
HAL Id: tel-02301338
https://theses.hal.science/tel-02301338

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Performance Predictability in Cloud Data
Stores

Vikas Jaiman

To cite this version:
Vikas Jaiman. Improving Performance Predictability in Cloud Data Stores. Machine Learning [cs.LG].
Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM016�. �tel-02301338�

https://theses.hal.science/tel-02301338
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Vikas JAIMAN

Thèse dirigée par Vivien QUÉMA, Professeur, Grenoble INP,
et coencadrée par Sonia BEN MOKHTAR, Directrice de Recherche,
CNRS

préparée au sein du Laboratoire d’Informatique de Grenoble (LIG)
dans l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique (ED MSTII)

Improving Performance
Predictability in Cloud Data Stores
Amélioration de la prédictibilité des perfor-
mances pour les environnement de stockage
de données dans les nuages

Thèse soutenue publiquement le 30 avril 2019,
devant le jury composé de :

Monsieur Noël DE PALMA
Professeur, Université Grenoble Alpes, Président

Monsieur Laurent RÉVEILLÈRE
Professeur, Université de Bordeaux, Rapporteur

Monsieur Gaël THOMAS
Professeur, Telecom SudParis, Rapporteur

Monsieur Etienne RIVIÈRE
Professeur, UCLouvain, Examinateur

Monsieur Vivien QUÉMA
Professeur, Grenoble INP, Directeur de thèse

Madame Sonia BEN MOKHTAR
Directrice de Recherche, CNRS LIRIS, Co-Encadrant de thèse

To my parents.

Abstract

Today, users of interactive services such as e-commerce, web search have increasingly
high expectations on the performance and responsiveness of these services. Indeed,
studies have shown that a slow service (even for short periods of time) directly impacts
the revenue. Enforcing predictable performance has thus been a priority of major
service providers in the last decade. But avoiding latency variability in distributed
storage systems is challenging since end user requests go through hundreds of servers
and performance hiccups at any of these servers may inflate the observed latency. Even
in well-provisioned systems, factors such as the contention on shared resources or the
unbalanced load between servers affect the latencies of requests and in particular the
tail (95th and 99th percentile) of their distribution.
The goal of this thesis to develop mechanisms for reducing latencies and achieve per-
formance predictability in cloud data stores. One effective countermeasure for reducing
tail latency in cloud data stores is to provide efficient replica selection algorithms. In
replica selection, a request attempting to access a given piece of data (also called value)
identified by a unique key is directed to the presumably best replica. However, under
heterogeneous workloads, these algorithms lead to increased latencies for requests
with a short execution time that get scheduled behind requests with large execution
times. We propose Héron, a replica selection algorithm that supports workloads of
heterogeneous request execution times. We evaluate Héron in a cluster of machines
using a synthetic dataset inspired from the Facebook dataset as well as two real datasets
from Flickr and WikiMedia. Our results show that Héron outperforms state-of-the-art
algorithms by reducing both median and tail latency by up to 41%.
In the second contribution of the thesis, we focus on multiget workloads to reduce the
latency in cloud data stores. The challenge is to estimate the bottleneck operations and
schedule them on uncoordinated backend servers with minimal overhead. To reach this
objective, we present TailX, a task aware multiget scheduling algorithm that reduces
tail latencies under heterogeneous workloads. We implement TailX in Cassandra, a
widely used key-value store. The result is an improved overall performance of the cloud
data stores for a wide variety of heterogeneous workloads.

Keywords. Distributed storage, performance, scheduling.

5

Résumé

De nos jours, les utilisateurs de services interactifs comme le e-commerce, ou les
moteurs de recherche, ont de grandes attentes sur la performance et la réactivité de ces
services. En effet, les études ont montré que des lenteurs (même pendant une courte
durée) impacte directement le chiffre d’affaire. Avoir des performances prédictives est
donc devenu une priorité pour ces fournisseurs de services depuis une dizaine d’années.
Mais empêcher la variabilité dans les systèmes de stockage distribué est un challenge
car les requêtes des utilisateurs finaux transitent par des centaines de servers et les
problèmes de performances engendrés par chacun de ces serveurs peuvent influencer
sur la latence observée. Même dans les environnements correctement dimensionnés,
des problèmes comme de la contention sur les ressources partagés ou un déséquilibre
de charge entre les serveurs influent sur les latences des requêtes et en particulier sur la
queue de leur distribution (95ème et 99ème centile).
L’objectif de cette thèse est de développer des mécanises permettant de réduire les
latences et d’obtenir des performances prédictives dans les environnements de stockage
de données dans les nuages. Une contre-mesure efficace pour réduire la latence de
queue dans les environnements de stockage de données dans les nuages est de fournir
des algorithmes efficaces pour la sélection de réplique. Dans la sélection de réplique,
une requête tentant d’accéder à une information donnée (aussi appelé valeur) identifiée
par une clé unique est dirigée vers la meilleure réplique présumée. Cependant, sous
des charges de travail hétérogènes, ces algorithmes entraînent des latences accrues
pour les requêtes ayant un court temps d’exécution et qui sont planifiées à la suite de
requêtes ayant des long temps d’exécution. Nous proposons Héron, un algorithme de
sélection de répliques qui gère des charges de travail avec des requêtes ayant un temps
d’exécution hétérogène. Nous évaluons Héron dans un cluster de machines en utilisant
un jeu de données synthétique inspiré du jeu de données de Facebook ainsi que deux
jeux de données réels provenant de Flickr et WikiMedia. Nos résultats montrent que
Héron surpasse les algorithmes de l’état de l’art en réduisant jusqu’à 41% la latence
médiane et la latence de queue.
Dans la deuxième contribution de cette thèse, nous nous sommes concentrés sur les
charges de travail multi-GET afin de réduire la latence dans les environnements de
stockage de données dans les nuages Le défi consiste à estimer les opérations limitantes
et à les planifier sur des serveurs non-coordonnés avec un minimum de surcoût. Pour

7

atteindre cet objectif, nous présentons TailX, un algorithme d’ordonnancement de
tâches multi-GET qui réduit les temps de latence de queue sous des charges de travail
hétérogènes. Nous implémentons TailX dans Cassandra, une base de données clé-
valeur largement utilisée. Il en résulte une amélioration des performances globales des
environnements de stockage de données dans les nuages pour une grande variété de
charges de travail hétérogènes.

Mot clés. Stockage distribué, performance, planification.

8

Acknowledgements

I would like to express my gratitude towards my thesis supervisor, Prof. Vivien
Quéma who has been incredibly helpful throughout the long process of developing the
work in this thesis. I would like to thank him for his guidance, constant feedback and
encouragement throughout this work. I have learned a lot from him that helped me to
mature academically.

I would like to thank my co-supervisor Dr. Sonia Ben Mokhtar for mentoring me
during my PhD. Even though we were not in the same city but our regular long Skype
discussions to discuss research ideas encouraged me to work harder. She was always
willing to hear my half baked ideas and provided excellent guidance and feedback
which allowed me to explore new ideas.

A special thanks to Prof. Etienne Rivière for giving me the opportunity to work at
UCLouvain, Belgium during my PhD and provided me with much needed guidance
along the way. I really enjoyed the time spent over there. He was always willing to
discuss new ideas. It helped me to put the thesis in better shape.

Prof. Noël de Palma, for having done me the honor of chairing the jury of this thesis.
I would like to thank the other members of my committee as well: Laurent Réveillère
and Prof. Gaël Thomas; for agreeing to serve as the reviewer of my thesis and the
time and effort they have dedicated to the revision of this thesis. Their experience and
valuable feedback significantly helped in improving the final version of this work.

I also extend my sincere thanks to Dr. Lydia Y. Chen for her valuable inputs during
my research and collaboration on my paper. Her extensive knowledge of systems helped
me to improve my work.

This thesis would not have happened without the financial support of the LIG,
University Grenoble Alpes and UCLouvain, Belgium especially project fundings from
OCCIWARE, EBSIS, and DIONASYS.

I would like to thank my ERODS team members: Thomas, Renaud, Vania, Nicolas,
Didier, Ahmed, Amadou, Hugo, Jeremie, Jaafar, Matthieu, Vincent, Albin, Maha,
Nicolas, Soulaimane and Christopher who provided me a very beautiful working
atmosphere during my PhD. Our chit-chat during lunch and coffee breaks made my
PhD life easier. Also, my colleagues from INGI team at UCLouvain, Belgium: Raziel
and Sana; with whom I spent memorable time in Belgium.

I would like to thank Abhinav with whom I spent countless hours by discussing

9

research problems over the tea break. It was indeed an enjoyable time. My friends:
Shweta, Seema, Mishra, Preeti, Siddartha, Karthik and Amrit without them PhD life
would have turned different. They were beside me, encouraging me and make me feel
like home.

Finally, I would like to thanks my parents for their endless love and constant support
during all these years. Without them, it would have been an impossible task to complete.

10

Preface

This thesis presents the research conducted in the ERODS team at Laboratoire d’Inform-
atique de Grenoble, to pursue a Ph.D. in Computer Science from the doctoral school
“Mathématiques, Sciences et Technologies de l’Information, Informatique (ED MSTII)”
of the Université Grenoble Alpes, France. My research activities have been supervised
by Prof. Vivien Quéma (ERODS / Grenoble INP) and Dr. Sonia Ben Mokhtar (LIRIS
/ CNRS). Some of the works presented in this thesis have been done in collaboration
with Prof. Etienne Rivière, INGI department of Université catholique de Louvain
(UCLouvain), Belgium.

This thesis studies performance issues in key-value stores and provide algorithms for
improving performance under heterogeneous workloads.

While the second part of the thesis is currently under submission, contributions related
to first part led to the following publications:

• Vikas Jaiman, Sonia Ben Mokhtar, Vivien Quéma, Lydia Y. Chen, and Etienne
Rivière. "Héron: Taming tail latencies in key-value stores under heterogeneous
workloads". In Proceedings of the IEEE 37th Symposium on Reliable Distributed

Systems (SRDS), Salvador, Brazil Oct 2018, pp. 191–200.

11

Contents

1 Introduction 19

1.1 Thesis Objectives . 20
1.2 Contributions . 22
1.3 Thesis Organization . 23

2 Background and Problem Definition 25

2.1 Key-value stores . 26
2.1.1 Data model . 26
2.1.2 Distributed hash table . 26
2.1.3 Latency . 28
2.1.4 Data replication . 28
2.1.5 Data consistency . 28

2.2 Tail latency in key-value stores . 29
2.2.1 Replica selection . 29
2.2.2 Task-aware scheduling . 31

2.3 Workload heterogeneity is the norm 32
2.4 Summary . 33

3 Latency Aware Algorithm for Replica Selection 35

3.1 Replica selection in key-value stores 36
3.2 Performance of DS and C3 under heterogeneous workloads 37
3.3 Héron design and implementation 38

3.3.1 Challenges . 40
3.3.2 Load estimation . 42
3.3.3 Value size estimation . 42
3.3.4 Replica selection module . 46

3.4 Evaluation . 47
3.4.1 Experimental setup . 48
3.4.2 Héron on variable configurations of the synthetic dataset . . . 49
3.4.3 Real workloads . 55

3.5 Related Work . 57
3.5.1 Reducing tail latency through replica selection 58

13

CONTENTS

3.5.2 Taming latency in cluster environments 61
3.6 Summary . 63

4 Task-aware Scheduling for Improving Tail Latencies 65

4.1 Problem definition . 66
4.2 Related Work . 69

4.2.1 Network-specific . 70
4.2.2 Redundancy-specific . 70
4.2.3 Task-aware schedulers . 71
4.2.4 Request reissues and parallelism 73
4.2.5 Multiget scheduling . 73

4.3 Challenges . 75
4.3.1 Scheduling without complete knowledge is hard 75
4.3.2 Need for coordination . 76

4.4 TailX design and implementation . 76
4.4.1 Load estimation and replica selection 77
4.4.2 Request splitting . 78
4.4.3 Delay allowance policies . 78
4.4.4 Server selection . 80

4.5 Evaluation . 80
4.5.1 Experimental setup . 82
4.5.2 TailX on variable configurations of the synthetic dataset . . . 82

4.6 Summary . 89

5 Conclusions 91

5.1 Summary . 91
5.2 Lessons Learned . 93
5.3 Future Directions . 93

Bibliography 95

14

List of Figures

2.1 Distributed hash table implementation. 27
2.2 Replica selection in Cassandra. 30
2.3 Multiget requests in key-value stores. 32
2.4 Key-Value Table. 33

3.1 CDF of value sizes for WikiMedia (left) and Flickr (right) datasets. . . 37
3.2 Tail latency when varying the proportion of requests for large values

with DS and C3. 38
3.3 An example scenario illustrating the limitations of state-of-the-art solu-

tions. 39
3.4 Operating principle of Héron. 41
3.5 Cassandra placement strategy. 41
3.6 Load Estimation in Héron. 43
3.7 Example of requests read latencies. 44
3.8 Value Size Estimation . 44
3.9 Replica selection in key-value stores. 46
3.10 Maximum throughput attained across all scenarios. 49
3.11 Improvement of tail latency with Héron for different sizes of large values. 51
3.12 Improvement of Héron for different proportion of request for large values. 52
3.13 Improvement of Héron over the average of all heterogeneous workloads. 52
3.14 Median latency over different proportions of request for large values. . 53
3.15 Impact of head-of-line-blocking when small requests are queued behind

large requests. 55
3.16 WikiMedia Dataset . 56
3.17 Flickr Dataset . 57

4.1 An example scenario. Left:Requests assigned to server facing delayed
response time. Right:Procrastinate opsets into delay queue to take
benefits of delay allowance . 68

4.2 Overview of TailX. 76
4.3 Operating principle of TailX scheduling. 78

15

LIST OF FIGURES

4.4 Improvement of TailX over latency with different multiget request sizes
(80% multiget of size 5 and 20% multiget of size 100) for 1 million
operations . 83

4.5 Improvement of TailX over latency with different multiget request sizes
(80% multiget of size 5 and 20% multiget of size 100) for 10 million
operations . 84

4.6 Analysis of different latency percentiles for different multiget request
sizes (80% multiget of size 5 and 20% multiget of size 100) for 10
million operations . 84

4.7 Improvement of TailX over latency with different multiget request value
sizes (80% multiget requests have small values (1 KB) and rest 20%
multiget requests have 10% of large values) for 1 million operations . 85

4.8 Analysis of different latency percentiles for different multiget request
value sizes (80% multiget requests have small values (1 KB) and rest
20% multiget requests have 10% of large values) for 1 million operations 86

4.9 Improvement of TailX over latency with different multiget request value
sizes (80% multiget requests have small values (1 KB) and rest 20%
multiget requests have 20% of large values) for 1 million operations . 86

4.10 Analysis of different latency percentiles for different multiget request
value sizes (80% multiget requests have small values (1 KB) and rest
20% multiget requests have 20% of large values) for 1 million operations 87

4.11 Improvement of TailX over latency with different multiget request value
sizes (80% multiget requests have small values (1 KB) and rest 20%
multiget requests have 50% of large values) for 1 million operations . 88

4.12 Analysis of different latency percentiles for different multiget request
value sizes (80% multiget requests have small values (1 KB) and rest
20% multiget requests have 50% of large values) for 1 million operations 88

16

List of Tables

2.1 Replica selection strategies (adapted from [1]). 31

3.1 Héron absolute performance measurements. 50
3.2 Improvement of Héron over Median and Tail Latency with different

large request sizes . 50

4.1 Fraction of long jobs out of total jobs in heterogeneous workloads
consuming bulk of resources (adapted from [2]). 72

17

1
Introduction

Contents

1.1 Thesis Objectives . 20

1.2 Contributions . 22

1.3 Thesis Organization . 23

Today, users of online services such as e-commerce, web search have increasingly
high expectations on the performance and responsiveness of these services [3, 4].
Services which give responses quickly are more fluid and natural to users than services
which take time. A slow service directly impacts the revenue of its provider, even if
the performance drop is only for a short period of time [5]. Amazon has reported a
latency loss of 100ms causes loss of 1% in sales [6]. Similarly, Google reported that a
slowdown from 100ms to 400ms in page load time for Google search results led to a
decrease in user searches from 0.2% to 0.6% [4]. Therefore this underlines the fact that
performance has a major impact on revenues. Enforcing predictable performance is
a challenging task even for well-provisioned systems. End-user requests go through
hundreds of servers. Performance hiccups at any of these servers may dramatically
inflate the observed latency for some of these requests. For instance, measurements
from a real Google service [5] running in a cluster of 2,000 servers show that if one in
100 user requests gets slow (e.g., has a 1 second latency) while handled by one server
that is collecting responses from 100 other servers in parallel, then 63% of user requests
will take more than one second to execute. This problem is commonly known as the
tail latency problem where a fraction of latency measurements (such as 95th percentile,
99th percentile and more) incurred longest delay. For example, 99th percentile latency
defines the smallest latency of the 1% of largest latency values. Several studies [4,5,7,8]
show that in distributed environment latency distributions exhibit long-tail behaviors
(95th, 99th percentile etc.) and they affect the performance of large-scale systems.

19

1.1. THESIS OBJECTIVES

Managing tail latency is one of the primary challenges for large-scale Internet ser-
vices. Today’s modern data centers facing poor user experiences particularly interactive
services such as social networks and web search due to long tail behaviors.

However, to keep the tail latency low and guaranteeing predictable latency is a
very challenging task for service providers since the size of the system scales up when
the overall use increases [5, 7]. It is very difficult and impractical to eliminate all
sources of latency variability in a distributed environment where resources are being
shared [8]. This includes global resource sharing, maintenance activities, queuing,
power limits, garbage collection, energy management of latency variability which
skewed the performance [5]. Several approaches have been proposed to reduce tail
latency for the different components of large-scale distributed systems [2,7,9,10,11,12,
13, 14, 15, 16]. They include techniques such as reissuing requests, using preferential
resource allocation, leveraging parallelism for individual requests or sending redundant
requests.

Of the services used for building cloud applications, storage plays a fundamental
role for overall services tail latencies. Key-value stores are the dominant class of storage
solutions in this context. They emerged as a fundamental building block for cloud
applications to provide better scalability and performance in terms of microseconds
of latency and throughput. Replica selection strategies and scheduling algorithms are
often used to reduce tail latencies in key-value stores. We find that the impact of
these algorithms have been overlooked while working under heterogeneous workloads.
Therefore, we motivate our approach towards following directions: i) Improve the
performance through proposing better replica selection algorithms under heterogeneous
workloads, and ii) Proposing better scheduling strategies for multiget requests under
heterogeneous workloads.

1.1 Thesis Objectives

In this thesis, we seek to improve the performance of cloud data stores that facil-
itates online services. In particular, we narrowed our scope towards improving the
performance of key-value stores under heterogeneous workloads. Our objectives can be
summarized to:

• Objective 1: Towards designing replica selection algorithms to reduce tail laten-

cies under heterogeneous workloads.

Replica selection algorithms are often used to reduce tail latencies in key-value
stores. In a key-value store, each piece of data or value is replicated on multiple
servers for fault-tolerance. Replica selection strategies can help reducing tail
latency when the performance of these servers differ. Specifically, a request
attempting to access the value for a given key can be directed to the presumably
best replica, i.e. the one that is expected to serve the request with the smallest

20

latency. State-of-the-art replica selection algorithms that are Cassandra dynamic
snitching [17] and C3 [1] have been designed for workloads where requests access
values of the same size. An analysis of real-life key-value stores’ workloads (e.g.,
of Facebook’s Memcached deployment [18]) shows that this assumption does
not hold, as user requests typically access values of sizes ranging from 1 KB to
few MBs. We show in this thesis that under such workloads, the tail latency of
a key-value store using these algorithms increases dramatically compared to a
scenario where all values have the same size. The increase in tail latency ranges
from ×10 when clients access 1% of large values to ×126 when this proportion
reaches 20%.

The reason why existing algorithms do not perform well under heterogeneous
workloads is that fast requests accessing small values can get stuck behind slow
ones accessing large values. This can dramatically increase the latency of fast
requests, a phenomenon known as head-of-line-blocking [5]. Selecting the best
replica for a request, while preventing fast requests from being stuck behind slow
ones, requires addressing two challenges. First, when a request for a key arrives
at the entry-point of a key-value store, the size of the corresponding value is
not known. A first challenge is thus to be able to predict this size based on the
key with minimal operational overhead. Assuming that the size of values can be
correctly estimated at request time, a second challenge is to be able to choose a
replica that can prevent the head-of-line-blocking scenario. We present Héron, a
replica selection algorithm that solves these two challenges.

• Objective 2: Scheduling multiget requests in key-value stores under heteroge-

neous workloads.

We focus on the problem of performance bottlenecks in cloud data stores while
scheduling multiget requests under heterogeneous workloads. In multiget re-
quests, it is very difficult to deliver consistent latency for interactive services
due to the varying degree of request fan-out. If the requests are with a larger
fan-out, it is most likely that it would be affected by long tail [5,19]. Therefore to
serve high fan-out user requests or request asking for several keys data elements,
multiple operations are batched together. A multiget request finishes when all
of its operations complete. Therefore, the response time of a request depends
on the response time of slowest operation in that multiget request. When the
requests come, the key question is which dispatching policy should we use to
route incoming requests on the servers? This policy is known as task assignment

policy. By using better task assignment policy we aim to reduce median and tail
latencies.

Also, requests that are coming on the system have multiple operations with the
varied number of keys and value sizes. Server exhibits high tail latencies for
these workloads due to the different execution time of operations. Therefore,

21

1.2. CONTRIBUTIONS

it’s very difficult to coordinate the operations which go on different servers and
the problem becomes more difficult due to the fact that some operation has
different value size. Thus the challenge is to schedule the operations in a way
that synchronize the approximate execution time and complete all the operations
at the same time. Our aim to design an efficient scheduling algorithm which can
estimate the bottleneck operations and schedule them on uncoordinated backend
servers in such a way that creates minimal overhead and reduce latencies at the
tail. We present TailX, a task aware multiget scheduling algorithm that solve
these challenges.

1.2 Contributions

The main contribution of this thesis is the design and implementation of Héron
and TailX. Héron is a replica selection algorithm for key-value stores where replica
diversity is available. Héron improve tail latency in key-value store under heteroge-
neous workloads. TailX is a task-aware multiget scheduling algorithm which reduces
performance bottlenecks under heterogeneous workloads. Here is the summary of thesis
contributions:

1. Taming tail latency through replica selection in key-value stores: We address
the problem of tail latency under heterogeneous workloads in key-value stores.
Replica selection algorithms are used to reduce tail latency in key-value stores.
We highlight the challenges involved in designing replica selection algorithms.
We present Héron, a replica selection algorithm that reduces tail latencies under
heterogeneous workloads. We implement it as part of Cassandra, a widely used
key-value store. In summary, this thesis makes the following contributions:

• We expose the challenges involved in the design of replica selection algo-
rithms under heterogeneous workloads.

• We propose a novel replica selection algorithm, i.e., Héron, under heteroge-
neous workloads, implement it as part of Cassandra a widely used key-value
store and assess its performance compared to C3 [1] and DS [20] on a real
cluster of machines and with realistic workloads.

• We evaluate Héron through extensive experiments. Results show that Héron
reduces tail latency without sacrificing median latency in all the used YCSB
workloads compared to both DS and C3.

2. Task-aware Scheduling for Tail Latencies in Key-Value Stores: We address
the problem of performance bottlenecks in cloud datastores in the case of schedul-
ing multiget requests under heterogeneous workloads. Multiget scheduling is
used to achieve low tail latency. We present TailX, a task aware multiget schedul-
ing algorithm that reduces tail latencies under heterogeneous workloads. Here
are the design contributions of TailX:

22

• We expose the challenges involved in the design of task-aware scheduling
algorithm under heterogeneous workloads.

• We propose a novel replica selection algorithm, i.e., TailX, under heteroge-
neous workloads, implement it as part of Cassandra a widely used key-value
store and assess its performance compared to Rein [16] on a real cluster of
machines and with realistic workloads.

• We evaluate TailX through extensive experiments. Results show that TailX
reduces tail latency without sacrificing median latency in all the used YCSB
workloads compared to Rein.

1.3 Thesis Organization

Chapter 2 discusses the background setting related to this thesis along with the details
of the target problem. It describes the key parameters used in this thesis for improving
performance in cloud data stores. It describes the steps involved for replica selection
algorithm in key-value stores. Afterwards, it describes the execution steps of multiget
scheduling in key-value stores.

Chapter 3 details the challenges of designing a replica selection algorithm in key-value
stores under heterogeneous workloads. It defines the problem of tail latency in key-
value stores by highlighting the potential of the replica selection algorithm. It presents
the design and implementation of Héron, a replica selection algorithm and its key
components. Further, it discusses the performance evaluation of Héron with variable
configurations of a synthetic dataset and real workloads. Afterwards, it discusses the
work related to this thesis. It discusses the replica selection algorithms which are used to
reduce tail latency in cloud data stores and Geo-distributed systems. Also, it discusses
existing work on reducing tail latency in cluster environments.

Chapter 4 focuses on multiget requests in key-value stores. It details the challenges
of designing a multiget scheduling algorithm in key-value stores under heterogeneous
workloads. Next, it discusses the work related to task-aware scheduling. It discusses the
multiget scheduling in cloud data stores and describes the state-of-the-art algorithms
in cloud data stores. Afterwards, it presents the design and implementation of TailX,
a multiget scheduling algorithm and it’s key components. Further, it discusses the
performance evaluation of TailX with variable configurations of a synthetic dataset.

Chapter 5 concludes the thesis and outlines future work.

23

2
Background and Problem Definition

Contents

2.1 Key-value stores . 26

2.1.1 Data model . 26

2.1.2 Distributed hash table . 26

2.1.3 Latency . 28

2.1.4 Data replication . 28

2.1.5 Data consistency . 28

2.2 Tail latency in key-value stores 29

2.2.1 Replica selection . 29

2.2.2 Task-aware scheduling . 31

2.3 Workload heterogeneity is the norm 32

2.4 Summary . 33

Cloud computing is a distributed computing paradigm which is based on the fun-
damental principle of "reusability of IT capabilities". In cloud computing, systems
are connected in a private or public network to provide subscription-based services in
terms of infrastructure, platform and softwares. It offers consumers a beneficial way
to acquire and manage these IT resources in a distributed environment. Through this,
cloud computing reduces the cost consumption of application hosting, computation,
maintenance, elastic provisioning, content storage in a significant way. In 2018, a study
on cloud computing [21], provides an interesting comparison between cloud hosting
and enterprises. It says 77% of the enterprises have at least one application or a portion
of their infrastructure in a cloud. Also, 76% of the enterprises seek to accelerate their

25

2.1. KEY-VALUE STORES

service delivery for their cloud apps and platforms. Therefore, cloud providers concen-
trate on better Quality of service (QoS) to provide good performance guarantees. QoS
is achieved by many factors including flexibility, performance, availability, robustness,
usability, security and many more. In this thesis, we are focusing on the performance of
these services.

Of the services used for building cloud application, storage plays a fundamental
role in overall services. Specifically, we focus to design an efficient cloud data stores
that can provide better performance guarantees. Key-Value Stores are the dominant
class of storage solutions in this context and are the focus of this thesis.

The remaining of this chapter is structured as follows. We first detail the key factors
of key-value stores through which better performance can be achieved (§2.1). Next, we
discuss the tail latency in key-value stores and detail the working of replica selection
strategies and task aware scheduling (§2.2). Afterward, we discuss the heterogeneous
workloads in key-value stores (§2.3). Finally we conclude the chapter (§2.4).

2.1 Key-value stores

Today key-value stores are very popular among storage solutions due to elasticity,
scalability, and ease of deployment compared to traditional database systems. They
emerged as an alternative to traditional database systems due to the limitations of
predefined schema, scalability and data structures. In key-value stores, there is no
schema constraint and they can handle unstructured data such as numbers, texts, audios,
videos, email, images, XML and many more. Values are accessed via a key with a GET
request. Therefore it is more flexible and an application has complete control over the
value. Additionally, they provide a high throughput rate and have low latencies for
get/put workloads.

2.1.1 Data model

A key-value store maintains a number of tables, each mapping a collection of keys
to values of arbitrary size. A partitioning scheme distributes keys between servers as
described in §2.1.2. To enforce fault tolerance, key-value stores use data replication
which we will discuss in §2.1.4. To retrieve a value for a given key, a client sends a
request to one of the nodes in the system, which then redirects this request to one of
the servers holding a replica. The retrieved value depends on the consistency model
followed by the key-value stores. It ranges from eventual consistency to serializability
as discussed in §2.1.5.

2.1.2 Distributed hash table

Distributed Hash Table (DHT) is widely used by distributed storage systems. It’s a
structured peer to peer overlay that provides the look-up service for key-value pairs. It’s

26

Node 1

0

Node 2

Node 3

Node 4 25

50

75

Data Range 1
(1-25)

Data Range 2
(26-50)

Data Range 3
(51-75)

Data Range 4
(76-99, 0)

Token

O
w

n
 t

o
k
e

n
s
 1

 t
o

 2
5

Own tokens 26 to 50

Own tokens 76 to 99, & 0

O
w

n
 t

o
k
e

n
s
 5

1
 t

o
 7

5

Figure 2.1 – Distributed hash table implementation.

similar to a hash table in which each participating node efficiently retrieves the value
by given key. For data lookup, instead of connecting to the centralized server, DHT
offers a scalable alternative which distributes lookup on a number of peers without the
need for central coordination. This avoids the problem of the bottleneck at the central
coordinating node.

Any read/write operation should locate the node containing that key. Each node has
some range of keys along with the information of key range on other nodes. Whenever
a request comes to a node, that node forwards the request to the nearest node containing
that key according to the look up table. For example, in Cassandra, by doing internal
gossip between nodes, each node eventually has state information of every other node.
As seen in figure 2.1, whole token range is divided into number of nodes which are in a
cluster. Each node holds a hash based token range which is well balanced among nodes.
By default, MD5 hashing is used for even key distribution among nodes which leads to
well-balanced storage distribution. Keys are converted into the hash-based token using
a consistent hashing algorithm. When the request comes to a node, partitioner [22]
converts the key into a hash token. It then go clockwise into the ring until it picks the
corresponding node that is holding the data on the basis of token range. Afterward,
based on the replication factor and replication strategy which we will discuss in later
sections, rest of the replica locations are identified.

27

2.1. KEY-VALUE STORES

2.1.3 Latency

Online services are latency critical and a very small delay directly impacts the
revenue. Amazon has reported a latency loss of 100ms causes loss of 1% in sales [6].
To provide good QoS there is a Service Level Agreement (SLA) between the cloud
provider and users which defines the scope of the service. To accomplish this task,
Service Level Objective (SLO) are used to define the exact metrics that are being used
to provide the service.

We take the example of a real Google service [5] running in a cluster of 2,000
servers show that if one in 100 user requests gets slow (e.g., has a 1 second latency)
while handled by one server that is collecting responses from 100 other servers in
parallel, then 63% of user requests will take more than one second to execute. Even
for the services where one in 10000 requests gets slow, it see almost one in five user
requests taking more than 1 second. This problem is commonly known as the tail

latency problem. Tail latency is a very important metrics which defines the worst delays
in cloud data stores. Tail latency is the fraction of latency measurements (such as 95th
percentile, 99th percentile and more) which incurred longest delay. For example, 99th
percentile latency defines the smallest latency of the 1% of largest latency values.

2.1.4 Data replication

Data replication creates a copy of the data or subset of a data and stores to another
physical machine (called replica) in same datacenter or another physical location. Data
replication is used to provide more data availability and scalability in cloud data stores.
In general, data is replicated on different datacenters, racks, and disks. There is a
possibility of data loss in the case of network failures, server outage etc. To overcome
this, data is recovered from other replicas and request is served to the client. For this, a
well-designed replication protocol is needed. Also to improve scalability replication
techniques are used. If the data is properly distributed and managed then concurrent
clients can access the same data at the same time from different replicas without creating
any bottlenecks.

Replication strategies are not only used to achieve availability but also to provide
scalability to the systems. It increases the system performance in order to achieve a
better response time. However, if only one copy of data is scattered among servers then
it leads to a lack of availability and robustness. Therefore by adding more servers and
replicating data among those servers, the system is capable of handling more requests
and become more scalable.

2.1.5 Data consistency

In general, it’s not necessary to get the most recent value of data on every replica all
the time. Normally for any read or write operation, client application configures the
consistency level that shows how consistent the requested data must be. The decision is

28

based on the response time and accuracy of data. It determines the number of replicas
on which a read/write operations must succeed before returning an acknowledgment to
the client. For example, in Cassandra, depends on the consistency level, corresponding
replicas return the data and it asks remaining replicas for checksums only. To do this, a
snitch function decides in which rack and datacenter are both written to and read from.
A user can specify the desired consistency level as ONE, QUORUM, ALL and many
more1.
One. It returns the response from the closest replica as determined by the snitch. It is a
weak consistency model which dominates when there is a requirement of "fast access".
ALL. It returns the response once all the replicas have responded to a client. It is a
strong consistency model where only one consistent state can be seen but this may cost
high latency.
QUORUM. It returns the response once a quorum of the replicas has responded to
the client. This consistency model also suffers from performance issues due to getting
replies from multiple replicas.
How Quorum is calculated? Quorum is calculated based on the replication factor
(RF)
quorum = (sum_of_replication_factors / 2) + 1
sum_of_replication_factors = datacenter1_RF + datacenter2_RF + . . . + datacen-
tern_RF

2.2 Tail latency in key-value stores

2.2.1 Replica selection

Key-value stores use replica selection mechanism to curb the tail latency. Normally
data is replicated on multiple servers in key-value stores. For replica selection, when
a request comes to a client, it chooses the best replica out of multiple replica servers.
This is done by considering the performance of each replica server in the datacenter
i.e. client will choose the replica which serves the request in minimum time. In the
following sections, we see the replica deployment strategies and working strategy of a
replica selection algorithm in key-value stores.

2.2.1.1 Replica deployment strategies

Normally data is stored on multiple replicas and a replication strategy determines
the nodes where the replica should be placed. A user can define the replication factor

1We are following the consistency level 1 in the rest of our work. It means that data is retrieved from
a single replica.

29

2.2. TAIL LATENCY IN KEY-VALUE STORES

Node 1

Node 2

Node 3

Node 4

4
5

Client

1
6

Partitioner

Primary

 Key

Token

2

3

R1

R2

R3

 Chosen Replica

 Coordinator

 Replica

Figure 2.2 – Replica selection in Cassandra.

for each piece of data which is being duplicated within a system2. In our work, we are
using replication factor as 3 i.e. each piece of data is available on 3 replica servers.
Here we discuss the replica deployment strategy followed by Cassandra through which
data can be replicated on nodes3. We keep Cassandra as a reference point for our study.
Since among all the key-value stores, Cassandra [17] implements the most efficient of
existing replica selection algorithms (see Table 2.1).

1. SimpleStrategy: This strategy is used only for one rack and single datacenter.
It places the first replica on a node which is determined by partitioner (eg. Mur-
mur3 [22]). Additional replicas will be placed on next nodes clockwise in the
ring.

2. NetworkTopologyStrategy: This strategy is used when a cluster is deployed
across multiple datacenters. It specifies the number of replicas in each datacenter.
It tries to place the replicas on different racks as there is a possibility of failure of
rack due to power, cooling or network issues.

2A data can be replicated in a single datacenter or multiple datacenters. In our work, we are
considering the replication in a single datacenter.

3In our work, we are following the Simple strategy for deployment of replicas in a single datacenter.

30

Cassandra [17] Choose replica based on history of read latencies

MongoDB [23] Select nearest node using network latency

OpenStack Swift [24], Apache
Accumulo [25]

Read from a single node, choose a new replica in case of a node
failure

Riak [26] Recommend to use an external load balancer

Table 2.1 – Replica selection strategies (adapted from [1]).

2.2.1.2 Replica selection in key-value stores

We take the example of Cassandra [17] in Figure 2.2. Each value is by default
replicated to three replica servers (in the example, let us consider a value v replicated
on R1, R2, and R3). The request initially arrives at a node (step 1) that will act as
its coordinator. Depending on the implementation of the coherence mechanisms, the
coordinator has to fetch the value from one or multiple replicas. We consider the most-
common configuration where the coordinator waits only for the response from a single

replica. The coordinator asks the partitioner to hash the key (step 2) and gets a token in
return (step 3). The coordinator can then identify the first node holding the key/value
pair (i.e., R1). The coordinator identifies all the nodes holding the key/value pair based
on the replication strategy. Here, replicas of a given pair are placed in successive nodes
clockwise. The coordinator uses a replica selection algorithm to select the best replica
for executing the query (step 5), and replies to the client (step 6).

2.2.2 Task-aware scheduling

In task aware scheduling, a task decomposes into tens to hundreds of sub-tasks.
These tasks comprise multiple flows and go through different parts of the network
in a different time. Network resource allocation mechanisms treat all these flows in
isolation, therefore optimize only flow level metrics. A slow sub-task can slowdown
the overall response time. A task is considered as complete when all of its sub-tasks
complete. Therefore, this has motivated efforts to schedules the requests in a task-aware
fashion. Task-aware scheduling reduces average and tail latency by grouping flows of a
task and schedules them together.

For understanding multiget request scenario, we take the example of Cassandra [17]
which is a widely used key-value store. As seen in Figure 2.3, node 1, 2 and 3 are
holding the values of keys (A,B), (C,D) and (E,F) respectively. A client sends a multiget
request mget(A, B, C) to one of the nodes and ask for the value v for corresponding keys
A, B, C. The request initially arrives at a node and the node acts as a coordinator (step
1). In order to fetch a value, the coordinator asks the partitioner to hash the requested
key (step 2) and gets as a response a token corresponding to that key (step 3). Using the
obtained token of keys, the coordinator can identify the first node containing the value

31

2.3. WORKLOAD HETEROGENEITY IS THE NORM

Node 1

Node 2

Node 3

Node 4

[4
]

[5
]

Client

[1
]

[6
]

Partitioner

Primary

 Key

Token

[2]

[3]

 Coordinator

A,B

C,D

E,Fre
ad

(A
,B

,C
)

re
ad

(A
,B

)

read(C)[4]

[5]

va
lu

e
(A

,B
,C

)
va

lu
e

(A
,B

)

value (C)

Figure 2.3 – Multiget requests in key-value stores.

A, B and the second node containing the value C (step 4). This mapping is possible
because the overall range of hashed keys (or tokens) is split equally among nodes using
a distributed hash table as explained in § 2.1.2. The corresponding nodes return the
value to the coordinator (step 5). Finally, coordinator returns the response to the client
(step 6).

2.3 Workload heterogeneity is the norm

In today’s key-value stores, workloads which are coming on a system are heteroge-
neous in nature. The value sizes which are stored in these key-value stores can span an
order of magnitude. As seen in figure 2.4 a value can be binary, text, image or small
video. These value sizes vary from few bytes to MBs. For instance, a workload analysis
at Facebook’s memcached key-value store [18] shows that stored value sizes have
large variations. The value size distribution is heavy-tailed in some of the pools at a
memcached key-value store. A similar degree of variability is shown in WikiPedia [27]
and Flickr [28] datasets where value size varies from kBs to MBs.
The value sizes are highly skewed towards smaller size but very few large value
sizes consume a large share of computational resources [5]. Therefore, to optimize
the performance of key-value stores ideally we would like to assign jobs to servers
according to the size of jobs. Conventionally this may entail minimizing the tail latency
or the server can be well balanced [29].

32

3
Latency Aware Algorithm for Replica Selection

Contents

3.1 Replica selection in key-value stores 36

3.2 Performance of DS and C3 under heterogeneous workloads . . . 37

3.3 Héron design and implementation 38

3.3.1 Challenges . 40

3.3.2 Load estimation . 42

3.3.3 Value size estimation . 42

3.3.4 Replica selection module 46

3.4 Evaluation . 47

3.4.1 Experimental setup . 48

3.4.2 Héron on variable configurations of the synthetic dataset . . 49

3.4.3 Real workloads . 55

3.5 Related Work . 57

3.5.1 Reducing tail latency through replica selection 58

3.5.2 Taming latency in cluster environments 61

3.6 Summary . 63

In this chapter, we present Héron [30], a replica selection algorithm that reduces tail
latencies under heterogeneous workloads. Héron predicts which requests will require
significant time by keeping track of the keys corresponding to large values. It does so
using a Bloom filter at each server. Once a request has been identified as accessing a
small (respectively, a large) value, it applies an appropriate replica selection algorithm,
which avoids head-of-line-blocking.

35

3.1. REPLICA SELECTION IN KEY-VALUE STORES

Héron can be applied to any low latency key-value store where value replication is
enabled. Among such stores, Cassandra [17] implements the most efficient of existing
replica selection algorithms (see Table 2.1). It is therefore the best reference point
for our study. We implemented Héron in Cassandra and compared its performance to
state-of-the-art algorithms (e.g., dynamic snitching [17] – DS for short – and C3 [1]) in
a public cluster of 15 machines on Grid5000 [31].

We evaluate Héron with four datasets, two synthetic datasets including one based on
access statistics from Facebook [18] and two real datasets from Flickr [28] and Wiki-
Media [27]. We use YCSB [32] to generate different requests workloads, allowing
to evaluate the system under different read/write ratios. Our results show that Héron
improves tail latency over state-of-the-art algorithms without compromising median
latency.

The remaining of this chapter is structured as follows. We first detail the major replica
selection algorithms proposed in the literature (§3.1). Next, we further explain the
limitations of the C3 and DS replica selection strategies in presence of heterogeneous
workloads (§3.2). Afterwards, we present a detailed description of Héron (§3.3) and
present its implementation and performance evaluation (§3.4). Next, we detail the
state-of-the-art related to replica selection and tail latency improvement in distributed
systems (§4.2). Finally, we conclude the chapter (§3.6).

3.1 Replica selection in key-value stores

Two major replica selection algorithms have been proposed in the literature. The
details are as follows:

Dynamic snitching By default, in Cassandra, replica selection is done using dynamic

snitching (DS for short) [17]. The performance of read requests from various replicas is
monitored over time and the best replica is selected based on its recent performance
history. DS maintains a score for each replica that is updated every 100 ms. All replica
scores are reset every 10 minutes, to allow replicas to possibly recover. The limitation
of this approach is that it is solely based on replicas’ past read performance, without
considering the forthcoming load at each replica (i.e., its queue size). This may lead to
overloading recently-fast replicas and to the appearance of bottlenecks in the system,
ultimately impacting tail latency.

The C3 algorithm C3 [1] is a replica selection algorithm that improves over DS by
handling service time variations among replicas. C3 computes replica scores based
on both service time and queue size. This score is then used by a request coordinator
for choosing the replica that is expected to better help reducing the request waiting
time. Additionally, to avoid overloading a given replica queue (e.g., because the

36

3.3. HÉRON DESIGN AND IMPLEMENTATION

0% 1% 5% 10% 20%

0

100

200

300

400

Requests for large values

R
ea

d
L

at
en

cy
(m

s)
95

th
Percentile

0% 1% 5% 10% 20%

0

200

400

600

800

Requests for large values

99
th
Percentile

DS C3

Figure 3.2 – Tail latency when varying the proportion of requests for large values
with DS and C3.

while processing a large request, a server should no longer be selected to process small
requests. These small requests should be scheduled instead on the following best replica
based on its score (service time × queue size). In the example of Figure 3.3, the next
small requests should be sent to replica server C, which would yield a latency of 5 ms
(figure (c)).

More practically, to study the impact of heterogeneous workloads on DS and C3, we
use a synthetic workload containing small (1 KB) and large (512 KB) values. We use
YCSB [32] to generate a read-heavy workload. We vary the proportion of large values
from 0% to 20%. Our experimental settings are detailed in Section 3.4. Figure 3.2
presents the 95th and 99th percentile of the read latency distribution. We observe a
significant increase in tail latency when increasing the proportion of large values for
both DS and C3. For the 95th percentile, the increase ranges from ×10 when there are
1% of requests for large values, to ×126 when there are 20% of requests to large values.

3.3 Héron design and implementation

This section presents Héron, a replica selection algorithm 1 that aims at reducing
tail latency under heterogeneous workloads.

Figure 3.4 presents the architecture of Héron and how it handles client requests.
When a request from a client reaches a coordinator, it first goes through a replica scoring
module (step 1). The coordinator retrieves the set of replicas storing the requested value
by querying the partitioner. The replica scoring module ranks these replicas based on
periodic feedback on their latest service time and queue size. In parallel, the request

38

Client

Server A

Server C

Server B

Client

Request

Queue

2 ms

3 ms

1 ms

(a) An example scenario where a large re-
quest has been scheduled on replica server
A. The question is: where should subse-
quent small requests be scheduled?

Client

Server A

Server C

Server B

Client

Request

Queue

2 ms

3 ms

1 ms

(b) C3 and DS schedule the subsequent re-
quests to replica server A which results the
requests get stuck behind the large one on
replica server A.

Client

Server A

Server C

Server B

Client

Request

Queue

2 ms

3 ms

1 ms

Request

for large

values

Request

for small

values

Subsequent

request for

 small values

(c) Shows how Héron dynamically
blocks the replica server A for small pe-
riod of time until the latter finishes the
processing of the large request. Mean-
while, subsequent small requests are
scheduled on replica server C.

Figure 3.3 – An example scenario illustrating the limitations of state-of-the-art
solutions.

is sent to the Bloom filter manager (step 2). This module estimates whether a given
request will access a small or a large value. It uses a Bloom filter that keeps track of
large requests. The replica selection module (step 3) uses the input from both modules
to select the replica that is expected to serve the request faster.

We first detail the challenges (§3.3.1) and then present the mechanisms for load
estimation among servers (§3.3.2), followed by size estimation using Bloom filters

39

3.3. HÉRON DESIGN AND IMPLEMENTATION

Algorithm 1: On Request Arrival (Request req, Replicas R, Bloom filter Manager
bF)

1 repeat

2 R←− sort(R)
3 for Server si in R do

4 if req.key is in bF then

5 if si is available then

6 send(req,si)
7 put si on busy

8 else

9 repeat

10 go to next server si in R
11 until si is available

12 send(req,si)

13 else

14 if si is available then

15 send(req,si)
16 else

17 repeat

18 go to next server si in R
19 until si is available

20 send(req,si)

21 if si is busy then

22 wait until si is available

23 until req is sent

(§3.3.3) and replica selection (§3.3.4).

3.3.1 Challenges

This section details the challenges associated with reducing tail latencies under
heterogeneous workloads, and the design space for building a key/value store with this
goal.

Dealing with heterogeneous requests first requires being able to distinguish requests
accessing small values from requests accessing large values. This must be done by the
coordinator node, but this node only knows the key that is requested. It does not hold
the value and must therefore use a specific mechanism to estimate the category of size
the value belongs to. Under the high performance constraints of key-value-stores, this
mechanism must be cost-effective.

Once the coordinator is able to distinguish between requests for small and large

40

3.3. HÉRON DESIGN AND IMPLEMENTATION

overlapping between token ranges. Let us for instance consider the cluster depicted
in Figure 3.5 where the first replica of each value is determined by the partitioner
(e.g. Murmur3 [22]) and the rest of the replicas are placed on next nodes clockwise
in the ring. In this case, statically reserving a replica on each group to handle small
requests (e.g., node N1 in the group RG1, node N2 in the group RG2, etc.) may lead to
a situation where all replicas are reserved to serve small requests, which leads to the
starvation for large requests. To avoid this problem, Héron uses dynamic assignment
policy (explained in§ 3.3.4) for placing the jobs on nodes in which the reservation of
replicas is made dynamic.

With a dynamic scheduling strategy, a particular replica is reserved at runtime
and only for a small amount of time to handle requests for large values, leaving the
others available for handling requests to small values as shown in figure 3.5. Since
requests for large values create more head-of-line-blocking rather than requests for
small values. Compared to a static assignment policy, this approach has the benefit of
blocking replicas only temporarily. With dynamic scheduling, a request can be handled
by any replica of the value. Two main approaches are available for selecting this replica,
priority-based and FIFO algorithms. Priority-based algorithms, such as shortest job
first [35] give the priority to fastest jobs over slower ones. In our context, this means
giving priority to requests accessing small values over requests accessing large values.
This approach is not ideal for a key-value store. It creates an imbalance between the
requests of different clients, and clients accessing larger values can potentially observe a
significant increase in latency. FIFO algorithms process requests in their order of arrival,
regardless of the size of the access values. They do not incur fairness or consistency
problems and are therefore more appropriate for key/value stores. The challenge
however is to offer a FIFO scheduling algorithm that avoids the head-of-line-blocking
problem.

3.3.2 Load estimation

Héron includes a replica scoring mechanism similar to the one used by C3 [1] to
estimate the load among servers as described in figure 3.6. Coordinators periodically
collect as scoring metric for each server the product of its average service time and
its queue size. Replicas with a lower score are better candidates for serving incoming
requests, if all requests are for value of the same size. The difference with C3 is that
Héron does not rely on a control flow mechanism to balance the load between servers.
Instead, Héron uses differentiated scheduling in which a dynamic assignment policy is
used to schedule requests as described in the following.

3.3.3 Value size estimation

The objective of Héron is to process fast and slow requests in a way that avoids
head-of-line-blocking. To reach this objective, Héron needs to predict whether a request
will access a large (slow request) or a small value (fast request). The size threshold

42

between these two types of requests is application-specific. We therefore assume
that an application and database administrator will be able to set a threshold value
THRL according to the data distribution over her database. For instance, for a database
containing values ranging from 1 KB to 512 KB, the system designer may rely on an
evaluation of the average read time latencies of these values as shown by Figure 3.7.
This figure shows that a request accessing a 512 KB value is 32 times slower than a
request accessing a 1 KB value, and that there is a significant gap in latency between
values of sizes 256 KB and 512 KB. In this example, the system designer may set the
threshold parameter THRL to 256 KB.

Héron uses Bloom filters to keep track of keys corresponding to large values as
depicted in figure 3.8.

Bloom filters [36] are space-time efficient probabilistic data structures that allow
performing set-membership queries (i.e., testing whether a given item belongs to a set).
A Bloom filter is a vector of m bits initially set to 0, with an associated set of k hash
functions (with k ≪ m). Inserting an element in a Bloom filter is done by hashing the
element (in our context the key contained in the request) using the k hash functions
and setting the corresponding bit positions to 1. Testing the presence of an element in
a Bloom filter is done by hashing the element using the k hash functions and testing
whether all corresponding bit positions are set to 1. Querying a Bloom filter may lead
to false positives but will never lead to false negatives. The false positive rate depends
on the size of the vector, the number of hash functions and the maximum number of
elements to be inserted in the set. Héron sets these values so as to maintain the false
positive rate below 0.1%.
Constructing the bloom filter

We update the Bloom filter when new large values get inserted in the database. The

ReplicaClient

Ser
ve

r
lo
ad

Feedback

Figure 3.6 – Load Estimation in Héron.

43

3.3. HÉRON DESIGN AND IMPLEMENTATION

1 64 256 512

0

20

40

Value size (in KB)

R
ea

d
L

at
en

cy
(i

n
m

s)

Figure 3.7 – Example of requests read latencies.

Request Queue

Small

Large

Value Size
Estimator

Small/
Large

 Collection of

keys with large

 values

 Diffrentiate

large from small

 values

Figure 3.8 – Value Size Estimation

filter is built at each of the replicas. For each write request, if the value size exceeds
THRL, the key is inserted into the Bloom filter. The Bloom filter is also updated when
an existing small value is replaced by a value whose size exceeds THRL.

We observe that in workloads such as the one from Facebook [18], different tables
have different value distribution patterns. Some may contain only small values and be
relatively homogeneous, while others are highly heterogeneous. To account for this
fact, Héron allows administrators to set policies that disable the use of the Bloom filters
for tables that have less than a configurable proportion of large values, as observed
from the collected statistics, and avoid paying the overhead of querying the Bloom filter
when it is not necessary.

Synchronizing the bloom filter between nodes

The addition of information to the filter is performed at all of the replicas for a given key.
The construction of a common global filter across all coordinators requires aggregating
the filters from all replicas, i.e. keeping the result of the logical or operation between

44

all filters. Due to the append-only nature of this construction, and to the idempotency
of the aggregation, there is no need to complex synchronization involving a consensus
protocol. Héron disseminates updates in an asynchronous, gossip-like, way. When
the local filter is modified by a given node, upon the addition of a new large value
or the replacement of a small value by a large one, it is piggybacked on the write
acknowledgment sent to the coordinator. Coordinators gradually construct the global
filter by interacting with storage servers, and merging newly-set bits to their local filter.

Handling deletions and growth

Deletion of large values (or their replacement by small values) would require removing
their keys from the filter aggregated by coordinators. Bloom filters do not allow this
operation, as un-setting the bits for the corresponding key comes with the risk of
un-setting bits set for keys of other large values still present in the store. Handling
deletions with a compact membership representation is actually only possible using
more complex data structures, such as counting Bloom filters [37] or counting quotient
filters [38]. These data structures have higher costs in memory and computation. More
importantly, they are less amenable to the simple, asynchronous synchronization that
Héron uses: their aggregation would require more costly consistency maintenance for
coordinators.

Another linked issue is that of filters that happen to be insufficiently large after the
growth of the dataset. In this case, the rate of false positives increases and the system is
at risk of incorrectly considering too many keys as being associated with large values.
Again, dynamically-resizable compact membership representations such as incremental
Bloom filters [39] or counting quotient filters [38] can address this issue, but they also
come at the cost of additional complexity in particular for aggregation and querying. As
a result, Héron does not implement such features but relies on periodic system updates
as detailed next.

Periodic system updates

Our system includes a number of updates that take place periodically, and using a
low-priority background task. These tasks include the regeneration of Bloom filters
and their synchronization, the periodic updates of table statistics and possibly the
updates on the threshold for large values. Specifically, the datastore is periodically
analyzed and the distribution of value sizes is updated. Using the gathered data, each
storage node computes a new filter for the values it owns and whose size exceeds the
threshold. The parameters of this filter (size, number of hash functions) may change
according to some administrator-defined policy, e.g. if the size of the store exceeds
the value initially estimated. Coordinators aggregate filters for several generations and
start using the latest generation as soon as they have received an update for it from all

45

3.3. HÉRON DESIGN AND IMPLEMENTATION

storage servers. Similarly, the list of tables that contain a given proportion of large
requests is updated. Finally, if the distribution of values changes dramatically, the
administrator gets informed and may possibly decide to adjust the threshold for large
values accordingly.

3.3.4 Replica selection module

Available

ReplicaReplica Status

 1

 2

 3

...

Replica 1

Replica 2

Replica
Selection

Busy

Request for
 large value

Request for
 small value

Figure 3.9 – Replica selection in key-value stores.

The replica selection selects the replica that is expected to serve an incoming request
faster than the other replicas. The working mechanism of replica selection is depicted
in figure 3.9. It uses three types of information: (i) whether the request is expected to
access a small or a large value, as provided by the Bloom filter manager; (ii) the relative
score of the servers holding replicas for that key, as provided by the replica scoring
module; (iii) whether these replicas are currently handling a request for a large value
or not. The last information is maintained over time by the replica selection module.
Specifically, the initial status of a replica having no request to process is set to available.
As long as this replica processes requests accessing small values, its status remains
available. Instead, when a request accessing a large value is scheduled on a given
replica, its status becomes busy. The latter comes back to the available status when the
processing of the large request is over.

Scheduling of requests tagged as large

If the request is tagged as large by the Bloom filter manager and if there exists a replica
R whose status is available, then the request is sent to R and R’s status becomes busy.
If there is more than one replica whose status is available, the replica selection module

46

uses the scores provided by the replica scoring module to chose the one that is expected
to be the fastest. After finishing processing the request, the replica selection module
updates the status of R to available. If there is no available replica, then the request is
blocked until at least one of the replicas becomes available.

Scheduling of requests tagged as small

If the request to schedule is tagged as small by the Bloom filter manager, the replica
manager uses the first replica server whose status is available from the ordered list
provided by the replica scoring module. In this situation, the replica’s status remains un-
changed since short jobs are not expected to affect tail latency by head-of-line blocking.

Synchronizing information about replicas’ status

A coordinator relies on its local knowledge of the replica status for making scheduling
decisions. This information is synchronized in a best-effort manner between replicas.
Specifically, the propagation of this information leverages existing communication
between servers and coordinators for requesting queues sizes and service times for
replica scoring. Storage servers include their current status with all exchanged messages
and coordinators update their replica status table accordingly when receiving these
messages. This asynchronous and best-effort propagation may lead to inconsistent views
between coordinators about the status of a given storage server. For instance, a given
coordinator may schedule a request to a given replica and locally update the latter’s
status to busy. At the same time, another coordinator can schedule small requests into
this same replica because it did not yet receive the feedback that this node was busy. In
this situation, the head-of-line-blocking problem may occur but only for a limited period
of time. We consider this to be an acceptable compromise as a fully consistent exchange
of information about replica status would greatly impair the horizontal scalability of
the key/value store and its overall performance. Our evaluation shows that Héron still
drastically reduces tail latencies despite the potential inconsistencies in replica state
tables.

3.4 Evaluation

We implement Héron as an extension of the Cassandra [17] key/value store. We
evaluate its effectiveness in reducing tail latency using both synthetic datasets generated
using the Yahoo Cloud Serving Benchmark (YCSB) [32], and real datasets from Wiki-
Media [27] and Flickr [28]. We compare the reduction in tail latency with DS [17] and
C3 [1]. We conduct the experiments on a public high-performance cluster representative
of current cloud data centers hardware [31]. We analyze the impact of three types of

47

3.4. EVALUATION

heterogeneous workloads, i.e., read-only (100% read), read-heavy (95% read-5% write)
and update-heavy (50% read-50% write), with varying ratios of requests for large values
and varying large value sizes.
Our evaluation aims at answering the following questions:

1. How does Héron compare to C3 and DS when the dataset contains a mix of small
and large values? (§3.4.2.1)

2. How is the performance of Héron impacted by the proportion of large values in
the key-value store? (§3.4.2.2)

3. How does Héron perform when the proportion of read vs write requests varies?
(§3.4.2.3)

4. Is the impact of Héron confirmed with real datasets? (§3.4.3)

We start this section by presenting our evaluation setup (§3.4.1) before presenting our
results (§3.4.2 and 3.4.3).

3.4.1 Experimental setup

Experimental platform. We evaluate Héron on Grid5000 [31]. We use 15 servers
equipped with 2 Intel Xeon E5-2630 v3 CPUs (8 cores per CPU), 128 GB of RAM, and
2 558 GB HDDs. Servers are interconnected by a 10Gbps Ethernet network and run the
Debian 8 GNU/Linux OS.
Cassandra configuration. We use a replication factor of 3, which means that each
value is available on three replica servers. We consider a write-all read-from-one
coherency mechanism in which consistency is achieved by reading from a single replica
and not from a quorum. Each experiment involves 2 million requests accessing small
and large values. We systematically check that Cassandra achieves its maximum
throughput (i.e. that we use enough clients to saturate the system). The measured
peak throughput depends on the proportion of requests for large values in the system.
Figure 3.10 shows the maximal achieved throughput across all experiments and value
sizes in this section.

When there are no requests to large values, the throughput peaks at ≈ 72000
requests/sec. It reduces to ≈ 2200 requests/sec when 20% of the requests are for large
values.
Synthetic datasets. We use the industry standard Yahoo Cloud Serving Benchmark
(YCSB) [32] to generate synthetic workloads. YCSB originally only generates work-
loads with values of a single size. We modified its source code to generate a configurable
proportion of large and small values. The size of small and large values is also con-
figurable. The distribution of access frequency for all stored values (small and large)
follows a Zipfian distribution with a Pareto index of α = 0.99. This means informally
that the most popular value is almost twice as popular as the second-most-popular value,
and so on with decreasing popularities.

48

0% 1% 2% 5% 10% 20%
0

2

4

6

·104

Ratio of requests for large values.

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
ec

)

Figure 3.10 – Maximum throughput attained across all scenarios.

With a replication factor of 3 and 15 servers, each storage node holds about 170 GB
of data.
Real datasets. We evaluate Héron with the publicly available Flickr [28] and WikiMe-
dia [27] datasets, which contain 1 million images and 225 thousand images, respectively.
The CDF of image sizes on these datasets is shown by Figure 3.1. We use YCSB [32]
to generate workloads based on these datasets and considered the 10% largest values of
each dataset as large in all scenarios. The access frequency distribution for stored values
(small and large) follows the same Zipfian distribution as for the synthetic workloads.

3.4.2 Héron on variable configurations of the synthetic dataset

We evaluate Héron along three dimensions of heterogeneous workloads, i.e., the
varying size of large values (§3.4.2.1), the ratio of requests for large values (§3.4.2.2),
and types of workloads (§3.4.2.3).

We compile the absolute latency values measurements of Héron in Table 3.1. We will
refer to this table on the three subsequent sections. We present the relative improvements
between the different systems in Figures 3.11, 3.12 and 3.13.

3.4.2.1 Varying the size of large values

We start by studying the impact of the size of large values. We fix the proportion
of requests to large values to 10%. We vary the size of large values between 64 KB,
128 KB, 256 KB and 512 KB. By looking at the table of absolute values (Table 3.1),
we first note that, when the size of values increases in the database (e.g., 64 KB values
versus 512 KB values), tail latencies are higher because the system takes more time to
execute the overall workloads.

Moreover, in the case of values of size 512 KB, the probability of running into head

49

3.4. EVALUATION

Dataset
Update Heavy Read Heavy Read Only

95th%ile 99th%ile 95th%ile 99th%ile 95th%ile 99th%ile

64 KB 12.5 ms 27.8 ms 21.2 ms 33.7 ms 24 ms 41.8 ms
128 KB 25.2 ms 41.3 ms 51 ms 101 ms 47 ms 86 ms
256 KB 50 ms 81 ms 95 ms 160 ms 105 ms 209 ms
512 KB 130 ms 218 ms 196 ms 340 ms 199 ms 336 ms

1% 19.1 ms 57.2 ms 35.2 ms 89.6 ms 35.3 ms 96.2 ms
2% 38.2 ms 92.7 ms 58.8 ms 114.6 ms 65 ms 134.2 ms
5% 77.6 ms 140 ms 121 ms 216 ms 139 ms 272 ms

10% 130 ms 218 ms 196 ms 340 ms 199 ms 336 ms
20% 183 ms 310 ms 336 ms 549 ms 349 ms 574 ms

Table 3.1 – Héron absolute performance measurements.

of line blocking in Héron is higher than in the case of 64 KB. This is not surprising as
requests for large values occupy servers for a longer period of time. In order to have a
closer look at the numbers, we summarized the results for the read-heavy workload in
Table 3.2. This table shows the improvement provided by Héron over C3 and DS for
the median and 99th percentile latencies. From this table we can observe that Héron
improves the median latency by up to 36% over C3 and DS respectively. Furthermore,
Héron improves the tail by up to 30% over DS and 28% over C3.

Dataset
Improvement over DS Improvement over C3
Median 99th%ile median 99th%ile

64 KB +19.23% +11.6% +20.74% +9.13%
128 KB +17.58% +13.67% +19.35% +10.61%
256 KB +23.12% +17.52% +27.64% +14.89%
512 KB +36.75% +30.04% +36.02% +28.72%

Table 3.2 – Improvement of Héron over Median and Tail Latency with different
large request sizes

We present the percentage of improvement of Héron over DS and C3 for read-heavy
workloads in Figure 3.11. For instance, the improvement of Héron over DS for large
values of size 64 KB is 9% for the 95th percentile, meaning that the tail latency at this
percentile of Héron is 91% that of DS under the same conditions. The read latency with
Héron is lower than the read latency of both C3 and DS in all tested configurations.
More importantly, the improvement increases with the value sizes, i.e., Héron achieves
higher latency reduction than DS and C3.

50

For large value sizes of 64 KB, 128 KB, and 256 KB, the improvements over C3
and DS are relatively modest, ranging between 8%-10% and 12%-17% for 95th and
99th percentiles tail latency, respectively. For large values sizes of 512 KB, Héron
improves the tail latency by up to 30% over DS and 28% over C3. This is explained by
the fact that Héron is able to mitigate the waiting time of a request for small values by
avoiding scheduling them behind requests for large values. As C3 and DS are oblivious
to the size of the requested value, not only requests for small but also request for large
values can be scheduled behind requests for large values, significantly degrading tail
latency. Our measurements further show that the improvement brought by Héron for
median latency ranges from 1.5 ms to 13 ms for large value sizes ranging from 64 KB
to 512 KB.

64 128 256 512

10

20

30

Size of large values (KB)

Im
pr

ov
em

en
ts

(i
n

%
)

95
th
Percentile

64 128 256 512

10

20

30

Size of large values (KB)

99
th
Percentile

DS C3

Figure 3.11 – Improvement of tail latency with Héron for different sizes of large
values.

3.4.2.2 Varying the proportion of requests for large values

We study the impact of the proportion of requests for large value on system perfor-
mance. We fix the size of large values to 512 KB and we vary their proportion from 1%
to 20% for all three types of workloads. From the absolute values reported in Table 3.1,
for both the 95th and 99th percentiles and for all three workload types we observe that
the latency increases with the percentage of requests for large values, which is expected
as these requests take longer to execute.

We present the improvement of Héron over DS and C3 for read heavy workloads in
Figure 3.12. We can observe that Héron outperforms DS and C3 in all configurations.
Further, we observe that the effectiveness of Héron increases with the percentage of

51

3.4. EVALUATION

1% 2% 5% 10% 20%

0

10

20

30

Requests for large values

Im
pr

ov
em

en
ts

(i
n

%
)

95
th
Percentile

1% 2% 5% 10% 20%

0

10

20

30

Requests for large values

99
th
Percentile

DS C3

Figure 3.12 – Improvement of Héron for different proportion of request for large
values.

Update
Heavy

Read
Heavy

Read
Only

0

10

20

Im
pr

ov
em

en
ts

(i
n

%
)

95
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

0

10

20

99
th
Percentile

DS C3

Figure 3.13 – Improvement of Héron over the average of all heterogeneous
workloads.

52

requests for large values. With 10% of requests for 512 KB values, Héron achieves an
improvement of around 25%; however the improvement slightly drops in the case of
20% of such requests. This can be explained by the fact that the probability that all
servers are blocked by a request for a large value is higher in the case of 20% of such
requests than the same probability in the other configurations. In this situation, Héron
loses part of its ability to dispatch the requests agilely among servers. In the following
we zoom into each specific percentage of requests for large values.

95-5. In this experiment, 5% of the values in the database are large ones. Héron shows
similar improvement over DS, i.e., roughly 15% for the 95th and 99th percentile of tail
latency. Compared to C3, Héron achieves better gain, i.e., roughly 26% improvement
for the 99th percentile.

0

50

Update Heavy

Héron DS C3

0

50

Read Heavy

R
ea

d
L

at
en

cy
(i

n
m

s)

1% 2% 5% 10% 20%

0

50

Read Only

Requests for large values

Figure 3.14 – Median latency over different proportions of request for large
values.

53

3.4. EVALUATION

90-10. In this experiment, 10% of the values of the database are large ones. Héron
shows similar improvement over C3, i.e., around 27% for the 95th percentile. Against
DS, Héron achieves a slightly better gain for the 99th percentile than for the 95th

percentile, i.e., roughly 23% v.s. 28%. In terms of absolute latency, say for the 99th

percentile, it is 340 ms for Héron but roughly 486 and 477 ms for DS and CS, respec-
tively. Héron achieves the best performance for this workload, i.e., 10% of requests for
512 KB large values, where there is a sufficient number of available servers for Héron
to schedule requests for large values without blocking incoming requests.

80-20. In this experiment, 20% of the overall values are large ones. Héron shows
consistent improvement over C3 and DS for both the 95th and 99th percentiles, i.e.,
roughly 23% and 20%. This increases up to 41% in case of the 99.9th percentile tail
latency. In terms of absolute latency, for instance for the 95th percentile, it is 336 ms
for Héron but roughly 431 and 420 ms for DS and CS, respectively. The gap is even
more significant for the 99th percentile, where the observed latencies for Héron, DS,
C3 are 549 ms, 738 ms, and 708 ms, respectively.

In addition to tail latency, we also report the absolute values of the median latency under
the three workloads (Figure 3.14). We observe that Héron has a comparable median
latency to the one of DS and C3 when the proportion of requests for large values is
small (1− 5%). When the proportion of requests for large values exceeds 5% we can
observe that Héron improves over DS and C3 by up to 35%.

In summary, Héron is particularly more effective in reducing tail latency when the
percentage of requests for large values is higher. Compared to C3 and DS, Héron
reduces tail latencies by up to 41% without compromising median latency in all the
considered synthetic workloads.

3.4.2.3 Consolidated performance improvement

We analyze the average improvement over 8 heterogeneous read-only, read heavy,
and update heavy workloads. Figure 3.13 shows the average improvement over all
configurations (proportion of requests for large values, and different large value sizes,
as detailed in Table 3.1). Héron achieves the highest improvement for read heavy
workloads ≈ 23% and the smallest improvement for update heavy workloads ≈ 14%.
Héron takes scheduling decisions for read requests only, as write requests have to reach
all replicas in all cases. It can better cut the tail latency for workloads that contain
higher percentages of read requests, such as read-only and read-heavy workload. On the
other hand, reading requests take longer time than updating requests in our particular
Cassandra setting (as also illustrated in Table 3.1), as writes can be buffered to memory
while reads most often have to reach the servers’ disks. Hence, a higher percentage of
read requests can further stress the system. The average response time of the read-only

54

3.4. EVALUATION

Update
Heavy

Read
Heavy

Read
Only

0.5

0.6

0.7

0.8

0.9

1

R
ea

d
L

at
en

cy
(m

s)
Median

Update
Heavy

Read
Heavy

Read
Only

2

3

4

5

6

95
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

5

10

15

20

25

30

R
ea

d
L

at
en

cy
(m

s)

99
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

20

40

60

80

100

120

99.9
th
Percentile

Héron DS C3

Figure 3.16 – WikiMedia Dataset

workloads, up to 70%. The only case where Héron has inferior performance compared
to C3 and DS is for the median of the read only workload. The latency of Héron re-
mains around 1 ms. Actually, Héron achieves rather minor performance improvements
in both median and tail latency against DS and CS for read only workload in this dataset.

We present the results for the Flickr dataset in Figure 3.17. We first note that these
results show different latency characteristics from WikiMedia, i.e., lower tail latency,
though their median latency is in a similar range. This can be explained by the fact that
the Flickr dataset value size distribution has a shorter tail, that is, the maximal value for
sizes is smaller than for the WikiMedia dataset. Here, Héron achieves the lowest latency
for almost all combinations of latency metrics and workload types, except for the 99.9
percentile of read-heavy workloads. The overall improvement compared to C3 and DS
is also less significant than with the WikiMedia dataset. Héron is particularly designed
to handle the heterogeneous workloads that have a high variance across requests’ sizes.
When the sizes of requested values have lower variability, the impact of size-aware

56

Update
Heavy

Read
Heavy

Read
Only

0.5

0.6

0.7

0.8

0.9

1

R
ea

d
L

at
en

cy
(m

s)
Median

Update
Heavy

Read
Heavy

Read
Only

1.6

1.7

1.8

1.9

95
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

2

2.1

2.2

2.3

2.4

R
ea

d
L

at
en

cy
(m

s)

99
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

10

20

30

40

99.9
th
Percentile

Héron DS C3

Figure 3.17 – Flickr Dataset

scheduling becomes less visible, even if they are still present. Different from the
synthetic data set and WikiMedia, Héron achieves the best median and tail latency
improvement for update heavy workloads, compared against read only and read-heavy
workloads.

3.5 Related Work

In this section, we will discuss the literature on performance issues in cloud data
stores. Prior work has been focused on reducing tail latency through replica selection
algorithms. Also, there has been numerous work done in the area of Geo-distributed
systems. Apart from this, in cluster environments, a lot of work has been done on
proposing better scheduling policies, resource allocation problems and effect of work-
load heterogeneity on latencies. In this section, we summarize the research contributions
related to our work.

57

3.5. RELATED WORK

3.5.1 Reducing tail latency through replica selection

In the literature, a lot of work has been done on reducing tail latency through replica
selection algorithms. Here, we discuss some state-of-the-art algorithms.

3.5.1.1 Dynamic snitching

Dynamic snitching (DS for short) [20] is a replica selection algorithm that is used
by Cassandra [17]. All the nodes in a Cassandra cluster organize themselves into a
ring based distributed hash table. Every replica in a cluster has some score. A score is
calculated by the integration of one or more metrics. It defines how fast a replica can
serve the request. Thus, a replica with the best score serves the next incoming request
in minimum latency. In the case of Cassandra, it uses a combination of request latency
and estimated load on replicas. It uses normalized smoothed latency and the normalized
load of replicas for scoring. To calculate a textitscore, the performance of read requests
from various replicas is monitored over time and the best replica is selected based on
its recent performance history.

In dynamic snitch, snitch is a function that helps to decide which datacenter and rack
a read or write should be written and read from. It has to be dynamic since cassandra
asks the concerned node for data and the rest of the replicas reply with checksums
only. Therefore, among multiple replicas, only one replica (in the case of consistency 1)
returns the data. Here, role of dynamic snitching comes into play where it has to choose
the best replica among multiple replicas to minimize the latency. In dynamic snitch, it
chooses the best replica in the datacenter based on the network distance and replicas’
past read performance.

Scoring of replica is performed periodically at a regular interval. For instance, DS
maintains a score for each replica that is updated every 100 ms. The order of replicas
is maintained between re-computations and utilized for each request coming on the
system in that time interval. Each replica does independent measurements, therefore
has its own local view of the network delays and loads on other replicas. All replica
scores are reset every 10 minutes, to allow replicas to possibly recover.

The limitation of this approach is that it is solely based on replicas’ past read perfor-
mance, without considering the forthcoming load at each replica (i.e., its queue size).
This may lead to overloading recently-fast replicas and to the appearance of bottlenecks
in the system, ultimately impacting tail latency.

58

3.5.1.2 The C3 algorithm

C3 [1] is a replica selection algorithm that improves over DS by handling service
time variations among replicas. Due to periodic garbage collection, maintenance ac-
tivities, periodic background tasks, servers in cloud environments exhibit performance
fluctuations in service time. To overcome this, C3 computes replica scores based on
both service time and queue size. The score is piggybacked as feedback in response to
the coordinator. This score is used by a request coordinator for choosing the replica
that is expected to serve the request in minimum waiting time.

C3 tries to avoid herd behaviors where a number of clients try to send to the same fast
replica server. To overcome this, C3’s design has following key components:

1. Replica ranking:

Every replica server sends the product of queue size and service time as feed-
back by piggybacking in each response to the client. Client keep Exponentially
Weighted Moving Averages (EMWA) of queue size and service time to smoothen
the signal. Afterwards, client rank and choose the best replica according to the
score.

Since there is a possibility of delayed feedback from the replicas, clients calculate
the queue size estimate of each replica by calculating the instantaneous count
of its outstanding requests (oss). Outstanding requests are those for which a
response is yet to be received.

2. Rate control mechanism:

Through replica selection, we can’t identify the replica server capacity for fulfill-
ing client demands. Sometimes replicas overwhelmed with an excessive number
of client requests. To avoid overwhelming of a given replica queue (e.g., because
the replica is fast and thus simultaneously selected by several coordinators), C3
uses a rate control mechanism at each replica to limit the arrival of requests. To
estimate server capacity, since clients need to adapt performance fluctuations
across servers, C3 uses CUBIC congestion-control scheme [40].

Every client maintains a token based rate limiter for each server through which it
limits the requests sent to the server. This rate is termed as sending-rate (srate).
Also, the client tracks the responses received from the replica servers at each
interval. This rate is termed as receive-rate (rrate). By Cubic rate adaption
function client compares srate and rrate for server s. If the receive rate is lower
than the sending rate then the client decreases the sending rate. Similarly, if the
receive rate is higher than the sending rate then client increases the sending rate.

C3 is implemented in Cassandra on a cluster of 15 m1.xlarge instances of Amazon
EC2. C3 uses Yahoo Cloud Serving Benchmark (YCSB) [32] to generate datasets and
run the workloads. To generate datasets, C3 inserts 500 million 1 KB size records

59

3.5. RELATED WORK

through YCSB and runs 10 million operations with Zipfian distribution. Results show
that C3 significantly improves tail latencies compared to DS [1]. Since the incoming
request size was assumed to be the same, C3 does not perform well with heterogeneous
workloads (figure 3.2).

3.5.1.3 Replica selection in geo-distributed systems

Geo-distributed systems are another area of research in replica selection algorithms
where a client sends a request to the nearest replica among multiple datacenters to
minimize network delay. Nowadays many cloud providers have deployed their data-
centers in multiple geographic regions. To improve QoS, data is replicated on multiple
datacenters. Data is retrieved by the client from the nearest datacenter to minimize
the latency. Most of the cloud providers often face performance issues due to the poor
selection of servers [41]. Since all the datacenters differ in their service availability,
cost of usage, performance etc.

To select the best replica, Geo-replicated data stores continuously monitor the
network and system state of all replicas. Performance in these systems improves by
choosing a better choice of replica selection algorithms. Systems like Cassandra and
MongoDB uses such algorithms in Geo-distributed systems.

To choose the replica, the first step is to evaluate all replica metrics such as load mea-
surements and latency. The second step is to set the score of each replica based on the
measurements done in the first step and define the goodness of a replica. The third
step is to filter the replicas that do not have the requested data since sometimes not all
replicas have the required data to perform a certain query. Afterwards, the final step is
to select the subset of replica based on the consistency requirements.

In Cassandra, as explained in the previous section (§3.5.1.1) it uses dynamic snitching
to choose the nearest replica. Normally the scoring of replicas is done on the basis of
physical locations. Therefore, replicas which are on the same rack and in the same
datacenter would be preferred. After that replica scoring mechanism is followed for
replica selection in the datacenter. Similarly, in MongoDB network RTT is considered
to select the replicas. All the replicas that are farther from the default threshold of 15 ms
from the nearest are sorted out from the list and finally, one random replica is selected
from the list. Unfortunately, internet traffic, routing decisions changes very frequently
which results in the latency and loss rate change dramatically.

In Recent work [41], the author presented GeoPerf which automates the process of
testing the best replica selection algorithm with the help of symbolic execution and
lightweight modeling. Symbolic execution replaces input values by symbolic variables
rather than numeric values of an application. The main purpose of symbolic execution
is to test and validate all operations by traversing all possible code paths and generate

60

test cases for encountered errors.
In Geo-distributed replica selection algorithms, symbolic execution identifies test in-
puts (i.e. latency measurements) and traverse all possible code paths. Afterwards, the
symbolic execution engine examines code paths and look for bugs in an effort to find
a case where a given algorithm doesn’t perform well compared to the referenced one.
However, finding a case is still difficult since it needs to symbolically execute the entire
distributed system and requires inside knowledge of the system, code modifications,
and computation resources. However, symbolic execution doesn’t have a notion of
continuous time, therefore, it is difficult to evaluate replica selection choices.

Apart from this, Pisces [42] (Predictable Shared Cloud Storage), a key-value storage
service provides per-tenant fair resource allocation. Pisces uses replica selection in a
weight sensitive manner to make the fairness easier. It distributes load over replicas by
getting implicit feedback of per node-latencies.

3.5.2 Taming latency in cluster environments

Besides replica selection, other mechanisms have been proposed to reduce tail
latency. Dean and Barroso [5] analyze the reasons for latency variability and describe a
set of tail-latency tolerance techniques implemented in Google’s large scale systems.
They discuss short term adaptations in which they focused on hedged requests where a
user sends a request to multiple replicas and uses the results by the replica which re-
sponds first. A client cancels remaining requests once the response is received. Though
these adaptations typically add unnecessary load on servers.

CosTLO [43] reduces high latency variance by issuing requests redundantly. D-
SPTF [44] and RobinHood [9] adapt caching mechanisms to reduce tail latency. Main-
taining low tail latency is difficult since incoming requests are complex and consist
of multiple operations. RobinHood [9] reallocates cache resources from cache-rich
(backends which don’t affect request tail latency) to cache-poor (backends which affect
request tail latency) to maintain low tail latency. By doing this, it improves overall tail
latency and it has very little overhead. In D-SPTF [44], a request is sent to a server and
if the data is in a cache, it will respond otherwise the request will be forwarded to the
replicas.

Zoolander [12] is a key-value store that serves low latency with strict service level
objectives (SLOs). It uses replication for predictability and uses redundant accesses to
mask outlier response times. When system resources are under-utilized, it uses an ana-
lytical model to scale-out through replication. Similarly, when they are heavy-utilized it
uses traditional approaches to scale-out. Zoolander provides accurate predictions to find
better replication policies. By doing so, zoolander improves latency for key-value stores.

Mantri [45] tries to resolve the problem of skew-tolerance where some slower tasks in

61

3.5. RELATED WORK

the data-parallel application can delay the overall job completion time. Mantri uses
network-aware task placement and protects the task output based on cost-benefit analy-
sis. Through this, Mantri reduces job completion time by 20% on production cluster
that supports Bing.

Bobtail [8] tries to reduce the tail latency in cloud environments. It shows that virtual-
ization in Amazon EC2 increases the tail latency by a factor of two to four. It states
that the root cause of increasing response time is a property of nodes rather than the
network. Bobtail detects and avoid the bad behaving VMs without penalizing node
instantiation. Li et al. [46] explore the hardware, OS and application-level causes behind
tail latencies. Their work explain why queuing delay increases the latency whereas
parallelism improve the tail latency. Through extensive experiments, authors improved
Memcached tail latency with a two orders of magnitude.

Taming latency via resource allocation. Several users or tenants share same phys-
ical server or network infrastructure in the cloud to use common services. However,
tenants often face performance fluctuations. Therefore, to improve the performance pre-
dictability for a shared storage system, Pisces [42] (Predictable Shared Cloud Storage),
a key-value storage service provides per-tenant fair resource allocation. Each tenant
global weight is set according to the tenant’s service level objectives (SLO). Pisces
does the fair sharing between the tenants in a datastore. PARDA [47] also focus on the
problem of storage bandwidth sharing to give fairness between the clients. It uses IO
latency to observe load and uses a FAST-TCP control mechanism to limit the number of
IO requests per storage client. Prioritymeister [11] combine priorities and token-bucket
rate-limiter to provide tail-latency QoS for bursty workloads in shared-networked stor-
age. mClock [48] discusses the IO resource allocation in a hypervisor which provides
per-VM QoS.

Cake [49] is a reactive feedback control scheduler for distributed storage environments
to achieve high throughput and bounded latency. It considers a two-level scheduling
approach for shared storage systems where first-level schedulers control the consump-
tion to individual resources such as CPU, disk etc. These schedulers do various tasks
such as split large requests into small chunks, limit the number of outstanding requests
and provide mechanisms for differentiated scheduling. Second-level schedulers run
a slower feedback loop that adjusts resource allocations at the first-level schedulers
and maps high-level SLO requirements. To conclude, Cake allows latency sensitive
workloads while ensuring that tail latency SLOs are met.

62

3.6 Summary

In this chapter, we addressed the problem of tail latency under heterogeneous
workloads in key-value stores through replica selection. We study the approaches that
focus on the performance in cloud data stores. For replica selection algorithms, C3
and DS are two major replica selection algorithms in literature for key-value stores.
An in-depth study of these algorithms has highlighted the fact that these algorithms
don’t perform well under heterogeneous workloads. We proposed Héron, a replica
selection algorithm that deals with requests accessing large values by avoiding the
head-of-line-blocking of requests accessing small requests behind these requests. The
result is an improved overall performance of the key-value-store for a wide variety
of heterogeneous workloads. Our experiments with heterogeneous YCSB workloads
in a Cassandra based implementation showed that Héron outperforms state-of-the-art
algorithms (C3 and DS), reducing tail latencies by up to 41% and reducing the median
latency by up to 31%.

63

4
Task-aware Scheduling for Improving Tail

Latencies

Contents

4.1 Problem definition . 66

4.2 Related Work . 69

4.2.1 Network-specific . 70

4.2.2 Redundancy-specific . 70

4.2.3 Task-aware schedulers . 71

4.2.4 Request reissues and parallelism 73

4.2.5 Multiget scheduling . 73

4.3 Challenges . 75

4.3.1 Scheduling without complete knowledge is hard 75

4.3.2 Need for coordination . 76

4.4 TailX design and implementation 76

4.4.1 Load estimation and replica selection 77

4.4.2 Request splitting . 78

4.4.3 Delay allowance policies 78

4.4.4 Server selection . 80

4.5 Evaluation . 80

4.5.1 Experimental setup . 82

4.5.2 TailX on variable configurations of the synthetic dataset . . 82

4.6 Summary . 89

65

4.1. PROBLEM DEFINITION

4.1 Problem definition

In this chapter, we consider the question of performance bottlenecks in cloud data
stores in the case of scheduling multiget requests under heterogeneous workloads. It
is very difficult to deliver consistent latency for interactive services due to the varying
degree of request fan-out i.e. each request has different number of sub-request. If the
requests are with a larger fan-out, it is most likely that it would be affected by long tail
latencies [5, 19]. Therefore, to serve high fan-out user requests or request asking for
several keys data elements, multiget APIs batch multiget read operations in key-value
stores [33, 50, 51, 52]. A multiget request finishes when all of its operations complete.
Therefore, the response time of a request depends on the response time of slowest
operation in that multiget request.

In practice, multiget requests vary in the number of accessed keys and value size. A
workload analysis at Facebook [33] shows that a request contains an average 24 keys
while 5% of the requests contain more than 95 keys. Another statistics from Sound-
Cloud trace presented in Rein [16] shows a heavy-tailed distribution of keys in which
40% of the requests involve multiple keys with an average size of 8.6 keys and the
maximum number of keys reaches up to ∼2000 keys. Similarly, a production workload
analysis at Facebook [18] for key-value stores show that value size typically ranging
from a few bytes to MBs. Such variability in requests requires an efficient scheduling
algorithm that is not affected by bottleneck operations on backend servers.

Several approaches [1,16,19,30,50,51,53] have been used to reduce the latency in large
scale distributed systems. These approaches include changing the level of multiplexing
in the network to avoid head-of-line-blocking [19], scheduling based on bottleneck
completion time [53] and client-side priority assignment on the basis of bottleneck
operations [16].

Processing multiget requests on backend servers pose many challenges. First, in an
online setting when a request is issued service demand is unknown for that request
i.e. we do not have any prior knowledge of the request and the request is processed
in non-clairvoyant fashion [54]. Therefore, it is very difficult to schedule a request by
just knowing its key. A first challenge is thus to be able to predict the value size based
on the key with minimal operational overhead. Then if we assume that value size is
correctly estimated, the second challenge is to coordinate the operations (sub-requests)
which go on different servers. The problem becomes more challenging when keys
access heterogeneous value sizes. Therefore, another challenge is to provide an efficient
scheduling algorithm that can estimate the bottleneck operations and schedule them on
uncoordinated backend servers in such a way that creates minimal overhead and reduce
latencies at the tail.

66

Potential gains In order to understand the problem, we consider the example given by
Figure 4.1. A multiget request mget(A, B, C) is coming on the system which requests
values of keys A, B, C. Each key of a multiget request might have different value size
which results in the different completion time of each multiget request. Therefore, the
completion time of a multiget request depends on the number of operations and the
value sizes associated with each operation. In the example (left figure), three servers 1,
2, 3 are currently holding the value of keys (A, B), (C, D) and (E, F, G, H, I) respectively.
For the sake of simplicity, we assume that all the servers having the service time of 1
operation per unit time for a small value and 5 unit time for a large value. In the figure,
a small box represents a request to a small value and large rectangle boxes (i.e. D)
represent requests to large values. A request is divided into number of sub-requests
called opset according to the data stored on the servers. In the figure 4.1, for a request
mget(A,B,C), (A,B) and (C) are the two opsets. Considering the given scenario, mget(A,
B, C), mget(D, E), mget(F, G) and mget(H, I) will complete in 2, 6, 3 and 5 time units
respectively with an average response time of 4 time units (left sub-figure).

In an ideal scenario, it would be beneficial to consider the bottlenecks between the
opsets and procrastinate some operations before scheduling it on the server. To reach
this objective, we calculates the delay allowance of each opset by considering their
approximate total execution time and procrastinate some opset. Since a multiget request
will complete when all of its operations complete. Therefore, in mget(D, E) request D
take 6 unit time whereas request E will take 1 unit time. Thus, we have delay allowance
of 5 unit time for request E. We procrastinate this opset to get the benefit of delay
allowance and let other requests execute in that time. In this scenario, mget(A, B,
C), mget(D, E), mget(F, G) and mget(H, I) will complete in 2, 6, 2 and 4 time unit
respectively with an average response time of 3.5 time unit (right sub-figure).

Contributions. We present TailX, a task aware multiget scheduling algorithm that re-
duces tail latencies under heterogeneous workloads i.e. i) multiget requests of different
value sizes where values are very large in some multiget requests ii) multiget requests
of different number of operations where number of operations (sub-requests) in some
multiget requests are very large.

We first devise a method to estimate the approximate response time. To overcome this,
we use a size estimation module to provide a estimation of response time. It keeps track
of the keys that corresponds to the large value. Once a request has been identified as
accessing a small (large) value, TailX calculates the delay allowance of operations by
which some operations can procrastinate for some time to give better flexibility for
other operations to execute. It inserts the delay allowance in each bottleneck operations
as metadata. Delay allowance is calculated on the basis of the completion time of each
operation set that goes on the different servers. Our insight is to consider the number
of operations and value size to calculate the approximate execution time. Afterwards,

67

4.1. PROBLEM DEFINITION

Figure 4.1 – An example scenario. Left:Requests assigned to server facing
delayed response time. Right:Procrastinate opsets into delay queue to take benefits
of delay allowance

operations that are finishing earlier can wait for other operations which are taking time
since a multiget request finishes when all of its operations complete. In procrastinate
time, some other requests can be executed thus decrease latencies at the tail. To take
advantage of procrastinate time, rest of the subsequent operations schedule on the
storage server.

To demonstrate the feasibility of TailX, we implement it in Cassandra [17] — a popular
key-value store which is widely used by service providers. We compared TailX with
Rein [16], a state-of-the-art algorithm in a cluster of 16 machines on Grid’500 [31].
We evaluate TailX on variable configurations of a synthetic dataset which is inspired
by Facebook [18]. We use YCSB [32] to generate workloads which contains various
proportions of accessed keys and value size. We evaluate TailX with synthetic dataset
where 20% of multiget requests contain 100 operations (long request) whereas 80%
of multiget requests contain 5 operations (short request). In another evaluation, we
consider the dataset with each multiget size of 20 operations in which 80% multiget
requests contain 1 KB value size whereas rest 20% multiget request contains 10%
operations of large value (i.e. 2 MB) size. We vary the proportion of value size from
10% to 50%. We show that compares to Rein, TailX improves the median latency by
75% as well as tail latency by up to 70%.

The remaining of this chapter is structured as follows. We first detail the state-
of-the-art related to task aware scheduling in distributed systems (§4.2). Next, we
explain the challenges to design a scheduling algorithm for multiget requests under
heterogeneous workloads (§4.3). Next, we present a detailed description of TailX and

68

its key components (§4.4). Afterwards, we present its implementation and performance
evaluation (§4.5). Finally, we conclude the chapter (§4.6).

4.2 Related Work

Workloads which are coming on system have a great impact on latency. Before
discussing the state-of-the-art work, here we discuss some statistics of production
workloads.

Web workloads. Atikoglu et al. [18] described the workload analysis of a Mem-
cached [33] traffic at Facebook. This is perhaps the most detailed work yet for the
analysis of key-value store workloads. It studies 284 billion requests over a period of
58 days for five different Memcached use cases. Several features of the workloads
were outlined by the authors but we concentrate our study on value size distribution. It
presents the CDFs of value size in different Memcached pools. ETC pool is the largest
and most heterogeneous value size pool where value sizes vary from few bytes to MBs.
It represents the general cache usage of multiple applications. In ETC, 40% of the
requests contain value size up to 11 bytes while few values range up to 1 MB. These
kinds of workloads leave less cache space for smaller values. Though requests having
small values dominate all workloads in number and overall weight.
All workloads in the paper exhibit long-tail distribution and a small portion of keys are
appearing in most of the requests. Repeating keys provide the opportunity to cache
them in the first place. Some keys are repeating a number of times. For example, in
ETC pool, 50% of ETC keys appear in only 1% of requests i.e. they do not repeat many
times. Instead, in some pools, keys are repeated in millions of requests per day.

Another statistics from the analysis of a 30-minute production trace from Sound-
Cloud [16] in which multiget requests exhibit variations in key popularity and their
sizes. It shows the heavy-tailed distribution of multiget requests in which ∼40% of
requests involve more than one key while the average size is 8.6 keys. The maximum
size of a multiget request reaches up to ∼2000 keys.

The trace shows the heavy-tailed distribution of key access frequency in which most
keys are accessed once but few keys are accessed up to 1000 times. This shows the
variations in multiget requests which are coming on systems.

Task scheduling for large computation jobs is another area of related research. A task
is characterized into two features: i) the task size and ii) number of flows (sub-tasks)
per task. These two features are very critical while improving the performance in
data-parallel clusters. Task-aware scheduling is categorized as follows:

69

4.2. RELATED WORK

4.2.1 Network-specific

Orchestra [55] enables global control to improve performance across multi-node
transfers. The Orchestra architecture contains a cross-transfer scheduling policy that
prioritizes ad-hoc queries over batch jobs. It uses weighted fair sharing where each
transfer is assigned a weight and each link in the network is shared proportionally to
the weight of the transfer. Since scheduler without apriori knowledge compromise on
performance to avoid head-of-line-blocking.

Baraat [19] is a decentralized task-aware scheduling system which dynamically changes
the level of multiplexing in the network to avoid head-of-line-blocking. It uses task
arrival time to assign a globally unique identifier and put a priority for each task. All
flows of a task use this priority irrespective of the network they traverse. Therefore,
based on the identifier, switches can make consistent decisions even though they are not
in coordination and improves the chances that all flows of a task make progress together.
Since task flows in a serial fashion, hence they do similar behavior across the network.
It avoids the problem of centralized scheduling such as scalability or fault-tolerance etc.

Varys [53] is another coflow scheduling system that decrease communication time
for data-intensive jobs and provide predictable communication time. It uses Smallest-

Effective-Bottleneck-First (SEBF) and Minimum-Allocation-for-Desired-Duration (MADD)
heuristics for guaranteed coflow completions in a timely manner. In SEBF, scheduling
of a coflow is based on it’s bottleneck completion time. In MADD, it slow down all
the flows to match the longest flow i.e. the flow that takes longest completion time to
finish. It schedules the tasks in FIFO order such that small tasks are not starved behind
large tasks. Varys assumes complete prior knowledge of coflow characteristics such as
a number of flows, their sizes etc.

Aalo [56] is another scheduling policy that improves performance in data-parallel clus-
ters without prior knowledge. Aalo separate coflows into a number of priority queues.
Aalo’s non-clairvoyant scheduler is starvation free which performs prioritization across
queues and schedules coflow in FIFO order. It makes coflows practical in presence of
task failures and mitigation techniques.

To improve the performance in datacenters, pFabric [57] decouples flow scheduling
from rate control mechanisms. Each packet has a priority and whenever a port is idle,
the packet which has the highest priority is dequeued and sent out.

4.2.2 Redundancy-specific

Redundancy is a powerful technique which is used to reduce the latency in large
scale distributed systems. In redundancy, clients initiate an operation multiple times on
multiple servers. The operation which completes first is considered and rest of them is

70

discarded. If a client duplicates the request and considers the response which receives
earlier, then this scenario decreases the mean latency but system utilization has doubled.

Vulimiri et al. [58] characterize the scenarios where redundancy improves latency even
under exceptional conditions. It introduces a queuing model which gives an analysis of
system utilization and server service time distribution. It says if we assume client-side
replication cost is low then server-side below threshold replication always improves
mean latency. Also, if there is high variability in service-time distribution then perfor-
mance achievement would be higher in this case.

Sparrow [10], a stateless distributed scheduler that adapts the power of two choices
technique [59] by selecting two random servers. It put the tasks on the server which has
fewer queued tasks. Sparrow [10] uses batch sampling where instead of sampling each
task it places m tasks of a job on least loaded randomly selected servers. This approach
performs better for parallel jobs since they are sensitive to tail task wait time. It also
includes the late binding since the power of two choices suffers from performance
issues due to considering the server queue length which is a poor indicator of wait time.
By late binding, it delays the tasks assigned to machines until worker machines are
ready to run the task. Overall, all these approaches improve load-balance.

4.2.3 Task-aware schedulers

There has been numerous work on heterogeneous workloads which typically con-
sists of many numbers of short jobs and a very few long jobs. Large jobs are those
which consume the bulk of resources whereas short jobs are latency sensitive. Long jobs
can sustain long latencies but they suffer from poor scheduling placements. Therefore
efficient scheduling mechanisms are needed to improve performance and decrease
latency in these systems. As seen in table 4.1, top 10% of the Google trace jobs account
for 83.65% of task-seconds (product of a number of tasks and average task duration).
Their average task duration is 7.34 times higher than the remaining 90% of the jobs.
This kind of pattern emerges in rest of the traces.

Hawk [2] and Eagle [34] are two systems proposing a hybrid scheduler that schedules
jobs according to their sizes. In Hawk [2], long jobs are scheduled using a central-
ized scheduler while small jobs are scheduled in a fully distributed way. Since long
jobs are in fewer number than small jobs, their centralized scheduling allows a good
placement of jobs without introducing coordination bottlenecks. It reserves a portion
of a cluster to run exclusively for small jobs and remaining part of a cluster is left
for running large jobs. Short jobs can be scheduled on any server. This allows short
tasks to take advantages of idle servers which are available. If long tasks are scheduled
on any server, there might be a possibility of head-of-line-blocking. Apart from this,
Hawk uses randomized work stealing to allow idle nodes to steal short tasks that are

71

4.2. RELATED WORK

Workloads % Long Jobs % Task-Seconds

Google 2011 10.00% 83.65%

Cloudera-b 2011 7.67% 99.65%

Cloudera-c 2011 5.02% 92.79%

Cloudera-d 2011 4.12% 89.72%

Facebook 2010 2.01% 99.79%

Yahoo 2011 9.41% 98.31%

Table 4.1 – Fraction of long jobs out of total jobs in heterogeneous workloads
consuming bulk of resources (adapted from [2]).

queued behind long tasks. To differentiate between long and short tasks, it uses an
estimated runtime of jobs. This estimated runtime is compared against a threshold value.
Jobs whose task runtime are below the threshold value are considered as short jobs and
scheduled in a distributed way. The threshold value is based on the statistics of past jobs.

Eagle [34] is another hybrid scheduler, which schedules short and long jobs same as
Hawk [2] to avoid head-of-line-blocking. A job is a set of tasks that can run in parallel
on several worker nodes. Every task of a job is assigned to worker nodes to schedule a
job. The completion time of a job is the time when all the task finishes. Therefore, it is
the maximum completion time of any task in a job. Identification of long and short jobs
are classified by the average execution time of the tasks. If the average execution time
of tasks falls above (below) the threshold, then the job is considered as long (short).

It introduces sticky batch probing to achieve better job scheduling. In sticky batch
probing, scheduler places a probe on a node and it stays there until all the tasks of a job
are completed. It uses Least Work Left (LWL) scheduling policy to schedule long jobs.
Finally, Eagle is implemented as a part of Spark-plugin and it improves the performance
by avoiding head-of-line-blocking.

Omega [60] is a shared-state scheduler in which a separate centralized resource manager
maintains a shared scheduling state. In general, worker node or distributed scheduler
update this state. Based on the shared state, schedulers make a scheduling decision
and update the state. In Omega, there is no central resource allocator. Therefore all
the resource allocation decision happened in the schedulers themselves. There is a
master copy of the resource allocations called cell state, given to each scheduler. Each
scheduler has the local private copy of cell state which is used to make scheduling
decisions. The scheduler can see the entire cell state and has all the permission to claim
any resources. Once a placement decision is made, scheduler updates the shared copy
of the cell state.

72

4.2.4 Request reissues and parallelism

Kwiken [7] optimizes the end-to-end latency using a DAG of interdependent jobs. It
further uses latency reduction techniques such as request reissues to improve the latency
of request-response workflows. Also, there has been work done on request parallelism.

Haque et al. [14] propose solutions for decreasing tail latencies by dynamically increas-
ing the parallelism of individual requests in interactive services. But parallelizing each
request is challenging since service demand of a request is unknown during its arrival.
Therefore it is very difficult to parallelize requests without knowing the service demand.
Apart from this, parallelizing short requests don’t improve tail latency. To overcome
this, Few-to-Many (FM) selectively parallelizes the long running requests since that
are the ones contributing the most to the tail latency. FM scheduler determines how
much parallelism it needs to add based on individual system load and request progress.
Therefore, it improves the state-of-the-art predictor in terms of accuracy and efficiency
to support selective parallelization. FM parallelizes long requests on all servers thus
also including slow servers.

Recent efforts [15, 61] show that it is challenging to schedule tasks during the arrival of
variable size jobs. These works try to predict the long-running queries and parallelize
them selectively. Instead of targeting the more general problem of predicting job sizes,
which in some cases involves costly computations.

Jeon et al. [15] focus on the parallelizing long running queries which are few compared
to the short ones. It aims to achieve consistent low response time for web search
engines. It mentions a statistics from Bing which shows that 85% of the queries take
less than 15ms while few queries are very long which take up to 200ms. Specifically,
the average execution time is 13.47 ms while 99th percentile latency is 200 ms which is
15 times more than average latency. Therefore, parallelizing long running queries is a
fair solution to reduce query execution time. To achieve this, an effective parallelization
scheme and efficient prediction of query execution time are needed with accuracy. For
prediction, it improves the term and query features of the predictor. It also does query
rewriting to improve accuracy. It uses predicted query execution time to parallelize
long-running queries.

Apart from this, there has been numerous work on size aware scheduling. Authors [62]
proposed unfair scheduling to improve the performance of web servers. The idea is to
give priority to requests with the short remaining time.

4.2.5 Multiget scheduling

In key-value stores, multiget scheduling is a common pattern for scheduling requests
efficiently. Systems like Cassandra [17], MongoDB [23] offer such algorithms in these

73

4.2. RELATED WORK

systems. Rein [16] uses a multiget scheduling algorithm to schedule the multiget
request in a fashion that can reduce median as well as tail latency. In the next section,
we discuss the Rein [16] multiget scheduling.

4.2.5.1 Rein scheduling

When a multiget request comes to a server it splits into the group of sub-requests
called opsets on the basis of hashing mechanism 2.1.2 followed by the nodes. Normally
all the nodes have some hash range and keys split according to that hash range. Next, it
predicts the bottleneck opset i.e. opset which creates head-of-line-blocking. Estimation
of bottleneck opset is based on the number of operations in it. Opset which has the
highest number of operations is considered as bottleneck opset. Therefore, there is a
probability of more than one bottleneck opset if they have the same number of opera-
tions.

Rein uses a client-side priority assignment on the basis of bottleneck opset. The idea
is to prioritize operations with shorter execution time compared to larger ones. This
reduces the head-of-line-blocking of requests and improves latencies. It inserts the
priority corresponds to the number of operations in bottleneck opset to prefer the opsets
with shorter bottlenecks. Each priority is inserted as meta-data in each operation of a
given opset. Thus, all operations of an opset have the same priority. Afterwards, each
opset is sent to the corresponding server responsible for that data. Scheduling of each
operation is done on the server side.

In high-level view, each server servers the requests according to their assigned priority.
Since a simple priority queue might suffer from starvation, it uses two policies which
include the Shortest Bottleneck First (SBF) and Slack-Driven Scheduling (SDS). The
details are as follows:

1. Shortest bottleneck first:

In SBF, every operation of a multiget request has a priority which corresponds to
the cost of the bottleneck opset. The intuition is to prioritizes requests which have
smaller bottlenecks to minimize head-of-line-blocking. This scheme is similar to
Shortest Job first (SJF), apart from the request completion time that is determined
by the last operation of the request. It favors smaller multigets compare to the
large ones and schedule them ahead of larger multigets.

2. Slack driven scheduling:

In SDS, it assigns the priority for every operation x of a non-bottleneck opset O
as (cost(x) + slack(x))/size(O). It deprioritizes the operations based on how
long they can afford to be slacked. This policy uses server capacity efficiently by
prioritizing servicing requests compare to the bottle-necking the request.

The canonical priority queue implementation has some significant performance draw-
back due to lock contention in multi produce/consumer settings. Therefore, Rein uses

74

multiple queues at each server to make it more efficient. At backend nodes, there is a
multilevel queue with K FIFO queues Q = {Q1, Q2, . . . , QK} to serve the requests
with priorities. In multilevel queue, requests execute according to their assigned priori-
ties. However, each queue has different dequeue rates in a multilevel queue to avoid
starvation due to priority scheduling. A queue is assigned with highest queue rate
wQ1

and successive queues have the lower rates in a similar fashion. The scheduler
uses Deficit Round Robin (DRR) scheduling for dequeuing operations with assigned
dequeue rates. The higher priority queue has higher dequeue rate while lower priority
queue has lower dequeue rate. To assign priority of a multiget request, Rein calculates
the cost of each bottleneck opset B and opset with higher cost are assigned to lower
priority. For non-bottleneck opset op, it calculates the ratio between the cost of non-
bottleneck and bottleneck opset and loop over all the queues to minimize the absolute
difference between cost ratio and dequeue rate ratios. wB is the rate of the queue to
which bottleneck opset B is assigned. It is defined as below:

Qmin = argmin
q∈Q

‖ cost(op)
cost(B)

− wq

wB
‖

Rein is implemented in Cassandra, a widely used key-value store. It has been evaluated
on 16 m3.xlarge AWS EC2 instances. To generate the workloads, YCSB [32] is used
and run on a separate node. The consistency level is set to 1. For workloads, it uses
SoundCloud trace which is not publicly available. For synthetic dataset, it uses constant
multiget size of 50. Results show that Rein significantly improves median, as well
as tail latencies, compared to other state-of-the-art algorithms. It demonstrates that
distributed scheduling provide beneficial outputs in the context of key-value stores and
without requiring coordination. Rein can be applied to any key-value stores such as
Memcached [33] and MongoDB [23] or any other where same scheduling heuristics
can be applied.

4.3 Challenges

Before going into detail of TailX, we address the challenges to design such schedul-
ing algorithms. Here are the challenges associated with multiget scheduling under
heterogeneous workloads:

4.3.1 Scheduling without complete knowledge is hard

Scheduling multiget request in a storage system is challenging. Requests that are
coming on a system have multiple operations with varying number of keys and value
sizes [5, 16, 18]. Server exhibits high tail latencies for these workloads due to the
different execution time of operations. In an online setting, when a request is issued
to a key-value store, the service demand or response time of the request is unknown.

75

4.4. TAILX DESIGN AND IMPLEMENTATION

 Replica
Selection

 Load
 Estimation

 Splitter
 Delay allowance

Estimation

 Size
 Estimation

 Delay
Queue

 Procrastination S
e

rv
e

r
S

e
l e

c
t i
o

n

Coordinator

Servers

request

Figure 4.2 – Overview of TailX.

To provide better scheduling algorithm, it is required to know the service demand.
So, the first challenge to address is: how to predict the approximate response time
of a request by knowing only its key? Further, considering the high-performance
constraints of key-value stores, the mechanism set up to estimate the size of a given
value must be extremely efficient. The problem is challenging since scheduling is done
in non-clairvoyant fashion [54].

4.3.2 Need for coordination

Then, we assume that the approximate response time of a given request can be
correctly estimated at request time, the second challenge to address is: how to provide
an efficient scheduling algorithm which can estimate the bottleneck operations and
schedule them on uncoordinated backend servers in such a way that creates minimal
overhead and reduces tail latencies. Since all the operations have to wait for the
slowest operation, the scheduling algorithm should schedule the operations in a way
that synchronize the approximate execution time and complete at the same time.

4.4 TailX design and implementation

An overview of the architecture of TailX scheduling is given by Figure 4.2. In
the figure, when a request is issued, the node acts as a coordinator. Coordinator first
does the replica selection where it selects the best replica out of total target replicas
based on the past read performance of replica servers. An appropriate replica selection
mechanism (Dynamic snitching [20]) is applied to select the best replica.

76

Afterwards, the request goes to a splitter where it is split into sub-requests (opsets) by
a partitioner (Murmur3 [22]). This splitting is based on the hash based token range
holding by the server as explained in chapter 2.1.2. This splitting of keys is the same as
used in Cassandra for distribution of keys. The number of operations and value sizes
associated with keys vary in these opsets. Therefore, to correctly estimate the total
execution time of each opset, one needs to identify the operations which are taking a
long time. Therefore, to identify these operations, it passes through size estimation

module. The objective of this module is to estimate whether a given operation will
access a small or a large value. It keeps track of keys that associated with large values
and store the keys of those operations.

Once the value size of an operation is identified, delay allowance estimation module
estimates the cost of each opset i.e. approximate total execution time and calculate the
approximate delay allowance occurred by each opset. This delay allowance is inserted
as metadata in each operation of an opset. After delay allowance assignment, opsets
go through the delay queue. The objective of this step is to procrastinate each opset
which has delay allowance and let other requests execute in that time. If an operation
has delay allowance then it inserted in a delay queue with given procrastinating time.
The operations reside in the delay queue until the given procrastinate time expires.

Finally, operations go to the required server which is holding the data. Once the opera-
tions finish, they return the data to the coordinator.

We present in the following sections the details of all proposed modules. First, we
present the replica selection mechanism based on the load estimated among servers
(§4.4.1). Next, we describe the request splitting based on the data storage (§4.4.2).
Afterwards, we explain the delay allowance policies including delay estimation of
operations and scheduling mechanism (§4.4.3). Finally, we explain the server selection
(§4.4.4).

4.4.1 Load estimation and replica selection

The operations of a multiget request select the target replicas according to the
hash-based mechanism followed by the replica server (details in 2.1.2). The number
of replicas depends on the replication factor followed by the storage systems. After-
wards, a replica selection algorithm (Dynamic snitching [17] which considers past read
performance of the replicas) is applied for scoring the replicas and a faster replica is
chosen to complete the operation. The role of this component is to select the replica
that is expected to serve a given request faster than other replicas.

77

4.4. TAILX DESIGN AND IMPLEMENTATION

Request Queue
Server 1

Request

Response

Server 2

Value Size
Estimator

(1) (2)

Coordinator

Small

Large

[o
p

s
e
t 1

,o
p

s
e
t2

,
…

 o
p

s
e
t N

]

opset1

opset2

opset3

A,B
opset1

opset2

opset3

D
e
la

y
 E

s
t
im

a
t
i o

n

T
w

T
w

Collection of keys
of large values

Delay Queue

S
e
r
v
e
r
 S

e
l e

c
t i

o
n

op3op2
C,D

(3) (4)Value Size
Estimator

Request Queue
(1)

Collection of keys
of large values
Collection of keys
of large values

(2)

Response

Request

Figure 4.3 – Operating principle of TailX scheduling.

4.4.2 Request splitting

In a key-value store, all storage nodes are divided into hash based token ranges.
After selecting the intended replica, request splits into number of sub-requests called
opsets according to the partitioner (e.g. Murmur3 [22]). Each opset goes to a different
replica server and contains a varied number of operations with different value size.
Our goal is to schedule the operations in a way that can complete each opset at the
approximately same time. This gives better flexibility to other requests to execute in
that time.

4.4.3 Delay allowance policies

The algorithms for delay allowance policies are described in Algorithm 2 and Algo-
rithm 3. The role of these algorithms is to procrastinate the opsets which are finishing
earlier than the other opsets.

Every opset has different completion time due to the variations in value size and number
of operations in it. Therefore, some operations of an opset have to wait for bottleneck
operations. This results in increasing the latency of the overall request.

To overcome this situation, the delay allowance module calculates the cost of each
opset (opcost) i.e. opset execution time on the server. Calculation of the opset cost is
based on the value size estimation since we need to know the number of operations for
large values (NL) in each opset. The operations of large values are the sole reason of
inflating the operation cost. Therefore, we match the keys of large value to the keys
stored in Bloom filter [36] (step 4 of Algorithm 2). Next, it calculates opset cost of each
opset based on the request service time for small value (TS) and request service time for
large value (TL) (step 5 of Algorithm 2). Afterwards, it calculates delay allowance Tw

78

((step 8 of Algorithm 2)) and tag the allowance to each opset. Finally, it procrastinates
operations which has delay allowance (step 11 of Algorithm 2) otherwise send the opset
to the corresponding replica server. In Algorithm 3, if the delay allowance time has
finished then the request is dequeued and sent to the corresponding replica server.

4.4.3.1 Delay allowance estimation

The role of delay estimation is to estimate the approximate execution cost of each
opset and calculate the approximate delay allowance which can be occurred at each
opset. Calculation of delay allowance is based on the value size estimation of each
operation.

Value size estimation. An important question that TailX addresses is to determine
whether an operation will access a large or a small value. In this context, one may start
by wondering how to set a threshold (say THRL) such as values above this threshold are
considered as large by TailX. We assume that this choice is application dependent and
that it is up to the database administrator to set the value of THRL according to the data
distribution over her database. For instance, for a database containing text messages
(in the order of few KBs), photos (starting from hundreds of KBs), a database manager
may decide to consider as large all the values corresponding to photos and thus setting
THRL to few hundred KBs. Above this value, all requests will be considered as large
by TailX.

Considering a given value for THRL, TailX uses Bloom filters to keep track of keys
corresponding to large values. A Bloom filter is a vector of m bits initially set to 0,
with an associated set of k hash functions (generally k ≪ m). Inserting an element in
the Bloom filter is done by hashing the element (in our context the key contained in
the request) using the k hash functions and setting the corresponding bit positions to
1. Testing the presence of an element in the Bloom filter is done similarly by hashing
the element using the k hash functions and testing whether all the corresponding bit
positions are set to 1. Querying a Bloom filter may lead to false positive answers but
will never lead to false negative ones. The false positive rate depends on the size of the
vector, the number of used hash functions and the maximum number of elements to be
inserted in the set.

After identifying keys which corresponds to the large value, it calculates the opset cost
i.e. how much time the opset will take to execute. To estimate the opset cost (opcost),
it calculates the service time of operations for large values (TL) and small values (TS).
Afterwards, it multiplies them by their respective number of operations to get the overall
cost of the opset.

Further, it calculates the delay allowance (Tw) for each opset. Delay allowance is
calculated on the basis of cost difference of maximum opset cost (opcostmax) and cost

79

4.5. EVALUATION

of opset for which we are calculating the delay allowance. It means every opset has the
allowance time in which it can wait and let other operations to complete.

4.4.3.2 Delay scheduling

The role of a delay queue is to procrastinate the opset which has some delay
allowance. This gives better flexibility for other queries to execute in the delay allowance
time.

Delay queue design Delay queue (Qd) is an unbounded blocking queue implemented
in Java for opsets which have delayed allowance. The idea of delay queue is to
procrastinate some operations. An element can be taken out once the delay has expired.
The element which is at the head of the queue has the expired delay furthest in the past.

Scheduling of requests which has delay allowance If the request is tagged by delay
allowance (Tw > 0) during delay estimation then the request will be sent to delay queue.
The scheduler adds the system current time in the delay allowance i.e. procrastinate
time (Td), which helps to correctly estimate the procrastinated opset.

Scheduling of requests with zero delay allowance If the request is tagged by delay
allowance (Tw == 0) during delay estimation then the request will be sent directly to
the server without delay. Since these are the requests which take time to execute and
don’t offer any allowance for slacking that opset.

4.4.4 Server selection

Finally, operations are sent to the intended server directly or after completion of the
procrastination time.

4.5 Evaluation

We implement TailX as an extension of Cassandra [17], a very popular key-value
store. We evaluate its effectiveness in reducing tail latency using synthetic dataset
generated using the Yahoo! Cloud Serving Benchmark (YCSB) [32]. We compare
different latency percentiles, particularly the tail, under TailX, against state-of-the-art
algorithm i.e. Rein. We conduct extensive experiments on Grid’5000 [31], exploring
the impact of varying ratios of multiget request sizes and their value sizes. Overall, our
evaluation answers the following questions:

1. How is the performance of TailX impacted by the multiget request sizes in the
key-value store? (§4.5.2.1)

80

Algorithm 2: Opset delay allowance algorithm
Data: ksName = keyspace name, K = set of keys, CF = tablename, op = opset,

opcostmax= max opset cost, req = multiget request, opsets = set of opsets,
NL = set of keys correspond to large values in an opset, Qd = delay queue,
BF = bloom filter;

Input: req (ksName,K,CF);
Output: Procrastinated opsets.

1 begin

2 opcostmax = 0;
3 for op ∈ opsets do

/* Calculate number of keys correspond to large values in

an opset */

4 NL := {opr ∈ op | match(BF, opr.key) = 1};
/* Calculate opset cost */

// TL= request service time (in nanosec) for large value

// TS= request service time (in nanosec) for small value

// opsize = number of keys in an opset

5 opcost = TL ∗ |NL|+ TS ∗ (opsize− |NL|);
/* Calculate max opset cost */

6 opcostmax = max(opcost, opcostmax);

7 for op ∈ opsets do

/* Calculate delay allowance */

8 Tw = opcostmax − op.opcost;
/* Tag Tw to each opset */

9 tag(Tw, op);
/* Calculate procrastinating time */

// Tcurrent = current system time

10 Td ←− Tcurrent + Tw;
11 if op.Tw > 0 then

/* insert opset in delay queue */

12 Qd.enqueue(op, Td);

13 else

14 send op to corresponding replica;

Algorithm 3: Opset dequeue algorithm

1 begin

2 while Qd 6= ∅ && Tcurrent − Td ≥ 0 do

3 deque from Qd;
4 send op to corresponding replica;

81

4.5. EVALUATION

2. How is the performance of TailX impacted by the proportion of large values in
the key-value store? (§4.5.2.2)

We start this section by presenting our evaluation setup (§4.5.1) before presenting our
results (§4.5.2.1) and (§4.5.2.2).

4.5.1 Experimental setup

Experimental Platform. We evaluate TailX on Grid’5000 [31]. We use a 16 node
cluster in which each machine is equipped with 2 Intel Xeon X5570 CPUs (4 cores
per CPU), 24GB of RAM and a 465GB HDD. The machines are running the Debian 8
GNU/Linux operating system.

Configuration. We evaluate TailX in Cassandra. We used the industry standard
Yahoo! Cloud Serving Benchmark (YCSB) [32] to generate datasets and run our work-
loads. As YCSB only generates a single value size datasets for each given client, we
modified its source code to allow generation of mixed size datasets. Specifically, for
mixed size workloads, we kept the proportion of large values compared to small val-
ues the same. For generating client workloads, we configured YCSB on a separate node.

Moreover, in all the generated workloads, the access pattern of stored values (whether
small or large) follows a Zipfian distribution (with a Zipfian parameter ρ=0.99). To have
an idea of the size a given synthetic dataset, we insert 20 million of small records (1KB
size) and 100K of large records (2 MB size). This approximately represents 4̃1GB of
data per node. We kept the replication factor as 3 which means each piece of value is
available on 3 servers. Each measurement involves 1 million or 10 million requests
and is repeated 5 times. Each multiget request access various operations with different
value sizes. We test the cluster of its maximum attainable throughput and kept the 75%
system load for all our experiments.

4.5.2 TailX on variable configurations of the synthetic dataset

We evaluate in this section the effectiveness of TailX along different dimensions
of heterogeneous workloads, i.e., the impact of long operations on multiget requests
(§4.5.2.1), the impact of operations correspond to large values (§3.4.2.2).

4.5.2.1 Impact of multiget requests containing large number of operations

To study the impact of the proportion of long multiget requests (i.e. multiget request
size is large) on the system performance, we fix the size of multiget request as 100 and
short multiget request to 5. We keep the ratio of long multiget request to 20% i.e. for
each 100 multiget requests, 80 multiget are of size 5 and 20 multiget are of size 100.

82

Median Average 90th 95th 99th

0

20

40

60

80

100

120

140

160

L
at

en
cy

(i
n

m
s)

TailX Rein

Figure 4.4 – Improvement of TailX over latency with different multiget request
sizes (80% multiget of size 5 and 20% multiget of size 100) for 1 million opera-
tions

Through this, we can see the impact of long multiget over short multiget requests.

We present the improvement of TailX over Rein for 1 million operations and 10 million
operations in Figure 4.4 and 4.5 respectively. Figure 4.6 shows the different latency
percentiles to give a closer look in system. In this experiment, we start by generating
datasets in which each multiget request contains 1KB values.

Results show that TailX reduces the tail latencies over Rein by up to 63% while
reducing the median latency by up to 71%. TailX achieves a better gain for median
latency compare to tail latency. In terms of absolute latency (for 1 million operations),
say for 99th percentile, it is 56 ms for TailX but roughly 152 ms for Rein respectively.
For median latency, absolute value is 4.57 ms for TailX whereas it is around 14.3 ms
for Rein.

4.5.2.2 Impact of multiget requests having keys of large value sizes

To study the impact of the proportion of large requests (request having large value
i.e. 2 MB) on the system performance, we fix the size of multiget request as 20. We
keep the percentage of large multiget requests as 20% and vary the proportion of large
values.

83

4.5. EVALUATION

Median Average 90th 95th 99th
0

5

10

15

20

25

30

35

40

45

50

55

60

65

L
at

en
cy

(i
n

m
s)

TailX Rein

Figure 4.5 – Improvement of TailX over latency with different multiget request
sizes (80% multiget of size 5 and 20% multiget of size 100) for 10 million
operations

10th 30th 50th 70th 90th

0

5

10

15

20

25

30

Latency percentiles

L
at

en
cy

(i
n

m
s)

TailX Rein

Figure 4.6 – Analysis of different latency percentiles for different multiget request
sizes (80% multiget of size 5 and 20% multiget of size 100) for 10 million
operations

84

Median Average 90th 95th 99th 99.9th

0

50

100

150

200

250

300

350

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Figure 4.7 – Improvement of TailX over latency with different multiget request
value sizes (80% multiget requests have small values (1 KB) and rest 20% multiget
requests have 10% of large values) for 1 million operations

Varying proportion of large value sizes. We vary the proportion of large value from
10% to 50% in a multiget request. As specified before, these variations are only for 20%
of multiget requests. We present the latency reduction of TailX over Rein for 1 million
operations. In the following, we zoom into the specific percentage of large value sizes.

Multiget of 10% large values. In this experiment, 20% of each multiget contains
10% of large values. Figure 4.7 and 4.8 show the improvement of TailX over Rein
i.e., 30% latency reduction in 95th and 99th percentiles. TailX achieves a better gain
for median latency compare to tail latency, i.e., roughly 75% v.s. 30%. In terms of
absolute latency, say for 99th percentile, it is 97 ms for TailX but roughly 135 ms for
Rein respectively. For median latency, absolute value is 11 ms for TailX whereas it is
around 43 ms for Rein.

Multiget of 20% large values. Figure 4.9 and 4.10 show the improvement of TailX
over Rein i.e., 40% and 45% latency reduction in 95th and 99th percentiles respectively.
TailX achieves a better gain for median latency compare to tail latency, i.e., roughly
56% v.s. 45%. In terms of absolute latency, say for 99th percentile, it is 112 ms for
TailX but roughly 203 ms for Rein respectively. For median latency, absolute value is 8
ms for TailX whereas it is around 18 ms for Rein.

85

4.5. EVALUATION

10th 30th 50th 70th 90th

0

10

20

30

40

50

60

70

80

Latency percentiles

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Figure 4.8 – Analysis of different latency percentiles for different multiget request
value sizes (80% multiget requests have small values (1 KB) and rest 20% multiget
requests have 10% of large values) for 1 million operations

Median Average 90th 95th 99th 99.9th

0

100

200

300

400

500

600

700

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Figure 4.9 – Improvement of TailX over latency with different multiget request
value sizes (80% multiget requests have small values (1 KB) and rest 20% multiget
requests have 20% of large values) for 1 million operations

86

10th 30th 50th 70th 90th

0

10

20

30

40

50

60

70

80

Latency percentiles

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Figure 4.10 – Analysis of different latency percentiles for different multiget
request value sizes (80% multiget requests have small values (1 KB) and rest 20%
multiget requests have 20% of large values) for 1 million operations

Multiget of 50% large values. Figure 4.11 and 4.12 show the improvement of TailX
over Rein i.e., 18% and 27% latency reduction in 95th and 99th percentiles respectively.
TailX achieves a little less gain for median latency compare to tail latency, i.e., roughly
13%. In terms of absolute latency, say for 99th percentile, it is 109 ms for TailX but
roughly 150 ms for Rein respectively. For median latency, absolute value is 5.9 ms for
TailX whereas it is around 6.76 ms for Rein.

Summarizing, TailX outperforms Rein in all the configurations. TailX is effective when
there are some long requests in the systems. Also, effectiveness of TailX can be seen
when some multiget requests have some percentage of large values. Overall in these
configurations, TailX reduces the median latency up to 75% and tail latency by up to
70%.

87

4.5. EVALUATION

Median Average 90th 95th 99th 99.9th

0

50

100

150

200

250

300

350

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Figure 4.11 – Improvement of TailX over latency with different multiget request
value sizes (80% multiget requests have small values (1 KB) and rest 20% multiget
requests have 50% of large values) for 1 million operations

10th 30th 50th 70th 90th

0

5

10

15

20

25

30

Latency percentiles

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Figure 4.12 – Analysis of different latency percentiles for different multiget
request value sizes (80% multiget requests have small values (1 KB) and rest 20%
multiget requests have 50% of large values) for 1 million operations

88

4.6 Summary

In this chapter, we addressed the problem of median as well as tail latency in
key-value stores under heterogeneous workloads for multiget requests. We study
the approaches that focus on the performance in cloud data stores. For multiget
scheduling, an in-depth study of Rein has highlighted the fact that it doesn’t perform well
under heterogeneous workloads. Specifically, we design TailX, a multiget scheduling
algorithm that effectively deals with heterogeneous multiget requests. The result is
improved overall performance of the key-value store for a wide variety of heterogeneous
workloads. Specifically, our experiments under heterogeneous YCSB workloads in a
Cassandra based implementation shows that TailX outperforms Rein and reduces the
tail latencies by up to 70% while reducing the median latency by up to 75%.

89

5
Conclusions

Contents

5.1 Summary . 91

5.2 Lessons Learned . 93

5.3 Future Directions . 93

This thesis started with the aim of improving the performance of cloud data stores.
Over the course of this thesis, we addressed the set of challenges faced in the way of
improving the performance of cloud data stores and reduces latencies in these systems.
In this chapter, we summarize the key aspects of improving the performance in key-
value stores by stating how this goal is achieved (§5.1). We share the lessons which we
learned during the thesis (§5.2). Finally, we conclude the chapter with some possible
future directions in which the work can be extended (§5.3).

5.1 Summary

The main contributions of this thesis are as follows:

1. Taming tail latencies in key-value stores under heterogeneous workloads: In
chapter 3, we address the problem of tail latency under heterogeneous workloads
in key-value stores. Based on the previous work, we make the key observation
that replica selection algorithms are useful to reduce tail latency in key-value
stores. At the same time, we highlight the challenges involved in designing better
replica selection algorithms. We present Héron, a replica selection algorithm
that reduces tail latencies under heterogeneous workloads. We implement it as
part of Cassandra, a widely used key-value store. The result is improved overall

91

5.1. SUMMARY

performance of the key-value-store for a wide variety of heterogeneous workloads.
Here are the design contributions of Héron:

• Héron includes a replica scoring mechanism similar to the one used by
C3 [1] to estimate the load among servers. It periodically collects as scoring
metric for each server the product of its average service time and its queue
size.

• In an online setting, we don’t have apriori knowledge of requests coming
on system i.e. we don’t know the service demand of the request. Therefore
it is very difficult to schedule the request by knowing only its key. Héron
predicts which requests will require significant time by keeping track of the
keys corresponding to large values.

• Once a request has been identified as accessing a small (respectively, a
large) value, it applies an appropriate replica selection algorithm, which
avoids head-of-line-blocking.

2. Task-aware scheduling for improving tail latencies in key-value stores: In
chapter 4, we address the problem of performance bottlenecks in cloud datastores
in the case of scheduling multiget requests under heterogeneous workloads.
Multiget scheduling is used to achieve low tail latency. We aim to design an
efficient scheduling algorithm which can estimate the bottleneck operations and
schedule them on uncoordinated backend servers in such a way that creates
minimal overhead and reduce latencies at the tail. We present TailX, a task aware
multiget scheduling algorithm that reduces tail latencies under heterogeneous
workloads. We implement it as part of Cassandra, a widely used key-value store.
The result is improved overall performance of the key-value-store for a wide
variety of heterogeneous workloads. Here are the design contributions of TailX:

• In an online setting, we don’t have apriori knowledge of requests coming
on system i.e. we don’t know the service demand of the request. Therefore
it is very difficult to schedule the request by knowing only its key. TailX
predicts which requests will require significant time by keeping track of the
keys corresponding to large values.

• TailX is able to adopt varying workload conditions and can estimate the
bottleneck operations.

• TailX uses a novel approach to schedule the operations on uncoordinated
backend servers in such a way that create minimal overhead and reduce
latencies at the tail.

92

5.2 Lessons Learned

Achieving better performance in key-value stores require better algorithms with
minimum overhead. It requires solving complex mechanism of distributed architecture
and considering the incoming load coming on the system.

In our work, we consider latency as one of the main factors which affects the overall
performance of key-value stores. In order to achieve low latency, incoming requests
should be scheduled on uncoordinated backend servers in a way that creates minimal
overhead. This depends on the value size of the incoming requests. We learn that value
size has a great impact on the latency of requests, which leads to head-of-line-blocking
if not scheduled properly. Therefore we try to avoid head-of-line-blocking by separating
requests with small and large value sizes. Thus, we improved the overall performance
and reduces latency at the tail. Apart from value size, it is needed to estimate the load
among servers which helps to schedule the requests in an efficient manner.

For task aware scheduling in key-value stores, we learn that it is better to procrasti-
nate some operations of a request which complete very early compared to the operations
which take longer time. Therefore it leaves the room for executing the next incoming
requests, which leads to improving the latency.

5.3 Future Directions

In spite of contributions of this thesis in regard to performance improvisation in
cloud data stores, there are a number of open research challenges that required to be
addressed to make further advancement in the area. Some of the research directions are
identified as below:

Improving performance under heterogeneous workloads

There is a lot of work remaining for improving performance in key-value stores under
heterogeneous workloads. In our thesis, we have worked on single and multi GET re-
quests. Our work in Chapter 3 and Chapter 4 detailed the problem under heterogeneous
workloads. Next, we seek to consider the request models where we want to see the
performance results with a different ratio of the request for large and small values and
different request distribution such as uniform, zipfian bimodal etc. Also, a number of
operations in a request greatly impact the latency where we want to see the impact of
a heavy request (with more number of keys) on light request (less number of keys).
Apart from this, in today’s scenario, there are some high priority jobs which should be
complete before any other requests. It is interesting to see how these request models
impact the performance in key-value stores. To summarize, heterogeneous workloads
have a great impact on latency. Therefore a thorough performance evaluation is needed
to improve the latency in these systems.

93

5.3. FUTURE DIRECTIONS

Geo-distributed replica selection

The current work is focused on improving the latency in a single data center. There
is a lot of room for improvement in replica selection algorithms for geo-distributed
systems. In the literature, a lot of work has been done in the area of geo-distributed
replica selection. It is interesting to see the latency measurements for replica selection
algorithms under heterogeneous workloads in geo-distributed systems. Some work [41]
has been done on selecting the better replica selection algorithm but there is no sufficient
literature which shows the improvement in replica selection algorithm in geo-distributed
systems.

Scheduling in multi-datacenter with different consistency models

In this thesis, we consider a single datacenter with consistency one. We seek to
answer the question where heterogeneous workloads coming on the multi-datacenter.
In general, a client is getting replies with different consistency as one or quorum. We
believe quorum consistency will have a different impact on replica selection algorithms
as well as on task aware scheduling. Since in a quorum consistency model we will have
replies from more than half of the replica and it would be interesting to see how these
algorithms perform under such consistency levels. Furthermore, such consistency levels
with heterogeneous workloads led to complex the scenario. We believe this opens up
the research directions under such circumstances.

94

Bibliography

[1] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail latency in
cloud data stores via adaptive replica selection,” in NSDI, 2015.

[2] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk: Hybrid
datacenter scheduling,” in USENIX ATC, 2015.

[3] E. Schurman and J. Brutlag, “Performance related changes and their user impact,”
in Velocity: web performance and operations conference, 2009.

[4] J. Brutlag, “Speed matters for google web search,” Google. June, 2009.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, 2013.

[6] G. Linden, “Make data useful,” https://sites.google.com/site/glinden/Home/
StanfordDataMining.2006-11-28.ppt.

[7] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan, “Speeding
up distributed request-response workflows,” in SIGCOMM, 2013.

[8] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding long tails in the
cloud,” in NSDI, 2013.

[9] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-Balter, “Robinhood: Tail
latency aware caching – dynamic reallocation from cache-rich to cache-poor,”
in OSDI, 2018.

[10] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed, low
latency scheduling,” in SOSP, 2013.

[11] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger,
“Prioritymeister: Tail latency qos for shared networked storage,” in SoCC,
2014.

[12] C. Stewart, A. Chakrabarti, and R. Griffith, “Zoolander: Efficiently meeting very
strict, low-latency SLOs,” in ICAC, 2013.

[13] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:
Guaranteed job latency in data parallel clusters,” in EuroSys, 2012.

95

https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt

BIBLIOGRAPHY

[14] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and K. S. McKinley,
“Few-to-many: Incremental parallelism for reducing tail latency in interactive
services,” in ASPLOS, 2015.

[15] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and S. Rixner,
“Predictive parallelization: Taming tail latencies in web search,” in SIGIR,
2014.

[16] W. Reda, M. Canini, L. Suresh, D. Kostić, and S. Braithwaite, “Rein: Taming tail
latency in key-value stores via multiget scheduling,” in EuroSys, 2017.

[17] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system,”
SIGOPS Oper. Syst. Rev., 2010.

[18] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload
analysis of a large-scale key-value store,” in SIGMETRICS, 2012.

[19] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized task-
aware scheduling for data center networks,” in SIGCOMM, 2014.

[20] B. Williams, “Dynamic snitching in Cassandra: past,
present, and future,” http://www.datastax.com/dev/blog/
dynamic-snitching-in-cassandra-past-present-and-future, 2012.

[21] “CloudComputing Survey,” https://www.idg.com/tools-for-marketers/
2018-cloud-computing-survey/, 2018.

[22] “Partitioners,” https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/
archPartitionerAbout.html.

[23] “Mongodb,” https://www.mongodb.com/.

[24] “Openstack swift,” https://docs.openstack.org/swift/latest/.

[25] “Apache accumulo,” https://accumulo.apache.org/.

[26] “Riak Load Balancing and Proxy Configuration,” http://docs.basho.com/riak/1.4.
0/cookbooks/Load-Balancing-and-Proxy-Configuration/.

[27] “Wikimedia downloads,” http://download.wikimedia.org/.

[28] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval evaluation,” in MIR, 2008.

[29] M. Ould-Khaoua, G. Min, and N. Thomas, “Performance analysis and evaluation
of parallel, cluster, and grid computing systems comparing job allocation
schemes where service demand is unknown,” Journal of Computer and System

Sciences, 2008.

[30] V. Jaiman, S. B. Mokhtar, V. Quéma, L. Y. Chen, and E. Rivière, “Héron: Taming
tail latencies in key-value stores under heterogeneous workloads,” in SRDS,
2018.

[31] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine,
A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez,

96

http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archPartitionerAbout.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archPartitionerAbout.html
https://www.mongodb.com/
https://docs.openstack.org/swift/latest/
https://accumulo.apache.org/
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
http://docs.basho.com/riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/
http://download.wikimedia.org/

F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding virtualization capabilities to
the Grid’5000 testbed,” in Cloud Computing and Services Science, 2013.

[32] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking cloud serving systems with YCSB,” in SoCC, 2010.

[33] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani,
“Scaling Memcache at Facebook,” in NSDI, 2013.

[34] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware scheduling in
Eagle: Divide and stick to your probes,” in SoCC, 2016.

[35] J. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine scheduling prob-
lems,” in Studies in Integer Programming, 1977.

[36] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

munications of the ACM, 1970.

[37] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An
improved construction for counting bloom filters,” in European Symposium on

Algorithms, 2009.

[38] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose counting
filter: Making every bit count,” in SIGMOD, 2017.

[39] F. Hao, M. Kodialam, and T. V. Lakshman, “Incremental bloom filters,” in INFO-

COM, 2008.

[40] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,”
SIGOPS Oper. Syst. Rev., 2008.

[41] K. Bogdanov, M. Peón-Quirós, G. Q. Maguire, Jr., and D. Kostić, “The nearest
replica can be farther than you think,” in SoCC, 2015.

[42] D. Shue, M. J. Freedman, and A. Shaikh, “Performance isolation and fairness for
multi-tenant cloud storage,” in OSDI, 2012.

[43] Z. Wu, C. Yu, and H. V. Madhyastha, “Costlo: Cost-effective redundancy for
lower latency variance on cloud storage services,” in NSDI, 2015.

[44] C. R. Lumb, R. Golding, and G. R. Ganger, “D-SPTF: Decentralized request
distribution in brick-based storage systems,” in ASPLOS, 2004.

[45] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris, “Reining in the outliers in map-reduce clusters using mantri,” in
OSDI, 2010.

[46] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the tail: Hardware,
OS, and application-level sources of tail latency,” in SoCC, 2014.

[47] A. Gulati, I. Ahmad, and C. A. Waldspurger, “PARDA: Proportional allocation of
resources for distributed storage access,” in FAST, 2009.

97

BIBLIOGRAPHY

[48] A. Gulati, A. Merchant, and P. J. Varman, “mclock: Handling throughput variabil-
ity for hypervisor io scheduling,” in OSDI, 2010.

[49] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica, “Cake: Enabling
high-level slos on shared storage systems,” in SoCC, 2012.

[50] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic approach
to fast in-memory key-value storage,” in NSDI, 2014.

[51] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and concurrent
memcache with dumber caching and smarter hashing,” in NSDI, 2013.

[52] G. Ananthanarayanan, A. Ghodsi, A. Warfield, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “Pacman: Coordinated memory caching for parallel
jobs,” in NSDI, 2012.

[53] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with varys,”
in SIGCOMM, 2014.

[54] R. Motwani, S. Phillips, and E. Torng, “Non-clairvoyant scheduling,” in Proceed-

ings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA, 1993.

[55] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing data
transfers in computer clusters with orchestra,” in SIGCOMM, 2011.

[56] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior knowl-
edge,” in SIGCOMM, 2015.

[57] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in SIG-

COMM, 2013.

[58] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker,
“Low latency via redundancy,” in CoNEXT, 2013.

[59] M. Mitzenmacher, “The power of two choices in randomized load balancing,”
IEEE Transactions on Parallel and Distributed Systems, 2001.

[60] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega:
Flexible, scalable schedulers for large compute clusters,” in EuroSys, 2013.

[61] M. Jeon, Y. He, H. Kim, S. Elnikety, S. Rixner, and A. L. Cox, “TPC: Target-
driven parallelism combining prediction and correction to reduce tail latency
in interactive services,” in ASPLOS, 2016.

[62] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal, “Size-based schedul-
ing to improve web performance,” ACM TOCS, 2003.

98

99

	Introduction
	Thesis Objectives
	Contributions
	Thesis Organization

	Background and Problem Definition
	Key-value stores
	Data model
	Distributed hash table
	Latency
	Data replication
	Data consistency

	Tail latency in key-value stores
	Replica selection
	Task-aware scheduling

	Workload heterogeneity is the norm
	Summary

	Latency Aware Algorithm for Replica Selection
	Replica selection in key-value stores
	Performance of DS and C3 under heterogeneous workloads
	Héron design and implementation
	Challenges
	Load estimation
	Value size estimation
	Replica selection module

	Evaluation
	Experimental setup
	Héron on variable configurations of the synthetic dataset
	Real workloads

	Related Work
	Reducing tail latency through replica selection
	Taming latency in cluster environments

	Summary

	Task-aware Scheduling for Improving Tail Latencies
	Problem definition
	Related Work
	Network-specific
	Redundancy-specific
	Task-aware schedulers
	Request reissues and parallelism
	Multiget scheduling

	Challenges
	Scheduling without complete knowledge is hard
	Need for coordination

	TailX design and implementation
	Load estimation and replica selection
	Request splitting
	Delay allowance policies
	Server selection

	Evaluation
	Experimental setup
	TailX on variable configurations of the synthetic dataset

	Summary

	Conclusions
	Summary
	Lessons Learned
	Future Directions

	Bibliography

