M. V. Abola, V. Prasad, J. , and A. B. , Association between treatment toxicity and outcomes in oncology clinical trials, Annals of Oncology, vol.25, issue.11, pp.2284-2289, 2014.

H. Akaike, Information theory and an extension of the maximum likelihood principle, International Symposium on Information Theory, pp.267-281, 1973.

B. C. Arnold, Flexible univariate and multivariate models based on hidden truncation, Journal of Statistical Planning and Inference, vol.139, issue.11, pp.3741-3749, 2009.

A. Azzalini, The skew-normal distribution and related multivariate families (with discussion), Scandinavian Journal of Statistics, vol.32, pp.159-200, 2005.

J. Babb, A. Rogatko, and S. Zacks, Cancer phase i clinical trials: efficient dose escalation with overdose control, Stat Med, vol.17, issue.10, pp.1103-1120, 1998.

J. Barrett, P. Diggle, R. Henderson, and D. Taylor-robinson, Joint modelling of repeated measurements and time-to-event outcomes: Flexible model specification and exact likelihood inference, Journal of the Royal Statistical Society. Series B: Statistical Methodology, vol.77, issue.1, pp.131-148, 2015.

B. N. Bekele and Y. Shen, A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial, Biometrics, vol.61, issue.2, pp.344-354, 2005.

S. M. Berry, B. P. Carlin, J. J. Lee, and P. Muller, Bayesian adaptive methods for clinical trials, 2010.

C. M. Booth, A. H. Calvert, G. Giaccone, M. W. Lobbezoo, L. K. Seymour et al., Endpoints and other considerations in phase I studies of targeted anticancer therapy: Recommendations from the task force on Methodology for the Development of Innovative Cancer Therapies (MDICT), European Journal of Cancer, vol.44, issue.1, pp.19-24, 2008.

C. Cai, Y. Yuan, J. , and Y. , A Bayesian Dose-finding Design for Oncology Clinical Trials of Combinational Biological Agents, Journal of the Royal Statistical Society. Series C, Applied statistics, vol.63, issue.1, pp.159-173, 2014.

S. Champiat, O. Lambotte, E. Barreau, R. Belkhir, A. Berdelou et al., Management of immune checkpoint blockade dysimmune toxicities: A collaborative position paper, Annals of Oncology, vol.27, issue.4, pp.559-574, 2016.

L. Cheng, A. Lopez-beltran, F. Massari, G. T. Maclennan, and R. Montironi, , 2018.

, Molecular testing for BRAF mutations to inform melanoma treatment decisions: A move toward precision medicine, Modern Pathology, vol.31, issue.1, pp.24-38

Y. K. Cheung, Dose finding by the continual reassessment method, Biostatistics Series, 2011.

Y. K. Cheung and R. Chappell, Sequential designs for phase i clinical trials with late-onset toxicities, Biometrics, vol.56, issue.4, pp.1177-1182, 2000.

Y. K. Cheung and R. Chappell, A simple technique to evaluate model sensitivity in the continual reassessment method, Biometrics, vol.58, pp.671-674, 2002.

J. Crowley and A. Hoering, Handbook of statistics in clinical oncology, 2012.

K. Cunanan and J. S. Koopmeiners, Evaluating the performance of copula models in phase I-II clinical trials under model misspecification, BMC Medical Research Methodology, vol.14, pp.1471-2288, 2014.

S. E. Dahlberg, G. I. Shapiro, J. W. Clark, J. , and B. E. , Evaluation of statistical designs in phase i expansion cohorts: The Dana-Farber/Harvard cancer center experience, Journal of the National Cancer Institute, issue.7, p.106, 2014.

A. Doussau, B. Asselain, M. C. Le-deley, B. Geoerger, F. Doz et al., Dose-finding designs in pediatric phase I clinical trials: Comparison by simulations in a realistic timeline framework, Contemporary Clinical Trials, vol.33, issue.4, pp.657-665, 2012.

B. Efron, Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods, Biometrika, vol.68, issue.3, pp.589-599, 1981.

E. A. Eisenhauer, C. Twelves, and M. Buyse, Phase I cancer clinical trials: A practical guide, 2015.

, Draft Guideline on the evaluation of anticancer medicinal products in man, European Medicines Agency, 2016.

C. L. Faucett and D. C. Thomas, Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach, Statistics in Medicine, vol.15, issue.15, pp.1663-1685, 1996.

R. Henderson, P. Diggle, and A. Dobson, Joint modelling of longitudinal measurements and event time data, Biostatistics, vol.1, pp.465-480, 2000.

A. Hirakawa, An adaptive dose-finding approach for correlated bivariate binary and continuous outcomes in phase I oncology trials, Statistics in Medicine, vol.31, issue.6, pp.516-532, 2012.

S. Hunsberger, L. V. Rubinstein, J. Dancey, and E. L. Korn, Dose escalation trial designs based on a molecularly targeted endpoint, Statistics in Medicine, vol.24, issue.14, pp.2171-2181, 2005.

A. Iasonos, M. Gounder, D. R. Spriggs, J. F. Gerecitano, D. M. Hyman et al., The impact of non-drug-related toxicities on the estimation of the maximum tolerated dose in phase i trials, Clinical Cancer Research, vol.18, issue.19, pp.5179-5187, 2012.

J. G. Ibrahim, H. Chu, and L. M. Chen, Basic concepts and methods for joint models of longitudinal and survival data, Journal of Clinical Oncology, vol.28, issue.16, pp.2796-2801, 2010.

. Ich, Clinical safety data management: Definitions and standards for expedited reporting E2A, 1994.

A. Ivanova and S. H. Kim, Dose finding for continuous and ordinal outcomes with a monotone objective function: A unified approach, Biometrics, vol.65, issue.1, pp.1-19, 2009.

A. Ivanova, B. F. Qaqish, and M. J. Schell, Continuous toxicity monitoring in phase II trials in oncology, Biometrics, vol.61, issue.2, pp.540-545, 2005.

A. Ivanova and C. Xiao, Dose-finding when the target dose is on a plateau of a dose-response curve: Comparison of fully sequential designs, Pharmaceutical Statistics, vol.12, issue.5, pp.309-314, 2013.

K. James, E. Eisenhauer, M. Christian, M. Terenziani, D. Vena et al., Measuring response in solid tumors: Unidimensional versus bidimensional measurement, Journal of the National Cancer Institute, vol.91, issue.6, pp.523-528, 1999.

D. L. Jardim, K. R. Hess, P. Lorusso, R. Kurzrock, and D. S. Hong, Predictive value of phase i trials for safety in later trials and final approved dose: Analysis of 61 approved cancer drugs, Clinical Cancer Research, vol.20, issue.2, pp.281-288, 2014.

Y. Ji and S. J. Wang, Modified toxicity probability interval design: a safer and more reliable method than the 3 + 3 design for practical phase i trials, J Clin Oncol, vol.31, issue.14, pp.1785-1791, 2013.

I. H. Jin, S. Liu, P. F. Thall, and Y. Yuan, Using data augmentation to facilitate conduct of phase I-II clinical trials with delayed outcomes, Journal of the American Statistical Association, vol.109, issue.506, pp.525-536, 2014.

J. S. Koopmeiners and J. Modiano, A Bayesian adaptive phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes, Clinical Trials, vol.11, issue.1, pp.38-48, 2014.

S. Kummar, M. Gutierrez, H. James, and A. J. Murgo, Drug development in oncology : classical cytotoxics and molecularly targeted agents, vol.62, pp.15-26, 2006.

L. Gould, A. Boye, M. E. Crowther, M. J. Ibrahim, J. G. Quartey et al., Joint modeling of survival and longitudinal non-survival data: Current methods and issues. Report of the DIA Bayesian joint modeling working group, Statistics in Medicine, vol.34, issue.14, pp.2181-2195, 2015.
URL : https://hal.archives-ouvertes.fr/ineris-01855169

L. Tourneau, C. Diéras, V. Tresca, P. Cacheux, W. Paoletti et al., Current challenges for the early clinical development of anticancer drugs in the era of molecularly targeted agents, Targeted Oncology, vol.5, issue.1, pp.65-72, 2010.

L. Tourneau, C. Stathis, A. Vidal, L. Moore, M. J. Siu et al., Choice of starting dose for molecularly targeted agents evaluated in first-in-human phase I cancer clinical trials, Journal of Clinical Oncology, vol.28, issue.8, pp.1401-1407, 2010.

M. Lee, E. J. Feuer, and J. P. Fine, On the analysis of discrete time competing risks data, Biometrics, 2018.

J. J. Luke and F. S. Hodi, Vemurafenib and BRAF inhibition: A new class of treatment for metastatic melanoma, Clinical Cancer Research, vol.18, issue.1, pp.9-14, 2012.

L. M. Mccrink, A. H. Marshall, and K. J. Cairns, Advances in joint modelling: A review of recent developments with application to the survival of end stage renal disease patients, International Statistical Review, vol.81, issue.2, pp.249-269, 2013.

C. E. Mcculloch, J. M. Neuhaus, R. L. Olin, S. F. San, S. Francisco et al., Informative Visit Processes, vol.72, pp.1315-1324, 2016.

R. Mick and M. J. Ratain, Model-guided determination of maximum tolerated dose in Phase I clinical trials: Evidence for increased precision, J Nat Can Inst, vol.85, issue.3, pp.217-223, 1993.

B. Neuenschwander, M. Branson, and T. Gsponer, Critical aspects of the bayesian approach to phase i cancer trials, Stat Med, vol.27, issue.13, pp.2420-2439, 2008.

J. O'quigley and S. Chevret, Methods for dose finding studies in cancer clinical trials: A review and results of a monte carlo study, Statistics in Medicine, vol.10, pp.1647-1664, 1991.

J. O'quigley, M. D. Hughes, and T. Fenton, Dose-finding designs for HIV studies, Biometrics, vol.57, issue.4, pp.1018-1029, 2001.

J. O'quigley, M. Pepe, and L. Fisher, Continual reassessment method: A practical design for phase 1 clinical trials in cancer, Biometrics, vol.46, issue.1, pp.33-48, 1990.

J. O'quigley and L. Z. Shen, Continual reassessment method: A likelihood approach, Biometrics, vol.52, issue.2, pp.673-684, 1996.

X. Paoletti, A. Doussau, M. Ezzalfani, E. Rizzo, and R. Thiébaut, Dose finding with longitudinal data: Simpler models, richer outcomes, Statistics in Medicine, vol.34, issue.22, pp.2983-2998, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01288874

X. Paoletti and A. Kramar, A comparison of model choices for the continual reassessment method in phase i cancer trials, Statistics in Medicine, vol.28, pp.3012-3028, 2009.

S. Postel-vinay, L. Collette, X. Paoletti, E. Rizzo, C. Massard et al., Towards new methods for the determination of dose limiting toxicities and the assessment of the recommended dose for further studies of molecularly targeted agents -Dose-limiting toxicity and toxicity assessment recommendation group for early trials of targeted therapies, an European Organisation for Research and Treatment of Cancer-led study, European Journal of Cancer, vol.50, issue.12, pp.2040-2049, 2014.

S. Postel-vinay, C. Gomez-roca, L. R. Molife, B. Anghan, A. Levy et al., Phase I trials of molecularly targeted agents: Should we pay more attention to late toxicities, Journal of Clinical Oncology, vol.29, issue.13, pp.1728-1735, 2011.

V. Prasad and S. Mailankody, Research and development spending to bring a single cancer drug to market and revenues after approval, JAMA Internal Medicine, vol.177, issue.11, pp.1569-1575, 2017.

V. Pratt, H. Mcleod, L. Dean, A. Malheiro, and W. Rubinstein, Medical Genetics Summaries. NCBI Bookshelf, 2015.

C. Proust-lima, M. Séne, J. M. Taylor, and H. Jacqmin-gadda, Joint latent class models for longitudinal and time-to-event data: A review, Statistical Methods in Medical Research, vol.23, issue.1, pp.74-90, 2014.

D. Reitsma, A. Combest, J. Hummel, and A. Simmons, Improving Oncology Trials Through Adaptive Designs, Applied Clinical Trials, 2015.

M. Riviere, Y. Yuan, J. Jourdan, F. Dubois, and S. Zohar, , 2016.

, I/II dose-finding design for molecularly targeted agent: Plateau determination using adaptive randomization. Statistical Methods in Medical Research

D. Rizopoulos, Joint models for longitudinal and time-to-event data with applications in R, Biostatistics Series, 2012.

A. Robertson, F. Wright, and R. Dykstra, Order restricted statistical inference, 1988.

A. Rogatko, J. S. Babb, M. Tighiouart, F. R. Khuri, and G. Hudes, New paradigm in dose-finding trials: patient-specific dosing and beyond phase i, Clin Cancer Res, vol.11, issue.15, pp.5342-5346, 2005.

A. Rouanet, C. Helmer, J. Dartigues, and H. Jacqmin-gadda, Interpretation of mixed models and marginal models with cohort attrition due to death and drop-out, 2017.

, Statistical Methods in Medical Research, p.096228021772367

G. J. Rustin, M. Quinn, T. Thigpen, A. Du-bois, E. Pujade-lauraine et al., New Guidelines to Evaluate the Response to Treatment in Solid Tumors (Ovarian Cancer), Journal of the National Cancer Institute, vol.96, issue.6, pp.487-488, 2004.

G. J. Rustin, I. Vergote, E. Eisenhauer, E. Pujade-lauraine, M. Quinn et al., Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG), International journal of gynecological cancer : official journal of the International Gynecological Cancer Society, vol.21, issue.2, pp.419-423, 2011.

M. D. Schluchter, Methods for the analysis of informatively censored longitudinal data, Statistics in Medicine, vol.11, issue.14, pp.1861-1870, 1992.

P. Sharma, L. Kumar, S. Mohanty, and V. Kochupillai, Response to Imatinib mesylate in chronic myeloid leukemia patients with variant BCR-ABL fusion transcripts, Annals of hematology, vol.89, issue.3, pp.241-247, 2010.

L. Z. Shen and J. Quigley, Consistency of continual reassessment method under under model misspecification, Biometrika, vol.83, issue.2, pp.395-405, 1996.

R. Simon, B. Freidlin, L. Rubinstein, S. G. Arbuch, J. Collins et al., Accelarated titration designs for phase I clinical trials in oncology, J Nat Can Inst, vol.89, issue.15, pp.1138-1147, 1997.

K. Sinclair and A. Whitehead, A Bayesian approach to dose-finding studies for cancer therapies: Incorporating later cycles of therapy, Statistics in Medicine, vol.33, issue.15, pp.2665-2680, 2014.

J. M. Skolnik, J. S. Barrett, B. Jayaraman, D. Patel, and P. C. Adamson, , 2008.

, Shortening the timeline of pediatric phase i trials: the rolling six design, J Clin Oncol, vol.26, issue.2, pp.190-195

J. C. Soria, Phase 1 trials of molecular targeted therapies: Are we evaluating toxicities properly?, European Journal of Cancer, vol.47, issue.10, pp.1443-1445, 2011.

P. F. Thall and J. D. Cook, Dose-finding based on efficacy-toxicity trade-offs, Biometrics, vol.60, pp.684-693, 2004.

C. L. Tourneau, J. Jacklee, and L. L. Siu, Dose escalation methods in phase i cancer clinical trials, J Natl Cancer Inst, vol.101, issue.10, pp.708-720, 2009.

A. A. Tsiatis and M. Davidian, Joint modeling of Longitudinal and Time-toEvent Data: An Overview, Statistica Sinica, vol.14, pp.809-834, 2004.

N. A. Wages and C. Tait, Seamless phase I/II adaptive design for oncology trials of molecularly targeted agents, Journal of biopharmaceutical statistics, vol.25, issue.5, pp.903-920, 2015.

. Wikipedia, HER2/neu, 2018.

C. H. Wong, K. W. Siah, and A. W. Lo, Estimation of clinical trial success rates and related parameters, Biostatistics, pp.1-14, 2018.

M. S. Wulfsohn and A. A. Tsiatis, A joint model for survival and longitudinal data measured with error, Biometrics, vol.53, issue.1, pp.330-339, 1997.

W. Y. Yeung, B. Reigner, U. Beyer, C. Diack, D. Sabanés-bové et al., Bayesian adaptive dose-escalation designs for simultaneously estimating the optimal and maximum safe dose based on safety and efficacy, Pharmaceutical Statistics, pp.1-18, 2017.

W. Y. Yeung, J. Whitehead, B. Reigner, U. Beyer, C. Diack et al., , 2015.

, Bayesian adaptive dose-escalation procedures for binary and continuous responses utilizing a gain function, Pharmaceutical Statistics, vol.14, issue.6, pp.479-487

Y. Yuan and G. Yin, Bayesian dose finding by jointly modelling toxicity and efficacy as time-to-event outcomes, Journal of the Royal Statistical Society, vol.58, pp.719-736, 2009.

Y. Zang, J. Jack-lee, and Y. Yuan, Adaptive designs for identifying optimal biological dose for molecularly targeted agents, Clin Trials, vol.11, issue.3, pp.319-327, 2015.

W. Zhang, D. J. Sargent, and S. Mandrekar, An adaptive dose-finding design incorporating both toxicity and efficacy, Statistics in Medicine, vol.25, issue.14, pp.2365-2383, 2006.

X. Zhang, Y. Zhang, X. Ye, X. Guo, T. Zhang et al., Overview of phase IV clinical trials for postmarket drug safety surveillance: A status report from the ClinicalTrials.gov registry, BMJ Open, vol.6, issue.11, pp.1-9, 2016.

C. Zhou, A. Clamp, A. Backen, C. Berzuini, A. Renehan et al., Systematic analysis of circulating soluble angiogenesis-associated proteins in ICON7 identifies Tie2 as a biomarker of vascular progression on bevacizumab, British Journal of Cancer, vol.115, issue.2, pp.228-235, 2016.