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RÉSUMÉ ÉTENDU Introduction

Le système visuel humain a une capacité efficace à reconnaître facilement des régions d'intérêt dans des scènes complexes, même si les régions ciblées ont des couleurs ou des formes similaires à l'arrière-plan. La détection d'objets saillants (SOD) vise à détecter l'objet saillant qui attire le plus l'attention visuelle. La réponse d'un système SOD est une carte de saillance dans laquelle chaque pixel est étiqueté par une valeur réelle prise dans l'intervalle [0,1] pour indiquer sa probabilité d'appartenir à un objet saillant. Plus la valeur est élevée, plus la saillance est élevée.

En fonction de l'objectif visé, les approches existantes peuvent être classées globalement en deux catégories: les approches basées image et les approches basées vidéo. Les approches basées image modélisent le processus de vision en fonction de l'apparance de la scène. Le système visuel humain étant sensible aux mouvements, les approches basées vidéo détectent l'objet saillant en utilisant des indices, à la fois, du domaine spatial que du domaine temporel et deviennent de plus en plus populaires. Dans ce travail, nous nous concentrons sur les approches basées vidéo. Ce sujet a montré beaucoup d'intérêt notamment pour des applications exploitant l'attention humaine, telle que la conduite autonome [START_REF] Yan | Autonomous vehicle routing problem solution based on artificial potential field with parallel ant colony optimization (ACO) algorithm[END_REF], l'évaluation de la qualité, surveillance militaire, etc. En conduite autonome, l'un des principaux problèmes est de garantir la robustesse de reconnaissance des panneaux de signalisation. Ces panneaux sont généralement de couleurs vives et attirent facilement l'attention humaine. Les approches de détection d'objets saillants dans une vidéo permettent de détecter le panneau de signalisation dans une scène dynamique, ce qui contribue à améliorer la sécurité lors de la conduite autonome.

Dans l'évaluation de la qualité d'image, la sensibilité du système visuel humain à divers les signaux visuels est importante. La détection d'objets saillants et l'évaluation de la qualité d'image sont toutes deux liées à la façon dont le système de visuel humain perçoit une image; les chercheurs intègrent des informations de saillance à des modèles d'évaluation de la qualité d'image visant à améliorer leur performance. Une méthode habituelle consiste à utiliser la saillance comme une fonction de pondération pour refléter l'importance (ou la saillance) de la région dans une image.

Une autre application peut être trouvée dans la surveillance militaire. Les objets tels que les humains, les voitures et les avions attirent généralement un grand intérêt et doivent être soigneusement observé. Pour capter l'évolution de ces objets spécifiques, le calcul de la saillance fournit un indice important pour localiser les objets cibles.

Les méthodes de calcul de saillance basées vidéo insistent uniquement sur l'étiquetage de chaque pixel de l'image vidéo en indiquant "saillant" ou "non saillant". Pour les scènes réelles, la région saillante détectée peut contenir plusieurs objets (voir Fig. R1 (b)). Décomposer une région saillante en un ensemble d'objets différents est plus significatif et meilleur pour la compréhension de la vidéo. La Fig. R1 (c) montre la segmentation sémantique d'objets vidéo saillants [START_REF] Le | Semantic Instance Meets Salient Object: Study on Video Semantic Salient Instance Segmentation[END_REF] où tous les objets de même étiquette sémantique sont regroupés sous cette étiquette. Sur la Fig. R1 (d), on peut voir la segmentation semi-supervisée utilisant un étiquettage manuelle initial pour faire la segmention à travers la vidéo. L'assistance humaine est adoptée pour définir les objets d'intérêt qui sont généralement délimités dans la première image de la séquence. En propageant les étiquettes définies manuellement sur le reste de la séquence de la vidéo, l'instance de l'objet d'intérêt est segmentée dans l'ensemble de la séquence vidéo. La segmentation semi-supervisée d'objets vidéo peut être considérée comme un problème de suivi, mais avec le masque en sortie. Dans la carte en sortie, les pixels sont regroupés en plusieurs ensembles auxquels sont attribués une identité cohérente à l'objet: les pixels d'un même ensemble appartiennent au même objet.

Ce dernier type de segmentation s'avère plus attractif mais n'a pas encore été complètement étudié et donc laisse de la place pour la recherche. Ainsi cette thèse s'est également intéressée à la segmentation semi-supervisée d'objets vidéo.

Notions de base sur la détection d'objets vidéo saillants

Lors de la création de jeux de données, de longues vidéos sont collectées par des volontaires ou sélectionnées à partir de sites Web de partage de vidéos comme Youtube. Ensuite, la fixation visuelle humaine est collectée pour une séquence vidéo d'entrée. A l'aide d'un système de eye-tracking, les participants aux expériences visualisent tous les courts vidéo-clips et les points de leur fixations sont enregistrés. Puis, tous les Enfin, l'objet vidéo saillant est défini à l'échelle de la vidés entière: l'objet qui conserve les densités de fixation les plus élevées tout au long de la vidéo est sélectionné comme objet saillant et la vérité-terrain est ainsi générée. Dans le cadre de cette étude, cinq jeux de données ont été exploitées : VOS [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF], Freiburg-Berkeley Motion Segmentation (FBMS) [START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF][START_REF] Ochs | Segmentation of Moving Objects by Long Term Video Analysis[END_REF], Fukuchi [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF], DAVIS 2016-val [START_REF] Perazzi | A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation[END_REF] et DAVIS-2017-val [START_REF] Pont-Tuset | The 2017 DAVIS Challenge on Video Object Segmentation[END_REF]. Diverses métriques sont utilisées pour mesurer la similarité entre la carte de saillance générée (SM) et la vérité-terrain (GT). Les mesures couramment utilisées [START_REF] Borji | Salient Object Detection: A Survey[END_REF] sont: erreur absolue moyenne (MAE), courbe de précisionrappel (P-R), mesure de F-measure, rappel et précision.

Techniques traditionnelles de déctection d'objets vidéo saillants

Selon les techniques utilisées, les méthodes de détection d'objets vidéo saillants peuvent être grossièrement scendées en deux catégories: méthodes les traditionnelles et les méthodes utilisant l'apprentissage profond.

Dans cette étude, une nouvelle méthode traditionnelle de détection des objets saillants dans les vidéos est proposée. Les méthodes traditionnelles de détection d'objet basées sur l'a priori de l'arrière-plan peuvent rater des régions saillantes lorsque l'objet saillant touche les bords de l'image. Pour résoudre ce problème, nous proposons pour détecter la totalité de l'objet saillant d'ajouter les bordures virtuelles. Un filtre guidé est ensuite appliqué sur la sortisaillance temporelle en intégrant les informations de bordure spatiale pour une meilleure détection des objets saillants du bord. Enfin, une carte de saillance spatio-temporelle globale est obtenue en combinant la carte de saillance spatiale et la carte de saillance temporelle en fonction de l'entropie. Les principales contributions sont:

• une technique basées sur la notion de bordure virtuelle est proposée pour détecter un objet saillant connecté au bord de l'image,

• un filtre sensible aux contours est introduit pour fusionner les contours spatiaux avec les informations temporelles afin d'améliorer les contours des objets saillants,

• une nouvelle façon de décider du niveau de confiance de la carte de saillance spatiale et de la carte de saillance temporelle par le calcul de l'entropie et l'écarttype.

La Fig. R2 montre un des exemples de cartes de saillance générées à l'aide de la nouvelle approche VBGF exploitant les bords virtuels et le filtre guidé pour la détection d'objets vidéos saillants et la vérité-terrain (GT) correspondante.
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Vérité terrain Cartes de saillance générées Figure R2. Exemples de cartes de saillance générées avec la méthode proposée (VBGF).

Revue des méthodes utilisant l'apprentissage profond pour la détection des objets saillants dans les vidéos

Ces dernières années, les méthodes d'apprentissage profond (ou deep-learning) ont considérablement amélioré la détection des objets saillants dans les vidéos. C'est un sujet important et il reste encore beaucoup à explorer. Il est donc intéressant de se faire une idée globale, sur les méthodes existantes, qui pourrait ouvrir la voie à des travaux futurs. Les méthodes basées sur l'apprentissage profond peuvent atteindre des performances élevées, mais elles sont largement dépendantes des jeux de données d'apprentissage. Il est donc nécessaire de tester la générécité des méthodes de l'état de l'art en effectuant des comparaisons expérimentales sur différents jeux de données publics. Ainsi, nous donnons un aperçu des développements récents dans ce domaine et comparons les méthodes correspondantes à ce jour. Les principales contributions sont:

• un apperçu des méthodes récentes d'apprentissage profond pour la détection d'objets saillants dans les vidéos,

• un classement des méthodes de l'état de l'art ainsi que leur architecture,

• une étude expérimentales comparative pour tester la générécité des méthodes de l'état de l'art à travers des expérimentations sur des bases de données publiques.

Afin de montrer comment la performance d'un modèle traditionnel de détection d'objets vidéo saillants peut être encore améliorée en intégrant une méthode d'apprentissage profond, une méthode étendue (VBGFd) est proposée. C'est la version élargie de la méthode traditionnelle VBGF proposée intégrant la technique de deep-learning. La Fig. R3 montre exemples de cartes de saillance générées par la méthode proposée (VBGFd).

Méthode deep-learning pour la segmentation semi-supervisée de l'objet vidéo

Dans le domaine de segmentation semi-supervisée de l'objet vidéo, la technique de déformation de masque, qui adapte (recale) le masque de l'objet cible en fonction du flux de vecteurs entre images consécutives, est largement utilisée pour extraire l'objet cible. Le gros problème de cette approche est que la carte déformée générée n'est pas toujours d'une grande précision, l'arrière-plan ou d'autres objets pouvant être détectés à tort comme étant l'objet cible. Pour remédier à ce problème, nous proposons une méthode SWVOS, qui utilise la sémantique de l'objet cible comme guide lors du processus de recalage. Le calcul du taux de confiance de déformation détermine d'abord la qualité de la carte déformée générée. Ensuite, une sélection de la sémantique est introduite pour optimiser la carte à faible taux de confiance, où l'objet cible est identifié, à nouveau, à l'aide de l'étiquette sémantique de l'objet cible. Les contributions sont:

• une méthode est proposée pour déterminer le niveau de confiance des cartes de recalés,

• la sémantique des objets est introduite pour filtrer les objets du premier plan appartenant à des classes différentes de celle de l'objet prédéfini.

La Fig. R4 montre certaines cartes de segmentation générées par l'approche proposée SWVOS.

Première image et étiquettes générées manuellement
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Résultats de la segmentation Figure R4. Exemples de segmentations obtenues à l'aide de la méthode proposée (SWVOS).

Conclusion et perspectives

Cette thèse porte sur les problèmes de détection d'objets vidéo saillants destinée à la séparation des objets saillants de l'arrière-plan dans chaque image d'une séquence vidéo et les problèmes de segmentation semi-supervisée de l'objet vidéo qui visent à attribuer une dentité d'objet cohérente à chaque pixel de chaque image d'une séquence vidéo. Nous avons proposé une méthode traditionnelle de détection d'objets vidéo saillants et une revue des méthodes deep-learning pour la détection d'objets vidéo saillants. Nous avons égalment introduit une extension de la méthode traditionnelle proposée pour y intégrer le deep-learning et une méthode de deep-learning pour la segmentation semi-supervisée de l'objet vidéo. Les approches proposées ont été évaluées sur les jeux de données publics à grande échelle et difficiles. Les résultats expérimentaux obtenus montrent que les approches proposées donnent des résultats satisfaisants.

Certains travaux futurs peuvent être dérivés des analyses précédentes: utiliser des représentations plus riches les achitectures de deep-learning qui pourraient améliorer les performances l'approche VBGFd proposé; entrainer les réseaux de deep-learning pour la fusion de cartes de saillance pour améliorer l'approche VBGF proposée qui peut faillir quand les saillance temprelles et spatiales ne sont pas suffisamment nettes. On peut également, envisager à employer plus d'indices de saillance vidéo prenant en compte l'attention visuelle humaine. Il sera aussi intéressant d'explorer davantage les aspects temporels et spatio-temporels qui permettraient d'assurer une detection de saillance tout le long de la vidéo. essayez des réseaux faiblement supervisés. Enfin, on peut envisager d'explorer les réseaux faiblement supervisés. En effet, les modèles supervisés améliorent les performances de détection, mais reposent sur un jeu de données volumineux d'apprentissage. Les modèles faiblement supervisés qui ne demandent de grandes masses de données retient l'attention et constituent un sujet d'intérêt pour l'avenir. 
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INTRODUCTION Background

The human vision system has an effective ability to easily recognize regions of interest from complex scenes, even if the focused regions have similar colors or shapes as the background. Salient object detection (SOD) aims to detect the salient object that attracts the most the visual attention. The output of the SOD is a saliency map, in which each pixel is labeled by a real value within the range of [0,1] to indicate its probability of belonging to a salient object. Higher value represents higher saliency.

According to the goal of detection, existing approaches can be broadly classified into image SOD or video SOD, which are illustrated in Fig. 0 we focus on video SOD. This topic has gained much attention for its wide applications, especially where the task is driven by the human attention, such as autonomous driving [START_REF] Yan | Autonomous vehicle routing problem solution based on artificial potential field with parallel ant colony optimization (ACO) algorithm[END_REF], quality assessment, military surveillance, etc.

In autonomous driving, one of the biggest issue is to ensure the robustness of road signs recognition. Road signs are generally in brightly colors and easily catch the human attention. The video salient object detection is good at discovering the road sign in a dynamic scene, which helps to improve the safe during autonomous driving.

In image quality assessment, the sensitivity of the human visual system to various visual signals is important. As salient object detection and image quality assessment are both related to how human vision system perceives an image, researchers incorporate saliency information to image quality assessment models aiming at improving their performance. One usual way is to adopt salient object detection as a weighting function to reflect the importance region in an image.

Another application can be found in military surveillance. The objects such as humans, cars and airplanes usually attracts a lot of interests and need to be carefully observed. To grasp the trend of these specific objects, video salient object detection provide a useful cue to localize target objects. Introduction datasets, which is impossible for some applications where the available data is small. Traditional methods do not suffer from such limitation. Therefore, we firstly focus on video SOD based on traditional method, i.e., detecting salient object based on prior assumption. Deep-learning methods attract large attention for its high accuracy and efficiency. We secondly focus on video SOD based on deep learning methods.

The aforementioned video SOD methods put emphasis on only labeling each pixel in the video frame to be "salient" or "non-salient". For real-world scenes, the detected salient region may contain multiple objects (see Fig. 0.3 (b)). Decomposing the detected region into different objects is more meaningful and is better for video understanding. Video semantic salient object segmentation [START_REF] Le | Semantic Instance Meets Salient Object: Study on Video Semantic Salient Instance Segmentation[END_REF], as show in Fig. 0.3 (c), segments the salient region based on the semantic label, in which the salient objects belonging to the same semantic label are grouped together. From Fig. 0.3 (d), in the output map of video object instance segmentation, the pixels are grouped into multiple sets and assigned to consistent object IDs. Pixels within the same set belong to the same object.

Video object instance segmentation attracts more interests and has not been fully investigated. We address the problem of assigning consistent object IDs to objects instance. One popular way for video object instance segmentation is called as Semisupervised video object segmentation. Human-guidance is adopted to define the objects that people want to segment. It is usually delineated in the frame that the object appears in the first time. By propagating the manual labels to the rest of the video sequence, the object instance is segmented in the whole video sequences. Semisupervised video object segmentation can be regarded as a tracking problem but with the mask output.

Overview of the thesis

The thesis is organized as in Fig. 0.4. Chapter 1 introduces the preliminary knowledge about saliency detection. Chapter 2 is dedicated to a proposed traditional approach for video SOD, and an overview of recent deep-learning based methods and an extended model are proposed for video SOD in Chapter 3. In Chapter 4, a semi-supervised video object segmentation approach is proposed. Chapter 5 concludes the thesis and gives some perspectives for future work. The following parts give a briefly introduction of each chapter, in order to lead readers to better understanding the content.

Chapter 1 introduce the basic knowledge for video SOD and semi-supervised video object segmentation:

• A description of the dataset building.

• A list of popularly used datasets.

• A introduction of widely used evaluation metrics.

Chapter 2 presents a novel traditional method (Virtual Border and Guided Filterbased salient object detection for videos (VBGF)) for solving challenging problems in existing traditional methods:

• A virtual border-based technique for detecting the salient object connected to frame borders using the distance transform.

• An edge-aware filter to fuse the spatial edge with the temporal information for enhancing salient object edges.

• A new way to decide the confidence level of the spatial saliency map and the temporal saliency map by computing Entropy and Standard deviations. • An overview of recent deep-learning based methods for salient object detection in videos is presented;

• A classification of the state-of-the-art methods and their frameworks is provided.

• Experiments are made to test the generality of state-of-the-art methods through experimental comparison on different public datasets.

• An extension of the VBGF (VBGFd) by integrating a deep-learning technique is proposed and the performance is evaluated. • A selection method is proposed to decide the confidence level of the warped maps.

• Object semantic is introduced to filter foreground object belonging to the class which is different from the class of the pre-defined object. 

BASIC KNOWLEDGE

Chapter 1 firstly introduces the procedure of dataset building for video SOD in Section 1.1. Then, benchmarking datasets built in recent years are introduced in Section 1.2. Thirdly, evaluation metrics are finally listed in details in Section 1.3.

Procedure of dataset building

This section introduces the constructing of the video SOD dataset [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF]. In the procedure of dataset building, long videos are collected by volunteers or selected from videosharing websites like Youtube. Then short clips are randomly sampled to keep the clips containing objects in most frames. Then the human fixation is collected for an input video sequence. Subjects participate in the eye-tracking experiments are required to free-view all video short clips and their fixations are recorded. Thirdly, all object masks are manually annotated by subjects for each frame. Finally, the video salient object is defined at the scale of whole videos: the object that keeps the highest fixation densities throughout a video is selected to be the salient object, and the GT is generated. The procedure as shown in Fig. 1.1.

Benchmarking datasets

This section reviews the most popular datasets for video SOD and semi-supervised video object segmentation, respectively.

The VOS [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF] dataset is a recently published large dataset for SOD in videos, which is based on human eye fixation. These videos are grouped into two subsets: 1) VOS-E contains easy videos which usually contain obvious foreground objects with many different types of slow camera motion. 2) VOS-N contains normal videos which contain complex or highly dynamic foreground objects, and dynamic or cluttered background. Due to the limited number of large-scale datasets designed for SOD in videos, existing methods usually use datasets from highly related domains like the datasets hereafter.

The FBMS dataset [START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF][START_REF] Ochs | Segmentation of Moving Objects by Long Term Video Analysis[END_REF] is designed for moving object segmentation. Moving objects attract large attention and thus can be regarded as salient objects in videos. As in the methods [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF], we use the 30 test videos for test and only evaluate the result of frames which are provided the ground truth. It includes different cases (such as "the salient object touches the frame border" in sequence "marple7", "the salient object is very similar to the background" in "dog01" and "cars1", "multiple objects" in "cars5_20", "horses04_0400" and "people2_10" or "the background is complex" in "cats01").

The Fukuchi [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF] dataset, designed for video object segmentation, includes 10 sequences. Since most objects have distinct colors or are very dynamic, they can be con-1.2. Benchmarking datasets sidered as salient objects. The salient object touches the frame border in most video sequences, such as in "DO01_013" all the salient objects touch the frame border and in "M07_058", "DO01_055" and "DO02_001" part of salient objects touch frame border. All tested methods hardly detect the salient object for one video sequence "BR128T". As in [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF], this sequence "BR128T" is excluded in the test.

The DAVIS 2016-train-val dataset [START_REF] Perazzi | A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation[END_REF] 

Evaluation metrics

For video SOD, various metrics are used to measure the similarity between the generated saliency map (SM) and GT. The more commonly used metrics are:

• Mean Absolute Error (MAE): computed as the average absolute difference between all pixels in SM and GT. A smaller MAE value means a higher similarity and a better performance.

MAE = 1 h1 × w1 h1×w1 i=1 |GT(i) -SM(i)| (1.1)
where h 1 is the frame height, w 1 is the frame width.

• Precision-Recall (P-R) curve [START_REF] Borji | Salient Object Detection: A Survey[END_REF]: SM is normalized to [0, 255] and converted to a binary mask (BM) via a threshold that varies from 0 to 255. For each threshold, a pair of (Precision, Recall) values are computed which are used for plotting P-R curve. The curve closest to the upper right corner (1.0, 1.0) corresponds to the best performance.

Precision = |BM GT| |BM| , Recall = |BM GT| |GT| (1.2)
• F-measure: used to evaluate the global performance:

F -measure = (1 + β 2 ) × (Precision × Recall) (β 2 × Precision + Recall) (1.3)
β 2 is often set to 0.3. A higher F-measure mean a better performance.

Evaluation metrics

Note that the benchmark [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF] adopts an adaptive threshold (computed as the minimum value between "maximum pixel value of saliency map" and "twice the average values of saliency map") to convert the saliency map to a binary mask, and the calculates of metrics (MAE, Precision, Recall and F-measure). A higher F-measure, Precision and Recall values mean a better performance.

For video SOD evaluation, the metrics values are firstly computed over each video, and secondly computed the mean values over all videos in each dataset.

For semi-supervised video object segmentation, Region Similarity J and Contour Accuracy F [START_REF] Perazzi | A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation[END_REF] are used to measure the similarity between the generated segmentation map (M) and the ground truth (GT). Region Similarity J is defined as the intersectionover-union of M and GT. Contour Accuracy F is computed by the contour-based precision Pc and recall Rc.

J = |M GT| |M GT| F = 2P c R c P c + R c (1.4)
A larger J value and a larger F value mean a better performance. For the overall evaluation, the final measure is the average of four scores: J for seen categories, J for unseen categories, F for seen categories and F for unseen categories. CHAPTER 2

TRADITIONAL TECHNIQUES FOR SALIENT OBJECT DETECTION IN VIDEOS

In this chapter, Section 2.1 gives an overview of state-of-the-art methods dedicated to video salient object detection. Section 2.2 describes some issues existing in recent works. Section 2.3 presents the proposed method in detail. In Section 2.4, we conduct comparison experiments to evaluate the performance of the proposed method. Section 2.5 concludes the chapter.

An overview of state-of-the-art methods

A large number of approaches have been developed for detecting video salient objects based on traditional methods. Various low-level saliency cues are exploited for detection and different fusion ways are used to fuse the spatial and the temporal information together.

Classification based on low-level saliency cues

For video SOD, we propose to classify low-level saliency cues into three categories: prior assumption, foreground object and moving object.

Saliency cues: prior assumption

Contrast prior, spatial distribution prior, background prior, boundary connectivity prior, center prior and objectness prior [START_REF] Guo | Video Saliency Detection Using Object Proposals[END_REF] are most popular. Specifically, color contrast prior is mostly used in early works to capture the uniqueness in a scene. Chen et al. [START_REF] Chen | A Novel Bottom-Up Saliency Detection Method for Video With Dynamic Background[END_REF] obtain the motion saliency via contrast computation. Chen et al. [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF] compute the color contrast and the motion contrast respectively. Spatial distribution prior implies that the wider a color is distributed in the image, the lesser likely a salient object contains this color; background prior assumes that a narrow border of the image is the background region; boundary connectivity cue is based on the assumption that most of the image boundaries will not contain parts of the salient object: the boundary connectivity score of a region according to the ratio between its length along the image border and the spanning area of this region; center prior assumes that a salient object is more likely to be found near the image center, so it is usually used as a weighting coefficient on saliency maps; objectness prior leverages object proposals as the salient object cue; focusness prior assumes that a salient object is often photographed in focus to attract more attention.

For the saliency value computation, distance transform, graph-based, structured matrix decomposition, etc. are recently used measures. The features are usually extracted in pixel-level or superpixel-level. For superpixel-level, the image is decomposed by using superpixel segmentation which groups similar pixels and generates compact regions. For distance transform, the saliency value is computed as the shortest distance from each pixel or superpixel to seed pixels. Seed pixels selection is the key of distance transform. Based on background prior, Wang et al. [START_REF] Wang | Saliency-Aware Video Object Segmentation[END_REF] consider the spatiotemporal edge map border as seed pixels. Yang et al. [START_REF] Yang | Spatiotemporal salient object detection based on distance transform and energy optimization[END_REF] consider the four borders as seed set individually. Xi et al. [START_REF] Xi | Salient Object Detection With Spatiotemporal Background Priors for Video[END_REF] select the spatio-temporal seeds based on boundary connectivity cue. For graph-based method: an image is over-segmented into superpixels and mapped to one single graph. The saliency value of each superpixel is then computed based on the similarity between connected nodes and the saliency related queries. For structured matrix decomposition [3], a matrix is decomposed into a lowrank matrix representing background and a sparse matrix identifying salient objects.

Saliency cues: foreground object

Video foreground object [START_REF] Salehe | Foreground Segmentation with Tree-Structured Sparse RPCA[END_REF] which is separated from the background is another popular saliency cue for SOD in videos. Using foregroundness cue , Tu et al. [START_REF] Tu | Fusing disparate object signatures for salient object detection in video[END_REF] compute foreground weights to estimate saliency maps. Chen et al. [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF] define the foreground potential and background potential based on reliable object region and background region. Chen et al. [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF] assign high saliency value around foreground object. Aytekin et al. [1] extract the salient segments by applying a spectral foreground detection method. Kim et al. [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF] detect the foreground salient objects. Guo et al. [START_REF] Guo | Video Saliency Detection Using Object Proposals[END_REF] separate the foreground object from the background to produce an initial saliency estimation.

Saliency cues: moving object

Moving objects [4,[START_REF] Habib Mahmood | A collection of challenging motion segmentation benchmark datasets[END_REF] usually attract largely the human attention. Temporal saliency is detected from motion information. The optical flow method is one of the most popular tools to extract the motion information effectively. The salient object can be detected using the optical flow vectors by removing redundant motion (i.e. global motion, including the camera movement or the background motion). For the redundant motion computation, Tu et al. [START_REF] Tu | A New Spatio-Temporal Saliency-Based Video Object Segmentation[END_REF] propose that if the percentage of motion magnitude greater than the half of the maximum motion magnitude is larger than 50%, the global motion exists. Luo et al. [START_REF] Luo | Finding spatio-temporal salient paths for video objects discovery[END_REF] set the major direction along x-axis (either positive x-axis or negative x-axis) and y-axis (either positive y-axis or negative y-axis) to be the global motion in optical flow vectors. Cassagne et al. [START_REF] Cassagne | Video saliency based on rarity prediction: Hyperaptor[END_REF] calculate the mean value of the magnitude and the orientation of optical flow vectors as the global motion. Decombas et al. [START_REF] Decombas | Spatio-temporal saliency based on rare model[END_REF] compute the average value of optical flow vector along x-axis and y-axis as the global motion. These methods only use the motion information between adjacent frames [START_REF] Zhou | Improving Video Saliency Detection via Localized Estimation and Spatiotemporal Refinement[END_REF] to detect the salient object in temporal domain. However, the general idea of video salient object is that it has a coherent motion over time. It means that motion consistence need to be considered. Liu et al. [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF] propagate motion saliency measures over video sequences. Zhou et al. [START_REF] Zhou | Video saliency detection via bagging-based prediction and spatiotemporal propagation[END_REF] provide a bidirectional temporal propagation. 

Classification based on fusion ways

For video SOD, both spatial and temporal information can help the saliency detection. We propose to classify the existing methods into "Map fusion", "Feature fusion" and "Hybrid fusion" methods. "Map fusion" firstly obtains the spatial saliency map and the temporal saliency map, and then combines them together. "Feature fusion" is to fuse the extracted spatial feature and extracted temporal feature together to give a spatiotemporal feature, which is used to generate the spatio-temporal saliency map. In order to employ more video saliency information, these two techniques are used together in "Hybrid fusion" recently.

Video saliency cues

Prior assumption 

Map fusion

Fang et al. [START_REF] Fang | Video Saliency Incorporating Spatiotemporal Cues and Uncertainty Weighting[END_REF] give an adaptive weighted fusion rule with an uncertainty computation on both spatial and temporal saliency maps. Kannan et al. [START_REF] Kannan | Discovering salient objects from videos using spatiotemporal salient region detection[END_REF] propose a Max fusion. For each pixel, the fused saliency is the larger one between spatial saliency and temporal saliency. Duan et al. [START_REF] Duan | A spatiotemporal weighted dissimilarity-based method for video saliency detection[END_REF] combine these two saliency maps in a non-linear way, based on the assumption that spatially dissimilar and moving blocks are more visually attractive. Tu et al. [START_REF] Tu | A New Spatio-Temporal Saliency-Based Video Object Segmentation[END_REF] propose to equally weight both saliency maps in a linear way. Zhai et al. [START_REF] Zhai | Visual attention detection in video sequences using spatiotemporal cues[END_REF] propose a dynamic fusion technique where temporal gaze attention is dominate over the spatial domain when large motion contrast exists, and vice versa. Tu et al. [START_REF] Tu | Fusing disparate object signatures for salient object detection in video[END_REF] generate two types of saliency maps based on a foreground connectivity saliency measure, and exploit an adaptive fusion strategy. Yang et al. [START_REF] Yang | Spatiotemporal salient object detection based on distance transform and energy optimization[END_REF] propose a confidence-guided energy function to adaptively fuse spatial and temporal saliency maps. Ramadan et al. [START_REF] Ramadan | Pattern mining-based video saliency detection: Application to moving object segmentation[END_REF] apply the pattern mining algorithm to recognize spatio-temporal saliency patterns from two saliency maps.

Feature fusion

Wang et al. [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF] and Wang et al. [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF][START_REF] Wang | Saliency-Aware Video Object Segmentation[END_REF] detect the salient object from the fused spatio-temporal gradient field. Guo et al. [START_REF] Guo | Video Saliency Detection Using Object Proposals[END_REF] select a set of salient proposals via a ranking strategy. Li et al. [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF] fuse the spatial and temporal channel to generate saliency maps, and then use saliency-guided stacked autoencoders to get the final saliency map. Bhattacharya et al. [3] use a weighted sum of the sparse spatio-temporal features. Chen et al. [START_REF] Chen | A Novel Bottom-Up Saliency Detection Method for Video With Dynamic Background[END_REF] obtain the motion saliency map with spatial cue, then use k-Nearest Neighbors-histogram based filter and Markov random field to eliminate the dynamic backgrounds.

Hybrid fusion

Kim et al. [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF] generate the spatio-temporal map based on the theory of random walk with restart, which use the temporal saliency map as the restarting distribution of the random walk. Liu et al. [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF] obtain the spatio-temporal saliency map using temporal saliency propagation and spatial propagation. Xi et al. [START_REF] Xi | Salient Object Detection With Spatiotemporal Background Priors for Video[END_REF] first get spatio-temporal background priors, and the final saliency value is the sum of appearance and motion saliency. Zhou et al. [START_REF] Zhou | Improving Video Saliency Detection via Localized Estimation and Spatiotemporal Refinement[END_REF] generate the initial saliency map, and propose localized Chapter 2 -Traditional techniques for salient object detection in videos estimation to generate the temporal saliency map, and deploy the spatio-temporal refinement to get the final saliency map, which is then used to update the initial saliency map. Chen et al. [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF] get the temporal saliency map to facilitate the color saliency computation. Chen et al. [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF] detect the motion cues and spatial saliency map to get the motion energy term, which are combined with some constraints and formulated into the optimization framework. Chen et al. 

Introduction of some existing issues

In this section, a brief overview of some existing issues related to our work is given. The "background prior" [START_REF] Borji | Salient Object Detection: A Survey[END_REF] is widely used in SOD approaches based on traditional techniques. A narrow border of the image is assumed to be the background region. When the salient object pixels appear in the border, their saliency values are set incorrectly to zeros. Besides, video SOD detects the salient object from both spatial domain and temporal domain. How to combine these two saliences together during the detection is complex.

Background prior

Based on this assumption, the distance transform [START_REF] Rosenfeld | Distance functions on digital pictures[END_REF] has been widely used for saliency computation. Traditionally, the distance transforms measure the connectivity of a pixel and the seed set using different path cost functions. Since background regions are assumed to be connected to image borders, the border pixels are initialized as the seed set and the distance transform detects a pixel's saliency by computing the shortest path from the pixel to the seed. The shorter the shortest path is, the higher the saliency is. In the background prior, all the border pixels are regarded as background. Thus, in the distance transform, all the border pixels are set to be seed and their saliency values are thus zeros. This is not true if the object of interest appears in the frame border.

Based on "background prior", Zhang et al. [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] propose a salient object detection method based on the Minimum barrier distance transform. Combined with the raster scanning, a fast iterative Minimum barrier distance transform algorithm (FastMBD) detects the initial image saliency. In addition, the region possessing a very different appearance from image boundary is highlighted. For each image boundary region, the mean color and the color covariance matrix are calculated using the pixels inside this boundary region. Then the intermediate image boundary contrast map is obtained based on the Mahalanobis distance from the mean color. The final boundary contrast map is got from the four intermediate image boundary contrast maps. After the initial saliency map is integrated with the image boundary contrast map, a morphological smoothing step, a centeredness map and a contrast enhancement operation are used as post-processing operations. sion of our method was also provided to further improve the performance. Evaluation was conducted on four benchmark datasets. Our method achieves state-of-the-art performance at a substantially smaller computational cost, and significantly outperforms the methods that offer similar speed. sion of our method was also provided to further improve the performance. Evaluation was conducted on four benchmark datasets. Our method achieves state-of-the-art performance at a substantially smaller computational cost, and significantly outperforms the methods that offer similar speed. sion of our method was also provided to further improve the performance. Evaluation was conducted on four benchmark datasets. Our method achieves state-of-the-art performance at a substantially smaller computational cost, and significantly outperforms the methods that offer similar speed. It considers both the edge weights on the path and the spatial distance when computing the absorbed time, so the object that is different from or far from the background absorbing nodes can be highlighted. The homogeneous background region in the image center may not be effectively suppressed. The saliency map is updated using a weighted absorbed time. Fig. 2.5 compares the results without update processing and 

Complexity Analysis

We estimate the operation count by considering the case that every node performs bottom-up updating in Eq. 7 and top-down updating in Eq. 8 once. In practice, the root node has no parent and the leaf nodes have no child. Moreover, we can ignore the seed nodes in the updating steps, so the estimated operation count is in fact a loose upper bound.

If the geodesic distance is adopted, both Eq. 7 and Eq. 8 require one comparison operation and one addition operation. In total, 2 addition operations and 2 comparison operations are required.

If the barrier distance is adopted, we track the maximum and the minimum values for each node. Each time when a new node is visited, 3 comparison operations are required
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Salient Object Detection

We describe our salient object detection system in thi section. Despite of the distance transform presented in pre vious section, we introduce another simple yet useful auxil iary map based on appearance similarity measure to compli ment the shortage of measuring the boundary connectivity We further utilize the off-the-shelf MST to apply tree fil tering [3] to smooth the map. Finally, we also describe th post-processing in this section. The overall salient objec detection system is summarized in Figure 3.

Measuring the Boundary Connectivity

We set all pixels along the image boundary as a set o absorbing nodes. The sparse connectivity of the graph results that the background nodes near the image center have longer absorbed time than the similar nodes near the image boundaries. Consequently, the background regions near the image center possibly present comparative saliency with salient objects, thereby decreasing the contrast of objects and backgrounds in the resulted saliency maps. To alleviate this problem, we update the saliency map by using a weighted absorbed time y w , which can be denoted as:

y w = N × u, ( 10 
)
where u is the weighting column vector. In this work, we use the normalized recurrent time of an ergodic Markov chain, of which the transition matrix is the row normalized Q, as the weight u.

The equilibrium distribution 𝜋 for the ergodic Markov chain can be computed from the affinity matrix A as ∑ absorbing nodes. The sparse connectivity of the graph results that the background nodes near the image center have longer absorbed time than the similar nodes near the image boundaries. Consequently, the background regions near the image center possibly present comparative saliency with salient objects, thereby decreasing the contrast of objects and backgrounds in the resulted saliency maps. To alleviate this problem, we update the saliency map by using a weighted absorbed time y w , which can be denoted as:

y w = N × u, ( 10 
)
where u is the weighting column vector. In this work, we use the normalized recurrent time of an ergodic Markov chain, of which the transition matrix is the row normalized Q, as the weight u.

The equilibrium distribution 𝜋 for the ergodic Markov absorbing nodes. The sparse connectivity of the graph results that the background nodes near the image center have longer absorbed time than the similar nodes near the image boundaries. Consequently, the background regions near the image center possibly present comparative saliency with salient objects, thereby decreasing the contrast of objects and backgrounds in the resulted saliency maps. To alleviate this problem, we update the saliency map by using a weighted absorbed time y w , which can be denoted as:

y w = N × u, ( 10 
)
where u is the weighting column vector. In this work, we use the normalized recurrent time of an ergodic Markov chain, of which the transition matrix is the row normalized Q, as the weight u.

The equilibrium distribution 𝜋 for the ergodic Markov Though these methods [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF][START_REF] Tu | Real-Time Salient Object Detection with a Minimum Spanning Tree[END_REF][START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] can alleviate this problem, but not enough. Fig. 2.6 shows the saliency maps of these three methods on one example image.

Spatial and temporal information fusion

Various methods are proposed to decide the confidence weight for each saliency map.

Introduction of some existing issues

The method in [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF] fuses the superpixel color gradient magnitude and optical flow gradient magnitude into a spatio-temporal gradient field in a non-linear way. An exponential function is employed to emphasize the optical flow gradient magnitude. Then, the entire salient object is highlighted with the fused spatio-temporal edges. The local contrast and global contrast are introduced to highlight an entire object, and an energy function is used to encourage the spatio-temporal consistency. Fig. 2.7 illustrates the saliency estimation steps.

Wang et al. [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF] fuses the static edge probability map, the superpixel segmentation result and the motion boundary into a spatio-temporal edge probability map. The spatio-temporal saliency map is obtained by computing the shortest geodesic distance from each superpixel to two adjacent frames borders. A skeleton abstraction step is further used to improve the performance. Fig. 2.8 gives an example to show the detailed intermediate results.

Liu et al. [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF] first generate the temporal saliency map in the superpixel-level. Then, temporal saliency propagation is obtained using spatial appearance, and spatial propagation is performed via the temporal saliency map to obtain the spatio-temporal saliency maps. Fig. 2.9 presents the above steps in an example. Kim et al. [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF] use the temporal saliency map as the restarting distribution of the random walker. The spatial saliency is extracted via the transition probability matrix. The saliency maps of two domains are fused into a framework based on the theory of random walk with restart. Then the generated spatio-temporal map is used to update the temporal saliency distribution. Fig. 2.10 gives an example to compare the saliency maps generated by only using spatial information and employing temporal information as restarting distributions respectively. Chen et al. [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF] first employ contrast cue to get the low-level saliency. Then a Markov random field solution is devised to obtain the Pos region (salient), Neg region (non salient) and Unk region (undeterministic). Multiple nonlinear feature transformations are learned and help to assign saliency values to those Unk region. Finaly, spatiotemporal smoothness is enforced. Fig. 2.11 shows the steps of this method.

In complex scenes, existing methods still could not fully make use of detected saliency from the two domains. Some examples are shown in Fig. 2.12. For video SOD models [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF][START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF][START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF] which detect the salient object in spatial and temporal domains, the salient object are with blur edges. Thus, the fusion is still a challenging problem.

Facing these open issues, we propose a new video salient object detection algo- correspondence, are devised to measure the cluster saliency. Zhou et al. [START_REF] Hu | Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow[END_REF] adopted space-time saliency to generate a low-frame-rate video from a high-frame-rate input using various low-level features and region-based contrast analysis. Nevertheless, these approaches process the input video sequence in a frame-by-frame basis, ignoring the fact that video saliency maps should be spatiotemporally consistent. It can be seen that video saliency detection is still an emerging and challenging research problem to be further investigated. correspondence, are devised to measure the cluster saliency. Zhou et al. [START_REF] Hu | Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow[END_REF] adopted space-time saliency to generate a low-frame-rate video from a high-frame-rate input using various low-level features and region-based contrast analysis. Nevertheless, these approaches process the input video sequence in a frame-by-frame basis, ignoring the fact that video saliency maps should be spatiotemporally consistent. It can be seen that video saliency detection is still an emerging and challenging research problem to be further investigated. correspondence, are devised to measure the cluster saliency. Zhou et al. [START_REF] Hu | Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow[END_REF] adopted space-time saliency to generate a low-frame-rate video from a high-frame-rate input using various low-level features and region-based contrast analysis. Nevertheless, these approaches process the input video sequence in a frame-by-frame basis, ignoring the fact that video saliency maps should be spatiotemporally consistent. It can be seen that video saliency detection is still an emerging and challenging research problem to be further investigated. . Overview of saliency-aware geodesic video object segme rithm. We propose to detect the whole salient object via the adjunction of virtual borders from both spatial and temporal domains. A guided filter is then applied on the temporal information to integrate the spatial edge information for a better detection of the salient object edges. At last, a global spatio-temporal saliency map is obtained by combining the spatial saliency map and the temporal saliency map together according to the entropy. Given an input video sequence, in Spatial saliency detection (SD), the virtual border is built for each frame. Then, the saliency is computed to get the SSM. Secondly, in Temporal saliency detection (TD), the motion information is extracted from the input video. Then the virtual border building, the Feature fusion and the saliency computation are applied to obtain the TSM. At last, the two saliency maps are fused to get the STSM. The method is detailed in the following parts.

Spatial saliency detection

In this part, Spatial saliency detection (SD), the virtual border-based distance transform in spatial domain, is designed.

Virtual border building

Instead of using the frame border pixels as the seed set, we propose to add virtual borders around the original frame to obtain with-virtual-border frame. The virtual bor-der, calculated using original frame border pixel values, is used to get the new seed set. Specifically, the virtual border is built in four steps (as shown in Fig. 2.14): Frame Border Selection, Frame Border Division, Representative Pixel Selection and Virtual Border Padding. a) Frame Border Selection: it may suppose that the salient object could be connected with two or more borders. However, from the existing video datasets we observe that: in usual cases if the salient object appears in the frame border, it is often connected with only one border. Here for the sake of simplicity of the presentation, we select one original frame border to build the virtual border by two steps.

In the first step, Fast iterative Minimum barrier distance transform algorithm (FastMBD) [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] is applied to frame α to obtain the map M as Eq (2.1). In the second step, the frame border nearest to the non-zero region in the map M is selected to build the virtual border. Here, the threshold δ is used to determine the non-zero region. b) Frame Border Division: after one original border selected, the corresponding divided border is obtained from the original frame border (with width u). The DUB, the DDB, the DLB and the DRB are shown in the middle left part in Fig. 2.14. The reason lying behind this division is that: the region in the frame corner is often connected with two borders and its feature is also related to these two borders. Thus, the irregular shape connecting three borders is used to calculate the virtual border. The parameters u and l are selected empirically. In this chapter, u is set to 5 and l is set to 18%. Preliminary experiments showed that these values make the algorithm robust to various background complexities. c) Representative Pixel Selection: for the generated divided border, sum of absolute differences (SAD) is computed for each pixel by summing all the absolute differences between this pixel and other pixels in the divided border:

M = 1 3 (M 1 + M 2 + M 3 ). ( 2 
SAD(x) = x ∈DB |I(x) -I(x )| (2.2)
where DB ∈ DUB, DDB, DLB and DRB , I is the feature channel. The pixel having the minimum SAD is selected to represent the divided border. For color images, the SAD is computed by summing the three color channels:

colorSAD(x) =
x ∈DB i∈{r,g,b}

I i (x) -I i (x ) (2.3) 
We have also considered using the mean or median value of the border's intensities as the representative pixel value. Various experiments conducted on different frames have shown that the minimum SAD choice performs better than the mean and the median values in most of the cases (cf. the 1st example image in Fig. 2.14 where the representative pixel is chosen from the salient object instead of the background when using the mean value of the border's intensities). The same way, choosing the median value of the border's intensities as the representative pixel value fails, which can be seen on the 2nd example image in Fig. 2.14. As the minimum SAD performs better in most cases and in order to be more robust in all situations, we adopt the minimum SAD in the proposed method. d) Virtual Border Padding: around the selected original frame border, we build the corresponding virtual border with the above representative pixel to get the with-virtualborder frame D. The VUB, the VDB, the VLB and the VRB are shown in the middle right part in Fig. 2.14. Existing methods usually regard the border (with width 1) to be background and seed sizes are set to be 1. Here we set the virtual border size v to 5, which helps the proposed "virtual border building" to be applied to other distance transform based saliency detection methods. published in TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF].

Movement extraction

The optical flow vectors between pairs of successive frames are obtained using a fast optical flow method [START_REF] Hu | Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow[END_REF]. Then the optical flow vector is mapped to Munsell color system [2] to produce the color optical flow map E.

Virtual border building

Based on the background cue, the global motion is usually connected to E borders. The global motion is mainly generated by the background and camera motion. Camera motion appears in the whole color optical flow map and background motion has a high probability to be connected with E borders. Thus, E borders can reflect the global motion caused by both the background motion and the camera motion. The distance of each pixel to the border pixels of E calculated by the FastMBD [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] can indicate its temporal saliency. The larger the distance, the higher the temporal saliency value. As the same problem in the spatial saliency detection, when the salient object touches frame borders, its movement information also touches E borders. If we directly apply the FastMBD [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] on E, the salient object movement part connected to E borders is hard to be detected. Thus, we add virtual borders on E using the same procedure as described in Section 2.3.1 to obtain the with-virtual-border color optical flow map F .

Feature fusion

In our spatial saliency detection, only color and luminance features are used to detect the saliency, while edges are inherent features of the image and intrinsically salient for visual perception. Though some researches detect the salient object by considering edges, their results may be still inaccurate. Thus we propose a new Feature fusion way that fuses the spatial edge with the temporal information, considering that: 1) the salient object movement is often bigger than the background movement, thus the background and the salient object are often shown in different colors in the color optical flow map; 2) if the movements within the salient object are different, the salient object cannot be detected completely. If the spatial edges are added onto the optical flow map F , the salient object edges will be enhanced. The pixel's distance in blur edges will be increased if the pixel belongs to the salient object or decreased if the pixel belongs to the background. Thus we performed the guided filtering. The guided filter [START_REF] He | Guided Image Filtering[END_REF] is a linear filtering process, which involves a guidance image C 1 , an input image C 2 and an output image C 3 . The C 3 at a pixel i is computed using the filter kernel K which is a function of C 1 but independent of C 2 .

C 3 i = j K ij (C 1 )C 2 j , ( 2.4) 
where i and j are pixel indexes, and

K ij (C 1 ) = (|ω k |) -2 (i,j)∈ω k (1 + (C 1 i -µ k )(C 1 j -µ k )(σ k 2 + ) -1 ), (2.5) 
where ω k is the square window centered at the pixel k in C 1 , |ω k | is the number of pixels in ω k , is a regularization parameter, and µ k and σ k 2 are the mean and the variance of

C 1 in ω k .
The main assumption of the guided filter is a local linear model between C 1 and C 3 . Thus, C 3 has an edge if C 1 has an edge.

The proposed method uses with-virtual-border frame D as the guidance image and with-virtual-border color optical flow map F as the input image to get the filtered image G as Eq (2.6),

G i = j |ω k | -2 (i,j)∈ω k (1 + (D i -µ k )(D j -µ k )(σ k 2 + ) -1 )F j , ( 2.6) 
where i and j are pixel indexes, ω k is the square window centered at the pixel k in D i , µ k and σ k 2 are the mean and the variance of D i in ω k . is set to be 10 -6 . |ω k | is decided by the frame size. Large frame needs large ω k . We use 20×20 for Fukuchi and FBMS datasets, and use 60×60 for VOS dataset since VOS has larger average frame size than that of Fukuchi and FBMS [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF][START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF].

Saliency computation

The FastMBD [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] is applied on the filtered image G and then the virtual border region is removed to obtain the temporal saliency map TSM. One example is given to show the process of the temporal saliency detection in Fig. 2.16.

Spatial and temporal saliency maps fusion

Given the spatial saliency map SSM and the temporal saliency map TSM, the fusion is made to obtain STSM by four steps:

• SSM and TSM are firstly fused as Eq (2.7), where ratio 1 = mu T /(mu S + mu T ),

ratio 2 = 1 -ratio 1 . STSM = ratio 1 × SSM + ratio 2 × TSM (2.7)
where mu S and mu T are respectively the mean entropies of all the spatial saliency maps and all the temporal saliency maps for a video sequence (with κ the number of frames) as Eq (2.8).

mu S = κ j=1 (- 255 j =1 (Prob S j j × log(Prob S j j )))/κ mu T = κ j=1 (- 255 j =1 (Prob T j j × log(Prob T j j )))/κ (2.8) 
where Prob S j j and Prob T j j are respectively the normalized histogram of j th spatial saliency map and j th temporal saliency map: Prob j = num j /(h 1 × w 1 ), num j is the number of pixel (equal to j ) in saliency map. Here, the idea is that mu i (i = S, T ) are used to decide the confidence of SSM and TSM. The disorder degree of saliency map reflects the difficulty degree to detect the salient objects. If mu i (i ∈ S, T ) is larger, the saliency detection in this domain is worser.

• STSM is optimized using Eq (2.9)

STSM = SSM if mu S < mu T (2.9)
The frame is often more complex than the color optical flow map, which results in that the disorder degree of SSM is usually larger than that of TSM. If mu S is smaller than mu T , it means it is difficult to detect the salient object in TSM. Thus, SSM has a high confidence.

• STSM is optimized using Eq (2.10)

STSM = SSM if σ S > σ T (2.10)
σ S and σ T are respectively the standard deviations of non-zero regions in two grayscale images H S and H T , which are generated by the following steps: firstly, converting frame α from RGB to HSI color space, then eliminating the hue and saturation information while retaining the luminance to get the grayscale images α ; secondly, using a threshold δ to neglect the pixels with low saliency value from the images SSM and TSM as in Eq (2.11)

H S ij =    0 if SSM ij < δ α ij otherwise H T ij =    0 if TSM ij < δ α ij otherwise (2.11)
where i and j are pixel indexes in the images. The appearance of the wrongly detected background is mostly different from the salient object in the grayscale image, which results in that H i (i ∈ S,T ) contains more luminance values and thus σ i (i ∈ S,T ) is smaller. If σ S is bigger than σ T , it means SSM has a high confidence.

• Low saliency value (lower than δ) in SSM is decreased to 0.1 times.

The pixels with low saliency value in saliency map are unimportant for visual saliency but have a large influence in computing the detection confidence. Thus, δ is used to decrease their impact and set to 70 in this chapter.

Experiments and analyses

In this section, the performance of the proposed method VBGF is assessed and discussed. The performance of each component of the VBGF is shown to demonstrate our contributions. The VBGF's performance is then compared with nine state-of-the-art traditional SOD methods. Finally, the run-time complexity is compared.

In order to fully evaluate the effectiveness and robustness of the proposed method against the state-of-the-art methods of the same category, two popular related datasets FBMS and Fukuchi are used.

Nine state-of-the-art saliency models are tested: MST16 [START_REF] Tu | Real-Time Salient Object Detection with a Minimum Spanning Tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF], AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], FD17 [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF] on Fukuchi and FBMS dataset. For all the methods, the experimental results are obtained using the source codes or saliency results provided by the authors.

Contributions of each proposed component to the performance

The contributions are shown by analyzing the performance of each component.

Contribution of the proposed Virtual Border Building

The method (based on the "background prior") may miss the salient object connected to the image borders and the proposed virtual border aims to improve this problem. Since MST16 [START_REF] Tu | Real-Time Salient Object Detection with a Minimum Spanning Tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] and AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF] detect the salient object in image domain based on the "background prior", we compare the proposed spatial saliency map with them by using the Fukuchi dataset, in which many salient objects connected to the frame border. Quantitative performance can be found in Fig. 2.17. The proposed spatial saliency detection has a better performance since it can detect salient objects more completely.

Contribution of the proposed Feature fusion

The proposed Feature fusion employs the guided filter to fuse the spatial edges with the information in temporal domain. We compare the performance of the proposed temporal saliency map with guided filtering and without guided filtering. In the Fukuchi dataset the salient object motion is small, and in the FBMS, the global motion varies largely. These two different datasets are both used. Quantitative performance can be found in Fig. 2.18 and Fig. 2. [START_REF] Cong | Review of Visual Saliency Detection with Comprehensive Information[END_REF]. We can see that fusing the spatial salient object edges to the temporal information by using guided filtering can improve the detection accuracy. It helps to optimize the salient object edges and remove the background part from the saliency region.

Contribution of the proposed Map fusion

Our proposed method first generates spatial saliency map (cf. Section 2.3.1), then generates the temporal saliency map (cf. Section 2.3.2), finally generates the spatiotemporal saliency map (cf. Section 2.3.3). Therefore, we separately test the performance of each proposed saliency map, then compared quantitative results can be found in Fig. 2.20 and Fig. 2.21. For the Fukuchi dataset, the salient object motion is slow while the salient object and the background are in high contrast. Compared sequences and is with high complexity which make the temporal detection more difficult. On the other hand, the salient object appearance is similar to that of the background and the background is complex which makes the spatial detection more difficult. Among the compared methods (TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF] and SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]), TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF] gets a better result since it puts emphasize on the temporal saliency detection. However, compared with TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], the proposed method leverage the spatial saliency and fuses them in a more efficient way to obtain better result.

Subjective comparison with video SOD models

To evaluate the overall performances and disparities between our method and the state-of-the-art methods, we also show a subjective comparison in Fig. 2.24 and Fig. 2. [START_REF] Fan | Shifting more attention to video salient object detection[END_REF].

We can see that RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF] tends to detect salient object edges rather than the whole salient object. Methods : MST16 [START_REF] Tu | Real-Time Salient Object Detection with a Minimum Spanning Tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF], AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF] can detect salient object region located in the frame center but not the salient part close to frame borders. Especially, when the salient object exhibits clearly distinctive color features from the background, e.g. (e) and (g), the salient object connected to borders is detected with low saliency in the above methods. However, the proposed algorithm yields good performances on these cases. In (b) and (d), it's difficult to distinguish the edge between the salient object and the background for the spatial-only methods MST16 [START_REF] Tu | Real-Time Salient Object Detection with a Minimum Spanning Tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] and AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF]. While among video saliency models, the method TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF] and the proposed method can detect the salient object with less spatial influence and more accurate edges than TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF] and SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]. For multiple salient objects with complex background, e.g. (i), (j) and (k), TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF] and the proposed method can detect almost all multiple salient objects, but the proposed method has better edges. By visually comparing on this figure, we can see that the proposed method can detect the salient object more completely and more accurately. AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]. AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF].

Computation time comparison

A PC with Intel Core i7 4910 2.9GHz CPU and 16GB RAM is used for testing the speed of traditional methods. For different models (except the model FD17 [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF] with the unpublished code), the average run-time is listed in Table 2.3. Video models have higher computation costs than the other 3 image models since the optical flow estimation is usually time consuming. Our proposed model is the fastest video detection model, and the average run-time per frame of each processing stage can be found in Table 2.4 in detail.

Table 2.3: Average run time (per frame) of our proposed method (VBGF) and the compared models (MST16 [START_REF] Tu | Real-Time Salient Object Detection with a Minimum Spanning Tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF], AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]).

Image_based 

Conclusion

In this chapter, a novel video SOD method (the VBGF) is proposed. Using virtual border concept has helped to address the problem of distance transform employed for saliency computation in previous approaches. The guided filter-based Feature fusion and the Map fusion are efficiently used for fusing spatial and temporal information together by applying appropriate balance. When tested on various video databases, the proposed approach yields satisfactory performance and even outperforms the state-of-the-art methods.

The virtual border can be used as an optimization operation for salient object detection methods that are based on background prior. The guided filter-based Feature fusion helps to remove background regions for moving object detection and segmentation. The Map fusion provides a new way to combine various individual saliency maps into a more robust one. CHAPTER 3

OVERVIEW OF DEEP-LEARNING

METHODS FOR SALIENT OBJECT DETECTION IN VIDEOS

In this chapter, Section 3.1 introduces existing surveys and benchmarks related to salient object detection in videos. Section 3.2 gives a classification of state-of-the-art methods, and details the frameworks of some representative methods. Section 3.3 gives comparative experimental results of these representative methods. The assessment of their performance generalities are discussed. Section 3.4 shows an extension of the proposed VBGF to integrate deep-learning technique. Section 3.5 concludes the chapter.

Summary of existing surveys and benchmarks

Recently, several researchers tend to solve the problems of SOD in videos using deeplearning methods, which largely improves the performance both for the accuracy and the efficiency. However, there is few related survey. Table 3.1 lists the most relevant works, from which we can see that former works mainly focus on traditional methods. Among the recent works related to deep-learning methods, the survey presented in [START_REF] Han | Advanced Deep-Learning Techniques for Salient and Category-Specific Object Detection: A Survey[END_REF] is only for images; and the benchmark [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF] only compares deep-learning methods proposed for images with traditional methods proposed for videos. The survey of existing deep-learning methods for SOD in videos is less explored. This chapter has two main motivations:

• Deep-learning for video SOD is an important topic and still have a large space to explore so it is interesting to have a general idea about the existing methods which may pave the way for future works. 

Introduction to state-of-the-arts methods

Deep-learning based methods for video SOD, focusing on learning the high-level features [START_REF] Cong | Review of Visual Saliency Detection with Comprehensive Information[END_REF], gain great research interests, and some methods [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF][START_REF] Le | Deeply Supervised 3D Recurrent FCN for Salient Object Detection in Videos[END_REF][START_REF] Le | SpatioTemporal utilization of deep features for video saliency detection[END_REF][START_REF] Le | Video Salient Object Detection Using Spatiotemporal Deep Features[END_REF][START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Song | Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection[END_REF][START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF][START_REF] Wei | Two-stream recurrent convolutional neural networks for video saliency estimation[END_REF] are proposed. However, there still lack sufficient methods for comprehensive analysis. Inspired by [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF], the inherently correlated tasks like video foreground object segmentation [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF], moving object segmentation [START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF] and image SOD [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] are considered for analysis and comparison in this work.

In this section, we firstly classify the existing methods in 3.2.1, and secondly introduce in more details some representative methods of which the source codes are provided by authors in 3.2.2.

Classification based on the deep representations generation

According to whether the used neural network has to be trained, existing methods can be classified into two categories: 1) off-the-shelf deep features and 2) multistage/end-to-end trained. The used deep representations of the first category are directly extracted from existing deep networks. Thus, this is a simple way to directly use these deep representations for further researches [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF][START_REF] Le | SpatioTemporal utilization of deep features for video saliency detection[END_REF]. In the second category, methods usually get more efficient deep representations through their own training phase, where the inputs-outputs relationship is learned by deep architectures. The
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model trained in multiple stages is with intermediate supervision to ones trained endto-end. According to their utilization degree of the labeled datasets, the models can be further divided into supervised and weakly-supervised models.

Supervised models need training datasets with pixel-wise annotations. According to the domain of the learned deep representation, supervised methods [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Le | Deeply Supervised 3D Recurrent FCN for Salient Object Detection in Videos[END_REF][START_REF] Le | Video Salient Object Detection Using Spatiotemporal Deep Features[END_REF][START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Song | Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection[END_REF][START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF][START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF][START_REF] Wei | Two-stream recurrent convolutional neural networks for video saliency estimation[END_REF] can be classified into 1) spatial [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF]; 2) temporal [START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF]; 3) or spatio-temporal [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Le | Deeply Supervised 3D Recurrent FCN for Salient Object Detection in Videos[END_REF][START_REF] Le | Video Salient Object Detection Using Spatiotemporal Deep Features[END_REF][START_REF] Song | Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection[END_REF][START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF][START_REF] Wei | Two-stream recurrent convolutional neural networks for video saliency estimation[END_REF]. Due to the fact that current datasets have limited manually labeled ground truth, some methods, e.g. [START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF], propose to generate simulated video data using synthesizing methods. Different from supervised methods, weakly-supervised models train the network without requiring all training datasets to have corresponding pixel-level annotations. Some models learn to detect the salient object from spatial domain with image-level annotations, based on the assumption that image-level tags can provide the classes of the dominant objects which can be regarded as the salient foregrounds, e.g. [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF]. Sometimes, a small number of manually labeled data and a huge amount of weakly labeled data are used together. For example, in [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF], one seventh of the frames in a video is manually labeled data and the rest is weakly labeled. Three existing SOD methods are used to generate the weakly labeled data, and their proposed network is trained using both manually and weakly labeled data. Then the weakly labeled data is updated using their proposed network, as well as the three existing SOD methods. Fig. 3.1 shows the classification of the deep-learning based SOD methods.

Description of salient object detection frameworks

This section gives detailed introduction of 11 representative methods, which the source codes or saliency results are provided by the authors. Among them, Chen et al. [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF] propose a off-the-shelf deep features based model, and methods in [9, 18, 50, 52, 57, 76-78, 85, 90] are multi-stage/end-to-end trained models. Methods in [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF][START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF] are supervised models and with those in [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF][START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] are weakly-supervised models.

Firstly, the global framework for each method is described and then the deep network designed in each method is analyzed. 

Analysis of the frameworks of representative methods

As a matter of convenience, 11 methods are denoted as SCOMd [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF], NRF [START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF], DHSNet [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF], OSVOS [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF], NLDF [START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF], LMP [START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF], SFCN [START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF], SegFlow [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF], LVO [START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF], WSS [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF], SCNN [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF].

According to the involved tasks, these 11 frameworks can be divided into two categories: multi-task [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] and single-task [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF][START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF][START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF][START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF].

The multi-task framework not only predicts the salient objects, but also evaluates other tasks. It exploits the connections between the SOD task and other highly related tasks (such as classification, contour detection, optical flow and boundary detection), and then improves the SOD performance by making use of the deep representation from these tasks. Specifically, Wang et al. [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] propose a weakly-supervised network which has two subnetworks: one is designed for classification and the other is designed for SOD. Firstly, using image-level tags as the ground truth, detection stream is jointly trained with the classification subnetwork for classification prediction. Secondly, the saliency prediction of the detection subnetwork is used as the ground truth for finetuning the detection subnetwork. Both subnetworks share convolutional layers firstly and then are separated on the top of the shared layers, as shown in Fig. 3.2 (a). Cheng et al. [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF] propose a supervised network which also consists of two subnetworks: the segmentation subnetwork and the flow subnetwork. A bi-directional feature propagation is built between these two networks as shown in Fig. 3.2 (b), and an iterative training is used for optimizing the segmentation task. The OSVOS proposes two fully convolutional networks (FCNs) with the same architecture. The first FCN is used as a foreground branch and the second FCN is employed as a contour branch. The output of the first FCN is optimized by combining with that from the second FCN, as shown in Fig. 3.2 (c). The NLDF, an end-to-end trained network, adds the boundary loss term to design extra constraints to saliency prediction.

The single-task framework is designed just for the SOD task. Among them, SFCN and SCNN propose two fully convolutional networks (FCN) with the same architecture in their frameworks. From Fig. 3.3 (a), Wang et al. [START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF] use the first FCN for spatial saliency detection with the input of each frame, and use the other FCN for spatiotemporal saliency detection with the input of adjacent frame pairs and the detected spatial saliency results. The detected spatial saliency results is denoted as SFCNs. From Fig. 3.3 (b), Tang et al. [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF] firstly employ one FCN to get a spatial prior map, secondly generate temporal prior map from optical flow fields, thirdly combine these two prior maps to be a spatio-temporal prior map which guides the second FCN to generate the spatio-temporal saliency map. At last, the output saliency map is optimized by a CRF model. The SCOMd, NRF, LMP and DHSNet models only adopt one network in their singletask frameworks. In SCOMd, the authors employ a pretrained network and uses the deep spatial features instead of the handcrafted features, to define a new motion energy for SOD in video. In NRF, the authors firstly obtain the initial salient object and background estimation with their complementary convolutional neural network, and then construct a neighborhood reversible flow to propagate salient object and background along the most reliable inter-frame correspondences. The NRF is summarized in Fig. 3.4 (a). DHSNet and LMP, as in Fig. 3.4 (b), are end-to-end training networks without any other processing. In LMP, the authors detect motion patterns in videos with designed motion pattern network. While, In LVO, the authors firstly use the network proposed in [START_REF] Chen | DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[END_REF] to extract deep spatial features in the appearance stream, and then adopt the network proposed in [START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF] to detect motion patterns in the motion stream, and thirdly build a visual memory module which inputs the concatenation of appearance and motion streams to get the prediction. The LVO is shown in Fig. 3.4 (c).

Analysis of the deep networks of representative methods

In this part, we analyze the networks designed in the representative methods.

A typical network for SOD is usually an encoder-decoder network, and hierarchical features are generated layer by layer, as shown in Fig. 3.5.

The methods, e.g. [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF][START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF], use skip connections [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF][START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] or "à trous" pyramid pooling (ASPP) [START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF] to employ multi-scale feature maps for prediction. These networks are illustrated in Fig. 3.6. Specifically, Tokmakov et al. [START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF] add skip connections from the encoder features to the mirror decoder features, which benefits the decoder features with finer details. Cheng et al. [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF], Wang et al. [START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF] and Wang et al. [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] mainly use feature maps from 3rd to 5th layers of the backbone, while Tang et al. [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF] considers responses from 4th and 5th layers for predicting the final output. Luo et al. [START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF] add multiple skip connections to fully employ the deep information. Liu et al. [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF] add skip connections between mirror layers, but with multiple predictions. Four predictions in Fig. 3.6 (d) are used in the training step. And only the last one is used to generate the final saliency result. Caelles et al. [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF] add skip connections from the low-level layer to the high-level layer. Feature maps obtained from each layer are fused into a single output. Li et al. [START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF] use three parallel modules with ASPP to capture the multi-scale information. The outputs (Prediction1 and Prediction2 in Fig. 3.6 (f)) are both used to generate the saliency result. Table 3.2 summarizes the used backbone and training datasets for each mentioned representative method.

Networks for SOD often built the encoder network based on a backbone (i.e. an existing trained model with published weights). Image classification networks (e.g. VGG [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] and ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]) are commonly used as backbones. These networks [START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] are trained on large-scale image datasets and have a strong ability to learn both low-level and high-level features. Note that various networks are proposed based on VGGNet or ResNet for dense prediction. FlowNetS [START_REF] Dosovitskiy | FlowNet: Learning Optical Flow with Convolutional Networks[END_REF] is only used for estimating the optical flow and the baseline in [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF] to obtain the temporal feature. [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF], (c) [START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF], (d) [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF], (e) [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF], (f) [START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF].

Table 3.2: Backbone and Training datasets ("x" indicates that the method is not based on any backbone or the method is off-the-shelf deep features based)

Methods

Backbone

Training datasets SCOMd [START_REF] Chen | SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection[END_REF] VGG16

x NRF [START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF] VGG16 HKU-IS,MSRA10K,CSSD,DUT-OMRON DHSNet [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF] VGG16 MSRA10K,DUT-OMRON OSVOS [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF] VGG16 DAVIS 2016-train,PASCAL-Context NLDF [START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF] VGG16 MSRA-B LMP [START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF] x FlyingThings3D SFCN [START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF] VGG16 MSRA10K,SegTrackV2,DUT-OMRON,FBMS-training SegFlow [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF] ResNet101,FlowNetS DAVIS 2016-train,MPI Sintel [START_REF] Brox | Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation[END_REF],KITTI,Scene Flow LVO [START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF] VGG16 DAVIS 2016-train WSS [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] VGG16 DUTS SCNN [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF] VGG16 MSRA10K,SegTrackV2,FBMS-training

Various training datasets are used for networks to learn deep representations: Image SOD datasets (e.g. MSRA-B, MSRA10K [START_REF] Liu | Learning to Detect a Salient Object[END_REF], DUT-OMRON [START_REF] Yang | Saliency Detection via Graph-Based Manifold Ranking[END_REF], HKU-IS [START_REF] Li | Visual Saliency Detection Based on Multiscale Deep CNN Features[END_REF] and CSSD [START_REF] Yan | Hierarchical Saliency Detection[END_REF]) are used in most methods, e.g. [START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF]; image object segmentation datasets (e.g. DUTS [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF]) are used in [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF]; video object segmentation datasets (e.g. SegTrackV2 [START_REF] Li | Video Segmentation by Tracking Many Figure-Ground Segments[END_REF], DAVIS 2016-train) are used in methods [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF][START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF]; contour datasets (e.g. PASCAL-Context [START_REF] Mottaghi | The Role of Context for Object Detection and Semantic Segmentation in the Wild[END_REF]) are used in [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF]; moving object segmentation datasets (e.g. FBMS-training [START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF]) are used in methods [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF]; optical flow datasets (FlyingThings3D [START_REF] Mayer | A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation[END_REF]) are used in [START_REF] Tokmakov | Learning Motion Patterns in Videos[END_REF]; and datasets (MPI Sintel [START_REF] Brox | Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation[END_REF], KITTI [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF], Scene Flow [START_REF] Ochs | Segmentation of Moving Objects by Long Term Video Analysis[END_REF]) are used in [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF]. Besides, some methods generate new datasets from existing datasets: Wang et al. [START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF] create synthesized video dataset due to the limitation of video SOD datasets, and Tokmakov et al. [START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF] create training sequences which simulate cases where the object stops moving.

During the training phase, a network learns all the parameters via minimizing errors between the result and the ground truth. A loss function is used to compute this error. The "cross entropy" is commonly used for SOD [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Li | Primary Video Object Segmentation via Complementary CNNs and Neighborhood Reversible Flow[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF][START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF][START_REF] Tokmakov | Learning Video Object Segmentation with Visual Memory[END_REF]. Given the generated SM and GT, the cross entropy loss P is given by Eq (3.1).

P = - h1×w1 i=1 (g i logs i + (1 -g i )log(1 -s i )) (3.1)
where h 1 is the frame height, w 1 is the frame width, g i ∈ GT and s i ∈ SM. Since the numbers of salient and non-salient pixels are not balanced, the "balanced cross

Experimental evaluation

entropy", given by Eq (3.2), is more commonly used for SOD [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF][START_REF] Wang | Video Salient Object Detection via Fully Convolutional Networks[END_REF].

P = - h1×w1 i=1 ((1 -R) × g i logs i + R × (1 -g i )log(1 -s i )) (3.2) 
where R is the ratio of the number of salient pixels in GT over that of all pixels in GT.

Besides, motivated by the successful application of boundary Intersection over Union (IOU) loss in medical image segmentation [START_REF] Milletari | V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[END_REF], Luo et al. [START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF] add a boundary IOU loss, given by Eq (3.3), for SOD.

IOUloss = 1 - 2 |C GT C SM | |C GT | + |C SM | (3.3) 
where C GT and C SM are contours pixels of GT and SM respectively, which are obtained using the magnitude of Sobel operator followed by a tanh activation. In order to prevent learning high responses at all locations, Wang et al. [START_REF] Wang | Learning to Detect Salient Objects with Image-Level Supervision[END_REF] apply sparse regularization on the generated saliency map to reduce background noise during pre-training phases.

Experimental evaluation

In order to assess the generality of the state-of-the-art methods, large-scale datasets (including FBMS, VOS-E, VOS-N, VOS, DAVIS 2016-val and DAVIS-2017-val) are used to evaluate the above mentioned 11 methods: five metrics (including MAE, Recall, Precision, F-measure and P-R curve) are used to evaluate saliency methods (SCOMd, SFCN, SFCNs, DHSNet, NLDF, WSS and SCNN) and four metrics (including MAE, Recall, Precision and F-measure) are used to evaluate segmentation methods (LMP, LVO, SegFlow, NRF and OSVOS).

For methods SCOMd and SCNN, applied to FBMS and DAVIS 2016-val datasets, the results are those reported by the authors. For methods DHSNet, NLDF, NRF, OS-VOS, SFCNs and WSS, applied to all datasets, the results are generated using the provided source codes (OSVOS dose not contain the boundary snapping branch and WSS does not contain conditional random field (CRF) processing). When the authors give their results, we just report these results even if they provide their code.

Note that LMP firstly detects the motion pattern with the MP-Net, then uses the traditional spatial objectness and the CRF to refine the temporal results. The LVO also applies a CRF as a post-processing on the detection network output. In order to explore their deep performances, we just use their network outputs, denoted as LMPd and LVOd for our comparison. For their network inputs, the optical flow vector is generated by the method proposed by Tripathi et al. [START_REF] Tripathi | Improving streaming video segmentation with early and mid-level visual processing[END_REF].

Detailed performance on each dataset

Performance on the VOS-E dataset Fig. 3.7 shows the performance on the VOS-E dataset (with slow camera motion). DHSNet, NLDF, NRF, SFCN, SFCNs and WSS methods, based on backbone networks, all get high Precision, high Recall and high F-measure scores. DHSNet also gets the best P-R curve, and NRF gets the best MAE value. Most of these methods only detect the salient object from spatial domain, which shows that spatial saliency detection has a good performance for SOD on video dataset with slow camera motions.

Performance on the FBMS dataset

Fig. 3.8 presents the performances on the FBMS dataset which puts emphasis on the moving object. SCNN gets the best Recall score, and SCOMd gets the best Precision score, and LVOd gets the best F-measure score, and SegFlow gets the best MAE value. They not only detect the salient object from spatial domain, but also from temporal domain or fused spatio-temporal domain, which indicates that the temporal detection plays a significant role for SOD on video dataset with highly dynamic foreground objects. 
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Performance on the VOS-N and VOS dataset

Fig. 3.9 and Fig. 3.10 show the performances on the VOS-N and the VOS datasets respectively. The VOS-N datasets contains complex scenes or highly dynamic objects, while the VOS dataset contains various cases with slow camera motion, complex scenes or highly dynamic objects. Salient objects in these two datasets are obtained according to the saliency fixation, which is similar with that in image SOD datasets. That may explain why the methods (e.g. DHSNet, NRF, NLDF, SFCN, SFCNs and WSS) trained from image SOD datasets get better results than others.

Performance on the DAVIS 2016-val and DAVIS 2017-val dataset

Fig. 3.11 shows the performances on the DAVIS 2016-val dataset. Fig. 3.12 shows the performances on the DAVIS 2017-val dataset. These two datasets provides multiple balanced video attributes such as occlusion, appearance change, camera-shake, etc, which help better evaluate methods' robustness. The methods that detect saliency from two domains (e.g. LVOd, NRF, SegFlow) perform better than those only from one domain (e.g. LMPd, OSVOS, WSS), which shows that saliency from two domains is more efficient for SOD on complex videos datasets. Weakly supervised methods (e.g. SCNN and WSS) get a little lower recall and F-measure values. The methods (e.g. LVOd and SegFlow) are trained from object segmentation datasets only, which shows the effectiveness of using the training datasets from closely related domains. Besides, if we compare SFCNs with SFCN, we can find that they use the same deep-learning network but with different training datasets. The input of the former one is each frame with provided ground truth, while the input of the later one is the video sequence and the detection results from SFCNs. Thus, SFCN refines the output of SFCNs, by learning more deep features from the temporal domain. If we compare LMPd and LVOd, we can find that LVOd uses the same saliency detection from temporal domain as LMPd but with extra deep spatial saliency information, and deep fused spatio-temporal features. It helps LVOd to achieve a much better performance than LMPd, which also further prove that saliency detection from two domains is significant for SOD in videos. 

Global performance on various datasets

In order to catch the global view of the performance of a method on various datasets, the following Fig. 3.13 shows the comparative results of the methods for MAE metric on 6 datasets. As can be seen on this figure, methods perform less good on dataset FBMS. 3.4 and Table 3.5 show the detailed areas of 10 curves (corresponding to the 10 methods) in Fig. 3.14, Fig. 3.15 and Fig. 3.16 respectively. Fig. 3.14, Fig. 3.15 and Fig. 3.16 show that methods achieve highest Precision, Recall and F-measure scores on VOS-E dataset (with most static salient objects). We can learn that the deep-learning technique provides a strong ability to detect salient objects from the spatial domain. From Table 3.3, Table 3.4 and Table 3.5, one can observe that DHSNet and NRF get good Precision, Recall and F-measure scores, which are all among the best 3 scores, while LMPd performs not very well. We can firstly find that the end-to-end trainable network, DHSNet, is efficient to learn and detect the salient object; we secondly observe that though temporal saliency is significant, saliency information only detected from the temporal domain is not enough; we thirdly note that NRF that detects the salient objects from both spatial and temporal domain is more efficient for SOD in videos.

Computation time comparison

A PC with a NVIDIA 1080 GPU is used for testing the speed of the methods on the DAVIS-2016-val dataset. For different models (except SCOMd and SCNN with unpublished codes), the average run-time is listed in Table 3.6. From Table 3.6, we can observe that WSS has the least computation costs, which is similar to that of OSVOS, SFCN, DHSNet and NLDF. SegFlow, NRF, LMPd and LVOd are much more time-consuming.

Failure cases and analysis

It is difficult for all compared models to deal with some difficult cases such as the examples shown in Fig. 3.17. For the first failure case, the bike is recognized with losing fine-structure by the detection network. The bikes consists of many lines, but none of them was detected and only coarse edges are shown in the final map. For the second failure case, the background object is also detected as the salient object. For the third failure case, the salient object is not detected at all.

Extension of the proposed method to integrate deeplearning technique

The above various experiments illustrate that the image-based method DHSNet gives high performance over all the tested databases. It may be interesting to look at how 3.7, the performance is better for all performance evaluation metrics with the "guided filtering". By comparing the 3rd, 5th and 6th columns in Table 3.7, the performance is better for most evaluation metrics when the spatial saliency map and the temporal saliency map are fused together.

Performance benchmarking of the proposed method

The performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art models are reported.

In Table 3.8, Table 3.9 and Table 3.10, we inserted the performance of our proposed models into the the benchmarking table (cf. Table III in the paper [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF]) provided with the VOS dataset. Note that here we only list 13 state-of-the-art models (imagebased deep-learning and video-based traditional models) reported in [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF]. 13 stateof-the-art models are LEGS [START_REF] Wang | Deep networks for saliency detection via local estimation and global search[END_REF], MCDL [START_REF] Zhao | Saliency detection by multi-context deep learning[END_REF], MDF [START_REF] Li | Visual Saliency Detection Based on Multiscale Deep CNN Features[END_REF], ELD [START_REF] Lee | Deep Saliency with Encoded Low Level Distance Map and High Level Features[END_REF], DCL [START_REF] Li | Deep Contrast Learning for Salient Object Detection[END_REF], RFCN [START_REF] Wang | Saliency Detection with Recurrent Fully Convolutional Networks[END_REF],

DHSNet [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF], SIV [START_REF] Rahtu | Segmenting Salient Objects from Images and Videos[END_REF], FST [START_REF] Papazoglou | Fast Object Segmentation in Unconstrained Video[END_REF], NLC [START_REF] Faktor | Video Segmentation by Non-Local Consensus voting[END_REF], SAG [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], GF [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF] and SSA [START_REF] Li | A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection[END_REF]. These models are categorized into two parts: [I+D] for deep-learning and image-based, [V+U] for video-based and Unsupervised. From these three tables, we can see that among the tested 15 models, the VBGFd has the best score for 7 times, while the best benchmarked model DHSNet has the best score for 5 times. Thus in general, we can say that the VBGFd performs the best among the tested models. 

Computation time comparison

The deep-learning method is performed on an NVIDIA 1080 GPU, and is implemented in Python. The average run-time of the proposed VBGFd is listed in Table 3.11 in detail. Our VBGFd costs much time for exploiting optical flow (based on traditional technique), which could be accelerated by using hardware acceleration with GPU or FPGA platform, or replaced by much faster deep learning based optical flow computation method (such as FlowNet2.0). Excluding optical flow computation, our VBGFd only needs 0.34s for each frame. 

Conclusion

To the best of our knowledge, this is the first overview in the literature that focus on deep-learning based video SOD methods. The classification of the methods is done regarding the domain of their deep representations, which gives a new way to learn about recent development. Deep networks of some representative existing methods are introduced and compared in detail. They are surveyed from two ponts of view: frameworks and raw results. A comparative summary of methods is presented and their performances on various datasets are discussed. An effective way is presented for readers to study these 11 methods quickly. In addition, the various experiments conducted show that the methods DHSNet and NRF give high performance over all the tested databases. This overview aims to pave a way to study the existing deeplearning based video SOD methods. We also have extended our proposed traditional video SOD method (VBGF) to VBGFd by integrating an image-based deep-learning method [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF]. Various experimental results confirms combining the traditional video SOD method (VBGF) with imagebased deep-learning method performs better than any individual method, and shows that compared to the tested state-of-the-art methods, VBGFd yields improved good performance. CHAPTER 4

DEEP-LEARNING METHOD FOR

SEMI-SUPERVISED VIDEO OBJECT SEGMENTATION

The video SOD in previous two chapters aims to detect salient objects from background without distinguishing each object. But, it is better for video content understanding to assign consistent object IDs to each object. This chapter focus on this task. In this chapter, Section 4.1 introduces an overview of state-of-the-art methods. Section 4.2 gives some existing issues. Section 4.3 presents the proposed method in detail. In section 4.4, we show and discuss the performances of the proposed method. Section 4.5 concludes the chapter.

An overview of state-of-the-art methods

For semi-supervised video object segmentation based on the human-guidance, one challenge is how to segment a pre-defined object in a video based on its provided mask of the frame in which the object appears at the first time. Recent works are introduced based on the way to use the human-guidance.

Online-offline learning

An initial way for semi-supervised video object segmentation is to firstly train the parent network which detects all foreground objects (also called as offline learning), secondly fine-tune the parent network for the particular object using the manual label (also called as online learning), as in state-of-the-art methods [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF]. However, it is very timeconsuming. The methods [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Perazzi | Learning Video Object Segmentation from Static Images[END_REF][START_REF] Voigtlaender | Online Adaptation of Convolutional Neural Networks for Video Object Segmentation[END_REF] employ the combination of offline and online hape and appearance but fail when those over from relatively and abrupt motion. has emerged as a o segmentation algot a trivial task howporal matches in the ies [START_REF] Borji | Salient Object Detection: A Benchmark[END_REF], which can be y was needed in the awbacks of the then . On the other hand, n to provide a suffiject to produce temssing each frame indvantages: OSVOS lusions, it is not lims not need to process t temporally propa-Technically, we adopt the architecture of F volutional Networks (FCN) [START_REF] Cassagne | Video saliency based on rarity prediction: Hyperaptor[END_REF][START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF], suitable predictions. FCNs have recently become popu their performance both in terms of accuracy an tational efficiency [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF][START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF][START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF]. Arguably, the Ach of FCNs when it comes to segmentation is the co of the deeper layers, which leads to inaccurately predictions. To overcome this, a large variety from different fields use skip connections of larg maps [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Li | Video Object Segmentation with Reidentification[END_REF][START_REF] He | Mask R-CNN[END_REF], or learnable filters to impro ing [START_REF] Ilg | FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF]. To the best of our knowledge, this w first to use FCNs for the task of video segmentati

We perform experiments on two video objec tation datasets (DAVIS [START_REF] Kannan | Discovering salient objects from videos using spatiotemporal salient region detection[END_REF] and Youtube-Object and show that OSVOS significantly improves th the art 79.8% vs 68.0%. Our technique is able to frame of DAVIS (480×854 pixels) in 102 ms. By the level of supervision, OSVOS can further imp sults to 86.9% with just four annotated frames per thus providing a vastly accelerated rotoscoping to and appearance fail when those r from relatively abrupt motion. s emerged as a mentation algotrivial task howl matches in the 5], which can be as needed in the acks of the then n the other hand, provide a suffito produce temg each frame inntages: OSVOS ns, it is not limt need to process Technically, we adopt the architecture of Full volutional Networks (FCN) [START_REF] Cassagne | Video saliency based on rarity prediction: Hyperaptor[END_REF][START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF], suitable fo predictions. FCNs have recently become popular their performance both in terms of accuracy and tational efficiency [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF][START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF][START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF]. Arguably, the Achill of FCNs when it comes to segmentation is the coar of the deeper layers, which leads to inaccurately lo predictions. To overcome this, a large variety o from different fields use skip connections of larger maps [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF][START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF][START_REF] Li | Video Object Segmentation with Reidentification[END_REF][START_REF] He | Mask R-CNN[END_REF], or learnable filters to improve ing [START_REF] Ilg | FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks[END_REF][START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF]. To the best of our knowledge, this wor first to use FCNs for the task of video segmentation

We perform experiments on two video object s tation datasets (DAVIS [START_REF] Kannan | Discovering salient objects from videos using spatiotemporal salient region detection[END_REF] and Youtube-Objects [ and show that OSVOS significantly improves the the art 79.8% vs 68.0%. Our technique is able to p frame of DAVIS (480×854 pixels) in 102 ms. By inc the level of supervision, OSVOS can further improv sults to 86.9% with just four annotated frames per se ing architecture. The drawback of this approach, though, is that it preserves naive image gradients, i.e. pixels with high Euclidean differences in the color channels.

To overcome this limitation, our second approach snaps the results to learned contours instead of simple image gra- 1, second row). We further show that naively performing online updates on every frame quickly leads to drift, which manifests in strongly degraded performance. As a countermeasure, we propose to mix in the first frame (for which the ground truth pixel mask is known) as additional training example during online updates. Our contributions are the following: We introduce OnAVOS, which uses online updates to adapt to changes in appearance. Furthermore, we adopt a more recent network architecture and an additional objectness pretraining step [START_REF] Decombas | Spatio-temporal saliency based on rare model[END_REF][START_REF] Dosovitskiy | FlowNet: Learning Optical Flow with Convolutional Networks[END_REF] and demonstrate their effectiveness for the semi-supervised setup. We further show that OnAVOS significantly improves the state of the art on two datasets.

Related Work

Video Object Segmentation. A common approach of many classical video object segmentation (VOS) methods is to reduce the granularity of the input space, e.g. by using superpixels [START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF][START_REF] Chen | A Novel Bottom-Up Saliency Detection Method for Video With Dynamic Background[END_REF], patches [START_REF] Cassagne | Video saliency based on rarity prediction: Hyperaptor[END_REF][START_REF] Khoreva | Lucid Data Dreaming for Video Object Segmentation[END_REF], or object proposals [START_REF] Hu | Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow[END_REF]. While these methods significantly reduce the complexity of subsequent optimization steps, they can introduce unrecoverable errors early in the pipeline. The obtained intermediate representations (or directly the pixels [START_REF] He | Mask R-CNN[END_REF]) are then used for either a global optimization over the whole video [START_REF] He | Mask R-CNN[END_REF][START_REF] Hu | Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow[END_REF], over parts of it [START_REF] Chen | A Novel Bottom-Up Saliency Detection Method for Video With Dynamic Background[END_REF], or using only the current and the preceding frame [START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF][START_REF] Cassagne | Video saliency based on rarity prediction: Hyperaptor[END_REF][START_REF] Khoreva | Lucid Data Dreaming for Video Object Segmentation[END_REF].

Recently, neural network based approaches [START_REF] Brox | Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation[END_REF][START_REF] Decombas | Spatio-temporal saliency based on rare model[END_REF][START_REF] Faktor | Video Segmentation by Non-Local Consensus voting[END_REF][START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] including OSVOS [START_REF] Brox | Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation[END_REF] have become the state of the art for VOS. Since OnAVOS is built on top of OSVOS, we include a detailed description in Section 3. While OSVOS handles every video frame in isolation, we expect that incorporating temporal context should be helpful. As a step in this direction, Perazzi et al. [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] propose the MaskTrack method, in which the estimated segmentation [START_REF] Cassagne | Video saliency based on rarity prediction: Hyperaptor[END_REF] structure. In order to construct communications between two branches, we design an architecture that bridges two networks during the up-sampling stage. Specifically, feature maps are propagated bi-directionally through concatenations at different scales with proper operations (i.e., up-sampling or down-sampling) to match the size of different features. Then an iterative training scheme is adopted to jointly optimize the loss functions for both segmentation and optical flow tasks.

SegFlow

Our goal is to segment objects in videos, as well as estimate the optical flow between frames. Towards this end, we construct a unified model with two branches, a segmentation branch based on fully-convolutional network, and an 1/8, 1/16, 1/32 of the input image size, respectively. Then these score maps are up-sampled and summed together for predicting the final output (upper branch in Figure 2).

A pixel-wise cross-entropy loss with the softmax function E is used during optimization. To overcome imbalanced pixel numbers between foreground and background 

Learning to segment instances offline

In order to guide the pixel labeling network to segment the object of interest, we begin by expanding the convnet input from RGB to RGB+mask channel (4 channels). The extra mask channel is meant to provide an estimate of the visible area of the object in the current frame, its approximate location and shape. We can then train the labelling convnet to provide as output an accurate segmentation of the object, given as input the current image and a rough estimate of the object mask. Our tracking network is de-facto a "mask refinement" network.

There are two key observations that make this approach practical. First, very rough input masks are enough for our trained network to provide sensible output segments. Even a large bounding box as input will result in a reasonable tioned cues. In order to take merits of mask warping and semantics label guidance, we propose approach presented hereafter a novel semi-supervised video object segmentation.

Semantic-guided warping for semi-supervised video object segmentation (SWVOS) algorithm

The proposed SWVOS consists of three main steps: (1) according to the provided pixel-wise mask of the first frame, target object is firstly segmented using mask warping technique, where warped maps are generated; (2) the warping confidence is computed for each warped map, which is then divided into high-confidence map and lowconfidence map; (3) the warped map with high-confidence is directly used as the final segmentation maps, while the low-confidence warped map is optimized using semantics selection. The proposed block-diagram is shown in Fig. 4.5.

Mask warping

The optical flow vectors between pairs of successive frames are generated using the Flownet [START_REF] Ilg | FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks[END_REF]. Then the warped map of each frame is obtained by warping the proposal of the previous frame to the optical flow vector. The warping function is defined as:

f j = ω(f i , V i→j ) j = i + 1 (4.1)
where f j denotes the warped map of the frame j, ω is the bilinear warping function, f i denotes the warped map of the previous frame i (for the first frame, the proposal is the provided mask), V i→j is the optical flow vectors between pairs of successive frames i and j.

Warping confidence computation

For the generated warped map, overlap ratio and contiguous groups number are used for warping confidence computation (WCC). Overlap ratio (OR) is the ratio of the object that belongs to the warped map (WM) and the foreground map (FM), the larger is better. Contiguous groups number (CGN) is the number of contiguous regions in the warped map, the smaller is better. The warped map with a low OR value or a high CGN is regarded as low-confidence in the WCC.

The foreground map (FM) is obtained with a fully covolutional network (FCN), which is a modified NLDF network [START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF]. Our FCN differs from the NLDF [START_REF] Luo | Non-local Deep Features for Salient Object Detection[END_REF] in that (1) the NLDF resizes the input image to a fixed size while our FCN uses it with its original size; (2) the NLDF adopts the VGG [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] as the baseline and uses the output of the 5-th block in the VGG as the global feature, while our FCN removes this global feature which may bring noises for complex scenes; (3) the NLDF uses the cross entropy loss and the boundary IOU loss for training while our FCN only uses the cross entropy loss since our experiment showed that the boundary IOU loss does not influence a lot our method's performances.

One example of the WCC is given in Fig. 4.6. In this example, we can see that the warped map not only contains many contiguous groups, but also has low overlap region with the foreground map. Thus, it is judged to be a warped map with low-confidence. In this chapter, the threshold for the OR is just set to be a small number 0.001. The threshold for the CGN is set to be 10, i.e. about five times of the average number of objects in each frame in the video sequence.

Semantics selection

The warped map with low-confidence is optimized using semantic selection (SS) as following. Firstly, the semantic label of the target object in the first frame is detected using the MASK R-CNN [START_REF] He | Mask R-CNN[END_REF]. Secondly, for the frame with low-confidence warped map, semantics of all objects are detected using the MASK R-CNN. Thirdly, the object in the frame that satisfies two conditions is segmented to generate the optimized warped map: (1) the object has the same semantic label as the target object, (2) the object is the closest one to the center of gravity of the low-confidence warped map. Here the MASK R-CNN is fine-tuned with the YouTube-VOS-train dataset [START_REF] Xu | YouTube-VOS: A Large-Scale Video Object Segmentation Benchmark[END_REF] in order to recognize categories in this dataset which has much more classes than the previous datasets. One example is given in Fig. 4.7.

For a video sequence with multiple pre-defined objects, these target objects are detected separately, and then merged together to generate the final segmentation map. If the pixel is detected belonging to multiple target objects, it is set to the one that has the smallest size in the provided manual labels in the first frame.

Experiments and analyses

This section shows the performances of our approach. Table .4.1 compares our pro- posed method with the state-of-the-art methods. We can see that the proposed method achieves the better performance than Segflow [START_REF] Cheng | SegFlow: Joint Learning for Video Object Segmentation and Optical Flow[END_REF] on the YouTube-VOS-test dataset. We must note that the compared methods OSVOS, OnAVOS and MaskTrack perform better than our proposed method. However they all use the time-consuming online learning step, which is not suitable for real-world applications. Our proposed method has not this limitation.

For the semi-supervised video object segmentation task, the YouTube-VOS Challenge on video object segmentation 2018 use YouTube-VOS-test dataset for competition. Our method achieves the 8th result in YouTube-VOS Challenge on video object segmentation 2018. In Table 4.2, we show the performance of our proposed models (named "SnowFlower") in the benchmarking table. Note that only 8 models are selected and listed.

Conclusion

In this chapter, we have proposed a novel semi-supervised video object segmentation method that extracts each pre-defined object from each frame. This goal is achieved [START_REF] Brox | Object Segmentation by Long Term Analysis of Point Trajectories[END_REF] 8th by using the mask warping technique. By employing the warping confidence computation, the method can firstly detect the warped mask in low-level confidence. Then the optimized warped flow map is achieved through re-identifying the target object with semantics selection. The wrong segmented regions in the warped map is alleviated and the target object is extracted with better performance. For the evaluation of video object segmentation, a recently published large-scale dataset: Youtube-VOS is used.

Experimental results demonstrate that the proposed method achieves high J value and F value.
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CHAPTER 5

CONCLUSION AND PERSPECTIVE

This thesis focuses on the problems of video salient object detection (SOD) that aim at separating salient object from background in each frame of a video sequence and the problems of semi-supervised video object segmentation that aim at assigning consistent object IDs to each pixel in each frame of a video sequence. We have proposed a traditional method for video SOD, an overview of deep-learning methods for video SOD, an extension of the proposed traditional method to integrate deep-learning and a deep-learning method for semi-supervised video object segmentation as follows:

-The proposed traditional method for video SOD (VBGF) is based on "background prior", which takes the frame boundary as the background. The virtual border building is proposed to detect the salient object that touches the frame border. A "Feature fusion" is employed to enhance the detected salient object edges from the temporal domain. A "Map fusion" is used to combine the SSM and TSM together to generate the final saliency result. We have compared our video SOD model with the state-of-the-art models and the experiments demonstrate that the proposed model obtains significant improvement over the state-of-the-art approaches.

-The survey of the video SOD puts emphasis on deep-learning based methods in this domain. This survey firstly aims at classifying the existing methods and analyze their frameworks, which may benefit the future work. This survey secondly aims at making a comparison of the performances of the state-of-the-art methods. We used four popular datasets and five commonly used evaluation metrics. The results shows that the methods DHSNet and NRF performance good over all the tested databases.

-The extended model VBGFd is motivated by the observation that deep-learning image SOD achieves a good performance to detect the salient object from spatial domain. Combining deep representations from image SOD task helps to detect the salient object in videos. We have carried out evaluations on a large benchmarking dataset and experiments demonstrated the extended model achieves the state-of-the-art performance.

-The proposed video object segmentation model SWVOS, based on deep learning techniques, uses the semantics of the object as a guidance during the warping process. Experimental results on a large-scale dataset Youtube-VOS demonstrate that the proposed method achieves good performance. Some future works can be derived from the previous analyses:

-Employ some more useful deep representations: the guided filter used in VBGF may lead to information loss as the used hand-crafted features are not robust in some complex cases, which may be improved with informative deep representation features.

-Train some deep network for the map fusion: although the map fusion in VBGF based on traditional methods gives a good balance between the SSM and the TSM, it makes some failures when salient objects have not distinct appearance and motion information at the same time. It would be interesting to verify that the Map fusion method in VBGF can improve by using different deep networks.

-Employ more video saliency cues: it is valuable to investigate for other deep representations that can improve the quality of video saliency detection. The image objectlevel cue used in the VBGFd is the most popular choice. Human visual attention usually pays more attention on certain categories, thus the object classification cue can be considered as another choice to detect the video SOD.

-Explore more temporal saliency features and spatio-temporal saliency features: from our experiments, deep-learning technique performs well for detecting the salient object from the spatial domain. Most of the existing video SOD mainly rely on the spatial saliency detection and based on a backbone network. However the goal of video SOD is to detect the object which is salient in the whole video sequence. Further exploration for the temporal saliency features and spatio-temporal saliency features need to be explored.

-Explore weakly-supervised networks [START_REF] Tang | Weakly Supervised Salient Object Detection with Spatiotemporal Cascade Neural Networks[END_REF]: fully supervised models improve detection performance but rely on large training dataset with provided ground truth. Weaklysupervised models that do not rely on large pixel-wise labels attract much attention in recent years. However, its accuracy is still far from satisfactory, and further accuracy improving is one topic to investigate in the future.

-In video salient object detection, the video salient object may change (also called as saliency shift), which is challenging and firstly pointed out in recent method [START_REF] Fan | Shifting more attention to video salient object detection[END_REF]. Due to the dynamic human attention characteristics, considering such saliency shift is more realistic and is helpful for video understanding.

-In semi-supervised video object segmentation, the mask of the object is given. However, the mask needs a pixel-level accurate segmentation, which is time-consuming. Interactive segmentation using scribble supervision [START_REF] Sergi Caelles | The 2018 DAVIS Challenge on Video Object Segmentation[END_REF] is proposed recently. The user is asked to draw scribbles on the object instance, in order to refine the output of a method interactively until the result is satisfactory. In order to further decrease the human supervision, the unsupervised objects instance segmentation [START_REF] Sergi Caelles | The 2019 DAVIS Challenge on VOS: Unsupervised Multi-Object Segmentation[END_REF], which does not take any user input into account, are more attractive. FastMBD15 [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] and AMC13 [START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF]. The left parts show the P-R curves, the right parts shows the F-measure scores ↑. . . . . . . . . . . . . . . 
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  Figure 0.1: Examples of image SOD.
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  Figure 0.3: A comparison of video SOD, video semantic salient object segmentation and video object instance segmentation.
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 5 Figure 0.4: Overview of the thesis.
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 005 Fig.0.5 shows some saliency maps generated by VBGF and the corresponding GT. Chapter 3 puts emphasis on the analysis of the state-of-the-art methods in video SOD based on deep-learning techniques, which mainly concludes:
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 006 Fig.0.6 shows some examples of saliency maps generated by the VBGFd.Chapter 5 proposes a Semantic-guided warping for semi-supervised video object segmentation (SWVOS) to address the semi-supervised video object segmentation problem:
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 007 Fig.0.7 shows some segmentation maps generated by the proposed approach SWVOS.

Chapter 1 -Figure 1 . 1 :

 111 Figure 1.1: Examples of dataset building.

Fig. 2 .

 2 Fig. 2.1 shows the classification of the video SOD methods based on low-level cues.
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 21 Figure 2.1: Methods classification based on low-level cues.

  [START_REF] Chen | Bilevel Feature Learning for Video Saliency Detection[END_REF] employ contrast cue, devise a Markov random field solution and learn multiple nonlinear feature transformations to detect the video salient object detection. Fig.2.2 shows the classification of the video SOD methods based on fusion ways.
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 29 Figure 9: Some failure cases where the salient objects touch the image boundary.
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 23 Figure 2.3: FastMBD15 [103]. (a) Input image, (b) Minimum barrier distance transform with the Raster Scan, (c) Final result. (Figures are copied from the published paper [103])
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 243 Figure 2.4: MST16 [80]. (a) Input image, (b) Minimum barrier distance transform with the minimum spanning tree, (c) Boundary index (the boundary is divided into three groups according to their color values), (d) Boundary dissimilarity map, (e) Final result. (Figures are copied from the published paper [80])
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 3 Figure 3. Examples showing the benefits of the update processing. From left to right, input images, results without and with the update processing.
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 2526 Figure 2.5: AMC13 [36]. (a) Input image, (b) Result without update processing, (c) Result with update processing. (Figures are copied from the published paper [36])
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 271111 Figure 2.7: GF15 [89]. (a) Input frame, (b) Color optical flow map of the input frame, (c) Optical flow gradient magnitude, (d) Superpixel segmentation, (e) Gradient magnitude of (d), (f) Spatio-temporal gradient field by fusing (c) and (e) in a non-linear way, (g) Final result. (Figures are copied from the published paper [89])

  geodesic video object segmentation.
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 2829210 Figure 2.8: SAG15 [88]. (a) Input frame, (b) Color optical flow map of the input frame, (c) Static edge probability map, (d) Superpixel segmentation, (e) Motion boundary of (b) , (f) Spatio-temporal edge probability map by combining (c), (d) and (e), (g) Final result. (Figures are copied from the published paper [88])
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 211212 Figure 2.11: FD17 [14]. (a) Input frame, (b) Contrast-based saliency, (c) Pos region (salient) are denoted by blue color, Neg region (non salient) are denoted by red color and Unk region (undeterministic) are denoted by white color, (d) Final result. (Figures are copied from the published paper [14])
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 483213 Figure 2.13: The proposed block-diagram. SD: Spatial saliency detection; SSM: Spatial saliency map; TD: Temporal saliency detection; TSM: Temporal saliency map; STSM: Spatio-temporal saliency map.
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 11 M 2 and M 3 are obtained respectively from three color channels of frame α in the CIELab color space. For each color channel I with the size of h 1 × w 1 , M is generated as follows: if the pixel x ∈ r 1 (r 1 being the border of the frame α), its value in M is set to 0. If pixel x ∈ r 2 (r 2 being the non-border of the frame), its value in M is initialized as ∞. Two auxiliary maps τ and ψ are initialized by the pixel values in each channel of the original image. Let the 4-adjacent pixels around a pixel x in the region r 2 be x up (up pixel), x left (left pixel), x down (down pixel) and x right (right pixel). Using the update function, M and the auxiliary maps are firstly updated in raster scan order, secondly updated in inverse raster scan order with y ∈ x down , x right , and thirdly updated in raster scan order again. The update function is shown as follows: if M (x) > O y (x) (y ∈ x up , x left ), M (x), τ y and ψ y are updated to O y (x), max τ y , I(x) and min ψ y , I(x) respectively, where O y (x) = max τ y , I(x) -min ψ y , I(x) .
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 2 Figure2.17: (Better viewed in color) Quantitative comparisons between our proSSM (proposed spatial saliency map) and three image SOD models over the Fukuchi dataset. Some state-of-the-art methods, including: MST16[START_REF] Tu | Real-Time Salient Object Detection with a Minimum Spanning Tree[END_REF], FastMBD15[START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] and AMC13[START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF]. The left parts show the P-R curves, the right parts shows the F-measure scores ↑.
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 2 Figure 2.22: (Better viewed in color) Quantitative comparisons between our method (VBGF) and six video SOD models over the Fukuchi dataset. (a) show the P-R curves, (b) shows the F-measure scores ↑ and (c) shows MAE scores ↓. Some state-of-the-art methods, including: TGFV17 [87], SGSP16[START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15[START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15[START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15[START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], FD17[START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF] .
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 2 Figure 2.23: (Better viewed in color) Quantitative comparisons between our method (VBGF) and five video SOD models over the FBMS dataset. (a) show the P-R curves, (b) shows the F-measure scores ↑ and (c) shows the MAE scores ↓. Some state-ofthe-art methods, including: TGFV17 [87], SGSP16[START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15[START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15[START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF] and SAG15[START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF].
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 224 Figure 2.24: Comparison of the saliency maps (1). (a)-(f) are 6 different video sequences. Some state-of-the-art methods, including: MST16 [80], FastMBD15 [103],AMC13[START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF], TGFV17[START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16[START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15[START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15[START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15[START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF].
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 225 Figure 2.25: Comparison of the saliency maps (2). (g)-(k) are 5 different video sequences. Some state-of-the-art methods, including: MST16 [80], FastMBD15 [103],AMC13[START_REF] Jiang | Saliency Detection via Absorbing Markov Chain[END_REF], TGFV17[START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16[START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15[START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15[START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15[START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF].
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 33 Figure 3.3: Single-task models: (a) SFCN and (b) SCNN
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 234 Figure 3.4: Single-task models: (a) NRF, (b) DHSNet and LMP, (c) LVO.
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 236 Figure 3.5: Encoder-decoder network
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 37 Figure 3.7: (Better viewed in color) Performances on the VOS-E dataset: (a) F-measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve. ↑ means the higher the better and ↓ means the lower the better.
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 38 Figure 3.8: (Better viewed in color) Performances on the FBMS dataset: (a) F-measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve.
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 39333 Figure 3.9: (Better viewed in color) Performances on the VOS-N dataset: (a) F-measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve.
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 3 Figure 3.13: (Better viewed in color) MAE performance↓
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 3333 Figure 3.14: (Better viewed in color) Precision performance↑
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 317 Figure 3.17: Examples of saliency maps for cases of failure.
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 2 Introduction of the existing issue Parent Network Trained on DAVIS training set 2 Test Network Fine-tuned on frame 1 of test sequence 3 rt with a pre-trained base CNN for image labeling on ImageNet; its results in terms features, are not useful. (2) We then train a parent network on the training set of ocused on an specific object yet. (3) By fine-tuning on a segmentation example for rapidly focuses on that target.

  on frame 1 of test sequence 3 ith a pre-trained base CNN for image labeling on ImageNet; its results in terms of ures, are not useful. (2) We then train a parent network on the training set of DA d on an specific object yet. (3) By fine-tuning on a segmentation example for the dly focuses on that target.

2 Figure 4 .

 24 Figure 4. Two-stream FCN architecture: The main foreground branch (1) is complemented by a contour branch (2) which improves the localization of the boundaries (3).

Figure 4 . 1 :Figure 1 :

 411 Figure 4.1: OSVOS [9]. (a) An overview of OSVOS: the designed network is firstly trained to learn the generic objects, and then fine-tuned to learn the target object. (b) The designed network. (Figures are copied from the published paper [18])

Figure 4 . 2 :

 42 Figure 4.2: OnAVOS [83]. The first row shows the result without updating, the second row gives the online selected training example and the third shows the result with updating. (Figures are copied from the published paper [83])

Figure 2 .

 2 Figure 2. The proposed SegFlow architecture. Our model consists of two branches, the segmentation network based on a fullyconvolutional ResNet-101 and the flow branch using the FlowNetS[START_REF] Cassagne | Video saliency based on rarity prediction: Hyperaptor[END_REF] structure. In order to construct communications between two branches, we design an architecture that bridges two networks during the up-sampling stage. Specifically, feature maps are propagated bi-directionally through concatenations at different scales with proper operations (i.e., up-sampling or down-sampling) to match the size of different features. Then an iterative training scheme is adopted to jointly optimize the loss functions for both segmentation and optical flow tasks.

Figure 4 . 3 :

 43 Figure 4.3: Segflow [18]. (Figures are copied from the published paper [18])

Figure 1 :

 1 Figure 1: Given a rough mask estimate from the previous frame t -1 , we train a convnet to provide a refined mask output for the current frame t.

  Figure one annThe gen precedin

Figure 4 . 4 :

 44 Figure 4.4: MaskTrack [66]. (Figures are copied from the published paper [66])

Figure 4 . 5 :

 45 Figure 4.5: The proposed block-diagram SWVOS.

4. 3 .

 3 Semantic-guided warping for semi-supervised video object segmentation (SWVOS) algorithm

( a )

 a Figure 4.6: One example of the warping confidence computation. The target object is denoted in red box in (a). 114

4. 3 .Figure 4 . 7 :

 347 Figure 4.7: One example of semantics selection (SS). The target object is denoted in red box in (a). 115

2. 7

 7 GF15 [89]. (a) Input frame, (b) Color optical flow map of the input frame, (c) Optical flow gradient magnitude, (d) Superpixel segmentation, (e) Gradient magnitude of (d), (f) Spatio-temporal gradient field by fusing (c) and (e) in a non-linear way, (g) Final result. (Figures are copied from the published paper [89]) . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 SAG15 [88]. (a) Input frame, (b) Color optical flow map of the input frame, (c) Static edge probability map, (d) Superpixel segmentation, (e) Motion boundary of (b) , (f) Spatio-temporal edge probability map by combining (c), (d) and (e), (g) Final result. (Figures are copied from the published paper [88]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 SGSP16 [54]. (a) Input frame, (b) Color optical flow map of the input frame, (c) Superpixel segmentation, (d) Graph based motion saliency, (e) Spatial propagation, (f) Final result. (Figures are copied from the published paper [54]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.10 RWR15 [39]. (a) Input frame, (b) Saliency map generated by the random walk simulation without employing temporal information as restarting distributions, (c) Saliency map generated by the random walk simulation with employing temporal information as restarting distributions. (Figures are copied from the published paper [39]) . . . . . . . . . . . . . . . . . 2.11 FD17 [14]. (a) Input frame, (b) Contrast-based saliency, (c) Pos region (salient) are denoted by blue color, Neg region (non salient) are denoted by red color and Unk region (undeterministic) are denoted by white color, (d) Final result. (Figures are copied from the published paper [14]) . . .
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 18 -R curves of proTSM (proposed temporal saliency map) with guided filtering and without guided filtering over the Fukuchi dataset and the FBMS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.19 F-measure scores of the proposed temporal saliency map: (a) with guided filtering and (b) without guided filtering over the Fukuchi dataset and the FBMS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1 .

 1 is a popular video dataset for video foreground segmentation. It is divided into two splits: the training part used for training only and the validation part for the inference. It is widely used for SOD in videos, because of the foreground properties (most of the objects in the video sequences have distinct colors, which can be regarded as salient objects). The DAVIS-2017-train-val dataset [69] is a recently published video dataset. It is divided into two splits: training and validation. It is mainly an extension of DAVIS-2016 dataset.The detailed information of these datasets are listed in Table1.1. 1: Comparison between various test datasets.

	Dataset	Numbers Sequence Frame	GT	Resolution
	VOS	200	116103 116103 [408,800]
	VOS-E	97	49206	49206	[408,800]
	VOS-N	103	66897	66897	[448,800]
	FBMS-test	30	13860	720	[350,960]
	Fukuchi	10	740	740	[352,288]
	DAVIS 2016-val	20	1376	1376	[480,854]
	DAVIS 2017-val	30	1999	1999	[480,854]
	The YouTube-VOS dataset [96] is a recently published and the largest dataset with
	high resolution for semi-supervised video object segmentation. It is the most challeng-
	ing dataset, and it contains three sets: Train, Val and Test. It has the total number
	197,272 of object annotations. For the Test set, it contains 508 video sequences with
	the first-frame ground truth provided. 65 categories of objects in the Test set appear in
	Train set, which are called as "seen objects"; and 29 categories of objects in the Test
	set do not appear in Train set, which are called as "unseen objects".
	To illustrate datasets, some examples are given in Fig.1.2	

Table 2 .

 2 1: A table comparing the our method (VBGF) and six video SOD models in MAE ↓ and F-measure ↑ scores over 4 video sequences chosen from the Fukuchi dataset. The Bold number indicates the best result.

	Method	MAE scores ↓ AN119T DO01_013 DO01_055 DO02_001
	TGFV17 [87] 0.0119	0.0084	0.0462	0.0324
	SGSP16 [54] 0.0772	0.0675	0.0996	0.1463
	RWR15 [39]	0.0692	0.0773	0.052	0.0826
	GF15 [89]	0.0312	0.0306	0.0334	0.0378
	SAG15 [88]	0.0264	0.0247	0. 026	0.0162
	FD17 [14]	0.0062	0.0086	0. 0165	0.0113
	VBGF	0.0027	0.0052	0.0053	0.0014
	Method	F-measure scores ↑ AN119T DO01_013 DO01_055 DO02_001
	TGFV17 [87] 0.9069	0.704	0.7228	0.808
	SGSP16 [54] 0.7318	0.6343	0.5411	0.5925
	RWR15 [39]	0.4878	0.5379	0.6533	0.6182
	GF15 [89]	0.8659	0.6842	0.7417	0.8292
	SAG15 [88]	0.8432	0.5486	0.7393	0.8348
	FD17 [14]	0.9449	0.685	0.7852	0.8656
	VBGF	0.9516	0.801	0.8051	0.9322

Table 2 .

 2 2: A table comparing the our method (VBGF) and five video SOD models in MAE ↓ and F-measure scores ↑ over 5 video sequences chosen from the FBMS dataset.

	Method	MAE scores ↓ Cars5 Cars10 Cats03 Horses04 Horses05
	TGFV17 [87] 0.0205 0.0248 0.0536	0.0454	0.0363
	SGSP16 [54] 0.0708 0.0599 0.1089	0.0964	0.0877
	RWR15 [39] 0.1905 0.1485 0.1471	0.1175	0.0968
	GF15 [89]	0.0438 0.0388 0.1148	0.1049	0.0598
	SAG15 [88] 0.0486 0.034 0. 0941	0.1427	0.0689
	VBGF	0.0161 0.0218 0.0103	0.0243	0.0215
	Method	F-measure scores ↑ Cars5 Cars10 Cats03 Horses04 Horses05
	TGFV17 [87] 0.751 0.6494 0.6573	0.7021	0.6018
	SGSP16 [54] 0.6359 0.6595 0.6558	0.6476	0.6105
	RWR15 [39] 0.3485 0.4056 0.2219	0.3389	0.3666
	GF15 [89]	0.5877 0.6339 0.2762	0.6415	6067
	SAG15 [88] 0.4964 0.584 0.3532	0.3797	0.6495
	VBGF	0.7712 0.7281 0.7184	0.7294	0.6593

Table 2 .

 2 

		MST FastMBD AMC	-	-	-
	Time(s)↓	0.200	0.018	0.153	-	-	-
	Video_based SGSP	RWR	GF	SAG	FD	VBGF
	Time(s)↓	15.37	14.25	13.50 15.38 33.17 3.56
		Component	VBGF Time(s)↓ Ratio(%)
	virtual border building		0.50		14.04
		saliency detection		0.07		1.97
	optical flow computation		2.80		78.65
	feature fusion(guided filtering)	0.07		1.97
		map fusion		0.12		3.37
		total			3.56		100

4: Average run time (per frame) of each component in the proposed models.

Table 3 .

 3 1: Comparison of the existing survey/benchmark for SOD • Deep-learning methods can achieve high performance, but it heavily relies on the training datasets. Thus it is necessary to test the generality of the state-of-the-art methods through experimental comparison on different public datasets.

	Year Benchmark Survey Traditional Deep-learning Video Image
	[65] 2014	×	×	×
	[6] 2014	×	×	×
	[5] 2015	×	×	×
	[29] 2018	×	×	×
	[49] 2018	×		

Table 3 .

 3 3, Table

Table 3 . 5

 35 

	DHSNet LMPd	LVOd	NLDF	NRF	OSVOS SFCN SFCNs SegFlow	WSS
	1.4477	0.6519 1.3356 1.3436 1.5561 1.0447 1.2384 1.1471	1.3690	1.1635

: Area of each method in the Fig 3.16. (The best score is in bold)

Table 3 .

 3 6: Average run time in seconds (per frame) of the compared models. (The best score is in bold)

	Methods DHSNet LMPd LVOd NLDF NRF OSVOS SFCN SegFlow WSS
	Time(s)↓	0.069	0.2	0.42 0.091 0.297	0.072	0.072	0.174	0.067

Table 3 .

 3 7: Comparison of the proposed VBGFd componets' performance on dataset VOS, VOS-E, VOS-N. proSSM: proposed spatial saliency map; proTSM: proposed temporal saliency map; proSTSM: proposed spatio-temporal saliency map. The Bold number indicates the best result in each line.

				Proposed VBGFd components	
	Dataset	Metrics	proSSM	proTSM without proTSM with proSTSM guided filtering guided filtering
		Precision↑	0.863	0.398	0.528	0.881
	VOS-E	Recall↑ F-measure↑	0.905 0.872	0.380 0.394	0.480 0.516	0.877 0.880
		MAE↓	0.049	0.189	0.154	0.046
		Precision↑	0.649	0.407	0.407	0.690
	VOS-N	Recall↑ F-measure↑	0.851 0.686	0.389 0.403	0.392 0.403	0.806 0.714
		MAE↓	0.055	0.136	0.132	0.059
		Precision↑	0.753	0.403	0.466	0.783
	VOS	Recall↑ F-measure↑	0.877 0.778	0.385 0.399	0.435 0.458	0.840 0.795
		MAE↓	0.052	0.162	0.143	0.053
	6th columns show the results of the spatial saliency map, temporal saliency map and
	spatio-temporal saliency map. The 4th column shows the result of the temporal saliency
	detection without guided filtering. By comparing the 4th and 5th columns in Table

Table 3 .

 3 8: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art models on the dataset VOS-E. The best three scores in each column are marked in red, green and blue, respectively.

		Models	VOS-E Precision↑ Recall↑ F-measure↑ MAE↓
		LEGS	0.820	0.685	0.784	0.193
		MCDL	0.831	0.787	0.821	0.081
	[I+D]	MDF ELD DCL	0.740 0.790 0.864	0.848 0.884 0.735	0.762 0.810 0.830	0.100 0.060 0.084
		RFCN	0.834	0.820	0.831	0.075
		DHSNet	0.863	0.905	0.872	0.049
		SIV	0.693	0.543	0.651	0.204
		FST	0.781	0.903	0.806	0.076
	[V+U]	NLC SAG GF	0.439 0.709 0.712	0.421 0.814 0.798	0.435 0.731 0.730	0.204 0.129 0.153
		SSA	0.875	0.776	0.850	0.062
		VBGF	0.797	0.773	0.791	0.085
		VBGFd	0.881	0.877	0.880	0.046

Table 3 .

 3 9: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art models on the dataset VOS-N. The best three scores in each column are marked in red, green and blue, respectively.

		Models	VOS-N Precision↑ Recall↑ F-measure↑ MAE↓
		LEGS	0.556	0.593	0.564	0.215
		MCDL	0.570	0.645	0.586	0.085
	[I+D]	MDF ELD DCL	0.527 0.569 0.583	0.742 0.838 0.809	0.565 0.615 0.624	0.098 0.081 0.079
		RFCN	0.614	0.783	0.646	0.080
		DHSNet	0.649	0.851	0.686	0.055
		SIV	0.451	0.523	0.466	0.201
		FST	0.619	0.691	0.634	0.117
	[V+U]	NLC SAG GF	0.561 0.354 0.346	0.610 0.742 0.738	0.572 0.402 0.394	0.123 0.150 0.331
		SSA	0.660	0.682	0.665	0.103
		VBGF	0.558	0.688	0.583	0.130
		VBGFd	0.690	0.806	0.714	0.059

Table 3 .

 3 10: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art models on the dataset VOS. The best three scores in each column are marked in red, green and blue, respectively.

		Models	VOS Precision↑ Recall↑ F-measure↑ MAE↓
		LEGS	0.684	0.638	0.673	0.204
		MCDL	0.697	0.714	0.701	0.083
	[I+D]	MDF ELD DCL	0.630 0.676 0.719	0.793 0.861 0.773	0.661 0.712 0.731	0.099 0.071 0.081
		RFCN	0.721	0.801	0.738	0.078
		DHSNet	0.753	0.877	0.778	0.052
		SIV	0.568	0.533	0.560	0.203
		FST	0.697	0.794	0.718	0.097
	[V+U]	NLC SAG GF	0.502 0.526 0.523	0.518 0.777 0.767	0.505 0.568 0.565	0.162 0.140 0.244
		SSA	0.764	0.728	0.755	0.083
		VBGF	0.674	0.729	0.686	0.108
		VBGFd	0.783	0.840	0.795	0.053

Table 3 .

 3 11: Average run time (per frame) of each component in the proposed models.

	Component	VBGFd Time(s)↓ Ratio(%)
	saliency detection	0.15	4.78
	optical flow computation	2.80	89.17
	feature fusion(guided filtering)	0.07	2.23
	map fusion	0.12	3.82
	total	3.14	100

Table 4 .

 4 1: Performance comparison between the proposed method (SWVOS) and existing models over the YouTube-VOS-test dataset. The best score is in bold.

	Methods J_seen↑ J_unseen↑ F_seen↑ F_unseen↑ Overall↑
	OnAVOS	0.557	0.568	0.613	0.623	0.590
	MaskTrack	0.569	0.607	0.593	0.637	0.602
	OSVOS	0.591	0.588	0.637	0.639	0.614
	SWVOS	0.513	0.367	0.494	0.419	0.448
	Segflow	0.404	0.385	0.350	0.327	0.367

Table 4 .

 4 2: Performance benchmarking in the YouTube-VOS Challenge.

	Team Name	Overall	J_seen J_unseen F_seen F_unseen Rank
	Jono	0.722(1) 0.737(1) 0.648(2) 0.778(1) 0.725(2)	1st
	speeding_zZ 0.720(2) 0.725(3) 0.663(1) 0.752(3) 0.741(1)	2nd
	mikirui	0.699(3) 0.736(2) 0.621(4) 0.755(2) 0.684(4)	3rd
	hi.nine	0.684(4) 0.706(5) 0.623(3) 0.728(5) 0.677(5)	4th
	sunpeng	0.672(5) 0.707(4) 0.598(6) 0.736(4) 0.648(6)	5th
	random_name 0.672(6) 0.672(6) 0.609(5) 0.709(6) 0.697(3)	6th
	kduarte	0.539(7) 0.594(7) 0.483(7) 0.578(7) 0.502(7)	7th
	SnowFlower 0.448(8) 0.513(8) 0.367(8) 0.494(8) 0.419

  2.12 State-of-the-art saliency maps[START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF][START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF][START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF]. . . . . . . . . . . . . . . . . 2.13 The proposed block-diagram. SD: Spatial saliency detection; SSM: Spatial saliency map; TD: Temporal saliency detection; TSM: Temporal saliency map; STSM: Spatio-temporal saliency map. . . . . . . . . . . . . . . . . 2.14 Virtual border building: (1): two examples of map M obtained by applying FastMBD on the frame; and then for each frame, the closest border to the salient region is selected to build the virtual border; (2): generating the divided border from the highlighted frame border (with width u), h 1 is the frame height, w 1 is the frame width and l is the ratio of the corresponding border length, four divided borders: the DUB, the DDB, the DLB and the DRB are shown; (3): two examples of the representative pixel selection, where "Mean" means the representative pixel is chosen using the mean value of the border's intensities and "Median" means choosing the median value of the border's intensities as the representative pixel, the red dotted line denotes the virtual border padded with the selected representative pixel; (4): building and padding the virtual border (with size v) with representative pixel value, four virtual borders: VUB, the VDB, the VLB and the VRB, are shown in four different textures. 2.15 (Better viewed in color) An example of the spatial saliency detection. The red dotted line denotes the virtual border. . . . . . . . . . . . . . . . . . 2.16 (Better viewed in color) An example of the temporal saliency detection: from two successive frames, the optical flow vector is extracted and mapped to be the color optical flow map E. The virtual border is built on map E to generate with-virtual-border color optical flow map F . The red dotted line denotes the virtual border. After guided filtering, the filtered image G is generated to produce the temporal saliency map. Ground truth is provided for comparison. . . . . . . . . . . . . . . . . . . . . . . 2.17 (Better viewed in color) Quantitative comparisons between our proSSM (proposed spatial saliency map) and three image SOD models over the Fukuchi dataset. Some state-of-the-art methods, including: MST16 [80],

2.1. An overview of state-of-the-art methods

2.3. Virtual Border and Guided Filter-based (VBGF) algorithm

2.4. Experiments and analyses

Virtual Border and Guided Filter-based (VBGF) algorithm

Virtual border building

(2) (4)

.14: Virtual border building: (1): two examples of map M obtained by applying FastMBD on the frame; and then for each frame, the closest border to the salient region is selected to build the virtual border; (2): generating the divided border from the highlighted frame border (with width u), h 1 is the frame height, w 1 is the frame width and l is the ratio of the corresponding border length, four divided borders: the DUB, the DDB, the DLB and the DRB are shown; (3): two examples of the representative pixel selection, where "Mean" means the representative pixel is chosen using the mean value of the border's intensities and "Median" means choosing the median value of the border's intensities as the representative pixel, the red dotted line denotes the virtual border padded with the selected representative pixel; (4): building and padding the virtual border (with size v) with representative pixel value, four virtual borders: VUB, the VDB, the VLB and the VRB, are shown in four different textures. 

Saliency computation

After the "virtual border building", the spatial saliency map SSM is obtained by apply the FastMBD [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] to the with-virtual-border frame D and then remove the virtual border from the resulted map to obtain the spatial saliency map SSM. One example is given to show the process of spatial saliency detection in Fig. 2.15.

Temporal saliency detection

In temporal saliency detection (TD), given an input video sequence, the movement information is extracted from the whole video and then the salient object is detected from this movement information. This part is related to the method we called TGFV and with the spatial saliency map, the detected temporal saliency has a lower confidence. The proposed fusion can still get a good performance by retaining the spatial saliency map while neglecting the temporal detection influence. For the FBMS dataset, the low contrast and the complex background in the spatial domain make the spatial saliency detection inaccurate. Though the global motion is intricate, the temporal saliency map is still better than the spatial saliency map. The proposed fusion method takes advantages of results from both domains and gives a higher overall performance.

Comparison of the proposed method with state-of-the-art methods

Quantitative comparison with video SOD models

We compare our proposed method (VBGF, also called as proSTSM) with several video SOD models with the Fukuchi dataset and the FBMS dataset respectively. For the Fukuchi dataset, six compared models are: TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], FD17 [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF]. The P-R curves, F-measure and MAE values are drawn in Fig. 2.22, from which we can see that the proposed method has the best P-R curve, the highest F-measure and the smallest MAE values. The detailed MAE and F-measure scores over four video sequences are shown in Table .2.1 and the proposed method achieves the best performance. In the Fukuchi dataset, the contrast between the salient object and the background is large and the salient object movement is slow. Spatial saliency detection thus can already provide a high confidence, while the wrong detections in the temporal domain may influence the final saliency map. Compared with methods TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SA15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], and FD17 [START_REF] Chen | Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion[END_REF], the proposed fusion method can better select higher confidence spatial saliency information from two domains.

For the FBMS dataset, five compared models are TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using Minimum Barrier Distance[END_REF], SGSP16 [START_REF] Liu | Saliency Detection for Unconstrained Videos Using Superpixel-Level Graph and Spatiotemporal Propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart[END_REF], GF15 [START_REF] Wang | Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]. Fig. 2.23 reports the P-R curves, F-measure and MAE values. We can see that our proposed method performs the best, while all the methods get lower performances on this dataset since it is the most challenging one. Five videos with difficult cases (the salient object is similar to the background or the background is complex) are selected and the detailed corresponding MAE and Fmeasure scores are shown in Table .2.2, in which the proposed method is always the best method. In the FBMS dataset, on one hand, the global motion exists in many 

Extension of VBGF (VBGFd)

The block-diagram of the proposed VBGFd method is shown in Fig. 3 Compared with Fig. 2.13, the "Virtual border building" in both "SD" and "TD" blocks is removed. The "Saliency computation" in VBGF is a traditional methods, while the "Saliency computation" in VBGFd is based on a deep-salient detection method proposed in [START_REF] Liu | DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection[END_REF]: the DHSNet (because of the availability of its source code and its good performance). In VBGFd, the first two steps in the "Map fusion" part use the ratio of the entropies for each frame in Eq.2.7.

Experiments and analysis

In this section, the large-scale video SOD dataset VOS and its two subsets VOS-E, VOS-N are used to show the performance of VBGFd.

Performance of components of the proposed method

The proposed VBGFd can be decomposed into different components. In Table 3.7, we list the performances of VBGFd according to its components. The 3th, 5th and learning strategies, as in Fig. 4.1 (a).

Caelles et al. [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF] design a network to learn the foreground object, as in Fig. 4.1 (b), which is consisted of a foreground branch and a contour branch.

Compared with OSVOS [START_REF] Sergi Caelles | One-Shot Video Object Segmentation[END_REF], OnAVOS [START_REF] Voigtlaender | Online Adaptation of Convolutional Neural Networks for Video Object Segmentation[END_REF] updates the result based on online selected training example. It aims at adapting the changes in appearance. MaskTrack [START_REF] Perazzi | Learning Video Object Segmentation from Static Images[END_REF] predicts the segmentation mask with a rough estimated mask of the previous frame as in Fig. 4.4.

Mask warping

Most works adopt "mask warping" to combine the necessary appearance information and the temporal context together, which benefits the semi-supervised video object segmentation. The mask of the target object is warped to the optical flow vectors to generate warped map frame by frame [START_REF] Khoreva | Lucid Data Dreaming for Video Object Segmentation[END_REF][START_REF] Li | Video Object Segmentation with Reidentification[END_REF][START_REF] Perazzi | Learning Video Object Segmentation from Static Images[END_REF][START_REF] Sun | Mask Propagation Network for Video Object Segmentation[END_REF][START_REF] Xiao | MoNet: Deep Motion Exploitation for Video Object Segmentation[END_REF][START_REF] Loy | Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation[END_REF][START_REF] Xu | Class-Agnostic Video Object Segmentation without Semantic Re-Identification[END_REF].

Introduction of the existing issue

"Mask warping" is faster than online learning. However, the warped map generated is vulnerable to lighting changes, deformations, etc. The wrongly detected regions in one frame can be propagated to the following ones, thus more background is warped. To solve this problem, Leibe et al. [START_REF] Luiten | PReMVOS: Proposalgeneration, Refinement and Merging for the DAVIS Challenge on Video Object Segmentation 2018[END_REF] proposed to optimize the generated warped map in each step with an objectness score etc; Khoreva et al. [START_REF] Khoreva | Lucid Data Dreaming for Video Object Segmentation[END_REF] proposed to optimize the generated warped map by removing the possibly spurious blobs.

The semantics label of the object instance in the first frame is another useful cue for semi-supervised video object segmentation. In the method [START_REF] Maninis | Video Object Segmentation Without Temporal Information[END_REF], a semantics instance segmentation algorithm is leveraged to obtain the semantics label of the target object in the first frame, and then the semantics label is propagated to the following frames. In the method [START_REF] Le | Instance Re-Identification Flow for Video Object Segmentation[END_REF], objects are divided into human and non-human object instances which are propagated using different networks.

Mask warping and semantics label guidance are not mutually exclusive, and could be taken simultaneously. Few studies combine the advantages of the two aforemen- Pour la segmentation des instances d'objets dans une vidéo, nous proposons une approche d'apprentissage profond dans laquelle le calcul de la confiance de déformation détermine d'abord la confiance de la carte masquée, puis une sélection sémantique est optimisée pour améliorer la carte déformée, où l'objet est ré-identifié à l'aide de l'étiquettes sémantique de l'objet cible.

LIST OF ABBREVIATIONS

Les approches proposées ont été évaluées sur des jeux de données complexes et de grande taille disponibles publiquement et les résultats expérimentaux montrent que les approches proposées sont plus performantes que les méthodes de l'état de l'art.

Title : Salient object detection and segmentation in videos

Keywords : video, salient object detection, object instance segmentation, deep-learning Abstract : This thesis focuses on the problem of video salient object detection and video object instance segmentation which aim to detect the most attracting objects or assign consistent object IDs to each pixel in a video sequence. One approach, one overview and one extended model are proposed for video salient object detection, and one approach is proposed for video object instance segmentation.

For video salient object detection, we propose: (1) one traditional approach to detect the whole salient object via the adjunction of virtual borders. A guided filter is applied on the temporal output to integrate the spatial edge information for a better detection of the salient object edges. A global spatio-temporal saliency map is obtained by combining the spatial saliency map and the temporal saliency map together according to the entropy. ( 2 For video object instance segmentation, we propose a deep-learning approach in which the warping confidence computation firstly judges the confidence of the mask warped map, then a semantic selection is introduced to optimize the warped map, where the object is re-identified using the semantics labels of the target object.

The proposed approaches have been assessed on the published large-scale and challenging datasets. The experimental results show that the proposed approaches outperform the state-of-the-art methods.