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Abstract

Bacteria colonise interfaces by the formation of dense aggregates. In this thesis, we de-
velop and analyse simple models to clarify the role of passive physico-chemical forces and
processes - such as osmosis, surface tension effects and wettability - in the spreading of
bacterial colonies at solid-air interfaces. In particular, we focus on two spreading mecha-
nisms: The osmotically driven spreading and the promotion of spreading by the presence
of bio-surfactants. The models are based on a hydrodynamic description for thin films
of liquid mixtures and suspensions that is supplemented by bioactive processes. They
explicitly include surface tension effects and wettability.
The first part of the thesis focuses on the osmotic spreading mechanism of bacterial colonies
that relies on the generation of osmotic pressure gradients. The bacteria secrete a poly-
meric matrix which acts as an osmolyte and triggers the influx of nutrient-rich water from
the moist substrate into the colony. The analysis of the model shows that in accordance
with the experimental observation, the colony first swells and subsequently expands lat-
erally with a nearly constant contact angle at the advancing contact line. In addition, we
find that wettability crucially affects the spreading dynamics and determines whether the
colony is able to expand laterally over a substrate or not. At low wettability, the expansion
is arrested, albeit the colony is biologically active. However, a small reduction of the sur-
face tension and the resulting improvement of the wettability suffices to induce continuous
spreading. This can, e.g., result from the production of bio-surfactants, i.e. surface-active
molecules, by the bacteria. This is a widespread strategy that allows bacterial colonies
to efficiently expand over substrates. In addition to improving the wettability, gradients
in the surface concentration of surfactant at the edges of the colony result in Marangoni
fluxes that drive cooperative spreading.
In the second part, we lay the groundwork for the incorporation of a non-uniform surfac-
tant concentration into the model by studying passive liquid films covered by insoluble
surfactant. We first consider static drops and establish the link between the mesoscopic
and macroscopic descriptions of the system by energetic considerations. The requirement
of consistency of the two approaches relates the solid-gas interfacial tension in the macro-
scopic description to the mesoscopic wetting energy. We find that in the presence of
surfactants, the structural form of Young’s law remains unchanged. However, the surfac-
tant concentrations and the resulting interfacial tensions adapt self-consistently.
In the third part, we develop and study a model for the surfactant-driven spreading of
bacterial colonies. The model includes the production of bio-surfactants and accounts for
Marangoni fluxes arising due to a non-uniform surfactant concentration. We show that
the interplay between wettability and Marangoni fluxes strongly affects the expansion be-
haviour and morphology of bacterial colonies. The presence of bio-surfactants can enable
a bacterial colony to expand laterally under conditions which are otherwise unfavourable.
In addition, it may cause an instability of the circular shape of bacterial colonies. We
find that variations in the wettability and surfactant production are sufficient to repro-
duce four different types of colony growth, namely, arrested and continuous spreading of
circular colonies, slightly modulated front lines and the formation of pronounced fingers.
In the final part, we take a first step towards the incorporation of active collective bacte-
rial motion in the employed thin-film framework and present a phenomenologically derived
model for active polar films. The approach couples a thin-film equation for the film height
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to the dynamics of a polarisation field connected to self-propulsion and active stresses. It
can describe resting and moving drops of active liquids.
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Kurzzusammenfassung

Bakterien können Grenzflächen besiedeln, indem sie dichte Kolonien ausbilden. In die-
ser Arbeit werden einfache Modelle entwickelt und untersucht, die den Einfluss passiver
physikochemischer Kräfte und Prozesse – wie Osmose, Oberflächenspannungseffekte und
Benetzbarkeit – auf die Ausbreitung bakterieller Kolonien beleuchten. Der Fokus liegt
dabei insbesondere auf zwei Ausbreitungsmechanismen: dem osmotisch getriebenen Sprei-
ten und dem Spreiten angetrieben durch oberflächenaktive Moleküle, sogenannte Bio-
Surfactants. Diese Mechanismen werden von Bakterienkolonien an Grenzflächen zwischen
feuchten Substraten und Atmosphäre ausgenutzt. Die in dieser Arbeit entwickelten Mo-
delle basieren auf einer hydrodynamischen Beschreibung dünner, aus Mischungen und
Suspensionen bestehender Flüssigkeitsfilme, die um bioaktive Terme erweitert wird. Sie
berücksichtigen daher explizit Oberflächenspannungseffekte und Benetzbarkeit.
Der erste Teil der Arbeit widmet sich dem osmotisch getriebenen Spreiten von Bakterien-
kolonien, das auf der Erzeugung von osmotischen Druckgradienten beruht. Die Bakterien
produzieren extrazelluläre polymere Substanzen, die als Osmolyte wirken und einen Fluss
von nährstoffreicher Flüssigkeit aus dem feuchten Substrat in die Kolonie hervorrufen. Die
Analyse der entwickelten Modelle zeigt in Übereinstimmung mit experimentellen Befun-
den, dass die Kolonie zunächst vorrangig vertikal anschwillt und sich anschließend mit
einem annähernd konstanten Kontaktwinkel lateral über das Substrat ausbreitet. Es zeigt
sich, dass Benetzbarkeit die Spreitdynamik von Biofilmen drastisch beeinflusst und ent-
scheidend dafür ist, ob sich die Kolonie auf dem Substrat ausbreiten kann oder nicht. Bei
schlechter Benetzbarkeit wird die laterale Expansion der Kolonie unterdrückt, obwohl die
Bakterien biologisch aktiv sind und Wachstumsprozesse stattfinden. Eine leichte Verringe-
rung der Oberflächenspannung und die damit verbundene Verbesserung der Benetzbarkeit
kann jedoch ausreichen, um ein laterales Spreiten der Kolonie zu ermöglichen. Dies kann
beispielsweise durch Bio-Surfactants geschehen, welche die Eigenschaften der Oberfläche
modifizieren. Im Allgemeinen ist die Produktion von Bio-Surfactants eine weitverbreite-
te Strategie, die Bakterienkolonien eine effektive Ausbreitung ermöglicht. Zusätzlich zur
Verbesserung der Benetzbarkeit können Gradienten in der Surfactant-Konzentration am
Rand der Kolonie Marangoni-Flüsse hervorrufen, die das Spreiten unterstützen.
Im zweiten Teil der Arbeit werden passive, von unlöslichem Surfactant bedeckte Trop-
fen untersucht, um die Basis für die Berücksichtigung inhomogener Surfactant-Konzen-
trationen in der Modellierung zu schaffen. Zunächst werden statische passive Tropfen
betrachtet und die in dieser Arbeit verwendete mesoskopische Beschreibungsebene des
Systems wird mit einer makroskopischen Beschreibung verknüpft. Aus der Tatsache, dass
beide Bilder zu konsistenten Resultaten führen müssen, können Beziehungen zwischen
den jeweiligen Größen der beiden Beschreibungsebenen abgeleitet werden. Im Speziellen
wird gezeigt, dass die Eigenschaften der mesoskopischen Benetzungsenergie mit der ma-
kroskopischen Oberflächenspannung der Grenzfläche zwischen Substrat und Atmosphäre
verknüpft sind. Aus energetischen Überlegungen zu statischen Tropfen kann abgeleitet
werden, dass die Struktur des Youngschen Gesetzes im Vergleich zum Surfactant-freien
Fall unverändert bleibt. Die Surfactant-Konzentrationen auf dem Tropfen sowie auf der
umliegenden Absorptionsschicht passen sich jedoch selbstkonsistent mit den daraus resul-
tierenden Grenzflächenspannungen an.
Im nächsten Schritt wird ein Modell für das Surfactant-getriebene Spreiten bakterieller
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Kolonien entwickelt und analysiert. Dieses berücksichtigt die Produktion von Bio-Sur-
factants durch die Bakterien und die aus einer nicht-homogenen Surfactant-Verteilung
resultierenden Marangoni-Flüsse. Es zeigt sich, dass das Zusammenspiel zwischen Benetz-
barkeit und Marangoni-Flüssen die Ausbreitungsdynamik und Morphologie bakterieller
Kolonien stark beeinflusst. Die Produktion von Bio-Surfactants kann die laterale Expan-
sion unter für die Bakterien ansonsten ungünstigen Bedingungen ermöglichen. Zusätzlich
bewirkt sie eine Instabilität der kreisrunden Form der Kolonie. Die Analyse des Modells
zeigt, dass Variationen von Benetzbarkeit und Surfactant-Produktion ausreichen, um vier
verschiedene Arten von Wachstum zu reproduzieren: Kolonien, deren laterales Spreiten
verhindert wird, spreitende Kolonien mit kreisrunder oder leicht modulierter Form sowie
die Ausbildung ausgeprägter Finger im Höhenprofil.
Im letzten Teil der Arbeit wird ein phenomenologisches Modell für aktive polare Flüssig-
keiten hergeleitet, das einen ersten Schritt hin zur Einbeziehung der aktiven kollektiven
Bewegung der Bakterien in die entwickelte Dünnfilm-Beschreibung der Kolonien darstellt.
Das Modell verknüpft die Dynamik der freien Grenzfläche mit der eines Polarisationsfel-
des, das den Eigenantrieb der Bakterien und aktive Spannungen beschreibt. In einer ersten
Analyse des Modells werden ruhende und bewegte aktive Flüssigkeitstropfen untersucht.
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Résumé

Les bactéries se répandent aux interfaces en formant des colonies, qui peuvent être con-
sidérées comme des suspensions denses actives. L’objet de cette thèse est le développement
et l’analyse de modèles simples pour élucider le rôle des phénomènes physico-chimiques
et passifs - tels que l’osmose, la tension de surface et le mouillage - dans l’expansion des
colonies bactériennes aux interfaces solide/air. En particulier, nous nous sommes penchés
sur deux mécanismes qui ont été bien étudiés sur le plan expérimental : le gonflement
osmotique et les écoulements de Marangoni. Les modèles proposés dans cette thèse sont
basés sur une description hydrodynamique des couches minces de suspensions liquides,
qui incluent explicitement les effets de tension de surface et de mouillage. Ce cadre de
phénomènes purement passifs est complété par des processus bioactifs.
La première partie de la thèse porte sur le mécanisme d’expansion osmotique des biofilms.
Dans ce mécanisme, la bactérie sécrète une matrice polymérique qui agit comme un os-
molyte et entrâıne un afflux d’eau, riche en nutriments, du substrat humide vers le biofilm.
L’analyse du modèle montre que, conformément à l’observation expérimentale, la colonie
gonfle d’abord et se dilate ensuite latéralement avec un angle de contact d’avancement
presque constant. De plus, nous avons constaté que la mouillabilité du substrat est une
des déterminantes principales de la vitesse d’expansion du biofilm. En-dessous d’une
mouillabilité critique l’expansion s’interrompt, bien que la colonie soit biologiquement
active. Cependant, une légère réduction de la tension de surface et une amélioration de la
mouillabilité qui en résulte suffisent à induire un étalement continu. Or, il a été démontré
expérimentalement que les bactéries peuvent activement contrôler la tension de surface
par la production de bio-surfactants, c’est-à-dire de molécules tensioactives. Il s’agit
d’une stratégie répandue qui permet aux colonies bactériennes de s’étendre efficacement
sur les substrats. En plus d’améliorer la mouillabilité, les gradients dans la concentra-
tion surfacique de molécules tensioactives aux bords de la colonie peuvent entrâıner des
écoulements de Marangoni qui favorisent l’expansion coopérative.
Dans la deuxième partie, nous nous sommes intéressés à l’effet de molécules tensioactives
sur l’état d’équilibre d’une goutte de liquide simple sur une surface solide. Cette étude
nous a aidé à établir, via des considérations énergétiques, le lien entre les descriptions
mésoscopique et macroscopique pour des gouttes recouvertes de molécules tensioactives.
L’exigence de cohérence des deux approches relie la tension interfaciale solide-gaz dans
la description macroscopique à l’énergie de mouillage mésoscopique. Nous avons constaté
qu’en présence d’agents tensioactifs, la forme structurelle de la loi d’Young reste valable.
Cependant, les concentrations en agents tensioactifs et les tensions interfaciales qui en
résultent s’adaptent d’une manière cohérente.
Dans la troisième partie, nous avons développé et étudié un modèle pour l’expansion de
colonies bactériennes aidée par des molécules biologiques tensioactives auto-produites. Le
modèle inclut la production de ces bio-surfactants et tient compte des flux de Marangoni
résultant d’une concentration non uniforme de molécules tensioactives. Nous avons montré
que l’interaction entre la mouillabilité et les flux de Marangoni affecte fortement le com-
portement d’expansion et la morphologie des colonies bactériennes. La présence de bio-
surfactants permet à une colonie bactérienne de s’étaler latéralement dans des condi-
tions qui, sinon, seraient défavorables. De plus, elle peut provoquer une instabilité de la
forme axi-symétrique des colonies bactériennes. Malgré étant très simple, notre modèle
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nous a permis de reproduire quatre modes de développement différentes, qui ont été ob-
servés expérimentalement, à savoir l’étalement arrêté et continu des colonies circulaires,
l’étalement des colonies avec des bords légèrement modulées et la formation de doigts
prononcés.
Dans la dernière partie, nous avons fait un premier pas vers l’incorporation de la motilité
actif des bactéries dans notre modèle. La motilité rajout un nouveau élément au modèle:
une direction de polarisation relié à la propulsion. Nous présentons donc un modèle
phénoménologique pour un film mince active. L’approche associe une équation pour
l’évolution de une surface libre à la dynamique d’un champ de polarisation. Avec ce
modèle préliminaire nous avons pu décrire des gouttes de liquides actifs au repos et en
mouvement en fonction de l’état de polarisation.
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Résumé vii

1. Introduction 1
1.1. Surface Tension Effects and Wetting . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Bacterial Colonies as Complex Fluids . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Thin Films and Droplets of Simple Liquids 9
2.1. Equilibrium Droplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Equilibrium Droplets in the Macroscopic Picture . . . . . . . . . . . 9

2.1.2. Interactions between Film and Substrate . . . . . . . . . . . . . . . . 11

2.1.3. Equilibrium Droplets in the Mesoscopic Picture . . . . . . . . . . . . 12

2.2. Dynamical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1. Hydrodynamic Description of Liquid Films . . . . . . . . . . . . . . 13

2.2.2. Thin-Film Approximation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3. Gradient Dynamics Formulation of the Thin-Film Equation . . . . . 17

3. Osmotic Biofilm Spreading 21
3.1. Mechanism and Experimental Findings . . . . . . . . . . . . . . . . . . . . . 21

3.2. Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1. Thin-Film Equation for (Passive) Mixtures and Suspensions . . . . . 24

3.2.2. Bioactive Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3. Continuously Spreading Biofilms . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1. Transition from Swelling to Spreading . . . . . . . . . . . . . . . . . 32

3.3.2. Front Solutions for Continuously Spreading Biofilms . . . . . . . . . 35

3.4. Arrested Spreading of Biofilms . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5. Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. Thin Liquid Films and Droplets Covered by Insoluble Surfactants 43
4.1. Experimental Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2. Equilibrium Droplets Covered by Insoluble Surfactants . . . . . . . . . . . . 46

4.2.1. Equilibrium Droplets in the Macroscopic Picture . . . . . . . . . . . 47

4.2.2. Equilibrium Droplets in the Mesoscopic Picture . . . . . . . . . . . . 48

4.2.3. Application for a Simple Energy . . . . . . . . . . . . . . . . . . . . 50

4.3. Dynamical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4. Spreading of Surfactant-Laden Droplets . . . . . . . . . . . . . . . . . . . . 57

4.4.1. Spreading of a Droplet . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2. Fingering Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5. Delayed Coalescence of Surfactant-Laden Droplets . . . . . . . . . . . . . . 61

ix



Contents

5. Surfactant-Driven Spreading of Bacterial Colonies 65
5.1. Mechanism and Experimental Findings . . . . . . . . . . . . . . . . . . . . . 65
5.2. Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3. Four Types of Spreading for Colonies in Radial Geometry . . . . . . . . . . 70
5.4. Spreading of Planar Fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1. Front Velocity and Shape . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.2. Transversal Linear Stability Analysis . . . . . . . . . . . . . . . . . . 76
5.4.3. Morphological Phase Diagram . . . . . . . . . . . . . . . . . . . . . . 80

5.5. Preventing Growth by Counter-Gradients of Surfactant . . . . . . . . . . . 82

6. Towards a Model for Thin Liquid Films with Active Motion 85
6.1. Features and Continuum Description of Active Fluids . . . . . . . . . . . . 85
6.2. Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1. General Framework and Structure . . . . . . . . . . . . . . . . . . . 87
6.2.2. Specific Choices for the Energetic Contributions . . . . . . . . . . . 89
6.2.3. Reduction to a One-Dimensional Geometry . . . . . . . . . . . . . . 91
6.2.4. Linear Stability Analysis of the Flat Film . . . . . . . . . . . . . . . 91

6.3. Resting and Moving Active Droplets . . . . . . . . . . . . . . . . . . . . . . 94

7. Summary and Outlook 99

A. Appendix 103
A.1. Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1. Numerical Time Simulations . . . . . . . . . . . . . . . . . . . . . . 103
A.1.2. Parameter Continuation . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2. Details of the Thin-Film Model for Osmotic Biofilm Spreading . . . . . . . 111
A.2.1. Non-dimensional Form of the Model . . . . . . . . . . . . . . . . . . 111
A.2.2. Formulation for Parameter Continuation . . . . . . . . . . . . . . . . 112
A.2.3. Weak Formulation Used in Time Simulations . . . . . . . . . . . . . 113

A.3. Details of the Model for Drops Covered by Insoluble Surfactant . . . . . . . 115
A.3.1. Non-dimensional Form of the Model . . . . . . . . . . . . . . . . . . 115
A.3.2. Formulation for Parameter Continuation . . . . . . . . . . . . . . . . 116

A.4. Details of the Thin-Film Model for Surfactant-Driven Spreading of Bacterial
Colonies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.4.1. Non-dimensional Form of the Model . . . . . . . . . . . . . . . . . . 117
A.4.2. Formulation for Parameter Continuation . . . . . . . . . . . . . . . . 118
A.4.3. Weak Formulation Used in Time Simulations . . . . . . . . . . . . . 119

A.5. Tutorial on the Implementation of a Transversal Linear Stability Analysis . 120
A.5.1. Concept of the Transversal Linear Stability Analysis . . . . . . . . . 120
A.5.2. Implementation in AUTO07p . . . . . . . . . . . . . . . . . . . . . . 121
A.5.3. Formulation in Maple . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.5.4. Performing the Parameter Continuation in AUTO07p . . . . . . . . 125

List of Recurrent Symbols and Abbreviations 129

List of Publications 131

Bibliography 133

x



1. Introduction

1.1. Surface Tension Effects and Wetting

Phenomena based on surface tension effects and wetting are observed in our day-to-day
life: Beads of droplets grace spider webs catching the morning dew, bubbles are created
in soap water and ’tears of wine’ form at glasses filled with an alcoholic beverage. Liquids
represent a state of condensed matter in which the molecules experience mutual attrac-
tion. At a liquid-air interface, the cohesive attraction between liquid molecules is larger
than their adhesive attraction to the molecules in the air. The balance of adhesion and
cohesion results in an effective energy of the liquid-gas interface, also called interface or
surface tension. This interface energy is, e.g., responsible for the spherical shape of small
(free) liquid droplets that minimises their surface area [dGBWQ04]. In the presence of
other forces, e.g. gravity, deviations from the spherical shape occur.
When a drop of liquid is deposited on a solid substrate, the situation becomes more compli-
cated and different wetting scenarios may occur. Whether the droplet wets the substrate
or not, is determined by a force balance at the three-phase contact line between the liq-
uid, the solid substrate and the surrounding gaseous phase [dGBWQ04]. One speaks of
complete wetting if the droplet spreads until a macroscopic uniform liquid layer covers
the whole solid substrate as, e.g., water on clean glass. If the substrate is less wettable
as, e.g., in the case of water on plastic, the liquid forms a drop with a finite contact angle
θeq as depicted in Fig. 1.1. For contact angles 0° < θeq < 180°, this behaviour is clas-
sified as partial wetting. The contact angle can be determined from the famous Young’s
law [You05] that relates the macroscopic angle and the interfacial tensions of the three
involved interfaces. The extreme case of a contact angle that approaches 180° is called
non-wetting.
When the interfacial tension is not constant along the surface of the film or droplet (which
may, e.g., be caused by a non-uniform temperature) additional longitudinal forces at the in-
terface render the situation more complicated. These so-called Marangoni stresses - named
after the Italian physicist Carlo Marangoni - cause hydrodynamic fluxes that drive the liq-
uid from regions of lower surface tension to regions of higher surface tension [dGBWQ04].

non-wettingpartial wettingcomplete wetting

θeq

γlg

γsl γsg

Figure 1.1.: Sketch of three possible wetting scenarios. The contact angle increases from complete
wetting (θeq = 0°) over partial wetting to non-wetting (θeq = 180°). At liquid–air
interfaces, surface tension results from the greater attraction of liquid molecules to
each other than to the molecules in the air as sketched in the left picture. The
macroscopic contact angle θeq can be determined from the interfacial tensions γsl,
γsg and γlg of the three involved interface, namely the solid-liquid, the solid-gas and
the liquid-gas interface, respectively.
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1. Introduction

Marangoni stresses can also be caused by the presence of so-called surfactants. These
amphiphilic molecules consist of a hydrophilic head and a hydrophobic tail and adsorb to
interfaces, thereby lowering their surface tension. They may act as detergents, wetting
agents, emulsifiers, foaming agents or dispersants [RK12]. A non-uniform concentration
of surfactants at an interface gives rise to surface tension gradients and Marangoni flows.
In situations in which such surface forces dominate over bulk forces, surface tension and
wetting become important effects. Two of the most famous examples observed in nature
are shown in Fig. 1.2 (a) and (b). For leaves of the lotus plant, dirt particles are picked
up by water droplets rolling down their superhydrophobic surface that results from its
micro- and nanoscopic architecture [KBB08]. Another example are water striders - small
insects that are adapted for life on the surface of stagnant water. They use surface tension
to their advantage so they can “walk on water” [HCB03]. The physics of wetting can,
however, also serve to understand the dynamics of processes occurring in active living
systems on a smaller length scale. In the context of cancer aggregates spreading on a
solid surface, the collective cell migration can be modelled as the spreading of viscoelastic
droplets [DGN+11]. Recently, it has been shown that also in the embryogenesis of the
zebrafish, collective cell migration follows the laws of wetting [WTY+18]. In this system,
epiboly starts with a cluster of cells at one pole of the spherical egg yolk as shown in Fig.
1.2 (c). These cells are actively spreading in a continuous movement toward the other
pole of the yolk until they fully cover it [KBK+95, MGB+17]. By determining the contact
angle between the cells and the yolk and assuming that an interfacial force balance holds
during the quasi-static spreading process, one can draw conclusions about the biological
processes that change the interfacial tensions.
Another example of a biological system for which surface tension and wettability can
play an important role are bacterial colonies. In this thesis, we develop and analyse sim-
ple mathematical models to clarify the influence of these passive physical forces on the
spreading dynamics of living bacterial colonies.

(a) 4.3 hpf 5.3 hpf(c)(b)

blastoderm

yolk

Figure 1.2.: Examples of natural phenomena connected to surface tension and wettability. (a)
The micro- and nanoscopic architecture of its surface render the leaves of the lo-
tus plant superhydrophobic, resulting in self-cleaning properties. Reprinted with
permission from [EDKNB11] © Beilstein-Institut (2011). (b) Water striders use
surface tension to their advantage to “walk on water” (scale bar: 1cm). Reprinted
with permission from [HCB03] © Springer Nature (2004). (c) In the embryogenesis
of the zebrafish, collective cell migration follows the laws of wetting. Driven by a
modification of the interfacial tensions over time, the initial cluster of cells located
at one pole of the yolk actively spreads in a continuous movement towards the other
pole until the yolk is fully covered (scale bar: 100µm). Adapted with permission
from [WTY+18] © Biophysical Society (2017).
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1.2. Bacterial Colonies as Complex Fluids

Bacteria are able to colonise interfaces by the formation of dense aggregates. After the
attachment of individual bacteria to the interface, they proliferate and a colony starts
to form. The resulting multi-cellular lifestyle has advantages over individual bacteria as
it offers protection against unfavourable environmental conditions. Additionally, growth
and survival can be optimised by having different specialised cell types performing several
different functions. Bacterial colonies develop at various kinds of interfaces and are often
found on solid substrates submerged in a fluid. Here, we focus on colonies growing on
moist solid substrates in contact with a gas phase. When nutrients become scarce, very
motile colonies can rapidly reach novel nutrient sources by expanding along the interface.
In many cases, the active motion of individual bacteria is important for the expansion
of the colony. Bacteria can move across surfaces by employing various types of motility,
including swimming, twitching or gliding [Kea10]. In general, the active self-propulsion
of bacteria can give rise to interesting effects such as bacterial turbulence [WDH+12],
large-scale vortex structures [WWD+13] or dynamical clustering and phase separation
[ZBFS10]. In rapidly expanding swarming colonies, bacteria move collectively by rotating
flagella and form groups of parallely oriented elongated cells called rafts [Kea10]. Swarm-
ing bacteria form various types of macroscopic colony patterns as shown in Fig. 1.3. A
famous example is the characteristic bull’s eye formed by P. mirabilis that results from
cyclic waves of motility followed by a period of swarming cessation. Other possible pat-
terns include featureless swarms, the formation of dendrites or spiraling vortices as for
example observed in P. vortex bacteria [Kea10].

(a) (b) (c) (d) (e)

Figure 1.3.: Macroscopic colony patterns formed by different bacterial strains. (a) Featureless
mat formed by Bacillus subtilis. (b) Bull’s eye patterns formed by Proteus mirabilis.
(c) Dentrites formed by Pseudomonas aeruginosa. (d) Vortex structure formed by
Paenibacillus vortex. (e) A non-swarming mutant of Bacillus subtilis. Reprinted
with permission from [Kea10] © Springer Nature (2010).

Another strategy of bacteria to deal with nutrient limitation is the formation of biofilms,
relatively sessile communities that only expand slowly over the substrate.1 In this colony
type, the bacteria are embedded in a self-produced extracellular matrix that consists of
polysaccharides, bio-surfactants, peptides and proteins. Figure 1.4 (a) shows high reso-
lution images of biofilms. For the wild type, the bacterial cells are surrounded by the
extracellular matrix that is absent in a mutant strain deficient in matrix production. The
matrix protects the bacteria and determines the mechanical properties of the biofilm, which
govern its morphogenesis and allow it to resist mechanical stresses [FW10]. Although the

1Note that the usage of the terms ’biofilms’ and ’swarming colonies’ is not entirely uniform in the lit-
erature. Here, we use ’bacterial colonies’ as a generic term (that includes all expansion modes) and
’biofilm’ when explicitly referring to slowly expanding colonies that produce an extracellular polymeric
matrix.
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1. Introduction

morphologies of biofilms vary wildly, the ability to form highly structured colonies is cor-
related with the production of the extracellular matrix by the bacteria [BVFK05]. Figure
1.4 (b) shows a Bacillus subtilis biofilm grown on an agar substrate. In the middle of the
mature colony, a complex wrinkled morphology occurs that is thought to facilitate the
transport of liquid through the colony [AKR+12, WZDV+13].
The decision, whether a bacterial colony expands rapidly as a swarming colony or forms a
slowly spreading biofilm is determined by cell density and environmental conditions such
as the nature and rigidity of the underlying substrate and the availability of nutrients.
For many bacterial strains, the two modes are oppositely regulated [VBD+08] and cou-
pled to quorum sensing – a process that allows for a basic communication between cells
by the production of signalling molecules [DVM04]. The thickness of bacterial colonies
ranges from ten to a thousand times that of a single bacterium. Typically, the horizontal
extension is much larger (see Fig. 1.4 (c)).

(b)(a)

wild type matrix-deficient

(c)

x

y
z

mm-cm

10µm-5mm

mutant

Figure 1.4.: (a) Biofilms formed by wild-type Pseudomonas aeruginosa (left) and a matrix-
deficient mutant (right) visualised by scanning electron microscopy. Reprinted with
permission from [BVFK05] © Elsevier (2005). (b) Top-down view of a Bacillus sub-
tilis biofilm grown on agar for 7 days (scale bar: 2mm). Reprinted with permission
from [VCB+13] © Springer Nature (2013). (c) The thickness of bacterial colonies
that ranges from ten to a thousand times that of a single bacterium is typically much
smaller than the horizontal extension of the colony.

From the viewpoint of soft matter physics, bacterial colonies can be seen as complex flu-
ids consisting of self-propelled colloidal particles (describing the bacteria) embedded in
a polymer gel or fluid. This interpretation facilitates the understanding of some of their
properties and observed dynamical effects [WAS+11]: One example is the control of the
structure and mechanical properties of the colony. In general, the equilibrium water con-
tent of polymer gels is determined by their composition. As bacteria can tune the polymer
or surfactant concentration of the self-produced polymeric matrix in response to environ-
mental conditions, they can in this manner regulate the water concentration in the colony
which governs its mechanical properties. When modulating the material properties lo-
cally, e.g., in response to spatial heterogeneities in the concentration of nutrients, oxygen
or intercellular signalling molecules, spreading forces can be generated [WAS+11]. Indeed,
the spreading of the colony is in many cases not driven by the active motion of individual
bacteria but rather by growth processes and passive flows that result from the physico-
chemical properties of the bacterial film and the substrate [SSDC02, YTST17].
One well-studied example is the osmotic spreading of biofilms growing on moist substrates.
In general, osmosis is the transport of solvent across an interface that can not be passed
by the solute. In bacterial colonies, the osmotic spreading mechanism relies on the gen-
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1.2. Bacterial Colonies as Complex Fluids

eration of osmotic pressure gradients between the colony and the underlying substrate
[TJT16, TJLT17]. The extracellular matrix secreted by the bacteria acts as an osmolyte
and triggers the influx of nutrient-rich water from the moist agar substrate. This leads to
a subsequent swelling and spreading of the colony [SAW+12, YTST17, TJT16, DTH14,
YNS+17]. Bacillus subtilis colonies that employ the osmotic spreading mechanism first
swell (mainly) vertically. Subsequently, they expand laterally over the substrate with a
nearly constant contact angle [SAW+12]. Experiments show that in some situations, sur-
face forces determine whether a biofilm is able to expand over a substrate or not [TJLT17].
At low wettability, arrested spreading can be observed, i.e. the lateral expansion of the
biofilm is restricted, albeit the colony is biologically active. However, a small reduction in
surface tension suffices to induce continuous spreading [TJLT17].
For many bacterial strains, the chemical signalling molecules involved in the quorum
sensing mechanism have been found to play a double role. Besides allowing for a cell-
cell communication, they act as bio-surfactants at physiologically relevant concentrations
[RR01, RDBNO10]. The surface-active nature of these molecules [DRH+06] can be em-
ployed by the bacteria to modify the surface tension of the colony and generate fluid flows
[DDFMV15]. Bio-surfactants promote the spreading of bacterial colonies in two ways:
Measurements of surface tension and contact angle indicate that they improve the wettabil-
ity [KHC+15, LMB+06]. In addition, gradients in surfactant concentration at the edges of
the colony give rise to outward-pointing Marangoni flows which further drive the expansion
[DDFMV15]. For Bacillus subtilis and Pseudomonas aeruginosa colonies, it was shown by
genetic and physico-chemical experiments [KSF03, CSO05, ARK+09, FPB+12, YTST17]
that the surface tension gradient induced by the respective bio-surfactants surfactin and
rhamnolipids is important for the spreading of the colony [TJT18]. In the surfactant-
assisted spreading of liquid drops, Marangoni flows are known to cause a front instability
that gives rise to fingering [MC09, ML81, TWS89]. Therefore – besides enhancing the
spreading speed – Marangoni flows may also be the cause for the striking dendritic or
finger-like patterns of bacterial colonies observed in experiments [TJT18]. Genetic ex-
periments [FPB+12] show that surfactant-producing Pseudomonas aeruginosa wild-type
colonies spread outwards and form pronounced fingers. A mutant strain deficient in sur-
factant production is arrested in a small circular shape and cannot expand.

In natural and industrial processes, almost every moist surface with some nutrients is
prone to the formation of bacterial colonies. On the one hand, they can be beneficial
and are for example employed in waste-water treatment [RM12]. On the other hand,
they are responsible for various problems such as medical implant infections, tooth-decay
or fouling during industrial processes [Don02]. The widespread occurrence of bacterial
colonies led to the development of a variety of theoretical models in the past decades
(for reviews see for example [PVL03, WZ10, HL14]) designed to understand the physico-
chemical and biological principles of their formation and spreading at different types
of interfaces. They are based on a broad spectrum of modelling approaches depending
on the specific problem to be solved. The approaches include reaction-diffusion models
[KMM+97, GKCBJ98, MSM00], stochastic models based on diffusion-limited aggregation
[MF90, BJST+94], discrete dynamical models which implement biological rules in a cel-
lular automaton [WC97, PVLH+98, Her01], individual-based biofilm models [KPWvL01,
PKvL04], hybrid discrete-continuum models [DFFGI96, PVLH00], full continuum descrip-
tions [KD02, AK07] and phase-field models [ZCW08b, ZCW08a].
The evolution of bacterial colonies on flat solid substrates in contact with a bulk liquid,
i.e., at solid-liquid interfaces, has been an active field of research. Typically, models con-
sider the following processes [TJT16]: cell division and cell death, cell attachment to and
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evaporation wettabilityosmosis

nutrient-rich substrate

surface tension

Figure 1.5.: Physical effects that determine the spreading of bacterial colonies at solid-air in-
terfaces. The water content of the colony is regulated by evaporation on the one
hand and osmotic influx of fluid from the moist substrate on the other hand. The
contact angle of the colony edge is determined by the wettability and thus related
to the tensions of the involved interfaces. Gradients in surface tension can for exam-
ple be induced by a non-uniform distribution of surfactant molecules. They lead to
Marangoni flows that can promote colony expansion. In this thesis, these effects are
studied within a thin-film approach. The colony is treated as a complex fluid com-
posed of water (blue), biomass consisting of bacteria and polymeric matrix (yellow)
and surfactant molecules (red).

detachment from the surface, matrix production as well as nutrient and oxygen uptake
by the cell. Relevant questions which have been addressed are, e.g., the effect of nutrient
concentration [WC97, Her01], cell transport mechanisms [PVLH+98, EPVL01], cell-to-cell
signalling [WK12], biofilm matrix properties [CK04, ZCW08a, ZCW08b], or the presence
of multiple bacterial species [WG86, PKvL04, AK07] on the evolution of the colony.
The spreading of bacterial colonies at solid-gas interfaces involves the motion of the three-
phase contact line between the viscous colony, the gas phase and the solid substrate. In the
contact line region, wetting phenomena are likely to play a major role. This thesis presents
an approach that specifically aims at investigating the role of surface forces, i.e. surface
tension and wettability, on the spreading of bacterial colonies. The colony is treated as
a thin film of complex fluid composed of water, bacteria, nutrients and other molecules
which are secreted by the bacteria (for example extracellular polymeric substances and
surfactants). The use of a wetting energy avoids ad hoc assumptions regarding a contact
line law, a typical problem of macroscopic descriptions of the dynamics of bacterial colonies
[TJLT17]. Other thin-film models that neglect the influence of wettability have been ap-
plied to study osmotically driven colony spreading [SAW+12], the early stage dynamics of
biofilms and quorum sensing [WK12], the effect of surfactant production on the spreading
of a bacterial colony up a non-nutritive wall [ARK+09] and surfactant-driven spreading
in one dimension [FPB+12]. In such thin-film models, the biomass is only transported by
passive mechanisms – as opposed to active transport via bacterial motility.

In this thesis, we supplement a hydrodynamic description of a thin film of a biologically
passive liquid suspension [Thi11, TTL13, XTQ15] by bioactive processes. Thereby, we
neglect many aspects of the complexity of bacterial colonies (e.g. the nutrient and oxygen
dynamics), but obtain an approach that allows us to study how colony expansion results
from the interplay between passive surface forces, osmotic fluxes between agar and biofilm
and active growth processes. Figure 1.5 illustrates and summarises the physical effects
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that are in the focus of the analysis. In particular, the developed thin-film models are em-
ployed to gain a better understanding of the osmotic and surfactant-driven spreading of
bacterial colonies. These mechanisms are examples of modes of colony expansion that are
driven by passive physical processes rather than by the active motion of bacteria. Central
questions that we address are: How does wettability influence the spreading dynamics?
Can bacterial colonies always expand over substrates? Where is the osmotic influx into
the colony localised? How does the expansion velocity depend on the physical parameters?
What is the influence of surfactant produced by the bacteria on the colony shape? Can it
indeed be responsible for the dendritic fingers observed in experiments?

1.3. Outline

The structure of this thesis is as follows. In Chapter 2, the basics of wetting and the
properties of droplets on a horizontal homogeneous substrate are briefly reviewed. Spe-
cial emphasis is given to the comparison of a macroscopic description of droplets and the
mesoscopic approach that we apply. Next, a dynamical model for thin films of simple
liquids is introduced by deriving the thin-film equation from the governing equations of
hydrodynamics. This equation will serve as a basis for the models developed in the re-
mainder of the thesis for more complex systems.
In Chapter 3, we turn our attention to the first biological application and develop a thin-
film model for the osmotic spreading of biofilms focussing on the influence of wetting
phenomena near the contact line. In the first part of its analysis, we study the transition
from the initial swelling of biofilms to the subsequent horizontal spreading. In addition,
the influence of the physical parameters on the spreading speed is discussed. A central
question is whether the colony always spreads or if its expansion can be prevented by
unfavourable wetting conditions.
As discussed above, the production of bio-surfactants is of key importance for spreading
in many bacterial strains. The groundwork for the incorporation of inhomogeneous sur-
factant concentrations in our model is laid in Chapter 4. To that end, we first focus on
the passive case and derive a mesoscopic model that consistently describes static droplets
covered by surfactants. After discussing the equilibrium solutions, a dynamical thin-film
model is introduced and employed to illustrate some dynamical effects connected to the
presence of surfactants, namely the enhanced spreading rate of surfactant-covered droplets
and the transversal instability of their contact line. We are then well-equipped to develop
a model for the surfactant-driven spreading of bacterial colonies in Chapter 5. Here, we
focus on the influence of the interplay of wetting and the Marangoni effect on the morphol-
ogy of the evolving bacterial colonies. Recent experiments have suggested that bacterial
surfactant-production may be responsible for the formation of fingers in bacterial colonies
[FPB+12]. This hypothesis is tested by the analysis of our model.
In Chapter 6, we make a first step towards the incorporation of active bacterial motion
into our approach and propose a model that couples equations for the film height and
a polarisation field that is connected to self-propulsion of bacteria and resulting active
stresses. Finally, the thesis is concluded in Chapter 7 with a summary and outlook.

The results presented in this thesis have in part been published in [TJT2016], [TJLT2017],
[TJT18], [TSTJ18] and [TSTJ19] as detailed in the list of publications.
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Wetting phenomena are ubiquitous in nature and also of key importance in many tech-
nological applications, such as ink-jet printing, coating or water-resistant fabrics. In the
following chapter, we briefly review the basic physics of wetting, beginning with the prop-
erties of static droplets. Many interesting phenomena connected to the physics of wetting,
such as spreading or dewetting of liquid films are, however, dynamical effects. Therefore,
we deal with the modelling of the dynamics of thin liquid films in the second part of
this chapter and review the derivation of the thin-film equation from the hydrodynamic
description of liquid films. This equation – which describes the dynamics of thin films of a
simple liquid – will serve as a basis for the models developed in the remainder of the thesis
for more complex systems such as, e.g., films of mixtures, films covered by surfactants or
bacterial colonies.

2.1. Equilibrium Droplets

When a drop of liquid is deposited on a solid substrate, different wetting scenarios are
possible. In the following, we focus on partially wetting liquids that form a drop with a fi-
nite contact angle at the three-phase contact line between substrate, liquid and gas phase.
First, we analyse the equilibrium states for stationary droplets sitting on a substrate from
energetic considerations in a macroscopic picture on a scale above that of long-range inter-
molecular forces. In this framework, the contact angle is determined solely by a balance
of the interfacial tensions of the interfaces that meet at the contact line. In a next step,
we perform the same analysis in a mesoscopic picture which directly takes interactions
between liquid, substrate and the surrounding gas phase into account by introducing a
wetting energy. A comparison between the macroscopic and the mesoscopic description
reveals the connection between the respective quantities of the two pictures, namely the
interfacial tensions and the wetting energy. Note that the calculations presented in this
section have in part been published1 in

[TSTJ18] U. Thiele, J. Snoeijer, S. Trinschek, K. John Equilibrium contact angle
and adsorption layer properties with surfactants Langmuir 34, 7210–7221
(2017).

2.1.1. Equilibrium Droplets in the Macroscopic Picture

In this section, we briefly review how the contact angle which a droplet in equilibrium forms
with an underlying solid can be calculated from a corresponding macroscopic free energy.
We follow a well-known approach, which can, e.g., also be found in [dGBWQ04] and which
represents a very useful formalism that we later apply to more complex situations.
We consider a liquid drop of extension 2R on a one-dimensional2 dry solid substrate as

1Sec. 2.1.1 and 2.1.3 follow [TSTJ18] and contain figures and text adapted from Thiele, Snoeijer, Trin-
schek, John (2018), Langmuir 34 (24), pp. 7210–7221 © American Chemical Society (2018).

2Throughout this thesis, we work either in a two-dimensional or one-dimensional configuration corre-
sponding to two-dimensional or one-dimensional substrates. For simplicity, we always call the (half)
extension of droplets ”radius”.
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sketched in Fig. 2.1 (a). The shape of the drop is characterised by the height profile h(x).
The free energy densities of the liquid-gas, solid-liquid and solid-gas interfaces correspond
to the respective interfacial tensions and are denoted by γ, γsl and γsg. Using the reflection
symmetry, the (half) free energy of the drop is given by

Fmacro =

∫ R

0
dx [γξ + γsl − ph] +

∫ ∞

R
dx γsg + λhh(R) (2.1)

where the metric factor
ξ =

√
1 + (∂xh)2 (2.2)

describes the curved liquid-gas interface and ∂x denotes the derivative with respect to x.
The finite liquid volume V =

∫
dxh is controlled via the Lagrange multiplier p.

We independently vary the profile h(x) and the position of the contact line R which are
coupled via the boundary condition h(R) = 0, as imposed through the Lagrange multiplier
λh. For equilibrium droplets, these variations of the free energy functional vanish. This
can be used to characterise their profile. Varying h(x) implies

δFmacro =

∫ R

0
dx

[
γ
∂xh

ξ
δ(∂xh(x))− pδh(x)

]
+ λhδh(R) (2.3)

=

[
γ
∂xh

ξ
+ λh

]
δh(R)− γ ∂xh

ξ
δh(0)−

∫ R

0
dx δh(x)

[
γ
∂xxh

ξ3
+ p

]
(2.4)

where we used integration by parts. For equilibrium droplets, the variation vanishes in
the droplet and at the boundaries, which gives

λh = −γ ∂xh
ξ
, for x = R, (2.5)

p = −γκ, for x ∈ [0, R], (2.6)

where we introduced the curvature

κ =
∂xxh

ξ3
. (2.7)

In the centre of the drop at x = 0, symmetry implies ∂xh = 0. Evaluating the variation
of the radius R gives

δFmacro =
[
γξ|x=R + γsl − γsg − ph(R) + λh(∂xh)

]
δR . (2.8)

Together with the constraint h(R) = 0, λh given by Eq. (2.5) and the relation

cos θeq =
1√

1 + tan2 θeq

=
1√

1 + (∂xh(R))2
=

1

ξ
|x=R , (2.9)

requiring the variation of the free energy functional to vanish in equilibrium results in the
well-known Young law [You05]

γ cos θeq = γsg − γsl (2.10)

that relates the equilibrium contact angle to the interfacial tensions. By introducing the
spreading coefficient

S = γsg − γsl − γ , (2.11)

we find the Young-Dupré law [DD69]

γ cos θeq = γ + S , (2.12)
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Figure 2.1.: Liquid drop on a solid substrate. (a) In the macroscopic description, the equilibrium
contact angle θeq is determined by the interfacial tensions γ, γsg and γsl, which char-
acterize the liquid-gas, solid-gas and solid-liquid interface, respectively. (b) In the
mesoscopic description, the wetting energy fw(h) accounts for intermolecular forces
between solid and liquid. The substrate is covered by an equilibrium adsorption
layer of height ha which corresponds to the minimum of the wetting energy fw(h).
(cf. [TSTJ18])

which has only physical solutions for θeq if S < 0. This relation is discussed in more
detail in, e.g., [Sha93] and [BWDMQDG91] for different wetting scenarios. We see that
the spreading coefficient is a useful parameter to gauge wetting. When S < 0, partial
wetting occurs and the droplet has a finite contact angle. This is, e.g., the case if the
liquid-gas interfacial tension γ is large as it then exceeds the difference γsg − γsl between
the other interfacial tensions. Otherwise, for S > 0, no equilibrium contact angle exists
and the liquid wets the surface completely.1

2.1.2. Interactions between Film and Substrate

If the liquid layer is very thin, the macroscopic approach is no longer sufficient to describe
the situation because intermolecular interactions between the solid and the liquid lead
to deviations from the above described behaviour. We now investigate the situation on
a smaller mesoscopic scale where a continuum picture is still applicable, but where the
molecular interactions between liquid and the solid substrate become relevant. They can
be introduced using an effective interface- or wetting potential fw(h) which depends on
the thickness of the liquid layer. The corresponding pressure contribution

Π(h) = −∂hfw(h) (2.13)

arising due to the molecular interactions is called disjoining pressure or Derjaguin pressure
– named after Derjaguin who first studied this additional pressure contribution for thin
films [Der87]. The form of the wetting potential can be derived from microscopic consid-
erations, asymptotically or numerically [Die88, Sch90, TMTT13, HTA17]. Typically, for
partially wetting liquids, the interaction combines long range stabilising van der Waals
forces [Isr85] with short range destabilising polar interactions. Consequently, fw(h) has
a minimum at some film height h = ha corresponding to the height of an equilibrium
adsorption layer (in hydrodynamics often referred to as “precursor film”) and approaches
zero as h → ∞ as depicted in Fig. 2.1 (b). A common choice [Thi07, BEI+09] for the
functional form of the wetting energy – which is also used in this thesis unless stated
otherwise – is

fw(h) = A

(
− 1

2h2
+

h3
a

5h5

)
, (2.14)

where A denotes the Hamaker constant [Isr85]. The incorporation of such a disjoining
pressure results in a model in which the solid substrate is always at least covered by a
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thin adsorption layer h = ha. We discuss the consequences of this approach for a partially
wetting equilibrium droplet in the following section.

2.1.3. Equilibrium Droplets in the Mesoscopic Picture

In the mesoscopic description of a partially wetting scenario, we take the wetting energy
fw(h) introduced in the previous section into account and consider a droplet that sits on a
thin adsorption layer. In analogy with the variational approach applied in the macroscopic
case in Sec. 2.1.1, we start from a free energy functional that is now given by

Fmeso =

∫ ∞

0
dx [γξ + γsl + fw(h)− ph] , (2.15)

considering the half energy of a reflection symmetric droplet. In the mesoscopic pic-
ture, there is no direct influence of the solid-gas interfacial tension, because the substrate
is always at least covered by the adsorption layer. The two integrals appearing in the
macroscopic description for the droplet and the dry substrate are replaced by one integral
over the whole domain that now contains the wetting energy fw(h). The Lagrange multi-
plier p again ensures the conservation of volume within the drop.
Varying the free energy functional Fmeso with respect to the profile h(x) gives

δFmeso =

∫ ∞

0
dx δh(x) [−γκ+ ∂hfw − p] (2.16)

where we used [γ ∂xhξ δh(x)]∞0 = 0. For droplets in equilibrium, this variation vanishes and
the free surface profile can be derived from the Euler-Lagrange equation

0 = −γκ+ ∂hfw − p . (2.17)

Multiplying by ∂xh and integrating with respect to x gives the first integral3

E = −γ
∫
∂xh

ξ3
(∂xxh) dx+ fw(h)− ph+ γsl

=
γ

ξ
+ fw(h)− ph+ γsl ,

(2.18)

where E has a constant value across the considered domain and can be interpreted as an
energy density or as the horizontal force acting on a cross-section of the film.
To determine the shape of equilibrium droplets in the mesoscopic picture, we now consider
the wedge geometry in Fig. 2.1 (b). To determine the thickness ha of the coexisting
adsorption layer on the right and the angle θeq formed by the wedge on the left, we first
analyse the wedge region far away from the adsorption layer4. There, the curvature κ
vanishes and the influence of wettability is negligible, i.e., the film height is sufficiently
large that f, ∂hfw → 0 and hp→ 0. In the wedge region, Eqs. (2.17) and (2.18) give

p = 0 (2.19)

E =
γ

ξw
+ γsl = γ cos θeq + γsl . (2.20)

3Note that if the integrand of (2.15) is seen as Lagrangian L, the generalised coordinate and corresponding
momentum are q = h and p = ∂L/∂(∂xh) = γ(∂xh)/ξ, respectively. Then the first integral E which is
independent of x corresponds to the negative of the Hamiltonian H = p∂xq − L.

4Note that the wedge region with ∂xh ≈ const is distinct from the region of the macroscopic droplet
governed by the Laplace law p = −γκ as discussed more extensively in [Sha93]).
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2.2. Dynamical Equations

Second, we consider the flat adsorption layer of height ha far away from the wedge. There,
Eqs. (2.17) and (2.18) result in

p = ∂hf |ha (2.21)

E = γ + fw(ha)− hap+ γsl . (2.22)

For equilibrium states, the pressure p and the first integral E are constant across the sys-
tem. Therefore, the adsorption layer height ha and the contact angle θeq can be determined
from a comparison of Eqs. (2.19)-(2.20) with Eqs. (2.21)-(2.22) as

∂hf |ha = 0 and (2.23)

γ cos θeq = γ + fw(ha) (2.24)

respectively. For small contact angles θeq � 1, Eq. (2.24) simplifies to

θeq =

√
−2fw(ha)

γ
. (2.25)

We see that in the mesoscopic description, the contact angle is determined by the liquid-gas
surface tension γ and the wetting energy fw(h) instead of by all three interfacial tensions in
the macroscopic description. The value of the wetting energy at the adsorption layer height
thus contains the information on the relative strengths of the remaining two interfacial
tensions γsg and γsl. Comparing Eq. (2.24) with the macroscopic Young law (2.10) in
Sec. 2.1.1 results in the expected relation

fw(ha) = γsg − γsl − γ = S (2.26)

as condition for the consistency of mesoscopic and macroscopic description. It also ensures
that the mesoscopic energy density (2.15) approaches γsg in the adsorption layer at p = 0
which should be the case as the solid substrate with adsorption layer in the mesoscopic
picture in Sec. 2.1.3 corresponds to the solid-gas interface in the macroscopic picture in
Sec. 2.1.1 .1

2.2. Dynamical Equations

Up to now, we were dealing with equilibrium droplets. However, many interesting phe-
nomena connected to wetting, such as the spreading of droplets, dewetting or film rupture
are dynamical effects. In this section, we discuss the mathematical modelling of thin films
of simple liquids, which allows us to study wetting hydrodynamics. We present the stan-
dard derivation of the so-called thin-film equation [ODB97, Thi07], in Sec. 2.2.1 - 2.2.3
following [Wil16]. First, the general description of a liquid film on a substrate in terms of
the Navier-Stokes equation is briefly reviewed. Then, we derive a simplification of the full
hydrodynamic description which exploits a disparity of length scales in thin liquid films.

2.2.1. Hydrodynamic Description of Liquid Films

For an incompressible, non-volatile liquid with a constant density ρ, the continuity equa-
tion is given by

∇(3) · u(3) = 0 (2.27)

where u(3) = (ux, uy, uz)
T is the three-dimensional velocity field and ∇(3) = (∂x, ∂y, ∂z)

T

the three-dimensional nabla operator. Note that all three-dimensional vectors are indi-
cated by a superscript (3). Later, in the derivation of the thin-film equation, quantities
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2. Thin Films and Droplets of Simple Liquids

solid

liquid

gas

h(x, y, t)

x
yz

Figure 2.2.: Sketch of a thin liquid film with height profile h(x, y, t) on a solid substrate sur-
rounded by a gaseous phase.

without superscript indicate two-dimensional vectors.
Without external body forces, the transport of momentum in such a liquid is described
by the Navier-Stokes equations

ρ
(
∂tu

(3) + u(3) · ∇(3)u(3)
)

= −∇(3)p+ η∆(3)u(3) . (2.28)

Here, p denotes the pressure field, η the kinematic viscosity and ∆(3) the Laplace operator.
The right-hand side of the Navier-Stokes can also be written as the divergence of the
Cauchy stress tensor that is composed of the hydrostatic pressure and stresses related to
gradients in the velocity [Thi07]

τ = −p1(3) + η
(
∇(3)u(3) + (∇(3)u(3))T

)
. (2.29)

In the following, we consider free-surface liquid films of height h(x, y, t) on a solid substrate
as depicted in Fig. 2.2. In this case, the transport equations (2.27) and (2.28) need to
be accompanied by suitable boundary conditions at the (smooth) solid-liquid interface
and the (free) liquid-gas interface. At the solid substrate (z = 0), we assume no-slip and
no-penetration boundary conditions for the velocity, which postulate

u(3)|z=0 = 0 . (2.30)

At the free surface (z = h(x, y)), the kinematic condition

uz|z=h = ∂th+ u|z=h · ∇h (2.31)

ensures that no flux through the interface is present and that the dynamics of the height
profile h(x, y, t) is solely governed by the flux of mass resulting from the two-dimensional
flow field u|z=h at the free surface [Thi07].
The description of wetting hydrodynamics which includes spreading of droplets or dewet-
ting requires a model to resolve the so-called moving-contact line problem. If the no-slip
boundary condition is used at the solid-liquid interface and the substrate in front of the
droplet is truly ”dry”, then the viscous dissipation diverges at the contact line and it can
not move [dG85]. The problem can be resolved by different approaches. One possibility is
to release the no-slip boundary condition and allow for a finite slip velocity of the liquid
at the solid substrate [ODB97]. A drawback of this approach is that it introduces an
additional length scale in the model but the equation still lacks a boundary condition for
the contact angle [SA13]. Another possibility to allow for moving contact lines that we
pursue here is to use a model which incorporates a wetting potential (as introduced in Sec.
2.1.2) that has a minimum for a certain (small) film thickness ha. The disjoining pressure
Π(h) enters either as an additional body force in the Navier-Stokes equations or in the
force equilibrium at the free surface (as done here in the following). Then – assuming
that enough liquid is present in the system – the entire solid substrate is always at least
covered with a liquid layer of thickness ha. This method leads to both, a selection of the
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2.2. Dynamical Equations

contact angle and to a regularisation of the viscous stress.
The force-equilibrium at the free interface can be formulated using the stress tensor τ
defined in Eq. (2.29). One finds

(τ − τair) · n(3) = κγn(3) + Π(h)n(3) (2.32)

where γ is the surface tension, n(3) is the normal vector to the liquid-gas interface, κ is the
sum of the two principal curvatures of the interface and Π(h) is the disjoining pressure
introduced in Sec. 2.1.2. We assume here that the ambient gas does not transmit any force
and thus τair = 0. The term proportional to κγ represents the Laplace pressure which
gives a large contribution for highly curved films, e.g., bubbles. Note that variations in
the surface tension caused, e.g., by Marangoni effects would result in an additional term
tangential to the interface. This contribution is neglected in the following as we are here
concerned with the basic principles of the derivation of the thin-film equation which is
best illustrated for a simple example. We will re-introduce and discuss the effect of spatial
variations in surface tension in chapter 4.

2.2.2. Thin-Film Approximation

In the case of thin incompressible liquid films, the Navier Stokes equations (2.28) can be
simplified to an evolution equation for the height profile which is of a reduced mathematical
complexity but preserves many important physical features of the original free boundary
problem [ODB97, Thi07]. The so-called thin-film or lubrication approximation exploits the
disparity of the typical vertical and the lateral length scales in thin films. In an alternative
formulation, this corresponds to the fact that the height profile of the film exhibits only
small gradients in the direction parallel to the substrate. Following this definition of a
thin film, the approximation does not depend on the absolute dimensions of the film, but
finds applications ranging from tear films in the eye [SR85] to lava flows [BC00].
We begin the derivation of the thin-film equation by reformulating the continuity condition
(2.27) as

∂zuz = −∇ · u (2.33)

with u = (ux, uy). Integrating in the z-direction and using the no-penetration boundary
condition (2.30) yields

uz|z=h = −
∫ h

0
∇ · u dz . (2.34)

This can be used to substitute the vertical component of the velocity uz|z=h in the evolution
equation for the height profile (2.31). By applying the Leibniz integral rule, we find

∂th = −
∫ h

0
∇ · u dz − u|z=h · ∇h = −∇ ·

∫ h

0
u dz = −∇ · (hū) , (2.35)

which connects the evolution of the height profile h(x, y) and the mean velocity

ū =
1

h

∫ h

0
u dz . (2.36)

In the next step, we derive an expression for this mean velocity for thin films which exhibit
a disparity of length scales from the momentum equation (2.28). To this end, we introduce
scalings [ODB97] for the length and time scales and the pressure p

z = h0z̃ x, y =
h0

ε
x̃,
h0

ε
ỹ t = t0t̃ =

h0

εu0
t̃

u = u0ũ uz = εu0ũz p =
ηu0

εh0
p̃ (2.37)

15



2. Thin Films and Droplets of Simple Liquids

where the small parameter ε � 1 reflects the ratio of the vertical and the horizontal
length scales and the tildes denote dimensionless quantities. The respective derivatives
consequently rescale as

∂z =
1

h0
∂z̃ ∂x,y =

ε

h0
∂x̃,ỹ ∂t =

εu0

h0
∂t̃ . (2.38)

In this scaling, the momentum equations (2.28) read

ε
(
∂t̃ũ + (ũ · ∇̃+ ũz̃∂z̃)ũ

)
=

1

Re
(−∇̃p̃+ (ε2∆̃ + ∂2

z̃ )ũ) (2.39)

ε2
(
∂t̃ũz̃ + (ũ · ∇̃+ ũz̃∂z̃)ũz̃

)
=

1

Re
(−1

ε
∂z̃ p̃+ ε(ε2∆̃ + ∂2

z̃ )ũz̃) (2.40)

where we introduced the Reynolds number

Re =
u0h0ρ

η
(2.41)

that is determined by the ratio of inertial to viscous forces. In lowest order of ε, the
equations are given by

∇̃p̃ = ∂2
z̃ ũ (2.42)

∂z̃ p̃ = 0 (2.43)

and the pressure p̃ does thus not depend on the z̃ position. These equations need to
be accompanied by appropriate boundary conditions: At the solid substrate, the no-slip
boundary condition (2.30) yields

ũ|z̃=0 = 0 . (2.44)

At the liquid-air interface, the force balance (2.32) is projected onto the normal and
tangential vectors of the surface and expanded in the thin-film scaling. The derivation
of the final expressions is straight-forward, but rather lengthy. Therefore, we refer to the
literature [ODB97, Thi07] for the detailed calculation and only give the result

∂z̃ũ|z̃=h̃ = 0 (2.45)

p̃|z̃=h̃ = − 1

Ca
∆̃h̃− Π̃(h̃) (2.46)

where we introduced the capillary number

Ca =
u0η

γε3
(2.47)

that represents the ratio of the viscous forces to the surface tension γ. Note that in order
to keep the physically essential surface tension effects at leading order and thus in the
equations, the capillary number adsorbs a factor ε−3 in contrast to its classical definition.
The momentum equations (2.42) in lowest order can now be solved for the velocity ũ.
Integrating once with respect to z̃ and determining the integration constant c1 from the
boundary condition (2.45) gives

∂z̃ũ = z̃∇̃p̃+ c1 = z̃∇̃p̃− h̃(∇̃p̃)|z̃=h̃ . (2.48)

A second integration yields

ũ =
1

2
z̃2∇̃p̃− z̃h̃(∇̃p̃)|z̃=h̃ + c2 =

1

2
z̃2∇̃p̃− z̃h̃(∇̃p̃)|z̃=h̃ (2.49)
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2.2. Dynamical Equations

where the integration constant c2 is zero because of the no-slip boundary condition (2.44)
at the solid substrate. In a last step, we can now evaluate the mean velocity, which is
needed to express the evolution of the height profile h(x, y, t) with Eq. (2.35). After
applying the force balance boundary condition (2.46), we find

˜̄u =
1

h̃

∫ h̃

0

1

2
z̃2∇̃p̃− z̃h̃(∇̃p̃)|z̃=h̃dz̃ = − h̃

2

3
(∇̃p̃)|z̃=h̃ =

h̃2

3
∇̃
[

1

Ca
∆̃h̃+ Π̃(h̃)

]
. (2.50)

Inserting this expression for the mean velocity in the rescaled Eq. (2.35) gives the thin-film
equation

∂t̃h̃ = −∇̃ ·
[
h̃3

3
∇̃
(

1

Ca
∆̃h̃+ Π̃(h̃)

)]
. (2.51)

In the dimensional form, it reads

∂th = −∇ ·
[
h3

3η
∇ (γ∆h+ Π(h))

]
. (2.52)

When using the thin-film equation in dimensional from, care should be taken that in the
process of its derivation, we assumed a separation of the horizontal and vertical length
scales. In the next section, we give an alternative formulation of the thin-film equation
which facilitates the generalisation of the mathematical model to more complex situations.

2.2.3. Gradient Dynamics Formulation of the Thin-Film Equation

The structure of the thin-film equation (2.52) allows one to write the equation in a form
similar to the well-known Cahn-Hilliard equation [Cah65, Mit93] as

∂th = −∇ · j = ∇ ·
[
Q(h)∇δF

δh

]
, (2.53)

i.e., the dynamics of the field h is governed by a continuity equation with a flux j [Thi10,
TAP16, WTG+15]. This flux itself is the product of a mobility Q(h) and the gradient of
the functional derivative of a free energy functional F [h] with respect to the variable h,
which is denoted as δF

δh . For the thin-film equation, we find by comparison with Eq. (2.52)

that the mobility is given by Q(h) = h3

3η and an appropriate free energy functional is

F =

∫

Ω
[γξ + fw(h) + γsl] dx (2.54)

on a two-dimensional domain Ω. It corresponds to the free energy functional introduced in
Eq. (2.15) for the mesoscopic description of stationary droplets sitting on a solid substrate.
Note that here, volume conservation is ensured via the structure of Eq. (2.53) and the
free energy functional does in consequence not contain a Lagrange multiplier for volume
conservation. The metric factor

ξ =
√

1 + (∂xh)2 (2.55)

again describes the curved interface h(x, y). In the limit of small interface slopes, it can
be approximated by

ξ ≈ 1 + 1
2 |∇h|2 . (2.56)

The interfacial tension between solid substrate and liquid film is denoted by γsl and as-
sumed to be constant.
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2. Thin Films and Droplets of Simple Liquids

Formulation (2.53) of the thin-film equation is also called gradient dynamics formulation,
because the temporal evolution of the height profile h follows gradients of the free energy
functional F [h] in function space [TAP16]. An important property of such a dynamics
is that the free energy monotonically decreases with time. Stationary profiles correspond
to minima of the free energy functional characterised by δF

δh = p, in accordance with the
analysis of stationary droplets performed in Sec. 2.1.3.

The thin-film equation given in (2.52) describes a simple liquid and includes only sur-
face tension and disjoining pressure as physical effects. If one wants to account for more
complex situations in which, e.g., gravitation or gradients in surface tension induced by a
temperature gradient should be considered, one could introduce the corresponding terms
in the Navier-Stokes equation and redo the derivation presented in Sec. 2.2.2. However,
this procedure is quite error-prone and the formulation as a gradient dynamics allows for
a much simpler way to incorporate additional effects by simply adding the corresponding
energetic contributions to the free energy functional [Wil16]. Furthermore, the approach
can be extended to more complex systems which consist of more than one independent
field. For instance, thin films of solutions or suspensions are described by a height field
h(x, y, t) and the concentration of the solute [TTL13, XTQ15]. Another example are films
covered by an insoluble surfactant, where also the surfactant concentration contributes
to the free energy of the system [TAP12, TAP16]. In the two cases, the respective spa-
tially varying solvent or surfactant concentrations evolve dynamically. To account for such
situations, the gradient dynamics formulation can be extended towards multiple coupled
fields ψ = (ψ1, ψ2, ...ψn)T as e.g. discussed in [WTG+15] and [TAP16]. Note that the
fields ψi have to be independent variables such that a variation of one field should not
influence the other. This is for instance important for the description of mixtures, where
film height and concentration of solvent do not represent independent variables. In the
general framework, the resulting n equations read

∂tψ = ∇ ·
[
Q(ψ)∇∂F

∂ψ

]
(2.57)

where ψ and the variation of the free energy functional with respect to the order parameter
fields

∂F
∂ψ

=

(
∂F
∂ψ1

,
∂F
∂ψ2

, ...,
∂F
∂ψn

)T
(2.58)

are n-dimensional vectors while the nabla operator ∇ and the dot product are performed
in the two-dimensional coordinate space [WTG+15]. The mobility is generalised to an
n× n dimensional mobility matrix Q(ψ) which fulfils the following two criteria: To be in
agreement with the Onsager reciprocity relations [Ons31], the mobility matrix has to be
symmetric. Second, a positive definite mobility matrix ensures that the free energy of the
system decreases over time and F [h] represents a Lyapunov functional [WTG+15] since

d

dt
F(ψ) =

∫

Ω

∂F
∂ψ

∂tψ dx

=

∫

Ω

∂F
∂ψ
∇ ·
[
Q∇∂F

∂ψ

]
dx

= −
∫

Ω
(∇∂F

∂ψ
) ·Q(∇∂F

∂ψ
)dx ≤ 0 . (2.59)

When extending the gradient dynamics description towards more complex situations, the
additional energetic effects connected to the different fields ψi can be added to the free en-
ergy functional. The mobility matrix, however, depends on the particular set of boundary
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conditions at the substrate and the free interface of the film [WTG+15]. The exact form of
the entries of the mobility matrix, which often consist of polynomials of the order param-
eter fields [TAP16], has to be determined once for each set of boundary conditions from
a thin-film approximation of the corresponding dynamical equations [Wil16] as discussed
in Sec. 2.2.2 for films of simple liquid. In this thesis, we apply the gradient dynamics
formulation of the thin-film equation to suspensions and to films of simple liquids which
are covered by an insoluble surfactant. The resulting model equations are discussed in
sections 3.2.1 and 4.3, respectively.
Furthermore, thin-film equations can be used as a basis for developing models for complex
biological fluids. They provide a useful tool to study, e.g., the influence of surface tension
effects or wettability in such systems. One field of application are bacterial colonies that
can – in a simplified view – be interpreted as complex suspensions of liquid and biomass
[WAS+11]. In this approach, bioactive processes such as the proliferation of biomass or
the production of surfactant by the bacteria need to be accounted for by additional terms
that supplement the thin-film description. In the following chapter, we derive a model for
osmotically driven biofilm spreading.
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3. Osmotic Biofilm Spreading

One strategy of biofilms to achieve colony expansion on moist substrates in contact with
a gas phase is osmotically driven spreading. In the following section, we first briefly
introduce this spreading mechanism and discuss experimental observations. The focus of
the chapter lies on the development and analysis of a mathematical model. It is build on a
thin-film model for passive suspensions and allows for a systematic study of the interplay
of passive physical forces such as wettability, surface tension and osmosis on the one hand
and biological growth processes on the other hand.
Note that the results presented in this chapter have in part been published1 in

[TJT16] Sarah Trinschek, Karin John and Uwe Thiele. From a thin-film model for
passive suspensions towards the description of osmotic biofilm spreading
AIMS Materials Science, 3, 1138-1159 (2016)

[TJLT17] Sarah Trinschek, Karin John, Sigolène Lecuyer and Uwe Thiele. Contin-
uous versus arrested spreading of biofilms at solid-gas interfaces: The role
of surface forces. Physical Review Letters, 119.7, 078003 (2017).

3.1. Mechanism and Experimental Findings

In the osmotic spreading mechanism, the expansion of a bacterial colony over a substrate
is not driven by the active motility of individual bacteria, but by the physico-chemical
properties of the biofilm and the interfaces. The mechanism relies on the generation of
osmotic pressure gradients caused by the consumption of water and nutrient by the bacteria
and the production of further biomass. The resulting osmotic imbalance between biofilm
and moist agar substrate – caused for example by the exopolysaccharide component of
the polymeric matrix acting as an osmolyte – results in a physical swelling and spreading
of the biofilm and an increased nutrient uptake through an influx of nutrient-rich water
from the agar [TJLT17].
Figure 3.1 shows experimental data from a study of the osmotic spreading of B. subtilis
biofilms performed by Seminara et al. [SAW+12] demonstrating that colony expansion
depends on the production of osmolytes. The top view of biofilms on agar plates at
different points in time (a) shows that the wild-type strain (WT) spreads over the substrate
with a speed of roughly 0.2mm/h. The expansion of a mutant strain lacking flagella (hag)
is only slightly reduced as compared to the wild type. This excludes the active motion
of individual bacteria as the driving of the spreading. In contrast, the expansion of a
mutant strain (∆eps) deficient in the production of the exopolysaccharide component of
the polymeric matrix is dramatically slower. Figure 3.1 (b) shows the evolution of shapes
of the evolving biofilms over time. The wild-type colony first swells (mainly) vertically
with increasing steepness of the colony height. Subsequently, it expands laterally over the

1Chapter 3 is based on [TJT16] and [TJLT17] and contains figures and text adapted from Trinschek et
al. AIMS Materials Science, 3, 1138-1159 (2016) © AIMS Press (2016) particularly in Sec. 3.2.1 (p.28
l.4-14) and Sec. 3.2.2 (p.26 l.18 - p.29 l.14) and from Trinschek et al. Physical Review Letters 119.7
078003 (2017) © American Physical Society (2017) particularly in Sec. 3.1 (p.23 l.1-30), Sec. 3.2.2
(p.27 l.23 - p.28 l.17 and p.31 l.18-p.32 l.12) and Sec. 3.5.
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3. Osmotic Biofilm Spreading

substrate with a nearly constant contact angle. The mutant strain deficient in matrix
production cannot undergo this transition from vertical swelling to horizontal spreading
and its spreading is arrested.
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Figure 3.1.: The expansion of B. subtilis biofilms depends on the production of extracellular
matrix. (a) Top view of colonies on agar planes at different points in time for the
wild-type strain 3610 (WT), a strain lacking flagella (hag) and a strain deficient in
matrix production (∆eps). The scale bar is 1mm. (b) The biofilm shapes at intervals
of 1.5h for the wild-type (WT) and eps mutant strain ∆eps obtained by averaging of
the transmitted light intensity show a transition from swelling to spreading. Figures
adapted from [SAW+12] with permission © National Academy of Sciences (2004).

Further experimental insight into the osmotic spreading of B. subtilis comes from exper-
iments showing that nutrient depletion within a colony growing on a nutrient-rich agar
substrate triggers an increase in matrix production. The resulting subsequent colony
spreading provides the bacteria with fresh nutrients [ZSS+14]. Experimental tracking of
the distribution of the main phenotypes in bacterial colonies also suggests that the matrix-
producing cells play a crucial role in the spreading of the front [TJT16]. For B. subtilis
biofilms, fluorescence imaging techniques have been employed to show that they are pre-
dominantly located in the outer rim of the biofilm [WKW+16]. Recently, it has been
reported that bacterial cells at the edge the expanding colony switch off matrix produc-
tion and transition to sporulation after a set time delay of approximately 100min. The
process is driven by a pair of gene expression waves and the expression patterns localise
to propagating fronts [SVK+18].
The osmotic spreading mechanism is not only used by B. subtilis, but also exploited by
many other organisms, such as S. meliloti colonies, [DTH14], E. coli bacterial swarms
[PWH+14, YTST17], S. Aureus colonies [LKLY16] and V. cholerae biofilms [YNS+17].
Probing the osmolarity with osmolarity sensitive fluorescent liposomes [PWH+14] shows
that in E. coli swarms, the osmolarity rises abruptly near the leading edge of the swarm
and then drops to a level close to that of the bare agar substrate ≈ 100µm behind. Wa-
ter is drawn into the swarm in a narrow region from the colony edge and then pushed
back into the agar at a smaller rate. For V. cholerae biofilms, the growth of the wild-
type (matrix-producing) strain depends on the agar concentration which determines the
osmotic pressure in the agar, whereas the growth of a mutant strain deficient in matrix
production does not [YNS+17].2

2In principle, this observation can also be induced by a modified stiffness of the agar substrate but the
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3.1. Mechanism and Experimental Findings

The spreading of biofilms at solid-gas interfaces involves the motion of a three-phase
contact line between the viscous biofilm, the agar and the gas phase, so that wetting phe-
nomena are likely to play a role. Indeed, surface tension and wettability strongly affect
the spreading dynamics, which can be demonstrated by performing spreading experiments
using a B. subtilis wild-type strain (WT) and a mutant strain deficient in the production
of surfactin – a natural bio-surfactant produced by wild-type B. subtilis. Typically, the
production of surfactin is induced at high cell density by cell-to-cell communication (quo-
rum sensing) [OSDMM14, vGVK15]. Here, we exploit the fact that surfactin alters the
surface tension of the biofilm-gas interface. In the presence of surfactin, the contact angle
of the colony is lower which corresponds to an increased wettability. In an experiment
performed by Sigolène Lecuyer as published in [TJLT17], agar plates with appropriate
nutrient medium are inoculated with a small droplet of cell suspension. The subsequent
growth and spreading of the biofilm are monitored for three days. The colonies of the
wild-type and the mutant strain deficient in surfactin production are shown in Figs. 3.2
(a) and (d), respectively, on the first day and after three days of incubation. The wild
type (a) expands and forms circular biofilms with a diameter of about 2 cm after three
days. For the mutant strain in (d), the surface tension is not lowered by the presence of
surfactants and the contact angle is high. As the mutant strain can not profit from an
improved wettability, the colony is not able to spread. The external addition of surfactin
shortly after agar inoculation has no effect on the spreading of the wild-type strain (b).
Howexer, it restores a wild-type morphology in the surfactin-deficient strain (e). Inter-
estingly, the wild-type phenotype can also be recovered by adding the non-physiological
surfactants Tween 20 (c)-(f) or Span80 (not shown), which points at a physical role of
surfactin in the spreading mechanism [TJLT17].1

control + surfactin + Tween 20

WT

∆ srfAA

(a) (b) (c)

(d) (e) (f)

day 1 day 3

day 1 day 3

day 1 day 3

day 1 day 3

day 1 day 3

day 1 day 3

Figure 3.2.: Experimental observation of the influence of wettability (mediated by the presence
of surfactants altering the surface tension) on the osmotic spreading of biofilms
[TJLT17]. (a) The B. subtilis wild type NCIB 3610 spreads laterally with a velocity
of 0.2 mm/h over the agar substrate. (d) A mutant strain deficient in surfactin pro-
duction (∆srfAA) can not expand over the substrate. The external addition of the
surfactants (e) surfactin or (f) Tween 20 enables the spreading of the mutant strain
but does not affect the wild type (b), (c). Scale bar: 1cm (cf. [TJLT17])

Also in other experimental studies, the spreading of B. subtilis biofilms or the swarming
of B. subtilis colonies were shown to require or to be facilitated by the production of

effect was excluded by growing the biofilm on a semi-permeable membrane on top of the agar.
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3. Osmotic Biofilm Spreading

surfactin [GSC+12, KHC+15, LMB+06, JOHS05, KSF03]. The bio-surfactant promotes
the spreading of the colony by decreasing the surface tension of the water in the colony
and acting as a wetting agent. Goniometry measurements allow for the observation of a
’halo’ around surfactant-producing bacterial colonies which is characterised by a higher
wettability [LMB+06]. In P. aeruginosa colonies, rhamnolipids act as wetting agents
[TRLD07, CSO05]. In S. marcescens colonies, this role is taken by serrawettin [MN96a,
MN96b].

3.2. Mathematical Modelling

As discussed in the previous section, the influence of physical effects – such as osmotic
swelling and surface forces – on the spreading of bacterial colonies at solid-liquid in-
terfaces is a field of intense experimental research. In general, the literature concern-
ing the mathematical models for bacterial colony growth is very rich and the models
are diverse in the used modelling approaches and the considered processes (see, e.g.,
[WZ10, KD10, HL14, PVL03] for reviews). However, the aspect of physical surface forces
has up to now found only little attention.

In this section, we introduce a thin-film model for osmotically spreading biofilms which
explicitly includes surface tension effects and wettability. Similar thin-film models which
neglect the influence of wettability have been employed to study early stage colony growth
and quorum sensing [WK12, WKK+01], the effect of surfactant production on the spread-
ing of a bacterial colony up a non-nutritive wall [ARK+09] and osmotically driven biofilm
spreading [SAW+12]. Here, we supplement a consistent hydrodynamic description of a
thin film of a biologically passive liquid suspension by biomass growth processes and also
account for osmotic influx and evaporation of the solvent. The structure of the model
automatically guarantees a thermodynamically consistent description of the passive (i.e.,
non-biological) limiting case even for more complex interactions between the components.
Basing the description on a model for passive mixtures also has the advantage that the
dynamics of the contact line between the biofilm, the substrate and the gas phase is nat-
urally encoded in the evolution equations. Therefore – and in contrast to other modelling
approaches employed in the literature – no additional assumptions on the relation between
forces and the contact line velocity have to be made [TJT16] .

3.2.1. Thin-Film Equation for (Passive) Mixtures and Suspensions

In this section, we present a model for the description of thin layers of passive mixtures
and suspensions which was introduced in [Thi11, TTL13, XTQ15] and will serve as a basis
for the modelling of osmotically spreading biofilms. The model is presented in a gradient
dynamics formulation and represents one possible extension of the thin-film equation for
simple liquids towards more complicated systems as discussed in Sec. 2.2.3.

Free Energy Functional for Mixtures and Suspensions

We consider a thin film of a binary suspension or solution of height h(x, t) on a flat solid
substrate as shown in Fig. 3.3 where the local, z-averaged concentration of the solute is
denoted by φ(x, t). The behaviour of the passive suspension is determined by a free energy
functional. An appropriate choice for this functional is

Fmix[h, φ] =

∫
[ fw(h, φ) + hfm(φ) + γ

2 (∇h)2 ] dx, (3.1)
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solid
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h(x, y, t)

x
yz
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Figure 3.3.: Sketch of a thin film of a binary mixture of height h(x, t) on a flat solid substrate
surrounded by a gaseous phase. The z-averaged local concentration of solute is
denoted by φ(x, t).

where γ is again the surface tension and ∇ = (∂x, ∂y)
T is the planar gradient operator.

In addition to the surface term and the wetting energy fw(h, φ) (see Sec. 2.1.2) which
already occur in the description of simple liquids, the free energy now also contains a
mixing energy fm(h, φ).
In general, the contributions to the free energy functional in Eq. (3.1) underlying the
passive part of the dynamics can be chosen to include complex solvent-solute interactions
and composition-dependent wetting properties [TTL13, XTQ15]. Our modelling of os-
motic biofilm spreading focusses on the interplay between bio-active processes and passive
forces. Therefore, we restrict ourselves to relatively simple choices [TJT16]: The wetting
energy

fw(h) = A

(
− 1

2h2
+

h3
a

5h5

)
(3.2)

which has already been introduced in Eq. (2.14) depends only on the overall film height
h and describes a biofilm that partially wets the substrate. As discussed in Sec. 2.1.2, ha

denotes the height of a thin wetting layer and

A = 10
3 h

2
a(γ − γsg + γsl) (3.3)

is the Hamaker constant, here expressed through the interface energies. The film bulk
contribution

fm(φ) =
kBT

a3
[φ ln(φ) + (1− φ) ln(1− φ)] (3.4)

represents the entropic free energy of mixing of solute and solvent where kBT denotes the
thermal energy. We assume for simplicity that biomass and solvent are represented by the
same microscopic length a [TJLT17].1

Gradient Dynamics Formulation

To derive evolution equations, one has to notice that the fields h and φ can not be varied
independently, i.e. the concentration φ changes if h is varied at fixed local solute amount.
One choice for conserved parameter fields suitable for a gradient dynamics formulation as
introduced in Sec. 2.2.3 is given by h and the effective layer thickness of solute ψ = hφ.
After transforming the free energy functional to these fields via

Fmix[h, ψ] = Fmix[h, φ(h, ψ)] , (3.5)

one can write the evolution equations

∂th = ∇ ·
[
Qhh∇

δFmix

δh
+Qhψ∇

δFmix

δψ

]
(3.6)

∂tψ = ∇ ·
[
Qψh∇

δFmix

δh
+Qψψ∇

δFmix

δψ

]
(3.7)
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3. Osmotic Biofilm Spreading

for the film height and the effective layer thickness of the solute where the symmetric and
positive definite mobility matrix Q is defined as

Q(h, ψ) =

(
Qhh Qhψ
Qψh Qψψ

)
=

1

3η

(
h3 h2ψ
h2ψ hψ2

)
+

(
0 0
0 Dψ

)
. (3.8)

It contains contributions from convective and diffusive transport and can be determined
from a long-wave approximation of the full hydrodynamic model as discussed in [TTL13,

Thi11, XTQ15, TAP12, WTG+15, NT10]. The biomass diffusivity is D = a2

6πη , consistent

with the diffusion constant Ddiff = D kBT
a3 = kBT

6πaη . The mobility depends on the viscosity
of the solution η(φ) = η0η̂(φ), which is written in terms of a reference viscosity η0 (corre-
sponding to the viscosity of the solvent), the viscosity of the solute ηb and a dimensionless
scaling function η̂(φ) that captures the composition dependence of the viscosity. Here, we
use the linear ansatz

η̂(φ) = (1− φ) +
ηb
η0
φ (3.9)

for the viscosity of the colony [TJT16].1

Hydrodynamic Formulation

The evolution equations (3.6)-(3.7) can also be written in the usual hydrodynamic form
expressed in film height and solute concentration as

∂th = −∇ · jconv (3.10)

∂t(hφ) = −∇ · (φjconv + jdiff) . (3.11)

The passive convective flux jconv and the diffusive flux jdiff can be derived from (3.6)-
(3.7) by rewriting the variations of the free energy Fmix[h, ψ] with respect to h and ψ as
variations of the energy functional Fmix[h, φ] with respect to h and φ using the relations

δFmix[h, ψ]

δh
=
δFmix[h, φ]

δh
− φ

h

δFmix[h, φ]

δφ
(3.12)

δFmix[h, ψ]

δψ
=

1

h

δFmix[h, φ]

δφ
(3.13)

and expressing the mobility matrix Q as a function of h and φ. For the energy functional
given in Eq. (3.1) and under the assumption of a composition-independent wetting energy
fw(h), one obtains (for details see [XTQ15])

jconv = −h
3

3η
∇ (∂hfw − γ∆h) (3.14)

jdiff = −Ddiffhφ∇ (∂φfm) . (3.15)

From the height evolution equation (3.10), which exactly corresponds to the thin-film
equation (2.52), one can directly see that the inclusion of a mixing energy does not give
rise to an additional bulk flow. Therefore, the height profile of a drop of suspension evolves
identical to a simple liquid.

Spreading of Droplets of Mixtures Towards an Equilibrium Shape

Before incorporating bioactive terms into the model, it is instructive to briefly study the
spreading of a simple droplet as a reference for comparison to more complex situations.
To that end, we perform a finite element time simulation as outlined in the appendix
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Figure 3.4.: Spreading of a passive droplet towards its equilibrium profile. (a) Height profiles
taken at equidistant points in time. (b)-(c) Time evolution of the droplet radius
defined by the inflection points of the height profile in normal and logarithmic scaling.
(d) Contact angle determined from the curvature in the centre of the drop (solid line)
and analytical equilibrium value (dotted line). The domain of length Lx = 600 is
discretised on Nx = 1024 grid points. The wettability parameter (see Sec. 3.2.2) is
Wm = 3.

Sec. A.1.1 for the above described model (3.1)-(3.9). The simulation is initiated by a
height profile with a steep contact angle and the subsequent spreading of the droplet is
monitored. Figure 3.4 (a) shows height profiles at equidistant points in time during the
evolution of a passive droplet towards its equilibrium shape.3 At the beginning, the radius
of the droplet (b,c) rapidly increases with a time evolution r ∼ t1/10. This is known as
Tanner’s law [Tan79] and corresponds well to experiments on the viscous spreading of
small droplets as, e.g., performed in [CS86, CW89]. The contact angle (d) is determined
from the curvature of the height profile in the centre of the drop under the assumption
of a parabolic profile and decreases accordingly over time. At later times, the droplet
reaches the equilibrium profile discussed in Sec. 2.1.3 with a contact angle determined by
Eq. (2.25) (dotted grey line).

3.2.2. Bioactive Additions

In the previous section, we have presented a model for films of passive mixtures. Now we
supplement this model by bioactive processes such as proliferation and death of bacteria
and the production of the polymeric matrix and also account for osmotic influx and evap-
oration of the solvent. The biofilm of height h(x, t) is modelled as a mixture of solvent
(nutrient-rich water) and of biomass (bacteria and the extracellular polymeric matrix)
with the height-averaged biomass concentration φ(x, t) as shown schematically in Fig. 3.5
[TJLT17].

3For better comparability with later simulations, the figure is already presented in the scaling which will
be introduced in Sec. 3.2.2 .
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Figure 3.5.: Sketch of the osmotically driven spreading of biofilms. The bacteria in the colony
consume water and nutrients to produce biomass via bacterial proliferation and ma-
trix secretion which is described by the growth term G(h, φ). This results in osmotic
pressure gradients which cause the influx of nutrient-rich water ζ(h, φ) from the
moist agar substrate into the biofilm. (cf. [TJLT17])

Incorporation of Growth Processes and Osmotic Influx

The osmotic spreading mechanism is driven by the generation of an osmotic pressure
imbalance between the biofilm and the underlying agar substrate due to the production of
biomass. We assume that the agar constitutes a large reservoir of nutrient rich water at
a constant osmotic pressure Πagar, corresponding to an equilibrium water concentration
(1− φeq) in a flat biofilm. As the bacteria in the biofilm consume water and new biomass
is produced, the water concentration is modified from this equilibrium value. Since the
biomass cannot diffuse into the agar, the biomass growth creates an osmotic imbalance
between the biofilm and the agar [TJLT17]. The osmotic pressure in the biofilm, defined
as the negative of the variation of the free energy (3.1) with respect to the height h at a
fixed number of osmotically active particles hφ [Doi13], is given by

Πs = −δFmix[h, ψ]

δh
= −δFmix[h, φ]

δh
+
φ

h

δFmix[h, φ]

δφ
= −∂hfw−fm +φ∂φfm +γ∆h . (3.16)

Note that for a flat film without wettability influences, this expression reduces to Πs =
−kBT

a3 ln (1− φ) which in the dilute case of small biomass concentration φ� 1 yields the

classical linear result Πs ≈ kBT
a3 φ [Isr85]. However, the general form (3.16) is valid for any

concentration and mixing energy.
The resulting osmotic flux of water from the agar substrate into the biofilm

ζ(h, φ) = Qosm (Πs −Πagar) (3.17)

depends linearly on the osmotic pressure difference with Qosm being a positive mobility
constant.4 Recall that in the employed long-wave approximation, concentration variations
along the z-axis are not captured as such variations in concentrations are assumed to equi-
librate fast as compared to horizontal variations. Furthermore, the osmotic fluxes between
the substrate and the biofilm on the one hand and evaporation/condensation processes
between the gas phase and the biofilm on the other hand are not separated but both
contained in Eq. (3.17) [TJT16].

For the biomass growth, we assume that the cells proliferate and secrete the polymeric
matrix while consuming the nutrient-rich water. Lumping cell growth and matrix produc-
tion together into one growth rate constant g, these processes result in a gain term for the
biomass concentration φ in the form of a bimolecular reaction

∂tφ ∝ gφ(1− φ) . (3.18)

4Note that the osmotic pressure corresponds to a negative mechanical pressure which causes the sign of
Eq. (3.17).
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The growth rate g may further depend, e.g., on the nutrient concentration in the agar
substrate and on the bacterial strain. Translating this growth into an evolution for the
effective height of biomass yields

∂t(hφ) ∝ ghφ(1− φ) . (3.19)

The growth of bacteria in a biofilm is not unlimited because processes such as nutrient
and oxygen depletion prevent further growth when the biofilm reaches a critical thick-
ness [ZSS+14]. These limiting processes prescribe a maximal height h? that is related to
the thickness for which nutrient diffusion and consumption of nutrients by the bacteria
throughout the vertical profile of the film equilibrate [WK12]. As it is beyond the scope
of this work to model oxygen and nutrient concentration directly, we introduce a limiting
amount of biomass that can maximally be sustained by the substrate and which depends,
e.g., on the nutrient concentration of the agar [TJT16]. This can be achieved by multi-
plying the growth term with the factor (1− hφ

φeqh?
). It then corresponds to the well-known

logistic growth law [Mur02]. In addition, we account for the fact that at least one bacterial
cell is needed for cell division (and thus proliferation of biomass does not take place in the
wetting layer) by introducing a growth threshold at a small value φeqhu and a stable fixed
point at φeqha. The growth term is then given by

G(h, φ) = ghφ(1− φ)
(

1− hφ
φeqh?

)
fmod(h, φ) . (3.20)

The explicit form of fmod(h, φ) – which models the local modifications of the growth law
for very small amounts of biomass – is chosen as

fmod(h, φ) =

(
1− φeqhu

φh

)(
1− exp

(
φeqha − φh

ha

))
(3.21)

but other choices for fmod(h, φ) with the same fixed point structure do not change the
results qualitatively [TJLT17].
In summary, we employ a growth term that accounts for the fact that the biomass produc-
tion ceases if the biofilm becomes too thick and that a small threshold value of biomass
needs to be overcome to initiate growth. The production term G(h, φeq) is shown in Fig.
3.6 assuming a fixed biomass concentration φeq which corresponds to the case of an os-
motic influx which is very fast as compared to the biomass growth, as we will discuss
below.
To obtain the model for the osmotic spreading of biofilms, biomass growth and osmotic

influx are now incorporated into the passive model (3.1)-(3.15) as two non-conserved terms
which results in the evolution equations [TJT16]

∂th = −∇ · jconv + ζ(h, φ) (3.22)

∂t(hφ) = −∇ · (φjconv + jdiff) +G(h, φ) . (3.23)

for the colony height h and the effective layer thicknesses of biomass hφ.1

Derivation of a Reduced Model in the Limit of a Fast Osmotic Influx

Before we introduce a scaling for the model, we consider a limiting case in which the
complexity of the model can be considerably reduced. Following the discussion and the
parameters given in Refs. [YTST17] and [DTH14], the influx of water into the colony ζ
can be estimated by Darcy’s Law which describes the flow of a liquid per area through a
porous medium (in the units of m

s ) as

|ζ| = Qosm∆P ≈ χRT

ηfL
∆n (3.24)
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Figure 3.6.: The bioactivity G(h, φ) has the form of a modified logistic term and leads to growth
if the amount of biomass is smaller then a limiting amount h?. Here, G(h, φeq)/g is
shown for the quasi-steady state of the osmotic influx for φeq = 0.5, hu = 2ha, and
h? = 40ha. The inset zooms into the region of small film height and shows the fixed
point structure resulting from fmod(h, φ). (cf. [TJT16])

where χ is the intrinsic permeability of the medium, ∆P is the difference in the pressure, ηf
is the fluid viscosity and L is the length over which the total pressure drop is taking place.
Neglecting gravity, the pressure difference ∆P can be approximated by the difference in
osmotic pressure RT∆n, with R and T denoting the gas constant and temperature, re-
spectively, and ∆n denoting the difference in osmolarity between the agar and the colony.
Assuming a permeability χ ≈ 3000 nm2 [DTH14], the viscosity of water ηf = 10−3 Pa s,
a crude estimate of the interface width of L = 0.1...1000µm and an agar concentration
of 0.5 % with a molecular weight of 105 g/mol results in an osmotic influx ζ ranging from
1 mm/h to 3 mm/s.
In comparison, a typical bacterial growth rate constant is g ≈ 1 1

h and the typical height of
a swarming bacterial colony is h = 20µm [FPB+12]. Therefore, the ratio between growth
(gh) and osmotic water influx ζ is ζ

gh ≈ 4×103 . . . 4×107 and it is thus plausible to assume
a quasi instantaneous osmotic equilibrium between the agar and the colony.
If the influx of water is fast as compared to biomass growth but not as fast as the hydro-
dynamic fluxes, large biofilm droplets are always in ’osmotic equilibrium’ Πs = Πagar with
the substrate on the time scale of the biomass growth [TJLT17]. In this case, the biomass
concentration is given by

φ = φeq . (3.25)

The osmotic influx instantaneously compensates the modification in the osmotic pressure
induced by the biomass growth, i.e. it replaces the nutrient-rich water consumed during
the production of biomass and causes an additional influx to reach the osmotic equilibrium
for the new (higher) amount of biomass in the film. It can thus be written as

ζ(h, φeq) =
1

φeq
G(h, φeq) . (3.26)

In this case, one can reduce the model (3.22)-(3.23) to an effective description of the
biofilm height

∂th = ∇ ·
[
h3

3η
∇(∂hfw −∆h)

]
+

1

φeq
G(h, φeq) (3.27)

with a constant viscosity η = η0[(1− φeq) + φeq
ηb
η0

] [TJLT17].
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Dimensionless Form of the Equations

To facilitate the analysis, a dimensionless form of the model for osmotically spreading
biofilms can be obtained by introducing the scaling

t = τ t̃ (x, y) = L(x̃, ỹ) h = lh̃ fw,m = κf̃w,m (3.28)

with l � L for time, the horizontal and vertical coordinates and energy. Dimensionless
quantities are indicated by tildes. Inserting the scaling

τ = L2η0

κl κ = kT
a3 l l = ha L =

√
γ
κ l , (3.29)

into the evolution equation results in the dimensionless growth rate g̃ = gτ , the osmotic
mobility Q̃osm = Qosmτκ/l

2, the dimensionless diffusivity D̃ = δ2

6πη̂ with δ = a
ha

and the
wettability parameter

Wm =
A

κl2
=

A

kBT

a3

l3
(3.30)

that measures the relative strength of the wetting energy as compared to the entropic free
energy of mixing. From Eq. (2.25), it can be shown that the parameter Wm is connected
to the (passive) equilibrium contact angles via tan2(θeq) = 3

5Wm. Therefore, larger values
of Wm result in larger equilibrium contact angles and describe a less wettable substrate.
The model in the dimensionless form can be found in the Appendix A.2.1.

Experimental Calibration

A biofilm is a complex system which can only be expected to be described qualitatively,
not quantitatively by a simple model. However, the parameters and scales of the model
are in the following exemplarily estimated by a calibration with experiments. Comparing
with the typical biofilm height of ∼ 400µm measured in [VALK08, ZSS+14, WKW+16]
and using the viscosity and surface tension of water, as well as the typical solvent/biomass
length summarised in Table 3.1 results in

l = ha ≈ 3µm L ≈ 85µm τ ≈ 0.02 s κ ≈ 9.6 10−5J/m2 (3.31)

for the length, time and energy scales.

surface tension γ ≈ 70mN/m
height of the wetting layer ha ≈ 3µm
viscosity of water η0 ≈ 10−3Pas
typical surfactant length scale a ≈ 50nm
thermal energy at 25° kBT ≈ 4 · 10−21J

Table 3.1.: Parameters used to determine the time and length scales.

Throughout the analysis, we fix the maximal amount of biomass that can be sustained by
the substrate to h̃?φeq = 60, the equilibrium water concentration to (1 − φeq) = 0.5, the
ratio δ = 1, the adsorption layer height to h̃a = 1, the growth threshold to h̃u = 2 and
the ratio of the viscosities of biomass and liquid to ηb/η0 = 10000 [WAS+11]. The biofilm
spreading behaviour is studied depending on the growth rate g̃, the wettability parameter
Wm and the osmotic mobility Q̃osm.
With the above scales, a wettability parameter Wm = 8 corresponds to an equilibrium
contact angle of 5 ◦, comparable to the dynamic contact angle measured in [ZSS+14]. A
dimensionless expansion rate of 10−5 corresponds to a speed of 0.1− 0.2 mm/h.1
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dimensionless value corresponding dim.
value

literature value

growth rate
g̃ = lτ = 2× 10−5 g ≈ 3.6 1

h

Doubling time of B.
subtilis when grown at
35°C in minimal media :
120min [BKW86]

colony height
h̃ = h

l = 120 h ≈ 360µm
colony height of a B. sub-
tilis colony: ≈ 400µm
[ZSS+14, WKW+16]

mobility of the os-
motic flux Q̃osm = Qosmτκ/l

2

= 0.01
Qosm ≈ 5×10−6 m2s

kg

Table 3.2.: Estimation of some parameters in the model for the scaling given in (3.31) and com-
parison to values found in the literature.

3.3. Continuously Spreading Biofilms

In this section, we employ the developed biofilm model (3.22)-(3.23) to explore the influ-
ence of wettability and surface tension on the osmotic spreading of biofilms. The model
also allows us to study the interplay between these passive forces and bioactive growth and
production processes. We find that the model reproduces the non-equilibrium transition
between continuously spreading biofilms and arrested spreading observed in experiments
(see Sec. 3.1). On the one hand, at relatively high wettability, the biofilm initially rapidly
swells vertically and horizontally until a stationary film height is reached before expanding
continuously over the substrate. On the other hand, at lower wettability, the spreading of
the biofilm is arrested.
In the first part of this section, we focus on continuously spreading biofilms and discuss the
transition from swelling to spreading as well as the front solutions which evolve at large
times. Next, we explore conditions for which biofilm spreading is arrested and construct
a phase diagram.

3.3.1. Transition from Swelling to Spreading

First, we focus on situations with relatively high wettability and perform numerical time
simulations employing a finite element scheme as described in the appendix A.1.1. The
biofilm is studied for a one-dimensional geometry (corresponding biofilm ridges instead of
circular colonies) with no-flux boundary conditions. The simulations are initiated with a
small droplet of biofilm at equilibrium water concentration. In the early stages of growth,
the droplet undergoes a transition from initial rapid swelling to subsequent horizontal
spreading. Fig. 3.7 (a) shows height profiles for a growing biofilm at equidistant points
in time. Initially, the droplet rapidly grows vertically and horizontally. When the biofilm
height approaches the limiting value h̃?, the vertical growth slows down and only horizontal
spreading prevails and provides the film with fresh nutrients and water at the edges. At
this stage, the biofilm only spreads horizontally with a constant speed and shape of the
biofilm edge [TJT16]. Note that the front profiles in the dimensional scaling are much
more shallow than in the dimensionless representation shown in the Fig. 3.7.

The transition between vertical and horizontal swelling can by studied more quantitatively
by analysing the time evolution of the drop radius, the maximal film height and the
contact angle which are shown in Figures 3.7 (b), (c) and (d) respectively. We define the
drop size of the biofilm r(t) as the position of the inflection points of the height profile
h(x, t) at the edge of the droplet. In the very beginning of the colony growth, up to
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Figure 3.7.: Continuously spreading biofilm for Wm = 8. (a) Height profiles taken at equidistant
points in time. (b) Time evolution of the biofilm extension r/L measured at the
inflection point of the height profile. (c) Maximal biofilm height hmax/l (d) Contact
angle determined from the slope of h at the inflection point. The dotted grey line
corresponds to the passive equiliquium contact angle θeq. The remaining parameters

are g̃ = 2× 10−5 and Q̃osm = 0.01.

t ≈ 0.5 × 106τ , the radius only increases slowly. In this phase, vertical growth is more
dominant than horizontal spreading and the contact angle of the droplet increases. After
this initial phase, the radius and the colony height increase rapidly until the height reaches
a maximum. Then, the height decreases slightly to approach the plateau value h̃? at time
t ≈ 5× 106τ . Beyond this time the biofilm is expanding by a growth front that advances
horizontally with a constant velocity and a constant front profile, i.e., the dynamic contact
angle is also constant [TJT16]. The plateau value for the contact angle corresponds to a
value that is slightly larger than the passive equilibrium contact angle tan2(θeq) = 3

5Wm

(i.e., θeq ≈ 1.14 for Wm = 8 in the dimensionless scaling). The above described growth
dynamics agrees with the experimental observations [SAW+12, ZSS+14] for B. subtilis
colonies.

Fig. 3.8 shows snapshots of two exemplary profiles, one in the swelling regime at the
beginning of the time evolution (a) and the other one in the spreading regime at a late
time when all transients have decayed (b). The distinct features of the two expansion
modes become clear by studying the height profile (solid lines, top row) and biomass
concentration (colour coding, top row). The direction and strength of the osmotic influx
are indicated by the blue arrows underneath the biofilm. The influx and biomass growth
profiles are shown in the middle and bottom row, respectively.
In the swelling regime, the biofilm has not yet reached the limiting height and the growth
term G is positive throughout the colony. The biomass concentration is overall higher
than the equilibrium value, so that water is drawn into the film along its whole profile
via the osmotic influx ζ. At late stages, the situation is different: Far from the advancing
edges, the biofilm has reached the limiting film height h̃? and the biomass concentration
corresponds to the equilibrium value φeq. In the centre of the colony, biomass production
and degradation are in dynamic equilibrium as are osmotic influx and evaporation of
water, i.e., no net growth or influx takes place (G = 0 and ζ = 0). The biofilm height h
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3. Osmotic Biofilm Spreading

Figure 3.8.: Swelling regime in the beginning of the expansion (a) and spreading fronts which
occur for large times (b) in a continuously spreading biofilm for Wm = 8. The
height profiles are shown in the top row with solid lines. The shading within the film
indicates the biomass concentration φ. The direction and strength of the effective
osmotic flux ζ(h, φ) are represented by the direction and thickness of the blue arrows
below the biofilm. The middle and bottom figures show the osmotic influx profile and
the biomass growth term, respectively. The remaining parameters are g̃ = 2× 10−5

and Q̃osm = 0.01.
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3.3. Continuously Spreading Biofilms

and the biomass concentration are constant in the central region of the biofilm. Near the
edges, the biomass has not yet reached the limiting amount and the production of matrix
and new bacterial cells is localised to a propagating front [TJT16]. This is in accordance
with observations on the spatial distribution of matrix production in B. subtilis biofilms
[SVK+18]. The biomass production modifies the water concentration from the equilibrium
value (1−φeq) which results in an osmotic influx of water from the agar substrate into the
biofilm. We find that the osmotic influx mainly takes place at the edges of the biofilm.
Shortly behind the front edge, the influx is slightly negative and water is pushed back into
the agar. This influx profile is in qualitative agreement with the experimental observations
of the osmolarity and osmotic fluxes in B. subtilis colonies [PWH+14].
In the next section, we analyse the regime of continuously spreading fronts which evolve
at large times in more detail.1

3.3.2. Front Solutions for Continuously Spreading Biofilms

The time simulations presented in the previous section showed that for high wettability,
the biofilm advances at large times with constant velocity and shape. This allows for an
efficient and more systematic analysis of the system using parameter continuation. This
technique, which is outlined in appendix Sec. A.1.2 enables a direct observation of the
influence of the model parameters on front profile and velocity. To that end, we interpret
the solutions as stationary fronts in a co-moving coordinate frame which moves with the
velocity of the expanding colony. We transform the evolution equations (3.22)-(3.23)
written in the fields h and ψ = hφ into the co-moving coordinate system with a constant
velocity v via the coordinate transformation x → x + vt. In this co-moving frame, the
equations are given by

∂th = −∇ · jconv + ζ(h, ψ) + v∂xh

= F1(∇, v)[h, ψ]
(3.32)

∂tψ = −∇ · (φjconv + jdiff) +G(h, ψ) + v∂xψ

= F2(∇, v)[h, ψ] .
(3.33)

where we introduced F1,2(∇, v) as a short hand notation for the nonlinear operators
defined by the right-hand sides of the evolution equations (3.32)-(3.33). Thus, planar
fronts (h0(x), ψ0(x)) which depend only on one spatial coordinate, x, and move with a
stationary profile and velocity v correspond to stationary solutions

∂th0(x) = F1(∇, v)[h0(x), ψ0(x)] = 0 (3.34)

∂tψ0(x) = F2(∇, v)[h0(x), ψ0(x)] = 0 (3.35)

in the co-moving frame. The explicit formulation necessary for the analysis with the con-
tinuation package AUTO-07p is given in the appendix Sec. A.2.2.

The dependence of the front velocity v and the dynamic contact angle θ on various param-
eters of the model is presented in Fig. 3.9. The first and second row show the influence
of (a) biomass production g̃, (b) osmotic mobility Q̃osm, (c) colony height h̃? and (d) wet-
tability parameter Wm on the velocity and the contact angle. The third and fourth row
show the profiles of height h and biomass φh for two parameter combinations indicated by
circles in the velocity and contact angle plots. The system exhibits stable front solutions
over a broad parameter range which can be seen as a sign of its robustness. Recall that
the model is analysed in the dimensionless long-wave form and l� L holds for the dimen-
sional vertical and horizontal length scale. Consequently, the dimensional front profiles
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Figure 3.9.: Front velocity (top row) and contact angle (second row) depending on (a) the biomass
production g̃, (b) the osmotic mobility Q̃osm, (c) the limiting colony height h̃? and (d)
the wettability parameter Wm. One parameter is varied in a parameter continuation,
respectively, taking a solution for g̃ = 2× 10−5, Wm = 8, Q̃osm = 0.01 and h̃? = 120
as a reference. The dotted grey line corresponds to the passive equilibrium contact
angle θeq. The third (fourth) row shows the profiles of height h (biomass φh) for
two parameter combinations indicated by circles in the respective line colour in the
velocity and contact angle plots.
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3.3. Continuously Spreading Biofilms

are much more shallow than in the dimensionless representation of the profiles shown in
our figures. This also concernes the measured contact angles.
As expected, the front velocity increases with the biomass production rate g̃ (see Fig. 3.9
(a)), as this parameter represents the strength of the non-conserved part of the model
causing the osmotic imbalance in the biofilm and triggering the subsequent influx of wa-
ter. For small bioactivity rates g̃, the front advances very slowly and the contact angle
approximately corresponds to the equilibrium contact angle of a droplet of passive mixture
(dotted lines) given by Eq. (2.25). For a fast biomass growth, the growth term G(h, φ)
dominates the shape of the biofilm. The front profile becomes steeper when a stronger
biomass growth pushes the biofilm front forward [TJT16]. This indicates that the dy-
namic contact angle increases with the front velocity. This behaviour is also known from
the passive advance of fronts or drops, e.g. spreading drops or sliding drops on an incline
[BEI+09, TVN+01].
The velocity of the biofilm also increases with increasing biofilm height h̃? (see Fig. 3.9
(c)). In contrast, the osmotic mobility – which reflects the permeability of the interface
between moist substrate and biofilm – has only a small influence on the front velocity
and front profile (see Fig. 3.9 (b)). This is because the time scale of the osmotic flux is
always faster than the hydrodynamic time scale and the time scale of biomass growth in
the considered parameter regime, so that the biofilm can always reach osmotic equilib-
rium relatively fast. Interestingly, also the wettability parameter Wm, which represents
the influence of passive wetting forces, strongly influences the spreading velocity (see Fig.
3.9 (d)). The biofilm drastically slows down for a low wettability (large Wm). We focus
on this feature in the next section.
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3. Osmotic Biofilm Spreading

3.4. Arrested Spreading of Biofilms

The analysis of the fronts in the model for continuously spreading biofilms at large times
in the previous section has shown that the wettability can dramatically slow down the
lateral expansion. In this section, we analyse the mechanism behind the arrested biofilm
spreading by studying the time evolution of bacterial colonies in our model at low wet-
tability (large Wm). Then, the evolution of the biofilm dramatically differs from the
continuous spreading mode described in the previous section. We first analyse this regime
by performing numerical time simulations starting from a small biofilm droplet. Fig. 3.10
shows snapshots of the height profile (a), as well as the time evolution of colony radius (b),
height (c) and contact angle (d) for a large value of Wm corresponding to a low wettability.
Again, the biofilm initially rapidly swells. The influx and biomass production profile at
this stage are shown in Fig. 3.11 and quantitatively resemble those observed previously
for continuously spreading biofilms. However, in contrast to the case of higher wettability,
the biofilm soon evolves towards a stationary profile of fixed extension and contact angle
[TJLT17]. From a snapshot of the solution at a large time shown in Fig. 3.11 (b), it can be
clearly seen that the stationary biofilm drops are still bioactive. Biomass is being produced
at the biofilm edges where G > 0 and is degraded at the centre where G < 0 as there,
the biomass exceeds the limiting amount φeqh

?. The influx profile shows that accordingly,
water is drawn into the biofilm at the edges where the biomass concentration is high, and
pushed back into the substrate in the middle of the colony. The arrested state is possible
as hydrodynamic and diffusive fluxes within the biofilm and osmotic fluxes between agar
and biofilm rearrange biomass and water such that their profiles are stationary [TJLT17].
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Figure 3.10.: Arrested biofilm spreading for low wettability Wm = 12. (a) Height profiles taken
at equidistant points in time. (b) Time evolution of the biofilm extension r(t)
defined by the inflection point of the height profile. (c) Maximal biofilm height
hmax(t). (d) Contact angle determined from the slope of h at the inflection point.
The remaining parameters are g̃ = 2× 10−5 and Q̃osm = 0.01.
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3.4. Arrested Spreading of Biofilms

Figure 3.11.: Swelling regime in the beginning of the expansion (a) and stationary profile oc-
curring for large times (b) in a biofilm with arrested spreading for low wettability
Wm = 12. The height profiles are shown in the top row with solid lines. The
shading within the film indicates the biomass concentration φ. The direction and
strength of the effective osmotic flux ζ(h, φ) are represented by the direction and
thickness of the blue arrows below the biofilm. The middle figures and the bottom
figures show the osmotic influx profile and the biomass growth term, respectively.
The remaining parameters are g̃ = 2× 10−5 and Q̃osm = 0.01.
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3. Osmotic Biofilm Spreading

Bifurcation Analysis

In the previous sections, we have seen that the biofilm model possesses two qualitatively
different equilibrium solutions: For high wettability (low Wm), the biofilm expands via
a front solution with constant velocity v and profile. At low wettability (large Wm), the
biofilm evolves towards a stationary droplet. Before we generate a phase diagram that
identifies the regions of the two spreading modes in parameter space and compare it to
the experimental observations, we briefly address a more technical issue and perform a
bifurcation analysis of the problem. In particular, we analyse how the stationary, arrested
biofilm droplet loses its stability, when the wettability is enhanced (lower Wm) or the
biomass growth rate g̃ is increased.
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Figure 3.12.: Parameter continuation in the growth rate g̃ at fixed velocity v = 0 and varying
drop volume V =

∫
hdx. (a) The solution branch of arrested biofilm droplets loses

its stability in a fold bifurcation (F) at g̃ ≈ 1.227×10−5 . The subsequent snaking is
shown in more detail in (b). The height profiles, which correspond to the solutions
indicated in (a) are presented in (c) and show a transition from ’droplet-like’ to
’front-like’ biofilms. The remaining parameters are Q̃osm = 0.01 and h̃? = 120.

Figure 3.12 (a) shows the solution branch for a parameter continuation in the growth rate
at fixed velocity v = 0 and adapting drop volume V =

∫
hdx. For low biomass rates g̃, the

arrested droplet is a stable solution. The height profile (I) shown in Fig. 3.12 (c) indicates
that along this branch, the solution is ’droplet-like’ with a maximum at x = 0. When the
biomass growth g̃ is increased, this solution loses its stability in a fold bifurcation (F) at
g̃ ≈ 1.227×10−5. After this bifurcation, the solutions form a snaking branch [BK07] in the
bifurcation diagram. Along this branch of alternate stability, the profiles are ’front-like’
(see II - IV in 3.12 (c)) and their volume increases, i.e., the front edge is shifted further
to the right in the domain. The snaking nature of this branch is more visible in Fig.
3.12 (b), where the volume is shown against the difference between the biomass growth g̃
and the value g̃? ≈ 1.1798 × 10−5 that the branch converges to. A qualitatively different
solution is the flat biofilm of height h = h? which is shown in grey in Fig. 3.12 (a) and (c).
Presumably due to the Neumann boundary conditions, the snaking branch can, however,
not be followed until it reaches this solution branch, i.e., until the front solution fills the
whole domain.
The branch of arrested solutions discussed above is connected to the branch of moving
front solutions. Starting for example from point IV, one can perform a second parameter
continuation in the velocity v at fixed volume and obtain solutions corresponding to the
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3.5. Phase Diagram

continuously spreading fronts presented, e.g., in Fig. 3.9 (a). The model is thus multistable
in a (small) parameter region, i.e., different solutions coexist.
In the next section, the results obtained from the bifurcation analysis will be employed to
generate a morphological phase diagram.

3.5. Phase Diagram

The bifurcation analysis at fixed wettability has shown that a fold bifurcation represents
a limiting point for the existence of the arrested biofilm droplets. To obtain their stabil-
ity region in the (g̃,Wm) parameter space, we now perform various continuation runs for
different values of Wm similar to the one discussed above in Fig. 3.12 . For each run,
the fold point is detected. This information can be used to generate the morphological
phase diagram in Fig. 3.13 which summarises the spreading behaviour in dependence of
wettability parameter Wm and the biomass growth rate g̃.
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Figure 3.13.: Spreading behaviour of the biofilm in the (g̃,Wm) parameter plane for various
values of the osmotic mobility Q̃osm as indicated in the legend. In the shaded
regions, the spreading of the biofilm is arrested, i.e., the colony reaches a stationary
profile. Outside of this region, lateral spreading is not limited. These two regimes
correspond, e.g., to arrested biofilms deficient in surfactant production which do not
expand laterally but for which continuous spreading can be induced by increasing
the wettability (lowering Wm) by the external addition of surfactant. Scale bar:
5mm (cf. [TJLT17])

At constant g̃, corresponding, e.g., to a specific bacterial strain, spreading of the biofilm is
arrested at low wettability (high value of Wm) but the colony spreads continuously if the
wettability is enhanced (low value of Wm). In the context of the experiments described in
Sec. 3.1, an enhanced wettability corresponds to the situation in which a self-produced or
artificial homogeneously distributed surfactant lowers the surface tension. The presence
of surfactant can thus trigger a transition from a biofilm with arrested spreading to a
continuously spreading biofilm [TJLT17] – in agreement with the experimental results
in Fig. 3.2 and Ref. [LMB+06]. This transition only slightly depends on the strength
of the osmotic mobility Q̃osm (see Fig. 3.13) and one may consider the limiting case of
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3. Osmotic Biofilm Spreading

an instantaneous osmotic solvent transfer between agar and biofilm (i.e., Q̃osm � 1).
In this parameter regime, the model reduces to a one-variable model for the evolution
of the biofilm height as discussed in Sec. 3.2.2. The simplified model still reproduces
all relevant experimental features. For the limiting case of infinitely fast osmosis, the
parameter region of arrested spreading is only slightly smaller than for finite Q̃osm. This
indicates that surface and entropic mixing forces rather than time scales of transport and
bioactive processes are dominant in the determination of the transition between stationary
and laterally expanding biofilms [TJLT17].1
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4. Thin Liquid Films and Droplets Covered
by Insoluble Surfactants

In the previous chapter, we have seen that the presence of bio-surfactants can have a
strong influence on the spreading dynamics of bacterial colonies by modifying the wetta-
bility. However, the effect of surfactants on the spreading dynamics is not limited to a
variation of the equilibrium contact angle: Gradients in surfactant concentration – which
we have not accounted for in the previous section – may lead to additional flows. These
so-called Marangoni flows arise due to gradients in surface tension. In bacterial colonies,
bio-surfactants are being produced by the bacteria over time and a dynamical distribution
of surfactant molecules with concentration gradients (giving rise to Marangoni flows) is
to be expected. To study their effect on the spreading of the colony, it is necessary to
introduce a surfactant dynamics into the model. Before we investigate in more detail how
surfactants affect the expansion of bacterial colonies, we first study a related but simpler
passive system, namely a droplet of simple liquid covered by insoluble surfactants.
After reviewing some experimental findings related to the presence of surfactants, we focus
on the influence of surfactants on static partially wetting droplets. To that end, we discuss
the macroscopic and mesoscopic equilibrium descriptions for droplets covered by insoluble
surfactants and show the conditions for consistency between the two approaches in terms
of the contact angle and the distribution of surfactants. In the next part of this section,
we introduce a mathematical model that allows for a study of the spreading dynamics
by extending the thin-film equation for simple liquids to droplets covered by insoluble
surfactant. This model is then employed to briefly illustrate the influence of surfactants
on the spreading of droplets. We exemplarily study some dynamical effects – such as the
occurrence of a fingering instability and a temporary state of non-coalescence of droplets.

Note that the results presented in this chapter have in part been published1 in

[TSTJ18] U. Thiele, J. Snoeijer, S. Trinschek, K. John Equilibrium contact angle and
adsorption layer properties with surfactants Langmuir 34, 7210–7221 (2017)

[TSTJ19] U. Thiele, J. Snoeijer, S. Trinschek, K. John Correction to “Equilibrium
contact angle and adsorption layer properties with surfactants” Langmuir
35, 4788-4789 (2019).

4.1. Experimental Findings

Surfactants are amphiphilic molecules or particles that adsorb at interfaces, thereby de-
creasing its interfacial tension. The relation between the surfactant concentration and the
interfacial tension is described by an equation of state. The chemico-physical properties
of surfactants crucially alter the dynamics of thin liquid films with free surfaces. They

1Sections 4.1 - 4.3 closely follow [TSTJ18] and [TSTJ19]. They contain figures and text adapted from
Thiele et al. Langmuir, 2018, 34 (24), pp. 7210–7221 © American Chemical Society (2018) particularly
in Sec. 4.1 (p.43 l.32 - p.44 l.19), 4.2 and 4.3 (p.56 l.9-23) and from Thiele et al. Langmuir, 2019, 35
(13), pp. 4788-4789 © American Chemical Society (2019) in Sec. 4.2.3.
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4. Thin Liquid Films and Droplets Covered by Insoluble Surfactants

may act as detergents, wetting agents, emulsifiers, foaming agents and dispersants [RK12].
This is exploited for many industrial and biomedical applications ranging from dish soap
to surfactant replacement therapy for premature infants (see [CM09, MC09] for reviews).
The detailed mechanisms of surfactant-driven flows are, however, still an active field of
experimental and theoretical research.
For spreading surfactant-laden droplets on solid surfaces, the presence of surfactants causes
an enhanced spreading rate and deviations from Tanner’s law.2 This phenomenon can be
explained by the interfacial Marangoni stresses that result from gradients in the surface
tension. They drive the fluid flow and the convective and diffusive transport of surfactant
molecules with and along the interface. In addition to the enhanced spreading rate, the
interplay between surfactant dynamics and free surface thin-film flows leads to a variety
of other intriguing phenomena. These include super-spreading of aqueous droplets on
hydrophobic surfaces [Hil98, RSB+02], surfactant-induced fingering of spreading droplets
[ML81, TWS89, THS90, CCB+99, CC99, MC09, MC09] and autophobing of aqueous drops
on hydrophilic substrates [ASLM04, CM07, BDS+16]. Besides the creation of Marangoni
stresses, several other properties of surfactants, such as bulk solubility, their propensity to
form micelles or lamellar structures at high concentrations, the surfactant mobility on the
solid substrate and their ability to spread through the three-phase contact region enrich
the spectrum of the observed dynamical behaviour [TSTJ18].1

solvent
film

spreading retraction(a) (b)

film thinning dewet region

surfactant
leading edge

fingers

Figure 4.1.: (a) Fingering instability observed at the contact line of a drop of surfactant solution
below the critical micelle concentration spreading on a solid substrate prewetted
with a 100nm thick layer of solvent. The main drop (lower left corner) spreads and
feeds the fingers which thicken and subsequently branch. Reprinted with permission
from [HCPC04] © Elsevier (2004). (b) Autophobing process of a drop of aqueous
anionic surfactant solution below the critical micelle concentration on a 100µm water
film. The drop first spreads and the contact angle decreases. Then, the contact line
spontaneously retracts as the surfactant is transferred onto the substrate and renders
it less hydrophilic. This leads to dewetting and film rupture. The bottom row shows
a schematic view of the height profiles. Reprinted with permission from [ASLM04]
© American Chemical Society (2018).

Figure 4.1 (a) shows the surfactant-induced fingering instability occurring at the contact
line of a drop of surfactant solution spreading on a solid substrate coated by a film of
solvent as observed experimentally in [HCPC04]. During the spreading of the surfactant-

2Recall that Tanner’s law states that the spreading rate of a droplet of simple fluid is r(t) ∼ t(1/10) (see
Sec. 3.2.1).
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laden droplet, fingers evolve at the contact line. These are fed by the main drop and
grow, thicken and subsequently branch. The leading edge of the surfactant distribution
lies ahead of the region of the fingering instability. The spreading dynamics of the drop
and the fingers is strongly influenced by the thickness of the prewetting solvent film and
the surfactant concentration.
Figure 4.1 (b) illustrates the autophobing process of a drop of aqueous anionic surfactant
solution on a thin water film as observed in [ASLM04]. Initially, the drop spreads and a
thinned region evolves. When surfactant is transferred onto the substrate in this thinned
region, it renders it less hydrophilic. The contact line spontaneously retracts, which leads
to the development of a dewet region.

water

surfactant
solution

θ = 3◦

θ = 7◦

Figure 4.2.: Coalescence behaviour for a pure water drop and a drop containing surfactant
[BCKS18]. The lower surface tension drop containing surfactant is attracted towards
the other drop, which is itself pushed away. A state of temporary non-coalescence
occurs (top row). At higher mean contact angle θ of the two droplets at the time
of contact (bottom row), a fingering instability can be observed in the connecting
region. The scale bar represents 3 mm. Reprinted with permission from [BCKS18]
© American Physical Society (2018).

Another interesting dynamical effect related to the presence of surfactant is the delayed
coalescence of droplets. When two droplets of the same liquid touch, capillarity usually
drives their coalescence. The thin liquid bridge forming between the droplets fills with
time and the droplet merge into one. The understanding of droplet interaction and co-
alescence is of key importance for many industrial processes such as ink-jet printing and
has thus been the subject of intensive research (see, e.g., [ALG+05, RMRS06, HSLES12,
LKYY12, EWS13]). Interestingly, the coalescence can be delayed for a substantial period
of time, when the droplets have different surface tensions, despite being perfectly miscible
[KR12, KR14, KHFR14]. In this situation, a temporary state of non-coalescence arises,
in which the droplets move together over the substrate, connected by a thin neck region.
The height of this liquid bridge does not increase with time. Instead, the droplet with the
lower surface tension ”chases” the other droplet over the substrate. This behaviour can
not be explained from a perspective of the free energy, which would favour a single droplet.
It arises due to a Marangoni flow caused by the surface tension gradient that drains the
neck region and competes with the opposed flow due to capillarity [KR12, BCKS18].
This qualitative behaviour can also be observed for aqueous droplets with different con-
centrations of surfactant. Figure 4.2 shows the coalescence behaviour of a pure water drop
and a drop containing surfactant. The surface tension is lowered in the droplet containing
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surfactant. It is attracted towards the drop of pure water and ’chases’ it over the substrate
in a state of temporary non-coalescence. Experiments [BCKS18] show that the coalescence
behaviour is determined by two main parameters: the (mean) contact angle at which the
droplets touch and the difference in surface tension. At low contact angles, the non-
coalescence behaviour is precursor-mediated (top row). If the contact angle is higher, a
fingering instability occurs in the connecting region (bottom row). At even higher contact
angles, this instability disappears again and a smooth, stable neck separates the droplet
which move over the substrate with a high velocity (not shown) [BCKS18].

The presence of surfactants does, however, not only affect the flow dynamics. Also in the
static situation of a surfactant-covered droplet on a substrate at equilibrium, the spatially
inhomogeneous distribution of surfactant causes a non-trivial dependence of the contact
angle on the surfactant concentration. In the following, we discuss the influence of surfac-
tants on partially wetting droplets in equilibrium.

4.2. Equilibrium Droplets Covered by Insoluble Surfactants

Although many effects connected to the presence of surfactants and the respective in-
duced flows are dynamic out of equilibrium phenomena, the mathematical models that
describe such systems have to be consistent with the equilibrium conditions at the meso-
and macroscale. Due to their chemico-physical properties, surfactants affect the wettabil-
ity of droplets on substrates. If one introduces a surfactant-dependent wetting potential
fw(h,Γ) in the mesoscopic description, it therefore needs to be discussed how it has to be
related to the respective dependencies of the interface energies in the macroscopic descrip-
tion.
For simple fluids, we have investigated the relationship between the description of static
equilibrium droplets on the macroscale (on which the situation is determined solely by the
interfacial tensions) and on the mesoscale (on which interactions between the liquid and
the solid substrate become relevant and are accounted for through the introduction of a
wetting potential) in Sec. 2.1. In the following, we establish this mesoscopic-macroscopic
link in the presence of surfactants. In general, the surfactant adopts different concentra-
tions on the droplet and on the substrate. Therefore, the problem not only consists in
determining the adsorption layer height and the contact angle, but also the respective
surfactant concentrations.
The calculations are illustrated by explicitly choosing a functional form for the interface
energies, consistent with a linear equation of state for the surfactant. We propose a simple
modification of the wetting energy which yields consistency with the Young law in the
presence of surfactants.
The considerations presented in the following sections are, e.g., relevant for situations
that involve substrates covered by ultra-thin films or bare substrates, where polar and
apolar forces between interfaces cannot be neglected and the dynamics is governed by
the contact line. One example is the autophobing process during which surfactant is
transferred onto the substrate, rendering it less hydrophilic [ASLM04, CM07] and lead-
ing to dewetting and film rupture. Another example is the onset of Marangoni flows for
surfactant-driven spreading and fingering of droplets, which depends on the ability of the
surfactant to diffuse in front of the droplet, thereby establishing a gradient that drives the
flow [CCB+99, CC99].1
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γsl

γ = g − Γ∂Γg

γsg = gsg− γ∂Γgsg

−R 0 R x

(a) macroscopic picture

Γ(x) = Γd

Γ(x) = Γa

γsl

xR

γ = g − Γ∂Γg

Γ(x)→ Γw

fw(h,Γ)

(b) mesoscopic picture

Γ(x)→ Γa

h

Figure 4.3.: Liquid drop covered by insoluble surfactant on a solid substrate. (a) In the macro-
scopic description, the shape of the droplet and thus the equilibrium contact angle
is determined by the solid-liquid interfacial tension γsl and the interfacial tensions
γ and γsg of the liquid-gas and the solid-gas interface that depend on the respective
surfactant concentrations Γd and Γa on the droplet and on the adsorption layer.
(b) In the mesoscopic description, the substrate is covered by an adsorption layer.
The contact angle is determined by the solid-liquid interfacial tension γsl, the liquid-
gas interfacial tension γ which depends on the surfactant concentration, and the
minimum of the wetting energy fw(ha,Γa). (cf. [TSTJ18])

4.2.1. Equilibrium Droplets in the Macroscopic Picture

Let us consider a liquid drop covered by insoluble surfactants on a one-dimensional solid
substrate as depicted in Fig. 4.3 (a). As for the case of pure liquid in Sec. 2.1.1, we first
consider a macroscopic formulation of the problem.
The surfactant molecules exhibit a surface number density Γ (per unit length of the free
film surface) on the liquid-gas interface h(x). There may also be surfactant at the solid-gas
interface but for simplicity we assume the solid-liquid interface to be free of surfactant. The
free energies of the liquid-gas and solid-gas interfaces are characterised by the functions
g(Γ) and gsg(Γ), respectively. The total amount of surfactant, N =

∫
dsΓ =

∫
dxξΓ,

is conserved, which is imposed by a Lagrange multiplier λΓ that can be interpreted as
a chemical potential. The condition h(R) = 0 defining the contact line at R and the
conservation of the liquid volume V =

∫
hdx are ensured via further Lagrange multipliers

p and λh. The free energy functional to be minimised reads

Fmacro[h,Γ] =

∫ R

0
dx [ξg (Γ) + γsl − ph] +

∫ ∞

R
dx gsg (Γ)

− λΓ

(∫ R

0
dx ξΓ +

∫ ∞

R
dxΓ

)
+ λhh(R)

(4.1)

with ξ again being the metric factor (2.55). Varying the field Γ(x) yields

δFmacro =

∫ R

0
dx ξ(∂Γg − λΓ)δΓ +

∫ ∞

R
dx (∂Γgsg − λΓ)δΓ . (4.2)

This results in the chemical potentials

λΓ = ∂Γg for x ∈ [0, R]

and λΓ = ∂Γgsg for x ∈ [R,∞]
(4.3)

in the drop region and on the surrounding substrate, respectively. Since λΓ is a con-
stant and ∂Γg is a function of Γ, Eq. (4.3) implies that the surfactant is homogeneously
distributed albeit with different concentrations in each region, i.e.,

∂xΓ = 0. (4.4)
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We introduce the equilibrium surfactant concentrations Γ(x) = Γa on the substrate and
Γ(x) = Γd on the droplet. For the equilibrium distribution of surfactants characterized by
a constant chemical potential λΓ, Eq. (4.3) implies

∂Γg|Γd
= ∂Γgsg|Γa . (4.5)

Varying the field h(x) gives

δFmacro =

∫ R

0
dx

[
−p− ∂xxh

ξ3
(g − λΓΓ)

]
δh(x)

+

[(
∂xh

ξ
(g − λΓΓ)

)
δh

]R

0

+ λhδh(R) (4.6)

=

∫ R

0
dx [−p− κγ] δh(x) +

[
∂xh

ξ
γ + λh

]
δh(R)

where we introduced the surfactant-dependent liquid-gas interfacial tension

γ = g − Γ∂Γg (4.7)

and used Eq. (4.3). At the centre of the droplet, at x = 0, the reflection symmetry enforces
∂xh = 0. The Laplace pressure and λh can be obtained from Eq. (4.6) as

p = −γκ, for x ∈ [0, R] (4.8)

λh = −γ ∂xh
ξ

at x = R. (4.9)

Finally, evaluating the variation of R at the position x = R yields

δFmacro =
[
ξg (Γ) + γsl − ph− gsg(Γa)− λΓξΓd − λΓΓa + λh∂xh(R)

]
δR . (4.10)

Using the constraint h(R) = 0, the relation 1/ξ = cos θeq (see Eq. (2.9)), as well as the
obtained values for λΓ and λh results in the boundary condition

0 = γsl − γsg(Γa) + γ(Γd) cos θeq

with γ(Γd) = g(Γd)− Γd∂Γg|Γd
, (4.11)

and γsg(Γa) = gsg(Γa)− Γa∂Γgsg|Γa .

We have again found the Young law that relates the equilibrium contact angle to the
interfacial tensions. However, the interfacial tensions γi are not given by the local free
energies g and gsg which would enter at fixed concentration Γ. Instead, they are at
conserved total amount of surfactant defined by the local grand potentials g − Γ∂Γg and
gsg − Γ∂Γgsg. Importantly, the values of the interfacial tensions γ and γsg are not fixed a
priori. They have to be determined self-consistently from the equilibration of the surfactant
concentrations on the drop and the surrounding substrate. The observed contact angle
thus involves a subtle coupling between the distribution of surfactants and the interfacial
tensions.1

4.2.2. Equilibrium Droplets in the Mesoscopic Picture

In Sec. 2.1.3, we have discussed the mesoscopic description of droplets without surfactant.
We now generalise this approach and consider such a description for a droplet covered by
insoluble surfactants. Again, we study equilibrium situations involving a contact line as
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depicted in Fig. 4.3 (b). We focus on the problem how the dependency of the wetting
potential on surfactant concentration in the mesoscopic description has to be related to
the respective dependencies of the involved surface energies in the macroscopic description
to ensure the consistency of the two approaches.
To begin with, we consider a free energy functional

Fmeso[h,Γ] =

∫ ∞

0
[γsl + fw(h,Γ) + g(Γ)ξ − ph− λΓΓξ] dx , (4.12)

where fw(h,Γ) and g(Γ) represent the wetting and interface energy, respectively. The
solid-liquid interface energy γsl is treated as constant. The conservation of the amounts
of liquid and surfactant are ensured by the Lagrange multipliers p and λΓ, respectively.
In analogy to Sec. 2.1.3, there is again no direct influence of the solid-liquid interfacial
tension γsl, as in the mesoscopic description, the whole domain is at least covered by an
adsorption layer. In consequence, the two integrals for the droplet and substrate regions
in the macroscopic free energy (4.1) are replaced by one integral over the whole domain.
Varying the mesoscopic free energy functional (4.12) with respect to h(x) and Γ(x) gives
the Euler-Lagrange equations

p = ∂hfw − ∂x[(g − λΓΓ)∂xhξ ] (4.13)

and λΓ =
1

ξ
∂Γfw + ∂Γg, (4.14)

respectively. We introduce the generalised positions q1 = h and q2 = Γ and obtain3 the
first integral E

E = γsl + fw +
g − ΓλΓ

ξ
− h p , (4.15)

corresponding to Eq. (2.18) with γ replaced by g(Γ)− ΓλΓ.

In equilibrium, p, λΓ and E are constant across the system, which allows us to study the
coexistence of states. As in section 2.1.3, we consider the equilibrium between an adsorp-
tion layer of thickness ha and a wedge region with constant slope tan θeq as depicted in
Fig. 4.3 (b). The wetting potential fw(h,Γ) now depends on film height and surfactant
concentration. Therefore, it is not only necessary to determine the coexisting adsorption
layer height and wedge slope as in Sec. 2.1.3, but also the coexisting surfactant concen-
trations Γa on the adsorption layer and Γw on the wedge. We assume that the wedge is
far away from the adsorption layer (h � ha, fw → 0, |∂xh| → tan θeq, Γ → Γw) and the
adsorption layer is far away from the wedge (h → ha, ∂xh → 0, Γ → Γa), i.e., both are
sufficiently far away from the contact line region. Comparing the expressions for p, λΓ

and E given by Eqs. (4.13), (4.14) and (4.15) in wedge and adsorption layer (in analogy
to the calculation in Sec. 2.1.3), yields

0 = ∂hfw|(ha,Γa), (4.16)

∂Γg|Γw = ∂Γfw|(ha,Γa) + ∂Γg|Γa , (4.17)

γ(Γw) cos θeq = fw(ha,Γa)− Γa∂Γfw|(ha,Γa) + γ(Γa), (4.18)

respectively. To obtain Eq. (4.18), we have already used ξw = 1/ cos θeq as well as Eqs.
(4.7), (4.16) and (4.17). Equation (4.18) is the generalisation of the mesoscopic Young law

3Note that if the integrand of (4.12) is seen as Lagrangian L, the corresponding generalised momenta are
p1 = (g − λΓΓ)(∂xh)/ξ and p2 = 0, respectively. Then, the first integral E which is independent of x
corresponds to the negative of the Hamiltonian H = p∂xq − L.
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in the presence of surfactants. The concentrations are different on the wedge (Γ = Γw)
and on the adsorption layer (Γ = Γa) such that the liquid-gas interfacial tensions are also
different. Without surfactant we recover Eq. (2.24) as g(0) is γ of Sec. 2.1.3.

The obtained Eqs. (4.16) to (4.18) characterize the states of coexisting wedge and adsorp-
tion layer, which are determined by four quantities: the adsorption layer height ha, the
contact angle θeq and the surfactant concentrations on wedge and adsorption layer Γw and
Γa, respectively. In practice, one may chose any of these quantities as control parame-
ter and determine the other three quantities from the three relations (4.16)-(4.18). It is
convenient to choose Γa as control parameter and first use Eq. (4.16) to obtain ha, then
employ Eq. (4.17) to determine Γw and, finally, Eq. (4.18) to calculate the equilibrium
contact angle θeq. To obtain specific results, it is necessary to specify the free energies
of the liquid-gas interface g(Γ) and the solid-gas interface gsg(Γ) as well as the wetting
energy fw(h,Γ). In Sec. 4.2.3, we present a simple but illustrative example.1

Consistency of Mesoscopic and Macroscopic Approach

The mesoscopic and the macroscopic description of the system need to result in the same
equilibrium contact angle of the drop. Comparing the generalized mesoscopic Young law
given by Eq. (4.18) with the macroscopic one given by Eq. (4.11) in Sec. 4.2.1 gives the
consistency condition

fw(ha,Γa)− Γa∂Γfw|(ha,Γa) = γsg(Γa)− γsl − γ(Γa) = S(Γa). (4.19)

This corresponds to a generalisation of Eq. (2.26) in the presence of surfactant. It relates
the macroscopic equations of state (or interface energies) with the height- and surfactant-
dependent wetting energy.
The surfactant concentrations should be identical in the macroscopic and the mesoscopic
description. Note that Eq. (4.14) implies that the surfactant concentration Γw on the
wedge in the mesoscopic description corresponds to the concentration Γd on the droplet
in the macroscopic description. The consistency of the surfactant concentrations in both
pictures results in another condition: The mesoscopic chemical equilibrium in Eq. (4.17),
i.e. ∂Γg|Γw = ∂Γfw|(ha,Γa) + ∂Γg|Γa , has to coincide with the macroscopic one given by
Eq. (4.3), i.e. ∂Γg|Γw = ∂Γgsg|Γa . The comparison of the two conditions implies

∂Γgsg|Γa = ∂Γfw|(ha,Γa) + ∂Γg|Γa . (4.20)

Introducing the resulting relation for ∂Γfw|(ha,Γa) into Eq. (4.19) results in the condition

fw(ha,Γa) = gsg(Γa)− γsl − g(Γa) (4.21)

for the consistency of the macroscopic and mesoscopic description.
In the next section we explore the consequences of the consistency conditions for a simple
example and derive the form of the surfactant-dependent wettability.1

4.2.3. Application for a Simple Energy

Now, we illustrate our considerations for a simple free energy g(Γ) describing low surfactant
concentrations Γ, before extending the result to arbitrary g. We use a wetting energy that
is a product of height- and concentration-dependent factors implying that the presence of
surfactant only modifies the contact angle but not the adsorption layer height.4

4Note that the results presented in this section have been revised in response to the constructive remarks
of M. Plapp.
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Macroscopic Consideration

First, we consider a droplet in the presence of a low concentration of insoluble surfactant
on the drop and the surrounding substrate in a macroscopic description. In general,
the surfactant will even in the dilute limit affect the liquid-gas and solid-gas interfaces
differently. The different intermolecular interactions result in different molecular areas on
the two interfaces. Therefore, we introduce different effective molecular length scales a
and asg and consider the purely entropic interfacial free energies5

g(Γ) = γ0 + kBTΓ
[
ln(Γa2)− 1

]
(4.22)

gsg(Γ) = γ0
sg + kBTΓ

[
ln(Γa2

sg)− 1
]
. (4.23)

This results in the linear equations of state

γ(Γ) = g − Γ∂Γg = γ0 − kBTΓ (4.24)

γsg(Γ) = gsg − Γ∂Γgsg = γ0
sg − kBTΓ . (4.25)

The macroscopic concentration-dependent interfacial tension γsg(Γ) reflects the fact that
at equilibrium, surfactant is found on the drop as well as on the adsorption layer.
Inserting these interface energies into the macroscopic Young law in the presence of sur-
factants given by Eq. (4.11) results in

cos θeq =
γ0 cos θeq0 − kBTΓa

γ0 − kBTΓd
, (4.26)

where θeq0 = (γ0
sg − γsl)/γ

0 represents the contact angle in the absence of surfactant. The
ratio of the surfactant concentrations on the drop and on the surrounding substrate can
directly be obtained from Eq. (4.5) as

Γd =
a2

sg

a2
Γa =

1

δ
Γa (4.27)

where δ = a2/a2
sg represents the ratio of the different molecular length scales. Depending

on this parameter, adding surfactant to the system has a qualitatively different effect on
the contact angle. We discuss a number of limiting cases:

(A) The surfactant concentrations on adsorption layer and drop are identical (Γd = Γa =
Γ) if dependencies of the interface energies g and gsg on the surfactant concentration
are identical, i.e., a = asg and therefore δ = a2/a2

sg = 1. The dependence of the
equilibrium contact angle θeq on the surfactant concentration is given by

cos θeq =
γ0 cos θeq0 − kBTΓ

γ0 − kBTΓ
. (4.28)

(B) The surfactant prefers to stay on the liquid-gas interface for a � asg and δ =
a2/a2

sg � 1, which implies Γd � Γa. The equilibrium contact angle takes the form

cos θeq ≈
γ0 cos θeq0

γ0 − kBTΓd
, (4.29)

corresponding to the classical surfactant effect in which the equilibrium contact angle
decreases with increasing concentration.

5Note that in this example, Γ describes the surface number density of surfactant per unit area of the free
surface.
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(C) The surfactant prefers to stay on the solid-gas interface for a� asg and δ = a2/a2
sg �

1, which implies Γd � Γa. The equilibrium contact angle

cos θeq ≈ cos θeq0 −
kBT

γ0
Γa (4.30)

increases with increasing surfactant concentration such that this case corresponds to
an autophobing effect.

These limiting cases illustrate that the equilibrium contact angle depends subtly on the
nature of the free energies in the presence of surfactants. This is further investigated
numerically below in Sec. 4.2.3.1

Mesoscopic Consideration

Now, we consider a drop in the presence of a low concentration of insoluble surfactant
on the liquid-gas interface in a mesoscopic description. We employ the ideal gas local
free energy g(Γ) as defined in Eq. (4.22) and the liquid-gas interfacial tension γ(Γ) as
defined in (4.24). As the whole domain is at least covered by a thin adsorption layer in
the mesoscopic description, the free energy of the solid-liquid interface gsg does not occur.
We use the strong assumption that the wetting energy

fw(h,Γ) = χ(Γ)f̂w(h) (4.31)

can be written as the product of height- and concentration-dependent factors f̂w(h) and
χ(Γ) with χ(0) = 1. For this choice, the surfactant-independent adsorption layer height ha

is still given by ∂hf̂w|ha = p as in Sec. 2.1.3. We thus investigate the case of a surfactant
that changes the contact angle but does not affect the adsorption layer height (in the limit
p → 0). Note that, in consequence, the restriction to this ansatz implies that surfactant-
induced wetting transitions characterised by a diverging adsorption layer height can not
be investigated. We expect the ansatz to break down for θeq → 0.6

The equilibrium contact angle θeq is obtained by inserting the product ansatz (4.31) for
the wetting energy fw(h,Γ) into Eq. (4.18). This results in the expression

γ(Γw) cos θeq = γ(Γa) + f̂w(ha) [χ(Γa)− Γa∂Γχ|Γa ] (4.32)

for the contact angle.1

Consistency of Mesoscopic and Macroscopic Approach

The concentration-dependence of χ(Γ) in (4.31) needs to account for the consistency of
mesoscopic and macroscopic picture and can thus not be chosen freely. It can be obtained
by inserting the product ansatz (4.31) for the wetting energy and the entropic local free
energies into the consistency condition (4.21), which yields

χ(Γa) = 1− kBT

f̂w(ha)
ln(δ)Γa . (4.33)

This expression has to hold for any surfactant concentration Γa. Therefore, the surfactant-
dependent wetting energy can be written as

fw(h,Γ) = f̂w(h)

[
1− kBT

f̂w(ha)
ln(δ)Γ

]
. (4.34)

6In general, two (independent) critical exponents characterise the change in wetting behaviour close to the
wetting transition [BEI+09]: They characterise (i) how θeq approaches zero and (ii) how the thickness
of the adsorption layer diverges. Choosing a product ansatz corresponds to the limiting case of zero
critical exponent for the adsorption layer height.
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Let us summarise the macroscopic and mesoscopic description of a drop covered by in-
soluble surfactant: Macroscopically, the situation is characterized by the free energies g,
gsg and the interfacial tension γsl. For a given concentration Γa or Γd, the other Γ and
the contact angle θeq can be determined. Mesoscopically, the interfacial free energy gsg is
not defined. However, it is via the consistency conditions reflected in the wetting energy
fw(h,Γ), that itself is not part of the macroscopic description. In the example treated in
this section, g is determined by a, the macroscopic quantity gsg is determined by asg, and
the concentration-dependent mesoscopic wetting energy fw(h,Γ) depends on both, a and
asg.1

0 100 200 300 400
0

10

20

30

40

h
/l

(a)(a)(a)

δ =0.5

δ =1.0

δ =2.0

0 100 200 300 400

0.0

−0.2

−0.4

−0.6

∂
x
h

100 200 300 400

x/l

0.00

0.02

0.04

0.06

0.08

a
2
Γ

0 100 200 300 400
0

10

20

30

40

h
/l

(b)(b)(b)

a2Γ̄ =0.02

a2Γ̄ =0.04

a2Γ̄ =0.08

0 100 200 300 400

0.0

−0.2

−0.4

−0.6

∂
x
h

100 200 300 400

x/l

0.00

0.05

0.10

0.15

a
2
Γ

Figure 4.4.: Profiles of film height h (top), its spatial derivative ∂xh (middle) and surfactant
concentration Γ (bottom) determined by parameter continuation of the equations on

a finite domain. We study three different ratios δ = a2

a2
sg

of the effective molecular

length scales of the surfactant at a2Γ̄ = 0.04 in (a) and three different mean surfac-
tant concentrations Γ̄ at δ = 2 in (b) while keeping the remaining parameters fixed
to ε1 = 0.2 and ε2 = 0.4. Note that the surfactant concentration Γw occurring in the
mesoscopic description on the wedge corresponds to the concentration Γd occurring
in the macroscopic description on the droplet. (cf. [TSTJ19])

Surfactant-Covered Drops on a Finite Domain

To illustrate the equilibrium described by the model, we perform parameter continuation
runs [DWC+14] on finite domains employing the software package AUTO-07p [DO09] as
discussed in the appendix A.1.2 and analyse the film height and surfactant concentration.
In the following, we consider the wetting energy

fw(h,Γ) = χ(Γ)f̂w(h) = χ(Γ)A

(
− 1

2h2
+

h3
a

5h5

)
, (4.35)
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where f̂w(h) is the wetting energy introduced in Eq. (2.14). Recall that for A > 0,
it describes a partially wetting fluid, i.e., a droplet of finite contact angle sitting on a
stable adsorption layer of height ha. The model is rescaled for the analysis as outlined in
appendix Sec. A.3.1 by introducing the time scale τ = ηl/γ0, the length scale l = ha, and
the rescaled surface concentration Γ̃ = a2Γ. The solutions are then characterised by three
dimensionless parameters

δ =
a2

a2
sg

ε1 =
kBT

a2γ0
and ε2 = −10f̂w(ha)

3γ0
=

A

h2
aγ

0
. (4.36)

These are connected to the ratio of the effective molecular length scales of the surfactant
at the liquid-gas and the solid-gas interface, the ratio between the entropic energetic
contribution of the surfactant and the interfacial tension without surfactant, and the
equilibrium contact angle without surfactant, respectively.
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Figure 4.5.: Surfactant concentration on the droplet (left) and equilibrium contact angle (right)
depending on the surfactant concentration Γa on the adsorption layer. The values
obtained by parameter continuation for the domain size Lx/l = 400 (dashed lines)
and Lx/l = 6000 (dotted lines) are compared to the analytically obtained equilibrium
conditions (solid lines). The contact angle of the profiles is determined from the
curvature of h at the centre of the droplet, assuming a parabolic height profile. The
diamonds represent values extracted from time simulations of the evolution equations
(4.49)-(4.50) introduced in Sec. 4.3 for a domain size Lx/l = 400, however, without
using the approximation (4.42) for the curvature. (cf. [TSTJ19])

Figure 4.4 shows the profiles for film height and surfactant concentration obtained by
parameter continuation of the equations on a finite domain. We exemplarily study three
different ratios δ of the effective molecular length scales of the surfactant while keeping the
remaining parameters fixed to ε1 = 0.2 and ε2 = 0.4. The resulting profiles presented in
Fig. 4.4 (a) confirm the limiting cases discussed in Sec. 4.2.3. The surfactant concentration
is identical on drop and adsorption layer, if the dependencies of the interface energies g
and gsg on the surfactant concentration are identical, i.e., a = asg and thus δ = 1 (solid
blue lines). The contact angle is in this case only slightly modified by the addition of
surfactant to the system. The surfactant prefers to stay on the liquid-gas interface for
a < asg and thus δ < 1 (dashed red lines) and accumulates on the droplet. In this case,
the addition of surfactant slightly lowers the contact angle. If the surfactant prefers to
stay on the solid-gas interface for a > asg and thus δ > 1 (dash-dotted green lines), the
surfactant concentration on the drop is smaller than on the adsorption layer and the con-
tact angle of the droplet increases. The influence of the amount of surfactant for fixed
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δ = 2 is presented in Fig. 4.4 (b). From the height profiles, it can be seen that the contact
angle decreases slightly with increasing surfactant concentration.

For a more thorough analysis of the effect of the amount of surfactant on the equilibrium
solution, the surfactant concentrations on the adsorption layer and on the droplet as
well as the equilibrium contact angle are extracted from the parameter continuation and
compared to the analytical equilibrium conditions obtained by Eqs. (4.26) and (4.27).
Figure 4.5 shows the analytically obtained equilibrium values (solid lines) and the values
extracted from parameter continuation on a finite domain with Lx/l = 400 (dashed lines)
for three different values of δ, using the surfactant concentration on the adsorption layer
Γa as control parameter. The surfactant concentrations measured in the continuation
are very close to the analytical prediction as shown in Fig. 4.5 (a). However, there is
a small discrepancy for the contact angles presented in 4.5 (b). In order to understand
this offset, the domain size in the parameter continuation is increased to Lx/l = 6000
with accordingly adjusted liquid volume. Then, the values obtained on the finite domain
(dotted lines) match the analytical prediction well. For very large domain and droplet
sizes, the analytical predictions for surfactant concentration and contact angle obtained
by parameter continuation perfectly match. The observed deviations in 4.5 (b) can thus
be explained by the finite size of the simulation domain and droplet.1

Generalisation to Arbitrary Interface Energies

In the previous section, we have studied a situation with a low concentration of surfactant
resulting in purely entropic surface free energies g(Γ) and gsg(Γ) and we have established
the form of the function χ(Γ) which guarantees the consistency of the macroscopic and
mesoscopic approach. However, these considerations can be easily generalised to arbitrary
interface energies by writing a free energy on the mesoscale which is consistent with the
macroscale. By identifying χ with

χ =
1

f̂w(ha)
[gsg(Γ)− g(Γ)− γsl] , (4.37)

the free energy functional in (4.12) can be rewritten as

Fmeso[h,Γ] =

∫ {
γsl +

f̂w(h)

f̂w(ha)
[gsg(Γ)− g(Γ)] + ξ [g(Γ)− λΓΓ]− ph

}
dx . (4.38)

We can split the integral (4.38) into three contributions stemming from the droplet Fdrop,
the adsorption layer Fa and the contact line region Fint, i.e., Fmeso = Fdrop +Fint +Fa. In

the droplet away from the contact line, where f̂w(h) << f̂w(ha), the free energy functional
reduces to

Fdrop =

∫
{γsl + ξ [g(Γ)− λΓΓw]− ph} dx . (4.39)

In the adsorption layer, where ξ = 1 and f̂(h) = f̂a, Eq. (4.38) simplifies to

Fa =

∫
{gsg − λΓΓa − pha} dx . (4.40)

Expressions (4.39) and (4.40) are now identical7 to the macroscopic description by the
free energy functional given by Eq. (4.1) in Sec. 4.2.1. The expression for χ(Γ) given in
(4.37) is thus not restricted to simple entropic energies, but instead valid for arbitrary
expressions g if the product ansatz for fw(h,Γ) is used.1

7We can drop the constant pressure term pha in Fa by assuming that outside the adsorption layer h� ha

holds and that the volume constraint on the liquid is determined by the droplet and not the adsorption
layer.
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Figure 4.6.: Sketch of a thin liquid film with height profile h(x, y, t) covered by insoluble surfac-
tants of concentration Γ on a solid substrate surrounded by a gaseous phase. The
projection of the concentration onto the flat solid substrate is given by Γp = ξΓ.

4.3. Dynamical Equations

Up to now, we have studied the equilibrium solutions of droplets covered by an insoluble
surfactant. However, many interesting phenomena connected to the presence of surfactants
like, e.g., the occurrence of a fingering instability in spreading drops, are dynamical effects.
Therefore, we now present a mathematical model for the time evolution of such systems.
At low surfactant concentrations and in situations where the influence of wettability is
negligible, the governing equations for coupled film flow and surfactant dynamics are well
established. The dynamics of a surfactant-covered liquid film is typically described by
coupling an evolution equation for the surfactant concentration to an evolution equation
for the film height (derived from the long-wave approximation of a viscous Stokes flow).
Capillarity and Marangoni stresses are usually included via an equation of state for the
surfactant. Wettability is in some models incorporated via a disjoining pressure [WCM02,
CM07]. However, specific model features (such as nonlinear equations of state) are often
included in an ad hoc fashion at the level of the dynamic equations. This approach neglects
that the system has to respect symmetries imposed by the laws of thermodynamics, as
discussed in [TAP12, TSTJ18]. The recent formulation of the dynamic equations as a
gradient dynamics based on an energy functional [TAP12, TAP16] sheds some light on
the question, how features like a nonlinear equation of state for the surfactant and a
concentration-dependent wettability can be incorporated into a mesoscopic description in
a consistent manner.1

We consider a thin film of height h(x, y, t) which is covered by an insoluble surfactant of
surface number density Γ(x, y, t) on a flat solid substrate surrounded by a gaseous phase as
depicted in Fig. 4.6. To describe the system in a gradient dynamics formulation [TAP12],
it is necessary to formulate the problem in variables that can be varied independently.
Therefore, we introduce the projection of the surface number density onto the flat surface
of the substrate as

Γp(x, y, t) = ξΓ(x, y, t) (4.41)

by using the relation

ds = ξdx with ξ =
√

1 + |∇h|2 ≈ 1 + 1
2 |∇h|2 . (4.42)

Here, ds is the surface element of the curved liquid surface and dx is the surface element
on the euclidean flat plane. The model is based on the free energy functional

Fsurf[h,Γp] =

∫
[fw(h,

Γp

ξ ) + fs(
Γp

ξ )ξ + γsl] dx (4.43)

as introduced in Eq. (4.12) for the mesoscopic description of films covered by insoluble
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surfactants8. Recall that it contains the wetting energy fw and the local free energy of the
surfactant layer, now called fs. It can be used to write evolution equations for h(x, y, t)
and Γp(x, y, t)

∂th = ∇ · [Qhh∇
δFsurf

δh
+QhΓ∇

δFsurf

δΓp
] (4.44)

∂tΓp = ∇ · [QΓh∇
δFsurf

δh
+QΓΓ∇

δFsurf

δΓp
] (4.45)

with the positive definite mobility matrix [TAP12] [WTG+15]

Q =

(
Qhh QΓh

QhΓ QΓΓ

)
=

(
h3

3η
h2Γ
2η

h2Γ
2η

hΓ2

η +DΓ

)
. (4.46)

Performing the variations of the free energy functional gives

δFsurf

δh
= ∂hfw −∇ · [1

ξ (fs − Γ∂Γfs − Γ
ξ ∂Γfw)∇h] (4.47)

δFsurf

δΓp
=

1

ξ
∂Γfw + ∂Γfs . (4.48)

Inserting these variations into Eqs. (4.44)-(4.45), we obtain the following equations in the
long-wave limit ξ ≈ 1

∂th = ∇ ·
[
Qhh∇[∂hfw −∇ · [(fs − Γ∂Γfs − Γ∂Γfw)∇h]] +QhΓ∇[∂Γfw + ∂Γfs]

]
(4.49)

∂tΓ = ∇ ·
[
QΓh∇[∂hfw −∇ · [(fs − Γ∂Γfs − Γ∂Γfw)∇h]] +QΓΓ∇[∂Γfw + ∂Γfs]

]
. (4.50)

The final term of the evolution equation for the film height h(x, y, t) represents the
Marangoni flux.
The gradient dynamics description of liquid layers and drops covered by insoluble or solu-
ble surfactants is discussed more generally in [TAP12]9 and [TAP16], respectively. There,
various thermodynamically consistent extensions of thin-film hydrodynamics (including,
e.g., surfactant-dependent interface energies and wetting potentials that affect not only
hydrodynamic flows but also diffusion fluxes) are discussed and contrasted to approaches
employed in the literature.1

4.4. Spreading of Surfactant-Laden Droplets

In the following section, we briefly discuss some of the properties of spreading droplets
covered by insoluble surfactants as they will serve as a basis to understand the influence of
bio-surfactants on the expansion of bacterial colonies. To that end, we perform numerical
time simulations of the model presented in Sec. 4.3 employing relatively simple choices
for the energetic contributions fw and fs.
If the wetting energy fw(h) does not depend on the surfactant concentration, the evolu-
tion equations (4.49)-(4.50) are valid for any measure of the concentration of surfactant
molecules at the interface [TAP12]. In the following, we chose Γ to be a (dimensionless)
packing fraction.

8There, additional Lagrange multipliers p and λΓ have been used to prescribe a conservation of liquid
and surfactant.

9Note that there a term was missed and a correction is contained in the appendix of [TAP16].

57



4. Thin Liquid Films and Droplets Covered by Insoluble Surfactants

For relatively low densities of surfactant, the energetic contribution of a non-interacting
surfactant can be written as an entropic term of the form

fs(Γ) = γ0 +
kT

a2
Γ[log(Γ)− 1] (4.51)

as already employed in Eq. (4.22) in Sec. 4.2.3. For simplicity, the wetting energy

fw(h) = A(− 1

2h2
+

h3
a

5h5
) (4.52)

is assumed to depend only on the film height, neglecting the influence of the surfactant on
the equilibrium contact angle. This corresponds to the case δ = 1 in Sec. 4.2.3 and the
functional form of fw(h) is identical to Eq. (2.14) introduced for partially wetting simple
liquids. For these choices, the evolution equations (4.49)-(4.50) take the classical form

∂th = ∇ ·
[
h3

3η
∇[∂hf −∇ · (ω∇h)] +

kT

a2

h2

2η
∇Γ

]
(4.53)

∂tΓ = ∇ ·
[
h2Γ

2η
∇[∂hf −∇ · (ω∇h)] +

kT

a2

hΓ

η
∇Γ +

kT

a2
D∇Γ

]
(4.54)

employed in many modelling approaches, if we identify

ω = fs − Γ∂Γfs = γ0 − kT

a2
Γ (4.55)

with the surface tension. In our model, the value of the surface tension thus decreases
linearly with the surfactant concentration and the Marangoni flux is given by

jM =
kT

a2

h2

2η
∇Γ , (4.56)

corresponding to the classical linear Marangoni effect with a coefficient γΓ = −kT/a2.
We follow the approach employed in most hydrodynamical models [MC09] and assume that
the change of the surface tension with the surfactant concentration is small as compared
to the reference surface tension γ0. In consequence, only γ0 is used in the Laplace pressure
term, i.e. ∇ · (ω∇h) ≈ γ0∆h.
The model is analysed in a dimensionless form obtained by introducing the scaling

t = τ t̃ x = Lx̃ y = Lỹ h = lh̃ fw,s = κf̃w,s (4.57)

where tildes indicate dimensionless quantities. For time, energy and vertical and horizontal
lengths, we employ the scales

τ = L2η
κl κ = kT

a2 l = ha L =

√
γ0

κ l . (4.58)

Note that here we assume Γ to be a dimensionless packing fraction of surfactant molecules
at the interface. This scaling results in the dimensionless diffusivity D̃ = η

lD and the
wettability parameter

Ws =
Aa2

h2
akBT

, (4.59)

that defines the relative strength of wetting as compared to the entropic influence of the
surfactant. Similar to the wettability parameter Wm appearing in the thin-film model
for mixtures and suspensions introduced in Sec. 3.2.1, it is connected to the equilibrium
contact angle θeq of passive stationary droplets by θeq ∝

√
Ws so that larger values of Ws
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4.4. Spreading of Surfactant-Laden Droplets

result in a less wettable substrate and larger contact angles. The evolution equations in
the dimensionless form are given in the appendix A.4.1.

In the following, we employ the model to exemplarily demonstrate, how the presence of
surfactant affects the spreading speed of droplets as well as the transversal stability of
spreading fronts.

4.4.1. Spreading of a Droplet

Figure 4.7 shows the spreading of a surfactant-laden droplet on a one-dimensional sub-
strate. The time simulation is initiated with a parabolic liquid droplet covered by surfac-
tant with a constant concentration Γ = 0.3 sitting on an adsorption layer with negligible
surfactant concentration. The initial contact angle is larger than the equilibrium value
determined by Ws.
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Figure 4.7.: Spreading of a passive droplet with Ws = 0.05 covered by insoluble surfactant of
initial concentration Γ = 0.3 and with diffusivity D̃ = 0.01. (a) Height profiles
and (b) surfactant concentration profiles taken at equidistant points in time. The
time evolution of the droplet radius rh (defined by the inflection point of the height
profile) and the surfactant radius rΓ (determined as the point where Γ = 0.01) is
given in normal (c) and logarithmic scaling (d). The contact angle determined from
the curvature in the centre of the drop (solid line) and the analytical equilibrium
value (dotted line) are shown in (e). The domain of length Lx = 2000 is discretised
on Nx = 1024 grid points.
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The evolving height and surfactant concentration profiles are shown in Fig. 4.7 (a) and
(b) at equidistant points in time. During the spreading of the droplet, the surfactant
concentration is nearly constant in the droplet but decays linearly at the edges. The time
evolution of the extension of the height and surfactant profile and contact angle presented
in Fig. 4.7 (c)-(e) shows that the droplet height evolves towards a stationary profile.
Interestingly, the spreading towards this shape is faster than for droplets of simple liquid
(compare to Fig. 3.4 for the spreading of droplets without surfactant) which can best be
seen in the logarithmic plot of the radius (d) which grows slightly faster10 than rh ∝ t1/10,
corresponding to a modification of Tanner’s law [Tan79]. This is caused by outward-
pointing Marangoni fluxes in regions with strong gradients in the surfactant concentration
- mostly at the edges of the droplet – which promote its spreading. The edge of the
surfactant profile (here determined as the point where Γ = 0.01) evolves with rΓ ∝ t1/4

[MC09]. Another interesting feature is the presence of a small ”foot” in the height profile
at a position that roughly corresponds to the leading edge of the surfactant profile. This
has also been discussed in [CM07, CM06, WCM04b] where thin-film models have been
employed to study autophobing and fingering phenomena in surfactant-laden droplets. In
contrast to these models, we do not observe a ”thinning region” between the droplet and
the advancing foot, as we employ a wetting potential that favours an adsorption layer of
constant height. The contact angle of the spreading droplet approaches a value slightly
below the equilibrium value prescribed by Eq. (2.25). This is also a consequence of the
outward-pointing Marangoni fluxes. In the long time limit, when the surfactant reaches
the boundaries of the simulation domain, the surfactant will be distributed homogeneously
in the domain – resulting from the absence of a surfactant-dependence in the employed
wetting energy – and the droplet will reach the equilibrium profile prescribed by Eqs.
(4.16)-(4.18).

4.4.2. Fingering Instability

The presence of surfactant does not only influence the spreading speed of drops as discussed
above, but can also affect their morphology. Marangoni fluxes have been shown to give
rise to a fingering instability in the surfactant-assisted spreading of liquid drops [MC09].
This has first been observed experimentally in [ML81] and subsequently confirmed and
studied in detail, e.g., in [TWS89, HK95, CCB+99, ASLM03, ASLM04]. Transient growth
analysis and numerical time simulations of hydrodynamic thin-film models have been em-
ployed to analyse this instability for films covered by insoluble surfactants [THS90, MT99]
but have also been extended to soluble surfactants with sorption kinetics [WCM04b] and
situations involving micelle formation [CM06]. Warner et al. [WCM02] showed that for
the spreading of drops covered by insoluble surfactant, the thickness disparity between
the spreading droplet and the underlying absorption layer is crucial for the observation
of the fingering instability. Based on a transient stability analysis, the instability can be
explained in terms of mobility gradients arising due to variations in the film thickness in
the thinned region ahead of the drops which then leads to a faster spreading of thicker
regions that subsequently elongate into fingers [WCM04a].

Figure 4.8 shows that also in the model given by Eqs. (4.53)-(4.54), we observe a transver-
sal instability for surfactant-laden fronts spreading towards their equilibrium shape. The
initial condition of the numerical time simulation is given by a (steep) planar front covered
by surfactants with constant concentration Γ = 0.5 on an absorption layer with negligible

10A fit of the data for rh in the initial interval t ∈ [0, 2 × 105] with the function rh = a tb gives a ≈ 33.8
and b ≈ 0.155.
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Figure 4.8.: Transversal instability observed for the spreading of a surfactant-laden planar front.
The top and bottom row show the height and surfactant concentration distributions
at equidistant points in time, respectively. Parameters: Ws = 0.05, D̃ = 0.01. The
domain of size Lx = Ly = 5000 is discretised on Nx ×Ny = 256× 256 grid points.

presence of surfactant11. The front in the height profile (top row) becomes transversally
unstable and small protrusions grow in time, giving rise to thin, ramified fingers. The
instability is less pronounced in the surfactant concentration profile, which shows a nearly
linear decay ahead of the spreading front that is approximately constant in the y-direction.
The formation of fingers can be suppressed by increasing the wettability parameter Ws,
i.e. the contact angle, and thus favouring a straight contact line or by increasing the dif-
fusivity D̃ of the surfactant, smoothing out the gradients in the surfactant concentration
(data not shown).
In contrast to previous modelling approaches, we use a wetting energy that describes a
partially wetting liquid. Therefore, the ’foot’ in the height profile observed in the spreading
of one-dimensional droplets in the previous section (see inset in Fig. 4.7 (a)) is transver-
sally unstable. This leads to the formation of small droplets ahead of the spreading front.
Furthermore, we do not observe a thinned region such that the reason for the transver-
sal instability can in our model not be given by the mobility gradients associated with it.12

4.5. Delayed Coalescence of Surfactant-Laden Droplets

After illustrating the effect of surfactants on the spreading speed and morphology of
droplets, we now briefly discuss how surfactants influence the coalescence of two droplets.
We employ the model presented in Sec. 4.3 to study the delayed coalescence as, e.g., ob-
served experimentally in [BCKS18]. As the fluids used in this experiment completely wet
the substrate, the wetting contribution does not need to be accounted for, i.e., we use

11The initial condition is given by h(t = 0) = 10
[
1− tanh(0.01(x− Lx

4
+ Lx

70
rand(Nx,Ny)))

]
and Γ(t =

0) = 0.25
[
1− tanh(0.01(x− Lx

4
+ Lx

70
rand(Nx,Ny)))

]
, where rand(Nx, Ny) corresponds to a 2D array

filled with random float numbers from the half-open interval [0.0, 1.0).
12Note that, unfortunately, a transversal linear stability analysis similar to the one performed in Sec. 5.4.2

is not possible in this set-up, as the system does not exhibit stationary fronts due to the limited amount
of liquid and surfactant. It is, however, possible for surfactant-covered films flowing down an inclined
plate, where a similar analysis has been performed in [EMC05, GN15].
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fw(h,Γ) = 0. The surfactant is again assumed to be non-interacting and of low concen-
tration and, as previously, we employ the energetic contribution

fs(Γ) = γ0 +
kT

a2
Γ[log(Γ)− 1] (4.60)

where Γ again represents a dimensionless packing fraction of surfactant at the interface. In
this case, the evolution equations (4.49)-(4.50) for the height profile h and the surfactant
concentration Γ take the simple form

∂th = ∇ ·
[
h3

3η
∇(−γ0∆h)

]
+
kT

a2
∇ ·
[
h2

2η
∇Γ

]
(4.61)

∂tΓ = ∇ ·
[
h2Γ

3η
∇(−γ0∆h)

]
+
kT

a2
∇ ·
[
hΓ

η
∇Γ

]
+
kT

a2
D∆Γ . (4.62)

For the analysis, it is expedient to rescale the model by introducing the length scale l
for both, horizontal and vertical direction and the time scale τ = ηl/γ0. By not implying
different length scales in horizontal and vertical directions, the contact angle is not affected
by the rescaling. The solutions are characterised by a dimensionless diffusivity D̃ and the
model parameter

ε1 =
kBT

a2γ0
(4.63)

as already introduced in Eq. (4.36). This parameter represents the effective strength
of the surfactant and defines the variation of the surface tension with the surfactant
concentration.

Figure 4.9 shows one-dimensional time simulations performed with the finite element
method outlined in Sec. A.1.1. Both simulations are initialised with two droplets of iden-
tical volume with a parabolic profile on an adsorption layer of height ha = 1. The left
droplet is initially covered by surfactant. Figure 4.9 (a) shows profiles for the film height
h (top) and surfactant concentration Γ (bottom) taken at equidistant points in time for
an initial condition consisting of droplets with initial height hinit/l = 75 corresponding to
an initial contact angle θinit ≈ 0.29. After contact, coalescence (C) of the droplets can be
observed as they merge into one. The simulation presented in Fig. 4.9 (b) is initiated with
two droplets of the same volume as in (a), but with a smaller initial height hinit/l = 25
corresponding to θinit ≈ 0.03. The droplets thus meet at a smaller contact angle. In this
case, the droplets do not merge and we observe a temporary state of non-coalescence (NC).
This two qualitatively different scenarios can be characterised by tracking the position of
the droplets, defined as the maxima of the height profile. These are shown in Fig. 4.9
(c) for coalescence (black lines) and temporary non-coalescence (blue lines). In the latter
case, the droplet which is initially covered by surfactant (and thus has a lower surface
tension) moves towards the droplet which is initially free of surfactant and ’chases’ it over
the substrate13. The two scenarios can also be distinguished by monitoring the height
of the neck region between the droplets, which is presented in Fig. 4.9 (d). In the case
of coalescence (black line), the height rapidly grows, whereas in the case of temporary
non-coalescence (blue lines), the height stays roughly constant.
The mechanism behind the non-coalescence is illustrated in Fig. 4.10 (a) that shows a
zoom of the neck region. The capillary pressure gives rise to a flow into the neck region
that promotes the coalescence. In the state of temporary non-coalescence, this flow is

13The sharp bend in the time evolution of x(hmax)/l at t/τ ≈ 1.1 × 106 for the case of non-coalescence
(blue line in Fig. 4.9 (c)) results from a shape deformation of the right droplet leading to shift of the
maximum.
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Figure 4.9.: (a) Height and surfactant concentration taken at equidistant points in time for two
coalescing droplets with initial height hinit/l = 75 corresponding to θinit ≈ 0.29. (b)
The contact angle at which the droplets meet is lower for a simulation initialised
with droplets of the same volume but initial height hinit/l = 25 (corresponding to
θinit ≈ 0.03). In this case, the coalescence of the droplets is significantly delayed. (c)
Position of the maxima of the droplets for the scenario of coalescence and temporary
non-coalescence. In the case of coalescence, the droplets merge at t/τ ≈ 1.44 × 107

and afterwards, only one maximum of the height profile is detected. (d) Height of
the neck region between the droplets defined as the minimum of the height profile
between them. The remaining parameters are D̃ = 1 and ε1 = 0.1. The domain is
discretised on Nx = 1024 equidistant mesh points.
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compensated by the Marangoni flow out of the connecting neck. The resulting velocity
profile (black arrows) thus causes a motion of both droplets to the right and prevents
immediate coalescence.
In experiments, the difference in surface tension and the contact angle at the moment of
drop-drop contact have been identified as key parameters [BCKS18]. In our model, these
quantities can be varied by choosing different values for the model parameter ε1 and the
initial contact angle θinit of the droplets while keeping the volume of the droplets and the
initial distance between their contact lines constant. Figure 4.10 (b) shows a parameter
scan, identifying the conditions for temporary non-coalescence in the (ε1−θinit) parameter
space. In qualitative agreement with the experimental observation in [BCKS18], we find
temporary non-coalescence for low contact angles (low θinit) and a low difference in surface
tension (low ε1).

Figure 4.10.: (a) Illustration of the mechanism of temporary non-coalescence using a zoom in the
neck-region of the time simulation for hinit/l = 25 and ε1 = 0.1 at t/τ = 4 × 107

shown in Fig. 4.9. The capillary pressure causes a flow of liquid into the neck
region. This flow is, however, over-compensated by the Marangoni flow pointing
from low surface tension (high surfactant concentration Γ) to high surface tension
(low surfactant concentration Γ). The velocity profile (black arrows) indicates a
flow of both droplets to the right, preventing immediate coalescence. (b) Parameter
scan based on time simulations that identifies the region of coalescence (blue dots)
and temporary non-coalescence (red diamonds) in the (ε1 − θinit) parameter space
at fixed volume of the drops V = 25000. The initial distance of the drops is defined
by the distance of the contact lines is dinit/l = 200. The surfactant diffusivity is
set to D̃ = 0.1. The domain of length Lx = 20000 is discretised on Nx = 1024 grid
points and the state of coalescence is evaluated at t/τ = 10× 107.

To summarise this chapter, we have discussed the modelling of passive droplets cov-
ered by insoluble surfactants. In addition to considerations for equilibrium situations,
we have briefly and exemplarily studied some dynamical effects – namely the spreading
of surfactant-laden droplets, the fingering instability and temporary non-coalescence of
droplets – to illustrate how the presence of surfactants changes the spreading of passive
droplets. After this excursus, we investigate in the following chapter how surfactants influ-
ence the expansion of bacterial colonies where such surface-active molecules are in many
cases produced by the bacteria.
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5. Surfactant-Driven Spreading of Bacterial
Colonies

In chapter 3, we have studied the osmotic spreading of bacterial colonies over substrates.
This mechanism for colony expansion is not driven by the active motion of individual
bacteria, but by the physico-chemical properties of the involved interfaces. As discussed
in Sec. 1.2, bacterial colonies can exhibit various modes of surface colonisation. Another
expansion mechanism which relies on (passive) physical fluxes is the surfactant-driven
spreading of bacterial colonies. In this chapter, we first briefly introduce this mechanism
and discuss experimental observations. Then, we develop and analyse a mathematical
model which is again based on a thin-film description. The model allows us to study
the effect of wettability and Marangoni fluxes on the spreading velocity as well as on the
arising morphology of the bacterial colony.
Note that the results presented in this chapter have in part been published1 in

[TJT18] Sarah Trinschek, Karin John and Uwe Thiele. Modelling of surfactant-
driven front instabilities in spreading bacterial colonies Soft Matter 14.22,
4464-4476 (2018).

5.1. Mechanism and Experimental Findings

For many bacterial strains, the chemical signalling molecules involved in the quorum sens-
ing mechanism have been found to play a double role. Besides allowing for a cell-cell
communication, they act as bio-surfactants at physiologically relevant concentrations. In
chapter 3, we have already discussed that such bio-surfactants can promote the spreading
of bacterial colonies by improving the wettability. In addition, gradients in surfactant
concentration at the edges of the colony induce Marangoni fluxes which further drive its
expansion [FPB+12, DDFMV15, YTST17, CSO05]. If the concentration of bio-surfactants
is high at the centre of the colony (where bacteria produce these molecules) the surface
tension is lowered in this region. This results in an outward-pointing flow along the surface
tension gradient which promotes the spreading of the colony. Genetic and physico-chemical
experiments [FPB+12, YTST17, KSF03, ARK+09, CSO05] show that in Bacillus subtilis
and Pseudomonas aeruginosa colonies, this surface tension gradient – induced by the re-
spective bio-surfactants surfactin and rhamnolipids – is an important driver of colony
expansion. Besides enhancing the spreading speed, Marangoni fluxes may also be respon-
sible for the striking finger-like colony patterns observed in experiments.
Figure 5.1 shows visible light images of an experiment performed by Fauvart et al., that
demonstrates the effect of surfactant production in P. aeruginosa colonies [FPB+12]. The
wild-type strain which is shown in the left part of each image undergoes a rapid surface
colonisation. The colony spreads outwards and forms pronounced fingers. The signal
intensity plots in the lower row of Fig. 5.1 show the existence of a capillary rim at the

1Chapter 5 is based on and closely follows [TJT18]. It contains figures and text adapted from Trinschek et
al. Soft Matter, 14.22, 4464-4476 (2018) © Royal Society of Chemistry (2018) particularly in Sec. 5.1
(p.65 l.18-33 and p.66 l.12-25), Sec. 5.2 (p.68 l.1 - p.70 l.20) and Sec. 5.3 - 5.5.
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5. Surfactant-Driven Spreading of Bacterial Colonies

edge of the spreading colony. In contrast, a mutant strain deficient in surfactant production
shown in the right part of each image is arrested in a small circular shape and is not able
to spread over the substrate, in spite of all other conditions being equal.
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Figure 5.1.: Visible light images (top) of P. aeruginosa colonies at different points in time. The
surfactant producing wild type (left side of the images, WT) spreads outwards and
forms pronounced fingers whereas a mutant strain deficient in surfactant production
(right side of the images, mutant) can not expand. Signal intensity plots (bottom)
along the rectangular regions indicated in the visible light images show the pres-
ence of a pronounced rim for the wild-type colonies. Adapted with permission from
[FPB+12] © Royal Society of Chemistry (2011).

The surfactant-driven spreading is also observed for other bacterial strains: Genetic knock-
out experiments [DRH+06] show that surface-active AHL (N-acyl-homoserine lactone)
molecules are crucial for an efficient expansion of Rhizobium etli colonies. The experi-
mentally observed colony shapes and spreading speeds of about 0.5µm/s agree with those
estimated from a spreading driven by Marangoni forces. Growth measurements verify
that for Paenibacillus dendritiformis colonies, the spreading velocity indeed depends on
the surfactant concentration but not on the motility of the individual bacteria [BSZ+09].
Besides the surfactant-induced instability, also chemotactic effects and nutrient limitation
are possible causes for the dendritic morphology of bacterial colonies (for a critical review,
see [MHH+10]). However, the demonstration that the expansion can be prevented by
counter-gradients of surfactant [FPB+12] strongly hints at the existence of a surfactant-
driven expansion mechanism. The swarming of a colony can be inhibited by the addition
of purified surfactant to the agar substrate as well as by the bio-surfactant production
of nearby colonies [CSO05]. In both cases, the necessary gradients in surface tension are
suppressed. Figure 5.2 shows the growth of P. aeruginosa colonies on an agar substrate,
onto which a ring pattern was stamped using a sterile ring. When this ring is just wetted
with water, the colony swarms over the imprint. When, in contrast, the ring is wetted with
rhamnolipids in a concentration close to the in vivo one, the expansion of the colony is
slowed down and eventually stops [FPB+12]. In this case, the gradients in surface tension
due to the bio-surfactants produced by the bacteria are counterbalanced by the surfactant
in the imprint and the driving Marangoni fluxes are suppressed.1

5.2. Mathematical Modelling

In this section, we introduce a model for the surfactant-driven spreading of bacterial
colonies. The model focuses on the influence of Marangoni fluxes and wettability on the
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1cm

control crel = 1/100 crel = 1/10 crel = 1

Figure 5.2.: Inhibition of swarming in P. aeruginosa colonies. Bio-surfactant is added exoge-
neously in a ring pattern around the colony in increasing concentration crel rela-
tive to the in vivo concentration. At sufficiently high concentration, this results
in a counter-gradient of surfactant that suppresses the outward-pointing Marangoni
fluxes and the expansion of the colony slows down and eventually stops. Adapted
with permission from [FPB+12] © Royal Society of Chemistry (2011).

spreading dynamics and the morphology of the colony. As for the osmotic spreading
mechanism in Sec. 3.2, the description is based on a thin-film model for the corresponding
passive limiting case. Here, we treat the bacterial colony as a thin film of height h(x, y, t)
covered by insoluble surfactant molecules of concentration Γ(x, y, t) and supplement the
hydrodynamic equations with bioactive growth processes for the film height and surfactant
concentration.
Similar thin-film models have successfully been applied in the context of surfactant-
mediated spreading of bacterial colonies to study the movement of a B. subtilis biofilm up
a wall on waves of surfactant [ARK+09] or bacterial swarming in colonies of P. aeruginosa
in a one-dimensional setting [FPB+12]. However, the focus of these studies does not lie on
the effect of Marangoni effects on the morphology of the colony and they do, in particular,
not contain two-dimensional hydrodynamic simulations of the proposed models.

Passive Part of the Model

As mentioned above, the model for surfactant-driven spreading of bacterial colonies is
based on the description of passive thin films covered by insoluble surfactant presented
in Sec. 4.3. Here, the evolution equations (4.49)-(4.50) are supplemented with terms de-
scribing bioactive processes. The focus of the model lies on the study of the interplay
between the bioactive growth and production processes and the passive surface and in-
terface forces. Therefore, we choose relatively simple, well-studied forms for the energetic
contributions that determine the passive part of the dynamics. We again use the wetting
energy fw(h) given by Eq. (2.14) and the interfacial energy fs(Γ) given by Eq. (4.51) that
have already been employed in Sec. 4.4 to study the spreading of passive droplets covered
by insoluble surfactant. They describe situations with a relatively low surfactant density,
for which the assumption of a linear equation of state is reasonable. The wetting energy
is assumed to depend only on the film height, neglecting the influence of the surfactants
on the equilibrium contact angle. This means that variations in the wettability on the one
hand and gradients in the surface tension on the other hand – which can both be induced
by the presence of bio-surfactants – are treated as two separate effects. The separation
of this two physical parameters facilitates the disentanglement of their respective impact
on the growth dynamics. However, care should be taken when comparing to experimen-
tal observations. There, the difference between a bacterial strain deficient in surfactant
production and a surfactant producing strain implies that the latter likely experiences a
higher surfactant concentration resulting in Marangoni fluxes and a higher wettability.
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Bioactive Terms

To describe the surfactant-driven spreading of bacterial colonies, the hydrodynamic model
for passive liquids is extended by biological growth and production processes. Over time,
the bacteria in the colony grow and multiply by cell division and possibly produce poly-
meric substances and osmolytes. As discussed in chapter 3, this processes may give rise
to a difference of the osmotic pressures in the film and in the underlying moist substrate
which results in the influx of water into the colony [SAW+12]. We assume that this influx
is fast as compared to the growth processes. Then, the biomass production and osmotic
influx can be written as one effective growth term G(h) as discussed in Sec. 3.2.2. Recall
that the resulting biomass growth term2 is of the form

G(h) = gh

(
1− h

h?

)
fmod(h)

with fmod(h) =
(

1− hu

h

)(
1− φeq

)[
1− exp

(
φeq

ha − h
ha

)] (5.1)

and the growth rate g.
The second bioactive process that needs to be included in the model is the production of
surfactant molecules by the bacteria. As the produced surfactant quickly diffuses to the
liquid-air interface due to the small height of the colony as compared to its lateral ex-
tension, we assume the production of surfactant P (h,Γ) to be proportional to the biofilm
height. In addition, we assume that the production decreases with increasing surfactant
concentration and approaches zero when the local surfactant concentration reaches a lim-
iting value Γmax. This results in the production term

P (h,Γ) = ph (Γmax − Γ) Θ(Γmax − Γ) Θ(h− hu) (5.2)

where the step-functions Θ are introduced to ensure that the production only takes place
inside the colony (where the film height exceeds that value hu) and not in the adsorption
layer. In addition, they prevent a degradation of the surfactant if the concentration Γmax

is overcome [TJT18].3

We include biomass growth and surfactant production as additional non-conserved flux
terms into the evolution equations (4.49)-(4.50) describing the passive system. Using the
entropic energy of the surfactant given by Eq. (4.51) and the mobility matrix given in Eq.
(4.46) results in the following model

∂th = ∇ ·
[
h3

3η
∇(∂hfw − γ0∆h)

]
+
kT

a2
∇ ·
[
h2

2η
∇Γ

]
+G(h) (5.3)

∂tΓ = ∇ ·
[
h2Γ

3η
∇(∂hfw − γ0∆h)

]
+
kT

a2
∇ ·
[
hΓ

η
∇Γ

]
+
kT

a2
D∆Γ + P (h,Γ) . (5.4)

for the surfactant-driven spreading of bacterial colonies [TJT18].1

Non-Dimensional Form of the Equations

To obtain a dimensionless form of the model (5.3)-(5.4) and thereby facilitate the analysis,
we employ the same scaling as for the passive surfactant model in Sec. 4.4, namely

t = τ t̃ x = Lx̃ y = Lỹ h = lh̃ fw,s = κf̃w,s (5.5)

2Recall that, as discussed in Sec. 3.2.2, this choice for G(h) corresponds to a logistic growth term that
accounts for the fact that the biomass production ceases if the biofilm becomes too thick and reaches
the height h?. Furthermore, a small threshold value of biomass φeqhu needs to be overcome to initiate
growth.

3In the numerical calculations, they are approximated by Θ(x) ≈ 0.5[1 + tanh(100x)].
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where a tilde indicates dimensionless quantities. Note that Γ describes the (dimensionless)
packing fraction of surfactant at the interface. Employing the scaling

τ = L2η
κl κ = kT

a2 l = ha L =

√
γ0

κ l , (5.6)

for time, energy and vertical and horizontal lengths, respectively, results in the dimension-
less biomass growth rate g̃ = τg, the dimensionless surfactant production rate p̃ = τ lp ,
the dimensionless diffusivity D̃ = η

lD and the wettability parameter

Ws =
Aa2

h2
akBT

, (5.7)

as already given in Eq. (4.59). Recall that it is connected to the equilibrium contact angle
θeq of passive stationary droplets (without bioactive terms) by θeq ∝

√
Ws so that larger

values of Ws result in a less wettable substrate and larger contact angles. The evolution
equations in the dimensionless form are given in appendix A.4.1. If not stated otherwise,
we fix the parameters to g̃ = 10−5, p̃ = 10−6, h̃? = 20 and D̃ = 0.01 throughout the
analysis and focus on the effect of the wettability parameterWs and the maximal surfactant
concentration Γmax on the growth of the colonies. These two parameters capture, e.g., the
difference between a surfactant-producing bacterial strain and a mutant strain deficient
in surfactant production.1

Experimental Calibration

Bacterial colonies are complex living systems which can in general only be expected to be
described qualitatively by a simple model, not quantitatively. However, in the following
we estimate the parameters and scales from an exemplary calibration to experiments on
the spreading of P. aeruginosa or B. subtilis colonies as described, e.g., in Refs. [FPB+12,
ARK+09]. Using the parameters summarised in Table 5.1 results in the scales

τ ≈ 0.03s l ≈ 1µm L ≈ 10µm κ ≈ 4 · 10−4 J

m2
. (5.8)

surface tension of water γ0 ≈ 70mN/m
height of the wetting layer ha ≈ 1µm
viscosity of the colony η ≈ 0.1Pas
typical surfactant length scale a ≈ 3nm
thermal energy at 25° kBT ≈ 4 · 10−21J

Table 5.1.: Parameters used to determine the time, length and energy scales in the model for
surfactant-driven spreading of bacterial colonies. (cf. [TJT18])

Then, the dimensionless growth rate g̃ = 10−5 corresponds to a dimensional value of
g = g̃

τ ≈ 1.2 1
h which fits well to the experimentally obtained doubling time that is – de-

pending on the growth conditions – in the order of 30min− 1.5h [LW12]. A dimensionless
limiting height h̃? = 20 corresponds to a dimensional value h? = h̃?l ≈ 20µm which is in
accordance with the experimentally measured value of 15− 20µm in Ref. [FPB+12]. We
use a dimensionless production rate p̃ = plτ = 10−6, which results in a maximal production
rate4 of pΓmax ≈ 1 . . . 20 s−1 m−1 using the scales for l and τ above and Γmax = 0.02 . . . 0.5.

4Comparing with Ref. [ARK+09], the surfactant production can be roughly estimated from the change
of the surface tension over time dγ

dt
= 0.2 mN

m
1
h

= kBT
a2

dΓ
dt

= kBT
a2

pΓmaxh. Using a film thickness of
hmax = 20µm, we find a surfactant production rate constant pΓmax = 6 s−1 m−1 for a B. subtilis
colony, which fits well with our estimated pΓmax.
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dimensionless value corresponding
dimensional value

literature value

growth rate g̃ = lτp = 10−5 g = 1.2 1
h

doubling time of
P. aeruginosa [LW12]:
30min-1.5h

colony height h̃ = h
l = 20 h = 20µm colony height of a

P. aeruginosa colony
[FPB+12]: 15− 20µm

max. surfactant
production rate

p̃Γmax = 0.02...0.5 ×
10−6

for Γmax = 0.02..0.5

pΓmax = 1...20 1
sm

surfactant production
rate in a B. subtilis
biofilm [ARK+09], es-
timated from the drop
in surface tension:
pΓmax = 6 s−1 m−1

translational
diffusion
coefficient

D̃ = DTτ/L
2 = 0.01

(diffusivity)

DT = 3× 10−11 m2 s−1

(diffusion coefficient)

diffusion coefficient
calculated for sur-
factin on a wa-
ter/hexane interface
[Nic03]: 1.8 . . . 6.7 ×
10−10 m2 s−1

Table 5.2.: Estimation of the parameters in the model for surfactant-driven spreading of bacterial
colonies for the scaling given in Eq. (5.8) and comparison to values found in the
literature. (cf. [TJT18])

The chosen dimensionless parameter D̃ = 0.01 = DTτ/L
2 = κDτ/L2 corresponds to a

translational diffusion coefficient DT = 3× 10−11 m2 s−1. This is lower than the diffusion
coefficient calculated for surfactin on a water/hexane interface (1.8 . . . 6.7× 10−10 m2 s−1

[Nic03]) but still in an acceptable range. The estimated parameters are summarised and
compared to literature values in Table 5.2 [TJT18].

In the next sections, we analyse the presented model, focusing on the influence of Ma-
rangoni fluxes and wettability on spreading dynamics and morphology. First, we perform
time simulations of initially circular colonies at different parameter values Ws and limiting
surfactant concentrations Γmax. These serve as illustrative examples and can already be
employed to gain a graphic representation and a qualitative understanding of the spreading
behaviour. Next, the observed effects are studied for planar fronts by parameter continu-
ation techniques [DO09]. This yields a more technical description that allows, e.g., for the
analysis of the emerging front instability by a transversal linear stability analysis. In the
last part of the section, counter-gradients of surfactant are exemplarily tested as a strategy
to prevent the expansion of bacterial colonies, providing an illustrative application of the
model.1

5.3. Four Types of Spreading for Colonies in Radial Geometry

In a first step, the dynamics of colony growth in the model is studied by performing
two-dimensional numerical time simulations of Eq. (5.3)-(5.4) in the dimensionless form
and in a circular geometry. These simulations reveal the influence of the wettability
and Marangoni fluxes on the spreading speed and morphology of the emerging bacterial
colonies. We employ a finite element scheme as outlined in appendix A.1.1 on a simulation
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domain Ω = [−Lx, Lx] × [−Ly, Ly] with Lx = Ly = 5000 discretised on a regular mesh
using Nx×Ny = 512× 512 grid points. On the boundaries, no-flux conditions are applied
for the film height and the surfactant concentration. The initial condition is given by
a small circular bacterial colony with surfactant concentration Γmax on the colony and
0.05× Γmax on the surrounding substrate.

The time simulations of (5.3)-(5.4) show that – depending on the wettability and the
strength of the Marangoni fluxes in the system – four qualitatively different types of
spreading behaviour can be observed for colonies growing in a circular geometry [TJT18].
These are shown in Fig. 5.3 (a) to (d) for different choices of the parameters Ws and
Γmax. The respective top left plots show the contour lines of the colony height (defined by
h(x, y) = 0.5h?) at equidistant points in time. The film height and surfactant distribution
at the end of the simulation are shown in the respective top and bottom right plots. The
respective bottom left plots in Fig. 5.3 give the time dependence of the mean values of the
maximal and minimal radii of the colony to characterise its shape evolution.
We first discuss the spreading behaviour of the system for low surfactant concentrations
(low Γmax). Consistent with the biofilm spreading model without surfactant presented in
chapter 3, the system shows a transition between continuously expanding and arrested
colonies depending on the wettability parameter Ws. For high wettability and thus small
equilibrium contact angles (low Ws, Fig. 5.3 (c)), the bacterial colony first swells vertically
and horizontally until it reaches the limiting film height h?. Subsequently, it expands hor-
izontally over the substrate with a constant speed and a circular (type C) colony shape.
In contrast, at low wettability and thus high contact angle (high Ws, Fig. 5.3 (d)), the
height evolves towards a stationary profile of fixed extension and contact angle and the
spreading of the bacterial colony is arrested (type A). This is consistent with the spreading
dynamics observed in the biofilm model discussed in Sec. 3.3 and Sec. 3.4.
For both spreading modes, the production of a significant amount of surfactant (high Γmax)
improves the ability of the bacterial colony to expand outwards over the substrate. It gives
rise to a higher surfactant concentration Γ(x, y) at the centre of the colony than on the
surrounding substrate. The emerging surface tension gradients induce outward-pointing
Marangoni flows that facilitate the expansion of the colony over the substrate [TJT18].
For a continuously spreading colony, these Marangoni flows increase the spreading speed
and also induce modulations of the circular colony shape (low Ws, Fig. 5.3 (a)). How-
ever, eventually the growth of these undulations slows down. For large times, the tips and
troughs of the front line translate with a similar velocity over the substrate, which can also
be seen in the time evolution of the mean values of the maximal and minimal radii of the
colony shape. With the scales presented above in Sec. 5.2, the numerically measured di-
mensionless expansion rate of roughly 5×10−4 corresponds to a speed of about 10µm/min,
which compares well to the value of 5− 40µm/min found in experiments [FPB+12].
For the initially arrested spreading at low wettability (high Ws in Fig. 5.3 (b)), the con-
sequences of the surfactant production are even more drastic: It enables a horizontal
expansion of the colony by the formation of pronounced fingers (type F). At large times,
the tips of the fingers expand outwards with a constant velocity whereas the troughs of
the front line stay behind at a fixed position.
A similar distinction of two types of front instabilities, for which the shape of the evolving
front modulations becomes stationary (type M) or corresponds to continuously growing
fingers (type F), has been made for advancing coating films driven by gravity or shear
stress [ESR00].

The mechanism behind the formation of pronounced fingers in the colony shape becomes
clear when studying the distribution of surfactant on the colony and the surrounding sub-
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Figure 5.3.: Panels (a) to (d) show the four different types of spreading that may occur depending
on the wettability parameter Ws and the maximal surfactant concentration Γmax.
The respective bottom left plots show the time dependence of the mean values of
the maximal and minimal radii of the colony while the respective top left plots show
snapshots of the h(x, y) = 0.5h? contour line at points in times indicated by square
symbols in the bottom left plots. The respective top and bottom right plots show
the film height and surfactant distribution, respectively, at the end of the simulation
on a domain with Lx = Ly = 5000. Without surfactant, the shape of the bacterial
colony is circular. At high wettability (c), the colony expands over the substrate
with a stable circular front. At low wettability (d), the spreading of the colony is
arrested. If the colony produces a significant amount of surfactant Γmax, spreading
is promoted by Marangoni fluxes and the circular front becomes unstable. At high
wettability (a), the front continuously advances but is modulated. At low wettability
(b), the colony forms pronounced fingers which expand over the substrate while the
troughs stay arrested. (cf. [TJT18])
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strate in more detail. Figure 5.4 shows a 3D top-view of the height profile of a colony
with pronounced fingers at t = 107τ which is colour-coded with the respective surfactant
concentration. Due to the limiting film height h̃? in the biomass growth term, the centre
of the colony is relatively flat. In agreement with the experimental observation [FPB+12],
the height profile has a rim at the edges of the colony that is particularly pronounced at
the tips of the fingers. The surfactant concentration allows us to understand the devel-
opment of expanding fingers in the colony shape. In the troughs close to the centre of
the colony, the surfactant concentration is overall high. In this region, the gradients in Γ
are small, resulting in only small Marangoni fluxes that are not sufficient to overcome the
arrested spreading behaviour. In contrast, at the tips of the fingers, gradients in Γ and
thus Marangoni fluxes are strong and drive the tips further outwards. If the diffusion of
the surfactant is not too strong, this gradient in surfactant concentration is maintained
during the spreading and the fingers can continuously expand over the substrate [TJT18].

Note again that in experiments, the presence of surfactants is expected to give rise to
Marangoni flows but also to increase wettability. Therefore, a real surfactant producing
strain has a higher surfactant concentration Γmax and a higher wettability Ws than a
bacterial strain deficient in surfactant production.
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Figure 5.4.: Details of the colony spreading with pronounced fingers for Ws = 0.1 and Γmax = 0.5.
The height profile h(x, y) at t = 107τ is shown as a top-view on a domain with
Lx = Ly = 5000 and colour-coded with the respective surfactant concentration

Γ(x, y). The gradient in surface tension and thus the Marangoni flux ~jM is strong at
the tips of the fingers, driving them further outwards. In the troughs, the surfactant
concentration Γ is overall high which results in weak Marangoni fluxes that do not
suffice to overcome the arrested spreading. (cf. [TJT18])

To obtain a more complete picture of the front instability, we briefly investigate the influ-
ence of the remaining dimensionless parameters and test the robustness of the observed
phenomena. A simulation with parameters Ws = 0.05, Γmax = 0.5, g̃ = 10−5, p̃ = 10−6,
h̃? = 20 and D̃ = 0.01 is used as a reference and each parameter is individually varied.
Fig. 5.5 shows time simulations which are initiated with a quarter of a small bacterial
colony with surfactant concentration Γmax on a domain Ω = [0, 5000]× [0, 5000] discretised
on an equidistant mesh of Nx ×Ny = 256× 256 grid points.
A larger biomass production rate g̃ reduces the formation of fingers (see Fig. 5.5 (a)). This
can be attributed to a decrease of the relative importance of Marangoni flows versus the
tendency of the biomass to expand via growth, provided the wettability of the substrate
is favourable for expansion. A similar type of argument holds when increasing the max-
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Figure 5.5.: Influence of the parameters g̃, h̃?, D̃ and p̃ on the morphology of bacterial colonies ex-
panding via the surfactant-driven spreading mechanism. The contour line h(x, y) =
0.5h? is shown at equidistant points in time with ∆t/τ = 106. In each run, one
parameter is varied as compared to a reference parameter set (middle row) with
Ws = 0.05, Γmax = 0.5, g̃ = 10−5, p̃ = 10−6, h̃? = 20 and D̃ = 0.01 on a domain
with Lx = Ly = 5000. (cf. [TJT18])

imal film height h∗ which also weakens the instability (see Fig. 5.5 (b)). The flux that
drives the colony spreading is composed of different contributions, which either favour a
round colony expansion like the film flow and the biomass growth or trigger the instability,
like the Marangoni flux. These flux contributions have a different, film height-dependent
mobility such that a change in film height can affect the respective time scales and thus
the trade-off between the different fluxes. A change of the surfactant diffusion D̃ or the
production rate p̃ does not drastically change the morphology of the colonies (see Fig. 5.5
(b) and (c), respectively).1

5.4. Spreading of Planar Fronts

The time simulations for the growth of bacterial colonies in a circular geometry have
identified the wettability parameter Ws and the amount of surfactant Γmax as two key
parameters which influence the spreading speed and morphology. To gain a deeper un-
derstanding of the system and the spreading dynamics , we next investigate planar fronts.
In this geometry, a transformation into the co-moving frame that moves with the same
velocity as the front is possible, which greatly facilitates the analysis.

5.4.1. Front Velocity and Shape

For planar fronts, it is possible to perform a more systematic analysis of the system
employing parameter continuation. This technique allows for a direct observation of the
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5.4. Spreading of Planar Fronts

influence of Ws and Γmax on the spreading of the colony. To that end, the evolution
equations (5.3)-(5.4) are transformed into the co-moving coordinate system with a constant
velocity v. This transformation yields

∂th = ∇ · [Qhh∇[∂hfw − γ∆h] +QhΓ∇(∂Γfs)] +G(h) + v∂xh

= F1(∇, v)[h,Γ]
(5.9)

∂tΓ = ∇ · [QΓh∇[∂hfw − γ∆h] +QΓΓ∇(∂Γfs)] + P (h,Γ) + v∂xΓ

= F2(∇, v)[h,Γ] ,
(5.10)

where we introduced F1,2(∇, v) as a short hand notation for the nonlinear operators
defined by the right-hand sides of the evolution equations (5.9)-(5.10). Planar fronts
(h0(x),Γ0(x)) which only depend on one spatial coordinate x and move with a constant
profile and velocity v in the resting coordinate frame now correspond to stationary solu-
tions

∂th0(x) = F1(∇, v)[h0(x),Γ0(x)] = 0 (5.11)

∂tΓ0(x) = F2(∇, v)[h0(x),Γ0(x)] = 0 . (5.12)

in the co-moving frame. In the parameter continuation analysis, we fix the surfactant
concentration far away from the colony to a small but finite value.
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Figure 5.6.: Front profiles and velocity in the surfactant-driven spreading of planar bacterial
colonies. (a) and (b) show the front profiles of film height h and surfactant concen-
tration Γ for a parameter combination corresponding to the circular colony spreading
at low surfactant concentration (type C for Ws = 0.03, Γmax = 0.02) and spread-
ing with a modulated morphology at higher surfactant concentration (type M for
Ws = 0.03, Γmax = 0.5). (d) and (e) show the influence of the wettability on the
front profiles. The front velocity v strongly depends on the maximal surfactant
amount Γmax (c) as well as on the wettability parameter Ws (f). (cf. [TJT18])

Figure 5.6 shows the influence of the maximal surfactant concentration Γmax (top row)
and the wettability parameter Ws (bottom row) on the front profile and its velocity. For
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5. Surfactant-Driven Spreading of Bacterial Colonies

the studied parameter combinations, the height profile of the front shows a typical capil-
lary rim. Behind the spreading front, film height and surfactant concentration reach their
respective saturation values h? and Γmax. The surfactant diffuses in front of the moving
colony, resulting in a linear decay. As discussed more generally in [WJ01], this is a typical
profile for a moving source of surfactant.
Figures 5.6 (a) and (b) show the front profiles (h0(x),Γ0(x)) for the parameter combina-
tions corresponding to modulated (M) and circular (C) spreading in the radial geometry
(Fig 5.3) which differ in the parameter value of Γmax. Although the height profile h does
not show strong differences, the velocity of the front (see Fig. 5.6 (c)) is strongly affected
by the maximal surfactant concentration Γmax. For a bacterial colony with very small
Γmax, corresponding e.g. to a mutant strain deficient in surfactant production, the front
velocity is roughly a factor of two smaller than in a colony with Γmax = 0.5. This indicates
that the Marangoni effect indeed strongly contributes to the outward flux driving the ex-
pansion of the colony. Figures 5.6 (d)-(f) show the influence of the wettability parameter
Ws on the front profile and its velocity. In analogy to the transition from continuous to
arrested spreading observed in biofilms without Marangoni flows discussed in Sec. 3.4, the
colony expansion slows for low wettability (large Ws).

For completeness, we also briefly investigate the effect of the remaining parameters g̃,
h̃?, D̃ and p̃ on the front profile and the spreading velocity. The analysis presented in
Fig. 5.7 shows that the velocity is strongly influenced by the biomass production rate g̃
and the colony height h̃?. In contrast, a variation of the surfactant diffusivity D̃ and the
production rate p̃ only have a small effect on the velocity.
The time simulations for radial geometry discussed in Sec. 5.3 demonstrate that the pres-
ence of surfactant not only affects the spreading velocity of the colonies, but also influences
its morphology. We focus on this aspect in the next section.1

5.4.2. Transversal Linear Stability Analysis

Now, we study the influence of surfactant production on the morphology of bacterial
colonies by performing a transversal linear stability analysis. We employ the ansatz

h(x, y, t) = h0(x) + εh1(x) exp(ikyy + σt) (5.13)

Γ(x, y, t) = Γ0(x) + εΓ1(x) exp(ikyy + σt) (5.14)

with ε � 1 for film height and surfactant profile. This ansatz corresponds to fronts
consisting of a y-invariant base state given by the stationary fronts (h0(x),Γ0(x)) plus a
small perturbation with x-dependence (h1(x),Γ1(x)) which is modulated in the y-direction
with a wavenumber ky and grows or decays exponentially in time with the rate σ. Inserting
this ansatz into the evolution equations (5.9)-(5.10) results to O(ε) in the linear problem

σh1(x) = F ′1h|h0(x),Γ0(x)h1(x) + F ′1Γ|h0(x),Γ0(x)Γ1(x) (5.15)

σΓ1(x) = F ′2h|h0(x),Γ0(x)h1(x) + F ′2Γ|h0(x),Γ0(x)Γ1(x) , (5.16)

for the eigenvalues σ and the eigenfunctions (h1(x),Γ1(x)). F ′i,h and F ′i,Γ are operators
denoting the Fréchet-derivatives of the non-linear operator Fi with respect to h and Γ,
respectively. The linear stability of the front (h0(x),Γ0(x)) can now be determined from
the largest eigenvalue σ. It indicates if the perturbation grows (for Re(σ) > 0) or decays
(for Re(σ) < 0) in time. We again employ continuation techniques to solve the linear
eigenvalue problem (5.15)-(5.16). To that end, the set of equations for the stationary
front profiles h0(x) and Γ0(x) analysed in Sec. 5.4.1 is supplemented by a set of equations
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Figure 5.7.: Effect of the parameters g̃, h̃?, D̃ and p̃ on the profile and velocity of planar fronts. A
simulation with the parameters Ws = 0.03, Γmax = 0.5, g̃ = 10−5, p̃ = 10−6, h̃? = 20
and D̃ = 0.01 is used as a reference and each parameter is varied individually. The
front velocity is shown in the top row. For two parameter values marked by red and
blue circles in the velocity plot, the corresponding height and surfactant profiles are
shown in the middle and bottom row.
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Figure 5.8.: Eigenvalues obtained by the transversal linear stability analysis for planar fronts
with Ws = 0.03. The dispersion relation shown in (a) monotonically decreases for
Γmax = 0.02 (red) but has a maximum σmax > 0 for Γmax = 0.5 (blue) indicating
a front that is unstable with respect to transversal perturbations. Following the
maximum of the dispersion relation in dependence of Γmax shown in (b) as black
solid line reveals that for Ws = 0.03, the largest eigenvalues σmax is positive for
Γmax > 0.0268 and the front profile is thus unstable in this parameter regime. The
dot-dashed green line gives the wavenumber kmax corresponding to the maximum of
the dispersion relation. (cf. [TJT18])

for the eigenfunctions. These are assumed to fulfill the same boundary conditions as the
base state. The transversal wave number ky and eigenvalue σ are treated as parameters
in a pseudo-arclength continuation. This approach is presented in tutorial form in Ref.
[Thi15b] and outlined for this particular model in appendix A.5.

We again analyse the front profiles for two parameter sets that differ in the maximum of
the surfactant concentration Γmax and correspond to the modulated (M) and circular (C)
spreading mode in the radial geometry (Fig. 5.3). Recall that the respective base states
(h0(x),Γ0(x)) are displayed in Fig. 5.6. To analyse the transversal stability of these fronts,
we determine the corresponding dispersion relations σ(ky). For the parameter set (C) with
a low surfactant concentration Γmax = 0.02, the dispersion relation decays monotonically
(red solid line in Fig. 5.8 (a)). The largest eigenvalue is σmax = 0 at ky = 0 and the
front is thus transversally stable. The eigenfunction (h1(x),Γ1(x)) corresponding to the
largest eigenvalue (red solid lines in Fig. 5.9) is the neutrally stable (Goldstone) mode
representing the translational symmetry of the equations. As expected, it is identical to
the spatial derivative of the front profiles (data not shown) [TJT18].
For the other parameter set (M) corresponding to the situation that a significant amount
of surfactant Γmax = 0.5 is produced by the bacteria, the dispersion relation is shown in
Fig. 5.8 (a) with blue dashed lines. The largest eigenvalue is positive at a finite wavenum-
ber (σmax = 3.98×10−7 at ky = 4.89×10−3) and the front is thus transversally unstable.5

These values are consistent with linear results extracted from the fully nonlinear time
simulation in a planar geometry (data not shown). The eigenfunctions corresponding to
the largest eigenvalue (blue dashed lines in Fig. 5.9) are strongly localised in the front
region. To determine at which surfactant concentration the transition from transversally
stable to unstable fronts takes place, we follow the maximum of the dispersion relation

5For comparison, the value of the eigenvalue σ(ky = 0) at zero wavenumber ranges from 10−14.. 10−12 in
the continuation runs which can be used as an estimate for the error.
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Figure 5.9.: Eigenfunctions obtained by the transversal linear stability analysis for planar two-
dimensional fronts with Ws = 0.03. The eigenfunctions corresponding to the
transversal wave number ky with the largest eigenvalue σmax are shown in (a) for
the height profile and in (b) for the surfactant concentration with red solid lines for
Γmax = 0.02 and blue dashed lines for Γmax = 0.5, respectively. The corresponding
base states that have already been presented in Fig. 5.6 are given with grey lines for
comparison. (cf. [TJT18])

σmax while varying Γmax (Fig. 5.8 (b )). We find that σmax is positive and the front profile
thus transversally unstable for Γmax > 0.0268 if the wettability parameter is Ws = 0.03.
The transversal linear stability analysis thus confirms the observation made in the time
simulations: If a significant amount of surfactant is being produced by the bacteria, the
colony spreads with a transversally unstable front profile and modulations of the contact
line occur which (at least initially) grow in time [TJT18].

The front profiles in our model for the spreading of bacterial colonies exhibit some of the
main characteristics of fronts occurring in models for the surfactant-driven spreading of
passive thin liquid films: For instance, we find a capillary rim near the edge of the front
and a linear decay of the surfactant concentration in front of the drop. However, as al-
ready discussed in Sec. 4.4.2, we do not observe the typical thinned region in front of the
advancing colony which is often assumed to be the cause for the front instability occurring
in the surfactant-driven spreading of passive drops on horizontal substrates [MC09]. In-
stead, the analysis of our model for surfactant-driven colony spreading shows similarity to
a surfactant-covered drop sliding down an inclined substrate [EMC04, EMC05, GN15]. In
this set-up, the spreading of the drop is – in addition to the Marangoni fluxes – driven by
gravity, that acts as a body force on the liquid. In our model, the driving is realised by the
non-conserved production of biomass. The fingering instability and the eigenfunctions of
the unstable mode observed in our model strongly resemble the transversal perturbations
found for sliding drops in a constant-flux configuration in [EMC05] which are also located
at the front edge rather than in the region ahead of it.1
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5.4.3. Morphological Phase Diagram

The analysis of planar fronts is completed by a comparison of the results from the transver-
sal linear stability analysis with time simulations for planar fronts. The simulations are
performed on a domain Ω = [0, Lx]× [0, Ly] with Lx = 3000 and Ly = 6000 discretised on
an equidistant Nx×Ny = 256×512 mesh with the same integration method and boundary
conditions as applied in Sec. 5.3. The initial condition consists of a planar front given
by the corresponding stationary front profile (h0(x),Γ0(x)) plus small random noise for
each parameter set. The end time of the simulation is Tend = 107τ . For initially planar
fronts, we find three different spreading regimes as shown in Fig. 5.10: Moving planar
fronts (red triangles), moving modulated fronts (blue squares) for which the transversal
perturbations grow in time and arrested planar fronts, which do not advance (grey dots)
[TJT18]. A helpful measure to distinguish these spreading modes is the height profile
integrated in the direction of front movement Iy =

∫
h̃(x̃, ỹ)dỹ that is shown in Fig. 5.10

(d), (b) and (e) at equidistant points in time for the three types of spreading, respectively.
Concerning the influence of wettability and surfactant production on the spreading of the
colony, we obvserve the same tendencies as in the circular geometry studied in Sec. 5.3:
At low surfactant concentrations, the front spreads with a circular colony shape for a
small contact angle (low Ws) but its expansion is arrested for high wettability parameters
Ws. An increased surfactant concentration leads to transversal instabilities resulting in a
modulated front.
These findings are now compared to the predictions obtained from the transversal lin-
ear stability analysis. We identify the region in which the ansatz (5.13)-(5.14) of moving
fronts (stationary h and Γ in the co-moving frame) is valid. The breakdown of the ansatz
of stationary fronts manifests itself in a positive eigenvalue for ky = 0, corresponding to
an unstable profile. In the grey region to the right of the dashed line in Fig. 5.10, we
do not expect stationary moving fronts. This is in accordance with the arrested spread-
ing observed in time simulations for these parameter values. Note that in this situation,
the height evolves towards a stationary profile but the produced surfactant still spreads
outwards. The arrested growth mode does therefore not correspond to a stationary front
with v = 0 for both fields h and Γ.

The strength of the transversal instability of the moving fronts is in the transversal linear
stability analysis predicted by the magnitude of largest eigenvalue σmax. To the left of the
dotted line in Fig. 5.10, the eigenvalue is larger than σmax = 10−8 and the modulation
of the front is expected to be observable within our simulation time Tend/τ = 5 · 106..107.
This is in good agreement with the time simulations.

Interestingly, the formation of pronounced fingers cannot be observed for time simulations
initiated with planar fronts that are only slightly perturbed. In general, the transversal
instability appears to be much weaker than in the radial geometry. This observation can
be explained by a dilution effect of the surfactant: In the radial geometry, the produced
surfactant is diluted more strongly when it spreads outwards from the colony as compared
to the planar front. In consequence, the surfactant profile decays faster with the distance
to the front. This results in stronger gradients in surfactant concentration and larger
Marangoni flows driving the transversal instability. To test if the fingering mode still exists
in the planar geometry, we perform time simulations with an initial condition consisting of
a planar front with a finite-size perturbation in the form of a small finger as shown in Fig.
5.10 (c). The time simulations demonstrate that, indeed, the arrested spreading mode can
for this front shape be overcome for large surfactant concentrations (grey dots with yellow
circles in Fig. 5.10): The initial finger continuously grows while the rest of the front stays
behind. In conclusion, the instability and especially the formation of fingers are generically
occurring in the planar and the radial geometry, however, the onset and strength critically
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Figure 5.10.: (a) Morphological phase diagram for the spreading of two-dimensional planar fronts.
To the left (right) of the black dashed line, the fronts of the height profile h are
moving (not moving). The linear stability analysis predicts modulated moving
fronts to the left of the black dotted line (the largest eigenvalue σmax is > 10−8).
In numerical time simulations initiated with a noisy planar front, three types of
spreading occur: transversally stable planar fronts (red triangles), modulated fronts
(blue squares) and arrested fronts which can not expand over the substrate (grey
dots). The grey dots with yellow circles mark parameter sets for which a finite
perturbation in the initial condition leads to the growth of a pronounced finger.
The white dotted line in (a) corresponds to the continuation run from parameter set
(M) to parameter set (C) presented in Fig. 5.8 (b). (cf. [TJT18]) (b)-(e) Profiles of
the respective integrated height profile Iy at equidistant times with ∆t/τ = 5×105.
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depend on the colony shape [TJT18]. When comparing the shape of the modulated planar
fronts in the bioactive model (see Fig. 5.10 (b)) to the front instability observed in the
passive system (see Fig. 4.8), one finds that the instability is much more ramified in the
latter case. This can be explained by the expansion of the biomass via growth which
broadens the structures and results in a colonisation of the substrate between existing
protrusions, provided the wettability of the substrate is favourable for expansion.1

5.5. Preventing Growth by Counter-Gradients of Surfactant

After analysing the model mathematically in the previous sections, we now illustrate
the consequences of the surfactant-driven spreading mechanism with an example. One
strategy that has been proposed to prevent the spreading of bacterial colonies are counter-
gradients of surfactants. As discussed in Sec. 5.1, experiments for P. aeruginosa [FPB+12]
show that, indeed, the expansion of a colony can be arrested by exogeneously adding bio-
surfactant to the agar substrate in a circular pattern around the colony with a concen-
tration comparable to the in vivo one. This effect can also occur when two surfactant-
producing colonies approach each other [CSO05].
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Figure 5.11.: Counter-gradients of surfactant represent a possible strategy to inhibit colony ex-
pansion. A small bacterial colony is initiated in the centre of the simulation domain
(upper row). Initially, additional surfactant is deposited on the left border of the
domain (lower row). The counter-gradient of external surfactant influences the
spreading dynamics and prevents fingering towards the left side of the domain .
The top row shows the colony height h at different points in time, the bottom row
shows the respective surfactant concentration Γ. Parameters are Ws = 0.1 and
Γmax = 0.5. (cf. [TJT18])

To exemplarily test counter-gradients of surfactants as a strategy for the prevention of
colony expansion in our model, we perform a time simulation withWs = 0.1 and Γmax = 0.5
that is shown in Fig. 5.11. The initial condition is given by a surfactant-laden colony at
the centre of the simulation domain and additional surfactant to the left of the colony. We
observe that the growth of the colony towards the left hand side slows down as soon as
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the colony ’senses’ the additional surfactant and eventually its growth is arrested. At the
other side, the colony performs the finger-like growth expected in this parameter regime
[TJT18].
In other experimental set-ups however, the growth prevention by counter-gradients of sur-
factants is counteracted by the favouring of wettability due to the presence of surfactants
– an effect which is not directly included in our model. Indeed, experiments on B. subtilis
[LMB+06] show that the expansion of an only weakly surfactant producing ’target strain’
can be promoted by the presence of a nearby surfactant-producing ’helper’ colony that
improves the wettability. Similar experiments for P. aeruginosa [DRvDX14] show that
the spreading dynamics also depends on the initial distance between the two colonies. If
the promoting effect of the increased wettability or the preventing effect due to a counter-
gradient in surface tension dominates the spreading behaviour thus seems to depend on
the experimental set-up and the bacterial strain.1
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6. Towards a Model for Thin Liquid Films
with Active Motion

The active motion of individual bacteria does not play a decisive role in colonies which
expand via the discussed osmotically or surfactant-driven spreading mechanism. It is,
however, important for other modes of colony growth such as collective swarming. In this
chapter, we take a first step towards the incorporation of random individual and coherent
collective bacterial motility into our thin-film description. The resulting model couples the
dynamics of the film height profile with the dynamics of a height-averaged polarisation
field. In the future, models of this type may provide an advance in the understanding
of the interplay of biologically controlled physico-chemical processes (such as osmosis and
Marangoni flows) and the active motion of bacteria. The developed model is of a generic
nature and describes a droplet of active fluid or gel and could, e.g., also represent an
actomyosin solution - a system often used as cytoskeleton model.
In the following, we first give an overview over related approaches existing in the literature
on the modelling of active media before proposing our model. It is then briefly analysed
for a one-dimensional geometry to get a first impression of the features of the model. The
results presented in this chapter are, however, not meant to be a rigorous derivation or an
exhaustive analysis. In contrast, they represent a phenomenologically derived suggestion
for a class of simple models that could prove a useful starting point for future investigation
and development.

6.1. Features and Continuum Description of Active Fluids

Active fluids are a class of soft materials that typically consist of or contain a large num-
ber of self-propelled active particles. Bacterial suspensions are one example for a living
active fluid. The individual bacteria act as self-driven particles that swim in a direction
determined by their driving engine, the cell geometry and possible external forces. An-
other example for a living active fluid is the cytoskeleton of cells [JR10, KJJ+05]. In this
system, active stresses are induced into a network of actin filaments by motor molecules
which align or slide filaments w.r.t. each other. There are also various examples of non-
living active matter (for a review, see [MJR+13]), such as, e.g., so-called Janus particles –
artifical microswimmers which have two different sides with different physical or chemical
properties.
Often, active fluids consist of rod-shaped particles which at high densities show a tendency
to orientational order. In many situations, such as in bacterial suspensions, the constituent
particles of the active fluid possess a head-tail asymmetry. They can cooperatively order
either in a polar phase (particles are on average aligned in the same direction and with
the same sense of direction) or in a nematic phase (particles are on average oriented par-
allel but with random orientation or are head-tail symmetric). The polar order can be
described by the polarisation – a vectorial order parameter that measures the locally av-
eraged orientation of the particles.
Active fluids show an important conceptual difference from passive systems: Energy com-
ing from the constituent particles is constantly dissipated into the surroundings. In bac-
terial suspensions for example, every bacterium consumes energy by nutrient uptake and
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dissipates it through its self-propulsion. In consequence, active fluids are – in contrast to
passive fluids – even in a stationary state typically far away from thermodynamic equi-
librium. The energy input is local and occurs at the particle level rather than, e.g., at
the system boundaries as in classical hydrodynamic systems. These properties of active
matter clearly distinguish it from the passive case. In consequence, interesting novel ef-
fects may occur: Large-scale vortex structures [SWS+10, SNS+12], bacterial turbulence
[DCC+04, WDH+12], dynamical clustering [PSJ+12, BBK+13, ZBFS10] and motility-
induced phase separation [SLVC+12] are some examples of intriguing new phenomena
observed in experiments.

In a coarse-grained approach, active particles in a fluid can be described by a small number
of macroscopic fields, such as the particle density and a macroscopic polarisation p that
is usually defined as the local average over the ”microscopic polarisation” of the individ-
ual particles. The time evolution of these fields is then prescribed by a set of continuum
equations. An important class of coarse grained models for active materials is based on
liquid crystal hydrodynamics [Cha92, Pro95]. The passive theory is supplemented with a
new feature that introduces activity into the models: The particles are endowed with self-
generated active stresses that enter the hydrodynamic evolution equations. These stresses
can be extensile or contractile and depend on the specific features and geometry of the par-
ticles. The respective equations can either be written phenomenologically based on sym-
metry arguments [HRRS04] or be derived from microscopic interactions [BM09, LM06]. In
the context of the cytoskeleton of living cells, a description as a visco-elastic gel driven out
of equilibrium [KJJ+05, JKPJ07, JP09, PJJ15] was developed and applied successfully to
study, e.g, the presence of defect structures [KJJ+04], the transition to sponteneous flow
[TCM11], concentration banding [GML08], multi-component [JJKP07] or compressible
[VJP06] active polar films. Similar phase-field models have been employed to study the
cytoskeleton on surfaces [ZSA12] and the collective motion of cells [LZA15]. A detailed
review of the modelling of active media can, e.g., be found in [MJR+13, Men15, Ram10].

Often, active fluids are found in spatial confinement, such as suspensions of bacteria in
porous media, or in an adaptive geometry, such as the cytoskeleton of cells enclosed by
the cell membrane. Droplets of active liquid have a free surface. In this system, intrigu-
ing novel features such as spontaneous symmetry breaking [SK14], self-organisation of
defect-structures [SNS+12], large-scale flows [WWD+13, PSD+12], or even self-sustained
motility of active droplets [SCD+12] can be observed experimentally. Therefore, this ge-
ometry poses an interesting problem for mathematical modelling.
In previous theoretical studies of two- and three-dimensional active drops entirely im-
mersed in a passive fluid, activity has been found to lead to spontaneous symmetry break-
ing, accompanied by deformation and self-propulsion of the droplets [TMC12, WMVH14,
MWP15, WH16] similar to drops of simple liquid driven by chemical reactions [VRR96].
The problem of active drops on flat solid surfaces has only been scarcely addressed in
the literature. In a recent numerical study of a drop of polar active liquid, motile steady
states with biologically relevant shapes have been observed [TTMC15]. However, three-
dimensional simulations of active droplets are computationally expensive. This problem
can be circumvented by applying a thin-film approximation to reduce the dimensions
of the model. For passive nematic systems, a thin-film description has been derived
[BC01, LCA+13] and used to study droplet spreading [LKTC13]. A similar approach
has been employed for active polar fluids to study free-surface films [SR09] and the ef-
fect of a highly symmetric polarisation field on spreading laws and stationary shapes of
droplets [JR12]. The self-propulsion of active drops has been associated with topologi-
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film height
h(x, t)

z-averaged
polarisation p(x, t)local polarisation

of individual
particles

x1

x2

Figure 6.1.: Generic model for a droplet consisting of an active polar fluid. The polarisation field
p(x, t)) (red arrows) represents the local height-averaged value of the polarisation
of the individual particles (grey arrows in the inset). Its dynamics is coupled to
the dynamics of the film height h(x, t). The total local polarisation is given by
P(x, t) = h(x, t) p(x, t).

cal defects in the polarisation field [KA15]. However, often these models do not include
a dynamical evolution equation for the polarisation but instead prescribe a polarisation
pattern. Recently, a thin-film theory for an active liquid crystal has been derived based on
the Beris-Edwards theory that uses a tensorial order parameter (instead of a polarisation
field) [KMW17]. However, it does not result in a closed form of evolution equations.
Here, we follow a different approach and construct a phenomenological model for a self-
propelled polar fluid. It is based on a gradient dynamics on the free energy functional valid
for the passive system that is supplemented by active terms. Unlike previous modelling
approaches, we explicitly account for wettability. This allows for a study of the inter-
play between passive effects like capillarity and surface tension and activity introduced by
active stresses and self-propulsion.

6.2. Mathematical Modelling

In the following section, we propose a generic model which couples a polarisation field
to an evolution equation for the height profile of the active droplet. The polarisation
represents the locally averaged orientation of the constituent particles.

6.2.1. General Framework and Structure

We consider a film or droplet of height h(x1, x2) consisting of an active polar fluid, e.g.
motile bacteria, as sketched in Fig. 6.1. The polarisation vector p is introduced as the
height-averaged value of the local microscopic z-dependent polarisation of the individual
particles. By assuming ad hoc that the third component is small as compared to the other
two, it can be written as

p =

(
p1(x1, x2)
p2(x1, x2)

)
. (6.1)

As the polarisation reflects the orientational order of the microscopic particles, it may
occur spontaneously and is also influenced by the surface profile. In contrast to the film
thickness, the total polarisation is thus not a conserved quantity.

Although we study an active polar fluid, we again base our model on a free energy func-
tional. This guarantees that in the absence of activity, the model describes a well-defined
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equilibrium state. We introduce the free energy functional

Fpld[h,p] = Fcap + Fwet + Fspo + Fel + Fcoupl (6.2)

for a drop of polar liquid. It accounts for various effects that possibly influence the
dynamics, namely capillarity, wettability, spontaneous polarisation, an elastic energy of
the polarisation and a coupling between the polarisation vector and the shape of the free
surface of the drop. The specific choices of the energetic contributions are discussed below.
To write evolution equations for the film height and the polarisation, one has to notice
that – similar to the description of suspensions – the free energy functional needs to be
expressed in variables that can be varied independently. Therefore, we introduce the local
total amount of polarisation P = hp and transform the free energy functional via

Fpld[h,P] = Fpld[h,p(h,P)] . (6.3)

By constructing a gradient dynamics based on this energy functional, we can describe the
dynamics of a passive polar fluid close to but out of equilibrium.
Activity is introduced into the model by assuming that the polarisation causes an active
stress in the drop. This stress can be described by the tensor σa [Ram10] with the
components

σa
kj = −capkpj . (6.4)

It forces the system out of equilibrium and can thus not be derived from the free energy
functional. Instead, it is introduced into the evolution equations as a non-variational
term. The active stress is extensile for ca > 0 (describing, e.g., bacterial suspensions) and
contractile for ca < 0 (describing, e.g., actomyosin solutions).
As a second active contribution to our model, we assume that the self-propulsion of the
particles in the direction of p causes an active flux of the form

α = 3
α0η

h2
p = 3

α0η

h3
P =

∑

k

αkek (6.5)

where α0 is a constant and η denotes the viscosity. This second active ingredient of the
model breaks the P→ −P symmetry for α0 6= 0.
The general form of the evolution equations 1 for h and P is then given by

∂th =
∑

k

∂xk



Qhh

[
∂xk

δFpld

δh
− αk +

∑

j

∂xjσ
a
kj

]
+
∑

j

QhPj∂xk
δFpld

δPj



 (6.6)

∂tPi =
∑

k

∂xk



QhPi

[
∂xk

δFpld

δh
− αk +

∑

j

∂xjσ
a
kj

]
+
∑

j

QPiPj∂xk
δFpld

δPj



−QNC

δFpld

δPi
.

(6.7)

The film-height equation is a conserved dynamics while the polarisation equation com-
bines a conserved and a non-conserved dynamics. The former represents the transport of

1In this section, we use the following notations for the vector operations in cartesian coordinates (here
given for a scalar h, a vector a =

∑
i aiei and a tensor A =

∑
ij Aijeiej with the components Aij):

scalar product between vectors: a · b =
∑
i aibi

product between tensor and vector: A · a =
∑
ij Aijajei

gradient of a scalar: ∇h =
∑
i ∂xih ei

gradient of a vector: (∇a)ij = ∂xjai

derivative of a scalar w.r.t. a vector: ∂g
∂a

=
∑
i
∂g
∂ai

ei

Laplace operator: ∆h =
∑
i ∂xixih

divergence of a vector: ∇ · a =
∑
i ∂xiai

divergence of a tensor: ∇ ·A =
∑
ij ∂xjAijei

double inner product: A : B =
∑
ij AijBij

outer product between vectors: (ab)ij = aibj
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polarisation with the flow while the latter describes reorientation, e.g., due to spontaneous
polarisation. QNC is the corresponding mobility. Activity is introduced by the active stress
σa and the self-propulsion α both in the conserved part. The mobilities are given by

Qhh =
h3

3η

QhPi =
h2Pi
3η

= h3 pi
3η

(6.8)

QPiPj = h
(PiPj

3η
+Mδij

)
=
h3pipj

3η
+ hMδij

where δij denotes the Kronecker symbol. They correspond to scalar, vector and tensor
quantities, respectively, and can be understood in analogy to Ref. [XTQ15].
After introducing the convective flux jC, the diffusive fluxes jDPi and the reactive flux jR

as

jC = −h
3

3η


∇δFpld

δh
+
∑

j

pj∇
δFpld

δPj


− h3

3η
∇ · σa + α0P (6.9)

jDPi = −hM∇δFpld

δPi
(6.10)

jR
i = −QNC

δFpld

δPi
, (6.11)

respectively, the equations of motion can be expressed in the compact form

∂th = −∇ · jC (6.12)

∂tPi = ∂t(hpi) = −∇ ·
[
pij

C + jDPi
]

+ jR
i . (6.13)

6.2.2. Specific Choices for the Energetic Contributions

Now, we specify the energetic contributions to the free energy functional (6.2) that deter-
mine the dynamics of the active droplet. We use

Fpld[h,p] = Fcap + Fwet + Fspo + Fel + Fcoupl (6.14)

=

∫ [
γ
(

1 + 1
2(∇h)2

)
+ fw(h,p2) + hfspo

(
p2
)

+ hfel(h,p) + fcoupl(h,p)
]

dx (6.15)

which includes the following effects:

• The first two terms also occur in the description of simple fluids in Sec. 2.1.3 and
describe the energetic contributions of capillarity (in the limit of small interface
slopes) and wettability, respectively. The interfacial tension is denoted by γ. Note
that here, the wettability may also depend on the magnitude p2 of the local mean
polarisation. We employ a wetting energy of the product form

fw(h,p2) = f̂w(h)(1 + χp2) = A

(
− 1

2h2
+

h3
a

5h5

)
(1 + χp2) (6.16)

with a constant χ that is motivated and specified below. f̂w(h) is the wetting energy
for droplets of partially wetting simple liquids given by Eq. 2.14. Recall that A and
ha denote the Hamaker constant and the adsorption layer height, respectively.
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Fspo Fel Fcoupl with chp > 0

(a) (b) (c)

Figure 6.2.: Schematic illustration of the effect of the energetic contributions occurring in droplets
consisting of polar particles. Fspo describes a transition between an isotropic, mi-
croscopically disordered state with |p| ≈ 0 to an ordered state with |p| ≈ 1. Fel is
a liquid crystal elastic energy that represents the energetic cost of gradients in the
polarisation. Fcoupl couples the polarisation to the gradient of the free interface,
so that it is energetically favoured if the polarisation is orthogonal to the interface
gradient for chp > 0. Note again that we assume p to be always parallel to the
substrate.

• The contribution Fspo accounts for the polarisation energy, describing a transition
between an isotropic, microscopically disordered and a polarised state as illustrated
in Fig. 6.2 (a). This can be described by the ”Mexican hat” energy

fspo(p2) = −csp

2
p · p +

csp

4
(p · p)2 (6.17)

that for csp > 0 allows for the existence of an unstable disordered (|p| = 0) and an
energetically favoured ordered state (|p| = 1). For stability, the constant csp needs
to be chosen positive.
We assume that in the droplet, the polarisation is normally |p| ≈ 1 whereas it
vanishes in the adsorption layer, i.e., |p| ≈ 0. For the polarisation energy fspo(p2)
given in Eq. (6.17), this can be achieved by employing a specific form of the wetting
energy 2

fw(h,p2) = f̂w(h)
(
1 + χp2

)
with χ =

ha

f̂w(ha)
csp . (6.20)

• The contribution fel(h,p) =
cp
2 ∇p : ∇p is a two-dimensional liquid crystal elastic

energy that represents the energetic cost of gradients in the polarisation as illustrated
in Fig. 6.2 (b). Note that for simplicity we assume the same value of stiffness
associated with splay and bend deformations, i.e. we use the single elastic constant
cp [Pro95].

• The last term fcoupl(h,p) =
chp

2 (p · ∇h)2 couples the polarisation and the gradient
of the free surface. chp is a constant that can be chosen positive (for alignment of

2 Then, the respective contributions in the free energy take the form

Fa
pld =

∫ {
f̂w(ha) + ha

( csp
2
p2 +

csp
4

(p2)2
)}

dx (6.18)

in the adsorption layer of height h = ha. The fluid does not polarise spontaneously in the adsorption
layer, since the only admissible fixed point is p = 0. Far away from the interface in the droplet with
h� ha the wetting energy goes to zero, i.e., fw(h)→ 0 and the free energy takes the form

Fdroplet
pld =

∫ {
h
(
−csp

2
p2 +

csp
4

(p2)2
)}

dx (6.19)

which admits the additional fixed point |p| = 1 corresponding to spontaneous polarisation.
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the polarisation orthogonal to the interface slope ∇h) or negative (for a polarisation
parallel to ∇h) as shown in Fig. 6.2 (c). Note that alternatively, coupling terms
∼ p · ∇h may be applied to energetically favour an outward- or inward-pointing
polarisation.

6.2.3. Reduction to a One-Dimensional Geometry

In a one-dimensional geometry under the assumption of vanishing gradients and polarisa-
tion in the x2-direction, the polarisation and all mobilities become scalar quantities and
the evolution equations drastically simplify. In the following, we use the notations x = x1,
p = p1 and P = hp1. The coupling between the polarisation and the interface slope does
not contribute in a one-dimensional geometry (in which the polarisation can not minimise
the interaction with the interface by rotating in the substrate plane) and is omitted in the
following. The free energy functional Fpld given in Eq. (6.14) then reduces to

Fpld[h, P ] =

∫ [
γ(1+ 1

2(∂xh)2)+fw

(
h, P 2

)
+csph

[
− 1

2

(
P
h

)2
+ 1

4

(
P
h

)4 ]
+
cp
2 h
(
∂x
(
P
h

) )2]
dx

after transforming to the total polarisation P . The variations with respect to film height
and polarisation are given by

δFpld

δh
= −γ∂xxh+ ∂hfw −

p

h
∂pfw + fspo − p∂pfspo +

cp

2
(∂xp)

2 +
cpp

h
∂x(h∂xp) (6.21)

δFpld

δP
=

1

h
∂pfw + ∂pfspo −

cp

h
∂x (h∂xp) . (6.22)

The equations of motions in the one-dimensional geometry read

∂th = −∂xjC (6.23)

∂t(hp) = −∂x
(
pjC + jD

)
+ jR (6.24)

with the fluxes

jC = −h
3

3η

[
∂x
δFpld

δh
+ p∂x

δFpld

δP

]
− h3

3η
ca∂x(p2) + α0hp (6.25)

jD = −hM∂x
δFpld

δP
(6.26)

jR = −QNC
δFpld

δP
. (6.27)

Note that there is no direct contribution of fspo to the convective flux jC as the respective
terms cancel out (similar to the mixing energy fm in Eq. (3.14) in the model for passive
mixtures and suspensions discussed in Sec. 3.2.1).

6.2.4. Linear Stability Analysis of the Flat Film

Next, we analyse the linear stability of a flat homogeneous one-dimensional film. There
are three stationary flat-film solutions of film height h0 with a constant polarisation P0.
They can be determined from the condition of a vanishing non-conserved flux jR, i.e.,
δFpld

δP = 0. The fixed points are shown in Fig. 6.3 (a) and correspond to non-polarised
films (h, P ) = (h0, 0) or polarised films

(h, P ) = (h0, P0) = (h0,±Bh0) with B =

√
1− 10

3

(
ha

h0

)3

+
4

3

(
ha
h0

)6
. (6.28)
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Figure 6.3.: (a) Possible stationary solutions (h0, P0) for homogeneous non-polarised (P0 = 0,
blue lines) and polarised (P0 = Bh0, red lines) flat films that can be determined
from the condition of a vanishing non-conserved contribution, i.e. δFpld/δP = 0. (b)
and (c) give corresponding dispersion relations for the non-polarised and polarised
film of height h0 = 10. Note that the eigenvalues λP,i are complex for the polarised
film. (d) Time simulation initialised with a non-polarised flat film plus small noise
for periodic boundary conditions. The height profile h (left) and mean polarisation
p (right) are shown at equidistant points in time. First, the flat film polarises and
domains with positive and negative polarisation are created. Subsequently, the film
dewets and droplets (with different orientation of the polarisation) form. These
droplets undergo a complex dynamics and coalescence. The remaining parameters
are ca = 0.01 , csp = 0.01 , A = 1 , M = 1 , ha = 1 , η = 1 , γ = 1 , cp = 2 , QNC =
1 andα0 = 0.001 .
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The latter exist for film heights h0
ha
>
(

4
5−
√

13

)1/3
≈ 1.42 and approach a mean polarisation

of P0/h0 ≈ ±1 for thick films with h0 � ha.
By inserting the ansatz

h(x) = h0 + εh1e
ikx+λt (6.29)

P (x) = P0 + εP1e
ikx+λt (6.30)

with ε� 1 into the evolution equations (6.23)-(6.24) and solving the resulting eigenvalue
problem, we determine the linear stability of the flat homogeneous film.
For the non-polarised flat film with (h, P ) = (h0, 0), we find the eigenvalues

λNP,1 =− h3
0γ

3η
k4 +

[
1− 2

(
ha

h0

)3
]
A

ηh0
k2

=− h3
0γ

3η
k2[k2 − k2

c ] with k2
c =

[
1− 2

(
ha
h0

)3
]

3A

h3
0γ

λNP,2 =−Mcpk
4 − 1

h0

[
QNCcp −Mh0cspB

2
]
k2 +QNC

csp

h0
B2 .

These are shown in Fig. 6.3 (b) and can easily be interpreted because the effects of film
height and polarisation decouple: The eigenvalue λNP,1 represents the dispersion relation
of a simple thin-film equation [Thi07]. It exhibits a long-wave instability (with onset at
k = 0 and an unstable band of wavenumbers 0 ≤ k ≤ kc with fastest growing mode
at k = kc/

√
2) and the film tends to dewet [Mit93]. The eigenvalue λNP,2 captures the

influence of the polarisation. The spontaneous polarisation destabilises the non-polarised
state of the film. Due to the elastic energetic cost of gradients in the polarisation, the
instability has the largest growth rate at k = 0. For cp = 0, the eigenvalue λNP,2 diverges
for large wavenumbers k so that the elastic energy is a crucial ingredient to provide a
cut-off of small scale instabilities and thus obtain stable solutions in the model.
The eigenvalues of the polarised flat film with (h, P ) = (h0, Bh0) shown in Fig. 6.3 (c)
can also be obtained analytically, however, in the form of rather lengthy expressions (not
shown). In the limit of thick films, i.e., (ha/h0)3 � 1, they reduce to

λP,1 = −γ h0
3

3η
k4 +

A

ηh0
k2 − iα0k

λP,2 = −cpMk4 − 2

(
Mcsp +

QNC

h0
cp

)
k2 − iα0 k −

QNC

h0
2 csp .

Both eigenvalues are now complex for α0 6= 0. The thin-film instability is still present in
λP,1, but the polarisation has now a stabilising effect in λP,2.

Figure 6.3 (d) shows the time evolution of a non-polarised flat film. The simulation
is performed employing the finite element scheme outlined in appendix Sec. A.1.1 with
periodic boundary conditions for an initially constant film height h = 10 and vanishing
polarisation p = 0 with additional small random noise. It illustrates the consequences of
the two unstable eigenvalues λNP,1 and λNP,2: First, the flat film polarises and domains
with positive and negative polarisation form. Subsequently, the film dewets, leading to
the formation of droplets with different orientation of the polarisation. These droplets
undergo a complex dynamics and coalescence until only one (large) droplets persists. In
the following section, we turn our attention to such droplets and study the effect of activity
on their shape and dynamics.
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6.3. Resting and Moving Active Droplets

For droplets consisting of active polar particles, self-propulsion of the particles and active
stresses modify the fluxes within the droplet as compared to droplets consisting of passive
liquids. In consequence, the coupling between the film height profile and the polarisation
field can be expected to give rise to a modified spreading dynamics and even droplets that
actively self-propel over a substrate. To get a first impression of the solutions of the model
introduced in the previous section, we perform numerical time simulations for drops on
one-dimensional substrates. First, we focus on the case where the activity is solely induced
by self-propulsion and no active stress is present, i.e. ca = 0. The simulations are initiated
with a parabolic droplet (with a contact angle corresponding to the passive equilibrium
value) and a small random polarisation within the droplet. 3 Interestingly, the model ex-
hibits multistability and possesses solutions that correspond to resting and moving active
droplets for the same parameter values.

Figure 6.4 shows three qualitatively different types of active droplets that occur in the
model. The most intuitive case is presented in Fig. 6.4 (a). In an initial self-polarisation
stage starting from the contact lines regions, the polarisation within the droplet increases.
It reaches a rather uniform plateau with p = 1. In the contact line region, the polarisation
decreases to |p| ≈ 0 smoothed by the elastic energy Fel that penalises strong gradients in
p. Subsequently, the self-propulsion of the particles results in a movement of the droplet
over the substrate. The shape of the droplet is nearly unchanged as compared to the
passive droplet. Ultimately, the drop moves with constant shape and velocity.
If, however, the polarisation does not evolve towards a uniform value within the droplet
during the initial self-polarisation stage, stationary active droplets may occur. Figure 6.4
(b) shows such an evolution where the developing polarisation is positive in the left, and
negative in the right hand side of the droplet. In this case, the self-propulsion of the
left and right half of the drop counteract each other by pointing inwards. The droplet is
slightly contracted, resulting in a slightly steeper contact angle. The polarisation profile
is anti-symmetric (and the integral

∫
ph dx vanishes) so that there is no ’net’ total self-

propulsion and the droplet remains stationary. Figure 6.4 (c) shows an analogue resting
droplet with the difference that now, the polarisation and thus the self-propulsion points
outwards, so that the contact angle of the droplet is slightly lowered. Note that the states
in (b) and (c) are not related by symmetry.

As the moving droplet is propelled over the substrate with a constant shape and velocity,
we can employ the method of parameter continuation to efficiently study the effect of pa-
rameter changes on this solution type. To that end, we transform the evolution equations
(6.23)-(6.24) into the co-moving coordinate system with a constant velocity v.
The dependence of the droplet velocity and shape on various parameters of the model is
presented in Fig. 6.5. The first row shows the influence of (a) the self-propulsion speed α0,
(b) the active stress ca, (c) the wetting energy A and (d) the elastic polarisation energy

3 The initial condition is given by

h(x) = max
(
h0 − a(x− Lx

2
)2, 1

)
with h0 = 50 and a = 3

20
A

h0−1.
(6.31)

P (x) = 0.01 rand(Nx) h(x)−1
h0

Sym(x) (6.32)

where rand(Nx) corresponds to a 1D array filled with random float numbers from the half-open interval
[0.0,1.0). The function Sym(x) introduces a slight asymmetry into the initial condition and is chosen as
Sym(x) = 1 for the simulation shown in Fig. 6.4 (a), as Sym(x) = sin(2π x

Lx
) for the simulation shown

in (b) and as Sym(x) = −sin(2π x
Lx

) for the simulation shown in (c).
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Figure 6.4.: Moving (a) and resting (b,c) active droplets occurring for the same set of param-
eters. The height profile h (top) and the mean polarisation p (bottom) are shown
at equidistant points in time for three different simulations initiated with slightly
different polarisation patterns within the droplet. If the polarisation profile is sym-
metric after a self-polarisation stage, the droplet moves over the substrate (a). If it
is anti-symmetric and the integral over the polarisation thus vanishes, the droplets
are resting (b-c). Parameters are: ca = 0 , csp = 0.01 , A = 1 , M = 1 , ha = 1 , η =
1 , γ = 1 , cp = 2 , QNC = 1 and α0 = 0.002

95



6. Towards a Model for Thin Liquid Films with Active Motion

cp on the velocity. The profiles of height h and polarisation p for two specific parameter
combinations (given by red and blue dots) are presented in the second and third row.
The velocity of the drop is roughly proportional to the self-propulsion speed α0 (see Fig.
6.5 (a)). Note that the height and polarisation profiles do not depend on this parameter
and the droplets have a nearly parabolic shape even at high velocities.
The velocity is moderately influenced by the strength of the active stress ca > 0 (see Fig.
6.5 (b)). If the stress is contractile (ca < 0), the droplet is contracted, the contact angle
is larger and the velocity decreases. For an extensile stress (ca > 0), the droplet widens
and its velocity is enhanced.
Interestingly, the Hamaker constant A which is connected to the wettability, does nearly
not influence the velocity (see Fig. 6.5 (c)). In particular, we do not observe a transition
between resting and moving droplets when the wettability is modified as found in the
models for osmotically or surfactant-driven spreading of bacterial colonies discussed in the
previous sections. For a non-vanishing self-propulsion (α0 6= 0), the droplets are always
moving. A possible explanation for this is that – in contrast to the model for bacterial
colonies – the motility of the drop is not accompanied by a shape deformation that might
be energetically unfavourable in terms of capillarity and wetting. Instead, the motile ac-
tive droplets maintain their parabolic shape.
The constant cp that is connected to the elastic energy of gradients in the polarisation also
only slightly affects the velocity of the droplet, but determines the width of the transition
zone from |p| ≈ 0 in the adsorption layer to |p| ≈ 1 in the droplet (see Fig. 6.5 (d)).

The presented analysis can only give a glimpse onto the behaviour of the model and further
development and investigation are necessary to evaluate its applicability. The exemplary
numerical simulations have shown that it possesses moving and resting droplet solutions
for the same set of parameters. These need to be further characterised and carefully com-
pared to the equilibrium droplets of the passive system. It is to be expected that the
resting solutions are unstable with respect to finite perturbations. It remains a subject of
future research to determine the localisation and strength of the perturbation needed to
trigger a propulsion of the droplet.
In addition, the dynamics of active fluids can be dramatically different when the polari-
sation field is fully two-dimensional or when it is allowed to move out of plane [TCM11].
Therefore, an analysis of the model in two dimensions should be performed. In this geom-
etry, the existence of a splay-induced motility in the presence of active stress but without
self-propulsion as observed in [TMC12, WMVH14, MWP15, WH16] could be tested. An-
other interesting question that could be addressed with this model is how the presence
of a macroscopic polarisation affects the dewetting dynamics of thin films. In addition,
the model is suitable to study activity-induced splitting of droplets on the one hand and
coalescence of active droplets on the other hand.
To summarise, we have in this chapter presented a phenomenologically derived model for
thin active polar films that explicitly includes wettability. Due to the reduced complexity
in the thin-film description, it may serve as a computationally less expensive alternative
to models applied in the literature for the study of active drops on substrates. For one
spatial dimension, first numerical simulations have shown the occurrence of reasonable
dynamical states. However, future investigation and an analysis in two dimensions are
necessary to further characterise the model and its solutions. After further testing and
validation, the suggested class of models could represent a useful alternative to existing
models for active droplets on substrates and could for example also be coupled to the
osmotically and surfactant-driven spreading mechanisms of bacterial colonies discussed in
the previous chapters of this thesis.
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Figure 6.5.: Velocity of the active polar droplet (top row) depending on the self-propulsion speed
(a), the strength of the active stress (b), the wetting energy (c) and the elastic en-
ergy (d). One parameter is varied in a parameter continuation, respectively, taking
the solution for ca = 0 , csp = 0.01 , A = 1 , M = 1 , ha = 1 , η = 1 , γ = 1 , cp =
2 , QNC = 1 andα0 = 0.002 in Fig. 6.4 (a) as a reference. The respective second
(third) row shows height (polarisation) profiles for two specific parameter combina-
tions as indicated by filled circles in the respective line colour in the velocity plots.
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7. Summary and Outlook

In addition to the conclusions drawn within the individual chapters, we now summarise
the whole thesis and present a brief outlook. The main objective of this thesis was to
develop and analyse simple models to clarify the role of passive physico-chemical forces
– such as osmosis, surface tension effects and wettability – on the spreading of bacterial
colonies that grow at solid-air interfaces. The applied models add bioactive processes to
a hydrodynamic approach within a thermodynamically consistent framework. We mainly
focused on two spreading mechanisms that bacterial colonies employ at solid-air interfaces:
The osmotic spreading of biofilms and the promotion of spreading by the presence of bio-
surfactants. These mechanisms rely on the physico-chemical properties of the interfaces
rather than on the active motion of individual bacteria.
The models employed in this thesis are based on a thin-film description of fluids. Thereby,
the foundation for the model development was laid in Chapter 2 by discussing the proper-
ties of equilibrium droplets. Then, the thin-film equation for simple fluids was introduced
as a mesoscopic modelling approach and related to the macroscopic description of droplets.
In Chapter 3, we turned our attention towards the first biological example and developed
a simple model for the osmotic spreading of biofilms. The analysis of our model by nu-
merical time simulations showed that – in accordance with the experimental observation
[SAW+12] – the colony first swells (mainly) vertically with increasing steepness of the
colony height and subsequently expands laterally with a roughly constant contact angle.
At large times, biomass growth, matrix production and osmotic influx are mainly located
in a region close to the leading edge of the colony [TJT16]. The influence of the physical
parameters of the model on the spreading speed and contact angle of the colony was stud-
ied by parameter continuation – a very efficient method for problems involving stationary
(front) solutions.
Furthermore, our analysis confirmed that wetting crucially affects the spreading dynamics
of biofilms. Indeed, surface forces determine whether a biofilm can expand over a substrate
or not. We observed a transition between continuous and arrested spreading depending
on the wettability. The lateral expansion of the biofilm is restricted in the case of arrested
spreading, although the colony is biologically active. However, a small reduction in sur-
face tension of the biofilm suffices to enable spreading [TJLT17]. This modulation of the
surface tension can, e.g., be induced by the presence of bio-surfactants. A phase diagram
was generated to identify the transition in the parameter space spanned by wettability
and bacterial growth rate. In Fig. 3.13, this phase diagram is connected to experimental
findings. The results obtained within our model provide a qualitative understanding of the
experimentally observed transition between arrested and continuous spreading that occurs
in a B. subtilis strain upon the improvement of wettability by the addition of external sur-
factants [TJLT17]. In addition to modifying the wettability, bio-surfactants in bacterial
colonies also affect the spreading dynamics by the generation of Marangoni fluxes. These
fluxes could not be described by the model presented in Chapter 3 because the approach
does not capture non-uniform surfactant concentrations.

The next logical extension of the model was thus the incorporation of a spatially inho-
mogeneous surfactant concentration. To that end, it was first necessary to gain a deeper
understanding of the modelling of surfactant-covered thin films in the passive case. In
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Chapter 4, we employed equilibrium considerations to establish the link between meso-
scopic and macroscopic descriptions of static surfactant-covered drops on solid substrates.
The quantities occurring in the two approaches are related by the requirement of consis-
tency of the mesoscopic and macroscopic description, implying that the dependencies of
wetting and interface energies on the surfactant concentration may not be chosen inde-
pendently. In particular, properties of the mesoscopic wetting energy are directly related
to the solid-gas interfacial tension in the macroscopic description [TSTJ18]. By analysing
static drops via energetic considerations, find that the structural form of Young’s law re-
mains unchanged in the presence of surfactants. However, the surfactant concentrations
on the drop and on the surrounding adsorption layer and the resulting interfacial tensions
adapt self-consistently. The addition of surfactant to the system may have a qualitatively
different effect on the contact angle, depending on the relation between the free energies
of the liquid-gas and the solid-gas interface [TSTJ18]. Even in the simple example with
purely entropic free energies of the surfactant discussed in Sec. 4.2.3, the contact angle
is either lowered with increasing amount of surfactant in the system or increased, corre-
sponding to an autophobing effect [TSTJ19].
The ansatz of a factorised wetting energy fw(h) = f̂w(h)χ(Γ) employed in Sec. 4.2.3 is
only one possible choice and actually strongly restricts the physical phenomena that can
be captured by the model. To describe, e.g., the behaviour close to a wetting transition,
other assumptions regarding the form of the wetting energy are necessary [TSTJ18]. The
main arguments and results presented in Chapter 4 are, however, independent of the spe-
cific form of the wetting energy and of general nature. They also apply to the theoretical
description of dynamical phenomena through hydrodynamic modelling. Many effects asso-
ciated with surfactants, e.g. autophobing and spreading, are typically studied in dynamic
and out of equilibrium settings. However, the underlying mesoscopic theoretical model
should for large times always result in the same equilibrium state as the corresponding
macroscopic description. This is often not the case in the literature. In future work,
the results presented in the first part of the chapter may be extended to a number of
more complex situations involving, e.g., soluble surfactants and the formation of micelles
[TSTJ18].
After these equilibrium considerations, we introduced a thin-film description for the dy-
namics of drops covered by insoluble surfactant in the second part of Chapter 4. By per-
forming numerical time simulations, some dynamical effects such as the enhanced spread-
ing rate of surfactant-covered droplets and the transversal instability of their contact line
were demonstrated.

After this excursus on passive surfactant-laden droplets, we developed a model for the
second spreading mechanism of bacterial colonies studied within this thesis, namely the
surfactant-driven spreading. In Chapter 5, we studied a model which includes the pro-
duction of bio-surfactant by the bacteria and which also accounts for fluxes arising due to
a non-uniform distribution of surfactant. The analysis of this model demonstrated that
wetting properties and Marangoni flows both strongly affect the expansion rate and mor-
phology of bacterial colonies. Variations in the wettability and the surfactant production
are sufficient to reproduce four different types of spreading, ranging from arrested spread-
ing over circular spreading and modulated spreading fronts to the formation of pronounced
fingers [TJT18]. We showed that the Marangoni flows can significantly contribute to the
spreading. Therefore, the production of bio-surfactants can enable a bacterial colony to
spread over the substrate under conditions which are otherwise unfavourable for expansion.
Our results are in qualitative agreement with experimental findings [FPB+12] showing
that surfactant-producing Pseudomonas aeruginosa wild-type colonies spread outwards
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and form pronounced fingers whereas a mutant deficient in surfactant production is ar-
rested in a small circular shape and cannot expand. This corresponds to the transition
from the arrested spreading mode to the fingering mode that occurs upon the production
of a significant amount of bio-surfactant for low wettability in our model [TJT18]. For
planar fronts, parameter continuation techniques were employed to generate a phase dia-
gram that distinguishes the different arising morphologies in the parameter space spanned
by wettability and surfactant production. It was successfully compared to results obtained
by time simulations.

An interesting possible future extension of the model would be the direct incorporation
of the influence of the bio-surfactant on the wetting properties, e.g., by the introduction
of a surfactant-dependent wetting energy as discussed in Chapter 4. This could allow one
to disentangle the interplay of the different spreading processes and to obtain a consis-
tent interpretation of a class of experiments whose interpretations at the moment seem
to sometimes contradict each other (as, e.g., discussed in Sec. 5.5 for experiments on the
prevention of growth by counter-gradients of surfactant). In particular, the double or even
triple role played by the bio-surfactants (changing interface energies, driving Marangoni
flows and also acting as osmolytes) could be clarified. To resolve this issue, further exper-
iments are also required. They should focus on the physico-chemical aspects of spreading,
i.e. the dynamics of the surfactant and the influence of wettability, e.g., by using agar
substrates with different wetting properties.

In this thesis, we employed simple two-field approaches: In Chapter 3, when dealing with
the osmotic spreading mechanism, the colony was described as a mixture of biomass and
water. In Chapter 5 on surfactant-driven spreading, the bacterial colony was treated
as a complex fluid covered by surfactants. To describe situations involving both a non-
homogeneous distribution of bio-surfactants and non-negligible variations of the colony
composition (e.g., because of similar time scales for biomass growth and osmotic pro-
cesses), the model can be extended to a three-field model. Furthermore, the model can be
extended to soluble surfactants with a bulk concentration by adapting the approach for
passive fluids presented in [TAP16].
In the modelling approach presented in this thesis, complex features such as cell differen-
tiation and vertical gradients are neglected. It has been shown experimentally by high-
lighting surfactant production by autofluorescence [FPB+12], that there are only small
spatio-temporal variations in the rhamnolipid production in P. aeruginosa colonies. How-
ever, cell differentiation is in general an important effect in bacterial colonies and biofilms.
In addition, one may also incorporate the quorum sensing role of the bio-surfactants which
allows for a basic form of communication between individual cells in future extensions of
the model [TJT18].

The modelling framework presented in this thesis may furthermore easily be extended
to other experimental set-ups. In many practical applications, biofilms form at liquid-
solid interfaces under confinement. A channel geometry as shown in Fig. 7.1 could be
employed to incorporate an ambient aqueous medium that may either be quiescent or
flowing, thereby shearing the spreading bacterial colony. As the lower substrate is now
a solid, osmotic fluxes connect the biofilm and the ambient medium. Also Marangoni
stresses will act differently as they drive flows in the biofilm and in the ambient medium
that itself becomes an important sink for the bio-surfactant. A model of this type could,
e.g., be employed to study the coupling between flows in the external medium and the
spreading process which is, e.g. relevant in the context of pipe blockage by biofilms.

In its last part, this thesis took a first step towards the incorporation of active collective
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liquid

solid

h(x, y, t)
nutrient uptake
osmotic flux

Figure 7.1.: Bacterial colony with a free interface profile h(x, y, t) growing in contact with a
nutrient-rich liquid in a confined channel geometry. Exchange processes – such as
osmotic fluxes and the uptake of nutrients – take place via the free interface.

bacterial motion into thin-film models. In Chapter 6, a phenomenologically derived model
for thin active polar films was proposed. The approach couples a thin-film equation for
the film height to the dynamics of a polarisation field connected to self-propulsion and
active stresses. Numerical simulations in one dimension showed reasonable dynamical be-
haviour and the model can describe moving and resting drops of active liquids. Due to
the reduced complexity in the thin-film description, the model thus represents a candidate
for a computationally less expensive alternative to models applied in the literature for
the study of active drops on substrates. However, future testing and validation as well
as an analysis for two-dimensional substrates are necessary to further characterise the
model and its solutions. In a two-dimensional geometry, one could expect the existence of
a splay-induced motility in the presence of active stress (but without self-propulsion) in
the model as observed in [TMC12, WMVH14, MWP15, WH16]. Furthermore, the model
could be employed to investigate how the presence of a macroscopic polarisation affects
the dewetting dynamics of thin films and the coalescence of active droplets. In the future,
the model could be coupled to the osmotically and surfactant-driven spreading mechanism
of bacterial colonies.

To summarise, this thesis presented a framework for the modelling of spreading bacterial
colonies. It focuses on the description of the influence of surface tension and wetting prop-
erties which are particularly important in the osmotically and surfactant-driven colony
expansion. Although the developed model class neglects many processes that become im-
portant in mature bacterial colonies, it is, however, well-suited to describe the dynamics
of the edge of spreading colonies. The spreading dynamics and the resulting colony shapes
are in qualitative agreement with the experiments. It could thus be shown that in certain
situations, physical effects suffice to explain important features of the spreading dynamics,
such as the formation of pronounced fingers driven by bio-surfactants.
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A. Appendix

A.1. Numerical Methods

For many geometries and problems, information about the solutions of nonlinear partial
differential equations – such as the thin-film models discussed in this thesis – cannot be
obtained by analytical methods. Instead, approximations and numerical methods need
to be applied. Typically, the dynamical behaviour of a system is analysed by performing
time simulations starting from a given initial state. Time simulations are a useful tool
to observe time-dependent solutions or transient behaviour for a given initial condition
and control parameter set, such as the transition from swelling to subsequent horizontal
expansion of osmotically spreading biofilms studied in Sec. 3.3.1. In many cases, how-
ever, the system evolves towards a stationary solution, such as the fronts1 emerging in
the long-time limit of spreading biofilms as discussed in Sec. 3.3.2. If one is interested in
the effect of a parameter on these stationary solutions – for example the influence of the
wettability on the front velocity – it is inefficient to perform separate time simulations at
each parameter value. In addition, time-stepping methods are unable to determine unsta-
ble solutions and can therefore only give an incomplete picture of the solution structure
of the system and its change with parameters. These problems can be circumvented by
applying continuation methods [DKK91, Kuz13, DWC+14, KOB07] which directly follow
stationary solutions in parameter space.
In this chapter we briefly introduce the employed methods for time simulations and param-
eter continuation, largely following the description in [Wil16]. We provide a demonstrative
sketch of the methods rather than a mathematically precise description.

A.1.1. Numerical Time Simulations

The studied models describe the time evolution of spatially extended fields – such as
the film height or surfactant concentration – in terms of nonlinear partial differential
equations that also depend on the spatial derivatives of the fields. After introducing a
spatial discretisation of the problem on a mesh, it is thus necessary to evaluate these
spatial derivatives. In addition, a time-stepping method is necessary to determine the
temporal evolution of the solution. Various different approaches exist for these two main
ingredients of the numerical procedure. In this thesis, we employ a finite element method
coupled to an implicit Runge-Kutta scheme as briefly outlined in the following.

Spatial Discretisation and Finite Element Method

The finite element method is based on the idea to subdivide the domain into small sub-
domains of simple shape, the so-called elements. Therefore, it is often applied when dealing
with highly irregular geometries as occurring for example in solid mechanics and struc-
tural engineering. Here, we sketch the main ideas of the approach, following [Wil16] and
[HH17]. A detailed description of the method can be found in standard textbooks (e.g.

1Front solutions which move with a constant velocity and shape correspond to stationary solutions after
transforming the system into the co-moving coordinate frame.
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[BCO81, PS05, EG13]).

Before applying the finite element method, the problem is written in the so-called ’weak
formulation’. In general, a second-order scalar partial differential equation for a field
u(x, y) on a two-dimensional domain Ω can be expressed in the residual form

R (x, y, u(x, y)) = 0 in Ω (A.1)

accompanied by appropriate boundary conditions. To keep the notation compact, we
suppress the explicit dependence of R on the derivatives of u. A classical (or strong)
solution of the problem is any function u(x, y) that satisfies the partial differential equation
and the boundary condition at every point in the domain Ω. The concept of a weak solution
uw(x, y) of the problem is based on a slight relaxation of this criterion. A weak solution
is a function that satisfies the boundary condition and for which the weighted residual

r =

∫

Ω
R (x, y, uw(x, y))φtest(x, y)dx (A.2)

vanishes for an arbitrary ’test function’ φtest(x, y) [HH17]. The advantage of writing the
problem in the weak formulation is that it weakens the requirements of the differentiability
of the solution. For the simple thin-film equation

∂th = −∇ ·
[
h3

3η
∇(∆h+ Π(h))

]
(A.3)

introduced in Eq. (2.52), one can write a weak formulation that is of second order in space
by introducing the variable w = ∆h+ Π(h). It is given by

0 =

∫

Ω

[
(∂th) +∇ ·

(
h3

3η
∇w
)]

φtest1 dx (A.4)

0 =

∫

Ω
[∆h+ Π(h)− w]φtest2 dx (A.5)

for test functions φtest1 and φtest2 . By applying integration by parts to all terms which
contain second order spatial derivatives of the fields, one obtains

0 =

∫

Ω
(∂th)φtest1 dx−

∫

Ω

(
h3

3η
∇w
)
· ∇φtest1 dx +

∫

∂Ω

h3

3η
φtest1 ∇w · ds (A.6)

0 =

∫

Ω
[Π(h)− w]φtest2 dx−

∫

Ω
∇h · ∇φtest2 dx +

∫

∂Ω
φtest2 ∇h · ds (A.7)

where ds denotes the line element of the boundary ∂Ω pointing in the direction of the
outside normal. The boundary conditions of the problem can be implemented through the
boundary integrals. In this thesis, we use Neumann boundary conditions (if not stated
otherwise) that lead to vanishing boundary integrals as ∇h = 0 and ∇w = 0 (equivalent
to ∇h = ∆∇h = 0).
The corresponding weak formulations for the more complex models studied in this thesis
(e.g. mixtures or surfactant-covered films) are given in Sec. A.2.3 and Sec. A.4.3.

In this thesis, we consider liquid films and droplets on flat solid substrates and analyse
the systems on a two dimensional rectangular domain

Ω = [0, Lx]× [0, Ly] (A.8)
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Figure A.1.: (a) Linear finite element ansatz function in one dimension which has the values
at the nodes as degrees of freedom. (b) The superposition of the ansatz functions
provides a piecewise linear interpolation.

with the spatial domain sizes Lx and Ly in the x- and y-direction, respectively. This
simple geometry facilitates the spatial discretisation. For rectangular elements with the
constant size ∆x×∆y, the decomposition of the domain is given by

Ω =
⋃

i,j

Ωi,j with Ωi,j = [i∆x, (i+ 1)∆x]× [j∆y, (j + 1)∆y] (A.9)

for i = 0 , ... , Lx∆x and j = 0 , ... ,
Ly
∆y . (A.10)

The key feature of the finite element method is to expand the field u(x, y) and – following
the classical Galerkin method [EG13] also the test functions – in basis functions ψi(x, y)
which only have compact support, i.e., differ from zero only in a few cells. In practice, the
expansion is truncated after a finite number of terms and we obtain the approximations

uw(x, y) ≈
∑

k

Ukψk(x, y) φtest(x, y) ≈
∑

j

Φjψj(x, y) . (A.11)

In the performed numerical simulations, we use simple ansatz functions ψi(x, y) which
are linear in x- and y-direction. They have a finite value at the corners of the elements,
the so-called nodes, as sketched in Fig. A.1 (a) for a one-dimensional system. Inserting
the approximation (A.11) of the field and the test-functions into the weak formulation
of the problem and replacing the integrals by appropriate weighted sums yields a set of
equations for the yet unknown coefficients Uk [HH17]. Let us for the moment assume
that we have already appropriately treated the time-derivatives which occur in the weak
formulation of the problem. Then, the resulting nonlinear algebraic equations are solved
for the unknown coefficients using, e.g., Newton’s method [Deu04]. For the employed
linear ansatz functions, the obtained approximation for the field uw(x, y) is a piecewise
linear interpolation between the values at the nodes as sketched in Fig. A.1 (b). The
quality of the solution could, e.g., be improved by using non-uniformly spaced nodes or
higher-order ansatz functions [HH17].
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Time Stepping Method

In this section, we briefly discuss the treatment of the temporal derivatives occurring in
the coupled ordinary equations that result from the weak formulation of the problem by
discretising space and applying the finite element method, again following [Wil16].
Let us consider a general system of first order ordinary differential equations

d

dt
u(t) = f(u(t), t) (A.12)

for a time-dependent vector u(t). In the context of treating the time derivatives in a finite
element scheme for partial differential equations, u(t) is an array consisting of the values
of the field at the nodes. The function f(u(t), t) contains the expressions obtained by
applying the finite element method.
A good overview of numerical methods for ordinary differential equations can, e.g., be
found in [But16]. The simplest time-stepping method which illustrates the main idea be-
hind many time stepping methods is the explicit Euler scheme. This algorithm is based on
the forward difference approximation of the temporal derivative and makes the prediction

u(t+ ∆t) = u(t) + ∆tf(u(t), t) (A.13)

for u at the next time step. The accuracy of the method depends on the size of the time
step ∆t and it can be shown that the truncation error is proportional to the step size. One
way to improve the accuracy of the method is to approximate f with intermediate values
at several stages within the time interval [t, t+∆t] instead of assuming a constant value for
the whole time interval. This is done in the explicit Runge-Kutte schemes [But16] which
can be formulated as

u(t+ ∆t) = u(t) + ∆t

s∑

i=1

biki (A.14)

where the ki represent the approximation for f(u(t) , t) at the intermediate stages and are
given by

ki = f


u(t) + ∆t

i−1∑

j=1

aijkj , t+ ci∆t


 . (A.15)

The coefficients aij , ci and bi for a specific Runge-Kutta scheme are often displayed in a
compact form in a Butcher tableau as shown in Table A.1 (a) for a method of s stages.

(a) 0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · ass
b1 b2 · · · bs

(b) c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

c3 a31 a32 · · · a3s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

Table A.1.: General form of the Butcher tableau for an explicit (a) and an implicit (b) Runge-
Kutta method of s stages.

Explicit Runge-Kutta time-stepping methods have the advantage that the new step can
be easily calculated from the information available at time t. However, they are usually
not suitable for the solution of stiff equations containing higher order derivatives, such as
the thin-film equation. The reason is that their region of numerical stability is small which
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results in strict constraints for the possible time step ∆t. This can be circumvented by
applying implicit Runge-Kutte schemes, which can be written in the form

u(t+ ∆t) = u(t) + ∆t
s∑

i=1

biki (A.16)

with

ki = f


u(t) + ∆t

s∑

j=1

aijkj , t+ ci∆t


 . (A.17)

The difference as compared to an explicit time stepping method is the time at which
f(u(t) , t), which enters into the coefficients ki, is evaluated. This can also be seen in
the Butcher tableau which has the form depicted in Table A.1 (b) and is no longer given
by a lower triangle as for explicit time-stepping methods. In consequence, a system of
algebraic equations has to be solved at every time step which increases the computational
cost considerably. Nevertheless, this increased effort is – especially for stiff equations –
often out-weighted by the possible larger step ∆t [But16].
A special class of such methods are the diagonally implicit Runge-Kutta (DIRK) schemes
[Ale77] for which every stage is implicit, i.e., all diagonal coefficients aii are non-zero.
Throughout this thesis, we employ a scheme as given in the Butcher tableau in Table A.2.

α α 0
1 1− α α

1− α α

Table A.2.: Butcher tableau for the employed second-order DIRK method, where α = 1 + 1
2

√
2.

A further improvement of the time-stepping method can be achieved by using an adaptive
time step which is not of constant size but instead controlled by the local truncation error
of a single Runge-Kutta step. This can be done by comparing two methods which are of
different order of accuracy and adapting the time step in such a way that it stays within
a given bound. [But16]

Practical Implementation Using DUNE-PDElab

The numerical time simulations are implemented using the open source framework DUNE
(Distributed and Unified Numerics Environment) [BBD+08a, BBD+08b, BHM10]. This
C++ based toolbox is designed to solve partial differential equations using grid-based
methods such as finite differences, finite volume or finite element approaches. DUNE pro-
vides several modules that target the specific tasks, such as DUNE-pdelab for the discreti-
sation using for example finite elements, DUNE-grid for grid managing and DUNE-istl for
the implementation of iterative solvers. The template-based toolbox serves as an interface
between these modules and allows for high-performance computing. Most of the simula-
tions presented in this thesis were performed parallelized on the computer grid PALMA
of the University of Münster.
The specific implementation used in this thesis extends a code for the simple thin-film equa-
tion written by Markus Wilczek [Wil16] and Walter Tewes [Tew18]. An implicit second or-
der Runge-Kutta scheme with adaptive time step is used for the time-integration. The re-
sulting linear problem is solved with a biconjugate gradient stabilised method (BiCGStab)
and a symmetric successive overrelaxation (SSOR) as preconditioner.
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A.1.2. Parameter Continuation

In this section, we briefly introduce continuation methods by sketching the procedure of a
natural parameter continuation, largely following the lecture notes by Thiele [Thi15c] and
the descriptions in [Wil16] and [Eng17]. For stationary states, the studied model systems
can – after spatial discretisation of the fields and their derivatives – be written as a set of
nonlinear equations

du

dt
= 0 = G(u, λ) (A.18)

where u represents the solution array containing, e.g., the profile of the film height on
the grid points, and λ represents a control parameter. Continuation methods now rely
on the fact that any regular solution (u0, λ0) is part of a unique continuum of solutions,
called a solution branch. A slight change in the control parameter thus only results in a
small change of the solution [Thi15c]. This assumption is based on the Implicit Function
Theorem which states that if the Jacobian matrix is non-singular and G(u, λ) and the
Jacobian are smooth near (u0, λ0), then there exists a whole family u(λ) close to u0(λ0).
A mathematically precise formulation, proof and further applications of this theorem can
be found in [KP12]. The strategy of continuation methods is now to start from a given
solution (u0, λ0) and successively follow the solution branch by slightly varying the pa-
rameter λ and adapting the solution [Wil16].

The first step in a continuation procedure is to obtain the solution (u0, λ0) which serves
as a starting point. For many cases, including most systems discussed here, an analytical
solution of the problem is not available. One possibility is to start from a numerical
solution that a time-stepping procedure converged to at large times. However, this relies
on the availability of an adequate implementation and a sufficient convergence of the
numerical solution. Another strategy, which is pursued in most cases in this thesis, is a
homotopy method. In this approach, the system is written in a form that consists of a
model of reduced complexity (for which an analytical solution is known) and the remaining
terms multiplied by an artificial parameter, for example µ. The continuation procedure
is initiated from the analytical solution at µ = 0 which is subsequently continued to the
full model of interest by successively varying the artificial parameter to µ = 1 [Wil16].
Following this approach, most continuation runs in this thesis are initiated by the flat film
solution of a simple thin-film equation.
The continuation procedure itself, which is applied to follow the solution (ui, λi) along a
solution branch by varying the control parameter to λi+1 = λi + ∆λ, consists of two steps
as depicted in Fig. A.2: First, in a prediction step, the known solution branch is linearly
extrapolated using the tangent vector ν = ∂u

∂λ of the curve u(λ) to obtain an initial guess
for the solution ûi+1 at λi+1. Next, this test solution is developed into a “true” solution
(to arbitrary exactness) of Eq. (A.18) by applying a Newton iteration procedure [Deu04]
at fixed control parameter λi+1. These steps are repeatedly performed to continue along
a solution branch. The tangential vector ν(ui) which is used in the prediction step to
generate the test solution

ûi+1 = ui + ∆λν(ui) (A.19)

can be obtained from a differentiation of Eq. (A.18) as

ν = −J−1∂G

∂λ
(A.20)

where J is the Jacobian [Eng17]. The subsequent correction of the test solution by New-
ton’s method corresponds to a vertical step in the (u, λ) space. The step size ∆λ used in
the prediction step can be adapted dynamically during the continuation along the branch
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control parameter λ
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Figure A.2.: Sketch of a natural parameter continuation procedure. In a prediction step, a test
solution is generated by extrapolating the known solution branch. Subsequently, this
solution is corrected using an iterative Newton method. This simple procedure is,
however, not suitable to follow solution branches around saddle-node bifurcations.

to ensure fast convergence of the Newton method.
One drawback of the natural parameter continuation procedure sketched above is that is
relies on a one-to-one correspondence of solutions u and parameter λ and it can there-
fore not follow solution branches around saddle-node bifurcations such as the fold point
(uSN , λSN ) depicted in Fig. A.2. This can be fixed by employing the pseudo-arclength
continuation or Keller method [Kel79] which introduces an additional parameter s repre-
senting the approximate arclength along the solution branch u(λ) and writes both u(λ(s))
and λ(s) as functions of the new control parameter s. Then, the Newton correction steps
are performed at fixed s. In consequence, this method allows for changes in the direction
of the parameter λ and thus the continuation around fold points [Thi15c].

If the system under study fulfils certain symmetries, such as translational symmetry or
invariance w.r.t. a change in volume as is, e.g., the case for the simple thin-film equation,
the continuation of a solution along a branch is no longer possible as solutions are not
unique anymore. Instead, a continuous spectrum of solutions exists at each λ which all
have the same morphology but, in our example possess different volumes or are shifted
along the x-axis. To guarantee the existence of a unique solution which can be followed,
the ’neutrally stable’ eigenmodes of the system need to be suppressed in the continuation
procedure by the introduction of additional conditions [Eng17]. For volume conservation in
the thin-film equation, where the solution u represents the height profile h, the respective
condition is the integral condition

0 =

∫

Ω
hdx− V0 . (A.21)

The translation symmetry can be broken by introducing the integral condition

0 =

∫

Ω

∂hi−1

∂x
(hi − hi−1) dx (A.22)

which requests that the projection of the solution in the i-th iteration step onto the trans-
lation mode of the (i− 1)-th solution is zero [Eng17].

One possible implementation of the above described continuation method, which is ap-
plied here, is provided by the software package Auto07p [DO09]. Many tutorials on the
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application of Auto07p to different types of systems and problems can be found in the
Münsteranian Torturials On Continuation [Thi15a]. Note that – in contrast to other soft-
ware packages such as pde2path [UWR14] or oomph-lib [HH06] – Auto07p is limited to
one-dimensional geometries. In Sec. A.5 the implementation of a parameter continuation
using Auto07p is discussed in more detail. There, it is also shown how the procedure can
be extended to study the (transversal) stability of fronts.
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A.2. Details of the Thin-Film Model for Osmotic Biofilm
Spreading

A.2.1. Non-dimensional Form of the Model

The model

∂th = ∇ ·
[
Qhh∇

δFmix

δh
+Qhψ∇

δFmix

δψ

]
+ ζ(h, ψ) (A.23)

∂tψ = ∇ ·
[
Qψh∇

δFmix

δh
+Qψψ∇

δFmix

δψ

]
+G(h, ψ) (A.24)

as introduced in Eqs. (3.22)-(3.23) in a hydrodynamic formulation with the energetic
contributions, mobilities and bioactive terms as defined in Eqs. (3.1)-(3.4), (3.8)-(3.9) and
(3.16)-(3.21) describes the osmotically driven spreading of biofilms. It is brought into a
non-dimensional form by introducing the scaling

t = τ t̃ x = Lx̃ y = Lỹ h = lh̃ ψ = lψ̃ fw,m = κf̃w,m (A.25)

for time, space and energy, assuming that in a thin-film geometry, the horizontal x- and
y-direction scale differently than the vertical z-direction. Dimensionless quantities are
indicated by tildes. The scales are chosen as

τ =
L2η0

κl
l = ha L =

√
γ

κ
l κ =

kBT

a3
l . (A.26)

The non-dimensional form of the evolution equations then reads

∂t̃h̃ = ∇̃ ·
[
Q̃hh∇̃

δF̃mix

δh̃
+ Q̃hψ∇̃

δF̃mix

δψ̃

]
+ ζ̃(h̃, ψ̃) (A.27)

∂t̃ψ̃ = ∇̃ ·
[
Q̃ψh∇̃

δF̃mix

δh̃
+ Q̃ψψ∇̃

δF̃mix

δψ̃

]
+ G̃(h̃, ψ̃) . (A.28)

Note that the nondimensional variations are given by

δF̃mix

δh̃
=
lL2

κL2

δFmix

δh
=
l

κ

δFmix

δh

δF̃mix

δψ̃
=
l

κ

δFmix

δψ
(A.29)

since the functional derivatives scale as

δ

δh(x)
=

1

L2l

δ

δh̃(x̃)

δ

δψ(x)
=

1

L2l

δ

δψ̃(x̃)
. (A.30)

This gives

δF̃mix

δh̃
=Wm

(
1

h̃3
− 1

h̃6

)
− ∆̃h̃ (A.31)

δF̃mix

δψ̃
= ln

(
ψ̃

h̃

)
− ln

(
1− ψ̃

h̃

)
(A.32)

with a dimensionless parameter

Wm =
A

l3
a3

kBT
(A.33)
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representing the ratio between the wetting and the entropic bulk contributions to the free
energy. It is therefore called wettability parameter.
The mobility matrix is given by

Q̃ =
η0

l3
Q =

1

3η̂

(
h̃3 h̃2ψ̃

h̃2ψ̃ h̃ψ̃2

)
+

(
0 0

0 D̃ψ̃

)
(A.34)

with the dimensionless diffusivity

D̃ =
δ2

6πη̂
with δ =

a

ha
. (A.35)

The biomass production term reads

G̃(h̃, ψ̃) = g̃h̃
ψ̃

h̃

(
1− ψ̃

h̃

)(
1− ψ̃

φeqh̃?

)
fmod(h̃, ψ̃) (A.36)

with the dimensionless growth rate g̃ = gτ and the dimensionless limiting height h̃? = h?

l .
The local modification of the growth term for small amounts of biomass is given by

fmod

(
h̃, ψ̃

)
= (1− φeqh̃u

ψ̃
)
(

1− exp(φeq − ψ̃)
)

(A.37)

with h̃u = hu
l . The osmotic influx term reads

ζ̃(h̃, ψ̃) = Q̃osm

(
−δF̃mix[h̃, ψ̃]

δh̃
− Π̃agar

)
(A.38)

with the dimensionless osmotic mobility constant Q̃osm = τκ
l2
Qosm and Π̃agar = l

κΠagar.

A.2.2. Formulation for Parameter Continuation

To analyse the model for osmotic biofilm spreading with parameter continuation, we trans-
form the evolution equations (A.27)-(A.28) into the co-moving coordinate system moving
with a constant velocity v via the coordinate transformation x → x + vt. The equations
contain derivatives of the film height h up to fourth order and derivatives of the biomass
height ψ up to second order. For the parameter continuation using AUTO07p, the system
needs to be written as a system of first order differential equations. We omit the tildes
that indicate dimensionless quantities and choose the variables

u1 = ψ u2 = h u3 = ψx u4 = hx u5 = hxx u6 = hxxx (A.39)

where subscipt x stand for spatial derivatives. Then, we define the ODE system with
NDIM = 6 as

∂xu1 = u3 ∂xu4 = u5

∂xu2 = u4 ∂xu5 = u6 (A.40)

∂xu3 = ψxx ∂xu6 = hxxxx .

The steady versions of Eqs. (A.27)-(A.28) in the co-moving frame with velocity v are
solved for the yet unknown expressions for ψxx and hxxxx. This yields

ψxx =
1

η̂h6
(2η̂h8ψxhxxxπ − 2η̂hxψhxxxπh

7 − 6G(ψ, h)η̂2h6π

+ 6ζ(ψ, h)h5πη̂2ψ + 6η̂h4hxψxWmπ − 6η̂h2
xψWmπh

3

+ η̂hxxh
5ψ + η̂h5hxψx − η̂h4h2

xψ (A.41)

+ η̂xh
6ψx − η̂xh5hxψ − 12η̂hhxψxWmπ + 12η̂h2

xψWmπ

− 6h6ψxη̂
2πv + 6h5hxψη̂

2πv)

112



A.2. Details of the Thin-Film Model for Osmotic Biofilm Spreading

and

hxxxx =
1

η̂h8ψπ
(−η̂h8ψxhxxxπ − 2η̂hxψhxxxπh

7

+ η̂xh
8ψhxxxπ + 3G(ψ, h)η̂2h6π − 3η̂hxxh

4ψWmπ

− 3η̂h4hxψxWmπ + 6η̂h2
xψWmπh

3 + 3η̂xh
4hxψWmπ

− 1
2 η̂hxxh

5ψ + 1
2 η̂ψxxh

6 − 1
2 η̂h

5hxψx (A.42)

+ 1
2 η̂h

4h2
xψ − 1

2 η̂xh
6ψx + 1

2 η̂xh
5hxψ

+ 6η̂hxxhψWmπ + 6η̂hhxψxWmπ − 30η̂h2
xψWmπ − 6η̂xhhxψWmπ

+ 3h6ψxη̂
2πv)

with

η̂ =

ηb
η0
ψ + h− ψ

h
η̂x =

ηb
η0
ψx + hx − ψx

h
−

( ηbη0
ψ + h− ψ)hx

h2
. (A.43)

As boundary conditions, we apply hx = ψx = hxxx = 0 at both boundaries, yielding
NBC = 6 equations and at the same time breaking the translation symmetry. One integral
condition is used to measure the drop volume (NINT = 1). Thus, the problem has (NBC +
NINT−NDIM +1) = 2 free parameters. The continuation run is initiated from a numerical
solution obtained by a finite element method using DUNE for a stationary (relatively flat)
biofilm droplet. In the runs for stationary (arrested) profiles, the velocity v is fixed to zero
and the drop volume is used as an adapting (pseudo-)free parameter when studying the
influence of other control parameters (for example the biomass growth rate g). For the
analysis of the front profiles, the drop volume is fixed (i.e. the integral condition becomes
a ’true’ condition and not just a measure) and the velocity is adapted.

A.2.3. Weak Formulation Used in Time Simulations

For the time simulations, the osmotic biofilm model is written in a symmetric formulation
presented by Xu et al. in [XTQ15], i.e.

∂tψ = ∇ ·
[
Qψw∇

δFmix[ψ,ψw]

δψ
+Qψψw∇

δFmix[ψ,ψψw]

δψw

]
+G(ψ,ψw) (A.44)

∂tψw = ∇ ·
[
Qψwψ∇

δFmix[ψ,ψw]

δψ
+Qψwψw∇

δFmix[ψ,ψw]

δψw

]
−G(ψ,ψw) + ζ(ψ,ψw)

(A.45)

where we again omit the tildes identifying dimensionless quantities. The energy functional
Fmix and the bioactive terms are expressed through the effective thickness of biomass ψ
and water ψw and the mobility matrix is defined as

(
Qψψ Qψψw

Qψwψ Qψwψw

)
=
ψ + ψw

3η̂

(
ψ2 +M ψψw −M
ψψw −M ψwψw +M

)
(A.46)

with

M =
ψψwδ

2

2π(ψ + ψw)2
. (A.47)

We formulate the system in terms of four variables

u0 = ψ u1 =
δFmix

δψ
w0 = ψw w1 =

δFmix

δψw
(A.48)
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to reduce the order of the differential equations by two derivatives. The evolution equations
are then given by

∂tu0 = ∇ · [Qψψ∇u1 +Qψψw∇w1] +G (A.49)

u1 =
δFmix

∂u0
= Wm

(
1

(u0+w0)3 − 1
(u0+w0)6

)
+ ln

(
u0

u0+w0

)
−∆(u0 + w0) (A.50)

∂tw0 = ∇ · [Qψwψ∇u1 +Qψwψw∇w1]−G+ ζ (A.51)

w1 =
δFmix

∂w0
= Wm

(
1

(u0+w0)3 − 1
(u0+w0)6

)
+ ln

(
w0

u0+w0

)
−∆(u0 + w0) (A.52)

We choose linear test- and ansatz-functions φ0, ..., φ3, multiply Eqs. (A.49)-(A.52) with
these functions and integrate over the whole domain. After partial integration and apply-
ing Neumann boundary conditions (resulting in vanishing boundary integrals), the weak
formulation of the problem used for the implementation in DUNE is given by

0 =

∫

Ω
dx [∂tu0φ0 + [Qψψ∇u1 +Qψψw∇w1] · ∇φ0 −Gφ0]

0 =

∫

Ω
dx
[[
−u1 +Wm

(
1

(u0+w0)3 − 1
(u0+w0)6

)
+ ln

(
u0

u0+w0

)]
φ1 + (∇u0 +∇w0) · ∇φ1

]

0 =

∫

Ω
dx [∂tw0φ2 + [Qψwψ∇u1 +Qψwψw∇w1] · ∇φ2 + (G− ζ)φ2]

0 =

∫

Ω
dx
[[
−w1 +Wm

(
1

(u0+w0)3 − 1
(w0+w0)6

)
+ ln

(
w0

u0+w0

)]
φ3 + (∇u0 +∇w0) · ∇φ3

]
.
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A.3. Details of the Model for Drops Covered by Insoluble
Surfactant

A.3.1. Non-dimensional Form of the Model

To write a non-dimensional version of the model for surfactant-covered drops with surfac-
tant-dependent wettability introduced in Eqs. (4.49)-(4.50) in Sec. 4.3, the energy is
rescaled by the interfacial tension without surfactant γ0 and the length scales in verti-
cal and horizontal direction are rescaled by the adsorption layer height. Note that in this
model, Γ represents a surface number density (with dimension 1/m2). The rescaling of
the equations results in

x = lx̃ h = lh̃ Γp = l2Γ̃p t = τ t̃ F = κl2F̃ (A.53)

with the scales

l = ha τ =
ηl

κ
κ = γ0 . (A.54)

Note that here, the vertical and horizontal length scales are rescaled in the same way. The
non-dimensional form of the evolution equations is then given by

∂t̃h̃ = ∇̃ ·
[
Q̃11∇̃

δF̃surf

δh̃
+ Q̃12∇̃

δF̃surf

δΓ̃p

]
(A.55)

∂t̃Γ̃p = ∇̃ ·
[
Q̃21∇̃

δF̃surf

δh̃
+ Q̃22∇̃

δF̃surf

δΓ̃p

]
. (A.56)

The variations scale as

δF̃surf

δh̃
=
ll2

κl2
δFsurf

δh
=
l

κ

δFsurf

δh

δF̃surf

δΓ̃p

=
1

κ

δFsurf

δΓp
(A.57)

since the functional derivatives are given by

δ

δh
=

1

l2l

δ

δh̃(x̃)

δ

δΓp
=

1

l2
δ

δΓ̃p(x̃)
. (A.58)

The free energy functional F̃surf (written as a function of Γ̃) reads

F̃surf =

∫ [
1 + ε1Γ̃(ln Γ̃− 1)

]

︸ ︷︷ ︸
g̃(Γ̃)

ζ + ε2

(
− 1

2h̃2
+

1

5h̃5

)[
1 +

10

3

ε1
ε2

ln δΓ̃

]

︸ ︷︷ ︸
f̃w(h̃,Γ̃)

dx̃
(A.59)

with the dimensionless parameters

δ =
a2

a2
sg

ε1 =
kBT

a2γ0
ε2 =

A

h2
aγ

0
(A.60)

representing the ratio of the effective molecular length scales of the surfactant on the liquid-
gas and solid-gas interface, the ratio of the entropic energetic contribution of the surfactant
as compared to the surface tension without surfactant and the ratio of the wetting energy
as compared to the surface tension, respectively. The dimensionless diffusivity is given
by D̃ = Dηa2/ha. Note that for performing the variations, the surfactant concentration
in F̃surf has to be expressed in terms of its projection onto the flat substrate Γ̃p by using

Γ̃ =
Γ̃p

ξ .
In the following, we omit the tildes that indicate dimensionless quantities.
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A.3.2. Formulation for Parameter Continuation

To study the steady state solutions of the evolution equations (A.55)-(A.56) with the
free energy functional given in Eq. (A.59), we formulate the problem as a set of ordinary
differential equations suitable for parameter continuation. In thermodynamic equilibrium,
the fluxes stemming from ∇ δFsurf

δh and ∇ δFsurf
δΓp

vanish separately. The variations thus
become constant across the system

(I)
δFsurf

δh
= ∂hfw − ∂x[(g − λΓΓ)∂xhξ ] = p (A.61)

(II)
δFsurf

δΓp
=

1

ξ
∂Γfw + ∂Γg = λΓ (A.62)

where p denotes the pressure and λΓ denotes the chemical potential as given in Eqs. (4.13)
and (4.14). For the entropic energy and the product ansatz used in Sec. 4.2.3, one can
derive an expression for the surfactant coverage Γ(λ, h) from Eq. (A.62). One finds
a second order ordinary differential equation for h(x) by inserting this expression into
Eq. (A.61) . By introducing the variables

u1 = h u2 = hx , (A.63)

the problem can be reformulated as a set of two first order differential equation given by

d

dx
u1 = hx = u2 (A.64)

d

dx
u2 = hxx =

ξ3

C

(
χ∂hf̂w − p−

h2
x

ξ2
(∂Γg − λΓ)

M

ε1
Γ∂hf̂w

)
(A.65)

with

M =
10

3

ε1
ε2

ln δ and C = g − λΓ− (∂Γg − λ)Γ
M

ε1
λf̂w

h2
x

ξ
.
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A.4. Details of the Thin-Film Model for Surfactant-Driven
Spreading of Bacterial Colonies

A.4.1. Non-dimensional Form of the Model

The model

∂th = ∇ ·
[
h3

3η
∇(∂hfw − γ0∆h)

]
+
kT

a2
∇ ·
[
h2

2η
∇Γ

]
+G(h) (A.66)

∂tΓ = ∇ ·
[
h2Γ

3η
∇(∂hfw − γ0∆h)

]
+
kT

a2
∇ ·
[
hΓ

η
∇Γ

]
+
kT

a2
D∆Γ + P (h,Γ) . (A.67)

presented in Sec. 5.2 with fw(h), G(h) and P (h,Γ) as defined in Eqs. (4.52), (5.1) and
(5.2) is brought into a non-dimensional form by introducing the scaling

t = τ t̃ x = Lx̃ y = Lỹ h = lh̃ Γ = Γ̃ fw,s = κf̃w,s . (A.68)

for time, space, concentration and energy. Note that in this model, Γ represents the
(dimensionless) packing fraction of surfactant at the interface. The scales are chosen as

l = ha κ = kT
a2 L =

√
γ0

κ l τ = L2η
κl . (A.69)

The non-dimensional form of the evolution equations can then be written as

∂t̃h̃ = ∇̃ ·
[
Q̃hh∇̃[Ws(

1
h̃3
− 1

h̃6
)− ∆̃h] + Q̃hΓ∇̃ ln(Γ̃)

]
+ G̃(h̃) (A.70)

∂t̃Γ̃ = ∇̃ ·
[
Q̃Γh∇̃[Ws(

1
h̃3
− 1

h̃6
)− ∆̃h] + Q̃ΓΓ∇̃ ln(Γ̃)

]
+ P̃ (h̃, Γ̃) (A.71)

with the dimensionless parameter

Ws =
Aa2

h2
akBT

(A.72)

defining the relative strength of wetting as compared to the energetic influence of the
surfactant. The mobilities are given by

Q̃hh =
h̃3

3
Q̃Γh = Q̃hΓ =

h̃2Γ̃

2
QΓ̃Γ̃ = h̃Γ̃2 + D̃Γ̃ (A.73)

with a dimensionless diffusivity D̃ = η
lD. The growth rate and production term in the

dimensionless model read

G̃(h̃) = g̃(h̃− h̃u)
(

1− h̃

h̃?

)
(1− exp(h̃s − h̃)) (A.74)

P̃ (h̃, Γ̃) = p̃h̃(Γ̃max − Γ̃)Θ(Γ̃max − Γ̃)Θ(h̃− hu) (A.75)

with the dimensionless biomass growth rate g̃ = τg, the dimensionless surfactant produc-
tion rate p̃ = τpl and the dimensionless film heights h̃? = h?

l and h̃s = hs
l .

In the following, we omit the tildes that indicate dimensionless quantities.
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A.4.2. Formulation for Parameter Continuation

To analyse the model for surfactant-driven spreading of bacterial colonies with parame-
ter continuation, we transform the evolution equations (A.70)-(A.70) into the co-moving
coordinate system moving with a constant velocity v via the coordinate transformation
x→ x+ vt. The resulting equations contain derivatives of the film height h up to fourth
order and derivatives of the surfactant concentration Γ up to second order. For the pa-
rameter continuation using AUTO07p, the system needs to be transformed into a system
of first order differential equations. We choose the variables

u1 = h u2 = Γ u3 = hx u4 = Γx u5 = hxx u6 = hxxx (A.76)

where subscipt x stands for a spatial derivative and define the system of ordinary differ-
ential equations with NDIM = 6 as

∂xu1 = u3 ∂xu4 = Γxx

∂xu2 = u4 ∂xu5 = u6 (A.77)

∂xu3 = u5 ∂xu6 = hxxxx .

The stationary version of Eqs. (A.70)-(A.71) thus need to be solved for the yet unknown
expressions for Γxx and hxxxx. After introducing the abbreviations

f1 = Ws(
1
h3 − 1

h6 ) (A.78)

f3 = ln(Γ) , (A.79)

solving (A.70)-(A.71) for hxxxx yields

hxxxx = 1
Qhh

[Qhh,x(f1,x − hxxx) +Qhhf1,xx +QhΓ,xf3,x +QhΓf3,xx +G+ vhx] (A.80)

hxxxx = 1
QΓh

[QΓh,x(f1,x − hxxx) +QΓhf1,xx +QΓΓ,xf3,x +QΓΓf3,xx + P + vΓx] . (A.81)

These two expressions for hxxxx can be combined to obtain

f3,xx =
1

QΓΓ
QΓh
− QhΓ

Qhh

[
(
Qhh,x
Qhh

− QΓh,x

QhΓ
)(f1,x − hxxx) + (

QhΓ,x

Qhh
− QΓΓ,x

QΓh
)f3,x

+ vhx+G
Qhh

− vΓx+P
QhΓ

]
− f2,xx .

(A.82)

The term f3,xx can also be expressed via the derivation of Eq. (A.79) w.r.t x. By combining
the expressions, we find

Γxx = Γ

(
f3,xx +

Γ2
x

Γ2

)
(A.83)

which can be used in Eqs. (A.80) to obtain hxxxx.

As boundary conditions, we apply hx = Γx = hxxx = 0 on the left boundary and hx =
Γx = 0 and Γ = Γ0 on the right boundary (NBC = 6), thereby fixing the surfactant
concentration on the adsorption layer to a constant value. One integral condition is used
to measure the drop volume (NINT = 1). This yields (NBC +NINT −NDIM + 1) = 2 free
parameters.
The continuation run is initiated by a homotopy method, starting from a flat thin film
without surfactant production with a small perturbation of critical wavelength as described
in the tutorial [Thi15b].
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A.4.3. Weak Formulation Used in Time Simulations

For the time simulations of the dimensionless evolution equations

∂th = ∇ ·
[
Qhh∇[Ws(

1
h3 − 1

h6 )−∆h] +QhΓ∇ ln(Γ)
]

+G(h) (A.84)

∂tΓ = ∇ ·
[
QΓh∇[Ws(

1
h3 − 1

h6 )−∆h] +QΓΓ∇ ln(Γ)
]

+ P (h,Γ) , (A.85)

we formulate the system in terms of four variables

u0 = h u1 = Ws(
1
h3 − 1

h6 )−∆h w0 = Γ w1 = ln(Γ) (A.86)

to reduce the order of the differential equations. The evolution equations are then given
by

∂tu0 = ∇ · [Qhh∇u1 +QhΓ∇w1] +G (A.87)

u1 = Ws(
1
u0

3 − 1
u0

6 )−∆u0 (A.88)

∂tw0 = ∇ · [QΓh∇u1 +QΓΓ∇w1] + P (A.89)

w1 = ln(w0) . (A.90)

We choose linear test- and ansatz-functions φ0, ..., φ3, multiply Eqs. (A.87)-(A.90) with
these functions and integrate over the whole domain. After partial integration and apply-
ing Neumann boundary conditions (resulting in vanishing boundary integrals), the weak
formulation of the problem used for the implementation in DUNE is given by

0 =

∫

Ω
dx [∂tu0φ0 + [Qhh∇u1 +QhΓ∇w1] · ∇φ0 −Gφ0] (A.91)

0 =

∫

Ω
dx
[[
−u1 +Ws(

1
u0

3 − 1
u0

6 )
]
φ1 +∇u0 · ∇φ1

]
(A.92)

0 =

∫

Ω
dx [∂tw0φ2 + [QΓh∇u1 +QΓΓ∇w1] · ∇φ2 − Pφ2] (A.93)

0 =

∫

Ω
dx [[−w1 + ln(w0)]φ3] . (A.94)
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A.5. Tutorial on the Implementation of a Transversal Linear
Stability Analysis

The following section presents a tutorial on the implementation of a transversal linear
stability analysis in AUTO07p. We focus on involved evolution equations which require
the use of a symbolic computing environment to obtain an adequate formulation of the
problem. We first briefly review the mathematical concept of a transversal stability anal-
ysis before presenting the method using the equations for surfactant-driven spreading of
bacterial colonies as an example.

A.5.1. Concept of the Transversal Linear Stability Analysis

In general, linear stability analysis is a standard method to determine the stability of
solutions with respect to small perturbations. Here, we are interested in the front solutions
of the model for surfactant-driven spreading of bacterial colonies and therefore transform
the evolution equations (A.84)-(A.85) into the co-moving frame in which front solutions
correspond to stationary profiles. This yields

∂th = ∇ ·
[
Qhh∇[Ws(

1
h3 − 1

h6 )−∆h] +QhΓ∇ ln(Γ)
]

+G(h)− v∂xh
= F1(∇, x, v)[h,Γ]

(A.95)

∂tΓ = ∇ ·
[
QΓh∇[Ws(

1
h3 − 1

h6 )−∆h] +QΓΓ∇ ln(Γ)
]

+ P (h,Γ)− v∂xΓ

= F2(∇, x, v)[h,Γ]
(A.96)

where we introduced F1,2(∇, x, v) as a short hand notation for the nonlinear operators
defined by the right-hand sides of the evolution equations. We assume the existence of a
stationary front solution (h0(x),Γ0(x)) that fulfills

0 = ∇ ·
[
Qhh∇[Ws(

1
h3 − 1

h6 )−∆h] +QhΓ∇ ln(Γ)
]

+G(h)− v∂xh (A.97)

0 = ∇ ·
[
QΓh∇[Ws(

1
h3 − 1

h6 )−∆h] +QΓΓ∇ ln(Γ)
]

+ P (h,Γ)− v∂xΓ (A.98)

and study the temporal evolution of this solution under the influence of a small perturba-
tion (δh(x, y, t), δΓ(x, y, t)). Inserting the ansatz

h(x, y) = h0(x) + δh(x, y, t) (A.99)

Γ(x, y) = Γ0(x) + δΓ(x, y, t) (A.100)

into Eqs. (A.95)-(A.96) and expanding F1,2 about the front solution (h0(x),Γ0(x)) gives

∂
∂th0(x) + ∂

∂tδh(x, y, t) = F1[h0(x) + δh(x, t),Γ0(x) + δΓ(x, y, t)] (A.101)

= F1[h0(x),Γ0(x)] + F ′1h|h0(x),Γ0(x)δh(x, y, t) + F ′1Γ|h0(x),Γ0(x)δΓ(x, y, t) +O(δ2
h, δ

2
Γ)

∂
∂tΓ0(x) + ∂

∂tδΓ(x, y, t) = F2[h0(x) + δh(x, y, t),Γ0(x) + δΓ(x, y, t)] (A.102)

= F2[h0(x),Γ0(x)] + F ′2h|h0(x),Γ0(x)δh(x, y, t) + F ′2Γ|h0(x),Γ0(x)δΓ(x, y, t) +O(δ2
h, δ

2
Γ) .

Here, F ′h,Γ are linear operators denoting the Fréchet-derivatives of the nonlinear operators
F with respect to h and Γ. The terms in order zero vanish because (h0(x),Γ0(x)) is a
stationary front solution. The first order in δ gives two coupled linear evolution equations
for the perturbation

∂
∂tδh(x, y, t) = F ′1h|h0(x),Γ0(x)δh(x, y, t) + F ′1Γ|h0(x),Γ0(x)δΓ(x, y, t) (A.103)

∂
∂tδΓ(x, y, t) = F ′2h|h0(x),Γ0(x)δh(x, y, t) + F ′2Γ|h0(x),Γ0(x)δΓ(x, y, t) . (A.104)
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To analyse the transversal stability of the front solutions in the co-moving frame, we
employ the ansatz

h = h0(x) +
∑

j

h1,j(x) exp(ikyy + σjt) (A.105)

Γ = Γ0(x) +
∑

j

Γ1,j(x) exp(ikyy + σjt) (A.106)

which corresponds to a plane-wave ansatz for the perturbation in y-direction with an ex-
ponential time dependence. Inserting it into Eqs. (A.103)-(A.104) results in the equations

σjh1,j(x) = F ′1h|h0(x),Γ0(x)h1,j(x) + F ′1Γ|h0(x),Γ0(x)Γ1,j(x) (A.107)

σjΓ1,j(x) = F ′2h|h0(x),Γ0(x)h1,j(x) + F ′2Γ|h0(x),Γ0(x)Γ1,j(x) (A.108)

for the j-th eigenmode. Statements about the linear stability of the front (h0(x),Γ0(x))
can now be made by determining the largest eigenvalue σj(ky) which tells if the pertur-
bation grows (for σj > 0) or decays (for σj < 0) in time (here assuming σj is real).

A.5.2. Implementation in AUTO07p

The linear eigenvalue problem (A.107)-(A.108) is solved by parameter continuation em-
ploying the software package AUTO07p. To that end, the set of equations for the sta-
tionary front profiles h0(x) and Γ0(x) are supplemented by a set of equations for the
eigenfunctions h1(x) and Γ1(x). This approach, in which transversal wave number and
eigenvalue are treated as parameters in a pseudo-arclength continuation is presented in
tutorial form in [Thi15b]. For the implementation in AUTO07p, the system is formulated
as a system of first order differential equations by introducing the variables

u1 = h0 u2 = Γ0 u3 = h0,x u4 = Γ0,x u5 = h0,xx u6 = h0,xxx

u7 = h1 u8 = Γ1 u9 = h1,x u10 = Γ1,x u11 = h1,xx u12 = h1,xxx
(A.109)

where subscipt x stands for a spatial derivative. The system of ordinary differential equa-
tions with NDIM = 12 is then defined as

∂xu1 = u3 ∂xu4 = Γ0,xx ∂xu7 = u9 ∂xu10 = Γ1,xx

∂xu2 = u4 ∂xu5 = u6 ∂xu8 = u10 ∂xu11 = u12 (A.110)

∂xu3 = u5 ∂xu6 = h0,xxxx ∂xu9 = u11 ∂xu12 = h1,xxxx .

In a first step, Eqs. (A.97)-(A.98) and Eqs. (A.107)-(A.108) for (h1,Γ1) thus need to be
solved for the yet unknown expressions for Γ0,xx, h0,xxxx, Γ1,xx and h1,xxxx. This is done by
implementing the problem in the software package maple as presented below in Sec. A.5.3.

We apply NBC = 12 boundary conditions

h0,x = Γ0,x = h0,xxx = h1,x = Γ1,x = h1,xxx = 0 on the left boundary

h0,x = h0,xxx = h1,x = Γ1,x = h1,xxx = 0 Γ0 = Γa on the right boundary ,
(A.111)

thereby fixing the surfactant concentration on the adsorption layer to a constant value Γa.
One integral condition is applied to measure the drop volume Vh0 = 1

L

∫
h0(x)dx, another

one is applied to measure the volume of the eigenfunction Vh1 = 1
L

∫
h1(x)dx, so that

NINT = 2. This results in (NBC +NINT −NDIM + 1) = 3 free parameters.

121



A. Appendix

A.5.3. Formulation in Maple

The objective of the implementation of the transversal linear stability analysis in maple is
to obtain expressions for Γ0,xx, h0,xxxx, Γ1,xx and h1,xxxx needed for the formulation of the
problem in AUTO07p. To that end, we use the same procedure as outlined in Sec. A.4.2.
However, now the evolution equations need to be considered in a two-dimensional geome-
try.
The equivalent of Eq. (A.80) is given by

∆2h =
1

Qhh

[
∇Qhh · ∇f1︸ ︷︷ ︸

=:T1

+Qhh∆f1︸ ︷︷ ︸
=:T2

+∇QhΓ · ∇f3︸ ︷︷ ︸
=:T3

+QhΓ∆f3︸ ︷︷ ︸
=:T4

−∇Qhh · ∇∆h︸ ︷︷ ︸
=:T5

+G+ vhx − ∂th︸ ︷︷ ︸
=:T6

]
.

(A.112)

The zeroth order in δ is used obtain an expression for h0,xxxx, the first order in δ is
employed to find an expression for h1,xxxx. The term ∆2h can also be written as

∆2h = h0,xxxx +
(
h1,xxxx − 2k2

yh1,xx + k4
yh1

)
eikyy+σt . (A.113)

The equivalent of Eq. (A.82) in two dimensions is

∆f3 =
1

QΓΓ
QΓh
− QhΓ

Qhh

[
1

Qhh
∇Qhh · ∇(f1 −∆h)

︸ ︷︷ ︸
=:T7

− 1
QΓh
∇QΓh · ∇(f1 −∆h)

︸ ︷︷ ︸
=:T8

+ 1
QhΓ
∇QhΓ · ∇f3︸ ︷︷ ︸

=:T10

− 1
QhΓ
∇QΓΓ · ∇f3︸ ︷︷ ︸
=:T11

+ G
Qhh
− P

QhΓ
+ v hx

Qhh
− v Γx

QhΓ
− 1

Qhh
∂th+ 1

QhΓ
∂tΓ︸ ︷︷ ︸

=:T12

]
. (A.114)

The term ∆f3 can also be expressed via the spatial derivation of Eq. (A.79) and we find

Γxx = Γ∆f3 + Γ2
x

Γ − Γyy +
Γyy
Γ

. (A.115)

Listing A.1 below shows a code excerpt of the file ’LTSABioSurfactantModel.mw’ which
contains the implementation in maple. After loading necessary packages (l. 1-4), the ener-
getic contributions, mobilities and non-conserved terms are defined in terms of functions
h(x, y, t) and Γ(x, y, t) (l. 6-20). Next, the ansatz for the transversal linear stability anal-
ysis consisting of planar fronts with harmonic perturbations in y-direction as given in
Eqs. (A.105)-(A.106) is specified (l. 17-19).
The expressions for Γ0,xx and Γ1,xx are derived first. To that end, the terms contributing
to Eq. (A.114) are defined (l. 24-30) and summed (l. 33-37). Note that the surfactant
production P containing tanh-terms is treated separately (l. 42-45), as it causes problems
with the maple routine for simplifying expressions. The expression obtained for Γxx is
expanded in a series in ε, a parameter employed to introduce the smallness of the eigen-
functions (l. 39-40). The zeroth and first order are used to obtain expressions for Γ0,xx and
Γ1,xx , respectively (l. 47-51). These can then be transformed to Fortran code (l. 53-68)
to facilitate the implementation in AUTO07p.
The same procedure is performed to obtain expressions for h0, xxxx and h1,xxxx from
Eqs. (A.112) and (A.113).
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1 # Load nece s sa ry packages
2 > r e s t a r t :
3 > with ( LinearAlgebra ) :
4 > with ( codegen ) :

6 # Def ine the ene rg i e s , mob i l i ty matrix and non−conserved terms :
7 > f 1 := W∗(1/h(x , y , t )ˆ3−1/h(x , y , t ) ˆ 6 ) :
8 > f 3 := log (G(x , y , t ) ) :
9 > Qhh := (1/3)∗h(x , y , t ) ˆ 3 :

10 > QGh := (1/2)∗h(x , y , t )ˆ2∗G(x , y , t ) :
11 > QhG := (1/2)∗h(x , y , t )ˆ2∗G(x , y , t ) :
12 > QGG := h(x , y , t )∗G(x , y , t )ˆ2+ D i f f ∗G(x , y , t ) :
13 > Production := ( . 5∗ pr ∗(Gmax−G(x , y , t ) )∗ ( tanh ( c1 ∗(Gmax−G(x , y , t ) ) ) + 1 . ) ∗ . 5 )
14 ∗( tanh ( c2 ∗(h(x , y , t)−hu ))+1. )∗h(x , y , t ) :
15 > Growth := gr ∗(h(x , y , t)−hu)∗(1.−h(x , y , t )/ hs ta r )∗(1.− exp (hp−h(x , y , t ) ) ) :

17 # Ansatz f o r h and Gamma:
18 > h := h0 ( x)+eps ∗h1 ( x )∗ exp ( I ∗k∗y+sigma∗ t ) :
19 > G := G0( x)+eps ∗G1( x )∗ exp ( I ∗k∗y+sigma∗ t ) :
20 > Lh := d i f f (h (x , y , t ) , x , x)+ d i f f (h (x , y , t ) , y , y ) :

22 # Obatin the expr e s s i on f o r Gamma {xx}

24 # Implementation o f the terms c o n t r i b u t i n g to Laplace ( f 3 )
25 > T7 := ( ( d i f f (Qhh , x ) )∗ ( d i f f ( f1−Lh , x))+( d i f f (Qhh , y ) )∗ ( d i f f ( f1−Lh , y ) ) ) /Qhh :
26 > T8 := −(( d i f f (QGh, x ) )∗ ( d i f f ( f1−Lh , x))+( d i f f (QGh, y ) )∗ ( d i f f ( f1−Lh , y ) ) ) /QGh:
27 > T10 := ( ( d i f f (QGh, x ) )∗ ( d i f f ( f3 , x ))+( d i f f (QGh, y ) )∗ ( d i f f ( f3 , y ) ) ) /Qhh :
28 > T11 := −(( d i f f (QGG, x ) )∗ ( d i f f ( f3 , x ))+( d i f f (QGG, y ) )∗ ( d i f f ( f3 , y ) ) ) /QGh:
29 > T12 := Growth/Qhh+ve l ∗( d i f f (h (x , y , t ) , x ) )/Qhh−ve l ∗( d i f f (G(x , y , t ) , x ) )/QGh
30 −( d i f f (h (x , y , t ) , t ) )/Qhh+( d i f f (G(x , y , t ) , t ) )/QGh:

32 # expre s s i on f o r Laplace ( f 3 ) ( without the terms conta in ing tanh )
33 > equat ion126 := −(T7+T8+T10+T11+T12 )/(QGh/Qhh−QGG/QGh) :

35 # expre s s i on f o r Gamma {xx} ( without the terms conta in ing tanh )
36 > equat ion127 := G(x , y , t )∗ equat ion126+( d i f f (G(x , y , t ) , x ) )ˆ2/G(x , y , t )
37 +( d i f f (G(x , y , t ) , y ) )ˆ2/G(x , y , t )−( d i f f (G(x , y , t ) , y , y ) ) :

39 # Expand expr e s s i on f o r Gamma {xx} in a s e r i e s in eps :
40 > equat ion127 := s i m p l i f y ( s e r i e s ( equation127 , eps , 2 ) ) :

42 # t r e a t the terms with tanh separa te ly , as maple has problems with
43 # s i m p l i f y i n g the terms otherw i s e .
44 > PTerm := G(x , y , t )∗ Production /( (QGh/Qhh−QGG/QGh)∗QGh) :
45 > PTerm := s e r i e s (PTerm , eps , 2 ) ;

47 # Terms o f ze roth order in eps :
48 > equat ion1270 := s i m p l i f y ( op (1 , equat ion127 ) ) + s i m p l i f y ( op (1 ,PTerm ) ) :
49 # Terms o f f i r s t order in eps :
50 > equat ion1271 := s i m p l i f y ( op (3 , equat ion127 )∗ exp(− I ∗k∗y−sigma∗ t ) )
51 + s i m p l i f y ( op (3 , PTerm)∗ exp(− I ∗k∗y−sigma∗ t ) ) ;

53 # No more d e r i v a t i v e s need to be performed , in t roduce symbol ic e x p r e s s i o n s
54 > equat ion1270subs := subs ({G0( x)=G, G1( x)=G1, d i f f (G0( x ) , x)=Gx,
55 d i f f ( h0 ( x ) , x)=hx , d i f f ( h1 ( x ) , x)=h1x , d i f f (G0( x ) , x , x)=Gxx ,
56 d i f f (G1( x ) , x , x)=G1xx , d i f f ( h0 ( x ) , x , x)=hxx , d i f f ( h1 ( x ) , x , x)=h1xx ,
57 d i f f ( h0 ( x ) , x , x , x)=hxxx , d i f f ( h1 ( x ) , x , x , x)=h1xxx , d i f f (G1( x ) , x)=G1x ,
58 h0 ( x)=h , h1 ( x)=h1 } , equat ion1270 + PTerm0)
59 > equat ion1271subs := subs ({G0( x)=G, G1( x)=G1, d i f f (G0( x ) , x)=Gx,
60 d i f f ( h0 ( x ) , x)=hx , d i f f ( h1 ( x ) , x)=h1x , d i f f (G0( x ) , x , x)=Gxx ,
61 d i f f (G1( x ) , x , x)=G1xx , d i f f ( h0 ( x ) , x , x)=hxx , d i f f ( h1 ( x ) , x , x)=h1xx ,
62 d i f f ( h0 ( x ) , x , x , x)=hxxx , d i f f ( h1 ( x ) , x , x , x)=h1xxx , d i f f (G1( x ) , x)=G1x ,
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63 h0 ( x)=h , h1 ( x)=h1 } , equat ion1271 + PTerm1)

65 # Transform the e x p r e s s i o n s to Fortran Code :
66 > f o r t r a n ( equat ion1270subs ) ;
67 > f o r t r a n ( equat ion1271subs ) ;

69 # Obatin the expr e s s i on f o r h {xxxx}

71 # Implementation o f the terms c o n t r i b u t i n g to Laplace (h)

73 > T1 := ( d i f f (Qhh , x ) )∗ ( d i f f ( f1 , x ))+( d i f f (Qhh , y ) )∗ ( d i f f ( f1 , y ) ) ;
74 > T2 := Qhh∗( d i f f ( f1 , x , x)+ d i f f ( f1 , y , y ) ) ;
75 > T3 := ( d i f f (QGh, x ) )∗ ( d i f f ( f3 , x ))+( d i f f (QGh, y ) )∗ ( d i f f ( f3 , y ) ) ;
76 > T4 := QhG∗( d i f f ( f3 , x , x)+ d i f f ( f 3+f3 , y , y ) ) ;
77 > T5 := −( d i f f (Qhh , x ) )∗ ( d i f f (Lh , x))−( d i f f (Qhh , y ) )∗ ( d i f f (Lh , y ) ) ;
78 > T6 := Growth+ve l ∗( d i f f (h (x , y , t ) , x))−( d i f f (h (x , y , t ) , t ) ) ;

80 # S e r i e s expansion o f exp r e s s i on f o r Laplace (h)
81 > equat ion124 := s i m p l i f y ( s e r i e s ( (T1+T2+T3+T4+T5+T6)/Qhh, eps , 2 ) ) ;

83 # Terms o f ze roth order in eps :
84 > equat ion1240 := s i m p l i f y ( op (1 , equat ion124 ) ) ;
85 # Terms o f f i r s t order in eps :
86 > equat ion1241 := s i m p l i f y ( op (3 , equat ion124 )∗ exp(− I ∗k∗y−sigma∗ t ) ) ;

88 # No more d e r i v a t i v e s need to be performed , in t roduce symbol ic e x p r e s s i o n s
89 > equat ion1240subs := subs ({G0( x)=G, G1( x)=G1, d i f f (G0( x ) , x)=Gx,
90 d i f f ( h0 ( x ) , x)=hx , d i f f ( h1 ( x ) , x)=h1x , d i f f (G0( x ) , x , x)=Gxx ,
91 d i f f (G1( x ) , x , x)=G1xx , d i f f ( h0 ( x ) , x , x)=hxx , d i f f ( h1 ( x ) , x , x)=h1xx ,
92 d i f f ( h0 ( x ) , x , x , x)=hxxx , d i f f ( h1 ( x ) , x , x , x)=h1xxx , d i f f (G1( x ) , x)=G1x ,
93 h0 ( x)=h , h1 ( x)=h1 } , equat ion1240 )
94 > equat ion1241subs := subs ({G0( x)=G, G1( x)=G1, d i f f (G0( x ) , x)=Gx,
95 d i f f ( h0 ( x ) , x)=hx , d i f f ( h1 ( x ) , x)=h1x , d i f f (G0( x ) , x , x)=Gxx ,
96 d i f f (G1( x ) , x , x)=G1xx , d i f f ( h0 ( x ) , x , x)=hxx , d i f f ( h1 ( x ) , x , x)=h1xx ,
97 d i f f ( h0 ( x ) , x , x , x)=hxxx , d i f f ( h1 ( x ) , x , x , x)=h1xxx , d i f f (G1( x ) , x)=G1x ,
98 h0 ( x)=h , h1 ( x)=h1 } , equat ion1241 )
99 > equat ion1241 = s i m p l i f y ( equat ion1241subs )

101 # Take care o f y− d e r i v a t i v e s in Laplace ˆ2(h ) , need expr . f o r h {1 , xxxx}
102 > equat ion1241subs := −h1∗kˆ4+2∗h1xx∗kˆ2+equat ion1241subs ;

104 # Transform the exp r e s s i on to Fortran Code :
105 > f o r t r a n ( equat ion1240subs ) ;
106 > f o r t r a n ( equat ion1241subs ) ;

Listing A.1: Excerpt from the file ’LTSABioSurfactantModel.mw’ containing the implemen-
tation of the transversal linear stability analysis in maple.
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A.5.4. Performing the Parameter Continuation in AUTO07p

All necessary files for the linear stability analysis are compressed in the folder ’LTSA.zip’.
The continuation is coordinated by the python script ’bioskript.auto’ which loads the
correct equation and parameter file for each run. It can be executed with the command

auto b i o s k r i p t . auto

in the unix shell. Listing A.2 exemplarily shows how a run named ’prep2run1’ is executed
starting from the point ’UZ1’ of the previous run ’prep1run1’ using the equation file
’BiofilmFluxTSA’ and the constants file ’c.prep2run1’ and how it is subsequently saved
and plotted.

32 prep2run1=run ( ’ prep1run1 ’ , e=’ BiofilmFluxTSA ’ , c=’ prep2run1 ’ , IRS=’UZ1 ’ )
33 save ( prep2run1 , ’ prep2run1 ’ )
34 p lo t prep2run1
35 wait ( )

Listing A.2: Excerpt from the file ’bioskript.auto’ showing how a run can be started, saved
and plotted using python commands.

The parameter continuation consists of two main stages which are outlined in the following.

Preparation Stage: Start the Parameter Continuation and Go to Moving Fronts

The continuation run is initiated starting from a flat thin film without surfactant produc-
tion as described in the tutorial [Thi15b]. As starting solution for (h0,Γ0), we use a film of
height h0 = 2 with a small amplitude modulation of wavelength L = 2π/kc and constant
surfactant concentration Γ0 = 0.0001. Here,

kc =

√
−∂

2fw

∂h2

∣∣∣
h=h0

=

√
−Wm

(
− 3
h4

0
+ 6

h7
0

)
(A.116)

is the critical wavenumber for the linear instability of a flat film of thickness h0. The
starting solution for the eigenfunctions is the trivial eigenfunction h1 = Γ1 = 0.
In the first two runs, we study steady profiles without bioactivity and go from a flat film
towards droplet solutions. In the runs ’prep2run2’ to ’prep2run4’, the biomass growth
rate g and the surfactant production rate p are increased. Note that at this stage, the
correct tanh-terms for the approximation of the Θ-functions in the production term have
not been activated yet. In the third part of the preparation stage, we study moving fronts,
vary the model parameters to the parameter regime for which the transversal instability
is expected and introduce the correct tanh-terms.
The runs performed in the preparation stage for transversal linear stability analysis are
summarised in Table A.3.
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run continuation
parameters

description

prep1run1 L, g, p Go from a flat film solution to a droplet, starting at
the critical L with one period of a small-amplitude
sinusoidal solution

prep2run1 Vh0, g, p Increase the volume of the droplet
prep2run2 - prep2run3 g, Vh0, Vh1 Increase the biomass production from 0 to 10−3 and

let drop volume adapt, considering arrested profiles
prep2run4 p, v,Vh1 Increase the surfactant production from 0 to 10−6

and let v adapt, now considering moving fronts.

prep3run1 -prep3run8 X, v, Vh1 Go to the parameter regime in which the LTSA shall
be performed, modify one parameter X in each run.
An exception is prep3run6, in which the tanh-terms
are switched on.

Table A.3.: Summary of the runs executed in the preparation stage for the transversal linear
stability analysis with AUTO07p.

LTSA Stage: Introduce the Eigenfunctions and Calculate the Dispersion Relation

This stage contains the runs connected to the transversal linear stability analysis. First, we
introduce the eigenfunctions. To that end, the eigenvalue σ is varied in run ’LTSA1run1’.
This is possible because the eigenfunctions still correspond the trivial solution. ’True’
eigenvalues are detected as branching points if we set the parameter ISP=3. These detected
branching points can then be used as a starting point for the run ’LTSA1run2’ in which
the branch is switched by setting ISW=-1 and the volume of the eigenfunction is increased.
The dispersion relation can be calculated by varying the wave number ky.
The code excerpt from ’bioskript.auto’ in Listing A.3 shows how running AUTO07p with
python commands can be used to perform sequences of commands automatically. In the
run ’LTSA2run1’, stops are created at two different parameter values of Γmax, for which
the dispersion relation shall be calculated. Then, a loop construction can be used to
perform the respective runs in ky (l. 139-143), save (l. 147-149) and plot (l. 153-158)
the dispersion relations. In addition, we save the solutions for (h0,Γ0) and (h1,Γ1) at the
maximum of the dispersion relation (l. 160-172).
To find the onset of the transversal instability, the maximum of the dispersion relation can
be followed by employing a fold continuation. This is done in the third part of the LTSA
stage for a variation of the parameter Γmax. The fold point is detected in run ’LTSA2run1’
and subsequently followed in runs ’LTSA2run2’-’LTSA2run3’.
All runs performed in the transversal linear stability analysis are summarised in Table
A.4.
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127 LTSA2run1=run ( ’LTSA1run2 ’ , e=’ BiofilmFluxTSA ’ , c=’LTSA2run1 ’ , IRS=’EP1 ’ ,
128 UZR = { 7 : [ 0 . 5 , 0 . 0 2 ] } ,UZSTOP = {7 : 0 . 0 1 9} )
129 save (LTSA2run1 , ’LTSA2run1 ’ )
130 p lo t LTSA2run1
131 wait ( )

133 f o r Sta r t in [ ’UZ1 ’ , ’UZ2 ’ ] :
134 i f S ta r t==’UZ1 ’ : Gmax = 0 .5
135 i f S ta r t==’UZ2 ’ : Gmax = 0.02

137 # c a l c u l a t e the d i s p e r s i o n r e l a t i o n f o r Gmax = 0 .5 and Gmax = 0.02

139 LTSA2run2 = run ( ’LTSA2run1 ’ , e=’ BiofilmFluxTSA ’ , c=’LTSA2run2 ’ , IRS = Start ,
140 UZR= {4 4 : [ 1 e−10, 4 .85 e−03 ]} , UZSTOP = {44 : 0 . 02} )
141 save (LTSA2run2 , ’LTSA2run2 ’ )
142 p lo t LTSA2run2
143 wait ( )

145 # save the d i s p e r s i o n r e l a t i o n

147 k = np . array (LTSA2run2 [ ’PAR(44) ’ ] )
148 sigma = np . array (LTSA2run2 [ ’PAR(43) ’ ] )
149 np . savetxt ( ’ Disp Gmax=’+s t r (Gmax)+ ’ . dat ’ , np . t ranspose ( [ k , sigma ] ) )

151 # plo t the d i s p e r s i o n r e l a t i o n

153 p l t . f i g u r e ( )
154 p l t . x l a b e l ( ’ $k y$ ’ )
155 p l t . y l a b e l ( ’ $sigma$ ’ )
156 p l t . p l o t (k , sigma )
157 p l t . t i g h t l a y o u t ( )
158 p l t . s a v e f i g ( ’ Disp Gmax=’+s t r (Gmax)+ ’ . png ’ )

160 # save the s o l u t i o n s at the maximum of the d i sp . r e l a t i o n
161 i f Gmax == 0 . 5 :
162 s topper=’UZ2 ’ # cor r e sp . to max . o f the d i sp . r e l a t i o n at ky = 4.85 e−03
163 x = LTSA2run2( stopper ) [ ’ t ’ ]∗ LTSA2run2( stopper ) [ ’ per ’ ]
164 h ,G = LTSA2run2( stopper ) [ ’ h ’ ] , LTSA2run2( stopper ) [ ’G’ ]
165 h1 ,G1= LTSA2run2( stopper ) [ ’ h1 ’ ] , LTSA2run2( stopper ) [ ’G1 ’ ]
166 np . savetxt ( ’ Solution Gmax =0.5 k=kmax ’ , np . t ranspose ( [ x , h ,G, h1 ,G1 ] ) )
167 i f Gmax == 0 . 0 2 :
168 s topper=’UZ1 ’# cor r e sp . to max . f o the d i sp . r e l a t i o n at ky = 0
169 x = LTSA2run2( stopper ) [ ’ t ’ ]∗ LTSA2run2( stopper ) [ ’ per ’ ]
170 h ,G = LTSA2run2( stopper ) [ ’ h ’ ] , LTSA2run2( stopper ) [ ’G’ ]
171 h1 ,G1= LTSA2run2( stopper ) [ ’ h1 ’ ] , LTSA2run2( stopper ) [ ’G1 ’ ]
172 np . savetxt ( ’ Solution Gmax =0.02 k=0 ’ , np . t ranspose ( [ x , h ,G, h1 ,G1 ] ) )

Listing A.3: Excerpt from the file ’bioskript.auto’ showing how running AUTO07p with
python commands can be used to perform sequences of commands automati-
cally. A loop construction is employed to perform (l. 139-143), save (l. 147-149)
and plot (l. 153-158) runs in ky to obtain the dispersion relations for different
values of Γmax.
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run continuation
parameters

ISP ISW description

LTSA1run1 σ, v, Vh1 ISP= 3 ISW= 1 Change the eigenvalue σ from zero for
the trivial eigenfunction h1 = Γ1 =
0. ’True’ eigenvalues are detected as
branching points.

LTSA1run2 σ, v, Vh1 ISP= 1 ISW= -1 Restarting at a branching point, we
switch branch. This ’blows up’ the cor-
responding eigenfunction (h1,Γ1) from
zero. Its norm is measured by the sec-
ond integral condition.

LTSA2run1 Γmax, v, σ ISP= 1 ISW= 1 Generate a run in Γmax with two stops
at Γmax = 0.5 and Γmax = 0.02 which
serve as starting points to obtain the
respective dispersion relation

LTSA2run2 ky, v, σ ISP= 1 ISW= 1 Calculate the dispersion relation by
starting at the respective point on run
LTSA2run1 and varying the wave num-
ber ky.

LTSA3run1 σ, ky, Γmax ISP= 1 ISW= 1 Find the maximum of the dispersion re-
lation as a fold point.

LTSA3run2
LTSA3run3

σ, ky, Γmax ISP= 1 ISW= 2 Restart at the fold point and perform
a fold continuation varying Γmax and
tracking the maximum of the dispersion
relation as a fold.

Table A.4.: Summary of the runs executed in the LTSA stage of the transversal linear stability
analysis with AUTO07p.
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List of Recurrent Symbols and Abbreviations

h(x, t) : film height

F : free energy functional

γ : liquid-gas interfacial tension

γsl : solid-liquid interfacial tension

γsg : solid-gas interfacial tension

κ : curvature of the free surface

p : pressure

fw : wetting energy

A : Hamaker constant

ha : adsorption layer thickness

Π(h) : disjoining pressure

θeq : equilibrium contact angle

Q : mobility

u(3) : three-dimensional velocity field within the film

u : components of the three-dimensional velocity parallel to the substrate

η : (kinematic) viscosity

τ : stress tensor

fm : free energy density of mixing

Wm : wettability parameter in the model for thin films of mixtures

G : biomass growth term

ζ : osmotic influx into the biofilm

φ1/2(x, t) : local concentration of solvent/solute in the model for films of mixtures

ψ1/2(x, t) : effective layer thickness of solvent/solute in the model for films of mixtures

φeq : equilibrium biomass concentration in the biofilm representing osmotic equilibrium

Qosm : mobility of the osmotic influx

Πs : osmotic pressure in the biofilm

Πagar : osmotic pressure in the agar substrate
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ηb/0 : viscosity of solute / solvent

η̂ : dimensionless function to model the concentration-dependent viscosity

v : velocity of fronts or moving active droplets

g(Γ) : free energy of the surfactant-covered liquid-gas interface

gsg(Γ) : free energy of the surfactant-covered solid-gas interface

ξ : metric factor describing the curved free surface

Γ : surfactant concentration on the surface

Γa/d/w : surfactant concentration on the adsorption layer / drop / wedge

ε1/2 : dim.less parameters in the model for passive drops covered by insoluble surfactant

Γp : surfactant concentration projected onto the solid substrate

Ws : wettability parameter in the model for thin films covered by insoluble surfactant

p(x, t) : height-averaged mean polarisation vector

P(x, t) : height-averaged total polarisation vector

σa : active stress tensor

α : active flux due to self-propulsion

M : diffusion constant of the polarisation

cp : constant defining the strength of the liquid crystal elastic energy

csp : constant defining the strength of the spontaneous polarisation

chp : constant defining the strength of the coupling of polarisation and interface

ca : constant defining the strength of the active stress

α0 : strength of self-propulsion
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List of Publications

The following articles were produced during the course of this thesis and contain pre-
publications of results:

• S. Trinschek, K. John and U. Thiele. From a thin film model for passive suspensions
towards the description of osmotic biofilm spreading AIMS Materials Science, 3,
1138-1159 (2016)
Original research article introducing and analysing the model for osmotic biofilm
spreading. The model was developed and the results interpreted by ST, KJ and
UT. Text, numerical simulation data and figures were produced by ST, with critical
review of KJ and UT.

• S. Trinschek, K. John, S. Lecuyer and U. Thiele. Continuous versus arrested spread-
ing of biofilms at solid-gas interfaces: The role of surface forces. Physical Review
Letters, 119, 078003 (2016)
Original research article analysing the non-equilibrium transition between arrested
and continuously spreading biofilms. Text, numerical simulation data and figures
were produced by ST, with critical review of KJ and UT. The experimental data
and description of the experiment were provided by SL.

• U. Thiele, J. Snoeijer, S. Trinschek, K. John. Equilibrium contact angle and adsorp-
tion layer properties with surfactants Langmuir 34, 7210–7221 (2017)
Original research article discussing the relation between a macroscopic and meso-
scopic description of surfactant-covered drops. The calculations were performed by
KJ, UT, JS and ST following an idea of JS and UT. The text was mainly written
by ST and KJ with contributions of UT and critical review of JS. The numerical
simulation data and figures were produced by ST.

• U. Thiele, J. Snoeijer, S. Trinschek, K. John. Correction to ’Equilibrium contact an-
gle and adsorption layer properties with surfactants’ Langmuir 35, 4788-4789 (2019)
Correction to the aforementioned article in response to constructive criticism of
Mathis Plapp. The calculations were performed by KJ, UT, JS and ST. The text
was written by ST and KJ with critical review of UT and JS. The numerical simu-
lation data and figures were produced by ST.

• S. Trinschek, K. John, and U. Thiele. Modelling of surfactant-driven front instabil-
ities in spreading bacterial colonies Soft Matter, 14, 4464-4476 (2018)
Original research article introducing and analysing the model for the surfactant-
driven spreading of bacterial colonies. The model was developed and the results
interpreted by ST, KJ and UT. Text, numerical simulation data and figures were
produced by ST, with critical review of KJ and UT

The following article resulted from a collaboration with the group ’AG Betz: Mechanics
of Cellular Systems’ and is not discussed in this thesis:

• B. Wallmeyer, S. Trinschek, S. Yigit, U. Thiele, T. Betz. Collective Cell Migration
in Embryogenesis Follows the Laws of Wetting Biophysical journal 114.1, 213-222
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(2018)
Original research article studying the influence of wetting on the embryogenesis of
zebrafish. BW, SY, and TB designed the experimental research. BW performed and
analyzed the experiments. BW, ST, UT, and TB developed the presented model. ST
performed the simulations. BW and TB wrote the manuscript. All authors together
developed the interpretation and progression of experiments and modelling.
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Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel. Localized cell death
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[LMB+06] V. Leclère, R. Marti, M. Bóchet, P. Fickers, and P. Jacques. The lipopep-
tides mycosubtilin and surfactin enhance spreading of Bacillus subtilis
strains by their surface-active properties. Arch. Microbiol., 186(6):475–
483, 2006.

[LW12] A. E. LaBauve and M. J. Wargo. Growth and laboratory maintenance
of Pseudomonas aeruginosa. Curr Protoc Microbiol, pages 6E–1, 2012.
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Förderung.

... bei Bernhard Wallmeyer, Sargon Yigit und Prof. Dr. Timo Betz für eine angenehme
und erfolgreiche Kooperation, in der ich einiges über Zebrafische gelernt habe.

... bei Prof. Dr. Jacco Snoeijer für eine spannende Zusammenarbeit und aufschlussreiche
Diskussionen.

... bei den derzeitigen und ehemaligen Mitgliedern der Arbeitsgruppe Thiele für zahl-
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