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RÉSUMÉ ÉTENDU

Introduction

Le système visuel humain a une capacité efficace à reconnaître facilement des régions
d’intérêt dans des scènes complexes, même si les régions ciblées ont des couleurs
ou des formes similaires à l’arrière-plan. La détection d’objets saillants (SOD) vise à
détecter l’objet saillant qui attire le plus l’attention visuelle. La réponse d’un système
SOD est une carte de saillance dans laquelle chaque pixel est étiqueté par une valeur
réelle prise dans l’intervalle [0,1] pour indiquer sa probabilité d’appartenir à un objet
saillant. Plus la valeur est élevée, plus la saillance est élevée.

En fonction de l’objectif visé, les approches existantes peuvent être classées glob-
alement en deux catégories: les approches basées image et les approches basées
vidéo. Les approches basées image modélisent le processus de vision en fonction de
l’apparance de la scène. Le système visuel humain étant sensible aux mouvements,
les approches basées vidéo détectent l’objet saillant en utilisant des indices, à la fois,
du domaine spatial que du domaine temporel et deviennent de plus en plus popu-
laires. Dans ce travail, nous nous concentrons sur les approches basées vidéo. Ce su-
jet a montré beaucoup d’intérêt notamment pour des applications exploitant l’attention
humaine, telle que la conduite autonome [98], l’évaluation de la qualité, surveillance
militaire, etc.

En conduite autonome, l’un des principaux problèmes est de garantir la robustesse
de reconnaissance des panneaux de signalisation. Ces panneaux sont généralement
de couleurs vives et attirent facilement l’attention humaine. Les approches de détection
d’objets saillants dans une vidéo permettent de détecter le panneau de signalisation
dans une scène dynamique, ce qui contribue à améliorer la sécurité lors de la conduite
autonome.

Dans l’évaluation de la qualité d’image, la sensibilité du système visuel humain à
divers les signaux visuels est importante. La détection d’objets saillants et l’évaluation
de la qualité d’image sont toutes deux liées à la façon dont le système de visuel hu-
main perçoit une image; les chercheurs intègrent des informations de saillance à des
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modèles d’évaluation de la qualité d’image visant à améliorer leur performance. Une
méthode habituelle consiste à utiliser la saillance comme une fonction de pondération
pour refléter l’importance (ou la saillance) de la région dans une image.

Une autre application peut être trouvée dans la surveillance militaire. Les objets tels
que les humains, les voitures et les avions attirent généralement un grand intérêt et
doivent être soigneusement observé. Pour capter l’évolution de ces objets spécifiques,
le calcul de la saillance fournit un indice important pour localiser les objets cibles.

Les méthodes de calcul de saillance basées vidéo insistent uniquement sur l’étiquetage
de chaque pixel de l’image vidéo en indiquant “saillant” ou “non saillant”. Pour les
scènes réelles, la région saillante détectée peut contenir plusieurs objets (voir Fig.R1
(b)). Décomposer une région saillante en un ensemble d’objets différents est plus sig-
nificatif et meilleur pour la compréhension de la vidéo. La Fig.R1 (c) montre la seg-
mentation sémantique d’objets vidéo saillants [42] où tous les objets de même éti-
quette sémantique sont regroupés sous cette étiquette. Sur la Fig.R1 (d), on peut voir
la segmentation semi-supervisée utilisant un étiquettage manuelle initial pour faire la
segmention à travers la vidéo. L’assistance humaine est adoptée pour définir les ob-
jets d’intérêt qui sont généralement délimités dans la première image de la séquence.
En propageant les étiquettes définies manuellement sur le reste de la séquence de
la vidéo, l’instance de l’objet d’intérêt est segmentée dans l’ensemble de la séquence
vidéo. La segmentation semi-supervisée d’objets vidéo peut être considérée comme
un problème de suivi, mais avec le masque en sortie. Dans la carte en sortie, les pixels
sont regroupés en plusieurs ensembles auxquels sont attribués une identité cohérente
à l’objet: les pixels d’un même ensemble appartiennent au même objet.

Ce dernier type de segmentation s’avère plus attractif mais n’a pas encore été
complètement étudié et donc laisse de la place pour la recherche. Ainsi cette thèse
s’est également intéressée à la segmentation semi-supervisée d’objets vidéo.

Notions de base sur la détection d’objets vidéo saillants

Lors de la création de jeux de données, de longues vidéos sont collectées par des
volontaires ou sélectionnées à partir de sites Web de partage de vidéos comme Youtube.
Ensuite, la fixation visuelle humaine est collectée pour une séquence vidéo d’entrée. A
l’aide d’un système de eye-tracking, les participants aux expériences visualisent tous
les courts vidéo-clips et les points de leur fixations sont enregistrés. Puis, tous les
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Première image Images d’entrée

(a)

(b) Vérité terrain (GT) d’objets vidéo saillants

(c) GT d’objets saillants basée sémantique

Etiquetage manuel GT pour la segmentation semi-supervisée de l’objet vidéo

(d)

Figure R1. Comparaison entre la détection d’objets saillants, la ségmentation séman-
tique d’objets saillants et la segmentation semi-supervisée d’objets saillants

masques d’objets sont annotés manuellement dans chaque image par les participants.
Enfin, l’objet vidéo saillant est défini à l’échelle de la vidés entière: l’objet qui conserve
les densités de fixation les plus élevées tout au long de la vidéo est sélectionné comme
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objet saillant et la vérité-terrain est ainsi générée.
Dans le cadre de cette étude, cinq jeux de données ont été exploitées : VOS [49],

Freiburg-Berkeley Motion Segmentation (FBMS) [8, 63], Fukuchi [27], DAVIS 2016-val
[68] et DAVIS-2017-val [69]. Diverses métriques sont utilisées pour mesurer la simi-
larité entre la carte de saillance générée (SM) et la vérité-terrain (GT). Les mesures
couramment utilisées [6] sont: erreur absolue moyenne (MAE), courbe de précision-
rappel (P-R), mesure de F-measure, rappel et précision.

Techniques traditionnelles de déctection d’objets vidéo

saillants

Selon les techniques utilisées, les méthodes de détection d’objets vidéo saillants peu-
vent être grossièrement scendées en deux catégories: méthodes les traditionnelles et
les méthodes utilisant l’apprentissage profond.

Dans cette étude, une nouvelle méthode traditionnelle de détection des objets sail-
lants dans les vidéos est proposée. Les méthodes traditionnelles de détection d’objet
basées sur l’a priori de l’arrière-plan peuvent rater des régions saillantes lorsque l’objet
saillant touche les bords de l’image. Pour résoudre ce problème, nous proposons pour
détecter la totalité de l’objet saillant d’ajouter les bordures virtuelles. Un filtre guidé est
ensuite appliqué sur la sortisaillance temporelle en intégrant les informations de bor-
dure spatiale pour une meilleure détection des objets saillants du bord. Enfin, une carte
de saillance spatio-temporelle globale est obtenue en combinant la carte de saillance
spatiale et la carte de saillance temporelle en fonction de l’entropie. Les principales
contributions sont:

• une technique basées sur la notion de bordure virtuelle est proposée pour dé-
tecter un objet saillant connecté au bord de l’image,

• un filtre sensible aux contours est introduit pour fusionner les contours spatiaux
avec les informations temporelles afin d’améliorer les contours des objets sail-
lants,

• une nouvelle façon de décider du niveau de confiance de la carte de saillance
spatiale et de la carte de saillance temporelle par le calcul de l’entropie et l’écart-
type.
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La Fig.R2 montre un des exemples de cartes de saillance générées à l’aide de la
nouvelle approche VBGF exploitant les bords virtuels et le filtre guidé pour la détection
d’objets vidéos saillants et la vérité-terrain (GT) correspondante.

Images d’entrée

Vérité terrain

Cartes de saillance générées

Figure R2. Exemples de cartes de saillance générées avec la méthode proposée
(VBGF).

Revue des méthodes utilisant l’apprentissage profond

pour la détection des objets saillants dans les vidéos

Ces dernières années, les méthodes d’apprentissage profond (ou deep-learning) ont
considérablement amélioré la détection des objets saillants dans les vidéos. C’est un
sujet important et il reste encore beaucoup à explorer. Il est donc intéressant de se
faire une idée globale, sur les méthodes existantes, qui pourrait ouvrir la voie à des
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travaux futurs. Les méthodes basées sur l’apprentissage profond peuvent atteindre des
performances élevées, mais elles sont largement dépendantes des jeux de données
d’apprentissage. Il est donc nécessaire de tester la générécité des méthodes de l’état
de l’art en effectuant des comparaisons expérimentales sur différents jeux de données
publics. Ainsi, nous donnons un aperçu des développements récents dans ce domaine
et comparons les méthodes correspondantes à ce jour. Les principales contributions
sont:

• un apperçu des méthodes récentes d’apprentissage profond pour la détection
d’objets saillants dans les vidéos,

• un classement des méthodes de l’état de l’art ainsi que leur architecture,

• une étude expérimentales comparative pour tester la générécité des méthodes
de l’état de l’art à travers des expérimentations sur des bases de données publiques.

Afin de montrer comment la performance d’un modèle traditionnel de détection
d’objets vidéo saillants peut être encore améliorée en intégrant une méthode d’apprentissage
profond, une méthode étendue (VBGFd) est proposée. C’est la version élargie de la
méthode traditionnelle VBGF proposée intégrant la technique de deep-learning. La
Fig.R3 montre exemples de cartes de saillance générées par la méthode proposée
(VBGFd).

Méthode deep-learning pour la segmentation semi-supervisée

de l’objet vidéo

Dans le domaine de segmentation semi-supervisée de l’objet vidéo, la technique de
déformation de masque, qui adapte (recale) le masque de l’objet cible en fonction du
flux de vecteurs entre images consécutives, est largement utilisée pour extraire l’objet
cible. Le gros problème de cette approche est que la carte déformée générée n’est pas
toujours d’une grande précision, l’arrière-plan ou d’autres objets pouvant être détectés
à tort comme étant l’objet cible. Pour remédier à ce problème, nous proposons une
méthode SWVOS, qui utilise la sémantique de l’objet cible comme guide lors du pro-
cessus de recalage. Le calcul du taux de confiance de déformation détermine d’abord
la qualité de la carte déformée générée. Ensuite, une sélection de la sémantique est
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Images entrées

Vérité terrain

Cartes de saillance générées

Figure R3. Exemples de cartes de saillance générées par la méthode proposée
(VBGFd).

introduite pour optimiser la carte à faible taux de confiance, où l’objet cible est identifié,
à nouveau, à l’aide de l’étiquette sémantique de l’objet cible. Les contributions sont:

• une méthode est proposée pour déterminer le niveau de confiance des cartes de
recalés,

• la sémantique des objets est introduite pour filtrer les objets du premier plan
appartenant à des classes différentes de celle de l’objet prédéfini.

La Fig.R4 montre certaines cartes de segmentation générées par l’approche proposée
SWVOS.
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Première image et étiquettes générées manuellement

Image d’entrée

Résultats de la segmentation

Figure R4. Exemples de segmentations obtenues à l’aide de la méthode proposée
(SWVOS).

Conclusion et perspectives

Cette thèse porte sur les problèmes de détection d’objets vidéo saillants destinée à
la séparation des objets saillants de l’arrière-plan dans chaque image d’une séquence
vidéo et les problèmes de segmentation semi-supervisée de l’objet vidéo qui visent à
attribuer une dentité d’objet cohérente à chaque pixel de chaque image d’une séquence
vidéo. Nous avons proposé une méthode traditionnelle de détection d’objets vidéo
saillants et une revue des méthodes deep-learning pour la détection d’objets vidéo
saillants. Nous avons égalment introduit une extension de la méthode traditionnelle
proposée pour y intégrer le deep-learning et une méthode de deep-learning pour la
segmentation semi-supervisée de l’objet vidéo. Les approches proposées ont été éval-
uées sur les jeux de données publics à grande échelle et difficiles. Les résultats ex-
périmentaux obtenus montrent que les approches proposées donnent des résultats
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satisfaisants.
Certains travaux futurs peuvent être dérivés des analyses précédentes: utiliser des

représentations plus riches les achitectures de deep-learning qui pourraient améliorer
les performances l’approche VBGFd proposé; entrainer les réseaux de deep-learning
pour la fusion de cartes de saillance pour améliorer l’approche VBGF proposée qui
peut faillir quand les saillance temprelles et spatiales ne sont pas suffisamment nettes.
On peut également, envisager à employer plus d’indices de saillance vidéo prenant
en compte l’attention visuelle humaine. Il sera aussi intéressant d’explorer davantage
les aspects temporels et spatio-temporels qui permettraient d’assurer une detection de
saillance tout le long de la vidéo. essayez des réseaux faiblement supervisés. Enfin,
on peut envisager d’explorer les réseaux faiblement supervisés. En effet, les mod-
èles supervisés améliorent les performances de détection, mais reposent sur un jeu
de données volumineux d’apprentissage. Les modèles faiblement supervisés qui ne
demandent de grandes masses de données retient l’attention et constituent un sujet
d’intérêt pour l’avenir.
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INTRODUCTION

Background

The human vision system has an effective ability to easily recognize regions of interest
from complex scenes, even if the focused regions have similar colors or shapes as
the background. Salient object detection (SOD) aims to detect the salient object that
attracts the most the visual attention. The output of the SOD is a saliency map, in which
each pixel is labeled by a real value within the range of [0,1] to indicate its probability
of belonging to a salient object. Higher value represents higher saliency.

According to the goal of detection, existing approaches can be broadly classified
into image SOD or video SOD, which are illustrated in Fig.0.1 and Fig.0.2 respectively.

Input image

Ground truth (GT)

Figure 0.1: Examples of image SOD.

Image SOD models the visual processing based on the appearance of the scene.
Since the human vision system is sensitive to motions, video SOD detects the salient
object using cues in both spatial domain and temporal domain. In this present work,
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Introduction

Input frames

GT of the corresponding frame

Figure 0.2: Examples of video SOD.

we focus on video SOD. This topic has gained much attention for its wide applications,
especially where the task is driven by the human attention, such as autonomous driving
[98], quality assessment, military surveillance, etc.

In autonomous driving, one of the biggest issue is to ensure the robustness of
road signs recognition. Road signs are generally in brightly colors and easily catch the
human attention. The video salient object detection is good at discovering the road sign
in a dynamic scene, which helps to improve the safe during autonomous driving.

In image quality assessment, the sensitivity of the human visual system to various
visual signals is important. As salient object detection and image quality assessment
are both related to how human vision system perceives an image, researchers incor-
porate saliency information to image quality assessment models aiming at improving
their performance. One usual way is to adopt salient object detection as a weighting
function to reflect the importance region in an image.

Another application can be found in military surveillance. The objects such as hu-
mans, cars and airplanes usually attracts a lot of interests and need to be carefully
observed. To grasp the trend of these specific objects, video salient object detection
provide a useful cue to localize target objects.

For video SOD (see Fig.0.3 (b)), in which the pixels with high value represent
salient objects, and the pixels with zero value represent background. There is trend
to solve this problem from traditional method to deep-learning based method. Tradi-
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Introduction

(a) Input frames

(b) GT of video SOD

(c) GT of video semantic salient object segmentation

(d) GT of video object instance segmentation

Figure 0.3: A comparison of video SOD, video semantic salient object segmentation
and video object instance segmentation.

tional methods usually detect the salient object based on hand-crafted features and
prior assumptions, while deep-learning methods detect the salient object based on
deep representations which are learned from training datasets with provided ground
truth. For a given database, deep-learning methods have a better performance than
many recent traditional methods. But it should be trained with huge and rich training
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datasets, which is impossible for some applications where the available data is small.
Traditional methods do not suffer from such limitation. Therefore, we firstly focus on
video SOD based on traditional method, i.e., detecting salient object based on prior
assumption. Deep-learning methods attract large attention for its high accuracy and
efficiency. We secondly focus on video SOD based on deep learning methods.

The aforementioned video SOD methods put emphasis on only labeling each pixel
in the video frame to be “salient” or “non-salient”. For real-world scenes, the detected
salient region may contain multiple objects (see Fig.0.3 (b)). Decomposing the detected
region into different objects is more meaningful and is better for video understanding.
Video semantic salient object segmentation [42], as show in Fig.0.3 (c), segments the
salient region based on the semantic label, in which the salient objects belonging to the
same semantic label are grouped together. From Fig.0.3 (d), in the output map of video
object instance segmentation, the pixels are grouped into multiple sets and assigned
to consistent object IDs. Pixels within the same set belong to the same object.

Video object instance segmentation attracts more interests and has not been fully
investigated. We address the problem of assigning consistent object IDs to objects
instance. One popular way for video object instance segmentation is called as Semi-
supervised video object segmentation. Human-guidance is adopted to define the ob-
jects that people want to segment. It is usually delineated in the frame that the object
appears in the first time. By propagating the manual labels to the rest of the video
sequence, the object instance is segmented in the whole video sequences. Semi-
supervised video object segmentation can be regarded as a tracking problem but with
the mask output.

Overview of the thesis

The thesis is organized as in Fig.0.4. Chapter 1 introduces the preliminary knowledge
about saliency detection. Chapter 2 is dedicated to a proposed traditional approach for
video SOD, and an overview of recent deep-learning based methods and an extended
model are proposed for video SOD in Chapter 3. In Chapter 4, a semi-supervised video
object segmentation approach is proposed. Chapter 5 concludes the thesis and gives
some perspectives for future work. The following parts give a briefly introduction of
each chapter, in order to lead readers to better understanding the content.

Chapter 1 introduce the basic knowledge for video SOD and semi-supervised video
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Figure 0.4: Overview of the thesis.

object segmentation:

• A description of the dataset building.

• A list of popularly used datasets.

• A introduction of widely used evaluation metrics.

Chapter 2 presents a novel traditional method (Virtual Border and Guided Filter-
based salient object detection for videos (VBGF)) for solving challenging problems in
existing traditional methods:

• A virtual border-based technique for detecting the salient object connected to
frame borders using the distance transform.

• An edge-aware filter to fuse the spatial edge with the temporal information for
enhancing salient object edges.

• A new way to decide the confidence level of the spatial saliency map and the
temporal saliency map by computing Entropy and Standard deviations.

Fig.0.5 shows some saliency maps generated by VBGF and the corresponding GT.
Chapter 3 puts emphasis on the analysis of the state-of-the-art methods in video

SOD based on deep-learning techniques, which mainly concludes:
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Figure 0.5: Some examples of saliency maps generated by the proposed VBGF.

• An overview of recent deep-learning based methods for salient object detection
in videos is presented;

• A classification of the state-of-the-art methods and their frameworks is provided.

• Experiments are made to test the generality of state-of-the-art methods through
experimental comparison on different public datasets.

• An extension of the VBGF (VBGFd) by integrating a deep-learning technique is
proposed and the performance is evaluated.

Fig.0.6 shows some examples of saliency maps generated by the VBGFd.
Chapter 5 proposes a Semantic-guided warping for semi-supervised video object

segmentation (SWVOS) to address the semi-supervised video object segmentation
problem:
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Figure 0.6: Some examples of saliency maps generated by VBGFd.

• A selection method is proposed to decide the confidence level of the warped
maps.

• Object semantic is introduced to filter foreground object belonging to the class
which is different from the class of the pre-defined object.

Fig.0.7 shows some segmentation maps generated by the proposed approach SWVOS.
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CHAPTER 1

BASIC KNOWLEDGE

Chapter 1 firstly introduces the procedure of dataset building for video SOD in Section
1.1. Then, benchmarking datasets built in recent years are introduced in Section 1.2.
Thirdly, evaluation metrics are finally listed in details in Section 1.3.

1.1 Procedure of dataset building

This section introduces the constructing of the video SOD dataset [49]. In the proce-
dure of dataset building, long videos are collected by volunteers or selected from video-
sharing websites like Youtube. Then short clips are randomly sampled to keep the clips
containing objects in most frames. Then the human fixation is collected for an input
video sequence. Subjects participate in the eye-tracking experiments are required to
free-view all video short clips and their fixations are recorded. Thirdly, all object masks
are manually annotated by subjects for each frame. Finally, the video salient object is
defined at the scale of whole videos: the object that keeps the highest fixation densities
throughout a video is selected to be the salient object, and the GT is generated. The
procedure as shown in Fig.1.1.

1.2 Benchmarking datasets

This section reviews the most popular datasets for video SOD and semi-supervised
video object segmentation, respectively.

The VOS [49] dataset is a recently published large dataset for SOD in videos, which
is based on human eye fixation. These videos are grouped into two subsets: 1) VOS-
E contains easy videos which usually contain obvious foreground objects with many
different types of slow camera motion. 2) VOS-N contains normal videos which contain
complex or highly dynamic foreground objects, and dynamic or cluttered background.
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Video collection by volunteers Video collection from video-sharing websites

Human fixation on different frames in a video sequence

Input frame Annotated masks Selection GT

Figure 1.1: Examples of dataset building.

Due to the limited number of large-scale datasets designed for SOD in videos, ex-
isting methods usually use datasets from highly related domains like the datasets here-
after.

The FBMS dataset [8, 63] is designed for moving object segmentation. Moving ob-
jects attract large attention and thus can be regarded as salient objects in videos. As
in the methods [17], we use the 30 test videos for test and only evaluate the result of
frames which are provided the ground truth. It includes different cases (such as “the
salient object touches the frame border” in sequence “marple7”, “the salient object is
very similar to the background” in “dog01” and “cars1”, “multiple objects” in “cars5_20”,
“horses04_0400” and “people2_10” or “the background is complex” in “cats01”).

The Fukuchi [27] dataset, designed for video object segmentation, includes 10 se-
quences. Since most objects have distinct colors or are very dynamic, they can be con-

28



1.2. Benchmarking datasets

sidered as salient objects. The salient object touches the frame border in most video
sequences, such as in “DO01_013” all the salient objects touch the frame border and
in “M07_058”, “DO01_055” and “DO02_001” part of salient objects touch frame border.
All tested methods hardly detect the salient object for one video sequence “BR128T”.
As in [14], this sequence “BR128T” is excluded in the test.

The DAVIS 2016-train-val dataset [68] is a popular video dataset for video fore-
ground segmentation. It is divided into two splits: the training part used for training only
and the validation part for the inference. It is widely used for SOD in videos, because of
the foreground properties (most of the objects in the video sequences have distinct col-
ors, which can be regarded as salient objects). The DAVIS-2017-train-val dataset [69]
is a recently published video dataset. It is divided into two splits: training and validation.
It is mainly an extension of DAVIS-2016 dataset.

The detailed information of these datasets are listed in Table 1.1.

Table 1.1: Comparison between various test datasets.

Dataset Numbers ResolutionSequence Frame GT
VOS 200 116103 116103 [408,800]

VOS-E 97 49206 49206 [408,800]
VOS-N 103 66897 66897 [448,800]

FBMS-test 30 13860 720 [350,960]
Fukuchi 10 740 740 [352,288]

DAVIS 2016-val 20 1376 1376 [480,854]
DAVIS 2017-val 30 1999 1999 [480,854]

The YouTube-VOS dataset [96] is a recently published and the largest dataset with
high resolution for semi-supervised video object segmentation. It is the most challeng-
ing dataset, and it contains three sets: Train, Val and Test. It has the total number
197,272 of object annotations. For the Test set, it contains 508 video sequences with
the first-frame ground truth provided. 65 categories of objects in the Test set appear in
Train set, which are called as “seen objects”; and 29 categories of objects in the Test
set do not appear in Train set, which are called as “unseen objects”.

To illustrate datasets, some examples are given in Fig.1.2
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VOS FBMS DAVIS 2016 Fukuchi YouTube-VOS

Figure 1.2: Some examples are given for each dataset.

1.3 Evaluation metrics

For video SOD, various metrics are used to measure the similarity between the gener-
ated saliency map (SM) and GT. The more commonly used metrics are:

• Mean Absolute Error (MAE): computed as the average absolute difference be-
tween all pixels in SM and GT. A smaller MAE value means a higher similarity
and a better performance.

MAE = 1
h1× w1

h1×w1∑
i=1
|GT(i)− SM(i)| (1.1)

where h1 is the frame height, w1 is the frame width.

• Precision-Recall (P-R) curve [6]: SM is normalized to [0, 255] and converted to a
binary mask (BM) via a threshold that varies from 0 to 255. For each threshold,
a pair of (Precision, Recall) values are computed which are used for plotting P-R
curve. The curve closest to the upper right corner (1.0, 1.0) corresponds to the
best performance.

Precision = |BM⋂GT|
|BM| , Recall = |BM⋂GT|

|GT| (1.2)

• F-measure: used to evaluate the global performance:

F−measure = (1 + β2)× (Precision× Recall)
(β2 × Precision + Recall) (1.3)

β2 is often set to 0.3. A higher F-measure mean a better performance.

30



1.3. Evaluation metrics

Note that the benchmark [49] adopts an adaptive threshold (computed as the minimum
value between “maximum pixel value of saliency map” and “twice the average values
of saliency map”) to convert the saliency map to a binary mask, and the calculates of
metrics (MAE, Precision, Recall and F-measure). A higher F-measure, Precision and
Recall values mean a better performance.

For video SOD evaluation, the metrics values are firstly computed over each video,
and secondly computed the mean values over all videos in each dataset.

For semi-supervised video object segmentation, Region Similarity J and Contour
Accuracy F [68] are used to measure the similarity between the generated segmenta-
tion map (M) and the ground truth (GT). Region Similarity J is defined as the intersection-
over-union of M and GT. Contour Accuracy F is computed by the contour-based pre-
cision Pc and recall Rc.

J = |M
⋂GT|

|M ⋃GT| F = 2PcRc

Pc +Rc

(1.4)

A larger J value and a larger F value mean a better performance. For the overall
evaluation, the final measure is the average of four scores: J for seen categories, J for
unseen categories, F for seen categories and F for unseen categories.

31





CHAPTER 2

TRADITIONAL TECHNIQUES FOR SALIENT

OBJECT DETECTION IN VIDEOS

In this chapter, Section 2.1 gives an overview of state-of-the-art methods dedicated
to video salient object detection. Section 2.2 describes some issues existing in recent
works. Section 2.3 presents the proposed method in detail. In Section 2.4, we conduct
comparison experiments to evaluate the performance of the proposed method. Section
2.5 concludes the chapter.

2.1 An overview of state-of-the-art methods

A large number of approaches have been developed for detecting video salient objects
based on traditional methods. Various low-level saliency cues are exploited for detec-
tion and different fusion ways are used to fuse the spatial and the temporal information
together.

2.1.1 Classification based on low-level saliency cues

For video SOD, we propose to classify low-level saliency cues into three categories:
prior assumption, foreground object and moving object.

Saliency cues: prior assumption

Contrast prior, spatial distribution prior, background prior, boundary connectivity prior,
center prior and objectness prior [28] are most popular. Specifically, color contrast prior
is mostly used in early works to capture the uniqueness in a scene. Chen et al. [15]
obtain the motion saliency via contrast computation. Chen et al. [14] compute the color
contrast and the motion contrast respectively. Spatial distribution prior implies that the

33



Chapter 2 – Traditional techniques for salient object detection in videos

wider a color is distributed in the image, the lesser likely a salient object contains this
color; background prior assumes that a narrow border of the image is the background
region; boundary connectivity cue is based on the assumption that most of the image
boundaries will not contain parts of the salient object: the boundary connectivity score
of a region according to the ratio between its length along the image border and the
spanning area of this region; center prior assumes that a salient object is more likely
to be found near the image center, so it is usually used as a weighting coefficient on
saliency maps; objectness prior leverages object proposals as the salient object cue;
focusness prior assumes that a salient object is often photographed in focus to attract
more attention.

For the saliency value computation, distance transform, graph-based, structured
matrix decomposition, etc. are recently used measures. The features are usually ex-
tracted in pixel-level or superpixel-level. For superpixel-level, the image is decomposed
by using superpixel segmentation which groups similar pixels and generates compact
regions. For distance transform, the saliency value is computed as the shortest dis-
tance from each pixel or superpixel to seed pixels. Seed pixels selection is the key of
distance transform. Based on background prior, Wang et al. [91] consider the spatio-
temporal edge map border as seed pixels. Yang et al. [100] consider the four borders as
seed set individually. Xi et al. [93] select the spatio-temporal seeds based on boundary
connectivity cue. For graph-based method: an image is over-segmented into superpix-
els and mapped to one single graph. The saliency value of each superpixel is then
computed based on the similarity between connected nodes and the saliency related
queries. For structured matrix decomposition [3], a matrix is decomposed into a low-
rank matrix representing background and a sparse matrix identifying salient objects.

Saliency cues: foreground object

Video foreground object [23] which is separated from the background is another popu-
lar saliency cue for SOD in videos. Using foregroundness cue , Tu et al. [82] compute
foreground weights to estimate saliency maps. Chen et al. [17] define the foreground
potential and background potential based on reliable object region and background re-
gion. Chen et al. [14] assign high saliency value around foreground object. Aytekin et
al. [1] extract the salient segments by applying a spectral foreground detection method.
Kim et al. [39] detect the foreground salient objects. Guo et al. [28] separate the fore-
ground object from the background to produce an initial saliency estimation.
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2.1. An overview of state-of-the-art methods

Saliency cues: moving object

Moving objects [4, 58] usually attract largely the human attention. Temporal saliency is
detected from motion information. The optical flow method is one of the most popular
tools to extract the motion information effectively. The salient object can be detected
using the optical flow vectors by removing redundant motion (i.e. global motion, in-
cluding the camera movement or the background motion). For the redundant motion
computation, Tu et al. [81] propose that if the percentage of motion magnitude greater
than the half of the maximum motion magnitude is larger than 50%, the global mo-
tion exists. Luo et al. [56] set the major direction along x-axis (either positive x-axis or
negative x-axis) and y-axis (either positive y-axis or negative y-axis) to be the global
motion in optical flow vectors. Cassagne et al. [12] calculate the mean value of the
magnitude and the orientation of optical flow vectors as the global motion. Decombas
et al. [20] compute the average value of optical flow vector along x-axis and y-axis as
the global motion. These methods only use the motion information between adjacent
frames [105] to detect the salient object in temporal domain. However, the general idea
of video salient object is that it has a coherent motion over time. It means that motion
consistence need to be considered. Liu et al. [54] propagate motion saliency measures
over video sequences. Zhou et al. [106] provide a bidirectional temporal propagation.

Fig. 2.1 shows the classification of the video SOD methods based on low-level cues.

2.1.2 Classification based on fusion ways

For video SOD, both spatial and temporal information can help the saliency detection.
We propose to classify the existing methods into “Map fusion”, “Feature fusion” and
“Hybrid fusion” methods. “Map fusion” firstly obtains the spatial saliency map and the
temporal saliency map, and then combines them together. “Feature fusion” is to fuse
the extracted spatial feature and extracted temporal feature together to give a spatio-
temporal feature, which is used to generate the spatio-temporal saliency map. In order
to employ more video saliency information, these two techniques are used together in
“Hybrid fusion” recently.
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Video saliency cues

Prior assumption

Foreground object

Various priors :

Saliency measures:

Contrast prior

Backgroundness prior
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Objectness prior

Distance transform
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Graph-based

Markov random field

...

...

Figure 2.1: Methods classification based on low-level cues.
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Map fusion

Fang et al. [26] give an adaptive weighted fusion rule with an uncertainty computation
on both spatial and temporal saliency maps. Kannan et al. [37] propose a Max fusion.
For each pixel, the fused saliency is the larger one between spatial saliency and tem-
poral saliency. Duan et al. [22] combine these two saliency maps in a non-linear way,
based on the assumption that spatially dissimilar and moving blocks are more visu-
ally attractive. Tu et al. [81] propose to equally weight both saliency maps in a linear
way. Zhai et al. [102] propose a dynamic fusion technique where temporal gaze atten-
tion is dominate over the spatial domain when large motion contrast exists, and vice
versa. Tu et al. [82] generate two types of saliency maps based on a foreground con-
nectivity saliency measure, and exploit an adaptive fusion strategy. Yang et al. [100]
propose a confidence-guided energy function to adaptively fuse spatial and temporal
saliency maps. Ramadan et al. [71] apply the pattern mining algorithm to recognize
spatio-temporal saliency patterns from two saliency maps.

Feature fusion

Wang et al. [89] and Wang et al. [88, 91] detect the salient object from the fused
spatio-temporal gradient field. Guo et al. [28] select a set of salient proposals via a
ranking strategy. Li et al. [49] fuse the spatial and temporal channel to generate saliency
maps, and then use saliency-guided stacked autoencoders to get the final saliency
map. Bhattacharya et al. [3] use a weighted sum of the sparse spatio-temporal features.
Chen et al. [15] obtain the motion saliency map with spatial cue, then use k-Nearest
Neighbors-histogram based filter and Markov random field to eliminate the dynamic
backgrounds.

Hybrid fusion

Kim et al. [39] generate the spatio-temporal map based on the theory of random walk
with restart, which use the temporal saliency map as the restarting distribution of the
random walk. Liu et al. [54] obtain the spatio-temporal saliency map using temporal
saliency propagation and spatial propagation. Xi et al. [93] first get spatio-temporal
background priors, and the final saliency value is the sum of appearance and motion
saliency. Zhou et al. [105] generate the initial saliency map, and propose localized
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estimation to generate the temporal saliency map, and deploy the spatio-temporal re-
finement to get the final saliency map, which is then used to update the initial saliency
map. Chen et al. [14] get the temporal saliency map to facilitate the color saliency com-
putation. Chen et al. [17] detect the motion cues and spatial saliency map to get the
motion energy term, which are combined with some constraints and formulated into the
optimization framework. Chen et al. [13] employ contrast cue, devise a Markov random
field solution and learn multiple nonlinear feature transformations to detect the video
salient object detection. Fig. 2.2 shows the classification of the video SOD methods
based on fusion ways.

Fusion ways

Map fusion

Feature fusion

Gradient magnitude fusion

Max 

Fixed weight

Hybrid fusion

Channel fusion

...

Feature fusion

Map fusion

Adaptive weight

...

Figure 2.2: Methods classification based on fusion ways
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2.2 Introduction of some existing issues

In this section, a brief overview of some existing issues related to our work is given.
The “background prior” [6] is widely used in SOD approaches based on traditional tech-
niques. A narrow border of the image is assumed to be the background region. When
the salient object pixels appear in the border, their saliency values are set incorrectly
to zeros. Besides, video SOD detects the salient object from both spatial domain and
temporal domain. How to combine these two saliences together during the detection is
complex.

2.2.1 Background prior

Based on this assumption, the distance transform [72] has been widely used for saliency
computation. Traditionally, the distance transforms measure the connectivity of a pixel
and the seed set using different path cost functions. Since background regions are as-
sumed to be connected to image borders, the border pixels are initialized as the seed
set and the distance transform detects a pixel’s saliency by computing the shortest path
from the pixel to the seed. The shorter the shortest path is, the higher the saliency is.
In the background prior, all the border pixels are regarded as background. Thus, in the
distance transform, all the border pixels are set to be seed and their saliency values
are thus zeros. This is not true if the object of interest appears in the frame border.

Based on “background prior”, Zhang et al. [103] propose a salient object detection
method based on the Minimum barrier distance transform. Combined with the raster
scanning, a fast iterative Minimum barrier distance transform algorithm (FastMBD)
detects the initial image saliency. In addition, the region possessing a very different
appearance from image boundary is highlighted. For each image boundary region,
the mean color and the color covariance matrix are calculated using the pixels inside
this boundary region. Then the intermediate image boundary contrast map is obtained
based on the Mahalanobis distance from the mean color. The final boundary contrast
map is got from the four intermediate image boundary contrast maps. After the initial
saliency map is integrated with the image boundary contrast map, a morphological
smoothing step, a centeredness map and a contrast enhancement operation are used
as post-processing operations. Fig. 2.3 gives an example, in which Fig. 2.3 (b) shows
the initial saliency result using FastMBD and Fig. 2.3 (c) presents the final result. Fig.
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2.3 (c) is improved but the lower part of the person is not detected, since it touches the
border of the frame.

Input FT HC SIA RC GS HS AMC SO MB MB+ GTGD

Figure 8: Sample saliency maps of the compared methods. The baseline using the geodesic distance (GD) often produces a
rather fuzzy central area, while our methods based on MBD (MB and MB+) do not suffer from this problem.

5.4. Limitations

A key limitation of the image boundary connectivity cue
is that it cannot handle salient objects that touch the im-
age boundary. In Fig. 9, we show two typical examples of
this case. Our method MB fails to highlight the salient re-
gions that are connected to the image boundary, because it
basically only depends on the image boundary connectivity
cue. Our extended version MB+, which further leverages
the appearance-based backgroundness prior, can help alle-
viate this issue if the foreground region has a high color
contrast against the image boundary regions (see the top
right image in Fig. 9). However, when such background-
ness prior does not hold, e.g. in the second test image in
Fig. 9, MB+ cannot fully highlight the salient region, either.

6. Conclusion

In this paper, we presented FastMBD, a raster scanning
algorithm to approximate the Minimum Barrier Distance
(MBD) transform, which achieves state-of-the-art accuracy
while being about 100X faster than the exact algorithm. A
theoretical error bound result was shown to provide insight
into the good performance of such Dijkstra-like algorithms.
Based on FastMBD, we proposed a fast salient object de-
tection method that runs at about 80 FPS. An extended ver-
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Figure 9: Some failure cases where the salient objects touch
the image boundary.

sion of our method was also provided to further improve the
performance. Evaluation was conducted on four benchmark
datasets. Our method achieves state-of-the-art performance
at a substantially smaller computational cost, and signifi-
cantly outperforms the methods that offer similar speed.
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(c)

Figure 2.3: FastMBD15 [103]. (a) Input image, (b) Minimum barrier distance transform
with the Raster Scan, (c) Final result. (Figures are copied from the published paper
[103])

Tu et al. [80] combine the Minimum barrier distance transform with a minimum span-
ning tree. Instead of finding the shortest distance, they search the shortest path in the
minimum spanning tree. The minimum spanning tree is constructed by avoiding edges
with large color difference between adjacent pixels. To ensure the detection of the
salient object that touches the frame border, the boundary color dissimilarity measure
is used. They first divide the boundary into three groups according to their color values
and then the intermediate pixel-wise color dissimilarity map of each group is calculated
using the Mahalanobis distance. The final color dissimilarity map is the weighed sum of
three intermediate color dissimilarity maps. In the post-processing, a boundary dissim-
ilarity map, a pixel location dependent masking and an adaptive contrast enhancement
are used. Fig. 2.4 gives an example to show the intermediate results.

Jiang et al. [36] propose a saliency detection via absorbing Markov chain on an
image graph model. It measures image saliency by using the similarity of the absorbed
time of each transient node with the background absorbing nodes (the image border).
It considers both the edge weights on the path and the spatial distance when comput-
ing the absorbed time, so the object that is different from or far from the background
absorbing nodes can be highlighted. The homogeneous background region in the im-
age center may not be effectively suppressed. The saliency map is updated using a
weighted absorbed time. Fig. 2.5 compares the results without update processing and
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Figure 3: An overview of our MST-based saliency detection framework.

3.3. Complexity Analysis

We estimate the operation count by considering the case
that every node performs bottom-up updating in Eq. 7 and
top-down updating in Eq. 8 once. In practice, the root node
has no parent and the leaf nodes have no child. Moreover,
we can ignore the seed nodes in the updating steps, so the
estimated operation count is in fact a loose upper bound.

If the geodesic distance is adopted, both Eq. 7 and Eq. 8
require one comparison operation and one addition opera-
tion. In total, 2 addition operations and 2 comparison oper-
ations are required.

If the barrier distance is adopted, we track the maximum
and the minimum values for each node. Each time when a
new node is visited, 3 comparison operations are required
for bottom-up or top-down pass, including one comparison
for the maximum, one for the minimum and one for com-
paring the optimal distance. Extra subtraction operation is
required to compute the barrier distance. As a result, in total
6 comparisons and 2 subtraction operations are required for
the minimum barrier distance.

As a result, the distance transform with a MST has con-
stant complexity for each pixel regardless of the distance
metric used. With the linear time construction algorithm
described in [3], the overall distance transform is also linear
in the number of pixels.

4. Salient Object Detection
We describe our salient object detection system in this

section. Despite of the distance transform presented in pre-
vious section, we introduce another simple yet useful auxil-
iary map based on appearance similarity measure to compli-
ment the shortage of measuring the boundary connectivity.
We further utilize the off-the-shelf MST to apply tree fil-
tering [3] to smooth the map. Finally, we also describe the
post-processing in this section. The overall salient object
detection system is summarized in Figure 3.

4.1. Measuring the Boundary Connectivity

We set all pixels along the image boundary as a set of
seed nodes to exploit the background and connectivity pri-
ors for salient object detection. We have tested our MST-
based distance transform using both GD and BD. When
computing the GD transform, we also account for the inter-
nal edge weight clipping step similar to [26]. We compute
the average edge weight of all remaining edges on the MST
as the clipping threshold. The barrier distance is not based
on accumulation so it does not contain this step.

Example results of our MST-based distance transform
using GD or BD are shown in Figure 4. As one can see,
the BD transform is more robust to texture and has the abil-
ity to capture the geometry information better. Thus the BD

(a)

Figure 3: An overview of our MST-based saliency detection framework.

3.3. Complexity Analysis

We estimate the operation count by considering the case
that every node performs bottom-up updating in Eq. 7 and
top-down updating in Eq. 8 once. In practice, the root node
has no parent and the leaf nodes have no child. Moreover,
we can ignore the seed nodes in the updating steps, so the
estimated operation count is in fact a loose upper bound.

If the geodesic distance is adopted, both Eq. 7 and Eq. 8
require one comparison operation and one addition opera-
tion. In total, 2 addition operations and 2 comparison oper-
ations are required.

If the barrier distance is adopted, we track the maximum
and the minimum values for each node. Each time when a
new node is visited, 3 comparison operations are required
for bottom-up or top-down pass, including one comparison
for the maximum, one for the minimum and one for com-
paring the optimal distance. Extra subtraction operation is
required to compute the barrier distance. As a result, in total
6 comparisons and 2 subtraction operations are required for
the minimum barrier distance.

As a result, the distance transform with a MST has con-
stant complexity for each pixel regardless of the distance
metric used. With the linear time construction algorithm
described in [3], the overall distance transform is also linear
in the number of pixels.

4. Salient Object Detection
We describe our salient object detection system in this

section. Despite of the distance transform presented in pre-
vious section, we introduce another simple yet useful auxil-
iary map based on appearance similarity measure to compli-
ment the shortage of measuring the boundary connectivity.
We further utilize the off-the-shelf MST to apply tree fil-
tering [3] to smooth the map. Finally, we also describe the
post-processing in this section. The overall salient object
detection system is summarized in Figure 3.

4.1. Measuring the Boundary Connectivity

We set all pixels along the image boundary as a set of
seed nodes to exploit the background and connectivity pri-
ors for salient object detection. We have tested our MST-
based distance transform using both GD and BD. When
computing the GD transform, we also account for the inter-
nal edge weight clipping step similar to [26]. We compute
the average edge weight of all remaining edges on the MST
as the clipping threshold. The barrier distance is not based
on accumulation so it does not contain this step.

Example results of our MST-based distance transform
using GD or BD are shown in Figure 4. As one can see,
the BD transform is more robust to texture and has the abil-
ity to capture the geometry information better. Thus the BD

(b)

Figure 3: An overview of our MST-based saliency detection framework.

3.3. Complexity Analysis

We estimate the operation count by considering the case
that every node performs bottom-up updating in Eq. 7 and
top-down updating in Eq. 8 once. In practice, the root node
has no parent and the leaf nodes have no child. Moreover,
we can ignore the seed nodes in the updating steps, so the
estimated operation count is in fact a loose upper bound.

If the geodesic distance is adopted, both Eq. 7 and Eq. 8
require one comparison operation and one addition opera-
tion. In total, 2 addition operations and 2 comparison oper-
ations are required.

If the barrier distance is adopted, we track the maximum
and the minimum values for each node. Each time when a
new node is visited, 3 comparison operations are required
for bottom-up or top-down pass, including one comparison
for the maximum, one for the minimum and one for com-
paring the optimal distance. Extra subtraction operation is
required to compute the barrier distance. As a result, in total
6 comparisons and 2 subtraction operations are required for
the minimum barrier distance.

As a result, the distance transform with a MST has con-
stant complexity for each pixel regardless of the distance
metric used. With the linear time construction algorithm
described in [3], the overall distance transform is also linear
in the number of pixels.

4. Salient Object Detection
We describe our salient object detection system in this

section. Despite of the distance transform presented in pre-
vious section, we introduce another simple yet useful auxil-
iary map based on appearance similarity measure to compli-
ment the shortage of measuring the boundary connectivity.
We further utilize the off-the-shelf MST to apply tree fil-
tering [3] to smooth the map. Finally, we also describe the
post-processing in this section. The overall salient object
detection system is summarized in Figure 3.

4.1. Measuring the Boundary Connectivity

We set all pixels along the image boundary as a set of
seed nodes to exploit the background and connectivity pri-
ors for salient object detection. We have tested our MST-
based distance transform using both GD and BD. When
computing the GD transform, we also account for the inter-
nal edge weight clipping step similar to [26]. We compute
the average edge weight of all remaining edges on the MST
as the clipping threshold. The barrier distance is not based
on accumulation so it does not contain this step.

Example results of our MST-based distance transform
using GD or BD are shown in Figure 4. As one can see,
the BD transform is more robust to texture and has the abil-
ity to capture the geometry information better. Thus the BD

(c)

Figure 3: An overview of our MST-based saliency detection framework.

3.3. Complexity Analysis

We estimate the operation count by considering the case
that every node performs bottom-up updating in Eq. 7 and
top-down updating in Eq. 8 once. In practice, the root node
has no parent and the leaf nodes have no child. Moreover,
we can ignore the seed nodes in the updating steps, so the
estimated operation count is in fact a loose upper bound.

If the geodesic distance is adopted, both Eq. 7 and Eq. 8
require one comparison operation and one addition opera-
tion. In total, 2 addition operations and 2 comparison oper-
ations are required.

If the barrier distance is adopted, we track the maximum
and the minimum values for each node. Each time when a
new node is visited, 3 comparison operations are required
for bottom-up or top-down pass, including one comparison
for the maximum, one for the minimum and one for com-
paring the optimal distance. Extra subtraction operation is
required to compute the barrier distance. As a result, in total
6 comparisons and 2 subtraction operations are required for
the minimum barrier distance.

As a result, the distance transform with a MST has con-
stant complexity for each pixel regardless of the distance
metric used. With the linear time construction algorithm
described in [3], the overall distance transform is also linear
in the number of pixels.

4. Salient Object Detection
We describe our salient object detection system in this

section. Despite of the distance transform presented in pre-
vious section, we introduce another simple yet useful auxil-
iary map based on appearance similarity measure to compli-
ment the shortage of measuring the boundary connectivity.
We further utilize the off-the-shelf MST to apply tree fil-
tering [3] to smooth the map. Finally, we also describe the
post-processing in this section. The overall salient object
detection system is summarized in Figure 3.

4.1. Measuring the Boundary Connectivity

We set all pixels along the image boundary as a set of
seed nodes to exploit the background and connectivity pri-
ors for salient object detection. We have tested our MST-
based distance transform using both GD and BD. When
computing the GD transform, we also account for the inter-
nal edge weight clipping step similar to [26]. We compute
the average edge weight of all remaining edges on the MST
as the clipping threshold. The barrier distance is not based
on accumulation so it does not contain this step.

Example results of our MST-based distance transform
using GD or BD are shown in Figure 4. As one can see,
the BD transform is more robust to texture and has the abil-
ity to capture the geometry information better. Thus the BD

(d)

Figure 3: An overview of our MST-based saliency detection framework.

3.3. Complexity Analysis

We estimate the operation count by considering the case
that every node performs bottom-up updating in Eq. 7 and
top-down updating in Eq. 8 once. In practice, the root node
has no parent and the leaf nodes have no child. Moreover,
we can ignore the seed nodes in the updating steps, so the
estimated operation count is in fact a loose upper bound.

If the geodesic distance is adopted, both Eq. 7 and Eq. 8
require one comparison operation and one addition opera-
tion. In total, 2 addition operations and 2 comparison oper-
ations are required.

If the barrier distance is adopted, we track the maximum
and the minimum values for each node. Each time when a
new node is visited, 3 comparison operations are required
for bottom-up or top-down pass, including one comparison
for the maximum, one for the minimum and one for com-
paring the optimal distance. Extra subtraction operation is
required to compute the barrier distance. As a result, in total
6 comparisons and 2 subtraction operations are required for
the minimum barrier distance.

As a result, the distance transform with a MST has con-
stant complexity for each pixel regardless of the distance
metric used. With the linear time construction algorithm
described in [3], the overall distance transform is also linear
in the number of pixels.

4. Salient Object Detection
We describe our salient object detection system in this

section. Despite of the distance transform presented in pre-
vious section, we introduce another simple yet useful auxil-
iary map based on appearance similarity measure to compli-
ment the shortage of measuring the boundary connectivity.
We further utilize the off-the-shelf MST to apply tree fil-
tering [3] to smooth the map. Finally, we also describe the
post-processing in this section. The overall salient object
detection system is summarized in Figure 3.

4.1. Measuring the Boundary Connectivity

We set all pixels along the image boundary as a set of
seed nodes to exploit the background and connectivity pri-
ors for salient object detection. We have tested our MST-
based distance transform using both GD and BD. When
computing the GD transform, we also account for the inter-
nal edge weight clipping step similar to [26]. We compute
the average edge weight of all remaining edges on the MST
as the clipping threshold. The barrier distance is not based
on accumulation so it does not contain this step.

Example results of our MST-based distance transform
using GD or BD are shown in Figure 4. As one can see,
the BD transform is more robust to texture and has the abil-
ity to capture the geometry information better. Thus the BD

(e)

Figure 2.4: MST16 [80]. (a) Input image, (b) Minimum barrier distance transform with
the minimum spanning tree, (c) Boundary index (the boundary is divided into three
groups according to their color values), (d) Boundary dissimilarity map, (e) Final result.
(Figures are copied from the published paper [80])
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with update processing.

the weight. We first renumber the nodes so that the first 𝑡
nodes are transient nodes and the last 𝑟 nodes are absorbing
nodes, then define the affinity matrix A which represents
the reverence of nodes as

𝑎𝑖𝑗 =

⎧
⎨
⎩

𝑤𝑖𝑗 𝑗 ∈ 𝑁(𝑖), 1 ≤ 𝑖 ≤ 𝑡
1 if 𝑖 = 𝑗
0 otherwise

(6)

where 𝑁(𝑖) denotes the nodes connected to node 𝑖. The
degree matrix that records the sum of the weights connected
to each node is written as

D = diag(
∑

𝑗𝑎𝑖𝑗). (7)

Finally, the transition matrix P on the sparsely connected
graph is given as

P = D−1 ×A, (8)

which is actually the raw normalized A. As the nodes are
locally connected, P is a sparse matrix with a small number
of nonzero elements.

The sparsely connected graph restricts the random walk
to only move within a local region in each step, hence the
expected time spent to move from transient node 𝑣𝑡 to ab-
sorbing node 𝑣𝑎 is determined by two major factors. One
is the spatial distance between the two nodes. Their dis-
tance is larger, and the expected time is longer. The other is
the transition probabilities of the nodes along the different
paths from 𝑣𝑡 to 𝑣𝑎. Large probabilities are able to shorten
the expected time to absorption. Given starting node 𝑣𝑡, the
shorter the time is, the larger the probability of absorption
in node 𝑣𝑎 is in a long run.

5. Saliency Detection

Given the transition matrix P by Eq. 8, we can easily
extract the matrix Q by Eq. 1, based on which the funda-
mental matrix N is computed. Then, we obtain the saliency
map S by normalizing the absorbed time y computed by
Eq. 2 to the range between 0 and 1, that is

S(𝑖) = y(𝑖) 𝑖 = 1, 2, . . . , 𝑡, (9)

where 𝑖 indexes the transient nodes on graph, and y denotes
the normalized absorbed time vector.

Most saliency maps generated by the normalized ab-
sorbed time y are effective, but some background nodes
near the image center may not be adequately suppressed
when they are in long-range homogeneous region, as shown
in Figure 3. That can be explained as follows. Most n-
odes in this kind of background regions have large transi-
tion probabilities, which means that the random walk may
transfer many times among these nodes before reaching the

Figure 3. Examples showing the benefits of the update process-
ing. From left to right, input images, results without and with the
update processing.

absorbing nodes. The sparse connectivity of the graph re-
sults that the background nodes near the image center have
longer absorbed time than the similar nodes near the im-
age boundaries. Consequently, the background regions n-
ear the image center possibly present comparative saliency
with salient objects, thereby decreasing the contrast of ob-
jects and backgrounds in the resulted saliency maps. To
alleviate this problem, we update the saliency map by using
a weighted absorbed time yw, which can be denoted as:

yw = N× u, (10)

where u is the weighting column vector. In this work, we
use the normalized recurrent time of an ergodic Markov
chain, of which the transition matrix is the row normalized
Q, as the weight u.

The equilibrium distribution 𝜋 for the ergodic Markov
chain can be computed from the affinity matrix A as

𝜋𝑖 =

∑
𝑗 𝑎𝑖𝑗∑
𝑖𝑗 𝑎𝑖𝑗

, (11)

where 𝑖, 𝑗 index all the transient nodes. Since we define the
edge weight 𝑤𝑖𝑗 as the similarity between two nodes, the
nodes within the homogeneous region have large weighted
sum

∑
𝑗 𝑎𝑖𝑗 . This means the recurrent time in this kind of

region is small as shown in Figure 3. For this reason, we use
the average recurrent time ℎ𝑗 of each node 𝑗 to weight the
corresponding element 𝑛𝑖𝑗 (i.e., the expected time spending
in node 𝑗 before absorption given starting node 𝑖 ) in each
row of the fundamental matrix N. Precisely, given the e-
quilibrium distribution 𝜋, ℎ𝑗 is computed by Eq. 4 and the
weighting vector u is computed as:

𝑢𝑗 =
ℎ𝑗∑
𝑘 ℎ𝑘

, (12)

where 𝑗 and 𝑘 index all the transient nodes on graph.
By the update processing, the saliency of the long-range

homogeneous regions near the image center can be sup-
pressed as Figure 3 illustrates. However, if the kind of re-
gion belongs to salient object, its saliency will be also in-
correctly suppressed. Therefore, we define a principle to
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with salient objects, thereby decreasing the contrast of ob-
jects and backgrounds in the resulted saliency maps. To
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Figure 2.5: AMC13 [36]. (a) Input image, (b) Result without update processing, (c)
Result with update processing. (Figures are copied from the published paper [36])

Frame GT

[80] [103] [36]

Figure 2.6: State-of-the-art saliency maps [36, 80, 103].

Though these methods [36, 80, 103] can alleviate this problem, but not enough.
Fig.2.6 shows the saliency maps of these three methods on one example image.

2.2.2 Spatial and temporal information fusion

Various methods are proposed to decide the confidence weight for each saliency map.
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2.2. Introduction of some existing issues

The method in [89] fuses the superpixel color gradient magnitude and optical flow
gradient magnitude into a spatio-temporal gradient field in a non-linear way. An expo-
nential function is employed to emphasize the optical flow gradient magnitude. Then,
the entire salient object is highlighted with the fused spatio-temporal edges. The local
contrast and global contrast are introduced to highlight an entire object, and an energy
function is used to encourage the spatio-temporal consistency. Fig. 2.7 illustrates the
saliency estimation steps.

Wang et al. [88] fuses the static edge probability map, the superpixel segmenta-
tion result and the motion boundary into a spatio-temporal edge probability map. The
spatio-temporal saliency map is obtained by computing the shortest geodesic distance
from each superpixel to two adjacent frames borders. A skeleton abstraction step is fur-
ther used to improve the performance. Fig. 2.8 gives an example to show the detailed
intermediate results.

Liu et al. [54] first generate the temporal saliency map in the superpixel-level. Then,
temporal saliency propagation is obtained using spatial appearance, and spatial propa-
gation is performed via the temporal saliency map to obtain the spatio-temporal saliency
maps. Fig. 2.9 presents the above steps in an example.

Kim et al. [39] use the temporal saliency map as the restarting distribution of the
random walker. The spatial saliency is extracted via the transition probability matrix.
The saliency maps of two domains are fused into a framework based on the theory of
random walk with restart. Then the generated spatio-temporal map is used to update
the temporal saliency distribution. Fig. 2.10 gives an example to compare the saliency
maps generated by only using spatial information and employing temporal information
as restarting distributions respectively.

Chen et al. [14] first employ contrast cue to get the low-level saliency. Then a Markov
random field solution is devised to obtain the Pos region (salient), Neg region (non
salient) and Unk region (undeterministic). Multiple nonlinear feature transformations
are learned and help to assign saliency values to those Unk region. Finaly, spatio-
temporal smoothness is enforced. Fig. 2.11 shows the steps of this method.

In complex scenes, existing methods still could not fully make use of detected
saliency from the two domains. Some examples are shown in Fig.2.12. For video SOD
models [39, 54, 89] which detect the salient object in spatial and temporal domains, the
salient object are with blur edges. Thus, the fusion is still a challenging problem.

Facing these open issues, we propose a new video salient object detection algo-
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Fig. 1. Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical
flow gradient magnitude Mo of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude Mc of abstraction in (d) by (1);
(f) spatiotemporal gradient field M by combining Mc and Mo ; (g) our saliency detection results computed by the gradient flow field.

correspondence, are devised to measure the cluster saliency.
Zhou et al. [33] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using
various low-level features and region-based contrast
analysis. Nevertheless, these approaches process the input
video sequence in a frame-by-frame basis, ignoring the
fact that video saliency maps should be spatiotemporally
consistent. It can be seen that video saliency detection is still
an emerging and challenging research problem to be further
investigated.

III. OUR APPROACH

The goal of our work is to produce the accurate
spatiotemporal saliency maps, where the objects of interest are
discovered and the foreground and background are separated
over the whole video. Our method has three main steps:
saliency estimation, saliency cues refinement and spatiotem-
poral saliency optimization.

A. Saliency Estimation

Given an input video sequence, we first obtain the super-
pixels for each frame to preserve the initial structure elements
of video contents, while the undesirable details are efficiently
simplified and ignored. Strong edges or contours in the
frame are preserved as boundaries between superpixels. These
boundaries and discontinuities reveal the important content of
the video frame (see bottom image of Fig. 1(e)). However,
the color discontinuities are not discriminative enough in
a complex scenario with highly textured background areas
(see top image of Fig. 1(e)). Motion information can be
reasonably assumed to contribute to salient region detection,
since the pixels which change abruptly in the optical flow
field often attract more attention by people (see top image
of Fig. 1(b)). Nevertheless, motion information alone is insuf-
ficient for identifying the salient regions since the moving
objects may have very small optical flow, or the background
is dynamic (see bottom image of Fig. 1(b)).

According to the aforementioned analysis, we integrate
both discontinuity and motion information into our saliency
optimization framework, which is more reliable than either
alone. Let I = {I1, I2, · · ·} be a set of frames of the input
video I. We first apply the SLIC [25] to abstract each frame Ik

into superpixels Rk = {Rk,1, Rk,2, · · · }, and the corresponding
abstraction of frame Ik is denoted by I ′

k (see Fig. 1(d)). Then
we compute the color gradient magnitude Mc

k of abstraction
frame I ′

k at position x(x, y):

Mc
k (x) = ‖∇ I ′

k(x)‖. (1)

We adopt the large displacement motion estimation
algorithm [39] to compute the optical flow. Let vk be the
optical flow field of Ik , we then compute the magnitude of
the gradient of vk :

Mo
k (x) = ‖∇vk(x)‖. (2)

The color gradient magnitude Mc
k and optical flow gradient

magnitude Mo
k are integrated into a spatiotemporal gradient

field Mk of frame fk as follows:

Mk(x)=
{

Mc
k (x) · (1 − ex p(−λ · Mo

k (x))) if max(Mo
k ) > 1;

Mc
k (x) if max(Mo

k ) ≤ 1.

(3)

In practice, we have found that Mo has more discriminative
ability when max(Mo) > 1. Therefore, an exponential func-
tion is employed to emphasize Mo

k . λ is a scaling factor for the
exponential function, and we set λ = 1 in all our experiments.
When max(Mo)≤1, the scene is nearly static and the very
small optical flow is not discriminative. Fig. 1(c) shows the
optical flow gradient magnitude Mo between two frames from
different videos. From the top one we can find that it is very
helpful to reveal the moving object when the max value of Mo

is larger than 1. When the object is nearly static, e.g., the boat
in Fig. 1 is moving slowly, Mo is very small and becomes
less effective (see the bottom image of Fig. 1(c)). Clearly, the
spatiotemporal gradient field (see Fig. 1(f)) is able to reveal
the locations of visually important regions, which are better
compared to considering either color discontinuities or motion
information only. Based on this effort, we present an efficient
and robust saliency estimation algorithm in the following.

We can imagine that many flows start from the four sides
of the frame and end at the opposite sides along the vertical/
horizontal directions (see Fig. 2(a)). When the flow passes
through the current frame, the value of the flow will increase
with the value of the corresponding spatiotemporal gradient
field. Let the size of the frame Ik be n × m, we define

(a)
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Fig. 1. Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical
flow gradient magnitude Mo of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude Mc of abstraction in (d) by (1);
(f) spatiotemporal gradient field M by combining Mc and Mo ; (g) our saliency detection results computed by the gradient flow field.

correspondence, are devised to measure the cluster saliency.
Zhou et al. [33] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using
various low-level features and region-based contrast
analysis. Nevertheless, these approaches process the input
video sequence in a frame-by-frame basis, ignoring the
fact that video saliency maps should be spatiotemporally
consistent. It can be seen that video saliency detection is still
an emerging and challenging research problem to be further
investigated.

III. OUR APPROACH

The goal of our work is to produce the accurate
spatiotemporal saliency maps, where the objects of interest are
discovered and the foreground and background are separated
over the whole video. Our method has three main steps:
saliency estimation, saliency cues refinement and spatiotem-
poral saliency optimization.

A. Saliency Estimation

Given an input video sequence, we first obtain the super-
pixels for each frame to preserve the initial structure elements
of video contents, while the undesirable details are efficiently
simplified and ignored. Strong edges or contours in the
frame are preserved as boundaries between superpixels. These
boundaries and discontinuities reveal the important content of
the video frame (see bottom image of Fig. 1(e)). However,
the color discontinuities are not discriminative enough in
a complex scenario with highly textured background areas
(see top image of Fig. 1(e)). Motion information can be
reasonably assumed to contribute to salient region detection,
since the pixels which change abruptly in the optical flow
field often attract more attention by people (see top image
of Fig. 1(b)). Nevertheless, motion information alone is insuf-
ficient for identifying the salient regions since the moving
objects may have very small optical flow, or the background
is dynamic (see bottom image of Fig. 1(b)).

According to the aforementioned analysis, we integrate
both discontinuity and motion information into our saliency
optimization framework, which is more reliable than either
alone. Let I = {I1, I2, · · ·} be a set of frames of the input
video I. We first apply the SLIC [25] to abstract each frame Ik

into superpixels Rk = {Rk,1, Rk,2, · · · }, and the corresponding
abstraction of frame Ik is denoted by I ′

k (see Fig. 1(d)). Then
we compute the color gradient magnitude Mc

k of abstraction
frame I ′

k at position x(x, y):

Mc
k (x) = ‖∇ I ′

k(x)‖. (1)

We adopt the large displacement motion estimation
algorithm [39] to compute the optical flow. Let vk be the
optical flow field of Ik , we then compute the magnitude of
the gradient of vk :

Mo
k (x) = ‖∇vk(x)‖. (2)

The color gradient magnitude Mc
k and optical flow gradient

magnitude Mo
k are integrated into a spatiotemporal gradient

field Mk of frame fk as follows:

Mk(x)=
{

Mc
k (x) · (1 − ex p(−λ · Mo

k (x))) if max(Mo
k ) > 1;

Mc
k (x) if max(Mo

k ) ≤ 1.

(3)

In practice, we have found that Mo has more discriminative
ability when max(Mo) > 1. Therefore, an exponential func-
tion is employed to emphasize Mo

k . λ is a scaling factor for the
exponential function, and we set λ = 1 in all our experiments.
When max(Mo)≤1, the scene is nearly static and the very
small optical flow is not discriminative. Fig. 1(c) shows the
optical flow gradient magnitude Mo between two frames from
different videos. From the top one we can find that it is very
helpful to reveal the moving object when the max value of Mo

is larger than 1. When the object is nearly static, e.g., the boat
in Fig. 1 is moving slowly, Mo is very small and becomes
less effective (see the bottom image of Fig. 1(c)). Clearly, the
spatiotemporal gradient field (see Fig. 1(f)) is able to reveal
the locations of visually important regions, which are better
compared to considering either color discontinuities or motion
information only. Based on this effort, we present an efficient
and robust saliency estimation algorithm in the following.

We can imagine that many flows start from the four sides
of the frame and end at the opposite sides along the vertical/
horizontal directions (see Fig. 2(a)). When the flow passes
through the current frame, the value of the flow will increase
with the value of the corresponding spatiotemporal gradient
field. Let the size of the frame Ik be n × m, we define

(b)
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Fig. 1. Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical
flow gradient magnitude Mo of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude Mc of abstraction in (d) by (1);
(f) spatiotemporal gradient field M by combining Mc and Mo ; (g) our saliency detection results computed by the gradient flow field.

correspondence, are devised to measure the cluster saliency.
Zhou et al. [33] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using
various low-level features and region-based contrast
analysis. Nevertheless, these approaches process the input
video sequence in a frame-by-frame basis, ignoring the
fact that video saliency maps should be spatiotemporally
consistent. It can be seen that video saliency detection is still
an emerging and challenging research problem to be further
investigated.

III. OUR APPROACH

The goal of our work is to produce the accurate
spatiotemporal saliency maps, where the objects of interest are
discovered and the foreground and background are separated
over the whole video. Our method has three main steps:
saliency estimation, saliency cues refinement and spatiotem-
poral saliency optimization.

A. Saliency Estimation

Given an input video sequence, we first obtain the super-
pixels for each frame to preserve the initial structure elements
of video contents, while the undesirable details are efficiently
simplified and ignored. Strong edges or contours in the
frame are preserved as boundaries between superpixels. These
boundaries and discontinuities reveal the important content of
the video frame (see bottom image of Fig. 1(e)). However,
the color discontinuities are not discriminative enough in
a complex scenario with highly textured background areas
(see top image of Fig. 1(e)). Motion information can be
reasonably assumed to contribute to salient region detection,
since the pixels which change abruptly in the optical flow
field often attract more attention by people (see top image
of Fig. 1(b)). Nevertheless, motion information alone is insuf-
ficient for identifying the salient regions since the moving
objects may have very small optical flow, or the background
is dynamic (see bottom image of Fig. 1(b)).

According to the aforementioned analysis, we integrate
both discontinuity and motion information into our saliency
optimization framework, which is more reliable than either
alone. Let I = {I1, I2, · · ·} be a set of frames of the input
video I. We first apply the SLIC [25] to abstract each frame Ik

into superpixels Rk = {Rk,1, Rk,2, · · · }, and the corresponding
abstraction of frame Ik is denoted by I ′

k (see Fig. 1(d)). Then
we compute the color gradient magnitude Mc

k of abstraction
frame I ′

k at position x(x, y):

Mc
k (x) = ‖∇ I ′

k(x)‖. (1)

We adopt the large displacement motion estimation
algorithm [39] to compute the optical flow. Let vk be the
optical flow field of Ik , we then compute the magnitude of
the gradient of vk :

Mo
k (x) = ‖∇vk(x)‖. (2)

The color gradient magnitude Mc
k and optical flow gradient

magnitude Mo
k are integrated into a spatiotemporal gradient

field Mk of frame fk as follows:

Mk(x)=
{

Mc
k (x) · (1 − ex p(−λ · Mo

k (x))) if max(Mo
k ) > 1;

Mc
k (x) if max(Mo

k ) ≤ 1.

(3)

In practice, we have found that Mo has more discriminative
ability when max(Mo) > 1. Therefore, an exponential func-
tion is employed to emphasize Mo

k . λ is a scaling factor for the
exponential function, and we set λ = 1 in all our experiments.
When max(Mo)≤1, the scene is nearly static and the very
small optical flow is not discriminative. Fig. 1(c) shows the
optical flow gradient magnitude Mo between two frames from
different videos. From the top one we can find that it is very
helpful to reveal the moving object when the max value of Mo

is larger than 1. When the object is nearly static, e.g., the boat
in Fig. 1 is moving slowly, Mo is very small and becomes
less effective (see the bottom image of Fig. 1(c)). Clearly, the
spatiotemporal gradient field (see Fig. 1(f)) is able to reveal
the locations of visually important regions, which are better
compared to considering either color discontinuities or motion
information only. Based on this effort, we present an efficient
and robust saliency estimation algorithm in the following.

We can imagine that many flows start from the four sides
of the frame and end at the opposite sides along the vertical/
horizontal directions (see Fig. 2(a)). When the flow passes
through the current frame, the value of the flow will increase
with the value of the corresponding spatiotemporal gradient
field. Let the size of the frame Ik be n × m, we define
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Fig. 1. Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical
flow gradient magnitude Mo of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude Mc of abstraction in (d) by (1);
(f) spatiotemporal gradient field M by combining Mc and Mo ; (g) our saliency detection results computed by the gradient flow field.

correspondence, are devised to measure the cluster saliency.
Zhou et al. [33] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using
various low-level features and region-based contrast
analysis. Nevertheless, these approaches process the input
video sequence in a frame-by-frame basis, ignoring the
fact that video saliency maps should be spatiotemporally
consistent. It can be seen that video saliency detection is still
an emerging and challenging research problem to be further
investigated.

III. OUR APPROACH

The goal of our work is to produce the accurate
spatiotemporal saliency maps, where the objects of interest are
discovered and the foreground and background are separated
over the whole video. Our method has three main steps:
saliency estimation, saliency cues refinement and spatiotem-
poral saliency optimization.

A. Saliency Estimation

Given an input video sequence, we first obtain the super-
pixels for each frame to preserve the initial structure elements
of video contents, while the undesirable details are efficiently
simplified and ignored. Strong edges or contours in the
frame are preserved as boundaries between superpixels. These
boundaries and discontinuities reveal the important content of
the video frame (see bottom image of Fig. 1(e)). However,
the color discontinuities are not discriminative enough in
a complex scenario with highly textured background areas
(see top image of Fig. 1(e)). Motion information can be
reasonably assumed to contribute to salient region detection,
since the pixels which change abruptly in the optical flow
field often attract more attention by people (see top image
of Fig. 1(b)). Nevertheless, motion information alone is insuf-
ficient for identifying the salient regions since the moving
objects may have very small optical flow, or the background
is dynamic (see bottom image of Fig. 1(b)).

According to the aforementioned analysis, we integrate
both discontinuity and motion information into our saliency
optimization framework, which is more reliable than either
alone. Let I = {I1, I2, · · ·} be a set of frames of the input
video I. We first apply the SLIC [25] to abstract each frame Ik

into superpixels Rk = {Rk,1, Rk,2, · · · }, and the corresponding
abstraction of frame Ik is denoted by I ′

k (see Fig. 1(d)). Then
we compute the color gradient magnitude Mc

k of abstraction
frame I ′

k at position x(x, y):

Mc
k (x) = ‖∇ I ′

k(x)‖. (1)

We adopt the large displacement motion estimation
algorithm [39] to compute the optical flow. Let vk be the
optical flow field of Ik , we then compute the magnitude of
the gradient of vk :

Mo
k (x) = ‖∇vk(x)‖. (2)

The color gradient magnitude Mc
k and optical flow gradient

magnitude Mo
k are integrated into a spatiotemporal gradient

field Mk of frame fk as follows:

Mk(x)=
{

Mc
k (x) · (1 − ex p(−λ · Mo

k (x))) if max(Mo
k ) > 1;

Mc
k (x) if max(Mo

k ) ≤ 1.

(3)

In practice, we have found that Mo has more discriminative
ability when max(Mo) > 1. Therefore, an exponential func-
tion is employed to emphasize Mo

k . λ is a scaling factor for the
exponential function, and we set λ = 1 in all our experiments.
When max(Mo)≤1, the scene is nearly static and the very
small optical flow is not discriminative. Fig. 1(c) shows the
optical flow gradient magnitude Mo between two frames from
different videos. From the top one we can find that it is very
helpful to reveal the moving object when the max value of Mo

is larger than 1. When the object is nearly static, e.g., the boat
in Fig. 1 is moving slowly, Mo is very small and becomes
less effective (see the bottom image of Fig. 1(c)). Clearly, the
spatiotemporal gradient field (see Fig. 1(f)) is able to reveal
the locations of visually important regions, which are better
compared to considering either color discontinuities or motion
information only. Based on this effort, we present an efficient
and robust saliency estimation algorithm in the following.

We can imagine that many flows start from the four sides
of the frame and end at the opposite sides along the vertical/
horizontal directions (see Fig. 2(a)). When the flow passes
through the current frame, the value of the flow will increase
with the value of the corresponding spatiotemporal gradient
field. Let the size of the frame Ik be n × m, we define

(d)
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Fig. 1. Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical
flow gradient magnitude Mo of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude Mc of abstraction in (d) by (1);
(f) spatiotemporal gradient field M by combining Mc and Mo ; (g) our saliency detection results computed by the gradient flow field.

correspondence, are devised to measure the cluster saliency.
Zhou et al. [33] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using
various low-level features and region-based contrast
analysis. Nevertheless, these approaches process the input
video sequence in a frame-by-frame basis, ignoring the
fact that video saliency maps should be spatiotemporally
consistent. It can be seen that video saliency detection is still
an emerging and challenging research problem to be further
investigated.

III. OUR APPROACH

The goal of our work is to produce the accurate
spatiotemporal saliency maps, where the objects of interest are
discovered and the foreground and background are separated
over the whole video. Our method has three main steps:
saliency estimation, saliency cues refinement and spatiotem-
poral saliency optimization.

A. Saliency Estimation

Given an input video sequence, we first obtain the super-
pixels for each frame to preserve the initial structure elements
of video contents, while the undesirable details are efficiently
simplified and ignored. Strong edges or contours in the
frame are preserved as boundaries between superpixels. These
boundaries and discontinuities reveal the important content of
the video frame (see bottom image of Fig. 1(e)). However,
the color discontinuities are not discriminative enough in
a complex scenario with highly textured background areas
(see top image of Fig. 1(e)). Motion information can be
reasonably assumed to contribute to salient region detection,
since the pixels which change abruptly in the optical flow
field often attract more attention by people (see top image
of Fig. 1(b)). Nevertheless, motion information alone is insuf-
ficient for identifying the salient regions since the moving
objects may have very small optical flow, or the background
is dynamic (see bottom image of Fig. 1(b)).

According to the aforementioned analysis, we integrate
both discontinuity and motion information into our saliency
optimization framework, which is more reliable than either
alone. Let I = {I1, I2, · · ·} be a set of frames of the input
video I. We first apply the SLIC [25] to abstract each frame Ik

into superpixels Rk = {Rk,1, Rk,2, · · · }, and the corresponding
abstraction of frame Ik is denoted by I ′

k (see Fig. 1(d)). Then
we compute the color gradient magnitude Mc

k of abstraction
frame I ′

k at position x(x, y):

Mc
k (x) = ‖∇ I ′

k(x)‖. (1)

We adopt the large displacement motion estimation
algorithm [39] to compute the optical flow. Let vk be the
optical flow field of Ik , we then compute the magnitude of
the gradient of vk :

Mo
k (x) = ‖∇vk(x)‖. (2)

The color gradient magnitude Mc
k and optical flow gradient

magnitude Mo
k are integrated into a spatiotemporal gradient

field Mk of frame fk as follows:

Mk(x)=
{

Mc
k (x) · (1 − ex p(−λ · Mo

k (x))) if max(Mo
k ) > 1;

Mc
k (x) if max(Mo

k ) ≤ 1.

(3)

In practice, we have found that Mo has more discriminative
ability when max(Mo) > 1. Therefore, an exponential func-
tion is employed to emphasize Mo

k . λ is a scaling factor for the
exponential function, and we set λ = 1 in all our experiments.
When max(Mo)≤1, the scene is nearly static and the very
small optical flow is not discriminative. Fig. 1(c) shows the
optical flow gradient magnitude Mo between two frames from
different videos. From the top one we can find that it is very
helpful to reveal the moving object when the max value of Mo

is larger than 1. When the object is nearly static, e.g., the boat
in Fig. 1 is moving slowly, Mo is very small and becomes
less effective (see the bottom image of Fig. 1(c)). Clearly, the
spatiotemporal gradient field (see Fig. 1(f)) is able to reveal
the locations of visually important regions, which are better
compared to considering either color discontinuities or motion
information only. Based on this effort, we present an efficient
and robust saliency estimation algorithm in the following.

We can imagine that many flows start from the four sides
of the frame and end at the opposite sides along the vertical/
horizontal directions (see Fig. 2(a)). When the flow passes
through the current frame, the value of the flow will increase
with the value of the corresponding spatiotemporal gradient
field. Let the size of the frame Ik be n × m, we define

(e)
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Fig. 1. Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical
flow gradient magnitude Mo of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude Mc of abstraction in (d) by (1);
(f) spatiotemporal gradient field M by combining Mc and Mo ; (g) our saliency detection results computed by the gradient flow field.

correspondence, are devised to measure the cluster saliency.
Zhou et al. [33] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using
various low-level features and region-based contrast
analysis. Nevertheless, these approaches process the input
video sequence in a frame-by-frame basis, ignoring the
fact that video saliency maps should be spatiotemporally
consistent. It can be seen that video saliency detection is still
an emerging and challenging research problem to be further
investigated.

III. OUR APPROACH

The goal of our work is to produce the accurate
spatiotemporal saliency maps, where the objects of interest are
discovered and the foreground and background are separated
over the whole video. Our method has three main steps:
saliency estimation, saliency cues refinement and spatiotem-
poral saliency optimization.

A. Saliency Estimation

Given an input video sequence, we first obtain the super-
pixels for each frame to preserve the initial structure elements
of video contents, while the undesirable details are efficiently
simplified and ignored. Strong edges or contours in the
frame are preserved as boundaries between superpixels. These
boundaries and discontinuities reveal the important content of
the video frame (see bottom image of Fig. 1(e)). However,
the color discontinuities are not discriminative enough in
a complex scenario with highly textured background areas
(see top image of Fig. 1(e)). Motion information can be
reasonably assumed to contribute to salient region detection,
since the pixels which change abruptly in the optical flow
field often attract more attention by people (see top image
of Fig. 1(b)). Nevertheless, motion information alone is insuf-
ficient for identifying the salient regions since the moving
objects may have very small optical flow, or the background
is dynamic (see bottom image of Fig. 1(b)).

According to the aforementioned analysis, we integrate
both discontinuity and motion information into our saliency
optimization framework, which is more reliable than either
alone. Let I = {I1, I2, · · ·} be a set of frames of the input
video I. We first apply the SLIC [25] to abstract each frame Ik

into superpixels Rk = {Rk,1, Rk,2, · · · }, and the corresponding
abstraction of frame Ik is denoted by I ′

k (see Fig. 1(d)). Then
we compute the color gradient magnitude Mc

k of abstraction
frame I ′

k at position x(x, y):

Mc
k (x) = ‖∇ I ′

k(x)‖. (1)

We adopt the large displacement motion estimation
algorithm [39] to compute the optical flow. Let vk be the
optical flow field of Ik , we then compute the magnitude of
the gradient of vk :

Mo
k (x) = ‖∇vk(x)‖. (2)

The color gradient magnitude Mc
k and optical flow gradient

magnitude Mo
k are integrated into a spatiotemporal gradient

field Mk of frame fk as follows:

Mk(x)=
{

Mc
k (x) · (1 − ex p(−λ · Mo

k (x))) if max(Mo
k ) > 1;

Mc
k (x) if max(Mo

k ) ≤ 1.

(3)

In practice, we have found that Mo has more discriminative
ability when max(Mo) > 1. Therefore, an exponential func-
tion is employed to emphasize Mo

k . λ is a scaling factor for the
exponential function, and we set λ = 1 in all our experiments.
When max(Mo)≤1, the scene is nearly static and the very
small optical flow is not discriminative. Fig. 1(c) shows the
optical flow gradient magnitude Mo between two frames from
different videos. From the top one we can find that it is very
helpful to reveal the moving object when the max value of Mo

is larger than 1. When the object is nearly static, e.g., the boat
in Fig. 1 is moving slowly, Mo is very small and becomes
less effective (see the bottom image of Fig. 1(c)). Clearly, the
spatiotemporal gradient field (see Fig. 1(f)) is able to reveal
the locations of visually important regions, which are better
compared to considering either color discontinuities or motion
information only. Based on this effort, we present an efficient
and robust saliency estimation algorithm in the following.

We can imagine that many flows start from the four sides
of the frame and end at the opposite sides along the vertical/
horizontal directions (see Fig. 2(a)). When the flow passes
through the current frame, the value of the flow will increase
with the value of the corresponding spatiotemporal gradient
field. Let the size of the frame Ik be n × m, we define

(f)
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Fig. 1. Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical
flow gradient magnitude Mo of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude Mc of abstraction in (d) by (1);
(f) spatiotemporal gradient field M by combining Mc and Mo ; (g) our saliency detection results computed by the gradient flow field.

correspondence, are devised to measure the cluster saliency.
Zhou et al. [33] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using
various low-level features and region-based contrast
analysis. Nevertheless, these approaches process the input
video sequence in a frame-by-frame basis, ignoring the
fact that video saliency maps should be spatiotemporally
consistent. It can be seen that video saliency detection is still
an emerging and challenging research problem to be further
investigated.

III. OUR APPROACH

The goal of our work is to produce the accurate
spatiotemporal saliency maps, where the objects of interest are
discovered and the foreground and background are separated
over the whole video. Our method has three main steps:
saliency estimation, saliency cues refinement and spatiotem-
poral saliency optimization.

A. Saliency Estimation

Given an input video sequence, we first obtain the super-
pixels for each frame to preserve the initial structure elements
of video contents, while the undesirable details are efficiently
simplified and ignored. Strong edges or contours in the
frame are preserved as boundaries between superpixels. These
boundaries and discontinuities reveal the important content of
the video frame (see bottom image of Fig. 1(e)). However,
the color discontinuities are not discriminative enough in
a complex scenario with highly textured background areas
(see top image of Fig. 1(e)). Motion information can be
reasonably assumed to contribute to salient region detection,
since the pixels which change abruptly in the optical flow
field often attract more attention by people (see top image
of Fig. 1(b)). Nevertheless, motion information alone is insuf-
ficient for identifying the salient regions since the moving
objects may have very small optical flow, or the background
is dynamic (see bottom image of Fig. 1(b)).

According to the aforementioned analysis, we integrate
both discontinuity and motion information into our saliency
optimization framework, which is more reliable than either
alone. Let I = {I1, I2, · · ·} be a set of frames of the input
video I. We first apply the SLIC [25] to abstract each frame Ik

into superpixels Rk = {Rk,1, Rk,2, · · · }, and the corresponding
abstraction of frame Ik is denoted by I ′

k (see Fig. 1(d)). Then
we compute the color gradient magnitude Mc

k of abstraction
frame I ′

k at position x(x, y):

Mc
k (x) = ‖∇ I ′

k(x)‖. (1)

We adopt the large displacement motion estimation
algorithm [39] to compute the optical flow. Let vk be the
optical flow field of Ik , we then compute the magnitude of
the gradient of vk :

Mo
k (x) = ‖∇vk(x)‖. (2)

The color gradient magnitude Mc
k and optical flow gradient

magnitude Mo
k are integrated into a spatiotemporal gradient

field Mk of frame fk as follows:

Mk(x)=
{

Mc
k (x) · (1 − ex p(−λ · Mo

k (x))) if max(Mo
k ) > 1;

Mc
k (x) if max(Mo

k ) ≤ 1.

(3)

In practice, we have found that Mo has more discriminative
ability when max(Mo) > 1. Therefore, an exponential func-
tion is employed to emphasize Mo

k . λ is a scaling factor for the
exponential function, and we set λ = 1 in all our experiments.
When max(Mo)≤1, the scene is nearly static and the very
small optical flow is not discriminative. Fig. 1(c) shows the
optical flow gradient magnitude Mo between two frames from
different videos. From the top one we can find that it is very
helpful to reveal the moving object when the max value of Mo

is larger than 1. When the object is nearly static, e.g., the boat
in Fig. 1 is moving slowly, Mo is very small and becomes
less effective (see the bottom image of Fig. 1(c)). Clearly, the
spatiotemporal gradient field (see Fig. 1(f)) is able to reveal
the locations of visually important regions, which are better
compared to considering either color discontinuities or motion
information only. Based on this effort, we present an efficient
and robust saliency estimation algorithm in the following.

We can imagine that many flows start from the four sides
of the frame and end at the opposite sides along the vertical/
horizontal directions (see Fig. 2(a)). When the flow passes
through the current frame, the value of the flow will increase
with the value of the corresponding spatiotemporal gradient
field. Let the size of the frame Ik be n × m, we define

(g)

Figure 2.7: GF15 [89]. (a) Input frame, (b) Color optical flow map of the input frame, (c)
Optical flow gradient magnitude, (d) Superpixel segmentation, (e) Gradient magnitude
of (d), (f) Spatio-temporal gradient field by fusing (c) and (e) in a non-linear way, (g)
Final result. (Figures are copied from the published paper [89])
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Figure 1. Overview of saliency-aware geodesic video object segmentation.

background in all frames of a given video sequence with-
out any user annotation and semantic prior. Our method is
based on the proposed visual saliency detection technique
that incorporates several visual cues such as motion bound-
ary, edge and color. Object and background estimations
generated by our method provide consistent and reliable pri-
ors for higher level object segmentation tasks. This topic is
less explored, mainly due to only a few methods specifically
designed for video saliency till now. These saliency meth-
ods [14, 20, 28, 26, 13, 21], however, usually build their
system as a simple combination of existing image saliency
models with motion cues. Furthermore, the performance of
these methods is not good enough to guide the segmenta-
tion. Our method correctly estimates the locations of ob-
ject and background and gains uniform saliency maps. On
the other hand, our video object segmentation algorithm is
based on the geodesic distance, which has been proved to
be effective for interactive image and video segmentation
with user brushes [3, 25, 2, 10]. However, in many vision
applications, such as processing a large number of video da-
ta, it is usually tedious and impractical for users to handle
the video frames manually. In this paper, we try to intro-
duce geodesic distance into our totally automatic segmenta-
tion framework, which is different with previous approach-
es [3, 25, 2, 10] that require careful user assistance.

2. Our approach
Fig. 1 shows an overview of our approach. First, input

frames are oversegmented into superpixels. For each super-
pixel, two types of edges are extracted: spatial static edges
within the same frame and motion boundary edges estimat-
ed from neighboring frames. Geodesic distance, which is
defined as the shortest paths between two superpixels on the
image, is then adopted in a intra-frame graph for computing
the object probability of each superpixel. Based on the ob-
servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability
is computed as the shortest geodesic distance to the frame
boundaries. A self-adaptive threshold is used to obtain ini-
tial labeling of the frame into background and foreground
regions. Next an inter-frame graph is constructed for pro-
ducing spatiotemporal saliency maps by the computation of
geodesic distance to the estimated background regions of t-
wo adjacent frames. Finally, to achieve refined estimation
of foreground, global appearance model for foreground and
background is established by saliency results. Dynamic lo-
cation model for each frame is estimated from motion infor-
mation extracted from few subsequent frames. Spatiotem-
poral saliency maps, global appearance model and dynamic
location model are combined into an energy function for
final segmentation. Our source code will be publicly avail-
able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-
aries, while simultaneously being very efficient. Motion
information also offers a simplified but very effective in-
dicator of object, the pixels which change abruptly from
neighbors often gain more attention. As shown in Fig. 1,
the location of static edges for single frame and the opti-
cal flow field estimated from two consecutive frames could
provide useful information for detecting object. We base
our approach on these two discriminative features for prim-
ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we
compute an edge probability map Ek

c (xk
i ) corresponding to

k-th frame F k at pixel xk
i using [16]. The optical flow

between pairs of subsequent frames are obtained by the
large displacement motion estimation algorithm [7]. Let
V k be the optical flow field of frame F k, we then compute
the gradient magnitude Ek

o of the optical flow field V k as
1http://github.com/shenjianbing/videoseg15
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ject and background and gains uniform saliency maps. On
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Fig. 1 shows an overview of our approach. First, input

frames are oversegmented into superpixels. For each super-
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ed from neighboring frames. Geodesic distance, which is
defined as the shortest paths between two superpixels on the
image, is then adopted in a intra-frame graph for computing
the object probability of each superpixel. Based on the ob-
servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability
is computed as the shortest geodesic distance to the frame
boundaries. A self-adaptive threshold is used to obtain ini-
tial labeling of the frame into background and foreground
regions. Next an inter-frame graph is constructed for pro-
ducing spatiotemporal saliency maps by the computation of
geodesic distance to the estimated background regions of t-
wo adjacent frames. Finally, to achieve refined estimation
of foreground, global appearance model for foreground and
background is established by saliency results. Dynamic lo-
cation model for each frame is estimated from motion infor-
mation extracted from few subsequent frames. Spatiotem-
poral saliency maps, global appearance model and dynamic
location model are combined into an energy function for
final segmentation. Our source code will be publicly avail-
able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-
aries, while simultaneously being very efficient. Motion
information also offers a simplified but very effective in-
dicator of object, the pixels which change abruptly from
neighbors often gain more attention. As shown in Fig. 1,
the location of static edges for single frame and the opti-
cal flow field estimated from two consecutive frames could
provide useful information for detecting object. We base
our approach on these two discriminative features for prim-
ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we
compute an edge probability map Ek
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i ) corresponding to
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background in all frames of a given video sequence with-
out any user annotation and semantic prior. Our method is
based on the proposed visual saliency detection technique
that incorporates several visual cues such as motion bound-
ary, edge and color. Object and background estimations
generated by our method provide consistent and reliable pri-
ors for higher level object segmentation tasks. This topic is
less explored, mainly due to only a few methods specifically
designed for video saliency till now. These saliency meth-
ods [14, 20, 28, 26, 13, 21], however, usually build their
system as a simple combination of existing image saliency
models with motion cues. Furthermore, the performance of
these methods is not good enough to guide the segmenta-
tion. Our method correctly estimates the locations of ob-
ject and background and gains uniform saliency maps. On
the other hand, our video object segmentation algorithm is
based on the geodesic distance, which has been proved to
be effective for interactive image and video segmentation
with user brushes [3, 25, 2, 10]. However, in many vision
applications, such as processing a large number of video da-
ta, it is usually tedious and impractical for users to handle
the video frames manually. In this paper, we try to intro-
duce geodesic distance into our totally automatic segmenta-
tion framework, which is different with previous approach-
es [3, 25, 2, 10] that require careful user assistance.

2. Our approach
Fig. 1 shows an overview of our approach. First, input

frames are oversegmented into superpixels. For each super-
pixel, two types of edges are extracted: spatial static edges
within the same frame and motion boundary edges estimat-
ed from neighboring frames. Geodesic distance, which is
defined as the shortest paths between two superpixels on the
image, is then adopted in a intra-frame graph for computing
the object probability of each superpixel. Based on the ob-
servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability
is computed as the shortest geodesic distance to the frame
boundaries. A self-adaptive threshold is used to obtain ini-
tial labeling of the frame into background and foreground
regions. Next an inter-frame graph is constructed for pro-
ducing spatiotemporal saliency maps by the computation of
geodesic distance to the estimated background regions of t-
wo adjacent frames. Finally, to achieve refined estimation
of foreground, global appearance model for foreground and
background is established by saliency results. Dynamic lo-
cation model for each frame is estimated from motion infor-
mation extracted from few subsequent frames. Spatiotem-
poral saliency maps, global appearance model and dynamic
location model are combined into an energy function for
final segmentation. Our source code will be publicly avail-
able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-
aries, while simultaneously being very efficient. Motion
information also offers a simplified but very effective in-
dicator of object, the pixels which change abruptly from
neighbors often gain more attention. As shown in Fig. 1,
the location of static edges for single frame and the opti-
cal flow field estimated from two consecutive frames could
provide useful information for detecting object. We base
our approach on these two discriminative features for prim-
ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we
compute an edge probability map Ek

c (xk
i ) corresponding to

k-th frame F k at pixel xk
i using [16]. The optical flow

between pairs of subsequent frames are obtained by the
large displacement motion estimation algorithm [7]. Let
V k be the optical flow field of frame F k, we then compute
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background in all frames of a given video sequence with-
out any user annotation and semantic prior. Our method is
based on the proposed visual saliency detection technique
that incorporates several visual cues such as motion bound-
ary, edge and color. Object and background estimations
generated by our method provide consistent and reliable pri-
ors for higher level object segmentation tasks. This topic is
less explored, mainly due to only a few methods specifically
designed for video saliency till now. These saliency meth-
ods [14, 20, 28, 26, 13, 21], however, usually build their
system as a simple combination of existing image saliency
models with motion cues. Furthermore, the performance of
these methods is not good enough to guide the segmenta-
tion. Our method correctly estimates the locations of ob-
ject and background and gains uniform saliency maps. On
the other hand, our video object segmentation algorithm is
based on the geodesic distance, which has been proved to
be effective for interactive image and video segmentation
with user brushes [3, 25, 2, 10]. However, in many vision
applications, such as processing a large number of video da-
ta, it is usually tedious and impractical for users to handle
the video frames manually. In this paper, we try to intro-
duce geodesic distance into our totally automatic segmenta-
tion framework, which is different with previous approach-
es [3, 25, 2, 10] that require careful user assistance.

2. Our approach
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pixel, two types of edges are extracted: spatial static edges
within the same frame and motion boundary edges estimat-
ed from neighboring frames. Geodesic distance, which is
defined as the shortest paths between two superpixels on the
image, is then adopted in a intra-frame graph for computing
the object probability of each superpixel. Based on the ob-
servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability
is computed as the shortest geodesic distance to the frame
boundaries. A self-adaptive threshold is used to obtain ini-
tial labeling of the frame into background and foreground
regions. Next an inter-frame graph is constructed for pro-
ducing spatiotemporal saliency maps by the computation of
geodesic distance to the estimated background regions of t-
wo adjacent frames. Finally, to achieve refined estimation
of foreground, global appearance model for foreground and
background is established by saliency results. Dynamic lo-
cation model for each frame is estimated from motion infor-
mation extracted from few subsequent frames. Spatiotem-
poral saliency maps, global appearance model and dynamic
location model are combined into an energy function for
final segmentation. Our source code will be publicly avail-
able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-
aries, while simultaneously being very efficient. Motion
information also offers a simplified but very effective in-
dicator of object, the pixels which change abruptly from
neighbors often gain more attention. As shown in Fig. 1,
the location of static edges for single frame and the opti-
cal flow field estimated from two consecutive frames could
provide useful information for detecting object. We base
our approach on these two discriminative features for prim-
ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we
compute an edge probability map Ek
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background in all frames of a given video sequence with-
out any user annotation and semantic prior. Our method is
based on the proposed visual saliency detection technique
that incorporates several visual cues such as motion bound-
ary, edge and color. Object and background estimations
generated by our method provide consistent and reliable pri-
ors for higher level object segmentation tasks. This topic is
less explored, mainly due to only a few methods specifically
designed for video saliency till now. These saliency meth-
ods [14, 20, 28, 26, 13, 21], however, usually build their
system as a simple combination of existing image saliency
models with motion cues. Furthermore, the performance of
these methods is not good enough to guide the segmenta-
tion. Our method correctly estimates the locations of ob-
ject and background and gains uniform saliency maps. On
the other hand, our video object segmentation algorithm is
based on the geodesic distance, which has been proved to
be effective for interactive image and video segmentation
with user brushes [3, 25, 2, 10]. However, in many vision
applications, such as processing a large number of video da-
ta, it is usually tedious and impractical for users to handle
the video frames manually. In this paper, we try to intro-
duce geodesic distance into our totally automatic segmenta-
tion framework, which is different with previous approach-
es [3, 25, 2, 10] that require careful user assistance.

2. Our approach
Fig. 1 shows an overview of our approach. First, input

frames are oversegmented into superpixels. For each super-
pixel, two types of edges are extracted: spatial static edges
within the same frame and motion boundary edges estimat-
ed from neighboring frames. Geodesic distance, which is
defined as the shortest paths between two superpixels on the
image, is then adopted in a intra-frame graph for computing
the object probability of each superpixel. Based on the ob-
servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability
is computed as the shortest geodesic distance to the frame
boundaries. A self-adaptive threshold is used to obtain ini-
tial labeling of the frame into background and foreground
regions. Next an inter-frame graph is constructed for pro-
ducing spatiotemporal saliency maps by the computation of
geodesic distance to the estimated background regions of t-
wo adjacent frames. Finally, to achieve refined estimation
of foreground, global appearance model for foreground and
background is established by saliency results. Dynamic lo-
cation model for each frame is estimated from motion infor-
mation extracted from few subsequent frames. Spatiotem-
poral saliency maps, global appearance model and dynamic
location model are combined into an energy function for
final segmentation. Our source code will be publicly avail-
able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-
aries, while simultaneously being very efficient. Motion
information also offers a simplified but very effective in-
dicator of object, the pixels which change abruptly from
neighbors often gain more attention. As shown in Fig. 1,
the location of static edges for single frame and the opti-
cal flow field estimated from two consecutive frames could
provide useful information for detecting object. We base
our approach on these two discriminative features for prim-
ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we
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based on the proposed visual saliency detection technique
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ary, edge and color. Object and background estimations
generated by our method provide consistent and reliable pri-
ors for higher level object segmentation tasks. This topic is
less explored, mainly due to only a few methods specifically
designed for video saliency till now. These saliency meth-
ods [14, 20, 28, 26, 13, 21], however, usually build their
system as a simple combination of existing image saliency
models with motion cues. Furthermore, the performance of
these methods is not good enough to guide the segmenta-
tion. Our method correctly estimates the locations of ob-
ject and background and gains uniform saliency maps. On
the other hand, our video object segmentation algorithm is
based on the geodesic distance, which has been proved to
be effective for interactive image and video segmentation
with user brushes [3, 25, 2, 10]. However, in many vision
applications, such as processing a large number of video da-
ta, it is usually tedious and impractical for users to handle
the video frames manually. In this paper, we try to intro-
duce geodesic distance into our totally automatic segmenta-
tion framework, which is different with previous approach-
es [3, 25, 2, 10] that require careful user assistance.

2. Our approach
Fig. 1 shows an overview of our approach. First, input
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pixel, two types of edges are extracted: spatial static edges
within the same frame and motion boundary edges estimat-
ed from neighboring frames. Geodesic distance, which is
defined as the shortest paths between two superpixels on the
image, is then adopted in a intra-frame graph for computing
the object probability of each superpixel. Based on the ob-
servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability
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boundaries. A self-adaptive threshold is used to obtain ini-
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regions. Next an inter-frame graph is constructed for pro-
ducing spatiotemporal saliency maps by the computation of
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wo adjacent frames. Finally, to achieve refined estimation
of foreground, global appearance model for foreground and
background is established by saliency results. Dynamic lo-
cation model for each frame is estimated from motion infor-
mation extracted from few subsequent frames. Spatiotem-
poral saliency maps, global appearance model and dynamic
location model are combined into an energy function for
final segmentation. Our source code will be publicly avail-
able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-
aries, while simultaneously being very efficient. Motion
information also offers a simplified but very effective in-
dicator of object, the pixels which change abruptly from
neighbors often gain more attention. As shown in Fig. 1,
the location of static edges for single frame and the opti-
cal flow field estimated from two consecutive frames could
provide useful information for detecting object. We base
our approach on these two discriminative features for prim-
ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we
compute an edge probability map Ek
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Figure 2.8: SAG15 [88]. (a) Input frame, (b) Color optical flow map of the input frame,
(c) Static edge probability map, (d) Superpixel segmentation, (e) Motion boundary of
(b) , (f) Spatio-temporal edge probability map by combining (c), (d) and (e), (g) Final
result. (Figures are copied from the published paper [88])
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: SGSP16 [54]. (a) Input frame, (b) Color optical flow map of the input frame,
(c) Superpixel segmentation, (d) Graph based motion saliency, (e) Spatial propagation,
(f) Final result. (Figures are copied from the published paper [54])
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(a) (b) (c)

Figure 2.10: RWR15 [39]. (a) Input frame, (b) Saliency map generated by the random
walk simulation without employing temporal information as restarting distributions, (c)
Saliency map generated by the random walk simulation with employing temporal infor-
mation as restarting distributions. (Figures are copied from the published paper [39])

rithm. We propose to detect the whole salient object via the adjunction of virtual borders
from both spatial and temporal domains. A guided filter is then applied on the temporal
information to integrate the spatial edge information for a better detection of the salient
object edges. At last, a global spatio-temporal saliency map is obtained by combin-
ing the spatial saliency map and the temporal saliency map together according to the
entropy.
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(a) (b)

(c) (e)

Figure 2.11: FD17 [14]. (a) Input frame, (b) Contrast-based saliency, (c) Pos region
(salient) are denoted by blue color, Neg region (non salient) are denoted by red color
and Unk region (undeterministic) are denoted by white color, (d) Final result. (Figures
are copied from the published paper [14])

Frame GT

[54] [39] [89]

Figure 2.12: State-of-the-art saliency maps [39, 54, 89].
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2.3 Virtual Border and Guided Filter-based (VBGF) al-

gorithm

The block-diagram of the proposed VBGF method is shown in Fig.2.13.

Input 

video

Saliency computationVirtual border building 

Virtual border building

Movement extraction

TSM

SSM

Map 

fusion

Feature fusion

Saliency computation
SD

TD

STSM

Figure 2.13: The proposed block-diagram. SD: Spatial saliency detection; SSM: Spatial
saliency map; TD: Temporal saliency detection; TSM: Temporal saliency map; STSM:
Spatio-temporal saliency map.

Given an input video sequence, in Spatial saliency detection (SD), the virtual border
is built for each frame. Then, the saliency is computed to get the SSM. Secondly, in
Temporal saliency detection (TD), the motion information is extracted from the input
video. Then the virtual border building, the Feature fusion and the saliency computation
are applied to obtain the TSM. At last, the two saliency maps are fused to get the
STSM. The method is detailed in the following parts.

2.3.1 Spatial saliency detection

In this part, Spatial saliency detection (SD), the virtual border-based distance transform
in spatial domain, is designed.

Virtual border building

Instead of using the frame border pixels as the seed set, we propose to add virtual
borders around the original frame to obtain with-virtual-border frame. The virtual bor-
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der, calculated using original frame border pixel values, is used to get the new seed
set. Specifically, the virtual border is built in four steps (as shown in Fig.2.14): Frame
Border Selection, Frame Border Division, Representative Pixel Selection and Virtual
Border Padding.

a) Frame Border Selection: it may suppose that the salient object could be con-
nected with two or more borders. However, from the existing video datasets we ob-
serve that: in usual cases if the salient object appears in the frame border, it is often
connected with only one border. Here for the sake of simplicity of the presentation, we
select one original frame border to build the virtual border by two steps.

In the first step, Fast iterative Minimum barrier distance transform algorithm (FastMBD)
[103] is applied to frame α to obtain the map M as Eq (2.1).

M = 1
3(M1

′ +M2
′ +M3

′). (2.1)

where M1
′, M2

′ and M3
′ are obtained respectively from three color channels of frame

α in the CIELab color space. For each color channel I with the size of h1 × w1, M ′ is
generated as follows: if the pixel x ∈ r1 (r1 being the border of the frame α), its value
in M ′ is set to 0. If pixel x ∈ r2 (r2 being the non-border of the frame), its value in
M ′ is initialized as∞. Two auxiliary maps τ and ψ are initialized by the pixel values in
each channel of the original image. Let the 4-adjacent pixels around a pixel x in the
region r2 be xup (up pixel), xleft (left pixel), xdown (down pixel) and xright (right pixel).
Using the update function, M ′ and the auxiliary maps are firstly updated in raster scan
order, secondly updated in inverse raster scan order with y ∈

{
xdown, xright

}
, and thirdly

updated in raster scan order again. The update function is shown as follows: if M ′(x) >
Oy(x) (y ∈

{
xup, xleft

}
), M ′(x), τy and ψy are updated to Oy(x), max

{
τy, I(x)

}
and

min
{
ψy, I(x)

}
respectively, where Oy(x) = max

{
τy, I(x)

}
−min

{
ψy, I(x)

}
.

In the second step, the frame border nearest to the non-zero region in the map M
is selected to build the virtual border. Here, the threshold δ is used to determine the
non-zero region.

b) Frame Border Division: after one original border selected, the corresponding di-
vided border is obtained from the original frame border (with width u). The DUB, the
DDB, the DLB and the DRB are shown in the middle left part in Fig.2.14. The reason
lying behind this division is that: the region in the frame corner is often connected with
two borders and its feature is also related to these two borders. Thus, the irregular
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Virtual border building

Frame Border Selection Frame Border Division Representative Pixel Selection Virtual Border Padding

MeanMinimum SAD Ground Truth

Minimum SAD Median Ground Truth

Map M

Map M

(1) (3)

(2) (4)

Figure 2.14: Virtual border building: (1): two examples of map M obtained by applying
FastMBD on the frame; and then for each frame, the closest border to the salient region
is selected to build the virtual border; (2): generating the divided border from the high-
lighted frame border (with width u), h1 is the frame height, w1 is the frame width and l is
the ratio of the corresponding border length, four divided borders: the DUB, the DDB,
the DLB and the DRB are shown; (3): two examples of the representative pixel selec-
tion, where “Mean” means the representative pixel is chosen using the mean value of
the border’s intensities and “Median” means choosing the median value of the border’s
intensities as the representative pixel, the red dotted line denotes the virtual border
padded with the selected representative pixel; (4): building and padding the virtual bor-
der (with size v) with representative pixel value, four virtual borders: VUB, the VDB, the
VLB and the VRB, are shown in four different textures.
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shape connecting three borders is used to calculate the virtual border. The parameters
u and l are selected empirically. In this chapter, u is set to 5 and l is set to 18%. Pre-
liminary experiments showed that these values make the algorithm robust to various
background complexities.

c) Representative Pixel Selection: for the generated divided border, sum of absolute
differences (SAD) is computed for each pixel by summing all the absolute differences
between this pixel and other pixels in the divided border:

SAD(x) =
∑

x′∈DB
|I(x)− I(x′)| (2.2)

where DB ∈
{
DUB, DDB, DLB and DRB

}
, I is the feature channel. The pixel having

the minimum SAD is selected to represent the divided border. For color images, the
SAD is computed by summing the three color channels:

colorSAD(x) =
∑

x′∈DB

∑
i∈{r,g,b}

∣∣∣I i(x)− I i(x′)
∣∣∣ (2.3)

We have also considered using the mean or median value of the border’s intensities
as the representative pixel value. Various experiments conducted on different frames
have shown that the minimum SAD choice performs better than the mean and the
median values in most of the cases (cf. the 1st example image in Fig.2.14 where the
representative pixel is chosen from the salient object instead of the background when
using the mean value of the border’s intensities). The same way, choosing the median
value of the border’s intensities as the representative pixel value fails, which can be
seen on the 2nd example image in Fig.2.14. As the minimum SAD performs better in
most cases and in order to be more robust in all situations, we adopt the minimum SAD
in the proposed method.

d) Virtual Border Padding: around the selected original frame border, we build the
corresponding virtual border with the above representative pixel to get the with-virtual-
border frame D. The VUB, the VDB, the VLB and the VRB are shown in the middle
right part in Fig.2.14. Existing methods usually regard the border (with width 1) to be
background and seed sizes are set to be 1. Here we set the virtual border size v to
5, which helps the proposed “virtual border building” to be applied to other distance
transform based saliency detection methods.
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Virtual border buildingFrame

Spatial saliency map Ground truth

Figure 2.15: (Better viewed in color) An example of the spatial saliency detection. The
red dotted line denotes the virtual border.

Saliency computation

After the “virtual border building”, the spatial saliency map SSM is obtained by apply the
FastMBD [103] to the with-virtual-border frame D and then remove the virtual border
from the resulted map to obtain the spatial saliency map SSM. One example is given
to show the process of spatial saliency detection in Fig.2.15.

2.3.2 Temporal saliency detection

In temporal saliency detection (TD), given an input video sequence, the movement
information is extracted from the whole video and then the salient object is detected
from this movement information. This part is related to the method we called TGFV and
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published in TGFV17 [87].

Movement extraction

The optical flow vectors between pairs of successive frames are obtained using a fast
optical flow method [33]. Then the optical flow vector is mapped to Munsell color system
[2] to produce the color optical flow map E.

Virtual border building

Based on the background cue, the global motion is usually connected to E borders.
The global motion is mainly generated by the background and camera motion. Camera
motion appears in the whole color optical flow map and background motion has a high
probability to be connected with E borders. Thus, E borders can reflect the global
motion caused by both the background motion and the camera motion. The distance
of each pixel to the border pixels of E calculated by the FastMBD [103] can indicate
its temporal saliency. The larger the distance, the higher the temporal saliency value.
As the same problem in the spatial saliency detection, when the salient object touches
frame borders, its movement information also touches E borders. If we directly apply
the FastMBD [103] on E, the salient object movement part connected to E borders is
hard to be detected. Thus, we add virtual borders on E using the same procedure as
described in Section 2.3.1 to obtain the with-virtual-border color optical flow map F .

Feature fusion

In our spatial saliency detection, only color and luminance features are used to detect
the saliency, while edges are inherent features of the image and intrinsically salient for
visual perception. Though some researches detect the salient object by considering
edges, their results may be still inaccurate. Thus we propose a new Feature fusion way
that fuses the spatial edge with the temporal information, considering that: 1) the salient
object movement is often bigger than the background movement, thus the background
and the salient object are often shown in different colors in the color optical flow map;
2) if the movements within the salient object are different, the salient object cannot
be detected completely. If the spatial edges are added onto the optical flow map F ,
the salient object edges will be enhanced. The pixel’s distance in blur edges will be
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increased if the pixel belongs to the salient object or decreased if the pixel belongs
to the background. Thus we performed the guided filtering. The guided filter [31] is a
linear filtering process, which involves a guidance image C1, an input image C2 and an
output image C3. The C3 at a pixel i is computed using the filter kernel K which is a
function of C1 but independent of C2.

C3
i =

∑
j

Kij(C1)C2
j, (2.4)

where i and j are pixel indexes, and

Kij(C1) = (|ωk|)−2 ∑
(i,j)∈ωk

(1 + (C1
i − µk)(C1

j − µk)(σk
2 + ε)−1), (2.5)

where ωk is the square window centered at the pixel k in C1, |ωk| is the number of pixels
in ωk, ε is a regularization parameter, and µk and σk

2 are the mean and the variance of
C1 in ωk. The main assumption of the guided filter is a local linear model between C1

and C3. Thus, C3 has an edge if C1 has an edge.

The proposed method uses with-virtual-border frame D as the guidance image and
with-virtual-border color optical flow map F as the input image to get the filtered image
G as Eq (2.6),

Gi =
∑

j

|ωk|−2 ∑
(i,j)∈ωk

(1 + (Di − µk)(Dj − µk)(σk
2 + ε)−1)Fj, (2.6)

where i and j are pixel indexes, ωk is the square window centered at the pixel k in Di,
µk and σk

2 are the mean and the variance of Di in ωk. ε is set to be 10−6. |ωk| is decided
by the frame size. Large frame needs large ωk. We use 20×20 for Fukuchi and FBMS
datasets, and use 60×60 for VOS dataset since VOS has larger average frame size
than that of Fukuchi and FBMS [27, 49].

Saliency computation

The FastMBD [103] is applied on the filtered image G and then the virtual border region
is removed to obtain the temporal saliency map TSM. One example is given to show
the process of the temporal saliency detection in Fig.2.16.
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Filtered image G

Frame1

With-virtual-border color 

optical flow map F

Temporal saliency map

Frame2

Color optical flow map E

Ground truth

Figure 2.16: (Better viewed in color) An example of the temporal saliency detection:
from two successive frames, the optical flow vector is extracted and mapped to be the
color optical flow map E. The virtual border is built on map E to generate with-virtual-
border color optical flow map F . The red dotted line denotes the virtual border. After
guided filtering, the filtered image G is generated to produce the temporal saliency
map. Ground truth is provided for comparison.
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2.3.3 Spatial and temporal saliency maps fusion

Given the spatial saliency map SSM and the temporal saliency map TSM, the fusion is
made to obtain STSM by four steps:

• SSM and TSM are firstly fused as Eq (2.7), where ratio1 = muT/(muS + muT ),
ratio2 = 1− ratio1.

STSM = ratio1 × SSM + ratio2 × TSM (2.7)

where muS and muT are respectively the mean entropies of all the spatial saliency
maps and all the temporal saliency maps for a video sequence (with κ the number
of frames) as Eq (2.8).

muS =
κ∑

j=1
(−

255∑
j′=1

(ProbSj

j′ × log(ProbSj

j′ )))/κ

muT =
κ∑

j=1
(−

255∑
j′=1

(ProbT j

j′ × log(ProbT j

j′ )))/κ
(2.8)

where ProbSj

j′ and ProbT j

j′ are respectively the normalized histogram of jth spatial
saliency map and jth temporal saliency map: Probj′ = numj′/(h1 × w1), numj′

is the number of pixel (equal to j′) in saliency map. Here, the idea is that mui

(i = S, T ) are used to decide the confidence of SSM and TSM. The disorder
degree of saliency map reflects the difficulty degree to detect the salient objects.
If mui (i ∈

{
S, T

}
) is larger, the saliency detection in this domain is worser.

• STSM is optimized using Eq (2.9)

STSM = SSM if muS < muT (2.9)

The frame is often more complex than the color optical flow map, which results
in that the disorder degree of SSM is usually larger than that of TSM. If muS is
smaller than muT , it means it is difficult to detect the salient object in TSM. Thus,
SSM has a high confidence.

• STSM is optimized using Eq (2.10)

STSM = SSM if σS > σT (2.10)
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σS and σT are respectively the standard deviations of non-zero regions in two
grayscale images HS and HT , which are generated by the following steps: firstly,
converting frame α from RGB to HSI color space, then eliminating the hue and
saturation information while retaining the luminance to get the grayscale images
α′; secondly, using a threshold δ to neglect the pixels with low saliency value from
the images SSM and TSM as in Eq (2.11)

HSij
=

0 if SSMij < δ

α′ij otherwise
HTij

=

0 if TSMij < δ

α′ij otherwise
(2.11)

where i and j are pixel indexes in the images. The appearance of the wrongly
detected background is mostly different from the salient object in the grayscale
image, which results in that Hi (i ∈

{
S,T

}
) contains more luminance values and

thus σi (i ∈
{
S,T

}
) is smaller. If σS is bigger than σT , it means SSM has a high

confidence.

• Low saliency value (lower than δ) in SSM is decreased to 0.1 times.

The pixels with low saliency value in saliency map are unimportant for visual
saliency but have a large influence in computing the detection confidence. Thus,
δ is used to decrease their impact and set to 70 in this chapter.

2.4 Experiments and analyses

In this section, the performance of the proposed method VBGF is assessed and dis-
cussed. The performance of each component of the VBGF is shown to demonstrate
our contributions. The VBGF’s performance is then compared with nine state-of-the-art
traditional SOD methods. Finally, the run-time complexity is compared.

In order to fully evaluate the effectiveness and robustness of the proposed method
against the state-of-the-art methods of the same category, two popular related datasets
FBMS and Fukuchi are used.

Nine state-of-the-art saliency models are tested: MST16 [80], FastMBD15 [103],
AMC13 [36], TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89], SAG15 [88], FD17
[14] on Fukuchi and FBMS dataset. For all the methods, the experimental results are
obtained using the source codes or saliency results provided by the authors.
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2.4.1 Contributions of each proposed component to the perfor-
mance

The contributions are shown by analyzing the performance of each component.

Contribution of the proposed Virtual Border Building

The method (based on the “background prior”) may miss the salient object connected
to the image borders and the proposed virtual border aims to improve this problem.
Since MST16 [80], FastMBD15 [103] and AMC13 [36] detect the salient object in image
domain based on the “background prior”, we compare the proposed spatial saliency
map with them by using the Fukuchi dataset, in which many salient objects connected
to the frame border. Quantitative performance can be found in Fig.2.17. The proposed
spatial saliency detection has a better performance since it can detect salient objects
more completely.

Contribution of the proposed Feature fusion

The proposed Feature fusion employs the guided filter to fuse the spatial edges with
the information in temporal domain. We compare the performance of the proposed
temporal saliency map with guided filtering and without guided filtering. In the Fukuchi
dataset the salient object motion is small, and in the FBMS, the global motion varies
largely. These two different datasets are both used. Quantitative performance can be
found in Fig.2.18 and Fig.2.19. We can see that fusing the spatial salient object edges
to the temporal information by using guided filtering can improve the detection accu-
racy. It helps to optimize the salient object edges and remove the background part from
the saliency region.

Contribution of the proposed Map fusion

Our proposed method first generates spatial saliency map (cf. Section 2.3.1), then
generates the temporal saliency map (cf. Section 2.3.2), finally generates the spatio-
temporal saliency map (cf. Section 2.3.3). Therefore, we separately test the perfor-
mance of each proposed saliency map, then compared quantitative results can be
found in Fig.2.20 and Fig.2.21. For the Fukuchi dataset, the salient object motion
is slow while the salient object and the background are in high contrast. Compared
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Figure 2.17: (Better viewed in color) Quantitative comparisons between our proSSM
(proposed spatial saliency map) and three image SOD models over the Fukuchi
dataset. Some state-of-the-art methods, including: MST16 [80], FastMBD15 [103] and
AMC13 [36]. The left parts show the P-R curves, the right parts shows the F-measure
scores ↑.
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P-R curves over Fukuchi

P-R curves over FBMS

Figure 2.18: P-R curves of proTSM (proposed temporal saliency map) with guided
filtering and without guided filtering over the Fukuchi dataset and the FBMS dataset.
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F-measure scores ↑ over Fukuchi

F-measure scores ↑ over FBMS

Figure 2.19: F-measure scores of the proposed temporal saliency map: (a) with guided
filtering and (b) without guided filtering over the Fukuchi dataset and the FBMS dataset.
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P-R curves over Fukuchi

P-R curves over FBMS

Figure 2.20: (Better viewed in color) P-R curves of proSSM, proTSM and proSTSM
over the Fukuchi dataset and FBMS dataset. proSSM: proposed spatial saliency
map; proTSM: proposed temporal saliency map; proSTSM: proposed spatio-temporal
saliency map.
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F-measure scores ↑ over Fukuchi

F-measure scores ↑ over FBMS

Figure 2.21: F-measure scores of proSSM, proTSM and proSTSM over the Fukuchi
dataset and the FBMS dataset. proSSM: proposed spatial saliency map; proTSM: pro-
posed temporal saliency map; proSTSM: proposed spatio-temporal saliency map.
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with the spatial saliency map, the detected temporal saliency has a lower confidence.
The proposed fusion can still get a good performance by retaining the spatial saliency
map while neglecting the temporal detection influence. For the FBMS dataset, the low
contrast and the complex background in the spatial domain make the spatial saliency
detection inaccurate. Though the global motion is intricate, the temporal saliency map
is still better than the spatial saliency map. The proposed fusion method takes advan-
tages of results from both domains and gives a higher overall performance.

2.4.2 Comparison of the proposed method with state-of-the-art
methods

Quantitative comparison with video SOD models

We compare our proposed method (VBGF, also called as proSTSM) with several video
SOD models with the Fukuchi dataset and the FBMS dataset respectively.

For the Fukuchi dataset, six compared models are: TGFV17 [87], SGSP16 [54],
RWR15 [39], GF15 [89], SAG15 [88], FD17 [14]. The P-R curves, F-measure and MAE
values are drawn in Fig.2.22, from which we can see that the proposed method has
the best P-R curve, the highest F-measure and the smallest MAE values. The detailed
MAE and F-measure scores over four video sequences are shown in Table.2.1 and the
proposed method achieves the best performance. In the Fukuchi dataset, the contrast
between the salient object and the background is large and the salient object movement
is slow. Spatial saliency detection thus can already provide a high confidence, while
the wrong detections in the temporal domain may influence the final saliency map.
Compared with methods TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89], SA15
[88], and FD17 [14], the proposed fusion method can better select higher confidence
spatial saliency information from two domains.

For the FBMS dataset, five compared models are TGFV17 [87], SGSP16 [54],
RWR15 [39], GF15 [89], SAG15 [88]. Fig.2.23 reports the P-R curves, F-measure
and MAE values. We can see that our proposed method performs the best, while all
the methods get lower performances on this dataset since it is the most challenging
one. Five videos with difficult cases (the salient object is similar to the background or
the background is complex) are selected and the detailed corresponding MAE and F-
measure scores are shown in Table.2.2, in which the proposed method is always the
best method. In the FBMS dataset, on one hand, the global motion exists in many
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(a)

(b) (c)

Figure 2.22: (Better viewed in color) Quantitative comparisons between our method
(VBGF) and six video SOD models over the Fukuchi dataset. (a) show the P-R curves,
(b) shows the F-measure scores ↑ and (c) shows MAE scores ↓. Some state-of-the-art
methods, including: TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89], SAG15 [88],
FD17 [14]
.
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Table 2.1: A table comparing the our method (VBGF) and six video SOD models in
MAE ↓ and F-measure ↑ scores over 4 video sequences chosen from the Fukuchi
dataset. The Bold number indicates the best result.

Method MAE scores ↓
AN119T DO01_013 DO01_055 DO02_001

TGFV17 [87] 0.0119 0.0084 0.0462 0.0324
SGSP16 [54] 0.0772 0.0675 0.0996 0.1463
RWR15 [39] 0.0692 0.0773 0.052 0.0826
GF15 [89] 0.0312 0.0306 0.0334 0.0378

SAG15 [88] 0.0264 0.0247 0. 026 0.0162
FD17 [14] 0.0062 0.0086 0. 0165 0.0113

VBGF 0.0027 0.0052 0.0053 0.0014

Method F-measure scores ↑
AN119T DO01_013 DO01_055 DO02_001

TGFV17 [87] 0.9069 0.704 0.7228 0.808
SGSP16 [54] 0.7318 0.6343 0.5411 0.5925
RWR15 [39] 0.4878 0.5379 0.6533 0.6182
GF15 [89] 0.8659 0.6842 0.7417 0.8292

SAG15 [88] 0.8432 0.5486 0.7393 0.8348
FD17 [14] 0.9449 0.685 0.7852 0.8656

VBGF 0.9516 0.801 0.8051 0.9322

sequences and is with high complexity which make the temporal detection more dif-
ficult. On the other hand, the salient object appearance is similar to that of the back-
ground and the background is complex which makes the spatial detection more difficult.
Among the compared methods (TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89]
and SAG15 [88]), TGFV17 [87] gets a better result since it puts emphasize on the tem-
poral saliency detection. However, compared with TGFV17 [87], the proposed method
leverage the spatial saliency and fuses them in a more efficient way to obtain better
result.

Subjective comparison with video SOD models

To evaluate the overall performances and disparities between our method and the
state-of-the-art methods, we also show a subjective comparison in Fig.2.24 and Fig.2.25.
We can see that RWR15 [39] tends to detect salient object edges rather than the
whole salient object. Methods : MST16 [80], FastMBD15 [103], AMC13 [36], TGFV17

67



Chapter 2 – Traditional techniques for salient object detection in videos

(a)

(b) (c)

Figure 2.23: (Better viewed in color) Quantitative comparisons between our method
(VBGF) and five video SOD models over the FBMS dataset. (a) show the P-R curves,
(b) shows the F-measure scores ↑ and (c) shows the MAE scores ↓. Some state-of-
the-art methods, including: TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89] and
SAG15 [88].
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Table 2.2: A table comparing the our method (VBGF) and five video SOD models
in MAE ↓ and F-measure scores ↑ over 5 video sequences chosen from the FBMS
dataset.

Method MAE scores ↓
Cars5 Cars10 Cats03 Horses04 Horses05

TGFV17 [87] 0.0205 0.0248 0.0536 0.0454 0.0363
SGSP16 [54] 0.0708 0.0599 0.1089 0.0964 0.0877
RWR15 [39] 0.1905 0.1485 0.1471 0.1175 0.0968
GF15 [89] 0.0438 0.0388 0.1148 0.1049 0.0598

SAG15 [88] 0.0486 0.034 0. 0941 0.1427 0.0689
VBGF 0.0161 0.0218 0.0103 0.0243 0.0215

Method F-measure scores ↑
Cars5 Cars10 Cats03 Horses04 Horses05

TGFV17 [87] 0.751 0.6494 0.6573 0.7021 0.6018
SGSP16 [54] 0.6359 0.6595 0.6558 0.6476 0.6105
RWR15 [39] 0.3485 0.4056 0.2219 0.3389 0.3666
GF15 [89] 0.5877 0.6339 0.2762 0.6415 6067

SAG15 [88] 0.4964 0.584 0.3532 0.3797 0.6495
VBGF 0.7712 0.7281 0.7184 0.7294 0.6593

[87], SGSP16 [54], GF15 [89], SAG15 [88] can detect salient object region located in
the frame center but not the salient part close to frame borders. Especially, when the
salient object exhibits clearly distinctive color features from the background, e.g. (e)
and (g), the salient object connected to borders is detected with low saliency in the
above methods. However, the proposed algorithm yields good performances on these
cases. In (b) and (d), it’s difficult to distinguish the edge between the salient object
and the background for the spatial-only methods MST16 [80], FastMBD15 [103] and
AMC13 [36]. While among video saliency models, the method TGFV17 [87] and the
proposed method can detect the salient object with less spatial influence and more
accurate edges than TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89] and SAG15
[88]. For multiple salient objects with complex background, e.g. (i), (j) and (k), TGFV17
[87] and the proposed method can detect almost all multiple salient objects, but the
proposed method has better edges. By visually comparing on this figure, we can see
that the proposed method can detect the salient object more completely and more
accurately.
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Figure 2.24: Comparison of the saliency maps (1). (a)-(f) are 6 different video se-
quences. Some state-of-the-art methods, including: MST16 [80], FastMBD15 [103],
AMC13 [36], TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89], SAG15 [88].
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Figure 2.25: Comparison of the saliency maps (2). (g)-(k) are 5 different video se-
quences. Some state-of-the-art methods, including: MST16 [80], FastMBD15 [103],
AMC13 [36], TGFV17 [87], SGSP16 [54], RWR15 [39], GF15 [89], SAG15 [88].
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2.4.3 Computation time comparison

A PC with Intel Core i7 4910 2.9GHz CPU and 16GB RAM is used for testing the speed
of traditional methods. For different models (except the model FD17 [14] with the un-
published code), the average run-time is listed in Table 2.3. Video models have higher
computation costs than the other 3 image models since the optical flow estimation is
usually time consuming. Our proposed model is the fastest video detection model, and
the average run-time per frame of each processing stage can be found in Table 2.4 in
detail.

Table 2.3: Average run time (per frame) of our proposed method (VBGF) and the com-
pared models (MST16 [80], FastMBD15 [103], AMC13 [36], TGFV17 [87], SGSP16
[54], RWR15 [39], GF15 [89], SAG15 [88]).

Image_based MST FastMBD AMC - - -
Time(s)↓ 0.200 0.018 0.153 - - -

Video_based SGSP RWR GF SAG FD VBGF
Time(s)↓ 15.37 14.25 13.50 15.38 33.17 3.56

Table 2.4: Average run time (per frame) of each component in the proposed models.

Component VBGF
Time(s)↓ Ratio(%)

virtual border building 0.50 14.04
saliency detection 0.07 1.97

optical flow computation 2.80 78.65
feature fusion(guided filtering) 0.07 1.97

map fusion 0.12 3.37
total 3.56 100

2.5 Conclusion

In this chapter, a novel video SOD method (the VBGF) is proposed. Using virtual border
concept has helped to address the problem of distance transform employed for saliency
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computation in previous approaches. The guided filter-based Feature fusion and the
Map fusion are efficiently used for fusing spatial and temporal information together by
applying appropriate balance. When tested on various video databases, the proposed
approach yields satisfactory performance and even outperforms the state-of-the-art
methods.

The virtual border can be used as an optimization operation for salient object de-
tection methods that are based on background prior. The guided filter-based Feature
fusion helps to remove background regions for moving object detection and segmenta-
tion. The Map fusion provides a new way to combine various individual saliency maps
into a more robust one.
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CHAPTER 3

OVERVIEW OF DEEP-LEARNING

METHODS FOR SALIENT OBJECT

DETECTION IN VIDEOS

In this chapter, Section 3.1 introduces existing surveys and benchmarks related to
salient object detection in videos. Section 3.2 gives a classification of state-of-the-art
methods, and details the frameworks of some representative methods. Section 3.3
gives comparative experimental results of these representative methods. The assess-
ment of their performance generalities are discussed. Section 3.4 shows an extension
of the proposed VBGF to integrate deep-learning technique. Section 3.5 concludes the
chapter.

3.1 Summary of existing surveys and benchmarks

Recently, several researchers tend to solve the problems of SOD in videos using deep-
learning methods, which largely improves the performance both for the accuracy and
the efficiency. However, there is few related survey. Table 3.1 lists the most relevant
works, from which we can see that former works mainly focus on traditional methods.
Among the recent works related to deep-learning methods, the survey presented in
[29] is only for images; and the benchmark [49] only compares deep-learning meth-
ods proposed for images with traditional methods proposed for videos. The survey of
existing deep-learning methods for SOD in videos is less explored.

This chapter has two main motivations:

• Deep-learning for video SOD is an important topic and still have a large space
to explore so it is interesting to have a general idea about the existing methods
which may pave the way for future works.
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Table 3.1: Comparison of the existing survey/benchmark for SOD

Year Benchmark Survey Traditional Deep-learning Video Image
[65] 2014 × X X × × X
[6] 2014 × X X × × X
[5] 2015 X × X × × X
[29] 2018 × X × X × X
[49] 2018 X × X X X X

• Deep-learning methods can achieve high performance, but it heavily relies on the
training datasets. Thus it is necessary to test the generality of the state-of-the-art
methods through experimental comparison on different public datasets.

3.2 Introduction to state-of-the-arts methods

Deep-learning based methods for video SOD, focusing on learning the high-level fea-
tures [19], gain great research interests, and some methods [17, 41, 43, 44, 50, 74, 76,
90, 92] are proposed. However, there still lack sufficient methods for comprehensive
analysis. Inspired by [49], the inherently correlated tasks like video foreground object
segmentation [9, 18, 78], moving object segmentation [77] and image SOD [52, 57, 85]
are considered for analysis and comparison in this work.

In this section, we firstly classify the existing methods in 3.2.1, and secondly in-
troduce in more details some representative methods of which the source codes are
provided by authors in 3.2.2.

3.2.1 Classification based on the deep representations generation

According to whether the used neural network has to be trained, existing methods
can be classified into two categories: 1) off-the-shelf deep features and 2) multi-
stage/end-to-end trained. The used deep representations of the first category are
directly extracted from existing deep networks. Thus, this is a simple way to directly
use these deep representations for further researches [17, 43]. In the second category,
methods usually get more efficient deep representations through their own training
phase, where the inputs-outputs relationship is learned by deep architectures. The
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model trained in multiple stages is with intermediate supervision to ones trained end-
to-end. According to their utilization degree of the labeled datasets, the models can be
further divided into supervised and weakly-supervised models.

Supervised models need training datasets with pixel-wise annotations. Accord-
ing to the domain of the learned deep representation, supervised methods [9, 18, 41,
44, 50, 52, 57, 74, 77, 78, 90, 92] can be classified into 1) spatial [9, 50, 52, 57]; 2)
temporal [77]; 3) or spatio-temporal [18, 41, 44, 74, 78, 90, 92]. Due to the fact that
current datasets have limited manually labeled ground truth, some methods, e.g. [90],
propose to generate simulated video data using synthesizing methods. Different from
supervised methods, weakly-supervised models train the network without requiring
all training datasets to have corresponding pixel-level annotations. Some models learn
to detect the salient object from spatial domain with image-level annotations, based
on the assumption that image-level tags can provide the classes of the dominant ob-
jects which can be regarded as the salient foregrounds, e.g. [85]. Sometimes, a small
number of manually labeled data and a huge amount of weakly labeled data are used
together. For example, in [76], one seventh of the frames in a video is manually labeled
data and the rest is weakly labeled. Three existing SOD methods are used to gener-
ate the weakly labeled data, and their proposed network is trained using both manually
and weakly labeled data. Then the weakly labeled data is updated using their proposed
network, as well as the three existing SOD methods. Fig. 3.1 shows the classification
of the deep-learning based SOD methods.

3.2.2 Description of salient object detection frameworks

This section gives detailed introduction of 11 representative methods, which the source
codes or saliency results are provided by the authors. Among them, Chen et al. [17]
propose a off-the-shelf deep features based model, and methods in [9, 18, 50, 52, 57,
76–78, 85, 90] are multi-stage/end-to-end trained models. Methods in [9, 18, 50, 52,
57, 77, 78, 90] are supervised models and with those in [76, 85] are weakly-supervised
models.

Firstly, the global framework for each method is described and then the deep net-
work designed in each method is analyzed.
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SOD models

Off-the-shelf deep features

Weakly-supervised model Supervised model

Spatial saliency 

Temporal saliency

Spatio-temporal saliency

Multi-stage/end-to-end trained

Figure 3.1: Methods classification according to the deep representations generation

Analysis of the frameworks of representative methods

As a matter of convenience, 11 methods are denoted as SCOMd [17], NRF [50],
DHSNet [52], OSVOS [9], NLDF [57], LMP [77], SFCN [90], SegFlow [18], LVO [78],
WSS [85], SCNN [76].

According to the involved tasks, these 11 frameworks can be divided into two cate-
gories: multi-task [18, 85] and single-task [9, 17, 50, 52, 57, 76–78, 90].

The multi-task framework not only predicts the salient objects, but also evaluates
other tasks. It exploits the connections between the SOD task and other highly related
tasks (such as classification, contour detection, optical flow and boundary detection),
and then improves the SOD performance by making use of the deep representation
from these tasks. Specifically, Wang et al. [85] propose a weakly-supervised network
which has two subnetworks: one is designed for classification and the other is de-
signed for SOD. Firstly, using image-level tags as the ground truth, detection stream is
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jointly trained with the classification subnetwork for classification prediction. Secondly,
the saliency prediction of the detection subnetwork is used as the ground truth for fine-
tuning the detection subnetwork. Both subnetworks share convolutional layers firstly
and then are separated on the top of the shared layers, as shown in Fig. 3.2 (a). Cheng
et al. [18] propose a supervised network which also consists of two subnetworks: the
segmentation subnetwork and the flow subnetwork. A bi-directional feature propaga-
tion is built between these two networks as shown in Fig. 3.2 (b), and an iterative
training is used for optimizing the segmentation task. The OSVOS proposes two fully
convolutional networks (FCNs) with the same architecture. The first FCN is used as a
foreground branch and the second FCN is employed as a contour branch. The output
of the first FCN is optimized by combining with that from the second FCN, as shown in
Fig. 3.2 (c). The NLDF, an end-to-end trained network, adds the boundary loss term to
design extra constraints to saliency prediction.

The single-task framework is designed just for the SOD task. Among them, SFCN
and SCNN propose two fully convolutional networks (FCN) with the same architecture
in their frameworks. From Fig. 3.3 (a), Wang et al. [90] use the first FCN for spatial
saliency detection with the input of each frame, and use the other FCN for spatio-
temporal saliency detection with the input of adjacent frame pairs and the detected
spatial saliency results. The detected spatial saliency results is denoted as SFCNs.
From Fig. 3.3 (b), Tang et al. [76] firstly employ one FCN to get a spatial prior map,
secondly generate temporal prior map from optical flow fields, thirdly combine these
two prior maps to be a spatio-temporal prior map which guides the second FCN to
generate the spatio-temporal saliency map. At last, the output saliency map is opti-
mized by a CRF model.

The SCOMd, NRF, LMP and DHSNet models only adopt one network in their single-
task frameworks. In SCOMd, the authors employ a pretrained network and uses the
deep spatial features instead of the handcrafted features, to define a new motion en-
ergy for SOD in video. In NRF, the authors firstly obtain the initial salient object and
background estimation with their complementary convolutional neural network, and
then construct a neighborhood reversible flow to propagate salient object and back-
ground along the most reliable inter-frame correspondences. The NRF is summarized
in Fig. 3.4 (a). DHSNet and LMP, as in Fig. 3.4 (b), are end-to-end training networks
without any other processing. In LMP, the authors detect motion patterns in videos with
designed motion pattern network. While, In LVO, the authors firstly use the network
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Figure 3.2: Multi-tasks models: (a) WSS, (b) SegFlow and (c) OSVOS
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Figure 3.3: Single-task models: (a) SFCN and (b) SCNN
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proposed in [16] to extract deep spatial features in the appearance stream, and then
adopt the network proposed in [77] to detect motion patterns in the motion stream, and
thirdly build a visual memory module which inputs the concatenation of appearance
and motion streams to get the prediction. The LVO is shown in Fig. 3.4 (c).

Analysis of the deep networks of representative methods

In this part, we analyze the networks designed in the representative methods.

A typical network for SOD is usually an encoder-decoder network, and hierarchical
features are generated layer by layer, as shown in Fig. 3.5.

The methods, e.g. [9, 50, 52, 57, 77, 85], use skip connections [9, 18, 52, 57, 77,
85] or “à trous” pyramid pooling (ASPP) [50] to employ multi-scale feature maps for
prediction. These networks are illustrated in Fig. 3.6. Specifically, Tokmakov et al. [77]
add skip connections from the encoder features to the mirror decoder features, which
benefits the decoder features with finer details. Cheng et al. [18], Wang et al. [90]
and Wang et al. [85] mainly use feature maps from 3rd to 5th layers of the backbone,
while Tang et al. [76] considers responses from 4th and 5th layers for predicting the
final output. Luo et al. [57] add multiple skip connections to fully employ the deep
information. Liu et al. [52] add skip connections between mirror layers, but with multiple
predictions. Four predictions in Fig. 3.6 (d) are used in the training step. And only
the last one is used to generate the final saliency result. Caelles et al. [9] add skip
connections from the low-level layer to the high-level layer. Feature maps obtained from
each layer are fused into a single output. Li et al. [50] use three parallel modules with
ASPP to capture the multi-scale information. The outputs (Prediction1 and Prediction2
in Fig. 3.6 (f)) are both used to generate the saliency result.

Table 3.2 summarizes the used backbone and training datasets for each mentioned
representative method.

Networks for SOD often built the encoder network based on a backbone (i.e. an
existing trained model with published weights). Image classification networks (e.g. VGG
[73] and ResNet [32]) are commonly used as backbones. These networks [32, 73] are
trained on large-scale image datasets and have a strong ability to learn both low-level
and high-level features. Note that various networks are proposed based on VGGNet or
ResNet for dense prediction. FlowNetS [21] is only used for estimating the optical flow
and the baseline in [18] to obtain the temporal feature.
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Figure 3.4: Single-task models: (a) NRF, (b) DHSNet and LMP, (c) LVO.
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Figure 3.6: Networks: (a) [77], (b) [18, 85], (c) [57], (d) [52], (e) [9], (f) [50].
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Table 3.2: Backbone and Training datasets (“x” indicates that the method is not based
on any backbone or the method is off-the-shelf deep features based)

Methods Backbone Training datasets
SCOMd[17] VGG16 x

NRF[50] VGG16 HKU-IS,MSRA10K,CSSD,DUT-OMRON
DHSNet[52] VGG16 MSRA10K,DUT-OMRON
OSVOS[9] VGG16 DAVIS 2016-train,PASCAL-Context
NLDF[57] VGG16 MSRA-B
LMP[77] x FlyingThings3D

SFCN[90] VGG16 MSRA10K,SegTrackV2,DUT-OMRON,FBMS-training
SegFlow[18] ResNet101,FlowNetS DAVIS 2016-train,MPI Sintel[7],KITTI,Scene Flow

LVO[78] VGG16 DAVIS 2016-train
WSS[85] VGG16 DUTS
SCNN[76] VGG16 MSRA10K,SegTrackV2,FBMS-training

Various training datasets are used for networks to learn deep representations: Im-
age SOD datasets (e.g. MSRA-B, MSRA10K [53], DUT-OMRON [101], HKU-IS [48]
and CSSD [99]) are used in most methods, e.g. [50, 52, 57, 76, 90]; image object
segmentation datasets (e.g. DUTS [85]) are used in [85]; video object segmentation
datasets (e.g. SegTrackV2 [46], DAVIS 2016-train) are used in methods [9, 18, 76,
78, 90]; contour datasets (e.g. PASCAL-Context [62]) are used in [9]; moving object
segmentation datasets (e.g. FBMS-training [8]) are used in methods [76, 90]; optical
flow datasets (FlyingThings3D [60]) are used in [77]; and datasets (MPI Sintel [7], KITTI
[35], Scene Flow [63]) are used in [18]. Besides, some methods generate new datasets
from existing datasets: Wang et al. [90] create synthesized video dataset due to the
limitation of video SOD datasets, and Tokmakov et al. [78] create training sequences
which simulate cases where the object stops moving.

During the training phase, a network learns all the parameters via minimizing er-
rors between the result and the ground truth. A loss function is used to compute this
error. The “cross entropy” is commonly used for SOD [18, 50, 52, 57, 78]. Given the
generated SM and GT, the cross entropy loss P is given by Eq (3.1).

P = −
h1×w1∑

i=1
(gilogsi + (1− gi)log(1− si)) (3.1)

where h1 is the frame height, w1 is the frame width, gi ∈ GT and si ∈ SM. Since
the numbers of salient and non-salient pixels are not balanced, the “balanced cross
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entropy”, given by Eq (3.2), is more commonly used for SOD [9, 76, 90].

P = −
h1×w1∑

i=1
((1−R)× gilogsi +R× (1− gi)log(1− si)) (3.2)

where R is the ratio of the number of salient pixels in GT over that of all pixels in GT.

Besides, motivated by the successful application of boundary Intersection over
Union (IOU) loss in medical image segmentation [61], Luo et al. [57] add a boundary
IOU loss, given by Eq (3.3), for SOD.

IOUloss = 1− 2 |CGT
⋂
CSM|

|CGT|+ |CSM|
(3.3)

where CGT and CSM are contours pixels of GT and SM respectively, which are obtained
using the magnitude of Sobel operator followed by a tanh activation. In order to prevent
learning high responses at all locations, Wang et al. [85] apply sparse regularization on
the generated saliency map to reduce background noise during pre-training phases.

3.3 Experimental evaluation

In order to assess the generality of the state-of-the-art methods, large-scale datasets
(including FBMS, VOS-E, VOS-N, VOS, DAVIS 2016-val and DAVIS-2017-val) are used
to evaluate the above mentioned 11 methods: five metrics (including MAE, Recall,
Precision, F-measure and P-R curve) are used to evaluate saliency methods (SCOMd,
SFCN, SFCNs, DHSNet, NLDF, WSS and SCNN) and four metrics (including MAE,
Recall, Precision and F-measure) are used to evaluate segmentation methods (LMP,
LVO, SegFlow, NRF and OSVOS).

For methods SCOMd and SCNN, applied to FBMS and DAVIS 2016-val datasets,
the results are those reported by the authors. For methods DHSNet, NLDF, NRF, OS-
VOS, SFCNs and WSS, applied to all datasets, the results are generated using the
provided source codes (OSVOS dose not contain the boundary snapping branch and
WSS does not contain conditional random field (CRF) processing). When the authors
give their results, we just report these results even if they provide their code.

Note that LMP firstly detects the motion pattern with the MP-Net, then uses the
traditional spatial objectness and the CRF to refine the temporal results. The LVO also
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applies a CRF as a post-processing on the detection network output. In order to explore
their deep performances, we just use their network outputs, denoted as LMPd and
LVOd for our comparison. For their network inputs, the optical flow vector is generated
by the method proposed by Tripathi et al. [79].

3.3.1 Detailed performance on each dataset

Performance on the VOS-E dataset

Fig. 3.7 shows the performance on the VOS-E dataset (with slow camera motion).
DHSNet, NLDF, NRF, SFCN, SFCNs and WSS methods, based on backbone networks,
all get high Precision, high Recall and high F-measure scores. DHSNet also gets the
best P-R curve, and NRF gets the best MAE value. Most of these methods only detect
the salient object from spatial domain, which shows that spatial saliency detection has
a good performance for SOD on video dataset with slow camera motions.

Performance on the FBMS dataset

Fig. 3.8 presents the performances on the FBMS dataset which puts emphasis on
the moving object. SCNN gets the best Recall score, and SCOMd gets the best Pre-
cision score, and LVOd gets the best F-measure score, and SegFlow gets the best
MAE value. They not only detect the salient object from spatial domain, but also from
temporal domain or fused spatio-temporal domain, which indicates that the temporal
detection plays a significant role for SOD on video dataset with highly dynamic fore-
ground objects.
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(a)

(b)

(c)

Figure 3.7: (Better viewed in color) Performances on the VOS-E dataset: (a) F-
measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve. ↑ means the higher the better
and ↓ means the lower the better.
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(a)

(b)

(c)

Figure 3.8: (Better viewed in color) Performances on the FBMS dataset: (a) F-
measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve.
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Performance on the VOS-N and VOS dataset

Fig. 3.9 and Fig. 3.10 show the performances on the VOS-N and the VOS datasets
respectively. The VOS-N datasets contains complex scenes or highly dynamic ob-
jects, while the VOS dataset contains various cases with slow camera motion, complex
scenes or highly dynamic objects. Salient objects in these two datasets are obtained
according to the saliency fixation, which is similar with that in image SOD datasets.
That may explain why the methods (e.g. DHSNet, NRF, NLDF, SFCN, SFCNs and
WSS) trained from image SOD datasets get better results than others.

Performance on the DAVIS 2016-val and DAVIS 2017-val dataset

Fig. 3.11 shows the performances on the DAVIS 2016-val dataset. Fig. 3.12 shows
the performances on the DAVIS 2017-val dataset. These two datasets provides mul-
tiple balanced video attributes such as occlusion, appearance change, camera-shake,
etc, which help better evaluate methods’ robustness. The methods that detect saliency
from two domains (e.g. LVOd, NRF, SegFlow) perform better than those only from one
domain (e.g. LMPd, OSVOS, WSS), which shows that saliency from two domains is
more efficient for SOD on complex videos datasets. Weakly supervised methods (e.g.
SCNN and WSS) get a little lower recall and F-measure values. The methods (e.g.
LVOd and SegFlow) are trained from object segmentation datasets only, which shows
the effectiveness of using the training datasets from closely related domains. Besides,
if we compare SFCNs with SFCN, we can find that they use the same deep-learning
network but with different training datasets. The input of the former one is each frame
with provided ground truth, while the input of the later one is the video sequence and
the detection results from SFCNs. Thus, SFCN refines the output of SFCNs, by learn-
ing more deep features from the temporal domain. If we compare LMPd and LVOd,
we can find that LVOd uses the same saliency detection from temporal domain as
LMPd but with extra deep spatial saliency information, and deep fused spatio-temporal
features. It helps LVOd to achieve a much better performance than LMPd, which also
further prove that saliency detection from two domains is significant for SOD in videos.
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(a)

(b)

(c)

Figure 3.9: (Better viewed in color) Performances on the VOS-N dataset: (a) F-
measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve.
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(a)

(b)

(c)

Figure 3.10: (Better viewed in color) Performances on the VOS dataset: (a) F-
measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve.
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(a)

(b)

(c)

Figure 3.11: (Better viewed in color) Performances on the DAVIS-2016-val dataset: (a)
F-measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve.
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(a)

(b)

(c)

Figure 3.12: (Better viewed in color) Performances on the DAVIS-2017-val dataset: (a)
F-measure↑, Precision↑, Recall↑, (b) MAE↓, (c) P-R curve
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3.3.2 Global performance on various datasets

In order to catch the global view of the performance of a method on various datasets,
the following Fig. 3.13 shows the comparative results of the methods for MAE metric
on 6 datasets. As can be seen on this figure, methods perform less good on dataset
FBMS.

;

Figure 3.13: (Better viewed in color) MAE performance↓

Fig. 3.14, Fig. 3.15 and Fig. 3.16 show the comparative results of the methods
for Precision, Recall and F-measure metrics on different datasets. In each figure, the
radar chart contains 10 closed curves, where each curve shows the performance of
a method on the datasets. The area of the closed curve can reflect the performance
of the method on the whole datasets. The larger the area the better the performance.
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Table 3.3, Table 3.4 and Table 3.5 show the detailed areas of 10 curves (corresponding
to the 10 methods) in Fig. 3.14, Fig. 3.15 and Fig. 3.16 respectively.

Figure 3.14: (Better viewed in color) Precision performance↑

Table 3.3: Area of each method in the Fig 3.14. (The best score is in bold)

DHSNet LMPd LVOd NLDF NRF OSVOS SFCN SFCNs SegFlow WSS
1.3505 0.5650 1.3388 1.2562 1.4768 1.0244 1.1332 1.0282 1.4354 1.0685
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Figure 3.15: (Better viewed in color) Recall performance↑

Table 3.4: Area of each method in the Fig 3.15. (The best score is in bold)

DHSNet LMPd LVOd NLDF NRF OSVOS SFCN SFCNs SegFlow WSS
1.8987 1.2482 1.3665 1.7740 1.8966 1.2212 1.7656 1.8061 1.2142 1.6278
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3.3. Experimental evaluation

Figure 3.16: (Better viewed in color) F-measure performance↑

Table 3.5: Area of each method in the Fig 3.16. (The best score is in bold)

DHSNet LMPd LVOd NLDF NRF OSVOS SFCN SFCNs SegFlow WSS
1.4477 0.6519 1.3356 1.3436 1.5561 1.0447 1.2384 1.1471 1.3690 1.1635

Fig. 3.14, Fig. 3.15 and Fig. 3.16 show that methods achieve highest Precision,
Recall and F-measure scores on VOS-E dataset (with most static salient objects). We
can learn that the deep-learning technique provides a strong ability to detect salient
objects from the spatial domain. From Table 3.3, Table 3.4 and Table 3.5, one can
observe that DHSNet and NRF get good Precision, Recall and F-measure scores,
which are all among the best 3 scores, while LMPd performs not very well. We can
firstly find that the end-to-end trainable network, DHSNet, is efficient to learn and detect
the salient object; we secondly observe that though temporal saliency is significant,
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saliency information only detected from the temporal domain is not enough; we thirdly
note that NRF that detects the salient objects from both spatial and temporal domain
is more efficient for SOD in videos.

3.3.3 Computation time comparison

A PC with a NVIDIA 1080 GPU is used for testing the speed of the methods on the
DAVIS-2016-val dataset. For different models (except SCOMd and SCNN with unpub-
lished codes), the average run-time is listed in Table 3.6.

Table 3.6: Average run time in seconds (per frame) of the compared models. (The best
score is in bold)

Methods DHSNet LMPd LVOd NLDF NRF OSVOS SFCN SegFlow WSS
Time(s)↓ 0.069 0.2 0.42 0.091 0.297 0.072 0.072 0.174 0.067

From Table 3.6, we can observe that WSS has the least computation costs, which is
similar to that of OSVOS, SFCN, DHSNet and NLDF. SegFlow, NRF, LMPd and LVOd
are much more time-consuming.

3.3.4 Failure cases and analysis

It is difficult for all compared models to deal with some difficult cases such as the
examples shown in Fig.3.17. For the first failure case, the bike is recognized with losing
fine-structure by the detection network. The bikes consists of many lines, but none of
them was detected and only coarse edges are shown in the final map. For the second
failure case, the background object is also detected as the salient object. For the third
failure case, the salient object is not detected at all.

3.4 Extension of the proposed method to integrate deep-

learning technique

The above various experiments illustrate that the image-based method DHSNet gives
high performance over all the tested databases. It may be interesting to look at how
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Input frame Ground truth OSVOS SFCN DHSNet NLDF

SegFlow NRF LMPd LVOd WSS

(a)

Input frame Ground truth OSVOS SFCN DHSNet NLDF

SegFlow NRF LMPd LVOd WSS

(b)

Input frame Ground truth OSVOS SFCN DHSNet NLDF

SegFlow NRF LMPd LVOd WSS

(c)

Figure 3.17: Examples of saliency maps for cases of failure.

existing traditional video SOD method can be further improved by integrating this ex-
isting deep-learning image-based SOD method. Based on this open issue, we extend
our VBGF algorithm to a deep-learning method VBGFd.
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3.4.1 Extension of VBGF (VBGFd)

The block-diagram of the proposed VBGFd method is shown in Fig.3.18.

Input 

video

Saliency computation

Saliency computation

Movement extraction

TSM

SSM

Fusion

Guided filtering

SD

TD

STSM

Figure 3.18: The proposed block-diagram. SD: Spatial saliency detection; SSM: Spatial
saliency map; TD: Temporal saliency detection; TSM: Temporal saliency map; STSM:
Spatio-temporal saliency map.

Compared with Fig.2.13, the “Virtual border building” in both “SD” and “TD” blocks
is removed. The “Saliency computation” in VBGF is a traditional methods, while the
“Saliency computation” in VBGFd is based on a deep-salient detection method pro-
posed in [52]: the DHSNet (because of the availability of its source code and its good
performance). In VBGFd, the first two steps in the “Map fusion” part use the ratio of the
entropies for each frame in Eq.2.7.

3.4.2 Experiments and analysis

In this section, the large-scale video SOD dataset VOS and its two subsets VOS-E,
VOS-N are used to show the performance of VBGFd.

Performance of components of the proposed method

The proposed VBGFd can be decomposed into different components. In Table 3.7,
we list the performances of VBGFd according to its components. The 3th, 5th and
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Table 3.7: Comparison of the proposed VBGFd componets’ performance on dataset
VOS, VOS-E, VOS-N. proSSM: proposed spatial saliency map; proTSM: proposed
temporal saliency map; proSTSM: proposed spatio-temporal saliency map. The Bold
number indicates the best result in each line.

Dataset Metrics
Proposed VBGFd components

proSSM proTSM without proTSM with proSTSMguided filtering guided filtering

VOS-E

Precision↑ 0.863 0.398 0.528 0.881
Recall↑ 0.905 0.380 0.480 0.877

F-measure↑ 0.872 0.394 0.516 0.880
MAE↓ 0.049 0.189 0.154 0.046

VOS-N

Precision↑ 0.649 0.407 0.407 0.690
Recall↑ 0.851 0.389 0.392 0.806

F-measure↑ 0.686 0.403 0.403 0.714
MAE↓ 0.055 0.136 0.132 0.059

VOS

Precision↑ 0.753 0.403 0.466 0.783
Recall↑ 0.877 0.385 0.435 0.840

F-measure↑ 0.778 0.399 0.458 0.795
MAE↓ 0.052 0.162 0.143 0.053

6th columns show the results of the spatial saliency map, temporal saliency map and
spatio-temporal saliency map. The 4th column shows the result of the temporal saliency
detection without guided filtering. By comparing the 4th and 5th columns in Table 3.7,
the performance is better for all performance evaluation metrics with the “guided filter-
ing”. By comparing the 3rd, 5th and 6th columns in Table 3.7, the performance is better
for most evaluation metrics when the spatial saliency map and the temporal saliency
map are fused together.

Performance benchmarking of the proposed method

The performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art models
are reported.

In Table 3.8, Table 3.9 and Table 3.10, we inserted the performance of our pro-
posed models into the the benchmarking table (cf. Table III in the paper [49]) provided
with the VOS dataset. Note that here we only list 13 state-of-the-art models (image-
based deep-learning and video-based traditional models) reported in [49]. 13 state-
of-the-art models are LEGS[84], MCDL[104], MDF[48], ELD[45], DCL[47], RFCN[86],
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DHSNet[52], SIV[70], FST[64], NLC[24], SAG[88], GF[89] and SSA[49]. These mod-
els are categorized into two parts: [I+D] for deep-learning and image-based, [V+U] for
video-based and Unsupervised. From these three tables, we can see that among the
tested 15 models, the VBGFd has the best score for 7 times, while the best bench-
marked model DHSNet has the best score for 5 times. Thus in general, we can say
that the VBGFd performs the best among the tested models.

Table 3.8: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art
models on the dataset VOS-E. The best three scores in each column are marked in
red, green and blue, respectively.

Models
VOS-E

Precision↑ Recall↑ F-measure↑ MAE↓

[I+
D

]

LEGS 0.820 0.685 0.784 0.193
MCDL 0.831 0.787 0.821 0.081
MDF 0.740 0.848 0.762 0.100
ELD 0.790 0.884 0.810 0.060
DCL 0.864 0.735 0.830 0.084

RFCN 0.834 0.820 0.831 0.075
DHSNet 0.863 0.905 0.872 0.049

[V
+U

]

SIV 0.693 0.543 0.651 0.204
FST 0.781 0.903 0.806 0.076
NLC 0.439 0.421 0.435 0.204
SAG 0.709 0.814 0.731 0.129
GF 0.712 0.798 0.730 0.153

SSA 0.875 0.776 0.850 0.062
VBGF 0.797 0.773 0.791 0.085

VBGFd 0.881 0.877 0.880 0.046

Computation time comparison

The deep-learning method is performed on an NVIDIA 1080 GPU, and is implemented
in Python. The average run-time of the proposed VBGFd is listed in Table 3.11 in detail.
Our VBGFd costs much time for exploiting optical flow (based on traditional technique),
which could be accelerated by using hardware acceleration with GPU or FPGA plat-
form, or replaced by much faster deep learning based optical flow computation method
(such as FlowNet2.0). Excluding optical flow computation, our VBGFd only needs 0.34s
for each frame.
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Table 3.9: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art
models on the dataset VOS-N. The best three scores in each column are marked in
red, green and blue, respectively.

Models
VOS-N

Precision↑ Recall↑ F-measure↑ MAE↓

[I+
D

]

LEGS 0.556 0.593 0.564 0.215
MCDL 0.570 0.645 0.586 0.085
MDF 0.527 0.742 0.565 0.098
ELD 0.569 0.838 0.615 0.081
DCL 0.583 0.809 0.624 0.079

RFCN 0.614 0.783 0.646 0.080
DHSNet 0.649 0.851 0.686 0.055

[V
+U

]

SIV 0.451 0.523 0.466 0.201
FST 0.619 0.691 0.634 0.117
NLC 0.561 0.610 0.572 0.123
SAG 0.354 0.742 0.402 0.150
GF 0.346 0.738 0.394 0.331

SSA 0.660 0.682 0.665 0.103
VBGF 0.558 0.688 0.583 0.130
VBGFd 0.690 0.806 0.714 0.059

Table 3.10: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art
models on the dataset VOS. The best three scores in each column are marked in red,
green and blue, respectively.

Models
VOS

Precision↑ Recall↑ F-measure↑ MAE↓

[I+
D

]

LEGS 0.684 0.638 0.673 0.204
MCDL 0.697 0.714 0.701 0.083
MDF 0.630 0.793 0.661 0.099
ELD 0.676 0.861 0.712 0.071
DCL 0.719 0.773 0.731 0.081

RFCN 0.721 0.801 0.738 0.078
DHSNet 0.753 0.877 0.778 0.052

[V
+U

]

SIV 0.568 0.533 0.560 0.203
FST 0.697 0.794 0.718 0.097
NLC 0.502 0.518 0.505 0.162
SAG 0.526 0.777 0.568 0.140
GF 0.523 0.767 0.565 0.244

SSA 0.764 0.728 0.755 0.083
VBGF 0.674 0.729 0.686 0.108
VBGFd 0.783 0.840 0.795 0.053
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Table 3.11: Average run time (per frame) of each component in the proposed models.

Component VBGFd
Time(s)↓ Ratio(%)

saliency detection 0.15 4.78
optical flow computation 2.80 89.17

feature fusion(guided filtering) 0.07 2.23
map fusion 0.12 3.82

total 3.14 100

3.5 Conclusion

To the best of our knowledge, this is the first overview in the literature that focus on
deep-learning based video SOD methods. The classification of the methods is done
regarding the domain of their deep representations, which gives a new way to learn
about recent development. Deep networks of some representative existing methods
are introduced and compared in detail. They are surveyed from two ponts of view:
frameworks and raw results. A comparative summary of methods is presented and
their performances on various datasets are discussed. An effective way is presented
for readers to study these 11 methods quickly. In addition, the various experiments
conducted show that the methods DHSNet and NRF give high performance over all
the tested databases. This overview aims to pave a way to study the existing deep-
learning based video SOD methods.

We also have extended our proposed traditional video SOD method (VBGF) to
VBGFd by integrating an image-based deep-learning method [52]. Various experimen-
tal results confirms combining the traditional video SOD method (VBGF) with image-
based deep-learning method performs better than any individual method, and shows
that compared to the tested state-of-the-art methods, VBGFd yields improved good
performance.
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CHAPTER 4

DEEP-LEARNING METHOD FOR

SEMI-SUPERVISED VIDEO OBJECT

SEGMENTATION

The video SOD in previous two chapters aims to detect salient objects from background
without distinguishing each object. But, it is better for video content understanding to
assign consistent object IDs to each object. This chapter focus on this task. In this
chapter, Section 4.1 introduces an overview of state-of-the-art methods. Section 4.2
gives some existing issues. Section 4.3 presents the proposed method in detail. In
section 4.4, we show and discuss the performances of the proposed method. Section
4.5 concludes the chapter.

4.1 An overview of state-of-the-art methods

For semi-supervised video object segmentation based on the human-guidance, one
challenge is how to segment a pre-defined object in a video based on its provided
mask of the frame in which the object appears at the first time. Recent works are
introduced based on the way to use the human-guidance.

4.1.1 Online-offline learning

An initial way for semi-supervised video object segmentation is to firstly train the par-
ent network which detects all foreground objects (also called as offline learning), sec-
ondly fine-tune the parent network for the particular object using the manual label (also
called as online learning), as in state-of-the-art methods [9]. However, it is very time-
consuming. The methods [9, 18, 66, 83] employ the combination of offline and online
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learning strategies, as in Fig. 4.1 (a).
Caelles et al. [9] design a network to learn the foreground object, as in Fig. 4.1 (b),

which is consisted of a foreground branch and a contour branch.
Compared with OSVOS [9], OnAVOS [83] updates the result based on online se-

lected training example. It aims at adapting the changes in appearance. Fig. 4.2 presents
an example.

Cheng et al. [18] propose a network which has two branches: the segmentation
branch and the flow branch to predict the foreground objects, as in Fig. 4.3.

MaskTrack [66] predicts the segmentation mask with a rough estimated mask of the
previous frame as in Fig. 4.4.

4.1.2 Mask warping

Most works adopt “mask warping” to combine the necessary appearance information
and the temporal context together, which benefits the semi-supervised video object
segmentation. The mask of the target object is warped to the optical flow vectors to
generate warped map frame by frame [38, 51, 67, 75, 94, 95, 97].

4.2 Introduction of the existing issue

“Mask warping” is faster than online learning. However, the warped map generated is
vulnerable to lighting changes, deformations, etc. The wrongly detected regions in one
frame can be propagated to the following ones, thus more background is warped. To
solve this problem, Leibe et al. [55] proposed to optimize the generated warped map
in each step with an objectness score etc; Khoreva et al. [38] proposed to optimize the
generated warped map by removing the possibly spurious blobs.

The semantics label of the object instance in the first frame is another useful cue for
semi-supervised video object segmentation. In the method [59], a semantics instance
segmentation algorithm is leveraged to obtain the semantics label of the target object
in the first frame, and then the semantics label is propagated to the following frames.
In the method [40], objects are divided into human and non-human object instances
which are propagated using different networks.

Mask warping and semantics label guidance are not mutually exclusive, and could
be taken simultaneously. Few studies combine the advantages of the two aforemen-
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Figure 2. Overview of OSVOS: (1) We start with a pre-trained base CNN for image labeling on ImageNet; its results in terms of segmen-
tation, although conform with some image features, are not useful. (2) We then train a parent network on the training set of DAVIS; the
segmentation results improve but are not focused on an specific object yet. (3) By fine-tuning on a segmentation example for the specific
target object in a single frame, the network rapidly focuses on that target.

the video, looking for targets whose shape and appearance
vary gradually in consecutive frames, but fail when those
constraints do not apply, unable to recover from relatively
common situations such as occlusions and abrupt motion.

In this context, motion estimation has emerged as a
key ingredient for state-of-the-art video segmentation algo-
rithms [49, 42, 17]. Exploiting it is not a trivial task how-
ever, as one e.g. has to compute temporal matches in the
form of optical flow or dense trajectories [5], which can be
an even harder problem.

We argue that temporal consistency was needed in the
past, as one had to overcome major drawbacks of the then
inaccurate shape or appearance models. On the other hand,
in this paper deep learning will be shown to provide a suffi-
ciently accurate model of the target object to produce tem-
porally stable results even when processing each frame in-
dependently. This has some natural advantages: OSVOS
is able to segment objects through occlusions, it is not lim-
ited to certain ranges of motion, it does not need to process
frames sequentially, and errors are not temporally propa-
gated. In practice, this allows OSVOS to handle e.g. inter-
laced videos of surveillance scenarios, where cameras can
go blind for a while before coming back on again.

Our third contribution is that OSVOS can work at var-
ious points of the trade-off between speed and accuracy.
In this sense, it can be adapted in two ways. First, given
one annotated frame, the user can choose the level of fine-
tuning of OSVOS, giving him/her the freedom between a
faster method or more accurate results. Experimentally, we
show that OSVOS can run at 181 ms per frame and 71.5%
accuracy, and up to 79.7% when processing each frame in
7.83 s. Second, the user can annotate more frames, those
on which the current segmentation is less satisfying, upon
which OSVOS will refine the result. We show in the exper-
iments that the results indeed improve gradually with more
supervision, reaching an outstanding level of 84.6% with
two annotated frames per sequence, and 86.9% with four,
from 79.8% from one annotation.

Technically, we adopt the architecture of Fully Con-
volutional Networks (FCN) [12, 27], suitable for dense
predictions. FCNs have recently become popular due to
their performance both in terms of accuracy and compu-
tational efficiency [27, 8, 9]. Arguably, the Achilles’ heel
of FCNs when it comes to segmentation is the coarse scale
of the deeper layers, which leads to inaccurately localized
predictions. To overcome this, a large variety of works
from different fields use skip connections of larger feature
maps [27, 18, 51, 30], or learnable filters to improve upscal-
ing [34, 52]. To the best of our knowledge, this work is the
first to use FCNs for the task of video segmentation.

We perform experiments on two video object segmen-
tation datasets (DAVIS [37] and Youtube-Objects [41, 20])
and show that OSVOS significantly improves the state of
the art 79.8% vs 68.0%. Our technique is able to process a
frame of DAVIS (480×854 pixels) in 102 ms. By increasing
the level of supervision, OSVOS can further improve its re-
sults to 86.9% with just four annotated frames per sequence,
thus providing a vastly accelerated rotoscoping tool.

All resources of this paper, including training and test-
ing code, pre-computed results, and pre-trained models
are publicly available at www.vision.ee.ethz.ch/
˜cvlsegmentation/osvos/.

2. Related Work

Video Object Segmentation and Tracking: Most of the
current literature on semi-supervised video object segmen-
tation enforces temporal consistency in video sequences to
propagate the initial mask into the following frames. First of
all, in order to reduce the computational complexity some
works make use of superpixels [6, 17], patches [42, 11],
or even object proposals [38]. Märki et al. [33] cast the
problem into a bilateral space in order to solve it more ef-
ficiently. After that, an optimization using one of the pre-
vious aggregations of pixels is usually performed; which
can consider the full video sequence [38, 33], a subset of
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Figure 2. Overview of OSVOS: (1) We start with a pre-trained base CNN for image labeling on ImageNet; its results in terms of segmen-
tation, although conform with some image features, are not useful. (2) We then train a parent network on the training set of DAVIS; the
segmentation results improve but are not focused on an specific object yet. (3) By fine-tuning on a segmentation example for the specific
target object in a single frame, the network rapidly focuses on that target.

the video, looking for targets whose shape and appearance
vary gradually in consecutive frames, but fail when those
constraints do not apply, unable to recover from relatively
common situations such as occlusions and abrupt motion.

In this context, motion estimation has emerged as a
key ingredient for state-of-the-art video segmentation algo-
rithms [49, 42, 17]. Exploiting it is not a trivial task how-
ever, as one e.g. has to compute temporal matches in the
form of optical flow or dense trajectories [5], which can be
an even harder problem.

We argue that temporal consistency was needed in the
past, as one had to overcome major drawbacks of the then
inaccurate shape or appearance models. On the other hand,
in this paper deep learning will be shown to provide a suffi-
ciently accurate model of the target object to produce tem-
porally stable results even when processing each frame in-
dependently. This has some natural advantages: OSVOS
is able to segment objects through occlusions, it is not lim-
ited to certain ranges of motion, it does not need to process
frames sequentially, and errors are not temporally propa-
gated. In practice, this allows OSVOS to handle e.g. inter-
laced videos of surveillance scenarios, where cameras can
go blind for a while before coming back on again.

Our third contribution is that OSVOS can work at var-
ious points of the trade-off between speed and accuracy.
In this sense, it can be adapted in two ways. First, given
one annotated frame, the user can choose the level of fine-
tuning of OSVOS, giving him/her the freedom between a
faster method or more accurate results. Experimentally, we
show that OSVOS can run at 181 ms per frame and 71.5%
accuracy, and up to 79.7% when processing each frame in
7.83 s. Second, the user can annotate more frames, those
on which the current segmentation is less satisfying, upon
which OSVOS will refine the result. We show in the exper-
iments that the results indeed improve gradually with more
supervision, reaching an outstanding level of 84.6% with
two annotated frames per sequence, and 86.9% with four,
from 79.8% from one annotation.

Technically, we adopt the architecture of Fully Con-
volutional Networks (FCN) [12, 27], suitable for dense
predictions. FCNs have recently become popular due to
their performance both in terms of accuracy and compu-
tational efficiency [27, 8, 9]. Arguably, the Achilles’ heel
of FCNs when it comes to segmentation is the coarse scale
of the deeper layers, which leads to inaccurately localized
predictions. To overcome this, a large variety of works
from different fields use skip connections of larger feature
maps [27, 18, 51, 30], or learnable filters to improve upscal-
ing [34, 52]. To the best of our knowledge, this work is the
first to use FCNs for the task of video segmentation.

We perform experiments on two video object segmen-
tation datasets (DAVIS [37] and Youtube-Objects [41, 20])
and show that OSVOS significantly improves the state of
the art 79.8% vs 68.0%. Our technique is able to process a
frame of DAVIS (480×854 pixels) in 102 ms. By increasing
the level of supervision, OSVOS can further improve its re-
sults to 86.9% with just four annotated frames per sequence,
thus providing a vastly accelerated rotoscoping tool.

All resources of this paper, including training and test-
ing code, pre-computed results, and pre-trained models
are publicly available at www.vision.ee.ethz.ch/
˜cvlsegmentation/osvos/.

2. Related Work

Video Object Segmentation and Tracking: Most of the
current literature on semi-supervised video object segmen-
tation enforces temporal consistency in video sequences to
propagate the initial mask into the following frames. First of
all, in order to reduce the computational complexity some
works make use of superpixels [6, 17], patches [42, 11],
or even object proposals [38]. Märki et al. [33] cast the
problem into a bilateral space in order to solve it more ef-
ficiently. After that, an optimization using one of the pre-
vious aggregations of pixels is usually performed; which
can consider the full video sequence [38, 33], a subset of
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Figure 4. Two-stream FCN architecture: The main foreground
branch (1) is complemented by a contour branch (2) which im-
proves the localization of the boundaries (3).

ing architecture. The drawback of this approach, though, is
that it preserves naive image gradients, i.e. pixels with high
Euclidean differences in the color channels.

To overcome this limitation, our second approach snaps
the results to learned contours instead of simple image gra-
dients. To this end, we propose a complementary CNN in a
second branch, that is trained to detect object contours. The
proposed architecture is presented in Figure 4: (1) shows
the main foreground branch, where the foreground pixels
are estimated; (2) shows the contour branch, which detects
all contours in the scene (not only those of the foreground
object). This allows us to train offline, without the need
to fine-tune on a specific example online. We used the ex-
act same architecture in the two branches, but training for
different losses. We noticed that jointly training a network
with shared layers for both tasks rather degrades the ob-
tained results thus we kept the computations for the two ob-
jectives uncorrelated. This allows us to train the contour
branch only offline and thus it does not affect the online
timing. Since there is need for high recall in the contours,
we train on the PASCAL-Context [31] database, which pro-
vides contour annotations for the full scene of an image.
Finally, in the boundary snapping step (Figure 4 (3), we
compute superpixels that align to the computed contours (2)
by means of an Ultrametric Contour Map (UCM) [1, 40],
which we threshold at a low value. We then take a fore-
ground mask (1) and we select superpixels via majority vot-
ing (those that overlap with the foreground mask over 50%)
to form the final foreground segmentation.

In this second case, we trade accuracy for speed, since
the snapping process takes longer (400 ms instead of 60 ms
per frame), but we achieve more accurate results. Both re-
finement processes result in a further boost in performance,
and are fully modular, meaning that depending on the re-
quirements one can choose not to use them, sacrificing ac-
curacy for execution time, since both modules come with a
small, yet avoidable computational overhead.

4. Experimental Validation
Databases, state-of-the-art, and measures: The main
part of our experiments is done on the recently-released
DAVIS database [37], which consists of 50 full-HD video
sequences with all of their frames segmented with pixel-
level accuracy. We use three measures: region similarity in
terms of intersection over union (J ), contour accuracy (F),
and temporal instability of the masks (T ). All evaluation
results are computed on the validation set of DAVIS.

We compare to a large set of state-of-the-art meth-
ods, including two very recent semi-supervised techniques,
OFL [49], BVS [33], as well as the methods originally
compared on the DAVIS benchmark: FCP [38], JMP [11],
HVS [17], SEA [42], and TSP [6]. We also add the unsuper-
vised techniques: FST [36], SAL [46], KEY [25], MSG [5],
TRC [13], CVOS [48], and NLC [10]. We add two in-
formative bounds: the quality that an oracle would reach
by selecting the best segmented object proposal out of two
state-of-the-art techniques (COB [29] and MCG [40]), and
by selecting the best superpixels from COB (COB|SP).

For completeness, we also experiment on Youtube-
objects [41], manually segmented by Jain and Grau-
man [20]. We compare to OFL [49], BVS [33], LTV [35],
HBT [16], AFS [50], SCF [20], and JFS [45] and take the
pre-computed evaluation results from previous work.

Ablation Study on DAVIS: To analyze and quantify the
importance and need of each of the proposed blocks of
our algorithm, Table 1 shows the evaluation of OSVOS
compared to ablated versions without each of its building
blocks. Each column shows: the original method without
boundary snapping (-BS), without pre-training the parent
network on DAVIS (-PN), or without performing the one-
shot learning on the specific sequence (-OS). In smaller and
italic font we show the loss (in blue) or gain (in red) on each
metric with respect to our final approach.

We can see that both the pre-training of the parent net-
work and the one-shot learning play an important role (we
lose 15.2 and 27.3 points in J without them, respectively).
Removing both, i.e., using the Imagenet raw CNN, the re-
sults in terms of segmentation (J =17.6%) are completely
random. The boundary snapping adds 2.4 points of im-

Measure Ours -BS -PN-BS -OS-BS -PN-OS-BS

MeanM ↑ 79.8 77.4 2.4 64.6 15.2 52.5 27.3 17.6 62.2

J RecallO ↑ 93.6 91.0 2.6 70.5 23.2 57.7 35.9 2.3 91.3

Decay D ↓ 14.9 17.4 2.5 27.8 13.0 −1.9 16.7 1.8 13.1

MeanM ↑ 80.6 78.1 2.5 66.7 13.9 47.7 32.9 20.3 60.4

F RecallO ↑ 92.6 92.0 0.6 74.4 18.3 47.9 44.7 2.4 90.2

Decay D ↓ 15.0 19.4 4.5 26.4 11.4 0.6 14.3 2.4 12.6

T MeanM ↓ 37.6 33.5 4.0 60.9 23.3 53.8 16.2 46.0 8.4

Table 1. Ablation study on DAVIS: Comparison of OSVOS
against downgraded versions without some of its components.

(b)

Figure 4.1: OSVOS [9]. (a) An overview of OSVOS: the designed network is firstly
trained to learn the generic objects, and then fine-tuned to learn the target object. (b)
The designed network. (Figures are copied from the published paper [18])
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2 VOIGTLAENDER, LEIBE: ONLINE ADAPTATION FOR VIDEO OBJECT SEGMENTATION

un-adapted
baseline

adaptation
targets

online
adapted

ground
truth

Figure 1: Qualitative results on two sequences of the DAVIS validation set. The second row
shows the pixels selected as positive (red) and negative (blue) training examples. It can be
seen that after online adaptation, the network can deal better with changes in viewpoint
(left) and new objects appearing in the scene (the car in the right sequence).

Segmentation (OnAVOS), which updates a convolutional neural network based on online-
selected training examples. In order to avoid drift, we carefully select training examples by
choosing pixels for which the network is very certain that they belong to the object of inter-
est as positive examples, and pixels which are far away from the last assumed pixel mask
as negative examples (see Fig. 1, second row). We further show that naively performing
online updates on every frame quickly leads to drift, which manifests in strongly degraded
performance. As a countermeasure, we propose to mix in the first frame (for which the
ground truth pixel mask is known) as additional training example during online updates.

Our contributions are the following: We introduce OnAVOS, which uses online up-
dates to adapt to changes in appearance. Furthermore, we adopt a more recent network
architecture and an additional objectness pretraining step [20, 21] and demonstrate their
effectiveness for the semi-supervised setup. We further show that OnAVOS significantly
improves the state of the art on two datasets.

2 Related Work
Video Object Segmentation. A common approach of many classical video object seg-
mentation (VOS) methods is to reduce the granularity of the input space, e.g. by using
superpixels [8, 15], patches [12, 38], or object proposals [33]. While these methods signifi-
cantly reduce the complexity of subsequent optimization steps, they can introduce unrecov-
erable errors early in the pipeline. The obtained intermediate representations (or directly
the pixels [30]) are then used for either a global optimization over the whole video [30, 33],
over parts of it [15], or using only the current and the preceding frame [8, 12, 38].

Recently, neural network based approaches [7, 20, 24, 35] including OSVOS [7] have
become the state of the art for VOS. Since OnAVOS is built on top of OSVOS, we include a
detailed description in Section 3. While OSVOS handles every video frame in isolation, we
expect that incorporating temporal context should be helpful. As a step in this direction,
Perazzi et al. [35] propose the MaskTrack method, in which the estimated segmentation

Figure 4.2: OnAVOS [83]. The first row shows the result without updating, the sec-
ond row gives the online selected training example and the third shows the result with
updating. (Figures are copied from the published paper [83])

Figure 2. The proposed SegFlow architecture. Our model consists of two branches, the segmentation network based on a fully-
convolutional ResNet-101 and the flow branch using the FlowNetS [12] structure. In order to construct communications between two
branches, we design an architecture that bridges two networks during the up-sampling stage. Specifically, feature maps are propagated
bi-directionally through concatenations at different scales with proper operations (i.e., up-sampling or down-sampling) to match the size
of different features. Then an iterative training scheme is adopted to jointly optimize the loss functions for both segmentation and optical
flow tasks.

3. SegFlow

Our goal is to segment objects in videos, as well as es-
timate the optical flow between frames. Towards this end,
we construct a unified model with two branches, a segmen-
tation branch based on fully-convolutional network, and an
optical flow branch based on the FlowNetS [12].

Due to the lack of datasets with both segmentation and
optical flow annotations, we initialize the weights of two
branches from legacy models trained on different datasets,
and optimize the SegFlow on segmentation and optical flow
datasets via iterative offline training and online finetuning.
In the following, we first introduce the baseline model of
the segmentation and optical flow branch, and then explain
how we construct the joint model using the proposed bi-
directional architecture. The overall architecture of our pro-
posed joint model is illustrated in Figure 2.

3.1. Segmentation Branch

Inspired by the effectiveness of fully-convolutional net-
works in image segmentation [24] and the deep structure in
image classification [18, 36], we construct our segmenta-
tion branch based on the ResNet-101 architecture [18], but
modified for binary (foreground and background) segmen-
tation predictions as follows: 1) the fully-connected layer
for classification is removed, and 2) features of convolution
modules in different levels are fused together for obtaining
more details during up-sampling.

The ResNet-101 has five convolution modules, and each
consists of several convolutional layers, Relu, skip links and
pooling operations after the module. Specifically, we draw
feature maps from the 3-th to 5-th convolution modules af-
ter pooling operations, where score maps are with sizes of

1/8, 1/16, 1/32 of the input image size, respectively. Then
these score maps are up-sampled and summed together for
predicting the final output (upper branch in Figure 2).

A pixel-wise cross-entropy loss with the softmax func-
tion E is used during optimization. To overcome imbal-
anced pixel numbers between foreground and background
regions, we use the weighted version as adopted in [45],
and the loss function is defined as:

Ls(Xt) = −(1− w)
∑

i,j∈fg
logE(yij = 1; θ)

−w
∑

i,j∈bg
logE(yij = 0; θ), (1)

where i, j denotes the pixel location of foreground fg and
background bg, yij denotes the binary prediction of each
pixel of the input image X at frame t, and w is computed as
the foreground-background pixel-number ratio.

3.2. Optical Flow Branch

Considering the efficiency and accuracy, we choose the
FlowNetS [12] as our baseline for flow estimation. The op-
tical flow branch uses an encoder-decoder architecture with
additional skip links for feature fusions (feature concate-
nations between the encoder and decoder). In addition, a
down-scaling operation is used at each step of the encoder,
where each step of the decoder up-samples back the output
(see the lower branch in Figure 2). Based on such structure,
we find that it shares similar properties with the segmenta-
tion branch and their feature representations are in similar
scales, which enables plausible connections to the segmen-
tation model, and vice versa, where we will introduce in the
next section.

Figure 4.3: Segflow [18]. (Figures are copied from the published paper [18])
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4.3. Semantic-guided warping for semi-supervised video object segmentation (SWVOS)
algorithm

MaskTrack ConvNet

Input frame t

Mask estimate t-1

Refined mask t

Figure 1: Given a rough mask estimate from the previous
frame t − 1 , we train a convnet to provide a refined mask
output for the current frame t.

instance of interest by feeding in the previous’ frame mask
estimate during offline training (§3.1). And a second is em-
ploying online training (§3.2) to fine-tune the model to be-
come more specialized for the specific instance.

3.1. Learning to segment instances offline

In order to guide the pixel labeling network to segment
the object of interest, we begin by expanding the convnet
input from RGB to RGB+mask channel (4 channels). The
extra mask channel is meant to provide an estimate of the
visible area of the object in the current frame, its approx-
imate location and shape. We can then train the labelling
convnet to provide as output an accurate segmentation of
the object, given as input the current image and a rough es-
timate of the object mask. Our tracking network is de-facto
a "mask refinement" network.

There are two key observations that make this approach
practical. First, very rough input masks are enough for our
trained network to provide sensible output segments. Even
a large bounding box as input will result in a reasonable
output (see §5.2). The input mask’s main role is to point the
convnet towards the correct object instance to segment.

Second, this particular approach does not require us to
use video as training data, such as done in [3, 18, 29]. Be-
cause we only use a mask as additional input, instead of an
image crop as in [3, 18], we can easily synthesize training
samples from single frame instance segmentation annota-
tions. This allows to train from a large set of diverse images
and avoids having to use existing (scarce and small) video
segmentation benchmarks for training.

Figure 1 shows our overall architecture. To simulate the
noise in the previous frame output masks, during offline
training we generate input masks by deforming the anno-
tated masks via affine transformation as well as non-rigid
deformations via thin-plate splines [4], followed by a coars-
ening step (dilation morphological operation) to remove de-
tails of the object contour. We apply this data generation
procedure over a dataset of ∼ 104 images containing di-
verse object instances, see examples in Figure 2. At test

(a) Annotated image (b) Example training masks

Figure 2: Examples of training mask generation. From
one annotated image, multiple training masks are generated.
The generated masks mimic plausible object shapes on the
preceding frame.

time, given the mask estimate at time t−1, we apply the
dilation operation and use the resulting rough mask as input
for object segmentation in frame t.

The affine transformations and non-rigid deformations
aim at modelling the expected motion of an object between
two frames. The coarsening permits us to generate train-
ing samples that resembles the test time data, simulating
the blobby shape of the output mask given from the previ-
ous frame by the convnet. These two ingredients make the
estimation more robust and help to avoid accumulation of
errors from the preceding frames.

After training the resulting convnet has learnt to do
guided instance segmentation, similar to networks like
DeepMask [32] and Hypercolumns [17], but instead of tak-
ing a bounding box as guidance, we can use an arbitrary
input mask. The training details are described in §4.

When using offline training only, the segmentation pro-
cedure consists of two steps: the previous frame mask is
coarsened and then fed into the trained network to estimate
the current frame mask. Since objects have a tendency
to move smoothly through space, the object mask in the
preceding frame will provide a good guess in the current
frame and simply copying the coarse mask from the pre-
vious frame is enough. This approach is fast and already
provides good results. We also experimented using optical
flow to propagate the mask from one frame to the next, but
found the optical flow errors to offset the gains.

With only the offline trained network, the proposed ap-
proach allows to achieve competitive performance com-
pared to previously reported results (see §5.2). However the
performance can be further improved by integrating online
training strategy.

3.2. Learning to segment instances online

For further boosting the video segmentation quality, we
borrow and extend ideas that were originally proposed for
tracking. Current top performing tracking techniques [12,
29] all use some form of online training. We thus consider
improving results by adding this as a second strategy.

The idea is to use, at test time, the segment annotation of
the first video frame as additional training data. Using aug-

Figure 4.4: MaskTrack [66]. (Figures are copied from the published paper [66])

tioned cues. In order to take merits of mask warping and semantics label guidance, we
propose approach presented hereafter a novel semi-supervised video object segmen-
tation.

4.3 Semantic-guided warping for semi-supervised video

object segmentation (SWVOS) algorithm

The proposed SWVOS consists of three main steps: (1) according to the provided
pixel-wise mask of the first frame, target object is firstly segmented using mask warp-
ing technique, where warped maps are generated; (2) the warping confidence is com-
puted for each warped map, which is then divided into high-confidence map and low-
confidence map; (3) the warped map with high-confidence is directly used as the final
segmentation maps, while the low-confidence warped map is optimized using seman-
tics selection. The proposed block-diagram is shown in Fig.4.5.

4.3.1 Mask warping

The optical flow vectors between pairs of successive frames are generated using the
Flownet [34]. Then the warped map of each frame is obtained by warping the proposal
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Mask warping

Video

Warpping confidence computation

High confidence Low confidence

Semantics selection

Mask of the first frame

Segmentation map

Figure 4.5: The proposed block-diagram SWVOS.

of the previous frame to the optical flow vector. The warping function is defined as:

fj = ω(fi, Vi→j) j = i+ 1 (4.1)

where fj denotes the warped map of the frame j, ω is the bilinear warping function, fi

denotes the warped map of the previous frame i (for the first frame, the proposal is the
provided mask), Vi→j is the optical flow vectors between pairs of successive frames i
and j.

4.3.2 Warping confidence computation

For the generated warped map, overlap ratio and contiguous groups number are used
for warping confidence computation (WCC). Overlap ratio (OR) is the ratio of the object
that belongs to the warped map (WM) and the foreground map (FM), the larger is better.
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OR = |WM⋂FM|
|FM| (4.2)

Contiguous groups number (CGN) is the number of contiguous regions in the warped
map, the smaller is better. The warped map with a low OR value or a high CGN is
regarded as low-confidence in the WCC.

The foreground map (FM) is obtained with a fully covolutional network (FCN), which
is a modified NLDF network [57]. Our FCN differs from the NLDF [57] in that (1) the
NLDF resizes the input image to a fixed size while our FCN uses it with its original
size; (2) the NLDF adopts the VGG [73] as the baseline and uses the output of the
5-th block in the VGG as the global feature, while our FCN removes this global feature
which may bring noises for complex scenes; (3) the NLDF uses the cross entropy loss
and the boundary IOU loss for training while our FCN only uses the cross entropy loss
since our experiment showed that the boundary IOU loss does not influence a lot our
method’s performances.

One example of the WCC is given in Fig.4.6. In this example, we can see that the
warped map not only contains many contiguous groups, but also has low overlap region
with the foreground map. Thus, it is judged to be a warped map with low-confidence.
In this chapter, the threshold for the OR is just set to be a small number 0.001. The
threshold for the CGN is set to be 10, i.e. about five times of the average number of
objects in each frame in the video sequence.

4.3.3 Semantics selection

The warped map with low-confidence is optimized using semantic selection (SS) as
following. Firstly, the semantic label of the target object in the first frame is detected
using the MASK R-CNN [30]. Secondly, for the frame with low-confidence warped map,
semantics of all objects are detected using the MASK R-CNN. Thirdly, the object in the
frame that satisfies two conditions is segmented to generate the optimized warped
map: (1) the object has the same semantic label as the target object, (2) the object
is the closest one to the center of gravity of the low-confidence warped map. Here
the MASK R-CNN is fine-tuned with the YouTube-VOS-train dataset [96] in order to
recognize categories in this dataset which has much more classes than the previous
datasets. One example is given in Fig.4.7.

For a video sequence with multiple pre-defined objects, these target objects are
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(a) Pre-defined target object in the 1st frame

(b) Input frame

(c) Warped map

(d) Foreground map

Figure 4.6: One example of the warping confidence computation. The target object is
denoted in red box in (a). 114
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(a) Pre-defined target object in the 1st frame

(b) Input frame

(c) Warped map before SS

(d) Warped map after SS

Figure 4.7: One example of semantics selection (SS). The target object is denoted in
red box in (a). 115
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detected separately, and then merged together to generate the final segmentation map.
If the pixel is detected belonging to multiple target objects, it is set to the one that has
the smallest size in the provided manual labels in the first frame.

4.4 Experiments and analyses

This section shows the performances of our approach. Table.4.1 compares our pro-

Table 4.1: Performance comparison between the proposed method (SWVOS) and ex-
isting models over the YouTube-VOS-test dataset. The best score is in bold.

Methods J_seen↑ J_unseen↑ F_seen↑ F_unseen↑ Overall↑
OnAVOS 0.557 0.568 0.613 0.623 0.590

MaskTrack 0.569 0.607 0.593 0.637 0.602
OSVOS 0.591 0.588 0.637 0.639 0.614
SWVOS 0.513 0.367 0.494 0.419 0.448
Segflow 0.404 0.385 0.350 0.327 0.367

posed method with the state-of-the-art methods. We can see that the proposed method
achieves the better performance than Segflow [18] on the YouTube-VOS-test dataset.
We must note that the compared methods OSVOS, OnAVOS and MaskTrack perform
better than our proposed method. However they all use the time-consuming online
learning step, which is not suitable for real-world applications. Our proposed method
has not this limitation.

For the semi-supervised video object segmentation task, the YouTube-VOS Chal-
lenge on video object segmentation 2018 use YouTube-VOS-test dataset for competi-
tion. Our method achieves the 8th result in YouTube-VOS Challenge on video object
segmentation 2018. In Table 4.2, we show the performance of our proposed models
(named “SnowFlower”) in the benchmarking table. Note that only 8 models are selected
and listed.

4.5 Conclusion

In this chapter, we have proposed a novel semi-supervised video object segmentation
method that extracts each pre-defined object from each frame. This goal is achieved
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4.5. Conclusion

Table 4.2: Performance benchmarking in the YouTube-VOS Challenge.

Team Name Overall J_seen J_unseen F_seen F_unseen Rank
Jono 0.722(1) 0.737(1) 0.648(2) 0.778(1) 0.725(2) 1st

speeding_zZ 0.720(2) 0.725(3) 0.663(1) 0.752(3) 0.741(1) 2nd
mikirui 0.699(3) 0.736(2) 0.621(4) 0.755(2) 0.684(4) 3rd
hi.nine 0.684(4) 0.706(5) 0.623(3) 0.728(5) 0.677(5) 4th

sunpeng 0.672(5) 0.707(4) 0.598(6) 0.736(4) 0.648(6) 5th
random_name 0.672(6) 0.672(6) 0.609(5) 0.709(6) 0.697(3) 6th

kduarte 0.539(7) 0.594(7) 0.483(7) 0.578(7) 0.502(7) 7th
SnowFlower 0.448(8) 0.513(8) 0.367(8) 0.494(8) 0.419(8) 8th

by using the mask warping technique. By employing the warping confidence compu-
tation, the method can firstly detect the warped mask in low-level confidence. Then
the optimized warped flow map is achieved through re-identifying the target object with
semantics selection. The wrong segmented regions in the warped map is alleviated
and the target object is extracted with better performance. For the evaluation of video
object segmentation, a recently published large-scale dataset: Youtube-VOS is used.
Experimental results demonstrate that the proposed method achieves high J value and
F value.
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CHAPTER 5

CONCLUSION AND PERSPECTIVE

This thesis focuses on the problems of video salient object detection (SOD) that aim
at separating salient object from background in each frame of a video sequence and
the problems of semi-supervised video object segmentation that aim at assigning con-
sistent object IDs to each pixel in each frame of a video sequence. We have proposed
a traditional method for video SOD, an overview of deep-learning methods for video
SOD, an extension of the proposed traditional method to integrate deep-learning and
a deep-learning method for semi-supervised video object segmentation as follows:

-The proposed traditional method for video SOD (VBGF) is based on “background
prior”, which takes the frame boundary as the background. The virtual border build-
ing is proposed to detect the salient object that touches the frame border. A “Feature
fusion” is employed to enhance the detected salient object edges from the temporal
domain. A “Map fusion” is used to combine the SSM and TSM together to generate the
final saliency result. We have compared our video SOD model with the state-of-the-art
models and the experiments demonstrate that the proposed model obtains significant
improvement over the state-of-the-art approaches.

-The survey of the video SOD puts emphasis on deep-learning based methods in
this domain. This survey firstly aims at classifying the existing methods and analyze
their frameworks, which may benefit the future work. This survey secondly aims at
making a comparison of the performances of the state-of-the-art methods. We used
four popular datasets and five commonly used evaluation metrics. The results shows
that the methods DHSNet and NRF performance good over all the tested databases.

-The extended model VBGFd is motivated by the observation that deep-learning im-
age SOD achieves a good performance to detect the salient object from spatial domain.
Combining deep representations from image SOD task helps to detect the salient ob-
ject in videos. We have carried out evaluations on a large benchmarking dataset and
experiments demonstrated the extended model achieves the state-of-the-art perfor-
mance.
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-The proposed video object segmentation model SWVOS, based on deep learn-
ing techniques, uses the semantics of the object as a guidance during the warping
process. Experimental results on a large-scale dataset Youtube-VOS demonstrate that
the proposed method achieves good performance.

Some future works can be derived from the previous analyses:

- Employ some more useful deep representations: the guided filter used in VBGF
may lead to information loss as the used hand-crafted features are not robust in some
complex cases, which may be improved with informative deep representation features.

- Train some deep network for the map fusion: although the map fusion in VBGF
based on traditional methods gives a good balance between the SSM and the TSM, it
makes some failures when salient objects have not distinct appearance and motion in-
formation at the same time. It would be interesting to verify that the Map fusion method
in VBGF can improve by using different deep networks.

- Employ more video saliency cues: it is valuable to investigate for other deep repre-
sentations that can improve the quality of video saliency detection. The image object-
level cue used in the VBGFd is the most popular choice. Human visual attention usu-
ally pays more attention on certain categories, thus the object classification cue can be
considered as another choice to detect the video SOD.

- Explore more temporal saliency features and spatio-temporal saliency features:
from our experiments, deep-learning technique performs well for detecting the salient
object from the spatial domain. Most of the existing video SOD mainly rely on the spatial
saliency detection and based on a backbone network. However the goal of video SOD
is to detect the object which is salient in the whole video sequence. Further exploration
for the temporal saliency features and spatio-temporal saliency features need to be
explored.

- Explore weakly-supervised networks [76]: fully supervised models improve detec-
tion performance but rely on large training dataset with provided ground truth. Weakly-
supervised models that do not rely on large pixel-wise labels attract much attention in
recent years. However, its accuracy is still far from satisfactory, and further accuracy
improving is one topic to investigate in the future.

-In video salient object detection, the video salient object may change (also called
as saliency shift), which is challenging and firstly pointed out in recent method [25].
Due to the dynamic human attention characteristics, considering such saliency shift is
more realistic and is helpful for video understanding.
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-In semi-supervised video object segmentation, the mask of the object is given.
However, the mask needs a pixel-level accurate segmentation, which is time-consuming.
Interactive segmentation using scribble supervision [10] is proposed recently. The user
is asked to draw scribbles on the object instance, in order to refine the output of a
method interactively until the result is satisfactory. In order to further decrease the hu-
man supervision, the unsupervised objects instance segmentation [11], which does not
take any user input into account, are more attractive.
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LIST OF ABBREVIATIONS

ASPP “à trous” pyramid pooling.

BM binary mask.

CRF conditional random field.

DDB divided down border.
DLB divided left border.
DRB divided right border.
DUB divided up border.

F Contour Accuracy.
FastMBD Fast iterative Minimum barrier distance transform algorithm.
FBMS Freiburg-Berkeley Motion Segmentation.
FCN fully convolutional networks.

GT Ground truth.

IOU Intersection over Union.

J Region Similarity.

MAE Mean Absolute Error.

P-R Precision-Recall.
proSSM proposed spatial saliency map.
proSTSM proposed spatial-temporal saliency map.
proTSM proposed temporal saliency map.
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SAD sum of absolute differences.
SD Spatial saliency detection.
SM saliency map.
SOD Salient object detection.
SSM Spatial saliency map.
STSM Spatio-temporal saliency map.
SWVOS Semantic-guided warping for semi-supervised video object segmentation.

TD Temporal saliency detection.
TSM Temporal saliency map.

VBGF Virtual Border and Guided Filter-based salient object detection for videos.
VBGFd extension of the VBGF.
VDB the virtual down border.
VLB virtual left border.
VRB virtual right border.
VUB virtual up border.
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Titre : Détection d'objets saillants et segmentation dans des vidéos 

Mots clés : vidéo, détection d'objet saillant, segmentation d'instance d'objet, apprentissage en profondeur 

Résumé : Cette thèse est centrée sur le problème de 
la détection d'objets saillants et de leur segmentation 
dans une vidéo en vue de détecter les objets les plus 
attractifs ou d'affecter des identités cohérentes 
d'objets à chaque pixel d'une séquence vidéo. 
Concernant la détection d'objets saillants dans vidéo, 
outre une revue des techniques existantes, une 
nouvelle approche et l'extension d'un modèle sont 
proposées; de plus une approche est proposée pour 
la segmentation d'instances d'objets vidéo. 
     Pour la détection d'objets saillants dans une vidéo, 
nous proposons : (1) une approche traditionnelle pour 
détecter l'objet saillant dans sa totalité à l'aide de la 
notion de "bordures virtuelles". Un filtre guidé est 
appliqué sur la sortie temporelle pour intégrer les 
informations de bord spatial en vue d'une meilleure 
détection des bords de l'objet saillants. 
Une carte globale de saillance spatio-temporelle est 
obtenue en combinant la carte de saillance spatiale et 
la carte de saillance temporelle en fonction de 
l'entropie. (2) Une revue des développements récents 
des méthodes basées sur l’apprentissage profond est 
réalisée.  Elle inclut les classifications des méthodes 

de l'état de l'art et de leurs architectures, ainsi 
qu'une étude expérimentale comparative de leurs 
performances. (3) Une extension d'un modèle de 
l’approche traditionnelle proposée en intégrant un 
procédé de détection d’objet saillant d’image basé 
sur l’apprentissage profond a permis d'améliorer 
encore les performances. 
    Pour la segmentation des instances d'objets dans 
une vidéo, nous proposons une approche 
d'apprentissage profond dans laquelle le calcul de la 
confiance de déformation détermine d'abord la 
confiance de la carte masquée, puis une sélection 
sémantique est optimisée pour améliorer la carte 
déformée, où l'objet est ré-identifié à l'aide de 
l'étiquettes sémantique de l'objet cible. 

Les approches proposées ont été évaluées sur 
des jeux de données complexes et de grande taille 
disponibles publiquement et les résultats 
expérimentaux montrent que les approches 
proposées sont plus performantes que les méthodes 
de l'état de l'art. 

 

 

Title :  Salient object detection and segmentation in videos 

Keywords : video, salient object detection, object instance segmentation, deep-learning 

Abstract : This thesis focuses on the problem of 
video salient object detection and video object 
instance segmentation which aim to detect the most 
attracting objects or assign consistent object IDs to 
each pixel in a video sequence. One approach, one 
overview and one extended model are proposed for 
video salient object detection, and one approach is 
proposed for video object instance segmentation. 
    For video salient object detection, we propose: (1) 
one traditional approach to detect the whole salient 
object via the adjunction of virtual borders. A guided 
filter is applied on the temporal output to integrate the 
spatial edge information for a better detection of the 
salient object edges. A global spatio-temporal 
saliency map is obtained by combining the spatial 
saliency map and the temporal saliency map together 
according to the entropy. (2) An overview of recent 
developments for deep-learning based methods is 
provided. It includes the classifications of  the 

 
 

state-of-the-art methods and their frameworks, and 
the experimental comparison of the performances of 
the state-of-the-art methods. (3) One extended 
model further improves the performance of the 
proposed traditional approach by integrating a deep-
learning based image salient object detection 
method.  

For video object instance segmentation, we 
propose a deep-learning approach in which the 
warping confidence computation firstly judges the 
confidence of the  mask warped map, then a 
semantic selection is introduced to optimize the 
warped map, where the object is re-identified using 
the semantics labels of the target object.  

The proposed approaches have been assessed 
on the published large-scale and challenging 
datasets. The experimental results show that the 
proposed approaches outperform the state-of-the-art 
methods. 
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