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��	���

������� ��� ������ ������ �	�� � ������ ����� �g ��� ��� ����	���	��� "���� �� ��
����� gi�

*���� ������� ����� ������	
� 	�	��� ��	� 	 {0, 1, 2, 3}� ��	�� +��	 ������� ���� ��� ����	��
	�	���� ��	� 	 {1, 2, 3}� ��� �	
� �����	��� x0 �	�� �� ������ ���� t� �� ������	��� ���
������ ∂0 �� 1−���
 dx0 ��� ������ ��	��� ∂t �� dt� �������	�����

,���	�� ���	���	��� �	�� ������� �� ��� �����	��� xi ��� ���� ∂i� �� ∂xi ��� ����� 	� � �	�� ��

�
�	��	�� �	�� ������ ����	�� �����	��� ���� -	
	������ ����	�� ���	���	��� �	�� ������� �� t 	

��� �����	��� ��� (t, xi) ��� ���� �	���� ∂t� �� ∂t|xi ��� ���������

��� ��
��� ≡ �� := ��������� � �.���	�� �� ��"	�	�� �� ∝ 	�	����� � �������	���	���

)



������� �

���������	��

��������

��� ������� 	
�����
�� �� ��� ������� 
	 ������� ���������� � � � � � � � �

��� �
�
����
�� �� ��
��
��� ��������� �� ��� ������ �
�� 
	

�
��
�
�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� ��� ��	
 ����� �� ��� �������� ��������� � � � � � � � � � � � � � ��

����� ���������� ��� ���� ������� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� �������� ������ ������������ ����������
� ���
�� � � � � � � � � � � � � � 

����� �������� �� ������!����� "����!��� � � � � � � � � � � � � � � � � � � � �#

����� $���� ������ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� ����������� �� ���������"�� �� ���� ��������� � � � � � � � � � � � � � � � �%

��! " ������������ #��������� ������ � � � � � � � � � � � � � � � � � � � � � �$

��&�� '�������� �� ���������� ���������� � � � � � � � � � � � � � � � � � � � � � �(

��&�� ) ������!����� "����!�� ��� ��� �*� +������� ��������� � � � � � � � � � �,

��&�� �����-���� �.������� �� ��� �������� �� ���������!���"� �"��������� � ��

��� ������� ��������� �� ���%������
� 	�
� ���
�
��������� � � � � � � �&

����� )"������� �������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �%

����� +/����"� ������� �� ��� ������ �� �"������� �� !�� ��������� � � � � � �(

��� ������� 	
�����
�� �� ��� ������� 
	 ������� ����������

������� �����	
	�� ����	�� ��� ����� �����	�� ������� ��� �������� �� �����	�� ��� ������

������ ����	��� �������� �� ���
	���	�� ���� �	�� ������ �����	� 	� �����	��� ��� ��� ������

��� ����� 	� ����	������ �� ��	��	�� ��� ���������	� 
���	�
��� ��� ���������	� �� ��	
�

����	��� ����� ��� ���
� ����	�	�� ��� 	���������� ���� ���	� ���

�



�� ���� ����	
� �������� �� �������� �  ���	����������� ������� M ������� ���� 

��	������ ���	�� �����	 g� �����  �
����	�� �����	 ���� �������� ����  ����������	��

���	��� ��	� �� ������	� (−,+,+,+) �� ���� ������� 	
���� �� � ����� ���� � ����� ������

���� ��	�	 (xμ) ���� �		������� ��	�	 �����	 ∂xμ ��� ��������� 1−���	 dxμ� ��� ���
�����	
�� g ���� �� ������ �	 gμν � g = gμν dx

μ ⊗ dxν � ��� ���	� �� ��	 ����	� ���� �� ������ �	 gμν �

����� �	 
�� �� ��� ��������������	��� �������� M �	 ������ ����

�� ���� ��� 
����

��� ���	
�� ������ ��� ��� ����������� ���������� �� g� ����� ���� �	 �� ��	��� ��� 
������

���	
�� 
�	���	 ��� ������  �� ���	
������ �������� ��������� �
���� ∇ �	 ���	 ����

�������� �� 	����	 ��� ����	��	 �� g� �� ��������� ���
�����	� ∇[μ∇ν]f = 0 �� ��! 	����

f � ��� ∇ρ gμν = 0�  �� ���
�����	 �� ��� �������� ��������� �� � ����� A = Aμ∂xμ � �� ��	

���������� 1−��� Aμ dx
μ� Aμ ≡ gμνA

ν � Aμ = gμνAν � ��� �� ��	�����

∇μA
ν = ∂xμAν + Γν

μρA
ρ ; ∇μAν = ∂xμAν − Γρ

μν Aρ , "#�#$

�	
�������!� ���� ��� ����������� ���������� ���%�����	 � ���	��&�� 	!����	

Γρ
μν ≡ 1

2
gρσ (∂xμgνσ + ∂xνgμσ − ∂xσgμν) : Γρ

[μν] = 0 . "#�'$

����������� �� �������� ���������	 �� �����	 �����	 ��� (������ ���	�� �� ���
�����	

Rμ
νρσ� �	 � ���	�� �� 	
������� �������� �� ��! ����� A = Aμ∂xμ � ��������� ��� 	���

����������	 �� )�	���  ����� ��� *����� +#,-./�

∇μ∇νA
ρ −∇ν∇μA

ρ ≡ Rρ
σμν A

σ . "#�.$

0�� �� �� ��	� ������ ��� "	!������$ (���� ���	� Rμν dx
μ ⊗ dxν ��� ��� (���� 	���� R

�! 	����		��� ����������	� Rμν ≡ Rρ
μρν � R ≡ Rμ

μ� 1 ����������� ���������� ��� �		�������

�������� ���������	� (������ ��� (���� ���	�	 ��� (���� 	���� ��� 	������! �� ������ ��

��! �����	��� ��� �� � (��������� "
�	�������������$ ������ �	 ���� �� �	�� ���� �� ���

(��������� �����	 ������� �! g �� ����������	����� 	
������� 	������	 �� M�

 �� ���
���� ������� 	
������� ������! "����� ��� �������$ ��� ��� 	��		�����! ����

	� �� ��� 	����	 Tμν dx
μ ⊗ dxν �� 2����� (��������! �	 ��	����� �! ��� �������� ��	
�����

Rμν −
1

2
Rgμν + Λ gμν = 8πGTμν , "#�3$

�� ���
�����	� ���� G �	 4�����5	 ������������ ���	�����  ��	 ������ ��� �� ��� 6��	����

�������� �������	 ��� ���	���� 
������ Λ ����� �	 ��� ���������
� �����
���  �� 	!������

���	� �� ���
�����	 Gμν ≡ Rμν − (R/2) gμν �	 ��� �������� ������ ��� ���!	 � ���	�������

��������� ∇μG
μν = 0�  �� 6��	���� �������� ���	 ������������! ��	��	 ��� ���	������� �� ���

"��	� 	!������$ ����!��������� ���	� �

����� �� ��	 ��������� 	���� ∇μT
μν = 0�

 �� 6��	���� �������� ��� �� �������� ��� � ���������� 
����
��� ���� ��� 6��	�����7�����
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������ ��� �	
 �
��
���� ���� SEH = (16πG)−1
∫
M (R − 2Λ)

√
g d4x ����	 �	
 �
�
�������

g ≡ | det(gμν)|�� ���
� �� �	
 ������ SM ��� �	
 ����
� �����
� �
�����
� �� ������
���� �
����

�	
 
�
�������
���� �
���� �� �	
� �
��
� ���� �	
 ��������� �� SM ���	 �
�
�� �� �	
 �
����

�
���� �����
���� �� ��� ���
������
�� �
 �
��
� ���
� � 	
���
��������� ���� �� � ����

����������� ��� �	
 �����
��  ��	���	 �	�� ����������� ��� ��� �
 ����� ���������� ���

�	
 �
�
�����
���������� �
��
��� �� �	
 ����
 �� �	
 ���� 
�
�
��� ��	��	 ��� �	
��
��
� �


���
�	�� �����
��
� �� � ������������ ����
��� !"����	��
� #$%%� &��
� ��� "����	��
� #$%'(� ��

�)
�� � ��������
 ����
���* �� ���
 ��
 ��� �	
 ���
����� �� �	
 ���
 +���
��
 ��� �� ���� �


����
������
�� ����
� �� �	
 ����������

�������� � 	
����� �������

 ������������ ���
� �� ������� �
�����
� �� �
��� �� � ���� �� ���
���
 ���� � �	�

 ���
�������

���
 ��	��	 ���
�� �	
 +���
��
 �� � ���
� ���
� ��� �	
 ���
 
�������� �� ��� ��
���
�� "	��


���	 � �����
 �� � ������ 
�
������ ����
� ��� � ,
������� ����
���* ���	 �������
 ��� ������

���
 ��� ���
 �������� �	�� �� ����� ��������
 ���	 -
�
��� .
��������� /
�
����� � �
� �� �	�

�

���
������� 0���
1 ����
� ����
���2
� �� 0���
1 �� ����� ������
 �� �	�� ���
� ���	���	 �	
 �	���


�� ���	 � �
� �� ��� ���� ���3�
� �� �������� �� �	
 ,
������� ���
�

�	
 �
�������� �� �	
 ���
���
 �������� ��� �� �	
 4����
�� 
3������� �� �
��� �� ���	 �

���� ����
����� �� �	
 56% �����
 �� -
�
��� .
��������� �	�� �����
 ���
� � ������� ��
� ��

�	
 4����
�� 
3������� �� 
������� 	������ ���
�����
� ���	 ���
 ���� ���
�� ���������
� �������

����� ��� �� �� �	
 ���
 �� �	
 ���
���������� �� 
����
��
 ��� ���3�
�
�� �� ��������� �� �	
�



3������� �� � &���	� ����
� ����� ������� &	�3�
��7��	�� ��� -
���	 !%898(�� � ���� ���

�
���� �� ����
� ����
���* ��� �	�� �����
 ��� �
����
�� ����� �� !:���
�� �	���
� ��� "	

�
��

%8'5(� �;$;�;5#< !-�������	��� #$%#(� �'=�==< ! �����
��
� #$$=(� �9>�';� �	��	 �� ��� �� �	


 ?: ��������� ! �������� ?
�
�� ��� :���
�� %89#( ��	
 ����
� ���� ������ �� � @����������

������������� ��� �	��	 �� ��
� �	����	��� �	
 �
�
�� �	
�����

A� �� �� �	
 �
�
�����
���������� ����������� �	
 ���
���
 ��������M ���� �
 �����
� ��

�
 �������� 	�
������� �������� ��� � ��������� ���� &���	� ������
� !7
���� ��� /B��	
2� #$$5(�

�	��	 ��� �
 ��
� �� �	
 ������ ����
�� "	
� �
�����
� �� � ���������
 �	���� �	
 ���� ���������
�

(xμ) ���� �
 ���� ���� �	
 ���
 ���������
 x0 = t ��� �	
 �
�������� ������ ���������
� xi�

 ��������� �� M ���� � ������ �� ���
��*
 	�
�������
� Σi� M = ∪i∈RΣi� Σi ∩ Σj = ∅

��� j 
= i� ��� �
 �	��
� ����� ��� ������
 ���	 ����������� �
������ �� n �	
�� ���
��*
� �����
�

���
��
�� ���� ������ 4−�
����� 4��	 	�
�������
 ����
����� �� � �	�

����
������� 0���
1
����
� ��� ��� �
 �

� �� 
��	 ���� �� �	
 ����� �
�� ����
 �� ���
 ����������� �	��
� �
� ��

�
�
�
��
 ���
��
��� ���	 4−�
������ n� �	
 ��������� ��� �
 �	�����
��2
� �� � �
����� ������

�������� S �������� ����
����� ����� ��� �����
�������� ���
��*
 ���
� ��� �
��
� ���	 �	�� 
��	

������ 	�
�������
 �� � �
�
� �
� �� S� �	
 ���� %����� n �� n ���� �	�� �
 ����������

���� ��������	 
� ��� ����
� � ������� �� ��� ����
�����
� 
� ��� ��� �
������ �� ��� ����� �� ���������
�
�������
� ��� ��� ��� �������� �������� �� ������� �� �����
���	 �� �� �
�� �������

'



�� ��� ����	�
� �� S� n = −α dS ��� ��� ��	���� ��	�	�� ����� ��
��	�
 α �
� �	�� d ���

�����	�� ���	���	��� ��
�� dn = −α−1 dα ∧ n� ���	
� ���� n �� �� �� 	������	�
��� ��	�� 	

���	����
� �� n∧ dn = 0� ��� 	���	�	��� ��� �	�� �����	
��� t �	�� �� ����
 � ��	
� � ��	����

	
����	
� ��
��	�
 �� S �	����	
� ��� ���	������ �����	�
 S = S(t)�� �
� �	�� �� ��� �� �����

��� ������������ ��� ���	�� �����	
��� xi� �
 ��� ����� ��
�� ���  ��� ���	������

!
 ��� � �����	�� �����	
��� ��	� ��� �����
�
� �� n �
� 	� ���� n ��� ��	���
�

������	�����

nμ =
1

N

(
1,−N i

)
; nμ = −N (1, 0, 0, 0) . �"�#�

��� ��	���� ��	�	�� ���� ��
��	�
 N ������	
� ��� �	��
�� ������
 ��
����	�� �	�� �� ����

��	
� ��� �
	� �� �����	
��� �	��� !� ��� ������� ������� 	� ���	�� ���	��	�
� ��� �����	�
�

���������	�
 a(n) �� �����
�
� a
(n)
μ ≡ nν∇νnμ �� ��� ������� �	�� 4−�����	�� n �$���������


%&'"&(� ��)&* +����	���� %&'',(� ��"&&��

a
(n)
i =

∂xiN

N
; a

(n)
0 = N ia

(n)
i , �"�)�

����� ��� ���
� �����	�
 ��	� ���� ��� �������
��	�� �� n �
� 	� ���������	�
� nμa
(n)
μ = 0�

	���� � ��
����
�� �� ��� �
	���	�� �� n� ��� �	�� ������ N = N i∂xi ��
����� � ���	��

�	-�������	� ���� ������ ��	
� 	
 ��
����	�� �	��� ������	
� ��� ���� ��
��
�	�
 	
 ���

�	�������� �	��� ���������� ��	 ���� �	�� ���� 
�� �
 �� ���	���� �� ��� �����	
��� ��
��	�


��.
	
� ��� ��������	�
 �� ��� ����� ���	�� �����	
��� ������
 �	��� !
 �����	
��� �����/


�
�� 	� ����	�� ��� ��������	�
 �� ��� ����� ���	�� �����	
��� ������
 �	��� 0� ��.
	�	�


���� �
� �	�� ������ �� n �
� ��� �	�� �����	
��� ������ ∂t � ∂t = Nn +N ��� �	���� "�"

��� �
 	�������	�
 �� ��� ���	��	�
 �
� ���� ��������

1���	��	
� ��� ���� � � ��
��	�
� �� ���� �
 ������	�
 �����	�
� ����� ��� ���	��	�
 �
�

��� �	�� ��
��	�
 ��� �� ����� ��� �	��� ��� �	�� ���������	2� � �����	�� 3�� ���	
� ����

����������� ������� �
��� ���� ��
 �� ��
� 	� 	
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�� ��� ���4����� �
�� ��� ����������� �� ��� ���	��	�
 �� ���
 �� ��� n/

�������
�� ���	�� ���4���	�
 �������� hμν ∂xμ ⊗ dxν �

hμν = gμν + nμnν , hμν n
ν = 0 , hμσh

σ
ν = hμν , hμνhμν = 3 . �"�5�

��� ����	��	�
 �� ��� ���	���� ����−(0, 2) ��
�� �� ��� ���	�� �	�� ��.
� ��� ���	�� 6	�/

��

	�
 ����	� h ≡ hij dx
i⊗dxj � �	�� 	
���� hij ∂xi ⊗∂xj � $	��
 ��	 �������� �
� ��� 
�����

,



Σt t 2 + 1
N n N
∂t

n

ds2 = gμν dx
μdxν = −

(
N2 −NkNk

)
dt2 + 2Ni dx

i dt + hij dx
idxj ,

Ni = hijN
j

h

Rij dx
i⊗dxj h

Kμν ≡
−hρμ hσν∇ρnσ n

Kμν Kij
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R+ 2nμnνRμν = R+K2 −Kij Kij ; ���!�

hμin
νRμν = DiK −DjKj

i ; ������

hμih
ν
jRμν = − 1

N
∂t|xk Kij +

1

N
NkDkKij +

1

N
(KikDjN

k +Kkj DiN
k)

− 1

N
DiDjN +Rij +KKij − 2Kik Kk

j , ������

"���� D ������� ��� ��������#������ ����#���#� ���������� "��� ��� ������ ������ hij ��� ���

$�#��%�#��� ����������� &�� ������ ��������� �	�#��	�� R �3������ ������� ��� ������ �'�������

�	�#��	�� K �� ��� ������ ��� 
�#�� () ��� �������#� ������ �� ��� ��������� ��� �'������� �	�#��	����

R ≡ hijRij � K ≡ Kμ
μ = hijKij � &�� *��� �"� �+	������ ��� ��� ��	���%���,,� ��������� (��"���

��� �	�#��	��� �� � 
�#�� �)���	������ "���� ��� ���� �������� 
�#�� �� �#��	���� �+	����� ��� Kij

(��"��� �	������#� �������

&�� ����
)�������	� ������ ��� �� �	�� (� ��������� "��� ������ �� ��� ������ ��������

��� ����� ������ ��

Tμν = E nμnν + 2n(μJν) + Sμν , ������

with E ≡ nμnνTμν , Jμ ≡ −hρμnσTρσ , Sμν ≡ hρμh
σ
νTρσ .

-���� E �� ��� ����
) ������) �� ��� ��	����� Jμ �"��� Jμn
μ = 0� ����� ������	� ������)� ���

Sμν �"��� nμSμν = 0� ����� �)������� ������ ������) ������� ��� �� ����	��� () �(���#��� "���

4−#������) n ������ �� ��� ������ ���������� "��� ��� ������ �������� &�� �������� ����	�� ��

����� ������ �� 
�#�� () S/3 "��� S ��� ����� �� ��� ������ ������) ������� S ≡ gμνSμν = hijSij �

&�� 3 + 1 ���� �� ��� .������� �+	����� �/���"���� 0����� ��� 1����� ��!2��� ��	�
�	����

������ �34� /��	(����� ����3� �4��45�� �� ���� �(������ ���� ��� �(�#� ������������� �� ���

�������� ����� ������ ��� �� ��� ����
)�������	� ������� ������� ����	
� ��� .������� �+	��

���� ����	���
� ����� � �������
���� ��������� /����������)� ��� ���� �#��	���� �� ��� ������

������ �� ������� �� ��� �'������� �	�#��	�� ����	
� ��� ��*������ �� ��� ������� &��� 
�#�� �"�

����������� �#��	���� �+	������ ��� hij ��� Kij �� ��� �)������� #����(��� ����������,��
 ���

�)���	������ ��� ����� ��(�����
 �� �������� 

∂t
∣∣
xk hij =− 2NKij +DjNi +DiNj , ������

∂t
∣∣
xk Ki

j = N
(
Ri

j +KKi
j + 4πG

[
(S − E) δij − 2Si

j

]
− Λ δij

)
−DiDjN +NkDkKi

j +Ki
kDjN

k −Kk
j DkN

i , ����5�

��� �"� ���� ������ ��� ��� #��������� ���������� �+	������ �� ����� +	�������� ���� ��� ��	���
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R+K2 −Ki
j Kj

i = 16πGE + 2Λ ; ������

DkKk
i −DiK = 8πGJi . ������
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����� �	�� � ����������� ����	
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������	
 �����
����	� 
������  !����� "#$%#&� ����	�� ��� ��	���	��� "#$'(&� !��	�� )�������� ���

)�
������ "*+#*& �*+(,

�������� �� �	� 
�� ������

-�� ����	�� ��
�	��� �� ��������	�� �� ��� ���� ������ ��� �������	����	���� 	������	
 �	�����

�	�� ���	����� �	�� 
�������  �����������, 	���	��	
 
�������� .
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���
� R
3 ��� ��� ��������	
 (����
� �� ��	� /���	��0 H3� �� �� � ������  �����������, 
��������
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 -�	� �
��� ��
��� 
�� ��� 	�����
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3 
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��	
� �� 
����	�
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� �� ����� �	�����	�� ���	����� ��� �� ��	���� ����� ���
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ds2ref =
dr2

1− kr2
+ r2 dθ2 + r2(sin θ)2 dφ2 ,  ##3,

����� ��� 
������� ��������� k 	� ��4�� �� +1 ��� S
3� 0 ��� R

3 ��� −1 ��� H
3 5� ��
� 
����

θ ��� φ ��� ������� 
����	����� ��� r 	� � ���	�� 
����	���� ��
� ���� ��� 
��������r �����
��

����	� *�������� �� ���� 4πr26 ���� �	���� 
��������� �� ��� �����	
�� 
����	����� 	� ��� R
3
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-�� ���	
� 	������� �������	�� ��7�	��� � ���	��	�� ����	�� ����
	�� 	� ��� ����	�� ��	
�� ��

��������	�� ��� ��� �8	��	�� ��	� ����
�� 
���� ��� ����
�� ���� ���� � 
����� 9�����
	�� u

���������� �� ����� ��	
��� u = n . ���� ������� 
��	
� ��� � 
����	���� ���	� ��� ��� ���
�	��

�	�� �� ��� ���� ������ 	� ���� ��� �� ��� 
��	
� �� 
������� �	�� t �� ��
� ����	�� ��
�	�� ��

��������	��  ������	�� ����� ��
�	���, ��	�	�� ���� ��� (:# ������	�� �� ��
�	�� ##� ��������

�	�� ��� ��7�	������ �� ����	�� 
����	����� xi 
����	�� �	�� ��� 9�����
	�� u -�� ������ 
���	�

�	�� 
���������� �� � 
��	
� �� ���	��	�� ��	�� ����
	���� �	�� ��� 
����	����� (t, xi) -�� �����

N = 1/(u0)  	� ��	� 
����	���� ������, ���� �8������� 	� ��	� ��������4 ��� ��
�� ���� �� ���

������ �	�� τ �� ��� ��	� ����
�� �	�� �����
� �� ��� 
����	���� �	�� t� N = dτ/dt� ���� �� �

���� ���
�	�� �� t ��� �� ��� ��������	�� �������	�� -�	� 
�� ���� �� ���� �� ��	�	�� ���� ���

���	��	�� �� ��� 9��
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����7���
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��� �

������	�� �� ��� ������ ��
��� �� ��� ��	
�� �	�� 
��������� �	��� ��  #%, N = N(t)

	���	�� ���� ��� ����	�� ��	
�� �� ��������	�� ��� ���� ����������
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� ��� ��� ����������
��������	�� �	�� 
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	� ���� �������� �� �� ��� ����
� �
�� 5� ��� 
���������	�� 
����	���� ���	� (t, xi) = (τ, xi)� ���

����� 	� 1 ��� ��� 
��������� �� ��� 9�����
	�� ��� 	�� ���� #����� ����
� �� uμ = (1, 0, 0, 0)

��� uμ = (−1, 0, 0, 0)� �����
�	����
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ds2 = gμν dx
μdxν = −dt2 + hij dx

idxj = −dt2 + a(t)2 ds2ref , ������
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R00 = −3
ä

a
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ä

a
+ 2

ȧ2

a2
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2k

a2

)
hij , ����-�
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 ˙≡ ∂t|xi � ��� ������	�� �	��	 ����� ���� ����

R ≡ gμνRμν = 6

(
ä

a
+
ȧ2

a2
+

k

a2

)
. ���./�
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Rij =
2k

a2
hij ; R =
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Tμν = ε uμuν + p hμν , ������

���	� ε = ε(t) �� p = p(t) �	�� 	�����
������ 
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� � � �� � !���� � ��
��
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��� 	����
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 � ��
  "  	���	� �+�	��
��� �)��
� �� " 	 
�� ���� ��	��,�� a(t)�


�� �������		 �
����	��

3

(
ȧ

a

)2

= 8πG ε+ Λ− 3k

a2
; ������

3
ä

a
= −4πG (ε+ 3p) + Λ . ����-�

.� !���	��� , 
� 	�!�
(��� ���� �, �� ���� ,� � �/�	 � ��*��! 
��� ���
�� ���
�,�� ��

� ������ � ��  " �� �$�����! #����	��� 0 	 � � �(�$ 
�� 1�� ��
� � ��
��� �	����	�� 
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������	�
� � �)��
� � ����-� ���  ��� ����� �����	�
� �  " 
�� �$����� � " 	 Λ = 0� �� 	�)��	��

� � ��
��� �� ��	!� �� �!� � �� � !���� � ��
��
 " 	 � � ��
��� ������	�
� �� .
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� � ���  � ε(t)� p(t)�

ε̇+ 3
ȧ

a
(ε+ p) = 0 . ����7�
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aμ = −
h ν
μ ∇νp

ε+ p
: a0 = 0 , ai = − ∂xip

ε+ p
. ����9�
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�� �� ��	 
�� �������
 ����
��� ������������� �	 
�� 
��� �������� a(t)�

ε(t) �	� p(t) �� 	�
 ������� �� �����
�� ����	 
��
 
�� �������� ����
��� �� 
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 ����
 ��
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��	 ��

�
�
� �� 
�� ����� !
 ��	 �� "�

�	 �	 
��� ���� �	 
�# �� � ���
���� ��������	��� ���
��	

p(ε) �
 ����
 "�
��	 ��#� �	��� ��	�� ��
� ε �	� p �� ��� ��	�
��	� �� 
�#�� ��� ��#����
 ����

�� � ��	�� ���
��	� p = wε "�
� w = cst.� �� "���� 
�� �	��� ��	����
��	 � ��
��	 ����$�


��	 ������� 
�� 
�#� �����
��	 �� 
�� �	��� ������ �� p ∝ ε ∝ a(t)−3(1+w)� %��� � ��	��

���
��	 �� "����� ���� �� �����	� �� ��� �� 
�� #��
 ��##�	 #�

� #������ ��� ��

� �� 
���

�����
��&�� �� 
�� ������	��	� ����� �� w�

• w = 0 �������� ����� ����� ���������� #�

� �p = 0�� "�
� ε ∝ a(t)−3� !	 
��� ����

ε ���	����� "�
� � ��
 #��� ��	��
� �� 
�� ���� ������ 
�� �	��� ��	����
��	 � ��
��	

������ 
� � ��	����� ��
 #��� ���	
 � ��
��	� ∇μ(εu
μ) = 0� �	� #�� �� "��� ��

	�
�� �� ���� ���� ��	 �� ���� 
� #���� 
�� 	�	'�	
���
�	� (�) *�

� ����� � ���	
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�
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� "��� c �� 	�
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��� �� 	�����
��� !
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�� ������
��	 �� � ���#�������� �� ��#�	�
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��

#�

� ������� !	 
�� ���� �� ��
 ���
��� ���
��	� �k = 0� �	� � ��	����	� ���#��������

��	�
�	
� 
�� ����
�	� ��� ���
 +,-. #���� �	����� �� )	�"	 �� 
�� /�	�
��	'�� %�

�

#���� �	� 
�� ����� ���
� 
�#� ����	��	�� ��	 �� ������� ��# ����0� �� a(t) ∝ t2/3�

• w = 1/3 �������� � ����
��	 ����� "�
� ε ∝ a(t)−4� ���� ��	 #���� � ���
�	 ���� � ��
�'

���
����
�� #�

� 
��
 #�� �� ������� 
� ����
��	� �	� �� 
��� ���
�� �� � ���#��������

�� ��#�	�
�� �� �
�	��� ������� #�

� �	� ����
��	� +�# ����0�� �	 
�� ��#����
 ����

k = 0 �	� Λ = 0� 
�� ����� ���
� �� 
�� ��� ����
��	 +,-. #���� �	����� ������� ��

a(t) ∝
√
t�

• w = −1 "���� ������	� 
� � ���#�������� ��	�
�	
� ��� ���
��	 p = −ε �#����� 
��


ε �����#�� ����
���� �	� p �
��	 	���
���� �� ��	�
�	
� �� �����
�#� �	� "���� 1��	
��

��	
���
� 
� ��
� +���#�		 � ��
��	� ����
�� �� � ����
��� ���#�������� ��	�
�	
 8πGε�

���� ��	 �� ���	 �� �	 �2��
��� ������
��	 �� 
�� (�) /	��� ��#��	�	
 #������� �� 
��

���#�������� ��	�
�	
 Λ� �2��
����� ������	� 
�� �
��"��� ������ ����	
 Λ ��	
���
��	

�� � ����� ε = Λ/(8πG)� p = −Λ/(8πG)� 3 ��� (�) /	��� +,-. #���� �	������

�� ����
��� Λ� "�
� 	� ��
� ����� �	� "�
� k = 0� "���� ���� �	 ����	�	
����� ��"�	�

����� ���
� "�
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√
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��������� ���� −3k/a2	 
�� ���������� �� ���� � ������ �� ��� ���� ������� �������

��	��� ����� ����� �� � ���� 8πGε ∝ a(t)−2 ���� ��	���� ���� � ������� ����������

�� ��� ����������� ������� ��	� �	 
�� ������ ����� ���� � ��!�" �#$% ����� �������

���� Λ = 0� ����� � ������� �&��� ��������� �� ��� ��" ������ �� ��� �������

��������� ���� ���� � ����� ������ �� ��� ����� ������ ���� ����� a(t) ∝ t	 
�� ����

������� ������� ��	��� ��!���� ���� ��� �&��� k ��� �� �� �������� ������!����

�� �"!������� �!����� �������	 
��� !������ ������!��� �� ��� ��'������ (��� ����� ��� �

������ �#$% ����� ���� � ������������ ������	 )������ ��� ������� ��������

��� ��� �!������� $���� ����� �*!������ ��	�+� ����� ���� �� ������� � ���� ����� ����

���� ��� %�"� �����	 ,���� ��� ������!���� �!������� �� ���!�" ��� �$����'-���

(�.���.� �!������� ���� � ������ ������� ���� �"!������� �!����� �"!����������	

/���� ������ �� w ��� ���� ��������� ��������� � ��� ���������� ���� �� ��� 0���1 -���2

����� w = 1� ��!�"�� � ����" �����" ������ �� a−6 �� ������!���� �� ��� !�������3

����" ������� �� � ���� ��������� ������ ���� ��������� �� � -��� ������� �� � ��!������

����� −1 < w < −1/3 �� � ����������� �"������ ����� �� 4��. 5���" �� � -��� ���� �������

!������� ������ ��� � ������������ ������	

��� ����� ��	���
�	�

6 ���� ���!���� ������������ ����� �� ��� �� ������� ���� � ��� �� ���� �������� �����

��� ������ i ��� � ����" �����" εi �� � ����� !������ ������� �� ����� !��������&�� �" wi7

ε =
∑

i εi �� p =
∑

iwi εi� ����� ����� �� ����� ���� � ���� �� ������������ ����	 8��������

����� ������� �� �� �����!���� ���� ������!���� ����"'������� �� ��!������" ��������

�� ���� ��� ���� ��������� εi ∝ a(t)−3(1+wi) ����� �!!���� ��� ���� ������ i	 
�� �����������

���� ��� ������������ ������ �� ��� �!����� ��������� �� �� ��!����� �" �1������ �������

����� ���� �����!������ �� �*!����� ������ ���� w = −1 �� � �1������ ����" �����"

εΛ = Λ/8πG ��� ��� ������������ ������ �� w = −1/3 �� � �1������ ����" �����" ������

��" �� �������� εk = −3k/(8πGa2) ��� ���������	


�� ���� ������� ������� ��	��� ��" ��� �� �������� �� 3H2 =
∑

i 8πGεi ���� ���

,����� !�������� H(t) ≡ ȧ/a	 ) � �*!���� �� �����!��� !���� �ȧ 
= 0� �� �� �� �������

�" ��� ����'��� ���� �� ���� ��� ����������� 9/����: !��������� �*!������ ��� ��������

����������� �� ���� ����� �� �1������� ������ �� ���� ����" ������7

Ωi ≡
8πGεi
3H2

;
∑
i

Ωi = 1 . ��	�;�


�� ������ ����������� �!!��� �� �� ���!������ ���� ��� ��� !�"����� ������� ���"��

��� �������� �!���� ���� �������� ����� ���� r� �� ������� !����� �� �������� �� ���� ��

��� ���!��� !�����<���"�� �������� -��� �� ����" �����= wr = 1/3�� �� ���"��� ������ ��

�'��������� 9����: 4��. (����� �84(�� ���� ������������� �� ���� ����� �� ���� ��������
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����� m� wm = 0� �	�
 �� ���������� �� �	� �����
 ������ ���� ���	 �	� ��������� k ���

�	� ���������� �������� Λ� 1 = Ωr + Ωm + ΩΛ + Ωk� �	� ������ ��������� Ωm ��
 �� ����

���� �	� ���
���� ��� ��� ���� ������ ���������� Ωb� ΩDM� ����� �	�� �� �	�� ����������

�������� ����
���� �� ����� �� � ����� ����� �	�� �����
 ������� �������������� �������! �	�

�������"��
 ����� Ωi(t0) ≡ Ω0
i �# ���	 �# �	��� ������������� ��� ��
 ���������� #�� ���	 �

���������� �����

��������	
 
�	���� 	 ��� ���	
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 ��
�� �� ���������

�	� ����
 �������� �Λ$�� ���� �#�� �	� ���������� �������� Λ ��� � ��� ���� ������

���������!� �� �������� ���� �# �������
� ��������� �	� ����� ������ ������� �� ��� �	
����

�������� ��� � ���������� �������� Λ > 0� %	�� ������ #�� ���������� �� � ����� ����

������� &�' #�� �	� ������������ ���	�� #�� ���� �����!� �� �� ����� �� �� ������� ����������� 

()*% ���� �� ������� #��� �	� ���������� ��������� ���	 �	� ���� ������� ��� Λ� ���

���	 � �����	��� ������ ���������� k = 0� Ωk = 0 ∀t� �	� ����� ����������� ������� �� ��

��������� ���	 �	� ������������ ����������� �� �	� �������"��
 +���� ���������� �������� �

����
 ()*% ���� �� ���� ����� �Ω0
k = (0.7± 1.9) · 10−3 �� 1σ ���,����� ��� �� �	� ������

����������� -.&/ 0���� ������ 12���� $����������� -.&/3!�

�	� �	��� ��������� ������������� �� �	� ,��� (�������� �4������ �&�-'! #�� �	� �����������

εr� εm ��� Λ� ���� �� a−4� a−3 ��� � ��������� ����������
� �	�� �4������ �������� �	��� �	��

ȧ/a ≥
√
Λ/3 ∀t� �� �	�� �	� ���� �� ����,����
 ��� ���������
 ���������� a(t) → +∞ #��

t → +∞� ��� ȧ/a ≥ cst/a2 #�� cst > 0� �� �	�� �	��� �� � 5�� 5���� a(t) → 0+ �� � ,���� ����

�	�� ��� �� ��� �� t = 0+� �	� �����
 ������������ �# �	� ������ ������� �� �	�� ���������
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 #�� ������ ���������� �� �� ��� ��
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 ��� �� ��������� �
 ���������� ���	 ��
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√
t� �	� ��� ���� ���� ��������� 	�� ������ ���������

�� ��������� �
 ������ ��� ��� ���� ���� �����! �	� ���������� �������� ���	 Ωm +ΩΛ � 1�
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 ��������� εr� (ȧ)
2 = H2

0 Ω
0
m/a+H2

0 Ω
0
Λ a

2 ���	 �	� ���������� a(t0) = 1 ��� ���	 �	�

�������"��
 6���� ��������� H0 ≡ H(t0)� �	�� �������� �4������ ��� �� ����� ���
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�� �������

a(t) = 3

√
Ω0
m

Ω0
Λ

sinh2/3
(
3

2
H0

√
Ω0
Λ(t− t1)

)
, �&�-/!
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0 Ω0
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!� Ω0
r
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 ��
������ �������� ���� ����������
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r ���	 ��� ����(� ������ �� ������� �
��� ���( Ω0

γ � 5.4 · 10−5!� ��� � ���� �����'
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���
�� gH ��� � ��		������ ����� ��������� ���
���% gμν = gHμν + δgμν � ��� ���&
���� ���
��

���	������ �
� ������� �
����� ����
 ��� ��
� �������� �
�� �'�'( ����
 � ����� �� ����

���
������ �
�� ��� ������ ���� t �� ��� ��������� 	
�� η� ��� �����
 �� ������ �� � 	�
�

�������� �� t �
�� ��� !"#$ ����� �����
 �� dη = dt/a(t)% �������� �� ������ � ��	�� N = a(t)
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���� ��
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ds2H = a2(η)
[
−dη2 + ḡij dx

idxj
]
, �'�*+ 

�� ��
�� �� ��� 
���
���� �	����� ���
�� ���� ���� ������� ḡij dx
idxj ≡ ds2ref �
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���� �� ���% 
��� ��� 
���
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������ ���
�������% �� ���� ḡij = δij � ���
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��� �� ��� 3'++*5% ����& ��� $���� 3*44+5% 1����% ���
����% ���

���/����� 3*4'*5 	�*8+�*9* ������� ��� �,������� �� � ��
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ds2 = a2(η)
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−(1 + 2φ) dη2 + 2Bi dη dx

i + ((1− 2ψ) ḡij +Gij) dx
idxj

]
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Bi = D̄iB − Si ; Gij = 2 D̄iD̄jE + D̄iFj + D̄jFi + hij , �'�:' 
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Tμν = ε uμuν + p bμν + πμν ;  $�%&!

ε = εH + δε ; p = pH + δp ,  $�%%!
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��� a(η) ��������� �� 
�� �	#������ ������  ������ ��� ���
	�� a(η) ∝ η2� ��
� η ∝ t1/3� ��
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�� ./01 ���� uH ���� �� �������
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�� �������� ��	
�	� ������	
�� xi� uμH = (a−1, 0, 0, 0) �� 
�� ������	
� ���
�� (η, xi)� �
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 	� uμ = uμH + δuμ ��� 	 ���
������ δuμ� �� �������
�� �
 
��� ��	��

uμ = a−1(1− φ, V i) ,  $�%3!

��
������� 
�� ����������
 ���
������ �	��	��� V i� ����� 
�� u0 �������
 �� ������ ���� 
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���
������ �4�	����� �� 
�� ����	��5	
��� ����
��� gμνu
μuν = −1 ����� 
�� ��
�� ����  $�%*!�

V i 	� �� ����
 ��
� 	 �	�	� 	�� 	 ��
�� �	�
� V i = ḡij D̄jv + vi ��
� D̄iv
i = 0�
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����� ��������� k = +1��  ��� ���������� ��� 
������ �

������ ��������� �� ���� ���� �	 �������� ���� �������� ���������� ��������� ���������� �����
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#�	 ���������� �	���� (η, xi) �� ���� ��� ���� ������� ��	 �� ������ ����� ��� 
��������
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*"+,� �������� ��� ��� ������� (���!������) �
�������� ��� ������ �� � ����� ���������
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��� ����������� (η, xi)� �� ����� �� ��� 
�������� �������� ���� ��� �� ���������� ��� ����
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������ η ����������� ���� ��� ��� ������ ��
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����������� ��������� φ� B� Si� E� δε��� #� ��� ��
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��������
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����������� �����	� ��� ������ ��� ����� �� ��� ��	�� �������� �� ��� 
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*��� � ����� ���������� �	���� (xμ) = (η, xi) �� ���� ��� 
�������� ���� ������� ��!��

��� ���� �$�%&�� ��	 ���������� ���������� ������ xμ �→ x̃μ = xμ + δxμ(xν) ��� 
������� ����

���������� ����� 0� ��� ���� �� ������� ����
����� ������� �������� �� ���������� �� ��
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���������� ��� �� ���������� ����� ���� ���������� ���������������� ��������� ��� ������������
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����� �����	


φ �→ φ̃ = φ− a′

a
δη − (δη)′ ; ψ �→ ψ̃ = ψ +

a′

a
δη

B �→ B̃ = B + δη − χ′ ; E �→ Ẽ = E − χ , ������

���� ��� ������� ���������� ������ �� ���� ����� ���� ������ ��� ������ ������ δxi = ḡijD̄jχ+ χi

��� D̄iχ
i = 0� ��� ���� � ����� ′ ������� � ������� ���������� ��� ������� �� η� ��� ������

����� ��� ���� ����������� ���� �������� Si �→ S̃i = Si + ḡijχ
j ′� ���� ��� ������ ���� hij �� ���

������ ������ ����� ������� ���������� hij �→ h̃ij = hij �

��������	�
��	��� ��������

!� ����� �� �"����� ������ ������ ���� ��� ����������� �� ��� �� �����# �������� ��� ���  ����

����������	���
 $��������� �� � ����� ����� �� ��� ������ ����� ���� ��� � �	��	� �����%���������

����� ��� &'������� �()�	� *���� ���������� �� ��� ������ �� � ���# ����������� ��$��������� ����

�� ��� �� ��� ����������� �� � �����  ��+������ ����� �� �� ����� �� ��� ������ �� ��������� ����

�� ��,����� ��� ���� ������ - �����%���������� ��������� ���� ���� ���� �� � ���������� ��

��� ������ �� ��� ������ �� .���  ����� �������� ������ ������� �������������� �� ��� ������ ��

����������� /�� ��������� ��� ����� �������������� �� � ������ ϕ ����� ��� ���������� ������

xμ �→ x̃μ = xμ + δxμ(xν) �� ��� ������  ����� ��� �� ���
���� ϕ(xμ) ��� ϕ̃(xμ) ���� ."��

���������� ����� xμ ������� �� � ."�� ����� �� ���  ��+������ ��������� ����� �� � �������

ϕ̃(x̃μ) = ϕ(xμ)� 0���� ϕ̃(xμ) = ϕ(xμ− δxμ+o(δxμ)) = ϕ(xμ)− δxμ∂μϕ+o(δxμ) ��� ��� �����%

���������� ��������� �� ϕ �� ∂μϕ = 0� ������� ���# ��������� �� ������� ���� ��� �����%���������

�� ��# ������

0������ �����%���������� 
� �	�
 �	��	 �� ����� ����� �� ��� ���������� $���������� 1"��������

��� .���%����� ������� �� ��� ����������� �� ��#����� � ����� ��� �� ����� �� ���� ����� ���

��� ���� ����� �������������� ������ ��� �����# �����%��������� ������ /����%����� �����%

��������� ����� ��� ��� ������# � ������ ���� ��� �������� �� .���%����� ������ ������ �� ������

���������� ��� �������� &'������� �()�	�

-� ����� � ���� ��� ��������� ��� 2������ ����3 hij �� ��� ������ ���������� .���%����� ���%

��� ����� �� ���� � .���%����� ����� ���������� /��� ��� �������������� ����� ������ �� ��� 2������

�����3 �� ��� .���%����� ������ �������������� φ� B� ψ ��� E� ��� ��� ��� ���� ��� �������� ��

��� �������� +��� �� ��� ��	���� ��
��
���� ��� ���� �����%��������� �� .���%�����


Φ ≡ φ− a′

a
(E′ −B)− (E′′ −B′) ; Ψ ≡ ψ +

a′

a
(E′ −B) . ����4�

5� ������� ����������� ���� ��� ������� ���  � �"������ ��� ��� 2������ �����3 �� ��� ������

���������� ��� �� ��� �� 2������ ����3 ������� �� ������� �� ��� ���������� ������� δη ��� χ�

��� ���� ����� ����

-� � ������ ����� �� � ��������� ������ ��� � ���������� �����%����������  ��+������ ����%

��



�������� δε �� 	
� ������	�����	� �� ������ �� ���� 
����� ���	��
���	� �� δε �→ δε − ε′H δη =

δε + 3 (a′/a)(εH + pH) δη� �	 ���� 
� ��� ���	��
�����
	 ������ 
� ψ� δε − 3 (a′/a)(εH + pH)ψ
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�� a(η) (b ν
μ ∇νε)/ε  +���� �	� ,��	�� �&-&'� 
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• 4�� 	��

�� ���� �� ��� �� ��� �
	����
	� E = 0� B = 0� �	� Si = 0� �	 ���� 
� ���

���	��
�����
	 ���� �
� ����� ���������� ���� � �
	����
	 ��	 �� �������� �� � ����� ���	��

��
� �	� ����	 
���� ����� �
� ���������� Eo� Bo� Si,o� ���� ���� δη = E′
o−Bo� χ = Eo �	�

χi ���� ���� χi ′ = −ḡijSj,o� 2��
���	���� ���� ������ �
�� �������� ����� �����
� �	 ���

�
�� 
� � �����	����	��	� ���� ����
� ������� �

���	��� ���	��� η �→ η� xi �→ xi+χi(xk)

���� D̄iχ
i = 0� ���
������ ���� � �����	����	��	� ���������	� 
� ��� ������� �

���	���� xi
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• 4�� 
���������
 ���� �� 
����	�� �� �����	� φ = 0 �	� Bi = D̄iB − Si = 0� 4�� ����
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����������� �� ��� ����	�
�� ������� �� ��� ������ ���� ����	��� ����� ��� ������ �� ���

���������η ������ ��� � ����� ��������� ������� ������	���� ������� ��� ������� ��� !" #�

���� ��	��� ��� ������ �� ���� 
������������� $g0i = 0%" &���� ������� ����' �� � ������ ���

� ��� ������� ��� ����	�
������ 
���� ���� ��������� �� ��� ������� ���������� gij " &����

�� �����	�� ��	�� ������ �� ����� � ��� ���������������� 	������� '���� ��� 
� 	���

�� � ���������� ������� η �→ η + a(η)−1 δ̂η(xk)� xi �→ xi + (δxi)(xk) $'��� ���� δ̂η = a δη%

�(���� ��� )����� *++�!" &�� ������ �� η ����������� �� ��� ��
������ ������ � ���

��������� ������	����" #� ��� 
� ������� ��� ���������� ��,	��������� �	�� �� � ���������

� ��� ������ �������� ����	�
����� �����
�� v �� ��� ������� ������	����" &�� ������ ��

��� ������� ����������� ������ ����������� �� ����� ����
������ �� � ���������������� '��"

• &�� ������	 
�������� ��� �� ��-��� 
� ��� ��,	�������� E = 0� ψ = 0 ��� Fi = 0

'��� �� �����	�� ��	�� ������� ������� ��� ������ ���� hij �� ��� ���� ����	�
����� � ���

������� ������ ���������� gij " &�� ������ ��������� �	����	�� R � ��� ���������η ������


���� ����� �� ������� 
� a2R = 6k+12k ψ+4 ḡijD̄iD̄jψ �.����� (�������� ��� (��/���	��

*+�*� �"*01!� ���� ��	�� ������ ����������� �� �� �
����� � ����	�
����� �� ���� �	����	��

'���� ����� ��� 	����� ���	�R = 6k/a2 � ��� 
������	��" 2�� � 3�� 
������	�� $k = 0%�

���� ��	�� �� ���� ������� �� �� ��� ��� ��� �(���� ��� )����� *++�!� '��� R = 0 �����

�� ��� ����	�
�� ���������"

• &�� 
�	���� ��������� ��� ��,	���� Bi = D̄iB − Si = 0 ��� V i = ḡijD̄jv + vi = 0"

&���� �'� ������ ��� �'� ������ ���������� ��������� ���� ��,	�������� ���� ��� �'�

������ $δη� χ% ��� ��� ������ $χi% ��	�� ������� � ������ ��� ����' �� 	�-�� �� �������4

��� ���������� ���	������ � ��� ��������� � ��� ��	������������ ������ ,	������ vi − Si
������� ��� ������� ��� ! �	�� 
� ���� �� ����� �� ���� ��	�� �� 
� ��-���" &�� ��	��

���������� ���������� �� ��� ��������� � ��� �������  ��������� ���������� ui = a−1 V i�

������� ���� ��� ������� ����������� ��� �������� '��� ��� 3	�� 3�'� ��� � ��� �������

���������� � ��� �������� ����� ui = a(Bi+ḡijV
j)� ������� ���� ��� ���������η ������ ���

���������� �� ��� 3	�� 3�'� u = n" &�� ������ ������� ���� ���  ��������� �� ������	�����

������ ��� ��	� ���� �� �	�� 
� ������������� '���� �� �5������� �� -��� ����� 
� ���

��������� vi − Si = 0" &��� ��	�� �������� � ���	��� ����������� � 
��� ��� �������

�������� ��� ��� ������� ����������� �� ��� 3	�� �������" &�� ��������� ��	�� ������

�� � ���������������� ����
������ � ��� ������� ������������ xi �→ xi + (δxi)(xk)� ��� �

����
������ � ��� ������� ������� η �→ η + (δη)(η)"

6�� 	����� ��	�� ���������� ��� 
� ������� ��� 
� ����������� �����-� ��,	�������� �� ��'

��� ���������η ������	����� ���	�� 
� ��-���� �	�� �� ������	����� � �������� ������ �������

$δε = 0% �� �������� ������ �5������� �	����	��" 7��������� ���������� ��� ���� 
� ��� �� 	���

��������� ��� ��	��� ����� ��� ������ � ��� ������� ����������� �����'��� ������� ���"
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�	 �g� �̈f = �g� �� � ������ �� ������
 �	� ���������� ��

������ ��� 
���������� ������� �g � ���������� �� ���
 �� ���������� ����� ∂xigj−∂xjgi = 0�

��� �� �������
 �	� ������ ������� ������
 � �� �� ������� �	� ���� ������ ���� �� ∂xigi =

−4πG�� �	� �������� �� � � 
��� �� �	� ���� ����������� �������� d�/dt+� ∂xivi = 0� �	�

��� �� ���
����� ����������� � ����� �� �	� ���� �������� �� �� �i( �X) ≡ �(ti, �X) = �(ti, �x)�

��� �� �	� ���������� �����

�̇+ �
NJ̇
NJ

= 0 : �(t, �X) =
�i( �X)

NJ(t, �X)
, ������

 	��� NJ � �	� !������ �� �	� ��������� ������������� �X �→ �x �� � 
��� ��� ��	� ����� N

������
 ��� "#� �����$��

NJ ≡ det

(
∂f i

∂Xj

)
; NJ(ti, �X) = 1 . ����%�

&����� �'��� ���� �i( �X) �� �	� ���� �������� �� �v ��� �g ��� �� ���
�� ���'������

����� ��� ��� �('������ � ����� �� �f �  	�� �	� )���� ��� ���� ���� ����������� �������� ���
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�	��� � � �������� ��� �� ��*�('������ � ����� �� +�
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εklm

(
∂Xk f̈ i

) (
∂Xlf i

) (
∂Xmf j

)
= 0 ∀j ;

1

2
εijk ε

lmn
(
∂Xl f̈ i

) (
∂Xmf j

) (
∂Xnfk

)
= −4πG�i ,

����,�

 �	 �	� ������� ����������� +��*-��� ������ εijk� ε
lmn ≡ δli δ

m
j δ

n
k εijk�
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�	� +�
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��� ��� ������ ψ &'���
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√
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√
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ψ
√
h
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dψ
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VD

dVD
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daD
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������ ωμν ��� �����	�� ��� 	� ���������� ���� ���������� 	���� �	�

�.������� ����� ��� �� ���� ��� �� ���� �	��	 �� 	� �.������� ������� ��� �� �������� ���
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ȧD
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〈R〉D − 1
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äD
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����������� �����

QD ≡ 2

3

(〈
Θ2
〉
D − 〈Θ〉2D

)
− 2

〈
σ2
〉
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ȧD
aD
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= 8πG εDeff + Λ− 3 kD
a2D

; ����� 

3
äD
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= −4πG(εDeff + 3 pDeff) + Λ ; ����! 

�̇Deff + 3
ȧD
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(εDeff + pDeff) = 0 , ����� 
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� �%�	�� 
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16πG
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16πG
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48πG
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Lagrangian theory of structure formation in relativistic cosmology.
V. Irrotational fluids
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We extend the general relativistic Lagrangian perturbation theory, recently developed for the
formation of cosmic structures in a dust continuum, to the case of model universes containing a single
fluid with a single–valued analytic equation of state. Using a coframe–based perturbation approach,
we investigate evolution equations for structure formation in pressure–supported irrotational fluids
that generate their rest–frame spacetime foliation. We provide master equations to first order for the
evolution of the trace and traceless parts of barotropic perturbations that evolve in the perturbed
space, where the latter describes the propagation of gravitational waves in the fluid. We illustrate
the trace evolution for a linear equation of state and for a model equation of state describing isotropic
velocity dispersion, and we discuss differences to the dust matter model, to the Newtonian case, and
to standard perturbation approaches.

PACS numbers: 98.80.-k, 98.80.Es,04.20.-q,04.20.Cv,04.25.Nx,04.30.-w

I. INTRODUCTION

Relativistic cosmological perturbation theory is based
on evolving the Einstein equations with a global folia-
tion of the spacetime metric, via the 3 + 1 formalism
[7, 41]. In the standard approach a spatially homo-
geneous and isotropic Friedmann–Lemâıtre–Robertson–
Walker (FLRW) geometry is assumed as the unperturbed
global background spacetime, and Einstein’s equations
are then solved to some order on this predefined back-
ground [45]. The standard approach is Eulerian in the
sense that perturbations are represented and propagate
on this background that corresponds, in the Newtonian
limit, to Eulerian perturbation theory. In this latter case,
a perturbation method for the density and velocity fields
is used to solve the Euler–Poisson system of equations
that governs the fluid evolution [10]. Cosmological struc-
ture formation in the nonperturbative regime is also gen-
erally modeled within the Newtonian framework.
An alternative approach to structure formation has

also been developed, principally in the Newtonian regime,
which is directly tied to fluid elements. It is consequently
known as Lagrangian perturbation theory [8, 9, 11–
17, 26, 27, 33, 52, 53, 56, 57, 71, 78] to distinguish it
from the Eulerian approach based on coordinates on an
assumed global background. The Lagrangian approach
uses a single perturbation variable, the fluid’s deforma-
tion field. This gives it the advantage of also applying in
the nonlinear regime, where Eulerian density perturba-
tions are large. In recent years, Lagrangian perturbation
theory has been generalized to general relativistic cos-
mologies with a dust continuum [L1, L2, L3, L4]; see also
[37, 44, 50, 58, 59, 63, 64].
In the Newtonian regime, an extension of Lagrangian

∗Corresponding author. buchert@ens–lyon.fr

perturbation theory to fluids with dynamic pressure was
considered first in terms of isotropic pressure [6]. The
resulting Lagrangian perturbation equations have been
solved up to second order for a polytropic fluid [51, 67].
For third order perturbative solutions in Newtonian La-
grangian perturbation theory with pressure, see Ref. [66].
Models with isotropic pressure can also be considered
as phenomenological models for the generally anisotropic
pressure originating from the velocity dispersion of dust
particles [47–49], by taking velocity moments of the colli-
sionless Vlasov equation [24, 25]. For a sequence of mod-
eling assumptions used in nonperturbative extensions of
Lagrangian perturbation theory, see the summary [21].
In this paper we will extend relativistic Lagrangian

perturbation theory for a dust matter model [L1, L2, L3,
L4] to the case of irrotational perfect fluids, and also to
cases that are relevant for the modeling of multistream
regimes where the dust approximation breaks down. This
will provide a framework not only to deal with a relativis-
tic generalization of Newtonian Lagrangian perturbation
theory with pressure at late epochs, but also to the fully
relativistic situation of the early Universe.
A primary motivation for such an investigation is to

establish a framework which is better suited to stud-
ies of the backreaction of inhomogeneities in cosmology
as compared to standard perturbation theory. In par-
ticular, standard cosmological perturbation theory con-
ventionally assumes that average cosmic evolution is ex-
actly described by a solution to Einstein’s equations with
a prescribed energy–momentum tensor on a global hy-
persurface irrespective of the scale of coarse–graining of
the matter fields. No fundamental physical principle de-
mands such an outcome [76].
The scalar averaging scheme introduced in [19, 20, 22,

30] is an example of an approach to backreaction of in-
homogeneities in cosmology, in which the Einstein equa-
tions are assumed to hold on small scales, where they
are well–tested, but not for the average cosmic evolu-
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tion on arbitrarily large spatial scales. This is a con-
sequence of the fact that a generic averaging operation
includes nonlocal fluctuation terms, and it should not be
confused with modified gravity approaches which change
the Einstein-Hilbert action. A variety of phenomenolog-
ical interpretations of the Buchert scheme are possible
[28, 29, 46, 61, 62, 72–75, 79], since additional ingredi-
ents are required to relate statistical quantities to phys-
ical observables determined from our own cosmological
observations.
To date, no phenomenological approach to backreac-

tion has fully utilized the general scalar averaging frame-
work for perfect fluids [20]. In the timescape scenario [73–
75], solutions to the corresponding system of averaged
scalar equations have been given with matter and radi-
ation [31] extending smoothly into the early radiation–
dominated epoch in the early Universe. However, in de-
riving these solutions it was assumed that backreaction is
insignificant before photon–electron decoupling, so that
backreaction involving pressure terms was neglected.
Neglecting backreaction in the primordial plasma may

seem to be a reasonable approximation for the evolu-
tion of the background universe to leading order, given
that it is extremely close to being spatially homogeneous
and isotropic at early times. However, backreaction can
nonetheless make a significant difference when consid-
ering the growth of perturbations. In particular, even
if the difference from the Friedmann equation is of or-
der 10−5 as a fraction of energy density at decoupling,
this is nonetheless of the same order as the density per-
turbations. A recent study of Cosmic Microwave Back-
ground (CMB) anisotropies in the timescape model found
that neglecting such small differences in initial condi-
tions at last scattering leads to systematic uncertainties
of 8–13% for particular cosmological parameters at the
present epoch [54]. This remark applies to the conserva-
tive assumption that the background universe does not
already contain backreaction arising from earlier epochs
that could be compatible with large–scale homogeneity
and isotropy [28].
For these reasons, we desire a new approach to cosmo-

logical perturbation theory which is intrinsic to the fluid
and not anchored to an embedding space. Relativistic
Lagrangian perturbation theory represents a promising
avenue, as it is intimately tied to physical particles. To
proceed to a fully realistic theory will require important
steps beyond those which we investigate in this paper.
Such steps will include:

• An extension from one fluid to the many fluids per-
tinent to the early Universe, which requires consid-
ering a tilt between various fluid flow vectors and
the normal to the spatial hypersurfaces;1

1 Note that in the standard approach, the same FLRW frame is
used for different matter components. (Even in this idealized case
there are important differences to be respected for the different

• Identifying relevant physical scales and volume par-
titioning the model universe into regions whose
average evolves by averaged dynamical equations,
rather than by global Friedmann equations;

• Aiming at a background–free description. While
perturbations are still formulated in the present pa-
per as deviations from a fixed background cosmol-
ogy, a general volume partitioning can be imple-
mented without referring to a background [23, 72].

As a first step towards these goals, in the present paper
we will firstly consider relativistic Lagrangian perturba-
tion theory for the same system that was considered in
Ref. [20], namely a single component perfect fluid with
barotropic equation of state. We will also include an ex-
plicit cosmological constant term.
This paper is organized as follows. In Section II we

employ a 3+ 1 formalism [7, 41] with Lagrangian spatial
coordinates, presenting the general framework and foli-
ation structure for a general irrotational matter model.
We then restrict our attention to a barotropic fluid and
discuss in detail the fluid variables and their equation of
state. In this context, in Section III we introduce Car-
tan’s coframe formalism, proceeding with the relativistic
Lagrangian perturbation approach. We develop the first–
order Lagrangian scheme and derive master equations for
the trace and trace–free parts of the perturbation field.
In Section IV we apply the first–order Lagrangian scheme
to particular matter models, allowing us to explicitly de-
rive solutions for the trace part, and we illustrate and
discuss the results. Particular solutions for the gravi-
toelectric traceless part are studied in Appendix A. We
summarize our main results in Section V.

II. SPACETIME FOLIATION STRUCTURE
AND 3+1 EINSTEIN EQUATIONS

In this paper we will consider a model universe con-
taining a single irrotational fluid, so that a foliation of
spacetime into flow–orthogonal hypersurfaces can be in-
troduced.

A. Decomposition of Einstein’s equations for
flow–orthogonal hypersurfaces

The irrotationality assumption on the fluid amounts to
the existence of two scalar functions, N and t, such that
the 1−form dual to the normalized 4−velocity vector uμ

of the fluid can be written as:2

uμ = −N ∂μt ; N := (−∂μt ∂μt)−1/2
. (1)

matter components [70].)
2 In the convention we use here, greek letters μ, ν, · · · are spacetime
indices running from 0 to 3, while lowercase latin letters i, j, · · ·
are spatial indices running from 1 to 3. We use units in which
c = 1, if not otherwise stated.
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The level sets of t then define flow–orthogonal hyper-
surfaces, labeled Σt, which foliate spacetime, with unit
normal uμ, uμuμ = −1. We will now follow the 3 + 1
formalism [7, 41] and define our time coordinate as coin-
ciding with this function t. In this case, N(t, xi) is the
lapse function.
In addition, we choose the spatial coordinates to be

spatial Lagrangian (or comoving) coordinates, denoted
X i, that are assumed to be constant along each flow line.
In the set of coordinates (Xμ) = (t,X i), the components
of the fluid 4−velocity vector and its dual are then re-
spectively:

uμ =
1

N
(1, 0, 0, 0) ; uμ = (−N, 0, 0, 0) , (2)

while the line element can be written as

ds2 = gμν dX
μdXν = −N2dt2 + gij dX

idXj . (3)

Here, gij corresponds both to the spatial coefficients of
the 4−metric gμν and to the components of the 3−metric
that it induces on the hypersurfaces Σt. Introducing the
projector onto Σt, hμν = gμν + uμuν , this 3−metric is
indeed

hij := gμνh
μ
ih

ν
j = gij . (4)

The spatial metric and the lapse function N together en-
code the inhomogeneities. (We will later use the more
elementary coframe coefficients instead of the 3−metric
coefficients.) We use Ri

j to denote the Ricci tensor coef-
ficients of this spatial metric, with R the corresponding
Ricci scalar.
Without loss of generality, the energy–momentum ten-

sor of the fluid is given by

Tμν = (ε+ p)uμuν + pgμν + πμν + qμuν + qνuμ , (5)

where πμν is an anisotropic pressure, with π[μν] = 0,
uμπμν = 0 and πμ

μ = 0, and qμ the heat flux, with
qμu

μ = 0.
Introducing the expansion tensor (as minus the extrin-

sic curvature) of the hypersurfaces,

Θij := ∇νnμh
μ
ih

ν
j =

1

2N
∂tgij , (6)

Einstein’s equations with a cosmological constant may
be cast into a set of constraint and evolution equations.
The constraint equations are the energy and momentum
constraints:3

R+Θ2 −Θi
jΘ

j
i = 16πG ε + 2Λ ;

Θi
j‖i −Θ|j = −8πGqj .

(7)

3 The symbol ‖ denotes the covariant derivative with respect to
the 3−metric hij . When applied to scalars it reduces to a partial
derivative, denoted |, with respect to the Lagrangian coordinates,
Xi.

The propagation equations are given by

Θi
j =

1

2N
gik∂tgkj ;

N−1∂tΘ
i
j =− ΘΘi

j −Ri
j +Ai

j

+ 4πG
[
(ε− p) δij + 2πi

j

]
+ Λ δij ,

(8)

where aμ := uν∇νuμ = N−1N||μ is the covariant accel-
eration of the fluid (with ∇ denoting the 4−covariant

derivative), and Ai
j := ai‖j + aiaj = N−1N

‖i
‖j . Com-

bining the trace of the second equation with the energy
constraint yields the Raychaudhuri equation:

N−1∂tΘ = −1

3
Θ2 − 2σ2 − 4πG(ε + 3p) +A + Λ , (9)

where A := Ai
i = ∇μa

μ = N−1N
‖i
‖i.

With the spacetime described by the given metric, the
energy–momentum conservation laws are expressed as
follows:

∂tε+NΘ(ε+ p) = −N
(
qμ||μ + 2qμaμ + σμνπ

μν
)
; (10)

(ε+ p) aμ + p||μ = −
(
π ||ν
μν + aνπμν

)
−
(
4

3
Θ qμ + qνσμν + uν∇νqμ − qνaν uμ

)
. (11)

In what follows, we will specialize to the case of isotropic
pressure, πμν = 0, and vanishing heat flux, qμ = 0. Note
that with these assumptions we do still allow for some
nonperfect fluids, since p is not necessarily the local ther-
modynamic equilibrium pressure [38]. Such a restriction
is required here since both extra terms in general create
vorticity, which cannot be covered by the class of flow–
orthogonal foliations considered in this work.
Let us illustrate this by considering more closely the

irrotationality condition for a fluid with negligible heat
flux, qμ = 0, to see how this condition constrains the
equation of state and the anisotropic pressure. The van-
ishing of the vorticity 2−form implies vanishing of the
antisymmetrized projected gradient of the acceleration,
a[ν||μ] = 0, since aμ = (lnN)||μ from (1), being a conse-
quence of the existence of the fluid–orthogonal foliation.
From this, one obtains through (11) the following con-
straint on the energy–momentum components:

ε||[μ p||ν] + (ε+ p)||[μ h
ρ
ν]∇σπ

σ
ρ

−(ε+ p)hρ[μh
σ
ν]∇ρ∇τπ

τ
σ = 0 . (12)

Since ∇μπ
μ
ν = 0 would imply the vanishing of the right

hand sides of (10)–(11), an anisotropic pressure that does
contribute to the dynamics will satisfy ∇μπ

μ
ν 
= 0 and

thus will not fulfill the above condition in general, pro-
ducing a vortical flow. Conversely, a barotropic fluid flow
with πμν = 0 and an effective equation of state of the
form p = β(ε), automatically satisfies the above con-
straint. Moreover, for such a fluid, (11) allows one to
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write the acceleration as a flow–orthogonal projected gra-
dient, and it will indeed obey the relativistic equivalent
of the Kelvin–Helmholtz theorem, so that irrotationality
will be preserved along the flow lines [32, 38].

B. Barotropic perfect fluid spacetimes

For the remainder of this paper we will only consider
fluids with qμ = 0 and πμν = 0. The energy–momentum
tensor (5) then reduces to perfect fluid form:

Tμν = (ε + p)uμuν + pgμν , (13)

while its conservation equations (10)–(11) become, re-
spectively

∂tε+NΘ(ε+ p) = 0 ; (14)

aμ = − p||μ
ε + p

. (15)

As a further restriction we will assume that the fluid
flow is barotropic, i.e., we assume a local relation of the
form p = β(ε) to effectively hold throughout the entire
fluid,4 that we will henceforth call the equation of state or
EoS. As noted earlier, such a relation will ensure that the
flow remains irrotational. For such a fluid, setting some
reference constant energy and rest mass density values
ε1, �1, we may use the EoS to define a formal rest mass
density �(ε) and a related specific enthalpy h(ε) – as an
injection energy per fluid element and unit formal rest
mass [42] – respectively, by

� := F (ε) := �1 exp

∫ ε

ε1

dx

x+ β(x)
; (16)

h(ε) :=
ε+ β(ε)

F (ε)
=
ε+ p

�
. (17)

The energy–momentum conservation equations (10) and
(11) then, respectively, provide a conservation law for �,

∂t�+NΘ� = 0 , (18)

and a relation between the specific enthalpy (17) and the
lapse,

N||μ
N

= aμ = −h||μ
h

: (Nh)|i = 0 . (19)

4 Considering the local dynamical solution for these variables,
there is always a freedom of integration constant that depends
on the Lagrangian coordinates, i.e., on the particular fluid ele-
ment. We assume here that the same relation holds for all fluid
elements. Only this assumption makes the dynamical relation
an apparent equation of state that is valid throughout the fluid
flow. All related variables then also depend on this assumption,
which is a restriction imposed on initial data.

By an appropriate choice of the hypersurface–labeling
function t, the lapse can thus be rescaled so that [20, 38]

N =
1

h
=

F (ε)

ε+ β(ε)
. (20)

If we assume that the fluid remains in thermodynamic
equilibrium locally, and if it has a nonvanishing rest mass
density, then this density will follow the same evolution
law (18) as � = F (ε), by rest mass conservation. This for-
mal � and the actual rest mass density will then coincide
up to a possible different spatial dependence (cf., foot-
note 4). These two quantities may be made equal by a
suitable choice of initial conditions for the rest mass den-
sity or local thermodynamic equilibrium assumptions.5

This would then ensure the validity of the interpretation
of � and h as the physical rest mass density (or particle
number density) and specific enthalpy of the fluid, re-
spectively. We will not, however, make such assumptions
in the following Section III, to keep its level of general-
ity. This will allow us to consider the case of a zero rest
mass fluid (for which F (ε) 
= 0 and h(ε) are still well–
defined), as well as that of a nonzero rest mass density
with less constrained initial conditions. It will also allow
us to consider the variable p as an effective pressure term
— e.g., modeling velocity dispersion — instead of the lo-
cal thermodynamic equilibrium pressure. For the general
treatment including these cases it will suffice to formally
define � and h from Equations (16)–(17) using the single
barotropic assumption p = β(ε). We follow the notation
of Ref. [20] here.

5 Let us take the local state of the fluid to belong to a thermody-
namic Gibbs space admitting the equation of state u(s, v), where
s is the specific entropy, v is the specific volume and u = εv is
the specific internal energy. If we now assume that p is the
local thermodynamic equilibrium pressure of the fluid, it can
then be expressed as p(s, v) = −∂u/∂v. Provided that a specific
equation of state does not render the above relations degenerate,
then these relations may be inverted to provide v(ε, p). Within a
barotropic flow satisfying p = β(ε), the actual rest mass density
v−1 thus only depends on the energy density ε, which fully de-
termines its initial conditions. From the conservation equations
of both quantities, ∂tε/(ε + β(ε)) = −NΘ = ∂t(v−1)/v−1, this
dependency must be v−1 = F (ε), for Θ not identically vanishing,
up to a constant prefactor which can be absorbed in the choice
of 	1. Hence, in this case, F (ε) is indeed the rest mass density of
the fluid with no further loss of generality. Also note that under
the same assumptions, s is also a function of ε, preserved along
the flow lines as the flow is adiabatic: ∂ts = 0 = (ds/dε) ∂tε,
while ∂tε is not identically vanishing. The flow is thus isen-
tropic, s being a constant s1 that depends neither on time nor
on the fluid element. The barotropic relation then corresponds
to the equation p(ε, s) deduced from the thermodynamic equa-
tion of state, and taken at constant s, β(ε) = p(ε, s = s1) (see
[32, 38, 39, 42, 43, 65]).
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III. LAGRANGIAN PERTURBATION SCHEME

In this section we will introduce the coframe formalism
to describe spacetime, which is a set of four deformation
1−form fields dual to a generally noncoordinate basis of
vectors at every point of the manifold [35, 36, 77]. A gen-
eral relativistic version of a coframe–based perturbative
approach for an irrotational dust continuum has been
proposed in Ref. [44], developed further in Ref. [50] and
in final form, featuring only the coframes as the single
perturbation variable in Ref. [L1].

A. Coframe formulation

Following [L2, L3, L4], we construct a set of three
spatial coframes ηa such that the spatial metric can be
rewritten in the form

g(3) = Gab η
a ⊗ ηb : gij = Gabη

a
iη

b
j . (21)

Here Gab(X) is the Gram matrix that encodes all
the initial spatial metric perturbations, Gab(X) :=

δ i
a δ

j
b Gij(X), with the initial metric coefficients,

Gij(X) := gij(ti,X). On the other hand we can also
include the temporal component into the matrix and
rewrite it as

G̃αβ =

(
−1 0
0 Gab

)
. (22)

With this we introduce a full set of four spacetime
coframes ηα to describe the 4−metric g(4) :

g(4) = G̃αβ η
α ⊗ ηβ , (23)

by defining the coframe components as

η0μ = (−N, 0, 0, 0) ; ηaμ = (0, ηai) . (24)

We now define the transformation between coordinate
and noncoordinate bases as: J =

√−g/
√
−G̃ =√−g/

√
G (the signature adopted here being (−1, 1, 1, 1),

and using the notation g := det((4)g), G̃ := det(G̃αβ) and
G := det(Gab)). This corresponds to J = − det(ηαμ), or,

1

4!
εαβγδ η

α ∧ ηβ ∧ ηγ ∧ ηδ =

− 1

4!
J εμνρσ dXμ ∧ dXν ∧ dXρ ∧ dXσ .

(25)
From Eq. (24), in terms of the spatial components of the
coframes, J becomes

J =
1

3!
Nεabcε

ijkηaiη
b
jη

c
k = N det(ηai) , (26)

while correspondingly, the dual vector basis can be de-
scribed by the four frames eα = e μ

α ∂/∂Xμ:

e μ
α ηαν = δμν ; e μ

α ηβμ = δ β
α ;

e μ
α = − 1

6J εαβγδ ε
μν�σηβνη

γ
�η

δ
σ ;

e i
a =

1

2J Nεabcε
ijkηbjη

c
k ;

e μ
0 =

1

N
(−1, 0, 0, 0) ; e μ

a = (0, e i
a ) .

(27)

With this choice, the evolution equations for J and the
expansion tensor coefficients Θi

j read:

∂tJ =
∂tN

N
J + JNΘ ;

Θi
j =

1

2J εabcε
ikl
(
∂tη

a
j

)
ηbkη

c
l ;

∂tΘ
i
j

N
= −ΘΘi

j +
1

2J εabcε
ikl∂t

( 1

N
∂tη

a
j

)
ηbkη

c
l

+
1

NJ εabcε
ikl
(
∂tη

a
j

) (
∂tη

b
k

)
ηcl .

(28)

From the constraint and evolution equations (7)–(9),
together with the definition of J and Eqs. (28), the
Lagrange–Einstein system of an irrotational barotropic
fluid model is cast into the following form:

Gab ∂tη
a
[iη

b
j] = 0 ; (29)

1

2J εabcε
ikl ∂t

(
1

N

(
∂tη

a
j

)
ηbkη

c
l

)
= Ai

j −Ri
j

+ [4πG(ε− p) + Λ] δij ; (30)

εabcε
ijk (∂tη

a
i)
(
∂tη

b
j

)
ηck = (16πGε + 2Λ−R)NJ ;

(31)[
1
J εabcε

ikl
(
∂tη

a
j

)
ηbkη

c
l

]
‖i =

[
1
J εabcε

ikl (∂tη
a
i) η

b
kη

c
l

]
|j ;

(32)

p = β(ε) . (33)

Equations (29)–(32) are not closed unless an EoS, here
(33), is specified. Recall that the lapse appearing above
can be replaced by its expression in terms of ε, N = (ε+
β(ε))−1 F (ε). The evolution equation (30) may be split
into a trace part, which we then combine with the energy
constraint (31) to obtain the Raychaudhuri equation, and
a traceless part, yielding respectively:

1

2J εabcε
ikl∂t

(
1

N
∂tη

a
i

)
ηbkη

c
l = A− 4πG(ε + 3p) + Λ ;

(34)

1

2J

[
εabcε

ikl∂t

(
1

N

(
∂tη

a
j

)
ηbkη

c
l

)
− 1

3
εabcε

mkl∂t

(
1

N
(∂tη

a
m) ηbkη

c
l

)
δij

]
= ξij − τ ij ,

(35)
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where τ ij := Ri
j − 1

3Rδij are the coefficients of the

traceless part of the spatial Ricci tensor, and ξij :=

Ai
j − 1

3A δij .

The Lagrange–Einstein system, Eqs. (29)–(33), is
closed and provides the components ηai of coframes, from
which one can calculate the evolution of the perturba-
tions. The system comprises 14 equations, where 9 equa-
tions describe the evolution for the coefficient functions
of 3 spatial Cartan coframe fields, and the remaining 5
equations originate from the 4 constraints and the EoS
defining the properties of the fluid.

B. Perturbation ansatz

1. Background

We will choose a spatially flat, homogeneous and
isotropic model universe as the background spacetime,
with the same barotropic EoS, and including a possible
constant curvature term into the first–order perturba-
tions, (cf., e.g., [L3]). Accordingly, the spatial metric
coefficients of the background will be a2(t)δij , a(t) be-
ing the background scale factor. We prescribe a homo-
geneous lapse NH(t) for this homogeneous and isotropic
background, by setting its relation to the background en-
ergy density εH , formal rest mass density �H := F (εH)
and pressure pH = β(εH) as being the same relations as
those for the inhomogeneous quantities,

NH =
�H

εH + pH
=

F (εH)

εH + β(εH)
. (36)

We may then write the background line element as

ds2H = −N2
H(t)dt2 + a2(t) δijdX

idXj . (37)

Note that the evolution of the background lapse function
NH(t) will be given by its definition (36) and the EoS,
making it time–dependent for pH 
= 0. One should keep
in mind that our choice of time coordinate t will con-
sequently not coincide in general with the usual ‘cosmic
time’ coordinate for the background, and will evolve at
a different rate. The usual cosmic time t̃ would rather
be defined by dt̃ = NH(t)dt, so that the background line
element (37) would take the usual Friedmannian form for
homogeneous and isotropic model universes:6

ds2H = −dt̃2 + a2
[
t̃
]
δij dX

idXj . (38)

6 The notation a
[
t̃
]
signifies that the scale factor still takes the

same values, a[t̃] := a(t), but has a different functional depen-
dence on the alternative time coordinate.

With this time variable, the standard Friedmann equa-
tions would indeed be recovered:

3
∂2
t̃
a

a
= − 4πG(εH + 3pH) + Λ ;

3

(
∂t̃a

a

)2

= 8πGεH + Λ ;

∂t̃εH + 3
∂t̃a

a
(εH + pH) = 0 . (39)

However, for consistency with the lapsed foliation used
for the full inhomogeneous spacetime, in what follows we
include the homogeneous lapse NH into the background
and use the coordinate t. In terms of this variable, the
acceleration and Friedmann equations are respectively:

3

N2
H

∂2t a

a
= −4πG(εH + 3pH) + Λ + 3

∂ta

a

∂tNH

N3
H

;

3

N2
H

(
∂ta

a

)2

= 8πGεH + Λ , (40)

while the energy–momentum conservation equation is
formally unchanged:

∂tεH + 3
∂ta

a
(εH + pH) = 0 . (41)

2. Coframes decomposition

It is important to express the full set of equations in
terms of a single perturbation variable, the coframes,
so that the Lagrangian perturbation approach is well–
defined. Although this is not made fully explicit in the
Lagrange–Einstein system (29)–(33), it is implicitly the
case as the Ricci tensor and covariant derivatives are
functionals of the metric, and hence of the coframes, and
ε, p, N and Ai

j can be expressed in terms of the coframes
and initial energy density data. The latter relations are
obtained via the conservation equation (18) for � = F (ε)
and the evolution equation for J := J /N = det(ηai)
from the first equation in (28):

NΘ = −∂tF (ε)
F (ε)

=
∂tJ

J
; ε = F−1

(
F (εi)

J

)
, (42)

where for any quantity A, Ai denotes the quantity at
initial time ti. Here Ji = 1 as a result of the choice of
initial conditions for the coframes. The barotropic EoS
and choice of N then allow us to determine p, N and

Ai
j = N−1N

||i
||j , and to express these fields as functions

of J = det(ηai).
We then follow the previous papers [L1]–[L4] and de-

compose the coframes into a FLRW coframe set and de-
viations thereof,

ηa = ηaidX
i = a(t) (δai + P a

i ) dX
i . (43)
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At this nonperturbative level, the metric coefficients are
then related to the deformation field by

gij = a2(t)
(
Gij + 2P(ij) +GabP

a
i P

b
j

)
, (44)

where we have defined

P i
j := δ i

a P
a
j ; P := P k

k = δ k
a P a

k ; Pij := GaiP
a
j .
(45)

Recall that the Gram matrix coefficients Gab have been
defined to encode the initial metric inhomogeneities, so
that the coefficients P a

i can be set to zero initially. Also
recall that this coframe split is made with respect to a
FLRW background with a nontrivial lapse included, and
that the functional dependence of a, or of the deformation
field, on the time coordinate t will be affected accordingly.
We then expand the deformation fields P a

i into a per-
turbative sum, so that the coframes are given by:

ηa = a(t)

(
δai +

∞∑
m=1

P
a (m)
i

)
dX i, (46)

where the mth–order deformation field coefficients P
a (m)
i

are of order εm for some bookkeeping parameter ε � 1.
In this paper we will only focus on first–order deforma-
tions.

3. Initial conditions

We will follow the steps of Refs. [L3, L4] to prescribe
the initial data. The deformation field and its time–
derivatives are given at some initial time ti by:

P a
i (ti) = 0 ;

(∂tP
a
i ) (ti) =: Ua

i ;(
∂2t P

a
i

)
(ti) =:W a

i − 2HiU
a
i ,

(47)

where H := ∂ta/a is the Hubble function. Hereafter, we
will normalize the scale factor as ai = 1. The six 1−form
fields Ua = Ua

idX
i and W a = W a

i dX
i are 1−form

generalizations of the initial Newtonian peculiar–velocity
and peculiar–acceleration gradient fields, respectively.
The Lagrange–Einstein system with its split into trace

and traceless parts according to (29)–(35) then translates
into constraints on the initial data:

U[ij] = 0 ; W[ij] = 0 ; (48)

W − U

(
∂tN

N

)
i

= 3Hi

[(
∂tN

N

)
i

−
(
∂tNH

NH

)
i

]
+ Λ

(
Ni

2 −N2
H i

)
+Ni

2 Ai

− 4πG
[
(εi + 3pi)Ni

2 − (εH i + 3 pH i)N
2
H i

]
; (49)

Wtl a
j δ

i
a +

(
Hi −

(
∂tN

N

)
i

)
Utl a

j δ
i

a

+ U Utl a
j δ

i
a −

(
Ua

k δ
i

a U
b
j δ

k
b − 1

3
Ua

l δ
k

a U b
k δ

l
b δ

i
j

)
= N2

i

(
ξij (ti)− τ ij (ti)

)
; (50)

U2 − Ua
i δ

j
a U

b
j δ

i
b + 4HiU

= 16πG
(
εiNi

2− εH iN
2
H i

)
+ 2Λ

(
Ni

2−N2
H i

)
−RiNi

2 ;

(51)(
Ni

−1Ua
j δ

i
a

)
‖i =

(
Ni

−1U
)
|j + 2Hi

(
Ni

−1
)
|j ; (52)

pi = β(εi) ; pH i = β(εH i) . (53)

The abbreviations U := Ua
k δ

k
a , W := W a

k δ
k

a , and
Wtl a

i := W a
i − (1/3)Wδai , Utl a

i := Ua
i − (1/3)Uδai ,

are used for the trace and traceless parts, respectively.

C. First–order Lagrange–Einstein system

We now expand the above Lagrange–Einstein system
and its initial conditions to first order7 in the only dy-
namical variable in this Lagrangian perturbation ap-
proach, namely the deformation field P a

i . In what fol-
lows we omit the index (1) for the first–order deformation
field and the associated initial conditions Uij , Wij , but
keep the index for the other variables, as functionals of
P a

i . We first need to express these functionals explicitly
at first order.

1. Dependent variables at first order

In order to express the first–order Ricci tensor and
scalar curvature in terms of the coframes, we expand
the initial metric coefficients to first order as Gij(X) =

δij+G
(1)
ij (X) since they reduce to δij at the unperturbed

zero–order level. Introducing the first–order quantities

G(1)ij := δikδjlG
(1)
kl , P

ij := δikδjlPkl for the inverse met-
ric, we can then substitute the metric and its inverse,
truncated to first order,

gij = a2
(
δij +G

(1)
ij + 2P(ij)

)
; (54)

gij = a−2
(
δij −G(1)ij − 2P (ij)

)
, (55)

into the definitions of the spatial Christoffel symbols and
of the spatial Ricci tensor. We thereby obtain:

Γ
k (1)
ij =

1

2
δkl

(
G

(1)
il|j +G

(1)
lj|i −G

(1)
ij|l
)

(56)

+ δkl
(
P(il)|j + P(lj)|i − P(ij)|l

)
;

R(1)
ij = Rij + P k

[j|k]|i + P k
[j |k]|i + P

|k
(ik)|j − P

|k
(ij) |k ;

(57)

R(1) = a−2R + 2a−2
(
P ki

|i|k − P
|k
|k
)
, (58)

7 Note that initial data can be assumed, without loss of generality,
to be first order.
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where Rij := G
(1)|k
i[k|j] + G

k(1)
[j|k]|i, and R := δijRij =

2G
l |k
[k|l]

(1) are the initial conditions for the curvature

tensor coefficients and their trace, respectively.
An important difference from the dust case is that here

the spatial Ricci scalar will in general not be constrained
to evolve as R(X) a(t)−2 at first order, due to the con-
tributions from the lapse in the momentum constraints.
As will be shown below, these contributions give rise to
a nonzero evolution for the (initially vanishing) second

term (P ki
|i|k − P

|k
|k ), or equivalently a nonconserved

scalar curvature, ∂tR(1) + 2HR(1) = a−2∂t(a
2R(1)) 
= 0,

in contrast to the dust case.
Using the barotropic EoS and the corresponding solu-

tion (42) to the energy conservation equation (14), we
can also expand ε, p, N and Ai

j in terms of the first–
order deformation field. We write εi := εH i(1 + δεi) at
first order, and expand J−1 = a−3 det(δai + P a

i )
−1 at

the same order as a−3(1− P ). The solution (42) for ε as
a function of J can then be expanded to first order in the
perturbation as

ε = F−1

(
F (εH i) + F ′(εH i) εH i δεi − F (εH i)P

a3

)
= F−1

(
F (εH i)

a3

)
+

[
1

a3
εH i F

′(εH i)δεi − P
F (εH i)

a3

] (
F−1

)′(F (εH i)

a3

)
.

(59)

The energy–momentum conservation equation (42) still
holds for background quantities, giving

F (εH) =
F (εH i)

a3
. (60)

This can be substituted into (59) to give

ε = εH

[
1 +

F (εH)

εH F ′(εH)

(
εH i F

′(εH i)

F (εH i)
δεi − P

)]
. (61)

The further use of the definition of F , Eq. (16), allows
us to simplify the above to

ε = εH

[
1−

(
1 +

pH
εH

)
P̄

]
, (62)

which we have written for convenience in terms of a
shifted deformation trace,

P̄ := P − αH i δεi , (63)

where αH i := (εH i + β(εH i))
−1
εH i is a constant, and δεi

is the initial energy perturbation.
The pressure can in turn be expanded to first order as

p = β(ε), yielding

p = pH − β′(εH)
(
εH + pH

)
P̄ . (64)

Note that the factor β′(εH) corresponds to the (generally
time–dependent) dimensionless ratio of the background
speed of sound to speed of light squared, β′(εH) =:
c2S(t)/c

2, if pH is the thermodynamic equilibrium pres-
sure for the background fluid.
We then expand the lapse N = (ε+ p)−1F (ε) as

N = NH

[
1 + β′(εH) P̄

]
(65)

at first order in the deformation field. At this order, one
will then have (with ∂tP = ∂tP̄ ):

∂tN

N
=
∂tNH

NH
+ β′ (εH) ∂tP̄

− 3H (εH + β (εH))β′′ (εH) P̄ ,

(66)

with

∂tNH

NH
= 3Hβ′ (εH) . (67)

This also allows one to obtain the first–order expression

for Ai
j = N−1N

||i
||j :

Ai (1)
j = a−2β′(εH) δikP̄|j|k . (68)

2. First–order system

Using the above expansions, the Lagrange–Einstein
system (29)–(32) can be rewritten at first order in the
deformation field as follows:

∂tP[ij] = 0 ; (69)

∂2t P
i
j + 3H

[
1− β′(εH)

]
∂tP

i
j

+H
[
1− β′(εH)− V(t)

]
∂tP̄ δ

i
j

= N2
HAi (1)

j −N2
H

(
Ri (1)

j − V(t)
4

R(1) δij

)
;

(70)

∂t

(
P i

j|i − P̄|j
)
= −2Hβ′ (εH) P̄|j , (71)

H ∂tP̄ + 4πG
[
εH + pH − (2εH + Λ̃)β′(εH)

]
N2

H P̄

= −1

4
N2

HR(1) , (72)

with ∂tP = ∂tP̄ , and where Ai (1)
j , Ri (1)

j = a−2δikR(1)
kj

and R(1) are expressed as functions of P a
i according to

the formulas given above, Λ̃ := Λ/(4πG), and we intro-
duce the abbreviation

V(t) :=
[
εH + pH −

(
2εH + Λ̃

)
β′(εH)

]−1

×
{
εH + pH −

(
3εH − pH + 2Λ̃

)
β′(εH)

+
(
2εH + Λ̃

)(
εH + pH

)
β′′(εH)

}
. (73)
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Equation (70) has been obtained from the first–order ex-
pansion of the extrinsic curvature evolution equation (30)
by combining it with the first–order energy constraint
(72). The EoS (33) has already been used to expand ε, p
and N in terms of the first–order deformation field.

D. First–order master equations

Following the approach of Ref. [L4] the above sys-
tem can be reexpressed by decomposing the deformation
fields into trace, trace–free symmetric and antisymmetric
parts:

P i
j =

1

3
Pδij +Πi

j +Pi
j , (74)

where Πij = P(ij) − 1
3Pδij and Pij = P[ij].

We will now derive the governing equations for these
parts, named master equations. For the trace part we use
the new variable P̄ from Eq. (63). Accordingly, (69)–(70)
become:

∂tPij = 0 : Pij = Pij(ti) = 0 ; (75)

∂2t P̄ + 3H
[
2− 2β′(εH)− V(t)

]
∂tP̄

= N2
HA(1) −N2

H

(
1− 3

4
V(t)

)
R(1) ; (76)

∂2tΠ
i
j + 3H [1− β′(εH)]∂tΠ

i
j = N2

H

(
ξ
i (1)
j − τ

i (1)
j

)
;

(77)

∂t

(
Πi

j|i −
2

3
P̄|j

)
= −2Hβ′ (εH) P̄|j . (78)

Once again the first–order quantities A(1), ξ
i (1)
j , R(1)

and τ
i (1)
j are used as shorthand notations but are

meant to be expressed in terms of the deformation field.
These expressions are obtained from the results above,
Eqs. (57), (58), (68), as follows:8

a2A(1) = β′(εH)Δ0P̄ ; (79)

a2ξ
i (1)
j = β′(εH)

(
P̄

|i
|j −

δij
3
Δ0P̄

)
; (80)

8 The expression given for τ
i (1)
j makes use of the momentum

constraints (78), which imply, through their spatial derivative,

∂tΠ
|k

k[i|j] = 0, and thus Π
|k

k[i|j] = Π
|k

k[i|j] (ti) = 0. Also note

that since P and P̄ differ by an initial spatial function, we can ex-
press (79)–(82) in terms of either variable. Here we have adopted
the most compact possibility, noting that the initial value of P̄
is nonzero, whereas (81) and (82) involve the initial curvature
which is independent of the initial perturbation field.

a2R(1) = R + 2

(
Πki

|k|i −
2

3
P

|k
|k

)
; (81)

a2τ
i (1)
j = T i

j + 2Π
i |k
k|j −Π

i |k
j |k

− 1

3

(
2Π

k |l
l|k δij + P

|i
|j − 1

3
Δ0P δ

i
j

)
, (82)

with T i
j := Ri

j − 1
3Rδij = τ

i (1)
j (ti), and with Δ0 the

coordinate Laplacian operator in the Lagrangian coordi-
nates {X i}, Δ0 := δij∂i∂j .

1. Master equation for the trace

Contracting the momentum constraints (78) with a
spatial derivative |j yields the first–order evolution equa-
tion for the nontrivial part of the scalar curvature:

∂t

(
P ki

|k|i − P
|k
|k
)
= ∂t

(
Πki

|k|i −
2

3
P̄

|k
|k

)
= −2Hβ′(εH)Δ0P̄ . (83)

From the respective expressions (58), (79) for R(1) and
A(1), this amounts to the following evolution for R(1):

∂tR(1) + 2HR(1) = −4Ha−2β′(εH)Δ0P̄

= −4HA(1) , (84)

which unlike the case of dust does remain coupled to the
dynamics of the inhomogeneous perturbation.
Combining this evolution equation with the linearized

energy constraint (72) and its time–derivative one then
obtains the master equation for the evolution of the trace
(63) of the first–order deformation field:9

∂2t P̄ + 2H(1− 3β′(εH)) ∂tP̄ −W(t)N2
H P̄

= a−2N2
H β′ (εH)Δ0P̄ , (85)

where pH = β(εH) and NH = F (εH)/(εH +pH) still, and

W(t) := 4πG
[
εH + pH − (2εH + Λ̃)β′(εH)

][
4− 3V(t)

]
= 4πG

[
εH + pH +

(
εH − 3pH + 2Λ̃

)
β′(εH)

]
− 12πG

(
2εH + Λ̃

)(
εH + pH

)
β′′(εH) . (86)

To avoid potential confusion, since the time coordinate t
used in this paper has a different rate as compared to the
conventional cosmic time, it will sometimes be convenient

9 This equation can also be derived by combining the energy con-
straint (72) with the trace (76) of the evolution equation to
eliminate R(1), or equivalently by directly expanding the Ray-
chaudhuri equation (34) to first–order. In both cases, the master
equation for the trace would then be recovered after replacing the
first–order acceleration divergence A(1) by its explicit expansion
(79).



10

for further applications to use the (time–coordinate–
independent) background scale factor a as the time vari-
able instead. With this change of parametrization, the
energy constraint (72) and the master equation for the
trace (85) may be rewritten as follows:

a
∂P̄

∂a
+ α0P̄ = − N2

H

4H2
R(1) ; (87)

∂2P̄

∂a2
+
α1

a

∂P̄

∂a
− α2

a2
P̄ =

α3

a4
Δ0P̄ , (88)

respectively, with time–dependent coefficients,

α0 := 4πG
N2

H

H2

[
εH + pH −

(
2εH + Λ̃

)
β′ (εH)

]
;

α1 := α0 + 4πG
N2

H

H2

[
Λ̃− 2pH

]
;

α2 := N2
HW(t)/H2 ; α3 := N2

Hβ
′ (εH) /H2 ,

(89)

where we recall that from the background Friedmann
equation we have H2/N2

H = 4πG (2εH + Λ̃)/3.
From Eq. (88) we can introduce a time–dependent

background Jeans wave number kJ(εH) by10

kJ (εH) :=
1

c

√
α2

α3
=

1

c

√
W(t)

β′(εH)
, (90)

provided that the term in the square root is positive.
Pressure should be positive for sound waves to resist
gravitational collapse, and the existence of the Jeans
length is intimately related to the energy conditions sat-
isfied by the matter field.
A remark is in order here. In general, one would expect

the evolution of the inhomogeneous deformation to be af-
fected by the local, inhomogeneous speed of sound and
density, so that a nonperturbative Lagrangian realization
would rather feature a local Jeans wave number kJ (ε)
[21]. The dynamics in the presence of a significant den-
sity contrast will thus only be partially captured by the
above first–order equation, where ε has been expanded in
P a

i and, accordingly, only zero–order background factors
such as kJ (εH) survive in front of the first–order P̄ .
As in the dust case, the advantages of the Lagrangian

approach are only fully realized via nonlinear extrapo-
lation, e.g., by computing the energy density as a full
nonlinear functional from the first–order deformation.
This is part of the Relativistic Zel’dovich Approxima-
tion scheme, as defined for dust fluids in [L1]. As in
the dust case and in contrast to standard Eulerian linear
perturbation schemes, applying this procedure to com-
pute the energy density out of the solution to first–order
equations such as (85), will already capture part of the

10 We include the factor c explicitly so that the dimensional content
of this relation is clear. The right hand side of (86) must be
divided by c2 if units c �= 1 are restored.

nonlinear features. This is due to the nonlinear extrap-
olation and to the use of Lagrangian spatial coordinates
which follow the fluid propagation in an exact manner.
Further nonlinear effects of inhomogeneous pressure will,
however, still be missed due to the absence of local Jeans
length contributions in the equation used for P̄ , com-
pared to what should appear in the nonperturbative evo-
lution equation.
We will not go beyond this procedure in the present

paper. Let us nonetheless suggest here a possible direc-
tion for improvement. It would require properly defin-
ing the local Jeans length in the relativistic context as a
functional of the deformation. This quantity would then
replace the background Jeans length in the trace master
equation. The corresponding nonlinear master equation
could then be solved in an iterative manner, by com-
puting at each step the local Jeans length via functional
extrapolation out of the previous estimate for the defor-
mation field. Note that each step would also involve a
search for the traceless part of the deformation, as all of
its components would be required for the extrapolation.
The evolution equation (85) may be rewritten in an

alternative form via a time–dependent rescaling of the
variable P̄ �→ P̄ /NH(t). Using the variation rate (67)
of the background lapse one finds the more transparent
form:

∂2t

(
P̄

NH

)
+ 2H∂t

(
P̄

NH

)
− 4πG(εH + pH)N2

H

(
P̄

NH

)
= a−2N2

H β′(εH)Δ0

(
P̄

NH

)
. (91)

• Dust limit: Setting pH = β(εH) = 0, we find
W(t) = 4πGεH = 4πG�H = 4πG�H ia

−3 and NH(t) =
(εH + pH)−1�H = 1, and consequently both t–variable
forms of the trace master equation, Eqs. (85) and (91),
reduce to the dust deformation trace evolution equation
of [L1]–[L4]. The trace master equation becomes:

∂2t P +2H∂tP − 4πG�H ia
−3P = −4πG�H ia

−3δεi . (92)

With NH = 1 the time variable used is the standard
FLRW time coordinate t̃ = t, so that the above time–
derivatives coincide with those used in [L1]–[L4] (denoted
there by overdots). Finally, as evaluating Eq. (92) at
the initial time gives W = −4πG�H iδεi, its right hand
side can always be rewritten asWa−3, and the dust–case
master equation for the trace (e.g., Eq. (41) of [L4]) is
thus recovered.

• Newtonian limit: The Newtonian limit is obtained
by the joint application of the Minkowski Restriction
(MR) for the deformation field, as introduced for dust
in [L1, L2], and of the c → ∞ limit together with the
assumption of a nonrelativistic pressure.
The latter two assumptions imply that the pressure is

no longer a source of the gravitational field, as the en-
ergy density is then ε � �c2 � p (where the constant c
has been temporarily restored), so that all source terms
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reduce to the contribution of �. Note that � can be con-
sidered as equal to the actual rest mass density in this
limit. A further consequence of this is that the lapse
becomes trivial, N = �c2/(ε + p) � 1, consistent with
its spatial variation rate, N−1N|i = −(ε + p)−1 p|i �
−(�c2)−1 p|i → 0 when c → ∞, for any pressure spatial
gradient. It is also the case for the (already homoge-
neous, but generally time–dependent) background lapse
that NH � 1. Consequently, the fluid–orthogonal hyper-
surface time label t now coincides with the fluid’s proper
time τ (since 1 � N = ∂tτ) as well as with the stan-
dard background cosmic (proper) time t̃. All these no-
tions thus consistently define a time reference that can
be used as the Newtonian absolute time. We will denote
the corresponding Lagrangian time–derivative operator
by an overdot.
With N = 1 the line element (3) reduces to the one

used in [L1, L2] for irrotational dust, and one can thus
directly use the corresponding definition of the MR in this
context.11 This restriction amounts to assuming that the
initial metric is Euclidean and that the spatial coframes
are exact in the three–dimensional hypersurfaces, i.e.,
that there exist spatial coordinates xa = fa(X i, t) such
that Gab = δab and

ηai = a(t) (δai + P a
i ) = fa

|i . (93)

In any t = const hypersurface, the spatial line element
then reads ds2 = δab dx

adxb. The coordinates xa thus
define Cartesian–type Eulerian coordinates in which the
metric coefficients are manifestly Euclidean at each time,
and they can be used to define a Newtonian spatial ref-
erence frame. Through its second equality, Eq. (93) also
implies that the deformation 1–forms P a are also exact
and accordingly define a deformation vectorP, with com-
ponents P a,

x = a(t)
[
X+P (X, t)

]
, P a

i =: P a
|i . (94)

With these two assumptions the master equation (91)
on the trace P = δ i

a P
a
i becomes an equation on the

Lagrangian divergence ∇0 ·P := δ i
a P

a
|i of P:

∇0 · P̈+ 2H∇0 · Ṗ− 4πG�H
(∇0 ·P− δ�i

)
= a−2 dpH

d�H
Δ0

(∇0 ·P− δ�i
)
, (95)

11 Note that the Minkowski Restriction introduced for the dust case
is in principle independent of a possible c → ∞ limit and can
still otherwise be applied in a Minkowskian regime, as the name
suggests. In the present case, when c is still finite, this proce-
dure would need to be extended to the presence of pressure and
consequently of an inhomogeneous lapse. We believe, however,
that such an extension to this case would require a modification
of the perturbation framework used so far in this paper, through
the use of a spacetime foliation better adapted to this purpose,
and we will consequently not attempt to provide such a general-
ization here.

with �H = a−3�H i still, and �i =: �H i(1 + δ�i). Note
that, although the pressure itself no longer contributes as
a source of gravitation, its spatial gradient still produces
an acceleration (as obviously expected in a Newtonian
framework), which is why it still affects the dynamics of
∇0 · P above through the sound speed squared factor
dpH/d�H in front of its Laplacian.
The above Eq. (95) matches12 the corresponding equa-

tion for the deformation vector obtained in the Newto-
nian Lagrangian framework, Eq. (24b) in [6] or Eq. (45)
in [25] written for the longitudinal part of the deforma-
tion vector. By definition, this part obeys the same evolu-
tion equation as the Lagrangian divergence of the vector,
as can be seen in the unnumbered equations involving
that divergence before Eq. (24a) in [6] . Note that in
this reference, the Laplacian term features a local sound
speed squared (related to the local Jeans length) dp/d�,
but it is already noted there that it should actually be
replaced by the background value for consistency with
the first–order expansion, and it is indeed replaced by
the corresponding background expression in [25].

2. Master equation for the traceless part

The first–order evolution of the traceless symmetric

part Πi
j is given by Eq. (77), with ξ

i (1)
j and τ

i (1)
j re-

placed by their expressions (80) and (82), respectively.
Eliminating the initial traceless curvature T i

j by evalu-
ation of the evolution equation at the time corresponding
to the initial condition (114), then first yields the follow-
ing evolution equation for the traceless symmetric part:

∂2tΠ
i
j + 3H

[
1− β′(εH)

]
∂tΠ

i
j

+
N2

H

a2

(
2Π

i |k
k|j −Π

i |k
j|k − 2

3
Π

k |l
l|k δij

)
=
N2

H

3a2

([
1 + 3β′(εH)

]
Di

j P̄ −
[
1 + 3β′(εH i)

]
Di

j P̄i

)
+

N2
H

a2N2
Hi

(
Wtl i

j +Hi

[
1− 3β′(εH i)

]
Utl i

j

)
. (96)

Here P̄i = −αH i δεi due to the vanishing of the ini-
tial spatial perturbation field, and we have introduced
the coordinate traceless spatial Hessian operator Di

j :=

δik∂k∂j − (1/3)δijΔ0.

12 Eq. (95) features additional contributions from the initial den-
sity perturbations δ	i as compared to the original Newtonian re-
sult obtained in [6]. These perturbations were actually neglected
there, by assuming 	i = 	H i, as is also assumed in Zel’dovich’s
original work for the dust case [78]. However, as is demonstrated
in Appendix A of [6], such an assumption can be made without
loss of generality in the Newtonian context within the first–order
perturbation scheme in the deformation vector, through a suit-
able change of Lagrangian coordinates, making both approaches
equivalent.
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This equation still explicitly features the trace, but it
can be fully expressed in terms of Πi

j by making use of
the momentum constraints (78). This can be achieved
by rewriting (78) as

1

NH
∂tΠ

i
j|i =

2

3
∂t

(
P̄|j
NH

)
. (97)

A time–integration and spatial differentiation of this
equation allows one to express Di

j P̄ as

Di
j P̄

NH
=

Di
j P̄i

NH i

+
1

2

∫ t

ti

∂t

(
3Π

k |i
j|k −Π

k |l
l|k δij

)
NH

dt′ .

(98)
The pair of equations {(96),(98)} together comprise the
master equation for the traceless part. When pH = 0,
one simply has NH(t) = 1 and β′(εH) = 0 so that this
master equation reduces to the corresponding one in the
dust case, Eq. (43) in [L4].

3. Master equations for free and scattered gravitational
waves

Following the approach developed in [L3, L4], we can
gain more insight into the evolution of Πi

j by splitting
the full master equation for the traceless variable into
gravitoelectric and gravitomagnetic parts.

To this end, we first define a corresponding split of the
initial conditions for the traceless variables:

Utl i
j = Utl,E i

j + Utl,H i
j ; Wtl i

j = Wtl,E i
j + Wtl,H i

j ;

(99)

Utl,H i
j|i = 0 ; Wtl,H i

j|i = 0 ; (100)

2Δ0 Utl,E i
j + U

tl,E k |l
l|k δij − 3 U

tl,E i |k
k|j = 0 ; (101)

2Δ0 Wtl,E i
j + W

tl,E k |l
l|k δij − 3 W

tl,E i |k
k|j = 0 . (102)

These conditions can be jointly required because of the
following geometric identity (taking its first two time–
derivatives and evaluating them at the initial time):

(
2Δ0Π

i
j +Π

k |l
l|k δij − 3Π

i |k
k|j

)
|i = 0 . (103)

This in turn is due to Πk
[i|j]|k = 0, which is a consequence

of the momentum constraints (see footnote 8).

We can then define the gravitoelectric and gravitomag-
netic traceless parts, respectively, ΠE i

j and ΠH i
j , from

their vanishing initial values and their respective initial

first time–derivatives Utl,E i
j and Utl,H i

j , requiring them

to obey the following evolution equations:

∂2t ΠH i
j + 3H

[
1− β′(εH)

]
∂t ΠH i

j −
N2

H

a2
Δ0 ΠH i

j

=
N2

H

a2N2
Hi

(
Wtl,H i

j +Hi

[
1− 3β′(εH i)

]
Utl,H i

j

)
; (104)

∂2t ΠE i
j + 3H

[
1− β′(εH)

]
∂t ΠE i

j +
N2

H

3a2
Δ0 ΠE i

j

=
N2

H

3a2

([
1 + 3β′(εH)

]
Di

j P̄ −
[
1 + 3β′(εH i)

]
Di

j P̄i

)
+

N2
H

a2N2
Hi

(
Wtl,E i

j +Hi

[
1− 3β′(εH i)

]
Utl,E i

j

)
.

(105)

Equation (104) is the master equation for free gravita-
tional waves, while Equation (105), after elimination of
the coupling to the trace, is the master equation for
the gravitational wave part that is scattered at the fluid
source. We will discuss the coupling to the trace of this
latter equation in more detail below.
The above evolution equations ensure that we indeed

get a decomposition of the traceless deformation field
obeying (96) at all times:

Πi
j = ΠE i

j + ΠH i
j . (106)

They will also propagate the initial constraints (99)–
(102) that define the split of Utl i

j and Wtl i
j . This will

ensure the preservation at all times of the divergence–free
nature of free gravitational waves as well as the geomet-
ric identity on their scattered part, similar to the dust
case (cf. [L3, L4]):

ΠH i
j|i = 0 ; (107)

2Δ0 ΠE i
j + Π

E k |l
l|k δij − 3 Π

E i |k
k|j = 0 . (108)

The (also propagating) momentum constraints (97) split
as follows:

ΠH i
j|i = 0 ;

1

NH
∂t ΠE i

j|i =
2

3
∂t

(
P̄|j
NH

)
. (109)

Observe that ΠH i
j decouples from the trace in both the

momentum constraints and the evolution equation, while
ΠE i

j remains coupled to the trace in both cases.
Alternatively, using a time integral of the momentum

constraints,

ΠE i
j|i =

2

3

∫ t

ti

NH ∂t

(
P̄|j
NH

)
dt′ , (110)

the geometric constraint (108) on ΠE i
j can be expressed

as follows:

Δ0 ΠE i
j = Di

j

(∫ t

ti

NH ∂t

(
P̄

NH

)
dt′
)
. (111)

This is to be compared to the dust–case relation, Eq. (51)
in [L4], to which it reduces when pH = 0 and accordingly
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NH(t) = 1: Δ0 ΠE i
j = Di

j(P̄ − P̄i) = Di
jP . Hence,

in the presence of pressure, in contrast to the dust case,
the gravitoelectric traceless part and the trace, although
still tightly coupled, will in general have different time
behaviors.
With the antisymmetric part vanishing at all times,

the evolution equations for the trace and for the gravi-
toelectromagnetic split of the traceless symmetric part,
coupled through the momentum constraints, characterize
the behavior of the first–order Lagrangian deformation
field for this general barotropic single fluid. These evo-
lution equations have yet to be complemented by the set
of initial constraints (48)–(53), to which we turn now.

E. First–order initial conditions

The constraints on the initial conditions for the defor-
mation field, the density and the spatial curvature are
expressed at the first–order level as follows:

U[ij] = 0 ; W[ij] = 0 ; (112)

W − 6Hi β
′(εH i)U =

−N2
H i αH i

[
W(ti) δεi + β′(εH i)Δ0(δεi)

]
; (113)

Wtl i
j +Hi

[
1− 3 β′(εH i)

]
Utl i

j = −N2
H i T

i
j

−N2
H i αH i β

′(εH i)

[
(δεi)

|i
|j −

1

3
Δ0(δεi) δ

i
j

]
;

(114)

HiU = −1

4
RN2

H i + 4πGN2
H i αH i δεi ×[

εH i + pH i − (2εH i + Λ̃)β′(εH i)
]
;

(115)

U i
j|i − U|j = 2Hi αH i β

′(εH i) (δεi)|j ; (116)

pi = pH i + εH i β
′(εH i) δεi ; pH i = β(εH i) . (117)

This set of initial conditions can also be obtained by eval-
uating the linearized Lagrange–Einstein system at the
initial time. It can be complemented by the requirements
(99)–(102) which define the initial split into gravitoelec-
tric and gravitomagnetic parts of the traceless deforma-
tion field.
Note that the above set keeps more variables coupled

than the corresponding ones in [L4]. This is to be ex-
pected, since in the dust case a vanishing pressure and
a constant lapse allowed for the elimination of ε and Λ
between the first two constraints, leaving only a relation
among U , W and R. Here, we also have contributions
from p, Λ (due to the lapse factor in the Λ term) and

the nonvanishing Ai
(1). Accordingly, the dependence on

the initial energy density εi and its spatial derivatives
can no longer be explicitly removed in general. How-
ever, as in the dust case, the scalar constraints (113) and
(115), together with the initial EoS (117), show that only
two independent first–order initial conditions need to be

given for the scalar variables U , W , R, εi, and pi. One
could for instance only specify U and W as can be done
in the dust case, fully determining the other scalar initial
conditions. In contrast to the dust case, however, deter-
mining εi in this situation would involve solving for the
Laplacian differential equation (113).

IV. APPLICATION TO SPECIFIC EQUATIONS
OF STATE

Concrete results can be obtained by looking at spe-
cial cases of the barotropic EoS. In this section, we will
first consider the family of linear relations between the
pressure and the energy density. We then proceed to a
special nonlinear polytropic EoS that allows one to model
the isotropic part of a velocity dispersion field up to late
epochs of nonlinear structure formation.

A. Case of a linear Equation of State: p = wε

In the previous section we have derived the evolution
equations for the first–order deformation field, sourced
by a general barotropic fluid. In this section we will
consider as an example the simplest barotropic EoS,
p = β(ε) = wε with w a constant parameter obeying
the dominant energy condition, −1 ≤ w ≤ 1. In addition
to the radiation fluid, with w = 1/3, other interesting
cases include a “stiff fluid” corresponding to a free scalar
field source, with w = 1, and a “curvature” or “string
gas” equation of state, with w = −1/3. For this class of
linear EoS we can readily apply the procedure suggested
in [L3, L4] to find the relativistic Lagrangian first–order
solutions.
The formal rest mass density F (ε) and the lapse are

found to be as follows:

F (ε) = �1

(
ε

ε1

)1/(1+w)

; N =
�1

ε1(1 + w)

(
ε

ε1

)−w/(1+w)

,

(118)
if w 
= −1. (The case w = −1 for a “vacuum energy equa-
tion of state” can be treated separately by the explicit
cosmological term.)
The solution (42) of the energy conservation law then

yields the energy density, and the lapse as deduced
from (118), as the following respective functionals of the
coframes, with J = det(ηai):

ε = εi J
−(1+w) ; N = Ni J

w . (119)

Similar equations hold for the background spacetime,

εH = εH i a
−3(1+w) ; NH = NH i a

3w ;
∂tNH

NH
= 3wH .

(120)
Given the linear barotropic EoS, the pressure and back-
ground pressure are immediately deduced from the ex-
pression of the corresponding energy densities, and will
share their functional dependencies.
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1. First–order equations

With the linear EoS β(ε) = wε, β′(εH) reduces to
the constant value w, β′′(εH) vanishes at all times, and
αH i = (1+w)−1. Consistent with a first–order evaluation
of the exact formulas above, the first–order expressions
(62)–(66) for P̄ , ε, p, F (ε), N (and its rate of evolution)
thus simplify to

P̄ = P − (1 + w)−1δεi ;

ε = εH

[
1− (1 + w)P̄

]
; p = pH − w(1 + w) εH P̄ ;

F (ε) = F (εH)
[
1− P̄

]
;

N = NH

[
1 + wP̄

]
;

∂tN

N
= 3wH + w ∂tP̄ . (121)

Eq. (73) reduces to

V(t) = εH(1− w)2 − 2wΛ̃

εH(1− w) − wΛ̃
, (122)

and the first–order Lagrange–Einstein system (72), (75)–
(78) becomes:13

∂tPij = 0 : Pij = Pij(ti) = 0 ;

∂2t P̄ + 3H
εH(1− w)2 + 2w2Λ̃

εH(1− w) − wΛ̃
∂tP̄

= N2
H ia

6w

[
A(1) − εH(1− w)(1 + 3w) + 2wΛ̃

4εH(1− w) − 4wΛ̃
R(1)

]
;

(123)

∂2tΠ
i
j + 3H(1− w)∂tΠ

i
j = N2

H i a
6w
(
ξ
i (1)
j − τ

i (1)
j

)
;

(124)

H ∂tP̄ + 4πG
[
εH(1− w)− wΛ̃

]
N2

H i a
6w P̄

= −1

4
N2

H i a
6wR(1) ; (125)

∂t

(
Πi

j|i −
2

3
P̄|j

)
= −2wHP̄ . (126)

The acceleration gradient and its trace and traceless
parts are expressed in terms of the deformation field at
first order according to Eqs. (68), (79), and (80), yielding

Ai (1)
j = a−2w P̄

|i
|j ; (127)

A(1) = a−2wΔ0P̄ ; (128)

ξ
i (1)
j = a−2wDi

j P̄ , (129)

13 It is worth noting in the case when Λ = 0, V(t) simplifies further
and reduces to the constant 1−w, so that (123) becomes

∂2
t P̄ + 3H(1 −w)∂tP̄ = N2

H i a
6w

[
A(1) − 1 + 3w

4
R(1)

]
.

while the first–order expressions (58),(81), and (82) of
the Ricci tensor and its trace/traceless split are formally
unchanged. Since for the chosen EoS, W(t) yields

W(t) = 4πG
[
εH(1− w)(1 + 3w) + 2wΛ̃

]
= 4πG

[
εH i a

−3(1+w)(1− w)(1 + 3w) + 2wΛ̃
]
,

(130)

the master equation (85) for the trace of the perturbation
now reads:

∂2t P̄ + 2H(1− 3w)∂tP̄

− 4πGN2
H i

[
εH i(1− w)(1 + 3w) a3(w−1) + 2wΛ̃ a6w

]
P̄

= wN2
H i a

6w−2Δ0P̄ . (131)

In turn, the master equation (96) for the traceless sym-
metric part of the deformation field becomes

∂2tΠ
i
j + 3H(1− w)∂tΠ

i
j

+N2
H i a

6w−2

{
2Π

i |k
k|j −Π

i |k
j|k − 2

3
Π

k |l
l|k δij

−1

3

(
1 + 3w

)
Di

j

(
P̄ − P̄i

)}
= a6w−2

[
Wtl i

j + (1 − 3w)Hi U
tl i

j

]
, (132)

with, from the momentum constraints (126),

a−3w Di
j P̄ = Di

j P̄i +

∫ t

ti

∂t

(
3Π

k |i
j|k −Π

k |l
l|k δij

)
2 a3w

dt′ .

(133)
We can finally rewrite the set of initial conditions (112)–
(117) for the linear EoS:

U[ij] = 0 ; W[ij] = 0 ; (134)

W − 6wHiU = − N2
H i

1 + w

(
wΔ0(δεi)

+ 4πG
[
εH i(1− w)(1 + 3w) + 2wΛ̃

]
δεi

)
; (135)

Wtl i
j + (1− 3w)Hi Utl i

j = −N2
H i

[
T i

j +
w

1 + w
Di

j(δεi)

]
;

(136)

Hi U = −1

4
RN2

H i +
4πGN2

H i

1 + w

[
εH i(1− w)− wΛ̃

]
δεi ;

(137)

U i
j|i − U|j = 2

w

1 + w
Hi (δεi)|j ; (138)

pi = pH i + w εH i δεi ; pH i = w εH i . (139)

2. Solutions for the trace of the deformation field

Similarly to [L1, L2], we will now further investigate
the behavior of the trace P of the first–order deformation.
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For simplicity, we will restrict attention to the case of
a vanishing cosmological constant, Λ = 0, as may be
reasonably assumed during the radiation–dominated era.
In this case Eqs. (87)–(89) reduce to

a
∂P̄

∂a
+

3

2
(1− w)P̄ =

−3

32πGεH i

a3(1+w)R(1) ; (140)

∂2P̄

∂a2
+
α1

a

∂P̄

∂a
− α2

a2
P̄ = α3i a

3w−1Δ0P̄ , (141)

with the constant parameters

α1 =
3(1− 3w)

2
; α2 =

3(1− w)(3w + 1)

2
;

α3i =
3w

8πGεH i

.
(142)

If w > 0 (implying α3i > 0), as we will assume in the
following, then Eq. (141) is a second–order hyperbolic
partial differential equation (PDE).14 This equation is
formally analogous to the standard Eulerian propagation
equations for a linearized density contrast [38, 55, 69]
once those are reexpressed in terms of the variable a.15

In the Eulerian case, assuming global flat–space spatial
coordinates, one can find the analytical general solution
using a Fourier transformation. A discussion of the differ-
ences between the Eulerian and Lagrangian approaches
has been given in [L4]. (See also the related discussion
in [71].) Ref. [L4] also elucidated a procedure for find-
ing general–relativistic Lagrangian first–order solutions
for the deformation field in the dust case. We show here
that this procedure can be readily extended to the pres-
ence of pressure and apply it to the determination of a
Lagrangian solution for the trace part.16

First, we can use the formal identity of Eq. (141), writ-
ten in Lagrangian coordinates on the nontrivial space-
time manifold, with an equation written in Euclidean
space. We can thus work within this flat space with
its effective ‘Eulerian’ Cartesian spatial coordinates xi

and solve Equation (141) with Δ0 �→ δij ∂xi∂xj for the
unknown P̄ (a,x). On this space we can then apply an
inverse Fourier transformation

P̄ (a,x) =

∫∫∫
P̄k(a,k) e

−ik·x d3k , (143)

14 It would be an elliptic PDE for w < 0 (i.e., α3i < 0), while for
the parabolic case w = 0 (and consequently α3i = 0) it reduces,
as expected, to the evolution equation for the dust case, with
decoupled time and space variables.

15 Note that in terms of the conventional cosmic time t̃ intro-
duced in (38), Eq. (141) reduces to ∂2

t̃
P̄ +(2− 3w)a−1∂t̃a∂t̃P̄ −

4πG
[
(1− w)(1 + 3w)εH + 2wΛ̃

]
P̄ = wa−2Δ0P̄ . This is for-

mally equivalent to the linearized Eulerian equation (3.2.17) of
Ref. [69] in that the coefficients agree, but both the dependent
and (spatial) independent variables differ.

16 A complementary picture of an equivalent procedure is shown in
Appendix A 2 and applied to the search for a particular solution
for the traceless part.

and thus get a second–order linear ordinary differential
equation:

d2P̄k

da2
+
α1

a

dP̄k

da
−
(
α2a

−2 − α3i k
2a3w−1

)
P̄k = 0 , (144)

where we have used k·x := δijk
ixj and k :=

(
δijk

ikj
)1/2

.
In this case the background Jeans wave number (90)

satisfies

kJ(εH)2 =
α2

α3i

a−3(1+w)

= 4πGεH i
(1− w)(3w + 1)

w a3(1+w)
,

(145)

where we recall that 0 < w ≤ 1 is assumed. The behav-
ior of the solution to Eq. (141) will then depend on the
relative values of k and a kJ(εH).
One can first proceed by investigating the extreme

cases, as is commonly done in the Eulerian analyses.
When k � a kJ(εH), Eq. (144) may be solved as

P̄k = a1+3wCk,1 + a
3
2 (w−1)Ck,2 , (146)

where Ck,1(2) are two functions of k encoding the ini-
tial conditions. This corresponds, as expected, to the
unstable regime since the term with coefficient Ck,1 is a
growing mode.
In the opposite situation when k � a kJ (εH), the so-

lution reads

P̄k = a
9w−1

4

[
Jν̂

(
B a

1+3w
2 k

)
Ck,1 + Yν̂

(
B a

1+3w
2 k

)
Ck,2

]
;

B :=
2
√
α3i

1 + 3w
; ν̂ :=

9w − 1

2 + 6w
, (147)

with different k–dependent coefficients Ck,1(2), and where
Jν(x) and Yν(x) denote the Bessel functions of the first
and second kind, respectively. This corresponds to a ‘sta-
ble’ regime of acoustic oscillations, although their ampli-
tude will grow over time (as a(3w−1)/2 for large a) for an
unusual EoS with w > 1/3. The latter remark includes
the “stiff fluid” EoS w = 1, for which the above solution
is exact at all times, since it corresponds to kJ(εH) = 0.
From the expression (145) of kJ (εH), the noncomoving

Jeans wave number a kJ (εH) decreases over time, so that
even an initially unstable solution will eventually enter
the stable regime. Such a solution will cross the threshold
k � a kJ (εH) and it may be useful to be able to describe
this transition period as well.
As in the Newtonian case in the Eulerian approach,

with different coefficients (see, e.g., [40]), the Bessel func-
tions actually allow for an explicit solution of Eq. (144)
for any mode at all times. The general solution is the
same as (147) up to a change of the order of the Bessel
functions:

P̄k = a
9w−1

4

[
Jν

(
B a

1+3w
2 k

)
Ck,1 + Yν

(
B a

1+3w
2 k

)
Ck,2

]
;

B =
2
√
α3i

1 + 3w
; ν =

5 + 3w

2 + 6w
. (148)
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The integration constantsCk,1(2) are derived from the ini-

tial conditions on P̄ and its time–derivative, P̄i(X) and
U(X). To this end, one formally replaces these quanti-
ties by functions of the ‘Eulerian’ coordinates xi on the
Euclidean space, with the same functional dependence,
P̄i(x) and U(x). One is then working on flat–space, and
the respective Fourier transforms P̄k(a = ai = 1,k) and
(∂tP̄k)(a = 1,k) = Hi(∂aP̄k)(a = 1,k) can be com-
puted, from which Ck,1(2)(k) are deduced. Knowing

these, P̄ (a,k) is expressed as the full solution given by
Eq. (148) and its inverse Fourier transform (143) gives
P̄ (a,x) in Euclidean space.
Finally, one can formally replace the Eulerian spatial

coordinates by the Lagrangian ones in P̄ (a,x) while pre-
serving the functional form. The resulting Lagrangian
function P̄ (a,X) then gives a solution to the evolution
equation (141) in the nonconstant curvature spatial sec-
tions, thanks to the algebraic identity of this equation
with its Euclidean space counterpart. It is now a La-
grangian solution, however, and must be interpreted as
such: the coordinates X i are comoving with the inho-
mogeneous fluid flow. They are local coordinates on the
perturbed manifold; thus the solution P (a,X) describes
perturbations as they evolve in the perturbed space. This
perturbed space is in general not isometric to Euclidean
space. Note that the Fourier modes P̄ (a,k) are only an
intermediate resolution step as they only correspond to
modes in the ancillary Euclidean space. As the inver-
sion of the solution (148) does not allow for an explicit
general analytic expression, it requires the specification
of the initial conditions and will usually involve numer-
ical integration with the given Ck,1(2)(k) to realize this
solution procedure.

B. Case of a polytropic Equation of State: p = κ�γ

As a second class of models we will now turn to the
nonlinear case of polytropic equations of state.

1. Equation of state and resolution procedure

We consider the polytropic EoS, p = κ�γ , � = F (ε),
where κ is the polytropic constant, and γ > 1 the poly-
tropic exponent. For such flows the pressure and the
energy density obey the relation [38, 60]

ε = β−1(p) =
1

γ − 1
p+Ap1/γ =

1

γ − 1
κ �γ +Aκ1/γ� ,

(149)
where A is a constant parameter. We will assume in this
section that the formal � = F (ε) actually coincides with
the rest mass density of the fluid, e.g., via suitable initial
conditions. For A = 0, we again obtain the (nondust) lin-
ear case p = wε with w := γ−1 > 0. In the following, we
will instead consider the case Aκ1/γ = 1 (in particular

A > 0), corresponding to an EoS of the type of a non-
relativistic adiabatic ideal gas, the energy density being
the sum of the rest mass density and an internal energy
density equal to p/(γ − 1).
As a relevant example, we will focus on the case

γ = 5/3, which is an exact solution for a locally isotropic
distribution with velocity dispersion, derived from the
relativistic kinetic theory of collisionless matter [34]. (See
also [68] and references therein.) This EoS also coincides
with the corresponding exact solution in Newtonian cos-
mology derived from kinetic theory [24, 25]. In these
latter papers it is also shown that this particular EoS
arises in the inhomogeneous case by closing the hierarchy
of kinetic equations through truncation of the third and
higher reduced moments. In the inhomogeneous case this
law is, however, phenomenological, since there is a non-
vanishing anisotropic part. Neglecting this part strictly
results in shear–free motion confirming the exactness of
the law in the homogeneous case.
The conservation law (18), combined with p = κ�γ ,

gives for the evolution of p:

∂tp+ γNΘp = 0 ; γ =
5

3
. (150)

The same relation holds within the background space-
time, so that pH a5 = pH i ai

5. The assumption of the
background sources following the same EoS also gives,
for γ = 5/3:

εH = β−1(pH) =
3

2
pH +Ap

3/5
H ;

β′(εH) =
2

3

5

5 + 2Ap
−2/5
H

; (151)

β′′(εH) =
80Ap

−7/5
H

9
(
5 + 2Ap

−2/5
H

)3 .
The procedure outlined in the last subsection for solv-
ing the trace master equation, Eq. (88), in terms of
Fourier transformation within a set of coordinates for-
mally equivalent to Eulerian spatial coordinates, is still
applicable in this case. We can thus substitute (151)
and (89) in the Eulerian coordinate analogue of (88),
and solve the corresponding ordinary differential evolu-
tion equation for each Fourier mode. This has to be per-
formed by numerical integration as the more complicated
time–evolution of the coefficients prevents an explicit an-
alytic solution. Once initial conditions are specified we
can then numerically compute the inverse Fourier trans-
form, and formally replace the (Eulerian) spatial coor-
dinates by the Lagrangian coordinates X i (see Section
IVA2) to obtain the solution for P̄ (t,X i).

2. Behavior of the first–order trace for a model overdense
region

As an instructive toy model, we will now consider the
evolution of an initial spherical Gaussian deformation:
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−P̄i = αH iδεi = ci exp

(
− R2

2σ2

)
, (152)

where σ and ci respectively define the characteristic scale
and maximum amplitude of the initial perturbation, and

R :=
(
δijX

iXj
)1/2

is a Lagrangian coordinate ‘radius’.17

We will take ci > 0 and ci � 1. The perturbation can
then be seen to describe a small initial local overdensity,
since the initial rest mass density contrast,

δi :=
�i
�H i

−1 =
F (εi)

F (εH i)
−1 =

F (εH i[1 + δεi])− F (εH i)

F (εH i)
,

(153)
is well approximated by αH i δεi = −P̄i for ci � 1.

The actual value of the amplitude ci is irrelevant for
the evolution of P̄ itself, since it obeys a linear equa-
tion. However, it will matter for the nonlinear evalua-
tion of any physical quantity such as � determined by the
first–order solution for P̄ through the extrapolation pro-
cedure mentioned above from the Relativistic Zel’dovich
Approximation. To best illustrate the effect of this pro-
cedure, we choose a rather large overdensity with the
arbitrary amplitude ci = 10−3 at an initial time that cor-
responds to the epoch of last scattering. As we will see,
this will let the unstable perturbations enter the mildly
nonlinear regime (where |P̄ | < 1 but is of order 1) around
the present epoch, i.e., around a = a0 � 1090 since we
set ai = 1.

The other independent initial condition amounts to
specifying the first time–derivative (∂tP̄ )(ti). For this we
simply consider an initially stationary deformation and
set (∂tP̄ )(ti) = U = 0.

The present formalism focuses on the description of a
single fluid source, as it allows for a description in terms
of a single velocity field and a single EoS. We will con-
sequently make the simplifying assumption of a model
universe filled with a single–component matter fluid and
a cosmological constant. The description of model uni-
verses with multicomponent fluids is beyond the scope
of the present paper, and is left to future work. The
background density parameters Ωm, ΩΛ for the matter
component and the cosmological constant respectively,
satisfy Ωm + ΩΛ = 1. We will take the present epoch
value Ω0

Λ = 0.692 in agreement with the best–fit ΛCDM
parameters from the Planck Collaboration [5].

17 We have chosen the set of Lagrangian coordinates Xi such that
the components of the spatial metric at initial time, Gij , are ap-
proximately δij (at leading order) in these coordinates. They can
thus be considered as Cartesian–like coordinates, and R is thus a
fluid–comoving radial coordinate. It does not, however, coincide
with the spatial metric distance between the fluid elements of
the respective Lagrangian coordinates (Xi) and (0, 0, 0). (This
is true irrespective of a possible normalization by a(t) to make
it a background comoving distance.)

The background is also affected by the polytropic EoS
(149) of the source fluid. As noted above, our poly-
trope is exact for the background and is parametrized
by the arbitrary constant κ, or equivalently A as we set
Aκ1/γ = 1. Specifying its value amounts to choosing
the initial instability scale as determined by kJ (εH i). It
also controls the ratio between pressure and rest mass
density at a given time, and hence the deviation of the
background from a dust–fluid ΛCDM model. The value
we adopt for our examples below, ApH i

−2/5 = 3/2, re-
quires the background fluid pressure to be relativistic
(and radiation–like) at the initial time, pH i = εH i/3,
with pH i/�H i = 2/3. However, it subsequently quickly
becomes negligible as pH/�H ∝ a−2, keeping the late–
time dynamics of the background very close to that of
the ΛCDM model. We choose to make the lengths
R, σ dimensionless by setting the initial instability scale
kJ(εH i)

−1 (as derived from substituting (151) into (90)
at the initial time) to be our length unit. Thus σ < 1
means that the scale of the initial perturbation is below
the Jeans scale kJ(εH i)

−1, and above it for σ > 1. For
the value of A adopted in the present example and esti-
mating �H i from ΛCDM background parameters [5], this
length unit is approximately 98 kpc. This would corre-
spond to a large background comoving initial overdensity
size of a0 kJ(εH i)

−1 � 107 Mpc.18

Figs. 1–3 show the numerical results for P̄ with the
procedure, initial conditions and parameters given above,
for three different values of σ.

The first case, σ = 10 (Fig. 1), corresponds to a
super–Jeans length, hence unstable, initial perturbation.
Figs. 1(a),(b) show the numerical results for the evolution
of the perturbation −P̄ as a function of the scale factor
at several values of R, and over the whole range of radiiR
for increasing values of a, respectively. As expected, this
perturbation is unstable and remains so by growing at all
times, the pressure gradient being insufficient to prevent
the collapse of the structure. The evolution is similar to
the dust case with the fast onset of a linear growth of the
perturbation with a before a late–time slow down due to
the presence of Λ.

The second case, σ = 0.2 (Fig. 2), illustrates the op-
posite situation of an initially sub–Jeans length pertur-
bation. Figs. 2(a),(b) show the numerical solution for
−P̄ in this situation along the same reasoning as for
Figs. 1(a),(b). At the early stage, the pressure gradi-

18 Note that kJ(εH i)
−1 defines an initial instability ‘scale’ only

in terms of Lagrangian coordinates, e.g., in terms of R. This
means that the corresponding ‘background comoving’ distance,
a(t)kJ (εH i)

−1 evaluated at present time, does not coincide with
the present–day physical size of an object that would initially
have been of this scale, as such a size must be evaluated using
the actual, deformed, spatial metric. (See previous footnote.)
a0kJ (εH i)

−1 may be seen as a rough estimate of this physical

size, as obtained by fully neglecting the deformations G
(1)
ab , P a

i ,
in the evaluation of the integrated spatial line element.



18

(a) (b)

FIG. 1: Numerical solution for the first–order trace −P̄ in Lagrangian space, for an initial spherical Gaussian overdensity with
a peak amplitude of 10−3 at R = 0 and a standard deviation σ such that kJ (εH i) σ = 10. (a). Evolution of −P̄ as a function
of a for fixed values of the Lagrangian radius R. From top to bottom: R = 0, 10, 20 and 30. (b). Spatial variation of −P̄ with
R, for several values of the background scale factor. From bottom to top: a = 1, 10, 200, 500 and 1000. The perturbation
strongly grows over time, corresponding to a collapsing structure.

(a) (b)

FIG. 2: Numerical solution for the first–order trace −P̄ in Lagrangian space, for an initial spherical Gaussian overdensity with
a peak amplitude of 10−3 at R = 0 and a standard deviation σ such that kJ (εH i)σ = 0.2. (a). Evolution of −P̄ as a function of
a at fixed distance R. From top to bottom at a = 1000: R = 3, R = 4, R = 1 and R = 0. The inset panel shows a detail of the
early evolution (small values of a), where only the R = 0 (solid line) and R = 1 (dashed line) are visibly nonzero. (b). Spatial
variation of −P̄ with the Lagrangian radius, for several values of the background scale factor. The structure is first damped
and spread out by the Lagrangian pressure gradient, before starting to grow back after the critical wave number a kJ(εH) has
increased, as the perturbation enters the unstable regime.

ent dominates and opposes the gravitational collapse.
The perturbation behaves as an acoustic wave and is
damped as it propagates away from the initial peak at
R = 0. However, the instability wave number a kJ(εH)
quickly starts increasing over time (cf., Fig. 4). That is
why around a = 50 to 100 the perturbation starts to
grow as its typical wave number (estimated by σ−1 = 5)
ends up below the critical value, with a kJ(εH) = 5 for
a � 94, and it enters the unstable regime. The peak
of this growing structure remains at a mostly station-
ary Lagrangian position, at R � 3.7, while its increasing

amplitude still remains small and below the initial value
−P̄ (a = 1, R = 0) = 10−3 up to present time (a � 1090).

For comparison we also consider the special case where
the initial scale lies at the stability threshold, σ = 1. The
evolution of the corresponding solution for −P̄ with a at
several radii is shown in Figs. 3(a),(b), with the latter
highlighting the early evolution (1 ≤ a ≤ 20). Fig. 3(c)
shows the spatial dependence of −P̄ with R at some val-
ues of the scale factor. The behavior of the perturbation
in this case is as expected intermediate, with an initial
acoustic damping and propagation away from R = 0 sim-
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(a) (b)

(c)

FIG. 3: Numerical solution for the first–order trace −P̄ in Lagrangian space, for an initial spherical Gaussian overdensity with
a peak amplitude of 10−3 at R = 0 and a standard deviation σ such that kJ (εH i) σ = 1. (a) and (b). Evolution of −P̄ as a
function of a at a given distance R, for late and early times, respectively. From top to bottom at a = 1000 for (a): R = 3,
R = 1, R = 0, R = 4, R = 5; same order for (b) at a = 20. (c). Spatial variation of −P̄ with R, for fixed values of the
background scale factor. From top to bottom at R = 0: a = 1000, a = 500, a = 200, a = 1, a = 20, a = 4. The behavior is
rather similar to the previous case of kJ(εH i) σ = 0.2; as expected, the unstable regime is, however, reached sooner, and the
perturbation then grows similarly to the case of kJ (εH i) σ = 10, up to much above its initial amplitude.

ilarly to the σ = 0.2 case, but more rapidly entering an
unstable regime, after a � 5. The amplitude of the per-
turbation then starts growing with a dust–like behavior
up to beyond 20 times its initial value at present time,
with a shifted peak as in the σ = 0.2 case, that stays
around R � 2.5.

3. Evaluating the nonlinear density contrast

As we recalled above, even the first–order Lagrangian
perturbation scheme allows one to probe part of the non-
linear regime in the evaluation of observable quantities.
This involves extrapolating these observables as exact,
nonlinear functionals of the deformation field, the latter
being evaluated as a solution to its first–order evolution
equations and constraints.

Adopting this procedure for the rest mass density we
evaluate it as the exact integral to the rest mass conser-
vation equation (18):

� =
�i
J

; J = det(ηai) = a3 det(δai + P a
i ) , (154)

where P a
i are the components of the deformation field.

The density contrast δ is then deduced from the above:

δ :=
�− �H
�H

=
�i

�H ia
−3J

−1 ; a−3J = det(δai+P
a
i ) ,

(155)
and it is evaluated by replacing P a

i by the first–order
solution.

Using the polytropic EoS and the parameters adopted
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FIG. 4: Evolution of the instability wave number a kJ (εH)
with the scale factor a for the polytropic EoS considered here,
with the unit of length convention kJ (εH i) = 1. As this wave
number only depends on the background by construction, this
result applies to all examples considered in this Subsection
IVB. After a small initial dip, a kJ (εH) exceeds its initial
value around a � 4 and enters the increasing power law regime
a kJ (εH) ∝ √

a (valid as long as (ΩΛ/Ωm)(a/ai)
−2 � 1, which

is satisfied up to the present epoch) as expected from the large
a expansion of its expression for the present polytropic EoS.

here, the lapse may then be computed from

N =
�

ε+ p
=

�

�+ γ
γ−1κ�

γ
=

1

1 + 5
3 (1 + δ)2/3 a−2

,

(156)
with δ expressed from the deformation field as above.
This formula shows that the lapse is 1 in pressure–free
(here empty) regions (δ = −1) and decreases with in-
creasing density contrast at a given time. The deviation
(1 −N) rapidly decreases over time as ∝ a−2, with late
time values of order 10−6 (when a � 1000), as long as δ
remains at most of order unity.
We will now illustrate this process for the density con-

trast with two examples using the same polytropic EoS
as above. Note that this evaluation requires the knowl-
edge of all components of the deformation field, including
the traceless part. We specify procedures in Appendix A
to obtain a particular (gravitoelectric) solution for the
first–order traceless part from the initial conditions for
the trace in specific cases. These procedures have been
used to determine a consistent solution for the full defor-
mation field in the examples below. We have also made
use of the fact that the initial density �i = F (εH i [1+δεi])
is well approximated by F (εH i)(1+αH i δεi) = �H i(1−P̄i)
for a small, still linear, initial density perturbation (with
αH i = 3/4 for the chosen EoS parameters) for the evalu-
ation of δ.
a. Localized overdensity:

Let us first retain the ‘spherical’ initial overdensity ex-
ample studied thus far in this section, with the initial
conditions for the trace given by (152), with ci = 10−3,
and U = 0. The first–order solution for the trace in
this situation has been determined above, and is comple-

mented by a gravitoelectric solution for the first–order
traceless part through the use of the procedure given in
Appendix A2 that directly applies to this case. The de-
terminant J is then computed from this solution as in
Appendix A4, giving δ from Eq. (155).
Note that when all components of the deformation field

are very small, i.e., when it lies fully in the linear regime,
then the extrapolated δ remains quantitatively close to
−P̄ , which corresponds to its expansion at first order in
the deformation field. This is the case in the initially
stable or marginally stable cases σ = 0.2 and σ = 1,
where the initial acoustic damping of the perturbation
keeps its amplitude small up to the present time despite
the late–time growth. In both of these cases, the resulting
density contrast indeed remains indistinguishable from
the value of −P̄ already depicted above (Figs. 2–3).
We will consequently focus from now on on the case

σ = 10, where the unstable deformation reaches into the
mildly nonlinear regime before the present time, as can
be seen for the trace (whose amplitude reaches about 0.5
at the present epoch).
Figs. 5(a),(b) show the result of the nonlinear evalua-

tion of the density contrast in this situation, as a function
of a at given radii R, and as a function of the radius at
several moments in its evolution, respectively. Although
the general behavior is roughly similar to that of −P̄
(cf. Fig. 1), nonlinear effects are visible in the amplified
growth of δ at late times near R = 0, with a maximal
overdensity reaching about 0.7 at present.
This nonlinear deviation of the density contrast func-

tional with respect to its first–order estimate −P̄ is made
explicit by the direct comparison of the peak (R = 0)
amplitude evolution of δ and −P̄ as a function of the
background scale factor in Fig. 6(a). The spatial depen-
dence on R of both quantities at late times, compared
in Fig. 6(b) at a = 1000, is also visibly affected by the
amplified growth of the density contrast where P̄ is no
longer small, i.e., around R = 0.
b. Lagrangian monochromatic wave:

The second toy model we consider is that of a sin-
gle Lagrangian monochromatic wave deformation. The
choices of background parameters and the length unit
(kJ (εH i) = 1) are unchanged. The initial perturbation is
now chosen to be

−P̄i = ci cos(KX) ; U = 0 , (157)

where we will again take ci = 10−3 as an initial ampli-
tude. This situation corresponds to an initially station-
ary monochromatic wave in the given Lagrangian coordi-
nate set,19 −P̄i = ci cos(δijK

iXj+φ0) with φ0 = 0 and a

19 Similarly to the interpretation of R for the previous example,
it is important to keep in mind that the perturbation we are
considering here only has a sinusoidal dependence in the chosen
Lagrangian coordinates Xi. It would have a different functional
dependence in terms of actual physical (metric) spatial distance
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(a) (b)

FIG. 5: Numerical evaluation of the nonlinear density contrast δ as extrapolated from the first–order Lagrangian perturbation,
where the initial −P̄ is the same spherical Gaussian field as for Fig. 1, with peak value of 10−3 and kJ(εH i)σ = 10. (a).
Evolution of δ with the background scale factor at fixed distances R. From top to bottom: R = 0, 10, 20 and 30. (b). Spatial
variation of δ with the Lagrangian radius, for given values of a. From bottom to top: a = 1, 10, 200, 500 and 1000. The
overall behavior of δ is similar to the results of Fig. 1 for the first–order −P̄ in the same situation, but the extrapolated density
contrast grows faster at late times near the R = 0 maximal overdensity. Additional nonlinear effects concerning the comparison
with a standard perturbation approach, not studied here, could also be revealed by using instead as the x–axis for (b) the
actual spatial metric distance to the R = 0 fluid element (as an ‘Eulerian radius’), altering the spatial dependence. (See the
discussion in Section IVB4.)

(a) (b)

FIG. 6: Comparison of the extrapolated nonlinear density contrast δ (dashed line) with the first–order solution for the sign–
inverted deformation trace −P̄ (solid line) within the same setting as Figs. 1 and 5. (a). Comparison of the evolution of both
quantities as a function of a at the centre of the overdensity (R = 0). (b). Comparison of the spatial variation of both quantities
with R at a late time (a = 1000). In this situation, the perturbation grows large enough to enter the nonlinear regime and to
render the time evolution and spatial behavior of the extrapolated δ clearly deviating from those of −P̄ .

Lagrangian wave vector K along the first coordinate X ,
with components Ki = (K, 0, 0).

between two points on a given hypersurface t = const. One ex-
pects for instance, at a given late time t and along a given spatial
geodesic line, the distance between the successive perturbation
nodes at KX = −π/2 and KX = π/2 (surrounding a collapsing
overdensity) to be shorter than the distance between the nodes
at KX = π/2 and KX = 3π/2 (surrounding an expanding un-
derdensity), despite all nodes being equally separated in terms
of the Lagrangian coordinate X.

The first–order trace solution then remains in this
monochromatic mode form in the Lagrangian coordinates
at all times, P̄ = P̂K(t) cos(KX). The amplitude P̂K(t)
evolves according to the ordinary differential equation
(A2) which is solved by numerical integration for a given
wave number K. A gravitoelectric solution for the trace-
less part is then determined along the lines of Appendix
A1, where the relevant amplitude Q̂K(t) is again numeri-

cally evaluated, knowing P̂K(t), through its defining time
integral formula (A3). From these, one can calculate the
density contrast in the same way as in the previous ex-
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(a) (b)

FIG. 7: Numerical evaluation of the nonlinear density contrast δ as extrapolated from the first–order Lagrangian perturbation.
The first–order deformation trace is taken as a plane–wave in Lagrangian coordinates of wave vector K (of norm K) along the
X coordinate, −P̄ ∝ cos(KX) , of initial amplitude 10−3. The result is shown at a given time as a function of KX for three
possible values of K, which is expressed in units kJ(εH i) = 1. (a). At a = 10, for K = 0.1 (K−1 = 10), K = 5 (K−1 = 0.2)
and K = 1 by order of decreasing amplitude. (b). At a = 1000, for K = 0.1 (K−1 = 10), K = 1 and K = 5 (K−1 = 0.2) by
order of decreasing amplitude. The side panel displays the (otherwise barely visible) latter two curves on a different vertical
scale. The most unstable perturbation, for K−1 = 10, displays a non–sinusoidal asymmetric shape at late times as it reaches
the mildly nonlinear regime. This shape would be further nonlinearly modified, via a different x–axis dependence, if this axis
were expressed alternatively in terms of an Eulerian–type, regularly spaced (in terms of spatial metric distances), x coordinate.

ample, with the determinant J evaluated as detailed in
Appendix A4.

Here we again study three cases distinguished by their
wave number in direct analogy to the previous example,
with K−1 playing the role of the characteristic length
σ. We accordingly choose K−1 = 0.2, K−1 = 1 and
K−1 = 10, which at the initial time are stable, marginally
stable and unstable, respectively. The corresponding spa-
tial dependence of δ as a function of KX for the three
wave number choices is shown at an early time (a = 10)
in Fig. 7(a), and at a late time (a = 1000) in Fig. 7(b).

In this situation, in the first two cases the components
of the deformation field again remain small at all times,
due to initial acoustic oscillations, and the density con-
trast thus follows the sinusoidal shape of −P̄ at all times.
This is also the case for the unstable mode K−1 = 10 at
a = 10 when it is still in the linear regime. At a = 1000,
however, this mode clearly deviates from this behavior
as its amplitude is no longer linear. In particular, an
asymmetry develops between the under– and overden-
sity magnitudes as the latter is sharply amplified by the
nonlinear evolution of δ.

4. Discussion

In both examples above, the Lagrangian scheme and
the proposed extrapolation procedure exhibit nonlin-
ear effects on the overdensity for unstable perturbations
when they become large enough. The amplitude of large
overdensities in these examples is clearly underestimated
when they are approximated by the first–order expression

−P̄ instead of using the nonlinear extrapolation for δ.
An even higher initial overdensity amplitude could ac-

tually lead to a vanishing determinant a−3J at the maxi-
mum overdensity at a late enough time, implying �→ ∞
with deformation coefficients still of order 1. This situ-
ation corresponds to a shell–crossing, beyond which the
first–order Lagrangian scheme in no longer valid.
The presence of pressure can delay its occurrence by

damping the perturbation. An improvement of the per-
turbative scheme to account for further local nonlinear
effects in the dynamical evolution, e.g., allowing for a
nonlinear coefficient to define the Jeans length is needed,
however, to fully circumvent this problem. Velocity dis-
persion effects may in principle allow us to model the
multistream regime, and the stabilization of structure
formation in the form of virialization, which may help
to avoid shell–crossings [18, 25].
We emphasize that the current Lagrangian perturba-

tion scheme already contains another effect of nonlinear
structure evolution, which lies in the exact propagation
of the spatial coordinates used along the fluid flow lines.
This is analogous to the inclusion of quadratic convec-
tion terms within linear Lagrangian time derivatives in
the Newtonian framework.20

20 In addition to the time derivatives being taken at different fixed
spatial coordinates, a difference also comes from the spatial
derivative operators, such as the Laplacian Δ0 appearing in
the trace master equation (85), being expressed in terms of La-
grangian coordinates and thus differing from the corresponding
Eulerian operators. (See [6] for the explicit transformation in the
Newtonian case.)
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Let us suggest a procedure that would be required to
make these effects explicit also in the relativistic context;
its concrete application is beyond the scope of this paper.
Eulerian–like coordinates could first be recovered, at

least along a given spatial geodesic direction, by labeling
points at equal intervals of spatial metric distances. This
would involve solving for the initial metric components
Gab such that their Ricci tensor is consistent with the ini-
tial conditions (114)–(115) for given initial deformation
field data, and then functionally evaluating and integrat-
ing the line element as given by (A18) from the first–order
solution for P a

i . The resulting length, as a function of
a Lagrangian coordinate, could then be used as an esti-
mate of the Eulerian coordinate distance. Finally, this
relation would have to be numerically inverted so that
a given Lagrangian function obtained through the Rela-
tivistic Zel’dovich Approximation, such as �(X i), could
be expressed as a function of the Eulerian coordinate x
along the chosen line.
A different functional dependence on this spatial dis-

tance (which may be normalized by a(t) to become
a background comoving distance), as compared to the
fluid–comoving coordinates X i, would thus include non-
linear effects of the fluid–propagation–dependent coordi-
nate transformation.
Recall, however, that a three–dimensional family of

Eulerian observers generally does not exist in a relativis-
tic (intrinsic) description. Strictly, a coordinate trans-
formation to Eulerian space can only be conducted after
the Minkowski Restriction of the relativistic solution has
been executed.

V. CONCLUSION

In this paper we have generalized the Lagrangian per-
turbation approach to the nonlinear evolution of inhomo-
geneous general relativistic model universes containing a
single irrotational fluid obeying a general barotropic re-
lation.
By choosing a suitable set of coframes, we obtained the

master partial differential equations for the evolution of
the trace and traceless parts of the first–order deforma-
tion field that reduce to the corresponding equations in
the dust case. The trace part also matches the Newto-
nian limit of the corresponding Lagrangian perturbation
problem.
We discussed the procedure proposed in previous

papers of how to find the solution for perturbations
that propagate in the perturbed space, and applied
this procedure to specific toy models, illustrating the
mildly nonlinear evolution of the density contrast. We
also discussed the limits of a first–order Lagrangian
scheme, and we proposed ideas for a nonperturbative
generalization, which is needed especially in application
to cases where the pressure term is taken to model
multistreaming beyond the mildly nonlinear regime.
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Appendix A: Examples of solutions for the
gravitoelectric traceless part

In this paper we will not attempt to find the general
solution of Equations (96)–(97) for the traceless part. We
will, however, discuss a procedure for finding one possible
solution for suitably chosen traceless–part initial condi-
tions. For any barotropic EoS, this yields one example
of a full gravitoelectric solution for all components of the
deformation field P a

i . It can then be substituted into ex-
act nonlinear formulae to extrapolate functionals of the
coframes such as metric distances or the rest mass den-
sity.

To find such an example solution, we will focus on the
gravitoelectric part which is directly coupled to the trace,
and accordingly we set the gravitomagnetic part to zero.

1. Case of a Lagrangian monochromatic wave

Let us first assume that the first–order trace solution
can be written as a single monochromatic wave mode in
the given set of Lagrangian spatial coordinates X i:

P̄ (t,X i) = ϕ(K ·X) P̂K(t) , (A1)

for some constant Lagrangian wave vector K, where
K · X := δijK

iXj, and ϕ(K · X) = cos(K · X + φ0),
with constant phase φ0. This form is a solution of the
first–order trace master equation, if and only if P̂K(t) is
a solution of the ordinary differential equation

d2

dt2
P̂K + 2H(1− 3β′(εH))

d

dt
P̂K −W(t)N2

H P̂K

= −a−2N2
H β′ (εH)K2 P̂K , (A2)

with K :=
(
δijK

iKj
)1/2

. Then P = P̄ − P̄i =

ϕ(K ·X) (P̂K(t)− P̂K(ti)).



24

Setting

Q̂K(t) :=

∫ t

ti

NH(t′) ∂t

(
P̂K

NH

)
(t′) dt′

= P̂K(t)− P̂K(ti)− 3

∫ t

ti

H(t′)β′(εH)(t′) P̂K(t′) dt′ ,

(A3)

the time integral of the momentum constraints (97) is

Πi
j|i =

2

3
Q̂K(t)Kj ϕ

′(K ·X) . (A4)

We now take Πi
j to be a purely longitudinal mode and

get the following solution to the momentum constraints
(with Kj := δjlK

l):

Πi
j =

(
KiKj

K2
− 1

3
δij

)
Q̂K(t)ϕ(K ·X) (A5)

=

(
KiKj

K2
− 1

3
δij

)(
Q̂K(t)

P̂K(t)− P̂K(ti)

)
P (t,X i) .

(A6)

Substituting this form into the master equation (96)
shows that it is consistently a solution of both equations
for the traceless part. It is straightforward to show from

the above formula that 2Δ0Π
i
j+Π

k |l
l|k δij−3Π

i |k
k|j = 0,

i.e., this Πi
j obeys the defining relation (108) for the

gravitoelectric part and evolves according to (105). This
solution is thus a pure gravitoelectric one, amounting to
setting the gravitomagnetic part to zero by the choice
of vanishing gravitomagnetic traceless part of the initial
deformation: Πi

j = ΠE i
j .

Choosing this solution amounts to specifying the fol-
lowing (gravitoelectric) initial conditions:

Utl i
j =

(
KiKj

K2
− 1

3
δij

)(
U + 3Hi β

′(εH i)αH i δεi

)
;

(A7)

Wtl i
j =

(
KiKj

K2
− 1

3
δij

)(
W + 3Hi β

′(εH i)U

+ 3
[
∂t(Hβ

′(εH))(ti) + 2H2
i β

′(εH i)
]
αH i δεi

)
.

(A8)

This is compatible with the set of constraints on the ini-
tial conditions given in Section III E, in particular the
initial momentum constraints (116) and Eq. (114), pro-
vided that the latter is used to specify the traceless part
of the initial first–order Ricci tensor T i

j .

The corresponding full perturbation field P i
j = Πi

j +
1
3δ

i
jP then reads:

P i
j =

KiKj

K2

(
Q̂K(t)

P̂K(t)− P̂K(ti)

)
P

+
1

3
δij

(
1− Q̂K(t)

P̂K(t)− P̂K(ti)

)
P . (A9)

Note that the corresponding deformation 1−forms Pa =
δakP

k
i dX

i are not exact due to the different time evolu-
tion of the trace and gravitoelectric traceless parts. This
contrasts with the dust case where a purely gravitoelec-
tric perturbation would lead to integrable coframes [L4],
so that only the non–flat initial metric would prevent one
obtaining an Euclidean spatial metric at all times in that
situation.
By linearity of the equations, a solution for Πi

j can
also be obtained when the trace is a finite sum of such
monochromatic waves, or the sum of the two time–
evolution modes solutions of the evolution equation (A2)
for a given wave vector K, simply by summing the cor-
responding solutions as given by (A5).

2. Case of a spatially localized solution

We assume here either that the spatial slices are glob-
ally diffeomorphic to the Euclidean space R

3, i.e., that
they can be covered by a single chart, or that the defor-
mation field can be assumed to vanish outside a given
chart. In either case it suffices to work within the Eu-
clidean space spanned by the spatial coordinates in a
given chart.
Let us now consider a spatially localized solution for

the trace, e.g., a local overdensity evolving from an ini-
tial Gaussian perturbation in terms of the given set of
spatial Lagrangian coordinates, as studied in the numer-
ical examples of Section IV. More specifically, we require
the solution for the trace to always be a square–integrable
function of the spatial coordinates in the chart, so that its
Fourier transform in these coordinates can be performed
and inverted. We can thus write:

P̄ (t,X i) =

∫∫∫
e−iK·XP̂ (t,K) d3K , (A10)

where P̂ (t,K) is a solution of the evolution equation (A2)
at fixed K, with the initial conditions set by the forward
Fourier transform in the chart coordinates:

P̂ (ti,K) = − 1

(2π)3
αH i

∫∫∫
eiK·X δεi(X) d3X ; (A11)

(∂tP̂ )(ti,K) =
1

(2π)3

∫∫∫
eiK·X U(X) d3X . (A12)

Note that the above approach represents an alterna-
tive and complementary formulation of the method of
solution presented in [L4] which formally replaces the La-
grangian coordinates by ‘Eulerian’ ones. In the present
paper it is applied in Sections IVA2 and IVB. The re-
formulation suggested here allows us to be more explicit
about the required assumptions, as well as expressing the
coordinate components of tensors such as Πi

j in a more
convenient form. In both formulations, the use of plane–
wave modes and flat–space Fourier transformations is suf-
ficient since the Lagrangian first–order master equations
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to be solved only involve the metric–independent coordi-
nate spatial derivatives |i and Laplacian Δ0 = |i|j δij as
spatial derivative operators.

By linearity of the equations, a solution for the (gravi-
toelectric) traceless part is obtained by summation of the
plane wave solutions for all Fourier modes:

Πi
j = ΠE i

j =

∫∫∫
e−iK·XK

iKj

K2
Q̂(t,K) d3K

−1

3
δij

∫∫∫
e−iK·X Q̂(t,K) d3K , (A13)

with

Q̂(t,K) :=

∫ t

ti

NH(t′) ∂t

(
P̂ (t,K)

NH(t)

)
(t′) dt′ . (A14)

Using this solution again implies a specific choice of initial
conditions for the traceless deformation field (in partic-
ular taking it to be gravitoelectric) and for the traceless
part of the spatial Ricci tensor.

In the case of spherically symmetric initial conditions
in the chart coordinates, i.e., when δεi(X

i) and U(X i)

only depend on R :=
(
δijX

iXj
)1/2

, their Fourier trans-
form will also depend only on K. From the evolution
equation (A2), this feature is preserved over time, so

that one can write P̂ (t,K) as P̂ (t,K) and consequently

Q̂(t,K) as Q̂(t,K) and P̄ (t,X i) as P̄ (t, R). The above
solution for Πi

j can then be computed as

Πi
j =

(
X iXj

R2
− 1

3
δij

)
q(t, R) , (A15)

with Xj := δjkX
k and

q(t, R) :=
4π

R

∫ ∞

0

K sin(RK) Q̂(t,K) dK

− 4π

R3

∫ ∞

0

(
sin(RK)

K
−R cos(RK)

)
Q̂(t,K) dK . (A16)

3. Time integral of the gravitoelectric evolution
equation

The above procedure gives a way of obtaining a trace-
less part consistent with the momentum constraints and
evolution equations in particular situations, and when
only initial conditions on the trace part (or on the en-
ergy density) are explicitly specified. Alternatively, and
still focusing on a purely gravitoelectric traceless part, a
solution can be derived from the gravitoelectric traceless
evolution equation (105), if the trace part and the (grav-
itoelectric) traceless initial conditions are known. It can
be achieved by rewriting this evolution equation as fol-

lows:

∂t

(
a3

NH
∂t ΠE i

j

)
= −aNH

3
Di

j

(∫ t

ti

NH ∂t

(
P̄

NH

)
dt′
)

+
aNH

3

([
1 + 3β′(εH)

]
Di

j P̄ −
[
1 + 3β′(εH i)

]
Di

j P̄i

)
+
aNH

N2
Hi

(
Wtl,E i

j +Hi

[
1− 3β′(εH i)

]
Utl,E i

j

)
, (A17)

after replacing Δ0 ΠE i
j by its integral expression (111)

in terms of P̄ . It can be readily time–integrated twice to
give ΠE i

j . This yields the full Π
i
j if the initial conditions

are chosen such that the gravitomagnetic part vanishes.
In contrast to the previous subsections, this procedure

can be applied in general, allowing the gravitoelectric ini-
tial conditions for the traceless part to be freely set. How-

ever, this requires the initial conditions Utl i
j = Utl,E i

j

and Wtl i
j = Wtl,E i

j to be explicitly specified. While
the trace parts relate to the energy density and spatial
scalar curvature, the tracefree parts are related to prop-
erties of the gravitational wave components at the initial
time. The latter have to be set in such a way as to ful-
fill the momentum constraints and their time derivative
at the initial time, as well as the geometric constraints
(101)–(102) for the gravitoelectric parts.

4. On the evaluation of physical quantities

From given solutions for the trace and traceless parts,
the full deformation field is straightforwardly obtained as
P i

j = Πi
j + (1/3)P δij , with P = P̄ − P̄i. This expres-

sion can then be inserted into the Lagrangian functional
expressions for various physical quantities in terms of the
deformation field. They can then be directly evaluated
without any further linearization. This extrapolation is a
crucial part of the Relativistic Zel’dovich Approximation
as defined in [L1], and it generally requires the knowledge
of all components of the deformation field.
One would for instance directly compute a spatial dis-

tance from the line element

ds2 = a(t)2Gab (δ
a
i + P a

i )
(
δbj + P b

j

)
dX idXj , (A18)

where knowledge of Gab(X
k) is also required. In turn,

the rest mass density (with initial conditions set in such
a way that it does coincide with � = F (ε)) would be
computed as

� =
�i
J

=
�H i (1 + αH i δεi)

a3 det (δai + P a
i )
. (A19)

For the evaluation of the latter, note that in the case of
a monochromatic wave (with one or both time–evolution
modes), the deformation field components can be written
as follows:

P i
j = λ1

KiKj

K2
+ λ2 δ

i
j , (A20)
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and similarly in the case of a localized spherically sym-
metric perturbation,

P i
j = λ1

X iXj

K2
+ λ2 δ

i
j . (A21)

The coefficients λ1(t,X
k), λ2(t,X

k) for the monochro-
matic case are directly deduced from (A9) or from a sum
of two such solutions, while in the localized spherically
symmetric case, λ1(t,X

k) = q(t, R) and λ2(t,X
k) =(

P (t, R) − q(t, R)
)
/3. The determinant of the spatial

coframe coefficients, from which � is evaluated, is then
expressed in both cases by

J = a3(1 + λ2)
2 (1 + λ1 + λ2) , (A22)

leading to an infinite rest mass density (from shell–
crossing) whenever λ2 → −1 or λ1 + λ2 → −1.

Such an extrapolation procedure provides the exact
metrical distances, density and other physical properties
as produced by the deformation field at a given order.
In particular, this gives powerful approximations for the
Ricci and Weyl curvatures that are not available in stan-
dard perturbation theory. It is, however, clear that the
resulting expressions are approximations that must be
controlled.

We can further combine the exact functionals for a
given deformation with exact averages of Einstein’s equa-
tions. An example was given in [L2] that also showed
that the resulting prescription can even lead to exact re-
sults. For example, the combination of the first–order La-
grangian dust model with exact averages led to an exact
formula for the kinematical backreaction within a class
of averaged Lemâıtre–Tolman–Bondi solutions [L2].
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generic third–order model for nonlinear clustering”,
Mon. Not. R. Astron. Soc. 267, 811 (1994). (Eprint
astro-ph/9309055)

[17] T. Buchert, “Lagrangian perturbation approach to the
formation of large–scale structure”, In Proceedings
of the International School of Physics Enrico Fermi.
Course CXXXII: Dark matter in the Universe, eds.
S. Bonometto, J. Primack and A. Provenzale (Società
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On Average Properties of Inhomogeneous Fluids in
General Relativity III: General Fluid Cosmologies

T. Buchert · P. Mourier · X. Roy

Abstract We investigate effective equations governing the volume expansion of
spatially averaged portions of inhomogeneous cosmologies in spacetimes filled with
an arbitrary fluid. This work is a follow-up to previous studies focused on irro-
tational dust models (Paper I) and irrotational perfect fluids (Paper II) in flow-
orthogonal foliations of spacetime. It complements them by considering arbitrary
foliations (hence arbitrary lapse and shift) and by allowing for a tilted fluid flow
with vorticity. As for the first studies, the propagation of the spatial averaging
domain is chosen to follow the congruence of the fluid, which avoids unphysical
dependencies in the averaged system that is obtained. We present two different
averaging schemes and corresponding systems of averaged evolution equations pro-
viding generalizations of Papers I and II. The first one retains the averaging oper-
ator used in several other generalizations found in the literature. We extensively
discuss relations to these formalisms and pinpoint limitations, in particular in rela-
tion to averaging domain rest mass conservation. The alternative averaging scheme
that we subsequently introduce follows the spirit of Papers I and II and focuses
on the fluid flow and the associated 1 + 3 threading congruence, used jointly with
the 3 + 1 foliation that builds the surfaces of averaging. This results in compact
averaged equations with a minimal number of cosmological backreaction terms.
We highlight that this system becomes especially transparent when applied to a
natural class of proper time foliations.
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1 Introduction

A viable cosmological model provides an effective evolution history of the inhomo-
geneous Universe. The procedure of spatially averaging the scalar characteristics
of an inhomogeneous model universe yields a system of Friedmann-type equations
with an effective energy-momentum tensor, featuring so-called backreaction terms
(see [15,16], respectively referred to as Paper I and II hereafter). These additional
terms contribute to and may potentially replace the dark constituents of the Uni-
verse that have to be postulated as fundamental sources in the standard model
of cosmology [14,18]. For recent reviews and references, we direct the attention of
the reader to [33,19,29,45,53,28,22].

Extensions of this averaging framework have been investigated, concentrating
on general foliations of spacetime within the 3+1 formalism, to include a possible
shift vector and a tilted fluid 4−velocity with vorticity [46,10]. Some misinterpre-
tations and drawbacks can be identified in these papers, and we are going to point
them out in specially dedicated sections on the comparison with results in the
literature. A four-dimensional averaging procedure has also been proposed [37,38]
in order to provide an explicit 4−covariant expression of the backreaction terms
and to relate these to gauge-invariant variables.

We describe in this paper a unified and general framework within the 3 + 1
formalism, leaving its four degrees of freedom (lapse and shift vector) unspecified
and allowing for a tilted and vortical fluid flow. We shall emphasize (i) the use
of an averaging domain comoving with the 1 + 3 threading congruence of the
fluid, and (ii) the Lagrangian point of view, that has been employed previously,
without averaging, for fluids with vorticity [6] and pressure [5]. The present general
investigation is also useful to relax some restricting assumptions of Papers I and
II, to better understand the relation to Newtonian averaged cosmologies [23], and
to extend the range of applicability of the effective equations.

The averaged system that we derive furnishes a background-free approach to
relativistic cosmologies. It can alternatively be interpreted as a general background
cosmology with a ‘background’ that is not fixed a priori [45], but interacts with
the formation of structures. Fluctuations can then be investigated with respect
to the physical average,1 abandoning standard perturbative frameworks where
fluctuations are referred to a fixed reference background and thus eliminating the
need to consider gauge transformations.

This paper is organized as follows. Section 2 gives a comprehensive outline
of the 3 + 1 framework and the general fluid content we consider. We here also
introduce the Lagrangian description, the relevance of which we shall emphasize
in what follows. We introduce in section 3 an averaging framework similar to one
commonly used in relativistic cosmological modeling (named here fluid-extrinsic
approach), but with emphasis on a comoving evolution of the averaging domain.
We derive the corresponding averaged evolution equations for the domain and
comment on the resulting backreaction terms. We close this section with a detailed
discussion of existing results in the literature. Section 4 opens a new perspective on
the averaging problem by proposing a fluid-intrinsic approach that is inspired by
a 1 + 3 threading of spacetime and that focusses on the fluid’s metric and volume

1First results on a corresponding perturbation scheme that makes structures evolve on
such a physical background have been communicated [57].
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forms rather than the metric and volume forms of the hypersurfaces. This allows for
a compact formulation of the effective equations governing hypersurface averages
of fluid properties, and it agrees in spirit with what has been presented in Papers I
and II. We conclude in Section 5 after a discussion of various subcases of interest
in order to illustrate our fluid-intrinsic approach and to prepare applications.

2 Foliation of spacetime and decomposition of the fluid

This section sets the definitions and notations for the 3 + 1 foliation of spacetime
and for the decomposition of the fluid flow and of its energy-momentum tensor
(see, e.g., [4,51,60,1,39] for more details). The comoving and Lagrangian pictures
are then introduced as natural possible coordinate descriptions adapted to the
fluid flow.

2.1 Description of the geometry

Our spacetime model is a globally hyperbolic four-dimensional manifold, endowed
with the pseudo-Riemannian metric tensor g and described by a local system of
coordinates xμ = (t, xi).2

We foliate this manifold into a family of spacelike hypersurfaces, and we denote
by n their timelike, future-oriented, unit normal 4−vector. The foliation can be
characterized by a regular scalar function S strictly increasing along each flow line,
and defined such that each spatial hypersurface is a level set of S. For simplicity, we
choose the time coordinate t as being a strictly increasing function of S (implying
the reciprocal relation S = S(t)), and use it to label the hypersurfaces. The spatial
coordinates xi, on the other hand, are kept arbitrary.

In such a spacetime coordinate basis, the components of n are written:

nμ =
1

N

(
1,−N i

)
, (2.1)

and the components of its non-exact dual form n read:

nμ = −N (1, 0) . (2.2)

The positive lapse function N determines how far consecutive slices are from each
other at each point, while the shift vector N generates a spatial diffeomorphism
that relates pairs of points between the slices. Following the usual conventions of
a 3+1 formalism, we here associate this lapse to the coordinate functions defining
the propagation of the local spatial coordinates between slices. By definition we
have:

∂t = Nn+N . (2.3)

2Greek letters are assigned to spacetime indices, they run in {0, 1, 2, 3}, and Latin letters
refer to space indices, running in {1, 2, 3}. The signature of the metric is taken as (−+++),
and units are such that c = 1. The coordinate system xμ is associated to the coordinate
basis {∂xμ} := {∂t,∂xi} and its dual exact basis {dxμ} := {dt, dxi}. Unless otherwise speci-
fied, components of tensorial objects should be understood as expressed in these bases, with
arguments (t, xi).
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We shall keep the lapse and shift unspecified for the derivation of the averaged
system, thereby preserving the four degrees of freedom of the foliation. We shall,
however, introduce in subsection 2.4 convenient foliations and coordinate choices
that may be adopted for the description of the system (these amount to setting
the shift, or both the lapse and the shift).

Spacetime tensors are projected onto the hypersurfaces of the foliation by
means of the operator h = hαβ dxα ⊗ dxβ ,

hμν = gμν + nμnν , hαμn
α = 0 , hμ

αh
α
ν = hμ

ν , hαβhαβ = 3 , (2.4)

whose restriction on the spatial slices defines the spatial Riemannian metric hij ,
with inverse hij . Given this operator and the normal vector n, the four-dimensional
line element can be decomposed into

ds2 = gαβ dxαdxβ = −
(
N2 −NkNk

)
dt2 + 2Ni dx

i dt + hij dx
idxj . (2.5)

Note that the lapseN also measures, through its spatial variations, the acceleration
of the frames associated with n:

a(n)
μ := nα∇αnμ =

N||μ
N

, (2.6)

where ∇α denotes the four-covariant derivative, and || the three-covariant deriva-
tive associated with the spatial metric hij .

2.2 Description of the fluid

We consider in this work a model universe sourced by a single general fluid, the
flow of which is described by a unit timelike vector u, tilted with respect to the
normal n of the foliation.

2.2.1 Decomposition of the 4-velocity

The fluid 4-velocity vector u can be decomposed in all generality into

u = γ (n+ v) , (2.7)

with nαv
α = 0 , γ = −nαu

α =
1√

1− vαvα
, (2.8)

where v (hereafter Eulerian velocity) is the spatial velocity of the fluid relative
to the normal frames, which are defined as being at rest within the hypersurfaces
and transported along the normal n. The vector v identifies the direction and
magnitude of the above-mentioned tilt. The magnitude is equivalently measured
by the Lorentz factor γ or by the tilt angle φ, defined as φ := arcosh(γ) [44,38].
For a vanishing tilt, u = n, we have v = 0, γ = 1, and φ = 0.

Introducing the spatial coordinate velocity of the fluid,

V =
dx

dt
, with nαV

α = 0 , (2.9)
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where x is the spatial position of a fluid element in the coordinate system (t, xi)
and d/dt is the derivative with respect to t along the fluid flow lines, we can write
the Eulerian velocity as (see, e.g., [60,1,39]):

v =
1

N
(N + V ) . (2.10)

Equation (2.7) can then be reformulated in the general form:

u =
γ

N
(Nn+N + V ) , (2.11)

with
γ

N
=

1√
N2 − (Nα + V α)(Nα + Vα)

.

In contrast to the Eulerian velocity v which is covariantly defined, the coordinate
velocity V depends on the way the spatial coordinates propagate between neigh-
boring hypersurfaces; hence it depends on the shift. For instance for a coordinate
system comoving with the fluid, which corresponds to a specific shift, we have
V = 0, while for a vanishing tilt, we have V = −N , whatever shift is chosen. We
represent in figure 1 the different vector fields introduced thus far.

Note that a foliation orthogonal to the fluid, where n := u and v = 0 (as
considered in Papers I and II), is only possible for a fluid flow with no vorticity.
Even for irrotational fluids, introducing a tilt allows us to keep the freedom in the
construction of the spatial hypersurfaces.

�

Fig. 1 Representation of the different vector fields at hand, on a spatial hypersurface Σt. n
is the vector normal to the hypersurface and it transports the normal frames; ∂t is the time-
vector of the coordinate basis, tangent to the integral curves C(∂t) (with xi = const.); and u
is the 4-velocity of the fluid, tangent to the congruence C(u). The deviations between n and
∂t, on the one hand, and between ∂t and u, on the other hand, are identified respectively by
N and V . The tilt between u and n is given by v = (N + V )/N . (Note that although N and
V are tangent to Σt, we represent them at the heads of the other vectors for simplicity.) For
a coordinate system comoving with the fluid, we have V = 0 and ∂t = (N/γ)u. Even though
the coordinate velocity vanishes in this situation, the fluid can still experience a spatial motion
within the hypersurface, given by v, and the shift would be set to N = Nv. Alternatively,
in the case of a fluid flow orthogonal to the hypersurfaces, we would have u = n, and hence
V = −N for any shift.
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The components of u and its dual are obtained by noticing that any spatial
vector χ can be extended to a four-dimensional vector by writing:

χμ = (χ0, χi) , with χ0 = 0 . (2.12)

The components of its dual 1−form are then deduced from the property nαχα = 0
along with expression (2.1):

χμ = (χ0, χi) , with χ0 = Nkχk . (2.13)

Applying (2.12) and (2.13) to the shift vector and the coordinate velocity, we
obtain from (2.11) the component expressions:

uμ =
γ

N

(
1, V i

)
, uμ =

γ

N

(
−N2 +Nk (Nk + Vk) , Ni + Vi

)
. (2.14)

2.2.2 Kinematic variables and acceleration

Let us introduce the operator b = bαβ dxα ⊗ dxβ that projects tensors onto the
local rest frames of the fluid orthogonal to u:

bμν = gμν + uμuν , bαμu
α = 0 , bμαb

α
ν = bμν , bαβbαβ = 3 . (2.15)

The projectors b and h usually differ because of the tilt of u with respect to the
normal n of the slices. From relations (2.15), we can decompose the 4−covariant
derivative of the 1−form u into the 4-acceleration and the kinematic parts of the
fluid [31] as follows:

∇μuν = −uμ aν +
1

3
Θbμν + σμν + ωμν , (2.16)

with aμ := uα∇αuμ , Θ := ∇αu
α ,

and σμν := bαμb
β
ν∇(αuβ) −

1

3
Θbμν , ωμν := bαμb

β
ν∇[αuβ] , (2.17)

where the round and square brackets respectively imply symmetrization and anti-
symmetrization over the indices enclosed. a is the acceleration of the fluid, Θ its
expansion rate, σ its shear tensor, and ω is its vorticity tensor.3

Recall that the rest frames of the fluid are not hypersurface-forming if ω does
not vanish.

3The shear, vorticity and acceleration of the fluid, as seen in the normal frames, can be
derived from the projections onto the three-surfaces of the proper shear σ, proper vorticity ω

and proper acceleration a, respectively. For instance, the second would read hα
μh

β
ν ωαβ =

hα
μh

β
ν bδαb

ξ
β∇[δuξ], which differs from hα

μh
β
ν∇[αuβ] when a is not null.
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2.2.3 Stress-energy tensor and conservation laws

The stress-energy tensor of the fluid can be decomposed with respect to the fluid
rest frames as follows:

Tμν = ε uμuν + 2 q(μuν) + p bμν + πμν , (2.18)

with ε := uαuβTαβ , qμ := −bαμu
βTαβ , p bμν + πμν := bαμb

β
νTαβ , bμνπμν = 0 .

ε denotes the energy density of the fluid in its rest frame, qμ the spatial heat
vector, p the isotropic pressure, and πμν the spatial and traceless anisotropic stress.
Alternatively, it can be decomposed with respect to the normal frames as

Tμν = E nμnν + 2n(μJν) + Sμν , (2.19)

with E := nαnβTαβ , Jμ := −hα
μn

βTαβ , Sμν := hα
μh

β
νTαβ ,

where E is the energy density of the fluid, Jμ its momentum density, and Sμν its
stress density, all as measured in the normal frames. The isotropic part of Sμν is
given by the trace S := gαβSαβ . This last decomposition will be used in section 3
for the derivation of the averaged equations. Using expression (2.7), we can relate
the scalar quantities of both decompositions as

E = γ2ε+ (γ2 − 1) p+ 2 γvαqα + vαvβπαβ , (2.20)

S = (γ2 − 1) ε+ (γ2 + 2) p+ 2 γvαqα + vαvβπαβ . (2.21)

From the property ∇βT
αβ = 0 along with relations (2.18) and (2.17), we derive

the energy conservation law:

uα∇βT
αβ = 0 ⇔ ε̇+Θ (ε+ p) = −aαq

α −∇αq
α − παβσαβ , (2.22)

and the momentum conservation law:

bμα∇βT
αβ = 0

⇔ aμ = − 1

ε+ p

(
bαμ∇αp+ bμαq̇

α +
4

3
Θqμ + qα(σαμ + ωαμ) + bμα∇βπ

αβ

)
,

(2.23)

where the overdot is defined below in subsection 2.3. These relations can be com-
plemented by the conservation of the rest mass density � of the fluid in its rest
frame:

∇α(�u
α) = 0 , or equivalently, �̇+Θ� = 0 . (2.24)

2.3 Time derivatives and their relations

The existence of two different times (the coordinate time t and the fluid proper
time τ) and of three timelike congruences (see figure 1) leads to several possible
definitions of time derivatives. Those of interest for the present work are:

• the covariant derivative along the fluid flow lines, denoted by an overdot; for
any tensor field F , we have Ḟ := uα∇αF ;
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• the comoving derivative along the fluid flow lines and according to the proper
time τ , or Lagrangian derivative, denoted by d/dτ ;

• the comoving derivative d/dt along the fluid flow lines and according to the
coordinate time t;

• the partial coordinate time derivative along the vector ∂t, i.e. along the integral
curves of constant xi, denoted by ∂t

∣∣
xi .

The last three derivatives are related by:

dFμν...
αβ...

dt
=

∂Fμν...
αβ...

∂t

∣∣∣∣
Xi

=
∂Fμν...

αβ...

∂t

∣∣∣∣
xi

+ V i ∂F
μν...
αβ...

∂xi
, (2.25)

dFμν...
αβ...

dτ
=

γ

N

dFμν...
αβ...

dt
, (2.26)

for any tensor field F = Fμν...
αβ...∂μ ⊗∂ν ⊗ . . .⊗dxα ⊗dxβ ⊗ . . . . For a scalar field

ψ, the first two derivatives are identical: ψ̇ = uα∂αψ = dψ/dτ .

Proof Let us consider the components Fμν...
αβ... of a tensor field F in the coordinate basis

associated with (t, xi) (see footnote 2). For notational ease, we drop in what follows the indices
and write F := Fμν...

αβ.... The total coordinate-time derivative of F along any timelike curve C
can be decomposed in terms of the coordinate partial derivatives as

dF

dt

∣∣∣∣
C
=

∂F

∂t

∣∣∣∣
xi

+
∂F

∂xi

dxi

dt

∣∣∣∣
C
. (2.27)

Considering the variation along the congruence C(u) of the fluid, and therefore making use of
definition (3.7), we obtain

dF

dt
:=

dF

dt

∣∣∣∣
C(u)

=
∂F

∂t

∣∣∣∣
xi

+
∂F

∂xi
V i . (2.28)

Moreover, for the Lagrangian coordinates Xi, by definition constant along the fluid flow lines,
we have (dXi/dt) |C(u) = 0, and hence dF/dt = ∂t|XiF , which concludes the proof of (2.25).

The total derivative of F with respect to the proper time τ of the fluid along the congruence
C(u) satisfies

dF

dτ
:=

dF

dτ

∣∣∣∣
C(u)

=
dt

dτ

∣∣∣∣
C(u)

dF

dt

∣∣∣∣
C(u)

. (2.29)

From the definition of u and its component expression (2.14), we have (dt/dτ) |C(u) = u0 =
γ/N , and thus

dF

dτ
=

γ

N

dF

dt
, (2.30)

which proves (2.26). Reformulating the right-hand side by means of (2.28), and using again
the component expression of u finally yields:

dF

dτ
= u0 ∂F

∂t

∣∣∣∣
xi

+ ui ∂F

∂xi
= uα ∂xαF , (2.31)

hence d/dτ = uα∂α. This operator coincides with the overdot, ˙ = uα∇α, when applied to a
scalar variable. �
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2.4 Comoving and Lagrangian descriptions

2.4.1 Comoving description

For any given foliation, the shift vector can be chosen in such a way that the
spatial components (2.14) of u vanish: by setting N = Nv, given relation (2.10),
we have V = 0. This choice corresponds to spatial coordinates propagating along
the fluid flow lines, i.e. to comoving (or Lagrangian) spatial coordinates. We will
refer to the use of these spatial coordinates as a comoving description of the fluid,
and denote them by Xi. Note that a comoving description is a “weak” form of a
Lagrangian description (as introduced below) in that no constraints are set on the
time coordinate t.

In the coordinates (t,Xi) of the comoving description, the components (2.14)
of the fluid velocity read:

uμ =
γ

N
(1, 0) , uμ =

(
−N

γ
, γvi

)
, (2.32)

while the line element (2.5) reduces to

ds2 = −N2

γ2
dt2 + 2Nvi dt dX

i + hijdX
idXj . (2.33)

The components of the acceleration and kinematic quantities simplify as follows.
From the anti-symmetric part of (2.16) we can write in any coordinate system:

ωμν = u[μaν] +∇[μuν] = u[μaν] + ∂[μuν] . (2.34)

In comoving coordinates, the (0, i) components of this expression vanish, given
that ωαiu

α = 0. Combining this property with a0 = 0, from aαu
α = 0, we can

thus write the spatial components of the acceleration as

ai =
γ

N

(
d

dt
ui +

γ

N
∂i

(
N

γ

))
, (2.35)

where we also used u0 = −N/γ and ∂t = d/dt. Inserting (2.35) back into the (i, j)
components of (2.34) yields the non-vanishing components of the vorticity:

ωij =
γ

N
u[i

d

dt
uj] +

N

γ
∂[i

( γ

N
uj]

)
. (2.36)

The expansion tensor can be related to the Lie derivative Lub of the projector b
along the fluid flow in any coordinates according to

(Lub)μν = uα∇αbμν + bαν∇μu
α + bμα∇νu

α = 2u(μaν) + 2∇(μuν) = 2Θμν ,
(2.37)

where we have used the symmetric part of (2.16) for the last equality. The covari-
ant derivatives of the second expression can be equivalently replaced by partial
derivatives. This provides the non-vanishing comoving-coordinates components of
the expansion tensor as Θij = (Lub)ij / 2 = u0∂0bij/ 2, and hence

Θij =
1

2

γ

N

d

dt
bij . (2.38)
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The trace and traceless parts are deduced from the above. For convenience, we
express them in terms of a representative length � in the fluid rest frames, defined
by �̇/� := Θ/3 [31]:

Θ =
1

2

γ

N
bij

d

dt
bij =

3

�

γ

N

d�

dt
; σij =

1

2

γ

N
�2

d

dt
(�−2bij) . (2.39)

2.4.2 Lagrangian description

An appropriate choice of foliation can allow for the hypersurfaces to be labelled
by a proper time τ of the fluid [34,35]. Such a construction identifies a class of
foliations which we call fluid proper time foliations. It is realized by level sets
of the fluid proper time τ , as defined from its comoving coordinate-time evolu-
tion rate dτ/dt = N/γ (see section 2.3) and an initial spacelike hypersurface Γ
(parametrized by an equation t = tΓ (X

i)) on which it takes a given constant value
τi,

4

τ(t,Xi) := τi +

∫ t

tΓ (Xi)

N(t̂, Xi)

γ(t̂, Xi)
dt̂ . (2.40)

The hypersurface labelled by a given value τ can equivalently be defined as the
image at time τ of Γ by the flow operator defined from the unitary vector field u.

The fluid proper time foliations set the normal vector n, and determine the
lapse N up to a time-dependent factor. The fluid proper time can then be used as
the time parameter t labelling these hypersurfaces, t := τ , fully determining the
lapse and tying it to the Lorentz factor, N = γ. Note that for such foliations, the
hypersurfaces cannot be fluid-orthogonal, namely a tilt must be present, except
in the case of irrotational geodesic flows (e.g. irrotational dust) [31]. In general,
such a tilt may be expected to grow with time and become large and highly
inhomogeneous on the slices. This may even imply in some cases that not all
slices remain everywhere spacelike; hence, when using such a foliation, we will
implicitly restrict our attention to the part of spacetime where the hypersurfaces
do remain spatial, if necessary. Within this class of foliation and lapse choice, the
additional requirement of using comoving spatial coordinates defines a comoving

4The proper time is not uniquely defined a priori, but it is fully determined by the choice
of an initial Cauchy surface to build one of its level sets [35]. Another proper time function
τ ′, taking the constant value τ ′i on another initial hypersurface Γ ′, would differ from τ by

a function ϕ constant along the fluid flow lines, τ ′(t,Xi) = τ(t,Xi) + ϕ(Xi). This relation
follows by writing

τ ′ := τ ′i +
∫ t

tΓ ′ (Xi)

N(t̂, Xi)

γ(t̂, Xi)
dt̂ ,

with Γ ′ parametrized by t = tΓ ′ (Xi), yielding

ϕ(Xi) = τ ′i − τi +

∫ tΓ (Xi)

tΓ ′ (Xi)

N(t̂, Xi)

γ(t̂, Xi)
dt̂ .

The expressions defining τ and τ ′ are here given in terms of comoving coordinates. They
could alternatively be written covariantly, by setting the value of τ − τi (resp. τ ′ − τ ′i ) at a
given spacetime event as the total length of the unique fluid flow line joining this event to the
hypersurface Γ (resp. Γ ′). The properties of both proper times and their relation through ϕ
of course hold in this description.
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and synchronous picture which we call the Lagrangian description of the fluid (see
Asada and Kasai [6] and Asada [5], inspired by Friedrich [36]).

In the coordinates (τ,Xi) of the Lagrangian description, the components (2.14)
of the 4−velocity and its dual read:

uμ = (1, 0) , uμ = (−1, γvi) , (2.41)

while the line element (2.5) takes the form:

ds2 = −dt2 + 2γvi dX
idt + hijdX

idXj . (2.42)

The Lagrangian condition uμ = δμ0, as introduced in [36], is therefore equivalent to
setting simultaneously N i = Nvi and N = γ. It implies g00 = −1 or, equivalently,
N2 − NkNk = 1. In this description, as a special case of a comoving description
(with the additional requirement of N = γ), the spatial components of the fluid
acceleration reduce to

ai =
d

dτ
ui , (2.43)

and those of the kinematic variables become:

Θij =
1

2

d

dτ
bij ; Θ =

1

2
bkl

d

dτ
bkl =

3

�

d�

dτ
; σij =

1

2
�2

d

dτ
(�−2bij) ;

ωij = u[i
d

dτ
uj] + ∂[iuj] . (2.44)

In the following derivations of the extrinsic and intrinsic averaging schemes, we
will keep the lapse and shift unspecified, thereby considering a general description
and preserving the four degrees of freedom of the foliation. The formulation of
the averaged system in the Lagrangian description will be discussed later on as a
particularly insightful special case within the intrinsic scheme.

3 Rest mass–preserving scalar averaging: fluid-extrinsic approach

In this section we recall the 3+ 1 formulation of Einstein’s equations with respect
to the hypersurfaces of normal n, we formalize spatial averaging over a compact
domain that lies within the spatial hypersurfaces and that follows the fluid flow.
We then derive the commutation rule and averaged equations for the scalar parts
of Einstein’s equations and we discuss some properties of the resulting backreac-
tion terms and their relation to boundary terms. At the end of the section, we
compare our approach and its results to previous proposals of generalizations of
the framework of Papers I and II that can be found in the literature, and we
discuss in detail the differences and pinpoint limitations.

3.1 Dynamical equations

The 3 + 1 foliation of Einstein’s equations [4,51,60,1,39], with the cosmological
constant Λ included, comprises the following evolution equations:

∂t
∣∣
xi hij =− 2NKij +Ni||j +Nj||i , (3.1)

∂t
∣∣
xi Ki

j = N
(
Ri

j +KKi
j + 4πG

[
(S − E) δij − 2Si

j

]
− Λ δij

)
−N

||i
||j +NkKi

j||k +Ki
kN

k
||j −Kk

jN
i
||k , (3.2)
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together with the momentum and energy constraints:

Kk
i||k −K||i = 8πGJi , (3.3)

R+K2 −Ki
jKj

i = 16πGE + 2Λ . (3.4)

Rij and Kij :=−hα
i h

β
j∇αnβ are the components of the 3−Ricci tensor and the

extrinsic curvature of the hypersurfaces, respectively.R := hijRij andK := hijKij

are their respective traces.

In Appendix A we give the evolution equations for hij and Ki
j along the

congruence of the fluid, using the derivative d/dt instead of ∂t
∣∣
xi , and we specify

their expressions in the comoving and Lagrangian descriptions.

3.2 Fluid-extrinsic scalar averaging

3.2.1 Comoving-to-reference map

We introduce a set of Lagrangian (or comoving) spatial coordinates X = {Xi}.
The comoving coordinates of each fluid element remain constant along its flow
line, as opposed in general to its arbitrary reference spatial coordinates x = {xi}.
This arises from the different directions between the threading congruence of the
fluid (t,Xi = const.), given by u, and the arbitrary coordinate congruence (t, xi =
const.), given by ∂t. The two sets of spatial coordinates x and X are related by
a one-parametric family of diffeomorphisms5 parametrized by the coordinate time
t,

Φt : DX → Dx = Φt(DX) ,

X 
→ x = Φt(X) := f(t,X) , (3.5)

with f(ti,X) = X , and J(t,X) := det
∂f(t,X)

∂X
, (3.6)

where D refers to a compact domain lying within the hypersurfaces and trans-
ported along the congruence of the fluid flow (hereafter comoving domain). This
specific transport ensures that the domain encloses the same collection of fluid
elements at all times (an important feature to which we shall come back in the
discussion). We denote the set of spatial coordinate values corresponding to this
collection at a given time t by Dx(t), or Dx for short, in the reference coordi-
nates, and by DX (by definition time-independent) in the comoving coordinates.
The maps Φt define on each constant-t hypersurface a coordinate transformation
between x and X.

From (3.5) we reformulate the coordinate velocity (2.9) as

V =
dx

dt
=

d

dt
f(t,X) = ∂t

∣∣
Xi f(t,X) , (3.7)

5Note that we assume throughout the regularity of the fluid flow implied by the existence of
congruences and invertible maps (diffeomorphisms), which excludes the description of caustics
that may occur for particular matter models.
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where along the direction of the derivative ∂t
∣∣
Xi , given by the fluid flow lines, the

comoving spatial coordinates Xi are kept fixed. Using (3.6) together with (3.7) we
have the identity:

∂t
∣∣
Xi J = J ∂iV

i . (3.8)

We note that the Newtonian tools developed for the Lagrangian description of
structure formation in cosmology can be applied to this diffeomorphism without
difficulty (see [13], [32] and references therein).

3.2.2 Volume of a domain and its comoving time-evolution

The Riemannian volume of the spatial domain D is given by

VD(t) :=

∫
Dx

nμdσμ =

∫
Dx

√
h(t, xi) d3x , (3.9)

where h is the determinant of the spatial metric, h := det(hij), and dσμ is the
oriented spatial volume element, dσμ := −nμ

√
h d3x. We seek the coordinate-time

variation of (3.9) along the fluid flow lines, namely we search for the expression of

d

dt

∫
Dx

√
h(t, xi) d3x . (3.10)

The operators d/dt and
∫
Dx

· d3x do not commute in general since the endpoints
of the integral, determined by the spatial region Dx, depend themselves on time.
The fluid is moving with respect to the coordinate system (t, xi), and the domain
of integration is attached to the fluid6 (see figure 2). We need to reformulate the
integrand to get rid of this time-dependence.

To this aim, we consider the family of maps Φt = f(t, ·) introduced above to
change the coordinates from xi to Xi. We have:

xi = f i(t,X) , d3x = det

(
∂f(t,X)

∂X

)
d3X = J(t,X) d3X , (3.11)

while the region of integration transforms as Dx → DX = Φ−1
t (Dx). Inserting

(3.11) into (3.9), we get:

VD(t) =

∫
DX

√
h(t, f i(t,X)) J(t,X) d3X . (3.12)

The invariance of the volume element
√
h(t, xi) d3x (here integrated over the same

collection of fluid elements) with respect to changes of spatial coordinates appears
here by noticing that

√
h(t, f i(t,X)) J(t,X) above corresponds to the square root

of the determinant of the components in the coordinate system (t,X) of the spatial
metric h. Obviously, the fluid is at rest in this coordinate system, allowing for the
commutation of d/dt = ∂t

∣∣
Xi and

∫
DX

· d3X.7 We can now write:

d

dt
VD =

∫
DX

d

dt

(√
h(t, f i(t,X)) J

)
d3X , (3.13)

6For the same reason, the operators d/dτ and ∂t|xi do not commute either with
∫
Dx

· d3x.
7Note that, in contrast to the operator d/dt, the operator d/dτ does not commute in

general with
∫
DX

· d3X, since d/dτ = (γ/N) d/dt depends on the spatial coordinates.
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Fig. 2 Representation of the motion of a compact domain D between neighboring hypersur-
faces. D is transported along the congruence of the fluid C(u), with Xi = const., and contains
by construction the same collection of fluid elements throughout its evolution. We introduce in
this figure another compact domain, E∂t , carried along the congruence C(∂t), with xi = const.,
that coincides with D at time t. E∂t encloses the same collection of fluid elements as D at that
time. At t+dt, the two domains do not coincide anymore as the fluid undergoes a spatial mo-
tion of velocity V in the coordinate system (t, xi) (hence d/dt and

∫
Dx

· d3x do not commute).

This motion induces a flux of fluid particles across the boundary of E∂t . In the comoving and
Lagrangian descriptions, the congruences C(∂t) and C(u) are identical and this flux does not
occur. A similar distinction would have to be made between D and a domain transported
along the flow of the hypersurfaces normal vector n, with a flux of fluid particles accross the
boundaries of the latter, except in the absence of tilt.

and, transforming the coordinates back to xi with the help of Φ−1
t , we obtain:

d

dt
VD =

∫
Dx

d

dt

(
J
√
h
)
J−1 d3x =

∫
Dx

(
d

dt

√
h+

√
hJ−1 d

dt
J

)
d3x . (3.14)

Using the relations (2.25) and (3.8), this implies:

d

dt
VD =

∫
Dx

(
∂t
∣∣
xi

√
h+ V k∂k

√
h+ ∂kV

k
√
h
)
d3x

=

∫
Dx

(
1

2
hij∂t

∣∣
xihij +

1

2
hijV k∂khij + ∂kV

k

)√
h d3x . (3.15)

From the trace of the evolution equation (3.1) and noticing that

1

2
hij∂khij V

k + ∂kV
k = V k

||k , (3.16)

we finally end up with the expression of the coordinate-time comoving variation
of the Riemannian volume (see Appendix A for an alternative derivation using
instead the 3 + 1 evolution equations along the congruence of the fluid):

d

dt
VD =

∫
Dx

(
−NK+N i

||i + V i
||i
)√

h d3x

=

∫
Dx

(
−NK+

(
Nvi

)
||i

)√
h d3x , (3.17)

where we used relation (2.10) for the last equality.



On Average Properties of Inhomogeneous Fluids in General Relativity III 15

3.2.3 Averaging and commutation rule

We define the extrinsic spatial hypersurface volume average of any scalar ψ on a
compact comoving domain D as

〈
ψ
〉
D (t) :=

1

VD

∫
D
ψ nμdσμ =

1

VD

∫
Dx

ψ(t, xi)
√
h(t, xi) d3x . (3.18)

Applying this definition on (3.17), we can write the rate of change of VD as

1

VD
d

dt
VD =

〈
−NK+

(
Nvi

)
||i

〉
D

, (3.19)

and express the comoving coordinate-time derivative of the averaged scalar ψ in
the form:

d

dt

〈
ψ
〉
D = −

〈
−NK+

(
Nvi

)
||i

〉
D

〈
ψ
〉
D +

1

VD
d

dt

∫
Dx

ψ(t, xi)
√
h(t, xi) d3x .

(3.20)
The second term on the right–hand side is evaluated by following the same proce-
dure as above: we perform a coordinate change by means of the maps Φt,

d

dt

∫
Dx

ψ(t, xi)
√

h(t, xi) d3x =
d

dt

∫
DX

ψ(t, f i(t,X))
√

h(t, f i(t,X)) J(t,X) d3X

=

∫
DX

d

dt

(
ψ(t, f i(t,X))

√
h(t, f i(t,X)) J(t,X)

)
d3X ,

and, transforming back to the reference coordinates, expanding the integrand, and
using once again the definition (3.18), we end up with

1

VD
d

dt

∫
Dx

ψ
√
h d3x =

〈
d

dt
ψ

〉
D
+
〈(

−NK+
(
Nvi

)
||i

)
ψ
〉
D

. (3.21)

Plugging this equation into (3.20), we finally obtain the commutation rule for
extrinsic averages over a spatial comoving domain. We formulate this new result
in the form of a lemma.

Lemma 1 (Commutation rule for extrinsic volume averages)

The commutation rule between spatial averaging on a compact domain D, ly-
ing within a t-constant hypersurface and comoving with the fluid, and comoving
differentiation with respect to the coordinate time reads, for any 3 + 1 foliation of
spacetime and for any scalar ψ:

d

dt

〈
ψ
〉
D =

〈
d

dt
ψ

〉
D
−
〈
−NK+

(
Nvi

)
||i

〉
D

〈
ψ
〉
D +

〈(
−NK+

(
Nvi

)
||i

)
ψ
〉
D

.

(3.22)
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This commutation rule is independent of the shift vector, and hence is independent
of the propagation of the spatial coordinates. This feature is inherited from the
coordinate-independent definition of the propagation of the domain of averaging
obtained by requiring it to be comoving with the fluid.

Note that, as shown in Appendix B (Eq.(B.2) therein), the local terms appear-
ing in the volume rate of change (3.19) can be equivalently expressed in terms of
the lapse, tilt and fluid expansion rate as −NK+(Nvi)||i = (N/γ)Θ−γ−1 dγ/dt.
The commutation rule can thus alternatively be written under the following form
for any scalar ψ:

d

dt

〈
ψ
〉
D =

〈
d

dt
ψ

〉
D
−
〈
N

γ
Θ − 1

γ

dγ

dt

〉
D

〈
ψ
〉
D +

〈(
N

γ
Θ − 1

γ

dγ

dt

)
ψ

〉
D

, (3.23)

which will be useful when applied to fluid rest frame variables such as ε or �.

3.3 Conservation of the fluid rest mass

We introduce the conserved fluid rest mass flux vector M as

Mμ := �uμ , ∇μM
μ = 0 , (3.24)

from the (conserved) rest mass density �. The rest mass of the fluid within the
domain D is given by the flow of M through D:

MD :=

∫
D
Mμdσμ =

∫
D
−�uμnμ

√
h d3x = VD

〈
γ�
〉
D , (3.25)

with the oriented spatial volume element dσμ = −nμ

√
h d3x, and where we used

−uμnμ = γ, Eq. (2.8).
The conservation of this rest mass can be seen by integrating the conservation

equation of M over the spacetime tube T swept by the domain D between two
hypersurfaces at times t1 and t2 > t1:

0 =

∫
T

∇μM
μ√g d4x =

∮
∂T

Mμdημ , (3.26)

where dημ is the outward-oriented volume element on the boundary ∂T of T .
Introducing the timelike part A of ∂T , with A its outward-oriented unit normal
vector and dVA its volume 3-form, we rewrite the above as:

0 =

∫
Dt2

γ�
√
h d3x−

∫
Dt1

γ�
√
h d3x+

∫
A

MμAμ dVA

= MDt2
−MDt1

+

∫
A

MμAμ dVA . (3.27)

The last term cancels out precisely because the domain propagates along the fluid
flow lines so that the normal vector A is orthogonal to u everywhere on the
boundary A . We therefore end up with the conservation of the rest mass within
D: MDt2

= MDt1
.
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Alternatively, one can make use of the local continuity equation (2.24) for �,
equivalent to the conservation of M (3.24), rewritten in terms of a coordinate-time
derivative:

d

dt
�+

N

γ
Θ� = 0 . (3.28)

Applying the commutation rule expressed in terms of Θ, Eq. (3.23), and the
corresponding form of the volume expansion rate, V−1

D dVD/dt = 〈(N/γ)Θ −
γ−1 dγ/dt〉D, to the average of the above local continuity equation multiplied by
γ then gives d(VD

〈
γ�
〉
D)/dt = 0, recovering the conservation of MD.

3.4 Averaged inhomogeneous cosmologies in the fluid-extrinsic approach

We introduced in the previous sections a scalar averaging procedure on a compact
spatial domain comoving with the fluid. We derived the corresponding commu-
tation rule and showed the preservation of the total fluid rest mass within the
comoving domain. Both hold for any foliation of spacetime. By means of this for-
malism, and from the Einstein equations given in subsection 2.2, we now give
an (under-determined) set of scalar balance equations describing the effective dy-
namics of spatially averaged comoving and compact regions of inhomogeneous
cosmologies.

3.4.1 Averaged evolution equations

Following the original proposal of [23] (used in Papers I and II), we define the
effective scale factor aD of the comoving domain D as

aD(t) :=

(
VD(t)

VDi

)1/3

, (3.29)

where Di refers to the domain at the initial time ti. The volume expansion rate
(3.19) then gives:

1

aD
daD
dt

=
1

3

〈
−NK+

(
Nvi

)
||i

〉
D

. (3.30)

From the average of the trace of N × (3.2) and that of N2× (3.4), and upon using
the commutation rule (3.22) along with relation (3.30), we obtain the effective
evolution equations for an inhomogeneous model universe in the fluid-extrinsic
averaging procedure, that we formulate in the form of a Theorem.

Theorem 1.a (Extrinsically averaged evolution equations)

The evolution equations for the effective scale factor of a compact spatial domain
D comoving with a general fluid read, for any 3 + 1 foliation of spacetime:

3
1

aD
d2aD
dt2

= −4πG
〈
N2 (ε+ 3p)

〉
D
+
〈
N2

〉
D
Λ +QD + PD +

1

2
TD , (3.31)

3

(
1

aD
daD
dt

)2

= 8πG
〈
N2ε

〉
D
+
〈
N2

〉
D
Λ− 1

2

〈
N2 R

〉
D
− 1

2
QD − 1

2
TD ,

(3.32)
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with QD, PD and TD respectively the kinematical backreaction, the dynamical back-
reaction, and the stress-energy backreaction, defined as

QD :=
〈
N2

(
K2 −KijKij

)〉
D
− 2

3

〈
−NK+

(
Nvi

)
||i

〉2

D
, (3.33)

PD :=

〈((
Nvi

)
||i

)2
+

d

dt

((
Nvi

)
||i

)
− 2NK

(
Nvi

)
||i −N2viK||i

〉
D

+

〈
NN

||i
||i −K dN

dt

〉
D

, (3.34)

TD := − 16πG
〈
N2

(
(γ2 − 1)(ε+ p) + 2 γvαqα + vαvβπαβ

)〉
D

. (3.35)

Remarks to Theorem 1.a: Care should be taken in the interpretation of the
system ((3.31),(3.32)). These equations are globally invariant under the remaining
coordinate freedoms, that is, (i) under any change of the spatial coordinates, or (ii)
under a change of the time coordinate of the form t 
→ T (t) with dT/dt > 0 and of
the lapse asN 
→ N ′ = N (dT/dt)−1 (which corresponds to a re-parametrization of
the hypersurfaces). However, individual terms, as well as each equation side taken
separately, are invariant under the former transformation only. A time change
as above would rescale most terms, such as QD, TD or 3 ((1/aD) daD/dt)2, by
the time-dependent factor (dT/dt)−2 (strictly preserving their sign). The terms
PD and (3/aD) d2aD/dt2 would undergo an affine transformation, with this same
rescaling plus an additional term (the same for both, thus preserving the equa-
tion globally) proportional to (daD/dt) (d2T/dt2), so that even their sign can be
arbitrarily changed in a time-dependent manner.

Accordingly, depending on what t represents, the left-hand sides of equa-
tions ((3.31),(3.32)) may not follow an interpretation similar to the corresponding
3 (ȧ/a)2 and 3 ä/a of the standard Friedmann equations. These are unambiguously
expressed as derivatives with respect to the common proper of the comoving fluid.8

Without a well-specified choice for t, conclusions may only be drawn on quanti-
ties that are invariant under the change of time coordinate expressed above. Such
invariants include the sign of the contribution of each term except the dynamical
backreaction and scale factor acceleration terms, as we shall, e.g., discuss for the
stress-energy backreaction in section 3.5.2, or effective dimensionless “Ω” param-
eters that may be defined for a non-stationary aD (daD/dt = 0) by dividing each
term of Eq. (3.32) by 3 [(1/aD) daD/dt]2.The generality of Theorem 1.a allows us
to choose the most suited definition for t in any specific application.

The Friedmannian interpretation of t and its derivatives can be recovered for
some choices that are applicable to general settings. This is the case for instance
for the synchronous and the Lagrangian descriptions, which involve a choice of
foliation (see section 4.4 for an example). One could also choose t within any
foliation such that it coincides with the proper time along some given timelike

8Note that one could in the same way parametrize the Friedmann model by a different time
coordinate while staying within the homogeneous foliation, and similarly get rescaled terms
and an arbitrarily altered acceleration term (see, e.g., the system of equations (20) in Paper II
[16] or the system of equations (40) in [47]). The usual form of the Friedmann equations
removes this freedom by choosing the proper time as the most natural time parameter in
this situation. As, additionally, the spatial coordinates generally used in this framework are
comoving with the fluid content, this picture corresponds to what we termed in this work a
Lagrangian description.
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wordline, for instance taken to to model the wordline of an observer on Earth. Once
a specification of the time label is performed, each term of the above equations,
including the acceleration term (3/aD) d2aD/dt2 or its sign, can be interpreted in
direct relation to the physical meaning of the chosen t.

3.4.2 Integrability and energy balance conditions

We proceed by deriving the integrability condition for the system of equations of
Theorem 1.a, which provides the relation that has to hold for (3.32) to be the
integral of (3.31). This condition is obtained by taking the comoving coordinate-
time derivative of (3.32), and by inserting the set of equations (3.31) and (3.32)
back into the result.9 Complementing this condition by the average of the energy
conservation equation, we write the second part of the above Theorem:

Theorem 1.b (Integrability and energy balance conditions)

A necessary condition of integrability of equation (3.31) to yield equation (3.32) is
given by the relation:

d

dt
QD +

6

aD
daD
dt

QD +
d

dt

〈
N2R

〉
D +

2

aD
daD
dt

〈
N2R

〉
D +

d

dt
TD +

4

aD
daD
dt

(TD + PD)

= 16πG

(
d

dt

〈
N2ε

〉
D +

3

aD
daD
dt

〈
N2 (ε+ p)

〉
D

)
+ 2Λ

d

dt

〈
N2

〉
D , (3.36)

where the source part on the right-hand side satisfies the averaged energy conser-
vation law:

d

dt

〈
N2ε

〉
D+

3

aD
daD
dt

〈
N2 (ε+ p)

〉
D =

〈
N

γ
Θ

〉
D

〈
N2p

〉
D−

〈
N

γ
ΘN2p

〉
D
−
〈
1

γ

dγ

dt

〉
D

〈
N2p

〉
D

+

〈(
2
1

N

dN

dt
− 1

γ

dγ

dt

)
N2ε

〉
D

−
〈
N3

γ

(
qαaα +∇αq

α + παβσαβ

)〉
D

. (3.37)

This conservation law can be complemented by the conservation of the fluid rest
mass, dMD/dt = 0, which may be rewritten as follows:

d

dt

〈
γ	

〉
D +

3

aD
daD
dt

〈
γ	

〉
D = 0 . (3.38)

Proof The local energy conservation law (2.22) implies:

d

dt

(
N2ε

)
+

N

γ
Θ

(
N2 (ε+ p)

)
= 2

1

N

dN

dt
N2ε− N3

γ

(
qαaα +∇αq

α + παβσαβ

)
. (3.39)

Relation (3.37) is then recovered by averaging the local equation (3.39) and applying the
commutation rule expressed in terms of Θ, Eq.(3.23). �

We present as Corollary 1 in Appendix B an equivalent formulation of the sys-
tem of equations of Theorem 1, focussing explicitly on the kinematic and dynami-
cal variables of the fluid rather than the geometric properties of the hypersurfaces
(such as their intrinsic and extrinsic curvatures).

9Alternatively, we can derive the integrability condition directly from the Einstein equa-
tions. For this we note that we can derive the evolution equations for the square of the trace-free
part of the extrinsic curvature and the evolution equation for the 3−scalar curvature using
(3.2) and (3.4). Averaging these equations and combining them, we also obtain the integrability
condition.
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The system of equations of this theorem could also be rewritten in more com-
pact ways, as we shall illustrate for similar equations obtained within an alternative
averaging approach in section 4. We will keep it under the current form, as it is
already sufficient to discuss important properties and relations to the literature,
to which we turn now.

3.5 Discussion

We summarize in the first part of this subsection the framework of our study. We
then discuss the backreaction terms that were defined, investigate boundary effects
and boundary-free global domains, and finally discuss relations to the literature
for global and general domains successively.

3.5.1 Summary

We have worked with three sets of independent worldlines: the normal congruence
along n, everywhere orthogonal to the hypersurfaces of constant coordinate time
t, the congruence of the coordinate frames along ∂t, and the threading congruence
of the comoving frames (or, equivalently, the fluid rest frames) along u. The de-
viations between n and ∂t, on the one hand, and between n and u, on the other
hand, are identified respectively by the vector fields N and v, while that between
∂t and u is pinpointed by V (see figure 1).

This general configuration allows for a fluid flow with vorticity and tilted with
respect to the normal of the three-surfaces, and for an arbitrary propagation of
the spatial coordinates. Also, the lapse function is left unspecified, preserving the
freedom in the construction of the spatial slices.

We have considered a compact spatial domainD, lying within the hypersurfaces
and transported along the fluid flow lines, thus enclosing by construction the same
collection of fluid elements throughout the evolution. In the generic situation,
this domain undergoes a spatial motion in the coordinate system (t, xi), since the
integral curves of ∂t and u do not coincide (see figure 2).

Within this framework, we have established the general commutation rule (for-
mula (3.22)) between spatial averaging and differentiation with respect to the co-
ordinate time along the fluid flow lines. We have then derived in Theorem 1 a set of
scalar equations describing the regional dynamics of spatially averaged portions of
an inhomogeneous fluid. The results obtained hold for a general fluid and for a gen-
eral foliation of spacetime and, in particular, are independent of the propagation
of the spatial coordinates. In such a general foliation, however, we have stressed
the risk of too hastily interpreting these results, in particular of interpreting the
time acceleration term in the same way as the proper-time acceleration term ä/a
of the standard Friedmann equations: its meaning strongly depends on the in-
terpretation of the chosen time parameter t itself. We have also highlighted the
Lagrangian foliation and coordinates choice as a transparent setting that allows
us to recover the common interpretation.
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3.5.2 Comments on the backreaction terms

The kinematical backreactionQD (3.33) and the dynamical backreaction PD (3.34)
generalize the expressions given in Paper II. The emphasis is set here on the
geometric variables of the foliation {K, Kij , etc.}, rather than on the kinematic
variables of the fluid {Θ, Θij , etc.} (see Appendix B for a formulation in terms
of the latter). These two sets of variables are identical in the fluid-orthogonal
approach of Paper II, but they differ in the present framework. Differences with
the setup of Paper II can be made explicit in the kinematical backreaction term
by reformulating it as

QD =
2

3

(〈
N2K2

〉
D
−
〈
−NK+ (Nvi)||i

〉2

D

)
− 2

〈
N2K2

tl

〉
D

, (3.40)

where the traceless part of the extrinsic curvature defines the shear scalar of the
normal congruence, K2

tl :=
1
2

(
Kij − 1

3Khij

) (
Kij − 1

3Khij
)
, and its trace K gives

(up to a sign change) the expansion rate of the normal congruence. This formu-
lation is reminiscent of Paper II. However, it is no longer expressed in terms of
kinematic variables, and it highlights an additional contribution (Nvi)||i from the
Eulerian velocity (or, equivalently, the tilt). We can also notice additional terms
due to the Eulerian velocity in the expression of the dynamical backreaction (3.34).

If the fluid is vorticity-free, we can choose a fluid-orthogonal foliation, namely
we can set n = u as in Paper II and, thus, have v = 0 and γ = 1. In this
configuration the geometric and kinematic variables coincide, and we recover the
expressions of QD and PD given in Paper II. As this setting also implies the
vanishing of the stress-energy backreaction TD, we formally get back the same set
of evolution equations for the effective scale factor (up to the additional inclusion
of the cosmological constant contribution). This could have been expected, but
notice that here, in contrast to Paper II, we allow for a non-vanishing shift vector
and a non-perfect fluid. As already discussed, and as for the commutation rule
(3.22), the shift does not contribute because local evolutions are regarded along
the fluid flow lines, and the spatial domain of averaging is comoving with the fluid;
the shift vector plays no dynamical role locally and on average. However, even
though nonperfect-fluid effects are not formally present in the evolution equations
for the effective scale factor, they still influence the dynamics through the local
and average evolution of the energy density (see equations (2.22) and (3.37)).

In addition to contributing to the kinematical and dynamical backreaction
terms, the tilt also yields the additional backreaction term TD, which we named
stress-energy backreaction, and which can be interpreted in the following ways.

Firstly, it measures the difference between the fluid’s energy as seen in the
normal frames and its rest frames. In this sense, it is thus (up to an overall negative
factor) an average measure of the kinetic energy of the fluid in the normal frames.
Indeed, using relation (2.20) we can write

(γ2 − 1)(ε+ p) + 2 γvαqα + vαvβπαβ = E − ε = Tμνn
μnν − Tμνu

μuν , (3.41)

so that

TD = −16πG
〈
N2(E − ε)

〉
D

= −16πG
〈
N2(Tμνn

μnν − Tμνu
μuν)

〉
D

. (3.42)
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Secondly, it also expresses the difference in isotropic pressure as seen in both
frames, since combining relations (2.20) and (2.21) gives

E − ε = S − 3p = Tμνh
μν − Tμνb

μν . (3.43)

This backreaction term has been introduced to express the dynamics of the av-
eraging domain as sourced by averages of scalar dynamical quantities of the fluid
as seen in its rest frames, ε and p (recall equations (3.31)–(3.32)), rather than
the quantities measured in the normal frames, E and S, since only the former
correspond to intrinsic thermodynamical quantities of the fluid that are directly
described by its equation of state.

Thirdly, as will be shown in subsection 3.5.3, it corresponds to the ‘bulk’ tilt
contribution in that it survives for a boundary-free domain, while the tilt contri-
butions to QD and PD are boundary terms.

The last expression in equation (3.42) shows that our stress-energy backreac-
tion corresponds (up to a numerical factor) to the ‘fluid corrections’ terms intro-
duced by Brown et al. in [10], while the first form (3.35) is sufficient to identify it
with the (unnamed and slightly more general) 〈F 〉 term appearing in Räsänen’s
equations in [54], and to see that it reduces to the ‘tilt effects’ noticed by Gasperini
et al. in [38] in the particular case of a perfect fluid, still up to numerical factors.

The sign of TD will usually be constrained and will remain negative, consis-
tently with the interpretation of −TD as a measure of kinetic energy, so that this
backreaction will contribute as a deceleration term to the effective acceleration
equation (3.31). This constraint is expressed by the following Proposition.

Proposition 1 (sign of the stress-energy backreaction)

If the matter stress-energy tensor satisfies the Null Energy Condition, then

(γ2 − 1)(ε+ p) + vμvνπμν ≥ 0 , (3.44)

and the following assumptions on the heat vector q separately impose TD ≤ 0:

(i) a vanishing heat vector, q = 0 (this includes the case of a perfect fluid, for
which the constant sign of the corresponding ‘tilt effects’ was already noticed
in [38]); or,

(ii) a preferred mutual spatial orientation between v and (the projection onto the
hypersurfaces of) q ensuring N2γ qμv

μ ≥ 0, locally or on average; or,
(iii) on the contrary and more realistically, a variable orientation of the heat vector

de-correlated from that of v and from the value of the lapse N and Lorentz
factor γ, so that the variable-sign term N2γ qμv

μ is averaged out while the other

terms all add up positively:
∣∣∣〈N2γ qμv

μ
〉
D

∣∣∣� 〈
(γ2 − 1)(ε+ p) + vμvνπμν

〉
D.

Proof Noting that (bμνv
ν)(bμρvρ) = bμνvμvν = γ2 − 1 = γ2v2, one can define two future-

pointing null vectors k+,k− as kμ± := γv uμ ∓ bμνn
ν = γv uμ ± bμνv

ν . The projections of the
stress-energy tensor onto these vectors yield:

Tμνk
μ
±kν± = (γ2 − 1)(ε+ p) + πμνv

μvν ∓ 2γv qμv
μ . (3.45)

According to the Null Energy Condition (which we recall is a condition of positiveness of the
projection Tμνkμkν for any future-oriented null vector k), both projections are positive, hence

(γ2 − 1)(ε+ p) + πμνv
μvν ≥ 2γv|qμvμ| ≥ 0 . (3.46)



On Average Properties of Inhomogeneous Fluids in General Relativity III 23

Recalling that TD = −16πG
〈
N2

(
(γ2 − 1)(ε+ p) + πμνvμvν + 2γ qμvμ

)〉
D (equation (3.35)),

and since 2γv < 2γ, even the (stronger) first inequality is insufficient to conclude on the sign
of TD without further assumptions on q. This was to be expected since the same reasoning
could be applied similarly after interchanging the roles played by u and n (that is, using the
normal-frame decomposition of the stress-energy tensor, which replaces for instance q by J ,
and using the null vectors k′μ± := γv nμ∓hμ

νu
ν instead of kμ±), which exchanges TD and −TD.

This symmetry in the roles played by u and n is broken by the possibility of constraining
q, which is an intrinsic property of the fluid, through physical assumptions (e.g. assuming a
perfect fluid), while this is not possible for the foliation-dependent vector J . �

Note that the same results hold under any of the other standard (Weak, Strong,
Dominant) Energy Conditions as they all imply the Null Energy Condition [40,
66].

3.5.3 Boundary terms and global averages

As previously illustrated (see figure 2), the spatial motion of D in the coordinate
system (t, xi) induces a flux of fluid elements with velocity V across the boundary
of the domain E∂t

, coinciding at some instant with D and transported along the
congruence of ∂t. In the same line of thoughts, there also exists a flux of fluid
elements with velocity N + V = Nv across the boundary of the domain En,
coinciding with D at some instant and carried along the normal congruence.

The first boundary effect is related to the choice of the spatial coordinates,
and it can be made to vanish by adopting a comoving picture. The second one is
generated by the tilt, that is, the deviation of the fluid 4−velocity with respect to
n, that translates into a tilted motion of the comoving domain boundaries with
respect to the normal of the slices. It will be present in general unless the foliation
is fluid-orthogonal, a foliation choice which is not possible if the fluid has non-
vanishing vorticity. It is this second effect that impacts on the time variation of
the Riemannian volume, as one can see upon writing expression (3.17) as

d

dt
VD =

∫
Dx

−NK
√
h d3x+

∫
Dx

(
Nvi

)
||i
√
h d3x =

∫
Dx

−NK
√
h d3x+

∮
∂Dx

Nviκi dς ,

(3.47)

where we have used Gauss’ theorem for the second equality. Above, κκκ is the
outward-pointing unit normal vector of the boundary ∂D, whose surface element
is denoted by dς. This rewriting allows to clearly see how the tilt, as measured by
v, contributes as a boundary term to the evolution of the domain’s volume.

Similar tilt-related boundary terms affect the commutation rule (3.22) and
the evolution equations of the effective scale factor (3.31)–(3.32). They arise from
the averages of covariant spatial three-divergences, which are boundary terms as
implied by Gauss’ theorem:

〈
Ai

||i
〉
D

=
1

VD

∫
Dx

Ai
||i

√
h d3x =

1

VD

∮
∂Dx

Ai
κi dς , (3.48)

for any spatial vector field A. These effects cannot be neglected in general; for
a given fluid flow, their contribution entirely depends on the way the slices are
constructed, which locally affects the amplitudes of the lapse and the tilt, and on
the choice of the domain of interest (locally defining a specific boundary).
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As an example, let us consider the commutation rule (3.22). Successively ap-
plying (3.48) to A = Nv = N +V and A = ψNv, we can rewrite it for any scalar
ψ under the following forms:

d

dt

〈
ψ
〉
D =

〈
d

dt
ψ

〉
D
+
〈
NK

〉
D
〈
ψ
〉
D −

〈(
NK −

(
Nvi

)
||i

)
ψ
〉
D

−
〈
ψ
〉
D

1

VD

∮
∂Dx

Nviκi dς (3.49)

=
〈
Nnμ∂μψ

〉
D +

〈
NK

〉
D
〈
ψ
〉
D −

〈
NKψ

〉
D

+
1

VD

∮
∂Dx

ψN viκi dς −
〈
ψ
〉
D

1

VD

∮
∂Dx

Nviκi dς , (3.50)

where the second expression makes use of the total coordinate-time derivative with
respect to n, instead of u (as in the first expression), replacing d

dt by Nnμ∂μ.
For simplicity, we do not make the boundary contributions explicit in the

evolution equations for aD, although this could be done in the same manner.
Instead, we illustrate their effect by comparing the set of averaged equations in
the generic case to a restricted situation where all boundary terms cancel out. We
consider to this aim the case of topologically closed spatial sections (that is, we
assume that the hypersurfaces are compact three-dimensional manifolds without
boundaries), and we extend the averaging domain to the full compact boundary-
free hypersurface, which we denote by Σ. From (3.47), the evolution of the domain
volume becomes in this case:

1

VΣ

dVΣ

dt
= −

〈
NK

〉
Σ

, (3.51)

so that the scale factor here satisfies (daΣ/dt)/aΣ = −
〈
NK

〉
Σ
/3. Then, from

(3.50), the commutation rule for a global boundary-free averaging domain can be
written under the following equivalent forms:

d

dt

〈
ψ
〉
Σ

=

〈
d

dt
ψ

〉
Σ

+
〈
NK

〉
Σ

〈
ψ
〉
Σ
−
〈(

NK −
(
Nvi

)
||i

)
ψ
〉
Σ

;

d

dt

〈
ψ
〉
Σ

=
〈
N nμ∂μψ

〉
Σ
+
〈
NK

〉
Σ

〈
ψ
〉
Σ
−
〈
NKψ

〉
Σ

, (3.52)

for any scalar ψ.
Applying Theorem 1.a to a global domain on topologically closed hypersur-

faces (D = Σ), we infer that the system of evolution equations (3.31)–(3.32) for
the effective scale factor remains formally unchanged as written, while the global
backreaction terms reduce to the following:

QΣ =
〈
N2

(
K2 −KijKij

)〉
Σ
− 2

3

〈
NK

〉2
Σ

; (3.53)

PΣ = −
〈
NKnμ∂μN

〉
Σ
−
〈
N ||i N||i

〉
Σ

; (3.54)

TΣ = − 16πG
〈
N2

(
(γ2 − 1)(ε+ p) + 2 γvαqα + vαvβπαβ

)〉
Σ

, (3.55)

thanks to the vanishing of the averages of spatial divergences (which are boundary
terms) on Σ. In particular, for the calculation of the expression of PΣ from the
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general PD (3.34), successive uses of this property provide the following equivalent
expressions:

PΣ =

〈
NN

||i
||i −K dN

dt

〉
Σ

−
〈
N
(
KNvi

)
||i

〉
Σ

; (3.56)

PΣ = −
〈
N ||i N||i +K dN

dt

〉
Σ

+
〈
KNviN||i

〉
Σ

. (3.57)

The backreaction formulae (3.53)–(3.55) can be compared with the expressions in
the general case, (3.33)–(3.35): the differences are the boundary contributions to
the backreactions, erased when D = Σ. These include all explicit contributions
of the tilt vector v to the kinematical and dynamical backreactions, which have
disappeared in the above expressions (3.53)–(3.54). The alternative expressions
(3.56)–(3.57) for the dynamical backreaction when D = Σ show, nevertheless,
that the tilt vector still manifests itself through the difference between coordinate-
time evolutions along the fluid flow d

dt and along the hypersurface-orthogonal flow
Nnμ∂μ, here regarding the lapse N . Moreover, the existence of a tilt still influences
the dynamics of the effective scale factor through the stress-energy backreaction,
which is unchanged whether the domain has boundaries or not. Indeed, the stress-
energy backreaction is not a boundary effect but instead a manifestation of, e.g.,
the local difference between the rest frame energy of the fluid and its energy as
measured in the normal frames.

The integrability condition and the averaged energy conservation law for an
average performed over a closed hypersurface are, respectively, deduced from re-
lations (3.36) and (3.37) without change. The same terms are involved, since no
explicit three-divergence term appears in these two expressions. However, the back-
reactions appearing in the integrability condition should again be replaced by their
simplified expressions above.

3.5.4 Relations to the literature: global averages

The averaged equations and the commutation rule that we obtained in the par-
ticular case D = Σ are equivalent to those derived by Räsänen in [54],10 where
all averages were taken on the whole boundary-free hypersurface (which was not
assumed to be topologically closed and compact; instead, the existence of the
averages was implied by an assumption of statistical homogeneity of the spatial
hypersurfaces). The above average equations for the D = Σ case are also identical
to those obtained by Tanaka & Futamase in [64] (following from [43] and supple-
menting their equations with the contributions of the cosmological constant), while
the commutation rule was not explicitly given in these papers. Periodic bound-
ary conditions were assumed, so that the situation considered was equivalent to a
global averaging over hypersurfaces with a closed 3-torus topology. The vanishing

10This is not obvious at first glance, due to a different choice of the scalars that have been
averaged, i.e. in contrast to our case the averaged quantities in [54] do not involve the factor
N2. Hence, the averaged equations do not appear identical to those obtained in the present
work, and to see that they are equivalent the use of the corresponding local equations is
necessary. The notations also differ (mostly because the description adopted in [54] is explicitly
4−covariant); one should take care in particular of the fact that in [54] the notation ∂t is used
for the coordinate-time covariant derivative along n (i.e. Nnμ∇μ in the notations of the present
work), rather than for the coordinate-time partial derivative ∂t|xi .
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shift considered in these papers does not affect the results since, as seen above,
this vector does not contribute to the local and average dynamics.

One also recovers the same averaged equations and commutation rule as in
subsection 3.5.3 above by restricting in the same way the expressions obtained
by Brown et al. in [10] to the compact boundary-free domain case (whereas it
is not the case for the results of Larena in [46] due to the different choice of
scale factor). More surprisingly, the averaged and commutation relations derived
by Gasperini et al. in [38] (or by Smirnov in [61] within the same formalism)
remain formally similar to the equations we get in our boundary-free D = Σ
case hereabove, even when applied to a general domain. This originates from the
different propagation of the averaging domain, which in [38,61] is chosen to be
along the flow of n; accordingly, the natural time derivative in their approach is
Nnμ∂μ (in the notations of the present work). This similitude (or, equivalently,
the fact that the averaged equations and commutation rule of [38,61] are formally
unchanged by restricting them to the case D = Σ) indeed shows that boundary
terms only occur when the domain’s boundaries follow a tilted flow with respect
to the normal to the hypersurfaces in which the domain is embedded. There is no
such tilt in the domain propagation in [38,61], hence boundary terms are absent,
despite the non-vanishing local tilt vector between the fluid and normal flows. As
in our case, this local tilt still influences the dynamics via the difference in energy
density and pressure between the local frames orthogonal to each of these flows.

3.5.5 Relations to the literature: transport of the averaging domain

In the more generic case of an averaging domain not covering the whole hyper-
surface, its time propagation needs to be specified. Three choices in particular,
determined by the three congruences we introduced (see figure 1), may appear as
‘natural’ definitions of the transport of the averaging domain.

The first choice is to assume a domain evolving along the congruence of the
coordinate frames ∂t. This is the situation implicitly considered by Larena [46]
and Brown et al. [10] (see also the respective applications of these papers in [65]
and [11,12]). Such a construction picks up two important issues: first, given a
particular choice of shift, the vectors ∂t and u will not be collinear in general,
hence there will be a flow of fluid elements across the domain boundary. This calls
the physical relevance of the averaged system into question as the domain will not
encompass the same collection of fluid elements throughout its evolution, i.e. it will
not conserve its rest mass content. Second, for the same spacetime and the same
foliation, the location of the domain at a given time will depend on the choice of
the shift vector, as it determines the direction of ∂t. This leads to an unphysical
dependency of the averaged system (hence, of all spatial average properties) on
the choice of the spatial coordinates and on the way they propagate.

The second choice is to assume a spatial domain evolving along the integral
curves of the normal frames n. This is the configuration considered by Gasperini et
al. [38] (see also the follow-up paper [49]). Their averaging formalism, as introduced
in [37], is based on the construction of a spacetime window function characterizing
the averaging domain to be considered, and is written in manifestly 4−covariant
form. While this formalism is suitable for a freely specifiable propagation of the
domain boundaries, the averaged system of equations derived in [38], both in
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4−covariant and 3+1 forms, has assumed a transport along n (see equation (3.2)
therein).11

This choice of propagation was also the one adopted by Smirnov [61] and
Beltrán Jiménez et al. [7]. In these papers, n is assumed to be geodesic and to
correspond to the 4−velocity of an irrotational non-interacting dust contribution
to the stress-energy tensor, in contrast to [38] where this normal vector was freely
specifiable. The formalism of Smirnov is otherwise close to that of Gasperini et
al. [38], from which it is directly inspired, with both 4−covariant and 3 + 1 forms
of the averaged equations. Beltrán Jiménez et al. [7] consider a 3 + 1 description,
with a vanishing shift and a trivial lapse (N = 1) but still tilted fluid flows, and
their domain actually follows both ∂t and n as the vanishing shift makes these
two directions identical.

The choice of a domain transport along n leads to formally simpler averaged
equations in terms of the geometric variables of the foliation due to the vanishing
boundary terms (see subsection 3.5.4). It also makes the propagation of the aver-
aging domain independent of the propagation of the spatial coordinates, but this
propagation becomes instead dependent on the choice of the foliation which defines
the vector n. One could argue that such a dependence is inherently present in any
spatial averaging scheme, since the domain of averaging lies by definition within
the hypersurfaces built from the foliation. However, the dependence we refer to
can be understood from a spacetime perspective: by changing the foliation, and
hence the vector n, the four-dimensional tube spanned by the domain transported
along this vector will not remain the same (see figure 3). We also notice that the
second drawback mentioned previously for an evolution along ∂t also holds for a
transport along n: the rest mass of the fluid within the domain will generically
not be conserved, as the particle content of the domain will be altered during its
evolution.

Two similar generalization schemes have been suggested by Räsänen in [54]
(see also the application [55]), and by Kasai et al. in [43] followed by Tanaka
& Futamase in [64], where such issues related to the propagation of the domain
boundaries are avoided. However, in both cases this requires specific choices of the
averaging domain that restrict the scope to large scales and to a class of foliations
where the assumptions made in these papers can hold. Räsänen [54] derives the
averaged equations in a 4−covariant form for a domain covering the whole hyper-
surfaces, thus without the need for specifying its propagation. The convergence of
the averages for such an infinite domain is ensured by the assumption of statisti-
cal homogeneity to hold in these hypersurfaces. In turn, the system of averaged
equations obtained by Tanaka & Futamase in [64] (slightly generalizing that of
[43]) requires a domain and foliation where periodic boundary conditions can be
assumed. A system of averaged equations is given in a background-independent
scheme as a preliminary step in [43,64]. However, the emphasis is subsequently

11Accordingly, and in contrast to a statement of [38], the resulting averaged system of
equations, as expressed in 3 + 1 form, is not identical to that of Brown et al. [10] for a non-
vanishing shift, as in this latter study the domain is transported along ∂t. This becomes true
if a vanishing shift is chosen, due to the proportionality of n and ∂t in this case. As correctly
stated, however, the averaged system of equations in 3 + 1 form of [38] becomes identical to
that of Paper II for an irrotational perfect fluid if the fluid rest frames are used to generate
the spatial hypersurfaces. This is indeed expected as in this case n = u, hence the domain has
the same (fluid-comoving) evolution as in Paper II.
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Fig. 3 We here illustrate the situation where the propagation of the averaging domain is
chosen so as to follow the normal of the hypersurfaces at stake. For the foliation of slices
Σt, the domain locus is described by the associated normal congruence C(n) (green dotted
lines). For another foliation of slices Σ′

t, it is described by the normal congruence C(n′) (red
dash-dotted lines), which differs in general from C(n). The spatial domain selected in this
way at time t by each foliation is represented by the continuous-line colored section of the
corresponding hypersurface, Σt or Σ′

t. Choosing a domain transport along the normal of the
hypersurfaces constructs different four-dimensional tubes, corresponding to different physical
systems, for different foliations. It will also imply a flow of fluid elements across the domain
boundary in general.

put on linear perturbation theory at a Friedmannian background, on which the
main conclusions are based. Accordingly, no or negligible contributions from back-
reaction are found in this setting, which is expected due to the nonlinear and
background-free nature of backreaction.12 The transport of the averaging domain
is not specified; this does not affect the results due to the vanishing of any bound-
ary term. Comparing with [38] and in view of the discussion above in subsection
3.5.4, we conclude that the results obtained in both latter schemes [54,64] would
remain valid in a general foliation, and for any domain, provided it is required
that its boundaries propagate along n (which would also be a propagation along
∂t in [64] in view of the vanishing shift vector choice) in order to prevent the oc-
curence of extra boundary terms. A wider applicability of the schemes would thus
be recovered, but the drawbacks highlighted above for such a propagation would
also be retained.

The third choice, which we adopt in the present work, is that of a domain
comoving with the fluid. As its boundaries follow the fluid flow u, the averaging
domain always sweeps out the same four-dimensional tube of spacetime, whatever
the choice of the foliation and spatial coordinates. This option also ensures, by def-

12We emphasize that mixing background-dependent applications with a background-free
framework may imply strong restrictions, e.g. the small backreaction found by Russ et al. [59]
in second-order perturbation theory at a Friedmannian background must in reality vanish due
to the geometric constraints imposed (see the comments in Paper I [15], Sect. 3.4.).
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inition, that the domain encloses the same collection of fluid elements throughout
its evolution, which in turn implies the conservation of the fluid rest mass within
D. Choosing such a domain propagation therefore avoids all of the drawbacks
mentioned above. It should be noted, however, that the advantage of rest mass
conservation within the spatial domain would not hold, in general, for the averaged
description of a model universe filled with several fluids. A multi-fluid approach
would require to pick up and follow one preferred fluid congruence, preserving the
corresponding rest mass only, while allowing the others to flow across the domain
boundaries, see e.g. [30]. However, the rest mass within the domain could be con-
served simultaneously for every fluid only by assuming that the 4−velocities of
all fluids coincide, at least at the domain boundary,13 or that the spatial domain
is extended to the whole hypersurface. In the present work we consider a cos-
mological model sourced by a single fluid, which should satisfactorily account for
the description of the main cosmological epochs largely dominated by a particular
fluid (radiation or dust).

3.5.6 Relations to the literature: comparison of the final averaged equations

Most authors cited in the above discussion base their studies either on a direct
3 + 1 formulation of the evolution and averaged equations, or on a formulation
using explicitly 4−covariant terms from which a 3 + 1 form is explicitly deduced.
This allows for a rather direct comparison with the formalism and results presented
so far in this paper (section 3.4).14

All of the corresponding systems of 3 + 1 averaged equations are manifestly
different from the one we obtain in subsection 3.4 due to the different propaga-
tion of the averaging domain. However, we notice a formal similarity between the
commutation rule (3.22) and the system of dynamical equations for the effective
scale factor (3.31)–(3.32) we present, and those of Brown et al. [10]. The tilt vector
pondered by the lapse Nv appearing in several terms in the commutation rule and
backreaction formulas would there be formally replaced by the shift vectorN , both
representing the deviation of the vector flow followed by the domain (respectively
u and ∂t) to the normal to the slices n in the corresponding framework. Simi-
larly, the time derivative d/dt along u would be replaced by the time derivative
∂t
∣∣
xi along ∂t. This allows to easily see that both systems of equations become

equivalent in the special case of a comoving description (within which Nv = N
and d/dt = ∂t

∣∣
xi), as expected since in this case the spatial coordinates are cho-

sen in such a way that both domains follow the same flow ∂t ∝ u. Despite the
same domain propagation choice, the averaged equations of Larena [46] remain
different from the former even in a comoving picture due to a different notion

13The averaged equations are in general defined for arbitrary domains. If an assumption
is adopted that distinct fluid congruences coincide or “average out” on the boundary, the
arbitrariness of the domain choice has to be given up.

14The averaged energy conservation equation and the integrability condition (see subsection
3.4.2 above) are not always considered. The 3 + 1 approach of Beltrán Jiménez et al. [7]
differs from the one used here in that it does neither include lapse nor shift, while Tanaka
& Futamase [64] consider a nontrivial lapse along with a vanishing shift. In the approach of
Räsänen [54], the formulation is only given in explicitly 4−covariant terms; also in this case
can a 3+1 formulation be readily deduced, for comparison with the above averaged equations,
upon making a coordinate choice including the appropriate time t.
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of effective scale factor.15 Finally, as already discussed, the choice of a domain
propagating along the normal to the slices (or in the last two cases, the use of
global assumptions on the domain that erase boundary terms, yielding the same
evolution) made by Gasperini et al. [38], Beltrán Jiménez et al. [7], Smirnov [61],
Tanaka & Futamase [64] and Räsänen [54] would require to take either global
averages or fluid-orthogonal hypersurfaces (when possible) in each case to make
the averaged equations of these papers equivalent to those derived in the above
section 3.4.

The reader may find a complete comparison of the averaging formalisms dis-
cussed above in Appendix C and synthetic tables therein.

4 Rest mass–preserving scalar averaging: fluid-intrinsic approach

In this section we propose an alternative averaging procedure aimed at characteriz-
ing average properties that are fully intrinsic to the fluid. We start with presenting
the motivations for this approach.

4.1 Motivation for a fluid-intrinsic averaging procedure

In the previous section we learned that most of the literature on the general-
ization of spatially averaged cosmologies for arbitrary foliations abandons the
intrinsic fluid averaging approach that was a primary element of Papers I and
II. Instead, the averaging procedures considered were built from averaging do-
mains evolving along the normal congruence of the hypersurfaces of arbitrary
foliations. We pointed out that this choice inherits problems with regards to the
foliation-dependent evolution of the domain,16 and especially the non-conservation
of the rest mass of the averaging domain in general situations. These problems are
avoided for our choice of a comoving domain of averaging, i.e. of a domain trans-
ported along the fluid congruence.

The approach we presented in section 3 complies, however, with the definition
of the averaging operation, and with the set of foliation-related local variables
explicitly appearing in the equations, adopted in the aforementioned literature

15Such additional differences with the results of [46] arise from a definition of the effective
scale factor in this latter study that makes its evolution different from that of the cubic
root of the domain’s volume. Since the aim of an averaging framework is to investigate the
regional dynamics of comoving domains lying within spatial hypersurfaces, it appears to be
more appropriate to define the scale factor from their volume. The reader may refer to [65] for a
comparison of the different averaged energy constraints obtained for different choices of aD, and
for an analysis of the backreaction effects obtained for each choice in a Friedmann-Lemâıtre-
Robertson-Walker (FLRW) model perturbed up to second order. Note, however, that in these
studies the domain also follows the congruence of the coordinate frames along ∂t, implying
the drawbacks already highlighted in section 3.5.5.

16We emphasize that the averaged dynamics and the definitions of backreaction terms in
this approach involve the extrinsic curvature, which depends on derivatives of the normal
vector. Even if the tilt measuring the deviation of the 4−velocity with respect to the normal
is small (the Lorentz factor is close to unity), its derivatives can be large. This may lead to
a strong foliation dependence of the averaged variables and backreaction terms that is to be
considered irrelevant for a cosmological model, since in such an approach these quantities only
characterize properties of a family of extrinsic observers.
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(although some ‘mixed’ fluid and foliation scalars such as hμν∇μuν have also
been used by Larena [46]). This extrinsic approach could be employed to measure
the deviations from the dynamics of a homogeneous-isotropic model universe in a
geometric way, since it focuses on averages of foliation-dependent scalars character-
izing the hypersurfaces such as the respective traces of the extrinsic and intrinsic
curvatures. We argue, however, that intrinsic properties of the fluid content such
as those measured by the rest frame kinematic quantities Θ, σ2 and ω2, defined in
subsection 2.2.2, are relevant for the characterization of an effective cosmological
model. It is not only a philosophical question to consider as a viable cosmology the
evolution of averaged fluids formulated in its own variables, rather than looking at
averages ‘from outside’ that mostly focus on the study of geometrical properties
of the hypersurfaces. This risks invoking a quasi-Newtonian understanding of a
moving fluid with respect to some fiducial external spacetime.

Having said this, the reader may point out that focusing on the properties of the
fluid congruence is more reminiscent of a 1 + 3 (threading) point of view. Indeed,
we employ in this work a 1 + 3 threading formalism, but jointly with a 3 + 1
foliation, simply because hypersurfaces are needed for the averaging operation.
Going as far as possible toward a fluid-intrinsic description avoids an excessive
foliation-dependence of the variables considered. However, this goal will encounter
limitations, since the rest frames of a vortical fluid are not hypersurface-forming.
A fully intrinsic construction of effective cosmologies will thus in general require
other choices. The foliation at constant fluid proper time, as part of the Lagrangian
description (see subsection 2.4.2) allows for a spatial averaging over hypersurfaces
that are built from the fluid flow itself. Another possibility that is opened with
the intrinsic approach would be to characterize hypersurfaces statistically. This
strategy will be discussed in subsection 5.3.3.

As a first step toward an intrinsic approach, we present in Appendix B a
re-expression of the extrinsic evolution equations (3.31)–(3.32) in terms of the
fluid’s intrinsic variables. This provides more insight into the contributions of these
quantities to the averaged dynamics, in particular the influence of the vorticity
can be better understood, but it also raises additional contributions from the tilt
factor γ. In the following, we shall go another route heading toward an intrinsic
fluid point of view. For this aim we introduce a slightly different generalization of
the fluid-orthogonal averaging formalism of Papers I and II that will also allow
us to derive a more compact form of averaged cosmologies. We first motivate this
route by contemplating on the conservation of the rest mass of the fluid.

4.1.1 Regional rest mass conservation

We have shown in subsection 3.3 that the total fluid rest mass within the domain
D, MD =

∫
D Mμ dσμ, with Mμ = �uμ the conserved rest mass flux vector, is

preserved in time (dMD/dt = 0) as a consequence of the domain’s fluid-comoving
propagation. We have also shown that MD can be expressed in terms of the volume
and averaging operator introduced by (3.18) as follows:

MD =

∫
D
γ�

√
h d3x = VD

〈
γ�
〉
D . (4.1)

The relevant scalar to be integrated over the spatial domain is therefore γ�, rather
than the rest mass density � as it could have been expected. Unless the foliation
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is fluid-orthogonal (γ = 1), the quantity
∫
D �

√
h d3x = VD

〈
�
〉
D is not the fluid

rest mass within D and accordingly is not conserved. Indeed, using the continuity
equation (3.28) for � as well as the commutation rule (3.23) and the associated
volume evolution rate expression, we have

d

dt

(
VD

〈
�
〉
D

)
= −VD

〈
1

γ

dγ

dt
�

〉
D

. (4.2)

The need to account for the factor γ is a consequence of the conserved � being a rest
mass density of the fluid in its local rest frames. It is thus a density with respect to
the measure of proper volume of the fluid elements, while γ� is the corresponding
density with respect to the (Lorentz-contracted) normal frames volume measure√
h d3x used in the definition of the extrinsic volume averaging operator

〈
·
〉
D.

The total fluid rest mass within the domain is alternatively obtained by inte-
grating the rest mass density per unit of fluid proper volume, �, with the corre-
sponding fluid rest frames volume element,

√
b d3x with b := det(bij): given the

relation between the determinants b and h,

b = det(gij + uiuj) = det(hij + uiuj) = h det(δij + hikukuj)

= h (1 + hijuiuj) = h (1 + hμνuμuν) = h γ2 , (4.3)

we have
√
b d3x = γ

√
h d3x, and therefore

MD =

∫
D
�
√
b d3x . (4.4)

The rest mass of the fluid MD is thus more naturally defined in terms of the proper
volume measure

√
b d3x.

Note that the two covariant17 volume measures
√
h d3x and

√
b d3x coincide

in the case of a flow-orthogonal foliation (possible for an irrotational fluid), which
is the situation considered in Papers I and II. A degeneracy between both vol-
umes is present in these papers, while they are distinct for any other choice of
foliation. This is similar to the difference between hypersurface-orthogonal and
fluid-comoving propagation choices for the averaging domain, that emerges out-
side the fluid-orthogonal foliation framework of Papers I and II where both choices
can be made simultaneously. We have argued above that once this distinction needs
to be done, preserving the comoving character of the domain propagation is the
relevant choice for a physical description of average properties of a regional subset
of the fluid. Here we also notice that keeping a volume measure that corresponds
to a proper volume for the fluid appears to be the most suited to describe the
integrated contribution of variables that are primarily defined from the fluid’s rest
frames, as, e.g. for the expression of the mass within the domain from the rest
mass density �.

We shall accordingly introduce a new volume for the domain and a new av-
eraging operator based on the fluid proper volume element. It will allow us to

17As
√

h(t, xk) d3x, the fluid-orthogonal volume 3-form
√

b(t, xk) d3x is also invariant un-
der a change of spatial coordinates, as can be checked either directly or by rewriting it as

γ(t, xk)
√

h(t, xk) d3x, γ = −nμuμ being a 4-scalar. It reads in particular
√

b(t, xi) d3x =√
b(t, f i(t,X)) J(t,Xi) d3X in comoving spatial coordinates Xi, with b(t, f i(t,X)) J(t,Xi)2

being the determinant of the spatial components of the fluid rest frame projector b in the
comoving coordinate system (t,Xi).
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define these notions intrinsically from the source content, leaving only the integra-
tion itself as based on the foliation choice since the spatial integration domain lies
within a hypersurface.18 We will also recover the expected relation between mass
and averaged rest mass density.

4.1.2 Intrinsic averaging operator

We consider as before a compact domain D transported along the fluid flow lines
and contained within hypersurfaces of normal the unit timelike vector field n.
Instead of using the hypersurface Riemannian domain volume Vh

D, where the su-
perscript h is used for clarity, we introduce the proper volume of the fluid elements
within D:

Vb
D(t) :=

∫
D
uμdσμ =

∫
D
γ(t, xi)

√
h(t, xi) d3x =

∫
D

√
b(t, xi) d3x , (4.5)

and we define the fluid-instrinsic average over D of any scalar ψ as19

〈
ψ
〉b
D :=

1

Vb
D

∫
D
ψ uμdσμ =

1

Vb
D

∫
D
ψ(t, xi) γ(t, xi)

√
h(t, xi) d3x

=
1

Vb
D

∫
D
ψ(t, xi)

√
b(t, xi) d3x . (4.6)

In other words, we make use of the restriction to the slices of the Hodge dual �u
of the 1−form u as the volume 3-form, rather than the volume 3−form similarly
built from n that was used for the extrinsic definitions of section 3.

Similarly to the extrinsic hypersurface averager of section 3, we recover from
(4.5) and (4.6) the volume and averager of Papers I and II when considering a
foliation orthogonal to an irratotional fluid flow. The two averaging schemes can
be formally related as

Vb
D = Vh

D 〈γ〉hD ;
〈
ψ
〉b
D =

〈γψ〉hD
〈γ〉hD

, (4.7)

for any scalar ψ, where we label the extrinsic averaging operator used throughout
section 3 with a superscript h for a more explicit distinction. This shows the
identity of both operators in the absence of tilt (γ = 1), and their approximate
identity in the case of a small tilt, i.e. of non-relativistic Eulerian velocities of the
fluid in the chosen foliation (γ � 1).

18In the following we shall emphasize the choice of a proper time foliation that, in particular,
forms hypersurfaces that are themselves defined intrinsically from the fluid (up to the choice
of an initial hypersurface).

19Note that the intrinsic averager (4.6) can be obtained in the framework of Gasperini et
al. [38] by rewriting their window function, WΩ = nμ∇μ

(
H(A(xα)− A0)

)
H(r0 − B(xα)), as

WΩ = uμ∇μ
(
H(A(xα)−A0)

)
H(r0−B(xα)). Considering in addition the constraint uμ∂μB =

0, which defines a comoving domain propagation, yields the same averaged system that we are
going to derive in the present section. (See [41] for a detailed analysis.)
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4.2 Intrinsic effective dynamics of general fluids seen in general foliations

4.2.1 Fluid-intrinsic volume measure and averager: time evolution

Starting with the reformulation of the extrinsic averaging scheme in Appendix
B, we obtain from the volume evolution rate (B.3), the commutation rule (B.4),
and the above relations between both schemes (4.7), the evolution rate of the
fluid-intrinsic volume:

1

Vb
D

d

dt
Vb
D =

〈
N

γ
Θ

〉b

D
=
〈
Θ̃
〉b

D
, (4.8)

where we have introduced the rescaled scalar expansion rate Θ̃ := (N/γ)Θ. Since
N/γ = dτ/dt, Θ̃ can be seen as the fluid’s local expansion rate with respect to the
coordinate time t, while Θ expresses this rate with respect to the proper time τ .

This evolution rate formula can alternatively be derived in the same way as
it was done for the hypersurface Riemannian domain volume in subsection 3.2.2,
changing the spatial coordinates to comoving ones in the integral to commute
integration and comoving coordinate-time derivative. Using the invariance of the
fluid rest frame volume form with respect to such a spatial diffeomorphism, we
then get the above result through the second equality of relation (2.39) holding in
comoving coordinate systems.

Both methods can be equally used to obtain a new commutation rule for the
intrinsic averager, which we now express in the form of a Lemma:

Lemma 2 (commutation rule for fluid-intrinsic volume averages)

The commutation rule between fluid-intrinsic averaging on a compact domain
D, lying within the t-constant hypersurfaces and comoving with the fluid, and co-
moving differentiation with respect to the coordinate time reads, for any 3 + 1
foliation of spacetime and for any scalar ψ:

d

dt

〈
ψ
〉b

D
=

〈
d

dt
ψ

〉b

D
−
〈
Θ̃
〉b

D

〈
ψ
〉b

D
+
〈
Θ̃ ψ

〉b

D
. (4.9)

This simple relation is independent of the shift due to the spatial coordinate-
independent definitions of the domain propagation and averaging procedure; it
only depends on the lapse and the tilt through the threading lapse factor N/γ in
Θ̃, rescaling the proper time evolutions to coordinate-time evolutions.

Within this fluid-intrinsic averaging scheme, the averaged rest mass density
takes the expected form: 〈

�
〉b
D =

MD
Vb
D

. (4.10)

From the commutation rule (4.9) and the continuity equation d�/dt+ Θ̃� = 0, we

obtain d(Vb
D
〈
�
〉b
D)/dt = 0, which shows again the preservation of the domain rest

mass MD.
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4.2.2 Averaged evolution equations

We define the effective scale factor of the fluid body via the intrinsic domain
volume:

abD(t) :=

(
Vb
D(t)

Vb
Di

)1/3

, (4.11)

so that its rate of change yields the averaged expansion rate as seen in coordinate
time t:

Hb
D :=

1

abD

dabD
dt

=
1

3

〈
Θ̃
〉b

D
. (4.12)

Equivalently, the rate of change of the fluid scale factor can be defined as

Hb
D :=

〈
1

�

d�

dt

〉b

D
, (4.13)

with � being the representative length lying in the rest frames of the fluid, and
satisfying

�̇

�
=

1

3
Θ , or

1

�

d�

dt
=

1

3
Θ̃ . (4.14)

In other words, � denotes the spatial isotropic deviation of two neighbouring fluid
elements.20

Instead of using the Einstein equations projected along n, yielding equations
(3.2) and (3.4) (expressed in terms of the intrinsic and extrinsic curvature of the
hypersurfaces), we here express the local dynamics of the fluid directly through
the Raychaudhuri equation:

Θ̇ = −1

3
Θ2 − 2σ2 + 2ω2 +∇μa

μ − 4πG (ε+ 3p) + Λ , (4.15)

obtained from a projection of the Einstein equations along u; it relates rest frame
kinematic and dynamical scalars of the fluid, thus being relevant for the present
fluid-focussed approach. It can be complemented by an analogue in terms of fluid-
intrinsic quantities of the foliation-related energy constraint (3.4) by defining a
‘fluid rest frame 3−curvature’ scalar R from the 4−Ricci tensor Rμν and scalar
R, following Ellis et al. [34], as follows:

R := ∇μu
ν ∇νu

μ −∇μu
μ ∇νu

ν +R+ 2Rμν u
μuν . (4.16)

Noting that the covariant derivatives above can be equivalently replaced by their
projections orthogonal to u (∇ρu

σ 
→ b κ
ρ bστ∇κu

τ ), the scalar Gauss equation [1,

20The difference to the averager used in section 3 can be made explicit by introducing l as
the counterpart of �:

1

l

dl

dt
=

1

3

(
Θ̃ − 1

γ

dγ

dt

)
=

1

�

d�

dt
− 1

3

1

γ

dγ

dt
.

We thus have l3 = �3/γ, i.e. l is a length (cubic root of a volume) associated with the volume
contraction of � by the Lorentz factor γ (lengths are contracted by γ in one spatial direction

and are not affected in the other orthogonal two, implying a factor γ1/3 for the isotropically
averaged length contraction).
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39] applied to the u-orthogonal hypersurfaces when those exist (i.e. for vanishing
vorticity) shows that R corresponds in this case to the scalar intrinsic curvature
of these hypersurfaces. For non-zero vorticity, such hypersurfaces cannot be built,
and R is not transparently interpreted as a scalar curvature.21 It should be kept
in mind that it does not in general correspond to the intrinsic curvature R of the
n-orthogonal hypersurfaces in which the domain D is embedded.

Inserting the trace of the Einstein equations and their projection along u in
the definition (4.16) of R allows to relate it to the fluid’s rest frame energy den-
sity within a constraint equation where the covariant derivative of u has been
decomposed into its kinematic parts:

2

3
Θ2 − 2σ2 + 2ω2 + R = 16πGε+ 2Λ . (4.17)

Analogously to what has been done in section 3 within the extrinsic averaging
scheme, we can now apply the fluid-intrinsic averager to equations (4.17) and
(4.15) multiplied by (N/γ)2 and use expression (4.8) for the evolution rate of Vb

D
as well as the commutation rule (4.9) to obtain the effective evolution equations
of the scale factor abD. We formulate them in the following Theorem in terms
of rescaled variables defined similarly to Θ̃: rescaled kinematic variables, σ̃2 :=
(N/γ)2σ2 and ω̃2 := (N/γ)2ω2, dynamical variables, ε̃ := (N/γ)2ε and p̃ :=
(N/γ)2p, acceleration 4-divergence, Ã := (N/γ)2A with A := ∇μa

μ, and fluid
3-curvature, R̃ := (N/γ)2R.

Theorem 2.a (fluid-intrinsically averaged evolution equations)

The evolution equations for the effective scale factor of the fluid body within
a compact and comoving regional spatial domain D of an inhomogeneous general
fluid, and for any 3 + 1 foliation of spacetime, read:

3
1

abD

d2abD
dt2

= − 4πG
〈
ε̃+ 3p̃

〉b
D + Λ̃b

D + Q̃b
D + P̃b

D ; (4.18)

3
(
Hb

D
)2

= 8πG
〈
ε̃
〉b
D + Λ̃b

D − 1

2
Q̃b

D − 1

2

〈
R̃
〉b
D , (4.19)

with a time- and scale-dependent contribution from the cosmological constant,

Λ̃b
D := Λ

〈
N2

γ2

〉b

D
, (4.20)

21However, R can indeed arise as the 3−Ricci scalar associated to a ‘u-orthogonal spatial
Riemann-like’ tensor which can be built from the u-orthogonal spatial covariant derivative
operator (defined for tensors fully orthogonal to u as the projection through b of their covari-
ant 4−derivative on every component) as well as from its spacetime embedding [50,34,56].
Although for non-vanishing vorticity this Riemann-like tensor does not possess all the sym-
metry properties of a true Riemann tensor and the way of defining such a spatial curvature
tensor is not unique, R may accordingly be seen as the scalar part of local 3−curvature at the
u-orthogonal subspace of the tangent space at each spacetime point. Boersma and Dray intro-
duce so-called parametric manifolds to define this quantity as the curvature of the parametric
submanifold [8]. Alternatively, we may see it simply as a definition through equation (4.17).
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and with Q̃b
D and P̃b

D denoting the intrinsic kinematical and dynamical backreac-
tion terms, respectively, as seen in the t-hypersurfaces. They are defined as follows:

Q̃b
D :=

2

3

〈(
Θ̃ −

〈
Θ̃
〉b

D

)2
〉b

D
− 2

〈
σ̃2
〉b

D
+ 2

〈
ω̃2
〉b

D
; (4.21)

P̃b
D :=

〈
Ã
〉b

D
+

〈
Θ̃

γ

N

d

dt

(
N

γ

)〉b

D
. (4.22)

As for Theorem 1.a, the left-hand side of equation (4.18) above should not be
directly interpreted as a time-acceleration of the scale factor, unless a framework
such as the Lagrangian picture, that we develop below, is adopted (compare the
discussion and proof in subsection 3.4.1).

Note also that the backreaction terms introduced above do not correspond in
general to the terms QD and PD appearing in the extrinsic averaging scheme.
They do coincide, however, in case of a fluid-orthogonal foliation as can be seen by
direct comparison with the definitions (3.33)–(3.34) of QD and PD, and by noting
that in this case Kij = Θij , ω

2 = 0, and (through relation (2.6) between lapse and

acceleration of the normal frames), Ã = NN
||i
||i.

The above system of averaged equations can alternatively be derived (through
relations (4.7) between both averaging schemes) from the analogous relations for
the effective scale factor aD of the extrinsic averaging scheme, provided the latter
relations are re-expressed in terms of the fluid rest frame local kinematic and
dynamical variables, as exposed in Appendix B. The use of the local dynamical
equations (4.17) and (4.15) is still required in the process since the local quantities
to be averaged differ between both schemes by a factor γ.

4.2.3 Integrability and energy balance conditions

As for the extrinsic averaging formalism (see subsection 3.4.2), a condition of
integrability of the system of averaged equations (4.18)–(4.19) can be obtained by
applying the Lagrangian coordinate-time derivative d

dt to the averaged constraint

equation (4.17) and inserting 2 (abD)−1 (dabD/dt)× ((4.18)− (4.19)) into the result.
The averaged fluid source terms appearing in the resulting condition are themselves
constrained by the local energy balance equation (2.22), which can be rescaled by
a factor (N/γ)3 to yield:

d

dt
ε̃+ Θ̃ (ε̃+ p̃) = 2 ε̃

γ

N

d

dt

(
N

γ

)
− N3

γ3
(qμaμ +∇μq

μ + πμνσμν) . (4.23)

Applying to it the intrinsic averager, the commutation rule (4.9) yields an evolution

equation for
〈
ε̃
〉b
D, which we express along with the integrability condition in the

second part of the Theorem:
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Theorem 2.b (integrability and energy balance conditions to 2.a)

A necessary condition of integrability of equation (4.18) to yield equation (4.19) is
given by:

d

dt
Q̃b

D + 6Hb
DQ̃b

D +
d

dt

〈
R̃
〉b
D + 2Hb

D
〈
R̃
〉b
D + 4Hb

DP̃b
D

= 16πG

(
d

dt

〈
ε̃
〉b
D + 3Hb

D
〈
ε̃+ p̃

〉b
D

)
+ 2

d

dt
Λ̃b

D , (4.24)

where the first terms on the right–hand side obey an averaged energy balance equa-
tion:

d

dt

〈
ε̃
〉b

D
+ 3Hb

D
〈
ε̃+ p̃

〉b

D
=
〈
Θ̃
〉b

D

〈
p̃
〉b

D
−
〈
Θ̃ p̃

〉b

D

−
〈
N3

γ3
(∇μq

μ + qμaμ + πμνσμν)

〉b

D
+ 2

〈
ε̃
γ

N

d

dt

(
N

γ

)〉b

D
. (4.25)

This balance equation can be supplemented by the rest mass conservation law
dMD/dt = 0, which can be equivalently expressed in terms of the averaged rest

mass density
〈
�
〉b
D = MD/Vb

D:

d

dt

〈
�
〉b
D + 3Hb

D
〈
�
〉b
D = 0 . (4.26)

4.3 Effective forms of the fluid-intrinsic cosmological equations

We now introduce effective forms of the fluid-intrinsically averaged equations pro-
viding compact expressions that are suitable for applications.

4.3.1 Effective Friedmannian form

Following the suggestion in Paper II, the set of equations given in Theorem 2,
which features deviations from the standard Friedmann equations, can be seen
as a (scale-dependent) Friedmannian dynamics sourced by an effective energy-
momentum tensor. The corresponding effective homogeneous energy density and
pressure are defined as:

εbeff :=
〈
ε̃
〉b
D − 1

16πG
Q̃b

D − 1

16πG
W̃b

D +
1

8πG
L̃b

D ; (4.27)

pbeff :=
〈
p̃
〉b
D − 1

16πG
Q̃b

D +
1

48πG
W̃b

D − 1

8πG
L̃b

D − 1

12πG
P̃b

D , (4.28)

where we have introduced the backreaction terms W̃b
D, for the deviation of the

averaged fluid 3−curvature
〈
R̃
〉b
D from a constant-curvature behaviour, and L̃D

for the deviation from the cosmological constant Λ:22

W̃b
D :=

〈
R̃
〉b
D − 6

kD
(abD)2

; L̃b := Λ̃b − Λ . (4.29)

22In the standard cosmological model it is assumed that the cosmological constant Λ models
Dark Energy; the averaged equations show that we then also have to account for Dark Energy
backreaction Lb

D in cases where N �= γ, cf. (4.20).
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kD is a domain-dependent arbitrary constant, which can for instance be defined

as kD = (abD)2(ti)
〈
R̃
〉b
D(ti) / 6 to feature the initial scalar curvature. Equations

(4.18)–(4.19) can then be written as Friedmann-like equations for the effective
sources and the effective Hubble function Hb

D, summarized in the following Corol-
lary to Theorem 2:

Corollary 2.a (Effective Friedmannian form)

The set of cosmological evolution equations of Theorem 2 can be written in Fried-
mannian form for the effective sources (4.27) and (4.28):

3
1

abD

d2abD
dt2

= −4πG (εbeff + 3 pbeff) + Λ , (4.30)

3
(
Hb

D
)2

= 8πG εbeff − 3
kD

(abD)2
+ Λ ; (4.31)

while the integrability condition (4.24) reduces to the effective conservation equa-
tion:

d

dt
εbeff + 3Hb

D
(
εbeff + pbeff

)
= 0 . (4.32)

4.3.2 Effective scalar field form

Looking at the effective sources (4.27) and (4.28), we appreciate that the kinemati-
cal backreaction term −Q̃b

D/(16πG) individually obeys an effective stiff equation of
state, i.e., its contributions pbQ and εbQ to the effective pressure and energy density

(respectively) obey pbQ = εbQ, while the curvature deviation term −W̃b
D/(16πG)

individually obeys an effective curvature equation of state, pbW = −εbW/3 (with
similar notations), and the Dark Energy backreaction term L̃b

D/(8πG) an effec-
tive Dark Energy equation of state, pbL = −εbL. The dynamical backreaction term
−P̃b

D/(12πG) arises as an additional effective geometric pressure. This considera-
tion motivates the introduction of a scalar field language, since a free scalar field
in the fluid analogy also obeys a stiff equation of state, and the scalar field po-
tential also features a different sign for the effective potential in the expressions
for the energy density and the pressure. With this analogy the backreaction terms
(by definition only time-dependent, as spatial averages) can be represented by an
effective homogeneous scalar field, the morphon field, as introduced in [24]. The
resulting Friedmann-like equations are sourced in this description by the following
effective homogeneous energy density and pressure:23

εbeff =:
〈
ε̃
〉b
D + εΦ,b

eff ; pbeff =
〈
p̃
〉b
D + pΦ,b

eff . (4.33)

with the morphon variables (for the simplest choice of a scalar field fluid analogy),

εΦ,b
eff :=

1

2

(
d

dt
Φ̃D

)2

+ Ub
eff(Φ̃D) ; pΦ,b

eff :=
1

2

(
d

dt
Φ̃D

)2

− Ub
eff(Φ̃D) . (4.34)

23In the paper introducing the morphon field [24], the possibility of phantom energies has
been discussed too, which in this effective picture does not violate energy conditions. We have
omitted this possible parametrization here.
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The morphon field is therefore defined in terms of the backreaction terms as:

24πG

(
d

dt
Φ̃D

)2

:= −3Q̃b
D − 2P̃b

D − W̃b
D ; (4.35)

24πG Ub
eff(Φ̃D) := 3L̃b

D + P̃b
D − W̃b

D . (4.36)

We summarize the resulting equations in the following Corollary :

Corollary 2.b (Effective Friedmannian form with effective scalar field)

The set of cosmological evolution equations of Theorem 2 can be written in Fried-
mannian form for the averaged energy sources and effective scalar field energies:24

3
1

abD

d2abD
dt2

= −4πG
(〈

ε̃
〉b
D + εΦ,b

eff + 3 (
〈
p̃
〉b
D + pΦ,b

eff )
)
+ Λ . (4.37)

3
(
Hb

D
)2

= 8πG
(〈

ε̃
〉b
D + εΦ,b

eff

)
− 3

kD
(abD)2

+ Λ ; (4.38)

The integrability condition (4.24), written in terms of the deviation fields W̃b
D and

L̃D (cf. (4.29),

d

dt
Q̃b

D + 6Hb
DQ̃b

D +
d

dt
W̃D + 2Hb

DW̃D + 4Hb
DP̃b

D − 2
d

dt
L̃b

D

= 16πG

(
d

dt

〈
ε̃
〉b
D + 3Hb

D
〈
ε̃+ p̃

〉b
D

)
, (4.39)

is mapped to a conservation law for the effective homogeneous scalar field energies,
equivalent to an effective Klein Gordon operator, applied to Φ̃D:

d

dt
εb−Φ
eff + 3Hb

D
(
εb−Φ
eff + pb−Φ

eff )
)
+ Sb

D = 0 , (4.40)

i.e.
dΦ̃D
dt

(
d2Φ̃D
dt2

+ 3Hb
D
dΦ̃D
dt

+
∂Ub

eff(Φ̃D)

∂Φ̃D

)
+ Sb

D = 0 , (4.41)

balanced by the averaged conservation law for the sources (cf. (4.25)):

Sb
D :=

d

dt

〈
ε̃
〉b
D + 3Hb

D
(〈

ε̃
〉b
D +

〈
p̃
〉b
D

)
=
〈
Θ̃
〉b

D

〈
p̃
〉b

D
−
〈
Θ̃ p̃

〉b

D

−
〈
N3

γ3
(∇μq

μ + qμaμ + πμνσμν)

〉b

D
+ 2

〈
ε̃
γ

N

d

dt

(
N

γ

)〉b

D
, (4.42)

so that in total the conservation law for the total effective energy densities (4.32)
holds.

24The language of a given effective scalar field theory can be freely specified. We may
think of other scalar field theories, e.g. non-minimally coupled, especially, if we set the scalar
field analogy within an extrinsic averaging formalism, where another dictionary could be a
better choice. In this line, the analogy—here set up for fluid-instrinsic averaging—could have
interesting implications for the relation of different scalar field theories with different foliation
choices. By construction, the scalar field obtained here obeys the evolution equations of a
homogeneous scalar field, being built from pure functions of t. One may, however, define it
first (following the above procedure) as a function of the time t of a given foliation, and then
consider this field in another foliation choice, where it will in general be inhomogeneous. In
this way, the scalar field would acquire a nonvanishing spatial gradient and would so allow
for a comparison with phenomenological inhomogeneous scalar fields employed in standard
perturbation theory.
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4.4 Lagrangian effective forms

The effective averaged equations derived from the fluid-intrinsic approach can
be further simplified by moving to the Lagrangian picture, where the rescaled
variables (Θ̃, ε̃, ...) reduce to the original variables (Θ, ε, ...) since N = γ. We
recall that the Lagrangian picture requires both a foliation choice of hypersurfaces
at constant proper time τ and the natural adapted spacetime coordinate choice
(τ,Xi). We shall list below arguments why we consider this choice as the most
adapted one, both to the geometric structure and to cosmological applications.
The choice of fluid-comoving spatial coordinates Xi actually remains optional in
the following, as we have seen that the average equations do not depend on the
shift.

Within this picture, the commutation rule (4.9) and scale factor evolution rate
(4.12) become respectively:〈

ψ
〉b ·
D

=
〈
ψ̇
〉b

D
−
〈
Θ
〉b

D

〈
ψ
〉b

D
+
〈
Θψ

〉b

D
;

ȧbD
abD

=
1

3

〈
Θ
〉b
D , (4.43)

where the operators ˙ and d/dt are here equivalent for scalars.

4.4.1 Lagrangian effective cosmological equations

We summarize the Lagrangian formulation of the averaged cosmological equations
in the following Corollary. (Note that the property N = γ of the constant-τ
foliation choice makes the Dark Energy backreaction L̃b

D vanish.)

Corollary 3.a (Lagrangian effective cosmological equations)

The evolution equations for the proper volume scale factor abD (4.18)–(4.19) for
a choice of constant fluid proper time foliation parametrized by t = τ , read:

3
äbD
abD

= −4πG
〈
ε+ 3p

〉b
D + Λ+Qb

D + Pb
D ; (4.44)

3
(
Hb

D
)2

= 8πG
〈
ε
〉b
D + Λ− 1

2
Qb

D − 1

2

〈
R
〉b
D , (4.45)

with Hb
D = ȧbD/abD and the backreaction terms reduced to

Qb
D =

2

3

〈(
Θ −

〈
Θ
〉b
D

)2〉b

D
− 2

〈
σ2
〉b

D
+ 2

〈
ω2
〉b

D
; (4.46)

Pb
D =

〈
A
〉b
D . (4.47)

The corresponding integrability condition (c.f. equation (4.24)) now becomes:

Q̇b
D +6Hb

DQb
D +

〈
R
〉b ·
D +2Hb

D
〈
R
〉b
D +4Hb

DPb
D = 16πG

(〈
ε
〉b ·
D + 3Hb

D
〈
ε+ p

〉b
D

)
,

(4.48)
with the right-hand side satisfying the averaged energy conservation equation (4.25)
under the following simpler form:〈

ε
〉b ·
D + 3Hb

D
〈
ε+ p

〉b
D =

〈
Θ
〉b
D
〈
p
〉b
D −

〈
Θ p

〉b
D −

〈
∇μq

μ + qμaμ + πμνσμν

〉b
D .

(4.49)
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4.4.2 Effective Friedmannian and Lagrangian form

Combining the above form with the effective Friedmannian form provides the
most compact writing of the averaged cosmological equations, summarized in the
following second part of the Corollary :

Corollary 3.b (Compact form of Lagrangian cosmologies)

In the Lagrangian picture (implying N = γ, where all fields are expressed in terms
of fluid-intrinsic coordinates (τ,Xi)), the effective Friedmann equations (4.31)–
(4.32), reduce to the following form:

3
äbD
abD

= −4πG(εbeff + 3 pbeff) + Λ ; (4.50)

3
(
Hb

D
)2

= 8πG εbeff − 3
kD

(abD)2
+ Λ ; (4.51)

ε̇ b
eff + 3Hb

D
(
εbeff + pbeff

)
= 0 , (4.52)

with Hb
D = ȧbD/abD. The effective energy density εbeff and effective pressure pbeff , as

defined in (4.27) and (4.28), are here simplified to the following expressions:

εbeff =
〈
ε
〉b
D − 1

16πG
Qb

D − 1

16πG
Wb

D ; (4.53)

pbeff =
〈
p
〉b
D − 1

16πG
Qb

D +
1

48πG
Wb

D − 1

12πG
Pb

D , (4.54)

with Qb
D and Pb

D as given by (4.46) and (4.47), and with the curvature deviation

term W̃b
D reduced to Wb

D =
〈
R
〉b
D − 6kD/(abD)2.

In the Lagrangian picture the scalar field analogy can be interpreted with the
help of a morphon field in a simplified form.

Corollary 3.c (Compact form of Lagrangian cosmologies with morphon)

The effective Friedmann equations (4.51)–(4.52) can be interpreted as being sourced
by homogeneous morphon energy densities by reformulating the backreaction terms
in (4.53) and (4.54):

εbeff =
〈
ε
〉b
D + εΦ,b

eff ; εΦ,b
eff := 1

2 Φ̇
2
D + Ub

eff(ΦD) (4.55)

pbeff =
〈
p
〉b
D + pΦ,b

eff ; pΦ,b
eff := 1

2 Φ̇
2
D − Ub

eff(ΦD) , (4.56)

with the simplified morphonic dictionary:

24πG Φ̇2
D := −3Qb

D − 2Pb
D −Wb

D ; (4.57)

24πG Ub
eff(ΦD) := Pb

D −Wb
D . (4.58)

The conservation law (4.52) couples the conservation law for the material sources
(4.49) to an effective Klein-Gordon operator applied to ΦD:

Φ̇

(
Φ̈D + 3Hb

DΦ̇D +
∂Ub

eff(ΦD)

∂ΦD

)
+Sb

D = 0 ; (4.59)
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with Sb
D here reduced to

Sb
D =

〈
ε
〉b ·
D +3Hb

D
〈
ε+ p

〉b
D =

〈
Θ
〉b
D
〈
p
〉b
D−

〈
Θ p

〉b
D−

〈
∇μq

μ + qμaμ + πμνσμν

〉b
D .

We note the important property that Sb
D only vanishes in general in the case

of dust matter, separating the individually satisfied conservation law from a Klein-
Gordon equation for ΦD. In more general cases, Sb

D is non-zero. As an example it
was pointed out in Paper II that this property implies that the spatially averaged
inhomogeneous radiation fluid does not follow the volume expansion law of the
homogeneous-isotropic radiation-dominated cosmos.

Useful characteristics for cosmological models such as dimensionless effective
cosmological ‘parameters’ can be defined along the lines explained in [18] (sect.
2.4).

5 Discussion and Concluding Remarks

In this article we have distinguished fluid-extrinsic (section 3) and fluid-intrinsic
(section 4) averaging procedures of the scalar parts of the Einstein equations within
a general 3+1 spacetime split and for a general fluid whose congruence is allowed
to be tilted with respect to the normal congruence of the spacelike hypersurfaces.
While the former applies to all previous investigations in the literature, which we
have compared in detail with our proposal of fluid-extrinsic averaging—formulated,
however, for comoving domains of averaging25—, the latter forms our new proposal
of constructing effective cosmological equations.

5.1 Recovering the results of Paper I and Paper II

Fluid-intrinsic scalar averaging generalizes, in form and spirit, the previously sug-
gested cosmological equations restricted to flow-orhogonal foliations of spacetime:
Paper I [15] for irrotational dust (case I below), and Paper II [16] for irrotational
perfect fluids (case II-C below). Within the fluid-intrinsic picture, it is straight-
forward to recover these subcases. We additionally get a Lagrangian picture for
irrotational perfect fluids with pressure (case II-L below).

I (irrotational, non-tilted dust in Lagrangian form): We set ω = 0, p = 0, qμ = 0,
πμν = 0, and ε = �, and a fluid-orthogonal foliation. The coordinate time t is
then already the proper time τ , cf. (2.40), and we can start from the Lagrangian
form of Corollary 3. Moreover, abD = aD and extrinsic and intrinsic averag-

ing operators become equivalent,
〈
· · ·
〉b
D =

〈
· · ·
〉
D, for this fluid-orthogonal

situation. The index b becomes redundant for all expressions, and we directly
recover the cosmological equations of Paper I.

II-C (irrotational, non-tilted perfect fluids in comoving form): In Paper II the choice
γ = 1 with a non-constant lapse function N was adopted, hence, this does not
correspond to a Lagrangian picture. In other words, τ does not reduce to the

25Recall that we reformulated the extrinsic averaging approach with this property of the
averaging operator in order to avoid a number of drawbacks that may arise by not requiring
this constraint.
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coordinate time t, cf. (2.40). To recover the same form we have to use the
equations of Corollary 2, in which we can select a fluid-orthogonal foliation.
We can then omit the index b for the same reasons as in case I. Setting γ = 1,
ω = 0, qμ = 0, πμν = 0 and Λ = 0 in these equations, we recover the equations
of Paper II (were Λ was not considered).

II-L (irrotational, non-tilted perfect fluids in Lagrangian form): We can set ω = 0,
qμ = 0, πμν = 0 and consider a fluid proper time foliation, with t = τ (hence
the equations of Corollary 3 can be used). For nonvanishing pressure gradients
in the fluid local rest frames, this foliation is not fluid orthogonal, γ > 1, and
we get different, simpler averaged equations with respect to Paper II, with an
intrinsic averaging operator that is distinct from the extrinsic one.

5.2 Recovering the Newtonian form of the general cosmological equations

The compact form of the cosmological equations of Corollary 3 enjoys a straight-
forward transformation to the corresponding equations that arise in Newtonian
Cosmology [23]. We formulate this ‘Newtonian limit’ in terms of a restriction of
the fluid deformations to integrable fluid deformations, according to the Minkowski
Restriction as defined and executed for various variables in the series of papers [27,
26,2,3,47], see especially [2,3]. As in [47], we will combine it with a nonrelativistic
limit in the special-relativistic sense, c −→ ∞.

The cosmological equations presented in this paper do not explicitly refer to
a particular spatial metric, they only depend functionally on a spatial metric. To
explain the notion of integrability we write the spatial metric in terms of three
Cartan co-frame (1-form) fields, ηa, where a = 1, 2, 3 counts the spatial co-frames,

h = δab η
a ⊗ ηb . (5.1)

The Minkowski Restriction, denoted by “→”, if applied to the spatial co-frames,
restricts the general 1-forms to exact forms: ηa → dfa. We consider here a fluid
proper time foliation, and in this subsection we consider all tensor fields restricted
to the three-dimensional spatial hypersurfaces, with the associated spatial exterior
derivative. fa defines an embedding into Euclidean space (a becomes a coordinate
index of Eulerian coordinates xa = fa(t,Xi), where fa defines a diffeormorphism);
the proper time τ reduces to the coordinate time t that then labels flat space
sections. In an exact basis dXi, associated with Lagrangian spatial coordinates
Xi, the coefficients of the Cartan co-frames reduce to the Newtonian deforma-
tion matrix fa

|i in Lagrangian coordinates, ηa = ηai dX
i → dfa = fa

|i dX
i,

where a vertical slash denotes derivative with respect to Lagrangian coordinates.
The Riemannian spatial metric reduces to the Euclidean metric up to the coor-
dinate transformation from Lagrangian to Eulerian coordinates, gij dX

i ⊗ dXj =
δabf

a
|if

b
|j dX

i ⊗ dXj = δij dx
i ⊗ dxj . The 3 + 1 Einstein equations then reduce

to the Newtonian equations in Lagrangian form (for an explicit demonstration in
the case of an irrotational dust matter model see [27] for the Einstein equations
and [13,32] for the Newtonian equations in Lagrangian form, admitting non-zero
vorticity.)

We illustrate this transformation to the Newtonian equations for the case of a
rotational dust matter model. We apply the Minkowski Restriction to this context
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in a fluid proper time foliation, and we additionally assume that the relative veloc-
ities (compared to c) between fluid-comoving and normal observers and the asso-
ciated special-relativistic effects of differences of clock rates are negligible. In other
words, we can neglect the local tilt (not its variations) between the fluid rest frames
and the Euclidean constant-τ hypersurfaces considered, γ � 1, and the intrinsic
averages (as the extrinsic ones) reduce to being expressed in terms of Euclidean
volume integrals. Writing these Euclidean averages without the unnecessary label
b, we obtain the following set of cosmological equations from Corollary 3:

3
(
Hb

D
)2

= 8πG εNeff − 3
kD
a2D

+ Λ ; (5.2)

3
äD
aD

= −4πG(εNeff + 3 pNeff) + Λ ; (5.3)

ε̇Neff + 3HD
(
εNeff + pNeff

)
= 0 , (5.4)

with Hb
D = ȧD/aD, and with the effective sources

εNeff =
〈
�
〉
D − 1

16πG
QN

D − 1

16πG
WN

D ; (5.5)

pNeff = − 1

16πG
QN

D +
1

48πG
WN

D . (5.6)

The kinematical backreaction reduce to

QN
D =

2

3

〈(
Θ −

〈
Θ
〉
D

)2〉
D
− 2

〈
σ2
〉
D
+ 2

〈
ω2
〉
D

; (5.7)

where Θ, σ and ω are the scalar kinematic variables of the (now integrable) expan-
sion and vorticity tensors, i.e., related to the kinematic invariants of the velocity
gradient field dḟ = (∂ḟa/∂xi) dxi with coefficients expressed in the Eulerian co-
ordinate basis dxi.

In Newtonian theory, kD is a constant of integration (not associated with
a constant curvature term), and the “curvature deviation” WN

D also looses its
interpretation as a Riemannian curvature. It is defined through (5.4) which splits
into two equations. Firstly, the energy conservation law (4.49) reduces for dust to
the continuity equation for the average density:〈

�
〉·
D + 3HD

〈
�
〉
D = 0 . (5.8)

Secondly, the Newtonian form of the integrability condition, and hence the defini-
tion of WN

D follows from integrating the remaining part of (5.4), which is

Q̇N
D + 6HDQN

D +WN
D + 2HDWN

D = 0 , (5.9)

i.e. (cf. [18], sect. 2.3):

1

2

(
QN

D +WN
D
)

= − 1

a2D

∫ t

ti

dt′QN
D

d

dt′
aD(t′) , (5.10)

defining WN
D through QN

D and the time-history of QN
D .26

26In Newtonian Cosmology we have to abandon the background-free character of general
relativity: in order to obtain unique solutions, we have to introduce a background in terms of
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5.3 Concluding remarks on the fluid-instrinsic and Lagrangian approaches

5.3.1 Interest of the fluid-intrinsic averaged equations

Corollary 2 shows that in the fluid-intrinsic approach tilt effects are no longer
an issue, and the stress-energy backreaction disappears. This is different from all
approaches presented in the literature, put into perspective in subsection 3.5. Tilt
effects may, however, be important for the observational interpretation, since the
observer may be tilted with respect to the cosmic fluid. For effective cosmologies
we advocate the fluid-intrinsic point of view, focussing on the effective evolution of
the model universe, and eliminating wherever possible observer-specific issues. It
is then an entirely different question, well-separated from the model universe, how
the variables of these cosmologies are related to observables, which is a question
related to light-cone averages, not considered in this work.

5.3.2 Interest of the Lagrangian picture choice

Corollary 3 shows, in addition to Corollary 2, that a constant fluid proper time
foliation choice, parametrized by t = τ (implying N = γ), makes the Dark Energy
backreaction Lb

D disappear and removes the need to account for a difference of
time rates in the dynamical backreaction and in the rescaling of all variables to
be averaged. Despite these simplifications, we emphasize that the above set of
compact cosmological equations holds for a general fluid. The difference between
Corollary 2 (presenting the cosmological equations for general fluids and general
foliations), and Corollary 3 (making the fluid proper time foliation choice) may
serve for a discussion of the robustness of the averaged equations with respect to
a foliation choice.

We here summarize the advantages of the use of the Lagrangian picture in
combination with the fluid-intrinsic averaging framework for cosmological backre-
action:

(i) It links the foliation itself to the fluid, in a way alternative to the fluid-
orthogonal choice, but in contrast to the latter it comes with a unique time-
normalization and holds for any fluid;

(ii) It allows for a simple and compact form of the cosmological equations, removing
the need for rescalings and extra terms due to the different clock rates;

(iii) The corresponding choice of time is formally unique up to a constant along
each flow line (see, however, our remarks on effective times below), and of
clear physical interpretation. The associated time derivatives, in particular the
scale factor expansion and acceleration rates, are well-defined as proper rates
for the fluid elements;

(iv) It reduces without change to the usual (fluid-orthogonal) approach for irrota-
tional dust and for homogeneous fluids with pressure (FLRW);

a linear reference velocity field, Vi = Hijxj , with homogeneous expansion, shear and vorticity,
Hij =: ΘH(t)/3 + Σij(t) + Ωij(t). Deviations thereof are to be bound to a 3-torus topology.

As a result of the integrability of the Newtonian variables on flat space sections, QN
D (which

does not depend on the background variables) can be written in terms of full divergences of
vector fields. Hence, QN

D has to vanish on the no-boundary 3-torus, see [23] and the recent
discussion [20].
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(v) It also allows simple, transparent, Newtonian-like formulas for the kinematic
variables (especially the components of the tensorial variables), and it re-
duces to the Newtonian averaged equations for spatially flat space sections
(Minkowski Restriction) and nonrelativistic velocities.

A possible important drawback however has to be checked in individual cases:
the so-defined foliation may become strongly tilted with respect to the fluid, and
might even not always be spacelike in the entire spacetime, if acceleration and/or
vorticity induce an infinite tilt after a finite time. The averaging formalism would
become ill-defined in the spacetime regions where the hypersurfaces are no longer
spacelike. As for the comoving domain moreover, for several fluid components, the
advantages can only be preserved in general for one fluid, considered as preferred,
from which the proper time will be defined.

5.3.3 Limitations and outlook

The results of this work are general in various respects, culminating in compact
forms of effective cosmologies by arguing in favour of a Lagrangian description.
However, there are issues that are worth to be addressed, and we highlight some
of them in what follows.

The issue of closure The presented sets of averaged equations and compact cos-
mological equations are not closed. This known issue is obvious from the very
approach of performing averages of only the scalar parts of the Einstein equations.
It is also obvious since a balance equation on averages will not allow to reconstruct
the inhomogeneous metric (similarly to, in Newtonian contexts, the virial relations
not allowing for the reconstruction of the orbits in phase space). We do not enter
the issue of averaging or smoothing tensorial variables here, but we emphasize that
even averaging further scalar equations would result in a hierarchy of equations
that would not close (similar as the hierarchy of moment equations in kinetic the-
ory). As in the standard Friedmannian framework, where closure conditions have
to be imposed in terms of equations of state determining fluid properties, closure
conditions may here be represented as effective equations of state in the effective
Friedmannian and Lagrangian forms. These effective relations encode inhomoge-
neous properties and evolution details of the fluid and, hence, they are dynamical
and not simply derivable from thermodynamical properties. Closure conditions
can be studied in terms of exact scaling solutions [18,24,58], global assumptions
on model universes [17], exact solutions of the Einstein equations, e.g. [9,63], or
generic but approximate models for inhomogeneities, e.g. [26].

Statistical hypersurfaces of averaging The framework of Papers I and II allows for
averaging on fluid-comoving domains and on hypersurfaces formed by the fluid
itself, but only in cases where the fluid is irrotational and non-tilted. We pro-
posed here a way of dealing with rotational and tilted cases by introducing a
fluid-intrinsic averaging procedure that reduces to the standard Riemannian vol-
ume average for cases of irrotational fluids in their fluid-orthogonal foliations, and
we suggested the fluid proper time foliations as a possible way of still building
the hypersurfaces from the fluid. Alternatively, we can take a statistical point of
view by investigating hypersurfaces of ‘statistically averaged’ geometries, a notion
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that has yet to be formalized. The example of vorticity may illustrate the physical
idea behind such a concept: if we view vorticity as arising on small scales only
while expecting that, by going to larger scales, it will become unimportant, we
may wonder whether vorticity ‘averages out’ (in a statistical sense) on some scale
of averaging. On scales larger than this, a potential flow is expected, and the fluid
can be described as hypersurface-forming, while ‘averaged-out’ scales may still
feature a statistical ‘dressed’ [21] contribution from vorticity. The idea of viewing
averaged equations as providing a definition of ‘statistical hypersurfaces of aver-
aging’ has been advocated (e.g. [54]) and, in Newtonian theory, assumptions such
as homogeneous-isotropic turbulence have been advanced to construct statistical
averages [52].
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A 3 + 1 evolution equations along the congruence of the fluid

The evolution equations for hij and Ki
j along the congruence of the fluid are obtained from

expressions (3.1) and (3.2), by relating the derivative ∂t|xi to d/dt with the help of (2.25).
They read:

d

dt
hij =− 2NKij +Ni||j +Nj||i + V k∂khij , (A.1)

d

dt
Ki

j = N
(
Ri

j +KKi
j + 4πG

[
(S − E) δij − 2Si

j

]
− Λ δij

)
−N

||i
||i +NkKi

j||k +Ki
kN

k
||j −Kk

jN
i
||k + V k∂kKi

j . (A.2)

Comoving coordinate system. In the comoving picture, as described in subsection 2.4, we have
N = Nv, or equivalently V = 0. Equations (A.1) and (A.2) hence read:

d

dt
hij =− 2NKij +N(vi||j + vj||i) + viN||j + vjN||i , (A.3)

d

dt
Ki

j = N
(
Ri

j +KKi
j + 4πG

[
(S − E) δij − 2Si

j

]
− Λ δij

)
−N

||i
||j

+NvkKi
j||k +NKi

kv
k
||j +Ki

kv
kN||j −NKk

jv
i
||k −Kk

jv
iN||k . (A.4)

Comoving coordinate system and constant–fluid proper time slicing. In the Lagrangian picture,
also described in subsection 2.4, we have N = Nv (or equivalently V = 0), and N = γ as a
consequence of the slicing and the additional parametrization choice t = τ . Expressions (A.1)
and (A.2) accordingly read:

d

dτ
hij =− 2γKij + γ(vi||j + vj||i) + viγ||j + vjγ||i , (A.5)

d

dτ
Ki

j = γ
(
Ri

j +KKi
j + 4πG

[
(S − E) δij − 2Si

j

]
− Λ δij

)
−DiDjγ

+ γvkKi
j||k + γKi

kv
k
||j +Ki

kv
kγ||j − γKk

jv
i
||k −Kk

jv
iγ||k , (A.6)

where we have used the equality between the proper time and coordinate time derivatives
along the fluid flow.

The equations of evolution along the fluid flow in general coordinates and slicing allow an
alternative derivation of the coordinate time derivative of the Riemannian volume,

d

dt
VD =

∫
Dx

(
−NK+

(
Nvi

)
||i
)√

h d3x , (A.7)

by restarting from (3.14) and expanding its integrand as

d

dt
VD =

∫
Dx

(
1

2
hij d

dt
hij + J−1 d

dt
J

)√
h d3x . (A.8)

The trace of (A.1) can then be used together with (3.8) to obtain:

d

dt
VD =

∫
Dx

(
−NK+N i

||i +
1

2
hijV k∂khij + ∂kV

k

)√
h d3x . (A.9)

This expression then allows to catch up with the end of the derivation given in section 3.2.2, so
that a similar use of relations (3.16) and (2.10) again gives the evolution of the volume (A.7).
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B Extrinsic averaging procedure in fluid-intrinsic kinematic variables

The system of equations for extrinsic averages on D derived in section 3 is mostly expressed
in terms of geometric variables of the n-orthogonal hypersurfaces, such as their extrinsic cur-
vature. We here suggest an alternative formulation of the same equations focusing instead on
the intrinsic, rest-frame kinematic quantities of the fluid (see subsection 2.2.2), which do not
depend on the foliation choice.

We can first rewrite the volume expansion rate expression (3.19) and commutation rule
(3.22) in terms of the intrinsic expansion rate of the fluid Θ by re-expressing the three-
divergence of Nv as (

Nvi
)
||i = Nvi||i + viN||i = N∇μv

μ , (B.1)

where we have employed (2.6) for the last equality. Noticing that K = −∇μnμ and making
use of expression (2.7), we get27

−NK+
(
Nvi

)
||i =

N

γ
Θ − 1

γ

dγ

dt
= Θ̃ − 1

γ

dγ

dt
:= Θ̃T , (B.2)

where we have defined a tilted and scaled expansion rate Θ̃T out of the scaled rate Θ̃ = (N/γ)Θ.
This allows to recast the volume expansion rate and the commutation rule, respectively, into
the following expressions:

3HD =
1

VD
dVD
dt

=
〈
Θ̃T

〉
D

; (B.3)

d

dt

〈
ψ
〉
D =

〈
d

dt
ψ

〉
D

−
〈
Θ̃T

〉
D
〈
ψ
〉
D +

〈
Θ̃Tψ

〉
D

. (B.4)

We notice that, even for the general configuration we are investigating (see figure 1), the
commutation rule, as well as the domain volume expansion rate, can be cast into a simple
form with respect to the fluid quantities, although this extrinsic averaging framework requires
the explicit contribution from the evolving tilt.

The use of the Raychaudhuri equation (4.15) and the energy constraint (4.17) (instead
of the scalar parts of the extrinsic 3 + 1 Einstein equations (3.2)–(3.4)), together with this
alternative form of the commutation rule, allows a rewriting of the effective evolution equations
for aD. This yields the following equivalent formulation of Theorem 1, in terms of rescaled
fluid-intrinsic kinematic and dynamical variables, σ̃2 = (N2/γ2)σ2, ω̃2 = (N2/γ2)ω2, R̃ =

(N2/γ2)R, ε̃ = (N2/γ2) ε, p̃ = (N2/γ2) p, and Ã = (N2/γ2)A (with A = ∇μaμ), as well as

Λ̃ := (N2/γ2)Λ.

Corollary 1.a (extrinsically averaged evolution equations in fluid variables)

The effective averaged evolution equations for aD can be written under the following form:

3

(
1

aD
daD
dt

)2

= 8πG
〈
ε̃
〉
D +

〈
Λ̃
〉
D

− 1

2

〈
R̃
〉
D

− 1

2
QT

D; (B.5)

3

aD
d2aD
dt2

= −4πG
〈
(ε̃+ 3p̃)

〉
D +

〈
Λ̃
〉
D

+QT
D + PT

D , (B.6)

27The factor N/γ in expressions (B.3)–(B.4) adjusts the clock rate between the proper time
of the fluid and the coordinate time. This can also be seen upon writing:

N

γ
Θ − 1

γ

dγ

dt
=

N

γ

(
Θ − 1

γ

dγ

dτ

)
=

dτ

dt

(
Θ − 1

γ

dγ

dτ

)
,

where we have used the relation (2.26) between d/dt and d/dτ . The extra tilt term −γ−1 dγ/dt
can be understood as the effect of the evolving mutual tilt between the hypersurfaces embed-
ding D and the fluid flow. This affects the volume measure and the evolution of the volume
due to the fluid’s intrinsic expansion.
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with alternative, ‘tilted’ kinematical and dynamical backreactions, reading respectively:

QT
D :=

2

3

[〈(
Θ̃T

)2
〉

D
−

〈
Θ̃T

〉2

D

]
− 2

〈
σ̃2

〉
D + 2

〈
ω̃2

〉
D +

2

3

〈
2 Θ̃T 1

γ

dγ

dt
+

(
1

γ

dγ

dt

)2
〉

D
;

(B.7)

PT
D :=

〈
Ã
〉
D
+

〈
γ

N

d

dt

(
N

γ

)
Θ̃T

〉
D
−

〈
2 Θ̃T 1

γ

dγ

dt
+

(
1

γ

dγ

dt

)2

+
N

γ

d

dt

(
γ

N

1

γ

dγ

dt

)〉
D

.

(B.8)

We recall that, as in Theorem 1.a, the left-hand sides in the above equations should be
seen as derivatives with respect to the chosen parameter t, and be interpreted according to
the physical meaning of the latter. In particular, the term 3 a−1

D d2aD/dt2 in equation (B.6)
is the proper time scale factor acceleration in a Lagrangian picture, but not in general.

Under this form, only two backreaction terms appear, QT
D and PT

D, as the tilt only con-
tributes under these combinations. These backreaction terms will not in general be directly re-
lated to the QD and PD appearing in Theorem 1.a, as they do not collect the same local terms
in their expression. They do coincide, however, for a fluid-orthogonal foliation (QT

D = QD,

PT
D = PD, while TD = 0).

Note that there is no explicit non-perfect fluid contribution to these effective evolution
equations for the scale factor aD, although the non-perfect fluid components of the energy-
momentum tensor do have an influence on the dynamics via the local (and average, see below)
evolution of ε and p.

As before, this set of equations goes along with an integrability condition, and must be
complemented by the evolution equation for the averaged energy density and pressure.

Corollary 1.b (integrability and energy balance conditions to Corollary 1.a)

The corresponding integrability condition reads:

d

dt
QT

D + 6HDQT
D +

d

dt

〈
R̃
〉
D

+ 2HD
〈
R̃
〉
D

+ 4HDPT
D

= 16πG

(
d

dt

〈
ε̃
〉
D + 3HD

〈
(ε̃+ p̃)

〉
D

)
+ 2

d

dt

〈
Λ̃
〉
D

, (B.9)

while the associated averaged conservation equation for the scaled energy density ε̃ and pressure
p̃ becomes:

d

dt

〈
ε̃
〉
D + 3HD

〈
ε̃+ p̃

〉
D =

(〈
Θ̃T

〉
D
〈
p̃
〉
D −

〈
Θ̃T p̃

〉
D

)
−

〈
1

γ

dγ

dt
(ε̃+ p̃)

〉
D

−
〈
N3

γ3

(
aμq

μ +∇μq
μ + πμνσμν

)〉
D

+ 2

〈
ε̃
γ

N

d

dt

(
N

γ

)〉
D
. (B.10)

(The expression 〈Θ̃T 〉D
〈
p̃
〉
D − 〈Θ̃T p̃〉D, can also be written as

〈
dp̃/dt

〉
D − d

〈
p̃
〉
D /dt.)

We add a technical remark. In the fluid-intrinsic point of view we can borrow one element
from the 1+3 formalism to foliate spacetime, the so-called spacetime threading, although spatial
volume averaging only makes sense on hypersurfaces. We recall that in the 1+3 decomposition,
the four-dimensional line element reads (see, e.g., [42], sect.10):

ds2 = −M2 dt2 + 2M2Mi dt dX
i + (bij −M2MiMj) dX

idXj . (B.11)

with M the threading lapse and M the threading shift, which relate to the lapse and Eulerian
velocity as follows:

M :=
N

γ
; M :=

γ2

N

(
v + vkvkn

)
: MMμ = γ(0, vi) = (0, ui) . (B.12)

In the Lagrangian description we have:

M = 1 ; M = γ
(
v + vkvkn

)
: Mμ = γ(0, vi) = (0, ui) . (B.13)

Note that in the most compact form of the general averaged equations, we only deal with
appearances of N/γ = M.
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C Summarized literature comparison

We present in Table 1 a synthetic comparison of the various formalisms used in the existing
generalization proposals of the system of averaged scalar equations of Papers I and II to general
foliations.

In this table we express all notations in terms of those used in this work to make compar-
isons easier. In particular, when considering the 4-scalar expressions of [38,54,61], we define

the lapse N as (−∂μT ∂μT )−1/2, where T is the scalar function which labels the hypersurfaces.
This quantity (noted Γ in [54]) plays a role analogous to the 3+ 1 lapse as nμ = −N∂μT , and
it indeed coincides with the usual lapse if the 4-scalar formalism is split into a 3+1 description
with the natural choice of T as the time coordinate.



On Average Properties of Inhomogeneous Fluids in General Relativity III 53

Reference
Domain boundary

flow
(Mass-preserving ?)

Fluid content Formulation
Foliation
vector n

Tanaka &
Futamase [64]

Equivalent to
having n, and ∂t

(No)a
General Tμν

3 + 1 with
N = 0

General

Larena [46] Implicitly, ∂t (No)
One perfect

fluid
3 + 1 General

Brown et al.
[10]

Implicitly, ∂t (No)
Sum of general

fluids
3 + 1 General

Gasperini et
al. [38]

n (No)
One perfect

fluid

Both
(mostly)b

4-scalar and
3 + 1

General

Räsänen [54]
Global domain

(Yes)c
General Tμν 4-scalar General

Beltrán
Jiménez et al.

[7]
n, = ∂t (No)

General Tμν

with a dust
partd

3 + 1 with
N = 0 and

N = 1

Geodesic
(dust

velocity)

Smirnov [61] n (No)
General Tμν

plus a dust
partd

Both 4-scalar
and 3 + 1

Geodesic
(dust

velocity)

Section 3 of
this work

u (Yes)
One general

fluid
3 + 1 General

a In [64], boundary terms are removed by an (a priori background-dependent) assumption
of periodic boundary conditions on the large enough but still compact domain. As
discussed in section 3.5.4 above, this implies equivalent results to the more general case
(not considered in [64]) of a compact domain propagating along n, at the expense of the
mass preservation. As the shift vector is chosen to be zero in [64], this would also
amount to a propagation along ∂t.

b Formally, the boundaries of the domain are assumed to be determined by some scalar
function, in which case the averages and the equations are truly covariant; but the
authors mention the difficulty of finding such a scalar on physical grounds which may
constrain one to choose a function of the coordinates instead of a scalar, hence inducing
deviations from general covariance in the averages. The follow-up paper [49] makes these
deviations explicit at second order in perturbation theory.

c The equations would formally still hold without change if a regional domain propagating
along n were considered instead. However, it would not be mass-preserving in this case.

d In both cases (Beltrán Jiménez et al. [7] and Smirnov [61]) it is assumed that there are
‘natural’ observers corresponding to some irrotational dust as part of the fluid content of
the model universe, not interacting with the rest, so that it is moreover geodesic, and
the corresponding geodesic irrotational normalized velocity field is used as the normal
vector n to build the hypersurfaces. In [7] it is assumed to represent the baryonic and
Dark Matter on large scales and hence is a well-defined part of Tμν (whereas the
remaining parts can account for other fluids such as radiation or Dark Energy, or for
effects due to a departure from General Relativity). In [61], it can either be some
component intrinsically contained within Tμν , or some ‘test observers’ that are added to
the fluid content with an assumed negligible source contribution.

Table 1 Summary of the main differences between the various generalizations of the averaged
scalar 3 + 1 Einstein equations to general foliations suggested in the literature. This table
is split into three parts respectively focussing on the setup, the equations presented (and
corresponding effective Hubble parameter considered), and the terms they feature.
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Reference
Effective Hubble parameter

(×3)

Evolution
of scale
factor

Integrability
condition

Averaged
energy
balance

Tanaka &
Futamase [64]

1
V

dV
dt

=
〈
−NK

〉
Yes No No

Larena [46]
〈
Nhμν∇μuν

〉
�= 1

V
dV
dt

e Yes Yes Yes

Brown et al.
[10]

1
V

dV
dt

=
〈
−NK+N i

||i
〉

f Yes No No

Gasperini et
al. [38]

1
V

dV
dt

=
〈
−NK

〉
Yes No

Only in
case n = u

Räsänen [54] 1
V

dV
dt

=
〈
−NK

〉
Yes No Yes

Beltrán
Jiménez et

al. [7]

1
V

dV
dt

=
〈
−K

〉
(N = 1) Yes Yes Yes

Smirnov [61] 1
V

dV
dt

=
〈
−NK

〉
Yes No No

Section 3 of
this work

1
VD

dVD
dt

=
〈
−NK+(Nvi)||i

〉
D

Yes Yes Yes

e The application paper [65] introduces instead five possible definitions of the effective
Hubble parameter H in order to compare them, and derives the averaged energy
constraint for each of them. The first four of these definitions are respectively:
3H = V̇/V = 〈−NK+N i

||i〉 (which becomes simply
〈
−NK

〉
later in the paper as the

shift is set to zero); 3H =
〈
−K

〉
; 3H =

〈
Nhμν∇μuν

〉
; 3H =

〈
hμν∇μuν

〉
; where all

averages are taken over a domain on the n-orthogonal hypersurfaces. The last proposal
for 3H consists in averaging simply the intrinsic fluid expansion rate Θ (without any
lapse factor) over a domain on u-orthogonal hypersurfaces, in case u is irrotational. In
all of the n-orthogonal cases, the domain still implicitly evolves along ∂t, whereas in the
last case the averaged (dust) equation is recalled from Paper I, meaning that in this case
the domain must be assumed to be fluid-comoving.

f In the first application [11], the average of hμν∇μuν is also considered, while the second
application [12] focuses on the average of Θ; however, in both cases, the corresponding
averaged equations are not explicited.

Table 1 Summary of the main differences between the various generalizations of the averaged
scalar 3 + 1 Einstein equations to general foliations suggested in the literature. (continued)
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Reference
Dynamical
variables

(from Tμν)

Kinematic
variables

Inclusion of
Λ

Explicitly
identified

backreaction
terms

Main local
time

derivative

Tanaka &
Futamase

[64]

Normal-
frame

Normal-frame
(i.e., built
from the
extrinsic
curvature)

Yes None
∂t
∣∣
xi (=

Nnμ∂μ)

Larena
[46]

Intrinsicg
Mixed (e.g.,
hμν∇μuν)g

Yes
Q, P, and
three moreh

∂t
∣∣
xi

Brown et
al. [10]

Intrinsic
(for each
fluid)

Normal-frame Yes
Q, P, and
one T term
per fluid

∂t
∣∣
xi

Gasperini
et al. [38]

Normal-
framei

Normal-frame No None Nnμ∂μ

Räsänen
[54]

Either
normal-

frame or in
a general
framej

Normal-frame
Implicit (can
be included
in Tμν)

Only Q Nnμ∂μ

Beltrán
Jiménez
et al. [7]

Normal-
frame

Normal-frame
Implicit (can
be included
in Tμν)

Only Q; there
P = 0

∂t
∣∣
xi

(= nμ∂μ)

Smirnov
[61]

Normal-
frame (plus

Tμ
μ)

Normal-frame
Implicit (can
be included
in Tμν)

Only Q, not
in all

equations
Nnμ∂μ

Section 3
of this
work

Intrinsic Normal-frame Yes QD, PD, TD
d
dt

=
N
γ
uμ∂μ

g However, in contrast to other papers, the averages of the intrinsic dynamical quantities
alone (multiplied by N2) do not appear explicitly: the dynamical variables appearing in
the averaged equations are actually averages of the local normal-frame variables as
expressed in terms of the local intrinsic ones through the tilt.

h In the application paper [65], where the averaged energy constraint is derived for five
proposals of effective Hubble parameter choices (see footnote d above), the kinematic
variables appearing in the equations are the best-suited for each case: based on the
normal frames in the first two cases, mixed in the third and fourth cases, and intrinsic in
the last case. The backreaction terms introduced there also depend on the Hubble
parameter choice and can be either only Q, Q and P, or Q and another backreaction
denoted LD, with a different expression for Q in each case.

i However, in the 3 + 1 form of the equations, the intrinsic dynamical variables ε and p
are used instead, which allows for an explicit separation of the difference to the average
of the normal-frame variables, corresponding to the ‘stress-energy backreaction’ of the
present work.

j Two forms of the equations are given, with an explicit separation of the contribution of
the dynamical variables as seen either in the normal frames, or in an independent,
general frame.

Table 1 Summary of the main differences between the various generalizations of the averaged
scalar 3 + 1 Einstein equations to general foliations suggested in the literature. (continued)



56 T. Buchert, P. Mourier, X. Roy

Additional specificities of some of the papers compared here:

• Räsänen [54]: The velocity field u that is introduced in addition to n is fully general and
is not related either to n nor to the content of the model universe (it could be chosen
to be a fluid’s velocity as in the present approach, but this would be a restriction of
generality). It is supposed to represent the normalized velocity field of the observers. In
the application paper [55], this field is restricted to be everywhere very close to n (and so
has a small vorticity), whereas n is assumed to be chosen such that it builds hypersurfaces
of statistical homogeneity and isotropy. These restrictions are already both suggested in
the original paper [54] but the equations are kept general.

• Beltrán Jiménez et al. [7]: The main objective of using a general Tμν in this paper is
to account for theories beyond General Relativity whose differences are transferred into
Tμν as effective terms. Note also that this paper features an additional average equation
giving the evolution of the averaged shear scalar ∂t

〈
σ2

〉
, as well as the corresponding

local equation; these equations are absent from the other papers quoted in this appendix,
including the present work (the reason being that the resulting system is still not closed
by adding this equation; work about looking deeper into the hierarchy of equations is in
preparation).

• Smirnov [61]: not only the choice of hypersurfaces (or of n) and the choice of the time
that parametrizes them are specific in this paper, but this is also the case for the domain,
although this is not explicit in the equations and it could as well be any domain evolving
along this specific n. Indeed, the domain is there chosen as a ‘sphere’ in some n-comoving
coordinates Zi on the hypersurfaces, as defined by HijZ

iZj ≤ r0 for some r0 > 0 and with
Hij the components of the spatial metric in these coordinates. This choice was a response
to the series of papers of Gasperini et al. and Marozzi [37,38,49] to show how it is possible
to determine the boundary of the domain via a scalar function (here in the sense that the
Zi are fixed a priori without link to the actual spacetime coordinate choices).

• In the present work, we also introduce, in section 4, a different averaging formalism that
measures scalar quantities and volume in the local rest frames of the fluid, even if they
are integrated over a domain lying in the not necessarily fluid-orthogonal hypersurfaces.
We then obtain the corresponding commutation rule and averaged dynamics under rather
simple forms as expressed in terms of the intrinsic dynamical quantities of the fluid (for
instance, the effective Hubble parameter, still defined as 1/3 of the volume expansion rate,

can be simply expressed as the average of N
γ
Θ) and only two backreactions, kinematical

and dynamical, distinct in general from the terms QD, PD of section 3. This formalism
and this system of equations clearly differ from the literature compared in this Appendix
(including our section 3, although it otherwise follows the same setup), due to the different
volume and averaging operator definition.

D Erratum

We wish to point out a small mistake in Paper II [16] (repeated in the appendix of [18] after
Equations (A23) and (A28) therein). For this we recall that the spatial components of the
acceleration, ai = N||i/N , the 4−divergence A := ∇μaμ = ai||i + aiai, and its expression in

terms of the lapse N or the injection energy per fluid element h (related to the relativistic
enthalpy), respectively,

A =

(
N ||i

N

)
||i

+
N ||iN||i

N2
=

N
||i
||i

N
= h

(
1

h

)||i

||i
= −

h
||i
||i
h

+ 2
h||ih||i

h2
,

are correctly written, but the first equality in Equation (10a) of Paper II (and of its review in

[18]) is incorrect, A �=
(
N ||i/N

)
||i, due to an omission of the aiai contribution to A here.

There is also an imprecise statement: in Paper II, in footnote 3, it is stated that for
scalars the operator || amounts to a partial derivative. This statement is only true for spatial
components (for a scalar, ||i := ∂i, but ||0 = N i∂i �= ∂t; ||0 was identically zero for scalars due
to the vanishing shift in Paper II).
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Abstract. The subject of cosmological backreaction in General Relativity is often

approached by coordinate-dependent and metric-based analyses. We present in this

letter an averaging formalism for the scalar parts of Einstein’s equations that is

coordinate-independent and only functionally depends on a metric. This formalism

is applicable to general 3 + 1 foliations of spacetime for an arbitrary fluid with tilted

flow. We clarify the dependence on spacetime foliation and argue that this dependence

is weak in cosmological settings. We also introduce a new set of averaged equations

that feature a global cosmological time despite the generality of the setting, and we

put the statistical nature of effective cosmologies into perspective.

Keywords : cosmology—foliations—Lagrangian description—backreaction

1. Context

Cosmology deals with models for the evolution of the Universe and, within General

Relativity, entails the question of how to split the 4−dimensional spacetime into a

3−dimensional space evolving in time. This question can be formally answered by

a 1 + 3 threading along a preferred timelike congruence (see, e.g. [16, 23]), or by a

3 + 1 slicing (foliation) into a family of spacelike hypersurfaces (see, e.g. [2, 18]). Both

decompositions introduce four degrees of freedom, which are given in terms of a lapse

function and a shift vector (or one-form). We shall consider the threading and slicing

approaches jointly to formalize configurations where the fluid content is described by

a 4−velocity tilted with respect to the hypersurface normal. A priori, only in special

cases does the slicing keep the proper time of the fluid elements synchronous.

In standard cosmology one commonly idealizes the geometry of the Universe by a

homogeneous-isotropic background metric with constant spatial curvature. In the case

of the so-called concordance or ΛCDM model (“Cold Dark Matter with dark energy

modeled by the cosmological constant Λ”), the metric form features a global time

t labeling Euclidean spatial sections that admit global coordinates xi, with a global
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rescaling factor a(t),1 4ghom = −dt2 + a2(t)δijdx
i ⊗ dxj . It is known that other choices

of slicing change Friedmann’s equations which determine the only gravitational degree

of freedom, a(t). See, e.g. [5]. The scale factor may even become space-dependent, for

instance for a general slicing lapse. The problem of dependence on spacetime foliation

therefore also exists in standard cosmology, where it is solved by choosing a preferred

(proper time) foliation anchored to the Cosmic Microwave Background (CMB) rest

frame.

Nonlinear structure formation in cosmology is most often investigated within the

Newtonian framework of self-gravitating fluids. Efforts to describe relativistic models

of inhomogeneities often rely on metric forms that are designed to be ‘close to’ the

homogeneous-isotropic metric form above. The idea is to describe ‘small’ perturbations,

which is a sensible assumption for metric perturbations, since they are indeed very small

except in the vicinity of strong field astrophysical objects [22].2 In the longitudinal gauge,

the lapse function and the spatial 3−metric are referred to a ‘perturbed Newtonian

setting’, with an assumed metric form for the physical spacetime,

4gpert = −N2dt2 + gij dx
i ⊗ dxj , (1)

where the slicing lapse N and the 3−metric coefficients gij of a family of spacelike

hypersurfaces t = const. are written as (here for scalar perturbations only):3

N2 ≡ 1 + 2Φ(t, xi) ; gij ≡ a2(t)[1− 2Ψ(t, xi)] γij . (2)

We note that the extrinsic curvature has no trace-free part, i.e. for a fluid 4−velocity

parallel to the normal congruence N−1 ∂t the above metric describes homogeneous

solutions in cosmologically relevant cases [12, 13, 14].4

Metric forms that are designed to stay ‘close to’ a homogeneous solution are

also used to address the backreaction problem by devising simulations that include

relativistic corrections. As an example we read in [1] (see also references therein) that

‘the backreaction from structure can differ by many orders of magnitude depending upon

the slicing of spacetime one chooses to average over’. We shall confront this statement

with a covariant and background-free result about averaged dynamics that allows us

to discuss the foliation dependence of backreaction without the need to consider gauge

transformations.

1 We adopt the conventions that Greek indices are assigned to spacetime indices running in {0, 1, 2, 3},
and Latin indices refer to space indices, running in {1, 2, 3}. The signature of the metric is taken as

(−+++), and the units are such that c = 1.
2 However, the derivatives of the metric can be large. Even for metric perturbations of order 10−6,

curvature perturbations can be of order unity and therefore out of reach in this setting [9]. Green and

Wald [19] have modified earlier statements of [22] emphasizing that curvature can be large. (Their

statement of trace-free backreaction, however, has no physical justification [10].)
3 Here, a(t) denotes the same scale factor as in the homogeneous-isotropic case, which follows by setting

0 = Φ = Ψ; γij denotes a constant curvature metric that is commonly considered to be flat, γij = δij .
4 It is commonly assumed that the 4−velocity is tilted with respect to the normal congruence, but that

spatial velocities are non-relativistic, i.e. that the Lorentz factor γ is close to 1. Our remark implies

that by replacing the approximate sign by an equality sign the fluid has to be shear-free in the metric

form {(1) and (2)} and, hence, homogeneous in cosmologically relevant cases [12, 13, 14].
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We finally emphasize that cosmological backreaction can only be present if the

average spatial curvature, and hence the large-scale average of cosmological variables,

are allowed to evolve. Schemes that suppress average curvature evolution by, e.g.

employing periodic boundary conditions as in Newtonian models [7], cannot describe

global backreaction, but only backreaction in the interior of an assumed background

model, i.e. ‘cosmic variance’.5

2. Explicit foliation dependence of backreaction

Cosmological backreaction is the study of inhomogeneity effects on the global evolution

of the model universe. This involves averaging strategies which can for instance be

unambiguously defined on the basis of volume averages of scalars. For irrotational dust

and irrotational perfect fluids the answer has been given in terms of volume averaged

scalar parts of the Einstein equations in [4, 5, 6]. This yielded cosmological equations

of Friedmannian form for an effective energy-momentum tensor including averages of

(extrinsic and intrinsic) curvature invariants of geometrical inhomogeneities in fluid-

orthogonal spatial domains. These results are background-free, they depend on the

averaging domain (e.g. on spatial scale), and they imply a dependence on the metric

only via the morphology of the domain and the volume element of integration. As we

shall discuss, this implicit dependence on the metric can be exploited for a statistical

interpretation of the effective cosmological equations.

In a forthcoming investigation we derive the scalar-averaged equations for arbitrary

3 + 1 foliations with general tilted fluid flow [11]. There, we discuss in detail relations

to other works where such generalizations are offered. These earlier proposals focus on

an extrinsic approach, i.e. they perform averages of the geometrical variables as seen by

hypersurface observers. As we also discuss in [11], this approach inherits problems such

as the non-conservation of the number of fluid elements within the averaging domain as

it evolves.

We present in this letter the general scalar-averaged equations derived from an

intrinsic approach, therefore following the spirit of the original works [4, 5]. Specifically,

we perform averages of the fluid variables as seen by fluid observers. We consider an

arbitrary spatial foliation which can be tilted with respect to the fluid congruence; this

is necessary for a general flow as a fluid-orthogonal foliation is impossible as soon as the

fluid has nonzero vorticity [17]. Accordingly, local spacelike projections can be performed

onto the local tangent spaces of the hypersurfaces of the foliation along their normal n,

with hμν = gμν+nμnν , or onto the rest frames of the fluid elements along their 4−velocity

u, with bμν = gμν+uμuν . These projectors define two covariant volume measures on the

tangent spaces of the hypersurfaces:
√
det(hij)d

3x and
√

det(bij)d
3x = γ

√
det(hij)d

3x,

with xi arbitrary local spatial coordinates, and γ the Lorentz factor given by the fluid

5 Theoretical foundations of the cosmological backreaction effect via structure-emerging average spatial

curvature may be found in [4, 6]. (See also illustrations within a class of background-free simulations

in [3].)
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spatial velocity v, as a measure of the local tilt between n and u, as follows:

γ =
1√

1− vαvα
; uμ = γ(nμ + vμ) ; nαvα = 0 . (3)

We associate accordingly to the same averaging domain D lying in the hypersurfaces two

different volumes: the Riemannian volume V h
D ≡
´
D
√

det(hij) d
3x, and the fluid proper

volume, V b
D ≡
´
D
√

det(bij) d
3x. The former appears on average Lorentz-contracted with

respect to the latter: introducing the proper volume averager, defined for any scalar ϕ

as 〈ϕ〉bD ≡ 1/V b
D
´
D ϕ

√
det(bij) d

3x, we have V h
D = V b

D〈1/γ〉b, which shows identity in the

absence of tilt, i.e. when γ = 1. The integral is here again performed over a domain

lying within the hypersurfaces of normal n. As we shall only consider proper volume

averages in the following, we shall omit the index b for notational ease.

We apply the averaging operator to the scalar parts of the Einstein equations over

a compact domain D lying within the hypersurfaces. Following [4, 5], D is chosen to be

a comoving domain, i.e. it is transported along the fluid congruence, which ensures the

absence of matter flow across its boundaries and the preservation of its total rest mass.

From this procedure we obtain the following expansion and acceleration laws, together

with their integrability condition, for rescaled kinematic fluid variables (the squared

rates of expansion, shear and vorticity, Θ̃2 = M2Θ2, σ̃2 ≡ M2σ2, ω̃2 ≡ M2ω2), energy

density and pressure (ε̃ ≡ M2ε, p̃ ≡ M2p), divergence of the fluid’s 4−acceleration aμ

(Ã ≡ M2A, with A ≡ ∇μa
μ), and fluid 3−curvature (R̃ ≡ M2R):6

3
1

aD

d2aD
dt2

= −4πG
〈
ε̃+ 3p̃

〉
D
+ Λ̃D + Q̃D + P̃D ;

3

(
1

aD

daD
dt

)2

= 8πG
〈
ε̃
〉
D
+ Λ̃D − 1

2
〈R̃〉D − 1

2
Q̃D ;

d

dt
Q̃D + 6HDQ̃D +

d

dt
〈R̃〉D + 2HD 〈R̃〉D + 4HDP̃D

= 16πG

(
d

dt

〈
ε̃
〉
D
+ 3HD

〈
ε̃+ p̃

〉
D

)
+ 2

d

dt
Λ̃D . (4)

The first terms on the right-hand side of the last equation also obey an averaged energy

balance equation sourced by the non-perfect-fluid parts of the energy-momentum tensor.

We observe a time- and domain-dependent contribution from the cosmological constant,

Λ̃D ≡ Λ〈N2/γ2〉D, and two terms Q̃D and P̃D denoting the intrinsic kinematical and

dynamical backreaction terms, respectively. These are defined in terms of the rescaled

6 We defined M ≡ N/γ (the threading lapse in a 1 + 3 threading of spacetime). The hypersurfaces

are parametrized by a monotonic scalar function t. From it we can define the comoving time-derivative

d/dt as the derivative with respect to t along the fluid flow lines, and the effective Hubble rate

HD ≡ (daD/dt)/aD for the volume scale factor aD ≡ (VD/VDi)
1/3. Θ, σμν and ωμν are, respectively,

the trace, the symmetric traceless part, and the antisymmetric part of the projected 4−velocity

gradient, bαμb
β
ν∇αuβ . σ2 := (1/2)σμνσ

μν and ω2 := (1/2)ωμνω
μν define the rates of shear and

vorticity. The ‘fluid 3−curvature’ R is defined from the energy constraint in the fluid rest frames,

R ≡ −(2/3)Θ2 + 2σ2 − 2ω2 + 16πGε + 2Λ (see [15]), and reduces to the 3−Ricci scalar of the fluid-

orthogonal hypersurfaces for vanishing vorticity.
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fluid variables as follows:

Q̃D ≡ 2

3

〈(
Θ̃−

〈
Θ̃
〉
D

)2
〉

D
− 2

〈
σ̃2
〉
D
+ 2

〈
ω̃2
〉
D
;

P̃D ≡
〈
Ã
〉
D
+

〈
Θ̃

γ

N

d

dt

(
N

γ

)〉
D
. (5)

The dynamical backreaction thus consists of an acceleration 4−divergence and of a

contribution that captures the rate of desynchronization of the clocks, with the proper

time τ of the fluid obeying dτ/dt = N/γ = M . By defining an effective diagonal

energy-momentum tensor with the following effective sources:7

εeff ≡
〈
ε̃
〉
D
− Q̃D

16πG
− W̃D

16πG
+

L̃D
8πG

;

peff ≡
〈
p̃
〉
D
− Q̃D

16πG
+

W̃D
48πG

− L̃D
8πG

− P̃D
12πG

, (6)

the set of effective cosmological equations can be cast into ‘Friedmannian form’:

3

(
1

aD

daD
dt

)2

= 8πG εeff − 3
kD

(aD)2
+ Λ ;

3
1

aD

d2aD
dt2

= −4πG (εeff + 3 peff) + Λ ;

d

dt
εeff + 3HD (εeff + peff) = 0 , (7)

where the last equation, the effective energy conservation law, is equivalent to the

integrability condition. The set of equations (7) needs a closure condition, e.g. an

effective equation of state that relates εeff , peff and aD.

3. Effective cosmological equations in the fluid proper time foliation

Starting from an arbitrary Cauchy hypersurface, one can globally construct a 3 + 1

foliation the slices of which are obtained by transporting the initial hypersurface through

the (general) 4−velocity u of the fluid. Each hypersurface of this foliation corresponds to

a constant value of proper time τ , measured along the fluid world lines and being set to

τi ≡ ti on the initial slice. The proper time τ can thus be used to label the hypersurfaces,

defining a global time parameter. The same construction can be performed from any

choice of the initial Cauchy hypersurface, identifying what we call the class of fluid

proper time foliations. (See also [16], chapter 4.1.)

Such a construction sets the normal vector n and the lapse N , which in this case

equals the Lorentz factor: N = γ. A natural choice for the shift vector N would be

7 We have defined new backreaction variables: W̃D for the deviation of the averaged fluid 3−curvature

from a constant-curvature behaviour, W̃D ≡ 〈R̃〉D − 6kD/(aD)2, and L̃D for the deviation from the

cosmological constant Λ, L̃D ≡ Λ̃D − Λ. kD is an a priori domain-dependent arbitrary constant which

can be set to kD ≡ (aD)2(ti)〈R̃〉D(ti)/6. In the standard cosmological model it is assumed that the

cosmological constant Λ models Dark Energy; the averaged equations show that we then also have to

account for Dark Energy backreaction L̃D in cases where N 
= γ.
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N = Nv (for which N = γ implies N2 − NμNμ = 1), identifying the points on each

hypersurface that correspond to the same fluid element. However, the choice of a shift

does neither affect the definition of our averaging formalism nor the resulting averaged

equations. Apart from the case of irrotational dust, the hypersurfaces of a fluid proper

time foliation cannot be fluid-orthogonal, namely a tilt must be present. As we shall

see, this choice carries a number of advantages in the context of the averaging problem.

Within a fluid proper time foliation, the general volume expansion and acceleration

laws for the fluid scale factor aD (together with their integrability condition), (4), reduce

to the following effective cosmological equations:

3

(
ȧD
aD

)2

= 8πG εeff − 3
kD

(aD)2
+ Λ ; 3

äD
aD

= −4πG(εeff + 3 peff) + Λ ;

ε̇eff + 3HD (εeff + peff) = 0 . (8)

The overdot denotes the covariant derivative with respect to proper time. The effective

energy density εeff and effective pressure peff , as defined in (6), become

εeff =
〈
ε
〉
D
− QD

16πG
− WD

16πG
;

peff =
〈
p
〉
D
− QD

16πG
+

WD
48πG

− PD
12πG

, (9)

with QD as given by (5) with non-rescaled variables (since here M = 1), and where the

dynamical backreaction reduces to PD = 〈A〉D, removing the contribution from clock

desynchronization. The cosmological constant deviation L̃D vanishes, and the curvature

deviation term W̃D reduces to WD = 〈R〉D − 6kD/(aD)
2.

We emphasize that the above system and the corresponding proper time foliation

choices are covariantly defined, i.e. are coordinate-independent [20]. For concrete

calculations of local variables, a specific set of coordinates may then be chosen depending

on the problem being investigated. For instance, for the formation of structure in

relativistic Lagrangian perturbation theory [8], an appropriate set can be constructed as

follows. First, as for the hypersurfaces labeled in terms of proper time, we can introduce

spatial labels X i to identify each fluid element in the general threading congruence

defined by u, which can always be relabeled in this covariant framework. (The spatial

labels X i provide the same identification of points as the shift vector choice N = Nv.)

Second, for any given foliation, these labels may be used as a set of spatial coordinates

propagating along the fluid flow lines. These are comoving (or Lagrangian) spatial

coordinates, where the spatial coordinate velocity (hence the spatial components of uμ)

vanish. We name this choice comoving description of the fluid, in conformity with the

literature. This description is a ‘weak’ form of a Lagrangian description of the fluid

where in addition τ is used as the time-coordinate. The coordinate assignment (X i, τ)

provides uμ = (1, 0, 0, 0). This defines Lagrangian observers who in the standard model

are called fundamental observers.
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4. Conclusion and Discussion

Looking at the set of equations (4) and their backreaction terms (5) we appreciate

that the explicit foliation dependence is solely given in terms of the threading lapse

M = N/γ. In the fluid proper time foliation we have M = 1, which does not differ

significantly from the value of the threading lapse in the metric form {(1) and (2)} for

the usual assumptions N = 1+ε ; |ε| � 1 and γ = 1+ζ ; ζ � 1. The remaining foliation

dependence of the amount of backreaction arises in the realization of the averaged model,

when integration of local variables is performed over specific hypersurfaces that are not

fully determined by N/γ due to the degeneracy of this ratio.

Let us now narrow down the class of relevant foliations, focussing on matter-

dominated model universes. We think of a cosmological coarse-graining that smoothes

over scales where vorticity, velocity dispersion and pressure play a role. In view of

observations one can then reasonably assume the existence of a class of foliations where

the hypersurfaces reflect statistical homogeneity and isotropy and in which the motions

of all coarse-grained fluid elements are non-relativistic, i.e. γ � 1, thus identifying a

class relevant to cosmology (see also the related discussion in [24]). This implies that the

tilt is negligible on these scales, uμ � nμ, and, in view of the negligible pressure gradients

over the coarse-graining scale, that the lapse function can be set to N � 1.8 Overall

this estimates M to be close to a Lagrangian description, M � 1, while the domain

of integration selected by the hypersurfaces is bound to small variations in spacetime,

since these hypersurfaces are constrained to remain almost orthogonal to u everywhere.

Thus, these conditions imply only small variations of the large-scale backreaction terms

(of the order of the deviations of the lapse and the Lorentz factor from 1) under a

change of cosmological spacetime foliation. Explicit bounds on such variations will

be investigated in a forthcoming paper [21]. These covariantly defined requirements

cannot be reproduced in a coordinate-dependent setting such as that used in [1]. The

variations can of course be larger when going beyond this restricted class of foliations

that are favoured on cosmological scales, as it would, e.g. be needed for evaluating

backreaction on smaller scales. These scales, where tilt, vorticity and pressure gradients

matter, can be treated as well within the general framework introduced in this letter.

We emphasize that the lapse and the Lorentz factor only depend on the normal

vector flow, and not on its derivatives, allowing for strong constraints on variations of

the backreaction with the foliation when the normal vector itself is constrained. In

our formalism, the kinematical backreaction does not involve the extrinsic curvature,

which depends on derivatives of the normal vector. It features instead derivatives of the

relative velocities of the fluid elements (such as Θ). These foliation-independent scalars

can be large despite velocities themselves being small (cf., footnote 2), allowing for large

backreaction. We remark in this context that the fact that M � 1 in the metric form

{(1) and (2)}, together with the smallness assumptions made, does not mean that the

8 Another issue arises if we also consider the coarse-graining of ‘time’ that may accumulate an effective

lapse during differing histories of voids and clusters, cf. the ‘timescape scenario’ [25].
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estimates of backreaction in paper [1] fall within our conclusions about the small impact

of the foliation choice. These authors employ an extrinsic averaging formalism where

dependencies on derivatives of the normal vector n (and, thus, on derivatives ofN and γ)

are introduced in the backreaction terms via the dependence on the extrinsic curvature

of the hypersurfaces. This may lead to unphysical foliation dependence of backreaction,

just because the variables to be averaged are defined from the hypersurfaces themselves,

i.e. they characterize the properties of a family of extrinsic observers. (We consider

this additional foliation dependence ‘unphysical’, since such observers only exist as a

mathematical abstraction.)9

The fluid proper time foliation and its representation in terms of the Lagrangian

description appear to be natural choices for an effective cosmology. These settings

should not be disqualified in favour of a choice of foliation extrinsic to the fluid by

emphasizing the need to avoid singularities. For example, evolving a dust matter model

implies the development of shell-crossing, as discussed in [8], as a manifestation of the

breakdown of the dust approximation. Improving the matter model may or may not

avoid these or other (e.g. black hole) singularities.

A possible shortcoming of the proper time foliations relates to the spacelike

character of the corresponding hypersurfaces generated from the evolution of a single

fluid. While such foliations are always well-defined under the assumption that the fluid

flow contains no singularity, one has to guarantee that the hypersurfaces, generated

from the initial spacelike slice, remain spacelike for all times considered. This will

hold at least locally in general and globally for an irrotational dust model with a fluid-

orthogonal initial hypersurface (since the whole foliation will then be fluid-orthogonal).

The construction of a proper time foliation is based on the choice of an initial Cauchy

hypersurface, which has to be specified; it may be best anchored to the last scattering

surface at the CMB epoch. These aspects have to be judged within specific applications.

The proper time choice can also be criticized because it requires following the

details of inhomogeneities developing in the fluid. This latter view originates, however,

from looking at a single realization of the fluid’s evolution and a single inhomogeneous

metric. What the averaged equations embody goes beyond the picture obtained from

a single realization of the metric. Changing the metric will change the morphology of

the averaging domain and the volume element, but we are entitled to implement the

cosmological model through a statistical ensemble of realizations. With this statistical

interpretation of the averaged equations, the effective cosmological equations no longer

trace individual metric variations as suggested by a one-metric-based picture. In this

context, a further important question for the definition of statistical hypersurfaces will

be whether the tilt, depending on physics on smaller scales, would average out to provide

an effective flow-orthogonal foliation on cosmological scales. Follow-up work is dedicated

9 We also remark that if backreaction happens to be zero in one foliation (e.g. if subjected to a 3−torus

constraint on a flat space section [7]), and if it is represented by a small number in its numerical

realization, a still small but nonzero backreaction parameter in another foliation could suggest a ratio

of several orders of magnitude, even if both estimates were in reality comparable.



Letter to the Editor 9

to explicitly implementing these statistical aspects.
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Abstract. We introduce a generalization of the 4−dimensional averaging window

function of Gasperini, Marozzi and Veneziano (2010) that may prove useful for a

number of applications. The covariant nature of spatial scalar averaging schemes to

address the averaging problem in relativistic cosmology is an important property that is

implied by construction, but usually remains implicit. We employ here the approach of

Gasperini et al. for two reasons. First, the formalism and its generalization presented

here are manifestly covariant. Second, the formalism is convenient for disentangling the

dependencies on foliation, volume measure, and boundaries in the averaged expressions

entering in scalar averaging schemes. These properties will prove handy for simplifying

expressions, but also for investigating extremal foliations and for comparing averaged

properties of different foliations directly. The proposed generalization of the window

function allows for choosing the most appropriate averaging scheme for the physical

problem at hand, and for distinguishing between the role of the foliation itself and

the role of the volume measure in averaged dynamic equations. We also show that

one particular window function obtained from this generalized class results in an

averaging scheme corresponding to that of a recent investigation by Buchert, Mourier

and Roy (2018) and, as a byproduct, we explicitly show that the general equations for

backreaction derived therein are covariant.

Keywords : general relativity—foliations—Lagrangian description—backreaction

1. Introduction

Cosmology is the discipline of describing overall dynamic properties of the Universe in

a spatially and/or statistically averaged sense. For a cosmology founded on general

relativistic principles, this aim is hard to obtain for at least two reasons:

(i) In general relativity a global and canonical notion of time is not in general expected

to exist. There is no unique and general way of extending the eigentime of a world

line to a global time parameter at each point in space-time. Thus, global dynamics
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is not easily defined since a natural ‘laboratory frame’ is missing. A cosmological

model would usually describe congruences of fundamental observers following source

fluid flows, and would naturally attempt to build global frames based on such a

family of observers. However, the identification of observer congruences in our

space-time, that ‘at present day’ involves a complicated hierarchy of structure, is

a difficult task. Moreover, a congruence of fluid-comoving observers does not build

global rest frames in presence of vorticity (expected to appear on small scales), so

that alternative definitions of observers-based spatial sections may be required.

(ii) Averages and statistical descriptions are not naturally formulated within general

relativity. Tensor quantities are intrinsic to the tangent-space in which they live;

while there are ways of mapping tensor quantities between tangent-spaces, such

mappings are not unique. Furthermore, point particles as matter sources are not

compatible with the formulation of general relativity. Projecting such a particle

picture into a continuous space-time setting may for instance involve an extension to

a curved manifold of the Newtonian procedure of coarse-graining particles in phase

space by filtering the Klimontovich density and of forming appropriate moments.

For these reasons statistical matter descriptions are highly involved in general

relativity.

The standard paradigm of cosmology relies on pre-assuming a statistical geometry and

a corresponding matter description (disentangled from curvature degrees of freedom).

Assuming also decoupling of scales, approximate large-scale statistical homogeneity and

isotropy is used as a motivation for taking the Friedman-Lemâıtre-Robertson-Walker

(FLRW) class of metrics as an idealization for the average properties of the Universe

on the largest scales. However, the FLRW class of metrics assumes local isotropy which

results in a homogeneous geometry on all scales, not only on the largest scales. The

assumption that the FLRW geometries match the average properties does not follow

from first principles.

In the field of inhomogeneous cosmology we are interested in studying the failure

of the FLRW idealization as an accurate description of geometry on the largest

scales, meaning the failure of it to describe the average dynamics of inhomogeneities

propagating on all scales and the motions of test particles through them. In general

relativity geometry and matter couple locally. This core feature is missed by any large-

scale description that neglects structure on small scales and only deals with coupling

between an assumed large-scale geometry and averaged matter sources.

The usual approaches to describe structure on cosmological scales involve weak

field approximations around a homogeneous background. However, typical weak field

argumentation in cosmology has limitations. It is assumed that there is a global FLRW

background metric around which the weak field is to be taken everywhere; clearly

local potentials associated with most structures in our Universe are weak; the question

in cosmology is what an appropriate background is for such a weak field limit [26].

Moreover, even if metric perturbations are small with respect to a global FLRW metric
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over a spatial section of the Universe, their derivatives can be non-perturbative. This is

the case for non-linear density fields (which are present at nested scales in our present-

day Universe), in which case second-order derivatives of the potentials are necessarily

non-linear (see, e.g. [6]). In such cases, the expansion of the Einstein equation into a

zero-order FLRW part and a first-order part breaks down, and from first principles we

would not expect the FLRW field equations to be satisfied as independent equations

decoupled from the dynamics of structures.

Here, we shall focus on quantifications of the non-linear backreaction of smaller

scales on the large scale evolution that involves averaging of ‘local’ quantities. We

shall focus only on averaging schemes for space-time scalars as done in [2, 3], and later

generalized by many authors (see, e.g. the reviews [9, 10] and references therein). We

note that the fundamental problems in describing averaged cosmological dynamics as

outlined in (i) and (ii) are not fully addressed in this form of averaging. In particular,

the assumption of a ‘local’ fluid description, where fluid elements are implicitly coarse-

grained by neglecting their internal curvature degrees of freedom, is built into the

Buchert equations [2, 3] (see, e.g. [27]). However, we do not assume an averaged

homogeneous and isotropic fluid as a source for a large-scale statistical geometry:

geometry and matter couple at the fluid resolution scale. The average behaviour is

formulated directly from the physics at this ‘local’ scale, and inhomogeneities at local

scales appear explicitly in the resulting generalizations of the Friedmann equations,

reflecting the non-commutativity of averaging and evolution in time.

In this work we introduce a 4−dimensional averaging window function that

generalizes the window function presented in [13,14] for integration over hypersurfaces.

There are multiple purposes in doing so. First, we shall often be interested in a fluid-

intrinsic averaging operation (when a fundamental fluid exists in our space-time); such

intrinsic formulation will in general not be compatible with the class of window functions

considered in [13, 14]. Second, the generalized scheme allows for maximal freedom in

the choices of averaging domain and volume measure, while still being compact and

easy to interpret. Covariance is built explicitly into the averaging scheme, guaranteeing

that any generalization of the Buchert scheme formulated from this will be coordinate-

independent by construction. Third, the introduction of the new window function has

applications for further investigations on extremal foliations and on the dependence of

averaged quantities on the foliation. Such studies are beyond the scope of this paper,

but will be considered in a future paper [16].

We are solely concerned with covariance here; we do not consider gauge-invariance

as defined in standard model perturbation theory.‡ In standard model perturbation

theory the fields of interest are perturbation degrees of freedom of the space-time

metric defined relative to a background metric. These fields are defined in terms of

components of the metric and the background metric and do not transform as tensors

in the differential geometry definition of a tensor, i.e. they are not covariant. This

‡ We emphasize the focus of this paper on covariant variables only, in distinction to [13] where both

covariance and standard model perturbation theory gauge invariance are discussed.
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includes the Bardeen variables, which are ‘gauge-invariant’ in this context, i.e. they

are invariant under first-order changes of the diffeomorphism between the background

manifold and the physical space-time manifold, but they are not 4−scalars.

We emphasize that there is no reference to a background space-time in the context

of this paper, and that we use the conventional general relativistic wording throughout.

When referring to scalar degrees of freedom we mean quantities that do not transform

under arbitrary coordinate transformations. When we refer to ‘gauge’ degrees of freedom

in this paper, this will be in the broad sense of the word, i.e. as redundant degrees of

freedom in the parameterization of a physical system.

This paper is organized as follows. In section 2 we introduce the averaging scheme

as formulated in terms of a covariant window function. We discuss the interpretation of

the generalized adapted volume measure entering this scheme and we give examples of

relevant subcases. In section 3 we discuss the commutation rule for such an averaging

operation and apply it to the conservation of regional rest mass. The averaged Einstein

equations for a general fundamental fluid source are derived in section 4 for a general

window function, expressed in such a way that boundary terms vanish by construction,

except for the average energy conservation law. We consider domains propagated along

the fluid world lines as a special case that allow for a more transparent interpretation

of the averaged equations. We conclude in section 5.

2. The averaging scheme

We now introduce the averaging scheme used to quantify averaged dynamics in this

paper. This averaging formalism is a direct generalization of that presented in [14],

the difference being that we allow for an arbitrary volume measure on the selected

hypersurfaces. We discuss the interpretation of the generalized volume measure, and

highlight several relevant subcases of the averaging scheme in relation to the existing

literature.

2.1. The window function

Following [13, 14] we consider scalar functions integrated over space-time domains that

are selected out of the space-time 4−manifold M by appropriate choices of window

functions. In the context of this paper we shall consider window functions that single out

compact regions of 3−dimensional spatial hypersurfaces. Averaging over 3−dimensional

hypersurfaces is natural when we want to describe the evolution of averaged properties

of spatial sections of the Universe.

Here we shall consider a slightly broader class of 3 + 1 window functions than

in [13, 14], to allow for arbitrary positive volume measures on the hypersurface of

integration. Hence, we do not restrict ourselves to having the volume measure coincide

with the adapted volume measure in the frame of the foliation. Such a more general

volume measure is natural in several settings, some of which we shall investigate below.
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This furthermore allows us to make explicit which properties of the averaged expressions

are related to the foliation and which are related to the volume measure. When

investigating foliation dependence [16] the separation of these contributions will be

useful.

We shall consider the broad class of window functions

WA,A0,B,B0,V = −V μ∇μ(H(A0 − A))H(B0 − B) = (V μ∇μA) δ(A0 −A)H(B0 − B) , (1)

where A is a scalar with time-like gradient that determines the spatial foliation of

integration (with hypersurfaces A = const.) and B is a scalar with space-like (or possibly

null) gradient that is used to bound the averaging domain. A0 and B0 are constants that

respectively select a specific hypersurface of the foliation (A = A0) and the domain’s

spatial boundary (B = B0). V is an arbitrary time-like vector field, that need not be

normalized, and that will in general not be normal to the hypersurfaces defined by A.

H is the unit step function; we use the convention H(0) = 1 throughout. We shall call

A the hypersurface scalar, B the boundary scalar, and V the volume measure vector.

We shall drop the subscripts denoting the dependencies of W in the following.

This form of the window function generalizes that of [14] through the freedom of

choice of the volume measure vector, which in [14] is restricted to being the unit normal

vector n to the hypersurfaces defined by A. V determines the volume measure on the

hypersurfaces defined by A. This corresponds to considering the usual oriented volume

element

dV λ = −nλ

√
g

6
nμεμν	σ dx

ν ∧ dx	 ∧ dxσ ; nμ =
−∇μA

(−gνσ∇νA∇σA)1/2
, (2)

(where g ≡ − det (gμν), and ε is the Levi-Civita symbol) projected along the vector V .

Thus, the integration measure that we use on the surfaces defined by constant A is

dV ≡ Vμ dV
μ . (3)

We can think of Vμ dV
μ as the flux of V through the infinitesimal volume dV μ.

If V is taken to be the normal vector n to the A = const. hypersurfaces, we

simply recover the Riemannian volume measure of the hypersurfaces, dV = nμ dV
μ.

Alternatively, we may take the volume measure vector V to be a 4−velocity field u

of physical interest, in general tilted with respect to the normal n. In this case, the

integration measure defined in (3) becomes

dV ≡ uμ dV
μ = −uμn

μ

√
g

6
nλελν	σ dx

ν ∧ dx	 ∧ dxσ

= γ

√
g

6
nλελν	σ dx

ν ∧ dx	 ∧ dxσ

= γ

√
g

6
(−∇νA∇νA)−1/2 ε ijk dx̄

i ∧ dx̄j ∧ dx̄k = γ nμ dV
μ , (4)

where x̄μ = (A, x̄i) is an adapted coordinate system to the foliation of A, and where

γ ≡ −u · n is the tilt, or Lorentz factor, between the normal of the hypersurfaces

and the 4−velocity u. The infinitesimal volume element dV measures the local proper

volume (around A = A0) of the fluid element defined by the infinitesimal fluid flow tube
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that intersects the hypersurface {A = A0} at the points of the time coordinate (in the

x̄μ basis) A = A0 and of the spatial coordinates spanning the range [x̄i, x̄i + dx̄i]. The

Riemannian volume measure nμ dV
μ of this fluid element as it intersects the hypersurface

{A = A0}, is its volume measure in the frame defined by n, and it is thus Lorentz-

contracted with respect to dV. Hence, the choice V = u introduces a local proper

volume measure of the fluid as the Riemannian volume measure multiplied by the local

Lorentz factor γ.

2.2. Averages of scalars

We define the integral over a scalar S over the space-time domain {A = A0, B ≤ B0}
singled out by the window function W as follows:

IW (S) ≡
∫
M

d4x
√
g S W , (5)

and we define the average of a scalar S as

〈S〉W ≡
∫
M d4x

√
g S W∫

M d4x
√
gW

=
IW (S)

V , (6)

where V ≡ IW (1) is the volume of the domain as measured by dV. The functional

dependencies of IW (S) and 〈S〉W on the variables of W are kept implicit for ease of

notation, and we shall also drop the window function index W in what follows.

2.3. Examples of window functions

We now present several possible choices for the window function, adapted to specific

descriptions.

2.3.1. Riemannian averages: As discussed above, the choice V = n implies integration

with respect to the Riemannian volume element of the hypersurfaces determined by

A in the definitions (5)–(6) for integration and averages. This choice corresponds to

the averaging formalisms that are often used in the literature for general foliations, in

addition to specific (not always covariantly defined) conditions on the propagation of the

domain boundary (see a comprehensive list of such general foliation extensions of [2,3] in

the literature comparison investigated in [8]). This is the choice made in [14], where the

propagation of the domain is in principle kept general, but is specified as following the

normal vector, n·∇B = 0, when derivation of averaged Einstein equations is considered.

2.3.2. Lagrangian window functions: One can also use the integration measure arising

from V = u, where u is the generator of flow lines of a physical fluid, together with

the requirement of a domain propagating along the fluid flow, u ·∇B = 0. We do not

at this point specify the time function A. We call such a choice a Lagrangian window

function, since the spatial domain is comoving with the fluid, and the volume measure

is defined as the proper volume measure of the fluid elements.
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The proper volume element of the fluid (4) and the associated volume and averages

as defined by (6) are equivalent to those of [7], here derived from a manifestly covariant

window function. This explicitly shows that all results derived from the integration of

scalars with this choice of volume element in [7] are covariant, as well as the former

results of [2,3] obtained with the same volume element in the case of a fluid-orthogonal

foliation (V = u = n).

2.3.3. Mass-weighted averages: Consider a fluid with 4−velocity u and with an

associated conserved local rest mass current M ,

Mμ = �uμ ; ∇μM
μ = 0 , (7)

where � is the rest mass density. We can define a mass-weighted Lagrangian average

by choosing V μ = Mμ in (1) and u ·∇B = 0. This mass-weighted average corresponds

to that formulated for irrotational dust in fluid-orthogonal foliations in [20], but here

expressed in the explicitly covariant formalism and extended to arbitrary fluids and

foliations.

2.3.4. Other weighted averages: As illustrated by the previous example, the freedom

of choice of V allows for any weighting of the averages. One may thus use the window

function (1) to define, e.g., averages weighted by curvature, or by other functions related

to curvature degrees of freedom in the spirit of the ‘q-average’ of Sussman [21, 22]§,
writing the corresponding window function under a manifestly covariant form.

2.3.5. Extensions to light cone averages: One may choose a boundary scalar with null

gradient such that {B = B0} defines the past light cone of a given event, as studied

in [15] in the case V = n. Integrals and averages are then taken over the spatial region

defined by the interior of the light cone at time A = A0.

Because V is not constrained to be the unit normal vector to the A = const.

hypersurfaces, the formalism can also be straightforwardly extended to averaging over

past light cones by choosing A as the appropriate scalar with light-like gradient and

V as a fixed time-like vector, e.g. the 4-velocity u of a fluid source. One might then

also replace B by a scalar of time-like gradient; another averaging operator discussed

in [15] is recovered in this case if V is taken as the normalized gradient of B. For either

a space-like or a time-like ∇B, such a window function would then select a bounded

part of the past light cone of a given event. The variations of integrals or averages

with respect to A0 then provide information on drift effects as this event changes, while

§ Note that the ‘q-average’ is constructed for the specific metrics of the Lemâıtre-Tolman-Bondi and

Szekeres models by introducing a weighting in the average that is defined from metric degrees of

freedom in a particular coordinate system. It is therefore not formulated in a manifestly covariant way.

However, we may simply extend the definition of the weighting to any other coordinate system, by

requiring the weighing to be invariant under the change of coordinates. With such an extension the

weighting function is per construction a 4−scalar, and the ‘q-average’ becomes covariant.
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the description of time evolution along a fixed past light cone would instead require an

analysis of variations with respect to B0.

3. The Buchert-Ehlers commutation rule

We now give a generalization of the commutation rule [5], [2–4, 12], and the

corresponding manifestly covariant version [14]. We focus on different possible rewritings

of the commutation rule, which can prove useful for interpretation and for compactness

of averaged equations. We then apply it to a Lagrangian window function and to the

evolution of the fluid rest mass within the integration domain.

3.1. General formulation

The essential insight of scalar averaging schemes is that time-derivatives and averaging

operations do not commute in general. The commutation rule for the integral can be

derived by differentiating the expression for I(S) in the form (5) with respect to A0:

I(S)′ =

∫
M

d4x
√
g S V ν∇νA

(
∂

∂A0
δ(A0 −A)

)
H(B0 − B)

=

∫
M

d4x
√
g S V ν∇νA

(
− ∂

∂A
δ(A0 − A)

)
H(B0 −B)

=

∫
M

d4x
√
g S V ν∇νA

(
− Zμ

Zν∇νA
∇μδ(A0 − A)

)
H(B0 −B)

=

∫
M

d4x
√
gW

∇μ

(
SZμ V κ∇κA

Zσ∇σA
H(B0 − B)

)
V ν∇νA

= I

(
Zμ∇μS

Zσ∇σA

)
+ I

⎛⎝S∇μ

(
Zμ V κ∇κA

Zσ∇σA

)
V ν∇νA

⎞⎠− I

(
S Zμ∇μB δ(B0 −B)

Zσ∇σA

)
, (8)

with the notation ′ ≡ ∂/∂A0, and whereZ is an arbitrary vector field obeyingZ·∇A 
= 0

everywhere. The third line of (8) follows fromZ ·∇(δ(A0−A)) = (Z ·∇A) ∂A(δ(A0−A)),

and the fourth line follows from partial integration, with the convention H(0) = 1

implying H(x)δ(x) = δ(x).

Z represents the freedom of the direction in which we define local time derivatives

with respect to A. Non-commutativity is given by the failure of the boundary to be

parallel-transported along Z/(Z ·∇A) and by the change of volume measure along the

flow lines of Z/(Z ·∇A). We denote the first term of (8) the evolution term, the second

term the expansion term, and the third term the boundary term.

The full result (8) is not dependent on Z, but different choices of Z allow us to

trade between the three terms in (8). For instance, we can make the boundary terms

disappear by choosing Z such that Z ·∇B = 0,‖ i.e., the boundary term contribution

does not appear if the direction chosen for time derivation follows the propagation of

‖ Taking Z to be time-like or null automatically ensures Z ·∇A 
= 0 if ∇A is time-like.



Covariance of scalar averaging and backreaction 9

the boundary. Similarly, we might make the evolution term vanish by choosing a Z

such that Z ·∇S = 0. ¶ The rate of evolution of the volume I(1) and the commutation

rule for the average follow from (8) and are given respectively by

I(1)′

I(1)
=

〈∇μ

(
Zμ V κ∇κA

Zσ∇σA

)
V ν∇νA

〉
−
〈
Zμ∇μB δ(B0 −B)

Zσ∇σA

〉
; (9)

〈S〉′ = I(S)′

I(1)
− 〈S〉 I(1)

′

I(1)
=

〈
Zμ∇μS

Zσ∇σA

〉
+

〈
(S − 〈S〉)∇μ

(
Zμ V κ∇κA

Zσ∇σA

)
V ν∇νA

〉
−
〈
(S − 〈S〉)Zμ∇μB δ(B0 −B)

Zσ∇σA

〉
. (10)

Again, we might trade between the three terms in (10) by changing Z, e.g., we can still

make the third term vanish by choosing Z to be a time-like vector field comoving with

the spatial boundaries of the domain.

When it is possible to choose a time-like Z such that ∇μ

(
Zμ V κ∇κA

Zσ∇σA

)
= 0, and

Zμ∇μB = 0 simultaneously, there is a sense in which time-derivative and the averaging

operation commute in (8) and (10): in this case it is possible to construct flow lines

along which the only contribution to the change of 〈S〉 is the change of S itself. This is

the case for a mass-weighted window function (see section 2.3.3). In this case, Z = u

satisfies the above requirements, so that the commutation rule (10) reduces to

〈S〉′ =
〈
uμ∇μS

uσ∇σA

〉
. (11)

Hence, there is commutation of this particular averaging operation and time-derivative

along the flow lines of u, generalizing this result obtained for irrotational dust in the

fluid-orthogonal foliation [20]. This commutation is, however, obtained at the expense

of a more complicated definition required for a physical volume (and associated scale

factor). In this setting, the ‘volume’ I(1) actually corresponds to a total rest mass

within the integration domain, as described in section 3.3. Thus, as noticed in [20],

defining a physical volume would require to compensate for the weighting by �, e.g. by

considering I(1/�).

We may choose Z to be the most convenient vector field for simplifying the

commutation rules, or may choose it from a geometric motivation as, e.g. in [14], where

Z is chosen to coincide with the normal to the hypersurfaces. Alternatively, one may

choose a physical vector field for Z, e.g. Z = u, where u is the 4−velocity of a physical

fluid of interest. In this formulation the terms in (8) and (10) can be interpreted in

terms of evolution along physical flow lines of a fluid and its expansion.

¶ Note, however, that if ∇S ∝ ∇A, then this choice is not possible, and the evolution term cannot be

put to zero.
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3.2. Application to the case of a Lagrangian window function

Let us consider a Lagrangian window function as defined in section 2.3.2. Writing the

commutation rule (8) with Z = u we have in this case

I(S)′ = I

(
uμ∇μS

uσ∇σA

)
+ I

(
S∇μu

μ

uσ∇σA

)
; I(1)′ = I

( ∇μu
μ

uσ∇σA

)
, (12)

where the first contribution comes from the change of S along the flow lines of u, and

the second contribution from the expansion ∇μu
μ of the fluid. Note the normalization

uσ∇σA, which is a change of measure between the proper time parameter τ of the fluid

and the foliation parameter A along each fluid flow line. Hence, this normalization

reduces to unity if and only if A is a proper time of u.

The analogous commutation rule for the average (10) yields

〈S〉′ =
〈
uμ∇μS

uσ∇σA

〉
+

〈
(S − 〈S〉)∇μu

μ

uσ∇σA

〉
. (13)

There are at least two natural ways of choosing A in the Lagrangian spirit of formulating

the window function. In cases where u is irrotational, it is then proportional to the

gradient of a scalar α, and we can choose A to define a foliation in the rest frame of the

fluid (i.e. fluid-orthogonal hypersurfaces) by A = α. An alternative natural choice of A

is a proper time parameter τ of u [7,8]. This has the advantage of being always possible,

even if u has vorticity, and of providing a clear physical interpretation of A as the time

parameter in evolution equations for average quantities. However, the time-like nature

of ∇τ can in general not be guaranteed. Note that the above conditions define classes

of foliation scalars, i.e. further specifications are required to determine them uniquely.+

A choice of proper time foliation can be simultaneously fluid-orthogonal only when the

fluid is irrotational and geodesic.∗

3.3. Total rest mass of the averaging domain

Consider a conserved local rest mass current Mμ = ρuμ as in (7). We can define a total

rest mass within the domain at A = A0 as

M(A0) ≡
∫
M

d4x
√
gMμ∇μ(H(A−A0))H(B0 −B) , (14)

+ The proper time foliation A = τ is only specified up to an additive function β obeying u ·∇β = 0.

The fluid frame foliation A = α is only specified up to a reparametrization, A = f(α), for any non-

decreasing function f of α. This freedom can be denoted a gauge freedom, since it can be viewed as a

time reparametrization within the original foliation itself. See Appendix A for further details on gauge

freedom in the labeling of hypersurfaces.
∗ A fluid-orthogonal foliation implies that u = n = −N∇A with the lapse N = (−∇A · ∇A)−1/2.

The vorticity of u thus has to vanish, which is part of Frobenius’ theorem. It also implies that the

4−acceleration a of the fluid relates to the lapse variations as aμ = N−1 bμν∇νN [7, 23], with b the

fluid-orthogonal projector. If A is additionally required to be a proper time function for the fluid,

u ·∇A = 1, then N = 1 everywhere and a = 0. This shows that the fluid flow must also be geodesic.
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i.e., as I(1) for a window function with V μ = Mμ (e.g. the mass-weighted window

function, see section 2.3.3). Applying (8) gives the evolution of M(A0) which, due to

the local conservation of Mμ, reduces to a single boundary term

M(A0)
′ = −

∫
M

d4x
√
gMμ∇μB H(A− A0) δ(B0 −B) , (15)

i.e. the evolution of mass is given by the flux of the mass current Mμ out of the averaging

domain. Thus, M(A0) is constant in A0 when the domain is comoving with the fluid

elements, u ·∇B = 0. For such a comoving integration domain, M = M(A0) (for any

A0), as defined by (14), corresponds to the total conserved rest mass of the fluid within

the domain. In this case, the additional requirement V = u sets a Lagrangian window

function (as defined in section 2.3.2). The conserved total rest mass within the domain

then takes the natural form M = I(�). For other volume measures, in general, I(�)

would not correspond to the rest mass within the domain and would not be conserved,

due to a weighting or due to the volume not being measured in the fluid’s local rest

frames. (For instance, for the hypersurfaces Riemannian volume measure, V = n,

and still for a comoving domain, the integrated rest mass would have to be written

M = I(γ�) with γ = −n · u.) A Lagrangian window function {V = u, u ·∇B = 0}
thus appears as a particularly natural choice to follow and characterize a given collection

of fluid elements, if a preferred fluid frame with an associated rest mass current is present

in the model universe. We shall focus again in section 4.3.1 on domains that follow the

propagation of the fluid—hence preserving the associated rest mass—as a subcase of

particular interest of more general averaged evolution equations, to which we turn now.

4. The averaged Einstein equations

The general averaging formalism and the commutation rule are applied below to scalar

projections of the Einstein equations. The resulting system of averaged evolution

equations allows for a covariant definition of cosmological backreaction terms. We shall

then explicitly provide the simpler form taken by these equations for a domain that

follows the fluid world lines, and we discuss the natural choices V = n and V = u.

4.1. Local variables and relations

In this subsection we consider an averaging domain defined by a time-like propagation

of its boundary. We thus assume that a unit time-like propagation vector field P can be

defined such that it satisfies P ·∇B = 0, at least on the domain’s boundary {B = B0}.
Applying the commutation rules (8)–(10) with the choice Z = P will then ensure the

vanishing of the boundary terms in these equations.

Kinematic variables may then be defined for this vector field by decomposing its

gradient with respect to P and its null-space as follows, using the orthogonal projector

k with components kμν = gμν + PμPν :

∇μPν = −Pμa
P
ν +

1

3
ΘP kμν + σP

μν + ωP
μν ;
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aPμ = P ν∇νPμ ; ΘP = kμν∇μPν ; σ
P
μν = kα

(μk
β
ν)∇αPβ −

1

3
ΘP kμν ; ω

P
μν = kα

[μk
β
ν]∇αPβ ;

σ2
P =

1

2
σP
μν σ

P,μν ; ω2
P =

1

2
ωP
μν ω

P,μν . (16)

Assuming the presence of a preferred non-singular fluid flow as a source, with 4−velocity

u, the (fully general) energy-momentum tensor is naturally decomposed with respect to

u and its null-space:

Tμν = ε uμuν + 2 q(μuν) + p bμν + πμν ;

ε ≡ uμuνTμν ; qμ ≡ −bαμu
βTαβ ; p ≡ 1

3
bμνTμν ; πμν ≡ bαμb

β
νTαβ − p bμν , (17)

where b is the projector onto the fluid’s rest frames, with components bμν = gμν +uμuν .

It may alternatively be decomposed using P . In particular, one can define the energy

density EP and pressure SP/3, in the frames defined by P , from, respectively:

EP ≡ P μP νTμν ; SP = kμνTμν . (18)

These variables are related to the fluid rest frame energy density ε, pressure p, and to

the non-perfect fluid contributions via

EP −ε =
1

2
[EP +SP −(ε+3p)] = (ε+p)

[
(uμPμ)

2 − 1
]
+2 (uμPμ)(P

νqν)+πμνP
μP ν . (19)

The following Raychaudhuri equation for P is then obtained by combining the Einstein

equation projected twice along P , and its trace:

P μ∇μΘP = −1

3
Θ2

P − 2σ2
P + 2ω2

P +∇μaPμ − 4πG(EP + SP ) + Λ . (20)

We define an effective scalar 3−curvature for the null-space of P (which is not

hypersurface-forming if ω2
P 
= 0) as follows:

RP ≡ ∇μP
ν ∇νP

μ −∇μP
μ∇νP

ν +R + 2RμνP
μP ν . (21)

This definition of effective 3−curvature reduces to the scalar 3−curvature of the P -

orthogonal hypersurfaces when they exist (i.e., for ω2
P = 0, by Frobenius’ theorem).

Such a generalization of the hypersurface-based notion is not unique; we here follow a

similar definition as that of, e.g. [11]. This convention implies the following relation in

the form of an energy constraint:

2

3
Θ2

P = −RP + 2σ2
P − 2ω2

P + 16πGEP + 2Λ . (22)

4.2. Averaged evolution equations

We use the general window function (1) and define an effective ‘scale factor’ a as

a = (I(1)/I(1)i)
1/3, where the subscript i denotes a value on some initial hypersurface

A = Ai.

As noted for the example of the mass-weighted average [20], it should be kept in

mind that this definition is only relevant as a scale factor if it can be interpreted as a

typical length derived from a volume, i.e. only when the choice of integration measure

defined by V allows for the interpretation of I(1) as a volume. Another definition
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of ‘scale factor’ that does relate it to a physical volume (e.g. to I(1/�) in the case

of the mass-weighted average) may otherwise be more appropriate. It should also be

noted, that the effective ‘scale factor’ a in general does not have an interpretation in

terms of mean redshift of null bundles (the averaging scheme presented in this paper

is too general to make a direct link to statistical light propagation). However, when

I(1) does measure a volume, and under the assumptions that (i) the frame of averaging

is associated with statistical homogeneity and isotropy, that (ii) structures are slowly

evolving (allowing null-rays to probe the statistical homogeneity scale), and that (iii)

typical emitters and observers of light are reasonably close to being in the averaging

frame, a might be interpreted as the inverse of a ‘statistical redshift’ averaged over

many observers and emitters [19]. More generally, only assuming a choice of window

function such that I(1) measures a physical volume, a should merely be interpreted as

an effective length scale of an averaging region defined in a given foliation.

Averaging the above equations (22) and (21) with the averaging definition (6), and

making use of the volume evolution rate (9) and the commutation rule (10) with the

choice Z = P , implying Z ·∇B = 0, yields the following evolution equations for a:

3

(
a′

a

)2

= 8πG

〈
ε

(P μ∇μA)2

〉
+ Λ

〈
1

(P μ∇μA)2

〉
− 1

2

〈 RP

(P μ∇μA)2

〉
− 1

2
Q− 1

2
T ; (23)

3
a′′

a
= −4πG

〈
ε+ 3p

(P μ∇μA)2

〉
+ Λ

〈
1

(P μ∇μA)2

〉
+Q+ P +

1

2
T . (24)

These equations feature three backreaction terms, a kinematical backreaction Q, a

dynamical backreaction P, and an energy-momentum backreaction T that captures the

difference of the energy densities as measured in two different frames (see [8]). These

backreaction terms are defined as follows:

Q ≡ 2

3

[〈
Θ2

P

(P ρ∇ρA)2

〉
−
〈
ΘP + Γ−1

P P μ∇μΓP

P ρ∇ρA

〉2
]
−
〈

2σ2
P

(P μ∇μA)2

〉
+

〈
2ω2

P

(P μ∇μA)2

〉
;

P ≡
〈

∇μaPμ
(P μ∇μA)2

〉
+

〈
ΘP

(P ρ∇ρA)2

(
2
P μ∇μΓP

ΓP
− P μ∇μ(P

ν∇νA)

P σ∇σA

)〉
+

〈
Γ−1
P P μ∇μ(P

ν∇νΓP )

(P μ∇μA)2

〉
−
〈
Γ−1
P P μ∇μΓP

(P ρ∇ρA)2
P ν∇ν(P

κ∇κA)

P σ∇σA

〉
;

T = −16πG

〈
EP − ε

(P μ∇μA)2

〉
, (25)

with the energy difference EP − ε given by (19), and with the ratio of ‘Lorentz factors’

ΓP ≡ (V μ∇μA)/(P
ν∇νA) = (−V μnμ)/(−P νnν), −V μnμ being a Lorentz factor when

V is normalized.

From the requirement of (23) being the integral of (24) we get the integrability

condition:

Q′ + 6
a′

a
Q+

〈 RP

(P σ∇σA)2

〉′
+ 2

a′

a

〈 RP

(P σ∇σA)2

〉
+ T ′ + 4

a′

a
T + 4

a′

a
P

= 16πG

(〈
ε

(P σ∇σA)2

〉′
+ 3

a′

a

〈
ε+ p

(P σ∇σA)2

〉)
+ 2Λ

〈
(P σ∇σA)

−2
〉′
. (26)
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Defining the kinematic variables of the fluid from the decomposition of the 4−velocity

gradient,

∇μuν = −uμaν +
1

3
Θ bμν + σμν + ωμν ;

aμ = uν∇νuμ ; Θ = bμν∇μuν ; σμν = bα(μb
β
ν)∇αuβ −

1

3
Θ bμν ; ωμν = bα[μb

β
ν]∇αuβ ;

σ2 =
1

2
σμνσ

μν ; ω2 =
1

2
ωμνω

μν , (27)

we can express the energy-momentum conservation equation projected onto the fluid

frame as follows:

− uμ∇νT
ν
μ = uμ∇με+Θ(ε+ p) + aμqμ +∇μq

μ + πμν σ
μν = 0 . (28)

One can then divide this relation by (P μ∇μA)
2, take the average and apply the

commutation rule (8) with Z = u. This yields the average energy conservation law

satisfied by the right-hand side of (26):〈
ε

(P σ∇σA)2

〉′
+ 3

a′

a

〈
ε+ p

(P σ∇σA)2

〉
= −

〈
Θ

Ȧ

p

(P σ∇σA)2

〉
+

〈
Θ

Ȧ

〉〈
p

(P σ∇σA)2

〉
+

〈
Γ̇/Γ

Ȧ
− (uμ∇μB) δ(B0 − B)

Ȧ

〉〈
p

(P σ∇σA)2

〉
−
〈

ε

(P σ∇σA)2
(uμ∇μB) δ(B0 − B)

Ȧ

〉

+

〈
ε

(P σ∇σA)2
2(Γ̇P/ΓP )− (Γ̇/Γ)− 2(Ä/Ȧ)

Ȧ

〉
−
〈
aμq

μ +∇μq
μ + πμνσ

μν

Ȧ (P σ∇σA)2

〉
, (29)

with Γ ≡ (V μ∇μA)/(u
ν∇νA) = (−V μnμ)/γ, and using the shorthand notation Ṡ

for the proper-time covariant derivative along u of a scalar S, Ṡ ≡ uμ∇μS. This

average conservation equation features two boundary terms that provide the variations

in volume and average energy density due to the flux of fluid elements across the

domain’s boundary if uμ∇μB 
= 0.

The above system of averaged equations (23,24,26,29) is covariant since it only

features explicitly covariant terms. The form of these equations is moreover globally

preserved under a change of the parametrization of the foliation (using a non-decreasing

function of A instead of A, preserving the set of hypersurfaces), but the individual

terms they contain are not. This is no different from the time-parameter dependence

of the expansion and acceleration terms of the Friedmann equations in homogeneous

and isotropic cosmologies. This freedom of relabeling the hypersurfaces is important

to keep in mind when interpreting averaged evolution equations: as for any parametric

equations, e.g. acceleration terms (as second derivatives with respect to a parameter)

can be tuned in any desirable way, including the change of sign, by an appropriate

change of the parameter. This is discussed in more detail in the specific context of the

above averaged equations in Appendix A. This interpretation issue is simply solved by

the choice of a time label with a clear physical meaning for the hypersurfaces. Such a

choice can be made specifically for the physical model considered, or from more general

conditions, such as taking τ itself as the parameter A when working within a foliation

at constant fluid proper time τ (see the related remarks that conclude section 3.2).
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This general set of averaged equations is naturally expressed in terms of geometric

variables such as the extrinsic curvature or the intrinsic scalar 3−curvature of the

A = const. hypersurfaces for a domain propagation along the normal vector field, i.e.,

for P = n. In this case, and for V = n (i.e. for Riemannian averages), this system

corresponds to the averaged system derived in [14], with the addition of the integrability

condition and the general form of the averaged energy conservation law.

For a general propagation vector P , the explicit contribution of the geometric

variables in the above equations can also be recovered by an alternative writing. It

can be done by splitting P into a component along n and a component orthogonal to

n, P = γP (n + vP ) with γP = −P · n and n · vP = 0. The contributions from the

decomposition of the gradient of P to the averaged equations can then be expressed in

terms of the extrinsic curvature of the hypersurface, e.g. by applying the following split

in the commutation rule:

∇μ

(
P μ V ρ∇ρA

Pσ∇σA

)
V ν∇νA

=
ΘP + Γ−1

P P μ∇μΓP

P ρ∇ρA
= −NK +N

∇μ(V
νnν v

μ
P )

V ρnρ
+

Nnμ∇μ(V
νnν)

V ρnρ
,

with the lapse function N ≡ (∇μA∇μA)
−1/2 and the trace of the extrinsic curvature

K ≡ −∇μn
μ. The set of equations using this decomposition will then simplify when

using the Riemannian volume measure of the hypersurfaces, V = n. In the comoving

domain case, P = u, this returns one of the sets of equations obtained in [8] when

geometric variables–based expressions for the spatial Riemannian volume measure and

a domain comoving with the fluid flow are considered.

4.3. Examples of applications

4.3.1. Comoving domains: We now specify the above results to the case of a domain

comoving with the fluid, i.e. for which u · ∇B = 0. One can thus take P = u. The

adapted local Raychaudhuri equation (20) and energy constraint (22) are then expressed

in terms of rest frame variables of the fluid:

Θ̇ = −1

3
Θ2 − 2σ2 + 2ω2 +∇μa

μ − 4πG(ε+ 3p) + Λ ; (30)

2

3
Θ2 = −R+ 2σ2 − 2ω2 + 16πGε+ 2Λ , (31)

with the effective scalar 3−curvature of the rest frames of u [11],

R ≡ ∇μu
ν∇νu

μ −∇μu
μ∇νu

ν +R + 2Rμνu
μuν . (32)

The corresponding evolution equations for the effective ‘scale factor’ a (which may still

not be the most appropriate definition in cases where I(1) is not interpreted as a volume)

are then written as follows:

3

(
a′

a

)2

= 8πG

〈
ε

Ȧ
2

〉
+ Λ

〈
1

Ȧ
2

〉
− 1

2

〈
R
Ȧ

2

〉
− 1

2
Q ; (33)

3
a′′

a
= −4πG

〈
ε+ 3p

Ȧ
2

〉
+ Λ

〈
1

Ȧ
2

〉
+Q+ P . (34)
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The energy-momentum backreaction vanishes since P = u, and the kinematical and

dynamical backreaction terms reduce to the following:

Q ≡ 2

3

⎛⎝〈Θ2

Ȧ
2

〉
−
〈
Θ+ Γ̇/Γ

Ȧ
2

〉2
⎞⎠− 2

〈
σ2

Ȧ
2

〉
+ 2

〈
ω2

Ȧ
2

〉
; (35)

P ≡
〈
∇μa

μ

Ȧ
2

〉
+

〈
Θ

Ȧ
2

(
2
Γ̇

Γ
− Ä

Ȧ

)〉
+

〈
Γ̈/Γ

Ȧ
2

〉
−
〈
(Ä/Ȧ) (Γ̇/Γ)

Ȧ
2

〉
. (36)

The integrability condition (26) now becomes

Q′ + 6
a′

a
Q+

〈
R
Ȧ

2

〉′

+ 2
a′

a

〈
R
Ȧ

2

〉
+ 4

a′

a
P

= 16πG

(〈
ε

Ȧ
2

〉′

+ 3
a′

a

〈
ε+ p

Ȧ
2

〉)
+ 2Λ

〈
1

Ȧ
2

〉′

, (37)

where the right-hand side obeys the averaged energy conservation law (29) that reduces

to 〈
ε

Ȧ
2

〉′

+ 3
a′

a

〈
ε+ p

Ȧ
2

〉
= −

〈
Θ

Ȧ

p

Ȧ
2

〉
+

〈
Θ+ Γ̇/Γ

Ȧ

〉〈
p

Ȧ
2

〉

+

〈
ε

Ȧ
2

(
Γ̇/Γ− 2Ä/Ȧ

Ȧ

)〉
−
〈
qμaμ +∇μq

μ + πμνσ
μν

Ȧ
3

〉
.

(38)

Remark: The requirement u·∇B = 0 in the choice of the window function corresponds

to the definition of an averaging domain that follows the fluid flow. It thus ensures by

construction the preservation over time of the collection of fluid elements to be averaged,

in particular preserving their total rest mass (as shown in section 3.3) when it can be

defined.

4.3.2. Lagrangian window function: The above equations for a comoving domain,

u ·∇B = 0, simplify further when in addition the fluid proper volume measure is used,

V = u, yielding a Lagrangian window function. This corresponds to setting Γ = 1

in equations (33)–(38) above, dropping all terms that depend on its evolution. The

system of averaged equations in the framework corresponding to the Lagrangian window

function in [7,8] is thus recovered, under an equivalent, here manifestly covariant form.

As discussed in the above references, it becomes particularly transparent in a foliation

by hypersurfaces of constant fluid proper time, A = τ .

Remark: The Lagrangian window function choice, based on a preferred fluid

4−velocity field, is especially adapted to analyzing average properties within single-

fluid cosmological models. This could apply, e.g. to the description of a dark matter-

dominated late Universe within a dust model, or to the radiation-dominated era within

a model of a pressure-supported fluid. It can as well be used in a model involving
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several non-comoving fluids, e.g. to describe a mixture of dark matter and radiation

with different 4−velocities. In this case, it would require choosing one of the fluids to be

followed through its evolution and to define a proper volume measure. The total energy-

momentum tensor would then have to be decomposed with respect to the corresponding

frame, in which contributions from the other fluids will generally appear in the form of

non-perfect fluid terms [24].

4.3.3. Riemannian volume averages: As discussed at the end of section 4.2, the choice

of a Riemannian volume measure, V = n, is the most adapted for analyzing averaged

geometric properties of the hypersurfaces themselves, e.g. by providing expressions of

the averaged equations in terms of the extrinsic curvature of the hypersurfaces. This

is expected since the scale factor and averages are then based on the intrinsic spatial

volume form of the hypersurfaces. The evolution equations for the scale factor with

such a choice and for a comoving domain, u ·∇B = 0, may be obtained from equations

(33)–(38) by setting Γ = 1/γ. This gives a manifestly covariant system of equations

equivalent to that given in Appendix B of [8], also expressed in terms of the rest frame

fluid variables. Recovering the dependence in the geometric variables such as the trace of

extrinsic curvature then requires rewriting these local quantities along the lines suggested

at the end of section 4.2.

Remark: The choice of a Riemannian volume measure, V = n, is especially suited for

studying the behaviour of hypersurfaces defined from geometric conditions, such as the

Constant Mean Curvature requirement, which is frequently used in general relativity.

The averaged equations for this volume measure take their simplest form for a

propagation of the domain along the normal vector n (n · ∇B = 0). The evolution

equations for such a choice of propagation of the domain can be directly obtained in

terms of the geometric variables from the general equations of section 4.2, recovering

the framework and results of [14]. However, a geometric propagation of the domain

(n ·∇B = 0) will in general imply a flow of fluid elements (with a 4−velocity u) across

the domain boundary. Preservation of fluid elements could be recovered with additional

assumptions; for instance, for an irrotational fluid model with averaging defined in the

corresponding global fluid rest frames, with n = u. In a more general cosmological

setting, one may assume on large scales that vorticity effects may be neglected, at

least near the domain boundary, allowing for a foliation where a propagation of the

domain boundary along the normal vector would approximate a comoving propagation

(u · ∇B = 0). One may also assume a choice of hypersurfaces where statistical

homogeneity holds for all observables, effectively leaving the evolution equations defined

over such a choice of hypersurfaces invariant under the increase of scale of the domain

B0 above a suitable homogeneity scale cut-off. This would then allow for a computation

of averages over a global range (B0 −→ +∞), effectively eliminating the need for

distinguishing the possible propagations of the domain boundary for this choice; see [19]

for an investigation of this framework.
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4.3.4. Light propagation: As discussed in section 2.3.5, an alternative choice for the

domain boundary would be that of binding it to the past light cone of a given event by

choosing the appropriate scalar B with light-like gradient, covering the evolution of the

average properties of spatial sections in the interior of this light cone.

Alternatively, one might consider the case where A has light-like gradient such that

A = A0 singles out a null surface that might be associated with the light cone of an

observer, and where B has time-like or space-like gradient (e.g. ∇B being proportional

to an irrotational fluid 4−velocity u). Variation of average properties with respect

to emitting times of the sources along a given cone then requires a variation of the

parameter B0, while the above results for the dependence in A0 would provide insight

on drift effects as the observer changes. These situations have been investigated in detail

with similar covariant averaging schemes in [15] (see also the application in an adapted

coordinate system [1]).

Remark: Averaging domains defined from the light cone are natural candidates for

relating the averaging formalism discussed in this paper to observations. It is important

to keep in mind that the formalism presented in this paper is general, allowing for

averaging over hypersurfaces of arbitrary globally hyperbolic space-times. In particular,

the average equations only implicitly depend on the metric of space-time. While we

consider this being an advantage, as it allows to express average properties independently

of a specific form of the space-time metric, it implies the need for further specifications

and assumptions in order to connect the general result to observations. For example,

assumptions must be made in order to interpret averaged quantities defined over spatial

hypersurfaces in terms of (averaged) energy, flux, etc., of photon bundles emitted by

matter sources and absorbed by specified classes of observers. Such an interpretation

may become more natural if the formalism is specified to light cone averaging [15],

but further assumptions would still be needed in order to close the system of averaged

equations (e.g. by specifying a model for the inhomogeneous metric [1]), and to relate

the obtained averages to observational results that are usually based on idealizing

assumptions on the geometry. It is beyond the scope of this paper to go into details about

the difficult task of establishing connections between averaged cosmological evolution

equations and (statistical) observations of selected observers. For papers addressing the

link between the averaging formalism and its observational interpretation, see e.g. [18,19]

(with a covariant formalism for global spatial averages in the second case), and [17, 25]

for local and bi-local investigations.

5. Conclusion

Covariance is a requirement for any physical theory, and a cornerstone in the formulation

of general relativity. In this paper we have investigated scalar covariant formulations of

global dynamics relevant for the description of backreaction effects in cosmology. We

have considered a generalized window function, allowing for arbitrary foliation, spatial

boundary, and volume measure.
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We provided an explicitly covariant form for the commutation rule and for the

spatially averaged scalar parts of Einstein’s equations, with the associated integrability

condition, using this general window function. The absence of restrictions imposed

on the energy-momentum tensor of the fluid sources allows us to apply these schemes

to the early Universe as well as to the matter-dominated later stages, and they cover

all spatial scales down to which the fluid approximation can be considered as valid.

Backreaction terms are introduced from these equations, and are thus also expressed

under a manifestly covariant form. We then applied these results to the physically

relevant subcase of a comoving domain.

We have given a procedure for providing several possible decompositions of the

commutation rule and the resulting averaged equations. This allows us, for example, to

get rid of boundary terms, or to keep them as transparent boundary flux terms, for any

choice of domain propagation. We have discussed the effect on averaged equations of a

relabeling of the hypersurfaces in a given foliation, and we have stressed the importance

of being able to physically interpret the chosen label.

The formalism used in this paper provides a unifying framework encompassing

various scalar averaging schemes that have been suggested or could be used for the

description of averaged properties of cosmological models. It can be straightforwardly

adapted to a given specific scheme by suitably choosing the window function. Several

examples of such possible applications were given. In particular, we have shown that

the manifestly covariant averaging scheme used in this work reduces to the averaging

scheme considered in [8] for a so-called Lagrangian window function, providing covariant

formulas for the latter scheme. The explicit selection of the foliation by a scalar function

in the scheme used in this work also makes it suitable for the forthcoming investigation

of foliation dependence of averaged expressions [16], and it may be helpful for other

related considerations.
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Appendix A. Freedom of hypersurfaces labeling

We here investigate in more detail the consequences of a change of the hypersurfaces

label A (without change of the hypersurfaces) for the terms appearing in the evolution

equations for the effective scale factor a.

Any transformation of the form

A �→ f(A), (A.1)

where f is a strictly monotonically increasing function, is a transformation of the

foliation of A onto itself (i.e. the same set of hypersurfaces is considered, with a different

parametrization), since

nμ = − ∇μf(A)√
−∇νf(A)∇νf(A)

= − ∇μA√
−∇νA∇νA

. (A.2)

The class of transformations (A.1) is thus a gauge of the foliation.

This seemingly innocent parametrization freedom can cause issues if we are naively

evaluating averaged quantities without paying attention to the interpretation on what

the time label A represents in the equations. As an example, the interpretation of the

Friedmann equations under their usual form relies on the fact that their time parameter

has a transparent meaning as the eigentime of ideal fundamental observers.

Let us consider an integrand

SW = −SV μ∇μ(H(A0 −A))H(B0 −B) , (A.3)

where the vector SV μH(B0−B) is invariant under reparametrizations (A.1) of A. (This

is for instance the case if S, V and B,B0 are independent of A or only depend on it

via the normal vector n.) Under such a reparametrization, the integral I(S) = I(S)A,A0

(recovering provisionally an explicit indication of the dependence in A and A0 of the

window function) becomes

I(S)A,A0 �→ I(S)f(A),f(A0) = I(S)A,A0 , (A.4)

where we have used that

H(f(A0)− f(A)) = H(A0 − A) , (A.5)

for strictly increasing functions f . Such an integral thus only depends on the chosen

foliation and the selected slice, but not on the parametrization, and we can remove the

subscript notation A,A0 in the following.

Derivatives with respect to the parameter transform as

∂I(S)

∂A0
�→ ∂I(S)

∂(f(A0))
=

1

f ′(A0)

∂I(S)

∂A0
, (A.6)

while second derivatives become

∂2I(S)

∂A2
0

�→ ∂2I(S)

∂(f(A0))2
=

1

f ′(A0)2
∂2I(S)

∂A2
0

− f ′′(A0)

f ′(A0)3
∂I(S)

∂A0
. (A.7)

We can therefore tune first derivatives by any positive rescaling f ′(A0) through the

transformations (A.1), while second derivatives may even be canceled or change sign,
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since f ′′(A0) is not constrained in its sign. The above results similarly apply to the

average 〈S〉 and its derivatives with respect to A0.

We conclude that, without a physical interpretation of the hypersurface label

A, statements about the magnitude of first-order derivatives (A.6), as well as any

statements (about magnitude or sign) about second-order derivatives (A.7), are

degenerate with the choice of A. This applies for instance to the left-hand sides of

the averaged dynamical equations (23)–(24), or (33)–(34), that are proportional to

(∂I(1)/∂A0)
2 and ∂2I(1)/∂A2

0, assuming that V , B and B0 are defined independently

of A or only depend on it via the normal vector n.

Under the same assumption, the conclusions about parametrization-dependence

also hold for the terms on the right-hand sides of (23)–(24). Most of them can be

written as 〈S/(P σ∇σA)
2 〉 with a scalar S that is unchanged under the reparametrization

(A.1), even when it depends on A, such as ΓP , and would thus rescale by a

factor f ′(A0)
2, as does (∂I(1)/∂A0)

2. The only exception is the combination of

terms
〈
−(ΘP + Γ−1

P P μ∇μΓP )P
ν∇ν(P

σ∇σA) (P
ρ∇ρA)

−3
〉
appearing in P in (24), which

would transform as〈
−(ΘP + Γ−1

P P μ∇μΓP )P
ν∇ν(P

σ∇σA)

(P ρ∇ρA)3

〉
�→

1

f ′(A0)2

〈
−(ΘP + Γ−1

P P μ∇μΓP )P
ν∇ν(P

σ∇σA)

(P ρ∇ρA)3

〉
− f ′′(A0)

f ′(A0)3
∂I(1)

∂A0

,(A.8)

i.e. in the same way as ∂2I(1)/∂A2
0. These identical transformations of both sides of

the averaged evolution equations ensure the preservation of the form of these equations

under a reparametrization. The same remarks hold for the equations (33)–(34) with

P = u in this case.
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