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From my point of view one cannot arrive, by way of theory,
at any at least somewhat reliable results in the field of cosmology,

if one makes no use of the principle of general relativity.

Albert Einstein, 1949



Abstract

In the standard model of cosmology, the global dynamics of the Universe is modelled via a
highly symmetric background spacetime with homogeneous and isotropic spatial sections. The
coupling of the homogeneous fluid sources to the overall expansion is then determined by the
Einstein equations of General Relativity. In addition, the formation of inhomogeneous matter
structures is described either via a relativistic perturbation scheme assuming small deviations of
all fields to the prescribed homogeneous background, or using Newtonian dynamics within the
same expanding background, depending on the scale and epoch. However, the interpretation
of observations within this model calls for an unexpectedly accelerated expansion requiring a
poorly-understood ‘Dark Energy’ component, in addition to Dark Matter.

Inhomogeneous cosmology aims at relaxing the restrictions of these models on the geometry
and sources while staying within the framework of General Relativity. It can allow, in partic-
ular, for an improved modelling of the formation of structures accounting for strong deviations
from homogeneity in the matter distribution and the geometry. It can also study the dynamical
consequences, or backreaction effects, of the development of such inhomogeneities on the expan-
sion of larger scales. Such a backreaction may then reproduce, at least partially, the behaviours
attributed to Dark Energy or Dark Matter.

During my PhD under the direction of Thomas Buchert, I have been working on several
analytical aspects of general-relativistic inhomogeneous cosmology. T present below the results
of collaborations in which I played a major role in the context of the PhD. I first focussed
on the expression of a relativistic Lagrangian approximation scheme for the description of the
local dynamics of structures up to a nonlinear regime in irrotational perfect barotropic fluids.
I then considered the effective description of inhomogeneous fluids with vorticity and a general
energy-momentum tensor in terms of two possible schemes of spatial averaging. These schemes
are applicable to any choice of spatial hypersurfaces of averaging, providing for each choice a
set of effective evolution equations, featuring several backreaction terms, for an averaging region
comoving with the sources. This allows for a qualitative discussion of the dependence of the
average equations and backreactions on the foliation choice. 1 also studied the rewriting of such
averaging schemes and evolution equations under a unified and manifestly 4—covariant form.
This latter result will allow for a more explicit investigation of foliation dependence.
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Résumé

Le modéle standard de la cosmologie décrit ’expansion de I’Univers au moyen d’un espace-temps
idéalisé. Celui-ci est supposé admettre des sections spatiales dont la géométrie et le contenu éner-
gétique, couplés par les équations d’Einstein de la Relativité Générale, sont strictement homo-
génes et isotropes. Cette hypothése de forte symétrie contraint la dynamique d’un tel modéle, qui
peut alors étre décrite entiérement par une fonction, un facteur d’échelle dépendant seulement du
temps. Cette fonction est obtenue comme solution d'une équation différentielle ordinaire, dépen-
dant d’un nombre restreint de paramétres a contraindre par I'observation. La description dans
ce cadre des phénoménes physiques se produisant & différentes époques au cours de ’expansion
s’en trouve considérablement simplifiée. Cela s’applique par exemple a la formation des noyaux
atomiques simples, ou a ’émergence des galaxies et & leur organisation en structures de plus
grande échelle.

Toutefois, pour rester compatible avec les observations, ce modéle requiert deux composantes
de nature encore indéterminée, la Matiére Noire et I’Energie Noire. Toujours dans ce modéle,
cette derniére provoquerait ’accélération de ’expansion, et pourrait correspondre & une compo-
sante énergétique exotique issue d'un champ (souvent scalaire) fondamental ou simplement étre
modélisée par une constante cosmologique. Dans les deux cas, se pose le probléme de la surpre-
nante coincidence du début de la phase accélérée avec ’époque de la formation des structures de
matiére & grande échelle.

Le modéle standard de la cosmologie inclut une description de la mise en place et de 1’évolution
de ces structures. Selon I’échelle et I’époque considérées, elles sont modélisées soit par un schéma
perturbatif relativiste avec de faibles déviations de toutes les grandeurs par rapport au modéle
de fond homogeéne et isotrope, soit par une dynamique newtonienne au sein de ce méme fond
en expansion. Dans les deux cas, I’expansion aux plus grandes échelles est prescrite a priori,
via ce fond, et ne peut étre affectée par le développement d’inhomogénéités dans la distribution
de matiére. Pourtant, selon les principes de la Relativité Générale, ces inhomogénéités dans
les sources doivent affecter la géométrie locale. La déformation associée peut étre importante
dans les régions tres denses, ou & l'inverse particuliérement vides, apparaissant dans 1’Univers
tardif, pour lesquelles une description en termes de faibles fluctuations par rapport a une densité
homogeéne est insuffisante. Ce changement dynamique dans la géométrie peut & son tour affecter
I'expansion, par un phénomeéne de rétroaction (« backreaction » ), contribuant éventuellement aux
effets imputés a 'Energie Noire ou & la Matiére Noire.

Mon travail de theése sous la direction de Thomas Buchert s’inscrit dans le cadre de la cos-
mologie inhomogéne et relativiste, qui vise & décrire la formation de structures et les effets de
rétroaction au sein de la Relativité Générale. J'ai ainsi été amené & contribuer de facon majeure
a l'approfondissement et a l’extension de deux approches précédemment développées dans ce
cadre pour la modélisation analytique de ces phénoménes.
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La premiére est un schéma de perturbation relativiste lagrangien sur des champs de défor-
mation de la métrique, développé dans le cadre d’'un modeéle de fluide sans pression ni vorticité
[Buchert and Ostermann, 2012, Buchert et al., 2013, Alles et al., 2015, Al Roumi et al., 2017].
Il permet de décrire la formation des structures au-dela d’un régime linéaire grace a 1’évalua-
tion non-perturbative de la densité, de la courbure et d’autres observables & partir du champ
de déformation approché, selon un principe similaire & 'approximation de Zel’dovich pour la
gravitation newtonienne. La seconde stratégie, développée pour des fluides parfaits irrotation-
nels avec ou sans pression [Buchert, 2000, 2001], consiste en l’écriture de moyennes spatiales
pour des scalaires inhomogénes sur des domaines compacts d’espace qui suivent la propagation
du fluide source. Ceci permet ’écriture d’équations-bilans sur la dynamique effective de tels do-
maines, pouvant étre comparées aux équations de Friedmann qui seraient obtenues pour un fluide
homogene. Les différences font apparaitre explicitement des termes de rétroaction (cinématique,
dynamique, ou de courbure). Cette analyse peut étre appliquée a la premiére approche qui fournit
alors un modeéle d’évolution locale. Dans les deux cas, le formalisme 3+1 de la Relativité Géné-
rale décrivant ’espace-temps au moyen de sections spatiales évoluant dynamiquement est utilisé,
avec le choix spécifique (permis par l’absence de vorticité) de sections spatiales orthogonales a
la quadrivitesse du fluide en tout point.

Je décrit ces deux approches plus en détail dans I'introduction ci-dessous (chapitre 1), aprés
une description du formalisme 341 utilisé dans I’ensemble de cette thése et, pour comparaison,
un rappel détaillé du modéle de fond et du schéma de perturbations relativiste du modéle cosmo-
logique standard. Les résultats de plusieurs travaux effectués au sein de ma these dans le cadre
de plusieurs collaborations, et dont je suis 'un des principaux auteurs, font ’objet des chapitres
suivants. Ces travaux sont basés sur les deux approches inhomogénes rappelées ci-dessus.

Je présente ainsi au chapitre 2 un travail conjoint avec Yongzhuang Li et David Wiltshire
de I'University of Canterbury (Nouvelle-Zélande) et Thomas Buchert. Nous y montrons com-
ment un schéma de perturbation lagrangien, inspiré de celui adapté aux fluides sans pression,
peut encore étre développé pour des fluides parfaits barotropes irrotationnels. Comme pour les
fluides sans pression, ce schéma se base sur une réécriture des équations d’Einstein (sous forme
3+1) au moyen d’une base de 1-formes spatiales (ou coframes), qui sont ensuite perturbées au
premier ordre par rapport & un fond homogeéne et isotrope. Une emphase particuliére est mise
sur la trace de la perturbation : nous écrivons son équation d’évolution linéarisée, examinons les
limites newtonienne et & pression nulle, et donnons une solution analytique dans le cas d’'une re-
lation barotrope linéaire, applicable par exemple & un fluide radiatif. Nous étudions également les
contraintes sur les conditions initiales ainsi que la dynamique de la partie sans trace. Une décom-
position de cette derniére en parties électrique et magnétique est déterminée et peut permettre
une modélisation d’ondes gravitationnelles se propageant dans le fluide. Enfin, nous illustrons
sur un exemple simple 1'utilisation de I’ensemble des composantes de la solution linéarisée sur
les coframes en vue d’une évaluation non-perturbative de la densité au cours de la formation

d’une structure, pour laquelle les gradients de pression sont supposés modéliser une dispersion



de vitesse.

Au chapitre 3, je décris les résultats de deux études conduites par Xavier Roy, Thomas Buchert
et moi-méme, 'une étant en cours de finalisation et ’autre publiée sous forme de lettre, afin
de généraliser le schéma de moyennes spatiales de [Buchert, 2000, 2001]. Nous y présentons
deux approches possibles pour moyenner spatialement des scalaires sur un domaine compact
d’espace suivant, 14 encore, le flot du fluide source des équations d’Einstein, applicables & un
feuilletage quelconque de l'espace-temps en hypersurfaces spatiales. La source est cette fois un
fluide quelconque, a priori non parfait et pouvant présenter de la vorticité. Le premier schéma
proposé se base sur 1’élément de volume riemannien des hypersurfaces et permet d’examiner
I’évolution de la géomeétrie de ces derniéres. Nous le comparons a la littérature, ot un schéma
similaire a été proposé plusieurs fois mais jamais appliqué a des domaines préservant leur contenu
de fluide au cours du temps. Le second schéma, utilisant le volume propre des éléments de fluide
et se basant sur les variables cinématiques du fluide, permet une analyse plus intrinséque de la
dynamique de ce dernier (nous le qualifions donc d’« intrinséque » ). Nous obtenons pour ces deux
schémas les équations d’évolution moyennes pour le facteur d’échelle effectif (estimant la taille du
domaine en fonction du temps) et 'expression des termes de rétroaction associés. Pour le schéma
intrinséque en particulier, sur lequel nos deux études insistent, nous présentons également des
formes effectives plus compactes, quoique toujours aussi générales, de ces équations. Nous mettons
en exergue le concept d’'un feuilletage par hypersurfaces & temps propre constant pour le fluide et
la description lagrangienne associée, et montrons comment une telle description simplifie encore
davantage les équations moyennes obtenues avec le schéma intrinséque. Un aspect de notre lettre
est également dédié & une discussion qualitative de 'influence d’'un changement de feuilletage
spatial sur les moyennes et les termes de rétroaction.

J’expose ensuite au chapitre 4 le travail que j’ai effectué en collaboration avec Asta Heinesen
de I"University of Canterbury et Thomas Buchert, sur une réécriture sous forme manifestement
covariante de différents schémas de moyenne spatiale scalaire. En nous inspirant de [Gasperini
et al., 2009, 2010], nous écrivons une telle forme pour des moyennes grace a une fonction fenétre
qui sélectionne les sections spatiales et le domaine compact sur lequel moyenner. En ’écrivant sous
une forme généralisée, cette fonction nous permet également de sélectionner la mesure de volume,
pour inclure notamment les deux schémas de moyenne du chapitre 3 sous une forme unifiée,
mais également des moyennes pondérées. Nous écrivons les équations d’évolution moyennées sur
un domaine et les termes de rétroaction obtenus avec un représentant quelconque de la classe
de fonctions fenétres considérée. Nous retrouvons en particulier, sous une forme manifestement
covariante, les résultats du chapitre 3 pour le schéma de moyenne intrinséque et pour un domaine
suivant la propagation du fluide.

Enfin, le chapitre 5 dresse un bilan des différents résultats détaillés dans les chapitres précé-
dents. J'y esquisse également les projets en cours et des perspectives de développements futurs
pour un approfondissement des résultats présentés dans cette thése.
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Foreword

Cosmology is the investigation of the shape and dynamical behaviour of the Universe on the
largest scales, in particular the observed overall expansion and its time dependence. It also
studies the main energy-momentum sources in the Universe through time and their coupling to
the global dynamics, as well as the progressive mutual decoupling of particles and the formation
of the first atomic nuclei in the early Universe. As for the late Universe, another major focus of
cosmology is the description of the structures in the large-scale distribution of matter (the so-
called Cosmic Web) and their formation and dynamics in interaction with the global expansion.

The first approaches to a full mathematical cosmological model arose a century ago with
General Relativity, which describes the coupling of spacetime geometry and sources, hence al-
lowing a global study of the dynamics of the Universe depending on its energy contents. These
first studies (e.g., de Sitter [1917], Einstein [1917|, Friedmann [1922], Lemaitre [1927]; see, e.g.,
Peebles [1971], p.3-14 for a short review) were based on an idealized geometry assuming strict
homogeneity and isotropy of space, a class of models which is still of major use in today’s cos-
mology as a reference ‘background’ to the standard model of cosmology (see section 1.2 in the
next chapter).

The picture of an eternal Universe that would be globally static on its largest scales, possibly
limited to our own Galaxy, was rather widespread at the time and lead Einstein to design a static
model with a positive cosmological constant A counterweighting gravitational attraction. This
conception was later disfavoured in view of the observation of other galaxies and of the discov-
ery of their increasing distances to Earth indicated by their redshift in observations by Slipher
(reviewed by Eddington in [Eddington, 1923]). This showed the expansion of the observable
Universe, as analysed by Lemaitre [Lemaitre, 1927|, and later by Hubble [Hubble, 1929], and
led to the preference for expanding homogeneous models without an unnecessary cosmological
constant.

The sources of such models were radiation, ordinary matter, and since the late 1930s Dark
Matter as an additional matter source, dominant in mass proportions and behaving as baryons
with respect to gravitation but seemingly decoupled from other interactions, deduced from ob-
served motions within galaxies and galaxy clusters. The dynamics of such cosmological models
(with or without A) together with the observation of a nearly blackbody and isotropic radiative
background suggesting a very dense early Universe with coupled radiation and matter releasing



this radiation as it expands, established the idea that the Universe had a well-defined start in

terms of an initial singularity nicknamed ‘Big Bang’.

In the 1980s and 1990s observations and predictions of the matter density and age of the
Universe from homogeneous models without a cosmological constant started to appear incom-
patible (see, e.g., Efstathiou et al. [1990] and references therein). The refined observational study
of distant objects redshifts via supernovae in 1998 [Riess et al., 1998, Perlmutter et al., 1999]
within the assumption of homogeneous models indicated that only such models with an acceler-
ated expansion could be compatible with observations. This required an energy source opposing
gravitational collapse of more ordinary matter, which was named Dark Energy and has appeared
to be compatible with the re-introduction of a positive cosmological constant in addition to the
other sources. This raised, however, the so-called Coincidence Problem. The value of A as a pa-
rameter of General Relativity is fully unconstrained a priori, and it cannot be simply predicted,
e.g., as a vacuum energy from Quantum Field Theory as attempts in doing so famously lead to
a prediction exceeding the observed value by 120 orders of magnitude (see, e.g., Carroll [2001]
and references therein). Thus, why should the energy associated to A be of the same order of
magnitude (about 2/3 of the energy balance) as that of Dark and ordinary Matter today?

The importance of the contribution of a cosmological constant, or even the presence of accel-
eration, do depend on the cosmological model considered. Hence, alternative or complementary
approaches to the cosmological constant (a nonzero A can still be included in most of these
models) regarding the apparent acceleration of the expansion in the most widely-used models
have also been suggested, sometimes simultaneously addressing the nature of Dark Matter or
the gravitational dynamics attributed to it. This includes, for instance, models of Dark En-
ergy as a fundamental ‘quintessence’ scalar field source (see, e.g., Wetterich [1988], Ratra and
Peebles [1988] and references therein), or departures from General Relativity usually modelled
as modifications to the Einstein-Hilbert action and consequently to the Einstein equations (see
for instance Carroll et al. [2005], Nojiri and Odintsov [2005], Joyce et al. [2016] and references
therein).

Another possible approach, suggested by Ellis |Ellis, 1984, is to generalize the class of cosmo-
logical models considered, within General Relativity and without additional fundamental sources,
to account for large local departures from homogeneity implied by the gravitational clustering
of matter in the late Universe. A hint towards the relevance of this clustering for the large-scale
dynamics could be seen in its approximate coincidence with the beginning of the accelerating
phase of the expansion as deduced from homogeneous models [Roukema et al., 2013], another
possible formulation of the Coincidence Problem.

In the standard model of cosmology, the formation of these large-scale matter structures
(galaxy clusters, filaments, and walls, separated by voids) is usually modelled either as Newto-
nian self-gravitating fluid dynamics or as relativistic linear perturbations, in both cases over a
given homogeneous expanding background model. Inhomogeneous cosmology aims at a relativis-
tic description of the dynamics of these structures without too restrictive assumptions regarding



deviations from homogeneity, and ideally without a prescribed background. This allows in princi-
ple for a more realistic and more accurate modelling of structure formation within an expanding
Universe.

Conversely, it can account as well for the consequences or backreaction effects of the devel-
opment of such inhomogeneities onto the large-scale expansion, some of which possibly corre-
sponding to the effects expected from Dark Energy [Buchert, 2000, 2008, Buchert and Résénen,
2012]. Modifications to the dynamics of smaller-scale regions due to highly nonlinear structure
formation within them can also be investigated, and may contribute in part to the behaviour
attributed to Dark Matter. The different dynamics induced by large inhomogeneities may also
help explaining some of the observational disagreements or ‘tensions’ with respect to the standard
model of cosmology, most notably the discrepancy between values of the present-time expansion
rate deduced within this model from local or from early Universe-based observations |Riess et al.,
2016, 2019] (see Buchert et al. [2016] for a review of other such tensions).

During my PhD under the direction of Thomas Buchert, I have been working within this
inhomogeneous relativistic approach to cosmology. I have been mainly focussing in particular on
the description of the effective dynamics of regions of inhomogeneous space in terms of spatial
averages and resulting backreaction terms as introduced in [Buchert, 2000, 2001], by investi-
gating the extension of such schemes to general sources and general definitions of ‘space’ as
a three-dimensional section of spacetime, and manifestly 4—covariant formulations of such ap-
proaches. As another important application of inhomogeneous cosmology, I also contributed to
the development of a Lagrangian relativistic scheme for the approximate description of a mildly
nonlinear regime of structure formation for perfect fluids with nonvanishing pressure and pres-
sure gradients, building upon previous analyses for pressureless fluids [Buchert and Ostermann,
2012, Buchert et al., 2013, Alles et al., 2015, Al Roumi et al., 2017|. T worked on these projects as
part of several collaborations. This led to several papers in joint first authorship and more minor
contributions to other projects [Roukema, Mourier, Buchert, and Ostrowski, 2017a, Roukema,
Ostrowski, Buchert, and Mourier, 2017b]; T will present only the former results here.

This thesis is structured as follows. In the introductory chapter 1, I recall the 341 (space +
time) formalism of General Relativity used throughout this thesis as a key framework for rela-
tivistic cosmologies (section 1.1) and the main assumptions of the standard model of cosmology
in terms of a homogeneous background model and perturbations thereof (sections 1.2 and 1.3).
I also subsequently describe inhomogeneous cosmological frameworks of major interest for this
thesis: the relativistic Zel’dovich approximation (section 1.4) and the spatial averaging proce-
dures and associated backreactions for inhomogeneous irrotational fluids seen in their rest frames
(section 1.5). T present in chapter 2 an extension of the relativistic Zel’dovich approximation to
fluids with pressure. I then introduce in chapter 3 proposals for averaging schemes for arbitrary
fluid sources within general three-dimensional spatial slices, together with a comparison with
suggestions in the literature in this direction. In chapter 4 I show how such schemes can be
written under a manifestly covariant form and further extended, before concluding in chapter 5.



Remarks on conventions and notations

The spacetime metric signature convention adopted here is (— + ++).

Units are taken such that the vacuum speed of light ¢ is 1, but ¢ will occasionally be recovered
when insightful. The gravitational constant G is not adimensioned.

The exterior derivative for forms is denoted as d, and their exterior product as A.

A coordinate system is often used; it is then noted (z*) and is associated to the coordinate vector
basis (0,r) (also written (8,)) and its dual exact 1—form basis (dz*). Components of tensorial
objects are implicitly expressed in these bases and at the point of coordinates z*, unless otherwise
stated. Tensors, vectors or forms are usually written in bold font, with their components using
the same symbol in plain font with appropriate indices; e.g., the 4—velocity vector field is written
as u = u#8,,. For vectors noted in this way, the associated metric-dual 1—form is underlined, e.g.
for u, u = u, dz*. In the Newtonian framework briefly used in section 1.4, three-dimensional
vectors are rather topped with an arrow, e.g., g for the gravitational field, of components g¢'.
Greek letters denote spacetime indices running in {0, 1,2, 3}, while Latin letters stand for spatial
indices, running in {1,2,3}. The time coordinate 2° will be rather noted ¢, and accordingly the
vector 9y and 1—form da¥ are rather written 8; and dt, respectively.

Partial derivatives with respect to the coordinate z are noted 9;, or d,: when there is a risk of
ambiguity with another spatial coordinate set. Similarly, partial derivatives with respect to ¢ in
the coordinate set (t,z%) are noted either d;, or d;|,; when necessary.

The symbol = or := expresses an equality by definition, and o indicates a proportionality.
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1.1 Spatial foliations and 3-+1 picture of General Relativity

General Relativity describes the local coupling between the geometry of spacetime and energy
sources. Particles subjected to gravitation only will follow geodesics in spacetime, and the theory
thus fulfils its requirement of satisfying the equivalence principle: the trajectories of massive
particles under the above conditions are independent from their mass.



In this theory, spacetime is modelled as a four-dimensional manifold M endowed with a
Lorentzian metric tensor g, 4.e., a symmetric tensor field associated with a non-degenerate
quadratic form of signature (—, 4, +, +) on each tangent space. In a chart, with a given coordi-
nate basis (z*) with associated basis vectors @,» and coordinate 1—forms dz#, the components
of g will be written as g, g = g, dz* ® dz¥, and those of its inverse will be written as g#”.

Still as part of the general-relativistic framework, M is moreover equipped with the paral-
lel transport defined from the Levi-Civita connection of g, i.e., there is no torsion and parallel
transport preserves the metric. The corresponding covariant derivative operator V is thus com-
mutative for scalars and vanishes for g: in coordinate components, V|,V f = 0 for any scalar
[, and V,g,, = 0. The components of the covariant derivative of a vector A = A#8,u or of its
metric-dual 1—form A, dz*, A, = g, AY, A¥ = g"" A,, read for instance

V“AV = O A + sz AP ; V,LLAI/ = OpnAy — F;pw AP > (1'1)

respectively, with the Levi-Civita connection coefficients or Christoffel symbols
97 (OwnGuo + Owv Guo — OzoGu) - F[pw,} =0. (1.2)

Commutation of covariant derivatives for vectors defines the Riemann tensor, of components
R!,,s, as a measure of spacetime curvature: for any vector A = A 8,u, following the sign
conventions of Misner, Thorne, and Wheeler [1973],

VvV, AP =V, VAP =RP, AT (1.3)
From it are also defined the (symmetric) Ricci tensor R, dz* ® da” and the Ricci scalar R
by successive contractions, R,, = Ry, R = R",. A Levi-Civita connection and associated
covariant derivatives, Riemann and Ricci tensors and Ricci scalar can similarly be defined in
any dimension and for a Riemannian (positive-definite) metric, as will be used later for the
Riemannian metrics induced by g on three-dimensional spacelike sections of M.

The coupling between spacetime geometry (metric and curvature) and the stress-energy ten-
sor of the sources T}, dz* ® dz” in General Relativity is described by the Einstein equation:

1
R, — ERquLAgW:STrGTW , (1.4)

in components, where G is Newton’s gravitational constant. This general form of the Einstein
equation includes the constant parameter A known as the cosmological constant. The symmetric
tensor of components G, = Ry, — (R/2) g,u is the Einstein tensor and obeys a conservation
equation: V,G*” = 0. The Einstein equation thus automatically ensures the conservation of the
(also symmetric) energy-momentum tensor appearing in its right-hand side: V, 7" = 0.

The Einstein equation can be obtained from a variational principle, with the Einstein-Hilbert



action for the geometric part, Spy = (167G)~ fM — 2A \fd4 (with the determinant
g = | det(gu)|), added to the action Sys for the matter sources described as fundamental fields.
The energy-momentum tensor is then defined from the variation of Sy, with respect to the metric
tensor components. It may alternatively be defined under a phenomenological form in a fluid
approximation for the sources. Although this approximation may not be fully accounting for
the general-relativistic geometry at the scale of the fluid elements (which may themselves be
somewhat ill-defined in a cosmological context) [Wiltshire, 2011, Coley and Wiltshire, 2017, it
offers a tractable framework of wide use for the modelling of the late Universe and it will be
conservatively adopted in the following.

Building a spatial foliation

A cosmological model is usually described in terms of a split of spacetime into a three dimensional
space (which models the Universe at a given time) and the time evolution of its properties. While
such a picture is a priori especially suited for a Newtonian framework with absolute and global
space and time notions, this is still compatible with General Relativity. Selecting a set of three-
dimensional ‘space’ slices parametrized by ‘time’ is still possible in this case, although the choice
of such a set is far from unique, in contrast to the Newtonian case.

The description of the spacetime manifold and of the Einstein equations in terms of such a
split corresponds to the 3-+1 picture of General Relativity. This picture gives a natural view of
the Einstein equations as evolving physical observables with time from given, constrained initial
data, and is at the core of the investigations of existence and uniqueness of solutions to these
equations as a Cauchy problem (most notably Choquet-Bruhat and Geroch [1969]). T will now
recall an adapted framework for this picture (as detailed, e.g., in [Misner, Thorne, and Wheeler,
1973], p.505-532; |Gourgoulhon, 2012], p.78-88; |Alcubierre, 2008, p.64-75) which is part of the
ADM formalism |[Arnowitt, Deser, and Misner, 1962| (the latter also aiming at a Hamiltonian
formulation), and which is used throughout the present thesis'.

On top of the general-relativistic assumptions, the spacetime manifold M will be assumed to
be globally hyperbolic, allowing for a foliation into Cauchy surfaces [Bernal and Sanchez, 2003],
which can be used as the spatial slices. When described in a coordinate chart, the four coordinates
(x#) will be split into the time coordinate 20 = ¢ and the remaining, spatial coordinates .

A foliation of M into a family of spacelike hypersurfaces ¥;, M = Ujer X, 3; N X; = @
for j # i, can be chosen among all possible such foliations, denoting by n their timelike, future-
oriented, unit normal 4—vector. Each hypersurface corresponds to a three-dimensional ‘space’
slice, and can be seen at each point as the local rest frame of some arbitrarily chosen set of
reference observers, with 4—velocity n. The foliation can be characterized by a regular scalar
function S strictly increasing along any future-pointing timelike line, and defined such that each
spatial hypersurface is a level set of S. The dual 1-form n to n will thus be proportional

!The remaining of this section is inspired by the introduction of the 3+1 formalism in the paper in preparation
(subsections 2.1 and 3.1 therein) presented in chapter 3, developing it in more detail.



to the gradient of S: n = —adS for some strictly positive scalar function a and with d the
exterior derivative. Hence dn = —a~!da A n, showing that m has to be irrotational, which is
equivalent to n A dn = 0. For simplicity, the time coordinate ¢ will be chosen as being a strictly
increasing function of S (implying the reciprocal relation S = S(t)), and will be used to label
the hypersurfaces. The spatial coordinates z*, on the other hand, are kept arbitrary.

In such a spacetime coordinate basis, the components of n and its dual n are written,

respectively:

1 .
nt = v (1,-=N*) ; mn,=-N(1,0,0,0). (1.5)

The strictly positive lapse function N determines the distance between consecutive slices at each
point per unit of coordinate time. It also measures, through its spatial variations, the covariant
acceleration a(™ of components a&n) = n"V,n, of the observers with 4—velocity n (Gourgoulhon
[2012], p.62; Alcubierre [2008], p.122):

0y N ,
az(»n) == aén) = N”agn) , (1.6)
N
where the second equation arises from the orthogonality of n and its acceleration, n“afln) =0,

itself a consequence of the unitarity of n. The shift vector N = N%@,: generates a spatial
diffeomorphism that relates points in consecutive slices. Following the usual conventions in the
literature cited hereabove, this lapse will from now on be associated to the coordinate functions
defining the propagation of the local spatial coordinates between slices. In coordinate compo-
nents, it describes the propagation of the local spatial coordinates between slices. By definition
lapse and shift relate to m and the time coordinate vector 8; as 8, = Nn + N (see Figure 1.1
for an illustration of the foliation and these vectors).

Specifying the lapse as a function, or from an evolution equation, selects the foliation and
the time function used to label the slices. The shift characterizes a spacetime flow crossing each
hypersurface exactly once, that can be (and is, in the present formalism) used to propagate the
spatial coordinates.

341 split of the Einstein equations

Spacetime tensors are projected onto the hypersurfaces of the foliation by means of the n-
orthogonal spatial projection operator h', 8.+ ® dzV,

hyw = guv +nyuny, ., A, ,n”" =0, h¥ B, = ht R hy, = 3. (1.7)

v

The restriction of the associated type—(0,2) tensor to the spatial slices defines the spatial Rie-
mannian metric h = h;; de! @ da?, with inverse h/ 8,: ® 8,,. Given this operator and the normal



Figure 1.1: Diagrammatic representation of a foliation of a spacetime into spatial hypersurfaces
Y; labelled by the time parameter ¢ (here in 2 + 1 dimensions), and of the relation between the
lapse N, the normal vector n to the hypersurfaces, the tilt vector IN, and the time coordinate
vector 0.

vector m, the four-dimensional line element can be decomposed into
ds? = g deda” = — (N2 = N*Ny ) di? + 2N; da' dt + h; do'da? | (1.8)

with N; = hy; N7

The spatial metric h characterizes the intrinsic geometry of the spatial hypersurfaces, with
the (spatial) Ricci tensor R;j dz‘®da? of h as their intrinsic curvature. In turn, the embedding of
the slices within spacetime is characterized by their extrinsic curvature, with components K, =
—h", h?,V pne. From the orthogonality to n in both indices by construction, the components of
K, are fully determined by the spatial components K;;. The intrinsic and extrinsic curvatures



are related through decompositions of the spacetime Ricci tensor (Gourgoulhon [2012], p.51-53):

R+2nMn"R,, =R+ K* - Kij KY ; (1.9)
WY Ry, = DiK — DK, (1.10)

W RY Ry, = f%atymk Kij + %N’fpk/cij + %(;cik D;N* 4 Ky; DiN*®)
—%DiDjN—FRU—I—ICICij — 2K K (1.11)

where D denotes the three-covariant derivative associated with the spatial metric h;; and its
Levi-Civita connection. The scalar intrinsic curvature R (3-Ricci scalar) and scalar extrinsic
curvature K of the slices are given by the respective traces of the intrinsic and extrinsic curvatures,
R = hinij, K=K, = hileij. The first two equations are the Gauss-Codazzi relations between
all curvatures on a given hypersurface, while the last relation gives an evolution equation for K;;

between successive slices.

The energy-momentum tensor can in turn be decomposed with respect to the spatial sections
and their normal as

T = Enyny +2n0,J)) + S (1.12)

with E=n'n"T,, , J,= —h”#n”TpU y S = hp“h"VTpJ .

Here, E is the energy density of the sources, J, (with J,n* = 0) their momentum density, and
S, (with n#S,,, = 0) their symmetric stress density tensor, all as measured by observers with
4—velocity m (i.e., in the frames associated with the spatial slices). The isotropic pressure in
these frames is given by S/3 with S the trace of the stress density tensor, S = ¢g""S,, = hijSij.

The 3 + 1 form of the Einstein equation (Arnowitt, Deser, and Misner [1962|, Gourgoulhon
[2012] p.87, Alcubierre [2008] p.71-74), is then obtained from the above decompositions of the
spacetime Ricci tensor and of the energy-momentum tensor, related through the Einstein equa-
tion including, here, a cosmological constant. Additionally, the time evolution of the spatial
metric is related to the extrinsic curvature through the definition of the latter. This gives two
(tensorial) evolution equations for h;; and Kj; as the dynamical variables characterizing the
hypersurfaces and their embedding in spacetime:

8t\xk hij = —=2NK;; + D;N; + D;N; , (1.13)
Ol o Ky = N (R + KK + 4nG [ (S = B) o, — 285 — A6
— D'DjN + N* DyK*; + K' D;N* — K¥; DpN* (1.14)

and two (one scalar and one vectorial) constraint equations on these quantities from the Gauss-
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Codazzi relations, the energy constraint and the momentum constraint:

R+K?— K, K, = 167G E + 2A ; (1.15)
DKk, — DiK = 87G J; . (1.16)

In practice, these constraint equations only need to be ensured when setting initial conditions, as
the above evolution equations propagate the constraints if initially satisfied; this gives a Cauchy
problem on the variables h;;, IC;; from constrained initial conditions (Gourgoulhon [2012], p.88-
89; Alcubierre [2008], p.74-75).

Most cosmological models are based on such a 3 + 1 split of spacetime. This is in particular
the case of the simplest expanding model universes, where a preferred set of spatial hypersurfaces
is characterized by a maximal symmetry condition.

1.2 Homogeneous and isotropic universes and the standard
model of cosmology

1.2.1 The FLRW models and the Friedmann equations
The cosmological principle

The Friedmann- Lemaitre- Robertson- Walker (thereafter FLRW) cosmological models are based on
the assumption of the existence of a foliation of the spacetime manifold into strictly homogeneous
and 1sotropic spatial sections. This relatively simple, idealized model universe is designed for
the description of the largest spatial scales, beyond the so-called homogeneity scale. This scale
of statistical homogeneity of matter distribution in the Universe is currently estimated from two-
point correlation functions in the matter distribution to be about 70 Mpc/h at present time (see,
e.g., Scrimgeour et al. [2012], Gongalves et al. [2018], and references therein), where h ~ 0.7 is
a constant arising from the present-day expansion rate. Being of a statistical nature, such an
homogeneity scale would not fully rule out the observed existence of a few matter structures
and vacua larger than 400 Mpc/h (e.g. Gott et al. [2005], Horvath et al. [2014], Kopylov and
Kopylova [2002]), but would render them unlikely. In view of this and of other evaluation methods
accounting for higher-order correlations (Sylos Labini et al. [2009], Wiegand et al. [2014]; see also
Nesseris and Trashorras [2019] and references therein), the above homogeneity scale value and
even the existence of such a scale remain under debate.

The assumption of the validity of the model above these scales is referred to as the cosmological
principle. 1t is often presented as a consequence of the observation of approximate isotropy of the
sky properties for an observer on Earth together with the Copernican principle stating that such
an observer should be typical, i.e., any observer should obtain a similar result. Provided one
additionally assumes the isotropy property to be ezact, at all times, in a smoothed picture beyond
a certain scale, it will then hold around every point of each spatial section as a consequence of

11



the Copernican principle. Under these assumptions, the model universe then has to be spatially
homogeneous at all times and a member of the FLRW class, with a shear-free, vorticity-free and
geodesic perfect-fluid content (Ehlers [1961], Collins and Wainwright [1983], Ellis, Maartens, and
MacCallum [2012] p.203).

Geometry of the FLRW models

The spatial sections of homogeneity of the FLRW models are three-dimensional isotropic Rieman-
nian manifolds with constant (homogeneous) intrinsic curvature. Accordingly, they correspond
to one of the three possible such manifolds, the unit 3-sphere S?, the 3-dimensional Euclidean
space R3 and the hyperbolic 3-space of unit ‘radius’ H?, up to a global (homogeneous) conformal
factor or scale factor for the metric. This scale factor can for instance be seen in the S? case
as defining a sphere with non-unit radius. The above three reference manifolds are respectively
of constant positive, vanishing, and negative scalar curvature. By a suitable choice of coordi-
nates r, 0, ¢, the line element for each of these Riemannian manifolds may be written under the

convenient unified form

2
ds?; = 1d77”k72 + 12 d6? + r*(sin0)? dep? , (1.17)
where the constant parameter k is taken as +1 for S, 0 for R3 and —1 for H3. In each case,
f and ¢ are angular coordinates and r is a radial coordinate such that the constant-r surfaces
remain 2-spheres of area 4mr?; they simply correspond to the spherical coordinates in the R?
case.

The strict isotropy assumption requires a vanishing spatial velocity in the spatial slices of
homogeneity for any existing fluid source, 4.e., the sources must have a common 4-velocity u
orthogonal to these slices, u = m. A very natural choice for a coordinate basis for the descrip-
tion of the FLRW models is then set by the choice of constant time ¢ on each spatial section of
homogeneity (labelling these sections) arising from the 3+1 formalism of section 1.1, together
with the requirement of spatial coordinates 2° comoving with the 4-velocity w. The latter condi-
tion corresponds to a choice of vanishing shift associated with the coordinates (¢,z*). The lapse
N = 1/(u®) (in this coordinate system) that expresses in this framework the local rate of the
proper time 7 of the fluid sources with respect to the coordinate time ¢, N = dr/dt, must be a
pure function of ¢ due to the homogeneity assumption. This can also be seen as arising from the
vanishing of the 4-acceleration of the fluid as a consequence of isotropy, since it corresponds to
the acceleration of the normal vector to the slices with components given by (1.6). N = N(¢)
implies that the spatial slices of homogeneity are also hypersurfaces of constant 7. Hence, the
proper time is a valid and preferred choice for the hypersurface-labelling time coordinate ¢, which
is then referred to as the cosmic time. In the corresponding coordinate basis (¢, z') = (7,z%), the
lapse is 1 and the components of the 4-velocity and its dual 1-form reduce to u* = (1,0,0,0)
and u, = (—1,0,0,0), respectively.
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The FLRW line element then reads in these coordinates

ds® = g, datda” = —dt* + hyjda'da? = —dt? + a(t)? ds2y (1.18)
where h,,, are the components of the metric induced on the spatial hypersurfaces. They are
expressed as above in terms of the time-dependent scale factor a(t) > 0 (a(t) = 0 representing
singularities) and the spatial line element dsfef given by one of the three reference Riemannian
metrics mentioned above. By continuity, all spatial sections must correspond to the same ref-
erence Riemannian manifold up to their scale factor, i.e., k is a constant. ¢ is only defined up
to an arbitrary translation, but if a(t) reaches zero at a finite proper time value in the past
(corresponding to an initial singularity or ‘Big Bang’), it is customary to set this value to t = 0.

For the dimensionless conventions k = +1 (in the non-flat spatial sections cases) adopted here,
the scale factor a(t) becomes a dimensionful number measuring a characteristic size associated
with the constant spatial curvature, e.g., the radius of the spatial sections if they are 3-spheres.
It can alternatively be made adimensional and be normalized to unity at a reference epoch by
appropriately rescaling k and the coordinate r into dimensionful variables using the characteristic
size at the reference epoch. In the flat spatial sections case (k = 0), a(t) can simply be assumed
to be dimensionless by interpreting r as having the dimension of a length. It is customary to do
so in this case and to normalize the scale factor to unity at the current epoch to, a(tg) = 1.

Computing the spacetime Ricci tensor components in the coordinates (¢, 2%) from the simple
metric form (1.18) with ds%; given by (1.17) yields

. . .2
a a a 2k
Rop=-3- 7 Roi=Rio=0 ; Rjj= <+22+2> hij (1.19)
a a a a
for i = 1,2,3 and with the overdot notation "= J|,:. The spacetime Ricci scalar thus reads
. .2
a a k
R=g"R,, =6|-+—+—=] . 1.20
g iz (a + a2 + ag) ( )

Similarly computing the Weyl tensor for this metric form shows that it is vanishing, i.e., the
FLRW metrics are conformally flat, and their Ricci tensor as given above fully characterize their
spacetime curvature properties (e.g., Ellis, Maartens, and MacCallum [2012], p.204). In the
spatial sections, the intrinsic curvature components R;; and the scalar intrinsic curvature R

read, respectively:

2% 6k

Ri]’ = CT hij ; R = (1.21)

a?’

Coupling to the sources

The isotropy assumption prevents any momentum vector or trace-free (anisotropic) pressure
contributions to the energy-momentum tensor. The latter thus has to take a perfect fluid form

13



[Ellis, Maartens, and MacCallum, 2012, p.203]:
Ty = €upuy +phy , (1.22)

where € = ¢(t) and p = p(t) are, respectively, the total energy density and isotropic pressure of
the sources in their common rest frame, i.e., as measured in the homogeneous spatial slices.

Using the expressions (1.19)—(1.20) for the spacetime Ricci tensor and scalar and the energy-
momentum tensor form (1.22), the Einstein equations with a cosmological constant A then reduce
in this simple framework to a set of ordinary differential equations for the main variable a(t),
the Friedmann equations:

N\ 2

3(“) - 8wGe+A—¥; (1.23)
a a
3% = —4nG(e+3p)+A. (1.24)

In general, both right-hand sides above will be nonzero, making this system suitable as
a simple model of an expanding Universe. For a non-exotic fluid with positive pressure, the
acceleration equation (1.24) can only imply deceleration of the expansion for A = 0, and requires
a positive and large enough cosmological constant for a positive acceleration. It also shows that
this is required as well for Einstein’s static FLRW model, with a specific A as a function of
the energy sources, together with a specific positive spatial curvature as a consequence of the
vanishing of both sides of the integral equation (1.23).

The above system can be complemented by the energy conservation law on €(t), p(t):

3

é+3g(e+p):0. (1.25)

This relation arises from the conservation of the energy-momentum tensor, V,T*” = 0, projected
onto the fluid 4-velocity. In this framework, it can also be directly deduced from a combination
of (1.24) and the time derivative of (1.23), i.e. it is not an independent equation from the two
Friedmann equations and it expresses a condition of compatibility between them. The other
components of the energy-momentum tensor conservation equation, as obtained by projecting it
orthogonally to the fluid 4-velocity, relate the fluid’s 4-acceleration, of components a* = u*V u*,
to the spatial pressure gradient,

h,V Oyi
a#:—M: ap=0, a;=-— vl (1.26)
€E+p €E+p

This provides another derivation of the geodesic nature of the fluid in this setting where p is
homogeneous in the spatial sections, d,ip = 0.
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1.2.2 Specifying the model sources
Effective equations of state

The above system of only two independent equations (1.23)-(1.24) on the three variables a(t),
€(t) and p(t) is not closed, as expected given that the physical properties of the fluid have not
been specified at this stage. This can be solved by specifying (at least partially) an equation of
state for the fluid. It can be written in this case in term of a barotropic pressure energy relation
p(€) at least within some range, since both € and p are pure functions of time. The simplest case
is a linear relation, p = we with w = est., for which the energy conservation equation (1.25)
then provides the time evolution of the energy sources as p o € o a(t)~30+%). Such a linear
relation is widely used as holding for all of the most common matter models. The latter are thus
characterized by the corresponding value of w.

3

e w = 0 describes dust, i.e., pressureless matter (p = 0), with ¢ o a(¢)7°. In this case

e coincides with a rest mass density for the fluid (i.e., the energy conservation equation
reduces to a conserved rest mass current equation, V,(eu’) = 0) and may as well be
noted p. This case can be used to model the non-interacting Dark Matter fluid, or even
nonrelativistic baryons for which the pressure is much smaller than the mass energy density
o (that would read pc? in units where ¢ is not adimensioned) and can thus be neglected. It
is thus suited for the description of a cosmological era dominated by such nonrelativistic
matter sources. In the case of flat spatial sections (k = 0) and a vanishing cosmological
constant, the resulting pure dust FLRW model universe is known as the Einstein-de Sitter

model and the scale factor time dependence can be deduced from (1.23) as a(t) o< t2/3.

e w = 1/3 describes a radiation fluid, with € oc a(¢)~%. This can model a photon gas, or ultra-
relativistic matter that may be coupled to radiation, and is thus suited for a cosmological
era dominated by strongly coupled matter and radiation. From (1.23), in the simplest case
k =0 and A = 0, the scale factor of the pure radiation FLRW model universe evolves as

a(t) o< V.

e w = —1 would correspond to a cosmological constant. The relation p = —e implies that
e (assumed positive) and p (then negative) are constants of spacetime and would jointly
contribute to both Friedmann equations exactly as a positive cosmological constant 87Ge.
This can be seen as an effective description of the Dark Energy component modelled by the
cosmological constant A, effectively replacing the otherwise already present A contribution
by a source ¢ = A/(87G), p = —A/(87G). A pure Dark Energy FLRW model universe,
for positive A, with no extra source and with k = 0, would have an exponentially growing
scale factor with time, a(t) o< exp(y/A/3t), and would not reach a Big Bang singularity in
a finite time to the past.

e w = —1/3 also corresponds to a negative pressure (or a negative energy density) and
may similarly be used as an effective fluid description of the contribution of the spatial
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curvature term —3k/a?. The contribution of such a source to the first Friedmann equation
(1.23) would indeed be a term 87Ge x a(t)~2 from (1.25), with a vanishing contribution
to the acceleration equation (1.24). The latter shows that an empty FLRW model universe
with A = 0, where an assumed nonzero curvature is the only source of the Friedmann
equations, must have a linear scaling of the scale factor with time, a(t) o ¢t. The first
Friedmann equation (1.23) implies that the nonzero k has to be negative, corresponding
to hyperbolic spatial sections. This picture corresponds to the so-called Milne model for a
vacuum FLRW model with no cosmological constant. Inserting the Friedmann equations
into the spacetime Ricci tensor expression (1.19) shows that it vanishes in this case, along
with the Weyl tensor. Hence, the corresponding spacetime is simply the (Riemann-flat)
Minkowski spacetime with an unusual slicing, with hyperbolic spatial hypersurfaces.

Other values of w are also sometimes encountered in the literature such as the “stiff fluid”
model w = 1, implying an energy density scaling as a~® and corresponding to the pressure-
energy relation of a free fundamental scalar field described as a fluid source, or an unspecified
value —1 < w < —1/3 as an alternative, dynamical model of Dark Energy as a fluid with negative
pressure rather than a cosmological constant.

The Omega parameters

A more complete cosmological model can then be obtained from a sum of such sources, where
the source i has an energy density ¢; and a linear partial equation of state parametrized by w;:
€=y ,€and p =) . w; €, which would be valid over a range of cosmological eras. Considering
these sources to be decoupled, each corresponding energy-momentum is separately conserved
so that the time behaviour ¢; oc a(t)~3(1+%i) still applies for each source i. The contributions
from the cosmological constant and the spatial curvature can be replaced by effective sources

within this decomposition as explained above, with w = —1 and an effective energy density
exn = A/8nG for the cosmological constant and w = —1/3 and an effective energy density (which
may be negative) e, = —3k/(87Ga?) for curvature.

The first Friedmann equation (1.23) may then be rewritten as 3H? = Y. 87Ge; with the
Hubble parameter H(t) = a/a. In an expanding or collapsing phase (@ # 0) it can be divided
by its left-hand side to define the dimensionless ‘Omega’ parameters expressing the relative
contributions of each (real or effective) source to this energy balance:

81Ge;
U= s doi=1. (1.27)

7

The current observations appear to be compatible with the main physical sources (beyond
the earliest epoch) being radiation (here noted 7, and including photons and neutrinos, as well as
the coupled photons+baryons radiation fluid at early times; w, = 1/3), and baryonic matter and
non-interacting ‘cold’” Dark Matter (CDM), both nonrelativistic at late times and here together
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noted m, w,, = 0. They will contribute to the energy balance along with the curvature k and
the cosmological constant A: 1 = Q. + Q,, + Qp + Q. The matter parameter €2, may be split
into the baryonic and cold Dark Matter components €y, Qpy. (Note that in this cosmological
context, ‘baryonic’ is taken in a broad sense that actually includes nonrelativistic leptons.) The
present-day values ;(tg) = QY of each of these contributions are key parameters for such a
cosmological model.

Background dynamics in the standard model of cosmology

The widely accepted ‘ACDM’ model (for the cosmological constant A and a cold Dark Matter
component), or standard model of cosmology, considers the above matter sources as its physical
content, and a cosmological constant A > 0. While allowing for deviations at all scales (see
section 1.3 for the perturbative method for large scales), it is based on an assumed ‘background’
FLRW model as arising from the cosmological principle, with the same sources and A, and
with a vanishing spatial curvature, £ = 0, € = 0 Vt. The latter restriction appears to be
compatible with the observational constraints on the present-day Omega parameters assuming a
nearly FLRW model on large scales () = (0.7 £1.9) - 1072 at 1o confidence level in the Planck
collaboration 2018 joint results [Planck Collaboration, 2018]).

The three remaining contributions to the first Friedmann equation (1.23) for the background,
€r, €m and A, scale as a™*, a~3 and a constant, respectively. This equation moreover shows that
aja > /A/3 Vt, so that the model is indefinitely and unboundedly expanding, a(t) — +oo for
t — 400, and a/a > cst/a® for cst > 0, so that there is a Big Bang, a(t) — 0% at a finite time
that can be set to t = 07. The energy contribution of the matter sources is thus dominated
by radiation at early times and by nonrelativistic matter at late times. The energy balance is
ultimately dominated by Q4 for ¢ — +o0o where the scale factor will asymptotically undergo an
exponential growth with ¢.

For a small enough A (as is observed, and as necessary for matter structures to be able to
form), the model can be split in two main eras. The early era is dominated by radiation, with an
approximate scale factor evolution a(t) o< /£. The late era, once radiation has become negligible,
is dominated by matter and (at even later times) the cosmological constant with Q,, + Qx ~ 1,
i.e., fully neglecting €., (a)? = HZ Q2 /a+ HE QY a® with the convention a(ty) = 1 and with the
present-day Hubble parameter Hy = H(tp). This evolution equation can be solved analytically

v 3
a(t) = 3/97761 sinh?/3 <2H0,/Q%(t — tl)) ) (1.28)
A

for some reference time ¢; that may be tuned to match this solution with the end of the radiation-

to provide

dominated era. The radiative era is often assumed to be preceded by an additional phase with
fast, exponential expansion known as inflation, driven by a yet-unknown mechanism (for which
many competing models exist) at play beyond the Planck energy scale. This can explain the
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apparent near thermal equilibrium of the observable Universe around the end of the radiative
era, while all parts of it could otherwise not be causally connected at that time.

The Planck collaboration (2018 joint results) [Planck Collaboration, 2018] provides the fol-
lowing observational constraints on the present-day Omega parameters of the FLRW background
of the ACDM model: QY = 0.3111 £ 0.0056, O = 0.6889 4 0.0056 (at 1o confidence level). QO
is smaller than 104, depending on the number of still relativistic neutrinos (the contribution
to QU from the energy density of photons alone being QY ~ 5.4 -107°). This is thus consis-
tent with a picture (for the assumed FLRW background) at present day of negligible radiation,
and an energy balance dominated by the cosmological constant with a smaller but comparable
contribution from Dark and baryonic Matter, making the above analytic solution (1.28) for a(t)
relevant around the present epoch. This matter contribution splits into Dark and baryonic Mat-
ter as QODM ~ 0.261 and QY ~ 0.0490, respectively, being dominated by the cold Dark Matter
component.

The simplicity of the FLRW background model, with global dynamics fully determined by
a(t) as a single variable, makes it a very convenient setting for the description of a variety of
physics phenomena in the early Universe within the standard model of cosmology. This reduces
for instance the complexity of the study within a dynamical Universe of the phase transitions
associated with the successive separations of the forces of the Standard Model of particle physics
as energy density decreases, or of the formation of the lightest atomic nuclei (the Primordial
Nucleosynthesis).

The Cosmic Microwave Background

After the formation of nuclei and in the transition period between the radiation- and the matter-
dominated eras, the decoupling of ‘baryonic’ matter (including electrons) from radiation allows
for the formation of atoms. This decoupling occurs as the decreasing density of the initial
radiative photon-baryons mixture becomes low enough for the photons’ average time between
scatterings to become of the order of the typical age of the Universe 1/H at that time. The
collection of the typical last such scattering event at each point of space builds the surface
of last scattering. Photons are freely emitted from this surface, building a mostly isotropic
radiation feature that is observed today as the Cosmic Microwave Background (CMB), its typical
wavelength being redshifted into the microwave range.

The CMB, and in particular the power spectrum of its fluctuations around a strictly isotropic
radiation, is a fundamental tool for observational cosmological constraints. It is for instance the
source of most of the constraints on the parameters of the ACDM model and some extensions
thereof in the Planck collaboration results such as those cited hereabove. These fluctuations (see
Figure 1.2) are coupled to the early inhomogeneities in matter density since the local baryonic
density directly affects the local decoupling time. They may thus be used to construct initial
data (at least on the observer’s past light cone) for the evolution of matter structures in the
matter-dominated era. However, the description of such fluctuations and of their growth in
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the first stages of matter structure formation clearly calls for going beyond the strictly FLRW
‘background’ model. This is usually performed with a perturbative scheme around an FLRW

metric and associated homogeneous and isotropic sources.

=4 R

Figure 1.2: All-sky projected map from the Planck Collaboration 2018 results of the local fluc-
tuations in the CMB temperature depending on the direction of observation. The isotropic
component at about 2.7 K and the leading fluctuation (the dipole component with an amplitude
of about 3.4 mK) have been removed. The areas delineated by the grey curves (mostly along the
major axis of the map, corresponding to the Milky Way plane) are hidden by foregrounds and
have been reconstructed. Credit: ESA and the Planck Collaboration.

1.3 Eulerian linear relativistic perturbation theory

Small deviations of a cosmological model from strict homogeneity and isotropy may be described
in terms of a perturbative expansion of the metric and energy-momentum tensor components
with respect to an FLRW reference model or ‘background’. Such an approach is commonly
applied, within the standard model of cosmology, to the description of the early stages (linear
regime) of the formation of matter structures, and to the largest scales in a coarse-grained
picture where, e.g., density or curvature perturbations are expected to be small. A relativistic
framework (by contrast to a Newtonian model) is moreover needed for fluctuations over scales
comparable to or larger than the causality horizon (as estimated by the Hubble length ¢/H(t))
near the onset of structure formation i7.e. around the matter-radiation decoupling epoch, for
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which the finite propagation speed of information cannot be ignored. These scales correspond
to a typical present-day size of around 100 Mpc/h. A relativistic model is also necessary for

studying fluctuations in the radiation fluid.

1.3.1 Framework and perturbation variables
Metric form

This perturbation theory is based on an split of the metric g into a (homogeneous) FLRW
metric g and a supposedly small deviation thereof, Juv = gfy + 0g,- The background metric
components are usually written under the form obtained from (1.18) after a change of time
coordinate from the cosmic time ¢ to the conformal time n. The latter is defined as a pure
function of ¢ from the FLRW scale factor by dn = dt/a(t), amounting to setting a lapse N = a(t)
instead of 1, preserving the spatial hypersurfaces. The FLRW line element (1.18) then reads in
these coordinates?:

ds? = a*(n) [—dn2 + Gij dxidaﬂ , (1.29)

in terms of the reference spatial metric with line element g;; dz’dz? = ds%; from expression (1.17).

In the ACDM model, the FLRW background is flat, i.e. the reference metric is Euclidean, and
the spatial coordinates 2’ are usually chosen as Cartesian coordinates, so that gij = 0;5. The
choice of 17 as the time coordinate thus makes the conformal relation between this FLRW metric
and the Minkowski metric explicit, whence the name of this coordinate.

The perturbative approach at first order (Bardeen [1980], Kodama and Sasaki [1984], Stewart
[1990], Mukhanov et al. [1992], Bruni et al. [1992], Malik and Wands [2009], Ellis, Maartens, and
MacCallum [2012] p.249-262) assumes the existence of a corresponding coordinate system (1, z%)
on the model spacetime (the perturbed manifold) in which the line element can be split as

ds® = a®(n) [~ (1 + 2¢) dn* + 2B; dnda’ + (1 — 2¢) Gs; + Gij) da'da’] | (1.30)

where the space- and time-dependent perturbation variables ¢, B;, ¥, Gi; (= G;) are first-order
quantities. Since it relies on an expansion of the metric components in coordinates that need not
be directly related to the fluid content in general, and by analogy to the Newtonian perturbative
frameworks, T will refer to this framework as a first-order (or linear) Fulerian perturbation theory,
by contrast to a Lagrangian approach.

The variables B;, G;; may be further split into first-order scalar, vector and tensor parts:

where D denotes the spatial covariant derivative with respect to the reference metric Gij dr'@dad.

*Here and in the following, T will for ease of notation make use of the slightly improper form a(n) to denote
the scale factor at time t = t(n), i.e. a(t(n)), even though it has in principle a different functional dependence on
the variable 7.
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This operator reduces to a partial derivative when the reference metric is flat and written in
Cartesian coordinates. It coincides at first order with the full spatial covariant derivative of
the perturbed spacetime when applied to an already first-order variable, as above. The scalar
perturbations are those built from the four functions ¢, v, B and E. The vector parts arise from
a divergence-free condition, g¥ DiSj =g¥ DiFj = 0 where g%/ are the components of the inverse
metric to g;; dz! ® dz?, in order to define the scalar parts uniquely. Similarly, the (symmetric)
tensor part h;; is defined as traceless and divergence-free: h;; = hjj, gt hij =0, g Dihjk =0.

Sources perturbation

The source fields in the energy-momentum tensor T}, are also similarly split into background
(e, prr) and first-order quantities:

Ty = euru” +pbuy + 7 ; (1.32)
e=eg+0e 5 p=py+p, (1.33)

where u# is the 4-velocity of the sources corresponding to their energy frame [Ellis, Maartens,
and MacCallum, 2012, p.91], i.e., defined as an eigenvector of T),,, so that the heat vector
qu = —u”b?, Ty vanishes, with b, = g + uyu, the components of the projector into the
associated local rest frames. The anisotropic pressure tensor m,, is symmetric, fluid-orthogonal
and traceless: m,, = m,,, 7, =0, utm,, = 0. It is part of the first-order variables as it vanishes
in the isotropic background spacetime. Similarly to Gjj, it may be split into scalar, vector and
tensor parts. The anisotropic pressure is however still vanishing at any order if the source is
assumed to be a perfect fluid.

In order to have a consistent FLRW background model, the background sources ey (t) and
pr(t) and the scale factor a(t) are assumed to be coupled according to the Friedmann equations
(1.23) (1.24) (adding the subscript H to € and p in these equations) for a given choice of the
parameters k (in consistency with the choice of g;;) and A. The Friedmann equations for a(t)
may easily be rewritten in the time variable 7 instead of ¢ to directly get the evolution equations
for a(n) depending on the background sources (giving for instance a(n) o 7%, with 7 oc t1/3, in
the Einstein-de Sitter model py =0, A =0, k = 0).

The 4-velocity itself is also perturbed with respect to the FLRW field wy which is comoving
with the reference spatial coordinates z*, uf; = (a™1,0,0,0) in the coordinate system (n,z"). It
is thus split as u# = u‘IfI + dut for a first-order Ju”. In components, it then reads

ut =a (1 -9,V (1.34)

introducing the independent first-order variable V¢, while the u® component is deduced from the
first-order expansion of the normalization condition g, u*u” = —1 using the metric form (1.30).
V' can be split into a scalar and a vector part, V¢ = g% Djv + o' with Djv® = 0.
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Consistently splitting in this way all perturbation variables into scalar, vector and tensor
parts (or modes) is of special interest in a first-order scheme since the evolution equations at this
order will be linear by construction. Each mode will thus be decoupled from the others and can be
studied separately. The uniqueness of such a split however requires specific boundary conditions
(typically periodic conditions or requirements of damping at spatial infinity) or compact spatial
sections (associated to an S? reference spatial manifold, & = +1). Such conditions will provide a
unique definition of each mode by ensuring that harmonic first-order variables (vanishing under
the background spatial Laplacian operator a2 ¥ D;D;) vanish or have a vanishing gradient.

1.3.2 Gauge freedom
The gauge issue in Eulerian relativistic perturbation theory

Any coordinate system (7, 2%) in which the line element may be written under the perturbed
form (1.30) with first-order perturbations is equally acceptable a priori. Each such choice may
be interpreted as a mapping (specifically, a diffeomorphism) between the ‘perturbed’ (almost-
FLRW) manifold and the assumed ‘background’ spacetime. The latter is a given reference
manifold equipped with the background FLRW metric and an adapted coordinate system with
conformal time and comoving (Cartesian in ACDM) spatial coordinates. The mapping, expressed
in terms of the coordinate basis choice, associates to each event of the background manifold,
with coordinates (n,z%), an event in the perturbed manifold which will be attributed the same
coordinate values. Each such mapping singles out a ‘preferred’ spatial foliation (in the perturbed
spacetime) as given by the level sets of the corresponding 7 coordinate, which are the images of
the hypersurfaces of homogeneity in the background manifold. The value of a perturbed field at
an event is then compared to the value of the corresponding background field at its image by the
inverse map, i.e. at the background point with the same coordinates. This difference defines the
perturbation variable for this field.

Another choice of mapping, and of the associated coordinate system, within the acceptable
class, will change the perturbation variables ¢, B, S;, F, de... As the mapping of the perturbed
spacetime to the reference manifold is a prior: arbitrary, this is considered a gauge freedom of the
perturbation theory, and raises the issue of the gauge dependence of the perturbation variables.

From a given coordinate system (z#) = (n,z%) in which the perturbed line element takes
the form (1.30), any first-order coordinate change z# — ZH = z# + 0x#(z") will preserve this
first-order form. It will thus be another acceptable choice, building an associated new mapping,
locally infinitesimally close to the previous one, and thus a new gauge. (Only infinitesimal trans-
formations will be considered here, thus dismissing non-infinitesimal rotations and translations
of the spatial coordinates which would also preserve the form of the perturbed metric, since the
background coordinates themselves are defined up to such a transformation as well.) From the
transformation of the metric components and their split, under such a gauge change, the scalar
perturbations ¢, B, 1 and E for instance will transform as [Ellis, Maartens, and MacCallum,
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2012, p.253]:

~ a’ ~ a’
¢H¢:¢—55n—(5n)’ P Yo =94 o
B—B=B+d—-Y ; E—~E=E—y, (1.35)

where the spatial coordinate change is also split into scalar and vector parts, 6z’ = g"ijX + X
with D;x* = 0, and where a prime / denotes a partial derivative with respect to . The vector
parts are also transformed (for instance S; — S’Z =5+ gijxj/) while the tensor part h;; of the
metric perturbation remains invariant, h;; — fzij = hjj.

Gauge-independent variables

In order to extract perturbations that are independent of the arbitrary mapping, one can build
gauge-invariant quantities at a given order in the perturbation from the a priori gauge-dependent
variables [Bardeen, 1980]. Gauge invariance to all orders is a very restricting requirement. This
is due to the association of a given background event to an event in the perturbed spacetime that
is different for each gauge. A gauge-invariance condition would then read as a comparison of
the values of the perturbed field between distinct events (active transformation in the perturbed
spacetime). For instance, the gauge transformation of a scalar ¢ under the coordinate change
at — Tt =zt + oxF(x") is the change between the two functions p(z#) and @(z#) (the fixed
coordinate value xz# mapping to a fixed point of the background manifold) where, as a scalar,
o(z") = p(2*). Hence p(at) = @(at —dat +o(6x)) = p(a#) — 020, + o(d2*) and the gauge-
invariance condition on ¢ is d,¢ = 0, leaving only constants as scalars that are gauge-invariant
to any order.

However, gauge-invariance to first order is still possible for nontrivial quantities. Expressing
the first-order results in the computation of physical observables in terms of such variables
will then avoid interpretation issues with purely gauge-dependent terms. First-order gauge-
invariant variables are usually obtained from combinations of first-order perturbations of tensor
components (or scalars) [Bardeen, 1980)].

As noted above, for instance, the ‘tensor part’ h;; of the metric components first-order per-
turbation is such a first-order gauge invariant. From the transformation rules (1.35) of the ‘scalar
parts’ of the first-order metric decomposition, ¢, B, 1 and E, one can see that the following two
combinations known as the Bardeen potentials are also gauge-invariant at first-order:

! /

@ng—%(E’—B)—(E”—B’) : \Ifzwqt%(E’fB). (1.36)

No further independent such combination can be expected for the ‘scalar parts’ of the metric
components due to the two ‘scalar part’ degrees of freedom in the coordinate change, dn and ¥,
for four variables.

As a perturbation of a spacetime scalar with a nontrivial (time-dependent) background coun-
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terpart, de is not gauge-invariant by itself at first order, transforming as de — de — € 0n =
de 4+ 3(d'/a)(eg + pr) on. In view of the transformation (1.35) of ¢, de — 3 (a’/a)(ey + pu) ¢
is thus a first-order gauge invariant based on de, but there are various other possible such con-
structions for the energy density [Malik and Wands, 2009].

Rather than combinations based on components of tensor with different ranks, one may also
define covariant variables that would vanish in the background, such as the (rescaled) fluid-
orthogonal energy density variation as a vector, a(n) (b,” V,€)/e [Ellis and Bruni, 1989], or its
norm as a scalar. Such quantities being already of first order then ensures that they will remain
invariant to this order under a gauge change [Stewart and Walker, 1974, Stewart, 1990].

Examples of gauge choices

Another way of dealing with the gauge freedom is to fix a gauge through more constraining
requirements on the mapping to the background manifold or on the form taken by the perturbed
metric components. Such requirements may need to be completed by further assumptions in
order to eliminate residual gauge-dependent degrees of freedom. The following examples are
some of the commonly used gauge choices:

e The Poisson gauge is set by the conditions £ = 0, B = 0, and S; = 0. In view of the
transformation laws for these variables, such a condition can be achieved by a gauge change
from any given other gauge (of parameters E,, By, Si o, ...) with én = E —B,, x = E, and
X' such that y*' = —g¥ Sjo- Accordingly, this leaves some residual gauge freedom in the
form of a time-independent pure vector spatial coordinate change, n — n, 2 — z* + x"(:ck)
with D;x’ = 0, associated with a time-independent relabelling of the spatial coordinates z*
[Malik and Wands, 2009]. The conditions on B and S; imply a block-diagonal form for the
metric, go; = 0, and correspond to a vanishing shift, associated to spatial coordinates 2
that propagate along the normal n to the constant-n slices. The scalar parts of the metric
perturbation are reduced to ¢ and 1 which coincide in this case with the Bardeen potentials
(1.36), ¢ = ®, ¢p = ¥. Writing down the Einstein equations at first order within this gauge
results in several equations reminiscent of the Newtonian ones, including a Poisson-like
equation for ® as a weak-field equivalent of the Newtonian gravitational potential [Malik
and Wands, 2009]. (Accordingly, this gauge may also be referred to as a Newtonian gauge
or Newtonian slicing when only scalar perturbations are considered.) This also allows to
relate both scalar parts of the metric perturbation through the fluid’s anisotropic pressure,
giving ® = W (leaving a single scalar-part variable) if 7, = 0. This relation between both
Bardeen potentials may also be obtained by applying the Einstein equation while already
using only such gauge-invariant variables [Bardeen, 1980].

e The synchronous gauge is obtained by setting ¢ = 0 and B; = D;B — S; = 0. The first
condition implies that ggo reduces to —a(n)2. It corresponds to setting the 7 coordinate
(defined by d7 = a(n)dn and corresponding to cosmic time in the background) to still be
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interpreted in the perturbed manifold as the proper time measured along the normal to the
constant-n slices from a given ‘initial’ spatial hypersurface [Kodama and Sasaki, 1984|. In
this gauge, the metric is also block-diagonal (go; = 0). These choices allow for a simple form
of the metric, the perturbations being only contained in the spatial components g;;. There
is residual gauge freedom in terms of free time-independent functions which may be used
for a coordinate change, n + 1+ a(n)™* gﬁ(a:k), z' s 2t + (52%) (2F) (with here on = adn)
[Malik and Wands, 2009]. The freedom on 7 corresponds to the arbitrary choice of the
‘initial’ hypersurface. It may be removed wia additional requirements, such as a vanishing
of the scalar velocity perturbation variable v on the initial hypersurface. The freedom on
the spatial coordinates simply corresponds to their relabelling in a time-independent way.

The uniform curvature gauge is defined by the requirements £ = 0, v» = 0 and F; = 0
with no residual gauge freedom, leaving the tensor part h;; as the only perturbation of the
spatial metric components g;;. The scalar intrinsic curvature R of the constant-n slices
being given in general by a’R = 6k+12k 1/)+4§ijl_)il_)j1/) [Ellis, Maartens, and MacCallum,
2012, p.256], this gauge indeed corresponds to an absence of perturbation on this curvature
which keeps the uniform value R = 6k/a? of the background. For a flat background (k = 0),
this gauge is also referred to as the flat gauge [Malik and Wands, 2009], with R = 0 still
in the perturbed spacetime.

The comoving orthogonal gauge requires B; = D;B — S; = 0 and V' = giijv + ot = 0.
These two scalar and two vector conditions represent more requirements than the two
scalar (87, x) and one vector (x*) gauge degrees of freedom can allow to fulfill in general:
the additional assumption of the vanishing of the gauge-invariant vector quantity v; — 5;
[Kodama and Sasaki, 1984] must be made in order for this gauge to be defined. The gauge
conditions correspond to the vanishing of the spatial 4-velocity components u! = a=!' V?,
meaning that the spatial coordinates are comoving with the fluid flow, and of the spatial
components of the velocity 1-form u; = a(B;+gi; V7), meaning that the constant- slices are
orthogonal to the fluid flow, w = n. The latter implies that the 4-velocity is hypersurface-
forming and thus that it must be irrotational, which is expressed at first order by the
condition v; — S; = 0. This gauge provides a natural association of both the spatial
foliation and the spatial coordinates to the fluid content. The remaining gauge freedom
is a time-independent relabelling of the spatial coordinates, z* — z* + (0z%)(z¥), and a
relabelling of the spatial slices, n +— 1+ (dn)(n).

Yet further gauge conditions may be imposed e.g. by alternative specific requirements on how

the constant-n hypersurfaces should be defined, such as hypersurfaces of constant energy density

(0e = 0) or constant scalar extrinsic curvature. Additional conditions may then be set to fully

determine the gauge, since the choice of the spatial coordinates otherwise remains free.

25



1.3.3 Limitations and alternatives to this formalism

The above formalism is a priori suited for the study of fluctuations in the radiation-dominated
epoch, as well as the linear growth of structures in the early regime of their formation on large
scales. Some of its aspects however impede its applicability beyond these regimes. In particular,
the deviations from homogeneity of all variables (metric components, velocity field, density,
and their spatial derivatives) need to be assumed small and controlled by a given first-order
smallness parameter in order to be comparable (once properly adimensioned). Hence, it cannot
be used to describe the dynamics at the scales of the largest walls and voids and below, beyond
the early onset of structures after the last scattering epoch, when nonlinear inhomogeneities in
density (and curvature, as metric derivatives coupled to density) start to form. Deviations from
a homogeneous density even become nonperturbative at later times and smaller scales such as
those of galaxy superclusters.

The perturbative scheme can be extended to second order (see, e.g., Malik and Wands [2009])
and beyond, to encompass a wider range of perturbations, However, this requires new construc-
tions of gauge-invariant quantities or extensions of the specific gauge choices for each order, and
the scheme cannot be readily extended into a nonperturbative approach as would be needed for
the dynamics at small scales. This may require going beyond the tight links to the assumed
background from which the mapping and gauge-dependence notions originate. The need for
prescribing a background also precludes a full investigation of possible ‘backreaction’ effects of
the small scale dynamics to the global expansion behaviour at the largest scales, as the latter is
given by the background evolution.

The dynamics in the matter-dominated era at scales below the causality horizon size of
order ¢/H(t), are often described in terms of Newtonian models instead. This offers a simpler
framework for the investigation of potentially nonlinear dynamics, at scales and for fluid models
for which at least special-relativistic effects are of limited relevance. One may use a perturbation
scheme based on the Eulerian picture for a Newtonian expanding fluid model, where all variables
(velocity field, density, ...) are expanded in terms of small deviations with respect to a prescribed
homogeneous and isotropic Hubble flow (see, e.g., Peebles [1980], p.47-68). Such an approach is
reminiscent of the relativistic scheme presented in this section in terms of its variables, actually
being inspired from a similar relativistic perturbation scheme [Lifshitz, 1946|. It has a similarly
limited applicability (small density fluctuations being assumed), in addition to being restricted
to nonrelativistic regimes.

The Newtonian formalism, however, also allows for relatively fast N-body—based numeri-
cal investigations of structure formation on top of a prescribed background expansion without
restrictions on the growth of density contrasts or other observables. Such numerical schemes
overall reproduce rather well the observed distribution of matter, at least above the scales of
galaxy groups [Angulo et al., 2012, Alimi et al., 2012].

On the analytic side, such evolutions may be described thanks to perturbation schemes based
on the Newtonian dynamics of an expanding fluid in a Lagrangian picture instead, in particular
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the Zel’dovich approximation and the underlying Lagrangian scheme [Zel’dovich, 1970]. The
perturbation is encoded into the deformation field alone (giving the position of a particle in
Eulerian space at a given time as a function of its Lagrangian  initial  position) as a deviation
from that of the homogeneous and isotropic Hubble flow. Observables are then computed directly
from the perturbed deformation field through exact first integrals: for these calculations, the
approximation scheme is nonperturbative. Very large overdensities, for instance, are allowed,
and will be reached near shell-crossings (corresponding to a degenerate deformation field).

The Zel’dovich approximation is of rather common use for the onset of initial conditions for
Newtonian simulations. While much faster as mostly analytic, it also provides a rather good
match to the matter dynamics and distributions obtained with N-body simulations until shell-
crossings and multistreaming at small scales become too important [Buchert, 1996]. It may even
be extended into these regimes wia the addition of the contributions of several flows after shell-
crossing, a modelling of velocity dispersion as an effective pressure term, and/or the expansion
of the deformation field at second order or beyond.

A similar scheme may be implemented in a general-relativistic setting to handle nontrivial
curvature contributions and special-relativistic effects, to simultaneously describe the largest
scales and those which enter the nonlinear regime of density distributions. This Relativistic
Zel’dovich Approzimation or RZA is also based on the perturbation of a single deformation
variable from which observables can be computed in a nonperturbative manner.

1.4 A relativistic Lagrangian scheme

1.4.1 Principle of Lagrangian approaches
Lagrangian picture in Newtonian dynamics and deformation field

In Newtonian fluid mechanics, a Lagrangian description keeps track of the fluid elements through
their evolution, and expresses the dynamics in terms of the deformation field f(t, )Z) This vector
corresponds to the Eulerian position & at time ¢ of the fluid element that was at spatial coordinate
X at some initial time, f(t;, X) = X. All fields are then expressed as functions of time and of
this Lagrangian coordinate X which builds a time-independent label for each fluid particle.

The time derivative d/dt along the fluid flow (total or Lagrangian time derivative) is defined in
terms of Eulerian positions and the velocity field # as d/dt = 9|,: +v'0,:, featuring an advection
term which accounts for the time-dependent Eulerian positions of the fluid elements. However,
in the Lagrangian coordinates set (¢, )2), the total time derivative coincides by construction with
the partial time derivative 0;| xi, and can be denoted by an overdot for short. The velocity and
particle acceleration fields are then straightforwardly expressed from the deformation field as,
respectively, ¥ = f and dv/dt = f Accordingly, unlike Eulerian descriptions, the velocity is not
an independent field in a Lagrangian approach.

Considering a self-gravitating dust fluid, the Euler equation reduces to setting the acceleration
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as equal to the gravitational field strength g, f: g, as a result of assuming the equivalence of
inertial and gravitational masses. §is constrained as being an irrotational field, 9,:¢7 —9,;¢* = 0,
and as satisfying the Poisson equation relating it to its source, the mass density field o: 9,:g" =
—47Go. The evolution of g is given by the mass conservation equation, do/dt+ 0 0,:v" = 0. This
can be integrated analytically in terms of the initial conditions on p, Qi(X) = o(t;, )Z") = o(t;, T),
and of the deformation field,
N S
Q—}—QN—j:O : Q(t,)z):]\il((t’))z) : (1.37)

where VJ is the Jacobian of the coordinate transformation X — & at a given time (the label ¥
standing for ‘Newtonian’),

aft >
N . N4
J = det ( j> ;o I, X)=1 . (1.38)

Hence, apart from Qi()?) as the initial condition, ¢, ¥ and g are no longer independent
fields but are expressed in terms of f: while the Euler and rest mass conservation equations are
automatically satisfied. The only remaining system of equations for the dynamics is thus given
by the irrotationality condition and Poisson equation on the acceleration f (being equal to g).
These two equations can be re-expressed in terms of Lagrangian positions and the deformation

field as follows, respectively, using the integral (1.37) for p:

€kim (3)('6]”) (Oxif") (Oxmf) =0 V) ; %eijk elmn (3)@]&) (Oxm f7) (0ank) = —4nGo; ,
(1.39)
with the totally antisymmetric Levi-Civita symbol €, emn = (52 05" Oy €ijik-

As one can see, for given initial conditions, this Lagrangian system only depends on the single
variable f(t,)_f) and its derivatives. More precisely, it only depends on the Jacobian matrix of
the Lagrangian to Eulerian coordinates transformation, NJij (t,)_f) = 0y fi(t,)?), and its time
derivatives. It is then possible to consistently assume a perturbation of for NJZ'j as the only
unknown as a small deviation with respect to an assumed solution.

The perturbed deformation field and nonperturbative evaluations

In a (Newtonian) cosmological context, the deformation field would typically be written as a
deviation from the homogeneous and isotropic Hubble flow solution fr(t, X) = a(t)X:

ft.X)=a(t) (X +P(t,X)) : NI, =a(t) (6 +0xP") | (1.40)

with a(t;) = 1 and a perturbation vector field P(t, X) such that P(t;, X) = 0 and |0y, P! < 1
with also small time derivatives. a(t) is set to follow the Friedmann equations (1.23)-(1.24)
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for a dust fluid (with density og(t) = og;/a(t)?® for some initial homogeneous density op; as a
parameter) with A = 0 and £ as a simple integration constant, which also hold for a Newtonian
dust homogeneous and isotropic Hubble flow. A nonzero A could be included with a modification
to the Poisson equation, which would be sourced by A — 47 Gp instead of —47wGo.

The system of evolution equations on NJZ'J- (1.39) is then linearised (or developed to some
further order) in the spatial derivatives of Pto get an approximate solution for the deformation
field. At first order for instance, one can find the most general solution of the linearised evolution
equations, and use it as the generic expression for f for the following steps; it is also possible
to restrict it to its growing mode, as done in the original Zel’dovich approximation |Zel’dovich,
1970]. However, observables that can be deduced from f are handled in a nonperturbative way,
as they are computed from this approximate f with their exact, functional expression. In this
Newtonian case, this applies most prominently to o, which is computed according to (1.37) from
the solution fto the linearised version of (1.39), without any further approximation. This allows
a strict mass conservation with this deformation field. Moreover, with this procedure, g is allowed
to enter a non-linear regime and have large departures from a homogeneous value, as is physically
observed in a Universe where structures are already well developed.

The Relativistic Zel’dovich approximation (RZA), as introduced in [Buchert and Ostermann,
2012] (see also Kasai [1995], Matarrese and Terranova [1996] without the formulation of all
equations in terms of a single variable), extends these ideas to the general-relativistic framework
by writing the 3+1 Einstein equations in terms of a single variable. The perturbation scheme
will similarly be set on this variable with respect to a FLRW background. The 341 equations
are then linearised to get a first-order (or beyond) solution for the perturbation variable, which
is used to compute in a nonperturbative way the observables from their functional expression
in terms of this variable. Such observables include in this case the energy density, but also, for
instance, spatial curvatures or metric distances.

1.4.2 A perturbation variable for the 341 Einstein equations
Geometric framework

The RZA framework presented here follows the conventions of Buchert et al. [2013], later ap-
plied and extended in [Alles et al., 2015, Al Roumi et al., 2017], as a follow-up to [Buchert
and Ostermann, 2012] with a small variant in the decomposition of the metric. Following the
assumptions of these papers, the model spacetime considered in the remainder of this section,
globally hyperbolic and obeying the Einstein equations, is filled with a dust fluid of 4—velocity u:
TH = putu” with a vanishing pressure and a rest mass density p associated with the conserved
current pu”. The fluid is also assumed to be irrotational, i.e., in terms of the dual 1—form u
to u, w Adu = 0. As seen in section 1.1, this is a necessary condition for the use of the fluid’s
4-velocity uw as the normal vector n to spatial hypersurfaces. The Frobenius theorem ensures
that it is locally a sufficient condition, and it will be assumed here that such (automatically
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space-like) hypersurfaces can be defined globally to build a spatial foliation and used within the
3-+1 formalism.

The remainder of this section uses this 3-+1 formalism as described in section 1.1, with the
above choice of fluid-orthogonal hypersurfaces, labelled by the coordinate ¢ with a choice of lapse
as N = 1. The latter is allowed by the vanishing of the spatial variation (1.6) of the lapse, since
the dust fluid flow is geodesic, u*V ,u,, = 0, and i = u. This also means that ¢ is a proper time
for the fluid, as the cosmic time of FLRW models (see section 1.2). A vanishing shift is also set,
fully specifying the degrees of freedom of the 3-+1 picture. The associated spatial coordinates X*
are comoving with the fluid flow and are thus the relativistic analogs of the Lagrangian positions
in the Newtonian setting, hence the use of the same notation. The partial time derivative in
the coordinate system (¢, X*) thus coincides with the proper time directional derivative along
the fluid lines, 0;|y» = u*0,, and will be denoted hereafter by an overdot. In the coordinates
(t, X*), the metric line element takes the form

ds? = —dt* + hy; dX'dX7 . (1.41)

The spatial coframes

The objects that will play an analogous role to the spatial derivatives of the Newtonian de-
formation field (Jacobian matrix) in the RZA are the components n% of spatial coframes n,
where a = 1,2,3 is a counting index. These coframes are 1-forms building a generalized (non-
coordinate) basis of the forms on the spatial hypersurfaces, and they are defined as satisfying

h=Gun"@n’” , Olxe(Gw) =0, (1.42)
or, in components on the (¢, X?) coordinate basis, with n¢ = n% dXx?,
9ij (t, X*) = hij(t, X*) = Gap(XP) % (8, XF) (¢, X7) . (1.43)
Here Gj;; are the initial spatial metric coefficients, that is
Gap(X") = 0,76, gij (1, X*) (1.44)

so that the spatial metric coefficients in the coframe basis G, are time-independent, and the
coframes themselves contain all the information about the time evolution of the spatial metric.
This is a generalization of the coframes that are more usually set to be orthonormal (Cartan
coframes 7% h = dg, 7 ® A°), as in [Buchert and Ostermann, 2012] for instance. Instead, the
convention of Buchert et al. [2013] as used here allows for a simpler form of the RZA, closer to the
Newtonian case. In particular, the coframes coefficients can be assumed (in compatibility with
(1.44)) to be initially n%(t;, X*) = 6% as were 0; f¢ in the Newtonian case, without restriction of
generality and in particular without constraining the initial spatial metric to be Euclidean.
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The dual basis of the coframes are the frames e, = e, i, satisfying

eainaj =6 et =0 (1.45)

J 7 a

Introducing the determinant of the coframe coefficients matrix,
— a 1 ijk a, b c
J = det(n%) = G Cabe € il Mk (1.46)

the coefficients of the frames can be expressed in terms of those of the coframes as

| g
e, = 5 Cabe ik nbjnck ) (1.47)

As the inverse metric is simply expressed in terms of the frames and the inverse of the initial
metric (G satisfying GG, = 62), g7 = G“beaiebj, it can also be expanded in terms of the
coframes and G®(X*).

The requirement (1.42) on the coframes allows for a freedom in their definition, in terms of a
spacetime-dependent ‘rotation’ (isometry of the initial metric, reducing to a rotation if the latter
is Euclidean), n® — A% (t, X*) n® with Ga(X*) A% (¢, X*) A%, (¢, X*) = Gq(X*). This freedom
can be used to set a symmetry condition on the evolution of the coframes:

Gapn’; = 0. (1.48)

This condition will simplify further expressions and, together with the initial choice n%(¢;, X k ) =
0%, fully determines the coframes. It is moreover required in order for the coframes to be a
relativistic equivalent of the Newtonian deformation field within this irrotational framework®.

Rewriting the 341 Einstein equations in terms of the coframes

Using the above symmetry condition, the spatial components of the mixed-indices extrinsic
curvature can be expressed from (1.13) as
7 10 1 ikl -a b c
’Cj:—eanj:—ﬁ(fabce 77]77 kM- (149)
The opposite of its trace coincides in this fluid-orthogonal setting with the expansion scalar
© = V,u' = V,n' = —K involved in the rest mass conservation equation, ¢ + 0© = 0. With
the coframe choice (1.42), J relates to the determinants G' = det(Gyp) and g = | det(gu,)| (which

*The Minkowski restriction |Buchert and Ostermann, 2012, Buchert et al., 2013] consists in assuming that
Glap can be taken as dq for appropriate fluid-comoving coordinates X and that the coframes are exact spatial
1—forms, n® = df® within each spatial slice. The spatial metric is then Euclidean, h = 6., df® @ df° (cf. (1.61)),
with components dqp in the coordinates z® = f°(t, Xk). The latter coordinates are then Eulerian coordinates in
this flat space, and in these coordinates, the above symmetry condition reduces in this restriction to a vanishing
rotational of the velocity field, 8f[“/8:vb] =0.
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in the present framework is also equal to det(h;j)), as J = 1/g/G. Hence, using moreover (1.13)
to relate g = hijhij and © = —K, one has

0g _J (1.50)

Vi T

As a consequence, the rest mass conservation equation can be exactly integrated as

ai(X")

Q(thk) = J(t,Xk) ;

0i(XF) = o(ty, XY . (1.51)

This is a direct analog of the Newtonian integral with the formal substitution Oy f* — n%.

Using the above expressions of ICij (from the 3+1 equation (1.13)) and p, the remaining 3+1
Einstein equations (1.14)-(1.16) can be re-expressed in terms of the coframes:

5 €abe ekt n“jnbkncl + €qpe €M najnbkncl = (AnGoi +AJ)5'; — IR ; (1.52)
€abe €M 400 0% = 167G + (2A —R) J ; (1.53)
D; (Eabc ekt ﬁajnbkncl) =Dy (Eabc et ??ambwcz) . (1.54)

This system is complemented by the symmetry condition (1.48). One can explicitly add the
(redundant) Raychaudhuri equation arising from the combination of the trace of the evolution
equation (1.52) and the Hamilton constraint (1.53) which eliminates the spatial Ricci tensor:

1 il -
5 €abe ekl n“inbkncl =AJ —4nGy; . (1.55)

Under this form, it is almost manifest that the above system of constraints and evolution
equations only depends on the coefficients 7% as dynamical variables, in addition to constrained
initial conditions. This dependency is only implicit for J, the spatial covariant derivatives and
the spatial Ricci tensor, but in the same way, they can all be expressed as functions of the
coframes alone.

This is indeed obvious for J from equation (1.46), whereas the covariant derivatives only in-
volve connection coefficients that can be expressed in terms of the inverse metric and derivatives
of the metric, thus in terms of the coframes and their derivatives. The spatial Ricci tensor is de-
duced (by contraction of the spatial Riemann tensor, of components Rijkl) from the commutation
of the spatial covariant derivatives of the coframes,

2D Dyn®; = Ry 1% (1.56)

implying
Rij = 2e," DDy’ . (1.57)
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As the frames, the spatial covariant derivatives, and the rising of indices are all expressed in
terms of the coframes, so are the spatial Ricci tensor with mixed indices Rij and the Ricci scalar
R = R';,. However, for compactness, these quantities will not usually be explicitly expressed in
terms of the coframes in the following.

As the main variable for the RZA, the coframes can then be perturbed with respect to a
reference (here FLRW) expression, similarly to the deformation field in the Newtonian case.

1.4.3 First-order expansion of the coframes and nonperturbative evaluations
A first-order solution for the coframes

Writing the coframes as a first-order deviation from their FLRW expression, one has
= alt) (% + PA(LX5)) (1.58)

with |P%| < 1 and P%(t;, X¥) = 0. The scale factor a(t) is initially equal to 1 and follows the
Friedmann equations (1.23) (1.24) for a dust fluid with some homogeneous energy density o (t)
evolving as oy (t) = a(t) 3 om(t;), and freely specifiable parameters og(t;), A and k.

The constraints and evolution equations (1.48),(1.52-1.55) can then be linearised in P¢% to
search for the general solution for the perturbed coframes at this order. Finding this general
solution would amount to solving a linear system of coupled partial differential equations in the
9 components of P2 in the variables (¢, X?).

Instead, following [Buchert and Ostermann, 2012, Buchert et al., 2013], this problem can be

simplified by restricting the general solution to the case where all components of P% have the

a
79

same time evolution as its trace P = §,°P%, considering that this trace part already captures
most aspects of the interactions with the matter sources and the development of inhomogeneities.
Such an assumption is possible due to the direct coupling between spatial derivatives of P9 and
its trace arising from the momentum constraint (1.54), linearised in P% and Ggp ~ dqp (for a small
initial intrinsic curvature) and time-integrated as d; P’, = 8; P with P’ = §, P%. This assumption
of direct coupling of all components extends the ‘slaving’ principle of the (Newtonian) Zel’dovich
approximation, where the velocity field is assumed to be proportional to the acceleration by a
choice of initial conditions selecting only the growing mode. As in this Newtonian case, only
the growing mode will be kept here in the solutions for the evolution of P itself, on top of the
assumption on the trace-free components, assuming the other modes to be already absent in the
initial conditions.

The evolution of the trace part is obtained from linearising the Raychaudhuri equation (1.55)

and applying an additional time derivative, which gives, in terms of H(t) = a(t)/a(t) :
) [ai‘” (15+2H(t)P—47rGgH(t)P>] ~0. (1.59)
As it follows a third-order linear ordinary differential equation, the solution for P is made of three
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modes, reducing to a sum of two independent modes after making use of the initial condition
P(t;, X*) = 0. As said above, as part of the approximation, the decaying mode is assumed to
vanish, so that P takes the separable growing-mode form P(t, X*) = £(t)2(X*) where 2 is
time-independent, otherwise arbitrary, and £(t) satisfies

£+ 2H(t)E — AnGop(t)(E+ K) =0
Et)=0; &) =1, (1.60)

with an arbitrary constant K indicating the absence of constraint on &(t;).
All components will thus take the form P%(t, X*) = £(¢)22%(X*) within the above as-
sumptions, giving the following prescription for the components of the first-order approximate

coframes:

0, X7) = a(t)[0% + £(1) 25(XM)] (1.61)

with £(t) obeying (1.60). The time-independent functions &% are arbitrary apart from their
need to comply with the constraints provided by (1.48) and (1.53)—(1.54) at initial time, at least
to first order.

Nonperturbative estimates for the density and other observables

Finally, all observables shall be derived non-perturbatively from their exact functional expression
in terms of the coframes, the latter being replaced by their prescribed value (1.61). The rest mass
density for instance is computed according to (1.51), which ensures exact mass conservation, as
in the Newtonian case. Introducing the following initial invariants, that are functions of the
spatial position only:

1 .

I = Seane €M 700,09 = P (1.62)
1 .

I1; = ieabc ezklyai(@bk Cl : (163)
1 .

L = e M PPN 2 = det(27) (1.64)

one gets within the above prescription (1.61) for n% :

- 01
O Bt EL + 200 + 8 10L)

(1.65)

This allows for large overdensities for a large enough £(t) at fluid elements where the denominator
becomes small.

The spatial curvature can be similarly evaluated from its coframe expression (1.57), and
metric distances would be computed from the exact expression of the metric components g;; =
a? Gap (6% +P% )(5bj +ij ), keeping the quadratic terms in P9 . It should be noted, however, that
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each quantity may in principle be evaluated from several different functional expressions (e.g.,
the scalar curvature, or the density, can alternatively be computed from the Hamilton constraint
(1.53)), giving different result since the coframes used only approximately solve the Einstein
equations. Comparing such different results provides a test of the quality of the approximation;
see, e.g., Doroshkevich et al. [1973] for such a comparison for density in the Newtonian framework.

Extending the scheme

The RZA can be further extended by carrying the expansion of the coframes beyond the first order
(see Alles et al. [2015]) or, within the first order, by relaxing the assumptions on the coupling of
all components of the perturbation to its trace. For the latter generalization, following [Al Roumi
et al., 2017], the traceless part Hij = Pij — Pdij/3 can be split into an electric part EHij and a
magnetic part? HHij, Hij = EHij+HHij. The electric part is required to satisfy the direct coupling
to the trace arising from the linearised momentum constraint, ajEHij = (%Hij = 20;P/3, by
having the same time dependence as P as a longitudinal mode. It is thus the part already
considered above. The magnetic part decouples from the trace and is transverse, 8jHHij =0. It
contains additional degrees of freedom that are related to the description of gravitational waves,
via the damped wave equation aQ(Hl:Iij +3H Hf[ij) — ok oL0; HHij = sij for some time-independent
source sij(Xk), and according to the detailed comparison of this field to the standard description
of gravitational waves made explicit in [Al Roumi et al., 2017|. Other possible extensions can
include the consideration of model fluids with nonzero pressure, to which part of this thesis has
been dedicated (see chapter 2).

Despite relaxing the assumptions on the deviation of the energy density and other observables
from homogeneity and thus probing further into the nonlinear regime of structure formation, the
RZA still relies on the prescription of a background. It might be modified into an iterative scheme
that updates the background at each time step to account for the non-FLRW metric evolution
(see Roy and Buchert [2012] for a description of deviations out of an updating background,
but without the use of the Lagrangian coframes as the main variable). This approach relies on
the definition of an ‘effective’ scale factor and associated effective FLRW metric at each step,
from an average of the inhomogeneous dynamics. Such descriptions in terms of averages are not
sufficient by themselves (without, e.g., associating them with approximations such as the RZA)
to give a local model of the evolving spatial metric and matter distribution. As I will detail now,
they provide, however, an efficient and background-free description of the effective dynamics on
a given scale (including a comparison to FLRW on the largest scales) as being affected by the
smaller-scale inhomogeneities.

4This split is not, in general, directly related to the electric and magnetic parts of the Weyl tensor. At first
order in the RZA, the magnetic Weyl tensor (in the fluid frame), for instance, depends on all components of the
perturbation field P?; (see Al Roumi et al. [2017] for details).
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1.5 Spatial averaging and backreaction from inhomogeneities

1.5.1 Averaging procedure

This section presents the spatial averaging framework for scalars and associated description of
the averaged dynamics of a spatial region introduced in [Buchert and Ehlers, 1997, Buchert,
2000] for dust fluids and generalized in [Buchert, 2001] for fluids with pressure. Following the
framework of both references, the model general-relativistic universe under consideration is filled
with an irrotational perfect fluid of 4—velocity u, and is described in an adapted 341 picture.

As for the RZA in the previous section, for such an irrotational fluid a foliation of spacetime
into fluid-orthogonal spatial hypersurfaces (n = u) is considered, and spatial coordinates X* are
chosen as being comoving with the fluid elements, so that the associated shift vanishes. As in
[Buchert, 2001], without further assumptions, the time coordinate t is freely chosen among the
possible labels that are constant on each spatial slice, so that the lapse N is only defined by the
constraint (1.6) on its spatial variations (with a(™ equal to the 4—acceleration @ = a* @, of the
fluid). In the coordinates (¢, X?), the line element takes the following form:

ds? = —N?dt? + h;; AX'dX7 | (1.66)

and the components of the 4—velocity v and its dual read, respectively:
Iz 1 .
ult = N,O,O,O i u, = (=N,0,0,0) . (1.67)

Such a 3+1 setting may be seen as a background-free, nonperturbative analog of the comoving
orthogonal gauge of Eulerian relativistic perturbation theory (c¢f. subsection 1.3.2).

Spatial averaging can then be performed over any given compact domain D lying within a
fluid-orthogonal spatial slice. This averaging domain is propagated between all slices via the
fluid flow, s.e. it is defined as a Lagrangian domain, which follows the fluid through its evolution.
This ensures the conservation of the collection of fluid elements it contains, and in particular of
the total fluid rest mass within D.

The Riemannian volume of the domain within a given spatial slice is given by
Vp(t) = / Va(t, X dBX (1.68)
D

where h = det(h;;), i.e., Vhd3X is the Riemannian spatial volume element in the fluid-
orthogonal hypersurfaces. The spatial average of a scalar ¢ over the domain at a given hy-
persurface is then defined as its volume average [Buchert and Ehlers, 1997, Buchert, 2000, 2001]:

) (t)EVlD /D Wt XIWh(t, XF)d3X | (1.69)
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the normalization ensuring that (1), = ¢ if ¢ is a constant or is homogeneous on the slice. ¢
being only used as a parameter, and the foliation being selected from a geometric requirement,
this definition is coordinate-independent.

This operation is only well-defined for scalars. A similar procedure for higher-type tensors
would additionally require a comparison of the values of a tensor at different events, hence
between different tangent or cotangent spaces (or higher-type tensor spaces), raising the issue
of the non-uniqueness of mappings between these different spaces. Accordingly, as in [Buchert,
2000, 2001], the problem of defining an averaging operation for tensors will not be addressed
here; see, e.g., Zalaletdinov [1992], Paranjape [2009], Korzyniski [2010] and references therein for

some proposals for such a formalism.

1.5.2 Effective dynamics of the region of averaging and backreactions

The overall evolution of the Lagrangian averaging domain D may be characterized by an effective
scale factor ap(t) as an estimate of its typical ‘size’ averaged over all directions at a given time,
defined from the volume at time ¢ and the volume Vp; at initial time #; as

Vp(t)
Vp

ap(t) = ¢

. (1.70)
In a strictly homogeneous and isotropic geometry, this would reduce to the FLRW scale factor
a(t) (normalized as a(t;) = 1) for any Lagrangian domain: differences in the evolution of ap(t)
with respect to such an FLRW scale factor will represent backreaction effects of inhomogeneities
within the domain on the domain’s dynamics.

These effects will be first described below for a pressureless fluid, with energy-momentum
tensor components 7T}, = o u,u,, following [Buchert, 2000]. In this case, as for the RZA frame-
work above (see subsection 1.4.2), t is chosen as a proper time for the dust fluid, reducing the
lapse to 1 and the line element to the simpler form (1.41).

Commutation rule for dust

Backreaction effects arise as a consequence of the nonlinearity of the local dynamical equations,
and of the lack of commutation of the spatial averaging operation and of the time derivative
along the fluid flow d/dt = O x+ (simply reducing to the time derivative for a purely time-
dependent function such as Vp(t), ap(t) or an average). The latter property is characterized by
the following commutation rule, expressed in terms of the expansion scalar of the fluid © = V u#
for any scalar ¢ [Buchert and Ehlers, 1997, Buchert, 2000]:

ORI IRCERORON o
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Unless © or ¢ is homogeneous on the t = e¢st slice, the correlation function on the right-hand

side is nonzero and there is non-commutation.

This rule can be shown by first considering the time evolution of the volume integral of a
scalar ¢ over the domain, (d/dt)( [, YVhd3X). Since D and the spatial coordinates X’ are
comoving with the fluid flow, the (compact) domain of integration in the spatial coordinates
space is time-independent for these spatial coordinates, and the integration and time derivative
d/dt = O¢|x» can be commuted. Further using the first equality in (1.50) obtained within the
same framework, © = h=1/2d(v/h)/dt since g = h, one gets

iéwx/ﬁd?’xz/pi(m/ﬁ) d3X

d
:/ <¢+w@> Vhd3X . (1.72)
p \ dt
Applying this formula to ¢ = 1 and dividing by Vp gives the rates of evolution of the volume

and the effective scale factor:

1 dvp 3 dap

Vp At ap dat O (1.73)

The combination of (1.72) for a given ¢ and of (1.73) gives the commutation rule (1.71) for ¢
from d (¥)p /dt = V' (d/dt)([p VR A3X) — (1) p V' dVp/dt.

Averaging the dust-source Einstein equations

The expansion tensor of the fluid is in general defined as the symmetrized fluid-orthogonal

projected gradient of the 4—velocity, ©,, = b’ b7,V ptis With b, = 6", +utu, the components

(p
of the fluid-orthogonal projection operator. The antisymmetric part bp[ubay]v,,ug defines the
vorticity 2—form components w,, and vanishes for the irrotational fluid considered here. The
expansion tensor can be split into its trace which is the expansion scalar, and its traceless part

defining the (symmetric) shear tensor:

ot =0

1
6,&1/ - §9bm/ T Oouw 0= Guu ; " ) u'uo-w/ =0. (1.74)

The latter is associated with the positive-definite shear scalar, 0 = 7,04 /2.

For the fluid-orthogonal foliation considered, b, = h",, and V,u, = V,n,, so that the
opposite of the extrinsic curvature coincides with the expansion tensor of the fluid, —K;; = ©;;
in spatial components while the other components vanish. In this situation, with N* = 0 and
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N =1 and within the dust fluid assumption, the 341 Einstein equations (1.13) (1.16) reduce to
6t]Xk hij = 2@@' ;
Ol xk©'; = —00"; — R, + (4rGo + N) 0" ;
2
362—%9:1&m@+2A—R;
D0k = DO .

The trace of (1.76) can be combined with the Hamilton constraint (1.77) to provide an additional
scalar equation, the Raychaudhuri equation:

L1
@+§@?+%2:—MGQ+A. (1.79)

This system can be complemented by the rest mass conservation equation arising from
V. IT* = 0 projected onto the fluid 4—velocity, giving yet another scalar equation:

0+00=0. (1.80)

The averaging operator defined hereabove can then be applied to the scalar equations (1.77),
(1.79) and (1.80). Using the commutation rule (1.71) and the scale factor evolution rate ex-
pression (1.73), one gets the following evolution equations for the effective scale factor [Buchert,

2000]:

SN2
1 1
ap 2 2
ap
3a— = —4nG (o)p + A+ QOp ; (1.82)
D
. a
(0)p +3-2 (0)p =0, (1.83)
ap
introducing the kinematical backreaction term,
_ 2 2
9 =2 ((6%)p = (©)3) —2(0%)y, - (1.84)

The average rest mass density conservation equation (1.83) is equivalent to the conservation
of the total fluid rest mass within the domain Mp = [, 0 VA d3X = Vp (0)p: dMp/dt = 0, as
a consequence of the fluid-comoving domain assumption.

Backreactions for a dust fluid
The system of averaged dynamical equations (1.81)-(1.83) exhibits several qualitative differences

with respect to the Friedmann equations (1.23)—(1.25) for a strictly FLRW model universe.
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One important difference is the dependence of each term (except A) on the averaging region,
hence on the scale considered or on the position of the domain with respect to over- and under-
dense regions. Hence the dynamics of ap, as well as the contributions (and even the signs) of
(R)p and Qp can vary with the region of averaging.

These equations also feature the kinematical backreaction term Op as an additional source to
the dynamics of ap. This term compares two positive contributions: the variance of the expansion
scalar and the average shear scalar. In an FLRW model, the former vanishes by homogeneity and
the latter is zero due to isotropy, implying the absence of kinematical backreaction. Qp is thus a
direct effect and a measure of inhomogeneity and anisotropy within the domain, with qualitative
consequences on the effective dynamics of the set of fluid elements considered. The acceleration
equation (1.82) shows that a positive backreaction for a given domain will contribute positively
to its effective scale factor acceleration, thus contributing to the role played by a positive A or
another description of an acceleration-inducing Dark Energy. Conversely, a negative backreaction
for another domain choice will contribute as an additional mass to the deceleration, playing
the role of a Dark Matter-like source. Such behaviours indeed arise in some inhomogeneous
cosmological models (see, e.g., Risidnen [2006] (in a Newtonian model), Buchert and Carfora
[2008], Chuang et al. [2008], Wiegand and Buchert [2010]; and Buchert and Résénen [2012] for

a review).

The contribution from the averaged intrinsic spatial scalar curvature also differs from FLRW
models. The local curvature is inhomogeneous, being coupled to the matter distribution, and
its time evolution is not globally constrained: while a curvature Ry = 6k/a(t)? is accounted for
in the Friedmann equations, in general (R) will be domain-dependent and needs not evolve as
l/a%. Its nontrivial evolution is directly coupled to Qp. This can be seen by combining the
time derivative of (1.81) with (1.82), using (0)p (t) = (0)p (ti)/ap(t)® as an integral of (1.83).
The result amounts to expressing the compatibility between the evolution equations (1.81) and
(1.82) as the following integrability condition:

(a%Q9p) + ai— (ab (R)p) =0. (1.85)

&~

. ap . ap 1

6 — R 2—(R)p=—+

Qp + aDQD+< )p+ aD< )D a8

This differs from the FLRW models where the compatibility between the homogeneous Hamilton

and Raychaudhuri equations (1.23)—(1.24) is equivalent to the energy conservation equation
(1.25). Here, the three average equations (1.81)—(1.83) are independent.

The different dynamics of the average (as opposed to homogeneous) curvature can thus be
seen as another backreaction effect of the inhomogeneities within D on its evolution. This can
be made explicit by rewriting the evolution equations for ap (1.81), (1.82), and the integrability
condition (1.85) combined with the average energy conservation equation (1.83), respectively,
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under an effective non-dust Friedmannian form [Buchert, 2001, 2005]:

ap\ 3k
3<D) =8nG el 4+ A — —ZD ; (1.86)
ap af
ap D D
3a— = —4nGegg + 3pegg) + A (1.87)
D
. ap
ng+3£(egjff +ph) =0, (1.88)

where kp is a domain-dependent constant parameter. This system is formally equivalent to the
Friedmann equations and FLRW energy conservation law (1.23) (1.25) with domain-dependent

effective perfect fluid source terms € (t) and pZ(t), defined as follows:

1 1

D = — — ; 1.
ot = (00 = 15,59 T 15 VP (1.89)
1 1
D _ , 1.
Peit = 15690 T g5V (1.90)

In this rewriting, the averaged curvature contribution has been explicitly split into a Friedman-
nian term decreasing as 1/a2, and the deviation with respect to this behaviour as a curvature
backreaction Wp, (R)p, (t) = 6 kp/ap(t)? +Wp(t), where kp may for instance be set from initial
conditions in the domain, kp = (R) (ti)/6.

Perfect fluids with pressure

In the more general case of an irrotational perfect fluid with nonzero, inhomogeneous pressure
described in a fluid-orthogonal foliation (within the setting exposed in subsection 1.5.1), as
considered in [Buchert, 2001], the acceleration of the fluid and the resulting inhomogeneous
lapse (which cannot be set to 1) have to be accounted for.

In this setting, the lapse expresses the relative rates of the proper time 7 measured by the
fluid elements and the coordinate time ¢, along the fluid worldlines: N = dr/d¢, where d/dt is
still defined as the coordinate time derivative along the fluid flow 9| y«. This difference of time
rates affects the volume and effective scale factor expansion rates and the commutation rule for
a given scalar 1, which respectively become [Buchert, 2001]

1dvp_ 3 dap
VD dt N ap dt

§ (- (5), = (ves), - (ve), (), am

In these equations, © is thus replaced by the rescaled rate NO: since © expresses the local

= (NO)p ; (1.91)

volume expansion rate per unit fluid proper time, N© = O (dr/dt) is the local volume expansion
rate per unit coordinate time ¢.
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The evolution equations for the effective scale factor arise from the averages of the scalar
parts of the 3+1 Einstein equations for a perfect fluid, subsequently making use of the above
commutation rule and scale factor evolution rate. They take the following form for nonvanishing
pressure (cf. Buchert [2001], with here the inclusion of a nonzero cosmological constant):

1 dap 2 1 L5

3<aDdt> = 81G (N2e), + A(N?), — o (N*R)p, — 5Op ; (1.93)
3 dop 4w A(N*), +Qp+P 1.94
e (N*(e+3p))p+A(N*),+Qp+Pp, (1.94)

with a rescaling of the sources, of A, and of R by a factor N2, a modified kinematical backreaction
QD and an additional dynamical backreaction term 'PD

<<N2®2>D - <N@>$D) —2(N%?%), i Pp=(N>V.a"), <@ (Z]j>p . (1.95)

Op =

[SVIN )

These equations are covariant, but individual terms (especially d?ap/dt? and Pp due to its
second term) depend on the choice of t as a parametrization of the hypersurfaces and need to be
interpreted in direct relation to the chosen ¢ in specific applications.

The combination of (1.94) with the time derivative of (1.93) gives the corresponding integra-
bility condition,

6 dap

~ 2 d
COp+ PG, 1 C(NR), + Sy

4 da d

= 167TG< (N2€),, + 3 da” (N2 (et >D> . (1.96)

Similarly to the dust case, the above averaged equations may as well be rewritten under an
effective Friedmannian form (see Buchert [2001], in the A = 0 case). They would now feature
rescaled local energy sources in the effective sources, additional contributions of <N 2p>D and of
Pp in the effective pressure term, and an inclusion in both effective sources of the deviation of
the cosmological constant contribution A (N?)_ (t) to (1.93)—(1.94) from an actual constant.

With the assumed perfect fluid form of the energy-momentum tensor, T}, = € u,u, + p by,
the local energy conservation equation arising from V,TH" projected along the fluid 4—velocity
reads u"0,e + O(e+p) = 0. Rescaling it by N? before applying the averaging operation and the
commutation rule (1.92) gives the averaged energy conservation equation as another expression
for the right-hand side of the above integrability condition:

— (N?e), + ——— (N*(c +p)), = (NO)p (N?p), — (ON?p), +2 <N(2]Ze> . (1.97)
D
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Applications and generalizations

The systems of averaged equations presented above may be seen as balance equations describ-
ing and comparing all contributions to the overall dynamics of a finite, inhomogeneous region,
introducing measures of the dynamical effects of such an inhomogeneity under the form of back-
reaction terms. These systems, nevertheless, feature only averages and are based on the scalar
parts of the 341 Einstein equations only. They are consequently not closed, even once a local
equation of state is assumed for the sources, and do not keep track of the whole local information.
They are not sufficient to solve for the local dynamics such as the formation of structures, and
to determine for instance the amplitude of the backreactions as a function of time. This is to
be achieved in combination with assumptions on a cosmological model, which would ideally be
nonperturbative and/or background-free.

The relativistic Zel’dovich approximation may for instance be used to evolve initial conditions
which can be set as fluctuations around a homogeneous matter distribution (e.g., modelling the
distribution near the last scattering epoch deduced from CMB observations), restricting the
attention to dust fluids in the framework presented in section 1.4 or applying the generalization
of the RZA to fluids with pressure which will be introduced in chapter 2. Alternatively, one
may use as cosmological models exact inhomogeneous solutions to the Einstein equations (in
particular the Lemaitre-Tolman-Bondi [Bondi, 1947] and Szekeres [Szekeres, 1975] models; see,
e.g., Bolejko et al. [2011], Sussman [2011, 2014] and references therein for applications to the
study of kinematical backreaction), silent-Universe models (e.g., Bolejko [2018]), patchings of
exact solutions (e.g., Bolejko and Célérier [2010], Lavinto et al. [2013] and references therein),
or phenomenological models such as the Timescape model [Wiltshire, 2009, 2011] or multi-scale
models |Buchert and Carfora, 2008, Wiegand and Buchert, 2010]. The recently emerging fully
relativistic cosmological simulations [Bentivegna and Bruni, 2016, Mertens et al., 2016, Giblin
et al., 2016, Macpherson et al., 2019], based on the integration of the 3+1 Einstein equations, are
also promising frameworks for the investigation of backreaction effects® in realistic inhomogeneous
model universes.

The framework of this section can be further extended to spatial averaging in spatial foliations
that are not required to be orthogonal to the 4—velocity of the sources. This allows for the
description of more general fluid flows which may have a nonzero vorticity, and of non-perfect
fluid energy-momentum contributions which in general create vorticity. A major part of this
thesis has been dedicated to proposals for such an extension that preserve the main ideas of
the above schemes (such as a fluid-comoving averaging domain). These results will be presented
in chapters 3 and 4, the latter focussing on a manifestly 4—covariant writing of the averaged
equations.

5The more widespread Newtonian simulations, on the other hand, are usually insufficient for this investigation
due to the periodic simulation box used (a 3—torus topology) for which the Newtonian equivalent of the kinematical
backreaction vanishes [Buchert and Ehlers, 1997]. Moreover, spatial curvature coupling dynamically to the general-
relativistic backreaction should play an important role [Buchert and Carfora, 2008, Roukema et al., 2013] which
is not accounted for by the Newtonian framework.
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Chapter 2

A relativistic Lagrangian
approximation for fluids with pressure

The RZA (Relativistic Zel’dovich Approximation), as introduced in [Buchert and Ostermann,
2012| and further refined in [Buchert et al., 2013, Alles et al., 2015, Al Roumi et al., 2017], recalled
above in chapter 1, section 1.4, considers a model universe sourced by an irrotational dust fluid
described in its spatial rest frames. This was also an underlying assumption in the relativistic
Lagrangian approximation schemes suggested in [Kasai, 1995, Matarrese and Terranova, 1996].
This is a rather sensible assumption for the modelling of large cosmological scales in the late
Universe. This era is dominated by matter with nonrelativistic velocities, so that its pressure is
much smaller than the energy density associated with its rest mass, and non-negligible pressure
gradients and vorticity are mostly restricted to small-scale collapsing or collapsed regions.

A more comprehensive model for structure formation would require the inclusion of a nonva-
nishing pressure. This would allow for the handling of earlier epochs where radiation is dominant
or cannot be neglected. One would also be able to probe structure formation beyond the initial
gravitational collapse stage and account for the appearance and stabilization of virialized matter
structures such as galaxy clusters within the studied domain. This can impact the dynamics of
the domain, especially when it already lies at the scales corresponding to these objects.

The main limitation of Lagrangian approaches is the occurrence of shell-crossings: fluid
elements are followed through their evolution, but their worldlines can cross. This leads to a
degeneracy in the definition of the 4—velocity field and the fluid flow at the event where this
shell-crossing occurs. The degeneracy remains at later times as several crossing flows would
need to be modelled, a phenomenon known in Newtonian contexts as multistreaming or velocity
dispersion, and that still occurs in a general-relativistic framework. Hence in the corresponding
region of spacetime, the single-fluid model and the associated Lagrangian picture are ill-defined
and lead to singularities in matter density as well as in geometric quantities such as spatial
curvature. A more involved multi-fluid or phase space approach would be more suitable for the
description of these regimes.
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Shell-crossings are naturally expected for irrotational dust models in collapsing regions. How-
ever, when pressure is not exactly zero (as for baryonic matter), pressure gradients will become
very strong in a collapse and can oppose it, stabilizing the structure and avoiding shell-crossings.

Moreover, the velocity dispersion in Newtonian dynamics may be modelled in a first approx-
imation by an effective pressure gradient term in the Euler equation, with increasing validity
as more shell-crossings occur and the distribution of velocities becomes more isotropic (Binney
and Tremaine [2008], Adler and Buchert [1999]; Buchert and Dominguez [2005] and references
therein). The effective fluid described in this way will then itself better avoid shell-crossings due
to the effective pressure gradient, allowing for a Lagrangian description for longer times while
already modelling velocity dispersion and the formation of virialized objects. The validity of the
extension of such an effective description of velocity dispersion to a general-relativistic setting
would be an assumption. However, for nonrelativistic velocities as for Dark and baryonic Matter
in the late Universe, it may be a reasonable approximation since the direct contribution of the
effective pressure into the energy sources (which may bias the dynamics) will remain negligible
with respect to the rest mass density. Hence, the main dynamical contribution will still be the
effective pressure gradient as in the Newtonian framework.

Vorticity also plays a role on small scales and can contribute to the avoidance of shell-crossings
by angular momentum conservation. I will not consider it in this chapter for simplicity, since a
nonzero vorticity implies further major changes to the RZA framework, with the necessary use
of more general spatial slices, tilted with respect to the fluid flow. This will be addressed in a
more general setting and in relation to the averaging problem in the next chapters.

In this chapter, T will show how the relativistic Lagrangian framework of section 1.4 and
the RZA may be modified and extended to account for irrotational inhomogeneous barotropic
fluids® described in a fluid-orthogonal foliation, and for the 4—acceleration and inhomogeneous
lapse associated with their pressure gradients. This broadens the range of these formalisms to
the radiation-dominated era and to small-scale baryonic matter dynamics. Under the above
assumption of the validity of a general-relativistic modelling of velocity dispersion by an effec-
tive pressure, this will also be applicable to the regimes of structure formation where velocity
dispersion plays an important stabilizing role. Numerical results are presented for illustrative
toy-models of the latter situation, along with analytic solutions for linear pressure energy den-
sity relations applicable to radiation. The recovery of the dust case and of Newtonian results
in Lagrangian frameworks is considered. Building upon [Al Roumi et al., 2017] for dust, the

5The very assumption of the energy-momentum tensor being that of a perfect fluid with a local thermodynamic
equation of state does imply a restriction on the possible classes of spacetime metrics. As discussed in detail in
Krasinski et al. [1997], the sources computed from a given spacetime metric and the Einstein equations do not
always allow for the definition of a specific entropy which complies with the Gibbs equation, and thus local
thermodynamic equilibrium may not hold. A barotropic relation between the sources is, of course, even more
restrictive in this sense. This should be kept in mind before applying the formalism presented below to a specific
class of spacetime metrics. Note, however, that the Lagrangian approximation scheme below determines a time
evolution for the metric, so that only the class of metrics for the initial data needs to be restricted when imposing
physical assumptions on the local thermodynamic relations within the fluid.
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behaviour of the traceless part of the perturbation field in fluids with pressure is also discussed,
and a split into electric and magnetic parts is shown to still be possible despite a similar time
behaviour for both the trace and the traceless parts of the perturbation being no longer possible.
As for the dust case, the electric and magnetic components of the traceless part defined in this
way are not directly related in general to the electric/magnetic split of the Weyl tensor.

These results, presented below, were obtained as part of a collaboration with Yongzhuang Li
and David Wiltshire, University of Canterbury (New Zealand), and Thomas Buchert. The
remaining of this chapter corresponds to the contents of our paper which has been recently
published as |Li, Mourier, Buchert, and Wiltshire, 2018|.
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Lagrangian theory of structure formation in relativistic cosmology.
V. Irrotational fluids

Yong-Zhuang Li', Pierre Mourier?, Thomas Buchert?*, and David L. Wiltshire!
LSchool of Physical & Chemical Sciences, University of Canterbury,
Private Bag 4800, Christchurch 8140, New Zealand and
2 Univ Lyon, Ens de Lyon, Univ Lyonl, CNRS, Centre de Recherche Astrophysique de Lyon UMRS5574, F-69007, Lyon, France

We extend the general relativistic Lagrangian perturbation theory, recently developed for the
formation of cosmic structures in a dust continuum, to the case of model universes containing a single
fluid with a single—valued analytic equation of state. Using a coframe—based perturbation approach,
we investigate evolution equations for structure formation in pressure—supported irrotational fluids
that generate their rest—frame spacetime foliation. We provide master equations to first order for the
evolution of the trace and traceless parts of barotropic perturbations that evolve in the perturbed
space, where the latter describes the propagation of gravitational waves in the fluid. We illustrate
the trace evolution for a linear equation of state and for a model equation of state describing isotropic
velocity dispersion, and we discuss differences to the dust matter model, to the Newtonian case, and

to standard perturbation approaches.

PACS numbers: 98.80.-k, 98.80.Es,04.20.-q,04.20.Cv,04.25.Nx,04.30.-w

I. INTRODUCTION

Relativistic cosmological perturbation theory is based
on evolving the Einstein equations with a global folia-
tion of the spacetime metric, via the 3 + 1 formalism
[7, 41]. In the standard approach a spatially homo-
geneous and isotropic Friedmann-Lemaitre-Robertson—
Walker (FLRW) geometry is assumed as the unperturbed
global background spacetime, and Einstein’s equations
are then solved to some order on this predefined back-
ground [45]. The standard approach is Eulerian in the
sense that perturbations are represented and propagate
on this background that corresponds, in the Newtonian
limit, to Eulerian perturbation theory. In this latter case,
a perturbation method for the density and velocity fields
is used to solve the Euler—Poisson system of equations
that governs the fluid evolution [10]. Cosmological struc-
ture formation in the nonperturbative regime is also gen-
erally modeled within the Newtonian framework.

An alternative approach to structure formation has
also been developed, principally in the Newtonian regime,
which is directly tied to fluid elements. It is consequently
known as Lagrangian perturbation theory [8, 9, 11—
17, 26, 27, 33, 52, 53, 56, 57, 71, 78] to distinguish it
from the Eulerian approach based on coordinates on an
assumed global background. The Lagrangian approach
uses a single perturbation variable, the fluid’s deforma-
tion field. This gives it the advantage of also applying in
the nonlinear regime, where Eulerian density perturba-
tions are large. In recent years, Lagrangian perturbation
theory has been generalized to general relativistic cos-
mologies with a dust continuum [L1, 1.2, 1.3, L4]; see also
[37, 44, 50, 58, 59, 63, 64].

In the Newtonian regime, an extension of Lagrangian

*Corresponding author. buchert@ens-lyon.fr

perturbation theory to fluids with dynamic pressure was
considered first in terms of isotropic pressure [6]. The
resulting Lagrangian perturbation equations have been
solved up to second order for a polytropic fluid [51, 67].
For third order perturbative solutions in Newtonian La-
grangian perturbation theory with pressure, see Ref. [66].
Models with isotropic pressure can also be considered
as phenomenological models for the generally anisotropic
pressure originating from the velocity dispersion of dust
particles [47-49], by taking velocity moments of the colli-
sionless Vlasov equation [24, 25]. For a sequence of mod-
eling assumptions used in nonperturbative extensions of
Lagrangian perturbation theory, see the summary [21].

In this paper we will extend relativistic Lagrangian
perturbation theory for a dust matter model [L1, L2, L3,
L4] to the case of irrotational perfect fluids, and also to
cases that are relevant for the modeling of multistream
regimes where the dust approximation breaks down. This
will provide a framework not only to deal with a relativis-
tic generalization of Newtonian Lagrangian perturbation
theory with pressure at late epochs, but also to the fully
relativistic situation of the early Universe.

A primary motivation for such an investigation is to
establish a framework which is better suited to stud-
ies of the backreaction of inhomogeneities in cosmology
as compared to standard perturbation theory. In par-
ticular, standard cosmological perturbation theory con-
ventionally assumes that average cosmic evolution is ex-
actly described by a solution to Einstein’s equations with
a prescribed energy—-momentum tensor on a global hy-
persurface irrespective of the scale of coarse—graining of
the matter fields. No fundamental physical principle de-
mands such an outcome [76].

The scalar averaging scheme introduced in [19, 20, 22,
30] is an example of an approach to backreaction of in-
homogeneities in cosmology, in which the Einstein equa-
tions are assumed to hold on small scales, where they
are well-tested, but not for the average cosmic evolu-



tion on arbitrarily large spatial scales. This is a con-
sequence of the fact that a generic averaging operation
includes nonlocal fluctuation terms, and it should not be
confused with modified gravity approaches which change
the Einstein-Hilbert action. A variety of phenomenolog-
ical interpretations of the Buchert scheme are possible
[28, 29, 46, 61, 62, 72-75, 79], since additional ingredi-
ents are required to relate statistical quantities to phys-
ical observables determined from our own cosmological
observations.

To date, no phenomenological approach to backreac-
tion has fully utilized the general scalar averaging frame-
work for perfect fluids [20]. In the timescape scenario [73—
75], solutions to the corresponding system of averaged
scalar equations have been given with matter and radi-
ation [31] extending smoothly into the early radiation—
dominated epoch in the early Universe. However, in de-
riving these solutions it was assumed that backreaction is
insignificant before photon—electron decoupling, so that
backreaction involving pressure terms was neglected.

Neglecting backreaction in the primordial plasma may
seem to be a reasonable approximation for the evolu-
tion of the background universe to leading order, given
that it is extremely close to being spatially homogeneous
and isotropic at early times. However, backreaction can
nonetheless make a significant difference when consid-
ering the growth of perturbations. In particular, even
if the difference from the Friedmann equation is of or-
der 107° as a fraction of energy density at decoupling,
this is nonetheless of the same order as the density per-
turbations. A recent study of Cosmic Microwave Back-
ground (CMB) anisotropies in the timescape model found
that neglecting such small differences in initial condi-
tions at last scattering leads to systematic uncertainties
of 8-13% for particular cosmological parameters at the
present epoch [54]. This remark applies to the conserva-
tive assumption that the background universe does not
already contain backreaction arising from earlier epochs
that could be compatible with large—scale homogeneity
and isotropy [28].

For these reasons, we desire a new approach to cosmo-
logical perturbation theory which is intrinsic to the fluid
and not anchored to an embedding space. Relativistic
Lagrangian perturbation theory represents a promising
avenue, as it is intimately tied to physical particles. To
proceed to a fully realistic theory will require important
steps beyond those which we investigate in this paper.
Such steps will include:

e An extension from one fluid to the many fluids per-
tinent to the early Universe, which requires consid-
ering a tilt between various fluid flow vectors and
the normal to the spatial hypersurfaces;!

1 Note that in the standard approach, the same FLRW frame is
used for different matter components. (Even in this idealized case
there are important differences to be respected for the different

e Identifying relevant physical scales and volume par-
titioning the model universe into regions whose
average evolves by averaged dynamical equations,
rather than by global Friedmann equations;

e Aiming at a background-free description. While
perturbations are still formulated in the present pa-
per as deviations from a fixed background cosmol-
ogy, a general volume partitioning can be imple-
mented without referring to a background [23, 72].

As a first step towards these goals, in the present paper
we will firstly consider relativistic Lagrangian perturba-
tion theory for the same system that was considered in
Ref. [20], namely a single component perfect fluid with
barotropic equation of state. We will also include an ex-
plicit cosmological constant term.

This paper is organized as follows. In Section II we
employ a 3+ 1 formalism [7, 41] with Lagrangian spatial
coordinates, presenting the general framework and foli-
ation structure for a general irrotational matter model.
We then restrict our attention to a barotropic fluid and
discuss in detail the fluid variables and their equation of
state. In this context, in Section III we introduce Car-
tan’s coframe formalism, proceeding with the relativistic
Lagrangian perturbation approach. We develop the first—
order Lagrangian scheme and derive master equations for
the trace and trace—free parts of the perturbation field.
In Section IV we apply the first—order Lagrangian scheme
to particular matter models, allowing us to explicitly de-
rive solutions for the trace part, and we illustrate and
discuss the results. Particular solutions for the gravi-
toelectric traceless part are studied in Appendix A. We
summarize our main results in Section V.

II. SPACETIME FOLIATION STRUCTURE
AND 341 EINSTEIN EQUATIONS

In this paper we will consider a model universe con-
taining a single irrotational fluid, so that a foliation of
spacetime into flow—orthogonal hypersurfaces can be in-
troduced.

A. Decomposition of Einstein’s equations for
flow—orthogonal hypersurfaces

The irrotationality assumption on the fluid amounts to
the existence of two scalar functions, N and ¢, such that
the 1—form dual to the normalized 4—velocity vector u*
of the fluid can be written as:?

w,=—No,t 3  N:=(=0"a,t)""*. (1)

matter components [70].)

2 In the convention we use here, greek letters u, v, - - - are spacetime
indices running from 0 to 3, while lowercase latin letters i, j, - - -
are spatial indices running from 1 to 3. We use units in which
¢ =1, if not otherwise stated.



The level sets of t then define flow—orthogonal hyper-
surfaces, labeled Y;, which foliate spacetime, with unit
normal v, utu, = —1. We will now follow the 3 + 1
formalism [7, 41] and define our time coordinate as coin-
ciding with this function ¢. In this case, N (¢, z%) is the
lapse function.

In addition, we choose the spatial coordinates to be
spatial Lagrangian (or comoving) coordinates, denoted
X that are assumed to be constant along each flow line.
In the set of coordinates (X#) = (¢, X*), the components
of the fluid 4—velocity vector and its dual are then re-
spectively:

1

u/“‘: _(1’070’0) ;

N Uy = (7N707070)7 (2)

while the line element can be written as
ds® = g, dAXHdXY = —N?dt? + g;; dX'dX7 . (3)

Here, g;; corresponds both to the spatial coefficients of
the 4—metric g,,, and to the components of the 3—metric
that it induces on the hypersurfaces ;. Introducing the
projector onto ¢, hyy = guw + uyu,, this 3—metric is
indeed

hij = guyh’uih])j = Gij - (4)

The spatial metric and the lapse function N together en-
code the inhomogeneities. (We will later use the more
elementary coframe coefficients instead of the 3—metric
coefficients.) We use R’ ; to denote the Ricci tensor coef-
ficients of this spatial metric, with R the corresponding
Ricci scalar.

Without loss of generality, the energy—momentum ten-
sor of the fluid is given by

T,uu - (6 +p)u,uuu +pg;u/ + iy + qultly + quy, (5)

where 7, is an anisotropic pressure, with m,,; = 0,
utm,, = 0 and 7, = 0, and ¢, the heat flux, with
quut = 0.

Introducing the expansion tensor (as minus the extrin-
sic curvature) of the hypersurfaces,

“w

1
@7,] = V,,n#h#ih'/j = Watglj 3 (6)

Einstein’s equations with a cosmological constant may
be cast into a set of constraint and evolution equations.
The constraint equations are the energy and momentum
constraints:?

R+60%-0,07, =167Ge + 2 ;
O — 9 = —8nGy; .

(7)

Jgllé

3 The symbol || denotes the covariant derivative with respect to
the 3—metric h;;. When applied to scalars it reduces to a partial
derivative, denoted |, with respect to the Lagrangian coordinates,
Xt

The propagation equations are given by

O =onY

NT'9,0, = — 00", — R, + A, (8)
+ 447G [(6 - D) (5ij + 2772-] + A(Sij ,

t 6tgk] 3

where a, == u"V, u, = N’lNH# is the covariant accel-
eration of the fluid (with V denoting the 4—covariant
derivative), and A’; := a’; + a’a; = N‘lN”iHj. Com-
bining the trace of the second equation with the energy
constraint yields the Raychaudhuri equation:

1
N~19,0 = —§®2 —20% —4nG(e+3p) + A+ A, (9)

where A := A%, = V 0" = N‘lN”ZHi.

With the spacetime described by the given metric, the
energy—momentum conservation laws are expressed as
follows:

e+ NO(e+p)=—-N (qﬂllu + 2¢"a, + alwﬂ'””> ; (10)
(e+p)au+p.=— (WHVHV + ayﬂiw)

4
- (ge Qu+q o +u"Vy,q, —q"a, uu> . (11

In what follows, we will specialize to the case of isotropic
pressure, 7,, = 0, and vanishing heat flux, ¢, = 0. Note
that with these assumptions we do still allow for some
nonperfect fluids, since p is not necessarily the local ther-
modynamic equilibrium pressure [38]. Such a restriction
is required here since both extra terms in general create
vorticity, which cannot be covered by the class of flow—
orthogonal foliations considered in this work.

Let us illustrate this by considering more closely the
irrotationality condition for a fluid with negligible heat
flux, ¢, = 0, to see how this condition constrains the
equation of state and the anisotropic pressure. The van-
ishing of the vorticity 2—form implies vanishing of the
antisymmetrized projected gradient of the acceleration,
) = 0, since a, = (In N)j, from (1), being a conse-
quence of the existence of the fluid—orthogonal foliation.
From this, one obtains through (11) the following con-
straint on the energy—momentum components:

€|l Pl + (€ + Py h” Vo,
—(e+p) WP, 07V, VerT, =0, (12)

Since V7, = 0 would imply the vanishing of the right
hand sides of (10)—(11), an anisotropic pressure that does
contribute to the dynamics will satisfy V,7*, # 0 and
thus will not fulfill the above condition in general, pro-
ducing a vortical flow. Conversely, a barotropic fluid flow
with 7, = 0 and an effective equation of state of the
form p = [(e), automatically satisfies the above con-
straint. Moreover, for such a fluid, (11) allows one to



write the acceleration as a flow—orthogonal projected gra-
dient, and it will indeed obey the relativistic equivalent
of the Kelvin—Helmholtz theorem, so that irrotationality
will be preserved along the flow lines [32, 38].

B. Barotropic perfect fluid spacetimes

For the remainder of this paper we will only consider
fluids with ¢, = 0 and 7, = 0. The energy-momentum
tensor (5) then reduces to perfect fluid form:

T;w = (6 +p)uuuu + DP9 , (13)

while its conservation equations (10)—(11) become, re-
spectively

Oie+ NO(e+p)=0; (14)
_ _ P
o= -2 (15

As a further restriction we will assume that the fluid
flow is barotropic, i.e., we assume a local relation of the
form p = B(e) to effectively hold throughout the entire
fluid,* that we will henceforth call the equation of state or
EoS. As noted earlier, such a relation will ensure that the
flow remains irrotational. For such a fluid, setting some
reference constant energy and rest mass density values
€1, 01, we may use the EoS to define a formal rest mass
density o(¢) and a related specific enthalpy h(e) — as an
injection energy per fluid element and unit formal rest
mass [42] — respectively, by

0:=F(e) = Qlexp/eﬁg(x); (16)
h(e) := %(ﬁe()e) = E—gp . (17)

The energy—momentum conservation equations (10) and
(11) then, respectively, provide a conservation law for o,

o+ NOo=0, (18)

and a relation between the specific enthalpy (17) and the
lapse,

4 Considering the local dynamical solution for these variables,
there is always a freedom of integration constant that depends
on the Lagrangian coordinates, i.e., on the particular fluid ele-
ment. We assume here that the same relation holds for all fluid
elements. Only this assumption makes the dynamical relation
an apparent equation of state that is valid throughout the fluid
flow. All related variables then also depend on this assumption,
which is a restriction imposed on initial data.

By an appropriate choice of the hypersurface-labeling
function ¢, the lapse can thus be rescaled so that [20, 38]

(20)

If we assume that the fluid remains in thermodynamic
equilibrium locally, and if it has a nonvanishing rest mass
density, then this density will follow the same evolution
law (18) as o = F(¢), by rest mass conservation. This for-
mal o and the actual rest mass density will then coincide
up to a possible different spatial dependence (cf., foot-
note 4). These two quantities may be made equal by a
suitable choice of initial conditions for the rest mass den-
sity or local thermodynamic equilibrium assumptions.®
This would then ensure the validity of the interpretation
of o and h as the physical rest mass density (or particle
number density) and specific enthalpy of the fluid, re-
spectively. We will not, however, make such assumptions
in the following Section III, to keep its level of general-
ity. This will allow us to consider the case of a zero rest
mass fluid (for which F(e) # 0 and h(e) are still well-
defined), as well as that of a nonzero rest mass density
with less constrained initial conditions. It will also allow
us to consider the variable p as an effective pressure term
— e.g., modeling velocity dispersion — instead of the lo-
cal thermodynamic equilibrium pressure. For the general
treatment including these cases it will suffice to formally
define p and h from Equations (16)—(17) using the single
barotropic assumption p = 3(e). We follow the notation
of Ref. [20] here.

5 Let us take the local state of the fluid to belong to a thermody-
namic Gibbs space admitting the equation of state u(s, v), where
s is the specific entropy, v is the specific volume and u = ev is
the specific internal energy. If we now assume that p is the
local thermodynamic equilibrium pressure of the fluid, it can
then be expressed as p(s,v) = —du/0v. Provided that a specific
equation of state does not render the above relations degenerate,
then these relations may be inverted to provide v(e, p). Within a
barotropic flow satisfying p = B(¢), the actual rest mass density
v~1 thus only depends on the energy density e, which fully de-
termines its initial conditions. From the conservation equations
of both quantities, die/(e + B(e)) = —NO = ¢ (v~1)/v~1, this
dependency must be v~ = F(e), for © not identically vanishing,
up to a constant prefactor which can be absorbed in the choice
of p1. Hence, in this case, F(¢) is indeed the rest mass density of
the fluid with no further loss of generality. Also note that under
the same assumptions, s is also a function of ¢, preserved along
the flow lines as the flow is adiabatic: 9¢s = 0 = (ds/de) Oxe,
while Oe is not identically vanishing. The flow is thus isen-
tropic, s being a constant s; that depends neither on time nor
on the fluid element. The barotropic relation then corresponds
to the equation p(e, s) deduced from the thermodynamic equa-
tion of state, and taken at constant s, 5(e) = p(e, s = s1) (see
[32, 38, 39, 42, 43, 65]).



III. LAGRANGIAN PERTURBATION SCHEME

In this section we will introduce the coframe formalism
to describe spacetime, which is a set of four deformation
1—form fields dual to a generally noncoordinate basis of
vectors at every point of the manifold [35, 36, 77]. A gen-
eral relativistic version of a coframe—based perturbative
approach for an irrotational dust continuum has been
proposed in Ref. [44], developed further in Ref. [50] and
in final form, featuring only the coframes as the single
perturbation variable in Ref. [L1].

A. Coframe formulation

Following [L2, L3, L4], we construct a set of three
spatial coframes n® such that the spatial metric can be
rewritten in the form

Pg = Gun®@n’ 9i; = Gan™n’; . (21)

Here Ggp(X) is the Gram matrix that encodes all

the initial spatial metric perturbations, Gg,(X) :=
6,°0,”G;;(X), with the initial metric coefficients,
Gij(X) = gij(t;, X). On the other hand we can also
include the temporal component into the matrix and
rewrite it as

Gop = (‘01 Gi{)) . (22)

With this we introduce a full set of four spacetime
coframes n® to describe the 4—metric (Vg

Wg =G sn"@n", (23)

by defining the coframe components as

n°, = (=N,0,0,0) ; = (0,7%) . (24)

We now define the transformation between coordinate

and noncoordinate bases as: vV—=9/ V-G

V—9/VG (the signature adopted here being (—1,1,1,1),
and using the notation g := det(Yg), G := det(éag) and
G := det(Gqp)). This corresponds to J = —det(n®,), or,

1
qi€eme 1t AN AnT AR’ =

Eje,w, AX* AdXY AdXP AdX7

(25)
From Eq. (24), in terms of the spatial components of the
coframes, J becomes

1
j 3 Neabcej 7 277 77 kE — Ndet( ) (26)

while correspondingly, the dual vector basis can be de-
scribed by the four frames e, = e " 0/0X":

e, =", %“77’8 :50/3;
1
eau = 6j ea[;?'yé dﬂ/ggnﬁun 977 o ; ( )
. 27
eaZ — ﬁNGabcemknb 77 ks

1

e = N<_170’0’0) ce=(0,e,) .

With this choice, the evolution equations for J and the
expansion tensor coefficients ©; read:

8]\7
i = a b c .
0 = 2j€abc (3t77 ])77 U (28)
0,0 i 1 ikl 1 a \, b c
N] = *@@j + ﬁeabce at(ﬁatn ])77 U

1 .
+ _eabcezkl

N7 (9m“;) (0" )

From the constraint and evolution equations (7)—(9),
together with the definition of J and Egs. (28), the
Lagrange—Einstein system of an irrotational barotropic
fluid model is cast into the following form:

Gab 00"y = 0; (29)

i 1 o c i i
ﬁeabpe kil Oy (N (6t"7 j) kan l) = 'Aj - Rj
+[4rG(e—p)+ A% (30)

Eabe€F (Om®,) (atnbj) n% = (16rGe + 2A—R)NT ;

(31)
[%Eabceikl (3t77aj) kaﬁcl} i [%eabceikl (9en®;) nbwcz] TR
(32)

Equations (29)—(32) are not closed unless an EoS, here
(33), is specified. Recall that the lapse appearing above
can be replaced by its expression in terms of ¢, N = (e +
B(€))! F(e). The evolution equation (30) may be split
into a trace part, which we then combine with the energy
constraint (31) to obtain the Raychaudhuri equation, and
a traceless part, yielding respectively:

1 1
— eapec™ O, <Nat77ai> 77bk7701 =A—4rG(e+3p) + A;

27
(34)
1 % 1 a c
s [ (5 0t

1 1 .
- geabcemklat (N (0 ) nem z) ] =& -1
(35)



where Tij = Rij — %R(Sij are the coefficients of the
traceless part of the spatial Ricci tensor, and §ij =
) Lo

The Lagrange—Einstein system, Eqgs. (29)—(33), is
closed and provides the components n*; of coframes, from
which one can calculate the evolution of the perturba-
tions. The system comprises 14 equations, where 9 equa-
tions describe the evolution for the coefficient functions
of 3 spatial Cartan coframe fields, and the remaining 5
equations originate from the 4 constraints and the EoS
defining the properties of the fluid.

B. Perturbation ansatz
1. Background

We will choose a spatially flat, homogeneous and
isotropic model universe as the background spacetime,
with the same barotropic EoS, and including a possible
constant curvature term into the first—order perturba-
tions, (cf., e.g., [L3]). Accordingly, the spatial metric
coefficients of the background will be a?(t)d;;, a(t) be-
ing the background scale factor. We prescribe a homo-
geneous lapse Ny (t) for this homogeneous and isotropic
background, by setting its relation to the background en-
ergy density eg, formal rest mass density oy = F(ep)
and pressure py = B(ey) as being the same relations as
those for the inhomogeneous quantities,

_om _  Flen)
e = e +pa en+Blen) (36)

We may then write the background line element as
dsf; = —Ng(t)dt* + a®(t) 6;;d X dX7 . (37)

Note that the evolution of the background lapse function
Ny (t) will be given by its definition (36) and the EoS,
making it time—dependent for py # 0. One should keep
in mind that our choice of time coordinate ¢ will con-
sequently not coincide in general with the usual ‘cosmic
time’ coordinate for the background, and will evolve at
a different rate. The usual cosmic time # would rather
be defined by dt = Ng(t)dt, so that the background line
element (37) would take the usual Friedmannian form for
homogeneous and isotropic model universes:®

dsf; = —di* + a?[t] 6,; dX'dX7 . (38)

6 The notation a[ﬂ signifies that the scale factor still takes the
same values, a[t] := a(t), but has a different functional depen-
dence on the alternative time coordinate.

With this time variable, the standard Friedmann equa-
tions would indeed be recovered:
at?a
37 = —4nGleyg + 3py) + A ;
a2
3 (ta> =8rGey + A;

a

8~
drer + 3 %‘(eﬂ +pr)=0. (39)

However, for consistency with the lapsed foliation used
for the full inhomogeneous spacetime, in what follows we
include the homogeneous lapse Ny into the background
and use the coordinate t. In terms of this variable, the
acceleration and Friedmann equations are respectively:

3 dfa Ora 0Ny
=Sty A+328 ;
N7 nG(eg +3pg) + A+3 . NG

3 8,5@ 2

while the energy—momentum conservation equation is
formally unchanged:

0
8&1{-%3%(6}1 +pu)=0. (41)

2. Coframes decomposition

It is important to express the full set of equations in
terms of a single perturbation variable, the coframes,
so that the Lagrangian perturbation approach is well-
defined. Although this is not made fully explicit in the
Lagrange—Einstein system (29)—(33), it is implicitly the
case as the Ricci tensor and covariant derivatives are
functionals of the metric, and hence of the coframes, and
€, p, N and Aij can be expressed in terms of the coframes
and initial energy density data. The latter relations are
obtained wia the conservation equation (18) for p = F'(e)
and the evolution equation for J := J/N = det(n%)
from the first equation in (28):

o 8tF(e) o atJ . . 1 F(Ei)

where for any quantity A, A; denotes the quantity at
initial time t;. Here J; = 1 as a result of the choice of
initial conditions for the coframes. The barotropic EoS
and choice of NV then allow us to determine p, N and

Aij = N’lN”iHj , and to express these fields as functions

of J = det(n®,).

We then follow the previous papers [L1]-[L4] and de-
compose the coframes into a FLRW coframe set and de-
viations thereof,

n® =n%dX" = a(t) (0% + P%)dX". (43)



At this nonperturbative level, the metric coefficients are
then related to the deformation field by

9i; = a*(t) (Gij + 2Pj) + Gap P ij) ) (44)
where we have defined

Pl =4,'P% ; P:=P =6,"P% ; Py = GaP" .
(45)
Recall that the Gram matrix coefficients GG, have been
defined to encode the initial metric inhomogeneities, so
that the coefficients P can be set to zero initially. Also
recall that this coframe split is made with respect to a
FLRW background with a nontrivial lapse included, and
that the functional dependence of a, or of the deformation
field, on the time coordinate t will be affected accordingly.
We then expand the deformation fields P% into a per-
turbative sum, so that the coframes are given by:

n" = a(t) (6 > P <’">> X', (46)
m=1

where the mth-order deformation field coefficients P (m)

are of order € for some bookkeeping parameter ¢ < 1.

In this paper we will only focus on first—order deforma-

tions.

8. Initial conditions

We will follow the steps of Refs. [L3, L4] to prescribe
the initial data. The deformation field and its time—
derivatives are given at some initial time ¢; by:

P%(ti) =0;
(0:P%) (t:) = U (47)
(07 P%) (i) = W% —2H;U* |

7

where H := 0;a/a is the Hubble function. Hereafter, we
will normalize the scale factor as a; = 1. The six 1—form
fields U* = U%dX" and W* = W%dX" are 1—form
generalizations of the initial Newtonian peculiar—velocity
and peculiar—acceleration gradient fields, respectively.

The Lagrange-FEinstein system with its split into trace
and traceless parts according to (29)—(35) then translates
into constraints on the initial data:

Uijj =0 5 Wy =03 (48)

()~ [(%) - (%) ]

+ A (N2 = Ny) + N2 A
—4nQG [(q + 3pi)Ni2 — (em; + 3pHi)N12{i] ; (49)

: N :
lyira 5 4 t lrra s 4
) . 1 )
+U U6, - (U“k 0,'U" 6" = SU6, U 5;53.)

= Ni2 (513 (ti) — Tij (ti)) ; (50)

1

U? - U%6,7U%6," + 4H;U

= 167G (6 Ni*— emiNjy;) + 2A(Ni*— N7;) — RaNy™ ;

G1)
(Ni 1 U%0,") ), = (NiH0)  + 2 (V) s (52)
pi=pB(&) 5 puy=0B(ems) . (53)

The abbreviations U := U%.§,%, W = W< §.F, and
e = wa — (1/3)Wée,, W = U — (1/3)Us%,
are used for the trace and traceless parts, respectively.

C. First—order Lagrange—Einstein system

We now expand the above Lagrange—FEinstein system
and its initial conditions to first order” in the only dy-
namical variable in this Lagrangian perturbation ap-
proach, namely the deformation field P%. In what fol-
lows we omit the index () for the first-order deformation
field and the associated initial conditions U;;, W;;, but
keep the index for the other variables, as functionals of
P® . We first need to express these functionals explicitly
at first order.

1. Dependent variables at first order

In order to express the first-order Ricci tensor and
scalar curvature in terms of the coframes, we expand
the initial metric coefficients to first order as G;;(X) =
i +G§J1») (X)) since they reduce to d;; at the unperturbed
zero—order level. Introducing the first-order quantities
GWi .= 51'7“(5le,($)7 P .= §% 3t Py, for the inverse met-
ric, we can then substitute the metric and its inverse,
truncated to first order,

gij = a? (%‘ +G) + QP(ij)) ; (54)
gij — a2 (52'3' —aqWij _ Qp(ij)) , (55)

into the definitions of the spatial Christoffel symbols and
of the spatial Ricci tensor. We thereby obtain:

k@ _ Lk (Gu) E O/ e)
2

ij illj 1ji zj|l) (56)
kl .
+ 8" (Puyy|; + Pujyi — Plaj) ;

N _ k k [k [k .
Rij = %ij + P + By + Pawy — Pagy ks
57)

RW =27 + 242 (P, - PY, ), (58)

7 Note that initial data can be assumed, without loss of generality,
to be first order.



. (L)]k k(1) . Sif _
where %,] = Gz[k|] + G Gk and #Z = 6J<%’ij =
2G are the initial conditions for the curvature

k|l
tenb[or| ]coefﬁcients and their trace, respectively.

An important difference from the dust case is that here
the spatial Ricci scalar will in general not be constrained
to evolve as Z(X)a(t)~? at first order, due to the con-
tributions from the lapse in the momentum constraints.
As will be shown below, these contributions give rise to
a nonzero evolution for the (initially vanishing) second
term (Pki|i|k — Plklk)7 or equivalently a nonconserved
scalar curvature, 9; R +2HRW = a=20,(a*>R™M) # 0,
in contrast to the dust case.

Using the barotropic EoS and the corresponding solu-
tion (42) to the energy conservation equation (14), we
can also expand €, p, N and Aij in terms of the first—
order deformation field. We write ¢; := eg;(1 + J¢;) at
first order, and expand J~' = a=3det(6% + P%)~! at
the same order as a=3(1 — P). The solution (42) for € as
a function of J can then be expanded to first order in the
perturbation as

c— p-l (F(€Hi) + F'(ems) s 6ei — Fens) P)

+ [éﬁHiF'(em)&i _P¥} (Fl)l<F(€Hi)) .

The energy—momentum conservation equation (42) still
holds for background quantities, giving

Fley) = —=132 (60)

This can be substituted into (59) to give

attan (o 7)] - @

€E=¢€y [1—1—

The further use of the definition of F, Eq. (16), allows
us to simplify the above to

6=6H[1—<1+12—Z)P}, (62)

which we have written for convenience in terms of a
shifted deformation trace,

P.=P — OlHi(;q 5 (63)

where ap; := (e + ﬂ(eHi))fl €H; 18 a constant, and de;
is the initial energy perturbation.
The pressure can in turn be expanded to first order as

p = Ble), yielding

psz—B/(GH) (ﬁH +pH)I3. (64)

Note that the factor 8'(eg) corresponds to the (generally

time—dependent) dimensionless ratio of the background

speed of sound to speed of light squared, f'(ep) =:

c%(t)/c?, if py is the thermodynamic equilibrium pres-

sure for the background fluid.
We then expand the lapse N = (e + p) "1 F(e) as

N =Ny [1+ 8 (en) P] (65)

at first order in the deformation field. At this order, one
will then have (with 9,P = 9, P):

oN  ONy f
N TNy TP (em) b (66)
—3H (e + B (en)) B (en) P,
with
O Nu _ ’
N—H =3Hp (en) - (67)

This also allows one to obtain the first—order expression
for A7, = NINI .

ALY = a2 (eyr) 6 By (68)

2.  First-order system

Using the above expansions, the Lagrange-FEinstein
system (29)—(32) can be rewritten at first order in the
deformation field as follows:

7P’ +3H[1— B'(en)] 0 P
+ H[1— B (en) — V()| 0: P&,
T C Ry o R A U PNTINTIA
= N AW — Nj (Rj - RW )
d (Pijli - 15|j) — —2Hp (en) P
H@tp + e |:€H +pH — (26H + /~\> B/(€H>i| NIZJP

1
= fZNl%IR(l) : (72)

with ;P = 9, P, and where A’V R".V = 4264 R{
and R are expressed as functions of P% according to

the formulas given above, A := A/(47G), and we intro-
duce the abbreviation

V(t) = [eH +pu — (2em + A)ﬂ’(eH)] -
x {eH +pr — (3en —pu + 2[\)5/(6H)

+(2er + A) (e +pu) B (en) - (73)



Equation (70) has been obtained from the first—order ex-
pansion of the extrinsic curvature evolution equation (30)
by combining it with the first—order energy constraint
(72). The EoS (33) has already been used to expand €, p
and N in terms of the first-order deformation field.

D. First—order master equations

Following the approach of Ref. [L4] the above sys-
tem can be reexpressed by decomposing the deformation
fields into trace, trace—free symmetric and antisymmetric
parts:

Pl = S Po + I + 9 (74)

where Hij = P(’Lj) - %P(SU and ml] = P[”]

We will now derive the governing equations for these
parts, named master equations. For the trace part we use
the new variable P from Eq. (63). Accordingly, (69)—(70)
become:

OPij =0 : Py =Pi;(ti) =0; (75)
P +3H[2—28 (em) — V()| O, P

= N; AW — N2 (1 — 2

ORI+ 3H[L — B (el = N (64,0 =)

Once again the first-order quantities AM), fij(l), RO

and sz(l) are used as shorthand notations but are
meant to be expressed in terms of the deformation field.
These expressions are obtained from the results above,
Egs. (57), (58), (68), as follows:®

a? AN = B'(ey) Ao P ; (79)

a2£ij(1) _ B/(GH) <P||zj . 6:;] A()P), (80)

(1)

constraints (78), which imply, through their spatial derivative,
[k _ k_ [y —

atnk[im =0, ar_ld thus W = W (ti) = 0. Also note

that since P and P differ by an initial spatial function, we can ex-

press (79)—(82) in terms of either variable. Here we have adopted

the most compact possibility, noting that the initial value of P

is nonzero, whereas (81) and (82) involve the initial curvature
which is independent of the initial perturbation field.

8 The expression given for T makes use of the momentum

; 2
_ ki |k .
R = 7 +2 (H i — 3P k) . (8D
aQTij(l) = y; + 211"
1 : | ;
- <2n’“l|k'153 +Pl - 3A0P51j> , (82)

b _qp Ik
J

klj |k

3

with 7% == %', — %%63 = Tij(l)(ti), and with Ag the
coordinate Laplacian operator in the Lagrangian coordi-

nates {XZ}, Ao = 5”(91(9]

1. Master equation for the trace

Contracting the momentum constraints (78) with a
spatial derivative |; yields the first—order evolution equa-
tion for the nontrivial part of the scalar curvature:

i i 2 5
815 (Pk|k|7, *Plk‘k):at (Hk kngkk>
= 72Hﬂ/(6H) Aop (83)

From the respective expressions (58), (79) for R and
AW | this amounts to the following evolution for R(1):

ORY +2HRMW = —4Ha ™28 (es1) Ao P
= —4HAWY | (84)

which unlike the case of dust does remain coupled to the
dynamics of the inhomogeneous perturbation.

Combining this evolution equation with the linearized
energy constraint (72) and its time—derivative one then
obtains the master equation for the evolution of the trace
(63) of the first-order deformation field:®

O}P +2H(1— 38 (en)) 0:P — W(t)Nj P
=a >N} B (en) Ao P, (85)

where py = B(ey) and Ny = F(en)/(em +pp) still, and

W(t) :=47Glen + pu — (2en + A)ﬂ’(eH)] [4—3V(1)]
=47G [eH +pH + (EH —3py + QA)ﬁl(fH)}
— 127G (2e + A) (e +pr) B (er) . (86)

To avoid potential confusion, since the time coordinate t
used in this paper has a different rate as compared to the
conventional cosmic time, it will sometimes be convenient

9 This equation can also be derived by combining the energy con-
straint (72) with the trace (76) of the evolution equation to
eliminate R or equivalently by directly expanding the Ray-
chaudhuri equation (34) to first—order. In both cases, the master
equation for the trace would then be recovered after replacing the
first-order acceleration divergence A1) by its explicit expansion
(79).



for further applications to use the (time-coordinate-
independent) background scale factor a as the time vari-
able instead. With this change of parametrization, the
energy constraint (72) and the master equation for the
trace (85) may be rewritten as follows:

oP _ N?
15 T 0P =~ R (87)
82P o 8]5 a2 — Qa3 —
2 aoa al a8

respectively, with time-dependent coefficients,

g = 47TGN—%2I {GH +pH — (261{ Jr]\) I (ﬁH)} ;

N2
a1 =g+ 47rG—H {A - 2pH} ; (89)

g = NZW(t )/H2 i ag =N (en) /H?,

where we recall that from the background Friedmann
equation we have H2/N? = 47G (2ex + N)/3.

From Eq. (88) we can introduce a time-dependent
background Jeans wave number k(ez) byt°

Jlen) \/‘72 B’ (90)

provided that the term in the square root is positive.
Pressure should be positive for sound waves to resist
gravitational collapse, and the existence of the Jeans
length is intimately related to the energy conditions sat-
isfied by the matter field.

A remark is in order here. In general, one would expect
the evolution of the inhomogeneous deformation to be af-
fected by the local, inhomogeneous speed of sound and
density, so that a nonperturbative Lagrangian realization
would rather feature a local Jeans wave number k;(e)
[21]. The dynamics in the presence of a significant den-
sity contrast will thus only be partially captured by the
above first—order equation, where € has been expanded in
P% and, accordingly, only zero—order background factors
such as kj(ey) survive in front of the first—order P.

As in the dust case, the advantages of the Lagrangian
approach are only fully realized wvia nonlinear extrapo-
lation, e.g., by computing the energy density as a full
nonlinear functional from the first—order deformation.
This is part of the Relativistic Zel’dovich Approxima-
tion scheme, as defined for dust fluids in [L1]. As in
the dust case and in contrast to standard Eulerian linear
perturbation schemes, applying this procedure to com-
pute the energy density out of the solution to first—order
equations such as (85), will already capture part of the

10 We include the factor ¢ explicitly so that the dimensional content
of this relation is clear. The right hand side of (86) must be
divided by ¢? if units ¢ # 1 are restored.
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nonlinear features. This is due to the nonlinear extrap-
olation and to the use of Lagrangian spatial coordinates
which follow the fluid propagation in an exact manner.
Further nonlinear effects of inhomogeneous pressure will,
however, still be missed due to the absence of local Jeans
length contributions in the equation used for P, com-
pared to what should appear in the nonperturbative evo-
lution equation.

We will not go beyond this procedure in the present
paper. Let us nonetheless suggest here a possible direc-
tion for improvement. It would require properly defin-
ing the local Jeans length in the relativistic context as a
functional of the deformation. This quantity would then
replace the background Jeans length in the trace master
equation. The corresponding nonlinear master equation
could then be solved in an iterative manner, by com-
puting at each step the local Jeans length via functional
extrapolation out of the previous estimate for the defor-
mation field. Note that each step would also involve a
search for the traceless part of the deformation, as all of
its components would be required for the extrapolation.

The evolution equation (85) may be rewritten in an
alternative form wvia a time—dependent rescaling of the
variable P +— P/Ny(t). Using the variation rate (67)
of the background lapse one finds the more transparent
form:

P P P
2 i 2
0; <NH> +2H3t<NH> 47G(eg + pu)Ng (NH>

=N ) Do) (91)

e Dust limit: Setting py = B(ey) = 0, we find
W(t) = dnGey = 4nGoy = 4nGop;a~3 and Ny(t) =
(eg + pr)~tom = 1, and consequently both t—variable
forms of the trace master equation, Egs. (85) and (91),
reduce to the dust deformation trace evolution equation
of [L1]-[L4]. The trace master equation becomes:

0P+ 2HO,P —4nGop;a *P = —4nGom;a 256 . (92)
With Ny = 1 the time variable used is the standard
FLRW time coordinate t = ¢, so that the above time-
derivatives coincide with those used in [L1]-[L4] (denoted
there by overdots). Finally, as evaluating Eq. (92) at
the initial time gives W = —4nGom;d€;, its right hand
side can always be rewritten as Wa ™3, and the dust—case
master equation for the trace (e.g., Eq. (41) of [L4]) is
thus recovered.

e Newtonian limit: The Newtonian limit is obtained
by the joint application of the Minkowski Restriction
(MR) for the deformation field, as introduced for dust
n [L1, L2], and of the ¢ — oo limit together with the
assumption of a nonrelativistic pressure.

The latter two assumptions imply that the pressure is
no longer a source of the gravitational field, as the en-
ergy density is then € ~ oc? > p (where the constant c
has been temporarily restored), so that all source terms



reduce to the contribution of p. Note that ¢ can be con-
sidered as equal to the actual rest mass density in this
limit. A further consequence of this is that the lapse
becomes trivial, N = pc?/(e + p) ~ 1, consistent with
its spatial variation rate, N™'N; = —(e + p) ' p; ~
—(902)*1p|i — 0 when ¢ — oo, for any pressure spatial
gradient. It is also the case for the (already homoge-
neous, but generally time—-dependent) background lapse
that Ny ~ 1. Consequently, the fluid—orthogonal hyper-
surface time label ¢t now coincides with the fluid’s proper
time 7 (since 1 ~ N = 0;7) as well as with the stan-
dard background cosmic (proper) time £. All these no-
tions thus consistently define a time reference that can
be used as the Newtonian absolute time. We will denote
the corresponding Lagrangian time—derivative operator
by an overdot.

With N = 1 the line element (3) reduces to the one
used in [L1, L2] for irrotational dust, and one can thus
directly use the corresponding definition of the MR in this
context.!! This restriction amounts to assuming that the
initial metric is Euclidean and that the spatial coframes
are exact in the three-dimensional hypersurfaces, i.e.,
that there exist spatial coordinates x* = f%(X? t) such
that G, = dqp and

n% = a(t) (6% + P%) = f9; - (93)

In any ¢t = const hypersurface, the spatial line element
then reads ds? = 64 dz®dzb. The coordinates z® thus
define Cartesian—type Eulerian coordinates in which the
metric coeflicients are manifestly Euclidean at each time,
and they can be used to define a Newtonian spatial ref-
erence frame. Through its second equality, Eq. (93) also
implies that the deformation 1-forms P are also exact
and accordingly define a deformation vector P, with com-
ponents P?,

x = a(t) [X +P (X,t)] , P%=PY, . (94)
With these two assumptions the master equation (91)
on the trace P = §,°P% becomes an equation on the
Lagrangian divergence Vi - P := 5aiPa|i of P:

Vo -P+2HV,-P —47Gon (Vo P - 60;)
dpu

=gqg 222 A Vo -P—960;), (95
a don 0( 0 Q) ( )

11 Note that the Minkowski Restriction introduced for the dust case
is in principle independent of a possible ¢ — oo limit and can
still otherwise be applied in a Minkowskian regime, as the name
suggests. In the present case, when c is still finite, this proce-
dure would need to be extended to the presence of pressure and
consequently of an inhomogeneous lapse. We believe, however,
that such an extension to this case would require a modification
of the perturbation framework used so far in this paper, through
the use of a spacetime foliation better adapted to this purpose,
and we will consequently not attempt to provide such a general-
ization here.
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with oy = a 3op; still, and g; =: om;(1 + do;). Note
that, although the pressure itself no longer contributes as
a source of gravitation, its spatial gradient still produces
an acceleration (as obviously expected in a Newtonian
framework), which is why it still affects the dynamics of
Vo - P above through the sound speed squared factor
dpp /dom in front of its Laplacian.

The above Eq. (95) matches!? the corresponding equa-
tion for the deformation vector obtained in the Newto-
nian Lagrangian framework, Eq. (24b) in [6] or Eq. (45)
in [25] written for the longitudinal part of the deforma-
tion vector. By definition, this part obeys the same evolu-
tion equation as the Lagrangian divergence of the vector,
as can be seen in the unnumbered equations involving
that divergence before Eq. (24a) in [6] . Note that in
this reference, the Laplacian term features a local sound
speed squared (related to the local Jeans length) dp/do,
but it is already noted there that it should actually be
replaced by the background value for consistency with
the first-order expansion, and it is indeed replaced by
the corresponding background expression in [25].

2. Master equation for the traceless part

The first—order evolution of the traceless symmetric
part Hij is given by Eq. (77), with §Zj(1) and sz(l) re-
placed by their expressions (80) and (82), respectively.
Eliminating the initial traceless curvature .7 ; by evalu-
ation of the evolution equation at the time corresponding
to the initial condition (114), then first yields the follow-
ing evolution equation for the traceless symmetric part:

O + 3H[L — ' (eq)] 01T
N% ik ik 2k |l
+?(2HM SRR
N? - -
= 37;;([1 +36(en)] D P — [1 435 (ems)] Dlei>
Nir

+ a2N121,i

(“W@ +H[1- 35’(6Hi)]“Uij) . (96)

Here P, = —ay; 0¢; due to the vanishing of the ini-
tial spatial perturbation field, and we have introduced
the coordinate traceless spatial Hessian operator D*; :=

5k 0R0; — (1/3)5%, A

12 Eq. (95) features additional contributions from the initial den-
sity perturbations dp; as compared to the original Newtonian re-
sult obtained in [6]. These perturbations were actually neglected
there, by assuming ¢; = 0m;, as is also assumed in Zel’dovich’s
original work for the dust case [78]. However, as is demonstrated
in Appendix A of [6], such an assumption can be made without
loss of generality in the Newtonian context within the first—order
perturbation scheme in the deformation vector, through a suit-
able change of Lagrangian coordinates, making both approaches
equivalent.



This equation still explicitly features the trace, but it
can be fully expressed in terms of II*. by making use of
the momentum constraints (78). This can be achieved
by rewriting (78) as

_ P,
Lo, = 2@(“) . (97)

A time-integration and spatial differentiation of this
equation allows one to express D; P as

DL,P  DLPR 1 (! O <3ij\kll - Hkm”%‘) ,

— = + dt’.

Ny Npy; 2 /ti Npg

(98)

The pair of equations {(96),(98)} together comprise the
master equation for the traceless part. When py = 0,
one simply has Ny (t) = 1 and f'(eyg) = 0 so that this
master equation reduces to the corresponding one in the
dust case, Eq. (43) in [L4].

8. Master equations for free and scattered gravitational
waves

Following the approach developed in [L3, L4], we can
gain more insight into the evolution of Hij by splitting
the full master equation for the traceless variable into
gravitoelectric and gravitomagnetic parts.

To this end, we first define a corresponding split of the
initial conditions for the traceless variables:

tlrri _ tLEpri | tLHyppi | tlyrsi _ tLEyy-i , tLHypsd o |
U = U, + U;; "W4% =""W, + W5

(99)
tLEri | tLEpk |l LB [k o
280" P 4 PR s By E o (101)
tl,Eyyri tL,Evy k|1 ¢i tLErr,i |k
2 00+ W st 3P F =0 (102)

These conditions can be jointly required because of the
following geometric identity (taking its first two time—
derivatives and evaluating them at the initial time):

i kol s ik
(280IT'; + 117, 7 6% — 31T, ) |, =0 (103)

This in turn is due to Hkmj]
of the momentum constraints (see footnote 8).

k= 0, which is a consequence

We can then define the gravitoelectric and gravitomag-

netic traceless parts, respectively, EHij and HHij, from
their vanishing initial values and their respective initial

: e tLEpri t1,H i .
first time-derivatives ""U"; and ""'U";, requiring them
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to obey the following evolution equations:

. ) N2 )
Op My + BH[1 = B'(e4)| 0T — —LAGMTT

N} : ‘
= azj\ZQ{' (tl,HV[/”j + H; [1 _ Sﬂ/(EHi)]tl,HUzj> : (104)

7 % N2 J
0PI + BH[1 = §'(em) ] 05T + 525 AgPIT

- ﬁ(h +38(en)] D', P — [1 435 (ems)] Djpi>
N? i i
+ a2]\1[1’2 (tI,EWj + H; [1 _ 35/(6Hi)]tl,EUj> .
H;

(105)

Equation (104) is the master equation for free gravita-
tional waves, while Equation (105), after elimination of
the coupling to the trace, is the master equation for
the gravitational wave part that is scattered at the fluid
source. We will discuss the coupling to the trace of this
latter equation in more detail below.

The above evolution equations ensure that we indeed
get a decomposition of the traceless deformation field
obeying (96) at all times:

e
I, = P, + 1,

; (106)

They will also propagate the initial constraints (99)—
(102) that define the split of "U"; and "W . This will
ensure the preservation at all times of the divergence—free
nature of free gravitational waves as well as the geomet-
ric identity on their scattered part, similar to the dust
case (cf. [L3, L4]):

Hyre . .
Iy, =03

200710, + Pt o — 3P =0

(107)
(108)

The (also propagating) momentum constraints (97) split
as follows:

: ‘ P
HHZ--:O 3 L@ﬁ’ﬂz%@(—j)

Observe that HHij decouples from the trace in both the

momentum constraints and the evolution equation, while

EHij remains coupled to the trace in both cases.
Alternatively, using a time integral of the momentum

constraints,
: 2 [t =¥
ETi g /
.. == | Nygo| —=)dt",
A /ti . t<NH>

the geometric constraint (108) on EHij can be expressed
as follows:

, (! P
NPT, = DY, < ) Ny 8t<N_H> dt/) :

This is to be compared to the dust—case relation, Eq. (51)
in [L4], to which it reduces when py = 0 and accordingly

(110)

(111)



Ny(t) = 1: AOEHij = Dij(P— P) = D';P. Hence,
in the presence of pressure, in contrast to the dust case,
the gravitoelectric traceless part and the trace, although
still tightly coupled, will in general have different time
behaviors.

With the antisymmetric part vanishing at all times,
the evolution equations for the trace and for the gravi-
toelectromagnetic split of the traceless symmetric part,
coupled through the momentum constraints, characterize
the behavior of the first-order Lagrangian deformation
field for this general barotropic single fluid. These evo-
lution equations have yet to be complemented by the set
of initial constraints (48)—(53), to which we turn now.

E. First—order initial conditions

The constraints on the initial conditions for the defor-
mation field, the density and the spatial curvature are
expressed at the first—order level as follows:

Uiy =0 5 Wy =03
W —6H; f'(en;) U =

— N} am; [W(ti)dﬁi +B/(6Hi)AO(5€i)} ;o (113)
YW+ Hy [1-38'(emy)]| U = —Njj; T

(112)

i 1 i
— Ny B'(ens) [(5&)' i~ 3A0(56i)51‘] ;

(114)
1
HU = —Z%‘N};i + 47G N§ ap; 06 ¥
|:€Hi +pu; — 2em; + A) ﬂ/(€Hi)] ;
(115)
U'i = Uy = 2Hy am; B (ems) (86 5 (116)
pi =pm;+emi B (emi) 66 5 pmy = Blemy) . (117)

This set of initial conditions can also be obtained by eval-
uating the linearized Lagrange-Einstein system at the
initial time. It can be complemented by the requirements
(99)—(102) which define the initial split into gravitoelec-
tric and gravitomagnetic parts of the traceless deforma-
tion field.

Note that the above set keeps more variables coupled
than the corresponding ones in [L4]. This is to be ex-
pected, since in the dust case a vanishing pressure and
a constant lapse allowed for the elimination of € and A
between the first two constraints, leaving only a relation
among U, W and Z. Here, we also have contributions
from p, A (due to the lapse factor in the A term) and
the nonvanishing AW, Accordingly, the dependence on
the initial energy demnsity e¢; and its spatial derivatives
can no longer be explicitly removed in general. How-
ever, as in the dust case, the scalar constraints (113) and
(115), together with the initial EoS (117), show that only
two independent first—order initial conditions need to be
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given for the scalar variables U, W, Z, €;, and p;. One
could for instance only specify U and W as can be done
in the dust case, fully determining the other scalar initial
conditions. In contrast to the dust case, however, deter-
mining €; in this situation would involve solving for the
Laplacian differential equation (113).

IV. APPLICATION TO SPECIFIC EQUATIONS
OF STATE

Concrete results can be obtained by looking at spe-
cial cases of the barotropic EoS. In this section, we will
first consider the family of linear relations between the
pressure and the energy density. We then proceed to a
special nonlinear polytropic EoS that allows one to model
the isotropic part of a velocity dispersion field up to late
epochs of nonlinear structure formation.

A. Case of a linear Equation of State: p = we

In the previous section we have derived the evolution
equations for the first—order deformation field, sourced
by a general barotropic fluid. In this section we will
consider as an example the simplest barotropic EoS,
p = B(e) = we with w a constant parameter obeying
the dominant energy condition, —1 < w < 1. In addition
to the radiation fluid, with w = 1/3, other interesting
cases include a “stiff fluid” corresponding to a free scalar
field source, with w = 1, and a “curvature” or “string
gas” equation of state, with w = —1/3. For this class of
linear EoS we can readily apply the procedure suggested
in [L3, L4] to find the relativistic Lagrangian first—order
solutions.

The formal rest mass density F'(¢) and the lapse are
found to be as follows:

1/(14w) —w/(1+w)

€ 01 €

Fle)=o [ = T N=—2 (&
& =a (€1> ’ e1(1 4+ w) <€1> ’
(118)

ifw # —1. (The case w = —1 for a “vacuum energy equa-
tion of state” can be treated separately by the explicit
cosmological term.)

The solution (42) of the energy conservation law then
yields the energy density, and the lapse as deduced
from (118), as the following respective functionals of the
coframes, with J = det(n?):

e=gJ ) N = N Jv . (119)

Similar equations hold for the background spacetime,

€y = eHia_3(1+“’) : Ng = Ny; 6>V ; %VNH =3wH .
(120)
Given the linear barotropic EoS, the pressure and back-
ground pressure are immediately deduced from the ex-
pression of the corresponding energy densities, and will
share their functional dependencies.




1. First-order equations

With the linear EoS B(¢) = we, B'(eg) reduces to
the constant value w, 3”(ey) vanishes at all times, and
agi = (1+w)~!. Consistent with a first-order evaluation
of the exact formulas above, the first-order expressions
(62)—(66) for P, €, p, F(€), N (and its rate of evolution)
thus simplify to

P=P—(1+w) 10 ;

e:eH{l—(l—Fw)P] i p=py—w(l+w)eg P;

F(e) = F(em)[1— P] ;
0N

N =Ng[l+wP] ; ~ =3wH +wdP. (121)
Eq. (73) reduces to
—w)? — A
V(t) = e (l—w)* —2wA ’ (122)

er(l —w) —wA
and the first—order Lagrange—Einstein system (72), (75)—
(78) becomes:!3
0PBij =0 Py = Pi;(ti) = 0;
EH(]. — U))2 + 2w2/~\

OfP +3H — 0, P
e (l—w) —wA

AW _ e (1 —w)(1+ 3w) +~2w/~\R(1)

—_ N2 _a,Gw
i dep (1 — w) — 4wA

)

(123)

ORI, + BH(1 — w)a, T, = N a® (6,0 =7,V

(124)
HO,P+ 47TG[6H(1 —w) — w]\]N?L“ a% P
1
— —ZNIQﬂaﬁ“’ RW (125)
i 25 5
o, (Hjli -3 j> — —2wHP . (126)

The acceleration gradient and its trace and traceless
parts are expressed in terms of the deformation field at
first order according to Egs. (68), (79), and (80), yielding

AW = a2 Pl (127)
AN = 72w AP ; (128)
¢ W =a 2w P, (129)

13 Tt is worth noting in the case when A = 0, V(t) simplifies further
and reduces to the constant 1 — w, so that (123) becomes

_ _ 1+3
2P + 3H(1 — w)o,P = N%, a% | A — %RU)
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while the first-order expressions (58),(81), and (82) of
the Ricci tensor and its trace/traceless split are formally
unchanged. Since for the chosen EoS, W(t) yields

W(t) = 47G [GH(1 —w)(1+ 3w) + 2w/~\]
=4rG {eHi a2 (1 — w)(1 + 3w) + QwA] ,
(130)

the master equation (85) for the trace of the perturbation
now reads:

02P +2H(1 — 3w)0, P
— 4nGNE; [emi(1 — w)(1 + 3w) a1 L 2wh a1 P
= wN§; a®2AP . (131)

In turn, the master equation (96) for the traceless sym-
metric part of the deformation field becomes
O, + 3H(1 — w)o, 1T
+ N, a2 {miklj"f - Hij‘k‘k - %H’“”k”éij
—%(1 +3w)D'; (P - F’i)}
= a7 "W 4+ (1= 3w)H; U] (132)

with, from the momentum constraints (126),

E i |l o
—Swpi p—Di P tat(gnﬂk — 1y 6j)d/
a =D K+ . 9 gdw .

’ (133)
We can finally rewrite the set of initial conditions (112)—
(117) for the linear EoS:

Uiy =0 5 Wy =0; (134)
Nirs
W~ 6wt = — - (w Ao(d6;)
+47G es (1 — w)(1 + 3w) + 2wA] 661) . (135)

i i i w i
YW+ (1 - 3w)H;"UY = —Np; {yj + —Dj((sei)} ;

1+w
(136)
1 ATGN?. -
H,U=—- NZ. TP HE (1 — —wA]be :
u 4% Hi T T lemi(1 —w) — wA]de; ;
(137)
Uijli -U; =2 Tou —|—wHi (0€i) |5 5 (138)
pi:pHi+w6Hi561 5 PH; = WeEm; - (139)

2. Solutions for the trace of the deformation field

Similarly to [L1, L2], we will now further investigate
the behavior of the trace P of the first—order deformation.



For simplicity, we will restrict attention to the case of
a vanishing cosmological constant, A = 0, as may be
reasonably assumed during the radiation—dominated era.
In this case Egs. (87)-(89) reduce to

0P 3 -3

2(1—w)P = ———¢?H+IRM . (140
“da + 2( w) 327TG€Hia + - (140)

62]5 [05] 8]5 a2 — _
AT 2P = e BT IAGP 141
a2 o da o2 azi a ol (141)

with the constant parameters
3(1-3 3(1— 3 1
o 30 (142)
T SnGen;

If w > 0 (implying as; > 0), as we will assume in the
following, then Eq. (141) is a second—order hyperbolic
partial differential equation (PDE).!* This equation is
formally analogous to the standard Eulerian propagation
equations for a linearized density contrast [38, 55, 69]
once those are reexpressed in terms of the variable a.'®
In the Eulerian case, assuming global flat—space spatial
coordinates, one can find the analytical general solution
using a Fourier transformation. A discussion of the differ-
ences between the Eulerian and Lagrangian approaches
has been given in [L4]. (See also the related discussion
in [71].) Ref. [L4] also elucidated a procedure for find-
ing general-relativistic Lagrangian first—order solutions
for the deformation field in the dust case. We show here
that this procedure can be readily extended to the pres-
ence of pressure and apply it to the determination of a
Lagrangian solution for the trace part.'®

First, we can use the formal identity of Eq. (141), writ-
ten in Lagrangian coordinates on the nontrivial space-
time manifold, with an equation written in Euclidean
space. We can thus work within this flat space with
its effective ‘Eulerian’ Cartesian spatial coordinates z
and solve Equation (141) with Ag — 69 0,:0,, for the
unknown P(a,x). On this space we can then apply an
inverse Fourier transformation

P(a,x) = / / / Pp.(a,k) e~ k> d%k

1 Tt would be an elliptic PDE for w < 0 (i.e., az; < 0), while for
the parabolic case w = 0 (and consequently as; = 0) it reduces,
as expected, to the evolution equation for the dust case, with
decoupled time and space variables.

Note that in terms of the conventional cosmic time i intro-
duced in (38), Eq. (141) reduces to 02 P + (2 — 3w)a™ ' 9;a0; P —
eye [(1 —w)(1 4+ 3w)emy + 2w/~X] P = wa=2A¢P. This is for-
mally equivalent to the linearized Eulerian equation (3.2.17) of
Ref. [69] in that the coefficients agree, but both the dependent
and (spatial) independent variables differ.

A complementary picture of an equivalent procedure is shown in
Appendix A 2 and applied to the search for a particular solution
for the traceless part.

(143)
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and thus get a second—order linear ordinary differential
equation:

PP, o1 dPs
da? a da

— (ozgcf2 — as; k2a3“’*1) P, =0, (144)

where we have used k-x := 5ijkimj and k := (éijk‘ik‘j)l/z.
In this case the background Jeans wave number (90)
satisfies

(0%
ky(em)® = a—;a‘3(1+w) s
(1—w)Bw+1) )

= dnGen; wad+w)

where we recall that 0 < w < 1 is assumed. The behav-
ior of the solution to Eq. (141) will then depend on the
relative values of k and aky(ey).

One can first proceed by investigating the extreme
cases, as is commonly done in the Eulerian analyses.
When k < akj(er), Eq. (144) may be solved as

Pk _ a1+3wck’1 + a%(w—l)cfk’2 , (146)

where Cf 1(2) are two functions of k encoding the ini-
tial conditions. This corresponds, as expected, to the
unstable regime since the term with coefficient C} ; is a
growing mode.

In the opposite situation when k > ak;(ey), the so-
lution reads

Po=a" [Jo (Ba"™ k) Coa + Yo (Ba™" k) Cua]
B = f@ D D= 311_6; : (147)

with different k—dependent coefficients Cy, 1(2), and where
Jy(x) and Y, (z) denote the Bessel functions of the first
and second kind, respectively. This corresponds to a ‘sta-
ble’ regime of acoustic oscillations, although their ampli-
tude will grow over time (as a(**~1/2 for large a) for an
unusual EoS with w > 1/3. The latter remark includes
the “stiff luid” EoS w = 1, for which the above solution
is exact at all times, since it corresponds to kj(ex) = 0.

From the expression (145) of k(e ), the noncomoving
Jeans wave number a ks () decreases over time, so that
even an initially unstable solution will eventually enter
the stable regime. Such a solution will cross the threshold
k ~ aky(en) and it may be useful to be able to describe
this transition period as well.

As in the Newtonian case in the Fulerian approach,
with different coefficients (see, e.g., [40]), the Bessel func-
tions actually allow for an explicit solution of Eq. (144)
for any mode at all times. The general solution is the
same as (147) up to a change of the order of the Bessel
functions:

P, = o {J,, (B a3 k) Cri+Y, (BaHsz k) Ck’z} ;
2. /as; 5+ 3w
B = ; = . 14
143w ° " 216w (148)



The integration constants C}, 1 () are derived from the ini-
tial conditions on P and its time-derivative, P;(X) and
U(X). To this end, one formally replaces these quanti-
ties by functions of the ‘Eulerian’ coordinates z* on the
Euclidean space, with the same functional dependence,
Py(x) and U(x). One is then working on flat-space, and
the respective Fourier transforms Py(a = a; = 1,k) and
(0:Pg)(a = 1,k) = H;i(0.P)(a = 1,k) can be com-
puted, from which Cj 1(2)(k) are deduced. Knowing
these, P(a,k) is expressed as the full solution given by
Eq. (148) and its inverse Fourier transform (143) gives
P(a,x) in Euclidean space.

Finally, one can formally replace the Eulerian spatial
coordinates by the Lagrangian ones in P(a,x) while pre-
serving the functional form. The resulting Lagrangian
function P(a,X) then gives a solution to the evolution
equation (141) in the nonconstant curvature spatial sec-
tions, thanks to the algebraic identity of this equation
with its Euclidean space counterpart. It is now a La-
grangian solution, however, and must be interpreted as
such: the coordinates X are comoving with the inho-
mogeneous fluid flow. They are local coordinates on the
perturbed manifold; thus the solution P(a,X) describes
perturbations as they evolve in the perturbed space. This
perturbed space is in general not isometric to Euclidean
space. Note that the Fourier modes P(a,k) are only an
intermediate resolution step as they only correspond to
modes in the ancillary Euclidean space. As the inver-
sion of the solution (148) does not allow for an explicit
general analytic expression, it requires the specification
of the initial conditions and will usually involve numer-
ical integration with the given Cj, 1(2)(k) to realize this
solution procedure.

B. Case of a polytropic Equation of State: p = ko”

As a second class of models we will now turn to the
nonlinear case of polytropic equations of state.

1. Equation of state and resolution procedure

We consider the polytropic EoS, p = ko7, 0 = F(e),
where k is the polytropic constant, and v > 1 the poly-
tropic exponent. For such flows the pressure and the
energy density obey the relation [38, 60]

1
1HQ”+A%1/”Q,

(149)
where A is a constant parameter. We will assume in this
section that the formal o = F(€) actually coincides with
the rest mass density of the fluid, e.g., via suitable initial
conditions. For A = 0, we again obtain the (nondust) lin-
ear case p = we with w := vy —1> 0. In the following, we
will instead consider the case Ax'/7 = 1 (in particular

1
_ p—1 _ /vy —
= =——p+ A =
e=8""(p) po R
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A > 0), corresponding to an EoS of the type of a non-
relativistic adiabatic ideal gas, the energy density being
the sum of the rest mass density and an internal energy
density equal to p/(y — 1).

As a relevant example, we will focus on the case
~v = 5/3, which is an exact solution for a locally isotropic
distribution with velocity dispersion, derived from the
relativistic kinetic theory of collisionless matter [34]. (See
also [68] and references therein.) This EoS also coincides
with the corresponding exact solution in Newtonian cos-
mology derived from kinetic theory [24, 25]. In these
latter papers it is also shown that this particular EoS
arises in the inhomogeneous case by closing the hierarchy
of kinetic equations through truncation of the third and
higher reduced moments. In the inhomogeneous case this
law is, however, phenomenological, since there is a non-
vanishing anisotropic part. Neglecting this part strictly
results in shear—free motion confirming the exactness of
the law in the homogeneous case.

The conservation law (18), combined with p = ko7,
gives for the evolution of p:

Op+yNOp=0; 7= g .
The same relation holds within the background space-
time, so that pya® = py;a;®. The assumption of the
background sources following the same EoS also gives,
for v =5/3:

(150)

3
en =B (pu) = SbH + Apdl®
2 5
Bller) =53 —— 37 ; (151)
3 5—|—2ApH/
80 Apy/°
ﬁ//(GH) — pH

9 (5+2Ap;f/5)3 '

The procedure outlined in the last subsection for solv-
ing the trace master equation, Eq. (88), in terms of
Fourier transformation within a set of coordinates for-
mally equivalent to Eulerian spatial coordinates, is still
applicable in this case. We can thus substitute (151)
and (89) in the Eulerian coordinate analogue of (88),
and solve the corresponding ordinary differential evolu-
tion equation for each Fourier mode. This has to be per-
formed by numerical integration as the more complicated
time—evolution of the coefficients prevents an explicit an-
alytic solution. Once initial conditions are specified we
can then numerically compute the inverse Fourier trans-
form, and formally replace the (Eulerian) spatial coor-
dinates by the Lagrangian coordinates X° (see Section
IV A 2) to obtain the solution for P(¢, X?).

2. Behavior of the first-order trace for a model overdense
region

As an instructive toy model, we will now consider the
evolution of an initial spherical Gaussian deformation:



_ R?
—P, = ag;de = cjexp <— ) ) (152)
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where o and ¢; respectively define the characteristic scale
and maximum amplitude of the initial perturbation, and

R:= (0;X'X7) Y25 a Lagrangian coordinate ‘radius’.!”

We will take ¢; > 0 and ¢; < 1. The perturbation can
then be seen to describe a small initial local overdensity,
since the initial rest mass density contrast,

Flemi[l +d&]) — Flens)
F(em;) 7
(153)
is well approximated by ag; de; = —P; for ¢; < 1.

The actual value of the amplitude ¢; is irrelevant for
the evolution of P itself, since it obeys a linear equa-
tion. However, it will matter for the nonlinear evalua-
tion of any physical quantity such as ¢ determined by the
first—order solution for P through the extrapolation pro-
cedure mentioned above from the Relativistic Zel’dovich
Approximation. To best illustrate the effect of this pro-
cedure, we choose a rather large overdensity with the
arbitrary amplitude ¢; = 1072 at an initial time that cor-
responds to the epoch of last scattering. As we will see,
this will let the unstable perturbations enter the mildly
nonlinear regime (where |P| < 1 but is of order 1) around
the present epoch, i.e., around a = ap ~ 1090 since we
set a; = 1.

1=

0 F(e)
51 = —71 =
0H; F(em;)

The other independent initial condition amounts to
specifying the first time—derivative (9, P)(t;). For this we
simply consider an initially stationary deformation and
set (0;P)(t;) = U = 0.

The present formalism focuses on the description of a
single fluid source, as it allows for a description in terms
of a single velocity field and a single EoS. We will con-
sequently make the simplifying assumption of a model
universe filled with a single-component matter fluid and
a cosmological constant. The description of model uni-
verses with multicomponent fluids is beyond the scope
of the present paper, and is left to future work. The
background density parameters £2,,, 25 for the matter
component and the cosmological constant respectively,
satisfy Q,, + Qan = 1. We will take the present epoch
value 2} = 0.692 in agreement with the best-fit ACDM
parameters from the Planck Collaboration [5].

17 We have chosen the set of Lagrangian coordinates X such that
the components of the spatial metric at initial time, G;;, are ap-
proximately d;; (at leading order) in these coordinates. They can
thus be considered as Cartesian—like coordinates, and R is thus a
fluid—comoving radial coordinate. It does not, however, coincide
with the spatial metric distance between the fluid elements of
the respective Lagrangian coordinates (X?) and (0,0,0). (This
is true irrespective of a possible normalization by a(t) to make
it a background comoving distance.)

17

The background is also affected by the polytropic EoS
(149) of the source fluid. As noted above, our poly-
trope is exact for the background and is parametrized
by the arbitrary constant s, or equivalently A as we set
Ar'7 = 1. Specifying its value amounts to choosing
the initial instability scale as determined by kj(eg;). It
also controls the ratio between pressure and rest mass
density at a given time, and hence the deviation of the
background from a dust—fluid ACDM model. The value
we adopt for our examples below, Apy;=2/° = 3/2, re-
quires the background fluid pressure to be relativistic
(and radiation-like) at the initial time, pg; = em;/3,
with pg;/omn; = 2/3. However, it subsequently quickly
becomes negligible as py/og o a~2, keeping the late—
time dynamics of the background very close to that of
the ACDM model. We choose to make the lengths
R, o dimensionless by setting the initial instability scale
kj(em;)~t (as derived from substituting (151) into (90)
at the initial time) to be our length unit. Thus o < 1
means that the scale of the initial perturbation is below
the Jeans scale k'J(GHi)_17 and above it for ¢ > 1. For
the value of A adopted in the present example and esti-
mating op; from ACDM background parameters [5], this
length unit is approximately 98 kpc. This would corre-
spond to a large background comoving initial overdensity
size of ag ky(ep;)~t ~ 107 Mpec.'®

Figs. 1-3 show the numerical results for P with the
procedure, initial conditions and parameters given above,
for three different values of o.

The first case, o = 10 (Fig. 1), corresponds to a
super—Jeans length, hence unstable, initial perturbation.
Figs. 1(a),(b) show the numerical results for the evolution
of the perturbation —P as a function of the scale factor
at several values of R, and over the whole range of radii R
for increasing values of a, respectively. As expected, this
perturbation is unstable and remains so by growing at all
times, the pressure gradient being insufficient to prevent
the collapse of the structure. The evolution is similar to
the dust case with the fast onset of a linear growth of the
perturbation with a before a late-time slow down due to
the presence of A.

The second case, 0 = 0.2 (Fig. 2), illustrates the op-
posite situation of an initially sub—Jeans length pertur-
bation. Figs. 2(a),(b) show the numerical solution for
—P in this situation along the same reasoning as for
Figs. 1(a),(b). At the early stage, the pressure gradi-

18 Note that kj(em;)~ ! defines an initial instability ‘scale’ only
in terms of Lagrangian coordinates, e.g., in terms of R. This
means that the corresponding ‘background comoving’ distance,
a(t)k(ep;)~ ! evaluated at present time, does not coincide with
the present—day physical size of an object that would initially
have been of this scale, as such a size must be evaluated using
the actual, deformed, spatial metric. (See previous footnote.)
apky(err;) ' may be seen as a rough estimate of this physical

size, as obtained by fully neglecting the deformations G[(llb), P,
in the evaluation of the integrated spatial line element.
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FIG. 1: Numerical solution for the first—order trace —P in Lagrangian space, for an initial spherical Gaussian overdensity with
a peak amplitude of 1073 at R = 0 and a standard deviation ¢ such that ks(em;) o = 10. (a). Evolution of —P as a function
of a for fixed values of the Lagrangian radius R. From top to bottom: R = 0, 10, 20 and 30. (b). Spatial variation of —P with
R, for several values of the background scale factor. From bottom to top: a = 1, 10, 200, 500 and 1000. The perturbation
strongly grows over time, corresponding to a collapsing structure.
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FIG. 2: Numerical solution for the first—order trace —P in Lagrangian space, for an initial spherical Gaussian overdensity with
a peak amplitude of 107% at R = 0 and a standard deviation o such that ky(em;) o = 0.2. (a). Evolution of —P as a function of
a at fixed distance R. From top to bottom at a = 1000: R =3, R =4, R =1 and R = 0. The inset panel shows a detail of the
early evolution (small values of a), where only the R = 0 (solid line) and R = 1 (dashed line) are visibly nonzero. (b). Spatial
variation of —P with the Lagrangian radius, for several values of the background scale factor. The structure is first damped
and spread out by the Lagrangian pressure gradient, before starting to grow back after the critical wave number a kj(em) has

increased, as the perturbation enters the unstable regime.

ent dominates and opposes the gravitational collapse.
The perturbation behaves as an acoustic wave and is
damped as it propagates away from the initial peak at
R = 0. However, the instability wave number a k(eg)
quickly starts increasing over time (cf., Fig. 4). That is
why around a = 50 to 100 the perturbation starts to
grow as its typical wave number (estimated by o~ = 5)
ends up below the critical value, with aks(eg) = 5 for
a ~ 94, and it enters the unstable regime. The peak
of this growing structure remains at a mostly station-
ary Lagrangian position, at R ~ 3.7, while its increasing

amplitude still remains small and below the initial value
—P(a=1,R=0) =103 up to present time (a =~ 1090).

For comparison we also consider the special case where
the initial scale lies at the stability threshold, o = 1. The
evolution of the corresponding solution for — P with a at
several radii is shown in Figs. 3(a),(b), with the latter
highlighting the early evolution (1 < a < 20). Fig. 3(c)
shows the spatial dependence of —P with R at some val-
ues of the scale factor. The behavior of the perturbation
in this case is as expected intermediate, with an initial
acoustic damping and propagation away from R = 0 sim-
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FIG. 3: Numerical solution for the first-order trace —P in Lagrangian space, for an initial spherical Gaussian overdensity with
a peak amplitude of 1072 at R = 0 and a standard deviation ¢ such that kj(em;) o = 1. (a) and (b). Evolution of —P as a
function of a at a given distance R, for late and early times, respectively. From top to bottom at a = 1000 for (a): R = 3,

R =1, R=0, R =4, R = 5; same order for (b) at a = 20. (c).

Spatial variation of —P with R, for fixed values of the

background scale factor. From top to bottom at R = 0: a = 1000, a = 500, a = 200, a = 1, a = 20, a = 4. The behavior is
rather similar to the previous case of kj(em;) o = 0.2; as expected, the unstable regime is, however, reached sooner, and the
perturbation then grows similarly to the case of kj(em;) o = 10, up to much above its initial amplitude.

ilarly to the o = 0.2 case, but more rapidly entering an
unstable regime, after a ~ 5. The amplitude of the per-
turbation then starts growing with a dust-like behavior
up to beyond 20 times its initial value at present time,
with a shifted peak as in the ¢ = 0.2 case, that stays
around R ~ 2.5.

3. Ewvaluating the nonlinear density contrast

As we recalled above, even the first—order Lagrangian
perturbation scheme allows one to probe part of the non-
linear regime in the evaluation of observable quantities.
This involves extrapolating these observables as exact,
nonlinear functionals of the deformation field, the latter
being evaluated as a solution to its first—order evolution
equations and constraints.

Adopting this procedure for the rest mass density we
evaluate it as the exact integral to the rest mass conser-
vation equation (18):

J =det(n%) = a®det(6% + P%), (154)

where P? are the components of the deformation field.
The density contrast § is then deduced from the above:

5= 0—0H 0i

37 _ a a
= a3 a"°J = det(6%+P%)
(155)
and it is evaluated by replacing P% by the first-order

solution.

Using the polytropic EoS and the parameters adopted
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FIG. 4: Evolution of the instability wave number akj(ex)
with the scale factor a for the polytropic EoS considered here,
with the unit of length convention k;(em;) = 1. As this wave
number only depends on the background by construction, this
result applies to all examples considered in this Subsection
IVB. After a small initial dip, aks(en) exceeds its initial
value around a ~ 4 and enters the increasing power law regime
aky(en) o< v/a (valid as long as (24 /Qm)(a/a;) ™2 < 1, which
is satisfied up to the present epoch) as expected from the large
a expansion of its expression for the present polytropic EoS.

here, the lapse may then be computed from

o _ 0 _ L

etp  o+zIgro’ 14 35(1+06)3a72]

(156)
with § expressed from the deformation field as above.
This formula shows that the lapse is 1 in pressure—free
(here empty) regions (§ = —1) and decreases with in-
creasing density contrast at a given time. The deviation
(1 — N) rapidly decreases over time as oc a2, with late
time values of order 107% (when a ~ 1000), as long as §
remains at most of order unity.

We will now illustrate this process for the density con-
trast with two examples using the same polytropic EoS
as above. Note that this evaluation requires the knowl-
edge of all components of the deformation field, including
the traceless part. We specify procedures in Appendix A
to obtain a particular (gravitoelectric) solution for the
first—order traceless part from the initial conditions for
the trace in specific cases. These procedures have been
used to determine a consistent solution for the full defor-
mation field in the examples below. We have also made
use of the fact that the initial density o; = F'(eg; [L1+0€i])
is well approximated by F(ex;)(1+am;de) = om;(1—B)
for a small, still linear, initial density perturbation (with
ap; = 3/4 for the chosen EoS parameters) for the evalu-
ation of 4.

a. Localized overdensity:

Let us first retain the ‘spherical’ initial overdensity ex-
ample studied thus far in this section, with the initial
conditions for the trace given by (152), with ¢; = 1073,
and U = 0. The first—order solution for the trace in
this situation has been determined above, and is comple-

N =

20

mented by a gravitoelectric solution for the first—order
traceless part through the use of the procedure given in
Appendix A 2 that directly applies to this case. The de-
terminant .J is then computed from this solution as in
Appendix A4, giving ¢ from Eq. (155).

Note that when all components of the deformation field
are very small, i.e., when it lies fully in the linear regime,
then the extrapolated § remains quantitatively close to
— P, which corresponds to its expansion at first order in
the deformation field. This is the case in the initially
stable or marginally stable cases ¢ = 0.2 and ¢ = 1,
where the initial acoustic damping of the perturbation
keeps its amplitude small up to the present time despite
the late—time growth. In both of these cases, the resulting
density contrast indeed remains indistinguishable from
the value of —P already depicted above (Figs. 2-3).

We will consequently focus from now on on the case
o = 10, where the unstable deformation reaches into the
mildly nonlinear regime before the present time, as can
be seen for the trace (whose amplitude reaches about 0.5
at the present epoch).

Figs. 5(a),(b) show the result of the nonlinear evalua-
tion of the density contrast in this situation, as a function
of a at given radii R, and as a function of the radius at
several moments in its evolution, respectively. Although
the general behavior is roughly similar to that of —P
(¢f. Fig. 1), nonlinear effects are visible in the amplified
growth of § at late times near R = 0, with a maximal
overdensity reaching about 0.7 at present.

This nonlinear deviation of the density contrast func-
tional with respect to its first—order estimate — P is made
explicit by the direct comparison of the peak (R = 0)
amplitude evolution of § and —P as a function of the
background scale factor in Fig. 6(a). The spatial depen-
dence on R of both quantities at late times, compared
in Fig. 6(b) at a = 1000, is also visibly affected by the
amplified growth of the density contrast where P is no
longer small, i.e., around R = 0.

b.  Lagrangian monochromatic wave:

The second toy model we consider is that of a sin-
gle Lagrangian monochromatic wave deformation. The
choices of background parameters and the length unit
(kj(em;) = 1) are unchanged. The initial perturbation is
now chosen to be
—P=cicos(KX) ; U=0, (157)
where we will again take ¢; = 1072 as an initial ampli-
tude. This situation corresponds to an initially station-
ary monochromatic wave in the given Lagrangian coordi-
nate set,'® —P; = ¢; cos(6;; K' X7+ ¢g) with ¢g = 0 and a

19 Similarly to the interpretation of R for the previous example,
it is important to keep in mind that the perturbation we are
considering here only has a sinusoidal dependence in the chosen
Lagrangian coordinates X*. It would have a different functional
dependence in terms of actual physical (metric) spatial distance
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FIG. 5: Numerical evaluation of the nonlinear density contrast § as extrapolated from the first—order Lagrangian perturbation,
where the initial —P is the same spherical Gaussian field as for Fig. 1, with peak value of 107* and ks(em;) o = 10. (a).
Evolution of 6 with the background scale factor at fixed distances R. From top to bottom: R = 0, 10, 20 and 30. (b). Spatial
variation of § with the Lagrangian radius, for given values of a. From bottom to top: a = 1, 10, 200, 500 and 1000. The
overall behavior of § is similar to the results of Fig. 1 for the first-order —P in the same situation, but the extrapolated density
contrast grows faster at late times near the R = 0 maximal overdensity. Additional nonlinear effects concerning the comparison
with a standard perturbation approach, not studied here, could also be revealed by using instead as the z—axis for (b) the
actual spatial metric distance to the R = 0 fluid element (as an ‘Eulerian radius’), altering the spatial dependence. (See the
discussion in Section IV B4.)
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FIG. 6: Comparison of the extrapolated nonlinear density contrast ¢ (dashed line) with the first—order solution for the sign—
inverted deformation trace —P (solid line) within the same setting as Figs. 1 and 5. (a). Comparison of the evolution of both
quantities as a function of a at the centre of the overdensity (R = 0). (b). Comparison of the spatial variation of both quantities
with R at a late time (@ = 1000). In this situation, the perturbation grows large enough to enter the nonlinear regime and to

render the time evolution and spatial behavior of the extrapolated d clearly deviating from those of —P.

Lagrangian wave vector K along the first coordinate X, The first—order trace solution then remains in this
with components K¢ = (K, 0,0). monochromatic mode form in the Lagrangian coordinates
at all times, P = Pk(t) cos(KX). The amplitude P (t)

evolves according to the ordinary differential equation

(A2) which is solved by numerical integration for a given

between two points on a given hypersurface t = const. One ex- wave number K. A gravitoelectric solution for the trace-
pects for instance, at a given late time ¢ and along a given spatial less part is then determined along the lines of Appendix

geodesic line, the distance between the successive perturbation . A . . .
nodes at KX — —m/2 and KX — /2 (surrounding a collapsing A 1, where the relevant amplitude Qk (¢) is again numeri-

overdensity) to be shorter than the distance between the nodes cally evaluated, knowing Pk (t), through its defining time
at KX = n/2 and KX = 37/2 (surrounding an expanding un-  integral formula (A3). From these, one can calculate the

derdensity), despite all nodes being equally separated in terms density contrast in the same way as in the previous ex-
of the Lagrangian coordinate X.
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FIG. 7: Numerical evaluation of the nonlinear density contrast § as extrapolated from the first—order Lagrangian perturbation.
The first—order deformation trace is taken as a plane-wave in Lagrangian coordinates of wave vector K (of norm K) along the
X coordinate, —P o cos(KX) , of initial amplitude 1073, The result is shown at a given time as a function of KX for three
possible values of K, which is expressed in units ks(ezr;) = 1. (a). At a = 10, for K = 0.1 (K~* =10), K =5 (K~ = 0.2)
and K = 1 by order of decreasing amplitude. (b). At a = 1000, for K = 0.1 (K=" =10), K =1 and K =5 (K~' = 0.2) by
order of decreasing amplitude. The side panel displays the (otherwise barely visible) latter two curves on a different vertical
scale. The most unstable perturbation, for K ! = 10, displays a non-sinusoidal asymmetric shape at late times as it reaches
the mildly nonlinear regime. This shape would be further nonlinearly modified, via a different z—axis dependence, if this axis
were expressed alternatively in terms of an Eulerian—type, regularly spaced (in terms of spatial metric distances), x coordinate.

ample, with the determinant J evaluated as detailed in
Appendix A 4.

Here we again study three cases distinguished by their
wave number in direct analogy to the previous example,
with K~! playing the role of the characteristic length
0. We accordingly choose K~! = 0.2, K~! = 1 and
K~! =10, which at the initial time are stable, marginally
stable and unstable, respectively. The corresponding spa-
tial dependence of § as a function of KX for the three
wave number choices is shown at an early time (a = 10)
in Fig. 7(a), and at a late time (a¢ = 1000) in Fig. 7(b).

In this situation, in the first two cases the components
of the deformation field again remain small at all times,
due to initial acoustic oscillations, and the density con-
trast thus follows the sinusoidal shape of —P at all times.
This is also the case for the unstable mode K~! = 10 at
a = 10 when it is still in the linear regime. At a = 1000,
however, this mode clearly deviates from this behavior
as its amplitude is no longer linear. In particular, an
asymmetry develops between the under— and overden-
sity magnitudes as the latter is sharply amplified by the
nonlinear evolution of §.

4. Discussion

In both examples above, the Lagrangian scheme and
the proposed extrapolation procedure exhibit nonlin-
ear effects on the overdensity for unstable perturbations
when they become large enough. The amplitude of large
overdensities in these examples is clearly underestimated
when they are approximated by the first—order expression

— P instead of using the nonlinear extrapolation for 6.

An even higher initial overdensity amplitude could ac-
tually lead to a vanishing determinant a~3.J at the maxi-
mum overdensity at a late enough time, implying 0 — oo
with deformation coefficients still of order 1. This situ-
ation corresponds to a shell-crossing, beyond which the
first—order Lagrangian scheme in no longer valid.

The presence of pressure can delay its occurrence by
damping the perturbation. An improvement of the per-
turbative scheme to account for further local nonlinear
effects in the dynamical evolution, e.g., allowing for a
nonlinear coefficient to define the Jeans length is needed,
however, to fully circumvent this problem. Velocity dis-
persion effects may in principle allow us to model the
multistream regime, and the stabilization of structure
formation in the form of virialization, which may help
to avoid shell-crossings [18, 25].

We emphasize that the current Lagrangian perturba-
tion scheme already contains another effect of nonlinear
structure evolution, which lies in the exact propagation
of the spatial coordinates used along the fluid flow lines.
This is analogous to the inclusion of quadratic convec-
tion terms within linear Lagrangian time derivatives in
the Newtonian framework.2’

20 In addition to the time derivatives being taken at different fixed
spatial coordinates, a difference also comes from the spatial
derivative operators, such as the Laplacian Ay appearing in
the trace master equation (85), being expressed in terms of La-
grangian coordinates and thus differing from the corresponding
Eulerian operators. (See [6] for the explicit transformation in the
Newtonian case.)



Let us suggest a procedure that would be required to
make these effects explicit also in the relativistic context;
its concrete application is beyond the scope of this paper.

Eulerian—like coordinates could first be recovered, at
least along a given spatial geodesic direction, by labeling
points at equal intervals of spatial metric distances. This
would involve solving for the initial metric components
Gap such that their Ricci tensor is consistent with the ini-
tial conditions (114)—(115) for given initial deformation
field data, and then functionally evaluating and integrat-
ing the line element as given by (A18) from the first—order
solution for P%. The resulting length, as a function of
a Lagrangian coordinate, could then be used as an esti-
mate of the Eulerian coordinate distance. Finally, this
relation would have to be numerically inverted so that
a given Lagrangian function obtained through the Rela-
tivistic Zel’dovich Approximation, such as o(X?), could
be expressed as a function of the Eulerian coordinate x
along the chosen line.

A different functional dependence on this spatial dis-
tance (which may be normalized by a(t) to become
a background comoving distance), as compared to the
fluid-comoving coordinates X ¢, would thus include non-
linear effects of the fluid—propagation—dependent coordi-
nate transformation.

Recall, however, that a three-dimensional family of
Eulerian observers generally does not exist in a relativis-
tic (intrinsic) description. Strictly, a coordinate trans-
formation to Eulerian space can only be conducted after
the Minkowski Restriction of the relativistic solution has
been executed.

V. CONCLUSION

In this paper we have generalized the Lagrangian per-
turbation approach to the nonlinear evolution of inhomo-
geneous general relativistic model universes containing a
single irrotational fluid obeying a general barotropic re-
lation.

By choosing a suitable set of coframes, we obtained the
master partial differential equations for the evolution of
the trace and traceless parts of the first-order deforma-
tion field that reduce to the corresponding equations in
the dust case. The trace part also matches the Newto-
nian limit of the corresponding Lagrangian perturbation
problem.

We discussed the procedure proposed in previous
papers of how to find the solution for perturbations
that propagate in the perturbed space, and applied
this procedure to specific toy models, illustrating the
mildly nonlinear evolution of the density contrast. We
also discussed the limits of a first—order Lagrangian
scheme, and we proposed ideas for a nonperturbative
generalization, which is needed especially in application
to cases where the pressure term is taken to model
multistreaming beyond the mildly nonlinear regime.
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Appendix A: Examples of solutions for the
gravitoelectric traceless part

In this paper we will not attempt to find the general
solution of Equations (96)—(97) for the traceless part. We
will, however, discuss a procedure for finding one possible
solution for suitably chosen traceless—part initial condi-
tions. For any barotropic EoS, this yields one example
of a full gravitoelectric solution for all components of the
deformation field P¢ . It can then be substituted into ex-
act nonlinear formulae to extrapolate functionals of the
coframes such as metric distances or the rest mass den-
sity.

To find such an example solution, we will focus on the
gravitoelectric part which is directly coupled to the trace,
and accordingly we set the gravitomagnetic part to zero.

1. Case of a Lagrangian monochromatic wave

Let us first assume that the first—order trace solution
can be written as a single monochromatic wave mode in
the given set of Lagrangian spatial coordinates X"

Pt X") = p(K - X) P (1) (A1)

for some constant Lagrangian wave vector K, where
K- X :=§;K'X7, and p(K - X) = cos(K - X + ¢9),
with constant phase ¢g. This form is a solution of the
first—order trace master equation, if and only if Pk (t) is
a solution of the ordinary differential equation
2 4 / d A 2 D
— P 2H(1 -3 — Pk —W(t)Ng P
a2 K+ 2H ( ﬁ(eH))dtK W(t)Ng Pk

= —a2N%4 B (ey) K? Pk , (A2)
with K = (5K K7)"2

= Then P = P - P =
e(K - X) (Pk(t) — Px(t)).



Setting

/NH (PK>(t)dt’

= P (t) — Px(t —3/H 7)) Px(t') dt’
(A3)

the time integral of the momentum constraints (97) is
i 2 5

We now take Hij to be a purely longitudinal mode and
get the following solution to the momentum constraints
(with K; := &, K*):

/(K -X). (A1)

i, — (55 - 30) Q0o X) (A5)
_ KiKJ’ 71 i QK( ) i
( St 30, ><—PK() PK(ti)>P(t,X).

(A6)

Substituting this form into the master equation (96)
shows that it is consistently a solution of both equations
for the traceless part. It is straightforward to show from

the above formula that 2 AOHijﬁ—Hkl‘kll 63 Hik‘j“C =0,

i.e., this TI'; obeys the defining relation (108) for the
gravitoelectric part and evolves according to (105). This
solution is thus a pure gravitoelectric one, amounting to
setting the gravitomagnetic part to zero by the choice
of vanishing gravitomagnetic traceless part of the initial
deformation: Hij = 11 .

Choosing this solution amounts to specifying the fol-
lowing (gravitoelectric) initial conditions:

. K'K; 1.
tlej _ < J 352.) (U—|—3Hi,@/(€Hi)aHi65i> 5

K2
(A7)
W = (% - %5@) (W +3H; 3 (ens) U
+ 3 [0(HB (e)) () + 2 HE B (ens) evms I )
(AS)

This is compatible with the set of constraints on the ini-
tial conditions given in Section IITE, in particular the
initial momentum constraints (116) and Eq. (114), pro-
vided that the latter is used to specify the traceless part
of the initial first-order Ricci tensor .7 ; .

The corresponding full perturbation field P, = IT*; +
%&jp then reads:

P = K'K; ( Ok )P

K2
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Note that the corresponding deformation 1—forms P* =
5% P dX* are not exact due to the different time evolu-
tion of the trace and gravitoelectric traceless parts. This
contrasts with the dust case where a purely gravitoelec-
tric perturbation would lead to integrable coframes [L4],
so that only the non—flat initial metric would prevent one
obtaining an Euclidean spatial metric at all times in that
situation.

By linearity of the equations, a solution for IT*; can
also be obtained when the trace is a finite sum of such
monochromatic waves, or the sum of the two time—
evolution modes solutions of the evolution equation (A2)
for a given wave vector K, simply by summing the cor-
responding solutions as given by (A5).

2. Case of a spatially localized solution

We assume here either that the spatial slices are glob-
ally diffeomorphic to the Euclidean space R?, i.e., that
they can be covered by a single chart, or that the defor-
mation field can be assumed to vanish outside a given
chart. In either case it suffices to work within the Eu-
clidean space spanned by the spatial coordinates in a
given chart.

Let us now consider a spatially localized solution for
the trace, e.g., a local overdensity evolving from an ini-
tial Gaussian perturbation in terms of the given set of
spatial Lagrangian coordinates, as studied in the numer-
ical examples of Section I'V. More specifically, we require
the solution for the trace to always be a square—integrable
function of the spatial coordinates in the chart, so that its
Fourier transform in these coordinates can be performed
and inverted. We can thus write:

P(t,X") = / / / e KXP(t,K)d°K |

where P(t,K) is a solution of the evolution equation (A2)
at fixed K, with the initial conditions set by the forward
Fourier transform in the chart coordinates:

(A10)

P(ti,K) = ——

! mE aHi///eiK'X Se(X)d3X ; (A11)
@7 /// KX UX)d3x (A12)

Note that the above approach represents an alterna-
tive and complementary formulation of the method of
solution presented in [L4] which formally replaces the La-
grangian coordinates by ‘Eulerian’ ones. In the present
paper it is applied in Sections IV A 2 and IV B. The re-
formulation suggested here allows us to be more explicit
about the required assumptions, as well as expressing the
coordinate components of tensors such as II*. in a more
convenient form. In both formulations, the use of plane—
wave modes and flat—space Fourier transformations is suf-
ficient since the Lagrangian first-order master equations

(&fp)(tlv K



to be solved only involve the metric-independent coordi-
nate spatial derivatives |; and Laplacian Ag = |3, 57 as
spatial derivative operators.

By linearity of the equations, a solution for the (gravi-
toelectric) traceless part is obtained by summation of the
plane wave solutions for all Fourier modes:

i i —i K- K
Hj:EHj:///e K-X KQJQ(t K)d’K

_%yj ///e—iK‘X Ot K)PK, (A13)

with

(t,K)

Q(t,K) / Nyt ( Na() )(t’) dt’ . (A14)

Using this solution again implies a specific choice of initial
conditions for the traceless deformation field (in partic-
ular taking it to be gravitoelectric) and for the traceless
part of the spatial Ricci tensor.

In the case of spherically symmetric initial conditions
in the chart coordinates, i.e., when de;(X*) and U(X?)
only depend on R := (5inin)1/2, their Fourier trans-
form will also depend only on K. From the evolution
equation (A2), this feature is preserved over time, so

that one can write P(t,K) as P(t, K) and consequently

Q(t,K) as Q(t, K) and P(t, X") as P(t,R). The above
solution for II'; can then be computed as
XX 1
nj:( R2]—35j>q(t,R), (A15)

with Xi = 6ijk and

q(t, R) / Ksin(RK) Q(t, K)dK

_ %/O (%I};K) - Rcos(RK)) O(t, K)dK . (A16)

3. Time integral of the gravitoelectric evolution
equation

The above procedure gives a way of obtaining a trace-
less part consistent with the momentum constraints and
evolution equations in particular situations, and when
only initial conditions on the trace part (or on the en-
ergy density) are explicitly specified. Alternatively, and
still focusing on a purely gravitoelectric traceless part, a
solution can be derived from the gravitoelectric traceless
evolution equation (105), if the trace part and the (grav-
itoelectric) traceless initial conditions are known. It can
be achieved by rewriting this evolution equation as fol-
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lows:
3 ) N
o (zavHatEHlj) e </ NHBt( ) )
. o o
+ 5 ([ 438 (en)] D P = [1+38 ()] D', )
St (MW 13 )] UYL (AT
H;

after replacing Ay EHij by its integral expression (111)
in terms of P. It can be readily time-integrated twice to
give EHij. This yields the full Hij if the initial conditions
are chosen such that the gravitomagnetic part vanishes.

In contrast to the previous subsections, this procedure
can be applied in general, allowing the gravitoelectric ini-
tial conditions for the traceless part to be freely set. How-
ever, this requires the initial conditions " ij = Ey ij
and “Wij = ﬂ’EWij to be explicitly specified. While
the trace parts relate to the energy density and spatial
scalar curvature, the tracefree parts are related to prop-
erties of the gravitational wave components at the initial
time. The latter have to be set in such a way as to ful-
fill the momentum constraints and their time derivative
at the initial time, as well as the geometric constraints
(101)—(102) for the gravitoelectric parts.

4. On the evaluation of physical quantities

From given solutions for the trace and traceless parts,
the full deformation field is straightforwardly obtained as
P’ =1, + (1/3)P¢";, with P = P — P;. This expres-
smn can then be inserted into the Lagrangian functional
expressions for various physical quantities in terms of the
deformation field. They can then be directly evaluated
without any further linearization. This extrapolation is a
crucial part of the Relativistic Zel’dovich Approximation
as defined in [L1], and it generally requires the knowledge
of all components of the deformation field.

One would for instance directly compute a spatial dis-
tance from the line element

ds® = a(t)’Gap (6% + P%) (6% + P% ) dX'dX7 | (A18)
where knowledge of Gu,(X¥) is also required. In turn,
the rest mass density (with initial conditions set in such
a way that it does coincide with ¢ = F(e)) would be
computed as
o o (1+apg;oe)

=2 = . Al
J  addet (0% + P%) (A19)

For the evaluation of the latter, note that in the case of
a monochromatic wave (with one or both time—evolution
modes), the deformation field components can be written
as follows:

K2

K'K; ;
K2 +/\2(5j,

Pi=x (A20)



and similarly in the case of a localized spherically sym-

metric perturbation,

XX
K2

P=X + A0 (A21)
The coefficients A1 (¢, X*), Aa(t, X*) for the monochro-
matic case are directly deduced from (A9) or from a sum
of two such solutions, while in the localized spherically
symmetric case, \i(t, X*) = q(t,R) and X\y(t, X*) =
(P(t,R) — q(t,R))/3. The determinant of the spatial
coframe coefficients, from which p is evaluated, is then
expressed in both cases by

J=a(1+ )2 (1+ A+ N2), (A22)

leading to an infinite rest mass density (from shell-
crossing) whenever Ay — —1 or Ay + Ay — —1.
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Such an extrapolation procedure provides the exact
metrical distances, density and other physical properties
as produced by the deformation field at a given order.
In particular, this gives powerful approximations for the
Ricci and Weyl curvatures that are not available in stan-
dard perturbation theory. It is, however, clear that the
resulting expressions are approximations that must be
controlled.

We can further combine the exact functionals for a
given deformation with exact averages of Einstein’s equa-
tions. An example was given in [L2] that also showed
that the resulting prescription can even lead to exact re-
sults. For example, the combination of the first—order La-
grangian dust model with exact averages led to an exact
formula for the kinematical backreaction within a class
of averaged Lemaitre—Tolman—Bondi solutions [L.2].
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Chapter 3

Averaging and backreactions in general
foliations

The RZA (Relativistic Zel’dovich Approximation) including fundamental or effective pressure
sources detailed in the previous chapter can be used as one of the possible models for the local
dynamics in an inhomogeneous Universe. In this case it provides a nonperturbative approxima-
tion for the evolution of the matter or radiation energy density from given initial conditions,
able to probe from the very early up to rather late regimes of structure formation, as well as
scales where dust models are insufficient. It may then be used in conjunction with the spa-
tial averaging procedure and averaged dynamical equations of Buchert [2001], recalled above in
chapter 1 (section 1.5), for an investigation of the backreaction consequences of the emergence
and stabilization of structures on the overall dynamics of a given set of matter fluid elements,
including possible contributions to Dark Matter-like effects at small scales.

As mentioned earlier, a natural further extension to this scheme would be the inclusion of
vorticity in the fluid, which can have non-negligible contributions to the dynamics of collapsing
regions. One would thus consider a model fluid of 4—velocity w with a nonzero vorticity 2—form
w, of components w,, = bp[ubay]vpug with b”, = 6”4 + vPu,. In terms of the dual 1—form
to w, this implies u A du # 0, i.e., u does not form orthogonal hypersurfaces. A more general
foliation than the fluid-orthogonal ones considered so far has thus to be used in this case, allowing
for a nonzero, varying tilt between the fluid 4—velocity and the normal to the hypersurfaces.

While adapting the RZA to non—fluid-orthogonal foliations as required to account for vorticity
will be a future project, a major part of my PhD has been dedicated to the generalization of the
spatial averaging scheme of Buchert [2000, 2001] to such less restrictive possibilities of building
the spatial slices of averaging for the study of backreaction in inhomogeneous, possibly rotational
fluids.

Beyond accounting for vorticity contributions, considering a freely specifiable 3+1 spatial
foliation has other advantages. As no more restrictions need to be made on the fluid’s kine-
matics, its energy-momentum tensor can also be taken under the most general form. A non-
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barotropic isotropic pressure, an anisotropic pressure, and a heat vector can be included, while
they will all generally create vorticity (see Ellis, Maartens, and MacCallum [2012] p.124-125, or
Christopherson et al. [2009] for perturbative results). It also implies that, while still focussing
on the frames and worldlines of a particular fluid component (with 4—velocity u), other compo-
nents with distinct 4—velocities can be included, despite them generally adding non-perfect fluid
contributions to the total energy-momentum tensor as decomposed with respect to u [Maartens
et al., 1999, Delgado Gaspar et al., 2019].

Moreover, such a generality allows for the choice of a foliation of specific physical interest,
which may not be fluid-orthogonal even for an irrotational fluid, in each concrete application
of the formalism to a cosmological model. This can include, for instance, hypersurfaces with
constant scalar extrinsic curvature. Another choice of interest is a foliation by constant—fluid
proper time slices, which can always be built for a nonsingular fluid flow and provides a natural
interpretation of its ‘time’ parameter. I will further investigate this option below.

Relativistic numerical simulations for cosmology may also adopt a non-fluid-orthogonal fo-
liation for an improved numerical stability, since the formation of shell-crossings in the fluid
would otherwise lead to coordinate singularities in the associated 3+1 scheme. The analysis of
resulting average dynamics and backreactions then requires an averaging scheme applicable to
the chosen hypersurfaces. This is the situation considered in the recent work of Macpherson et
al. [Macpherson et al., 2019] where the foliation and time parametrization are selected by setting
an evolution equation on the lapse along the normal vector n as’ n*o,N = —NK/3.

Accounting for any possible spatial foliation choice can also allow for the determination of
how the effective dynamics and the backreaction terms found in the fluid-orthogonal framework
of Buchert [2000, 2001] would change for another foliation, since spatial averages are by definition
taken over a subset of the spatial slices considered. This question has been raised in the literature
where it is sometimes designated as a possible ‘gauge dependence’ (e.g., Larena [2009], Brown
et al. [2009]). This name refers to the Eulerian perturbation theories around an FLRW back-
ground (see subsection 1.3.2) where a different mapping to the background spacetime’s slices of
homogeneity leads to the consideration of a different foliation in the perturbed manifold. =In the
background-free frameworks considered here, changes in averaged quantities between different
foliation choices are rather referred to as foliation dependence.

Several proposals for such a generalization of the framework of Buchert [2000, 2001]| have
already been exposed in the literature (Kasai et al. [2006], Tanaka and Futamase [2007]; Larena
[2009]; Brown et al. [2009]; Gasperini et al. [2009, 2010]; Résénen [2010]; Beltran Jiménez et al.
[2014]; Smirnov [2014]). However, none of these works considers a non-global averaging domain
propagating along the fluid flow lines and preserving its fluid elements contents over time, directly
affecting the effective dynamics. The consequences of such different propagation choices as well
as other characteristics of the formalism of each of these works will be discussed in more detail

"This choice would give a parametrization by the conformal time 7 in an FLRW (Friedmann-Lemaitre-
Robertson-Walker) model.
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below.

I will present in this chapter the results of the joint work with Xavier Roy and Thomas Buchert
on averages of scalars in arbitrary spatial foliations. This corresponds to two studies: a paper
in the last stages of preparation, and a Letter recently published as [Buchert, Mourier, and Roy,
2018]. The latter has been the object of an additional CQG+ Comment for originality® at the
journal’s request.

In the first study, constituting the first part of this chapter below, we introduce two possible
averaging schemes for such a general framework?, and the resulting effective regional dynamics
for a compact averaging domain comoving with the fluid flow. The latter can have vorticity and
acceleration and has no restriction on its stress-energy tensor. Both schemes are mostly similar,
and both reduce to the scheme of Buchert [2000, 2001] for a fluid-orthogonal foliation, but, when
the hypersurfaces are tilted with respect to the fluid flow, these schemes are distinguishable from
each other by their volume measures and the local variables on which they focus. The first one
is identical to those used in the literature proposals mentioned above apart from the domain
propagation: it focusses on the geometry of the slices themselves, in the region delineated by
the averaging domain, by using the Riemannian volume measure from the induced metric on
the slices. After its description and application to averaging the 3+1 Einstein equations, we
compare it with the previous works and analyse their specificities. The second averaging scheme
is more intrinsic to the fluid flow due to using its proper volume as a volume measure, while still
integrating over the (fluid-comoving) domain lying within the arbitrary spatial slices. It focusses
on the kinematic variables of the fluid. Providing more insight into the effective dynamics of
the fluid content, this scheme is also well suited to foliations at constant fluid proper time. We
discuss its application to this particular choice, as well as its restriction to the fluid-orthogonal
subcase and to a Newtonian framework.

This is followed as a second part to this chapter by the results of our Letter. We summarize
there the main findings of our general scalar averaging framework and we discuss further their
implications, focussing on the fluid-intrinsic scheme and its application to constant— fluid proper
time foliations. We address in particular the explicit dependence of the average evolution equa-
tions and of the backreaction terms on the choice of foliation. We argue for a small possible such
dependence in a cosmological context, thanks to the intrinsic approach, despite the existence of
opposite claims such as in [Adamek et al., 2019] within extrinsic averaging schemes.

*nttps://cqgplus.com/2018/11/28/space-is-the-place/

9Although the averaged dynamical equations derived in this study arise from the local Einstein equations,
the definition of the averaging operator and formalism itself only relies on the assumption of a semi-Riemannian
manifold, and thus holds within any corresponding metric gravity theory. It may thus also be applied to such
alternative theories of gravity, such as those discussed as alternative explanations to the apparent dynamical
effects attributed to Dark Matter or Dark Energy.
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On Average Properties of Inhomogeneous Fluids in
General Relativity III: General Fluid Cosmologies

T. Buchert - P. Mourier - X. Roy

Abstract We investigate effective equations governing the volume expansion of
spatially averaged portions of inhomogeneous cosmologies in spacetimes filled with
an arbitrary fluid. This work is a follow-up to previous studies focused on irro-
tational dust models (Paper I) and irrotational perfect fluids (Paper II) in flow-
orthogonal foliations of spacetime. It complements them by considering arbitrary
foliations (hence arbitrary lapse and shift) and by allowing for a tilted fluid flow
with vorticity. As for the first studies, the propagation of the spatial averaging
domain is chosen to follow the congruence of the fluid, which avoids unphysical
dependencies in the averaged system that is obtained. We present two different
averaging schemes and corresponding systems of averaged evolution equations pro-
viding generalizations of Papers I and II. The first one retains the averaging oper-
ator used in several other generalizations found in the literature. We extensively
discuss relations to these formalisms and pinpoint limitations, in particular in rela-
tion to averaging domain rest mass conservation. The alternative averaging scheme
that we subsequently introduce follows the spirit of Papers I and II and focuses
on the fluid flow and the associated 1 + 3 threading congruence, used jointly with
the 3 + 1 foliation that builds the surfaces of averaging. This results in compact
averaged equations with a minimal number of cosmological backreaction terms.
We highlight that this system becomes especially transparent when applied to a
natural class of proper time foliations.
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1 Introduction

A viable cosmological model provides an effective evolution history of the inhomo-
geneous Universe. The procedure of spatially averaging the scalar characteristics
of an inhomogeneous model universe yields a system of Friedmann-type equations
with an effective energy-momentum tensor, featuring so-called backreaction terms
(see [15,16], respectively referred to as Paper I and II hereafter). These additional
terms contribute to and may potentially replace the dark constituents of the Uni-
verse that have to be postulated as fundamental sources in the standard model
of cosmology [14,18]. For recent reviews and references, we direct the attention of
the reader to [33,19,29,45,53,28,22].

Extensions of this averaging framework have been investigated, concentrating
on general foliations of spacetime within the 3 + 1 formalism, to include a possible
shift vector and a tilted fluid 4—velocity with vorticity [46,10]. Some misinterpre-
tations and drawbacks can be identified in these papers, and we are going to point
them out in specially dedicated sections on the comparison with results in the
literature. A four-dimensional averaging procedure has also been proposed [37,38]
in order to provide an explicit 4—covariant expression of the backreaction terms
and to relate these to gauge-invariant variables.

We describe in this paper a unified and general framework within the 3 4+ 1
formalism, leaving its four degrees of freedom (lapse and shift vector) unspecified
and allowing for a tilted and vortical fluid flow. We shall emphasize (i) the use
of an averaging domain comoving with the 1 + 3 threading congruence of the
fluid, and (ii) the Lagrangian point of view, that has been employed previously,
without averaging, for fluids with vorticity [6] and pressure [5]. The present general
investigation is also useful to relax some restricting assumptions of Papers I and
I, to better understand the relation to Newtonian averaged cosmologies [23], and
to extend the range of applicability of the effective equations.

The averaged system that we derive furnishes a background-free approach to
relativistic cosmologies. It can alternatively be interpreted as a general background
cosmology with a ‘background’ that is not fixed a priori [45], but interacts with
the formation of structures. Fluctuations can then be investigated with respect
to the physical average,’ abandoning standard perturbative frameworks where
fluctuations are referred to a fixed reference background and thus eliminating the
need to consider gauge transformations.

This paper is organized as follows. Section 2 gives a comprehensive outline
of the 3 4+ 1 framework and the general fluid content we consider. We here also
introduce the Lagrangian description, the relevance of which we shall emphasize
in what follows. We introduce in section 3 an averaging framework similar to one
commonly used in relativistic cosmological modeling (named here fluid-extrinsic
approach), but with emphasis on a comoving evolution of the averaging domain.
We derive the corresponding averaged evolution equations for the domain and
comment on the resulting backreaction terms. We close this section with a detailed
discussion of existing results in the literature. Section 4 opens a new perspective on
the averaging problem by proposing a fluid-intrinsic approach that is inspired by
a 1+ 3 threading of spacetime and that focusses on the fluid’s metric and volume

1First results on a corresponding perturbation scheme that makes structures evolve on
such a physical background have been communicated [57].
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forms rather than the metric and volume forms of the hypersurfaces. This allows for
a compact formulation of the effective equations governing hypersurface averages
of fluid properties, and it agrees in spirit with what has been presented in Papers I
and II. We conclude in Section 5 after a discussion of various subcases of interest
in order to illustrate our fluid-intrinsic approach and to prepare applications.

2 Foliation of spacetime and decomposition of the fluid

This section sets the definitions and notations for the 3 + 1 foliation of spacetime
and for the decomposition of the fluid flow and of its energy-momentum tensor
(see, e.g., [4,51,60,1,39] for more details). The comoving and Lagrangian pictures
are then introduced as natural possible coordinate descriptions adapted to the
fluid flow.

2.1 Description of the geometry

Our spacetime model is a globally hyperbolic four-dimensional manifold, endowed
with the pseudo-Riemannian metric tensor g and described by a local system of
coordinates z* = (t,z").?

We foliate this manifold into a family of spacelike hypersurfaces, and we denote
by n their timelike, future-oriented, unit normal 4—vector. The foliation can be
characterized by a regular scalar function S strictly increasing along each flow line,
and defined such that each spatial hypersurface is a level set of S. For simplicity, we
choose the time coordinate ¢ as being a strictly increasing function of S (implying
the reciprocal relation S = S(t)), and use it to label the hypersurfaces. The spatial
coordinates z°, on the other hand, are kept arbitrary.

In such a spacetime coordinate basis, the components of n are written:

nt = % (1, —Ni) , (2.1)

and the components of its non-exact dual form n read:
n, = —N (1,0). (2.2)

The positive lapse function N determines how far consecutive slices are from each
other at each point, while the shift vector IN generates a spatial diffeomorphism
that relates pairs of points between the slices. Following the usual conventions of
a 34 1 formalism, we here associate this lapse to the coordinate functions defining
the propagation of the local spatial coordinates between slices. By definition we
have:

2Greek letters are assigned to spacetime indices, they run in {0, 1,2,3}, and Latin letters
refer to space indices, running in {1, 2,3}. The signature of the metric is taken as (— + ++),
and units are such that ¢ = 1. The coordinate system x* is associated to the coordinate
basis {9y} := {8, 8,:} and its dual exact basis {dz#} := {dt,dz’}. Unless otherwise speci-
fied, components of tensorial objects should be understood as expressed in these bases, with
arguments (¢, z?).
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We shall keep the lapse and shift unspecified for the derivation of the averaged
system, thereby preserving the four degrees of freedom of the foliation. We shall,
however, introduce in subsection 2.4 convenient foliations and coordinate choices
that may be adopted for the description of the system (these amount to setting
the shift, or both the lapse and the shift).

Spacetime tensors are projected onto the hypersurfaces of the foliation by
means of the operator h = hopgdz® ® dz?,

huv = guv + nunu hoz,una =0, h",h%, =h",, haﬁhaﬂ =3, (2'4)

whose restriction on the spatial slices defines the spatial Riemannian metric h;j,
with inverse h'/. Given this operator and the normal vector n, the four-dimensional
line element can be decomposed into

m2:gwdfmﬂ?:f(NQfN@MQdR+2Mdﬂdt+mﬂmﬁﬂ. (2.5)

Note that the lapse IV also measures, through its spatial variations, the acceleration
of the frames associated with n:

Njju

a&n) =n"Van, = N

(2.6)
where V, denotes the four-covariant derivative, and I the three-covariant deriva-
tive associated with the spatial metric h;;.

2.2 Description of the fluid

We consider in this work a model universe sourced by a single general fluid, the
flow of which is described by a unit timelike vector u, tilted with respect to the
normal n of the foliation.

2.2.1 Decomposition of the 4-velocity
The fluid 4-velocity vector u can be decomposed in all generality into

u=7y(Mn+v), (2.7)
!
VI—0v%g

where v (hereafter Fulerian velocity) is the spatial velocity of the fluid relative
to the normal frames, which are defined as being at rest within the hypersurfaces
and transported along the normal m. The vector v identifies the direction and
magnitude of the above-mentioned tilt. The magnitude is equivalently measured
by the Lorentz factor v or by the tilt angle ¢, defined as ¢ := arcosh(v) [44,38].
For a vanishing tilt, u = n, we have v =0, v =1, and ¢ = 0.

Introducing the spatial coordinate velocity of the fluid,

with nov® =0, v =—nqou® = (2.8)

V:i—f, with n Ve =0, (2.9)
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where x is the spatial position of a fluid element in the coordinate system (¢, xz)
and d/dt is the derivative with respect to ¢ along the fluid flow lines, we can write
the Eulerian velocity as (see, e.g., [60,1,39]):

1
=— (N . 2.1
v=5 (N+V) (2.10)
Equation (2.7) can then be reformulated in the general form:
u= L (Nn+N+V), (2.11)

1
with -

N~ /NZ—(No+ V) (Na t Va)

In contrast to the Eulerian velocity v which is covariantly defined, the coordinate
velocity V' depends on the way the spatial coordinates propagate between neigh-
boring hypersurfaces; hence it depends on the shift. For instance for a coordinate
system comoving with the fluid, which corresponds to a specific shift, we have
V = 0, while for a vanishing tilt, we have V' = — N, whatever shift is chosen. We
represent in figure 1 the different vector fields introduced thus far.

Note that a foliation orthogonal to the fluid, where n := u and v = 0 (as
considered in Papers I and II), is only possible for a fluid flow with no vorticity.
Even for irrotational fluids, introducing a tilt allows us to keep the freedom in the
construction of the spatial hypersurfaces.

\%

— — 7,

Fig. 1 Representation of the different vector fields at hand, on a spatial hypersurface X;. n
is the vector normal to the hypersurface and it transports the normal frames; 0; is the time-
vector of the coordinate basis, tangent to the integral curves C(8¢) (with a? = const.); and u
is the 4-velocity of the fluid, tangent to the congruence C(u). The deviations between n and
¢, on the one hand, and between 8; and u, on the other hand, are identified respectively by
N and V. The tilt between u and n is given by v = (IN + V)/N. (Note that although N and
V are tangent to X;, we represent them at the heads of the other vectors for simplicity.) For
a coordinate system comoving with the fluid, we have V = 0 and 8; = (N/v) u. Even though
the coordinate velocity vanishes in this situation, the fluid can still experience a spatial motion
within the hypersurface, given by v, and the shift would be set to N = Nwv. Alternatively,
in the case of a fluid flow orthogonal to the hypersurfaces, we would have w = n, and hence
V = —N for any shift.
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The components of w and its dual are obtained by noticing that any spatial
vector x can be extended to a four-dimensional vector by writing:

X =" x"), with x°=0. (2.12)

The components of its dual 1—form are then deduced from the property n®xo = 0
along with expression (2.1):

Xu = (x0,X:),  with  xo = N"xx. (2.13)

Applying (2.12) and (2.13) to the shift vector and the coordinate velocity, we
obtain from (2.11) the component expressions:

M:

u (1,vi) . uu = % (—N2 +N*(Ng + Vi), N; + V,-) L (2.14)

==

2.2.2 Kinematic variables and acceleration

Let us introduce the operator b = b,z dz® ® dz”? that projects tensors onto the
local rest frames of the fluid orthogonal to u:

buv = Guv + uptty,  bapu® =0, b0, =0, 0Pbas=3. (2.15)

The projectors b and h usually differ because of the tilt of u with respect to the
normal n of the slices. From relations (2.15), we can decompose the 4—covariant
derivative of the 1—form w into the 4-acceleration and the kinematic parts of the
fluid [31] as follows:

Vuuy = —uy ay + %Qb,ﬂ, +our + W, (2.16)
with  ay :=u%Vau,, 6 :=Vau®,
and o = b 07 Viqug) — %wa, wuv 1= b%,0° Viaug (2.17)

where the round and square brackets respectively imply symmetrization and anti-
symmetrization over the indices enclosed. a is the acceleration of the fluid, O its
expansion rate, o its shear tensor, and w is its vorticity tensor.?

Recall that the rest frames of the fluid are not hypersurface-forming if w does
not vanish.

3The shear, vorticity and acceleration of the fluid, as seen in the normal frames, can be
derived from the projections onto the three-surfaces of the proper shear o, proper vorticity w

and proper acceleration a, respectively. For instance, the second would read h"‘uhﬂ L WaB =

ho‘uhﬂy b‘sabEBV[(;ug], which differs from h“uhﬁuv[&uﬁ] when a is not null.
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2.2.3 Stress-energy tensor and conservation laws

The stress-energy tensor of the fluid can be decomposed with respect to the fluid
rest frames as follows:

T = €uptty + 2 () +Dbpy + Tpw (2.18)
with € := u*u’Tog, qu = —b* 0’ Tug, Pbuv + Ty = b*,0° Tug, b = 0.
e denotes the energy density of the fluid in its rest frame, g, the spatial heat

vector, p the isotropic pressure, and m,,, the spatial and traceless anisotropic stress.
Alternatively, it can be decomposed with respect to the normal frames as

Ty = Enyny +2n(,Jy) + S (2.19)
with B :=n"n"Tas,  Ju:=—h*m’Tag,  Suw:=h",h" Tos,
where E is the energy density of the fluid, J,, its momentum density, and S, its
stress density, all as measured in the normal frames. The isotropic part of S,, is
given by the trace S := gaBSag. This last decomposition will be used in section 3

for the derivation of the averaged equations. Using expression (2.7), we can relate
the scalar quantities of both decompositions as

E=~+ (> =1)p+27wqa + v’ m0p , (2.20)
S="2=1De+ (> +2)p+ 270 + v*0 10p . (2.21)

From the property VzT%? = 0 along with relations (2.18) and (2.17), we derive
the energy conservation law:

uanTo‘B =0 & ¢é+0(e+p)=—aaq” —Vaq™ — waﬁaa,g , (2.22)
and the momentum conservation law:

bua VT =0

1 ) 4
S au = (baHVap + buag™ + 59(1“ +q%(oap +wap) + buavﬁﬂ'aﬁ) )

s
(2.23)

where the overdot is defined below in subsection 2.3. These relations can be com-
plemented by the conservation of the rest mass density o of the fluid in its rest
frame:

Va(ou®) =0, or equivalently, ¢+ ©8p=0. (2.24)

2.3 Time derivatives and their relations

The existence of two different times (the coordinate time ¢ and the fluid proper
time 7) and of three timelike congruences (see figure 1) leads to several possible
definitions of time derivatives. Those of interest for the present work are:

e the covariant derivative along the fluid flow lines, denoted by an overdot; for
any tensor field F', we have F := u“VF;
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e the comoving derivative along the fluid flow lines and according to the proper
time 7, or Lagrangian derivative, denoted by d/dr;

e the comoving derivative d/dt along the fluid flow lines and according to the
coordinate time t;

e the partial coordinate time derivative along the vector 9%, i.e. along the integral
curves of constant z°, denoted by 9

xi’
The last three derivatives are related by:
KU, HU... Hy... nu...
dF afi... _ oF afi... _ oF af... +V18F af... (2 25)
dt ot xi ot i oxt '
dr N dt ’ '

for any tensor field F = FF[;" 9, ®0, ®...®dz" ® dzf ®... . For a scalar field
1, the first two derivatives are identical: 1) = u®9a1h = dy/dr.

Proof Let us consider the components F“{;’B of a tensor field F' in the coordinate basis

associated with (¢, %) (see footnote 2). For notational ease, we drop in what follows the indices
and write F' := F“gﬁ The total coordinate-time derivative of F' along any timelike curve C
can be decomposed in terms of the coordinate partial derivatives as

OF dx’
Oxt dt

ar
dt

_oF
c Ot

(2.27)

zt C

Considering the variation along the congruence C(u) of the fluid, and therefore making use of
definition (3.7), we obtain

OF
Oxt

dF _ dF
dt T dt

_OF

=— Vi, (2.28)

xt

Moreover, for the Lagrangian coordinates X?, by definition constant along the fluid flow lines,
we have (dX?/dt) lc(u) = 0, and hence dF'/dt = ;| x: F, which concludes the proof of (2.25).

The total derivative of F' with respect to the proper time 7 of the fluid along the congruence
C(u) satisfies

dF _dF|  dt| dF (2.29)
dr dr C(u) dr C(u) dt C(u)
From the definition of w and its component expression (2.14), we have (dt/dr) |¢(y) = u® =
/N, and thus
dF _ vy dF (2.30)
dr N dt”’ ’

which proves (2.26). Reformulating the right-hand side by means of (2.28), and using again
the component expression of u finally yields:

dF o OF OF
_ P 2.31
ar "ot wi “or ( )

hence d/dT = u®*0n. This operator coincides with the overdot, "= u®V, when applied to a
scalar variable. J
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2.4 Comoving and Lagrangian descriptions
2.4.1 Comoving description

For any given foliation, the shift vector can be chosen in such a way that the
spatial components (2.14) of uw vanish: by setting N = Nwv, given relation (2.10),
we have V' = 0. This choice corresponds to spatial coordinates propagating along
the fluid flow lines, i.e. to comoving (or Lagrangian) spatial coordinates. We will
refer to the use of these spatial coordinates as a comoving description of the fluid,
and denote them by X°. Note that a comoving description is a “weak” form of a
Lagrangian description (as introduced below) in that no constraints are set on the
time coordinate t.

In the coordinates (¢, X*) of the comoving description, the components (2.14)
of the fluid velocity read:

ot N
’U/# = N (170)5 Uy = (_7771}1) ’ (232)

while the line element (2.5) reduces to

2 . . .
ds? = —% dt® + 2Nv; dtdX" + hi;dX"dX7 . (2.33)

The components of the acceleration and kinematic quantities simplify as follows.
From the anti-symmetric part of (2.16) we can write in any coordinate system:

Wpv = Uuay) + Vit = up,a,) + 8[,_Luy] . (2.34)

In comoving coordinates, the (0,7) components of this expression vanish, given
that we;u® = 0. Combining this property with ap = 0, from aqu® = 0, we can
thus write the spatial components of the acceleration as

o (d e (N
ai = 5 <dtuz+ N& (7)) , (2.35)

where we also used ug = —N/v and 9; = d/d¢t. Inserting (2.35) back into the (3, j)
components of (2.34) yields the non-vanishing components of the vorticity:

v, d N, (7
The expansion tensor can be related to the Lie derivative L£,,b of the projector b
along the fluid flow in any coordinates according to

(Lub),, = u*Vabuw +bav Vuu® + buaVou® = 2u,a,) +2V,u,) =204 ,
(2.37)
where we have used the symmetric part of (2.16) for the last equality. The covari-
ant derivatives of the second expression can be equivalently replaced by partial
derivatives. This provides the non-vanishing comoving-coordinates components of
the expansion tensor as ©;; = (Lub),; /2= u’8ob;;/ 2, and hence

05 — bij (2.38)

yd
N dt

N =
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The trace and traceless parts are deduced from the above. For convenience, we
express them in terms of a representative length £ in the fluid rest frames, defined
by ¢/¢:=©6/3 [31]:

d

. Ly pd o
T o=y CL (). (2.39)

~

1 p—

O=ontal =

i d 37
b b N

2.4.2 Lagrangian description

An appropriate choice of foliation can allow for the hypersurfaces to be labelled
by a proper time 7 of the fluid [34,35]. Such a construction identifies a class of
foliations which we call fluid proper time foliations. It is realized by level sets
of the fluid proper time 7, as defined from its comoving coordinate-time evolu-
tion rate dr/d¢t = N/~ (see section 2.3) and an initial spacelike hypersurface I’
(pzirametrized by an equation ¢t = t;(X*)) on which it takes a given constant value
Ti,

T(t, X") =1 + /t m t (2.40)

tr(xi) V(E X7

The hypersurface labelled by a given value 7 can equivalently be defined as the
image at time 7 of I' by the flow operator defined from the unitary vector field w.

The fluid proper time foliations set the normal vector n, and determine the
lapse N up to a time-dependent factor. The fluid proper time can then be used as
the time parameter ¢ labelling these hypersurfaces, t := 7, fully determining the
lapse and tying it to the Lorentz factor, N = ~. Note that for such foliations, the
hypersurfaces cannot be fluid-orthogonal, namely a tilt must be present, except
in the case of irrotational geodesic flows (e.g. irrotational dust) [31]. In general,
such a tilt may be expected to grow with time and become large and highly
inhomogeneous on the slices. This may even imply in some cases that not all
slices remain everywhere spacelike; hence, when using such a foliation, we will
implicitly restrict our attention to the part of spacetime where the hypersurfaces
do remain spatial, if necessary. Within this class of foliation and lapse choice, the
additional requirement of using comoving spatial coordinates defines a comoving

4The proper time is not uniquely defined a priori, but it is fully determined by the choice
of an initial Cauchy surface to build one of its level sets [35]. Another proper time function
7/, taking the constant value Til on another initial hypersurface I'’, would differ from 7 by
a function ¢ constant along the fluid flow lines, 7/(¢, X*) = 7(t, X?) 4+ ¢(X?). This relation

follows by writing
t N XY .
T'::T-’Jr/ 7(A7 _)dt,
trr(xiy y(E X7)

with I’ parametrized by ¢ = t 7/ (X?), yielding

tr(X) N(E XY

X" =1 -7 —
SD( ) i i+ ¢ (Xl) ’Y(t,XZ)
The expressions defining 7 and 7/ are here given in terms of comoving coordinates. They
could alternatively be written covariantly, by setting the value of 7 — 7y (resp. 7/ — 7{) at a
given spacetime event as the total length of the unique fluid flow line joining this event to the
hypersurface I" (resp. I"). The properties of both proper times and their relation through ¢
of course hold in this description.
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and synchronous picture which we call the Lagrangian description of the fluid (see
Asada and Kasai [6] and Asada [5], inspired by Friedrich [36]).

In the coordinates (7, X*) of the Lagrangian description, the components (2.14)
of the 4—velocity and its dual read:

u* =(1,0), up = (—1,7v;), (2.41)
while the line element (2.5) takes the form:
ds® = —dt* + 2yv; dX'dt + hy;dX'dX7 . (2.42)

The Lagrangian condition u" = §*¢, as introduced in [36], is therefore equivalent to
setting simultancously N* = Nv® and N = ~. It implies goo = —1 or, equivalently,
N2 — NEN, = 1. In this description, as a special case of a comoving description
(with the additional requirement of N = «), the spatial components of the fluid
acceleration reduce to

d
“ ar" (2.43)
and those of the kinematic variables become:
o_td, g _Llyud, 3dl ld e
@2]—2d7_bz]7 @_Qb dTbk;l—édT, 0'13—2£ dT(E b”)7
d

In the following derivations of the extrinsic and intrinsic averaging schemes, we
will keep the lapse and shift unspecified, thereby considering a general description
and preserving the four degrees of freedom of the foliation. The formulation of
the averaged system in the Lagrangian description will be discussed later on as a
particularly insightful special case within the intrinsic scheme.

3 Rest mass—preserving scalar averaging: fluid-extrinsic approach

In this section we recall the 3 4+ 1 formulation of Einstein’s equations with respect
to the hypersurfaces of normal n, we formalize spatial averaging over a compact
domain that lies within the spatial hypersurfaces and that follows the fluid flow.
We then derive the commutation rule and averaged equations for the scalar parts
of Finstein’s equations and we discuss some properties of the resulting backreac-
tion terms and their relation to boundary terms. At the end of the section, we
compare our approach and its results to previous proposals of generalizations of
the framework of Papers I and II that can be found in the literature, and we
discuss in detail the differences and pinpoint limitations.

3.1 Dynamical equations

The 3 + 1 foliation of Einstein’s equations [4,51,60,1,39], with the cosmological
constant A included, comprises the following evolution equations:

O] hij = — 2NKij + Ny + Nyjjs » (3.1)
:ICij :N('R}j +,CK:ZJ +47TG[(S—E)51J _2Sij] —A(Sij)

2t

Ot

_ Nl

||j+Nk/Cink+ICika\|j—IijNiHlm (3.2)
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together with the momentum and energy constraints:

Kkin = Kyji =8nG J; , (3.3)
R+ K? - KK, = 167G E +2A . (3.4)

Ri; and K;j:=—h",; hﬁjvan,g are the components of the 3—Ricci tensor and the
extrinsic curvature of the hypersurfaces, respectively. R := h% Rij and K := R KCij
are their respective traces.

In Appendix A we give the evolution equations for h;; and lCij along the
congruence of the fluid, using the derivative d/dt instead of O ,i» and we specify
their expressions in the comoving and Lagrangian descriptions.

3.2 Fluid-extrinsic scalar averaging
3.2.1 Comoving-to-reference map

We introduce a set of Lagrangian (or comoving) spatial coordinates X = {X"'}.
The comoving coordinates of each fluid element remain constant along its flow
line, as opposed in general to its arbitrary reference spatial coordinates * = {a:z}
This arises from the different directions between the threading congruence of the
fluid (t, X* = const.), given by u, and the arbitrary coordinate congruence (t,z" =
const.), given by 8:. The two sets of spatial coordinates @ and X are related by
a one-parametric family of diffeomorphisms® parametrized by the coordinate time
L,

(}t : DX — Dm :(bt('Dx),
X = x=®,(X):= f(t,X), (3.5)
. of(t, X
with  f(t,X) =X, and J(t,X):=det %, (3.6)
where D refers to a compact domain lying within the hypersurfaces and trans-
ported along the congruence of the fluid flow (hereafter comoving domain). This
specific transport ensures that the domain encloses the same collection of fluid
elements at all times (an important feature to which we shall come back in the
discussion). We denote the set of spatial coordinate values corresponding to this
collection at a given time ¢ by Dg(t), or Dy for short, in the reference coordi-
nates, and by Dx (by definition time-independent) in the comoving coordinates.
The maps ®; define on each constant-t hypersurface a coordinate transformation
between x and X.
From (3.5) we reformulate the coordinate velocity (2.9) as

d d
V== LX) =0y £ X), (3.7)

5Note that we assume throughout the regularity of the fluid flow implied by the existence of
congruences and invertible maps (diffeomorphisms), which excludes the description of caustics
that may occur for particular matter models.
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where along the direction of the derivative 8t| «i» given by the fluid flow lines, the
comoving spatial coordinates X* are kept fixed. Using (3.6) together with (3.7) we

have the identity: .
| I =JOV". (3.8)

We note that the Newtonian tools developed for the Lagrangian description of
structure formation in cosmology can be applied to this diffeomorphism without
difficulty (see [13], [32] and references therein).

3.2.2 Volume of a domain and its comoving time-evolution

The Riemannian volume of the spatial domain D is given by
Vpl(t) = / nider, — / VAl s d (3.9)
D, D,

where h is the determinant of the spatial metric, h := det(h;;), and do, is the
oriented spatial volume element, do, := fnux/ﬁd?’x. We seek the coordinate-time
variation of (3.9) along the fluid flow lines, namely we search for the expression of

% Vh(t, xt) dPe . (3.10)
Do

The operators d/dt and wa- 43z do not commute in general since the endpoints
of the integral, determined by the spatial region Dg, depend themselves on time.
The fluid is moving with respect to the coordinate system (, mi), and the domain
of integration is attached to the fluid® (see figure 2). We need to reformulate the
integrand to get rid of this time-dependence.

To this aim, we consider the family of maps ®+ = f(¢,) introduced above to
change the coordinates from z* to X*. We have:

of(t, X)

ot = it X), d%:det( %

) X =J(t, X)d*X, (3.11)

while the region of integration transforms as Dy — Dx = ®, 1(Dw). Inserting
(3.11) into (3.9), we get:

Vp(t) = /D Vh(t, fi(t, X)) J(t, X)d*X . (3.12)

The invariance of the volume element \/h(t, z?) d3z (here integrated over the same
collection of fluid elements) with respect to changes of spatial coordinates appears
here by noticing that /h(t, f*(¢t, X)) J(t, X ) above corresponds to the square root
of the determinant of the components in the coordinate system (¢, X) of the spatial
metric h. Obviously, the fluid is at rest in this coordinate system, allowing for the
commutation of d/dt = atyX,., and fDx' d3X.” We can now write:

%vp = /DX % (\/h(t,fi(mX))J) Bx, (3.13)

3

6For the same reason, the operators d/dr and d|,: do not commute either with fD -dx.
@x

"Note that, in contrast to the operator d/dt, the operator d/dr does not commute in
general with fDx- d3X, since d/dr = (y/N) d/dt depends on the spatial coordinates.
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t+dt

D, E,,

Fig. 2 Representation of the motion of a compact domain D between neighboring hypersur-
faces. D is transported along the congruence of the fluid C(u), with X = const., and contains
by construction the same collection of fluid elements throughout its evolution. We introduce in
this figure another compact domain, £g,, carried along the congruence C(9;), with z' = const.,
that coincides with D at time t. £, encloses the same collection of fluid elements as D at that
time. At ¢+ dt, the two domains do not coincide anymore as the fluid undergoes a spatial mo-
tion of velocity V in the coordinate system (,z?) (hence d/dt and fDm. d3z do not commute).
This motion induces a flux of fluid particles across the boundary of £, . In the comoving and
Lagrangian descriptions, the congruences C(9;) and C(u) are identical and this flux does not
occur. A similar distinction would have to be made between D and a domain transported
along the flow of the hypersurfaces normal vector n, with a flux of fluid particles accross the
boundaries of the latter, except in the absence of tilt.

and, transforming the coordinates back to x* with the help of 'I>;1, we obtain:

a, [ 4 e [ (8 L) s
dth—/Dwdt(J\/ﬁ)J &Pz = Dw(dt\/ﬁ+x/ﬁJ dt)dx. (3.14)

Using the relations (2.25) and (3.8), this implies:

%VD :/ (at ml\/ﬁ+vkakﬁ+akvk\/ﬁ) d’x
Dy

1 ..
= ~h'g
[l (o

@

1 ..
xz‘hij —+ ih” Vkﬁkhij + 8kvk) \/Edsx. (3.15)
From the trace of the evolution equation (3.1) and noticing that
%hijﬁkhij VE L g vE =V (3.16)

we finally end up with the expression of the coordinate-time comoving variation
of the Riemannian volume (see Appendix A for an alternative derivation using
instead the 3 4 1 evolution equations along the congruence of the fluid):

gVD:/ (—NIC+Ni‘|i+Vi‘|i) \/EdB:C

Dy

:/ (-NK+ (V') ) Vads, (3.17)
Dy

where we used relation (2.10) for the last equality.
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3.2.8 Averaging and commutation rule

We define the extrinsic spatial hypersurface volume average of any scalar 1 on a
compact comoving domain D as

S ntdo - ! i) dPx
(W) (1) = VD/Dw do = - /szp(m ) VAL doe (3.18)

Applying this definition on (3.17), we can write the rate of change of Vp as

1 d i
Vo @iV = <—NIC+(NU)HZ.>D, (3.19)

and express the comoving coordinate-time derivative of the averaged scalar v in
the form:

%W)D=—<—NIC+(NU1')W>D<¢>D e dt/ Wit 2') VR D) dPx.

(3.20)
The second term on the right—hand side is evaluated by following the same proce-
dure as above: we perform a coordinate change by means of the maps ®¢,

%/ w(t,x"wh(t,wi)d%:%/ W(t, f1 (X)) VR, Fi(,X)) J(t, X) d>X
Dy Dx
= [ S (X)) VREFEX) 10.X)) a'X

and, transforming back to the reference coordinates, expanding the integrand, and
using once again the definition (3.18), we end up with

Vo dt/ ¥ Vhd’e <§t¢> t < (—N’C+ (Nvi)”i) w>D : (3.21)

Plugging this equation into (3.20), we finally obtain the commutation rule for
extrinsic averages over a spatial comoving domain. We formulate this new result
in the form of a lemma.

Lemma 1 (Commutation rule for extrinsic volume averages)

The commutation rule between spatial averaging on a compact domain D, ly-
ing within a t-constant hypersurface and comoving with the fluid, and comoving
differentiation with respect to the coordinate time reads, for any 3 + 1 foliation of
spacetime and for any scalar :

% (W)p = <§t¢>D = (= NE (V) ) (@ + (VK + (V) ) )

(3.22)
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This commutation rule is independent of the shift vector, and hence is independent
of the propagation of the spatial coordinates. This feature is inherited from the
coordinate-independent definition of the propagation of the domain of averaging
obtained by requiring it to be comoving with the fluid.

Note that, as shown in Appendix B (Eq.(B.2) therein), the local terms appear-
ing in the volume rate of change (3.19) can be equivalently expressed in terms of
the lapse, tilt and fluid expansion rate as —NK + (Nvi)w = (N/y) @ —y~ ' dy/dt.
The commutation rule can thus alternatively be written under the following form
for any scalar :

b= (i), (o280, {2 1)), o

which will be useful when applied to fluid rest frame variables such as € or p.

3.3 Conservation of the fluid rest mass

We introduce the conserved fluid rest mass flux vector M as
M" = out, V,M"=0, (3.24)

from the (conserved) rest mass density o. The rest mass of the fluid within the
domain D is given by the flow of M through D:

Mp ::/ M"do, :/ —ou*n,Vhd’z = Vp <’yg>D , (3.25)
D D

with the oriented spatial volume element do, = fn,n/ﬁd?’x, and where we used
—utn, =, Eq. (2.8).

The conservation of this rest mass can be seen by integrating the conservation
equation of M over the spacetime tube .7 swept by the domain D between two
hypersurfaces at times t1 and to > t;:

0:/ VMM“\/gd“x:?{ M*dn, (3.26)
s 0T

where dn, is the outward-oriented volume element on the boundary 0.7 of 7.
Introducing the timelike part & of 0.7, with A its outward-oriented unit normal
vector and dV,, its volume 3-form, we rewrite the above as:

O:/ fyg\/ﬁdigwf/ ’yg\/ﬁd3x+/ M" A, dVy,
D D o

to ty

= Mp,, — Mp,, + / M* A, dVy . (3.27)
o

The last term cancels out precisely because the domain propagates along the fluid
flow lines so that the normal vector A is orthogonal to u everywhere on the
boundary «/. We therefore end up with the conservation of the rest mass within
D: Mp,, = Mp,, .
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Alternatively, one can make use of the local continuity equation (2.24) for p,
equivalent to the conservation of M (3.24), rewritten in terms of a coordinate-time
derivative:

d N

— —Bp=0. 3.28
et o0 (3.28)
Applying the commutation rule expressed in terms of ©, Eq. (3.23), and the
corresponding form of the volume expansion rate, Vo' dVp/dt = ((N/v)© —
=1 dy/dt)p, to the average of the above local continuity equation multiplied by

~ then gives d(Vp <’YQ>D)/dt = 0, recovering the conservation of Mp.

3.4 Averaged inhomogeneous cosmologies in the fluid-extrinsic approach

We introduced in the previous sections a scalar averaging procedure on a compact
spatial domain comoving with the fluid. We derived the corresponding commu-
tation rule and showed the preservation of the total fluid rest mass within the
comoving domain. Both hold for any foliation of spacetime. By means of this for-
malism, and from the Einstein equations given in subsection 2.2, we now give
an (under-determined) set of scalar balance equations describing the effective dy-
namics of spatially averaged comoving and compact regions of inhomogeneous
cosmologies.

3.4.1 Averaged evolution equations

Following the original proposal of [23] (used in Papers I and II), we define the
effective scale factor ap of the comoving domain D as

1/3
an(t) = (V;J:)) , (3.29)

where Dj refers to the domain at the initial time ¢;. The volume expansion rate
(3.19) then gives:
i dap 1

- - < ~ NK+ (Nui)w>

— 3.30
ap dt 3 ( )

D
From the average of the trace of N x (3.2) and that of N?x (3.4), and upon using
the commutation rule (3.22) along with relation (3.30), we obtain the effective
evolution equations for an inhomogeneous model universe in the fluid-extrinsic
averaging procedure, that we formulate in the form of a Theorem.

Theorem 1l.a (Extrinsically averaged evolution equations)

The evolution equations for the effective scale factor of a compact spatial domain
D comoving with a general fluid read, for any 3 + 1 foliation of spacetime:

éd;?f = —47G <N2 (e + 3p)>D + <N2>D A+ Qp+Pp + %Tp , (3.31)
3 (;?)2 = 817G <N26>D n <N2>DA - % <N2 R>D - %QD - %Tp7

(3.32)
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with Qp, Pp and Tp respectively the kinematical backreaction, the dynamical back-
reaction, and the stress-energy backreaction, defined as

‘_ 2 (12 g 2 i 2
Op = (N* (K2 = Kiykc)) = 2 (= N+ (Vo)) (3.33)
i 2.d i i i
Pp = < (Vo)) + 5 (Vo)) =28k (V') | = NP /c,|i>D
i 4 dN
+ <NN Ky >D , (3.34)
Tp := — 167G <N2 ((72 —1(e+p) +27v%qa + vavﬂﬂ'ag)>p . (3.35)

Remarks to Theorem 1.a: Care should be taken in the interpretation of the
system ((3.31),(3.32)). These equations are globally invariant under the remaining
coordinate freedoms, that is, (i) under any change of the spatial coordinates, or (ii)
under a change of the time coordinate of the form t — T'(¢) with d7"/d¢t > 0 and of
the lapse as N — N’ = N (dT'/dt) ™! (which corresponds to a re-parametrization of
the hypersurfaces). However, individual terms, as well as each equation side taken
separately, are invariant under the former transformation only. A time change
as above would rescale most terms, such as Qp, Tp or 3 ((1/ap) dap/dt)?, by
the time-dependent factor (dT/dt)™2 (strictly preserving their sign). The terms
Pp and (3/ap) d?ap/dt* would undergo an affine transformation, with this same
rescaling plus an additional term (the same for both, thus preserving the equa-
tion globally) proportional to (dap/dt) (d%T/dt?), so that even their sign can be
arbitrarily changed in a time-dependent manner.

Accordingly, depending on what ¢ represents, the left-hand sides of equa-
tions ((3.31),(3.32)) may not follow an interpretation similar to the corresponding
3(a/a)? and 3 d/a of the standard Friedmann equations. These are unambiguously
expressed as derivatives with respect to the common proper of the comoving fluid.®
Without a well-specified choice for ¢, conclusions may only be drawn on quanti-
ties that are invariant under the change of time coordinate expressed above. Such
invariants include the sign of the contribution of each term except the dynamical
backreaction and scale factor acceleration terms, as we shall, e.g., discuss for the
stress-energy backreaction in section 3.5.2, or effective dimensionless “€2” param-
eters that may be defined for a non-stationary ap (dap/dt # 0) by dividing each
term of Eq. (3.32) by 3[(1/ap) dap/dt]>. The generality of Theorem 1.a allows us
to choose the most suited definition for ¢ in any specific application.

The Friedmannian interpretation of ¢ and its derivatives can be recovered for
some choices that are applicable to general settings. This is the case for instance
for the synchronous and the Lagrangian descriptions, which involve a choice of
foliation (see section 4.4 for an example). One could also choose ¢ within any
foliation such that it coincides with the proper time along some given timelike

8Note that one could in the same way parametrize the Friedmann model by a different time
coordinate while staying within the homogeneous foliation, and similarly get rescaled terms
and an arbitrarily altered acceleration term (see, e.g., the system of equations (20) in Paper II
[16] or the system of equations (40) in [47]). The usual form of the Friedmann equations
removes this freedom by choosing the proper time as the most natural time parameter in
this situation. As, additionally, the spatial coordinates generally used in this framework are
comoving with the fluid content, this picture corresponds to what we termed in this work a
Lagrangian description.
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wordline, for instance taken to to model the wordline of an observer on Earth. Once
a specification of the time label is performed, each term of the above equations,
including the acceleration term (3/ap) d?ap/dt? or its sign, can be interpreted in
direct relation to the physical meaning of the chosen t.

3.4.2 Integrability and energy balance conditions

We proceed by deriving the integrability condition for the system of equations of
Theorem 1.a, which provides the relation that has to hold for (3.32) to be the
integral of (3.31). This condition is obtained by taking the comoving coordinate-
time derivative of (3.32), and by inserting the set of equations (3.31) and (3.32)
back into the result.” Complementing this condition by the average of the energy
conservation equation, we write the second part of the above Theorem:

Theorem 1.b (Integrability and energy balance conditions)

A necessary condition of integrability of equation (3.31) to yield equation (3.32) is
given by the relation:
idaD

2 daD 4 dap

d
T 9p +7<N2R>’D <Nz73>73+ TD+77(TD +Pp)

34d
a” N, (3.36)

= 167G (7 (N?e)p, + dt<

<N2 e+p>,D) +2A

where the source part on the right-hand side satisfies the averaged energy conser-
vation law:

b0 o= () (S (25

1dAN  1dvy\ ., N3 /| o _af
TR A

This conservation law can be complemented by the conservation of the fluid rest
mass, dMp /dt = 0, which may be rewritten as follows:

d 3 dap .
7 ep+ T (ve)p=0. (3.38)

Proof The local energy conservation law (2.22) implies:

d N 1 dN N3
S (V) + e (N> (e +p) =2 - N%e— . <q°‘aa Vg™ + ﬂaﬁaag) . (3.39)

Relation (3.37) is then recovered by averaging the local equation (3.39) and applying the
commutation rule expressed in terms of @, Eq.(3.23). O

We present as Corollary 1 in Appendix B an equivalent formulation of the sys-
tem of equations of Theorem 1, focussing explicitly on the kinematic and dynami-
cal variables of the fluid rather than the geometric properties of the hypersurfaces
(such as their intrinsic and extrinsic curvatures).

9 Alternatively, we can derive the integrability condition directly from the Einstein equa-
tions. For this we note that we can derive the evolution equations for the square of the trace-free
part of the extrinsic curvature and the evolution equation for the 3—scalar curvature using
(3.2) and (3.4). Averaging these equations and combining them, we also obtain the integrability
condition.
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The system of equations of this theorem could also be rewritten in more com-
pact ways, as we shall illustrate for similar equations obtained within an alternative
averaging approach in section 4. We will keep it under the current form, as it is
already sufficient to discuss important properties and relations to the literature,
to which we turn now.

3.5 Discussion

We summarize in the first part of this subsection the framework of our study. We
then discuss the backreaction terms that were defined, investigate boundary effects
and boundary-free global domains, and finally discuss relations to the literature
for global and general domains successively.

3.5.1 Summary

We have worked with three sets of independent worldlines: the normal congruence
along n, everywhere orthogonal to the hypersurfaces of constant coordinate time
t, the congruence of the coordinate frames along 8, and the threading congruence
of the comoving frames (or, equivalently, the fluid rest frames) along u. The de-
viations between n and 8¢, on the one hand, and between n and w, on the other
hand, are identified respectively by the vector fields IN and v, while that between
9; and wu is pinpointed by V (see figure 1).

This general configuration allows for a fluid flow with vorticity and tilted with
respect to the normal of the three-surfaces, and for an arbitrary propagation of
the spatial coordinates. Also, the lapse function is left unspecified, preserving the
freedom in the construction of the spatial slices.

We have considered a compact spatial domain D, lying within the hypersurfaces
and transported along the fluid flow lines, thus enclosing by construction the same
collection of fluid elements throughout the evolution. In the generic situation,
this domain undergoes a spatial motion in the coordinate system (¢, :ci)7 since the
integral curves of 8¢ and u do not coincide (see figure 2).

Within this framework, we have established the general commutation rule (for-
mula (3.22)) between spatial averaging and differentiation with respect to the co-
ordinate time along the fluid flow lines. We have then derived in Theorem 1 a set of
scalar equations describing the regional dynamics of spatially averaged portions of
an inhomogeneous fluid. The results obtained hold for a general fluid and for a gen-
eral foliation of spacetime and, in particular, are independent of the propagation
of the spatial coordinates. In such a general foliation, however, we have stressed
the risk of too hastily interpreting these results, in particular of interpreting the
time acceleration term in the same way as the proper-time acceleration term a/a
of the standard Friedmann equations: its meaning strongly depends on the in-
terpretation of the chosen time parameter ¢ itself. We have also highlighted the
Lagrangian foliation and coordinates choice as a transparent setting that allows
us to recover the common interpretation.



On Average Properties of Inhomogeneous Fluids in General Relativity III 21

3.5.2 Comments on the backreaction terms

The kinematical backreaction Qp (3.33) and the dynamical backreaction Pp (3.34)
generalize the expressions given in Paper II. The emphasis is set here on the
geometric variables of the foliation {IC, KCjj, etc.}, rather than on the kinematic
variables of the fluid {©, ©;;, etc.} (see Appendix B for a formulation in terms
of the latter). These two sets of variables are identical in the fluid-orthogonal
approach of Paper II, but they differ in the present framework. Differences with
the setup of Paper II can be made explicit in the kinematical backreaction term
by reformulating it as

Op — % (<N2K2>D - < ~ NK + (Nvi)|u>2b) —2 <N21€?1>D : (3.40)

where the traceless part of the extrinsic curvature defines the shear scalar of the
normal congruence, K2 := % (ICZ-J- — %Khij) (IC” — %lChij), and its trace K gives
(up to a sign change) the expansion rate of the normal congruence. This formu-
lation is reminiscent of Paper II. However, it is no longer expressed in terms of
kinematic variables, and it highlights an additional contribution (N vi)Hi from the
Eulerian velocity (or, equivalently, the tilt). We can also notice additional terms
due to the Eulerian velocity in the expression of the dynamical backreaction (3.34).

If the fluid is vorticity-free, we can choose a fluid-orthogonal foliation, namely
we can set n = w as in Paper II and, thus, have v = 0 and v = 1. In this
configuration the geometric and kinematic variables coincide, and we recover the
expressions of Qp and Pp given in Paper II. As this setting also implies the
vanishing of the stress-energy backreaction Tp, we formally get back the same set
of evolution equations for the effective scale factor (up to the additional inclusion
of the cosmological constant contribution). This could have been expected, but
notice that here, in contrast to Paper II, we allow for a non-vanishing shift vector
and a non-perfect fluid. As already discussed, and as for the commutation rule
(3.22), the shift does not contribute because local evolutions are regarded along
the fluid flow lines, and the spatial domain of averaging is comoving with the fluid;
the shift vector plays no dynamical role locally and on average. However, even
though nonperfect-fluid effects are not formally present in the evolution equations
for the effective scale factor, they still influence the dynamics through the local
and average evolution of the energy density (see equations (2.22) and (3.37)).

In addition to contributing to the kinematical and dynamical backreaction
terms, the tilt also yields the additional backreaction term 7p, which we named
stress-energy backreaction, and which can be interpreted in the following ways.

Firstly, it measures the difference between the fluid’s energy as seen in the
normal frames and its rest frames. In this sense, it is thus (up to an overall negative
factor) an average measure of the kinetic energy of the fluid in the normal frames.
Indeed, using relation (2.20) we can write

(V> = 1) (e + D) + 2700 + v Tap = B — € = Tpunn” — Toulu”,  (3.41)
so that

Tp = 167G <N2(E - e)>D — 167G <N2(Twn“n” - ,“,u“u”)>D . (3.42)
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Secondly, it also expresses the difference in isotropic pressure as seen in both
frames, since combining relations (2.20) and (2.21) gives

E—e=8—3p=Tuh" —Tub" . (3.43)

This backreaction term has been introduced to express the dynamics of the av-
eraging domain as sourced by averages of scalar dynamical quantities of the fluid
as seen in its rest frames, € and p (recall equations (3.31)—(3.32)), rather than
the quantities measured in the normal frames, F and S, since only the former
correspond to intrinsic thermodynamical quantities of the fluid that are directly
described by its equation of state.

Thirdly, as will be shown in subsection 3.5.3, it corresponds to the ‘bulk’ tilt
contribution in that it survives for a boundary-free domain, while the tilt contri-
butions to @p and Pp are boundary terms.

The last expression in equation (3.42) shows that our stress-energy backreac-
tion corresponds (up to a numerical factor) to the ‘fluid corrections’ terms intro-
duced by Brown et al. in [10], while the first form (3.35) is sufficient to identify it
with the (unnamed and slightly more general) (F') term appearing in Résénen’s
equations in [54], and to see that it reduces to the ‘tilt effects’ noticed by Gasperini
et al. in [38] in the particular case of a perfect fluid, still up to numerical factors.

The sign of Tp will usually be constrained and will remain negative, consis-
tently with the interpretation of —7p as a measure of kinetic energy, so that this
backreaction will contribute as a deceleration term to the effective acceleration
equation (3.31). This constraint is expressed by the following Proposition.

Proposition 1 (sign of the stress-energy backreaction)

If the matter stress-energy tensor satisfies the Null Energy Condition, then
(77 = (e +p) +0"0" 7 2 0, (3.44)
and the following assumptions on the heat vector q separately impose Tp < 0:

(i) a wvanishing heat vector, ¢ = 0 (this includes the case of a perfect fluid, for
which the constant sign of the corresponding ‘tilt effects’ was already noticed
in [38]); or,

(ii) a preferred mutual spatial orientation between v and (the projection onto the
hypersurfaces of) q ensuring N2'y guv* >0, locally or on average; or,

(#ii) on the contrary and more realistically, a variable orientation of the heat vector
de-correlated from that of v and from the value of the lapse N and Lorentz

factor~, so that the variable-sign term N2~ quv" is averaged out while the other
terms all add up positively: ‘<N2'y q#U”>D) < {((v* = 1)(e+p)+ v“v”mw>D.

Proof Noting that (b*,v")(bupv?) = buyvFvY = 42 — 1 = 4202, one can define two future-
pointing null vectors k4, k_ as ki = yvut F b nY = yvur £ b, 07, The projections of the
stress-energy tensor onto these vectors yield:

Tk kY = (72 = 1)(e+p) + muvvho” F 2yv gt . (3.45)

According to the Null Energy Condition (which we recall is a condition of positiveness of the
projection T}, k# k" for any future-oriented null vector k), both projections are positive, hence

(v* = D(e+p) + muvHo” > 2yvlguet| > 0. (3.46)



On Average Properties of Inhomogeneous Fluids in General Relativity III 23

Recalling that Tp = —167G (N2 (v — 1)(e + p) + muvHv” + 25 quv“)>D (equation (3.35)),
and since 2yv < 2+, even the (stronger) first inequality is insufficient to conclude on the sign
of Tp without further assumptions on gq. This was to be expected since the same reasoning
could be applied similarly after interchanging the roles played by u and m (that is, using the
normal-frame decomposition of the stress-energy tensor, which replaces for instance g by J,
and using the null vectors k,iM = yvnt Fh¥,u” instead of k), which exchanges Tp and —7Tp.
This symmetry in the roles played by u and m is broken by the possibility of constraining
g, which is an intrinsic property of the fluid, through physical assumptions (e.g. assuming a
perfect fluid), while this is not possible for the foliation-dependent vector J. OJ

Note that the same results hold under any of the other standard (Weak, Strong,
Dominant) Energy Conditions as they all imply the Null Energy Condition [40,
66].

3.5.83 Boundary terms and global averages

As previously illustrated (see figure 2), the spatial motion of D in the coordinate
system (t,z") induces a flux of fluid elements with velocity V across the boundary
of the domain &p,, coinciding at some instant with D and transported along the
congruence of 9¢. In the same line of thoughts, there also exists a flux of fluid
elements with velocity N + V = Nwv across the boundary of the domain &,
coinciding with D at some instant and carried along the normal congruence.

The first boundary effect is related to the choice of the spatial coordinates,
and it can be made to vanish by adopting a comoving picture. The second one is
generated by the tilt, that is, the deviation of the fluid 4—velocity with respect to
n, that translates into a tilted motion of the comoving domain boundaries with
respect to the normal of the slices. It will be present in general unless the foliation
is fluid-orthogonal, a foliation choice which is not possible if the fluid has non-
vanishing vorticity. It is this second effect that impacts on the time variation of
the Riemannian volume, as one can see upon writing expression (3.17) as

d
—VD:/ —N/c\/ﬁd3x+/
Dg

(Nv') .\/Ed?’x:/ ~NKVhd®z + Nv's; de,
dt D I Dy 9Dy
(3.47)
where we have used Gauss’ theorem for the second equality. Above, » is the
outward-pointing unit normal vector of the boundary 9D, whose surface element
is denoted by d¢. This rewriting allows to clearly see how the tilt, as measured by
v, contributes as a boundary term to the evolution of the domain’s volume.
Similar tilt-related boundary terms affect the commutation rule (3.22) and
the evolution equations of the effective scale factor (3.31)—(3.32). They arise from
the averages of covariant spatial three-divergences, which are boundary terms as

implied by Gauss’ theorem:

i 1 i 3 1 i
ALY = — A —— Az de 4
< ||z>D Vo /Dm i Vhd’x Vo b A d¢ (3.48)

for any spatial vector field A. These effects cannot be neglected in general; for
a given fluid flow, their contribution entirely depends on the way the slices are
constructed, which locally affects the amplitudes of the lapse and the tilt, and on
the choice of the domain of interest (locally defining a specific boundary).
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As an example, let us consider the commutation rule (3.22). Successively ap-
plying (3.48) to A = Nv = N +V and A = ¢ Nv, we can rewrite it for any scalar
1) under the following forms:

G o= (50)_+ (K0 = ( (¥ - (V) ) w),

—{(¥)p % jép Nv'sg dg (3.49)
= <Nn”8uz/)>D + <NIC>D <¢>D - <N’Cw>D

1 ; 1 i
+ = Nv's;ds — —_— % Nv'sx; ds 3.50
Vp j{apw v (W) Vo Jop, (3.50)

where the second expression makes use of the total coordinate-time derivative with
respect to n, instead of u (as in the first expression), replacing % by Nntd,,.

For simplicity, we do not make the boundary contributions explicit in the
evolution equations for ap, although this could be done in the same manner.
Instead, we illustrate their effect by comparing the set of averaged equations in
the generic case to a restricted situation where all boundary terms cancel out. We
consider to this aim the case of topologically closed spatial sections (that is, we
assume that the hypersurfaces are compact three-dimensional manifolds without
boundaries), and we extend the averaging domain to the full compact boundary-
free hypersurface, which we denote by X. From (3.47), the evolution of the domain
volume becomes in this case:

1 dvs
Ve dt (NK), (3.51)
so that the scale factor here satisfies (dax/dt)/ax = — <NIC>E /3. Then, from

(3.50), the commutation rule for a global boundary-free averaging domain can be
written under the following equivalent forms:

% (V)g = <§tw>2 +(NK) 3 (), = ( (NE = (Vo)) ¢>2 :
L (4, = (N 0,00 5 + (VK 5 (8} — (NEB),, 552)

for any scalar .

Applying Theorem 1.a to a global domain on topologically closed hypersur-
faces (D = X), we infer that the system of evolution equations (3.31)—(3.32) for
the effective scale factor remains formally unchanged as written, while the global
backreaction terms reduce to the following:

05 = (N2 (K2 Kik)) = 2(NK)Y, (3.53)
Py = — (NKn"9uN), — <N”iN||Z->2 ; (3.54)
Ts = — 167G <N2 ((’y2 —1(e+p)+27v%qa + vavﬁwa5)>2 , (3.55)

thanks to the vanishing of the averages of spatial divergences (which are boundary
terms) on Y. In particular, for the calculation of the expression of Px from the
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general Pp (3.34), successive uses of this property provide the following equivalent
expressions:

B i e dN\ ; ,
Px = <NN K >2 <N(IC Nv )|u>g ; (3.56)
Py = — <N” Niji +’Cdt>2 + <ICNv NHZ->E : (3.57)

The backreaction formulae (3.53)—(3.55) can be compared with the expressions in
the general case, (3.33)—(3.35): the differences are the boundary contributions to
the backreactions, erased when D = Y. These include all explicit contributions
of the tilt vector v to the kinematical and dynamical backreactions, which have
disappeared in the above expressions (3.53)—(3.54). The alternative expressions
(3.56)—(3.57) for the dynamical backreaction when D = X show, nevertheless,
that the tilt vector still manifests itself through the difference between coordinate-
time evolutions along the fluid flow % and along the hypersurface-orthogonal flow
Nn*0,, here regarding the lapse N. Moreover, the existence of a tilt still influences
the dynamics of the effective scale factor through the stress-energy backreaction,
which is unchanged whether the domain has boundaries or not. Indeed, the stress-
energy backreaction is not a boundary effect but instead a manifestation of, e.g.,
the local difference between the rest frame energy of the fluid and its energy as
measured in the normal frames.

The integrability condition and the averaged energy conservation law for an
average performed over a closed hypersurface are, respectively, deduced from re-
lations (3.36) and (3.37) without change. The same terms are involved, since no
explicit three-divergence term appears in these two expressions. However, the back-
reactions appearing in the integrability condition should again be replaced by their
simplified expressions above.

3.5.4 Relations to the literature: global averages

The averaged equations and the commutation rule that we obtained in the par-
ticular case D = X are equivalent to those derived by Résénen in [54],'"" where
all averages were taken on the whole boundary-free hypersurface (which was not
assumed to be topologically closed and compact; instead, the existence of the
averages was implied by an assumption of statistical homogeneity of the spatial
hypersurfaces). The above average equations for the D = X case are also identical
to those obtained by Tanaka & Futamase in [64] (following from [43] and supple-
menting their equations with the contributions of the cosmological constant), while
the commutation rule was not explicitly given in these papers. Periodic bound-
ary conditions were assumed, so that the situation considered was equivalent to a
global averaging over hypersurfaces with a closed 3-torus topology. The vanishing

10This is not obvious at first glance, due to a different choice of the scalars that have been
averaged, i.e. in contrast to our case the averaged quantities in [54] do not involve the factor
N?2. Hence, the averaged equations do not appear identical to those obtained in the present
work, and to see that they are equivalent the use of the corresponding local equations is
necessary. The notations also differ (mostly because the description adopted in [54] is explicitly
4—covariant); one should take care in particular of the fact that in [54] the notation 9 is used
for the coordinate-time covariant derivative along n (i.e. Nn#V, in the notations of the present
work), rather than for the coordinate-time partial derivative 0|, .
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shift considered in these papers does not affect the results since, as seen above,
this vector does not contribute to the local and average dynamics.

One also recovers the same averaged equations and commutation rule as in
subsection 3.5.3 above by restricting in the same way the expressions obtained
by Brown et al. in [10] to the compact boundary-free domain case (whereas it
is not the case for the results of Larena in [46] due to the different choice of
scale factor). More surprisingly, the averaged and commutation relations derived
by Gasperini et al. in [38] (or by Smirnov in [61] within the same formalism)
remain formally similar to the equations we get in our boundary-free D = X
case hereabove, even when applied to a general domain. This originates from the
different propagation of the averaging domain, which in [38,61] is chosen to be
along the flow of n; accordingly, the natural time derivative in their approach is
Nntd, (in the notations of the present work). This similitude (or, equivalently,
the fact that the averaged equations and commutation rule of [38,61] are formally
unchanged by restricting them to the case D = X) indeed shows that boundary
terms only occur when the domain’s boundaries follow a tilted flow with respect
to the normal to the hypersurfaces in which the domain is embedded. There is no
such tilt in the domain propagation in [38,61], hence boundary terms are absent,
despite the non-vanishing local tilt vector between the fluid and normal flows. As
in our case, this local tilt still influences the dynamics via the difference in energy
density and pressure between the local frames orthogonal to each of these flows.

3.5.5 Relations to the literature: transport of the averaging domain

In the more generic case of an averaging domain not covering the whole hyper-
surface, its time propagation needs to be specified. Three choices in particular,
determined by the three congruences we introduced (see figure 1), may appear as
‘natural’ definitions of the transport of the averaging domain.

The first choice is to assume a domain evolving along the congruence of the
coordinate frames 8;. This is the situation implicitly considered by Larena [46]
and Brown et al. [10] (see also the respective applications of these papers in [65]
and [11,12]). Such a construction picks up two important issues: first, given a
particular choice of shift, the vectors d; and w will not be collinear in general,
hence there will be a flow of fluid elements across the domain boundary. This calls
the physical relevance of the averaged system into question as the domain will not
encompass the same collection of fluid elements throughout its evolution, i.e. it will
not conserve its rest mass content. Second, for the same spacetime and the same
foliation, the location of the domain at a given time will depend on the choice of
the shift vector, as it determines the direction of 8;. This leads to an unphysical
dependency of the averaged system (hence, of all spatial average properties) on
the choice of the spatial coordinates and on the way they propagate.

The second choice is to assume a spatial domain evolving along the integral
curves of the normal frames n. This is the configuration considered by Gasperini et
al. [38] (see also the follow-up paper [49]). Their averaging formalism, as introduced
in [37], is based on the construction of a spacetime window function characterizing
the averaging domain to be considered, and is written in manifestly 4—covariant
form. While this formalism is suitable for a freely specifiable propagation of the
domain boundaries, the averaged system of equations derived in [38], both in
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4—covariant and 3+ 1 forms, has assumed a transport along n (see equation (3.2)
therein).'!

This choice of propagation was also the one adopted by Smirnov [61] and
Beltran Jiménez et al. [7]. In these papers, n is assumed to be geodesic and to
correspond to the 4—velocity of an irrotational non-interacting dust contribution
to the stress-energy tensor, in contrast to [38] where this normal vector was freely
specifiable. The formalism of Smirnov is otherwise close to that of Gasperini et
al. [38], from which it is directly inspired, with both 4—covariant and 3 + 1 forms
of the averaged equations. Beltrdn Jiménez et al. [7] consider a 3 4+ 1 description,
with a vanishing shift and a trivial lapse (N = 1) but still tilted fluid flows, and
their domain actually follows both 8; and n as the vanishing shift makes these
two directions identical.

The choice of a domain transport along n leads to formally simpler averaged
equations in terms of the geometric variables of the foliation due to the vanishing
boundary terms (see subsection 3.5.4). It also makes the propagation of the aver-
aging domain independent of the propagation of the spatial coordinates, but this
propagation becomes instead dependent on the choice of the foliation which defines
the vector n. One could argue that such a dependence is inherently present in any
spatial averaging scheme, since the domain of averaging lies by definition within
the hypersurfaces built from the foliation. However, the dependence we refer to
can be understood from a spacetime perspective: by changing the foliation, and
hence the vector n, the four-dimensional tube spanned by the domain transported
along this vector will not remain the same (see figure 3). We also notice that the
second drawback mentioned previously for an evolution along 8; also holds for a
transport along m: the rest mass of the fluid within the domain will generically
not be conserved, as the particle content of the domain will be altered during its
evolution.

Two similar generalization schemes have been suggested by Résénen in [54]
(see also the application [55]), and by Kasai et al. in [43] followed by Tanaka
& Futamase in [64], where such issues related to the propagation of the domain
boundaries are avoided. However, in both cases this requires specific choices of the
averaging domain that restrict the scope to large scales and to a class of foliations
where the assumptions made in these papers can hold. Résénen [54] derives the
averaged equations in a 4—covariant form for a domain covering the whole hyper-
surfaces, thus without the need for specifying its propagation. The convergence of
the averages for such an infinite domain is ensured by the assumption of statisti-
cal homogeneity to hold in these hypersurfaces. In turn, the system of averaged
equations obtained by Tanaka & Futamase in [64] (slightly generalizing that of
[43]) requires a domain and foliation where periodic boundary conditions can be
assumed. A system of averaged equations is given in a background-independent
scheme as a preliminary step in [43,64]. However, the emphasis is subsequently

1 Accordingly, and in contrast to a statement of [38], the resulting averaged system of
equations, as expressed in 3 + 1 form, is not identical to that of Brown et al. [10] for a non-
vanishing shift, as in this latter study the domain is transported along 9;. This becomes true
if a vanishing shift is chosen, due to the proportionality of n and 9: in this case. As correctly
stated, however, the averaged system of equations in 3 + 1 form of [38] becomes identical to
that of Paper II for an irrotational perfect fluid if the fluid rest frames are used to generate
the spatial hypersurfaces. This is indeed expected as in this case n = u, hence the domain has
the same (fluid-comoving) evolution as in Paper II.
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C(u)

Fig. 3 We here illustrate the situation where the propagation of the averaging domain is
chosen so as to follow the normal of the hypersurfaces at stake. For the foliation of slices
3¢, the domain locus is described by the associated normal congruence C(n) (green dotted
lines). For another foliation of slices X}, it is described by the normal congruence C(n’) (red
dash-dotted lines), which differs in general from C(n). The spatial domain selected in this
way at time t by each foliation is represented by the continuous-line colored section of the
corresponding hypersurface, 3¢ or 3}. Choosing a domain transport along the normal of the
hypersurfaces constructs different four-dimensional tubes, corresponding to different physical
systems, for different foliations. It will also imply a flow of fluid elements across the domain
boundary in general.

put on linear perturbation theory at a Friedmannian background, on which the
main conclusions are based. Accordingly, no or negligible contributions from back-
reaction are found in this setting, which is expected due to the nonlinear and
background-free nature of backreaction.'? The transport of the averaging domain
is not specified; this does not affect the results due to the vanishing of any bound-
ary term. Comparing with [38] and in view of the discussion above in subsection
3.5.4, we conclude that the results obtained in both latter schemes [54,64] would
remain valid in a general foliation, and for any domain, provided it is required
that its boundaries propagate along n (which would also be a propagation along
9; in [64] in view of the vanishing shift vector choice) in order to prevent the oc-
curence of extra boundary terms. A wider applicability of the schemes would thus
be recovered, but the drawbacks highlighted above for such a propagation would
also be retained.

The third choice, which we adopt in the present work, is that of a domain
comoving with the fluid. As its boundaries follow the fluid flow u, the averaging
domain always sweeps out the same four-dimensional tube of spacetime, whatever
the choice of the foliation and spatial coordinates. This option also ensures, by def-

12We emphasize that mixing background-dependent applications with a background-free
framework may imply strong restrictions, e.g. the small backreaction found by Russ et al. [59]
in second-order perturbation theory at a Friedmannian background must in reality vanish due
to the geometric constraints imposed (see the comments in Paper I [15], Sect. 3.4.).
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inition, that the domain encloses the same collection of fluid elements throughout
its evolution, which in turn implies the conservation of the fluid rest mass within
D. Choosing such a domain propagation therefore avoids all of the drawbacks
mentioned above. It should be noted, however, that the advantage of rest mass
conservation within the spatial domain would not hold, in general, for the averaged
description of a model universe filled with several fluids. A multi-fluid approach
would require to pick up and follow one preferred fluid congruence, preserving the
corresponding rest mass only, while allowing the others to flow across the domain
boundaries, see e.g. [30]. However, the rest mass within the domain could be con-
served simultaneously for every fluid only by assuming that the 4—velocities of
all fluids coincide, at least at the domain boundary,'® or that the spatial domain
is extended to the whole hypersurface. In the present work we consider a cos-
mological model sourced by a single fluid, which should satisfactorily account for
the description of the main cosmological epochs largely dominated by a particular
fluid (radiation or dust).

3.5.6 Relations to the literature: comparison of the final averaged equations

Most authors cited in the above discussion base their studies either on a direct
3 + 1 formulation of the evolution and averaged equations, or on a formulation
using explicitly 4—covariant terms from which a 3 + 1 form is explicitly deduced.
This allows for a rather direct comparison with the formalism and results presented
so far in this paper (section 3.4).'*

All of the corresponding systems of 3 4+ 1 averaged equations are manifestly
different from the one we obtain in subsection 3.4 due to the different propaga-
tion of the averaging domain. However, we notice a formal similarity between the
commutation rule (3.22) and the system of dynamical equations for the effective
scale factor (3.31)—(3.32) we present, and those of Brown et al. [10]. The tilt vector
pondered by the lapse Nv appearing in several terms in the commutation rule and
backreaction formulas would there be formally replaced by the shift vector IV, both
representing the deviation of the vector flow followed by the domain (respectively
u and 0¢) to the normal to the slices n in the corresponding framework. Simi-
larly, the time derivative d/d¢ along u would be replaced by the time derivative
O¢| . along O¢. This allows to easily see that both systems of equations become
equivalent in the special case of a comoving description (within which Nv = N
and d/dt = 04 z'i)’ as expected since in this case the spatial coordinates are cho-
sen in such a way that both domains follow the same flow 9; o u. Despite the
same domain propagation choice, the averaged equations of Larena [46] remain
different from the former even in a comoving picture due to a different notion

13The averaged equations are in general defined for arbitrary domains. If an assumption
is adopted that distinct fluid congruences coincide or “average out” on the boundary, the
arbitrariness of the domain choice has to be given up.

14The averaged energy conservation equation and the integrability condition (see subsection
3.4.2 above) are not always considered. The 3 4+ 1 approach of Beltrdn Jiménez et al. [7]
differs from the one used here in that it does neither include lapse nor shift, while Tanaka
& Futamase [64] consider a nontrivial lapse along with a vanishing shift. In the approach of
Rasénen [54], the formulation is only given in explicitly 4—covariant terms; also in this case
can a 3+ 1 formulation be readily deduced, for comparison with the above averaged equations,
upon making a coordinate choice including the appropriate time ¢.
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of effective scale factor.'® Finally, as already discussed, the choice of a domain
propagating along the normal to the slices (or in the last two cases, the use of
global assumptions on the domain that erase boundary terms, yielding the same
evolution) made by Gasperini et al. [38], Beltrdn Jiménez et al. [7], Smirnov [61],
Tanaka & Futamase [64] and Résédnen [54] would require to take either global
averages or fluid-orthogonal hypersurfaces (when possible) in each case to make
the averaged equations of these papers equivalent to those derived in the above
section 3.4.

The reader may find a complete comparison of the averaging formalisms dis-
cussed above in Appendix C and synthetic tables therein.

4 Rest mass—preserving scalar averaging: fluid-intrinsic approach

In this section we propose an alternative averaging procedure aimed at characteriz-
ing average properties that are fully intrinsic to the fluid. We start with presenting
the motivations for this approach.

4.1 Motivation for a fluid-intrinsic averaging procedure

In the previous section we learned that most of the literature on the general-
ization of spatially averaged cosmologies for arbitrary foliations abandons the
intrinsic fluid averaging approach that was a primary element of Papers I and
II. Instead, the averaging procedures considered were built from averaging do-
mains evolving along the normal congruence of the hypersurfaces of arbitrary
foliations. We pointed out that this choice inherits problems with regards to the
foliation-dependent evolution of the domain,'® and especially the non-conservation
of the rest mass of the averaging domain in general situations. These problems are
avoided for our choice of a comoving domain of averaging, i.e. of a domain trans-
ported along the fluid congruence.

The approach we presented in section 3 complies, however, with the definition
of the averaging operation, and with the set of foliation-related local variables
explicitly appearing in the equations, adopted in the aforementioned literature

153uch additional differences with the results of [46] arise from a definition of the effective
scale factor in this latter study that makes its evolution different from that of the cubic
root of the domain’s volume. Since the aim of an averaging framework is to investigate the
regional dynamics of comoving domains lying within spatial hypersurfaces, it appears to be
more appropriate to define the scale factor from their volume. The reader may refer to [65] for a
comparison of the different averaged energy constraints obtained for different choices of ap, and
for an analysis of the backreaction effects obtained for each choice in a Friedmann-Lemaitre-
Robertson-Walker (FLRW) model perturbed up to second order. Note, however, that in these
studies the domain also follows the congruence of the coordinate frames along 9%, implying
the drawbacks already highlighted in section 3.5.5.

16We emphasize that the averaged dynamics and the definitions of backreaction terms in
this approach involve the extrinsic curvature, which depends on derivatives of the normal
vector. Even if the tilt measuring the deviation of the 4—velocity with respect to the normal
is small (the Lorentz factor is close to unity), its derivatives can be large. This may lead to
a strong foliation dependence of the averaged variables and backreaction terms that is to be
considered irrelevant for a cosmological model, since in such an approach these quantities only
characterize properties of a family of extrinsic observers.
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(although some ‘mixed’ fluid and foliation scalars such as h*”V,u, have also
been used by Larena [46]). This eztrinsic approach could be employed to measure
the deviations from the dynamics of a homogeneous-isotropic model universe in a
geometric way, since it focuses on averages of foliation-dependent scalars character-
izing the hypersurfaces such as the respective traces of the extrinsic and intrinsic
curvatures. We argue, however, that intrinsic properties of the fluid content such
as those measured by the rest frame kinematic quantities @, o and w?, defined in
subsection 2.2.2; are relevant for the characterization of an effective cosmological
model. It is not only a philosophical question to consider as a viable cosmology the
evolution of averaged fluids formulated in its own variables, rather than looking at
averages ‘from outside’ that mostly focus on the study of geometrical properties
of the hypersurfaces. This risks invoking a quasi-Newtonian understanding of a
moving fluid with respect to some fiducial external spacetime.

Having said this, the reader may point out that focusing on the properties of the
fluid congruence is more reminiscent of a 1 + 3 (threading) point of view. Indeed,
we employ in this work a 1 + 3 threading formalism, but jointly with a 3 4+ 1
foliation, simply because hypersurfaces are needed for the averaging operation.
Going as far as possible toward a fluid-intrinsic description avoids an excessive
foliation-dependence of the variables considered. However, this goal will encounter
limitations, since the rest frames of a vortical fluid are not hypersurface-forming.
A fully intrinsic construction of effective cosmologies will thus in general require
other choices. The foliation at constant fluid proper time, as part of the Lagrangian
description (see subsection 2.4.2) allows for a spatial averaging over hypersurfaces
that are built from the fluid flow itself. Another possibility that is opened with
the intrinsic approach would be to characterize hypersurfaces statistically. This
strategy will be discussed in subsection 5.3.3.

As a first step toward an intrinsic approach, we present in Appendix B a
re-expression of the extrinsic evolution equations (3.31)—(3.32) in terms of the
fluid’s intrinsic variables. This provides more insight into the contributions of these
quantities to the averaged dynamics, in particular the influence of the vorticity
can be better understood, but it also raises additional contributions from the tilt
factor 7. In the following, we shall go another route heading toward an intrinsic
fluid point of view. For this aim we introduce a slightly different generalization of
the fluid-orthogonal averaging formalism of Papers I and II that will also allow
us to derive a more compact form of averaged cosmologies. We first motivate this
route by contemplating on the conservation of the rest mass of the fluid.

4.1.1 Regional rest mass conservation

We have shown in subsection 3.3 that the total fluid rest mass within the domain
D, Mp = [, M"doy,, with M" = gu” the conserved rest mass flux vector, is
preserved in time (dMp/dt = 0) as a consequence of the domain’s fluid-comoving
propagation. We have also shown that Mp can be expressed in terms of the volume
and averaging operator introduced by (3.18) as follows:

Mp = /D vovVhd®z = Vp <’)/Q>,D . (4.1)

The relevant scalar to be integrated over the spatial domain is therefore g, rather
than the rest mass density ¢ as it could have been expected. Unless the foliation
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is fluid-orthogonal (y = 1), the quantity [ ovVhd3z = Vp <,Q>D is not the fluid
rest mass within D and accordingly is not conserved. Indeed, using the continuity
equation (3.28) for p as well as the commutation rule (3.23) and the associated
volume evolution rate expression, we have

9 (Vo (e)p) = v <i‘j§g>D . (4.2)

The need to account for the factor 7 is a consequence of the conserved p being a rest
mass density of the fluid in its local rest frames. It is thus a density with respect to
the measure of proper volume of the fluid elements, while vp is the corresponding
density with respect to the (Lorentz-contracted) normal frames volume measure
Vhd3z used in the definition of the extrinsic volume averaging operator <->D.

The total fluid rest mass within the domain is alternatively obtained by inte-
grating the rest mass density per unit of fluid proper volume, g, with the corre-
sponding fluid rest frames volume element, v/bd3z with b := det(b;;): given the
relation between the determinants b and h,

b= det(gij + uiuj) = det(hij + uin) =h det(éij + hikukuj)
=h(1+hPuu;) = h (1 +h* uuu,) = hy? (4.3)

we have vVbd3z = vWh d3z, and therefore
Mp = / oVbd’z. (4.4)
D

The rest mass of the fluid Mp is thus more naturally defined in terms of the proper
volume measure v/bd3z.

Note that the two covariant'” volume measures v/hd3z and vbd>®z coincide
in the case of a flow-orthogonal foliation (possible for an irrotational fluid), which
is the situation considered in Papers I and II. A degeneracy between both vol-
umes is present in these papers, while they are distinct for any other choice of
foliation. This is similar to the difference between hypersurface-orthogonal and
fluid-comoving propagation choices for the averaging domain, that emerges out-
side the fluid-orthogonal foliation framework of Papers I and IT where both choices
can be made simultaneously. We have argued above that once this distinction needs
to be done, preserving the comoving character of the domain propagation is the
relevant choice for a physical description of average properties of a regional subset
of the fluid. Here we also notice that keeping a volume measure that corresponds
to a proper volume for the fluid appears to be the most suited to describe the
integrated contribution of variables that are primarily defined from the fluid’s rest
frames, as, e.g. for the expression of the mass within the domain from the rest
mass density o.

We shall accordingly introduce a new volume for the domain and a new av-
eraging operator based on the fluid proper volume element. It will allow us to

17As \/h(t,2%) d3z, the fluid-orthogonal volume 3-form +/b(t,z*) d3z is also invariant un-
der a change of spatial coordinates, as can be checked either directly or by rewriting it as
~v(t, z*)\/h(t,x¥)d3z, v = —ntu, being a 4-scalar. It reads in particular /b(t,z?)d3z =
Vb, fi(t, X)) J(t, X*) d3X in comoving spatial coordinates X, with b(¢, fi(¢, X)) J (¢, X?)?
being the determinant of the spatial components of the fluid rest frame projector b in the
comoving coordinate system (£, X?).
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define these notions intrinsically from the source content, leaving only the integra-
tion itself as based on the foliation choice since the spatial integration domain lies
within a hypersurface.'® We will also recover the expected relation between mass
and averaged rest mass density.

4.1.2 Intrinsic averaging operator

We consider as before a compact domain D transported along the fluid flow lines
and contained within hypersurfaces of normal the unit timelike vector field n.
Instead of using the hypersurface Riemannian domain volume V%, where the su-
perscript h is used for clarity, we introduce the proper volume of the fluid elements
within D:

Vo (8) = / wido, — / (b, &) /R, ) dP = / N
D D D
and we define the fluid-instrinsic average over D of any scalar 1) as'®

<w>bp = %/Dwu”da“ = %/Dw(t, xi)’y(t,xi)\/mdg’x
=g [utea) Vit . (1)
VD D

In other words, we make use of the restriction to the slices of the Hodge dual xu
of the 1—form w as the volume 3-form, rather than the volume 3—form similarly
built from n that was used for the extrinsic definitions of section 3.

Similarly to the extrinsic hypersurface averager of section 3, we recover from
(4.5) and (4.6) the volume and averager of Papers I and II when considering a
foliation orthogonal to an irratotional fluid flow. The two averaging schemes can
be formally related as

()
Ny

VH=Vh (e s () = (4.7)

for any scalar 1), where we label the extrinsic averaging operator used throughout
section 3 with a superscript h for a more explicit distinction. This shows the
identity of both operators in the absence of tilt (v = 1), and their approximate
identity in the case of a small tilt, i.e. of non-relativistic Eulerian velocities of the
fluid in the chosen foliation (y ~ 1).

181n the following we shall emphasize the choice of a proper time foliation that, in particular,
forms hypersurfaces that are themselves defined intrinsically from the fluid (up to the choice
of an initial hypersurface).

9Note that the intrinsic averager (4.6) can be obtained in the framework of Gasperini et
al. [38] by rewriting their window function, W = n#V, (H(A(z®) — Ag))H(ro — B(z®)), as
Wo = ulV, (H(A(z*) — Ag)) H(ro — B(z®)). Considering in addition the constraint u#8, B =
0, which defines a comoving domain propagation, yields the same averaged system that we are
going to derive in the present section. (See [41] for a detailed analysis.)
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4.2 Intrinsic effective dynamics of general fluids seen in general foliations
4.2.1 Fluid-intrinsic volume measure and averager: time evolution

Starting with the reformulation of the extrinsic averaging scheme in Appendix
B, we obtain from the volume evolution rate (B.3), the commutation rule (B.4),
and the above relations between both schemes (4.7), the evolution rate of the
fluid-intrinsic volume:

1d. o, /N_\" /b

where we have introduced the rescaled scalar expansion rate © := (N/~)O. Since
N/~ = dr/dt, © can be seen as the fluid’s local expansion rate with respect to the
coordinate time ¢, while © expresses this rate with respect to the proper time 7.

This evolution rate formula can alternatively be derived in the same way as
it was done for the hypersurface Riemannian domain volume in subsection 3.2.2,
changing the spatial coordinates to comoving ones in the integral to commute
integration and comoving coordinate-time derivative. Using the invariance of the
fluid rest frame volume form with respect to such a spatial diffeomorphism, we
then get the above result through the second equality of relation (2.39) holding in
comoving coordinate systems.

Both methods can be equally used to obtain a new commutation rule for the
intrinsic averager, which we now express in the form of a Lemma:

Lemma 2 (commutation rule for fluid-intrinsic volume averages)

The commutation rule between fluid-intrinsic averaging on a compact domain
D, lying within the t-constant hypersurfaces and comoving with the fluid, and co-
moving differentiation with respect to the coordinate time reads, for any 3 + 1
foliation of spacetime and for any scalar i:

Loy = (Su) (o) (v +(ouY. . (49)

D

This simple relation is independent of the shift due to the spatial coordinate-
independent definitions of the domain propagation and averaging procedure; it
only depends on the lapse and the tilt through the threading lapse factor N/v in
é, rescaling the proper time evolutions to coordinate-time evolutions.

Within this fluid-intrinsic averaging scheme, the averaged rest mass density
takes the expected form:

M
(o), = VT;J : (4.10)

From the commutation rule (4.9) and the continuity equation do/dt + ég =0, we

obtain d(V% <Q>Z)) /dt = 0, which shows again the preservation of the domain rest
mass Mp.
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4.2.2 Averaged evolution equations

We define the effective scale factor of the fluid body via the intrinsic domain

volume:
1/3
abh(t) = (V%(t)) , (4.11)

Vi,
so that its rate of change yields the averaged expansion rate as seen in coordinate
time ¢:

1 dab 1/ ~\b
HY = 7—1’:7< > . 4.12
P ogh at 509/5 (4.12)

Equivalently, the rate of change of the fluid scale factor can be defined as

b 1de\’
e (1 s
with £ being the representative length lying in the rest frames of the fluid, and
satisfying

‘1 1d0 1~

=39 g T 3°
In other words, ¢ denotes the spatial isotropic deviation of two neighbouring fluid
elements.?’

Instead of using the Einstein equations projected along m, yielding equations
(3.2) and (3.4) (expressed in terms of the intrinsic and extrinsic curvature of the
hypersurfaces), we here express the local dynamics of the fluid directly through
the Raychaudhuri equation:

(4.14)

: 1
e = —592 —20° 4 2w + V,a" — 4nG (e + 3p) + A, (4.15)

obtained from a projection of the Einstein equations along w; it relates rest frame
kinematic and dynamical scalars of the fluid, thus being relevant for the present
fluid-focussed approach. It can be complemented by an analogue in terms of fluid-
intrinsic quantities of the foliation-related energy constraint (3.4) by defining a
‘fluid rest frame 3—curvature’ scalar # from the 4—Ricci tensor R, and scalar
R, following Ellis et al. [34], as follows:

X = V,u' Vyut' = V,ut Vou” + R+ 2 Ry uf'u” . (4.16)

Noting that the covariant derivatives above can be equivalently replaced by their
projections orthogonal to u (V,u? — b,"b7 V,u"), the scalar Gauss equation [I,

20The difference to the averager used in section 3 can be made explicit by introducing [ as
the counterpart of £:

1011_1(é 1d'y)_1dé 11dy
ldt 3 ydt)  edt 3~dt’

We thus have I3 = ¢3 /7, i.e. [ is a length (cubic root of a volume) associated with the volume
contraction of ¢ by the Lorentz factor v (lengths are contracted by v in one spatial direction
and are not affected in the other orthogonal two, implying a factor v1/3 for the isotropically
averaged length contraction).
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39] applied to the u-orthogonal hypersurfaces when those exist (i.e. for vanishing
vorticity) shows that % corresponds in this case to the scalar intrinsic curvature
of these hypersurfaces. For non-zero vorticity, such hypersurfaces cannot be built,
and Z is not transparently interpreted as a scalar curvature.?* It should be kept
in mind that it does not in general correspond to the intrinsic curvature R of the
n-orthogonal hypersurfaces in which the domain D is embedded.

Inserting the trace of the Einstein equations and their projection along u in
the definition (4.16) of #Z allows to relate it to the fluid’s rest frame energy den-
sity within a constraint equation where the covariant derivative of u has been
decomposed into its kinematic parts:

%@2 —20% 4 2w° + % = 167Ge + 2\ . (4.17)

Analogously to what has been done in section 3 within the extrinsic averaging
scheme, we can now apply the fluid-intrinsic averager to equations (4.17) and
(4.15) multiplied by (N/~)? and use expression (4.8) for the evolution rate of V%
as well as the commutation rule (4.9) to obtain the effective evolution equations
of the scale factor a%. We formulate them in the following Theorem in terms
of rescaled variables defined similarly to ©: rescaled kinematic variables, 62 :=
(N/v)?0% and @&? := (N/v)?w?, dynamical variables, ¢ := (N/v)% and p :=
(N/~)?p, acceleration 4-divergence, A := (N/v)%A with A := V,a", and fluid
3-curvature, % := (N/v)*%.

Theorem 2.a (fluid-intrinsically averaged evolution equations)
The evolution equations for the effective scale factor of the fluid body within

a compact and comoving regional spatial domain D of an inhomogeneous general
fluid, and for any 3 + 1 foliation of spacetime, read:

1 d%ab _ - s\bo b b 5b
PO TR —47rG<6+3p>D+ p+Qp+Pp; (4.18)
D
2 b P 1~ 1, -
3(Hp)® = 8nG (&), + A — 5 Qb — 5 (#) 5 , (4.19)

with a time- and scale-dependent contribution from the cosmological constant,

_ N2\?
A=A <?> , (4.20)
D

21However, % can indeed arise as the 3—Ricci scalar associated to a ‘u-orthogonal spatial
Riemann-like’ tensor which can be built from the wu-orthogonal spatial covariant derivative
operator (defined for tensors fully orthogonal to u as the projection through b of their covari-
ant 4—derivative on every component) as well as from its spacetime embedding [50,34,56].
Although for non-vanishing vorticity this Riemann-like tensor does not possess all the sym-
metry properties of a true Riemann tensor and the way of defining such a spatial curvature
tensor is not unique, Z may accordingly be seen as the scalar part of local 3—curvature at the
u-orthogonal subspace of the tangent space at each spacetime point. Boersma and Dray intro-
duce so-called parametric manifolds to define this quantity as the curvature of the parametric
submanifold [8]. Alternatively, we may see it simply as a definition through equation (4.17).
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and with Q% and P2 denoting the intrinsic kinematical and dynamical backreac-
tion terms, respectively, as seen in the t-hypersurfaces. They are defined as follows:

bm2((6-(0))) 2@ ra(@), am
P = <A>bp + <é%% <f>>b . (4.22)

D

(o}

As for Theorem 1.a, the left-hand side of equation (4.18) above should not be
directly interpreted as a time-acceleration of the scale factor, unless a framework
such as the Lagrangian picture, that we develop below, is adopted (compare the
discussion and proof in subsection 3.4.1).

Note also that the backreaction terms introduced above do not correspond in
general to the terms Op and Pp appearing in the extrinsic averaging scheme.
They do coincide, however, in case of a fluid-orthogonal foliation as can be seen by
direct comparison with the definitions (3.33)—(3.34) of Qp and Pp, and by noting
that in this case KC;; = 0,5, w? = 0, and (through relation (2.6) between lapse and
2
[li°

The above system of averaged equations can alternatively be derived (through
relations (4.7) between both averaging schemes) from the analogous relations for
the effective scale factor ap of the extrinsic averaging scheme, provided the latter
relations are re-expressed in terms of the fluid rest frame local kinematic and
dynamical variables, as exposed in Appendix B. The use of the local dynamical
equations (4.17) and (4.15) is still required in the process since the local quantities
to be averaged differ between both schemes by a factor ~.

acceleration of the normal frames), A = NN/

4.2.8 Integrability and energy balance conditions

As for the extrinsic averaging formalism (see subsection 3.4.2), a condition of
integrability of the system of averaged equations (4.18)—(4.19) can be obtained by
applying the Lagrangian coordinate-time derivative % to the averaged constraint
equation (4.17) and inserting 2 (a%) ™! (da% /dt) x ((4.18) — (4.19)) into the result.
The averaged fluid source terms appearing in the resulting condition are themselves
constrained by the local energy balance equation (2.22), which can be rescaled by
a factor (N/)? to yield:

d. |~ _vd (N) N°? Y
giro@rn =263 4 () -2 @t Vgt 1 7). @)
Applying to it the intrinsic averager, the commutation rule (4.9) yields an evolution

equation for <€>l7;7 which we express along with the integrability condition in the
second part of the Theorem:
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Theorem 2.b (integrability and energy balance conditions to 2.a)

A necessary condition of integrability of equation (4.18) to yield equation (4.19) is
given by:

fQ'D-f—GHDQD + <%>D+2HD <@> +4HDPD

= 167G ( (&)Y + 3H} (¢ +p)o ) + 25/1% , (4.24)

where the first terms on the right—hand side obey an averaged energy balance equa-

tion:
{9+ 3mb(e+5), = (6) (9) - (69),,

N3 v b Y d N b
_<?(qu“+q“au+7ﬂ‘ gw,)> +2< th( >> . (4.25)

D

This balance equation can be supplemented by the rest mass conservation law

dMp/dt = 0, which can be equivalently expressed in terms of the averaged rest
mass density <Q>,bD = Mp/V:
d b b b
3 (0)p +3HD (o), = 0. (4.26)

4.3 Effective forms of the fluid-intrinsic cosmological equations

We now introduce effective forms of the fluid-intrinsically averaged equations pro-
viding compact expressions that are suitable for applications.

4.8.1 Effective Friedmannian form

Following the suggestion in Paper II, the set of equations given in Theorem 2,
which features deviations from the standard Friedmann equations, can be seen
as a (scale-dependent) Friedmannian dynamics sourced by an effective energy-
momentum tensor. The corresponding effective homogeneous energy density and
pressure are defined as:

WD +

b ~\ b
Ceff = <€>D 16 GQD 16 G E’D: (427)

b b 1~ 1 Ab
pest = (B)p = 15, GQD+487TGW TR 12G

—Ph, (4.28)

where we have introduced the backreaction terms W5, for the deviation of the

. ~\b . P
averaged fluid 3—curvature <%>D from a constant-curvature behaviour, and Lp
for the deviation from the cosmological constant A:>?

- b k - -
Wh = (#)], — 6((1,)773)2 ; L0=A AL (4.29)
D

22In the standard cosmological model it is assumed that the cosmological constant A models
Dark Energy; the averaged equations show that we then also have to account for Dark Energy
backreaction LY, in cases where N # ~, cf. (4.20).
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kp is a domain-dependent arbitrary constant, which can for instance be defined
as kp = (a)%(t;) <,%~’>l;)(ti) / 6 to feature the initial scalar curvature. Equations
(4.18)—(4.19) can then be written as Friedmann-like equations for the effective
sources and the effective Hubble function HY, summarized in the following Corol-
lary to Theorem 2:

Corollary 2.a (Effective Friedmannian form)

The set of cosmological evolution equations of Theorem 2 can be written in Fried-
mannian form for the effective sources (4.27) and (4.28):

Ldap gl be) + A 1

5 qp = 4G (eer +3per) + A (4.30)

D

3(Hp)® = 87G elg — 3 ka +A; (4.31)
(ap)?

while the integrability condition (4.24) reduces to the effective conservation equa-
tion:

d
el +3HD (e;’ﬂ +p23) —0. (4.32)

4.3.2 Effective scalar field form

Looking at the effective sources (4.27) and (4.28), we appreciate that the kinemati-
cal backreaction term —Q% /(167G individually obeys an effective stiff equation of
state, i.e., its contributions pbg and ebQ to the effective pressure and energy density
(respectively) obey p% = eb, while the curvature deviation term —W5/(167G)
individually obeys an effective curvature equation of state, p%, = —e5 /3 (with
similar notations), and the Dark Energy backreaction term L% /(87G) an effec-
tive Dark Energy equation of state, p% = —e%. The dynamical backreaction term
—P% /(127G) arises as an additional effective geometric pressure. This considera-
tion motivates the introduction of a scalar field language, since a free scalar field
in the fluid analogy also obeys a stiff equation of state, and the scalar field po-
tential also features a different sign for the effective potential in the expressions
for the energy density and the pressure. With this analogy the backreaction terms
(by definition only time-dependent, as spatial averages) can be represented by an
effective homogeneous scalar field, the morphon field, as introduced in [24]. The
resulting Friedmann-like equations are sourced in this description by the following
effective homogeneous energy density and pressure:>>

con = (&)p +et 3 pin = (B)p + ek - (4.33)

with the morphon variables (for the simplest choice of a scalar field fluid analogy),

ey 1(d: b5 ey 1(d:\° b
6eff = 5 (a@’D) + Ueff(ds’D) 5 peff = 5 (&@’D) - eff(@’]_)) . (434)

23In the paper introducing the morphon field [24], the possibility of phantom energies has
been discussed too, which in this effective picture does not violate energy conditions. We have
omitted this possible parametrization here.
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The morphon field is therefore defined in terms of the backreaction terms as:
d- \? ~ ~ ~
24n@ (Eqsp) = —30% — 2P% — Wh ; (4.35)
247G Ulg(p) = 3L +PhH—Wh . (4.36)

We summarize the resulting equations in the following Corollary:

Corollary 2.b (Effective Friedmannian form with effective scalar field)

The set of cosmological evolution equations of Theorem 2 can be written in Fried-

mannian form for the averaged energy sources and effective scalar field energies:**
g Ldlahp (O + e L3 ()2 +pTd)) + A (4.37)
& e 0 €)p T €t P)p t Pet . :
b2 b | Db kp .
3(Hp)* =87G ()3 +€i) - AR (4.38)

The integrability condition (4.24), written in terms of the deviation fields W and
Lp (cf. (4.29),
d
25
dt

d - -
— 167G <a (&) + 3HD (e + p>;;) , (4.39)

d - o do- _ . i
EQ"D +6HHQY + g+ QHLWp + 4HLPY — 25 7h

is mapped to a conservation law for the effective homogeneous scalar field energies,
equivalent to an effective Klein Gordon operator, applied to @p:

d ,— _ _
56{23@ +3 Hp (ngqu +P2ff¢)) +65 =0, (4.40)
déD dQéD b déD anff (éD) b
e — | —— H Sl = 4.41
BT <dt2 DT g, ) TER =0 (D)

balanced by the averaged conservation law for the sources (cf. (4.25)):

&Y = % (&)2 +3Hp (<g>§’3 + <ﬁ>§,) = <é>;<15>;— <éﬁ>;

N3 b v d [NY\"
—{ (V" +¢"ay + 7" ,,)> —|—2<€—— (—)> , (4.42)
<'y3 H » N Ndt\~v/)/p

so that in total the conservation law for the total effective energy densities (4.32)
holds.

24The language of a given effective scalar field theory can be freely specified. We may
think of other scalar field theories, e.g. non-minimally coupled, especially, if we set the scalar
field analogy within an extrinsic averaging formalism, where another dictionary could be a
better choice. In this line, the analogy—here set up for fluid-instrinsic averaging—could have
interesting implications for the relation of different scalar field theories with different foliation
choices. By construction, the scalar field obtained here obeys the evolution equations of a
homogeneous scalar field, being built from pure functions of . One may, however, define it
first (following the above procedure) as a function of the time t of a given foliation, and then
consider this field in another foliation choice, where it will in general be inhomogeneous. In
this way, the scalar field would acquire a nonvanishing spatial gradient and would so allow
for a comparison with phenomenological inhomogeneous scalar fields employed in standard
perturbation theory.
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4.4 Lagrangian effective forms

The effective averaged equations derived from the fluid-intrinsic approach can
be further simplified by moving to the Lagrangian picture, where the rescaled
variables (0, ¢, ...) reduce to the original variables (O, e, ...) since N = ~. We
recall that the Lagrangian picture requires both a foliation choice of hypersurfaces
at constant proper time 7 and the natural adapted spacetime coordinate choice
(7, X"“). We shall list below arguments why we consider this choice as the most
adapted one, both to the geometric structure and to cosmological applications.
The choice of fluid-comoving spatial coordinates X® actually remains optional in
the following, as we have seen that the average equations do not depend on the
shift.

Within this picture, the commutation rule (4.9) and scale factor evolution rate
(4.12) become respectively:

(o), = -Gl vy, Bt aw
where the operators = and d/dt are here equivalent for scalars.

4.4.1 Lagrangian effective cosmological equations

We summarize the Lagrangian formulation of the averaged cosmological equations
in the following Corollary. (Note that the property N = v of the constant-r
foliation choice makes the Dark Energy backreaction 5% vanish.)

Corollary 3.a (Lagrangian effective cosmological equations)

The evolution equations for the proper volume scale factor a% (4.18)~(4.19) for
a choice of constant fluid proper time foliation parametrized by t = T, read:

b
3ZTD:—47TG<6+3p>bD+A+QbD+P%; (4.44)
D
1 1
3(Hp)" = 87G (e)p+ A~ 50b — 5 (%), , (4.45)

with HY = a% /a% and the backreaction terms reduced to

b=2((o-(@n)) 2( w2()

Ph = (A)) . (4.47)

The corresponding integrability condition (c.f. equation (4.24)) now becomes:

Olp +6HD Q-+ (#)y, +2Hp (#)5, + AHEPh = 167G ()3, +3Hp (e + 1)}, ),

(4.48)
with the right-hand side satisfying the averaged energy conservation equation (4.25)
under the following simpler form:

()p + 3Hb (e + )3, = (O)5 (b — () — (Vad” +d"ay + 7TWUW(>bD )
4.49
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4.4.2 Effective Friedmannian and Lagrangian form

Combining the above form with the effective Friedmannian form provides the
most compact writing of the averaged cosmological equations, summarized in the
following second part of the Corollary:

Corollary 3.b (Compact form of Lagrangian cosmologies)
In the Lagrangian picture (implying N = ~, where all fields are expressed in terms

of fluid-intrinsic coordinates (1, X")), the effective Friedmann equations (4.31)-
(4.32), reduce to the following form:

b
33—? = —47rG(esz + 3pgﬂ~) + A (4.50)
D
3 (H%)2 =8rG ey — 3 k;D 5 A (4.51)
(ap)
¢ + 3 Hp (GZH +p2ff> =0, (4.52)

with H% = a%/aé’;. The effective energy density egﬁ and effective pressure pgﬁ, as
defined in (4.27) and (4.28), are here simplified to the following expressions:

b1 by 1 b

ot = (€), e 9p 167rGWD’ (4.53)
b b B 1 b 1 b 1 b

per = P)p ~ 15,690 T 15:6VP T oG TP (4.54)

with Q% and PY as given by (4.46) and (4.47), and with the curvature deviation
term W5 reduced to W5 = <%>; — 6kp/(a%)?.

In the Lagrangian picture the scalar field analogy can be interpreted with the
help of a morphon field in a simplified form.

Corollary 3.c (Compact form of Lagrangian cosmologies with morphon)

The effective Friedmann equations (4.51)—(4.52) can be interpreted as being sourced
by homogeneous morphon energy densities by reformulating the backreaction terms
in (4.53) and (4.54):

b .
Efo = <6>D + eff’fb ; eff’fb = %@?D + Ué'ff(@p) (4.55)
b \b b . Db 1#2 b
peg = (P)p +Pei 3 Peip = 39D — Ur(Pp) , (4.56)
with the simplified morphonic dictionary:
241G 3 = —3Q% — 2P% — WY ; (4.57)
247G Ul (Pp) := PLH — W5 . (4.58)

The conservation law (4.52) couples the conservation law for the material sources
(4.49) to an effective Klein-Gordon operator applied to p:

b
b (% + 3Hpdp + wg%@) +6% =0; (4.59)
D
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with &Y% here reduced to
&Y = <e>bD'+3HbD (e +p>l;) = <9>bD <p>;;—<9p>lfD—<V#q“ +q"a, + w“”aw,>l,’D

We note the important property that &% only vanishes in general in the case
of dust matter, separating the individually satisfied conservation law from a Klein-
Gordon equation for @p. In more general cases, 6% is non-zero. As an example it
was pointed out in Paper II that this property implies that the spatially averaged
inhomogeneous radiation fluid does not follow the volume expansion law of the
homogeneous-isotropic radiation-dominated cosmos.

Useful characteristics for cosmological models such as dimensionless effective
cosmological ‘parameters’ can be defined along the lines explained in [18] (sect.
2.4).

5 Discussion and Concluding Remarks

In this article we have distinguished fluid-eztrinsic (section 3) and fluid-intrinsic
(section 4) averaging procedures of the scalar parts of the Einstein equations within
a general 34 1 spacetime split and for a general fluid whose congruence is allowed
to be tilted with respect to the normal congruence of the spacelike hypersurfaces.
While the former applies to all previous investigations in the literature, which we
have compared in detail with our proposal of fluid-extrinsic averaging—formulated,
however, for comoving domains of averaging®®—, the latter forms our new proposal
of constructing effective cosmological equations.

5.1 Recovering the results of Paper I and Paper II

Fluid-intrinsic scalar averaging generalizes, in form and spirit, the previously sug-
gested cosmological equations restricted to flow-orhogonal foliations of spacetime:
Paper I [15] for irrotational dust (case I below), and Paper II [16] for irrotational
perfect fluids (case II-C below). Within the fluid-intrinsic picture, it is straight-
forward to recover these subcases. We additionally get a Lagrangian picture for
irrotational perfect fluids with pressure (case II-L below).

I (irrotational, non-tilted dust in Lagrangian form): We set w = 0, p = 0, ¢** = 0,
mu = 0, and € = p, and a fluid-orthogonal foliation. The coordinate time ¢ is
then already the proper time 7, cf. (2.40), and we can start from the Lagrangian

form of Corollary 3. Moreover, a%, = ap and extrinsic and intrinsic averag-

ing operators become equivalent, <--->b = <~~~>D, for this fluid-orthogonal

situation. The index b becomes redundant for all expressions, and we directly
recover the cosmological equations of Paper I.

I1-C (irrotational, non-tilted perfect fluids in comoving form): In Paper II the choice
v = 1 with a non-constant lapse function N was adopted, hence, this does not
correspond to a Lagrangian picture. In other words, 7 does not reduce to the

25Recall that we reformulated the extrinsic averaging approach with this property of the
averaging operator in order to avoid a number of drawbacks that may arise by not requiring
this constraint.
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coordinate time t, c¢f. (2.40). To recover the same form we have to use the
equations of Corollary 2, in which we can select a fluid-orthogonal foliation.
We can then omit the index b for the same reasons as in case 1. Setting v = 1,
w=0,q¢" =0, 7, =0and A = 0 in these equations, we recover the equations
of Paper II (were A was not considered).

II-L (irrotational, non-tilted perfect fluids in Lagrangian form): We can set w = 0,
q" =0, 7y = 0 and consider a fluid proper time foliation, with ¢ = 7 (hence
the equations of Corollary 3 can be used). For nonvanishing pressure gradients
in the fluid local rest frames, this foliation is not fluid orthogonal, v > 1, and
we get different, simpler averaged equations with respect to Paper II, with an
intrinsic averaging operator that is distinct from the extrinsic one.

5.2 Recovering the Newtonian form of the general cosmological equations

The compact form of the cosmological equations of Corollary 3 enjoys a straight-
forward transformation to the corresponding equations that arise in Newtonian
Cosmology [23]. We formulate this ‘Newtonian limit’ in terms of a restriction of
the fluid deformations to integrable fluid deformations, according to the Minkowski
Restriction as defined and executed for various variables in the series of papers [27,
26,2,3,47], see especially [2,3]. As in [47], we will combine it with a nonrelativistic
limit in the special-relativistic sense, ¢ — oo.

The cosmological equations presented in this paper do not explicitly refer to
a particular spatial metric, they only depend functionally on a spatial metric. To
explain the notion of integrability we write the spatial metric in terms of three
Cartan co-frame (1-form) fields, n®, where a = 1,2, 3 counts the spatial co-frames,

hzéabna®nb . (5.1)

The Minkowski Restriction, denoted by “—”, if applied to the spatial co-frames,
restricts the general 1-forms to exact forms: n* — df®*. We consider here a fluid
proper time foliation, and in this subsection we consider all tensor fields restricted
to the three-dimensional spatial hypersurfaces, with the associated spatial exterior
derivative. f¢ defines an embedding into Euclidean space (a becomes a coordinate
index of Eulerian coordinates % = f%(t, X*), where f* defines a diffeormorphism);
the proper time 7 reduces to the coordinate time t that then labels flat space
sections. In an exact basis dX?, associated with Lagrangian spatial coordinates
X*? the coefficients of the Cartan co-frames reduce to the Newtonian deforma-
tion matrix f9; in Lagrangian coordinates, n* = 1% dX? — dfe = [ dxt,
where a vertical slash denotes derivative with respect to Lagrangian coordinates.
The Riemannian spatial metric reduces to the Euclidean metric up to the coor-
dinate transformation from Lagrangian to Eulerian coordinates, g;; dX* ® dX7 =
5abf“|ifb|j dX' @ dX7 = 0ij dz® ® dz?. The 3 + 1 Einstein equations then reduce
to the Newtonian equations in Lagrangian form (for an explicit demonstration in
the case of an irrotational dust matter model see [27] for the Einstein equations
and [13,32] for the Newtonian equations in Lagrangian form, admitting non-zero
vorticity.)

We illustrate this transformation to the Newtonian equations for the case of a
rotational dust matter model. We apply the Minkowski Restriction to this context
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in a fluid proper time foliation, and we additionally assume that the relative veloc-
ities (compared to ¢) between fluid-comoving and normal observers and the asso-
ciated special-relativistic effects of differences of clock rates are negligible. In other
words, we can neglect the local tilt (not its variations) between the fluid rest frames
and the Euclidean constant-r hypersurfaces considered, v ~ 1, and the intrinsic
averages (as the extrinsic ones) reduce to being expressed in terms of Euclidean
volume integrals. Writing these Euclidean averages without the unnecessary label
b, we obtain the following set of cosmological equations from Corollary 3:

kp

3 (HY)? =87rGeéYg—3a—2+A; (5.2)
D
SZ—D = —4nG(els +3plk) + A ; (5.3)
D
N+ 3 Hp (eeng +pefo) -0, (5.4)

with HbD = ap/ap, and with the effective sources

N 1 N 1 N

o =(0)p = 16:G9P ~ 1gzq VP (5-5)
N _ 1 N 1 N

Peit = ~ 15,6 9P+ 150 VP (5:6)

The kinematical backreaction reduce to

o= ((e-(0))") -2(*), +2(st), (57)

where ©, o and w are the scalar kinematic variables of the (now integrable) expan-
sion and vorticity tensors, i.e., related to the kinematic invariants of the velocity
gradient field df = (0 fe /0z%) dz* with coefficients expressed in the Eulerian co-
ordinate basis dx’.

In Newtonian theory, kp is a constant of integration (not associated with
a constant curvature term), and the “curvature deviation” WH also looses its
interpretation as a Riemannian curvature. It is defined through (5.4) which splits
into two equations. Firstly, the energy conservation law (4.49) reduces for dust to
the continuity equation for the average density:

(0)p + 3Hp (0), = 0. (5.8)

Secondly, the Newtonian form of the integrability condition, and hence the defini-
tion of W3 follows from integrating the remaining part of (5.4), which is

ON 4 6HpON + WA +2H WY =0, (5.9)
i.e. (cf. [18], sect. 2.3):

1 N N\ 1 K NaN: | ’
5(@1} +WD> = g/ti dt QD@QD(t)v (5.10)

defining WA through OF and the time-history of Q.2

26In Newtonian Cosmology we have to abandon the background-free character of general
relativity: in order to obtain unique solutions, we have to introduce a background in terms of
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5.3 Concluding remarks on the fluid-instrinsic and Lagrangian approaches
5.3.1 Interest of the fluid-intrinsic averaged equations

Corollary 2 shows that in the fluid-intrinsic approach tilt effects are no longer
an issue, and the stress-energy backreaction disappears. This is different from all
approaches presented in the literature, put into perspective in subsection 3.5. Tilt
effects may, however, be important for the observational interpretation, since the
observer may be tilted with respect to the cosmic fluid. For effective cosmologies
we advocate the fluid-intrinsic point of view, focussing on the effective evolution of
the model universe, and eliminating wherever possible observer-specific issues. It
is then an entirely different question, well-separated from the model universe, how
the variables of these cosmologies are related to observables, which is a question
related to light-cone averages, not considered in this work.

5.3.2 Interest of the Lagrangian picture choice

Corollary 3 shows, in addition to Corollary 2, that a constant fluid proper time
foliation choice, parametrized by t = 7 (implying N = ), makes the Dark Energy
backreaction L% disappear and removes the need to account for a difference of
time rates in the dynamical backreaction and in the rescaling of all variables to
be averaged. Despite these simplifications, we emphasize that the above set of
compact cosmological equations holds for a general fluid. The difference between
Corollary 2 (presenting the cosmological equations for general fluids and general
foliations), and Corollary 3 (making the fluid proper time foliation choice) may
serve for a discussion of the robustness of the averaged equations with respect to
a foliation choice.

We here summarize the advantages of the use of the Lagrangian picture in
combination with the fluid-intrinsic averaging framework for cosmological backre-
action:

(i) It links the foliation itself to the fluid, in a way alternative to the fluid-
orthogonal choice, but in contrast to the latter it comes with a unique time-
normalization and holds for any fluid;

(ii) It allows for a simple and compact form of the cosmological equations, removing
the need for rescalings and extra terms due to the different clock rates;

(iii) The corresponding choice of time is formally unique up to a constant along
each flow line (see, however, our remarks on effective times below), and of
clear physical interpretation. The associated time derivatives, in particular the
scale factor expansion and acceleration rates, are well-defined as proper rates
for the fluid elements;

(iv) It reduces without change to the usual (fluid-orthogonal) approach for irrota-
tional dust and for homogeneous fluids with pressure (FLRW);

a linear reference velocity field, V; = H;;x;, with homogeneous expansion, shear and vorticity,
H;j =: Op(t)/3 4+ Xi;(t) + 2;;(t). Deviations thereof are to be bound to a 3-torus topology.
As a result of the integrability of the Newtonian variables on flat space sections, Qg (which
does not depend on the background variables) can be written in terms of full divergences of
vector fields. Hence, Qg has to vanish on the no-boundary 3-torus, see [23] and the recent
discussion [20].
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(v) It also allows simple, transparent, Newtonian-like formulas for the kinematic
variables (especially the components of the tensorial variables), and it re-
duces to the Newtonian averaged equations for spatially flat space sections
(Minkowski Restriction) and nonrelativistic velocities.

A possible important drawback however has to be checked in individual cases:
the so-defined foliation may become strongly tilted with respect to the fluid, and
might even not always be spacelike in the entire spacetime, if acceleration and/or
vorticity induce an infinite tilt after a finite time. The averaging formalism would
become ill-defined in the spacetime regions where the hypersurfaces are no longer
spacelike. As for the comoving domain moreover, for several fluid components, the
advantages can only be preserved in general for one fluid, considered as preferred,
from which the proper time will be defined.

5.3.8 Limitations and outlook

The results of this work are general in various respects, culminating in compact
forms of effective cosmologies by arguing in favour of a Lagrangian description.
However, there are issues that are worth to be addressed, and we highlight some
of them in what follows.

The issue of closure The presented sets of averaged equations and compact cos-
mological equations are not closed. This known issue is obvious from the very
approach of performing averages of only the scalar parts of the Einstein equations.
It is also obvious since a balance equation on averages will not allow to reconstruct
the inhomogeneous metric (similarly to, in Newtonian contexts, the virial relations
not allowing for the reconstruction of the orbits in phase space). We do not enter
the issue of averaging or smoothing tensorial variables here, but we emphasize that
even averaging further scalar equations would result in a hierarchy of equations
that would not close (similar as the hierarchy of moment equations in kinetic the-
ory). As in the standard Friedmannian framework, where closure conditions have
to be imposed in terms of equations of state determining fluid properties, closure
conditions may here be represented as effective equations of state in the effective
Friedmannian and Lagrangian forms. These effective relations encode inhomoge-
neous properties and evolution details of the fluid and, hence, they are dynamical
and not simply derivable from thermodynamical properties. Closure conditions
can be studied in terms of exact scaling solutions [18,24,58], global assumptions
on model universes [17], exact solutions of the Einstein equations, e.g. [9,63], or
generic but approximate models for inhomogeneities, e.g. [26].

Statistical hypersurfaces of averaging The framework of Papers I and IT allows for
averaging on fluid-comoving domains and on hypersurfaces formed by the fluid
itself, but only in cases where the fluid is irrotational and non-tilted. We pro-
posed here a way of dealing with rotational and tilted cases by introducing a
fluid-intrinsic averaging procedure that reduces to the standard Riemannian vol-
ume average for cases of irrotational fluids in their fluid-orthogonal foliations, and
we suggested the fluid proper time foliations as a possible way of still building
the hypersurfaces from the fluid. Alternatively, we can take a statistical point of
view by investigating hypersurfaces of ‘statistically averaged’ geometries, a notion
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that has yet to be formalized. The example of vorticity may illustrate the physical
idea behind such a concept: if we view vorticity as arising on small scales only
while expecting that, by going to larger scales, it will become unimportant, we
may wonder whether vorticity ‘averages out’ (in a statistical sense) on some scale
of averaging. On scales larger than this, a potential flow is expected, and the fluid
can be described as hypersurface-forming, while ‘averaged-out’ scales may still
feature a statistical ‘dressed’ [21] contribution from vorticity. The idea of viewing
averaged equations as providing a definition of ‘statistical hypersurfaces of aver-
aging’ has been advocated (e.g. [54]) and, in Newtonian theory, assumptions such
as homogeneous-isotropic turbulence have been advanced to construct statistical
averages [52].
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A 3 4+ 1 evolution equations along the congruence of the fluid

The evolution equations for h;; and ICi]- along the congruence of the fluid are obtained from
expressions (3.1) and (3.2), by relating the derivative 9|, to d/dt with the help of (2.25).
They read:

d
29 =~ 2NKaj + Nijjj + Njjji + VEoLhij (A1)
< = N (R} +KK'; +4nG [ (S - E) ') — 25%] — A oY)

[l ki i ATk kE agi k i
- N \|¢+N IClekJrICZkNijIC jNZHkJrV RK'; . (A.2)

Comoving coordinate system. In the comoving picture, as described in subsection 2.4, we have
N = Nwv, or equivalently V = 0. Equations (A.1) and (A.2) hence read:

d
Tl =~ 2NKij + N +vj113) +0iNjj; +0iNjja s (A.3)
Qi = N(R + KK +4nG [ (S — E) 6%, —257] ani.) — i
I J J J J J 15

+ NOFKY 4+ NI 08 4+ K0P Ny = NIEF o) — KR 0 Ny (A.4)

Comowing coordinate system and constant—fluid proper time slicing. In the Lagrangian picture,
also described in subsection 2.4, we have N = Nw (or equivalently V = 0), and N = v as a
consequence of the slicing and the additional parametrization choice ¢t = 7. Expressions (A.1)
and (A.2) accordingly read:

d
Ehij == 2y K5 + v vy +v515) +vivy; + v (A.5)
KT =y (R + KK+ 4nG [(S = B) 8" — 28] = Ad';) = D'Dyy

+ 'yvleink +7/Cikv’“‘|j + Kikvk’mj - 'yIijvin — K’“jviwuk R (A.6)

where we have used the equality between the proper time and coordinate time derivatives
along the fluid flow.

The equations of evolution along the fluid flow in general coordinates and slicing allow an
alternative derivation of the coordinate time derivative of the Riemannian volume,

%Vp — /D (-NK+ (Vo) ) Vids, (A7)

by restarting from (3.14) and expanding its integrand as

d 1 ..d d
—Vp = “h9 —hii+J P —=J)Vhd3z. A8
at P /Dm (2 ait g ) * (A-8)

The trace of (A.1) can then be used together with (3.8) to obtain:
d i Lo k 3
P = =NE+ N, + Sh7VEochi; + 0pV Vhd3z. (A.9)
Do

This expression then allows to catch up with the end of the derivation given in section 3.2.2, so
that a similar use of relations (3.16) and (2.10) again gives the evolution of the volume (A.7).
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B Extrinsic averaging procedure in fluid-intrinsic kinematic variables

The system of equations for extrinsic averages on D derived in section 3 is mostly expressed
in terms of geometric variables of the n-orthogonal hypersurfaces, such as their extrinsic cur-
vature. We here suggest an alternative formulation of the same equations focusing instead on
the intrinsic, rest-frame kinematic quantities of the fluid (see subsection 2.2.2), which do not
depend on the foliation choice.

We can first rewrite the volume expansion rate expression (3.19) and commutation rule
(3.22) in terms of the intrinsic expansion rate of the fluid © by re-expressing the three-
divergence of Nv as

(N”Z)\\«;:Nvlﬂi"'vaHi:Nvlﬂ)u’ (B.1)

where we have employed (2.6) for the last equality. Noticing that £ = —V,n# and making
use of expression (2.7), we get?”

; N 1 ~ -
Nk (V) = Ne L g Ldv_gr (B.2)
= 5% T T v dt

where we have defined a tilted and scaled ezpansion rate ©T out of the scaled rate © = (N/v)e.
This allows to recast the volume expansion rate and the commutation rule, respectively, into
the following expressions:

3Hp = %% = <éT>D ; (B.3)
G =(50) —(87), Wp+(878), . (B.4)

We notice that, even for the general configuration we are investigating (see figure 1), the
commutation rule, as well as the domain volume expansion rate, can be cast into a simple
form with respect to the fluid quantities, although this extrinsic averaging framework requires
the explicit contribution from the evolving tilt.

The use of the Raychaudhuri equation (4.15) and the energy constraint (4.17) (instead
of the scalar parts of the extrinsic 3 + 1 Einstein equations (3.2)—(3.4)), together with this
alternative form of the commutation rule, allows a rewriting of the effective evolution equations
for ap. This yields the following equivalent formulation of Theorem 1, in terms of rescaled
fluid-intrinsic kinematic and dynamical variables, 62 = (N2/~v2) 02, @2 = (N?/y?)w?, # =
(N2/v) %, ¢ = (N?/v?) ¢, p = (N?/4?) p, and A = (N?/4?) A (with A = V,a"), as well as
A= (N2/42) A

Corollary 1.a (extrinsically averaged evolution equations in fluid variables)

The effective averaged evolution equations for ap can be written under the following form:

1 dap\? _ " . 1y 1

3 (EW) = 87G (&) + (4)_ — (%) —59%; (B.5)
3 d2a1) - ~ ~ i T T

ap a2z —4nG (e + 3p)>D + </1>D +9p+Pp, (B.6)

27The factor N/v in expressions (B.3)—(B.4) adjusts the clock rate between the proper time
of the fluid and the coordinate time. This can also be seen upon writing:

N 1d N 1d d 1d
Ng_ldr_N(g_ ldy)_dr(, 1dy)
¥ v dt 0 v dr dt v dr

where we have used the relation (2.26) between d/dt and d/dr. The extra tilt term —y~1 dy/dt
can be understood as the effect of the evolving mutual tilt between the hypersurfaces embed-
ding D and the fluid flow. This affects the volume measure and the evolution of the volume
due to the fluid’s intrinsic expansion.
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with alternative, ‘tilted’ kinematical and dynamical backreactions, reading respectively:

b= (@), (] e ()

(B.7)

T < <l dy (1d72 Nd [/~ 1dy
: S — (267 - —_——
P <A> <th( ) >D < 'ydt+ v dt +7dt Nydt) /)

(B.8)

We recall that, as in Theorem 1.a, the left-hand sides in the above equations should be
seen as derivatives with respect to the chosen parameter ¢, and be interpreted according to
the physical meaning of the latter. In particular, the term 30,,51 d%ap/dt? in equation (B.6)
is the proper time scale factor acceleration in a Lagrangian picture, but not in general.

Under this form, only two backreaction terms appear, Q% and Pg, as the tilt only con-
tributes under these combinations. These backreaction terms will not in general be directly re-
lated to the Qp and Pp appearing in Theorem 1.a, as they do not collect the same local terms
in their expression. They do coincide, however, for a fluid-orthogonal foliation (Q% = Op,
PL = Pp, while Tp = 0).

Note that there is no explicit non-perfect fluid contribution to these effective evolution
equations for the scale factor ap, although the non-perfect fluid components of the energy-
momentum tensor do have an influence on the dynamics via the local (and average, see below)
evolution of € and p.

As before, this set of equations goes along with an integrability condition, and must be
complemented by the evolution equation for the averaged energy density and pressure.

Corollary 1.b (integrability and energy balance conditions to Corollary 1.a)

The corresponding integrability condition reads:
d T T d 2 7 T
— 6H —(Z 2Hp (% 4H
dtQD+ DQD+dt< >D+ ’D< >’D+ pPp

= 167G (% (&), +3Hp (€ + ﬁ))D) + 2% (A, (B.9)

while the associated averaged conservation equation for the scaled energy density € and pressure
P becomes:

& (e #3810 90 = ((67),, o~ (677),) - (22 @)
_<:Lj(wq“+vuq“+7r“”aw)>p+2< ;i( )>D (B.10)

(The expression ( @T <p> QT P)p, can also be written as <dp/dt>D —d <p>D /dt.)

We add a technlcal remark In the fluid-intrinsic point of view we can borrow one element
from the 143 formalism to foliate spacetime, the so-called spacetime threading, although spatial
volume averaging only makes sense on hypersurfaces. We recall that in the 143 decomposition,
the four-dimensional line element reads (see, e.g., [42], sect.10):

ds? = —M? dt? + 2M?M; dtd X + (b — MEMM;) dXPAXT (B.11)

with M the threading lapse and M the threading shift, which relate to the lapse and Eulerian
velocity as follows:

N 2 k
M= — M= — (ngv ’L}kﬂ) : MM, =~(0,v;) = (0,u;) . (B.12)
0% N
In the Lagrangian description we have:
M=1; M=x <y+ ’Uk’l}kﬂ> ¢ My =7(0,v;) = (0,u;) . (B.13)

Note that in the most compact form of the general averaged equations, we only deal with
appearances of N/y = M.
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C Summarized literature comparison

We present in Table 1 a synthetic comparison of the various formalisms used in the existing
generalization proposals of the system of averaged scalar equations of Papers I and II to general
foliations.

In this table we express all notations in terms of those used in this work to make compar-
isons easier. In particular, when considering the 4-scalar expressions of [38,54,61], we define
the lapse N as (—9,T AMT) =12 where T is the scalar function which labels the hypersurfaces.
This quantity (noted I" in [54]) plays a role analogous to the 3+ 1 lapse as n, = —N9,T, and
it indeed coincides with the usual lapse if the 4-scalar formalism is split into a 3+ 1 description
with the natural choice of T" as the time coordinate.
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Domain boundary

Reference flow Fluid content Formulation szgtag;o;
(Mass-preserving 7)
Equivalent to .
Tanaka & : 34 1 with
Futamase [64] having n, Snd O General T}, N=o0 General
(No)
. .. One perfect
Larena [46] Implicitly, 8; (No) Auid 3+1 General
Brown et al. .. Sum of general
[10] Implicitly, 8; (No) fuids 3+1 General
Both
Gasperini et One perfect (mostly)?
al. [38] n (Noj fluid 4-scalar and General
3+1
Résénen [54] Global docm aut General T}, 4-scalar General
(Yes)
Beltran General T}, 3+ 1 with Geodesic
Jiménez et al. n, = 8¢ (No) with a dust N =0 and (dust
[7] part? N=1 velocity)
‘ General T}, Both 4-scalar Geodesic
Smirnov [61] n (No) plus a dust (dust
d and 3+ 1 .
part velocity)
Section 3 of u (Yes) One general 341 General

this work

fluid

%In [64], boundary terms are removed by an (a priori background-dependent) assumption
of periodic boundary conditions on the large enough but still compact domain. As

discussed in section 3.5.4 above, this implies equivalent results to the more general case

(not considered in [64]) of a compact domain propagating along n, at the expense of the
mass preservation. As the shift vector is chosen to be zero in [64], this would also
amount to a propagation along 9.
b Formally, the boundaries of the domain are assumed to be determined by some scalar
function, in which case the averages and the equations are truly covariant; but the
authors mention the difficulty of finding such a scalar on physical grounds which may

constrain one to choose a function of the coordinates instead of a scalar, hence inducing
deviations from general covariance in the averages. The follow-up paper [49] makes these
deviations explicit at second order in perturbation theory.

¢ The equations would formally still hold without change if a regional domain propagating
along n were considered instead. However, it would not be mass-preserving in this case.

¢ In both cases (Beltran Jiménez et al. [7] and Smirnov [61]) it is assumed that there are
‘natural’ observers corresponding to some irrotational dust as part of the fluid content of
the model universe, not interacting with the rest, so that it is moreover geodesic, and
the corresponding geodesic irrotational normalized velocity field is used as the normal
vector n to build the hypersurfaces. In [7] it is assumed to represent the baryonic and
Dark Matter on large scales and hence is a well-defined part of T}, (whereas the
remaining parts can account for other fluids such as radiation or Dark Energy, or for
effects due to a departure from General Relativity). In [61], it can either be some
component intrinsically contained within 7},,, or some ‘test observers’ that are added to
the fluid content with an assumed negligible source contribution.

Table 1 Summary of the main differences between the various generalizations of the averaged
scalar 3 + 1 Einstein equations to general foliations suggested in the literature. This table
is split into three parts respectively focussing on the setup, the equations presented (and
corresponding effective Hubble parameter considered), and the terms they feature.
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Effective Hubble parameter Evolution Integrability Averaged
Reference of scale o energy
(x3) factor condition balance
Tanaka & 1dv _

Futamase [64] vt — (= NK) Yes No No
Larena [46] (NR*'Vyuy ) # %% ¢ Yes Yes Yes
Brown et al. 1dv _ /[ i f

it L av _< NK+ N HZ.> Yes No No
Gasperini et 1dv _ ) Only in
al. [38] Vot (= NK) Yes No case n =u

Résénen [54] %% = (- NK) Yes No Yes

Beltran
Jiménez et %% =(-K) (N=1) Yes Yes Yes
al. [7]
Smirnov [61] %% = (- NK) Yes No No
PN 1 dvp
Sect}lon 3 of Vp dt Yes Yes Yes
this work :<_N’C+(NUZ)HZ'>D

¢ The application paper [65] introduces instead five possible definitions of the effective
Hubble parameter H in order to compare them, and derives the averaged energy
constraint for each of them. The first four of these definitions are respectively:
3H =V/V = (—NK+ N ) (which becomes simply ( — NK) later in the paper as the

[l

shift is set to zero); 3H = < - IC>; 3H = <Nh*“’Vuuy>; 3H = <h‘“’Vuul,>; where all
averages are taken over a domain on the n-orthogonal hypersurfaces. The last proposal
for 3H consists in averaging simply the intrinsic fluid expansion rate @ (without any
lapse factor) over a domain on u-orthogonal hypersurfaces, in case u is irrotational. In
all of the n-orthogonal cases, the domain still implicitly evolves along 9¢, whereas in the
last case the averaged (dust) equation is recalled from Paper I, meaning that in this case
the domain must be assumed to be fluid-comoving.

fIn the first application [11], the average of h*”V ,u, is also considered, while the second
application [12] focuses on the average of ©; however, in both cases, the corresponding
averaged equations are not explicited.

Table 1 Summary of the main differences between the various generalizations of the averaged
scalar 3 4+ 1 Einstein equations to general foliations suggested in the literature. (continued)
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Explicitly

Reference Dv}:l:ggigsal Kinematic Inclusion of identified Ma;inmlgcal
variables A backreaction .
(from Tw) derivative
terms
Normal-frame
Tanaka & (i.e., built _
Futamase Nf(; ;ﬁzl_ from the Yes None ?\; Iﬁ (9(7
[64] extrinsic nkou)
curvature)
Larena .. Mixed (e.g. Q, P, and
g b b 9 )
[46] Intrinsic AV uy )9 Yes three more” O xt
Brown et Intrinsic Q, P, and
a?v‘[ll Of (for each Normal-frame Yes one 7 term Ot o
’ fluid) per fluid
Gasperini Normal- u
et al. [38] framet Normal-frame No None Nntoy,
Either
Riisiinen normal- Implicit (can
a[s;l}e frame or in Normal-frame be included Only Q Nntoy,
£ afgenorjal in Tyy)
rame
Beltran Implicit (can )
Jiménez Nf? 1;111;1— Normal-frame be included Onl};)Q_, (t)here _6t |ﬁ'a
et al. |7 in Ty,,) - (= n#0y)
Smirnoy Normal- Implicit (can Only Q, not
61] frame (plus  Normal-frame be included in all Nnt0y,
TH) in Tyy) equations
Section 3 d _
of this Intrinsic Normal-frame Yes 9p, Pp, Tp th“(’)
work Ut O

9 However, in contrast to other papers, the averages of the intrinsic dynamical quantities
alone (multiplied by N2) do not appear explicitly: the dynamical variables appearing in
the averaged equations are actually averages of the local normal-frame variables as
expressed in terms of the local intrinsic ones through the tilt.

" In the application paper [65], where the averaged energy constraint is derived for five
proposals of effective Hubble parameter choices (see footnote ¢ above), the kinematic
variables appearing in the equations are the best-suited for each case: based on the
normal frames in the first two cases, mixed in the third and fourth cases, and intrinsic in
the last case. The backreaction terms introduced there also depend on the Hubble
parameter choice and can be either only Q, Q and P, or Q and another backreaction
denoted Lp, with a different expression for Q in each case.

‘ However, in the 3 + 1 form of the equations, the intrinsic dynamical variables ¢ and p
are used instead, which allows for an explicit separation of the difference to the average
of the normal-frame variables, corresponding to the ‘stress-energy backreaction’ of the
present work.

J Two forms of the equations are given, with an explicit separation of the contribution of
the dynamical variables as seen either in the normal frames, or in an independent,
general frame.

Table 1 Summary of the main differences between the various generalizations of the averaged
scalar 3 4+ 1 Einstein equations to general foliations suggested in the literature. (continued)
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Additional specificities of some of the papers compared here:

e Risanen [54]: The velocity field u that is introduced in addition to m is fully general and
is not related either to n nor to the content of the model universe (it could be chosen
to be a fluid’s velocity as in the present approach, but this would be a restriction of
generality). It is supposed to represent the normalized velocity field of the observers. In
the application paper [55], this field is restricted to be everywhere very close to n (and so
has a small vorticity), whereas n is assumed to be chosen such that it builds hypersurfaces
of statistical homogeneity and isotropy. These restrictions are already both suggested in
the original paper [54] but the equations are kept general.

e Beltrén Jiménez et al. [7]: The main objective of using a general T}, in this paper is
to account for theories beyond General Relativity whose differences are transferred into
T, as effective terms. Note also that this paper features an additional average equation
giving the evolution of the averaged shear scalar 8t<02>, as well as the corresponding
local equation; these equations are absent from the other papers quoted in this appendix,
including the present work (the reason being that the resulting system is still not closed
by adding this equation; work about looking deeper into the hierarchy of equations is in
preparation).

e Smirnov [61]: not only the choice of hypersurfaces (or of n) and the choice of the time
that parametrizes them are specific in this paper, but this is also the case for the domain,
although this is not explicit in the equations and it could as well be any domain evolving
along this specific n. Indeed, the domain is there chosen as a ‘sphere’ in some n-comoving
coordinates Z* on the hypersurfaces, as defined by H;; Z 173 < rq for some rg > 0 and with
H;; the components of the spatial metric in these coordinates. This choice was a response
to the series of papers of Gasperini et al. and Marozzi [37,38,49] to show how it is possible
to determine the boundary of the domain via a scalar function (here in the sense that the
Z" are fixed a priori without link to the actual spacetime coordinate choices).

e In the present work, we also introduce, in section 4, a different averaging formalism that
measures scalar quantities and volume in the local rest frames of the fluid, even if they
are integrated over a domain lying in the not necessarily fluid-orthogonal hypersurfaces.
We then obtain the corresponding commutation rule and averaged dynamics under rather
simple forms as expressed in terms of the intrinsic dynamical quantities of the fluid (for
instance, the effective Hubble parameter, still defined as 1/3 of the volume expansion rate,
can be simply expressed as the average of %(9) and only two backreactions, kinematical
and dynamical, distinct in general from the terms Qp, Pp of section 3. This formalism
and this system of equations clearly differ from the literature compared in this Appendix
(including our section 3, although it otherwise follows the same setup), due to the different
volume and averaging operator definition.

D Erratum

We wish to point out a small mistake in Paper II [16] (repeated in the appendix of [18] after
Equations (A23) and (A28) therein). For this we recall that the spatial components of the
acceleration, a; = NH@'/Nv the 4—divergence A := V a# = ahi + a'a;, and its expression in

terms of the lapse N or the injection energy per fluid element h (related to the relativistic
enthalpy), respectively,

. . ||2 . []2 )
Ao (N T NNy N :h(l)uz _ M +2hwh”"
N " N2 N h h h2

[lé

are correctly written, but the first equality in Equation (10a) of Paper II (and of its review in
[18]) is incorrect, A # (N"i/N) 10 due to an omission of the a’a; contribution to A here.

There is also an imprecise statement: in Paper II, in footnote 3, it is stated that for
scalars the operator || amounts to a partial derivative. This statement is only true for spatial
components (for a scalar, ||; := 0;, but || = N9; # O [jo Was identically zero for scalars due
to the vanishing shift in Paper II).
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Abstract. The subject of cosmological backreaction in General Relativity is often
approached by coordinate-dependent and metric-based analyses. We present in this
letter an averaging formalism for the scalar parts of Einstein’s equations that is
coordinate-independent and only functionally depends on a metric. This formalism
is applicable to general 3 + 1 foliations of spacetime for an arbitrary fluid with tilted
flow. We clarify the dependence on spacetime foliation and argue that this dependence
is weak in cosmological settings. We also introduce a new set of averaged equations
that feature a global cosmological time despite the generality of the setting, and we
put the statistical nature of effective cosmologies into perspective.

Keywords: cosmology—foliations—Lagrangian description—backreaction

1. Context

Cosmology deals with models for the evolution of the Universe and, within General
Relativity, entails the question of how to split the 4—dimensional spacetime into a
3—dimensional space evolving in time. This question can be formally answered by
a 1 + 3 threading along a preferred timelike congruence (see, e.g. [16, 23]), or by a
3+ 1 slicing (foliation) into a family of spacelike hypersurfaces (see, e.g. [2, 18]). Both
decompositions introduce four degrees of freedom, which are given in terms of a lapse
function and a shift vector (or one-form). We shall consider the threading and slicing
approaches jointly to formalize configurations where the fluid content is described by
a 4—velocity tilted with respect to the hypersurface normal. A priori, only in special
cases does the slicing keep the proper time of the fluid elements synchronous.

In standard cosmology one commonly idealizes the geometry of the Universe by a
homogeneous-isotropic background metric with constant spatial curvature. In the case
of the so-called concordance or ACDM model (“Cold Dark Matter with dark energy
modeled by the cosmological constant A”), the metric form features a global time
t labeling Euclidean spatial sections that admit global coordinates z, with a global
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rescaling factor a(t),' *g"™ = —dt* + a*(t)d;;dx’ @ da?. It is known that other choices
of slicing change Friedmann’s equations which determine the only gravitational degree
of freedom, a(t). See, e.g. [5]. The scale factor may even become space-dependent, for
instance for a general slicing lapse. The problem of dependence on spacetime foliation
therefore also exists in standard cosmology, where it is solved by choosing a preferred
(proper time) foliation anchored to the Cosmic Microwave Background (CMB) rest
frame.

Nonlinear structure formation in cosmology is most often investigated within the
Newtonian framework of self-gravitating fluids. Efforts to describe relativistic models
of inhomogeneities often rely on metric forms that are designed to be ‘close to’ the
homogeneous-isotropic metric form above. The idea is to describe ‘small” perturbations,
which is a sensible assumption for metric perturbations, since they are indeed very small
except in the vicinity of strong field astrophysical objects [22].* In the longitudinal gauge,
the lapse function and the spatial 3—metric are referred to a ‘perturbed Newtonian
setting’, with an assumed metric form for the physical spacetime,

tgPert = — N2dt? + g;;da’ @ da’ | (1)

where the slicing lapse N and the 3—metric coefficients g;; of a family of spacelike
hypersurfaces ¢ = const. are written as (here for scalar perturbations only):”

N?>=1+428(t,2") 5 gy =a*(t)[1 —29(t, 2")] ;- (2)

We note that the extrinsic curvature has no trace-free part, i.e. for a fluid 4—velocity
parallel to the normal congruence N '8, the above metric describes homogeneous
solutions in cosmologically relevant cases [12, 13, 14].*

Metric forms that are designed to stay ‘close to’ a homogeneous solution are
also used to address the backreaction problem by devising simulations that include
relativistic corrections. As an example we read in [1] (see also references therein) that
‘the backreaction from structure can differ by many orders of magnitude depending upon
the slicing of spacetime one chooses to average over’. We shall confront this statement
with a covariant and background-free result about averaged dynamics that allows us
to discuss the foliation dependence of backreaction without the need to consider gauge
transformations.

! We adopt the conventions that Greek indices are assigned to spacetime indices running in {0, 1,2, 3},
and Latin indices refer to space indices, running in {1,2,3}. The signature of the metric is taken as
(= + ++), and the units are such that ¢ = 1.

2 However, the derivatives of the metric can be large. Even for metric perturbations of order 107°,
curvature perturbations can be of order unity and therefore out of reach in this setting [9]. Green and
Wald [19] have modified earlier statements of [22] emphasizing that curvature can be large. (Their
statement of trace-free backreaction, however, has no physical justification [10].)

3 Here, a(t) denotes the same scale factor as in the homogeneous-isotropic case, which follows by setting
0 = ® = V; ;; denotes a constant curvature metric that is commonly considered to be flat, v;; = d;;.
4 Tt is commonly assumed that the 4—velocity is tilted with respect to the normal congruence, but that
spatial velocities are non-relativistic, i.e. that the Lorentz factor 7 is close to 1. Our remark implies
that by replacing the approximate sign by an equality sign the fluid has to be shear-free in the metric
form {(1) and (2)} and, hence, homogeneous in cosmologically relevant cases [12, 13, 14].
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We finally emphasize that cosmological backreaction can only be present if the
average spatial curvature, and hence the large-scale average of cosmological variables,
are allowed to evolve. Schemes that suppress average curvature evolution by, e.g.
employing periodic boundary conditions as in Newtonian models [7], cannot describe
global backreaction, but only backreaction in the interior of an assumed background
model, i.e. ‘cosmic variance’.”

2. Explicit foliation dependence of backreaction

Cosmological backreaction is the study of inhomogeneity effects on the global evolution
of the model universe. This involves averaging strategies which can for instance be
unambiguously defined on the basis of volume averages of scalars. For irrotational dust
and irrotational perfect fluids the answer has been given in terms of volume averaged
scalar parts of the Einstein equations in [4, 5, 6]. This yielded cosmological equations
of Friedmannian form for an effective energy-momentum tensor including averages of
(extrinsic and intrinsic) curvature invariants of geometrical inhomogeneities in fluid-
orthogonal spatial domains. These results are background-free, they depend on the
averaging domain (e.g. on spatial scale), and they imply a dependence on the metric
only via the morphology of the domain and the volume element of integration. As we
shall discuss, this implicit dependence on the metric can be exploited for a statistical
interpretation of the effective cosmological equations.

In a forthcoming investigation we derive the scalar-averaged equations for arbitrary
3 + 1 foliations with general tilted fluid flow [11]. There, we discuss in detail relations
to other works where such generalizations are offered. These earlier proposals focus on
an extrinsic approach, i.e. they perform averages of the geometrical variables as seen by
hypersurface observers. As we also discuss in [11], this approach inherits problems such
as the non-conservation of the number of fluid elements within the averaging domain as
it evolves.

We present in this letter the general scalar-averaged equations derived from an
intrinsic approach, therefore following the spirit of the original works [4, 5]. Specifically,
we perform averages of the fluid variables as seen by fluid observers. We consider an
arbitrary spatial foliation which can be tilted with respect to the fluid congruence; this
is necessary for a general flow as a fluid-orthogonal foliation is impossible as soon as the
fluid has nonzero vorticity [17]. Accordingly, local spacelike projections can be performed
onto the local tangent spaces of the hypersurfaces of the foliation along their normal n,
with h,, = g +n,n,, or onto the rest frames of the fluid elements along their 4—velocity
u, with b, = g,, +u,u,. These projectors define two covariant volume measures on the

tangent spaces of the hypersurfaces: \/det(h;;)d*z and y/det(b;;)d*z = v4/det(h;;)d>x,

with 2* arbitrary local spatial coordinates, and 7 the Lorentz factor given by the fluid

® Theoretical foundations of the cosmological backreaction effect via structure-emerging average spatial
curvature may be found in [4, 6]. (See also illustrations within a class of background-free simulations
in [3].)
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spatial velocity v, as a measure of the local tilt between m and wu, as follows:
B 1

T VT,
We associate accordingly to the same averaging domain D lying in the hypersurfaces two
different volumes: the Riemannian volume V}* = fD \/W d3z, and the fluid proper
volume, Vll; = fD \/det(b;;) d*z. The former appears on average Lorentz-contracted with
respect to the latter: introducing the proper volume averager, defined for any scalar ¢
as (o) = 1/V} [ ¢/det(b;;) d>x, we have Vi = V5(1/+)", which shows identity in the
absence of tilt, i.e. when v = 1. The integral is here again performed over a domain

u =y(nf + o) 5 n%, =0. (3)

lying within the hypersurfaces of normal n. As we shall only consider proper volume
averages in the following, we shall omit the index b for notational ease.

We apply the averaging operator to the scalar parts of the Einstein equations over
a compact domain D lying within the hypersurfaces. Following [4, 5], D is chosen to be
a comoving domain, i.e. it is transported along the fluid congruence, which ensures the
absence of matter flow across its boundaries and the preservation of its total rest mass.
From this procedure we obtain the following expansion and acceleration laws, together
with their integrability condition, for rescaled kinematic fluid variables (the squared
rates of expansion, shear and vorticity, 0% = M?0?, 52 = M?¢?, &% = M?w?), energy
density and pressure (€ = M?¢, p = M?p), divergence of the fluid’s 4—acceleration a*
(A= M*A, with A= V,a"), and fluid 3—curvature (Z = M*%):°

1 d%ap N ~ ~ ~ -
= —4rG (e+3p) +Ap+Qp+Pp

1 dap > 3 S 1~
3(@?) = 871G (&) +ho— 3@~ 5 0p

d ~ ~ d, -~ - .
&QD + 6HDQD + &<‘%>D + QHD <‘@>D —|— 4H'D7DD

= 167G (% <€>D +3Hp <g +p>D) + %AD . (4)
The first terms on the right-hand side of the last equation also obey an averaged energy
balance equation sourced by the non-perfect-fluid parts of the energy-momentum tensor.
We observe a time- and domain-dependent contribution from the cosmological constant,

/~\D = A(N2/72>D, and two terms QD and 7517 denoting the intrinsic kinematical and
dynamical backreaction terms, respectively. These are defined in terms of the rescaled

6 We defined M = N/v (the threading lapse in a 1+ 3 threading of spacetime). The hypersurfaces
are parametrized by a monotonic scalar function ¢. From it we can define the comoving time-derivative
d/dt as the derivative with respect to ¢ along the fluid flow lines, and the effective Hubble rate
Hp = (dap/dt)/ap for the volume scale factor ap = (Vp/Vpi)Y/3. ©, o, and wy,, are, respectively,
the trace, the symmetric traceless part, and the antisymmetric part of the projected 4—velocity
gradient, b(’ﬂbﬂyvaula. o? = (1/2)ou,0" and w? = (1/2)w,w" define the rates of shear and
vorticity. The ‘fluid 3—curvature’ #Z is defined from the energy constraint in the fluid rest frames,
X = —(2/3)0% + 207 — 2w? + 167Ge + 2A (see [15]), and reduces to the 3—Ricci scalar of the fluid-

orthogonal hypersurfaces for vanishing vorticity.
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fluid variables as follows:

oo =3((6-(8),)) —2(#), +2(#),;

(8, (534 (5),

The dynamical backreaction thus consists of an acceleration 4—divergence and of a
contribution that captures the rate of desynchronization of the clocks, with the proper

time 7 of the fluid obeying dr/dt = N/y = M. By defining an effective diagonal
7

energy-momentum tensor with the following effective sources:

<g> _ QD _ WD 4 ZD .

p 167G 167G 871G ' )

s 9p Wp Lp Pp

Peft = <p >D 167G 487G 872G 127G (6)

the set of effective cosmological equations can be cast into ‘Friedmannian form’

1 dap\? k
3(— aD) = 871G e — 3 D + A

Eeff

ap dt (CLD)2
1 dQCLD
— = —47G (€eft + 3 Pe A
ap A2 7 (Eff+ pff)-i-
d
&Eeff + SH’D (eeff +peff) =0 ) (7)

where the last equation, the effective energy conservation law, is equivalent to the
integrability condition. The set of equations (7) needs a closure condition, e.g. an
effective equation of state that relates e, pegr and ap.

3. Effective cosmological equations in the fluid proper time foliation

Starting from an arbitrary Cauchy hypersurface, one can globally construct a 3 + 1
foliation the slices of which are obtained by transporting the initial hypersurface through
the (general) 4—velocity w of the fluid. Each hypersurface of this foliation corresponds to
a constant value of proper time 7, measured along the fluid world lines and being set to
7i = t; on the initial slice. The proper time 7 can thus be used to label the hypersurfaces,
defining a global time parameter. The same construction can be performed from any
choice of the initial Cauchy hypersurface, identifying what we call the class of fluid
proper time foliations. (See also [16], chapter 4.1.)

Such a construction sets the normal vector n and the lapse /N, which in this case
equals the Lorentz factor: N = ~. A natural choice for the shift vector N would be

7 We have defined new backreaction variables: Wp for the deviation of the averaged fluid 3—curvature
from a constant-curvature behaviour, Wp = (#)p — 6kp/(ap)?, and Lp for the deviation from the
cosmological constant A, Lp=Ap—A. kpisana priori domain-dependent arbitrary constant which
can be set to kp = (ap)?(t;)(Z)p(t)/6. In the standard cosmological model it is assumed that the
cosmological constant A models Dark Energy; the averaged equations show that we then also have to
account for Dark Energy backreaction Lp in cases where N # .
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N = Nwv (for which N = ~ implies N? — N®N, = 1), identifying the points on each
hypersurface that correspond to the same fluid element. However, the choice of a shift
does neither affect the definition of our averaging formalism nor the resulting averaged
equations. Apart from the case of irrotational dust, the hypersurfaces of a fluid proper
time foliation cannot be fluid-orthogonal, namely a tilt must be present. As we shall
see, this choice carries a number of advantages in the context of the averaging problem.

Within a fluid proper time foliation, the general volume expansion and acceleration
laws for the fluid scale factor ap (together with their integrability condition), (4), reduce
to the following effective cosmological equations:

o, ..

k +

3 (aD> = 871G e — 3—D2 +A ;32— —4mG (e + 3perr) + A5
ap (aD> ap

E‘eﬂf + 3HD (Eeff +peff) =0. (8)

The overdot denotes the covariant derivative with respect to proper time. The effective
energy density e.q and effective pressure peg, as defined in (6), become

e — < > _ Op _ Wp
eff p 167G 167G’
B Qp Wp Pp
Peft = <p>p T 167G T 487G T 120G (9)

with Qp as given by (5) with non-rescaled variables (since here M = 1), and where the
dynamical backreaction reduces to Pp = (A)p, removing the contribution from clock
desynchronization. The cosmological constant deviation £p vanishes, and the curvature
deviation term Wp reduces to Wp = (Z)p — 6kp/(ap)?.

We emphasize that the above system and the corresponding proper time foliation
choices are covariantly defined, i.e. are coordinate-independent [20]. For concrete
calculations of local variables, a specific set of coordinates may then be chosen depending
on the problem being investigated. For instance, for the formation of structure in
relativistic Lagrangian perturbation theory [8], an appropriate set can be constructed as
follows. First, as for the hypersurfaces labeled in terms of proper time, we can introduce
spatial labels X to identify each fluid element in the general threading congruence
defined by u, which can always be relabeled in this covariant framework. (The spatial
labels X" provide the same identification of points as the shift vector choice N = Nv.)
Second, for any given foliation, these labels may be used as a set of spatial coordinates
propagating along the fluid flow lines. These are comoving (or Lagrangian) spatial
coordinates, where the spatial coordinate velocity (hence the spatial components of u*)
vanish. We name this choice comoving description of the fluid, in conformity with the
literature. This description is a ‘weak’ form of a Lagrangian description of the fluid
where in addition 7 is used as the time-coordinate. The coordinate assignment (X", )
provides u* = (1,0,0,0). This defines Lagrangian observers who in the standard model
are called fundamental observers.



Letter to the Editor 7

4. Conclusion and Discussion

Looking at the set of equations (4) and their backreaction terms (5) we appreciate
that the explicit foliation dependence is solely given in terms of the threading lapse
M = N/~. In the fluid proper time foliation we have M = 1, which does not differ
significantly from the value of the threading lapse in the metric form {(1) and (2)} for
the usual assumptions N = 1+¢; |¢| < 1and v = 14(; ¢ < 1. The remaining foliation
dependence of the amount of backreaction arises in the realization of the averaged model,
when integration of local variables is performed over specific hypersurfaces that are not
fully determined by N/7 due to the degeneracy of this ratio.

Let us now narrow down the class of relevant foliations, focussing on matter-
dominated model universes. We think of a cosmological coarse-graining that smoothes
over scales where vorticity, velocity dispersion and pressure play a role. In view of
observations one can then reasonably assume the existence of a class of foliations where
the hypersurfaces reflect statistical homogeneity and isotropy and in which the motions
of all coarse-grained fluid elements are non-relativistic, i.e. v =~ 1, thus identifying a
class relevant to cosmology (see also the related discussion in [24]). This implies that the
tilt is negligible on these scales, u ~ n*, and, in view of the negligible pressure gradients
over the coarse-graining scale, that the lapse function can be set to N ~ 1.5 Overall
this estimates M to be close to a Lagrangian description, M =~ 1, while the domain
of integration selected by the hypersurfaces is bound to small variations in spacetime,
since these hypersurfaces are constrained to remain almost orthogonal to u everywhere.
Thus, these conditions imply only small variations of the large-scale backreaction terms
(of the order of the deviations of the lapse and the Lorentz factor from 1) under a
change of cosmological spacetime foliation. Explicit bounds on such variations will
be investigated in a forthcoming paper [21]. These covariantly defined requirements
cannot be reproduced in a coordinate-dependent setting such as that used in [1]. The
variations can of course be larger when going beyond this restricted class of foliations
that are favoured on cosmological scales, as it would, e.g. be needed for evaluating
backreaction on smaller scales. These scales, where tilt, vorticity and pressure gradients
matter, can be treated as well within the general framework introduced in this letter.

We emphasize that the lapse and the Lorentz factor only depend on the normal
vector flow, and not on its derivatives, allowing for strong constraints on variations of
the backreaction with the foliation when the normal vector itself is constrained. In
our formalism, the kinematical backreaction does not involve the extrinsic curvature,
which depends on derivatives of the normal vector. It features instead derivatives of the
relative velocities of the fluid elements (such as ©). These foliation-independent scalars
can be large despite velocities themselves being small (cf., footnote 2), allowing for large
backreaction. We remark in this context that the fact that M ~ 1 in the metric form
{(1) and (2)}, together with the smallness assumptions made, does not mean that the

8 Another issue arises if we also consider the coarse-graining of ‘time’ that may accumulate an effective
lapse during differing histories of voids and clusters, cf. the ‘timescape scenario’ [25].
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estimates of backreaction in paper [1] fall within our conclusions about the small impact
of the foliation choice. These authors employ an extrinsic averaging formalism where
dependencies on derivatives of the normal vector n (and, thus, on derivatives of N and )
are introduced in the backreaction terms via the dependence on the extrinsic curvature
of the hypersurfaces. This may lead to unphysical foliation dependence of backreaction,
just because the variables to be averaged are defined from the hypersurfaces themselves,
i.e. they characterize the properties of a family of extrinsic observers. (We consider
this additional foliation dependence ‘unphysical’, since such observers only exist as a
mathematical abstraction.)’

The fluid proper time foliation and its representation in terms of the Lagrangian
description appear to be natural choices for an effective cosmology. These settings
should not be disqualified in favour of a choice of foliation extrinsic to the fluid by
emphasizing the need to avoid singularities. For example, evolving a dust matter model
implies the development of shell-crossing, as discussed in [8], as a manifestation of the
breakdown of the dust approximation. Improving the matter model may or may not
avoid these or other (e.g. black hole) singularities.

A possible shortcoming of the proper time foliations relates to the spacelike
character of the corresponding hypersurfaces generated from the evolution of a single
fluid. While such foliations are always well-defined under the assumption that the fluid
flow contains no singularity, one has to guarantee that the hypersurfaces, generated
from the initial spacelike slice, remain spacelike for all times considered. This will
hold at least locally in general and globally for an irrotational dust model with a fluid-
orthogonal initial hypersurface (since the whole foliation will then be fluid-orthogonal).
The construction of a proper time foliation is based on the choice of an initial Cauchy
hypersurface, which has to be specified; it may be best anchored to the last scattering
surface at the CMB epoch. These aspects have to be judged within specific applications.

The proper time choice can also be criticized because it requires following the
details of inhomogeneities developing in the fluid. This latter view originates, however,
from looking at a single realization of the fluid’s evolution and a single inhomogeneous
metric. What the averaged equations embody goes beyond the picture obtained from
a single realization of the metric. Changing the metric will change the morphology of
the averaging domain and the volume element, but we are entitled to implement the
cosmological model through a statistical ensemble of realizations. With this statistical
interpretation of the averaged equations, the effective cosmological equations no longer
trace individual metric variations as suggested by a one-metric-based picture. In this
context, a further important question for the definition of statistical hypersurfaces will
be whether the tilt, depending on physics on smaller scales, would average out to provide
an effective flow-orthogonal foliation on cosmological scales. Follow-up work is dedicated

9 We also remark that if backreaction happens to be zero in one foliation (e.g. if subjected to a 3—torus
constraint on a flat space section [7]), and if it is represented by a small number in its numerical
realization, a still small but nonzero backreaction parameter in another foliation could suggest a ratio
of several orders of magnitude, even if both estimates were in reality comparable.
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to explicitly implementing these statistical aspects.
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Chapter 4

A manifestly 4-covariant form for
averages and the averaged equations

The two averaging frameworks introduced in the previous chapter for a general choice of spatial
slices are both volume-based but use different volume measures. They have been defined covari-
antly, as integrals based on scalars and covariant volume measures on a given three-dimensional
domain selected in spacetime via a geometric construction. For the sake of transparency they
have been written in the form obtained within a specific coordinate set adapted to the foliation,
following the usual 3+1 framework. Nevertheless, as I will show below, building upon the formal-
ism suggested in |Gasperini et al., 2009, 2010|, a manifestly covariant form of the same volumes
and averages definitions can also be written, and allows for a combination of both frameworks
under the same form.

Spatial volumes and volume-averages of scalars are defined in [Gasperini et al., 2009, 2010] in
terms of integrals over the whole spacetime manifold M, with the spatial domain of averaging D
selected by a scalar window function Wp: I(¢) = fM VI Wp d*z for any scalar 1 defines the
volume as I(1) and the average of a scalar ¢ as I(¢)/I(1). With the conventions of Gasperini
et al. [2010], the window function is then defined as Wp(z") = n*V ,(H(A(z") — Ao)) H(By —
B(z")) with H the Heaviside step function. In this writing, A is a ‘time’ scalar function whose
level sets define the spatial hypersurfaces of averaging, the constant parameter Ag labelling the
current slice (the slice at time A = Ap), while the scalar function B and the constant By select
the spatial boundary of the averaging domain at all time (a point of coordinates z* is in the
averaging domain at time A = A(x*) if, and only if, B(z*) < By).

With a choice of 3+1 spacetime coordinates adapted to the foliation by constant— A slices, i.e.,
choosing a time coordinate t as a function of A, the first (extrinsic) averaging framework presented
in chapter 3 is recovered. The above definition is thus simply a manifestly 4—covariant form of
this same averager. The only difference lies in the domain propagation remaining unspecified in
the definition of Gasperini et al. [2010]. For the derivation of the averaged dynamical equations
in the latter work, a propagation of the domain along the normal to the slices is assumed, rather
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than an averaging domain comoving with the fluid flow.

The main body of this chapter below stems from the recently published work [Heinesen,
Mourier, and Buchert, 2019] as a result of a collaboration with Asta Heinesen (University of
Canterbury, New Zealand) and Thomas Buchert. In this study, we show how to generalize
the above window function to encompass both of the averaging frameworks introduced above in
chapter 3 as well as any similar spatial averaging procedure defined from another volume measure.
This provides in particular a manifestly covariant form of the second, fluid-intrinsic averaging
operator of chapter 3. Averages with a different weight than volume (such as mass-weighted
averages) are also included in the class of window functions considered. Giving some examples
of possible choices for the window function, we discuss the range of applicability of the general
form and the possibility of its extension to averages over light cones (such as the formalisms
introduced in |Gasperini et al., 2011]), which would be useful for an application to observations.
We then derive the manifestly 4—covariant form of the averaged 341 Einstein equations and of
the corresponding backreaction terms with such a general window function. In these results, the
propagation of the domain between slices remains freely specifiable, but a special emphasis is
still set on a domain comoving with a physical fluid flow.

The question of the quantitative dependence of averages and backreactions on the foliation
choice, requiring an averaging formalism that allows for general spatial foliations, has not been
fully addressed in the analysis given in chapter 3 of such a formalism. This was limited to a
mostly qualitative discussion, due to the selection of the spatial hypersurfaces remaining implicit
in the 3+1 form of the definition of these averages. The manifestly covariant form discussed in
the present chapter, in which the foliation is explicitly selected by the scalar A, however, is well
suited to the more explicit investigation of foliation dependence of averaging-based quantities.
As of the writing of this thesis, I am pursuing the collaboration with Asta Heinesen on this
question as a follow-up project to the study exposed in this chapter.
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Abstract. We introduce a generalization of the 4—dimensional averaging window
function of Gasperini, Marozzi and Veneziano (2010) that may prove useful for a
number of applications. The covariant nature of spatial scalar averaging schemes to
address the averaging problem in relativistic cosmology is an important property that is
implied by construction, but usually remains implicit. We employ here the approach of
Gasperini et al. for two reasons. First, the formalism and its generalization presented
here are manifestly covariant. Second, the formalism is convenient for disentangling the
dependencies on foliation, volume measure, and boundaries in the averaged expressions
entering in scalar averaging schemes. These properties will prove handy for simplifying
expressions, but also for investigating extremal foliations and for comparing averaged
properties of different foliations directly. The proposed generalization of the window
function allows for choosing the most appropriate averaging scheme for the physical
problem at hand, and for distinguishing between the role of the foliation itself and
the role of the volume measure in averaged dynamic equations. We also show that
one particular window function obtained from this generalized class results in an
averaging scheme corresponding to that of a recent investigation by Buchert, Mourier
and Roy (2018) and, as a byproduct, we explicitly show that the general equations for
backreaction derived therein are covariant.

Keywords: general relativity—foliations—Lagrangian description—backreaction

1. Introduction

Cosmology is the discipline of describing overall dynamic properties of the Universe in
a spatially and/or statistically averaged sense. For a cosmology founded on general
relativistic principles, this aim is hard to obtain for at least two reasons:

(i) In general relativity a global and canonical notion of time is not in general expected
to exist. There is no unique and general way of extending the eigentime of a world
line to a global time parameter at each point in space-time. Thus, global dynamics
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is not easily defined since a natural ‘laboratory frame’ is missing. A cosmological
model would usually describe congruences of fundamental observers following source
fluid flows, and would naturally attempt to build global frames based on such a
family of observers. However, the identification of observer congruences in our
space-time, that ‘at present day’ involves a complicated hierarchy of structure, is
a difficult task. Moreover, a congruence of fluid-comoving observers does not build
global rest frames in presence of vorticity (expected to appear on small scales), so
that alternative definitions of observers-based spatial sections may be required.

(ii) Averages and statistical descriptions are not naturally formulated within general
relativity. Tensor quantities are intrinsic to the tangent-space in which they live;
while there are ways of mapping tensor quantities between tangent-spaces, such
mappings are not unique. Furthermore, point particles as matter sources are not
compatible with the formulation of general relativity. Projecting such a particle
picture into a continuous space-time setting may for instance involve an extension to
a curved manifold of the Newtonian procedure of coarse-graining particles in phase
space by filtering the Klimontovich density and of forming appropriate moments.
For these reasons statistical matter descriptions are highly involved in general
relativity.

The standard paradigm of cosmology relies on pre-assuming a statistical geometry and
a corresponding matter description (disentangled from curvature degrees of freedom).
Assuming also decoupling of scales, approximate large-scale statistical homogeneity and
isotropy is used as a motivation for taking the Friedman-Lemaitre-Robertson-Walker
(FLRW) class of metrics as an idealization for the average properties of the Universe
on the largest scales. However, the FLRW class of metrics assumes local isotropy which
results in a homogeneous geometry on all scales, not only on the largest scales. The
assumption that the FLRW geometries match the average properties does not follow
from first principles.

In the field of inhomogeneous cosmology we are interested in studying the failure
of the FLRW idealization as an accurate description of geometry on the largest
scales, meaning the failure of it to describe the average dynamics of inhomogeneities
propagating on all scales and the motions of test particles through them. In general
relativity geometry and matter couple locally. This core feature is missed by any large-
scale description that neglects structure on small scales and only deals with coupling
between an assumed large-scale geometry and averaged matter sources.

The usual approaches to describe structure on cosmological scales involve weak
field approximations around a homogeneous background. However, typical weak field
argumentation in cosmology has limitations. It is assumed that there is a global FLRW
background metric around which the weak field is to be taken everywhere; clearly
local potentials associated with most structures in our Universe are weak; the question
in cosmology is what an appropriate background is for such a weak field limit [26].
Moreover, even if metric perturbations are small with respect to a global FLRW metric
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over a spatial section of the Universe, their derivatives can be non-perturbative. This is
the case for non-linear density fields (which are present at nested scales in our present-
day Universe), in which case second-order derivatives of the potentials are necessarily
non-linear (see, e.g. [6]). In such cases, the expansion of the Einstein equation into a
zero-order FLRW part and a first-order part breaks down, and from first principles we
would not expect the FLRW field equations to be satisfied as independent equations
decoupled from the dynamics of structures.

Here, we shall focus on quantifications of the non-linear backreaction of smaller
scales on the large scale evolution that involves averaging of ‘local’ quantities. We
shall focus only on averaging schemes for space-time scalars as done in [2, 3], and later
generalized by many authors (see, e.g. the reviews [9,10] and references therein). We
note that the fundamental problems in describing averaged cosmological dynamics as
outlined in (i) and (ii) are not fully addressed in this form of averaging. In particular,
the assumption of a ‘local’ fluid description, where fluid elements are implicitly coarse-
grained by neglecting their internal curvature degrees of freedom, is built into the
Buchert equations [2, 3] (see, e.g. [27]). However, we do not assume an averaged
homogeneous and isotropic fluid as a source for a large-scale statistical geometry:
geometry and matter couple at the fluid resolution scale. The average behaviour is
formulated directly from the physics at this ‘local” scale, and inhomogeneities at local
scales appear explicitly in the resulting generalizations of the Friedmann equations,
reflecting the non-commutativity of averaging and evolution in time.

In this work we introduce a 4—dimensional averaging window function that
generalizes the window function presented in [13,14] for integration over hypersurfaces.
There are multiple purposes in doing so. First, we shall often be interested in a fluid-
intrinsic averaging operation (when a fundamental fluid exists in our space-time); such
intrinsic formulation will in general not be compatible with the class of window functions
considered in [13,14]. Second, the generalized scheme allows for maximal freedom in
the choices of averaging domain and volume measure, while still being compact and
easy to interpret. Covariance is built explicitly into the averaging scheme, guaranteeing
that any generalization of the Buchert scheme formulated from this will be coordinate-
independent by construction. Third, the introduction of the new window function has
applications for further investigations on extremal foliations and on the dependence of
averaged quantities on the foliation. Such studies are beyond the scope of this paper,
but will be considered in a future paper [16].

We are solely concerned with covariance here; we do not consider gauge-invariance
as defined in standard model perturbation theory.f In standard model perturbation
theory the fields of interest are perturbation degrees of freedom of the space-time
metric defined relative to a background metric. These fields are defined in terms of
components of the metric and the background metric and do not transform as tensors
in the differential geometry definition of a tensor, i.e. they are not covariant. This

I We emphasize the focus of this paper on covariant variables only, in distinction to [13] where both
covariance and standard model perturbation theory gauge invariance are discussed.



Covariance of scalar averaging and backreaction 4

includes the Bardeen variables, which are ‘gauge-invariant’ in this context, i.e. they
are invariant under first-order changes of the diffeomorphism between the background
manifold and the physical space-time manifold, but they are not 4—scalars.

We emphasize that there is no reference to a background space-time in the context
of this paper, and that we use the conventional general relativistic wording throughout.
When referring to scalar degrees of freedom we mean quantities that do not transform
under arbitrary coordinate transformations. When we refer to ‘gauge’ degrees of freedom
in this paper, this will be in the broad sense of the word, i.e. as redundant degrees of
freedom in the parameterization of a physical system.

This paper is organized as follows. In section 2 we introduce the averaging scheme
as formulated in terms of a covariant window function. We discuss the interpretation of
the generalized adapted volume measure entering this scheme and we give examples of
relevant subcases. In section 3 we discuss the commutation rule for such an averaging
operation and apply it to the conservation of regional rest mass. The averaged Einstein
equations for a general fundamental fluid source are derived in section 4 for a general
window function, expressed in such a way that boundary terms vanish by construction,
except for the average energy conservation law. We consider domains propagated along
the fluid world lines as a special case that allow for a more transparent interpretation
of the averaged equations. We conclude in section 5.

2. The averaging scheme

We now introduce the averaging scheme used to quantify averaged dynamics in this
paper. This averaging formalism is a direct generalization of that presented in [14],
the difference being that we allow for an arbitrary volume measure on the selected
hypersurfaces. We discuss the interpretation of the generalized volume measure, and
highlight several relevant subcases of the averaging scheme in relation to the existing
literature.

2.1. The window function

Following [13,14] we consider scalar functions integrated over space-time domains that
are selected out of the space-time 4—manifold M by appropriate choices of window
functions. In the context of this paper we shall consider window functions that single out
compact regions of 3—dimensional spatial hypersurfaces. Averaging over 3—dimensional
hypersurfaces is natural when we want to describe the evolution of averaged properties
of spatial sections of the Universe.

Here we shall consider a slightly broader class of 3 + 1 window functions than
in [13, 14], to allow for arbitrary positive volume measures on the hypersurface of
integration. Hence, we do not restrict ourselves to having the volume measure coincide
with the adapted volume measure in the frame of the foliation. Such a more general
volume measure is natural in several settings, some of which we shall investigate below.
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This furthermore allows us to make explicit which properties of the averaged expressions
are related to the foliation and which are related to the volume measure. When
investigating foliation dependence [16] the separation of these contributions will be
useful.

We shall consider the broad class of window functions

Wa,a0.8,80,v = —VIV,(H(Ay— A)H(By — B) = (V*V,A) (A — A)H(By — B), (1)

where A is a scalar with time-like gradient that determines the spatial foliation of
integration (with hypersurfaces A = const.) and B is a scalar with space-like (or possibly
null) gradient that is used to bound the averaging domain. Ay and By are constants that
respectively select a specific hypersurface of the foliation (A = Ap) and the domain’s
spatial boundary (B = By). V is an arbitrary time-like vector field, that need not be
normalized, and that will in general not be normal to the hypersurfaces defined by A.
‘H is the unit step function; we use the convention H(0) = 1 throughout. We shall call
A the hypersurface scalar, B the boundary scalar, and V' the volume measure vector.
We shall drop the subscripts denoting the dependencies of W in the following.

This form of the window function generalizes that of [14] through the freedom of
choice of the volume measure vector, which in [14] is restricted to being the unit normal
vector m to the hypersurfaces defined by A. V' determines the volume measure on the
hypersurfaces defined by A. This corresponds to considering the usual oriented volume
element

A by g v g . = _v A
dV* = —n 6 N €po A’ A daz? A dx ; Ny = (_ngV/TVUA)l/? @

(where g = —det (g,,,), and € is the Levi-Civita symbol) projected along the vector V.

Thus, the integration measure that we use on the surfaces defined by constant A is
dy =V, dv#. (3)

We can think of V,, dV*# as the flux of V' through the infinitesimal volume dV*.

If V' is taken to be the normal vector m to the A = const. hypersurfaces, we
simply recover the Riemannian volume measure of the hypersurfaces, dV = n, dV*.
Alternatively, we may take the volume measure vector V' to be a 4—velocity field u
of physical interest, in general tilted with respect to the normal n. In this case, the
integration measure defined in (3) becomes

dV = u,dV* = —uun“g n*€xvgo dz” A dx? A dz”
V9 A
6

e "}/7 n EAVQO' d.Z'V /\ dfl:g /\ de’U

_ v% (=V,AVYA) 2 e dz? AdF AdTh =y, dVF (4)

where 7 = (A, z') is an adapted coordinate system to the foliation of A, and where
v = —u - n is the tilt, or Lorentz factor, between the normal of the hypersurfaces
and the 4—velocity w. The infinitesimal volume element dV measures the local proper
volume (around A = Ay) of the fluid element defined by the infinitesimal fluid flow tube
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that intersects the hypersurface {A = Ay} at the points of the time coordinate (in the
T basis) A = Ay and of the spatial coordinates spanning the range 7%, z° + dz‘]. The
Riemannian volume measure n,, dV* of this fluid element as it intersects the hypersurface
{A = Ap}, is its volume measure in the frame defined by m, and it is thus Lorentz-
contracted with respect to dV. Hence, the choice V' = w introduces a local proper
volume measure of the fluid as the Riemannian volume measure multiplied by the local
Lorentz factor ~.

2.2. Averages of scalars

We define the integral over a scalar S over the space-time domain {A = Ay, B < By}
singled out by the window function W as follows:

Iy (S) E/ d*z \JgSW | (5)
M
and we define the average of a scalar S as

) d4az\/§SW_IW(S)
(Sl = S o = ©)

where V = Iy/(1) is the volume of the domain as measured by dV. The functional

dependencies of Iy (S) and (S),, on the variables of W are kept implicit for ease of
notation, and we shall also drop the window function index W in what follows.

2.3. Eramples of window functions

We now present several possible choices for the window function, adapted to specific
descriptions.

2.3.1. Riemannian averages: As discussed above, the choice V' = n implies integration
with respect to the Riemannian volume element of the hypersurfaces determined by
A in the definitions (5)—(6) for integration and averages. This choice corresponds to
the averaging formalisms that are often used in the literature for general foliations, in
addition to specific (not always covariantly defined) conditions on the propagation of the
domain boundary (see a comprehensive list of such general foliation extensions of [2,3] in
the literature comparison investigated in [8]). This is the choice made in [14], where the
propagation of the domain is in principle kept general, but is specified as following the
normal vector, n-V B = 0, when derivation of averaged Einstein equations is considered.

2.3.2. Lagrangian window functions: One can also use the integration measure arising
from V' = wu, where u is the generator of flow lines of a physical fluid, together with
the requirement of a domain propagating along the fluid flow, w - VB = 0. We do not
at this point specify the time function A. We call such a choice a Lagrangian window
function, since the spatial domain is comoving with the fluid, and the volume measure
is defined as the proper volume measure of the fluid elements.
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The proper volume element of the fluid (4) and the associated volume and averages
as defined by (6) are equivalent to those of [7], here derived from a manifestly covariant
window function. This explicitly shows that all results derived from the integration of
scalars with this choice of volume element in [7] are covariant, as well as the former
results of [2,3] obtained with the same volume element in the case of a fluid-orthogonal
foliation (V =u =n).

2.8.3.  Mass-weighted averages: Consider a fluid with 4—velocity w and with an
associated conserved local rest mass current M,

M" = ou* ; V,M" =0, (7)

where p is the rest mass density. We can define a mass-weighted Lagrangian average
by choosing V# = M* in (1) and w - VB = 0. This mass-weighted average corresponds
to that formulated for irrotational dust in fluid-orthogonal foliations in [20], but here
expressed in the explicitly covariant formalism and extended to arbitrary fluids and
foliations.

2.3.4. Other weighted averages: As illustrated by the previous example, the freedom
of choice of V allows for any weighting of the averages. One may thus use the window
function (1) to define, e.g., averages weighted by curvature, or by other functions related
to curvature degrees of freedom in the spirit of the ‘q-average’ of Sussman [21,22]§,
writing the corresponding window function under a manifestly covariant form.

2.83.5. Fxtensions to light cone averages: One may choose a boundary scalar with null
gradient such that {B = By} defines the past light cone of a given event, as studied
in [15] in the case V' = n. Integrals and averages are then taken over the spatial region
defined by the interior of the light cone at time A = A,.

Because V' is not constrained to be the unit normal vector to the A = const.
hypersurfaces, the formalism can also be straightforwardly extended to averaging over
past light cones by choosing A as the appropriate scalar with light-like gradient and
V as a fixed time-like vector, e.g. the 4-velocity w of a fluid source. One might then
also replace B by a scalar of time-like gradient; another averaging operator discussed
in [15] is recovered in this case if V' is taken as the normalized gradient of B. For either
a space-like or a time-like V B, such a window function would then select a bounded
part of the past light cone of a given event. The variations of integrals or averages
with respect to Ag then provide information on drift effects as this event changes, while

§ Note that the ‘q-average’ is constructed for the specific metrics of the Lemaitre-Tolman-Bondi and
Szekeres models by introducing a weighting in the average that is defined from metric degrees of
freedom in a particular coordinate system. It is therefore not formulated in a manifestly covariant way.
However, we may simply extend the definition of the weighting to any other coordinate system, by
requiring the weighing to be invariant under the change of coordinates. With such an extension the
weighting function is per construction a 4—scalar, and the ‘q-average’ becomes covariant.
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the description of time evolution along a fixed past light cone would instead require an
analysis of variations with respect to By.

3. The Buchert-Ehlers commutation rule

We now give a generalization of the commutation rule [5], [2-4, 12], and the
corresponding manifestly covariant version [14]. We focus on different possible rewritings
of the commutation rule, which can prove useful for interpretation and for compactness
of averaged equations. We then apply it to a Lagrangian window function and to the
evolution of the fluid rest mass within the integration domain.

3.1. General formulation

The essential insight of scalar averaging schemes is that time-derivatives and averaging
operations do not commute in general. The commutation rule for the integral can be
derived by differentiating the expression for /(S) in the form (5) with respect to Ag:

1(S) = /M die\ /g S V'V, A <8%05(A0 . A)) H(By — B)
_ /M d'e\/§ S V'V, A (—8‘15(/10 - A)) H(B, — B)

v Z“
_ /M d'e\/§S V'V, A (—m%ﬂfle _ A)) H(B, — B)

v, (szu Vel 34(B, — B))

Zo°VsA
= | dlwygw -
/M o Vv, A
(2SN (5 (7n324) _(SZVBIB B
'\ Zv,4 VIV, A Za ’

with the notation’ = 0/0Ag, and where Z is an arbitrary vector field obeying Z-V A # 0
everywhere. The third line of (8) follows from Z-V (0(Ay—A)) = (Z-V A) 04(§(Ao—A)),
and the fourth line follows from partial integration, with the convention H(0) = 1
implying H(z)d(z) = d(x).

Z represents the freedom of the direction in which we define local time derivatives
with respect to A. Non-commutativity is given by the failure of the boundary to be
parallel-transported along Z/(Z - VA) and by the change of volume measure along the
flow lines of Z/(Z -V A). We denote the first term of (8) the evolution term, the second
term the expansion term, and the third term the boundary term.

The full result (8) is not dependent on Z, but different choices of Z allow us to
trade between the three terms in (8). For instance, we can make the boundary terms
disappear by choosing Z such that Z - VB = 0,/ i.e., the boundary term contribution
does not appear if the direction chosen for time derivation follows the propagation of

| Taking Z to be time-like or null automatically ensures Z - VA # 0 if VA is time-like.
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the boundary. Similarly, we might make the evolution term vanish by choosing a Z
such that Z- VS = 0. § The rate of evolution of the volume /(1) and the commutation
rule for the average follow from (8) and are given respectively by

AL (Z“%Zﬁ) - <Z“VNB 5(By — B)> | 9
(1) VIV, A 2oV, A ’

,_ I(S) (1)
R T

B pVrEV, A " _
() (e ) (=g, g

Again, we might trade between the three terms in (10) by changing Z, e.g., we can still
make the third term vanish by choosing Z to be a time-like vector field comoving with
the spatial boundaries of the domain.

When it is possible to choose a time-like Z such that V, <Z“ g:g;ﬁ) = 0, and
ZMV B = 0 simultaneously, there is a sense in which time-derivative and the averaging

operation commute in (8) and (10): in this case it is possible to construct flow lines
along which the only contribution to the change of (S) is the change of S itself. This is
the case for a mass-weighted window function (see section 2.3.3). In this case, Z = u
satisfies the above requirements, so that the commutation rule (10) reduces to

sy = (e )- (1)

Hence, there is commutation of this particular averaging operation and time-derivative

along the flow lines of w, generalizing this result obtained for irrotational dust in the
fluid-orthogonal foliation [20]. This commutation is, however, obtained at the expense
of a more complicated definition required for a physical volume (and associated scale
factor). In this setting, the ‘volume’ I(1) actually corresponds to a total rest mass
within the integration domain, as described in section 3.3. Thus, as noticed in [20],
defining a physical volume would require to compensate for the weighting by o, e.g. by
considering 1(1/p).

We may choose Z to be the most convenient vector field for simplifying the
commutation rules, or may choose it from a geometric motivation as, e.g. in [14], where
Z is chosen to coincide with the normal to the hypersurfaces. Alternatively, one may
choose a physical vector field for Z, e.g. Z = wu, where w is the 4—velocity of a physical
fluid of interest. In this formulation the terms in (8) and (10) can be interpreted in
terms of evolution along physical flow lines of a fluid and its expansion.

9 Note, however, that if V.S o« VA, then this choice is not possible, and the evolution term cannot be
put to zero.
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3.2. Application to the case of a Lagrangian window function

Let us consider a Lagrangian window function as defined in section 2.3.2. Writing the
commutation rule (8) with Z = uw we have in this case

utv,S SV, u* , V,ut
“Syzf(wﬁ)“(mﬁ) ? I(l):](m)’ (12)

where the first contribution comes from the change of S along the flow lines of u, and
the second contribution from the expansion V,u* of the fluid. Note the normalization
u’V,A, which is a change of measure between the proper time parameter 7 of the fluid
and the foliation parameter A along each fluid flow line. Hence, this normalization
reduces to unity if and only if A is a proper time of u.

The analogous commutation rule for the average (10) yields

o= (230) +(595)

There are at least two natural ways of choosing A in the Lagrangian spirit of formulating

the window function. In cases where w is irrotational, it is then proportional to the
gradient of a scalar «, and we can choose A to define a foliation in the rest frame of the
fluid (i.e. fluid-orthogonal hypersurfaces) by A = «. An alternative natural choice of A
is a proper time parameter 7 of w [7,8]. This has the advantage of being always possible,
even if w has vorticity, and of providing a clear physical interpretation of A as the time
parameter in evolution equations for average quantities. However, the time-like nature
of V1 can in general not be guaranteed. Note that the above conditions define classes
of foliation scalars, i.e. further specifications are required to determine them uniquely.™
A choice of proper time foliation can be simultaneously fluid-orthogonal only when the
fluid is irrotational and geodesic.™

3.3. Total rest mass of the averaging domain

Consider a conserved local rest mass current M* = pu* as in (7). We can define a total
rest mass within the domain at A = A as

M(Ay) = /M d*x \/g M"V ,(H(A — Ag))H(By — B) , (14)

T The proper time foliation A = T is only specified up to an additive function 3 obeying u - V5 = 0.
The fluid frame foliation A = « is only specified up to a reparametrization, A = f(«), for any non-
decreasing function f of a. This freedom can be denoted a gauge freedom, since it can be viewed as a
time reparametrization within the original foliation itself. See Appendix A for further details on gauge
freedom in the labeling of hypersurfaces.

* A fluid-orthogonal foliation implies that u = n = —NV A with the lapse N = (-=VA - VA)~1/2,
The vorticity of w thus has to vanish, which is part of Frobenius’ theorem. It also implies that the
4—acceleration a of the fluid relates to the lapse variations as a* = N~='p**V,N [7,23], with b the
fluid-orthogonal projector. If A is additionally required to be a proper time function for the fluid,
u-VA=1, then N =1 everywhere and @ = 0. This shows that the fluid flow must also be geodesic.
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i.e., as I(1) for a window function with V# = M" (e.g. the mass-weighted window
function, see section 2.3.3). Applying (8) gives the evolution of M(Ag) which, due to
the local conservation of M*, reduces to a single boundary term

M(Ap) = — /M d'z /g M"YV, B H(A — Ay) §(Bo — B) (15)

i.e. the evolution of mass is given by the flux of the mass current M* out of the averaging
domain. Thus, M(Ap) is constant in Ay when the domain is comoving with the fluid
elements, u - VB = 0. For such a comoving integration domain, M = M (Ay) (for any
Ap), as defined by (14), corresponds to the total conserved rest mass of the fluid within
the domain. In this case, the additional requirement V' = u sets a Lagrangian window
function (as defined in section 2.3.2). The conserved total rest mass within the domain
then takes the natural form M = I(p). For other volume measures, in general, I(p)
would not correspond to the rest mass within the domain and would not be conserved,
due to a weighting or due to the volume not being measured in the fluid’s local rest
frames. (For instance, for the hypersurfaces Riemannian volume measure, V. = n,
and still for a comoving domain, the integrated rest mass would have to be written
M = I(yo) with v = —n - w.) A Lagrangian window function {V = u, u- VB = 0}
thus appears as a particularly natural choice to follow and characterize a given collection
of fluid elements, if a preferred fluid frame with an associated rest mass current is present
in the model universe. We shall focus again in section 4.3.1 on domains that follow the
propagation of the fluid—hence preserving the associated rest mass—as a subcase of
particular interest of more general averaged evolution equations, to which we turn now.

4. The averaged Einstein equations

The general averaging formalism and the commutation rule are applied below to scalar
projections of the Einstein equations. The resulting system of averaged evolution
equations allows for a covariant definition of cosmological backreaction terms. We shall
then explicitly provide the simpler form taken by these equations for a domain that
follows the fluid world lines, and we discuss the natural choices V =mn and V = u.

4.1. Local variables and relations

In this subsection we consider an averaging domain defined by a time-like propagation
of its boundary. We thus assume that a unit time-like propagation vector field P can be
defined such that it satisfies P- VB = 0, at least on the domain’s boundary {B = By}.
Applying the commutation rules (8)—(10) with the choice Z = P will then ensure the
vanishing of the boundary terms in these equations.

Kinematic variables may then be defined for this vector field by decomposing its
gradient with respect to P and its null-space as follows, using the orthogonal projector
k with components k,, = g, + P, P,:

1
V,P, = —P,al + 2 Op b + o+ W
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v (n w — M

1
a, = P'N,By; ©p = K"V P, ; ol = kK] VaPs — PRLLTE wh, = Kk VaPs
1 1
op = : a/fl, o Wk = Wl P (16)
Assuming the presence of a preferred non-singular fluid flow as a source, with 4—velocity
u, the (fully general) energy-momentum tensor is naturally decomposed with respect to
u and its null-space:

T = €uyty, + 2 gty + Dby + T

1
e=u'u"T, ; q.= —bcztuﬁTag ;op= ngT;w D T = baubﬂyTag —pbu, (17)
where b is the projector onto the fluid’s rest frames, with components b,, = g, +u,u,.
It may alternatively be decomposed using P. In particular, one can define the energy

density Ep and pressure Sp/3, in the frames defined by P, from, respectively:
Ep=P'P"T,,; Sp=k"T,, . (18)

2]
These variables are related to the fluid rest frame energy density €, pressure p, and to
the non-perfect fluid contributions via

Ep—e= ;[EP+SP— (e4+3p)] = (e+p) [(w'P,)* — 1] +2 (u*P,)(P"q,) + 7, PFP” . (19)

The following Raychaudhuri equation for P is then obtained by combining the Einstein
equation projected twice along P, and its trace:

1
PV, Op = —g@i — 20} + 2wp + V'al, —4nG(Ep+ Sp)+ A . (20)

We define an effective scalar 3—curvature for the null-space of P (which is not
hypersurface-forming if w% # 0) as follows:

Rp =V, P'V,P" —V,P*V,P’ + R+ 2R,, P"P" . (21)

This definition of effective 3—curvature reduces to the scalar 3—curvature of the P-
orthogonal hypersurfaces when they exist (i.e., for w3 = 0, by Frobenius’ theorem).
Such a generalization of the hypersurface-based notion is not unique; we here follow a
similar definition as that of, e.g. [11]. This convention implies the following relation in

the form of an energy constraint:

2
562 = —Rp +20% — 2wp + 167G Ep + 2A . (22)

4.2. Averaged evolution equations

We use the general window function (1) and define an effective ‘scale factor’ a as
a = (I(1)/I(1);)*/3, where the subscript i denotes a value on some initial hypersurface
A=A

As noted for the example of the mass-weighted average [20], it should be kept in
mind that this definition is only relevant as a scale factor if it can be interpreted as a
typical length derived from a volume, i.e. only when the choice of integration measure
defined by V allows for the interpretation of /(1) as a volume. Another definition
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of ‘scale factor’ that does relate it to a physical volume (e.g. to I(1/p) in the case
of the mass-weighted average) may otherwise be more appropriate. It should also be
noted, that the effective ‘scale factor’ a in general does not have an interpretation in
terms of mean redshift of null bundles (the averaging scheme presented in this paper
is too general to make a direct link to statistical light propagation). However, when
I(1) does measure a volume, and under the assumptions that (i) the frame of averaging
is associated with statistical homogeneity and isotropy, that (ii) structures are slowly
evolving (allowing null-rays to probe the statistical homogeneity scale), and that (iii)
typical emitters and observers of light are reasonably close to being in the averaging
frame, a might be interpreted as the inverse of a ‘statistical redshift’ averaged over
many observers and emitters [19]. More generally, only assuming a choice of window
function such that I(1) measures a physical volume, a should merely be interpreted as
an effective length scale of an averaging region defined in a given foliation.

Averaging the above equations (22) and (21) with the averaging definition (6), and
making use of the volume evolution rate (9) and the commutation rule (10) with the
choice Z = P, implying Z - VB = 0, yields the following evolution equations for a:

() - w5 b)) o

a €+ 3p 1 1

These equations feature three backreaction terms, a kinematical backreaction Q, a
dynamical backreaction P, and an energy-momentum backreaction T that captures the
difference of the energy densities as measured in two different frames (see [8]). These
backreaction terms are defined as follows:

o=2 02 /O + TR PV I\ 20p N\, [/ 2} \
~ 3 |\ (PrV,A)? PrV,A (PrV,,A)? (PrV,A)2 )’

po| YV N,/ _Or (,P'VIp  PMV(P'V,A)
~\ (PrV,A)2 (PPV,A)?2 Tp PoV, A

Iyt PAV,(PYV,Ip) ' PV, Tp PV, (PFV,A)
) )
Ep — €
with the energy difference Ep — € given by (19), and with the ratio of ‘Lorentz factors’
I'p = (V*V,A)/(P'V,A) = (=V*n,)/(—=P"n,), =V*#n, being a Lorentz factor when
V is normalized.

7

From the requirement of (23) being the integral of (24) we get the integrability
condition:

g Re \' 0 [ R A
Q+6aQ+<(PUVUA)2>+2a<(PUVUA)2 +T AT 4P

— 167G (<m>/ + 3% <(Pj;7fj4)2>> 20 ((PTV,A)2Y . (26)
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Defining the kinematic variables of the fluid from the decomposition of the 4—velocity
gradient,

1
Vu, = —uya, + g@ by + O + Wi

1
a, =u'Vyu,; © ="V, u,; o, = bo(‘ub’i)vauﬁ —=Obu; W = bo[‘ubi]vauﬁ;

3
1 1
o = §UWUW Cowr= iwww’”, (27)

we can express the energy-momentum conservation equation projected onto the fluid
frame as follows:

—u'V, T = u'V e+ O(e+p) + a'q, + V" + mu, 0 = 0. (28)
One can then divide this relation by (P*V,A)? take the average and apply the

commutation rule (8) with Z = w. This yields the average energy conservation law
satisfied by the right-hand side of (26):

() i wim) G o) (D (wvrr)
+<T/F_(u“VMB)§(BO—B)>< p >_< ¢ (u“VuB)é(BO—B)>

A A (P°V,A)? (P°V,A)? A
+ € 2Tp/Tp)— (D/T) —2(4/4)\ <q + V0" +w“”> (29)
(P°V,A)2 A A (P°V,A)? )
with T = (V*V,A)/(wV,A) = (~V#n,)/y, and using the shorthand notation S
for the proper-time covariant derivative along w of a scalar S, S = u*V,S. This

average conservation equation features two boundary terms that provide the variations
in volume and average energy density due to the flux of fluid elements across the
domain’s boundary if u*V,B # 0.

The above system of averaged equations (23,24,26,29) is covariant since it only
features explicitly covariant terms. The form of these equations is moreover globally
preserved under a change of the parametrization of the foliation (using a non-decreasing
function of A instead of A, preserving the set of hypersurfaces), but the individual
terms they contain are not. This is no different from the time-parameter dependence
of the expansion and acceleration terms of the Friedmann equations in homogeneous
and isotropic cosmologies. This freedom of relabeling the hypersurfaces is important
to keep in mind when interpreting averaged evolution equations: as for any parametric
equations, e.g. acceleration terms (as second derivatives with respect to a parameter)
can be tuned in any desirable way, including the change of sign, by an appropriate
change of the parameter. This is discussed in more detail in the specific context of the
above averaged equations in Appendix A. This interpretation issue is simply solved by
the choice of a time label with a clear physical meaning for the hypersurfaces. Such a
choice can be made specifically for the physical model considered, or from more general
conditions, such as taking 7 itself as the parameter A when working within a foliation
at constant fluid proper time 7 (see the related remarks that conclude section 3.2).
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This general set of averaged equations is naturally expressed in terms of geometric
variables such as the extrinsic curvature or the intrinsic scalar 3—curvature of the
A = const. hypersurfaces for a domain propagation along the normal vector field, i.e.,
for P = m. In this case, and for V' = n (i.e. for Riemannian averages), this system
corresponds to the averaged system derived in [14], with the addition of the integrability
condition and the general form of the averaged energy conservation law.

For a general propagation vector P, the explicit contribution of the geometric
variables in the above equations can also be recovered by an alternative writing. It
can be done by splitting P into a component along n and a component orthogonal to
n, P = yp(n + vp) with yp = —P -mn and n - vp = 0. The contributions from the
decomposition of the gradient of P to the averaged equations can then be expressed in
terms of the extrinsic curvature of the hypersurface, e.g. by applying the following split
in the commutation rule:

v, (priived 1 pu v u y
p PV,A)  Op+ITp PV, I'p —NlC—l—NV”(V n,v%)  NntV,(V'n,)
VeV, A Prv,A - Ven, Ven, ’
with the lapse function N = (V#AV,A4)~Y/2 and the trace of the extrinsic curvature
= -V, n*. The set of equations using this decomposition will then simplify when

using the Riemannian volume measure of the hypersurfaces, V.= m. In the comoving
domain case, P = wu, this returns one of the sets of equations obtained in [8] when
geometric variables—based expressions for the spatial Riemannian volume measure and
a domain comoving with the fluid flow are considered.

4.3. Examples of applications

4.3.1. Comoving domains: We now specify the above results to the case of a domain
comoving with the fluid, i.e. for which w - VB = 0. One can thus take P = u. The
adapted local Raychaudhuri equation (20) and energy constraint (22) are then expressed
in terms of rest frame variables of the fluid:

0= —;@2 —20% + 2w + Va0 — 4nG(e+ 3p) + A ; (30)

262 = —R +20° — 2w* + 167Ge + 27 , (31)
with the effective scalar 3—curvature of the rest frames of w [11],

R=V,u'Vu" -V, u'Vou' + R+ 2R, u'u” . (32)

The corresponding evolution equations for the effective ‘scale factor’ a (which may still
not be the most appropriate definition in cases where I(1) is not interpreted as a volume)
are then written as follows:

8%G<%>+A<%>—1<g>—1Q; (33)
A A 2\ A 2

34 :_47rG<€+,23p>+A<.i2>+Q+P. (34)

w
N
SHES
~_
[\
Il

A A



Covariance of scalar averaging and backreaction 16

The energy-momentum backreaction vanishes since P = u, and the kinematical and
dynamical backreaction terms reduce to the following:

- ) e
3\\A A A A

e (5 )3 () (). e
A AN T A A A

The integrability condition (26) now becomes
/! R ! !/ R /
Qo +6%Q+ <2> +2% <2> +4%p
a A a \ 4 a
/ /
! 1
—16nG ({5 ) +32 (V) ran () (37)
A a\ A A
where the right-hand side obeys the averaged energy conservation law (29) that reduces
/ .
€ a [e+ O p O+1I/T P
)3 ()= T 2)t(—— )\
A a A A A A A
s /T —24/A [ d"au + Vg + m ot
A A A’ '

Remark: The requirement w-V B = 0 in the choice of the window function corresponds

to

(38)

to the definition of an averaging domain that follows the fluid flow. It thus ensures by
construction the preservation over time of the collection of fluid elements to be averaged,
in particular preserving their total rest mass (as shown in section 3.3) when it can be
defined.

4.8.2.  Lagrangian window function: The above equations for a comoving domain,
u - VB = 0, simplify further when in addition the fluid proper volume measure is used,
V = w, yielding a Lagrangian window function. This corresponds to setting I' = 1
in equations (33)—(38) above, dropping all terms that depend on its evolution. The
system of averaged equations in the framework corresponding to the Lagrangian window
function in [7,8] is thus recovered, under an equivalent, here manifestly covariant form.
As discussed in the above references, it becomes particularly transparent in a foliation
by hypersurfaces of constant fluid proper time, A = 7.

Remark: The Lagrangian window function choice, based on a preferred fluid
4—velocity field, is especially adapted to analyzing average properties within single-
fluid cosmological models. This could apply, e.g. to the description of a dark matter-
dominated late Universe within a dust model, or to the radiation-dominated era within
a model of a pressure-supported fluid. It can as well be used in a model involving
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several non-comoving fluids, e.g. to describe a mixture of dark matter and radiation
with different 4—velocities. In this case, it would require choosing one of the fluids to be
followed through its evolution and to define a proper volume measure. The total energy-
momentum tensor would then have to be decomposed with respect to the corresponding
frame, in which contributions from the other fluids will generally appear in the form of
non-perfect fluid terms [24].

4.8.3. Riemannian volume averages: As discussed at the end of section 4.2, the choice
of a Riemannian volume measure, V' = m, is the most adapted for analyzing averaged
geometric properties of the hypersurfaces themselves, e.g. by providing expressions of
the averaged equations in terms of the extrinsic curvature of the hypersurfaces. This
is expected since the scale factor and averages are then based on the intrinsic spatial
volume form of the hypersurfaces. The evolution equations for the scale factor with
such a choice and for a comoving domain, -V B = 0, may be obtained from equations
(33)—(38) by setting I' = 1/v. This gives a manifestly covariant system of equations
equivalent to that given in Appendix B of [8], also expressed in terms of the rest frame
fluid variables. Recovering the dependence in the geometric variables such as the trace of
extrinsic curvature then requires rewriting these local quantities along the lines suggested
at the end of section 4.2.
Remark: The choice of a Riemannian volume measure, V' = n, is especially suited for
studying the behaviour of hypersurfaces defined from geometric conditions, such as the
Constant Mean Curvature requirement, which is frequently used in general relativity.
The averaged equations for this volume measure take their simplest form for a
propagation of the domain along the normal vector n (n - VB = 0). The evolution
equations for such a choice of propagation of the domain can be directly obtained in
terms of the geometric variables from the general equations of section 4.2, recovering
the framework and results of [14]. However, a geometric propagation of the domain
(n-VB =0) will in general imply a flow of fluid elements (with a 4—velocity u) across
the domain boundary. Preservation of fluid elements could be recovered with additional
assumptions; for instance, for an irrotational fluid model with averaging defined in the
corresponding global fluid rest frames, with n = w. In a more general cosmological
setting, one may assume on large scales that vorticity effects may be neglected, at
least near the domain boundary, allowing for a foliation where a propagation of the
domain boundary along the normal vector would approximate a comoving propagation
(u - VB = 0). One may also assume a choice of hypersurfaces where statistical
homogeneity holds for all observables, effectively leaving the evolution equations defined
over such a choice of hypersurfaces invariant under the increase of scale of the domain
Bgy above a suitable homogeneity scale cut-off. This would then allow for a computation
of averages over a global range (By — +00), effectively eliminating the need for
distinguishing the possible propagations of the domain boundary for this choice; see [19]
for an investigation of this framework.
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4.8.4. Light propagation: As discussed in section 2.3.5, an alternative choice for the
domain boundary would be that of binding it to the past light cone of a given event by
choosing the appropriate scalar B with light-like gradient, covering the evolution of the
average properties of spatial sections in the interior of this light cone.

Alternatively, one might consider the case where A has light-like gradient such that
A = A, singles out a null surface that might be associated with the light cone of an
observer, and where B has time-like or space-like gradient (e.g. V B being proportional
to an irrotational fluid 4—velocity w). Variation of average properties with respect
to emitting times of the sources along a given cone then requires a variation of the
parameter By, while the above results for the dependence in Ay would provide insight
on drift effects as the observer changes. These situations have been investigated in detail
with similar covariant averaging schemes in [15] (see also the application in an adapted
coordinate system [1]).
Remark: Averaging domains defined from the light cone are natural candidates for
relating the averaging formalism discussed in this paper to observations. It is important
to keep in mind that the formalism presented in this paper is general, allowing for
averaging over hypersurfaces of arbitrary globally hyperbolic space-times. In particular,
the average equations only implicitly depend on the metric of space-time. While we
consider this being an advantage, as it allows to express average properties independently
of a specific form of the space-time metric, it implies the need for further specifications
and assumptions in order to connect the general result to observations. For example,
assumptions must be made in order to interpret averaged quantities defined over spatial
hypersurfaces in terms of (averaged) energy, flux, etc., of photon bundles emitted by
matter sources and absorbed by specified classes of observers. Such an interpretation
may become more natural if the formalism is specified to light cone averaging [15],
but further assumptions would still be needed in order to close the system of averaged
equations (e.g. by specifying a model for the inhomogeneous metric [1]), and to relate
the obtained averages to observational results that are usually based on idealizing
assumptions on the geometry. It is beyond the scope of this paper to go into details about
the difficult task of establishing connections between averaged cosmological evolution
equations and (statistical) observations of selected observers. For papers addressing the
link between the averaging formalism and its observational interpretation, see e.g. [18,19]
(with a covariant formalism for global spatial averages in the second case), and [17,25]
for local and bi-local investigations.

5. Conclusion

Covariance is a requirement for any physical theory, and a cornerstone in the formulation
of general relativity. In this paper we have investigated scalar covariant formulations of
global dynamics relevant for the description of backreaction effects in cosmology. We
have considered a generalized window function, allowing for arbitrary foliation, spatial
boundary, and volume measure.
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We provided an explicitly covariant form for the commutation rule and for the
spatially averaged scalar parts of Einstein’s equations, with the associated integrability
condition, using this general window function. The absence of restrictions imposed
on the energy-momentum tensor of the fluid sources allows us to apply these schemes
to the early Universe as well as to the matter-dominated later stages, and they cover
all spatial scales down to which the fluid approximation can be considered as valid.
Backreaction terms are introduced from these equations, and are thus also expressed
under a manifestly covariant form. We then applied these results to the physically
relevant subcase of a comoving domain.

We have given a procedure for providing several possible decompositions of the
commutation rule and the resulting averaged equations. This allows us, for example, to
get rid of boundary terms, or to keep them as transparent boundary flux terms, for any
choice of domain propagation. We have discussed the effect on averaged equations of a
relabeling of the hypersurfaces in a given foliation, and we have stressed the importance
of being able to physically interpret the chosen label.

The formalism used in this paper provides a unifying framework encompassing
various scalar averaging schemes that have been suggested or could be used for the
description of averaged properties of cosmological models. It can be straightforwardly
adapted to a given specific scheme by suitably choosing the window function. Several
examples of such possible applications were given. In particular, we have shown that
the manifestly covariant averaging scheme used in this work reduces to the averaging
scheme considered in [8] for a so-called Lagrangian window function, providing covariant
formulas for the latter scheme. The explicit selection of the foliation by a scalar function
in the scheme used in this work also makes it suitable for the forthcoming investigation
of foliation dependence of averaged expressions [16], and it may be helpful for other
related considerations.
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Appendix A. Freedom of hypersurfaces labeling

We here investigate in more detail the consequences of a change of the hypersurfaces
label A (without change of the hypersurfaces) for the terms appearing in the evolution
equations for the effective scale factor a.

Any transformation of the form

A= f(A), (A1)

where f is a strictly monotonically increasing function, is a transformation of the
foliation of A onto itself (i.e. the same set of hypersurfaces is considered, with a different
parametrization), since

n _ vﬂf(A) _ VMA (A 2)
CT T NANA) | V-V AVA |

The class of transformations (A.1) is thus a gauge of the foliation.

This seemingly innocent parametrization freedom can cause issues if we are naively
evaluating averaged quantities without paying attention to the interpretation on what
the time label A represents in the equations. As an example, the interpretation of the
Friedmann equations under their usual form relies on the fact that their time parameter
has a transparent meaning as the eigentime of ideal fundamental observers.

Let us consider an integrand

SW = —SVIV,(H(Ay — A)) H(By — B) | (A.3)

where the vector SV#H(By— B) is invariant under reparametrizations (A.1) of A. (This
is for instance the case if S, V and B, By are independent of A or only depend on it
via the normal vector m.) Under such a reparametrization, the integral 1(S) = 1(5) 4.4,
(recovering provisionally an explicit indication of the dependence in A and Aj of the
window function) becomes

1(S)a,40 = 1(S) pa),140) = 1(5) 4,4, » (A.4)
where we have used that
H(f(Ao) — f(A)) = H(A — A), (A.5)

for strictly increasing functions f. Such an integral thus only depends on the chosen
foliation and the selected slice, but not on the parametrization, and we can remove the
subscript notation A, Ay in the following.

Derivatives with respect to the parameter transform as

oI(S)  I(S) 1 9I(9)

04y " O(F(A0) ~ F(Ag) 04y (4.5)
while second derivatives become
O?1(S) O?1(S) B 1 O?I(S)  f"(Ap) OI(S) (A7)

|_> = — .
045 O0(f(A0))*  [f'(A0)* OAF  [/(A0)® 0Ag
We can therefore tune first derivatives by any positive rescaling f’(Ag) through the
transformations (A.1), while second derivatives may even be canceled or change sign,
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since f”(Ap) is not constrained in its sign. The above results similarly apply to the
average (S) and its derivatives with respect to Ay.

We conclude that, without a physical interpretation of the hypersurface label
A, statements about the magnitude of first-order derivatives (A.G), as well as any
statements (about magnitude or sign) about second-order derivatives (A.7), are
degenerate with the choice of A. This applies for instance to the left-hand sides of
the averaged dynamical equations (23)—(24), or (33)—(34), that are proportional to
(0I(1)/0Ag)? and 9%I(1)/DA3, assuming that V', B and By are defined independently
of A or only depend on it via the normal vector n.

Under the same assumption, the conclusions about parametrization-dependence
also hold for the terms on the right-hand sides of (23)-(24). Most of them can be
written as ( S/(P7V,A)?) with a scalar S that is unchanged under the reparametrization
(A.1), even when it depends on A, such as I'p, and would thus rescale by a
factor f'(Ag)?, as does (9I(1)/0Ay)?>. The only exception is the combination of
terms (—(6p + ', PV, I'p) P'V,(P°V,A) (P*V ,A)~3) appearing in P in (24), which
would transform as

(©p +Tp' PV, I'p) PV, (P°V,A)
<‘ (P, A >

1 (©p + ' PPV, I'p) PYV,(P°V,A) f"(Ap) OI(1)
A <‘ (P, ) > A oA,

i.e. in the same way as 0°I(1)/0A2. These identical transformations of both sides of

the averaged evolution equations ensure the preservation of the form of these equations
under a reparametrization. The same remarks hold for the equations (33)-(34) with
P = u in this case.
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Chapter 5

Conclusion and perspectives

This PhD under the direction of Thomas Buchert has been a rewarding opportunity to work
on several analytical aspects of the formation of matter structures in the Universe and its con-
sequences, within the framework of General Relativity. I have studied approximate models of
the local dynamics as well as effective, averaged descriptions of the evolution of a set of fluid
elements, focussing for the latter on the possible use of various definitions of ‘space’ slices in
spacetime and of local measures of volume. For both aspects, a highlight has been the extension
of the validity range of existing schemes to less restrictive fluid models, improving in particular
the modelling of small scales and of collapsing objects in their late formation stages.

In the introduction of this thesis (chapter 1), I first recalled the key notion of foliations of
spacetime into sets of spacelike hypersurfaces and the corresponding 3+1 formulation of General
Relativity. I then exposed the main framework of the standard model of cosmology. The cor-
responding background models with homogeneous and isotropic spatial hypersurfaces provide a
simple framework which can be fully described in terms of a single function of time, the scale
factor a(t). They only rely on a small set of parameters as degrees of freedom to be determined.
The observational constraints on these models, however, require them to undergo an accelerated
expansion and to be dominated by poorly-understood energy components, Dark Matter (with
dynamical effects that are also detectable at smaller scales) and Dark Energy. The perturba-
tion theory built in the standard cosmological model accounts for small perturbations in the
matter distribution out of the homogeneous background, while it cannot be applied to the non-
linear stages of formation of inhomogeneous structures due to this smallness assumption. It also
introduces a notion of gauge freedom in terms of the mapping to the assumed background model.

In the last two sections of the introduction I presented two frameworks which aim at better
accounting for the emergence of nonlinear inhomogeneities and their coupling to the global dy-
namics. The Relativistic Zel’dovich Approximation (RZA), designed for irrotational pressureless
model fluids, is an efficient Lagrangian scheme for the nonperturbative estimate of the local
energy density and other inhomogeneous observables such as curvature, out of perturbative so-
lutions for a set of spatial coframes. The effects of such local inhomogeneities on the overall
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dynamics of larger scales are modelled by the second framework in terms of spatial averages,
effective scale factors, and backreaction terms. The latter represent the deviation from the be-
haviour of homogeneous models and may account for some of the effects attributed to Dark
Energy and Dark Matter, depending on the averaging scale. These two formalisms formed the
basis of the investigations of the following chapters.

In chapter 2, I exposed a Lagrangian approximation scheme building upon the RZA to
model structure formation in accelerated irrotational fluids with a barotropic isotropic pressure
contribution. The evolution of the trace of the perturbation variable was determined, with an
analytic solution in the case of a linear barotropic relation. Procedures for finding solutions
for the traceless part were also discussed, which could be split into electric and magnetic parts
modelling a propagation of gravitational waves in the fluid. Trace and traceless parts are both
required for the nonperturbative evaluation of quantities of interest such as the rest mass density.
This was illustrated by a numerical application example in terms of a toy-model for a collapsing
structure in which pressure gradients modelled multistreaming.

I then presented in chapter 3 two averaging procedures that can be applied to any definition
of the spatial foliation and to a model fluid with vorticity and a general energy-momentum
tensor. The commutation rule and the evolution equations for the relevant effective scale factor
were derived for both procedures for an averaging domain comoving with the fluid flow, with a
discussion of the backreaction terms that arise in each case. The first approach focusses mostly
on the evolution of geometric properties of the hypersurfaces despite following a set of fluid
elements moving through these slices. The second formalism brings more physical insight into
the dynamics of the fluid through the use of a different volume measure, based on the proper
volume of the fluid, and through a focus on variables arising from the fluid rest frames. This
strategy strongly restricts the dependence of the resulting averages and backreaction terms on
the freedom of choice of the foliation. It is especially suited to a foliation by hypersurfaces of
constant proper time of the fluid, which exist even in presence of vorticity. With this latter choice,
the whole averaging procedure is built from the physical fluid flow, including the spatial slices,
and the averaged dynamical equations and the backreactions take an even more transparent
form. Due to their generality, both frameworks of this chapter will be applicable to a range of
cosmological models and scales for the study of the dynamical contribution of backreactions.

Finally, I showed in chapter 4 how both of the above averaging procedures could be written
under a manifestly 4—covariant form. The freedoms in the window function that defines volumes
and averages can be used to select any spatial foliation and averaging domain, including the
specification of the domain propagation, but also any volume measure. Weighted averages are
also possible at the expense of the simple form of an effective scale factor which could still
be interpreted as a typical length scale. The manifestly covariant commutation rule, averaged
dynamical equations and backreaction expressions were also derived for a generic member of
this class of window functions, recovering in particular the results of the previous chapter for a
fluid-comoving domain and a measure based on the proper volume for the fluid.
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The explicit selection of the foliation by the window function in the manifestly 4—covariant
form of the averaging framework allows for a direct comparison of integrals or averages over a
domain between two foliation choices. The dependence of these quantities, including backreac-
tions, on the foliation choice can then be studied and bounded explicitly. A variational analysis
in terms of infinitesimal foliation changes can also be performed to search for foliations that
extremize a specific integral (such as the volume) or average. T am pursuing these studies as part
of an ongoing project in collaboration with Asta Heinesen.

I have also initiated an application of the fluid-intrinsic averaging framework of chapter 3 to
the analysis of general-relativistic cosmological simulations using non—fluid-orthogonal foliations.
This project is a collaboration with Hayley Macpherson (Monash University, Australia), which
we will continue in the near future, for a new analysis of the recent results of Macpherson et al.
[2019] in terms of intrinsic kinematic variables of the matter flow and the associated kinematical
backreaction.

I am additionally planning as a future project a rewriting of the RZA that would hold in
any spatial foliation, allowing in this way for the handling of vorticity as well as non-perfect
fluid contributions. As already mentioned, this would be a natural further extension beyond
the inclusion of isotropic pressure and would improve the modelling of small scales. 1 would
moreover benefit from the experience with the general framework needed already used for the
study of general averages in chapter 3.

Another possible future project would be the application of this latter general averaging
framework to specific cosmological models and fluid sources for the investigation of backreactions
in these cases. One example of particular interest could be the use of the two vector fields at
play (the 4—velocity of some source u and the normal vector to the slices n), with a relative tilt,
to model the early Universe era with two main fluid components, Dark Matter and radiation,
having two different velocities associated with w and mn, respectively. For this, the radiation
fluid would be assumed to remain irrotational. This follows a suggestion of David Wiltshire with
whom a collaboration would be possible.

While continuing on these projects, I will also turn after the end of this PhD to the study of
other consequences of General Relativity, especially gravitational waves, through the opportunity
of a postdoctoral position at the Max Planck Institut fiir Gravitationsphysik in Hannover. In
this context, the electric and magnetic split of traceless components of linearized spatial coframes
introduced within the RZA framework may bring an additional tool of interest for the modelling
of gravitational waves as they propagate through matter.
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