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Résumé

La positivité gamma d’une suite combinatoire unifie à la fois l’unimodalité et la symétrie
de cette suite. Trouver des nouvelles familles d’objets dont les polynômes énumératives ont
une positivité gamma est un défi et un sujet important en combinatoire et géométrie. Il a
attiré beaucoup d’attention ces derniers temps en raison de la conjecture de Gal, qui affirme
que le γ-vecteur a des coefficients positifs pour n’importe quel polytope simple. Souvent, le
h-polynôme pour les polytopes simpliciaux de signification combinatoire peut être donné
en tant que fonction génératrice sur un ensemble d’objets combinatoires apparentés par
rapport à une statistique telle que le nombre des descentes, dont les polynômes énumératifs
sur les permutations sont des polynômes Eulériens.

Ce travail traite des propriétés gamma de plusieurs famille de polynômes énumératifs de
permutations comme les polynômes Eulériens et les polynômes de Narayana. Cette thèse
contient quatre chapitres. L’introduction donne quelques notions de base et des résultats
généraux sur le développement gamma de polynômes.

Chapitre 1 vise à généraliser la formule de Stembrige reliant les polynômes de pic et
les polynômes Eulériens en utilisant des statistiques circulaires et en employant la méth-
ode de la fraction continue. Cette approche était inspirée par le fait bien connu que les
polyômes Eulériens peuvent être interprétés à la fois comme des polynômes de descentes
et de l’excédance de permutations. Nous prouvons également des formules similaires pour
les polynômes d’excédance à permutations restreintes telles que les dérangements et les
permutations à motifs exclus.

Chapitre 2 traite des permutations qui évitent un motif unique de longueur trois. On
sait que ces permutations sont énumérées par les nombres de Catalan. Nous étudions
une sorte de (q, t)-nombres de Catalan définis par des fractions continues et fournissons
plusieurs nouvelles interprétations ainsi que leurs développements gamma correspondants
en utilisant des permutations évitant certains motifs. Nous donnons également une carac-
térisation complète de certains (−1)-phénomène pour chaque sous-ensemble de permuta-
tions évitant un motif de longueur trois, et discutons de leurs q-analogues.

Chapitre 3 étudie une classe de permutations introduite par Flajolet et Françon pour
donner une interprétation combinatoire des coefficients de Taylor des fonctions elliptiques
de Jacobi. En généralisant deux fractions continues de Rogers et de Stieltjes, nous donnons
des interprétations combinatoires des coefficients de Taylor correspondants ainsi que leurs
coefficients gamma.

Chapitre 4 est à étudier le tableau de différences associé aux polynômes énumérative
de permutations colorée par rapport aux nombres de points fixes. Ceci conduit à une
généralisation des résultats d’Eriksen–Freij–Wästlund et de Liese et Remmel sur les k-
excédances en permutations. De plus, en considérant les r-dérangements dans le contexte
du tableau de différences, nous obtenons un λ-analogue des nombres de r-dérangements
dus à Wang–Miska–Mezö.
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Mots-clés: statistiques de permutation, descente, excédance, pic, inversion, inver-
sion admissible, tableau des différences d’Euler, polynômes Eulériens, γ-positivité, (q, t)-
nombre de Catalan, permutations à motifs exclus, dérangement, permutation alternée,
(−1)-phénomène, action modifiée de Foata-Strehl, fraction continue, fonction elliptique de
Jacobi, double permutation.
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Abstract

The gamma positivity of a combinatorial sequence unifies both unimodality and sym-
metry. Finding new family of objects whose enumerative sequences have gamma positivity
is a challenge and important topic in recent years. It has received considerable attention in
recent times because of Gal’s conjecture, which asserts that the γ-vector has nonnegative
entries for any flag simple polytope. Often times, the h-polynomial for simplicial poly-
topes of combinatorial signification can be given as a generating function over a related
set of combinatorial objects with respect to some statistic like the descent numbers, whose
enumerative polynomials on permutations are Eulerian polynomials.

This work deals with the gamma properties of several enumerative polynomials of
permutation such as Eulerian polynomials and Narayana polynomials. This thesis contains
four chapters. The introduction gives some backgrounds and general results on gamma
expansion of polynomials.

Chapter 1 aims to generalize Stembrige’s formula relating peak polynomials and Eule-
rian polynomials by using their cycle analogues and using continued fraction method. This
approach was motivated by the well-known fact that Eulerian polynomials can be inter-
preted as both descent and excedance polynomials of permutations. We also prove similar
formulae for excedance polynomials of restricted permutations such as derangements and
permutations avoiding certain patterns.

Chapter 2 discusses permutations that avoid single pattern of length three. These
permutations are known to be enumerated by Catalan numbers. We define a kind of
(q, t)-Catalan numbers using continued fractions and provide several new interpretations
along with their corresponding gamma expansions using pattern avoiding permutations.
We also give a complete characterization of certain (−1)-phenomenon for each subset of
permutations avoiding pattern of length three, and discuss their q-analogues.

Chapter 3 studies a class of permutations introduced by Flajolet and Françon to give
a combinatorial interpretation for the Taylor coefficients of Jacobian elliptic functions. By
considering two more general continued fractions of Rogers and Stieltjes, we provide com-
binatorial interpretations of the corresponding Taylor coefficients as well as their gamma
coefficients.

Chapter 4 is to study the difference table associated with enumerative polynomials
of colored permutations with respect to the numbers of fixed points. This leads to a
generalization of Eriksen–Freij–Wästlund’s result and Liese and Remmel’s result on k-
excedances in permutations. Moreover, by considering r-derangements in the context of
the difference table, we obtain a λ-analogue of r-derangement numbers due to Wang–
Miska–Mezö.

Keywords: permutation statistic, descent, excedance, peak, inversion, admissible in-
version, Euler’s difference table, Eulerian polynomial, gamma-positivity, (q, t)-Catalan
number, permutation pattern avoidance, derangement, alternating permutation, (−1)-
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phenomenon, Modified Foata-Strehl action, continued fraction, Jacobi elliptic function,
doubled permutation.
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Introduction

Enumerative combinatorics is an area of combinatorics, whose basic problem is to count
the number of elements of a finite set. Determine the sequences (numbers or polynomials)
from counting some combinatorial objects and further study the properties (symmetric,
unimodal, etc) of the sequences are two most challenging and interesting topics, which
attract much attention of many mathematicians.

If A = {ak}nk=0 is a finite sequence of real numbers, then

• A is symmetric, if ai = an−i for 0 ≤ i ≤ n/2.

• A is unimodal, if 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · for some k ∈ N.

• A is log-concave, if a2j ≥ aj−1aj+1, for all 1 ≤ j ≤ n− 1.

• the generating polynomial, gA(x) := a0 + a1x+ · · ·+ anx
n, is called real rooted if all

its zeros are real.

The polynomial gA(x) =
∑n

k=0 akx
k is said to have a certain property if A = {ak}nk=0

has. An obvious example satisfying all of the properties above is the n-th row of Pascal’s
triangle {(nk)}nk=0:

(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
· · · · · · · · ·

The following theorem establishes the relation of above properties.

Theorem 0.1 ([14]). Let A = {ak}nk=0 be a finite sequence of nonnegative numbers.

(a) If gA(x) is real-rooted, then the sequence A′ := {ak/
(
n
k

)}nk=0 is log-concave.

(b) If A′ is log-concave, then so is A.

(c) If A is positive and log-concave, then A is unimodal.

The symmetric polynomials h(x) :=
∑n

k=0 axx
k ∈ R[x] with center of symmetry n/2

form a linear space, which has a basis

Bn := {xk(1 + x)n−2k}�n/2�k=0 .
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Indeed, the so-called Waring’s formula [42] reads:

xn + yn =

�n/2�∑
j=0

(−1)j
n

n− j

(
n− j

j

)
(xy)j(x+ y)n−2j .

Let γn,j = (−1)j n
n−j

(
n−j
j

)
, then

xn + yn =

�n/2�∑
j=0

γn,j (xy)
j(x+ y)n−2j .

Since aj = an−j (symmetry), we have

ajx
j + an−jx

n−j = ajx
j(1 + xn−2j)

= ajx
j
∑
k

γn−2j,kx
k(x+ 1)n−2j−2k

= aj
∑
k

γn−2j,kx
k+j(x+ 1)n−2(j+k).

If h(x) =
∑�n/2�

k=0 γkx
k(1+x)n−2k, we call {γk}n/2k=0 the γ-vector of h. Since the binomial

coefficients {(nk)}nk=0 for fixed n are unimodal, having a nonnegative γ-vector leads to
the unimodality of {ak}nk=0 directly. We say that h is γ-positive if the γ-vector of h is
nonnegative.

Let Γn
+ denotes the convex cone of polynomials that have nonnegative coefficients when

expanded in Bn. It is easy to see that

Γm
+ · Γn

+ := {fg : f ∈ Γm
+ and g ∈ Γn

+} ⊆ Γm+n
+ . (1)

Remark 0.1. Suppose that a polynomial h(x) =
∑n

k=0 akx
k ∈ R+[x] has a nonnegative

and symmetric coefficients with center of symmetry n/2, if all its zeros are real, then the
negative zeros can be paired into reciprocal pairs,

h(x) = Axk
�∏

i=1

(x+ θi)(x+ 1/θi) = Axk
�∏

i=1

((1 + x)2 + (θi + 1/θi − 2)x),

where A > 0. Since x and (1 + x)2 + (θi + 1/θi − 2)x are in Γ1
+ and Γ2

+, from (1) we see
that h(x) is γ-positive.

The classical Eulerian polynomials An(t) are defined by∑
k≥0

(k + 1)ntk =
An(t)

(1− t)n+1
(2)

for integers n ≥ 0. These polynomials were introduced by Euler [37] in the 18th century
when he looked for an expression for the alternating sum

∑
1≤i≤k i

n(−1)i. The research
about the Eulerian polynomials plays an important role in numerous arithmetical and
combinatorial studies [48, 51, 59]. For instance, from (2) we can derive the equivalent
definition of the Eulerian polynomials∑

n≥0

An(t)
zn

n!
=

(1− t)ez

ezt − tez
. (3)
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We give the first few values of Eulerian polynomials as follows,

An(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if n = 1,

1 + t, if n = 2,

1 + 4t+ t2, if n = 3,

1 + 11t+ 11t2 + t3, if n = 4,

1 + 26t+ 66t2 + 26t3 + t4, if n = 5.

(4)

A permutation of [n] := {1, 2, . . . , n} is a bijection π : [n] → [n]. Let Sn denote the set
of all permutations of [n]. A statistic on Sn is just a function st : Sn → N. The study of
permutations of sets and wide variety of interesting statistics of permutations is the richest
topic in enumerative combinatorics and its history can at least go back to more than a
century ago due to André [2] and MacMahon [76, 77].

A permutation π = π(1)π(2) · · ·π(n) ∈ Sn is an alternating (resp. falling alternating)
permutation if π(1) < π(2), π(2) > π(3), π(3) < π(4), etc. (resp. π(1) > π(2), π(2) <
π(3), π(3) > π(4), etc.). We denote by An the set of alternating permutations of length n.
The complement transformation

π �→ πc = (n+ 1− π(1))(n+ 1− π(2)) · · · (n+ 1− π(n))

on the permutations π ∈ An shows that the number of alternating permutations is equal
to the number of falling alternating permutations. We define the Euler numbers, denoted
by En, to be the number of alternating (resp. falling alternating) permutations on [n].
Note that the sequence is called Euler number because Euler is the first to consider the
generating function (6), see [100].

n En alternating permutations
1 1 1
2 1 12
3 2 132, 231
4 5 1324, 1423, 2314, 2413, 3412

Figure 1: The alternating permutations and Euler numbers for 1 ≤ n ≤ 4.

At the end of the 19th century, André [2] gave the following generation function of
alternating permutations in An.

Theorem 0.2. We have ∑
n≥0

En
xn

n!
= secx+ tanx.

Note that since secx (resp. tanx) is an even function (resp. odd function), from
Theorem 0.2,

secx = 1 +
x2

2!
+ 5

x4

4!
+ 61

x6

6!
+ 1385

x8

8!
+ · · ·+ E2n

x2n

(2n)!
+ · · · , (5)

tanx = x+ 2
x3

3!
+ 16

x5

5!
+ 272

x7

7!
+ · · ·+ E2n+1

x2n+1

(2n+ 1)!
+ · · · , (6)
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then the even (resp. odd) Euler numbers are also called secant (resp. tangent) numbers.
In the early 20th century MacMahon studied four fundamental permutation statistics,

the descent number, the excedance number, the inversion number and the major index.
For each permutation π = π(1)π(2) · · ·π(n) ∈ Sn, an integer i ∈ [n − 1] is a descent

(resp. excedance) of π if π(i) > π(i+ 1)(resp. π(i) > i). Denote DES(π) (resp. EXC(π))
the set of descents (resp. excedances) and denote des π(resp. exc π) the number of descents
(resp. excedances) of π. MacMahon [76, 77] showed that the descent number and excedance
number on permutations are equidistributed, i.e.,∑

π∈Sn

tdes π =
∑
π∈Sn

texc π.

S3 des exc inv maj

123 0 1 0 0
132 1 1 1 2
213 1 1 1 1
231 1 2 2 2
312 1 1 2 1
321 2 1 3 3

Figure 2: Four fundamental statistics for S3.

Riordan [87] later discovered the following combinatorial interpretation for the Eulerian
polynomials

An(t) =
∑
π∈Sn

tdes π. (7)

With the above interpretation, each statistic equidistributed with the descent number
(or excedance number) on permutations is usually called Eulerian statistic. The well
known Foata’s first fundamental transformation [46] provides the bijection to show the
equidistribution of the decent number and the excedance number on permutations (or
more generally on words).

An inversion of a permutation π ∈ Sn is a pair (π(i), π(j)) such that 1 ≤ i < j ≤ n and
π(i) > π(j). Denote INV(π) the set of inversions and inv π the number of the inversions
of π. The set Sn has a group structure by composition. The resulting group is called
the symmetric group, or the type A Coxeter group of order n. A well-known result in
the type A Coxeter group is that the length of an element equals its inversion number [8].
Rodrigues [88] showed the the distribution of the inversion statistic,∑

π∈Sn

qinv π = [n]q!,

where
[n]q! := [1]q[2]q · · · [n]q

and
[n]q := 1 + q + q2 + · · ·+ qn−1.

MacMahon [75, 76] defined the major index by

maj π =
∑

i∈DES(π)

i,
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and showed that the inversion number and the major index are identically distributed on
permutations, i.e., ∑

π∈Sn

qmaj π =
∑
π∈Sn

qinv π.

In memory of MacMahon, any permutation statistic equidistributed with the inversion
number (or major index) is called a Mahonian statistic. The well known Foata’s second
fundamental transformation [47] provides the bijection to prove the equidistribution of the
inversion number and the major index on permutations (or more generally on words).

With (4), the first few terms of Eulerian polynomials An(t) have the following expres-
sions,

An(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if n = 1,

1 + t, if n = 2,

(1 + t)2 + 2t, if n = 3,

(1 + t)3 + 8t(1 + t), if n = 4,

(1 + t)4 + 22t(1 + t)2 + 16t2, if n = 5.

Let π ∈ Sn and by convention π(0) = π(n + 1) = ∞, we call π(i) is a double descent
of π if π(i − 1) > π(i) > π(i + 1), denote by dd π the number of double descents of π.
A classical result due to Foata and Schützenberger [51] states that Eulerian polynomials
have the following γ-expansion.

Theorem 0.3 (Foata–Schützenberger).

An(t) =
∑
π∈Sn

tdes π =

�n−1
2

�∑
k=0

γAn,kt
k(1 + t)n−1−2k, (8)

where

γAn,k = #{π ∈ Sn : dd π = 0, des π = k}. (9)

Note that Foata and Strehl’s celebrated valley-hopping [52] was a neat combinatorial
argument that lead to (8) (see also [83, Chapter 4] for a nice exposition and the references
therein). Moreover, we can take t = −1 in (8) and recover the following combinatorial
interpretation of a classical identity involving the odd Euler number E2n+1 [37]:

∑
π∈Sn

(−1)des π =
∑
π∈Sn

(−1)exc π =

{
0 if n is even,
(−1)

n−1
2 En if n is odd.

(10)

Recall that a permutation σ ∈ Sn is a derangement if it has no fixed points, i.e., σ(i) 	= i
for all i ∈ [n]. Let Dn be the set of derangements in Sn. A parallel result for the even
Euler number E2n was first given by Roselle [90]:

∑
π∈D∗

n

(−1)des π =
∑
π∈Dn

(−1)exc π =

{
(−1)

n
2 En if n is even,

0 if n is odd,
(11)

where D∗
n denotes the set of coderangements of length n, see Definition 2.3.

Recall [6] it is common to consider permutations graphically. For a permutation π =
π(1) · · ·π(n), its plot consists of the the points (i, π(i)) in the Euclidean plane, for i =
1, . . . , n.
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Figure 3: The plot of permutation 314592687 with a 1423 pattern marked with black
dots

Given two permutations π ∈ Sn and p ∈ Sk, k ≤ n, we say that π contains the pattern
p if there exists a set of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that the subsequence
π(i1)π(i2) · · ·π(ik) of π is order-isomorphic to p. From the graphical perspective, π contains
p if erasing zero or more points from the plot of π and then rescaling the axes appropriately
leads to the plot of p. For example, 314592687 contains 1423 because the subsequence 4968
is order-isomorphic to 1423, see Figure 3.

If π does not contain p, we say that π avoids p. The set of permutations of length n that
avoid patterns p1, p2, · · · , pm is denoted as Sn(p1, p2, · · · , pm). For example, 314592687
avoids 3241 and 4231 since it has no subsequence ordered-isomorphic to 3241 and 4231.

Given two permutations σ and τ with lengths k and � respectively, define the direct
sum σ ⊕ τ the permutation of length k + � consisting of σ followed by a shifted copy of τ :

(σ ⊕ τ)(i) =

{
σ(i) if i � k,

k + τ(i− k) if k + 1 � i � k + �.

The skew sum σ � τ is defined analogously. See Figure 4 for the illustration.

Figure 4: The direct sum 2413⊕ 4231, the skew sum 2413� 4231.

The study of patterns in permutations and words has a long history [63]. MacMahon
[75] (resp. Knuth [64]) showed that the size of Sn(123) (resp. Sn(231)) is the Catalan
number. Simion and Schmidt [98] were the first to study the relationship among the
different permutation patterns and gave an bijection between Sn(132) and Sn(123). Over
the past decades many mathematicians have paid a lot of attention to pattern avoidance
in permutations.

Chapter 1

The integer i (2 ≤ i ≤ n − 1) is a peak of π = π(1)π(2) · · ·π(n) if π(i − 1) < π(i) >
π(i+ 1), denote peak′ π the number of peaks of π, The peak number played a key role in
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Stembridge’s theory of enriched P-partitions, see [103]. Define the peak polynomials

P peak
n (x) :=

∑
π∈Sn

xpeak
′ π.

The following equivalent form of (8) was first given by Stembridge [103, Remark 4.8],

An(t) =

(
1 + t

2

)n−1

P peak
n

(
4t

(1 + t)2

)
. (12)

Let
P (peak,des)
n (x, t) :=

∑
π∈Sn

xpeak πtdes π.

Recently Zhuang [112, Theorem 4.2] proved the following result, which reduces to (12)
when x = 1,

An(t) =

(
1 + xt

1 + x

)n−1

P (peak,des)
n

(
(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
. (13)

We prove several new formulas expressing polynomials counting permutations by vari-
ous excedance statistics in terms of Eulerian polynomials, which are analoguous to Zhuang’s
formulas. Our methods include permutations enumeration technics involving continued
fractions and cycle version of modified Foata-Strehl action. Moreover, we prove similar
formulae for restricted permutations such as derangements and permutations avoiding cer-
tain patterns.

The contents of this chapter are available online in arXiv:1908.01084, 1–41.

Chapter 2

Similar with the combinatorial interpretation of Eulerian polynomials, t-Catalan num-
bers (or Narayana polynomials) (cf. [83, Section 2.3]) are defined by

Nn(t) =
∑

π∈Sn(231)

tdes π =
n−1∑
k=0

1

k + 1

(
n− 1

k

)(
n

k

)
tk. (14)

There is an γ-expansion (cf. [83, Theorem 4.2]) for the t-Catalan numbers

Nn(t) :=
∑

π∈Sn(231)

tdes π =

�n−1
2

�∑
k=0

γNn,kt
k(1 + t)n−1−2k, (15)

where

γNn,k = #{π ∈ Sn(231) : dd π = 0, des π = k}. (16)

The Clarke-Steingrímsson-Zeng bijection [24] linking des based statistics with exc based
ones is crucial for our ensuing derivation. It is the composition, say Φ, of two bijections
between Sn and the set of certain weighted two colored Motzkin paths of length n. One
bijection is due to Françon and Viennot [54], the other is due to Foata and Zeilberger [53].
See [24] for a direct description of Φ and further details. The following equidistribution
result reveals further properties of Φ and is equivalent to [95, Theorem 8] modulo one
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application of the inverse map: π �→ π−1. For any n ≥ 1, there is a bijection Φ on Sn such
that

(des, fmax, 31-2, 2-31,MAD) π = (exc, fix, cros, nest, inv) Φ(π) for all π ∈ Sn.

Shin and Zeng [95] deduced the continued fraction expansion for the quint-variate gener-
ating function of Sn with respect to the above statistics. We first prove several new inter-
pretations of a kind of (q, t)-Catalan numbers along with their corresponding γ-expansions
using pattern avoiding permutations. Secondly, we give a complete characterization of cer-
tain (−1)-phenomenon for each subset of permutations avoiding a single pattern of length
three, and discuss their q-analogues utilizing the newly obtained q-γ-expansions. More-
over, we enumerate the alternating permutations avoiding simultaneously two patterns,
namely (2413, 3142) and (1342, 2431), of length four, and consider such (−1)-phenomenon
for these two subsets as well.

The contents of this chapter are published in Adv. in Appl. Math. 106 (2019),
57–95.

Chapter 3

The Jacobi elliptic function sn (z, x) is defined by the inverse of an elliptic integral, i.e.,

sn (z, x) = y iff z =

∫ y

0

dt√
(1− t2)(1− x2t2)

.

where x ∈ (0, 1) is a fixed modulus.
The other two Jacobi elliptic functions are defined by

cn (z, x) :=
√

1− sn 2(z, x),

dn (z, x) :=
√

1− x2sn 2(z, x).

A variety of problems related to Jacobi elliptic functions have been extensively studied
in mathematical physics, combinatorics and number theory ( [25, 26, 31, 32, 43, 44, 80,
89, 104, 106] ). When x = 0 or x = 1, the Jacobi elliptic functions degenerate into
trigonometric or hyperbolic functions, to be more precise,

sn (z, 0) = sin z, cn (z, 0) = cos z, dn (z, 0) = 1,

sn (z, 1) = tanh z, cn (z, 1) = dn (z, 1) = sech z.

Furthermore, the Jacobi elliptic functions relate the classic Euler numbers,

−isn (iz, 1) + cn (iz, 1) = tan z + sec z =
∞∑
n=0

En
zn

n!
,

where i =
√−1.

The three Jacobi elliptic functions also satisfy the following differential system (see [11]):⎧⎪⎪⎨⎪⎪⎩
d
dz

sn (z, x) = cn (z, x)dn (z, x),
d
dz

cn (z, x) = −sn (z, x)dn (z, x),
d
dz

dn (z, x) = −x2sn (z, x)cn (z, x),
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with the initial condition,

sn (0, x) = 0, cn (0, x) = 1, dn (0, x) = 1.

With the above relations, the Taylor series coefficients of the Jacobian elliptic function
are well studied by several authors, see [92, 31, 32]. The first few terms of Taylor series
expansions of these Jacobian elliptic functions are given as follows:

sn (z, x) = z − (1 + x2)
z3

3!
+ (1 + 14x2 + x4)

z5

5!
− (1 + 135x2 + 135x4 + x6) + · · · , (17)

cn (z, x) = 1− z2

2!
+ (1 + 4x2)

z4

4!
− (1 + 44x2 + 16x4)

z6

6!
+ · · · , (18)

dn (z, x) = 1− x2
z2

2!
+ x2(4 + x2)

z4

4!
− x2(16 + 44x2 + x4)

z6

6!
+ · · · . (19)

Rogers and Stieltjes [89, 104] considered the following Laplace-Borel transforms of sn
and cn :

S1(z, x) =

∫ ∞

0
e−tsn (zt, x)dt and C0(z, x) =

∫ ∞

0
e−tcn (zt, x)dt,

i.e., the series obtained from (17) and (18) by replacing zn/n! by zn, have the following
continued fractions forms,

S1(z, x) =
z

1 + (1 + x2)z2 − 1 · 22 · 3 · x2z4

1 + (1 + x2)32z2 − 3 · 42 · 5 · x2z4
1 + (1 + x2)52z2 − · · ·

,

C0(z, x) =
1

1 + z2 − 12 · 22 · x2z4

1 + (32 + 22x2)z2 − 32 · 42 · x2z4
1 + (52 + 42x2)z2 − · · ·

.

According to [44], the combinatorial interpretation of the coefficients of

(−1)n
z2n+1

(2n+ 1)!
(resp. (−1)n

z2n

(2n)!
)

in the Taylor series expansions of Jacobi elliptic functions sn (z, x)(resp. cn (z, x)) were
first considered by Schützenberger. Afterwards, a series of paper [106, 43, 31, 44] answered
the problem by providing interpretations via different methods. In particular, Flajolet-
Françon [44] gave an interpretation of the elliptic functions as generating functions of
doubled permutations , see Definition 3.1.

By generalizing the continued fraction expansions of Rogers and Stieltjes, we give the
combinatorial interpretation of the Taylor coefficients of the generalized Jacobian ellip-
tic functions. The second goal of this chapter is to study the expansion of the Taylor
coefficients of the Jacobian elliptic functions, which implies the symmetric and unimodal
property of the Taylor coefficients of the Jacobian elliptic functions. The main tools are the
combinatorial theory of continued fractions due to Flajolet and bijections due to Françon-
Viennot [54], Foata-Zeilberger [53] and Clarke-Steingrímsson-Zeng [24].
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Chapter 4

Let l be a fixed positive integer and Cl Sn be the wreath product of the cyclic group
Cl of order l by the symmetric group Sn of order n. The group Cl  Sn is also known
as the colored permutation group. In the case l = 1 (resp. l = 2) the wreath product
Cl  Sn is the symmetric group Sn (resp. the group of the signed permutations or the
Type B Coxeter group Bn). Various statistics on colored permutation groups have been
studied in the literature and several q-analogs of colored Eulerian polynomials have been
proposed [38, 39, 41, 49, 50, 70, 71, 102]. Euler [33] studied the difference table (gmn )0≤m≤n,
where the coefficients are defined by gnn = n! and

gmn = gm+1
n − gmn−1, (20)

for 0 ≤ m ≤ n− 1. The first terms of these coefficients for gmn are given in Tables 1.

n\m 0 1 2 3 4 5
0 1
1 0 1!
2 1 1 2!
3 2 3 4 3!
4 9 11 14 18 4!
5 44 53 64 78 96 5!

Table 1: Values of gmn for 0 ≤ m ≤ n ≤ 5.

Dumont and Randrianarivony [33] studied the combinatorial interpretation of gmn in
the symmetric group Sn, which consists of permutations of [n] = {1, . . . , n}. In particular,
they showed that the sequence {g0n}n≥0 is the number of derangements, i.e., the fixed point
free permutations in Sn. Wang–Miska–Mezö [107] introduced the r-derangement number,
which counts the derangements of [n] with the first r elements appear in distinct cycles.
In ordinary rook theory, rook placements can be associated with permutations of set [n],
see [61]. Briggs and Remmel [16] generalized the rook theory linked with the elements
of C�  Sn. Rakotondrajao [84] developed further combinatorial interpretations of gmn in
terms of k-successions, Liese and Remmel [69] used the rook theory to obtain a series of
recurrence formula for the number of permutations with m k-successions. The reader is
referred to [33, 84, 85, 40, 23, 35, 69, 20], where several generalizations of Euler’s difference
table with combinatorial meanings were studied.

We continue the research about Euler’s difference table. In 2008 Faliharimalala and
Zeng [40] studied the Euler’s difference table (gm�,n)0≤m≤n for C� Sn,{

gn�,n = �nn! (m = n);
gm�,n = gm+1

�,n − gm�,n−1 (0 ≤ m ≤ n− 1). (21)

In 2009 Eriksen–Freij–Wästlund [35] studied the following λ-Euler’s difference table
(gmn (λ))0≤m≤n, {

gnn(λ) = n! (m = n);
gmn (λ) = gm+1

n (λ) + (λ− 1)gmn−1(λ) (0 ≤ m ≤ n− 1),
(22)

and interpreted gmn (λ) when λ is a non-negative interger. Motivated by the above works,
we studied the combinatorial interpretation of λ-analogue of Euler’s difference table gm�,n(λ)
when λ is a variable. Using Briggs and Remmel’s rook theory for C� Sn, we interpret the
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coefficients of polynomial gm�,n(λ). Moreover, by relating with the sequences arising from
the difference table, we obtain λ-analogue of Wang–Miska–Mezö’s r-derangement numbers
for colored permutations.

The contents of this chapter are published in Electron. J. Combin. 25 (2018), no.
4, Paper 4.25, 27 pp.
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Chapter 1

Eulerian polynomials and excedance
statistics1

1.1 Introduction

The Eulerian polynomials An(t) can be defined through the continued fraction expan-
sion [104]∑

n≥0

An(t)z
n = 1/1− 1 · z/1− t · z/1− 2 · z/1− 2t · z/1− 3 · z/1− 3t · z/1− . . . (1.1)

For an n-permutation σ := σ(1)σ(2) · · ·σ(n) of the word 1 . . . n, an index i (1 ≤ i ≤ n−1) is
a descent (resp. excedance) of σ if σ(i) > σ(i+1) (resp. σ(i) > i). It is well-known [51, 83]
that

An(t) =
∑
σ∈Sn

tdes σ =
∑
σ∈Sn

texc σ, (1.2)

where Sn is the set of n-permutations and des σ (resp. exc σ) denotes the number of
descents (resp. excedances) of σ. The value σ(i) (2 ≤ i ≤ n − 1) is a peak of σ if
σ(i− 1) < σ(i) > σ(i+ 1) and the peak polynomials are defined by

P peak
n (x) :=

∑
σ∈Sn

xpeak
′ σ (1.3)

where peak′ σ denotes the number of peaks of σ. The peak polynomials are related to the
Eulerian polynomials by Stembridge’s identity [103, Remark 4.8], see also [13, 112],

An(t) =

(
1 + t

2

)n−1

P peak
n

(
4t

(1 + t)2

)
, (1.4)

which can be used to compute the peak polynomials. Obviously Eq. (1.4) is equivalent to
the so-called γ-expansion of Eulerian polynomials

An(t) =

�(n−1)/2�∑
k=0

22k+1−nγn,kt
k(1 + t)n−1−2k, (1.5)

1The contents of this chapter are available online in arXiv:1908.01084, 1–41, see [60].
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LH∗
n

Sn Sn

φFV φFZ

Φ

LHn

Sn+1 Sn+1

ψFV ψ

Ψ

Figure 1.1: Bijections Φ = φ−1
FZ ◦ φFV and ψ = ψFV ◦Ψ−1.

where γn,k is the number of n-permutations with k peaks. In the form of (1.5) it is not diffi-
cult to see that Stembridge’s formula (1.4) is actually equivalent to a formula of Foata and
Schüzenberger [51, Théorème 5.6] via Brändén’s modified Foata-Strehl action (cf. [13]).
In the last two decades, many people studied the refinements of Stembridge’s identity, see
Brändén [13], Petersen [82], Shin and Zeng [96, 97], Zhuang [112], Athanasiadis [3] and
the references therein. In particular, Zhuang [112] has proved several identities express-
ing polynomials counting permutations by various descent statistics in terms of Eulerian
polynomials, extending results of Stembridge, Petersen, and Brändén.

By contracting the continued fraction (1.1) starting from the first and second lines (see
Lemma 1.39), respectively, we derive the two J-type continued fraction formulae (cf. [43])

∑
n≥0

An+1(t)z
n =

1

1− (1 + t) · z − 1 · 2 · t · z2

1− 2(1 + t) · z − 2 · 3 · t · z2

1− 3(1 + t) · z − 3 · 4 · tz2
1− · · ·

(1.6)

and∑
n≥0

An(t)z
n =

1

1− (1 + 0 · t) · z − 12 · z2

1− (2 + 1 · t) · z − 22 · t · z2

1− (3 + 2 · t) · z − 32 · t · z2
1− · · ·

. (1.7)

In view of Flajolet’s combinatorial interpretation in terms of weighted Motzkin paths
for generic J-type continued fraction expansions [43], Françon-Viennot’s bijection ψFV

(resp. its restricted version φFV ) between permutations and Laguerre histories provides
a bijective proof of (1.6) (resp. (1.7)), while Foata-Zeilberger’s bijection φFZ [53] gives
a bijective proof of (1.7). More precisely, Françon-Viennot [54] set up a bijection (and
its restricted version) from permutations to Laguarre histories using linear statistics of
permutation, while Foata-Zeilberger’s bijection [53] uses cyclic statistics of permutations.
Clarke-Steingrímsson-Zeng [24] gave a direct bijection Φ on permutations converting statis-
tic des into exc on permutations, and linking the restricted Françon-Viennot’s bijection φFV

to Foata-Zeilberger bijection φFZ , see Figure 1. As a variation of Φ, Shin and Zeng [96]
constructed a bijection Ψ on permutations to derive a cycle version of linear statistics on
permutations, which are obtained via Françon-Viennot bijection ψFV . One of our main
results (cf. Theorem 1.6) shows that a direct description of the bijection ψ := ψFV ◦Ψ−1
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from Sn+1 to LHn is straightforward. It turns out that ψ is connected to a recent bijection
of Yan, Zhou and Lin [110], see Theorem 1.31 and Figure 1.4.

A permutation σ is called 231-avoiding permutation if there is no triple of indices
i < j < k such that σ(k) < σ(i) < σ(j). The Narayana polynomials are defined by

Nn(t) =
∑

σ∈Sn(231)

tdes σ,

where Sn(231) is the set of 231-avoiding permutations in Sn. It is well known that
Narayana polynomial is γ-positive and have the expansion [83, Chapter 4]:

Nn(t) =

n/2∑
k=0

γ̃n,jt
j(1 + t)n−1−2j , (1.8)

where γ̃n,j = |{σ ∈ Sn(231) : des(σ) = peak(σ) = j}|. As for Eulerian polynomials, by
contraction, from ∑

n≥0

Nn(t)z
n = 1/1− z/1− t · z/1− z/1− t · z/1− . . . (1.9)

we derive immediately the followoing continued fractions∑
n≥0

Nn+1(t)z
n =

1

1− (1 + t) · z − t · z2

1− (1 + t) · z − t · z2
1− · · ·

(1.10)

and ∑
n≥0

Nn(t)z
n =

1

1− z − t · z2

1− (1 + t) · z − t · z2
1− (1 + t) · z − · · ·

. (1.11)

Note that Nn(1) is the n-th Catalan number Cn = 1
n+1

(
2n
n

)
.

In this chapter we shall prove generalizations of Stembridge’s formula using excedance
statistics by further exploiting the continued fraction technique in [95, 96, 97]. Indeed,
since the observation (cf. [96]) that the gamma-positive formula of Eulerian polynomi-
als (1.5) is equal to the Jacobi-Rogers polynomial corresponding to (1.6), it becomes clear
that Flajolet-Viennot’s combinatorial theory of formal continued fractions could sheld more
lights on this topic. Our main tool is the combinatorial theory of continued fractions due
to Flajolet [43] and bijections due to Françon-Viennot, Foata-Zeilberger between permu-
tations and Laguarre histories, see [54, 53, 43, 24, 95]. As in [96] this approach uses both
linear and cycle statistics on permutations. There are several well-known q-Narayana poly-
nomials in the litterature; see [56] and the references therein. As a follow-up to [56], we
shall give more results on q-Narayana polynomials using pattern avoiding permutations.

The rest of this chapter is organized as follows: in Section 2 we introduce the work in
[95, 96, 97], and construct a bijection ψ, which is an analogue of Foata-Zeilberger’s bijection
from Sn+1 to LHn and related to a recent bijection of Yan-Zhou-Lin [110]; in Section 3
we present three classes of analogues of (1.4) using excedance statistics for permutations,
derangements and pattern avoiding permutations as well as a type B analogue for Eulerian
polynomials. In Section 4 we prove Theorems 1.15, 1.25, 1.31 and 1.32. using variations of
modified Foata-Strehl action on permutations or Laguerre histories. In Section 5 we prove
the remaining theorems by exploiting the continued fraction technique.
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CMn

Sn+1(213) Sn+1(321)

ψ̃FV ψ̃

Ψ̃

CM∗
n

Sn(231) Sn(321)

φ̃FV φ̃FZ

Φ̃

Figure 1.2: Bijections Ψ̃ = ψ̃−1 ◦ ψ̃FV and Φ̃ = φ̃−1
FZ ◦ φ̃FV

1.2 Background and preliminaries

1.2.1 Permutation statistics and two bijections

For σ = σ(1)σ(2) · · ·σ(n) ∈ Sn with convention 0–0, i.e., σ(0) = σ(n+ 1) = 0, a value
σ(i) (1 ≤ i ≤ n) is called

• a peak if σ(i− 1) < σ(i) and σ(i) > σ(i+ 1);

• a valley if σ(i− 1) > σ(i) and σ(i) < σ(i+ 1);

• a double ascent if σ(i− 1) < σ(i) and σ(i) < σ(i+ 1);

• a double descent if σ(i− 1) > σ(i) and σ(i) > σ(i+ 1).

The set of Peaks (resp. Valleys, double ascents, double descents) of σ is denoted by

Pkσ (resp. Valσ, Daσ, Ddσ).

Let peak σ (resp. valley σ, da σ, dd σ) be the number of peaks (resp. valleys, double
ascents, double descents) of σ. For i ∈ [n] := {1, . . . , n}, we introduce the following
statistics:

(31-2)i σ = #{j : 1 < j < i and σ(j) < σ(i) < σ(j − 1)}
(2-31)i σ = #{j : i < j < n and σ(j + 1) < σ(i) < σ(j)}
(2-13)i σ = #{j : i < j < n and σ(j) < σ(i) < σ(j + 1)}
(13-2)i σ = #{j : 1 < j < i and σ(j − 1) < σ(i) < σ(j)}

(1.12)

and define (see (1.55)):

(31-2) =
n∑

i=1

(31-2)i, (2-31) =
n∑

i=1

(2-31)i, (2-13) =
n∑

i=1

(2-13)i, (13-2) =
n∑

i=1

(13-2)i.

Now, we consider σ ∈ Sn as a bijection i �→ σ(i) for i ∈ [n], a value x = σ(i) is called

• a cyclic peak if i = σ−1(x) < x and x > σ(x);

• a cyclic valley if i = σ−1(x) > x and x < σ(x);

• a double excedance if i = σ−1(x) < x and x < σ(x);

• a double drop if i = σ−1(x) > x and x > σ(x);

• a fixed point if x = σ(x).
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We say that i ∈ [n − 1] is an ascent of σ if σ(i) < σ(i + 1) and that i ∈ [n] is a drop
of σ if σ(i) < i. Let Cpk (resp. Cval, Cda, Cdd, Fix, Drop) be the set of cyclic peaks
(resp. cyclic valleys, double excedances, double drops, fixed points, drops) and denote the
corresponding cardinality by cpk (resp. cvalley, cda, cdd, fix, drop). Moreover, define

wex σ = #{i : i ≤ σ(i)} = exc σ + fix σ (1.13)
crosi σ = #{j : j < i < σ(j) < σ(i) or σ(i) < σ(j) ≤ i < j}, (1.14)
nesti σ = #{j : j < i < σ(i) < σ(j) or σ(j) < σ(i) ≤ i < j}. (1.15)

Let cros 1 =
∑n

i=1 crosiand icr σ = cros σ−1. Define nest 2 =
∑n

i=1 nesti and ine σ =
nest σ−1.

Remark 1.1. Although we introduced ine above, it is really the same statistic as nest.
Namely, we have ine π = nest π for any permutation π. When fix π = 0 this should be
clear from definition. In general, it will suffice to observe that for any i such that π(i) = i,
there are as many j < i with π(j) > i as k > i with π(k) < i.

A pair of integers (i, j) is an inversion of σ ∈ Sn if i < j and σ(i) > σ(j), and σ(i)
(resp. σ(j)) is called inversion top (resp. bottom). Let inv σ be the inverion number of σ.

For σ ∈ Sn with convention 0–∞, i.e., σ(0) = 0 and σ(n + 1) = ∞, let Lpk (resp.
Lval, Lda, Ldd) be the set of peaks (resp. valleys, double ascents and double decents) and
denote the corresponding cardinality by lpeak (resp. lvalley, lda and ldd). For i ∈ [n],
the value σ(i) is called a left-to-right maximum (resp. right-to-left minimum) if σ(i) =
max {σ(1), σ(2), . . . , σ(i)} (resp. σ(i) = min {σ(i), . . . , σ(n − 1), σ(n)}). Similarly, we
define left-to-right minimum (resp. right-to-left maximum).

A double ascent σ(i) (i = 1, . . . , n) is called a foremaximum (resp. afterminimum) of
σ if it is at the same time a left-to-right maximum (resp. right-to-left minimum). Denote
the number of foremaxima (resp. afterminima) of σ by fmax σ (resp. amin σ). Note that
for the peak number peak′ in (1.3) we have following identities :

peak′ = valley = peak−1 and lvalley = lpeak . (1.16)

Now we recall two bijections Φ and Ψ due to Clarke et al. [24] and Shin-Zeng [96],
respectively.

1.2.2 The bijection Φ

Let σ = σ(1) . . . σ(n) ∈ Sn, an inversion top number (resp. inversion bottom number)
of a letter x := σ(i) in the word σ is the number of occurrences of inversions of form (i, j)
(resp (j, i)). A letter σ(i) is a descent top (resp. descent bottom) if σ(i) > σ(i + 1) (resp.
σ(i − 1) > σ(i)). Given a permutation σ, we first construct two biwords,

(
f
f ′
)

and
(
g
g′
)
,

where f (resp. g) is the subword of descent bottoms (resp. nondescent bottoms) in σ
ordered increasingly, and f ′ (resp. g′) is the permutation of descent tops (resp. nondescent
tops) in σ such that the inversion bottom (resp. top) number of each letter x := σ(i) in
f ′ (resp. g′) is (2-31)xσ, and then form the biword w =

(
f
f ′

g
g′

)
by concatenating f and

g, and f ′ and g′, respectively. Rearranging the columns of w, so that the bottom row is
in increasing order, we obtain the permutation τ = Φ(σ) as the top row of the rearranged
bi-word.

The following result can be found in [96, Theorem 12] and its proof.
1Our definition of cros corresponds to icr in [56].
2Our definition of nest corresponds to ine in [56].
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Lemma 1.1 (Shin-Zeng ). For σ ∈ Sn, we have

(2-31, 31-2, des, asc, lda− fmax, ldd, lvalley, lpeak, fmax)σ

=(nest, icr, drop, exc+fix, cda, cdd, cvalley, cpk, fix)Φ(σ) (1.17)

=(nest, cros, exc, drop+fix, cdd, cda, cvalley, cpk, fix)(Φ(σ))−1,

(Lval, Lpk, Lda, Ldd)σ = (Cval,Cpk,Cda∪Fix,Cdd)Φ(σ), (1.18)

(2-31)iσ = nestiΦ(σ) ∀i = 1, . . . , n. (1.19)

1.2.3 The bijection Ψ

Given a permutation σ ∈ Sn, let

σ̂ =

(
1 2 . . . n n+ 1

σ(1) + 1 σ(2) + 1 . . . σ(n) + 1 1

)
, (1.20)

and τ := Φ(σ̂) ∈ Sn+1. Since the last element of σ̂ is 1, the first element of τ should be
n+ 1. Define the bijection Ψ : Sn → Sn by

Ψ(σ) := τ(2) . . . τ(n+ 1) ∈ Sn. (1.21)

Example 1.2. If σ = 4 1 2 7 9 6 5 8 3, then σ̂ = 5 2 3 8 10 7 6 9 4 1, and reading
from left to right, we obtain the corresponding numbers (2-31)i : 1, 1, 1, 2, 0, 1, 1, 0, 0, 0 for
i = 5, 2, . . . , 1, and(

f

f ′

)
=

(
1

4

2

9

4

5

6

7

7

10

)
,

(
g

g′

)
=

(
3

2

5

3

8

8

9

6

10

1

)
.

Hence

w =

(
f

f ′
g

g′

)
=

(
1

4

2

9

4

5

6

7

7

10

3

2

5

3

8

8

9

6

10

1

)
→

(
10

1

3

2

5

3

1

4

4

5

9

6

6

7

8

8

2

9

7

10

)
.

Thus τ = Φ(σ̂) = 10 3 5 1 4 9 6 8 2 7, and Ψ(σ) = τ(2) . . . τ(10) = 3 5 1 4 9 6 8 2 7.

Lemma 1.3. For i ∈ [n], we have

(2-31)i+1σ̂ =

{
(2-13)iσ + 1 if i+ 1 ∈ Lval σ̂ ∪ Lda σ̂;

(2-13)iσ if i+ 1 ∈ Lpk σ̂ ∪ Ldd σ̂.

Proof. An increasing (resp. decreasing) run of σ is a maximum consecutive increasing
(resp. decreasing) subsequence R := σ(i)σ(i + 1) . . . σ(j) of σ such that σ(i − 1) > σ(i)
and σ(j) > σ(j+1) with 1 ≤ i ≤ j ≤ n. For any i ∈ [n], as σ̂(n+1) = 1, there is a unique
way to write

σ̂ =

{
w1(i+ 1)u1d2 . . . uk−1dk if i+ 1 ∈ Lvalσ̂ ∪ Ldaσ̂;

w1(i+ 1)d1u2d2 . . . ukdk if i+ 1 ∈ Lpkσ̂ ∪ Lddσ̂,

where ui (resp. di) is an increasing (resp. decreasing) run, and (i+ 1)u1 (resp. (i+ 1)d1)
is an increasing (resp. decreasing) sequence. We say that a run R covers i if i is bounded
by max(R) and min(R). It is not hard to show that

#{i ≥ 2 : ui covers i+ 1} =

{
#{i ≥ 2 : di covers i+ 1}+ 1 if i+ 1 ∈ Lvalσ̂ ∪ Ldaσ̂;

#{i ≥ 2 : di covers i+ 1} if i+ 1 ∈ Lpkσ̂ ∪ Lddσ̂.
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Since (2-13)i (resp. (2-31)i) is the number of increasing (resp. decreasing) runs covering i
to the right of i, we are done.

We use the aforementioned statistics to define variant boundary conditions. Given a
permutation σ ∈ Sn with convention ∞ − 0, the number of corresponding peaks, val-
leys, double ascents, and double descents of permutation σ ∈ Sn is denoted by rpeak σ,
rvalley σ, rda σ, rdd σ respectively. A double descent σ(i) is called a aftermaximum (resp.
foreminimum) of σ if it is at the same time a right-to-left maximum (resp. left-to-right
minimum). Denote the number of aftermaxima (resp. foreminimum) of σ by amax σ (resp.
fmin σ).

For σ = σ(1)σ(2) · · ·σ(n) ∈ Sn, we define two permutations σc and σr by σc(i) =
n+ 1− σ(i) and σr(i) = σ(n+ 1− i) for i ∈ [n]. It is not difficult to verify the following
properties

(2-31, 31-2, des, lda− fmax, ldd, lvalley, fmax) σ (1.22)
=(13-2, 2-13, asc, rdd− amax, rda, rvalley, amax) σr (1.23)
=(31-2, 2-31, des, lda− amin, ldd, lpeak, amin)σr·c (1.24)
=(2-13, 13-2, asc, rdd− fmin, rda, rvalley, fmin)σr·c·r, (1.25)

where σr·c = (σr)c and σr·c·r = (σr·c)r = (σr)c·r.

1.2.4 The star variation

For σ = σ(1) · · ·σ(n) ∈ Sn, we define its star compagnon σ∗ as a permutation of
{0, . . . , n} by

σ∗ =
(
0 1 2 . . . n
n σ(1)− 1 σ(2)− 1 . . . σ(n)− 1

)
. (1.26)

We define the following sets of cyclic star statistics for σ:

Cpk∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) < i > σ∗(i)}, (1.27)

Cval∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) > i < σ∗(i)}, (1.28)

Cda∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) < i < σ∗(i)}, (1.29)

Cdd∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) > i > σ∗(i)}, (1.30)
Fix∗ σ = {i ∈ [n− 1] : i = σ∗(i)}, (1.31)
Wex∗σ = {i ∈ [n− 1] : i ≤ σ∗(i)}(= exc σ), (1.32)
Drop∗σ = {i ∈ [n] : i > σ∗(i)}. (1.33)

The corresponding cardinalties are denoted by cpk∗, cvalley∗, cda∗, cdd∗, fix∗, wex∗ and
drop∗, respectively. By (1.27), (1.30) and (1.33), we have drop∗−1 = cdd∗+cpk∗ . Let
cyc σ be the number of cycles of σ and cyc∗ σ := cycσ∗. For example, for σ = 3762154, we
have σ∗ = 72651043, which has two cycles 1 → 2 → 6 → 4 → 1 and 7 → 3 → 5 → 0 → 7.
Thus cyc∗ σ = 2.

Theorem 1.4. For σ ∈ Sn, we have

(Val,Pk \ {n},Da,Dd)σ = (Cval∗,Cpk∗,Cda∗ ∪Fix∗,Cdd∗)Ψ(σ) (1.34)

and

((2-13)i, (31-2)i)σ = (nesti, crosi)Ψ(σ) for i ∈ [n]. (1.35)
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Proof. We first recall the construction of Ψ: if σ ∈ Sn, let σ̂ = (σ(1)+1) . . . (σ(n)+1)(1) ∈
Sn+1 and τ = Φ(σ̂) (with τ(1) = n + 1), then Ψ(σ) := τ(2) . . . τ(n + 1) ∈ Sn, i.e.
Ψ(σ)(i) = τ(i+ 1) for i ∈ [n]. As (Ψ(σ))∗(i) = Ψ(σ)(i)− 1, we have

τ(i+ 1) = (Ψ(σ))∗(i) + 1. (1.36)

For S ⊂ N, let S + 1 := {s ∈ S : s+ 1}. Given σ ∈ Sn, it is easy to check that

((Valσ + 1) ∪ {1},Pkσ + 1,Daσ + 1,Ddσ + 1) = (Lval, Lpk, Lda, Ldd)σ̂. (1.37)

For 2 ≤ i ≤ n, i ∈ Cval τ means i < τ(i) and i < τ−1(i), namely,

i < Ψ(σ)(i− 1) and i < (Ψ(σ))−1(i) + 1,

therefore,

i− 1 ∈ Cval∗(Ψ(σ)) ⇐⇒ i < Ψ(σ)(i− 1) and i− 1 < (Ψ(σ))−1(i).

Thus

(Cval∗Ψ(σ) + 1) ∪ {1} = CvalΦ(σ̂) (1.38)

In the same vein, we have

Cpk∗Ψ(σ) + 1 = CpkΦ(σ̂) \ {n+ 1}
Cda∗Ψ(σ) ∪ Fix∗Ψ(σ) + 1 = CdaΦ(σ̂) ∪ FixΦ(σ̂) (1.39)

Cdd∗Ψ(σ) + 1 = CddΦ(σ̂).

Comparing (1.37) and (1.38)-(1.39) and using (1.18) we derive (1.34).
As nesti τ = (2-31)iσ̂ by (1.19), to prove nestiΨ(σ) = (2-13)iσ, it is sufficient to show

that

(nest)i+1τ =

{
(nest)iΨ(σ) + 1 if i+ 1 ∈ Cval τ ∪ Cda τ ∪ Fix τ ;

(nest)iΨ(σ) if i+ 1 ∈ Cpk τ ∪ Cdd τ .
(1.40)

By (1.18), comparing (1.40) with Lemma 1.3, we are done. We omit the proof of
crosiΨ(σ) = (31-2)iσ for it is similar and left to the reader.

Now we are ready to prove (1.40). Note that the index nesti σ (i ∈ [n]) can be
characterized using σ∗ as follows:

nesti σ = #{j ∈ [n] : j < i ≤ σ∗(i) < σ∗(j) or σ∗(j) < σ∗(i) < i < j}. (1.41)

We consider three cases of i+ 1.

(i) if i+ 1 < τ(i+ 1), then i < (Ψ(σ))∗(i). By (1.36), we have

#{j ∈ [n] : j+1 < i+1 < τ(i+1) < τ(j+1)} = #{j ∈ [n] : j < i ≤ (Ψ(σ))∗(i) < (Ψ(σ))∗(j)},

#{j ∈ [n] : j+1 > i+1 ≥ τ(i+1) > τ(j+1)} = #{j ∈ [n] : j > i > (Ψ(σ))∗(i) > (Ψ(σ))∗(j)}.
Since τ(1) = n+ 1, we have nesti+1 τ = nestiΨ(σ) + 1 by using (1.15) (resp. (1.41)
) to compute nesti+1 τ (resp. nestiΨ(σ)).

(ii) if i+ 1 > τ(i+ 1), then i > (Ψ(σ))∗(i). Similarly we get nesti+1 τ = nestiΨ(σ) .



1.2. Background and preliminaries 21

•

• • •

•

• • •

•
si 0 0 0 1 0 1 1 0

Lr Lb Lb Lr

Figure 1.3: (s,p) = ((U,Lr,Lb, D, U,Lb,Lr, D), (0, 0, 0, 1, 0, 1, 1, 0)) ∈ LH8

(iii) if i+ 1 = τ(i+ 1), then i = (Ψ(σ))∗(i). For i ∈ Fix τ , it is easy to see that

#{j ∈ [n+ 1] : j > i > τ(j)} = #{j ∈ [n+ 1] : j < i < τ(j)}.

Then by (1.36), we have

#{j ∈ [n] : j + 1 > i+ 1 > τ(j + 1)}
=#{j ∈ [n] : j + 1 < i+ 1 < τ(j + 1)}+ 1 (as τ(1) = n+ 1)

=#{j ∈ [n] : j < i < (Ψ(σ))∗(j)}+ 1.

Then, we have nesti+1 τ = nestiΨ(σ) + 1 by using (1.15) (resp. (1.41) ) to compute
nesti+1 τ (resp. nestiΨ(σ)).

Since asc = valley+da, des = peak+dd−1, wex∗ = cvalley∗+cda∗+fix∗, drop∗−1 =
cdd∗+cpk∗, we get the following result in [96, Theorem 12].

Corollary 1.5 (Shin-Zeng). For σ ∈ Sn we have

(2-13, 31-2, des, asc, da, dd, valley)σ
= (nest, cros, drop∗−1,wex∗, cda∗+fix∗, cdd∗, cvalley∗)Ψ(σ). (1.42)

1.2.5 Laguerre histories as permutation encodings

A 2-Motzkin path of length n is a word s := s1 . . . sn on the alphabet {U,D,Lr,Lb}
such that |s1 . . . sn|U = [s1 . . . si|D and

hi := |s1 . . . si|U − [s1 . . . si|D ≥ 0 (i = 1, . . . , n), (1.43)

where |s1 . . . si|U is the number of letters U in the word s1 . . . si. By (1.10) we see that the
number of 2-Motzkin paths of length n is the Catalan number Cn+1.

A Laguerre history (resp. restricted Laguerre history) of length n is a pair (s,p),
where s is a 2-Motzkin path s1 . . . sn and p = (p1, . . . , pn) with 0 ≤ pi ≤ hi−1 (resp.
0 ≤ pi ≤ hi−1 − 1 if si = Lb or D) and h0 = 0. Let LHn (resp. LH∗

n) be the set of
Laguerre histories (resp. restricted Laguerre histories) of length n. There are several well-
known bijections between Sn and LH∗

n and LHn−1, see [5, 7, 28, 24, 29, 36] and references
therein.
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1.2.6 Françon-Viennot bijection

We recall a version of Françon and Viennot’s bijection ψFV : Sn+1 → LHn. Given
σ ∈ Sn+1, the Laguerre history (s,p) is defined as follows:

si =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U if i ∈ Valσ

D if i ∈ Pkσ

Lr if i ∈ Daσ

Lb if i ∈ Ddσ

(1.44)

and pi = (2-13)i σ for i = 1, . . . , n. Given σ = 4 1 2 7 9 6 5 8 3, see Figure 1 for ψFV (σ).

Theorem 1.6. The mapping ψ := ψFV ◦ Ψ−1 is a bijection from Sn+1 to LHn. If
ψ(σ) = (s,p) with σ ∈ Sn+1, then, for i = 1, . . . , n,

si =

⎧⎪⎨⎪⎩
U if i ∈ Cval∗ σ;
D if i ∈ Cpk∗ σ;
Lr (resp. Lb) if i ∈ Cda∗ σ ∪ Fix∗ σ (resp. Cdd∗ σ),

(1.45)

with pi = nesti σ.

Proof. This follows from Theorem 1.4 by comparing (1.45) with (1.44), see the commutative
diagram in Figure 1.1.

Corollary 1.7. The two sextuple statistics

(nest, cros, exc, cdd∗, cda∗+fix∗, cpk∗) and (2-13, 31-2, des, da, dd, peak−1)

are equidistributed on Sn.

Proof. For σ ∈ Sn, let τ = ψ−1 ◦ Θ ◦ ψFV (σ), where Θ is the involution on LHn defined
by

∀(s,p) ∈ LHn, Θ(s,p) =

⎧⎪⎨⎪⎩
(si, pi) if si = U or D

(Lr, pi) if si = Lb

(Lb, pi) if si = Lr.

(1.46)

It follows from (1.44), (1.45) and (1.46) that, ∀i ∈ [n],

(Val, Pk, Dd, Da, (2-13)i)σ = (Cval∗, Cpk∗, Cda∗ ∪Fix∗, Cdd∗, nesti)τ.

Let ψFV (σ) = (s,p) and ψ(τ) = (s′,p′). Then hi(s,p) = hi(s
′,p′) for all i ∈ [n]. It is not

difficult to prove by induction that

(2-13)iσ + (31-2)iσ = hi−1(s,p) (1.47)
nesti σ + crosi σ = hi−1(s

′,p′). (1.48)

Thus we have (31-2)iσ = crosi τ . As exc = wex∗ = cvalley∗+cda∗+fix∗, des = valley+dd,
cpk∗ = cvalley∗, and valley = peak−1, we complete the proof.
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For k ∈ [n] we define the two subsets of Sn:

DDn,k :={σ ∈ Sn : des(σ) = k, dd(σ) = 0} (1.49)
DE∗

n,k :={σ ∈ Sn : exc(σ) = k, cda∗(σ) + fix∗(σ) = 0}. (1.50)

As (cf. [95, Eq. (40)])

inv = exc+2nest+ cros, (1.51)

we derive the following result from Corollary 1.7.

Corollary 1.8. We have∑
σ∈DDn,k

q2(2-13)+(31-2) =
∑

σ∈DE∗
n,k

qinv(σ)−exc(σ). (1.52)

We recall two bijections φFZ and φFV from Sn to LH∗
n.

1.2.7 Restricted Françon-Viennot bijection

We recall a restricted version of Françon and Viennot’s bijection φFV : Sn → LH∗
n.

Given σ ∈ Sn, the Laguerre history (s,p) is defined as follows:

si =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U if i ∈ Lvalσ

D if i ∈ Lpkσ

Lr if i ∈ Ldaσ

Lb if i ∈ Lddσ

(1.53)

and pi = (2-31)i σ for i = 1, . . . , n.

1.2.8 Foata-Zeilberger bijection

This bijection φFZ encodes permutations using cyclic statistics. Given σ ∈ Sn, φFZ :
Sn → LH∗

n is for i = 1, . . . , n,

si =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U if i ∈ Cvalσ;

D if i ∈ Cpkσ;

Lr if i ∈ Cdaσ ∪ Fixσ;

Lb if i ∈ Cddσ,

(1.54)

with pi = nesti σ. By (1.18) and (1.19), we can build a comutative diagram, see the right
diagram of Figure 1.1.

1.2.9 Pattern avoidances and 2-Motzkin paths

Given two permutations σ ∈ Sn and τ ∈ Sk, we say that σ contains the pattern
τ if there exists a set of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that the subsequence
σ(i1)σ(i2) · · ·σ(ik) of σ is order-isomorphic to τ . Otherwise, σ is said to avoid τ . For exam-
ple, the permutation 15324 contains the pattern 321 and avoids the pattern 231. The set of
permutations of length n that avoid patterns τ1, τ2, · · · , τm is denoted as Sn(τ1, τ2, · · · , τm).
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Moreover we shall consider the so-called vincular patterns [4]. The number of occur-
rences of vincular patterns 31-2, 2-31, 2-13 and 13-2 in π ∈ Sn are defined (cf. (1.12))
by

(31-2) π = #{(i, j) : i+ 1 < j ≤ n and π(i+ 1) < π(j) < π(i)},
(2-31) π = #{(i, j) : j < i < n and π(i+ 1) < π(j) < π(i)},
(2-13) π = #{(i, j) : j < i < n and π(i) < π(j) < π(i+ 1)},
(13-2) π = #{(i, j) : i+ 1 < j ≤ n and π(i) < π(j) < π(i+ 1)}.

(1.55)

Similarly, we use Sn(31-2) to denote the set of permutations of length n that avoid the
vincular pattern 31-2, etc. In order to apply Laguerre history to count pattern-avoiding
permutations, we will need the following results in [56, Lemma 2.8 and 2.9].

Lemma 1.9. [56, Lemma 2.8] For any n ≥ 1, we have

Sn(2-13) = Sn(213), Sn(31-2) = Sn(312), (1.56)
Sn(13-2) = Sn(132), Sn(2-31) = Sn(231). (1.57)

Proof. By definition we have Sn(213) ⊂ Sn(2-13), Conversely, if π /∈ Sn(213), then π has
the pattern 213, that is, there exists i, j, k ∈ [n] such that k < i < j, π(i) < π(k) < π(j),
then there must be some i′, i ≤ i′ < j, and π(i′) < π(k) < π(i′ + 1), then π /∈ Sn(2-13).

The first equality in Lemma 1.9 was already observed by Claesson [22, Lemma 2]. The
proofs of the remaining three equalities are essentially the same and thus omitted.

Lemma 1.10. [56, Lemma 2.9]

(i) A permutation π ∈ Sn belongs to Sn(321) if and only if nestπ = 0

(ii) The mapping Φ has the property that Φ(Sn(231)) = Sn(321).

Proof. (i) If π ∈ Sn with pattern 321, there are indices i, j and k such that π(i) > π(j) >
π(k) with 1 ≤ i < j < k ≤ n. There are two cases to consider:

• if π(j) < j, then π(k) < π(j) < j < k form a nesting of π;

• if π(j) ≥ j, then i < j ≤ π(j) < π(i) form a nesting of π.

Therefore in either case, we have nest π > 0. Suppose that π ∈ Sn with nest π > 0. Then
there is a pair (i, j) ∈ [n]× [n] such that i < j ≤ π(j) < π(i) or π(j) < π(i) < i < j. There
are also two cases:

• if j ≤ π(j), as π(i) > j, there is a k > j such that π(k) < j, thus π(i) > π(j) > π(k);

• if π(j) < j, as π(j) < i, there is a k < i such that π(k) > i, thus π(k) > π(i) > π(j).

Therefore in either case, we have π 	∈ Sn(321).
(ii) By Lemmas 1.1 and 1.9 we have π ∈ Sn(231) if and only if ineΦ(π) = nestΦ(π) = 0.

Thus, it follows from (i) that π ∈ Sn(231) if and only if Φ(π) ∈ Sn(321).

We use CMn to denote the set of 2-Motzkin paths of length n and CM∗
n to denote its

subset that is composed of 2-Motzkin paths without Lb-step at level zero, i.e., if hi−1 = 0,
then si 	= Lb.

Let φ̃FV , φ̃FZ , ψ̃FV and ψ̃ be the restriction of φFV , φFZ , ψFV and ψ on the sets
Sn(231), Sn(321), Sn+1(213) and Sn+1(321), respectively.

Theorem 1.11. We have
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1. The mapping φ̃FV is a bijection from Sn(231) to CM∗
n.

2. The mapping φ̃FZ is a bijection from Sn(321) to CM∗
n.

3. The mapping ψ̃FV is a bijection from Sn+1(213) to CMn.

4. The mapping ψ̃ is a bijection from Sn+1(321) to CMn.

Proof. We just prove (1) and leave the others to the reader. If σ1, σ2 ∈ Sn(231), let
φFV (σi) = (si,pi) for i = 1, 2. By definition we have (2-31)σ1 = (2-31)σ2 = 0, which
implies that p1 = p2 = (0, 0, · · · , 0); as φFV is a bijection, we derive that s1 	= s2. Hence,
the mapping φ̃FV is an injection from Sn(231) to CM∗

n. Noticing that the generating
function

∑
n≥0 |CM∗

n|zn has the continued fraction expansion (1.11) with t = 1, we derive
that |Sn(231)| = |CM∗

n| = Cn. Thus, the mapping φ̃FV is a bijection.

Theorem 1.12. Let Φ̃ be the restriction of Φ on Sn(231). Then Φ̃ is a bijection from
Sn(231) to Sn(321). Moreover, for σ ∈ Sn(231), we have

(31-2, des, asc, lda− fmax, ldd, lvalley, lpeak, fmax)σ

=(icr, drop, exc+fix, cda, cdd, cvalley, cpk, fix) Φ̃(σ) (1.58)

=(cros, exc, drop+fix, cdd, cda, cvalley, cpk, fix)(Φ̃(σ))−1

Proof. For σ ∈ Sn(231), we have (2-31)i = 0 for i ∈ [n]. So the inversion bottom (resp.
top) number of each letter in f ′ (resp. g′) equals 0. Let τ = Φ̃(σ). By definition of Φ
(cf. Section 1.2.2) the letters in f ′ (resp. g′) are in increasing order. It is not hard to
verify that nesti(τ) = 0 for each i ∈ [n]. By Lemma 1.10, we derive that τ ∈ Sn(321).
For σ1, σ2 ∈ Sn(231), since Φ is a bijection, we have Φ̃(σ1) 	= Φ̃(σ2). And |Sn(231)| =
|Sn(321)| = Cn, so Φ̃ is a bijection from Sn(231) to Sn(321). Finally, the equidistribution
(1.58) follows from Lemma 1.1.

Theorem 1.13. Let Ψ̃ be the restriction of Ψ on Sn(213). Then Ψ̃ is a bijection from
Sn(213) to Sn(321).

Proof. If σ ∈ Sn(213), then (2-13)iσ = 0 for i ∈ [n]. Thus, (2-31)1σ̂ = 0, and by
Lemma 1.3, (2-31)i+1σ̂ = 1 if i+ 1 is a nondescent top and (2-31)i+1σ̂ = 0 otherwise. By
definition of Φ, we construct two biwords,

(
f
f ′
)

and
(
g
g′
)
, where f (resp. g) is the subword

of descent bottoms (resp. nondescent bottoms) in σ̂ ordered increasingly, and f ′ (resp. g′)
is the permutation of descent tops (resp. nondescent tops) in σ̂ such that the letters (resp.
except 1 at the end) in f ′ (resp. g′) are in increasing order.

Let τ = Φ(σ̂). It is not hard to verify that nesti(τ) = 1 if i ∈ g′ \ {1} and nesti(τ) = 0
otherwise. Thus, by (1.40), we have nest(Ψ̃(σ)) = 0. By Lemma 1.10, Ψ̃(σ) ∈ Sn(321).
For σ1, σ2 ∈ Sn(213), since Ψ is a bijection, we have Ψ̃(σ1) 	= Ψ̃(σ2). And |Sn(213)| =
|Sn(321)| = Cn, so Ψ̃ is a bijection from Sn(213) to Sn(321).

Example 1.14. If σ = 1 6 8 9 7 2 5 3 4, then σ̂ = 2 7 9 10 8 3 6 4 5 1, and reading
from left to right, we obtain the corresponding numbers (2-31)i : 1, 1, 1, 0, 0, 1, 0, 1, 0, 0 for
i = 2, 7, . . . , 1, and(

f

f ′

)
=

(
1

5

3

6

4

8

8

10

)
,

(
g

g′

)
=

(
2

2

5

3

6

4

7

7

9

9

10

1

)
.
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Hence

w =

(
f

f ′
g

g′

)
=

(
1

5

3

6

4

8

8

10

2

2

5

3

6

4

7

7

9

9

10

1

)
→

(
10

1

2

2

5

3

6

4

1

5

3

6

7

7

4

8

9

9

8

10

)
.

Thus τ = Φ(σ̂) = 10 2 5 6 1 3 7 4 9 8, and Ψ̃(σ) = τ(2) . . . τ(10) = 2 5 6 1 3 7 4 9 8.

Combining Theorems 1.11, 1.12, 1.13 and Figure 1.1 we obtain the diagrams in Fig-
ure 1.2.

1.3 Main results

For a finite set of permutations Ω and m statistics stat1, . . . , statm on Ω, we define the
generating polynomial

P (stat1,...,statm)(Ω; t1, . . . , tm) :=
∑
σ∈Ω

tstat1 σ
1 . . . tstatm σ

m . (1.59)

Theorem 1.15. For n ≥ 1,

P (nest,cros,exc,fix)(Sn; p, q, tq, r)

=

(
1 + xt

1 + x

)n

P (nest,cros,cpk,exc,fix)

(
Sn; p, q,

(1 + x)2t

(x+ t)(1 + xt)
,
q(x+ t)

1 + xt
,
(1 + x)r

1 + xt

)
, (1.60)

equivalently,

P (nest,cros,cpk,exc,fix)(Sn; p, q, x, qt, r)

=

(
1 + u

1 + uv

)n

P (nest,cros,exc,fix)

(
Sn; p, q, qv,

(1 + uv)r

1 + u

)
, (1.61)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Remark 1.2. Cooper et al. [27, Theorem 11] have recently proved the p = q = 1 case of
(1.60) by applying Sun and Wang’s CMFS action [105].

Applying Lemma 1.10 and Theorem 1.15 with p = 0, we obtain the following result.

Corollary 1.16. For n ≥ 1,

P (cros,exc,fix)(Sn(321); q, tq, r)

=

(
1 + xt

1 + x

)n

P (cros,cpk,exc,fix)

(
Sn(321); q,

(1 + x)2t

(x+ t)(1 + xt)
,
q(x+ t)

1 + xt
,
(1 + x)r

1 + xt

)
, (1.62)

equivalently,

P (cros,cpk,exc,fix)(Sn(321); q, x, qt, r)

=

(
1 + u

1 + uv

)n

P (cros,exc,fix)

(
Sn(321); q, qv,

(1 + uv)r

1 + u

)
, (1.63)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .
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We define the polynomial

An(p, q, t) :=
∑
σ∈Sn

pnest σqcros σtexc σ. (1.64)

The following is a generalization of Stembridge’s identity (1.4).

Theorem 1.17. For n ≥ 1, we have

An(p, q, t) =

(
1 + xt

1 + x

)n−1

P (nest,cros,cpk∗,exc)
(
Sn; p, q,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
, (1.65)

equivalently,

P (nest,cros,cpk∗,exc)(Sn; p, q, x, t) =

(
1 + u

1 + uv

)n−1

An(p, q, v), (1.66)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

By Corollary 1.7, we obtain the following linear generalization of Stembridge’s identity.

Corollary 1.18. For n ≥ 1, we have

An(p, q, t) =

(
1 + xt

1 + x

)n−1

P (2-13,31-2,peak−1,des)

(
Sn; p, q,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
,

(1.67)
equivalently,

P (2-13,31-2,peak−1,des)(Sn; p, q, x, t) =

(
1 + u

1 + uv

)n−1

An(p, q, v), (1.68)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Remark 1.3. When x = 1 or p = q = 1 we recover two special cases of (1.65) due to
Brändén’s result [13, Eq (5.1)] and Zhuang [112, Theorem 4.2], respectively.

With Lemma 1.9 and (1.16), let p = 0 (resp. q = 0) in Corollary 1.18, we obtain the
following corollary.

Corollary 1.19. For all positive integers n and each triple statistic

(τ, stat1, stat2) ∈{(213, 31-2, valley), (312, 2-13, valley)},
we have

P (stat1,des)(Sn(τ); q, t)

=

(
1 + xt

1 + x

)n−1

P (stat1,stat2,des)

(
Sn(τ); q,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
,

(1.69)

equivalently,

P (stat1,stat2,des)(Sn(τ); q, x, t) =

(
1 + u

1 + uv

)n−1

P (stat1,des)(Sn(τ); q, v), (1.70)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .
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Remark 1.4. When x = 1, (1.69) reduces to [56, Eqs. (1.5) and (1.6)]. When (τ, stat1, stat2) =
(213, 31-2, valley) and q = 1, (1.69) reduces to [112, Corollary 5.3].

From (1.51) and (1.67) we derive the following result, which is an extension of Shin
and Zeng [97, Theorem 1].

Corollary 1.20. For n ≥ 1,∑
σ∈Sn

qinv σ−exc σtexc σ

=

(
1 + xt

1 + x

)n−1

P (2-13,31-2,peak−1,des)

(
Sn; q

2, q,
(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
.

(1.71)

Define the cycle-refinement of the Eulerian polynomial An(t) by

A(cyc∗ − fix∗,exc)
n (q, t) :=

∑
σ∈Sn

q(cyc
∗ − fix∗)σtexc σ,

we obtain a cyclic analogue of Zhuang’s formula [112, Theorem 4.2].

Theorem 1.21. For n ≥ 1, we have

A(cyc∗ − fix∗,exc)
n (q, t)

=

(
1 + xt

1 + x

)n−1

P (cyc∗ − fix∗,cpk∗,exc)
(
Sn; q,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
,

(1.72)

equivalently,

P (cyc∗ − fix∗,cpk∗,exc)(Sn; q, x, t) =

(
1 + u

1 + uv

)n−1

An(q, v), (1.73)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Let p = q = 1 in (1.65) or q = 1 in (1.72), we get the following corollary.

Corollary 1.22. For n ≥ 1, we have

An(t) =

(
1 + xt

1 + x

)n−1

P (cpk∗,exc)
(
Sn;

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
, (1.74)

equivalently,

P (cpk∗,exc)(Sn;x, t) =

(
1 + u

1 + uv

)n−1

An(v), (1.75)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Recall that a permutation σ ∈ Sn is a derangement if it has no fixed points, i.e.,
σ(i) 	= i for all i ∈ [n]. Let

D(stat1,stat2)
n (q, t) :=

∑
σ∈Dn

qstat1 σtstat2 σ,

where Dn is the set of derangements in Sn.
Taking (p, q, tq, r) = (q, 1, t, 0) (resp. (p, q, tq, r) = (q2, q, tq, 0)) in Theorem 1.15 and

by (1.51), we obtain the following corollary.
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Corollary 1.23. For all positive integers n and for each statistic stat ∈ {nest, inv},

D(stat,exc)
n (q, t) =

(
1 + xt

1 + x

)n

P (stat,cpk,exc)

(
Dn; q,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
, (1.76)

equivalently,

P (stat,cpk,exc)(Dn; q, x, t) =

(
1 + u

1 + uv

)n

D(stat,exc)
n (q, v), (1.77)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

By (1.51) and Lemma 1.10, the r = 0 case of (1.62) yields the following result in parallel
with Corollary 1.23, which generalizes Lin’s identity [72, Theorem 1.4].

Corollary 1.24. For n ≥ 1,

P (inv,exc)(Dn(321); q, t) (1.78)

=

(
1 + xt

1 + x

)n

P (inv,cpk,exc)

(
Dn(321); q,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
,

equivalently,

P (inv,cpk,exc)(Dn(321); q, x, t) =

(
1 + u

1 + uv

)n

P (inv,exc)(Dn(321); q, v), (1.79)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Moreover, we have the the following formula.

Theorem 1.25. For all positive integers n,

D(cyc,exc)
n (q, t) =

(
1 + xt

1 + x

)n

P (cyc,cpk,exc)

(
Dn; q,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
, (1.80)

equivalently,

P (cyc,cpk,exc)(Dn; q, x, t) =

(
1 + u

1 + uv

)n

D(cyc,exc)
n (q, v), (1.81)

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Consider the generalized q-Narayana polynomials Nn(t, q, r) defined by

Nn(t, q, r) :=
∑

σ∈Sn(321)

texc σqinv σrfix σ. (1.82)

In particular, we have

Nn(t/q, q, 1) =
∑

σ∈Sn(321)

texc σqinv σ−exc σ (1.83)

Nn(t, q, t) =
∑

σ∈Sn(321)

twex σqinv σ. (1.84)

Fu et al. [56] gave more interpretations of Nn(t/q, q, 1) and Nn(t, q, t) in terms of n-
permutation patterns. We further prove the following interpretations by using the (n− 1)-
permutation patterns.
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Table 1.1: Five choices of (τ, stat1, stat2, stat3)
# τ stat1 stat2 stat3
1 321 exc inv fix
2 231 des des+31-2 fmax
3 132 asc asc+2-13 amax
4 312 des des+2-31 amin
5 213 asc asc+13-2 fmin

Theorem 1.26. For n ≥ 1, the following identities hold

Nn(t/q, q, 1) =
∑

σ∈Sn−1(τ)

tstat1 σqstat2 σ(1 + t)stat3 σ, (1.85)

Nn(t, q, t) = tn
∑

σ∈Sn−1(τ)

(q2/t)stat1 σqstat2 σ(1 + q2/t)stat3 σ, (1.86)

where five choices for the quadruples (τ, stat1, stat2, stat3) are listed in Table 1.1.

For 0 ≤ k ≤ n, define the sets

Sn,k(321) = {σ ∈ Sn(321) : exc σ = k, cda σ = 0}, (1.87)

Sn,k(213) = {σ ∈ Sn(213) : asc σ = k, rda σ = 0}, (1.88)

Sn,k(312) = {σ ∈ Sn(312) : des σ = k, ldd σ = 0}, (1.89)

Sn,k(132) = {σ ∈ Sn(132) : asc σ = k, rda σ = 0}, (1.90)

Sn,k(231) = {σ ∈ Sn(231) : des σ = k, ldd σ = 0}, (1.91)

and Sn(321) = ∪n
k=0Sn,k(321).

Theorem 1.27. For n ≥ 1, the following q-analogue of (1.8) holds

Nn(t/q, q, 1) =

�n−1
2

�∑
k=0

γn−1,k(q)t
k(1 + t)n−1−2k, (1.92)

where

γn−1,k(q) =
∑

π∈Sn−1,k(321)

qinv π (1.93)

=
∑

π∈Sn−1,k(231)

q(31-2) π+des π =
∑

π∈Sn−1,k(312)

q(2-31) π+des π (1.94)

=
∑

π∈Sn−1,k(132)

q(2-13) π+asc π =
∑

π∈Sn−1,k(213)

q(13-2) π+asc π. (1.95)

Theorem 1.28. For n ≥ 1, the following q-analogue of (1.8) holds

Nn(t, q, t) =

�n+1
2

�∑
k=1

γ̃n−1,k−1(q)t
k(1 + t/q)n+1−2k, (1.96)
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where

γ̃n−1,k−1(q) =
∑

π∈Sn−1,k(321)

qn−1+inv π−exc π (1.97)

=
∑

π∈Sn−1,k−1(231)

qn−1+(31-2) π =
∑

π∈Sn−1,k−1(312)

qn−1+(2-31) π (1.98)

=
∑

π∈Sn−1,k−1(132)

qn−1+(2-13) π =
∑

π∈Sn−1,k−1(213)

qn−1+(13-2) π. (1.99)

Remark 1.5. Other interpretations for γn−1,k(q) and γ̃n−1,k−1(q) are given in [73, 72, 56].

Let Bn be the set of permutations σ of {±1, . . . ,±n} with σ(−i) = −σ(i) for every
i ∈ [n]. As Steingrímsson [102, Definition 3], we define the excedance of σ ∈ Bn by i <f σ(i)
for i ∈ [n], in the friends order <f of {±1, . . . ,±n}:

1 <f −1 <f 2 <f −2 <f · · · <f n <f −n,

and denote the number of excedances of σ ∈ Bn by excB(σ). As Brenti [15] we say that
i ∈ [0, n− 1] is a B-descent of σ if σ(i) > σ(i+1) in the natural order < of {±1, . . . ,±n}:

−n < · · · < −2 < −1 < 1 < 2 < · · · < n,

where σ(0) = 0. Denote the number of B-descents of σ by desB(σ).
Define the sign type B Eulerian polynomial as follows,

Bn(y, t) =
∑
σ∈Bn

yneg σtexcB σ.

Theorem 1.29. We have
Bn(y, t) =

∑
σ∈Bn

yneg σtdesB σ. (1.100)

We can write the sign type B Eulerian polynomials in terms of cyclic peak analogue of
Eulerian polynomials P (cpk,exc)(Sn;x, t).

Theorem 1.30. For n ≥ 1,

Bn(y, t) = (1 + yt)nP (cpk,exc)

(
Sn;

(1 + y)2t

(y + t)(1 + yt)
,
y + t

1 + yt

)
, (1.101)

equivalently,

P (cpk,exc) (Sn; y, t) =
1

(1 + uv)n
Bn(u, v), (1.102)

where u =
1+t2−2yt−(1−t)

√
(1+t)2−4yt

2(1−y)t and v =
(1+t)2−2yt−(1+t)

√
(1+t)2−4yt

2yt .

Yan, Zhou and Lin [110] constructed a bijection ψY ZL : Sn+1 → Ln. The next result
shows that their bijection is actually almost equal to our ψ.

Theorem 1.31. The bijection ψY ZL is related to ψ as follows

Θ ◦ ψY ZL = ψ. (1.103)
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Sn+1

LHn LHn

ψY ZL ψ

Θ

Figure 1.4: Involution Θ connecting ψY ZL and ψ.

For k ∈ [n] we define the subset of Sn:

SDEn,k := {σ ∈ Sn : exc(σ) = k, scda = 0}. (1.104)

As exc = scval+ scda, we have

SDEn,k = {σ ∈ Sn : scval(σ) = k, scda(σ) = 0}.

Theorem 1.32. We have∑
σ∈SDEn,k

qinv(σ)−exc(σ) =
∑

σ∈DDn,k

q2(31-2)+(2-13). (1.105)

Comparing (1.104) and (1.50) we derive DE∗
n,k = SDEn,k and the following result of

Yan-Zhou-Lin [110].

Corollary 1.33 (Yan-Zhou-Lin).∑
σ∈SDEn,k

qinv(σ)−exc(σ) =
∑

σ∈DDn,k

q2(2-13)+(31-2). (1.106)

1.4 Proofs using group actions

1.4.1 Proof of Theorem 1.15

We use a variant of Foata-Zeilberger’s bijection φFZ : Sn → LH∗
n (cf. (1.54)). Given

σ ∈ Sn, we construct the restricted Laguerre history φ′
FZ : Sn → L∗

n as follows. For
i = 1, . . . , n,

si =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U if i ∈ Cvalσ;

D if i ∈ Cpkσ;

Lr if i ∈ Cddσ ∪ Fixσ;

Lb if i ∈ Cdaσ,

(1.107)

with pi = nesti σ.
First, define

L∗
r((s,p)) := {i ∈ [n] : si = Lr and pi = hi−1},

we give the following lemma.
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Lemma 1.34. If φ′
FZ(σ) = (s,p) ∈ L∗

n, we have

fix σ = #L∗
r((s,p)), (1.108)

exc σ = #Lb(s) + #U(s), (1.109)

nest σ =
n∑

i=1

pi, (1.110)

exc σ + cros σ + nest σ =
n∑

i=1

hi−1, (1.111)

Proof. From the construction of φ′
FZ , it is easy to see (1.109)-(1.110). Define

exci σ =

{
1, if σ(i) > i
0, if σ(i) ≤ i.

By inductions on i ∈ [n] we have

exci σ + nesti σ + crosi σ =

⎧⎪⎪⎨⎪⎪⎩
hi−1 + 1, if si = U ;
hi−1, if si = Lr;
hi−1 − 1, if si = D;
hi−1, if si = Lb,

which implies (1.111) immediately. For i ∈ Fix σ, we have exci σ + crosi σ = 0, then
pi = nesti σ = hi−1 and si = Lr. This proves (1.108).

Yan-Zhou-Lin [110] introduced a group action on LHn in the spirit of the Foata–Strehl
action on permutations. For (s,p) ∈ LHn and i ∈ [n], if si = Lb or Lr, then ϕi be
the mapping on LHn such that ϕi((s,p)) = ((s′,p)), where s′ is the 2-Motzkin path
obtained from s by changing the color of the i-th step, namely Lb ↔ Lr. Otherwise,
define ϕi((s,p)) = (s,p). We use another similar Z

n
2 -action on LH∗

n. Let i ∈ [n] and
(s,p) ∈ LH∗

n. Define the restricted group action ϕ′
i as follows,

ϕ′
i((s,p)) =

{
(s,p), if i ∈ L

∗
r((s,p))

ϕi((s,p)), otherwise.

For any subset S ⊆ [n] define the mapping ϕ′
S : LH∗

n → LH∗
n by ϕ′

S((s,p)) =
∏

i∈S ϕ′
i((s,p)).

Hence the group Z
n
2 acts on LH∗

n via the function ϕ′
S , which is a generalization of the group

action on CM∗
n in [72]. We see that for i ∈ [n], pi and hi−1 are invariant under the group

action. This action divides the set LH∗
n into disjoint orbits and each orbit has a unique

restricted Laguerre history which has all its level steps not included in L
∗
r((s,p)) labelled

by Lb. It is easy to see that the restricted group action preserves the elements in L
∗
r((s,p))

in each orbit of L∗
n.

For 0 ≤ j ≤ n and 1 ≤ k ≤ n, let us introduce

Rn,j = {(s,p) ∈ LH∗
n | #L

∗
r((s,p)) = j}.

Let Orb((s,p)) := {ϕ′
S((s,p)) | S ⊆ [n] } be the orbit of (s′,p) ∈ Rn,j under the restricted

group action. First we prove the following identity.

Lemma 1.35. For (s,p) ∈ Rn,j, we have

(1 + x)#Lb (s)+#Lr (s)−#L∗
r((s,p))

∑
(s′,p)∈Orb(s,p)

t#Lb (s
′)+#U (s′)

=
∑

(s′,p)∈Orb(s,p)

(1 + xt)#Lr (s′)−#L∗
r((s

′,p))(x+ t)#Lb (s
′)t#U (s′). (1.112)
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Proof. Let L(s) := {i ∈ [n] : si = Lb or Lr} \ L
∗
r((s,p)) with cardinality � = #Lr (s) +

#Lb (s) −#L
∗
r((s,p)). As #U (s′) = #U (s) for (s′,p) ∈ Orb(s,p), the above identity is

equivalent to
(1 + x)�

∑
S⊂L(s)

t|S| =
∑

S⊂L(s)

(1 + xt)|S|(x+ t)�−|S|,

namely, (1 + x)� · (1 + t)� = (1 + xt+ x+ t)�.

We are ready to prove Theorem 3.1. For (s,p) ∈ Rn,j , since 2#U (s) + #Lr (s) −
#L

∗
r((s,p)) + #Lb (s) + j = n and Eq. (1.112), we have( ∑

(s′,p)∈Orb(s,p)

t#Lb (s
′)+#U (s′)

)
(1 + x)n−j−2#U (s) (1.113)

=
∑

(s′,p)∈Orb(s,p)

(1 + xt)n−j−2#U (s′)−#Lb (s
′)(x+ t)#Lb (s

′)t#U (s′),

dividing both sides by (1 + x)n−j−2#U (s) for the above equation,

∑
(s′,p)∈Orb(s,p)

t#U (s′)+#Lb (s
′) =

∑
(s′, p)∈Orb(s,p)

(1 + xt)n−j−2#U (s′)−#Lb (s
′)(x+ t)#Lb (s

′)t#U (s′)

(1 + x)n−j−2#U (s)
.

Then, summing over all the orbits leads to the restricted Laguerre histories in Rn,j ,

∑
(s,p)∈Rn,j

t#Lb (s)+#U (s) =
∑

(s,p)∈Rn,j

(1 + xt)n−j−2#U (s)−#Lb (s)(x+ t)#Lb (s)t#U (s)

(1 + x)n−j−2#U (s)
.

Since
∑

i pi and
∑n

i=1 hi−1 is invariant under the group action,∑
(s,p)∈Rn,j

(
p
∑

i piq
∑n

i=1 hi−1−
∑

i pi

)
t#Lb (s)+#U (s)

=
∑

(s,p)∈Rn,j

(
p
∑

i piq
∑n

i=1 hi−1−
∑

i pi

)
(1 + xt)n−j−2#U (s)−#Lb (s)(x+ t)#Lb (s)t#U (s)

(1 + x)n−j−2#U (s)
.

(1.114)

Applying the bijection φ′−1
FZ to the above identity, with (1.108)–(1.111) we obtain∑

σ∈Sn,j

(
pnest σqcros σ+exc σ

)
texc σ

=
∑

σ∈Sn,j

(
pnest σqcros σ+exc σ

)
(1 + xt)n−j−exc σ−cpk σ(x+ t)exc σ−cpk σtcpk σ

(1 + x)n−j−2 cpk σ
, (1.115)

where Sn,j is the set of permutations in Sn with j fixed points. It is easy to see (1.115)
is equal to(

1 + xt

1 + x

)n−j

P (nest,cros,cpk,exc)

(
Sn,j ; p, q,

(1 + x)2t

(x+ t)(1 + xt)
,
q(x+ t)

1 + xt

)
,

which is (1.60). By using the substitution u = (1+x2)t
(x+t)(1+xt) and v = x+t

1+xt as in (1.60), we
obtain (1.61) immediately. We complete the proof.
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Remark 1.6. When x = 1 in (1.114), we have

∑
(s,p)∈Rn,j

(
p
∑

i piq
∑n

i=1 hi−1−
∑

i pi

)
t#Lb (s)+#U (s)

=
∑

(s,p)∈Rn,j

(
p
∑

i piq
∑n

i=1 hi−1−
∑

i pi

)
(1 + t)n−j−2#U (s)t#U (s)

2n−j−2#U (s)
. (1.116)

Define

On,k,j = {(s,p) ∈ Rn,j : s has no Lb-step and k U -steps}.

By the restricted group action on Rn,j , it is easy to see that there are 2n−j−2#U (s) elements
in each orbit, then we have

2n−2k−j |On,k,j | = |{(s,p) ∈ Rn,j : #U (s) = k}|.

Then (1.116) is equivalent to

∑
(s,p)∈Rn,j

(
p
∑

i piq
∑n

i=1 hi−1−
∑

i pi

)
t#Lb (s)+#U (s)

=
∑
k=0

∑
(s,p)∈On,j,k

(
p
∑

i piq
∑n

i=1 hi−1−
∑

i pi

)
(1 + t)n−j−2ktk, (1.117)

applying the bijection φ′−1
FZ to the above identity, with (1.108)–(1.111) we obtain Shin and

Zeng’s result, see [96, Theorem 8],∑
π∈Sn

(tq)exc πpnest πqcros πrfix π

=
n∑

j=0

rj
�(n−j)/2�∑

k=0

( ∑
σ∈Sn,k,j

pnest σqcros σ+exc σ

)
tk(1 + t)n−j−2k, (1.118)

where
Sn,k,j = {σ ∈ Sn, cpk σ = k, fix σ = j, cda σ = 0}.

Taking p = 0 in (1.118), by (1.51) and Lemma 1.10, we obtain the following result due to
Lin, see [72, Theorem 2.4],∑

σ∈Sn(321)

texc σqinv σrfix σ

=
∑
j=0

rj
�(n−j)/2�∑

k=0

⎛⎝ ∑
σ∈Sn,k,j(321)

qinv σ

⎞⎠ tk(1 + t)n−j−2k, (1.119)

where
Sn,k,j(321) := {σ ∈ Sn(321) : fix σ = j, exc σ = k, cda σ = 0}.



36 1. Eulerian polynomials and excedance statistics

1.4.2 Proof of Theorem 1.25

Let σ ∈ Sn with convention 0–∞. For any x ∈ [n], the x-factorization of σ reads
σ = w1w2xw3w4, where w2 (resp. w3) is the maximal contiguous subword immediately
to the left (resp. right) of x whose letters are all smaller than x. Following Foata and
Strehl [52] we define the action ϕx by

ϕx(σ) = w1w3xw2w4.

Note that if x is a double ascent (resp. double descent), then w3 = ∅ (resp. w2 = ∅),
and if x is a valley then w2 = w3 = ∅. For instance, if x = 5 and σ = 26471583 ∈ S7,
then w1 = 2647, w2 = 1, w3 = ∅ and w4 = 83. Thus ϕ5(σ) = 26475183. Clearly, ϕx is an
involution acting on Sn and it is not hard to see that ϕx and ϕy commute for all x, y ∈ [n].
Brändén [13] modified the map ϕx to be

ϕ′
x(σ) :=

{
ϕx(σ), if x is not a peak of σ;
σ, if x is a peak of σ.

It is clear that ϕ′
x is involution and commutes with ϕ′

y for x 	= y. For any subset S ⊆ [n]
we can then define the map ϕ′

S : Sn → Sn by

ϕ′
S(σ) =

∏
x∈S

ϕ′
x(σ).

Hence the group Z
n
2 acts on Sn via the functions ϕ′

S , S ⊆ [n]. This action is called the
Modified Foata–Strehl action (MFS-action for short).

The idea of MFS-action is due to Foata-Strehl, which was later considered by Shapiro,
Woan, and Getu [93]. Brändén [13] developed the MFS-action much more extensively and
Sun-Wang [105] gave a cyclic analogue of the MFS-action, whose results in [13, 74, 105]
motivated much of the work in this section.

Recall that the cycle structure of a permutation σ ∈ Sn can be written as a disjoint
union of its distinct cycles C1, C2, · · · , Ck. Define the standard cycle representation of σ
by

• writing the largest element of each cycle first,

• arranging the cycles in increasing order according to their largest elements.

Let σ = C1C2 · · ·Ck, define o(σ) to be the permutation obtained from σ by erasing
the parentheses of cycles. For example, for σ = 26471583 ∈ D8, the standard cycle
representation is (6512)(8347), then o(σ) = 65128347. In this section, we consider the
statistics of o(σ) with the convention 0–∞.

From the above map o : Sn �→ Sn, we observe the following result directly.

Lemma 1.36. For σ = C1C2 . . . Ck ∈ Dn, we have

cvalley σ = lvalley o(σ) = lpeak o(σ) = cpk σ, lda o(σ) = exc σ − cpk σ,

ldd o(σ) =n− cpk σ − exc σ, lda o(σ) + ldd o(σ) = n− 2 cpk σ.
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Proof. The first two identities are easily seen by the definitions of σ and o(σ). For the
third identity,

ldd o(σ) =n− (lpeak o(σ) + lvalley o(σ) + lda o(σ))

=n− (cpk σ + cvalley σ + exc σ − cvalley σ)

=n− cpk σ − exc σ.

With the second and third identities, the fourth identity can be derived directly.

For σ ∈ Dn, define the map τ cx : Dn �→ Dn by

τ cx(σ) := o−1(ϕ′
x(o(σ))).

It is easy to see that τ cx is involution and commutes with τ cy for x 	= y. For any subset
S ⊆ [n], we define τ cS : Dn → Dn by

τ cS(σ) =
∏
x∈S

τ cx(σ).

Sun and Wang [105] defined the group action of Zn
2 on Dn via the involutions τ cS over all

S ⊆ [n]; this group action is called the cyclic modified Foata–Strehl action, abbreviated
CMFS-action, see Figure 1.5 for an illustration. For any permutation σ ∈ Sn, let Orb(σ) =
{g(σ) : g ∈ Z

n
2} be the orbit of σ under the CMFS-action.

0

6

5

1

2

8

3

4

7

∞

Figure 1.5: CMFS-actions on (6512)(8347)

Remark 1.7. The CMFS-action divides the set Dn into disjoint orbits. Moreover, for
σ ∈ Dn, x is a double drop (resp. double excedance) of σ if and only if x is a double
excedance (resp.double drop) of τ cx(σ). A double drop (resp. double excedance) x of σ
remains a double drop (resp. double excedance) of τ cy(σ) for any y 	= x. Hence, there is
a unique permutation in each orbit which has no double excedance. Let σ̌ be this unique
element in Orb(σ), and for any other σ′ ∈ Orb(σ), it can be obtained from σ̌ by repeatedly
applying τ cx for some double drop x of σ̌. Each time this happens, exc increases by 1 and
cdd decreases by 1. Thus by Lemma 1.36, we have∑

σ∈Orb σ

texc σ = texc σ̌(1 + t)cdd σ̌ = tcpk σ̌(1 + t)n−2 cpk σ̌.

We obtain gamma expansion of derangement polynomials immediately by summing over
all the orbits that form Dn.
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For any Π ⊆ Sn let

A(exc,cyc)(Π;w, t) :=
∑
σ∈Π

wcyc σtexc σ.

The set Π is invariant under the CMFS-action if τ cS(σ) ∈ Π for any σ ∈ Π and any S ⊆ [n].
Then we will give a generalized version of Theorem 1.25.

Theorem 1.37. If Π ⊆ Dn is invariant under the CMFS-action, then

A(cyc,exc)(Π;w, t) =

(
1 + xt

1 + x

)n

P (cyc,cpk,exc)

(
Π;w,

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt

)
, (1.120)

equivalently,

P (cyc,cpk,exc)(Π;x, t, w) =

(
1 + u

1 + uv

)n+1

A(cyc,exc)(Π;w, v),

where u =
1+t2−2xt−(1−t)

√
(1+t)2−4xt

2(1−x)t and v =
(1+t)2−2xt−(1+t)

√
(1+t)2−4xt

2xt .

Let σ be a derangement of [n]. First we prove the following identity.

Lemma 1.38. We have

(1 + x)cda σ+cdd σ
∑

σ′∈Orb(σ)

texc σ′
=

∑
σ′∈Orb(σ)

(1 + xt)cddσ′
(x+ t)cdaσ

′
tcvalley σ′

. (1.121)

Proof. Let J(σ) := {i ∈ [n] : σ(i) is a double excedance or double drop} be the set of
indices of double excedances and double drops of σ with cardinality j = cda σ+cdd σ. As
exc σ′ = cda σ′ + cvalley σ′ and cvalley σ′ = cvalley σ, the above identity is equivalent to

(1 + x)j
∑

S⊂J(σ)

t|S| =
∑

S⊂J(σ)

(1 + xt)|S|(x+ t)j−|S|,

namely, (1 + x)j · (1 + t)j = (1 + xt+ x+ t)j .

We are ready to prove the Theorem 1.37. With Lemma 1.36 and Eq. (1.121), we have( ∑
σ′∈Orb(σ)

texc σ′)
(1+x)n−2 cpk σ′

=
∑

σ′∈Orb(σ)

(1+xt)n−exc σ′−cpk σ′
(x+ t)exc σ′−cpk σ′

tcpk σ′
,

dividing both sides by (1 + x)n−2 cpk σ′ ,

∑
σ′∈Orb(σ)

texc σ′
=

∑
σ′∈Orb(σ)

(1 + xt)n−exc σ′−cpk σ′
(x+ t)exc σ′−cpk σ′

tcpk σ′

(1 + x)n−2 cpk σ′ .

Then, summing over all the orbits leads to the permutations in Π,

∑
σ∈Π

texc σ =
∑
σ∈Π

(1 + xt)n−exc σ−cpk σ(x+ t)exc σ−cpk σtcpk σ

(1 + x)n−2 cpk σ
,

For σ′ ∈ Orb(σ), first we have cyc(σ′) = cyc(σ). From the definition of o(σ), we have
cyc(σ) is equal to the number of left-to-right maximum of o(σ). It is easy to see that the
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number of left-to-right maximum is invariant under MFS-action. Thus we have cyc(σ′) is
invariant for σ′ = Orb(σ).

Then we have∑
σ∈Π

texc σwcyc σ =
∑
σ∈Π

(1 + xt)n−exc σ−cpk σ(x+ t)exc σ−cpk σtcpk σ

(1 + x)n−2 cpk σ
wcyc σ,

=

(
1 + xt

1 + x

)n

P (cpk,exc,cyc)

(
Π;

(1 + x)2t

(x+ t)(1 + xt)
,
x+ t

1 + xt
, w

)
.

We complete the proof.

Remark 1.8. Recently, using the joint distribution of the cyclic valley number and ex-
cedance number statistics Cooper, Jones and Zhuang [27] have generalized the formula of
Stembridge by applying Sun and Wang’s CMFS action. In particular they also obtained
the w = 1 case of Theorem 1.37.

1.4.3 Proof of Theorems 1.31 and 1.32

Proof of Theorem 1.31. For σ ∈ Sn+1, an index i ∈ [n] is called

• a shifted cycle valley if i < σ(i) and i+ 1 ≤ σ−1(i+ 1);

• a shifted cycle peak if i ≥ σ(i) and i+ 1 > σ−1(i+ 1);

• a shifted double excedance if i < σ(i) and i+ 1 > σ−1(i+ 1);

• a shifted no double excedance if i ≥ σ(i) and i+ 1 ≤ σ−1(i+ 1).

Denote by Scval, Scpeak, Scda and Scdn, the sets of shifted cycle valleys, shifted cycle
peaks, shifted double excedance and shifted no double excedance. It is easy to see that the
shifted statistics are almost equal to our star statistics, i.e.,

(Scval, Scpeak, Scdn, Scda) = (Cval∗, Cpk∗, Cdd∗, Cda∗ ∪Fix∗). (1.122)

We just prove Scval = Cval∗. As Cval∗(σ) = {i : i + 1 < σ(i), i < σ−1(i + 1)}, it is
sufficient to show that Scval ⊂ Cval∗. If σ ∈ Sn and i ∈ Scval(σ), then i < σ(i) and
i+1 ≤ σ−1(i+1). Suppose i+1 = σ(i) then σ−1(i+1) = i, which contradicts the second
inequality. So i+1 < σ(i), and i ∈ Cval∗. We can reformulate the bijection ψY ZL in [110]
as follows

si =

⎧⎪⎨⎪⎩
U if i ∈ Cval∗ σ;
D if i ∈ Cpk∗ σ;
Lr (resp. Lb) if i ∈ Cdd∗ σ (resp. Cda∗ ∪Fix∗ σ),

(1.123)

with pi = nesti σ. Comparing (1.123) with (1.45) and by (1.122), we see that the only
difference between the Laguerre histories obtained by applying the bijections ψY ZL and ψ
is the color of their level steps.

Proof of Theorem 1.32. For σ ∈ Sn, let σr := σ(n) · · ·σ(2)σ(1) be the reverse of σ. By
(1.42),

[2(31-2) + 2-13]σ = [2(2-13) + 31-2]σr = (2 nest+ cros)Ψ(σr).



40 1. Eulerian polynomials and excedance statistics

σ ∈ DD4,k σ σr Ψ(σ) ∈ SDE4,k (31-2)σ (2-13)σ invΨ(σ) excΨ(σ)
k = 0 1324 4231 1423 0 1 2 1

1423 3241 1432 1 0 3 1
2314 4132 4123 0 2 3 1
2413 3142 4132 1 1 4 1

k = 1 3412 2143 3214 1 0 3 1
2134 4312 3124 0 1 2 1
3124 4213 4213 1 1 4 1
4123 3214 4231 2 0 5 1

Figure 1.6: Illustration of Ψ on DD4,k with their statistics.

By (1.51), we derive

[2(31-2) + (2-13)]σ = (inv− exc)Ψ(σr). (1.124)

Besides, by (1.42) and (1.122) we have

(des, dd)σ = (asc, da)σr

= (wex∗, cda∗+fix∗)Ψ(σr)

= (cvalley∗+cda∗+fix∗, cda∗+fix∗)Ψ(σr)

= (scval+ scda, scda)Ψ(σr).

Hence, when dd(σ) = scdaΨ(σ) = 0, from (1.42) we derive that σ ∈ DDn,k if and only if
ρ(σ) ∈ SDEn,k. With (1.124) this implies (1.106).

1.5 Proofs via continued fractions

1.5.1 Some combinatorial continued fractions

We first recall a standard contraction formula for continued fractions, see [95, Eq. (44)].

Lemma 1.39 (Contraction formula). The following contraction formulae hold

1

1− α1z

1− α2z

1− α3z

1− α4z

1− · · ·

=
1

1− α1z −
α1α2z

2

1− (α2 + α3)z −
α3α4z

2

1− · · ·

= 1 +
α1z

1− (α1 + α2)z −
α2α3z

2

1− (α3 + α4)z −
α4α5z

2

1− · · ·

.

The following four combinatorial continued fraction expansions are proved by Shin and
Zeng [96]. Let

An(p, q, t, u, v, w) :=
∑
σ∈Sn

pnest σqcros σtexc σucdd
∗ σvcda

∗ +fix∗ σwcpk∗ σ (1.125)

=
∑
σ∈Sn

p(2-13)σq(31-2)σtdes σuda σvdd σwpeak σ−1, (1.126)
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where the equality of the two enumerative polynomials follows from Lemma (1.7).

Lemma 1.40. [96, Eq. (28)] We have∑
n≥0

An+1(p, q, t, u, v, w)z
n

=
1

1− (u+ tv)[1]p,qz − [1]p,q[2]p,qtwz
2

1− (u+ tv)[2]p,qz − [2]p,q[3]p,qtwz
2

· · ·

, (1.127)

where [n]p,q = (pn − qn)/(p− q).

Let

Bn(p, q, t, u, v, w, y) :=
∑

σ ∈Sn

pnest σqcros σtexc σucdd σvcda σwcvalley σyfix σ. (1.128)

Lemma 1.41. [96, Eq. (34)] We have

1 +
∞∑
n=1

Bn(p, q, t, u, v, w, y)z
n =

1

1− b0z −
a0c1z

2

1− b1z −
a1c2z

2

1− b2z −
a2c3z

2

. . .

, (1.129)

where ah = tw[h+ 1]p,q, bh = yph + (qu+ tv)[h]p,q and ch = [h]p,q for h ≥ 0.

Let

Cn(q, t, u, v, w) :=
∑
σ∈Sn

qcyc
∗ σ−fix∗ σtwex

∗ σucda
∗ +fix∗ σvcdd

∗ σwcvalley∗ σ, (1.130)

Lemma 1.42. [96, Eq. (50)] We have

∞∑
n≥0

Cn+1(q, t, u, v, w)z
n

=
1

1− (tu+ v)z − 1(q + 1)twz2

1− 2(tu+ v)z − 2(q + 2)twz2

1− 3(tu+ v)z − 3(q + 3)twz2

. . .

. (1.131)

Let

Dn(q, t, u, v, w) :=
∑
σ∈Dn

qcyc σtexc σucda σvcdd σwcvalley σ. (1.132)
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Lemma 1.43. [96, Eq. (41)] We have

1 +
∞∑
n=1

Dn(q, t, u, v, w)z
n

=
1

1− 0(tu+ v)z − 1(q + 0)twz2

1− 1(tu+ v)z − 2(q + 1)twz2

1− 2(tu+ v)z − 3(q + 2)twz2

. . .

.
(1.133)

1.5.2 Proof of Theorems 1.15–1.28

Proof of Theorem 1.15. In view of Lemma 1.41, let (p, q, t, u, v, w, y) = (p, q, t, 1, 1, w, y),
then ah = tw[h+ 1]p,q, b0 = y, bh = yph + (q + t)[h]p,q, ch = [h]p,q, we have

Bn(p, q, t, 1, 1, w, y) =
∑
σ∈Sn

pnest σqcros σtexc σwcvalley σyfix σ,

and

∞∑
n=0

Bn(p, q, t, 1, 1, w, y)z
n (1.134)

=
1

1− yz − tw[1]2p,qz
2

1− (yp+ (q + t)[1]p,q)z −
tw[2]2p,qz

2

1− (yp2 + (q + t)[2]p,q)z −
tw[3]2p,qz

2

. . .

.

The right-hand side of Eq. (1.60) is

∑
n≥0

P (nest,cros,cpk,exc,fix)

(
Sn; p, q,

(1 + x)2t

(x+ t)(1 + xt)
,
q(x+ t)

1 + xt
,
(1 + x)r

1 + xt

)(
(1 + xt)z

1 + x

)n

.

By transforming q(x+t)
1+xt , (1+x)2t

(x+t)(1+xt) ,
(1+xt)z
(1+x) and (1+x)r

1+xt to t, w, z and y in (1.134), respec-
tively, and observing (1.129), we obtain the equation corresponds to the continue fraction
expansion of Sn(p, q, tq, r) immediately.

Proof of Theorem 1.17. In view of (1.127), we have

An(p, q, t, 1, 1, w) =
∑
σ∈Sn

pnest σqcros σtexc σwcpk∗ σ.
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It follows that

∞∑
n=0

An+1(p, q, t, 1, 1, w)z
n

=
1

1− [1]p,q(t+ 1)z − [1]p,q[2]p,qtwz
2

1− [2]p,q(t+ 1)z − [2]p,q[3]p,qtwz
2

1− [3]p,q(t+ 1)z − [3]p,q[4]p,qtwz
2

. . .

(1.135)

and

∞∑
n=0

An+1(p, q, t)z
n

=
1

1− [1]p,q(t+ 1)z − [1]p,q[2]p,qtz
2

1− [2]p,q(t+ 1)z − [2]p,q[3]p,qtz
2

1− [3]p,q(t+ 1)z − [3]p,q[4]p,qtz
2

. . .

. (1.136)

The generating function of the right side of Eq. (1.65) is

∑
n≥0

P (nest,cros,cpk∗,exc)
(
Sn+1; p, q,

(1 + w)2t

(w + t)(1 + wt)
,
w + t

1 + wt

)(
(1 + wt)z

1 + w

)n

.

Substituting (t, w, z) by ( w+t
1+wt ,

(1+w)2t
(w+t)(1+wt) ,

z(1+wt)
(1+w) ) in (1.135), the right-hand-side becomes

that of (1.136) immediately. Thus their left-hand-sides are also equal.

Proof of Theorem 1.21. In view of Eq. (1.130), the generating function of the left side of
Eq. (1.72) is

∞∑
n≥0

A
(cyc∗ − fix∗,exc)
n+1 (q, t)zn

=
1

1− 1(t+ 1)z − 1(q + 1)tz2

1− 2(t+ 1)z − 2(q + 2)tz2

1− 3(t+ 1)z − 3(q + 3)tz2

. . .

. (1.137)

In view of Eq. (1.130), we have

Cn(q, t, 1, 1, w) =
∑
σ∈Sn

qcyc
∗ σ−fix∗ σwcvalley∗ σtexc σ,
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and
∞∑
n≥0

Cn+1(q, t, 1, 1, w)z
n

=
1

1− 1(t+ 1)z − 1(q + 1)twz2

1− 2(t+ 1)z − 2(q + 2)twz2

1− 3(t+ 1)z − 3(q + 3)twz2

. . .

. (1.138)

The generating function of the right side of Eq. (1.72) is∑
n≥0

P (cyc∗ − fix∗,cvalley∗,exc)
(
Sn+1; q,

(1 + w)2t

(w + t)(1 + wt)
,
w + t

1 + wt

)(
(1 + wt)z

1 + w

)n

.

By transforming w+t
1+wt ,

(1+w)2t
(w+t)(1+wt) and z(1+wt)

(1+w) to t, w and z in (1.138), respectively, we
obtain (1.137) immediately. By the above argument, we see that the two sides of Eq. (1.72)
have the same continue fraction.

Proof of Theorem 1.25. When stat = cyc, in view of Eq. (1.133), the generating function
of the left side of Eq. (1.80) is

1 +

∞∑
n=1

D(cyc,exc)
n (q, t)zn

=
1

1− 0(t+ 1)z − 1(q + 0)tz2

1− 1(t+ 1)z − 2(q + 1)tz2

1− 2(t+ 1)z − 3(q + 2)tz2

. . .

.
(1.139)

In view of Eq. (1.133), we have

Dn(q, t, 1, 1, w) =
∑
σ∈Dn

qcyc σwcpk σtexc σ,

and

1 +
∞∑
n=1

Dn(q, t, 1, 1, w)z
n =

1

1− 1(q + 0)twz2

1− 1(t+ 1)z − 2(q + 1)twz2

1− 2(t+ 1)z − 3(q + 2)twz2

. . .

.

(1.140)

The generating function of the right side of Eq. (1.80) is∑
n≥0

P (cyc,cpk,exc)

(
Dn; q,

(1 + w)2t

(w + t)(1 + wt)
,
w + t

1 + wt

)(
(1 + wt)z

1 + w

)n

.
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By transforming w+t
1+wt ,

(1+w)2t
(w+t)(1+wt) and z(1+wt)

(1+w) to t, w and z in (1.140), respectively, we
obtain (1.139) immediately. By the above argument, we see that the two sides of Eq. (1.80)
for stat = cyc have the same continue fraction.

Proof of Theorem 2.1. Recall [21, Theorem 7.2] that
∞∑
n=0

Nn(t, q, r)z
n =

1

1− rz − tqz2

1− (1 + t)qz − tq3z2

1− (1 + t)q2z − tq5z2

. . .

. (1.141)

Writing
∑∞

n=1Nn−1(t, q, r)z
n = z

∑∞
n=0Nn(t, q, r)z

n we have

1 +
∑
n≥1

Nn−1(t, q, 1 + t)zn = 1 +
z

1− (1 + t)z − tqz2

1− q(t+ 1)z − tq3z2

1− · · ·

, (1.142)

which is
∑

n≥0Nn(t/q, q, 1)z
n by applying contraction formula (cf. Lemma 1.39). Thus

Nn(t/q, q, 1) = Nn−1(t, q, 1 + t). (1.143)

Since nest π−1 = nest π (cf. Remark 1.1) and wexπ−1 = n − excπ for any π ∈ Sn,
by Lemma 1.10, we deduce that π ∈ Sn(321) if and only if π−1 ∈ Sn(321). Using the
inverse mapping π �→ π−1 on Sn(321) we can rewrite Nn(t, q, t) :=

∑
π∈Sn(321)

twex πqinv π

as follows:

Nn(t, q, t) = tn
∑

π∈Sn(321)

(1/t)exc πqinv π = tnNn(q/t, q, 1).

It follows from (1.143) that

Nn(t, q, t) = tnNn−1(q
2/t, q, 1 + q2/t). (1.144)

In view of (1.82) identities (1.143) and (1.144) provide the first interpretation in Table 1.
Other interpretations in Table 1 can be derived from the equidistribution results in (1.17)
and (1.22)–(1.25)

Proof of Theorem 1.27. By Lemma 1.10, (1.51) and (1.128), we have

Bn(0, q, tq, 1, 0, 1, 1) =
∑

σ∈Sn(321)

qinv σtexc σ. (1.145)

It follows from Lemma 1.41 that
∞∑
n=0

∑
σ∈Sn(321)

qinv σtexc σzn =
1

1− z − tqz2

1− qz − tq3z2

1− q2z − tq5z2

. . .

. (1.146)
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On the other hand, the generating function of the right-hand side of Eq. (1.92) is

1 + z
∑
n≥1

�n−1
2

�∑
k=0

⎛⎝ ∑
σ∈Sn−1,k(321)

qinv(σ)

⎞⎠ tk(1 + t)n−1−2kzn−1

=1 + z
∑
n≥0

∑
σ∈Sn(321)

qinv(σ)
(

t

(1 + t)2

)excσ

((1 + t)z)n, (1.147)

which, combining with (1.146), is equal to

1 +
z

1− (1 + t)z − tqz2

1− (1 + t)qz − tq3z2

1− (1 + t)q2z − tq5z2

. . .

(1.148)

=
1

1− z − tz2

1− (q + t)z − tq2z2

1− (q + t)qz − tq4z2

· · ·

, (1.149)

which is equal to
∑
n≥0

Nn(t/q, q, 1)z
n by (1.141). Other interpretations can be obtained by

the equidistribution results of (1.17) and (1.22)–(1.25).

Proof of Theorem 1.28. The generating function of the right side of (1.96) can be written
as

1 + z
∑
n≥1

�n+1
2

�∑
k=1

⎛⎝ ∑
σ∈Sn−1,k−1(321)

qn−1+inv σ−exc σ

⎞⎠ tk(1 + t/q)n+1−2kzn−1

=1 + zt
∑
n≥0

⎛⎝ ∑
σ∈Sn(321)

qinv σ−exc σ

(
tq2

(q + t)2

)exc σ
⎞⎠ ((q + t)z)n. (1.150)

By using the second claim of Lemma 1.10, (1.51) and (1.128), we have

Bn(0, q, t, 1, 0, 1, 1) =
∑

σ∈Sn(321)

qinv σ−exc σtexc σ,

Lemma 1.41 implies that

∞∑
n=0

∑
σ∈Sn(321)

qinv σ−exc σtexc σzn =
1

1− z − tz2

1− qz − tq2z2

1− q2z − tq4z2

. . .

.
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Making the substitution z �→ (q + t)z and t �→ tq2/(q + t)2 in the above equation, we
obtain

1 +
zt

1− (q + t)z − tq2z2

1− (q + t)qz − tq4z2

1− (q + t)q2z − tq6z2

. . .

(1.151)

=
1

1− tz − tqz2

1− (1 + t)qz − tq3z2

1− (1 + t)q2z − tq5z2

· · ·

, (1.152)

which is equal to
∑
n≥0

Nn(t, q, t)z
n by (1.141). Other interpretations can be obtained by

the equidistribution results of (1.17) and (1.22)–(1.25).

1.5.3 Proof of Theorems 1.29–1.30

Recall the color order <c of {±1, . . . ,±n}:
−1 <c −2 <c · · · <c −n <c 1 <c 2 <c · · · <c n,

and define the following statistics:

fix σ = #{i ∈ [n] : i = σ(i)},
excA σ = #{i ∈ [n] : i <c σ(i)},
wexA σ = #{i ∈ [n] : i ≤c σ(i)} = excA σ + fixσ,

wexC σ = #{i ∈ [n] : i ≤ |σ(i)| and σ(i) < 0},
neg σ = #{i ∈ [n] : σi < 0}.

For convenience, we use the following compact notation for the J-type continued fraction

J [z; bn, λn] =
1

1− b0z −
λ1z

2

1− b1z −
λ2 z

2

1− b2z −
λ3z

2

1− · · ·

. (1.153)

Let
Fn(t, w, r, y) =

∑
σ∈Bn

twexA σwwexC σrfix σyneg σ.

Lemma 1.44. [97, Lemma 16] For n ≥ 1,∑
n≥0

Fn(t, w, r, y)z
n = J [z; bn, λn], (1.154)

where the coefficients λn and bn are given by

λn = n(t+ wy)(1 + y) (n ≥ 1)

bn = n(1 + y) + t(r + n) + wy(n+ 1) (n ≥ 0).
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We need the following lemma, see [111, Lemma 12] and [57, p. 307].

Lemma 1.45. Suppose that two sequences {Pn}n and {Qn}n satisfy the equation∑
n≥0

Pn
zn

n!
= eαz

∑
n≥0

Qn
zn

n!
.

If
∑
n≥0

Qnz
n = J [z; bn, λn], then

∑
n≥0

Pnz
n = J [z; bn + α, λn].

Proof of Theorem 1.29. Since exc = (wexA− fix) + wexC, see [97, Eq. (4.5)], we have

Fn(t, t, 1/t, y) =
∑
σ∈Bn

texcB σyneg σ = Bn(y, t),

and formula (1.154) becomes ∑
n≥0

Bn(y, t)z
n = J [z; bn, λn], (1.155)

where bn = (n+ 1)(1 + yt) + n(t+ y) and λn = (1 + y)2tn2.
On the other hand, let

B̂n(y, t) :=
∑
σ∈Bn

yneg σtdesB σ. (1.156)

Then Brenti [15, Theorem 3.4] proved

∑
n≥0

B̂n(y, t)
zn

n!
=

(1− t)ez(1−t)

1− tez(1−t)(1+y)
= ey(t−1)zS((1 + y)z; t) (1.157)

with S(z; t) = (1−t)ez(1−t)

1−tez(1−t) , which is the exponential generating function of Eulerian poly-

nomials An(t). By Lemma 1.45 we derive from (1.7) and (1.157) that
∑

n≥0 B̂n(y, t)z
n has

the same continued fraction (1.155).

Proof of Theorem 1.30. By (1.128), we have

P (cpk,exc)(Sn;w, t) = Bn(1, 1, t, 1, 1, w, 1).

Specializing (p, q, t, u, v, w, y) in Lemma 1.41 yields

∞∑
n=0

P (cpk,exc)(Sn;w, t)z
n = J [z; bn, λn],

where bn = 1 + (1 + t)n and λn = twn2. It follows that the series

∑
n≥0

P (cpk,exc)

(
Sn;

(1 + y)2t

(y + t)(1 + yt)
,
y + t

1 + yt

)
((1 + yt)z)n

has the same continued fraction expansion for
∑

n≥0Bn(y, t)z
n in (1.155).
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Chapter 2

Gamma positivity in restricted
permutations 1

2.1 Introduction

One of the simple and fertile characterizations of Catalan numbers Cn = 1
n+1

(
2n
n

)
is

the following Stieltjes continued fraction expansion (cf. [12, 43])
∞∑
n=0

Cnz
n =

1

1− z

1− z

. . .

.

In this chapter we define the (q, t)-Catalan numbers Cn(t, q) as the Taylor coefficients in
the following continued fraction expansion

∞∑
n=0

Cn(t, q)z
n =

1

1− z

1− tz

. . .

1− qk−1z

1− tqk−1z

. . .

. (2.1)

When we take q = 1 in (2.1), the right-hand side reduces to the continued fraction ex-
pansion for the generating function of the Narayana polynomials Cn(t, 1), see [12], and
for t = 1 we recover the classical q-Catalan numbers of Carlitz-Riordan [17]. Blanco and
Petersen [9] considered a related (q, t)-analog of Catalan numbers Dyck(n; t, q). Indeed, by
comparing the continued fraction (2.1) with that in [9, Proposition 2.6], we have

Dyck(n; t, q) = Cn(tq, q
2). (2.2)

The combinatorial constructions behind the proof of Theorem 2.1, one of our main
results, originated from the fundamental work of Flajolet [43] for the lattice path interpre-
tation of the formal continued fractions, and two bijections between sets of certain weighted

1The contents of this chapter are published in Adv. in Appl. Math. 106 (2019), 57–95.
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Table 2.1: Ten choices for (τ, stat)
# τ stat # τ stat

1 231 13-2 6 132 2-31
2 231 ai∗ 7 231 31-2
3 312 2-13 8 312 2-31
4 312 ai 9 213 13-2
5 213 31-2 10 132 2-13

Motzkin paths and permutations due to Françon-Viennot [54], and Foata-Zeilberger [53],
see also [24, 95, 96].

The first goal of this chapter is to establish new combinatorial interpretations for
Cn(t, q), as well as their corresponding γ-expansions, using pattern avoiding permuta-
tions, which we define now. Denote by Sn the set of permutations of length n. Given
two permutations π ∈ Sn and p ∈ Sk, k ≤ n, we say that π avoids the pattern p if
there does not exist a set of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that the subse-
quence π(i1)π(i2) · · ·π(ik) of π is order-isomorphic to p. For example, the permutation
15324 avoids 231. The set of permutations of length n that avoid patterns p1, p2, · · · , pm
is denoted as Sn(p1, p2, · · · , pm).

A polynomial f(x) =
∑n

i=0 aix
i ∈ R[x] is called palindromic if ai = an−i for 0 ≤ i ≤ n.

Clearly {xi(1+x)n−2i}�n/2�i=0 forms a basis for the vector space of all palindromic polynomials
of degree no greater than n. We call the unique expansion

f(x) =

�n/2�∑
i=0

γix
i(1 + x)n−2i

the γ-expansion for f(x). Actually most of the expansions derived in this chapter are
q-γ-expansions, in the sense that the coefficients are polynomials in q, and when we let
q = 1, we recover the original γ-expansions.

Now we give the first three main results of this chapter, with the definitions of permu-
tation statistics, permutation patterns and restricted permutations sets postponed to the
next section.

Theorem 2.1. The (q, t)-Catalan numbers Cn(t, q) have the following ten interpretations

Cn(t, q) =
∑

π∈Sn(τ)

tdes πqstat π,

with τ being a pattern of length 3, and stat being a permutation statistic. Ten choices for
the pair (τ, stat) are listed in Table 2.1.

The last four interpretations for the γ-coefficients given in the next theorem correspond
in a natural way to the interpretaions labelled as entries 1, 3, 5, 6 in Table 2.1.

Theorem 2.2. For n ≥ 1, the following γ-expansions formula holds true

Cn(t, q) =

�n−1
2

�∑
k=0

γn,k(q)t
k(1 + t)n−1−2k, (2.3)
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where

γn,k(q) =
∑

π∈Ŝn,k(321)

qinv π−exc π (2.4)

=
∑

π∈S̃n,k(213)

q(31-2) π =
∑

π∈S̃n,k(312)

q(2-13) π (2.5)

=
∑

π∈S̃n,k(132)

q(2-31) π =
∑

π∈S̃n,k(231)

q(13-2) π. (2.6)

Remark 2.1. Eq. (2.3) with interpretation (2.4) is due to Lin and Fu [73]. Moreover,
Blanco and Petersen [9] also obtained a γ-expansion formula for Cn(tq, q

2), which should
yield another interpretation for the γ-coefficients.

We will also prove the following variation of Theorems 2.1 and 2.2.

Theorem 2.3. We have∑
π∈Sn(213)

tdes πqai π =
∑

π∈Sn(132)

tdes πqai
∗ π (2.7)

=

�n−1
2

�∑
k=0

( ∑
π∈S̃n,k(213)

qai π
)
tk(1 + t)n−1−2k (2.8)

=

�n−1
2

�∑
k=0

( ∑
π∈S̃n,k(132)

qai
∗ π

)
tk(1 + t)n−1−2k. (2.9)

Our second goal is to derive new examples of the following (−1)-phenomenon: for
certain combinatorial generating functions for a set of permutations or derangements, sub-
stituting −1 for one of the variables gives an associated generating function over alternating
permutations in the set. A permutation is said to be alternating (or up-down) if it starts
with an ascent and then descents and ascents come in turn. (This has been called reverse
alternating in Stanley’s survey [100] and some of the other literature, but we stick with this
convention throughout the chapter.) We denote by An the set of alternating permutations
of length n, and by An(p1, p2, · · · , pm) the set of alternating permutations of length n that
avoid patterns p1, p2, . . . , pm.

The rest of the chapter is organized as follows. In Section 2.2, we give most of the
definitions and provide the previously known results from the literature, which will be
used to prove Theorems 2.1, 2.2 and 2.3 in Section 2.3. We consider a variation involving
the weak excedance in Section 2.4. Next in Section 2.5, we completely determine the
existence of (−1)-phenomena for Sn(τ), where τ runs through all permutations in S3. For
example, we have the following q-version of the (−1)-phenomenon on Sn(321) concerning
exc. Recall [9] that Carlitz’s q-Catalan numbers Cn(q) are defined by

Cn(q) := Cn(q, q
2). (2.10)

Using the Dyck path interpretation for Cn(t, q) in (2.1) (see [43]), we see that Cn(q) is a
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polynomial of degree
(
n
2

)
. For instance,

C0(q) = C1(q) = 1,

C2(q) = q + 1,

C3(q) = q3 + q2 + 2q + 1,

C4(q) = q6 + q5 + 2q4 + 3q3 + 3q2 + 3q + 1.

Theorem 2.4. For any n ≥ 1,

Cn(−1, q) =
∑

π∈Sn(321)

(−1)exc πqinv π−exc π =

{
0 if n is even,
(−q)

n−1
2 Cn−1

2
(q2) if n is odd,

(2.11)

∑
π∈Dn(321)

(−1)exc πqinv π =

{
(−q)

n
2 Cn

2
(q2) if n is even,

0 if n is odd.
(2.12)

Motivated by Lewis’ work [65, 66, 67, 68], many authors [10, 19, 109, 108, 81] have
studied pattern avoidance on alternating permutations, especially the Wilf-equivalence
problem for patterns of length four. As for alternating permutations that avoid two pat-
terns of length four simultaneously, our results in Section 2.6 concerning Sn(2413, 3142)
and Sn(1342, 2431) appear to be new. We close with some remarks to motivate further
study along this line.

2.2 Definitions and preliminaries

2.2.1 Permutation statistics and a proof of Theorem 2.4

In this chapter, we define the variant labels for some notations and the nomenclature
of various permutation statistics of Chapter 1, other statistics use the same labels as
mentioned before.

Definition 2.1. Let π = π(1)π(2) · · ·π(n) be a permutation, assume π(n+1) = n+1. A
descent (resp. an ascent) in π is a triple (i, π(i), π(i+1)) such that i ∈ [n] and π(i) > π(i+1)
(resp. π(i) < π(i + 1)). Here π(i) is called the descent top (resp. the ascent bottom) and
π(i + 1) is called the descent bottom (resp. the ascent top). An excedance (resp. a
nonexcedance) in π is a pair (i, π(i)) such that i ∈ [n] and π(i) > i (resp. π(i) ≤ i).
Here i is called the excedance bottom (resp. the nonexcedance top) and π(i) is called the
excedance top (resp. the nonexcedance bottom). The number of descents (resp. the number
of ascents) in π is denoted by des π (resp. asc π), and the number of excedances in π is
denoted by exc π.

Next, we introduce four statistics involving three consecutive letters in π. Define

S̃n,k(213) := {π ∈ Sn(213) : dd
∗ π = 0, des π = k},

S̃n,k(312) := {π ∈ Sn(312) : dd
∗ π = 0, des π = k},

S̃n,k(132) := {π ∈ Sn(132) : dd π = 0, des π = k},
S̃n,k(231) := {π ∈ Sn(231) : dd π = 0, des π = k}.

Definition 2.2. The statistic MAD is defined by

MAD π := des π + (31-2) π + 2 · (2-31) π
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Definition 2.3. [95, Definition 7] A permutation π is called coderangement if fmax π = 0.
Let D∗

n be the set of all coderangements in Sn.

Shin and Zeng introduced the above linear model of derangements. As suggested by
its name, the set of coderangements is equinumerous with the set of derangements.

For the rest of this subsection, we collect all the lemmas that will be useful in later
sections, and prove Theorem 2.4.

The Clarke-Steingrímsson-Zeng bijection [24] linking descent based statistics with ex-
cedance based ones is crucial for our ensuing derivation. It is the composition, say Φ, of
two bijections between Sn and the set of certain weighted two colored Motzkin paths of
length n. One bijection is due to Françon and Viennot [54], the other is due to Foata and
Zeilberger [53]. See [24] for a direct description of Φ and further details. The following
equidistribution result reveals further properties of Φ and is equivalent to [95, Theorem 8]
modulo one application of the inverse map: π �→ π−1.

Lemma 2.5 (Shin-Zeng). For any n ≥ 1, there is a bijection Φ on Sn such that

(des, fmax, 31-2, 2-31,MAD) π = (exc, fix, cros, nest, inv) Φ(π) for all π ∈ Sn.

Shin and the fourth author [95] deduced the continued fraction expansion for the quint-
variate generating function of Sn with respect to the above statistics.

Lemma 2.6 (Shin-Zeng). Let

An(x, y, q, p, s) :=
∑
π∈Sn

xdes πyfmax πq(31-2) πp(2-31) πsMAD π

=
∑
π∈Sn

xexc πyfix πqcros πpnest πsinv π. (2.13)

Then we have

1 +
∞∑
n=1

An(x, y, q, p, s)z
n =

1

1− b0z −
a0c1z

2

1− b1z −
a1c2z

2

. . .

, (2.14)

where, for h ≥ 0,

ah = s2h+1[h+ 1]q,ps, bh = yphs2h + (x+ q)sh[h]q,ps,

and

ch = x[h]q,ps, [h]u,v := (uh − vh)/(u− v).

In order to make (2.13) suitable for the pattern-avoiding subsets, we have to invoke the
following two lemmas.

Lemma 2.7. For any n ≥ 1,

Sn(2-13) = Sn(213), Sn(31-2) = Sn(312),

Sn(13-2) = Sn(132), Sn(2-31) = Sn(231).

Proof. See the proof of Lemma 1.9 in Chapter 1.
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Lemma 2.8. (i) A permutation π ∈ Sn belongs to Sn(321) if and only if nest π = 0. (ii)
The mapping Φ has the property that Φ(Sn(231)) = Sn(321).

Proof. See the proof of Lemma 1.10 in Chapter 1.

By the second claim of Lemma 2.8, the special case of Lemma 2.6 where p = 0, q = 1
yields a result of Cheng et al. [21, Theorem 7.3].

Lemma 2.9 (Cheng et al.). We have
∞∑
n=0

( ∑
π∈Sn(321)

qinv πtexc πyfix π

)
zn =

1

1− yz − tqz2

1− (1 + t)qz − tq3z2

1− (1 + t)q2z − tq5z2

. . .

.

(2.15)

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. Taking (t, y) = (−1/q, 1) in (2.15), we have by applying the con-
traction formula

1 +
∞∑
n=1

( ∑
π∈Sn(321)

(−1)exc πqinv π−exc π

)
zn = 1 +

z

1 +
qz2

1 +
q3z2

1 +
q5z2

. . .

.

We derive (2.11) by comparing this with (2.1).
In the same vein, by setting (t, y) = (−1, 0) in (2.15), we obtain

∞∑
n=0

( ∑
π∈Dn(321)

(−1)exc πqinv π

)
zn =

1

1− (−q)z2

1− (−q3)z2

1− (−q5)z2

. . .

.

Comparing with (2.1), we readily get (2.12).

2.2.2 Other combinatorial interpretations of Cn(q)

We can derive several pattern avoiding interpretations for our q-Catalan numbers Cn(q)
from γ-expansions proved in [73, 72]. Let

Ŝn,k(321) := {π ∈ Sn(321) : exc π = k and if i < π(i),

then i+ 1 is a nonexcedance bottom}.
According to this definition, for any π ∈ Ŝn,k(321), each occurrence of an excedance
uniquely leads to an occurrence of a nonexcedance. So when n is odd, the maximum for
exc π is achieved at k = n−1

2 , and in this case, the “if” condition becomes “if and only if.”
More precisely, take any π ∈ Ŝn,n−1

2
(321), we have for 1 ≤ i ≤ n− 1 that the following are

equivalent:
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• i < π(i),

• i+ 1 is a nonexcedance bottom, and

• π(i)− 1 is a nonexcedance top.

This analysis shows that Ŝ2n+1,n(321) is exactly the set described in [101, Excercise
145], and therefore it is enumerated by Cn.

Interestingly, we find yet another two q-γ-expansions in Lin’s work [72, Theorems 1.2
and 1.4].

Lemma 2.10 (Lin). For any n ≥ 1,

∑
π∈Sn(321)

twex πqinv π =

�n+1
2

�∑
k=1

⎛⎝ ∑
π∈NDWn,k(321)

qinv π

⎞⎠ tk(1 + t/q)n+1−2k, (2.16)

∑
π∈Dn(321)

texc πqinv π =

�n
2
�∑

k=1

⎛⎝ ∑
π∈NDEn,k(321)

qinv π

⎞⎠ tk(1 + t)n−2k, (2.17)

where

NDWn,k(321) := {π ∈ Sn(321) : wex π = k, no i such that π(i+ 1) ≥ i+ 1,

i ≥ π−1(i)},
NDEn,k(321) := {π ∈ Dn(321) : exc π = k, no i such that π−1(i) < i < π(i)}.

Now we can give the following three alternative interpretations for Cn(q).

Proposition 2.11. For any n ≥ 1,

Cn(q
2) =q−2n

∑
π∈Ŝ2n+1,n(321)

qinv π = q−2n
∑

π∈NDW2n+1,n+1(321)

qinv π

=q−n
∑

π∈NDE2n,n(321)

qinv π.

Proof. The first equality involving Ŝ2n+1,n(321) follows from putting t = −1 in (2.3) and
comparing (2.4) with (2.11). The second interpretation involving
NDW2n+1,n+1(321) is a result of taking t = −q in (2.16), replacing wex π by 2n+1−exc π,
and comparing the result with (2.11). The last one follows from (2.17) (setting t = −1)
and (2.12) similarly.

Remark 2.2. Two remarks on Proposition 2.11 are in order. First, as a by-product we
note that inv π is even for any π ∈ Ŝ2n+1,n(321) (resp. π ∈ NDW2n+1,n+1(321)), and
inv π has the parity of n for any π ∈ NDE2n,n(321). A direct combinatorial explanation
of this might be interesting. On the other hand, from a bijective point of view, we note
that the second equality above is a natural result of the inverse map π �→ π−1, while a
bijection deducing the third equality is possible via the two colored Motzkin path [72, 73].
We leave the details as exercises for motivated readers. Moreover, we note in passing that
|NDE2n,n(321)| = Cn is equivalent to Exercise 151 in [101].
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2.3 Proofs of Theorems 2.1, 2.2 and 2.3

In order to prove Theorem 2.1, we begin with a crucial lemma, which follows from [96,
Eq. (39)].

Lemma 2.12 (Shin-Zeng). The following four polynomials are equal∑
π∈Sn

tdes πp(2-13) πq(31-2) π =
∑
π∈Sn

tdes πp(31-2) πq(2-13) π

=
∑
π∈Sn

tdes πp(2-31) πq(31-2) π =
∑
π∈Sn

tdes πp(31-2) πq(2-31) π.

Proof. Indeed, equation (39) in [96] reads:
∞∑
n=0

( ∑
π∈Sn

tdes πp(2-13) πq(31-2) π
)
zn =

∞∑
n=0

( ∑
π∈Sn

tdes πp(2-31) πq(31-2) π
)
zn

=
1

1− c1z

1− c2z

1− c3z

. . .

with c2i = t[i]p,q and c2i−1 = [i]p,q for i ≥ 1, where two misprints in [96] are corrected. The
continued fraction shows clearly that the generating function is symmetric in p and q.

Next we give the definition of the statistic admissible inversion, which was first intro-
duced by Shareshian and Wachs [94].

Definition 2.4. Let π = π(1)π(2) · · ·π(n) be a permutation of Sn and π(0) = π(n+1) = 0.
An admissible inversion of π is an inversion pair (π(i), π(j)), i.e., 1 ≤ i < j ≤ n and
π(i) > π(j), satisfying either of the following conditions:

• π(j) < π(j + 1) or

• there is some l such that i < l < j and π(j) > π(l).

If we apply reverse-complement to this definition, we get the following version, which
was also used in [74, Definition 1].

Definition 2.5. Let π = π(1)π(2) · · ·π(n) be a permutation of Sn and π(0) = π(n+1) =
n+ 1. A star admissible inversion of π is a pair (π(i), π(j)) such that 1 ≤ i < j ≤ n and
π(i) > π(j), satisfying either of the following conditions:

• π(i− 1) < π(i) or

• there is some l such that i < l < j and π(i) < π(l).

Let ai π and ai∗ π be the numbers of admissible inversions and star admissible inversions
of π ∈ Sn, respectively. For example, if π = 231, then ai π = 0 while ai∗ π = 2.

Lemma 2.13. We have

ai π = (2-13) π, if π ∈ Sn(312), (2.18)
ai∗ π = (13-2) π, if π ∈ Sn(231). (2.19)
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Proof. By Definition 2.4, an inversion pair (π(i), π(j)) of a permutation π ∈ Sn is admis-
sible if and only if either of the following conditions holds

• the triple (π(i), π(j), π(j + 1)) forms a pattern 2-13 or 3-12;

• the triple (π(i), π(l), π(j)) with i < l < j forms a pattern 312.

Thus, if π ∈ Sn(312), the permutation π avoids both 312 and 3-12. This proves (2.18).
The proof of (2.19) is similar.

We are now in position to prove Theorem 2.1. Our starting point is the following
interpretation of Cn(t, q) using pattern avoiding permutations first appeared in [73]

Cn(t, q) =
∑

π∈Sn(321)

texc πqinv π−exc π. (2.20)

We note that equality (2.20) follows also from Cheng et al. [21, Theorem 7.3] (see Lemma 2.9)
by applying a standard contraction formula (see Lemma 1.39). For the reader’s conve-
nience, we are using a graph (see Figure 2.1) on the vertices 0, 1, . . . , 10, where label 0
represents the interpretation in (2.20) while the remaining labels correspond to the ten
interpretations in Table 2.1 of Theorem 2.1, and an edge between two vertices represents
the two interpretations will be proven to be equivalent. Thus we break down the proof of
Theorem 2.1 as showing equivalences represented by all the edges in Fig 2.1.

9 8 5 6 1 2

3

4

7

0 10

Figure 2.1: The proof flowchart for Theorem 2.1

Proof of Theorem 2.1.

• 0—7: We make the substitutions (x, y, q, p, s) = (t/q, 1, 1, 0, q) in (2.13), then apply
Lemma 2.8 and the definition of MAD to obtain∑

π∈Sn(321)

texc πqinv π−exc π =
∑

π∈Sn(231)

tdes πq(31-2) π.

• 1—2, 3—4: These two follow directly from Lemma 2.13.

• 5—3—7—8: With Lemma 2.7 in mind, we set p = 0 in Lemma 2.12 to get∑
π∈Sn(213)

tdes πq(31-2) π =
∑

π∈Sn(312)

tdes πq(2-13) π =
∑

π∈Sn(231)

tdes πq(31-2) π

=
∑

π∈Sn(312)

tdes πq(2-31) π.
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• 5—6: The reverse-complement transformation π �→ πrc provides us with∑
π∈Sn(213)

tdes πq(31-2) π =
∑

π∈Sn(132)

tdes πq(2-31) π.

• 8—9, 7—10, 6—1: Recall that Cn(t, q) is palindromic in t, then we apply the reverse
map π �→ πr to get∑

π∈Sn(312)

tdes πq(2-31) π =
∑

π∈Sn(312)

tn−1−des πq(2-31) π =
∑

π∈Sn(213)

tdes πq(13-2) π,

∑
π∈Sn(231)

tdes πq(31-2) π =
∑

π∈Sn(231)

tn−1−des πq(31-2) π =
∑

π∈Sn(132)

tdes πq(2-13) π,

∑
π∈Sn(132)

tdes πq(2-31) π =
∑

π∈Sn(132)

tn−1−des πq(2-31) π =
∑

π∈Sn(231)

tdes πq(13-2) π.

By gathering all the equalities above, we complete the proof.

The proofs of Theorems 2.2 and 2.3 build on several lemmas.

Definition 2.6 (MFS-action). Let π ∈ Sn with boundary condition π(0) = π(n+1) = 0,
for any x ∈ [n], the x-factorization of π reads π = w1w2xw3w4, where w2 (resp. w3) is the
maximal contiguous subword immediately to the left (resp. right) of x whose letters are all
larger than x. Following Foata and Strehl [52] we define the action ϕx by

ϕx(π) = w1w3xw2w4.

Note that if x is a double ascent (resp. double descent), then w2 = ∅ (resp. w3 = ∅),
and if x is a peak then w2 = w3 = ∅. For instance, if x = 3 and π = 28531746 ∈ S7,
then w1 = 2, w2 = 85, w3 = ∅ and w4 = 1746. Thus ϕx(π) = 23851746. Clearly, ϕx is an
involution acting on Sn and it is not hard to see that ϕx and ϕy commute for all x, y ∈ [n].
Brändén [13] modified the map ϕx to be

ϕ′
x(π) :=

{
ϕx(π), if x is not a valley of π;
π, if x is a valley of π.

0

9

5

6

1
3

2

7

4

8

0

Figure 2.2: MFS-actions on 596137428 (recall π(0) = π(10) = 0)

See Figure 2.2 for illustration, where exchanging w2 and w3 in the x-factorisation is
equivalent to moving x from a double ascent to a double descent or vice versa. Note that
the boundary condition does matter. Take the permutation 596137428 in Fig 3.2 as an
example. If π(0) = 10 instead, then 5 becomes a valley and will be fixed by ϕ′

5.
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It is clear that ϕ′
x’s are involutions and commute. For any subset S ⊆ [n] we can then

define the map ϕ′
S : Sn → Sn by

ϕ′
S(π) =

∏
x∈S

ϕ′
x(π).

Hence the group Z
n
2 acts on Sn via the functions ϕ′

S , S ⊆ [n]. This action will be called
the Modified Foata–Strehl action (MFS-action for short). For any permutation π ∈ Sn, let
Orb(π) = {g(π) : g ∈ Z

n
2} be the orbit of π under the MFS-action.

Remark 2.3. If we change the boundary condition to π(0) = π(n+1) = n+1, and in the
x-factorization, we take w2 (resp. w3) to be the maximal contiguous subword immediately
to the left (resp. right) of x whose letters are all smaller than x, then we have the version
used by Lin-Zeng in [74]. Note that for 321 ∈ S3(231), ϕ′

2(321) = 231 	∈ S3(231) using
our version, while ϕ′

2(321) = 312 ∈ S3(231) using Lin-Zeng’s version. Thus we need both
versions in this chapter, just as we have defined both ai and ai∗. More precisely, when
patterns {231, 132, 2-31, 13-2} are concerned, we use Lin-Zeng’s version, while for patterns
{213, 312, 2-13, 31-2} we use our current version.

Lemma 2.14. The statistic ai is constant on any orbit under the MFS-action.

Proof. Let π ∈ Sn, we aim to show that for each x ∈ [n], we have ai π = ai ϕ′
x(π). We

discuss by three cases, according to the type of x. If x is a peak or a valley of π, then
ϕ′
x(π) = π and the result is true. If x is a double descent of π, then the x-factorization of π

is π = w1w2xw3w4 with w3 being the empty word, and there are no admissible inversions
of π formed by x and one letter in w2. As ϕ′

x(π) = w1w3xw2w4, there are no inversions
of ϕ′

x(π) between w2 and x. Let (π(i), π(j)) /∈ {(y, x) : y is a letter in w2} be a pair in π
such that i < j. We claim that (π(i), π(j)) is an admissible inversion of π if and only if
it is an admissible inversion of ϕ′

x(π), from which the result follows for this case. Finally,
suppose x is a double ascent of π. Recall that ϕ′

x is an involution, and x is a double ascent
of π if and only if x is a double descent of ϕ′

x(π), so this case follows as well.
Now we prove the claim from last paragraph. For a word w, we write a ∈ w if a is a

letter in w. To check the claim, we must consider cases depending on whether π(i) and
π(j) belong to w1, w2, x, or w4. We will show only the case π(i) ∈ w2x, π(j) ∈ w4, other
cases are similar. If (π(i), π(j)) is an admissible inversion of π, then π(i) > π(j) < π(j+1)
or π(i) > π(j) > π(l) for some i < l < j. Since ϕ′

x does not change the relative order
between the letters other than x, we see that for the first case and the second case with
π(l) 	= x, (π(i), π(j)) remains an admissible inversion of ϕ′

x(π). For the second case with
π(l) = x, we denote x′ the first letter of w4. Then x′ < x < π(j) < π(i). Now in view
of the triple (π(i), x′, π(j)) in ϕ′

x(π), we deduce that (π(i), π(j)) is an admissible inversion
of ϕ′

x(π). To show that, if (π(i), π(j)) is an admissible inversion of ϕ′(π) then (π(i), π(j))
is an admissible inversion of π, is similar and we omit it. This finishes the proof of our
claim.

Lemma 2.15. The statistics (2-31), (13-2), (2-13) and (31-2) are constant on any orbit
under the MFS-action.

Proof. For π ∈ Sn, when π(0) = π(n+1) = n+1, the cases (2-31) and (13-2) were proved
by Brändén [13, Theorem 5.1]. For the case (2-13) (see Fig. 2.3), let π(0) = π(n+ 1) = 0,
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and note that

(2-13) π = #{(i, j) : 1 ≤ i < j < n, π(j) < π(i) < π(j + 1)}
= #{(i, j, k) : 1 ≤ i < j < k ≤ n, π(j) < π(i) < π(k), π(j) is a valley,

π(k) is a peak, π(l) is neither a valley nor a peak, for j < l < k}.
Here the first equality is by definition. To see the second equality, suppose we are given a
pair of indices (i, j) that satisfies the conditions in the first line. Starting with j, search
to the left looking for the largest valley, say π(j′), then i < j′ ≤ j. Starting with j + 1,
search to the right looking for the smallest peak, say π(k), then j+1 ≤ k ≤ n. Now clearly
(i, j′, k) forms a triple that is counted by the second and third lines above. Conversely,
given such a triple, we can uniquely find a pair that is counted by the first line. Hence
these two sets are in bijection. Finally, the number of these triples is invariant under the
action since π(j) and π(k) cannot move and neither can π(i) hop over the valley π(j). A
similar argument leads to the case (31-2).

Lemma 2.16. The MFS-action ϕ′
S is closed on the subsets Sn(τ), for τ = 213, 312,

132, 231.

Proof. This follows directly from Lemmas 2.7 and 2.15.

0

π(i)

π(j)

π(k)

0

Figure 2.3: MFS-actions on pattern avoidance 2-13

Proof of Theorem 2.2. By Lemma 2.15, the statistics tracked by the power of q remain
constant inside each orbit under the MFS-action. We first prove the 213-avoiding case in
(2.5). The MFS-action divides the set Sn into disjoint orbits. Moreover, for π ∈ Sn, x is
a double descent (resp. double ascent) of π if and only if x is a double ascent (resp. double
descent) of ϕ′

x(π). A double descent (resp. double ascent) x of π remains a double descent
(resp. double ascent) of ϕ′

y(π) for any y 	= x. Hence, there is a unique permutation
in each orbit which has no double descent. Graphically, this is the permutation all of
whose active dots hop to the left. Now, let π̄ be this unique element in Orb(π), then
da∗ π̄ = n− peak∗ π̄ − valley∗ π̄ and des π̄ = peak∗ π̄ − 1 = valley∗ π̄. And for any other
π′ ∈ Orb(π), it can be obtained from π̄ by repeatedly applying ϕ′

x for some double ascent
x of π̄. Each time this happens, des increases by 1 and da decreases by 1. Thus∑

σ∈Orb π

q(31-2) σtdes σ = q(31-2) π̄tdes π̄(1 + t)da π̄ = q(31-2) π̄tdes π̄(1 + t)n−2 des π̄−1.

We obtain the 213-avoiding case (2.5) immediately from Lemma 2.16 and by summing
over all the orbits that form Sn(213). The proofs of the remaining three cases are quite
analogous, although one should keep in mind that for the 231-avoiding and 132-avoiding
cases in (2.6), we use Lin-Zeng’s version of MFS-action and the initial condition π(0) =
π(n+ 1) = n+ 1 instead.
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Proof of Theorem 2.3. Clearly the reverse-complement transformation π �→ πrc satisfies
(des, 213, ai) π = (des, 132, ai∗) πrc, which yields (2.7) directly. With Lemma 2.14 and
Lemma 2.16, we obtain (2.8) and (2.9) via the MFS-action in a similar fashion as in the
proof of Theorem 2.2.

Lemma 2.17. All inversions in a down-up permutation of odd length are admissible. More-
over, for π ∈ S̃2n+1,n(213), we have

ai π + ai πr = 2n2 + n, (2.21)
ai π = 2 · (3-12) π, (2.22)
ai πr = (31-2) π. (2.23)

Proof. Assume π ∈ S2n+1 is a down-up permutation, and (π(i), π(j)) is an inversion pair.
If j = 2n+1 or π(j) is a peak, then π(j− 1) < π(j). Otherwise π(j) must be a valley and
j < 2n+ 1, then we see π(j) < π(j + 1). In both cases, we see that (π(i), π(j)) is indeed
admissible. So we have inv π = ai π.

Now suppose π ∈ S̃2n+1,n(213), the initial condition π(2n+ 2) = 0 and the restriction
of having no double descents force π(2n) < π(2n+ 1). Since π has exactly n descents and
no double descents, its descents and ascents must alternate. Moreover, if 2n+1 is not the
first letter of π then it will cause a pattern of 213. In summary, π must be a down-up
permutation with the first letter being 2n + 1. Also note that the reversal of a down-up
permutation of odd length is still a down-up permutation. Therefore we have

ai π + ai πr = inv π + inv πr =

(
2n+ 1

2

)
,

where the last equality relies on the simple fact that any pair of letters in π is either an
inversion pair for π, or an inversion pair for πr. This proves (2.21).

To get (2.22), we construct a 1-to-2 map from triples that form 3-12 patterns in π, to
inversion pairs of π. Suppose (π(i), π(j), π(j+1)) is such a triple, then it is mapped to two
inversion pairs, namely (π(i), π(j)) and (π(i), π(j + 1)). This map is well-defined. Since
π is down-up, each inversion pair can only be the image under this map for at most one
triple. Now it will suffice to show that all inversion pairs in π arise in this way. Suppose
(π(i), π(j)) is an inversion pair. If π(j) is a peak, then (π(i), π(j − 1), π(j)) forms a 3-12
pattern. Otherwise π(j) must be a valley, so π(j) < π(j + 1). Now if π(j + 1) > π(i),
(π(i), π(j), π(j + 1)) will form a 213 pattern which should be avoided by π. So we must
have π(j + 1) < π(i) and (π(i), π(j), π(j + 1)) forms a 3-12 pattern.

Finally for (2.23), simply note that if π ∈ Sn(213), then πr ∈ Sn(312). Then by
Lemma 2.13 we get ai πr = (2-13) πr = (31-2) π and the proof is completed.

With the above lemma we obtain another combinatorial interpretation of Cn(q).

Proposition 2.18. For any n ≥ 1,

Cn(q) =
∑

π∈S̃2n+1,n(213)

qn
2−(3-12) π

Proof. Using the #5 interpretation for Cn(t, q) and making the same argument as we did
in the proof of Theorem 2.2 concerning the MFS-action, we have

C2n+1(t, q) =
∑

π∈S2n+1(213)

tdes πq(31-2) π =
n∑

k=0

( ∑
π∈S̃2n+1,k(213)

q(31-2) π
)
tk(1 + t)2n−2k.
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We take t = −1 in the above equation and apply (2.11) for the left-hand side to get

C2n+1(−1, q) = (−q)nCn(q
2).

For the right-hand side, only the term with k = n remains. Equating this with the left-hand
side and use Lemma 2.17 to get the desired expression for Cn(q).

2.4 A variant of q-Narayana polynomials

Let Wn(t, q) :=
∑

π∈Sn(321)
twex πqinv π, then combining Lemma 2.8 (i) and

Lemma 2.19 below gives us tnWn(t
−1, 1) = Cn(t, 1). Therefore Wn(t, q) can be viewed

as a variant of q-Narayana polynomials. We explore its various interpretations and q-γ-
expansions in this section.

Definition 2.7. For π ∈ Sn, a value x = π(i) (i ∈ [n]) is called

• a cyclic valley if i = π−1(x) > x and x < π(x);

• a double excedance if i = π−1(x) < x and x < π(x);

• a drop if x = π(i) < i.

Let cvalley (resp. cda, drop) denote the number of cyclic valleys (resp. double ex-
cedances, drops) in π. The following result is due to Shin-Zeng [96, Theorem 5].

Lemma 2.19 (Shin-Zeng). There is a bijection Υ on Sn such that for all π ∈ Sn,

(ine, icr, drop, cda, cdd, cvalley, fix) π

=(2-31, 31-2, des, lda− fmax, ldd, lvalley, fmax) Υ(π),

where the linear statistics on the right-hand side are defined with the convention π(0) = 0
and π(n+ 1) = n+ 1 for π ∈ Sn.

Theorem 2.20. we have

Wn(t, q) =
∑

π∈Sn(321)

twex πqinv π

=tn
∑

π∈Sn(231)

(q/t)des πq(31-2) π = tn
∑

π∈Sn(231)

(q/t)des πq(13-2) π

=tn
∑

π∈Sn(231)

(q/t)des πqai
∗ π = tn

∑
π∈Sn(312)

(q/t)des πq(2-31) π

=tn
∑

π∈Sn(312)

(q/t)des πq(2-13) π = tn
∑

π∈Sn(312)

(q/t)des πqai π

=tn
∑

π∈Sn(213)

(q/t)des πq(31-2) π = tn
∑

π∈Sn(213)

(q/t)des πq(13-2) π

=tn
∑

π∈Sn(132)

(q/t)des πq(2-31) π = tn
∑

π∈Sn(132)

(q/t)des πq(2-13) π.

Proof. Since drop π = n − wex π and inv π = n − wex π + cros π + 2nest π ([95, Eq.
(40)]), we have∑

π∈Sn(321)

twex πqinv π =
∑

π∈Sn(321)

tn−drop πqinv π = tn
∑

π∈Sn(321)

(q/t)drop πqcros π.
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By Theorem 2.1 and Lemma 2.19, we have

tn
∑

π∈Sn(321)

(q/t)drop πqcros π =tn
∑

π∈Sn(231)

(q/t)des πq(31-2) π

=tn
∑

π∈Sn(231)

(q/t)des πq(13-2) π,

and the remaining equalities follow similarly.

We can now derive another q-γ-expansion for the joint distribution of wex and inv over
Sn(321).

Theorem 2.21. For any n ≥ 1,

∑
π∈Sn(321)

twex πqinv π =

�n+1
2

�∑
k=1

(
qn−k

∑
π∈S̃n,k−1(231)

q(13-2) π
)
tk(1 + t/q)n+1−2k. (2.24)

Proof. By Theorems 2.20 and 2.2,

tn
∑

π∈Sn(231)

(q/t)des πq(13-2) π = tn
�n−1

2
�∑

k=0

⎛⎜⎝ ∑
π∈S̃n,k(231)

q(13-2) π

⎞⎟⎠ (q/t)k(1 + q/t)n−1−2k.

For the right-hand side of above equation, by shifting k to k − 1, we get (2.24).

In a similar fashion, the combination of Theorems 2.20 and 2.2 yields another three
expressions. Now comparing (2.24) with (2.16) gives us the following five different inter-
pretations for the same q-γ-coefficients in (2.24).

Corollary 2.22. The following holds∑
π∈NDWn,k(321)

qinv π = qn−k
∑

π∈S̃n,k−1(231)

q(13-2) π = qn−k
∑

π∈S̃n,k−1(132)

q(2-31) π

= qn−k
∑

π∈S̃n,k−1(312)

q(2-13) π = qn−k
∑

π∈S̃n,k−1(213)

q(31-2) π.

2.5 Avoiding one pattern of length three: a complete charac-
terization

In this section, we completely determine the existence of (−1)-phenomena for Sn(τ),
with respect to des (in subsections 5.1 and 5.2) and exc (in subsection 5.3), where τ runs
through all permutations in S3. The reader can refer to Tables 2.2–2.4 for quick access to
the results.

2.5.1 The 231-avoding des-case and its q-analogues

The 231-avoiding alternating permutations were first enumerated by Mansour [79]:

|A2n+1(231)| = |A2n(231)| = Cn, for n ≥ 0. (2.25)
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A bijective proof of this fact with further implications was given by Lewis [65]. Indeed,
combining (2.25) with exercises 146, 147, 149 and 150 in [101], utilizing the reverse map,
the complement map, as well as the reverse complement map, one get the complete enu-
merations for all alternating permutations avoiding a single pattern of length three (see
Table 2.2).

Recall the standardization of a word w with n distinct ordered letters, denoted as
st(w), is the unique permutation in Sn that is order isomorphic to w. We say a word w1 is
superior to another word w2 and denote as w1 > w2, if for any two letters l1 ∈ w1, l2 ∈ w2,
we always have l1 > l2. The following decomposition is crucial for deriving q-analogues of
the (−1)-phenomenon on pattern-avoiding subsets of the coderangements.

Lemma 2.23. Let P0(t, q) = Q0(t, q) = R1(t, q) = 1, P1(t, q) = Q1(t, q) = 0, and for
n ≥ 2,

Pn(t, q) :=
∑

π∈D∗
n(231)

tdes πq(13-2) π,

Qn(t, q) :=
∑

π∈D∗
n(132)

tdes πq(2-31) π,

Rn(t, q) :=
∑

π∈D∗
n(213)

tdes πq(31-2) π.

Then for n ≥ 2,

Pn(t, q) =
n−2∑
m=0

tqn−m−1Pm(t, q)Cn−m−1(t, q), (2.26)

Qn(t, q) =
n−2∑
m=0

tqmQm(t, q)Cn−m−1(t, q), (2.27)

Rn(t, q) =
n−1∑
m=1

tqn−m−1Rm(t, q)Cn−m−1(t, q). (2.28)

Proof. The key observation is that, π ∈ D∗
n(231) if and only if π = π(1)nπ(2), for some

subwords π(1) and π(2) 	= ∅, with π(2) > π(1). In addition, π(1) ∈ D∗
m(231) and st(π(2)) ∈

Sn−m−1(231), for some m, 0 ≤ m ≤ n − 2. Indeed, if π ∈ D∗
n(231), since n must be

a left-to-right maximum of π, it cannot be at the end of π, so π(2) 	= ∅. And since
π(2) is preceded by n, it contains no left-to-right maximum, therefore the coderangement
restriction does not affect π(2) at all, but we do need it to avoid 231 as a subword of π.
The condition π(2) > π(1) is to guarantee that xny does not form a 231 pattern for any
x ∈ π(1) and y ∈ π(2). The above discussion shows the “only if” part of the claim, the “if”
part should be clear as well.

Now that the claimed decomposition is justified, we use the appropriate 231-avoiding
interpretation for Cn−m−1(t, q) taken from Theorem 2.1 and examine the change of des
and (13-2) during this decomposition. This should give us (2.26), the proofs of (2.27) and
(2.28) are similar and thus omitted.

Now we can derive the following q-analogues for the (−1)-phenomenon on Sn(231)
concerning des, which parallels Theorem 2.4 nicely.
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Theorem 2.24. For any n ≥ 1,∑
π∈Sn(231)

(−1)des πq(31-2) π =
∑

π∈Sn(231)

(−1)des πq(13-2) π

=

{
0 if n is even,
(−q)

n−1
2 Cn−1

2
(q2) if n is odd,

(2.29)

∑
π∈D∗

n(231)

(−q)des πq(31-2) π =

{
(−q)

n
2 Cn

2
(q2) if n is even,

0 if n is odd,
(2.30)

∑
π∈D∗

n(231)

(−1)des πq(13-2) π =

{
(−1)

n
2 C∗

n
2
(q) if n is even,

0 if n is odd,
(2.31)

where C∗
n(q) :=

∑
π∈A2n(132)

q(2-31) π.

Proof. All we need to do to prove (2.29) (resp. (2.30)) is take t = −1 (resp. (x, y, q, p, s) =
(−1, 0, 1, 0, q)) in Theorem 2.1 (resp. (2.13)), then apply Theorem 2.4. Next for (2.31), with
the decomposition (2.26) in mind, we note that P2n+1(−1, q) = 0 follows from induction
on Pm(−1, q) and using (2.11) for
Cn−m−1(−1, q). In the same vein, the even 2n case reduces to proving the following
identity:

C∗
n(q) =

n−1∑
m=0

q3n−3m−2C∗
m(q)Cn−m−1(q

2). (2.32)

Combining Proposition 2.11 and Corollary 2.22, we get the desired interpretation that
meshes well with that of C∗

m(q):

qn−m−1Cn−m−1(q
2) =

∑
π∈A2n−2m−1(132)

q(2-31) π.

Next we plug this back to (2.32) and decompose permutations in A2n(132) similarly as in
the proof of (2.26) to complete the proof.

The first few values for C∗
n(q) are:

C∗
0 (q) = C∗

1 (q) = 1,

C∗
2 (q) = 2q,

C∗
3 (q) = 3q2 + 2q4,

C∗
4 (q) = 4q3 + 6q5 + 2q7 + 2q9,

C∗
5 (q) = 5q4 + 12q6 + 9q8 + 8q10 + 4q12 + 2q14 + 2q16.

2.5.2 Other des-cases avoiding one pattern of length three and their q-
analogues

In a search for results analogous to Theorems 2.24 and 2.4, we consider all the remaining
subsets that avoid one pattern of length three, and summarize the results in Tables 2.3
and 2.4. The (−1)-evaluations for the non-� entries with missing parity are understood to
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Table 2.2: The enumeration of An(τ), for n ≥ 3 odd and even.
τ 123 132 213 231 312 321

A2n+1(τ) Cn+1 Cn Cn+1 Cn Cn+1 Cn+1

A2n(τ) Cn Cn Cn Cn Cn Cn+1

Table 2.3: The (−1)-evaluation over Sn(τ) and D∗
n(τ) with respect to des.

des \τ 123 132 213 231 312 321
S2n+1 � (−1)nCn (−1)nCn (−1)nCn (−1)nCn �
D∗

2n � (−1)nCn (−1)nCn−1 (−1)nCn � �

vanish. For instance,
∑

π∈S2n(132)
(−1)des π = 0. A “�” means there is no such phenomenon

in this case. Take the top-left � in Table 2.3 for example, we put it there to indicate that∑
π∈S2n(123)

(−1)des π does not always vanish, or
∑

π∈S2n+1(123)
(−1)des π does not seem to

be a recognizable sequence. For all the des-cases, we actually obtain the stronger q-versions.
We begin by proving three useful lemmas.

Lemma 2.25. For any n ≥ 1,∑
π∈D∗

n(213)

tdes πq(13-2) π = t
∑

π∈Sn−1(213)

tdes πq(13-2) π.

Proof. It is easy to see from the definition of D∗
n that π ∈ D∗

n(213) if and only if π = nπ′

with π′ ∈ Sn−1(213). Moreover, we note that des π = 1+ des π′ and (13-2) π = (13-2) π′.
Summing over all the π ∈ D∗

n(213) completes the proof.

Lemma 2.26. For any n ≥ 1 and π ∈ Sn,

des π + (31-2) π + 1 = fl π + (13-2) π, (2.33)

where fl π = π(1) is the first letter of π.

Proof. We use induction on n. The n = 1 case holds trivially. Assume (2.33) is true for
any permutation with length less than n. Let π ∈ Sn and i be such that π(i) = n. If
i ∈ {1, n}, the statement is easily checked. Otherwise we assume 2 ≤ i ≤ n − 1 and let
π′ = π(1) · · ·π(i− 1)π(i+ 1) · · ·π(n).

• If π(i− 1) < π(i+ 1), then des π = des π′ + 1, fl π = fl π′, and

(13-2) π − (13-2) π′ = (31-2) π − (31-2) π′ + 1,

where we only need to check the contributions for 13-2 and 31-2 coming from the
triple with n playing the role of 3.

• π(i− 1) > π(i+ 1), then des π = des π′, fl π = fl π′, and

(13-2) π − (13-2) π′ = (31-2) π − (31-2) π′.

In both cases, we see that (2.33) holds for n as well.
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Lemma 2.27. For any n ≥ 2,

∑
π∈D∗

n(132)

tdes πqfl π =

�n
2
�∑

k=1

( ∑
π∈D∗

n,k(132)

qfl π

)
tk(1 + t)n−2k, (2.34)

where D
∗
n,k(132) := {π ∈ D∗

n(132) : dd
∗ π = 1, des π = k}.

Proof. Since pattern 132 is concerned here, per Remark 2.3, we shall use Lin-Zeng’s dual
version of the MFS-action ϕx. In addition, we modify it differently in the following way.
This new variant of MFS-action is denoted as ϕx.

ϕx(π) :=

{
π, if x is a valley, a peak, or a left-to-right maximum of π;
ϕx(π), otherwise.

We state without proving the following facts about ϕx, all of which can be verified
similarly as for ϕ′

x.

• ϕx’s are involutions and commute;

• the map ϕx is closed on D∗
n(132);

• for any π ∈ D∗
n(132) and each x ∈ [n], fl π = fl ϕx(π).

Let π ∈ D∗
n(132). The above facts, together with a similar argument about the orbits

under this new MFS-action, tell us that there is a unique permutation in Orb(π) which has
exactly one double descent at the first letter (this is due to the definition of coderangements
D∗ and the convention that π(0) = π(n) = n + 1). Now, let π̄ be this unique element in
Orb(π), then da π̄ = n− 1− peak π̄ − valley π̄ and des π̄ = peak π̄ + 1 = valley π̄. Thus

∑
σ∈Orb π

tdes σqfl σ = qfl π̄tdes π̄(1 + t)da π̄ = qfl π̄tdes π̄(1 + t)n−2 des π̄.

Summing over all the orbits establishes (2.34).

Now we are ready to present the q-analogues for all the remaining entries shown in
Table 2.3.
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Theorem 2.28. For any n ≥ 1,∑
π∈Sn(132)

(−1)des πq(2-31) π =
∑

π∈Sn(132)

(−1)des πq(2-13) π

=

{
0 if n is even,
(−q)

n−1
2 Cn−1

2
(q2) if n is odd,

(2.35)∑
π∈Sn(213)

(−1)des πq(31-2) π =
∑

π∈Sn(213)

(−1)des πq(13-2) π

=

{
0 if n is even,
(−q)

n−1
2 Cn−1

2
(q2) if n is odd,

(2.36)∑
π∈Sn(312)

(−1)des πq(2-31) π =
∑

π∈Sn(312)

(−1)des πq(2-13) π

=

{
0 if n is even,
(−q)

n−1
2 Cn−1

2
(q2) if n is odd,

(2.37)

∑
π∈D∗

n(132)

(−1)des πq(2-31) π =

{
(−1)

n
2 Ĉn

2
(q) if n is even,

0 if n is odd,
(2.38)

∑
π∈D∗

n(132)

(−q)des πq(31-2) π =

{
(−q)

n
2 C n

2
(q) if n is even,

0 if n is odd,
(2.39)

∑
π∈D∗

n(213)

(−1)des πq(13-2) π =

{
(−1)

n
2 q

n−2
2 Cn−2

2
(q2) if n is even,

0 if n is odd,
(2.40)

∑
π∈D∗

n(213)

(−q)des πq(31-2) π =

{
(−1)

n
2 q

3n−4
2 Cn−2

2
(q2) if n is even,

0 if n is odd,
(2.41)

where

Ĉn(q) :=
∑

π∈A2n(231)

q(13-2) π and Cn(q) :=
∑

π∈A2n(231)

q(2-13) π.

Proof. (2.35)–(2.37) follow directly by taking t = −1 in Theorem 2.1 and applying (2.11).
The proof of (2.38) parallels that of (2.31), only that we use the decomposition in (2.27)
this time. To prove (2.39), we first note that∑

π∈D∗
n(132)

(−q)des πq(31-2) π =
∑

π∈D∗
n(132)

(−1)des πqdes π+(31-2) π

(2.33)
=

∑
π∈D∗

n(132)

(−1)des πqfl π−1,

which gives directly the odd 2n+ 1 case in view of the expansion (2.34). For the even 2n
case, we compute using (2.34) again that∑

π∈D∗
2n(132)

(−1)des πqfl π−1 = (−1)n
∑

π∈D∗
2n,n(132)

qfl π−1 (2.33)
= (−q)n

∑
π∈D∗

2n,n(132)

q(31-2) π.

Moreover, we note that π ∈ D
∗
2n,n(132) if and only if πr ∈ A2n(231), which implies (2.39).
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Finally, (2.40) follows from (2.36) and Lemma 2.25. In view of the similarity between
(2.40) and (2.41), it is a straightforward calculation basing on identity (2.33) and that
fl π = n for any π ∈ D∗

n(213), as pointed out in the proof of Lemma 2.25.

The first few values for Ĉn(q) and Cn(q) are:

Ĉ0(q) = Ĉ1(q) = 1,

Ĉ2(q) = q + q2,

Ĉ3(q) = q2 + q3 + q4 + q5 + q6,

Ĉ4(q) = q3 + q4 + 2q5 + 2q6 + 2q7 + q8 + 2q9 + q10 + q11 + q12,

Ĉ5(q) = q4 + q5 + 3q6 + 3q7 + 4q8 + 3q9 + 5q10 + 3q11 + 4q12 + 3q13 + 3q14

+ 2q15 + 2q16 + 2q17 + q18 + q19 + q20,

C0(q) = C1(q) = 1,

C2(q) = 1 + q,

C3(q) = 1 + 2q + 2q2,

C4(q) = 1 + 3q + 5q2 + 5q3,

C5(q) = 1 + 4q + 9q2 + 14q3 + 14q4,

C6(q) = 1 + 5q + 14q2 + 28q3 + 42q4 + 42q5.

The q-Catalan numbers Cn(q) merit some further investigation for their own sake. First
we utilize (2.33) again to get another interpretation for Cn(q):∑

π∈A2n(231)

q(2-13) π =
∑

π∈A2n(231)

q(31-2) π
r (2.33)

= q−n−1
∑

π∈A2n(231)

qfl πr
.

Definition 2.8. Let Cn(q) = q−n−1
∑

π∈A2n(231)

qfl πr
:=

n−1∑
k=0

an,kq
k, where

an,k = {π ∈ A2n(231) : fl πr = n+ k + 1} and an,k = |an,k|.

The first few examples are :

a1,0 = {12};
a2,0 = {1423} and a2,1 = {1324};
a3,0 = {162534}, a3,1 = {162435, 132645} and a3,2 = {132546, 152436}.

Recall that the ballot numbers f(n, k) satisfy (see [1, 18]) the recurrence relation

f(n, k) = f(n, k − 1) + f(n− 1, k), (n, k ≥ 0), (2.42)

where f(n, k) = 0 if n < k and f(0, 0) = 1, and have the explicit formula

f(n, k) =
n− k + 1

n+ 1

(
n+ k

k

)
, (n ≥ k ≥ 0).

With the initial values a1,0 = a2,0 = a2,1 = 1, and comparing (2.42) and (2.43), we establish
the following connection.
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Proposition 2.29. For 0 ≤ k ≤ n− 1,

an,k = f(n− 1, k) =
n− k

n

(
n− 1 + k

k

)
.

Proof. For n, k ≥ 0 let a0,0 = 1 and an,k = 0 if k ≥ n or k < 0. It suffices to prove the
following recurrence relation for an,k:

an+1,k = an+1,k−1 + an,k. (2.43)

First note two useful facts for any π ∈ A2n(231).

a) fl π = 1, since otherwise (π(1), π(2), 1) will form a 231 pattern.

b) π(1) < π(3) < · · · < π(2n− 1), i.e., the valleys of π form an increasing subsequence.

Due to fact a), we can assume fl πr = π(2n) > 1. Now we decompose an,k as the union of
two disjoint subsets:

apn,k := {π ∈ an,k : π(2n)− 1 is a peak},
avn,k := {π ∈ an,k : π(2n)− 1 is a valley}.

We proceed to show that |apn+1,k| = |an+1,k−1| and |avn+1,k| = |an,k| via two bijections
α : apn+1,k → an+1,k−1 and β : avn+1,k → an,k, and thus proving (2.43).

The first map α is relatively easier. For any π ∈ apn+1,k, we get its image α(π) by
switching the position of two peaks π(2n) and π(2n) − 1. A moment of reflection should
reveal that α : apn+1,k → an+1,k−1 is indeed well-defined and bijective.

We have to lay some ground work for the second map β : avn+1,k → an,k. The key
observation is on the last three letters. We claim that for any π ∈ avn+1,k,

π(2n) = π(2n+ 2) + 1, π(2n+ 1) = π(2n+ 2)− 1. (2.44)

First we see 2n+2 	= π(2n+2), since otherwise 2n+1 = π(2n+2)− 1 cannot be a valley.
So 2n+ 2 must be a non-terminal peak. Now notice that 2n+ 1 cannot appear to the left
of 2n+ 2, otherwise it will cause a 231 pattern. It must also be a peak, since there are no
other letters larger than it except for 2n+ 2. If 2n+ 1 = π(2n+ 2) is the last peak, then
2n being a valley forces (π(2n), π(2n+ 1), π(2n+ 2)) = (2n+ 2, 2n, 2n+ 1), which means
(2.44) holds true. Otherwise 2n+ 1 is a non-terminal peak and we consider 2n next. This
deduction must end in finitely many steps since the total number of peaks is n (and finite).
At this ending moment we find some m as the last peak, and 2n+2, 2n+1, . . . ,m+1 are
all peaks decreasingly ordered to its left, then m− 1 being a valley, together with fact b)
force us to have (2.44) again. So the claim is proved.

The definitions and validity of β and its inverse become transparent, in view of (2.44).

β: For π ∈ avn+1,k, delete π(2n+ 1) and π(2n+ 2), then decrease the remaining letters
larger than π(2n+ 2) by 2.

β−1: For σ ∈ an,k, increase the letters no less than σ(2n) by 2, and append two letters
σ(2n) and σ(2n) + 1 to the right of σ, in that order.

The proof ends here and we give the following example for illustration.
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Table 2.4: The (−1)-evaluation over Sn(τ) and Dn(τ) with respect to exc.
exc \τ 123 132 213 231 312 321
S2n+1 � (−1)nCn (−1)nCn � � (−1)nCn

D2n Conjecture 2.32 (−1)nCn (−1)nCn � � (−1)nCn

Example 2.30. The two bijections α : apn+1,k → an+1,k−1 and β : avn+1,k → an,k for the
case of n = 3 are shown below.

ap4,3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
13254768
13274658
15243768
17243658
17263548

α−−→

13254867
13284657
15243867
18243657
18263547

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ a4,2

ap4,2

⎧⎨⎩
13284657
18243657
18263547

α−−→
13284756
18243756
18273546

⎫⎬⎭ a4,1

ap4,1
{

18273546
α−−→ 18273645

}
a4,0

av4,2

{
13254867
15243867

β−−→ 132546
152436

}
a3,2

av4,1

{
13284756
18243756

β−−→ 132645
162435

}
a3,1

av4,0
{

18273645
β−−→ 162534

}
a3,0

2.5.3 Other exc-cases avoiding one pattern of length three

In this subsection we present the parallel (−1)-phenomena with respect to exc, note
the differences when one compares Table 2.4 with Table 2.3. Unfortunately we have not
found any q-analogues at this moment.

Theorem 2.31. For any n ≥ 1,

∑
π∈Sn(213)

(−1)exc π =
∑

π∈Sn(132)

(−1)exc π =

{
0 if n is even,
(−1)

n−1
2 Cn−1

2
if n is odd,

(2.45)

∑
π∈Dn(213)

(−1)exc π =
∑

π∈Dn(132)

(−1)exc π =

{
(−1)

n
2 Cn

2
if n is even,

0 if n is odd.
(2.46)

Proof. We first apply the q = 1 case of Theorem 2.4, and the following identity due to
Elizalde [34] to derive the second equalities in both (2.45) and (2.46).∑

π∈Sn(321)

texc πyfix π =
∑

π∈Sn(132)

texc πyfix π, for n ≥ 1. (2.47)

Next we observe the following facts, which can be easily checked.

π ∈ Sn(132) ⇔ πrc ∈ Sn(213),

exc(π) = n− exc(πrc)− fix(π), fix(π) = fix(πrc).
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Consequently we have∑
π∈Sn(132)

texc πyfix π = tn
∑

π∈Sn(213)

t− exc π−fix πyfix π. (2.48)

Plugging in t = −1, y = 0 gives us directly the first equality in (2.46). Finally, taking
t = y = −1 in (2.48), (2.47) and t = −1, q = 1 in (2.24) leads to:

(−1)n
∑

π∈Sn(213)

(−1)exc π =
∑

π∈Sn(321)

(−1)wex π =

{
0 if n is even,
(−1)

n+1
2 Cn−1

2
if n is odd,

which is exactly the first equality in (2.45).

The only non-� entry in Table 2.4 that is not covered by Theorems 2.4 or 2.31 is still
a conjecture.

Conjecture 2.32. For any n ≥ 1, the polynomials Gn(t) :=
∑

π∈Dn(123)

texc π have nonneg-

ative coefficients in their γ-expansions. Moreover, there is a sequence {Fn}n≥1 of positive
integers such that

Gn(−1) =
∑

π∈Dn(123)

(−1)exc π =

{
(−1)

n
2 Fn

2
if n is even,

0 if n is odd.

We note that neither {Gn(1)}n≥1 nor {Fn}n≥1 is registered in the OEIS. The first
values are given by Gn(1) = 0, 1, 2, 7, 20, 66, 218, 725, . . . and Fn = 1, 7, 58, 545, 5570, . . ..
For the first few n ≥ 1, we have

G1(t) = 0, G2(t) = t,

G3(t) = t+ t2 = t(1 + t), G4(t) = 7t2,

G5(t) = 10t2 + 10t3 = 10t2(1 + t),

G6(t) = 2t2 + 62t3 + 2t4 = 2t2(1 + t)2 + 58t3,

G7(t) = 109t3 + 109t4 = 109t3(1 + t),

G8(t) = 45t3 + 635t4 + 45t5 = 45t3(1 + t)2 + 545t4,

G9(t) = 5t3 + 1264t4 + 1264t5 + 5t6 = 5t3(1 + t)3 + 1249t4(1 + t),

G10(t) = 769t4 + 7108t5 + 769t6 = 769t4(1 + t)2 + 5570t5.

The symmetry of Gn(t) follows from the map π �→ πrc, which is stable on Sn(123) and
Dn(123), and satisfies exc(π) = n− exc(πrc)−fix(π). Thus, if π ∈ Dn(123), we obtain the
symmetry.

2.6 Two cases avoiding two patterns of length four

We first enumerate An(2413, 3142) and An(1342, 2431), then put these results in the
context of (−1)-evaluations of the descent polynomials over Sn(2413, 3142) and Sn(1342, 2431).

Letting q = 1 in the last interpretation (2.6) of Theorem 2.2 we derive immediately the
following γ-expansion for Narayana polynomials (see also [83, Chapter 4]).

Cn(t, 1) =
∑

π∈Sn(231)

tdes π =

�n−1
2

�∑
k=0

γNn,kt
k(1 + t)n−1−2k, (2.49)



2.6. Two cases avoiding two patterns of length four 73

where γNn,k := γn,k(1). The following two γ-expansions (2.50) and (2.51), which were
obtained recently by Fu-Lin-Zeng [55] and Lin[72], respectively, will be crucial in our (−1)-
evaluations.

Sn(t) :=
∑

π∈Sn(2413,3142)

tdes π =

�n−1
2

�∑
k=0

γSn,kt
k(1 + t)n−1−2k, (2.50)

Yn(t) :=
∑

π∈Sn(1342,2431)

tdes π =

�n−1
2

�∑
k=0

γYn,kt
k(1 + t)n−1−2k, (2.51)

where

γSn,k = #{π ∈ Sn(2413, 3142) : dd π = 0, des π = k}, (2.52)

γYn,k = #{π ∈ Sn(1342, 2431) : dd π = 0, des π = k}. (2.53)

It follows that

|An(2413, 3142)| = γS
n,�n−1

2
�, |An(1342, 2431)| = γY

n,�n−1
2

�. (2.54)

Recall the γ-coefficients in the expansions (2.49), (2.50)–(2.51). For ∗ = N,S, Y , let

Γ∗(x, z) :=
∞∑
n=1

�n−1
2

�∑
k=0

γ∗n,kx
kzn

be the generating functions for γNn,k, γ
S
n,k and γYn,k, respectively. We need the following two

algebraic equations for ΓS(x, z) and ΓY (x, z), which were first derived by Lin [72].

ΓS = z + zΓS + xzΓ2
S + xΓ3

S , (2.55)

ΓY = z + zΓY + 2xzΓNΓY + xΓ2
N (ΓY − z). (2.56)

2.6.1 The case of (2413,3142)–avoiding alternating permutations.

Theorem 2.33. Let rn := |A2n+1(2413, 3142)|, n ≥ 0, R(x) :=
∞∑
n=1

rnx
n, then

R(x) = x(R(x) + 1)2 + x(R(x) + 1)3. (2.57)

Consequently, r0 = 1 and for n ≥ 1,

rn =
2

n

n−1∑
i=0

2i
(
2n

i

)(
n

i+ 1

)
. (2.58)

Proof. First, (2.54) gives us rn = γS2n+1,n. Therefore, in order to get a recurrence relation
for rn, we should extract the coefficient of z2n+1 in (2.55) and then compare the coefficients
of xn from both sides. This gives us, for n ≥ 1,

rn = [xn−1]
(
[z2n]Γ2

S(x, z)
)
+ [xn−1]

(
[z2n+1]Γ3

S(x, z)
)
.

Now we take a closer look at [z2n]Γ2
S(x, z).

[z2n]Γ2
S(x, z) =

2n−1∑
m=1

⎛⎝�m−1
2

�∑
j=0

γSm,jx
j

⎞⎠ ·
⎛⎝� 2n−m−1

2
�∑

k=0

γS2n−m,kx
k

⎞⎠ ,
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So for each term in this summation, the power of x is

j + k ≤
⌊
m− 1

2

⌋
+

⌊
2n−m− 1

2

⌋
≤ n− 1.

Hence we get contributions for xn−1 only from odd m’s, with j and k both achieving their
maxima. Similar analysis applies to the term involving Γ3

S and the details are omitted. All
these amount to

rn =
n−1∑
m=0

rmrn−m−1 +
n−1∑
m,l=0

rmrlrn−m−l−1.

In terms of the generating function R(x), we obtain (2.57). Next we rewrite (2.57) as

x =
R

(R+ 1)2(R+ 2)
, (2.59)

which is ripe for applying the Lagrange inversion (cf. [45]). A straightforward computation
leads to (2.58) and completes the proof.

Theorem 2.34. Let tn := |A2n(2413, 3142)|, n ≥ 1, T (x) :=
∞∑
n=1

tnx
n, then

1

2
R(x) =

1

2
R(x) · T (x) + T (x). (2.60)

Consequently, t1 = 1 and for n ≥ 2,

tn =
4

n− 1

n−2∑
i=0

2i
(
2n− 1

i

)(
n− 1

i+ 1

)
. (2.61)

Proof. While it might be possible to establish (2.60) algebraically from (2.55), we present
a combinatorial argument, showing both sides generate the same set of permutations.

The first thing to notice is that for an alternating permutation π ∈ A2n+1(2413,
3142), n ≥ 1, its reverse πr 	= π is also in A2n+1(2413, 3142). This implies that rn is
even for n ≥ 1. Moreover, we call a permutation π ∈ Sn, n ≥ 2 normal if 1 appears
to the left of n. For example, there are three normal permutations in S3: 213, 123, 132.
Now we see that exactly one permutation in the pair {π, πr} is normal, and consequently
the number of normal permutations in A2n+1(2413, 3142) is rn/2. Therefore the left-hand
side of (2.60) generates all normal, alternating, and (2413, 3142)-avoiding permutations of
odd length larger than 1. Next we show that the right-hand side does precisely the same.
The following claimed decomposition, whose proof given separately, is the key ingredient.
Recall two classical operations, the direct sum “⊕” and the skew sum “�”. If π = π(1)π(2)

with π(1) < π(2), then we write π = π(1) ⊕ st(π(2)). Similarly, if π = π(1)π(2) with
π(1) > π(2), then we write π = st(π(1))� π(2). For instance, we have 12354 = 123⊕ 21 and
34521 = 123� 21.

Claim 2.35. Let π be a normal, alternating, and (2413, 3142)-avoiding permutation of odd
length larger than 1, then there exists a unique pair of permutations (π(1), π(2)), such that

1. π = π(1) ⊕ π(2),

2. either π(1) = 1 or π(1) is of odd length and non-normal, alternating and (2413, 3142)-
avoiding,
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3. π(2) is of even length (≥ 2) and (2413, 3142)-avoiding, its reverse is alternating.

In view of the claim above, 1
2R(x) · T (x) accounts for the cases when π(1) is of length

3 or longer, while T (x) corresponds to the case when π(1) = 1. Now since the above
decomposition using ⊕ is unique, we get (2.60).

Applying (2.59), we can rewrite (2.60) as

T =
R

R+ 2
= x(R+ 1)2.

This form is suitable for the more general Lagrange-Bürmann formula (cf. [45]), and we
get for n ≥ 2,

tn = [xn−1](R+ 1)2 =
1

n− 1
[Rn−2]

(
2(R+ 1)(R+ 1)2n−2(R+ 2)n−1

)
=

2

n− 1

n−2∑
i=0

2n−1−i

(
n− 1

i

)(
2n− 1

n− 2− i

)

=
4

n− 1

n−2∑
i=0

2i
(
n− 1

i+ 1

)(
2n− 1

i

)
.

The proof is now completed.

Proof of Claim 2.35. A permutation avoids both 2413 and 3142 if and only if it is separable
(cf. [63, page 57]), which means it can be decomposed as either π = π(1) ⊕ π(2) or
π = π(1) � π(2). Now π being normal excludes the case of π = π(1) � π(2). Such ⊕-
decomposition may not be unique. To make it unique as claimed, we always take the
decomposition where π(1) is shortest in length. This also means π(1) itself cannot be ⊕-
decomposed further. Therefore π(1) = 1 or π(1) can be �-decomposed and thus non-normal.
Being subwords of π, π(1) and π(2) should avoid 2413 and 3142 as well. The remaining
restrictions on π(1) and π(2) can be verified easily.

Remark 2.4. In view of the similarity in the expressions for rn and tn, we can unify them
as the following formula:

|An(2413, 3142)| = 2n−2m

m

m−1∑
i=0

2i
(

m

i+ 1

)(
n− 1

i

)
, where m =

⌊
n− 1

2

⌋
, and n ≥ 3.

Moreover, the two sequences {rn}n≥0 and {tn}n≥1 have been cataloged in the OEIS (see
oeis:A027307 and oeis:A032349), and were considered, for instance, by Deutsch et al.
[30] as enumerating certain type of lattice paths. Then a natural question would be to find
a bijection between these two combinatorial models.

Now we turn to the (−1)-evaluation for Sn(t), which is a direct result of (2.50) and
(2.54).

Theorem 2.36. For any n ≥ 1, the following holds

Sn(−1) =
∑

π∈Sn(2413,3142)

(−1)des π =

{
0 if n is even,
(−1)

n−1
2 rn−1

2
if n is odd.

(2.62)
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2.6.2 The case of (1342,2431)–avoiding alternating permutations.

Theorem 2.37. Let un := |A2n+1(1342, 2431)| and U(x) :=
∞∑
n=0

unx
n, then

U(x) =

√
1− 4x√

1− 4x− 2x
=

1

1− 2x

1− 2x

1− x

1− x

. . .

. (2.63)

Proof. We only sketch the proof since it is quite analogous to that of Theorem 2.33. We
use (2.56) in a similar way as we use (2.55) in the proof of (2.57), i.e., we extract the
coefficients of z2n+1 from both sides and then compare the coefficients of xn. This leads
to the following recurrence relation that involves the Catalan number Cn, since we have
already shown that γN2n+1,n = |A2n+1(231)| = Cn. For n ≥ 1, we have:

un = 2
n−1∑
m=0

umCn−1−m +
n−1∑
m=1

um

n−m−1∑
l=0

ClCn−m−l−1

= 2

n−1∑
m=0

umCn−1−m +

n−1∑
m=1

umCn−m.

In terms of generating functions, this means

2(U(x)− 1) = 2xU(x)C(x) + (U(x)− 1)C(x),

where

C(x) =
1−√

1− 4x

2x

is the generating function for the Catalan numbers. We plug in C(x) and solve for U(x)
to finish the proof.

Remark 2.5. Interestingly, our result above seems to be the first combinatorial interpre-
tation for un, and the sequence {un}n≥0 is also on OEIS (see oeis:A084868). Although a
single sum formula for un can be derived from (2.63) by using standard method, we prefer
to give a multiple sum formula as follows:

∞∑
n=0

unx
n =

1

1− 2x√
1− 4x

=

∞∑
m=0

(
2x√
1− 4x

)m

=
∞∑

m=0

( ∞∑
k=0

2

(
2k

k

)
xk+1

)m

.

Thus we obtain, for n ≥ 1,

un =

n∑
m=1

2m
∑

k1+···+km=n−m

m∏
i=1

(
2ki
ki

)
. (2.64)

The above formula shows that un is a multiple of 4 when n ≥ 2.
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With the aid of (2.51) and (2.54), we obtain

Theorem 2.38. For any n ≥ 1, the following holds

Yn(−1) =
∑

π∈Sn(1342,2413)

(−1)des π =

{
0 if n is even,
(−1)

n−1
2 un−1

2
if n is odd.

(2.65)

We end this section by noting that both Sn(2413, 3142) and Sn(1342, 2431) exhibit
(−1)-phenomenon only for the entire set of permutations, but not for the subset of coderange-
ments. This should not come as a surprise in view of the reversal relations between the
two patterns that we avoid, namely (2413)r = 3142, (1342)r = 2431, and the fact that the
definition of coderangements is incompatible with the reverse map. Other subsets of Sn

instead of D∗
n should be examined to hunt for the other half of the (−1)-phenomenon.

2.7 Final remarks

It would be interesting to give direct combinatorial proofs of the (−1)-phenomena
of this chapter. The expansions we have in Theorems 2.2 and 2.3, Lemma 2.27 are all
natural, in the sense that the statistics (powers of q) appear in the γ-coefficients on the
expansion side, are the same as those that appear on the left-hand side, the avoiding
patterns are also the same. And we prove them uniformly using the MFS-action and its
variation. Each interpretation listed in Theorem 2.1 (resp. Theorem 2.20) should have a
q-γ-expansion in theory. Namely, once we have an expansion for one of them, the others all
share this expansion. But expansions derived this way are unnatural (for instance, (2.24) is
unnatural). So now the question is, do the other ones that we are missing in Theorem 2.2
(to be precise, in Tabel 2.1) have natural expansions? It seems the MFS-action cannot
help anymore.

It would be appealing to establish a multivariate generating function (in the spirit
of Shin-Zeng’s Lemma 2.6) that specializes to the (2413, 3142)-avoiding permutations or
(1342, 2413)-avoiding permutations, and consequently giving us q-analogues of (2.62) or
(2.65).

Another direction to extend the results presented here is to place Sn in the broader
context of Coxeter groups, and consider the so-called Narayana polynomials of types B and
D (see [3, Theorems 2.32 and 2.33]). This approach was shown fruitful for permutations
in a recent work of Eu, Fu, Hsu and Liao [36].

Finally, in a different context, some (−1)-phenomenon have been generalized to the
deeper cyclic sieving phenomenon (CSP), see [86, 91]. It would be interesting to see
whether there are any CSP-analogue for our (−1)-phenomenon.
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Chapter 3

Elliptic Functions, Continued
Fractions and Gamma Positivity

3.1 Introduction

The Jacobi elliptic function sn (z, x) is defined by the inverse of an elliptic integral, i.e.,

sn (z, x) = y iff z =

∫ y

0

dt√
(1− t2)(1− x2t2)

,

where x ∈ (0, 1) is fixed modulus. The other two Jacobi elliptic functions are defined by

cn (z, x) :=
√

1− sn 2(z, x),

dn (z, x) :=
√

1− x2sn 2(z, x).

The first few terms of Taylor series expansions of these Jacobian elliptic functions are
given [44],

sn (z, x) = z − (1 + x2)
z3

3!
+ (1 + 14x2 + x4)

z5

5!
− (1 + 135x2 + 135x4 + x6) + · · · , (3.1)

cn (z, x) = 1− z2

2!
+ (1 + 4x2)

z4

4!
− (1 + 44x2 + 16x4)

z6

6!
+ · · · , (3.2)

dn (z, x) = 1− x2
z2

2!
+ x2(4 + x2)

z4

4!
− x2(16 + 44x2 + x4)

z6

6!
+ · · · . (3.3)

Rogers and Stieltjes [89, 104] considered the following Laplace-Borel transforms of sn
and cn :

S1(z, x) =

∫ ∞

0
e−tsn (zt, x)dt and C0(z, x) =

∫ ∞

0
e−tcn (zt, x)dt,

i.e., the series obtained from (3.1) and (3.2) by replacing zn/n! by zn, have the following
continued fractions expansions,

S1(z, x) =
z

1 + (1 + x2)z2 − 1 · 22 · 3 · x2z4

1 + (1 + x2)32z2 − 3 · 42 · 5 · x2z4
1 + (1 + x2)52z2 − · · ·

, (3.4)
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C0(z, x) =
1

1 + z2 − 12 · 22 · x2z4

1 + (32 + 22x2)z2 − 32 · 42 · x2z4
1 + (52 + 42x2)z2 − · · ·

. (3.5)

According to [44], the question of the possible combinatorial significance of the coeffi-
cients of

(−1)n
z2n+1

(2n+ 1)!
(resp. (−1)n

z2n

(2n)!
)

in the Taylor Series expansions of Jacobi elliptic functions sn (z, x)(resp. cn (z, x)) was
first raised by Schützenberger. The first combinatorial interpretation was given by Viennot
[106], and is expressed in terms of so-called Jacobi permutations. Flajolet [43] has shown
the coefficients of cn (z, x) to count classes of alternating (up-and-down) permutations
based on the parity of peaks. Dumont [31] finally discovered some further relations between
these functions and the cycle structure of permutations. Flajolet-Françon [44] gave an
interpretation of the elliptic functions as generating functions of double permutations.

A polynomial f(x) =
∑

i aix
i ∈ R[x] is called γ-positive if f(x) =

∑�n/2�
i=0 γix

i(1+x)n−2i

for n ∈ N and nonnegative reals γ0, γ1, . . . , γ�n/2�. The notion of γ-positivity appeared
first in the work of Foata and Schützenberger [51], a recent survey on γ-positivity in
combinatorics and geometry was given by Athanasiadis [3]. In a series of papers Shin and
Zeng [95, 96, 97] exploited the combinatorial theory of continued fractions to derive various
γ-positivity results.

In this chapter, we study a class of permutations introduced by Flajolet and Françon
to give combinatorial interpretations for the Taylor coefficients of Jacobian elliptic func-
tions. By considering two more general continued fractions of Rogers and Stieltjes, we
provide combinatorial interpretations of the corresponding Taylor coefficients as well as
their gamma coefficients.

3.2 Main results

In this chapter, we define the variant labels for some notations and the nomenclature
of various permutation statistics of pervious chapters, other statistics use the same labels
as mentioned before.

For π ∈ Sn, consider the ordinal type any entry π(i) (i ∈ [n]) can be classified into four
categories (cf. Subsection 1.2.1), we give the following definition.

Definition 3.1. A permutation is a Doubled Permutation iff for all i, elements (i.e. values)
2i+ 1 and 2i+ 2 have the same ordinal type. The set of doubled permutations is denoted
by DPn.

Define J2n+1(p, q, x, u, v, w) the coefficients in the following continued fraction expan-
sion, ∑

n≥0

(−1)nJ2n+1(p, q, x, u, v, w)z
2n+1

=
z

1 + (u2 + x2v2)[1]2p,qz
2 − [1]p,q[2]

2
p,q[3]p,qx

2w2z4

1 + (u2 + x2v2)[3]2p,qz
2 − [3]p,q[4]

2
p,q[5]p,qx

2w2z4

· · ·

, (3.6)

where [n]p,q = (pn − qn)/(p− q). Then we give the following combinatorial interpretation
of the coefficients in the continued fraction expansions (3.6).
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Theorem 3.1. We have

J2n+1(p, q, x, u, v, w) :=
∑

π∈DP2n+1

p(2-13)πq(31-2)πxdes πuda πvdd πwvalley π (3.7)

Remark 3.1. Let J2n+1(x) := J2n+1(1, 1, x, 1, 1, 1), Eq. (3.7) reduces to Flajolet-Françon’s
result [44]. In other words,

sn (z, x) :=
∑
n≥0

(−1)nJ2n+1(x)
z2n+1

(2n+ 1)!
.

Define

DP2n+1,2k := {π ∈ DP2n+1, dd π = 0, des π = 2k}.

We have the double analogue of Eulerian polynomials expansion formula as follows.

Theorem 3.2.

J2n+1(p, q, x, u, v, w) =

�n/2�∑
k=0

a2n+1,2k(p, q)(xw)
2k(u2 + v2x2)n−2k, (3.8)

where
a2n+1,2k(p, q) =

∑
π∈DP2n+1,2k

p(2-13)πq(31-2)π. (3.9)

Moreover, for all 0 ≤ k ≤ �n/2�, the following divisibility holds

(p+ q)2k | a2n+1,2k(p, q). (3.10)

In particular, the coefficients in the Taylor series expansion of Jacobi elliptic function
sn (z, x) have the following γ-expansions.

Corollary 3.3. For all n ≥ 1, we have

J2n+1(x) =

�n
2
�∑

i=0

|DP2n+1,2k|x2k(1 + x2)n−2k. (3.11)

The second goal of this chapter is to explore the coefficients in the Taylor series expan-
sion of Jacobi elliptic function cn (z, x) by generalizing the continued fractions of (3.5).

For π ∈ Sn, consider the cyclic ordinal type any entry π(i) (i ∈ [n]) can be classified
into four categories such as cyclic peak, cyclic valley, double excedance and fixed point,
double drop (cf. Subsection 1.2.1)we give the following definition.

Definition 3.2. A permutation π is said to be a Cyclic Doubled Permutation of the First
Kind iff for all i, elements (i.e. values) 2i+ 2 and 2i+ 3 in π have the same cyclic ordinal
type. The set of first cyclic doubled permutations is denoted by FCDPn. A permutation
π is said to be a Cyclic Doubled Permutation of the Second Kind iff for all i, elements (i.e.
values) 2i+ 1 and 2i+ 2 in π have the same cyclic ordinal type. The set of second cyclic
doubled permutations is denoted by SCDPn.
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The Clarke-Steingrímsson-Zeng [24, 96] constructed a bijection Φ from des based statis-
tics with exc based ones for π ∈ Sn, we show that the bijection Φ has following property
from σ ∈ DP2n to Φ(σ) ∈ SCDP2n.

Theorem 3.4. For n ≥ 1, there exists a bijection Φ : DP2n �→ SCDP2n such that

(2-31, 31-2, des, lda− fmax, ldd, lvalley, fmax) σ

= (nest, icr, drop, cda, cdd, cvalley, fix) Φ(σ).
(3.12)

Define J2n(p, q, x, u, v, w, y) the coefficients in the following continued fraction expan-
sion, ∑

n≥0

(−1)nJ2n(p, q, x, u, v, w, y)z
2n =

1

1 + b0z2 − λ1z
4

1 + b1z2 − λ2z
4

1 + b2z2 · · ·

, (3.13)

where bn = (p2ny + qu[2n]p,q)
2 + x2v2[2n]2p,q and λn = [2n − 1]2p,q[2n]

2
p,qx

2w2. Then we
give the following combinatorial interpretation of the coefficients in the continued fraction
expansions (3.13).

Theorem 3.5. We have

J2n(p, q, x, u, v, w, y) =
∑

σ∈SCDP2n

pnest πqicr πxdrop πucda πvcdd πwcvalley πyfix π (3.14)

=
∑

π∈DP2n

p(2-31)πq(31-2)πxdes πulda π−fmax πvldd πwlvalley πyfmax π

(3.15)

=
∑

σ∈SCDP2n

pnest πqcros πxexc πucdd πvcda πwcvalley πyfix π. (3.16)

Remark 3.2. Let J2n(x) := J2n(1, 1, x, 1, 1, 1, 1), Eq. (3.15) reduces to Flajolet-Françon’s
result [44]. In other words,

cn (z, x) := 1 +
∑
n≥1

(−1)nJ2n(x)
z2n

(2n)!
.

By taking y = 0 in the Theorem 3.5, we consider the derangement analogue of doubled
permutations. Define D2n(p, q, x, u, v, w) the coefficients in the following continued fraction
expansion ∑

n≥0

(−1)nD2n(p, q, x, u, v, w)z
2n

=
1

1− [1]2p,q[2]
2
p,qx

2w2z4

1 + [2]2p,q(q
2u2 + x2v2)z2 − [3]2p,q[4]

2
p,qx

2w2z4

· · ·

. (3.17)

By Theorem 3.5, we give the following combinatorial interpretation of the coefficients
in the continued fraction expansions (3.17).
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Corollary 3.6. We have

D2n(p, q, x, u, v, w) :=
∑

π∈DD∗
2n

p(2-31)πq(31-2)πxdes πulda πvldd πwlvalley π (3.18)

=
∑

π∈DD2n

pnest πqicr πxdrop πucda πvcdd πwcvalley π (3.19)

=
∑

π∈DD2n

pnest πqcros πxexc πucdd πvcda πwcvalley π. (3.20)

Where DD2n := {π ∈ SCDP2n, fix π = 0} and DD∗
2n = {π ∈ DP2n, fmax π = 0}.

Define Dcyc
2n (β, x, u, v, w) the coefficients in the following continued fraction expansion

1 +
∑
n≥1

(−1)nDcyc
2n (β, x, u, v, w)z2n =

1

1 + b0z2 − λ1x
2w2z4

1 + b1z2 − λ2x
2w2z4

· · ·

, (3.21)

where, for k ≥ 0,

bk = (2k)2(x2u2 + v2), and λk+1 = (2k + 1)(2k + 2)(β + 2k)(β + 2k + 1).

Then we give the following combinatorial interpretation of the coefficients in the con-
tinued fraction expansions (3.21).

Theorem 3.7. We have

Dcyc
2n (β, x, u, v, w) :=

∑
π∈DD2n

βcyc πxexc πucda πvcdd πwcvalley π,

where cyc π denote the number of its cycles for any permutation π ∈ DD2n.

Define the double Derangement polynomial,

D2n(x) :=
∑

π∈DD2n

xexc π.

We give the first few terms of D2n(x) as follows,

D2(x) = 0,

D4(x) = 4x2,

D6(x) = 16x4 + 16x2,

D8(x) = 64x6 + 720x4 + 64x2,

D10(x) = 256x8 + 14720x6 + 14720x4 + 256x2,

D12(x) = 1024x10 + 253696x8 + 1111360x6 + 253696x4 + 1024x2.

By observing above equations, we have the following q-analogue of double Derangement
polynomials expansion formula.

Theorem 3.8. For all positive integers n and for each statistic stat ∈ {cyc, inv, nest},

∑
π∈DD2n

qstat πxexc π =

�n/2�∑
k=0

b2n,2k(q)x
2k(1 + x2)n−2k, (3.22)
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where
b2n,2k(q) =

∑
w∈DD2n,2k

qstat π, (3.23)

and DD2n,2k consists of all elements of DD2n with exactly 2k excedances and no double
excedance.

The third goal of this chapter is to give another combinatorial interpretation of the
coefficients in the Taylor series expansion of Jacobi elliptic functions sn (z, x) and cn (z, x)
by using the fundamental transformation.

Theorem 3.9. The coefficient of

(−1)n
z2n+1

(2n+ 1)!
x2k

in sn (z, x) counts the number of (even) first cyclic doubled permutations over 2n+ 2 ter-
minated by 1 having 2k + 1 excedances. The coefficient of

(−1)n
z2n

(2n)!
x2k

in cn (z, x) counts the number of (even) second cyclic doubled permutations over 2n having
2k excedances.

Remark 3.3. In this chapter, we prove above theorem by using fundamental transforma-
tion of Foata-Schützenberger, see [51, p. 13]. The bijection of Clarke-Steingrímmson-Zeng
[24] can be used to give another proof.

3.3 Definitions and Preliminaries

A Motzkin path of length n in the plan N × N is a sequence of points (s0, . . . , sn),
where s0 = (0, 0), si − si−1 = (1, 0), (1,±1) and sn = (n, 0). Each step (si−1, si) is
called East (resp. North-East, South-East) if si − si−1 = (1, 0) (resp. si − si−1 = (1, 1),
si − si−1 = (1,−1)). The height of the step (si−1, si) is the ordinate of si−1.

Given a Motzkin path γ, for convenience we consider two types of horizontal steps,
either blue or red, the set of 2-Motzkin path of length n ≥ 1 is denoted by CMn. Denoting
the North-East step by a, the East blue step by b, the East red step by b′ and the South-
East step by c, see Figure 3.1 for a 2-Motzkin path. If we weight each East blue (resp. East
red, North-East, South-East) step of height i by bi (resp. b′i, ai and ci), the weight of γ is
defined by the product of its step weights and denoted by w(γ). Then,

∞∑
n=0

∑
γ∈CMn

w(γ) zn =
1

1− (b0 + b′0) z −
a0c1 z

2

1− (b1 + b′1) z −
a1c2 z

2

. . .

. (3.24)

A 2-Motzkin path is a doubled path if the step at odd position is always followed by
a step of the same type. See Figure 3.1 for a doubled path γ, whose wieght is w(γ) =
a0a1b2b2c2c1a0a1c2c1b

′
0b

′
0. Grouping steps 2 by 2 in a doubled path of length 2n yields a

2-Motzkin path of length n, then we obtain the following lemma.
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a0

a1

b2 b2
c2

c1a0

a1 c2

c1 b′0 b′0

Figure 3.1: The doubled path γ can be written as the word aabbccaaccbb.

Lemma 3.10. If DM2n is the set of doubled paths of length 2n, then
∞∑
n=0

∑
γ∈DM2n

w(γ) zn =
1

1− (b0
2 + b′0

2) z − a0a1c2c1 z
2

1− (b2
2 + b′2

2)z − a2a3c4c3 z
2

. . .

, (3.25)

A doubled Laguerre history of length 2n denoted by DH2n is a couple (γ, (p1, . . . , p2n))
such that γ is a doubled path of length 2n and (p1, . . . , p2n) is a sequence satisfying 0 ≤
pi ≤ v(si−1, si), where v(si−1, si) = k if si−1 = (i− 1, k).

3.4 Proof of Theorem 3.1

For i ∈ [2n+ 1], define (31-2)kσ, (2-31)kσ and (2-13)kσ for σ ∈ DP∗
2n+1 by

(31-2)kσ = #{i : i+ 1 < j and σ(i+ 1) < σ(j) = k < σ(i)},
(2-31)kσ = #{i : j < i− 1 and σ(i) < σ(j) = k < σ(i− 1)},
(2-13)kσ = #{i : j < i− 1 and σ(i− 1) < σ(j) = k < σ(i)}.

The numbers lk = (31-2)kσ (resp. rk = (2-31)kσ) are called the left embracing numbers
(resp. right embracing numbers) of k ∈ [2n] in σ.

For any σ ∈ DP2n+1, the doubled Laguerre history (s0, . . . , s2n, p1, . . . , p2n) is con-
structed as follows: let s0 = (0, 0) and for i = 1, . . . , 2n,

• the step (si−1, si) is North-East if i is a valley,

• the step (si−1, si) is South-East if i is a peak,

• the step (si−1, si) is East blue if i is a double ascent,

• the step (si−1, si) is East red if i is a double descent.

While pi = (2-13)iσ for i = 1, . . . , 2n. If hi is the height of (si−1, si), i.e., si−1 = (i−1, hi),
then (2-13)iσ + (31-2)iσ = hi. Since σ(0) = σ(2n + 2) = 0, so 2n + 1 must be a peak
and valley σ = peak σ− 1. Thus (s0, . . . , s2n, p1, . . . , p2n) is a doubled Laguerre history of
length 2n and

w(σ) = xER γ+NE γuEB γvER γwNE γ
2n∏
i=1

ppiqhi−pi ,

where NE γ (resp. EB γ, ER γ) is the number of North-East steps (resp. East blue steps,
East red steps) of γ. Therefore,

J2n+1(p, q, x, u, v, w) =
∑

γ∈DM2n

xER γ+NE γuEB γvER γwNE γ
2n∏
i=1

[hi + 1]p,q, (3.26)
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where [n]p,q = (pn− qn)/(p− q). Given a doubled path γ, the weight of each step at height
k is created by

ak := xw[k + 1]p,q, bk := u[k + 1]p,q, b′k := xv[k + 1]p,q, ck := [k + 1]p,q, (3.27)

if the step is North-East, East blue, East red and South-East, respectively, and the weight
of γ is defined to be the product of the step weights. Summing over all the doubled paths
of length 2n with the rules (3.27), we have

J2n+1(p, q, x, u, v, w) =
∑

γ∈DM2n

w(γ). (3.28)

With Lemma 3.10 and above equation, J2n+1(p, q, x, u, v, w) are the coefficients in the
following continued fraction expansion,∑

n≥0

J2n+1(p, q, x, u, v, w)z
n

=
1

1− (u2 + x2v2)[1]2p,qz −
[1]p,q[2]

2
p,q[3]p,qx

2w2z2

1− (u2 + x2v2)[3]2p,qz −
[3]p,q[4]

2
p,q[5]p,qx

2w2z2

· · ·

, (3.29)

by transforming z to −z2 and multiplying both sides by z, we obtain (3.7) immediately.

3.5 Proof of Theorem 3.2

In this section, we give a proof using continued fraction and a proof using Modified
Foata-Strehl action.

3.5.1 Analytic method

In view of (3.29), for 0 ≤ k ≤ �n/2�, let a2n+1,2k(p, q, x, u, v) be the coefficient of w2k

in J2n+1(p, q, x, u, v, w), i.e.,

J2n+1(p, q, x, u, v, w) =

�n/2�∑
k=0

a2n+1,2k(p, q, x, u, v)w
2k. (3.30)

Transforming z and w to z
(u2+x2v2)

and w(u2+x2v2)
x in (3.29), respectively, we have

∑
n≥0

�n/2�∑
k=0

a2n+1,2k(p, q, x, u, v)

x2k(u2 + x2v2)n−2k
w2kzn

=
1

1− [1]2p,qz −
[1]p,q[2]

2
p,q[3]p,qw

2z2

1− [3]2p,qz −
[3]p,q[4]

2
p,q[5]

2
p,qw

2z2

1− [5]2p,qz −
[5]p,q[6]

2
p,q[7]p,qw

2z2

· · ·

. (3.31)
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Since the continued fraction expansion of (3.31) is free of variables x, u, and v, the coeffi-
cient of w2kzn of the above equation is a polynomial in p and q with nonnegative integral
coefficients. Denoted the coefficient of (3.31) by

P2n+1,2k(p, q) :=
a2n+1,2k(p, q, x, u, v)

x2k(u2 + x2v2)n−2k
. (3.32)

On the other hand, taking (p, q, x, u, v, w) = (p, q, 1, 1, 0, w) in (3.30), the continued
fraction (3.29) becomes the right-hand side of (3.31) immediately. With the definition of
a2n+1,2k in (3.9), we see that

P2n+1,2k(p, q) = a2n+1,2k(p, q, 1, 1, 0) = a2n+1,2k(p, q). (3.33)

Combining (3.30), (3.31) (3.32) and (3.33), this proves (3.8). Finally, since (p+ q)2 | [2n−
1]p,q[2n]

2
p,q[2n+1]p,q for all n ≥ 1, in the right-hand side of (3.31), each w2 appears with a

factor (p+ q)2, and the polynomial P2n+1,2k(p, q) is divisible by (p+ q)2k. This completes
the proof.

3.5.2 Group action method

Definition 3.3 (MFS-action). Let π ∈ Sn with boundary condition π(0) = π(n+1) = 0,
for any a ∈ [n], the a-factorization of π reads π = w1w2aw3w4, where w2 (resp. w3) is the
maximal contiguous subword immediately to the left (resp. right) of a whose letters are all
larger than a. Following Foata and Strehl [52] we define the action ϕa by

ϕa(π) = w1w3aw2w4.

Note that if a is a double ascent (resp. double descent), then w2 = ∅ (resp. w3 = ∅),
and if a is a peak then w2 = w3 = ∅. For instance, if a = 3 and π = 28531746 ∈ S7,
then w1 = 2, w2 = 85, w3 = ∅ and w4 = 1746. Thus ϕa(π) = 23851746. Clearly, ϕa is an
involution acting on Sn and it is not hard to see that ϕa and ϕb commute for all a, b ∈ [n].
Brändén [13] modified the map ϕa to be

ϕ′
a(π) :=

{
ϕa(π), if a is not a valley of π;
π, if a is a valley of π.

0

9

5

6

1
3
2

7

4

8

0

Figure 3.2: MFS-actions on 569174328 (recall π(0) = π(10) = 0)

See Figure 3.2 for illustration, where exchanging w2 and w3 in the a-factorisation is
equivalent to move a from a double ascent to a double descent or vice versa. Note that
the boundary condition does matter. Take the permutation 569173428 in Figure 3.2 as an
example. If π(0) = 10 instead, then 5 becomes a valley and will be fixed by ϕ′

5.
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It is clear that ϕ′
a’s are involutions and commute. For any subset S ⊆ [n] we can then

define the map ϕ′
S : DP2n+1 → DP2n+1 by

ϕ′
S(π) =

∏
a∈S

ϕ′
2a−1(π)ϕ

′
2a(π).

Note that ϕ′
2n+1(π) = π and the concatenation of ϕ′

2a−1(π)ϕ
′
2a(π) is closed for π ∈ DP2n.

Hence the group Z
n
2 acts on DP2n+1 via the functions ϕ′

S , S ⊆ [n]. This action will be
called the Modified Foata–Strehl action (MFS-action for short).

Proof of Corollary 3.3. For any permutation π ∈ DP2n+1, let Orb(π) = {g(π) : g ∈ Z
n
2}

be the orbit of π under the MFS-action. The MFS-action divides the set DP2n+1 into
disjoint orbits. Moreover, for π ∈ DP2n+1, 2a−1 and 2a are double descents (resp. double
ascents) of π if and only if 2a − 1 and 2a are double ascents (resp. double descents) of
ϕ′
2a−1(π)ϕ

′
2a(π). Double descents (resp. double ascents) 2a − 1 and 2a of π remains a

double descent (resp. double ascent) of ϕ′
2b−1(π)ϕ

′
2b(π) for any b 	= a. Hence, there is

a unique permutation in each orbit which has no double descent. Let π̄ be this unique
element in Orb(π), then da π̄ = 2n+1−peak π̄−valley π̄ and des π̄ = peak π̄−1 = valley π̄.
And for any other π′ ∈ Orb(π), it can be obtained from π̄ by repeatedly applying ϕ′

2a−1

and ϕ′
2a for some double ascents 2a− 1 and 2a of π̄. Once ϕ′

2a−1ϕ
′
2a is used, des

2 increases
by 1 and da

2 decreases by 1. Thus∑
σ∈Orb π

x
des σ

2 = x
des π̄

2 (1 + x)
da∗ π̄

2 = x
des π̄

2 (1 + x)n−des π̄,

by summing over all the orbits that compose together to form DP2n+1, we obtain

∑
π∈DP2n+1

x
des
2 =

�n
2
�∑

i=0

|DP2n+1,2i|xi(1 + x)n−2i,

by transforming x to x2, (3.11) is derived immediately.

3.6 Proof of Theorem 3.4

The Clarke-Steingrímsson-Zeng [24, 96] constructed a bijection Φ from des based statis-
tics with exc based ones for π ∈ Sn, to be specific, for n ≥ 1 and σ ∈ Sn,

(2-31, 31-2, des, lda− fmax, ldd, lvalley, fmax) σ

= (nest, icr, drop, cda, cdd, cvalley, fix) Φ(σ).
(3.34)

In this section, we first recall the bijection Φ and show that the above bijection also has
above properties from σ ∈ DP2n to Φ(σ) ∈ SCDP2n.

Recall (1.14) and (1.15), let σ ∈ SCDP2n, the refinements of inverse crossing and
inverse nesting are defined by

icrk σ = #{i ∈ [2n] : (i < k ≤ σ(i) < σ(k)) ∨ (i > k > σ(i) > σ(k))},
inek σ = #{i ∈ [2n] : (i < k ≤ σ(k) < σ(i)) ∨ (i > k > σ(k) > σ(i))}.

It is clear that icr σ =
∑2n

k=1 icrk σ and ine σ =
∑2n

k=1 inek σ.
For σ = σ(1)σ(2) · · ·σ(2n) ∈ DP2n, let σ(0) = 0 and σ(2n + 1) = 2n + 1. For

1 ≤ i ≤ 2n, the letter σ(i) (resp. σ(i + 1)) is called a descent top (resp. descent bottom)
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of σ if σ(i) > σ(i + 1); the letter σ(i) (resp. σ(i + 1)) is called a nondescent top (resp.
nondescent bottom) of σ if σ(i) < σ(i+1). We define inversion top number (resp. inversion
bottom number) of a letter i in the permutation σ by the number of appearances of inversion
form (i, j) (resp (j, i)) in σ.

The permutation τ = Φ(σ) is constructed by

(2-31)kσ = inek τ, for k = 1, . . . , 2n.

Given a permutation σ, for two biwords,
(
f
f ′
)

and
(
g
g′
)
, by concatenating f and g, and f ′

and g′, respectively, we obtain the biword τ ′ =
(

f
f ′

g
g′

)
.

• Define the word f by the subword of descent bottoms of σ in increasing order.

• Define the word g by the subword of nondescent bottoms of σ in increasing order.

• Define the word f ′ by the permutation on descent tops in σ, where the inversion
bottom number of each letter a in f ′ is equal to the right embracing number of a in
σ.

• Define the word g′ by the permutation on nondescent tops in σ, where the inversion
top number of each letter b in g′ is equal to the right embracing number of b in σ.

Then we rearrange the columns of τ ′ such that the bottom row is in increasing order, the
top row of the rearranged bi-word leads to the desired permutation τ = Φ(σ).

Example 3.11. Let σ = 8 2 3 4 10 6 7 5 9 1 ∈ DP10, with right embracing numbers
2, 1, 1, 1, 0, 2, 1, 1, 0, 0. Then(

f

f ′

)
=

(
1

9

2

7

5

10

6

8

)
,

(
g

g′

)
=

(
3

2

4

3

7

4

8

6

9

5

10

1

)
,

τ ′ =
(
f

f ′
g

g′

)
=

(
1

9

2

7

5

10

6

8

3

2

4

3

7

4

8

6

9

5

10

1

)
→

(
10

1

3

2

4

3

7

4

9

5

8

6

2

7

6

8

1

9

5

10

)
.

and thus Φ(σ) = τ = 10 3 4 7 9 8 2 6 1 5 ∈ SCDP10.

Proof of Theorem 3.4. Given σ ∈ DP2n, let τ = Φ(σ). From the construction process
every column

(
i
j

)
in
(
f
f ′
)

(resp.
(
g
g′
)
) satisfies i < j (resp. i ≥ j ).

• Each letter σ(i) appears in f ′ is a descent top σ(i) in σ and also a drop σ(i) in τ , in
other words,

σ(i) > σ(i+ 1) (1 ≤ i ≤ 2n) ⇐⇒ σ(i) > τ(σ(i)). (3.35)

Therefore, des σ = drop τ.

• By the construction, (2-31)σ is equal to the sum of the right embracing numbers in
σ and the sum of the inversions in the words f ′ and g′. For an inversion pair (i, j)
in f ′ (resp. g′), we have τ(i) < τ(j) < j < i (resp. j < i ≤ τ(i) < τ(j)), then the
pair (i, j) is a inverse nesting in τ . Thus (2-31)kσ = inek τ, ∀k ∈ [2n].
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• Similarly, (31-2)kσ = icrk τ, ∀k ∈ [2n].

• If k is a foremaximum in σ, then k is a nondescent bottom and a nondescent top, so
k appears in g and g′. From the construction, (31-2)kσ = 0. Therefore, the column(
k
k

)
occurs in

(
g
g′
)
, i.e., τ(k) = k. Conversely, if τ(k) = k, then the column

(
k
k

)
occurs in

(
g
g′
)

and (31-2)kσ = 0, which yields that k is a foremaximum in σ. Thus
fmax σ = fix τ.

• If k is a double ascent of σ and not a foremaximum of σ, then k is a nondescent bottom
and nondescent top. So k appears in g and g′. From the construction, (31-2)kσ > 0.
Therefore,

(
g
g′
)

does not contain the column
(
k
k

)
, i.e., τ−1(k) < k < τ(k), which

implies that k is a double excedance of τ . Conversely, if τ−1(k) < k < τ(k), then the
column k occures in g and g′ and (31-2)kσ > 0. It follows that k is a double ascent
of σ and not a foremaximum of σ.Thus (lda− fmax)σ = cda τ.

• If k is a double descent of σ, then k is a descent bottom and descent top. So k occurs
in f and f ′, then τ−1(k) > k > τ(k), which implies that k is a double drop of τ .
Conversely, if τ−1(k) > k > τ(k), then the column k occurs in f and f ′. It follows
that k is a double descent of σ. Thus ldd σ = cdd τ.

• If k is a valley of σ, then k is a descent bottom and nondescent top. So k occurs
in f and g′, then τ−1(k) > k < τ(k), which implies that k is a cyclic valley of τ .
Conversely, if τ−1(k) > k < τ(k), then the column k occurs in f and g′. It follows
that k is a valley of σ. Thus lvalley σ = cvalley τ.

• If k is a peak of σ, then k is a nondescent bottom and descent top. So k occurs
in f ′ and g, then τ−1(k) < k > τ(k), which implies that k is a cyclic peak of τ .
Conversely, if τ−1(k) < k > τ(k), then the column k occurs in f ′ and g. It follows
that k is a peak of σ. Thus lpeak σ = cpk τ.

With the Definitions 3.1 and 3.2, then τ ∈ SCDP2n and the statistics above satisfy (3.12).
This completes the proof.

3.7 Proof of Theorem 3.5

Using Foata-Zeilberger’s bijection ΨFZ : SCDP2n → DH2n, the doubled Laguerre
history (s0, . . . , s2n, p1, . . . , p2n) is constructed as follows, let s0 = (0, 0),

• the step (si−1, si) is North-East if i is a cyclic valley,

• the step (si−1, si) is South-East if i is a cyclic peak,

• the step (si−1, si) is East blue if i is a double excedance (or fixed point),

• the step (si−1, si) is East red if i is a double drop.

and pi = nesti σ for i = 1, . . . , 2n. It is easy to see that

nesti σ + icri σ =

⎧⎪⎪⎨⎪⎪⎩
hi, if (si−1, si) is North-East;
hi − 1, if (si−1, si) is South-East;
hi, if (si−1, si) is East blue;
hi − 1, if (si−1, si) is East red.
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Then (s0, . . . , s2n, p1, . . . , p2n) is a doubled Laguerre history of length 2n and

w(σ) = xER γ+NE γuEB γvER γwNE γyEB
∗ γqNE γ+EB γ

2n∏
i=1

ppiqhi−1−pi ,

where NE γ (resp. EB γ, ER γ, EB∗ γ) is the number of North-East steps (East blue steps,
and East red steps and East blue steps whose height is equal to pi) of γ. Given a doubled
path γ, the weight of each step at height k is created by using the following rules:

ak := xw[k + 1]p,q, bk := ypk + qu[k]p,q, b′k := xv[k]p,q, ck := [k]p,q, (3.36)

if the step is North-East, East Blue, East Red and South-East, respectively, and the weight
of γ is defined by the product of the step weights. Summing over all the doubled paths of
length 2n with the rules (3.36), we have

J2n(p, q, x, u, v, w, y) =
∑

γ∈DM2n

w(γ). (3.37)

With Lemma 3.10 and above equation, J2n(p, q, x, u, v, w, y) are the coefficients in the
following continued fraction expansion,∑

n≥0

J2n(p, q, x, u, v, w, y)z
n

=
1

1− y2z − [1]2p,q[2]
2
p,qx

2w2z2

1− ((qu[2]p,q + p2y)2 + x2v2[2]2p,q)z −
[3]2p,q[4]

2
p,qx

2w2z2

1− · · ·

, (3.38)

by transforming z to −z2, we obtain (3.13) immediately.
Claim: for π ∈ SCDP2n, we have

(nest, icr, drop, cda, cdd, cvalley, fix)π

=(nest, cros, exc, cdd, cda, cvalley, fix)π−1.
(3.39)

With Eqs. (3.12) and (3.39), the other two interpretations (3.15) and (3.16) is obtained.
Take y = 0 in (3.38), we have∑

n≥0

D2n(p, q, x, u, v, w)z
n

=
1

1− [1]2p,q[2]
2
p,qx

2w2z2

1− ((q2u2 + x2v2)[2]2p,q)z −
[3]2p,q[4]

2
p,qx

2w2z2

1− ((q2u2 + x2v2)[4]2p,q)z · · ·

, (3.40)

which is equivalent to (3.17) by transforming z to −z2.

3.8 Proof of Theorem 3.7

Let
Dcyc

2n (β, x, u, v, w) :=
∑

σ∈D2n

βcyc σxexc σucda σvcdd σwcvalley σ,
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in view of [95, Eq. 40], given a doubled path γ, the weight is created by using the following
rules:

bk + b′k := k(xu+ v) and akck+1 := (k + 1)(β + k)xw, (3.41)

where ak (resp. bk, b′k and ck) is the weight of North-East (resp. East blue, East red and
South-East) step at height k. The weight of γ is defined by the product of the step weights.
Summing over all the doubled paths of length 2n with the rules (3.41), we have

Dcyc
2n (β, x, u, v, w) =

∑
γ∈DM2n

w(γ).

With Lemma 3.10 and above equation, Dcyc
2n (p, q, x, u, v, w, y) are the coefficients in the

following continued fraction expansion,

1 +
∑
n≥1

Dcyc
2n (β, x, u, v, w)zn

=
1

1− 0(x2u2 + v2)z − 2β(β + 1)x2w2z2

1− 22(x2u2 + v2)z − 3(β + 2)4(β + 3)x2w2z2

· · ·

, (3.42)

which is equivalent to (3.21) by transforming z to (−z)2.

3.9 Proof of Theorem 3.8

In this section, we give the proof by considering three cases.

1. When stat = nest, considering the generating function of the left side of Eq. (3.22),

D2n(q, 1, x, 1, 1, 1) =
∑

π∈DD2n

qnest πxexc π.

In view of (3.40), we have

1 +
∑
n≥1

D2n(q, 1, x, 1, 1, 1)z
n =

1

1− [1]2q [2]
2
qx

2z2

1− [2]2q(x
2 + 1)z − [3]2q [4]

2
qx

2z2

· · ·

. (3.43)

Then the generating function of the right side of Eq. (3.22) is equal to

∑
n≥0

�n/2�∑
k=0

b2n,2k(q)x
2k(1 + x2)n−2kzn (3.44)

=
∑
n≥0

∑
π∈D2n,2k

qnest π(
x

1 + x2
)2k

(
(1 + x)2z

)n
=
∑
n≥0

D2n(q, 1,
x

1 + x2
, 1, 0, 1)

(
(1 + x2)z

)n
.
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By Eq. (3.40),

∑
n≥0

D2n(q, 1, x, 1, 0, 1)z
n =

1

1− [1]2q [2]
2
qx

2z2

1− [2]2qz −
[3]2q [4]

2
qx

2z2

· · ·

. (3.45)

By transforming x
1+x2 and (1 + x2)z into x and z, respectively, then Eq. (3.44) is

equivalent to (3.43) immediately. This completes the proof.

2. When stat = inv, invoking the known result (see [95, Eq. (40)]),

inv = drop+ cros+2 nest,

by using a inverse bijection, we have

inv = exc+ icr+2 ine .

Considering the generating function of the left side of Eq. (3.22),

D2n(q
2, q, xq, 1, 1, 1) =

∑
π∈DD2n

qinv πxexc π.

In view of (3.40), we have

1 +
∑
n≥1

D2n(q
2, q, qx, 1, 1, 1)zn =

1

1−
[1]2q2,q[2]

2
q2,qx

2q2z2

1− [2]2
q2,q

(x2q2 + q2)z −
[3]2q2,q[4]

2
q2,qx

2q2z2

· · ·

.

(3.46)
Then the generating function of the right side of Eq. (3.22) is equal to

∑
n≥0

�n/2�∑
k=0

b2n,2k(q)x
2k(1 + x2)n−2kzn (3.47)

=
∑
n≥0

∑
π∈D2n,2k

qinv π(
x

1 + x2
)2k

(
(1 + x)2z

)n
=
∑
n≥0

D2n(q
2, q,

qx

1 + x2
, 1, 0, 1)

(
(1 + x2)z

)n
.

By Eq. (3.40), we have

∑
n≥0

D2n(q
2, q, qx, 1, 0, 1)zn =

1

1−
[1]2q2,q[2]

2
q2,qx

2z2

1− q2[2]2
q2,q

z −
[3]2q2,q[4]

2
q2,qx

2z2

· · ·

. (3.48)

By transforming x
1+x2 and (1 + x2)z into x and z, respectively, then Eq. (3.47) is

equivalent to (3.46) immediately. This completes the proof.
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3. When stat = cyc, considering the generating function of the left side of Eq. (3.22),

C2n(q, x, 1, 1, 1) =:
∑

π∈DD2n

qcyc πxexc π.

In view of (3.42), we have

1 +
∑
n≥1

C2n(q, x, 1, 1, 1)z
n =

1

1− 2q(q + 1)x2z2

1− 22(x2 + 1)z − 3(q + 2)4(q + 3)x2z2

· · ·

. (3.49)

Then the generating function of the right side of Eq. (3.22) is equal to

1 +
∑
n≥1

�n/2�∑
k=0

b2n,2k(q)x
2k(1 + x2)n−2kzn (3.50)

=1 +
∑
n≥1

∑
π∈D2n,2k

qcyc π(
x

1 + x2
)2k

(
(1 + x)2z

)n
=1 +

∑
n≥1

C2n(q,
x

1 + x2
, 0, 1, 1)

(
(1 + x2)z

)n
.

By Eq. (3.42),

1 +
∑
n≥1

C2n(q, x, 0, 1, 1)z
n =

1

1− 2q(q + 1)x2z2

1− 22z − 3(q + 2)4(q + 3)x2z2

· · ·

. (3.51)

By transforming x
1+x2 and (1 + x2)z into x and z, respectively, then Eq. (3.50) is

equivalent to (3.49) immediately. This completes the proof.

3.10 Proof of Theorem 3.9

The fundamental bijection of Foata-Schützenberger linking des statistics with drop is
crucial for our ensuing derivation, see [51] and [99].

Recall that the cycle structure of a permutation π ∈ Sn can be written as a disjoint
union of its distinct cycles C1, C2, · · · , Ck, i.e., π = C1C2 · · ·Ck. Define the standard cycle
representation of π in following two steps.

1. Writing the largest element of each cycle first,

2. Arranging the cycles in increasing order according to their largest elements.

For example, for π = 26471583 ∈ S8, the standard cycle representation is (6512)(8347).
For π ∈ Sn, define Ψ(π) in two steps.

1. Inserting a left parenthesis in π = π(1)π(2) · · ·π(n) before each left-to-right maximum,
i.e., an element ai such that ai > aj for every j < i.

2. Then inserting a closing parenthesis before each internal left parenthesis and at the
end.
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σ ∈ DP5 τ = Ψ1(σ) τ−1 ∈ FCDP6

desσ da∗ σ dd∗ σ valley∗ σ
drop τ − 1 cda τ + fix τ cdd τ cvalley τ − 1
exc τ−1 − 1 cdd τ−1 + fix τ−1 cda τ−1 cvalley τ−1 − 1

12345 623451 623451 0 4 0 0
31425 645231 645231 2 0 0 2
32415 654321 654321 2 0 0 2
41325 645321 654231 2 0 0 2
42315 654231 645321 2 0 0 2
31524 645213 546231 2 0 0 2
32514 654312 564321 2 0 0 2
51324 645312 564231 2 0 0 2
52314 654213 546321 2 0 0 2
41523 654123 456321 2 0 0 2
42513 645132 465231 2 0 0 2
51423 654132 465321 2 0 0 2
52413 645123 456231 2 0 0 2
12543 623145 423561 2 2 2 0
34521 612453 236451 2 2 2 0
54321 612345 234561 4 0 4 0

Figure 3.3: Illustration of Ψ1 on doubled permutations on [5] with their statistics

σ ∈ DP5 τ = Ψ2(σ
′) τ−1 ∈ SCDP4

desσ da∗ σ dd∗ σ valley∗ σ
drop τ cda τ + fix τ cdd τ cvalley τ
exc τ−1 cdd τ−1 + fix τ−1 cda τ−1 cvalley τ−1

12345 1234 1234 0 4 0 0
31425 3412 3412 2 0 0 2
32415 4321 4321 2 0 0 2
41325 3421 4312 2 0 0 2
42315 4312 3421 2 0 0 2

Figure 3.4: Illustration of Ψ2 on doubled permutations on [5] with their statistics

Conversely, define Ψ−1(π) to be the permutation obtained from π by writing in standard
form and erasing the parentheses. Then the above map Ψ : π �→ π is a bijection from Sn

to itself, known as the fundamental bijection.

Remark 3.4. For τ = Ψ(σ), it is easy to observe the following properties.

• If the value i is a double ascent of σ, the value i is a double excedance or fixed point
of τ .

• If the value i is a double descent of σ, the value i is a double drop of τ .

• If the value i is a peak of σ, the value i is a cyclic peak of τ .

• If the value i is a valley of σ, the value i is a cyclic valley of τ .

Proof of Theorem 3.9. For Jacobi elliptic function sn (z, x), recall [44, Theorem 1] the
Taylor coefficients count the number (odd) doubled permutations over 2n + 1 having
2k descents. We define a new bijection Ψ1 on DP2n+1. Given a permutation σ =
σ(1) . . . σ(2n + 1) ∈ DP2n+1, let σ̂ = (σ(1) + 1) . . . (σ(2n + 1) + 1)(1), where elements
2i+ 2 and 2i+ 3 are of the same ordinal type. Consider the permutation τ = Ψ(σ̂).

• The bijection Ψ satisfies that the elements 2i + 2 and 2i + 3 in τ are of the same
cyclic ordinal type.
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• Since the last element σ̂(2n+ 2) of σ̂ is 1, the final element of last cycle of τ should
be 1, i.e., τ(1) = 2n+ 2, by using a classical inverse bijeciton,

τ−1 := τ−1(1)τ−1(2) · · · τ−1(n).

Then the last element τ−1(2n+ 2) of τ−1 should be 1.

Then τ := Ψ1(σ) = Ψ(σ̂) ∈ FCDP2n+2, and

des σ = des σ̂ − 1 = drop τ − 1 = exc τ−1 − 1.

Then we see that the Taylor coefficients count the number (even) first cyclic doubled
permutations over 2n + 2 terminated by 1 and having 2k + 1 excedances. We give an
example for the bijection Ψ1 on doubled permutations on [5], see Figure 3.3.

For Jacobi elliptic function cn (z, x), recall [44, Theorem 1] the Taylor coefficients count
the number (odd) doubled permutations over 2n+ 1 terminated by 2n+ 1 and having 2k
descents. let σ := σ(1) . . . σ(2n)(2n + 1), the elements 2i + 1 and 2i + 2 are of the same
ordinal type. Using the fundamental bijection Ψ to σ′ := σ(1) . . . σ(2n), consider the
permutation τ ′ := Ψ2(σ) = Ψ(σ′), where elements 2i+ 1 and 2i+ 2 in τ ′ are of the same
cyclic ordinal type. Then τ ′ ∈ SCDP2n, and

des σ = des σ′ = drop τ ′ = exc τ ′−1.

Then we see that the Taylor coefficients count the number (even) second cyclic doubled
permutations over 2n having 2k excedances. We give an example for the bijection Ψ2 on
doubled permutations on [5], see Figure 3.4.

3.11 Interpret cn (z, x) in terms of alternating permutations

A permutation σ = σ1σ2 · · ·σn ∈ Sn is alternating (resp. falling alternating) permuta-
tion if σ1 < σ2, σ2 > σ3, σ3 < σ4, etc. (resp. σ1 > σ2, σ2 < σ3, σ3 > σ4, etc.). Let A

∗
n

(resp. An) be the set of alternating (resp. falling alternating) permutations on [n]. Let
evalley π and opeak π denote the number of even valleys and odd peaks of π.

A Dyck path is a Motzkin path without horizontal step. Let Dyck2n denote the set of
Dyck paths of length 2n. Then, it is well known (see [43]) that

1 +
∑
n≥1

∑
γ∈Dyck2n

w(γ)z2n =
1

1− a0c1z
2

1− a1c2z
2

1− a2c3z
2

. . .

. (3.52)

Using Lemma 1.39 in (3.13), we obtain that J2n(p, q, x) := J2n(p, q, x, 1, 1, 1, 1) are the
coefficients of the following continued fractions,

∞∑
n=0

(−1)nJ2n(p, q, x)z
2n =

1

1 +
[1]2p,q z

2

1 +
[2]2p,q (xz)

2

1 +
[3]2p,q z

2

1 +
[4]2p,q (xz)

2

. . .

. (3.53)
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Remark 3.5. When p = q = x = 1, (3.53) reduces to the continued fraction of classic
secant numbers E2n, see [95, Eq. (9)]. In 2012, Kim [62] tried to found a formula for
J2n(p, q, 1).

Observing the continued fractions (3.53), we give another combinatorial interpretation
of J2n(p, q, x).

Theorem 3.12. For n ≥ 1, we have

J2n(p, q, x) =
∑

π∈A2n

p(2-31)πq(31-2)πxevalley π+opeak π. (3.54)

Proof. For any σ = σ1σ2 . . . σ2n ∈ A2n, let σ(2n + 1) = 2n + 1, the corresponding Dyck
path diagram (s0, . . . , s2n, p1, . . . , p2n) is constructed as follows: let s0 = (0, 0) and for
i = 1, . . . , 2n,

• the step (si−1, si) is North-East if i is a valley,

• the step (si−1, si) is South-East if i is a peak.

While pi = (2-31)iσ for i = 1, . . . , 2n. If hi is the height of (si−1, si), i.e., si−1 = (i−1, hi),
Since 1 is the valley then (31-2)1σ + (2-31)1σ = 0 = h1, and for i > 1,

(31-2)iσ + (2-31)iσ

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(31-2)i−1σ + (2-31)i−1σ + 1 if i− 1 is a valley and i is a valley,
(31-2)i−1σ + (2-31)i−1σ − 1 if i− 1 is a peak and i is a peak.
(31-2)i−1σ + (2-31)i−1σ if i− 1 is a valley and i is a peak,
(31-2)i−1σ + (2-31)i−1σ if i− 1 is a peak and i is a valley,

by induction we have

(31-2)iσ + (2-31)iσ =

{
hi if i is a valley,
hi − 1 if i is a peak.

Therefore,

w(σ) = xENE γ+OSE γqNE γ
2n∏
i=1

ppiqhi−1−pi ,

where NE γ, SE γ, ENE and OSE γ are the number of North-East steps, South-East steps,
North-East steps at even positions (s2i−1, s2i)(1 ≤ i ≤ n − 1) (corresponding height h2i
is odd) and South-East steps at odd positions (s2i′ , s2i′+1)(1 ≤ i′ ≤ n − 1) (correspond-
ing height h2i′+1 is even) of γ, respectively. For example, σ = 645231 gives the path
(NE,ENE,OSE,ENE,OSE, SE) and the weight (1, tp, tq, tp, tq, 1). Therefore,

J2n(p, q, x) =
∑

γ∈Dyck2n

xENE γ+OSE γqNE γ
2n∏
i=1

[hi]p,q, (3.55)

where [n]p,q = (pn − qn)/(p− q). Given a Dyck path γ, the weight of each step is created
by using the following rules:

a2k := [2k + 1]p,q, a2k+1 := [2k + 2]p,qx, c2k := [2k]p,qx, c2k+1 := [2k + 1]p,q, (3.56)
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if the step is North-East at height 2k, North-East at height 2k + 1, South-East at height
2k, and South-East at height 2k + 1, respectively, and the weight of γ is defined to be the
product of the step weights. Summing over all the doubled paths of length 2n with the
rules (3.56), we have

J2n(p, q, x) =
∑

γ∈Dyck2n

w(γ). (3.57)

With (3.52) and above equation, J2n(p, q, x) are the coefficients in the following continued
fraction expansion,

∞∑
n=0

J2n(p, q, x)z
2n =

1

1− [1]2p,q z
2

1− [2]2p,q (xz)
2

1− [3]2p,q z
2

1− [4]2p,q (xz)
2

. . .

, (3.58)

by transforming z2 to −z2, we obtain (3.53) immediately.

Remark 3.6. For a Dyck path γ ∈ Dyck2n, a North-East step at positions (s2i−1, s2i)
(1 ≤ i ≤ n−1) is matched by some South-East step at (s2i′ , s2i′+1)(1 ≤ i ≤ n−1), i.e., the
number of North-East steps at odd height is equal to the number of South-East steps at
even height. In the construction from the alternating permutation to Dyck path of above
proof, we see that the number of even valleys is equal to the number of odd peaks for
π ∈ A2n. Therefore, when p = q = 1, (3.54) reduces to Flajolet’s result [43, Theorem 4].
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Chapter 4

λ-Euler’s difference table for colored
permutations 1

4.1 Introduction

Euler [33] studied the difference table (gmn )0≤m≤n, where the coefficients are defined by
gnn = n! and

gmn = gm+1
n − gmn−1, (4.1)

for 0 ≤ m ≤ n−1. Dumont and Randrianarivony [33] studied the combinatorial interpreta-
tion of gmn in the symmetric group Sn, which consists of permutations of [n] = {1, . . . , n}.
In particular, they showed that the sequence {g0n}n≥0 is the number of derangements,
i.e., the fixed point free permutations in Sn. Then Rakotondrajao [84] developed further
combinatorial interpretations. The reader is referred to [33, 84, 85, 40, 23, 35, 69, 20],
where several generalizations of Euler’s difference table with combinatorial meanings were
studied.

Definition 4.1. For fixed integer � ≥ 1, we define λ-Euler’s difference table
(gm�,n(λ))0≤m≤n for C�  Sn, where the coefficients are defined by{

gn�,n(λ) = �n n! (m = n);
gm�,n(λ) = gm+1

�,n (λ) + (λ− 1)gm�,n−1(λ) (0 ≤ m ≤ n− 1). (4.2)

From the above definition, it is easy to see the coefficients gm�,n(λ) are polynomials in λ.
Faliharimalala and Zeng [40] studied the combinatorial interpretation of gm�,n(0) in terms
of k-circular successions in C�  Sn. Eriksen et al. [35] gave a combinatorial interpretation
for the coefficients gm1,n(λ) by assuming that λ is a non-negative integer. They showed
that gm1,n(λ) count the number of permutations of [n] such that fixed points on the last
n− k positions may be colored in any one of λ colors. Liese and Remmel [69] interpreted
the coefficients of polynomial gm1,n(λ) by counting certain rook placements in the [n]× [n]
board.

It is not hard to see that the coefficient gm�,n(λ) is divisible by �mm!. This prompted us to
introduce dm�,n(λ) = gm�,n(λ)/�

mm!. Then we derive the following allied array (dm�,n(λ))0≤m≤n

from (4.1).

1The contents of this chapter are published in Electron. J. Combin. 25 (2018), no. 4, Paper
4.25, 27 pp, see [58].
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Definition 4.2. For fixed integer � ≥ 1, the coefficients of the λ-difference table
(dm�,n(λ))0≤m≤n are defined by{

dn�,n(λ) = 1 (m = n);
dm�,n(λ) = �(m+ 1)dm+1

�,n (λ) + (λ− 1)dm�,n−1(λ) (0 ≤ m ≤ n− 1). (4.3)

The first terms of these coefficients for � = 1, 2 are given in Tables 4.1 and 4.2.

n\m 0 1 2 3 4
0 1
1 λ 1
2 λ2 + 1 λ+ 1 1
3 λ3 + 3λ+ 2 λ2 + 2λ+ 3 λ+ 2 1
4 λ4 + 6λ2 + 8λ+ 9 λ3 + 3λ2 + 9λ+ 11 λ2 + 4λ+ 7 λ+ 3 1

Table 4.1: Values of dm�,n(λ) for 0 ≤ m ≤ n ≤ 4 and � = 1.

n\m 0 1 2 3 4
0 1
1 λ+ 1 1
2 λ2 + 2λ+ 5 λ+ 3 1
3 λ3 + 3λ2 + 15λ+ 29 λ2 + 6λ+ 17 λ+ 5 1
4 λ4 + 4λ3 + 30λ2 + 116λ+ 233 λ3 + 9λ2 + 51λ+ 131 λ2 + 10λ+ 37 λ+ 7 1

Table 4.2: Values of dm�,n(λ) for 0 ≤ m ≤ n ≤ 4 and � = 2.

Two combinatorial interpretations of dm�,n(0) were given in [40]. When λ is a non-
negative integer, Eriksen et al. [35] gave a combinatorial interpretation for the coefficients
dm1,n(λ) in the symmetric group. Wang et al.[107] introduced the r-derangement number,
which counts the derangements of [n] with the first r elements appear in distinct cycles.

Motivated by [40, 35, 69, 107], we study the combinatorial interpretation of gm�,n(λ) and
dm�,n(λ) in the colored symmetric group G�,n, i.e., the wreath product of a cyclic group and
a symmetric group. The chapter is organized as follows. In Sections 3 and 4, we interpret
the polynomial gm�,n(λ) and the coefficients in gm�,n(λ), respectively. In Sections 5 and 6,
we prove the linear combinatorial interpretation and cyclic combinatorial interpretation
of dm�,n(λ), respectively. In Section 7, we obtain the generating functions and recurrence
relations of dm�,n(λ). In Section 8, we generalize r-derangement number by relating with
dm�,n(λ). In Section 9, we give a combinatorial proof of recurrence relation of dm�,n(λ).

4.2 Definitions and main results

For positive integers �, n ≥ 1, the group of colored permutations of n elements with
� colors is the wreath product G�,n := C�  Sn = Cn

� � Sn, where C� is the �-cyclic group
generated by ζ = e2iπ/�(i2 = −1). From definition, it is obvious to see the elements in G�,n

are pairs (ε, σ) ∈ Cn
� × Sn.

And G�,n can also be seen as a permutation group on the colored set:

Σ�,n := C� × [n] = {ζji | i ∈ [n], 0 ≤ j ≤ �− 1}.
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Clearly there are �nn! signed permutations in the group G�,n. For more details, see
[38].

A signed permutation π ∈ G�,n can be written in two-line form. For example, if
π = (ε, σ) ∈ G4,11, where ε = (1, ζ3, 1, ζ, 1, 1, ζ2, ζ, 1, ζ, 1) and

σ = 7 5 3 1 2 6 8 9 4 10 11,

we write

π =

(
1 2 3 4 5 6 7 8 9 10 11
ζ27 5 3 1 ζ32 6 ζ8 9 ζ4 ζ10 11

)
.

To be convenient, we write j bars over i instead of ζji. Thus, we rewrite the above
permutation in linear form as π = ¯̄7 5 3 1 ¯̄2 6 8̄ 9 4̄ 10 11, or in disjoint cyclic form
as

π = (1, ¯̄7, 8̄, 9, 4̄) (¯̄2, 5) (3) (6) (10) (11).

That is, when using disjoint cyclic notation to determine the image of a number, we ignore
the sign on that number and only consider the sign on the number to which it is mapped.
Thus, in the above example, we ignore the sign ζ2 on the 7 and 7 maps to ζ8 since the
sign on 8 is ζ. Moreover, let [m+ 1, n] denote the interval {m+1, . . . , n}, and we give the
following conventions:

i) If π = (ε, σ) ∈ G�,n, we define |π| = σ and signπ(i) = εi for i ∈ [n]. For example, if
π = 1 4̄ 3 ¯̄2 then ε = (1, ζ2, 1, ζ) and signπ(4) = ζ.

ii) For i ∈ [n] and j ∈ {0, 1, . . . , �− 1}, we define ζji+ k = ζj(i+ k) for 0 ≤ k ≤ n− i,
and ζji− k = ζj(i− k) for 0 ≤ k ≤ i. For example, ¯̄2 + 1 = ¯̄3 in G4,11.

iii) We define the total ordering on Σ�,n as follows. For i, j ∈ {0, . . . , �−1} and a, b ∈ [n],

ζia < ζjb ⇐⇒ i > j or i = j and a < b.

In G�,n, Faliharimalala and Zeng [40] introduced the k-successions as follows.

Definition 4.3. Given a permutation π ∈ G�,n and an integer 0 ≤ k ≤ n − 1, π(i) is a
k-succession at position i ∈ [n − k] if π(i) = i + k. In particular, the 0-succession is also
called fixed point.

Note that the above k-succession π(i) needs to be uncolored, that is, signπ(π(i)) = 1.
To obtain the combinatorial interpretation of gm�,n(λ), we introduce the following defi-

nition.

Definition 4.4. For any integer 0 ≤ k ≤ n−1, let SUCk(π) denote the set of k-successions
in π ∈ G�,n, i.e.,

SUCk(π) = {π(i)|π(i) = i+ k, i ∈ [n− k], π ∈ G�,n}.

For integer 0 ≤ m ≤ n, we define the statistic suc
(k)
>m(π) is the number of k-successions

included in [m+ 1, n] for π ∈ G�,n, i.e.,

suc
(k)
>m(π) = #{π(i) ∈ [m+ 1, n]|π(i) ∈ SUCk(π)}.

In particular, for π ∈ G�,n, by taking k = 0 and k = m, suc(k)>m is the number of fixed points
and m-successions concerning π ∈ G�,n, respectively, which are included in [m+ 1, n].



102 4. λ-Euler’s difference table for colored permutations

For example, when π ∈ G4,11, if π = 5 3 1 ¯̄̄2 6 8̄ 9 4̄ 10 11 ¯̄7 and π′ = 3 1 ¯̄̄2 6 8̄ 9 4̄ 10 11 ¯̄7 5 ,

we have SUC1(π) = SUC2(π
′) = {3, 6, 11} and suc

(1)
>4(π) = suc

(2)
>4(π

′) = 2.

Theorem 4.1. For fixed integers �, k, m and n, let � ≥ 1 and 0 ≤ k ≤ m ≤ n, we have

gm�,n(λ) =
∑

π∈G�,n

λsuc
(k)
>m(π). (4.4)

Remark 4.1. We recover Faliharimalala and Zeng’s result [40, Theorem 3] about the
combinatorial interpretation of gm�,n(0) in G�,n. And we prove Theorem 4.1 in Section 4.3.

We give an example to illustrate the above theorem. For � = 2, n = 2 and m = 1, the
permutations in G2,2 are

1 2, 1̄ 2, 1 2̄, 1̄ 2̄, 2 1, 2̄ 1, 2 1̄, 2̄ 1̄.

For k = 0,
∑

π∈G2,2
λsuc

(0)
>1(π) = 2λ+ 6. For k = 1,

∑
π∈G2,2

λsuc
(1)
>1(π) = 2λ+ 6.

For n,m, s ≥ 0, Rakotondrajao [85] also studied the number of permutations in Sn hav-
ing exactly s m-successions. Similarly, we define that cm�,n,s is the number of permutations
π ∈ G�,n having s m-successions. In other words,

cm�,n,s = |{π ∈ G�,n| |SUCm(π)| = s}|, for n, s,m ≥ 0.

With Theorem 4.1 and above definition, we state an expression of gm�,n(λ) as follows.

Corollary 4.2. For � ≥ 1, 0 ≤ m ≤ n and 0 ≤ s ≤ n−m, we have

gm�,n(λ) =
∑
s≥0

cm�,n,sλ
s. (4.5)

Remark 4.2. With the equations (4.2) and (4.5), we obtain that

cm+1
�,n,s = cm�,n,s + cm�,n−1,s − cm�,n−1,s−1,

which is the result of [40, Theorem 4].

To show the combinatorial interpretations and recursions of cm�,n,s, we review the gen-
eralized rook theory model in [16].

Let B�
n be the n × �n array of squares, we label the n columns from left to right by

1, 2, . . . , n and the �n rows from bottom to top by

1, ζ1, . . . , ζ�−11, 2, ζ2, . . . , ζ�−12, . . . , n, ζn, . . . , ζ�−1n,

respectively. For instance, the board B3
n is pictured in Figure 4.1. The square in the

column labeled with i and the row labeled with ζrj is denoted by (i, ζrj). Each such
square is called a cell and the rows labeled by j, ζj, . . . , ζ�−1j are called level j.

Given a board B ⊆ B�
n, we let R�

k,n(B) denote the set of k element subsets P of B
such that no two elements lie in the same level or column for non-negative integers k.
We call the subset P a placement of non-attacking �-rooks in B. Since the cells in the
placement are considered to contain �-rooks, we define the kth �-rook number of B by
r�k,n(B) = |R�

k,n(B)|.
Given a permutation π ∈ G�,n, we can identify π with a placement Pπ of n �-rooks in

B�
n. In other word, Pπ = {(i, ζrj) : π(i) = ζrj for1 ≤ i ≤ n}, then we define the kth �-hit
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1

ζ1

ζ21

2

ζ2

ζ22

·
·
·
n

ζn

ζ2n

1 2 · · · n

Level 1

Level 2

·
·
·

Level n

Figure 4.1: A board B3
n.

number of B denoted by h�k,n(B), which is the number of π ∈ G�,n such that the placement
Pπ intersects the board B in exactly k cells, i.e.,

h�k,n(B) = |{Pπ|π ∈ G�,n and|Pπ ∩B| = k}|.

Briggs and Remmel [16, Theorem 1] found the following relationship between the �-hit
numbers and the �-rook numbers.

Theorem 4.3 (Briggs-Remmel). Let B be a board contained in B�
n. Then

n∑
k=0

h�k,n(B)xk =

n∑
k=0

r�k,n(B)�n−k(n− k)!(x− 1)k.

By interpreting cm�,n,s in terms of �-hit numbers for a certain board, we obtain the
following formula.

Theorem 4.4. For �, n ≥ 1, 0 ≤ m ≤ n and s ≥ 0, we have

cm�,n,s =
n−m∑
t=s

(−1)t−s�n−t(n− t)!

(
t

s

)(
n−m

t

)
. (4.6)

Remark 4.3. When � = 1, (4.6) reduce to the result of [69, Theorem 2.2]. And we prove
Theorem 4.4 in Section 4.4.

To make our arguments of interpreting the coefficients dm�,n(λ) clear, we only consider

the case k = 0 in statistics suc
(k)
>m(π). We define FIX(π) := SUC0(π), which denote the

set of fixed points in π ∈ G�,n, i.e., FIX(π) = {π(i)|π(i) = i, i ∈ [n], π ∈ G�,n}. Define
fix>m(π) := suc

(0)
>m(π), i.e.,

fix>m(π) := #{π(i) ∈ [m+ 1, n]|π(i) ∈ FIX(π)}.
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For example, when π ∈ G4,11, if π = ¯̄7 5 3 1 ¯̄̄2 6 8̄ 9 4̄ 1̄0 11, we have FIX(π) =
{3, 6, 11} and fix>4(π) = 2.

To give the linear interpretation of dm�,n(λ), we give the following definition.

Definition 4.5. For 0 ≤ m ≤ n, a permutation π = (ε, σ) ∈ G�,n is called an m-decreasing
permutation if satisfies the following conditions:

i) signπ(π(i)) = 1(i ∈ [m]);

ii) π(1) > π(2) > · · · > π(m).

Let Lm
�,n be the set of m-decreasing permutations in G�,n. For example, when � = 2, n =

3 and m = 2,

L2
2,3 = {213, 213̄, 312, 312̄, 321, 321̄}, and

∑
π∈L2

2,3

λfix>2(π) = λ+ 5.

Theorem 4.5. For 0 ≤ m ≤ n, we have

dm�,n(λ) =
∑

π∈Lm
�,n

λfix>m(π).

Remark 4.4. When λ = 0, Theorems 4.5 reduce to the result of [40, Theorem 10], we
prove above theorem in Section 4.5.

To give the cyclic interpretation of dm�,n(λ), we give the following definition.

Definition 4.6. For 0 ≤ m ≤ n, a permutation π = (ε, σ) ∈ G�,n is called m-separated
permutation if satisfies the following conditions:

i) signπ(i) = 1(i ∈ [m]);

ii) the first m elements belong into distinct cycles.

Let Cm
�,n be the set of m-separated permutations in G�,n. For example, when � = 2, n =

3 and m = 2,

C2
2,3 = {(13)(2), (13̄)(2), (1)(23), (1)(23̄), (1)(2)(3), (1)(2)(3̄)},

and ∑
π∈C2

2,3

λfix>2(π) = λ+ 5.

Theorem 4.6. For 0 ≤ m ≤ n, we have

dm�,n(λ) =
∑

π∈Cm
�,n

λfix>m(π).

Remark 4.5. When λ = 0, Theorems 4.6 reduce to the result of [40, Theorem 12], we
prove above theorem in Section 4.6.
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To generalize the definition of r-derangement number, we give the following definition.

Definition 4.7. For 0 ≤ m ≤ n, a permutation π ∈ G�,n is called m-fixed point-free
colored permutation if satisfies the following conditions:

i) For i ∈ [m], let π(i) ∈ [m+ 1, n] and signπ(i) = signπ(π(i)) = 1;

ii) no two elements of [m] are in the same cycle.

Let Fm
�,n+m be the set of m-fixed point-free colored permutations in G�,n+2m, we define

fm
�,n+m(λ) =

∑
π∈Fm

�,n+m

λfix>m(π). (4.7)

For example, when � = 2, n = 1 and m = 1,

F 1
2,2 = {(12)(3), (12)(3̄), (13)(2), (13)(2̄), (123), (123̄), (132), (132̄)}

and
f1
2,2(λ) = 2λ+ 6.

Remark 4.6. When (�, λ) = (1, 0), the equation (4.7) reduce to the sum over {π ∈
Fm
�,n+m| fix>m(π) = 0}, then the polynomial fm

�,n+m(λ) reduces to the r-derangement num-
ber, see [107, Definition 1]. By the above definition, we generalize the generating functions
and recurrence relations of Wang et al. [107].

By observing the above definitions, we prove the following combinatorial relation be-
tween the fm

�,n+m(λ) and dm�,n+m(λ) in Section 4.8.

Theorem 4.7. For � ≥ 1 and m,n ≥ 0, we have

fm
�,n+m(λ) =

(n+m)!

n!
dm�,n+m(λ). (4.8)

4.3 Proof of Theorem 4.1

In the section, to prove Theorem 4.1, we prove the following equations,⎧⎪⎪⎨⎪⎪⎩
∑

π∈G�,n

λsuc
(k)
>n(π) = �n n! (m = n);∑

π∈G�,n

λsuc
(k)
>m(π) =

∑
π∈G�,n

λsuc
(k)
>m+1(π) + (λ− 1)

∑
π∈G�,n−1

λsuc
(k)
>m(π) (0 ≤ m ≤ n− 1).

(4.9)

Lemma 4.8. For any integer k such that 0 ≤ k ≤ m and 0 ≤ m ≤ n, there holds∑
π∈G�,n

m+1∈SUCk(π)

λsuc
(k)
>m(π) = λ

∑
π∈G�,n−1

λsuc
(k)
>m(π). (4.10)
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Proof. Let us define the bijection ψ: G�,n �→ G�,n−1. For π ∈ G�,n, we delete the m+ 1 at
position m+ 1− k and define the ψ(π) = π̂1π̂2 . . . π̂m−kπ̂m−k+2 . . . π̂n−1 ∈ G�,n−1 where

π̂i =

{
πi, if |π|i < m+ 1;

πi − 1, if |π|i > m+ 1.

Conversely, starting from ψ(π) = π̂1π̂2 . . . π̂m−kπ̂m−k+2 . . . π̂n ∈ G�,n−1, we define π =
π1π2 . . . πn ∈ G�,n where

πi =

{
π̂i, if |π̂|i < m+ 1;

π̂i + 1, if |π̂|i ≥ m+ 1.

Then we put m+1 at the position m+1−k, from the map, we can easily see suc
(k)
>m(π) =

suc
(k)
>m(ψ(π)) + 1.

For example � = 4, n = 9,m = 4, k = 1, π = ¯̄7 3 4 5 ¯̄̄2 1̄ 8 9 6̄ , ψ(π) = ¯̄6 3 4 ¯̄̄2 1̄ 7 8 5̄,
and suc

(1)
>4(π) = suc

(1)
>4(ψ(π)) + 1.

Lemma 4.9. For 0 ≤ m ≤ n, there holds∑
π∈G�,n−1

λsuc
(k)
>m(π) =

∑
π∈G�,n

m+1∈SUCk(π)

λsuc
(k)
>m+1(π). (4.11)

Proof. It follows similar arguments as in the proof of Lemma 4.8.

Proof of Theorem 4.1. First we check the initial condition in (4.9), when m = n, suc(k)>n(π) =

0,
∑

π∈G�,n

λsuc
(k)
>n(π) = �nn!.

We start to prove the recurrence in (4.9). Then, by considering the following equation,∑
π∈G�,n

λsuc
(k)
>m(π) =

∑
π∈G�,n

m+1/∈SUCk(π)

λsuc
(k)
>m(π) +

∑
π∈G�,n

m+1∈SUCk(π)

λsuc
(k)
>m(π). (4.12)

Because for π ∈ G�,n with m + 1 /∈ SUCk(π), we have suc
(k)
>m(π) = suc

(k)
>m+1(π), then

(4.12) is equivalent to∑
π∈G�,n

λsuc
(k)
>m(π) =

∑
π∈G�,n

m+1/∈SUCk(π)

λsuc
(k)
>m+1(π) +

∑
π∈G�,n

m+1∈SUCk(π)

λsuc
(k)
>m(π). (4.13)

By equations (4.10) and (4.13), we obtain that∑
π∈G�,n

λsuc
(k)
>m(π) =

∑
π∈G�,n

m+1/∈SUCk(π)

λsuc
(k)
>m+1(π) + λ

∑
π∈G�,n−1

λsuc
(k)
>m(π). (4.14)

By combining the equations (4.11) and (4.14), we obtain∑
π∈G�,n

λsuc
(k)
>m(π)

=(λ− 1)
∑

π∈G�,n−1

λsuc
(k)
>m(π) +

∑
π∈G�,n

m+1/∈SUCk(π)

λsuc
(k)
>m+1(π) +

∑
π∈G�,n

m+1∈SUCk(π)

λsuc
(k)
>m+1(π).
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Figure 4.2: The board B2
4,1 corresponds to the shaded cells.

With (4.12), it is easy to see that the above equation is equivalent to the recurrence
relation in (4.9), this completes the proof of Theorem 4.1.

Remark 4.7. Since why gm�,n(λ) is independent from k (0 ≤ k ≤ m) in the above proof
is not mentioned, we state an argument as follows. By considering the bijection d which
transforms π = π1π2π3 · · ·πn into d(π) = π′ = π2π3 · · ·πnπ1. It is easy to see that the
k-successions of π are in [m+1, n] if and only if the (k+1)-successions of π′ are in [m+1, n].
Hence, let the composition of j times of d is denoted by dj , the application of dk2−k1 permits
to transfer the k1-successions to k2-successions if k1 < k2. In particular if we apply dm to
a permutation whose fixed points are in [m + 1, n], then we obtain a permutation whose
m-succession are in [m+ 1, n] and vice versa.

4.4 Proof of Theorem 4.4

In this section, first we prove the following expressions of cm�,n,s in Theorem 4.4,

cm�,n,s =
n−m∑
t=s

(−1)t−s�n−t(n− t)!

(
t

s

)(
n−m

t

)
. (4.15)

Then we derive several recurrence relations of cm�,n,s.

Proof of Theorem 4.4. First, we give the combinatorial interpretation of cm�,n,s as follows.
Let B�

n,m be the board contained in B�
n consisting of the cells (1, 1+m), (2, 2+m), (3, 3+m),

. . . , (n −m,n). For example, the board B2
4,1 is pictured in Figure 4.2. Then the number

of π ∈ G�,n with s m-successions is the s-th �-hit number of B�
n,m, i.e.,

cm�,n,s = h�s,n(B
�
n,m). (4.16)

With the definitions of B�
n,m, we have r�s,n(B

�
n,m) =

(
n−m
s

)
. By Theorem 4.3,

gm�,n(λ) =
n∑

s=0

cm�,n,sλ
s =

n∑
s=0

h�s,n(B
�
n,m)λs

=
n∑

s=0

r�s,n(B
�
n,m)�n−s(n− s)!(λ− 1)s

=

n∑
s=0

(
n−m

s

)
�n−s(n− s)!(λ− 1)s.

(4.17)
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Equating the coefficients of λs yields (4.15) immediately.

Remark 4.8. We also obtain the above expression (4.17) of gm�,n(λ) by generating function,
see Proposition 4.21.

Let s = n−m in (4.15), we obtain the following corollary.

Corollary 4.10. For all � ≥ 1 and n ≥ m ≥ 0,

cm�,n,n−m = �mm!

Next we show the recurrence relations of cm�,n,s in colored symmetric group.

Proposition 4.11. For all � ≥ 1, n ≥ 2, 0 ≤ m < n, and s ≥ 1,

cm�,n,s = (�(n− s− 1) + (�− 1))cm�,n−1,s + �(s+ 1)cm�,n−1,s+1 + cm�,n−1,s−1. (4.18)

Proof. Let us consider the map from π = π1 . . . πn−1 ∈ G�,n−1 to π̄ ∈ G�,n such that π̄ has
s m-successions, we consider the following three cases.

• If π ∈ G�,n−1 has s m-successions.

1. Let π̄ = π1πn−m−1(ζ
jn)πn−m+1 . . . πn−1πn−m and 1 ≤ j ≤ �− 1, the number of

m-successions of π̄ and π are the same, so there are (�−1)cm�,n−1,s permutations
in this case.

2. Let π̄ = π1πi−1(ζ
jn)πi+1 . . . πn−1πi, where i 	= n−m and i is a position without

m-successions, the number of m-successions of π̄ and π are the same. Since we
have n−s−1 choices for position i and 0 ≤ j ≤ �−1, there are �(n−s−1)cm�,n−1,s

permutations in this case.

• If π ∈ G�,n−1 has s + 1 m-successions. Let π̄ = π1πi−1(ζ
jn)πi+1 . . . πn−1πi, where

i is a position with m-succession, the number of m-successions of π̄ is the number
of m-successions of π minus one. Since we have s + 1 choices for position i and
0 ≤ j ≤ �− 1, there are �(s+ 1)cm�,n−1,s+1 permutations in this case.

• If π ∈ G�,n−1 has s− 1 m-successions. Let π̄ = π1πn−m−1(ζ
jn)πn−m+1 . . . πn−1

πn−m and j = 0, the number of m-successions of π̄ is the number of m-successions
of π plus one, so there are cm�,n−1,s−1 permutations in this case.

Proposition 4.12. For all �, n ≥ 1, 0 ≤ m < n, and s ≥ 0,

cm�,n,s =

(
n−m

s

)
cm�,n−s,0. (4.19)

Proof. Note that in (4.16), cm�,n,s is the number of placements of n non-attacking �-rooks
in B�

n that intersect B�
n,m in exactly s squares. By removing the level i+m and column i

of these �-rooks which lie in the cell (i, i+m)(1 ≤ i ≤ n−m), we obtain these placements
of n − s non-attacking �-rooks in B�

n−s that intersect B�
n−s,m in exactly 0 squares, which

is counted by cm�,n−s,0. The process is pictured in Figure 4.3.
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X

Figure 4.3: From Board B2
4 to Board B2

2 .

Remark 4.9. Faliharimalala and Zeng [40, Lemma 14] proved the above (4.19) directly
by interpreting cm�,n,s as the number of permutation in G�,n with s m-successions. However,
we give a trivial proof by interpreting cm�,n,s as the number of placements of n non-attacking
�-rooks in B�

n that intersect B�
n,m in exactly s squares.

Proposition 4.13. For all � ≥ 1, n ≥ 2 and 0 ≤ m < n,

cm�,n,0 = (�n− 1)cm�,n−1,0 + �(n−m− 1)cm�,n−2,0. (4.20)

Proof. Let us consider the map from π = π1 . . . πn ∈ G�,n to π′ ∈ G�,n−1, starting from π
without m-successions, we define

π′ =

{
π1 . . . πi−1πnπi+1 . . . πn−1, if πi = ζjn(0 ≤ j ≤ �− 1) for 1 ≤ i < n;

π1 . . . πn−1, if πn = ζjn(0 ≤ j ≤ �− 1).

1. π′ ∈ G�,n−1 has no m-successions.

Either πn = ζjn(0 ≤ j ≤ � − 1) or πi = ζjn(1 ≤ i < n, 0 ≤ j ≤ � − 1) and
πn 	= i + m, π′ has no m-successions. Conversely, for π′ ∈ G�,n−1 without m-
successions, by inserting ζjn(0 ≤ j ≤ �−1) into π′ in every position except putting n
in to position n−m, we obtain the permutation in G�,n without m-successions. Since
ζjn(0 ≤ j ≤ �− 1) can be in any position except πn−m = n, there are (�n− 1)cmn−1,0

permutations.

2. π′ ∈ G�,n−1 has 1 m-succession.

When πi = ζjn(1 ≤ i ≤ n − 1 − m, 0 ≤ j ≤ � − 1) and πn = i + m, π′ has 1
m-succession, then the 1 m-succession of π′ corresponds to the �-rook (i, i + m) of
the rook placement in the board B�

n−1. For the rook placement corresponds to π′

in B�
n−1, removing the column i and level i + m from the board B�

n−1, we obtain
the rook placement in B�

n−2 without intersecting B�
n−2,m, which corresponding to the

permutation denoted by π̃ ∈ G�,n−2, and π̃ has no m-successions.

Conversely, let π̃ be a permutation in G�,n−2 without m-successions, we obtain π ∈
G�,n in two steps.

Step 1. For 1 ≤ i ≤ n− 1−m, by adding the column i and level i+m to the boards
B�

n−2, we choose (i, i + m) as the new �-rook and take the same rook placement
corresponds to π̃, then we obtain the rook placement in B�

n−1 corresponding to π′ ∈
G�,n−1 with 1 m-succession.



110 4. λ-Euler’s difference table for colored permutations

1
1̄

2
2̄

3
3̄

4
4̄

1 2 3 4

X

X

X

X
→

1
1̄

2
2̄

3
3̄

4
4̄

1 2 3 4

X

X X

X

X
→

1
1̄

2
2̄

3
3̄

1 2 3

X

X

X

1
1̄

2
2̄

3
3̄

4
4̄

1 2 3 4

X

X

X

X

→

1
1̄

2
2̄

3
3̄

1 2 3

X

X

X

Figure 4.4: Reducing rook placements from B2
4,2 by the rook position in level 1 .

Step 2. Adding the column n and level n in the board B�
n−1, by taking away the �-

rook (i, i+m) and putting �-rooks at (i, ζjn)(0 ≤ j ≤ �−1) and (n, i+m), we obtain
the rook placement without intersecting B�

n,m, which corresponds to the permutation
π ∈ G�,n without m-successions. Since 1 ≤ i ≤ n − 1 −m and 0 ≤ j ≤ � − 1, there
are �(n− 1−m)cm�,n−2,0 permutations.

Remark 4.10. When m = 0, we define that

D�
n := c0�,n,0, (4.21)

which counts the number of derangements in G�,n. It is easy to see (4.20) reduce to

D�
n = (�n− 1)D�

n−1 + �(n− 1)D�
n−2.

Proposition 4.14. For all � ≥ 1, n ≥ 2, and 1 ≤ m < n,

cm�,n,0 = �mcm−1
�,n−1,0 + �(n−m)cm�,n−1,0. (4.22)

Proof. We prove the above equation by considering level 1 in the rook placement corre-
sponding to the permutation π ∈ G�,n without m-successions.

1. When the �-rook of level 1 is in column i (1 ≤ i ≤ n−m), if the �-rook of level i+m
lies at the position (k, ζj(i + m))(k 	= i and 0 ≤ j ≤ � − 1), by adding a �-rook at
the position (k, ζj1) in the level 1, we obtain a placement of n + 1 �-rooks without
intersecting B�

n,m. Then removing column i and level i+m will result in a placement
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Figure 4.5: Board B2
4,2 with some lightly shaded cells.

of n−1 non-attacking �-rooks without intersecting B�
n−1,m. Since the rook placement

corresponding to π has � different positions in level 1 and column 1 ≤ i ≤ n − m,
thus there are �(n −m)cm�,n−1,0 placements. The process is illustrated in top of the
Figure 4.4.

2. When the �-rook of level 1 is in column i(n−m < i ≤ n), by removing column i and
level 1, we obtain a placement of n − 1 non-attacking �-rooks without intersecting
B�

n−1,m−1. Thus there are �mcm−1
�,n−1,0 placements. The process is illustrated in the

bottom of Figure 4.4.

Proposition 4.15. For all �, n ≥ 1 and 0 ≤ m < n,

cm�,n,0 = �mm!
m∑
r=0

(
m

r

)(
n−m

m− r

)
cm−r
�,n−m,0. (4.23)

Proof. To obtain a placement of n non-attacking �-rooks without intersecting B�
n,m, start-

ing from the lightly shaded cells in the lower right corner of the board in Figure 4.5, we
see that 0 to m �-rooks can be placed in this area. Suppose that we choose r levels in
this area, there are

(
m
r

)
ways. Since there should be m �-rooks in the last m columns, we

choose m − r �-rooks above the lower right corner of the board. Thus we choose m − r
levels from the n−m levels, there are

(
n−m
m−r

)
ways.

After picking the m levels that contain the �-rooks in the last m columns, there are
�mm! ways to place the �-rooks in the last m columns.

Let P denote the non-attacking rook placement in the last m columns with r �-rooks
falling in the lightly shaded area, we extend P to a non-attacking rook placement Q with
n �-rooks, where there is no intersection with B�

n,m. By removing the levels and columns
of rook placement P , we obtain the non-attacking rook placement without intersecting
B�

n−m,m−r, which is counted by cm−r
�,n−m,0. Summing over all possible values of r yields the

desired result.

Proposition 4.16. For all � ≥ 1, n ≥ 2 and 0 ≤ m < n,

cm�,n,0 = �cm+1
�,n,1 + (�m+ �− 1)cm�,n−1,0. (4.24)
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Figure 4.6: Reducing rook placements from B2
4,1 by the rook position in top level .

Proof. Let us consider the rook position of level n in the rook placement which correspond-
ing to the permutation π ∈ G�,n without m-successions.

1. When the �-rook of level n is in column i(1 ≤ i ≤ n − m − 1). If the �-rook of
column i is in row n, we keep it unchanged. If the �-rook of column i is in row
ζjn(1 ≤ j ≤ � − 1), we exchange the row ζjn with row n. Then we move the level
n to the bottom level of the board, which is denoted by level 1′, other levels are
increased by one such as level 2′, . . . , level n′. By exchanging the level 1′ and level
(i + m + 1)′, we obtain a non-attacking rook placement that intersect B�

n,m+1 one
rook (i, i+m+ 1). Since the �-rook can be in the row ζjn(0 ≤ j ≤ �− 1), there are
�cm+1

n,1 permutations in this case. This process is shown in top of Figure 4.6.

2. When the �-rook of level n is in column i(n −m ≤ i ≤ n), the �-rook can be in the
position (i, ζjn)(n − m ≤ i ≤ n, 0 ≤ j ≤ � − 1), since π has no m-successions, the
�-rook can not be in the square (n −m,n), so there are �m + � − 1 choices in level
n. Removing the level n and column i will result in a non-attacking rook placement
without intersecting B�

n−1,m. Then there are (�m + � − 1)B�
n−1,m permutations in

this kind. This process is shown in bottom of Figure 4.6.

Proposition 4.17. For � ≥ 1, n ≥ 2 and 1 ≤ m < n,

cm�,n,0 = cm−1
�,n,0 + cm−1

�,n−1,0. (4.25)

Proof. Let us consider the non-attacking rook placement corresponding to the permutation
π ∈ G�,n without m-successions. We move the bottom level to the top level and all other
levels reduced by one, which is shown in Figure 4.7.
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Figure 4.7: Moving the bottom level to top level in B2
4,2.

1. When the bottom �-rook is not in the position (n −m + 1, 1), the process is shown
in the top of Figure 4.7. After the movement of �-rooks in the board, we obtain
the non-attacking rook placement without intersecting B�

n,m−1. Thus there are cm−1
�,n,0

permutations in this case.

2. When the bottom �-rook is in the position (n − m + 1, 1), the process is shown in
the bottom of Figure 4.7. The resulting rook placement intersect B�

n,m−1 in the
position (n−m+ 1, n). By removing the column n−m+ 1 and level n, we get the
non-attacking rook placement without intersecting B�

n−1,m−1. Thus there are cm−1
�,n−1,0

permutations in this case.

Proposition 4.18. For �, n ≥ 1 and 0 ≤ m < n,

cm�,n,0 =
m∑
r=0

(
m

r

)
D�

n−m+r. (4.26)

Proof. We prove this theorem by inductions on m. If m = 0, we have c0�,n,0 = D�
n by

equation (4.21). Suppose that ci�,n,0 =
∑i

r=0

(
i
r

)
D�

n−i+r is satisfied for i ≤ m− 1, then

cm−1
�,n,0 + cm−1

�,n−1,0 =
m−1∑
r=0

(
m− 1

r

)
D�

n−m+1+r +
m−1∑
r=0

(
m− 1

r

)
D�

n−m+r. (4.27)

By separating out the m − 1 term of the first sum and the 0 term of the second sum in
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(4.27), which is equivalent to(
m− 1

m− 1

)
D�

n +
m−2∑
r=0

(
m− 1

r

)
D�

n−m+1+r +

(
m− 1

0

)
D�

n−m +
m−1∑
r=1

(
m− 1

r

)
D�

n−m+r.

By transforming r to r − 1 in the first sum and using
(
m−1
r−1

)
+
(
m−1
r

)
=
(
m
r

)
, we have

cm−1
�,n,0 + cm−1

�,n−1,0 =
m∑
r=0

(
m

r

)
D�

n−m+r.

With the recurrence (4.25),
cm�,n,0 = cm−1

�,n,0 + cm−1
�,n−1,0,

we obtain

cm�,n,0 =

m∑
r=0

(
m

r

)
D�

n−m+r.

The proof is thus completed.

With equations (4.19) and (4.26), we give the relation between cm�,n,s and D�
n directly.

Corollary 4.19. For �, n ≥ 1, 0 ≤ m < n and s ≥ 0,

cm�,n,s =

(
n−m

s

) m∑
r=0

(
m

r

)
D�

n−s−m+r.

By observing the coefficients of polynomial gm�,n(λ), we find cm�,n,s decreases as s increases.

Proposition 4.20. For �, n ≥ 1, 1 ≤ m < n and s ≥ 1,

cm�,n,s−1 ≥ cm�,n,s. (4.28)

Proof. With recursion (4.19) and (4.22), we have

cm�,n,s−1 − cm�,n,s

=

(
n−m

s− 1

)
cm�,n−s+1,0 −

(
n−m

s

)
cm�,n−s,0

=(�(n−m− s+ 1)

(
n−m

s− 1

)
−
(
n−m

s

)
)cm�,n−s,0 + �m

(
n−m

s− 1

)
cm−1
�,n−s,0.

Since

�(n−m− s+ 1)

(
n−m

s− 1

)
−
(
n−m

s

)
=

(n−m)!

(n−m− s)!s!
(�s− 1),

we obtain (4.28) immediately.

Remark 4.11. In particular, when m = 0, we have the similar result for c0�,n,s. By
using D�

n = �nD�
n−1 + (−1)n [40, Equation (2.8)] and similar arguments above, we have

c0�,n,s−1 ≥ c0�,n,s for 2 ≤ s ≤ n− 2 and n ≥ 3.

Remark 4.12. When � = 1, the above expressions and relations of cm�,n,s in this section
reduce to Liese and Remmel’s results [69, Sections 2 and 3].
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4.5 Proof of Theorem 4.5

In this section, to prove Theorem 4.5, we prove the following equations,∑
π∈Lm

�,n

λfix>m(π) =
∑

π∈G�,n

λfix>m(π)/�mm!, for 0 ≤ m ≤ n. (4.29)

Proof of Theorem 4.5. For 1 ≤ k ≤ n, if π = π(1)π(2) . . . π(k − 1)π(k)π(k + 1) . . . π(n) ∈
G�,n, let T (π) be the vector that record the numbers of the last n − k positions in
π, i.e., T (π) = (π(k + 1), π(k + 2), . . . , π(n)). For example, if n = 12, k = 4, π =

9̄ 5 ¯̄4 1 3 ¯̄̄8 2 6 7̄ 10 12 11 ∈ G4,12, then T (π) = (3, ¯̄̄8, . . . , 11). We define the relation ∼ on
G�,n by

π ∼ π′ ⇔ T (π) = T (π′),

it is easy to see this is an equivalence relation. Let us consider the map δ : (η, π) → δ(η, π)
from G�,m × G�,n to G�,n, where G�,m can be seen as a permutation group of colored set
C� × {|π|(1), |π|(2), . . . , |π|(m)}. Define the permutation δ(η, π) such that δ(η, π)(i) =

η(i)(i ≤ m), and δ(η, π)(i) = π(i)(i > m). For example, if π = 9̄ 5 ¯̄4 1 3 ¯̄̄8 2 6 7̄ 10 12 11 ∈
G4,12, and η = 5 4̄ 1 9̄ ∈ G4,4′ , then

δ(η, π) = 5 4̄ 1 9̄ 3 ¯̄8 2 6 7̄ 10 12 11.

So the equivalence class of π ∈ G�,n is {δ(η, π)|η ∈ G�,m}, it’s easy to see the cardinality
of each equivalence class is �mm!, choosing the representative of the equivalence class δ(ι, π)
such that

sign(|ι|(i)) = 1 and ι(1) > ι(2) · · · > ι(m).

Since the fix points of π and δ(ι, π) on [m + 1, n] keep unaltered. By Theorem 4.1,
we obtain that the number of equivalence class is gm�,n(λ)/�

mm!, which yields the equation
(4.29).

Remark 4.13. As in the proof of Theorem 4.1, we can also prove the recurrence relations
of (4.3) by constructing bijections directly, the proof is left to the interested reader.

4.6 Proof of Theorem 4.6

In this section, we give two proofs of Theorem 4.6. In the first proof, we give a bijection
from Cm

�,n to Lm
�,n, that is,

∑
π∈Lm

�,n

λfix>m(π) =
∑

π∈Cm
�,n

λfix>m(π) for 0 ≤ m ≤ n. (4.30)

In the second proof, we prove this cyclic result by constructing a equivalence relation
on G�,n, that is, ∑

π∈Cm
�,n

λfix>m(π) =
∑

π∈G�,n

λfix>m(π)/�mm!, for 0 ≤ m ≤ n. (4.31)
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4.6.1 First Proof

we will give a bijection ρ : π → π′ from Cm
�,n to Lm

�,n such that fix>m(π) = fix>m(π′).
First we give the map |π| →′ |π′| and then construct the sign transformation.

• Let |π′| = |π′|(1), . . . , |π′|(m), . . . , |π′(n)|, where |π′|(1), . . . , |π′|(m) in decreasing re-
arrangement of |π|(1), . . . , |π|(m) and |π′|(m + i) = |π|(m + i)(1 ≤ i ≤ n − m).
Conversely, we give the reverse map by π′ → π from Lm

�,n to Cm
�,n. For π′ ∈ Lm

�,n, we
define P := {|π′|(i), i ∈ [m]}. let

(|π′|−s(i), . . . , |π′|−2(i), |π′|−1(i), i)

be the cycle of |π| containing i(i ∈ [m]), where s is the least non-negative number
such that |π′|−s(i) ∈ P and if |π′|(j) = i(j ∈ [n]), then |π′|−1(i) := j. And setting
|π′|0(i) = i, that is, if i ∈ P ∩ [m], then s = 0, and i is a fixed point of |π|. The other
cycles keep in accordance with |π′|.

• We define the sign transformation as follows. Since each element i ∈ [m] in π and
π(i)(i ∈ [m]) in π′ are uncolored, we exchange the sign of |π|(i) ∈ [m] in π and
i ∈ [m] in π′. In other words,

signπ(i) = signπ′(|π|(i)) = 1 and signπ(|π|(i)) = signπ′(i), i ∈ [m].

The signs of other elements remain unchanged, i.e.,

signπ′(i) = signπ(i), i /∈ [m] ∪ {|π|(i)|i ∈ [m]}.

For example: For � = 4, n = 12,m = 4, π = (1 ¯̄9) (2 7̄) (3 5) (4) (6 8̄) (10) (11

12) ∈ C4
4,12,

signπ′(1) = signπ(|π|(1)) = ζ2, signπ′(2) = signπ(|π|(2)) = ζ,

we have

π′ = 9 7 5 4 3 8̄ 2̄ 6 ¯̄1 10 12 11 ∈ L4
4,12 and fix>4(π) = fix>4(π

′) = 1.

4.6.2 Second Proof

We decompose a permutation π ∈ G�,n as a product of disjoint cycles. For each
i ∈ [m], we define ωπ(i) = π(i)π2(i) . . . πs−1(i) where s ≥ 1 is the least integer such that
|π|s(i) ∈ [m]. Obviously ωπ(i) = ∅ if s = 1. Let Ω(π) be the product of cycles of π
which have no common elements with {ζji|i ∈ [m], 0 ≤ j ≤ � − 1}, let πm ∈ G�,m be
the permutation obtained from π by deleting elements in ωπ(i) and the cycles in Ω(π) for
i ∈ [m].

For example, if � = 4, n = 12,m = 4 and π = (1̄ 9 7̄ 2 5 ¯̄3 4) (6 8̄) (10) (11 12), then
π4 = (1̄2¯̄34) and

ωπ(1) = 97̄, ωπ(2) = 5, ωπ(3) = ∅, ωπ(4) = ∅, Ω(π) = (6 8̄) (10) (11 12).

Setting E(π) = (ωπ(1), ωπ(2), · · · , ωπ(k),Ω(π)), we define the relation ∼ on G�,n by

π1 ∼ π2 ⇔ E(π1) = E(π2),
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it is easy to see that this is an equivalence relation. Then we define the mapping θ :
(τ, π) �→ θ(τ, π) from G�,m ×G�,n to G�,n. We obtain the permutation θ(τ, π) by inserting
the elements ωi(π) after the elements ζji(i ∈ [m], 0 ≤ j ≤ �−1) of τ and adding the cycles
of Ω(π).

For example, if π = (1̄ 9 7̄ 2 5 ¯̄3 4) (6 8̄) (10) (11 12) and τ = (1 2̄) (3̄) (4) then

θ(τ, π) = (1 9 7̄ 2̄ 5) (3̄) (4) (6 8̄) (10) (11 12).

Obviously {θ(τ, π)|τ ∈ G�,m} is the equivalence class of π ∈ G�,n. From the construction
of θ(τ, π), for τ ∈ G�,m and π ∈ Gm

�,n, we have θ(τ, π) ∼ π. Conversely, if π′ ∼ π, then
π′ = θ(π′

m, π), and if θ(τ, π) = θ(τ ′, π) = π′ for τ, τ ′ ∈ G�,m, then τ = τ ′ = π′
m. Hence the

cardinality of each equivalence class is �mm!. Let η be the identity permutation of G�,m,
then we choose θ(η, π) as the representative of each equivalence class {θ(τ, π)|τ ∈ G�,m},
that is, θ(η, π) represents the the permutation π ∈ G�,n where signπ(i) = 1(i ∈ [m])
with the first m elements belong into distinct cycles. It is obvious to see fix>m(π) =
fix>m(θ(η, π)). By Theorem 4.1, the number of equivalence classes is gm�,n(λ)/�

mm!, as
desired.

4.7 Generating functions and further recurrence relations

In this section, by using the recurrence relation (4.2), we obtain the generating functions
and further recurrence relations of gm�,n(λ) and dm�,n(λ).

Proposition 4.21. For m ≥ 0 we have the following identities:

gm�,n+m(λ) =
n∑

i=0

(λ− 1)n−i

(
n

i

)
�m+i(m+ i)!, (4.32)

∑
n≥0

gm�,n+m(λ)
un

n!
=

�mm!exp((λ− 1)u)

(1− �u)m+1
, (4.33)

∑
m,n≥0

gm�,n+m(λ)
xm

m!

un

n!
=

exp((λ− 1)u)

1− �x− �u
. (4.34)

Proof. For any function f(k)(k ≥ 0): Z[λ] → C[λ], we define the operator

Δf(n)(λ) = f(n)(λ) + (λ− 1)f(n− 1)(λ).

By inductions on N ≥ 0, we have

ΔNf(n)(λ) =
N∑
i=0

(λ− 1)i
(
N

i

)
f(n− i)(λ) =

N∑
i=0

(λ− 1)N−i

(
N

i

)
f(n−N + i)(λ).

(4.35)

If f(n)(λ) = gn�,n(λ), thus gn+m−i
�,n+m (λ) = Δif(n+m)(λ) for i ≥ 0. From (4.35), we

obtain

gm�,n+m(λ) = Δnf(n+m)(λ) =
n∑

i=0

(λ− 1)n−i

(
n

i

)
�m+i(m+ i)!. (4.36)
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For the above identity, multiplying both sides by un/n! and summing over n ≥ 0, we obtain∑
n≥0

gm�,n+m(λ)
un

n!
= �mm!

∑
n,i≥0

(λ− 1)n−i

(
m+ i

i

)
�iun

(n− i)!
.

By shifting n to n+ i, we have

∑
n≥0

gm�,n+m(λ)
un

n!
= �mm!

⎛⎝∑
n≥0

(λ− 1)n
un

n!

⎞⎠ ·
⎛⎝∑

i≥0

(
m+ i

i

)
(�u)i

⎞⎠ .

Clearly the above equation implies (4.33) immediately. Finally multiplying both sides of
(4.33) by xm/m! and summing over m ≥ 0 yields (4.34).

Remark 4.14. Setting m = 0 in (4.32), we obtain

d0�,n(λ) = g0�,n(λ) = n!

n∑
i=0

(λ− 1)i

i!
�n−i, (4.37)

which implies immediately the following recurrence relation,

d0�,n(λ) = �nd0�,n−1(λ) + (λ− 1)n (n ≥ 1). (4.38)

Proposition 4.22. For � ≥ 1 and 0 ≤ m ≤ n− 2 we have

gm�,n(λ) = (�n+ λ− 1)gm�,n−1(λ)− �(n−m− 1)(λ− 1)gm�,n−2(λ) (n ≥ 2); (4.39)

gm�,n(λ) = �(n−m)gm�,n−1(λ) + �mgm−1
�,n−1(λ) (m ≥ 1, n ≥ 1); (4.40)

gm�,n(λ) = �ngm�,n−1(λ) + �m(λ− 1)gm−1
�,n−2(λ) (m ≥ 1, n ≥ 2), (4.41)

where g0�,0(λ) = 1, g0�,1(λ) = λ+ �− 1 and g1�,1(λ) = �.

Proof. Let F (u) denote the left-hand side of (4.33). By using the differentiation of F (u)
and (4.33), we obtain

(1− �u)F ′(u) = [�(m+ 1) + (λ− 1)(1− �u)]F (u). (4.42)

By equating the coefficients of un/n! in (4.42), we have

gm�,n+m+1(λ) = [�(m+ n+ 1) + λ− 1]gm�,n+m(λ)− �n(λ− 1)gm�,n+m−1(λ),

shifting n+m+ 1 to n yields (4.39) immediately.
Then multiplying both sides of (4.33) by 1− �u, we have

(1− �u)
∑
n≥0

gm�,n+m(λ)
un

n!
=

�mm!exp((λ− 1)u)

(1− �u)m
= �m

∑
n≥0

gm−1
�,n+m−1(λ)

un

n!
. (4.43)

By equating the coefficients of un/n!, we have

gm�,n+m(λ)− �ngm�,n+m−1(λ) = �mgm−1
�,n+m−1(λ), (4.44)

shifting n+m to n yields (4.40) .
Finally, from (4.40) and (4.2), we have

gm�,n(λ) = �ngm�,n−1(λ)− �m(gm�,n−1(λ)− gm−1
�,n−1(λ))

= �ngm�,n−1(λ) + �m(λ− 1)gm−1
�,n−2(λ),

which yields (4.41), the proof is completed.
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With the above Proposition 4.22, we derive the following propositions immediately.

Proposition 4.23. For � ≥ 1 and 0 ≤ m ≤ n− 2 we have

dm�,n(λ) = (�n+ λ− 1)dm�,n−1(λ)− �(n−m− 1)(λ− 1)dm�,n−2(λ) (n ≥ 2); (4.45)

dm�,n(λ) = �(n−m)dm�,n−1(λ) + dm−1
�,n−1(λ) (m ≥ 1, n ≥ 1); (4.46)

dm�,n(λ)− (λ− 1)dm−1
�,n−2(λ) = �ndm�,n−1(λ) (m ≥ 1, n ≥ 2), (4.47)

where d0�,0(λ) = 1, d0�,1(λ) = λ+ �− 1 and d1�,1(λ) = 1.

Proof. With Proposition 4.22, we can get these equations (4.45), (4.46) and (4.47) directly.

Remark 4.15. Setting � = 1, (4.3), (4.45), and (4.47) reduce to the result of Eriksen et
al. [35, Propositions 8.1, 8.3 and 8.2]. In this case, (4.33) and (4.34) recover the result of
Rakotondrajao [84, Theorem 6.7 and Theorem 6.8]. Setting λ = 0, Propositions 4.21, 4.22
and 4.23 reduce to the result of Faliharimalala and Zeng [40, Propositions 17, 18, and 19].

4.8 Proof of Theorem 4.7

In this section, to prove Theorem 4.7, we prove the following equation,

∑
π∈Fm

�,n+m

λfix>m(π) =
(n+m)!

n!

∑
π∈Cm

�,n+m

λfix>m(π) for m,n ≥ 0. (4.48)

And with the generating functions of dm�,n(λ), we obtain the generating functions and
recurrence relations of fm

�,n(λ).

Proof of Theorem 4.7. For � ≥ 1, we construct such a permutation π ∈ Fm
�,n+m in following

way, see Definition 4.7.
Starting from the set [n+2m], we take m elements from the set [m+1, 2m] as the image

of [1,m], which is labeled as π(i)(i ∈ [m]). Clearly there are
(
n+m
m

)
m! ways to choose. Let

i′(i ∈ [m]) represent the two element set {i, π(i)}, and let i′(i ∈ [m+1, n+m]) denote the
remaining element [n + 2m] \ {i, π(i)}. Let π′ denote the permutation on the colored set
C� × {1′, 2′, 3′, · · · , (m+ n)′} such that signπ′(i′) = 1(i′ ∈ [m]) and i′(i′ ∈ [m]) belong into
distinct cycles, by transforming the i′ into {i, π(i)}, we obtain the desired permutation
in Fm

�,n+m and vice versa. From this construction, we have fix>m(π) = fix>m(π′). This
completes the proof.

Theorem 4.24. For � ≥ 1 and 0 ≤ m ≤ n, we have

∑
n≥0

fm
�,n(λ)

un

n!
=

umexp(λ− 1)u

(1− �u)m+1
. (4.49)

Proof. According to the generating function (4.33) of gm�,n(λ), it is clear to see that

∑
n≥0

dm�,n+m(λ)
un

n!
=

exp(λ− 1)u

(1− �u)m+1
.
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For the above identity, multiplying both sides by um, we obtain∑
n≥0

(n+m)!

n!
dm�,n+m(λ)

un+m

(n+m)!
=

umexp(λ− 1)u

(1− �u)m+1
.

With Theorem 4.7, ∑
n≥0

fm
�,n+m

un+m

(n+m)!
=

umexp(λ− 1)u

(1− �u)m+1
,

which is (4.49) by shifting n+m to n.

With (4.3), (4.45), (4.46), (4.47) and Theorem 4.7, we obtain the following corollary.

Corollary 4.25. For � ≥ 1, 1 ≤ m ≤ n− 2, we have

(n−m+ 1)fm−1
�,n (λ) = �mfm

�,n(λ) + (λ− 1)nfm−1
�,n−1(λ); (4.50)

(n−m)fm
�,n(λ) = n(�n− 1 + λ)fm

�,n−1(λ)− �(λ− 1)n(n− 1)fm
�,n−2(λ); (4.51)

fm
�,n(λ) = �nfm

�,n−1(λ) + nfm−1
�,n−1(λ); (4.52)

(n−m)fm
�,n(λ) = (λ− 1)n(n− 1)fm−1

�,n−2(λ) + �n2fm
�,n−1(λ); (4.53)

where f0
�,0(λ) = 1, f0

�,1(λ) = λ+ �− 1 and f1
�,1(λ) = 1.

With (4.51) and (4.52), we have the following corollary.

Corollary 4.26. For � ≥ 1 and 1 ≤ m ≤ n− 2, we have

fm
�,n(λ) = mfm−1

�,n−1(λ)− �(λ− 1)(n− 1)fm
�,n−2(λ) + (�m+ �n− 1 + λ)fm

�,n−1(λ). (4.54)

Remark 4.16. When (�, λ) = (1, 0), (4.49) and (4.54) reduce to the results of [107,
Theorem 3 and Theorem 2].

4.9 Combinatorial proof of recurrence relation (4.46)

In this section, we give the combinatorial proof of recurrence (4.46), that is,∑
π∈Cm

�,n

λfix>m(π) = �(n−m)
∑

π∈Cm
�,n−1

λfix>m(π) +
∑

π∈Cm−1
�,n−1

λfix>m−1(π), (4.55)

other recurrences (4.45) and (4.47) can be proved in similar ways.

Lemma 4.27. For 0 ≤ m ≤ n,∑
π∈Cm

�,n
m∈FIX(π)

λfix>m(π) =
∑

π∈Cm−1
�,n−1

λfix>m−1(π). (4.56)

Proof. It follows similar arguments as in the proof of Lemma 4.8.

Lemma 4.28. For 0 ≤ m ≤ n,∑
π∈Cm

�,n
m/∈FIX(π)

λfix>m(π) = �(n−m)
∑

π∈Cm
�,n−1

λfix>m(π). (4.57)
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Proof. Let us consider the map χ : π → (ε, β, π′) from Cm
�,n ∩ {π ∈ G�,n|m /∈ FIX(π)} to

C� × [n−m]× Cm
�,n−1 such that fix>m(π) = fix>m(π′).

For π ∈ Cm
�,n ∩ {π ∈ G�,n|m /∈ FIX(π)}, we decompose π as the product of disjoint

cycles. Let π(m) = β, it is easy to see |β| ∈ [m+ 1, n] and signπ(β) = ε.
For the element i ∈ π, we delete the element β and define the element i′ ∈ [n− 1] in π′

by

i′ =

{
i, if |i| < |β|;
i− 1, if |i| > |β|.

Conversely, starting from (ε, β, π′) ∈ C� × [n− k]× Cm
�,n−1, for the element i′ ∈ π′, we

define the element i ∈ [n] in π by

i =

{
i′, if |i′| < |β|;
i′ + 1, if |i′| ≥ |β|,

and let π(m) = (ε, β).

For example, let � = 4, n = 9, k = 4, if π = (1 ¯̄̄7) (2 ¯̄5) (3 ¯̄̄8) (4 9̄) (6) ∈ C4
4,9,

ε = ζ, β = 9, π′ = (1 ¯̄̄7) (2 ¯̄5) (3 ¯̄̄8) (4) (6) ∈ C4
4,8 and fix>4(π) = fix>4(π

′).

for π = (1 ¯̄̄7) (2) (3 8̄) (4 ¯̄5) (6) (9) ∈ C4
4,9,

ε = ζ2, β = 5, π′ = (1 ¯̄̄6) (2) (3 7̄) (4) (5) (8) ∈ C4
4,8 and fix>4(π) = fix>4(π

′).

Proof of equation (4.55). By considering the following equation,∑
π∈Cm

�,n

λfix>m(π) =
∑

π∈Cm
�,n

m/∈FIX(π)

λfix>m(π) +
∑

π∈Cm
�,n

m∈FIX(π)

λfix>m(π), (4.58)

by Lemma 4.27, the (4.58) is equivalent to∑
π∈Cm

�,n

λfix>m(π) =
∑

π∈Cm
�,n

m/∈FIX(π)

λfix>m(π) +
∑

π∈Cm−1
�,n−1

λfix>m−1(π). (4.59)

By Lemma 4.28, we obtain (4.55) immediately. This completes the proof.

4.10 Final remarks

Faliharimalala and Zeng [41, eq. (1.2)] studied the wreath product analogue of Euler’s
q-difference table {gm�,n(q)}0≤m≤n as follows.

Definition 4.8 (Faliharimalala-Zeng). For fixed integer � ≥ 1, the coefficients of Euler’s
q-difference table (gm�,n(q))0≤m≤n for C�  Sn are defined by{

gn�,n(q) = [�]q[2�]q . . . [n�]q, (m = n);
gm�,n(q) = gm+1

�,n (q)− q�(n−m−1)gm�,n−1(q) (0 ≤ m ≤ n− 1). (4.60)

Faliharimalala and Zeng found a combinatorial interpretation of (gm�,n(q))0≤m≤n by
introducing a new Mahonian statistic fmaf on the wreath products. So the natural question
is to find a q-λ-Euler’s difference table for λ-Euler’s difference table in Definition 4.1, it
seems the statistic fmaf cannot help directly.



122 4. λ-Euler’s difference table for colored permutations



123

Bibliography

[1] M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544–2563.

[2] D. André, Développement de sec x and tgx, C. R. Math. Acad. Sci. Paris 88 (1879),
965–979.

[3] C. A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar.
Combin. 77 (2018), Article B77i, 64pp (electronic).

[4] E. Babson, E. Steingrímsson, Generalized permutation patterns and a classification
of the Mahonian statistics, Sém. Lothar. Combin., B44b (2000), 18 pp.

[5] M. Barnabei, F. Bonetti, N. Castronuovo, M, Silimbani, Ascending runs in permuta-
tions and valued Dyck paths, Ars Math. Contemp. 16 (2019) 445–463.

[6] D. Bevan, Permutation patterns: basic definitions and notation, arXiv preprint (2015).
(arXiv:1506.06673).

[7] P. Biane, Permutations suivant le type d’excédance et le nombre d’inversions et in-
terprétation combinatoire d’une fraction continue de Heine, European J. Combin. 14
(1993), no. 4, 277–284.

[8] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Graduates Texts in
Mathematics, 231. Springer, New York, 2005.

[9] S. A. Blanco, T. K. Petersen, Counting Dyck paths by area and rank, Ann. Comb.,
18 (2) (2014), 171–197.

[10] M. Bóna, On a family of conjectures of Joel Lewis on alternating permutations, Graphs
Combin., 30 (3) (2014), 521–526.

[11] F. Bowman, Introduction to Elliptic Functions with Applications. English Universities
Press, London, United Kingdom, 1953.

[12] P. Brändén, A. Claesson, E. Steingrímsson, Catalan continued fractions and increasing
subsequences in permutations, Discrete Math., 258 (2002), 275–287.

[13] P. Brändén, Actions on permutations and unimodality of descent polynomials, Euro-
pean J. Combin., 29 (2008), 514–531.

[14] P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of
Enumerative Combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca
Raton, FL, 2015, 437–483. (arXiv:1410.6601)

[15] F. Brenti. q-Eulerian polynomials arising from Coxeter groups, European J. Combin.
15 (5): 417–441, 1994.



124 BIBLIOGRAPHY

[16] K. S. Briggs, J. B. Remmel, m-Rook numbers and a generalization of a formula of
Frobenius to Cm  Sn, J. Combin. Theory Ser. A, 113 (2006) 1138-1171.

[17] L. Carlitz, J. Riordan, Two element lattice permutation numbers and their q-
generalization. Duke Math. J., 31 (1964), 371–388.

[18] F. Chapoton and J. Zeng, A curious polynomial interpolation of Carlitz-Riodan’s
q-Ballot numbers, Contrib. Discret Math., 10 (2015), 99–122.

[19] J. N. Chen, W. Y. C. Chen, R. D. P. Zhou, On pattern avoiding alternating permu-
tations, European J. Combin., 40 (2014), 11–25.

[20] W. Y. C. Chen, C. C. Y. Gu, K. J. Ma, L. X. W. Wang, Higher order log-concavity
in Euler’s difference table, Discrete Math. 311 (2011), no. 20, 2128-2134.

[21] S-E. Cheng, S. Elizalde, A. Kasraoui, B. E. Sagan, Inversion polynomials for 321-
avoiding permutations, Discrete Math., 313 (22) (2013), 2552–2565.

[22] A. Claesson, Generalized pattern avoidance, European J. Combin., 22 (7) (2001),
961–971.

[23] R. J. Clarke, G. N. Han, J. Zeng, A combinatorial interpretation of the Seidel gener-
ation of q-derangement numbers, Ann. Comb. 1(1997) 313-327.

[24] R. J. Clarke, E. Steingrímsson, J. Zeng, New Euler-Mahonian statistics on permuta-
tions and words, Adv. Appl. Math., 18 (3) (1997), 237–270.

[25] E. V. F. Conrad, Some continued fraction expansions of laplace transforms of elliptic
functions. PhD Thesis, The Ohio State University, 2002.

[26] E. V. F. Conrad, P. Flajolet, The Fermat cubic, elliptic functions, continued fractions
and a combinatorial excursion, Sém. Lothar. Combin. 54 (2005), 1–44. Art. B54g.

[27] M. C. Cooper, W. S. Jones, Y. Zhuang, On the joint distribution of cyclic valleys and
excedances over conjugacy classes of Sn, arXiv:1906.05191.

[28] S. Corteel, Crossings and alignments of permutations, Adv. Appl. Math. 38 (2) (2007)
149–163.

[29] A. de Médicis, G. X. Viennot, Moments des q-polynômes de Laguerre et la bijection
de Foata-Zeilberger. Adv. in Appl. Math. 15 (1994), no. 3, 262–304.

[30] E. Deutsch, D. Callan, M. Beck, D. Beckwith, W. Bohm, R. F. McCoart and GCHQ
Problems Group, Another type of lattice path, Amer. Math. Monthly., 107 (4) (2000),
Problem 10658, 368–370.

[31] D. Dumont, A combinatorial interpretation for the Schett recurrence on the Jacobian
elliptic functions, Math. Comp. 33 (1979), 1293–1297.

[32] D. Dumont, Une approche combinatoire des fonctions elliptiques de Jacobi, Adv.
Math. 1 (1981), 1–39.

[33] D. Dumont, A. Randrianarivony, Dérangements et nombres de Genocchi, Discrete
Math. 132 (1994) 37-49.



BIBLIOGRAPHY 125

[34] S. Elizalde, Fixed points and excedances in restricted permutations, Proceedings of
FPSAC Linköping University, Sweden, 2003.

[35] N. Eriksen, R. Freij, J. Wästlund, Enumeration of derangements with descents in
prescribed positions, Electron. J. Combin., 16 (2009) #R32.

[36] S.-P. Eu, T.-S. Fu, H.-C. Hsu, H.-C. Liao, Signed countings of types B and D permu-
tations and t, q-Euler numbers, Adv. Appl. Math., 97 (2018), 1–26.

[37] L. Euler, Institutiones calculi differentials cum eius usu in analysi finitorum ac Doc-
trina serierum, in: Academiae Imperialis Scientiarum Petropolitanae, St. Petersburg,
1755 (Chapter VII, ”Methodus summandi superior ulterius promota”).

[38] H. L. M. Faliharimalala„ Combinatorial studies of Euler’s table on wreath products,
Thèse de doctorat, Université Claude Bernard Lyon 1, 2010.

[39] H. L. M. Faliharimalala, and A. Randrianarivony, Flag-major index and flag-inversion
number on colored words and Wreath product, Sem. Lothar. Combin., B62c (2010),
10 pp.

[40] H. L. M. Faliharimalala, J. Zeng, Derangements and Euler’s difference table for Cl Sn,
Electron. J. Combin., 15 (2008) #R65.

[41] H. L. M. Faliharimalala, J. Zeng, Fix-Euler-Mahonian statistics on wreath products,
Adv. Appl. Math., 46 (2011), 275-295.

[42] P. Filipponi, Waring’s formula, the binomial formula, and generalized Fibonacci ma-
trices. Fibonacci Quart. 30(3)(1992), 225-231.

[43] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980),
no. 2, 125–161.

[44] P. Flajolet, J. Françon, Elliptic functions, continued fractions and doubled permuta-
tions, European J. Combin. 10 (1989), 235–241.

[45] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.

[46] D. Foata, Etude algébrique de certains problèmes d’analyse combinatoire et du calcul
des probabilités, Publ. Inst. Statist. Univ. Paris 14 (1965), 81–241.

[47] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc., 19
(1968), 236–240.

[48] D. Foata, Eulerian polynomials: from Euler’s time to the present, The Legacy of
Alladi Ramakrishnan in the Mathematical Sciences (2010), 253–273.

[49] D. Foata and G.-N. Han, Signed words and permutations, I: A fundamental transfor-
mation, Proc. Amer. Math. Soc. 135 (2007), 31–40.

[50] D. Foata and G.-N. Han, Signed words and permutations, III; The MacMahon Ver-
fahren, Sém. Lothar. Combin. 54, B54a, 20 pp.

[51] D. Foata, M. P. Schützenberger, Théorie géométrique des polynômes eulériens, Lecture
Notes in Math., vol. 138, Springer-Verlag, Berlin, 1970.



126 BIBLIOGRAPHY

[52] D. Foata, V. Strehl, Rearrangements of the symmetric group and enumerative prop-
erties of the tangent and secant numbers, Math Z., 137 (3) (1974), 257–264.

[53] D. Foata, D. Zeilberger, Denert’s permutation statistic is indeed Euler-Mahonian,
Stud. Appl. Math., 83 (1) (1990), 31–59.

[54] J. Françon, G. Viennot, Permutations selon leurs pics, creux, doubles montées et
double descentes, nombres d’Euler et nombres de Genocchi, Discrete Math., 28 (1)
(1979), 21–35.

[55] S. Fu, Z. Lin, J. Zeng, On two unimodal descent polynomials, Discrete Math., 341 (9)
(2018), 2616–2626.

[56] S. Fu, D. Tang, B. Han, J, Zeng, (q, t)-Catalan numbers: gamma expansions, pattern
avoidances and the (−1)-phenomenon, Adv. in Appl. Math., 106 (2019) 57–95.

[57] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, John Wiley, New York
(1983).

[58] B. Han, λ-Euler’s difference table for colored permutations, Electron. J. Combin., 25
(4) (2018), #P4. 25.

[59] G.-N. Han, Z. Lin and J. Zeng, A symmetrical q-Eulerian identity, Sem. Lothar.
Combin., B67c (2012), 11 pp.

[60] B. Han, J. Mao and J. Zeng, Eulerian polynomials and excedance statistics, arXiv
preprint (2019). (arXiv:1908.01084).

[61] I. Kaplansky, J. Riordan, The problem of rooks and its applications, Duke Math. J.,
13 (1946) 259–268.

[62] J. S. Kim, Enumeration formulas for generalized q-Euler numbers, Adv. in Appl. Math.
49 (2012) 326–350.

[63] S. Kitaev, Patterns in Permutations and Words, Springer Science & Business Media,
2011.

[64] D. Knuth, The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, MA,
1968.

[65] J. B. Lewis, Alternating, pattern-avoiding permutations, Electron. J. Combin., 16
(2009), Note 1.7, 8pp (electronic).

[66] J. B. Lewis, Pattern avoidance for alternating permutations and Young tableaux, J.
Combin. Theory Ser. A, 118 (4) (2011), 1436–1450.

[67] J. B. Lewis, Generating trees and pattern avoidance in alternating permutations,
Electron. J. Combin., 19 (2012), Research paper 1.21, 21pp (electronic).

[68] J. B. Lewis, Pattern avoidance for alternating permutations and reading words of
tableaux (Doctoral dissertation, Massachusetts Institute of Technology), 2012.

[69] J. Liese, J. B. Remmel, Q-analogues of the number of permutations with k-excedances,
Pure Mathematics and Applications, 21 (2010), 285-320.



BIBLIOGRAPHY 127

[70] Z. Lin, On some colored Eulerian quasisymmetric functions, arXiv preprint
(2013).(arXiv:1309.6368).

[71] Z. Lin, Eulerian calculus arising from permutation statistics, Thèse de doctorat, Uni-
versité Claude Bernard Lyon 1, 2014.

[72] Z. Lin, On γ-positive polynomials arising in pattern avoidance, Adv. Appl. Math., 82
(2017), 1–22.

[73] Z. Lin, S. Fu, On 1212-avoiding restricted growth functions, Electron. J. Combin., 24
(2017), Research Paper 1.53, 20pp (electronic).

[74] Z. Lin, J. Zeng, The γ-positivity of basic Eulerian polynomials via group actions, J.
Combin. Theory Ser. A, 135 (2015), 112–129.

[75] P. A. MacMahon, Combinatory Analysis, vol. 1, Cambridge Univ. Press, Cambridge,
1915.

[76] P. A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, London
1915–1916. Reprinted by Chelsea, New York, 1960.

[77] P. A. MacMahon, The indices of permutations and the derivation therefrom of func-
tions of a single variable associated with the permutations of any assemblage of objects,
Amer. J. Math., 35 (1913), 281–322.

[78] P. A. MacMahon, Two applications of general theorems in combinatory analysis, Proc.
London Math. Soc., 15 (1916), 314–321.

[79] T. Mansour, Restricted 132-alternating permutations and Chebyshev polynomials,
Ann. Comb., 7 (2003), 201–227.

[80] S.-M. Ma, J. Ma, Y.-N Yeh, R. R. Zhou, Combinatorics of Jacobian Elliptic function,
arXiv preprint (2018). (arXiv:1807.08700).

[81] Z. Mei, S. Wang, Pattern avoidance and Young tableaux, Electron. J. Combin., 24
(2017), Research Paper 1.6, 10pp (electronic).

[82] T. K. Petersen, Enriched P-partitions and peak algebras, Adv. Math. 209 (2007), no.
2, 561–610.

[83] T. K. Petersen, Eulerian Numbers. With a foreword by Richard Stanley. Birkhäuser
Advanced Texts: Basler Lehrbücher. Birkhäuser/Springer, New York, 2015.

[84] F. Rakotondrajao, On Euler’s difference table, Proc. of FPSAC’07, Tianjin, 2007.

[85] F. Rakotondrajao, k-fixed-points-permutations, Integers 7 (2007) #A36.

[86] V. Reiner, D. Stanton, D. White, The cyclic sieving phenomenon, J. Combin. Theory
Ser. A, 108 (2004), 17–50.

[87] J. Riordan, An introduction to combinatorial analysis, Wiley Publications in Math-
ematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd.,
London, 1958.

[88] O. Rodrigues, Note sur les inversions, ou derangements produits dans les permuta-
tions, J. Math. 4 (1839), 236–240.



128 BIBLIOGRAPHY

[89] L. J. Rogers, on the representation of certain asymptotic series as convergent continued
fractions, Proc. London Math. Soc., Ser. 2, 4 (1907), 72-89.

[90] P. D. Roselle, Permutations by number of rises and successions, Proc. Amer. Math.
Soc., 19 (1968): 8–16.

[91] B. E. Sagan, The cyclic sieving phenomenon: A survey, London Math. Soc. Lecture
Note Ser. 392, Cambridge Univ. Press, Cambridge, 2011.

[92] A. Schett, Properties of the Taylor series expansion coefficients of the Jacobian elliptic
functions, Math. Comp., v. 30, 1976, pp. 143-147.

[93] L. W. Shapiro, W. J. Woan, S. Getu, Runs, slides, and moments, SIAM J. Alg. Disc.
Meth. 4 (4):459–466, 1983.

[94] J. Shareshian, M. L. Wachs, Eulerian quasisymmetric functions, Adv. Math., 225
(2011), 2921–2966.

[95] H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, Euro-
pean J. Combin. 31 (7) (2010), 1689–1705.

[96] H. Shin, J. Zeng, The symmetric and unimodal expansion of Eulerian polynomials via
continued fractions, European J. Combin., 33 (2) (2012), 111–127.

[97] H. Shin, J. Zeng, Symmetric unimodal expansions of excedances in colored permuta-
tions. European J. Combin. 52 (2016), 174–196.

[98] R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6.4
(1985), 383–406.

[99] R. P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge University Press, Cam-
bridge, 1997.

[100] R. P. Stanley, A survey of alternating permutations, Contemp. Math., 531 (2010),
165–196.

[101] R. P. Stanley, Catalan Numbers. Cambridge University Press, 2015.

[102] E. Steingrímsson, Permutation statistics of indexed permutations, European J. Com-
bin. 15 (2): 187–205, 1994.

[103] J. R. Stembridge, Enriched P -partitions, Trans. Amer. Math. Soc. 349 (2): 763–788,
1997.

[104] T. Stieltjes, Sur the réduction en fraction continue d’une série procédant selon les
puissances descendantes d’une variable, Ann. Fac. Sci. Tulouse, 3 (1889), 1-17.

[105] H. Sun, Y. Wang, A group action on derangements, Electron. J. Combin. 21 (1)
(2014), #P1.67.

[106] G. Viennot, Une interprétation combinatoire des coefficients de déveloooements en
série entière des fonctions elliptiques de Jacobi, J. Combin. Theory Ser. A, 29 (1980),
121–133.

[107] C. Y. Wang, P. Miska, I. Mezö , The r-derangement numbers. Discrete Math. 340
(2017), no. 7, 1681-1692.



BIBLIOGRAPHY 129

[108] Y. Xu, S. H. F. Yan, Alternating permutations with restrictions and standard Young
tableaux, Electron. J. Combin., 19 (2012), Research Paper 2.49, 16pp (electronic).

[109] S. H F. Yan, On Wilf equivalence for alternating permutations, Electron. J. Combin.
20 (2013), Research Paper 3.58, 19pp (electronic).

[110] S. H. F. Yan, H. Zhou, Z. Lin, A new encoding of permutations by Laguerre histories,
to appear in Electron. J. Combin. (2019).

[111] J. Zeng, Énumérations de permutations et J-fractions continues, European J. Com-
bin. 14 (4) (1993) 37–382.

[112] Y. Zhuang, Eulerian polynomials and descent statistics, Adv. in Appl. Math. 90
(2017) 86–144.



130 BIBLIOGRAPHY



131

Index

gm�,n(λ), 99
(13-2), 16
(2-13), 16
(2-31), 16
(31-2), 16
(s,p), 21
(dm�,n(λ))0≤m≤n, 100
(gmn (λ))0≤m≤n, 10
(gmn )0≤m≤n, 10
(gm�,n)0≤m≤n, 10
(gm�,n(λ))0≤m≤n, 99
(gm�,n(q))0≤m≤n, 121
(q, t)-Catalan number, 49, 50
<c, 47
An(p, q, t), 27
An(p, q, t, u, v, w), 40
An(t), 2, 3, 13
An(x, y, q, p, s), 53
A

(cyc∗ − fix∗,exc)
n (q, t), 28

Bn(p, q, t, u, v, w, y), 41
Bn(y, t), 31
B�

n,m, 107
C∗
n(q), 65

C0(z, x), 9, 80
Cn(q, t, u, v, w), 41
Cn(t, q), 49
Cm
�,n, 104

Dn(q, t, u, v, w), 41
D

(stat1,stat2)
n (q, t), 28

D�
n, 110

D2n(p, q, x, u, v, w), 82
D2n(x), 83
Dcyc

2n (β, x, u, v, w), 83
FIX, 103
Fn(t, w, r, y), 47
Fm
�,n+m, 105

Gn(t), 72
J [z; bn, λn], 47
J2n+1(p, q, x, u, v, w), 80

J2n+1(x), 81
J2n(p, q, x), 96
J2n(p, q, x, u, v, w, y), 82
J2n(x), 82
L∗
r((s,p)), 32

Lm
�,n, 104

Nn(t), 7, 15
Nn(t, q, r), 29
P (stat1,...,statm)(Ω; t1, . . . , tm), 26
Pn(t, q), 64
P peak
n (x), 7

P
(peak,des)
n (x, t), 7

Qn(t, q), 64
R(x), 73
Rn(t, q), 64
SUCk(π), 101
S1(z, x), 9, 79
Sn(t), 73
U(x), 76
Wn(t, q), 62
Yn(t), 73
An, 3
Cda∗, 19
Cda, 17
Cdd∗, 19
Cdd, 17
Cpk∗, 19
Cpk, 17
Cval∗, 19
Cval, 17
DD∗

2n, 83
DD2n, 83
DH2n, 85
DPn, 80
D∗

n, 5, 53
Dn, 5
Da, 16
Dd, 16
DES, 4



132 INDEX

Drop, 17
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Euler’s difference table, 10, 99
Eulerian polynomial, 2, 7, 13
Eulerian statistic, 4
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Falling alternating permutation, 3, 96
Foata-Zeilberger bijection, 14, 23, 32, 90
Françon-Viennot bijection, 22, 23, 50, 53

Group action on derangement, 37
Group action on doubled permutation, 88
Group action on Laguerre history, 33

Inverse crossing number, 17, 88
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Inversion, 4
Inversion number, 4

Jacobi elliptic function, 8, 79
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Mahonian statistic, 5
Major index, 4

Narayana polynomial, 7, 15
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Pattern avoidance, 6, 23, 50
Peak polynomial, 7, 13
Permutation, 3

Real rooted, 1
Restricted Laguerre history, 21, 32

Secant number, 4
Sign type B Eulerian polynomial, 31
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Tangent number, 4

Unimodal, 1
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