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Chapter 1

Introduction

The science of fluid dynamics has been focus of researcher’s worldwide for many years, because of its
complex nature. In order to understand the behaviour of fluids, theoretical and experimental studies are
conducted but with limitations. Analysis of big systems like waves in ocean or turbulence in atmosphere
are very di�cult because of its size and complexity. Building experiments or computations are very
di�cult to scale such huge problems. Solution to this, is to construct simple models that could be
easily built inside a laboratory, such that the physics behind it can be well understood. Fluid flow
through simple geometries like circular pipe or between two flat plates, exhibit two types of behaviour
which depends on velocity and the viscosity of the fluid: laminar flow or turbulent flow. Laminar flow
is characterised by streamlines moving parallel to each other and each of which has a constant velocity
but is in motion relative to its neighbouring layers. It has high momentum di�usion and low momentum
convection, whereas the turbulent regime is characterised by chaotic motion of the fluid particle, along
with eddies and high fluctuations. In case of turbulent flow, it exhibits low momentum di�usion and
high momentum convection, which helps in mixing.

Passage of fluid from laminar to turbulent regime is called “Transition to Turbulence”. There are
two kinds of flows, ones, which are subjected to volume force such as temperature and gravity, and
those, which are dominated by shear. The Taylor-Couette (fluid in between two rotating cylinder) is a
good example of first kind of flow, as the rotating speed of the cylinder is increased, linear instabilities
occur. These instabilities changes the topology of the fluid, but stays very close to base state. The
process of moving from one state to another is known as bifurcation. When the rotating speed of the
cylinder is increased further, successive bifurcations occur inside the flow that makes it more disordered
in space and time and finally reaching chaos. Occurrence of successive bifurcations, which moves the
fluid system from laminar to turbulent is called super-critical transition to turbulence. In case of
super-critical transitions, linear stability theory can be used to predict the bifurcation points. Shear
dominated flows, such as, plane Couette flow or Poisueille flow, bifurcations occurs at much lower
values of the control parameter than the linear instability threshold. In case of pipe Poisueille flow,
there is no linear instability at all. The reason for such earlier transition is due to presence of finite
amplitude disturbance that gets amplified due to convective instability mechanism. The other major
di�erence is that, the bifurcated flow is very di�erent from the base flow and has a high level of disorder.
Linear stability theory fails to predict this transition with accuracy. These transitions, often called as
sub-critical transition to turbulence, are major focus here. In sub-critical transition, the coexistence
of several locally stable states at a given value of the control parameter is possible and a hysteretic
behaviour as the control parameter is varied. One way to understand the process of transition is to
look from system dynamics point of view. Consider an equilibrium system in which the flow is time
independent and spatially uniform, instabilities drive the flow away from the equilibrium point. The
corresponding system then starts behaving in an unexpected manner due to the competition between
the stabilising and destabilising forces.

Hydrodynamic stability analysis is a method to study the behaviour of flow subjected to an in-
finitesimal disturbances. According to linear stability theory, pipe flows are always stable, even at
infinite Reynolds number. Whereas, in 1883, Reynolds [1] conducted the famous experiment, to study
the transition of laminar flow to turbulence in a straight pipe. He interpreted that the transition was
due to presence of disturbance in the pipe that aids the flow to move from laminar regime to turbulent
regime. The amount of noise in the system has direct e�ect on the transition of turbulence. He found
that, by carefully controlling the experiment, the transition Reynolds number could be delayed. This
ambiguity between the theory and experiments has left researcher to invent new theoretical methods
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like weakly non-linear analysis, transient growth analysis to study instabilities in depth. These methods
are computationally very costly, but with the advent of modern super computational facility, it is easier
to perform Direct Numerical Simulation (DNS). Recently, experiments methods like Particle Image
Velocimetry has helped researchers to analysis the system more rigorously.

In this chapter, initially the theory behind pipe flow is discussed along with brief summary of
numerical and experimental results obtained so far in the literature. Second part of the chapter is
dedicated to expansion pipe flows. In the third part, we discuss global stability analysis, transient
growth analysis, numerical simulations, experiments and some of the unanswered questions. Finally,
the outline of the thesis is given for the convenience of the reader.

1.1 Navier–Stokes Equation
In early 1800’s Claude Navier and George Gabriel Stokes derived the partial di�erential equations
that govern the dynamics of fluid known as the famous Navier-Stokes (NS) equations. Using the
principle of mass and momentum conservation, the incompressible NS equation can be derived in a
non-dimensionalized form as:

ˆu
ˆt

+ u · Òu = ≠Òp + 1
Re

�u + f , (1.1)

Ò · u = 0.

Where u is the velocity vector and p is the pressure. The external force is denoted by f . Re is
a dimensionless quantity called as Reynolds number. It is defined as Re = UL/‹, where U is the
characteristic velocity [m/s] (mean velocity of the fluid), L the characteristic linear dimension [m], and
‹ the kinematic viscosity [m2/s]. It acts as a control parameter to the system that drives the flow.
The parameter Re can be understood as a measure that compares the applied shear that is disturbing
the flow to that of viscous dissipation that is stabilising the flow. A viscous time scale can be obtained
as ·‹ = L2/‹ and a shear time scale as ·s = L/U , using both the time scale, Reynolds number can
be again redefined as Re = ·‹/·s. When ratio between the ·‹ and ·s is small, the viscous dissipation,
damps out small fluctuations in the velocity field and stabilise it. On the other hand, when the ratio is
larger, viscosity has less e�ect on the flow to damp the oscillations due to shear, which ultimately leads
to transition.

The NS equations are non-linear equations, which is studied by mathematician and physicist for its
wide range of application. It is well known that in two space dimensions, (1.1) has a unique solution
for all times under some restrictions on the initial condition. In three space dimensions, there are
no solutions, if they do, they are not smooth enough. It is one of the millennium prize problems in
mathematics, to prove that solutions of the three dimensional incompressible Navier-Stokes equations
always exist.

D

Figure 1.1: Schematic diagram of Hagen-Poiseuille flow in a infinitely long pipe

1.2 Constant diameter pipe flow
Pipe Poiseuille flow also known, as Hagen-Poiseuille flow is one of the classical wall bounded shear flows,
to which analytic solutions of the Navier-Stokes equations exists. The flow is driven by a constant non-
zero pressure gradient in the axial direction. The stationary solution to an infinite length pipe flow
is a parabolic velocity profile, where the velocity only depends on the distance from the wall and the
direction of the profile lies towards the negative pressure gradient. The stationary solution for pipe
Poiseuille flow is given as:

U = (1 ≠ r2)ez, (1.2)
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here r is the radius of the pipe. Figure 1.1 shows a schematic diagram of the pipe Poiseuille flow,
which is parabolic. The Reynolds number for pipe flow is defined by Re = UD/‹, where D is the pipe
diameter U is the mean velocity. The simplest form of the pipe geometry has led researchers to study
the flow behaviour extensively. However, there are lot of unknowns about the transition to turbulence
due to the e�ect of perturbations.

1.2.1 Stability
Hydrodynamic stability analysis is a process to check if a flow is stable, when subjected to disturbance.
The idea is to take a stationary flow and apply some disturbance to it and check the growth of this
applied disturbance. Looking for the critical Re at which the flow becomes unstable, the type of
disturbance are some of the questions that can be answered through stability analysis. Consider the
flow velocity and pressure (U, P ) that satisfies the equation (1.1), the e�ect of a disturbance, û0, can
be investigated by considering the perturbation equation. Let (û, p) be the small deviation from the
baseflow due to the disturbance. The deviated flow can be written as (U + û, P + p̂) and it satisfies
(1.1), subtracting the base flow and the perturbed flow yields the following equation:

ût + (û · Ò)û + (U · Ò)û + (û · Ò)U = 1
Re

�û (1.3)

Ò · û = 0 (1.4)
û(x, 0) = û0 (1.5)

A norm, is defined to measure the size of the perturbation in (1.5), which defines the stability of the base
flow. Di�erent kind of norms can be used according to problem. L2 norm, which measures the kinetic
energy of the perturbation is used in general. The baseflow is said to be stable to the disturbance, if
the norm of the perturbations tends to zero as time increases. If the flow is stable to all the disturbance
then it is called “globally stable”. In most cases, the flow is only stable for the disturbance that are
small enough, If the disturbance is larger than a critical value the flow becomes unstable. Such kind
of stability, which depends on size of the perturbation, is called conditional stability. Re plays a vital
role in the stability of the flow. At low Re, the flow might be globally stable but conditionally stable at
higher Re. Some flow have a critical Reynolds number Rec, beyond which the infinitesimal perturbation
makes the flow unstable. The search for the Rec, size, shape and the optimal perturbation is the most
fundamental part of hydrodynamic stability. Stability of the flow can be determined by looking at the
eigenvalue of the linearised equation of (1.5). The real part of the eigenvalue corresponds to growth
rate and the imaginary corresponds to oscillation. If the flow is stable, the real part of the eigenvalue
remains negative. Rec is found when the real part of the eigenvalue becomes positive.

The critical Reynolds number for which plane Poiseuille flow becomes linearly unstable is at Rec >
5772, when the so-called Tollmien Schlichting wave becomes linearly unstable. However, turbulence
typically appears at much lower Reynolds numbers in reality. This discrepancy is due to the fact that
full spectrum of NS equation (1.1) is not taken into consideration only the linearised equation (1.5)
is considered, so finding the subcritical Reynolds number and the amplitude of perturbation is very
di�cult. The complexity comes when considering the case of pipe Poiseuille flow, which is linearly
stable at all Re. However, experiments by Osborne Reynolds have shown that the flow loses its global
stability Re > 2000, It signifies that any perturbation to the pipe at low Re, will be damped. He
found that the perturbation inside the experiments leads to early transition. Laminar pipe flow up
till Re < 105 can be achieved by carefully controlling the external noise in the experiments [2]. In
case of pipe Poiseuille flow, where the linear stability analysis (1.5) fails to find an unstable eigenvalue,
mathematicians have applied transient growth analysis [3]. According to transient growth analysis, the
least stable eigenvalue (the eigenvalue close to zero) still have linear e�ects that may cause considerable
initial growth of a perturbation. This is due to non-orthogonality of the eigenfunctions of the linearised
Navier-Stokes operator. In case of pipe flow the non-linear (higher order) terms that are removed due
to linearisation (1.5) creates the growth of perturbation that leads to transition to turbulence. One
other way to study transition is to solve the full non-linear equation (1.1), which is nothing but DNS.
Apart from DNS, many other numerical methods like Large Eddy simulation, in which large scales of
the spectrum are solved using NS equation and the smaller scales are simulated using a mathematical
model. Another simulation method is to use Reynolds Averaged Navier-Stokes method as it averages
the whole spectrum as mentioned in its name, It has less computational cost, when compared to other
methods. Using these tools, it is possible to look into the process of transition in a much-detailed way.
In the following section, DNS results of pipe flow are discussed.
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Figure 1.2: Axial vorticity plot showing a numerical pu� evolution at Re=3000. Image taken from
Duguet et al. 2010 [4]

1.2.2 Transition to turbulence
Since steady laminar pipe flow happens to be linearly stable for all Re, to trigger turbulence, it require
a finite amplitude perturbation. DNS with edge state perturbation, have shown that there exists a
whole range of Re, where the laminar flow and the turbulence can coexists and this regime is termed as
transitional regime. Pipe flow in this transitional regime exhibits a quasi-stable localised turbulent "pu�"
state as well as a globally turbulent "slug" flow, they were detected experimentally [5] and numerically
on periodic domains [4, 6–9]. It was shown that the finite amplitude required to trigger "pu�" depend
critically on its "shape" and "position". Researchers have used random disturbances [4, 6], impulsive
perturbation [8] or obstacle disturbance [5] at the inlet of the pipe to study transition. The discovery
of exact travelling wave solutions in wall-bounded shear flows, has made researchers speculate that the
states lie inside the turbulent attractor and close to laminar-turbulent boundary edge [6]. A turbulent
flow trajectory is said to move between these states, which depends upon the unstable direction of the
travelling waves in phase space [6].

(a)

(b)

Figure 1.3: (a) Visualisation of pu� splitting at Re = 2300 in a cross-sectional (x, y) plane, with
red as positive and blue as negative streamwise vorticity on a linear scale and showing 75D. At t
= 0, Re is impulsively changed from 2200 to 2300. Snapshots (from bottom to top) were taken at
t = 500, 990, 1010, 1110 and 1600. Once the pu� extends far enough and the vorticity decays in its
central section, a new pu� emerges. (b) Spreading of turbulence in a numerical simulation. Space-time
diagram was constructed from the center axis of the 150D long pipe. Images taken from Avila et al.
2010 [8]

The transitional regime, initially occupied by the “pu�”, as Re increases, weakly turbulent pu�s
become growing turbulent slugs filled with small scale turbulence of regularly increasing length tending
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to capture the whole pipe. It was shown that the length of the pu� is statistically constant, which led
to think that they are equilibrium states [5]. Structure of a pu� as shown in figure 1.2 has a sharp
leading edge and blunt tailing edge. Recent experimental and numerical studies have shown that, pu�s
might decay back to laminar state within a finite time with some probability function of Re. It was also
shown that the life time of isolated pu� increases in a super-exponential way as a function of Re [8]. As
Re gets higher, the pu� splits to form trains of pu� that occupy the whole pipe [7, 8] as show in Figure
1.3. Later, these successive pu�s spread themselves to form slugs. Figure 1.3 shows how turbulence
proliferates starting from a localised pu� at Re = 2200 as initial condition.

1.2.3 Fully developed turbulence
Once the Re value surpasses the transitional regime Re & 3000, it enters the turbulent regime. In
this regime, finite amplitude perturbation gets amplified and leads to transition of turbulence. Trig-
gered turbulence then develops, as it moves downstream and becomes fully developed turbulence after
a critical length, which depends on Re. Experimental investigation to find the critical position of fully
developed turbulence, by measuring the velocity fluctuations, showed the critical distance from the inlet
decreases as Re increases [10–14]. Recently, DNS on spatially developing pipe flows have been carried
out with weakly but finitely perturbed laminar inflow. It was shown that the transition to full developed
turbulence at high Re occurs more gradually rather than abruptly due to the presence of helical vor-
tex filaments and large-scale vortices, which grow as they convect downstream and trigger turbulence
[15]. Growth of the energy norm of the inlet perturbation was tending to be exponential, rather than
algebraic, with axial distance. Figure 1.4 shows the evolution of friction factor f = ≠(dP/dz)D

1/2flU2 and the
energy norm Î E Î=

s R

0 (uÕ2
x,rms + uÕ2

y,rms + uÕ2
z,rms)rdr/(R2V 2) as a function of the axial distance, z,

for Re = 8000, where P is the pressure, fl is the density, U is the bulk velocity and (uÕ
x, uÕ

y, uÕ
z) are

the velocity fluctuation components in (x, y, z) directions, respectively. Here, r is defined as


x2 + y2,
R = D/2 and V is the volume of the pipe. It can be seen that, during transition the energy norm of
such inlet perturbations grow exponentially.

(b)(a)

Figure 1.4: Friction factor f (•), and energy norm 10≠2 log10 Î E Î (ù). Dash-dot-dash: f = 64/Re;
dash-dot-dot-dash: Moody’s correlation. (a) Perturbation as a ring at 0.4 Æ r/R Æ 0.42, (b) 0.9 Æ
r/R Æ 0.915 for Re = 8000 respectively. Image taken from Wu et al. 2015 [15]

1.3 Expansion pipe flow
Expansion pipe flows or diverging pipe flows are special cases in which the outlet pipe diameter is
larger than the inlet pipe diameter. They have many applications in industries for transferring fluid
and also have application in thrust vectoring nozzles. Expansion chamber can also be found in engine
exhaust. When blood flows through veins of the human body, they deposit fat, which gets accumulated
on the walls there by forming a blockage called as stenosis. This blockage in some way acts like an
expansion flow and researchers are looking deeply into it to understand the flow property. Another
major application of diverging pipe is in drilling of borehole to extract oil. The following section will
deal with the stability and sensitivity of expansion pipe flow and transition to turbulence.
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D

d

Figure 1.5: Schematic diagram of two dimensional expansion flow

1.3.1 Stability and sensitivity
The geometry of expansion pipe is shown in figure 1.5. It can be seen that the outlet diameter D is larger
than the inlet diameter d. A non-dimensional number called expansion ratio E = D/d is defined to
measure how much the outlet and inlet diameter varies. One of the major di�erences between expansion
pipe flow and constant diameter pipe flow is the formation of the recirculation region. Hagen-Poiseuille
flow at the inlet is recovered close to the outlet, but the velocity at the outlet depends on the expansion
ratio. The red dashed line on the figure 1.5 denotes the recirculation region that forms due to flow
seperation, when flow move from the inlet and attaches downstream. Length of the recirculation region
increases linearly as a function of Re. Note, Re here is based on the inlet diameter d. Early experiments
on asymmetric sudden expansion [16, 17], showed the existence of shear layer instability at Re & 1500
after which oscillations are observed down stream. A symmetric breaking bifurcation was identified
by [18] after a critical Re. The initial symmetric flow is replaced by an asymmetric flow, which is
steady. The asymmetry was seen through the presence of larger recirculation region on side of the
walls. Recently, experiments [19] using magnetic resonance imaging technique, provided results on
steady symmetry breaking bifurcation in the flow through a 1:2 sudden axisymmetric expansion as
Re is increased. Figure 1.6(a) shows cross section taken downstream of the expansion region. It can
be clearly seen that the recirculation region becomes asymmetric as the Re is increased. Centroid
of the velocity distribution of is calculated to measure the asymmetry present in the velocity profile,
figure 1.6(b) shows the measure of centroid as a function of Re. Initially the symmetric downstream
flow evolves smoothly and rapidly into an asymmetric steady state. The critical point of the original
supercritical bifurcation was found to be at Rec ¥ 1139. This symmetry breaking is the rotational
analogue of the steady symmetry breaking observed in the symmetric planar expansion.

(B)(A)

Figure 1.6: (A) Rapid acquisition with relaxation enhancement (Magnetic Resonance Imaging) images
taken at 45h downstream from the expansion. Each of the velocity profiles used to construct the
surfaces were acquired in 20 ms. The values of Re were (e) 946 ± 10, (f) 1234 ± 10, (g) 1478 ± 10 and
(h) 1819 ± 10. (B) Graph of the square of a measure of the asymmetry of the flow plotted as a function
of Re. The measure used was the centroid of the distribution of the velocity. The lines are least-squares
fits of straight lines to the data. The intersection of the lines gives a value of Rec = 1139 ± 10 for the
estimate of the symmetry breaking bifurcation point. Image taken from Mullin et al. 2009 [19]

Transient growth analysis [20] has shown that for values of the Re well below any linear instability,
infinitesimal perturbation is strongly amplified. It was shown that the linear amplification places a
vital role in the instability of the flow. In case of expansion flow, small infinitesimal perturbations are
amplified close to the expansion region, where there is existence of shear layer due to flow separation.
This amplification of perturbation, along with non-linear e�ect, causes the flow become unstable. As
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discussed earlier, even though the flow may be globally stable, but due to transient growth, instabilities
can occur. This kind of amplification of perturbation and decay is known as convective instability.
Perturbations can be amplified up to a factor of 106 due to transient growth [20]. The initial perturbation
that causes maximum amplification is present in the expansion section, i.e., sensitivity region of the
pipe. Figure 1.7 shows the amplification of perturbation inside an expansion pipe. It shows how the
perturbation at the expansion section grows, as it convect downstream and evolve into packets of waves
characterised by a chevron structure. Inflectional instability mechanism helps the perturbation to gain
energy as it convects downstream and reaches maximum value near the reattachment point. Once the
maximum amplified perturbation crosses the reattachment point, they start to decay down.

Figure 1.7: Evolution of optimal initial disturbance in the m = 1 mode visualised through contours/iso-
surfaces of azimuthal velocity at Re = 1200 from t = 0 (bottom) in time intervals of four units in
the spatial range of ≠2.5 Æ x Æ 15. The panel labeled t = 110 shows the evolved disturbance at its
maximum growth: here the spatial range is 36.5 Æ x Æ 54 from the expansion and the isosurface levels
are two orders of magnitude larger than in the other panels. Image taken from Cantwell et al. 2010
[20]

Global stability analysis [21] using a pipe length of L = 400d, proved that the base flow which is
axisymmetric is stable up to Re Æ 3273. It was shown that, once the Re goes beyond the critical value
an oscillatory global mode with m = 1 and St = 0.13 occurs, where St = ⁄i/2fi is the Strouhal number
with ⁄i being the imaginary part of the unstable eigenvalue. The eigenfunction of the corresponding
unstable eigenvalue tend to appear slightly upstream of the reattachment point, which was in agreement
with maximum growth of perturbation [20]. Experimental investigation [19] and global stability analysis
has a critical value of Rec ¥ 1139 and Rec ¥ 3273 respectively. This discrepancy between the theory
and the experiments is due to presence of imperfections in experiments, which gets amplified and leads
to early transition.

1.3.2 Transition to turbulence
DNS with a finite amplitude perturbation [22] showed that the symmetry breaking can be achieved at
Re ¥ 1500, which is in good agreement with experiments of [19] for 1:2 asymmetric sudden expansion
flow. The perturbation was applied at the inlet of the expansion pipe along with Hagen-Poiseuille flow.
Once the critical Reynolds number is crossed, the recirculation region breaks down to form localised
turbulence, which stays close to the expansion section. It was shown that the laminar and turbulent state
can co-exist for a same value of Re. When the perturbation is removed from the system the asymmetric
state goes back to axisymmetric state, whereas in case of disordered flow state, no detectable change
in the flow was found. The position of the disordered state tends to remain the same. Figure 1.8
shows the detailed view of the finite amplitude of perturbation ” as a function of Re, required to trigger
localised turbulence. Furthermore, experiments on slowly diverging pipe [23], has shown the formation
of recirculation region depends upon the diverging angle. Once the Re goes beyond a critical value, a
localised turbulence patch is formed close to the expansion section. Figure 1.9 shows a flow visualisation
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Figure 1.8: Plot of control parameter (”, Re). Region I contains only steady states, region II only
unsteady motion and region III both steady and unsteady flow, which was found by decreasing Re.
Pairs of symbol are used to indicate the step size in Re. Plot taken from Sanmiguel-Rojas & Mullin
2012 [22].

(a)

(b)

Figure 1.9: (a) Flow visualisation of localised turbulent patch in a diverging pipe (4¶, E = 10). (b)
Space-time diagrams for Re = 800 for an diverging pipe of angle 4¶. Image taken from Peixinho &
Besnard 2013 [23].
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and a space diagram of the experiment where the dynamics of the localised turbulence can be seen as
function of time.

1.3.3 Query
With the help of discussions from this chapter, certain question can be derived as below. Sensitivity
study on 2D sudden expansion helps us to identify the most sensitivity region to trigger flow. To identify
this region, is one of the motivation for the initial step. How does this sensitivity get a�ected by the
divergence of the pipe will helps us to understand the e�ect of domain. Experimental investigation of
expansion pipe flow has shown the existence of a super-critical bifurcation that occurs downstream the
expansion section. Could a three dimensional numerical simulation helps us to identify the bifurcations
and study about the onset of turbulence? was a initial question that we could pose before going in to
turbulence. Earlier, numerical simulations have shown the existence of hysteresis in the expansion pipe
flow, one motivation is to reanalysis this hysteretic behaviour and study the regime carefully. In order
to trigger turbulence, what shape, size and position of perturbations could be built to have a better
transition study could be one of the main motive. If so, how does this turbulent patch behave in long
time? Do they self-sustain?. How do they decay and where do they get their kinetic energy from is
an interesting area to look for. How well does this localized turbulence, resemble to a travelling pu�
in a straight pipe flow is another important aspect to look for. In terms of fully developed turbulence,
most of the literatures on identifying the critical length of developed turbulence are calculated using the
velocity fluctuation components. Pressure, which is strongly coupled with velocity, is less explored, we
could ask how well does the velocity and pressure correlate along the axial direction of the pipe flow. Is
it possible to identify the critical length for fully developed turbulence using pressure fluctuations? How
does the pressure fluctuations grow, as functions of axial position of the pipe are some of the interesting
areas to observe.

1.3.4 Outline
Queries that are put forth in the previous section are answered through the chapters below. A brief
description of each chapter and their content is given below:

1.3.4.1 Chapter 2

Two dimensional sudden expansion flow and gradual diverging flow is investigated via global stability
analysis. The direct mode and the adjoint mode are obtained for the unstable eigenvalue. Structural
sensitivity of the baseflow is computed to understand the region where the flow sensitivity due to
perturbation is studied. Later, explanations about global stability analysis and transient growth analysis
are discussed for three-dimensional sudden expansion pipe flow.

1.3.4.2 Chapter 3

Spectral Element Method, which is used for performing DNS of expansion pipe flow, is briefly explained.
Domain decomposition, weak formulation of Navier-Stokes equation, discrete form of the equation and
time discretisation are explained. Finally, implementation of SEM inside the open-source code NEK5000
is discussed.

1.3.4.3 Chapter 4

Chapter four provides DNS results of flow though gradual expansion pipe with tilt perturbation applied
at the inlet along with Hagen-Poiseuille flow. Initially, it looks into the onset and growth of recirculation
region in a gradual expansion pipe as discussed in (1.3.2) and compares the result with experimental data
in literature. Later, asymmetry growth due to perturbation is measured, which is in good agreement
with experiments [19]. The dynamics of the localised turbulence is studied as a function of time at high
Re to check if the flow recovers Hagen-Poiseuille flow at the outlet. Relaminarisation of the localised
turbulence is done by reducing the value of Re and hystersis property is also studied. Finally, coherent
structures of the flow are found and compared with that of the pu� as discussed in section (1.2.2). It
is shown that the m = 1 mode dominates the flow and the flow is more active in the core region.
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1.3.4.4 Chapter 5

Here, tilt perturbation is replaced by a vortex perturbation, in order to have perturbation that satisfies
continuity boundary at the inlet. Tilt perturbation leads to an abrupt transition, whereas the vortex
perturbation gives a less abrupt transition. At low value of vortex strength, optimal perturbation with
chevron like structure as discussed in section (1.3.1) is found, which initially occurs in the expansion
section. It amplifies, as it moves downstream but breaks due to non-linear e�ect. This breaking leads
to series of turbulent patches that occurs quasi periodically. Once the strength of vortex perturbation
reaches a critical value, the turbulent patch, which was moving during low vortex strength, now oc-
cupies a constant spatial position like localised turbulence in chapter 3. Finally, Proper Orthogonal
Decomposition (POD) is applied to the localised turbulence to find the most energetic modes. The first
POD mode lies in the center of the pipe and close to expansion section, there by validating that the
localised turbulence patch gains it energy from the inlet flow and validates the coherent structure study
from chapter 4.

1.3.4.5 Chapter 6

This chapter is an on going study about behaviour of the vortex perturbation in a straight pipe. Recent
DNS on spatially developing flow [15] where weakly turbulent flow was injected into the inlet of laminar
pipe flow and showed how this weakly turbulent structures amplify as they advect downstream and
trigger turbulence. A large computational domain of size 20 million has been built to understand the
onset and growth of the vortex perturbation inside the straight pipe. It is assumed that this will answer
us the kind of structures reach the expansion region, when vortex perturbation is used. Secondly, we are
also interested in investigating the development pressure in the pipe flow and study how the pressure
fluctuations scales with Re.

1.3.4.6 Chapter 7

Studies on developing turbulent pipe flow, as discussed in section (1.2.3) is generally been done on
velocity fluctuations to identify the fully developed turbulent regime. The pressure poisson equation
which is derived by taking the divergence of the Navier-Stokes equation reveal that the velocity and
pressure or strongly coupled. Chapter 7 presents the results of growth of pressure fluctuations along
axial direction. It is shown that a self-similarity exists for pressure fluctuation growth and it is very
robust to perturbation. In the end, tuft visualisations are presented to show the increase of fluctuation
rate when compared to the inlet and in the developed turbulent regime.

1.3.4.7 Conclusion and future perspective

A final conclusion to the thesis is given here with a brief discussion of the results obtained using numerical
simulations and experiments. In order to continue the research of expansion pipe flow, certain questions
that were are raised during the course of the thesis is put forward in the future perspective section.
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Chapter 2

Structural sensitivity of expansion flow

2.1 Introduction
Properties of two dimensional expansion flows, which have smaller inlet and larger outlet section, are well
documented in literature. However, before performing three dimensional expansion pipe flows, studying
two dimensional cases helps to understand the flow behaviour, onset of the recirculation region, length of
domain required, critical Reynolds number and the sensitive regions inside the domain. The reason for
choosing a two dimensional expansion flow is because of its less computational cost and to understand
the physics in a less complex geometry.

Experimental studies on two dimensional sudden expansion flow with expansion ratio of three [18]
have shown the onset of symmetry breaking bifurcation that occurs at Rec = 40. Here, channel
half-height was used as the characteristic length to define Re. At higher Re, the flow becomes time
dependent, which arises may be due to the presence of three-dimensional e�ects. Placing a contraction at
the end of sudden expansion flow geometry [24] tends to increases the Re at which symmetric bifurcation
occurs. It was also shown that there exists an instability that occurs due to the inlet expansion and
instability due to outlet contraction. In this case, the length of the expansion section plays a vital role
in determining which instability occurs first.

Stability analysis of the expansion flow, helps us to understand the critical Reynolds number at which
the flow becomes unstable. It has helped to identify the existence of a symmetry breaking bifurcations
[25–27] that lead to asymmetry of recirculation regions inside the domain. Sensitivity analysis of two
dimensional cylinder flow [28] has helped to identify the most sensitive region that causes largest shift
to unstable eigenvalue behind the cylinder.

Recently, sensitivity analysis [29] were carried out on two dimensional expansion flow with a per-
turbation that may be produced by realistic passive control. With the aid of the information obtained
from the sensitivity parameter a control was designed. A cylinder was introduced in the expansion
section, which acts as a passive control to the system. It was shown that by introducing such a passive
control, the flow can be maintained steady symmetric for a higher Re.

In global stability analysis, a steady state flow, known as base flow is investigated for the its behaviour
to an infinitesimal perturbation. These perturbations are governed by linearised Navier-Stokes equation
(LN-S). In the context of a non-linear dynamical system, global stability is defined as the system’s
susceptibility to infinitesimal disturbances from an equilibrium point, which in our case is a steady-state
solution to the Navier-Stokes Equations. Given a non-linear system u̇ = f(u) let u0 be an equilibrium
point, such that f(u) is continuously di�erentiable about a neighbourhood of u0. Let Df(u0) be the
Jacobian of f evaluated at u0 and so u̇ = Df(u0)u is the linearisation of u̇ = f(u) about u0. Then,
the point u0 is asymptotically stable if Re(⁄i) < 0 for all eigenvalues ⁄i of Df(u0) and the point u0 is
unstable if Re(⁄i) > 0 for one or more eigenvalues ⁄i of Df(u0).

In this chapter, we present the results of stability and sensitivity analysis of two cases of expansion
flows with an expansion ratio of two (i) sudden expansion and (ii) gradual expansion with an angle of
divergence 10¶.
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2.1.1 Global stability analysis
The equations of fluid flow i.e., incompressible Navier-Stokes Equation can be written as:

ˆU
ˆt

+ U · ÒU = ≠ÒP + 1
Re

�U, (2.1)

Ò · U = 0. (2.2)

where U is the relative fluid velocity, P is the pressure and Re = Ud/‹ is the Reynolds number, Since
the problem is two dimensional we can represent this in terms of state vector � such that

� = [U(x, y, t), P (x, y, t)]. (2.3)

The global linear stability analysis is done on the flow vector �. It is reasonable to take the vector in
the form of

� = �0 + �1e⁄t, (2.4)

Where �0 = [U0(x, y, t), P0(x, y, t)] is called as the base state or the baseflow and the structure of the
base flow is steady and symmetric and �1 = [û(x, y), p̂(x, y)] is the small perturbation applied to the
base flow. The perturbation can be found in the form of an eigenmode with a corresponding eigenvalue.

⁄ = ⁄r + i⁄i (2.5)

⁄r corresponds to the growth rate and ⁄i corresponds to the oscillating part of the eigenmodes. The
oscillating frequency can be used to obtain a non-dimensional parameter called as Strouhal number
St = ⁄id/2fiUo, where Uo is the velocity at the inlet of the baseflow.

2.2 Base flow
The base flow is the time independent solution of the system on which a linear stability analysis is
carried out. It is obtained from the first right hand term of (2.4) �0 = [U0(x, y, t), P0(x, y, t)] which is
the steady expansion flow. The corresponding equations to obtain a base flow is given by:

Ò.U0 = 0 (2.6)

0 = ≠U0.ÒU0 ≠ ÒP0 + 1
Re

�U0. (2.7)

The boundary conditions are given by

U0(x, y) = 2(1 ≠ 4y2) Inlet , (2.8)
U0(x, y) = 0 walls , (2.9)

Pn ≠ n · ÒU0(x, y)/Re = 0 outlet. (2.10)

Boundary condition at the inlet corresponds to parabolic velocity profile. No slip condition in the wall
is implement by equation (2.13) and the stress free pressure outlet is implemented (2.14).

2.3 Newton Method
In order to obtain the base flow, an iterative convergence method is used. Laplacian equation is solved
to set the initial condition for the iteration.

Ò2Ï = 0 (2.11)

where Ï is the stream function and Ò2 is the laplace operator. The boundary conditions are given by

Ï = y Inlet , (2.12)
Ï = 0 walls , (2.13)
Ï = 0 outlet. (2.14)

The momentum equation contains a advection term (U0.Ò)U0, to solve it an iterative method called
the Newton method is used. The approximate solution which is obtained through solving (2.11) can be
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used as an initial guess to the newton method. The approximate solution is in a such way that it does
not satisfies the boundary conditions (4.3) and it is written as

NS(U0, P0) ”= 0 (2.15)

where,

NS(U0, P0) =
3

ÒU0.U0 + ÒP0 ≠ Re≠1Ò2U0
Ò.U

4
(2.16)

In the equation (2.16) we intended to add a small value of (”U, ”P ) so that we yield a base flow of the
form (U0 + ”U, P0 + ”P ) which satisfies the boundary conditions (4.3) given a solution of the form

NS(U0 + ”U, P0 + ”P ) = 0 (2.17)

The above equation can be written in the linear form as

NS(U0, P0) + LN ≠ S(U0,P0)(”U, ”P ) = 0 (2.18)

LN ≠ S(U0,P0)(”U, ”P ) = ≠NS(U0, P0)

LN ≠ S(U0,P0)

3
”U
”P

4
=

3
(”U0).”U + (Ò”U).U0 + Ò(”P ) ≠ Re≠1Ò2(”U)

Ò.”U

4
(2.19)

Where LN-S is the linear part of Navier-Stokes equation. Solving the above equation (2.19) gives a
solution of the form (”U, ”P ) which is added to the (U0, P0) which is again taken into the loop as better
approximation.

(U0, P0) Ω (U0 + ”U, P0 + ”P ) (2.20)

The loop is iterated until a convergence criteria is reached (i.e)

NS(U0, P0) < tol (2.21)

where tol is a small value to check convergence. In our case tol = 0.0000001.

2.4 Perturbation analysis
The linear stability analysis is done by substituting (2.4) in the governing equations (2.2) and removing
the higher order terms, which leads to

Ò · û = 0 (2.22)

⁄û + û.ÒU0 + U0.Òû + Òp̂ ≠ 1
Re

Ò2û = 0 (2.23)

The boundary conditions are given by

û = 0 Inlet , (2.24)
û = 0 walls , (2.25)

p̂n ≠ n · Òû/Re = 0 Outlet. (2.26)

The equations from (2.22) can be written in a generalized eigenvalue problem form as

A�1 = ⁄B�1 (2.27)

Where A and B are linear non symmetric operators, solving this gives for �1 ”= 0 gives us non-
trivial solutions which contributes to complex eigenpair (⁄, �) also known as eigenvalue spectrum.
This spectrum helps us to identify the flow is stable are unstable. If growth rate ⁄r is positive for any
of the eigenvalue, the flow is unstable and the perturbation is amplified in time. When the perturbation
velocities cannot be considered small any more, the evolution of the perturbation is no longer predicted
by the linear equations, since non-linear e�ects became important. Nonetheless, the linear approach is
important in detecting physical growth mechanism.
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2.5 Structural sensitivity analysis
Sensitivity analyses based on adjoint equations are widely used in stability analysis, where they provide
information related to the mechanism of disturbances growth. In Giannetti and Luchini [28] it is
shown by a perturbation analysis that, for each considered global mode (û, p̂, ⁄), the addition of a
perturbation ”f̂ at the right hand side of the momentum equation (2.22) causes the following variation
”⁄ of the eigenvalue ⁄:

”⁄ = Èû+, ”f̂Í
Èû+, ûÍ (2.28)

Where Èa, bÍ =
⁄

�

(aú · b)d� is the scalar product between the complex vectors a and b on the flow

domain � and the asterisk * denotes the conjugate of a complex quantity. The vector field û+ is the
velocity field of the mode adjoint. The adjoint operator L+ of a di�erential operator L is defined as the
unique operator satisfying:

ÈLu, vÍ = Èu, L+vÍ (2.29)

The equations from (2.29) can be written in a eigenvalue problem form as, which is Hermitian transpose
of the direct eigenvalue problem (2.27):

AH�1 = ⁄+BH�1 (2.30)

Modes obtained by solving (2.30) are called adjoint modes. Structural sensitivity equation helps to
describe the e�ect of baseflow modification on each global mode. It helps to identify the region inside
the computational domain that produces the biggest stability variation in a flow. The most important
part of sensitivity analysis is to look for perturbation that generates the maximum variation to the
unstable eigenvalue. The equation is constructed using the direct mode and the adjoint mode:

S(x, y) = Î v̨i(x, y) ÎÎ ųi(x, y) Î-----

⁄

�

v̨ú
i · ųi

-----

(2.31)

The vectors vi and ui represent the adjoint and direct eigenfunction, corresponding to the ith eigenvalue.
S(x, y) is the structural sensitivity parameter.

(a)

100

0
(b)

Figure 2.1: Structural sensitivity parameter over a two dimensional cylinder at Rec = 45 (a) Computed
using our code (b) Image taken from Giannetti & Luchini 2007 [28], red and blue corresponds to
maximum and minimum respectively.

2.6 Validation
In order to validate the method, we used FreeFem++, a finite element solver to create computational
domain and to perform the stability analysis. Specifically, flow over a two dimensional cylinder was
tested. The first unstable mode was obtained at a critical Reynolds number Rec = 45, which has a
Strouhal number of St = 0.119. It is called the Von Karman 1 mode because; it is associated with the
onset of vortex shedding which leads to classical Von Karman streets. As the Re is increased further a
second mode tends to move towards the unstable region, at Rec = 110 the mode becomes critical which
has a St = 0.122, we call it as the Von Karman 2 mode as it has nearly the same frequency of the Von
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Karman 1 [30, 31]. The structural sensitivity parameter was computed using equation (2.31) is shown
in figure 2.1, along with the structural sensitivity obtained by Giannetti & Luchini 2007 [28] for Rec =
45. It shows the sensitivity region lies behind the wake of cylinder in the recirculation region formed
behind it.

2.7 Computational domain and mesh
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Figure 2.2: Schematic diagram of 2D expansion flow

Schematic diagram of the computational domain is shown in figure 2.2, here the inlet height is defined
by d and outlet height by D. Ratio between the inlet and outlet height is called as the expansion ratio
E = D/d. In the present study E = 2. l1 and l2 represent the length of inlet and outlet section from
the expansion section. The divergence angle is defined by –, if – = 90¶ it is sudden expansion flow.
Output of the mesh convergence study is show in table 2.1. Initially, the study was carried out only
by changing the number of mesh triangle N , it was found that Mesh number 4 to predict the drag and
the real part of the eigenvalue with a good accuracy. Drag is computed by

s
� T0 · ndl, where T0 is the

base flow stress tensor. Later, the e�ect of the length of the inlet and outlet section, (i.e.), l1 and l2
was studied by keeping the mesh density constant. The influence of l1 and l2 was found too negligible
in the present case. Finally, Mesh number 4 was chosen for performing global stability and structural
sensitivity analysis.

Mesh l1 l2 N ⁄r Drag
1 5 35 13292 -0.000623987 0.427382
2 5 35 16237 -0.000617999 0.427466
3 5 35 24565 -0.000610824 0.427714
4 5 35 31686 -0.000613321 0.427779
5 10 35 28413 -0.000604445 0.614185
6 5 40 34331 -0.000590479 0.451006

Table 2.1: Mesh dependency study on the least stable eigenvalue, here N is the number of mesh triangles.

2.8 Sudden expansion
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Figure 2.3: Contour plot of streamwise velocity of the baseflow computed using mesh 4

Base flow computed by Newton method for a two dimensional expansion flow is shown in figure 2.3.
It can be seen that the flow has two re-circulation regions that are symmetric around the axis to each
other. The maximum velocity is in the center of the expansion and the velocity decreases once the
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flow expands downstream. The convergence of the base flow was checked by measuring the L2 norm.
Once the base flow was obtained, linear stability analysis was performed using equation (2.22). At low
Re the flow was globally stable and all the eigenvalue were negative. As Re increased, few eigenvalue
started moving in the positive direction. The first unstable eigenvalue ⁄r = 0.00001 was obtained at
critical Reynolds number Rec = 143. Figure 2.4 shows the plot of first 6 least unstable eigenvalues. The
eigenvalue with blue circle is the most unstable as it growth value becomes positive. Mode obtained
is termed as direct mode or symmetry breaking mode and it has no oscillating component, as the
imaginary part of the eigenvalue is zero. The adjoint modes were computed using equation (2.30).
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Figure 2.4: First 6 eigenvalue obtained for a sudden expansion flow at Rec = 143. The eigenvalue
circled with blue ring is the least unstable.
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Figure 2.5: Contour plot of streamwise velocity at Rec = 143. (a) Direct mode, (b) adjoint mode. Only
10d out of 35d is shown.

Figure 2.5(a) corresponds to streamwise velocity and it can be seen that it has a positive and a
negative lobe. The positive lobe and negative lobe represents that the flow moves faster and slower
respectively. This di�erence in the flow breaks the symmetry in the flow; this mode makes the center
core region to shift to one side of the domain, which in turn makes one of the recirculation regions longer
and the other one shorter. Since the mode has no oscillating component, the size of the recirculation
region becomes independent of time. The structure of adjoint mode in the streamwise direction is
shown in figure 2.5(b) has two lobes similar to that of the direct mode but seem to be situated in area
of recirculation region. It tends to stretch from the expansion region and to be very active in the near
wall region.

Crosswise velocity for direct and adjoint mode are shown in figure 2.6 and it can be seen that they
are less dominant went compared to the streamwise velocity modes. Pressure modes are show in figure
2.7, the pressure modes tends to alternate itself along the streamwise direction, more active near the
expansion region and tends to decay as it moves downstream.

Structural sensitivity of the base flow is computed with the help of direct and adjoint modes using
equation (2.31). It helps us to identify the structure of perturbation to baseflow that tend to have max-
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Figure 2.6: Contour plot of crosswise velocity at Rec = 143. (a) Direct mode, (b) adjoint mode. Only
10d out of 35d is shown.
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Figure 2.7: Contour plot of pressure at Rec = 143. (a) Direct mode, (b) adjoint mode. Only 10d out of
35d is shown.
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Figure 2.8: Structural sensitivity parameter, S, for the most unstable eigenvalue. Only 10d out of 35d
is shown.

imum variation to the least unstable eigenvalue. Figure 2.8 shows the structural sensitivity parameter,
one of the most important thing to note is that region of the maximum sensitivity lies in the shear layer
that form between the expanding flow and the recirculation region. It is also found to exist close to
the expansion section. This provides us with an intuition that any perturbation close to the expansion
section is increases the sensitivity.

Our results on linear stability analysis on symmetric base flows, which confirms a picthfork bifur-
cation are consistent with literature on stability analysis of two dimensional expansion flow [18, 27,
29].
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Figure 2.9: Contour plot of streamwise velocity at Re = 475. (a) Direct mode, (b) adjoint mode. Only
20d out of 45d is shown.
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Figure 2.10: Contour plot of crosswise velocity at Re = 475. (a) Direct mode, (b) adjoint mode. Only
20d out of 45d is shown.

2.9 Gradual expansion
Further, a gradually expansion section of diverging angle – = 10¶ was analyzed. The mesh and the
size of the domain were adjusted accordingly to have accurate results. It was found that the symmetry
breaking mode occurs at Rec = 475, which is much higher than the case of a sudden expansion section.
One of the reason for such higher value of critical point is that the onset of the recirculation in a
gradually expansion section occurs at much higher Re. It is to be noted that, if the diverging angle
becomes zero i.e – = 0 then it is a case of plane poiseuille flow, which becomes unstable at Rec = 5772.
Figure 2.9 shows the direct and adjoint mode along the streamwise direction. Similar to that of the
sudden expansion, the direct mode consist of a positive and negative lobe but which extends itself all
along the gradually expansion section. Crosswise velocity shown in figure 2.10 shows that how gradual
expansion can e�ect the length of these lobes that extend from inlet of the expansion section to the
outlet of expansion section. Pressure mode in figure 2.11 alternate themselves but looks elongated all
over the expansion section and the adjoint pressure mode in figure 2.11 tends to be active around the
walls of the expansion section. Contour for sensitivity parameter is shown in figure 2.12, it clearly shows
that the region of maximum sensitivity lies all over the expansion region and remains close to the wall,
which is due to the presence a very small recirculation region in the domain.
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Figure 2.11: Contour plot of pressure at Re = 475. (a) Direct mode, (b) adjoint mode. Only 20d out
of 45d is shown.
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Figure 2.12: Structural sensitivity parameter, S, for the most unstable eigenvalue. Only 20d out of 45d
is shown.

2.10 Conclusion
Stability analysis on a two-dimensional sudden expansion and gradual expansion shows that the first
symmetry break mode is stationary and has no oscillating component to it. For sudden expansion the
first unstable mode occurs at Rec = 143 and in case of gradual expansion it occurs at Rec = 475.
Further, analysis with varying the divergence angle showed that the value of Rec tends to increase with
decreasing expansion angle. Streamwise velocity mode tends to be situated close to expansion section,
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in case of gradual expansion section; it looks elongated along the expansion region. Pressure modes
tend to alternate themselves along the streamwise direction and present very close to the expansion
section. Structural sensitivity parameter that gives the region to which baseflow is susceptible, in case
of sudden expansion it remains close to expansion and section and very sensitive in the shear layer
formed between the recirculation region and the core flow. For gradual expansion, the sensitive region
tends to lie all along the expansion region. Both the analysis shows that any perturbation at the
expansion is sensitive and can lead to early transitions. Stability analysis in three dimension is di�cult
to achieve because the base flow is global stable for Rec . 3400, it requires a long computational domain
and the code has to be parallelised to solve it. The structural sensitivity analysis is in accordance
with the finding of the [20, 32] that the expansion section acts like an amplifier, which amplifies the
incoming perturbation. It can also be noted that [20] in three dimensional transient growth analysis
the perturbation is amplified in between the recirculation region and starts to decay, once it crosses
the reattachment point. Further, stability analysis with varying expansion ratio [33] has shown that
after the symmetry breaking instability, a second instability occurs to three di�erent modes. The type
of modes depends upon the expansion ratio. We are interested in studying this variation of modes
with respect to the expansion ratio. Similarly, application of passive flow control method [29] on the
gradual expansion flow would help us to understand the e�ects of it. All the above methods are done
using linearised NS equations, without taking into account the non-linear part. In order to consider the
non-linearity of the equation, DNS with perturbation close to inlet has to be performed. In chapter 3,
we will study about applying a simple perturbation to the inlet pipe and study the transition behaviour.
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Chapter 3

Computational Method

3.1 Introduction
The NS equations (1.1) can be solved in di�erent ways, which mostly dependent on type of the problem.
Finite Di�erence Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and
spectral methods (SM) are the well known methods used in general. All these methods have their
own advantages and disadvantages. The FDM method is easy to implement, but cannot be applied for
complex geometry problems. FEM can handle complex geometries; it is therefore applicable to wide
range of problems. The strong form of the partial di�erential equation is reduced to weak form by
using the variational formulation. The weak form of the equation consists of trail functions (expansion
or approximating functions) and test functions (weight functions). The approximate representation of
the solution to the di�erential equation is given by the trail functions, which is a linear combination
of suitable trial basis functions. The test function ensures that the di�erential equation and some
boundary conditions are satisfied as closely as possible by the truncated series expansion. In order to
ensure that the approximate solution, defined by the truncated series satisfies the di�erential equation,
the test function are used to minimize the residual that is obtained when the approximate solution
is substituted into the di�erential equation. The test function is obtained in a way that the inner
product of the test function added with the residual is zero. The choice of trail functions is the main
criteria that di�erentiate the SM from FEM. Choosing a high order basis functions leads to SM that
has a high spatial accuracy. Similar to FDM, applying SM to complex grids is di�cult. In 1984,
Patera [34] first gave the method that combines the flexibility of FEM along with the accuracy of SM.
The hybrid method was called the “Spectral Element Method” (SEM). In this chapter, we initially
present the spatial and temporal discretization of the incompressible Navier–Stokes equations. In the
following section, the discrete form of the equation is explained along with the fractional step method.
Later, NEK5000 [35], a three dimensional SEM code developed by in National Argonne Laboratory is
discussed.

3.2 Spectral Element Method

3.2.1 Domain Decomposition
As mentioned, the computational domain � is divided into sets of non-overlapping sub-domains (ele-
ments) �e, e = 1, 2..., E such that :

� =
E€

e=1
�e (3.1)

Each element can be visualized as a smaller computational domain on which spectral method (A.2)
is applied. These elements share their boundaries; hence the elements have same order of polynomial
basis functions. This method of having same order for each element is called as conformal grid. If
the elements have hanging nodes, then it is called non-conformal grid, which makes the discretization
process complex. “Lagrange polynomials” (A.2.2) are used for higher order basis functions. Consider
a finite sequence of distinct points {›i}N

i=0 µ [≠1, 1], where ›0 = ≠1 and ›N = 1, and let the function
u : [≠1, 1] æ R be a one dimensional representation of a solution. The Lagrangian interpolation of u
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reads

u(›i) =
Nÿ

j=0
uj„j(›i) = ui, i = 0, 1..., N. (3.2)

where {uj}N
j=0 is the basis coe�cients corresponding to a set of orthogonal nodal basis functions

-1 -0.5  0  0.5  1

�i(x)

x

i = 0
i = 2
i = 4GLL-points

 0

 1

Figure 3.1: GLL mesh for a square domain � = [≠1, 1] with E = [5 ◊ 5], (a) N = 5 and (b) N = 10

{„j}N
j=0. Nodal basis functions are known as “Lagrangian interpolants” and have the property that the

basis coe�cients {ui}N
i=0 are also function values at the distinct points {›i}N

i=0, i.e. „j(xi) = ”ij holds,
where ”ij is the Kronecker delta function, which equals to one if i = j and zero otherwise. In SEM,
Legendre polynomials PN (x) is used to choose the Largrange basis functions, where N is the polynomial
order. The discrete points {›i} are the polynomial roots of (1 ≠ x2)P Õ

N (x). These points are called the
Gauss Lobatto Legendre (GLL) points, and the corresponding Lagrange polynomials can be defined as
“GLL polynomials”. Figure 3.1 shows a one dimensional GLL point along with the basis function. It
can be seen that the functions becomes zero at other GLL points. The mesh has dense points close to
the element boundary. Since the Lagrange polynomial is orthogonal, this leads to a diagonal or block
diagonal “mass matrix”, which is preferred in time domain computations due to that the inversion of
such matrices are trivial.

The other advantage of using GLL points is that, it can be used to compute the numerical quadrature
(A.1.5). Consider a GLL polynomial p of degree Æ 2N ≠ 1, then the quadrature formula is given by:

1⁄

≠1

p(x)dx ©
Nÿ

j=0
Êjp(›j), ›j œ [≠1, 1], (3.3)

where {Êj}N
j=0 are quadrature weights given by

Êj = 2
N(N + 1)

1
[PN (›k)]2 (3.4)

Interpolation in one dimension can be extended to two or three dimensions by using tensor products.
Figure 3.2 shows SEM meshes, constructed using GLL points. In case of deformed mesh, a reference
element �̂ = [≠1, 1]d, (d = 2, 3) is used to define a mapping between the reference element and each
element in the domain, i.e. xe : �̂ æ �e. If the mesh is rectangular, then the transformation is a�ne,
and the jacobian becomes a constant value. SEM in NEK5000 employs quadrilateral in two dimensions
and hexahedral in three dimensions. Solving the partial di�erential equation in a finite computational
domain � consist of spatial and temporal discretization. In the following section, spatial discretization
that lead to a semi-discrete matrix form and temporal discretization is explained, along with fractional
step method.
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Figure 3.2: GLL mesh for a square domain � = [≠1, 1] with E = [5 ◊ 5], (a) N = 5 and (b) N = 10

3.3 Spatial discretization

3.3.1 Weak formulation
The strong form (A.1.1) of equation (2.2) is reduced to weak form (A.1.3), which allows us to use
the Lagrangian basis functions along with the Galerkin method (A.1.4). That gives a spatial accuracy
that is consistent with the order of the basis functions. In order to obtain the weak form, variational
formulation is used. Equation (2.2) is multiplied with test functions v œ H1(�)d and q œ L2(�) then
we integrate over � to obtain

⁄

�

v · ˆu

ˆt
d� +

⁄

�

v · (u · Òu)d� = ≠
⁄

�

v · Òpd� + 1
Re

⁄

�

v · Ò2d� +
⁄

�

v · fd� (3.5)

⁄

�

q(Ò · u)d� = 0 (3.6)

Integration by parts on the viscous and pressure terms then yields
⁄

�

v · ˆu

ˆt
d� +

⁄

�

v · (u · Òu)d� = ≠
j

�
e

v · pnd�e ≠
j

�
n

v · pnd�n +
⁄

�

p(Ò · v)d� (3.7)

+ 1
Re

j

�
e

v · Òu · nd�e + 1
Re

j

�
n

v · Òu · nd�n ≠ 1
Re

⁄

�

Òu · Òvd�

+
⁄

�

v · fd� (3.8)

⁄

�

q(Ò · u)d� = 0

Later test functions (V ◊ Z) µ (H1(�)d ◊ L2(�)) for (u, p) are chosen such that the solution is
su�ciently smooth and includes natural and essential (Dirichlet and periodic) boundary conditions.
Trail functions are chose in space v œ V0 = H1

0 (�)d and q œ Z = L2
0(�) such that the boundary

integrals that correspond to essential boundary conditions cancels. Natural boundary conditions are
assumed to cancel the boundary integral (

i
�

n

) in the case they are used and the test functions are
assumed to cancel the boundary integrals (

i
�

e

) for the essential boundary conditions. Considering all
the conditions, then the “weak formulation” of the problem can be stated as:

Find (u, p) œ V ◊ Z such that:
d

dt
(v, u) + A(v, u, u) = B(v, p) + 1

Re
C(v, u) + F(v), ’v œ V0, (3.9)

B(u, q) = 0 ’q œ Z (3.10)
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Where

d

dt
(v, u) =

⁄

�

v · ˆu

ˆt
d� = d

dt

⁄

�

v · ud�

A(v, u, u) = (v, u · Òu) =
⁄

�

v · (u · Òu)d�

B(v, p) = ≠(Ò · v, w) = ≠
⁄

�

(Ò · v)wd�

C(v, u) = ≠(Òv · Òu) = ≠
⁄

�

Òu · Òvd�

F(v) = (v, f) = ≠
⁄

�

v · fd�

By Galerkin method choosing trial and test functions in the same Sobolev space that is built up by
of Lagrangian interpolants. Then, the discrete sub-spaces is chosen in the following way (uN , pN ) œ
V0,N ◊ ZN µ V0 ◊ Z, v œ V0,N and q œ ZN

Find (uN , pN ) œ V0,N ◊ ZN such that:

d

dt
(vN , uN ) + AN (vN, uN, uN) = BN (vN , pN ) + 1

Re
CN (vN , uN ) + FN (vN ), ’vN œ V0,N (3.11)

BN (uN , qN ) = 0 ’qN œ ZN (3.12)

where

AN (vN, uN, uN) = (vN , uN · ÒuN )GLL,

BN (vN , pN ) = ≠(Ò · vN , wN )GLL,

CN (vN , uN ) = ≠(ÒvN · ÒuN )GLL,

FN (vN ) = (vN , fN )GLL,

(vN , uN ) = (vN , uN )GLL,

Here the inner products on the form (·, ·)GLL are computed with the GLL-quadrature rule, which
includes all quadrature computations that include velocity and pressure. Computing (·, ·)GLL on a
collocated grid and staggered grid is called as (PN ◊ PN ) and (PN ◊ PN≠2) method respectively. For
more details about discretization,readers are suggested to refer [36, 37]

3.3.2 Semi-discrete matrix form
Reducing the Integral form to matrix form is the most convenient way to solve the set of equations.
Here, we describe the steps for converting domain integrals to semi-discrete matrix form for a two
dimensional non-deformed conformal grid. For more complicated grids the readers are suggested to
refer [36, 37]. Consider a single element on a rectangular domain � = [0, L1] ◊ ... ◊ [0, Ld], with
{„j}N

j=0 Lagrangian interpolants and reference element �̂ = [≠1, 1]d.. Then an a�ne transformation
x : �̂ æ �, (r1, ...rd) æ (x1, ...dd) is given by x(r1, ..., rd) = ((L1/2)(r1 + 1), ...., (Ld/2)(rd + 1)). The
quadrature nodes and weights of an integral approximation are given by {›i}N

l=0 µ [≠1, 1] and Êl
N
l=0

respectively.Also let diag(A1, ...Am) represents a diagonal block matrix with the matrices A1, ..., Am

through the diagonal.

The inner products of (3.12) are computed using (3.1) as :

(u, v)N =
⁄

�
vud� =

ÿ

îĵ

ÿ

ij

Q

avîĵ

⁄

�

„î„ĵ„i„jdxdy

R

b uij (3.13)

Where v̄ = vîĵ and ū = uij are vectors of basis coe�cients obtained after a�ne transformation. A much
simpler form of the inner product (3.13) is:

(u, v)N = v̄T Mū, (3.14)
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where M is the so called “mass matrix” with the entries, after a�ne transformation:

Mk̂k =
1⁄

≠1

1⁄

≠1

„i(r1)„î(r1)„j(r2)„ĵ(r2)L1
2 dr1

L2
2 dr2 (3.15)

= L1L2
4

Q

a
1⁄

≠1

„i(r1)„î(r1)dr1

R

b

Q

a
1⁄

≠1

„j(r2)„ĵ(r2)dr2

R

b

¥ L1L2
4

A
Nÿ

l=0
fll„î(›l)„i(›l)

B A
Nÿ

l=0
fll„ĵ(›l)„j(›l)

B
(3.16)

Ó
„(›j) = ”ij , M̂ = diag({fl0, fl1, ..., flN })

Ô
(3.17)

= L1L2
4 M̂îiM̂ĵj (3.18)

where L1L2/4 is the constant Jacobian that corresponds to the a�ne mapping and k̂ = 1+ î+(N +1)ĵ,
k = 1 + i + (N + 1)j is is the ordering of the elements. Equation (3.18) written in tensor product form
yields

M = L1L2
4

1
M̂ ¢ M̂

2
(3.19)

Where M̂ is the one dimensional mass matrix and ¢ is the tensor product.

The derivatives in the equation can be represented by the di�erential matrix (D̂), which in one di-
mension is given by:

D̂ij = d„j

dr

----
r=›

i

, i, j œ {0, 1, ..., N}2 (3.20)

The derivative operator for two dimensions reads

D1 =
1

I ¢ D̂
2 2

L1
, D2 =

1
D̂ ¢ I

2 2
L2

, (3.21)

Sti�nes matrix (K̂), of the equation in one dimensional form is given by:

K̂ij =
1⁄

≠1

d„i

dr

----
r=›

j

d„j

dr

----
r=›

i

dr ¥
Nÿ

l=0
D̂lifllD̂lj , i, j œ {0, 1, ..., N}2 (3.22)

The two dimensional operator for the sti�ness matrix becomes

K = L2
L1

1
M̂ ¢ K̂

2
+ L1

L2

1
K̂ ¢ M̂

2
(3.23)

Now define
M = diag(M, ....M), K = diag(K, ....K), D = [D1...Dd] , (3.24)

We construct general matrices that represent all flow fields. Then the inner products of the discrete
variational form (2.14) can be evaluated as follow

AN (v, u, u) = (v, u · Òu) = v̄T C(ū)ū (3.25)
BN (v, p) = ≠(Ò · v, p) = ≠v̄T DT p̄ (3.26)
CN (v, u) = ≠(Òv, Òu) = ≠v̄T Kū (3.27)
FN (v, u) = (v, f) = v̄T Mf̄ (3.28)

This results in the following semi-discrete matrix form of the Navier-Stokes equations

Mdū
dt

+ C(ū)ū + 1
Re

Kū ≠ DT p̄ = Mf̄ (3.29)

≠Dū = 0 (3.30)
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3.4 Time discretization
The temporal discretization which is widely used in NEK5000 is backward di�erentiation and extrap-
olation of order k (BDFk/EXTk) scheme. The order of time discretization is important for accuracy
and stability. Complex equation like the Navier-Stokes require a higher order implicit temporal dis-
cretization to attain stability and accuracy. Since the equations include both velocity and pressure, the
time advancement can hardly be done in a single equation. Instead so-called “splitting” methods are
used, that decouple the velocity and pressure and solve the system in two steps. This procedure can be
performed in several ways. In this thesis we restrict ourselves to shortly explain the methods included
in the Nek5000 code, which are based on the fractional step method.

3.4.1 The BDFk/EXTk scheme
The kth order implicit backward di�erentiating scheme is based Taylor expansion. Consider a equation
of the form dy/dt = f(y), then the BDFk scheme is given by:

1
�t

kÿ

t=0
—kyn+1≠i ¥ f(yn+1) (3.31)

where {—i}k
i=1 are BDF coe�cients and �t is the time-step size. From equation (3.31), it can be seen

that the number of implicit relations to be solved are the same for di�erent orders k. Hence, the
computational cost does not depend on the choice of order. The term in Navier–Stokes discretization,
when treated implicitly creates non-symmetric, non-linear system, which makes it di�cult to solve. In
turn a explicit method, which implements high order extrapolation on the non-linear terms including
the advection part is used. The kth order extrapolation (EXTk) of a general non linear term f(yn+1)
is given by

f(yn+1) ¥
kÿ

i=1
–if(yn+1≠i) (3.32)

where {–i}k
i=1 is a set of extrapolation coe�cients corresponding to the specific order of the scheme.

Adding the BDFk and EXTk schemes together results in the BDFk/EXTk scheme

1
�t

kÿ

i=0
—kyn+1≠i =

kÿ

i=1
–if(yn+1≠i) (3.33)

Figure 3.3 shows the stability region of second and third order BDFk/EXTk schemes for the scalar
equation dy/dt = ⁄y. It can be seen that the BDF3/EXT3 scheme does include more of the imaginary
axis eigenvalues than the BDF2/EXT2 scheme. The BDFk/EXTk discretization applied to the semi-
discrete equation (3.30) yields
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Figure 3.3: Stability regions of BDFk/EXTk methods. Red line and blue line corresponds to
BDF3/EXT3 and BDF2/EXT2 respectively.
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M 1
�t

kÿ

i=0
—iūn+1≠i ≠ DT p̄n+1 + 1

Re
Kūn+1 = ≠

kÿ

i=1
–iC(ūn+1≠i)ūn+1≠i + Mf̄n+1 (3.34)

≠Dūn+1 = 0 (3.35)

Which is transformed into

Hūn+1 ≠ DT p̄n+1 = M(f̄n+1 ≠ 1
�t

kÿ

i=1
—iūn+1≠i) ≠ 1

�t

kÿ

i=1
–iC(ūn+1≠i)ūn+1≠i (3.36)

≠Dūn+1 = 0 (3.37)

where H = diag(H, ..., H) is the discrete Helmholtz operator defined as :

H = 1
Re

K + —0
�t

M (3.38)

It is convenient to write (3.37) as a linear system. We get:
5

H ≠DT

≠D 0

6 5
ūn+1

p̄n+1

6
=

5
f̃n+1

0

6
(3.39)

where

f̃n+1 = M
A

f̄n ≠ 1
�t

kÿ

i=1
—iūn+1≠i

B
≠ 1

�t

kÿ

i=1
–iC(ūn+1≠i)ūn+1≠i (3.40)

This system of equation can be solved with the fractional step method.

3.5 The fractional step method
The most widely used decoupling method is the fractional-step method, which has a first order time
error that can be improved to second order by pressure correction. Recall, we are given a system on
the form:

Hūú = f̃n + DT p̄n (3.41)
by approximating the inverse H results in

ūú = H≠1(f̃n + DT p̄n) (3.42)

which is followed by a pressure correction step

EÒ2p̄n+1 = ≠ 1
�t

Dūú (3.43)

ūn+1 = ūú + �tM≠1DT Ò2p̄n+1 (3.44)
p̄n+1 = p̄n + Ò2p̄n+1 (3.45)

where E = DM≠1DT is a consistent Poisson operator for pressure.

3.6 DNS using NEK5000

3.6.1 Pipe mesh
The NEK5000 [35] employs a basic program called genbox, which helps to create spectral element mesh
that consist of tensor-product arrays of elements. Considering a cylindrical pipe section to be used for
study of straight and expansion pipe, genbox was used to create a two dimensional cylindrical mesh
initially that consist of quadrilateral elements. Another program called prenek was used to edit the mesh
to add refinement near the wall section. Figure 3.4(a, b, c) depicts three cylindrical meshes with di�erent
Elements (E) and polynomial order (N). It can be clearly viewed that the wall is well refined. Finally
the two dimensional cylindrical mesh is extruded in the axial direction to form a three dimensional
pipe as show in figure 3.4(d). The flow in the axial direction is driven by a pressure gradient, which is
adjusted dynamically by the time-integration scheme to assure a constant mass flux is obtained. This
method is used instead of a fixed pressure gradient. The basic idea is that the mean-flow is linear in
the pressure gradient, which allows the pressure gradient to be adjusted in each time step in order to
maintain a constant bulk velocity Ub.
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(a) (b) (c)

(d)

Figure 3.4: SEM mesh with quadrilateral elements for (a) E= 80, N=5, (b) E=80, N=7, (c) E=320,
N=5 and (d) is the three dimensional view of the pipe

3.6.2 Computational resource
Since it is not possible to run big computation on desktop computer, all the computations presented
here were carried out using the super computer facility at CRIHAN. For a single simulation a maximum
of 1000 cores can be used for 24 hours.

Figure 3.5: CRIHANN Super computer facility.

3.6.3 Data visualization and post processing
Visulization of large data is not possible until a special file reader is used. VisIT (Visualization IT)
provides a special file reader for NEK5000. All the contour plot show in the thesis were created using
VisIT. For the case of post processing, data were dumped on to a specific output file and were analysed
using special codes written using Python.
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Chapter 4

E�ect of tilt perturbation

4.1 Introduction
The flow in axisymmetric sudden-expansion pipe flow has been studied experimentally [16, 19, 38, 39]
and numerically [21, 22]. The expansion pipe consist of a small inlet d and a larger outlet diameter D. In
general, the inlet diameter d is used as the length scale to define the Reynolds number Re = Ud/‹, where
U is the mean flow velocity and ‹ is the kinematic velocity. The flow inside the expansion pipe initially
separates in the expansion region and reattaches downstream, there by forming a recirculation region.
This region grows linearly in the axial direction as the Re is increased. Once a critical Re is exceeded,
the recirculation region becomes asymmetric and breaks. In experiments, the recirculation region loses
symmetry at Re ƒ 1139 [19] and then breaks to form localised turbulence that occupies a stable spatial
position [38]. In terms of global stability analysis, [21] have shown that the symmetry breaking occurs
after a critical Reynolds number of ¥ 3273. The reason for the early occurrence of transition is believed
to be due to experimental imperfections. The imperfections gets amplified as the Re increases and
creates a by-pass to the turbulent regime. In numerical simulation these imperfections are very small
and the transition to turbulence occurs at much higher Re when compared to experiments. In order
to trigger turbulence a numerical finite amplitude perturbation is added to the system, which in turn
creates the by-pass that helps to reach the turbulent regime. This process of adding finite amplitude
perturbation can be explained via system dynamics, as show in figure 4.1.The green line in the figure
correspond to a laminar regime, which is an attractor, i.e., any infinitesimal perturbation to the system
decays and system remains laminar. The transition to turbulence only occurs only when the critical Re
is reached. In case of expansion pipe flow this not possible and it is explained in the following sections.
When a finite amplitude perturbation ” is added to the laminar system, the system takes a bypass
(dotted lines) to the turbulent regime. This early transition to turbulence depends upon the amplitude
” of the perturbation, higher the perturbation, earlier is the transition. Numerical simulations with
an applied imperfection [22] found the transition to turbulence to occur at Re ¥ 1800. The goal of
the present study is to numerically simulate a gradual expansion (diverging) pipe flow with a finite
amplitude imperfection added to the system that could trigger early transition to turbulence. The
long-term motivation of this study is to understand the e�ect of the perturbation on the system and

Figure 4.1: System dynamics view of the expansion pipe flow system with finite amplitude perturbation
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Figure 4.2: Morphing of a straight pipe mesh to a gradual expansion pipe

how the localized turbulence gains energy to sustain in a constant spatial position. In the first part, the
numerical method and its computational grid validation are presented. In the second part, the results
for the asymmetric growth of the recirculation are discussed, along with the oscillation of the flow, the
time evolution of the localised turbulence, and observations of decay of the turbulent structure.

4.2 Numerical method
The unsteady incompressible Navier-Stokes equation for a viscous Newtonian fluid is solved using
NEK5000 (SEM) as discussed in chapter 3.The Navier-Stokes equation is recollected here for the con-
vince of the reader and to explain the application of boundary condition:

Ò · v = 0 (4.1)
ˆv
ˆt + v · Òv = ≠ÒP + 1

Re
Ò2v , (4.2)

where v = (u, v, w) and P denote the scaled velocity vector and pressure respectively. The equations
(4.1) and (4.2) were non-dimensionalised using the inlet pipe diameter, d, for the length scale and the
mean velocity at the inlet, u, for the velocity scale. The time scale and the pressure scale are therefore
t = d/u and flu2, Where fl is the density of the fluid. The equations are solved with the boundary
conditions

v(x, t) = 2(1 ≠ 4r2)ez , (4.3)
v(x, t) = 0 , (4.4)

Pn ≠ n · Òv(x, t)/Re = 0 (4.5)

corresponding to a fully developed Hagen-Poiseuille flow (4.3) at the inlet, no-slip at the walls, and a
stress free outflow (4.5) condition at the outlet of the pipe, where x = (x, y, z) is the position vector
and n denotes the normal vector. The flow was initialised with Poiseuille in the inlet section and
each simulation was computed using 512 cores. In order to create a gradual expansion pipe, initially a
straight pipe was created. The straight pipe mesh is later morphed using a simple mathematical model.
The equation for scaling factor S to morph the domain is given as:

S =

Y
]

[

1, z < Ein,

1 + (D≠1)(z≠E
in

)
E

out

≠E
in

, Ein < z < Eout,
D, z > Eout.

(4.6)

x = S ◊ x (4.7)
y = S ◊ y (4.8)

Where Ein, Eout are the axial position of the inlet and outlet of the expansion section respectively. D
is the outlet diameter of the pipe. Figure 4.2 show a small pipe of length 25d morphed into a gradual
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Figure 4.3: The spectral-element mesh used in the present study with a divergent angle of – = 26.57¶.
(a) Sketch of the domain, (b) cross-section of the mesh (dark lines represent the elements and the grey
lines represent the Gauss-Labatto-Legendre points) and (c) a three-dimensional view of the mesh near
the diverging section. The mesh is made of K = 14 400 elements.

expansion pipe. Here the length of the expansion section is 1d. The equations were solved using an
open source code nek5000 developed by [40]. Spatial discretisation is based on the spectral element
method using Legendre polynomials. The equations are reduced to a weak form and discretised in space
by Galerkin approximation. N th order Lagrange polynomial interpolants on Gauss-Labatto-Legendre
points were chosen as the basis for the velocity space, similary for the pressure space. In all the
simulations PN ≠PN formulations were implemented. The time-stepping in nek5000 is semi-implicit in
which the viscous term of the Navier-Stokes equations are treated implicitly using third order backward
di�erentiation and the non-linear terms are treated by a third order extrapolation scheme. The gradual
expansion pipe as shown in figure 4.3 consists of three parts (1) the inlet, (2) the diverging section
and (3) the outlet. The velocity field is simulated in the Cartesian coordinate system (x, y, z). The
expansion ratio is E = D/d = 2. The length of the divergent section is kept constant in this study
and of length d, which leads to a divergence half-angle – = 26.57¶. The length of the inlet pipe is 5d
and the outlet pipe length is 150d. The computational mesh was constructed using hexahedral element,
with fine refinement near the wall and the expansion section. This was done to perfectly resolve the
sensitive flow separation and reattachment point. The (x, y) cross-section contains 80 elements and
175 element in the z direction. The total number of grid point in the computational domain can be
calculated using KN3, where K is the number of element and N is Legendre polynomial order. In order
to find the proper size of the computational domain, simulations were carried out keeping the value
of E constant and changing the value of N . Table 4.1 shows the length of the recirculation region for
di�erent orders of polynomial at Re = 1000. Here, flow reattachment point, zr, and the viscous drag
(flU2/2)AwCf , where Aw is the surface area of the outlet pipe wall and Cf is the friction coe�cient
are used as criteria to check for convergence. The reason for using length of the recirculation region zr

as criteria because it is very sensitive to the resolution of the separated shear layer, particularly near
the separation point. It can seen from 4.1 that the polynomial order of N = 5 is su�cient to resolve
the flow accurately. This value of N and the mesh have been used in all the following simulations
presented in this chapter. The polynomial order of N = 5, along with K = 14 000 leads to a mesh
of size ¥ 1.8 ◊ 106 grid points. The total number of grid points in the simulation is approximately
KN3. The flow was initialised with Poiseuille in the inlet section and each simulation was computed
using 512 cores. Table 4.1 shows the length of the recirculation region for di�erent orders of polynomial
at Re = 1000. The mesh convergence study was carried out by changing the polynomial order N of
the Legendre polynomial, of the spectral elements. The observations used to assess convergence are
the flow reattachment point, zr, and the viscous drag (flU2/2)AwCf , where Aw is the surface area of
the outlet pipe wall and Cf is the friction coe�cient. The length of the recirculation region depends
sensitively on the resolution of the separated shear layer, particularly near the separation point. The
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N Reattachment Position zr Viscous Drag
3 43.68 0.8430
4 43.65 0.3566
5 43.58 0.3419
6 43.59 0.3418
7 43.58 0.3419

Table 4.1: Convergence study, changing the order of polynomial N . zr is the length of the recirculation
region in the pipe for Re = 1000.

Figure 4.4: (a) Streamline of the recirculation region of length zr inside the diverging pipe at Re = 300.
(b) Recirculation region length, zr, with respect to Re. (•) corresponds to best-fit proportionality
given by 2zr/d = 0.0866Re for present case. (⇤) corresponds to 2zr/d = 0.0874Re [20], (M) and (O)
corresponds to experimental result [16, 39] 2zr/d = 0.088 Re and 2zr/d = 0.096Re respectively for
sudden expansions.

polynomial order of N = 5 is su�cient to resolve the flow accurately. This value of N and the mesh
have been used in all the following simulations, which corresponds to ¥ 1.8 ◊ 106 grid points. To
further validate the accuracy of the simulations, the growth of the recirculation as a function of the
Reynolds number is shown in figure 4.4.The simulations show that the extent of the recirculation region
is of the form 2zr/d = 0.0866Re, which agrees well with previous studies for sudden expansion flow.
Unlike the sudden expansion flow, for a gradual expansion pipe, the onset of recirculation occurs after
a critical flow velocity. From the inset in figure 4.4 it can be seen that initially the value is zero and
after a critical Re the recirculation region starts to occurs, this depends upon the divergence half-angle
– and Re [23]. The figure 4.5 are contour plots of axial velocity. For Re = 10 the streamlines inside the
domain are straight, indicating there is no recirculation region. In case of Re = 100, the recirculation
can be seen close to the expansion section.

4.3 Finite amplitude perturbation
According to stability theory, the first bifurcation in expansion pipe flow occur at very high Re. To
numerically simulate this Re, we need a very long computational domain, which is not possible with
the present computational resource. Even if we could build domain to run high Re, the growth of the
unstable mode will be slow and would require a very long computational time to achieve onset of turbu-
lence. In order to overcome this problem of computing long domain, a finite amplitude perturbation is
added to system that creates a bypass to turbulence regime. For sudden expansion pipe flow, numerical
simulations [20, 21] have shown that the flow is unstable to infinitesimal perturbations for Re ¥ 3273,
but the transition in experiments occurs at much lower Re [16, 19, 38]. The exact nature of the observed
instability is therefore unclear. The small deformation or imperfection creates perturbation in the flow
that gets amplified due to convective instability mechanism, which leads to time-dependent solutions.
Numerical results [20], have shown that small perturbation get amplified by transient growth in the
sudden expansion for Re Æ 1200, advect downstream and decays. In the present computational domain,
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�5 0 5 10

(b)

(a)

Figure 4.5: Contour plot of axial velocity with streamlines for showing the length of recirculation region
(a) Re = 10, shows there is no recirculation region and (b) Re = 100.

the flow is linearly stable up to Re & 2200, i.e., the flow is laminar. For larger Re the recirculation bub-
ble extends close to the end of the outlet section and cannot be calculated reliably. In order to trigger
turbulence as discussed above, we added a finite amplitude perturbation at the inlet of expansion pipe
flow. The finite amplitude perturbation is applied along with the Hagen-Poiseuille flow in the form:
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Figure 4.6: Cross-sections of the pipe. Contour line plots of the axial velocity (solid black lines) taken at
z = 22.5d for (a) Re = 1000 and (b) Re = 1600. The dashed line corresponds to the inlet pipe diameter
and the blue lines with arrows represent the crosswise velocities within the recirculation region. (c)
Contour plot of the perturbation, i.e., flow with perturbation (” = 0.001) subtracted from the base
flow (” = 0) for Re = 1600. (d) Streamwise cross-section of the flow around the reattachment point at
Re = 1600 with ” = 0.001.

u(x, t) = 2(1 ≠ 4r2)ez + ”ey , (4.9)

where ” is the finite-amplitude applied to crosswise velocity.
The addition of the perturbation (4.9) distorts the flow, nudging it in the direction of the crosswise

direction. In all the simulations presented in this chapter, a fixed value of ” = 0.001. Figure 4.6(a-c)
shows cross-sections of the pipe at z = 22.5d from the expansion section. Thick dark lines shows contours
of the axial velocity, where the thick dotted line represents the diameter of the inlet section and the blue
lines with arrows shows the region of recirculation region. At low Re the flow remains axisymmetric as
show in Figure 4.6(a), which corresponds to Re = 1000. when Re = 1600, the flow inside the pipe starts
becoming asymmetry because of the nudging perturbation as show in figure 4.6(b). It can be identified
by comparing the solid and dashed lines. In to order to clearly understand the e�ect of perturbation
on the flow, an initial computation without perturbation (baseflow) is done. This baseflow solution is
subtracted from a perturbed flow solution for the same value of Re. The result of subtraction is show
in figure 4.6(c) and it can be seen that low is accelerates on the right-hand side of the pipe section and
decelerates on the opposite side. To further quantify this, cross section in the axial plane is shown in
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figure 4.6(d), it can be seen that recirculation region is asymmetry. This reattachment pattern is very
sensitive to the form of the perturbation given at the inlet, which motivates the application of a simple
form of disturbance.

4.4 Growth and Oscillation
Asymmetry growth of the flow in figure 4.6(a) can be measured by calculating position of the centroid
of the axial velocity from the centre point of the pipe. The axial velocity is projected on to a Cartesian
circular grid (x, y).
The moment of the function in x and y direction is given by:

Mx =
ÿ

x

xv(x, y) My =
ÿ

x

yv(x, y) (4.10)

M =
ÿ

x

ÿ

y

v(x, y) (4.11)

Then the position of the centroid (x̄, ȳ) is:

x̄ = Mx

M
ȳ = My

M
(4.12)

Then square distance of the centroid from the centre of the pipe is:

Á = x̄2 + ȳ2 (4.13)

The square of this distance is denoted by Á ([19]). Figure 4.7(a) shows Á as a function of Re with least-
square fit on the data obtained. It can be seen that at low Re there is no variation in the position of
the centroid, a steady symmetric state is observed for Re < 912. As Re increases, a symmetry-breaking
bifurcation occurs at a critical Rec = 912. This value is smaller than the case of sudden expansion
pipe (Rec = 1139 in the experiment by [19]). Clearly, the critical Re depends on the position of the
cross-section, – and ”. The value of Á increases linearly (912 < Re < 1500) forming a steady asymmetric
state, with biased growth in the recirculation region. The magnitude of the symmetry deviation grows
as the square root of Re, typical of supercritical bifurcation. The error bars in figure 4.7(a) represent
the amplitude of the fluctuations in Á.
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Figure 4.7: (a) Asymmetry growth of the flow measured by the square of the distance of the centroid
from the centre of the pipe, Á, as a function of Re. The lines are least-square fit of the data and the
intersection of the lines is at Rec = 912 for the estimate of symmetry breaking bifurcation point. (b)
Oscillations of Á at Re = 1650 as a function of time. The inset is the fast Fourier transform of the signal
with a fundamental frequency f = 0.468 and a period doubling sub-harmonic SH = 0.234.

As the Re is increased further (1500 Æ Re Æ 1650), the flow becomes time dependent. The position
of the centroid starts varying, due to the oscillation of the reattachment point downstream [38]. These
oscillations are also observed in experiments of sudden expansion flow [19]. Figure 4.7(b) shows the
value of Á as function of time, it can be seen that it exhibits quasi-periodic oscillations in the shear
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Figure 4.8: (a) Plot of friction coe�cient, Cf , with respect to Re. The (blue) filled-circles represent the
steady laminar asymmetric flow; the (red) filled-squares represent unsteady localised turbulent state.
The continuous line represents the fit for the laminar state: Cf = 1.97/Re ≠ 0.0012 and the dotted
line represents a fit for localised turbulent state: Cf = 0.0066(Re ◊ E)≠0.22. The shaded regions
1650 . Re . 3273 is the hysteretic regime, where the blue subsection indicates the extent of the regime
explored on the laminar branch. (b) Contour plot of streamwise velocity of localised turbulence at
Re = 1680 with ” = 0.001.

layer around the recirculation region. Fast Fourier Transform (FFT) was performed on the signal to
identify the dominating frequency. The inset in figure 4.7(b) is the FFT of the signal as a function of
frequency, where f = 0.468 and SH = 0.234 a period doubling sub-harmonic. f seems to correspond
to the frequency of vortex shedding around a circular body, which occurs due to the Kelvin-Helmholtz
instability [41, 42]. This frequency of oscillation depends upon the type of the perturbation added to
the system [32, 43]. Once the Re goes higher, the recirculation region to become turbulence.

4.5 Hysteresis
In order to measure the onset of turbulence, the skin friction coe�cient, Cf are calculated on the whole
domain. Figure 4.8(a) shows the friction coe�cient, Cf , as a function of Re. At low Re, the flow is
steady and asymmetric and the value of Cf decreases. The negative value in the skin friction coe�cient
is due to the presence of recirculation region, which extends up to approximately half the of the outlet
section before transition. Around the transition Reynolds number, Ret ƒ 1680, the recirculation region
inside the pipe breaks and leads to a localised turbulent state, which can be seen by the sudden rise in
the value of Cf and the axial velocity contours is shown in figure 4.8(b).

The turbulence that occurs, takes a constant spatial position inside the domain, near to the sudden
expansion section [22, 38]. The formation of turbulence, near the diverging section, increases Cf due to
higher internal mixing and resulting shear at the boundary. In this regime, Cf values scale roughly with
the same exponent as the Blasius friction law, even though straight pipe flow are not turbulent at these
Re. The present calculations for the perturbed flow were run up to t = 600 and the localised turbulence
remained present. The perturbation was then removed and the flow was simulated up to t = 1200. The
turbulence was observed to be self-sustained, and to occupy the same spatial position. The behaviour
of system the whole system is explained using figure 4.8(a). The gradual expansion pipe without
perturbation creates steady, symmetric solution until Re < 2200, beyond that the numerical simulation
creates outlet boundary condition problem because of the recirculation region extending close to the
outlet section. Once the perturbation is added, at low Re the solution is steady and asymmetric. After
Re > 1680, the flow becomes turbulent. The range of Re in which laminar state as well as turbulent
state co-exist is denoted by blue shade (1650 . Re . 2200). Since the recirculation region is broken,
the simulation can be extended up to a very high Re. Global stability analysis [21] have revealed that
the first bifurcation for the sudden expansion pipe occurs at Re & 3273 above which natural transition
can be expected without any added perturbation. Given the much larger computational cost and that
we have already computed a range of Re, where the laminar and turbulent flows co-exist, we have
not pursued the linear instability. To analyse the relaminarisation of the gradual expansion pie flow,
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Figure 4.9: Relaminarisation study. (a) Spatio-temporal diagram (same legend as figure 4.10) of lo-
calised turbulence decay from Re0 = 2000 to Ref = 1500. (b) Relaminarization time, tR, versus Ref .

simulations were performed, where localised turbulence was generated at Re0 = 2000 and the decay to
laminar flow observed for Re below Ret. In figure 4.9(a), the spatio-temporal diagram shows a typical
relaminarisation case. At t = 0, Re is reduced suddenly from Re0 = 2000 to Ref = 1500. Here,
the localised turbulence detaches from the inlet section almost immediately, then convects downstream
and simultaneously decays, which can be seen as the disappearance of the vortical structures [17, 44].
The relaminarisation time, tR, was obtained by monitoring the time taken for the total energy in the
computational domain to fall below a threshold of 10≠6. Above Ref = 1500 the turbulence leaves the
computational domain before falling below the threshold. The figure 4.9(b) shown tR as a function
of Ref . The straight line fit indicates that the decay time of the turbulence increases linearly for
Re < 1500, as identified in experiments [23]. Here, no significant period of time was observed before the
detachment of turbulence from the walls. Simulations were not carried out within the hysteresis region
due to high computational cost. For these Re the turbulence is self-sustained for some time before
detachment from the inlet section, and the time before detachment is expected to diverge rapidly as in
uniform pipe flow [8].

4.6 Higher Reynolds number
Simulations were carried out at high Re to study how the onset of the localized turbulence occurs
and it’s dynamics. The spatio-temporal diagrams show in figure 4.10 corresponds to (a) Re = 4000,
(b) Re = 3000, (c) Re = 2000 and (d) Re = 5000. The horizontal axis represents the centre axis of
the pipe from the diverging section to the outlet. The streamwise vorticity value has been normalised
with the maximum vorticity and been plotted with the same scale for comparison purposes. Initially
at Re = 2000, the turbulence onsets at t = 25 and moves downstream, at t = 100 the turbulence
starts moving upstream towards the diverging section and finally holds a stable position z/d ƒ 10. For
Re = 5000, the onset of turbulence nearly occurs at the same time as that of Re = 2000, but the amount
of time it takes to reach a localised position is t = 40, which is much smaller than that of the Re = 2000.
The time taken to hold a stable position decreases as Re increases. The velocity trace downstream the
localised turbulence for Re = 2000 recovers laminar flow (see figure 4.10(e)). In the case of Re = 5000,
the flow downstream the intense region of turbulence exhibits inhomogeneous patterns. This is due to
presence of high inertial force, compared to viscous force that damps the turbulence back to laminar
state. The streamwise velocity trace (see figure 4.10(f)) suggests weak turbulence, that does not return
to laminar flow and eventually could lead to pu� splitting [8, 9]. This property of expansion flow with
laminar inlet profile forming localised turbulence and decaying in the outlet section is in good relation
with experiments [23].

4.7 Coherent structures
Structure within the localised turbulence is further studied using spatial correlations, which have been
used to identify fast and slow streaks that dominate the coherent structures within pu�s in pipe flow

50



4.7. Coherent structures Chapter 4. E�ect of tilt perturbation

0 50 100

0

50

100

150

200

250

300

350

400

450

500
0 50 100

0

50

100

150

200

250

300

350

400

450

500

0 50 100

0

50

100

150

200

250

300

350

400

450

500
0 50 100

0

50

100

150

200

250

300

350

400

450

500 −0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150
0

0.5

1

1.5

2

−0.5

0

0.5

0 50 100 150
0

0.5

1

1.5

2

−0.5

0

0.5

Figure 4.10: Evolution of localised turbulence. Spatio-temporal diagram of streamwise vorticity along
the centreline of the pipe, where z = 0 corresponds to the start of the diverging section, for (a)
Re = 4000, (b) Re = 3000, (c) Re = 2000 and (d) Re = 5000. (e) and (f) q2 = v2 + w2 in (red)
and streamwise velocity u (blue) at the final time step of (c) and (d). The dashed lines represent the
Poiseuille centreline velocity in the inlet and the outlet sections.
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Figure 4.11: Spacial correlation on streamwise velocity of localised turbulence at Re = 2000. Contour
of correlation, C(◊, z), at (a) r = 0.5d and (c) r = 0.8d. Projection function of C(◊, z) for di�erent
azimuthal wave number m at (b) r = 0.5d and (d) r = 0.8d. (e ≠ h) Cross-sections of the axial flow
relative to the time averaged profile with fast flow (light/white) and slow flow (dark/red) taken at the
corresponding vertical dashed lines.

[6]. The correlation in the streamwise velocity is obtained using the function:

C (◊, z) =
52 Èuz(◊ + „, z)uz(„, z)Í„

Èmax(uz)2Ít

6

r

(4.14)

where È·Ís indicates averaging over the subscripted variable, uz is the instantaneous axial flow velocity
and r is the radial position. The signature of structures of a particular azimuthal wavenumber m
is obtained by projecting the correlation function, Cm(z) = 2 ÈC(◊, z) cos(m◊)Í◊ [6]. Figure 4.11(a,b)
shows the correlation at r = 0.5d and it can be seen that the m = 1 mode dominates the flow. Whereas
in figure 4.11(c,d) at r = 0.8d, the m = 2 structure dominates the flow along with m = 3 with a much
smaller correlation value, which suggests that the flow is more active in the centre region than near to
the walls. Overall this analysis points out that the localised turbulence in the gradual expansion possess
a di�erent flow structure from the turbulent pu� [5, 6, 45] where m = 3 and 4 dominate the flow near
to the wall. The cross-sections in figure 4.11(e-h) indicate slow and fast moving flow.

4.8 Conclusions
Numerical results for the flow through a circular pipe with a gradual expansion in presence of an
imperfection have been presented in this chapter. The small imperfection leads to a linear asymmetry
growth of the recirculation region, which has also been observed in experiments of sudden expansion
pipe flow. As Re is increased, the long recirculation region oscillates seemingly due to shear Kelvin-
Helmoltz instability [19, 38]. This time-dependent motion lies in a narrow range of Re for the amplitude
studied here (” = 10≠3). From Ret ¥ 1680, the flow with the imperfection triggers localised turbulence
in the outlet section of the pipe. For Re > Ret a route to the subcritical turbulent flow is established,
and remains unchanged if the small perturbation is removed. Thus the flow through a perfect gradual
axisymmetric expansion in a pipe exhibits multiplicity in the solution set of the Navier-Stokes equations,
where both axisymmetric states and turbulent motion coexist over a range of Re. Above Ret ƒ 1680,
the turbulent flow is expected to have a lifetime that increases significantly. The system therefore
exhibits hysteresis behaviour if Re is increased beyond critical for linear instability and then reduced
below this value, until Re ¥ 1650. This property of localised turbulent flow with laminar inlet profile
forming localised turbulence and decaying in the outlet section agrees with experiments [23, 38]. The
localised turbulence does not convect downstream but holds a stable spatial position. The structure
within the localised turbulence is further studied using spatial correlations, which identifies fast and
slow streaks that dominate the coherent structures. The main finding is that flow is more active in
the centre region than near to the walls. Hence, it is important to note that the localised turbulence
observed here has di�erent structure from that of a turbulent pu� in uniform pipe flow [6].
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Chapter 5

E�ect of vortex perturbation

In the previous, we studied pipe flow with gradual expansion with small tilt perturbation at the inlet.
Here, we return to simple case of sudden expansion with vortex perturbation, to study the e�ect of
perturbation. Direct numerical simulations for incompressible viscous fluid in a expansion pipe flow
with a finite amplitude perturbation at inlet is presented in this chapter. The perturbation in the form
of a vortex with its axis parallel to the axis of the pipe, is applied along with Hagen-Poisueille flow. At
su�ciently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes
position axially depending on the strength of the perturbation. This vortex perturbation is believed
to produce a less abrupt transition than in previous studies with a tilt perturbation, as the localized
turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which
resembles an optimally amplified perturbation. For higher amplitude, the localized turbulence remains
at a constant axial position. It is further investigated using proper orthogonal decomposition, which
indicates that the centre region close to the expansion is highly energetic.

5.1 Introduction
A brief introduction to axisymmetric expansion flow, is given in this section to make the chapter
self-consitient for the reader. The flow through an axisymmetric expansion in a circular pipe is of
both fundamental and practical interest. The geometry arises in many applications, ranging from
engineering to physiological problems such as the flow past stenosis [46]. The bifurcations of flow
patterns in sudden expansions have been studied experimentally [16, 19, 38, 39] and numerically [21,
22]. In all these studies, flow separation after the expansion and reattachment downstream leads to
the formation of a recirculation region near the wall. Its extent grows linearly as the flow velocity
increases. Numerical simulations and experimental results have shown that the recirculation region
breaks axisymmetry once a critical Reynolds number is exceeded. Here, the Reynolds number is defined
Re = Ud/‹, where U is the inlet bulk flow velocity, d is the inlet diameter and ‹ is the kinematic
viscosity. In experiments, the recirculation region loses symmetry at Re ƒ 1139 [19] and forms localized
turbulent patches that appears to remain in at a fix axial position [22, 23, 47]. Global stability analysis
[21] suggests that the symmetry breaking occurs at a much larger critical Re. The reason for the
early occurrence of transition in experiments is believed to be due to imperfections, which are very
sensitive to the type or the form of the imperfections. These imperfections are modelled in numerical
simulations by adding arbitrary perturbations. Small disturbances are likely to be amplified due to
the convective instability mechanism, and appear to be necessary to realise time-dependent solutions.
Numerical results [20], have also shown that small perturbations are amplified by transient growth in
the sudden expansion for Re Æ 1200, advect downstream then decay. Simulations in relatively long
computational domains, which accommodate the recirculation region with an applied finite amplitude
perturbation at the inlet [22, 47], discussed in chapter 4 have found the transition to turbulence to
occur at Re & 1500, depending upon the amplitude of the perturbation. The most basic perturbation
is to mimic a small tilt at the inlet, via a uniform cross-flow, on top of the Hagen-Poiseuille flow [22, 47,
48]. This perturbation creates an asymmetry in the recirculation region downstream, which oscillates
due to Kelvin-Helmholtz instability, similar to that of a wake behind axisymmetric blu� bodies [42].
At higher Re, the recirculation breaks to form localized turbulence. Another possibility is to include a
rotation of the inlet pipe, and numerical simulations with a swirl boundary condition [49], have shown
the existence of three-dimensional instabilities above a critical swirl velocity. Experimental studies have
also been conducted [50], for expansion ratio of 1:8, confirming the existence of convective and absolute
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(a) (b) (c)

Figure 5.1: Vector plot of ū.(a) R = 0.25, (b) R = 0.125 and (c) R = 0.1 at di�erent positions inside
the domain.

instabilities, and also time-dependent states. The higher the Re, the smaller is the swirl su�cient
for the transition between states to take place. In the present investigation, a small localized vortex
perturbation is added at the inlet, without wall rotation, along with the Hagen-Poiseuille flow. This
vortex perturbation has been implemented to observe a less abrupt transition to localized turbulence
than observed for the tilt case, enabling study of the most energetic modes during the transition. The
goal of this chapter is to discuss results of expansion pipe flow with a localized vortex perturbation
added to the system. Initially numerical method is discussed with regards to the simulations performed
with vortex perturbation. Secondly, spatio-temporal dynamics of the turbulent patch and the analysis
of the localized turbulent patch using Proper Orthogonal Decomposition (POD) is presented. Finally,
the conclusions are stated.

5.2 Vortex perturbation
When trying to make connection between experimental observations and simulations, the issue of the
choice of perturbation must be addressed. Many perturbations have been tested experimentally [51–54]
and replications in numerical works have reproduced some of the observations [15, 55–57]. In the paper of
Wu et al. [15], it is clearly mentioned that a perturbation on the axis of the pipe requires large amplitude
to trigger transition or decays quickly. In this chapter consider a simple localized perturbation, and
introduce a localized vortex to the inlet Poiseuille flow. The radial size of the vortex may be controlled
as well as its position in the inlet section. This perturbation also satisfies the continuity condition at
the injection point and automatically breaks axisymmetry, contrary to the tilt perturbation [21, 47] We
define s =


(x ≠ x0)2 + (y ≠ y0)2 as the distance between the center of the vortex at (x0, y0) to any

point (x, y) in the cross-section, at which the local measure of rotation is given by

� =

Y
]

[

1, s Æ R/2,
2(R ≠ s)/R, R/2 < s Æ R,
0, s > R ,

(5.1)

where R is the radius of the vortex. The velocity perturbation ū in Cartesian coordinates is then

ū = ” � (y0 ≠ y, x ≠ x0, 0) , (5.2)

where ” is a parameter measuring the strength of the vortex. The full inlet condition is therefore

vx = �(x ≠ x0), (5.3)
vy = �(y0 ≠ y),
vz = 2(1 ≠ 4r2)

Then the inlet condition is given by:

v(x, t) = (x ≠ x0)ex + (y0 ≠ y)ey + 2(1 ≠ 4r2)ez (5.4)

where r2 = x2 + y2. Figure 5.1 show vortex perturbation inside inlet section, 5.1(a) shows a vortex
of size R = 0.25 and 5.1(b, c) shows that with the formula vortex can be placed anywhere inside the
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(a)

(b)

Figure 5.2: Computational domain (a) inlet domain, (b) outlet domain which are stitched together.

(a) (b)

(c)

Figure 5.3: The spectral-element mesh of the sudden expansion pipe. (a) Sketch of the domain, (b)
(x, y) cross-section of the mesh (the dark lines represent the elements and the grey lines represent
the Gauss-Lobatto-Legendre mesh), (c) (x, z) cross section of the pipe around the expansion and (d)
truncated three dimensional view of the expansion pipe. The mesh is made of K = 63, 200 elements.

domain. The other advantage of the formulation is that additional vortex can be added. In all the
simulations presented in this chapter, a single vortex with size R = 0.25 is kept constant.

5.3 Computational domain
The sudden expansion mesh is created by stitching to straight pipes, which two di�erent diameters
as shown in Figure 5.2. The flow inside in the expansion pipe geometry is governed by unsteady
three-dimensional incompressible Navier-Stokes equations for a viscous Newtonian fluid as discussed in
chapter 4. The equations are solved with the initial condition (6.6) and boundary conditions:

v(x, t) = 0 x œ Wall, (5.5)
Pn ≠ n · Òv(x, t)/Re = 0 x œ Outlet, (5.6)

corresponding to no-slip (6.1) at the walls, and a open boundary condition (6.2) at the outlet of
the pipe. The equation (6.2) is a Neumann boundary at the outlet, with n being the surface vector
pointing outwards from the computational domain, chosen to avoid numerical oscillations. Figure 5.3(a)
is a schematic diagram of the sudden expansion pipe. The length of the inlet pipe is 5d, the outlet pipe
is 150d, and the expansion ratio is given by E = D/d = 2, where D is the outlet pipe diameter. The
computational mesh was created using hexahedral elements. Figure 5.3(b) shows the (x, y) cross section
of the pipe with 160 elements and the streamwise extent of the pipe has 395 elements. The mesh is refined
near to the wall and near the expansion section (see figure 5.3(c)). A three dimensional view of the
mesh along the expansion pipe is displayed in figure 5.3(d). The mesh used here contains approximately
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N KN3 (◊106) Reattachment Position zr Viscous Drag
4 4.0 43.58 0.3725
5 7.9 43.72 0.3333
6 13.6 43.73 0.3323

Table 5.1: Convergence study, changing the order of polynomial N . zr is the non-dimensional length
of the recirculation region in the pipe for Re = 1000.

 

Figure 5.4: (a) Vector plot of ųÕ. Axial vorticity contour of the vortex perturbation (R = 0.25) in the
inlet of the pipe at (b) z = ≠5 and (c) z = ≠2.5 for Re = 2000. Black and white corresponds to the
maximum and minimum of vorticity and orange (grey) represents zero vorticity.

four times more elements than our previous study [47]. Table 5.1 shows the parameters used to assess
convergence: (i) the flow reattachment point, zr, and (ii) the viscous drag. The convergence study
was done at Re = 1000 (zr is very sensitive and may be a�ected by the outlet at larger Re) and no
qualitative changes were found for Re = 2000. N = 5 is su�cient to resolve the flow accurately near
the separation point as well as at the reattachment point. The total number of grid points in the mesh
is approximately KN3 = 7.9 ◊ 106, where K is the number of elements. The entire set of simulations
reported here took over one calendar year to complete on four processors.

5.4 E�ect of amplitude of the vortex perturbation
The perturbation is added at the inlet pipe along with the parabolic flow velocity profile at z = ≠5.
Figure 5.4(a) is a cross-section of velocity field of the vortex perturbation. Figure 5.4(b) and (c) show
contour plots of axial vorticity at the inlet section of the pipe, z = ≠5, and further downstream at
z = ≠2.5. The contours show that the perturbation di�uses and becomes smoother along the inlet. At
the expansion section, z = 0, perturbations are known to be amplified [20]. In previous works [21, 47],
the addition of a tilt perturbation has been found to trigger transition to turbulence. However, the tilt
perturbation (i) creates a discontinuity at the inlet and (ii) does not break the mirror symmetry. In this
respect, the vortex perturbation permits a more controlled transition, resulting in smoother dependence
of the transitional regime on the strength of the perturbation. Figure 5.5 shows a space-time diagram
for the centreline streamwise vorticity at Re = 2000 for di�erent perturbation strengths, ”. After
t ¥ 500, it can be seen that for di�erent ” the flow settles into di�erent behaviours of the turbulent
patches, observed over the following 1500 time units. Computational costs limit simulations to larger
t. For ” < 0.05, the perturbation decays before reaching the expansion section. At ” = 0.05 (see figure
5.5(a)), a turbulent localized patch forms, then moves downstream. Around t ƒ 600 another turbulent
patch forms upstream at z ƒ 60 and the downstream patch decays immediately. This process appears
to repeat in a quasi-periodic manner. When the amplitude of the vortex perturbation is increased,
” = 0.1, see figure 5.5(b), again a patch of turbulence appears, then moves downstream. When a
turbulent patch arises upstream at t ƒ 600, the patch downstream again decays immediately. This
time, however, the process appears to repeat more stochastically, in time and location, of the arising
upstream patch. Occasional reversal in the drift of the patch is also observed. It is expected that if the
patch drifts far downstream, then it will relaminarise, since the the local Reynolds number based on the
outlet diameter is Re/E = 1000, somewhat below the 2000 typically required for sustained turbulence.
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Figure 5.5: Spacetime diagram of the centreline streamwise vorticity for Re = 2000 for (a) ” = 0.05,
(b) ” = 0.1, and (c) ” = 0.2.

It is likely that the deformation to the flow profile by the upstream patch reduces the potential for
growth of perturbations within the patch downstream, disrupting the self-sustaining process. Still for
” = 0.1, figure 5.6 shows the streamwise vorticity for a (x, z) cross-section over the whole pipe: 150d.
At t = 1000 (see figure 5.6(a)), it can be seen that only a single turbulent patch exists in the domain.
At t = 1025 (see figure 5.6(b)), an axially periodic structure appears at z ƒ 10. Once this develops
into turbulence (see figure 5.6(c)), the patch downstream dissipates rapidly (see figure 5.6(d)). The
appearance of the new patch in our expansion is di�erent from the pu� splitting process observed in a
straight pipe [3–5, 7–9, 53, 58]. Here the new turbulent patch evolves out of the amplified perturbation
at the entrance and breaks down into turbulence, forming a new patch upstream of an existing patch.
The patch drifts downstream and decays. The slopes in the diagrams of figure 5.5 indicate the drift
velocity of the patch, which varies with respect to ” and z, and decreases as ” increases. Figure 5.7
shows the iso-surface streamwise vorticity for the axially periodic structure that appears at z ƒ 10, in
this case it is shown for 12.5 < z < 25 at t = 2000. This structure appears repeatedly and resembles
the optimally amplified perturbation found in a sudden expansion flow by [20]. Initially the structure
appears near the expansion region, where the flow is very sensitive to perturbations, it is amplified and
then breaks down into turbulence downstream. For ” = 0.2, see figure 5.5(c), the turbulent patch never
goes beyond z ƒ 60. Here the perturbation develops consistently into turbulence, so that its position
remains roughly constant. The patch remains close enough to the entrance so that there is insu�cient
space for a new distinct patch to arise. For large amplitude ” = 0.5, the turbulence patch does not
drift, remaining at a more stable axial position, shown in the spatiotemporal diagram of figure 5.8(a).
A snapshot of the flow at t = 100 is also presented in figure 5.8(b), and this streamwise vorticity contour
plot highlights the e�ect of the vortex perturbation that is clearly at the origin of the turbulent patch.
In previous works [21, 47], spatially localized turbulence has also been observed, and one question that
can be asked is how similar or di�erent is this localized turbulence from the turbulent pu�s observed
in straight pipe flow [5]? Using spatial correlation functions, previous works [47] have found that the
localized turbulence in expansion pipe flow is more active in the centre region than near the wall, hence
di�erent from the pu�s in uniform pipe flow [6]. In the next section, we provide results on a another
analysis tool: the proper orthogonal decomposition.
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Figure 5.6: x ≠ z cross sections of streamwise vorticity contour plot for Re = 2000 with ” = 0.1 at
(a) t = 1000, (b) t = 1025, (c) t = 1050 and (d) t = 1100. Each triad represents the full pipe length,
truncated at every 50d for simple visualization purpose. Here black and white corresponds to the
maximum and minimum of vorticity and orange (grey) represents zero vorticity.

1

-1

0

Figure 5.7: Iso-surface of streamwise vorticity resembling the optimal perturbation for Re = 2000,
” = 0.1 at t = 1025 and spanning from z = 12.5 to 25 from left to right.
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Figure 5.8: (a) Spacetime diagram for the centreline streamwise vorticity for Re = 2000 and ” = 0.5.
(b) Zoomed contour plot of the streamwise vorticity for z up to 50, black and white corresponds to the
maximum and minimum of vorticity and orange (grey) represents zero vorticity. Note the perturbation
development between the expansion section and the turbulent patch.

5.5 Proper Orthogonal Decomposition Method
Principle Component Analysis, often called Proper Orthogonal Decomposition (POD) in the context of
fluid flow analysis, has been widely used by several researchers [59–62] to identify coherent structures
in turbulent flows by extracting an orthogonal set of principle components in a given set of data. Each
data sample ai, being a snapshot state, may be considered as a vector in m-dimensional space, where
m is e.g. the number of grid points. These vectors may be combined to form the columns of the m ◊ n
data matrix X = [a1 a2 . . . an], where, n is the number of snapshots. Let T be an m ◊ n matrix with
columns of principle components, related by to X by

T = XW . (5.7)
T is intended to be an alternative representation for the data, having columns of orthogonal vectors
with the property that the first nÕ columns of T span the data in X with minimal residual, for any
nÕ < n. Here the inner product aT a corresponds to the energy norm for the minimisation. W is defined
via the singular value decomposition (SVD) of the covariance matrix X

T
X. If the SVD of X is

X = Ũ�W

T , (5.8)
where, � is the diagonal matrix of the singular values, then

X

T
X = W �T

Ũ

T
Ũ�W

T = W �2
W

T . (5.9)
Also the SVD of X

T
X may be calculated,

X

T
X = USV

T . (5.10)
Comparing equation (5.9) and (5.10) we have that W © U . Therefore, to calculate the principle
components we construct the n ◊ n matrix of inner products X

T
X, where it is assumed that n π m,

and compute its SVD (5.10). Only the first columns of T are expected to be of interest, and the jth

principle component ûj may be obtained by

uj =
nÿ

i=1
aiUi,j , ûj = uj/(uT

j uj). (5.11)

The normalised singular values
�̂jj =

Ò
Sjj/(n ≠ 1), (5.12)

are a measure of the energy captured by each component, having the property that �̂jj equals the root
mean square of aT

i ûj over the data set.
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Figure 5.9: Fabricated patterns that are input into the flow.

5.6 Validation of POD alogrithm
To validate the POD algorithms ability to identify coherent structures inside the flow, a series of
fabricated patterns that constructed and introduced inside a flow. Equation (5.15) helps to simulate
a multi-dominant structures buried in the fluid flow. The basic idea of the validation is to introduce
known coherent structures of particular frequency and to check if the POD algorithm can retrieve it.
Here, the method proposed by Seena and Sung (2011) is applied to construct the fabricated patterns

z0(x, y, t) = exp(≠y2/0.7) (5.13)

zn(x, y, t) = –n(t)
m=Œÿ

m=≠Œ
(≠1)mexp

C
≠

A
(x ≠ —nm ≠ “nt)2

dn
+ y2

dn

BD
, n = 1, 2, 3, ... (5.14)

z = z0 + z1 + z2 + z3 (5.15)

where dn = anx+bn is the diameter of the structure, an and bn are the constants, a—n is the wavelength
factor defined as the distance between two neighboring structures, “n is the convection velocity of the
structure in the streamwise direction, and –n is the growth or decay factor. The dominant frequencies of
these three structures z1, z2, and z3 are determined by fn = “n/(2—n) i.e., 0.5 Hz, 1.64Hz, and 4.0Hz,
respectively. The value of the coe�cient –n(t) determines variations in the convecting structures; that
is, at –n(t) = 1 the structures are constant without growth or decay while the cases at –n(t) > 1
and –n(t) < 1 correspond to the growing and decaying structures, respectively. The fabricated multi-
dominant structure pattern is composed of three di�erent dynamic structures (n = 1, 2, 3), each of which
evolves with a certain velocity at di�erent frequencies. The parameters for each pattern are listed in
table (5.2).

Figure 5.9 shows snapshots of the structures that are input into the flow field. The structures z1, z2
and z3 are formulated in a such way to be constant, decay and grow respectively as they move from left
to right side of the domain. The characteristic frequency of the dominant structure increases with n.
Heren the complete flow pattern is constructed by superimposing the the three structures of di�erent
sizes and frequencies onto the stationary field. Figure 5.9 (a) shows the stationary filed and the figures
5.9 (b, c, d) represent the three di�erent structures built z1, z2 and z3 respectively. The multi-dominant
flow field is z = z0 + z1 + z2 + z3, as show in figure 5.9 (d), it can be seen that after superimposing
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n an bn —n “n f (Hz) –n(t)
1 0.030 0.050 0.8 0.8 0.5 1
2 0.015 0.035 0.55 1.8 1.64 e≠t/30 ≠ 0.1
3 0.0075 0.020 0.3 2.4 4.0 1 ≠ e≠t/20 + 0.2

Table 5.2: Constants for the fabricated pattern.
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Figure 5.10: The first three POD modes extracted from the fabricated multi-dominant structure pattern.

structures the flow field becomes more complex. To apply POD algorithm on to constructed flow field,
total of 200 successive snapshots with a sampling frequency of 10 Hz were analyzed using the POD
algorithm, It was found that the, cumulative energy of the first six modes reaches 99.7% of the total.
Thus, the first six modes would give an accurate reflection of the three buried structures. The spatial
distributions of the first three POD modes are shown in figure 5.10, a general view of which shows
that the first, second, and third pairs of POD modes share similarities with the structures q1,q2, and q3
shown in figure 5.9, respectively. In order to further validate, Fourier coe�cients of the modes where
computed, figure 5.11 (a) shows the value of Fourier coe�cient of the first three modes respectively.
Figure 5.11 (b) is the Fast Fourier Transform of the Fourier coe�cient signal obtained from the first
POD mode. The spectrum peaked at f1 = 0.49, f2 = 1.61 and f3 = 3.99 respectively, which is nothing
but the frequencies of the three coherent structures that where introduced into the stationary flow field.

5.7 POD on localized turbulence
Applying POD to turbulence can help us visualize the most energetic structures inside it. A large
number of snapshots were collected, and it was found that after 1200 snapshots the energy of the
leading POD modes (principle components) became independent of the number of snapshots. Figure
5.12(a)shows the axial velocity of mode 1, which constitutes 74% of the total kinetic energy. It can be
seen that the center core region is predominant and its shape is reminiscent of the vortex perturbation.
Hence, the inlet flow has more e�ect on the localised turbulence than the wall shear. Mode 2 is shown
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Figure 5.11: (a) Fourier coe�cients of first three mode, where red, blue and black correspond to
first, second and third POD mode respectively. (b) Power spectra of temporal POD mode coe�cients
extracted from first POD mode.

Figure 5.12: Cross sections (x, z), (x, y) and iso-surfaces of the proper orthogonal decomposition. (a)
Mode 1, (b) mode 2 and (c) mode 3 computed for Re = 2000 and ” = 0.5 using 1500 snapshots. Red
(light-gray) and blue (dark-gray) correspond to the maximum and minimum of streamwise velocity
component.
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in the figure 5.12(b), has two predominant region along the axial direction and constitutes ¥ 20% of the
energy. Mode 3 represents only ¥ 3% of the energy and is shown in the figure 5.12(c). The remaining
modes appear more complex and less energetic. The study of spatial correlation in chapter 4 and POD
has revealed the sustainability of the localized turbulence is due to the inlet flow and the perturbation
that is applied along with it. Any change in the perturbation or the inlet condition can have drastic
e�ect on the localized turbulence, Once the perturbation is turned o� the flow field will revert back to
laminar state.

In addition, simulations were carried out by changing R and (x0, y0) independently. It has been
found that (i) a smaller vortex perturbation: R . 0.2 and (ii) a vortex closer to the centreline could
not sustain a fixed localized turbulent patch [15].

5.8 Conclusions
Numerical results for the flow through a circular pipe with a sudden expansion in presence of a vortex
perturbation at the inlet have been presented. For Re = 2000 and a relatively small perturbation
amplitude, 0.05 . ” . 0.1, a patch of turbulence in the outlet section is observed to drift downstream,
then decay upon the appearance of another patch of turbulence upstream. Moreover, this vortex
perturbation produces a controlled transition, in that the transitional regime depends smoothly on the
perturbation strength, and the origin of symmetry breaking is defined. Further, the turbulent patch
that forms first appears via a low order azimuthal mode resembling an optimal perturbation. The
process repeats quasi-periodically or stochastically as the amplitude of the perturbation, ”, increases.
The turbulent patch formation is di�erent from the pu� splitting behaviour observed in uniform pipe
flow [3, 5, 8, 58], as here the new patches arise upstream of existing turbulent patches. The drift
velocity of the patch varies with ”, decreasing as ” is increased. For large ”, the patch does not drift
downstream, but holds a stable spatial position forming localized turbulence. The structure within the
localised turbulence is further studied using proper orthogonal decomposition, which indicates that the
first mode comprises most of the energy and the flow is more active in the centre region than near the
wall. The growth and decay of the vortex perturbation should be explored to understand the onset of
turbulence, which will dealt in the chapter 5.
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Chapter 6

Transition in a straight circular pipe

In the previous chapter, the e�ect of vortex perturbation on sudden expansion pipe was examined. In
this chapter, we apply the vortex perturbation to the constant diameter pipe with special focus on the
wall pressure fluctuations. Numerical simulations of transition to turbulence in a straight pipe [3, 4,
6–9, 45, 63], in general are performed using a short length pipe, using periodic boundary condition. It
is used to reduce the computational cost. Recent DNS of straight pipe with long computational domain
[15], has shown that the energy of the finite amplitude perturbation at the inlet, grows exponentially.
Finite amplitude turbulent perturbation are induced via a thin circular ring present at the core region,
which leads to the formation of helical structure that tends to become large-scale reverse hairpin vortices
as they convect downstream. Interactions of these reverse hairpin vortices among themselves and their
interaction with near wall flow creates smaller hairpin structures that lead to break down to form full
developed turbulence. DNS results of transition to turbulence is presented in this chapter. A finite
amplitude vortex perturbation, is applied at the inlet, that leads to transition to turbulence. Looking
at the mean value of velocity and pressure, reveal less detail about the transition. Whereas, velocity
and pressure fluctuations measured at the center of the pipe and in the near wall region seems to
increase exponentially. Figure 6.1(a) is a schematic diagram of the pipe. The length of the pipe is 75D,

Figure 6.1: The spectral-element mesh of the straight pipe. (a) Sketch of the computational domain,
the red circles and blue dots correspond to the numerical probes placed along the axial direction to
measure velocity and pressure fluctuations at the center and in the near wall region. A total of 750
probes were placed in centre of the pipe and in the near wall region along the axial direction. (b)
Truncated three dimensional view of the pipe. The mesh is made of K = 64, 000 elements.

where D is the pipe diameter. The computational mesh was created using hexahedral elements. A
three dimensional view of the mesh is displayed in figure 6.1(b). A N = 6 order Lagrange polynomial
interpolants was used on the Gauss-Labatto-Legendre points to have higher resolution. The total
number of grid points in the mesh is approximately KN3 = 13.8 ◊ 106, where K is the number of
elements. The probes were placed at center as well as in the near wall region to measure the velocity
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and pressure along the streamwise direction. In terms of the near-wall region, the probes data were
averaged from four measurement point along the circumference of the pipe section.

(a)

(b)

(c)

0

2

Figure 6.2: Contour plot of streamwise velocity for Re = 5000 at t = 1600. The pipe has been truncated
as (a) 0 ≠ 25d (b) 25d ≠ 50d (c) 50d ≠ 75d

6.1 Numerical Method
Three-dimensional incompressible Navier-Stokes equations for a viscous Newtonian fluid as discussed
in chapter 4. The equations are solved with the initial condition (6.6) and boundary conditions:

v(x, t) = 0 x œ Wall, (6.1)
Pn ≠ n · Òv(x, t)/Re = 0 x œ Outlet, (6.2)

corresponding to no-slip (6.1) at the walls, and an open boundary condition (6.2) at the outlet of
the pipe. The equation (6.2) is a Neumann boundary at the outlet, with n being the surface vector
pointing outwards from the computational domain, chosen to avoid numerical oscillations. For the inlet
boundary condition, Hagen-Poiseuille flow was applied along with a vortex perturbation. Equation of
the finite amplitude vortex perturbation is recollected for the convenience of the reader. The vortex
perturbation has been designed in a way to control the radial size R and the strength ”. It can also be
placed at any where inside the inlet section. It satisfies the continuity condition at the injection point
and breaks mirror symmetry. The distance between center of the vortex at (x0, y0) to any point (x, y)
in the cross-section is defined by s =


(x ≠ x0)2 + (y ≠ y0)2. Measure of rotation is given by:

� =

Y
]

[

1, s Æ R/2,
2(R ≠ s)/R, R/2 < s Æ R,
0, s > R ,

(6.3)

where R is the radius of the vortex. The velocity perturbation ũ in Cartesian coordinates is then

ũ = ” � (y0 ≠ y, x ≠ x0, 0) , (6.4)

where ” is a parameter measuring the strength of the vortex.

vx = �(x ≠ x0), (6.5)
vy = �(y0 ≠ y),
vz = 2(1 ≠ 4r2)

Then the inlet condition is given by:

v(x, t) = (x ≠ x0)ex + (y0 ≠ y)ey + 2(1 ≠ 4r2)ez (6.6)

66



6.2. Transition to turbulence Chapter 6. Transition in a straight circular pipe

where r2 = x2 + y2. The simulation was initialised with Hagen-Poiseuille flow all over the domain.
Initially, the simulations were executed upto t = 800. Later, streamwise velocity u and pressure P along
the centreline (Red circle in figure 6.1) and near-wall region (blue dots in figure 6.1) were measured
from t = 800 to 1600. Figure 6.1(a) shows the x ≠ y cross-section of the pipe with one probe in the
centre and four probes around the near wall region. In the x ≠ z cross-section the probes are placed at
every 0.5D, which gives 5 ◊ 150 probes as 750 probes.

6.2 Transition to turbulence
At first, di�erent values of Re, R and ” and length of the pipe were experimented to understand the
transition in straight pipe. Taking into consideration of the computational cost, the length of the pipe
was fixed to 75D and Re = 5000. Simulations revealed that any perturbation below ” < 0.5 and
R < 0.25 decays and the flow recovers laminar Poiseuille flow. Later, the value of R was fixed to 0.25D
and ” = 0.5. Figure 6.2 shows the streamwise velocity contour plot. For the purpose of visualisation,
the 75D long pipe has been truncated into three parts. It can be seen in figure 6.2(a) the flow is laminar
close to inlet and wavy structures occurs along the domain and finally becomes turbulent close to the
outlet. Cross sections in the circumference direction reveals how the perturbation breaks the spatial and
temporal symmetries. At inlet, the Poiseuille flow is retained, as we move to z = 5D, the perturbation
creates a kind of streak inside the domain. This motion of vortex perturbation, a�ects only one side of
the domain. Above z > 20D, spatial and temporal symmetries are broken as they move downstream,
shown in figure 6.2(b). The flow becomes quasi turbulent for z > 55D, which is shown in figure 6.2(c).
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ū

z

Figure 6.3: Mean value of streamwise velocity ū along the axial direction, big red dotted line indicate
centreline velocity for a laminar flow and the small green dotted line correspond to centreline velocity
of fully-developed turbulent flow [64]. 80 000 data samples were taken from 150 probes in the centreline
along the axial direction to compute the time average (t = 800 ≠ 1600).

6.3 Meanflow
Streamwise velocity u and pressure P from the Navier-Stokes equation solution can be decomposed
as two components u = ū + uÕ and P = p̄ and pÕ. Here ū is the mean streamwise velocity, p̄ is the
mean pressure, uÕ and pÕ are the velocity and pressure fluctuations respectively. Fluctuations of the
flow, tend to carry most of the information about transition. Figure 6.3 shows the mean velocity plot
along the streamwise direction, measured from the centreline of the pipe. Simulation was initially run
from t = 0 to 800, so that transient part of the flow does not a�ect the data for statistics. The mean
value was calculated on the data obtained from time scale t = 800 to 1600. It can be seen that at the
inlet, the velocity is twice ū corresponding to the average parabolic velocity. Sudden decrease in the
mean velocity close to the inlet, is due the presence of the vortex perturbation. The rotating vortex
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perturbation, has significant e�ect of the centreline velocity field, which is been marked by the red
dotted box in figure 6.2(a). As the flow convect downstream, the vortex starts to dissipate and it size
starts diminishing. Similarly, looking at the red dotted box in figure 6.2(c) shows turbulent regime part
along the centreline which cause the small bump close to the outlet.
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Figure 6.4: (a) Mean value of pressure p̄ along the axial direction. (b) Skin friction factor ⁄ along the
streamwise direction (dark line). Small and large dotted line correspond to friction factor for laminar
flow and fully-developed turbulent flow (Blasius). 80 000 data samples from four probes around the
near wall region were used to obtain the time average.
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Figure 6.5: Space-time diagram of velocity fluctuations along streamwise direction, the blue and red
dotted line correspond to velocity and pressure fluctuations, respectively at t = 1600.

Mean pressure P along the streamwise direction is shown in figure 6.4(a). It decreases monotonously
from the inlet to outlet. To measure the skin friction factor ⁄f = ≠ dP

dz D/ 1
2 flu2, the gradient of the mean

pressure at the near wall region was used. Gradient of pressure along the axial direction was computed
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by finding the di�erence between two consecutive probes placed at 0.5D apart. Figure 6.4(b) depicts
friction factor along the streamwise direction. The green small dashed line corresponds to friction factor
due to laminar flow i.e., ⁄f = 64/Re and the red dashed line corresponds to ⁄f = 0.316/Re1/4 Blasius
friction factor for turbulent pipe flow. The blue line, obtained from the simulation, remains at low value
close to inlet because of the presence of laminar flow (see figure 6.2(a)) and the value tends to remain
constant and increases once it reaches the turbulent regime close to outlet (see figure 6.2(a)).

6.4 Fluctuations
Fluctuation components were obtained by subtracting the mean values from the flow components. A
space-time diagram shown in figure 6.5 was constructed from the stream wise velocity fluctuations at the
centreline of the pipe. It shows the existence of laminar regime close to the inlet and turbulent regime
after z = 50D. To further understand, streamwise velocity (blue line) and pressure fluctuations (red
line) at t = 1600 from the space diagram are plotted below the space time diagram. The fluctuations
close to inlet are zero and constant, which depicts the existence of laminar flow below z . 30D. After
z > 40D, the amount of fluctuations start increasing. Close to the outlet section, the fluctuations tends
to drop. Figure 6.6(a and b) are the standard deviation of velocity and pressure fluctuations along the
streamwise direction. In term of standard deviation the velocity and pressure fluctuations, are constant
and seems to increase rapidly close to the turbulent regime and decrease as they move towards the
outlet. Decrease of the fluctuations at the outlet could be an e�ect of outlet open boundary condition
applied in the numerical method.
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Figure 6.6: Standard deviation of fluctuations obtained using 80 000 samples of (a) velocity (b) pressure
respectively.

6.5 Conclusion
DNS result for transition to turbulence at Re = 5000 in 75D long pipe with a vortex perturbation
( R = 0.25D and ” = 0.5)was presented. Instead of periodic boundary condition, velocity and open
boundary condition were applied to study the spatial development of pipe flow. Simulations provide
evidence of spatial and temporal symmetry breaking structures occurring inside the domain, which
later initiates turbulence downstream. Mean value of velocity from the centreline decreases as the flow
develops downstream along with the mean pressure. Analysing the skin friction factor of the pipe
reveal the flow is laminar close to the inlet and turbulent at outlet, by comparing with friction factor
of laminar flow and full-developed turbulent flow. Velocity fluctuations are absent close to inlet and
increases rapidly as it moves downstream, but decay down as they reach the outlet condition. This
e�ect of outlet can be verified only by performing new simulations with a larger computational domain
and also by changing the open boundary condition to convective boundary.
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Chapter 7

Wall pressure fluctuation in developing
turbulent flow

7.1 Introduction
Direct numerical simulations on spatially developing pipe flows have been carried out showing the
existence of helical vortex filament and large-scale vortices, which grow as they convect downstream
and trigger turbulence [15]. In theory, linear stability analysis [65–72] suggests that the perturbations
at the inlet are responsible for transition to turbulence at lower Reynolds number, Re = UD/‹, where
U is the mean velocity, D is the pipe diameter, and ‹ the kinematic viscosity of the fluid. To achieve
laminar flow, the perturbations like background vorticity or thermal gradients at the inlet could be
minimised using honeycombs, screens and temperature control. Several experimental observations [1,
2, 5, 12–14, 52–54, 73–76] have shown that the laminar state in pipe flows can be achieved over a wide
range of flow rates or Re up to 100 000 [2]. Furthemore, it was shown that finite amplitude perturbation
at the inlet causes the energy to grow exponentially [15] with the axial distance and creates vortical
structures that break down to become fully developed turbulence. Velocity fluctuations are widely used
to identify the behaviour of developing turbulent flow. The pressure field on the other hand, which is
strongly coupled with the gradient of the mean velocity and fluctuations, is less explored. This chapter
is dedicated to report the results of an experimental study of the development of pipe flow at high
Reynolds numbers. The wall pressure fluctuations along the axial direction are measured to identify
their growth and behaviour. In the first part , the relationship between the pressure and velocity
is explained, followed by the re-analysis of data from [14]. Secondly part, explains the experimental
setup and the pressure measurement system. Growth of pressure fluctuations as a function of the axial
position is discussed In third part for Reynolds number in the range of 105 to 106. Finally, tuft tuft
visualisations are presented.

7.2 Velocity-Pressure coupling
The fluctuations of the velocity component carry information about the behaviour of the flow. Mea-
surements of the statistics of centreline velocity fluctuations were used to obtain the axial position for
fully developed pipe turbulence [5, 14]. According to [11] and [14], most of the transition to turbulence
occurs in the entrance region up to about 60 diameters from the pipe inlet. In general, most of the
literature on developing turbulent flow has been conducted using velocity fluctuations, whereas pressure
fluctuations are less explored. This paper deals with studying the behaviour of pressure fluctuations in
a developing turbulent circular pipe flow. The pressure field of an incompressible flow can be obtained
by taking the divergence of the Navier-Stokes equation, this gives a Poisson equation, that shows a
strong coupling between pressure and velocity:

1
fl

Ò2P = ≠ˆUi

ˆxj

ˆUj

ˆxi
, (7.1)
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Figure 7.1: Schematic diagram of the pipe flow facility. The inset shows a detailed view of the ring
perturbation.

where the pressure P = p̄ + pÕ, U = ū + uÕ and fl is the fluid density. Hence, decomposing the equation
(7.1) results in the following pressure fluctuation equation:

1
fl

Ò2pÕ = ≠2 ˆ2

ˆxiˆxj
(uÕ

iūj) ≠ ˆ2

ˆxiˆxj

1
uÕ

iu
Õ
i ≠ uÕ

iu
Õ
j

2
. (7.2)

The right hand side in equation (7.2) contains two terms, that have di�erent behaviour. The first term
represents the interaction between the gradient of the mean velocity field and the gradient of turbulent
velocity field. The second term represents turbulence-turbulence interaction. This clearly shows a link
between the mean velocity gradient, velocity fluctuations, the pressure and how they redistribute the
turbulence between various fluctuating components.

The goal of the present investigation is to measure the pressure along the pipe for a wide range of
Re. In the first part, the experiment and the wall pressure measurement system are briefly described.
In the second part, the results for the wall mean and fluctuating pressure are discussed. Then, the
e�ect of the ring perturbation is presented. Finally tuft visualisation in the inlet region and developed
turbulent region are shown.

7.3 Experimental set-up

7.3.1 Cottbus Large Pipe test facility (CoLaPipe)
The CoLaPipe (Cottbus large pipe test facility) has a diameter of D = 190 ± 0.3 mm, length of 28 m
(148D) long and was constructed from 13 acrylic sections of 2 m long and 5 mm thick. The sections
were initially aligned using a laser and attached using bolts and nuts. Gaps or leaks are prevented using
insulating tape. Figure 7.1 presents a schematic sketch of the test section. The air flow is driven using
a radial blower of 45 kW. The pipe is mounted on a closed loop containing a cooling system to maintain
constant temperature. All the experiments were conducted at 20 ± 1¶C. At the inlet of the pipe, the
flow passes through a settling chamber with honeycombs, screens and meshes to damp fluctuations [5,
12]. Moreover, a smooth inlet contraction section is used, designed using a fifth order polynomial. The
Bernoulli’s equation is used to calculate Re by using the mean pressure values obtained before and after
the contraction section. At the exit of the contraction, the streamwise turbulence intensity is less than
0.5%. The current experimental setup has a working range of 6 ◊ 104 < Re < 106 (5 to 80 m/s). It
corresponds to 0.2 < u· < 3 m/s, where u· is the friction velocity in fully developed flow: u· =


·w/fl,

and ·w is the wall shear stress. More details about the facility can be found in [77] and [78].

7.3.2 Natural transition and orifice perturbation at the inlet
In classical turbulence studies, the pipes are tripped at the inlet and the measurements were conducted
at x/D & 30D and 70D by [79] and [80], respectively, to assure the flow is turbulent. Here we used an
orifice perturbation, that is a 2 mm thick aluminium annular ring. The inner radius of the ring is at a
constant height h from the pipe wall. The natural transition corresponds to h = 0 and the perturbed
cases correspond to h = 4.5, 9.5, 15.5 and 21.5 mm, which corresponds to area blockage pourcentage
of 10, 20, 30 and 40%, respectively. This type of perturbation was already studied systematically in
transition experiments [53]. The position of the perturbation is 1.3D from the exit of the contraction.
By reanalysing the data from [14], figure 7.2 was obtained. It shows that the critical axial position of
transition, xc, decreases as Re is increased and scales as xc/D Ã Re≠2.25.
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Figure 7.2: Critical position along the pipe axis for transition to turbulence as a function of Re. The
reanalysis of the centreline velocity fluctuations as a function of Re for various x/D, from [14], shows
that the critical position for transition, xc, decreases with Re. The continuous line is a power law fit to
the data described in the text.

7.3.3 Wall pressure measurement system
The wall pressure in the facility is measured using pressure taps. It has an pinhole diameter, d, of
400 microns. Pressure taps are available along the pipe on 41 locations. At each location, three
pressure taps are installed around the circumference. The pressure is measured using a piezo-electric
transducer (Measurement Specialities Model 9116) mounted behind the pinhole. To minimise the error
of measurements, particular criteria were reached: (i) the diameter of the pressure tap should be small,
when compared to the length scale in the flow, i.e., d+ = du· /‹ < 20 [81, 82]. Experimental results
presented here were conducted in the range of 8 < d+ < 47. (ii) The length of the pressure tube (L)
used for each of the pressure tap should be equal in length to avoid the problem of fluctuation damping
due to the tube walls. In our case we used 2 meter long tubes to connect to the pressure transducer. (iii)
The length of the pressure tube (L) to the pinhole diameter, d, should be greater than 2 (L/d > 2) [83].
All pressure measurements are taken using a pressure scanner with a range of 7 kPa (from Measurement
Specialities Model 9116), connected through an Ethernet cable. Five to ten channels are simultaneously
measured and the acquisition is performed using LabView. Each pressure signal is 10 000 samples at
a frequency of 100 Hz. Initially, 50 000 samples were acquired to determine the pressure fluctuations.
With 10 000 samples, we found a deviation of the fluctuations about 1.2%.

7.4 Results and discussion

7.4.1 Friction factor results for fully developed turbulent pipe flow
To validate further the experiment, the friction factor, ⁄f = ≠ dP

dx
2D
flU2 , as a function of Re is measured

in the downstream of the pipe, where flow is fully developed, and is shown in figure 7.3(a). ⁄f was
calculated with 5 points averaging method using the pressure data in the region 70 < x/D < 130. The
error bars represent the total uncertainty in the measurements, which are based on 5 rehearsals, that
indicate a maximum error on Re of 9.6% and on ⁄f of 5.6%. The friction factor relationship proposed
by Prandtl can be derived from the integration of the mean velocity profile. This relation can be written
as:

1/⁄1/2
f = C1 log

1
Re⁄1/2

f

2
+ C2 (7.3)

where C1 and C2 are coe�cients, which may or may not depend on Re. If C1 = 2.0 and C2 = ≠0.8,
then (7.3) is the same as that derived by Prandtl from the smooth-pipe data of [10]. In figure 7.3(b), a
least-squares approximation was used on our data to determine the values for the coe�cients: C1 = 2.0
and C2 = ≠0.18. The argument that the coe�cients in (7.3) are independent of Re is based on two
assumptions: (i) a log law exists, and (ii) the contribution of the near-wall region to the average velocity
is negligible. In figure 7.3, we also plot the variation of ⁄f with Re along with the skin friction formula
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Figure 7.3: Friction factor, ⁄f , in fully developed turbulent flow. (a) ⁄f as a function of Re. (b) ⁄≠1/2
f

as a function of Re ◊ ⁄1/2
f . The bottom line is the Prandtl fit for [11] smooth pipe data and the top

line is a fit to the present experiments.

proposed by [84]:

⁄f = 0.3164/Re1/4 (7.4)

which is considered accurate only up to Re 6 100 000.

7.4.2 Pressure fluctuations along the pipe
7.4.2.1 Pressure fluctuations along the pipe without ring perturbation

The facility allows for measurements of the wall static pressure: P = p̄ + pÕ, where p̄ is the mean
pressure and pÕ is the fluctuation. Figure 7.4(a) shows the mean pressure di�erence from the outlet,
p̄e, as a function of the axial position, x/D. It decreases monotonously from the inlet and the slope
depends on Re, because there is a strong pressure gradient that drives the flow. However, the mean
pressure, p̄, does not convey any information about the transition to fully developed turbulence. Hence,
the behaviour of fluctuations, pÕ, should be explored. Figure 7.4(b) presents the standard deviation of
pressure fluctuations, pÕ, normalised by pressure di�erence at the contraction, �p, along the pipe for
di�erent Re. �p is the pressure drop between the inlet and the outlet of the contraction. The outlet of
the contraction is the inlet of the pipe (x = 0). At the inlet, pÕ/�p is small and increases with the axial
position before reaching a steady state value. In general, the value of pÕ increases with Re, however
when normalised by �p, it decreases in a self-similar way.

To investigate this self-similar growth, di�erent scalings can be implemented [83]. In figure 7.4(c),
pÕ+ is shown as a function of x/D, where pÕ+ = pÕ/flu2

· and u2
· = ⁄f U2/8 is the friction velocity from the

fully developed turbulent region. Only a partial collapse of the data is observed and the most striking
observation is the exponential increase of the pressure fluctuations close to the inlet region. The pÕ+ data
can be fitted using an exponential fit: pÕ+ = – + — exp(“x/D), which is in a good agreement with the
exponential growth of the energy norm in the simulations of [15] in developing turbulent pipe flow. The
parameter “ decreases with Re. Further, one can normalise the data using the asymptotic value of the
exponential, i.e. pÕ+

Œ = –, as shown in figure 7.4(d). It indicates that the curvature of the exponential
growth shifts toward low x/D for large Re, as indicated by the arrow. This is in qualitative agreement
with the experiments of [14] that found an abrupt decrease of the critical position for transition as Re
increases (see figure 7.2).

7.4.2.2 Pressure fluctuations along the pipe with ring perturbation

One can wonder if the exponential growth of pressure fluctuations along the pipe (see figure 7.5) is
robust to perturbation. Figure 7.5 presents the standard deviation of wall pressure fluctuations along
the pipe for di�erent Re and each plot corresponds to a case where a ring perturbation is placed at
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Figure 7.4: Wall mean pressure and fluctuations along the pipe without perturbation: (a) p̄ ≠ p̄e,
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Figure 7.6: Wall pressure fluctuations as a function of Re in the saturated region for di�erent pertur-
bations: (a): pÕ/�p and (b) pÕ+.

1.3D from the inlet. Each perturbation corresponds to an obstruction of 10, 20, 30 and 40% of the pipe
cross-section area, as sketched in the insets of figure 7.5. It has a strong e�ect locally, which can be
quantified through a sudden peak at x/D = 1.3 to 8 corresponding to a flow separation region. However,
downstream (x/D & 10) the pressure evolves exponentially as in the case without perturbation. Our
results indicate a systematic increase of �pÕ/p between the unperturbed flow and the perturbed cases.
It is in agreement with the experiments of [85] for Re = 180 000.

7.4.2.3 Pressure fluctuations as a function of Re

In figure 7.6, we present the variation of pressure fluctuations as function of Re for di�erent perturbation
cases. Here pÕ is an average of three points in the saturated region around x/D = 50. The figure 7.6(a)
clearly shows that the pÕ/�p decreases as a function of Re. The best fit is a power law with an exponent
around -0.13. The pressure fluctuation, pÕ, is normalised by flu2

· , as shown in figure 7.6(b) as a function
of Re· , where Re· is flu· /‹. One might observe that the data collapses, suggesting the fully developed
turbulent flow to be independent of the annular perturbation. The decrease in the pressure fluctuation
when compared to a turbulent boundary layer flow [83, 86, 87], might be due to the velocity overshoot
that is found in the inner region of turbulent pipe flow [14]. This velocity overshoot is absent in terms
of channel flow and turbulent boundary layer flow. The smooth curved surface of the pipe interior
contributes to the interchange of counter-rotating vortices towards the pipe core, strongly influencing
the flow structure in the inner region as well as in the core of the pipe flow.

Spectra have been measured before [88–93] where the focus was on sound production, acoustic
e�ects, compressible e�ects and vibroacoustic response of thin cylindrical shells.

7.4.3 Tuft flow visualisation
In order to further understand the flow in the inlet section, tuft flow visualisation was carried out and
images are presented in figure 7.7. One can see that the wool tuft oscillates as it is a flexible filaments
freely hanging in the flow. The tuft is inserted through a pressure tap. Away from the tuft holding
position, the tuft is stretched and it does not touch the wall. When the flow velocity is small, the
filaments inclines along the flow. Then, above a critical value of Re, the filaments exhibit oscillations.
It is observed that the amplitude of the oscillation are small in the inlet region and comparatively 20%
larger downstream. It is then assumed that the amplitude is proportional to the pressure fluctuation
and related to the formation of wall vortices arising in the inlet [15].
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Figure 7.7: Tuft visualisation in the streamwise plane without ring perturbation. The tuft is 50 cm
long (2.63D) for Re = 445 000. (a) Superposed view of the tuft filament, pinned at 0.65D from the
inlet. (b) View at 100D. The insets are snapshots of the tuft. Note the increase of the amplitude of
the flapping. Flow is from left to right.

7.5 Conclusions
The behaviour of pressure was studied in a developing turbulent pipe flow. Both the mean pressure
measurements and the pressure fluctuations were discussed in detail. It was observed that the pressure
fluctuations have an exponential growth along the pipe with the axial position. This evolution indicates
that the growth of the energy is faster than simple di�usion between the wall pressure fluctuations and
the mean flow. This agrees with the non-isotropic or wall turbulence view of pipe flow. Then the growth
saturates in the so-called developed turbulent region.

There, the root-mean-square values of the wall pressure normalised by the inner variables are found to
be decreasing as a function of Re. Finally, tuft visualisations were performed to confirm flow fluctuations
at di�erent positions along the pipe. The measurements showed that the amplitude of tuft oscillations
increases as the flow goes downstream suggesting wall vortices arising from the wall.
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Chapter 8

Conclusion

8.1 Conclusion
Expansion pipe flows have many industrial application, this thesis explores the numerical simulation
of two dimensional and three dimensional expansion pipe flows to understand the behaviour of finite-
amplitude perturbation. Initially a global stability and sensitivity analysis were carried out on a two
dimensional sudden expansion and gradual expansion, which showed that the first instability is a sym-
metry breaking bifurcation. Sensitivity analysis showed that the most sensitive region of expansion flow
lies in the expansion region and the close to the shear layer. This showed us that any perturbation close
to this section can have transient growth due to convective instability mechanism.

A three dimensional expansion pipe flow is simulated using a spectral element code with a finite
amplitude perturbation at the inlet. Initially at low Reynolds number the flow creates a linear asym-
metry growth of the recirculation region occurs. As the Reynolds number is increased, the recirculation
region starts oscillating. At Reynolds number greater than 1680, the recirculation region breaks to
form localised turbulence in the outlet section of the pipe. Above the transition Reynolds number a
route to the sub-critical turbulent flow is established, and remains unchanged if the small perturbation
is removed. It was found that both axisymmetric states and turbulent motion coexist over a range of
Reynolds number. This property of localised turbulent flow with laminar inlet profile forming localised
turbulence and decaying in the outlet section agrees with experiments. The localised turbulence does
not convect downstream but holds a stable axial position. Structure within the localised turbulence
is further studied using spatial correlations, which identifies fast and slow streaks that dominate the
coherent structures. The flow tends to be more active in the centre region than near to the walls.

Later, the tilt perturbation is replaced with a vortex perturbation that satisfies the continuity
boundary condition at the inlet. The behaviour of the flow due to the strength of the perturbation
is explored. For relatively small perturbation amplitude, a patch of turbulence in the outlet section
is observed to drift downstream, then decays upon the appearance of another patch of turbulence
upstream. The process repeats quasi-periodically or stochastically as the amplitude of the perturbation
strength is increased. Further, the turbulent patch that forms first appears via a low order azimuthal
mode resembling an optimal perturbation. The turbulent patch formation is di�erent from the pu�
splitting behaviour observed in uniform pipe flow, as here the new patches arise upstream of existing
turbulent patches. At large perturbation strength, the patch does not drift downstream, but holds a
stable spatial position forming localised turbulence. The structure within the localised turbulence is
further studied using proper orthogonal decomposition, which indicates that the first mode comprises
most of the energy and the flow is more active in the centre region than near the wall.

Applying vortex perturbation to straight pipe flow also triggers turbulence, velocity and pressure
fluctuations along the pipe are studied. Divergence of Navier-Stokes equations reveal that the pressure
fluctuations and the velocity fluctuations are strongly coupled. The simulations are aimed at studying
the statistics of the fluctuations along the stream wise direction and to understand the correlation
between the fluctuating components.

Since the study of velocity fluctuations in turbulent pipe flow are largely available, new experimen-
tal measurements from Cottbus Large Pipe Facility are presented. Mean pressure and the pressure
fluctuations growth were discussed in detail. It was observed that the pressure fluctuations have an
exponential growth along the pipe with the axial position.

The position of the pressure fluctuations saturation tends to be in agreement with the velocity
fluctuations in variance in streamwise direction. Growth of the pressure fluctuations saturates in the
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so-called developed turbulent region. The position of saturation tends to be in agreement with the
statistical invariance of the velocity fluctuations in streamwise direction. Applying tripping device
close to the inlet, shift the saturation point closer to the inlet section. Finally, tuft visualisations were
performed to confirm flow fluctuations at di�erent positions along the pipe. The measurements showed
that the amplitude of tuft oscillations increases as the flow goes downstream suggesting wall vortices
arising from the wall.

8.2 Future perspective
Certain question are still remain unanswered, which could be explored in the future for expansion pipe
flows. Even though the present study o�ers only a few insights, it opens up many other directions for
further research. . In case of a sudden expansion pipe flow, the localized turbulence patch has a length
of ¥ 5d, but experimental investigation of narrow diverging pipes have a turbulent patch that extends
all along the expansion section. Numerical simulation with slowly diverging angle could help us answer
this question. One another important factor to look for, is to check if these long turbulent patches can
split itself.

When the angle of divergence tends to zero, the expansion pipe flow becomes a straight pipe flow.
The stability of straight pipe flow lies at infinity, a clear understanding or relation between the two
di�erent pipe flow could be made. Is it possible to build a regime map between the straight pipe flow
and the expansion flow?

The vortex perturbation has only been tested for variation of strength, a complete study by varying
the Reynolds number is required to understand the real e�ect of it. Even the size of the vortex
perturbation along with its position at the inlet should be studied to clearly understand its e�ect. In
this thesis only expansion section of ratio 1:2 is explored, a detailed investigation of e�ect of expansion
ratio on the localised turbulence is also required.

The e�ect of geometric deformation of the inlet, is interesting to study, which could resemble very
close to the experiments. Even though proper orthogonal mode decomposition gives the most energetic
mode, it does not give any information about the dynamics. Application of Dynamic Mode Decompo-
sition on the localized turbulence could give more insight about the behaviour.

Experimental investigation for identification of developed turbulence has shown the statistical invari-
ance of fluctuations along the axial directions, a detailed numerical simulation by triggering turbulence
using vortex perturbation could help understand the wall fluctuations behaviour.
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Resumé

Les écoulements dans des tubes ou des conduites ou les tuyaux circulaires qui ont un diamètre d’entrée
petit et un diamètre de sortie plus grand sont appelés élargissements ou divergents. Ces écoulement
dans des élargissements ou divergents ont été peu étudiés du point de vue des simulation numériques.
Cette thèse présente des résultats de simulations numériques directes des équations de Navier-Stokes
pour ces écoulements dans des élargissement. La di�érence principale entre un écoulement dans une
conduite droite et un élargissement est l’apparition d’une zone de recirculation. EIle est forme lorsque
l’écoulement se détache du tube de petit diamètre et se rattache en aval à la paroi dans le tube de grand
diamètre. Cette zone de recirculation croît linéairement en fonction du nombre de Reynolds. Cette
croissance de la région de recirculation ne permet pas l’utilisation de conditions aux limites périodiques
pour les simulations numérique. Par conséquent, il est nécessaire d’utiliser un grand domaine de calcul
pour contenir la zone de recirculation lorsque le nombre de Reynolds est élevé, ce qui à son tour augmente
le coût du calcul. Ici, le nombre de Reynolds est défini par: Re = Ud/‹ avec U la vitesse d’entrée, d le
diamètre d’entrée et ‹ la viscosité cinématique.

Le nombre Reynolds critique de la transition vers la turbulence pour un écoulement dans un élar-
gissement prédit par l’analyse linéaire de stabilité (Re > 3477) est plus élevé que celui observé ex-
périmentalement. Ce décalage entre les expériences et la théorie linéaire de stabilité est due à la
présence d’imperfections dans le dispositif expérimental, qui fournit une amplitude de perturbation
finie à l’écoulement. Analyse de la croissance transitoire ont montré que le mécanisme d’instabilité con-
vective amplifient la perturbation qui pourrait provoquer un chemin plus court vers la turbulence. Les
expériences ont montré la formation de tâches de turbulence à proximité de la section d’élargissement qui
se relaminarise en aval. L’un des moyens e�caces pour déclencher une turbulence dans les simulations
numériques consiste à mimer les expériences, en ajoutant une perturbation d’amplitude finie.

Une étude de stabilité dans un élargissement bi-dimensionnel a été réalisée afin de comprendre la
sensibilité des perturbations et l’e�et de la taille du domaine. L’analyse globale de la stabilité est faite
pour identifier les paramètres les plus instables de la sensibilité aux valeurs propres et structurelle de
celui-ci. Tout d’abord, la bifurcation se produit à un Reynolds critique, Rec = 143, ce qui est une
bifurcation de rupture de symétrie et n’a aucun élément oscillant (bifurcation stationnaire). Cette
bifurcation provoque un gonflement l’écoulement sortant vers une paroi dans la section élargie. La
taille de la zone de recirculation augmente d’un côté et diminue sur l’autre côté. En calculant le mode
adjoint, le paramètre de sensibilité structurelle peut être calculée. On a constaté que la zone proche
de la section d’expansion est très sensible à toute perturbation due à la présence d’une couche de
cisaillement. De même, l’élargissement progressif avec un angle de 10¶ montre que l’apparition de la
région de recirculation dépend de l’angle de divergence. Pour ce divergent, la première bifurcation
se produit à Rec = 475, ce qui est similaire à celle de l’élargissement brusque, mais la région de la
sensibilité structurelle tend à occuper toute la zone d’élargissement.

Nous présentons des résultats obtenu pour des simulations numériques directes tridimensionnelles
pour un élargissement progressif ou divergent. Les simulations ont été réalisées avec un profil de vitesse
de type Hagen-Poiseuille à l’entrée, sans glissement à la paroi et une condition de contraint libre à la
sortie du domaine. Afin de déclencher la turbulence, une perturbation d’amplitude finie n’est ajoutée
à l’entrée au profil de vitesse de Hagen-Poiseuille. Si cette perturbation est pas appliquée à l’entrée,
l’écoulement reste laminaire et axi-symétrique. Une perturbation de type inclinaison est appliquée dans
le sens transversal. Pour un nombre de Reynolds petit, mais fini, la perturbation crée une croissance de
l’asymétrie de la zone de recirculation, qui est quantifiée en mesurant le barycentre de la distribution
de vitesse dans le sens de l’écoulement. L’asymétrie croît en racine carrée de Re, ceci confirme une
transition de type super-critique que l’on retrouve dans les expériences. Enfin, à une certaine valeur du
nombre de Reynolds, la région de recirculation commence à osciller et se brise pour devenir une tâche
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turbulente. Cette turbulence a tendance à se maintenir à une position axiale constante à proximité
de la section d’élargissement et se relaminarise lorsqu’elle se déplace vers l’aval. Un profil de vitesse
parabolique (de Hagen-Poiseuille) est récupéré en aval dans la section de sortie. La tâche de turbulence
localisée a tendance à occuper la même position axiale, même si sa taille augmente avec Re. En
supprimant la perturbation, la tâche de turbulence localisée s’auto-entretien indiquant ainsi l’existence
d’une gamme de Re correspondant à un régime hystérétique. La corrélation spatiale dans la tâche de
turbulence localisée révèle que presque toute l’énergie cinétique de l’écoulement est due à l’écoulement
du jet central. Ceci est di�érent du pu� turbulent observé dans la conduite de section constante.

L’application de la perturbation de type inclinaison à l’entrée crée une discontinuité et ne brise pas
la symétrie de l’écoulement. Afin de satisfaire l’équation de continuité, un perturbation de type vortex
a été sélectionné. La taille de la maille pour le domaine de calcul est également augmentée, afin de tenir
compte des petites structures à grande échelle qui sont rejetés en raison de la perturbation de rotation.
Le vortex est défini par sa taille et son amplitude à l’entrée en même temps que l’écoulement de Hagen-
Poiseuille. Afin d’étudier le comportement de cette perturbation de type vortex, la taille a été fixée et
l’amplitude de la perturbation est variée. A faible amplitude, le vortex se relaminarise avant d’atteindre
la zone d’élargissement. Lorsque l’amplitude augmente, l’écoulement devient unstable. En amont de
la tâche de turbulence localisée, on observe la formation d’une structure ondulatoire réminiscente de
la perturbation optimale calculée par d’autres auteurs. Ces tâches de turbulence apparaissent quasi
périodiquement et se relaminarisent lorsqu’elles se déplacent en aval. Pour une amplitude critique de
la perturbation de type vortex, position de la tâche de turbulence commence à osciller axiallement à
proximité de la zone d’élargissement et occupe finalement une position stable. Enfin, la décomposition
en modes propres est e�ectuée sur la tâche de turbulence localisée et montre que le mode le plus
énergique se trouve au centre de l’écoulement. Ces éléments ainsi que l’étude de corrélation spatiale de
la tâche de turbulence montre clairement que la turbulence localisée gagne son énergie du flux primaire
sortant du tuyau d’entrée.

Récemment, des simulations numériques directes de grande résolution et fort Re dans des tubes de
section constante ont montré que les perturbations d’amplitude finie s’amplifie de façon exponentielle
avant de déclencher des tâches turbulentes. Ainsi, nous présentons les résultats de l’étude à l’aide d’une
perturbation de type vortex dans un écoulement dans un tube (de section constante circulaire) droit.
Dans un premier temps, la turbulence est déclenchée en raison de la perturbation à l’entrée et la position
de la turbulence développée est mesurée. Ici, nous avons l’intention d’étudier le comportement des
fluctuations de la vitesse et de la pression le long de l’entrée du tuyau jusqu’à la position de turbulence
développée. Dans la littérature, des étude s expérimentales sur l’identification de la position axiale
pour l’établissement de la turbulence développée par les fluctuations de vitesse sont disponibles. A
l’aide de l’installation CoLaPipe (Cottbus Large Pipe), nous avons réalisé des expériences pour mesurer
la fluctuation pression à la paroi. On a constaté que la pression de paroi moyenne diminue à mesure que
l’écoulement se déplace vers l’aval. De plus, les fluctuations croîent de façon exponentielle et atteignent
un point de saturation. La position axiale de la saturation des fluctuations de pression sont en accord
avec la position de la turbulence développée mesurée à partir de la vitesse sur l’axe de la conduite. La
croissance exponentielle des fluctuations de pression a tendance à avoir un comportement auto-similaire
par rapport à Re. Des simulations numériques au nombre de Reynolds modéré sont e�ectués pour
vérifier ce comportement.
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Appendix A

Mathematical concepts

A.1 Approximation of partial di�erential equations

A.1.1 Strong form of partial di�erential equation
To explain the structure of weight residual method, consider a domain � with external boundary � and
assume that f : � æ R is a given function. The strong of the partial di�erential equation is given by:

Y
_]

_[

Lu ≠ f = 0 in �

u = u� on �
(A.1)

where L is a continuous positive-definite di�erential operator . consider the Poisson equation:
Y
____]

____[

≠ˆ2u

ˆx2 ≠ f = 0 in [0, 1]

u(0) = 0 u(0) = 1
(A.2)

A.1.2 Application of weight residual method
If a set of trial functions, denoted by U, is defined as U = {u | u œ H2(�), u = u� on �} and a set of
test functions, denoted by V, is defined as V = {v | v œ L2(�), v = 0 on �}, where H is the sobolev
space of functions equipped with Lp-norms. Then equation (A.1) can be written as:

Find uh œ Uh such that:
(Lu ≠ f, w) = 0 ’wœW (A.3)

Equation (A.3) form ensures that the projection of function Lu ≠ f on W to be zero. By using L2(�)
inner product (A.3) takes the form:

Find uh œ Uh such that: ⁄

�

(Lu ≠ f)wd� = 0 ’wœW (A.4)

A finite dimensional subspace Uh œ U with basis „i, (i = 0, ..., N) is chosen for discretization. The solu-
tion can be written as a truncated series using the trail function „i as basis function. The approximate
solution uh œ Uh is then written as:

uh =
Nÿ

i=0
ci„i (A.5)

An exact di�erential L operator or a discrete di�erential operator Lh can be used by the choice of the
space Uh. Substituting the a discrete di�erential operator in equation (A.1) gives:

Lhuh ≠ f = rh in � (A.6)
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where rh is called the residual of the equation. The expansion coe�cient ci are the unknowns that
are obtained by projecting the residual to zero using the L2-norm as: (rh, w)W = 0, ’wœW . Since the
approximate solution is an element of finite dimensional subspace of U, even the test function can be
reduced to finite dimensional subspace W h œ W . Âj is the basis function for the test function such that
W h = ÂN

i=0 and the discrete weight residual form reads:

Find uh œ Uh such that: !
Lhuh ≠ f, wh

"
W = 0 ’whœW h (A.7)

By applying L2-inner product, Find ci, (i = 0, ...N) such that:

Nÿ

i=0
ci

⁄

�

(Lh„i)Âjd� =
⁄

�

fÂjd� j = 0, ....., N (A.8)

Equation (A.8) can be written in matrix form as:

Lc = f (A.9)

with:

Lij =
⁄

�

(L„j)Âid� (A.10)

fi =
⁄

�

fÂid� (A.11)

where c = [c0, ..., cN ]T , f = [f0, ..., fN ]T . The coe�cient ci is obtained by solving the set of equations
(A.9). The approximate solution uh is then obtained by substituting ci in (A.5). The choice of test
function Âj determine the type of discretization method.

A.1.3 Weak formulation
By applying integration by part to weight residual form (A.3), a bilinear form a(u, w)w can be obtained
such that (A.1) can be written as:

Find u œ U such that :
a(u, w)w = (f, w)w ’wœW (A.12)

In case of Poisson equation (A.2):
a(u, w)w = (ˆu

ˆx
,

ˆw

ˆx
)w (A.13)

According to Lax-Milgram theorem, a unique solution u exists to the partial di�erential equation if
the bilinear form a(u, w) is coercive on W (positive definite) and bounded. For more details on the
theorem, please refer to Appendix of [94]. The reason to call it weak form is that the solution u which
was initially in H2(�), after application of variational formulation the inner product ( ˆu

ˆx , ˆw
ˆx ) requires

that both U µ H1(�) and W µ H1(�). The other advantage of the weak form is that the application
of boundary condition on the domain is easier.

A.1.4 Galerkin Methods
If the finite dimensional test function Uh and the train function W h are chosen to be the same and
applying the variational formulation (A.3), then the method is termed as Galerkin weight-residual
method. The approximation of the bilinear form is given by:

a(uh, wh)w = (f, wh)w ’whœW h (A.14)

Considering u as the exact solution of the (A.3) and Uh µ U

a(u, wh)U = (f, wh)U, ’whœUh (A.15)

Subtracting (A.14) from (A.15) gives:

(L(uh ≠ u), wh)U = 0, ’whœUh (A.16)
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Equation (A.16) can be interpreted key property that leads to error e = uh ≠ u between the solution of
the original problem and the Galerkin approximation is orthogonal to the finite dimensional subspace
Uh. This method leads to linear system of equation, which can be construed into set of matrix that
can be solved by computer program.

A.1.5 Numerical Integration
Integral formulas in the weak form are generally evaluated using simple trapezoidal rule. Higher order
methods, however, requires higher order integration rules. The method expands the solution over a
certain polynomial basis. Thus, they require the calculation of integral of polynomial of certain order.
The quadratures derived from the requirement to be exact for all the polynomials of certain order are
called Gauss quadratures. The general formula for numerical integration is given as:

b⁄

a

p(›)f(›)d› =
Nÿ

i=0
wif(›i) + RN (f) (A.17)

where p(›) is the weight function of the integration satisfying p(›) Ø 0 and
bs

a

p(›)d› > 0 and RN (f) is

the error of the quadrature. The Gauss numerical integration is formed in a such a way that to find
wi and ›i for a minimum error of the quadrature RN (f) © 0 for polynomials of the maximal possible
degree. Equation (A.17) cannot be used for polynomial of order higher than 2N + 1 as it contains only
2N +2 free parameters. Let Q0 = 1, Q1, ..., QN , ... is the system of orthogonal polynomials with respect
to the weight function p(›), i.e.:

b⁄

a

p(›)QiQjd› = ”ij, i, j = 0, ...., N, .... (A.18)

with ”ij being the Kronecker symbol. Note that for a given p(›) the system Qi is uniquely determined
by (A.18). In case of finite element methods and spectral methods p(x) = 1 and the corresponding
orthogonal system consists of the so-called Legendre polynomials. The reader is requested to refer [36,
37, 94] for other orthogonal polynomials that are used. Considering {›i}N

i=0 to be the zeros of QN+1,
then (A.18) defines unique sequence {wi}N

i=0 such that it is exact for all the polynomials of order N .
It can be proved [36, 94] that RN (f) © 0 for all the polynomials of order 2N + 1. Then the numerical
integration formula for any arbitrary polynomial �(›) = QN+1(›)q(›) + r(›), for q, r œ PN of order
2N + 1, where PN being the linear space consisting of all the polynomials of order less or equal to N
is given as:

b⁄

a

p(›)�(›)d› ©
Nÿ

i=0
wi�(›i) (A.19)

It can also be interpreted as, if (A.17) is exact for all the polynomials of order 2N + 1 than {›i}N
i=0

must be the zeros of QN+1 and {wi}N
i=0 is chosen by (A.19). In case of Legendre orthogonal weights

and nodes of the quadrature are given by:

xj = zeroes of LN+1 0 Æ j Æ N (A.20)

wj = 2
(1 ≠ x2

j )[LN+1(xj)2] j = 0, ..., N (A.21)

The above equation (A.21) is not valid for polynomial of order higher than 2N ≠1 since equation (A.17)
consist only of 2N free parameters. In order to take the boundary in to account and to be valid for
polynomial of order 2N ≠ 1, not exact for all polynomial 2N a quadrature can be constructed using the
above method. The resulting quadrature is termed as Gauss-Labatto quadrature and its corresponding
nodes and weights are given by

x0 = ≠1 xj = zeroes of LÕ
N xN = 1 Æ j Æ N ≠ 1 (A.22)

wj = 2
N(N + 1)

1
[LN (xj)]2 j = 0, ..., N (A.23)
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A.2 Spectral Methods

A.2.1 Fourier Spectral
In section (A.1.2), it was shown that the solution to a partial di�erential equation can expanded in a
series of expansion functions:

u =
Œÿ

i=0
ciÏi (A.24)

where ci being the expansion coe�cient and Ïi is the orthogonal set of trail function in case of spectral
methods. The orthogonality with respect to a weight function w is defined by:

1⁄

≠1

Ïi(x)Ïj(x)w(x)dx = ”ij (A.25)

Then the coe�cients ci in (A.24) are given by weighted inner product:

ci = 1
ÎÏÎ2

1⁄

≠1

u(x)Ïi(x)w(x)dx (A.26)

with:

ÎÏÎ2 =
1⁄

≠1

Ïi(x)Ïi(x)w(x)dx (A.27)

If Ï(x) = eikx, then the method is called as Fourier spectral method, as Ï(x) is orthogonal in the
interval (0, 2fi) with weight 1. If the solution u of the partial di�erential equation is infinitely smooth
and periodic together with all its derivatives then the kth coe�cient of the expansion decays faster
than any inverse power of k. This property of exponential decay of coe�cients in trial functions is
called spectral accuracy, in practice exponential decay of the coe�cients never happens but can be
made attainable by properly constructing the orthogonal set of functions. Another way of achieving
exponential decay is by choosing the eigenfunctions of singular Sturm-Liouville problems defined on
� = (≠1, 1) as the trial functions. The general equation of singular Sturm-Liouville problems is given
by:

≠ d

dx

3
a(x)dÏi

dx

4
+ b(x)Ïi = ⁄iw(x)Ïi, a > 0, b > 0 (A.28)

Jacobi polynomials like Chebyshev and Legendre polynomials are the solutions to (A.28). Using Jacobi
polynomials, which are orthogonal, it can shown that an exponential convergence can obtained for
infinitely smooth functions [36, 37].

lim
NæŒ

Î u ≠ P h
N u ÎU = 0 (A.29)

Then the finite expansion of the truncated series is given by:

P h
N u =

Nÿ

i=0
ciÏi (A.30)

In terms of spectral method, the convergence is achieved by increasing the order of the polynomial N .

A.2.2 Jacobi polynomials
If in the equation (A.28) we consider a(x) = (1 ≠ x2), b(x) = 0 and w(x) = 1 then the solutions are
Legendre polynomials, given by the recurrence relation:

Y
_]

_[

L0(x) = 1
L1(x) = x

Ln+1(x) = 2n+1
n+1 xLn(x) ≠ n

n+1 Ln≠1(x)
(A.31)

Figure A.1 shows the higher order polynomials that were created using a Python code (Appendix). The
advantage of Legendre polynomial over the other orthogonal polynomials is that the weight function is
w is given by w(x) = 1, which is easier to apply integration by parts in Galerkin formulations.
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Figure A.1: Legendre polynomials for N= 1,...5

A.2.3 Pseudospectral method
The spectral method is nothing but transformation from the physical space to spectral space. The
coe�cients ci in the spectral approximation depend on all the values of u(x) in the physical space and
can only be computed by numerical integration. In case of arbitrary functions u(x), this cannot be
done exactly. To overcome this problem a set of approximate coe�cients ĉi is obtained by using a an
interpolating polynomial �h

N u(x) of u(x) defined by a finite set of interpolation points. The equation
for interpolant is given as :

�h
N u =

Nÿ

i=0
ĉiÏi (A.32)

Then by applying the quadrature nodes and weight of Legendre polynomials, the discrete coe�cients
ĉi can be approximated :

ĉi = 1
ÎÏÎ2

Nÿ

k=0
u(xk)Ïi(xk)w(xk) (A.33)

with:

ÎÏÎ2 =
Nÿ

k=0
Ïi(xk)Ïi(xk)wk (A.34)

The spectral accuracy is retained even after the continuous transform is replaced by an interpolating
polynomial (A.32)of Gauss-quadrature points. In practice, however, the interpolation polynomials
are written as a linear combination of Lagrange interpolation polynomials through the Gauss-type
quadrature points:

�h
N u =

Nÿ

i=0
uiÏi (A.35)

in this way the coe�cients are just given by the value of the function in the interpolation points
ui = u(xi).

A.2.4 Legendre-Gauss-Lobatto-Lagrange interpolation polynomials
The basicfunction „i of Legendre-Gauss-Lobatto-Lagrange (LGL) interpolation polynomials then are
given by :

„i = ≠1
N(N + 1)LN (xi)

(1 ≠ x2)LÕ
N (x)

x ≠ xi
(A.36)

Figure A.2(a) shows basicfunction for N=2 LGL points and (b) for N = 6 points. In general using
LGL-points along with Legendre polynomial is preferred, than any other orthogonal polynomials and
interpolation points.
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A.3 Spectral Element Method
Spectral element method, combines the advantage of FEM, which can be used to discretize complex
geometries and that of the spectral methods to use higher order polynomial for faster convergence and
accuracy. It was proposed by Patera [34], Initially the doamin is divided into Nel non-overlapping
elements �e

� =
N

el€

e=1
�e (A.37)

Then the space of approximation Uh = {u œ U | u�
e

œ PN (�e)}, where PN (�e) denotes the space
of polynomials in �e of degree Æ N . Convergence is either obtained by increasing the degree of the
polynomials or by increasing the number of elements Nel. The basis functions Ïi are typically high-
order Lagrange interpolation polynomials through the local Gauss-Lobatto integration points defined
per element.
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Appendix B

NEK5000

This chapter is dedicated to guide a future researcher to launch a simulation using NEK5000 spectral
element code and explain the module that I have written during thesis. In order to launch a DNS of
straight pipe as described in chapter 6, five files are required. They are as follows:

• .rea - Contains the control parameters and the mesh coordinates

• .usr - Contains the sub-routine to process during simulation

• .map - Consist of the mapping of spectral elements

• SIZE - Contains the information of elements per processor and polynomials

• .batch - Contains information to launch the simulation on the cluster.

B.1 .rea file
The mesh coordinate and the control parameters for running a DNS is given in this file, it can be created
using genbox or pretex from Nek tools. It can also be created by Python or MATLAB. .map file is
generated along with the .rea file. Parameters inside the file is denoted by the letter p. It contains
a total of 118 parameters. p002 corresponds to the kinematic viscosity, a negative value represents
Reynolds number i.e Re = 1/‹. The number of time steps required to run the simulation is given
in parameter p011. The p01 determines the number of output file to be given. Finally, p021, p022
are used to fix tolerance level of the pressure and the velocity solvers. These are the most important
parameter, for more details the reader is requested to read NEK5000 user manuals.

****** PARAMETERS *****
2.60999990 NEKTON VERSION
3 DIMENSIONAL RUN

118 PARAMETERS FOLLOW
1.00000 p001 DENSITY

-100.000 p002 VISCOS
0.00000 p003
0.00000 p007 RHOCP
1.00000 p008 CONDUCT
0.00000 p009
0.00000 p010 FINTIME
100.000 p011 NSTEPS

-0.100000E-02 p012 DT
0.00000 p013 IOCOMM
0.00000 p014 IOTIME
20.0000 p015 IOSTEP
0.00000 p016 PSSOLVER: 0=default
0.100000E-05 p021 DIVERGENCE
0.100000E-06 p022 HELMHOLTZ
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Information of the computational mesh is given inside the .rea file , which can be found beneath
the parameters. In the example case given below, 32000 is the number of spectral elements, followed
by the Cartesian coordinate of each element.

5.00000 5.00000 -2.75000 -2.75000 XFAC,YFAC,XZERO,YZERO
**MESH DATA** 6 lines are X,Y,Z;X,Y,Z. Columns corners 1-4;5-8

32000 3 32000 NEL,NDIM,NELV
ELEMENT 1 [ 1A] GROUP 0

0.877686E+00 0.923880E+00 0.707107E+00 0.671752E+00
0.363549E+00 0.382683E+00 0.707107E+00 0.671752E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.877686E+00 0.923880E+00 0.707107E+00 0.671752E+00
0.363549E+00 0.382683E+00 0.707107E+00 0.671752E+00
0.375000E+00 0.375000E+00 0.375000E+00 0.375000E+00

To restart a simulation, the parameter PRESOLVE/RESTART OPTIONS must be changed from 0 to 1
and the name of the file should be mentioned below.

1 PRESOLVE/RESTART OPTIONS
restart0.f00001

7 INITIAL CONDITIONS

B.2 .usr file
The user file consist of the all the sub-routine, that can be modified to control the boundary condi-
tion, initial conditions, mesh deformation and processing of data. Sub-routine usrchk() is called at
every time step of the simulation, it can used to monitor the convergence as well as the total energy.
The example below is written to check constant mass flow at the inlet of the pipe and also to check
convergence of the simulation.

subroutine userchk
include ’SIZE’
include ’TOTAL’
integer e,eg,f
real chi, omega
real residu, H1, L2, SEMI, LINF
parameter (lt=lx1*ly1*lz1*lelt)
common /myoutflow/ d(lx1*ly1*lz1*lelt),w1(lx1*ly1*lz1*lelt)
common /myjunk/ vort(lt,3),w11(lt),w21(lt)

common /RESIDU_ARRAYS/ uo(lx1,ly1,lz1,lelt),
$ vo(lx1,ly1,lz1,lelt),
$ wo(lx1,ly1,lz1,lelt)

n = nx1*ny1*nz1*nelv
wmax = glmax(vz,n)

ubar = 0.
uarea = 0.
do e=1,nelv
do f=1,2*ndim

if (cbc(f,e,1).eq.’v ’) then
call surface_int(uint,aint,vz,e,f)
ubar = ubar + uint
uarea = uarea + aint

endif
enddo
enddo
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ubar = glsum(ubar ,1)
uarea = glsum(uarea,1)
if (uarea.gt.0) ubar = ubar/uarea

if (nid.eq.0) write(6,1) istep,time,uarea,ubar,wmax
1 format(i9,1p4e12.4,’ ubar’)

if(istep.EQ.0) then

call rzero(uo,n)
call rzero(vo,n)
call rzero(wo,n)

if(nid.EQ.0) open(unit=10,file=’residu.dat’)

elseif(istep.GE.1) then
call opsub2(uo,vo,wo,vx,vy,vz)
call normvc(H1,SEMI,L2,LINF,uo,vo,wo)
residu = L2/dt
call opcopy(uo,vo,wo,vx,vy,vz)

if(nid.EQ.0) write(10,*) istep, residu

if(residu.LT.1e-9) then

call outpost(vx,vy,vz,pr,t,’CONV_’)
call exitt

endif

elseif(istep.EQ.nsteps) then

close(10)
endif

The userbc sub-routine is shown below, it was written to impose a vortex perturbation at the inlet
of the pipe, along with parabolic velocity profile.

subroutine userbc (ix,iy,iz,iside,ieg)
include ’SIZE’
include ’TOTAL’
include ’NEKUSE’
integer e,eg

common /mygeom/ xmin,xmax,ymin,ymax

delta = 0.5
xd=x/delta
yd=y/delta
rr=xd*xd+yd*yd

scale = 2*(0.5/delta)**2 ! Ubar = 1 in inlet pipe (r=0.5)
xnot = 0
ynot = -0.3
R = 0.25
del = 0.5
pos = sqrt((xd-xnot)*(xd-xnot) + (yd-ynot)*(yd-ynot))
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if (pos.le.R/2) then
omega = 1

else if (pos.gt.R/2 .and. pos.le.R) then
omega = 2 * (R - pos)/R

else
omega = 0

endif

ux= del * omega * (-(yd-ynot))
uy= del * omega * (xd-xnot)
uz= scale*(1-rr)

temp=0.0

return
end

The setobj subroutine is return to find the wall node points inside the computational domain to
compute drag.

subroutine set_obj ! define objects for surface integrals

include ’SIZE’
include ’TOTAL’

common /mygeom/ xmin,xmax,ymin,ymax

integer e,f

c Define new objects

nobj = 1 ! for Periodic
iobj = 0
do ii=nhis+1,nhis+nobj

iobj = iobj+1
hcode(10,ii) = ’I’
hcode( 1,ii) = ’F’ ! ’F’
hcode( 2,ii) = ’F’ ! ’F’
hcode( 3,ii) = ’F’ ! ’F’
lochis(1,ii) = iobj

enddo
nhis = nhis + nobj

if (maxobj.lt.nobj) write(6,*) ’increase maxobj in SIZEu. rm *.o’
if (maxobj.lt.nobj) call exitt

nxyz = nx1*ny1*nz1*nelt

do e=1,nxyz
do f=1,2*ndim

z = zm1(e,1,1,1)
if (cbc(f,e,1).eq.’W ’ .and. z.gt.0) then

iobj = 1

if (iobj.gt.0) then
nmember(iobj) = nmember(iobj) + 1
mem = nmember(iobj)
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ieg = lglel(e)
object(iobj,mem,1) = ieg
object(iobj,mem,2) = f
write(6,1) iobj,mem,f,ieg,e,nid,’ OBJ’

1 format(6i9,a4)
endif

endif
enddo
enddo

return
end

B.3 SIZE file
Parameters like polynomial order, elements per processors, number of objects inside the computational
domain are controlled by this parameter.

parameter (ldim=3)
parameter (lx1=5,ly1=lx1,lz1=lx1,lelt=2000,lelv=lelt)
parameter (lxd=8,lyd=lxd,lzd=lxd)
parameter (lelx=1,lely=1,lelz=1)
parameter (lzl=3 + 2*(ldim-3))

ldim is the dimension of the Navier-Stokes equation. lx1 and lxd are the controls the polynomial
order of the approximation and polynomial order of the integration for convective terms respectively.
lelt determines the number element per processor.

B.4 launching a simulation

B.4.1 Step 1:
In order to launch a simulation, First change the parameters in the Pipe.rea, Pipe.usr and in the
SIZE file accordingly, Copy the makenek file from the neksvn installation folder.

B.4.2 Step 2:
A nek5000 file should be created. In the folder where Pipe.rea Pipe.usr Pipe.map and SIZE exists,
executing the following command:

>> Module load openmpi % only on CRIHAN
>> ./makenek Pipe

B.4.3 Step 3:
A SESSION.NAME file should be created for the code to access the working directory and the name of
the file. It can be created executing the command:

>> echo Pipe > SESSION.NAME
>> echo ‘pwd‘’/’ >> SESSION.NAME
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B.4.4 Step 4:
To launch the simulation on CRIHAN super computer facility, a batch file is created by the following
shell script:

#!/bin/bash
#
# Job name
# @ job_name = ompi.run
# Batch output file
# @ output = $(job_name).o$(jobid)
# Batch error file
# @ error = $(job_name).e$(jobid)

# Job type
# @ job_type = MPICH

# Job time (hh:mm:ss)
# @ wall_clock_limit = 24:00:00

# ---------------------
# MPI tasks number
# @ total_tasks = 1000

# MPI task maximum memory (mb, gb)
# @ data_limit = 3gb
# ----------------------
echo ‘pwd‘’/’ > CURREN_DIR

# Input files directory
# @ cri_initialdir = /home/2015005/kselva02/pipes/pipe_5000
# Output files directory
# @ cri_finaldir = /home/2015005/kselva02/pipes/pipe_5000

# @ notification = complete
# User e-mail address
# @ notify_user = kamal.selvam@etu.univ-lehavre.fr
# @ queue

cd $LOCAL_WORK_DIR
touch Pipe.rea
rm -f logfile
rm -f ioinfo
mv Pipe.log.1000 Pipe.log1.1000
mv Pipe.sch Pipe.sch1
# User commands

# MPI code execution (binary linked with Open MPI)
mpirun.Ompi /home/2015005/kselva02/pipes/pipe_5000/nek5000 > lpipe.log

# Move output files to $LOCAL_SPOOL_DIR
# (before automatic copy to cri_finaldir)
mv *.res *.dat *.log *.f* *.out $LOCAL_SPOOL_DIR

Time for execution of the simulation can be modified in wall_clock_limit and the number of
cores to run the simulation in total_tasks. The path of the folder should also be changed respectively.
Save the file as Pipe_run.batch
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B.4.5 Step 5:
Finally to launch the simulation on CRIHAN, the following command should be executed:

>> llsubmit Pipe_run.batch

To view the status of the simulation:

>> llq -u [username]

B.4.6 Step 6:
To visualise the simulated data, an open source data software called VIsit is used. To open a series of
output files, a metadata file is needed. A sample metadata file is shown below called Vis.nek5000

NEK5000
version: 1.0
filetemplate: pipe%01d.f%05d
firsttimestep: 1
numtimesteps: 20
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Abstract
This thesis deals with numerical and experimental investigations of flow through circular pipes with
smaller inlet and larger outlet diameter, also known as expansion pipes. The hydrodynamic expansion
pipe flow is globally stable for high Reynolds number. In order to numerically simulate these type of
flows, large computational domains that could accommodate the linearly growing symmetric recircula-
tion region is needed. This in turn increases the computational cost. Moreover, experimental studies of
expansion pipe flows indicate that the transition occurs at lower Reynolds number than predicted by
the linear stability theory. The reason for early transition is due to the presence of imperfections in the
experimental setup, that acts as a finite-amplitude perturbation of the flow. Three dimensional direct
numerical simulations of the Navier-Stokes equations with two di�erent types of perturbations (i) the
tilt and (ii) the vortex are investigated. First, the tilt perturbation, which applied at the inlet, creates an
asymmetric recirculation region and then breaks to form localised turbulence downstream the expansion
section. Second, the vortex perturbation, which satisfies the continuity boundary condition at the wall,
creates structures that looks like lower order azimuthal mode, resembles an optimally amplified pertur-
bation. It grows due to convective instability mechanism and then breaks to form localised turbulence.
Spatial correlation and the proper orthogonal decomposition reveal that this localised turbulence gains
it energy from the core flow coming out of the inlet pipe. Applying vortex perturbation to straight pipe
flow also triggers turbulence. Additional measurements and simulations on the development length of
the fully developed turbulence reveals that the fluctuations become statistically invariant after a critical
axial position. The pressure fluctuations grow exponentially and then saturates, indicating the region
of fully developed turbulent pipe flow.

Keywords: Transition to turbulence, pipe flow, expansion flow, localised turbulence, fully developed
turbulence, pressure measurements

Resumé
Cette thèse traite de recherches numériques et expérimentales sur l’écoulement à traves des conduites
circulaires ou des tubes avec une petite entrée et un diamètre de sortie plus grand, parfois appelées élar-
gissement ou divergents. L’écoulement dans un élargissement est globalement stable pour des nombres
de Reynolds élevés. Ainsi la simulation numérique de ce type d’écoulement nécessite de grands domaines
de calcul contenant la zone de recirculation, qui croît linéairement. En outre, les études expérimentales
dans les élargissements brusques indiquent que la transition se produit à des nombres de Reynolds
plus faibles que prévue par la théorie linéaire de stabilité. La raison pour cette transition précoce est
due à la présence d’imperfections dans le dispositif expérimental, qui agit comme une perturbation
d’amplitude finie de l’écoulement. Des simulations numériques directes des équations de Navier-Stokes
ont été réalisés avec deux types di�érents de perturbations (i) l’inclinations et (ii) le vortex. Tout
d’abord, la perturbation de type inclinaison, qui est appliqué à l’entrée, crée une zone de recirculation
asymétrique, puis se casse pour former une turbulence localisée en aval de l’expansion. Deuxièmement,
la perturbation de type vortex, qui satisfait la condition de continuité à la paroi, crée des structures
qui ressemblent à un mode azimutal d’ordre inférieur, déjà identifié comme une perturbation optimale
amplifiée. Il croît en raison de l’instabilité convective, puis forme une tâche de turbulence localisée.
Enfin, la corrélation spatiale et la décomposition en modes propres révèlent que cette turbulence lo-
calisée obtient son énergie de l’écoulement d’entrée. La perturbation vortex déclenche également la
turbulence dans des conduites de section constante. Des mesures et des simulations supplémentaires
sur la longueur de développement de la turbulence développée révèlent que les variations des propriétés
de l’écoulement (vitesse er pression) deviennent statistiquement invariantes après une position axiale
critique. Les fluctuations de pression se développent de façon exponentielle puis saturent, indiquant la
région d’écoulement turbulent pleinement développé.

Mots clés: Transition à la turbulence, écoulement dans une conduite, écoulement dans une élar-
gissement, turbulence localisée, turbulence développée, des mesures de pression


