Arithmetic of values of L-functions and generalized multiple zeta values over number fields

Xiaohua Ai

- To cite this version:

Xiaohua Ai. Arithmetic of values of L-functions and generalized multiple zeta values over number fields. General Mathematics [math.GM]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066394 . tel-02303034

HAL Id: tel-02303034
https://theses.hal.science/tel-02303034
Submitted on 2 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ARITHMETIC OF VALUES OF L-FUNCTIONS AND GENERALIZED MULTIPLE ZETA VALUES OVER NUMBER FIELDS

XIAOHUA AI

INSTITUT DE MATHEMATIQUES DE JUSSIEU-PARIS RIVE GAUCHE (IMJ-PRG)
UNIVERSITE PIERRE ET MARIE CURIE (PARIS 6)

JUIN 2017

Contents

1 Introduction 3
1.1 Generalizations of classical Zeta Values 3
1.2 Hecke's Formula 3
1.3 Inspiration 5
1.3.1 Goncharov's Hodge correlators 6
1.3.2 Plectic Philosophy 6
1.4 Main results 7
1.4.1 Generalized MZV for totally real fields 9
1.4.2 \quad The case $F=\mathbb{Q}$. 10
1.4.3 The case of a general totally real field 11
1.5 Final remarks 12
2 Goncharov's Theory of Hodge correlators 13
2.1 Introduction 13
2.2 Definition of Hodge correlators after Goncharov 13
2.3 Examples of Hodge correlators 14
3 Plectic Principle 16
3.1 Equivariant plectic Green Currents 16
3.2 Some explanation of the philosophy 17
4 Generalization of Multiple Zeta Values (I): General construction and results over \mathbb{Q} 19
4.1 General construction 19
4.1.1 Plectic Green currents 19
4.1.2 Higher plectic Green currents 20
4.1.3 Generalized MZV for totally real fields 23
4.1.4 Generalized MZV for arbitary number fields 23
4.2 Relation to classical MZVs 24
4.2.1 Relation to MZVs and examples 24
4.2.2 Proof of the theorem 36
4.3 Relation to multiple polylogarithms 54
5 Generalization of Multiple Zeta Values (II): Results for general totally real fields 56
5.1 The Hecke transform 57
5.2 Reciprocity formula for the Hecke transform 60
5.3 Sczech's rational functions and Eisenstein cocycles 62
5.3.1 Introduction 62
5.3.2 Sczech's rational function and higher plectic Green functions. 65
5.4 Generalized multiple zeta values for general $F(\mathrm{I})$: special cases 75
5.4.1 The case $r=2$. 76
5.4.2 The case $r=3$. 81
5.4.3 The case $r=4$. 87
5.5 Generalized multiple zeta values
for general F (II): general case 91
5.5.1 Preliminaries 91
5.5.2 General case of r and generalized polylogarithms over F 93
6 The values $\mathscr{Z}_{I, F}(\Gamma, S)$ and the cohomology of congruence subgroups of $S L_{m}\left(O_{F}\right)$ 97

1 Introduction

The principal objective of this thesis is to generalize multiple Zeta values to the case when the ground field \mathbb{Q} is replaced by an arbitrary number field. The motivation behind the construction comes from the work of A. Goncharov on Hodge correlators and the plectic philosophy of J. Nekovář and A. Scholl.

We start by constructing the higher plectic Green functions. Hecke once proved that the integral of the restriction of a suitable Eisenstein series over \mathbb{Q} to the idele class group of a given number field multipled an idele class character of finite order is equal to the L-functions of this charator. By replacing Eisenstein seris with our higher plectic Green functions, a similar integration gives new results, which give the generalization of classical multiple zeta values and multiple polyloarithms.

According to the plectic principle, a non-trivial subgroup of the ring of integers of a given number field plays an essential role in this work.

1.1 Generalizations of classical Zeta Values

Classically, multiple Zeta values(MZVs) are the periods of mixed Tate motives, namely the MZVs are iterated integrals on $\mathbb{P}^{1} \backslash\{0,1, \infty\}$. Mixed motives and their realizations related to classical modular forms were studied by various mathematicians (Beilinson, Beilinson-Levin, Manin, Goncharov, F. Brown, ...) Moreover, there exist mysterious modular phenomena in the ring of MZVs related to the depth filtration. A good geometric understanding of these phenomena seems that we should put MZVs and modular forms for $S L_{2}(\mathbb{Z})$ in a common framework. Recently, F. Brown proposed so-called multiple modular values and mixed modular motives.

On the other hand, A. Goncharov used ideas from quantum physics on Hodge theoretical setting to construct so-called Hodge correlators, which provide a new method to describe the corresponding variations of real mixed Hodge structures and a new way to understand periods of motives. He proved that classical polylogarithms, elliptic polylogarithms and their generalizations are all Hodge correlators.

However, all the work mentioned above is built up over the rational field \mathbb{Q}. What the situation will be if \mathbb{Q} is replaced by an arbitary number field K is still largely open. One natural but non-trivial question is

Question 1.1 How should we define multiple Zeta values over arbitary number fields?

What should we put in the missing place in the following diagram to complete this diagram?
Classical zeta values $/ \mathbb{Q} \rightarrow$ (partial)Dedekind zeta functions $/ K$

In this thesis, we propose a potential method to answer this question, inspired by A. Goncharov's theory on Hodge correlators [10] and by the plectic principle due to J. Nekovár and A. Scholl [13]. The starting point is to generalize the Hecke formula.

1.2 Hecke's Formula

Hecke [12] proved that the integral of the restriction of a suitable Eisenstein series over \mathbb{Q} to the idele class group of a given number field multipled by an idele class character χ of finite order is
equal to the L-functions of χ, up to some Γ factors. In fact, Hecke's formula is one of the typical examples within the theory of automorphic periods.

More precisely, Let K be a number field of degree $[K: \mathbb{Q}]=r_{1}+2 r_{2}$.

$$
K_{\mathbb{R}}=K \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}} .
$$

Define the norm map

$$
N=N_{K / \mathbb{Q}} \otimes i d: K_{\mathbb{R}}^{\times} \longrightarrow \mathbb{R}^{\times} .
$$

In order to state Hecke's formula, we will need the following data:
(1) Let $U \subset O_{K,+}^{\times}$be a subgroup of finite index, where

$$
O_{K,+}^{\times}=O_{K}^{\times} \cap\left(K_{\mathbb{R}}^{\times}\right)_{+}, \quad\left(K_{\mathbb{R}}^{\times}\right)_{+}=\left(\mathbb{R}_{+}^{\times}\right)^{r_{1}} \times\left(\mathbb{C}^{\times}\right)^{r_{2}} .
$$

(2) Let $I \subset K$ be a fractional O_{K}-ideal.
(3) $\exists m \in \mathbb{N} \backslash\{0\}, \quad \phi: I / m I \longrightarrow \mathbb{C}$ be a function such that

$$
\forall \varepsilon \in U, \quad \forall \alpha \in I \backslash\{0\}, \quad \phi(\varepsilon \alpha)=\phi(\alpha)
$$

We consider the following embedding (defined up to a conjugation)

$$
G L_{K}(1) \hookrightarrow G L_{\mathbb{Q}}([K: \mathbb{Q}]) .
$$

Let $E(g, s, \phi)$ be the Eisenstein series defined by

$$
E(g, s, \phi)=\sum_{x \in I \backslash\{0\}} \frac{\phi(x)}{\|g \cdot x\|^{s}},
$$

where $g \in G L_{\mathbb{Z}}(I)(\mathbb{R}) \cong G L_{[K: \mathbb{Q}]}(\mathbb{R})$ and $\|\cdot\|$ is a scalar product on $K_{\mathbb{R}}$.
Hecke proved the following formula. [12]

$$
\int_{U_{\mathbb{R}} / U} E(u, s, \phi) \mathrm{d}^{\times} \mu(u)=C\left(r_{1}, r_{2}, s, \mathrm{~d}^{\times} \mu(u)\right)\left(\sum_{x \in I \backslash\{0\}} \frac{\phi(x)}{\left|N_{K / \mathbb{Q}}(x)\right|^{s /[K: \mathbb{Q}]}}\right),
$$

where

$$
U_{\mathbb{R}}=\operatorname{Ker}\left(N_{K / \mathbb{Q}} \otimes 1:\left(K_{\mathbb{R}}^{\times}\right)_{+} \longrightarrow \mathbb{R}_{+}^{\times}\right),
$$

and $C\left(r_{1}, r_{2}, s, \mathrm{~d}^{\times} \mu(u)\right)$ is some Γ factor and $\mathrm{d}^{\times} \mu(u)$ is a Haar measure. In fact we can also make the formulation in an adelic setting.

In a more concrete setting, we can rewrite Hecke's formula as follows.

Theorem 1.2 (Hecke's Formula)

$$
\int_{U_{\mathbb{R}} / U}\left(\sum_{\alpha \in I \backslash\{0\}} \frac{\phi(\alpha)}{\|u \alpha\| \|^{[K: \mathbb{Q}] s}}\right) \mathrm{d}^{\times} \mu(u)=\frac{2 \pi^{r_{2}}}{[K: \mathbb{Q}] 2^{r_{1}}} \frac{\Gamma(s / 2)^{r_{1}} \Gamma(s)^{r_{2}}}{\Gamma([K: \mathbb{Q}] s / 2)} \sum_{\alpha \in(I \backslash\{0\}) / U} \frac{\phi(\alpha)}{\left|N_{K / \mathbb{Q}}(\alpha)\right|^{s}} .
$$

One of the objectives of this thesis is to try to generalize this formula in order to produce suitable "secondary"arithmetic objects. First of all we would like to precise the meaning of "secondary".

The generalization of Hecke's formula begins with replacing the Eisenstein series by some nontrivial objects, namely so-called higher plectic Green functions, which depend on one basic plectic Green function $g_{I}^{v}(x, u)$ (Definition 4.1) and on some combinatorial data. We will give the details about the construction of higher plectic Green functions in the fourth and fifth chapters.

Now it is natural to ask

Question 1.3 What are we going to obtain if we integrate these new objects over $U_{\mathbb{R}} / U$?

This thesis will answer this question. We would like to give the simplest example by integrating the basic plectic Green function.

Theorem 1.4 (Reinterpretation of Hecke's formula) Let F be a totally real field of degree $r=[F$: $\mathbb{Q}]$ and \mathscr{D} the different ideal of F. If I is a fractional ideal of F, let

$$
I^{*}=\{x \in F \mid \operatorname{Tr}(x I) \subset \mathbb{Z}\}=\mathscr{D}^{-1} I^{-1}
$$

If $x \in F_{\mathbb{R}}=F \otimes \mathbb{R}$, if $U \subset O_{F,+}^{\times}$a subgroup of finite index and if $\forall \varepsilon \in U,(\varepsilon-1) \cdot x \in I$, which is equivalent to

$$
x I \in\left(F_{\mathbb{R}} / I\right)^{U}
$$

and if $v: \operatorname{Hom}(F, \mathbb{R}) \longrightarrow\{0,1\}$, consider

$$
g_{I}^{v}(x, u)=\lim _{\eta \rightarrow 0^{+}} \sum_{n \in\left(I^{*} \backslash\{0\}\right) / U} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\eta}}
$$

where $u \in U_{\mathbb{R}}=\operatorname{Ker}\left(N:\left(F_{\mathbb{R}}^{\times}\right)_{+} \longrightarrow \mathbb{R}_{+}^{\times}\right)$and $\|\cdot\|$ is the standard scalar product on $F_{\mathbb{R}} \cong \mathbb{R}^{r}$.

$$
\forall \varepsilon \in U, \quad g_{I}^{v}(x, \varepsilon u)=g_{I}^{v}(x, u)
$$

By integration in a similar way as Hecke did, we obtain

$$
\int_{U_{\mathbb{R}} / U} g_{I}^{v}(x, u) d u=\frac{2^{r-1} \Gamma(1 / 2)^{r}}{\Gamma(r / 2)} \lim _{\eta \rightarrow 0^{+}} \sum_{n \in\left(I^{*} \backslash\{0\} / U\right)} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\prod_{j=1}^{r}\left|n_{j}\right|^{(r+\eta) / r}} .
$$

Note that

$$
N(n)=N_{F / \mathbb{Q}}(n)=\prod_{j=1}^{r} n_{j},
$$

hence

$$
\int_{U_{\mathbb{R}} / U} g_{I}^{v}(x, u) d u=\frac{2^{1-r} \Gamma(1 / 2)^{r}}{r \Gamma(r / 2)} \lim _{\eta \rightarrow 0^{+}} \sum_{n \in\left(I^{*} \backslash\{0\}\right) / U} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{|N(n)|^{(r+\eta) / r}}
$$

It is easy to see that we recover the Hecke formula, the righthand side is a linear combination of special values $L\left(1, \chi_{F}\right)$ for certain Dirichlet characters χ_{F} of F of signature v.

For other more complicated higher plectic Green functions, the results are highly non-trivial, some non-trivial iterated integrals make their appeareance in a subtle way. However, if the number field K is just the rational field \mathbb{Q}, the integration $\int_{U_{\mathbb{R}} / U}$ is trivial and we prove that the higher plectic Green functions deliver linear combinations of classical zeta values.

1.3 Inspiration

Before giving our main results, we will fist talk about two sources of inspiration of our construction in the next section and give some simple examples in order to illustrate our strategy.

1.3.1 Goncharov's Hodge correlators

In A. Goncharov's recent work [10], he constructed so-called Hodge correlators from just one fundamental object, namely the Green function, and certain Feynman diagrams, as in perturbative quantum field theory. In fact, the Green function contributes as the propagator which in Feynman diagrams serves to calculate the rate of collisions in quantum field theory.

Goncharov introduced such an idea to a Hodge-theoretic setting. He discovered that the socalled Hodge correlators are the coefficients of twistor connections, which describe the corresponding variations of real mixed Hodge structures. He proved that classical polylogarithms, elliptic polylogarithms and their generalizations are all Hodge correlators.

For example, over \mathbb{C}^{\times}, the Green function $G(x, y)$ is $\log |x-y|^{2}$. Applying a non-trivial integral formula of Levin, Goncharov proved that the usual polylog can be writen as a Hodge correlator. Based on such a construction, he obtained higher multipolylogarithms, more precisely, he proved that the generating series of cycle multiple polylogarithms is a Hodge correlator, with the generating series of classical polylogarithms serving as a Green function. His construction of Hodge correlators on \mathbb{C}^{\times}gives a variant of multiple polylogs, but a precise relation to the classical definition is not made explicit.

1.3.2 Plectic Philosophy

Over a totally real field F, J. Nekovár and A. Scholl [13] formulated what they call the plectic conjecture. The geometric objects in this conjecture are Shimura varities/stacks whose definition groups are restrictions of scalars from an algebraic group over F. More concretely, they work with abelian varieties with real multiplication by O_{F}, where O_{F} is the ring of integers of F. We will try to explain the plectic principle in the following.

If B is a connected complex manifold. Let X / B be a family of abelian varities with real multiplication, and $s: B \longrightarrow X$ a nonzero torsion section fixed by a subgroup of finite index $U \subset O_{F,+}^{\times}$. This subgroup U acts naturally on X and acts trivally on B, then we should consider the following diagram

where $E U$ is the total space over the classifying space $B U$ of the group U and $B \times_{U} E U=B \times E U / U$. When $B=\{p t\}$, then X is a variety, we have the following situation

Nekovár and Scholl [13] constructed in their work a U-equivariant current $\tilde{\theta}$ on $\tilde{X}=X \times U_{\mathbb{R}}$, where $U_{\mathbb{R}}=E U$. In fact $\tilde{\theta}$ is a plectic generalisation of the (slightly modified) $\log |\theta(\tau, z)|$ of the absolute value of the standard Theta function on the elliptic curve $E=\mathbb{C} / \mathbb{Z} \tau+\mathbb{Z}$, which is the Green function on E.

So $s^{*}(\tilde{\theta})$ is U-equivariant on $\tilde{B}=B \times U_{\mathbb{R}}$. Then $s^{*}(\tilde{\theta})$ can descend to a current on $B \times U_{\mathbb{R}} / U$, and we can compute the trace

$$
\pi_{*}\left(s^{*}(\tilde{\theta})\right)=\int_{U_{\mathbb{R}} / U} s^{*}(\tilde{\theta})
$$

which gives very interesting functions, such as generalized Eisenstein-Kronecker-Lerch series.
The above integral, as well as its variants involving more complicated functions than $\tilde{\theta}$, can be computed by integrating suitable expressions depending on $\|u x\|$ over U_{R}. For this purpose, the Hecke transform is introduced and used in their work. Here is a typical example.

Proposition 1.5 (Hecke transform)[14]
Let $U_{\mathbb{R}} \subset\left(\mathbb{R}_{+}^{\times}\right)^{r}$ be the subgroup

$$
U_{\mathbb{R}}=\left\{\left(u_{j}\right) \mid \prod u_{j}=1\right\}
$$

with the measure $\mathrm{d}^{\times} u=\frac{d u_{1}}{u_{1}} \wedge \cdots \wedge \frac{d u_{r-1}}{u_{r-1}}$. Let $\|\cdot\|$ be the Euclidean norm on \mathbb{C}^{r}, on which U acts by multiplication. Let $\left(p_{j}\right) \in \mathbb{Z}^{r}, p=\sum p_{j}$. Then for any $x \in\left(\mathbb{C}^{\times}\right)^{r}$ and $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$,

$$
\int_{U_{\mathbb{R}}}\|u x\|^{-2 s} \prod_{j} u_{j}^{-2 p_{j}} \mathrm{~d}^{\times} u=\frac{2^{r-1}}{\Gamma(s)} \prod_{j} \Gamma\left(\frac{p+s}{r}-p_{j}\right)\left|x_{j}\right|^{2\left(p_{j}-(p+s) / r\right)} .
$$

1.4 Main results

In our work, we consider a generalisation of $\log \left|1-e^{2 \pi i x}\right|^{2}$ on the compact real torus

$$
S^{1}=\left\{e^{2 \pi i x} \mid x \in \mathbb{R} / \mathbb{Z}\right\} \subset \mathbb{C}^{\times}
$$

This function is the restriction of the Green function $G(1, y)=\log |1-y|^{2}$ of the origin of \mathbb{C}^{\times}to S^{1}. We are going to consider corresponding objects on tori with real multiplication.

Let F be a totally real field of degree $r=[F: \mathbb{Q}]$, we have the trace map $\operatorname{Tr}=\operatorname{Tr}_{F / \mathbb{Q}}$ and the norm map $N=N_{F / \mathbb{Q}}$. Let \mathscr{D} be the different and let I be a fractional ideal of F and

$$
I^{*}=\{a \in F \mid \operatorname{Tr}(a I) \in \mathbb{Z}\}=\mathscr{D}^{-1} I^{-1} .
$$

Let $\|\cdot\|: F_{\mathbb{R}}=F \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{R}^{\operatorname{Hom}(F, \mathbb{R})} \longrightarrow \mathbb{R}_{+} \cup\{0\}$ be the standard euclidean norm. As above, let

$$
U_{\mathbb{R}}=\operatorname{Ker}\left(N:\left(F_{\mathbb{R}}^{\times}\right)_{+} \longrightarrow \mathbb{R}_{+}^{\times}\right)=\left\{\left(u_{1}, \ldots, u_{r}\right) \in \mathbb{R}_{+}^{r} \mid u_{1} \cdots u_{r}=1\right\} .
$$

Then we can define the "plectic" Green function associated to the ideal I

Definition 1.6 (Plectic Green function)

$$
g_{I}(x, u)=\lim _{\eta \rightarrow 0^{+}} \sum_{n \in I^{*} \backslash\{0\}} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\eta}}, \quad x \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}}
$$

which can also be defined as $\sum_{n \in I^{*} \backslash\{0\}} \frac{e^{2 \pi \pi T r(n x)}}{\|u n\|^{r}}$, viewed as a distribution on $\left(F_{\mathbb{R}} / I\right) \times U_{\mathbb{R}}$.
We can also add an additional choice of multisigns $\boldsymbol{v} \in\{0,1\}^{\operatorname{Hom}(F, R)}$. Then the modified "plectic" Green function becomes

$$
g_{I}^{v}(x, u)=\lim _{\eta \rightarrow 0^{+}} \sum_{n \in I^{*} \backslash\{0\}} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\eta}}, \quad x \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}} .
$$

There is also a second method to add a multisign

$$
g_{I, v}(x, u)=\lim _{\eta \rightarrow 0^{+}} \sum_{\substack{n \in I^{*} \backslash\{0\} \\ \operatorname{sgn}(n)=(-1)^{v}}} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\eta}}, \quad x \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}} .
$$

By using just this "plectic" Green function, we will construct a function (or a distribution) $\mathscr{G}_{I, \Gamma, S}(\cdot, \cdot)$ on

$$
O_{F,+}^{\times} \backslash\left(F_{\mathbb{R}} / I\right)^{S} \times U_{\mathbb{R}}=\left(F_{\mathbb{R}} / I\right)^{S} \times_{O_{F,+}^{\times}} E O_{F,+}^{\times},
$$

which depends on a given graph Γ and a subset S of the set of its vertices.
Definition 1.7 (Higher plectic Green function over a totally real field)
Let Γ be a finite connected non-oriented graph, $V(\Gamma)$ the set of vertices and $E(\Gamma)$ the non-empty set of edges. Let $S \subset V(\Gamma)$ be a subset of the set of vertices. Loops are forbidden here (i.e. the endpoints of each edge are distinct), but multiple edges are allowed. For each vertex $v \in V(\Gamma)$, let $x_{v} \in F_{\mathbb{R}} / I$ be a variable which decorates the vertex v; for each edge $e \in E(\Gamma)$, we give an orientation $\vec{e}=\left(v_{0}(e) \longrightarrow v_{1}(e)\right)$ and we associate a variable $n_{e} \in I^{*} \backslash\{0\}$.

Then the higher plectic Green function attached to (Γ, S) is defined as

$$
\mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\int_{\left(F_{\mathbb{R}} / I\right)^{V(\Gamma) \backslash S}} \prod_{e \in E(\Gamma)} g_{I}\left(x_{v_{1}(e)}-x_{v_{0}(e)}, u\right) \prod_{v \in V(\Gamma) \backslash S} d x_{v}
$$

where $x_{v} \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}}$ and dx is a fixed Haar measure en $F_{\mathbb{R}}$, and

$$
g_{I}\left(x_{v_{1}(e)}-x_{v_{0}(e)}, u\right)=\lim _{\eta \rightarrow 0^{+}} \sum_{n_{e} \in I^{*} \backslash\{0\}} \frac{e^{2 \pi i \operatorname{Tr}\left(n_{e}\left(x_{v_{1}}(e)-x_{v_{0}(e)}\right)\right)}}{\left\|u n_{e}\right\|^{r+\eta}} .
$$

There are variants of these functions (and numbers) depending on an additional choice of multisigns $v(e) \in\{0,1\}^{\operatorname{Hom}(F, \mathbb{R})}$ (and an orientation) for each edge e, which means that we can replace $g_{I}(\cdot, \cdot)$ by $g_{I, v}(\cdot, \cdot)$ (or $g_{I}^{v}(\cdot, \cdot)$).

Moreover, we can replace each $e \in E(\Gamma)$ by a chain of $k_{e} \geq 1$ edges (which is equivalent to that we add $k_{e}-1 \geq 0$ new vertices to each edge $e \in E(\Gamma)$) to get a new graph $\Gamma(k)$ with $|V(\Gamma(k))|=$ $|V(\Gamma)|+\sum_{e}\left(k_{e}-1\right)$ and the subset S is unchanged.

For example, the case of $k_{e}=3$ is as follows.

Figure 1: The subdivision of the edge e.
Hence we have defined a subdivision map:
Definition 1.8 (Subdivision map)

$$
\begin{gathered}
k: E(\Gamma) \longrightarrow \mathbb{N} \backslash\{0\} \\
k: e \longmapsto k_{e}
\end{gathered}
$$

Combining a subdivision of edges and formal Fourier expansion, we get

Proposition 1.9 (Subdivision of edges)

$$
\mathscr{G}_{I, \Gamma(k), S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\operatorname{vol}\left(F_{\mathbb{R}} / I\right)^{|V(\Gamma) \backslash S|+|k|-|E(\Gamma)|} \lim _{\eta \rightarrow 0^{+}} \sum_{\left\{n, c(n) \in H_{1}(\Gamma, S) \otimes I^{*}\right\}}^{\prime} \frac{e^{2 \pi i \operatorname{Tr}\left(\sum_{v \in S}(\partial n)_{v} x_{v}\right)}}{\prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{k_{e}(r+\eta)}}
$$

where $x \in F_{\mathbb{R}} / \mathbb{R}, u \in U_{\mathbb{R}},|k|=\sum_{e \in E(\Gamma)}\left|k_{e}\right|, n=\left(n_{e}\right)_{e \in E(\Gamma)}$,

$$
\partial n: V(\Gamma) \longrightarrow I^{*}
$$

$$
\partial n(v)=\sum_{e \in E(\Gamma), v_{1}(e)=v} n_{e}-\sum_{e \in E(\Gamma), v_{0}(e)=v} n_{e}
$$

and \sum^{\prime} means that ∂n is supported at S and each n_{e} is nonzero.

Remark 1.10 We can also add multisigns here, there are two methods. The first way is to associate each edge a multisign $v_{e}=\left(v_{e}^{1}, \ldots, v_{e}^{r}\right)$, then the formula in 4.9 will then contain terms $\operatorname{sgn}\left(n_{e}\right)^{v(e)}$:
$\mathscr{G}_{I, \Gamma(k), S}^{v}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\operatorname{vol}\left(F_{\mathbb{R}} / I\right)^{|V(\Gamma) \backslash S|+|k|-|E(\Gamma)|} \lim _{\delta \rightarrow 0^{+}} \sum_{\left\{n, c(n) \in H_{1}(\Gamma, S) \otimes I^{*}\right\}}^{\prime} \operatorname{sgn}\left(n_{e}\right)^{v(e)} \frac{e^{2 \pi i \operatorname{Tr}\left(\sum_{v \in S}(\partial n)_{v} x_{v}\right)}}{\prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{k_{e}(r+\delta)}}$.
The second method to add mutisigns by taking into account the $n_{e} \in I^{*} \backslash\{0\}$, such that $\operatorname{sgn}\left(n_{e}\right)=$ $(-1)^{v_{e}}$ for a given multisign v_{e} to each edge e. Then

$$
\mathscr{G}_{I, v, \Gamma(k), S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\operatorname{vol}\left(F_{\mathbb{R}} / I\right)^{|V(\Gamma) \backslash S|+|k|-|E(\Gamma)|} \lim _{\delta \rightarrow 0^{+}} \sum_{\substack{\left\{n, c(n) \in H_{1}(\Gamma, S) \otimes I^{*}\right\} \\ \operatorname{sgn}\left(n_{e}\right)=(-1)^{v(e)}}}^{\prime} \frac{e^{2 \pi i \operatorname{Tr}\left(\sum_{v \in S}(\partial n)_{v} x_{v}\right)}}{\prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{k_{e}(r+\delta)}}
$$

In fact, we usually prefer the second definition $\mathscr{G}_{I, v, \Gamma(k), S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)$.
Similarly, we can generalize the definition of plectic Green functions to any number field.
Definition 1.11 (Plectic Green functions for arbitary number fields)
Let K be a number field with r_{1} real places $\left(v_{i}\right)_{1 \leq i \leq r_{1}}$ and r_{2} complex places $\left(w_{j}\right)_{1 \leq j \leq r_{2}}$ and of degree $[K: \mathbb{Q}]=r_{1}+2 r_{2}$. We have the trace map $\operatorname{Tr}=\operatorname{Tr}_{K / \mathbb{Q}}$

$$
K_{\mathbb{R}} \cong \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}
$$

and we have a Hermitian product

$$
\begin{aligned}
&\langle\mid\rangle: K_{\mathbb{R}} \times K_{\mathbb{R}} \longrightarrow \mathbb{C} \\
&\left\langle\left(x_{v}, z_{w}\right) \mid\left(x_{v}^{\prime}, z_{w}^{\prime}\right)\right\rangle=\sum_{v} x_{v} x_{v}^{\prime}+\sum_{w} z_{w} z_{w}^{\prime}
\end{aligned}
$$

where

$$
x=\left(x_{v}, z_{w}\right) .
$$

Let

$$
\|\cdot\|=\langle\cdot \mid \cdot\rangle^{1 / 2}
$$

then the plectic Green function can be defined as

$$
g_{I}(x, u)=\sum_{n \in I^{*} \backslash\{0\}} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r_{1}+2 r_{2}}}, \quad x \in K_{\mathbb{R}} / I, u \in U_{\mathbb{R}},
$$

which is a distribution on $\left(K_{\mathbb{R}} / I\right) \times U_{\mathbb{R}}$.

1.4.1 Generalized MZV for totally real fields

If we suppose that there exists a subgroup $U \subset O_{F,+}^{\times}$of finite index stabilising $\left\{x_{v}\right\}$ for each $v \in S$, we can apply the Hecke transform to define a new function as follows.

Definition 1.12

$$
\mathscr{F}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}\right)=\left(O_{F,+}^{\times}: U\right)^{-1} \int_{U_{\mathbb{R}} / U} \mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right) d^{\times} u
$$

where $d^{\times} u=\frac{d u_{1} \cdots d u_{r-1}}{u_{1} \cdots u_{r-1}}, \prod_{j=1}^{r} u_{j}=1$ and $U_{\mathbb{R}} / U=B U \cong(\mathbb{S})^{r-1}$ is the classifying space of $U \cong \mathbb{Z}^{r-1}$.

Remark: In the same way, we can define $\mathscr{F}_{I, \Gamma, S}^{V}\left(\left\{x_{v}\right\}_{v \in S}\right)$ and $\mathscr{F}_{I, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}\right)$.
Then the generalized multiple zeta value is defined as

Definition 1.13 (Generalized multiple zeta values)

$$
\mathscr{Z}_{I}(\Gamma, S)=\mathscr{F}_{I, \Gamma, S}\left(\{0\}_{v \in S}\right) .
$$

Similarily, we have

$$
\mathscr{Z}_{I}^{v}(\Gamma, S)=\mathscr{F}_{I, \Gamma, S}^{v}\left(\{0\}_{\nu \in S}\right),
$$

and

$$
\mathscr{Z}_{I, v}(\Gamma, S)=\mathscr{F}_{I, v, \Gamma, S}\left(\{0\}_{v \in S}\right)
$$

1.4.2 The case $F=\mathbb{Q}$.

In this case we can give an explicit relation to the classical definition.
Theorem 1.14 (Relation to multiple zeta values) (4.16)
Let F be the rational field \mathbb{Q} and Γ any tree with rank $d=\operatorname{rank}\left(H_{1}(\Gamma, S)\right) \geq 2$, where $S=\partial \Gamma$. Assume that we are given a "sign" map $v: E(\Gamma) \longrightarrow\{0,1\}$ and a subdivision map $k: E(\Gamma) \longrightarrow \mathbb{N} \backslash\{0\}$ as in Remark 4.10 and in Definition 4.8, respectively. Then the generalized multiple zeta value $\mathscr{Z}_{I, v}(\Gamma(k), \partial \Gamma(k))(I=\mathbb{Z})$ can be expressed as a finite \mathbb{Z}-linear combination of classical multiple zeta values (MZVs) of depth d and weight $|k|=\sum_{e} k_{e}$.

Moreover, we have an explicit relation to multiple polylogarithms.

Theorem 1.15 (Relation to multiple polylogarithms)

If $F=\mathbb{Q}, I=\mathbb{Z}, x_{v} \in \frac{1}{N} \mathbb{Z} / \mathbb{Z}$, then $\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma}, 1\right)$ is a finite \mathbb{Z}-linear combination of the values of multiple polylogarithms evaluated at some N-th roots of unity.

Let us see one simple example.
Example 1.16 Let Γ_{1} be the graph in Figure 2.

Figure 2: A plane trivalent tree with one internal vertex
The rank of Γ_{1} is $2=\operatorname{rank}\left(H_{1}\left(\Gamma_{1}, \partial \Gamma_{1}\right)\right)$. To each edge $e_{i}(i=1,2,3)$ we add $\sigma_{i}-1 \geq 0$ points. The only internal vertex is denoted by y, each external vertex v_{i} is decorated by the variable $x_{v_{i}}$. For each $e_{i}(i=1,2)$, the given sign v_{i} equals 0 . For the edge e_{3}, the sign $v_{3}=1$. In fact, the constraint $n_{1}+n_{2}+n_{3}=0$ and $v_{1}=v_{2}=0$ imply that $v_{3}=1$.

$$
\mathscr{G}_{I, v, \Gamma_{1}, \partial \Gamma_{1}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{\substack{n_{1}+n_{2}+n_{3}=0, n_{i} \in \mathbb{Z} \backslash\{0\} \\ \operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}}}} \frac{e^{2 \pi i\left(n_{1} x_{v_{1}}+n_{2} x_{v_{2}}+n_{3} x_{v_{3}}\right)}}{\left|n_{1}\right| \sigma_{1}\left|n_{2}\right| \sigma_{2}\left|n_{3}\right|^{\sigma_{3}}}
$$

where $v_{1}=v_{2}=0, v_{3}=1$. Then

$$
\begin{gathered}
\mathscr{Z}_{I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{\substack{n_{1}+n_{2}+n_{3}=0, n_{i} \in \mathbb{Z} \backslash\{0\} \\
\operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}}}} \frac{1}{\left|n_{1}\right| \sigma^{\sigma_{1}}\left|n_{2}\right| \sigma_{2}\left|n_{3}\right|^{\sigma_{3}}}=\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{1}{\left|n_{1}\right| \sigma^{\sigma_{1}}\left|n_{2}\right|^{\sigma_{2}}\left|n_{1}+n_{2}\right|^{\sigma_{3}}} \\
\mathscr{Z}_{I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{1}{n_{1}^{\sigma_{1}} n_{2}^{\sigma_{2}}\left(n_{1}+n_{2}\right)^{\sigma_{3}}} .
\end{gathered}
$$

We show in Example 4.22 that

$$
\mathscr{Z}_{I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{r+s=\sigma_{1}+\sigma_{2}}\left(C_{r-1}^{\sigma_{1}-1}+C_{r-1}^{\sigma_{2}-1}\right) \zeta\left(s, r+\sigma_{3}\right)
$$

Here $\zeta\left(s, r+\sigma_{3}\right)$ is a classical double zeta value of weight $r+s+\sigma_{3}=\sigma_{1}+\sigma_{2}+\sigma_{3}$, which means that $\mathscr{Z}_{I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)$ can be expressed as a \mathbb{Z}-linear combination of double zeta values of this weight.

1.4.3 The case of a general totally real field

If $[F: \mathbb{Q}]=r>1$, then the generalized multiple zeta value $\mathscr{Z}_{I}(\Gamma, S)$ is highly non-trivial.
Let us see the case of $r=2$, we have the following theorem
Theorem 1.17 Given $\underline{k}=\left(k_{1}, \ldots, k_{d}\right)$ and $|\underline{k}|=k_{1}+\ldots+k_{d}$.
(1)If $2+|\underline{k}|$, then after several differentiation with respect to the coefficients α_{j}, β_{j}, the essential part of the definition of higher plectic Green function

$$
I_{2}(d, \underline{k})=\int_{0}^{\infty} \frac{1}{\prod_{j=1}^{d}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)^{k_{j}}} \mathrm{~d}^{\times} u
$$

can be written as product of π and an element of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{d}, \beta_{1}, \ldots, \beta_{d}\right)$.
(2) If 2 divides $|\underline{k}|$, then $I_{2}(d, \underline{k})$ can be written as

$$
\sum_{j=1}^{d} \gamma_{j} \cdot \log \left(\frac{\beta_{j}}{\alpha_{j}}\right)
$$

where $\gamma_{j} \in \mathbb{Q}\left(\alpha_{1}^{2}, \ldots, \alpha_{d}^{2}, \beta_{1}^{2}, \ldots, \beta_{d}^{2}\right)$.
Example 1.18 Consider the case $d=3, m=0$ and $n=1$. Then

$$
\begin{gathered}
I\left(\alpha_{j}, \beta_{j}\right)=\int_{0}^{\infty} \frac{1}{\prod_{j=1}^{3}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)} \frac{d u}{u} \\
=-\frac{\pi}{2} \sum_{j=1}^{3} \frac{\alpha_{j} \beta_{j}}{\prod_{k=1, k \neq j}^{3} \Delta_{k j}}=-\frac{\pi}{2}\left(\frac{\alpha_{1} \beta_{1}}{\Delta_{12} \Delta_{13}}-\frac{\alpha_{2} \beta_{2}}{\Delta_{21} \Delta_{23}}+\frac{\alpha_{3} \beta_{3}}{\Delta_{12} \Delta_{23}}\right) \\
=\frac{\pi}{2\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)\left(\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}\right)\left(\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}\right)} .
\end{gathered}
$$

Figure 3: The graph Γ.

If we are given the graph Γ and $S=\left\{v_{1}, v_{2}, v_{3}\right\}$, there are $k_{j} \in \mathbb{N}_{+}$edges with given $\lambda_{j}=\left(\alpha_{j}, \beta_{j}\right) \in$ $I^{*}, 1 \leq j \leq 3$.

Then there exist differetials $D_{\alpha_{j}, \beta_{j} ; k_{j}}$ such that the corresponding higher plectic Green function can be written as

$$
\int_{U_{\mathbb{R}}} \mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{v_{1}, v_{2}, v_{3}\right\}, u\right) \mathrm{d}^{\times} u=\sum_{\alpha_{j}, \beta_{j}} D_{\alpha_{j}, \beta_{j} ; k_{j}} I\left(\alpha_{j}, \beta_{j}\right) .
$$

For general r, we have the following theorem.
Theorem 1.19 (Main result over general totally real field-vague version) Let F be a totally real field of degree $[F: \mathbb{Q}]=r>1$. Given a graph and a subdivision map defined as before. By the reciprocity Proposition 5.8, we can assume the rank of the graph $d \geq r$. Moreover, we assume that if $2+r$, the subdivision map is given by $k_{e} \in 2 \mathbb{N}$ for each edge. According to the two reduction theorems Theorem 5.27, Theorem 5.33 and the theorem about the basic integral of the Hecke transform Theorem 5.61, we have the following expression of our generalized multiple zeta value

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\substack{\begin{subarray}{c}{n_{e} \in I^{*} \backslash\{0\} \\
\partial n=0 \\
\operatorname{sgn}\left(n_{e}\right)=(-1)^{v}} }}\end{subarray}} \sum_{\substack{ \\
C(d, r)}} \sum_{1 \leq m \leq r-1} \sum_{j}\left(\alpha_{j}\left(n_{e}\right)\right) \mathscr{L}_{m}\left(\beta_{j}\left(n_{e}\right)\right),
$$

where $\mathscr{L}_{m}(\cdot)$ is an generalized m-logarithm which is a non-trivial iterated integral, and $\alpha_{j}\left(n_{e}\right)$ and $\beta_{j}\left(n_{e}\right)$ are rational functions of the conjugates of n_{e} with coefficients in \mathbb{Q} and the sum $\sum_{C(d, r)}$ comes from the reduction theorem. Every sum here is finite.

1.5 Final remarks

The classical polylogarithms have been interpretated by Deligne in the language of variations of Hodge structures. It is natural to ask what kind of geometric objects or motivic avatar should correspond to our generalized polylogarithms ? Moreover, Classical multiple zeta values are periods of $\pi_{1}\left(\mathbb{G}_{m} \backslash\{0,1, \infty\}\right)$, i.e. periods of mixed Tate motives. For generalized multiple zeta values there should be a relation to some plectic invariant of $\mathbb{G}_{m} \otimes I \backslash\{1\}$. More generally, the analogue of the values of multiple polylogarithms at roots of unity should be related to some plectic object attached to $\pi_{1, \cdots, 1}^{\text {plec }}\left(\mathbb{G}_{m} \otimes I \backslash(N\right.$-torsion $\left.)\right)$. We will continue to study these problems after this thesis.

2 Goncharov's Theory of Hodge correlators

In this section, we will explain the idea of A. Goncharov's theory of Hodge correlators, where we are inspirated for the construction. This theory provides a new point of view of periods. Our explanation is based on several simple examples.

2.1 Introduction

In Goncharov's recent work [10], he constructed so-called Hodge correlators from just one fundamental object, namely the Green function, and certain Feynman diagrams, as in perturbative quantum field theory. In fact, the Green function contributes as the propagator which in Feynman diagrams serves to calculate the rate of collisions in quantum field theory.

Goncharov introduced such an idea to a Hodge-theoretic setting. He discovered that the socalled Hodge correlators are the coefficients of twistor connections, which describe the corresponding variations of real mixed Hodge structures. He proved that classical polylogarithms, elliptic polylogarithms and their generalizations are all Hodge correlators.

For example, over \mathbb{C}^{\times}, the Green function $G(x, y)$ is $\log |x-y|^{2}$. Applying a non-trivial integral formula of Levin, Goncharov proved that the usual polylogarithm can be writen as a Hodge correlator. Based on such a construction, he obtained higher multipolylogarithms, more precisely, he proved that the generating series of cycle multiple polylogarithms is a Hodge correlator, with the generating series of classical polylogarithms serving as a Green function. His construction of Hodge correlators on \mathbb{C}^{\times}gives a variant of multiple polylogs, but a precise relation to the classical definition is not made explicit.

In addition, there are motivic correlators in the motivic Lie algebra, whose periods are given by the Hodge correlators. For a modular curve and its cusps, the Hodge correlators generalize the Rankin-Selberg intergrals. In fact, the simplest case of them is the Rankin-Selberg convolution of two cuspidal Hecke eigenforms. The motivic correlators on a modular curve give Beilinson's elements in motivic cohomology, hence the Beilinson-Kato Euler system. The motivic correlators on the limit of the tower of modular curves give an automorphic adelic description of the Hodge correlators on modular curves.

2.2 Definition of Hodge correlators after Goncharov

Let X be a smooth compact complex curve and S a subset of X. There is a Green function $G(x, y)$ associated on X^{2} provided by a volume form. Given a tree T, each edge e of T contributes a Green function on $X^{\{\text {vertices of } e\}}$, which we lift to a function on $X^{\{\text {vertices of } T\}}$. Moreover, there is a canonical poly differential map

$$
\omega_{m}: \wedge^{m+1} \mathscr{A}_{X}^{0} \longrightarrow \mathscr{A}_{X}^{m},
$$

where \mathscr{A}_{X}^{k} is the space of smooth k-forms on X. Then applying this poly differential map to the Green functions assigned to the edge of T, we get a differential form of the top degree on $X^{\{\text {internal vertices of } T\}}$. Integrating such differential form, we get the integral assigned to T. If we decorate the external vertices by elements $a_{0}, \ldots, a_{n}\left(a_{i} \in S\right)$, see Figure 4 . By taking the sum over all trees T, that is decorated by a_{0}, \ldots, a_{n}, we obtain the Hodge correlator associated to the cyclic word $W=\mathcal{C}\left(\left\{a_{0}\right\} \otimes \cdots \otimes\left\{a_{n}\right\}\right)$.

For the rigorous definition in details, one should refer to the work of Goncharov [10].

Figure 4: A plane trivalent tree decorated by $\mathcal{C}\left(\left\{a_{0}\right\} \otimes \cdots \otimes\left\{a_{5}\right\}\right)$.
Remark 2.1 Compared to Goncharov's setting, we will work on number field, therefore we should find an analogue of Green's function over number field, which is also the starting point of our construction.

2.3 Examples of Hodge correlators

Correlators on $\mathbb{P}_{\mathbb{C}}^{1} \backslash S$ and polylogarithms Let $X=\mathbb{P}^{1}, S=\{\infty\}$. Given the following cyclic word

$$
W_{n}=\mathcal{C}(\{1\} \otimes\{z\} \otimes\{0\} \otimes \cdots \otimes\{0\}),
$$

the unique W_{n}-decorated Feynman diagram with no internal vertices incident to two $\{0\}$'s, see Figure 5

Figure 5: The Feynman diagram for the classical n-logarithms.
We denote by $\mathbf{L}_{n}(z)$ the corresponding correlator [10]. Let $L i_{n}(z)$ be the classical n-polylogrithm on $\mathbb{C P}^{1} \backslash\{0,1, \infty\}$. Further there is a single-valued version

$$
\begin{aligned}
& \text { if } n \text { odd } \mathcal{L}_{n}(z)=\operatorname{Re}\left(\sum_{k=0}^{n-1} \beta_{k} \log ^{k}|z| \cdot L i_{n-k}(z)\right), \\
& \text { if } n \text { even } \mathcal{L}_{n}(z)=\operatorname{Im}\left(\sum_{k=0}^{n-1} \beta_{k} \log ^{k}|z| \cdot L i_{n-k}(z)\right),
\end{aligned}
$$

where $\beta_{k}=\frac{2^{k} B_{k}}{k!}, B_{k}$ is the Bernoulli number.
Then the Levin formula gives us

$$
\mathbb{L}_{n}^{*}(z)=4^{-(n-1)} \sum_{\substack{n \in 2 \mathbb{Z} \\ 1 \leq k \leq n-2}}\binom{2 n-k-3}{n-1} \frac{2^{k+1}}{(k+1)!} \mathcal{L}_{n-k}(z) \log ^{k}|z|
$$

If we take

$$
\mathbb{L}_{n}(z)=4^{n-1}\binom{2 n-2}{n-1}^{-1} \mathbb{L}_{n}^{*}(z)
$$

Then Goncharov showed that the Hodge correlator can be related to the classical polylogrithms as follows

$$
-\mathbf{L}_{n}(z)=(2 \pi i)^{-n} \mathbb{L}_{n}(z)
$$

3 Plectic Principle

3.1 Equivariant plectic Green Currents

As we have explained in the introduction, the plectic principle, we just repeat the main idea here.
Let X / B be a family of abelian varities with real multiplication, and $s: B \longrightarrow X$ a nonzero torsion section fixed by a subgroup of finite index $U \subset O_{F,+}^{\times}$. This subgroup U acts naturally on X and acts trivally on B, then we should consider the following diagram

where $E U$ is the total space over the classifying space $B U$ of the group U and $B \times_{U} E U=B \times E U / U$. When $B=\{p t\}$, then X is a variety, we have the following situation

Nekovár and Scholl [13] constructed in their work a U-equivariant current $\tilde{\theta}$ on $\tilde{X}=X \times U_{\mathbb{R}}$, where $U_{\mathbb{R}}=E U . \tilde{\theta}$ is a plectic generalisation of the (slightly modified) $\log |\theta(\tau, z)|$ of the absolute value of the standard Theta function on the elliptic curve $E=\mathbb{C} / \mathbb{Z} \tau+\mathbb{Z}$, which is the Green function on E.

So $s^{*}(\tilde{\theta})$ is U-equivariant on $\tilde{B}=B \times U_{\mathbb{R}}$. Then $s^{*}(\tilde{\theta})$ can descend to a current on $B \times U_{\mathbb{R}} / U$, and we can compute the trace

$$
\pi_{*}\left(s^{*}(\tilde{\theta})\right)=\int_{U_{\mathbb{R}} / U} s^{*}(\tilde{\theta}),
$$

which gives very interesting functions, such as generalized Eisenstein-Kronecker-Lerch series.
The above integral, as well as its variants involving more complicated functions than $\tilde{\theta}$, can be computed by integrating suitable expressions depending on $\|u x\|$ over U_{R}. For this purpose, the Hecke transform is introduced and used in their work. Here is a typical example.

In the speculative plectic conjecture[13], they consider a framework :

where L is a totally imgainary quadratic extension of F. The diagram above gives rise to a Shimura stacks:

As in the previous remarks, Y is just an open Hilbert modular variety attached to $G L_{2, F}$, while \mathscr{A} is the universal oject (in the sense of stacks) of Y. Morally \mathscr{A} is the quotient [$U \backslash A$], where A is the non-exsitent universal Hilbert-Blumenthal abelian scheme over Y (the reason is (2) of the
remarks), $U \subset O_{F,+}^{\times}$is a subgroup of finite index in the group of totally positive units of F. If we consider that the group U acts trivially on Y, then we can get a stack $\mathscr{Y}=[U \backslash Y]$, which gives us a bigger diagram:

3.2 Some explanation of the philosophy

In this subsection, we would like to give some geometric explanations about the reason that the subgroup $U \subset O_{F,+}^{\times}$plays a non-trivial role in plectic principle.

In fact a universal Hilbert-Blumenthal abelian scheme over Y doesn't exist. First of all, we will try to explain something about the difference between two moduli problems associated to two groups. The picture is as follows:

For an typical example, we take $G=\operatorname{Res}_{F / \mathbb{Q}} G L_{2, F}$, and G^{*} is defined by Cartien product (fiber product).

$$
G^{*}=\left\{g \in G \mid \operatorname{det}(g) \in \mathbb{G}_{m}\right\}
$$

Usually, we have the moduli problem $\mathscr{M}_{G^{*}}\left(\right.$ resp. $\left.\mathscr{M}_{G}\right)$ associated to G^{*} (resp. G). The fact is that the functor $\mathscr{M}_{G^{*}}$ is representable, which means that there is an universal abelian variety (scheme) $\mathscr{A}_{G^{*}}$ over $\mathscr{M}_{G^{*}}$. The group of integers of $O_{F,+}^{\times}$acts on $\mathscr{M}_{G^{*}}$,

$$
O_{F,+}^{\times} \subset \mathscr{M}_{G^{\star}}, \quad \mathbb{Z}^{[F: \mathbb{Q}]-1} \cong O_{F,+}^{\times} .
$$

The action of $O_{F,+}^{\times}$on the connected components is trivial. The reason is that:

$$
\mathcal{H}^{d}=G(\mathbb{R}) /\left(K_{\infty} \backslash Z(\mathbb{R})\right),
$$

where $d=[F: \mathbb{Q}]$ and

$$
Z_{G^{*}}(\mathbb{R}) \subset \mathcal{H}^{d} / G^{*}(\mathbb{Z})
$$

where $Z_{G^{*}}$ is the center of G^{*}. Therefore the center $Z_{G^{*}}$ acts trivially on $\mathcal{H}^{d} / G^{*}(\mathbb{Z})$.
But the functor \mathscr{M}_{G} is just a coarse moduli space(un espace grossier in french). If we write,

$$
\mathscr{M}_{G}^{\text {gross }}=\mathscr{M}_{G^{*}} / O_{F,+}^{\times}
$$

(i) The neutrial component of $\mathscr{M}_{G}^{\text {gross }}=$ the neutrial component of $\mathscr{M}_{G^{*}}$.
(ii) But the set $\{$ the connected components $\}$ of $\mathscr{M}_{G}^{\text {gross }} \neq$ the set $\{$ the connected components $\}$ of \mathscr{M}_{G}.

Remark 3.1 We know that the action of $O_{F,+}^{\times}$permutates the connected components of $\mathscr{M}_{G}^{\text {gross }}$.

where p is a covering map (revetement).
Now we consider the previous moduli problems in the setting of stacks.

$$
\mathscr{M}_{G}^{c h p}=\left[\mathscr{M}_{G^{*}} / O_{F,+}^{\times}\right]
$$

Remark 3.2 Attention: $\mathscr{M}_{G}^{c h p}$ is not an algebraic stack, because the group $O_{F,+}^{\times}$is not a finite group.

But over $\mathscr{M}_{G}^{c h p}$, we still have a stack :

$$
\begin{gathered}
{\left[\mathscr{A} / O_{F,+}^{\times}\right]} \\
f \downarrow \\
\left.\downarrow \mathscr{M}_{G}^{c h p}\right]
\end{gathered}
$$

where f is a representable morphism, involving a tautological abelian variety.
Now we turn to toroial compactifications. We have a diagram of compactifications for $\mathscr{M}_{G^{*}}$.

Similarly, there is another diagram for $\mathscr{M}_{G}^{c h p}$

In conclusion :
$\mathscr{M}_{G^{*}}=G^{*}(\mathbb{Q}) \backslash G^{*}(\mathbb{A}) / Z_{G^{*}}(\mathbb{R}) K_{\infty}$ has a universal abelian variety.
$\mathscr{M}_{G}^{\text {gross }}=G(\mathbb{Q}) \backslash G(\mathbb{A}) / Z_{G}(\mathbb{R}) K_{\infty}$ does not have a universal abelian variety.

$$
\mathscr{M}_{G}^{c h p}=\left[G(\mathbb{Q}) \backslash G(\mathbb{A}) / Z_{G}(\mathbb{R}) K_{\infty}\right] .
$$

4 Generalization of Multiple Zeta Values (I): General construction and results over \mathbb{Q}

4.1 General construction

4.1.1 Plectic Green currents

In our work, we consider a generalisation of $\log \left|1-e^{2 \pi i x}\right|^{2}$ on the compact real torus

$$
S^{1}=\left\{e^{2 \pi i x} \mid x \in \mathbb{R} / \mathbb{Z}\right\} \subset \mathbb{C}^{\times}
$$

This function is the restriction of the Green function $G(1, y)=\log |1-y|^{2}$ of the origin of \mathbb{C}^{\times}to S^{1}. We are going to consider corresponding objects on tori with real multiplication.

Let F be a totally real field of degree $r=[F: \mathbb{Q}]$, we have the trace map $\operatorname{Tr}=\operatorname{Tr}_{F / \mathbb{Q}}$ and the norm map $N=N_{F / \mathbb{Q}}$. Let \mathscr{D} be the different and let I be a fractional ideal of F and

$$
I^{*}=\{a \in F \mid \operatorname{Tr}(a I) \in \mathbb{Z}\}=\mathscr{D}^{-1} I^{-1}
$$

Let $\|\cdot\|: F_{\mathbb{R}}=F \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{R}^{\operatorname{Hom}(F, \mathbb{R})} \longrightarrow \mathbb{R}_{+} \cup\{0\}$ be the standard euclidean norm. As above, let

$$
U_{\mathbb{R}}=\operatorname{Ker}\left(N:\left(F_{\mathbb{R}}^{\times}\right)_{+} \longrightarrow \mathbb{R}_{+}^{\times}\right)=\left\{\left(u_{1}, \ldots, u_{r}\right) \in \mathbb{R}_{+}^{r} \mid u_{1} \cdots u_{r}=1\right\} .
$$

Then we can define the "plectic" Green function associated to the ideal I
Definition 4.1 (Plectic Green function)

$$
g_{I}(x, u)=\lim _{\eta \rightarrow 0^{+}} \sum_{n \in I^{*} \backslash\{0\}} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\eta}}, \quad x \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}}
$$

which can also be defined as $\sum_{n \in I^{*} \backslash\{0\}} \frac{e^{2 \pi i T(n x)}}{\|u n\|^{r}}$, viewed as a distribution on $\left(F_{\mathbb{R}} / I\right) \times U_{\mathbb{R}}$.
We can also add an additional choice of multisigns $v \in\{0,1\}^{\operatorname{Hom}(F, R)}$. Then the modified "plectic" Green function becomes

$$
g_{I}^{v}(x, u)=\lim _{\eta \rightarrow 0^{+}} \sum_{n \in I^{*} \backslash\{0\}} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\eta}}, x \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}}
$$

There is also a second method to add a multisign

$$
g_{I, v}(x, u)=\lim _{\eta \rightarrow 0^{+}} \sum_{\substack{n \in I^{*} \backslash\{0\} \\ \operatorname{sgn}(n)=(-1)^{v}}} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\eta}}, x \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}} .
$$

Remark 4.2 ($O_{F,+}^{\times}$-equivariance)
$\forall \varepsilon \in O_{F,+}^{\times}$, we have

$$
g_{I}(\varepsilon x, \varepsilon u)=g_{I}(x, u)
$$

This is also true for $g_{I}^{V}(\cdot, \cdot)$ and $g_{I, v}(\cdot, \cdot)$.
Remark 4.3 (Dependence on I)

1. If $\alpha \in F_{+}^{\times}$and $N(\alpha)=1$, then $(\alpha I)^{*}=\alpha^{-1} I^{*}$. Hence

$$
g_{\alpha I}(\alpha x, \alpha u)=g_{I}(x, u) .
$$

2. $\forall \alpha \in F_{+}^{\times}, g_{\alpha I}(\alpha x, u)=N(\alpha) g_{I}(x, u)$. Therefore up to rescaling, $g_{I}(\cdot, \cdot)$ depends only on the class of I in the class group $C l_{F}^{+}$. This is also true for $g_{I}^{v}(\cdot, \cdot)$ and $g_{I, v}(\cdot, \cdot)$.

4.1.2 Higher plectic Green currents

By using just this "plectic" Green function, we will construct a function (or a distribution) $\mathscr{G}_{I, \Gamma, S}(\cdot, \cdot)$ on

$$
O_{F,+}^{\times} \backslash\left(F_{\mathbb{R}} / I\right)^{S} \times U_{\mathbb{R}}=\left(F_{\mathbb{R}} / I\right)^{S} \times_{O_{F,+}} E O_{F,+}^{\times},
$$

which depends on a given graph Γ and a subset S of the set of its vertices.

Definition 4.4 (Higher plectic Green function)

Let Γ be a finite connected non-oriented graph, $V(\Gamma)$ the set of vertices and $E(\Gamma)$ the non-empty set of edges. Let $S \subset V(\Gamma)$ be a subset of the set of vertices. Loops are forbidden here (i.e. the endpoints of each edge are distinct), but multiple edges are allowed. For each vertex $v \in V(\Gamma)$, let $x_{v} \in F_{\mathbb{R}} / I$ be a variable which decorates the vertex v; for each edge $e \in E(\Gamma)$, we choose an orientation $\vec{e}=\left(v_{0}(e) \longrightarrow v_{1}(e)\right)$ and we associate an element $n_{e} \in I^{*} \backslash\{0\}$.

Then the higher plectic Green function attached to (Γ, S) is

$$
\mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\int_{\left(F_{\mathbb{R}} / I\right)^{V(\Gamma) \backslash S}} \prod_{e \in E(\Gamma)} g_{I}\left(x_{v_{1}(e)}-x_{v_{0}(e)}, u\right) \prod_{v \in V(\Gamma) \backslash S} d x_{v},
$$

where $x_{v} \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}}$ and dx is a fixed Haar measure en $F_{\mathbb{R}}$, and

$$
g_{I}\left(x_{v_{1}(e)}-x_{v_{0}(e)}, u\right)=\lim _{\eta \rightarrow 0^{+}} \sum_{n_{e} \in I^{*} \backslash\{0\}} \frac{\left.\left.e^{2 \pi i \operatorname{Tr}\left(n _ { e } \left(x_{v_{1}}(e)\right.\right.}-x_{v_{0}(e)}\right)\right)}{\left\|u n_{e}\right\|^{r+\eta}} .
$$

There are variants of these functions (and numbers) depending on an additional choice of multisigns $v(e) \in\{0,1\}^{\operatorname{Hom}(F, R)}$ (and an orientation) for each edge e, which means that we can replace $g_{I}(\cdot, \cdot)$ by $g_{I, v}(\cdot, \cdot)$ (or $g_{I}^{v}(\cdot, \cdot)$).

Remark 4.5 By the very definition, $\mathscr{G}_{I, \Gamma, S}(\cdot, \cdot)$ inherits a $O_{F,+}^{\times}$-invariant property. $\forall \varepsilon \in O_{F,+}^{\times}$, we have

$$
\mathscr{G}_{I, \Gamma, S}\left(\left\{\varepsilon x_{v}\right\}_{v \in S}, \varepsilon u\right)=\mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right) .
$$

Therefore, our higher plectic Green function $\mathscr{G}_{I, \Gamma, S}(\cdot, \cdot)$ is a function (or distribution) on

$$
O_{F,+}^{\times} \backslash\left(F_{\mathbb{R}} / I\right)^{S} \times U_{\mathbb{R}}=\left(F_{\mathbb{R}} / I\right)^{S} \times_{O_{F,+}^{\times}} E O_{F,+}^{\times},
$$

which depends on the given graph Γ and the subset S of the set of its vertices. Here $E O_{F,+}^{\times}$is the total space of the group $O_{F,+}^{\times}$.

Lemma 4.6 (Convolution on $\left.F_{\mathbb{R}} / I\right)$ On $F_{\mathbb{R}} / I$ we have a formal convolution. Let $\chi_{n}(x)=e^{2 \pi i \operatorname{Tr}(x n)}$. If $A(x)=\sum_{m \in I^{*}} a(m) \chi_{m}(x)$ and $B(y)=\sum_{n \in I^{*}} b(n) \chi_{n}(y)$, then

$$
\int_{F_{\mathbb{R}} / I} A(x-y) B(y) d y=\int_{F_{\mathbb{R}} / I} \sum_{m, n \in I^{*}} a(m) b(n) \chi_{m}(x-y) \chi_{n}(y) d y=\operatorname{vol}\left(F_{\mathbb{R}} / I\right) \sum_{n \in I^{*}} a(n) b(n) \chi(n)
$$

Proof 4.1.1 The Proof of Lemma 4.6 is straightout.

$$
\begin{gathered}
\int_{F_{\mathbb{R}} / I} A(x-y) B(y) d y=\int_{F_{\mathbb{R}} / I} \sum_{m, n \in I^{*}} a(m) b(n) e^{2 \pi i \operatorname{Tr}((x-y) m)} e^{2 \pi i \operatorname{Tr}(y n)} d y \\
=\int_{F_{\mathbb{R}} / I} \sum_{m=n} a(m) b(n) e^{2 \pi i \operatorname{Tr}(x m)} e^{2 \pi i \operatorname{Tr}(y(n-m))} d y+\int_{F_{\mathbb{R}} / I} \sum_{m \neq n} a(m) b(n) e^{2 \pi i \operatorname{Tr}(x m)} e^{2 \pi i \operatorname{Tr}(y(n-m))} d y
\end{gathered}
$$

If $m \neq n$, then

$$
\int_{F_{\mathbb{R}} / I} b(n) e^{2 \pi \operatorname{Tr}(y(n-m))} d y=0
$$

Therefore we obtain

$$
\begin{aligned}
& \int_{F_{\mathbb{R}} / I} A(x-y) B(y) d y=\int_{F_{\mathbb{R}} / I} \sum_{m=n} a(m) b(n) e^{2 \pi i \operatorname{Tr}(x m)} e^{2 \pi \operatorname{Tr}(y(n-m))} d y \\
= & \int_{F_{\mathbb{R}} / I} \sum_{n \in I^{*}} a(n) b(n) e^{2 \pi i \operatorname{Tr}(x n)} \cdot \int_{F_{\mathbb{R}} / I} 1 d y=\operatorname{vol}\left(F_{\mathbb{R}} / I\right) \sum_{n \in I^{*}} a(n) b(n) e^{2 \pi i \operatorname{Tr}(x n)} .
\end{aligned}
$$

By the definition of $g_{I}(\cdot, \cdot)$, we can rewrite the higher plectic Green function as
$\mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\lim _{\eta \rightarrow 0^{+}} \sum_{n: E(\Gamma) \rightarrow I^{*} \backslash\{0\}} \prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{-r-\eta} \int_{\left(F_{\mathbb{R}} / I\right)^{v(\Gamma) \backslash S}} e^{2 \pi i \operatorname{Tr}\left(\sum_{e \in E(\Gamma)} n_{e}\left(x_{v_{1}(e)}-x_{v_{0}(e)}\right)\right)} d \mu_{V(\Gamma) \backslash S}$,
where we define the following map

$$
n: E \longrightarrow I^{*} \backslash\{0\} ; \quad n: e \longmapsto n_{e} \in I^{*} \backslash\{0\} .
$$

Let us define the chain complex for the graph Γ.

$$
\delta: C_{1}(\Gamma)=\mathbb{Z}[E(\Gamma)] \longrightarrow C_{0}(\Gamma)=\mathbb{Z}[V(\Gamma)],
$$

where $\delta:\left(v_{0} \rightarrow v_{1}\right) \longmapsto\left[v_{1}\right]-\left[v_{0}\right]$ is the boundary map of the chain complex and $\mathbb{Z}[X]$ denotes the free abelian group on a set X . We can also define the relative chain complex for (Γ, S), namely,

$$
C_{1}(\Gamma) \longrightarrow C_{0}(\Gamma) / C_{0}(S) .
$$

We can associate to n the following element $c(n)$ in $C_{1}(\Gamma) \otimes_{\mathbb{Z}} I^{*}$ of the graph Γ.

$$
c(n)=\sum_{e \in E(\Gamma)} n_{e} \cdot \vec{e} \in C_{1}(\Gamma) \otimes_{\mathbb{Z}} I^{*} .
$$

If we let

$$
\begin{equation*}
\pi_{v}=\sum_{e \in E(\Gamma), v_{1}(e)=v} n_{e}-\sum_{e \in E(\Gamma), v_{0}(e)=v} n_{e}, \tag{2}
\end{equation*}
$$

then

$$
e^{2 \pi i \operatorname{Tr}\left(\sum_{e \epsilon E(\Gamma)} n_{e}\left(x_{v_{1}(e)}-x_{v_{0}(e)}\right)\right)}=e^{2 \pi \operatorname{Tr}\left(\sum_{v \in V(\Gamma)} \pi_{v} x_{v}\right)} .
$$

We define the boundary map

$$
\begin{gathered}
\partial n: V(\Gamma) \longrightarrow I^{*}, \\
\partial n(v)=\left.\delta c(n)\right|_{v}=\pi_{v} .
\end{gathered}
$$

By using the previous convolution formula, we obtain that only the terms with $\left.\partial n\right|_{V(\Gamma) \backslash S}=0$ (which means that

$$
\left.\forall v \in V(\Gamma) \backslash S, \quad \pi_{v}=0\right)
$$

contribute to the integral in (1). Note that

$$
\left\{c(n)|\partial n|_{V(\Gamma) \backslash S}=0\right\}=H_{1}(\Gamma, S) \otimes_{\mathbb{Z}} I^{*} .
$$

Then we get a formal Fourier convolution description of $\mathscr{G}_{1, \Gamma, S}(\cdot, \cdot)$.

Proposition 4.7 (Formal Fourier Expansion)

$$
\mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\operatorname{vol}\left(F_{\mathbb{R}} / I\right)^{|V(\Gamma) \backslash S|} \lim _{\eta \rightarrow 0^{+}} \sum_{\left\{n, c(n) \in H_{1}(\Gamma, S) \otimes I^{*}\right\}}^{\prime} \frac{\exp ^{2 \pi i \operatorname{Tr}\left(\sum_{v \in S}(\partial n)_{v} x_{v}\right)}}{\prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{r+\eta}},
$$

where \sum^{\prime} means that we consider only n such that $c(n) \in H_{1}(\Gamma, S) \otimes I^{*}$ and $\forall e \in E(\Gamma), n_{e} \in I^{*} \backslash\{0\}$.

Proof 4.1.2

We can replace each $e \in E(\Gamma)$ by a chain of $k_{e} \geq 1$ edges, which is equivalent to that we add $k_{e}-1 \geq 0$ new vertices to each edge $e \in E(\Gamma)$ to get a new graph $\Gamma(k)$ with $|V(\Gamma(k))|=|V(\Gamma)|+$ $\sum_{e}\left(k_{e}-1\right)$ and the subset S is unchanged.

For example, the case of $k_{e}=3$ is as follows.

Figure 6: The subdivision of the edge e.
Hence we have defined a subdivision map:
Definition 4.8 (Subdivision map)

$$
\begin{gathered}
k: E(\Gamma) \longrightarrow \mathbb{N} \backslash\{0\} \\
k: e \longmapsto k_{e}
\end{gathered}
$$

Combining a subdivision of edges and formal Fourier expansion, we get
Proposition 4.9 (Subdivision of edges)

$$
\mathscr{G}_{I, \Gamma(k), S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\operatorname{vol}\left(F_{\mathbb{R}} / I\right)^{|V(\Gamma)| S|+|k|-|E(\Gamma)|} \lim _{\eta \rightarrow 0^{+}} \sum_{\left\{n, c(n) \in H_{1}(\Gamma, S) \otimes I^{*}\right\}}^{\prime} \frac{e^{2 \pi i \operatorname{Tr}\left(\sum_{v \in S}(\partial n) x_{1} x_{v}\right)}}{\prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{k_{e}(r+\eta)}},
$$

where $x \in F_{\mathbb{R}} / \mathbb{R}, u \in U_{\mathbb{R}},|k|=\sum_{e \in E(\Gamma)}\left|k_{e}\right|, n=\left(n_{e}\right)_{e \in E(\Gamma)}$,

$$
\partial n(v)=\sum_{e \in E(\Gamma), v_{1}(e)=v} n_{e}-\sum_{e \in E(\Gamma), v_{0}(e)=v} n_{e},
$$

and \sum^{\prime} means that ∂n is supported at S and each n_{e} is nonzero.
Remark 4.10 We can also add multisigns here, there are two methods. The first way is to associate each edge a multisign $v_{e}=\left(v_{e}^{1}, \ldots, v_{e}^{r}\right)$, then the formula in 4.9 will then contain terms $\operatorname{sgn}\left(n_{e}\right)^{v(e)}$:
$\mathscr{C}_{I, \Gamma(k), S}^{v}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\operatorname{vol}\left(F_{\mathbb{R}} / I\right)^{|V(\Gamma) \backslash S|+|k|-|E(\Gamma)|} \lim _{\eta \rightarrow 0^{+}} \sum_{\left\{n, c(n) \in H_{1}(\Gamma, S) \otimes I^{*}\right\}}^{\prime} \operatorname{sgn}\left(n_{e}\right)^{v(e)} \frac{e^{2 \pi i \operatorname{Tr}\left(\sum_{v \in S}(\partial n)_{v} x_{v}\right)}}{\prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{k_{e}(r+\eta)}}$.
The second method to add mutisigns by taking into account the $n_{e} \in I^{*} \backslash\{0\}$, such that $\operatorname{sgn}\left(n_{e}\right)=$ $(-1)^{v_{e}}$ for a given multisign v_{e} to each edge e. Then

$$
\mathscr{G}_{I, v, \Gamma(k), S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)=\operatorname{vol}\left(F_{\mathbb{R}} / I\right)^{|V(\Gamma)| S|+|k|-|E(\Gamma)|} \lim _{\eta \rightarrow 0^{+}} \sum_{\substack{\left\{n, c(n) \in H_{1}(\Gamma, S) \otimes I^{*}\right\} \\ \operatorname{sgn}\left(n_{e}\right)=(-1)^{v(e)}}}^{\prime} \frac{e^{2 \pi i \operatorname{Tr}\left(\sum_{v \in S}(\partial n)_{v} x_{v}\right)}}{\prod_{e \in E(\Gamma)}\left\|u n_{e}\right\|^{k_{e}(r+\eta)}} .
$$

In fact, we usually prefer the second definition $\mathscr{G}_{1, v, \Gamma(k), S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)$.

4.1.3 Generalized MZV for totally real fields

If we suppose that there exists a subgroup $U \subset O_{F,+}^{\times}$of finite index stabilising $\left\{x_{v}\right\}$ for each $v \in S$, we can apply the Hecke transform to define a new function as follows.

Definition 4.11

$$
\mathscr{F}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}\right)=\left(O_{F,+}^{\times}: U\right)^{-1} \int_{U_{\mathbb{R}} / U} \mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right) d^{\times} u
$$

where $d^{\times} u=\frac{d u_{1} \cdots d u_{r-1}}{u_{1} \cdots u_{r-1}}, \prod_{j=1}^{r} u_{j}=1$ and $U_{\mathbb{R}} / U=B U \cong(\mathbb{S})^{r-1}$ is the classifying space of $U \cong \mathbb{Z}^{r-1}$.
Remark: In the same way, we can define $\mathscr{F}_{I, \Gamma, S}^{V}\left(\left\{x_{v}\right\}_{v \in S}\right)$ and $\mathscr{F}_{I, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}\right)$.
Then the generalized multiple zeta value is defined as

Definition 4.12 (Generalized Multiple Zeta Values)

$$
\mathscr{Z}_{I}(\Gamma, S)=\mathscr{F}_{I, \Gamma, S}\left(\{0\}_{v \in S}\right) .
$$

Remark 4.13 Similarily, we have

$$
\mathscr{Z}_{I}^{v}(\Gamma, S)=\mathscr{F}_{I, \Gamma, S}^{v}\left(\{0\}_{v \in S}\right)
$$

and

$$
\mathscr{Z}_{I, v}(\Gamma, S)=\mathscr{F}_{I, v, \Gamma, S}\left(\{0\}_{v \in S}\right)
$$

Remark 4.14 In fact, the construction for $\mathscr{G}_{I, v, \Gamma(k), S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)$ also works for arbitary number fields. If a complex place exists, we can just replace the Euclidean norm by Hermitian norm and we can add signs just for the real places. For an imaginary quadratic field, there is no Hecke transform.

4.1.4 Generalized MZV for arbitary number fields

Definition 4.15 (Plectic Green functions for arbitary number fields)

Let K be a number field with r_{1} real places $\left(v_{i}\right)_{1 \leq i \leq r_{1}}$ and r_{2} complex places $\left(w_{j}\right)_{1 \leq j \leq r_{2}}$ and of degree $[K: \mathbb{Q}]=r_{1}+2 r_{2}$. We have the trace map $\operatorname{Tr}=\operatorname{Tr}_{K / \mathbb{Q}}$

$$
K_{\mathbb{R}} \cong \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}
$$

and we have a Hermitian product

$$
\begin{gathered}
\langle\mid\rangle: K_{\mathbb{R}} \times K_{\mathbb{R}} \longrightarrow \mathbb{C} \\
\left\langle\left(x_{v}, z_{w}\right) \mid\left(x_{v}^{\prime}, z_{w}^{\prime}\right)\right\rangle=\sum_{v} x_{v} x_{v}^{\prime}+\sum_{w} z_{w} z_{w}^{\prime}
\end{gathered}
$$

where

$$
x=\left(x_{v}, z_{w}\right)
$$

Let

$$
\|\cdot\|=\langle\cdot \mid \cdot\rangle^{1 / 2}
$$

then the plectic Green function can be defined as

$$
g_{I}(x, u)=\sum_{n \in I^{*} \backslash\{0\}} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r_{1}+2 r_{2}}}, \quad x \in K_{\mathbb{R}} / I, u \in U_{\mathbb{R}},
$$

which is a distribution on $\left(K_{\mathbb{R}} / I\right) \times U_{\mathbb{R}}$.

4.2 Relation to classical MZVs

4.2.1 Relation to MZVs and examples

In order to give an explicit relation to the classical definition, we obtain the following result.

Theorem 4.16 (Relation to multiple zeta values) Let F be the rational field \mathbb{Q}.
Let Γ be any tree with rank $d=\operatorname{rank}\left(H_{1}(\Gamma, S)\right) \geq 2$, where $S=\partial \Gamma$. Assume that we are given a "sign" map $v: E(\Gamma) \longrightarrow\{0,1\}$ and a subdivision map $k: E(\Gamma) \longrightarrow \mathbb{N} \backslash\{0\}$ as in Remark 4.10 and in Definition 4.8, respectively. Then the generalized multiple zeta value $\mathscr{Z}_{I, v}(\Gamma(k), \partial \Gamma(k))(I=\mathbb{Z})$ can be expressed as a finite \mathbb{Z}-linear combination of classical multiple zeta values (MZVs) of depth d and weight $|k|=\sum_{e} k_{e}$.

Remark 4.17 Before proving this result in general we consider first the case when Γ is a plane trivalent tree, i.e., a tree whose internal vertices are of valency 3. A plane trivalent tree Γ with $m+1$ external vertices has $2 m-1$ edges and $m-1$ internal vertices. The rank of Γ is $d=\operatorname{rank}\left(H_{1}(\Gamma, \partial \Gamma)\right)=$ m. A tree is a connected graph with no loops, no multiple edges and $H_{1}(\Gamma, \mathbb{Z})=0$.

Figure 7: The simplest examples of plane trivalent trees of small ranks.

Remark 4.18 In this theorem we only consider the situation that the subset $S=\partial \Gamma$. We would like to explain that such choice is quite general. In fact, $\mathscr{Z}_{1, v}(\Gamma, S)=0$ if $\partial \Gamma \phi S$, therefore we must have $\partial \Gamma \subset S$. If one internal vertex is contained in S, namely $\partial \Gamma \subsetneq S$, the situation can be reduced to a new tree with fewer internal vertices.

When $F=\mathbb{Q}$ and the ideal $I=\mathbb{Z}$, the Hecke transform is trivial. The generalized multiple zeta values are given by

$$
\mathscr{Z}_{I, v}(\Gamma, S)=\mathscr{G}_{I, v, \Gamma, S}\left(\{0\}_{v \in S}, 1\right) .
$$

Before giving the proof in full generality, we will illustrate the statement of Theorem 4.16 by several examples.

Some Examples.

Remark 4.19 In Theorem 4.16 and 4.38, we will take into account all arbitary trees, and we prove the theorems when the valency of any internal vertex val $\left(v_{\text {internal }}\right) \geq 3$. We will now explain the case: $\operatorname{val}\left(v_{\text {internal }}\right)=2$.

Figure 8: All internal vertices have valency 2

Let $\widetilde{\Gamma}$ be one of the trees in Figure 8.
We fix the signature $v_{1}=0$ for n_{1}, then implicitly all other signatures are also determined.

$$
\begin{gathered}
\mathscr{G}_{\mathbb{Z}, v, \widetilde{\Gamma}, \partial \widetilde{\Gamma}}\left(\left\{a_{1}, a_{2}\right\}, 1\right)=\int_{(\mathbb{R} / \mathbb{Z})^{k}}{ }_{\substack{n_{1}, \cdots, n_{k+1} \in \mathbb{Z}\{0\} \\
\sin \left(n_{j}\right)=(-1)^{v j} \\
n_{j}=n_{j+1}, 1 \leq j \leq k}} \frac{\left.e^{2 \pi i\left(\sum_{2 \leq j \leq k} n_{j}\left(x_{j}-x_{j-1}\right)\right)+n_{1}\left(x_{1}-a_{1}\right)+n_{k+1}\left(a_{2}-x_{k}\right)}\right)}{\prod_{j=1}^{k+1}\left|n_{j}\right|} d x_{1} \cdots d x_{k} \\
=\sum_{n_{1} \in \mathbb{N} \backslash\{0\}} \frac{e^{2 \pi i n_{1}\left(a_{2}-a_{1}\right)}}{n_{1}^{k+1}} . \\
\mathscr{Z}_{\mathbb{Z}, v}(\widetilde{\Gamma}, \partial \widetilde{\Gamma})=\mathscr{G}_{\mathbb{Z}, v, \widetilde{\Gamma}, \partial \widetilde{\Gamma}}(\{0,0\}, 1)=\sum_{n_{1} \in \mathbb{N} \backslash\{0\}} \frac{1}{n_{1}^{k+1}}=\zeta(k+1) .
\end{gathered}
$$

This result tells us that such a graph delivers the same result as the subdivision map of adding k points for the tree with one edge and two external vertices a_{1}, a_{2}.

Non-tree case. We will show some examples for graphs which are not trees.
Example 4.20 Let $\widehat{\Gamma}$ be the graph in Figure 9.
We fix the signature $v_{1}=0$ for n_{1} and the signature $\mu_{1}=0$, then other signatures are implicitly determined by the constraint at each internal vertex because of the formal Fourier convolution.

$$
\mathscr{G}_{\mathbb{Z}, v, \widehat{\Gamma}, \partial \widehat{\Gamma}}\left(\left\{y_{1}, y_{2}\right\}, 1\right)=\int_{(\mathbb{R} / \mathbb{Z})^{6}} \sum_{\begin{array}{c}
n_{k}, m_{l} \in \mathbb{Z} \backslash\{0\}_{l} \\
\operatorname{snn}\left(n_{k}\right)=(-1)^{v_{k}} \\
\operatorname{sgn}\left(m_{l}\right)=(-1)^{\prime} \\
n_{1}+n_{2}+m_{1}-m_{6} \\
m_{l}=m_{l+1}, 1 \leq l \leq 5
\end{array}} \frac{e^{2 \pi i\left(\sum_{l=1}^{5} m_{l}\left(x_{l+1}-x_{l}\right)+m_{6}\left(x_{1}-x_{6}\right)+n_{1}\left(y_{1}-x_{1}\right)+n_{2}\left(y_{2}-x_{1}\right)\right)}}{\prod_{l=1}^{6}\left|m_{l}\right| \cdot\left|n_{1}\right| \cdot\left|n_{2}\right|} d x_{1} \cdots d x_{6} .
$$

By formal Fourier convolution,

$$
\mathscr{G}_{\mathbb{Z}, v, \widehat{\Gamma}, \partial \widehat{\Gamma}}\left(\left\{y_{1}, y_{2}\right\}, 1\right)=\sum_{n_{1}, m_{1} \in \mathbb{N} \backslash\{0\}} \frac{e^{2 \pi i\left(n_{1}\left(y_{1}-y_{2}\right)\right)}}{m_{1}^{6} n_{1}^{2}}=\zeta(6) \sum_{n=0}^{\infty} \frac{e^{2 \pi i n\left(y_{1}-y_{2}\right)}}{n^{2}},
$$

Figure 9: The graph $\widehat{\Gamma}$.
and

$$
\mathscr{Z}_{\mathbb{Z}, v}(\widehat{\Gamma}, \partial \widehat{\Gamma})=\sum_{n_{1}, m_{1} \in \mathbb{N} \backslash\{0\}} \frac{1}{m_{1}^{6} n_{1}^{2}}=\zeta(6) \zeta(2) .
$$

By the shuffle relation, we get

$$
\mathscr{Z}_{\mathbb{Z}, v}(\widehat{\Gamma}, \partial \widehat{\Gamma})=\sum_{r+s=8}\left(C_{r-1}^{5}+C_{r-1}^{1}\right) \zeta(s, r) .
$$

The result is equal to the value of

$$
\mathscr{Z}_{\mathbb{Z}, v}\left(\Gamma_{b},\left\{s_{1}, s_{2}\right\}\right)=\sum_{\substack{n_{1}, m_{1} \in \mathbb{N} \backslash\{0\} \\ n_{2}=-n_{1}}} \frac{e^{2 \pi i\left(n_{1} y_{1}+n_{2} y_{2}\right)}}{m_{1}^{6} n_{1}^{2}}=\sum_{n_{1}, m_{1} \in \mathbb{N} \backslash\{0\}} \frac{e^{2 \pi i\left(n_{1}\left(y_{1}-y_{2}\right)\right)}}{m_{1}^{6} n_{1}^{2}},
$$

given by Figure 10.

Figure 10: The graph Γ_{b}.
From the discussion above, we can see that different graphs can deliver the same value.
The case of trees of internal valency ≥ 3.
Example 4.21 Let Γ be the graph in Figure 11.
The graph $\Gamma(k)$ is just a chain obtained after adding $k-1$ points to Γ. The given sign is $v_{i}=v$, $1 \leq i \leq k$. Then

$$
\mathscr{G}_{I, v, \Gamma(k), \partial \Gamma(k)}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma(k)}, 1\right)=\sum_{\substack{n \in \mathbb{Z} \backslash\{0\} \\ \operatorname{sgn}(n)=(-1)^{v}}} \frac{e^{2 \pi i n\left(x_{2}-x_{1}\right)}}{|n|^{k}},
$$

Figure 11: A plane trivalent tree of rank 1.
and

$$
\mathscr{Z}_{I, v}(\Gamma(k), \partial \Gamma(k))=\sum_{\substack{n \in \mathbb{Z} \backslash\{0\} \\ \operatorname{sgn}(n)=(-1)^{v}}} \frac{1}{|n|^{k}}=\zeta(k) .
$$

Moreover, we even do not need sign v, then one obtain

$$
\mathscr{Z}_{I}(\Gamma(k), \partial \Gamma(k))=\sum_{n \in \mathbb{Z} \backslash\{0\}} \frac{1}{|n|^{k}}=2 \zeta(k) .
$$

Example 4.22 Let Γ_{1} be the graph in Figure 12.

Figure 12: A plane trivalent tree with one internal vertex
The rank of Γ_{1} is $2=\operatorname{rank}\left(H_{1}\left(\Gamma_{1}, \partial \Gamma_{1}\right)\right)$. To each edge $e_{i}(i=1,2,3)$ we add $\sigma_{i}-1 \geq 0$ points. The only internal vertex is denoted by y, each external vertex v_{i} is decorated by the variable $x_{v_{i}}$. For each $e_{i}(i=1,2)$, the given sign v_{i} equals 0 . For the edge e_{3}, the sign $v_{3}=1$. In fact, the constraint $n_{1}+n_{2}+n_{3}=0$ and $v_{1}=v_{2}=0$ imply that $v_{3}=1$.

$$
\mathscr{G}_{I_{1}, \Gamma_{1}, \partial \Gamma_{1}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{\substack{n_{1}+n_{2}+n_{3}=0, n_{i} \in \mathbb{Z} \backslash \\ \operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}}}} \frac{e^{2 \pi i\left(n_{1} x_{v_{1}}+n_{2} x_{v_{2}}+n_{3} x_{v_{3}}\right)}}{\left|n_{1}\right| \sigma_{1}\left|n_{2}\right|^{\left.\left|\sigma_{2}\right| n_{3}\right|^{\sigma_{3}}},}
$$

where $v_{1}=v_{2}=0, v_{3}=1$. Then

$$
\begin{gathered}
\mathscr{Z}_{I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{\substack{n_{1}+n_{2}+n_{3}=0, n_{i} \in \mathbb{Z}\left\{0 \\
\operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}}\right.}} \frac{1}{\left.\left|n_{1}\right|\right|^{\sigma_{1}}\left|n_{2}\right|^{\sigma_{2}}\left|n_{3}\right|^{\sigma_{3}}}=\sum_{n_{1, n} \in \mathbb{N} \backslash\{0\}} \frac{1}{\left|n_{1}\right|^{\sigma_{1}\left|n_{2}\right|^{\sigma_{2}}\left|n_{1}+n_{2}\right|^{\sigma_{3}}}} \\
\mathscr{Z}_{1, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{n_{1}, n_{2} \in \mathbb{N}\{\{0\}} \frac{1}{n_{1}^{\sigma_{1}} n_{2}^{\sigma_{2}}\left(n_{1}+n_{2}\right)^{\sigma_{3}}} .
\end{gathered}
$$

Recall the following Eisenstein's trick

Formula 4.23

$$
\frac{1}{m^{i} n^{j}}=\sum_{r+s=i+j}\left(\frac{C_{r-1}^{i-1}}{(m+n)^{r} n^{s}}+\frac{C_{r-1}^{j-1}}{(m+n)^{r} m^{s}}\right) .
$$

then $\frac{1}{n_{1}^{\sigma_{1}^{1}} n_{2}^{\sigma_{2}^{2}}}=\sum_{r+s=\sigma_{1}+\sigma_{2}}\left(\frac{C_{r-1}^{\sigma_{1}-1}}{\left(n_{1}+n_{2}\right)^{r} n_{2}^{s}}+\frac{C_{r-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}\right)^{r} n_{1}^{s}}\right), r, s \geq 1$,
where $C_{b}^{a}=\binom{b}{a}$. Hence

$$
\begin{gathered}
\mathscr{Z}_{l, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \sum_{r+s=\sigma_{1}+\sigma_{2}}\left(\frac{C_{r-1}^{\sigma_{1}-1}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3} n_{2}^{s}}}+\frac{C_{r-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{1}^{s}}\right), \\
=\sum_{r+s=\sigma_{1}+\sigma_{2}}\left\{C_{r-1}^{\sigma_{1}-1}\left(\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{1}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{2}^{s}}\right)+C_{r-1}^{\sigma_{2}-1}\left(\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{1}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3} n_{1}^{s}}}\right)\right\} .
\end{gathered}
$$

Since

$$
\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{1}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{2}^{s}}=\sum_{0<n_{2}<n_{1}^{\prime}} \frac{1}{\left(n_{1}^{\prime}\right)^{r+\sigma_{3}} n_{2}^{s}}=\zeta\left(s, r+\sigma_{3}\right),
$$

where $n_{1}^{\prime}=n_{1}+n_{2}$. We can express the generalized multiple zeta value for Γ_{1} as follows:

$$
\begin{aligned}
\mathscr{Z}_{I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right) & =\sum_{r+s=\sigma_{1}+\sigma_{2}}\left(C_{r-1}^{\sigma_{1}-1} \zeta\left(s, r+\sigma_{3}\right)+C_{r-1}^{\sigma_{2}-1} \zeta\left(s, r+\sigma_{3}\right)\right) . \\
& =\sum_{r+s=\sigma_{1}+\sigma_{2}}\left(C_{r-1}^{\sigma_{1}-1}+C_{r-1}^{\sigma_{2}-1}\right) \zeta\left(s, r+\sigma_{3}\right) .
\end{aligned}
$$

Here $\zeta\left(s, r+\sigma_{3}\right)$ is a classical double zeta value of weight $r+s+\sigma_{3}=\sigma_{1}+\sigma_{2}+\sigma_{3}$, which means that $\mathscr{Z}_{I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)$ can be expressed as a \mathbb{Z}-linear combination of double zeta values of this weight.

Example 4.24 Let Γ_{1}^{\prime} be the diagram as in Figure 2. The rank of Γ_{1}^{\prime} is $\operatorname{rank}\left(H_{1}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)\right)=3$. In

Figure 13: A plane trivalent tree with one internal vertex and 4 edges
fact, the Γ_{1}^{\prime} is no longer a plane trivalent tree. For each edge $e_{i}(1 \leq i \leq 4)$, we add $\sigma_{i}-1\left(\sigma_{i} \geq 1\right)$ points. The only internal vertex is denoted by y, each external vertex v_{i} is decorated by $x_{v_{i}}$. For each $e_{i}(i=1,2,3)$, the given sign v_{i} equals 0 ; for e_{4} the sign $v_{4}=1$.

$$
\mathscr{G}_{1, v, \Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}^{\prime}}, 1\right)=\sum_{\substack{n_{1}+n_{2}+n_{3}+n_{4}=0, n_{i} \in \mathbb{Z} \backslash\{0\} ; \\ \operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}, 1 \leq i \leq 4}}} \frac{e^{2 \pi i\left(n_{1} x_{v_{1}}+n_{2} x_{v_{2}}+n_{3} x_{v_{3}}+n_{4} v_{v_{4}}\right)}}{\left|n_{1}\right|^{\left.\sigma_{1}\left|n_{2}\right|\right|^{\sigma_{2}}\left|n_{3}\right| \sigma_{3}\left|n_{4}\right|^{\sigma_{4}}},}
$$

where $v_{1}=v_{2}=v_{3}=0, v_{4}=1$. Then

$$
\mathscr{Z}_{I, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\mathscr{G}_{I, v, \Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}}\left(\{0\}_{v \in \partial \Gamma_{1}^{\prime}}, 1\right)
$$

$$
\begin{gathered}
=\sum_{\substack{n_{1}+n_{2}+n_{3}+n_{4}=0, n_{i} \in \mathbb{Z} \\
\operatorname{sgn}\left(n_{j}\right)=(-1)^{j}, 1 \leq 1 \leq j}} \frac{1}{\left|n_{1}\right| \sigma^{\sigma_{1}}\left|n_{2}\right| \sigma_{2}\left|n_{3}\right|^{\sigma_{3}}\left|n_{4}\right|^{\sigma_{4}}} \\
\mathscr{Z}_{I, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{1}{n_{1}^{\sigma_{1}} n_{2}^{\sigma_{2}} n_{3}^{\sigma_{3}}\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}}} .
\end{gathered}
$$

Firstly, we use Eisenstein's trick for

$$
\frac{1}{n_{2}^{\sigma_{2}} n_{3}^{\sigma_{3}}}=\sum_{r_{1}+s_{1}=\sigma_{2}+\sigma_{3}}\left(\frac{C_{r_{1}-1}^{\sigma_{2}-1}}{\left(n_{2}+n_{3}\right)^{r_{1}} n_{3}^{s_{1}}}+\frac{C_{r_{1}-1}^{\sigma_{3}-1}}{\left(n_{2}+n_{3}\right)^{r_{1}} n_{2}^{s_{1}}}\right)
$$

Then

$$
\mathscr{Z}_{I, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\sum_{r_{1}+s_{1}=\sigma_{2}+\sigma_{3}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}}\left(\frac{C_{r_{1}-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}}\left(n_{2}+n_{3}\right)^{r_{1}} n_{3}^{s_{1}} n_{1}^{\sigma_{1}}}+\frac{C_{r_{1}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}}\left(n_{2}+n_{3}\right)^{r_{1}} n_{2}^{s_{1}} n_{1}^{\sigma_{1}}}\right)
$$

Secondly, we use twice Eisenstein's trick for the terms involving n_{1} and $\left(n_{2}+n_{3}\right)$. Then we obtain

$$
\begin{aligned}
& \mathscr{Z}_{1, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=r_{1}+\sigma_{1}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{r_{2}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}} n_{3}^{s_{1}} n_{1}^{s_{2}}} \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=r_{1}+\sigma_{1}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{r_{2}-1}^{\sigma_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}\left(n_{2}+n_{3}\right)^{s_{2}} n_{3}^{s_{1}}}} \\
& \quad+\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{2}=r_{1}+\sigma_{1}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{r_{2}^{\prime}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}^{\prime} n_{2}^{s_{1}} n_{1}^{s_{2}^{\prime}}}} \\
& \quad+\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=r_{1}+\sigma_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}}} \frac{C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} C_{r_{1}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}^{\prime}}\left(n_{2}+n_{3}\right)^{s_{2}^{\prime} n_{2}^{s_{1}}}}
\end{aligned}
$$

Finally, we use Eisenstein's trick for the terms involving n_{1} and n_{2} (respectively, n_{1} and n_{3}).

$$
\begin{aligned}
& \mathscr{Z}_{I v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2} \\
r_{3}+r_{1}+\sigma_{3}=s_{1}+s_{1}, s_{2}}} \sum_{n_{1}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{r_{3}-1}^{s_{1}-1} C_{r_{2}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}}\left(n_{1}+n_{3}\right)^{r_{3}} n_{1}^{s_{3}}} \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}+r_{1}+\sigma_{1} \\
r_{3}+s_{3}=s_{1}+s_{1}+s_{2}}} \sum_{n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{r_{3}-1}^{s_{2}-1} C_{r_{2}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}}\left(n_{1}+n_{3}\right)^{r_{3}} n_{3}^{s_{3}}} \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=r_{1}+\sigma_{1}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{r_{2}-1}^{\sigma_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}}\left(n_{2}+n_{3}\right)^{s_{2}} n_{3}^{s_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime} r_{1}+\sigma_{1} \\
r_{3}^{\prime}+s_{3}^{\prime}=s_{1}+n_{2}, s_{2}^{\prime}}} \sum_{\substack{\text { n }}} \frac{C_{r_{3} \backslash}^{s_{1}-1} C_{\{0\}}^{r_{3}^{\prime}-1} C_{r_{2}^{\prime}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{3}-1}}{} \frac{\left.n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}^{\prime}}\left(n_{1}+n_{2}\right)^{r_{3}^{\prime}} n_{1}^{s_{3}^{\prime}}}{\left(n_{1}^{\prime}\right.} \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=r_{1}+\sigma_{1} \\
r_{3}^{\prime}+n_{2}, s_{3}^{\prime}, s_{1}+s_{2}^{\prime}}} \sum_{\substack{ \\
\hline}} \frac{C_{r_{3} \backslash\{0\}}^{s_{2}^{\prime}-1} C_{r_{2}}^{r_{1}-1} C_{r_{1}}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}^{\prime}}\left(n_{1}+n_{2}\right)^{r_{3}^{\prime}} n_{2}^{s_{3}^{\prime}}} \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=r_{1}+\sigma_{1}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{r_{2}^{\prime}-C_{1}}^{\sigma_{1}-1} C_{r_{1}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}+r_{2}^{\prime}}\left(n_{2}+n_{3}\right)^{s_{2}^{\prime}} n_{2}^{s_{1}}}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathscr{Z}_{I, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2} r_{1}+\sigma_{1} \\
r_{3}+s_{3} s_{1}+s_{2}}}\left(C_{r_{3}-1}^{s_{1}-1} C_{r_{2}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1}+C_{r_{3}-1}^{s_{2}-1} C_{r_{2}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1}\right) \zeta\left(\sigma_{4}+r_{2}, r_{3}, s_{3}\right) \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=r_{1}+\sigma_{1} \\
r_{3}^{\prime}+s_{3}^{\prime}-s_{1}+s_{2}^{\prime}}}\left(C_{r_{3}^{\prime}-1}^{s_{1}-1} C_{r_{2}^{\prime}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{3}-1}+C_{r_{3}^{\prime}-1}^{s_{2}^{\prime}-1} C_{r_{2}^{\prime}-1}^{r_{1}-1} C_{r_{1}-1}^{\sigma_{3}-1}\right) \zeta\left(\sigma_{4}+r_{2}^{\prime}, r_{3}^{\prime}, s_{3}^{\prime}\right) \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=r_{1}+\sigma_{1}}} C_{r_{2}-1}^{\sigma_{1}-1} C_{r_{1}-1}^{\sigma_{2}-1} \zeta\left(\sigma_{4}+r_{2}, s_{2}, s_{1}\right)+\sum_{\substack{r_{1}+s_{1}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=r_{1}+\sigma_{1}}} C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} C_{r_{1}-1}^{\sigma_{3}-1} \zeta\left(\sigma_{4}+r_{2}^{\prime}, s_{2}^{\prime}, s_{1}\right),
\end{aligned}
$$

where $\sigma_{4}+r_{2}+r_{3}+s_{3}=\sigma_{4}+r_{2}+s_{2}+s_{1}=\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}$.
We can see that $\mathscr{Z}_{1, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)$ is a \mathbb{Z}-linear combination of triple-zeta values of weight $\sigma_{1}+\sigma_{2}+$ $\sigma_{3}+\sigma_{4}$.

Example 4.25 Let Γ_{2} be the diagram as in Figure 14.
The rank is equal to $\operatorname{rank}\left(H_{1}\left(\Gamma_{2}, \partial \Gamma_{2}\right)\right)=3$. For each external edge $e_{i}(1 \leq i \leq 3)$, the given sign v_{i} equals 0 , therefore $v_{4}=1$.

$$
\mathscr{G}_{I, v, \Gamma_{2}, \partial \Gamma_{2}}\left(\left\{x_{v}\right\}_{v \in S}, 1\right)=\int_{(\mathbb{R} / \mathbb{Z})^{2}} \sum_{\begin{array}{c}
n_{i}, m_{i} \in \mathbb{Z},\{0\} \\
\operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}}
\end{array}} \frac{e^{2 \pi i\left(\left(x_{v_{3}}-y\right) n_{3}+\left(x_{v_{4}}-y\right) n_{4}\right)}}{\left|n_{3}\right| \sigma_{3}\left|n_{4}\right|^{\sigma_{4}}} \frac{e^{2 \pi i\left(\left(x_{v_{1}}-z\right) n_{1}+\left(x_{v_{2}}-z\right) n_{2}+(y-z) m_{1}\right)}}{\left|n_{1}\right| \sigma_{1}\left|n_{2}\right|^{\sigma_{2}}\left|m_{1}\right|^{\mu_{1}}} d x d y
$$

By the formal Fourier convolution, we get

$$
\mathscr{G}_{I, v, \Gamma_{2}, \partial \Gamma_{2}}\left(\left\{x_{v}\right\}_{v \in S}, 1\right)=\sum_{\substack{n_{1}+n_{2}+m_{1}=0, n_{3}+n_{4}-m_{1}=0 ; n_{i}, m_{i} \in \mathbb{Z} \backslash\{0\} \\ \operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}}}} \frac{e^{2 \pi i\left(n_{1} x_{v_{1}}+n_{2} x_{v_{2}}+n_{3} x_{v_{3}}+n_{4} x_{v_{4}}\right)}}{\left|n_{1}\right| \sigma_{1}\left|n_{2}\right| \sigma_{2}\left|n_{3}\right| \sigma_{3}\left|n_{4}\right| \sigma_{4}\left|m_{1}\right| \mu_{1}} .
$$

Figure 14: A plane trivalent tree with two internal vertices

We can see that for the first internal vertex z, we have a constraint condition $n_{1}+n_{2}+m_{1}=0$ and for the internal vertex y, we have $n_{3}+n_{4}-m_{1}=0, n_{1}+n_{2}+n_{3}+n_{4}=0$.

$$
\mathscr{Z}_{l, v}\left(\Gamma_{2}, \partial \Gamma_{2}\right)=\mathscr{G}_{I, v, \Gamma_{2}, \partial \Gamma_{2}}\left(\{0\}_{v \in S}, 1\right)=\sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{1}{n_{3}^{\sigma_{3}}\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}}} \frac{1}{n_{1}^{\sigma_{1}} n_{2}^{\sigma_{2}}\left(n_{1}+n_{2}\right)^{\mu_{1}}}
$$

Applying Eisenstein's trick 4.23 again, we get

$$
\begin{aligned}
& \mathscr{Z}_{l, v}\left(\Gamma_{2}, \partial \Gamma_{2}\right)=\sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{1}{n_{3}^{\sigma_{3}}\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}}} \sum_{s_{1}+t_{1}=\sigma_{1}+\sigma_{2}}\left(\frac{C_{s_{1}-1}^{\sigma_{1}-1}}{\left.\left(n_{1}+n_{2}\right)^{s_{1}+\mu_{1} n_{2}^{t_{1}}}+\frac{C_{s_{1}-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}\right)^{s_{1}+\mu_{1}} n_{1}^{t_{1}}}\right)}\right. \\
& =\sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \sum_{\text {(1) }} \sum_{s_{1}+t_{1}=\sigma_{1}+\sigma_{2}}(\underbrace{\frac{C_{s_{1}-1}^{\sigma_{1}-1}}{n_{3}^{\sigma_{3}}\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}}\left(n_{1}+n_{2}\right)^{s_{1}+\mu_{1}} n_{2}^{t_{1}}}}_{\text {(2) }}+\underbrace{\frac{C_{s_{1}-1}^{\sigma_{2}-1}}{n_{3}^{\sigma_{3}}\left(n_{1}+n_{2}+n_{3}\right)^{\sigma_{4}}\left(n_{1}+n_{2}\right)^{s_{1}+\mu_{1}} n_{1}^{t_{1}}}}) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{1}{n_{3}^{\sigma_{3}}\left(n_{1}+n_{2}\right)^{s_{1}+\mu_{1}}}=\sum_{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}\left(\frac{C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}}\left(n_{1}+n_{2}\right)^{t_{2}}}+\frac{C_{s_{2}-1}^{s_{1}+\mu_{1}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}} n_{3}^{t_{2}}}\right), \\
& (1)=\sum_{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}\left(\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}}+\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4} n_{3}^{t_{3}} n_{2}^{t_{1}}}}\right), \\
& \text { (2) }=\sum_{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}\left(\frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{1}^{t_{1}}}+\frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1}}{\left.\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4} n_{3}^{t_{2}} n_{1}^{t_{1}}}\right) .}\right.
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{1}{n_{3}^{t_{2}} n_{2}^{t_{1}}}=\sum_{s_{3}+t_{3}=t_{1}+t_{2}}\left(\frac{C_{s_{3}-1}^{t_{2}-1}}{\left(n_{3}+n_{2}\right)^{s_{3}} n_{2}^{t_{3}}}+\frac{C_{s_{3}-1}^{t_{1}-1}}{\left(n_{3}+n_{2}\right)^{s_{3}} n_{3}^{t_{3}}}\right), \\
& \frac{1}{n_{3}^{t_{2}} n_{1}^{t_{1}}}=\sum_{s_{3}^{\prime}+t_{3}^{\prime}=t_{1}+t_{2}}\left(\frac{C_{s_{3}^{\prime}-1}^{t_{2}-1}}{\left(n_{3}+n_{1}\right)^{s_{3}} n_{1}^{t_{3}^{\prime}}}+\frac{C_{s_{3}^{\prime}-1}^{t_{1}-1}}{\left(n_{3}+n_{1}\right)^{s_{3}^{\prime}} n_{3}^{t_{3}^{\prime}}}\right),
\end{aligned}
$$

we can rewrite (1) and (2) as follows.

$$
\begin{aligned}
& \text { (1) }=\sum_{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}}+\sum_{\substack{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{3}+t_{3}=t_{1}+t_{2}}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{2}\right)^{s_{3}} n_{2}^{t_{3}}} \\
& +\sum_{\substack{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{3}+t_{3}=t_{1}+t_{2}}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{1}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{2}\right)^{s_{3}} n_{3}^{t_{3}}} \\
& \text { (2) }=\sum_{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}} \frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{1}^{t_{1}}}+\sum_{\substack{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{3}^{\prime}+t_{3}^{\prime} t_{1}+t_{2}}} \frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{1}\right)^{s_{3}^{\prime}} n_{1}^{z_{3}^{\prime}}} \\
& +\sum_{\substack{s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{3}^{\prime}+t_{3}^{\prime}=t_{1}+t_{2}}} \frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{1}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{1}\right)^{s_{3}^{\prime}} n_{3}^{t_{3}^{\prime}}}
\end{aligned}
$$

Finally we get:

Formula 4.26

$$
\begin{aligned}
& \mathscr{Z}_{I, v}\left(\Gamma_{2}, \partial \Gamma_{2}\right)=\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}} \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{3}+t_{3}=t_{1}+t_{2}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}}\left(\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{2}\right)^{s_{3}} n_{2}^{t_{3}}}+\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{1}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{2}\right)^{s_{3}} n_{3}^{t_{3}}}\right) \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{1}^{t_{1}}} \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{3}^{\prime}+t_{3}^{\prime}=t_{1}+t_{2}}} \sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}}\left(\frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{1}\right)^{s_{3}^{\prime} n_{1}^{t_{3}^{\prime}}}}+\frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{1}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{3}+n_{1}\right)^{s_{3}^{\prime}} n_{3}^{t_{3}^{\prime}}}\right) .
\end{aligned}
$$

However,

$$
\sum_{n_{1}, n_{2}, n_{3} \in \mathbb{N} \backslash\{0\}} \frac{1}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\sigma_{4}}\left(n_{1}+n_{2}\right)^{t_{2} t_{2}^{t_{1}}}}=\sum_{0<k_{1}<k_{2}<k_{3}} \frac{1}{k_{3}^{s_{s}^{2}+\sigma_{4}} k_{2}^{t_{2}} k_{1}^{t_{1}}}=\zeta\left(t_{1}, t_{2}, s_{2}+\sigma_{4}\right),
$$

where $k_{1}=n_{1}, k_{2}=n_{1}+n_{2}, k_{3}=n_{1}+n_{2}+n_{3}$. Therefore

$$
\mathscr{Z}_{1, v}\left(\Gamma_{2}, \partial \Gamma_{2}\right)=\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\ s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}}\left(C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1}+C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{\sigma_{3}-1}\right) \zeta\left(t_{1}, t_{2}, s_{2}+\sigma_{4}\right)
$$

$$
\begin{aligned}
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{3}+t_{3}-t_{1}+t_{2}}}\left(C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{2}-1}+C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{1}-1}\right) \zeta\left(t_{3}, s_{3}, s_{2}+\sigma_{4}\right) \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{1} \\
s_{2}+\sigma_{2}=\sigma_{+}+\sigma_{2} \\
s_{3}^{\prime}+t_{3}^{\prime}=t_{1}+\mu_{1}+\mu_{2}}}\left(C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{2}-1}+C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{1}-1}\right) \zeta\left(t_{3}^{\prime}, s_{3}^{\prime}, s_{2}+\sigma_{4}\right) .
\end{aligned}
$$

We have expressed our $\mathscr{Z}_{1, v}\left(\Gamma_{2}, \partial \Gamma_{2}\right)$ as a \mathbb{Z}-linear combination of triple zeta values $\zeta\left(t_{1}, t_{2}, s_{2}+\right.$ $\left.\sigma_{4}\right)$, whose weight is $t_{1}+t_{2}+s_{2}+\sigma_{4}=\sigma_{1}+\sigma_{2}+\sigma_{3}+\mu_{1}$, and $\zeta\left(t_{3}, s_{3}, s_{2}+\sigma_{4}\right)$ and $\zeta\left(t_{3}^{\prime}, s_{3}^{\prime}, s_{2}+\sigma_{4}\right)$, whose weights are also $\sigma_{1}+\sigma_{2}+\sigma_{3}+\mu_{1}$.

Example 4.27 Let Γ_{3} be the diagram shown in Figure 15.

Figure 15: A plane trivalent tree with three internal vertices
The rank of Γ_{3} is $\operatorname{rank}\left(H_{1}\left(\Gamma_{3}, \partial \Gamma_{3}\right)\right)=4$, then the rank of Γ_{3} is 4 . For each external edge $e_{i}(1 \leq i \leq 4)$, the given sign v_{i} equals 0 , therefore $v_{5}=1$ by the constraint $n_{1}+\cdots+n_{5}=0$.

$$
=\int \sum_{n_{i} \in \mathbb{N} \backslash\{0\}} \frac{\mathscr{G}_{1, v, \Gamma_{3}, \partial \Gamma_{3}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{3}}\right)}{2 \pi i\left(\left(x_{v_{4}}-y_{3}\right) n_{4}+\left(x_{v_{5}}-y_{3}\right) n_{5}\right)} \frac{e^{2 \pi i\left(\left(x_{v_{3}}-y_{2}\right) n_{3}+\left(y_{3}-y_{2}\right) m_{2}\right)}}{\left|n_{4}\right|^{\sigma_{4}}\left|n_{5}\right|^{\sigma_{5}}} \frac{e^{2 \pi i\left(\left(x_{v_{1}}-y_{1}\right) n_{1}+\left(x_{\left.\left.v_{2}-y_{1}\right) n_{2}+\left(y_{2}-y_{1}\right) m_{1}\right)}^{\sigma_{3}\left|m_{2}\right| \mu^{\mu_{2}}}\right.\right.}}{\left|n_{1}\right| \sigma_{1}\left|n_{2}\right| \sigma_{2}\left|m_{1}\right|^{\mu_{1}}} \underline{d x},
$$

where $\underline{d x}=d x_{1} d x_{2} d x_{3}$. By applying the formal Fourier convolution,

$$
\begin{aligned}
& =\sum_{\substack{n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=0 \\
n_{1}+n_{2}+n_{3}+m_{2}=0 \\
n_{1}+n_{2}+m_{1}=0 \\
n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\}}} \frac{1}{\left|n_{4}\right| \sigma^{\sigma_{4}}\left|n_{5}\right| \sigma^{\sigma}} \frac{1}{\left|\sigma_{3}\right| \sigma_{3}\left|m_{2}\right|^{\mu_{2}}} \frac{1}{\left|n_{1}\right|^{\sigma_{1}}\left|n_{2}\right| \sigma_{2}\left|m_{1}\right|^{\mu_{1}}} \\
& =\sum_{n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\}} \frac{1}{n_{4}^{\sigma_{4}}\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{\sigma_{5}}} \underbrace{\frac{1}{n_{3}^{\sigma_{3}}\left(n_{1}+n_{2}+n_{3}\right)^{\mu_{2}}} \frac{1}{n_{1}^{\sigma_{1}} n_{2}^{\sigma_{2}}\left(n_{1}+n_{2}\right)^{\mu_{1}}}} .
\end{aligned}
$$

We can use the result of (3) in the formula 4.26 to get:

$$
\begin{aligned}
& \mathscr{Z}_{I, v}\left(\Gamma_{3}, \partial \Gamma_{3}\right)=\sum_{n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\}}\left(\frac{1}{\left|n_{4}\right|^{\sigma_{4}}\left|n_{1}+n_{2}+n_{3}+n_{4}\right|^{\sigma_{5}}}\right) \times \\
& \{\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}} \underbrace{\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}}} \\
& \text { (a) } \\
& +\sum_{\substack{s_{1}+t_{1} 1=\sigma_{1}+\sigma_{2} \\
s_{2}+\sigma_{1}=\sigma_{1}+\mu_{1}+\mu_{1} \\
s_{3}+t_{3}+t_{1}+t_{2}}}(\underbrace{\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}\left(n_{3}+n_{2}\right)^{s_{3}} n_{2}^{t_{3}}}}_{\text {(b) }}+\underbrace{\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}-1}^{t_{1}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}\left(n_{3}+n_{2}\right)^{s_{3} n_{3}} t_{3}}}_{\text {© }}) \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}} \underbrace{\frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{1}^{t_{1}}}} \\
& \text { (d) } \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3} \\
s_{3}+t_{3}^{\prime}=t_{1}+\mu_{1}+\mu_{2}}}(\underbrace{\frac{C_{s_{1}-1}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}\left(n_{3}+n_{1}\right)^{s_{3}^{\prime}} n_{1}^{t_{3}^{\prime}}}}_{(\mathrm{C})}+\underbrace{\frac{\sigma_{1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}\left(n_{3}+n_{1}\right)^{s_{3}} n_{3}^{s_{3}^{\prime}}}}_{\left(C_{s_{1}}^{\sigma_{2}-1} C_{s_{2}-1}^{s_{1}+\mu_{1}-1} C_{s_{3}^{\prime}-1}^{t_{1}-1}\right.})\}
\end{aligned}
$$

Remark: By careful observation, we can see that on the factorisation factors (without the exponent) of the denominators of these six terms (a)...(T), there is an action of the symmetric group S_{3}. For example, to pass from the factors of the denominator of (a) (without considering the power) to that of © \mathfrak{C}, we let $\sigma=\sigma(123)$ acting on $\left(n_{1}+n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right) n_{2}$ by $\left(n_{\sigma \cdot 1}+n_{\sigma \cdot 2}+n_{\sigma \cdot 3}\right)\left(n_{\sigma \cdot 1}+\right.$ $\left.n_{\sigma \cdot 2}\right) n_{\sigma \cdot 2}$, which also explains why there are $6=\left|S_{3}\right|$ terms.

Thanks to the remark, in order to reexpress $\mathscr{Z}_{1}\left(\Gamma_{3}, \partial \Gamma_{3}\right)$, we only need to understand:

$$
\operatorname{Sum}_{1}=\sum_{n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\}}\left(\frac{1}{n_{4}^{\sigma_{4}}\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{\sigma_{5}}}\right) \times \sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\ s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1}}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1}}{\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}} .
$$

Apply formula 4.23 again:

$$
\frac{1}{n_{4}^{\sigma_{4}}\left(n_{1}+n_{2}+n_{3}\right)^{s_{2}+\mu_{2}}}=\sum_{s_{4}+t_{4}=\sigma_{4}+s_{2}+\mu_{2}}\left(\frac{C_{s_{4}-1}^{\sigma_{4}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}}\left(n_{1}+n_{2}+n_{3}\right)^{t_{4}}}+\frac{C_{s_{4}-1}^{s_{2}+\mu_{2}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4} n_{4}^{t_{4}}}}\right) .
$$

Then

$$
+\sum_{n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\}} \sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\ s_{2}+\sigma_{2}=\sigma_{3}+\mu_{1} \\ s_{4}+t_{4}=\sigma_{4}+s_{2}+\mu_{1}}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}}\left(n_{4}\right)^{t_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}} .
$$

Again,

$$
\frac{1}{\left(n_{4}\right)^{t_{4}}\left(n_{1}+n_{2}\right)^{t_{2}}}=\sum_{s_{5}+t_{5}=t_{4}+t_{2}}\left(\frac{C_{s_{5}-1}^{t_{4}-1}}{\left(n_{1}+n_{2}+n_{4}\right)^{s_{5}}\left(n_{1}+n_{2}\right)^{t_{5}}}+\frac{C_{s_{5}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{4}\right)^{s_{5}} n_{4}^{t_{5}}}\right) .
$$

Then

$$
\begin{gathered}
\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}}\left(n_{4}\right)^{t_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}}=\sum_{s_{5}+t_{5}=t_{4}+t_{2}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{4}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}}\left(n_{1}+n_{2}+n_{4}\right)^{s_{5}}\left(n_{1}+n_{2}\right)^{t_{5} t_{2}^{t_{1}}}} \\
+\frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{2}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}}\left(n_{1}+n_{2}+n_{4}\right)^{s_{5}} n_{4}^{t_{5}} n_{2}^{t_{1}}} .
\end{gathered}
$$

Once again

$$
\frac{1}{n_{4}^{t_{5}} n_{2}^{t_{1}}}=\sum_{s_{6}+t_{6}=t_{5}+t_{1}}\left(\frac{C_{s_{6}-1}^{t_{5}-1}}{\left(n_{4}+n_{2}\right)^{s_{6}} n_{2}^{t_{6}}}+\frac{C_{s_{6}-1}^{t_{1}-1}}{\left(n_{4}+n_{2}\right)^{s_{6}} n_{4}^{t_{6}}}\right)
$$

Finally, we get

$$
\begin{aligned}
& \text { Sum }_{1}=\sum_{\substack{ \\
n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\} \\
\left\{\begin{array}{c}
s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+\sigma_{2} \\
s_{4}+t_{4}=\sigma_{4}++_{1}+s_{2}+\mu_{1} \\
s_{1}+\mu_{2}
\end{array}\right.}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{\sigma_{4}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}}\left(n_{1}+n_{2}+n_{3}\right)^{t_{4}}\left(n_{1}+n_{2}\right)^{t_{2}} n_{2}^{t_{1}}} \\
& +\sum_{n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\}} \sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+\sigma_{2} \\
s_{4}+\sigma_{4}+s_{4}+s_{1}+\mu_{1} \\
s_{5}+t_{5}+s_{4}+\mu_{2}+t_{2}}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{4}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}}\left(n_{1}+n_{2}+n_{4}\right)^{s_{5}}\left(n_{1}+n_{2}\right)^{t_{5} t_{2}} n_{2}^{t_{1}}} \\
& +\sum_{n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N}\{\{0\}} \sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+\sigma_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{4}+t_{4}+\sigma_{4}+s_{2}+\mu_{2} \\
s_{5}+t_{5}=t_{4}+t_{2} \\
s_{6}+t_{6} t_{5}+t_{1}}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{2}-1} C_{s_{6}}^{t_{5}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}}\left(n_{1}+n_{2}+n_{4}\right)^{s_{5}}\left(n_{4}+n_{2}\right)^{s_{6}} n_{2}^{t_{6}}} \\
& +\sum_{n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N} \backslash\{0\}} \sum_{\substack{s_{1}+t_{1} \\
s_{1} \sigma_{1}+\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{4}+t_{4}+\sigma_{4}+s_{2}+\mu_{2} \\
s_{+}+t_{4}+t_{4}+t_{2} \\
s_{6}+t_{6}+t_{5}+t_{1}}} \frac{C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{2}-1} C_{s_{6}}^{t_{1}-1}}{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)^{s_{4}+\sigma_{5}\left(\sigma_{5}+n_{2}+n_{4}\right)^{s_{5}}\left(n_{4}+n_{2}\right)^{s_{6}} n_{4}^{t_{6}}}}
\end{aligned}
$$

By exchanging the sum symbols, we get
Formula 4.28

$$
\operatorname{Sum}_{1}=\sum_{\substack{s_{1}+\sum_{1}=\sigma_{1}+\sigma_{2} \\ s_{2}+\sigma_{2} \\ s_{4}+t_{4}=\sigma_{3}+s_{1}+\mu_{1}+s_{2}+\mu_{2}}} C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{\sigma_{4}-1} \zeta\left(t_{1}, t_{2}, t_{4}, s_{4}+\sigma_{5}\right)
$$

$$
\begin{aligned}
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{4}+t_{4}=\sigma_{4}+s_{2}+\mu_{2} \\
s_{5}+t_{5}=t_{4}+t_{2}}} C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{4}-1} \zeta\left(t_{1}, t_{5}, s_{5}, s_{4}+\sigma_{5}\right) \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{4}+t_{4}=\sigma_{4}+s_{2}+\mu_{2} \\
s_{5}+t_{5}=t_{4}+t_{2} \\
s_{6}+t_{6}=t_{5}+t_{1}}} C_{s_{1-1}}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{2}-1} C_{s_{6}}^{t_{5}-1} \zeta\left(t_{6}, s_{6}, s_{5}, s_{4}+\sigma_{5}\right) \\
& +\sum_{\substack{s_{1}+t_{1}=\sigma_{1}+\sigma_{2} \\
s_{2}+t_{2}=\sigma_{3}+s_{1}+\mu_{1} \\
s_{4}+t_{4}=\sigma_{4}+s_{2}+\mu_{2} \\
s_{5}+t_{5}=t_{4}+t_{2} \\
s_{6}+t_{6}=t_{5}+t_{1}}} C_{s_{1}-1}^{\sigma_{1}-1} C_{s_{2}-1}^{\sigma_{3}-1} C_{s_{4}-1}^{s_{2}+\mu_{2}-1} C_{s_{5}-1}^{t_{2}-1} C_{s_{6}}^{t_{1}-1} \zeta\left(t_{6}, s_{6}, s_{5}, s_{4}+\sigma_{5}\right)
\end{aligned}
$$

where

$$
t_{1}+t_{2}+t_{4}+s_{4}+\sigma_{5}=t_{1}+t_{5}+s_{5}+s_{4}+\sigma_{5}=t_{6}+s_{6}+s_{5}+s_{4}+\sigma_{5}=\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}+\sigma_{5}+\mu_{1}+\mu_{2}
$$

In conclusion, since $\mathscr{Z}_{I, v}\left(\Gamma_{3}, \partial \Gamma_{3}\right)$ is just the summation of the 6 sums as Sum ${ }_{1}$, therefore $\mathscr{Z}_{I, v}\left(\Gamma_{3}, \partial \Gamma_{3}\right)$ is indeed a \mathbb{Z}-linear combination of quadruple zeta values of weight $\sigma_{1}+\sigma_{2}+\sigma_{3}+$ $\sigma_{4}+\sigma_{5}+\mu_{1}+\mu_{2}$.

4.2.2 Proof of the theorem

Proof of Theorem 4.16

Proof 4.2.1 (I). The graph Γ is a plane trivalent tree.

Inspired by the previous examples, we will prove the theorem 4.16 by induction on the number of internal vertices of a given tree. For simplicity, we will first consider only plane trivalent trees. Later we will prove this theorem for any tree.

Step 1: Let Γ be a given plane trivalent tree with N internal vertices $w_{j}(1 \leq j \leq N), N+2$ external vertices $v_{i}(1 \leq i \leq N+2), N-1$ internal edges and $N+2$ external edges. The subdivision map k is given by $k_{e_{i}}=\sigma_{e_{i}}\left(\sigma_{e_{i}} \geq 1\right)$ if $e_{i}(1 \leq i \leq N+2)$ is an external edge with endpoint v_{i}, and $k_{f_{j}}=\mu_{f_{j}}\left(\mu_{f_{j}} \geq 1\right)$ if $f_{j}(1 \leq j \leq N-1)$ is an internal edge. Recall that for each edge, we give a sign $v_{e} \in\{0,1\}$.

Remark: In fact, we can see that the orientation of each edge has no importance by changing the sign for each edge. Moreover, we can also assume that for each external edge e_{i} with the sign $v_{e_{i}}=0,1 \leq i \leq N+1$ (we shall see that this forces $v_{e_{N+2}}=1$). It is easy to see that we will lose no generality.

By the results of the above examples, we know that Therem 4.16 holds when $N=1,2,3$. Now our inductive hypothesis is that if $N=n(n \geq 1)$, the theorem is true. Moreover, we assume that:

Let Γ be a plane trivalent tree with $N(N \leq n)$ internal vertices and rank $d=\operatorname{rank}\left(H_{1}(\Gamma, \partial \Gamma)\right)$. Then we have a relation $d=N+1$. The generalized multiple zeta value associated $\mathscr{Z}_{1, v}(\Gamma, \partial \Gamma)$ can be written as follows

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{n_{1}, \ldots, n_{N+1} \in \mathbb{N} \backslash\{0\}} \sum_{\gamma \in S_{d}} \sum_{\substack{t_{i}^{\gamma} \\ 1 \leq i \leq d}} \frac{C_{\gamma, t_{i}^{\gamma}}^{n_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot d}\right)^{t_{d}^{\gamma}}},}{},
$$

which implies that

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\gamma \in \mathcal{S}_{d}} \sum_{\substack{t_{i}^{\gamma} \\ 1 \leq i \leq d}} C_{\gamma, t_{i}^{\gamma}} \zeta\left(t_{1}^{\gamma}, \cdots, t_{d}^{\gamma}\right),
$$

where S_{d} is the symmetric group, $C_{\gamma, t_{i}^{\gamma}} \in \mathbb{Z}$ is a constant depending on γ and t_{i}^{γ}. The upper mute symbol γ of ${ }_{j}^{\gamma}$ implies the dependence of γ, and

$$
t_{1}^{\gamma}+\ldots+t_{d}^{\gamma}=\sum_{e} \sigma_{e}+\sum_{f} \mu_{f}, \quad \forall \gamma \in S_{d},
$$

and

$$
t_{i}^{\gamma} \geq 1, \quad \forall \gamma \in S_{d}, \quad 1 \leq i \leq d .
$$

Therefore the first sum

$$
\sum_{\substack{t_{i}^{\gamma} \in \mathbb{N}\{\{0\} \\ 1 \leq i \leq d}}
$$

is a finite sum.
For convenience, we will define a new quantity

$$
\mathscr{O}_{I, v}\left(\Gamma, \partial \Gamma,\left(n_{i}\right)_{i},\left(m_{j}\right)_{j}\right)=\prod_{1 \leq i \leq N+2} \frac{1}{\left|n_{i}\right|^{\sigma_{i}}} \prod_{1 \leq j \leq N-1} \frac{1}{\left|m_{j}\right|^{\mu_{j}}} .
$$

In fact for each internal vertex we have $\pi_{v}=0$, hence each m_{j} can be written as a linear combination of the n_{i}, thus

$$
\mathscr{O}_{I, v}\left(\Gamma, \partial \Gamma,\left(n_{i}\right)_{i},\left(m_{j}\right)_{j}\right)=\mathscr{O}_{I, v}\left(\Gamma, \partial \Gamma,\left(n_{i}\right)_{i}\right) .
$$

If there is no ambiguity, we will for simplicity write:

$$
\mathscr{O}_{I, v}(\Gamma, \partial \Gamma)=\mathscr{O}_{I, v}\left(\Gamma, \partial \Gamma,\left(n_{i}\right)_{i}\right) .
$$

The fact that Theorem 4.16 holds means that we have a new expression for $\mathscr{O}_{I, v}(\Gamma, \partial \Gamma)$, namely

$$
\begin{aligned}
& \mathscr{O}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\gamma \in S_{d}} \sum_{\substack{t_{V_{i}^{\gamma}}^{\gamma} \\
1 \leq i \leq d}} \frac{C_{\gamma, t_{i}^{\gamma}}}{n_{\gamma \cdot 1}^{t_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \cdots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot d}\right)^{t_{d}^{\gamma}}},} \\
& t_{1}^{\gamma}+\ldots+t_{d}^{\gamma}=\sum_{e} \sigma_{e}+\sum_{f} \mu_{f}, \quad \forall \gamma \in S_{d},
\end{aligned}
$$

then

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\substack{n_{i} \in \mathbb{N}\{\{0\}, 1 \leq i \leq d}} \mathscr{O}_{I, v}(\Gamma, \partial \Gamma) .
$$

Step 2: Now we will prove the case of $N=n+1$.
For a plane trivalent tree, if the number of internal vertices is increased by 1, then the rank of the tree is increased by 1 , too.

Now we give a clockwise order for all external vertices v_{i}. We will also give an order for all internal vertices, such that the internal vertex w_{N}, decorated by the variable x_{N}, is connected with the two external vertices v_{N+1} and v_{N+2} by external edges $\overrightarrow{e_{N+1}}=\left(w_{N} \longrightarrow v_{N+1}\right)$ and $\overrightarrow{e_{N+2}}=\left(w_{N} \longrightarrow\right.$ v_{N+2}).

Figure 16: the internal vertex w_{N} is connected with the two external vertices v_{N+1} and v_{N+2}.

Figure 17: cutting down the internal edge f_{N-1} to get a new tree Γ^{\prime}.

In order to deduce the case $N=n+1$ from the case $N-1=n$, we do an operation: we cut down the internal edge f_{N-1}, one of whose ends is the internal vertex w_{N} and associate a new external vertex denoted as v_{N+1}^{\prime} and denote the new external edge as e_{N+1}^{\prime} to which we associate $n_{e_{N+1}^{\prime}}=m_{N-1}$ and the subdivision μ_{N-1}, then we build a new plane trivalent tree Γ^{\prime} with $N-1=n$ internal vertices and whose rank is $d-1$, where d is the rank of Γ.

In the definition of

$$
\mathscr{G}_{I, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, 1\right)=\int_{\left(F_{\mathbb{R}} / I\right)^{v(\Gamma) \backslash S}} \prod_{e \in E(\Gamma)} g_{I}\left(x_{v_{0}(e)}-x_{v_{1}(e)}, 1\right) \prod_{v \in V(\Gamma) \backslash S} d x_{v},
$$

where

$$
g_{I}\left(x_{v_{0}(e)}-x_{v_{1}(e)}, 1\right)=\lim _{\delta \rightarrow 0^{+}} \sum_{h_{e} \in I^{*} \backslash\{0\}} \frac{\left.\left.e^{2 \pi i\left(h _ { e } \left(x_{v_{0}}(e)\right.\right.}-x_{v_{1}(e)}\right)\right)}{\left\|u h_{e}\right\|^{r+\delta}}
$$

and $F=\mathbb{Q}(r=1), I^{*}=\mathbb{Z}$. We denote h_{e} by n_{e} if e is external and denote h_{e} by m_{e} if e is internal. And

$$
\mathscr{Z}_{l, v}(\Gamma, \partial \Gamma)=\mathscr{G}_{1, v, \Gamma, \partial \Gamma}\left(\{0\}_{\nu \in \partial \Gamma,}\right) .
$$

Then by formal Fourier convolution, we have

$$
\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\{0\}_{v \in \partial \Gamma}, 1\right)=\sum_{\substack{n_{i} \in \mathbb{Z}\{0\} \\ \operatorname{sgn}\left(n_{i}\right)=(-1)^{v_{i}, 1 \leq i \leq d}}} \frac{1}{\left|n_{N+1}\right|^{\sigma_{N+1}}\left|n_{N+2}\right|^{\sigma_{N+2}}\left|m_{N-1}\right|^{\mu_{N-1}}} \prod_{1 \leq i \leq N} \frac{1}{\left|n_{i}\right|^{\sigma_{i}}} \prod_{1 \leq j \leq N-2} \frac{1}{\left|m_{j}\right|^{\mu_{j}}},
$$

where $d=N+1$ and on each internal vertex, we have a constraint $\pi_{v}=0$ as in (2).
In fact, it is not difficult to see that

$$
\frac{1}{\left|m_{N-1}\right|^{\mu_{N-1}}} \prod_{1 \leq i \leq N} \frac{1}{\left|n_{i}\right|^{\sigma_{i}}} \prod_{1 \leq j \leq N-2} \frac{1}{\left|m_{j}\right|^{\mu_{j}}}=\mathscr{O}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right),
$$

and

$$
\mathscr{Z}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right)=\sum_{n_{i} \in \mathbb{N} \backslash\{0\}, 1 \leq i \leq N} \mathscr{O}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right) .
$$

Then

$$
\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\{0\}_{v \in \partial \Gamma}, 1\right)=\sum_{n_{i} \in \mathbb{N}\{0\}, 1 \leq i \leq N+1} \frac{1}{\left|n_{N+1}\right|^{\sigma_{N+1}}\left|n_{N+2}\right|^{\sigma_{N+2}}} \cdot \mathscr{O}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right) .
$$

Since the number of the internal vertices of Γ^{\prime} is n, then the theorem for Γ^{\prime} holds by the inductive hypothesis.

Hence we have the following equality:

$$
\mathscr{O}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right)=\sum_{\gamma \in S_{d-1}} \sum_{1}^{\gamma}, \ldots, t_{d-1}^{\gamma} \frac{\tilde{C}_{\gamma, t_{i}^{\gamma}}}{n_{\gamma \cdot 1}^{\gamma_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot(d-1)}\right)^{\gamma_{d-1}^{\gamma}}}, ~, ~, ~}
$$

where

$$
t_{1}^{\gamma}+\ldots+t_{d-1}^{\gamma}=\sum_{1 \leq i \leq N} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j}, \quad \forall \gamma \in S_{d-1},(d=N+1) .
$$

Now we need to calculate

$$
\mathscr{P}_{\gamma}=\frac{1}{\left|n_{N+1}\right|^{\sigma_{N+1}}\left|n_{N+2}\right|^{\sigma_{N+2}}} \times \frac{\tilde{C}_{\gamma, t_{i}^{\gamma}}}{n_{\gamma \cdot 1}^{t_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot(d-1)}\right)^{t_{d-1}}}, ~, ~, ~}
$$

from which we will deduce

$$
\mathscr{Z}_{l, v}(\Gamma, \partial \Gamma)=\sum_{\substack{n_{i} \in \mathbb{N} \backslash\{0\}, \gamma \in S_{d-1} \\ 1 \leq i \leq N+1}} \mathscr{P}_{\gamma}
$$

Recall: the rank d of a plane trivalent tree with N internal vertices equals $N+1$. Then

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\substack{n_{i} \in \mathbb{N}\left\{\{0\}, 1 \leq i \leq N+S_{N}\right.}} \sum_{\gamma} \mathscr{P}_{\gamma} .
$$

Step 3: Calculation of \mathscr{P}_{γ}.
For simplicity, we assume that $\gamma=1$. In fact, this assumption will be no loss of generality.

$$
\mathscr{P}_{1}=\frac{1}{n_{N+1}^{\sigma_{N+1}}\left|n_{N+2}\right|^{\sigma_{N+2}}} \times \frac{\tilde{C}_{1, t_{i}^{1}}}{n_{1}^{t_{1}^{1}}\left(n_{1}+n_{2}\right)^{t_{2}^{1} \ldots\left(n_{1}+\ldots+n_{N}\right)^{t_{N}^{1}}} ~ . ~} .
$$

For any plane tree Γ, we have

$$
n_{1}+n_{2}+\ldots+n_{N+1}+n_{N+2}=0 ; \quad n_{i}>0 ; \quad 1 \leq i \leq N+1 .
$$

Then

$$
\mathscr{P}_{1}=\frac{1}{n_{N+1}^{\sigma_{N+1}}\left(n_{1}+\ldots+n_{N+1}\right)^{\sigma_{N+2}}} \times \frac{\tilde{C}_{1, t_{i}^{1}}}{\left.n_{1}^{t_{1}^{1}}\left(n_{1}+n_{2}\right)^{t_{2}^{1} \ldots(} n_{1}+n_{2}+\ldots+n_{N}\right)^{t_{N}^{1}}} .
$$

Now for the final result, we will apply N times the Eisenstein trick 4.23.
1st time:

$$
\frac{1}{n_{N+1}^{\sigma_{N+1}}\left(n_{1}+n_{2}+\ldots+n_{N}\right)^{t_{N}^{1}}}=\sum_{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{t_{N}}} \frac{C_{r_{1}-1}^{\sigma_{N_{+1}-1}}}{\left(n_{1}+n_{2}+\ldots+n_{N+1}\right)^{r_{1}}\left(n_{1}+n_{2}+\ldots+n_{N}\right)^{s_{1}}}
$$

$$
+\sum_{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1}} \frac{C_{r_{1}-1}^{t_{N}^{1}-1}}{\left(n_{1}+n_{2}+\ldots+n_{N+1}\right)^{r_{1}} n_{N+1}^{s_{1}}}
$$

Then

$$
\begin{aligned}
& \mathscr{P}_{1}=\underbrace{\sum_{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1}} \frac{C_{1}^{\sigma_{N+1}-1} \tilde{C}_{1, t_{i}^{1}}^{t_{1}^{1}}\left(n_{1}+n_{2}\right)^{t_{2}^{1} \ldots\left(n_{1}+n_{2}+\ldots+n_{N}\right)^{s_{1}}\left(n_{1}+n_{2}+\ldots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}}}{}, ~}_{a_{1}^{1}} \\
& +\underbrace{\sum_{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1}} \frac{C_{r_{1}-1}^{t_{N}^{1}-1} \tilde{C}_{1, t_{i}^{1}}}{n_{1}^{1}} n_{N+1}^{s_{1}}\left(n_{1}+n_{2}\right)^{t_{2}^{1} \ldots\left(n_{1}+n_{2}+\ldots+n_{N-1}\right)^{t_{N-1}^{1}}\left(n_{1}+n_{2}+\ldots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}},}_{b_{1}^{1}}
\end{aligned}
$$

where the lower index 1 for a_{1}^{1} refers to \mathscr{P}_{1} and the upper index 1 indicates the 1 st time use of Eisenstein's trick.

Denote $C_{1, t_{i}^{1}}=C_{r_{1}-1}^{\sigma_{N+1}-1} \tilde{C}_{1, t_{i}^{1}}$. Now will see that

$$
\begin{aligned}
\sum_{\substack{n_{i} \in \mathbb{N},\{0\} \\
1 \leq i \leq N+1}} a_{1}^{1}=\sum_{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1}} & \sum_{n_{i} \in \mathbb{N},\left\{0,1, t_{i}^{1}\right.} \frac{C_{1 \leq N+1}}{n_{1}^{t_{1}^{1}}\left(n_{1}+n_{2}\right)^{t_{2}^{1}} \ldots\left(n_{1}+n_{2}+\ldots+n_{N}\right)^{s_{1}}\left(n_{1}+n_{2}+\ldots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}} \\
& =\sum_{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1}} C_{1, t_{i}^{1}} \zeta\left(t_{1}^{1}, \cdots, t_{N}^{1}, s_{1}, r_{1}+\sigma_{N+2}\right),
\end{aligned}
$$

where

$$
t_{1}^{1}+\cdots+t_{N}^{1}+s_{1}+r_{1}+\sigma_{N+2}=\sum_{1 \leq i \leq N+2} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j},
$$

since

$$
t_{1}^{\gamma}+\ldots+t_{d-1}^{\gamma}=\sum_{1 \leq i \leq N} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j}, \quad \forall \gamma \in S_{d-1}, \quad(d=N+1) .
$$

$\zeta\left(t_{1}^{1}, \cdots, t_{N}^{1}, s_{1}, r_{1}+\sigma_{N+2}\right)$ is a $(N+1)$-tuple zeta value of weight $\sum_{1 \leq i \leq N+2} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j}$.
Let us continue this procedure. We apply for the second time Eisenstein's trick for b_{1}^{1} by considering

$$
\begin{gathered}
\frac{1}{n_{N+1}^{s_{1}}\left(n_{1}+n_{2}+\ldots+n_{N-1}\right)^{t_{N-1}^{1}}}=\sum_{r_{2}+s_{2}=s_{1}+t_{N-1}^{1}} \frac{C_{r_{2}-1}^{s_{1}-1}}{\left(n_{1}+n_{2}+\ldots+n_{N-1}+n_{N+1}\right)^{r_{2}}\left(n_{1}+n_{2}+\ldots+n_{N-1}\right)^{s_{2}}} \\
+\sum_{r_{2}+s_{2}=s_{1}+t_{N-1}^{1}} \frac{C_{r_{2}-1}^{t_{N-1}^{1}-1}}{\left(n_{1}+n_{2}+\ldots+n_{N-1}+n_{N+1}\right)^{r_{2}} N_{N+1}^{s_{2}}} .
\end{gathered}
$$

Then

$$
\left.b_{1}^{1}=\underbrace{}_{a_{1}^{2}} \frac{C_{r_{2}-1}^{s_{1}-1} C_{r_{1}-1}^{t_{N}-1} \tilde{C}_{1, t_{i}^{1}}}{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1} \\
r_{2}+s_{2}=s_{1}+t_{N-1}}} \right\rvert\, \begin{aligned}
& n_{1}^{t_{1}^{1}} \ldots\left(n_{1}+\ldots+n_{N-1}\right)^{s_{2}}\left(n_{1}+\ldots+n_{N-1}+n_{N+1}\right)^{r_{2}}\left(n_{1}+\ldots+n_{N}+n_{N+1}\right)^{r_{1}+\sigma_{N+2}} \\
&
\end{aligned}
$$

```
\(+\sum_{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1}} \frac{C_{r_{2}-1}^{t_{N-1}^{1}-1} C_{r_{1}-1}^{t_{N}^{1}-1} \tilde{C}_{1, t_{i}^{1}}}{n_{1}^{t_{1}^{1}} n_{N+1}^{s_{2}}\left(n_{1}+n_{2}\right)^{t_{2}^{1}} \cdots\left(n_{1}+\ldots+n_{N-2}\right)^{t_{N-2}^{1}}\left(n_{1}+\ldots+n_{N-1}+n_{N+1}\right)^{r_{2}}\left(n_{1}+\ldots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}}\),
    \(r_{2}+s_{2}=s_{1}+t_{N-1}^{1}\)
                        \(b_{1}^{2}\)
```

We denote $C_{\sigma(N, N+1)}=C_{r_{2}-1}^{s_{1}-1} C_{r_{1}-1}^{t_{N}^{1}-1} \tilde{C}_{1, t_{i}^{t_{i}}}$. Then

$$
\begin{aligned}
& \sum_{\substack{n_{i} \in \mathbb{N} \leq\{0\} \\
1 \leq i \leq N+1}} a_{1}^{2}=\sum_{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1} \\
r_{2}+s_{2}=s_{1}+t_{N-1} \\
n_{i} \in \mathbb{N} \backslash\{0\} \\
1 \leq i \leq N+1 \\
g=\sigma(N, N+1)}} \frac{C_{\sigma(N, N+1)}}{t_{1}^{1} \cdots\left(n_{1}+\ldots+n_{N-1}\right)^{s_{2}}\left(n_{1}+\ldots+n_{N-1}+n_{N+1}\right)^{r_{2}}\left(n_{1}+\ldots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}} \\
&=\sum_{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1} \\
r_{2}+s_{2}=s_{1}+t_{N-1}^{1}}} C_{\sigma(N, N+1)} \zeta\left(t_{1}^{1}, \cdots, t_{N-2}^{1}, s_{2}, r_{2}, r_{1}+\sigma_{N+2}\right),
\end{aligned}
$$

where $t_{1}^{1}+\cdots+t_{N-2}^{1}+s_{2}+r_{2}+r_{1}+\sigma_{N+2}=\sum_{1 \leq i \leq N+2} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j}$.
We will continue the procedure by considering b_{1}^{2}. In fact, after the k-th time use of Eisenstein's trick ($k \geq 1$),

$$
\begin{aligned}
\frac{1}{n_{N+1}^{s_{k-1}}\left(n_{1}+n_{2}+\ldots+n_{N-(K-1)}\right)^{t_{N-(k-1)}^{1}}}= & \sum_{r_{k}+s_{k}} \frac{C_{r_{k}-1}^{s_{k}-1}}{\left(n_{1}+\ldots+n_{N-(k-1)}+n_{N+1}\right)^{r_{k}}\left(n_{1}+\ldots+n_{N-(k-1)}\right)^{s_{k}}} \\
\quad+\sum_{r_{k}+s_{k}=s_{k-1}+t_{N-(k-1)}^{1}}^{t_{N-1)}^{1}} & \frac{C_{r_{k}-1}^{t_{N-(k-1)}^{1}-1}}{\left(n_{1}+n_{2}+\ldots+n_{N-(k-1)}+n_{N+1}\right)^{r_{k} n_{N+1}} n_{N k}},
\end{aligned}
$$

then we will get two sums a_{1}^{k} and b_{1}^{k}, where $1 \leq k \leq N-1$ and

$$
\begin{aligned}
& a_{1}^{k}\left(n_{1}, \cdots, n_{N+1}\right)= \sum_{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1} \\
r_{2}+s_{2}=s_{1}+t_{N-1}^{1}}} C_{r_{k}-1}^{s_{k-1}-1} C_{r_{k-1}-1}^{t_{N-(k-2)}^{1} \cdots} C_{r_{1}-1}^{t_{N-1}^{1}} \tilde{C}_{1, t_{i}^{\prime}} \times M, \\
& \vdots \\
& r_{k}+s_{k}=s_{k-1}+t_{N-(k-1)}^{1}
\end{aligned}
$$

where

$$
\begin{gathered}
M=\frac{1}{\left[\prod_{i=1}^{N-k}\left(\sum_{p=1}^{i} n_{p}\right)^{t_{i}^{1}}\right]\left(n_{1}+\cdots+n_{N-(k-1)}\right)^{s_{k}}} \\
\times \frac{1}{\left[\prod_{j=N-(k-1)}^{N-1}\left(\left(\sum_{q=1}^{j} n_{q}\right)+n_{N+1}\right)^{r_{N-j+1}}\right]\left(n_{1}+\cdots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}} .
\end{gathered}
$$

Similarly, after the $(k+1)$-th time use of Eisenstein's trick for b_{1}^{k}, we obtain

$$
b_{1}^{k}=a_{1}^{k+1}+b_{1}^{k+1} .
$$

After N steps, we have $b_{1}^{N-1}=a_{1}^{N}+b_{1}^{N}$, where

$$
\begin{aligned}
& b_{1}^{N-1}= \sum_{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1} \\
r_{2}+s_{2}=s_{1}+t_{N-1}^{1}}} \frac{C_{r_{N-1}-1}^{t_{1}^{1}} \cdots C_{r_{1}-1}^{t_{N}^{1}-1} \tilde{C}_{1, t_{i}^{1}}}{n_{1}^{t_{1}^{1}} n_{N+1}^{s_{N}} \prod_{j=2}^{N-1}\left(n_{1}+\cdots n_{j}+n_{N+1}\right)^{r_{N-j+1}}\left(n_{1}+\cdots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}}, \\
& \vdots \\
& r_{r_{N-1}+s_{N-1}=s_{N-2}+t_{1}^{1}} \\
& a_{1}^{N}=\sum_{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1} \\
r_{2}+s_{2}=s_{1}+t_{N-1}}} \frac{C_{1}^{s_{N}}\left[\prod_{j=1}^{N-1}\left(\left(\sum_{q=1}^{j} n_{q}\right)+n_{N+1}\right)^{r_{N-j+1}}\right]\left(n_{1}+\cdots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}}}{\vdots}, \\
& \begin{array}{c}
r_{N}+s_{N}=s_{N-1}+t_{1}^{1}
\end{array}
\end{aligned}
$$

and

$$
b_{1}^{N}=\sum_{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{\prime} \\
r_{2}+s_{2}=s_{1}+t_{N-1}^{1}}} \frac{C_{r_{N}-1}^{t_{1}^{1}-1} \cdots C_{r_{1}-1}^{t_{N}^{1}-1} \tilde{C}_{1, t_{i}^{1}}^{s_{N+1}}}{\vdots} \begin{gathered}
r_{N+1}\left(n_{1}+n_{N+1}\right)^{r_{N}+r_{N+1}} \prod_{j=2}^{N-1}\left(n_{1}+\cdots n_{j}+n_{N+1}\right)^{r_{N-j+1}}\left(n_{1}+\cdots+n_{N+1}\right)^{r_{1}+\sigma_{N+2}} \\
r_{N}+s_{N}=s_{N-1}+t_{1}^{1}
\end{gathered} .
$$

The sums $\sum_{n_{i} \in \mathbb{N} \vee\{0\}} a_{1}^{k}$ and $\sum_{n_{i} \in \mathbb{N} \backslash\{0\}} b_{1}^{N}($ for each $1 \leq k \leq N)$ are \mathbb{Z}-linear combinations of $(N+$ 1)-tuple zeta values.

For example, for a plane trivalent tree with one internal vertex, the corresponding rooted tree illustrating the procedure of calculations is as follows.

Finally, we have

$$
\begin{gathered}
\mathscr{P}_{1}=a_{1}^{1}+b_{1}^{1}=a_{1}^{1}+a_{1}^{2}+b_{1}^{2}=\cdots=\left(\sum_{1 \leq j \leq k} a_{1}^{j}\right)+b_{1}^{k}=\left(\sum_{1 \leq l \leq N} a_{1}^{l}\right)+b_{1}^{N} . \\
\sum_{n_{i} \in \mathbb{N} \backslash\{0\}} a_{1,\left(n_{1}, \cdots, n_{N+1}\right)}^{k}=\sum_{\substack{r_{1}+s_{1}=\sigma_{N+1}+t_{N}^{1} \\
r_{2}+s_{2}=s_{1}+t_{N-1}}} C_{\tau_{k}, t_{i}^{l}} \zeta\left(t_{1}^{1}, \cdots, t_{N-k}^{1}, s_{k}, r_{k}, \cdots, r_{2}, r_{1}+\sigma_{N+2}\right), \\
\vdots \\
r_{k}+s_{k}=s_{k-1}+t_{N-(k-1)}^{1}
\end{gathered}
$$

where $C_{\tau_{k}, t_{i}^{1}} C_{r_{k}-1}^{t_{N-(k-1)}^{1}} \ldots C_{r_{1}-1}^{t_{N-1}^{1}} \tilde{C}_{1}, \tau_{1}=I d$ and $\tau_{k}(k \geq 2)$ is the permutation

$$
\tau_{k}=\left(\begin{array}{ccc}
N-k+2 & N-k+3 & N-k+4 \\
N+1 & N-k+2 & N-k+3 \\
N & N-1 & N+1 \\
N
\end{array}\right)
$$

which signifies that through the action of this permutation on the indices (without considering the powers) of denominators of a_{1}^{1}, we will recover the factors of a_{1}^{k}.

$$
t_{1}^{1}+\cdots+t_{N-k}^{1}+s_{k}+r_{k}+\cdots+r_{2}+r_{1}+\sigma_{N+2}=\sum_{1 \leq i \leq N+2} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j} .
$$

It is easy to see that $\zeta\left(t_{1}^{1}, \cdots, t_{N-k}^{1}, s_{k}, r_{k}, \cdots, r_{2}, r_{1}+\sigma_{N+2}\right)$ is a $(N+1)$-tuple zeta value. Therefore \mathscr{P}_{1} is indeed a \mathbb{Z}-linear combination of $(N+1)$-tuple zeta values of weight $\sum_{1 \leq i \leq N+2} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j}$.

We can obtain similar results for other \mathscr{P}_{γ} and get $a_{\gamma}^{i}(1 \leq i \leq N+1)$ with numerator $C_{\tau_{i} \gamma}$. Therefore we get

$$
\begin{gathered}
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{n_{1}, \ldots, n_{N+1} \in \mathbb{N} \backslash\{0\}} \sum_{1 \leq i \leq N+1} \sum_{\gamma \in S_{d-1}} a_{\gamma}^{i} \\
=\sum_{n_{1}, \ldots, n_{N+1} \in \mathbb{N} \backslash\{0\}} \sum_{\alpha \in S_{d}} \sum_{\tilde{i}_{i}^{\alpha}} \frac{C_{\alpha, \tilde{i}_{i}^{\alpha}}}{\hat{\tilde{t}}_{\alpha}^{\alpha}} n_{\alpha \cdot 1}\left(n_{\gamma \cdot 1}+n_{\alpha \cdot 2}\right)^{\tilde{t}_{2}^{\alpha} \ldots\left(n_{\alpha \cdot 1}+\ldots+n_{\alpha \cdot d}\right)^{\tilde{t}_{d}^{\alpha}}}, \\
=\sum_{\alpha \in S_{d}} \sum_{\tilde{T}_{i}^{\alpha}} C_{\alpha, \tilde{\tau}_{i}^{\alpha}} \zeta\left(\tilde{t}_{1}^{\alpha}, \cdots, \tilde{t}_{d}^{\alpha}\right),
\end{gathered}
$$

where $\alpha=\tau_{i} \cdot \gamma\left(1 \leq i \leq N+1\right.$ and $\left.\gamma \in S_{d-1}\right)$ is an element of S_{d}. Note that $\tau_{i}(1 \leq i \leq N+1)$ and $\gamma \in S_{d-1}$ generate the symmetric group S_{d} in the sense that

$$
S_{d}=S_{N+1}=\coprod_{i=1}^{N+1} \tau_{i} S_{N}=\coprod_{i=1}^{N+1} \tau_{i} S_{d-1} .
$$

So we have finished the proof of the case $N=n+1, \mathscr{Z}_{l, v}(\Gamma, \partial \Gamma)$ is indeed a finite \mathbb{Z}-linear combination of $(N+1)$-tuple zeta values of weight $\sum_{1 \leq i \leq N+2} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j}$.
(II). Г is an arbitary tree.

The demonstration is quite similar to the previnous proof for any plane trivalent tree. Let Γ be an arbitrary plane tree with N internal vertices. For each internal vertex $w_{j}(1 \leq j \leq N)$, the valency $\operatorname{val}\left(w_{j}\right)=3+\beta_{j}, \quad \beta_{j} \geq 0$. Then Γ has $N-1$ internal edges, $N+2+\sum_{1 \leq j \leq N} \beta_{j}$ external edges and $N+2+\sum_{1 \leq j \leq N} \beta_{j}$ external vertices v_{i}. Therefore the rank $d=\operatorname{rank}\left(H_{1}(\Gamma, \partial \Gamma)\right)$ is not equal $N+1$ any more, but we have

$$
d=N+1+\sum_{1 \leq j \leq N} \beta_{j} .
$$

Again we give a clockwise order to the set of all external vertices v_{i}. We will also give an order for all internal vertices, such that the internal vertex w_{N}, decorated by the variable x_{N}, is connected with the external vertices

$$
v_{N+1+\sum_{1 \leq j S N-1}} \beta_{j}, \ldots, v_{N+2+\sum_{1 \leq j \leq N} \beta_{j}}
$$

by external edges $\xrightarrow[e_{N+1+\sum_{1 \leq j \leq N-1} \beta_{j}}]{ }=\left(w_{N} \longrightarrow v_{N+1+\sum_{1 \leq j \leq N-1} \beta_{j}}\right), \ldots, \overrightarrow{e_{N+2+\sum_{1 \leq j \leq N} \beta_{j}}}=\left(w_{N} \longrightarrow v_{N+2+\sum_{1 \leq j \leq N} \beta_{j}}\right)$.
The initial step: the case $N=1$. Let $\beta=\beta_{1}(\geq 0)$ be the valency of the internal vertex of Γ_{1}^{\prime}. When $\beta=1$, the theorem is correct due to example 4.24 for Γ_{1}^{\prime}. Now we will prove the case for a general $\beta(\geq 1)$, where the rank d of the tree is $2+\beta$.

For each edge $e_{i}(1 \leq i \leq 3+\beta)$, we add $\sigma_{i}-1\left(\sigma_{i} \geq 1\right)$ points. The only internal vertex is denoted by x, each external vertex v_{i} is decorated by $x_{v_{i}}$. For each $e_{i}(i=1, \ldots, 2+\beta)$, the given sign v_{i} equals 0 . Then the sign $v_{3+\beta}$ is forced to be 1 .

$$
\mathscr{G}_{I, v, \Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}^{\prime}}, 1\right)=\sum_{\substack{n_{1}+\cdots+n_{3+\beta}=0, n_{i} \in \mathbb{Z}\left\{\{0\} ; \\ \operatorname{sgn}\left(n_{i}\right)=(-1)^{i_{i}, 1 \leq i \leq 2+\beta}\right.}} \frac{e^{2 \pi i\left(n_{1} x_{v_{1}}+\cdots+n_{3+\beta} x_{v_{3+\beta}}\right)}}{\left.\prod_{i=1}^{3+\beta}\left|n_{i}\right|\right|^{\sigma_{i}}},
$$

where $v_{1}=\cdots=v_{2+\beta}=0$. Then

$$
\begin{gathered}
\mathscr{Z}_{l, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\mathscr{G}_{I, v, \Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}}\left(\{0\}_{v \in \partial \Gamma_{1}^{\prime}}, 1\right)=\sum_{\substack{n_{1}+\cdots+n_{3+\beta}=0, n_{i} \in \mathbb{Z} \backslash\{0\} ; \\
\operatorname{sgn}\left(n_{i}\right)(-1)^{n_{i}, 1 \leq i \leq 2+\beta}}} \frac{1}{\prod_{i=1}^{3+\beta}\left|n_{i}\right|^{\sigma_{i}}} \\
\mathscr{Z}_{l, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\sum_{\substack{\left.n_{i} \mathbb{E} \mathbb{N}\{0\}\right\} \\
1 \leq i \leq 2+\beta}} \frac{1}{\prod_{i=1}^{2+\beta} n_{i}^{\sigma_{i}\left(n_{1}+\cdots+n_{2+\beta}\right)^{\sigma_{3+\beta}}} .}
\end{gathered}
$$

We define

$$
Q=\frac{1}{\prod_{i=1}^{2+\beta} n_{i}^{\sigma_{i}}\left(n_{1}+\cdots+n_{2+\beta}\right)^{\sigma_{3+\beta}}} .
$$

Then

$$
\mathscr{Z}_{l, v}\left(\Gamma_{1}^{\prime}, \partial \Gamma_{1}^{\prime}\right)=\sum_{\substack{n_{i} \in \mathbb{N}\{0\} \\ 1 \leq i \leq 2+\beta}} Q .
$$

Definition 4.29 If $0 \leq k \leq \beta$,

$$
\begin{gathered}
Q^{k}\left(\begin{array}{c}
n_{1}, \cdots, n_{k+1} ; n_{k+2}, \cdots, n_{2+\beta} \\
k_{1}, \cdots, k_{k+1} ; \\
\sigma_{k+2}, \cdots, \\
\sigma_{2+\beta}
\end{array}\right) \\
=\frac{1}{n_{k+2}^{\sigma_{k+2} \cdots n_{2+\beta}^{\sigma_{2+\beta}}\left(n_{1}+\cdots+n_{2+\beta}\right)^{\sigma_{3+\beta}}\left(n_{1}+\ldots+n_{k+1}\right)^{t_{k+1}} \cdots\left(n_{1}+n_{2}\right)^{k_{2} t_{2}} n_{1}^{k_{1} t_{1}}} .} .
\end{gathered}
$$

And $Q^{0}\left(\begin{array}{c}n_{1} ; n_{2}, \cdots, \\ \sigma_{1} ; \sigma_{2}, \cdots, \\ \sigma_{2+\beta}\end{array}\right)=Q$.
When $k=\beta$,

$$
=\frac{Q^{\beta}\left(\begin{array}{c}
n_{1}, \cdots, n_{\beta+1} ; n_{2+\beta} \\
\beta_{1}, \cdots, \beta^{t_{\beta}+1} ;
\end{array} \sigma_{2+\beta}\right)}{n_{\beta+2}^{\sigma_{\beta+2}}\left(n_{1}+\cdots+n_{2+\beta}\right)^{\sigma_{3+\beta}}\left(n_{1}+\ldots+n_{\beta+1}\right)^{\beta^{t_{\beta+1}} \cdots\left(n_{1}+n_{2}\right)^{\beta^{t_{2}}} n_{1}^{\beta_{1}}} .} .
$$

By the calculation of \mathscr{P}_{1} for any plane trivalent tree, we know that $Q^{\beta}\left(\begin{array}{c}n_{1}, \cdots, n_{\beta+1} ; n_{2+\beta} \\ { }_{\beta} t_{1}, \cdots,{ }_{\beta} t_{\beta+1} ; \\ \sigma_{2+\beta}\end{array}\right)$ can be written as

$$
\begin{gathered}
=\sum_{\tau_{j}(\beta)} \sum_{\tilde{t}_{i}^{\tau_{j}}} \frac{C_{\tau_{j}(\beta) \tilde{t}_{i}^{\tau_{j}}}}{n_{\tau_{j} \cdot 1}^{\tau_{j}^{j}}\left(n_{\tau_{j} \cdot 1}+n_{\tau_{j} \cdot 2}\right)^{\tilde{t}_{2}^{\tau_{j}} \cdots\left(n_{\tau_{j} \cdot 1}+\ldots+n_{\tau_{j} \cdot(\beta+2)}\right)^{\tilde{\tau}_{\beta+2}^{\tau_{j}}}}}, \\
\tilde{t}_{1}^{\tau_{j}}+\cdots \tilde{\tau}_{\beta+2}^{\tau_{j}}=\sum_{i=1}^{\beta+3} \sigma_{i}, \quad \forall j .
\end{gathered}
$$

where the permutation $\tau_{1}(\beta)=I d$ and if $2 \leq j \leq \beta+2$

$$
\tau_{j}(\beta)=\left(\begin{array}{cccc}
2+\beta-(j-1) & 2+\beta-(j-2) & \cdots & 1+\beta \\
2+\beta & 2+\beta-(j-1) & \cdots & \beta
\end{array}\right)
$$

and $C_{\tau_{j}(\beta), \tilde{t}_{i}^{\tau_{j}}} \in \mathbb{Z}$.
If $k=\beta-1$. We have one rooted tree illustrating the procedure of reducing to the case $k=\beta$ by

a repeated times of Eisenstein's trick.

$$
Q^{\beta-1}=Q^{\beta-1}\left(\begin{array}{ccc}
n_{1}, & \cdots, & n_{\beta} ; \\
{ }_{\beta-1} t_{1}, & n_{\beta+1}, & n_{\beta+2} \\
\beta-1 \\
t_{\beta}^{1}
\end{array} ; \sigma_{\beta+1}, \sigma_{\beta+2}\right)
$$

Denote

$$
Q_{\tau_{j}(\beta-1)}^{\beta}=Q^{\beta}\left(\tau_{j}(\beta-1) \cdot\left(\begin{array}{c}
n_{1}, \cdots, n_{\beta+1} ; \\
\beta_{1} t_{1}, \cdots,{ }_{\beta} t_{\beta+1} ;
\end{array} \sigma_{\beta+2}\right)\right),
$$

where the permutation $\tau_{1}(\beta-1)=I d$, and if $2 \leq j \leq \beta+1$,

$$
\tau_{j}(\beta-1)=\left(\begin{array}{ccc}
1+\beta-(j-1) & 2+\beta-(j-2) & \cdots \\
1+\beta+2 \\
1+\beta & 2+\beta-(j-1) & \cdots \\
\beta+1
\end{array}\right)
$$

acts on the indices i, l of n_{i} and ${ }_{\beta} t_{l}$.
Define

$$
Q_{\tau_{j}(\beta-1)}^{\beta}=\sum_{\substack{r_{1}+s_{1}=\sigma_{1+\beta}+{ }_{\beta-1} t_{\beta} \\ r_{2}+s_{2}=s_{1}+{ }_{\beta-1} t_{\beta-1}^{1} \\ r_{j}+s_{j}=s_{j-1}+{ }_{\beta-1} t_{1+\beta-j}}} Q^{\beta}\left(\tau_{j}(\beta-1) \cdot\binom{n_{1}, \cdots, n_{\beta+1} ; n_{\beta+2}}{{ }_{\beta} t_{1}, \cdots,{ }_{\beta} t_{\beta+1} ; \sigma_{\beta+2}}\right),
$$

where

$$
\begin{aligned}
& \tau_{j}(\beta-1) \cdot\left(\begin{array}{c}
n_{1}, \cdots, n_{\beta+1} ; \\
{ }_{\beta} t_{1}, \cdots, \\
\beta_{\beta+1} t_{\beta+1}
\end{array} ; \sigma_{\beta+2}\right)=
\end{aligned}
$$

Then

$$
Q^{\beta-1}=\sum Q_{I d}^{\beta}+\sum Q_{\tau_{2}(\beta-1)}^{\beta}+\cdots+\sum Q_{\tau_{\beta}(\beta-1)}^{\beta}+\sum Q_{\tau_{\beta+1}(\beta-1)}^{\beta}
$$

Continuing this procedure we can write Q^{q} as a sum of $Q_{\tau_{j}(q)}^{q+1}$ for $0 \leq q \leq \beta$. We can get the same result for Q_{σ}^{q} and $Q_{\tau_{j}(q) \sigma}^{q+1}$ and $\sigma=\tau_{l}(q-1)$ for some $1 \leq l \leq q+1$.

Then

$$
Q^{q}=\sum Q_{I d}^{q+1}+\sum Q_{\tau_{2}(q)}^{q+1}+\cdots+\sum Q_{\tau_{q+1}(q)}^{q+1}+\sum Q_{1, \tau_{q+2}(q)}^{q+1}
$$

In conclusion, $Q^{0}\left(\begin{array}{c}n_{1} ; n_{2}, \cdots, n_{\beta+2} \\ \sigma_{1} ; \sigma_{2}, \cdots, \\ \sigma_{\beta+2}\end{array}\right)=Q$ can be written as

Therefore

$$
\begin{aligned}
& \tilde{t}_{1}^{\widehat{\tau_{k}}}+\hat{t}_{2}^{\widehat{t_{k}}}+\cdots+\hat{t}_{\beta+2}^{\widehat{k_{k}}}=\sum_{i=1}^{\beta+3} \sigma_{i},
\end{aligned}
$$

where

$$
\widehat{\tau}_{k}=\tau_{l_{0}}(0) \cdots \tau_{\beta-1}(\beta-1) \tau_{l_{\beta}}(\beta),
$$

where $\tau_{1}(m)=I d$ and, if $2 \leq l \leq d^{\prime}+1+m, 0 \leq m \leq \beta$,

$$
\begin{gathered}
\tau_{l}(m)=\left(\begin{array}{cccc}
2+m-(l-1) & 2+m-(k-2) & \cdots & 1+m \\
2+m & 2+m \\
2+m-(k-1) & \cdots & m & 1+m
\end{array}\right) . \\
\left|\left\{\tau_{l}(m) ; \quad 2 \leq l \leq m+2, \quad 0 \leq m \leq \beta\right\}\right|=(\beta+2)(\beta+1) \cdots 2=(\beta+2)!=\left|S_{d}\right| .
\end{gathered}
$$

Hence, theorem 4.16 holds for a tree with one internal vertex of valency $3+\beta(\beta \geq 1)$.

The inductive step:

What we will change for induction in the proof is the following :
Recall that $d=N+1+\sum_{1 \leq j \leq N} \beta_{j}$, then let $d^{\prime}=N+\sum_{1 \leq j \leq N-1} \beta_{j}$.

In order to deduce the case $N=n+1$ to the case $N-1=n$, we apply the following operation: we cut down the internal edge f_{N-1}, one of whose ends is the internal vertex w_{N} and associate the new external vertex denoted as $v_{N+1+\sum_{1 \leq j \leq N-1}^{\prime} \beta_{j}}^{\prime}=v_{d^{\prime}+1}^{\prime}$ and denote the new external edge as
 we build up a new plane tree Γ^{\prime} with $N-1=n$ internal vertices and whose rank is $d^{\prime}=d-1-\beta_{N}$, where d is the rank of Γ.

$$
\mathscr{Z}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right)=\sum_{n_{i} \in \mathbb{N} \backslash\{0\}, 1 \leq i \leq d^{\prime}} \mathscr{O}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right) .
$$

Then

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\{0\}_{v \in \partial \Gamma}, 1\right)=\sum_{\substack{n_{i} \in \mathbb{N}\{\{0\} \\ 1 \leq i \leq d}} \frac{1}{\prod_{k=d^{\prime}-N}^{d-N}\left|n_{N+1+k}\right| \sigma_{N+1+k}} \cdot \mathscr{O}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right) .
$$

Since the number of the internal vertices of Γ^{\prime} is n, then the theorem for Γ^{\prime} holds by the inductive hypothesis.

Hence we have the following equality:

$$
\mathscr{O}_{I, v}\left(\Gamma^{\prime}, \partial \Gamma^{\prime}\right)=\sum_{\gamma \in S_{d^{\prime}} t_{1}^{\gamma}, \ldots, t_{d^{\prime}}^{\gamma}} \sum_{d_{\gamma \cdot 1}} \frac{\tilde{C}_{\gamma, t_{i}^{\gamma}}}{n_{1}^{t_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot\left(d^{\prime}\right)}\right)^{t_{d^{\prime}}}},},
$$

where

$$
t_{1}^{\gamma}+\ldots+t_{d^{\prime}}^{\gamma}=\sum_{1 \leq i \leq d^{\prime}} \sigma_{i}+\sum_{1 \leq j \leq N-1} \mu_{j}, \quad \forall \gamma \in S_{d^{\prime}} .
$$

Now

$$
\mathscr{P}_{\gamma}=\frac{1}{\prod_{k=d^{\prime}-N}^{d-N}\left|n_{N+1+k}\right|^{\sigma_{N+1+k}}} \frac{\tilde{C}_{\gamma, t_{i}^{\gamma}}}{\left.n_{\gamma \cdot 1}^{r_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot\left(d^{\prime}\right)}\right)}\right)^{\eta_{d^{\prime}}^{\prime}}},
$$

where $d^{\prime}=N+\sum_{1 \leq j \leq N-1} \beta_{j}$ and

$$
\sum_{i=1}^{d+1} n_{i}=0 .
$$

Then

$$
\mathscr{P}_{\gamma}=\frac{1}{n_{d^{\prime}+1}^{\sigma_{d^{\prime}+1} \cdots n_{d^{\prime}+1+\beta_{N}}^{\sigma_{d^{\prime}+1+\beta_{N}}}\left(n_{1}+\cdots+n_{d^{\prime}+1+\beta_{N}}\right)^{\sigma_{d^{\prime}+2+\beta_{N}}}} \frac{\tilde{C}_{\gamma, t_{i}^{\gamma}}}{n_{\gamma \cdot 1}^{t_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \cdots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot\left(d^{\prime}\right)}\right)^{t_{d^{\prime}}}}}, ~, ~, ~}
$$

and

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\substack{n_{i} \in \mathbb{N}\{0\}, 1 \leq i \leq d}} \sum_{\substack{S_{d^{\prime}} \\ t_{1}^{\gamma}, \ldots, t_{d^{\prime}}^{v}}} \mathscr{P}_{\gamma} .
$$

Without losing generality, we can focus on \mathscr{P}_{1}, where 1 is the identity permutation.
Calculation of \mathscr{P}_{1}.

$$
\mathscr{P}_{1}=\frac{1}{n_{d^{d^{\prime}+1}}^{\sigma_{\prime^{\prime}+1} \cdots n_{d^{\prime}+1+\beta_{N}}^{\sigma_{d^{\prime}+1+\beta_{N}}}\left(n_{1}+\cdots+n_{d^{\prime}+1+\beta_{N}}\right)^{\sigma_{d^{\prime}+2+\beta_{N}}}} \frac{\tilde{C}_{1, t_{i}^{1}}}{\left(n_{1}+\ldots+n_{d^{\prime}}\right)^{t_{d^{\prime}}} \cdots\left(n_{1}+n_{2}\right)^{t_{2}^{1}} n_{1}^{t_{1}^{1}}} ~ . ~}
$$

If $\beta_{N}=0$, then we return to the calculation of \mathscr{P}_{1} for a plane trivalent tree. If $\beta_{N}>0$, the number of monomials before the polynomial $\left(n_{1}+\cdots+n_{d^{\prime}+1+\beta_{N}}\right)^{\sigma_{d^{\prime}+2+\beta_{N}}}$ is no more 1 .

Therefore, the calculation of \mathscr{P}_{1} turns to reducing the number of monomials $n_{d^{\prime}+k}^{\sigma_{d^{\prime}}+k}$. We have to show that this number indeed can be reduced, then finally conclude the calculation by the case where the number is one.

As before, we will heavily use Eisenstein's trick. We will introduce several pieces of notation in order to simplify the demonstration.

Notation 4.30 (1) We will write Eis $\left(a^{s_{1}}, b^{s_{2}}\right)$ for the operation

$$
\frac{1}{a^{s_{1}} b^{s_{2}}}=\sum_{r_{1}+r_{2}=s_{1}+s_{2}} \frac{C_{r_{1}-1}^{s_{1}-1}}{(a+b)^{r_{1}} b^{r_{2}}}+\frac{C_{r_{1}-1}^{s_{2}-1}}{(a+b)^{r_{1}} a^{r_{2}}} .
$$

(2) Let $n\left(k_{1}, k_{2}\right)$ be the sum:

$$
\sum_{j=k_{1}}^{k_{2}} n_{j}=n_{k_{1}}+\cdots+n_{k_{2}} .
$$

In every use of Eis (\cdot, \cdot), there are two kinds of fractions $\frac{C_{1-1}^{s_{1}-1}}{(a+b)^{1} 1 b^{r}}$ and $\frac{C_{r_{1}-1}^{s_{1}-1}}{(a+b)^{r_{1}} a^{2} r^{2}}$. In order to reduce the number of terms $n_{d^{\prime}+k}^{\sigma_{d^{\prime}+k}}$, we draw a rooted tree to visualize the results after a repeated use of Eis (\cdot, \cdot).

For example, the operation Eis $\left(n_{d^{\prime}+1}^{\sigma^{\prime}+1}, n\left(1, d^{\prime}\right)^{\sigma_{d^{\prime}}}\right)$ yields
$\mathscr{P}_{1}=\alpha_{1}^{1}+\alpha_{2}^{1}$,

$$
\alpha_{2}^{1}=\sum_{\substack{r_{1}+s_{1}}} \frac{C_{d_{d^{\prime}+1}+t_{d^{\prime}}^{\prime}}^{t_{d^{\prime}-1}^{1}-1} \tilde{C}_{1, t_{i}^{1}}}{n_{d^{\prime}+1}^{s_{1}} \cdots n_{d^{\prime}+1+\beta_{N}}^{\sigma_{d^{\prime}+1+\beta_{N}}} n\left(1, d^{\prime}+1+\beta_{N}\right)^{\sigma_{d^{\prime}+2+\beta_{N}} n\left(1, d^{\prime}+1\right)^{r_{1}} n\left(1, d^{\prime}-1\right)^{t_{d^{\prime}-1}^{1} \cdots\left(n_{1}+n_{2}\right)^{t_{2}^{1}} n_{1}^{t_{1}^{1}}}} ~ . ~}
$$

Definition 4.31

$$
\alpha\left(k: i_{1}, j_{1} ; \cdots ; i_{k}, j_{k}\right)=\alpha_{i_{1}}^{k} \underbrace{2 \cdots 2}_{j_{1}} \underbrace{1 \cdots 1}_{i_{2}} \underbrace{2 \cdots 2}_{j_{2}} \underbrace{2 \cdots \cdots}_{\cdots} \underbrace{1 \cdots 1}_{i_{k}} \underbrace{2 \cdots 2}_{j_{k}},
$$

where

$$
\sum_{l=1}^{k}\left(i_{l}+j_{l}\right)=k ; \quad i_{l} \geq 0 ; \quad j_{l} \geq 0
$$

The upper symbol k means that we have used Eisenstein's trick k-times. In the first i_{1} applications of Eis (\cdot, \cdot) we consider only the term on the left, in the next j_{1} applications only the term on the right, etc. If we descend p times along the left branch, the number of monomials $n_{d^{\prime}+k}^{?}$ decreases by p. However, on the right branch, the number of monomials does not decrease. Moreover, the number of factors of the denominator of \mathscr{P}_{1} is equal to

$$
d^{\prime}+2+\beta_{N}=N+2+\sum_{1 \leq j \leq N} \beta_{j}=d+1 .
$$

During the repeated applications of Eis (\cdot, \cdot), the number of factors of denominators of $\alpha\left(k: i_{1}, j_{1} ; \cdots ; i_{k}, j_{k}\right)$ remains unchanged.

Note that

$$
\begin{gathered}
\alpha\left(k: i_{1}, j_{1} ; \cdots ; i_{k}, j_{k}\right)=\alpha\left(k+1: i_{1}, j_{1} ; \cdots ; i_{k}, j_{k} ; 1,0\right)+\alpha\left(k+1: i_{1}, j_{1} ; \cdots ; i_{k}, j_{k} ; 0,1\right) ; \\
\mathscr{P}_{1}=\sum_{\substack{i_{1}, \cdots, i_{k} \geq 0 \\
j_{1}, \cdots, j_{k} \geq 0 \\
\sum_{l=1}^{k}\left(i_{l}+j_{l}\right)=k}} \alpha\left(k: i_{1}, j_{1} ; \cdots ; i_{k}, j_{k}\right)
\end{gathered}
$$

For example, $\alpha_{1}^{1}=\alpha(1: 1,0), \alpha_{2}^{1}=\alpha(1: 0,1)$.
We will consider first two special cases.
Proposition 4.32 If $i_{1}=k\left(1 \leq k \leq \beta_{N}\right)$, then we get

When $k=\beta_{N}$, then

$$
\underbrace{\alpha_{1}^{\beta_{N}}}_{\beta_{N}}=\sum_{\substack{r_{1}+s_{1} \\=t_{d^{\prime}}^{\prime}+\sigma_{d^{\prime}+1} \\ r_{2}+s_{2} \\=r_{1}+\sigma_{d^{\prime}+2}}} \frac{C_{r_{\beta_{N}}-1}^{\sigma_{d^{\prime}+\beta_{N}}-1} \cdots C_{r_{1}-1}^{\sigma_{d^{\prime}+1}+1} \tilde{C}_{1}}{n_{d^{\prime}+\beta_{N}+1}^{\sigma_{d^{\prime}+\beta_{N}+1}} n\left(1, d^{\prime}+1+\beta_{N}\right)^{\sigma_{2+d^{\prime}+\beta_{N}} n\left(1, d^{\prime}+\beta_{N}\right)^{r_{\beta_{N}}} \prod_{j=1}^{\beta_{N}} n\left(1, d^{\prime}+j-1\right)^{s_{j}} \prod_{j=1}^{d^{\prime}-1} n(1, j)^{t_{j}^{1}}} .}
$$

From the calculation of \mathscr{P}_{1} for any plane trivalent tree, it is easy to see that $\underbrace{\alpha_{1 \cdots 1}^{\beta_{N}}}_{\beta_{N}}$ can be written as a \mathbb{Z}-linear combination of $d=d^{\prime}+1+\beta_{N}$-tuple zeta values.

Remark 4.33 The example shows that if some $i_{l}>0$, then the number of monomials $n_{d^{\prime}+k}^{?}$ of $\alpha(k$: $\left.i_{1}, j_{1} ; \cdots ; i_{k}, j_{k}\right)$ decrease.

Proposition 4.34 If $j_{k}=k$, then

Then

Now we will apply once again Eis $\left(n_{d^{\prime}+1}^{s_{d^{\prime}-1}}, n_{1}^{t_{1}^{1}}\right)$ and get:

Remark 4.35 Even in the extreme case, when $i_{1}+\cdots i_{k}=0, \alpha\left(k: i_{1}, j_{1} ; \cdots ; i_{k}, j_{k}\right)$ has no index 1 , we can still reduce the number of monomials $n_{d^{\prime}+k}^{?}$ before the polynomial $n\left(1, d^{\prime}+1+\beta_{N}\right)$.

Therefore we have shown that the number of monomials $n_{d^{\prime}+k}^{?}$ before $n\left(1, d^{\prime}+1+\beta_{N}\right)$ indeed can be reduced.

However, in order to demontrate by the mathematical induction that $\mathscr{O}_{I, v}(\Gamma, \partial \Gamma)$ can be written in the form

$$
\sum_{\gamma \in S_{d}} \sum_{\substack{t_{i}^{\gamma} \\ 1 \leq i \leq d}} \frac{C_{\gamma}}{n_{\gamma \cdot 1}^{t_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma}} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot d}\right)^{t_{d}^{\gamma}}}
$$

with $d=d^{\prime}+1+\beta_{N}$, and therefore conclude that

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\substack{n_{i} \in \mathbb{N} \backslash\{0\}, 1 \leq i \leq d}} \mathscr{O}_{I, v}(\Gamma, \partial \Gamma),
$$

we will use, in the body of the first mathematical induction, another induction on \sharp, the number of monomials $n_{d^{\prime}+k}^{\sigma_{d^{\prime}+k}}\left(1 \leq k \leq 1+\beta_{N}\right)$ before

$$
\left(n_{1}+n_{2}+\cdots+n_{d^{\prime}+1+\beta_{N}}\right)^{\sigma_{d^{\prime}+2+\beta_{N}}}
$$

in the denominator of

$$
\mathscr{P}_{1}=\frac{1}{n_{d^{\prime}+1}^{\sigma_{\prime^{\prime}+1}} \cdots n_{d^{\prime}+1+\beta_{N}}^{\sigma_{d^{\prime}+1+\beta_{N}}}\left(n_{1}+\cdots+n_{d^{\prime}+1+\beta_{N}}\right)^{\sigma_{d^{\prime}+2+\beta_{N}}}} \frac{\tilde{C}_{1}}{\left(n_{1}+\ldots+n_{d^{\prime}}\right)^{t_{d^{\prime}} \cdots\left(n_{1}+n_{2}\right)^{t_{2}^{1}} n_{1}^{t_{1}^{1}}} . . . ~}
$$

Definition 4.36 If $0 \leq k \leq \beta_{N}$,

$$
\begin{aligned}
& \mathscr{P}_{1}^{k}\left(\begin{array}{l}
n_{1}, \cdots, n_{d^{\prime}+k} ; \\
k_{1}^{t_{1}}, \cdots, k_{d^{\prime}+k}^{t^{\prime}} ;
\end{array} n_{d^{\prime}+k+1}, \cdots, n_{d^{\prime}+1+\beta_{N}}, \cdots, \sigma_{d^{\prime}+1+\beta_{N}}\right) \\
& =\frac{1}{n_{d^{\prime}+1+k}^{\sigma_{l^{\prime}+1+k} \cdots n^{\sigma_{d^{\prime}+1+1+\beta_{N}}}}\left(n_{1}+\cdots+n_{d^{\prime}+1+\beta_{N}}\right)^{\sigma_{d^{\prime}+2+\beta_{N}}}} \frac{\tilde{C}_{1}}{\left(n_{1}+\ldots+n_{d^{\prime}+k}\right)^{t t^{t^{\prime}+k} \cdots\left(n_{1}+n_{2}\right)^{k t_{2}^{1}}} n_{1}^{k t_{1}^{1}}} .
\end{aligned}
$$

And $\mathscr{P}_{1}^{0}\left(\begin{array}{l}n_{1}, \cdots, n_{d^{\prime}} ; n_{d^{\prime}+1}, \cdots, n_{d^{\prime}+1+\beta_{N}} \\ { }_{01}^{1}, \cdots, o_{d^{\prime}} ;\end{array} \sigma_{d^{d^{\prime}+1}}, \cdots, \sigma_{d^{\prime}+1+\beta_{N}}\right)=\mathscr{P}_{1}$.
Fix $\beta_{N}>0$. We make the inductive step on \sharp.

$$
\sharp=1+\beta_{N}-k
$$

(1) $I f \sharp=1$, then $k=\beta_{N}$.

$$
\begin{aligned}
& \mathscr{P}_{1}^{\beta_{N}}\left(\begin{array}{c}
n_{1}, \cdots, n_{d^{\prime}+\beta_{N}} ; n_{d^{\prime}+1+\beta_{N}}^{\beta_{N} t_{1}^{1}}, \cdots, \beta_{N} t_{d^{\prime}+\beta_{N}}^{1}
\end{array} \sigma_{d^{\prime}+1+\beta_{N}}\right) \\
& =\frac{1}{n_{d^{\prime}+1+\beta_{N}}^{\sigma_{\prime^{\prime}}+\beta_{N}}\left(n_{1}+\cdots+n_{d^{\prime}+1+\beta_{N}}\right)^{\sigma_{d^{\prime}+2+\beta_{N}}}} \frac{\tilde{C}_{1}}{\left(n_{1}+\ldots+n_{d^{\prime}+\beta_{N}}\right)^{\beta_{N} t_{d^{\prime}+\beta_{N}} \ldots\left(n_{1}+n_{2}\right)^{\beta_{N} t_{2}^{1}} n_{1}^{\beta_{1} t_{1}^{1}}} .} .
\end{aligned}
$$

By the demonstration for any plane trivalent tree, $\mathscr{P}_{1}^{\beta_{N}}\left(n_{1}, \cdots, n_{d^{\prime}+1+\beta_{N}}\right)$ can be written as

$$
=\sum_{\tau_{j}\left(\beta_{N}\right)} \sum_{\tilde{\tau}_{i}^{\tau_{j}}} \frac{C_{\tau_{j}\left(\beta_{N}\right), \tau_{i}^{\tau_{j}^{j}}}}{\left.n_{\tau_{j} \cdot 1}^{\tau_{j}^{\tau_{j}}}\left(n_{\tau_{j} \cdot 1}+n_{\tau_{j} \cdot 2}\right)^{\tau_{2}^{\tau_{j}^{j}} \cdots\left(n_{\tau_{j} \cdot 1}+\ldots+n_{\tau_{j} \cdot\left(d^{\prime}+1+\beta_{N}\right.}\right.}\right)^{\frac{\tau_{d^{\prime}+1+\beta_{N}}^{\tau_{j}}}{}},}
$$

where the permutation $\tau_{1}\left(\beta_{N}\right)=I d$ and if $2 \leq j \leq d^{\prime}+\beta_{N}+1$

$$
\tau_{j}\left(\beta_{N}\right)=\left(\begin{array}{cccc}
d^{\prime}+1+\beta_{N}-(j-1) & d^{\prime}+1+\beta_{N}-(j-2) & \cdots & d^{\prime}+\beta_{N} \\
d^{\prime}+1+\beta_{N} & d^{\prime}+1+\beta_{N}-(j-1) & \cdots & d^{\prime}+\beta_{N}-1+\beta_{N} \\
d^{\prime}+\beta_{N}
\end{array}\right)
$$

and $C_{\tau_{j}\left(\beta_{N}\right), \tilde{t}_{i}^{j_{j}}}=C_{r_{j}-1}^{t_{N-(j-1)}^{1} \cdots C_{r_{1}-1}^{t_{N-1}^{1}} \tilde{C}_{1} .}$
（2）Next，if $k=\beta_{N}-1$ ．We have one rooted tree illustrating the procedure of reducing to the case

$$
\mathscr{P}_{1}^{\beta_{N}-1}=\mathscr{P}_{1}^{\beta_{N}-1}\left(\begin{array}{ccc}
n_{1}, & \cdots, & n_{d^{\prime}+\beta_{N}-1} ;
\end{array} n_{d^{\prime}+\beta_{N}}, n_{d^{\prime}+1+\beta_{N}} \begin{array}{c}
\beta_{N}-1 t_{1}^{1}, \ldots, \\
\beta_{N}-1 t_{d^{\prime}+\beta_{N}-1}^{l_{1}} ;
\end{array} a_{d^{\prime}+\beta_{N}}, \sigma_{d^{\prime}+1+\beta_{N}}\right)
$$

Denote

$$
\mathscr{P}_{1, \tau_{j}\left(\beta_{N}-1\right)}^{\beta_{N}}=\mathscr{P}_{1}^{\beta_{N}}\left(\tau_{j}\left(\beta_{N}-1\right) \cdot\left(\begin{array}{c}
n_{1}, \cdots, \\
\beta_{N} t_{1}^{\prime}, \cdots, \\
\beta_{d_{N}} t^{\prime}+\beta_{N} ; \beta_{d^{\prime}+\beta_{N}} ;
\end{array} n_{d^{\prime}+1+\beta_{N}}^{d^{d^{\prime}+1+\beta_{N}}} ⿲ 二 丨 匕 刂\right),\right.
$$

where the permutation $\tau_{1}\left(\beta_{N}-1\right)=I d$ ，and if $2 \leq j \leq d^{\prime}+\beta_{N}$ ，

$$
\tau_{j}\left(\beta_{N}-1\right)=\left(\begin{array}{ccc}
d^{\prime}+\beta_{N}-(j-1) & d^{\prime}+1+\beta_{N}-(k-2) & \cdots \\
d^{\prime}+\beta_{N} & d^{\prime}+\beta_{N} \\
d^{\prime}+1+\beta_{N}-(j-1) & \cdots & d^{\prime}+\beta_{N}-1
\end{array}\right)
$$

acts on the indices i，l of n_{i} and $\beta_{\beta_{N}} t_{l}^{1}$ ．
Define

$$
\begin{aligned}
& \sum \mathscr{P}_{1, \tau_{j}\left(\beta_{N}-1\right)}^{\beta_{N}}=\sum_{r_{1}+s_{1}=\sigma_{d^{\prime}+\beta_{N}}+\beta_{N}-1 t_{d^{\prime}+\beta_{N}-1}^{1}} \mathscr{P}_{1}^{\beta_{N}}\left(\tau_{j}\left(\beta_{N}-1\right) \cdot\left(\begin{array}{ccc}
n_{1}, \cdots, \\
\beta_{N} t_{1}^{1}, \cdots, \beta_{N} t^{\prime}+\beta_{d^{\prime}} ; \beta_{N}
\end{array} ; \begin{array}{c}
n_{d^{\prime}+1+\beta_{N}} \\
\sigma_{d^{\prime}+1+\beta_{N}}
\end{array}\right)\right), \\
& r_{2}+s_{2}=s_{1}+\beta_{N-}-1 t_{d^{\prime}+\beta_{N}-2}^{1} \\
& r_{j}+s_{j}=s_{j-1}+\beta_{N}-1 t_{d^{\prime}+\beta_{N}-j}^{1}
\end{aligned}
$$

where

$$
\tau_{j}\left(\beta_{N}-1\right) \cdot\left(\begin{array}{c}
n_{1}, \cdots, n_{d^{\prime}+\beta_{N}} ; n_{d^{\prime}+1+\beta_{N}}^{\beta_{N} t_{1}^{1}, \cdots,}, \beta_{N} t_{d^{\prime}+\beta_{N}} ; \sigma_{d^{\prime}+1+\beta_{N}}
\end{array}\right)=
$$

Then

$$
\mathscr{P}_{1}^{\beta_{N}-1}=\sum \mathscr{P}_{1, I d}^{\beta_{N}}+\sum \mathscr{P}_{1, \tau_{2}\left(\beta_{N}-1\right)}^{\beta_{N}}+\cdots+\sum \mathscr{P}_{1, \tau_{d^{\prime}+\beta_{N}-1}\left(\beta_{N}-1\right)}^{\beta_{N}}+\sum \mathscr{P}_{1, \tau_{d^{\prime}+\beta_{N}}\left(\beta_{N}-1\right)}^{\beta_{N}} .
$$

Continuing this procedure we can write \mathscr{P}_{1}^{q} as a sum of $\mathscr{P}_{1, \tau_{j}(q)}^{q+1}$ for $0 \leq q \leq \beta_{N}$ ．We can get the same result for $\mathscr{P}_{1, \sigma}^{q}$ and $\mathscr{P}_{1, \tau_{j}(q) \sigma}^{q+1}$ and $\sigma=\tau_{l}(q-1)$ for some $1 \leq l \leq d^{\prime}+q$ ．

Then

$$
\mathscr{P}_{1}^{q}=\sum \mathscr{P}_{1, I d}^{q+1}+\sum \mathscr{P}_{1, \tau_{2}(q)}^{q+1}+\cdots+\sum \mathscr{P}_{1, \tau_{d^{\prime}+q}(q)}^{q+1}+\sum \mathscr{P}_{1, \tau_{d^{\prime}+q+1}(q)}^{q+1} .
$$

In conclusion, $\mathscr{P}_{1}^{0}\left(\begin{array}{c}n_{1}, \cdots, n_{d^{\prime}} ; n_{d^{\prime}+1}, \cdots, n_{d^{\prime}+1+\beta_{N}} \\ 0 t_{1}^{\prime}, \cdots, t_{d^{\prime}} ; \\ \sigma_{d^{\prime}+1}\end{array}, \cdots, \sigma_{d^{\prime}+1+\beta_{N}}\right)=\mathscr{P}_{1}$ can be written as
where

$$
\widehat{\tau}=\tau_{l_{0}}(0) \cdots \tau_{l_{N-1}}\left(\beta_{N}-1\right) \tau_{l_{\beta_{N}}}\left(\beta_{N}\right)
$$

where $\tau_{1}(m)=$ Id and, if $2 \leq l \leq d^{\prime}+1+m, 0 \leq m \leq \beta_{N}$,

$$
\left.\tau_{l}(m)=\binom{d^{\prime}+1+m-(l-1)}{d^{\prime}+1+m} \begin{array}{c}
d^{\prime}+1+m-(k-2) \\
d^{\prime}+1+m-(k-1)
\end{array} \cdots \begin{array}{ll}
d^{\prime}+m & d^{\prime}+1+m-1
\end{array}\right) .
$$

Let the set

$$
\begin{aligned}
D= & \left\{\widehat{\tau}=\prod_{0 \leq m \leq \beta_{N}} \tau_{l_{m}}(m) ; \quad 2 \leq l_{m} \leq d^{\prime}+1+m\right\}, \\
& |D|=\left(d^{\prime}+1+\beta_{N}\right)\left(d^{\prime}+\beta_{N}\right) \cdots\left(d^{\prime}+1\right) .
\end{aligned}
$$

For other $\gamma \in S_{d^{\prime}}$, we can obtain the same result of \mathscr{P}_{γ}, and

$$
S_{d}=\coprod_{\widehat{\tau} \in D} \widehat{\tau} \cdot S_{d^{\prime}}
$$

Remark 4.37 Eisenstein's trick has been formalized by Sczech in his theory of Eisenstein cocycles. It also appears in one of the proofs of the shuffle relations for MZV's. This is probably no coincidence.

4.3 Relation to multiple polylogarithms

In fact, the result of theorem 4.16 can be generalized to any higher Green function

$$
\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma}, 1\right)
$$

for any arbitary tree Γ.

Theorem 4.38 (Relation to multiple polylogarithms)

If $F=\mathbb{Q}, I^{*}=\mathbb{Z}, x_{v} \in \frac{1}{N} \mathbb{Z} / \mathbb{Z}$, then $\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma}, 1\right)$ is a finite \mathbb{Z}-linear combination of the values of multiple polylogarithms evaluated at some N-th roots of unity.

Let us first review Example 4.22.
where $v_{1}=v_{2}=0, v_{3}=1$ and $x_{v_{1}}, x_{v_{2}}, x_{v_{3}} \in \frac{1}{N} \mathbb{Z} / \mathbb{Z}$.

$$
\begin{gathered}
\mathscr{G}_{1, v, \Gamma_{1}, \partial \Gamma_{1}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{e^{2 \pi i\left(n_{1}\left(x_{v_{1}}-x_{v_{3}}\right)+n_{2}\left(x_{v_{2}}-x_{v_{3}}\right)\right)}}{n_{1}^{\sigma_{1}} n_{2}^{\sigma_{2}}\left(n_{1}+n_{2}\right)^{\sigma_{3}}} \\
\mathscr{G}_{1, v, \Gamma_{1}, \partial \Gamma_{1}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{n_{1}, n_{2} \in \mathbb{N}\{0\}} \sum_{r+s=\sigma_{1}+\sigma_{2}} e^{2 \pi i\left(n_{1}\left(x_{v_{1}}-x_{v_{3}}\right)+n_{2}\left(x_{v_{2}}-x_{v_{3}}\right)\right)} \cdot\left(\frac{C_{r-1}^{\sigma_{1}-1}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{2}^{s}}+\frac{C_{r-1}^{\sigma_{2}-1}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{1}^{s}}\right), \\
=\sum_{r+s=\sigma_{1}+\sigma_{2}}\left\{C_{r-1}^{\sigma_{1}-1}\left(\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{e^{2 \pi i\left(n_{1}\left(x_{v_{1}}-x_{v_{3}}\right)+n_{2}\left(x_{v_{2}}-x_{v_{3}}\right)\right)}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{2}^{s}}\right)+C_{r-1}^{\sigma_{2}-1}\left(\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{e^{2 \pi i\left(n_{1}\left(x_{v_{1}}-x_{v_{3}}\right)+n_{2}\left(x_{v_{2}}-x_{v_{3}}\right)\right)}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{1}^{s}}\right)\right\} .
\end{gathered}
$$

Note that

$$
e^{2 \pi i\left(n_{1}\left(x_{v_{1}}-x_{v_{3}}\right)+n_{2}\left(x-v_{2}-x_{v_{3}}\right)\right)}=e^{2 \pi i\left(\left(n_{1}+n_{2}\right)\left(x_{v_{1}}-x_{v_{3}}\right)+n_{2}\left(x_{v_{2}}-x_{v_{1}}\right)\right)},
$$

and

$$
e^{2 \pi i\left(n_{1}\left(x_{v_{1}}-x_{v_{3}}\right)+n_{2}\left(x_{v_{2}}-x_{v_{3}}\right)\right)}=e^{2 \pi i\left(n_{1}\left(x_{v_{1}}-x_{v_{2}}\right)+\left(n_{1}+n_{2}\right)\left(x_{v_{2}}-x_{v_{3}}\right)\right)} .
$$

Let $z_{1}=e^{2 \pi i\left(x_{v_{2}}-x_{v_{1}}\right)}$ and $z_{2}=e^{2 \pi i\left(x_{v_{1}}-x_{v_{3}}\right)}$, let $y_{1}=e^{2 \pi i\left(x_{v_{1}}-x_{v_{2}}\right)}$ and $y_{2}=e^{2 \pi i\left(x_{v_{2}}-x_{v_{3}}\right)}$. In fact, let the permutation $\sigma(12)$ acts on the indices of $v_{j}(1 \leq j \leq 3)$, then

$$
y_{\sigma(12) \cdot j}=z_{j}, \quad j=1,2 .
$$

Then we obtain
$\mathscr{G}_{I, v, \Gamma_{1}, \partial \Gamma_{1}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{r+s=\sigma_{1}+\sigma_{2}}\left\{C_{r-1}^{\sigma_{1}-1}\left(\sum_{n_{1}, n_{2} \in \mathbb{N}\{0\}} \frac{z_{1}^{n_{2}} z_{2}^{n_{1}+n_{2}}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{2}^{s}}\right)+C_{r-1}^{\sigma_{2}-1}\left(\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{y_{1}^{n_{1}} y_{2}^{n_{1}+n_{2}}}{\left(n_{1}+n_{2}\right)^{r+\sigma_{3}} n_{1}^{s}}\right)\right\}$
In conclusion,

$$
\mathscr{G}_{1, v, \Gamma_{1}, \partial \Gamma_{1}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{r+s=\sigma_{1}+\sigma_{2}}\left(C_{r-1}^{\sigma_{1}-1} L i_{s, r+\sigma_{3}}\left(z_{1}, z_{2}\right)+C_{r-1}^{\sigma_{2}-1} L i_{s, r+\sigma_{3}}\left(y_{1}, y_{2}\right)\right) .
$$

Proof 4.3.1 (Proof of Theorem 4.38) For a general tree Γ, by the proof of Theorem 4.16, $\mathscr{O}_{I, v}(\Gamma, \partial \Gamma)$ can be written as

$$
\sum_{\gamma \in S_{d}} \sum_{\substack{f_{j}^{\gamma} \\ 1 \leq j \leq d}} \frac{C_{\gamma, t_{j}^{\gamma}}}{n_{\gamma \cdot 1}^{t_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot d}\right)^{t_{d}^{\gamma}}}}
$$

with d the rank of Γ, and therefore conclude that

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\substack{n_{j} \in \mathbb{N} \backslash\{0\}, 1 \leq j \leq d}} \mathscr{O}_{I, v}(\Gamma, \partial \Gamma) .
$$

By careful observation, we get an expression

$$
\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma}, 1\right)=\sum_{\substack{n_{j} \in \mathbb{N} \backslash\{0\}, 1 \leq i \leq d}} e^{2 \pi i\left(\sum_{j=1}^{d+1} n_{j} x_{v j}\right)}\left(\sum_{\substack{\gamma \in S_{d}\\}} \sum_{\substack{t_{j}^{\gamma} \\ 1 \leq i \leq d}} \frac{C_{\gamma, t_{j}^{\gamma}}^{n_{\gamma}^{\gamma}}}{n_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot d}\right)^{t_{d}^{\gamma}}}\right),
$$

where $C_{\gamma, t_{j}^{\gamma}} \in \mathbb{Z}$. In fact, the Eisenstein trick is applied for the denominators, during these repeated operations the numerator remains unchanged. A simple calculation gives

$$
\sum_{j=1}^{d+1} n_{j} x_{v_{j}}=\sum_{l=1}^{d}\left(\sum_{j=1}^{l} n_{j}\right)\left(x_{v_{l}}-x_{v_{l+1}}\right) .
$$

Let

$$
z_{j}=e^{2 \pi i\left(x_{v_{j}}-x_{v_{j+1}}\right)}, \quad 1 \leq j \leq d,
$$

and

$$
z_{\gamma_{\cdot j}}=e^{2 \pi i\left(x_{v_{\gamma j} j}-x_{v_{\gamma}(j+1)}\right)}, \quad \gamma \in S_{d},
$$

then

$$
\begin{aligned}
& \mathscr{G}_{1, v, \Gamma, \partial \Gamma}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma}, 1\right)=\sum_{\substack{n_{j} \in \mathbb{N}\{\{0\} \\
1 \leq j \leq d}} \sum_{\substack{\gamma \in S_{d}}} \sum_{\substack{t_{j}^{\gamma} \\
1 \leq j \leq d}} \frac{C_{\gamma, t_{j}^{\eta}} \prod_{i=1}^{d} z_{\gamma \cdot j}^{\sum_{l=1}^{j} n_{\gamma \cdot l}}}{n_{1}^{t_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{\gamma_{2}^{\gamma} \ldots(}\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot d}\right)^{t_{d}^{\gamma}}}, \\
& \left.=\sum_{\gamma \in S_{d}}\left(\sum_{\substack{t_{j}^{\gamma} \\
1 \leq j \leq d}} \sum_{n_{j} \in \mathbb{N} \backslash\{0\},}^{1 \leq j \leq d}\right\}, C_{\gamma, t_{j}^{\gamma}} \frac{\prod_{j=1}^{d} z_{\gamma \cdot j}^{\sum_{l=1}^{j} n_{\gamma \cdot l}}}{n_{\gamma \cdot 1}^{r_{1}^{\gamma}}\left(n_{\gamma \cdot 1}+n_{\gamma \cdot 2}\right)^{t_{2}^{\gamma} \ldots\left(n_{\gamma \cdot 1}+\ldots+n_{\gamma \cdot d}\right)^{t_{d}^{\gamma}}}}\right),
\end{aligned}
$$

finally we obtain

$$
\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma}, 1\right)=\sum_{\gamma \in S_{d}}\left(\sum_{\substack{\gamma_{j}^{\gamma} \\ 1 \leq j \leq d}} C_{\gamma, t_{j}^{\gamma}} L i_{t_{1}^{\gamma}, \cdots, t_{d}^{\gamma}}\left(z_{\gamma \cdot 1}, \cdots, z_{\gamma \cdot d}\right)\right) .
$$

In conclusion, $\mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{x_{\nu}\right\}_{\nu \in \partial \Gamma}, 1\right)$ is indeed a finite \mathbb{Z}-linear combination of multiple polylogarithms evaluated at some N-th roots of unity.

5 Generalization of Multiple Zeta Values (II): Results for general totally real fields

If $[F: \mathbb{Q}]=r>1$, then the generalized multiple zeta value $\mathscr{Z}_{I}(\Gamma, S)$ is highly non-trivial.
From the definition of

$$
\begin{gathered}
\mathscr{F}_{I, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}\right)=\left(O_{F,+}^{\times}: U\right)^{-1} \int_{U_{\mathbb{R}} / U} \mathscr{G}_{I, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right) d^{\times} u, \\
\mathscr{Z}_{I, v}(\Gamma, S)=\mathscr{F}_{I, v, \Gamma, S}\left(\{0\}_{v \in S}\right),
\end{gathered}
$$

where $d^{\times} u=\frac{d u_{1} \cdots d u_{r-1}}{u_{1} \cdots u_{r-1}}, \prod_{j=1}^{r} u_{j}=1$ and $U_{\mathbb{R}} / U=B U$ the classifying space of $U=\mathbb{Z}^{r-1} . B U \cong\left(S^{1}\right)^{r-1}$, the isomorphism is independent of the choice of U, the calculation of the integral plays an important role to get the precise expression of our $\mathscr{Z}_{I, v}(\Gamma, S)$. For example, Given a graph Γ_{1} as in Figure 12 Let us compare the difference as follows.

Figure 18: A plane trivalent tree with one internal vertex
If the ground field is \mathbb{Q}, then

$$
\mathscr{Z}_{\mathbb{Q}, I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{\substack{n_{1}+n_{2}+n_{3}=0 \\ n_{1} \in \mathbb{Z} \\ n_{1}, n_{2}>0}} \frac{1}{\left|n_{1}\right|^{k_{1}\left|n_{2}\right|^{k_{2}}\left|n_{3}\right|^{k_{3}}}}=\sum_{n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}} \frac{1}{n_{1}^{k_{1}} n_{2}^{k_{2}}\left(n_{1}+n_{2}\right)^{k_{3}}} .
$$

If the ground field is $F,[F: \mathbb{Q}]=r>1$. By the definition

$$
\mathscr{F}_{I, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}\right)=\left(O_{F,+}^{\times}: U\right)^{-1} \int_{U_{\mathbb{R}} / U} \mathscr{G}_{I, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right) d^{\times} u,
$$

then the generalized multiple zeta value

$$
\mathscr{Z}_{I, v}(\Gamma, S)=\mathscr{F}_{I, v, \Gamma, S}\left(\{0\}_{v \in S}\right) .
$$

Therefore for the given graph Γ_{1}, we have

$$
\mathscr{Z}_{F, I, v}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{\left(n_{1}, n_{2}\right) \in\left(I^{\star},\{0\}\right)^{2} / U} \int_{U_{\mathbb{R}}} \frac{\mathrm{d}^{\times} u}{\left\|n_{1} u\right\|^{k_{1}}\left\|n_{2} u\right\|^{k_{2}}\left\|\left(n_{1}+n_{2}\right) u\right\|^{k_{3}}} .
$$

So we need to understand integrals such as

$$
\int_{U_{\mathbb{R}}} \frac{\mathrm{d}^{\times} u}{\left\|n_{1} u\right\|^{k_{1}}\left\|n_{2} u\right\|^{k_{2}}\left\|\left(n_{1}+n_{2}\right) u\right\|_{3}^{k_{3}}} .
$$

More generally, we need to understand the following integral

$$
\begin{equation*}
\int_{U_{\mathbb{R}}}\left(\prod_{j=1}^{d}\left\|n_{j} u\right\|^{-k_{j}}\right) \mathrm{d}^{\times} u . \tag{4}
\end{equation*}
$$

For this purpose, we have to introduction the calculation of the Hecke transform.
Remark 5.1 The work to understand integrals mentioned above will be done for totally real field F. For a general number field K of degree $r_{1}+2 r_{2}$,

$$
K_{\mathbb{R}} \cong \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}
$$

one can use polar coordinates on each factor of $\mathbb{C}^{r_{2}}$. This reduces the integral (4) to an analogous integral for totally real fields of degree $r_{1}+r_{2}$.

5.1 The Hecke transform

All the notations are defined as before.
Proposition 5.2 (The Hecke transform) [14]
Let $U_{\mathbb{R}} \subset\left(\mathbb{R}_{+}^{\times}\right)^{r}$ be the subgroup

$$
U_{\mathbb{R}}=\left\{u=\left(u_{1}, \ldots, u_{r}\right) \mid \prod_{j=1}^{r} u_{j}=1\right\}
$$

with the measure $d^{\times} u=\frac{d u_{1}}{u_{1}} \wedge \cdots \wedge \frac{d u_{r-1}}{u_{r-1}}$. Let $\|\cdot\|$ be the Euclidean norm on \mathbb{C}^{r}, on which $U_{\mathbb{R}}$ acts by multiplication. Let $(p)_{j} \in \mathbb{Z}^{r}, p=\sum p_{j}$. Then for any $x=\left(x_{1}, \ldots, x_{r}\right) \in\left(\mathbb{C}^{\times}\right)^{r}$ and $s \in \mathbb{C}, \operatorname{Re}(s)>0$.

$$
\int_{U_{\mathbb{R}}}\|u x\|^{-2 s} \prod_{j} u_{j}^{-2 p_{j}} d^{\times} u=\frac{2^{1-r}}{r \Gamma(s)} \prod_{j} \Gamma\left(\frac{p+s}{r}-p_{j}\right)\left|x_{j}\right|^{2\left(p_{j}-(p+s) / r\right)} .
$$

Proof 5.1.1 Firstly we will give a more general set-up. Change of variable:

$$
\begin{gathered}
H_{+}^{n-1}=\left\{u=\left(u_{1}, \cdots, u_{n}\right) \mid u_{j}>0, u_{1} \cdots, u_{n}=1\right\} \\
H_{+}^{n-1} \times \mathbb{R}_{+} \simeq \mathbb{R}_{+}^{n-1} ;\left(\left(u_{1}, \cdots, u_{n}\right), t\right) \longrightarrow x=\left(x_{1}, \cdots, x_{n}\right)=\left(t u_{1}, \cdots, t u_{n}\right) . \\
x_{1} \cdots x_{n}=t^{n}, \quad t=\left(x_{1} \cdots x_{2}\right)^{1 / n}, \quad u_{i}=\frac{x_{i}}{t}=\frac{x_{i}}{\left(x_{1} \cdots x_{n}\right)^{1 / n}}, \\
\sum_{1}^{n} \frac{d u_{i}}{u_{i}}=0,
\end{gathered}
$$

then,

$$
\begin{gathered}
d x_{1} \wedge \cdots \wedge d x_{n}=\frac{d x_{1} \wedge \cdots \wedge d x_{n}}{u_{1} \cdots u_{n}}=\frac{d x_{1}}{u_{1}} \wedge \cdots \wedge \frac{d x_{n}}{u_{n}}=\left(t \frac{d u_{1}}{u_{1}}+d t\right) \wedge \cdots\left(t \frac{d u_{n}}{u_{n}}+d t\right), \\
d x_{1} \wedge \cdots \wedge d x_{n}=t^{n} \wedge_{i=1}^{n} \frac{d u_{i}}{u_{i}}+t^{n-1} \sum_{i=1}^{n}\left(d u_{1} / u_{1} \wedge \cdots \wedge \frac{d u_{i-1}}{u_{i-1}} \wedge d t \wedge \frac{d u_{i+1}}{u_{i+1}} \wedge \cdots \wedge \frac{d u_{n}}{u_{n}}\right)=\omega \wedge n t^{n-1} d t .
\end{gathered}
$$

where

$$
\omega=(-1)^{n-i} \frac{d u_{1} \wedge \cdots \wedge \widehat{u_{i}} \wedge \cdots \wedge d u_{n}}{u_{1} \cdots \widehat{u}_{i} \cdots u_{n}}
$$

ω is independent of i, so we fix a standard form

$$
\mathrm{d}^{\times} u=\omega=\frac{d u_{1} \wedge \cdots \wedge d u_{n-1}}{u_{1} \cdots u_{n-1}}
$$

then for every function with n-variables, we have

$$
\int_{\mathbb{R}_{+}^{n}} g\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}=\int_{\mathbb{R}_{+}}\left(\int_{H_{+}^{n-1}} g\left(t u_{1}, \cdots, t u_{n-1}\right) \frac{d u_{1} \cdots d u_{n-1}}{u_{1} \cdots u_{n-1}}\right) n t^{n-1} d t .
$$

Recall the following Γ-integrals: $\lambda, a, b>0$, and $\operatorname{Re}(s)>0$ and $d^{\times} \lambda=\mathrm{d} \lambda / \lambda$,

$$
\Gamma(s) a^{-s}=\int_{\mathbb{R}_{+}} \mathrm{e}^{-a \lambda} \lambda^{s} d^{\times} \lambda=2 \int_{\mathbb{R}_{+}} \mathrm{e}^{-a x^{2}} x^{2 s} \mathrm{~d}^{\times} x
$$

where $\lambda=x^{2}$. Moreover $a=b^{2}$, we get

$$
\frac{\Gamma(s / 2)}{2 b^{s}}=\int_{\mathbb{R}_{+}} \mathrm{e}^{-(b x)^{2}} x^{s} \mathrm{~d}^{\times} x .
$$

Now if we take $z=\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathbb{C}^{\times}\right)^{n},\|z\|^{2}=\sum_{j=1}^{n}\left|z_{j}\right|^{2}, u=\left(u_{1}, \cdots, u_{n}\right) \in H_{+}^{n-1}, u z=\left(u_{1} z_{1}, \cdots, u_{n} z_{n}\right)$,

$$
\Gamma(s)\|u z\|^{-2 s}=\int_{\mathbb{R}_{+}} \mathrm{e}^{-\lambda\|u z\|^{2}} \lambda^{s} \mathrm{~d}^{\times} \lambda=2 \int_{\mathbb{R}_{+}} \mathrm{e}^{-\|t u z\|^{2}} t^{2 s} \mathrm{~d}^{\times} t
$$

where we take $\lambda=t^{2}$ for the last equality. if $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{Z}^{n}, a=\frac{a_{1}+\cdots+a_{n}}{n}$,

$$
\begin{gathered}
I(s)=\frac{\Gamma(s)}{2} \int_{H_{+}^{n-1}} \frac{u_{1}^{a_{1} \cdots u_{n}^{a_{n}}}}{\|u z\|^{2 s}} \frac{d u_{1} \cdots d u_{n-1}}{u_{1} \cdots u_{n-1}}=\int_{H_{+}^{n-1} \times \mathbb{R}_{+}} u_{1}^{a_{1} \cdots u_{n}^{a_{n}} \mathrm{e}^{-\|t u z\|^{2}} t^{2 s} \frac{d u_{1} \cdots d u_{n-1}}{u_{1} \cdots u_{n-1}} \frac{d t}{t} .} \begin{array}{c}
I(s)=\int_{\mathbb{R}_{+}^{n}} \frac{x_{1}^{a_{1} \cdots x_{n}^{a_{n}}}}{\left(x_{1} \cdots x_{n}\right)^{\left(a_{1}+\cdots+a_{n}\right) / n}} \mathrm{e}^{-\|x z\|^{2}}\left(x_{1} \cdots x_{n}\right)^{2 s / n / n} \frac{d x_{1} \cdots d x_{n}}{n x_{1} \cdots x_{n}} \\
I(s)=\frac{1}{n} \prod_{j=1}^{n} \int_{\mathbb{R}_{+}} x_{j}^{a_{j}-\frac{a_{1}+\cdots+a_{n}}{n}+\frac{2 s}{n}} \mathrm{e}^{-\mid z j^{2} x_{j}^{2}} \mathrm{~d}^{\times} x_{j}=\frac{1}{n} \prod_{j=1}^{n} \frac{1}{2} \frac{\Gamma\left(\frac{s}{n}+\frac{a_{j}-a}{2}\right)}{\left|z_{j}\right|^{a_{j}-a+\frac{2 s}{n}} .}
\end{array} . . .
\end{gathered}
$$

In conclusion: $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}, z \in \mathbb{C}, a=\left(a_{1}+\cdots+a_{n}\right) / n, \forall j, a_{j}-a+\operatorname{Re}(2 s / n)>0$, we have the Hecke transform

$$
\int_{H_{+}^{n-1}} \frac{u_{1}^{a_{1} \cdots u_{n}^{a_{n}}}}{\|u z\|^{2 s}} \frac{d u_{1} \cdots d u_{n-1}}{u_{1} \cdots u_{n-1}}=\frac{2^{1-n}}{n \Gamma(s)} \prod_{j=1}^{n} \frac{\Gamma\left(\frac{s}{n}+\frac{a_{j}-a}{2}\right)}{\left|z_{j}\right|^{a_{j}-a+\frac{2 s}{n}}} .
$$

Then we get what we want to prove by taking $a_{i}=-2 p_{i}$.
Remark 5.3 This formula works also for any $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{C}^{n}$ and $s \in \mathbb{C}$ such that $\forall j=1, \cdots, n$, $2 \operatorname{Re}(s)+n a_{j}>a_{1}+\cdots+a_{n}$.

Example 5.4 First of all, we will see one special example, namely the Hecke transform of our plectic Green current

$$
g_{I}^{v}(x, u)=\lim _{\delta \rightarrow 0^{+}} \sum_{n \in I^{*} \backslash\{0\}} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\|u n\|^{r+\delta}}, \quad x \in F_{\mathbb{R}} / I, u \in U_{\mathbb{R}} .
$$

Theorem 5.5 (Hecke's formula) If $U \subset O_{F,+}^{\times}$is a subgroup of finite index and if $\forall \varepsilon \in U,(\varepsilon-1) \cdot x \in I$, which is equivalent to

$$
x I \in\left(F_{\mathbb{R}} / I\right)^{U},
$$

then

$$
\forall \varepsilon \in U, \quad g_{I}^{v}(x, \varepsilon u)=g_{I}^{v}(x, u) .
$$

Therefore we get

$$
\int_{U_{\mathbb{R}} / U} g_{I}^{v}(x, u) d u=\lim _{\delta \rightarrow 0^{+}} \sum_{n \in\left(I^{*} \backslash\{0\}\right) / U} e^{2 \pi i \operatorname{Tr}(n x)} \int_{U_{\mathbb{R}}} \frac{1}{\|u n\|^{r+\delta}} d u .
$$

By the Hecke transform, we obtain

$$
\int_{U_{\mathbb{R}} / U} g_{I}^{v}(x, u) d u=\frac{2^{r-1} \Gamma(1 / 2)^{r}}{\Gamma(r / 2)} \lim _{\delta \rightarrow 0^{+}} \sum_{n \in\left(I^{*} \backslash\{0\} / U\right)} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{\prod_{j=1}^{r}\left|n_{j}\right|^{(r+\delta) / r}} .
$$

Note that

$$
N(n)=N_{F / \mathbb{Q}}(n)=\prod_{j=1}^{r} n_{j},
$$

hence

$$
\int_{U_{\mathbb{R}} / U} g_{I}^{v}(x, u) d u=\frac{2^{1-r} \Gamma(1 / 2)^{r}}{r \Gamma(r / 2)} \lim _{\delta \rightarrow 0^{+}} \sum_{n \in\left(I^{+} \backslash\{0\}\right) / U} \operatorname{sgn}(n)^{v} \frac{e^{2 \pi i \operatorname{Tr}(n x)}}{|N(n)|^{(r+\delta) / r}} .
$$

It is esay to see that the Hecke transform of the basic plectic Green function with signature delivers a linear combination of special values $L\left(1, \chi_{F}\right)$ for certain Dirichlet characters χ_{F} of F of signature v.

Remark 5.6 From the above theorem, we can see that the Hecke transform can give a natural reinterpretation of Hecke's formula. That is why such a formula is called by Nekovăr̆ and Scholl the Hecke transform.

For any given graph Γ and given multiple-signs v, the Hecke transform of the higher plectic Green function $\mathscr{I}_{I, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)$ is quite interesting. More revelent details will be presented in the next section.

5.2 Reciprocity formula for the Hecke transform

From the expression of the Hecke transform, we observe that when the degree of F is bigger, the higher plectic Green function(current) associated to a given graph becomes more compliqued. However we can always reduce to the case that the rank of the given graph is smaller than the degree of F, due to the duality given by the following formula.

Let $L_{1}(u), \ldots, L_{d}(u)$ be linear forms, $u=\left(u_{1}, \ldots, u_{r}\right)$

$$
L_{i}(u)=\sum_{j=1}^{r} L_{i j} u_{j}, \quad L_{i j}>0 .
$$

The dual linear forms

$$
L_{j}^{\star}(t)=\sum_{i=1}^{d} L_{i j} t_{i} .
$$

such that

$$
\sum_{i=1}^{d} L_{i}(u) t_{i}=\sum_{j=1}^{r} L_{j}^{\star}(t) u_{j} .
$$

Definition 5.7 Denote $U_{\mathbb{R}}=\left\{u=\left(u_{1}, \ldots, u_{r}\right) \mid u_{1} \cdots u_{r}=1, u_{j}>0\right\}$, we define

$$
{ }_{d} I_{r}\left(\left\{L_{i}\right\},\left\{\alpha_{i}\right\},\left\{\beta_{j}\right\}\right)=\int_{U_{\mathbb{R}}} \prod_{i=1}^{d} L_{i}(u)^{-\alpha_{i}} \prod_{j=1}^{r} u_{j}^{\beta_{j}} d^{\times} u
$$

Proposition 5.8 (Reciprocity formula for the Hecke transform) [14]

$$
\frac{1}{d}\left(\prod_{i=1}^{d} \Gamma\left(\alpha_{i}\right)\right)\left({ }_{d} I_{r}\left(\left\{L_{i}\right\},\left\{\alpha_{i}\right\},\left\{\beta_{j}\right\}\right)\right)=\frac{1}{r}\left(\prod_{j=1}^{r} \Gamma\left(\beta_{j}^{*}\right)\right)\left(r I_{d}\left(\left\{L_{j}^{*}\right\},\left\{\beta_{j}^{*}\right\},\left\{\alpha_{i}^{*}\right\}\right)\right),
$$

where

$$
\beta_{j}^{*}=\beta_{j}+\frac{|\alpha|-|\beta|}{r}, \quad|\alpha|=\sum_{i=1}^{k} \alpha_{i}, \quad|\beta|=\sum_{j=1}^{r} \beta_{j} .
$$

Example 5.9 If $d=1, L_{1}(u)=\sum_{j=1}^{r} l_{j} u_{j}, l_{j}>0 . \beta_{j}^{*}=\beta_{j}+\frac{\alpha-|\beta|}{r} ; L_{j}^{*}(t)=l_{j} t$. Then by the reciprocity formula, we obtain

$$
\int_{U_{\mathbb{R}}} L_{1}(u)^{-\alpha} \prod_{j=1}^{r} u_{j}^{\beta_{j}} d^{\times} u=\frac{1}{r \Gamma(\alpha)} \prod_{j=1}^{r} \frac{\Gamma\left(\beta_{j}^{*}\right)}{l_{j}^{\beta_{j}^{*}}} .
$$

If $\beta_{j}=0, \forall 1 \leq j \leq r$, then

$$
\int_{U_{\mathbb{R}}} L_{1}(u)^{-\alpha} d^{\times} u=\frac{\Gamma(\alpha / r)^{r}}{r \Gamma(\alpha)}\left(l_{1} \cdots l_{r}\right)^{-\alpha / r} .
$$

Example 5.10 If $d=2, \beta_{j}=0$, for all j, then $\beta_{j}^{*}=\frac{\alpha_{1}+\alpha_{2}}{r}$. The reciprocity formula gives us

$$
\int_{U_{\mathbb{R}}} L_{1}(u)^{-\alpha_{1}} L_{2}(u)^{-\alpha_{2}} d^{\times} u=\frac{2 \Gamma\left(\frac{\alpha_{1}+\alpha_{2}}{2}\right)^{r}}{r \Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \int_{\mathbb{R}_{+}}\left(\prod_{j=1}^{r}\left(L_{1 j} s+L_{2 j} s^{-1}\right)^{-\frac{\alpha_{1}+\alpha_{2}}{r}}\right) s^{\alpha_{1}-\alpha_{2}} d^{\times} s .
$$

Relation to Higher Plectic Green functions. In our definition of higher plectic Green function, we use the standard Euclidean norm. Now we will explain how to apply the reciprocity formula to study higher plectic Green functions.

Let $\lambda^{(i)}=\left(\lambda_{1}^{(i)}, \cdots, \lambda_{r}^{(i)}\right) \in \mathbb{R}_{+}^{r}, 1 \leq i \leq d$. If we take $L_{i}(u)=\sum_{j=1}^{r}\left(\lambda_{j}^{(i)}\right)^{2} u_{j}$ and $L_{j}^{*}(s)=\sum_{i=1}^{k}\left(\lambda_{j}^{(i)}\right)^{2} s_{i}$,

$$
L_{i}\left(u^{2}\right)=\sum_{j=1}^{r}\left(\lambda_{j}^{(i)}\right)^{2} u_{j}^{2}=\left\|\lambda^{(i)} u\right\|^{2} .
$$

The following integral appears naturally in the definition of higher plectic Green function associated to a general graph:

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{d}\left\|\lambda^{(i)} u\right\|^{-r \sigma_{i}} d^{\times} u=\int_{U_{\mathbb{R}}} \prod_{i=1}^{d} L_{i}\left(u^{2}\right)^{-r \sigma_{i} / 2} d^{\times} u .
$$

Since $d^{\times}\left(u^{2}\right)=2^{r-1} d^{\times} u$, then

Formula 5.11

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{d}\left\|\lambda^{(i)} u\right\|^{-r \sigma_{i}} d^{\times} u=2^{1-r} \int_{U_{\mathbb{R}}} \prod_{i=1}^{d} L_{i}(u)^{-r \sigma_{i} / 2} d^{\times} u .
$$

Again by the reciprocity formula, we obtain

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{d}\left\|\lambda^{(i)} u\right\|^{-r \sigma_{i}} d^{\times} u=\frac{d}{2^{r-1} r} \frac{\Gamma\left(\frac{\sigma_{1}+\cdots+\sigma_{r}}{2}\right)}{\prod_{i=1}^{d} \Gamma\left(r \sigma_{i} / 2\right)} \int_{s_{1} \cdots s_{k}=1}\left(\prod_{j=1}^{r} L_{j}^{*}(s)\right)^{-\frac{\sigma_{1}+\cdots+\sigma_{r}}{2}} \prod_{i=1}^{d} s_{i}^{r \sigma_{i} / 2} d^{\times} s
$$

Example $5.12 d=1$. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$, then

$$
\int_{U_{\mathbb{R}}}\|\lambda u\|^{-r \sigma} d^{\times} u=\frac{\Gamma(\sigma / 2)^{r}}{2^{r-1} r \Gamma(r \sigma / 2)} \frac{1}{\left(\lambda_{1} \cdots \lambda_{r}\right)^{\sigma}}=\frac{\Gamma(\sigma / 2)^{r}}{2^{r-1} r \Gamma(r \sigma / 2)} N(\lambda)^{-\sigma} .
$$

This result has already been seen in Theoem 5.5 of the Hecke formula.
Example 5.13 (1) $d=2, L_{j}^{\star}(s)=\left(\lambda_{j}^{(1)}\right)^{2} s+\left(\lambda_{j}^{(2)}\right)^{2} s^{-1}$.

$$
\int_{U_{\mathbb{R}}}\left\|\lambda^{(1)} u\right\|^{-r \sigma_{1}}\left\|\lambda^{(2)} u\right\|^{-r \sigma_{2}} d^{\times} u=\frac{\Gamma\left(\frac{\sigma_{1}+\sigma_{2}}{2}\right)}{2^{r-2} r \Gamma\left(r \sigma_{1} / 2\right) \Gamma\left(r \sigma_{2} / 2\right)} \int_{\mathbb{R}_{+}}\left(\prod_{j=1}^{r}\left(\left(\lambda_{j}^{(1)}\right)^{2} s+\left(\lambda_{j}^{(2)}\right)^{2} s^{-1}\right)\right)^{-\frac{\sigma_{1}+\sigma_{2}}{2}} s^{r\left(\sigma_{1}-\sigma_{2}\right) / 2} d^{\times} s
$$

(2) If $r=2, F$ is a real quadratic field.

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{d}\left\|\lambda^{(i)} u\right\|^{-2 \sigma_{i}} d^{\times} u=\frac{1}{2} \int_{U_{\mathbb{R}}} \prod_{i=1}^{d} L_{i}(u)^{-\sigma_{i}} d^{\times} u=\int_{\mathbb{R}_{+}} \prod_{i=1}^{d}\left(\left(\lambda_{1}^{(i)}\right)^{2} u+\left(\lambda_{2}^{(i)}\right)^{2} u^{-1}\right)^{-\sigma_{i}} d^{\times} u .
$$

From the two cases above, it is easy to observe the duality between $d=2$ and $r=2$, by the explicit expression of the two integrals. Therefore we can easily interchange d and r for getting the case of $d \geq r$.

Moreover, in next paragraph we will explain that we only need to take into account the case of $d=r$, thanks to a formula of Sczech generalizing Eisenstein's trick for $G L_{n}$.

5.3 Sczech's rational functions and Eisenstein cocycles

5.3.1 Introduction

R. Sczech [16] constructed a group cocycle Ψ on the unimodular group $G L_{n} \mathbb{Z}$, called the Eisenstein cocycle, which represents a nontrivial cohomology class in $H^{n-1}\left(G L_{n} \mathbb{Z}, M\right)$ with values in a function space M. Restricting Ψ on some subgroup W of totally positive units and evaluating the elements of M on W-invariant points, one get obtain a sequence of rational cohomology classes $\eta(b, f ; s) \in H^{n-1}(W, \mathbb{Q}), s=1,2, \ldots$ By evaluation on some fundamental cycle in $H_{n-1}(W, \mathbb{Z})$, these rational classes $\eta(b, f ; s)$ give rise to the numbers of partial zeta function associated with the ray class $b \bmod f$

$$
\zeta(b, f ; 1-s)=\sum_{a \equiv b(f)} N(a)^{-(1-s)}, \quad \operatorname{Re}(s)>1,
$$

where a runs over all integral ideals in the ring of integers O_{F} of a totally real field F, such that $a b^{-1}$ is a principal ideal generated by a totally positive number in the coset $1+f b^{-1}$. The Eisenstein cocycle Ψ is universal in the sense that it parametrizes all the special values of Hecke L-functions in every totally real number field of degree r, which are known to be either an algebraic number or an algebraic number times a power of π.

Sczech's construction begins with the rational function

$$
f(\xi)(x)=\frac{\operatorname{det}\left(\xi^{(1)}, \cdots, \xi^{(r)}\right)}{\left(x, \xi^{(1)}\right) \cdots\left(x, \xi^{(r)}\right)},
$$

where $x=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{R}^{r}$ is a row vector and $\xi^{(i)} \in \mathbb{R}^{r}$ are r nonzero column vectors and $\left(x, \xi^{(i)}\right)=$ $\sum x_{j} \xi_{j}^{(i)}$. This function is well-defined outside the hyperplanes $\left(x, \xi^{(i)}\right)=0$. Given a homogenous polynomial $P\left(X_{1}, \cdots, X_{r}\right)$, we apply the differential operator $P\left(-\partial_{x_{1}}, \cdots,-\partial_{x_{r}}\right)$ to $f(\xi)(x)$.

Definition 5.14 We define the general national function

$$
f(\xi)(P, x)=P\left(-\partial_{x_{1}}, \cdots,-\partial_{x_{r}}\right) f(\xi)(x),
$$

where $\partial_{x_{j}}$ denotes the partial derivative with respect to the variable x_{j}.
Sczech gave several elementary observations about this national function.
Lemma 5.15 [16]

$$
\sum_{i=0}^{r}(-1)^{i} f\left(\xi^{(0)}, \cdots, \widehat{\xi^{(i)}}, \cdots, \xi^{(r)}\right)=0 .
$$

For $A \in G L_{r}(\mathbb{R})$,

$$
\begin{gathered}
f\left(A \xi^{(1)}, \cdots, A \xi^{(r)}\right)(x)=\operatorname{det}(A) f\left(\xi^{(1)}, \cdots, \xi^{(r)}\right)(x A), \\
A f(\xi)=f(A \xi) .
\end{gathered}
$$

Formula 5.16

$$
P\left(-\partial_{x_{1}}, \cdots,-\partial_{x_{r}}\right) \sum_{i=0}^{r}(-1)^{i} f\left(\xi^{(0)}, \cdots, \widehat{\xi^{(i)}}, \cdots, \xi^{r}\right)(x)=0
$$

therefore

$$
\sum_{i=0}^{r}(-1)^{i} f\left(\xi^{(0)}, \cdots, \widehat{\xi^{(i)}}, \cdots, \xi^{(r)}\right)(P, \cdot)=0 .
$$

In fact, we will recover the Eisenstein trick from the above formulas in the case $r=2$. Now we will explain the relation between Sczech's rational function $f(\xi)(x)$ and our higher plectic Green function $\mathscr{G}_{1, v, \Gamma, S}\left(\left\{x_{v}\right\}_{v \in S}, u\right)$, and will explain how to reduce to the case of $d=r$ of the integral

$$
\begin{equation*}
\int_{U_{\mathbb{R}}} \prod_{i=1}^{d}\left\|\lambda^{(i)} u\right\|^{-r \sigma_{i}} d^{\times} u=2^{1-r} \int_{U_{\mathbb{R}}} \prod_{i=1}^{d} L_{i}(u)^{-r \sigma_{i} / 2} d^{\times} u \tag{5}
\end{equation*}
$$

as we have mentioned at the end of previous section.
We always assume that $r \sigma_{i} / 2 \in \mathbb{N}$ for all $1 \leq i \leq d$. So if $r \in 2 \mathbb{N}$, then $\sigma_{i} \in \mathbb{N}$; if $r \in 2 \mathbb{N}+1$, then $\sigma_{i} \in 2 \mathbb{N}_{+}$.

Before that, we will give a more general definition of Sczech's rational function.
Definition 5.17 Let $\underline{a}=\left(a_{1}, \cdots, a_{r}\right) \in \mathbb{N}_{+}^{r}, b \in \mathbb{N}_{+}$. We define

$$
f(\xi)(x ; \underline{a}, b)=\frac{\left(\operatorname{det}\left(\xi^{1}, \cdots, \xi^{r}\right)\right)^{b}}{\left(x, \xi^{1}\right)^{a_{1} \ldots\left(x, \xi^{r}\right)^{a_{r}}}}
$$

In fact, we can show that $f(\xi)(x ; \underline{a}, b)$ can be realized as $f(\xi)\left(P_{l}, x\right)$ for a carefully chosen homogenous polynomial P_{l}.

First of all, we will consider the simple case when $r=2$.
Example 5.18 We define two homogenous polynomials of degree 2.

$$
\begin{aligned}
& P_{1 ; \xi}\left(X_{1}, X_{2}\right)=\xi_{2}^{(2)} X_{1}-\xi_{1}^{(2)} X_{2}, \\
& P_{2 ; \xi}\left(X_{1}, X_{2}\right)=\xi_{1}^{(1)} X_{2}-\xi_{2}^{(1)} X_{1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& f(\xi)\left(P_{1 ; \xi}, x\right)=P_{1 ; \xi}\left(-\partial_{x_{1}},-\partial_{x_{2}}\right) f(\xi)(x)=\frac{\left(\operatorname{det}\left(\xi^{(1)}, \xi^{(2)}\right)\right)^{2}}{\left(x, \xi^{(1)}\right)^{2}\left(x, \xi^{(2)}\right)}=f(\xi)(x ;(2,1), 2), \\
& f(\xi)\left(P_{2 ; \xi}, x\right)=P_{2 ; \xi}\left(-\partial_{x_{1}},-\partial_{x_{2}}\right) f(\xi)(x)=\frac{\left(\operatorname{det}\left(\xi^{(1)}, \xi^{(2)}\right)\right)^{2}}{\left(x, \xi^{(1)}\right)\left(x, \xi^{(2)}\right)^{2}}=f(\xi)(x ;(1,2), 2) .
\end{aligned}
$$

Therefore we obtain that

$$
\frac{P_{1 ; \xi}^{a_{1}}\left(-\partial_{x_{1}},-\partial_{x_{2}}\right)}{a_{1}!} \frac{P_{2 ; \xi}^{a_{2}}\left(-\partial_{x_{1}},-\partial_{x_{2}}\right)}{a_{2}!} f(\xi)(x)=\frac{\left(\operatorname{det}\left(\xi^{1}, \xi^{2}\right)\right)^{a_{1}+a_{2}+1}}{\left(x, \xi^{1}\right)^{a_{1}+1}\left(x, \xi^{2}\right)^{a_{2}+1}}=f(\xi)\left(x ;\left(a_{1}+1, a_{2}+1\right), a_{1}+a_{2}+1\right) .
$$

If we denote

$$
P_{a_{1}-1, a_{2}-1 ; \xi}\left(X_{1}, X_{2}\right)=\frac{P_{1}^{a_{1}-1}}{\left(a_{1}-1\right)!} \frac{P_{2}^{a_{2}-1}}{\left(a_{2}-1\right)!},
$$

then

$$
f(\xi)\left(x ;\left(a_{1}, a_{2}\right), a_{1}+a_{2}-1\right)=P_{a_{1}-1, a_{2}-1 ; \xi}\left(-\partial_{x_{1}}, \partial_{x_{2}}\right) f(\xi)(x)=f(\xi)\left(P_{a_{1}-1, a_{2}-1 ; \xi}, x\right)
$$

For general r. Let

$$
\xi=\left(\xi^{(1)}, \xi^{(2)}, \cdots, \xi^{(r)}\right)
$$

be the invertible matrix with columns $\xi^{(i)}$, then denote a new column vector $\left(y_{1}, \cdots, y_{r}\right)^{\top}$, where

$$
y_{l}=\frac{\operatorname{det}(\boldsymbol{\xi})}{\left(x, \boldsymbol{\xi}^{(1)}\right) \cdots\left(x, \boldsymbol{\xi}^{(l)}\right)^{2} \cdots\left(x, \boldsymbol{\xi}^{(r)}\right)} .
$$

We have a linear equation

$$
\xi \cdot\left(y_{1}, \cdots, y_{r}\right)^{\top}=\left(-\partial_{x_{1}} f(\xi)(x), \cdots,-\partial_{x_{r}} f(\xi)(x)\right)^{\top} .
$$

This equation has a unique solution, then we can a unique expression of each y_{l}, namely

$$
\begin{gathered}
\left(y_{1}, \cdots, y_{r}\right)^{\top}=\xi^{-1} \cdot\left(-\partial_{x_{1}} f(\xi)(x), \cdots,-\partial_{x_{r}} f(\xi)(x)\right)^{\top} . \\
\xi^{-1}=\frac{1}{\operatorname{det}(\xi)} C_{\xi}^{\top},
\end{gathered}
$$

where $C_{\xi}=\left(C_{\xi}(i j)\right)_{1 \leq i, j \leq r}$ is the adjoint matrix of ξ.
Therefore there exist r homogenous polynomials of degree 1

$$
P_{1 ; \xi}\left(X_{1}, \cdots, X_{r}\right), \ldots, P_{r ; \xi}\left(X_{1}, \cdots, X_{r}\right),
$$

where

$$
P_{l ; \xi}\left(X_{1}, \cdots, X_{r}\right)=\frac{C_{\xi}(1 l) X_{1}+\cdots+C_{\xi}(r l) X_{r}}{\operatorname{det}(\xi)}, \quad 1 \leq l \leq r .
$$

which depend on the matrix ξ and such that

$$
y_{l}=\frac{\operatorname{det}(\xi)}{\left(x, \xi^{1}\right) \cdots\left(x, \xi^{l}\right)^{2} \cdots\left(x, \xi^{r}\right)}=P_{l ; \xi}\left(-\partial_{x_{1}}, \cdots,-\partial_{x_{r}}\right) f(\xi)(x)=f(\xi)\left(P_{l ; \xi}, x\right), \quad \forall 1 \leq l \leq r .
$$

Continuing the calculation, denote

$$
P(\underline{X} ; \underline{a} ; \xi)=\frac{P_{1 ; \xi}^{a_{1}-1}(\underline{X})}{\left(a_{1}-1\right)!} \frac{P_{2 ; \xi}^{a_{2}-1}(\underline{X})}{\left(a_{2}-1\right)!} \cdots \frac{P_{r ; \xi}^{a_{r}-1}(\underline{X})}{\left(a_{r}-1\right)!},
$$

where $\underline{X}=\left(X_{1}, \cdots, X_{r}\right)$. Hence we obtain

Formula 5.19

$$
f(\xi)(x ; \underline{a}, 1)=\frac{\operatorname{det}(\xi)}{\left(x, \xi^{(1)}\right)^{a_{1}}\left(x, \xi^{(2)}\right)^{a_{2}} \ldots\left(x, \xi^{(r)}\right)^{a_{r}}}=P\left(-\partial_{x_{1}}, \cdots,-\partial_{x_{r}} ; \underline{a} ; \xi\right) f(\xi)(x) .
$$

Now we consider $r+1$ column vectors $\xi^{(0)}, \ldots, \xi^{(r)}$. By Lemma 5.15,

$$
(-1)^{i} f\left(\xi^{(0)}, \cdots, \widehat{\xi}^{(i)}, \cdots, \xi^{(r)}\right)(x)=0 .
$$

Denote the new matrix

$$
\xi^{\widehat{i}}=\left(\xi^{(0)}, \ldots, \widehat{\xi^{(i)}}, \ldots \xi^{(r+1)}\right)
$$

and apply the differential operator

$$
P\left(-\partial_{x_{1}}, \cdots,-\partial_{x_{r}} ; \underline{a} ; \xi^{\hat{0}}\right)
$$

on

$$
f\left(\xi^{(1)}, \cdots, \xi^{(r)}\right)(x)=\sum_{i=1}^{r}(-1)^{i+1} f\left(\xi^{(0)}, \ldots, \widehat{\xi}^{(i)}, \cdots, \xi^{(r)}\right)(x) .
$$

then
hence we obtain
Lemma 5.20
where $\underline{a}=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{N}_{+}^{r}$.
The right hand side of the formula in Lemma 5.20 can be written as a finite linear combination of

$$
(\text { Constant }) \times \frac{\operatorname{det}\left(\xi^{(\hat{i})}\right)}{\left.\left(x, \xi^{(0)}\right)^{b_{1} \ldots\left(x, \boldsymbol{\xi}^{(i)}\right.}\right)^{b_{i} \ldots\left(x, \xi^{(r)}\right)^{b_{r}}}}, \quad i \geq 1, \quad b_{i} \in \mathbb{N}_{+} .
$$

5.3.2 Sczech's rational function and higher plectic Green functions.

Now we denote $\left(\lambda^{(i)}\right)^{2}=\left(\left(\lambda_{1}^{(i)}\right)^{2}, \cdots,\left(\lambda_{r}^{(i)}\right)^{2}\right)^{\top} \in \mathbb{R}_{+}^{r}$ as a column vector and denote $\underline{\lambda}^{2}=\left(\left(\lambda^{(1)}\right)^{2}, \cdots,\left(\lambda^{(d)}\right)^{2}\right) \epsilon$ $\operatorname{Mat}_{r \times d}\left(\mathbb{R}_{+}\right)$and $u=\left(u_{1}, \cdots, u_{r}\right) \in \mathbb{R}_{+}^{r}$ with $u_{1} \cdots u_{r}=1$ as a row vector. Hence

$$
L_{i}(u)=\sum_{j=1}^{r} u_{j}\left(\lambda_{j}^{(i)}\right)^{2}=\left(u,\left(\lambda^{(i)}\right)^{2}\right) .
$$

In general for the definition for our higher plectic Green function, we have

$$
\prod_{i=1}^{d} L_{i}(u)^{-r \sigma_{i} / 2}=\frac{1}{\prod_{i=1}^{d}\left(u,\left(\lambda^{(i)}\right)^{2}\right)^{r \sigma_{i} / 2}} .
$$

If $d=r$,

$$
\left.\prod_{i=1}^{r} L_{i}(u)^{-r \sigma_{i} / 2}=\frac{1}{\prod_{i=1}^{r}\left(u,\left(\lambda^{(i)}\right)^{2}\right)^{r \sigma_{i} / 2}}=\operatorname{det}\left(\left(\lambda^{(1)}\right)^{2}, \cdots,\left(\lambda^{(r)}\right)^{2}\right)\right)^{-1}\left(f\left(\underline{\lambda}^{2}\right)(u ; r / 2 \underline{\sigma}, 1)\right),
$$

where $\underline{\sigma}=\left(\sigma_{1}, \cdots, \sigma_{r}\right)$.
Moreover if $\sigma_{i}=\sigma \quad(\forall 1 \leq i \leq d=r)$, then

$$
\left.\prod_{i=1}^{r} L_{i}(u)^{-r \sigma / 2}=\operatorname{det}\left(\left(\lambda^{(1)}\right)^{2}, \cdots,\left(\lambda^{(r)}\right)^{2}\right)\right)^{-r \sigma / 2}\left(f\left(\underline{\lambda}^{2}\right)(u)\right)^{r}
$$

By the reciprocity of d and r, we can assume that $d \geq r$.

Now we will show that we can reduce to the case $d=r$.

Remark 5.21 There are several method to do such a reduction. We can do the reduction in a general setting, for arbitray linear forms $L_{i}(u)=\sum_{j=1}^{r} L_{i j} u_{j}, \quad 1 \leq i \leq d$ and for arbitary exponents $\underline{m}=\left(m_{1}, \ldots, m_{d}\right)$. However for now we will only focus on the reduction for $L_{i}(u)=\left(u,\left(\lambda^{(i)}\right)^{2}\right)$ and for $\underline{m}=(r / 2) \underline{\sigma}$ as in the begining of this section.
(1) Method I (a) If $d=r+1$.

$$
\prod_{i=1}^{r+1} L_{i}(u)^{-r \sigma_{i} / 2}=\frac{1}{\prod_{i=1}^{r+1}\left(u,\left(\lambda^{i}\right)^{2}\right)^{r \sigma_{i}}} .
$$

By Lemma 5.20, we have the following relation

$$
\frac{\operatorname{det}\left(\xi^{\hat{1}}\right)}{\left(x, \xi^{2}\right)^{a_{2}}\left(x, \xi^{3}\right)^{a_{3}} \cdots\left(x, \xi^{r+1}\right)^{a_{r+1}}}=\sum_{i=2}^{r+1}(-1)^{i} P\left(-\partial_{x_{1}}, \cdots,-\partial_{x_{r}} ; a ; \xi^{\hat{1}}\right) f\left(\xi^{1}, \cdots, \widehat{\xi}^{i}, \cdots, \xi^{r+1}\right)(x) .
$$

Take

$$
\xi=\underline{\lambda^{2}}, \quad x=u=\left(u_{1}, \cdots, u_{r}\right), \quad \underline{a}=(r / 2) \underline{\sigma^{0}}=(r / 2)\left(\sigma_{2}, \cdots, \sigma_{r+1}\right) .
$$

then we obtain

$$
\frac{\left.\operatorname{det}\left(\left(\lambda^{2}\right)^{2}, \cdots,\left(\lambda^{r+1}\right)^{2}\right)\right)}{\prod_{i=2}^{r+1}\left(u,\left(\lambda^{i}\right)^{2}\right)^{r \sigma_{i} / 2}}=\sum_{i=2}^{r+1}(-1)^{i} P\left(-\partial_{u_{1}}, \cdots,-\partial_{u_{r}} ;(r / 2) \underline{\sigma^{0}} ;\left(\lambda^{2}\right)^{\hat{1}}\right) f\left(\left(\lambda^{1}\right)^{2}, \cdots, \overline{\left(\lambda^{i}\right)^{2}}, \cdots,\left(\lambda^{r+1}\right)^{2}\right)(u) .
$$

Therefore

$$
\prod_{i=1}^{r+1} L_{i}(u)^{\frac{-r \sigma_{i}}{2}}=\sum_{i=2}^{r+1}(-1)^{i} \frac{1}{\left.\operatorname{det}\left(\left(\lambda^{2}\right)^{2}, \cdots,\left(\lambda^{r+1}\right)^{2}\right)\right)} \frac{P\left(-\partial_{u_{1}}, \cdots,-\partial_{u_{r}} ; \frac{r}{2} \underline{\sigma^{0}} ;\left(\underline{\lambda^{2}}\right)^{\hat{1}}\right) f\left(\left(\lambda^{1}\right)^{2}, \cdots, \overline{\left(\lambda^{i}\right)^{2}}, \cdots,\left(\lambda^{r+1}\right)^{2}\right)(u)}{\left(u,\left(\lambda^{1}\right)^{2}\right)^{\frac{\sigma \cdot l_{1}}{2}}} .
$$

Now combining with Formula 5.11 and 5, we have

$$
\left.\int_{U_{\mathbb{R}}} \prod_{i=1}^{r+1}\left\|\lambda^{(i)} u\right\|^{-r \sigma_{i}} d^{\times} u=2^{1-r} \sum_{i=2}^{r+1}(-1)^{i} \int_{U_{\mathbb{R}}} \frac{P\left(-\partial_{u_{1}}, \cdots,-\partial_{u_{r}} ; \frac{r}{2} \underline{\sigma}^{0} ;\left(\lambda^{2}\right)^{\hat{1}}\right) f\left(\left(\lambda^{1}\right)^{2}, \cdots, \overline{\left(\lambda^{i}\right)^{2}}, \cdots,\left(\lambda^{r+1}\right)^{2}\right)(u)}{\left(u,\left(\lambda^{1}\right)^{2}\right)^{\frac{r_{0}}{2}}} \operatorname{det}\left(\left(\lambda^{2}\right)^{2}, \cdots,\left(\lambda^{r+1}\right)^{2}\right)\right) .
$$

It is easy to see that RHS is a finite linear combination of case $d=r$.

(b) If $d>r+1$.

It is not difficult to obtain the same result by induction using $(d-r)$ times Lemma 5.20.
More precisely,

$$
\begin{equation*}
\frac{1}{\left(u,\left(\lambda^{(1)}\right)^{2}\right)^{r \sigma_{1}}\left(u,\left(\lambda^{(2)}\right)^{2}\right)^{r \sigma_{2} \ldots}\left(u,\left(\lambda^{(d-r-1)}\right)^{2}\right)^{r \sigma_{d-r-1}} \underbrace{\left.\left.\left(u,\left(\lambda^{(d-r)}\right)^{2}\right)^{r \sigma_{d-r}}\left(u,\left(\lambda^{(d-r+1)}\right)^{2}\right)^{r \sigma_{d-r+1} \ldots\left(u,\left(\lambda^{(d)}\right.\right.}\right)^{2}\right)^{r \sigma_{d}}}, ., ~}, \tag{1}
\end{equation*}
$$

(2)
where $q=d-r$. The symbol (1) means the i-th use of Sczech's formula in Lemma 5.20.
For example (1):

$$
\begin{gathered}
\frac{1}{\left.\left.\left(u,(\lambda(d-r))^{2}\right)^{r \sigma_{d-r} \cdots(u,(\lambda(d)}\right)^{2}\right)^{r \sigma_{d}}} \\
=\sum_{i_{1}=d-r+1}^{d}(-1)^{i_{1}+d-r+1} \frac{P\left(-\partial_{u_{1}}, \cdots,-\partial_{u_{r} ;} r \underline{\sigma}^{(d-r)} ;\left(\underline{\lambda^{2}}\right)^{[d-r, d]}\right) f\left(\left(\lambda^{(d-r)}\right)^{2}, \cdots,\left(\overline{\left.\lambda^{\left(i_{1}\right)}\right)^{2}}, \cdots,\left(\lambda^{(d)}\right)^{2}\right)(u)\right.}{\left(u,(\lambda(d-r))^{2}\right)^{r \sigma_{d-r} \operatorname{det}\left(\left(\lambda^{(d-r)}\right)^{2}, \cdots,(\lambda(d))^{2}\right)}}
\end{gathered}
$$

where

$$
\left(\underline{\lambda^{2}}\right)^{[d-r, d]}=\left(\left(\lambda^{(d-r)}\right)^{2}, \ldots,\left(\lambda^{(d)}\right)^{2}\right)
$$

$$
\underline{\sigma}^{(d-r)}=\left(\sigma_{d-r+1}, \sigma_{d-r+2}, \ldots, \sigma_{d}\right) \in \mathbb{N}_{+}^{r} .
$$

It is easy to see that we can continue this process and obtain the conclusion, we have reduced the case from $d>r$ to $d=r$.

Remark 5.22 Even though, this method can give a resolution for the reduction. But it increases the complexity of calculation of Hecke transform. Now we will the second method, which simply bases on Sczech's cocycle relation.
(2) Method II

Definition 5.23 Let $L_{i}(u)=\sum_{j}^{r} L_{i j} u_{j}, 1 \leq i \leq d$ be linear forms defined as before. We define

$$
L(\underline{k} ; d)=\frac{1}{\prod_{i=1}^{d} L_{i}(u)^{k_{i}}},
$$

where

$$
\underline{k}=\left(k_{1}, \cdots, k_{d}\right) \in \mathbb{N}^{r} .
$$

If we denote $L_{i}=\left(L_{i 1}, \cdots, L_{i r}\right)^{\top}$ a column vector and denote $\underline{L}=\left(L_{1}, \cdots, L_{d}\right) \in \operatorname{Mat}_{r \times d}(\mathbb{R})$ as a matrix. By Lemma 5.15, we have

Formula 5.24

$$
L\left(\underline{\underline{r}}^{\widehat{r+1}}(r+1) ; r+1\right)=\sum_{i=1}^{r}(-1)^{i-1} \frac{\operatorname{det}\left(\underline{L}^{\hat{i}}\right)}{\operatorname{det}\left(\underline{(}^{r+1}\right)} L\left(\underline{1}^{\hat{i}}(r+1) ; r+1\right),
$$

where

$$
\underline{k^{\hat{i}}}(r+1)=\left(k_{1}, \cdots, \widehat{k_{i}}, \cdots, k_{r+1}\right),
$$

and

$$
\underline{1}=(\underbrace{1, \cdots, 1}_{r+1}), \quad \underline{1}^{\hat{i}}=(1, \cdots, \underbrace{0}_{i^{h}}, \cdots, 1),
$$

and

$$
\underline{L}^{\hat{i}}=\left(L_{1}, \cdots, \widehat{L_{i}}, \cdots, L_{r+1}\right) \in M a t^{r \times r}(\mathbb{R}), \quad 1 \leq i \leq r+1 .
$$

Definition 5.25 (Coefficient Field) We define the field

$$
K(L)=\mathbb{Q}\left(L_{i j}\right), 1 \leq i \leq r+1,1 \leq j \leq r .
$$

Then it is easy to see that

$$
\frac{\operatorname{det}\left(\underline{L}^{\hat{i}}\right)}{\operatorname{det}\left(\underline{S}^{\tilde{r+1}}\right)} \in K(L)
$$

If $d>r$.

$$
L(\underline{m} ; d) L(\underline{n} ; d)=L(\underline{m}+\underline{n} ; d), \quad \underline{m}, \underline{n} \geq \underline{0} .
$$

Define

$$
\underline{1}_{(r, d)}=(\underbrace{1, \cdots, 1}_{r}, \underbrace{0, \cdots, 0}_{d-r}),
$$

then

$$
L\left(\underline{k}+\underline{1}_{(r, d)} ; d\right)=L\left(\underline{1}_{(r, d)} ; d\right) L(\underline{k} ; d),
$$

namely

$$
L\left(k_{1}+1, \cdots, k_{r}+1, k_{r+1}, \cdots, k_{d} ; d\right)=L(\underbrace{1, \cdots, 1}_{r}, 0, \cdots, 0 ; d) L\left(k_{1}, \cdots, k_{d} ; d\right) .
$$

By Formula 5.24, we obtain
$L\left(k_{1}+1, \cdots, k_{r}+1, k_{r+1}, \cdots, k_{d} ; d\right)=\sum_{i=1}^{r}(-1)^{i-1} \frac{\operatorname{det}\left(\underline{L}^{\hat{i}}\right)}{\operatorname{det}\left(\underline{L}^{r+1}\right)} L\left(k_{1}+1, \cdots, k_{i-1}+1, k_{i}, k_{i+1}+1, \cdots, k_{r+1}+1, k_{r+2}, \cdots, k_{d}\right)$,
namely

$$
L\left(\underline{k}+\underline{1}_{r, d} ; d\right)=\sum_{i=1}^{r}(-1)^{i-1} \frac{\operatorname{det}\left(\underline{L}^{\hat{i}}\right)}{\operatorname{det}\left(\underline{L}^{r+1}\right)} L\left(\underline{k}+\underline{1}_{(r+1, d)}^{\hat{i}} ; d\right),
$$

with

$$
\underline{L}^{\hat{i}}=\left(L_{1}, \cdots, \widehat{L_{i}}, \cdots, L_{r+1}\right) \in M a t_{r \times r}(\mathbb{R}), \quad 1 \leq i \leq r+1,
$$

and

$$
\underline{1}_{(r+1, d)}^{\hat{i}}=(\underbrace{1, \cdots, 1, \overbrace{0}^{i}, 1, \cdots, 1}_{r+1}, 0, \cdots, 0) .
$$

If we denote

$$
\underline{m}=\underline{k}+\underline{1}_{(r, d)}, \quad \delta_{i}=(0, \cdots 0, \underbrace{1}_{i}, 0, \cdots 0),
$$

then

$$
\underline{m}+\delta_{r+1}-\delta_{i}=\underline{k}+\underline{1}_{r+1, d}^{\hat{i}} .
$$

If $\underline{m} \geq \underline{1}_{r, d}$, then we obtain

$$
L(\underline{m} ; d)=\sum_{i=1}^{r}(-1)^{i-1} \frac{\operatorname{det}\left(\underline{L}^{\hat{i}}\right)}{\operatorname{det}\left(\underline{L}^{r+1}\right)} L\left(\underline{m}+\delta_{r+1}-\delta_{i} ; d\right) .
$$

Continuously, if $\underline{m^{(1), i}}=\underline{m}+\delta_{r+1}-\delta_{i} \geq \underline{1}_{r, d}(1 \leq i \leq r)$, then

$$
L\left(\underline{m}^{(1), i} ; d\right)=\sum_{j=1}^{r}(-1)^{i-1} \frac{\operatorname{det}\left(\underline{L}^{\hat{j}}\right)}{\operatorname{det}\left(\underline{L}^{r+1}\right)} L\left(\underline{m}^{(1), i}+\delta_{r+1}-\delta_{j} ; d\right) .
$$

Define

$$
\operatorname{Supp}(\underline{m})=\left\{i \mid m_{i} \neq 0\right\} .
$$

It is easy to observe that during the procedure of applying the cocycle relation from Lemma 5.15, the norm of \underline{m} remains unchanged, which means that

$$
|\underline{m}|=\sum_{i=1}^{d} m_{i}=\left|\underline{m}+\delta_{r}-\delta_{i}\right|=\text { Constant },
$$

however, we have

$$
\operatorname{Supp}\left(\underline{m}+\delta_{r+1}-\delta_{i}\right) \subseteq \operatorname{Supp}(\underline{m}) .
$$

Proposition $5.26 d>r$ and all notations defined as before.
If $\underline{m}=\left(m_{1}, \cdots, m_{d}\right) \geq \underline{1}_{r, d}$ then the cocycle relation

$$
\begin{equation*}
L(\underline{m} ; d)=\sum_{i=1}^{r}(-1)^{i-1} \frac{\operatorname{det}\left(\underline{L}^{\hat{i}}\right)}{\operatorname{det}\left(\underline{\underline{r}}^{r+1}\right)} L\left(\underline{m}^{(1), i} ; d\right), \tag{6}
\end{equation*}
$$

implies

$$
\begin{gathered}
|\underline{m}|=\left|\underline{m}^{(1), i}\right| \\
m_{i}^{(1), i}=m_{i}-1 ; \quad m_{j}^{(1), i}=m_{j}, j \neq i, \\
\sum_{j=1}^{r} m_{j}^{(1), i}<\sum_{j=1}^{r} m_{j}
\end{gathered}
$$

And

$$
\sharp\left(\operatorname{Supp}\left(\underline{m}^{(1), i}\right)\right) \leq \sharp(\operatorname{Supp}(\underline{m})), \quad \forall 1 \leq i \leq r .
$$

After repeating l-times the cocycle relation, we have

$$
\begin{equation*}
L\left(\underline{m}^{(l), i_{l}} ; d\right)=\sum_{i_{l+1}=1}^{r} C_{i_{l+1}} L\left(\underline{m}^{(l), i_{l}}+\delta_{r+1}-\delta_{i_{l+1}} ; d\right), \tag{7}
\end{equation*}
$$

where the constant

$$
C_{i_{l+1}}=(-1)^{i_{l+1}-1} \frac{\operatorname{det}\left(L_{1}, \cdots, \widehat{L}_{i_{l+1}}, \cdots, L_{r+1}\right)}{\operatorname{det}\left(L_{1}, \cdots, \widehat{L}_{i_{i}}, \cdots, L_{r+1}\right)}
$$

depends only on the coefficients of linear forms L_{i} and

$$
\begin{gathered}
\underline{m}^{(l+1), i_{l+1}}=\underline{m}^{(l), i_{l}}+\delta_{r+1}-\delta_{i_{l+1}}, \\
\left|\underline{m}^{(l+1), i_{l+1}}\right|=\left|\underline{m}^{(l), i_{l}}\right|
\end{gathered}
$$

There exists a finite l, such that

$$
\sharp\left(\operatorname{Supp}\left(\underline{m}^{(l), i_{l}}\right)\right)=\sharp(\operatorname{Supp}(\underline{m}))-1 .
$$

Proof 5.3.1 The proof is straight forward from repeating Sczech's cocylce relation. Now we will try to explain the procedure. If we only focus on the changement of powers of L_{i}, then the cocylc relation (6) can be translated into

$$
\underline{m}=\left(m_{1}, \cdots, m_{r}, m_{r+1}, m_{r+2}, \cdots, m_{d}\right) \longrightarrow\left\{\begin{array}{l}
\underline{m}^{(1), 1}=\left(m_{1}-1, m_{2}, \cdots, m_{r}, m_{r+1}+1, m_{r+2}, \cdots, m_{d}\right) \\
\underline{m}^{(1), 2}=\left(m_{1}, m_{2}-1, m_{3}, \cdots, m_{r}, m_{r+1}+1, m_{r+2}, \cdots, m_{d}\right) \\
\cdots \\
\underline{m}^{(1), i}=\left(m_{1}, \cdots, m_{i-1}, m_{i}-1, m_{i+1}, \cdots, m_{r}, m_{r+1}, m_{r+2}, \cdots, m_{d}\right) \\
\cdots \\
\underline{m}^{(1), r}=\left(m_{1}, \cdots, m_{r-1}, m_{r}-1, m_{r+1}+1, m_{r+2}, \cdots, m_{d}\right)
\end{array}\right.
$$

The cocyle relation 7 can also be written as

$$
\underline{m}^{(l), i_{l}}=\left(m_{1}^{(l), i_{l}}, \cdots, m_{r}^{(l), i_{l}}, m_{r+1}+l, \cdots, m_{d}\right) \longrightarrow
$$

$$
\longrightarrow\left\{\begin{array}{l}
\underline{m}^{(l+1), 1}=\left(m_{1}^{(l), i_{l}}-1, m_{2}^{(l), i_{l}}, \cdots, m_{r}^{(l), i_{l}}, m_{r+1}+l+1, m_{r+2}, \cdots, m_{d}\right) \\
\underline{m}^{(l+1), 2}=\left(m_{1}^{(l), i_{l}}, m_{2}^{(l), i_{l}}-1, m_{3}^{(l), i_{l}}, \cdots, m_{r}^{(l), i_{l}}, m_{r+1}+l+1, m_{r+2}, \cdots, m_{d}\right) \\
\cdots \\
\underline{m}^{(l+1), i_{l+1}}=\left(m_{1}^{(l), i_{l}}, \cdots, m_{i_{l+1}-1}^{(l), i_{l}}, m_{i_{l+1}}^{(l), i_{l}}-1, m_{i_{l+1}+1}^{(l), i_{l}}, \cdots, m_{r}^{(l), i_{l}}, m_{r+1}+l+1, m_{r+2}, \cdots, m_{d}\right) \\
\cdots \\
\underline{m}^{(l), r}=\left(m_{1}^{(l), i_{l}}, \cdots, m_{r-1}^{(l), i_{l}}, m_{r}^{(l), i_{l}}-1, m_{r+1}+l+1, m_{r+2}, \cdots, m_{d}\right) \\
\quad m_{j}^{(l+1), i_{l+1}}=m_{j}^{(l), i_{l}}, \quad 1 \leq j \leq r, j \neq i_{l+1},
\end{array}\right.
$$

and

$$
m_{i_{l+1}}^{(l+1), i_{l+1}}=m_{i_{l+1}}^{(l), i_{l}}-1, \quad 1 \leq i_{l}, i_{l+1} \leq r,
$$

and

$$
\left|\underline{m}^{(l), i_{i}}\right|=\left|\underline{m}^{(l+1), i_{l+1}}\right|, \quad m_{r+1}^{(l), i_{l}}=m_{r+1}+l .
$$

Denote

$$
\begin{gathered}
m_{i_{0}}=\operatorname{Min}\left\{m_{i}, 1 \leq i \leq d\right\} . \\
m_{i_{0}}^{(l), i_{0}}=m_{i_{0}}^{(l-1), i_{0}}-1=m_{i_{0}}^{(l-2), i_{0}}-2=\cdots=m_{i_{0}}-l .
\end{gathered}
$$

Take $l_{0}=m_{i_{0}}$, then

$$
\begin{gathered}
m_{i_{0}}^{\left(l_{0}\right), i_{0}}=0, \\
\sharp\left(\operatorname{Supp}\left(\underline{m}^{\left(l_{0}\right), i_{0}}\right)\right)=\sharp(\operatorname{Supp}(\underline{m}))-1 .
\end{gathered}
$$

Based on Proposition 5.26, it is not difficult to obtain the following theorem
Theorem 5.27 (Reduction Theorem I) If $d>r$. There exist constants $C_{i_{1}, \cdots, i_{d-1}} \in K(L)$, such that

$$
L(\underline{m} ; d)=\frac{1}{\prod_{i=1}^{d} L_{i}(u)^{m_{i}}}=\sum_{\substack{1 \leq i_{1}, \cdots, i_{d-1} \leq d \\ i_{j}+i_{h}, j \neq h}} \frac{C_{i_{1}, \cdots, i_{d-1}}}{\prod_{h=1}^{d-1} L_{i_{h}}(u)^{m_{i_{h}}^{\prime}}},
$$

where i_{1}, \ldots, i_{d-1} runs through some possible choices of $(d-1)$ different elements from the set $\{1, \ldots, d\}$ and

$$
\sum_{i=1}^{d} m_{i}=\sum_{h=1}^{d-1} m_{i_{h}} .
$$

We can then deduce to obtain that there exist $C_{i_{1}, \cdots, i_{r}} \in K(L)$, such that

$$
L(\underline{m} ; d)=\frac{1}{\prod_{i=1}^{d} L_{i}(u)^{m_{i}}}=\sum_{\substack{1 \leq i_{1}, \cdots, i_{r} \leq d \\ i_{j} \neq i_{h}, j \neq h}} \frac{C_{i_{1}, \cdots, i_{r}}}{\prod_{h=1}^{r} L_{i_{h}}(u)^{m_{i_{h}}^{\prime}}} .
$$

where i_{1}, \ldots, i_{r} runs through some possible choices of (r) different elements from the set $\{1, \ldots, d\}$ and

$$
\sum_{i=1}^{d} m_{i}=\sum_{h=1}^{r} m_{i_{h}} .
$$

Proof 5.3.2 We can obtain this theorem by mathematical induction on the sum $\sum_{j=1}^{r} m_{j}$, using Proposition 5.26.

We can even give the exact expression of the coefficients $C_{i_{1}, \cdots, i_{r}} \in K(L)$ if in need. For this moment, we just write $C_{i_{1}, \cdots, i_{r}} \in K(L)$ as symbols. Let us see the following example.

Example 5.28 Let $r=2$, we consider

$$
\begin{gathered}
\frac{1}{L_{1}^{2}(u) L_{2}^{3}(u) L_{3}^{3}(u)} . \\
\frac{1}{L_{1}(u) L_{2}(u)}=\frac{C_{1}}{L_{1}(u) L_{3}(u)}-\frac{C_{2}}{L_{2}(u) L_{3}(u)},
\end{gathered}
$$

where

$$
C_{1}=\frac{\operatorname{det}\left(L_{1}, L_{3}\right)}{\operatorname{det}\left(L_{1}, L_{2}\right)}, \quad C_{2}=\frac{\operatorname{det}\left(L_{2}, L_{3}\right)}{\operatorname{det}\left(L_{1}, L_{2}\right)} .
$$

We have the following tree to illustrate the procedure of applying the cocycle relation,

on the left branch of the tree, (a, b, c) (which signifies $\left.\frac{1}{L_{1}^{a}(u) L_{2}^{b}(u) L_{3}^{c}(u)}\right) \longrightarrow(a-1, b, c+1)$ (which denotes $\left.\frac{1}{L_{1}^{a-1}(u) L_{2}^{b}(u) L_{3}^{c+1}(u)}\right)$ and the final fraction should be multiplied by $(-1) C_{2}$; on the right branch, $(a, b, c) \longrightarrow(a, b-1, c+1)$ and the final fraction should be multiplied by C_{1}. The i-depth of the tree describes the situation after i-times appliction of the cocyle relation. For example, the first depth of the tree gives us

$$
\frac{1}{L_{1}^{2}(u) L_{2}^{3}(u) L_{3}^{3}(u)}=C_{1} \frac{1}{L_{1}^{2}(u) L_{2}^{2}(u) L_{3}^{4}(u)}-C_{2} \frac{1}{L_{1}^{1}(u) L_{2}^{3}(u) L_{3}^{4}(u)} .
$$

In conclusion, we obtain
$\frac{1}{L_{1}^{2}(u) L_{2}^{3}(u) L_{3}^{3}(u)}=C_{1}^{3} \frac{1}{L_{1}^{2}(u) L_{3}^{6}(u)}+C_{2}^{2} \frac{1}{L_{2}^{3}(u) L_{3}^{5}(u)}-3 C_{1}^{3} C_{2} \frac{1}{L_{1}(u) L_{3}^{7}(u)}+3 C_{1}^{2} C_{2}^{2} \frac{1}{L_{2}(u) L_{3}^{7}(u)}+2 C_{1} C_{2}^{2} \frac{1}{L_{2}^{2}(u) L_{3}^{6}(u)}$.
Further reduction. It turns out that the essential part in the definition of Higer plectic Green function

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{d}\left\|\lambda^{(i)} u\right\|^{-r k_{i}} \mathrm{~d}^{\times} u=2^{1-r} \int_{U_{\mathbb{R}}} \prod_{i=1}^{d} L_{i}(u)^{-r k_{i} / 2} \mathrm{~d}^{\times} u
$$

can be written as a $K(L)$-valued finite linear combination of the following intergral

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{r} \frac{1}{L_{i}(u)^{r k_{i} / 2}} \mathrm{~d}^{\times} u,
$$

where we consider only the case $2 \mid r k_{i}, 1 \leq i \leq r$ and we always assume that $d \geq r$.

Now we will show that we can do further reduction, which means that we only need to do the calculation of

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{r} \frac{1}{L_{i}(u)} \mathrm{d}^{\times} u
$$

and its variant, where $L_{i}(u)=\sum_{j=1}^{r} L_{i j} u_{j}$. In order to obtain the result of abitary exponents of $L_{i}(u)$, we can simply apply some differential operators on the last integral.

Remark 5.29 For this further reduction, we will begin with a general setting, which means we can begin with $d \geq r$ linear forms with arbitary exponents and reduce to the case of trivial exponents. Our first reduction theorem built upon cocycle relations can give another point of view, and also make a connection with our traitement for $F=\mathbb{Q}$.

Definition 5.30 Let $\rho:\{1, \ldots, r\} \longrightarrow\{1, \ldots, d\}$ be a map. We define

$$
m_{\rho}=\prod_{i=1}^{d}\left(\sharp\left(\rho^{-1}(i)\right)\right)!,
$$

where $\sharp\left(\rho^{-1}(i)\right.$ is the multiplicity of i. Then we define differential operator

$$
D_{\rho}=\prod_{j=1}^{r}\left(-\frac{\partial}{\partial L_{\rho(j) j}}\right) m_{\rho}^{-1} .
$$

Let us see some examples.
Example 5.31 (1) If $d=r$ and

$$
\begin{gathered}
\rho_{1}:\{1, \ldots, r\} \longrightarrow\{1, \ldots, r\}, \\
\rho_{1}(j)=j,
\end{gathered}
$$

then the diagonal operator

$$
D_{\rho_{1}}=\prod_{j=1}^{r}\left(-\frac{\partial}{\partial L_{j j}}\right) .
$$

(2) If $\rho_{2}:\{1, \ldots, r\} \longrightarrow\{1, \ldots, d\}$,

$$
\rho_{2}(j)=1, \quad \forall j \in\{1, \cdots, r\},
$$

then

$$
D_{\rho_{2}}=\frac{1}{(r)!} \prod_{j=1}^{r}\left(-\frac{\partial}{\partial L_{1 j}}\right) .
$$

We see investigate the acition of differential operator D_{ρ} on $L(\underline{m} ; d)$.
Fixe a map $\rho:\{1, \ldots, r\} \longrightarrow\{1, \ldots, d\} \quad(d \geq r)$, and define the following set

$$
S_{\rho}=\rho(\{1, \ldots, r\}) \subseteq\{1, \ldots, d\} .
$$

Given the fraction

$$
L(\underline{m} ; d)=\prod_{i=1}^{d} \frac{1}{L_{i}^{m_{i}}(u)},
$$

where $\underline{m}=\left(m_{1}, \ldots, m_{d}\right)$. Then a direct calculation gives

Formula 5.32

$$
D_{\rho}(L(\underline{m} ; d))=\left(\prod_{i \nless S_{\rho}} \frac{1}{L_{i}^{m_{i}}(u)}\right)\left(\prod_{i \in S_{\rho}} \frac{\left(m_{i}+\sharp\left(\rho^{-1}(i)\right)-1\right)!}{\left(m_{i}-1\right)!\sharp\left(\rho^{-1}(i)\right)} \frac{1}{\left(L_{i}(u)\right)^{m_{i}+\sharp\left(\rho^{-1}(i)\right)}}\right) .
$$

Let us review Example 5.31.

$$
D_{\rho_{1}}\left(\prod_{i=1}^{r} \frac{1}{L_{i}(u)}\right)=\left(\prod_{i=1}^{r} \frac{1}{L_{i}^{2}(u)}\right),
$$

and

$$
D_{\rho_{2}}\left(\prod_{i=1}^{d} \frac{1}{L_{i}(u)}\right)=\frac{1}{L_{1}^{r+1}(u)}\left(\prod_{i=2}^{d} \frac{1}{L_{i}(u)}\right) .
$$

Theorem 5.27 guaranties Now the following theorem tells us only

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{r} \frac{1}{L_{i}(u)} \mathrm{d}^{\times} u
$$

with trivial exponents is sufficient for our calculation of higher plectic Green function.
Theorem 5.33 (Reduction Theorem II)
Fixe

$$
L(\underline{m} ; r)=\prod_{i=1}^{r} \frac{1}{\overline{L_{i}^{m_{i}}}(u)},
$$

where $\underline{m}=\left(r k_{1} / 2, \cdots, r k_{r} / 2\right), \underline{k}=\left(k_{1}, \cdots, k_{r}\right)$ and $r k_{i} / 2 \in \mathbb{N}_{+}$.
(1) If $2+r$ or If $2 \mid r$ and $|\underline{k}|$ is even. There exists a differential operator $D(\underline{m})$, composed by some D_{ρ}, such that up to some rational number

$$
D(\underline{m}) L\left(\underline{1}_{(r, r)} ; r\right)=L(\underline{m} ; r) .
$$

(2) If $2 \mid r$ and $|\underline{k}|$ is odd. Then exists a differential operator $D(\underline{m})$ composed by some D_{ρ}, such that up to some rational number

$$
D(\underline{m}) L\left(\underline{1}_{(r, r)}+\frac{r}{2} \delta_{i_{0}} ; r\right)=L(\underline{m} ; r) .
$$

Proof 5.3.3 If there exists $q \in \mathbb{N}_{+}$such that

$$
\sum_{i=1}^{r}\left(m_{i}-1\right)=|\underline{m}|-r=r q,
$$

then we can find q differential operators $D_{j_{1}, \cdots, j_{r}}^{j}, 1 \leq j \leq q$,

$$
\frac{\Pi\left(n_{j_{i}}\right)!}{\Pi\left(n\left(j_{i}\right)-1\right)!} D^{1} \cdots D^{q}\left(L\left(\underline{1}_{(r, r)} ; r\right)\right)=L(\underline{m} ; r)
$$

where $n\left(j_{i}\right)$ is the multiplicity of j_{i} appearing in the q operators. We have the following equivalence

$$
|\underline{m}|-r=r q \quad \Longleftrightarrow \quad|\underline{m}|>\underline{1}_{(r, r)}, \quad r \mid(|\underline{m}|) .
$$

(1)If $2+r$ and we request that $r k_{i} / 2 \in \mathbb{N}_{+}$, then there exist $l_{i} \in \mathbb{N}_{+}$such that $k_{i} / 2=l_{i}$ and

$$
|\underline{m}|=\sum_{i=1}^{r} r k_{i} / 2=\sum_{i=1}^{r} r l_{i}=r\left(\sum_{i=1}^{r} l_{i}\right), \quad \Longrightarrow \quad r \mid(|\underline{m}|) .
$$

Therefore in this case, the theorem is proved.
If $2 \mid r$ and $|\underline{k}|$ is even. Let define

$$
S=\left\{i \mid k_{i} \in 2 \mathbb{N}_{+}+1\right\},
$$

then $|S|=s$ is even.
(1). If $i \notin S$, then k_{i} is even, then $k_{i}=2 l_{i}$, then

$$
\sum_{i \notin S} m_{i}=\sum_{i \notin S} r k_{i} / 2=\sum_{i \notin S} r l_{i}=r\left(\sum_{i \notin S} l_{i}\right),
$$

(2). If $i \in S$, then k_{i} is odd.

$$
\begin{gathered}
m_{i}=r k_{i} / 2=r\left(\frac{k_{i}+1}{2}\right)-\frac{r}{2}, \\
\sum_{i \in S} m_{i}=\sum_{i \in S} r k_{i} / 2=\sum_{i \in S} r\left(\frac{k_{i}+1}{2}\right)-\frac{r}{2} s=r\left(\sum_{i \in S}\left(\frac{k_{i}+1}{2}\right)-s / 2\right) .
\end{gathered}
$$

Finally, we have

$$
|\underline{m}|=\sum_{i=1}^{r} m_{i}=r\left(\sum_{i \notin S} l_{i}\right)+r\left(\sum_{i \in S}\left(\frac{k_{i}+1}{2}\right)-s / 2\right),
$$

which implies that

$$
r \mid(|\underline{m}|) .
$$

(2) If $2 \mid r$ and $|\underline{k}|$ is odd. In this case, $|S|=s=t+1\left(t \in 2 \mathbb{N}_{+}\right)$is odd and $\forall i \in S, k_{i} \in 2 \mathbb{N}_{+}+1$.

$$
\begin{gathered}
m_{i}=r k_{i} / 2=r\left(\frac{k_{i}-1}{2}\right)+\frac{r}{2}, \\
\sum_{i \in S} m_{i}=\sum_{i \in S} r k_{i} / 2=\sum_{i \in S} r\left(\frac{k_{i}-1}{2}\right)+\frac{r}{2} s=r\left(\sum_{i \in S}\left(\frac{k_{i}-1}{2}\right)+t / 2\right)+\frac{r}{2}
\end{gathered}
$$

and

$$
\sum_{i \notin S} m_{i}=\sum_{i \nless S} r k_{i} / 2=\sum_{i \notin S} r l_{i}=r\left(\sum_{i \notin S} l_{i}\right),
$$

so finally

$$
|\underline{m}|=r\left(\sum_{i \neq S} l_{i}+\sum_{i \in S}\left(\frac{k_{i}-1}{2}\right)+t / 2\right)+\frac{r}{2} .
$$

Let

$$
p=\left(\sum_{i \neq S} l_{i}+\sum_{i \in S}\left(\frac{k_{i}-1}{2}\right)+t / 2\right)-1,
$$

then there exist p differential operators $D_{j_{1}, \cdots, j_{r}}^{j}, 1 \leq j \leq p$, such that

$$
\prod\left(n_{j_{i}}\right)!\prod \frac{(r / 2)!}{\left(r / 2+n\left(j_{i}\right)\right)!} D^{1} \cdots D^{p}\left(L\left(\underline{1}_{(r, r)}+\frac{r}{2} \delta_{i_{0}} ; d\right)\right)=L(\underline{m} ; r),
$$

where $i_{0} \in S$.

Remark 5.34 In fact, by applying more differential operators, we can deduce to $i_{0}=r$. Moreover let define the differential operator

$$
D=\frac{1}{(r / 2)!}\left(-\frac{\partial}{\partial L_{r r}}\right)^{r / 2}
$$

then we have

$$
D\left(\frac{u_{r}^{r / 2}}{L_{1}(u) \cdots L_{r}(u)}\right)=L\left(\underline{1}_{(r, r)}+\frac{r}{2} \delta_{r} ; r\right)
$$

Example $5.35 r=2$.

$$
\begin{aligned}
& \frac{1}{3} D_{2,2} D_{1,2}\left(\frac{1}{L_{1}(u) L_{2}(u)}\right)=\frac{1}{L_{1}^{2}(u) L_{2}^{4}(u)} . \\
& \frac{2!}{4!} D_{2,2} D_{1,2}\left(\frac{1}{L_{1}(u) L_{2}^{2}(u)}\right)=\frac{1}{L_{1}^{2}(u) L_{2}^{5}(u)} .
\end{aligned}
$$

In the next section, we will give the details of the calculation, and therefore give an expression for higher plectic Green functions and generalized multiple zeta values for general totally real fields.

5.4 Generalized multiple zeta values for general $F(\mathbf{I})$: special cases

For a general F, already the Hecke transform in Definition 4.11 leads to non-trivial integral formulas. The resulting numbers are given by the usual L-values of F in the simplest possible case when Γ is a chain (thanks to Proposition 4.9). After that, everything turns out to be much more complicated than any naive attempt at defining MDZV would produce. For example, if F is a real quadratic field ($r=2$), then the terms of the infinite series defining $Z_{I}(\Gamma, S)$ do not necessarily involve only rational functions of the components of the $n_{e} \in I^{*}$, but sometimes also their logarithms. If F is a cubic field, there are also terms involving dilogarithm, and for higer rank field, some non-trivial iterated integrals make their appeareance.

Before illustrating how the Hecke transform produces these new functions, we will give a very vague version of our main theorem.

Theorem 5.36 (Main result over general totally real field-vague version) Let F be a totally real field of degree $[F: \mathbb{Q}]=r>1$. Given a graph and a subdivision map defined as before. By the reciprocity, we can assume the rank of the graph $d \geq r$. Moreover, we assume that if $2+r$, the subdivision map is given by $k_{e} \in 2 \mathbb{N}$ for each edge. According to the two reduction theorems Theorem 5.27 and Theorem 5.33 and Theorem 5.61, we have the following expression of our generalized multiple zeta value

$$
\mathscr{Z}_{I, v}(\Gamma, \partial \Gamma)=\sum_{\substack{\begin{subarray}{c}{n_{e} \in I^{*} \backslash\{0\} \\
\text { In=0 } \\
\operatorname{sgn}\left(n_{e}\right)=(-1)^{v}} }}\end{subarray}} \sum_{\substack{ \\
C(d, r)}} \sum_{1 \leq m \leq r-1} \sum_{j}\left(\alpha_{j}\left(n_{e}\right)\right) \mathscr{L}_{m}\left(\beta_{j}\left(n_{e}\right)\right),
$$

where $\mathscr{L}_{m}(\cdot)$ is an generalized m-logarithm which is a non-trivial iterated integral, and $\alpha_{j}\left(n_{e}\right)$ and $\beta_{j}\left(n_{e}\right)$ are rational functions of the conjugates of n_{e} with coefficients in \mathbb{Q} and the sum $\sum_{C(d, r)}$ comes from the reduction theorem. Every sum here is finite.

Calculation of a special integral.

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{r} \frac{1}{L_{i}(u)} \mathrm{d}^{\times} u
$$

where $U_{\mathbb{R}}=\left\{u=\left(u_{1}, \cdots, u_{r}\right) \in \mathbb{R}_{+}^{r} \mid u_{1} \cdots u_{r}=1\right\}$ and $\mathrm{d}^{\times} u=\frac{d u_{1} \cdots d u_{r-1}}{u_{1} \cdots u_{r-1}}$.
Since $u_{r}=\frac{1}{u_{1} \cdots u_{r-1}}$,

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{r} \frac{1}{L_{i}(u)} \mathrm{d}^{\times} u=\int_{\mathbb{R}_{+}^{r-1}} \prod_{i=1}^{r}\left(\frac{u_{1} \cdots u_{r-1}}{\sum_{j=1}^{r-1}\left(L_{i j}\left(u_{1} \cdots u_{j-1} u_{j}^{2} u_{j+1} \cdots u_{r-1}\right)\right)+L_{i r}}\right) \mathrm{d}^{\times} u
$$

Let us define

$$
y_{j}=u_{1} \cdots u_{j-1} u_{j}^{2} u_{j+1} \cdots u_{r-1}, \quad 1 \leq j \leq r-1 .
$$

Then

$$
y_{1} \cdots y_{r-1}=\left(u_{1} \cdots u_{r-1}\right)^{r}=u_{r}^{-r} .
$$

By a direct calcuration, we obtain

$$
\begin{gathered}
\mathrm{d}^{\times} y=\frac{d y_{1} \cdots d y_{r-1}}{y_{1} \cdots y_{r-1}}=r \mathrm{~d}^{\times} u . \\
\mathrm{d}^{\times} u=\frac{u_{r}^{r}}{r} d y,
\end{gathered}
$$

where $d y=d y_{1} \cdots d y_{r-1}$. We get
Formula 5.37 (Basic integral of the Hecke transform)

$$
I_{r}\left(L_{i}\right)=\int_{U_{\mathbb{R}}} \prod_{i=1}^{r} \frac{1}{L_{i}(u)} \mathrm{d}^{\times} u=\frac{1}{r} \int_{\mathbb{R}_{+}^{r-1}} \prod_{i=1}^{r} \frac{d y}{\sum_{j=1}^{r-1}\left(L_{i j} y_{j}\right)+L_{i r}} .
$$

Now let us first see some simple examples to find out how non-trival this integral is.

5.4.1 The case $r=2$.

$$
I_{2}=I_{2}\left(L_{i}\right)=\int_{U_{\mathbb{R}}} \frac{1}{L_{1}(u) L_{2}(u)} \mathrm{d}^{\times} u=\frac{1}{2} \int_{\mathbb{R}_{+}} \frac{d y}{\left(L_{11} y+L_{12}\right)\left(L_{21} y+L_{22}\right)} .
$$

Recall the Eisenstein trick
Lemma 5.38 Let V be a n-dimensional vector space, let $l_{0}, \ldots, l_{n} \in V^{*}$ be $n+1$ linear forms. Then $\forall x=\left(x_{1}, \ldots, x_{n}\right) \in V$, we have

$$
\sum_{i=0}^{n}(-1)^{i} \frac{\operatorname{det}\left(l_{0}, \ldots, \widehat{l}_{i}, \ldots, l_{n}\right)}{\prod_{j \neq i} l_{j}(x)}=0 .
$$

Theorem 5.39

$$
I_{2}=\frac{1}{2\left(L_{11} L_{22}-L_{21} L_{12}\right)}\left(\log \left(\frac{L_{11}}{L_{21}}\right)-\log \left(\frac{L_{12}}{L_{22}}\right)\right) .
$$

Proof 5.4.1 We will use the Eisenstein trick for the case

$$
l_{0}=0 \cdot y_{1}+y_{2}, \quad l_{1}=L_{11} y_{1}+L_{12} y_{2}, \quad l_{2}=L_{21} y_{1}+L_{22} y_{2}
$$

and take $y_{1}=y$ and $y_{2}=1$, then we obtain

$$
\frac{\operatorname{det}\left(L_{1}, L_{2}\right)}{\left(L_{11} y+L_{12}\right)\left(L_{21} y+L_{22}\right)}=\frac{L_{11}}{L_{11} y+L_{12}}-\frac{L_{21}}{L_{21} y+L_{22}}
$$

where $L_{1}=\left(L_{11}, L_{12}\right)$ and $L_{2}=\left(L_{21}, L_{22}\right)$. Then

$$
\begin{gathered}
\operatorname{det}\left(L_{1}, L_{2}\right) \int_{\mathbb{R}_{+}} \frac{d y}{\left(L_{11} y+L_{12}\right)\left(L_{21} y+L_{22}\right)}=\lim _{T \rightarrow \infty} \int_{0}^{T}\left(\frac{L_{11}}{L_{11} y+L_{12}}-\frac{L_{21}}{L_{21} y+L_{22}}\right) d y \\
=\lim _{T \rightarrow \infty}\left[\log \left(L_{11} y+L_{12}\right)-\log \left(L_{21} y+L_{22}\right)\right]_{0}^{T} \\
=\lim _{T \rightarrow \infty} \log \left(\frac{L_{11} T+L_{12}}{L_{21} T+L_{22}}\right)-\log \left(\frac{L_{12}}{L_{22}}\right)=\log \left(\frac{L_{11}}{L_{21}}\right)-\log \left(\frac{L_{12}}{L_{22}}\right)
\end{gathered}
$$

Finally,

$$
I_{2}=\frac{1}{2\left(L_{11} L_{22}-L_{21} L_{12}\right)}\left(\log \left(\frac{L_{11}}{L_{21}}\right)-\log \left(\frac{L_{12}}{L_{22}}\right)\right)
$$

Now we turn to the definition of the higher plectic Green fuction, according to Theorem 5.33 we have two cases, depending on that if the sum of all exponents are even or not.

Theorem 5.40 Given $\underline{k}=\left(k_{1}, \ldots, k_{d}\right)$ and $|\underline{k}|=k_{1}+\ldots+k_{d}$.
(1)If $2+|\underline{k}|$, then after several differentiation with respect to the coefficients α_{j}, β_{j}, the essential part of the definition of higher plectic Green function

$$
I_{2}(d, \underline{k})=\int_{\mathbb{R}_{+}} \frac{1}{\prod_{j=1}^{d}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)^{k_{j}}} \mathrm{~d}^{\times} u
$$

can be written as product of π and an element of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{d}, \beta_{1}, \ldots, \beta_{d}\right)$.
(2) If 2 divides $|\underline{k}|$, then $I_{2}(d, \underline{k})$ can be written as

$$
\sum_{j=1}^{d} \gamma_{j} \cdot \log \left(\frac{\beta_{j}}{\alpha_{j}}\right)
$$

where $\gamma_{j} \in \mathbb{Q}\left(\alpha_{1}^{2}, \ldots, \alpha_{d}^{2}, \beta_{1}^{2}, \ldots, \beta_{d}^{2}\right)$.
Remark 5.41 Even though Theorem 5.27 brings us to the situation $d=r$, however in this lemma above we give a general setting, $d \geq r$.

Proof 5.4.2 (Proof of Theorem 5.40)

$$
I_{2}(d, \underline{k})=\int_{0}^{\infty} \frac{u^{\left(\sum_{j=1}^{d} k_{j}\right)-1}}{\prod_{j=1}^{d}\left(\alpha_{j}^{2} u^{2}+\beta_{j}^{2}\right)^{k_{j}}} d u
$$

Now we will begin with something more general.
5.4 Generalized multiple zeta values for general $F(\mathrm{I})$: special cases

Generalization of Multiple Zeta Values (II):
Results for general totally real fields

Lemma 5.42 If $f, g \in \mathbb{C}[X] . g(X)=\prod_{j=1}^{d}\left(X-\tau_{j}\right), \tau_{1}, \ldots, \tau_{d} \in \mathbb{C}$ are distinct and $\operatorname{deg}(f) \leq d$. Then

$$
\frac{f(X)}{g(X)}=\sum_{j=1}^{d} \frac{f\left(\tau_{j}\right)}{g^{\prime}\left(\tau_{j}\right)} \frac{1}{X-\tau_{j}},
$$

where $\frac{f\left(\tau_{j}\right)}{g^{\prime}\left(\tau_{j}\right)}=\operatorname{Res}_{X=\tau_{j}} \frac{f(X) d X}{g(X)}$ and

$$
\frac{f\left(\tau_{j}\right)}{g^{\prime}\left(\tau_{j}\right)}=\frac{f\left(\tau_{j}\right)}{\prod_{\substack{k=1 \\ k \neq j}}^{d}\left(\tau_{k}-\tau_{j}\right)}
$$

By this lemma, we have

$$
\frac{X^{n}}{\prod_{j=1}^{d}\left(X-\tau_{j}\right)}=\sum_{j=1}^{d} \frac{\tau_{j}^{n}}{\prod_{\substack{k=1 \\ k \neq j}}^{d}\left(\tau_{k}-\tau_{j}\right)} \frac{1}{X-\tau_{j}}, \quad n \in \mathbb{N} .
$$

Now let us define

$$
c_{j}^{2}=\frac{\beta_{j}^{2}}{\alpha_{j}^{2}}, \quad 1 \leq j \leq d .
$$

Then we have

$$
\frac{X^{n}}{\prod_{j=1}^{d}\left(X+c_{j}^{2}\right)}=\sum_{j=1}^{d} \frac{\left(-c_{j}^{2}\right)^{n}}{\prod_{\substack{k=1 \\ k \neq j}}^{d}\left(c_{j}^{2}-c_{k}^{2}\right)} \frac{1}{X+c_{j}^{2}}, \quad \forall n \in \mathbb{N} .
$$

Then

$$
\frac{u^{2 n}}{\prod_{j=1}^{d}\left(u^{2}+c_{j}^{2}\right)}=\sum_{j=1}^{d} \frac{\left(-c_{j}^{2}\right)^{n}}{\prod_{\substack{k=1 \\ k \neq j}}^{d}\left(c_{j}^{2}-c_{k}^{2}\right)} \frac{1}{u^{2}+c_{j}^{2}} .
$$

Therefore

$$
\int_{0}^{\infty} \frac{u^{m}}{\prod_{j=1}^{d}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)} \frac{d u}{u}=\frac{1}{\prod_{j=1}^{d} \alpha_{j}^{2}} \int_{0}^{\infty} \frac{u^{m+d-1}}{\prod_{j=1}^{d}\left(u^{2}+c_{j}^{2}\right)} d u .
$$

Let define $m+d-1=2 n+\varepsilon, \varepsilon \in\{0,1\}$. Then

$$
\int_{0}^{\infty} \frac{u^{m}}{\prod_{j=1}^{d}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)} \frac{d u}{u}=\frac{1}{\prod_{j=1}^{d} \alpha_{j}^{2}} \int_{0}^{\infty} \frac{u^{2 n+\varepsilon}}{\prod_{j=1}^{d}\left(u^{2}+c_{j}^{2}\right)} d u=\frac{1}{\prod_{j=1}^{d} \alpha_{j}^{2}} \sum_{j=1}^{d} \frac{\left(-c_{j}^{2}\right)^{n}}{\prod_{\substack{k=1 \\ k \neq j}}^{d}\left(c_{j}^{2}-c_{k}^{2}\right)} \int_{0}^{\infty} \frac{u^{\varepsilon}}{u^{2}+c_{j}^{2}} d u
$$

(1): If $\varepsilon=0$, then $2+m+d$. Then

$$
\begin{gathered}
\int_{0}^{\infty} \frac{u^{m}}{\prod_{j=1}^{d}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)} \frac{d u}{u}=\frac{\pi}{2 \prod_{j=1}^{d} \alpha_{j}^{2}} \sum_{j=1}^{d} \frac{\left(-c_{j}^{2}\right)^{n}\left(c_{j}\right)^{-1}}{\prod_{\substack{k=1 \\
k \neq j}}^{d}\left(c_{j}^{2}-c_{k}^{2}\right)} \\
=(-1)^{(m+d-1) / 2} \frac{\pi}{2} \sum_{j=1}^{d} \frac{\alpha_{j}^{d-m-2} \beta_{j}^{d+m-2}}{\prod_{\substack{k=1 \\
k \neq j}}^{d} \Delta_{k j}},
\end{gathered}
$$

where

$$
\Delta_{k j}=\left|\begin{array}{cc}
\alpha_{k}^{2} & \beta_{k}^{2} \\
\alpha_{j}^{2} & \beta_{j}^{2}
\end{array}\right|
$$

(2): If $\varepsilon=1$, then $2 \mid m+d$.

$$
\int_{0}^{\infty} \frac{u^{m}}{\prod_{j=1}^{d}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)} \frac{d u}{u}=\frac{(-1)}{2 \prod_{j=1}^{d} \alpha_{j}^{2}} \sum_{j=1}^{d} \frac{\left(-c_{j}^{2}\right)^{n}}{\prod_{\substack{k=1 \\ k \neq j}}^{d}\left(c_{j}^{2}-c_{k}^{2}\right)} \log \left(c_{j}^{2}\right) .
$$

(Attention: one maybe worry about the convegence of $\int_{0}^{\infty} \frac{u}{u^{2}+c_{j}^{2}} d u$, however the alternating sum of such integral indeed cancel the infinit part, the similar calculation has been shown for I_{2}.)

When we take $m=|\underline{k}|$, we will get the result of $I_{2}(d, \underline{k})$.
Now let us give one simplest example of $2+|\underline{k}|$.
Example $5.43 d=3, m=0$ and $n=1$, that is

$$
\begin{gathered}
I\left(\alpha_{j}, \beta_{j}\right)=\int_{0}^{\infty} \frac{1}{\prod_{j=1}^{3}\left(\alpha_{j}^{2} u+\beta_{j}^{2} u^{-1}\right)} \frac{d u}{u} \\
=-\frac{\pi}{2} \sum_{j=1}^{3} \frac{\alpha_{j} \beta_{j}}{\prod_{k=1, k \neq j}^{3} \Delta_{k j}}=-\frac{\pi}{2}\left(\frac{\alpha_{1} \beta_{1}}{\Delta_{12} \Delta_{13}}-\frac{\alpha_{2} \beta_{2}}{\Delta_{21} \Delta_{23}}+\frac{\alpha_{3} \beta_{3}}{\Delta_{12} \Delta_{23}}\right) \\
=\frac{\pi}{2\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)\left(\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}\right)\left(\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}\right)} .
\end{gathered}
$$

Given the following graph Γ_{a}^{\prime} and $S=\left\{v_{1}, v_{2}, v_{3}\right\}$, there are $k_{j} \in \mathbb{N}_{+}$edges with given $\lambda_{j}=$ $\left(\alpha_{j}, \beta_{j}\right) \in I^{*}, 1 \leq j \leq 3$.

Figure 19: The graph Γ_{a}^{\prime}.
Then there exist differetials $D_{\alpha_{j}, \beta_{j} ; k_{j}}$ such that the corresponding higher plectic Green function can be written as

$$
\int_{U_{\mathbb{R}}} \mathscr{G}_{I, v, \Gamma, \partial \Gamma}\left(\left\{v_{1}, v_{2}, v_{3}\right\}, u\right) \mathrm{d}^{\times} u=\sum_{\alpha_{j}, \beta_{j}} D_{\alpha_{j}, \beta_{j} ; k_{j}} I\left(\alpha_{j}, \beta_{j}\right) .
$$

At last, we will show one simplest example when $d=r=2$ and all exponents are even.

Remark 5.44

$$
\begin{gathered}
\int_{U_{\mathbb{R}}} \frac{1}{L_{1}(u)^{2 \sigma_{1}} L_{2}(u)^{2 \sigma_{2}}} \mathrm{~d}^{\times} u=\int_{\mathbb{R}_{+}} \frac{1}{\left(u_{1}\left(\lambda_{1}^{(1)}\right)^{2}+u_{1}^{-1}\left(\lambda_{2}^{(1)}\right)^{2}\right)^{2 \sigma_{1}}\left(u_{1}\left(\lambda_{1}^{(2)}\right)^{2}+u_{1}^{-1}\left(\lambda_{2}^{(2)}\right)^{2}\right)^{2 \sigma_{2}}} \frac{d u_{1}}{u_{1}} \\
=\int_{\mathbb{R}_{+}} \frac{u_{1}^{2 \sigma_{1}+2 \sigma_{2}-1}}{\left(u_{1}^{2}\left(\lambda_{1}^{(1)}\right)^{2}+\left(\lambda_{2}^{(1)}\right)^{2}\right)^{2 \sigma_{1}}\left(u_{1}^{2}\left(\lambda_{1}^{(2)}\right)^{2}+\left(\lambda_{2}^{(2)}\right)^{2}\right)^{2 \sigma_{2}}} d u_{1}
\end{gathered}
$$

5.4 Generalized multiple zeta values for general $F(\mathrm{I})$: special cases

Generalization of Multiple Zeta Values (II):
Results for general totally real fields
where $\sigma_{i} \in \mathbb{N}_{+}$. And

$$
\frac{u_{1}^{2 \sigma_{1}+2 \sigma_{2}-1}}{\left(u_{1}^{2}\left(\lambda_{1}^{(1)}\right)^{2}+\left(\lambda_{2}^{(1)}\right)^{2}\right)^{2 \sigma_{1}}\left(u_{1}^{2}\left(\lambda_{1}^{(2)}\right)^{2}+\left(\lambda_{2}^{(2)}\right)^{2}\right)^{2 \sigma_{2}}}=D_{\underline{\lambda^{2}, \sigma_{1}, \sigma_{2}}}\left(\frac{u_{1}}{\left(u_{1}^{2}\left(\lambda_{1}^{(1)}\right)^{2}+\left(\lambda_{2}^{(1)}\right)^{2}\right)\left(u_{1}^{2}\left(\lambda_{1}^{(2)}\right)^{2}+\left(\lambda_{2}^{(2)}\right)^{2}\right)}\right),
$$

where the differential operator
$D_{\underline{\lambda_{2}}, \sigma_{1}, \sigma_{2}}=(-1)^{\sigma_{1}-2} \frac{\left(\partial_{\lambda_{1}^{(1)}}\right)^{\sigma_{1}-2}}{\left(\sigma_{1}-2\right)!\left(2 \lambda_{1}^{(1)}\right)^{\sigma_{1}-2}}(-1)^{\sigma_{1}} \frac{\left(\partial_{\lambda_{2}^{(1)}}\right)^{\sigma_{1}}}{\left(\sigma_{1}\right)!\left(2 \lambda_{2}^{(1)}\right)^{\sigma_{1}}} \frac{\left(\partial_{\lambda_{1}^{(2)}}\right)^{\sigma_{2}-1}}{\left(\sigma_{2}-1\right)!\left(2 \lambda_{1}^{(2)}\right)^{\sigma_{2}-1}} \frac{\left(\partial_{\lambda_{2}^{(2)}}\right)^{\sigma_{2}-1}}{\left(\sigma_{2}-1\right)!\left(2 \lambda_{2}^{(2)}\right)^{\sigma_{2}-1}}$.
Therefore

$$
\begin{gathered}
\int_{U_{\mathbb{R}}} \frac{1}{L_{1}(u)^{2 \sigma_{1}} L_{2}(u)^{2 \sigma_{2}}} \mathrm{~d}^{\times} u=\int_{\mathbb{R}_{+}} D_{\underline{\lambda^{2}}, \sigma_{1}, \sigma_{2}}\left(\frac{u_{1}}{\left(u_{1}^{2}\left(\lambda_{1}^{(1)}\right)^{2}+\left(\lambda_{2}^{(1)}\right)^{2}\right)\left(u_{1}^{2}\left(\lambda_{1}^{(2)}\right)^{2}+\left(\lambda_{2}^{(2)}\right)^{2}\right)}\right) d u_{1} \\
=D_{\underline{\lambda^{2}}, \sigma_{1}, \sigma_{2}} \int_{\mathbb{R}_{+}} \frac{u_{1}}{\left(u_{1}^{2}\left(\lambda_{1}^{(1)}\right)^{2}+\left(\lambda_{2}^{(1)}\right)^{2}\right)\left(u_{1}^{2}\left(\lambda_{1}^{(2)}\right)^{2}+\left(\lambda_{2}^{(2)}\right)^{2}\right)} d u_{1} \\
=D_{\underline{\lambda}^{2}, \sigma_{1}, \sigma_{2}}\left(\operatorname{det}\left(\underline{\lambda^{2}}\right)^{-1} \int_{U_{\mathbb{R}}} f\left(\underline{\lambda}^{2}\right)(u) d^{\times} u\right)=D_{\underline{\lambda^{2}}, \sigma_{1}, \sigma_{2}}\left(\operatorname{det}\left(\underline{\lambda^{2}}\right)^{-1}\left(\log \left(\frac{\left|\lambda_{1}^{(1)}\right|}{\left|\lambda_{2}^{(1)}\right|}\right)-\log \left(\frac{\left|\lambda_{1}^{(2)}\right|}{\left|\lambda_{2}^{(2)}\right|}\right)\right)\right) .
\end{gathered}
$$

According to Formula 5.11

$$
\int_{U_{\mathbb{R}}} \prod_{i=1}^{2}\left\|\lambda^{i} u\right\|^{-2 \tau_{i}} \mathrm{~d}^{\times} u=\frac{1}{2} \int_{U_{\mathbb{R}}} \prod_{i=1}^{2} L_{i}(u)^{-\tau_{i}} d^{\times} u .
$$

Given the following graph Γ_{b}^{\prime} and $S=\left\{s_{1}, s_{2}\right\}$, there are $2 \sigma_{1} \in \mathbb{N}_{+}$edges with given $\lambda^{1} \in I^{*}$ and $2 \sigma_{2} \in \mathbb{N}_{+}$edges with given $\lambda^{2} \in I^{*}$.

Figure 20: The graph Γ_{b}^{\prime}.
The corresponding higher plectic Green function can be written as

$$
\begin{gathered}
\int_{U_{\mathbb{R}}} \mathscr{I}_{I, v, \Gamma, \partial \Gamma}\left(\left\{s_{1}, s_{2}\right\}, u\right) \mathrm{d}^{\times} u=\sum_{\lambda^{1}, \lambda^{2}} \int_{U_{\mathbb{R}}} \prod_{i=1}^{2}\left\|\lambda^{i} u\right\|^{-4 \sigma_{i}} d^{\times} u=\sum_{\lambda^{1}, \lambda^{2}} \frac{1}{2} \int_{U_{\mathbb{R}}} \prod_{i=1}^{2} L_{i}(u)^{-2 \sigma_{i}} d^{\times} u \\
=\sum_{\lambda^{1}, \lambda^{2} \in I^{*} \backslash\{0\}} \frac{1}{2} D_{\underline{\lambda^{2}}, \sigma_{1}, \sigma_{2}}\left(\operatorname{det}\left(\underline{\lambda^{2}}\right)^{-1}\left(\log \left(\frac{\left|\lambda_{1}^{(1)}\right|}{\left|\lambda_{2}^{(1)}\right|}\right)-\log \left(\frac{\left|\lambda_{1}^{(2)}\right|}{\left|\lambda_{2}^{(2)}\right|}\right)\right)\right) .
\end{gathered}
$$

5.4.2 The case $r=3$.

By Thereom 5.33 (1), we need only calculate

$$
I_{3}=\int_{U_{\mathbb{R}}} \frac{1}{L_{1}(u) L_{2}(u) L_{3}(u)} \mathrm{d}^{\times} u=\frac{1}{3} \int_{\mathbb{R}_{+}^{2}} \frac{d y_{1} d y_{2}}{\prod_{i=1}^{3}\left(L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3}\right)} .
$$

Again by Eisenstein's trick, we have

$$
\frac{\operatorname{det}\left(L_{1}, L_{2}, L_{3}\right)}{\prod_{i=1}^{3}\left(L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3}\right)}=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \frac{\operatorname{det}\left(L_{i}^{\prime}, L_{j}^{\prime}\right)}{\left(L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3}\right)\left(L_{j 1} y_{1}+L_{j 2} y_{2}+L_{j 3}\right)},
$$

where

$$
\begin{aligned}
\operatorname{det}\left(L_{1}, L_{2}, L_{3}\right) & =\left|\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{31} & L_{33}
\end{array}\right| \\
\operatorname{det}\left(L_{i}^{\prime}, L_{j}^{\prime}\right) & =\left|\begin{array}{ll}
L_{i 1} & L_{i 2} \\
L_{j 1} & L_{j 2}
\end{array}\right| .
\end{aligned}
$$

Now let us define some new quantities.

$$
\Delta=\operatorname{det}\left(L_{1}, L_{2}, L_{3}\right) ; \quad R_{i j}=\operatorname{det}\left(L_{i}^{\prime}, L_{j}^{\prime}\right) ; \quad S_{i j}=\left|\begin{array}{ll}
L_{i 1} & L_{i 3} \\
L_{j 1} & L_{j 3}
\end{array}\right|
$$

and

$$
m_{i j}(x)=\left|\begin{array}{cc}
L_{i 1} & L_{i 2} x+L_{i 3} \\
L_{j 1} & L_{j 2} x+L_{j 3}
\end{array}\right|=R_{i j} x+S_{i j},
$$

and

$$
l_{i}\left(y_{1}, y_{2}\right)=L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3} .
$$

Then

$$
\begin{gathered}
\frac{\operatorname{det}\left(L_{1}, L_{2}, L_{3}\right)}{\prod_{i=1}^{3}\left(L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3}\right)}=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \frac{R_{i j}}{l_{i}\left(y_{1}, y_{2}\right) l_{j}\left(y_{1}, y_{2}\right)} \\
=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \frac{m_{i j}\left(y_{2}\right)}{l_{i}\left(y_{1}, y_{2}\right) l_{j}\left(y_{1}, y_{2}\right)} \frac{R_{i j}}{m_{i j}\left(y_{2}\right)} .
\end{gathered}
$$

Therefore

$$
\Delta \cdot I_{3}=\frac{1}{3} \sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \int_{\mathbb{R}_{+}}\left(\int_{\mathbb{R}_{+}} \frac{m_{i j}\left(y_{2}\right)}{l_{i}\left(y_{1}, y_{2}\right) l_{j}\left(y_{1}, y_{2}\right)} d y_{1}\right) \frac{R_{i j}}{m_{i j}\left(y_{2}\right)} d y_{2} .
$$

Replacing $L_{i 2}$ by $L_{i 2} y_{2}+L_{i 3}$ in the result of Example 5.4 . 1 we obtain

$$
\int_{\mathbb{R}_{+}} \frac{m_{i j}\left(y_{2}\right)}{l_{i}\left(y_{1}, y_{2}\right) l_{j}\left(y_{1}, y_{2}\right)} d y_{1}=\log \left(\frac{L_{i 1}}{L_{j 1}}\right)-\log \left(\frac{L_{i 2} y_{2}+L_{i 3}}{L_{j 2} y_{2}+L_{j 3}}\right) .
$$

We need to calculate

$$
\Delta \cdot I_{3}=\frac{1}{3} \sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \int_{\mathbb{R}_{+}}\left(\log \left(\frac{L_{i 1}}{L_{j 1}}\right)-\log \left(\frac{L_{i 2} y_{2}+L_{i 3}}{L_{j 2} y_{2}+L_{j 3}}\right)\right) \frac{R_{i j}}{m_{i j}\left(y_{2}\right)} d y_{2}
$$

In conclusion, we obtain the following result

Theorem 5.45 (The case $r=3$)

$$
3 \Delta \cdot I_{3}=J_{0}^{(3)}-J_{1}^{(3)},
$$

where

$$
\begin{gathered}
J_{0}^{(3)}=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{j 1}}{L_{j 2}}\right)\right)\left(\log \left(\frac{R_{i j}}{S_{i j}}\right)\right) ; \\
J_{1}^{(3)}=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} I\left(\frac{L_{i 3}}{L_{i 2}}, \frac{L_{j 3}}{L_{j 2}} ; \frac{S_{i j}}{R_{i j}}\right),
\end{gathered}
$$

where

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)=\int_{\mathbb{R}_{+}} \log \left(\frac{y+\alpha_{1}}{y+\alpha_{2}}\right) d \log (y+\beta)
$$

We will give the proof of the theorem above in several steps. Moreover we prove that if $r=3$, the term $J_{1}^{(3)}$ involves dilogarithms.
(1): contribution of $\log \left(\frac{L_{i 1}}{L_{j 1}}\right)$

First of all, it is easy to observe that

$$
\frac{R_{i j}}{m_{i j}\left(y_{2}\right)} d y_{2}=d \log \left(m_{i j}\left(y_{2}\right)\right)
$$

Then let us define

$$
\begin{gathered}
J_{0}(1)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \int_{\mathbb{R}_{+}} \log \left(\frac{L_{i 1}}{L_{j 1}}\right) \frac{R_{i j}}{m_{i j}\left(y_{2}\right)} d y_{2} \\
=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \int_{\mathbb{R}_{+}}\left(\log \left(L_{i 1}\right)-\log \left(L_{j 1}\right)\right) d \log \left(m_{i j}\left(y_{2}\right)\right) \\
=\lim _{T \rightarrow \infty} \sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(L_{i 1}\right)-\log \left(L_{j 1}\right)\right)\left[\log \left(m_{i j}\left(y_{2}\right)\right)\right]_{0}^{T} .
\end{gathered}
$$

Then

$$
\begin{gathered}
J_{0}(1)=\lim _{T \rightarrow \infty} \sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(L_{i 1}\right)-\log \left(L_{j 1}\right)\right)\left(\log \left(R_{i j} T+S_{i j}\right)-\log \left(S_{i j}\right)\right) \\
=\lim _{T \rightarrow \infty}\left(\log \left(L_{11}\right) \log \left(\frac{R_{12} T+S_{12}}{R_{13} T+S_{13}}\right)-\log \left(L_{21}\right) \log \left(\frac{R_{12} T+S_{12}}{R_{23} T+S_{23}}\right)+\log \left(L_{31}\right) \log \left(\frac{R_{13} T+S_{13}}{R_{23} T+S_{23}}\right)\right) \\
-\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(L_{i 1}\right)-\log \left(L_{j 1}\right)\right) \log \left(S_{i j}\right) .
\end{gathered}
$$

Thus

$$
\begin{gathered}
J_{0}(1)=\log \left(L_{11}\right) \log \left(\frac{R_{12}}{R_{13}}\right)-\log \left(L_{21}\right) \log \left(\frac{R_{12}}{R_{23}}\right)+\log \left(L_{31}\right) \log \left(\frac{R_{13}}{R_{23}}\right) \\
-\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(L_{i 1}\right)-\log \left(L_{j 1}\right)\right) \log \left(S_{i j}\right) .
\end{gathered}
$$

Notice that
$\log \left(L_{11}\right) \log \left(\frac{R_{12}}{R_{13}}\right)-\log \left(L_{21}\right) \log \left(\frac{R_{12}}{R_{23}}\right)+\log \left(L_{31}\right) \log \left(\frac{R_{13}}{R_{23}}\right)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(L_{i 1}\right)-\log \left(L_{j 1}\right)\right) \log \left(R_{i j}\right)$,
In conclusion, we have

Formula 5.46

$$
\begin{gathered}
J_{0}(1)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(L_{i 1}\right)-\log \left(L_{j 1}\right)\right)\left(\log \left(R_{i j}\right)-\log \left(S_{i j}\right)\right) \\
=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \log \left(\frac{L_{i 1}}{L_{j 1}}\right)\left(\log \left(\frac{R_{i j}}{S_{i j}}\right)\right) .
\end{gathered}
$$

(2): contribution of $\log \left(\frac{L_{i 2} y_{2}+L_{i 3}}{L_{j 2} y_{2}+L_{j 3}}\right)$

$$
J_{1}=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \int_{\mathbb{R}_{+}} \log \left(\frac{L_{i 2} y_{2}+L_{i 3}}{L_{j 2} y_{2}+L_{j 3}}\right) \frac{R_{i j}}{m_{i j}\left(y_{2}\right)} d y_{2}
$$

Again, we have $\frac{R_{i j}}{m_{i j}\left(y_{2}\right)} d y_{2}=d \log \left(m_{i j}\left(y_{2}\right)\right)$, hence

$$
J_{1}=J_{1}(0)+J_{1}(1),
$$

where

$$
J_{1}(0)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \int_{\mathbb{R}_{+}}\left(\log \left(L_{i 2}\right)-\log \left(L_{j 2}\right)\right) d \log \left(m_{i j}\left(y_{2}\right)\right)
$$

and

$$
J_{1}(1)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} \int_{\mathbb{R}_{+}}\left(\log \left(y_{2}+\frac{L_{i 3}}{L_{i 2}}\right)-\log \left(y_{2}+\frac{L_{j 3}}{L_{j 2}}\right)\right) d \log \left(m_{i j}\left(y_{2}\right)\right) .
$$

By the result of (1), we have

Formula 5.47

$$
J_{1}(0)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(L_{i 2}\right)-\log \left(L_{j 2}\right)\right)\left(\log \left(R_{i j}\right)-\log \left(S_{i j}\right)\right) .
$$

Now in order to get the precise expression of $J_{1}(0)$, it remains to calculate

$$
\begin{equation*}
\int_{\mathbb{R}_{+}}\left(\log \left(y_{2}+\frac{L_{i 3}}{L_{i 2}}\right)-\log \left(y_{2}+\frac{L_{j 3}}{L_{j 2}}\right)\right) d \log \left(m_{i j}\left(y_{2}\right)\right)=\int_{\mathbb{R}_{+}}\left(\log \left(y_{2}+\frac{L_{i 3}}{L_{i 2}}\right)-\log \left(y_{2}+\frac{L_{j 3}}{L_{j 2}}\right)\right) d \log \left(y_{2}+\frac{S_{i j}}{R_{i j}}\right) . \tag{8}
\end{equation*}
$$

Observe that

$$
\frac{R_{i j}}{S_{i j}}-\frac{L_{i 3}}{L_{i 2}}=\frac{L_{i 1}}{L_{i 2}} \cdot \frac{\left|\begin{array}{cc}
L_{i 2} & L_{i 3} \\
L_{j 2} & L_{j 3}
\end{array}\right|}{R_{i j}} ; \quad \frac{R_{i j}}{S_{i j}}-\frac{L_{j 3}}{L_{j 2}}=\frac{L_{j 1}}{L_{j 2}} \cdot \frac{\left|\begin{array}{cc}
L_{i 2} & L_{i 3} \\
L_{j 2} & L_{j 3}
\end{array}\right|}{R_{i j}} .
$$

Therefore we will have

$$
0<\frac{R_{i j}}{S_{i j}}<\frac{L_{i 3}}{L_{i 2}}, \frac{L_{j 3}}{L_{j 2}}
$$

or

$$
\frac{R_{i j}}{S_{i j}}>\frac{L_{i 3}}{L_{i 2}}, \frac{L_{j 3}}{L_{j 2}}>0
$$

In order to calculate (8), we will give a general setting.

Theorem 5.48 Given $\alpha_{1}, \alpha_{2}, \beta \in \mathbb{R}_{+}$. Define the integral

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)=\int_{0}^{T} \log \left(\frac{y+\alpha_{1}}{y+\alpha_{2}}\right) d \log (y+\beta)
$$

(1) If $0<\beta<\alpha_{1}, \alpha_{2}$, then

$$
\begin{gathered}
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)=\left(L i_{2}\left(\frac{\beta}{\alpha_{2}}\right)-L i_{2}\left(\frac{\beta}{\alpha_{1}}\right)\right)+\log \left(\alpha_{2}-\beta\right) \log \left(\frac{\beta}{\alpha_{2}}\right)-\log \left(\alpha_{1}-\beta\right) \log \left(\frac{\beta}{\alpha_{1}}\right) \\
+\frac{\left(\log \left(\alpha_{2}\right)\right)^{2}-\left(\log \left(\alpha_{1}\right)\right)^{2}}{2}+O\left(\frac{1}{T}\right)
\end{gathered}
$$

(2) If $0<\alpha_{1}, \alpha_{2}<\beta$, then

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)=L i_{2}\left(\frac{\beta-\alpha_{1}}{T+\beta}\right)-L i_{2}\left(\frac{\beta-\alpha_{2}}{T+\beta}\right)+L i_{2}\left(\frac{\beta-\alpha_{2}}{\beta}\right)-L i_{2}\left(\frac{\beta-\alpha_{1}}{\beta}\right)
$$

Proof 5.4.3 (1)First of all, we define

$$
I(t)=\int_{0}^{t} \log (y+1) \frac{d y}{y}, \quad t>0
$$

take $y+1=\frac{1}{z}$ then

$$
I(t)=-\int_{\frac{1}{1+t}}^{1} \frac{\log (z)}{z(1-z)} d z=-\int_{\frac{1}{1+t}}^{1} \frac{\log (z)}{z} d z-\int_{\frac{1}{1+t}}^{1} \frac{\log (z)}{1-z} d z=-\left[\frac{(\log (z))^{2}}{2}\right]_{\frac{1}{1+t}}^{1}-\int_{\frac{1}{1+t}}^{1} \frac{\log (z)}{1-z} d z
$$

Take $x=1-z$, then

$$
\int_{\frac{1}{1+t}}^{1} \frac{\log (z)}{1-z} d z=-\int_{0}^{\frac{t}{1+t}} \frac{\log (1-x)}{x} d(-x)=-L i_{2}\left(\frac{t}{1+t}\right)
$$

So we obtain

$$
I(t)=\frac{(\log (1+t))^{2}}{2}+L i_{2}\left(\frac{t}{1+t}\right)
$$

If $0<\beta<\alpha_{1}, \alpha_{2}$. Taking

$$
\begin{gathered}
y+\beta=\left(\alpha_{1}-\beta\right) z, \quad y+\alpha_{1}=\left(\alpha_{1}-\beta\right)(z+1) \\
\int_{0}^{T} \log \left(y+\alpha_{1}\right) d \log (y+\beta)=\int_{\frac{\beta}{\alpha_{1}-\beta}}^{\frac{T+\beta}{\alpha_{1}-\beta}}\left(\log \left(\alpha_{1}-\beta\right)+\log (z+1)\right) \frac{d z}{z} \\
=\log \left(\alpha_{1}-\beta\right) \log \left(\frac{T+\beta}{\beta}\right)+I\left(\frac{T+\beta}{\alpha_{1}-\beta}\right)-I\left(\frac{\beta}{\alpha_{1}-\beta}\right)
\end{gathered}
$$

In the same way we will have

$$
\begin{gathered}
\int_{0}^{T} \log \left(y+\alpha_{2}\right) d \log (y+\beta)=\int_{\frac{\beta}{\alpha_{2}-\beta}}^{\frac{T+\beta}{\alpha_{2}-\beta}}\left(\log \left(\alpha_{2}-\beta\right)+\log (z+1)\right) \frac{d z}{z} \\
=\log \left(\alpha_{2}-\beta\right) \log \left(\frac{T+\beta}{\beta}\right)+I\left(\frac{T+\beta}{\alpha_{2}-\beta}\right)-I\left(\frac{\beta}{\alpha_{2}-\beta}\right)
\end{gathered}
$$

Thus

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)=\log \left(\frac{\alpha_{1}-\beta}{\alpha_{2}-\beta}\right) \log \left(\frac{T+\beta}{\beta}\right)+I\left(\frac{T+\beta}{\alpha_{1}-\beta}\right)-I\left(\frac{T+\beta}{\alpha_{2}-\beta}\right)+\int_{\frac{\beta}{\alpha_{1}-\beta}}^{\frac{\beta}{\alpha_{2}-\beta}} \log (z+1) \frac{d z}{z}
$$

However we observe that

$$
I\left(\frac{T+\beta}{\alpha_{1}-\beta}\right)-I\left(\frac{T+\beta}{\alpha_{2}-\beta}\right)=\int_{\frac{T+\beta}{\alpha_{2}-\beta}}^{\frac{T+\beta}{\alpha_{1}-\beta}} \log (z+1) \frac{d z}{z}=\int_{\frac{T+\beta}{\alpha_{2}-\beta}}^{\frac{T+\beta}{\alpha_{1}-\beta}}(\log (z)+\log (1+1 / z)) \frac{d z}{z}
$$

so when T is sufficiently big, we will have

$$
\begin{gathered}
I\left(\frac{T+\beta}{\alpha_{1}-\beta}\right)-I\left(\frac{T+\beta}{\alpha_{2}-\beta}\right)=\left[\frac{(\log (z))^{2}}{2}\right]_{\frac{T+\beta}{\alpha_{2}-\beta}}^{\frac{T+\beta}{\alpha_{1}-\beta}}+O\left(\frac{1}{T}\right) \\
=-\log (T+\beta) \log \left(\alpha_{1}-\beta\right)+\log (T+\beta) \log \left(\alpha_{2}-\beta\right)+\frac{\left(\log \left(\alpha_{1}-\beta\right)\right)^{2}-\left(\log \left(\alpha_{2}-\beta\right)\right)^{2}}{2}+O\left(\frac{1}{T}\right)
\end{gathered}
$$

Meanwhile,

$$
\begin{gathered}
\int_{\frac{\beta}{\alpha_{1}-\beta}}^{\frac{\beta}{\alpha_{2}-\beta}} \log (z+1) \frac{d z}{z}=I\left(\frac{\beta}{\alpha_{2}-\beta}\right)-I\left(\frac{\beta}{\alpha_{1}-\beta}\right) \\
=\frac{\left(\log \left(\frac{\alpha_{2}}{\alpha_{2}-\beta}\right)\right)^{2}}{2}-\frac{\left(\log \left(\frac{\alpha_{1}}{\alpha_{1}-\beta}\right)\right)^{2}}{2}+\left(\operatorname{Li} i_{2}\left(\frac{\beta}{\alpha_{2}}\right)-L i_{2}\left(\frac{\beta}{\alpha_{1}}\right)\right)
\end{gathered}
$$

In conclusion,

$$
\begin{gathered}
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)=\left(L i_{2}\left(\frac{\beta}{\alpha_{2}}\right)-L i_{2}\left(\frac{\beta}{\alpha_{1}}\right)\right)+\log \left(\alpha_{2}-\beta\right) \log \left(\frac{\beta}{\alpha_{2}}\right)-\log \left(\alpha_{1}-\beta\right) \log \left(\frac{\beta}{\alpha_{1}}\right) \\
+\frac{\left(\log \left(\alpha_{2}\right)\right)^{2}-\left(\log \left(\alpha_{1}\right)\right)^{2}}{2}+O\left(\frac{1}{T}\right)
\end{gathered}
$$

(2) Define

$$
J\left(t ; t_{0}\right)=\int_{t_{0}}^{t} \log (z-1) \frac{d z}{z}
$$

where $1<t_{0}<t$. By taking $s=\frac{1}{z}$, we obtain

$$
\begin{gathered}
J\left(t ; t_{0}\right)=-\int_{1 / t}^{1 / t_{0}} \frac{\log (1 / s-1)}{1 / s}\left(-\frac{1}{s^{2}}\right) d s \\
=\int_{1 / t}^{1 / t_{0}} \frac{\log (1-s)}{s} d s-\int_{1 / t}^{1 / t_{0}} \frac{\log (s)}{s} d s \\
J\left(t ; t_{0}\right)=L i_{2}(1 / t)-L i_{2}\left(1 / t_{0}\right)+\frac{(\log (1 / t))^{2}}{2}-\frac{\left(\log \left(1 / t_{0}\right)\right)^{2}}{2} .
\end{gathered}
$$

Now $0<\alpha_{1}, \alpha_{2}<\beta$,

$$
\begin{gathered}
y+\beta=\left(\beta-\alpha_{1}\right) z, \quad y+\alpha_{1}=\left(\beta-\alpha_{1}\right)(z-1) \\
\int_{0}^{T} \log \left(y+\alpha_{1}\right) d \log (y+\beta)=\int_{\frac{\beta}{\beta-\alpha_{1}}}^{\frac{T+\beta}{\beta-\alpha_{1}}}\left(\log \left(\beta-\alpha_{1}\right)+\log (z-1)\right) \frac{d z}{z}
\end{gathered}
$$

5.4 Generalized multiple zeta values for general $F(\mathrm{I})$: special cases

$$
=\log \left(\beta-\alpha_{1}\right) \log \left(\frac{T+\beta}{\beta}\right)+J\left(\frac{T+\beta}{\beta-\alpha_{1}} ; \frac{\beta}{\beta-\alpha_{1}}\right)
$$

In the same way we obtain

$$
\int_{0}^{T} \log \left(y+\alpha_{2}\right) d \log (y+\beta)=\log \left(\beta-\alpha_{2}\right) \log \left(\frac{T+\beta}{\beta}\right)+J\left(\frac{T+\beta}{\beta-\alpha_{2}} ; \frac{\beta}{\beta-\alpha_{2}}\right)
$$

Therefore

$$
\begin{gathered}
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)=\log \left(\frac{\beta-\alpha_{1}}{\beta-\alpha_{2}}\right) \log \left(\frac{T+\beta}{\beta}\right)+J\left(\frac{T+\beta}{\beta-\alpha_{1}} ; \frac{\beta}{\beta-\alpha_{1}}\right)-J\left(\frac{T+\beta}{\beta-\alpha_{2}} ; \frac{\beta}{\beta-\alpha_{2}}\right) \\
=L i_{2}\left(\frac{\beta-\alpha_{1}}{T+\beta}\right)-L i_{2}\left(\frac{\beta-\alpha_{2}}{T+\beta}\right)+L i_{2}\left(\frac{\beta-\alpha_{2}}{\beta}\right)-L i_{2}\left(\frac{\beta-\alpha_{1}}{\beta}\right) \\
+\log \left(\frac{\beta-\alpha_{1}}{\beta-\alpha_{2}}\right) \log \left(\frac{T+\beta}{\beta}\right)+\frac{\left(\log \left(\frac{\beta-\alpha_{1}}{T+\beta}\right)\right)^{2}}{2}-\frac{\left(\log \left(\frac{\beta-\alpha_{1}}{\beta}\right)\right)^{2}}{2}-\left(\frac{\left(\log \left(\frac{\beta-\alpha_{2}}{T+\beta}\right)\right)^{2}}{2}-\frac{\left(\log \left(\frac{\beta-\alpha_{2}}{\beta}\right)\right)^{2}}{2}\right)
\end{gathered}
$$

It is not difficult to observe that
$\log \left(\frac{\beta-\alpha_{1}}{\beta-\alpha_{2}}\right) \log \left(\frac{T+\beta}{\beta}\right)+\frac{\left(\log \left(\frac{\beta-\alpha_{1}}{T+\beta}\right)\right)^{2}}{2}-\frac{\left(\log \left(\frac{\beta-\alpha_{1}}{\beta}\right)\right)^{2}}{2}-\left(\frac{\left(\log \left(\frac{\beta-\alpha_{2}}{T+\beta}\right)\right)^{2}}{2}-\frac{\left(\log \left(\frac{\beta-\alpha_{2}}{\beta}\right)\right)^{2}}{2}\right)=0$.
Finally we get

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)=L i_{2}\left(\frac{\beta-\alpha_{1}}{T+\beta}\right)-L i_{2}\left(\frac{\beta-\alpha_{2}}{T+\beta}\right)+L i_{2}\left(\frac{\beta-\alpha_{2}}{\beta}\right)-L i_{2}\left(\frac{\beta-\alpha_{1}}{\beta}\right)
$$

Corollary 5.49 Given $\alpha_{1}, \alpha_{2}, \beta \in \mathbb{R}_{+}$. Define

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)=\lim _{T \rightarrow+\infty} I\left(\alpha_{1}, \alpha_{2} ; \beta\right)(T)
$$

then

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)=\int_{\mathbb{R}_{+}} \log \left(\frac{y+\alpha_{1}}{y+\alpha_{2}}\right) d \log (y+\beta)
$$

(1) If $0<\beta<\alpha_{1}, \alpha_{2}$, then

$$
\begin{gathered}
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)=\left(L i_{2}\left(\frac{\beta}{\alpha_{2}}\right)-L i_{2}\left(\frac{\beta}{\alpha_{1}}\right)\right)+\log \left(\alpha_{2}-\beta\right) \log \left(\frac{\beta}{\alpha_{2}}\right)-\log \left(\alpha_{1}-\beta\right) \log \left(\frac{\beta}{\alpha_{1}}\right) \\
+\frac{\left(\log \left(\alpha_{2}\right)\right)^{2}-\left(\log \left(\alpha_{1}\right)\right)^{2}}{2}
\end{gathered}
$$

(2) If $0<\alpha_{1}, \alpha_{2}<\beta$, then

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)=L i_{2}\left(\frac{\beta-\alpha_{2}}{\beta}\right)-L i_{2}\left(\frac{\beta-\alpha_{1}}{\beta}\right)
$$

By this corollary, we return to the calculation of I_{3} and will obtain
5.4 Generalized multiple zeta values for general $F(\mathrm{I})$: special cases

Results for general totally real fields

Formula 5.50

$$
J_{1}(1)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} I\left(\frac{L_{i 3}}{L_{i 2}}, \frac{L_{j 3}}{L_{j 2}} ; \frac{S_{i j}}{R_{i j}}\right) .
$$

Now combining the results of Formulae 5.46, 5.47 and 5.50 , we obtain the final result of

$$
3 \Delta \cdot I_{3}=J_{0}(1)-\left(J_{1}(0)+J_{1}(1)\right),
$$

that is

$$
3 \Delta \cdot I_{3}=J_{0}^{(3)}-J_{1}^{(3)},
$$

where

$$
\begin{gathered}
J_{0}^{(3)}=J_{0}(1)-J_{1}(0)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1}\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{j 1}}{L_{j 2}}\right)\right)\left(\log \left(\frac{R_{i j}}{S_{i j}}\right)\right) ; \\
J_{1}^{(3)}=J_{1}(1)=\sum_{1 \leq i<j \leq 3}(-1)^{i+j-1} I\left(\frac{L_{i 3}}{L_{i 2}}, \frac{L_{j 3}}{L_{j 2}} ; \frac{S_{i j}}{R_{i j}}\right) .
\end{gathered}
$$

5.4.3 The case $r=4$.

$$
I_{4}=\int_{U_{\mathbb{R}}} \frac{1}{L_{1}(u) L_{2}(u) L_{3}(u) L_{4}(u)} \mathrm{d}^{\times} u=\frac{1}{4} \int_{\mathbb{R}_{+}^{3}} \frac{d y_{1} d y_{2} d y_{3}}{\prod_{i=1}^{4}\left(L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3} y_{3}+L_{i 4}\right)} .
$$

We will first give an explicit expression of I_{4}. Let us introduce some new notations.

Definition 5.51

$$
\begin{gathered}
R_{i j}^{(4)}=\left|\begin{array}{cc}
L_{i 1} & L_{i 2} \\
L_{j 1} & L_{j 2}
\end{array}\right| ; \quad S_{i j}^{(4)}=\left|\begin{array}{cc}
L_{i 1} & L_{i 3} \\
L_{j 1} & L_{j 3}
\end{array}\right| ; \quad U_{i j}^{(4)}=\left|\begin{array}{cc}
L_{i 1} & L_{i 4} \\
L_{j 1} & L_{j 4}
\end{array}\right| \\
R_{i j k}^{(4)}=\left|\begin{array}{ccc}
L_{i 1} & L_{i 2} & L_{i 3} \\
L_{j 1} & L_{j 2} & L_{j 3} \\
L_{k 1} & L_{k 2} & L_{k 3}
\end{array}\right| ; \quad S_{i j k}^{(4)}=\left|\begin{array}{ccc}
L_{i 1} & L_{i 2} & L_{i 4} \\
L_{j 1} & L_{j 2} & L_{j 4} \\
L_{k 1} & L_{k 2} & L_{k 4}
\end{array}\right| ; \quad V_{i j k}^{(4)}=\left|\begin{array}{ccc}
L_{i 1} & L_{i 3} & L_{i 4} \\
L_{j 1} & L_{j 3} & L_{j 4} \\
L_{k 1} & L_{k 3} & L_{k 4}
\end{array}\right| .
\end{gathered}
$$

Theorem 5.52 (The case $r=4$) We fix $\Delta_{4}=\operatorname{det}\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$. Let us define

$$
\begin{gathered}
C_{1}(i)=\log \left(L_{i 1}\right)-\log \left(L_{i 2}\right) ; \\
C_{2}(i, j)=\left(C_{1}(i)-C_{1}(j)\right)\left(\log \left(R_{i j}^{(4)}\right)-\log \left(S_{i j}^{(4)}\right)\right)
\end{gathered}
$$

and

$$
I\left(\alpha_{1}, \alpha_{2} ; \beta\right)=\int_{\mathbb{R}_{+}} \log \left(\frac{y+\alpha_{1}}{y+\alpha_{2}}\right) d \log (y+\beta) .
$$

Then

$$
4 \Delta_{4} \cdot I_{4}=J_{0}^{(4)}-J_{1}^{(4)}-J_{2}^{(4)},
$$

where

$$
J_{0}^{(4)}=\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq 4}(-1)^{i_{1}+i_{2}+i_{3}}\left(C_{2}\left(i_{1}, i_{2}\right)-C_{2}\left(i_{1}, i_{3}\right)+C_{2}\left(i_{2}, i_{3}\right)\right)\left(\log \left(R_{i_{1} i_{2} i_{3}}^{(4)}\right)-\log \left(S_{i_{1} i_{2} i_{3}}^{(4)}\right)\right) ;
$$

5.4 Generalized multiple zeta values for general $F(\mathrm{I})$: special cases

$$
J_{1}^{(4)}=\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq 4}(-1)^{i_{1}+i_{2}+i_{3}} J_{1}^{(4)}\left(i_{1}, i_{2}, i_{3}\right),
$$

$$
J_{1}^{(4)}\left(i_{1}, i_{2}, i_{3}\right)=C_{1}\left(i_{1}\right) I\left(\frac{U_{i_{1} i_{2}}^{(4)}}{S_{i_{1} i_{2}}^{(4)}}, \frac{U_{i_{1} i_{3}}^{(4)}}{S_{i_{1} i_{3}}^{(4)}} ; \frac{S_{i_{1} i_{2} i_{3}}^{(4)}}{R_{i_{1} i_{2} i_{3}}^{(4)}}\right)-C_{1}\left(i_{2}\right) I\left(\frac{U_{i_{1} i_{2}}^{(4)}}{S_{i_{1} i_{2}}^{(4)}}, \frac{U_{i_{2} i_{3}}^{(4)}}{S_{i_{2} i_{3}}^{(4)}} ; \frac{S_{i_{1} i_{2} i_{3}}^{(4)}}{R_{i_{1} i_{2} i_{3}}^{(4)}}\right)+C_{1}\left(i_{3}\right) I\left(\frac{U_{i_{1} i_{3}}^{(4)}}{S_{i_{1} i_{3}}^{(4)}}, \frac{U_{i_{2} i_{3}}^{(4)}}{S_{i_{2} i_{3}}^{(4)}} ; \frac{S_{i_{1} i_{2} i_{3}}^{(4)}}{R_{i_{1} i_{2} i_{3}}^{(4)}}\right) ;
$$

$$
J_{2}^{(4)}=\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq 4}(-1)^{i_{1}+i_{2}+i_{3}} J_{2}^{(4)}\left(i_{1}, i_{2}, i_{3}\right)
$$

$$
J_{2}^{(4)}\left(i_{1}, i_{2}, i_{3}\right)=\int_{0}^{\infty} I^{(4)}\left(i_{1}, i_{2}, i_{3}\right)\left(y_{3}\right) d\left(\log \left(y_{3}+\frac{S_{i_{1}}^{(4)} i_{3}}{R_{i_{1} i_{2} i_{3}}^{(4)}}\right)\right)
$$

$$
I^{(4)}\left(i_{1}, i_{2}, i_{3}\right)\left(y_{3}\right)=I\left(\frac{L_{i_{1} 3}}{L_{i_{1}} 2}, \frac{L_{i_{2} 3}}{L_{i_{2} 2}} ; \frac{S_{i_{1} i_{2}}^{(4)} y_{3}+U_{i_{1} i_{2}}^{(4)}}{R_{i_{1} i_{2}}^{(4)}}\right)-I\left(\frac{L_{i_{1} 3}}{L_{i_{1} 2}}, \frac{L_{i_{3} 3}}{L_{i_{3} 2}} ; \frac{S_{i_{1} i_{3}}^{(4)} y_{3}+U_{i_{1} i_{3}}^{(4)}}{R_{i_{1} i_{3}}^{(4)}}\right)+I\left(\frac{L_{i_{2} 3}}{L_{i_{2} 2}}, \frac{L_{i_{3} 3}}{L_{i_{3} 2}} ; \frac{S_{i_{2} i_{3}}^{(4)} y_{3}+U_{i_{2} i_{3}}^{(4)}}{R_{i_{2} i_{3}}^{(4)}}\right)
$$

Proof 5.4.4 (Proof of Theorem 5.52) We begin again with the Eisenstein trick,

$$
\frac{\Delta_{4}}{\prod_{i=1}^{4}\left(L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3} y_{3}+L_{i 4}\right)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} \frac{R_{i j k}^{(4)}}{l_{i} l_{j} l_{k}},
$$

where

$$
l_{i}=l_{i}\left(y_{1}, y_{2}, y_{3}\right)=L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3} y_{3}+L_{i 4} .
$$

Define

$$
m_{i j k}\left(y_{3}\right)=\left|\begin{array}{lll}
L_{i 1} & L_{i 2} & L_{i 3} y_{3}+L_{i 4} \\
L_{j 1} & L_{j 2} & L_{j 3} y_{3}+L_{i 4} \\
L_{k 1} & L_{k 2} & L_{k 3} y_{3}+L_{i 4}
\end{array}\right|=R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)} .
$$

Then
$\Delta_{4} \int_{\mathbb{R}_{+}^{3}} \frac{d y_{1} d y_{2} d y_{3}}{\prod_{i=1}^{4}\left(L_{i 1} y_{1}+L_{i 2} y_{2}+L_{i 3} y_{3}+L_{i 4}\right)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} \int_{0}^{\infty}\left(\int_{\mathbb{R}_{+}^{2}} \frac{m_{i j k}\left(y_{3}\right)}{l_{i} l_{j} l_{k}} d y_{1} d y_{2}\right) \frac{R_{i j k}^{(4)}}{m_{i j k}\left(y_{3}\right)} d y_{3}$.
If we define

$$
3 \Delta_{3}^{(i j k)}\left(y_{3}\right) I_{3}^{(i j k)}\left(y_{3}\right)=\int_{\mathbb{R}_{+}^{2}} \frac{m_{i j k}\left(y_{3}\right)}{l_{i} l_{j} l_{k}} d y_{1} d y_{2}
$$

then replacing $L_{i 3}$ by $L_{i 3} y_{3}+L_{i 4}$ and according to the result of Theorem 5.45, we obtain that

$$
3 \Delta_{3}^{(i j k)}\left(y_{3}\right) I_{3}^{(i j k)}\left(y_{3}\right)=J_{0}^{(3),(i j k)}\left(y_{3}\right)-J_{1}^{(3),(i j k)}\left(y_{3}\right)
$$

where

$$
J_{0}^{(3),(i j k)}\left(y_{3}\right)=\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{j 1}}{L_{j 2}}\right)\right)\left(\log \left(\frac{R_{i j}^{(4)}}{S_{i j}^{(4)} y_{3}+U_{i j}^{(4)}}\right)\right)
$$

$$
\begin{gathered}
-\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{k 1}}{L_{k 2}}\right)\right)\left(\log \left(\frac{R_{i k}^{(4)}}{S_{i k}^{(4)} y_{3}+U_{i k}^{(4)}}\right)\right) \\
+\left(\log \left(\frac{L_{j 1}}{L_{j 2}}\right)-\log \left(\frac{L_{k 1}}{L_{k 2}}\right)\right)\left(\log \left(\frac{R_{j k}^{(4)}}{S_{j k}^{(4)} y_{3}+U_{j k}^{(4)}}\right)\right) ; \\
J_{1}^{(3),(i j k)}\left(y_{3}\right)=I\left(\frac{L_{i 3}}{L_{i 2}}, \frac{L_{j 3}}{L_{j 2}} ; \frac{S_{i j}^{(4)} y_{3}+U_{i j}^{(4)}}{R_{i j}^{(4)}}\right)-I\left(\frac{L_{i 3}}{L_{i 2}}, \frac{L_{k 3}}{L_{k 2}} ; \frac{S_{i k}^{(4)} y_{3}+U_{i k}^{(4)}}{R_{i k}^{4}}\right)+I\left(\frac{L_{j 3}}{L_{j 2}}, \frac{L_{k 3}}{L_{k 2}} ; \frac{S_{j k}^{(4)} y_{3}+U_{j k}^{(4)}}{R_{j k}^{(4)}}\right),
\end{gathered}
$$

and

$$
\frac{R_{i j k}^{(4)}}{m_{i j k}\left(y_{3}\right)} d y_{3}=d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right),
$$

then

$$
4 \Delta_{4} I_{4}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} \int_{0}^{\infty}\left(J_{0}^{(3),(i j k)}\left(y_{3}\right)-J_{1}^{(3),(i j k)}\left(y_{3}\right)\right) d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right) .
$$

Then define

$$
\begin{gathered}
J_{0,0}^{(3),(i j k)}\left(y_{3}\right)=\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{j 1}}{L_{j 2}}\right)\right)\left(\log \left(R_{i j}^{(4)}\right)-\log \left(S_{i j}^{(4)}\right)\right) \\
-\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{k 1}}{L_{k 2}}\right)\right)\left(\log \left(R_{i k}^{(4)}\right)-\log \left(S_{i k}^{(4)}\right)\right) \\
+\left(\log \left(\frac{L_{j 1}}{L_{j 2}}\right)-\log \left(\frac{L_{k 1}}{L_{k 2}}\right)\right)\left(\log \left(R_{j k}^{(4)}\right)-\log \left(S_{j k}^{(4)}\right)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
J_{0,1}^{(3),(i j k)}\left(y_{3}\right)=\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{j 1}}{L_{j 2}}\right)\right)\left(\log \left(y_{3}+\frac{U_{i j}^{(4)}}{S_{i j}^{(4)}}\right)\right) \\
-\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{k 1}}{L_{k 2}}\right)\right)\left(\log \left(y_{3}+\frac{U_{i k}^{(4)}}{S_{i k}^{(4)}}\right)\right) \\
+\left(\log \left(\frac{L_{j 1}}{L_{j 2}}\right)-\log \left(\frac{L_{k 1}}{L_{k 2}}\right)\right)\left(\log \left(y_{3}+\frac{U_{j k}^{(4)}}{S_{j k}^{(4)}}\right)\right)
\end{gathered}
$$

It is easy to see that

$$
J_{0}^{(3),(i j k)}\left(y_{3}\right)=J_{0,0}^{(3),(i j k)}\left(y_{3}\right)-J_{0,1}^{(3),(i j k)}\left(y_{3}\right) .
$$

Define

$$
J_{0}^{(4)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} \int_{0}^{\infty}\left(J_{0,0}^{(3),(i j k)}\left(y_{3}\right)\right) d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right)
$$

and

$$
J_{1}^{(4)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} \int_{0}^{\infty}\left(J_{0,1}^{(3),(i j k)}\left(y_{3}\right)\right) d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right) ;
$$

and

$$
J_{2}^{(4)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} \int_{0}^{\infty}\left(J_{1}^{(3),(i j k)}\left(y_{3}\right)\right) d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right)
$$

Then

$$
4 \Delta_{4} I_{4}=J_{0}^{(4)}-J_{1}^{(4)}-J_{2}^{(4)}
$$

For proving Theorem 5.52, we only need to calculate the three quantities above. This is done in the following three lemmas. We will give the proof in detail only for the first lemma, the other two proofs are quite similar and straightforward.
Lemma 5.53

$$
J_{0}^{(4)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k}\left(C_{2}(i, j)-C_{2}(i, k)+C_{2}(j, k)\right)\left(\log \left(R_{i j k}^{(4)}\right)-\log \left(S_{i j k}^{(4)}\right)\right)
$$

Proof 5.4.5 (Proof:) We begin with the following integral

$$
\begin{gathered}
\int_{0}^{\infty}\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{j 1}}{L_{j 2}}\right)\right)\left(\log \left(R_{i j}^{(4)}\right)-\log \left(S_{i j}^{(4)}\right)\right) d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right) \\
=\lim _{T \rightarrow \infty}\left(\log \left(\frac{L_{i 1}}{L_{i 2}}\right)-\log \left(\frac{L_{j 1}}{L_{j 2}}\right)\right)\left(\log \left(R_{i j}^{(4)}\right)-\log \left(S_{i j}^{(4)}\right)\right)\left(\log \left(R_{i j k}^{(4)} T+S_{i j k}^{(4)}\right)-\log \left(S_{i j k}^{(4)}\right)\right) \\
=\lim _{T \rightarrow \infty} C_{2}(i, j)\left(\log \left(R_{i j k}^{(4)} T+S_{i j k}^{(4)}\right)-\log \left(S_{i j k}^{(4)}\right)\right) .
\end{gathered}
$$

Then

$$
\begin{gathered}
\int_{0}^{\infty}\left(J_{0,0}^{(3),(i j k)}\left(y_{3}\right)\right) d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right) \\
=\lim _{T \rightarrow \infty}\left(C_{2}(i, j)-C_{2}(i, k)+C_{2}(j, k)\right)\left(\log \left(R_{i j k}^{(4)} T+S_{i j k}^{(4)}\right)-\log \left(S_{i j k}^{(4)}\right)\right)
\end{gathered}
$$

Therefore the cocycle relation $\sum(-1)^{i+j+k}$, acting on the integral above, yields a cancelation of the terms involving $\log (T)$ and gives us

$$
\begin{gathered}
\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k}\left(J_{0,0}^{(3),(i j k)}\left(y_{3}\right)\right) d \log \left(R_{i j k}^{(4)} y_{3}+S_{i j k}^{(4)}\right) \\
=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k}\left(C_{2}(i, j)-C_{2}(i, k)+C_{2}(j, k)\right)\left(\log \left(R_{i j k}^{(4)}\right)-\log \left(S_{i j k}^{(4)}\right)\right) .
\end{gathered}
$$

Lemma 5.54

$$
J_{1}^{(4)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} J_{1}^{(4)}(i, j, k)
$$

where
$J_{1}^{(4)}(i, j, k)=C_{1}(i) I\left(\frac{U_{i j}^{(4)}}{S_{i j}^{(4)}}, \frac{U_{i k}^{(4)}}{S_{i k}^{(4)}} ; \frac{S_{i j k}^{(4)}}{R_{i j k}^{(4)}}\right)-C_{1}(j) I\left(\frac{U_{i j}^{(4)}}{S_{i j}^{(4)}}, \frac{U_{j k}^{(4)}}{S_{j k}^{(4)}} ; \frac{S_{i j k}^{(4)}}{R_{i j k}^{(4)}}\right)+C_{1}(k) I\left(\frac{U_{i k}^{(4)}}{S_{i k}^{(4)}}, \frac{U_{j k}^{(4)}}{S_{j k}^{(4)}} ; \frac{S_{i j k}^{(4)}}{R_{i j k}^{(4)}}\right)$.

Lemma 5.55

$$
J_{2}^{(4)}=\sum_{1 \leq i<j<k \leq 4}(-1)^{i+j+k} J_{2}^{(4)}(i, j, k)
$$

where

$$
J_{2}^{(4)}(i, j, k)=\int_{0}^{\infty} I^{(4)}(i, j, k)\left(y_{3}\right) d\left(\log \left(y_{3}+\frac{S_{i j k}^{(4)}}{R_{i j k}^{(4)}}\right)\right)
$$

and
$I^{(4)}(i, j, k)\left(y_{3}\right)=I\left(\frac{L_{i 3}}{L_{i 2}}, \frac{L_{j 3}}{L_{j 2}} ; \frac{S_{i j}^{(4)} y_{3}+U_{i j}^{(4)}}{R_{i j}^{(4)}}\right)-I\left(\frac{L_{i 3}}{L_{i 2}}, \frac{L_{k 3}}{L_{k 2}} ; \frac{S_{i k}^{(4)} y_{3}+U_{i k}^{(4)}}{R_{i k}^{(4)}}\right)+I\left(\frac{L_{j 3}}{L_{j 2}}, \frac{L_{k 3}}{L_{k 2}} ; \frac{S_{j k}^{(4)} y_{3}+U_{j k}^{(4)}}{R_{j k}^{(4)}}\right)$.
Remark 5.56 The passage from the result of case $r=3$ to the case of $r=4$ can be generalized to any $r \geq 2$. Such a recurrence relation inspires us to do a general calculation for any general $r \geq 2$. We will theorefore give a definition of so-called generalized m-polylogarithms over a totally real field F. However, the coefficients such as $R_{i j k}^{(4)}$ are very inconvenient for general r, thus we will give a general definition of these coefficients in a uniform way.

5.5 Generalized multiple zeta values for general F (II): general case

In this section we assume that a totally real field F is of degree $r>2$. Let us begin the preparation for the general calculation and the definition of generalized polylogarithms over F.

5.5.1 Preliminaries

Definition 5.57 Let us define the set

$$
N(r)=\{1, \ldots, r\} .
$$

Let X and Y be two subsets of $N(r)$ of the same cardinality. Given the linear forms as in Formula 5.37 , we will define the matrix

$$
A_{X, Y}=\left(L_{i j}\right)_{i \in X, j \in Y},
$$

where $L_{i j}$ is always the coefficient of the linear forms in question. Then we define

$$
R_{X, Y}^{(r)}=\operatorname{det}\left(A_{X, Y}\right)
$$

For example, if $r=4$, if we take $X_{1}=\{i, j, k\}, 1 \leq i<j<k \leq 4$ and $Y_{1}=\{1,2,3\}$, then

$$
R_{X_{1}, Y_{1}}^{(4)}=R_{i j k}^{(4)} .
$$

If we take $Y_{2}=\{1,2,4\}$, then

$$
R_{X_{1}, Y_{2}}^{(4)}=S_{i j k}^{(4)}
$$

Let $X_{2}=\{i, j\}, 1 \leq i<j \leq 4$ and $Y_{3}=\{1,2\}$ and $Y_{4}=\{1,3\}$ then

$$
R_{X_{2}, Y_{3}}^{(4)}=R_{i j}^{(4)}, \quad R_{X_{2}, Y_{4}}^{(4)}=S_{i j}^{(4)} .
$$

Now we will define a cocycle relation operator which acts on other sets, later on we will make such an operator act on the set of indices.

Definition 5.58 Assume that $n \in \mathbb{N} \backslash\{0\}$.
Let A be a finite totally ordered set. We define

$$
T_{n}(A)=\left\{\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \in A^{n} \mid a_{1}<a_{2}<\cdots<a_{n}\right\} .
$$

It is easy to see that $\left|T_{n}(A)\right|=\binom{|A|}{n}$.

Definition 5.59 The n-cocycle relation operator is defined as

$$
\operatorname{Cycl}_{n}(1, \ldots, n)=\sum_{i=0}^{n-1}(-1)^{i}(1,2, \ldots, n-(i+1), \widehat{n-i}, n-(i-1), \ldots, n),
$$

where $\widehat{(\cdot)}$ means omitting the term $(n-i)$.
Then the cocycle operator acts on $\underline{a} \in T_{n}(A)$,

$$
\operatorname{Cycl}_{n}(\underline{a})=\sum_{i=0}^{n-1}(-1)^{i}\left(a_{1}, a_{2}, \ldots, a_{n-(i+1)}, \widehat{a_{n-i}}, a_{n-(i-1)}, \ldots, a_{n}\right) .
$$

If f is a function depending on the multiple index $\underline{j} \in T_{n-1}(A)$, we deduce an action of the cocycle operator on f,

$$
\operatorname{Cycl}_{n}(f)=\sum_{i=0}^{n-1}(-1)^{i} f_{\underline{a}(i)},
$$

where

$$
\underline{a}(i)=\left(a_{1}, a_{2}, \ldots, a_{n-(i+1)}, \widehat{a_{n-i}}, a_{n-(i-1)}, \ldots, a_{n}\right),
$$

and

$$
\underline{j} \in\{\underline{a}(0), \ldots, \underline{a}(n-1)\} .
$$

If there is no ambiguity, we can simply write

$$
\operatorname{Cycl}_{n}(f)=\operatorname{Cycl}_{n}(\underline{j})\left(f_{\underline{j}}\right)
$$

For example, if $l_{i}(y)=\sum_{j=1}^{n} L_{i j} y_{j}, 0 \leq i \leq n$ and if

$$
\begin{gathered}
N(n)=\{0,1, \ldots, n\}, \\
N_{i}=\{0,1, \ldots, \overline{(n-i)}, \ldots, n\}, \\
\underline{n_{i}}=(0,1, \ldots, \overline{(n-i)}, \ldots, n) \\
f_{n_{i}}(y)=\frac{\operatorname{det}\left(\left(L_{k h}\right)_{k \in N_{i}, 1 \leq h \leq n}\right)}{\prod_{j \neq n-i} l_{j}(y)},
\end{gathered}
$$

Denote

$$
\operatorname{det}\left(l_{i_{1}}, \ldots, l_{i_{n}}\right)=\operatorname{det}\left(\left(L_{k h}\right)_{k \in\left\{i_{1}, \ldots, i_{n}\right\}, 1 \leq h \leq n}\right),
$$

then the Eisenstein trick

$$
\sum_{i=0}^{n}(-1)^{i} \frac{\operatorname{det}\left(l_{0}, l_{1}, \ldots, \widehat{l}_{i}, \ldots, l_{n}\right)}{\prod_{j \neq i} l_{j}(y)}=0
$$

after replacing i by $n-i$, can be rewritten as

$$
\operatorname{Cycl}_{n+1}(f)(y)=0
$$

5.5.2 General case of r and generalized polylogarithms over F

The cocycle relation

$$
\sum_{i=0}^{n}(-1)^{i} \frac{\operatorname{det}\left(l_{0}, l_{1}, \ldots, \widehat{l_{n-i}}, \ldots, l_{n}\right)}{\prod_{j \neq n-i} l_{j}(y)}=0
$$

is equivalent to

$$
\sum_{i=0}^{n-1}(-1)^{i} \frac{\operatorname{det}\left(l_{0}, l_{1}, \ldots, \widehat{l_{n-i}}, \ldots, l_{n}\right)}{\prod_{j \neq n-i} l_{j}(y)}+(-1)^{n} \frac{\operatorname{det}\left(l_{1}, \ldots, l_{n}\right)}{l_{1} \cdots l_{n}}=0
$$

then

$$
\frac{\operatorname{det}\left(l_{1}, \ldots, l_{n}\right)}{l_{1} \cdots l_{n}}=\sum_{i=0}^{n-1}(-1)^{n+i-1} \frac{\operatorname{det}\left(l_{0}, l_{1}, \ldots, \widehat{l_{n-i}}, \ldots, l_{n}\right)}{\prod_{j \neq n-i} l_{j}(y)}
$$

As in the previous section, we fix $l_{0}=y_{n}$ and take $y_{n}=1$, then

$$
\operatorname{det}\left(l_{0}, l_{1}, \ldots, \widehat{l_{n-i}}, \ldots, l_{n}\right)=(-1)^{1+n} \widetilde{\operatorname{det}}\left(l_{1}, \ldots, \widehat{l_{n-i}}, \ldots, l_{n}\right)
$$

where

$$
\widetilde{\operatorname{det}}\left(l_{i_{1}}, \ldots, l_{i_{n-1}}\right)=\operatorname{det}\left(\left(L_{k h}\right)_{k \in\left\{i_{1}, \ldots, i_{n-1}\right\}, 1 \leq h \leq n-1}\right)
$$

Therefore

$$
\begin{equation*}
\frac{\operatorname{det}\left(l_{1}, \ldots, l_{n}\right)}{l_{1} \cdots l_{n}}=\sum_{i=0}^{n-1}(-1)^{i} \frac{\widetilde{\operatorname{det}}\left(l_{1}, \ldots, \widehat{l_{n-i}}, \ldots, l_{n}\right)}{l_{1} \cdots \widehat{l_{n-i} \cdots l_{n}}} . \tag{9}
\end{equation*}
$$

Now recall us

$$
N(n)=\{1, \ldots, n\},
$$

and

$$
\underline{i}=\left(i_{1}, \ldots, i_{n-1}\right) \in T_{n-1}(N(n)) .
$$

then (9) can be written as

$$
\begin{equation*}
\frac{\operatorname{det}\left(l_{1}, \ldots, l_{n}\right)}{l_{1} \cdots l_{n}}=\operatorname{Cycl}_{n}(f)=\operatorname{Cycl}_{n}(\underline{i})\left(f_{\underline{i}}\right) . \tag{10}
\end{equation*}
$$

Results of general r. Now we will talk about the case of a general r. We fix a totally real field F of degree r. Let us recall the basic integral of the Hecke transform.

$$
I_{r}=I_{r}\left(L_{i}\right)=\int_{U_{\mathbb{R}}} \prod_{i=1}^{r} \frac{1}{L_{i}(u)} \mathrm{d}^{\times} u=\frac{1}{r} \int_{\mathbb{R}_{+}^{r-1}} \prod_{i=1}^{r} \frac{d y}{\sum_{j=1}^{r-1}\left(L_{i j} y_{j}\right)+L_{i r}}
$$

Let us fix the notation

$$
\Delta_{r}=\operatorname{det}\left(L_{1}, \ldots, L_{r}\right) .
$$

then

$$
r \Delta_{r} I_{r}=\int_{\mathbb{R}_{+}^{r-1}} \frac{\operatorname{det}\left(L_{1}, \ldots, L_{r}\right)}{\prod_{i=1}^{r}\left(\sum_{j=1}^{r-1}\left(L_{i j} y_{j}\right)+L_{i r}\right)} d y_{1} \cdots d y_{r-1}
$$

5.5 Generalized multiple zeta values for general F (II): general case

Generalization of Multiple Zeta Values (II):
Results for general totally real fields

Theorem 5.60 (General Relation of I_{r}) Given a totally real field F of degree r.

$$
N(r)=\{1, \ldots, r\} ; \quad \mathrm{I}_{(r)}(\underline{i})=\left\{i_{1}, \ldots, i_{r-1}\right\},
$$

and

$$
\underline{i}=\left(i_{1}, \ldots, i_{r-1}\right) \in T_{r-1}(N(r)) .
$$

And according to Definition 5.57

$$
\begin{gathered}
R_{\underline{i, r-1}}^{(r)}=R_{\mathrm{I}_{(r)}(\underline{i}), N(r) \backslash\{r-1\}}^{(r)} ; \\
R_{i, r}^{(r)}=R_{\mathrm{I}_{(r)}(\underline{)}(\underline{i}), N(r) \backslash\{r\}}^{(r)} .
\end{gathered}
$$

Then we can obtain the result of the basic integrals I_{r} from the result of I_{r-1},

$$
r \Delta_{r} I_{r}=\operatorname{Cycl}_{r}(\underline{i})\left(\int_{0}^{\infty}(r-1) \Delta_{r-1}^{(i)}\left(y_{r-1}\right) I_{r-1}^{(i)}\left(y_{r-1}\right) d \log \left(y_{r-1}+\frac{R_{i, r-1}^{(r)}}{R_{i, r}^{(r)}}\right)\right),
$$

where

$$
\Delta_{r-1}^{(i)}\left(y_{r-1}\right)=R_{i, r}^{(r)} y_{r-1}+R_{i, r-1}^{(r)}
$$

and

$$
(r-1) \Delta_{r-1}^{(i)}\left(y_{r-1}\right) I_{r-1}^{(i)}\left(y_{r-1}\right)=\int_{\mathbb{R}_{+}^{r-2}} \frac{\Delta_{r-1}^{(i)}\left(y_{r-1}\right)}{\prod_{k=1}^{r-1}\left(\sum_{j=1}^{r-1}\left(L_{i_{k}} y_{j}\right)+L_{i_{k} r}\right)} d y_{1} \cdots d y_{r-2} .
$$

In fact, we have considered the r-dimensional linear forms

$$
l_{i}(y)=\sum_{j=1}^{r-1}\left(L_{i j} y_{j}\right)+L_{i r} y_{r}, \quad y_{r}=1,1 \leq i \leq r
$$

as $r-1$-dimensional linear forms with a parameter y_{r-1} by regarding $L_{i(r-1)} y_{r-1}+L_{i r}$ as the $(r-1)$ th coefficient.

Proof 5.5.1 We always have the same notations.

$$
l_{i}(y)=\sum_{j=1}^{r-1}\left(L_{i j} y_{j}\right)+L_{i r}, \quad 1 \leq i \leq r
$$

Our starting point of the proof is the cocycle relations (9) and (10).

$$
\frac{\operatorname{det}\left(l_{1}, \ldots, l_{n}\right)}{l_{1} \cdots l_{n}}=\sum_{i=0}^{n-1}(-1)^{i} \frac{\widetilde{\operatorname{det}}\left(l_{1}, \ldots, \widehat{l_{n-i}}, \ldots, l_{n}\right)}{l_{1} \cdots \widehat{l_{n-i} \cdots l_{n}}} .
$$

By the defition of $\widetilde{\text { det }}$ and Definition 5.57, we know that

$$
\widetilde{\operatorname{det}}\left(l_{i_{1}}, \ldots, l_{i_{r}-1}\right)=R_{\underline{i}, r}^{(r)}
$$

then

$$
\frac{\widetilde{\operatorname{det}}\left(l_{i_{1}}, \ldots, l_{i_{r}-1}\right)}{l_{i_{1}} \cdots l_{i_{r-1}}}=\frac{R_{i, r}^{(r)} y_{r-1}+R_{i, r-1}^{(r)}}{l_{i_{1}}, \ldots, l_{i_{r}-1}} \times \frac{R_{i, r}^{(r)}}{R_{i, r}^{(r)} y_{r-1}+R_{i, r-1}^{(r)}}
$$

and

$$
\frac{R_{i, r}^{(r)}}{R_{i, r}^{(r)} y_{r-1}+R_{i, r-1}^{(r)}} d y_{r-1}=d \log \left(y_{r-1}+\frac{R_{i, r-1}^{(r)}}{R_{i, r}^{(r)}}\right) .
$$

This finishes the proof of the theorem.
5.5 Generalized multiple zeta values for general F (II): general case

Generalization of Multiple Zeta Values (II):
Results for general totally real fields

Theorem 5.61 (General expression of the basic integral of the Hecke transform)

The basic integral of the Hecke transform can be written as a sum of of $r-1$ terms

$$
r \Delta_{r} I_{r}=J_{0}^{(r)}-J_{1}^{(r)}-\ldots-J_{r-2}^{(r)}
$$

where the term $J_{0}^{(r)}$ is a sum of logarithms, and $J_{1}^{(r)}$ involves dilogarithms and logarithms, $J_{j}^{(r)}(1 \leq$ $j \leq r-2)$ are sums of iterated integrals of degree $j+1$ of differential forms $\frac{d y}{y+\beta_{j}}$, which we call the generalized $j+1$-logarithms, where β_{j} is a rational functions of the coefficients $L_{i j}$.

Proof 5.5.2 We will prove this theorem by mathematical induction.
The first step. Theorem 5.39, Theorem 5.45 and Theorem 5.52 imply this theorem when $r=2,3$, 4, respectively.

The inductive step. We suppose that the theorem holds when $r \leq k-1$, now we will prove when $r=k(k \geq 3)$. From Theorem 5.60 and the inductive hypothesis, we can deduce that

$$
\begin{gathered}
\operatorname{Cycl}_{r}(\underline{i})\left(\int_{0}^{\infty} J_{0}^{(r-1),(\underline{(})}\left(y_{r-1}\right) d \log \left(y_{r-1}+\frac{R_{\underline{i}, r-1}^{(r)}}{R_{\underline{i}, r}^{(r)}}\right)\right)=J_{0}^{(r)}-J_{1}^{(r)} ; \\
\operatorname{Cycl}_{r}(\underline{i})\left(\int_{0}^{\infty} J_{j}^{(r-1),(\underline{i})}\left(y_{r-1}\right) d \log \left(y_{r-1}+\frac{R_{\underline{i}, r-1}^{(r)}}{R_{\underline{i}, r}^{(r)}}\right)\right)=J_{j+1}^{(r)}, \quad 1 \leq j \leq r-3 .
\end{gathered}
$$

The theorem comes from the two relations above. To give a more precise expression of the first term, we will define a family of functions by induction. Recall that \underline{i} is $a(r-1)$-tuple, we will define a filtration between the tuples. Let

$$
{ }^{(h)} \underline{i}=\left({ }^{(h)} i_{1}, \ldots,{ }^{(h)} i_{h}\right), 1 \leq h \leq r-1
$$

be a h-tuple, where the upper left symbol ${ }^{(h)}$ signifies the size h of this tuple.

$$
{ }^{(r-1)} \underline{i}=\underline{i}=\left(i_{1}, \ldots, i_{r-1}\right)
$$

Let the set

$$
\mathrm{I}_{r}\left({ }^{(h)} \underline{i}\right)=\left\{{ }^{(h)} i_{1}, \ldots,{ }^{(h)} i_{h}\right\}
$$

Then we define the filtration relation as follows

$$
{ }^{(h-1)} \underline{i}=\left({ }^{(h-1)} i_{1}, \ldots,{ }^{(h-1)} i_{h-1}\right) \subset{ }^{(h)} \underline{i}
$$

if

$$
{ }^{(h)} i_{\alpha} \in\left\{{ }^{(h)} i_{\beta}, 1 \leq \beta \leq h\right\}, 1 \leq \alpha \leq h-1 .
$$

Recall us Definition 5.57 and we define

$$
\begin{gathered}
C_{1}(i)=\log \left(L_{i 1}\right)-\log \left(L_{i 2}\right) \\
C_{2}(i, j)=\left(C_{1}(i)-C_{1}(j)\right)\left(\log \left(R_{\{i, j\},\{1,2\}}^{(r)}\right)-\log \left(R_{\{i, j\},\{1,3\}}^{(r)}\right)\right)
\end{gathered}
$$

then

$$
C_{h}\left({ }^{(h)} \underline{i}\right)=\left(\operatorname{Cycl}_{h}\left({ }^{(h)} \underline{i}\right)\left(C_{h-1}\left({ }^{(h-1)} \underline{i}\right)\right)\right)\left(\log \left(R_{\mathrm{I}_{r}\left({ }^{(h)} \underline{\underline{i}}\right),\{1, \ldots, h\}}^{(r)}\right)-\log \left(R_{\mathrm{I}_{r}\left({ }^{(h)} \underline{\underline{i}}\right),\{1, \ldots, h-2, h+1\}}^{(r)}\right)\right),
$$

where $2 \leq k \leq r-1$.

$$
C_{r-1}(\underline{i})=\left(\operatorname{Cycl}_{r-1}(\underline{i})\left(C_{r-2}\left({ }^{(r-2)} \underline{i}\right)\right)\right)\left(\log \left(R_{\left.\mathrm{I}_{r(i}\right), N(r) \backslash\{r\}}^{(r)}\right)-\log \left(R_{\mathrm{I}_{r}(\underline{i}), N(r) \backslash\{r-1\}}^{(r)}\right)\right) .
$$

One can do the calculation and get

$$
J_{0}^{(r)}=\operatorname{Cycl}_{r}(\underline{(})\left(C_{r-1}(\underline{i})\right) .
$$

6 The values $\mathscr{Z}_{I, F}(\Gamma, S)$ and the cohomology of congruence subgroups of $S L_{m}\left(O_{F}\right)$

Francis Brown formulated a program about the modularity of mixed motives [3], with the purpose to generalize multiple zeta values and special values of L-functions of modular forms at all integers. In Brown's observation, there exsits a modular phenomena in the ring of multiple zeta values relating a mysterious depth filtration. He proposed that a geometric understanding of these phenomena should put multiple zeta values and modular form for $S L_{2}(\mathbb{Z})$ in the same framework.

$$
\begin{aligned}
& \mathbb{P}^{1} \backslash\{0,1, \infty\} \xrightarrow[\text { with }]{\text { replaced }}>\Gamma \backslash \mathcal{H} \\
& \pi_{1}^{u n} \xrightarrow[\text { with }]{\text { replaced }} \mathscr{G}_{\Gamma} \\
& \text { MZVs } \xrightarrow[\text { with }]{\text { replaced }} M M V s \\
& \mathscr{M} \mathscr{T}(\mathbb{Z}) \xrightarrow[\text { with }]{\text { replaced }} \mathscr{M} \mathscr{M} \mathscr{M}_{\Gamma},
\end{aligned}
$$

where Γ is a subgroup of $S L_{2}(\mathbb{Z})$ with finite index, and \mathscr{G}_{Γ} is relative completion of $S L_{2}$ respect to Γ. MMVs signifies multiple modular values, which are regularized iterated integrals of modular forms on an orbifold $\Gamma \backslash \backslash \mathcal{H}$ and are also periods of the hypertherical Tannakian category $\mathscr{M} \mathscr{M} \mathscr{M}_{\Gamma}$ of mixed modular motives.
$\mathscr{M} \mathscr{T}(\mathbb{Z})$ is the mixed Tate motives over \mathbb{Z}, and the category $\mathscr{M} \mathscr{M} \mathscr{M}_{\Gamma}$ should be generated by iterated extension of motives of modular forms.

Remark 6.1 We want to give some remarks on Brown's MMVs and Goncharov's Hodge correlators. If g is a cusp form for $S L_{2}(\mathbb{Z})$, then the special value $L(g, n) \times(2 \pi i)^{?}$ is a multiple modular value for $S L_{2}(\mathbb{Z})$, and is also a period in the sense of Kontsevich- Zagier. Goncharov's Hodge correlators contain the special values $L(f, n)$ of modular forms for $G L_{2}(\mathbb{Q})$ of weight $k \geq 2$, outside of critical strip. In fact the simplest Hodge correlators in this case coincide with the Rankin-Selberg integrals for $L(f, n)$.

We could ask if our generalized multiple zeta values can be immerged into such a program.
We begin with the classical problem, studied by Gangl-Kaneko-Zagier and Goncharov.
Recall the work of Gangl-Kaneko-Zagier and Goncharov's results. For this section we suppose that the field F is an imaginary quadratic field. We will show that our generalized multiple zeta value, for an imaginary quadratic field, could also be a good candidant as being multiple Eisenstein series, with the hope to be related to some non-holomorphic new modular forms. We recall the theorem 6 in [4].

Theorem 6.2 (Gangl, Kaneko and Zagier) [4] The Fourier expansion of

$$
G_{r, s}(\tau)=\sum_{\substack{\mathbf{m}, \mathbf{n} \in \mathbb{Z} \tau+\mathbb{Z} \\ m>n>0}} \frac{1}{\mathbf{m}^{r} \mathbf{n}^{s}}
$$

for $r \geq 3$ and $s \geq 2$ and $\tau \in \mathcal{H}$ the upper half plane is given by

$$
(2 \pi i)^{-r-s} G_{r, s}=(2 \pi i)^{-r-s} \zeta(r, s)+\sum_{\substack{h+p=r+s \\ h, p>1}}(2 \pi i)^{-p} C_{r, s}^{p} g_{h}(q) \zeta(p)+g_{r, s}(q)
$$

with $q=e^{2 \pi i \tau}$ and

$$
C_{r, s}^{p}=\delta_{s, p}+(-1)^{s} C_{p-1}^{s-1}+(-1)^{p-r} C_{p-1}^{r-1} \in \mathbb{Z}
$$

and

$$
\begin{gathered}
g_{r, s}(q)=\frac{(-1)^{r+s}}{(r-1)!(s-1)!} \sum_{\substack{m>n>0 \\
u>0, v>0}} u^{r-1} v^{s-1} q^{u m+v n} \in \mathbb{Q}[[q]], \\
g_{k}(q)=\frac{(-1)^{k}}{(k-1)!} \sum_{u, n>0} u^{k-1} q^{u n} .
\end{gathered}
$$

New result over an imaginary quadratic field. We can also get a similar result for our generalized multiple zeta value $\mathscr{Z}_{I, F}(\Gamma, S)$ if the field $F=\mathbb{Q}(\sqrt{-D})$ is an imaginary quadratic field.

Notation 6.3 We will note $\tau=\sqrt{-D}$ if $-D \equiv 2,3(4)$ and $\tau=\frac{1+\sqrt{-D}}{2}$ if $-D \equiv 1(4)$. Let $N(\alpha)=\alpha \cdot \bar{\alpha}$ be the standard norm of F.

For an imaginary quadratic field, our definition about higher plectic Green functions still works, however there is no $u \in U$ the subgroup of $U \subset O_{F,+}^{\times}$.

Let Γ_{1} be the graph Figure 1.

$$
\begin{gathered}
\mathscr{G}_{I, \mathbb{Q}(\sqrt{-D}), \Gamma_{1}, \partial \Gamma_{1}}\left(\left\{x_{v}\right\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{\alpha+\beta+\gamma=0} \frac{e^{-2 \pi i T r\left(\alpha \cdot x_{0}+\beta \cdot x_{1}+\gamma \cdot x_{2}\right)}}{N(\alpha)^{\sigma_{1}} N(\beta)^{\sigma_{2} N(\gamma)^{\sigma_{3}}}} \\
\mathscr{Z}_{I, \mathbb{Q}(\sqrt{-D})}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\mathscr{G}_{I, \mathbb{Q}(\sqrt{-D}), \Gamma_{1}, \partial \Gamma_{1}}\left(\{0\}_{v \in \partial \Gamma_{1}}, 1\right)=\sum_{\alpha, \beta} \frac{1}{N(\alpha)^{\sigma_{1} N(\beta)^{\sigma_{2}} N(\alpha+\beta)^{\sigma_{3}}} .} .
\end{gathered}
$$

If $\alpha=a_{1}+a_{2} \tau \in O_{F}, a_{1}, a_{2} \in \mathbb{Z}$ and $\beta=b_{1}+b_{2} \tau \in O_{F}, b_{1}, b_{2} \in \mathbb{Z}$, then

$$
\begin{gathered}
\mathscr{Z}_{I, \mathbb{Q}(\sqrt{-D})}\left(\Gamma_{1}, \partial \Gamma_{1}\right)= \\
\sum \frac{1}{\left(a_{1}+a_{2} \tau\right)^{\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{\sigma_{1}}\left(b_{1}+b_{2} \tau\right)^{\sigma_{2}}\left(b_{1}+b_{2} \bar{\tau}\right)^{\sigma_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{\sigma_{3}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{\sigma_{3}}} .
\end{gathered}
$$

We can also add a new $\operatorname{sign} \mu$ for each edge of the graph Γ_{1}, such that $\alpha>0$ and $\beta>0$, where $\alpha=a_{1}+a_{2} \tau>0$ means that if $a_{2}>0$ or $a_{2}=0, a_{1}>0$. Then

$$
\begin{gathered}
\mathscr{Z}_{I, \mu, \mathbb{Q}(\sqrt{-D})}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{\alpha, \beta>0} \frac{1}{N(\alpha)^{\sigma_{1}} N(\beta)^{\sigma_{2}} N(\alpha+\beta)^{\sigma_{3}}} \\
=\sum_{\substack{\sigma_{1}+a_{2} \tau>0 \\
b_{1}+b_{2}>0}} \frac{1}{\left(a_{1}+a_{2} \tau\right)^{\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{\sigma_{1}}\left(b_{1}+b_{2} \tau\right)^{\sigma_{2}}\left(b_{1}+b_{2} \bar{\tau}\right)^{\sigma_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{\sigma_{3}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{\sigma_{3}}} \\
=\sum_{\substack{a_{2}=b_{2}=0 \\
a_{1}>0, b_{1}>0}}+\sum_{\substack{a_{2}=0, b_{2}>0 \\
b_{1} \in \mathbb{Z}}}+\sum_{\substack{a_{2}>0, b_{2}=0 \\
a_{1} \in \mathbb{Z}}}+\sum_{\substack{a_{2}>, b_{2}>0 \\
a_{1}, b_{1} \in \mathbb{Z}}} .
\end{gathered}
$$

The first sum $\quad \sum_{\substack{a_{2}=b_{2}=0 \\ a_{1}>0 b_{1}>0}}$.

$$
\sum_{\substack{a_{1}=b_{2}=0 \\ a_{1}>0, b_{1}>0}}=\sum_{a_{1}>0, b_{1}>0} \frac{1}{\left(a_{1}\right)^{2 \sigma_{1}}\left(b_{1}\right)^{2 \sigma_{2}}\left(a_{1}+b_{1}\right)^{2 \sigma_{3}}}=\mathscr{Z}_{I, v, \mathbb{Q}}\left(\Gamma_{1}, \partial \Gamma_{1}\right),
$$

where

$$
\mathscr{Z}_{l, v, \mathbb{Q}}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\sum_{r+s=2 \sigma_{1}+2 \sigma_{2}}\left(C_{r-1}^{2 \sigma_{1}-1}+C_{r-1}^{2 \sigma_{2}-1}\right) \zeta\left(s, r+2 \sigma_{3}\right) .
$$

The second sum $\begin{gathered}\sum_{a_{2}=0, b_{2}>0}^{a_{1}>0, b_{1} \in \mathbb{Z}},\end{gathered}$

$$
\sum_{\substack{a_{2}=0, b_{2}>0 \\ b_{1} \in \mathbb{Z}}}=\sum_{\substack{a_{1}>0 \\ b_{2}>0, b_{1} \in \mathbb{Z}}} \frac{1}{\left(a_{1}\right)^{2 \sigma_{1}}\left(b_{1}+b_{2} \tau\right)^{\sigma_{2}}\left(b_{1}+b_{2} \bar{\tau}\right)^{\sigma_{2}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{\sigma_{3}}\left(a_{1}+b_{1}+b_{2} \bar{\tau}\right)^{\sigma_{3}}}
$$

Now we apply the Eisenstein's formula,

$$
\frac{1}{\left(b_{1}+b_{2} \tau\right)^{\sigma_{2}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{\sigma_{3}}}=\sum_{r_{1}+s_{1}=\sigma_{2}+\sigma_{3}}\left(\frac{(-1)^{\sigma_{2}} C_{r_{1}-1}^{\sigma_{2}-1}}{a_{1}^{r_{1}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{s_{1}}}+\frac{(-1)^{\sigma_{2}+s_{1}} C_{r_{1}-1}^{\sigma_{3}-1}}{a_{1}^{r_{1}}\left(b_{1}+b_{2} \tau\right)^{s_{1}}}\right) .
$$

And

$$
\frac{1}{\left(b_{1}+b_{2} \bar{\tau}\right)^{\sigma_{2}}\left(a_{1}+b_{1}+b_{2} \bar{\tau}\right)^{\sigma_{3}}}=\sum_{r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}\left(\frac{(-1)^{\sigma_{2}} C_{r_{2}-1}^{\sigma_{2}-1}}{a_{1}^{r_{2}}\left(a_{1}+b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}}+\frac{(-1)^{\sigma_{2}+s_{2}} C_{r_{2}-1}^{\sigma_{3}-1}}{a_{1}^{r_{2}}\left(b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}}\right) .
$$

Then

$$
\sum_{\substack{a_{2}=0, b_{2} \gg \\ b_{1} \in \mathbb{Z}}}=A_{1}+A_{2}+A_{3}+A_{4},
$$

where

$$
\begin{aligned}
& A_{1}=\sum_{\substack{a_{1}>0 \\
b_{2}>b_{1} \in \mathbb{L}_{1} \in r_{2}+s_{2}=s_{1}=\sigma_{2}+\sigma_{3}}} \sum_{\substack{r_{3}+\sigma_{3}}} \frac{C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{2}-1}}{} \frac{a_{1}^{r_{1}+r_{2}+\sigma_{1}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{s_{1}}\left(a_{1}+b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}}{} \\
& A_{2}=\sum_{\substack{a_{1}>0 \\
b_{2}>0, b_{1} \in \mathbb{Z} \\
r_{2}+r_{2}=\sigma_{2}+\sigma_{3}}} \sum_{1} \frac{(-1)^{s_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1}}{} \frac{\sigma_{1}}{a_{1}^{r_{1}+r_{2}+\sigma_{1}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{s_{1}}\left(b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}} \\
& A_{3}=\sum_{\substack{a_{1}>0 \\
b_{2}>0, b_{1} \in \mathbb{Z}_{2} r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}} \sum_{\substack{r_{1}+s_{1} \sigma_{2}+\sigma_{3}}} \frac{(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1}}{a_{1}^{r_{1}+r_{2}+\sigma_{1}}\left(a_{1}+b_{1}+b_{2} \bar{\tau}\right)^{s_{1}}\left(b_{1}+b_{2} \tau\right)^{s_{2}}} \\
& A_{4}=\sum_{\substack{a_{1}>0 \\
b_{2}>0, b_{1} \in \mathbb{Z} r_{2}+s_{2}=s_{2}+\sigma_{2}+\sigma_{3}}} \sum_{\substack{r_{3}+\sigma_{3}+\sigma_{3}}} \frac{(-1)^{s_{1}+s_{2}} C_{r_{2}-1}^{\sigma_{3}-1} C_{r_{1}-1}^{\sigma_{3}-1}}{a_{1}^{r_{1}+r_{2}+\sigma_{1}}\left(b_{1}+b_{2} \tau\right)^{s_{1}}\left(b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}} .
\end{aligned}
$$

(1) The first term can computed by the Lipschitz summation formula, due to H. Maass and John Hawkins.

$$
\begin{aligned}
& A_{1}=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}} \sum_{\substack{a_{1}>0, b_{2}>0 \\
b_{1}^{\prime} \in \mathbb{Z}}} \frac{C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{2}-1}}{} \frac{a_{1}^{r_{1}+r_{2}+\sigma_{1}}\left(b_{1}^{\prime}+b_{2} \tau\right)^{s_{1}}\left(b_{1}^{\prime}+b_{2} \bar{\tau}\right)^{s_{2}}}{} \\
& =\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{2}-1} \sum_{a_{1}>0} \frac{1}{a_{1}^{r_{1}+r_{2}+\sigma_{1}}} \sum_{b_{2}>0, b_{1}^{\prime} \in \mathbb{Z}} \frac{1}{\left(b_{1}^{\prime}+b_{2} \tau\right)^{s_{1}}\left(b_{1}^{\prime}+b_{2} \bar{\tau}\right)^{s_{2}}},
\end{aligned}
$$

where we remplaced $a_{1}+b_{1}$ by b_{1}^{\prime}.
Theorem 6.4 (Lipschitz summation formula, Hans Maass 96') [15]

$$
\sum_{m \in \mathbb{Z}} \frac{e^{-2 \pi i \mu m}}{(\tau+m)^{\alpha_{1}}(\bar{\tau}+m)^{\alpha_{2}}}=\frac{(2 \pi)^{\alpha_{1}+\alpha_{2}}(-1)^{\alpha_{1}-\alpha_{2}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \sum_{n \in \mathbb{Z}} a_{n+\mu}\left(y, \alpha_{1}, \alpha_{2}\right) e^{2 \pi i(n+\mu) x},
$$

where $\tau=x+i y \in \mathcal{H}=\{z \in \mathbb{C}: \operatorname{Imz}>0\}, \mu \in \mathbb{R}, \operatorname{Re}\left(\alpha_{1}+\alpha_{2}\right)>1$ and $a_{n+\mu}\left(y, \alpha_{1}, \alpha_{2}\right)$

$$
= \begin{cases}\Gamma\left(\alpha_{1}+\alpha_{2}-1\right)(4 \pi y)^{1-\alpha_{1}-\alpha_{2}}, & \text { if } n+\mu=0 \\ (n+\mu)^{\alpha_{1}+\alpha_{2}-1} e^{-2 \pi(n+\mu) y} \sigma\left(4 \pi(n+\mu) y, \alpha_{1}, \alpha_{2}\right), & \text { if } n+\mu>0 \\ (-n-\mu)^{\alpha_{1}+\alpha_{2}-1} e^{2 \pi(n+\mu) y} \sigma\left(-4 \pi(n+\mu) y, \alpha_{2}, \alpha_{1}\right), & \text { if } n+\mu<0\end{cases}
$$

where $\sigma(\eta, \alpha, \beta)$ denotes the special function which has the following integral representation:

$$
\int_{0}^{\infty}(u+1)^{\alpha-1} u^{\beta-1} e^{-\eta u} d u, \alpha \in \mathbb{C}, \operatorname{Re}(\beta)>0, \operatorname{Re}(\eta)>0 .
$$

Remark 6.5 The function $\sigma(\eta, \alpha, \beta)$ is a generalization of $\Gamma(\beta)$. In fact, the confluent hypergeometric function of the second kind

$$
\Psi(\beta, \alpha+\beta ; \eta)=\frac{\sigma(\eta, \alpha, \beta)}{\Gamma(\beta)}
$$

is an entire function in α and β.
Definition 6.6 For the simplicity of use, we denote

$$
\phi_{\alpha_{1}, \alpha_{2}}(\tau)=\sum_{m \in \mathbb{Z}} \frac{1}{(\tau+m)^{\alpha_{1}}(\bar{\tau}+m)^{\alpha_{2}}} .
$$

Then

$$
\begin{aligned}
& \phi_{\alpha_{1}, \alpha_{2}}(\tau)=(2 \pi i)^{\alpha_{1}+\alpha_{2}}(-1)^{\alpha_{1}-\alpha_{2}} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}-1\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}(4 \pi y)^{1-\alpha_{1}-\alpha_{2}} \\
& +\sum_{n \in \mathbb{N}_{+}} \frac{(2 \pi)^{\alpha_{1}+\alpha_{2}}(-1)^{\alpha_{1}-\alpha_{2}}}{\Gamma\left(\alpha_{1}\right)} n^{\alpha_{1}+\alpha_{2}-1} \frac{\sigma\left(4 \pi n y, \alpha_{1}, \alpha_{2}\right)}{\Gamma\left(\alpha_{2}\right)} e^{2 \pi i n \tau} \\
& +\sum_{n \in \mathbb{N}_{-}} \frac{(2 \pi)^{\alpha_{1}+\alpha_{2}}(-1)^{\alpha_{1}-\alpha_{2}}}{\Gamma\left(\alpha_{2}\right)}(-n)^{\alpha_{1}+\alpha_{2}-1} \frac{\sigma\left(-4 \pi n y, \alpha_{2}, \alpha_{1}\right)}{\Gamma\left(\alpha_{1}\right)} e^{2 \pi i n \bar{\tau}} .
\end{aligned}
$$

Then we can get

$$
A_{1}=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\ r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{2}-1} \zeta\left(r_{1}+r_{2}+\sigma_{1}\right) \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}, s_{2}}\left(b_{2} \tau\right) .
$$

(2)In the same way, we can get

$$
A_{4}=\sum_{\substack{r_{1}+s_{1} 1=\sigma_{2}+\sigma_{3} \\ r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}}(-1)^{s_{1}+s_{2}} C_{r_{1}-1}^{\sigma_{3}-1} C_{r_{2}-1}^{\sigma_{3}-1} \zeta\left(r_{1}+r_{2}+\sigma_{1}\right) \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}, s_{2}}\left(b_{2} \tau\right) .
$$

(3)Now we turn to the second and the third term.

$$
\frac{1}{a_{1}^{r_{1}+r_{2}+\sigma_{1}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{s_{1}}}=\sum_{t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}\left(\frac{(-1)^{r_{1}+r_{2}+\sigma_{1}} C_{t_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1}}{\left(b_{1}+b_{2} \tau\right)^{t_{1}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{t_{2}}}+\frac{(-1)^{r_{1}+r_{2}+\sigma_{1}+t_{2}} C_{t_{1-1}}^{s_{1}-1}}{\left(b_{1}+b_{2} \tau\right)^{t_{1}} a_{1}^{t_{2}}}\right) .
$$

Thus the second term can be written as

$$
A_{2}=B_{1}+B_{2},
$$

where

$$
B_{1}=\sum_{\substack{a_{1}>0 \\ b_{2}>0, b_{1} \in \mathbb{Z} \\ \boldsymbol{t}_{1}+t_{2}-r_{1}+r_{2}+\sigma_{1}+s_{1}}} \sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3}+\sigma_{3} \\ t_{1}}} \frac{(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1}}{\left(b_{1}+b_{2} \tau\right)^{t_{1}}\left(b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}\left(a_{1}+b_{1}+b_{2} \tau\right)^{t_{2}}},
$$

and

$$
B_{2}=\sum_{\substack{a_{1}>0 \\ b_{2}>0, b_{1} \in \mathbb{Z} \\ b_{1} \\ t_{1}+t_{2}+r_{1}+r_{1}+r_{2}+\sigma_{1}+s_{1}}} \sum_{\substack{r_{1}+\sigma_{3} \\ r_{1}+\sigma_{3}}} \frac{(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}+t_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{s_{1}-1}}{\left(b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}\left(b_{1}+b_{2} \tau\right)^{t_{1}} a_{1}^{t_{2}}} .
$$

It's easy to see that we can again apply the theorem 6.4 to calculate the term B_{2}.

$$
\begin{aligned}
B_{2}= & \sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}+t_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{s_{1}-1} \sum_{a_{1}>0} \frac{1}{a_{1}^{t_{2}}} \sum_{\substack{b_{2}>0 \\
b_{1} \in \mathbb{Z}}} \frac{1}{\left(b_{1}+b_{2} \bar{\tau}\right)^{s_{2}}\left(b_{1}+b_{2} \tau\right)^{t_{1}}} \\
& =\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{1}+s_{2}=\sigma_{2}+\sigma_{3} \\
t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}+t_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{s_{1}-1} \zeta\left(t_{2}\right) \times \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{t_{1}, s_{2}}\left(b_{2} \tau\right) .
\end{aligned}
$$

In order to calculate the term B_{1}, we will mention another theorem in [15].
Theorem 6.7 (Two-variable summation formula, Pasles and De Azevedo Pribitkin, 2001) [15] If $\mu \in \mathbb{R}, \operatorname{Re}(\alpha+\beta)>1, \operatorname{Re}(\gamma)>0, \tau=x+i y \in \mathcal{H}$ and $z \in \mathcal{H}$, then

$$
\sum_{m \in \mathbb{Z}} \frac{e^{-2 \pi i \mu m}}{\tau+m)^{\alpha}(\bar{\tau}+m)^{\beta}(z+m)^{\gamma}}=\frac{(2 \pi)^{\alpha+\beta+\gamma}(-i)^{\alpha-\beta+\gamma}}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} \sum_{\substack{n, l \in \mathbb{Z} \\ l+\mu>0}} \varphi_{n, l+\mu}(\tau, z, \alpha, \beta, \gamma) e^{2 \pi i[n x+(l+\mu) z]},
$$

where
$\varphi_{n, l+\mu}(\tau, z, \alpha, \beta, \gamma)= \begin{cases}e^{-2 \pi n y} \int_{0}^{b}(n+t)^{\alpha+\beta-1}(l+\mu-t)^{\gamma-1} e^{2 \pi i(\tau-z) t} \sigma(4 \pi(n+t) y, \alpha, \beta) d t, & \text { if } n \geq 0 \\ e^{2 \pi n y} \int_{0}^{b}(-n-t)^{\alpha+\beta-1}(l+\mu-t)^{\gamma-1} e^{2 \pi i(\bar{\tau}-z) t} \sigma(-4 \pi(n+t) y, \beta, \alpha) d t, & \text { if } n<0,\end{cases}$ here

$$
b=b(l+[\mu])= \begin{cases}\{\mu\}, & \text { if } l+[\mu]=0 \\ 1, & \text { if } l+[\mu] \geq 1\end{cases}
$$

$\{\mu\}$ denotes the fractional part and $[\mu]$ denotes the integer part of μ.

Definition 6.8

$$
\begin{gathered}
\psi_{\alpha, \beta, \gamma}(\tau, z)=\sum_{m \in \mathbb{Z}} \frac{1}{(\tau+m)^{\alpha}(\bar{\tau}+m)^{\beta}(z+m)^{\gamma}} \\
=\frac{(2 \pi)^{\alpha+\beta+\gamma}(-i)^{\alpha-\beta+\gamma}}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} \sum_{\substack{n, l \in \mathbb{Z} \\
l>0}} \varphi_{n, l}(\tau, z, \alpha, \beta, \gamma) e^{2 \pi i[n x+l z]} .
\end{gathered}
$$

Then we can deduce that

$$
B_{1}=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\ r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\ t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1} \sum_{a_{1}>0} \sum_{b_{2}>0} \psi_{t_{1}, s_{2}, t_{2}}\left(b_{2} \tau, b_{2} \tau+a_{1}\right) .
$$

Finally, we get

$$
\quad A_{2}=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\ r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\ t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}+t_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{s_{1}-1} \zeta\left(t_{2}\right) \times \sum_{b_{2} \in \mathbb{N}_{+}^{+}} \phi_{t_{1}, s_{2}}\left(b_{2} \tau\right) .
$$

(4) At last we turn to the third term A_{3}.

$$
\frac{1}{a_{1}^{r_{1}+r_{2}+\sigma_{1}}\left(b_{1}+b_{2} \tau\right)^{s_{2}}}=\sum_{\substack{k_{1}+k_{2}=\\ r_{1}+r_{2}+\sigma_{1}+s_{2}}}\left(\frac{C_{k_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1}}{\left(a_{1}+b_{1}+b_{2} \tau\right)^{k_{1}}\left(b_{1}+b_{2} \tau\right)^{k 2}}+\frac{C_{k_{1}-1}^{s_{2}-1}}{\left(a_{1}+b_{1}+b_{2} \tau\right)^{k_{1}} a_{1}^{k_{2}}}\right)
$$

Then

$$
\begin{aligned}
& A_{3}=\sum_{\substack{a_{1}>0 \\
b_{2}>0, b_{1} \in \mathbb{Z} \\
b_{2}}} \sum_{\substack{r_{1}+s_{1} 1 \\
k_{1}+s_{2}+\sigma_{2}+\sigma_{3}+\sigma_{3} \\
k_{1}+k_{2}-r_{1}+r_{2}+\sigma_{3}+\sigma_{1}+s_{2}}} \frac{(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1}}{\left(a_{1}+b_{1}+b_{2} \tau\right)^{k_{1}}\left(a_{1}+b_{1}+b_{2} \bar{\tau}\right)^{s_{1}}\left(b_{1}+b_{2} \tau\right)^{k 2}} \\
& +\sum_{\substack{a_{1}>0 \\
b_{2}>0, b_{1} \in \mathbb{Z} \\
k_{\begin{subarray}{c}{ \\
r_{1}+s_{2} \\
k_{1}+k_{2}=k_{2}=r_{1}+\sigma_{2}+\sigma_{2}+\sigma_{1}+\sigma_{3} \\
\sigma_{3}} }}}\end{subarray}} \frac{(-1)^{s_{1}} C_{r_{2}}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{s_{2}-1}}{\left(a_{1}+b_{1}+b_{2} \tau\right)^{k_{1}}\left(a_{1}+b_{1}+b_{2} \bar{\tau}\right)^{s_{1}} a_{1}^{k_{2}}} .
\end{aligned}
$$

By a similar method as for A_{2}, we finally get

$$
\begin{aligned}
& A_{3}=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2} \sigma_{2}+\sigma_{3} \\
k_{1}+k_{2}=r_{1}+r_{2}+\sigma_{1}+s_{2}}}(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{s_{2}-1} \zeta\left(k_{2}\right) \times \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{k_{1}, s_{1}}\left(b_{2} \tau\right) \\
& +\sum_{\substack{r_{1}+s_{1} 1=\sigma_{2}+\sigma_{3} \\
r_{2}+\sigma_{2}=\sigma_{+}+\sigma_{3} \\
k_{1}+k_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1} \sum_{a_{1}>0} \sum_{b_{2}>0} \psi_{k_{1}, s_{1}, k_{2}}\left(b_{2} \tau, b_{2} \tau-a_{1}\right) .
\end{aligned}
$$

In concusion, we obtain the second sum

$$
\sum_{\substack{a_{2}=0, b_{2}>0 \\ b_{1} \in \mathbb{Z}}}=A_{1}+A_{2}+A_{3}+A_{4}=\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\ r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{2}-1} \zeta\left(r_{1}+r_{2}+\sigma_{1}\right) \sum_{\sum_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}, s_{2}}\left(b_{2} \tau\right)
$$

$$
\begin{aligned}
&+\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}}(-1)^{s_{1}+s_{2}} C_{r_{1}-1}^{\sigma_{3}-1} C_{r_{2}-1}^{\sigma_{3}-1} \zeta\left(r_{1}+r_{2}+\sigma_{1}\right) \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}, s_{2}}\left(b_{2} \tau\right) \\
&+\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}+t_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{s_{1}-1} \zeta\left(t_{2}\right) \times \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{t_{1}, s_{2}}\left(b_{2} \tau\right) \\
&+\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1} \sum_{a_{1}>0} \sum_{b_{2}>0} \psi_{t_{1}, s_{2}, t_{2}}\left(b_{2} \tau, b_{2} \tau+a_{1}\right) \\
&+\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
k_{1}+k_{2}=r_{1}+r_{2}+\sigma_{1}+s_{2}}}(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{s_{2}-1} \zeta\left(k_{2}\right) \times \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{k_{1}, s_{1}}\left(b_{2} \tau\right) \\
&+\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
k_{1}+k_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1} \sum_{a_{1}>0} \sum_{b_{2}>0} \psi_{k_{1}, s_{1}, k_{2}}\left(b_{2} \tau, b_{2} \tau-a_{1}\right)
\end{aligned}
$$

The third sum $\sum_{\substack{a_{2}>0, b_{2}=0 \\ a_{1} \in \mathbb{Z}, b_{1}>0}}$.
By the symmetry between a_{1} and b_{1} and the symmetry between a_{2} and b_{2}, we can deduce the third sum from the result of the second sum.

$$
\begin{aligned}
& \sum_{\substack{b_{2}=0, b_{1}>0 \\
a_{2}>0, a_{1} \in \mathbb{Z}}}=\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3}}} C_{r_{1}^{\prime}-1}^{\sigma_{1}-1} C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} \zeta\left(r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}\right) \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}^{\prime}, s_{2}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3}}}(-1)^{s_{1}^{\prime}+s_{2}^{\prime}} C_{r_{1}^{\prime}-1}^{\sigma_{3}-1} C_{r_{2}^{\prime}-1}^{\sigma_{3}-1} \zeta\left(r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}\right) \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}^{\prime}, s_{2}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3} \\
t_{1}^{\prime}+t_{2}^{\prime}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{1}^{\prime}}}(-1)^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{2}^{\prime}+t_{2}^{\prime}} C_{r_{1}^{\prime}-1}^{\sigma_{1}-1} C_{r_{2}^{\prime}-1}^{\sigma_{3}-1} C_{t_{1}^{\prime}-1}^{s_{1}^{\prime}-1} \zeta\left(t_{2}^{\prime}\right) \times \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{t_{1}^{\prime}, s_{2}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3} \\
t_{1}^{\prime}+t_{2}^{\prime}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{1}^{\prime}}}(-1)^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{2}^{\prime}} C_{r_{1}^{\prime}-1}^{\sigma_{1}-1} C_{r_{2}^{\prime}-1}^{\sigma_{3}-1} C_{t_{1}^{\prime}-1}^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}-1} \sum_{b_{1}>0} \sum_{a_{2}>0} \psi_{t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}}\left(a_{2} \tau, a_{2} \tau+b_{1}\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3} \\
k_{1}^{\prime}+k_{2}^{\prime}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{2}^{\prime}}}(-1)^{s_{1}^{\prime}} C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} C_{r_{1}^{\prime}-1}^{\sigma_{3}-1} C_{k_{1}^{\prime}-1}^{s_{2}^{\prime}-1} \zeta\left(k_{2}^{\prime}\right) \times \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{2}^{\prime}, k_{1}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3} \\
k_{1}^{\prime}+k_{2}^{\prime}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{1}^{\prime}}}(-1)^{s_{1}^{\prime}} C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} C_{r_{1}^{\prime}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}-1} \sum_{b_{1}>0} \sum_{a_{2}>0} \psi_{k_{1}^{\prime}, s_{1}^{\prime}, k_{2}^{\prime}}\left(a_{2} \tau, a_{2} \tau-b_{1}\right) .
\end{aligned}
$$

The fourth sum $\quad \sum_{a_{2}>0, b_{2}>0}$. $a_{1}, b_{1} \in \mathbb{Z}$

Now we apply the Eisenstein's formula,

$$
\frac{1}{\left(b_{1}+b_{2} \tau\right)^{\sigma_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{\sigma_{3}}}=\sum_{l_{1}+h_{1}=\sigma_{2}+\sigma_{3}}\left(\frac{(-1)^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{2}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{h_{1}}}+\frac{(-1)^{\sigma_{2}+h_{1}} C_{l_{1}-1}^{\sigma_{3}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}}\left(b_{1}+b_{2} \tau\right)^{h_{1}}}\right) .
$$

And

$$
\frac{1}{\left(b_{1}+b_{2} \bar{\tau}\right)^{\sigma_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{\sigma_{3}}}=\sum_{l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}\left(\frac{(-1)^{\sigma_{2}} C_{l_{2}-1}^{\sigma_{2}-1}}{\left(a_{1}+a_{2} \bar{\tau}\right)^{k_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{h_{2}}}+\frac{(-1)^{\sigma_{2}+h_{2}} C_{l_{2}-1}^{\sigma_{3}-1}}{\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}}\left(b_{1}+b_{2} \bar{\tau}\right)^{h_{2}}}\right) .
$$

Then

$$
\sum_{\substack{a_{2}>0, b_{2}>0 \\ a_{1}, b_{1} \in \mathbb{Z}}}=T_{1}+T_{2}+T_{3}+T_{4},
$$

where

$$
\begin{aligned}
& T_{1}=\sum_{\substack{a_{2}>0, b_{2}>0 l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
a_{1}, b_{1} \in \mathbb{Z} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}} \frac{C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{2}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{h_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{h_{2}}}, \\
& T_{2}=\sum_{\substack{a_{2}>0, b_{2}>0 \\
a_{1}, b_{1} \in \mathbb{Z}}} \sum_{l_{1}+h_{1}=\sigma_{2}+\sigma_{2}=\sigma_{2}+\sigma_{3}} \frac{(-1)^{h_{2}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{h_{1}}\left(b_{1}+b_{2} \bar{\tau}\right)^{h_{2}}}, \\
& T_{3}=\sum_{\substack{a_{2}>0, b_{2}>0 l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
a_{1}, b_{1} \in \mathbb{Z} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}} \frac{(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}-1} C_{l_{1}-1}^{\sigma_{3}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{h_{1}}\left(b_{1}+b_{2} \tau\right)^{h_{2}}}, \\
& T_{4}=\sum_{\substack{a_{2}>0, b_{2}>0 l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
a_{1}, b_{1} \in \mathbb{Z} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}} \frac{(-1)^{h_{1}+h_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{l_{2}-1}^{\sigma_{3}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(b_{1}+b_{2} \tau\right)^{h_{1}}\left(b_{1}+b_{2} \bar{\tau}\right)^{h_{2}}} .
\end{aligned}
$$

In the following paragraph, we will calculate each T_{i}.
(1) T_{1}.

$$
\begin{aligned}
T_{1}= & \sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{2}-1} \sum_{a_{2}>0, b_{2}>0} \phi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{h_{1}, h_{2}}\left(\left(a_{2}+b_{2}\right) \tau\right) \\
& =\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{2}-1} \sum_{b_{2}^{\prime}>a_{2}>0} \phi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{h_{1}, h_{2}}\left(b_{2}^{\prime} \tau\right) .
\end{aligned}
$$

(2) T_{4}.

$$
T_{4}=\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\ l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}}(-1)^{h_{1}+h_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{l_{2}-1}^{\sigma_{3}-1} \sum_{a_{2}>0, b_{2}>0} \phi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{h_{1}, h_{2}}\left(b_{2} \tau\right)
$$

(3) T_{2}.

Recall that the classical Lipschitz summation formula :

$$
\sum_{m \in \mathbb{Z}} \frac{1}{(\tau+m)^{s}}=\frac{(-2 \pi i)^{s}}{\Gamma(s)} \sum_{n \in \mathbb{N}_{+}^{*}} n^{s-1} e^{2 \pi i n \tau}
$$

Then we will denote

$$
\lambda_{s}(\tau)=\sum_{m \in \mathbb{Z}} \frac{1}{(\tau+m)^{s}}
$$

Then we get also get

$$
\begin{aligned}
& \lambda_{s}(\bar{\tau})=\sum_{m \in \mathbb{Z}} \frac{1}{(\bar{\tau}+m)^{s}}=\frac{(-2 \pi i)^{s}}{\Gamma(s)} \sum_{n \in \mathbb{N}_{-}^{*}} n^{s-1} e^{2 \pi i n \bar{\tau}} . \\
& \frac{1}{\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{h_{1}}\left(b_{1}+b_{2} \bar{\tau}\right)^{h_{2}}}= \\
& \sum_{m+p=h_{1}+h_{2}}\left(\frac{(-1)^{h_{2}} C_{m-1}^{h_{1}-1}}{\left(a_{1}+a_{2} \tau+b_{2}(\tau-\bar{\tau})\right)^{m}\left(b_{1}+b_{2} \bar{\tau}\right)^{p}}+\frac{(-1)^{h_{2}+p} C_{m-1}^{h_{2}-1}}{\left(a_{1}+a_{2} \tau+b_{2}(\tau-\bar{\tau})\right)^{m}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{p}}\right) . \\
& T_{2}=C_{1}+C_{2}, \\
& C_{1}=\sum_{\substack{a_{2}>0, b_{2}>0 \\
a_{1}, b_{1} \in \mathbb{Z}}} \sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}} \frac{C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{1}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+a_{2} \tau+b_{2}(\tau-\bar{\tau})\right)^{m}\left(b_{1}+b_{2} \bar{\tau}\right)^{p}} ; \\
& C_{2}=\sum_{\substack{a_{2}>0, b_{2}>0 \\
a_{1}, b_{1} \in \mathbb{Z}}} \sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}} \frac{(-1)^{p} C^{l_{1}-1} C_{l_{2}-1}^{\sigma_{2}-1} C_{m-1}^{\sigma_{3}-1} C^{h_{2}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+a_{2} \tau+b_{2}(\tau-\bar{\tau})\right)^{m}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{p}} .
\end{aligned}
$$

We observe that $b_{2}(\tau-\bar{\tau})$ is an element in the upper half plan \mathcal{H}, thus we can apply the theorem of double-varaiables summation formula 6.7.

$$
\begin{aligned}
& C_{1}= \sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{3}+h_{2}=\sigma_{2}+\sigma_{3} b_{2}>0 \\
m+p=h_{1}+h_{2}}} \sum_{a_{2} \in \mathbb{Z}} \frac{C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{1}-1}}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+a_{2} \tau+b_{2}(\tau-\bar{\tau})\right)^{m}} \sum_{b_{1} \in \mathbb{Z}} \frac{1}{\left(b_{1}+b_{2} \bar{\tau}\right)^{p}} \\
& \quad=\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{1}-1} \sum_{\substack{a_{2}>0 \\
b_{2}>0}} \psi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}, m}\left(a_{2} \tau, a_{2} \tau+b_{2}(\tau-\bar{\tau})\right) \lambda_{p}\left(b_{2} \bar{\tau}\right) .
\end{aligned}
$$

By the same argument, we get

$$
\begin{aligned}
& C_{2}=\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}>0 \\
m+p=h_{1}+h_{2}}}(-1)^{p} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{2}-1} \psi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}, m}\left(a_{2} \tau, a_{2} \tau+b_{2}(\tau-\bar{\tau})\right) \lambda_{p}\left(\left(a_{2}+b_{2}\right) \tau\right) . \\
& T_{2}=\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+\sigma_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{1}-1} \sum_{\substack{a_{2}>0 \\
b_{2}>0}} \psi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}, m}\left(a_{2} \tau, a_{2} \tau+b_{2}(\tau-\bar{\tau})\right) \lambda_{p}\left(b_{2} \bar{\tau}\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}}(-1)^{p} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{2}-1} \sum_{\substack{a_{2}>0 \\
b_{2}>0}} \psi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}, m}\left(a_{2} \tau, a_{2} \tau+b_{2}(\tau-\bar{\tau})\right) \lambda_{p}\left(\left(a_{2}+b_{2}\right) \tau\right) . \\
& \text { (4) } T_{3} .
\end{aligned}
$$

Using the similar method as we did for T_{2}, we can obtain an expanion for T_{3}. However, $b_{2}(\bar{\tau}-\tau)$ is no longer in the upper half plan. So we will try another way.

$$
\begin{aligned}
& \frac{1}{\left(a_{1}+a_{2} \tau\right)^{l_{1}+\sigma_{1}}\left(b_{1}+b_{2} \tau\right)^{h_{2}}}=\sum_{\substack{i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}}}\left(\frac{C_{i_{1}-1}^{l_{1}+\sigma_{1}-1}}{\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{i_{1}}\left(b_{1}+b_{2} \tau\right)^{j_{1}}}+\frac{C_{i_{1}-1}^{h_{2}-1}}{\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{i_{1}}\left(a_{1}+a_{2} \tau\right)^{j_{1}}}\right) \\
& T_{3}=\sum_{\substack{a_{2}>0, b_{2}>0 \\
a_{1}, b_{1} \in \mathbb{Z}}} \sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2} \\
i_{1}+\sigma_{2}+\sigma_{3} \\
l_{1}+\sigma_{1}+h_{2}}} \frac{(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}-1} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1}}{\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{i_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{h_{1}}\left(b_{1}+b_{2} \tau\right)^{j_{1}}} \\
& +\sum_{\substack{a_{2}>0, b_{2}>0 l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
a_{1}, b_{1} \in \mathbb{Z} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}}}
\end{aligned}
$$

Since

$$
\frac{1}{\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{h_{1}}}=\sum_{\substack{i_{2}+j_{2}=\\ l_{2}+\sigma_{1}+h_{1}}}\left(\frac{C_{i_{2}-1}^{l_{2}+\sigma_{1}-1}}{\left(b_{1}+b_{2} \bar{\tau}\right)^{i_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{j_{2}}}+\frac{C_{i_{1}-1}^{h_{1}-1}}{\left(b_{1}+b_{2} \bar{\tau}\right)\left(a_{1}+a_{2} \bar{\tau}\right)^{j_{2}}}\right),
$$

therefore

$$
\begin{aligned}
& \frac{1}{\left(a_{1}+a_{2} \bar{\tau}\right)^{l_{2}+\sigma_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{h_{1}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{i_{1}}\left(b_{1}+b_{2} \tau\right)^{j_{1}}} \\
&=\sum_{\substack{i_{2}+j_{2}=\\
l_{2}+\sigma_{1}+h_{1}}} \frac{C_{i_{2}-1}^{l_{2}+\sigma_{1}-1}}{\left(b_{1}+b_{2} \bar{\tau}\right)^{i_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \bar{\tau}\right)^{j_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{i_{1}}\left(b_{1}+b_{2} \tau\right)^{j_{1}}}
\end{aligned}
$$

$$
+\frac{C_{i_{2}-1}^{h_{1}-1}}{\left(b_{1}+b_{2} \bar{\tau}\right)^{i_{2}}\left(a_{1}+a_{2} \bar{\tau}\right)^{j_{2}}\left(a_{1}+b_{1}+\left(a_{2}+b_{2}\right) \tau\right)^{i_{1}}\left(b_{1}+b_{2} \tau\right)^{j_{1}}} .
$$

So finally we obtain:

$$
\begin{aligned}
& T_{3}=\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}}}(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{h_{2}-1} \sum_{b_{2}^{\prime}>a_{2}>0} \phi_{j_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{i_{1}, h_{1}}\left(b_{2}^{\prime} \tau\right)+ \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}=\\
i_{2}+j_{2} \\
l_{2}+\sigma_{1}+h_{1}}}(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{l_{2}+\sigma_{1}-1} \sum_{a_{2}>b_{2}>0} \phi_{j_{1}, i_{2}}\left(b_{2} \tau\right) \phi_{i_{1}, j_{2}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}=\\
i_{2}+j_{2} \\
l_{2}+\sigma_{1}+h_{1} \\
t_{1}+t_{2}=i_{1}+j_{2}}}(-1)^{s_{1}+j_{2}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{h_{1}-1} C_{t_{1}-1}^{i_{1}-1} \sum_{a_{2}, b_{2}>0} \psi_{j_{1}, i_{2}, t_{1}}\left(b_{2} \tau, b_{2} \tau+a_{2}(\tau-\bar{\tau})\right) \lambda_{t_{2}}\left(a_{2} \bar{\tau}\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}}(-1)^{s_{1}+j_{2}+t_{2}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{h_{1}-1} C_{t_{1}-1}^{j_{2}-1} \sum_{a_{2}, b_{2}>0} \psi_{j_{1}, i_{2}, t_{1}}\left(b_{2} \tau, b_{2}+a_{2}(\tau-\bar{\tau})\right) \lambda_{t_{2}}\left(\left(a_{2}+b_{2}\right) \tau\right) \\
& l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
& i_{1}+j_{1}= \\
& l_{1}+\sigma_{1}+h_{2}= \\
& i_{2}+j_{2} \\
& \begin{array}{c}
l_{2}+\sigma_{1}+h_{1} \\
t_{1}+t_{2}=i_{1}+j_{2}
\end{array}
\end{aligned}
$$

In conclusion, we get

$$
\begin{aligned}
& \sum_{\substack{a_{2}>0, b_{2}>0 \\
a_{1}, b_{1} \in \mathbb{Z}}}=\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{2}-1} \sum_{b_{2}^{\prime}>a_{2}>0} \phi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{h_{1}, h_{2}}\left(b_{2}^{\prime} \tau\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}}(-1)^{h_{1}+h_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{l_{2}-1}^{\sigma_{3}-1} \sum_{a_{2}>0, b_{2}>0} \phi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{h_{1}, h_{2}}\left(b_{2} \tau\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{1}-1} \sum_{a_{2}>0} \psi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}, m}\left(a_{2} \tau, a_{2} \tau+b_{2}(\tau-\bar{\tau})\right) \lambda_{p}\left(b_{2} \bar{\tau}\right) \\
& +\sum_{\substack{b_{2}>0 \\
l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}}}(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{h_{2}-1} \sum_{b_{2}^{\prime}>a_{2}>0} \phi_{j_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{i_{1}, h_{1}}\left(b_{2}^{\prime} \tau\right)+ \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}=\\
i_{2}+j_{2} \\
l_{2}+\sigma_{1}+h_{1}}}(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{l_{2}+\sigma_{1}-1} \sum_{a_{2}>b_{2}>0} \phi_{j_{1}, i_{2}}\left(b_{2} \tau\right) \phi_{i_{1}, j_{2}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}=\\
i_{2}+j_{2} \\
l_{2}+\sigma_{1}+h_{1} \\
t_{1}+t_{2}=i_{1}+j_{2}}}(-1)^{s_{1}+j_{2}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{h_{1}-1} C_{t_{1}-1}^{i_{1}-1} \sum_{a_{2}, b_{2}>0} \psi_{j_{1}, i_{2}, t_{1}}\left(b_{2} \tau, b_{2} \tau+a_{2}(\tau-\bar{\tau})\right) \lambda_{t_{2}}\left(a_{2} \bar{\tau}\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}=\\
i_{2}+j_{2} \\
l_{2}+\sigma_{1}+h_{1} \\
t_{1}+t_{2}=i_{1}+j_{2}}}(-1)^{s_{1}+j_{2}+t_{2}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{h_{1}-1} C_{t_{1}-1}^{j_{2}-1} \sum_{a_{2}, b_{2}>0} \psi_{j_{1}, i_{2}, t_{1}}\left(b_{2} \tau, b_{2}+a_{2}(\tau-\bar{\tau})\right) \lambda_{t_{2}}\left(\left(a_{2}+b_{2}\right) \tau\right)
\end{aligned}
$$

Theorem 6.9 (The Fourier expansion of $\mathscr{Z}_{I, \mu, \mathbb{Q}(\sqrt{-\mathbb{D}})}\left(\Gamma_{1}, \partial \Gamma_{1}\right)$)

$$
\begin{aligned}
& \mathscr{Z}_{I, \mu, \mathbb{Q}(\sqrt{-\mathbb{D}})}\left(\Gamma_{1}, \partial \Gamma_{1}\right)=\mathscr{Z}_{I, \mu, \mathbb{Q}}\left(\Gamma_{1}, \partial \Gamma_{1}\right) \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{2}-1} \zeta\left(r_{1}+r_{2}+\sigma_{1}\right) \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}, s_{2}}\left(b_{2} \tau\right) \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3}}}(-1)^{s_{1}+s_{2}} C_{r_{1}-1}^{\sigma_{3}-1} C_{r_{2}-1}^{\sigma_{3}-1} \zeta\left(r_{1}+r_{2}+\sigma_{1}\right) \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}, s_{2}}\left(b_{2} \tau\right) \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}+t_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{s_{1}-1} \zeta\left(t_{2}\right) \times \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{t_{1}, s_{2}}\left(b_{2} \tau\right) \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
k_{1}+k_{2}=r_{1}+r_{2}+\sigma_{1}+s_{2}}}(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{s_{2}-1} \zeta\left(k_{2}\right) \times \sum_{b_{2} \in \mathbb{N}_{+}^{*}} \phi_{k_{1}, s_{1}}\left(b_{2} \tau\right) \\
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{2}=\sigma_{2}+\sigma_{3} \\
t_{1}+t_{2}=r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{r_{1}+r_{2}+\sigma_{1}+s_{2}} C_{r_{1}-1}^{\sigma_{2}-1} C_{r_{2}-1}^{\sigma_{3}-1} C_{t_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1} \sum_{a_{1}>0} \sum_{b_{2}>0} \psi_{t_{1}, s_{2}, t_{2}}\left(b_{2} \tau, b_{2} \tau+a_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{r_{1}+s_{1}=\sigma_{2}+\sigma_{3} \\
r_{2}+s_{1}=\sigma_{2}+\sigma_{3} \\
k_{1}+k_{2} r_{1}+r_{2}+\sigma_{1}+s_{1}}}(-1)^{s_{1}} C_{r_{2}-1}^{\sigma_{2}-1} C_{r_{1}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{r_{1}+r_{2}+\sigma_{1}-1} \sum_{a_{1}>0} \sum_{b_{2}>0} \psi_{k_{1}, s_{1}, k_{2}}\left(b_{2} \tau, b_{2} \tau-a_{1}\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3}}} C_{r_{1}^{\prime}-1}^{\sigma_{1}-1} C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} \zeta\left(r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}\right) \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}^{\prime}, s_{2}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{\prime}+s_{2}^{\prime}=\sigma_{1}+\sigma_{3}}}(-1)^{s_{1}^{\prime}+s_{2}^{\prime}} C_{r_{1}^{\prime}-1}^{\sigma_{3}-1} C_{r_{2}^{\prime}-1}^{\sigma_{3}-1} \zeta\left(r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}\right) \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{1}^{\prime}, s_{2}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{2}+s^{\prime}=\sigma_{1}+\sigma_{3} \\
t_{1}^{\prime}+t_{2}^{\prime}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{1}^{\prime}}}(-1)^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{2}^{\prime}+t_{2}^{\prime}} C_{r_{1}^{\prime}-1}^{\sigma_{1}-1} C_{r_{2}^{\prime}-1}^{\sigma_{3}-1} C_{t_{1}^{\prime}-1}^{s_{1}^{\prime}-1} \zeta\left(t_{2}^{\prime}\right) \times \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{t_{1}^{\prime}, s_{2}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}+s_{2}^{2} \sigma_{1}+\sigma_{3} \\
k_{1}^{\prime}+k_{2}^{\prime}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{2}^{\prime}}}(-1)^{s_{1}^{\prime}} C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} C_{r_{1}^{\prime}-1}^{\sigma_{3}-1} C_{k_{1}^{\prime}-1}^{s_{2}^{\prime}-1} \zeta\left(k_{2}^{\prime}\right) \times \sum_{a_{2} \in \mathbb{N}_{+}^{*}} \phi_{s_{2}^{\prime}, k_{1}^{\prime}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
r_{2}^{2}++_{2}^{2}=\sigma_{1}+\sigma_{3} \\
t_{1}^{\prime}+t_{2}^{\prime}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{1}^{\prime}}}(-1)^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{2}^{\prime}} C_{r_{1}^{\prime}-1}^{\sigma_{1}-1} C_{r_{2}^{\prime}-1}^{\sigma_{3}-1} C_{t_{1}^{\prime}-1}^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}-1} \sum_{b_{1}>0} \sum_{a_{2}>0} \psi_{t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}}\left(a_{2} \tau, a_{2} \tau+b_{1}\right) \\
& +\sum_{\substack{r_{1}^{\prime}+s_{1}^{\prime}=\sigma_{1}+\sigma_{3} \\
1}}(-1)^{s_{1}^{\prime}} C_{r_{2}^{\prime}-1}^{\sigma_{1}-1} C_{r_{1}^{\prime}-1}^{\sigma_{3}-1} C_{k_{1}-1}^{r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}-1} \sum_{b_{1}>0} \sum_{a_{2}>0} \psi_{k_{1}^{\prime}, s_{1}^{\prime}, k_{2}^{\prime}}\left(a_{2} \tau, a_{2} \tau-b_{1}\right) . \\
& \begin{array}{c}
r_{2}^{\prime}+s_{2}=\sigma_{1}+\sigma_{3} \\
k_{1}^{\prime}+k_{2}^{2}=r_{1}^{\prime}+r_{2}^{\prime}+\sigma_{2}+s_{1}^{\prime}
\end{array} \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{2}-1} \sum_{b_{2}^{\prime}>a_{2}>0} \phi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{h_{1}, h_{2}}\left(b_{2}^{\prime} \tau\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3}}}(-1)^{h_{1}+h_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{l_{2}-1}^{\sigma_{3}-1} \sum_{a_{2}>0, b_{2}>0} \phi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{h_{1}, h_{2}}\left(b_{2} \tau\right) \\
& +\sum_{\substack{l_{1}+k_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{1}-1} \sum_{\substack{a_{2}>0 \\
b_{2}>0}} \psi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}, m}\left(a_{2} \tau, a_{2} \tau+b_{2}(\tau-\bar{\tau})\right) \lambda_{p}\left(b_{2} \bar{\tau}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
m+p=h_{1}+h_{2}}}(-1)^{p} C_{l_{1}-1}^{\sigma_{2}-1} C_{l_{2}-1}^{\sigma_{3}-1} C_{m-1}^{h_{2}-1} \sum_{\substack{a_{2}>0 \\
b_{2}>0}} \psi_{l_{1}+\sigma_{1}, l_{2}+\sigma_{1}, m}\left(a_{2} \tau, a_{2} \tau+b_{2}(\tau-\bar{\tau})\right) \lambda_{p}\left(\left(a_{2}+b_{2}\right) \tau\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}}}(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{h_{2}-1} \sum_{b_{2}^{\prime}>a_{2}>0} \phi_{j_{1}, l_{2}+\sigma_{1}}\left(a_{2} \tau\right) \phi_{i_{1}, h_{1}}\left(b_{2}^{\prime} \tau\right)+ \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}=\\
i_{2}+j_{2} \\
l_{2}+\sigma_{1}+h_{1}}}(-1)^{s_{1}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{l_{2}+\sigma_{1}-1} \sum_{a_{2}>b_{2}>0} \phi_{j_{1}, i_{2}}\left(b_{2} \tau\right) \phi_{i_{1}, j_{2}}\left(a_{2} \tau\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=\\
l_{1}+\sigma_{1}+h_{2}=\\
i_{2}+j_{2} \\
l_{2}+\sigma_{1}+h_{1} \\
t_{1}+t_{2}=i_{1}+j_{2}}}(-1)^{s_{1}+j_{2}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{h_{1}-1} C_{t_{1}-1}^{i_{1}-1} \sum_{a_{2}, b_{2}>0} \psi_{j_{1}, i_{2}, t_{1}}\left(b_{2} \tau, b_{2} \tau+a_{2}(\tau-\bar{\tau})\right) \lambda_{t_{2}}\left(a_{2} \bar{\tau}\right) \\
& +\sum_{\substack{l_{1}+h_{1}=\sigma_{2}+\sigma_{3} \\
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=}}(-1)^{s_{1}+j_{2}+t_{2}} C_{l_{2}-1}^{\sigma_{2}} C_{l_{1}-1}^{\sigma_{3}-1} C_{i_{1}-1}^{l_{1}+\sigma_{1}-1} C_{i_{2}-1}^{h_{1}-1} C_{t_{1}-1}^{j_{2}-1} \sum_{a_{2}, b_{2}>0} \psi_{j_{1}, i_{2}, t_{1}}\left(b_{2} \tau, b_{2}+a_{2}(\tau-\bar{\tau})\right) \lambda_{t_{2}}\left(\left(a_{2}+b_{2}\right) \tau\right) \\
& \begin{array}{c}
l_{2}+h_{2}=\sigma_{2}+\sigma_{3} \\
i_{1}+j_{1}=
\end{array} \\
& l_{1}+\sigma_{1}+h_{2}= \\
& i_{2}+j_{2} \\
& \begin{array}{c}
l_{2}+\sigma_{1}+h_{1} \\
t_{1}+t_{2}=i_{1}+j_{2}
\end{array}
\end{aligned}
$$

References

[1] Francis Brown. Mixted Tate Motives over Spec Z. Annals of Math, Vol. 175. 2016.
[2] Francis Brown. Dedekind Zeta motives for totally real fields. Inventiones Mathematicae, Vol. 194. Springer, 2013.
[3] Francis Brown. Multiple Modular Values and the relative completion of the fundamental group of $M_{1,1}$. arXiv:1407.5167, 2014.
[4] H. Gangl, M. Kaneko and D. Zagier. Double Zeta Values and modular forms. Automorphic forms and zeta functions, 2006.
[5] Alexander Goncharov. Polylogarithms and Motivic Galois groups. Motives(Seattle, 1991)Proc.Sympos. Pure Math. 55, part 2, Amer. Math. Soc. Providence, 1994.
[6] Alexander Goncharov. Multiple polylogarithms and mixed Tate motives. math. AG/0103059, 2001.
[7] Alexander Goncharov. Multiple ζ values, Galois groups and geometry of modular varieties. European Congress of Mathematics, Progress in Math, Vol I(Barcelona, 2000), BirkhäuserVerlag, Basel, 2000.
[8] Alexander Goncharov. Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J, 2005.
[9] Alexander Goncharov. Euler complexes and geometry of modular varieties. GAFA,special volume dedicated to J.Bernstein's 60th brithday, 2008.
[10] Alexander Goncharov. Hodge correlators. Journal für die reine und angewandte Mathematik, 2016.
[11] Richard Hain. Classical Polylogarithms. Motives(Seattle, 1991)Proc.Sympos. Pure Math. 55, part 2, Amer. Math. Soc. Providence, 1994.
[12] E. Hecke. Uber Die Kroneckersche Grenzformel Für Reelle Quadratische Körper Und Die Klassenzah Relativ-Abelscher Körper. Verhandl. Naturforsch. Ges. Basel, pp. 363-372, Vol. 28, 1917.
[13] Jan Nekovar and Antony Scholl. Introduction to Plectic Cohomology. Contempary Mathematics, 2016.
[14] Jan Nekovar and Antony Scholl. private communication. 2016.
[15] P. Pasles and W. De Azevedo Pribitkin. A generalization of the Lipschitz summation formula and some applications. Proceedings of the AMS, Vol. 129, 2001.
[16] Robert Sczech. Eisenstein group cocycles for $G L_{n}$ and values of L-functions. Inventiones mathematicae, Vol. 113, 1993.
[17] Don Zagier. Hyperbolic manifolds and special values of Dedekind zeta functions. Inventiones mathematicae, 1986.
[18] Don Zagier. Values of zeta functions and their applications. First European Congress of Mathematics, Progress in Math, Birkhäuser-Verlag, Basel, 1994.

