolism of glucose 

in increasing the consumption of low pH products with starch-rich meals in healthy individuals? 

What about those with impaired glucose tolerance or those suffering from type-2 diabetes? This 

could be evaluated doing longer studies and comparing the concentrations of Hemoglobin A1C 

before and after the intervention. Could this strategy be transferred to, and useful in, clinical 

settings or as part of dietary advice for the overall population? It could be possible to obtain 

some answers from epidemiological studies examining the relationship between the 

consumption of low pH foods, proportion of starch in the diet and overall glycaemic control. 

2. IMPROVEMENT OF IN VITRO  PROTOCOLS  
Considering the positive relationship between the results of our in vitro digestion experiments 

and those of the clinical study (Figure 78), it would be interesting to quantitatively compare these 

results and investigate the possibility of using our in vitro protocol to estimate the glycaemic 

response in vivo, as already done by other research groups. In order to validate our in vitro 

protocol in this way, it would be important to test it with more foods, for which the mean 
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postprandial glycaemic response is known. This could be a useful tool in the preparatory phase 

of clinical trials to easily screen large numbers of foods. This could allow to reduce the number 

of samples in clinical studies, thereby reducing the constraints for the volunteers.  

Nevertheless, it is clear that there are limitations to in vitro systems and that further 

improvements could still be made. In general, it is important to note that current in vitro 

protocols that omit the oral phase and/or call for immediate acidification during the gastric 

phase are not sensitive to the contribution of salivary amylase, and would thus be unsuitable to 

identify inhibitory mechanisms related to acidity such as those studied here. Our protocol can 

also be improved, two elements that could bring it closer to physiological reality are the 

simulation of gastric emptying and of the absorption of digestion products. The results of our 

MRI study could provide a starting point for information on gastric emptying. The time-evolution 

of the gastric volumes could indeed be used to estimate the flow rate to apply during in vitro 

digestions of bread. Additionally, there is an ongoing project in our lab to improve the dynamic 

digestive system by installing a dialysis membrane, to simulate nutrient absorption, in the 

compartment that simulates intestinal digestion. This has already been done with the TIM model 

(the dynamic in vitro digestion system from the TNO, The Netherlands), for example. It would 

allow for continuous removal of the final products of starch digestion to mimic the rapid glucose 

absorption in the small intestine. Thereby eliminating potentially inhibitory effects of hydrolysis 

products on enzymatic activity and enabling the analysis of “post absorptive samples”, which 

would be a closer representation of what is absorbed by the blood stream. 

3. COMPLETE THE ANALYSIS OF THE MRI  DATA 
3.1. DETERMINE GASTRIC VOLUMES AT BASELINE  
Because image analysis is time-consuming, it has been decided to consider only postprandial 

anatomic volume scans at a first stage. However, for a complete analysis, it is necessary and 

important to analyse also baseline scans to ensure that there were no significant differences 

between the gastric volumes of participants of participants at baseline.  

3.2. COMPLETE THE ANALYSIS  OF INTRAGASTRIC CONT ENTS  
As we have mentioned before, we did not use any reference material during MRI exams to 

correct the possible variations of the MRI signal between the study sessions. Nevertheless, it is 

clear that there were different levels of contrast within the stomach in our images (as it can be 

observed in Figure 80A).  Image texture analyses of these exams could be carried out enabling a 

subsequent quantitative determination of the volumes of differently contrasted regions (Figure 

80B). A preliminary analysis of the different contrasted areas showed promising results. 

However only 19 studies over a total of 30 have been exploited so far, as the others contained 
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significant differences in terms of the average intensity of the images. Therefore, further work 

is needed to understand the origin of these differences and properly corrected them. 

3.3. QUANTITATIVE ANALYSIS  OF THE MOTIL ITY  SCAN S  
So far, only a qualitative and indirect analysis of the motility scans was conducted, regarding the 

position of the peas at different digestion times. However, it would be interesting to perform a 

more thorough and quantitative analysis. Because of the different contrast of the peas, it should 

at least be possible to determine the proportion of signal derived from the peas present in each 

slice, and therefore in each region of the stomach. Moreover, although the spatial resolution of 

these scans was poor, a delineation of the gastric volume seems feasible in these images. It 

should thus be possible to make volume reconstructions of the gastric contents to study the 

gastric motility (6 gastric volumes were scanned during a breath-hold), whenever a gastric 

contraction fell within the observed time window. 

Additionally, further analysis of these scans could theoretically provide a more accurate result 

in terms of gastric emptying. The gastric volume results from the volume of the meal, the flux of 

gastric secretions, and the flux of gastric emptying. If one could use the motility scans to 

estimate the volume of gastric contents that is emptied through the pylorus as well as their 

Figure 80 – Analysis of the intragastric chime. (A) Illustration of the differences in contrast 
observed in the chime. (B) Graphic representation of the occurrence of each level of contrast 
observed in (A).  

A 

B

↑ water 

↓ water 
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frequency (using the motility scans acquired under free breathing conditions, which last 1 min 

25 s), it could be possible to calculate the flux of secretions.  

 

4. FUTURE MRI  STUDIES  
MRI could be useful in so many experiments related to digestion! It would thus be presumptuous 

to say what could or should be done with this technique. With regards to our work, we may 

simply highlight that peas could work as a suitable probes for up to 2.5 – 3 hours. Future studies 

could therefore benefit from these findings and use them as markers of the gastric mixing. 

Also, our initial preliminary tests have showed that the high resolutions achievable by MRI can 

enable to discern pasta spheres with a diameter of about 3 mm. It would certainly be interesting 

to capitalize on these preliminary works, and try to monitor the evolution of particle structure 

within the stomach. It is also noteworthy that it is possible to monitor in vitro digestion 

experiments with MRI. Doing so with the same MRI acquisition sequences as we used in vivo, 

would allow to correlate the digestion kinetics with the signal obtained by MRI. A more complete 

investigation of the evolution of the food relaxation times during the course of in vitro digestions 

could even be conducted. Ultimately, such data could be used to retrieve more complete 

information on the rate of nutrient hydrolysis and release within the stomach. 
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Figure 5 - Micrographs of cross-sections of spaghetti. (1) Scanning electron micrograph, dry spaghetti. 
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region is contoured by a white line in (A) and (B) and identified by white arrows in (C). In (A) it 

is possible to observe individual boluses of cheese that appear as dark regions. In (B) the 

separation of two liquid phases is visible with aqueous and high fat layers that appear as bright 

and darker regions, respectively. Figure (C) illustrates the layering of a semi-solid rice pudding 

meal resulting in the formation of a particulate sediment (darker layer at the bottom) below a 

more homogeneous, higher water content phase (brighter layer at the top). (A) and (B) were 

obtained from (Mackie, Rafiee, Malcolm, Salt, & van Aken, 2013), (C) was obtained from 

(Marciani, et al., 2013). ............................................................................................................. 17 

Figure 8 – Postprandial intragastric pH. (A) - Gastric pH after a solid meal (dashed line) and a homogenized 

meal (full line) of equivalent nutrient content. Mean ± SEM, n=6. (Malagelada, Go, & 

Summerskill, 1979) (B) Variations in the pH of the gastric contents after the ingestion of the 

liquid test meal as a function of gastric emptying. Experimental values from ten individual 

experiments () and model (full line) (Carrière, Renou, Ville, Grandval, & Laugier, 2001). ..... 19 
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Figure 9 - Postprandial volume of gastric contents after a solid meal (dashed line) and a homogenized 

meal (full line) of equivalent nutrient content. Mean ± SEM, n=6. Obtained from (Malagelada, 

Go, & Summerskill, 1979). ......................................................................................................... 19 

Figure 10 - Emptying rate in kcal/min plotted as a function of caloric density of the meal. Results from 15 

studies investigating different meals with distinct physical and chemical properties and using 

non-invasive methodologies to determine gastric volume. (Cecil, Francis, & Read, 1999; Feinle, 

Kunz, Boesiger, Fried, & Schwizer, 1999; French & Read, 1994; Fruehauf, et al., 2009; Grimm, 

et al., 2018; Jones, et al., 1997; Kwiatek, et al., 2009; Kwiatek, et al., 2006; Lavin, French, & 

Read, 2002; Mackie, Rafiee, Malcolm, Salt, & van Aken, 2013; Marciani, Gowland, Spiller, et al., 

2001; Mourot, et al., 1988; K. Murray, et al., 2014; Toepfer, et al., 1999; Vesa, et al., 1997; Vesa, 

Marteau, Briet, Boutron-Ruault, & Rambaud, 1997). ............................................................... 21 

Figure 11- Schematic view of starch digestion. This scheme is originally from (S. Gropper & J. Smith, 2013), 

the description of the processes that occur in the stomach was modified according to other 

bibliographic sources. ................................................................................................................ 24 

Figure 12 - Scanning electron micrographs of wheat starch granules hydrolyzed by granular starch 

hydrolyzing enzyme at 55 ◦C for 0 h (A) and 1 h (B), and at 30 ◦C for 24 h (C). Obtained from 

(Naguleswaran, Li, Vasanthan, Bressler, & Hoover, 2012) ........................................................ 26 

Figure 13 - Effect of structural change in starch granules as a function of hydration during cooking (10 min, 

95 °C), on in vitro digestion. Digested starch as a % of total starch for seven starches at 

progressively increasing degrees of hydration (A. Maize; B. High amylose maize; C. Mazaca; D. 

Pea; E. Potato; F. Rice; G. Tapioca; H. Wheaten corn flour. Obtained from(Mishra, Hardacre, & 

Monro, 2012) ............................................................................................................................. 26 

Figure 14 – Effect of green tea on postprandial blood glucose concentrations. Mean (± SEM) incremental 

postprandial plasma glucose concentrations after ingestion of a meal containing bread and tea 

(•) and a reference meal without tea (▲).* Indicates significant difference between the meals 

(n = 14). Obtained from (Josic, Olsson, Wickeberg, Lindstedt, & Hlebowicz, 2010) ................. 29 

Figure 15 –Effect of meal supplementation with vinegar on plasma glucose concentration.  (A) Results 

obtained with a group of healthy subjects following consumption of a meal without vinegar (, 

full line), with vinegar (, dotted line) or with sodium acetate (, dashed line). Mean ± SEM, 

n=5. (B) Results obtained with a group of subjects with type-2 diabetes following consumption 

of a high glycemic index meal without vinegar (full line) or with vinegar (dashed line). *Indicates 

statistically significant differences between treatments. Mean values, n=8. ........................... 30 

Figure 16 - Proposed underlying mechanisms of the effects of vinegar on glucose metabolism. Extracted 

from (Petsiou, Mitrou, Raptis, & Dimitriadis, 2014). ................................................................. 31 

Figure 17 - The mean ± SEM fractional meal retention values for 24 subjects receiving either Tc-99m-egg 

sandwich (n = 14) orTc-99m in vivo labelled chicken liver (n = 10) and In-111 DTPA water on a 

semilogarithmic plot.(Siegel, et al., 1988) ................................................................................. 36 

Figure 18 – Images of the abdominal region. Examples of images obtained through ultrasound (left) and 

MRI (right). The gastric regions are identified by white arrows. Ultrasound and MRI images 

obtained from (Okabe, Terashima, & Sakamoto, 2017) and (Marciani, et al., 2013), respectively.
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file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332637
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332637
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332637
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332638
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332639
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332639
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332639
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332640
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332640
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332640
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332641
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332641
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332641
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332641
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332641
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332642
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332642
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332642
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332642
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332643
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332643
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332643
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332643
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332643
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332643
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332644
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332644
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332645
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332645
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332645
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332646
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332646
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332646
file:///C:/Users/Daniela_/Documents/PhD/Backup%20lab%20computer%20-%20Daniela%20-%2003-02-2017/A%20-%20Manuscript/Masterfile/Final%20files/Masterfile.docx%23_Toc526332646


 

237 
 

Figure 19 - Graphs show T1 recovery (recovery of longitudinal magnetization [Mz]) and the T2 decay (the 

decrease of transverse magnetization [Mxy]), as a function of time (in milliseconds [msc]) for 

fat and water. The effects of short and long TR (left) and short and long TE (right) 

correspondingly on T1 recovery and T2 decay in fat and water are illustrated by the blue bars: 

TR relates to T1 and affects T1 weighting, whereas TE relates to T2 and affects T2 

weighing.(Bitar, et al., 2006) ..................................................................................................... 41 

Figure 20 – Anatomical planes and image projection in shades of gray. The 3 main types of slice 

orientations which are selected by the magnetic gradient coils are illustrated by the blue planes. 

The resulting anatomical slices are presented and are also illustrative of the projection of signal 

intensity as shades of gray. Image obtained from  (McRobbie, Moore, Graves, & Prince, 2006).

 ................................................................................................................................................... 43 

Figure 21 - Color-coded dilution maps acquired at different times after consumption of 500 mL of a viscous 

locust bean gum meal. The transverse relaxation time T2 of the meal was calibrated against 

dilution in vitro. T2 maps of the stomach contents were then acquired in vivo, translated to 

dilution values using the calibration curve, and color coded. A transverse EPI image is also 

shown as an anatomic road map (L, left; R, right). Gastric secretion made the outer boundaries 

of the viscous meal more diluted (in red) at an early time, whereas the inner bolus remained 

viscous (in green) for longer. As time progressed, the viscous meals appeared more diluted and 

mixed. Obtained from (Marciani, Gowland, Spiller, et al., 2001). ............................................. 45 

Figure 22 - Frontal view of the three-dimensional reconstruction of the stomach illustrating intragastric 

fat distribution (in green) immediately (top), 90 minutes (middle) and 180 minutes (bottom) 

after meal ingestion, when the fat component preceded the nonfat component (F-NF, left) and 

when the fat component followed the nonfat component (NF-F, right). Obtained from (Kunz, 

et al., 2005). ............................................................................................................................... 46 

Figure 23- DiDGI® dynamic digestion system(Ménard, et al., 2014) .......................................................... 50 

Figure 24 - Texture Profile Analysis of in-vitro (grey columns) and in-vivo (white columns) formed boli. 

Different letters (a-b) denote statistically significant differences (p<0.05) between the two 

types of bolus for each parameter (cohesion, hardness and adhesiveness) according to one-way 

ANOVA. ...................................................................................................................................... 67 

Figure 25 - Assessment of the in vitro boli’s ability to reproduce in vivo conditions. Proportion of starch 

released during digestion of in vivo and in vitro formed bread boli. (A) ―▲― SSB - Snack-type 

digestion of an in vitro Saliva-based bolus (average ± SD, 3 rpts.), ―*― Snack-type digestion of 

an in vivo Saliva-based bolus (1rpt). (B) ―― CSB - Constant pH Digestion of an in vitro Saliva-

based-bolus (1rpt), ―+― Constant pH Digestion of an in vivo Saliva-based-bolus (1rpt). ....... 68 

Figure 26 - Amylolytic activity of saliva as a function of pH. Maximum activity, found at pH 6.2, was 352 ± 

41 U/mL of saliva (1 unit liberated 1.0 mg of maltose from potato starch in 3 min at pH 6.9 at 

20ºC). ......................................................................................................................................... 71 

Figure 27 - Starch and protein digestion during in vitro oral-gastric digestion of bread. Proportion of total 

starch (black symbols) and protein (white symbols) released into the chime throughout 

digestion.  (A) SWB - Snack-type digestion of a Water-based Bolus (1 rpt.).  (B) SSB - Snack-type 

digestion of a Saliva-based Bolus (average ± SD, 3 rpts.). (C) LSB - Lunch-type digestion of a 

Saliva-based Bolus (average ± SD, 3 rpts.). (D) CSB - Constant pH (pH 6) Digestion of a Saliva-

based Bolus (1 rpt.). In all graphs, dotted lines (- - -) correspond to gastric pH conditions. In 
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Figure 56- Postprandial volume of gastric contents. Mean (±SEM) volumes after consumption 

of three meals with equal volume containing equal amounts of starch from a white -

wheat-bread and of water (), tea () or lemon juice ().  The * symbol indicates 

significant differences (ANOVA followed by paired t -test) between the meal 

containing lemon juice and the other two meals. n = 10 healthy adults.  ................. 193 

Figure 57- Estimated postprandial volume of the solid (full lines) and liquid (dashed lines) phases. Mean 

(±SEM, smaller than symbol size for the solid phase) volumes after consumption of three meals 

with equal volume containing equal amounts of starch from a white-wheat-bread and of water 

(), tea () or lemon juice (). ............................................................................................. 194 

Figure 58 - Postprandial blood glucose responses. Mean (±SEM) incremental changes (Δ) in glucose 

concentrations in response to equal amounts of starch from a white-wheat-bread consumed 

with water (), tea () or lemon juice ().  The # symbol indicates significant differences were 

found (ANOVA followed by paired t-test) statistically significant difference between lemon juice 

and tea (P = 0.02). n = 10 healthy adults ................................................................................. 195 

Figure 59 – Appetite perceptions. Mean (±SEM) incremental changes in ratings of hunger, satiety, fullness, 

prospective food consumption, thirst and nausea in response to equal amounts of starch from 

a white-wheat-bread consumed with either water (), tea () or lemon juice ().   n= 10 

healthy adults .......................................................................................................................... 197 

Figure 60 – Relationship between appetite perceptions plotted against volume of gastric contents for the 

sense for three meals composed of equal portions of white-wheat-bread consumed with either 

water (), tea () or lemon juice (). Data were grouped by time point of measurement with 

a 5-10 min difference between time of VAS and of volume of gastric contents. The sense of 

hunger and prospective food consumption decreased linearly, the senses of satiety and fullness 

increased linearly.  n= 10 healthy adults ................................................................................. 197 

Figure 61 - Dynamic in vitro digestion of bread. Released starch (full symbols) and pH of the chime (dashed 

lines) during the course of oro-gastric digestions of three breads. Different symbols illustrate 

the results obtained with different breads. Two baguettes ( and ) and one sandwich bread 

were studied (). Average ± SD, 3 rpt. ................................................................................... 207 

Figure 62 - Dynamic in vitro digestion of bread. Released oligosaccharides (open symbols) and pH of the 

chime (dashed line) during the course of oro-gastric digestions of three breads. Different 

symbols illustrate the results obtained with different breads. Two baguettes ( and ) and 

one sandwich bread were studied (). Average ± SD, 3 rpt. ................................................. 208 

Figure 63 – Comparison on in vivo and in vitro results obtained with the same meals. Meals were 

composed of equal amounts of carbohydrate from a white-wheat-bread consumed with either 

water (), tea () or lemon juice (). (A) Postprandial blood glucose responses. Mean (±SEM) 

incremental changes (Δ) in glucose concentrations. # indicates a statistically significant 

difference between lemon juice and water (P<0.01). * indicates statistically significant 

differences between lemon juice and both water and tea at 30 min (P < 0.0001 and 0.001) and 

at 45 min (P =0.014 and 0.019). n = 17 healthy adults. (B) Released starch during the course of 

oro-gastro-intestinal digestions of the same meals in vitro. Average ± SD, 3 rpt. .................. 210 

Figure 64 – Comparison of the glycemic responses in the two branches of the clinical study. Glycaemia 

response to equal amounts of carbohydrate from a white-wheat-bread consumed with either 
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water (), tea () or lemon juice () in Part 1 (full symbols, full lines) and Part 2 (open 

symbols, dashed lines) of the clinical study. ........................................................................... 212 

Figure 65 – Analysis of the intragastric chime. (A) Illustration of the differences in contrast observed in the 

chime. (B) Graphic representation of the occurrence of each level of contrast observed in (A).
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Abstract 

 

During the last decade, there has been a growing interest in understanding the fate of food during 

digestion in the gastrointestinal tract in order to strengthen the possible effects of food on human 

health. Ideally, food digestion should be studied in vivo on humans but this is not always ethically and 

financially possible. Therefore simple static in vitro digestion models mimicking the gastrointestinal 

tract have been proposed as alternatives to in vivo experiments. On one hand, these models are 

extremely popular and widely used by the scientific community but, on the other hand, they are 

quite basic compares to the complexity of the digestive tract and it is essential before running 

experiments to know the type of information they can provide and perfectly understand their 

limitations. The objective of this article is to review a range of applications of in vitro digestion 

models, the parameters that were assessed and the physiological relevance of the data generated 

when compared to in vivo data. This is the result of a cooperative international effort made by some 

of the scientists involved in Infogest, an international network on food digestion.  
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Introduction 

There has been a growing interest from the scientific community in getting more information on the 

effect of food on human health. One strategy to reduce knowledge gaps is to focus on the fate of 

food during digestion in the gastrointestinal tract. 

The fate of food in the GIT can be studied using several methods or models including static and 

dynamic in vitro models, animals and humans. Static in vitro digestion methods are particularly 

popular because they are easy to use, cheap and do not require specific equipment. However, a huge 

number of protocols differing in the experimental conditions (pH and duration of the different steps, 

amount of digestive enzymes and bile etc) have been proposed making the comparison of results 

between studies impossible. Recently, an international consensus was reached within the COST 

Action Infogest (http://www.cost-infogest.eu/) and a protocol published (Minekus et al., 2014) that 

has since been widely used internationally. Another major drawbacks of static in vitro digestion 

models is that they are oversimplified and do not take into account the dynamic aspects of the 

digestive process. Therefore, these models have been used to compare the digestion of related foods 

under the same conditions (Dupont et al., 2010b), to study the digestion of pure compounds (Benede 

et al., 2014a; Benede et al., 2014b; Dupont et al., 2010a) or to unravel the interactions between 

constituents at the molecular level. For instance, using static digestion models, Mandalari et al. 

demonstrated that interactions were occurring between one of the main milk protein, i.e. β-

lactoglobulin, and phosphatidylcholine released by the stomach wall, protecting the protein from the 

action of pepsin during the gastric phase (Mandalari et al., 2009).  

However, one can question the limits of these static in vitro digestion models to predict other 

parameters and limit the use of animal or human models. The objective of this opinion paper is to 

review a range of applications of in vitro digestion models, the parameters that were assessed and 

the physiological relevance of the data generated when compared to in vivo data. This is the result of 

a cooperative international effort made by some of the Infogest participants. 

 

1 Estimation of the digestion of starch 

Starch is the most important digestible polysaccharide in human nutrition usually accounting for 20-

50% of the total energy intake. It is made up of two types of glucose polymers, amylose (15-20%) and 

amylopectin (80-85%), and is predominantly derived from plant seeds such as wheat, maize, rice, 

oats and rye (Caballero et al., 2012). Given its composition and the predominant role played in the 

human diet, starch is a major source of glucose that appears at relatively high concentrations in 

blood circulation during digestion (Butterworth et al., 2011). 

 

Starch digestion is initiated in the oral cavity by salivary α-amylase which starts hydrolyzing the 

glycosidic bonds of amylose and amylopectin (Bornhorst and Singh, 2012). Once the food bolus is 

swollen, starch hydrolysis by salivary α-amylase can continue in the stomach until the pH lowers 

sufficiently to inactivate the enzyme (Bornhorst and Singh, 2012; Gropper and Smith, 2013). As no 

amylase is secreted into the stomach, the last stage of starch digestion occurs in the small intestine 

where pancreatic α-amylase produces maltose, maltotriose and α-limit dextrins. These intermediate 

products are finally hydrolyzed into glucose by specific “brush border enzymes” at the gut wall. 

Glucose is the final product of starch digestion and is very efficiently absorbed into the bloodstream 

(Gropper and Smith, 2013). The digestive process of starch containing meals can hence easily be 

followed in vivo by monitoring the rise and subsequent decrease of blood glucose concentrations. 

Such measurements allow the determination of the postprandial blood glucose response (GR), which 
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is defined as the change in blood glucose concentration in the 2h period that follows the start of a 

meal (ISO, 2010). This type of data is at the origin of a number of metrics used to classify the in vivo 

digestion of starch and other carbohydrate sources, the most popular of which is the Glycaemic 

Index (GI) (Dona et al., 2010). GI is a kinetic parameter first proposed in 1981 (Jenkins et al., 1981). At 

that time, nutritional recommendations for diabetes were based on food chemical composition only, 

but concerns that this was not fully representative of physiological effects induced by foods had 

started being raised. Jenkins et al. (1981) proposed the GI concept as a physiology related metric that 

could supplement such recommendations. Since then the popularity of GI increased as experts 

stressed the relevance of low GI diets to the prevention and management of diabetes and other 

health conditions including coronary heart disease and possibly obesity (Augustin et al., 2015). 

Nowadays, GI is defined as the incremental area under the blood GR curve (IAUC) after consumption 

of a portion of food containing 50 g (or in some cases 25 g) of available carbohydrates expressed as a 

percentage of the IAUC elicited by a portion of a reference food (white bread or glucose solution) 

with equivalent amount of available carbohydrate (ISO, 2010). GI is not considered to be a 

characteristic of the human being but rather a property of the food item itself, specifically, its ability 

to raise blood glucose (ISO, 2010).  

 

The expensive (Dona et al., 2010) and time-consuming nature (Brand-Miller and Holt, 2004) of the in 

vivo experiments poses obstacles to the GI use, and, along with other factors, these considerations 

have fueled research on in vitro assays to predict GI values or an equivalent metric (Brand-Miller and 

Holt, 2004; Dona et al., 2010). Indeed, shortly after proposing the GI concept, Jenkins and coworkers 

showed that there was a high correlation (r > 0.86) between GIs of different foods and their in vitro 

digestion kinetics, as estimated with a mixture of human saliva and jejunal juice in dialysis bags 

(Figure 1) (Jenkins et al., 1982). Since then, several research teams have contributed to the 

development of in vitro static assays with the goal of accurately predicting the glycaemic response of 

foods. Such assays generally consist in mimicking the different phases of human digestion with 

commercially available enzymes. Most protocols comprise a simulated gastric phase followed by a 

small intestinal phase during which samples are collected to analyze the extent of carbohydrate 

digestion (Bjorck et al., 1994; Englyst et al., 1992; Gibson et al., 2011; Goñi et al., 1997; Monro et al., 

2010). In certain cases, gastro-intestinal digestion can be preceded by an in vivo chewing phase 

(Bjorck et al., 1994; Monro et al., 2010) or an in vitro treatment that often replicates mechanical but 

not enzymatic oral conditions (Englyst et al., 1992; Gibson et al., 2011). An extensive review of the in 

vitro protocols available to study starch digestion is outside the scope of the present review but can 

be found elsewhere (Dona et al., 2010; Woolnough et al., 2008). Here we will focus on a limited 

number of highly cited methodologies and their correlations with in vivo data. 

 

One of the pioneer in vitro approaches to classify food carbohydrates in a way that reflected their 

digestion in the gut was performed by Englyst and coworkers (Englyst et al., 1992). The main 

innovative character of their study was the collection of samples at two distinct time-points of the 

intestinal phase of digestion (20 min and 120 min) to distinguish rapidly and slowly digestible starch 

fractions, a characteristic of starchy food that is still extensively used nowadays. Indeed, subsequent 

research carried out by the same team showed a significant correlation between the proportions of 

rapidly digestible starch of 39 food items and the corresponding GI values obtained from the in vivo 

literature (r = 0.76) (Englyst et al., 1996). The reliability of this method as an indicator of the 

glycaemic response (GR) to foods was repeatedly confirmed (Araya et al., 2002; Ells et al., 2005; Seal 

et al., 2003). In the same period, the team of Goñi et al. (1997) was among the firsts to resort to a 

static in vitro digestion protocol, during which they monitored the time-course of in vitro starch 

hydrolysis of a series of starch containing foods. They concluded that their 90 min measurement had 
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the best correlation with in vivo GI values (r = 0.91) and derived an equation to allow GI values to be 

predicted from this in vitro approach (Goñi et al., 1997). Other researchers have remarked that 

although it seems to overestimate the GI, this methodology is sensible enough to reproduce the 

overall trends observed in vivo (Ferrer-Mairal et al., 2012).  

 

Although some researchers have found a proportional relationship between the quantity of ingested 

food and the glycaemic response (Englyst et al., 1999), most of in vitro protocols are standardized for 

fixed amounts of carbohydrate or food. These fixed portions are particularly advantageous for 

research purposes, yet they have an experimental character and differ from the food quantities that 

are usually consumed. In order to guide consumer choices based on food or diet effects, it is arguable 

that one should communicate the glycaemic response in grams per serving of food (Monro et al., 

2010). This has raised questions on the ability of in vitro assays to predict glycaemic responses to the 

varying quantities and compositions of foods that are part of the human diet (Monro et al., 2010), i.e. 

GR rather than GI. As a matter of course, in vitro experiments overlook the fact that glycaemic 

responses to foods depend on the balance between blood glucose loading and disposal. As a matter 

of course, typical blood GRs elicited by carbohydrate-rich foods or meals comprise an initial increase 

of glucose concentration (loading) and is followed by a decrease to its initial level (disposal) which 

contrasts with the plateau obtained at the end of in vitro digestion experiments. With the aim of 

filling this gap, Monro et al. (2010) have proposed to estimate glucose disposal rates from in vivo 

blood GR data obtained by (Venn et al., 2006) for different glycaemic loads, and to subtract the so-

estimated cumulative glucose disposal from the cumulated glucose release that is measured in vitro. 

This enables the construction of digestion curves that mimic in vivo blood GR curves for a better 

prediction of the in vivo glycaemic impact of foods (Monro et al., 2010). The correlation of the results 

obtained with this “in vitro model-assisted” approach with corresponding in vivo data on more than 

25 food items proved to be very good both when in vivo data were experimentally obtained as part 

of the study (r² = 0.88, Figure 2) (Monro et al., 2010) or collected from the literature (r² = 0.90) 

(Monro and Mishra, 2010). 

 

Given the increasing evidences of health benefits associated with a low GI diet, the International 

Carbohydrate Quality Consortium has very recently reached a scientific consensus defining “an 

urgent need to communicate information on GI […] to the general public and health professionals, 

through channels such as national dietary guidelines, food composition tables and food labels” 

(Augustin et al., 2015). In parallel, Monro and coworkers concluded that “valid measurement of 

glycaemic impact of foods may be obtained in vitro” (Monro et al., 2010) and can be applicable for 

“consumer and industry use” (Monro and Mishra, 2010). Although some researchers have reported 

discrepancies between in vivo and in vitro results (Berti et al., 2004; Brand-Miller and Holt, 2004; 

Casiraghi et al., 1992), overall, in vitro protocols do appear to be reliable indicators of in vivo glucose 

response (Araya et al., 2002; Ells et al., 2005; Englyst et al., 1996; Ferrer-Mairal et al., 2012; Goñi et 

al., 1997; Jenkins et al., 1982; Monro and Mishra, 2010; Monro et al., 2010; Seal et al., 2003). 

Employing in vitro digestion methods for characterizing the glycaemic impact of foods and labelling 

purposes is a question that remains to be debated in a larger scientific community. In any case, 

considering the practicality of in vitro assays, and their highly significant correlations with in vivo 

data, it certainly seems wise to continue optimizing these techniques and take advantage of them in 

research and early stages of product development.  

 

2 Assessing protein digestion 

Assessment of protein digestibility 
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Evaluating the quality of a dietary protein consists in determining how extensively this protein is 

digested and absorbed and its amino acids used by the human body. The most frequently used score 

to express the quality of a protein is the PDCAAS (Protein Digestibility-Corrected AA Score) which 

takes both the digestibility and the amino acid composition of the protein into account. Although the 

determination of the amino acid content of a protein is simple nowadays, an accurate and precise 

determination of its digestibility is still difficult. Digestibility of a protein is a key parameter of its 

bioavailability (Fuller and Tome, 2005), because it provides some information about the extent of 

digestion and absorption and the ability of the amino acids to be used. Digestibility (proportion of a 

protein absorbed from the digestive tract into the bloodstream) has been shown to significantly 

fluctuate according to the diet, especially between developed and developing countries (Gilani et al., 

2005). Protein digestibility is measured indirectly by the quantification of residual nitrogen at the 

extremity of the digestive tract. Nevertheless, this residual nitrogen includes the non-digested 

dietary nitrogen but also the endogenous nitrogen. Thus, the quantification of the total nitrogen 

(exogenous + endogenous) corresponds to the apparent digestibility whereas the estimation of only 

the exogenous nitrogen corresponds to the true digestibility (Fuller and Tome, 2005). Determination 

of the true digestibility is more complicated to perform and requires the labelling of the dietary 

proteins or of the host (to label endogenous proteins). Assessment of ileal digestibility is now 

recognized as more relevant than determination of fecal digestibility (Darragh and Hodgkinson, 2000; 

Fuller and Tome, 2005; Moughan, 2003) that can be modulated by the metabolic activity of the 

intestinal microbiota.  

Several groups have tried to determine protein digestibility through in vitro approaches. One of the 

advantages in using in vitro models to assess digestibility is that endogenous secretions are very 

limited in these models so that the data generated should be comparable to the true digestibility. In 

a pioneer work, Saunders et al. showed a good correlation between in vitro digestibility determined 

on alfalfa protein concentrates with a pepsin-pancreatin or a pepsin-trypsin method and in vivo data 

collected in a rat trial (r²=0.914) (Saunders et al., 1973). Satisfactory results were also obtained on 

soybean, lupine and rapeseed meal proteins. Indeed, true digestibility assessed on these proteins on 

rats showed a significant correlation with the degree of hydrolysis (r²=0.663, p<0.001) and nitrogen 

digestibility (r²=0.776, p<0.001) determined in vitro (Rozan et al., 1997). Finally, Kitabatake and 

Kinekawa found the same behavior of native and heat-denatured milk whey protein β-lactoglobulin 

in vitro and in the stomach of rats (Kitabatake and Kinekawa, 1998). The protein was shown to be 

fully resistant to proteolysis when native but extensively hydrolyzed when heat-denatured. 

However, using an in vitro models, other authors found the same ranking between the in vitro 

digestibility of different protein sources and in vivo but the values between the 2 approaches 

remained significantly different (Cho and Kim, 2011). These differences might be explained by an 

inadequate selection of the parameters of the in vitro digestion model used in this experiment 

making it physiologically irrelevant. 

 

In vitro/in vivo comparison of milk protein digestion 

One of the major goals of the Infogest COST Action was the harmonization of in vitro digestion 

experiments. Towards this end, the consensus static protocol by Minekus et al (Minekus et al., 2014), 

based on physiological in vivo data was developed. The success of the harmonization was 

experimentally tested in several inter-laboratory trials, using skim milk powder (SMP) as standardized 

food matrix. Thus, these efforts not only show the comparability of different digestion protocols, but 

also serve as a basis for gathering information about milk protein digestion. The participants were 
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asked to digest the SMP first with their in-house method and second with the consensus protocol. 

Protein decomposition was analyzed at different levels of hydrolysis, from proteins, to peptides, 

down to free amino acids. Gel electrophoresis, performed with samples after the gastric- and the 

intestinal phase of in vitro digestion, showed a highly heterogeneous pattern, when the participants 

applied their in-house methods (data not shown). In contrast to that, the protein patterns of the 

samples digested with the harmonized protocol were much more homogeneous (Figure 3). Although, 

in two of these samples, protein hydrolysis was decreased after the gastric phase (Figure 3, lines 6, 

7), compared to the five other samples (Figure 3, lines 1-5). This difference was explained by a lower 

pepsin activity, originating from problems with pepsin activity measurement prior to in vitro 

digestion. However, at the end of the digestion, the protein patterns were very similar and no intact 

milk proteins were detectable on gels with the harmonized protocol (Figure 3, intestinal phase), 

whereas some of the samples digested with the in-house methods still had intact β-lactoglobulin 

present (data not shown). Analysis of peptides by mass spectrometry showed that the in-house 

protocols in general had a lower hydrolysis rate after the gastric phase compared to the harmonized 

model. Moreover, at the end of the digestion, the peptide patterns were very similar in all the 

samples digested with the harmonized protocol. The specific digestion patterns for the most 

abundant milk proteins were visualized by an amino acid counting method, where for the frequency 

of each amino acid, identified within a specific milk peptide, a color code was attributed and aligned 

within the protein sequence e.g. β-casein (Figure 4). This method reveals that the different milk 

proteins are not randomly but very specifically hydrolyzed during the digestion phases. Considering 

the five most abundant milk proteins, (β-, αs1-, αs2-, κ-casein, and β-lactoglobulin), and using their 

characteristic digestion data, a Spearman correlation was calculated and the improvement in sample 

comparability could be confirmed at the peptide level as well in the harmonized protocol (Egger et 

al., 2016), compared to the in-house methods.  

The major conclusion of this work was that the harmonized protocol indeed improved the 

comparability of experimental results. However, if the in vitro process indeed was comparable to the 

in vivo situation, was still an open question. To answer this second and important question, an in vivo 

pig trial was performed, feeding pigs the exact same SMP that was previously digested with the in 

vitro models. The pigs were fed three times, 6-, 3-, and 1.5h prior to sacrifice, respectively with the 

SMP; the samples were collected at four different zones of the digestive tract. A gastric (stomach)-, 

duodenal-, upper intestinal- (Int 1), and lower intestinal- (Int2) sample, was collected in a total of 

eight pigs. Protein degradation, generation of peptides and free amino acids were analyzed with the 

same methods as for the previous inter-laboratory in vitro studies. The similarity of the different 

investigated digestion models was assessed in a partial least square analysis (PLS), considering the 

peptide analysis. An average was calculated for each sampling zone (Figure 5, pig- stom, duodenum, 

Int1, and Int2). The progression in pig in vivo digestion was clearly visible as indicated with the arrow. 

The samples from the gastric phase of the harmonized protocol all cluster close to the pig stomach 

sample (Figure 5, light blue) and the samples from the harmonized intestinal phase cluster below the 

pig Int 2 average (Figure 5, dark blue), indicating that they are possibly to some extend further 

digested than the pig Int 2 sample. The samples from the gastric- or intestinal- phase of the in-house 

protocols are spread in two groups in the lower part of the PLS analysis, showing that their results 

are on one hand very variable between each other and more importantly, different from the in vivo 

samples. In conclusion, it can be stated, that by setting the harmonized protocol in operation, two 

major goals were achieved. First, the comparability of experimental results between labs and 

countries was improved and even more importantly, the two endpoints (gastric and intestinal phase) 

indeed reflect the in vivo pig situation considering the digestion of proteins. Additional work is 

needed to compare other nutrients in a similar way. 
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Comparison of bioactive sequences found in vitro and in vivo  

The role of protein digestion in health is undeniable, not only from the nutritional point of view but 

due to the benefit of released bioactive peptides on health. In this context, it is generally observed 

that particular stable regions from milk proteins to gastrointestinal hydrolysis are precursors of 

sequences described as bioactive peptides. This raises the question of the physiological significance 

of these regions that, in some cases, have deserved to be considered as “food hormones” 

(Teschemacher et al., 1997). It is also worth considering that the peptide active form is sometimes 

released only after digestion. An example is fragment 169-175 from β-casein KVLPVPQ, that 

possessed a low in vitro ACE-inhibitory activity, but produced a significant antihypertensive effect 

after its oral administration to spontaneously hypertensive rats. This sequence was shown to lose the 

Gln at C-terminal end during simulated gastrointestinal digestion, giving rise to KVLPVP, which is 

presumably the in vivo active form (Maeno et al., 1996). 

Some studies have been selected to determine whether bioactive sequences identified after in vitro 

digestion are illustrative of those found in vivo. In these studies, opioid, antihypertensive and 

caseinophosphopeptides (CPPs) appear as the best represented cases. Through the reviewed years, 

the level of evidence and technical advance has increased from finding immunoreactive materials to 

peptide sequencing. 

Bovine β-casomorphins are opiate-like acting fragments from bovine β-casein comprising the 60-66 

(β-casomorphin-7) or C-terminally shortened fragments thereof and were originally isolated from an 

enzymatic casein digest (Brantl et al., 1979). They show the common N-terminal amino acid 

sequence YPFP and behave preferentially as µ-type opioid agonists (Brantl et al., 1981). In adult 

volunteers after ingestion of milk, β-casomorphin-7 and reduced amounts β-casomorphin-4 or -6 

immunoreactive materials occurred in the duodenal section of the small intestine. The main 

component of the immunoreactive material was larger than β-casomorphin-7 and was identified as 

its precursor (Svedberg et al., 1985). Indeed, this fragment was later isolated from the duodenal 

chyme of mini-pigs after feeding with the milk protein casein and was referred to as β-casomorphin-

11 which presented four additional amino acids at the C-terminal side (Meisel, 1986). The low 

amount of this peptide in the duodenum was attributed to rapid brush border degradation and/or 

high absorption rate of the fragments. More recently, in duodenum of mini-pigs fed gelled skim milk, 

two additional precursors of β-casomorphin-7, β-casein f(58-72) and β-casein f(59-67), were found 

(Barbe et al., 2014). In human jejunum, upon casein ingestion, β-casomorphin-7, numerous 

precursors of this peptide, and the short form, β-casomorphin-5, were reported (Boutrou et al., 

2013). 

Jinsmaa and Yoshikawa examined the conditions necessary for the release of β-casomorphins during 

in vitro gastrointestinal digestion (Jinsmaa and Yoshikawa, 1999). Pepsin cleaves the Leu58-Val59 

peptide bond and leucine aminopeptidase removes the Val
59

, rendering the Tyr at the N-terminus. 

For the carboxyl terminus, pancreatic elastase was found responsible for the hydrolysis of the 

peptide bond Ile66-His67 giving rise to β-casomorphin-7 (YPFPGPI). This means that the inclusion of 

pancreatic enzymes other than trypsin and chymotrypsin in the in vitro protocol will determine the 

generation the specific and physiological cleavages releasing β-casomorphin-7 from its precursors. β-

casomorphin-7 has been found upon sequential digestion of infant formulas with pepsin and 

Corolase PP® under conditions simulating infant digestion, with gastric pH 3.5 (Hernandez-Ledesma 

et al., 2004). De Noni, by hydrolysing β-casein under similar conditions, has also reported its 

occurrence; the highest amount being recovered when the peptic attack with pepsin was conducted 

at pH 2.0 (De Noni, 2008). Some precursors included in the β-casein 57-68 region were found when 

cheese or milk were digested with pepsin and pancreatin (Hernandez-Ledesma, Quiros et al. 2007; 
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Sanchez-Rivera, Diezhandino et al. 2014) or with human gastrointestinal secretions (Qureshi, 

Vegarud et al. 2013). Interestingly, an additional hydrolysis step with brush border peptidases 

released β-casomorphin-7 (Picariello et al., 2015). 

Neocasomorphin-6, f(114-119) from β-casein (YPVEPF) was first identified in a gastrointestinal in 

vitro digest (Jinsmaa and Yoshikawa, 1999) and more recently, it has been reported in human 

jejunum after milk ingestion (Boutrou et al., 2013). Likewise, this sequence appeared in duodenal 

effluents of mini-pigs after ingestion of liquid heated milk (Barbe et al., 2014). Neocasomorphin has 

been also identified after in vitro digestion of milk and cheese (Sanchez-Rivera et al., 2014), and 

under both adult and infant conditions employing physiologically relevant settings (Dupont et al., 

2010a; Hernandez-Ledesma et al., 2007). In contrast, other authors have reported the release of a 

precursor, β-casein f(114-124), (Picariello et al., 2010). 

Antihypertensive peptides are probably the most numerous bioactive compounds of proteinaceous 

nature, milk being the main source of peptides with this activity. The complete correspondence 

between in vitro activity (inhibition of the angiotensin converting enzyme, ACE) and in vivo effect 

(blood pressure lowering) has not been demonstrated, and it has been attributed to peptide 

degradation during gastrointestinal digestion or to a poor bioavailability. Hence, the presence of 

active sequences in digestion effluents marks the first step to know their bioaccessibility and 

potential absorption (Martinez-Maqueda et al., 2012).  

Table 1 shows some antihypertensive peptide sequences that have been reported along the different 

parts of the intestinal tract in in vivo studies, after consumption of bovine milk or casein in the case 

of adults, and human milk or infant formula in the case of newborns 

The sequences KVLPIPQ and VVPYPQR from human milk, that correspond to the Ile- and Val-replaced 

antihypertensive peptides β-casein f(169-175), KVLPVPQ and f(177-183), AVPYPQR, respectively, 

have been identified in the stomach of newborns but also in the undigested milk, which suggested 

that proteolysis begins during lactation or in the time before feeding (Dallas et al., 2014). In contrast, 

many unique peptides absent in maternal milk have been found in gastric digests, which suggests 

that extensive proteolysis also occurs in the term infant stomach. The β-casein sequence 133-138, 

LHLPLP, was reported in the jejunum of volunteers ingesting a commercial casein (Boutrou et al., 

2013). Precursors of this sequence, f(132-140) and f(130-140), are found in the duodenum of pigs 

upon ingestion of heated milk and acid gels prepared from milk (Barbe et al., 2014). This sequence 

belongs to a highly conserved β-casein region in different mammals, resistant to digestion due to the 

abundance of Pro residues. Numerous related peptides have been found after simulated 

gastrointestinal digestion of human (Hernandez-Ledesma et al., 2007) and bovine milk proteins 

(Benede et al., 2014b; Qureshi et al., 2013; Sanchez-Rivera et al., 2014). The inclusion of the brush 

border hydrolases on the digestion model favored the release of different forms with Pro138 at the C-

terminus (Picariello et al., 2015). From this sequence LHLPLP, various fragments HLPLP, HLPL, LPLP, 

HLP, LPL and PLP have shown antihypertensive activity (Quiros et al., 2007; Sanchez-Rivera et al., 

2016). 

In the case of αs1-casein f(143-149), AYFYPEL was found in stomach and duodenum of humans after 

milk or yogurt ingestion (Chabance et al., 1998), while in duodenum the reported form was f(144-

149), YFYPEL. These peptides have been identified as antihypertensive in a casein hydrolysate 

(Contreras et al., 2009; Sanchez-Rivera et al., 2014) but recently, its ability to interact with opioid 

receptors and exert an agonist activity has been described (Fernandez-Tome et al., 2016). Different 

peptide forms from this region have been found after gastric digestion of milk under dynamic 

conditions (Sanchez-Rivera et al., 2015) and after in vitro digestion of milk (Dupont et al., 2010b), 
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cheese (Sanchez-Rivera, Diezhandino et al. 2014) and infant formulas (Hernández-Ledesma et al., 

2007).  

Bovine caseins are also a source of caseino-phosphopeptides (CPPs) that have been proposed to 

prevent the precipitation of metal ions at alkaline pH in the distal small intestine (Meisel and 

FitzGerald, 2003). Interestingly, the phosphorylated regions are relatively resistant to hydrolysis 

during gastrointestinal digestion. Boutrou et al. showed that in addition to phosphorylation, the 

presence of bound minerals also prevents CPP from hydrolysis (Boutrou et al., 2010). The analysis of 

intraluminal digests of Fe-β-casein f(1-25) in vascularized rat loop model evidenced that the 

fragment, which contains the four phosphoserines, f(15-25), is resistant to proteinases. In the human 

stomach, phosphorylated fragments from β-casein 29-41, 33-44, 30-41, 6-17 and 29-40 were 

identified after milk ingestion. In human duodenum, related forms from these sequences were found 

(Chabance et al., 1998). In pig duodenum, CPPs from β-casein together with monophosphorylated 

sequences from αs1- and αs2-casein have been reported. However, other phosphorylated regions 

exhibiting the cluster sequence S(P)S(P)S(P)EE could not be identified under the analysis conditions 

due to the low ionization capacity of these multiple phosphorylated forms (Barbe et al., 2014). In 

human jejunum and ileum, related sequences have been found, which implies that phosphopeptides 

can survive the prolonged intestinal passage in vivo (Boutrou et al., 2013; Meisel et al., 2003). 

Phosphopeptide formation and resistance has been followed during simulated gastrointestinal 

digestion. The use of sequential hydrolysis with pepsin and pancreatin has been shown to release 

phosphorylated sequences previously reported in vivo, also in infant formula employing suitable 

conditions (Miquel et al., 2005). Moreover, isolation of the CPP fraction by selective precipitation or 

TiO2 chromatography allowed to identify several sequences containing the phosphorylated cluster 

(Miquel et al., 2006; Picariello et al., 2010). Adt et al. compared the number of sites of 

phosphorylation of CPPs in non-digested and digested Beaufort cheese samples, and found a 

decrease in the number of polyphosphorylated peptides (Adt et al., 2011). Still, an important part of 

the identified peptides contained the characteristic cluster sequence S(P)S(P)S(P)EE. The fact that the 

analysis was performed on a selective precipitate highlights the importance of this step on the 

thorough identification of all possible forms. 

Altogether, these results denote that in vitro digestion under different conditions is able to release 

certain gastrointestinal resistant peptides found in human digests. In addition the above examples 

highlight that not only the enzymes but their concentration, as well as, ion composition and pH of the 

digestive juices greatly affect the observed results and highpoint the importance of employing 

parameters deduced from human determinations to obtain physiologically relevant results. 

What happens when proteins are cross-linked at the interface of an emulsion? 

Recently, there were extensive studies carried out on how the digestion of interfacial protein in 

emulsion could be controlled by targeted enzymatic modification of the adsorbed protein layer 

(Juvonen et al., 2015; Macierzanka et al., 2011; Macierzanka et al., 2012). The main hypothesis was 

that a change in the pattern of proteolysis might alter colloidal phase behaviour of the emulsion in 

the stomach and the small intestine, which ultimately might influence both satiety and food intake. 

Triglyceride oil-in-water emulsions were produced with the milk protein sodium caseinate (NaCN), 

which was then modified after emulsification by enzymatic crosslinking with microbial 

transglutaminase (TG). The enzyme was selected because of its common use in food and 

pharmaceutical applications to strengthen or otherwise modify protein networks (Dickinson, 1997; 

Fontana et al., 2008). The work on the effect of the TG crosslinking was divided into three parts: (i) 

development of the emulsification and the crosslinking conditions (Macierzanka et al., 2011), (ii) in 

vitro static digestion studies, including an interfacial characterisation of changes in the adsorbed 
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protein layer during the digestion (Macierzanka et al., 2012), and (iii) in vivo human studies on 

postprandial responses (Juvonen et al., 2015). 

The in vitro studies (Macierzanka et al., 2012) focused on the effect of enzymatic structuring of NaCN 

stabilised emulsion on the pattern of simulated gastro-duodenal digestion of the protein, the 

interactions with physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS), and the 

resulting microstructural transformations of the emulsion as it passes through different stages of in 

vitro digestion. By modifying the structure of the NaCN interfacial layer in emulsions, the aim was to 

alter the pattern and/or the rate at which the protein was digested under in vitro conditions 

mimicking physicochemical conditions of the human upper GIT. Significant differences were found 

between the rates of digestion of NaCN crosslinked in emulsion (adsorbed protein) and in solution. 

The crosslinking of interfacial protein delayed proteolysis and prevent the emulsion from 

destabilising under simulated gastric conditions. In emulsion, the digestion of a population of 

polypeptides of Mr ca. 50−100 kDa was significantly retarded through the gastric diges^on. The 

persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the 

system from phase separating. In contrast, a rapid pepsinolysis of adsorbed but non-crosslinked 

NaCN and its displacement by PC led to emulsion destabilisation. The results suggested that the 

changes in protein accessibility and structure induced by adsorption to the oil–water interface and 

TG crosslinking might render the protein less susceptible to hydrolysis in the stomach. After passing 

from the gastric to the duodenal conditions, the interfacial properties of emulsion droplets were 

found to be almost exclusively governed by the BS. The interfacial BS also had a dominant role in 

determining diffusion of emulsion droplets through the small intestine mucus. 

In order to determine whether the TG-induced structuring of the interfacial protein layer in emulsion 

plays a role in controlling postprandial physiological responses, a human clinical trial was carried out 

using isoenergetic and isovolumic emulsions stabilised with either sodium caseinate (NaCN-E) or TG-

crosslinked sodium caseinate (TG-NaCN-E) (Juvonen et al., 2015). Blood samples were collected from 

the participants at baseline and during the 6-h period postprandially for the determination of serum 

TAG and plasma non-essential fatty acids (NEFA), cholecystokinin (CCK), glucagon-like peptide 1 (GLP-

1), glucose and insulin responses. It was found that the TG structuring of the emulsion interface 

affected early postprandial metabolic and hormonal responses as reflected by the different 

postprandial glucose, insulin and CCK profiles. However, the crosslinking did not have a significant 

effect on the gastric empting (GE) rate or the overall postprandial lipid digestion after the ingestion 

of the test emulsions. The in vitro study (Macierzanka et al., 2012) showed that the microstructures 

of NaCN-E and TG-NaCN-E produced with 1% (w/w) NaCN can be very similar to each other, 

producing evenly sized oil droplets that are stable to coalescence throughout the course of the in 

vitro digestion. This could suggest that the GE rate would not be significantly affected by the 

crosslinking of the interfacial protein. Indeed, the in vivo Magnetic Resonance Imaging showed 

comparable phase separation for the two emulsions in the stomach, which was probably the reason 

for the similar GE rates observed (Juvonen et al., 2015). Glucose and insulin blood profiles were 

lower after consuming TG-NaCN-E than NaCN-E, which suggested that protein was released from the 

TG-NaCN-E with a lower rate during the early postprandial phase when compared to the NaCN-E. 

Plasma glucose concentration decreased significantly more after the ingestion of TG-NaCN-E than 

after the ingestion of its non-crosslinked counterpart. As the GE rates were comparable between the 

test emulsions, the difference observed in the glucose and insulin profiles most probably resulted 

from the different release and/or absorption rates of the nutrients during the small intestinal phase 

due to the different initial digestion behaviours of the test emulsions. The postprandial secretion of 

CCK and GLP-1 was stimulated after consuming the two emulsions, but only the CCK profile differed 

significantly between the emulsions, showing a stronger increase after the ingestion of TG-NaCN-E 

than NaCN-E. Those results suggest that even a subtle structural modification of the interfacial 
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protein layer of fat droplets in emulsion can alter the early postprandial profiles of glucose, insulin 

and CCK through decreased protein digestion without affecting significantly on GE or overall lipid 

digestion. 

 

Effect of processing on protein digestion – the example of meat 

The effect of cooking on meat protein digestion has been investigated using both in vitro and in vivo 

approaches (Bax et al., 2013a; Bax et al., 2013b). Although, meat pieces and cooking conditions were 

not the same, some interesting conclusions can be drawn from the comparison of the obtained 

results. The in vitro approach consisted of a static digestion miming both gastric and intestinal 

digestion. For both compartments the kinetics was described and interpreted using a modelling 

approach allowing the evaluation of the maximal rate of digestion, the time at which it was observed, 

and the maximal degradation. In vivo, true ileal digestibility of proteins was measured using 
15

N 

labeled meat in cannulated mini-pigs, and digestion rate was evaluated from the kinetics of amino 

acids appearance in blood. The main data of the 2 studies are presented in Table 2. 

Whatever the type of meat (beef, pork or poultry), the muscle composition is essentially driven by 

contractile proteins (actin and myosin) and sarcoplasmic proteins (myoglobin), that are well 

conserved across species. The cooking temperatures were also slightly different, but for both meats 

it can be equated to medium and well-done meat. The comparison of the in vitro and in vivo data 

thus makes sense. Both approaches showed a decrease in the digestion rate with the more drastic 

cooking conditions. This is particularly true for pepsin digestion which is probably, with gastric 

emptying, one of the main determinants of protein digestion rate. The in vitro static model used was 

not adapted to measure intestinal protein digestibility. For that, instead of measuring OD increase, 

the measurement of non-digested proteins would have been required. Furthermore, in order to 

better mimic the in vivo intestinal digestion, in vitro intestinal digestion would have been conducted 

on samples that underwent different pepsin digestion duration. Nevertheless, in agreement with the 

true ileal digestibility observed in vivo, the maximal degradation observed in vitro after digestion with 

pancreatic enzymes was not different according the cooking conditions. The effect of meat cooking 

on peptides release from proteins during digestion has been investigated using both in vitro and in 

vivo approaches (Sayd et al., 2016). For example, in the case of myoglobin, a total of 34 peptides 

were identified in vitro and 14 in vivo, with 4 with a same amino acid sequence. Interestingly, the 

protein presented the same area not degraded when using both approaches (Figure 6). 

From this comparison, it can be concluded that the in vitro model properly ranks solid foods 

according to their digestion rate. It should be noticed that this good correlation was observed with 

minced meat. As the chewing efficiency greatly affects the in vivo meat protein digestion rate 

(probably through modification in gastric emptying), the in vitro digestion rate should however be 

considered as ‘potential‘. Regarding the overall digestion efficacy, the in vitro static approach proves 

to be a useful tool to compare the effects of food processing, however it does not provide a 

digestibility measurement as such.   

 

3 Bioaccessibility & bioavailability of micronutrients and phytochemicals 

Simulated in-vitro digestion has, in addition to macronutrients, also been carried out with a large 

number of micronutrients and phytochemicals, i.e. compounds that may have beneficial health 

effects but which are not strictly essential. Micronutrients comprise minerals, trace elements and 

vitamins, while the group of phytochemicals or secondary plant compounds is much larger, including 

e.g. phytosterols, carotenoids, polyphenols, glucosinolates, triterpenes, and many more. In vitro 

digestion has been employed for many micronutrients and phytochemicals, including trace elements 
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(iron, zinc), minerals (calcium, magnesium), carotenoids, a range of polyphenols, phytosterols 

(Moran-Valero et al., 2012), vitamins including B6, B12, E, D, (Etcheverry et al., 2012), and other 

dietary constituents such as cholesterol (Bohn et al., 2007). In the following section, we will focus on 

the most prominently examined compounds for which sufficient data is available. For this purpose, 

the focus will rest on iron as a trace element, carotenoids as vitamin A precursors and the most 

prevalent lipo-soluble phytochemicals, and polyphenols as the most abundant water-soluble 

phytochemicals. In addition, their dietary intake has been related to the prevention of micronutrient 

deficiencies (vitamin A, iron), and chronic disease prevention (carotenoids, polyphenols).   

Carotenoids – micronutrients and most abundant lipo-soluble phytochemicals 

Carotenoids as lipophilic constituents differ in their digestion behavior from water-soluble 

compounds as they require incorporation into mixed micelles, consisting of bile acids, partially 

digested lipids (mono-, diglycerides), phospholipids, and other lipophilic/amphipathic constituents. 

Thus, bioaccessibility is equivalent to the amount of carotenoids that are incorporated into mixed 

micelles in the aqueous phase following oro-gastro-intestinal digestion. For assessment of 

bioaccessibility, centrifugation and filtration (through 0.2 µm or even 0.02 µm filters) is typically 

carried out (Corte-Real et al., 2014), to remove carotenoids trapped in oil or present in the 

precipitate. Dialysis (through a semi-permeable cellulose membrane) may also be carried out but has 

shown to produce lower results (Veda et al., 2006). As carotenoids are typically consumed in form of 

fruits and vegetables, in vitro studies have focused on these food items, which are low in starch, and 

thus the oral digestion phase has often been left out. It is likewise assumed that carotenoids are 

mostly absorbed in the small intestine, and that colonic metabolism and uptake is negligible, though 

very little data is available on this topic (Alminger et al., 2014; Bohn et al., 2015). Additional 

endpoints that have been determined in vitro include total recovery (Failla et al., 2008), accounting 

for the presence of non-degraded but not absorbable carotenoids, and carotenoid retention after 

colonic fermentation (Goni et al., 2006; Kaulmann et al., 2015). Often, digesta have further been 

investigated for cellular uptake, i.e. coupling in vitro digestion with cellular uptake or transport 

models of the small intestinal epithelium, typically based on Caco-2 cell models (Biehler et al., 2011a; 

Corte-Real et al., 2016), reflecting intestinal enterocytes, taking into account cellular uptake, 

intracellular transport, and further sequestration, as well as potential metabolism/cleavage. 

As incorporation into micelles is paramount and depends on the presence of bile salts, pancreatic 

lipase, and lipids during digestion (Bohn, 2008; Borel, 2003), it is important that in vitro methods take 

these considerations into account, i.e. supplying sufficiently high enzyme and bile salt concentrations 

(Biehler and Bohn, 2010). Even though additional factors influence the bioavailability of carotenoids, 

e.g. cellular uptake, transport in the enterocyte, secretion to chylomicrons, re-distribution of 

carotenoids in lipoproteins (Borel, 2012; Reboul and Borel, 2011), it is believed that bioaccessibility 

constitutes the most influential factor. Thus, determination of bioaccessibility in vitro should 

reasonably well reflect bioavailability in vivo.  

Bioavailability of carotenoids in vivo is typically determined by analyzing the most recently absorbed 

carotenoids that appear in the plasma, i.e. in the triacyl-glycerol rich lipoprotein (TRL) fraction, rich in 

chylomicrons. Mostly, the area-under-time-curve (AUC, for 10-12 hours) above baseline (before test 

meal intake) is determined as a marker for bioavailability, which can be translated into fractional 

absorption (Bohn et al., 2013; O'Neill and Thurnham, 1998). 

Only a few studies have attempted to compare results from in vitro to in vivo studies, with generally 

promising conclusions, i.e. a reasonable correlation between the two. Reboul et al. (2006) compared 

fractional incorporation into micelles of alpha-and beta-carotene as well as of lutein and lycopene 
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from different test meals following in vitro digestion to earlier conducted in vivo incorporation into 

micelles from similar test meals, obtained by the same group (Tyssandier et al., 2003). In general, a 

high correlation (R=0.90, P=0.038) was encountered, suggesting that the bioaccessibility results in 

vitro in tendency reflect in vivo bioaccessibililty, pointing out that indeed intestinal solubility is a 

crucial parameter for carotenoid bioavailability (Figure 7). Furthermore, the authors compared their 

own bioaccessibility results for lycopene, beta-carotene and lutein with bioavailability results (TRL-

AUC values) from other authors, employing similar test meals, finding a high overall correlation of 

R=0.98 (P<0.001, Figure 8), with a better correlation for beta-carotene (R=0.998) compared to 

lycopene (R=0.54), perhaps due to the lower availability of lycopene in general. However, it should 

also be noted that up to 8-fold differences occurred between bioavailability and bioaccessibility, and 

that individual values can significantly deviate from an average correlation. These differences may be 

due to factors related to absorption and further transport, which can greatly vary between 

individuals. Similarly, in a study by Alminger et al. (2012), bioaccessibility of lycopene and beta-

carotene from soups containing tomato, broccoli and carrots, was compared to human bioavailability 

(determined via plasma concentrations after several weeks of consumption), and found generally 

comparable results for beta-carotene (R=0.93) and 5-cis lycopene (R=0.87) for various types of soups. 

Interestingly, cellular uptake equally well correlated with in vivo data. Recent studies have shown 

that inter-individual absorption of lutein (Borel et al., 2014), lycopene (Borel et al., 2015b) and beta-

carotene (Borel et al., 2015a) depended also on the presence of single nucleotide polymorphisms 

(SNPs), related e.g. to carotenoid transporters or cleavage enzymes (Borel, 2012), which are not 

accounted for by in vitro studies.  

As not all of the bioaccessible fraction may be taken up and further transported and absorbed by 

intestinal lining, bioaccessibility, at least for the better soluble xanthophylls, may tend to 

overestimate bioavailability, as also seen in dynamic models (Van Loo-Bouwman et al., 2014; Van 

Loo-Bouwman et al., 2010). For example, Unlu et al. (2005) reported bioavailability of lutein from 

spinach/mixed salad (when served with sufficient amounts of fat) of 28% while in vitro 

bioaccessibility from another type of spinach was reported as 58% (Biehler et al., 2011b). For 

lycopene from tomato juice, human bioavailability was calculated as 3.1% in one trial (Bohn et al., 

2013) while bioaccessibiliy was in a similar range (2.9% et al., Corte-Real and Bohn, unpublished), 

though again, based on different juices.  

 

Polyphenols - water soluble phytochemicals 

Unlike carotenoids, most polyphenols (with few exceptions such as resveratrol and curcumin), are 

reasonably well water-soluble. Thus, their bioaccessibility does not rely on micellization, but rather 

on release from the matrix and their staying in solution in the aqueous phase, as some polyphenols 

may be complexed with proteins (digestion enzymes) or minerals, and may precipitate (Bohn, 2014).  

Upon matrix release, polyphenols are partly taken up by the epithelium in the small and/or large 

intestine. In order to be absorbed, it appears (apart for some anthocyanins) that glucosides must be 

cleaved to liberate the respective aglycons (by e.g. cytosolic beta-glucosidase, phlorizin-hydrolase of 

the brush-border, or, to a lesser extent, by the low pH in the stomach). These aglycons can then be 

taken up via passive diffusion or via transporters. Many compounds are however re-excreted into the 

gut via transporters, or are glucuronidated/sulfated, and can be further metabolized in other tissues 

(e.g. the liver). Thus, compared to their native compounds, they may undergo substantial 

metabolism, depending largely on the polyphenol type. 
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Following in vitro digestion, bioaccessibility is either determined following centrifugation (Mandalari 

et al., 2013) centrifugation/filtration (Kaulmann et al., 2015), or, alternatively, following diffusion 

through semipermeable membranes (dialysis), with  e.g. 10,000-12,000 Da cut-offs (Bouayed et al., 

2012; Bouayed et al., 2011; Gil-Izquierdo et al., 2002), simulating that only soluble, small molecules 

can be taken up by the epithelium. The differences between these methods may be considerable, 

and recoveries appear lowest for dialysis (Bouayed et al., 2012). In contrast, in vivo bioavailability of 

polyphenols may either be compared by their (or their metabolites) urinary excretion (for water 

soluble polyphenols such as isoflavones, (Bohn et al., 2013), shown to vary between 0.3-43% 

(Manach et al., 2005), by their plasma appearance (Guo et al., 2014) over time (AUC), or via the 

feacal balance method (reflecting absorption) when colonic metabolism can be neglected, such as in 

ileostomists (Erk et al., 2014). The AUC following a single dose application is supposed to best reflect 

bioavailability of polyphenols (Carbonell-Capella et al., 2014).  

Thus, factors effecting polyphenol matrix release are crucial and must be mimicked in vitro, possibly 

including mastication, mechanical movements during gastric phase, pH (that could aid in liberation 

via hydrolyzing reactions), influence of enzymes aiding in the degradation of the matrix and in 

polyphenol release. For polyphenols however, there are at least 3 major concerns regarding in vitro 

digestion that clearly limit the predictability of bioavailability. These are:  

1. The absence of a colonic fermentation step for most in vitro models, where polyphenols are 

heavily metabolized. Many polyphenols reach the colon, where the microbiota can lead to 

additional reactions, including ring fission, deglycosylation, hydrolysis, deglucuronidation, 

and demethylation (Alminger et al., 2014; Bohn et al., 2015), resulting in products that may 

be absorbable in the colon.  

2. Many polyphenols are bound in the non-extractable fraction (NEPP) that may not be 

released in the gastric phase/small intestine (Bohn, 2014), but perhaps in the colon, such as 

phenolic acids. A large proportion of polyphenols is covalently bound, and are not 

extractable by chemical means (Arranz et al., 2010; Perez-Jimenez et al., 2013) or released in 

the small intestine. This NEPP fraction may exceed the extractable fraction. 

3. Bioavailability of polyphenols is altered by transporters in the gut, phase I/II metabolism 

reactions, and rapid turnover/excretion. For example, polyphenols may interact in a way that 

favours cellular uptake due to blocking certain efflux transporters into the gut lumen, or may 

override certain phase I/II metabolizing enzymes (Bohn, 2014), processes that are typically 

not studied in vitro, unless in vitro digestion is coupled to cellular models (Andre et al., 2015; 

Kaulmann et al., 2015), though detection problems may then become a concern.   

These factors impede estimating polyphenol availability by in vitro methods compared to e.g. less 

heavily metabolized compounds (e.g. carotenoids). Nevertheless, a few studies have compared their 

in vitro bioaccessibility with in vivo human trials. Brown et al. investigated the polyphenol 

composition of lingonberries following both in vitro (including faecal fermentation) and in vivo 

digestion in ileostomists (Brown et al., 2014). Certain differences in polyphenol composition were 

found between the ileal efflux and the bioaccessible fraction in vitro, and were explained by the 

absence of brush-border enzymes, e.g. phlorizin-hydrolase, but also cytosolic beta-glucosidase 

(cleaving sugar-moieties), from in vitro model. Nevertheless, general trends for in vitro and in vivo 

digested polyphenols were similar (bioaccessibility in vitro 28% and 49% in vivo). The results 

emphasize that the correlation between in vitro digestion with faecal fermentation and colonic 

bioaccessibility in vivo (ileostomist model) can be reasonable. Vetrani et al. compared an in vitro 

model including colonic digestion with human in vivo availability as determined via urinary excretion 

(Vetrani et al., 2016), based on over 70 subjects consuming a polyphenol rich diet over 8 weeks. A 
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significant though low correlation of R=0.280 (P=0.04) was found for 15 metabolites, suggesting that 

when combined with colonic fermentation, the model may predict polyphenol uptake and excretion 

to a certain extent.  

For compounds that are unstable (but absorbable) during the upper stages of digestion, in vitro 

models may more accurately predict bioaccessibility. For example, anthocyanin (as parent 

compounds) urinary excretion has been reported to be below 5.1% (range 0.004 – 5.1%, (Kalt et al., 

2014; Manach et al., 2005), while in vitro studies have suggested a bioaccessibility between zero in 

apples (Bouayed et al., 2011) to 4.6% from mulberries (Liang et al., 2012). For compounds that are 

absorbed to a high extent in the small intestine, such as isoflavones, it is also worth to compare in 

vitro with in vivo results. While most in vitro studies of soy isoflavonoids suggest a higher 

bioaccessibility of the glucosides (due to their higher water solubility), between 80-100% (Table 3), 

aglycons (more apolar, perhaps requiring micellarization) range lower in bioaccessibility, approx. 30-

60%. However, in vivo differences between aglycons and glucosides appear negligible (Nielsen and 

Williamson, 2007; Zubik and Meydani, 2003). It is assumed that glucosides require cleavage into 

agylcons prior to uptake, reducing the initial advantage of higher solubility. However, bioaccessibility 

may well predict relative absorption between various isoflavone aglycons, such as daidzein vs. 

genistein (Table 3), as both in vitro and in vivo find higher potential uptake/absorption of the more 

polar daidzein vs. genistein, when measured by urine excretion or by fractional absorption (faecal 

balance method). When measured as AUC in plasma however (a more accurate measure of 

bioavailability, accounting for uptake, biodistribution and excretion), genistein showed higher 

bioavailability (Setchell et al., 2003), as daidzein more rapidly is distributed into other tissues (higher 

volume of distribution (VD)). It is therefore important to clearly define “bioavailability” – noting that 

the latter is different from absorption or excretion.   

As measuring all individual polyphenols may be less practical, some in vitro methods have 

investigated total polyphenol recovery following in vitro digestion by the Folin-Ciocalteu method 

(Table 3), though not being specific for polyphenols (also detecting e.g. reducing sugars). When 

compared to in vivo bioavailability (either estimated by urine appearance or by plasma AUC), results 

appear to be in the same range of availability, though it is hard to compare the various test meals 

and various measures of bioavailability. Unfortunately, the Folin-Ciocalteu method is not applicable 

in vivo, where too many other factors influence anti-oxidant capacity of plasma.  

 

Trace elements – example iron 

One of the first digestion methods that has latterly been transferred to many other applications was 

described by Miller et al. (1981), set up originally to study iron bioaccessibility. Unlike organic 

micronutrients (vitamins) and phytochemcials, minerals do not undergo significant metabolism 

during digestion. However, oxidation/reduction may take place that can influence mineral 

bioavailability, and especially divalent minerals may undergo complexation during digestion, 

impinging on their availability. In order to be available, minerals/trace elements are believed to 

require solubilization (except perhaps, in the form of nanoparticles), which depends on the pH, 

concentration of the mineral, and the presence of other complexing agents. For example, Fe
2+

 may 

be oxidized into the non-absorbable Fe
3+

, or it may be complexed by organic acids such as phytic 

acid, oxalic acid or polyphenols, greatly reducing availability, similarly for other minerals (Bohn et al., 

2004a; Bohn et al., 2004b; Hurrell, 2007). Higher pH generally limits the availability of divalent 

minerals/trance elements, as solubility decreases with higher pH (>7), as insoluble oxides/hydroxides 

may form.  
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As for most minerals, iron is believed to be primarily absorbed in the upper intestine, though also 

colonic absorption, especially at lower pH (improved solubility), such as following fermentation of 

probiotic fiber, cannot be excluded (Scholz-Ahrens et al., 2007). An additional consideration is that 

for certain minerals there may be several non-exchangeable sources, termed “pools”, with different 

availability, such as for iron, zinc, and selenium. There are two main dietary sources of iron which do 

not mix during digestion, i.e. iron in hemoglobin in meat/fish and products (heme-iron), and non-

heme iron from plant sources, which are absorbed in a different way, with heme-iron having a 5-10 

times higher bioavailability. This is because iron bound to heme is taken up as an entire peptide 

(possibly via endocytosis), while non-heme iron is absorbed in the intestine as Fe
2+

 via divalent metal 

ion transporter 1 (Fuqua et al., 2012), susceptible to oxidation and complexation. As iron, unlike 

other minerals, where bioavailability may be best determined via plasma measurements, is mostly 

incorporated into erythrocytes (hemoglobin), measuring iron in red blood cells, such as several 

weeks following the intake of isotopically labelled iron, is the gold standard for iron absorption 

studies. However serum appearance curves have shown to correlate well with erythrocyte 

incorporation (Conway et al., 2006). In vitro, many studies have either focused on the bioaccessible 

fraction as measured via dialysis, to exclude iron bound/complexed to macromolecules (proteins, 

high molecular weight polyphenols) and not being bioavailable (Miller et al., 1981), or following 

prolonged centrifugation and filtration (Kulkarni et al., 2007), resulting in generally higher values 

than dialysis. As heme-iron absorption cannot be studied in vitro, in vitro digestion does not allow to 

compare between heme-iron and non-heme iron availability.   

Many studies have compared in vitro available iron with bioavailable iron in human trials. For 

example, iron availability has been studied from different iron salts with and without the addition of 

sodium EDTA (ethylene diamine tetra-acetic acid) from corn masa flour tortillas. A high correlation 

was found between in vitro bioaccessibility (after dialysis) and the amount recovered in erythrocytes 

(R=0.89, P<0.001, Figure 9). However, bioavailability was higher (by a factor 2) than bioaccessibility 

(Walter et al., 2003). It appears that for other minerals, which are usually absorbed to a higher 

degree, such as Mg and Ca (absorption approx. 20-40%), bioaccessibility and bioavailability values 

show less discrepancy. However, comparable results were obtained when correlating in vitro results 

by Aragon et al. (2012) with those of Davidsson et al. (2002), contrasting in vitro dialysability of 

various iron salts with and without EDTA, and erythrocyte incorporation of stable iron labelled test 

meals with the same iron compounds (n=6, R=0.80). In another comparison, various concentrations 

of ascorbic acid were added to test meals to investigate the effect on iron absorption. When 

comparing results obtained from this study, i.e. dialyzable iron fraction (Aragón et al., 2012) with 

earlier results from a similar study in vivo (erythrocyte incorporation (Cook and Monsen, 1977), a 

similar high correlation was obtained (R=0.98). In addition to iron salts, also different food items have 

been compared. Sandberg et al. (2005) presented data from various test meals, comparing in vitro 

solubility with human absorption studies (erythrocyte incorporation), and found a very high 

correlation (R=0.97), though with solubility being approx. twice as high as iron absorption (Figure 9). 

General limitations of the dialysis technique are that large molecules such as heme-iron or ferritin 

would be bioavailable, but not dialyzable, while some smaller compounds that are dialyzable such as 

phenolic complexes or complexes with organic acids can diffuse through the semipermeable 

membrane, but would generally not be bioavailable. As transporters may play important roles, 

especially between different mineral pools (e.g. heme iron and non-heme iron), predictability across 

those different forms is not possible by in vitro techniques. Some of these limitations may be 

overcome by coupling in vitro digestion with other techniques, i.e. based on cell culture. Correlations 

were high when comparing cellular uptake (a Caco-2 based model) following in vitro digestion and 

human bioavailability (erythrocyte uptake) following the addition of ascorbic acid or tannic acid (a 
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polyphenol) to a semi-synthetic meal (R=0.934, P= 0.012 and R=0.927, P=0.007, respectively), though 

iron uptake was (as mostly done for cellular studies) determined via ferritin expression (Yun et al., 

2004).  

 

In summary, while the tendency, that is the direction of bioavailability (higher, lower, equally well) 

appears to be generally predictable by methods incorporating in vitro digestion, this does mostly not 

predict the magnitude of bioavailability in humans, as too many processes, namely transport, phase 

I/II metabolism, colonic changes (especially for polyphenols), biodistribution and (renal) excretion 

affect bioavailability of micronutrients and phytochemicals in many different manners, which cannot 

be predicted by this method. A more accurate method is the coupling of in vitro digestion to cell 

models of the epithelium, such as Caco-2 cells, which may simulate, to a certain extent, transport and 

secretion to the basolateral side, as well as model some aspects of further metabolism. It should 

further be noted that though bioaccessibility often appears to be reasonably correlated with 

absorption (and urinary excretion), this is not necessarily true for bioavailability as determined via 

the AUC in plasma, which depends on further biodistribution. Generally, bioaccessibility tends to 

overestimate bioavailability, due to the involvement of limiting transporters in vivo. Despite these 

limitations, in vitro models have developed into very useful tools for hypothesis building and 

investigating a large number of potential influential factors governing digestion of micronutrients and 

phytochemicals. 

 

4 Lipid digestion 

The use of in vitro models in the study of food materials during digestion invariably requires the 

progression of findings from simulation to human studies. Ideally, observations made as part of 

human trials should be able to be correlated with findings from in vitro analysis, thus demonstrating 

the physiological relevance of the model.  A particular challenge with this approach, beyond ensuring 

that any model provides sufficient representation of human digestive physiology, is the identification 

and characterisation of complementary markers across both in vitro and in vivo analysis that can be 

used to establish particular correlations between simulated and human studies. The uptake of 

dietary lipids involves luminal hydrolysis of triglycerides by gastric and intestinal lipases followed by 

absorption across the epithelium and re-assimilation into triglycerides in the enterocytes. Biomarkers 

most commonly used to follow lipid digestion are fatty acid release (in vitro) and triglyceride 

appearance in blood, plasma-TAG (in vivo). Good in vitro/in vivo correlations are thus often impaired 

by the fact that in vitro data mostly reflect the intraluminal step of lipid digestion while in vivo data 

reflect the overall process of digestion and intestinal absorption without any information on rate 

limiting steps. A first challenge is therefore to find in vitro and in vivo data that reflect similar 

processes. Another challenge when creating in vitro models to assess lipolysis is ensuring accurate 

representation of both the biochemistry and biophysics of the gastrointestinal tract.  

When considering replication of the biochemistry of lipolysis, good in vivo-in vitro correlations were 

obtained during the gastrointestinal lipolysis of complete test meals and O/W emulsions, using a 

two-step static in vitro digestion model. This model was initially developed based on in vivo data 

recorded during the digestion of a liquid test meal in healthy volunteers and the arbitrary choice of 

conditions existing in the stomach and small intestine at 50% gastric emptying (Carriere et al., 2000; 

Carrière et al., 2001).  The mean pH values of 5.5 and 6.25 measured in gastric and duodenal 

contents, respectively, were chosen for the gastric and duodenal steps of in vitro digestion. Gastric 

lipase concentration was 17 µg/mL (20 U/mL on tributyrin; (Gargouri et al., 1986)) for the gastric step 
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and the solution mimicking human gastric juice was prepared using either purified human gastric 

lipase (HGL), recombinant dog gastric lipase (rDGL) or a rabbit gastric extract (RGE) containing rabbit 

gastric lipase (RGL) because these enzymes have similar lipase activity and specificity. For the 

duodenal step, a 1.7-fold dilution of gastric mixture was applied, resulting in a gastric lipase 

concentration of 10 µg/mL, while pancreatic lipase and bile salt concentrations were set at 250 

µg/mL (2,000 U/mL on tributyrin; (Carrière et al., 1993)) and 4 mM, respectively, using either purified 

human pancreatic lipase (HPL) or porcine pancreatic extracts (PPE) as a source of pancreatic lipase, 

and either human or bovine bile (Sigma B3883) as a source of bile salts. The choice of incubation 

times (30 min for the gastric step + 60 min for the duodenal step) was also arbitrary.  

Nevertheless, the choice of these conditions allowed the measurement of gastric (t=30min) and 

gastric + duodenal (t=90min) lipolysis levels (% of fatty acids released from triglycerides) that were in 

the same range as the lipolysis levels measured in vivo during the whole meal digestion in the 

stomach and duodenum (Table 4). In this later case, gastric lipolysis was deduced from the total 

output of lipolysis products passing through the pylorus, while gastric + duodenal lipolysis was 

deduced from the output of lipolysis products collected by continuous aspiration at the Angle of 

Treitz (junction between duodenum and jejunum). Both in vivo and in vitro studies revealed a faster 

lipolysis of the liquid test meal compared to the solid-liquid test meal (Table 4). This was attributed 

to the fact that triglycerides in the homogenized liquid test meal were finely emulsified with lecithin, 

thus providing a good and accessible substrate for lipases, while triglycerides in the solid-liquid meal 

had various origins and reduced accessibilities (butter, cooking oil, meat fat). Further experiments 

with the lipase inhibitor Orlistat confirmed that the two-step static in vitro digestion model was 

predictive of in vivo gastric and duodenal lipolysis levels, as well as of undigested fat excretion in 

feces when gastrointestinal lipolysis was impaired (Carrière et al., 2001).  

The same two-step static in vitro digestion model was used to study the effects of various emulsifiers 

on the bioavailability of α-linolenic acid (ALA) from flaxseed oil, in combination with an in vivo study 

of ALA lymphatic secretion in rats (Couedelo et al., 2015). In vitro data showed that the 

emulsification of flaxseed oil with soya lecithin led to a higher level of gastric lipolysis compared to 

the emulsification with sodium caseinate (Figure 10; Table 4). Similarly, duodenal lipolysis of flaxseed 

oil was also higher with lecithin than with caseinate (Figure 10; Table 4). The in vivo data obtained 

with the same emulsions and lymph collection in rats showed significant changes (p<0.05) in the 

kinetics and overall absorption (AUC) of ALA over the 6 hours post-feeding. The resulting lymphatic 

secretion of ALA was 3-fold higher with soya lecithin (Cmax = 24 ± 3 mg/mL; AUC=60 ± 32 mg/ml × h) 

than with caseinate (Cmax = 7 ± 4 mg/mL; AUC=24 ± 14 mg/ml × h). In addition, the synthesized 

chylomicrons were notably larger and more numerous with soya lecithin whereas they were smaller 

in the presence of caseinate. These results suggest that the intestinal bioavailability of ALA is 

increased by the emulsification of flaxseed oil with soya lecithin via an improved lipolysis, favouring 

the intestinal absorption of ALA and the secretion of many large chylomicrons in lymph. In vitro 

lipolysis rate of flaxseed emulsions therefore appears as predictive of intestinal absorption rate, 

probably because lipolysis is the limiting step in the overall bioavailability of fatty acids. Using the 

same two-step static in vitro digestion model, similar differences in the effects of lecithin and 

caseinate on lipolysis rates were observed with rapeseed oil and milk fat olein emulsions (Table 4; 

(Vors et al., 2012)). 

 

Since lipid digestion is an interfacial process its speed is controlled by droplet surface area 

(Benzonana and Desnuelle, 1965) and the nature of the surfactants which can impair enzyme 

accessibility at the surface (Delorme et al., 2011), hence the structural transformations that an 
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emulsion might undergo as a result of gastrointestinal biophysical processes need to be considered 

during in vitro testing. This consideration is highlighted in a series of studies progressing from in vitro 

to in vivo undertaken on “gastric structured” emulsions (Day et al., 2014; Golding et al., 2011; Keogh 

et al., 2011; Steingoetter et al., 2015; Wooster et al., 2014). The study design was based on the 

hypothesis that the rate and possibly extent of lipid uptake could be controlled by manipulating the 

surface area of fat to which digestive lipases could adsorb (such that lower surface areas would 

present fewer biding sites, leading to a reduction in the relative rate of digestion). To test this 

hypothesis, model emulsions were formulated to undergo a number of structural transitions when 

exposed to the biophysical conditions in the stomach (noting that all emulsion were initially stable 

and had comparable particle size distributions and viscosities). Dependent on composition, 

emulsions could be tailored to remain stable, flocculate, coalesce, partially coalesce (due to the 

presence of solid fat within the droplets at 37 °C), and fully break upon prolonged exposure to gastric 

environment (Figure 11).  

The study design initially involved the use of static in vitro gastric and small intestinal models to 

assess microstructural changes and extent of lipid digestion. Incubation of emulsion samples within 

the in vitro models, coupled with confocal microscopy, provided evidence of how conditions of pH, 

presence of enzymes and bile, and the application of shear at physiological temperatures impacted 

on emulsion structure during simulated digestion (Golding et al., 2011). In this respect, the static in 

vitro model was able to demonstrate the responsiveness of emulsion structures to particular 

physiological variables, enabling high throughput determination of structure dynamics based on 

iterative formulation design (Figure 11a). The in vitro model also enabled the extent of lipolysis to be 

measured for these emulsions during simulated small intestinal digestion, using a pH-stat 

methodology to determine the rate of fatty acid synthesis arising from triglyceride hydrolysis. This 

approach was able to confirm that low surface area emulsions that had undergone coalescence, 

partial coalescence or breaking during gastric incubation were significantly more slowly hydrolyzed 

compared to structurally stable or flocculated emulsions that retained high surface area.  

Based on in vitro findings, selected emulsion systems were studied in vivo using conventional dietary 

interventions and studies using MRI (Golding et al., 2011; Keogh et al., 2011; Steingoetter et al., 

2015). Upon consumption, the different emulsions were isocaloric, isoviscous and had the same 

initial droplet size distribution, but were again designed to undergo particular gastric structuring 

mechanisms based on earlier in vitro findings. Identification and development of complementary 

measurement techniques between in vitro and in vivo study methodologies was an important 

consideration in allowing correlations (of both structural dynamics and digestive properties) between 

the two approaches to be established. In the case of emulsions undergoing dynamic gastric 

structuring, information on gastric structure (MRI Imaging), emptying (Paracetamol absorption & MRI 

stomach volume) and triglyceride absorption (Plasma-TAG) were key biomarkers of interest.  

Variations in plasma-TAG onset time, peak and area under the curve provided information on the 

relative rate and extent of fat digestion taking place, which could in turn be correlated to rate of fatty 

acid release during in vitro digestion (Figure 11b). Intralipid was used as a (stable, high surface area) 

control emulsion for these studies, thereby providing initial comparison between in vitro and in vivo 

measurements. Comparison of a samples plasma-TAG profile to Intralipids could accordingly be used 

as an indicator of whether changes to in vitro fatty acid release arising from emulsion structuring 

were similarly represented by changes in vivo. In this respect, specific (and reproducible) in vitro-in 

vivo correlations were able to be established. Notably, partially coalescing emulsions, for which in 

vitro fatty acid release was found to be greatly diminished when compared to Intralipid, showed a 

markedly suppressed plasma-TAG response when compared to the same control. However, a poor in 
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vitro - in vivo correlation was found when comparing emulsions that broke under gastric conditions. 

In vitro digestion experiments predicted a slow intestinal uptake, however in vivo plasma-TAG curves 

showed a delayed but fast intestinal lipid update. It was proposed (and later confirmed by MRI) that 

the main source of this discrepancy arose from delayed gastric fat emptying with concurrent re-

dispersion during passage through the antrum-pylorus (Steingoetter et al., 2015). This highlights the 

widely held belief that a key limitation of static in vitro models is accurate representation of digestion 

biophysics (gastric mixing and emptying), such limitations have vastly been improved in the TNO 

intestinal model and IFR Model Gut dynamic digestion models (Minekus et al., 1999; Wickham and 

Faulks, 2007).     

In summary, when considering lipid emulsion digestion, detailed understanding of digestion 

biochemistry has allowed in vitro models to become a relatively good predictor of in vivo behavior. 

This is especially true when considering simple/stable emulsions where the extent of gastric and/or 

gastric + duodenal lipolysis measured in vitro were in the same range as the lipolysis levels measured 

in vivo. As for the digestion of emulsions whose structure changes as a result of interaction with the 

biophysics of the digestive environment, there are moderately good in vitro-in vivo correlations, but 

they can be hampered by a lack of representation of gastric mixing and empting in static in vitro 

models.   

 

General conclusion 

Food digestion is a dynamic process that is characterized by a flow of food in the different 

compartments of the gastrointestinal tract, the evolution of pH in the different compartments, the 

continuous production and release of digestive enzymes and bile. Therefore, simulating digestion 

with rather basic static in vitro digestion models appears difficult and questions arise whether these 

simple models can predict and/or correlate with in vivo experiments. 

Nevertheless, this exhaustive review of the recent knowledge acquired on the ability of static in vitro 

digestion models to mimic the in vivo reality clearly shows that, in some cases, static models can be 

physiologically relevant. One of the best examples is the excellent correlation that has been observed 

by several groups between in vitro and in vivo data for assessing the digestion of starch. There are 

indeed strong evidences that in vitro protocols do appear to be reliable indicators of the glucose 

response in vivo and could even be of great interest for the design of new foods with specific 

carbohydrate digestion rates. 

For protein digestion, in vitro models appear as potential predictor of true digestibility or, at least, 

are useful to rank different protein sources according to their digestibility. Similar patterns of 

bioactive peptides have been observed when comparing in vitro and in vivo models, thus in vitro 

models could be used to predict the release of bioactive sequences in the gastrointestinal tract. 

However, more work is needed to assess whether in vitro models could evaluate concentrations of 

bioactive sequences in the lumen. 

For carotenoids, in vitro bioaccessibility reasonably predicts in vivo bioavailability, especially on the 

greater average. While absolute bioavailability is harder to predict, the relative availability, e.g. when 

comparing availability of carotenoids from 2 test meals, appears to be quite well predictable.  

The case of polyphenols is rather different. If fecal fermentation is not included in the model for 

predicting the bioavailability of individual compounds, results do not appear meaningful, except for 

compounds mostly absorbed in the upper part of the intestine such as for certain flavonoids. When 
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estimating global bioavailability from a product, i.e. the sum of total phenolics, without focusing on 

individual compounds, the in vitro method appears to perform reasonably well, when compared to 

absorption and/or excretion. It also appears that colonic bioaccessibility in vitro vs. in vivo (in short-

bowel subjects) is well correlated, though differences due to brush-border enzyme activities exist. 

Furthermore, when in vitro digestion is coupled to faecal fermentation, reasonable correlations to 

the in vivo situation (uptake, excretion) may be reached, though more data is required in this 

respect. 

Therefore, although in vitro static models are over-simplistic and, as such, do not reproduce all the 

dynamic aspects of the gastrointestinal tract, they are extremely useful to predict in vivo digestion in 

some cases detailed in this review, offering a first step in screening the digestibility of food and 

understanding the effect of processing conditions on the digestive fate of certain food constituents. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Table 1 

Bioactive peptide (protein 

fragment) (reference) 

Ingested 

food 

Intestinal 

tract part 

Species Reference 

KVLPVPQ (β-CN 169-175) 

(Maeno et al., 1996) 

Human 

milk 

Stomach Human 

(newborn) 

Dallas et al., 2014 

AVPYPQR (β-CN 177-183) 

(Karaki et al., 1990) 

 

Human 

milk 

Stomach Human 

(newborn) 

Dallas et al., 2014 

AYFYPEL (αs1-CN 143-149) 

(Contreras et al., 2009) 

 

Milk or 

yogurt 

Stomach and 

duodenum 

Human Chabance et al., 1998 

YFYPEL (αs1-CN 144-149) 

(Sánchez-Rivera et al., 

2014) 

Milk Duodenum Human Chabance et al., 1998 

MKPWIQPK (αs2 190-197) 

(Maeno et al., 1996) 

 

Milk  Duodenum Pig Barbé et al., 2014 

FFVAPFPEVFGK (αs1-CN 23-

34) 

(Karaki et al., 1990) 

 

Milk  Duodenum Pig Barbé et al., 2014 

YPFPGPIPN (β-CN 60-68) 

(Saito et al., 2000) 

 

Casein Jejunum Human Boutrou et al., 2013 

LHLPLP (β-CN 133-138) 

(Quirós et al., 2007) 

 

Casein Jejunum Human Boutrou et al., 2013 

TPVVVPPFLQP (β-CN 80-

90) 

(Abubakar et al., 1998) 

 

Infant 

formula 

Jejunum Pig 

(newborn) 

Bouzerzour et al., 

2012 

     
a
 Fragment comprising antihypertensive sequence 
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Table 2 

 

 Meat P 

In vitro Pork, 30 min at 70°C Pork, 30 min at 

140°C 

 

Pepsin digestion    

Maximal degradation (ODmax) 0.106 0.122 *** 

Maximal rate of digestion (ΔOD/h) 0.163 0.126 *** 

Half-life time (min) 31 45 *** 

Trypsin –chymotrypsin digestion    

Maximal degradation (ODmax) 0.17 0.21 NS 

Maximal rate of digestion (ΔOD/h) 0.88 0.82 * 

Half-life time (min) 9 13 NS 

    

In vivo Veal, 30 min at 75°C Veal, 30 min at 

95°C 

 

True ileal digestibility, % 95.6 95.3 NS 

Maximal rate of IAA appearance in 

plasma (Δ [IAA]/min) 

22.8 13.0 ** 

Time of maximal plasma IAA 

concentration (min) 

165 290 * 
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Table 3 

 

Type of 

study 

Polyphenols 

studied 

Bioaccessibility/ Bioavailability 

(%) 

Studied by Reference 

In vitro Apple pp, FC* 55% mean bioaccessibility GI digestion and 

dializability 

(Bouayed et al., 2011) 

In vitro Apple 

polyphenols, 

HPLC 

24.7% overall dialiyzability, 

49.2% overall bioaccessibility 

31-56% intestinal recovery (0.5-

21% dialysis) for chlorogenic acids 

GI digestion and 

dialyzability 

(Bouayed et al., 2012) 

In vitro  Apple pp Procyanidins: 55% 

Rutin: 47% 

Phloridzin: 45% 

 

GI digestion and 

bioaccessibility 

(Tenore et al., 2013) 

In vitro Cashew apple 

juice pp, FC 

39% overall bioaccessibility GI digestion and 

bioaccessibility 

(de Lima et al., 2014) 

In vitro  Isoflavones from 

bread 

Daidzein: 59% 

Genistein: 33% 

Daidzein-genistein ratio: 1.8 

Glycitein: 75% 

Glucosides: mostly >80% 

GI digestion and 

bioaccessibility 

(Walsh et al., 2003) 

In vitro Isoflavones from 

pretzels 

Total isoflavones: 78-85% 

Aglycons (genistein, daidzein, 

glycitein): 40-60% 

GI digestion and 

bioaccessibility 

(Simmons et al., 2012) 

 

 

    

In vivo Apple pp in 

ileostomists,  

<5.3% recovery for 5-

caffeoylquinic acid, 4-p-

coumaroylquinic acid, caffeic acid, 

(-)-epicatechin, phloretin, quercetin 

AUC in plasma (8h) (Kahle et al., 2011) 

In vivo Apple smoothie 

pp in ileostomists 

63% recovery overall Recovery in 

ileostomist fluids 

(Hagl et al., 2011) 

In vivo Isoflavones Daidzein: 29.5% (low dose) 

Geinstein: 8.9% (low dose) 

Ratio daidzein: genistein: 3.3 

Faecal balance based 

on stable isotope 

administration 

(Setchell et al., 2003) 

In vivo Isoflavones from 

a soy-tomato 

juice, healthy 

subjects 

49.3% recovery (after cleaving of 

glucorinides/sulfates) 

Daidzein: 70% 

Genistein: 15% 

Daizein-genistein ratio: 4.7 

Glycitein: 31% 

Urinary excretion (24 

h pool) 

(Bohn et al., 2013) 

*pp= polyphenols, FC= Folin Ciocalteu method.  
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Table 4 

 

In vivo data / Digestion of test meals 

in healthy volunteers 

Gastric lipolysis (%)
a
 Lipolysis (%) at the angle of Treitz 

(gastric + duodenal lipolysis) 
b
 

Liquid test meal (Carrière et al., 

1993) 

10.0 ± 1.0 nd 

Liquid test meal (Carrière et al., 

2001) 

24.4 ± 5.7 59.4 ± 5.6 

Solid-Liquid test meal (Carrière et 

al., 2001) 

9.3 ± 6.3 27.7 ± 6.8 

Solid-Liquid test meal (Carrière et 

al., 2005) 

7.3 ± 5.9 20.8 ± 11.2 

In vitro data / Digestion of test 

meals and O/W emulsions 

Gastric lipolysis at 

t=30min (%) 

Gastric + duodenal lipolysis at 

t=90min (%) 

Liquid test meal (Carrière et al., 

2001) 

7.4 ± 0.3 72.3 ± 0.9 

Solid-Liquid test meal (Carrière et 

al., 2001) 

3.0 ± 0.5 53.7 ± 0.3 

Rapeseed oil/lecithin emulsion (Vors 

et al., 2012) 

9.5 ± 2.0 43.2 ± 3.6 

Rapeseed oil/caseinate emulsion 

(Vors et al., 2012) 

4.0 ± 4.0 29.1 ± 2.2 

Milk fat olein/lecithin emulsion 

(Vors et al., 2012) 

6.2 ± 0.6 42.0 ± 2.3 

Milk fat olein/caseinate emulsion 

(Vors et al., 2012) 

4.8 ± 1.6 20.9 ± 2.6 

Flaxseed oil/lecithin emulsion 

(Couedelo et al., 2015) 

16.3 ± 0.8 50.3 ± 2.0 

Flaxseed oil/caseinate emulsion 

(Couedelo et al., 2015) 

7.3 ± 2.9 32.6 ± 4.3 
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Titre : Nouvelles perspectives à la digestion de l'amidon et à la réponse glycémique : des digestions in 

vitro à une étude chez l'Homme par imagerie par résonance magnétique (IRM) 

Mots clés : Amylase salivaire, amylase pancréatique, pain, pâtes, jus de citron, thé, satiété. 

Résumé : Nous passons plus des trois quarts de 

notre vie dans l'état postprandial. Pourtant, une 

plus grande attention a été accordée à l'étude du 

métabolisme à jeun qu'à l'impact de l'état 

postprandial sur la santé. 

Il est prouvé scientifiquement qu'une 

alimentation optimale pour la santé passe par la 

prise en compte de l'impact glycémique des 

aliments au-delà de leur simple teneur en 

glucides. Un déterminant important de l'impact 

glycémique de notre alimentation est l'amidon, 

qui joue un rôle clé dans la nutrition humaine en 

fournissant jusqu'à 50% de l'apport énergétique 

total. S'il est établi que la cinétique de digestion 

des aliments riches en amidon est un élément 

essentiel de leur impact glycémique, les 

contributions de chaque étape digestive à ce 

processus restent un sujet de débats. Afin de 

mieux comprendre les facteurs qui peuvent 

influencer la réponse glycémique aux aliments 

riches en amidon, et d’identifier de nouvelles 

stratégies pour atténuer leur impact glycémique, 

il est essentiel d'élargir notre compréhension du 

processus digestif de l'amidon.  

Cette thèse visait à étudier la digestion de repas 

riches en amidon (pain et pâtes), à réévaluer la 

contribution l’amylase salivaire à l'aide de 

digestions semi-dynamiques in vitro, et à mener 

une étude chez l'Homme pour déterminer l'effet 

de boissons (jus de citron et thé) sur : la réponse 

glycémique au pain, l'apport ad libitum, et la 

digestion gastrique étudiée par imagerie par 

résonance magnétique (IRM). Nos résultats 

apportent une base scientifique à l'élaboration 

d'une stratégie simple et efficace pour réduire la 

réponse glycémique aux aliments riches en 

amidon dans des repas de tous les jours. 

 

 

Title: Novel insights into starch digestion and the glycaemic response: from in vitro digestions to a 

human study using magnetic resonance imaging (MRI) 

Keywords: Salivary amylase, pancreatic amylase, bread, pasta, lemon juice, tea, satiety. 

Abstract: All of us spend over three quarters of 

our lives in the postprandial state. Still, more 

attention has been dedicated to the study of the 

fasting metabolism than to the impact of the 

postprandial state on health. 

Scientific evidence supports that an optimum 

diet for health requires consideration of the 

glycaemic impact of foods in preference to 

consideration of carbohydrate content alone. An 

important determinant of the glycaemic impact 

of our diets is starch, which plays a key role in 

human nutrition, supplying up to 50% of the 

total energy intake. If it is clear that the digestion 

rate of starch-rich foods is an important 

determinant of their glycaemic impact, the 

contribution of each digestive stage to this 

process remains controversy. To better 

understand the factors that can influence the  

glycaemic response to starch-rich foods, and to 

identify new strategies to attenuate the 

glycaemic impact of starch-rich diets, it is 

essential to expand our understanding of the 

digestive process of starch.  

The aims of this PhD were to study the digestion 

of starch-rich meals (bread and pasta), to re-

evaluate the contribution of salivary amylase 

using semi-dynamic in vitro digestions, and to 

conduct a human study to determine the effect 

of drinks (lemon juice and tea) on: the glycaemic 

response to bread, ad libitum intake, and gastric 

digestion assessed by magnetic resonance 

imaging (MRI). Our results provide scientific 

rationale for the development of a simple and 

effective strategy to reduce the glycaemic 

response to starch-rich foods in everyday-life 

meals. 
 

 


