
HAL Id: tel-02301017
https://theses.hal.science/tel-02301017

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling traffic engineering over segment routing
Rabah Guedrez

To cite this version:
Rabah Guedrez. Enabling traffic engineering over segment routing. Networking and Internet Ar-
chitecture [cs.NI]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018. English. �NNT :
2018IMTA0116�. �tel-02301017�

https://theses.hal.science/tel-02301017
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication

Unité de recherche : Institut de recherche en informatique et systèmes aléatoires (IRISA)
Thèse N° : 2018IMTA0116

Par

Rapporteurs avant soutenance :

Béatrice PAILLASSA Professeure au laboratoire IRIT, ENSEEIHT
Jean Louis ROUGIER Professeur à Telecom ParisTech

Composition du Jury :

Président : Stefano SECCI Professeur au CNAM
Examinateurs : Béatrice PAILLASSA Professeure au laboratoire IRIT, ENSEEIHT

Jean Louis ROUGIER Professeur à Télécom Guillaume
URVOY-KELLER Professeur à l’Université Nice Sophia Antipolis

Encadrants : Samer LAHOUD Professeur associé à ESIB, Université Saint-Joseph de Beyrouth
Dir. de thèse : Olivier DUGEON Ingénieur de recherche à Orange Labs
Co-dir. de thèse : Géraldine TEXIER Maître de conférences à IMT Atlantique

Spécialité : Informatique

Thèse présentée et soutenue à Rennes, France, le 12/12/2018

Rendre possible l’ingénierie de trafic dans les réseaux avec routage par segment

Enabling Traffic Engineering Over Segment Routing

Rabah GUEDREZ

This thesis was conducted in collaboration with

Orange Labs and IMT Atlantique.

4

5

6

This thesis is dedicated to

My beloved parents

My wife Sara and my son Adam

My country

Acknowledgements

My deepest and infinite gratitude goes to the Almighty. Without his

guidance and support in times of doubt, I’m certain that I would never

be able to achieve my goals.

I would like to express my sincere gratitude to my advisors: Dr. Olivier

DUGEON, Prof. Géraldine Texier and Prof. Samer LAHOUD, you have

been excellent mentors for me. I would like to thank you for encouraging

my research and for allowing me to grow as a research scientist. Your

advice on both research as well as on my career have been priceless. I

would also like to thank my jury members, Prof. Stefano SECCI, Prof.

Béatrice PAILLASSA, Prof. Jean Louis ROUGIER and Prof. Guillaume

URVOY-KELLER for accepting to review my work. I also want to thank

you for letting my defense be an enjoyable moment, and for your brilliant

comments and suggestions, thanks to you.

My sincere thanks also go to my team at Orange Labs for the wonderful

years that I passed among them. In particular, I am grateful to Jean-Marc

COROLLEUR who provided me an opportunity to join his team.

My heartful thanks go to all my friends that were always there to support

me: Younes, Yazid, Imed, and Raouf.

This moment represents the biggest achievement of my life yet. So, I would

like to thank the people who shaped me to the person that I am now. My

family. My deepest gratitude and love to my wife Sara, my sisters Wahiba,

Soulef, Wissem and my brother Nacer Eddine, I would never be able to

thank enough my beloved parents who sacrificed everything to help me get

to where I am now. Thank you for giving me the courage and motivation

to push forward. Thank you for making me look back and be proud of

where i came from. You have always been my North Star when I feel lost.

Resumé

L’internet est devenu une partie intégrante dans la vie des personnes et des entreprises.

Cette démocratisation de la connexion a permis une incroyable effervescence de nou-

veaux services et applications. Les entreprises en profitent pour s’étendre et accéder

à de nouveaux marchés. Actuellement le trafic internet comporte des flux originaires

d’un très grand nombre d’applications telles que les appels VOIP, flux vidéo, jeux

interactifs, trading à haute fréquence, transactions bancaires, etc. chacune avec des

contraints réseaux particulière en terme de délai, de perte ou de bande passante. Cela

a donné naissance à deux types de réseaux le réseau Internet public et les réseaux

étendus privées : (i) Internet, le réseau public mondial où IP est la technologie de

réseau prédominante pour le transport de trafic. Bien qu’avec le temps la qualité s’est

améliorée et le débit a beaucoup augmenté, les applications n’ont pas de garantie ni

de contrôle sur la qualité de service (Quality of Service - Qos) qu’elles reçoivent. (ii)

Les réseaux étendus ou WAN (Wide Area Network) permettent de relier des sites

distants à travers des connexions point à point dédiées. Au cours des deux dernières

décennies, la commutation multiprotocole par étiquette (MPLS) est devenue la tech-

nologie plus répandue pour les réseaux WAN d’entreprise. Grâce à sa capacité à

prendre en charge les exigences de qualité de service et à attribuer différentes classes

de service (CoS) selon les besoins des applications.

Les opérateurs tels qu’Orange font face à des défis économiques et technologiques

considérables causés par la croissance exponentielle du trafic généré par leurs clients

ainsi que par la baisse des prix causée par un marché de plus en plus compétitif. En

effet, les clients opérant dans des secteurs sensibles tels que le multimédia, la finance

ou la santé comptent sur la fiabilité des connexions WAN dédiées pour connecter

leurs sites distants et fournir leurs services (par exemple la voix sur IP, la vidéo à la

demande). Les applications des clients sont de plus en plus sensibles aux dégradations

réseau qui peuvent se produire suite à des pannes, la congestion, ou des problèmes

de routage. Ce qui se traduit par des contrats de niveau de service (Service Level

Agreement - SLA) très strict. Afin de générer des profits, les opérateurs doivent

revoir leur modèle économique et réduire les coûts d’investissements et d’opérations.

Cela commence par une simplification du fonctionnement et de la gestion de leurs

réseaux (complexes) en s’appuyant sur des plans de contrôle simples et agiles tels que

le routage par segment et l’automatisation à l’aide de briques logicielles.

Pour ces raisons, le groupe de travail SPRING de l’Internet Engineering Task

Force (IETF), l’organisme de standardisation des protocoles de l’Internet, a proposé

l’architecture de routage par segments (Segment Routing - SR). Son objectif principal

est de développer une architecture avec un plan de contrôle simple, léger et facile à

gérer. Cette architecture peut être instanciée sur deux plans de transfert existants :

MPLS et IPv6. Le composant principal de cette architecture est le concept de routage

par la source, dans lequel un paquet transporte (dans son en-tête) les indications du

chemin qu’il doit suivre pour atteindre sa destination. Cette architecture a suscité

beaucoup d’enthousiasme chez les opérateurs tels qu’Orange, ce qui se traduit par

leur forte implication dans le processus de standardisation. Dans le cadre de cette

thèse effectuée au sein d’Orange, nous nous sommes plus particulièrement intéressés

à l’instanciation de l’architecture Segment Routing sur le plan de transfert MPLS

(SR-MPLS).

L’un des principaux concepts de l’architecture Segment Routing est la notion de

segments, ils représentent les différents composants du réseau : physiques (nœud,

lien, etc.) ou logiques (service/application). Un identificateur appelé identificateur

de segment ou SID est attribué à chaque segment. Le type et le format du SID

dépendent du plan de données sous-jacent (une étiquette MPLS ou une adresse IPv6).

L’empilement d’une liste de segments dans l’en-tête du paquet permet l’expression

de chemins topologiques. Dans SR-MPLS, un chemin est encodé sous la forme d’une

pile d’étiquettes MPLS, et qui par la suite est insérée dans l’en-tête du paquet. Un

SID est alors représenté par une étiquette de 20 bits et est traité en utilisant les trois

opérations habituelle de MPLS : POP pour empiler une nouvelle étiquette, PUSH

pour dépiler l’étiquette courante et SWAP pour en changer la valeur.

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

10

10

10

10

15
15

PKT

1005

PKT PKT

Match FEC x

PUSH([1005,1003,1004]) 1004

1003

PKT

1005

1004

1003

PKT

1005

1004

1003

PKT

1004

1003

PKT

1004

POP(1005)

POP(1003)

POP(1004)

Figure 1: Transfert de paquets dans un réseau SR-MPLS

10

Un des avantages de l’instanciation de l’architecture Segment Routing sur le plan

de transfert MPLS (SR-MPLS) est qu’elle nécessite moins de protocoles de contrôle

que l’architecture MPLS classique. En effet, le développement incrémental de MPLS

et l’apparition de nouvelles applications ont conduit aux ajouts successifs de fonc-

tionnalités et de protocoles, ayant parfois les mêmes objectifs. Le résultat est une

architecture complexe, non optimisée et très coûteuse en ressources. Un exemple con-

cret de cette complexité peut être perçu lors de l’établissement d’un tunnel de réseau

privé virtuel (VPN) pour relier un site client à un data center à travers le WAN

avec une garantie de bande passante. Ceci nécessite la collaboration des protocoles

de routage avec un protocole de signalisation et de réservation de ressource tel que

Resource Reservation Protocol - Traffic Engineering (RSVP-TE). Dans l’architecture

SR-MPLS, aucun pré-établissement de tunnels n’est nécessaire, car les paquets suiv-

ent le chemin qu’ils transportent dans leur entête. Ainsi, les états des tunnels ne sont

maintenus qu’en bordure du réseau. Par conséquent, le nombre d’états maintenus

dans le réseau est considérablement réduit. Le revers de la médaille réside dans le fait

que l’élimination de la signalisation perturbe le processus de réservation de la bande

passante, qui est un composant essentiel pour faire de l’ingénierie de trafic dans un

réseau MPLS classique. Pour remédier à ça, une nouvelle approche a été adoptée

pour permettre la mise en œuvre de l’ingénierie de trafic avec du Segment Routing.

Cette nouvelle approche s’intègre bien dans l’évolution actuelle vers la ”softwariza-

tion” des réseaux. Dans l’architecture de Software Defined Networking (SDN), un

contrôleur logiciel pilote un plan de contrôle SR-MPLS et assure en même temps la

gestion ainsi que la réservation des ressources réseau, alors que le plan de contrôle as-

sure le transfert des paquets tout en respectant les chemins calculés par le contrôleur

logiciel.

Dans cette thèse, nous avons identifié et proposé des solutions aux problèmes pour

faire de l’ingénierie de trafic dans les réseaux SR-MPLS (SR-TE). Ce travail est divisé

en deux parties principales : (i) l’identification des défis techniques et la résolution du

problème lié au cas d’utilisation de l’ingénierie de trafic. (ii) définition des exigences

architecturales et construction d’une preuve de concept fonctionnelle.

0.1 Algorithme native d’encodage de chemins SR

Un chemin SR est encodé comme une pile d’étiquettes que le routeur d’entrée inséré

(PUSH) sur l’en-tête du paquet, comme le montre la figure 1. 1. En fait, insérer

plus d’une étiquette a été supporté depuis la première version de MPLS [1] pour des

11

cas d’utilisation comme : hiérarchisation [2], réseau privé virtuel de couche 3 [3],

etc. Comme on peut remarquer, ces cas d’utilisation nécessitent une pile d’étiquettes

relativement petite (deux a trois étiquettes.). Par exemple, un scénario de L3VPN ne

nécessite que deux étiquettes simultanément : l’étiquette du tunnel et celle du VPN.

Cependant, un chemin SR, en fonction de la taille du réseau, peut-être composé de

plusieurs dizaines segment (SID) ce qui produit une grande pile d’étiquettes. Par

conséquent, les routeurs doivent pouvoir insérer un plus grand nombre d’étiquettes

afin de profiter pleinement du potentiel du SR.

Topologies Nombre de Noeuds Nombr de liens Nombre de demades
Geant 22 36 431
Albilene 12 18 131
Brain 161 166 9045
Germany50 50 80 1270
Nobel-germany 17 26 248

Table 1: caractéristiques des topologies utilisées dans les simulations.

L’encodage des chemins Segment Routing sous la forme d’une pile d’étiquettes

MPLS engendre une surcharge que les équipements actuels ne peuvent pas sup-

porter. En effet, les équipementiers n’ont pas anticipé l’insertion d’un grand nombre

d’étiquettes MPLS dans les en-têtes des paquets. Chaque routeur est conçu pour sup-

porter une profondeur maximale de pile d’étiquettes MPLS appelé MSD (Maximum

Stack Depth). Le MSD est une limitation matérielle des équipements, qui représente

le nombre maximum d’étiquettes qu’un nœud d’entrée peut insérer sur l’en-tête d’un

paquet [4]. Actuellement, le MSD varie de 3 à 5 selon l’équipementier. Le MSD a un

impact fort sur la capacité d’un réseau SR-MPLS d’exprimer ses chemins. Un chemin

est inutilisable en Segment Routing s’il ne peut pas être exprimé par un nombre de

label suffisamment petit pour que la profondeur de pile d’étiquettes soit inférieure ou

égale au MSD du routeur chargé d’insérer la pile d’étiquette sur l’en-tête du paquet.

Une valeur de MSD petite (comme celle des routeurs actuels) ne permet d’employer

qu’un sous-ensemble des chemins du réseau SR-MPLS, ce qui concentre le trafic et

peut engendrer des pertes et entrâıner de la congestion.

Les équipementiers utilisent des circuits intégrés spécifiques aux applications (ASIC)

pour accélérer les fonctions de traitement et de transfert des paquets afin d’atteindre

des vitesses de transfert importantes. Dans les équipements assurant le transfert des

paquets MPLS, la limitation MSD provient de l’implémentation de l’opération PUSH

dans les ASICs [5]. Cette limitation doit être prise en compte dans le processus de

12

calcul du chemin, car elle peut rendre inutilisables les longs chemins qui sont exprimés

avec une pile d’étiquettes supérieure à la MSD. Par conséquent, les flux de trafic sont

forcés sur des chemins relativement courts, ce qui entrâıne une répartition inefficace

du trafic ou une congestion aggravée du réseau. D’où la nécessité de développer des

algorithmes efficaces pour l’encodage des chemins SR.

Nous avons identifié le problème d’encodage des chemins Segment Routing comme

un verrou technologique qui doit être surmonté pour faire de l’ingénierie de trafic dans

des réseaux Segment Routing. Nous avons développé des algorithmes qui permettent

de calculer une pile d’étiquettes minimale pour l’expression de chemins SR. Les algo-

rithmes proposés fonctionnent nativement dans l’architecture de routage par segment.

Ils calculent le nombre minimum d’étiquettes pour exprimer un chemin SR.

Pour évaluer la performance de nos solutions, nous avons en premier lieu opté pour

des simulations proches de scénario de production. Pour cela, nous avons sélectionné

un ensemble de topologies réelles [6] avec leurs matrices de trafic, comme on peut voir

dans le tableau 1. Nous avons commencé par formuler le problème de répartition de

la matrice des demandes sur la topologie sous-jacente sous la forme d’un programme

linéaire. Par la suite, nous avons résolu ce programme linéaire qui a permis de calculer

le chemin optimal pour chaque demande. L’ensemble des chemins généré par le pro-

gramme linéaire est ensuite utilisé pour évaluer la performance des deux algorithmes

d’encodage. Les résultats de simulation montrent une augmentation considérable

du nombre de chemins qui sont exprimés avec une profondeur de pile inférieure au

MSD. Par la suite, nous avons démontré l’efficacité de nos algorithmes avec une

implémentation dans le contrôleur SDN OpenDayLight pilotant une topologie com-

posée d’une douzaine de routeurs de production et notre implémentation Open Source

d’un routeur SR-MPLS.

Ces algorithmes permettent de réduire la taille de la pile d’étiquettes nécessaire

pour encoder un chemin SR. Bien que les résultats soient satisfaisants, ils ne perme-

ttent pas d’exprimer la totalité des chemins du réseau, le MSD restant trop limitant.

Pour cela, nous avons proposé une méthode de fragmentation de chemins afin de

résoudre la limitation MSD (le but est de pouvoir se rapprocher de 100% des chemins

exprimés). Nous avons ainsi proposé un nouveau type de segment cible appelé Tar-

get SID (TSID) . Ce type de segment permet de créer des raccourcis dans le réseau

physique pour outrepasser MSD.

13

0.2 Nouveau type de Segment: Target-SID

Les algorithmes d’encodage natifs que nous avons proposés permettent de réduire

considérablement l’impact du MSD. Cependant, l’impact de cette limitation persiste

pour de très longs chemins, qui ne peuvent être exprimés avec une profondeur de

pile inférieure au MSD même avec l’optimisant l’encodage. Ces chemins peuvent être

des chemins de supervision ou des chemins dans des topologies de grand diamètre.

Nous avons donc proposé une nouvelle méthode d’encodage des chemins Segment

Routing, cette méthode de base sur un nouveau type de segment appelé le Targeted

SID (TSID). L’idée est de remplacer plusieurs étiquettes dans la pile initiale par une

seule étiquette TSID. C’est dans ce but qu’un chemin est fragmenté en plusieurs sous-

chemins. Ces sous-chemins pourront potentiellement être remplacés par des TSIDs

pendant la phase d’encodage. De plus, les TSID peuvent être partagés entre plusieurs

chemins pour réduire le nombre de TSID créés dans le réseau. L’utilisation des TSID

permet de réduire la taille de la pile d’étiquettes pour exprimer un chemin Segment

Routing dans la limite du MSD et est encore plus efficace lorsqu’elle est asssociée

aux algorithmes d’encodage proposés précédemment. Cependant, les TSID doivent

être installés au préalable dans le réseau avant que le trafic ne soit acheminé sur le

chemin SR. Quand un paquet atteint un nœud spécifique sur son chemin, l’étiquette

TSID en haut de la pile sera remplacée par la séquence d’étiquettes correspondant à

la portion du chemin qu’il a remplacé . Nous avons validé l’efficacité de cette méthode

sur les topologies présentées dans le tableau 1. L’encodage avec des TSID a permis

de limiter l’impact du MSD y compris sur les chemins longs.

Certes, la méthode du fractionnement des chemins grâce aux TSIDs permet de

résoudre le problème du MSD. Cependant, elle nécessite de créer et de maintenir de

nouveaux états dans les réseaux. Un grand nombre de chemins Segment Routing

peut générer un nombre très important de TSIDs. Pour remédier à ce problème, nous

avons développé un algorithme en ligne d’optimisation de nombre TSID. Dans cet

algorithme, nous encourageons par le biais d’une fonction d’incitation à réutiliser les

TSID existants pour satisfaire chaque nouvelle demande d’encodage. Pour évaluer les

performances de cette solution, nous avons formulé le problème d’installation d’un

nombre minimale de TSID sous la forme d’un programme linéaire. Les résultats

obtenus par l’algorithme en ligne sur les majorités des topologies sont proches des

résultats optimaux obtenus par le programme linéaire.

14

0.3 Conclusion et Perspectives

Notre travail s’inscrit dans le contexte de l’instanciation MPLS de l’architecture de

Segment Routing. Cette thèse a proposé des solutions pour faire de l’ingénierie de

trafic dans un réseau Segment Routing, et ainsi permettre aux opérateurs de profiter

de l’architecture de SR. Nos contributions ont apporté des solutions algorithmiques

pour résoudre le problème de la limitation MSD des équipements réseau. Il est essen-

tiel de surmonter cette limitation pour rendre possible une large adoption de Segment

Routing par les opérateurs. Afin de démontrer l’efficacité des algorithmes proposés,

nous les avons mis en œuvre dans une architecture SDN pour faire l’ingénierie de

trafic dans un réseau SR-MPLS. Nos algorithmes d’encodage, ont été implémentés

dans le contrôleur SDN OpenDayLight.

Si nos solutions permettent d’utiliser Segment Routing dans les réseaux actuels,

elles offrent également des perspectives intéressantes pour des cas d’utilisation future

tels que le châınage de fonctions réseau virtualités ou la protection contre les pannes.

Nous travaillons actuellement sur l’adaptation de nos algorithmes d’encodages

pour les appliquer aux chemins de protection calculés sur le graphe de topologie post-

convergence. Les algorithmes doivent éviter le problème de boucle qui peut survenir

à cause d’un mauvais encodage de la pile d’étiquette ou d’une erreur de calcul sur le

chemin poste convergence. Ce travail est guidé par le standard TI-LFA (Topology-

indépendant Loop Free Alternate) [çois-spring-segment-routing-ti-lfa-02].

Dans un second temps, nous envisageons l’utilisation de Segment Routing dans

le cadre de la virtualisation des fonctions réseau afin de permettre l’encodage des

chemins de châıne de service (NFV Service Chaining). En effet, il est nécessaire de

pouvoir imposer à un flux de trafic de passer une suite ordonnée de plusieurs fonctions

réseau virtualisées implantées dans des nœuds du réseau. Dans SR-MPLS, chaque

fonction réseau est associée à une étiquette MPLS ce qui augmente la taille de la pile

pour exprimer le chemin de service. De plus, une fonction réseau peut modifier la

classe de service du flux qui la traverse. Ces caractéristiques des chemins de châıne de

service doivent donc être prises en compte dans la conception d’un nouvel algorithme

d’encodage.

15

Contents

0.1 Algorithme native d’encodage de chemins SR 11

0.2 Nouveau type de Segment: Target-SID 14

0.3 Conclusion et Perspectives . 15

1 Introduction 1

2 Segment Routing 4

2.1 Introduction . 4

2.2 Source Routing . 6

2.2.1 Source Routing with IPv4 . 8

2.2.2 Source Routing with IPv6 . 8

2.2.3 Source Routing with MPLS 9

2.3 Segment Routing Generic Concepts and Terminology 9

2.3.1 Segments and Segment Identifiers 11

2.3.1.1 Segment Routing Global Block SRGB 11

2.3.1.2 Segments Global And Local Scope 12

2.3.1.3 Active Segment . 12

2.3.1.4 Segment types . 13

2.3.1.5 Segment Routing Paths 14

2.3.2 SPRING Node Configuration 16

2.4 Segment Routing over the MPLS Data Plane 18

2.4.1 Segment Routing MPLS Terminology 19

2.4.2 SR-MPLS Global Segment Implementation 19

2.4.3 SID Computation . 20

2.4.4 Forwarding Operations . 22

2.4.5 SR-MPLS Forwarding Entries Installation 24

2.4.6 MPLS Routing Source-routed Path 27

2.4.7 Anycast with SR-MPLS . 33

2.4.8 Interoperability and co-existence 34

i

2.5 Use Cases . 35

2.5.1 Fast Reroute with Segment Routing 35

2.5.2 IGP-Based MPLS Tunneling 37

2.5.3 Segment Routing Traffic Engineering 39

2.5.4 Monitoring and Measurement 41

2.6 Concluding remarks . 43

3 Label Encoding Algorithm for MPLS Segment Routing 44

3.1 Maximum SID Depth Signaling . 46

3.2 Related works . 46

3.3 Segment Routing Path Encoding . 47

3.3.1 Encoding types . 48

3.3.2 Encoding algorithms . 49

3.3.2.1 Strict Encoding . 49

3.3.2.2 SR-LEA Algorithm 51

3.3.2.3 SR-LEA-A . 55

3.4 Simulation Results . 56

3.5 SR-LEA SDN based Implementation 60

3.5.1 ELEANOR architecture . 61

3.5.1.1 Path Computation Module 62

3.5.1.2 Label Stack Optimization Module 62

3.5.2 Testbed Network Topology . 63

3.5.3 FRRouting-SR . 64

3.6 CONCLUSION . 65

4 A New Method For Encoding MPLS Segment Routing TE Paths 67

4.1 Introduction . 67

4.2 Related Work . 68

4.3 Path Segmentation . 68

4.3.1 Targeted SID Architecture 70

4.4 Offline TSID Placement Models . 71

4.4.1 Offline Optimization of TSIDs Placement 72

4.4.2 Offline Minimization of PCEP sessions 73

4.4.3 Online Algorithms . 74

4.5 Experimental Results . 77

4.5.1 OTO for TSIDs minimization 77

4.5.2 OTO for PCEP sessions minimization 79

ii

4.6 CONCLUSION . 82

5 General Conclusion and future work 83

5.1 Future Work . 86

Appendices 90

A Segment Routing over IPv6 Data Plane 91

A.0.1 SR-IPv6 Terminology . 91

A.0.2 Segment Routing Header . 92

A.0.3 SR-IPv6 forwarding operations 94

Conclusion 102

Bibliography 102

iii

List of Figures

1 Transfert de paquets dans un réseau SR-MPLS 10

2.1 Source Routing Example . 7

2.2 Reference network topology . 12

2.3 Hierarchy of the different segment types 14

2.4 An example of Segment Routing Path 15

2.5 Configuration of Segment Routing on nodes using a Network Manage-

ment System (NMS) . 16

2.6 Configuration of Segment Routing on nodes using a Mapping Server . 17

2.7 Segment Routing operations . 23

2.8 State Machine of SR-MPLS Forwarding Entries Installation 26

2.9 Packet header when using MPLS data plane for Segment Routing . . 28

2.10 Example of Segment Routing path with one Node-SID only: Routers

use the same Segment ID to forward the packet following the shortest

path up to the Node SID. 29

2.11 Example of Segment Routing path where the label stack is composed

only of Node-SIDs . 30

2.12 Example of Segment Routing path where the label stack is composed

of only Adj-SIDs . 31

2.13 Example of Segment Routing path where the label stack is composed

with node-SIDs (PE1 to P3 and P5 to PE4) and Adj-SIDs (P3 to P5) 32

2.14 Load balancing of flows using Group-Adj-SID 32

2.15 Local protection of the link between P2-P3 with Segment Routing . . 36

2.16 Standard MPLS VPNs with LDP or RSVP-TE for labels distribution 37

2.17 Segment Routing based MPLS VPN:MP-BGP for VPN labels exchange,

no need for RSVP or LDP as the SIDs are advertised using the IGP . 39

iv

2.18 A Path Computation Element (PCE) is used to compute Segment

Routing paths for Traffic Engineering. PCE protocol (PCEP) is used

to send the label stack and BGP-LS protocol is used to collect topology

information . 41

2.19 Network monitoring with Segment Routing. The SR path is composed

of the round-trip stack . 42

3.1 Reference network topology, all the links costs are 10 except the link

P3-P7 its cost is 100. 45

3.2 loose or strict path classification. 48

3.3 Reference network topology, all the links costs are 10 except the link

P3-P7 its cost is 100. 49

3.4 The problem that rises when expressing the SR path to connect CE1

and CE2 exclusively using Node-SIDs. 50

3.5 The SR path to connect CE1 and CE2 is expressed exclusively using

Adj-SIDs by a strict encoding algorithm. 51

3.6 SR-LEA flowchart. 52

3.7 The SR path to connect CE1 and CE2 is expressed as a label stack

computed using the SR-LEA algorithm. 54

3.8 The SR path to connect CE1 and CE2 is expressed as a label stack

computed using the SR-LEA-A algorithm. 56

3.9 Comparison of the average label stack size generated using a strict

encoding, SR-LEA and SR-LEA-A algorithms. 58

3.10 Paths expressed with a label stack size lower that the MSD (MSD = 5). 58

3.11 Comparison of SR-LEA and SR-LEA-A over a large set of paths. . . 59

3.12 ELEANOR Reference Architecture 61

3.13 ELEANOR software architecture . 63

3.14 Testbed Topology . 64

3.15 FRRouting-SR: Open source implementation of SR-MPLS 65

4.1 TSID Design Architecture. 69

4.2 OTO for TSIDs minimization compared to the worst-case scenario i.e.,

online TSID installation with no optimization. 78

4.3 OTO for TSIDs minimization compared to the Offline LP for TSIDs

minimization . 78

4.4 Comparison of the number of TSIDs created by the two offline LPs . 79

v

4.5 Comparison of the number of TSIDs created solely by OTO and SR-

LEA encoding algorithm combined with OTO 80

4.6 OTO for PCEP sessions minimization compared to the worst-case sce-

nario of an online TSIDs installation with no PCEP optimization. . . 81

4.7 OTO for PCEP sessions minimization compared to the offline LP for

PCEP sessions minimization . 81

4.8 Comparison of the number of PCEP sessions required by the two offline

LPs . 82

A.1 Header of IPv6 packet with Segment Routing 93

A.2 illustrates how the SRH can be added to a client IPv6 packet : a) SRH

added at the end of the original IPv6 packet extension header. b) client

packet is encapsulated into a new IPv6 packet, the SRH is added into

the extension header of the new IPv6 packet 95

A.3 State Machine of IPv6 node forwarding behavior when using Segment

Routing . 96

A.4 Example of Segment Routing path when using IPv6 data plane . . . 97

vi

Chapter 1

Introduction

Service Providers are facing extreme challenges to keep pace with the exponential

growth of their client’s traffic. Moreover, clients are requesting more strict Quality

of Service (QoS) requirements for their sensitive applications such as medical, finan-

cial, real-time videos calls and streaming application resulting in tightened Service

Level Agreements (SLA). Consequently, service providers need to meet those require-

ments while reducing cost. One of the solutions they are adopting is simplifying their

complex networks and rely more on software to reduce the operational expense and

capital expenditure.

Organizations operating in highly demanding environments such as banking, trad-

ing, medical, etc. rely on dedicated Wide Area Network (WAN) connections to con-

nect their remote sites. Mainly because of the guaranteed QoS requirements such

as bandwidth, protection, delay, etc. that the service providers deliver. For that,

service providers invest in building and maintaining specialized WANs to satisfy the

increasing demands. The majority of these networks run on the Multiprotocol Label

Switching (MPLS). However, over the years and with the increase of use cases the

MPLS control plane grow increasingly complex, which required a variety of intercon-

nected protocols built by different standardization working groups, thus making it

hard to manage, troubleshoot and evolve.

For the reasons mentioned above, the Internet Engineering Task Force (IETF)

SPRING working group has proposed the Segment Routing (SR) architecture. Its

main objective is to have a simple and easy to manage control plane. It relies on

an old networking paradigm known as source routing, where a packet carries in its

header the path to reach its destination. This architecture has generated a lot of

enthusiasm among service providers such as Orange, due to the simplification that

it brings to their IP/MPLS networks. In fact, the instantiation of SR architecture

over the MPLS data plane requires less control plane protocols: There is is no need

1

to pre-establish tunnels and the per-flow states are maintained only at the edges of

the network. Therefore, no signaling protocols such as LDP and/or RSVP-TE are re-

quired. Consequently, the number of states maintained in the network is considerably

reduced. However, the elimination of signaling disrupts the bandwidth reservation

process which is an important tool for traffic engineering. The lack of such an impor-

tant use case makes the service providers hesitant to migrate their networks to SR.

In this thesis, we identify and solve the problems that must be overcome to do traffic

engineering over SR (SR-TE) in IP/MPLS networks. Our work is divided into two

main parts: Identify and address the technical challenges to deliver such use case,

define architectural requirements, and build a working proof of concept.

In Chapter 2, we introduce the SR architecture and detail its building blocks. We

detail the implementation specifics SR-MPLS. We finish by detailing few use cases

where SR can have an important impact.

In Chapter 3, we first focus on defining a reference architecture to achieve traffic

engineering over SR. Interestingly, Software Defined Networks (SDN) has the capac-

ity to fill the gap of resource reservation and management in the SR architecture.

In fact, SR does not rely on signaling. Therefore, the resources availability does not

get updated throughout the network, which may lead to overbooking and poor net-

work utilization. Consequently, resource reservation and management mechanisms

functionalities are developed into an SDN controller who will maintain a central-

ized Traffic Engineering Database (TED). Additional functionalities can leverage the

TED such as path computation and network optimization, etc. we build the proposed

architecture using the OpenDayLight SDN Controller coupled with a testbed com-

posed of commercial routers running SR control plane. Secondly, we use the proposed

architecture to address the Maximum Segment Identifier Depth (MSD) hardware lim-

itation. Which limits the number of labels a router can push onto a packet’s header.

This prevents the expression of a considerable number of network paths causing a

sub-optimal network resources utilization. The MSD may slow down the adoption of

SR. To solve this problem, we propose two label encoding algorithms that slacken the

impact of the MSD by reducing the size of the label stack to express segment routing

paths. Both algorithms work natively without any additions to the SR architecture.

We prove the effectiveness of both algorithms through simulation over real network

topologies. In addition, we develop into OpenDaylight a label encoding engine that

leverages both algorithms.

In Chapter 4, we propose a new method to optimize the encoding of SR paths

and therefore reduce the impact of the MSD limitation. In this approach, we define

2

a new segment type called Targeted Segment Identifier (TSID). It is used in the

encoding of SR paths, where a single TSID is used to substitute multiple labels in

SR path description. We propose an SDN based architecture to implement the TSID

mechanism. Additionally, we propose and compare several optimization algorithms

to reduce the overhead introduced by TSID architecture.

Finally, in Chapter 5 we present the general conclusions of this thesis. We empha-

size the major contributions of this work, point out the open issues and the interesting

future directions.

3

Chapter 2

Segment Routing

2.1 Introduction

In September 2013, the Internet Engineering Task Force (IETF) started a new Work-

ing Group (WG) called ”Source Packet Routing in Networking” (SPRING) to stan-

dardize the Segment Routing (SR) architecture. One the main goal of this new

architecture is to address the complexity of Multi-Protocol Label Switching (MPLS)

networks that are currently used by Service Providers to transport data in their core

networks.

Over the years, MPLS has gained acceptance as the de facto technology to de-

ploy large IP networks. Thanks to the efforts made by the IETF standardization

working groups, MPLS control plane has continuously evolved in order to improve

the performance, scalability and provide support for new services. The introduced

enhancements required the definition of new protocols e.g., Resource Reservation Pro-

tocol Traffic Engineering RSVP-TE, the Label Distribution Protocol (LDP) and the

extension of others : Open Shortest Path First (OSPF) [7], Intermediate System to

Intermediate System (IS-IS) [8] and the Border Gateway Protocol Link State [9].

Traffic engineering represents an essential task for service providers. It optimizes

the use of the network resources (e.g., send traffic through less congested links), makes

sure that client Quality of Service (QoS) requirements are met and enforces network

resiliency by bypassing link and node failures through fast reroute. An MPLS network

with traffic engineering capabilities is referred to as MPLS-TE.

The MPLS-TE control plane consists mainly of the two protocols: RSVP-TE

to establish and maintain Label Switched Paths (LSPs), and an IGP protocol to

advertise the network resources. Large networks with a large number of MPLS-TE

LSPs suffer from scalability issues [10] due to RSVP-TE, which consumes a significant

amount of node resources: memory storage to maintain millions of states, processor

4

cycles to process these huge state tables and to synchronize the control protocols.

Indeed, after a node restart, the number of messages exchanged over the links to

repopulate the state tables can cause node congestion, which involves packets being

dropped and/or retransmitted and increases network convergence time.

As an example, let us consider a network of a WAN network composed of 1,000

edge routers and 60 core routers. In order to establish a full-mesh of MPLS-TE LSPs

between the edge routers, each edge router has to establish 999 LSPs. Consequently,

the core routers have to manage and maintain a total of 999,000 LSPs, this number

may be multiplied in the case of establishing dedicated TE LSPs for each service

or QoS class, this phenomenon is known as the N-Squared problem [11]. Therefore,

the network performance is severely impacted by the RSVP-TE refresh mechanism,

used to maintain up all the instantiated LSPs in the network. Some techniques such

as grouping the refresh messages of multiple LSPs in one or increasing the refresh

period are used to overcome the RSVP scalability issues [12]. However, these are

fixes that do not address the core problem. Also, using a hierarchy of LSPs reduces

the number of LSPs to maintain in the core routers. Or, RSVP-TE may be used to

only deliver node and link protection [13] while LDP is used to deliver VPN services

without bandwidth reservation.

Finally, the complexity of the management and the configuration of traffic en-

gineering information on the routers prevents their efficient exploitation. Service

Providers have become aware of the problems with MPLS and reached a point where

a global simplification of its control plane is necessary.

SR was introduced in order to overcome these issues and to simplify the use of

MPLS. SR leverages the source routing paradigm, where the path taken by the packet

to reach its destination is encoded in its header. The most important building block

of this architecture is the concept of segments [14]. Basically, a segment can repre-

sent a topological path (e.g., the shortest path to a node) or service (application).

Combining two or more segments allows the expression of any network path. In-

stead of using a dedicated protocol, segments are advertised using routing protocols.

SR architecture [15] [16] can be instantiated over two data planes: MPLS, without

any data plane modification and an IPv6-based solution that requires a hardware

upgrade. SR over MPLS data plane (SR-MPLS) simplifies the deployment and con-

figuration of services such as fast reroute (link and node protection) and VPNs, by

eliminating the need for protocols like LDP and/or RSVP-TE. Equipment vendors

have already started delivering the support for SR in their recent software releases.

The first interoperability tests have been conducted internally by service providers

5

or by independent entities such as the European Advanced Networking Test Center

(ENTC) [17].

In this chapter, we take a deep dive into the SR architecture. First, We start

by introducing source routing in section 2.2. Second, we detail the different building

block of SR in section 2.3. Third, we detail the MPLS in in section 2.4 implementation.

Finally, we detail several SR use cases in section 2.5.

2.2 Source Routing

The source routing paradigm was first introduced in the early versions of the Inter-

net Protocol IPv4 [18]. Since then various network architectures and protocols have

adopted it, such as MPLS [19], IPv6 [20] and wireless networks protocols: Dynamic

Source Routing DSR [21] and Source Demand Routing Protocol (SDRP) [22]. Addi-

tionally, source routing is a main component of the SR architecture. Understanding

source routing is essential for a better grasp of SR. For that purpose, we detail in this

section the functioning of source routing and its implementation in different protocols.

Source routing enables the source node (ingress) to specify explicitly the path

that packets have to follow in order to reach their destination. The Source-Routed

Path (SRP) consists of a sequence of nodes and links the packets pass through. The

components of the SRP (nodes, links) are carried in every packet header. The SRP

can express any topological paths. Consequently, it allows forwarding of traffic on

paths that are not the IGP shortest paths. Such characteristic is interesting for

multiple use cases such as traffic engineering, path monitoring and troubleshooting.

We distinguish two types of Source Routing:

1. Strict Source Routing: in strict source routing, all the intermediate hops (nodes,

links, etc.) between the source and the destination are listed in the packet

header. In this case, the packet must pass through exclusively the listed hops.

Two successive hops in the packet header are adjacent. Intermediates nodes do

not have to determine the next hop because the forwarding decision is only based

on the information carried in the packet header. In Fig. 2.1, service provider

connects two Customer Edge (CE) routers CE1 and CE2, and decides that the

traffic sent from CE1 to CE2 follows the path A: PE1 → P2 → P3 → PE4.

Hence, PE1 receives packets from CE1 then encodes into each packet header

the list of all the intermediate hops identifiers. When the packet reaches a given

node, this node looks up the reference of the next hop in the list in order to

6

determine to which hop it must forward the packet. Finally, PE4 removes the

hop list before forwarding the packet to CE2.

2. Loose Source Routing: in loose source routing, the packet carries only a subset

of the hop identifiers that constitute the full path. The packet goes through all

the hops listed in the header but not only i.e., packets may go through hops

that are not present in their header. This happens when two successive hops in

the packet header are physically separated by one or more intermediate nodes.

Going back to our example shown in Fig. 2.1, CE1 sends its traffic to CE2

following path B: PE1 → P3 → PE4, only P3 is specified as an intermediate

node. In this case, PE1 determines that P6 is the next hop to reach P3 by

looking up its forwarding table. This is considered as a loose path because PE1

and P3 are not direct neighbors, consequently packets have to go through P6,

which is not present in the hop list of the source path.

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

10

10

10

10

510

PKT

PE4

P3

P2 PKT

PE4

P3

P2

PKT

PE4

P3

P2

PKT

PE4

P3

P2

PKT

PE4

P3

PKT

PE4

P3

PKT

PKT

PKT

PE4

P3

PKT

PKT

PKT

PE4

P3

Path A: Strict path

Path B: Loose path

Figure 2.1: Path A is a strict path where all the intermediate nodes are carried in
the packet header. Path B is a loose path because only a subset of the intermediate
nodes is carried in the packet header

7

2.2.1 Source Routing with IPv4

As mentioned above, source Routing was introduced in the early versions of the IPv4

standards [18], it was implemented as an option in the IPv4 header, for which two

types were defined: type 131 for Loose Source and Record Route (LSRR) and type

137 for Strict Source and Record Route (SSRR).

IPv4 standard limits the length of the SRP to a maximum of 9 IPv4 addresses

because it is transported as an option in the IPv4 packet header, which has a maxi-

mum size of 40 Bytes. Each node crossed by the packet gets recorded, which allows

the destination to build its own loose or strict route in order to respond via the same

path.

IPv4 source routing was originally used by network administrators to perform

tasks such as network discovery, measurements and debugging. Due to the discovered

vulnerabilities and its exploitation for malicious purposes [23], such as conducting De-

nial of Service attacks, spoofing attacks, firewall bypassing and other attacks. Thus,

the majority of network administrators have disabled the support of these options in

their networks. As a result, the IETF advice now that packets with LSRR and SSRR

options should be dropped [24].

2.2.2 Source Routing with IPv6

The source routing behavior from IPv4 was reproduced in IPv6 extension header Type

0 Routing header (RH0), copying almost the same concepts as in IPv4. Contrarily

to IPv4, the RH0 is an extension header and its size is limited only by the maximum

transmission unit. For this reason, an RH0 can carry longer paths in comparison to

IPv4. For example, with a maximum transmission unit of 1500 Bytes, an SRP can

be composed of 90 IPv6 addresses, with the possibility to include the same address

multiple times. However, big SRPs have made things worse from a security point

of view. For example, a Denial Of Service attack can be carried out via traffic

amplification on a specific path between two nodes, this attack is more powerful with

RH0 than with IPv4 source routing, due to the fact that the number of IP addresses

carried in the RH0 is much greater than IPv4 source routing option: the RH0 can

carry up to 90 addresses compared to only 9 for IPv4, this gives the attacker the

possibility of oscillating up to 44 times between two nodes, which would eventually

cause a congestion on that path. As a result, the IETF deprecated the support of

RH0 [25].

8

The deprecation of RH0 was intended to stop its exploitation for malicious pur-

poses, but not to prevent totally the use of source routing in IPv6 networks. Indeed,

new secure routing headers were defined to deliver source routing for different net-

works types. For example, an IPv6 Routing Header for Source Routes with the

Routing Protocol for Low-Power and Lossy Networks [26] and the Segment Routing

extension header [27] (see Section A).

2.2.3 Source Routing with MPLS

MPLS networks also took advantage of source routing. Using the PUSH operation

multiple labels get added to the packet’s header, this is known as label stacking.

Each label from the stack identifies a unique LSP. These LSPs are pre-established

either by RSVP-TE or by LDP or BGP. Each intermediate node installs a state in

its forwarding table for each LSP that goes through it.

Unlike IPv4/IPv6 implementation of source routing where an IP address identifies

a unique node. In MPLS, a label is local to the node and it determines the path to

a hop (either direct or over an LSP). Additionally, MPLS implementation does not

suffer from the same security issues as in IPv4/IPv6, because a service provider drop

traffic originated from untrusted sources.

In the next section, we go into more detail on how SR architecture leverages the

source routing paradigm and the implementation specifics for each data plane: MPLS

and IPv6.

2.3 Segment Routing Generic Concepts and Ter-

minology

As mentioned in the previous section, source routing is used since the early days of

internet protocols. Although, it constitutes a core routing mechanism in environments

such as ad-hoc wireless networks [21, 22]. It was always implemented as extensions

for the IP protocols to solve specific use cases. The classical shortest path stayed the

de facto routing forwarding mechanism. The lightweight and the flexibility of source

routing in the expression of topological paths led the IETF to create the Source

Packet Routing in Networking (SPRING) working group, that works to define and

standardize the segment routing architecture that leverages source routing. In this

section, we define and detail the main concepts of SR.

In fact, SR is not a new protocol, but rather an architecture that defines a set of

requirements to implement source routing over IP networks. The SPRING working

9

group focuses on the definition and the standardization of SR architecture and its

use cases. Additionally, other IETF working groups work on the definition of pro-

tocol extensions: Open Shortest Path First (OSPF), IS-IS for IP Internets (ISIS),

Inter-Domain Routing (IDR) for BGP, Path Computation Element (PCE), and IPv6

Maintenance (6man).

Service provider core networks are experiencing limitations due to the growing

number of services and protocols deployed, which creates a barrier towards achieving

its optimal exploitation [10]. Therefore, in order to support the ever-growing number

of protocols, services and policies, network nodes are forced to maintain and manage

large state tables, which consumes a large amount of the node’s memory and process-

ing resources. It also becomes very difficult for network administrators to manage

and troubleshoot. All these points were taken into consideration by the SPRING

working group when defining the SR architecture. The SR architecture is focused on

the simplification of the node’s control plane and the reduction of states maintained

in forwarding tables. For instance, in an MPLS network with SR deployed there is

no need to pre-establish tunnels using RSVP-TE because the instructions to forward

the packets are carried in their headers. This leads to a considerable reduction in the

number of states maintained by the intermediate nodes. Finally, the SR architecture

does not require additional protocols: it extends those already deployed, such as the

Internal Gateway Protocols (IGP) e.g., OSPF [7] and ISIS [8] have been extended to

exchange SR information. SR main architectural concepts can be summarized in the

following points:

• Avoid as much as possible deploying new protocols dedicated for SR-MPLS,

• Extend already deployed protocols used by the IP/MPLS networks (OSPF,

ISIS, BGP-LS),

• Maintain per-flow states only at the network boundaries and reduce the flow

states maintained by the intermediate nodes.

SR is a generic architecture that can be instantiated over existing data planes; this

reduces its deployment cost and accelerates its mastering by the service provider’s

engineers. Depending on the existing hardware, SR deployment requirement varies

from a software upgrade to new hardware. Sections 2.4 and appendix A we explain

in more detail the deployment challenges of SR-MPLS and SR-IPv6 respectively. In

addition, SR can be deployed gradually because the control plane protocol extensions

are designed to be backward compatible. This enables SPRING nodes to interoperate

with other nodes that are not SR enabled.

10

2.3.1 Segments and Segment Identifiers

One of the main concepts in SR architecture is the notion of segments. They rep-

resent different network components: physical (node, link, etc.) or logical (ser-

vice/application). An identifier called Segment Identifier or SID is attributed to

each segment. The SID type and format depend on the underlying data plane (an

MPLS label or an IPv6 address as explained in Section Sections 2.4 and A). An

SID can have a global significance in the domain or local to the node advertising it.

Stacking a list of SIDs into the packet header allows the expression of (strict or loose)

topological paths. For the rest of the manuscript the terms segment and SID are

interchangeable.

In SR, a source route is encoded by the ingress node as a sequence of segments

in the packet header. Each individual segment has a corresponding data plane for-

warding instruction. The interpretation of the segment list creates an end-to-end

path. Intermediate nodes may modify the path by adding or removing one or more

segments from the packet header. A segment can represent a node, a link, a Border

Gateway Protocol (BGP) peering adjacency, an LSP, or even a service.

SR flexibility in expressing topological or service-based paths makes it very at-

tractive for data centers or service provider networks. For example, a segment can be

interpreted by an intermediate node as send packet to node N via the IGP shortest

path, send this packet to a Deep Packet Inspection (DPI) virtual machine or forward

packet through this node’s interface X. Moreover, the possibility of deploying this new

architecture over existing data planes with no or minor changes favors its wide adop-

tion. Currently, two data planes are considered for its instantiation [10]: an MPLS

data plane without any changes and IPv6 with a new type of Routing Extension

Header.

2.3.1.1 Segment Routing Global Block SRGB

Service providers may consider deploying SR in a gradual manner. For example, one

may choose to deploy SR over only a subset of the network nodes (e.g., PEs), or

use it to enable specific use cases such as Fast Reroute (FRR). Consequently, SR

control plane has to co-exist and interoperate with other control plane protocols on

the same node or over the network. For that, mechanisms are needed in order to avoid

conflicting or duplicated entries in the forwarding plane. Therefore, each SPRING

node reserves an SID block only for SR use: in the case of SR-MPLS a block of labels

or a block of IPv6 addresses for SR-IPv6. This block is named the Segment Routing

11

Global Block (SRGB). Reserving the same SRGB throughout the network is highly

recommended because it simplifies operations and troubleshooting. SR information

such as the SRGBs and SIDs are advertised inside a domain using the IGP protocol.

P2

P6 P5

P3

PE4PE1CE1 CE2

Node-SID PE1

Adj-SID PE1-P6

IGP {Node-SIDs (P2,PE1)}

IGP {Node-SIDs (P3,PE4)}

Figure 2.2: Reference network topology

2.3.1.2 Segments Global And Local Scope

The scope of an SID may be domain wide or local to a particular node. An SID

is global (i.e., unique in a SPRING domain) if it takes its value within the SRGB.

In addition, a global SID has an associated entry in the forwarding tables of all the

SPRING nodes, this is detailed in Section 2.4.2. The SID can also be local to the node

advertising it. Consequently, the same SID may be reused and therefore advertised

by other nodes. A local SID takes its value outside the SRGB. The local SID is

readvertised by all the SPRING nodes but only its owner installs a forwarding entry

associated with it. The entry in the forwarding table refers to the next hop, which

has been determined based on the IP forwarding table.

2.3.1.3 Active Segment

An active SID is the one that the current node uses to make a forwarding decision. It

can be the top label in an MPLS stack or the IPv6 address in the Destination Address

(DA) of the IP header. Every SID the encode the SR path becomes at least once

active before the packet reaches its destination. A global SID may stay active and

span several nodes. For example, the routers IPv6 loopback address in SR-MPLS. A

local SID must become active only on the node that advertises it. For example, the

SID attached to a specific router interface in SR-MPLS.

12

2.3.1.4 Segment types

The type of a segment depends on the way it is advertised and the network component

that it identifies, as shown in Fig. 2.3. Consequently, the segment advertised in the

IGP is named the IGP segment. In IP networks, network components are identified

by IP addresses which are advertised as IGP prefixes. In SR the SIDs attached to

these IGP prefixes are named IGP Prefix Segments (Prefix-SIDs). For example, an

SID can be attached to a unicast IGP prefix (e.g., router loopback or an adjacency)

as shown in Fig. 2.2, or an IGP anycast prefix (e.g., DNS, CDN, etc.). With the

emergence of new use cases, it is likely that new SID types will be defined in the

future. In this manuscript, we focus on the two main SID types: Node-SID and

adjacency SID (Adj-SID) as shown in Fig. 2.2. Both segment are sufficient to encode

any intradomain SR path. They are defined as follows:

• An Node-SID is a Prefix-SID, it is a unique identifier (global SID) in the SR

domain. It is assigned to a specific node. Specifically, it is attached to one of the

node’s loopback addresses. Every SPRING node has an entry in its forwarding

table for every Node-SID in the SPRING domain. When a node receives a

packet with a Node-SID as the active SID, it forwards the packet down the

path that results from the IGP path computation algorithm. For example, if

the node uses the standard Shortest Path First SPF algorithm, it executes the

following forwarding instruction: forward this packet down the shortest-path to

the node that has this SID.

• An Adj-SID is an IGP segment, it is an identifier that has a local significance. It

is used to identify an adjacency between two nodes. Only the node advertising

it has a forwarding entry corresponding to that SID. When a node receives a

packet with an Adj-SID as the active SID in the stack, it executes the following

forwarding instruction: send this packet out of a specific interface.

A Prefix-SID is associated with a forwarding instruction derived from the rout-

ing table computed by node’s path computation algorithm. In SR, it is possible to

assign Prefix-SIDs per path computation algorithms. Consequently, a SPRING node

advertises multiple Prefix-SIDs for one IGP prefix (i.e., one per algorithm), the topo-

logical path varies depending on the path computation algorithm used. Currently,

two algorithms are defined: type 0 which is a standard SPF based on the link metrics,

type 1 which is the a strict SPF, it is identical to a standard SPF, but it requires

that the nodes on the path respect the computed path even if it contradict local

13

Segment

Other SegmentsIGP Segment

IGP-Adjacency Segment

(Adj-SID)

IGP-Prefix Segment

(Prefix-SID)

IGP-Node

(Node-SID)

IGP-Anycast Segment

(Anycast-SID)

Other Segment types (eg.,
BGP peering, LDP
segment)

Figure 2.3: Hierarchy of the different segment types

policies. Other algorithms may be defined in the future. For example, algorithms

that take into consideration metrics such as delay, jitter or packet loss, etc. However,

the per algorithm SID assignment complicates the SR architecture, as it requires to

maintain additional states in the network leading to difficulties in configuration and

troubleshooting. It is up to the service providers to decide to adopt or not this possi-

bility. For the remainder of the manuscript, we consider that the SIDs are associated

with the standard SPF algorithm.

2.3.1.5 Segment Routing Paths

An SR path is composed of an ordered list of SIDs. The path can be automatically

computed and instantiated or manually imposed by the network administrator. The

path type depends on the type of SIDs used for its construction. For example, a

topological path is composed of SIDs that are attached to network components (e.g.,

node and link). It can be constructed using only multiple adjacency segments (Adj-

SID), multiple node segments (Node-SID) or a combination of both depending on the

forwarding requirements.

SR paths can be determined and provisioned by different mechanisms and entities,

for example with the nodes IGP Shortest Path First (SPF) algorithm, by the network

administrator via explicit configuration, or by the Path Computation Element (PCE)

14

[15]. The SR path is encoded as an SID list in into the packet’s header. Each

SID becomes active at one of the nodes crossed by the packet. The Active SID is

associated with a set of instructions in the forwarding table, which determines what

to do the active SID and how the packet is forwarded to the next hop. A global SID

may stay active for multiple nodes as seen in Fig. 2.4. Node-SID P5 is the active

SID at PE1, P6 and P5. The method of transition from one active SID to another

depends on the instantiated data plane i.e., MPLS or IPv6, as explained in sections

2.4 and A respectively. If the SID is global, all the SPRING nodes have a set of

instructions associated to it. If it is local, then only the node that owns that SID has

an association between the local SID and the set of instructions.

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

10

10

10 10

10

1015
PKT

PKT

PE4 Node-SID

P5-P3 Adj-SID

P5 Node-SID

PKT

PE4 Node-SID

P5-P3 Adj-SID

P5 Node-SID

PKT

PE4 Node-SID

P5-P3 Adj-SID

P5 Node-SID

PKT

PE4 Node-SID

P5-P3 Adj-SID

P5 Node-SID

PKT

PE4 Node-SID

P5-P3 Adj-SID

P5 Node-SID

PKT

Figure 2.4: An example of Segment Routing Path

In the example shown in Fig. 2.4, the service provider decides to forward the

client traffic from CE1 to CE2 through the path PE1 → P6 → P5 → P3 → PE4.

The selected SR path satisfies the client traffic requirements (e.g., bandwidth, delay,

jitter, etc.). The SID stack is pushed by PE1 on each packet that belongs to a specific

client flow (e.g., IP packets with destination CE2). P5’s Node-SID is the active SID

at PE1 and P6. Once packets arrive at P5, the node recognizes the active SID as

its own Node-SID. Applying the loose source routing paradigm required by the P5

Node-SID, PE1 forwards the packet to PE6. Then, P5 reads the next SID in the

stack, i.e., the Adj-SID P5−P3, which corresponds to an instruction that forces the

15

packets through the link connecting P5 and P3, before forwarding the packet PE4

Node-SID becomes the active SID. At P3, PE4 Node-SID is the active SID; PE4 is

a direct next-hop to reach PE4 because P3 and PE4 are neighbors. At PE4, the SR

Path is removed and the packets are forwarded to CE2.

2.3.2 SPRING Node Configuration

A SPRING node has to be configured to be able to announce its SR capabilities

and exchange SR information. Configuration can be done manually using the node

Command Line Interface (CLI) or as shown in Fig. 2.5, via a centralized entity such

as the Network Management System (NMS) using management protocols [15]. NET-

CONF [28] is foreseen as the de facto management/configuration protocol. Therefore,

the SPRING working group is working on the definition of a YANG model for the

configuration and management of SPRING nodes [29]. A SPRING node requires a

minimum set of configuration to be able to communicate with other SPRING nodes.

First SR has to be enabled on the node, then the set the SRGB and at least one

prefix SID binding.

P2

P6 P5

P3

PE4PE1CE1 CE2

NMS

{NETCONF/YANG}

Figure 2.5: Configuration of Segment Routing on nodes using a Network Management
System (NMS)

In order to simplify the configuration process and to allow the interoperability with

non-SPRING nodes a SPRING nodes can act as Segment Routing Mapping Server

(SRMS) [30]. Using a set of IGP extension, the SRMS centrally advertises mappings

16

between prefixes and and Segment Identifiers (SID) on behalf of other SPRING and

non-SR-capable nodes. In Fig. 2.6, node P3 plays the role of SRMS. The SRMS node

uses its SPRING IGP instance to advertise the bindings (IGP-Prefix, SID) of P6 and

P5 into the SR domain. SPRING nodes handle the SRMS advertisements as if the

Prefix-SIDs were advertised by the nodes themselves.

P2

P6 P5

P3

SRMP

PE4PE1CE1 CE2

{NETCONF/YANG}

NMSManually

<pushing configuration>

CLI

NON-SPRING Nodes

Figure 2.6: Configuration of Segment Routing on nodes using a Mapping Server

As stated before, segment routing does not introduce new protocols. Rather it

defines new extensions to the already deployed ones. Once a SPRING node is con-

figured with the SR information, it is ready to participate in the SR domain. It

advertises its own SR information (SRGB, prefix SID bindings,) using SR protocol

extensions and learns other SPRING node’s information. In an intradomain scenario,

SPRING nodes exchange their SR capabilities using one of the two widely deployed

IGP protocols (OSPF and ISIS), which have been extended to support the adver-

tisement of SR capabilities. In OSPF, SR information (e.g., SRGB, SIDs, etc.) are

encoded in a Type Length Value (TLV) format and carried in the opaque Link State

Advertisement (LSAs) of type 9, 10 and 11 [31]

17

2.4 Segment Routing over the MPLS Data Plane

Multiprotocol Label Switching (MPLS) [32] plays a critical role in service provider’s

core networks in delivering high-performance next-generation services. Additionally,

it is agnostic to the client’s access links because it encapsulates packets in its own

header. MPLS has simple data plane. It is based on a fixed size 20-bit labels and

three basic operations: POP, PUSH and SWAP. An ingress MPLS node push labels

into each packet that enters the MPLS domain. An intermediate MPLS node switches

the packet based on his pre-installed forwarding entries and the label carried in the

packet’s header. Despite its simple data plane, MPLS’s wide use and the increase

of supported services has made its control plane complicated and difficult to trou-

bleshooting and to evolve. Traditional MPLS control plane is composed of routing

protocols, label distribution protocols and tunnel signaling protocols, causing an im-

portant portion of network resources to be consumed just to maintain the protocols

soft states. Other issues arise such as synchronization problem between different pro-

tocols. SR is regarded as an evolution to MPLS, with its simple, lightweight and

SDN-ready control plane. Service providers consider SR as a strong candidate to

deliver traditional MPLS services such as Traffic engineering, failure protection (fast

reroute), layer two and layer three VPNs.

MPLS’s data plane meets all the requirements to instantiate the SR architecture

without any hardware upgrade. A segment is represented by a label, the MPLS header

already supports label stacking. Consequently, an SR path is encoded as label stack,

and the three basic MPLS forwarding operations are sufficient to forward source-

routed packets. Therefore, SR deployment is claimed to be straightforward. For

example, to enable SR on one of the network nodes (e.g., PE router), a simple software

upgrade is sufficient and there is no need to deploy new hardware. Unfortunately,

most of the MPLS Label Switching Routers (LSR) do packets processing using ASICs.

ASICs have fixed capacities: for example, if the ASIC can only PUSH a small number

of labels, this limits the node’s capacity when expressing SR paths.

In this section, we discuss the MPLS instantiation of SR (SR-MPLS): how SR

architectural components are implemented (e.g., Local SID, Global SID, SRGB, etc.).

How SR-MPLS control plane interacts and interoperates with other protocols such

as LDP and RSVP-TE.

18

2.4.1 Segment Routing MPLS Terminology

SR instantiation over the MPLS data plane requires the mapping of the generic

concepts defined in the SR architecture to the MPLS components and operations. In

this section, we detail SR-MPLS specific terminology and how the SR architecture

components are implemented in an MPLS data plane.

In SR-MPLS, an SID is an MPLS label. Therefore, for the remainder of the

manuscript, the term SID and label are used interchangeably. The SRGB is one

range or a concatenation of multiple ranges of local labels allocated by a given node

for SR. The advertised SRGB should be large enough to encompass all the global

segments. For example, if the network has 100 nodes, then the SRGB size must be

greater or equal to 100 (e.g., SRGB == [1000, 1100] or SRGB == [1000, 1049] ∪

[2000, 2049]). To avoid label allocation conflict, no other protocol (e.g., LDP, RSVP-

TE) is allowed to use a label inside the SRGB. Additionally, a global unique Index

(32-bit integer) is attributed to every global segment. This Index is combined with

the nodes SRGBs to compute the labels allocated for a global segments as explained

in section 2.4.2.

In addition to the IGP Prefix Segment defined in the generic SR architecture, SR-

MPLS defines new SID types that are specific to MPLS networks such as the LDP

LSP segment and the RSVP-TE LSP segment. A Global SID is a label within the

SRGB and the Local SID is a label outside the SRGB. For example:

• A Prefix-SID is a global SID, which is attached to an IGP-Prefix (i.e., IP

address). It is a label that take its values within the SRGB. The Node-SID is

a special case of the Prefix-SID; it is a label that identifies a specific network

node. It is attached to one of the node’s loopback addresses.

• An Adj-SID is a label that identifies the adjacency between two nodes. Gener-

ally advertised as a local SID unless decided otherwise. The Group-Adj-SID is

a special case of the Adj-SID. It is used for load balancing purposes over all the

links/interfaces tagged with the same Group-Adj-SID.

2.4.2 SR-MPLS Global Segment Implementation

SR instantiation over the MPLS data plane translates an SID to a standard MPLS

20-bit label. SR paths are encoded as a stack of labels that get pushed into each

packet header to construct the source-routed path. Having a consensus on how to

19

implement globally significant SIDs for SR-MPLS is one of the challenges that had

to face community. Consequently, two main proposal were discussed as follow:

The first proposal is to use globally unique significant labels as SID, this propo-

sition requires that all the LSRs support the entire label range (i.e., [1, 220]), or at

least the same sub-range. This proposition was rejected by IETF due to physical

restrictions imposed by some vendors on their products. In fact, some LSRs support

only a sub range of the entire label space, as the LSR is the one who chooses and

advertises to its neighbors the labels to use for every Forwarding Equivalence Class

(FEC). Consequently, the LSR is always certain that its neighbors will forward traffic

to it with a top label that falls into its supported range. The supported label range

is vendor specific. Therefore, a common label range in an operational network where

routers come from different vendors may be empty or too small for the network size.

The second proposal, which was adopted by the SPRING WG, consists of allo-

cating and advertising a locally chosen label range for SR called SRGB by all the

SPRING nodes. The SRGB can change from one node to another. In addition, a

unique index (i.e., 32-bit integer) is associated with each global segment. This in-

dex represents the offset of the global segment label within the SRGB. Some service

providers have expressed their intention to allocate the same SRGB on all SPRING

nodes when possible. This decision reproduces the globally unique significant label

concept, which will simplify configuration and troubleshooting.

2.4.3 SID Computation

SR-MPLS uses MPLS labels to identify segments. The different types of SIDs can be

advertised as global or local:

A globally significant SID is mapped to a label that takes its value within the

SRGB. Instead of advertising a globally unique label, a SPRING node advertises its

SRGB and for each global SID, it advertises a globally unique 32-bit index. All the

SPRING nodes compute the labels that identify global segments and install them in

their Label Forwarding Information Base (LFIB). The local label attributed to the

global segment is computed using (2.1), where the segment index is added to the

lower bound of node’s SRGB.







Global SID = Index+ SRGB lower bound

Global SID ≤ SRGB upper bound

(2.1)

20

We consider that all the nodes in the topology shown in Fig. 2.2, reserve the same

SRGB [1000, 2000]. Each node advertises using the IGP the same SRGB [1000, 2000]

and a domain-wide unique index attached to its loopback address. The computation

of the global SID (e.g., Node–SIDs) is performed using (2.1). For example, PE1’s

Node–SID = 1000 + 1 = 1001. The results of the Node–SIDs computation as shown

in Table 2.1 is the same on all the network nodes.

Table 2.1: Node–SIDs computation with a single Global Block (SRGB) [1000, 2000]

Node Loopback Global-index Node-SID

PE1 192.0.2.1/32 1 1001

P2 192.0.2.2/32 2 1002

P3 192.0.2.3/32 3 1003

PE4 192.0.2.4/32 4 1004

P5 192.0.2.5/32 5 1005

P6 192.0.2.6/32 6 1006

A SPRING node may advertise multiple separate labels blocks. Hence, the Node’s

SRGB is a concatenation of such blocks. For example, the node PE1 advertises the la-

bel ranges [1000, 1500] and [2000, 2500], thus PE1 SRGB is [1000, 1500]∪ [2000, 2500].

For the two global indexes 300 and 700 bound to two IGP prefixes, their associated

labels at PE1 are respectively:

Prefix–SID1 = 1000 + 300 = 1300

Prefix–SID2 = 700− (1500− 1000 + 1) + 2000 = 2199

An SRGB is a local propriety of a SPRING node. Hence, every SPRING node

may reserve a distinct SRGB. Consequently, a global segment gets associated with a

different label values (e.g., Node-SID) at each SPRING nodes. Now we consider that

all the nodes in the topology shown in Fig. 2.2, reserve a distinct SRGB. Each node

advertises using the IGP its SRGB and a domain-wide unique index attached to its

loopback address. Then a SPRING node uses every node’s SRGB to compute the

different values of global SIDs (e.g., Node-SID), the results are shown in Table 2.2.

21

Table 2.2: Node-SIDs computation with different Global Block for each node

PE1 SRGB [1000,2000]

Node Node-SID

PE1 1001

P2 1002

P3 1003

PE4 1004

P5 1005

P6 1006

P2 SRGB [3000,4000]

Node Node-SID

PE1 3001

P2 3002

P3 3003

PE4 3004

P5 3005

P6 3006

PE4 SRGB [7000,8000]

Node Node-SID

PE1 7001

P2 7002

P3 7003

PE4 7004

P5 7005

P6 7006

P5 SRGB[9000,10000]

Node Node-SID

P1 9001

P2 9002

P3 9003

P4 9004

P5 9005

P6 9006

P3 SRGB [5000,6000]

Node Node-SID

PE1 5001

P2 5002

P3 5003

PE4 5004

P5 5005

P6 5006

P6 SRGB[11000,12000]

Node Node-SID

PE1 11001

P2 11002

P3 11003

PE4 11004

P5 11005

P6 11006

For a local SIDs, no computation is performed because they are advertised as

labels. A local SID takes its value outside the node’s SRGB. A LFIB Forwarding

entry for a local SID is only installed by the node that advertises it i.e., only the

owner of the local SID knows how to forward packets using it.

2.4.4 Forwarding Operations

SR-MPLS uses the MPLS forwarding plane. Consequently, SR packets get manipu-

lated using the MPLS data plane operations PUSH, POP (NEXT) and SWAP (CON-

TINUE):

22

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

10

10

10

10

1515

PKT

1005

PKT PKT

Match FEC x

PUSH([1005,1003,1004]) 1004

1003

PKT

1005

1004

1003

PKT

1005

1004

1003

PKT

1004

1003

PKT

1004

POP(1005)

POP(1003)

POP(1004)

Figure 2.7: Segment Routing operations

• PUSH: the push operation is performed by the ingress nodes (LER), which

encodes into the packet header the list of labels that compose the SR path.

Node PE1 in Fig. 2.7, uses the PUSH operation to encode the path description

into the packet’s header. It is also used by intermediate nodes to add one or

more additional labels for rerouting and protection purposes.

• POP (NEXT): when the pop operation is performed, the active label is removed

from the label stack. It is performed when the packet’s active label belongs to

the current node (e.g., Node-SID. Adj-SID or Group-Adj-SID), or when the

penultimate-hop-popping is enabled for the next segment. Node P5 in Fig. 2.7,

pops the labels 1005 because it is its own Node-SID. In SR implementation,

the POP operation is called NEXT because popping the top-level label means

that the next label will be pointing to the next segment in SR path.

• SWAP (CONTINUE): the swap operation is performed to replace the active

label with a new one. In the SR-MPLS, it replaces the current node’s local

label of a global SID by the next node local label of the same global SID. It

is called CONTINUE because the old and the new labels point to the same

segment, they just belong to two different SRGBs.

In the next section, we detail how segments are used to populate the forwarding

plane entries, the operations that are performed upon the reception of a packet and

the forwarding decision-making mechanism.

23

2.4.5 SR-MPLS Forwarding Entries Installation

Forwarding entries for SR are derived from the routing table and SR information

(i.e., SIDs, SRGB), which is either configured or learned using the SR control plane

protocols (OSPF, ISIS, BGP-LS). The process of installing forwarding entries into

the forwarding table is depicted in Fig. 2.8. It explains the transition from the SR

information to the installation of forwarding entries into the forwarding table of a

SPRING node, different vendors may implement it with respect to their router’s

physical architecture.

A SPRING node is configured with its own SRGB and SIDs. Additionally, it

receives the SRGBs and SIDs (local or global) received via the IGP from other nodes.

Forwarding entry installation process starts by identifying the SIDs. There are SIDs

that are advertised as labels (e.g., Adj-SID), and there are those that need to be

computed (i.e., global SIDs) using (2.1) based on the index and the SRGB.

Let us consider that the node receives a SID advertisement. At step 100, the

node checks if the SID is within its SRGB. If No, then it’s a local SID. At step 200,

determine if the local SID belongs or not to the current node. If no, no corresponding

forwarding entry for that SID will be installed. At step 201, the local SID belongs to

the current node, now its type needs to be determined because the forwarding entry

depends on the type of the local SID:

• At step 210, the SID is identified as an Adj-SID. Therefore, the node adds

the following entry to its forwarding table: set the Adj-SID as incoming label

and the operation is POP (Adj-SID) then forwards the packet out the interface

associated to the Adj-SID.

• At step 220, the local-SID is identified as a Group-Adj-SID. Therefore, the node

adds the following entry to its forwarding table: set the Group-Adj-SID as the

incoming label and the operation is POP (Group-Adj-SID) then load-balances

the packets out of the interfaces associated with the Group-Adj-SID.

• For other local-SID types, a corresponding behavior is to be defined.

At step 300, the SID value is within the current node SRGB thus it is a global

SID. At step 310, the SID is determined to be the current node’s Node-SID, therefore,

the installed forwarding entry is: set the current Node-SID as the incoming label, the

operation is POP (Node-SID) then instructed to look for a forwarding entry with as

incoming label the new active SID.

24

At step 301, the owner of the global SID is identified then the next hop to reach

that node is derived from the current node routing table. At step 302, check if the

next hop’s SRGB equals the current node one. If No, go to step 303, compute the

equivalent global SID for the active SID using its index and the next hop SRGB. At

step 304, check if Penultimate hop popping (PHP) is enabled for that SID. If no,

install the following forwarding entry: set the active SID as the incoming label and

the operation is SWAP (active SID, equivalent SID in the next hop) then forwards

the packet out the interface to reach the next hop.

At step 305, check if the global SID belongs to the directly connected neighbor.

If yes, install the following forwarding entry: set the active SID as the incoming label

and the operation to POP (active SID) then forwards the packet out the interface to

reach the next hop.

25

Compute the equivalent

SID within the next hop’s
SRGB

SID’s PHP is enabled?

Index + SRGB

received/configured

Is the SID

value within the

Node’s SRGB?

Group-Adj-SID ?

has the next hop

the same SRGB?

Determine the SID Type

No

No

Yes

No

Identify the next hop

Adj-SID ?

Other local SIDs types

(e.g., service/application based)

Execute 1 Execute 2

Execute 3

Operation POPOperation POP

SID received /configured

Compute the SIDs

Is it the current

node’s
Node-SID

Yes

Yes

No

Pop the active label +

send the packet to the exit interface
1

Pop the active label + Load balance

between the group of interfaces2

Special treatment 3

4

100

300200

310

301

302

303

304

220
210

211
221

230

Do not install in the forwarding table

Does it belong to the

current node ?

YesExecute 4

No

201 Execute 5

5 Pop the active label + process the

new active label
6 SWAP the active label +

send the packet to the exit interface

Execute 6

Yes

Execute 1

Yes

Is the SID advertised

(belongs) by the

next hop?

305

No

Figure 2.8: State Machine of SR-MPLS Forwarding Entries Installation

26

Example : Let us consider the case where all the SPRING nodes in Fig. 2.2

allocate different SRGBs (i.e.., per-node SRGB). P2 has the SRGB [3000, 4000] and is

configured with index2 attached to its loopback address 192.168.0.2/32. P2 computes

the local label of its own Node-SID using (2.1) : P2’s Node−SID = 3000+2 = 3002.

P2 installs in its forwarding table the following : Incominglabel = 3002 operation =

POP (3002)

P2 learns via its IGP adjacency with P3, P3’s SRGB [5000, 6000] and Index3

attached to P3’s loopback address 192.168.0.3/32. P2 constructs the forwarding

instruction that will be used to forward traffic to P3. the traffic destined to P3

reaches P2 with the top label the Node − SID of P3, the label value is inside P2’s

SRGB. Therefore, the incoming label is equal to P3’s Node-SID inside P2’s SRGB :

3000 + 3 = 3003.

P3 allocate a different SRGB. Therefore, when P2 sends a packet to P3, the top

label (active SID) has to be either inside P3’s SRGB or one of its local SIDs (e.g.,

Adj-SID). Consequently, P2 has to swap P3’s Node-SID (3003) with its equivalent

computed inside P3’s SRGB i.e., 5000 + 3 = 5003

Finally P2 installs the following forwarding entry: Incoming label = 3003, Oper-

ation = SWAP(3003,5003), Exit interface = P2-P3.

In this section, we gave an overview on how the SR SIDs are translated to for-

warding plane entries. In the next section, we detail different techniques to encode

SR paths and the forwarding plane operation attached to each SID type.

2.4.6 MPLS Routing Source-routed Path

In SR-MPLS, the segment list that constructs the source-routed path is encoded as

a stack of labels into the packet header. The SR Path can be expressed using one or

multiple labels (SIDs). The computation of the label stack is addressed in [33, 34].

An LSR forwards packets based on the top label in the stack and the corresponding

forwarding entry in the LFIB. The top label represents the active segment. It corre-

sponds to the label number n in the label stack as shown in the Fig. 2.9. The last

label in the stack has position 1 and its S bit is set to 1 to indicate that it is the last

label in the stack.

27

SIDn-1SIDn SIDn-2 …. SID1

Label_stack_depth == N

SID = MPLS Label SDSCP

Ethernet, PPP
+ Others

Payload

3 bits

TTL

20 bits 8 bits1 bit

Figure 2.9: Packet header when using MPLS data plane for Segment Routing

When a packet is received, it gets matched to a specific FEC by the SR ingress

node, which is typically a PE. Each FEC is associated with a source-routed path (list

of SIDs). The source-routed path is expressed as a stack of labels that get pushed onto

the packets header. Each label represents a forwarding instruction. The combination

of all the instructions forwards the packet from the ingress node to the egress.

We use the same network topology as in Fig. 2.2. For simplification purposes, all

the service provider nodes are SR-enabled and all the nodes allocate the same SRGB

[1000, 2000]. Table 2.1 summarizes the result of Node-SIDs computation of all the

network nodes. A SR path can be expressed using one SID type or a combination of

SID. In following list of scenarios, we explain the different methods to express a SR

path:

Scenario 1: Encoding a SR path with one Node-SID

Depending on the algorithm and the criteria used to compute the Source-Routed Path,

the resulting path can be different or equal to the IGP’s Shortest Path computed using

the SPF algorithm. In the case where the resulting path is equal to the IGP’s shortest

path, then the SR path can be expressed using just one global SID. Consequently,

the label stack contains only one label. In the example shown in Fig. 2.10, the chosen

source-routed path to forward the client traffic between CE1 and CE2 follows the

IGP shortest path: PE1 → P2 → P3 → PE4. Therefore, PE4’s Node-SID 1004 is

sufficient to express the SR path. As the packets pass through P2 and P3, the label

1004 is maintained. In the case of a different per-node SRGB, the label 1004 would

be swapped with a different label value i.e., an equivalent label within the next hop’s

SRGB.

28

P2

P6 P5

P3

PE4PE1CE1 CE2

3

10

3

3

10

10

15

10

PKT

1004

PKT

1004
PKT

1004

PKT PKT

PKT

1004

Match FEC x

PUSH (1004)

10

POP(1004)

Figure 2.10: Example of Segment Routing path with one Node-SID only: Routers
use the same Segment ID to forward the packet following the shortest path up to the
Node SID.

Scenario 2: Encoding a SR path using only Node-SIDs

An SR path can be also expressed exclusively using Node-SIDs. This scenario is the

generalization of scenario 1. It is not necessary to indicate all intermediate nodes

Node-SIDs to construct the SR path, this results in a loose SR path. When two

nodes are not adjacent, the forwarding decision between their corresponding Node-

SIDs follows the IGP Shortest Path. This approach helps reduce the label stack

depth. Consequently, the resulting SR path is very sensitive to the IGP changes (e.g.,

changing one of the link’s IGP Metrics). Note that some paths cannot be expressed

using only Node-SIDs. In the scenario shown in Fig. 2.11, the chosen source-routed

path to forward the client flow between CE1 and CE2 is PE1 → P6 → P5 →

P3→ PE4, which is not the IGP Shortest Path. Here, we supposed that: the IGP’s

shortest path between PE1 and P5 is via P6, the link between the neighbors (P5,

P3) and (P3, PE4) is the shortest path between them. Thus, client traffic can be

source routed using three Node-SIDs 1005, 1003, 1004.

29

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

10

10

10

10

1515

PKT

1005

PKT PKT

Match FEC x

PUSH([1005,1003,1004]) 1004

1003

PKT

1005

1004

1003

PKT

1005

1004

1003

PKT

1004

1003

PKT

1004

POP(1005)

POP(1003)

POP(1004)

Figure 2.11: Example of Segment Routing path where the label stack is composed
only of Node-SIDs

Scenario 3 Encoding a SR path using only Adj-SIDs

An SR path can be expressed also exclusively using Adj-SIDs. This is used to create

strict paths that do not get affected by the IGP decision process. The Adj-SID labels

are only installed in the forwarding tables of nodes advertising them. Expressing

SR path in this way may result in a large label stack; this has numerous side effects

such as some incompatibility with LSRs that cannot push a large label stack. It also

increases client packet fragmentation if the MTU is not set properly, and may cause

load-balancing problems. We will tackle this problem in chapter III.

30

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

1010

PKT

16065

PKT PKT

Match FEC x

PUSH([16065,15053,14034]) 14034

15053

PKT

POP(15053)

POP(14034)

PKT

16065

14034

15053
PKT

14034

15053

PKT

14034

16065

1
5

0
5

3
1

0

10

POP(16065)

Figure 2.12: Example of Segment Routing path where the label stack is composed of
only Adj-SIDs

In the scenario shown in Fig. 2.12, the chosen source-routed path to forward the

client flow between CE1 and CE2 is PE1→ P6→ P5→ P3→ PE4; the SR path

can be expressed exclusively using Adj-SIDs: P6− P5: 16065, P5− P3: 15053 and

P3−PE4: 13034. When P6, P5 or P3 receives a packet and recognizes the top label

as one of its Adj-SID, it performs the POP operation then forwards the packet out

of the interface associated with Adj-SID.

Scenario 4 : Encoding a SR path using a mix of Node-SIDs and Adj-SIDs

In this scenario, a mix of Node-SIDs and Adj-SIDs are used to express the SR path. A

Node-SID is used to forward the packet through the IGP paths, the use of Node-SIDs

when possible reduce the size of the label stack. An Adj-SID is used to force the

packets out of a specific interface, for example, if desired not to follow the IGP.

In order to forward the traffic through the PE1→ P2→ P3→ P5→ PE4 path

as shown in Fig. 2.13, three labels 1003,9000,1004 are used to construct the SR path;

label 1003 is the Node-SID of P3, the packets will follow the IGP shortest path to

reach P3. At P3, the IGP shortest path between P3 and P5 is through PE4, i.e.,

using P5’s Node-SID, P3 would forward packets down that path. To force the traffic

to pass from P3 to P5, the Adj-SID (label 9000) allocated by P3 to the adjacency

P3− P5 is used. At P5, label 1004 used to forward the packet to PE4.

31

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

10

1010
PKT

PKT

Match FEC x

PUSH([1003,13035,1004])

1
3

0
3

5
1

0

10

PKT

1003

1004

13035

POP(1003)

POP(13035)

PKT

1003

1004

13035

PKT

1003

1004

13035

PKT

1004

PKT

1004 POP(1004)

Figure 2.13: Example of Segment Routing path where the label stack is composed
with node-SIDs (PE1 to P3 and P5 to PE4) and Adj-SIDs (P3 to P5)

Scenario 5: Load balancing over a SR path using the Group-Adj-SID

Group-Adj-SID is a special case of the Adj-SID; it is a locally significant label that rep-

resents a set of parallel adjacencies or interfaces; it is used for load balancing purposes.

In the example shown in Fig. 2.14, P2 allocates the label (Group-Adjacency-Label)

9000 for its adjacencies with P3. PE1 sends the client traffic to P2 with the top label

1002. P2 pops its own Node-SID label 1002, then processes the next top label 9000

which matches a forwarding entry with the instruction to load balance that traffic

between the two links connecting P2 to P3.

P2

P5

P3

PE4PE1CE1 CE2

10

10 10

10

10

1010
PKT PKT

9000
PKT

1004

PKT

1004

9000

PKT

1004

9000

POP(1004)

PKT

1004

10

Match FEC

PUSH([1002,9000,1004])

POP(9000)

P6

1002

1002 POP(1002)

Figure 2.14: Load balancing of flows using Group-Adj-SID

32

2.4.7 Anycast with SR-MPLS

An anycast group is a set of SPRING nodes that offers the same service inside a

network (e.g., DNS servers). Nodes that belong to an anycast group get attributed

the same IPv4 prefix, and then a unique index is attached to that prefix. The Anycast-

SID is computed by every node using (2.1).

All the nodes of the anycast group advertise the same prefix and its index using

the IGP update messages. Upon receiving multiple updates for the same prefix from

different nodes, a node computes the shortest path to reach the closest node of that

anycast group. Therefore, every packet with an Anycast-SID as the top label is

forwarded to the nearest node member of that anycast group.

For anycast to work properly in an SR-MPLS network, all the network nodes have

to use the same SRGB, so that all the global SIDs (e.g., Anycast-SID) have the same

label values across the network nodes. However, a unique SRGB is not mandatory

in SR. Let us take the example depicted in Fig. 2.2, and Table 2.1. All the SPRING

nodes reserve the same SRGB [1000, 2000], P3 and P5 belong to the same anycast

group, for that they both advertise the anycast IGP prefix 192.168.0.100/32 with

the index 100, the label allocated for that Anycast-SID by all the nodes is 1100. If

service provider chooses to load balance CE1 to CE2 traffic between the two SR

paths: PE1 → P2 → P3 → PE4 and PE1 → P2 → P5 → PE4, PE1 has to

push the label stack: 1100,1004, before forwarding the packet to P2. P2 load balance

traffic between its two ECMP path to reach the Anycast-SID 1100: P2 → P3 and

P2 → P5. Regardless, who receives the packet P3 or P5, they both recognize the

active label 1100 as theirs and therefore pops it, the new active segment 1004, falls

into the SRGB of both P3 and P5. Consequently, a corresponding forwarding entry

with 1004 as the incoming label exist on both P3 and P5. PE4 receives the packet

either from P3 or P5, it pops the label 1004 and forwards the packet to CE2.

However, routers from different vendors may allocate different SRGBs. For exam-

ple, if P3 allocates the SRGB [5000, 6000] and P5 [9000, 10000]. Hence, the labels

allocated to global SIDs is not unique in the SR domain, and this breaks the SR any-

cast. The problem is that P3 and P5 compute different Node-SID labels for PE4, i.e.,

5004 at P3 and 9004 at P5, the load balancing decision happens at P2. Therefore, it

is not possible at PE1 to determine which of PE4’s Node-SID labels: 5004 or 9004 to

push after the Anycast-SID label 3100, a solution to this problem is proposed in [35].

However, this proposition adds more complexity to SR architecture and requires that

routers maintain additional states.

33

2.4.8 Interoperability and co-existence

Service providers can choose to deploy SR in a tactical manner where SPRING and

non-SPRING nodes co-exist. For example, the service provider may choose to enable

SR only on the PE nodes [36]. Two deployment scenarios have been identified:

• Scenario 1: in an MPLS network where only a subset of its nodes are SR-

enabled. Interoperability between SR and LDP is needed. To do that, the

service provider can use the SRMS to attribute and advertise Prefix-SIDs owned

by non-SPRING nodes on their behalf. Then a SPRING node sending traffic

to a non-SPRING swaps the Prefix-SID attributed by SRMS to the LDP label

of the non-SPRING [36,37].

• Scenario 2: if the non-SPRING nodes do not use the same data plane used by

SPRING nodes, such as SPRING nodes with an MPLS data plane and non-

SPRING nodes with IP forwarding. In this case, a tunneling mechanism is used:

the traffic exchanged between two SPRING nodes through a non-SPRING node

is tunneled (e.g., encapsulation of MPLS in IPv4).

The first scenario allows a gradual and smooth deployment of the SR mechanism

in an existing IP/MPLS network. This is an important feature of the technology,

which will greatly help its fast and large adoption by operators.

Physical limitations on some equipment may get in the way or slow down SR

deployment. For example, some LSRs are limited by the number of labels they can

push onto a packet (e.g., maximum 4 labels) [4], this is known as the Maximum SID

Depth (MSD). Consequently, SR paths expressed with more labels than the ingress

LSR’s MSD (i.e., SR path size > MSD) cannot be used, which may lead to the

augmentations of traffic demands rejections and the overload of some network links.

We address the MSD limitation problem in chapter III and IV.

MPLS LSRs use a key value to do load balancing; the key can be computed over

a set of the packet field (IP source, IP destination, ports, etc.), which requires a deep

inspection of the packet. However, some LSRs can inspect a limited number of labels

called Readable Label Depth (RLD). Consequently, this may lead to an incorrect key

value, which impacts the performance of the load balancing function. This results in

sending packets that belongs to the same flow (e.g., TCP session) over different paths,

causing issues such as jitter, latency, and packet misordering. The other option is to

use the Entropy Labels (EL) mechanism described in [38], where the ingress LSR

computes the load balancing key and inserts it as a label into the label stack. A

34

transit LSR can use the EL for load balancing only if it is within its RLD. An ingress

LSR may push one or multiple EL pairs in addition to the SR path onto the label

stack; for the SR use case an algorithm on how to insert one or multiple ELs in order

to respect the transit LSRs RLDs is defined in [39]. The overhead added by ELs

increase the label stack size which worsens the MSD problem.

In this section, we gave the specifics of the SR-MPLS. We detailed the control plane

and the data planes processes and how information collected by the control plane

protocols are translated to data plane forwarding operations. In the next sections,

we detail several use cases here SR has an important impact.

2.5 Use Cases

SR adoption is related to the maturity and interoperability of the implementations.

Additionally, the SPRING working group focus on the uses cases put forward by

service providers such Orange. In this section, we focus on the first uses cases that

have been specified as the first scenarios to highlight the benefits of Segment Routing.

The very first one that got a lot of attention and support, especially from service

providers, is the link and node protection, which enables efficient fast recovery in case

of failure. The second one is the VPN scenario, where SR simplifies the deployment

of VPN. The third one is Traffic Engineering (TE), i.e., how SR is used to constrain

paths. The last one is the network monitoring and measurement use case. This list

is not exhaustive and other use cases have been or will be considered later on.

2.5.1 Fast Reroute with Segment Routing

SR provides automatic traffic protection without any topological restrictions. The

network can protect traffic against link and node failures without requiring additional

signaling in the network. Existing IP Fast Reroute (FRR) technology, in combination

with the explicit routing capabilities in SR, Furthermore, SR FRR mechanism known

as Topology Independent Loop Free Alternate (TI-LFA) [40] enhances the classical

IP-FRR solutions to provide 100 percent protection coverage as opposed to the LFA’s

varieties: LFA, remote LFA (RLFA) and directed LFA (DLFA).

In fact, a SPRING node automatically precomputes post convergence recovery

paths for each segment (e.g., Node-SID, Adj-SID) affected by the link or node failure,

this is done with minimal operational impact. There is no need for control plane

protocols to establish and maintain the protection paths (e.g., directed LDP sessions

or RSVP-TE tunnels). In SR-MPLS, the protection path takes the form of a stack of

35

labels. Depending on the type of failure link or node, a SPRING node computes the

post convergence protection path to bypass the failure. Any type of protection can be

computed: link protection, node protection, SRLG protection. The operations used

to activate the protection depend on the active SID (top label) in the initial SR path:

push the protection label stack, swap the active label with its equivalent in next hop

of the protection path, or pop the active label and push the recovery path.

In the example shown in Fig. 2.15, relying on SR-MPLS, PE1 pushes one label

1004 on the packet of CE1 to reach CE2 using the IGP shortest path PE1 →

P2 → P3 → PE4. The node P2 installs in its forwarding table alternate entries to

reroute the traffic via P5 in the case of the link P2− P3 failure. If P2 detects that

P3 is unreachable (e.g., detected by the Bidirectional Forwarding Detection (BFD)

protocol). Then, to reroute the traffic, P2 pushes the label 15035 (the Adj-SID

attached to the adjacency P5− P3) into the packets headers, and forwards it to P5.

P5 pops the label 15035 and then forwards the packets to P3. From the P3 to P4

the packets use P4’s Node-SID: 1004 to reach P4 via the IGP shortest path.

P2

P6 P5

P3

PE4PE1CE1 CE2

3

10

3

3

10

10

10

X

15035

PKT

1004

PKT

1004

PKT

1004

PKT

1004

PKT

1004

1
5

0
5

3

15035

PKT

1004
Push(15035)

Match FEC x

PUSH([1004])

1010

Figure 2.15: Local protection of the link between P2-P3 with Segment Routing

If P2 is configured for node protection, to reroute the traffic it swaps the NODE-

SID of PE4 with its equivalent value at P5 and forwards it to P5 to force the SR

path to bypass P3 by following the P5 → PE4. In both cases, SR delivers under

50 milliseconds fast reroute without the need for pre-established (signaled) reroute

paths.

36

Moreover, in our example, the failure is circumvented before PE1 gets the in-

formation; P2 detects and reacts quickly to the failure (reacts to the link P2 − P3

failure) by redirecting the traffic onto the P2 → P5 → P3 backup path. Next,

P2’s IGP converges and propagates the failure information to its adjacent nodes,

PE1 gets the information about the failure and decides to re-compute a new post

convergence SR path with the same destination PE4. Once the new SR path (i.e.,

PE1 → P2 → P5 → PE4) is in place, PE1 sends the client packets with the new

label stack.

2.5.2 IGP-Based MPLS Tunneling

MPLS is mainly used by service providers to provide VPN services for customers

to connect their distant sites and enable QoS in their core network, possibly using

MPLS-TE. SR simplifies the deployment of such services. In this section, we make a

comparison between SR and LDP/RESVP-TE to establish an MPLS VPN connecting

two client sites through the service provider’s core network.

P2

P6 P5

P3

PE4PE1CE1 CE2

MP-BGP

LDP or RSVP-TE

 + IGP-TE

172.17.13.0/24 172.16.13.0/24

Figure 2.16: Standard MPLS VPNs with LDP or RSVP-TE for labels distribution

1. Scenario using LDP or RSVP-TE: A shown in Fig. 2.16, LDP may be used

in the service provider’s core network to exchange MPLS labels and establish

a full mesh of multipoint to point Label-Switched Paths (LSPs) that connect

PE routers; LDP LSPs follow the IGP (OSPF, ISIS) shortest path between the

LSP’s head-end (ingress) and the tail-end (egress) Label Edge Routers (LERs).

RSVP-TE is used to establish tunnels are point to point; also with RSVP-TE,

it is possible to establish tunnels that do not follow the IGP shortest path.

37

In addition, Multi-Protocol BGP (MP-BGP) is enabled on the edge routers

establishes a BGP session over the core network between PE1 and PE4. Then,

CE1 advertises the prefix 172.17.13.0/24 to PE1, which installs that prefix in

the appropriate Virtual Routing Function (VRF), and binds it to the VPN label

50000 and announces it to PE4 using MP-BGP. Finally, PE1 installs the label

50000 in its forwarding table with an exit interface to CE1. PE4 considers

PE1 as the next hop for the prefix 172.17.13.0/24; all the traffic from CE2 to

destination CE1 will be tagged with the VPN label 50000. The same process

happens for the CE2 prefix 172.16.13.0/24 for the reverse path.

LDP or RSVP-TE establishes a tunnel between PE1 and PE4 based on their

loopback addresses. For example, PE4 learns using the LDP that to reach PE1

it must use P3 as the next hop with label 4000. Now, when PE4 receives traffic

from CE2 and the destination address matches 172.17.13.0/24, PE4 pushes two

labels on the packet {4000, 50000}. Label 4000 is used by P3 to identify the

next hop of the LSP to reach PE1 following the IGP path. At PE1, the label

50000 is used to forward the traffic through the exit interface to CE1.

Alternatively, RSVP-TE could be use to build a tunnel between PE1 and PE4

that respects client QoS requirements. similarly to the LDP example, two labels

are pushed by PE4 : The VPN label (e.g.50000) advertised by PE1 using MP-

BGP and the RSVP-TE tunnel label (e.g.45000).

2. SR scenario: SR is enabled in the core network as shown in Fig. 2.17, For simpli-

fication purposes all nodes are SR-enabled; also all the nodes allocate the same

SRGB[1000, 2000]. Each PE router is allocated a Node-SID associated with

its loopback as shown in Table 2.1. IGP is used to exchange SR information

(SIDs, SRGB, etc.), which simplifies the control plane, management and the

troubleshooting of the network by eliminating the need for signaling protocols

such as LDP and RSVP-TE. It also resolves the synchronization problem be-

tween LDP and IGP, which is not an easy thing to do [41]. Finally, similar to

LDP, ECMP load balancing between the available paths is a native function in

SR and does not require any additional configuration.

MP-BGP is enabled only on the LERs: PE1 and PE4. It is used to estab-

lish BGP sessions between the network edge routers. CE1 announce its prefix

172.17.13.0/24 to PE1, which installs the prefix in the appropriate VRF, binds

it with the label 50000 then advertise it to PE4 using MP-BGP.

38

P2

P6 P5

P3

PE4PE1CE1 CE2

MP-BGP

IGP-TE

with SR

172.17.13.0/24 172.16.13.0/24

Figure 2.17: Segment Routing based MPLS VPN:MP-BGP for VPN labels exchange,
no need for RSVP or LDP as the SIDs are advertised using the IGP

PE4 uses the index 1 attached to PE1 loopback address with its associated SRGB;

it computes the label 1001 to reach PE1 via the ECMP shortest path. PE4 pushes

the label stack {1001, 50000} into the packet header sent by CE2 to CE1. All the

core network nodes are running SR, which means that they all have an entry in their

forwarding table for the label 1001. consequently, multiple paths to reach the same

destination may exist. Therefore, client traffic may be load balanced between the two

available equal cost paths to reach PE1: P3 → P2 → PE1 and P5 → P6 → PE1.

PE1 receives the packets pops its Node-SID label 1001 then processes VPN label

50000 to finally forward the packets via the appropriate exit interface to CE1.

SR-MPLS simplifies VPN services delivery, by reducing the control plane protocols

overhead and eliminating the need for LDP/RSVP-TE signaling.

2.5.3 Segment Routing Traffic Engineering

Compared to the control plane of MPLS-TE, SR is not equipped with a resource

(mainly bandwidth) reservation mechanism such as RSVP-TE, as no signaling is

used and no per-flow states are maintained on the transit nodes. Consequently,

resource availability is not updated and re-advertised by the IGP. This may cause

incorrect SR path computation and therefore can lead to overuse and consequently

cause the congestion of a link or a path. Without updating the available resources,

the distributed control plane is unable to guarantee the client QoS constraints. In

the current stage of SR standards, only tactical traffic engineering is possible, where

traffic can be sent over non-IGP shortest paths and without any prior admission

39

control or resource reservation. The path computation done by network nodes is

constrained only by taking into account fixed additive metrics, e.g., delay, but not

concave metrics such as bandwidth.

In order to support traffic engineering (e.g., bandwidth reservation) in an SR net-

work (SR-TE), a centralized entity to keep track of the of the network resource avail-

ability must be introduced into the network. The most suitable solution is based on

the Path Computation Element (PCE) architecture, as demonstrated in [42–45]. Ini-

tially, the PCE architecture was designed for path computation in MPLS-TE/GMPLS

networks. However, with the proposed PCE communication Protocol (PCEP) exten-

sions [4] and IGP extensions, the PCE can accomplish SR-TE path computation and

instantiation the same way it did for TE tunnels.

The PCE acquires a global view of the service provider’s network (nodes and

links) with the associated traffic engineering metrics. This information is stored

in the Traffic Engineering Database (TED). This requires a tight synchronization

with the network distributed control plane for the PCE to be able to perform path

computations based on an up-to-date network state. For that purpose, the PCE

setups a BGP Link State (BGP-LS) session with (at least) one node that acts as

a BGP-LS speaker in order to retrieve the underlying topology, traffic engineering

metrics and SR information (SIDs, SRGBs, etc.) [9], as shown in Fig. 2.18. Another

option is to establish an IGP adjacency with one of the network nodes.

The stateful PCE [46] is best suited to enable traffic engineering in an SR enabled

networks. In this mode, in addition to the TED, the PCE maintains a LSP-TE/SR-

TE path database (LSP-DB). The stateful PCE keeps both databases up to date

and in sync with what actually exists on the physical network (instantiated paths

and their QoS requirement, resource reservation, etc.), in order to correctly perform

path computation and correctly update the available resources over the links used by

SR-TE paths and MPLS-TE LSPs.

In service provider scenario, the PE routers act as Path Computation Clients

(PCC). Once a PCC establishes a PCEP session with the PCE, the PCC can then

initiate path computation requests for specific FECs. A request contains the following

parameters: source and destination IP addresses, TE requirements (bandwidth, delay,

jitter) that will be used by the path computation objective function. Once computed,

using PCEP, the PCE sends to the PCC the list of SIDs that composes the path.

Instead of signaling the path using RSVP-TE, the PE binds the new path to a specific

FEC and then pushes the list of SIDs into the packet header that belongs to that

FEC. Once reported back by the PCC, the PCE stores in its SR path data base

40

(LSP-DB) the newly instantiated path with its associated TE characteristics such

as the amount of used bandwidth. This is needed in order to maintain the state of

bandwidth reservation in the network and allows new path computations that take

into account previous reservations.

Compared to RSVP-TE, SR does not signal a path and do not update the re-

sources availability in the network. However, with the use of a PCE, all the resource

reservations are maintained in its databases and the SR-TE path computation takes

into consideration previous reservations. This kind of architecture is in the spirit

of the SDN approach, where the PCE functionalities and the PCEP stack can be

integrated directly into an SDN controller as demostrated in [45,47].

P2

P6 P5

P3

PE4PE1CE1 CE2

PCE

PCEP BGP-LS LSP-DB

TED
Path Computation

Engine

P3P3

BGP-LS

Figure 2.18: A Path Computation Element (PCE) is used to compute Segment Rout-
ing paths for Traffic Engineering. PCE protocol (PCEP) is used to send the label
stack and BGP-LS protocol is used to collect topology information

2.5.4 Monitoring and Measurement

The major advantage of SR is the ability to express any topological path from any

node in the network; also, it is possible to express paths that can pass through a

node or a link multiple times or loops at a specific node back to the source. This

mechanism can be used for data plane Operation and Maintenance (OAM), which is

41

a very important task for a network operator. However, SR OAM does not require

control plane interaction as in MPLS OAM [48, 49] because the monitoring packets

stay in the data plane. The requirements for SR OAM have been defined in [50] and

the use case for a centralized monitoring station is detailed in [51].

Using SR, only one monitoring device (Path Monitoring System PMS) is needed

to monitor the entire network. Using the reference network topology in Fig. 2.2, all

the SPRING nodes reserve the same SRGB [1000, 2000], the results of the Node-SIDs

computation as shown in Table I. A PMS monitoring device is connected to PE1,

PMS is a SPRING node, and it has the Node-SID 1100.

For the example shown in Fig. 2.19, in order to monitor the IGP shortest path

between PE1 and PE4, the PMS pushes onto the OAM packets two labels: [1004,

1100] then send them to PE1. When the packets arrive at PE1, it uses the top label

1004 to forward the packets down the IGP shortest path: PE1→ P2→ P3→ PE4.

Once at PE4, PE4’s Node-SID 1004 is popped and 1100 is used to determine the

path back to the PMS. PE4 uses the IGP shortest path: PE4 → P3 → P2 → PE1

to send back the packets to the PMS. Once back to the PMS, the Node-SID 1100 get

popped. Finally, the PMS processes the OAM packets that have traveled the path to

measure the Round-Trip Time (RTT) or to monitor the delay variation in order to

detect routing changes.

P2

P6 P5

P3

PE4PE1

3

10

3

3

10

10 10

10

10PMS

PUSH([1004,1100])

POP(1004)

PKT

1004

1100

PKT

1100POP(1100)

PKT

1100

PKT

1004

1100

Figure 2.19: Network monitoring with Segment Routing. The SR path is composed
of the round-trip stack

The main advantage compared to a classic probe deployment is that a service

provider is only required to deploy a few number of probes; at least, only one would

42

be sufficient to monitor all links. By forging appropriate SID stacks, the probe could

explore all potential paths in the network and perform monitoring and measurements.

2.6 Concluding remarks

In this chapter, we gave a state of the art of Segment Routing, which is a new ar-

chitecture being standardized by the IETF. It can be instantiated currently over two

widely deployed data planes: MPLS and IPv6. We have focused on its MPLS instan-

tiation because of the significant interest expressed service providers such as Orange.

Indeed, its lightweight control plane, small data plane forwarding states and easy

integration with SDN controllers makes it a strong candidate to replace traditional

MPLS networks. Additionally, SR leverages the source routing paradigm for packets

forwarding, which brings much more flexibility to the network when combined with

SDN centralized path computation and resource optimization.

SR standardization and deployment roadmap is advancing rapidly. In fact, Seg-

ment Routing is already deployed to enable some use cases such as explicit routing

and failure restoration. However, there is still work to be done by standardization

bodies and vendors before all the use cases are ready for deployment in production

networks.

In this thesis, we focus on the traffic engineering use case (SR-TE). In fact, SR-

TE needs to be consolidated in order to be presented as an alternative to RSVP-TE,

especially when tight SLAs have to be respected. In the following chapters, we address

the problems that face the deployment of SR-TE.

43

Chapter 3

Label Encoding Algorithm for

MPLS Segment Routing

SR-MPLS is the central focus of the IETF working groups, mainly because of the

important involvement of service providers (SPs) as they are an important factor for

its wide adoption. Traffic engineering is one of the primary use cases being addressed.

Several challenges were identified among it is the SR path encoding problem and how

to bypass or limit the impact of the hardware limitation imposed by the Maximum

SID Depth. In this chapter, we propose two encoding algorithms that reduce the

impact of MSD and a reference implementation of an SDN based path encoding

using our algorithm

In Segment Routing, packets are forwarded using the path that is encoded in their

header. In the SR-MPLS the SID is represented as a 20-bit label. Consequently, It

is processed using the three standard MPLS operations POP, PUSH, and SWAP. A

SRP is encoded as a stack of labels that the ingress router pushes onto the packet’s

header. In fact, pushing more than one label was supported since the early version

of MPLS [1]. The label stack is used for multiple use cases: hierarchical tunnels [2],

Layer 2 Virtual Private Network (L2VPN) [52], and Layer 3 VPN [3]. Those use cases

require a relatively small label stack (two to three labels). For example, a scenario of

L2VPN or L3VPN requires only simultaneously two labels: the tunnel’s label and the

VPN’s label. However, a SR path requires a bigger label stack that can be composed

from just one up to tens of labels depending on the network size. Consequently, as

shown in Fig. 3.1, routers have to be able to push a larger number of labels in order

to take full advantage of the SR potential.

Unfortunately, current hardware suffers from the physical limitation that con-

strains the number of labels that can be pushed simultaneously onto the packet’s

44

header [4]. In the context of SR, this limitation is known as the Maximum SID

Depth (MSD).

In order to achieve wire-speed packet processing, hardware vendors use Application-

specific integrated circuits (ASIC), which are designed to perform specific operations

very efficiently compared to general purpose processors. However, they are limited

in the size and the type of the operations they can perform. The MSD limitation

comes from the implementation of the PUSH operation in ASICs [5], which accept

a maximum number of labels as input for the PUSH function. Therefore, efficient

algorithms for SRP label encoding are essential to alleviate the MSD impact. A label

encoding algorithm reduces the number of labels used to express a SRP.

In this chapter, we detail two label encoding algorithms for SR-MPLS paths.

Both algorithms compute the minimum number of labels to express a SRP. We eval-

uate their performances over several real-world network topologies, their efficiency

in alleviating the impact of the MSD limitation. Finally, we detail an SDN based

implementation.

P2 P3

P4

P5

P6

P7

P8

P9

P10

P11 PE12

PE1CE1

CE2

PKT

P8

P9

P10

P11

PE12

P6

P7

P4

P5

P2

P3

Label stack size = 11

Figure 3.1: Reference network topology, all the links costs are 10 except the link
P3-P7 its cost is 100.

45

3.1 Maximum SID Depth Signaling

The MSD corresponds to the maximum number of labels a router can push onto a

packet header: it is a local characteristic of a router, it varies from one equipment

vendor to another. This limitation is taken into consideration in the path computation

process, because as it can render long paths that expressed with a label stack greater

than the MSD unusable. Consequently, it forces the network traffic to follow only

short paths which cause inefficient traffic distribution or worse network congestion.

The MSD value is specific to the router’s interfaces (line card). Consequently, a router

may have different MSD values: one for each interface (line card). The MSD can be

advertised in two ways:

• A single MSD per node which represent the lowest MSD of the node interfaces.

• Multiple MSD values are advertised for each node, one per inetrface.

The MSD can advertised into the distributed control plane using the IGP protocols

extensions: OSPF [53] and IS-IS [54]. Additionally, In an architecture where the

path computation is delegated by the SR nodes to a centralized entity such as a SDN

controller or a PCE. The node’s MSD is learned via the Path Computation Element

Protocol (PCEP) extensions for SR [55] or via BGP-LS [56] SR extensions.

3.2 Related works

Overcoming the MSD limitation is essential to bootstrap the adoption of SR, this can

be sensed as the first academic works on SR were the ones that address this problem.

Because this limitation is linked to the hardware which is not easy to replace as it

represents a considerable investment for service providers. The community focused

on optimizing the label stack: the proposed encoding algorithms allowed to reduce

the size of the label stack used to express SR path. In what follows we detail two of

the first works on encoding SR paths:

In [33], Giorgetti et al. propose two SR path encoding algorithms: Segment Rout-

ing Direct (SR-D) and Segment Routing Reverse (SR-R). Both algorithms produce

for the same SR path two label stacks of equal size. However, the SR−D algorithm is

better as it produces less packet end to end processing overhead compared to SR−R.

We identified a problem with both algorithms that cause the resulting label stack to

express a path different from the initial one. The proposed algorithms work well in a

network where the shortest path between two directly connected nodes is a direct link.

46

However, because they use exclusively Node-SIDs we can have a case where the direct

link to reach the next node that owns the Node-SID is not the shortest path leading

to unwanted detour, such scenario happens when a network administrator chooses to

attribute higher costs to particular links to achieve traffic engineering [57, 58].

In [34], Lazzer et al. propose a new approach to compute jointly the traffic engi-

neering path and its label stack. First, a new graph is constructed based on the initial

graph by adding a virtual link between every pair of physical nodes in addition to the

existing links. The virtual links represent the Equal-Cost Multiple Paths (ECMP)

between the two nodes. The proposed algorithm jointly compute the path and the

minimum label stack. In the label encoding portion of the algorithm, the virtual link

is replaced by the tail’s end node Node-SID whilst the physical link is replaced by

an Adj-SID. This proposition suffers mainly from scalability issues. In fact, the new

graph is much bigger than the initial network graph, with a number of links equal to

the number of combinations of network nodes. For example, a network composed of

a thousand nodes results in a new graph with approximately half million links. Sev-

eral problems arise with such huge graphs, like for example slower response time due

to the memory requirements, a strong computation complexity, and a considerable

amount of processing required to update the network traffic engineering database.

Both works mentioned before suffer from limitations that make them unpractical

to implement or lead to unexpected behavior. In the next section, we detail two

algorithms SR path encoding algorithms and evaluate their performances.

3.3 Segment Routing Path Encoding

As mentioned before, a SR path can be encoded using a combination of SIDs (i.e.,

local or global). The label stack provides a forwarding continuation along the SR path

i.e., each node the packet traverses has a forwarding instruction to reach the next

node until the egress node. In this work, we focus on the expression of intradomain

topological paths. Consequently, we only consider the use of two SIDs types: Node-

SID and Adj-SID, other SID types such as service SIDs, BGP peering SIDs, etc. will

be subject of future works.

The two proposed SR path encoding algorithms produce a label stack composed

of two SID types: Node-SID and Adj-SID. Each SID has a pre-installed forwarding

plane instruction associated with as detailled in 2.3.1.4.

The SR path length varies depending on the network diameter, QoS requirements,

and network resources availability. Accordingly, the label stack to express a SR path

47

may exceed the ingress router’s MSD rendering the SR path unuseable. A small

MSD has other side effects such as preventing the use of additional label types like

the entropy labels [39]. Therefore, an efficient encoding algorithm is required to

minimize the size of the label stack.

3.3.1 Encoding types

A source routed path may be strict or loose as detailed in section 2.2. SR paths

can be expressed exclusively using Node-SIDs, local Adj-SIDs, Global Adj-SIDs or a

combination of those SID types. For the remainder of this manuscript, we consider

a SR path as strict if it is encoded using only Adj-SIDs. Otherwise, it is considered

loose as shown in Fig. 3.2:

Node-SID Global Adj-SIDs

Loose path Strict path

Adj-SID

 How many SR path links are
expressed using a global Adj-SID ?

A subset

All

Figure 3.2: loose or strict path classification.

• A SR path encoded exclusively with Node-SID or a combination of Node-SIDs

and Adj-SIDs is a loose path, because two successive Node-SIDs in the label

stack can be separated by one or more network nodes. In this case the label

stack expresses the initial path in the current state of the network. However, if

the IGP metric between two SR nodes changes, the label stack will not represent

the initial path anymore.

• A SR path encoded with local Adj-SID is a strict path, because the Adj-SIDs

are local to the nodes advertising them and each one is associated to a to one

link along the SR path. Therefore, the packet has to go through only the nodes

that own the Adj-SIDs.

48

• A SR path encoded with global Adj-SIDs can be a strict or a loose path: strict

if all the links that the packet has to go through are listed in the label stack,

loose only if a subset of the links is listed.

3.3.2 Encoding algorithms

To reduce the impact of the MSD limitation, we propose two SR path path encoding

algorithms that compute the minimum label stack to express a given topological path.

P2

P8 P7

P3

CE1 CE2

P6

P4
10

10

10

10

10

10

10

10

10
10

100PE1 PE5

Figure 3.3: Reference network topology, all the links costs are 10 except the link
P3-P7 its cost is 100.

Let us consider the topology detailed in Fig. 3.4. All the nodes allocate the same

SRGB: [1000, 2000]. The computed path to satisfy the Quality of Service (QoS)

requirements for the traffic sent by CE1 to CE2 is P : PE1 → P2 → P3 → P7 →

P6 → PE5. P has to be encoded as a stack of labels then pushed by PE1 onto

CE1-CE2 flow packets. In what follows we detail SR path encoding algorithms.

3.3.2.1 Strict Encoding

A strict encoding of the SR path is the worst case scenario, as it generates the

maximum label stack to encode a SR path. Two approaches may be applied:

• Using exclusively Node-SIDs to encode a SR path: each node in the SR path

is replaced by its Node-SID. This approach suffers from the same problem as

in [33]. In fact, the resulting label stack expresses the requested SR path only if

the shortest path between all the neighbors in the path is via the direct link. For

49

example, a strict encoding of path P results in the following label stack: {Node-

SID PE1, Node-SID P2, Node-SID P3, Node-SID P7, Node-SID P6, Node-SID

PE5}. However, this label stack does not express the path P : the packets at

P3 will be sent to P7 over the first ECMP P3→ P4→ P6→ P7 because link

P3→ P7 has a cost if 100. Therefore, it is not the shortest path.

P2

P8 P7

P3 P4

P6

PE5
PE1CE1

CE2

PKT

1005

1006

1007

1003

1002

PKT

1005

1006

1007

1003

1002

PKT

1005

1006

1007

1003

PKT

1005

1006

1007

PKT

1005

1006

1007

PKT

1005

1006
PKT

1005Match FEC x

PUSH([1002,1003,1007,1006,1005])

Cost = 100

POP(1003)

POP(1002)

POP(1007) POP(1006)

POP(1005)

Figure 3.4: The problem that rises when expressing the SR path to connect CE1 and
CE2 exclusively using Node-SIDs.

• Using exclusively Adj-SIDs to encode a SR path: At each node the exit interface

is replaced with the associated Adj-SID, this produces a label stack that corre-

sponds to requested path. As shown in Fig. 3.5, a strict encoding of the path

P results in the following label stack: {Adj-SID PE1-P2, Adj-SID P2-P3, Adj-

SID P3-P7, Adj-SID P7-P6, Adj-SID P6-PE5} = [5012, 5023, 5037, 5076, 5065].

Each node pops the Adj-SID that it owns before forwarding the packet through

the associated interface to that Adj-SID.

Strict encoding can be essential to accomplish certain tasks such as Operations,

Administration, and Maintenance (OAM) [51]. For example, to monitor a specific

path when ECMPs exist. The reference topology (shown in Fig. 3.4) is composed of

8 nodes. However, a service provider’s network can be composed of hundreds or even

thousands of nodes. Consequently, using strict encoding especially for long paths is

50

not always possible as it may violates the MSD constraint, also it adds a considerable

overhead to packets.

P2

P8 P7

P3

CE1 CE2

PKT

Match FEC x

PUSH([5012,5023,5037,5076,5065)

5
0

3
7

POP(5037)

PKT

5065

PKT

P6

P4

PKT

5076

5037

5023

5012

PKT

5065

5076

5037

5023

PKT

5065

5076

5037

PKT

5065

5076

PKT

5065

5023

5076

POP(5023)

POP(5012)

POP(5076) POP(5065)

PE1 PE5

Figure 3.5: The SR path to connect CE1 and CE2 is expressed exclusively using
Adj-SIDs by a strict encoding algorithm.

In the next two sections, we detail our two algorithms to reduce the impact of the

MSD limitation: the SR-LEA that uses Node-SIDs and local Adj-SID to efficiently

encode a SR path, and the SR-LEA-A algorithm which is an enhancement over the

SR-LEA algorithm, it takes advantage of the possibility to advertise Adj-SIDs as

global segments

3.3.2.2 SR-LEA Algorithm

We propose the SR-LEA algorithm to reduce the impact of the MSD limitation. The

algorithm takes the initial path expressed as a list of IP addresses then computes the

smallest sequence of SIDs able to represent exactly the same path. The initial path can

be imposed manually or computed by a centralized entity such as a Software Defined

Network (SDN) controller [44] [43] or by a Path Computation Element (PCE) [46] [45].

SR-LEA makes use of existing IGP shortest paths, which are installed as forwarding

instructions by the SR-MPLS control plane. The resulting label stack is a combination

of Node-SIDs and local Adj-SIDs. It represents exactly the initially computed path

in the current state of the network.

51

A Topological path
Divide the path into a

succession of shortest paths
(subpaths)

IF size(subpath)>=2 IF size(subpath)==2

Add to the label
stack the last

node's Node­SID

Add to the label
stack the Adj­SID
between the two

nodes

Return SRP label
stack

For each
subpath

Figure 3.6: SR-LEA flowchart.

SR-LEA has two main steps as shown in Fig. 3.6 and detailed by the pseudocode

in Algorithm 1 In the first step, the path is spliced to a succession of subpaths. The

number of subpaths represents the size of the final label stack. In the second step,

we replace each subpath by a single SID. The order of SIDs is important when added

to final label stack in order to respect the initial path:

• In the first step, the SR path is spliced into a succession of shortest paths

(subpaths) using the Dijkstra algorithm: container A holds the final SR path

splices, whereas the container B, will hold the current subpath that is being

computed when finished it is moved to the container A.

• In the second step, each subpath composed of three or more nodes is replaced by

its tail’s end node Node-SID, whilst if it is composed of two nodes it is replaced

by the Adj-SID between those two nodes.

The best case is that the SR path follows the shortest path. Consequently, con-

tainer A will hold one splice equals to the initial path. Then step two of the algorithm

will output a label stack composed of one label: the egress node’s Node-SID.

52

Algorithm 1 Efficient Label Encoding algorithm

INPUT: The SRP expressed as a list of IP addresses
OUTPUT: labelStack the SRP minimum label stack.
Initialization:

G: Graph of the network topology
A = { }: Holds the list of the subpaths.
B = []: A temporary variable used to construct a single subpath, when no IP
addresses can be added it is moved to A.
SPF = Dijkstra(SRP [1], SRP [end]): The shortest path between the source and
destination of the SRP.
labelStack = []

STEP 1: Computation of the SRP subpaths.

1: i = 1: Points to the current node of the SRP.
2: k = length(SRP) : Points to the last node of the candidate subpath.
3: while i <= length(SRP) do
4: push(B, SRP [i])
5: if i == length(SRP) then
6: push(A, B)
7: else if B * SPF then

8: if length(B) == 2 then

9: if k > i then

10: k = k − 1
11: B = B[1]
12: SPF = Dijkstra(G, B[1], SRP [k])
13: continue =⇒ jumps to the beginning of the loop for next iteration
14: else

15: push(A, B)
16: B = B[end]
17: SPF = Djikstra(G, B[1], SRP [k])
18: end if

19: else

20: push(A, B[1 : end− 1])
21: SPF = Djikstra(G, B[end− 1], SRP [k])
22: B = []
23: i = i− 1
24: continue

25: end if

26: end if

27: i = i+ 1
28: k = length(SRP)
29: end while

53

STEP 2: The construction of the label stack.for i← 1 To Size(A) do
1:2: if length(A[i]) > 2 then

3: push(labelStack, NodeSID(A[i][end]))
4: else

5: push(labelStack, AdjSID(A[i]))
6: end if

7: end for

To compute the minimum label sack to encode the SR path P, we follow the

two steps of the SR-LEA algorithm. First, the splices that compose the path P are

computed and saved in A: {(PE1, P2, P3), (P3, P7), (P7, P6, PE5)). Then, each

subpath in A is replaced with the appropriate SID which results in the following label

stack: [1003, 5037, 1005]. The details on how we convert the subpaths in A to the

final the label stack are as follow:

• The subpath (PE1, P2, P3) is composed of three nodes, is replaced by P3’s

Node-SID = 1003.

• The subpath(P3, P7) is composed of two nodes, is replaced by the Adj-SID

P3-P7 = 5037.

• The subpath (P7, P6, PE5) is replaced by PE5’s Node-SID = 1005.

P2

P8 P7

P3

CE1 CE2

PKT

Match FEC x

PUSH([1003,13073,1005])

5
0

3
7

PKT

1003

1005

5037

POP(1003)

POP(5037)

PKT

1003

1005

5037
PKT

1003

1005

5037

PKT

1005 POP(1005)P6

P4

PKT

1005
PKT

1005

PKTPE1 PE5

Figure 3.7: The SR path to connect CE1 and CE2 is expressed as a label stack
computed using the SR-LEA algorithm.

54

As shown in Fig. 3.7, a packet follows the IGP shortest path to reach P3 using

label 1003 (i.e., P3’s Node-SID). At P3, the Adj-SID 5037 is used to enforce the

packet through the link P3-P7. At P7, label 1005 (i.e., PE5’s Node-SID) is used to

forward the packet down the IGP shortest path to reach PE5. At PE5, label 1005 is

popped and the IP packet is forwarded to CE2.

3.3.2.3 SR-LEA-A

In the segment routing architecture, it is possible to advertise an adjacency (i.e., an

interface) as a global segment, rather than advertising it as a local segment. Accord-

ingly, the adjacency becomes routable in the SR domain. In comparison to the local

Adj-SID, all the SR nodes forward the packet using the IGP shortest path to reach

the node that advertises the global Adj-SID, then the node that owns the adjacency

forwards the packet to the exit interface associated with the global Adj-SID. To take

advantage of this possibility, we propose SR-LEA with global Adj-SIDs (SR-LEA-A).

When Adj-SIDs are advertised as global segments it is the SR-LEA-A that computes

the minimum label stack.

In SR-LEA-A, we suppose that all or a subset of Adj-SIDs are advertised as global

segments, the resulting label may be composed of Node-SIDs, local Adj-SIDs, and

global Adj-SIDs. The size of the label stack is either smaller or equal to the SR-LEA’s

one. Both algorithms share step 1 detailed in Algorithm 1. In SR-LEA-A, as detailed

by the pseudocode in Algorithm 2: a subpath of size larger than 3 followed by one

of size equal to 2 are encoded using one label: the global Adj-SID between the last

node in the first path and the first node in the second one. Compared to SR-LEA,

two labels are used to encode the two subpaths.

In the example described in Fig. 3.8, P3 advertises its adjacency with P7 as

the global SID 1037, the list A contains the following subpaths: {(PE1, P2, P3),

(P3, P7), (P7, P6, PE5)}. Accordingly, the two subpaths {(PE1, P2, P3), (P3, P7)}

are encoded using the global Adj-SID P3− P7 : 1037. Consequently, the label stack

for the path P is [1037, 1005]. At PE1 and P2, based on 1037 the packet is forwarded

down the shortest path to reach P3. At P3, the top label 1037 is popped and the

packet forwarded through the interface that connects P3 to P7. At P7, based on the

PE5’s Node-SID (i.e., 1005) the packet is forwarded through the shortest path to

reach PE5.

55

P2

P8 P7

P3

CE1 CE2

PKT

Match FEC x

PUSH([1037,1005])

1
0

3
7

PKT

1005

1037 POP(1037)

PKT
1005
1037

PKT

1005

1037

PKT

1005 POP(1005)P6

P4

PKT

1005

PKT

1005

PKTPE1 PE5

Figure 3.8: The SR path to connect CE1 and CE2 is expressed as a label stack
computed using the SR-LEA-A algorithm.

Algorithm 2 Efficient Label Encoding algorithm with global Adj-SIDs

STEP 1 Same as for SR-LEA
STEP 2

1: for i← 1 To Size(A) do
2: if length(A[i]) > 2 then

3: if length(A[i+ 1]) == 2 & & exist(GlobalAdjSID(A[i][end], A[i+ 1][1]))
then

4: push(labelStack,GlobalAdjSID(A[i][end], A[i+ 1][1]))
5: i = i+ 2

6: continue =⇒ jumps to the beginning of the loop for next iteration
7: end if

8: push(labelStack,NodeSID(A[i][end]))
9: else

10: push(labelStack, AdjSID(A[i]))
11: end if

12: end for

3.4 Simulation Results

In order to evaluate the performance of the proposed algorithms, we experimented on

several network typologies available in SNDlib library [6] [59]. To get a representative

set of paths. First, for each topology, we consider a sample bandwidth demand

matrix D based on detailed measurements of traffic in real IP networks, the values

represent the node-to-node demand trace. Second, We solve a multicommodity flow

problem [60] to identify the optimal set of paths to satisfy a demand matrix on several

56

topologies characterized in Table 3.1. Third, The paths are then encoded using the

strict Adj-SID, SR-LEA and SR-LEA-A algorithms. Equipment vendors such as

Cisco [61], Juniper, Nokia and Huawei announce different MSD values for different

router series. For this study, we fixed the MSD to 5 labels, which is the most common

values that we probe inside Orange network.

Topologies
Number of vertices

‖V ‖
Number of edges

‖E‖
Number of demads

‖D‖
Geant 22 36 431
Albilene 12 18 131
Brain 161 166 9045
Germany50 50 80 1270
Nobel-germany 17 26 248

Table 3.1: characteristics of the topologies used in the simulations.

The two proposed algorithms, compute the minimum label stack to express the

SR path. Recall that SR-LEA is used when the Adj-SIDs are local segments whilst

SR-LEA-A is used where there are global Adj-SIDs. The comparison is made between

the strict encoding, the SR-LEA and the SR-LEA-A algorithms. For each topology,

using the three encoding algorithms, we compute the average label stack size and the

percentage of network paths from solving the multicommodity problem encoded with

a label stack size lower than the MSD.

Fig. 3.9 illustrates the per-topology average label stack size variation depending

on the topology and the encoding algorithm.

• We observe that the strict encoding always produces a large label stack. This

was expected because no optimization on the label stack size is performed,

rather a one to one mapping of the physical links to the label stack. We note

that for some paths the label stack noticeably reaches up to 14 labels.

• SR-LEA reduces the size of the label stack by 52% to 65% compared to the

strict encoding; the observed gain varies depending on the network design and

diameter.

• SR-LEA-A gives the best results. Notably, compared to the strict encoding,

the average label stack size is reduced by 57% to 67%. When compared to the

SR-LEA we see a slight improvement in the label stack size which allows for

additional useable paths. The amount of additional path that can be used when

the SR-LEA-A is used

57

0

1

2

3

4

5

6

7

Strict

SR-LEA

SR-LEA-A

Av
er

ag
e

la
be

l s
ta

ck
 si

ze

Topologies

Figure 3.9: Comparison of the average label stack size generated using a strict en-
coding, SR-LEA and SR-LEA-A algorithms.

Topologies

%
 P

at
hs

≤
M

SD

0

20

40

60

80

100

120

Strict

SR-LEA

SR-LEA-A

Figure 3.10: Paths expressed with a label stack size lower that the MSD (MSD = 5).

58

Fig. 3.10, illustrates the variation of the percentage of the useable paths in each

topology. With a strict encoding, the percentage of useable paths can be very low e.g.,

37% for Germany50 topology. Using SR-LEA, increases considerably the amount of

useable paths e.g., from 37% to 97% for Germany50 topology. However, encoding

the label stack using SR-LEA-A gives the best results, as it increases the number of

usable paths from 37% to 99%, a gain of 2% to 4% more than SR-LEA.

Ŷobel-
gerŵaŶy braiŶ albileŶe gerŵaŶyϱϬ geaŶt

Sw-LEA ϰϬ,ϰϵ% ϳϬ,ϲϳ% ϵϲ,ϳϬ% ϯϭ,ϯϳ% Ϯϲ,ϰϯ%
Sw-LEA -A ϱϴ,ϲϯ% ϴϯ,ϭϮ% ϵϵ,ϭϯ% ϱϯ,ϰϳ% ϰϲ,ϳϱ%

Ϭ,ϬϬ%

ϮϬ,ϬϬ%

ϰϬ,ϬϬ%

ϲϬ,ϬϬ%

ϴϬ,ϬϬ%

ϭϬϬ,ϬϬ%

Figure 3.11: Comparison of SR-LEA and SR-LEA-A over a large set of paths.

We notice a slight improvement in the number of paths that can be encoded with a

label stack size less than the MSD using SR-LEA-A compared to the SR-LEA, the set

of paths that we use in this comparison are resulted from solving the multicommodity

flow problem: one path per demand. However, the number of paths is limited by the

demand matrix size. Therefore, the set of paths is not sufficient to compare the two

algorithms. To showcase the advantage of SR-LEA-A we consider for each topology

a large number of paths as detailed in Table 3.2: we compute up to five hundred

paths between every two nodes in the network graph using the Yen’s k-shortest path

algorithm (i.e., K == 500). Then encode each path using both algorithms. with

this amount of paths, we can see clearly as shown in Fig. 3.11, that SR-LEA-A

provides a considerable improvement compared to SR-LEA: from 20% to 28% on all

topologies besides Albilene. which has small graph composed of only twelve vertices

and eighteen edges. Therefore, there are not enough paths to explore.

59

Topology Total number of paths
Geant 198146
Albilene 1031
Brain 161931
Germany50 635000
Nobel-germany 23674

Table 3.2: Number of paths computed using Yen’s K-shortest path
algorithm with k == 500

We conclude that the proposed algorithms are very efficient in reducing the label

stack size, also to minimize considerably the impact of the MSD limitation. However,

both algorithms do not completely eliminate the MSD problem, as we still have

paths that are expressed with a label stack greater than the MSD. In chapter 4.6, we

introduce a new segment type called Target SID and an encoding algorithm that uses

this new segment to solve the MSD limitation.

3.5 SR-LEA SDN based Implementation

SR-MPLS couples MPLS’s robust data plane with SR light distribution control. The

SR control plane simplicity comes from extending already deployed protocols such as

OSPF, ISIS, and BGP-LS. Additionally, a SR path is carried in the packet’s header

as a label stack; this minimizes considerably the number of states core routers have to

maintain. Therefore, no signaling protocols such as RSVP-TE or LDP are required.

Unfortunately, losing the signaling process means that the resources availability in-

formation is not updated hence not advertised in the network. Consequently, SR

benefits from an SDN based architecture, where the controller maintains a global SR

traffic engineering database to track all SR path computation requests and update

the resources availability accordingly.

60

ELEANOR

BGP-LSPCEP

REST

Path computation
Request/Response

Topology
Acquisition

Route Reflector

Figure 3.12: ELEANOR Reference Architecture

In this section, we detail ELEANOR the application that we developed as a north-

bound application for the OpenDayLight SDN controller. ELEANOR is the first

SDN application that offers SDN based label stack encoding. ELEANOR is tested on

real topologies. ELEANOR resides outside of the controller and communicates with

OpenDayLight using its northbound REST API [62]. Specifically, it provides a SR

path computation and management module to enable traffic engineering capabilities.

ELEANOR mitigates also the impact of the MSD limitation through its label stack

optimization module, that minimizes the size of label stack required to express SR

paths.

In what follows, we detail ELEANOR’s software architecture and its two main

modules: Path computation and label stack optimization modules.

3.5.1 ELEANOR architecture

ELEANOR is an application developed for SR paths computation, management and

label stack optimization. Computes, encodes, stores and track all the active SR

paths with their QoS requirements. With the available information, new heuristics

can be developed for global resource optimization. For example, an administrator

can schedule periodic SR paths placement optimization to better distribute SR path

in the network in order to increase the acceptance rate of future demands.

ELEANOR is based on the open source project Pathman-SR [63], and it commu-

nicates with OpenDayLight through its northbound REST API. As depicted in Fig.

3.13, ELEANOR’s software architecture is composed of two main modules: the path

61

computation module and the label stack optimization module. The OpenDaylight

SDN controller uses two of its southbound interfaces to communicate with the net-

work: BGP-LS for topology acquisition and PCEP to push SR paths configuration

onto the routers.

3.5.1.1 Path Computation Module

The path computation module host a suite of path computation algorithms and the

Traffic Engineering Database (TED). The path computation requests are first han-

dled by this module. The appropriate path computation algorithm is chosen based

on the request parameters: path disjointness or QoS (e.g., delay, bandwidth, path

protection). The resulting path is then passed to the label stack optimization mod-

ule.

3.5.1.2 Label Stack Optimization Module

In order to compute the minimum label stack to express SR paths and therefore

reduce the impact of the MSD, we have implemented the Segment Routing Label

Encoding Algorithm (SR-LEA) detailed in 3.3.2.2. As we can see in the Fig. 3.6,

after the path computation module has computed the optimal path for given request.

The path is then passed to the label stack optimization module. SR-LEA relies on the

SID database to compute the minimum label stack. We did only implement SR-LEA

and not SR-LEA-A due to lack of support by industrial routers for global Adj-SID.

For example, a client requests a path between Amiens and Toulouse with 100 MB

of bandwidth. First, the appropriate CSPF is called to compute the path. Thus, the

resulting best path is {Amiens, Paris, Orleans, Lyon, Marseille, Toulouse}. Second,

the path is passed to SR-LEA algorithm, the SR path is spliced into three parts:

{Amiens, Paris, Orleans}, {Orleans, Lyon} and {Lyon, Marseille, Toulouse}. Then

as depicted in Fig. 3.6, the first subpath is encoded with the Node-SID of Orleans,

the second subpath is encoded by the Adj-SID attributed by Orleans to its adjacency

to Lyon, and the third subpath is encoded with the Node-SID of Toulouse. The

resulting label stack is a combination of Node-SIDs and Adj-SIDs encoded in XML

format, which get pushed into ODL using the POST method.

62

ELEANOR

SDN Controller

Path Computation Label Stack Optimization

Dijkstra

CSPF Delay

CSPF Bandwidth

Path disjointness

SR-LEA

SR paths
database

TE
Database

SIDs
Databse

Traffic Engineering

Path

Figure 3.13: ELEANOR software architecture

3.5.2 Testbed Network Topology

To demonstrate ELEANOR, we built the testbed topology depicted in Fig.3.14, it is

composed of several routers from Juniper, Cisco and FRRouting -SR our open source

implementation of SR-MPLS based on the FRRouting routing software [64]. The

routers are mapped over the France map, each router is named based on the city it

is located in.

We use the OSPF protocol with SR extension enabled [65], network routers use

OSPF-SR to exchange SR information such as Node-SID, Adj-SID, and SRGB, etc.

The border of the network is composed of a mix of industry routers, for the transit

nodes we use the FRRouting-SR routers. The border routers run the Path Com-

putation Client (PCC) application, it is used to request a path computation to be

performed by the SDN controller: each PCC establishes a PCEP [4] session with

OpenDayLight’s southbound interface PCEP. Additionally, OpenDayLight uses the

PCEP session for the creation and deletion of the SR paths requested by ELEANOR.

OpenDayLight learns the link state topology (e.g., the network graph the traffic en-

gineering information) by establishing a BGP-LS session with a single router in our

case Rennes that plays the role of a Route Reflector (RR) [66]. The route reflec-

tor advertises using the BGP-LS session to OpenDayLight the network information

that it sources from the interior gateway protocols. This information is copied by

ELEANOR in order to perform its computations.

63

ParisLannion

Amiens

Strasbourg

Toulouse

Nantes

Bordeaux

Marseille

Lyon

Orleans
Rennes

Figure 3.14: Testbed Topology

3.5.3 FRRouting-SR

FRRouting is a routing software suite [67] that runs on Unix platforms. It provides an

open source implementation of routing protocols such as OSPFv2, OSPFv3, ISIS, and

BGP. Consequently, it can run as a standalone router on a commodity hardware(white

box). Its architecture is composed of mainly two modules: the core daemon where

protocol instances run and the Zebra module that ensures the communication between

the different routing daemons and the Linux kernel.

64

Figure 3.15: FRRouting-SR: Open source implementation of SR-MPLS

We have extended the FRRouting suite to deliver SR functionalities. This imple-

mentation requires a Linux Kernel 4.5. The detail of our implementation is depicted

Fig. 3.15. Several modules and extensions had been developed in order to add the

support of SR. Notably, the OSPF Daemon (OSPFD) is extended to support the

encoding and decoding of the SR TLVs. SR database maintains the SR information

locally configured (e.g., SRGB, Adj-SID and Node-SID) or learned via the neighbors.

Several SR specific command has been added to vtysh shell: to enable SR, SRGB

configuration, Node-SID configuration, etc.

This implementation allows for the quick adoption of new SR standardization

proposal. Additionally, it can be installed on white boxes to deliver SR functionalities.

To ensure the proper functioning of FRRouting -SR router, interoperability tests with

routers from different vendors has been successfully performed.

3.6 CONCLUSION

In this chapter, we detailed two SR-MPLS paths label encoding algorithms, namely

SR-LEA and SR-LEA-A. Both algorithms compute the minimum label stack to ex-

press a segment routing path. Their performances have been evaluated over real

topologies which demonstrated their efficiency in alleviating the impact of the MSD.

The proposed algorithms are essential for the wide adoption of SR as they give an easy

software solution for the MSD limitation. Additionally, we have detailed ELEANOR

an OpenDayLight northbound application for segment routing path computation,

65

management, and label stack encoding optimization based on our SR-LEA algorithm.

This application can be used by service providers to deliver traffic engineering over

segment routing. We tested ELEANOR over a network topology composed of routers

from different vendors in addition to FRRouting-SR router: our implementation of

SR-MPLS.

In the next chapter, we introduce a new segment type that we couple with a new

algorithm to encode SR paths. We evaluate its performance in solving the MSD

problem.

66

Chapter 4

A New Method For Encoding

MPLS Segment Routing TE Paths

4.1 Introduction

In the previous chapter, we proposed algorithms to reduce the label stack required to

encode a SR path. Even though, the results were good we still didn’t reach a 100%

network coverage. For that purpose in this chapter, we explore path fragmentation

to tackle the MSD limitation. We define the Targeted SID (TSID), a new segment

type attached/assigned to a slice of the SR path. TSID’s role is to reduce the size

of the label stack to express a SR path. The underlying idea is to replace multiple

labels in the initial stack by a TSID label. Then, when a packet reaches a specific

node, the TSID label on the top of the label stack is substituted by the sequence

of labels it has replaced initially. Consequently, TSIDs have to be pre-installed in

the network before traffic is forwarded on the SR path. In this chapter, we prove

that SR paths fragmentation is an effective method to bypass the MSD limitation.

This reinstates the possibility to consider any available topological path and thence

empowers a better network resource utilization. To achieve our goals, we propose an

optimization algorithm to reduce the number of installed TSIDs, then we compare

the proposed algorithm to the results of the offline linear programming model.

In the proposed architecture, TSIDs may be installed anywhere in the network via

the Path Computation Element (PCE). Therefore, Service providers have to enable

Path Computation Clients (PCC) on core and Provider Edge (PE) nodes. However,

this increases the number of Path Computation Element Protocol (PCEP) sessions

the PCE has to maintain. For that purpose, we propose an optimization algorithm

to reduce the number of PCEP sessions. We compare the proposed algorithm to the

results of an offline linear programming model.

67

4.2 Related Work

In the literature, several algorithms have been proposed to efficiently encode SRPs

[68] [34] [33]. Their focus is to minimize the number of labels used to encode a SR

path, mainly by the combination of different SID types. Indeed, in Segment Routing

each SID corresponds to a forwarding behavior. For example, using a Node-SID

forces the traffic to use the shortest path to reach a designated node whereas using

an Adjacency SID constrains the traffic through a specific interface on a node.

Encoding algorithms slacken the impact of the MSD limitation. However, none

of the proposed algorithms solves totally the MSD problem. In particular, all the

proposed algorithms produce a label stack that expresses the SR path as a loose

path. Indeed, those algorithms consider that it is not necessary to express in detail

all the path if parts of the path follow the default route computed by the Shortest

Path First (SPF) algorithm of the routing protocol. However. expressing a SR path

as loose makes the SR path very sensitive to the network nodes routing tables changes

triggered by events that engender default routes recomputation. For example, a link

weight modification, a link or node failure. etc. In such events, to continue to express

correctly the SR paths, those algorithms must be re-run for all the paths. Such

behavior is not sustainable especially in large networks where changes are frequent

continuously triggering SPF computations.

For all these reasons, we propose a new approach for reducing the SR path label

stack while maintaining the expression of the path as strict. In this approach, we use

the proposed TSID mechanism to substitute a subset of the path labels. A binding

between the TSID and the labels it substitutes is installed into a network node. When

the packet reaches that specific node the TSID get replaced with the labels bound to

it. To the best of our knowledge, this work is the first to use the path segmentation

approach as a solution to the MSD limitation. This is a standalone approach yet

it can be combined with an efficient encoding algorithm such as those previously

discussed.

4.3 Path Segmentation

Traffic Engineering, QoS requirements enforcement and path diversity are use cases

that require the computation and the enforcement of paths that are usually not pre-

ferred by the IGP. However, the corresponding label stack to implement such paths

in SR may be greater than what is allowed by the ingress node’s MSD. Consequently,

68

in addition to the encoding algorithms proposed in 3.6, We propose the path segmen-

tation approach, where the initial label stack to express a SR path is fragmented into

multiple stacks, each sub-stack is replaced with a new type of segment named the

Targeted SID (TSID). We create as much TSIDs as required to obtain a label stack

size less than or equal to the MSD. A TSID is related to a specific label stack which

encodes a topological path and is installed on specific network nodes. The TSID,

like the Adj-SID, is local to a node, and takes its value outside the Segment Routing

Global Block (SRGB). The TSID is assigned to a push operation which replaces the

TSID label by a specific label stack. When the packet reaches the node that owns

the TSID, (i.e.the top label is equal to the TSID), the TSID gets popped and the

associated stack is pushed.

P11P12

P13 P14 P10

P8 P9

P7
PE4PE1

PE6
PE5

PE3
PE2

CE2CE1

CE3

Encoding Module

SRP Database

TSID Database

PCEP

PCE

TE Database
Constraint Based Path
Computation Module

Figure 4.1: TSID Design Architecture.

For illustration purposes, let us consider the network depicted in Fig. 4.1. A

client requests a connection of 100 MB of bandwidth to connect two of its sites

CE1 and CE2, the ingress edge router for the requested path is PE1 and PE2 is

the egress. The computed path that satisfies the requested bandwidth is Pth1 :

[P1,P7,P12,P13,P14,P11,P10,P4]. Moreover, the service provider implements the

SR path strict encoding where all the intermediate node’s Node-SIDs are listed in

the label stack. Consequently, the Pth1 get encoded with the following label stack:

[1,7,12,13,14,11,10,4]. If PE1 has a MSD of 5, then PE1 would not be able to

pushPth1 stack onto the client packets. In our approach, a TSID can be used to re-

place a slice of Pth1. For example, replace the slice Pth:[12, 13, 14, 11] with TSID1.

Therefore, Pth1 is encoded as follows: [1, 7, TSID1, 10, 4]. As shown in Table.

4.1, a new entry in P7 ’s Label Forwarding Information Database (LFIB) has to be

69

pre-installed before Pth1 is installed on PE1 to avoid that packets get dropped by P7.

Table 4.1: P7’s LFIB

Incoming label Operation Exit Interface
TSID1 POP(TSID1) & PUSH([12,13,14,11]) 7-12

4.3.1 Targeted SID Architecture

As stated previously SR control plan relies on a centralized server such as a PCE or

an SDN controller to deliver traffic engineering and QoS. We extend such architecture

in order to leverage TSIDs to reduce the impact of the MSD. Several architectural

components need to be combined to address how the TSIDs are computed and how

they can be installed into the network. It makes sense that the PCE installs also the

TSIDs, in addition to the SR path. Consequently, the PCE has to maintain a TSID

database in order to be able to reuse previously installed TSID for future SR paths.

In this proposed architecture, all network nodes implement the Path Computation

Element Clients (PCC). When a request reaches the PCE, the constraint-based path

computation (e.g.Constraint Shortest Path First, CSPF) module computes the path

based on the requested parameters and the information contained in the TED. As

depicted in 4.1, the computed path is then sent to the encoding module which decides

if a TSID is required or not.

The TSID approach requires the standardization of some of its components in

order to ensure inter-vendor interoperability. Recently, PCE protocol (PCEP) has

been extended to support SR. In fact, [69] defines new Type Length Values (TLV) for

SR. The SR Explicit Route Object (SR-ERO) carry the label stack to express a SR

path. We propose to reuse the same mechanism and TLVs to install a TSID and the

label stack it substitutes. Because the installation of TSIDs has to be initiated by

the PCE, we propose to extend the mechanism described in [69] to add the support

of PCE initiated TSIDs. The TSID value is a local label. Therefore, it is up to the

node that installs the TSID label stack to allocate the TSID value. Indeed, as the

TSID label is taken outside the SRGB, it makes sense to let the node pick its value

inside its label pool instead of letting the PCE allocate a label value that could be

outside the local label pool or already in use by another protocol. Accordingly, the

reporting mechanism is currently defined in [70] to let the PCC reports to the PCE

the label value it has associated/bind to a TSID.

70

In addition, it might be of interest to service providers to advertise the TSIDs in

the network using the IGP. This can be done via simple IGP protocols extension. In

this scenario, the PCE may not be the only entity responsible for SR paths compu-

tation. For example, network nodes may have their own CSPF computation engine.

Consequently, the TSIDs need to be advertised in IGP so that other nodes can use

them. Also, in the case, of a PCE failure, the advertisement of TSIDs help to recover

the state of the network by listening to the IGP. However, this approach adds new

states in the network which segment routing precisely tries to reduce.

In the next section, we formalize the problem statement for TSIDs placement.

Additionally, we propose two linear programming models for offline TSID placement

optimization, then we follow with two online optimization algorithms, we finish off

by assessing the performance of the online algorithms against the offline ones.

4.4 Offline TSID Placement Models

SR-MPLS nodes maintain considerably fewer states compared to traditional MPLS.

However, the proposed path segmentation approach adds an overhead to the SR

architecture. TSIDs are additional entries in the node’s forwarding table. Each

node may have to maintain TSID database if the TSIDs are advertised in the IGP.

Also, in the proposed architecture, TSIDs are installed via the PCEP protocol that

increases the number of PCEP sessions that the PCE have to maintain. Indeed, in a

traditional IP/MPLS networks, the PCEP sessions are established between the PCE

and the edge nodes i.e.PEs. In our approach, additional PCEP sessions must be

established between the PCE and core i.e.PE nodes in order to install TSIDs. In

this work, in addition to the proposition of the TSID mechanism and the architecture

that enables it, we aim to solve two following optimization problems:

• To reduce the global number of installed TSIDs,

• To reduce the number PCEP sessions the PCE has to maintain.

In this section, we present two offline Linear Programming (LP) models. Both

models take a set of paths in input and require the existence of a traffic matrix.

In fact, a realistic set of paths is generated by solving the multi-commodity flow

problem for a given network and a given traffic matrix. The proposed models have

been used as a benchmark for the more practical online algorithms with unknown

traffic matrices. In addition, if a Service Provider has the traffic matrix and wants

71

to migrate its network to Segment Routing, the two offline models may be used to

assist the transition.

4.4.1 Offline Optimization of TSIDs Placement

The first offline LP model (4.1) computes the minimum number of TSIDs to install

for a given set of paths. For simplicity purposes, we suppose that all the network

nodes have the a MSD of 5 labels because it is the most common value in production

routers. This model can still be extended for per-node MSD case at the expense of

increased computation.

We denote the set of paths that satisfy the traffic matrix and that are encoded with

a label stack greater than the MSD by P . T denotes the set of all possible TSIDs

without duplication generated from P . It is worth mentioning that it is possible

to have two or more TSIDs associated with the same label stack because they are

installed on different nodes. This important for our model as we need to distinguish

TSIDs not only by their label stack but also by the node they are installed on. For

example, in Fig. 4.1, the label stack composed of three Node-SIDs [P13,P14,P11]

can be installed on different nodes: P7,P8 or P12 and therefore considered as three

different TSIDs and not just one. Tp denotes the set of TSID that can be used for

the path p. αlt equals to 1 if the label l is used in TSID t and 0 otherwise. sp denotes

the size of path’s p label stack. st denotes the size of the TSID’s t label stack. fpt is

a binary variable, it takes the value 1 if the path p uses TSID t and 0 otherwise. f̂t is

a binary variable, it takes the value 1 if the TSID t is chosen to reduce at least one

path and 0 otherwise.

Minimize
∑

t∈T

f̂t (4.1a)

Subject to :

f̂t ≥ fpt ∀p ∈ P , ∀t ∈ T (4.1b)

sp −
∑

t∈Tp

fpt ∗ (st − 1) ≤MSD ∀p ∈ P (4.1c)

∑

t∈Tp

fpt ∗ αlt ≤ 1 ∀p ∈ P , ∀l ∈ p (4.1d)

72

The objective function (4.1a) minimizes the sum of f̂t (i.e., the total number of

used TSIDs). The Equation (4.1b) ensures that a TSIDs is computed once even it

is used to reduce multiple paths. Equation (4.1c) ensures that the TSIDs used for a

path results in a label stack size less than the MSD, keeping in mind that a TSID

reduces the size of the path by its size plus 1. For example, a SR path label stack

composed 8 labels can not be reduced by a TSID stack of 3 labels because the resulting

stack would be 6 labels, as an additional label has to be added to identify the TSID.

Equation (4.1d) ensures that no label appears more than once in the TSIDs used to

reduce a path. In fact, the intersection of a solution’s TSIDs must be avoided as it

leads to the creation of traffic loops.

4.4.2 Offline Minimization of PCEP sessions

The TSID architecture as depicted in Fig, 4.1 requires that the all the network nodes

become PCCs (i.e., edge and core routers). Thus, all the nodes are able to install

TSIDs. However, service providers tend to enable PCCs only on the border of the

network, i.e., PE routers. The increase in the number of PCEP sessions a PCE

has to maintain could lead to scalability issues. Accordingly, the performance of the

proposed architecture needs to be evaluated not only based on the number of installed

TSIDs but also on the required number of PCEP sessions. A service provider may

estimate that it is more important to reduce the number of PCEP sessions instead

of minimizing the number of TSIDs. We encourage this approach for large networks,

where number of core nodes is greater than the edge nodes, especially if the TSIDs

are not advertised by the IGP. A side effect of this approach is that TSIDs may be

concentrated at certain network nodes. Consequently, in the case of a node failure, a

considerable amount of paths will be affected especially that no protection mechanism

is defined for the TSID approach.

Minimize
∑

n∈V

kn (4.2a)

Subject to:

f̂t ≥ fpt ∀p ∈ P , ∀t ∈ T (4.2b)

73

sp −
∑

t∈Tp

fpt ∗ (st − 1) ≤MSD ∀p ∈ P (4.2c)

∑

t∈Tp

fpt ∗ αlt ≤ 1 ∀p ∈ P , ∀l ∈ p (4.2d)

kn ≥ f̂t ∗ ζn,t ∀p ∈ P , ∀t ∈ T (4.2e)

The offline LP model (4.2) minimizes the number of the PCEP sessions required

to install TSIDs. We used this model to benchmark the online PCEP minimization

algorithm. The objective function depicted in (4.2a) minimizes the network nodes

that have to be a PCC. In (4.2a) kn is a binary variable, it is equal to 1 if the node

n is used to install TSIDs and 0 otherwise. In addition to the constraint depicted in

(4.2e), the LP model (4.2) is subject to the same constraints as the LP model (??).

ζn,t denotes where the TSID t has to be installed, it is equal to 1 if the node n is used

to install the TSID t and 0 otherwise.

In the next section, we detail online optimization algorithms for PCEP and TSIDs.

We compare their performances to the offline LPs detailed in this section.

4.4.3 Online Algorithms

Delivering QoS using segment routing requires the use of a centralized controller

(e.g., PCE or SDN controller). In an online environment, the service provider does

not have the full demand matrix. Therefore, the connection demands are treated

by the controller one by one, where each demand contains a source, destination and

the QoS requirements. A path that respects those requirements is computed by the

optimization engine and then passed to the encoding engine. If the path is encoded

with a label stack greater than the demand’s source node MSD, it gets invalidated.

Consequently, the computation of another path is triggered, in absence of other paths

the demand is rejected.

In this section, we present two variations of an online optimization algorithm,

referred to as OTO for Online TSIDs Optimization:

• OTO for TSID minimization, favors the reutulization of existing TSIDs and

creates new ones only if there is no solution to reduce the requested path with

the TSIDs available in the TSIDs Database.

74

• OTO for PCEP session minimization, favors the solutions that require the in-

stallation of TSIDs on the nodes that maintain an active PCEP session with

PCE, also by reusing exiting TSIDs.

The OTO algorithm is composed of 6 steps, its pseudo-code is detailed in Al-

gorithm 3. In step 1, for a requested SRP, the function generateTSIDs (SRP)

generates a set of candidate tsids. Each candidate TSID has a size of at least 2

and not more than the MSD. A candidate TSID reduces the SRP stack size as fol-

lows: length(SRP)− length(TSID) + 1. In step 2, from the set of candidate TSIDs,

function generateSolutions(tsids) generates all the possible solutions to reduce the

label stack of the SRP, a solution generates a label stack size less than the MSD. Addi-

tionally, a solution may be composed of one or multiple TSIDs depending on the MSD

value and the longer of the SRP. The TSIDs that constitute a solution must not inter-

sect or otherwise we a forwarding is created. In step 3, a weight is assigned to each can-

didate solution, depending on the objective set by the operator. A solution’s weight is

equal to the number of new TSIDs that has to be created or the number of new PCEP

sessions it requires, hence preferring the re-utilization of already existing TSIDs or

established PCEP sessions. In step 4, the solution with the lowest weight is chosen.

In step 5, the best solution may require the creation and installation of new TSIDs. In

this case, the function matchTSIDToPCEPNode identifies the node that has to in-

stall the new TSID, then the function establishedPCEPSession(nodePCEP) checks

if there is an active PCEP session with that node. If no session was found, the func-

tion establishPCEPSession(nodePCEP) triggers the establishment of the PCEP

session. This can be performed by a node configuration protocol such as NETCONF.

The function PCEPinstallTSID uses PCEP to install the TSID on the identified

node. In step 6, in the initial SRP label stack, we replace the TSIDs with the labels

reported by the PCC nodes for that TSIDs. Finally, the OTO algorithm returns the

labelstack to install.

The OTO algorithm can be implemented as a module of the encoding engine

depicted in Fig. 4.1. The encoding engine triggers the installation of SRP and

TSIDs, also maintains the TSID Database.

75

Algorithm 3 Online TSIDs Optimization (OTO)

INPUT: SRP The SRP expressed as a list SIDs
OUTPUT: labelStack the SRP label stack MSD.

STEP 1: Generation of all the TSIDs for the SRP.

tsids = generateTSIDs(SRP)

STEP 2: Generation of possible solution.

solutions = generateSolutions(tsids)

STEP 3: compute the weight of each solution.

1: solWeight An array that holds the weight of each solution
2: for sol in solutions do
3: weight = weightSolution(sol)
4: push(solWeight,weight))
5: end for

STEP 4: Find the best solution.

bestSolution = minWeightSolution(solutions, solWeight)

STEP 5: Install required TSIDs.

1: for ts in bestSolution do

2: if existTSID(tsid) then

3: continue
4: else

5: nodePCEP = matchTSIDToPCEPNode(ts) node where to install the TSID
6: if !establishedPCEPSession(nodePCEP) then

7: establishPCEPSession(nodePCEP)
8: end if

9: installTSIDPCEP(ts,nodePCEP)
10: addTSID(ts) Add the ts to TSID Database
11: end if

12: end for

STEP 6: Compose the label stack.

1: labelStack = SRP
2: for tsid in bestSolution do

3: replaceTSID(labelStack,tsid)
4: end for

5: Return labelStack

76

4.5 Experimental Results

We performed several experiments to measure the performance of the two variations

of the OTO algorithm. Mainly we compare the two variations of the OTO algorithm

to the offline LP’s models in terms of the number of installed TSIDs and required

PCEP sessions. We also consider the case where the TSID mechanism is coupled

with the Segment Routing Label Encoding algorithm (SR-LEA) presented in Section

3.3.2.2. The experiments use network topologies provided by SNDlib [6] [59] and

their demand matrices. We fixed the MSD to 5 labels, which is the value announced

currently by the major equipment vendors. Table. 4.2, details for each topology, the

number of paths to encode and the number of possible TSIDs.

4.5.1 OTO for TSIDs minimization

In the OTO algorithm for TSIDs minimization, the weight function attributes weights

to all the possible solutions to reduce the size of the label stack. A solution that does

not require new TSIDs has a weight equal to zero whereas solutions that require the

installation of new TSIDs are penalized by higher weights. The chosen solution is the

one with the minimum weight. The performance of the OTO for TSIDs optimization

is evaluated on the number of TSIDs created.

Table 4.2: Entries for the linear programming models

Topology Nodes Path Set Possible TSIDs
Nobel-germany 17 136 423
Geant 22 162 566
Albilene 12 41 109
Brain 161 2571 2073
Germany50 50 991 3141

In order to evaluate the impact of the OTO weight function, we consider an online

worst-case scenario. Demands arrive sequentially, and for a given SRP there is no

prioritization between solutions. The first solution that reduces the SRP’s label sack

is chosen. As a result, new TSIDs are created more frequently. As seen in Fig. 4.2, for

all the topologies, the OTO algorithm generates fewer TSIDs than to the worst-case

scenario. We observe that the OTO gain against the worst-case scenario in terms of

the number of TSIDs correlates with the number of possible TSIDs shown in Table

4.2. The more TSIDs there are, the better the OTO performs. The weight function

considers all the possible TSIDs combinations and favorites the reuse of TSIDs. In

77

other words, the more paths OTO minimizes, the higher is the chance to reuse a

TSID.

119 138

43
124

804

87 99
27

90

543

0

100

200

300

400

500

600

700

800

900

Nobel-germany Geant Albilene Brain Germany50

N°
of

 T
SI

Ds

No optimization OTM for TSIDs minimization

Figure 4.2: OTO for TSIDs minimization compared to the worst-case scenario i.e.,
online TSID installation with no optimization.

The LP model (??), computes the minimum number of TSIDs required for a given

path set. It is used as a benchmark for the OTO algorithm. The close OTO results

are to LP the better. As it can be seen in Fig. 4.3, The OTO algorithm performs very

well especially for small path sets. The number of TSIDs installed by OTO algorithm

is very close to the LP’s solution for the first four topologies. However, we notice an

increase in the gap between OTO and LP for topology Germanny50, this is due to

the large TSIDs set.

87 99

27

90

543

68 78
20

67

421

0

100

200

300

400

500

600

Nobel-germany Geant Albilene Brain Germany50

N°
of

 T
SI

Ds

Offline LP for TSIDs minimization OTM for TSIDs minimization

Figure 4.3: OTO for TSIDs minimization compared to the Offline LP for TSIDs
minimization

The path segmentation approach causes two problems 1) the creation of new states

78

in the network (i.e., TSIDs) and 2) the establishment of additional PCEP sessions.

The OTO algorithm minimizes one of the two problems. We find it interesting to eval-

uate the impact of OTO optimizing one problem over another. Therefore, we evaluate

the impact of the OTO algorithm when minimizing the number of PCEP sessions over

the number of installed TSIDs. As seen in Fig. 4.4, optimizing the number of PCEP

sessions increases considerably the number of installed TSIDs. Minimizing PCEP ses-

sions leads to concentrating the TSIDs on certain nodes, which cause a weak TSIDs

reuse factor. Additionally, this causes an important overhead to the control plane if

the TSIDs are advertised via the IGP.

112 142

35

663

808

68 78
20

67

421

0

100

200

300

400

500

600

700

800

900

Nobel-germany Geant Albilene Brain Germany50

N°
of

 T
SI

Ds

Offline LP for TSIDs minimization Offline LP for PCEP minimization

Figure 4.4: Comparison of the number of TSIDs created by the two offline LPs

The PCE’s encoding engine can rely solely on the OTO algorithm to reduce the

size of all the label stacks. Furthermore, SR-LEA encoding algorithm presented in

Section 3.13 can be introduced as an intermediate step. The OTO algorithm is called

only if the SR-LEA algorithm fails at computing a label stack with a size less than

the MSD. In this scenario, the PCE first requests the SR-LEA algorithm to reduce

the size of the label stack. If the resulted stack if is still bigger than the MSD, then

it is passed to the OTO algorithm. Otherwise, it is the final stack. Consequently, we

observe a drastic decrease in the number TSIDs as it can be seen in Fig. 4.5.

4.5.2 OTO for PCEP sessions minimization

Service Providers are moving toward the network softwarization era, where having a

logically centralized controller is essential. Particularly, Traffic Engineering in Seg-

ment Routing network requires a centralized resource allocation and path computa-

tions. The way service providers are using the PCE and RSVP-TE is to establish

79

87 99

27

90

543

14 3 2 7 8
0

100

200

300

400

500

600

Nobel-germany Geant Albilene Brain Germany50

N°
of

 T
SI

Ds

SR-LEA + OTM for TSIDs minimization OTM for TSIDs minimization

3

Figure 4.5: Comparison of the number of TSIDs created solely by OTO and SR-LEA
encoding algorithm combined with OTO

PCEP sessions with only the network’s border routers. However, the proposed path

segmentation approach installs TSIDs on transit routers, which requires to main-

tain additional PCEP sessions with core nodes. Unfortunately, maintaining an active

PCEP session with all the network nodes may rise scalability issues. Reducing the

number of PCEP session with transit routers can be a priority for the service providers

especially for large networks.

In an online scenario, connection demands arrive sequentially to the PCE. There-

fore, anticipation the establishment of PCEP session with a subset of the network

nodes is not possible. In the path segmentation architecture, we trigger the estab-

lishment of new PCEP sessions only when required. For each SRP, we generate a set

of solutions composed of TSIDs to reduce the stack size. We use a weight function to

penalize solutions that require the establishment of new PCEP sessions. A solution

that reuses already established PCEP session has a weight of 0. The solution with the

minimum weight gets chosen. Several experiments have been conducted to evaluate

the performance of OTO with PCEP sessions minimization as follows.

80

17 18

11 9

49

10
7 8

5

27

0

10

20

30

40

50

60

Nobel-germany Geant Albilene Brain Germany50

N°
of

 P
CE

P
Se

ss
io

ns

No PCEP session optimization OTM for PCEP minization

Figure 4.6: OTO for PCEP sessions minimization compared to the worst-case scenario
of an online TSIDs installation with no PCEP optimization.

In a worst-case scenario, the first available solution is chosen. If the required

TSIDs does not exist in the TSIDs Database and no PCEP session with the node

that has to install the TSID is established then a PCEP session is initiated with the

network node using network configuration protocols such AS NETCONF. As it can

be seen in Fig. 4.6, the weight function of the OTO algorithm allows to reduce the

number of PCEP sessions.

10
7 8

5

27

9 8
6 5

26

0

5

10

15

20

25

30

Nobel-germany Geant Albilene Brain Germany50

N°
of

 P
CE

P
Se

ss
io

ns

Offline LP for PCEP minimization OTM for PCEP minization

Figure 4.7: OTO for PCEP sessions minimization compared to the offline LP for
PCEP sessions minimization

The offline LP model for PCEP session minimization (4.2), serve as a reference to

evaluate the performance of the OTO algorithm. As it can be seen in Fig. 4.7, on all

the tested topologies, the gap between the offline LP and OTO is very small. Hence,

we conclude that OTO performs very well.

81

Minimizing the number of TSIDs comes at a price of augmenting the number of

PCEP sessions. As it can be seen in Fig. 4.8. When comparing the results of the two

LPs (??)(4.2) in terms of PCEP sessions, increasing the number of PCEP sessions

augments the number of created TSIDs, for all the topologies minimizing the number

TSIDs. Accordingly, minimizing the PCEP sessions concentrates the installation of

TSIDs on certain network nodes, which in the case of a node failure could impact

more paths, especially when no fast recovery mechanism is defined.

9 8 6 5

26

13 15

8 9

48

0

10

20

30

40

50

60

Nobel-germany Geant Albilene Brain Germany50

N°
PC

EP
 S

es
sio

ns

Offline LP for TSIDs minimization Offline LP for PCEP minimization

Figure 4.8: Comparison of the number of PCEP sessions required by the two offline
LPs

4.6 CONCLUSION

In this chapter, we proposed the path segmentation approach to solve the Maximum

Stack Depth (MSD) limitation in Segment Routing networks. We detailed its im-

plementation and architectural requirements. We addressed the two optimization

problems identified for this architecture. Namely, minimizing the number of created

TSIDs and minimizing the number of PCEP sessions a PCE has to maintain with

transit nodes. We proposed the Online TSID Minimization (OTO) algorithm, it ad-

dresses the two optimization problems. The defined weight function is adapted to each

optimization problem i.e., it penalizes the creation of new TSIDs or the establishment

of new PCEP sessions. The experimental results show that the two variations of the

OTO algorithm perform very well, as their results are close to the reference offline

LP models. Coupling the OTO algorithm with the Segment Routing Label Encoding

Algorithm (SR-LEA) gave the best experimental results.

82

Chapter 5

General Conclusion and future

work

Our work is placed in the context of the MPLS instantiation of the Segment Routing

architecture. This thesis has investigated how service providers can leverage the Seg-

ment Routing architecture to deliver traffic engineering capabilities. Service providers

are under important stress to scale their networks to meet their customers’ require-

ments in terms of volume and QoS. Historically the volume of traffic handled by

networks never saw a decline, and it continues to grow at an accelerated rate espe-

cially with the increase of geographically distributed datacenter, and the explosion

of connected people and objects. Consequently, service providers are facing the chal-

lenge to increase their network throughput capacity while reducing CapEx. In this

context, traffic engineering is of a strategic importance to service providers because

of its capacity to reduce costs by optimizing the utilization of the available network

resources.

Service providers rely on MPLS as the defacto layer 3 WAN connectivity tech-

nology. Customers leverage it to provide IP level connectivity between their remote

offices. With the Additional benefits of QoS capabilities natively supported in MPLS.

For example, at a customer edge router, packets can be tagged to specify to what

QoS class they belong. Consequently, the service provider core routers prioritize those

packets based on their loss, jitter and latency limits. However, over the years, WAN

networks became complicated to manage and troubleshoot due to the complexity

added by the various uses cases supported. The incremental support of new use cases

led to over-engineered solutions resulting in a complex control plane composed of mul-

tiple protocols with intersecting capabilities. The currently distributed control plane

relays on a soft state model where all the network nodes have to maintain a consistent

database of all the network information (topology, traffic engineering, tunnel, etc).

83

Consequently, the maintenance and the troubleshooting of currently deployed services

or the support of new ones is hard and causes an increase in OpEx. For example,

a service provider receives a client demand to connect to of its remote site using

a VPN with a bandwidth of one gigabit/second, this requires to trigger the tunnel

signaling using the RSVP-TE then the IGP is synchronized with RSVP-TE process

in order propagate the reservation information so that all the network nodes update

their traffic engineering database. The RSVP-TE continues to maintain the tunnel

using periodic update messages. Additionally, the increase in the number of tunnels

and the slow signaling and tearing down processes prevent the service providers from

achieving network-wide traffic engineering. Thus, leading to a sub-optimal network

resource utilization. A variety of solutions were proposed to reduce the severance

of these side effect however the problem persisted. Consequently, service providers

prefer to over-dimensioning their networks to avoid fully relying on such complex con-

trol plane. However, this approach is not sustainable in current and future markets

especial with the drastic decline in the dedicated WAN connection prices due to the

emergence of new technologies such as Software Defined WAN or SD-WAN.

Therefore, service providers have to simplify the design of their networks and op-

timize as possible the available resources. For the reasons mentioned before, service

provider supports the idea of a simple network design based on a light control plane

coupled with a logically centralized software intelligence. A simple control plane

allows for an easy service instantiation and troubleshooting while the centralized

software layer handles the complex tasks such as the maintenance of the traffic engi-

neering database, path computation, and resource optimization. To concretize such

model the IETF SPRING working group proposed the segment routing architecture

which can be instantiated over two WAN data planes MPLS (SR-MPLS) and IPv6

(SR-v6). It has a light control plane because it relays on source routing to deliver

end to end connectivity. SR standardization is driven jointly by vendors and service

providers. Our work is placed in the context of the SR instantiation over the MPLS

data plane (i.e., SR-MPLS). SR simple control plane does not require new protocols,

rather it extends existing and well-established routing protocols such as OSPF, ISIS,

and BGP-LS. Consequently, the deployment of SR-MPLS requires only a software

upgrade, this will speed up SR deployment and encourages service providers to adopt

it as no big investment in hardware is required. Ultimately, SR-MPLS is projected

to become the defacto standard to deploy MPLS-based WAN services. Therefore,

service providers look to replace the conventional MPLS control plan that relies on

84

RSVP-TE and LDP for signaling and distributing labels with SR-MPLS. Addition-

ally, SR fits in the new wave of Software Defined Networks where the forwarding is

assured by the SR control plane and the path computation, resource management

and optimization algorithms are performed by an SDN controller.

Field deployment of segment routing has already started. However, it is limited

to use cases such as fast reroute, and shortest path forwarding. In our work, we

focused on solving the problems that service providers face in order to achieve SR

traffic engineering. The main problem that we identified is the Maximum Stack Depth

(MSD) limitation which is a hardware limitation. In SR-MPLS, the path that a packet

has to go through is encoded as label stack. The MSD is the maximum number of

MPLS label a router can push onto a packet’s header. Thus, rendering a considerable

amount of network paths unusable. This prevents achieving traffic engineering and

leads to sub-optimal network resource utilization.

SR Path Efficient Label Stack Encoding

In this thesis, we studied SR path label stack encoding. Costumers request WAN

connection with specific QoS requirements. The demand is formulated based on the

traffic requirements in term of bandwidth, delay, jitter or loss. The service provider

may impose manually a path but in most cases, it relates on a path Computation

Engine (PCE) which implement intelligent computation algorithms and relies on its

traffic engineering database that maintains an up to date knowledge of the topology

and the available resources. The PCE receives the customer demand with its QoS

criteria, then computes a path that is may not be the IGP shortest path. Furthermore,

in traffic engineering, the PCE my trigger a network-wide resources optimization in

order to optimize the traffic distribution in the network, costumers flow paths are

rearranged to increase future demand acceptance rate. However, in both cases, we

end up with long paths that when encoded as label stacks exceed the MSD. Therefore,

optimization cannot be done. This seriously hampers the adoption of SR. In this work,

we mainly focus on solving this problem.

First, we focused on developing efficient encoding algorithms that work natively

and do not require any extensions, modify or alter the SR behavior. to solve this

problem two label stack algorithms. Both of which performed very well against real-

life network topologies. To evaluate their performance, we first solved the linear

program to satisfy the demand matrix which resulted in a set of paths, then we used

the two algorithms to reduce the size of the label stack. The resulted label stack is

85

the optimal smallest stack. The simulation results show an important decrease in

the number of paths encoded with label stack greater than the MSD. Encouraged

by the good results, we followed with an implementation of our algorithms in the

OpenDayLight SDN controller, which allowed us to demonstrate, even more, the

real-life application of such techniques.

A new label encoding approach

The encoding algorithms allowed to reduce the size of the SR path label stack. How-

ever, we still have some paths of the network that can not be encoded with a label

stack less or equals to the MSD. This led to propose a new label encoding approach.

This requires the introduction of a new segment type that is the Targeted Segment

Identifier (TSID). This TSID replaced a sub-set of labels in the label stack. TSIDs

are installed on specific network nodes. When the packet reaches that node the TSID

get replaced by labels it replaced initially in the stack. The TSIDs architecture re-

lays on the PCE to install new TSIDs additionally maintains a database of already

installed TSIDs. We proposed online algorithms and linear programs to minimize

the number of TSIDs installed into the network and the number of sessions the PCE

have to maintain with the network nodes. We couple the TSIDs architecture with

the encoding algorithms to achieve the best results.

5.1 Future Work

In this thesis, we tackled the problem of optimizing the encoding SR paths. In fact,

SR relies mainly on source routing for packets forwarding. Therefore, the encoding of

the SR paths is a key component of the technology, which demonstrates the impor-

tance of the contributions presented in this work. We provided solutions that reduce

the impact of the MSD hardware limitation and therefore allows for a maximum uti-

lization of the network resources. Consequently, This encourages service providers to

deploy SR and extend its use case to include traffic engineering.

Enhanced Fast Rerout using Segment Routing Path

encoding

The encoding of SR paths is going to play an important role in any current or future

use cases. Consequently, The proposed algorithms can be extended to enable and

86

power these use cases. Actually, we are currently working on adapting the encoding

algorithms presented here to the Fast Reroute protection paths. This work is inspired

by the TI-LFA (Topology-Independant Loop Free Alternate) standard [40]. In order

to anticipate a failure, protection paths are computed on the post-convergence topol-

ogy graph in case of that failure occurring. That raises new challenges that the new

encoding algorithms have to address such as forwarding loops that may occur due to

label stack encoding errors.

In TI-LFA, a node pre-computes a single post-convergence shortest path that will

be used upon a failure (e.g., link failure) to forward the traffic. However, this approach

does not consider the link utilization (i.e., load) when computing the protection a

path. This introduces a high risk of congestion due to switching the traffic impacted

by the failure to links that do not have enough capacity. The solution we are studying

is to consider the links load and to compute multiple protection paths. Upon a failure,

each path will be used to forward a pre-determined ratio of the failure traffic.

Segment Routing for Service Chaining

A second perspective we are considering is the encoding of service chaining paths.

Indeed, SR provides unprecedented flexibility to direct traffic flows through several

network functions natively. This fits well with Network Functions Virtualization

(NFV)s. As detailed in [71], in SR-MPLS, Each NFV is considered a segment and

therefore has a SID assigned to it. However, this would increase the size of the stack

to express the service path. Consequently, we are considering to extend our encoding

algorithms for the expression of service paths. This extended version needs to take into

account that the service labels cannot be reduced from the label stack. Additionally,

an NFV may change the traffic flow profile and therefore its QoS requirements, this

has to be reflected in the label stack in order to assure that the flow is handled with

appropriate QoS.

TSID for Inter-AS path stitching

Finally, the TSID architecture can be generalized for inter-Autonomous System (AS)

path encoding/stitching. Currently, a TSID is associated with a local network path.

This can be extended to include paths provided by remote AS. For example, a service

provider can send it traffic via a remote AS, without any knowledge of its network

87

topology graph, it has to assure that the top label is the TSID when the flow packets

reach the remote AS ingress node.

88

Publications

1. Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. Label

encoding algorithm for mpls segment routing. In Network Computing and Ap-

plications (NCA), 2016 IEEE 15th International Symposium on, pages 113–117.

IEEE, 2016

2. Olivier Dugeon, Rabah Guedrez, Samer Lahoud, and Géraldine Texier. Demon-

stration of segment routing with sdn based label stack optimization. In Innova-

tions in Clouds, Internet and Networks (ICIN), 2017 20th Conference on, pages

143–145. IEEE, 2017

3. Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. A new

method for encoding mpls segment routing te paths. In Network of the Future

(NOF), 2017 8th International Conference on th, pages 58–65. IEEE, 2017

Posters and Demonstrations

1. Rabah Guedrez and Tantsura Jeff. The critical role of maximum sid depth

(msd) hardware limitations in segment routing ecosystem and how to work

around those. SDN+MPLS+NFV 2017 world congress, 2017

2. Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. Demon-

stration of segment routing with sdn based label stack optimization. North

American Network Operators’ Group (NANOG), 2017

3. Rabah Guedrez and Tantsura Jeff. The critical role of maximum sid depth

(msd) hardware limitations in segment routing ecosystem and how to work

around those. NANOG 2017, 2017

4. Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. Poster:

Efficient encoding of segment routing paths. Orange Labs doctoral students

day, 2017

89

Appendices

90

Appendix A

Segment Routing over IPv6 Data

Plane

SR instantiation over the IPv6 data plane (SR-IPv6) uses IPv6 addresses as Segment

IDs and the SRGB represents the pool of routable IPv6 addresses in the SR domain.

Consequently, all the SIDs are globally significant IPv6 addresses.

SR-MPLS does not require any modification to the MPLS data plane. However,

for SR-IPv6 to support source routing, the IPv6 header is extended and a special

behavior is defined. This means that service providers may have to buy new hard-

ware in order to deploy SR-IPv6 because equipment vendors use Application-Specific

Integrated Circuits (ASICs) to do packet processing.

In SR-MPLS in order to process and forward the packet to the next segment

(topological or service/application-based), the node has to POP (NEXT) the top

label, leading to gradually lose the SR path as the packet goes through the network.

In the SR-IPv6, the SR path encoded into the packet header is preserved in the IPv6

packet header when going through the network. Thus, the full path travels with the

packet to its destination. Therefore, at any point of the path, the current node can

determine the ingress and egress nodes of the packet as well as all intermediate nodes.

Several deployment scenarios can be identified for the SR-IPv6. For example,

where the MPLS data plane is not available, or combined with the MPLS data plane:

the core network implements the SR-MPLS while the home networks or the data

center deploy the SR-IPv6.

A.0.1 SR-IPv6 Terminology

SR-IPv6 requires the adaptation of the generic building blocks of the SR architecture

to the IPv6 data plane. The concepts of the SR architecture are implemented for the

SR-IPv6 data plane as follows:

91

• The SRGB is the IPv6 addresses space reserved for the SR domain. Those

addresses are routable by all the SPRING nodes.

• An SID is an IPv6 address.

• The Prefix-SID is an IPv6 address, routable by all the SPRING nodes.

• The Global SID is an IPv6 address within the SRGB. All the SPRING nodes

must be capable of processing a global SID.

• The Local SID is the IPv6 addresses that are outside the SRGB, i.e., not

routable. Only the node advertising it is able to process it.

• The Node-SID is an IPv6 address of the node’s loopback interface. It is a

routable address in the SR domain, therefore, a Node-SID is considered as a

global SID.

• The Adj-SID is an IPv6 address of a node interface. By default, it is advertised

as a local SID, unless specified otherwise.

A.0.2 Segment Routing Header

With the deprecation of the type 0 Routing Header (RH0) [25], IPv6 nodes had

no other method to source route their packets. For this reason, the IETF 6MAN

WG defined the new Segment Routing Header (SRH) [27] (Type 4 is suggested to

Internet Assigned Numbers Authority (IANA)). This enables IPv6 nodes to source

route their packets by listing the IPv6 addresses of the intermediate nodes loopbacks

and interfaces. SRH uses the HMAC security mechanism [78] in order to avoid the

security flows similar to RH0.

The SRH depicted in Fig. A.1, maintains the list of segments that compose the

SR path as a list of IPv6 addresses inside the Segment List[n] field. The segments

are encoded in the Segment List[n] in a reverse order. Example: for an SR path

composed of n segment, Segment List[0] contains the last segment of the SR path

and the Segment List[n− 1] contains the first one.

92

Version Traffic Flow Flow Label

Payload Length Next Header Hop Limit

IPv6 SA (Source Address)

IPv6 DA (Destination Address)

Next Header Hdr Ext Len Routing Type Segments Left

Segment List[0]

First Segment HMAC Key ID

……..

Optional SRH Type Length Value objects (TLVs)

Segment List[n-1]

Segment List[1] S
R
H

IP
V
6
 h

e
a
d
e
r

C P O A H
Flags

Figure A.1: Header of IPv6 packet with Segment Routing

The two pointers Segments Left and First Segment are used to go through the

Segment List:

• Segments Left is an index used to point to the active SID in the SR path:

Segment List[Segments Left] == active SID. Initially, it points to the first

SID and its value is set to N − 1, where N is the number of SIDs that compose

the SR path. After a segment is processed, the pointer gets decremented to

point to the next one to be inspected.

• First Segment is an index that always points to the first SID of the SR path.

Initially, its value is set to N − 1.

The flag field encapsulates several flags, each flag has an associated action that

needs to be performed over the packet. For example, the Clean-up flag is the first bit

in the Flags field. It indicates that the SRH is inserted into the client packet header

according to Fig. A.2 (a). Consequently, the node prior to the last segment of the

SR path knows that it has to remove the SRH. This behavior is similar to PHP in

MPLS.

SRH Type Length Value (TLVs): SRH may include several additional information

encoded as TLVs, each has its own role and meaning. The use of a TLV format makes

93

extending the SRH easier and more modular. One of the important defined TLVs is

the HMAC TLV. The presence of the optional HMAC is indicated by the h-flag in the

flags field. The service provider may choose to make it obligatory for all the traffic

generated from outside its network to have a valid HMAC. In fact, HMAC is used to

ensure that only trusted nodes from outside the service provider network participate

in SR, nodes configured with a pre-shared key can send traffic into the service provider

network, the use of HMAC eliminates the source routing security threats cause of the

deprecation of the RH0 described in [25]. The HMAC is the output of a hashing

algorithm [78] performed over the packet header, the ingress nodes of the service

provider network drop traffic with invalid HMAC. Traffic generated from inside the

operator’s network (e.g., by provider edge and transit nodes) is not required to add

an HMAC TLV into the SRH, because service provider SPRING nodes are considered

as trusted.

A.0.3 SR-IPv6 forwarding operations

SPRING nodes can perform the following set of operations on the client packets:

• PUSH: It is performed by the ingress nodes to encode the SRH into the packet.

Two methods may be used to perform the push operation:

1. The SRH is added at the end of the IPv6 extension header of the client

packet as shown in Fig. A.2 (a).

2. The client packets get encapsulated in a new IPv6 packet. The SRH is

carried in the extended header of newly added IPv6 header as shown in

Fig. A.2 (b), and this option allows service providers to tunnel the client

traffic through the network without any changes.

Intermediate nodes may perform the push operation in order to add a list of

IPv6 addresses to existing SRH, for rerouting and protection purposes. After

each PUSH operation, the pointer Segments Left is reset to point to the bottom

of the stack (Segment List[N-1]).

94

IPv6 Header

Client packet

Added by the ingress

SRH
Extension

header Payload

Client packet

Added by the Ingress

Original IPv6 Header PayloadOuter IPv6

Header

Extension

header
SRH

(a) (b)

Figure A.2: illustrates how the SRH can be added to a client IPv6 packet :
a) SRH added at the end of the original IPv6 packet extension header.
b) client packet is encapsulated into a new IPv6 packet, the SRH is added into the
extension header of the new IPv6 packet

• CONTINUE: it is the regular IPv6 forwarding operation, which is based on the

DA located in the IPv6 header.

• NEXT: It is performed when the DA of the received packet belongs to the cur-

rent node (e.g., matches its loopback address). Fig. A.3 illustrates its execution

process. Once a packet is received, the node starts at step 100 by checking if

the packet’s DA belongs to itself or not. If NO, the packet is forwarded based

on that DA (i.e., no need to process the SRH). If YES, that means that the

packet’s DA belongs to the current node. At step 200, the node starts pro-

cessing the SRH. At step 201, the node checks if the H-flag if set, if Yes, then

the HMAC TLV is present in the SRH. At step 211, the node then checks the

validity of the HMAC field (i.e., the packet is generated from a trusted source).

If the HMAC is invalid, the packet is dropped. At step 202, the node checks

if there are Segments Left in the SR path by checking if the Segments Left >

0. At step 203, the node decrements the Segments Left pointer by one. At step

204, the packet DA is replaced by the one pointed to by Segments Left in the

Segment List i.e., DA = Segment List [Segments Left]. At step 205, check if the

Segments Left pointer is equal to zero. If YES, the active segment is the last

one in the SR path. At step 206, the node checks if the c-flag is set. If Yes, the

SRH has to be removed before sending the packet to the last segment. Finally,

the packet is forwarded based on its DA.

95

Packet P received with
SRH

Does the DA belongs to
the current node ?

Segments_Left > 0

100

Yes

Process the SRH

Segments_Left - 1

Yes

DA = Segment_list [Segments_Left]

NO

200

202

201

No

Drop the packet

H-flac is set?
Yes

Segments_Left == 0

Yes

SRH clean-up flag is
set?

Remove (SRH or
SR IPv6 header

No

Yes

CONTINUE (Forward packet
based on DA)

No (i.e., Segments_Left == 0)

Ignore the SRH

203

204

205

206

207

300

No

Valide HMAC?
No

Yes

211

Figure A.3: State Machine of IPv6 node forwarding behavior when using Segment
Routing

96

Let us see in Fig. A.4 how PE1 choses to forward the SR-IPv6 lient traffic over the

path: PE1→ P6→ P5→ P3→ PE4. Therefore, PE1 encapsulates client packets

in IPv6 packets as shown in Fig. 2.3, the SRH is carried in the newly added header.

Segments List field of the SRH carries the IPv6 addresses that compose the SR path,

The SR path may be expressed as a loose or a strict path: the strict path for this

example would be PE1→ P6→ P5→ P3→ PE4 where all the intermediate nodes

are listed in the Segments List field, a loose path only lists the intermediate nodes

that are necessary to express the initial SR path. in order to reduce the size of the

SR path the node’s routing table (or the shortest path tree of a centralized controller)

can be used. For example, PE1’s routing table has the shortest path between PE1

and P5 is through P6, this information can be used to express the initially computed

SR path as PE1→ P5→ P3→ PE4, the loose path represents the same topological

path as the strict one i.e., PE1→ P6→ P5→ P3→ PE4.

P2

P6 P5

P3

PE4PE1CE1 CE2

10

10

10

10

10

10

10

1515
PKT PKT

Match FEC x

PUSH(SRH)

PKT

@IPv6 P5

@IPv6 P3

@IPv6 PE4

FS

SL

DA = P5

PKT

@IPv6 P5

@IPv6 P3

@IPv6 PE4

FS

SL

DA = P3

PKT

@IPv6 P5

@IPv6 P3

@IPv6 PE4

FS

SL

DA = PE4

PKT

PKT

Remove SRH

@IPv6 P5

@IPv6 P3

@IPv6 PE4

FS

SL

DA = PE4

Figure A.4: Example of Segment Routing path when using IPv6 data plane

The fields in SRH have these initial values: DA = P5 (i.e., take the shortest path

97

to reach P5), Segment list [PE4, P3, P5], Segments Left = 2 (points to the active

segment: P5), First Segment = 2 (always points to the First Segment: P5).

PE1 sets the packets DA to P5’s IPv6 address. From PE1’s routing table, the

next hop to reach P5 is P6, PE1 − P6 direct link is used to forward the packets.

At P6, the node detects that the packets are not destined to itself (DA != P6).

Therefore, P6 forward the packets to P5 via the direct link. At P5, the node detects

that the packets are destined to itself (DA == P5), P5 execute the CONTINUE

operation (depicted in Fig. A.3.): it decrements the pointer Segments Left (i.e.,

Segments Left == 1) which now points to P3 (i.e., Segments Left [1] == P3),

then copies the address of P3 in the DA field and forwards the packet based on that

address. The same process is repeated at P3. At PE4, Segments Left value is 0,

based on that PE4 conclude that it is the last segment, then removes the SR IPv6

header including the SRH before forwarding the packet using its original DA to CE2.

98

Acronyms

6man IPv6 Maintenance

Adj-SID Adjacency Segment

ASIC Application-Specific Integrated Circuits

BGP Border Gateway Protocol

BGP-LS BGP Link State

CE Customer Edge

CLI Command Line Interface

DA Destination Address

DPI Deep Packet Inspection

DSR Dynamic Source Routing

ECMP Equal-cost multi-path

EL Entropy Labels

ENTC European Advanced Networking Test Center

FRR Fast Reroute

HMAC key-hashed message authentication code

IETF Internet Engineering Task Force

IGP Internal Gateway Protocol

99

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISIS IS-IS for IP Internets

LDP Label Distribution Protocol

LER Label Edge Router

LFIB Label Forwarding Information Base

LSA Link State Advertisement

LSP Label Switched Path

LSR Label Switching Routers

LSRR Loose Source and Record Route

MP-BGP Multi-Protocol BGP

MPLS Multi-Protocol Label Switching

MPLS-TE MPLS Traffic Engineering

MSD Maximum SID Depth

Node-SID Node Segment

OAM Operation and Maintenance

OSPF Open Shortest Path First

PCC Path Computation Clients

PCE Path Computation Element

PCEP PCE communication Protocol

PE Provider Edge Router

PHP Penultimate hop popping

PMS Path Monitoring System

100

Prefix-SID Prefix Segment

QoS Quality of Service

RSVP Resource Reservation Protocol

RSVP-TE Resource Reservation Protocol - Traffic Engineering

RTT Round-Trip Time

SID Segment Identifier

SPF Shortest Path First

SPRING Source Packet Routing in Networking

SR Segment Routing

SR-IPv6 Segment Routing over IPv6 data plane

SR-MPLS Segment Routing over MPLS data plane

SRGB Segment Routing Global Block

SRH Segment Routing Header

SRMS Segment Routing Mapping Server

SRP Source-Routed Path

SSRR Strict Source and Record Route

TE Traffic Engineering

TED Traffic Engineering Database

TLV Type Length Value

VPN Virtual private network

VRF Virtual Routing Function

WG Working Group

101

Bibliography

[1] Yakov Rekhter, Alex Conta, Guy Fedorkow, Eric Rosen, Dino Farinacci, and

Tony Li. MPLS Label Stack Encoding. RFC 3032, March 2013.

[2] Kireeti Kompella and Yakov Rekhter. Label Switched Paths (LSP) Hierarchy

with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering

(TE). RFC 4206, October 2005.

[3] Harmen van der Linde and Thomas Nadeau. MPLS/BGP Layer 3 Virtual Private

Network (VPN) Management Information Base. RFC 4382, February 2006.

[4] Siva Sivabalan, Jan Medved, Clarence Filsfils, Victor Lopez, Jeff Tantsura, Wim

Henderickx, Edward Crabbe, and Jonathan Hardwick. PCEP Extensions for

Segment Routing. Internet-Draft draft-ietf-pce-segment-routing-07, Internet En-

gineering Task Force, March 2016. Work in Progress.

[5] Evgeny Tantsura and Gregory Mirsky. Using border gateway protocol to expose

maximum segment identifier depth to an external application, January 5 2017.

US Patent App. 14/846,342.

[6] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–

Survivable Network Design Library. In Proceedings of the 3rd International

Network Optimization Conference (INOC 2007), Spa, Belgium, April 2007.

http://sndlib.zib.de, extended version accepted in Networks, 2009.

[7] Peter Psenak, Stefano Previdi, Clarence Filsfils, Hannes Gredler, Rob Shakir,

Wim Henderickx, and Jeff Tantsura. OSPF Extensions for Segment Routing.

Internet-Draft draft-ietf-ospf-segment-routing-extensions-25, Internet Engineer-

ing Task Force, April 2018. Work in Progress.

[8] Stefano Previdi, Les Ginsberg, Clarence Filsfils, Ahmed Bashandy, Hannes

Gredler, Stephane Litkowski, Bruno Decraene, and Jeff Tantsura. IS-IS Ex-

102

tensions for Segment Routing. Internet-Draft draft-ietf-isis-segment-routing-

extensions-19, Internet Engineering Task Force, July 2018. Work in Progress.

[9] Stefano Previdi, Peter Psenak, Clarence Filsfils, Hannes Gredler, Mach Chen,

and Jeff Tantsura. BGP Link-State extensions for Segment Routing. Internet-

Draft draft-gredler-idr-bgp-ls-segment-routing-ext-01, Internet Engineering Task

Force, December 2015. Work in Progress.

[10] Adrian Farrel, Olufemi Komolafe, and Seisho Yasukawa. An Analysis of Scaling

Issues in MPLS-TE Core Networks. RFC 5439, October 2015.

[11] Internet Qos: Architectures and Mechanisms for Quality of Service. Morgan

Kaufmann Publishers In, 2001.

[12] George Swallow, Lou Berger, Der-Hwa Gan, Franco Tommasi, Simone Molendini,

and Ping Pan. RSVP Refresh Overhead Reduction Extensions. RFC 2961, March

2013.

[13] Alia Atlas, George Swallow, and Ping Pan. Fast Reroute Extensions to RSVP-TE

for LSP Tunnels. RFC 4090, October 2015.

[14] Stefano Previdi, Clarence Filsfils, Bruno Decraene, Stephane Litkowski, Martin

Horneffer, and Rob Shakir. Source Packet Routing in Networking (SPRING)

Problem Statement and Requirements. RFC 7855, May 2016.

[15] Clarence Filsfils, Stefano Previdi, Bruno Decraene, Stephane Litkowski, and Rob

Shakir. Segment Routing Architecture. Internet-Draft draft-ietf-spring-segment-

routing-08, Internet Engineering Task Force, May 2016. Work in Progress.

[16] Clarence Filsfils, Nagendra Kumar Nainar, Carlos Pignataro, Juan Camilo Car-

dona, and Pierre Francois. The segment routing architecture. In 2015 IEEE

Global Communications Conference (GLOBECOM), pages 1–6. IEEE, 2015.

[17] Interoperability feasibility showcase 2015 white paper. MPLS SDN World

Congress, 2015.

[18] Internet Engineering Task Force. RFC 791 Internet Protocol - DARPA Inernet

Programm, Protocol Specification, September 1981.

[19] Eric Rosen and Ross Callon. Multiprotocol Label Switching Architecture. RFC

3031, March 2013.

103

[20] Dr. Steve E. Deering. Internet Protocol, Version 6 (IPv6) Specification. RFC

2460, March 2013.

[21] Dave A. Maltz and David C. Johnson. The Dynamic Source Routing Protocol

(DSR) for Mobile Ad Hoc Networks for IPv4. RFC 4728, March 2013.

[22] Dr. Deborah Estrin, Dr. Tony Li, Yakov Rekhter, Kannan Varadhan, and

Daniel M.A. Zappala. Source Demand Routing: Packet Format and Forwarding

Specification (Version 1). RFC 1940, March 2013.

[23] Fernando Gont. Security Assessment of the Internet Protocol Version 4. RFC

6274, October 2015.

[24] Fernando Gont, R. Atkinson, and Carlos Pignataro. Recommendations on Fil-

tering of IPv4 Packets Containing IPv4 Options. RFC 7126, October 2015.

[25] George Neville-Neil, Pekka Savola, and Joe Abley. Deprecation of Type 0 Routing

Headers in IPv6. RFC 5095, October 2015.

[26] David Culler, Jonathan Hui, JP Vasseur, and Vishwas Manral. An IPv6 Routing

Header for Source Routes with the Routing Protocol for Low-Power and Lossy

Networks (RPL). RFC 6554, October 2015.

[27] Stefano Previdi, Clarence Filsfils, Brian Field, Ida Leung, J. Linkova, Ebben

Aries, Tomoya Kosugi, Eric Vyncke, and David Lebrun. IPv6 Segment Routing

Header (SRH). Internet-Draft draft-ietf-6man-segment-routing-header-01, Inter-

net Engineering Task Force, March 2016. Work in Progress.

[28] Philip A. Shafer. An Architecture for Network Management Using NETCONF

and YANG. RFC 6244, October 2015.

[29] Stephane Litkowski, Yingzhen Qu, and Jeff Tantsura. YANG Data Model for

Segment Routing. Internet-Draft draft-ietf-spring-sr-yang-02, Internet Engineer-

ing Task Force, March 2016. Work in Progress.

[30] Clarence Filsfils, Stefano Previdi, Ahmed Bashandy, Bruno Decraene, and

Stephane Litkowski. Segment Routing interworking with LDP. Internet-

Draft draft-ietf-spring-segment-routing-ldp-interop-09, Internet Engineering

Task Force, September 2017. Work in Progress.

104

[31] Alex D. Zinin, Igor Bryskin, and Lou Berger. The OSPF Opaque LSA Option.

RFC 5250, October 2015.

[32] Luc De Ghein. MPLS Fundamentals. Cisco Press, 2006.

[33] Alessio Giorgetti, Piero Castoldi, Filippo Cugini, Jeroen Nijhof, Francesco

Lazzeri, and Gianmarco Bruno. Path encoding in segment routing. In 2015 IEEE

Global Communications Conference (GLOBECOM), pages 1–6. IEEE, 2015.

[34] Francesco Lazzeri, Gianmarco Bruno, Jeroen Nijhof, Alessio Giorgetti, and Piero

Castoldi. Efficient label encoding in segment-routing enabled optical networks. In

Optical Network Design and Modeling (ONDM), 2015 International Conference

on, pages 34–38. IEEE, 2015.

[35] Hannes Gredler, Clarence Filsfils, Stefano Previdi, Bruno Decraene, Martin

Horneffer, and Pushpasis Sarkar. Anycast Segments in MPLS based Segment

Routing. Internet-Draft draft-psarkar-spring-mpls-anycast-segments-02, Internet

Engineering Task Force, April 2016. Work in Progress.

[36] Clarence Filsfils, Stefano Previdi, Ahmed Bashandy, Bruno Decraene, and

Stephane Litkowski. Segment Routing interworking with LDP. Internet-

Draft draft-ietf-spring-segment-routing-ldp-interop-01, Internet Engineering

Task Force, April 2016. Work in Progress.

[37] Chris Bowers, Hannes Gredler, and Uma Chunduri. Advertising LSPs with

Segment Routing. Internet-Draft draft-bowers-spring-advertising-lsps-with-sr-

02, Internet Engineering Task Force, November 2015. Work in Progress.

[38] John Drake, Shane Amante, Wim Henderickx, Lucy Yong, and Kireeti Kompella.

The Use of Entropy Labels in MPLS Forwarding. RFC 6790, October 2015.

[39] Kireeti Kompella, Siva Sivabalan, Stephane Litkowski, Rob Shakir, Sriganesh

Kini, and jefftant@gmail.com. Entropy labels for source routed tunnels with

label stacks. Internet-Draft draft-ietf-mpls-spring-entropy-label-03, Internet En-

gineering Task Force, April 2016. Work in Progress.

[40] Clarence Filsfils, Ahmed Bashandy, Bruno Decraene, and Pierre Francois.

Topology Independent Fast Reroute using Segment Routing. Internet-Draft

draft-francois-spring-segment-routing-ti-lfa-02, Internet Engineering Task Force,

February 2016. Work in Progress.

105

[41] Luyuan Fang. LDP IGP Synchronization. RFC 5443, May 2016.

[42] A Sgambelluri, F Paolucci, A Giorgetti, F Cugini, and P Castoldi. Experimental

demonstration of segment routing. Journal of Lightwave Technology, 34(1):205–

212.

[43] Luca Davoli, Luca Veltri, Pier Luigi Ventre, Giuseppe Siracusano, and Stefano

Salsano. Traffic engineering with segment routing: Sdn-based architectural de-

sign and open source implementation. In 2015 Fourth European Workshop on

Software Defined Networks, pages 111–112. IEEE, 2015.

[44] A Sgambelluri, A Giorgetti, F Cugini, G Bruno, F Lazzeri, and P Castoldi.

First demonstration of sdn-based segment routing in multi-layer networks. In

Optical Fiber Communications Conference and Exhibition (OFC), 2015, pages

1–3. IEEE, 2015.

[45] A Sgambelluri, F Paolucci, A Giorgetti, F Cugini, and P Castoldi. Sdn and pce

implementations for segment routing. In Networks and Optical Communications-

(NOC), 2015 20th European Conference on, pages 1–4. IEEE, 2015.

[46] Jan Medved, Ina Minei, Edward Crabbe, and Robert Varga. PCEP Extensions

for Stateful PCE. Internet-Draft draft-ietf-pce-stateful-pce-14, Internet Engi-

neering Task Force, March 2016. Work in Progress.

[47] Luca Davoli, Luca Veltri, Pier Luigi Ventre, Giuseppe Siracusano, and Stefano

Salsano. Traffic engineering with segment routing: Sdn-based architectural de-

sign and open source implementation.

[48] Kireeti Kompella and George Swallow. Detecting Multi-Protocol Label Switched

(MPLS) Data Plane Failures. RFC 4379, October 2015.

[49] Thomas Nadeau, Rahul Aggarwal, Kireeti Kompella, and George Swallow. Bidi-

rectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs).

RFC 5884, October 2015.

[50] Nagendra Kumar, Carlos Pignataro, Nobo Akiya, Ruediger Geib, Greg Mirsky,

and Stephane Litkowski. OAM Requirements for Segment Routing Net-

work. Internet-Draft draft-ietf-spring-sr-oam-requirement-01, Internet Engineer-

ing Task Force, December 2015. Work in Progress.

106

[51] Ruediger Geib, Clarence Filsfils, Carlos Pignataro, and Nagendra Kumar. A

Scalable and Topology-Aware MPLS Dataplane Monitoring System. Internet-

Draft draft-ietf-spring-oam-usecase-03, Internet Engineering Task Force, April

2016. Work in Progress.

[52] Eric C. Rosen and Loa Andersson. Framework for Layer 2 Virtual Private Net-

works (L2VPNs). RFC 4664, September 2006.

[53] Jeff Tantsura, Uma Chunduri, Sam Aldrin, and Peter Psenak. Signaling MSD

(Maximum SID Depth) using OSPF. Internet-Draft draft-ietf-ospf-segment-

routing-msd-13, Internet Engineering Task Force, May 2018. Work in Progress.

[54] Jeff Tantsura, Uma Chunduri, Sam Aldrin, and Les Ginsberg. Signaling

MSD (Maximum SID Depth) using IS-IS. Internet-Draft draft-ietf-isis-segment-

routing-msd-12, Internet Engineering Task Force, May 2018. Work in Progress.

[55] Siva Sivabalan, Clarence Filsfils, Jeff Tantsura, Wim Henderickx, and Jonathan

Hardwick. PCEP Extensions for Segment Routing. Internet-Draft draft-ietf-pce-

segment-routing-11, Internet Engineering Task Force, November 2017. Work in

Progress.

[56] Jeff Tantsura, Uma Chunduri, Gregory Mirsky, and Siva Sivabalan. Signaling

Maximum SID Depth using Border Gateway Protocol Link-State. Internet-Draft

draft-ietf-idr-bgp-ls-segment-routing-msd-01, Internet Engineering Task Force,

October 2017. Work in Progress.

[57] B. Fortz and M. Thorup. Internet traffic engineering by optimizing ospf weights.

In Proceedings IEEE INFOCOM 2000. Conference on Computer Communica-

tions. Nineteenth Annual Joint Conference of the IEEE Computer and Commu-

nications Societies (Cat. No.00CH37064), volume 2, pages 519–528 vol.2, 2000.

[58] Josselin Vallet and Olivier Brun. Online ospf weights optimization in ip networks.

Comput. Netw., 60:1–12, February 2014.

[59] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable

Network Design Library. Networks, 55(3):276–286, 2010.

[60] Michal Pióro and Deepankar Medhi. Routing, flow, and capacity design in com-

munication and computer networks. Elsevier, 2004.

107

[61] Segment routing configuration guide, cisco ios xe fuji 16.7.x - advertise

maximum sid depth by is-is and ospf to bgp-ls [cisco asr 1000 series aggre-

gation services routers] - cisco. https://www.cisco.com/c/en/us/td/docs/

ios-xml/ios/seg_routing/configuration/xe-16-7/segrt-xe-16-7-book/

sr-ad-max-SID-depth-is-is-ospf-bgp-ls.html. (Accessed on 05/28/2018).

[62] Opendaylight controller:rest reference and authentication - opendaylight

project. https://wiki.opendaylight.org/view/OpenDaylight_Controller:

REST_Reference_and_Authentication. (Accessed on 05/28/2018).

[63] Cisco. Pathman-sr. https://github.com/CiscoDevNet/pathman-sr, 2016.

[64] MSWindows NT kernel description. https://frrouting.org/. Accessed: 2018-

11-10.

[65] Peter Psenak, Stefano Previdi, Clarence Filsfils, Hannes Gredler, Rob Shakir,

Wim Henderickx, and Jeff Tantsura. OSPF Extensions for Segment Routing.

Internet-Draft draft-ietf-ospf-segment-routing-extensions-25, Internet Engineer-

ing Task Force, April 2018. Work in Progress.

[66] Enke Chen, Tony J. Bates, and Ravi Chandra. BGP Route Reflection: An

Alternative to Full Mesh Internal BGP (IBGP). RFC 4456, April 2006.

[67] FRRouting (FRR). Frrouting (frr) is an ip routing protocol suite for linux and

unix platforms. https://github.com/FRRouting/frr. (Accessed: 2018-11-10).

[68] Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. Label

encoding algorithm for mpls segment routing. In Network Computing and Ap-

plications (NCA), 2016 IEEE 15th International Symposium on, pages 113–117.

IEEE, 2016.

[69] Siva Sivabalan, Clarence Filsfils, Jeff Tantsura, Wim Henderickx, and Jonathan

Hardwick. PCEP Extensions for Segment Routing. Internet-Draft draft-ietf-

pce-segment-routing-14, Internet Engineering Task Force, October 2018. Work

in Progress.

[70] Siva Sivabalan, Jeff Tantsura, Clarence Filsfils, Stefano Previdi, Jonathan Hard-

wick, and Dhruv Dhody. Carrying Binding Label/Segment-ID in PCE-based

Networks. Internet-Draft draft-sivabalan-pce-binding-label-sid-04, Internet En-

gineering Task Force, March 2018. Work in Progress.

108

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-16-7/segrt-xe-16-7-book/sr-ad-max-SID-depth-is-is-ospf-bgp-ls.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-16-7/segrt-xe-16-7-book/sr-ad-max-SID-depth-is-is-ospf-bgp-ls.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-16-7/segrt-xe-16-7-book/sr-ad-max-SID-depth-is-is-ospf-bgp-ls.html
https://wiki.opendaylight.org/view/OpenDaylight_Controller:REST_Reference_and_Authentication
https://wiki.opendaylight.org/view/OpenDaylight_Controller:REST_Reference_and_Authentication
https://github.com/CiscoDevNet/pathman-sr
https://frrouting.org/
https://github.com/FRRouting/frr

[71] Francois Clad, Xiaohu Xu, Clarence Filsfils, daniel.bernier@bell.ca, Cheng Li,

Bruno Decraene, Shaowen Ma, Chaitanya Yadlapalli, Wim Henderickx, and Ste-

fano Salsano. Service Programming with Segment Routing. Internet-Draft draft-

xuclad-spring-sr-service-programming-00, Internet Engineering Task Force, July

2018. Work in Progress.

[72] Olivier Dugeon, Rabah Guedrez, Samer Lahoud, and Géraldine Texier. Demon-

stration of segment routing with sdn based label stack optimization. In Innova-

tions in Clouds, Internet and Networks (ICIN), 2017 20th Conference on, pages

143–145. IEEE, 2017.

[73] Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. A new

method for encoding mpls segment routing te paths. In Network of the Future

(NOF), 2017 8th International Conference on th, pages 58–65. IEEE, 2017.

[74] Rabah Guedrez and Tantsura Jeff. The critical role of maximum sid depth (msd)

hardware limitations in segment routing ecosystem and how to work around

those. SDN+MPLS+NFV 2017 world congress, 2017.

[75] Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. Demon-

stration of segment routing with sdn based label stack optimization. North

American Network Operators’ Group (NANOG), 2017.

[76] Rabah Guedrez and Tantsura Jeff. The critical role of maximum sid depth (msd)

hardware limitations in segment routing ecosystem and how to work around

those. NANOG 2017, 2017.

[77] Rabah Guedrez, Olivier Dugeon, Samer Lahoud, and Géraldine Texier. Poster:

Efficient encoding of segment routing paths. Orange Labs doctoral students day,

2017.

[78] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing

for Message Authentication. RFC 2104, March 2013.

109

Titre : Rendre possible l'ingénierie de trafic dans les réseaux avec routage par segment

Mots clés : Routage par segment, MPLS, ingénierie de trafic, SR-MPLS, PCE, RSVP-TE.

Résumé : La majorité́ des grands opérateurs
utilise la technologie MPLS pour gérer leur
réseau via des protocoles de signalisation et de
distributions de labels. Or, ces protocoles sont
complexes à déployer, à maintenir et la
résolution des pannes est souvent très difficile.
L’IETF a initié la standardisation d’une
architecture de routage par segments (Segment
Routing) s'appuyant sur un plan de contrôle
simple, léger, facile à gérer et instanciée sur
MPLS ou IPv6. Cette architecture repose sur le
concept de routage à la source, dans lequel l’en-
tête des paquets transporte les indications du
chemin à suivre pour atteindre sa destination.
Adapté aux cas d'usages simples et offrant
nativement une résistance aux pannes, les cas
d'usages plus complexes exigent de résoudre
des verrous technologiques pour lesquels nous
proposons plusieurs solutions.

Dans cette thèse effectuée au sein d’Orange
Labs, nous nous sommes intéressés à
l’instanciation de l’architecture Segment
Routing sur le plan de transfert MPLS et plus
particulièrement à l'ingénierie de trafic,
notamment avec réservation de ressources.
Nous avons proposé des solutions aux
problèmes liés à la limitation matérielle des
routeurs actuels ne permettant pas l'expression
de tous les chemins contraints. Ce travail est
divisé en deux parties : (i) la proposition
d’algorithmes de calcul et d’encodage de
chemins de routage par segment afin de
contourner les limitations matérielles. (ii) la
définition des exigences architecturales et la
construction d'une preuve de concept
fonctionnelle. Enfin, cette thèse propose de
nouvelles pistes d'études afin de consolider les
outils d'ingénierie de trafic pour le routage par
segment.

Title : Enabling Traffic Engineering Over Segment Routing.

Keywords : Segment Routing, Traffic Engineering, MPLS, SR-MPLS, PCE, RSVP-TE.

Abstract : Most major operators use MPLS
technology to manage their network via
signalling and label distribution protocols.
However, these protocols are complex to
deploy, maintain and troubleshooting is often
very difficult. The IETF has initiated the
standardization of a segment routing
architecture based on a simple control plane,
lightweight, easy-to-manage and instantiated on
MPLS or IPv6. This architecture is based on the
concept of source routing, in which the packet
header carries the indications of the path to
follow to reach its destination. Suitable for
simple use cases and natively resistant to
failure, more complex use cases require the
resolution of technological issues for which we
offer several solutions.

In this thesis carried out within Orange Labs,
we were interested in the instantiation of the
Segment Routing architecture on the MPLS
transfer plan and more particularly in traffic
engineering, particularly with resource
reservation. We have proposed solutions to the
problems related to the hardware limitation of
current routers that do not allow the expression
of all constrained paths. This work is divided
into two parts: (i) the proposal of algorithms for
computing and encoding segment routing
paths in order to bypass hardware limitations.
(ii) the definition of architectural requirements
and the construction of a functional proof of
concept. Finally, this thesis proposes new
research issues to consolidate traffic
engineering tools for segment routing.

	pdf2star-1569828683-2018IMTA0116_Guedrez-Rabah
	Algorithme native d'encodage de chemins SR
	Nouveau type de Segment: Target-SID
	Conclusion et Perspectives
	Introduction
	Segment Routing
	Introduction
	Source Routing
	Source Routing with IPv4
	Source Routing with IPv6
	Source Routing with MPLS

	Segment Routing Generic Concepts and Terminology
	Segments and Segment Identifiers
	Segment Routing Global Block SRGB
	Segments Global And Local Scope
	Active Segment
	Segment types
	Segment Routing Paths

	SPRING Node Configuration

	Segment Routing over the MPLS Data Plane
	Segment Routing MPLS Terminology
	SR-MPLS Global Segment Implementation
	SID Computation
	Forwarding Operations
	SR-MPLS Forwarding Entries Installation
	MPLS Routing Source-routed Path
	Anycast with SR-MPLS
	Interoperability and co-existence

	Use Cases
	Fast Reroute with Segment Routing
	IGP-Based MPLS Tunneling
	Segment Routing Traffic Engineering
	Monitoring and Measurement

	Concluding remarks

	Label Encoding Algorithm for MPLS Segment Routing
	Maximum SID Depth Signaling
	Related works
	Segment Routing Path Encoding
	Encoding types
	Encoding algorithms
	Strict Encoding
	SR-LEA Algorithm
	SR-LEA-A

	Simulation Results
	SR-LEA SDN based Implementation
	ELEANOR architecture
	Path Computation Module
	Label Stack Optimization Module

	Testbed Network Topology
	FRRouting-SR

	CONCLUSION

	A New Method For Encoding MPLS Segment Routing TE Paths
	Introduction
	Related Work
	Path Segmentation
	 Targeted SID Architecture

	Offline TSID Placement Models
	Offline Optimization of TSIDs Placement
	Offline Minimization of PCEP sessions
	Online Algorithms

	Experimental Results
	 OTO for TSIDs minimization
	OTO for PCEP sessions minimization

	CONCLUSION

	General Conclusion and future work
	Future Work

	Appendices
	Segment Routing over IPv6 Data Plane
	SR-IPv6 Terminology
	Segment Routing Header
	SR-IPv6 forwarding operations

	Conclusion
	Bibliography

	pdf2star-1569828785-2018IMTA0116_Guedrez-Rabah

