
HAL Id: tel-02303034
https://theses.hal.science/tel-02303034

Submitted on 2 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmetic of values of L-functions and generalized
multiple zeta values over number fields

Xiaohua Ai

To cite this version:
Xiaohua Ai. Arithmetic of values of L-functions and generalized multiple zeta values over number
fields. General Mathematics [math.GM]. Université Pierre et Marie Curie - Paris VI, 2017. English.
�NNT : 2017PA066394�. �tel-02303034�

https://theses.hal.science/tel-02303034
https://hal.archives-ouvertes.fr


ARITHMETIC OF VALUES OF L-FUNCTIONS AND

GENERALIZED MULTIPLE ZETA VALUES OVER NUMBER

FIELDS

XIAOHUA AI

INSTITUT DE MATHEMATIQUES DE JUSSIEU-PARIS RIVE GAUCHE

(IMJ-PRG)

UNIVERSITE PIERRE ET MARIE CURIE (PARIS 6)

JUIN 2017



Contents Contents

Contents

1 Introduction 3

1.1 Generalizations of classical Zeta Values . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hecke’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Goncharov’s Hodge correlators . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Plectic Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Generalized MZV for totally real fields . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 The case F =Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 The case of a general totally real field . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Goncharov’s Theory of Hodge correlators 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Definition of Hodge correlators after Goncharov . . . . . . . . . . . . . . . . . . . . 13

2.3 Examples of Hodge correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Plectic Principle 16

3.1 Equivariant plectic Green Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Some explanation of the philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Generalization of Multiple Zeta Values (I):

General construction and results over Q 19

4.1 General construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Plectic Green currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.2 Higher plectic Green currents . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.3 Generalized MZV for totally real fields . . . . . . . . . . . . . . . . . . . . . 23

4.1.4 Generalized MZV for arbitary number fields . . . . . . . . . . . . . . . . . . 23

4.2 Relation to classical MZVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Relation to MZVs and examples . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Proof of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Relation to multiple polylogarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Generalization of Multiple Zeta Values (II):

Results for general totally real fields 56

5.1 The Hecke transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Reciprocity formula for the Hecke transform . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Sczech’s rational functions and Eisenstein cocycles . . . . . . . . . . . . . . . . . . 62

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Sczech’s rational function and higher plectic Green functions. . . . . . . . . 65

5.4 Generalized multiple zeta values

for general F (I): special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 The case r = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 The case r = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.3 The case r = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1



Contents Contents

5.5 Generalized multiple zeta values

for general F (II): general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 General case of r and generalized polylogarithms over F . . . . . . . . . . . 93

6 The values ZI,F(Γ,S) and the cohomology of congruence subgroups of SLm(OF) 97

2



Introduction

1 Introduction

The principal objective of this thesis is to generalize multiple Zeta values to the case when the

ground field Q is replaced by an arbitrary number field. The motivation behind the construc-

tion comes from the work of A. Goncharov on Hodge correlators and the plectic philosophy of

J. Nekovár̆ and A. Scholl.

We start by constructing the higher plectic Green functions. Hecke once proved that the integral

of the restriction of a suitable Eisenstein series over Q to the idele class group of a given number

field multipled an idele class character of finite order is equal to the L-functions of this charator. By

replacing Eisenstein seris with our higher plectic Green functions, a similar integration gives new

results, which give the generalization of classical multiple zeta values and multiple polyloarithms.

According to the plectic principle, a non-trivial subgroup of the ring of integers of a given

number field plays an essential role in this work.

1.1 Generalizations of classical Zeta Values

Classically, multiple Zeta values(MZVs) are the periods of mixed Tate motives, namely the MZVs

are iterated integrals on P1 ∖{0,1,∞}. Mixed motives and their realizations related to classical

modular forms were studied by various mathematicians (Beilinson, Beilinson-Levin, Manin, Gon-

charov, F. Brown, ...) Moreover, there exist mysterious modular phenomena in the ring of MZVs

related to the depth filtration. A good geometric understanding of these phenomena seems that we

should put MZVs and modular forms for SL2(Z) in a common framework. Recently, F. Brown

proposed so-called multiple modular values and mixed modular motives.

On the other hand, A. Goncharov used ideas from quantum physics on Hodge theoretical setting

to construct so-called Hodge correlators, which provide a new method to describe the corresponding

variations of real mixed Hodge structures and a new way to understand periods of motives. He

proved that classical polylogarithms, elliptic polylogarithms and their generalizations are all Hodge

correlators.

However, all the work mentioned above is built up over the rational field Q. What the situation

will be if Q is replaced by an arbitary number field K is still largely open. One natural but non-trivial

question is

Question 1.1 How should we define multiple Zeta values over arbitary number fields?

What should we put in the missing place in the following diagram to complete this diagram?

Classical zeta values/Q > (partial)Dedekind zeta functions/K

Mutiple zeta values/Q∨
.........................................> ?

∨
.......

In this thesis, we propose a potential method to answer this question, inspired by A. Goncharov’s

theory on Hodge correlators [10] and by the plectic principle due to J. Nekovár̆ and A. Scholl [13].

The starting point is to generalize the Hecke formula.

1.2 Hecke’s Formula

Hecke [12] proved that the integral of the restriction of a suitable Eisenstein series over Q to the

idele class group of a given number field multipled by an idele class character χ of finite order is
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1.2 Hecke’s Formula Introduction

equal to the L-functions of χ , up to some Γ factors. In fact, Hecke’s formula is one of the typical

examples within the theory of automorphic periods.

More precisely, Let K be a number field of degree [K ∶Q] = r1+2r2.

KR =K⊗R ∼Ð→Rr1 ×Cr2 .

Define the norm map

N =NK/Q⊗ id ∶K×R Ð→R×.

In order to state Hecke’s formula, we will need the following data:

(1) Let U ⊂O×K,+ be a subgroup of finite index, where

O×K,+ =O×K ∩(K×R)+ , (K×R)+ = (R×+)r1 ×(C×)r2
.

(2) Let I ⊂K be a fractional OK-ideal.

(3) ∃ m ∈N∖{0}, φ ∶ I/mIÐ→C be a function such that

∀ε ∈U, ∀α ∈ I∖{0}, φ(εα) = φ(α).
We consider the following embedding (defined up to a conjugation)

GLK(1)↪GLQ([K ∶Q]).
Let E(g,s,φ) be the Eisenstein series defined by

E(g,s,φ) = ∑
x∈I∖{0}

φ(x)
∥g ⋅x∥s ,

where g ∈GLZ(I)(R) ≅GL[K∶Q](R) and ∥ ⋅∥ is a scalar product on KR.

Hecke proved the following formula. [12]

∫
UR/U

E(u,s,φ) d×µ(u) =C(r1,r2,s,d
×µ(u))⎛⎝ ∑x∈I∖{0}

φ(x)
∣NK/Q(x)∣s/[K∶Q]

⎞
⎠ ,

where

UR =Ker(NK/Q⊗1 ∶ (K×R)+Ð→R×
+
) ,

and C(r1,r2,s,d
×µ(u)) is some Γ factor and d×µ(u) is a Haar measure. In fact we can also make

the formulation in an adelic setting.

In a more concrete setting, we can rewrite Hecke’s formula as follows.

Theorem 1.2 (Hecke’s Formula)

∫
UR/U

⎛
⎝ ∑α∈I∖{0}

φ(α)
∥uα∥[K∶Q]s

⎞
⎠ d×µ(u) = 2πr2

[K ∶Q]2r1

Γ(s/2)r1Γ(s)r2

Γ([K ∶Q]s/2) ∑
α∈(I∖{0})/U

φ(α)
∣NK/Q(α) ∣s .

One of the objectives of this thesis is to try to generalize this formula in order to produce suitable

“secondary”arithmetic objects. First of all we would like to precise the meaning of “secondary”.

The generalization of Hecke’s formula begins with replacing the Eisenstein series by some non-

trivial objects, namely so-called higher plectic Green functions, which depend on one basic plectic

Green function gν
I (x,u) (Definition 4.1) and on some combinatorial data. We will give the details

about the construction of higher plectic Green functions in the fourth and fifth chapters.

Now it is natural to ask
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1.3 Inspiration Introduction

Question 1.3 What are we going to obtain if we integrate these new objects over UR/U ?

This thesis will answer this question. We would like to give the simplest example by integrating the

basic plectic Green function.

Theorem 1.4 (Reinterpretation of Hecke’s formula) Let F be a totally real field of degree r = [F ∶
Q] and D the different ideal of F. If I is a fractional ideal of F, let

I∗ = {x ∈ F ∣ Tr(xI) ⊂Z} =D
−1I−1

.

If x ∈FR =F⊗R, if U ⊂O×F,+ a subgroup of finite index and if ∀ε ∈U, (ε−1) ⋅x ∈ I, which is equivalent

to

xI ∈ (FR/I)U ,
and if ν ∶Hom(F,R)Ð→ {0,1}, consider

gν
I (x,u) = lim

η→0+
∑

n∈(I∗∖{0})/U

sgn(n)ν e2πiTr(nx)

∥un∥r+η
,

where u ∈UR =Ker(N ∶ (F×R )+Ð→R×+) and ∥ ⋅∥ is the standard scalar product on FR ≅Rr.

∀ε ∈U, gν
I (x,εu) = gν

I (x,u).
By integration in a similar way as Hecke did, we obtain

∫
UR/U

gν
I (x,u)du = 2r−1

Γ(1/2)r
Γ(r/2) lim

η→0+
∑

n∈(I∗∖{0}/U)

sgn(n)ν e2πiTr(nx)

∏r
j=1 ∣n j∣(r+η)/r

.

Note that

N(n) =NF/Q(n) = r∏
j=1

n j,

hence

∫
UR/U

gν
I (x,u)du = 21−r

Γ(1/2)r
rΓ(r/2) lim

η→0+
∑

n∈(I∗∖{0})/U

sgn(n)ν e2πiTr(nx)

∣N(n)∣(r+η)/r
.

It is easy to see that we recover the Hecke formula, the righthand side is a linear combination of

special values L(1,χF) for certain Dirichlet characters χF of F of signature ν .

For other more complicated higher plectic Green functions, the results are highly non-trivial, some

non-trivial iterated integrals make their appeareance in a subtle way. However, if the number field K

is just the rational field Q, the integration ∫UR/U
is trivial and we prove that the higher plectic Green

functions deliver linear combinations of classical zeta values.

1.3 Inspiration

Before giving our main results, we will fist talk about two sources of inspiration of our construction

in the next section and give some simple examples in order to illustrate our strategy.
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1.3 Inspiration Introduction

1.3.1 Goncharov’s Hodge correlators

In A. Goncharov’s recent work [10], he constructed so-called Hodge correlators from just one fun-

damental object, namely the Green function, and certain Feynman diagrams, as in perturbative

quantum field theory. In fact, the Green function contributes as the propagator which in Feynman

diagrams serves to calculate the rate of collisions in quantum field theory.

Goncharov introduced such an idea to a Hodge-theoretic setting. He discovered that the so-

called Hodge correlators are the coefficients of twistor connections, which describe the correspond-

ing variations of real mixed Hodge structures. He proved that classical polylogarithms, elliptic

polylogarithms and their generalizations are all Hodge correlators.

For example, over C×, the Green function G(x,y) is log ∣x−y∣2. Applying a non-trivial integral

formula of Levin, Goncharov proved that the usual polylog can be writen as a Hodge correlator.

Based on such a construction, he obtained higher multipolylogarithms, more precisely, he proved

that the generating series of cycle multiple polylogarithms is a Hodge correlator, with the generating

series of classical polylogarithms serving as a Green function. His construction of Hodge correlators

on C× gives a variant of multiple polylogs, but a precise relation to the classical definition is not

made explicit.

1.3.2 Plectic Philosophy

Over a totally real field F , J. Nekovár̆ and A. Scholl [13] formulated what they call the plectic

conjecture. The geometric objects in this conjecture are Shimura varities/stacks whose definition

groups are restrictions of scalars from an algebraic group over F . More concretely, they work with

abelian varieties with real multiplication by OF , where OF is the ring of integers of F . We will try

to explain the plectic principle in the following.

If B is a connected complex manifold. Let X/B be a family of abelian varities with real mul-

tiplication, and s ∶ BÐ→ X a nonzero torsion section fixed by a subgroup of finite index U ⊂ O×F,+.

This subgroup U acts naturally on X and acts trivally on B, then we should consider the following

diagram

X ×U EU > X

B×U EU
∨ π

> B,
∨

where EU is the total space over the classifying space BU of the group U and B×U EU =B×EU/U .

When B = {pt} , then X is a variety, we have the following situation

X ×U EU

BU.

∨
Nekovár̆ and Scholl [13] constructed in their work a U-equivariant current θ̃ on X̃ = X ×UR, where

UR = EU . In fact θ̃ is a plectic generalisation of the (slightly modified) log ∣θ(τ,z)∣ of the absolute

value of the standard Theta function on the elliptic curve E =C/Zτ +Z, which is the Green function

on E.

So s∗(θ̃) is U-equivariant on B̃ = B×UR. Then s∗(θ̃) can descend to a current on B×UR/U ,

and we can compute the trace

π∗(s∗(θ̃)) =∫
UR/U

s∗(θ̃),
6



1.4 Main results Introduction

which gives very interesting functions, such as generalized Eisenstein-Kronecker-Lerch series.

The above integral, as well as its variants involving more complicated functions than θ̃ , can

be computed by integrating suitable expressions depending on ∥ux∥ over UR. For this purpose, the

Hecke transform is introduced and used in their work. Here is a typical example.

Proposition 1.5 (Hecke transform)[14]

Let UR ⊂ (R×+)r be the subgroup

UR = {(u j)∣∏u j = 1}
with the measure d×u = du1

u1
∧⋯∧ dur−1

ur−1
. Let ∣∣ ⋅ ∣∣ be the Euclidean norm on Cr, on which U acts by

multiplication. Let (p j) ∈Zr, p =∑ p j. Then for any x ∈ (C×)r and s ∈C with Re(s) > 0,

∫
UR

∣∣ux∣∣−2s∏
j

u
−2p j

j d×u = 2r−1

Γ(s)∏j

Γ( p+ s

r
− p j)∣x j∣2(p j−(p+s)/r)

.

1.4 Main results

In our work, we consider a generalisation of log ∣1−e2πix∣2 on the compact real torus

S1 = {e2πix∣x ∈R/Z} ⊂C×.
This function is the restriction of the Green function G(1,y) = log ∣1−y∣2 of the origin of C× to S1.

We are going to consider corresponding objects on tori with real multiplication.

Let F be a totally real field of degree r = [F ∶Q], we have the trace map Tr =TrF/Q and the norm

map N =NF/Q. Let D be the different and let I be a fractional ideal of F and

I∗ = {a ∈ F ∣ Tr(aI) ∈Z} =D
−1I−1

.

Let ∣∣ ⋅ ∣∣∶ FR = F⊗R ∼Ð→RHom(F,R)Ð→R+∪{0} be the standard euclidean norm. As above, let

UR =Ker(N ∶ (F×R )+Ð→R×+) = {(u1, . . . ,ur) ∈Rr
+ ∣ u1⋯ur = 1}.

Then we can define the “plectic” Green function associated to the ideal I

Definition 1.6 (Plectic Green function)

gI(x,u) = lim
η→0+

∑
n∈I∗/{0}

e2πiTr(nx)

∣∣un∣∣r+η
, x ∈ FR/I, u ∈UR,

which can also be defined as ∑n∈I∗∖{0}
e2πiTr(nx)

∣∣un∣∣r , viewed as a distribution on (FR/I)×UR.

We can also add an additional choice of multisigns ν ∈ {0,1}Hom(F,R). Then the modified “plectic”

Green function becomes

gν
I (x,u) = lim

η→0+
∑

n∈I∗/{0}

sgn(n)ν e2πiTr(nx)

∣∣un∣∣r+η
, x ∈ FR/I, u ∈UR.

There is also a second method to add a multisign

gI,ν(x,u) = lim
η→0+

∑
n∈I∗/{0}

sgn(n)=(−1)ν

e2πiTr(nx)

∣∣un∣∣r+η
, x ∈ FR/I, u ∈UR.

7





1.4 Main results Introduction

Remark 1.10 We can also add multisigns here, there are two methods. The first way is to associate

each edge a multisign νe = (ν1
e , . . . ,ν

r
e), then the formula in 4.9 will then contain terms sgn(ne)ν(e):

G
ν
I,Γ(k),S({xv}v∈S,u)= vol(FR/I)∣V(Γ)/S∣+∣k∣−∣E(Γ)∣ lim

δ→0+
∑′{n,c(n)∈H1(Γ,S)⊗I∗}

sgn(ne)ν(e) e2πiTr(∑v∈S(∂n)vxv)

∏e∈E(Γ) ∣∣une∣∣ke(r+δ)
.

The second method to add mutisigns by taking into account the ne ∈ I∗ ∖{0}, such that sgn(ne) =(−1)νe for a given multisign νe to each edge e. Then

GI,ν ,Γ(k),S({xv}v∈S,u) = vol(FR/I)∣V(Γ)/S∣+∣k∣−∣E(Γ)∣ lim
δ→0+
∑′{n,c(n)∈H1(Γ,S)⊗I∗}

sgn(ne)=(−1)ν(e)

e2πiTr(∑v∈S(∂n)vxv)

∏e∈E(Γ) ∣∣une∣∣ke(r+δ)
.

In fact, we usually prefer the second definition GI,ν ,Γ(k),S({xv}v∈S,u).
Similarly, we can generalize the definition of plectic Green functions to any number field.

Definition 1.11 (Plectic Green functions for arbitary number fields)

Let K be a number field with r1 real places (vi)1≤i≤r1
and r2 complex places (w j)1≤ j≤r2

and of degree[K ∶Q] = r1+2r2. We have the trace map Tr = TrK/Q

KR ≅Rr1 ×Cr2

and we have a Hermitian product ⟨ ∣ ⟩ ∶KR×KRÐ→C

⟨(xv,zw)∣(x′v,z′w)⟩ =∑
v

xvx′v+∑
w

zwz′w,

where

x = (xv,zw).
Let ∥ ⋅∥ = ⟨⋅∣⋅⟩1/2,
then the plectic Green function can be defined as

gI(x,u) = ∑
n∈I∗/{0}

e2πiTr(nx)

∣∣un∣∣r1+2r2
, x ∈KR/I, u ∈UR,

which is a distribution on (KR/I)×UR.

1.4.1 Generalized MZV for totally real fields

If we suppose that there exists a subgroup U ⊂O×F,+ of finite index stabilising {xv} for each v ∈ S, we

can apply the Hecke transform to define a new function as follows.

Definition 1.12

FI,Γ,S({xv}v∈S) = (O×F,+ ∶U)−1∫
UR/U

GI,Γ,S({xv}v∈S,u)d×u,

where d×u = du1⋯dur−1

u1⋯ur−1
,∏r

j=1 u j = 1 and UR/U = BU ≅ (S)r−1 is the classifying space of U ≅Zr−1.

9





1.4 Main results Introduction

GI,ν ,Γ1,∂Γ1
({xv}v∈∂Γ1

,1) = ∑
n1+n2+n3=0,ni∈Z∖{0}

sgn(ni)=(−1)νi

e2πi(n1xv1
+n2xv2

+n3xv3
)

∣n1∣σ1 ∣n2∣σ2 ∣n3∣σ3
,

where ν1 = ν2 = 0, ν3 = 1. Then

ZI,ν(Γ1,∂Γ1) = ∑
n1+n2+n3=0,ni∈Z∖{0}

sgn(ni)=(−1)νi

1

∣n1∣σ1 ∣n2∣σ2 ∣n3∣σ3
= ∑

n1,n2∈N∖{0}

1

∣n1∣σ1 ∣n2∣σ2 ∣n1+n2∣σ3

ZI,ν(Γ1,∂Γ1) = ∑
n1,n2∈N∖{0}

1

n
σ1

1 n
σ2

2 (n1+n2)σ3
.

We show in Example 4.22 that

ZI,ν(Γ1,∂Γ1) = ∑
r+s=σ1+σ2

(Cσ1−1
r−1 +C

σ2−1
r−1 )ζ(s,r+σ3).

Here ζ(s,r+σ3) is a classical double zeta value of weight r+s+σ3 =σ1+σ2+σ3, which means that

ZI,ν(Γ1,∂Γ1) can be expressed as a Z-linear combination of double zeta values of this weight.

1.4.3 The case of a general totally real field

If [F ∶Q] = r > 1, then the generalized multiple zeta value ZI(Γ,S) is highly non-trivial.

Let us see the case of r = 2, we have the following theorem

Theorem 1.17 Given k = (k1, . . . ,kd) and ∣k∣ = k1+ . . .+kd .

(1)If 2∤ ∣k∣, then after several differentiation with respect to the coefficients α j,β j, the essential part

of the definition of higher plectic Green function

I2(d,k) =∫ ∞

0

1

∏d
j=1(α2

j u+β 2
j u−1)k j

d×u

can be written as product of π and an element of Q(α1, . . . ,αd ,β1, . . . ,βd).
(2) If 2 divides ∣k∣, then I2(d,k) can be written as

d∑
j=1

γ j ⋅ log(β j

α j

) ,
where γ j ∈Q(α2

1 , . . . ,α
2
d ,β

2
1 , . . . ,β

2
d ).

Example 1.18 Consider the case d = 3, m = 0 and n = 1. Then

I(α j,β j) =∫ ∞

0

1

∏3
j=1(α2

j u+β 2
j u−1)

du

u

= −π

2

3∑
j=1

α jβ j

∏3
k=1,k≠ j ∆k j

= −π

2
( α1β1

∆12∆13

−
α2β2

∆21∆23

+
α3β3

∆12∆23

)
= π

2(α1β2+α2β1)(α1β3+α3β1)(α2β3+α3β2) .
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Goncharov’s Theory of Hodge correlators

2 Goncharov’s Theory of Hodge correlators

In this section, we will explain the idea of A. Goncharov’s theory of Hodge correlators, where

we are inspirated for the construction. This theory provides a new point of view of periods. Our

explanation is based on several simple examples.

2.1 Introduction

In Goncharov’s recent work [10], he constructed so-called Hodge correlators from just one fun-

damental object, namely the Green function, and certain Feynman diagrams, as in perturbative

quantum field theory. In fact, the Green function contributes as the propagator which in Feynman

diagrams serves to calculate the rate of collisions in quantum field theory.

Goncharov introduced such an idea to a Hodge-theoretic setting. He discovered that the so-

called Hodge correlators are the coefficients of twistor connections, which describe the correspond-

ing variations of real mixed Hodge structures. He proved that classical polylogarithms, elliptic

polylogarithms and their generalizations are all Hodge correlators.

For example, over C×, the Green function G(x,y) is log ∣x− y∣2. Applying a non-trivial inte-

gral formula of Levin, Goncharov proved that the usual polylogarithm can be writen as a Hodge

correlator. Based on such a construction, he obtained higher multipolylogarithms, more precisely,

he proved that the generating series of cycle multiple polylogarithms is a Hodge correlator, with

the generating series of classical polylogarithms serving as a Green function. His construction of

Hodge correlators on C× gives a variant of multiple polylogs, but a precise relation to the classical

definition is not made explicit.

In addition, there are motivic correlators in the motivic Lie algebra, whose periods are given

by the Hodge correlators. For a modular curve and its cusps, the Hodge correlators generalize the

Rankin-Selberg intergrals. In fact, the simplest case of them is the Rankin-Selberg convolution of

two cuspidal Hecke eigenforms. The motivic correlators on a modular curve give Beilinson’s el-

ements in motivic cohomology, hence the Beilinson-Kato Euler system. The motivic correlators

on the limit of the tower of modular curves give an automorphic adelic description of the Hodge

correlators on modular curves.

2.2 Definition of Hodge correlators after Goncharov

Let X be a smooth compact complex curve and S a subset of X . There is a Green function G(x,y)
associated on X2 provided by a volume form. Given a tree T , each edge e of T contributes a

Green function on X{vertices of e}, which we lift to a function on X{vertices of T}. Moreover, there is a

canonical poly differential map

ωm ∶ ∧m+1
A

0
X Ð→A

m
X ,

where A
k

X is the space of smooth k-forms on X . Then applying this poly differential map to

the Green functions assigned to the edge of T , we get a differential form of the top degree on

X{internal vertices of T}. Integrating such differential form, we get the integral assigned to T . If we

decorate the external vertices by elements a0, . . . ,an (ai ∈ S), see Figure4 . By taking the sum over

all trees T , that is decorated by a0, . . . ,an, we obtain the Hodge correlator associated to the cyclic

word W = C ({a0}⊗⋯⊗{an}) .

For the rigorous definition in details, one should refer to the work of Goncharov [10].
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Figure 4: A plane trivalent tree decorated by C ({a0}⊗⋯⊗{a5}).
Remark 2.1 Compared to Goncharov’s setting, we will work on number field, therefore we should

find an analogue of Green’s function over number field, which is also the starting point of our

construction.

2.3 Examples of Hodge correlators

Correlators on P1
C∖S and polylogarithms Let X =P1, S = {∞}. Given the following cyclic word

Wn = C ({1}⊗{z}⊗{0}⊗⋯⊗{0}) ,
the unique Wn-decorated Feynman diagram with no internal vertices incident to two {0}’s, see

Figure 5

Figure 5: The Feynman diagram for the classical n-logarithms.

We denote by Ln(z) the corresponding correlator [10]. Let Lin(z) be the classical n-polylogrithm

on CP1∖{0,1,∞}. Further there is a single-valued version

if n odd Ln(z) =Re(n−1∑
k=0

βk logk ∣z∣ ⋅Lin−k(z)) ,

if n even Ln(z) = Im(n−1∑
k=0

βk logk ∣z∣ ⋅Lin−k(z)) ,
where βk = 2kBk

k!
, Bk is the Bernoulli number.

Then the Levin formula gives us

L∗n(z) = 4−(n−1) ∑
n∈2Z

1≤k≤n−2

(2n−k−3

n−1
) 2k+1

(k+1)!Ln−k(z) logk ∣z∣.

14
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If we take

Ln(z) = 4n−1(2n−2

n−1
)−1

L∗n(z).
Then Goncharov showed that the Hodge correlator can be related to the classical polylogrithms

as follows −Ln(z) = (2πi)−nLn(z).

15
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3 Plectic Principle

3.1 Equivariant plectic Green Currents

As we have explained in the introduction, the plectic principle, we just repeat the main idea here.

Let X/B be a family of abelian varities with real multiplication, and s ∶BÐ→X a nonzero torsion

section fixed by a subgroup of finite index U ⊂O×F,+. This subgroup U acts naturally on X and acts

trivally on B, then we should consider the following diagram

X ×U EU > X

B×U EU
∨ π

> B,
∨

where EU is the total space over the classifying space BU of the group U and B×U EU =B×EU/U .

When B = {pt} , then X is a variety, we have the following situation

X ×U EU

BU.

∨
Nekovár̆ and Scholl [13] constructed in their work a U-equivariant current θ̃ on X̃ = X ×UR, where

UR =EU . θ̃ is a plectic generalisation of the (slightly modified) log ∣θ(τ,z)∣ of the absolute value of

the standard Theta function on the elliptic curve E =C/Zτ +Z, which is the Green function on E.

So s∗(θ̃) is U-equivariant on B̃ = B×UR. Then s∗(θ̃) can descend to a current on B×UR/U ,

and we can compute the trace

π∗(s∗(θ̃)) =∫
UR/U

s∗(θ̃),
which gives very interesting functions, such as generalized Eisenstein-Kronecker-Lerch series.

The above integral, as well as its variants involving more complicated functions than θ̃ , can

be computed by integrating suitable expressions depending on ∥ux∥ over UR. For this purpose, the

Hecke transform is introduced and used in their work. Here is a typical example.

In the speculative plectic conjecture[13], they consider a framework :

GL2,F ⋉G2
a,F < ResL/F(GL1,L)⋉G2

a,F

GL2,F

∨
< ResL/F(GL1,L)∨

where L is a totally imgainary quadratic extension of F . The diagram above gives rise to a Shimura

stacks:

A < Aτ

Y
∨
< {τ}∨

As in the previous remarks, Y is just an open Hilbert modular variety attached to GL2,F , while

A is the universal oject (in the sense of stacks) of Y. Morally A is the quotient [U/A], where A

is the non-exsitent universal Hilbert-Blumenthal abelian scheme over Y (the reason is (2) of the

16
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remarks), U ⊂ O×F,+ is a subgroup of finite index in the group of totally positive units of F . If we

consider that the group U acts trivially on Y , then we can get a stack Y = [U/Y ], which gives us a

bigger diagram:

A < Aτ

Y

∨
< [U/{τ}]∨

Y
∨
< {τ}.∨

3.2 Some explanation of the philosophy

In this subsection, we would like to give some geometric explanations about the reason that the

subgroup U ⊂O×F,+ plays a non-trivial role in plectic principle.

In fact a universal Hilbert-Blumenthal abelian scheme over Y doesn’t exist. First of all, we

will try to explain something about the difference between two moduli problems associated to two

groups. The picture is as follows:

G∗ ⊂ > G

Gm

∨
⊂ > ResF/QGm,F

ν∨
For an typical example, we take G = ResF/QGL2,F , and G∗ is defined by Cartien product (fiber

product).

G∗ = {g ∈G∣det(g) ∈Gm}
Usually, we have the moduli problem MG∗(resp. MG) associated to G∗ (resp. G). The fact is that

the functor MG∗ is representable, which means that there is an universal abelian variety (scheme)

AG∗ over MG∗ . The group of integers of O×F,+ acts on MG∗ ,

O×F,+

œ

MG∗ , Z[F ∶Q]−1 ≅O×F,+.

The action of O×F,+ on the connected components is trivial. The reason is that:

Hd =G(R)/(K∞/Z(R)),
where d = [F ∶Q] and

ZG∗(R) œ Hd/G∗(Z),
where ZG∗ is the center of G∗. Therefore the center ZG∗ acts trivially onHd/G∗(Z).

But the functor MG is just a coarse moduli space(un espace grossier in french). If we write,

M
gross

G
=MG∗/O×F,+

(i) The neutrial component of M
gross

G
= the neutrial component of MG∗ .

(ii) But the set { the connected components } of M
gross

G
≠ the set { the connected components } of

MG.

Remark 3.1 We know that the action of O×F,+ permutates the connected components of M
gross

G
.

17
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MG∗

M
gross

G

p∨

where p is a covering map (revetement).

Now we consider the previous moduli problems in the setting of stacks.

M
chp

G
= [MG∗/O×F,+]

Remark 3.2 Attention: M
chp

G
is not an algebraic stack, because the group O×F,+ is not a finite

group.

But over M
chp

G
, we still have a stack :

[A /O×F,+]

[M chp

G
],

f∨

where f is a representable morphism, involving a tautological abelian variety.

Now we turn to toroial compactifications. We have a diagram of compactifications for MG∗ .

AG∗
⊂ > A

tor
G∗

O×F,+

œ

MG∗

∨
> M

tor
G∗

œ

O×F,+

∨

Similarly, there is another diagram for M
chp

G

[AG∗/O×F,+] > [A tor/O×F,+]

[M chp

G
]

f∨
> [M tor

G∗ /O×F,+]
∨

In conclusion :

MG∗ =G∗(Q)/G∗(A)/ZG∗(R)K∞ has a universal abelian variety.

M
gross

G
=G(Q)/G(A)/ZG(R)K∞ does not have a universal abelian variety.

M
chp

G
= [G(Q)/G(A)/ZG(R)K∞].
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4 Generalization of Multiple Zeta Values (I):

General construction and results over Q

4.1 General construction

4.1.1 Plectic Green currents

In our work, we consider a generalisation of log ∣1−e2πix∣2 on the compact real torus

S1 = {e2πix∣x ∈R/Z} ⊂C×.
This function is the restriction of the Green function G(1,y) = log ∣1−y∣2 of the origin of C× to S1.

We are going to consider corresponding objects on tori with real multiplication.

Let F be a totally real field of degree r = [F ∶Q], we have the trace map Tr =TrF/Q and the norm

map N =NF/Q. Let D be the different and let I be a fractional ideal of F and

I∗ = {a ∈ F ∣ Tr(aI) ∈Z} =D
−1I−1

.

Let ∣∣ ⋅ ∣∣∶ FR = F⊗R ∼Ð→RHom(F,R)Ð→R+∪{0} be the standard euclidean norm. As above, let

UR =Ker(N ∶ (F×R )+Ð→R×+) = {(u1, . . . ,ur) ∈Rr
+ ∣ u1⋯ur = 1}.

Then we can define the “plectic” Green function associated to the ideal I

Definition 4.1 (Plectic Green function)

gI(x,u) = lim
η→0+

∑
n∈I∗/{0}

e2πiTr(nx)

∣∣un∣∣r+η
, x ∈ FR/I, u ∈UR,

which can also be defined as ∑
n∈I∗∖{0}

e2πiTr(nx)

∣∣un∣∣r , viewed as a distribution on (FR/I)×UR.

We can also add an additional choice of multisigns ν ∈ {0,1}Hom(F,R). Then the modified ”plectic”

Green function becomes

gν
I (x,u) = lim

η→0+
∑

n∈I∗/{0}

sgn(n)ν e2πiTr(nx)

∣∣un∣∣r+η
,x ∈ FR/I, u ∈UR.

There is also a second method to add a multisign

gI,ν(x,u) = lim
η→0+

∑
n∈I∗/{0}

sgn(n)=(−1)ν

e2πiTr(nx)

∣∣un∣∣r+η
,x ∈ FR/I, u ∈UR.

Remark 4.2 (O×F,+−equivariance)

∀ε ∈O×F,+, we have

gI(εx,εu) = gI(x,u).
This is also true for gν

I (⋅, ⋅) and gI,ν(⋅, ⋅).
Remark 4.3 (Dependence on I)

1. If α ∈ F×+ and N(α) = 1, then (αI)∗ = α−1I∗. Hence

gαI(αx,αu) = gI(x,u).
2. ∀α ∈ F×+ , gαI(αx,u) =N(α)gI(x,u). Therefore up to rescaling, gI(⋅, ⋅) depends only on the class

of I in the class group Cl+F . This is also true for gν
I (⋅, ⋅) and gI,ν(⋅, ⋅).
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4.1.2 Higher plectic Green currents

By using just this “plectic” Green function, we will construct a function (or a distribution) GI,Γ,S(⋅, ⋅)
on

O×F,+/(FR/I)S×UR = (FR/I)S×O×
F,+

EO×F,+,

which depends on a given graph Γ and a subset S of the set of its vertices.

Definition 4.4 (Higher plectic Green function)

Let Γ be a finite connected non-oriented graph, V(Γ) the set of vertices and E(Γ) the non-empty

set of edges. Let S ⊂ V(Γ) be a subset of the set of vertices. Loops are forbidden here (i.e. the

endpoints of each edge are distinct), but multiple edges are allowed. For each vertex v ∈ V(Γ),
let xv ∈ FR/I be a variable which decorates the vertex v; for each edge e ∈ E(Γ), we choose an

orientationÐ→e = (v0(e) Ð→ v1(e)) and we associate an element ne ∈ I∗∖{0}.
Then the higher plectic Green function attached to (Γ,S) is

GI,Γ,S({xv}v∈S,u) =∫
(FR/I)V(Γ)∖S

∏
e∈E(Γ)

gI(xv1(e)−xv0(e),u) ∏
v∈V(Γ)∖S

dxv,

where xv ∈ FR/I,u ∈UR and dx is a fixed Haar measure en FR, and

gI(xv1(e)−xv0(e),u) = lim
η→0+

∑
ne∈I∗/{0}

e
2πiTr(ne(xv1(e)

−xv0(e)
))

∣∣une∣∣r+η
.

There are variants of these functions (and numbers) depending on an additional choice of multisigns

ν(e) ∈ {0,1}Hom(F,R) (and an orientation) for each edge e, which means that we can replace gI(⋅, ⋅)
by gI,ν(⋅, ⋅) (or gν

I (⋅, ⋅)).
Remark 4.5 By the very definition, GI,Γ,S(⋅, ⋅) inherits a O×F,+-invariant property. ∀ε ∈ O×F,+, we

have

GI,Γ,S({εxv}v∈S,εu) = GI,Γ,S({xv}v∈S,u).
Therefore, our higher plectic Green function GI,Γ,S(⋅, ⋅) is a function (or distribution) on

O×F,+/(FR/I)S×UR = (FR/I)S×O×
F,+

EO×F,+,

which depends on the given graph Γ and the subset S of the set of its vertices. Here EO×F,+ is the

total space of the group O×F,+.

Lemma 4.6 (Convolution on FR/I) On FR/I we have a formal convolution. Let χn(x) = e2πiTr(xn).

If A(x) =∑m∈I∗ a(m)χm(x) and B(y) =∑n∈I∗ b(n)χn(y), then

∫
FR/I

A(x−y)B(y)dy =∫
FR/I

∑
m,n∈I∗

a(m)b(n)χm(x−y)χn(y)dy = vol(FR/I)∑
n∈I∗

a(n)b(n)χ(n).
Proof 4.1.1 The Proof of Lemma 4.6 is straightout.

∫
FR/I

A(x−y)B(y)dy =∫
FR/I

∑
m,n∈I∗

a(m)b(n)e2πiTr((x−y)m)e2πiTr(yn)dy

=∫
FR/I
∑
m=n

a(m)b(n)e2πiTr(xm)e2πiTr(y(n−m))dy+∫
FR/I
∑
m≠n

a(m)b(n)e2πiTr(xm)e2πiTr(y(n−m))dy.
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If m ≠ n, then

∫
FR/I

b(n)e2πiTr(y(n−m))dy = 0.

Therefore we obtain

∫
FR/I

A(x−y)B(y)dy =∫
FR/I
∑
m=n

a(m)b(n)e2πiTr(xm)e2πiTr(y(n−m))dy

=∫
FR/I
∑
n∈I∗

a(n)b(n)e2πiTr(xn)
⋅∫

FR/I
1 dy = vol(FR/I) ∑

n∈I∗
a(n)b(n)e2πiTr(xn)

.

By the definition of gI(⋅, ⋅), we can rewrite the higher plectic Green function as

GI,Γ,S({xv}v∈S,u) = lim
η→0+

∑
n∶E(Γ)→I∗∖{0}

∏
e∈E(Γ)

∣∣une∣∣−r−η ∫
(FR/I)V(Γ)∖S

e
2πiTr(∑e∈E(Γ) ne(xv1(e)

−xv0(e)
))

dµV(Γ)∖S,

(1)

where we define the following map

n ∶ E Ð→ I∗∖{0}; n ∶ ez→ ne ∈ I∗∖{0}.
Let us define the chain complex for the graph Γ.

δ ∶C1(Γ) =Z[E(Γ)]Ð→C0(Γ) =Z[V(Γ)],
where δ ∶ (v0→ v1)z→ [v1]− [v0] is the boundary map of the chain complex and Z[X] denotes the

free abelian group on a set X. We can also define the relative chain complex for (Γ,S), namely,

C1(Γ)Ð→C0(Γ)/C0(S).
We can associate to n the following element c(n) in C1(Γ)⊗Z I∗ of the graph Γ.

c(n) = ∑
e∈E(Γ)

ne ⋅
Ð→e ∈C1(Γ)⊗Z I∗.

If we let

πv = ∑
e∈E(Γ),v1(e)=v

ne− ∑
e∈E(Γ),v0(e)=v

ne, (2)

then

e
2πiTr(∑e∈E(Γ) ne(xv1(e)

−xv0(e)
)) = e2πiTr(∑v∈V(Γ) πvxv).

We define the boundary map

∂n ∶V(Γ)Ð→ I∗,

∂n(v) = δc(n)∣v = πv.

By using the previous convolution formula, we obtain that only the terms with ∂n∣V(Γ)∖S = 0 (which

means that

∀v ∈V(Γ)∖S, πv = 0)
contribute to the integral in (1). Note that

{c(n) ∣ ∂n∣V(Γ)∖S = 0} =H1(Γ,S)⊗Z I∗.

Then we get a formal Fourier convolution description of GI,Γ,S(⋅, ⋅).
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4.1.3 Generalized MZV for totally real fields

If we suppose that there exists a subgroup U ⊂O×F,+ of finite index stabilising {xv} for each v ∈ S, we

can apply the Hecke transform to define a new function as follows.

Definition 4.11

FI,Γ,S({xv}v∈S) = (O×F,+ ∶U)−1∫
UR/U

GI,Γ,S({xv}v∈S,u)d×u,

where d×u = du1⋯dur−1

u1⋯ur−1
,∏r

j=1 u j = 1 and UR/U = BU ≅ (S)r−1 is the classifying space of U ≅Zr−1.

Remark: In the same way, we can define F
ν
I,Γ,S({xv}v∈S) and FI,ν ,Γ,S({xv}v∈S).

Then the generalized multiple zeta value is defined as

Definition 4.12 (Generalized Multiple Zeta Values)

ZI(Γ,S) =FI,Γ,S({0}v∈S).
Remark 4.13 Similarily, we have

Z
ν

I (Γ,S) =F
ν
I,Γ,S({0}v∈S),

and

ZI,ν(Γ,S) =FI,ν ,Γ,S({0}v∈S).
Remark 4.14 In fact, the construction for GI,ν ,Γ(k),S({xv}v∈S,u) also works for arbitary number

fields. If a complex place exists, we can just replace the Euclidean norm by Hermitian norm and we

can add signs just for the real places. For an imaginary quadratic field, there is no Hecke transform.

4.1.4 Generalized MZV for arbitary number fields

Definition 4.15 (Plectic Green functions for arbitary number fields)

Let K be a number field with r1 real places (vi)1≤i≤r1
and r2 complex places (w j)1≤ j≤r2

and of degree[K ∶Q] = r1+2r2. We have the trace map Tr = TrK/Q

KR ≅Rr1 ×Cr2

and we have a Hermitian product ⟨ ∣ ⟩ ∶KR×KRÐ→C

⟨(xv,zw)∣(x′v,z′w)⟩ =∑
v

xvx′v+∑
w

zwz′w,

where

x = (xv,zw).
Let ∥ ⋅∥ = ⟨⋅∣⋅⟩1/2,
then the plectic Green function can be defined as

gI(x,u) = ∑
n∈I∗/{0}

e2πiTr(nx)

∣∣un∣∣r1+2r2
, x ∈KR/I, u ∈UR,

which is a distribution on (KR/I)×UR.
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= ∑
n1+n2+n3+n4=0,ni∈Z

sgn(n j)=(−1)v j ,1≤ j≤4

1

∣n1∣σ1 ∣n2∣σ2 ∣n3∣σ3 ∣n4∣σ4

ZI,ν(Γ′1,∂Γ
′
1) = ∑

n1,n2,n3∈N∖{0}

1

n
σ1

1 n
σ2

2 n
σ3

3 (n1+n2+n3)σ4
.

Firstly, we use Eisenstein’s trick for

1

n
σ2

2 n
σ3

3

= ∑
r1+s1=σ2+σ3

⎛
⎝

C
σ2−1
r1−1(n2+n3)r1n

s1

3

+ C
σ3−1
r1−1(n2+n3)r1n

s1

2

⎞
⎠

Then

ZI,ν(Γ′1,∂Γ
′
1)= ∑

r1+s1=σ2+σ3

∑
n1,n2,n3∈N∖{0}

⎛
⎝

C
σ2−1
r1−1(n1+n2+n3)σ4(n2+n3)r1n

s1

3 n
σ1

1

+ C
σ3−1
r1−1(n1+n2+n3)σ4(n2+n3)r1n

s1

2 n
σ1

1

⎞
⎠

Secondly, we use twice Eisenstein’s trick for the terms involving n1 and (n2+n3). Then we obtain

ZI,ν(Γ′1,∂Γ
′
1) = ∑

r1+s1=σ2+σ3
r2+s2=r1+σ1

∑
n1,n2,n3∈N∖{0}

C
r1−1
r2−1C

σ2−1
r1−1(n1+n2+n3)σ4+r2n

s1

3 n
s2

1

+ ∑
r1+s1=σ2+σ3
r2+s2=r1+σ1

∑
n1,n2,n3∈N∖{0}

C
σ1−1
r2−1 C

σ2−1
r1−1(n1+n2+n3)σ4+r2(n2+n3)s2n

s1

3

+ ∑
r1+s1=σ2+σ3

r′2+s′2=r1+σ1

∑
n1,n2,n3∈N∖{0}

C
r1−1

r′
2
−1

C
σ3−1
r1−1

(n1+n2+n3)σ4+r′
2n

s1

2 n
s′

2

1

+ ∑
r1+s1=σ2+σ3

r′2+s′2=r1+σ1

∑
n1,n2,n3∈N∖{0}

C
σ1−1

r′
2
−1

C
σ3−1
r1−1

(n1+n2+n3)σ4+r′
2(n2+n3)s′2n

s1

2

Finally, we use Eisenstein’s trick for the terms involving n1 and n2(respectively, n1 and n3).

ZIν(Γ′1,∂Γ
′
1) = ∑

r1+s1=σ2+σ3
r2+s2=r1+σ1
r3+s3=s1+s2

∑
n1,n2,n3∈N∖{0}

C
s1−1
r3−1C

r1−1
r2−1C

σ2−1
r1−1(n1+n2+n3)σ4+r2(n1+n3)r3n

s3

1

+ ∑
r1+s1=σ2+σ3
r2+s2=r1+σ1
r3+s3=s1+s2

∑
n1,n2,n3∈N∖{0}

C
s2−1
r3−1C

r1−1
r2−1C

σ2−1
r1−1(n1+n2+n3)σ4+r2(n1+n3)r3n

s3

3

+ ∑
r1+s1=σ2+σ3
r2+s2=r1+σ1

∑
n1,n2,n3∈N∖{0}

C
σ1−1
r2−1 C

σ2−1
r1−1(n1+n2+n3)σ4+r2(n2+n3)s2n

s1

3
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+ ∑
r1+s1=σ2+σ3

r′2+s′2=r1+σ1

r′3+s′3=s1+s′2

∑
n1,n2,n3∈N∖{0}

C
s1−1

r′
3
−1

C
r1−1

r′
2
−1

C
σ3−1
r1−1

(n1+n2+n3)σ4+r′
2(n1+n2)r′3n

s′
3

1

+ ∑
r1+s1=σ2+σ3

r′2+s′2=r1+σ1

r′3+s′3=s1+s′2

∑
n1,n2,n3∈N∖{0}

C
s′2−1

r′
3
−1

C
r1−1

r′
2
−1

C
σ3−1
r1−1

(n1+n2+n3)σ4+r′
2(n1+n2)r′3n

s′
3

2

+ ∑
r1+s1=σ2+σ3

r′2+s′2=r1+σ1

∑
n1,n2,n3∈N∖{0}

C
σ1−1

r′
2
−1

C
σ3−1
r1−1

(n1+n2+n3)σ4+r′
2(n2+n3)s′2n

s1

2

Then

ZI,ν(Γ′1,∂Γ
′
1) = ∑

r1+s1=σ2+σ3
r2+s2=r1+σ1
r3+s3=s1+s2

(Cs1−1
r3−1C

r1−1
r2−1C

σ2−1
r1−1 +C

s2−1
r3−1C

r1−1
r2−1C

σ2−1
r1−1
)ζ(σ4+ r2,r3,s3)

+ ∑
r1+s1=σ2+σ3

r′2+s′2=r1+σ1

r′3+s′3=s1+s′2

(Cs1−1

r′
3
−1

C
r1−1

r′
2
−1

C
σ3−1
r1−1 +C

s′2−1

r′
3
−1

C
r1−1

r′
2
−1

C
σ3−1
r1−1 )ζ(σ4+ r′2,r

′
3,s
′
3)

+ ∑
r1+s1=σ2+σ3
r2+s2=r1+σ1

C
σ1−1
r2−1 C

σ2−1
r1−1 ζ(σ4+ r2,s2,s1)+ ∑

r1+s1=σ2+σ3

r′2+s′2=r1+σ1

C
σ1−1

r′
2
−1

C
σ3−1
r1−1 ζ(σ4+ r′2,s

′
2,s1),

where σ4+ r2+ r3+ s3 = σ4+ r2+ s2+ s1 = σ1+σ2+σ3+σ4.

We can see that ZI,ν(Γ′1,∂Γ
′
1) is a Z-linear combination of triple-zeta values of weight σ1 +σ2 +

σ3+σ4.

Example 4.25 Let Γ2 be the diagram as in Figure 14.

The rank is equal to rank(H1(Γ2,∂Γ2)) = 3. For each external edge ei (1 ≤ i ≤ 3), the given sign

νi equals 0, therefore ν4 = 1.

GI,ν ,Γ2,∂Γ2
({xv}v∈S,1)=∫

(R/Z)2
∑

ni,mi∈Z∖{0}
sgn(ni)=(−1)νi

e2πi((xv3
−y)n3+(xv4

−y)n4)

∣n3∣σ3 ∣n4∣σ4

e2πi((xv1
−z)n1+(xv2

−z)n2+(y−z)m1)

∣n1∣σ1 ∣n2∣σ2 ∣m1∣µ1
dxdy

By the formal Fourier convolution, we get

GI,ν ,Γ2,∂Γ2
({xv}v∈S,1) = ∑

n1+n2+m1=0,n3+n4−m1=0;ni,mi∈Z∖{0}
sgn(ni)=(−1)νi

e2πi(n1xv1
+n2xv2

+n3xv3
+n4xv4

)

∣n1∣σ1 ∣n2∣σ2 ∣n3∣σ3 ∣n4∣σ4 ∣m1∣µ1
.
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we can rewrite 1© and 2© as follows.

1© = ∑
s2+t2=σ3+s1+µ1

C
σ1−1
s1−1 C

σ3−1
s2−1

(n1+n2+n3)s2+σ4(n1+n2)t2n
t1
2

+ ∑
s2+t2=σ3+s1+µ1

s3+t3=t1+t2

C
σ1−1
s1−1 C

s1+µ1−1

s2−1 C
t2−1
s3−1

(n1+n2+n3)s2+σ4(n3+n2)s3n
t3
2

+ ∑
s2+t2=σ3+s1+µ1

s3+t3=t1+t2

C
σ1−1
s1−1 C

s1+µ1−1

s2−1 C
t1−1
s3−1

(n1+n2+n3)s2+σ4(n3+n2)s3n
t3
3

2© = ∑
s2+t2=σ3+s1+µ1

C
σ2−1
s1−1 C

σ3−1
s2−1

(n1+n2+n3)s2+σ4(n1+n2)t2n
t1
1

+ ∑
s2+t2=σ3+s1+µ1

s′3+t′3=t1+t2

C
σ2−1
s1−1 C

s1+µ1−1

s2−1 C
t2−1

s′
3
−1

(n1+n2+n3)s2+σ4(n3+n1)s′3n
t′
3

1

+ ∑
s2+t2=σ3+s1+µ1

s′3+t′3=t1+t2

C
σ2−1
s1−1 C

s1+µ1−1

s2−1 C
t1−1

s′
3
−1

(n1+n2+n3)s2+σ4(n3+n1)s′3n
t′
3

3

Finally we get:

Formula 4.26

ZI,ν(Γ2,∂Γ2) = ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1

∑
n1,n2,n3∈N∖{0}

C
σ1−1
s1−1 C

σ3−1
s2−1

(n1+n2+n3)s2+σ4(n1+n2)t2n
t1
2

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s3+t3=t1+t2

∑
n1,n2,n3∈N∖{0}

⎛
⎝

C
σ1−1
s1−1 C

s1+µ1−1

s2−1 C
t2−1
s3−1

(n1+n2+n3)s2+σ4(n3+n2)s3n
t3
2

+ C
σ1−1
s1−1 C

s1+µ1−1

s2−1 C
t1−1
s3−1

(n1+n2+n3)s2+σ4(n3+n2)s3n
t3
3

⎞
⎠

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1

∑
n1,n2,n3∈N∖{0}

C
σ2−1
s1−1 C

σ3−1
s2−1

(n1+n2+n3)s2+σ4(n1+n2)t2n
t1
1

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1

s′3+t′3=t1+t2

∑
n1,n2,n3∈N∖{0}

⎛⎜⎝
C

σ2−1
s1−1 C

s1+µ1−1

s2−1 C
t2−1

s′
3
−1

(n1+n2+n3)s2+σ4(n3+n1)s′3n
t′
3

1

+ C
σ2−1
s1−1 C

s1+µ1−1

s2−1 C
t1−1

s′
3
−1

(n1+n2+n3)s2+σ4(n3+n1)s′3n
t′
3

3

⎞⎟⎠ .

However,

∑
n1,n2,n3∈N∖{0}

1

(n1+n2+n3)s2+σ4(n1+n2)t2n
t1
2

= ∑
0<k1<k2<k3

1

k
s2+σ4

3 k
t2
2 k

t1
1

= ζ(t1,t2,s2+σ4),
where k1 = n1,k2 = n1+n2,k3 = n1+n2+n3. Therefore

ZI,ν(Γ2,∂Γ2) = ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1

(Cσ1−1
s1−1 C

σ3−1
s2−1 +C

σ2−1
s1−1 C

σ3−1
s2−1
)ζ(t1,t2,s2+σ4)
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We can use the result of 3© in the formula 4.26 to get:

ZI,ν(Γ3,∂Γ3) = ∑
n1,n2,n3,n4∈N∖{0}

( 1

∣n4∣σ4 ∣n1+n2+n3+n4∣σ5
)×

⎧⎪⎪⎨⎪⎪⎩ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1

C
σ1−1
s1−1 C

σ3−1
s2−1

(n1+n2+n3)s2+µ2(n1+n2)t2n
t1
2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a©

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s3+t3=t1+t2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

C
σ1−1
s1−1 C

s1+µ1−1

s2−1 C
t2−1
s3−1

(n1+n2+n3)s2+µ2(n3+n2)s3n
t3
2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b©

+ C
σ1−1
s1−1 C

s1+µ1−1

s2−1 C
t1−1
s3−1

(n1+n2+n3)s2+µ2(n3+n2)s3n
t3
3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c©

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1

C
σ2−1
s1−1 C

σ3−1
s2−1

(n1+n2+n3)s2+µ2(n1+n2)t2n
t1
1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d©

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1

s′3+t′3=t1+t2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
σ2−1
s1−1 C

s1+µ1−1

s2−1 C
t2−1

s′
3
−1

(n1+n2+n3)s2+µ2(n3+n1)s′3n
t′
3

1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e©

+ C
σ2−1
s1−1 C

s1+µ1−1

s2−1 C
t1−1

s′
3
−1

(n1+n2+n3)s2+µ2(n3+n1)s′3n
t′
3

3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f©

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

Remark: By careful observation, we can see that on the factorisation factors (without the ex-

ponent) of the denominators of these six terms a© . . . f© , there is an action of the symmetric group

S3. For example, to pass from the factors of the denominator of a© (without considering the power)

to that of c©, we let σ = σ(123) acting on (n1 +n2 +n3)(n1 +n2)n2 by (nσ ⋅1 +nσ ⋅2 +nσ ⋅3)(nσ ⋅1 +
nσ ⋅2)nσ ⋅2, which also explains why there are 6 = ∣S3∣ terms.

Thanks to the remark, in order to reexpress ZI(Γ3,∂Γ3), we only need to understand:

Sum1 = ∑
n1,n2,n3,n4∈N∖{0}

( 1

n
σ4

4 (n1+n2+n3+n4)σ5
)× ∑

s1+t1=σ1+σ2
s2+t2=σ3+s1+µ1

C
σ1−1
s1−1 C

σ3−1
s2−1

(n1+n2+n3)s2+µ2(n1+n2)t2n
t1
2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a©

.

(3)

Apply formula 4.23 again:

1

n
σ4

4 (n1+n2+n3)s2+µ2
= ∑

s4+t4=σ4+s2+µ2

⎛
⎝

C
σ4−1
s4−1(n1+n2+n3+n4)s4(n1+n2+n3)t4 +

C
s2+µ2−1

s4−1

(n1+n2+n3+n4)s4n
t4
4

⎞
⎠ .

Then

Sum1 = ∑
n1,n2,n3,n4∈N∖{0}

∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

C
σ1−1
s1−1 C

σ3−1
s2−1 C

σ4−1
s4−1

(n1+n2+n3+n4)s4+σ5(n1+n2+n3)t4(n1+n2)t2n
t1
2

34



4.2 Relation to classical MZVs

Generalization of Multiple Zeta Values (I):

General construction and results over Q

+ ∑
n1,n2,n3,n4∈N∖{0}

∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1

(n1+n2+n3+n4)s4+σ5(n4)t4(n1+n2)t2n
t1
2

.

Again,

1

(n4)t4(n1+n2)t2 = ∑
s5+t5=t4+t2

⎛
⎝

C
t4−1
s5−1(n1+n2+n4)s5(n1+n2)t5 +

C
t2−1
s5−1

(n1+n2+n4)s5n
t5
4

⎞
⎠ .

Then

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1

(n1+n2+n3+n4)s4+σ5(n4)t4(n1+n2)t2n
t1
2

= ∑
s5+t5=t4+t2

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t4−1
s5−1

(n1+n2+n3+n4)s4+σ5(n1+n2+n4)s5(n1+n2)t5n
t1
2

+ C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t2−1
s5−1

(n1+n2+n3+n4)s4+σ5(n1+n2+n4)s5n
t5
4 n

t1
2

.

Once again

1

n
t5
4 n

t1
2

= ∑
s6+t6=t5+t1

⎛
⎝

C
t5−1
s6−1

(n4+n2)s6n
t6
2

+ C
t1−1
s6−1

(n4+n2)s6n
t6
4

⎞
⎠

Finally, we get

Sum1 = ∑
n1,n2,n3,n4∈N∖{0}

∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

C
σ1−1
s1−1 C

σ3−1
s2−1 C

σ4−1
s4−1

(n1+n2+n3+n4)s4+σ5(n1+n2+n3)t4(n1+n2)t2n
t1
2

+ ∑
n1,n2,n3,n4∈N∖{0}

∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

s5+t5=t4+t2

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t4−1
s5−1

(n1+n2+n3+n4)s4+σ5(n1+n2+n4)s5(n1+n2)t5n
t1
2

+ ∑
n1,n2,n3,n4∈N∖{0}

∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

s5+t5=t4+t2
s6+t6=t5+t1

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t2−1
s5−1C

t5−1
s6

(n1+n2+n3+n4)s4+σ5(n1+n2+n4)s5(n4+n2)s6n
t6
2

+ ∑
n1,n2,n3,n4∈N∖{0}

∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

s5+t5=t4+t2
s6+t6=t5+t1

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t2−1
s5−1Ct1−1

s6(n1+n2+n3+n4)s4+σ5(n1+n2+n4)s5(n4+n2)s6n
t6
4

By exchanging the sum symbols, we get

Formula 4.28

Sum1 = ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

C
σ1−1
s1−1 C

σ3−1
s2−1 C

σ4−1
s4−1 ζ(t1,t2,t4,s4+σ5)
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+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

s5+t5=t4+t2

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t4−1
s5−1ζ(t1,t5,s5,s4+σ5)

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

s5+t5=t4+t2
s6+t6=t5+t1

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t2−1
s5−1Ct5−1

s6
ζ(t6,s6,s5,s4+σ5)

+ ∑
s1+t1=σ1+σ2

s2+t2=σ3+s1+µ1
s4+t4=σ4+s2+µ2

s5+t5=t4+t2
s6+t6=t5+t1

C
σ1−1
s1−1 C

σ3−1
s2−1 C

s2+µ2−1

s4−1 C
t2−1
s5−1Ct1−1

s6
ζ(t6,s6,s5,s4+σ5),

where

t1+ t2+ t4+ s4+σ5 = t1+ t5+ s5+ s4+σ5 = t6+ s6+ s5+ s4+σ5 = σ1+σ2+σ3+σ4+σ5+µ1+µ2.

In conclusion, since ZI,ν(Γ3,∂Γ3) is just the summation of the 6 sums as Sum1, therefore

ZI,ν(Γ3,∂Γ3) is indeed a Z-linear combination of quadruple zeta values of weight σ1 +σ2 +σ3 +
σ4+σ5+µ1+µ2.

4.2.2 Proof of the theorem

Proof of Theorem 4.16

Proof 4.2.1 (I). The graph Γ is a plane trivalent tree.

Inspired by the previous examples, we will prove the theorem 4.16 by induction on the number of

internal vertices of a given tree. For simplicity, we will first consider only plane trivalent trees.

Later we will prove this theorem for any tree.

Step 1 : Let Γ be a given plane trivalent tree with N internal vertices w j (1 ≤ j ≤ N), N + 2

external vertices vi (1 ≤ i ≤ N +2), N −1 internal edges and N +2 external edges. The subdivision

map k is given by kei
= σei

(σei
≥ 1) if ei (1 ≤ i ≤ N +2) is an external edge with endpoint vi, and

k f j
= µ f j

(µ f j
≥ 1) if f j (1 ≤ j ≤N −1) is an internal edge. Recall that for each edge, we give a sign

νe ∈ {0,1}.
Remark: In fact, we can see that the orientation of each edge has no importance by changing

the sign for each edge. Moreover, we can also assume that for each external edge ei with the sign

νei
= 0, 1 ≤ i ≤ N +1 (we shall see that this forces νeN+2

= 1). It is easy to see that we will lose no

generality.

By the results of the above examples, we know that Therem 4.16 holds when N = 1,2,3. Now

our inductive hypothesis is that if N = n (n ≥ 1), the theorem is true. Moreover, we assume that:

Let Γ be a plane trivalent tree with N (N ≤ n) internal vertices and rank d = rank(H1(Γ,∂Γ)).
Then we have a relation d =N +1. The generalized multiple zeta value associated ZI,ν(Γ,∂Γ) can

be written as follows

ZI,ν(Γ,∂Γ) = ∑
n1,...,nN+1∈N∖{0}

∑
γ∈Sd

∑
t
γ
i

1≤i≤d

Cγ,t
γ
i

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅d)tγ

d

,
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which implies that

ZI,ν(Γ,∂Γ) = ∑
γ∈Sd

∑
t
γ
i

1≤i≤d

Cγ,t
γ
i
ζ(tγ

1 ,⋯,tγ
d
),

where Sd is the symmetric group, Cγ,t
γ
i
∈ Z is a constant depending on γ and t

γ
i . The upper mute

symbol γ of t
γ
j implies the dependence of γ , and

t
γ
1 + . . .+ t

γ
d
=∑

e

σe+∑
f

µ f , ∀γ ∈ Sd ,

and

t
γ
i ≥ 1, ∀γ ∈ Sd , 1 ≤ i ≤ d.

Therefore the first sum

∑
t
γ
i
∈N∖{0}
1≤i≤d

is a finite sum.

For convenience, we will define a new quantity

OI,ν(Γ,∂Γ,(ni)i,(m j) j) = ∏
1≤i≤N+2

1

∣ni∣σi
∏

1≤ j≤N−1

1

∣m j∣µ j
.

In fact for each internal vertex we have πv = 0, hence each m j can be written as a linear combination

of the ni, thus

OI,ν(Γ,∂Γ,(ni)i,(m j) j) =OI,ν(Γ,∂Γ,(ni)i).
If there is no ambiguity, we will for simplicity write:

OI,ν(Γ,∂Γ) =OI,ν(Γ,∂Γ,(ni)i).
The fact that Theorem 4.16 holds means that we have a new expression for OI,ν(Γ,∂Γ), namely

OI,ν(Γ,∂Γ) = ∑
γ∈Sd

∑
t
γ
i

1≤i≤d

Cγ,t
γ
i

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅d)tγ

d

,

t
γ
1 + . . .+ t

γ
d
=∑

e

σe+∑
f

µ f , ∀γ ∈ Sd ,

then

ZI,ν(Γ,∂Γ) = ∑
ni∈N∖{0},

1≤i≤d

OI,ν(Γ,∂Γ).

Step 2: Now we will prove the case of N = n+1 .

For a plane trivalent tree, if the number of internal vertices is increased by 1, then the rank of

the tree is increased by 1, too.

Now we give a clockwise order for all external vertices vi. We will also give an order for all

internal vertices, such that the internal vertex wN , decorated by the variable xN , is connected with

the two external vertices vN+1 and vN+2 by external edgesÐÐ→eN+1 = (wN Ð→ vN+1) andÐÐ→eN+2 = (wN Ð→
vN+2).
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and

ZI,ν(Γ′,∂Γ
′) = ∑

ni∈N∖{0},1≤i≤N

OI,ν(Γ′,∂Γ
′).

Then

GI,ν ,Γ,∂Γ({0}v∈∂Γ,1) = ∑
ni∈N∖{0},1≤i≤N+1

1

∣nN+1∣σN+1 ∣nN+2∣σN+2
⋅OI,ν(Γ′,∂Γ

′).
Since the number of the internal vertices of Γ

′ is n, then the theorem for Γ
′ holds by the inductive

hypothesis.

Hence we have the following equality:

OI,ν(Γ′,∂Γ
′) = ∑

γ∈Sd−1

∑
t
γ
1
,...,t

γ
d−1

C̃γ,t
γ
i

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅(d−1))tγ

d−1

,

where

t
γ
1 + . . .+ t

γ
d−1
= ∑

1≤i≤N

σi+ ∑
1≤ j≤N−1

µ j, ∀γ ∈ Sd−1,(d =N +1).
Now we need to calculate

Pγ = 1

∣nN+1∣σN+1 ∣nN+2∣σN+2
×

C̃γ,t
γ
i

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅(d−1))tγ

d−1

,

from which we will deduce

ZI,ν(Γ,∂Γ) = ∑
ni∈N∖{0},
1≤i≤N+1

∑
γ∈Sd−1

Pγ .

Recall: the rank d of a plane trivalent tree with N internal vertices equals N +1. Then

ZI,ν(Γ,∂Γ) = ∑
ni∈N∖{0},
1≤i≤N+1

∑
γ∈SN

Pγ .

Step 3: Calculation of Pγ .

For simplicity, we assume that γ = 1. In fact, this assumption will be no loss of generality.

P1 = 1

n
σN+1

N+1 ∣nN+2∣σN+2
×

C̃1,t1
i

n
t1
1

1 (n1+n2)t1
2⋯(n1+ . . .+nN)t1

N

.

For any plane tree Γ, we have

n1+n2+ . . .+nN+1+nN+2 = 0; ni > 0; 1 ≤ i ≤N +1.

Then

P1 = 1

n
σN+1

N+1 (n1+ . . .+nN+1)σN+2
×

C̃1,t1
i

n
t1
1

1 (n1+n2)t1
2⋯(n1+n2+ . . .+nN)t1

N

.

Now for the final result, we will apply N times the Eisenstein trick 4.23.

1st time:

1

n
σN+1

N+1 (n1+n2+ . . .+nN)t1
N

= ∑
r1+s1=σN+1+t1

N

C
σN+1−1
r1−1(n1+n2+ . . .+nN+1)r1(n1+n2+ . . .+nN)s1
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+ ∑
r1+s1=σN+1+t1

N

C
t1
N−1

r1−1(n1+n2+ . . .+nN+1)r1n
s1

N+1

.

Then

P1 = ∑
r1+s1=σN+1+t1

N

C
σN+1−1
r1−1 C̃1,t1

i

n
t1
1

1 (n1+n2)t1
2⋯(n1+n2+ . . .+nN)s1(n1+n2+ . . .+nN+1)r1+σN+2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a1
1

+ ∑
r1+s1=σN+1+t1

N

C
t1
N−1

r1−1C̃1,t1
i

n
t1
1

1 n
s1

N+1(n1+n2)t1
2⋯(n1+n2+ . . .+nN−1)t1

N−1(n1+n2+ . . .+nN+1)r1+σN+2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b1

1

,

where the lower index 1 for a1
1 refers to P1 and the upper index 1 indicates the 1st time use of

Eisenstein’s trick.

Denote C1,t1
i
=C

σN+1−1
r1−1 C̃1,t1

i
. Now will see that

∑
ni∈N∖{0}
1≤i≤N+1

a1
1 = ∑

r1+s1=σN+1+t1
N

∑
ni∈N∖{0}
1≤i≤N+1

C1,t1
i

n
t1
1

1 (n1+n2)t1
2⋯(n1+n2+ . . .+nN)s1(n1+n2+ . . .+nN+1)r1+σN+2

= ∑
r1+s1=σN+1+t1

N

C1,t1
i
ζ(t1

1 ,⋯,t1
N ,s1,r1+σN+2),

where

t1
1 +⋯+ t1

N + s1+ r1+σN+2 = ∑
1≤i≤N+2

σi+ ∑
1≤ j≤N−1

µ j,

since

t
γ
1 + . . .+ t

γ
d−1
= ∑

1≤i≤N

σi+ ∑
1≤ j≤N−1

µ j, ∀γ ∈ Sd−1, (d =N +1).
ζ(t1

1 ,⋯,t1
N ,s1,r1+σN+2) is a (N +1)-tuple zeta value of weight ∑1≤i≤N+2 σi+∑1≤ j≤N−1 µ j.

Let us continue this procedure. We apply for the second time Eisenstein’s trick for b1
1 by consid-

ering

1

n
s1

N+1(n1+n2+ . . .+nN−1)t1
N−1

= ∑
r2+s2=s1+t1

N−1

C
s1−1
r2−1(n1+n2+ . . .+nN−1+nN+1)r2(n1+n2+ . . .+nN−1)s2

+ ∑
r2+s2=s1+t1

N−1

C
t1
N−1−1

r2−1(n1+n2+ . . .+nN−1+nN+1)r2n
s2

N+1

.

Then

b1
1 = ∑

r1+s1=σN+1+t1
N

r2+s2=s1+t1
N−1

C
s1−1
r2−1C

t1
N−1

r1−1C̃1,t1
i

n
t1
1

1⋯(n1+ . . .+nN−1)s2(n1+ . . .+nN−1+nN+1)r2(n1+ . . .+nN +nN+1)r1+σN+2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a2

1
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+ ∑
r1+s1=σN+1+t1

N

r2+s2=s1+t1
N−1

C
t1
N−1−1

r2−1 C
t1
N−1

r1−1C̃1,t1
i

n
t1
1

1 n
s2

N+1(n1+n2)t1
2⋯(n1+ . . .+nN−2)t1

N−2(n1+ . . .+nN−1+nN+1)r2(n1+ . . .+nN+1)r1+σN+2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b2

1

,

We denote Cσ(N,N+1) =C
s1−1
r2−1C

t1
N−1

r1−1C̃1,t1
i
. Then

∑
ni∈N∖{0}
1≤i≤N+1

a2
1 = ∑

r1+s1=σN+1+t1
N

r2+s2=s1+t1
N−1

ni∈N∖{0}
1≤i≤N+1

g=σ(N,N+1)

Cσ(N,N+1)
n

t1
1

1⋯(n1+ . . .+nN−1)s2(n1+ . . .+nN−1+nN+1)r2(n1+ . . .+nN+1)r1+σN+2

= ∑
r1+s1=σN+1+t1

N

r2+s2=s1+t1
N−1

Cσ(N,N+1)ζ(t1
1 ,⋯,t1

N−2,s2,r2,r1+σN+2),

where t1
1 +⋯+ t1

N−2+ s2+ r2+ r1+σN+2 =∑1≤i≤N+2 σi+∑1≤ j≤N−1 µ j.

We will continue the procedure by considering b2
1. In fact, after the k-th time use of Eisenstein’s

trick (k ≥ 1),

1

n
sk−1

N+1(n1+n2+ . . .+nN−(K−1))t1
N−(k−1)

= ∑
rk+sk

=sk−1+t1
N−(k−1)

C
sk−1
rk−1(n1+ . . .+nN−(k−1)+nN+1)rk(n1+ . . .+nN−(k−1))sk

+ ∑
rk+sk=sk−1+t1

N−(k−1)

C
t1
N−(k−1)

−1

rk−1(n1+n2+ . . .+nN−(k−1)+nN+1)rk n
sk

N+1

,

then we will get two sums ak
1 and bk

1, where 1 ≤ k ≤N −1 and

ak
1(n1,⋯,nN+1) = ∑

r1+s1=σN+1+t1
N

r2+s2=s1+t1
N−1⋅⋅⋅

rk+sk=sk−1+t1
N−(k−1)

C
sk−1−1
rk−1 C

t1
N−(k−2)

rk−1−1 ⋯C
t1
N−1

r1−1C̃1,t1
i
×M,

where

M = 1

[∏N−k
i=1 (∑i

p=1 np)t1
i ](n1+⋯+nN−(k−1))sk

× 1

[∏N−1
j=N−(k−1)((∑ j

q=1 nq)+nN+1)rN− j+1](n1+⋯+nN+1)r1+σN+2

.

41



4.2 Relation to classical MZVs

Generalization of Multiple Zeta Values (I):

General construction and results over Q

bk
1 = ∑

r1+s1

=σN+1+t1
N ;

r2+s2

=s1+t1
N−1;⋯

rk+sk

=sk−1+t1
N−k+1

C
t1
N−k+1

rk−1 ⋯C
t1
N−1

r1−1C̃1,t1
i

n
sk

N+1∏N−k
j=1 (n1+⋯+n j)t1

j ∏N−1
j=N−k+1(n1+⋯n j +nN+1)rN− j+1(n1+⋯+nN+1)r1+σN+2

.

Similarly, after the (k+1)-th time use of Eisenstein’s trick for bk
1, we obtain

bk
1 = ak+1

1 +bk+1
1 .

After N steps, we have bN−1
1 = aN

1 +bN
1 , where

bN−1
1 = ∑

r1+s1=σN+1+t1
N

r2+s2=s1+t1
N−1⋅⋅⋅

rN−1+sN−1=sN−2+t1
1

C
t1
2

rN−1−1⋯C
t1
N−1

r1−1C̃1,t1
i

n
t1
1

1 n
sN

N+1∏N−1
j=2 (n1+⋯n j +nN+1)rN− j+1(n1+⋯+nN+1)r1+σN+2

,

aN
1 = ∑

r1+s1=σN+1+t1
N

r2+s2=s1+t1
N−1⋅⋅⋅

rN+sN=sN−1+t1
1

C
sN−1−1
rN−1 C

t1
2

rN−1−1⋯C
t1
N−1

r1−1C̃1,t1
i

n
sN

1 [∏N−1
j=1 ((∑ j

q=1 nq)+nN+1)rN− j+1](n1+⋯+nN+1)r1+σN+2

,

and

bN
1 = ∑

r1+s1=σN+1+t1
N

r2+s2=s1+t1
N−1⋅⋅⋅

rN+sN=sN−1+t1
1

C
t1
1−1

rN−1⋯C
t1
N−1

r1−1C̃1,t1
i

n
sN+1

N+1(n1+nN+1)rN+rN+1∏N−1
j=2 (n1+⋯n j +nN+1)rN− j+1(n1+⋯+nN+1)r1+σN+2

.

The sums ∑ni∈N∖{0}ak
1 and ∑ni∈N∖{0}bN

1 (for each 1 ≤ k ≤N) are Z-linear combinations of (N +
1)-tuple zeta values.

For example, for a plane trivalent tree with one internal vertex, the corresponding rooted tree

illustrating the procedure of calculations is as follows.

P1

a1
1 b1

1

a2
1 b2

1

a3
1 b3

1
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Finally, we have

P1 = a1
1+b1

1 = a1
1+a2

1+b2
1 =⋯ = ⎛⎝ ∑1≤ j≤k

a
j

1

⎞
⎠+bk

1 = ( ∑
1≤l≤N

al
1)+bN

1 .

∑
ni∈N∖{0}

ak
1,(n1,⋯,nN+1) = ∑

r1+s1=σN+1+t1
N

r2+s2=s1+t1
N−1⋅⋅⋅

rk+sk=sk−1+t1
N−(k−1)

Cτk,t
1
i
ζ(t1

1 ,⋯,t1
N−k,sk,rk,⋯,r2,r1+σN+2),

where Cτk,t
1
i
=C

t1
N−(k−1)

rk−1 ⋯C
t1
N−1

r1−1C̃1, τ1 = Id and τk(k ≥ 2) is the permutation

τk = (N−k+2 N−k+3 N−k+4 ⋯ N N+1
N+1 N−k+2 N−k+3 ⋯ N−1 N

)
which signifies that through the action of this permutation on the indices (without considering the

powers) of denominators of a1
1, we will recover the factors of ak

1.

t1
1 +⋯+ t1

N−k + sk + rk +⋯+ r2+ r1+σN+2 = ∑
1≤i≤N+2

σi+ ∑
1≤ j≤N−1

µ j.

It is easy to see that ζ(t1
1 ,⋯,t1

N−k,sk,rk,⋯,r2,r1+σN+2) is a (N+1)-tuple zeta value. Therefore P1

is indeed a Z-linear combination of (N +1)-tuple zeta values of weight ∑1≤i≤N+2 σi+∑1≤ j≤N−1 µ j.

We can obtain similar results for other Pγ and get ai
γ(1 ≤ i ≤ N + 1) with numerator Cτi⋅γ .

Therefore we get

ZI,ν(Γ,∂Γ) = ∑
n1,...,nN+1∈N∖{0}

∑
1≤i≤N+1

∑
γ∈Sd−1

ai
γ

= ∑
n1,...,nN+1∈N∖{0}

∑
α∈Sd

∑̃
tα
i

Cα,t̃α
i

n
t̃α
1

α ⋅1(nγ ⋅1+nα ⋅2)t̃α
2 ⋯(nα ⋅1+ . . .+nα ⋅d)t̃α

d

,

= ∑
α∈Sd

∑̃
tα
i

Cα,t̃α
i

ζ(t̃α
1 ,⋯, t̃α

d ),
where α = τi ⋅γ (1 ≤ i ≤N+1 and γ ∈ Sd−1) is an element of Sd . Note that τi (1 ≤ i ≤N+1) and γ ∈ Sd−1

generate the symmetric group Sd in the sense that

Sd = SN+1 = N+1∐
i=1

τiSN = N+1∐
i=1

τiSd−1.

So we have finished the proof of the case N = n+ 1, ZI,ν(Γ,∂Γ) is indeed a finite Z-linear

combination of (N +1)-tuple zeta values of weight ∑1≤i≤N+2 σi+∑1≤ j≤N−1 µ j.

(II). Γ is an arbitary tree.

The demonstration is quite similar to the previnous proof for any plane trivalent tree. Let Γ be an

arbitrary plane tree with N internal vertices. For each internal vertex w j(1 ≤ j ≤ N), the valency

val(w j) = 3+β j, β j ≥ 0. Then Γ has N −1 internal edges, N +2+∑1≤ j≤N β j external edges and

N +2+∑1≤ j≤N β j external vertices vi. Therefore the rank d = rank(H1(Γ,∂Γ)) is not equal N +1

any more, but we have

d =N +1+ ∑
1≤ j≤N

β j.
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Again we give a clockwise order to the set of all external vertices vi. We will also give an order

for all internal vertices, such that the internal vertex wN , decorated by the variable xN , is connected

with the external vertices

vN+1+∑1≤ j≤N−1 β j
, . . . ,vN+2+∑1≤ j≤N β j

by external edgesÐÐÐÐÐÐÐÐ→eN+1+∑1≤ j≤N−1 β j
= (wNÐ→ vN+1+∑1≤ j≤N−1 β j

), ... ,ÐÐÐÐÐÐÐ→eN+2+∑1≤ j≤N β j
= (wNÐ→ vN+2+∑1≤ j≤N β j

).
The initial step: the case N = 1. Let β = β1 (≥ 0) be the valency of the internal vertex of Γ

′
1.

When β = 1, the theorem is correct due to example 4.24 for Γ
′
1. Now we will prove the case for a

general β (≥ 1), where the rank d of the tree is 2+β .

For each edge ei(1 ≤ i ≤ 3+β), we add σi−1(σi ≥ 1) points. The only internal vertex is denoted

by x, each external vertex vi is decorated by xvi
. For each ei(i = 1, . . . ,2+β), the given sign νi equals

0. Then the sign ν3+β is forced to be 1.

GI,ν ,Γ′
1
,∂Γ′

1
({xv}v∈∂Γ′

1
,1) = ∑

n1+⋯+n3+β=0,ni∈Z∖{0};
sgn(ni)=(−1)νi ,1≤i≤2+β

e
2πi(n1xv1

+⋯+n3+β xv3+β
)

∏3+β
i=1 ∣ni∣σi

,

where ν1 =⋯ = ν2+β = 0. Then

ZI,ν(Γ′1,∂Γ
′
1) = GI,ν ,Γ′

1
,∂Γ′

1
({0}v∈∂Γ′

1
,1) = ∑

n1+⋯+n3+β=0,ni∈Z∖{0};
sgn(ni)=(−1)νi ,1≤i≤2+β

1

∏3+β
i=1 ∣ni∣σi

ZI,ν(Γ′1,∂Γ
′
1) = ∑

ni∈N∖{0}
1≤i≤2+β

1

∏2+β
i=1 n

σi

i (n1+⋯+n2+β )σ3+β

.

We define

Q = 1

∏2+β
i=1 n

σi

i (n1+⋯+n2+β )σ3+β

.

Then

ZI,ν(Γ′1,∂Γ
′
1) = ∑

ni∈N∖{0}
1≤i≤2+β

Q.

Definition 4.29 If 0 ≤ k ≤ β ,

Qk ( n1, ⋯, nk+1; nk+2, ⋯, n2+β

kt1, ⋯, ktk+1; σk+2, ⋯, σ2+β
)

= 1

n
σk+2

k+2
⋯n

σ2+β

2+β
(n1+⋯+n2+β )σ3+β (n1+ . . .+nk+1)ktk+1⋯(n1+n2)kt2nkt1

1

.

And Q0 ( n1; n2, ⋯, n2+β
σ1; σ2, ⋯, σ2+β

) =Q.

When k = β ,

Qβ ( n1, ⋯, nβ+1; n2+β

β t1, ⋯, β tβ+1; σ2+β
)

= 1

n
σβ+2

β+2
(n1+⋯+n2+β )σ3+β (n1+ . . .+nβ+1)β tβ+1⋯(n1+n2)β t2n

β t1

1

.
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By the calculation of P1 for any plane trivalent tree, we know that Qβ ( n1, ⋯, nβ+1; n2+β

β t1, ⋯, β tβ+1; σ2+β
) can be

written as

= ∑
τ j(β)
∑̃
t
τ j

i

C
τ j(β),t̃τ j

i

n
t̃
τ j

1

τ j ⋅1(nτ j ⋅1+nτ j ⋅2)t̃τ j

2 ⋯(nτ j ⋅1+ . . .+nτ j ⋅(β+2))t̃
τ j

β+2

,

t̃
τ j

1 +⋯t̃
τ j

β+2
= β+3∑

i=1

σi, ∀ j.

where the permutation τ1(β) = Id and if 2 ≤ j ≤ β +2

τ j(β) = (2+β−( j−1) 2+β−( j−2) ⋯ 1+β 2+β
2+β 2+β−( j−1) ⋯ β 1+β

)
and C

τ j(β),t̃τ j

i

∈Z .

If k = β −1. We have one rooted tree illustrating the procedure of reducing to the case k = β by

a repeated times of Eisenstein’s trick.

Qβ−1

∑Q
β
Id

b1
1

∑Q
β
τ2(β−1) b2

1

∑Q
β
τ3(β−1) b3

1

⋯
∑Q

β
τβ (β−1) ∑Q

β
τβ+1(β−1)

Qβ−1 =Qβ−1( n1, ⋯, nβ ; nβ+1, nβ+2

β−1t1, ⋯, β−1t1
β

; σβ+1, σβ+2
)

Denote

Q
β
τ j(β−1) =Qβ (τ j(β −1) ⋅( n1, ⋯, nβ+1; nβ+2

β t1, ⋯, β tβ+1; σβ+2
)) ,

where the permutation τ1(β −1) = Id, and if 2 ≤ j ≤ β +1,

τ j(β −1) = (1+β−( j−1) 2+β−( j−2) ⋯ β+2

1+β 2+β−( j−1) ⋯ β+1
)

acts on the indices i, l of ni and β tl .

Define

Q
β
τ j(β−1) = ∑

r1+s1=σ1+β+β−1tβ

r2+s2=s1+β−1t1
β−1⋯

r j+s j=s j−1+β−1t1+β− j

Qβ (τ j(β −1) ⋅( n1, ⋯, nβ+1; nβ+2

β t1, ⋯, β tβ+1; σβ+2
)) ,

where

τ j(β −1) ⋅( n1, ⋯, nβ+1; nβ+2

β t1, ⋯, β tβ+1; σβ+2
) =

(nτ j(β−1)⋅1, ⋯, n
τ j(β−1)⋅(β−1t1

β− j
)
, nτ j(β−1)⋅(β−1tβ+1− j)

, nτ j(β−1)⋅(β−1tβN+2− j)
, ⋯ nτ j(β−1)⋅(β+1); nβ+2

β−1t1, ⋯, β−1tβ− j, s j, r j, ⋯, r1; σβ+2
) .
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Then

Qβ−1 =∑Q
β
Id
+∑Q

β
τ2(β−1)+⋯+∑Q

β
τβ (β−1)+∑Q

β
τβ+1(β−1).

Continuing this procedure we can write Qq as a sum of Q
q+1

τ j(q) for 0 ≤ q ≤ β . We can get the same

result for Q
q
σ and Q

q+1

τ j(q)σ and σ = τl(q−1) for some 1 ≤ l ≤ q+1.

Q
q

1

∑Q
q+1

Id
b1

1

∑Q
q+1

τ2(q) b2
1

∑Q
q+1

τ3(q) b3
1

⋯
∑Q

q+1

τq+1(q) ∑Q
q+1

τq+2(q)
Then

Qq =∑Q
q+1

Id
+∑Q

q+1

τ2(q)+⋯+∑Q
q+1

τq+1(q)+∑Q
q+1

1,τq+2(q).

In conclusion, Q0 ( n1; n2, ⋯, nβ+2

σ1; σ2, ⋯, σβ+2
) =Q can be written as

= ∑̂
τk

∑̃
t
τ̂k
i

C
τ̂k,t̃

τ̂k
i

n
t̃
τ̂k
1

τ̂k ⋅1(nτ̂k ⋅1+nτ̂k ⋅2)t̃ τ̂k
2 ⋯(nτ̂k ⋅1+ . . .+nτ̂k ⋅(β+2)t̃ τ̂k

β+2

.

Therefore

ZI,ν(Γ′,∂Γ
′) = ∑̂

τk

∑̃
t
τ̂k
i

C
τ̂k,t̃

τ̂k
i

ζ(t̃ τ̂k

1 , t̃
τ̂k

2 ,⋯, t̃ τ̂k

β+2
),

t̃
τ̂k

1 + t̃
τ̂k

2 +⋯+ t̃
τ̂k

β+2
= β+3∑

i=1

σi,

where

τ̂k = τl0(0)⋯τlβ−1
(β −1)τlβ (β),

where τ1(m) = Id and, if 2 ≤ l ≤ d′+1+m, 0 ≤m ≤ β ,

τl(m) = (2+m−(l−1) 2+m−(k−2) ⋯ 1+m 2+m

2+m 2+m−(k−1) ⋯ m 1+m
).

∣{τl(m); 2 ≤ l ≤m+2, 0 ≤m ≤ β}∣ = (β +2)(β +1)⋯2 = (β +2)! = ∣Sd ∣.
Hence, theorem 4.16 holds for a tree with one internal vertex of valency 3+β (β ≥ 1).

The inductive step:

What we will change for induction in the proof is the following :

Recall that d =N +1+∑1≤ j≤N β j, then let d′ =N +∑1≤ j≤N−1 β j.
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In order to deduce the case N = n+1 to the case N −1 = n, we apply the following operation:

we cut down the internal edge fN−1, one of whose ends is the internal vertex wN and associate

the new external vertex denoted as v′
N+1+∑1≤ j≤N−1 β j

= v′d′+1 and denote the new external edge as

e′
N+1+∑1≤ j≤N−1 β j

= e′d′+1 to which we associate ne′
N+1+∑1≤ j≤N−1 β j

=mN−1 and the subdivision µN−1, then

we build up a new plane tree Γ
′ with N −1 = n internal vertices and whose rank is d′ = d −1−βN ,

where d is the rank of Γ.

ZI,ν(Γ′,∂Γ
′) = ∑

ni∈N∖{0},1≤i≤d′
OI,ν(Γ′,∂Γ

′).
Then

ZI,ν(Γ,∂Γ) = GI,ν ,Γ,∂Γ({0}v∈∂Γ,1) = ∑
ni∈N∖{0},

1≤i≤d

1

∏d−N
k=d′−N ∣nN+1+k∣σN+1+k

⋅OI,ν(Γ′,∂Γ
′).

Since the number of the internal vertices of Γ
′ is n, then the theorem for Γ

′ holds by the inductive

hypothesis.

Hence we have the following equality:

OI,ν(Γ′,∂Γ
′) = ∑

γ∈Sd′

∑
t
γ
1
,...,t

γ

d′

C̃γ,t
γ
i

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅(d′))tγ

d′

,

where

t
γ
1 + . . .+ t

γ
d′
= ∑

1≤i≤d′
σi+ ∑

1≤ j≤N−1

µ j, ∀γ ∈ Sd′ .

Now

Pγ = 1

∏d−N
k=d′−N ∣nN+1+k∣σN+1+k

C̃γ,t
γ
i

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅(d′))tγ

d′

,

where d′ =N +∑1≤ j≤N−1 β j and
d+1∑
i=1

ni = 0.

Then

Pγ = 1

n
σd′+1

d′+1
⋯n

σd′+1+βN

d′+1+βN
(n1+⋯+nd′+1+βN

)σd′+2+βN

C̃γ,t
γ
i

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅(d′))tγ

d′

,

and

ZI,ν(Γ,∂Γ) = ∑
ni∈N∖{0},

1≤i≤d

∑
γ∈Sd′

∑
t
γ
1
,...,t

γ

d′

Pγ .

Without losing generality, we can focus on P1, where 1 is the identity permutation.

Calculation of P1.

P1 = 1

n
σd′+1

d′+1
⋯n

σd′+1+βN

d′+1+βN
(n1+⋯+nd′+1+βN

)σd′+2+βN

C̃1,t1
i

(n1+ . . .+nd′)t1
d′⋯(n1+n2)t1

2 n
t1
1

1

.

47



4.2 Relation to classical MZVs

Generalization of Multiple Zeta Values (I):

General construction and results over Q

If βN = 0, then we return to the calculation of P1 for a plane trivalent tree. If βN > 0, the number

of monomials before the polynomial (n1+⋯+nd′+1+βN
)σd′+2+βN is no more 1.

Therefore, the calculation of P1 turns to reducing the number of monomials n
σd′+k

d′+k
. We have

to show that this number indeed can be reduced, then finally conclude the calculation by the case

where the number is one.

As before, we will heavily use Eisenstein’s trick. We will introduce several pieces of notation in

order to simplify the demonstration.

Notation 4.30 (1) We will write Eis(as1 ,bs2) for the operation

1

as1bs2
= ∑

r1+r2=s1+s2

C
s1−1
r1−1(a+b)r1br2

+ C
s2−1
r1−1(a+b)r1ar2

.

(2) Let n(k1,k2) be the sum:
k2∑

j=k1

n j = nk1
+⋯+nk2

.

In every use of Eis(⋅, ⋅), there are two kinds of fractions
C

s1−1

r1−1

(a+b)r1 br2
and

C
s2−1

r1−1

(a+b)r1 ar2
. In order to

reduce the number of terms n
σd′+k

d′+k
, we draw a rooted tree to visualize the results after a repeated use

of Eis(⋅, ⋅).
P1

α1
1

α2
11

α3
112 α3

112

α2
12

α3
121 α3

122

α1
2

α2
21

α3
211 α3

212

α2
22

α3
221 α3

222

For example, the operation Eis(nσd′+1

d′+1 ,n(1,d′)σd′ ) yields

P1 = α1
1 +α1

2 ,

α1
1 = ∑

r1+s1

=σd′+1+t1
d′

C
σd′+1−1

r1−1 C̃1,t1
i

n
σd′+2

d′+2
⋯n

σd′+1+βN

d′+1+βN
n(1,d′+1+βN)σd′+2+βN n(1,d′+1)r1(n(1,d′)s1⋯(n1+n2)t1

2 n
t1
1

1

,

α1
2 = ∑

r1+s1

=σd′+1+t1
d′

C
t1
d′
−1

r1−1 C̃1,t1
i

n
s1

d′+1
⋯n

σd′+1+βN

d′+1+βN
n(1,d′+1+βN)σd′+2+βN n(1,d′+1)r1n(1,d′−1)t1

d′−1⋯(n1+n2)t1
2 n

t1
1

1

.

Definition 4.31

α(k ∶ i1, j1;⋯; ik, jk) = αk
1⋯1±

i1

2⋯2±
j1

1⋯1±
i2

2⋯2±
j2

⋯⋯°
⋯

1⋯1±
ik

2⋯2±
jk

,

where
k∑

l=1

(il + jl) = k; il ≥ 0; jl ≥ 0.
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The upper symbol k means that we have used Eisenstein’s trick k-times. In the first i1 applica-

tions of Eis(⋅, ⋅) we consider only the term on the left, in the next j1 applications only the term on

the right, etc. If we descend p times along the left branch, the number of monomials n?
d′+k decreases

by p. However, on the right branch, the number of monomials does not decrease. Moreover, the

number of factors of the denominator of P1 is equal to

d′+2+βN =N +2+ ∑
1≤ j≤N

β j = d+1.

During the repeated applications of Eis(⋅, ⋅), the number of factors of denominators of α(k ∶ i1, j1;⋯; ik, jk)
remains unchanged.

Note that

α(k ∶ i1, j1;⋯; ik, jk) = α(k+1 ∶ i1, j1;⋯; ik, jk;1,0)+α(k+1 ∶ i1, j1;⋯; ik, jk;0,1);

P1 = ∑
i1,⋯,ik≥0
j1,⋯, jk≥0

∑k
l=1(il+ jl)=k

α(k ∶ i1, j1;⋯; ik, jk).

For example, α1
1 = α(1 ∶ 1,0), α1

2 = α(1 ∶ 0,1).
We will consider first two special cases.

Proposition 4.32 If i1 = k (1 ≤ k ≤ βN), then we get

αk
1⋯1±

k

= ∑
r1+s1

=t1
d′
+σd′+1

r2+s2
=r1+σd′+2⋯⋯⋯

rk+sk
=rk−1+σd′+k

C
σd′+k−1

rk−1 ⋯C
σd′+1

r1−1 C̃1

∏βN

j=k
n

σd′+ j+1

d′+ j+1
n(1,d′+1+βN)σ2+d′+βN n(1,d′+k)rk∏k

j=1 n(1,d′+ j−1)s j∏d′−1
j=1 n(1, j)t1

j

.

When k = βN , then

α
βN

1⋯1±
βN

= ∑
r1+s1

=t1
d′
+σd′+1

r2+s2
=r1+σd′+2⋯⋯⋯
rβN
+sβN

=rβN−1+σd′+βN

C
σd′+βN

−1

rβN
−1 ⋯C

σd′+1

r1−1 C̃1

n
σd′+βN+1

d′+βN+1
n(1,d′+1+βN)σ2+d′+βN n(1,d′+βN)rβN ∏βN

j=1 n(1,d′+ j−1)s j∏d′−1
j=1 n(1, j)t1

j

.

From the calculation of P1 for any plane trivalent tree, it is easy to see that α
βN

1⋯1±
βN

can be written

as a Z-linear combination of d = d′+1+βN-tuple zeta values.

Remark 4.33 The example shows that if some il > 0, then the number of monomials n?
d′+k of α(k ∶

i1, j1;⋯; ik, jk) decrease.
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Proposition 4.34 If jk = k, then

αk
2⋯2±

k

= ∑
r1+s1

=σd′+1+t1
d′

r2+s2

=s1+t1
d′−1⋯⋯⋯

rk+sk

=sk−1+t1
d′−k+1

C
t1
d′−k+1

−1

rk−1 ⋯C
t1
d′
−1

r1−1 C̃1

n
sk

d′+1∏d′+1+βN

j=d′+2
n

σ j

j n(1,d′+1+βN)σd′+2+βN ∏k−1
j=0(n(1,d′− j)+nd′+1)r j+1∏d′−k

j=1 n(1, j)t1
j

.

Then

αd′−1
2⋯2±
d′−1

= ∑
r1+s1

=σd′+1+t1
d′

r2+s2

=s1+t1
d′−1⋯⋯⋯

rd′−1+sd′−1

=sd′−2+t1
2

C
t1
2−1

rd′−1−1⋯C
t1
d′
−1

r1−1 C̃1

n
sd′−1

d′+1∏d′+1+βN

j=d′+2
n

σ j

j n(1,d′+1+βN)σd′+2+βN ∏d′−2
j=0 (n(1,d′− j)+nd′+1)r j+1n

t1
1

1

.

Now we will apply once again Eis(nsd′−1

d′+1
,n

t1
1

1 ) and get:

αd′

2⋯2±
d′−1

1®
1

= ∑
r1+s1

=σd′+1+t1
d′

r2+s2

=s1+t1
d′−1⋯⋯⋯

rd′+sd′

=sd′−1+t1
1

C
sd′−1−1

rd′−1 C
t1
2−1

rd′−1−1⋯C
t1
d′
−1

r1−1 C̃1

∏d′+1+βN

j=d′+2
n

σ j

j n(1,d′+1+βN)σd′+2+βN ∏d′−2
j=0 (n(1,d′− j)+nd′+1)r j+1(n1+nd′+1)rd′n

sd′

1

;

αd′

2⋯2±
d′

= ∑
r1+s1

=σd′+1+t1
d′

r2+s2

=s1+t1
d′−1⋯⋯⋯

rd′+sd′

=sd′−1+t1
1

C
t1
1−1

rd′−1C
t1
2−1

r2−1⋯C
t1
d′
−1

r1−1 C̃1

∏d′+1+βN

j=d′+2
n

σ j

j n(1,d′+1+βN)σd′+2+βN ∏d′−2
j=0 (n(1,d′− j)+nd′+1)r j+1(n1+nd′+1)rd′n

sd′

d′+1

.

Remark 4.35 Even in the extreme case, when i1+⋯ik = 0, α(k ∶ i1, j1;⋯; ik, jk) has no index 1, we

can still reduce the number of monomials n?
d′+k before the polynomial n(1,d′+1+βN).

Therefore we have shown that the number of monomials n?
d′+k before n(1,d′ +1+βN) indeed

can be reduced.

However, in order to demontrate by the mathematical induction that OI,ν(Γ,∂Γ) can be written

in the form

∑
γ∈Sd

∑
t
γ
i

1≤i≤d

Cγ

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅d)tγ

d
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with d = d′+1+βN , and therefore conclude that

ZI,ν(Γ,∂Γ) = ∑
ni∈N∖{0},

1≤i≤d

OI,ν(Γ,∂Γ),

we will use, in the body of the first mathematical induction, another induction on ♯, the number of

monomials n
σd′+k

d′+k
(1 ≤ k ≤ 1+βN) before

(n1+n2+⋯+nd′+1+βN
)σd′+2+βN

in the denominator of

P1 = 1

n
σd′+1

d′+1
⋯n

σd′+1+βN

d′+1+βN
(n1+⋯+nd′+1+βN

)σd′+2+βN

C̃1

(n1+ . . .+nd′)t1
d′⋯(n1+n2)t1

2 n
t1
1

1

.

Definition 4.36 If 0 ≤ k ≤ βN ,

P
k
1 ( n1, ⋯, nd′+k; nd′+k+1, ⋯, nd′+1+βN

kt1
1 , ⋯, kt1

d′+k
; σd′+k+1, ⋯, σd′+1+βN

)

= 1

n
σd′+1+k

d′+1+k
⋯n

σd′+1+βN

d′+1+βN
(n1+⋯+nd′+1+βN

)σd′+2+βN

C̃1

(n1+ . . .+nd′+k)kt1
d′+k⋯(n1+n2)kt1

2 n
kt1

1

1

.

And P
0
1 ( n1, ⋯, nd′ ; nd′+1, ⋯, nd′+1+βN

0t1
1 , ⋯, 0t1

d′
; σd′+1, ⋯, σd′+1+βN

) =P1.

Fix βN > 0. We make the inductive step on ♯.
♯ = 1+βN −k

1©If ♯ = 1, then k = βN .

P
βN

1 ( n1, ⋯, nd′+βN
; nd′+1+βN

βN
t1
1 , ⋯, βN

t1
d′+βN

; σd′+1+βN
)

= 1

n
σd′+1+βN

d′+1+βN
(n1+⋯+nd′+1+βN

)σd′+2+βN

C̃1

(n1+ . . .+nd′+βN
)βN

t1
d′+βN⋯(n1+n2)βN

t1
2 n

βN
t1
1

1

.

By the demonstration for any plane trivalent tree, P
βN

1 (n1,⋯,nd′+1+βN
) can be written as

= ∑
τ j(βN)

∑̃
t
τ j

i

C
τ j(βN),t̃τ j

i

n
t̃
τ j

1

τ j ⋅1(nτ j ⋅1+nτ j ⋅2)t̃τ j

2 ⋯(nτ j ⋅1+ . . .+nτ j ⋅(d′+1+βN
)t̃τ j

d′+1+βN

,

where the permutation τ1(βN) = Id and if 2 ≤ j ≤ d′+βN +1

τ j(βN) = (d′+1+βN−( j−1) d′+1+βN−( j−2) ⋯ d′+βN d′+1+βN

d′+1+βN d′+1+βN−( j−1) ⋯ d′+βN−1 d′+βN
)

and C
τ j(βN),t̃τ j

i

=C
t1
N−( j−1)

r j−1 ⋯C
t1
N−1

r1−1C̃1 .
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2© Next, if k = βN −1. We have one rooted tree illustrating the procedure of reducing to the case

k = βN by Eisenstein’s trick.

P
βN−1

1

∑P
βN

1,Id
b1

1

∑P
βN

1,τ2(βN−1) b2
1

∑P
βN

1,τ3(βN−1) b3
1

⋯
∑P

βN

1,τd′+βN−1(βN−1) ∑P
βN

1,τd′+βN
(βN−1)

P
βN−1

1 =P
βN−1

1 ( n1, ⋯, nd′+βN−1; nd′+βN
, nd′+1+βN

βN−1t1
1 , ⋯, βN−1t1

d′+βN−1
; σd′+βN

, σd′+1+βN
)

Denote

P
βN

1,τ j(βN−1) =P
βN

1 (τ j(βN −1) ⋅( n1, ⋯, nd′+βN
; nd′+1+βN

βN
t1
1 , ⋯, βN

t1
d′+βN

; σd′+1+βN
)) ,

where the permutation τ1(βN −1) = Id, and if 2 ≤ j ≤ d′+βN ,

τ j(βN −1) = (d′+βN−( j−1) d′+1+βN−(k−2) ⋯ d′+βN

d′+βN d′+1+βN−( j−1) ⋯ d′+βN−1
)

acts on the indices i, l of ni and βN
t1
l .

Define

∑P
βN

1,τ j(βN−1) = ∑
r1+s1=σd′+βN

+βN−1t1
d′+βN−1

r2+s2=s1+βN−1t1
d′+βN−2⋯

r j+s j=s j−1+βN−1t1
d′+βN− j

P
βN

1 (τ j(βN −1) ⋅( n1, ⋯, nd′+βN
; nd′+1+βN

βN
t1
1 , ⋯, βN

t1
d′+βN

; σd′+1+βN
)) ,

where

τ j(βN −1) ⋅( n1, ⋯, nd′+βN
; nd′+1+βN

βN
t1
1 , ⋯, βN

t1
d′+βN

; σd′+1+βN
) =

(nτ j(βN−1)⋅1, ⋯, n
τ j(βN−1)⋅(βN−1t1

d′+βN− j−1
)
, n

τ j(βN−1)⋅(βN−1t1
d′+βN− j

)
, n

τ j(βN−1)⋅(βN−1t1
d′+βN− j+1

)
, ⋯ nτ j(βN−1)⋅(d′+βN)

; nd′+1+βN

βN−1t1
1 , ⋯, βN−1t1

d′+βN− j−1
, s j, r j, ⋯, r1; σd′+1+βN

) .
Then

P
βN−1

1 =∑P
βN

1,Id
+∑P

βN

1,τ2(βN−1)+⋯+∑P
βN

1,τd′+βN−1(βN−1)+∑P
βN

1,τd′+βN
(βN−1).

Continuing this procedure we can write P
q

1 as a sum of P
q+1

1,τ j(q) for 0 ≤ q ≤ βN . We can get the

same result for P
q

1,σ and P
q+1

1,τ j(q)σ and σ = τl(q−1) for some 1 ≤ l ≤ d′+q.
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P
q

1

∑P
q+1

1,Id
b1

1

∑P
q+1

1,τ2(q) b2
1

∑P
q+1

1,τ3(q) b3
1

⋯
∑P

q+1

1,τd′+q(q) ∑P
q+1

1,τd′+q+1(q)

Then

P
q

1 =∑P
q+1

1,Id
+∑P

q+1

1,τ2(q)+⋯+∑P
q+1

1,τd′+q(q)+∑P
q+1

1,τd′+q+1(q).

In conclusion, P
0
1 ( n1, ⋯, nd′ ; nd′+1, ⋯, nd′+1+βN

0t1
1 , ⋯, 0t1

d′
; σd′+1, ⋯, σd′+1+βN

) =P1 can be written as

= ∑̂
τ

∑̃
t τ̂
i

Cτ̂,t̃ τ̂
i

n
t̃ τ̂
1

τ̂k ⋅1(nτ̂ ⋅1+nτ̂ ⋅2)t̃ τ̂
2⋯(nτ̂ ⋅1+ . . .+nτ̂ ⋅(d′+1+βN

)t̃ τ̂
d′+1+βN

= ∑̂
τ

∑̃
t τ̂
i

Cτ̂,t̃ τ̂
i
ζ(t̃ τ̂

1 , t̃
τ̂
2 ,⋯, t̃ τ̂

d′+1+βN
),

where

τ̂ = τl0(0)⋯τlβN−1
(βN −1)τlβN

(βN),
where τ1(m) = Id and, if 2 ≤ l ≤ d′+1+m, 0 ≤m ≤ βN ,

τl(m) = (d′+1+m−(l−1) d′+1+m−(k−2) ⋯ d′+m d′+1+m

d′+1+m d′+1+m−(k−1) ⋯ d′+m−1 d′+m
).

Let the set

D = {τ̂ = ∏
0≤m≤βN

τlm(m); 2 ≤ lm ≤ d′+1+m},
∣D∣ = (d′+1+βN)(d′+βN)⋯(d′+1).

For other γ ∈ Sd′ , we can obtain the same result of Pγ , and

Sd = ∐̂
τ∈D

τ̂ ⋅Sd′ .

Remark 4.37 Eisenstein’s trick has been formalized by Sczech in his theory of Eisenstein cocy-

cles. It also appears in one of the proofs of the shuffle relations for MZV’s. This is probably no

coincidence.
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4.3 Relation to multiple polylogarithms

In fact, the result of theorem 4.16 can be generalized to any higher Green function

GI,ν ,Γ,∂Γ({xv}v∈∂Γ,1)
for any arbitary tree Γ.

Theorem 4.38 (Relation to multiple polylogarithms)

If F = Q,I∗ = Z, xv ∈ 1
N
Z/Z, then GI,ν ,Γ,∂Γ({xv}v∈∂Γ,1) is a finite Z-linear combination of the

values of multiple polylogarithms evaluated at some N-th roots of unity.

Let us first review Example 4.22.

GI,ν ,Γ1,∂Γ1
({xv}v∈∂Γ1

,1) = ∑
n1+n2+n3=0,n j∈Z∖{0}

sgn(n j)=(−1)ν j

e2πi(n1xv1
+n2xv2

+n3xv3
)

∣n1∣σ1 ∣n2∣σ2 ∣n3∣σ3
,

where ν1 = ν2 = 0, ν3 = 1 and xv1
,xv2

,xv3
∈ 1

N
Z/Z.

GI,ν ,Γ1,∂Γ1
({xv}v∈∂Γ1

,1) = ∑
n1,n2∈N∖{0}

e2πi(n1(xv1
−xv3
)+n2(xv2

−xv3
))

n
σ1

1 n
σ2

2 (n1+n2)σ3

GI,ν ,Γ1,∂Γ1
({xv}v∈∂Γ1

,1)= ∑
n1,n2∈N∖{0}

∑
r+s=σ1+σ2

e2πi(n1(xv1
−xv3
)+n2(xv2

−xv3
))
⋅( C

σ1−1
r−1(n1+n2)r+σ3ns

2

+
C

σ2−1
r−1(n1+n2)r+σ3ns

1

),

= ∑
r+s=σ1+σ2

⎧⎪⎪⎨⎪⎪⎩C
σ1−1
r−1 ( ∑

n1,n2∈N∖{0}
e2πi(n1(xv1

−xv3
)+n2(xv2

−xv3
))

(n1+n2)r+σ3ns
2

)+C
σ2−1
r−1 ( ∑

n1,n2∈N∖{0}
e2πi(n1(xv1

−xv3
)+n2(xv2

−xv3
))

(n1+n2)r+σ3ns
1

)⎫⎪⎪⎬⎪⎪⎭.
Note that

e2πi(n1(xv1
−xv3
)+n2(x−v2−xv3

)) = e2πi((n1+n2)(xv1
−xv3
)+n2(xv2

−xv1
))
,

and

e2πi(n1(xv1
−xv3
)+n2(xv2

−xv3
)) = e2πi(n1(xv1

−xv2
)+(n1+n2)(xv2

−xv3
))
.

Let z1 = e2πi(xv2
−xv1
) and z2 = e2πi(xv1

−xv3
), let y1 = e2πi(xv1

−xv2
) and y2 = e2πi(xv2

−xv3
). In fact, let the

permutation σ(12) acts on the indices of v j(1 ≤ j ≤ 3), then

yσ(12)⋅ j = z j, j = 1,2.

Then we obtain

GI,ν ,Γ1,∂Γ1
({xv}v∈∂Γ1

,1)= ∑
r+s=σ1+σ2

⎧⎪⎪⎨⎪⎪⎩C
σ1−1
r−1 ( ∑

n1,n2∈N∖{0}
z

n2

1 z
n1+n2

2(n1+n2)r+σ3ns
2

)+C
σ2−1
r−1 ( ∑

n1,n2∈N∖{0}
y

n1

1 y
n1+n2

2(n1+n2)r+σ3ns
1

)⎫⎪⎪⎬⎪⎪⎭
In conclusion,

GI,ν ,Γ1,∂Γ1
({xv}v∈∂Γ1

,1) = ∑
r+s=σ1+σ2

(Cσ1−1
r−1 Lis,r+σ3

(z1,z2)+C
σ2−1
r−1 Lis,r+σ3

(y1,y2)) .
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Proof 4.3.1 (Proof of Theorem 4.38) For a general tree Γ, by the proof of Theorem 4.16, OI,ν(Γ,∂Γ)
can be written as

∑
γ∈Sd

∑
t
γ
j

1≤ j≤d

Cγ,t
γ
j

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅d)tγ

d

with d the rank of Γ, and therefore conclude that

ZI,ν(Γ,∂Γ) = ∑
n j∈N∖{0},

1≤ j≤d

OI,ν(Γ,∂Γ).

By careful observation, we get an expression

GI,ν ,Γ,∂Γ({xv}v∈∂Γ,1) = ∑
n j∈N∖{0},

1≤i≤d

e
2πi(∑d+1

j=1 n jxv j
)
⎛⎜⎜⎜⎜⎝
∑
γ∈Sd

∑
t
γ
j

1≤i≤d

Cγ,t
γ
j

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅d)tγ

d

⎞⎟⎟⎟⎟⎠
,

where Cγ,t
γ
j
∈ Z. In fact, the Eisenstein trick is applied for the denominators, during these repeated

operations the numerator remains unchanged. A simple calculation gives

d+1∑
j=1

n jxv j
= d∑

l=1

( l∑
j=1

n j)(xvl
−xvl+1

).
Let

z j = e
2πi(xv j

−xv j+1
)
, 1 ≤ j ≤ d,

and

zγ ⋅ j = e
2πi(xvγ ⋅ j−xvγ ⋅( j+1)

)
, γ ∈ Sd ,

then

GI,ν ,Γ,∂Γ({xv}v∈∂Γ,1) = ∑
n j∈N∖{0},

1≤ j≤d

∑
γ∈Sd

∑
t
γ
i

1≤ j≤d

Cγ,t
γ
j
∏d

i=1 z
∑ j

l=1
nγ ⋅l

γ ⋅ j

n
t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅d)tγ

d

,

= ∑
γ∈Sd

⎛⎜⎜⎜⎜⎝
∑
t
γ
j

1≤ j≤d

∑
n j∈N∖{0},

1≤ j≤d

Cγ,t
γ
j

∏d
j=1 z

∑ j

l=1
nγ ⋅l

γ ⋅ j
n

t
γ
1

γ ⋅1(nγ ⋅1+nγ ⋅2)tγ
2⋯(nγ ⋅1+ . . .+nγ ⋅d)tγ

d

⎞⎟⎟⎟⎟⎠
,

finally we obtain

GI,ν ,Γ,∂Γ({xv}v∈∂Γ,1) = ∑
γ∈Sd

⎛⎜⎜⎜⎜⎝
∑
t
γ
j

1≤ j≤d

Cγ,t
γ
j
Litγ

1
,⋯,tγ

d
(zγ ⋅1,⋯,zγ ⋅d)

⎞⎟⎟⎟⎟⎠
.

In conclusion, GI,ν ,Γ,∂Γ({xv}v∈∂Γ,1) is indeed a finite Z-linear combination of multiple polylog-

arithms evaluated at some N-th roots of unity.
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More generally, we need to understand the following integral

∫
UR

⎛
⎝

d∏
j=1

∥n ju∥−k j
⎞
⎠d×u. (4)

For this purpose, we have to introduction the calculation of the Hecke transform.

Remark 5.1 The work to understand integrals mentioned above will be done for totally real field

F. For a general number field K of degree r1+2r2,

KR ≅Rr1 ×Cr2 ,

one can use polar coordinates on each factor of Cr2 . This reduces the integral (4) to an analogous

integral for totally real fields of degree r1+ r2.

5.1 The Hecke transform

All the notations are defined as before.

Proposition 5.2 (The Hecke transform)[14]

Let UR ⊂ (R×+)r be the subgroup

UR = {u = (u1, . . . ,ur)∣ r∏
j=1

u j = 1}

with the measure d×u = du1

u1
∧⋯∧ dur−1

ur−1
. Let ∥ ⋅∥ be the Euclidean norm on Cr, on which UR acts by

multiplication. Let (p) j ∈Zr, p =∑ p j. Then for any x = (x1, . . . ,xr) ∈ (C×)r and s ∈C, Re(s) > 0.

∫
UR

∣∣ux∣∣−2s∏
j

u
−2p j

j d×u = 21−r

rΓ(s)∏j

Γ( p+ s

r
− p j)∣x j∣2(p j−(p+s)/r)

.

Proof 5.1.1 Firstly we will give a more general set-up. Change of variable:

Hn−1+ = {u = (u1,⋯,un)∣u j > 0,u1⋯,un = 1}
Hn−1+ ×R+ ≃Rn−1+ ;((u1,⋯,un),t)Ð→ x = (x1,⋯,xn) = (tu1,⋯,tun).

x1⋯xn = tn
, t = (x1⋯x2)1/n, ui = xi

t
= xi(x1⋯xn)1/n ,

n∑
1

dui

ui

= 0,

then,

dx1∧⋯∧dxn = dx1∧⋯∧dxn

u1⋯un

= dx1

u1

∧⋯∧
dxn

un

= (t du1

u1

+dt)∧⋯(t dun

un

+dt),
dx1∧⋯∧dxn = tn

∧
n
i=1

dui

ui

+ tn−1
n∑

i=1

(du1/u1∧⋯∧
dui−1

ui−1

∧dt ∧
dui+1

ui+1

∧⋯∧
dun

un

) =ω ∧ntn−1dt.

where

ω = (−1)n−i du1∧⋯∧ ûi∧⋯∧dun

u1⋯ûi⋯un
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ω is independent of i, so we fix a standard form

d×u =ω = du1∧⋯∧dun−1

u1⋯un−1

then for every function with n-variables, we have

∫
Rn
+

g(x1,⋯,xn)dx1⋯dxn =∫
R+

(∫
Hn−1
+

g(tu1,⋯,tun−1)du1⋯dun−1

u1⋯un−1

)ntn−1dt.

Recall the following Γ-integrals: λ ,a,b > 0, and Re(s) > 0 and d×λ = dλ/λ ,

Γ(s)a−s =∫
R+

e−aλ λ sd×λ = 2∫
R+

e−ax2

x2sd×x,

where λ = x2. Moreover a = b2, we get

Γ(s/2)
2bs

=∫
R+

e−(bx)2xsd×x.

Now if we take z= (z1, . . . ,zn) ∈ (C×)n,∥z∥2 =∑n
j=1 ∣z j∣2, u= (u1,⋯,un) ∈Hn−1+ ,uz= (u1z1,⋯,unzn),

Γ(s)∥uz∥−2s =∫
R+

e−λ∥uz∥2λ sd×λ = 2∫
R+

e−∥tuz∥2t2sd×t

where we take λ = t2 for the last equality. if (a1,⋯,an) ∈Zn, a = a1+⋯+an

n
,

I(s) = Γ(s)
2
∫

Hn−1
+

u
a1

1 ⋯uan
n∥uz∥2s

du1⋯dun−1

u1⋯un−1

=∫
Hn−1
+ ×R+

u
a1

1 ⋯uan
n e−∥tuz∥2t2s du1⋯dun−1

u1⋯un−1

dt

t
.

I(s) =∫
Rn
+

x
a1

1 ⋯xan
n(x1⋯xn)(a1+⋯+an)/n e−∥xz∥2(x1⋯xn)2s/n dx1⋯dxn

nx1⋯xn

I(s) = 1

n

n∏
j=1
∫
R+

x
a j− a1+⋯+an

n
+ 2s

n

j e−∣z j ∣2x2
j d×x j = 1

n

n∏
j=1

1

2

Γ( s
n
+ a j−a

2
)

∣z j∣a j−a+ 2s
n

.

In conclusion: (a1, . . . ,an) ∈ Zn
,z ∈ C,a = (a1 +⋯+ an)/n, ∀ j,a j − a+Re(2s/n) > 0, we have the

Hecke transform

∫
Hn−1
+

u
a1

1 ⋯uan
n∥uz∥2s

du1⋯dun−1

u1⋯un−1

= 21−n

nΓ(s)
n∏

j=1

Γ( s
n
+ a j−a

2
)

∣z j∣a j−a+ 2s
n

.

Then we get what we want to prove by taking ai = −2pi.

Remark 5.3 This formula works also for any (a1,⋯,an) ∈ Cn and s ∈ C such that ∀ j = 1,⋯,n,

2Re(s)+na j > a1+⋯+an.

Example 5.4 First of all, we will see one special example, namely the Hecke transform of our

plectic Green current

gν
I (x,u) = lim

δ→0+
∑

n∈I∗∖{0}
sgn(n)ν e2πiTr(nx)

∥un∥r+δ
, x ∈ FR/I,u ∈UR.
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Theorem 5.5 (Hecke’s formula) If U ⊂O×F,+ is a subgroup of finite index and if∀ε ∈U, (ε−1) ⋅x ∈ I,

which is equivalent to

xI ∈ (FR/I)U ,
then

∀ε ∈U, gν
I (x,εu) = gν

I (x,u).
Therefore we get

∫
UR/U

gν
I (x,u)du = lim

δ→0+
∑

n∈(I∗∖{0})/U
e2πiTr(nx)∫

UR

1

∥un∥r+δ
du.

By the Hecke transform, we obtain

∫
UR/U

gν
I (x,u)du = 2r−1

Γ(1/2)r
Γ(r/2) lim

δ→0+
∑

n∈(I∗∖{0}/U)
sgn(n)ν e2πiTr(nx)

∏r
j=1 ∣n j∣(r+δ)/r .

Note that

N(n) =NF/Q(n) = r∏
j=1

n j,

hence

∫
UR/U

gν
I (x,u)du = 21−r

Γ(1/2)r
rΓ(r/2) lim

δ→0+
∑

n∈(I∗∖{0})/U
sgn(n)ν e2πiTr(nx)

∣N(n)∣(r+δ)/r .

It is esay to see that the Hecke transform of the basic plectic Green function with signature delivers

a linear combination of special values L(1,χF) for certain Dirichlet characters χF of F of signature

ν .

Remark 5.6 From the above theorem, we can see that the Hecke transform can give a natural

reinterpretation of Hecke’s formula. That is why such a formula is called by Nekovár̆ and Scholl the

Hecke transform.

For any given graph Γ and given multiple-signs ν , the Hecke transform of the higher plectic Green

function GI,ν ,Γ,S({xv}v∈S,u) is quite interesting. More revelent details will be presented in the next

section.
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5.2 Reciprocity formula for the Hecke transform

From the expression of the Hecke transform, we observe that when the degree of F is bigger, the

higher plectic Green function(current) associated to a given graph becomes more compliqued. How-

ever we can always reduce to the case that the rank of the given graph is smaller than the degree of

F , due to the duality given by the following formula.

Let L1(u), . . . ,Ld(u) be linear forms, u = (u1, . . . ,ur)
Li(u) = r∑

j=1

Li ju j, Li j > 0.

The dual linear forms

L∗j (t) =
d∑

i=1

Li jti.

such that
d∑

i=1

Li(u)ti = r∑
j=1

L∗j (t)u j.

Definition 5.7 Denote UR = {u = (u1, . . . ,ur)∣u1⋯ur = 1,u j > 0}, we define

dIr({Li},{αi},{β j}) =∫
UR

d∏
i=1

Li(u)−αi

r∏
j=1

u
β j

j d×u.

Proposition 5.8 (Reciprocity formula for the Hecke transform) [14]

1

d
( d∏

i=1

Γ(αi))(dIr({Li},{αi},{β j})) = 1

r

⎛
⎝

r∏
j=1

Γ(β∗j )⎞⎠(rId({L∗j },{β∗j },{α∗i })),
where

β∗j = β j + ∣α ∣− ∣β ∣
r

, ∣α ∣ = k∑
i=1

αi, ∣β ∣ = r∑
j=1

β j.

Example 5.9 If d = 1, L1(u) =∑r
j=1 l ju j, l j > 0. β∗j = β j + α−∣β ∣

r
; L∗j (t) = l jt. Then by the reciprocity

formula, we obtain

∫
UR

L1(u)−α
r∏

j=1

u
β j

j d×u = 1

rΓ(α)
r∏

j=1

Γ(β∗j )
l
β∗

j

j

.

If β j = 0,∀1 ≤ j ≤ r, then

∫
UR

L1(u)−αd×u = Γ(α/r)r
rΓ(α) (l1⋯lr)−α/r

.

Example 5.10 If d = 2, β j = 0, for all j, then β∗j = α1+α2

r
. The reciprocity formula gives us

∫
UR

L1(u)−α1L2(u)−α2d×u = 2Γ(α1+α2

2
)r

rΓ(α1)Γ(α2) ∫R+
⎛
⎝

r∏
j=1

(L1 js+L2 js
−1)− α1+α2

r

⎞
⎠sα1−α2d×s.
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Relation to Higher Plectic Green functions. In our definition of higher plectic Green function,

we use the standard Euclidean norm. Now we will explain how to apply the reciprocity formula to

study higher plectic Green functions.

Let λ (i) = (λ (i)1 ,⋯,λ (i)r ) ∈Rr+, 1≤ i≤d. If we take Li(u)=∑r
j=1(λ (i)j )2u j and L∗j (s)=∑k

i=1(λ (i)j )2si,

Li(u2) = r∑
j=1

(λ (i)j )2u2
j = ∥λ (i)u∥2.

The following integral appears naturally in the definition of higher plectic Green function associated

to a general graph:

∫
UR

d∏
i=1

∥λ (i)u∥−rσid×u =∫
UR

d∏
i=1

Li(u2)−rσi/2d×u.

Since d×(u2) = 2r−1d×u, then

Formula 5.11

∫
UR

d∏
i=1

∥λ (i)u∥−rσid×u = 21−r∫
UR

d∏
i=1

Li(u)−rσi/2d×u.

Again by the reciprocity formula, we obtain

∫
UR

d∏
i=1

∥λ (i)u∥−rσid×u = d

2r−1r

Γ(σ1+⋯+σr

2
)

∏d
i=1 Γ(rσi/2) ∫s1⋯sk=1

si>0

⎛
⎝

r∏
j=1

L∗j (s)⎞⎠
− σ1+⋯+σr

2 d∏
i=1

s
rσi/2
i d×s.

Example 5.12 d = 1. Let λ = (λ1,⋯,λr), then

∫
UR

∥λu∥−rσ d×u = Γ(σ/2)r
2r−1rΓ(rσ/2)

1

(λ1⋯λr)σ =
Γ(σ/2)r

2r−1rΓ(rσ/2)N(λ)−σ
.

This result has already been seen in Theoem 5.5 of the Hecke formula.

Example 5.13 (1) d = 2, L∗j (s) = (λ (1)j )2s+(λ (2)j )2s−1.

∫
UR

∥λ (1)u∥−rσ1∥λ (2)u∥−rσ2d×u= Γ(σ1+σ2

2
)

2r−2rΓ(rσ1/2)Γ(rσ2/2) ∫R+
⎛
⎝

r∏
j=1

((λ (1)j )2s+(λ (2)j )2s−1)⎞⎠
− σ1+σ2

2

sr(σ1−σ2)/2d×s.

(2) If r = 2, F is a real quadratic field.

∫
UR

d∏
i=1

∥λ (i)u∥−2σid×u = 1

2
∫

UR

d∏
i=1

Li(u)−σid×u =∫
R+

d∏
i=1

((λ (i)1 )2u+(λ (i)2 )2u−1)−σi

d×u.

From the two cases above, it is easy to observe the duality between d = 2 and r = 2, by the explicit

expression of the two integrals. Therefore we can easily interchange d and r for getting the case of

d ≥ r.

Moreover, in next paragraph we will explain that we only need to take into account the case of d = r,

thanks to a formula of Sczech generalizing Eisenstein’s trick for GLn.
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5.3 Sczech’s rational functions and Eisenstein cocycles

5.3.1 Introduction

R. Sczech [16] constructed a group cocycle Ψ on the unimodular group GLnZ, called the Eisen-

stein cocycle, which represents a nontrivial cohomology class in Hn−1(GLnZ,M) with values in a

function space M. Restricting Ψ on some subgroup W of totally positive units and evaluating the

elements of M on W -invariant points, one get obtain a sequence of rational cohomology classes

η(b, f ;s) ∈Hn−1(W,Q),s = 1,2, . . . By evaluation on some fundamental cycle in Hn−1(W,Z), these

rational classes η(b, f ;s) give rise to the numbers of partial zeta function associated with the ray

class b mod f

ζ(b, f ;1− s) = ∑
a≡b( f )

N(a)−(1−s)
, Re(s) > 1,

where a runs over all integral ideals in the ring of integers OF of a totally real field F , such that

ab−1 is a principal ideal generated by a totally positive number in the coset 1+ f b−1. The Eisenstein

cocycle Ψ is universal in the sense that it parametrizes all the special values of Hecke L-functions

in every totally real number field of degree r, which are known to be either an algebraic number or

an algebraic number times a power of π .

Sczech’s construction begins with the rational function

f (ξ)(x) = det(ξ (1),⋯,ξ (r))
(x,ξ (1))⋯(x,ξ (r)) ,

where x = (x1, . . . ,xr) ∈Rr is a row vector and ξ (i) ∈Rr are r nonzero column vectors and (x,ξ (i)) =
∑x jξ

(i)
j . This function is well-defined outside the hyperplanes (x,ξ (i)) = 0. Given a homogenous

polynomial P(X1,⋯,Xr), we apply the differential operator P(−∂x1
,⋯,−∂xr) to f (ξ)(x).

Definition 5.14 We define the general national function

f (ξ)(P,x) = P(−∂x1
,⋯,−∂xr) f (ξ)(x),

where ∂x j
denotes the partial derivative with respect to the variable x j.

Sczech gave several elementary observations about this national function.

Lemma 5.15 [16]
r∑

i=0

(−1)i f (ξ (0),⋯, ξ̂ (i),⋯,ξ (r)) = 0.

For A ∈GLr(R),
f (Aξ (1),⋯,Aξ (r))(x) = det(A) f (ξ (1),⋯,ξ (r))(xA),

A f (ξ) = f (Aξ).
Formula 5.16

P(−∂x1
,⋯,−∂xr)

r∑
i=0

(−1)i f (ξ (0),⋯, ξ̂ (i),⋯,ξ r)(x) = 0,

therefore
r∑

i=0

(−1)i f (ξ (0),⋯, ξ̂ (i),⋯,ξ (r))(P, ⋅) = 0.
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In fact, we will recover the Eisenstein trick from the above formulas in the case r = 2. Now we

will explain the relation between Sczech’s rational function f (ξ)(x) and our higher plectic Green

function GI,ν ,Γ,S({xv}v∈S,u), and will explain how to reduce to the case of d = r of the integral

∫
UR

d∏
i=1

∥λ (i)u∥−rσid×u = 21−r∫
UR

d∏
i=1

Li(u)−rσi/2d×u (5)

as we have mentioned at the end of previous section.

We always assume that rσi/2 ∈N for all 1 ≤ i ≤ d. So if r ∈ 2N, then σi ∈N; if r ∈ 2N+1, then

σi ∈ 2N+.

Before that, we will give a more general definition of Sczech’s rational function.

Definition 5.17 Let a = (a1,⋯,ar) ∈Nr+, b ∈N+. We define

f (ξ)(x;a,b) = (det(ξ 1
,⋯,ξ r))b

(x,ξ 1)a1⋯(x,ξ r)ar
.

In fact, we can show that f (ξ)(x;a,b) can be realized as f (ξ)(Pl,x) for a carefully chosen ho-

mogenous polynomial Pl .

First of all, we will consider the simple case when r = 2.

Example 5.18 We define two homogenous polynomials of degree 2.

P1;ξ (X1,X2) = ξ
(2)
2 X1−ξ

(2)
1 X2,

P2;ξ (X1,X2) = ξ
(1)
1 X2−ξ

(1)
2 X1.

Then

f (ξ)(P1;ξ ,x) = P1;ξ (−∂x1
,−∂x2

) f (ξ)(x) = (det(ξ (1),ξ (2)))2
(x,ξ (1))2(x,ξ (2)) = f (ξ)(x;(2,1),2),

f (ξ)(P2;ξ ,x) = P2;ξ (−∂x1
,−∂x2

) f (ξ)(x) = (det(ξ (1),ξ (2)))2
(x,ξ (1))(x,ξ (2))2 = f (ξ)(x;(1,2),2).

Therefore we obtain that

P
a1

1;ξ
(−∂x1

,−∂x2
)

a1!

P
a2

2;ξ
(−∂x1

,−∂x2
)

a2!
f (ξ)(x)= (det(ξ 1

,ξ 2))a1+a2+1

(x,ξ 1)a1+1(x,ξ 2)a2+1
= f (ξ)(x;(a1+1,a2+1),a1+a2+1).

If we denote

Pa1−1,a2−1;ξ (X1,X2) = P
a1−1
1(a1−1)!

P
a2−1
2(a2−1)! ,

then

f (ξ)(x;(a1,a2),a1+a2−1) = Pa1−1,a2−1;ξ (−∂x1
,∂x2
) f (ξ)(x) = f (ξ)(Pa1−1,a2−1;ξ ,x).
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For general r. Let

ξ = (ξ (1),ξ (2),⋯,ξ (r))
be the invertible matrix with columns ξ (i), then denote a new column vector (y1,⋯,yr)⊺, where

yl = det(ξ)
(x,ξ (1))⋯(x,ξ (l))2⋯(x,ξ (r)) .

We have a linear equation

ξ ⋅(y1,⋯,yr)⊺ = (−∂x1
f (ξ)(x),⋯,−∂xr f (ξ)(x))⊺.

This equation has a unique solution, then we can a unique expression of each yl , namely

(y1,⋯,yr)⊺ = ξ−1
⋅(−∂x1

f (ξ)(x),⋯,−∂xr f (ξ)(x))⊺.
ξ−1 = 1

det(ξ)C⊺ξ ,
where Cξ = (Cξ (i j))

1≤i, j≤r

is the adjoint matrix of ξ .

Therefore there exist r homogenous polynomials of degree 1

P1;ξ (X1,⋯,Xr), . . . ,Pr;ξ (X1,⋯,Xr),
where

Pl;ξ (X1,⋯,Xr) = Cξ (1l)X1+⋯+Cξ (rl)Xr

det(ξ) , 1 ≤ l ≤ r.

which depend on the matrix ξ and such that

yl = det(ξ)
(x,ξ 1)⋯(x,ξ l)2⋯(x,ξ r) = Pl;ξ (−∂x1

,⋯,−∂xr) f (ξ)(x) = f (ξ)(Pl;ξ ,x), ∀1 ≤ l ≤ r.

Continuing the calculation, denote

P(X ;a;ξ) = P
a1−1

1;ξ
(X)

(a1−1)!
P

a2−1

2;ξ
(X)

(a2−1)! ⋯
Par−1

r;ξ
(X)

(ar −1)! ,
where X = (X1,⋯,Xr). Hence we obtain

Formula 5.19

f (ξ)(x;a,1) = det(ξ)
(x,ξ (1))a1(x,ξ (2))a2⋯(x,ξ (r))ar

= P(−∂x1
,⋯,−∂xr ;a;ξ) f (ξ)(x).

Now we consider r+1 column vectors ξ (0), . . . ,ξ (r). By Lemma 5.15,

(−1)i f (ξ (0),⋯, ξ̂ (i),⋯,ξ (r))(x) = 0.

Denote the new matrix

ξ î = (ξ (0),⋯, ξ̂ (i),⋯ξ (r+1))
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and apply the differential operator

P(−∂x1
,⋯,−∂xr ;a;ξ 0̂)

on

f (ξ (1),⋯,ξ (r))(x) = r∑
i=1

(−1)i+1 f (ξ (0),⋯, ξ̂ (i),⋯,ξ (r))(x).
then

det(ξ 0̂)
(x,ξ (1))a1(x,ξ (2))a2⋯(x,ξ (r))ar

= f (ξ 0̂)(x;a,1) = P(−∂x1
,⋯,−∂xr ;a;ξ 0̂) f (ξ (1),⋯,ξ (r))(x),

hence we obtain

Lemma 5.20

det(ξ 0̂)
(x,ξ (1))a1(x,ξ (2))a2⋯(x,ξ (r))ar

= r∑
i=1

(−1)i+1P(−∂x1
,⋯,−∂xr ;a;ξ

ˆ(0)) f (ξ (0),⋯, ξ̂ (i),⋯,ξ (r))(x),
where a = (a1, . . . ,ar) ∈Nr+ .

The right hand side of the formula in Lemma 5.20 can be written as a finite linear combination of

(Constant)× det(ξ ˆ(i))
(x,ξ (0))b1⋯(x, ξ̂ (i))bi⋯(x,ξ (r))br

, i ≥ 1, bi ∈N+.

5.3.2 Sczech’s rational function and higher plectic Green functions.

Now we denote (λ (i))2 = ((λ (i)1 )2,⋯,(λ (i)r )2)⊺ ∈Rr+ as a column vector and denote λ 2 = ((λ (1))2,⋯,(λ (d))2) ∈
Matr×d(R+) and u = (u1,⋯,ur) ∈Rr+ with u1⋯ur = 1 as a row vector. Hence

Li(u) = r∑
j=1

u j(λ (i)j )2 = (u,(λ (i))2).
In general for the definition for our higher plectic Green function, we have

d∏
i=1

Li(u)−rσi/2 = 1

∏d
i=1(u,(λ (i))2)rσi/2 .

If d = r,

r∏
i=1

Li(u)−rσi/2 = 1

∏r
i=1(u,(λ (i))2)rσi/2 = det((λ (1))2,⋯,(λ (r))2))−1 ( f (λ 2)(u;r/2σ ,1)) ,

where σ = (σ1,⋯,σr).
Moreover if σi = σ (∀1 ≤ i ≤ d = r), then

r∏
i=1

Li(u)−rσ/2 = det((λ (1))2,⋯,(λ (r))2))−rσ/2 ( f (λ 2)(u))r .
By the reciprocity of d and r, we can assume that d ≥ r.

Now we will show that we can reduce to the case d = r.

Remark 5.21 There are several method to do such a reduction. We can do the reduction in a

general setting, for arbitray linear forms Li(u) =∑r
j=1 Li ju j, 1 ≤ i ≤ d and for arbitary exponents

m = (m1, . . . ,md). However for now we will only focus on the reduction for Li(u) = (u,(λ (i))2) and

for m = (r/2)σ as in the begining of this section.
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(1) Method I a© If d = r+1.

r+1∏
i=1

Li(u)−rσi/2 = 1

∏r+1
i=1 (u,(λ i)2)rσi

.

By Lemma 5.20, we have the following relation

det(ξ 1̂)
(x,ξ 2)a2(x,ξ 3)a3⋯(x,ξ r+1)ar+1

= r+1∑
i=2

(−1)iP(−∂x1
,⋯,−∂xr ;a;ξ 1̂) f (ξ 1

,⋯, ξ̂ i
,⋯,ξ r+1)(x).

Take

ξ = λ 2
, x = u = (u1,⋯,ur), a = (r/2)σ0 = (r/2)(σ2,⋯,σr+1).

then we obtain

det((λ 2)2,⋯,(λ r+1)2))
∏r+1

i=2 (u,(λ i)2)rσi/2 = r+1∑
i=2

(−1)iP(−∂u1
,⋯,−∂ur ;(r/2)σ0;(λ 2)1̂) f ((λ 1)2,⋯, (̂λ i)2,⋯,(λ r+1)2)(u).

Therefore

r+1∏
i=1

Li(u)−rσi
2 = r+1∑

i=2

(−1)i 1

det((λ 2)2,⋯,(λ r+1)2))
P(−∂u1

,⋯,−∂ur ;
r
2
σ0;(λ 2)1̂) f ((λ 1)2,⋯, (̂λ i)2,⋯,(λ r+1)2)(u)

(u,(λ 1)2) rσ1
2

.

Now combining with Formula 5.11 and 5, we have

∫
UR

r+1∏
i=1

∥λ (i)u∥−rσid×u=21−r
r+1∑
i=2

(−1)i∫
UR

P(−∂u1
,⋯,−∂ur ;

r
2
σ0;(λ 2)1̂) f ((λ 1)2,⋯, (̂λ i)2,⋯,(λ r+1)2)(u)

(u,(λ 1)2) rσ1
2 det((λ 2)2,⋯,(λ r+1)2)) d×u.

It is easy to see that RHS is a finite linear combination of case d = r.

b© If d > r+1.

It is not difficult to obtain the same result by induction using (d− r) times Lemma 5.20.

More precisely,

1

(u,(λ (1))2)rσ1 (u,(λ (2))2)rσ2⋯(u,(λ (d−r−1))2)rσd−r−1 (u,(λ (d−r))2)rσd−r(u,(λ (d−r+1))2)rσd−r+1⋯(u,(λ (d))2)rσd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1©´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2©´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶⋯´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q©

,

where q = d− r. The symbol i© means the i-th use of Sczech’s formula in Lemma 5.20.

For example 1©:
1

(u,(λ (d−r))2)rσd−r⋯(u,(λ (d))2)rσd

= d∑
i1=d−r+1

(−1)i1+d−r+1 P(−∂u1
,⋯,−∂ur ;rσ (d−r);(λ 2)[d−r,d]) f ((λ (d−r))2,⋯, ̂(λ (i1))2,⋯,(λ (d))2)(u)

(u,(λ (d−r))2)rσd−r det((λ (d−r))2,⋯,(λ (d))2)
where

(λ 2)[d−r,d] = ((λ (d−r))2, . . . ,(λ (d))2),
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σ (d−r) = (σd−r+1,σd−r+2, . . . ,σd) ∈Nr+.
It is easy to see that we can continue this process and obtain the conclusion, we have reduced

the case from d > r to d = r.

Remark 5.22 Even though, this method can give a resolution for the reduction. But it increases the

complexity of calculation of Hecke transform. Now we will the second method, which simply bases

on Sczech’s cocycle relation.

(2) Method II

Definition 5.23 Let Li(u) =∑r
j Li ju j,1 ≤ i ≤ d be linear forms defined as before. We define

L(k;d) = 1

∏d
i=1 Li(u)ki

,

where

k = (k1,⋯,kd) ∈Nr
.

If we denote Li = (Li1,⋯,Lir)⊺ a column vector and denote L = (L1,⋯,Ld) ∈Matr×d(R) as a matrix.

By Lemma 5.15, we have

Formula 5.24

L(1r̂+1(r+1);r+1) = r∑
i=1

(−1)i−1 det(Lî)
det(Lr̂+1)L(1

î(r+1);r+1),
where

kî(r+1) = (k1,⋯, k̂i,⋯,kr+1),
and

1 = (1,⋯,1²
r+1

), 1î = (1,⋯, 0®
ith

,⋯,1),
and

Lî = (L1,⋯, L̂i,⋯,Lr+1) ∈Matr×r(R), 1 ≤ i ≤ r+1.

Definition 5.25 (Coefficient Field) We define the field

K(L) =Q(Li j),1 ≤ i ≤ r+1,1 ≤ j ≤ r.

Then it is easy to see that

det(Lî)
det(Lr̂+1) ∈K(L).

If d > r.

L(m;d)L(n;d) = L(m+n;d), m,n ≥ 0.

Define

1(r,d) = (1,⋯,1²
r

,0,⋯,0²
d−r

),
then

L(k+1(r,d);d) = L(1(r,d);d)L(k;d),
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namely

L(k1+1,⋯,kr +1,kr+1,⋯,kd ;d) = L(1,⋯,1²
r

,0,⋯,0;d)L(k1,⋯,kd ;d).
By Formula 5.24, we obtain

L(k1+1,⋯,kr+1,kr+1,⋯,kd ;d)= r∑
i=1

(−1)i−1 det(Lî)
det(Lr̂+1)L(k1+1,⋯,ki−1+1,ki,ki+1+1,⋯,kr+1+1,kr+2,⋯,kd),

namely

L(k+1r,d ;d) = r∑
i=1

(−1)i−1 det(Lî)
det(Lr̂+1)L(k+1î(r+1,d);d),

with

Lî = (L1,⋯, L̂i,⋯,Lr+1) ∈Matr×r(R), 1 ≤ i ≤ r+1,

and

1î(r+1,d) = (1,⋯,1,
i©
0 ,1,⋯,1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r+1

,0,⋯,0).
If we denote

m = k+1(r,d), δi = (0,⋯0, 1®
i

,0,⋯0),
then

m+δr+1−δi = k+1î
r+1,d .

If m ≥ 1r,d , then we obtain

L(m;d) = r∑
i=1

(−1)i−1 det(Lî)
det(Lr̂+1)L(m+δr+1−δi;d).

Continuously, if m(1),i =m+δr+1−δi ≥ 1r,d (1 ≤ i ≤ r), then

L(m(1),i;d) = r∑
j=1

(−1)i−1 det(L ĵ)
det(Lr̂+1)L(m

(1),i+δr+1−δ j;d).
Define

Supp(m) = {i∣mi ≠ 0}.
It is easy to observe that during the procedure of applying the cocycle relation from Lemma 5.15,

the norm of m remains unchanged, which means that

∣m∣ = d∑
i=1

mi = ∣m+δr −δi∣ =Constant,

however, we have

Supp(m+δr+1−δi) ⊆ Supp(m).
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Proposition 5.26 d > r and all notations defined as before.

If m = (m1,⋯,md) ≥ 1r,d then the cocycle relation

L(m;d) = r∑
i=1

(−1)i−1 det(Lî)
det(Lr̂+1)L(m

(1),i;d), (6)

implies ∣m∣ = ∣m(1),i∣,
m
(1),i
i =mi−1; m

(1),i
j =m j, j ≠ i,

r∑
j=1

m
(1),i
j < r∑

j=1

m j.

And

♯(Supp(m(1),i)) ≤ ♯(Supp(m)), ∀1 ≤ i ≤ r.

After repeating l-times the cocycle relation, we have

L(m(l),il ;d) = r∑
il+1=1

Cil+1
L(m(l),il +δr+1−δil+1

;d), (7)

where the constant

Cil+1
= (−1)il+1−1 det(L1,⋯, L̂il+1

,⋯,Lr+1)
det(L1,⋯, L̂il ,⋯,Lr+1)

depends only on the coefficients of linear forms Li and

m(l+1),il+1 =m(l),il +δr+1−δil+1
,

∣m(l+1),il+1 ∣ = ∣m(l),il ∣
There exists a finite l, such that

♯(Supp(m(l),il)) = ♯(Supp(m))−1.

Proof 5.3.1 The proof is straight forward from repeating Sczech’s cocylce relation. Now we will

try to explain the procedure. If we only focus on the changement of powers of Li, then the cocylc

relation (6) can be translated into

m= (m1,⋯,mr,mr+1,mr+2,⋯,md)Ð→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(1),1 = (m1−1,m2,⋯,mr,mr+1+1,mr+2,⋯,md)
m(1),2 = (m1,m2−1,m3,⋯,mr,mr+1+1,mr+2,⋯,md)
⋯
m(1),i = (m1,⋯,mi−1,mi−1,mi+1,⋯,mr,mr+1,mr+2,⋯,md)
⋯
m(1),r = (m1,⋯,mr−1,mr −1,mr+1+1,mr+2,⋯,md)

.

The cocyle relation 7 can also be written as

m(l),il = (m(l),il1 ,⋯,m(l),ilr ,mr+1+ l,⋯,md)Ð→
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Ð→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(l+1),1 = (m(l),il1 −1,m
(l),il
2 ,⋯,m(l),ilr ,mr+1+ l+1,mr+2,⋯,md)

m(l+1),2 = (m(l),il1 ,m
(l),il
2 −1,m

(l),il
3 ,⋯,m(l),ilr ,mr+1+ l+1,mr+2,⋯,md)

⋯
m(l+1),il+1 = (m(l),il1 ,⋯,m(l),il

il+1−1,m
(l),il
il+1
−1,m

(l),il
il+1+1,⋯,m(l),ilr ,mr+1+ l+1,mr+2,⋯,md)

⋯
m(l),r = (m(l),il1 ,⋯,m(l),il

r−1 ,m
(l),il
r −1,mr+1+ l+1,mr+2,⋯,md)

.

m
(l+1),il+1

j =m
(l),il
j , 1 ≤ j ≤ r, j ≠ il+1,

and

m
(l+1),il+1

il+1
=m

(l),il
il+1
−1, 1 ≤ il, il+1 ≤ r,

and ∣m(l),il ∣ = ∣m(l+1),il+1 ∣, m
(l),il
r+1 =mr+1+ l.

Denote

mi0 =Min{mi,1 ≤ i ≤ d}.
m
(l),i0
i0
=m

(l−1),i0
i0

−1 =m
(l−2),i0
i0

−2 =⋯ =mi0 − l.

Take l0 =mi0 , then

m
(l0),i0
i0

= 0,

♯(Supp(m(l0),i0)) = ♯(Supp(m))−1.

Based on Proposition 5.26, it is not difficult to obtain the following theorem

Theorem 5.27 (Reduction Theorem I) If d > r. There exist constants Ci1,⋯,id−1
∈K(L), such that

L(m;d) = 1

∏d
i=1 Li(u)mi

= ∑
1≤i1,⋯,id−1≤d

i j≠ih, j≠h

Ci1,⋯,id−1

∏d−1
h=1 Lih(u)m′ih ,

where i1, . . . , id−1 runs through some possible choices of (d − 1) different elements from the set{1, . . . ,d} and
d∑

i=1

mi = d−1∑
h=1

mih .

We can then deduce to obtain that there exist Ci1,⋯,ir ∈K(L), such that

L(m;d) = 1

∏d
i=1 Li(u)mi

= ∑
1≤i1,⋯,ir≤d

i j≠ih, j≠h

Ci1,⋯,ir
∏r

h=1 Lih(u)m′ih .

where i1, . . . , ir runs through some possible choices of (r) different elements from the set {1, . . . ,d}
and

d∑
i=1

mi = r∑
h=1

mih .

Proof 5.3.2 We can obtain this theorem by mathematical induction on the sum ∑r
j=1 m j, using

Proposition 5.26.
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We can even give the exact expression of the coefficients Ci1,⋯,ir ∈K(L) if in need. For this moment,

we just write Ci1,⋯,ir ∈K(L) as symbols. Let us see the following example.

Example 5.28 Let r = 2, we consider

1

L2
1(u)L3

2(u)L3
3(u) .

1

L1(u)L2(u) =
C1

L1(u)L3(u) −
C2

L2(u)L3(u) ,
where

C1 = det(L1,L3)
det(L1,L2) , C2 = det(L2,L3)

det(L1,L2) .
We have the following tree to illustrate the procedure of applying the cocycle relation,

(233)
(134)

(035) (125)
(026) (116)
(017) (107)

(224)
(125)

(026) (116)
(017) (107)

(215)
(116)

(017) (107)
(206)

on the left branch of the tree, (a,b,c) (which signifies 1

La
1
(u)Lb

2
(u)Lc

3
(u) ) Ð→ (a− 1,b,c+ 1) (

which denotes 1

La−1
1
(u)Lb

2
(u)Lc+1

3
(u)) and the final fraction should be multiplied by (−1)C2; on the right

branch, (a,b,c) Ð→ (a,b−1,c+1) and the final fraction should be multiplied by C1. The i−depth

of the tree describes the situation after i−times appliction of the cocyle relation. For example, the

first depth of the tree gives us

1

L2
1(u)L3

2(u)L3
3(u) =C1

1

L2
1(u)L2

2(u)L4
3(u) −C2

1

L1
1(u)L3

2(u)L4
3(u) .

In conclusion, we obtain

1

L2
1(u)L3

2(u)L3
3(u) =C3

1

1

L2
1(u)L6

3(u) +C2
2

1

L3
2(u)L5

3(u) −3C3
1C2

1

L1(u)L7
3(u) +3C2

1C2
2

1

L2(u)L7
3(u) +2C1C2

2

1

L2
2(u)L6

3(u) .

Further reduction. It turns out that the essential part in the definition of Higer plectic Green

function

∫
UR

d∏
i=1

∥λ (i)u∥−rkid×u = 21−r∫
UR

d∏
i=1

Li(u)−rki/2d×u

can be written as a K(L)-valued finite linear combination of the following intergral

∫
UR

r∏
i=1

1

Li(u)rki/2 d×u,

where we consider only the case 2∣rki,1 ≤ i ≤ r and we always assume that d ≥ r.
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Now we will show that we can do further reduction, which means that we only need to do the

calculation of

∫
UR

r∏
i=1

1

Li(u)d
×u,

and its variant, where Li(u) =∑r
j=1 Li ju j. In order to obtain the result of abitary exponents of Li(u),

we can simply apply some differential operators on the last integral.

Remark 5.29 For this further reduction, we will begin with a general setting, which means we can

begin with d ≥ r linear forms with arbitary exponents and reduce to the case of trivial exponents.

Our first reduction theorem built upon cocycle relations can give another point of view, and also

make a connection with our traitement for F =Q.

Definition 5.30 Let ρ ∶ {1, . . . ,r}Ð→ {1, . . . ,d} be a map. We define

mρ = d∏
i=1

(♯(ρ−1(i)))!,
where ♯(ρ−1(i) is the multiplicity of i. Then we define differential operator

Dρ = r∏
j=1

(− ∂

∂Lρ( j) j

)m−1
ρ .

Let us see some examples.

Example 5.31 (1) If d = r and

ρ1 ∶ {1, . . . ,r}Ð→ {1, . . . ,r},
ρ1( j) = j,

then the diagonal operator

Dρ1
= r∏

j=1

(− ∂

∂L j j

) .
(2) If ρ2 ∶ {1, . . . ,r}Ð→ {1, . . . ,d},

ρ2( j) = 1, ∀ j ∈ {1,⋯,r},
then

Dρ2
= 1

(r)!
r∏

j=1

(− ∂

∂L1 j

) .
We see investigate the acition of differential operator Dρ on L(m;d).
Fixe a map ρ ∶ {1, . . . ,r}Ð→ {1, . . . ,d} (d ≥ r), and define the following set

Sρ = ρ ({1, . . . ,r}) ⊆ {1, . . . ,d}.
Given the fraction

L(m;d) = d∏
i=1

1

L
mi

i (u) ,
where m = (m1, . . . ,md). Then a direct calculation gives
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Formula 5.32

Dρ(L(m;d)) = ⎛⎝∏i/∈Sρ

1

L
mi

i (u)
⎞
⎠
⎛
⎝∏i∈Sρ

(mi+♯(ρ−1(i))−1)!
(mi−1)!♯(ρ−1(i))

1

(Li(u))mi+♯(ρ−1(i))
⎞
⎠ .

Let us review Example 5.31.

Dρ1
( r∏

i=1

1

Li(u)) = (
r∏

i=1

1

L2
i (u)) ,

and

Dρ2
( d∏

i=1

1

Li(u)) =
1

Lr+1
1 (u) (

d∏
i=2

1

Li(u)) .
Theorem 5.27 guaranties Now the following theorem tells us only

∫
UR

r∏
i=1

1

Li(u)d
×u

with trivial exponents is sufficient for our calculation of higher plectic Green function.

Theorem 5.33 (Reduction Theorem II)

Fixe

L(m;r) = r∏
i=1

1

L
mi

i (u) ,
where m = (rk1/2,⋯,rkr/2), k = (k1,⋯,kr) and rki/2 ∈N+.

(1) If 2 ∤ r or If 2∣r and ∣k∣ is even. There exists a differential operator D(m), composed by some

Dρ , such that up to some rational number

D(m)L(1(r,r);r) = L(m;r).
(2) If 2∣r and ∣k∣ is odd. Then exists a differential operator D(m) composed by some Dρ , such that

up to some rational number

D(m)L(1(r,r)+ r

2
δi0 ;r) = L(m;r).

Proof 5.3.3 If there exists q ∈N+ such that

r∑
i=1

(mi−1) = ∣m∣− r = rq,

then we can find q differential operators D
j
j1,⋯, jr ,1 ≤ j ≤ q,

∏(n ji)!∏(n( ji)−1)!D1⋯Dq(L(1(r,r);r)) = L(m;r),
where n( ji) is the multiplicity of ji appearing in the q operators. We have the following equivalence

∣m∣− r = rq ⇐⇒ ∣m∣ > 1(r,r), r∣(∣m∣).
(1)If 2 ∤ r and we request that rki/2 ∈N+, then there exist li ∈N+ such that ki/2 = li and

∣m∣ = r∑
i=1

rki/2 = r∑
i=1

rli = r( r∑
i=1

li), Ô⇒ r∣(∣m∣).
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Therefore in this case, the theorem is proved.

If 2∣r and ∣k∣ is even. Let define

S = {i∣ki ∈ 2N++1},
then ∣S∣ = s is even.

1©. If i /∈ S, then ki is even, then ki = 2li, then

∑
i/∈S

mi =∑
i/∈S

rki/2 =∑
i/∈S

rli = r(∑
i/∈S

li),
2©. If i ∈ S, then ki is odd.

mi = rki/2 = r(ki+1

2
)− r

2
,

∑
i∈S

mi =∑
i∈S

rki/2 =∑
i∈S

r(ki+1

2
)− r

2
s = r(∑

i∈S
(ki+1

2
)− s/2) .

Finally, we have

∣m∣ = r∑
i=1

mi = r(∑
i/∈S

li)+ r(∑
i∈S

(ki+1

2
)− s/2) ,

which implies that

r∣(∣m∣).
(2) If 2∣r and ∣k∣ is odd. In this case, ∣S∣ = s = t +1(t ∈ 2N+) is odd and ∀i ∈ S, ki ∈ 2N++1.

mi = rki/2 = r(ki−1

2
)+ r

2
,

∑
i∈S

mi =∑
i∈S

rki/2 =∑
i∈S

r(ki−1

2
)+ r

2
s = r(∑

i∈S

(ki−1

2
)+ t/2)+ r

2

and

∑
i/∈S

mi =∑
i/∈S

rki/2 =∑
i/∈S

rli = r(∑
i/∈S

li),
so finally

∣m∣ = r
⎛
⎝∑i/∈S li+∑

i∈S

(ki−1

2
)+ t/2⎞⎠+

r

2
.

Let

p = ⎛⎝∑i/∈S li+∑
i∈S

(ki−1

2
)+ t/2⎞⎠−1,

then there exist p differential operators D
j
j1,⋯, jr ,1 ≤ j ≤ p, such that

∏(n ji)!∏ (r/2)!
(r/2+n( ji))!D1⋯Dp(L(1(r,r)+ r

2
δi0 ;d)) = L(m;r),

where i0 ∈ S.
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Remark 5.34 In fact, by applying more differential operators, we can deduce to i0 = r. Moreover

let define the differential operator

D = 1

(r/2)! (−
∂

∂Lrr

)r/2
,

then we have

D
⎛
⎝

u
r/2
r

L1(u)⋯Lr(u)
⎞
⎠ = L(1(r,r)+ r

2
δr;r).

Example 5.35 r = 2.
1

3
D2,2D1,2( 1

L1(u)L2(u)) =
1

L2
1(u)L4

2(u) .
2!

4!
D2,2D1,2( 1

L1(u)L2
2(u)) =

1

L2
1(u)L5

2(u) .
In the next section, we will give the details of the calculation, and therefore give an expression for

higher plectic Green functions and generalized multiple zeta values for general totally real fields.

5.4 Generalized multiple zeta values

for general F (I): special cases

For a general F , already the Hecke transform in Definition 4.11 leads to non-trivial integral formu-

las. The resulting numbers are given by the usual L-values of F in the simplest possible case when Γ

is a chain (thanks to Proposition 4.9). After that, everything turns out to be much more complicated

than any naive attempt at defining MDZV would produce. For example, if F is a real quadratic field

(r = 2), then the terms of the infinite series defining ZI(Γ,S) do not necessarily involve only rational

functions of the components of the ne ∈ I∗, but sometimes also their logarithms. If F is a cubic

field, there are also terms involving dilogarithm, and for higer rank field, some non-trivial iterated

integrals make their appeareance.

Before illustrating how the Hecke transform produces these new functions, we will give a very

vague version of our main theorem.

Theorem 5.36 (Main result over general totally real field-vague version) Let F be a totally real

field of degree [F ∶ Q] = r > 1. Given a graph and a subdivision map defined as before. By the

reciprocity, we can assume the rank of the graph d ≥ r. Moreover, we assume that if 2 ∤ r, the

subdivision map is given by ke ∈ 2N for each edge. According to the two reduction theorems Theorem

5.27 and Theorem 5.33 and Theorem 5.61, we have the following expression of our generalized

multiple zeta value

ZI,ν(Γ,∂Γ) = ∑
⎧⎪⎪⎨⎪⎪⎩

ne∈I∗∖{0}
∂n=0

sgn(ne)=(−1)ν
⎫⎪⎪⎬⎪⎪⎭
/U
∑

C(d,r)
∑

1≤m≤r−1

∑
j

(α j(ne))Lm(β j(ne)),

where Lm(⋅) is an generalized m-logarithm which is a non-trivial iterated integral, and α j(ne) and

β j(ne) are rational functions of the conjugates of ne with coefficients in Q and the sum ∑C(d,r)
comes from the reduction theorem. Every sum here is finite.

75



5.4 Generalized multiple zeta values

for general F (I): special cases

Generalization of Multiple Zeta Values (II):

Results for general totally real fields

Calculation of a special integral.

∫
UR

r∏
i=1

1

Li(u) d×u,

where UR = {u = (u1,⋯,ur) ∈Rr+∣u1⋯ur = 1} and d×u = du1⋯dur−1

u1⋯ur−1
.

Since ur = 1
u1⋯ur−1

,

∫
UR

r∏
i=1

1

Li(u)d
×u =∫

Rr−1
+

r∏
i=1

⎛
⎝

u1⋯ur−1

∑r−1
j=1(Li j(u1⋯u j−1u2

ju j+1⋯ur−1))+Lir

⎞
⎠d×u

Let us define

y j = u1⋯u j−1u2
ju j+1⋯ur−1, 1 ≤ j ≤ r−1.

Then

y1⋯yr−1 = (u1⋯ur−1)r = u−r
r .

By a direct calcuration, we obtain

d×y = dy1⋯dyr−1

y1⋯yr−1

= r d×u.

d×u = ur
r

r
dy,

where dy = dy1⋯dyr−1. We get

Formula 5.37 (Basic integral of the Hecke transform)

Ir(Li) =∫
UR

r∏
i=1

1

Li(u)d
×u = 1

r
∫
Rr−1
+

r∏
i=1

dy

∑r−1
j=1(Li jy j)+Lir

.

Now let us first see some simple examples to find out how non-trival this integral is.

5.4.1 The case r = 2.

I2 = I2(Li) =∫
UR

1

L1(u)L2(u) d×u = 1

2
∫
R+

dy

(L11y+L12)(L21y+L22) .
Recall the Eisenstein trick

Lemma 5.38 Let V be a n-dimensional vector space, let l0, . . . , ln ∈V∗ be n+1 linear forms. Then∀x = (x1, . . . ,xn) ∈V , we have

n∑
i=0

(−1)i det(l0, . . . , l̂i, . . . , ln)
∏ j≠i l j(x) = 0.

Theorem 5.39

I2 = 1

2(L11L22−L21L12) (log(L11

L21

)− log(L12

L22

)) .
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Proof 5.4.1 We will use the Eisenstein trick for the case

l0 = 0 ⋅y1+y2, l1 = L11y1+L12y2, l2 = L21y1+L22y2,

and take y1 = y and y2 = 1, then we obtain

det(L1,L2)(L11y+L12)(L21y+L22) =
L11

L11y+L12

−
L21

L21y+L22

,

where L1 = (L11,L12) and L2 = (L21,L22). Then

det(L1,L2)∫
R+

dy

(L11y+L12)(L21y+L22) = lim
T→∞∫

T

0
( L11

L11y+L12

−
L21

L21y+L22

)dy

= lim
T→∞[ log(L11y+L12)− log(L21y+L22)]

T

0

= lim
T→∞ log(L11T +L12

L21T +L22

)− log(L12

L22

) = log(L11

L21

)− log(L12

L22

) .
Finally,

I2 = 1

2(L11L22−L21L12) (log(L11

L21

)− log(L12

L22

)) .
Now we turn to the definition of the higher plectic Green fuction, according to Theorem 5.33 we

have two cases, depending on that if the sum of all exponents are even or not.

Theorem 5.40 Given k = (k1, . . . ,kd) and ∣k∣ = k1+ . . .+kd .

(1)If 2∤ ∣k∣, then after several differentiation with respect to the coefficients α j,β j, the essential part

of the definition of higher plectic Green function

I2(d,k) =∫
R+

1

∏d
j=1(α2

j u+β 2
j u−1)k j

d×u

can be written as product of π and an element of Q(α1, . . . ,αd ,β1, . . . ,βd).
(2) If 2 divides ∣k∣, then I2(d,k) can be written as

d∑
j=1

γ j ⋅ log(β j

α j

) ,

where γ j ∈Q(α2
1 , . . . ,α

2
d ,β

2
1 , . . . ,β

2
d ).

Remark 5.41 Even though Theorem 5.27 brings us to the situation d = r, however in this lemma

above we give a general setting, d ≥ r.

Proof 5.4.2 (Proof of Theorem 5.40)

I2(d,k) =∫ ∞
0

u
(∑d

j=1 k j)−1

∏d
j=1(α2

j u2+β 2
j )k j

du.

Now we will begin with something more general.
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Lemma 5.42 If f ,g ∈C[X]. g(X) =∏d
j=1(X −τ j), τ1, . . . ,τd ∈C are distinct and deg( f ) ≤ d. Then

f (X)
g(X) =

d∑
j=1

f (τ j)
g′(τ j)

1

X −τ j

,

where
f (τ j)

g′(τ j) = ResX=τ j

f (X)dX

g(X) and

f (τ j)
g′(τ j) =

f (τ j)
∏d

k=1
k≠ j

(τk −τ j) .

By this lemma, we have

Xn

∏d
j=1(X −τ j) =

d∑
j=1

τn
j

∏d
k=1
k≠ j

(τk −τ j)
1

X −τ j

, n ∈N.

Now let us define

c2
j = β 2

j

α2
j

, 1 ≤ j ≤ d.

Then we have

Xn

∏d
j=1(X +c2

j) =
d∑

j=1

(−c2
j)n

∏d
k=1
k≠ j

(c2
j −c2

k
)

1

X +c2
j

, ∀n ∈N.

Then

u2n

∏d
j=1(u2+c2

j) =
d∑

j=1

(−c2
j)n

∏d
k=1
k≠ j

(c2
j −c2

k
)

1

u2+c2
j

.

Therefore

∫ ∞
0

um

∏d
j=1(α2

j u+β 2
j u−1)

du

u
= 1

∏d
j=1 α2

j

∫ ∞
0

um+d−1

∏d
j=1(u2+c2

j) du.

Let define m+d−1 = 2n+ε , ε ∈ {0,1}. Then

∫ ∞
0

um

∏d
j=1(α2

j u+β 2
j u−1)

du

u
= 1

∏d
j=1 α2

j

∫ ∞
0

u2n+ε

∏d
j=1(u2+c2

j) du= 1

∏d
j=1 α2

j

d∑
j=1

(−c2
j)n

∏d
k=1
k≠ j

(c2
j −c2

k
) ∫

∞
0

uε

u2+c2
j

du.

1©: If ε = 0, then 2 ∤m+d. Then

∫ ∞
0

um

∏d
j=1(α2

j u+β 2
j u−1)

du

u
= π

2∏d
j=1 α2

j

d∑
j=1

(−c2
j)n(c j)−1

∏d
k=1
k≠ j

(c2
j −c2

k
)

= (−1)(m+d−1)/2 π

2

d∑
j=1

αd−m−2
j β d+m−2

j

∏d
k=1
k≠ j

∆k j

,

where

∆k j = ∣ α2
k β 2

k

α2
j β 2

j

∣

78







5.4 Generalized multiple zeta values

for general F (I): special cases

Generalization of Multiple Zeta Values (II):

Results for general totally real fields

5.4.2 The case r = 3.

By Thereom 5.33 (1), we need only calculate

I3 =∫
UR

1

L1(u)L2(u)L3(u) d×u = 1

3
∫
R2
+

dy1dy2

∏3
i=1(Li1y1+Li2y2+Li3) .

Again by Eisenstein’s trick, we have

det(L1,L2,L3)
∏3

i=1(Li1y1+Li2y2+Li3) = ∑1≤i< j≤3

(−1)i+ j−1
det(L′i,L′j)

(Li1y1+Li2y2+Li3)(L j1y1+L j2y2+L j3) ,
where

det(L1,L2,L3) =
RRRRRRRRRRRRRR

L11 L12 L13

L21 L22 L23

L31 L31 L33

RRRRRRRRRRRRRR
det(L′i,L′j) = ∣ Li1 Li2

L j1 L j2
∣.

Now let us define some new quantities.

∆ = det(L1,L2,L3); Ri j = det(L′i,L′j); Si j = ∣ Li1 Li3

L j1 L j3
∣

and

mi j(x) = ∣ Li1 Li2x+Li3

L j1 L j2x+L j3
∣ = Ri jx+Si j,

and

li(y1,y2) = Li1y1+Li2y2+Li3.

Then
det(L1,L2,L3)

∏3
i=1(Li1y1+Li2y2+Li3) = ∑1≤i< j≤3

(−1)i+ j−1 Ri j

li(y1,y2)l j(y1,y2)
= ∑

1≤i< j≤3

(−1)i+ j−1 mi j(y2)
li(y1,y2)l j(y1,y2)

Ri j

mi j(y2) .
Therefore

∆ ⋅ I3 = 1

3
∑

1≤i< j≤3

(−1)i+ j−1∫
R+
(∫

R+

mi j(y2)
li(y1,y2)l j(y1,y2)dy1) Ri j

mi j(y2)dy2.

Replacing Li2 by Li2y2+Li3 in the result of Example 5.4.1 we obtain

∫
R+

mi j(y2)
li(y1,y2)l j(y1,y2)dy1 = log( Li1

L j1

)− log( Li2y2+Li3

L j2y2+L j3

) .
We need to calculate

∆ ⋅ I3 = 1

3
∑

1≤i< j≤3

(−1)i+ j−1∫
R+
(log( Li1

L j1

)− log( Li2y2+Li3

L j2y2+L j3

)) Ri j

mi j(y2)dy2.

In conclusion, we obtain the following result
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Theorem 5.45 (The case r = 3)

3∆ ⋅ I3 = J
(3)
0 −J

(3)
1 ,

where

J
(3)
0 = ∑

1≤i< j≤3

(−1)i+ j−1(log(Li1

Li2

)− log(L j1

L j2

))(log(Ri j

Si j

)) ;

J
(3)
1 = ∑

1≤i< j≤3

(−1)i+ j−1I(Li3

Li2

,
L j3

L j2

;
Si j

Ri j

),
where

I(α1,α2;β) =∫
R+

log(y+α1

y+α2

)d log(y+β).
We will give the proof of the theorem above in several steps. Moreover we prove that if r = 3,

the term J
(3)
1 involves dilogarithms.

1©:contribution of log( Li1

L j1
)

First of all, it is easy to observe that

Ri j

mi j(y2)dy2 = d log(mi j(y2)).
Then let us define

J0(1) = ∑
1≤i< j≤3

(−1)i+ j−1∫
R+

log( Li1

L j1

) Ri j

mi j(y2)dy2

= ∑
1≤i< j≤3

(−1)i+ j−1∫
R+
(log(Li1)− log(L j1))d log(mi j(y2))

= lim
T→∞ ∑

1≤i< j≤3

(−1)i+ j−1(log(Li1)− log(L j1))
⎡⎢⎢⎢⎢⎣

log(mi j(y2))
⎤⎥⎥⎥⎥⎦

T

0

.

Then

J0(1) = lim
T→∞ ∑

1≤i< j≤3

(−1)i+ j−1(log(Li1)− log(L j1))(log(Ri jT +Si j)− log(Si j))

= lim
T→∞(log(L11) log(R12T +S12

R13T +S13

)− log(L21) log(R12T +S12

R23T +S23

)+ log(L31) log(R13T +S13

R23T +S23

))
− ∑

1≤i< j≤3

(−1)i+ j−1(log(Li1)− log(L j1)) log(Si j).
Thus

J0(1) = log(L11) log(R12

R13

)− log(L21) log(R12

R23

)+ log(L31) log(R13

R23

)
− ∑

1≤i< j≤3

(−1)i+ j−1(log(Li1)− log(L j1)) log(Si j).
Notice that

log(L11) log(R12

R13

)−log(L21) log(R12

R23

)+log(L31) log(R13

R23

)= ∑
1≤i< j≤3

(−1)i+ j−1(log(Li1)−log(L j1)) log(Ri j),
In conclusion, we have
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Formula 5.46

J0(1) = ∑
1≤i< j≤3

(−1)i+ j−1 (log(Li1)− log(L j1))(log(Ri j)− log(Si j))

= ∑
1≤i< j≤3

(−1)i+ j−1 log( Li1

L j1

)(log(Ri j

Si j

)) .

2©: contribution of log( Li2y2+Li3

L j2y2+L j3
)

J1 = ∑
1≤i< j≤3

(−1)i+ j−1∫
R+

log( Li2y2+Li3

L j2y2+L j3

) Ri j

mi j(y2) dy2.

Again, we have
Ri j

mi j(y2)dy2 = d log(mi j(y2)), hence

J1 = J1(0)+J1(1),
where

J1(0) = ∑
1≤i< j≤3

(−1)i+ j−1∫
R+

(log(Li2)− log(L j2))d log(mi j(y2))
and

J1(1) = ∑
1≤i< j≤3

(−1)i+ j−1∫
R+
(log(y2+ Li3

Li2

)− log(y2+ L j3

L j2

))d log(mi j(y2)).
By the result of 1©, we have

Formula 5.47

J1(0) = ∑
1≤i< j≤3

(−1)i+ j−1 (log(Li2)− log(L j2))(log(Ri j)− log(Si j)) .
Now in order to get the precise expression of J1(0), it remains to calculate

∫
R+
(log(y2+ Li3

Li2

)− log(y2+ L j3

L j2

))d log(mi j(y2)) =∫
R+
(log(y2+ Li3

Li2

)− log(y2+ L j3

L j2

))d log(y2+ Si j

Ri j

).
(8)

Observe that

Ri j

Si j

− Li3

Li2

= Li1

Li2

⋅

∣ Li2 Li3

L j2 L j3
∣

Ri j

;
Ri j

Si j

−
L j3

L j2

= L j1

L j2

⋅

∣ Li2 Li3

L j2 L j3
∣

Ri j

.

Therefore we will have

0 < Ri j

Si j

< Li3

Li2

,
L j3

L j2

or
Ri j

Si j

> Li3

Li2

,
L j3

L j2

> 0

In order to calculate (8), we will give a general setting.
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Theorem 5.48 Given α1,α2,β ∈R+. Define the integral

I(α1,α2;β)(T) =∫ T

0
log(y+α1

y+α2

)d log(y+β).
(1) If 0 < β < α1,α2, then

I(α1,α2;β)(T) = (Li2( β

α2

)−Li2( β

α1

))+ log(α2−β) log( β

α2

)− log(α1−β) log( β

α1

)

+(log(α2))2−(log(α1))2
2

+O( 1

T
).

(2) If 0 < α1,α2 < β , then

I(α1,α2;β)(T) = Li2(β −α1

T +β
)−Li2(β −α2

T +β
)+Li2(β −α2

β
)−Li2(β −α1

β
) .

Proof 5.4.3 (1)First of all, we define

I(t) =∫ t

0
log(y+1)dy

y
, t > 0

take y+1 = 1
z

then

I(t) = −∫ 1

1
1+t

log(z)
z(1− z)dz = −∫ 1

1
1+t

log(z)
z

dz−∫ 1

1
1+t

log(z)
1− z

dz = −[(log(z))2
2

]1
1

1+t

−∫ 1

1
1+t

log(z)
1− z

dz.

Take x = 1− z, then

∫ 1

1
1+t

log(z)
1− z

dz = −∫
t

1+t

0

log(1−x)
x

d(−x) = −Li2( t

1+ t
) .

So we obtain

I(t) = (log(1+ t))2
2

+Li2( t

1+ t
) .

If 0 < β < α1,α2. Taking

y+β = (α1−β)z, y+α1 = (α1−β)(z+1),
∫ T

0
log(y+α1)d log(y+β) =∫

T+β
α1−β

β
α1−β

(log(α1−β)+ log(z+1)) dz

z

= log(α1−β) log(T +β

β
)+ I( T +β

α1−β
)− I( β

α1−β
).

In the same way we will have

∫ T

0
log(y+α2)d log(y+β) =∫

T+β
α2−β

β
α2−β

(log(α2−β)+ log(z+1)) dz

z

= log(α2−β) log(T +β

β
)+ I( T +β

α2−β
)− I( β

α2−β
).
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Thus

I(α1,α2;β)(T) = log(α1−β

α2−β
) log(T +β

β
)+ I( T +β

α1−β
)− I( T +β

α2−β
)+∫

β
α2−β

β
α1−β

log(z+1)dz

z
.

However we observe that

I( T +β

α1−β
)− I( T +β

α2−β
) =∫

T+β
α1−β

T+β
α2−β

log(z+1)dz

z
=∫

T+β
α1−β

T+β
α2−β

(log(z)+ log(1+1/z)) dz

z
,

so when T is sufficiently big, we will have

I( T +β

α1−β
)− I( T +β

α2−β
) = [(log(z))2

2
]

T+β
α1−β

T+β
α2−β

+O( 1

T
)

= − log(T +β) log(α1−β)+ log(T +β) log(α2−β)+ (log(α1−β))2−(log(α2−β))2
2

+O( 1

T
).

Meanwhile,

∫
β

α2−β

β
α1−β

log(z+1)dz

z
= I( β

α2−β
)− I( β

α1−β
)

= (log( α2

α2−β
))2

2
− (log( α1

α1−β
))2

2
+(Li2( β

α2

)−Li2( β

α1

)) .
In conclusion,

I(α1,α2;β)(T) = (Li2( β

α2

)−Li2( β

α1

))+ log(α2−β) log( β

α2

)− log(α1−β) log( β

α1

)

+(log(α2))2−(log(α1))2
2

+O( 1

T
).

(2) Define

J(t;t0) =∫ t

t0

log(z−1)dz

z
,

where 1 < t0 < t. By taking s = 1
z
, we obtain

J(t;t0) = −∫ 1/t0
1/t

log(1/s−1)
1/s (− 1

s2
)ds

=∫ 1/t0
1/t

log(1− s)
s

ds−∫ 1/t0
1/t

log(s)
s

ds

J(t;t0) = Li2(1/t)−Li2(1/t0)+ (log(1/t))2
2

− (log(1/t0))2
2

.

Now 0 < α1,α2 < β ,

y+β = (β −α1)z, y+α1 = (β −α1)(z−1),
∫ T

0
log(y+α1)d log(y+β) =∫

T+β
β−α1

β
β−α1

(log(β −α1)+ log(z−1)) dz

z
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= log(β −α1) log(T +β

β
)+J( T +β

β −α1

;
β

β −α1

).
In the same way we obtain

∫ T

0
log(y+α2)d log(y+β) = log(β −α2) log(T +β

β
)+J( T +β

β −α2

;
β

β −α2

).
Therefore

I(α1,α2;β)(T) = log(β −α1

β −α2

) log(T +β

β
)+J( T +β

β −α1

;
β

β −α1

)−J( T +β

β −α2

;
β

β −α2

)

= Li2(β −α1

T +β
)−Li2(β −α2

T +β
)+Li2(β −α2

β
)−Li2(β −α1

β
)

+ log(β −α1

β −α2

) log(T +β

β
)+ (log(β−α1

T+β
))2

2
− (log(β−α1

β
))2

2
−
⎛⎜⎜⎝
(log(β−α2

T+β
))2

2
− (log(β−α2

β
))2

2

⎞⎟⎟⎠ .
It is not difficult to observe that

log(β −α1

β −α2

) log(T +β

β
)+ (log(β−α1

T+β
))2

2
− (log(β−α1

β
))2

2
−
⎛⎜⎜⎝
(log(β−α2

T+β
))2

2
− (log(β−α2

β
))2

2

⎞⎟⎟⎠ = 0.

Finally we get

I(α1,α2;β)(T) = Li2(β −α1

T +β
)−Li2(β −α2

T +β
)+Li2(β −α2

β
)−Li2(β −α1

β
) .

Corollary 5.49 Given α1,α2,β ∈R+. Define

I(α1,α2;β) = lim
T→+∞I(α1,α2;β)(T)

then

I(α1,α2;β) =∫
R+

log(y+α1

y+α2

)d log(y+β).
(1) If 0 < β < α1,α2, then

I(α1,α2;β) = (Li2( β

α2

)−Li2( β

α1

))+ log(α2−β) log( β

α2

)− log(α1−β) log( β

α1

)

+(log(α2))2−(log(α1))2
2

.

(2) If 0 < α1,α2 < β , then

I(α1,α2;β) = Li2(β −α2

β
)−Li2(β −α1

β
) .

By this corollary, we return to the calculation of I3 and will obtain
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Formula 5.50

J1(1) = ∑
1≤i< j≤3

(−1)i+ j−1I(Li3

Li2

,
L j3

L j2

;
Si j

Ri j

).
Now combining the results of Formulae 5.46, 5.47 and 5.50, we obtain the final result of

3∆ ⋅ I3 = J0(1)−(J1(0)+J1(1)),
that is

3∆ ⋅ I3 = J
(3)
0 −J

(3)
1 ,

where

J
(3)
0 = J0(1)−J1(0) = ∑

1≤i< j≤3

(−1)i+ j−1(log(Li1

Li2

)− log(L j1

L j2

))(log(Ri j

Si j

)) ;

J
(3)
1 = J1(1) = ∑

1≤i< j≤3

(−1)i+ j−1I(Li3

Li2

,
L j3

L j2

;
Si j

Ri j

).

5.4.3 The case r = 4.

I4 =∫
UR

1

L1(u)L2(u)L3(u)L4(u)d
×u = 1

4
∫
R3
+

dy1 dy2 dy3

∏4
i=1(Li1y1+Li2y2+Li3y3+Li4) .

We will first give an explicit expression of I4. Let us introduce some new notations.

Definition 5.51

R
(4)
i j = ∣ Li1 Li2

L j1 L j2
∣; S

(4)
i j = ∣ Li1 Li3

L j1 L j3
∣; U

(4)
i j = ∣ Li1 Li4

L j1 L j4
∣

R
(4)
i jk
=
RRRRRRRRRRRRRR

Li1 Li2 Li3

L j1 L j2 L j3

Lk1 Lk2 Lk3

RRRRRRRRRRRRRR
; S

(4)
i jk
=
RRRRRRRRRRRRRR

Li1 Li2 Li4

L j1 L j2 L j4

Lk1 Lk2 Lk4

RRRRRRRRRRRRRR
; V

(4)
i jk
=
RRRRRRRRRRRRRR

Li1 Li3 Li4

L j1 L j3 L j4

Lk1 Lk3 Lk4

RRRRRRRRRRRRRR
.

Theorem 5.52 (The case r = 4) We fix ∆4 = det(L1,L2,L3,L4). Let us define

C1(i) = log(Li1)− log(Li2);
C2(i, j) = (C1(i)−C1( j))(log(R(4)i j )− log(S(4)i j )) ;

and

I(α1,α2;β) =∫
R+

log(y+α1

y+α2

)d log(y+β).
Then

4∆4 ⋅ I4 = J
(4)
0 −J

(4)
1 −J

(4)
2 ,

where

J
(4)
0 = ∑

1≤i1<i2<i3≤4

(−1)i1+i2+i3 (C2(i1, i2)−C2(i1, i3)+C2(i2, i3))(log(R(4)i1i2i3
)− log(S(4)i1i2i3

)) ;
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J
(4)
1 = ∑

1≤i1<i2<i3≤4

(−1)i1+i2+i3J
(4)
1 (i1, i2, i3),

J
(4)
1 (i1, i2, i3)=C1(i1)I⎛⎜⎝

U
(4)
i1i2

S
(4)
i1i2

,
U
(4)
i1i3

S
(4)
i1i3

;
S
(4)
i1i2i3

R
(4)
i1i2i3

⎞⎟⎠−C1(i2)I⎛⎜⎝
U
(4)
i1i2

S
(4)
i1i2

,
U
(4)
i2i3

S
(4)
i2i3

;
S
(4)
i1i2i3

R
(4)
i1i2i3

⎞⎟⎠+C1(i3)I⎛⎜⎝
U
(4)
i1i3

S
(4)
i1i3

,
U
(4)
i2i3

S
(4)
i2i3

;
S
(4)
i1i2i3

R
(4)
i1i2i3

⎞⎟⎠ ;

J
(4)
2 = ∑

1≤i1<i2<i3≤4

(−1)i1+i2+i3J
(4)
2 (i1, i2, i3),

J
(4)
2 (i1, i2, i3) =∫ ∞

0
I(4)(i1, i2, i3)(y3)d⎛⎜⎝log

⎛⎜⎝y3+ S
(4)
i1i2i3

R
(4)
i1i2i3

⎞⎟⎠
⎞⎟⎠ ,

I(4)(i1, i2, i3)(y3)= I
⎛
⎝

Li13

Li12

,
Li23

Li22

;
S
(4)
i1i2

y3+U
(4)
i1i2

R
(4)
i1i2

⎞
⎠−I
⎛⎜⎝

Li13

Li12

,
Li33

Li32

;
S
(4)
i1i3

y3+U
(4)
i1i3

R
(4)
i1i3

⎞⎟⎠+I
⎛⎜⎝

Li23

Li22

,
Li33

Li32

;
S
(4)
i2i3

y3+U
(4)
i2i3

R
(4)
i2i3

⎞⎟⎠ .

Proof 5.4.4 (Proof of Theorem 5.52) We begin again with the Eisenstein trick,

∆4

∏4
i=1(Li1y1+Li2y2+Li3y3+Li4) = ∑

1≤i< j<k≤4

(−1)i+ j+k
R
(4)
i jk

lil jlk
,

where

li = li(y1,y2,y3) = Li1y1+Li2y2+Li3y3+Li4.

Define

mi jk(y3) =
RRRRRRRRRRRRRR

Li1 Li2 Li3y3+Li4

L j1 L j2 L j3y3+Li4

Lk1 Lk2 Lk3y3+Li4

RRRRRRRRRRRRRR
= R
(4)
i jk

y3+S
(4)
i jk

.

Then

∆4∫
R3
+

dy1dy2dy3

∏4
i=1(Li1y1+Li2y2+Li3y3+Li4) = ∑

1≤i< j<k≤4

(−1)i+ j+k∫ ∞
0
(∫

R2
+

mi jk(y3)
lil jlk

dy1dy2) R
(4)
i jk

mi jk(y3) dy3.

If we define

3∆
(i jk)
3 (y3)I(i jk)

3 (y3) =∫
R2
+

mi jk(y3)
lil jlk

dy1dy2,

then replacing Li3 by Li3y3+Li4 and according to the result of Theorem 5.45, we obtain that

3∆
(i jk)
3 (y3)I(i jk)

3 (y3) = J
(3),(i jk)
0 (y3)−J

(3),(i jk)
1 (y3),

where

J
(3),(i jk)
0 (y3) = (log(Li1

Li2

)− log(L j1

L j2

))⎛⎜⎝log
⎛⎜⎝

R
(4)
i j

S
(4)
i j y3+U

(4)
i j

⎞⎟⎠
⎞⎟⎠

88



5.4 Generalized multiple zeta values

for general F (I): special cases

Generalization of Multiple Zeta Values (II):

Results for general totally real fields

−(log(Li1

Li2

)− log(Lk1

Lk2

))⎛⎝log
⎛
⎝

R
(4)
ik

S
(4)
ik

y3+U
(4)
ik

⎞
⎠
⎞
⎠

+(log(L j1

L j2

)− log(Lk1

Lk2

))⎛⎜⎝log
⎛⎜⎝

R
(4)
jk

S
(4)
jk

y3+U
(4)
jk

⎞⎟⎠
⎞⎟⎠ ;

J
(3),(i jk)
1 (y3) = I(Li3

Li2

,
L j3

L j2

;
S
(4)
i j y3+U

(4)
i j

R
(4)
i j

)− I(Li3

Li2

,
Lk3

Lk2

;
S
(4)
ik

y3+U
(4)
ik

R4
ik

)+ I(L j3

L j2

,
Lk3

Lk2

;
S
(4)
jk

y3+U
(4)
jk

R
(4)
jk

),
and

R
(4)
i jk

mi jk(y3) dy3 = d log(R(4)
i jk

y3+S
(4)
i jk
) ,

then

4∆4I4 = ∑
1≤i< j<k≤4

(−1)i+ j+k∫ ∞
0
(J(3),(i jk)

0 (y3)−J
(3),(i jk)
1 (y3))d log(R(4)

i jk
y3+S

(4)
i jk
) .

Then define

J
(3),(i jk)
0,0 (y3) = (log(Li1

Li2

)− log(L j1

L j2

))(log(R(4)i j )− log(S(4)i j ))

−(log(Li1

Li2

)− log(Lk1

Lk2

))(log(R(4)
ik
)− log(S(4)

ik
))

+(log(L j1

L j2

)− log(Lk1

Lk2

))(log(R(4)
jk
)− log(S(4)

jk
)) ;

and

J
(3),(i jk)
0,1 (y3) = (log(Li1

Li2

)− log(L j1

L j2

))⎛⎜⎝log
⎛⎜⎝y3+U

(4)
i j

S
(4)
i j

⎞⎟⎠
⎞⎟⎠

−(log(Li1

Li2

)− log(Lk1

Lk2

))⎛⎝log
⎛
⎝y3+U

(4)
ik

S
(4)
ik

⎞
⎠
⎞
⎠

+(log(L j1

L j2

)− log(Lk1

Lk2

))⎛⎜⎝log
⎛⎜⎝y3+U

(4)
jk

S
(4)
jk

⎞⎟⎠
⎞⎟⎠ ;

It is easy to see that

J
(3),(i jk)
0 (y3) = J

(3),(i jk)
0,0 (y3)−J

(3),(i jk)
0,1 (y3).
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Define

J
(4)
0 = ∑

1≤i< j<k≤4

(−1)i+ j+k∫ ∞
0
(J(3),(i jk)

0,0 (y3))d log(R(4)
i jk

y3+S
(4)
i jk
) ;

and

J
(4)
1 = ∑

1≤i< j<k≤4

(−1)i+ j+k∫ ∞
0
(J(3),(i jk)

0,1 (y3))d log(R(4)
i jk

y3+S
(4)
i jk
) ;

and

J
(4)
2 = ∑

1≤i< j<k≤4

(−1)i+ j+k∫ ∞
0
(J(3),(i jk)

1 (y3))d log(R(4)
i jk

y3+S
(4)
i jk
) .

Then

4∆4I4 = J
(4)
0 −J

(4)
1 −J

(4)
2 .

For proving Theorem 5.52, we only need to calculate the three quantities above. This is done in

the following three lemmas. We will give the proof in detail only for the first lemma, the other two

proofs are quite similar and straightforward.

Lemma 5.53

J
(4)
0 = ∑

1≤i< j<k≤4

(−1)i+ j+k (C2(i, j)−C2(i,k)+C2( j,k))(log(R(4)
i jk
)− log(S(4)

i jk
)) .

Proof 5.4.5 (Proof:) We begin with the following integral

∫ ∞
0
(log(Li1

Li2

)− log(L j1

L j2

))(log(R(4)i j )− log(S(4)i j ))d log(R(4)
i jk

y3+S
(4)
i jk
)

= lim
T→∞(log(Li1

Li2

)− log(L j1

L j2

))(log(R(4)i j )− log(S(4)i j ))(log(R(4)
i jk

T +S
(4)
i jk
)− log(S(4)

i jk
))

= lim
T→∞C2(i, j)(log(R(4)

i jk
T +S

(4)
i jk
)− log(S(4)

i jk
)) .

Then

∫ ∞
0
(J(3),(i jk)

0,0 (y3))d log(R(4)
i jk

y3+S
(4)
i jk
)

= lim
T→∞(C2(i, j)−C2(i,k)+C2( j,k))(log(R(4)

i jk
T +S

(4)
i jk
)− log(S(4)

i jk
)) .

Therefore the cocycle relation ∑(−1)i+ j+k, acting on the integral above, yields a cancelation of the

terms involving log(T) and gives us

∑
1≤i< j<k≤4

(−1)i+ j+k (J(3),(i jk)
0,0 (y3))d log(R(4)

i jk
y3+S

(4)
i jk
)

= ∑
1≤i< j<k≤4

(−1)i+ j+k (C2(i, j)−C2(i,k)+C2( j,k))(log(R(4)
i jk
)− log(S(4)

i jk
)) .

Lemma 5.54

J
(4)
1 = ∑

1≤i< j<k≤4

(−1)i+ j+kJ
(4)
1 (i, j,k),

where

J
(4)
1 (i, j,k)=C1(i)I⎛⎜⎝

U
(4)
i j

S
(4)
i j

,
U
(4)
ik

S
(4)
ik

;
S
(4)
i jk

R
(4)
i jk

⎞⎟⎠−C1( j)I⎛⎜⎝
U
(4)
i j

S
(4)
i j

,
U
(4)
jk

S
(4)
jk

;
S
(4)
i jk

R
(4)
i jk

⎞⎟⎠+C1(k)I⎛⎜⎝
U
(4)
ik

S
(4)
ik

,
U
(4)
jk

S
(4)
jk

;
S
(4)
i jk

R
(4)
i jk

⎞⎟⎠ .
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Lemma 5.55

J
(4)
2 = ∑

1≤i< j<k≤4

(−1)i+ j+kJ
(4)
2 (i, j,k),

where

J
(4)
2 (i, j,k) =∫ ∞

0
I(4)(i, j,k)(y3)d⎛⎜⎝log

⎛⎜⎝y3+ S
(4)
i jk

R
(4)
i jk

⎞⎟⎠
⎞⎟⎠ ,

and

I(4)(i, j,k)(y3)= I
⎛⎜⎝

Li3

Li2

,
L j3

L j2

;
S
(4)
i j y3+U

(4)
i j

R
(4)
i j

⎞⎟⎠−I
⎛
⎝

Li3

Li2

,
Lk3

Lk2

;
S
(4)
ik

y3+U
(4)
ik

R
(4)
ik

⎞
⎠+I
⎛⎜⎝

L j3

L j2

,
Lk3

Lk2

;
S
(4)
jk

y3+U
(4)
jk

R
(4)
jk

⎞⎟⎠ .
Remark 5.56 The passage from the result of case r = 3 to the case of r = 4 can be generalized to

any r ≥ 2. Such a recurrence relation inspires us to do a general calculation for any general r ≥ 2.

We will theorefore give a definition of so-called generalized m-polylogarithms over a totally real

field F. However, the coefficients such as R
(4)
i jk

are very inconvenient for general r, thus we will give

a general definition of these coefficients in a uniform way.

5.5 Generalized multiple zeta values

for general F (II): general case

In this section we assume that a totally real field F is of degree r > 2. Let us begin the preparation

for the general calculation and the definition of generalized polylogarithms over F .

5.5.1 Preliminaries

Definition 5.57 Let us define the set

N(r) = {1, . . . ,r}.
Let X and Y be two subsets of N(r) of the same cardinality. Given the linear forms as in Formula

5.37, we will define the matrix

AX ,Y = (Li j)i∈X , j∈Y ,
where Li j is always the coefficient of the linear forms in question. Then we define

R
(r)
X ,Y = det(AX ,Y ).

For example, if r = 4, if we take X1 = {i, j,k}, 1 ≤ i < j < k ≤ 4 and Y1 = {1,2,3}, then

R
(4)
X1,Y1
= R
(4)
i jk

.

If we take Y2 = {1,2,4}, then

R
(4)
X1,Y2
= S
(4)
i jk

.

Let X2 = {i, j}, 1 ≤ i < j ≤ 4 and Y3 = {1,2} and Y4 = {1,3} then

R
(4)
X2,Y3
= R
(4)
i j , R

(4)
X2,Y4
= S
(4)
i j .

Now we will define a cocycle relation operator which acts on other sets, later on we will make

such an operator act on the set of indices.
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Definition 5.58 Assume that n ∈N∖{0}.
Let A be a finite totally ordered set. We define

Tn(A) = {a = (a1, . . . ,an) ∈ An∣a1 < a2 <⋯ < an} .
It is easy to see that ∣Tn(A)∣ = (∣A∣n ).
Definition 5.59 The n-cocycle relation operator is defined as

Cycln(1, . . . ,n) = n−1∑
i=0

(−1)i(1,2, . . . ,n−(i+1), n̂− i,n−(i−1), . . . ,n),
where (̂⋅) means omitting the term (n− i).

Then the cocycle operator acts on a ∈ Tn(A),
Cycln(a) = n−1∑

i=0

(−1)i(a1,a2, . . . ,an−(i+1), ân−i,an−(i−1), . . . ,an).
If f is a function depending on the multiple index j ∈ Tn−1(A), we deduce an action of the cocycle

operator on f ,

Cycln( f ) = n−1∑
i=0

(−1)i fa(i),

where

a(i) = (a1,a2, . . . ,an−(i+1), ân−i,an−(i−1), . . . ,an),
and

j ∈ {a(0), . . . ,a(n−1)} .
If there is no ambiguity, we can simply write

Cycln( f ) =Cycln( j)( f j)
For example, if li(y) =∑n

j=1 Li jy j, 0 ≤ i ≤ n and if

N(n) = {0,1, . . . ,n},
Ni = {0,1, . . . , (̂n− i), . . . ,n},
ni = (0,1, . . . , (̂n− i), . . . ,n)

fni
(y) = det((Lkh)k∈Ni,1≤h≤n)

∏ j≠n−i l j(y) ,

Denote

det(li1 , . . . , lin) = det((Lkh)k∈{i1,...,in},1≤h≤n),
then the Eisenstein trick

n∑
i=0

(−1)i det(l0, l1, . . . , l̂i, . . . , ln)
∏ j≠i l j(y) = 0,

after replacing i by n− i, can be rewritten as

Cycln+1( f )(y) = 0.
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5.5.2 General case of r and generalized polylogarithms over F

The cocycle relation
n∑

i=0

(−1)i det(l0, l1, . . . , l̂n−i, . . . , ln)
∏ j≠n−i l j(y) = 0

is equivalent to

n−1∑
i=0

(−1)i det(l0, l1, . . . , l̂n−i, . . . , ln)
∏ j≠n−i l j(y) +(−1)n det(l1, . . . , ln)

l1⋯ln
= 0,

then
det(l1, . . . , ln)

l1⋯ln
= n−1∑

i=0

(−1)n+i−1 det(l0, l1, . . . , l̂n−i, . . . , ln)
∏ j≠n−i l j(y)

As in the previous section, we fix l0 = yn and take yn = 1, then

det(l0, l1, . . . , l̂n−i, . . . , ln) = (−1)1+nd̃et(l1, . . . , l̂n−i, . . . , ln),
where

d̃et(li1 , . . . , lin−1
) = det ((Lkh)k∈{i1,...,in−1},1≤h≤n−1)

Therefore

det(l1, . . . , ln)
l1⋯ln

= n−1∑
i=0

(−1)i d̃et(l1, . . . , l̂n−i, . . . , ln)
l1⋯l̂n−i⋯ln

. (9)

Now recall us

N(n) = {1, . . . ,n},
and

i = (i1, . . . , in−1) ∈ Tn−1(N(n)).
then (9) can be written as

det(l1, . . . , ln)
l1⋯ln

=Cycln( f ) =Cycln(i)( fi). (10)

Results of general r. Now we will talk about the case of a general r. We fix a totally real field F

of degree r. Let us recall the basic integral of the Hecke transform.

Ir = Ir(Li) =∫
UR

r∏
i=1

1

Li(u)d
×u = 1

r
∫
Rr−1
+

r∏
i=1

dy

∑r−1
j=1(Li jy j)+Lir

.

Let us fix the notation

∆r = det(L1, . . . ,Lr).
then

r∆rIr =∫
Rr−1
+

det(L1, . . . ,Lr)
∏r

i=1(∑r−1
j=1(Li jy j)+Lir) dy1⋯dyr−1.
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Theorem 5.60 (General Relation of Ir) Given a totally real field F of degree r.

N(r) = {1, . . . ,r}; I(r)(i) = {i1, . . . , ir−1},
and

i = (i1, . . . , ir−1) ∈ Tr−1(N(r)).
And according to Definition 5.57

R
(r)
i,r−1 = R

(r)
I(r)(i),N(r)∖{r−1};

R
(r)
i,r = R

(r)
I(r)(i),N(r)∖{r}.

Then we can obtain the result of the basic integrals Ir from the result of Ir−1,

r∆rIr =Cyclr(i)⎛⎜⎝∫
∞

0
(r−1)∆(i)

r−1(yr−1)I(i)r−1(yr−1) d log
⎛⎜⎝yr−1+ R

(r)
i,r−1

R
(r)
i,r

⎞⎟⎠
⎞⎟⎠ ,

where

∆
(i)
r−1(yr−1) = R

(r)
i,r yr−1+R

(r)
i,r−1

and

(r−1)∆(i)
r−1(yr−1)I(i)r−1(yr−1) =∫

Rr−2
+

∆
(i)
r−1(yr−1)

∏r−1
k=1(∑r−1

j=1(Lik jy j)+Likr) dy1⋯dyr−2.

In fact, we have considered the r-dimensional linear forms

li(y) = r−1∑
j=1

(Li jy j)+Liryr, yr = 1, 1 ≤ i ≤ r

as r−1-dimensional linear forms with a parameter yr−1 by regarding Li(r−1)yr−1+Lir as the (r−1)-
th coefficient.

Proof 5.5.1 We always have the same notations.

li(y) = r−1∑
j=1

(Li jy j)+Lir, 1 ≤ i ≤ r.

Our starting point of the proof is the cocycle relations (9) and (10).

det(l1, . . . , ln)
l1⋯ln

= n−1∑
i=0

(−1)i d̃et(l1, . . . , l̂n−i, . . . , ln)
l1⋯l̂n−i⋯ln

.

By the defition of d̃et and Definition 5.57, we know that

d̃et(li1 , . . . , lir−1) = R
(r)
i,r ,

then

d̃et(li1 , . . . , lir−1)
li1⋯lir−1

= R
(r)
i,r yr−1+R

(r)
i,r−1

li1 , . . . , lir−1

× R
(r)
i,r

R
(r)
i,r yr−1+R

(r)
i,r−1

and

R
(r)
i,r

R
(r)
i,r yr−1+R

(r)
i,r−1

dyr−1 = d log
⎛⎜⎝yr−1+ R

(r)
i,r−1

R
(r)
i,r

⎞⎟⎠ .
This finishes the proof of the theorem.
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Theorem 5.61 (General expression of the basic integral of the Hecke transform)

The basic integral of the Hecke transform can be written as a sum of of r−1 terms

r∆rIr = J
(r)
0 −J

(r)
1 − . . .−J

(r)
r−2,

where the term J
(r)
0 is a sum of logarithms, and J

(r)
1 involves dilogarithms and logarithms, J

(r)
j (1 ≤

j ≤ r−2) are sums of iterated integrals of degree j+1 of differential forms
dy

y+β j
, which we call the

generalized j+1-logarithms, where β j is a rational functions of the coefficients Li j.

Proof 5.5.2 We will prove this theorem by mathematical induction.

The first step. Theorem 5.39, Theorem 5.45 and Theorem 5.52 imply this theorem when r = 2, 3,

4, respectively.

The inductive step. We suppose that the theorem holds when r ≤ k−1, now we will prove when

r = k (k ≥ 3). From Theorem 5.60 and the inductive hypothesis, we can deduce that

Cyclr(i)⎛⎜⎝∫
∞

0
J
(r−1),(i)
0 (yr−1) d log

⎛⎜⎝yr−1+ R
(r)
i,r−1

R
(r)
i,r

⎞⎟⎠
⎞⎟⎠ = J

(r)
0 −J

(r)
1 ;

Cyclr(i)⎛⎜⎝∫
∞

0
J
(r−1),(i)
j (yr−1) d log

⎛⎜⎝yr−1+ R
(r)
i,r−1

R
(r)
i,r

⎞⎟⎠
⎞⎟⎠ = J

(r)
j+1, 1 ≤ j ≤ r−3.

The theorem comes from the two relations above. To give a more precise expression of the first

term, we will define a family of functions by induction. Recall that i is a (r−1)-tuple, we will define

a filtration between the tuples. Let

(h)i = ((h)i1, . . . ,(h) ih), 1 ≤ h ≤ r−1

be a h-tuple, where the upper left symbol (h) signifies the size h of this tuple.

(r−1)i = i = (i1, . . . , ir−1).
Let the set

Ir((h)i) = {(h)i1, . . . ,(h) ih} .
Then we define the filtration relation as follows

(h−1)i = ((h−1)i1, . . . ,(h−1) ih−1) ⊂ (h)i
if

(h)iα ∈ {(h)iβ , 1 ≤ β ≤ h} , 1 ≤ α ≤ h−1.

Recall us Definition 5.57 and we define

C1(i) = log(Li1)− log(Li2);
C2(i, j) = (C1(i)−C1( j))(log(R(r){i, j},{1,2})− log(R(r){i, j},{1,3})) ;

then

Ch((h)i) = (Cyclh((h)i)(Ch−1((h−1)i)))(log(R(r)
Ir((h)i),{1,...,h})− log(R(r)

Ir((h)i),{1,...,h−2,h+1})) ,
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where 2 ≤ k ≤ r−1.

Cr−1(i) = (Cyclr−1(i)(Cr−2((r−2)i)))(log(R(r)
Ir(i),N(r)∖{r})− log(R(r)

Ir(i),N(r)∖{r−1})) .
One can do the calculation and get

J
(r)
0 =Cyclr(i)(Cr−1(i)).
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6 The values ZI,F(Γ,S) and the cohomology of congruence subgroups

of SLm(OF)

Francis Brown formulated a program about the modularity of mixed motives [3], with the purpose to

generalize multiple zeta values and special values of L-functions of modular forms at all integers. In

Brown’s observation, there exsits a modular phenomena in the ring of multiple zeta values relating a

mysterious depth filtration. He proposed that a geometric understanding of these phenomena should

put multiple zeta values and modular form for SL2(Z) in the same framework.

P1∖{0,1,∞} replaced

with
> Γ/H

πun
1

replaced

with
> GΓ

MZV s
replaced

with
> MMV s

MT (Z) replaced

with
> MMM Γ,

where Γ is a subgroup of SL2(Z) with finite index, and GΓ is relative completion of SL2 respect

to Γ. MMV s signifies multiple modular values, which are regularized iterated integrals of modular

forms on an orbifold Γ//H and are also periods of the hypertherical Tannakian category MMM Γ

of mixed modular motives.

MT (Z) is the mixed Tate motives over Z, and the category MMM Γ should be generated by

iterated extension of motives of modular forms.

Remark 6.1 We want to give some remarks on Brown’s MMVs and Goncharov’s Hodge correlators.

If g is a cusp form for SL2(Z), then the special value L(g,n)×(2πi)? is a multiple modular value

for SL2(Z), and is also a period in the sense of Kontsevich- Zagier. Goncharov’s Hodge correlators

contain the special values L( f ,n) of modular forms for GL2(Q) of weight k ≥ 2, outside of critical

strip. In fact the simplest Hodge correlators in this case coincide with the Rankin-Selberg integrals

for L( f ,n).
We could ask if our generalized multiple zeta values can be immerged into such a program.

We begin with the classical problem, studied by Gangl-Kaneko-Zagier and Goncharov.

Recall the work of Gangl-Kaneko-Zagier and Goncharov’s results. For this section we sup-

pose that the field F is an imaginary quadratic field. We will show that our generalized multiple zeta

value, for an imaginary quadratic field, could also be a good candidant as being multiple Eisenstein

series, with the hope to be related to some non-holomorphic new modular forms. We recall the

theorem 6 in [4].

Theorem 6.2 (Gangl, Kaneko and Zagier) [4] The Fourier expansion of

Gr,s(τ) = ∑
m,n∈Zτ+Z

m≻n≻0

1

mrns

for r ≥ 3 and s ≥ 2 and τ ∈H the upper half plane is given by

(2πi)−r−sGr,s = (2πi)−r−sζ(r,s)+ ∑
h+p=r+s

h,p>1

(2πi)−pCp
r,sgh(q)ζ(p)+gr,s(q)
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with q = e2πiτ and

Cp
r,s = δs,p+(−1)sCs−1

p−1+(−1)p−rCr−1
p−1 ∈Z

and

gr,s(q) = (−1)r+s

(r−1)!(s−1)! ∑m>n>0
u>0,v>0

ur−1vs−1qum+vn ∈Q[[q]],

gk(q) = (−1)k
(k−1)! ∑u,n>0

uk−1qun
.

New result over an imaginary quadratic field. We can also get a similar result for our general-

ized multiple zeta value ZI,F(Γ,S) if the field F =Q(√−D) is an imaginary quadratic field.

Notation 6.3 We will note τ =√−D if −D ≡ 2,3(4) and τ = 1+√−D
2

if −D ≡ 1(4). Let N(α) = α ⋅α

be the standard norm of F.

For an imaginary quadratic field, our definition about higher plectic Green functions still works,

however there is no u ∈U the subgroup of U ⊂O×F,+.

Let Γ1 be the graph Figure 1.

G
I,Q(√−D),Γ1,∂Γ1

({xv}v∈∂Γ1
,1) = ∑

α+β+γ=0

e−2πiTr(α ⋅x0+β ⋅x1+γ ⋅x2)
N(α)σ1N(β)σ2N(γ)σ3

Z
I,Q(√−D)(Γ1,∂Γ1) = G

I,Q(√−D),Γ1,∂Γ1
({0}v∈∂Γ1

,1) =∑
α,β

1

N(α)σ1N(β)σ2N(α +β)σ3
.

If α = a1+a2τ ∈OF ,a1,a2 ∈Z and β = b1+b2τ ∈OF ,b1,b2 ∈Z, then

Z
I,Q(√−D)(Γ1,∂Γ1) =

∑ 1

(a1+a2τ)σ1(a1+a2τ̄)σ1(b1+b2τ)σ2(b1+b2τ̄)σ2(a1+b1+(a2+b2)τ)σ3(a1+b1+(a2+b2)τ̄)σ3
.

We can also add a new sign µ for each edge of the graph Γ1, such that α ≻ 0 and β ≻ 0, where

α = a1+a2τ ≻ 0 means that if a2 > 0 or a2 = 0, a1 > 0. Then

Z
I,µ,Q(√−D)(Γ1,∂Γ1) = ∑

α,β≻0

1

N(α)σ1N(β)σ2N(α +β)σ3

= ∑
a1+a2τ≻0
b1+b2≻0

1

(a1+a2τ)σ1(a1+a2τ̄)σ1(b1+b2τ)σ2(b1+b2τ̄)σ2(a1+b1+(a2+b2)τ)σ3(a1+b1+(a2+b2)τ̄)σ3

= ∑
a2=b2=0

a1>0,b1>0

+ ∑
a2=0,b2>0

b1∈Z

+ ∑
a2>0,b2=0

a1∈Z

+ ∑
a2>0,b2>0

a1,b1∈Z

.
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The first sum ∑ a2=b2=0
a1>0,b1>0

.

∑
a2=b2=0

a1>0,b1>0

= ∑
a1>0,b1>0

1

(a1)2σ1(b1)2σ2(a1+b1)2σ3
=ZI,ν ,Q(Γ1,∂Γ1),

where

ZI,ν ,Q(Γ1,∂Γ1) = ∑
r+s=2σ1+2σ2

(C2σ1−1
r−1 +C

2σ2−1
r−1 )ζ(s,r+2σ3).

The second sum ∑a2=0,b2>0
a1>0,b1∈Z

.

∑
a2=0,b2>0

b1∈Z

= ∑
a1>0

b2>0,b1∈Z

1

(a1)2σ1(b1+b2τ)σ2(b1+b2τ̄)σ2(a1+b1+b2τ)σ3(a1+b1+b2τ̄)σ3

Now we apply the Eisenstein’s formula,

1

(b1+b2τ)σ2(a1+b1+b2τ)σ3
= ∑

r1+s1=σ2+σ3

( (−1)σ2C
σ2−1
r1−1

a
r1

1 (a1+b1+b2τ)s1
+ (−1)σ2+s1C

σ3−1
r1−1

a
r1

1 (b1+b2τ)s1
).

And

1

(b1+b2τ̄)σ2(a1+b1+b2τ̄)σ3
= ∑

r2+s2=σ2+σ3

( (−1)σ2C
σ2−1
r2−1

a
r2

1 (a1+b1+b2τ̄)s2
+ (−1)σ2+s2C

σ3−1
r2−1

a
r2

1 (b1+b2τ̄)s2
).

Then

∑
a2=0,b2>0

b1∈Z

= A1+A2+A3+A4,

where

A1 = ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

C
σ2−1
r1−1 C

σ2−1
r2−1

a
r1+r2+σ1

1 (a1+b1+b2τ)s1(a1+b1+b2τ̄)s2

A2 = ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

(−1)s2C
σ2−1
r1−1 C

σ3−1
r2−1

a
r1+r2+σ1

1 (a1+b1+b2τ)s1(b1+b2τ̄)s2

A3 = ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1

a
r1+r2+σ1

1 (a1+b1+b2τ̄)s1(b1+b2τ)s2

A4 = ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

(−1)s1+s2C
σ3−1
r2−1 C

σ3−1
r1−1

a
r1+r2+σ1

1 (b1+b2τ)s1(b1+b2τ̄)s2
.

(1) The first term can computed by the Lipschitz summation formula, due to H. Maass and John

Hawkins.
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A1 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

∑
a1>0,b2>0

b′1∈Z

C
σ2−1
r1−1 C

σ2−1
r2−1

a
r1+r2+σ1

1 (b′1+b2τ)s1(b′1+b2τ̄)s2

= ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

C
σ2−1
r1−1 C

σ2−1
r2−1 ∑

a1>0

1

a
r1+r2+σ1

1

∑
b2>0,b′

1
∈Z

1

(b′1+b2τ)s1(b′1+b2τ̄)s2
,

where we remplaced a1+b1 by b′1.

Theorem 6.4 (Lipschitz summation formula, Hans Maass 96’) [15]

∑
m∈Z

e−2πiµm

(τ +m)α1(τ̄ +m)α2
= (2π)α1+α2(−1)α1−α2

Γ(α1)Γ(α2) ∑
n∈Z

an+µ(y,α1,α2)e2πi(n+µ)x
,

where τ = x+ iy ∈H = {z ∈C ∶ Imz > 0}, µ ∈R, Re(α1+α2) > 1 and an+µ(y,α1,α2)

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ(α1+α2−1)(4πy)1−α1−α2 , if n+µ = 0

(n+µ)α1+α2−1e−2π(n+µ)yσ(4π(n+µ)y,α1,α2), if n+µ > 0

(−n−µ)α1+α2−1e2π(n+µ)yσ(−4π(n+µ)y,α2,α1), if n+µ < 0

where σ(η ,α,β) denotes the special function which has the following integral representation:

∫ ∞
0
(u+1)α−1uβ−1e−ηudu,α ∈C,Re(β) > 0,Re(η) > 0.

Remark 6.5 The function σ(η ,α,β) is a generalization of Γ(β). In fact, the confluent hypergeo-

metric function of the second kind

Ψ(β ,α +β ;η) = σ(η ,α,β)
Γ(β)

is an entire function in α and β .

Definition 6.6 For the simplicity of use, we denote

φα1,α2
(τ) = ∑

m∈Z

1

(τ +m)α1(τ̄ +m)α2
.

Then

φα1,α2
(τ) = (2πi)α1+α2(−1)α1−α2

Γ(α1+α2−1)
Γ(α1)Γ(α2) (4πy)1−α1−α2

+ ∑
n∈N+

(2π)α1+α2(−1)α1−α2

Γ(α1) nα1+α2−1 σ(4πny,α1,α2)
Γ(α2) e2πinτ

+ ∑
n∈N−

(2π)α1+α2(−1)α1−α2

Γ(α2) (−n)α1+α2−1 σ(−4πny,α2,α1)
Γ(α1) e2πinτ̄

.
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Then we can get

A1 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

C
σ2−1
r1−1 C

σ2−1
r2−1 ζ(r1+ r2+σ1) ∑

b2∈N
∗
+

φs1,s2
(b2τ).

(2)In the same way, we can get

A4 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

(−1)s1+s2C
σ3−1
r1−1 C

σ3−1
r2−1 ζ(r1+ r2+σ1) ∑

b2∈N
∗
+

φs1,s2
(b2τ).

(3)Now we turn to the second and the third term.

1

a
r1+r2+σ1

1 (a1+b1+b2τ)s1
= ∑

t1+t2=r1+r2+σ1+s1

⎛
⎝
(−1)r1+r2+σ1C

r1+r2+σ1−1
t1−1(b1+b2τ)t1(a1+b1+b2τ)t2 +

(−1)r1+r2+σ1+t2C
s1−1
t1−1

(b1+b2τ)t1a
t2
1

⎞
⎠ .

Thus the second term can be written as

A2 = B1+B2,

where

B1 = ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2C
σ2−1
r1−1 C

σ3−1
r2−1 C

r1+r2+σ1−1
t1−1(b1+b2τ)t1(b1+b2τ̄)s2(a1+b1+b2τ)t2 ,

and

B2 = ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2+t2C
σ2−1
r1−1 C

σ3−1
r2−1 C

s1−1
t1−1

(b1+b2τ̄)s2(b1+b2τ)t1a
t2
1

.

It’s easy to see that we can again apply the theorem 6.4 to calculate the term B2.

B2 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2+t2C
σ2−1
r1−1 C

σ3−1
r2−1 C

s1−1
t1−1 ∑

a1>0

1

a
t2
1

∑
b2>0
b1∈Z

1

(b1+b2τ̄)s2(b1+b2τ)t1

= ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2+t2C
σ2−1
r1−1 C

σ3−1
r2−1 C

s1−1
t1−1 ζ(t2)× ∑

b2∈N
∗
+

φt1,s2
(b2τ).

In order to calculate the term B1, we will mention another theorem in [15].

Theorem 6.7 (Two-variable summation formula, Pasles and De Azevedo Pribitkin, 2001) [15]

If µ ∈R, Re(α +β) > 1, Re(γ) > 0, τ = x+ iy ∈H and z ∈H, then

∑
m∈Z

e−2πiµm

(τ +m)α(τ̄ +m)β (z+m)γ =
(2π)α+β+γ(−i)α−β+γ

Γ(α)Γ(β)Γ(γ) ∑
n,l∈Z
l+µ>0

ϕn,l+µ(τ,z,α,β ,γ)e2πi[nx+(l+µ)z]
,

where

ϕn,l+µ(τ,z,α,β ,γ)=⎧⎪⎪⎨⎪⎪⎩
e−2πny ∫ b

0 (n+ t)α+β−1(l+µ − t)γ−1e2πi(τ−z)tσ(4π(n+ t)y,α,β)dt, if n ≥ 0

e2πny ∫ b

0 (−n− t)α+β−1(l+µ − t)γ−1e2πi(τ̄−z)tσ(−4π(n+ t)y,β ,α)dt, if n < 0,

here

b = b(l+ [µ]) = ⎧⎪⎪⎨⎪⎪⎩
{µ}, if l+ [µ] = 0

1, if l+ [µ] ≥ 1.

{µ} denotes the fractional part and [µ] denotes the integer part of µ .
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Definition 6.8

ψα,β ,γ(τ,z) = ∑
m∈Z

1

(τ +m)α(τ̄ +m)β (z+m)γ

= (2π)α+β+γ(−i)α−β+γ

Γ(α)Γ(β)Γ(γ) ∑
n,l∈Z
l>0

ϕn,l(τ,z,α,β ,γ)e2πi[nx+lz]
.

Then we can deduce that

B1 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2C
σ2−1
r1−1 C

σ3−1
r2−1 C

r1+r2+σ1−1
t1−1 ∑

a1>0

∑
b2>0

ψt1,s2,t2(b2τ,b2τ +a1).

Finally, we get

A2 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2+t2C
σ2−1
r1−1 C

σ3−1
r2−1 C

s1−1
t1−1 ζ(t2)× ∑

b2∈N
∗
+

φt1,s2
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2C
σ2−1
r1−1 C

σ3−1
r2−1 C

r1+r2+σ1−1
t1−1 ∑

a1>0

∑
b2>0

ψt1,s2,t2(b2τ,b2τ +a1).

(4) At last we turn to the third term A3.

1

a
r1+r2+σ1

1 (b1+b2τ)s2
= ∑

k1+k2=

r1+r2+σ1+s2

⎛
⎝

C
r1+r2+σ1−1
k1−1(a1+b1+b2τ)k1(b1+b2τ)k2

+ C
s2−1
k1−1

(a1+b1+b2τ)k1a
k2

1

⎞
⎠

Then

A3 = ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s2

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

r1+r2+σ1−1
k1−1(a1+b1+b2τ)k1(a1+b1+b2τ̄)s1(b1+b2τ)k2

+ ∑
a1>0

b2>0,b1∈Z

∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s2

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

s2−1
k1−1

(a1+b1+b2τ)k1(a1+b1+b2τ̄)s1a
k2

1

.

By a similar method as for A2, we finally get

A3 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s2

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

s2−1
k1−1

ζ(k2)× ∑
b2∈N

∗
+

φk1,s1
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s1

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

r1+r2+σ1−1
k1−1 ∑

a1>0

∑
b2>0

ψk1,s1,k2
(b2τ,b2τ −a1).

In concusion, we obtain the second sum

∑
a2=0,b2>0

b1∈Z

= A1+A2+A3+A4 = ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

C
σ2−1
r1−1 C

σ2−1
r2−1 ζ(r1+ r2+σ1) ∑

b2∈N
∗
+

φs1,s2
(b2τ)
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+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

(−1)s1+s2C
σ3−1
r1−1 C

σ3−1
r2−1 ζ(r1+ r2+σ1) ∑

b2∈N
∗
+

φs1,s2
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2+t2C
σ2−1
r1−1 C

σ3−1
r2−1 C

s1−1
t1−1 ζ(t2)× ∑

b2∈N
∗
+

φt1,s2
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2C
σ2−1
r1−1 C

σ3−1
r2−1 C

r1+r2+σ1−1
t1−1 ∑

a1>0

∑
b2>0

ψt1,s2,t2(b2τ,b2τ +a1)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s2

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

s2−1
k1−1

ζ(k2)× ∑
b2∈N

∗
+

φk1,s1
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s1

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

r1+r2+σ1−1
k1−1 ∑

a1>0

∑
b2>0

ψk1,s1,k2
(b2τ,b2τ −a1).

The third sum ∑a2>0,b2=0
a1∈Z,b1>0

.

By the symmetry between a1 and b1 and the symmetry between a2 and b2, we can deduce the

third sum from the result of the second sum.

∑
b2=0,b1>0
a2>0,a1∈Z

= ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

C
σ1−1

r′
1
−1

C
σ1−1

r′
2
−1

ζ(r′1+ r′2+σ2) ∑
a2∈N

∗
+

φs′
1
,s′

2
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

(−1)s′1+s′2C
σ3−1

r′
1
−1

C
σ3−1

r′
2
−1

ζ(r′1+ r′2+σ2) ∑
a2∈N

∗
+

φs′
1
,s′

2
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

t′1+t′2=r′1+r′2+σ2+s′1

(−1)r′1+r′2+σ2+s′2+t′2C
σ1−1

r′
1
−1

C
σ3−1

r′
2
−1

C
s′1−1

t′
1
−1

ζ(t′2)× ∑
a2∈N

∗
+

φt′
1
,s′

2
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

t′1+t′2=r′1+r′2+σ2+s′1

(−1)r′1+r′2+σ2+s′2C
σ1−1

r′
1
−1

C
σ3−1

r′
2
−1

C
r′1+r′2+σ2−1

t′
1
−1 ∑

b1>0

∑
a2>0

ψt′
1
,s′

2
,t′

2
(a2τ,a2τ +b1)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

k′1+k′2=r′1+r′2+σ2+s′2

(−1)s′1Cσ1−1

r′
2
−1

C
σ3−1

r′
1
−1

C
s′2−1

k′
1
−1

ζ(k′2)× ∑
a2∈N

∗
+

φs′
2
,k′

1
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

k′1+k′2=r′1+r′2+σ2+s′1

(−1)s′1Cσ1−1

r′
2
−1

C
σ3−1

r′
1
−1

C
r′1+r′2+σ2−1

k1−1 ∑
b1>0

∑
a2>0

ψk′
1
,s′

1
,k′

2
(a2τ,a2τ −b1).
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The fourth sum ∑a2>0,b2>0
a1,b1∈Z

.

Now we apply the Eisenstein’s formula,

1

(b1+b2τ)σ2(a1+b1+(a2+b2)τ)σ3
= ∑

l1+h1=σ2+σ3

( (−1)σ2C
σ2−1
l1−1(a1+a2τ)l1(a1+b1+(a2+b2)τ)h1

+ (−1)σ2+h1C
σ3−1
l1−1(a1+a2τ)l1(b1+b2τ)h1

).
And

1

(b1+b2τ̄)σ2(a1+b1+(a2+b2)τ̄)σ3
= ∑

l2+h2=σ2+σ3

( (−1)σ2C
σ2−1
l2−1(a1+a2τ̄)l2(a1+b1+(a2+b2)τ̄)h2

+ (−1)σ2+h2C
σ3−1
l2−1(a1+a2τ̄)l2(b1+b2τ̄)h2

).
Then

∑
a2>0,b2>0

a1,b1∈Z

= T1+T2+T3+T4,

where

T1 = ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

C
σ2−1
l1−1

C
σ2−1
l2−1(a1+a2τ)l1+σ1(a1+a2τ̄)l2+σ1(a1+b1+(a2+b2)τ)h1(a1+b1+(a2+b2)τ̄)h2

,

T2 = ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

(−1)h2C
σ2−1
l1−1

C
σ3−1
l2−1(a1+a2τ)l1+σ1(a1+a2τ̄)l2+σ1(a1+b1+(a2+b2)τ)h1(b1+b2τ̄)h2

,

T3 = ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

(−1)s1C
σ2−1
l2−1

C
σ3−1
l1−1(a1+a2τ)l1+σ1(a1+a2τ̄)l2+σ1(a1+b1+(a2+b2)τ̄)h1(b1+b2τ)h2

,

T4 = ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

(−1)h1+h2C
σ3−1
l1−1

C
σ3−1
l2−1(a1+a2τ)l1+σ1(a1+a2τ̄)l2+σ1(b1+b2τ)h1(b1+b2τ̄)h2

.

In the following paragraph, we will calculate each Ti.

(1) T1.

T1 = ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

C
σ2−1
l1−1

C
σ2−1
l2−1 ∑

a2>0,b2>0

φl1+σ1,l2+σ1
(a2τ)φh1,h2

((a2+b2)τ)

= ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

C
σ2−1
l1−1

C
σ2−1
l2−1 ∑

b′
2
>a2>0

φl1+σ1,l2+σ1
(a2τ)φh1,h2

(b′2τ).

(2) T4.
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T4 = ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

(−1)h1+h2C
σ3−1
l1−1

C
σ3−1
l2−1 ∑

a2>0,b2>0

φl1+σ1,l2+σ1
(a2τ)φh1,h2

(b2τ).

(3) T2.

Recall that the classical Lipschitz summation formula :

∑
m∈Z

1

(τ +m)s =
(−2πi)s

Γ(s) ∑
n∈N∗+

ns−1e2πinτ
.

Then we will denote

λs(τ) = ∑
m∈Z

1

(τ +m)s .
Then we get also get

λs(τ̄) = ∑
m∈Z

1

(τ̄ +m)s =
(−2πi)s

Γ(s) ∑
n∈N∗−

ns−1e2πinτ̄
.

1

(a1+b1+(a2+b2)τ)h1(b1+b2τ̄)h2
=

∑
m+p=h1+h2

⎛
⎝

(−1)h2C
h1−1
m−1(a1+a2τ +b2(τ − τ̄))m(b1+b2τ̄)p

+ (−1)h2+pC
h2−1
m−1(a1+a2τ +b2(τ − τ̄))m(a1+b1+(a2+b2)τ)p

⎞
⎠ .

T2 =C1+C2,

C1 = ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

C
σ2−1
l1−1

C
σ3−1
l2−1

C
h1−1
m−1(a1+a2τ)l1+σ1(a1+a2τ̄)l2+σ1(a1+a2τ +b2(τ − τ̄))m(b1+b2τ̄)p

;

C2 = ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

(−1)pC
σ2−1
l1−1

C
σ3−1
l2−1

C
h2−1
m−1(a1+a2τ)l1+σ1(a1+a2τ̄)l2+σ1(a1+a2τ +b2(τ − τ̄))m(a1+b1+(a2+b2)τ)p

.

We observe that b2(τ − τ̄) is an element in the upper half planH, thus we can apply the theorem

of double-varaiables summation formula 6.7.

C1 = ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

∑
a2>0
b2>0

∑
a1∈Z

C
σ2−1
l1−1

C
σ3−1
l2−1

C
h1−1
m−1(a1+a2τ)l1+σ1(a1+a2τ̄)l2+σ1(a1+a2τ +b2(τ − τ̄))m ∑b1∈Z

1

(b1+b2τ̄)p

= ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

C
σ2−1
l1−1

C
σ3−1
l2−1

C
h1−1
m−1 ∑

a2>0
b2>0

ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp(b2τ̄).
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By the same argument, we get

C2 = ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

∑
a2>0
b2>0

(−1)pC
σ2−1
l1−1

C
σ3−1
l2−1

C
h2−1
m−1 ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp((a2+b2)τ).

T2 = ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

C
σ2−1
l1−1

C
σ3−1
l2−1

C
h1−1
m−1 ∑

a2>0
b2>0

ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp(b2τ̄)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

(−1)pC
σ2−1
l1−1

C
σ3−1
l2−1

C
h2−1
m−1 ∑

a2>0
b2>0

ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp((a2+b2)τ).

(4)T3.

Using the similar method as we did for T2, we can obtain an expanion for T3. However, b2(τ̄ −τ) is

no longer in the upper half plan. So we will try another way.

1

(a1+a2τ)l1+σ1(b1+b2τ)h2
= ∑

i1+ j1=
l1+σ1+h2

⎛
⎝

C
l1+σ1−1
i1−1(a1+b1+(a2+b2)τ)i1(b1+b2τ) j1

+ C
h2−1
i1−1(a1+b1+(a2+b2)τ)i1(a1+a2τ) j1

⎞
⎠

T3 = ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2

(−1)s1C
σ2−1
l2−1

C
σ3−1
l1−1

C
l1+σ1−1
i1−1(a1+a2τ̄)l2+σ1(a1+b1+(a2+b2)τ)i1(a1+b1+(a2+b2)τ̄)h1(b1+b2τ) j1

+ ∑
a2>0,b2>0

a1,b1∈Z

∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2

(−1)s1C
σ2−1
l2−1

C
σ3−1
l1−1

C
h2−1
i1−1(a1+a2τ̄)l2+σ1(a1+b1+(a2+b2)τ)i1(a1+b1+(a2+b2)τ̄)h1(a1+a2τ) j1

.

Since

1

(a1+a2τ̄)l2+σ1(a1+b1+(a2+b2)τ̄)h1
= ∑

i2+ j2=
l2+σ1+h1

⎛
⎝

C
l2+σ1−1
i2−1(b1+b2τ̄)i2(a1+b1+(a2+b2)τ̄) j2

+ C
h1−1
i2−1(b1+b2τ̄)(a1+a2τ̄) j2

⎞
⎠ ,

therefore

1

(a1+a2τ̄)l2+σ1(a1+b1+(a2+b2)τ̄)h1(a1+b1+(a2+b2)τ)i1(b1+b2τ) j1

= ∑
i2+ j2=

l2+σ1+h1

C
l2+σ1−1
i2−1(b1+b2τ̄)i2(a1+b1+(a2+b2)τ̄) j2(a1+b1+(a2+b2)τ)i1(b1+b2τ) j1
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+ C
h1−1
i2−1(b1+b2τ̄)i2(a1+a2τ̄) j2(a1+b1+(a2+b2)τ)i1(b1+b2τ) j1

.

So finally we obtain:

T3 = ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2

(−1)s1C
σ2

l2−1
C

σ3−1
l1−1

C
h2−1
i1−1 ∑

b′
2
>a2>0

φ j1,l2+σ1
(a2τ)φi1,h1

(b′2τ)+

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

(−1)s1C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

l2+σ1−1
i2−1 ∑

a2>b2>0

φ j1,i2(b2τ)φi1, j2(a2τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

t1+t2=i1+ j2

(−1)s1+ j2C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

h1−1
i2−1 C

i1−1
t1−1 ∑

a2,b2>0

ψ j1,i2,t1(b2τ,b2τ +a2(τ − τ̄))λt2(a2τ̄)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

t1+t2=i1+ j2

(−1)s1+ j2+t2C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

h1−1
i2−1 C

j2−1
t1−1 ∑

a2,b2>0

ψ j1,i2,t1(b2τ,b2+a2(τ− τ̄))λt2((a2+b2)τ)

In conclusion, we get

∑
a2>0,b2>0

a1,b1∈Z

= ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

C
σ2−1
l1−1

C
σ2−1
l2−1 ∑

b′
2
>a2>0

φl1+σ1,l2+σ1
(a2τ)φh1,h2

(b′2τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

(−1)h1+h2C
σ3−1
l1−1

C
σ3−1
l2−1 ∑

a2>0,b2>0

φl1+σ1,l2+σ1
(a2τ)φh1,h2

(b2τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

C
σ2−1
l1−1

C
σ3−1
l2−1

C
h1−1
m−1 ∑

a2>0
b2>0

ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp(b2τ̄)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

(−1)pC
σ2−1
l1−1

C
σ3−1
l2−1

C
h2−1
m−1 ∑

a2>0
b2>0

ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp((a2+b2)τ)
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+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2

(−1)s1C
σ2

l2−1
C

σ3−1
l1−1

C
h2−1
i1−1 ∑

b′
2
>a2>0

φ j1,l2+σ1
(a2τ)φi1,h1

(b′2τ)+

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

(−1)s1C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

l2+σ1−1
i2−1 ∑

a2>b2>0

φ j1,i2(b2τ)φi1, j2(a2τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

t1+t2=i1+ j2

(−1)s1+ j2C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

h1−1
i2−1 C

i1−1
t1−1 ∑

a2,b2>0

ψ j1,i2,t1(b2τ,b2τ +a2(τ − τ̄))λt2(a2τ̄)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

t1+t2=i1+ j2

(−1)s1+ j2+t2C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

h1−1
i2−1 C

j2−1
t1−1 ∑

a2,b2>0

ψ j1,i2,t1(b2τ,b2+a2(τ− τ̄))λt2((a2+b2)τ)

Theorem 6.9 (The Fourier expansion of Z
I,µ,Q(√−D)(Γ1,∂Γ1))

Z
I,µ,Q(√−D)(Γ1,∂Γ1) =ZI,µ,Q(Γ1,∂Γ1)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

C
σ2−1
r1−1 C

σ2−1
r2−1 ζ(r1+ r2+σ1) ∑

b2∈N
∗
+

φs1,s2
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

(−1)s1+s2C
σ3−1
r1−1 C

σ3−1
r2−1 ζ(r1+ r2+σ1) ∑

b2∈N
∗
+

φs1,s2
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2+t2C
σ2−1
r1−1 C

σ3−1
r2−1 C

s1−1
t1−1 ζ(t2)× ∑

b2∈N
∗
+

φt1,s2
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s2

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

s2−1
k1−1

ζ(k2)× ∑
b2∈N

∗
+

φk1,s1
(b2τ)

+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

t1+t2=r1+r2+σ1+s1

(−1)r1+r2+σ1+s2C
σ2−1
r1−1 C

σ3−1
r2−1 C

r1+r2+σ1−1
t1−1 ∑

a1>0

∑
b2>0

ψt1,s2,t2(b2τ,b2τ +a1)
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+ ∑
r1+s1=σ2+σ3
r2+s2=σ2+σ3

k1+k2=r1+r2+σ1+s1

(−1)s1C
σ2−1
r2−1 C

σ3−1
r1−1 C

r1+r2+σ1−1
k1−1 ∑

a1>0

∑
b2>0

ψk1,s1,k2
(b2τ,b2τ −a1)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

C
σ1−1

r′
1
−1

C
σ1−1

r′
2
−1

ζ(r′1+ r′2+σ2) ∑
a2∈N

∗
+

φs′
1
,s′

2
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

(−1)s′1+s′2C
σ3−1

r′
1
−1

C
σ3−1

r′
2
−1

ζ(r′1+ r′2+σ2) ∑
a2∈N

∗
+

φs′
1
,s′

2
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

t′1+t′2=r′1+r′2+σ2+s′1

(−1)r′1+r′2+σ2+s′2+t′2C
σ1−1

r′
1
−1

C
σ3−1

r′
2
−1

C
s′1−1

t′
1
−1

ζ(t′2)× ∑
a2∈N

∗
+

φt′
1
,s′

2
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

k′1+k′2=r′1+r′2+σ2+s′2

(−1)s′1Cσ1−1

r′
2
−1

C
σ3−1

r′
1
−1

C
s′2−1

k′
1
−1

ζ(k′2)× ∑
a2∈N

∗
+

φs′
2
,k′

1
(a2τ)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

t′1+t′2=r′1+r′2+σ2+s′1

(−1)r′1+r′2+σ2+s′2C
σ1−1

r′
1
−1

C
σ3−1

r′
2
−1

C
r′1+r′2+σ2−1

t′
1
−1 ∑

b1>0

∑
a2>0

ψt′
1
,s′

2
,t′

2
(a2τ,a2τ +b1)

+ ∑
r′1+s′1=σ1+σ3

r′2+s′2=σ1+σ3

k′1+k′2=r′1+r′2+σ2+s′1

(−1)s′1Cσ1−1

r′
2
−1

C
σ3−1

r′
1
−1

C
r′1+r′2+σ2−1

k1−1 ∑
b1>0

∑
a2>0

ψk′
1
,s′

1
,k′

2
(a2τ,a2τ −b1).

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

C
σ2−1
l1−1

C
σ2−1
l2−1 ∑

b′
2
>a2>0

φl1+σ1,l2+σ1
(a2τ)φh1,h2

(b′2τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

(−1)h1+h2C
σ3−1
l1−1

C
σ3−1
l2−1 ∑

a2>0,b2>0

φl1+σ1,l2+σ1
(a2τ)φh1,h2

(b2τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

C
σ2−1
l1−1

C
σ3−1
l2−1

C
h1−1
m−1 ∑

a2>0
b2>0

ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp(b2τ̄)
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+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3

m+p=h1+h2

(−1)pC
σ2−1
l1−1

C
σ3−1
l2−1

C
h2−1
m−1 ∑

a2>0
b2>0

ψl1+σ1,l2+σ1,m(a2τ,a2τ +b2(τ − τ̄))λp((a2+b2)τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2

(−1)s1C
σ2

l2−1
C

σ3−1
l1−1

C
h2−1
i1−1 ∑

b′
2
>a2>0

φ j1,l2+σ1
(a2τ)φi1,h1

(b′2τ)+

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

(−1)s1C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

l2+σ1−1
i2−1 ∑

a2>b2>0

φ j1,i2(b2τ)φi1, j2(a2τ)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

t1+t2=i1+ j2

(−1)s1+ j2C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

h1−1
i2−1 C

i1−1
t1−1 ∑

a2,b2>0

ψ j1,i2,t1(b2τ,b2τ +a2(τ − τ̄))λt2(a2τ̄)

+ ∑
l1+h1=σ2+σ3

l2+h2=σ2+σ3
i1+ j1=

l1+σ1+h2=

i2+ j2
l2+σ1+h1

t1+t2=i1+ j2

(−1)s1+ j2+t2C
σ2

l2−1
C

σ3−1
l1−1

C
l1+σ1−1
i1−1 C

h1−1
i2−1 C

j2−1
t1−1 ∑

a2,b2>0

ψ j1,i2,t1(b2τ,b2+a2(τ− τ̄))λt2((a2+b2)τ)
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