

Développement de la spectrométrie de masse MALDI -TOF pour l'identification des champignons filamenteux d'intérêt alimentaire et étude de leur résistance aux molécules biocides

Laura Quero

► To cite this version:

Laura Quero. Développement de la spectrométrie de masse MALDI -TOF pour l'identification des champignons filamenteux d'intérêt alimentaire et étude de leur résistance aux molécules biocides. Microbiologie et Parasitologie. Université de Bretagne occidentale - Brest, 2018. Français. NNT : 2018BRES0109 . tel-02303042

HAL Id: tel-02303042 https://theses.hal.science/tel-02303042

Submitted on 2 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THESE DE DOCTORAT DE

L'UNIVERSITE DE BRETAGNE OCCIDENTALE Comue Universite Bretagne Loire

ECOLE DOCTORALE N° 600 Ecole doctorale Ecologie, Géosciences, Agronomie et Alimentation Spécialité : Microbiologie

Développement de la spectrométrie de masse MALDI-TOF pour l'identification des champignons filamenteux d'intérêt alimentaire et étude de leur résistance aux molécules biocides

Thèse présentée et soutenue à Plouzané, le 21 Décembre 2018 Unité de recherche : Laboratoire de Biodiversité et Ecologie Microbienne (EA 3882)

Rapporteurs avant soutenance :

Sabine GALINDOProfesseur, UMR Quali'Sud, Polytech MontpellierJean-Denis BAILLYProfesseur, UMR INRA Toxalim, ENV de Toulouse

Composition du Jury :

Président :	Emmanuel COTON	Professeur, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UBO
Examinateurs :	Sabine GALINDO	Professeur, UMR Quali'Sud, Polytech Montpellier
	Anne-Gaëlle RANC	Docteur, Institut des Agents Infectieux, Centre National de Référence des
		Légionelles, Centre National de Référence des Staphylocoques, CHU de Lyon
Dir. de thèse :	Jérôme MOUNIER	Professeur, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UBO
Encadrants :	Victoria GIRARD	Docteur, bioMérieux, La Balme les Grottes
	Patrice NODET	Docteur, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UBO

Cette thèse CIFRE a été financée par bioMérieux et l'Association Nationale de la Recherche et de la Technologie (ANRT), en collaboration avec le Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM)

Convention #2015/0821

ociation nationale

Remerciements

Je tiens à adresser mes premier remerciements aux membres du jury pour avoir accepté de participer à l'évaluation de mon travail.

Mes remerciements vont également aux organismes financeurs qui ont rendu ce projet possible : la société bioMérieux ainsi que l'ANRT.

Je remercie le professeur Emmanuel Coton, directeur du LUBEM pour m'avoir permis de réaliser ma thèse au sein du laboratoire.

Je remercie sincèrement mon directeur de thèse, le professeur Jérôme Mounier, pour m'avoir fait confiance, tout d'abord dans le cadre d'un stage mais surtout pour la réalisation de ce projet. Merci pour tes conseils et ton optimisme.

Mes plus vifs remerciements à mon encadrante au sein de l'entreprise, le docteur Victoria Girard, pour ta disponibilité et pour la confiance que tu m'as accordée afin de mener ce projet à distance, j'espère en avoir été digne.

Je remercie chaleureusement mes deux encadrants de thèse au sein du LUBEM, les docteurs Valérie Vasseur et Patrice Nodet, merci pour vos conseils toujours avisés et pour le temps que vous avez pu me consacrer.

Mes remerciements vont également à toutes les personnes que j'ai pu cotoyer au sein du département R&D microbiologie de bioMérieux, et plus particulièrement à l'équipe VITEK MS : Valérie, Marie-Christine, Sophie, Delphine J., Delphine G., Laetitia et Nadine, merci de m'avoir si bien accueillie lors de mes séjour à La Balme et surtout de m'avoir transmis votre savoir, j'ai beaucoup appris à vos côtés, toujours dans la bonne humeur. Un grand merci à Sandrine, Béatrice et Priscillia pour tout le travail effectué sur l'analyse des données et pour votre disponibilité.

Je souhaite aussi remercier tous les membres du LUBEM et de l'ESIAB, avec qui j'ai pu partager de bons moments, autour d'un repas, d'un café ou entre deux manips : Anne-Cécile, Christelle, Christophe, Dominique, Elisabeth, Florence, Franck, Gaetan B., Gaetan L.F., Jean-Luc, José, Karim, Laurence, Marie-Elisabeth, Marielle, Monika et Nolwenn. Un grand merci à Stella, pour ta disponibilité au quotidien qui facilite la vie des thésards. Une pensée spéciale à Audrey, merci pour le travail que tu as effectué avec moi sur le projet et pour ta bonne humeur, et à Sylvie, merci de m'avoir laissée m'installer en soucho, j'espère que je ne t'ai pas trop envahie. Je souhaite aussi remercier Marc Le Romancer et Adeline Picot, pour m'avoir donné l'opportunité d'effectuer des missions d'enseignement. Enfin un grand merci à ma chère MHT, pour ta disponibilité et ton sens de l'humour, n'oublie pas de rester mauvaise mauvaise.

Je remercie évidemment mes compagnons de fortune (ou d'infortune selon les jours), tous les doctorants que j'ai eu l'occasion de croiser lors de ces trois ans : Annie, Fabienne, Lucille, Marcia, Marie-Caroline, Nicolas. Guillaume, bon courage pour ta dernière année, j'ai aussi une pensée pour ceux qui commencent : Marion, Mélanie, Océane et Vincent.

Un énorme merci à ceux qui sont devenus un peu plus que des collègues de travail, Amélie, merci pour tes conseils et ta confiance, je peux ouvrir ma propre collection de souches maintenant ! Merci aussi pour nos nombreuses discussions qui m'ont souvent aidée à relativiser et à décompresser. Marine et Maxence, merci pour cette dernière année riche en bons moments au labo comme en dehors, merci pour les fous-rires, les Maxime à peu près et les karaokés tard le soir. Une petite pensée pour Camille, qui a fait partie de la bande lors de son passage au LUBEM.

Merci à ma famille, de m'avoir toujours laissée libre de choisir ma voie et de m'avoir soutenue dans tout ce que j'ai entrepris, je n'en serai jamais arrivée là sans vous.

Enfin, merci à toi Jérémy d'avoir toujours été là pour me supporter, le meilleur est à venir.

Table des matières

Liste d	es abréviations	7
Liste d	es figures	8
Liste d	es tableaux	8
Introdu	ction bibliographique	9
I.	Les champignons	. 10
1)	Classification	. 10
2)	Développement et reproduction	. 13
3)	Rôle technologique	.14
II.	Altérations fongiques des aliments	.14
III.	Identification des champignons filamenteux	. 20
IV.	Spectrométrie de masse MALDI-TOF	.24
V.	Maîtrise des altérations fongiques	. 29
VI.	Objectifs des travaux de thèse	. 35
Chapit	re 1 : Développement et application de la spectrométrie de masse MALDI-TOF pour	
l'ident	ification des champignons filamenteux d'altération	. 38
I.	Résumé des travaux	. 39
II.	Article publié dans Food Microbiology	.43
III.	Résultats supplémentaires: Evaluation des performances d'identification de champignons	5
filar	nenteux par spectrométrie de masse MALDI-TOF après prélèvement directe de matériel	
biol	ogique à partir d'aliments contaminés	.61
Chapit	re 2 : Application de la spectrométrie de masse MALDI-TOF à la différenciation de complex	(es
d'espè	ces et au typage de champignons filamenteux d'altération – Application aux espèces	
apparte	enant à Aspergillus section Flavi et à Penicillium roqueforti	. 64
I.	Résumé des travaux	. 65
II.	Article à soumettre dans International Journal of Food Microbiology	.71
Chapit	re 3 : Evaluation de la néphélométrie laser comme méthode haut-débit pour déterminer la	
résista	nce fongiques aux conservateurs – Etude préliminaire	100
I.	Résumé des travaux	101
II.	Article à soumettre dans International Journal of Food Microbiology	107
Discus	sion générale et perspectives	147
Référe	nces bibliographiques	158
Valori	sations scientifiques	178

Liste des abréviations

- ADN = Acide désoxyribonucléique
- ASC = Advanced Spectra Classifier
- CHCA = Acide α -cyano-4-hydroxycinnamique
- CMI = Concentration Minimale Inhibitrice
- DHB = Acie 2,5-dihydroxybenzoïque
- DO = Densité Optique
- DON = Déoxynivalénol
- DRBC = Dichloran Rose Bengal Chloramphénicol
- ESI = Electrospray Ionisation
- FAO = Food and Agriculture Organization
- FUM = Fumonisine
- GRAS = Generally Recognized As Safe
- IRTF = Infra-rouge à transformée de Fourier
- ITS = Internal Transcribed Spacer
- MALDI-TOF = Matrix-assisted Laser Desorption Ionization
- MDS = Multi-dimensionnal scale
- MEA = Malt Extract Agar
- MLST = Multi-locus Sequence Typing
- OTA = Ochratoxine A
- PCR = Polymerase Chain Reaction
- PDA = Potato Dextrose Agar
- PFGE = Pulse-field Gel Electrophoresis
- RAPD = Random Amplified Polymorphic DNA
- RFLP = Restriction Fragment Length Polymorphism
- RNU = Relative Nephelometric Unit
- SDA = Sabouraud Dextrose Agar
- UBOCC = Université de Bretagne Occidentale Culture Collection
- YGC = Yeast Glucose Chloramphenicol
- ZEN = Zearalenone

Liste des figures

Figure 1 : Arbre représentatif de la classification du règne des Fungi (adapté de Willis 2018) 11
Figure 2: Exemples schématiques de structures conidiogènes pour les genres Aspergillus (A),
Fusarium (B) et Penicillium (C) (Crous, 2009)
Figure 3 : Représentation schématique du fonctionnement d'un spectromètre de masse MALDI-TOF
(adapté de Croxatto et al. 2012)
Figure 4 : Exemples de mesures préventives (cercles verts) et de contrôle (cercles rouges) utilisés pour
maîtriser la croissance des contaminants fongiques dans les produits alimentaires (adapté de Garnier
et al. 2017)
Figure 5 : Structures chimiques de l'acide benzoïque (a), de l'acide sorbique (b) et de la natamycine
(c)

Liste des tableaux

Table 1 : Exemples de produits alimentaires et des contaminants fongiques associés 16			
Table 2 : Genre et espèces productrices des mycotoxines les plus fréquemment retrouvées, substrat			
d'origine et teneurs maximales autorisées par la législation européenne (« Commission			
Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A,			
T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding (Text with EEA			
Relevance) » 2006)			
Table 3 : Gènes cibles à séquencer pour l'identification de différentes espèces fongiques			
Table 4 : Genres fongiques identifiés par spectrométrie de masse MALDI-TOF			
Table 5 : Réglementation des acides sorbique et benzoïque et de la natamycine : quantités autorisées			
et aliments concernés (<i>Règlement (UE) n° 1129/2011</i>)			
Table 6 : Performances d'identification (pourcentage de spectres correctement identifiés à l'espèce par			
la base de données VTEK MS) de 3 espèces fongiques prélevées directement de matrices alimentaires			
en fonction du temps de prélèvement62			

Introduction bibliographique

I. Les champignons

Bien que leur utilisation par l'Homme remonte à plus de 6000 ans, les champignons sont longtemps restés méconnus par rapport aux plantes et aux animaux. Aujourd'hui, il est bien établi que ces organismes interviennent dans des processus extrêmement importants comme le recyclage de la matière organique dans les habitats terrestres ou encore les associations symbiotiques dans lesquelles les champignons facilitent l'absorption des nutriments par des plantes (Varma et Kharkwal 2009) ou des insectes (Hyodo et al. 2003). Les champignons ont un impact important sur les activités humaines. Ils sont utilisés pour l'obtention de nombreux produits de nos vies quotidiennes comme les biocarburants (Tolan 2002), certains antibiotiques (Aly et al. 2011; Houbraken et al. 2011) et certains produits fermentés (Wang et al. 1975). Certains champignons macroscopiques sont comestibles et consommés dans le monde entier. A l'opposé, certaines espèces de champignons sont des agents pathogènes de plantes et sont à l'origine de maladies dévastant les cultures plantées par l'homme mais aussi les plantes sauvages, une menace qui s'accroît avec le réchauffement climatique (Vaughan et al. 2016). D'autres champignons peuvent aussi être pathogènes pour les animaux et l'Homme, et chez ce dernier, l'incidence de ces infections est en augmentation depuis une quinzaine d'années en raison du nombre accru de patients immunodéprimés (Atalay et al. 2016).

1) Classification

Les eucaryotes, les bactéries et les archées constituent les trois domaines du vivant. Le domaine des eucaryotes est divisé en 5 groupes majeurs, parmi lesquels celui des Unicontes, qui comprend tous les eucaryotes primitivement uni-flagellés que sont les Opisthocontes et les Amoebozoa. Les champignons ou Fungi appartiennent au groupe des Opisthocontes, au même titre que les animaux. Les recherches portant sur l'évolution ont montré que les règnes fongique et animal sont plus proches entre eux qu'ils ne le sont des autres domaines du vivant (Baldauf et Palmer 1993; Baldauf, 2008; McLaughlin et al. 2009; Spatafora et al. 2017). Le règne fongique comprend de très nombreux organismes très différents les uns des autres et regroupés dans différentes divisions, ou embranchements. Les premiers organismes fongiques seraient apparus il y a un milliard d'années (Lücking et al. 2009; Prieto et Wedin 2013), sous une forme unicellulaire, vivant dans des environnements aquatiques et se reproduisant *via* des spores asexuées propulsées par un flagelle. Ces organismes seraient similaires à ceux retrouvés aux premiers embranchements de la classification fongique (les

Cryptomycota, *Chytridiomycota* et *Blastocladiomycota*), qui produisent également des spores mobiles et vivent majoritairement dans des environnements aquatiques (Figure 1). Les *Microsporidia* ont également été placés avec ces trois groupes, bien qu'à ce jour, les spores des espèces de ce groupe n'aient jamais été décrites comme mobiles (Torruella et al. 2015). Les deux phyla ou divisions suivants dans l'évolution fongique sont les *Zoopagomycota* et les *Mucoromycota*, dont les espèces sont caractérisées par la production d'une spore à paroi très épaisse appelée zygospore. Les deux derniers phyla, *Ascomycota* et *Basidiomycota* sont capables de former des structures complexes destinées à la production des spores.

Figure 1 : Arbre représentatif de la classification du règne des Fungi (adapté de Willis 2018)

Chaque phylum est ensuite divisé en classes, ordres, familles, genres et espèces. Les *Ascomycota* et *Basidiomycota* contiennent la grande majorité des espèces fongiques décrites à ce jour (~ 90000 pour les *Ascomycota* et 50000 pour les *Basidiomycota*). Le groupe des *Basidiomycota* comprend notamment les champignons macroscopiques comestibles tels que le shiitake (*Lentinula edodes*) ou le champignon de Paris (*Agaricus bisporus*) mais aussi des espèces phyto-pathogènes responsables de rouilles (*Pucciniomycotina*) ou de charbons (*Ustilaginomycotina*). Enfin, le groupe des *Ascomycota* comprend les premières espèces domestiquées par l'Homme telles que les levures utilisées, i.e. *Saccharomyces cerevisiae*, pour produire des boissons alcoolisées dont les traces les plus anciennes remontent il y a près de 6 000 ans (Vidrih et Hribar 2016), mais aussi des espèces pathogènes appartenant aux genres *Fusarium* ou *Aspergillus*, qui peuvent s'avérer dangereuses pour les cultures céréalières mais aussi pour l'Homme *via* la production de mycotoxines retrouvées dans les

céréales comestibles (Antonissen et al. 2014). De plus, certaines espèces sont responsables de graves infections pouvant s'avérer mortelles (Denning et Hope 2010).

Les champignons forment un groupe d'une grande diversité, avec près de 150 000 espèces décrites, même s'il est estimé que moins de 10% des espèces existantes auraient été décrites. Les dernières estimations suggèrent que le nombre total d'espèces fongiques sur Terre se trouverait entre 2,2 et 3,8 millions (Hawksworth et Lücking 2017). Traditionnellement, leur classification reposait sur l'étude de leurs caractères morphologiques et physiologiques, qui ne reflétaient pas l'évolution des espèces. Les progrès et la démocratisation des méthodes moléculaires ont permis de remodeler la classification fongique avec un nombre croissant d'espèces décrites, et leur classification repose aujourd'hui sur l'analyse de l'ADN, permettant de regrouper les espèces ayant évolué à partir d'ancêtres communs (classification dite phylogénétique).

Grâce à l'application d'analyses phylogénétiques les espèces dont la reproduction sexuée n'avait pu être observée, et qui étaient rassemblées au sein du groupe des Deutéromycètes ou champignons imparfaits ont pu être reclassées au sein de leur véritable groupe d'appartenance (*Ascomycota* ou *Basidiomycota*). Comme évoqué ci-dessus, la classification des champignons a été adaptée en fonction des nouvelles découvertes apportées par la biologie moléculaire, et il est probable que l'avènement du séquençage de génomes entiers (Spatafora, 2011) sera le prochain outil qui permettra d'affiner encore plus précisément cette classification.

La nomenclature des champignons dépend du Code International de Nomenclature Botanique (ICN) qui doit être respecté lors de l'attribution d'un nom à une nouvelle espèce fongique. Beaucoup d'espèces couramment retrouvées dans l'environnement ont été décrites plusieurs fois par des chercheurs différents et possèdent donc plusieurs noms. De même, les formes sexuées et asexuées d'un même champignon possèdent parfois des noms différents. Afin de faciliter la communication scientifique et les travaux de recherches, la double nomenclature, qui autorisait l'utilisation de noms séparés pour les différentes formes d'un même champignon a été supprimée et une nouvelle version du Code International pour la Nomenclature (ICN) des algues, champignons et plantes a été introduite, en suivant le concept « One Fungus, One Name » (un champignon, un nom) (Norvell, 2011). Pour les espèces fongiques ayant plusieurs synonymes, il a été décidé que le nom à conserver devait être celui utilisé lors de la première description de l'espèce (chronologiquement parlant). Ces nouvelles règles de nomenclature devraient faciliter la communication scientifique ainsi que la recherche d'information. Cela est particulièrement vrai en mycologie appliquée où une

identification correcte est essentielle, notamment pour le diagnostic et le traitement des pathologies fongiques.

2) Développement et reproduction

Le règne des Fungi consiste en un groupe distinct d'organismes eucaryotes qui absorbent leurs nutriments à partir de matière organique. Les champignons sont retrouvés partout dans la nature, jouant un rôle essentiel en redonnant au sol les nutriments prélevés par les plantes. Il existe cependant un large groupe d'espèces qui peuvent être des agents pathogènes de plantes, et un plus petit groupe d'espèces qui peuvent être des parasites animaux ou humains. Les champignons varient considérablement en taille et en forme mais peuvent être divisés sur la base de leur morphologie en 2 groupes majeurs : les champignons filamenteux multicellulaires ou moisissures et les champignons unicellulaires ou levures. Cependant, la séparation entre ces deux groupes n'est pas totale car il existe des champignons dimorphiques qui sont capables de modifier leur type de développement (uni- ou pluricellulaire) en fonction de leur environnement. Chez la plupart des champignons pluricellulaires, le stade végétatif consiste en un enchevêtrement ou réseau de filaments qui constituent le mycélium. Chaque filament individuel ou hyphe possède une paroi rigide constituée d'un réseau tri-dimensionnel de polysaccharides (Latgé, 2007) et se développe par croissance apicale, qui résulte simultanément de la synthèse de la paroi, la dégradation de la paroi et la pression hydrostatique dans l'hyphe (Lew, 2011). Chez les champignons dits « primitifs », les hyphes sont « non-septés » tandis que chez les groupes plus récents dans l'évolution fongique, les hyphes sont divisés en compartiments via le développement de septa. Ces hyphes sont définis comme « septés ». Les champignons filamenteux sont essentiellement haploïdes et peuvent se propager via la production de spores uni- ou pluricellulaires entourées d'une paroi rigide. Les spores peuvent être produites par reproduction sexuée (stade téléomorphe ou parfait) ou asexuée (stade anamorphe ou imparfait). Certaines espèces fongiques sont homothalliques et peuvent donc produire des spores sexuées à partir d'un seul individu. Cependant, la plupart des espèces sont hétérothalliques, et ne peuvent produire de spores sexuées que lors de la rencontre de deux individus différents et génétiquement compatibles. Traditionnellement, la classification des espèces fongiques reposait sur la description des spores et structures sexuées. Les spores asexuées ou conidies sont quant à elles produites par simple division nucléaire haploïde. Elles sont le plus souvent produites en très grand nombre afin d'assurer la colonisation de nouveaux habitats par leur dispersion.

3) Rôle technologique

Outre les champignons comestibles macroscopiques, dont pas moins de 300 espèces sont consommées à travers le monde (Boa, 2004), les champignons microscopiques jouent un rôle majeur dans la production de nombreux produits alimentaires fermentés. Traditionnellement, les produits originaires d'Asie tels que le saké, la sauce soja ou le tempeh sont fabriqués grâce à l'utilisation des espèces fongiques *Aspergillus oryzae* et *A. sojae*. En occident, les aliments tels que le pain, la bière et le vin sont produits grâce à la fermentation des levures, et les champignons filamenteux sont utilisés dans la production fromagère notamment pour leur affinage, avec des espèces telles que celles appartenant aux genres *Mucor* (Hermet et al. 2012) et *Penicillium* (Ropars et al. 2012) et également dans la production de salaisons (Ludemann et al. 2009). Enfin, les activités métaboliques des champignons filamenteux sont également exploitées pour la production de nombreuses molécules actives telles que des enzymes et des antibiotiques (Bennett, 1998).

II. Altérations fongiques des aliments

Selon un rapport de la FAO paru en 2011, les pertes et le gaspillage alimentaires représentent 33% de la production totale d'aliments soit 1,3 milliard de tonnes par an (FAO, 2011). Les pertes alimentaire sont définies comme la nourriture perdue tout au long de la chaîne de production alimentaires, de la récolte à la transformation en passant par le stockage post-récolte. Le terme de gaspillage alimentaire quant à lui désigne les pertes alimentaires directement liées à la consommation humaine, c'est-à-dire les aliments jetés directement par les consommateurs ou les distributeurs (Parfitt et al. 2010). Le coût économique associé serait de 680 milliards US\$ dans les pays industrialisés et 310 milliards US\$ dans les pays en développement. Dans les pays industrialisés, un tiers des pertes (gaspillage) a aussi lieu chez le consommateur et si l'on transforme les quantités de nourriture produites mais non consommée dans les pays développés en valeur calorique, celle-ci est plus importante que la quantité de nourriture consommée par les pays en voie de développement (FAO, 2011). Les pertes et le gaspillage alimentaires ont de multiples causes parmi lesquelles on retrouve des agents microbiens. Ainsi, on estime que 25% des pertes et gaspillages alimentaires sont d'origine microbienne. L'altération d'un produit alimentaire dépend de sa contamination

initiale mais aussi de facteurs intrinsèques et extrinsèques. Les facteurs intrinsèques sont propres à l'aliment et incluent par exemple le pH et l'activité de l'eau (a_w). Les facteurs extrinsèques incluent la température, l'atmosphère et l'humidité relative. Ces facteurs intrinsèques et extrinsèques peuvent être modulés grâce à la transformation des produits et aux conditions de stockage, de manière à réduire l'incidence des microorganismes et à allonger la durée de vie des produits (Batt, 2016). Le plus souvent, les microorganismes responsables des altérations varient en fonction du type d'aliment, les produits avec une activité de l'eau élevée, un pH proche de la neutralité et riche en nutriments disponibles étant les plus propices aux altérations microbiennes (Blackburn, 2006). Les altérations causées par les microorganismes peuvent être divisées en deux catégories : les altérations de produits frais ou périssables (majoritairement des produits à forte a_w) et les altérations de produits transformés ou stockés, qui sont pour la plupart des aliments à a_w plus réduite (Hocking, 2014). Les champignons filamenteux étant capables de croître dans une large gamme d'a_w, de pH et de température, et pouvant utiliser de nombreux substrats comme les sucres, les acides organiques, les protéines et les lipides, ils peuvent altérer une large gamme d'aliments. Les pertes causées par les champignons représenteraient 5 à 10 % des pertes totales (Pitt et Hocking 2009). Ceux-ci peuvent contaminer les aliments par différentes voies d'entrée, par exemple par le biais de matières premières contaminées, mais aussi pendant la production, ou le stockage, via une contamination par des spores aéroportées. C'est pourquoi la production massive de spores est considérée comme l'une des stratégies de dispersion de nombreux champignons filamenteux d'altération comme les genres Paecilomyces, Penicillium et Aspergillus (Pitt et Hocking 2009). Ils peuvent se développer de manière visible et importante dans certaines zones de production et un nettoyage insuffisant peut conduire à une contamination récurrente des produits comme par exemple Penicillium roqueforti, qui a été retrouvé dans des usines produisant du pain de seigle ou Geotrichum candidum dans les produits laitiers (Dijksterhuis et al. 2013).

Les groupes fongiques les plus couramment associés aux altérations des produits alimentaires sont les suivants : les champignons filamenteux xérophiles, qui peuvent se développer à des a_w inférieures à 0,8, les champignons filamenteux thermo-résistants, qui peuvent survivre aux traitements thermiques comme la pasteurisation, les champignons filamenteux résistants aux conservateurs, les champignons filamenteux qui peuvent se développer en présence d'une très faible concentration en dioxygène ou en présence d'atmosphères modifiées, et enfin les champignons psychrophiles ou psychrotolérants, qui peuvent se développer aux températures de réfrigération (Rico-Munoz et al. 2018).

Lors de leur développement, en plus de l'altération visuelle du produit, les champignons filamenteux peuvent produire des exo-enzymes (lipases, protéases) qui vont transformer les propriétés sensorielles des aliments et induire des changements de couleur, de goût et de texture, conduisant à leur rejet par le consommateur. Il est intéressant de noter qu'il est assez rare qu'une même espèce fongique soit retrouvée comme agent d'altération dans des aliments présentant des propriétés intrinsèques et extrinsèques très différentes, cependant, une même espèce fongique peut être retrouvée sur une large gamme d'aliments présentant des caractéristiques physico-chimiques similaires (Filtenborg et al. 1996). (Houbraken et Samson 2017) ont publié récemment une liste des espèces fongiques majeures responsables d'altérations des aliments. Elle contient 14 genres et une trentaine d'espèces différentes, donnant un aperçu de la diversité des contaminants fongiques. Pour illustrer cette diversité, le Tableau 1 présente quelques genres et espèces majeures de champignons filamenteux et les produits alimentaires auxquels ils sont associés.

Produit alimentaire	Espèces fongiques d'altération associées
Produits laitiers (Filtenborg et al. 1996; Garnier et al. 2017; Hawksworth 2015; Pitt et Hocking 2009)	Cladosporium halotolerans, C. ramotenellum Didymella pinodella Fusarium domesticum Galactomyces geotrichum Mucor circinelloides, M. racemosus Penicillium antarticum, P. bialowiezense, P. brevicompactum, P. commune, P. echinulatum, P. palitans, P. spathulatum, Scopulariopsis fusca
Fruits et légumes (Filtenborg et al. 1996, Hawksworth 2015, Pitt et Hocking, 2009)	Alternaria alternata Botrytis cinerea Cladosporium herbarum Fusarium verticilloides Lasiodiplodia theobromae Penicillium digitatum, P. expansum, P. italicum
Céréales (Filtenborg et al. 1996; Hawksworth 2015; Nielsen et al. 2013; Pitt et Hocking 2009; Susca et al. 2014; Wambacq et al. 2016)	Aspergillus candidus, A. flavus, A. fumigatus, A. niger Claviceps purpurea Fusarium culmorum, F. graminearum, F. oxysporum, F. poae, F. sambucinum Microdochium nivale, M. majus Penicillium aurantiogriseum, P. cyclopium, P. roqueforti Trichoderma harzianum

Table 1 : Exemples de produits alimentaires et des contaminants fongiques associés

Produit alimentaire	Espèces fongiques d'altération associées
Produits de boulangerie (JSantos et al. 2016; Filtenborg et al. 1996; Hawksworth 2015; Le Lay et al. 2016; Pitt et Hocking 2009)	Aspergillus candidus, A. niger, A. repens, A. restrictus Cladosporium langeronii, C. sphaerospermum Paecilomyces variotii Penicillium brevicompactum, P. roqueforti Wallemia sebi
Produits carnés (Filtenborg et al., 1996, Hawksworth 2015, Pitt et Hocking, 2009)	Aureobasidium pullulans Penicillium chrysogenum, P. nalgiovense, P. simplicissimum Thamnidium elegans

Outre l'altération visuelle et sensorielle des produits, le développement des moisissures et leur possible production de mycotoxines représente un enjeu majeur de santé public. En effet, les mycotoxines sont des métabolites secondaires produits par les champignons filamenteux qui sont toxiques pour les vertébrés et les autres animaux. Majoritairement retrouvées lors du stockage post-récolte des céréales, ces toxines sont produites par certains champignons filamenteux au cours du stockage ou durant la culture des céréales aux champs, mais elles peuvent également être retrouvées sur des fruits, des épices ou dans des produits finis comme la bière, le pain, les jus de fruits, le chocolat, les produits laitiers ou le vin qui ont été produits à partir de matières premières contaminées (Kabak, 2009). La FAO estime que chaque année, environ 25% de la production mondiale de céréales sont contaminés par des mycotoxines et les conséquences de cette contamination sont multiples : gaspillage alimentaire, réduction de la productivité animale, augmentation des dépenses de santé, coûts d'inspection et d'analyses accrus (Krska et al. 2016).

Une espèce fongique peut produire une ou plusieurs mycotoxines, et une même mycotoxine peut être produite par différentes espèces fongiques. Cependant, le développement d'une espèce toxinogène n'implique pas nécessairement la production de mycotoxines. De même, l'élimination du contaminant fongique n'assure pas l'absence de mycotoxines, qui peuvent avoir été produites avant cette élimination et perdurer au sein de l'aliment (Turner et al. 2009). Les cinq genres fongiques majeurs pouvant produire des mycotoxines sont les suivants : *Alternaria, Aspergillus, Cladosporium, Fusarium* et *Penicillium* (Bryden, 2012). Les mycotoxines les plus fréquemment retrouvées, les espèces qui les produisent, les hôtes céréaliers les plus fréquemment touchés ainsi que les teneurs maximales autorisées par la législation européenne sont représentées dans le Tableau 2.

Table 2 : Genre et espèces productrices des mycotoxines les plus fréquemment retrouvées, substrat d'origine et teneursmaximales autorisées par la législation européenne (« Commission Recommendation of 17 August 2006 on the Presence ofDeoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding (Text with EEARelevance) » 2006)

Mycotoxine	Taxon	Substrat d'origine	Teneurs maximales autorisées
Aflatoxines	Aspergillus flavus Aspergillus parasiticus	Blé, orge, maïs, cacahuète	 8 μg/kg pour les arachides avant traitement 5 μg/kg pour le maïs et les fruits à coques et fruits séchés avant traitement, et épices 2 μg/kg pour les aliments pour nourrissons et aliments diététiques
Deoxynivalenol (DON)	<i>Fusarium</i> sp.	Blé, orge, avoine, maïs	 1750 μg/kg pour le blé, maïs et avoine bruts 1250 μg/kg pour les autres céréales brutes 750 μg/kg pour les pâtes et céréales destinées à la consommation humaine 500 μg/kg pour le pain 200 μg/kg pour les préparations à base de céréales pour nourrissons
Zearalenone (ZEN)	<i>Fusarium</i> sp.	Maïs, blé, orge, sorgho, seigle	 200 μg/kg pour le maïs brut et destiné à la consommation humaine 100 μg/kg pour les autres céréales brutes 75 μg/kg pour les autres céréales destinées à la consommation humaine 50 μg/kg pour le pain 20 μg/kg pour les préparations à base de céréales pour nourrissons
Fumonisine (FUM)	Fusarium proliferatum Fusarium verticilloides	Maïs, sorgho, riz	2000 μk/kg pour le maïs brut 1000 μg/kg pour la farine de maïs 400 μg/kg pour les aliments à base de maïs destinés à la consommation humaine 200 μg/kg pour les préparations à base de maïs pour nourrissons
Ochratoxine A (OTA)	Aspergillus carbonarius Aspergillus westerdijkiae Penicillium viridicatum Penicillium cyclopium	Maïs, raisin, orge, soja, café	 10 μg/kg pour les raisins secs et le café soluble 5 μg/kg pour les céréales brutes et le café torréfié 3 μg/kg pour les céréales transformées 2 μg/kg pour les vins et jus de raisin 0,5 μk/kg pour les aliments pour nourrissons et aliments diététiques

Mycotoxine	Taxon	Substrat d'origine	Teneurs maximales autorisées
T-2	Fusarium sporotrichioid es Fusarium poae	Maïs, blé, orge, avoine, riz, seigle	Pas de législation actuellement mais des recommandations européennes : $25 \mu g/kg$ pour le pain $50 \mu g/kg$ pour les autres céréales et leurs produits de mouture destinés à la consommation humaine $75 \mu g/kg$ pour les céréales pour petit-déjeuner $100 \mu g/kg$ pour le froment, seigle et autres céréales non transformées, pour le maïs et le son de céréales destinés à la consommation humaine $200 \mu g/kg$ pour l'orge et le maïs non tranformés, pour l'avoine destiné à la consommation humaine directe et pour le son et les flocons d'avoine $1000 \mu g/kg$ pour l'avoine non décortiquée

Comme présenté dans le Tableau 2, une même mycotoxine peut être retrouvée sur différentes céréales, parmi lesquelles certaines sont très utilisées en alimentation animale et humaine, comme le maïs, le blé et l'orge. Ces dernières années, les mycotoxines se sont imposées comme un danger mondial pour l'alimentation notamment car elles sont résistantes aux traitements thermiques (Kabak, 2009). Une étude publiée en 2012 (Rodrigues et Naehrer 2012) menée sur trois ans, trois continents et 7049 ingrédients a démontré que 81% des ingrédients étaient contaminés par au moins une des mycotoxines ciblées (aflatoxine, ZEN, DON, FUM et OTA). Un large panel d'effets toxiques des mycotoxines a été observé sur les animaux et les humains après ingestion de nourriture contaminée. Les mycotoxines peuvent avoir des effets immuno-suppresseurs (FUM, OTA, T-2), carcinogènes (aflatoxines, FUM, OTA), tératogènes (aflatoxines, OTA) et mutagènes (aflatoxines) (Bhat et al. 2010; Paterson et Lima, 2010). D'autre part, l'impact des mycotoxines dépend de nombreux facteurs comme l' exposition, la masse corporelle, l'espèce et l'âge des individus (Hussein et Brasel 2001).

Afin de prévenir l'altération des produits et d'éviter la production de mycotoxines, une détection rapide et précoce des agents d'altération est essentielle, pour permettre le contrôle et la minimisation des risques microbiologiques. C'est pourquoi il est important de disposer de méthodes fiables pour l'identification des champignons filamenteux.

III. Identification des champignons filamenteux

Un nom scientifique est une clé qui permet d'accéder aux informations disponibles sur un organisme. Une identification erronée peut conduire à une mauvaise appréciation des risques posés par cet organisme ou à l'inverse, une surestimation des risques provoquant la mise en œuvre d'actions coûteuses et non nécessaires. La taxonomie, la science qui étudie et décrit les organismes, est donc l'un des éléments essentiels permettant d'assurer la qualité et la sécurité des produits alimentaires. Dans la littérature, les deux publications majeures traitant de l'identification des champignons filamenteux responsables d'altérations sont les ouvrages de Pitt et Hocking (2009) et Robert (2010). Ils rassemblent la majorité des espèces retrouvées comme agents d'altération, ainsi que certaines de leurs caractéristiques, facilitant leur diagnostic. L'ouvrage de Pitt et Hocking (2009) est une référence en mycologie alimentaire car il rassemble des informations sur un très grand nombre de contaminants fongiques, ainsi que les éléments clés pour leur identification phénotypique. D'autres ouvrages de référence existent, proposant des méthodes d'identification similaires pour des genres d'intérêt alimentaire, comme la méthode de Pitt, qui permet l'identification des espèces du genre Penicillium et qui est basée sur l'utilisation de différents milieux de culture, températures et temps d'incubation ainsi que sur l'observation microscopique (Pitt, 1979).

Historiquement, l'identification des champignons filamenteux s'est basée sur l'examen de leurs caractéristiques phénotypiques. Ces caractéristiques incluent notamment l'observation de caractères macroscopiques tels que l'aspect du mycélium, sa couleur ainsi que celle du revers, la production de pigments ou d'exsudat, la vitesse de croissance ainsi que la croissance en fonction du milieu de culture et de la température d'incubation. La technique Biolog[™] basée sur l'utilisation de différents substrats a notamment été développée conduisant à l'obtention d'un profil métabolique qui, comparé à une base de données, permet d'identifier les organismes fongiques à l'espèce (Cantrell et al. 2006; Singh, 2009). L'identification phénotypique des champignons filamenteux repose également sur l'examen de caractères microscopiques tels que l'aspect des spores et des structures produisant ces dernières (Campbell et Johnson 2013). Cette étude morphologique nécessite une maturation suffisante pour que les thalles fongiques présentent un aspect typique et pour que les fructifications spécifiques apparaissent (Figure 2), ce qui peut parfois prendre jusqu'à plusieurs semaines pour certaines espèces. De plus, les variations morphologiques sont parfois très faibles et ne sont interprétables que par des mycologues expérimentés. Pour

conclure, cette technique classique peut s'avérer longue, fastidieuse et est souvent imprécise, d'où la nécessité de techniques alternatives.

Figure 2 : Exemples schématiques de structures conidiogènes pour les genres *Aspergillus* (A), *Fusarium* (B) et *Penicillium* (C) (Crous, 2009)

Pour l'identification moléculaire des champignons, le marqueur génétique universel est l'Internal Transcribed Spacer (ITS) region (Schoch et al. 2012, 2014). Au cours des dernières années et avec les avancées considérables effectuées en biologie moléculaire, le séquençage de gènes d'intérêt est devenue la méthode de référence pour l'identification des champignons filamenteux, supplantant les autres techniques moléculaires précédemment utilisées comme la RFLP (Restriction Fragment Length Polymorphism) ou la RAPD (Random Amplified Polymorphic DNA) (Paterson et Bridge 1994). L'extraction d'ADN et l'utilisation de la réaction de polymérisation en chaîne (PCR) est aujourd'hui une technique de routine dans les laboratoires de mycologie, et de nombreux kits commerciaux sont disponibles pour faciliter l'extraction d'ADN fongique. Les séquences obtenues après séquençage sont ensuite comparées à des bases de données telles que GenBank (www.ncbi.nlm.nih.gov/genbank) ou Fungal barcoding (http://www.fungalbarcoding.org) afin d'évaluer leur similarité avec les séquences présentes dans la base et ainsi orienter l'identification. Il faut cependant rester critique face aux résultats obtenus grâce aux bases de données publiques car elles contiennent des séquences mal attribuées ce qui peut conduire à une identification erronée. Enfin, bien que l'ITS soit reconnu comme le marqueur universel (Dulla et al. 2016), il peut être insuffisant pour discriminer deux ou plusieurs espèces d'un même genre. Dans un tel cas, il est nécessaire d'utiliser d'autres gènes spécifiques d'intérêt taxonomique (Tableau 3), dont les exons sont très conservés et peuvent être utilisés comme la cible des amorces, tandis que leurs introns sont hautement variables, permettant une délimitation des espèces et l'obtention

d'une identification fiable à l'espèce (Samson, 2010). En plus d'une comparaison avec des bases de données, une analyse phylogénétique avec des séquences de référence peut être menée pour affiner l'assignation taxonomique d'une séquence d'intérêt. L'avènement de l'utilisation des techniques génotypiques a permis de de remodeler et d'affiner la classification des champignons filamenteux, avec la description de nouvelles espèces au sein de complexes. Par exemple, Chen et al. (2017) ont redéfini la classification d'*Aspergillus* section *Aspergillus* avec 31 espèces dont 9 nouvellement acceptées, Frisvad et al. (2019) ont étudié *Aspergillus* section *Flavi* et défini 33 espèces dont 8 nouvelles, enfin, Visagie et al. (2014) se sont intéressés au genre *Penicillium* dans lequel 354 espèces sont acceptées et ont reclassé les espèces *Aspergillus paradoxus*, *A. crystallinus* et *A. malodoratus* au sein du genre *Penicillium*.

Gène ciblé	
β -tubuline et calmoduline (Geiser et al. 2007)	
β -tubuline, actine et facteur d'élongation α (Bensch et al. 2012)	
Facteur d'élongation α (O'Donnell et al. 2009)	
Actine et facteur d'élongation α (Jacobs et Botha 2008)	
β -tubuline (Samson et al. 2004)	
β -tubuline et RPB2 (Yilmaz et al. 2014)	

Table 3 : Gènes cibles à séquencer pour l'identification de différentes espèces fongiques

Si les techniques classiques d'observations, sont longues, parfois imprécises et nécessitent l'expertise d'un mycologue, les techniques de biologie moléculaire permettent d'obtenir une identification fiable et représentent la référence en matière d'identification sauf dans les cas où aucune ou trop peu de séquences de référence pour l'organisme à identifier sont disponibles. Cependant, ces techniques peuvent aussi s'avérer fastidieuses car elles nécessitent une étape de mise en culture préalable à l'extraction d'ADN, qui sera suivie par une PCR (Polymerase Chain Reaction) afin d'amplifier les gènes cibles, puis par le séquençage des amplicons avant de procéder à l'analyse des résultats, qui requiert une certaine expertise, expertise également nécessaire pour définir le choix des cibles à amplifier en fonction du genre fongique étudié. C'est pourquoi de nouvelles méthodes d'identification ont émergé ces dernières années, notamment les méthodes spectrales, qui pourraient être appliquées à l'identification haut débit et peu coûteuse des champignons filamenteux. Ces méthodes comprennent la spectrométrie de masse MALDI-TOF et les spectroscopies Raman (Ghosal et al. 2012) et Infra-Rouge à Transformée de Fourrier (Shapaval et al. 2013).

La spectroscopie est basée sur les interactions de radiations électromagnétiques avec la matière. Les méthodes spectroscopiques peuvent être basées sur les phénomènes d'émission, d'absorption, de fluorescence ou de dispersion et elles peuvent être utilisées pour des analyses quantitatives ou qualitatives. La spectroscopie Raman, est une technique basée sur la dispersion et sur l'effet Raman (du nom de son inventeur) : un effet optique selon lequel la fréquence de la lumière peut être modifiée par le milieu dans lequel elle circule. En pratique, un échantillon est éclairé par un rayon laser monochromatique qui va interagir avec les molécules de l'échantillon et ainsi provoquer la dispersion de la lumière. La lumière dispersée ayant une fréquence différente de la lumière émise, un spectre va ainsi pouvoir être généré (Bumbrah et Sharma 2016). Un des avantages de cette technique est qu'elle peut être miniaturisée et donc fournir des appareils très légers et utilisables sur le terrain. Dès 2003, l'application de cette technique à l'identification de bactéries et champignons filamenteux a été explorée (Maquelin et al. 2003) puis à l'identification de spores de macromycètes (De Gussem et al. 2007), et plus récemment l'identification de champignons filamenteux de différents genres d'intérêt comme Aspergillus et Fusarium (Fazio et al. 2018; Ghosal et al. 2012) dans un contexte environnemental, mais aussi de dermatophytes dans un contexte clinique (Witkowska et al. 2018). Cependant, le nombre de publications concernant l'identification de champignons filamenteux reste faible ce qui fait de la spectroscopie Raman une technique encore émergente et qui demande à être développée. La spectroscopie infrarouge à transformée de Fourier (ou IRTF) est elle aussi basée sur le principe d'absorption de la lumière, mais il s'agit ici d'une source infra-rouge polychromatique. Lors de son application à l'identification de microorganismes, les spectres obtenus présentent des valeurs d'absorbances spectroscopiques infra-rouge qui sont corrélées aux rangs taxonomiques par une analyse discriminante des moindres carrés partiels ou algorithme PLS-DA, qui permet ensuite de prédire l'attribution d'un spectre inconnu à un rang taxonomique (Lecellier, 2013). Dès 2002, cette technique a pu être appliquée pour la différenciation et la détection de Fusarium oxysporum et Rhizopus stolonifer sur des plants de tomates (Hahn, 2002) et par la suite, à l'identification d'espèces appartenant au genres Aspergillus et Penicillium (Fischer et al. 2006) jusqu'à la publication de Shapaval et al. (2013), qui ont proposé et évalué avec succès un protocole haut débit pour l'identification de 19 espèces fongiques d'altération. Une autre équipe a également développé une base de données spectrales représentant 140 espèces, et a pu obtenir une identification correcte à l'espèce pour plus de 90% des spectres (Lecellier et al. 2014, 2015). Cependant, malgré une utilisation possible en haut-débit et une automatisation (Li et al. 2016), cette technique présente certains inconvénients, notamment dans la préparation des échantillons avant analyse qui doit être très standardisée et requiert de nombreuses étapes. De plus, l'absence de calibration interne lors de l'acquisition des données conduit à des performances très variables en fonction de l'instrument utilisé (Lecellier et al. 2015).

IV. Spectrométrie de masse MALDI-TOF

La spectrométrie de masse est utilisée en chimie depuis de nombreuses années mais sa première application à l'identification bactérienne remonte à 1975 (Anhalt et Fenselau 1975). Dans les années 80 et 90, le développement de diverses techniques de désorption/ionisation et notamment des techniques d'ionisation « douces » comme le matrix assisted laser desorption ionisation (MALDI) ou l'ionisation « electrospray » (ESI) ont permis l'analyse de protéines intactes. La spectrométrie de masse « Matrix Assisted Laser Desorption Ionisation - Time Of Flight » (MALDI-TOF) est une technique couplant une source d'ionisation laser assistée par une matrice et un analyseur à temps de vol. L'instrument est composé de trois éléments fonctionnels : une source d'ionisation, pour transférer les ions moléculaires de l'échantillon dans l'analyseur, un analyseur de masse, pour séparer les ions en fonction de leur ratio masse / charge (m/z) et un détecteur. La technique MALDI permet de générer majoritairement des ions à une seule charge. Les analyseurs de masse TOF sont utilisés depuis de nombreuses années pour l'identification microbienne car ils permettent une analyse rapide et peuvent être miniaturisés, de plus, ils sont bien adaptés à l'ionisation de type MALDI. Pour l'analyse, les échantillons biologiques sont mélangés à une matrice qui va permettre la cristallisation de l'échantillon. La matrice est composée de petites molécules acides ayant une forte capacité d'absorption, pour transmettre l'énergie de la source d'ionisation aux molécules de l'échantillon (Fenselau et Demirev 2001; Nakamura et al. 2016). Les deux matrices les plus utilisées pour l'analyse d'échantillons fongiques sont l'acide 2,5-dihydroxybenzoïque (DHB) et l'acide α-cyano-4-hydroxycinnamique (CHCA), car elles sont appropriées pour l'analyse de molécules ayant une masse comprise entre 5000 et 20000 Da comme les protéines ribosomales. La plupart des microorganismes peuvent être analysés sans lyse cellulaire préalable car l'exposition à l'acidité de la matrice permet de lyser les cellules. Cependant, certains organismes comme les champignons filamenteux ayant une paroi épaisse et résistante (Latgé, 2007), il est préférable de passer par une étape d'extraction (impliquant généralement un traitement à l'acide formique et à l'acétonitrile) avant l'analyse par spectrométrie de masse. Lors de l'analyse (Figure 3), la matrice va absorber l'énergie du laser

conduisant à la désorption des échantillons qui sont ainsi ionisés et propulsés dans l'analyseur TOF, un tube de métal sous vide, dans lequel les ions vont être séparés en fonction de leur ratio m/z, avant d'atteindre le détecteur. Chaque pic du spectre de masse correspondra ainsi à un rapport m/z et la hauteur du pic sera proportionnelle au nombre d'ions de même m/z ayant atteint le détecteur. La spectrométrie de masse MALDI-TOF est une technique rapide, répétable et peu coûteuse en terme de coût d'analyse par échantillon, et elle permet de générer des spectres de masse caractéristiques via la détection des protéines ribosomales dont l'expression est abondante, constante et bien conservée d'une espèce à l'autre, ce qui en fait une candidate idéale pour l'identification microbienne.

Figure 3 : Représentation schématique du fonctionnement d'un spectromètre de masse MALDI-TOF (adapté de Croxatto et al. 2012)

C'est en 1994 qu'apparaît la première publication (Cain et al. 1994) traitant de l'identification bactérienne par spectrométrie de masse MALDI-TOF après traitement des cellules bactériennes (sonication et précipitation des protéines), suivie en 1996 par une autre publication traitant également de l'identification bactérienne, mais cette fois à partir de cellules intactes, n'ayant pas subi de traitement avant analyse (Holland et al. 1996). Par la suite, de nombreuses études ont démontré la fiabilité de cette technique pour l'identification d'espèces bactériennes (Nagy et al. 2009; Fournier et al. 2012; Nacef et al. 2017; van Baar 2000; van Wuijckhuijse et al. 2005) et même de virus (Vitale et al. 2013). L'application de la spectrométrie de masse à l'identification des champignons filamenteux n'est intervenue qu'une dizaine d'années après son utilisation pour les bactéries, avec les travaux de Chen et Chen en 2005 sur des spores de Penicillium, et ceux de Kallow et al. (2006), sur plusieurs souches d'Aspergillus section Nigri, cultivées en milieu liquide et ayant subi une étape de lyophilisation. La fiabilité de la spectrométrie de masse MALDI-TOF appliquée à l'identification des champignons filamenteux est aujourd'hui bien établie grâce aux nombreux travaux qui ont souligné sa robustesse, cependant, la plupart de ces publications concernent un nombre limité d'espèces ou un seul genre fongique. le Tableau 4 répertorie des exemples de publications traitant de l'identification des champignons par spectrométrie de masse MALDI-TOF ainsi que les résultats obtenus. Quelques travaux ont été menés sur la construction de bases de données (Becker et al. 2015; Lau et al. 2013; Cassagne et al. 2011; De Carolis et al. 2012). La majorité des publications concerne les champignons filamenteux d'intérêt clinique (Del Chierico et al. 2012; Gautier et al. 2014; McMullen et al. 2016; Packeu et al. 2013; Panda et al. 2015; Sleiman et al. 2016). Un nombre restreint d'équipes de recherche ont également exploré avec l'utilisation de la spectrométrie de masse MALDI-TOF pour la différenciation de complexes d'espèce, avec des résultats variables. Al-Hatmi et al. (2015) ont pu différencier les espèces d'intérêt clinique du complexe Fusarium fujikuroi, tandis que plusieurs équipes n'ont pas réussi à différencier des espèces proches du genre Aspergillus telles que A. flavus et A. oryzae (Li et al. 2017; Park et al. 2017; Rodrigues et al. 2011) sur la base de l'analyse de leurs spectres.

Genre/espèce	Nombre d'espèces et		Dágultota	Références
étudiés	de souches étudiées	r reparation des echantmons	Kesuitais	
Alternaria spp.	12 espèces	Dépôt direct mycélium +	Bonne séparation des espèces basée sur l'analyse de	Chowdappa et al. 2013
	60 souches	spores	similarité des spectres	
A	28 espèces	Dépôt direct mycélium +	08.60 d'identifications correctes	Alanio et al. 2011
Asperguius spp.	140 souches	spores	98,0% d identifications correctes	
Asparaillus app	4 espèces	Extraction acide	82% d'identifications correctes	Atalay et al. 2016
Asperguius spp.	24 souches	formique/acétonitrile	85% d identifications correctes	
Aspergillus spp.	12 espèces	Extraction acide	100% d'identifications correctes	Hettick et al. 2008b
	17 souches	trifluoroacétique/acétonitrile	100% d identifications correctes	
A	11 espèces	Extraction acide	Bonne séparation des espèces basée sur l'analyse de	Rodrigues et al. 2011
Asperguius spp.	102 souches	formique/acétonitrile	similarité des spectres sauf pour les espèces proches	
Eugarium enn	14 espèces	Extraction acide	02.60% d'identifications correctes	Al-Hatmi et al. 2015
<i>Fusurium</i> spp.	84 souches	formique/acétonitrile	55,0% d Identifications correctes	
Fusarium	60 souches	Dépôt direct mycélium +	1000 d'identifications correctes	S. Chang et al. 2016
verticilloides	ou souches	spores	100% d identifications correctes	
Eusarium opp	9 espèces	Extraction acide	01.80% d'identifications correctes	Marinach-Patrice et al.
<i>Fusurium</i> spp.	62 souches	trifluoroacétique/acétonitrile	51,8% d Identifications correctes	2009
Penicillium spp.	6 espèces	Dénêt direct sports	Bonne séparation des espèces basée sur l'analyse de	Chan at Chan 2005
	20 souches	Depot uncer spores	similarité des spectres	Chen et Chen 2003
Penicillium spp.	12 espèces	Extraction acide	100% d'identifications correctes	Hattick at al. 200%
	12 souches	trifluoroacétique/acétonitrile		10tues et al. 2000a

Table 4 : Genres fongiques identifiés par spectrométrie de masse MALDI-TOF

Après acquisition des spectres, deux méthodes sont possibles pour les analyser et obtenir une identification. La première approche consiste à comparer le spectre obtenu à une base de données spectrales pour obtenir une identification. Cette solution est rapide, simple et facile à implémenter en routine, pour peu qu'une base de données suffisamment complète et robuste soit disponible. La deuxième approche consiste à estimer la masse moléculaire des pics obtenus et à la comparer avec des masses moléculaires protéiques théoriques obtenues à partir de génomes séquencés (Demirev et al. 1999; de Koster et Brul 2016). Cependant, pour les bactéries comme pour les champignons filamenteux, cette méthode est limitée par le nombre de génomes séquencés et également par l'avancée limitée du développement des bases de données protéiques. Les systèmes commerciaux d'identification microbienne par spectrométrie de masse reposent donc sur la première approche. Dans cette approche, deux procédures différentes sont utilisées par les systèmes commerciaux pour créer la base de données spectrale. La première consiste en l'utilisation de nombreux spectres d'une souche afin de générer un « profil principal de spectres » (Sauer et al. 2008), tandis que la deuxième procédure génère un « super-spectre » obtenus en combinant les spectres de plusieurs souches, cultivées dans des conditions de culture différentes (Emonet et al. 2010). Pour ce deuxième cas, Normand et al. (2013) ont démontré que le nombre de souches utilisées ainsi que le nombre de réplicats biologiques utilisés pour construire une base de données spectrales ont un impact significatif sur les performances d'identification, en effet, en testant plusieurs constructions de base de données spectrales, ils ont obtenu les meilleures performances d'identification pour la base de données construite avec le plus de souches différentes possibles et le plus grand nombre de réplicats biologiques. De manière plus générale, il est nécessaire de s'assurer que les spectres utilisés pour construire la base de données ont été obtenus à partir de souches parfaitement identifiées et pures. Il faut également s'assurer que lorsqu'un traitement de pré-acquisition des spectres est nécessaire (par exemple une extraction protéique dans le cas des champignons filamenteux), il soit identique lors de la construction de la base de données puis lors de l'utilisation de cette base de données en routine (Rahi et al. 2016). Enfin, l'utilisation en routine de la spectrométrie de masse MALDI-TOF est dépendante de la fiabilité et de la richesse des bases de données spectrales, qui sont elles-mêmes conditionnées par la complexité de la taxonomie fongiques et la grande diversité des espèces d'altération. En conclusion, la spectrométrie de masse MALDI-TOF peut donc être considérée comme une technique fiable et rapide pour l'identification des champignons filamenteux, sous réserve de disposer de bases de données robustes et les plus complètes possibles en terme d'espèces répertoriées. Enfin, la complexité de la taxonomie

fongique associée à la diversité de plus en plus large des espèces fongiques responsables d'altérations constituent un défi important pour l'élaboration de bases de données fiables pour une utilisation en routine de la spectrométrie de masse MALDI-TOF.

Outre son utilisation pour l'identification de micro-organismes, la spectrométrie de masse MALDI-TOF a également été appliquée au typage de souches bactériennes appartenant à de nombreuses espèces d'intérêt clinique telles que Staphylococcus aureus (Ueda et al. 2015) ou Salmonella enterica (Kuhns et al. 2012) avec des résultats similaires à ceux obtenus par les méthodes traditionnelles de typage basées sur l'analyse de l'ADN telles que le polymorphisme de longueur des fragments de restriction (RFLP), ou l'électrophorèse en champs pulsé (PFGE). Dans le contexte industriel, la technique MALDI-TOF a également permis de différentier des isolats de Lactobacillus brevis et de corréler la classification des spectres obtenus en fonction des propriétés physiologiques des isolats (Kern et al. 2014). Cependant, le typage des organismes fongique s'avère plus difficile, notamment à cause de la nature complexe de leurs relations phylogénétiques (Bader, 2013), et peu d'études ont été consacrées à l'utilisation de la spectrométrie de masse MALDI-TOF appliquée au typage des champignons filamenteux. Quelques travaux ont été menés sur les levures, notamment en contexte industriel sur les espèces utilisées en vinification, pour lesquelles l'analyse des spectres et l'analyse génétique ont abouti à une classification similaire des isolats (Usbeck et al. 2014). Ces études ouvrent des perspectives quant à l'utilisation de la spectrométrie de masse appliquée au typage des champignons filamenteux, qui serait d'un grand intérêt en contexte industriel, notamment pour permettre de différencier les souches impliquées dans les procédés de fermentation des aliments, mais également pour tracer l'origine des contaminants.

V. Maîtrise des altérations fongiques

Traditionnellement, des moyens de lutte ont été mis en place par l'Homme pour lutter contre l'altération des produits alimentaires par les champignons filamenteux : fermentation, addition de sel ou de sucre à de fortes concentrations, séchage des produits ou stockage au froid. Aujourd'hui, les mesures classiques de lutte contre les altérations (Figure 4) sont similaires à celles utilisées depuis toujours et peuvent être divisées en deux catégories. Les mesures préventives, qui permettent d'éviter les contaminations du produit comme l'emballage en conditions aseptiques, l'utilisation d'un système de filtration de l'air ou encore l'implémentation de bonnes pratiques d'hygiène, et les mesures de contrôle, qui permettent de ralentir ou d'inhiber la croissance microbienne comme l'ajout de conservateurs, le conditionnement sous atmosphère modifiée, le stockage à basse température ou de détruire totalement ou partiellement les microorganismes tels que les traitements thermiques ou les traitements haute-pression (Garnier et al. 2017). Les méthodes citées ici correspondent à des moyens de lutte « post-récolte », qui se concentrent sur la maîtrise de la qualité des produits alimentaires, il est cependant à noter que des mesures « pré-récolte » peuvent être mises en œuvre notamment aux champs, avec l'utilisation de bio-protection par exemple. Un des moyens de maîtrise de la qualité et la sécurité des produits alimentaires est l'utilisation du concept de technologies barrières (« hurdle concept ») ou combinaison de méthodes de conservations. Ce concept vise à améliorer la qualité sanitaire des produits tout en réduisant l'intensité des traitements de prévention administrés (Khan et al. 2017; Leistner et Gorris 1995). Cependant, bien que l'utilisation de ces différentes mesures permette de réduire le nombre de contaminants capables d'altérer un produit, leur accumulation peut parfois conduire à la sélection d'espèces fongiques résistantes, associées à chaque mesure, par exemple, des espèces résistantes aux traitements thermiques ou aux conservateurs (Rico-Munoz et al. 2018). Il est donc nécessaire de choisir les bonnes techniques de conservation et les traitements adéquats à appliquer aux produits. De plus, un des enjeux actuel est la demande des consommateurs, de produits frais, non transformés et « naturels », exempts d'additifs. Or l'absence de traitements peut favoriser la croissance des microorganismes d'altération et donc avoir une influence négative sur la qualité des produits. C'est dans ce contexte qu'a émergé la démarche « Clean Label » afin de répondre à la demande des consommateurs, dans laquelle les entreprises s'attachent à simplifier les déclarations d'ingrédients et également à éliminer les additifs et ingrédients jugés « artificiels » en comparaison à des produits jugés plus « naturels ». C'est pourquoi les recherches se tournent aujourd'hui vers des alternatives comme l'utilisation d'atmosphères modifiées, de cultures bio-protectrices (Le Lay et al. 2016), d'extraits de plantes (Aguilar-González et al. 2015) ou de cires comestibles pour préserver la qualité des produits (Valencia-Chamorro et al. 2010).

Figure 4 : Exemples de mesures préventives (cercles verts) et de contrôle (cercles rouges) utilisés pour maîtriser la croissance des contaminants fongiques dans les produits alimentaires (adapté de Garnier et al. 2017)

Selon le règlement UE n°1333/2008, les conservateurs sont des substances qui prolongent la durée de vie d'un aliment en le protégeant des altérations dues aux micro-organismes (bactéries, levures, moisissures). Parmi ces conservateurs antibactériens et antifongiques, on distingue les conservateurs minéraux (tels que les nitrites et les sulfites) et organiques (De reynal, 2009). Les acides organiques sont naturellement produits par de nombreux organismes, ils présentent une faible toxicité pour l'Homme, ont un large spectre d'activité et un coût peu élevé (da Cruz Cabral et al. 2013). Ils possèdent également le statut GRAS (Generally Recognized As Safe) et peuvent être utilisés individuellement ou en combinaison. Leurs propriétés anti-fongiques dépendent de leur pKa et sont optimales à des pH faibles (Alcano et al. 2016), qui favorisent les formes non-dissociées, et leur mode d'action est expliqué par la théorie des acides faibles (Stratford et Anslow 1996). En effet, les formes non-dissociées sont très solubles dans les lipides et vont donc pouvoir traverser aisément la membrane plasmique. Une fois à l'intérieur de la cellule fongique, le pH interne de cette dernière étant proche de la neutralité, elles vont se dissocier en anions et protons. Le

métabolisme cellulaire (Brul et Coote 1999). De nombreux acides organiques sont utilisés en industrie agro-alimentaire mais seuls trois seront présentés dans cette étude bibliographique car il s'agit de ceux étudiés lors des travaux menés au cours de cette thèse.

L'acide sorbique (Figure 5) est largement utilisé en industries agro-alimentaires (additif E200), notamment dans l'industrie laitière et dans les produits sucrés à faible pH comme les boissons aromatisées. Il s'agit d'un composé naturel qui possède un avantage important car il n'a pas d'impact sur le goût ou l'odeur des produits et il est actif jusqu'à pH 6,5 contrairement à la plupart des autres acides faibles dont l'activité est optimale jusqu'à pH 5. Ceci pourrait être expliqué par son mode d'action qui est différent de celui décrit par la théorie des acides faibles. En effet, l'application de ce conservateur sur des spores d'Aspergillus niger n'a pas provoqué de diminution du pH intracellulaire (Stratford et al. 2009). Stratford et al. (2009) ont également noté que l'acide sorbique fait partie des biocides dont l'effet est corrélé à l'hydrophobicité, et qui se dissocient en présence de lipides, indiquant que le site d'action de ce conservateur pourrait être la membrane plasmique fongique. L'action de l'acide sorbique pourrait donc causer des fuites membranaires, perturber l'intégrité de la membrane et augmenter la perméabilité protonique. Il est également possible que les protéines membranaires de transport soient affectées par un éventuel remplacement des phospholipides membranaires par l'acide sorbique (Sergeeva et al. 2009; Stratford et al. 2009).

L'acide benzoïque (figure 5) est également utilisé dans les produits sucrés à faible pH et notamment les boissons (additif E210) mais il est généralement efficace à des concentrations plus faibles que l'acide sorbique (Levinskaite, 2012). Son mode d'action pourrait correspondre à la théorie des acides faibles proposée par Stratford et Anslow (1996) car une

acidification du cytoplasme a été observée lors de l'application de ce conservateur chez la levure *Saccharomyces cerevisiae* (Krebs et al. 1983).

Selon la législation (Tableau 5), ces deux acides organiques peuvent être utilisés seuls ou en mélange. Il convient cependant d'être vigilant car l'addition de différents conservateurs peut conduire à trois effets distincts : un effet additif – l'effet de la combinaison sera égal à la somme des effets séparés, un effet synergique – l'effet de la combinaison sera supérieur à la somme des effets séparés, ou un effet antagoniste – l'effet de la combinaison sera inférieur à la somme des effets séparés.

Enfin, un autre conservateur largement utilisé en industrie est la natamycine (ou pimaricine, E235, Figure 5), notamment à la surface des fromages affinés et des saucisses sèches et saucissons. Cet antibiotique fait partie de la famille des polyènes et a pour cible la membrane plasmique, et plus particulièrement l'ergostérol, auquel il se lie et inhibe les transporteurs membranaires ergostérol-dépendants impliqués dans la synthèse membranaire (te Welscher et al. 2008, 2012). Il est également reconnu GRAS, et contrairement aux acides faibles, il est actif à de faibles concentrations et agit sur un grand nombre d'espèces fongiques (Resa et al. 2014).

Conservateurs	Quantité autorisée	Aliments concernés
Acide sorbique – Sorbates Acide sorbique (E200) Sorbate de potassium (E202) Sorbate de calcium (E203)	20 mg/kg 300 mg/kg 1000 mg/kg 2000 mg/kg quantum satis*	Agrumes fraiches (surface) Boissons aromatisées Lait caillé, fromage (non affiné, en tranches, préemballé), fruits secs, préparations de fruits et légumes Fromages fondus, produits de boulangerie pré-cuits et pré-emballés Fromages affinés (uniquement en surface)
Acide benzoïque – Benzoates Acide benzoïque (E210) Benzoate de sodium (E211) Benzoate de calcium (E213)	150 mg/kg 500 mg/kg 1500 mg/kg 2000 mg/kg	Boissons aromatisées Préparations à base d'algues marines, olives et produits à faible teneur en sucre Chewing-gum Betteraves rouges cuites
Sorbates + Benzoates (E200-E213)	300 mg/kg 5000 mg/kg quantum satis*	Desserts à base de produits laitiers non traités thermiquement Œufs liquides Produits de viande séchée (uniquement en surface)
Natamycine (E235)	1 mg/dm ² (absence à 5mm de profondeur)	Fromages affinés, saucisses sèches et saucissons (uniquement en surface)

Table 5 : Réglementation des acides sorbique et benzoïque et de la natamycine : quantités autorisées et aliments concernés (Règlement (UE) n° 1129/2011)

*quantum satis = pas de valeur limite

Malgré l'utilisation des moyens de lutte présentés ci-dessus, de nombreux contaminants fongiques sont capables de persister dans l'environnement, et certains ont même développé des résistances aux conservateurs qui peuvent être divisés en trois stratégies, la destruction ou métabolisation de la molécule active, l'évitement afin d'empêcher le contact entre les cellules fongiques et le conservateur, et enfin, la réparation des dommages causés par le conservateur (Brul et Coote 1999). Plusieurs études ont démontré la résistance de certaines espèces aux substances présentées ci-dessus telles que *A. niger, Trichoderma viride* et *T. koningii* qui ont montré des résistances à l'acide sorbique (Plumridge et al. 2010, 2004; Pinches et Apps 2007). D'autres espèces telles que *Aspergillus flavus, Fusarium oxysporum* et *Penicillium italicum* étaient résistantes à des mélanges d'acides organiques composés de benzoate de sodium, nitrite de sodium et sorbate de potassium (Stanojevic et al. 2009). Enfin, la germination des spores d'*Aspergillus niger* et *Penicillium discolor* étaient possibles même à de fortes concentrations en natamycine (Leeuwen et al. 2010).

Afin de mieux comprendre le comportement des champignons filamenteux face à ces conservateurs, il est donc nécessaire d'évaluer leur croissance en présence de ces derniers. Pour cela, différentes méthodes existent, la plus courante consistant à observer la croissance ou l'absence de croissance sur boîte de Petri, en utilisant des milieux de culture gélosés contenant la molécule à tester. La croissance est ensuite évaluée via la mesure journalière du diamètre du thalle à la surface de la gélose, parfois jusqu'à 30 ou 50 jours d'incubation pour les plus fortes concentrations testées (León Peláez et al. 2012; Kosegarten et al. 2017). Mais des méthodes alternatives en milieu liquide ou semi-liquide (Medina et al. 2012) basées sur la mesure d'un trouble pour caractériser la croissance fongique peuvent être utilisées. Souvent réalisées en microplaques, ces méthodes permettent d'effectuer des mesures de croissance fongique haut débit. Les données acquises via ces méthodes peuvent être utilisées afin de modéliser différents paramètres, permettant de décrire et prévoir la croissance fongique via l'utilisation de modèles développés en mycologie prévisionnelle. A partir des cinétiques de croissance, des modèles primaires sont utilisés pour déterminer les valeurs des paramètres de croissances que sont la vitesse de croissance maximale (μ_{max}) et la phase de latence (λ), ces modèles pouvant être linéaires ou non linéaires en fonction de la méthode utilisée pour suivre la croissance (mesure du diamètre radial, détermination du pourcentage de germination, mesure d'un trouble) (Dantigny et al. 2005). Par la suite, des modèles secondaires peuvent être utilisés pour décrire l'évolution d'un paramètre primaire en fonction d'un facteur environnemental. Par exemple, l'évolution de μ_{max} en fonction du pH ou de la concentration en conservateur. Ces modèles permettent ainsi de décrire l'effet de facteurs limitants sur le

développement des moisissures et d'estimer des valeurs références comme la concentration minimale inhibitrice (CMI) d'un composé antifongique (Dagnas et Membré 2013). Enfin, la modélisation tertiaire, permet de combiner les modèles primaires et secondaires sous la forme de programmes informatiques regroupant des données de croissance acquises pour un grand nombre de contaminants alimentaires, de facteurs et de produits alimentaires permettant ainsi de prévoir le développement de micro-organismes dans les aliments (Chaix et al. 2015). Ces outils de microbiologie prévisionnelle permettent ainsi aux industriels de mettre en place les mesures adéquates pour prévenir le développement des contaminants.

Certaines études ont validé l'utilisation de la mesure de la densité optique, notamment dans un contexte clinique pour évaluer l'efficacité des traitements anti-fongiques (Meletiadis et al. 2001). Cependant, un des inconvénients de la mesure de densité optique est qu'elle n'est proportionnelle à la densité cellulaire qu'au début du développement fongique (Meletiadis et al. 2003). Une des solutions pour pallier à cet inconvénient est l'utilisation de la néphélométrie laser, basée sur la mesure de la dispersion de la lumière, qui est proportionnelle à la densité cellulaire. Son utilisation pour suivre la croissance d'organismes fongiques a été validée (Joubert et al. 2010). Toutefois, peu de travaux ont été publiées sur son utilisation (Rédou et al. 2015).

VI. Objectifs des travaux de thèse

L'introduction bibliographique précédente a souligné l'importance économique et sanitaire des problèmes d'altérations des aliments engendrés par les champignons filamenteux, *via* la perte et le gaspillage des denrées alimentaires contaminées, et *via* la production potentielle de mycotoxines. C'est pourquoi il est nécessaire de disposer d'outils fiables et rapides pour permettre leur identification, qui représente une étape clé dans la maîtrise de la qualité et de la sécurité des denrées alimentaires.

Les principaux outils d'identification reposent sur des méthodes phénotypiques dites « conventionnelles » basées sur la recherche de caractères morphologiques et culturaux des souches. Ces méthodes sont longues, laborieuses, peu reproductibles et requièrent des connaissances très vastes en raison de la grande diversité des moisissures. Par ailleurs, elles ne permettent pas de différencier certaines espèces très proches. En effet, la phylogénie moléculaire appliquée aux champignons filamenteux a permis de révéler qu'il existait chez les champignons de nombreux complexes d'espèces cryptiques, c'est-à-dire morphologiquement semblables. En outre, la connaissance et l'expertise dans ce domaine fait
appel à des compétences qui sont de plus en plus rares dans l'industrie, voire dans le secteur de la recherche publique. Au cours des quinze dernières années, ont été développées des méthodes « non conventionnelles » basées sur les techniques de biologie moléculaire utilisant le polymorphisme de l'ADN. Cependant, ces méthodes ont également leurs limites, à savoir l'investissement dans l'équipement, la complexité des protocoles, le coût élevé des réactifs, la difficulté d'automatisation et une formation technique spécifique.

Parallèlement à ces méthodes, de nouvelle approches de mesure physique ont vu le jour et ont aujourd'hui déjà fait l'objet d'étude pour l'identification de bactéries et de levures, principalement dans le domaine clinique. C'est le cas de la spectrométrie de masse MALDI-TOF (*Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight*). Appliquée sur cellules intactes ou préalablement lysées (cas des champignons, levures et certaines bactéries), différents biomarqueurs différenciés par leur rapport masse/charge vont ainsi être mis en évidence comme les peptides, les protéines (protéines ribosomales), les glycoprotéines et les oligonucléotides conférant ainsi à une espèce microbienne voire même une souche, un spectre, une empreinte qui lui est propre (Croxatto et al. 2012).

La spectrométrie de masse MALDI-TOF a révolutionné l'identification en routine de microorganismes (levures et bactéries) dans les laboratoires de microbiologie clinique en introduisant une méthode d'identification facile, rapide, haut-débit, peu cher et efficace. Des études récentes ont aussi montré que la spectrométrie de masse MALDI-TOF a le potentiel d'identifier des champignons filamenteux d'origine clinique (Cassagne et al. 2011; Sanguinetti et Posteraro 2014; Ranque et al. 2014; Schulthess et al. 2014). Cette technique a également été utilisée avec succès pour le typage et l'identification au niveau intra-spécifique de certaines bactéries et levures, démontrant que cette technologie peut être utilisée pour des études épidémiologiques et pour la classification taxonomique. L'application de cette technique aux contaminants fongiques des produits alimentaires pour leur identification et typage reste à développer.

En effet, la spectrométrie de masse MALDI-TOF ne peut être un outil fiable d'identification des contaminants alimentaires d'origine fongique que si l'on dispose d'une base de données robuste, représentative de leur diversité. De plus, après avoir été optimisée pour l'identification de microorganismes au niveau du genre et à l'espèce, se pose la question d'une éventuelle utilisation de la spectrométrie de masse MALDI-TOF pour permettre, la résolution de complexes d'espèces, voire la discrimination intra-spécifique d'isolats. Enfin, outre leur identification, une autre étape de la maîtrise des contaminants fongiques dans les

aliments transformés passe par l'utilisation de conservateurs ajoutés aux produits, afin d'empêcher leur croissance. Cependant, certaines espèces fongiques peuvent persister dans les denrées alimentaires malgré l'utilisation de ceux-ci, ce qui met en évidence l'existence de résistances à ces molécules. Il est donc nécessaire de comprendre d'où viennent ces résistances et quelles espèces et souches fongiques elles concernent. Pour cela, le suivi de croissance *in vitro* des contaminants en présence de conservateurs permet de sélectionner d'éventuelles souches résistantes afin de les étudier plus en détail pour parvenir à comprendre les mécanismes moléculaires de résistance mis en place. Le suivi de la croissance fongique passe le plus souvent par la mesure du diamètre du thalle en milieu gélosé, qui se fait sur plusieurs jours voire mois, en fonction de la vitesse de croissance de l'espèce ou de la souche étudiée. Ici encore, cette méthode ne permet pas de réaliser un suivi de croissance haut débit des organismes fongiques, c'est pourquoi des alternatives doivent être développées.

Dans ce contexte, le travail de thèse a été divisé en trois parties visant à répondre à ces différents objectifs :

- Tout d'abord, ce travail a consisté à développer, valider et appliquer la méthode de spectrométrie de masse MALDI-TOF pour l'identification des champignons filamenteux d'intérêt industriel.
- Dans un deuxième temps, l'application de la spectrométrie de masse MALDI-TOF à la résolution de complexes d'espèces ainsi qu'à la discrimination intraspécifique a été évaluée en prenant comme organismes modèles la section *Flavi* du genre *Aspergillus* et *Penicillium roqueforti*, respectivement.
- Enfin, la résistance de différentes espèces fongiques à 3 conservateurs communément utilisés en industrie (sorbate, benzoate, natamycine) ainsi que la variabilité de cette résistance au niveau intra-spécifique a été étudiée en utilisant la néphélométrie laser comme outil haut-débit pour le suivi de la croissance fongique en présence de conservateurs.

Chapitre 1 : Développement et application de la spectrométrie de masse MALDI-TOF pour l'identification des champignons filamenteux d'altération

I. Résumé des travaux

Comme évoqué dans l'introduction bibliographique, les champignons forment un groupe très diversifié contenant un très grand nombre d'espèces, estimé à environ 1,5 millions (Hawksworth, 2015). Parmi les champignons, les moisissures (champignons microscopiques filamenteux) ont un impact important sur les activités humaines pouvant être positif ou négatif. Ainsi, certaines espèces fongiques sont utilisées en tant que flore technologique, pour la production d'aliments fermentés mais aussi en biotechnologie pour la production de molécules d'intérêt (enzymes, acides organiques, antibiotiques) (Chalupová et al. 2014). A l'opposé, de nombreuses espèces sont impliquées dans l'altération des denrées alimentaires destinées à l'alimentation humaine ou animale. Du fait de leurs caractéristiques physiologiques (croissance sur une large gamme de pH et activité de l'eau par exemple), les champignons sont susceptibles de croître et d'altérer, par leurs activités métaboliques, une large variété de produits. L'altération de ces produits peut induire des modifications des qualités organoleptiques des aliments tels que des changements d'odeur, de goût et de texture (Filtenborg et al. 1996). Les espèces de champignons filamenteux les plus fréquemment responsables d'altération des aliments appartiennent aux genres Aspergillus et Penicillium, tandis que les espèces du genre Fusarium sont responsables de dégâts considérables au sein des productions céréalières au champ (Pitt et Hocking 2009). De plus, la production potentielle de mycotoxines par certaines espèces fongiques représente un danger pour la santé humaine et animale (Waśkiewicz 2014). Dans ce contexte, une identification fiable et rapide des moisissures technologiques et d'altération est une étape clé dans la maîtrise de la qualité des produits alimentaires.

L'identification des champignons filamenteux repose majoritairement sur deux types de méthodes : les méthodes phénotypiques et les méthodes génotypiques. Les premières considèrent des caractères phénotypiques macroscopiques et/ou microscopiques, l'aspect du thalle (couleur, texture, présence ou non d'exsudats ou de pigments...). Pour les caractéristiques microscopiques l'organisation des structures conidiogènes et la présence d'organes de la reproduction sexuée est recherchée. Ces observations peuvent être complétées par l'étude de caractères biochimiques comme la production de métabolites secondaires (Houbraken et al. 2007).

Les méthodes génotypiques reposent quant à elles sur des techniques de biologie moléculaire et sont aujourd'hui considérées comme la "référence" en matière d'identification de microorganismes. Elles sont basées sur l'analyse de régions d'ADN discriminantes qui permettent de classer les espèces. La région Internal Transcribed Spacer ou ITS (Schoch et al. 2012) utilisée pour discriminer les genres et espèces fongiques est parfois limitante et il est nécessaire de recourir à l'analyse d'autres gènes, par exemple celui codant pour la β -tubuline chez les *Penicillium* spp. (Visagie et al. 2014) ou celui codant pour le facteur d'élongation α chez les *Fusarium* spp. (Geiser et al. 2004).

Ces deux méthodes d'identification présentent des inconvénients, pour les méthodes phénotypiques, elles requièrent du temps de culture car les caractères recherchés peuvent être longs à apparaître, mais surtout un haut niveau d'expertise qui est de plus en plus rare aujourd'hui. Bien que les méthodes moléculaires soient considérées comme la référence grâce à leur niveau de spécificité élevé, elles demandent des étapes parfois lourdes à mettre en place (extraction d'ADN, PCR, séquençage des produits), difficilement automatisables, coûteuses, et l'analyse des séquences demande également une certaine expertise.

C'est pourquoi de nouvelles techniques ont émergé afin de permettre une identification simple, rapide et haut-débit des champignons filamenteux. La spectrométrie de masse MALDI-TOF s'est imposée parmi les méthodes spectrales comme une alternative aux méthodes existantes citées plus haut. Utilisée depuis longtemps en chimie, son utilisation pour l'identification des bactéries à l'espèce a été démontrée il y a près de 20 ans (Basile et al. 1998). Depuis, un nombre croissant de travaux se sont focalisés sur son application à l'identification des champignons filamenteux. Ces publications ont d'abord concerné principalement le domaine clinique (Erhard et al. 2008; Panda et al. 2015), où l'identification fiable et surtout rapide permet un traitement précoce des patients, puis, le domaine industriel, avec l'étude d'espèces fongiques responsables d'altération de produits agro-alimentaires (Rodrigues et al. 2011; Hettick et al. 2008). Enfin, plusieurs études ont été consacrées à la mise en place de bases de données spectrales pour l'identification des champignons (Gautier et al. 2014; Lau et al. 2013; Normand et al. 2013), majoritairement pour des espèces d'intérêt clinique.

Dans ce contexte, l'objectif de notre étude était de développer et d'appliquer la spectrométrie de masse MALDI-TOF pour l'identification des champignons filamenteux d'intérêt alimentaire. Pour cela, une base de données spectrales a été construite. Six-cent dix-huit souches, représentant 136 espèces fongiques, provenant majoritairement de deux collections : l'UBOCC (Collection de Cultures de l'Université de Bretagne Occidentale, France) et l'institut Westerdijkiae pour la diversité fongique (Pays-Bas) ont été utilisées. Elles ont été sélectionnées grâce à une veille scientifique et selon trois critères : leur fréquence d'apparition dans les aliments, le nombre de types d'aliments concernés et leur capacité à

produire des mycotoxines. Ces critères ont permis la sélection de 136 espèces, représentant au mieux la diversité des contaminants fongiques d'altération. Toutes les souches sélectionnées ont été identifiées par des techniques phénotypiques. Pour plus de la moitié (dont au moins une souche par espèce) l'identification a été confirmée par le séquençage et l'analyse phylogénétique d'un ou plusieurs gènes d'intérêt tels que ceux codant pour la βtubuline ou le facteur d'élongation α. Pour la construction de la base de données, les souches ont été cultivées dans différentes conditions. Quatre milieux gélosés ont été utilisés : le Sabouraud Dextrose Agar (SDA), le Potato Dextrose Agar (PDA), le Malt Extract Agar (MEA) et le Yeast Glucose Chloramphenicol agar (YGC) ainsi que deux temps de culture (2 et 8 jours à 25°C), cela afin d'obtenir des spectres issus de conditions de culture différentes et ainsi disposer d'une base de données la plus robuste possible. Après 2 ou 8 jours d'incubation, une étape d'extraction a précédé l'acquisition des spectres. Cette étape d'extraction à l'acide formique et acétonitrile permet de lyser les cellules fongiques et de solubiliser les protéines. Elle permet aussi d'inactiver les spores, assurant ainsi la sécurité du personnel manipulant les lames et évitant aussi la contamination de l'intérieur de l'instrument. Les extraits ont ensuite été déposés sur une lame et recouverts de matrice HCCA (acide α-cyano-4-hydroxycinnamique) après séchage. Les spectres ont été acquis par un système VITEK-MS (bioMérieux, Marcy l'Etoile, France), dans une gamme de masse de 2000 à 20000 Da. Chaque extrait a été déposé en duplicat.

Pour construire la base de données, une moyenne de 5 souches par espèce et de 50 spectres par souche ont été utilisés, représentant un total de 6 477 spectres. La base de données a ensuite été implémentée grâce à l'algorithme Advanced Spectra Classifier (ASC) développé par la société bioMérieux. L'évaluation des performances de la base de données a été effectuée par validation croisée : les spectres de la base sont divisés en 5 groupes, 4 de ces groupes sont utilisés pour construire une base de données, et le cinquième groupe sert de groupe test pour estimer les performances d'identification. Enfin, les performances ont été évaluées grâce à des souches externes. Des spectres ont été acquis pour 73 souches non utilisées pour construire la base de données et dont l'identification avait été validée par séquençage. L'identification correcte ou non de ces spectres par la base de données développée a ensuite été évaluée.

Globalement, aucun effet significatif des conditions de culture n'a été observé pour la majorité des milieux sur les performances d'identification. Cependant, deux cas de figures sont possibles. Dans le premier cas, et pour la plupart des espèces, les spectres issues d'une même souche sont regroupés ensemble, indiquant que l'effet des conditions de culture (temps

d'incubation et milieu) est moins important que celui résultant de la diversité intra-spécifique. Dans le deuxième cas, un léger effet des conditions de culture est observé comme par exemple pour *Penicillium expansum*, pour lequel les spectres sont regroupés en fonction du milieu de culture utilisé, indépendamment des différentes souches, ce qui pourrait être expliqué par le polymorphisme de cette espèce en fonction du milieu de culture. Il est cependant à noter que certains milieux de culture utilisés peuvent avoir un impact sur les performances d'identification. En effet, lors de tests préliminaires, les milieux Dichloran Glycerol (DG18) et Dichloran Rose Bengal Chloramphenicol (DRBC) ont été évalués et n'ont pas été validés car les spectres obtenus sur ces milieux n'étaient pas de qualité suffisante pour être exploités (nombre de pics trop faible, faible résolution).

L'évaluation des performances par validation croisée a montré une identification correcte de près de 95% des spectres, avec 4% des spectres non identifiées et 1% des spectres incorrectement identifiés. Pour 113 espèces sur les 136 implémentées, plus de 90% de spectres étaient correctement attribués. Les espèces présentant les scores les plus faibles étaient confondues avec d'autres espèces phylogénétiquement proches, comme par exemple Aspergillus foetidus confondu avec A. lacticoffeatus, les deux espèces étant considérées comme des synonymes d'A. niger par certains auteurs (Varga et al. 2011). Au contraire, d'autres espèces proches ont été parfaitement différenciées, comme les 7 espèces du complexe Cladosporium sphaerospermum. Lors de la validation externe, près de 90% des spectres ont été correctement identifiés pour les espèces représentées dans la base de données, 4% des spectres n'ont pas été identifiés, et 6% des spectres ont été incorrectement identifiés. Dans ce dernier cas, les erreurs d'identification ont été observés au sein d'un même genre fongique et parfois pour des espèces très proches voire synonymes (par exemple, Penicillium commune identifié en P. camemberti). Pour les spectres des espèces non représentées dans la base de données, 71% n'ont pas été identifiés (ce qui était le résultat attendu puisque ces espèces ne sont pas référencées dans la base), et les 29% restant ont été incorrectement identifiés. Comme dans le cas précédent, tous les spectres mal identifiés l'ont été entre espèces du même genre.

Les résultats de validation externe obtenus lors de cette étude sont similaires voire supérieurs à ceux obtenus par d'autres équipes ayant développé des bases de données spectrales (Lau et al. 2013; Gautier et al. 2014; Becker et al. 2015). En conclusion, cette étude souligne le potentiel de la spectrométrie de masse MALDI-TOF comme outil fiable, rapide et haut débit pour l'identification des champignons filamenteux d'intérêt industriel alimentaire.

II. Article publié dans Food Microbiology

Quéro L., Girard V., Pawtowski A., Tréguer S., Weill A., Arend S., Cellière B., Polsinelli S., Monnin V., Van Belkum A., Vasseur V., Nodet P., Mounier J., 2018. Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiology, doi: 10.1016/j.fm.2018.05.001

Food Microbiology xxx (2018) 1-13

Contents lists available at ScienceDirect

Food Microbiology

journal homepage: www.elsevier.com/locate/fm

Development and application of MALDI-TOF MS for identification of food spoilage fungi

Laura Quéro ^{a, b}, Victoria Girard ^b, Audrey Pawtowski ^a, Sylvie Tréguer ^a, Amélie Weill ^{a, c}, Sandrine Arend ^b, Béatrice Cellière ^b, Sophie Polsinelli ^b, Valérie Monnin ^b, Alex van Belkum ^b, Valérie Vasseur ^a, Patrice Nodet ^a, Jérôme Mounier ^{a, *}

^a Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France

^b BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France

^c Université de Bretagne Occidentale Culture Collection, Université de Brest, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France

ARTICLE INFO

Article history: Received 4 December 2017 Received in revised form 30 March 2018 Accepted 1 May 2018 Available online xxx

Keywords: MALDI-TOF MS Identification Filamentous fungi Food spoilage

ABSTRACT

Filamentous fungi are frequently involved in food spoilage and cause important food losses and substantial economic damage. Their rapid and accurate identification is a key step to better manage food safety and quality. In recent years, MALDI-TOF MS has emerged as a powerful tool to identify microorganisms and has successfully been applied to the identification of filamentous fungi especially in the clinical context. The aim of this study was to implement a spectral database representative of food spoilage molds. To this end, after application of a standardized extraction protocol, 6477 spectra were acquired from 618 fungal strains belonging to 136 species and integrated in the VITEK MS database. The performances of this database were then evaluated by cross-validation and ~95% of correct identification to the species level was achieved, independently of the cultivation medium and incubation time. The database was also challenged with external isolates belonging to 52 species claimed in the database and 90% were correctly identified to the species level. To our best knowledge, this is the most comprehensive database of food-relevant filamentous fungi developed to date. This study demonstrates that MALDI-TOF MS could be an alternative to conventional techniques for the rapid and reliable identification of spoilage fungi in food and industrial environments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Fungi are ecologically, physiologically and morphologically diverse and constitute one of the largest group of organisms on earth with at least 1.5 million and more probably, close to 3 million species (Hawksworth, 2015). Among fungi, microscopic filamentous fungi (also called molds) have an important impact on human

activities, either positive or negative. On one hand, they are important producers of enzymes, organic acids and antibiotics and can be used to manufacture fermented foods (Chalupová et al., 2014). On the other hand, they are able to spoil a large variety of food and feed commodities, from raw materials to finished products. Their growth can lead to several types of product-alteration such as taste and odor problems and decay. Penicillium and Aspergillus spp. are the most common spoilage fungi, whereas Fusarium species are mostly responsible for significant yield losses of small grain cereals and maize (Pitt and Hocking, 2009). Certain members of these genera as well as species from other genera can also potentially produce mycotoxins (Waśkiewicz, 2014), some of which have adverse effects on human and animal health and can thus render food and feed improper for consumption. Regarding their impact on human activities, it has been estimated that 5-10% of the worldwide food losses is due to fungal spoilage (Filtenborg et al., 1996). In this context, correct identification of food spoilage fungi

https://doi.org/10.1016/j.fm.2018.05.001 0740-0020/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Quéro, L., et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

^{*} Corresponding author. Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Parvis Blaise-Pascal, Technopôle Brest-Iroise, 29280 Plouzané. France.

E-mail addresses: laura.quero@biomerieux.com (L. Quéro), victoria.girard@ biomerieux.com (V. Girard), audrey.pawtowski@univ-brest.fr (A. Pawtowski), sylvie.treguer@univ-brest.fr (S. Tréguer), amelie.weill@univ-brest.fr (A. Weill), sandrine.arend@biomerieux.com (S. Arend), beatrice.celliere@biomerieux.com (B. Cellière), sophie.polsinelli@biomerieux.com (S. Polsinelli), valerie.monnin@ biomerieux.com (V. Monnin), alex.vanbelkum@biomerieux.com (A. van Belkum), valerie.vasseur@univ-brest.fr (V. Vasseur), patrice.nodet@univ-brest.fr (P. Nodet), jerome.mounier@univ-brest.fr (J. Mounier).

is a key step to better manage food safety and quality. An erroneous identification could lead to risk under-estimation or unnecessary counter measures (Hawksworth, 2015; Schnürer and Magnusson, 2005). It is also worth mentioning that many spoilage filamentous fungi are also opportunistic human pathogens and their identification at the species-level could also be of interest in the clinical context.

Identification of fungal isolates is based on phenotypic and/or genotypic methods. Phenotypic identification generally involves the examination of different morphological features at both macroscopic and microscopic levels, such as the thallus aspect or that of asexual spore-bearing structures, after a cultivation step on agar medium. Biochemical characteristics such as secondary metabolite production can also be used as a complementary approach (Houbraken et al., 2007). Genotypic methods based on molecular biology are considered the gold-standard for mold identification because of their high specificity. Indeed, comparative sequence analysis of conserved genes but also of unique DNA regions allows establishing the identity and phylogeny among organisms. For example, the internal transcribed spacer (ITS) region in ribosomal operons is considered as the primary barcode for fungi (Schoch et al., 2012). However, in some groups, other genes are superior to ITS for species-level identification such as the β -tubulin gene for Penicillium spp. (Visagie et al., 2014) and elongation-factor gene for Fusarium spp. (Geiser et al., 2004). Moreover, single-locus approaches are not always sufficient for accurate identification at the species-level. Although DNA sequencing allows good identification, it can be costly, fastidious and it always requires expertise (Chalupová et al., 2014). Thus, there is a continuous need for more rapid techniques to identify filamentous fungi, which are as reliable as molecular tools.

In recent years, Matrix-Assisted Laser Desorption Ionisation – Time Of Flight Mass Spectrometry (MALDI-TOF MS) has emerged as an alternative for or supplement to conventional phenotypic and molecular identification tools. Since then, the efficacy of MALDI-TOF MS for bacterial species identification has been demonstrated in an exponentially growing number of publications, mainly focusing on clinically relevant species (Basile et al., 1998; Fournier et al., 2012; Nacef et al., 2017; Nagy et al., 2009; van Baar, 2000; van Wuijckhuijse et al., 2005).

Over the last fifteen years, MALDI-TOF MS has also been successfully applied to filamentous fungi identification. The main difference is that unlike most bacteria, fungal mycelium, fructification organs and spores can have a thick cell wall thus an extraction step is often required before spectra acquisition (Cassagne et al., 2011). After Welham et al. (2000) who applied MALDI-TOF MS for fungal identification for the first time, several studies showed that this method could be adapted for the identification of various fungal groups including Penicillium, Aspergillus and Fusarium spp. For instance, Chen and Chen (2005) analyzed intact spores of Penicil*lium* spp. while Hettick et al. (2008) could successfully identify 12 Penicillium spp. with an extraction step before analysis. Marinach-Patrice et al. (2009) were able to correctly identify 92% of Fusarium spp. belonging to 9 different species, and Rodrigues et al. (2011) applied MALDI-TOF MS on species from the Aspergillus section Flavi. Finally, a recent study of Rychert et al. (2017) demonstrated the accuracy of MALDI-TOF MS by successfully identifying 91% of ~1400 clinical fungal isolates. Even though these results were promising, they were obtained using different protocols (either using intact spores or after an extraction step). In addition, except for the study of Rychert et al. (2017) which was devoted to clinically relevant fungal species, all studies cited above focused on a single genus and/or a limited number of species.

Many studies and reviews have dealt with MALDI-TOF MS microbial identification in clinical contexts (Ge et al., 2016; van Belkum et al., 2015, 2017) and today, this technique is routinely used for bacterial identification. Despite the increasing number of publications dealing with spectral database implementation for clinically relevant fungal species (Gautier et al., 2014; Lau et al., 2013; Normand et al., 2017), a real effort is still needed to construct robust database for routine identification of food borne filamentous fungi with the use of standardized protocols (Sanguinetti and Posteraro, 2017). Therefore, the aim of this work was to implement a database for food spoilage fungi identification with 618 strains representing 136 species using a standardized extraction protocol.

2. Material and methods

2.1. Fungal strains and cultivation

2.1.1. Fungal strains used for database construction

A total of 618 strains corresponding to 34 genera and 136 species (Table 1), representing major mold species encountered in food and feed, were obtained from the Université de Bretagne Occidentale Culture Collection (UBOCC, Plouzané, France) and the Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands). These species were selected based on scientific watch (Chen et al., 2017; Garnier et al., 2017; Perrone et al., 2007; Pitt and Hocking, 2009; Santos et al., 2016) and three main criteria e.g., frequency of occurrence in food, number of spoiled food types and ability to produce mycotoxins. All strains were identified at the species-level by morphological analysis based on macroscopic and microscopic features. In addition, when possible, at least one strain per species included in the database had also been identified by DNA sequencing with 479 out of 618 strains identity confirmed by sequencing of one or more regions (ITS region, partial β-tubulin gene, partial translation elongation factor-1 alpha gene, partial mcm7 and tsr1 genes).

All strains were sub-cultivated on appropriate solid culture media to assess viability and purity before they were used for spectrum acquisition. Then, they were cultivated at 25 °C for 2 and 8 days on four different media: Sabouraud Dextrose Agar (bio-Mérieux, Marcy l'Etoile, France), Potato Dextrose Agar (PDA), Malt Extract Agar (MEA) and Yeast Glucose Chloramphenicol agar (YGC). For the last three media, three suppliers were used, e.g., bioMérieux (Marcy l'Etoile, France), Becton Dickinson (Le Pont de Claix, France) and Oxoid (Dardilly, France). Different media and suppliers were chosen in order to represent the diversity of media used in industrial mycology and generate a database as robust as possible.

2.1.2. Fungal strains used for external database validation

For external database validation, 73 well characterized strains obtained from the "Laboratoire Universitaire de Biodiversité et Ecologie Microbienne" or UBOCC were used. These strains belonged to 67 different species (Table 2). Fifty-two species were represented in the database while 15 species were absent from it. None of the strains used for external validation were used to build the database. Each strain was cultivated under two different conditions. For each condition, an incubation time varying between 2 and 8 days and a cultivation medium, among all media and suppliers cited above, was randomly chosen.

2.2. Sample preparation

After cultivation, isolates were processed following the manufacturer's instructions. Hyphae and/or conidia were collected from the surface of agar plates (approximately 1 cm in diameter) with a moisturized sterile cotton swab (bioMérieux, Marcy l'Etoile, France). The biomass was then transferred into $900 \,\mu$ L of 70%

Please cite this article in press as: Quéro, L., et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

L. Quéro et al. / Food Microbiology xxx (2018) 1-13

Table 1

Selected species and strain numbers for each species used to build the database.

Species	Strain number*
Actinomucor elegans	CBS 111556, UBOCC-A-101334, UBOCC-A-106035, UBOCC-A-101333
Alternaria alternata	<u>CBS 916.96, CBS 117587, CBS 116329</u> , CBS 115152, <u>CBS 117143</u>
Apergillus arachidicola	<u>CBS 117610</u> , CBS 117612, CBS 117611, CBS 117614, CBS 117615
Aspergillus calidoustus	<u>UB0CC-A-101086, CBS 113228, CBS 112452, CBS 114380</u> , CBS 121001 CBS 566 5, CBS 114285
Aspergillus carbonarius	UBOCC-A-105002, UBOCC-A-105005, UBOCC-A-105008, CBS 113.80, CBS 111.26
Aspergillus chevalieri	UBOCC-A-112066, UBOCC-A-112181, CBS 129.54, CBS 522.65, CBS 121704
Aspergillus fenneliae	<u>CBS 584.90</u>
Aspergillus flavus	UBOCC-A-106028, UBOCC-A-106022, UBOCC-A-106029, UBOCC-A-108068, UBOCC-A-106031, UBOCC-A-101061, UBOCC-A-106030, UBOCC-A-106000, UBOCC-A-106000, UBOCC-A-106000, UBOCC-A-106000, UBOCC-A-106000, UBOCC-A-106000
Aspergillus foetidus	<u>106033, UBOCC-A-101063, CBS 100927</u> <u>CBS 114 40, CBS 129 48, CBS 110393, CBS 12128, CBS 122587</u>
Aspergillus fumigatus	UBOCC-A-106001, UBOCC-A-114029, UBOCC-10166, UBOCC-A-106018, UBOCC-A-110089
Aspergillus glaucus	UBOCC-A-108077, CBS 117337, CBS 150.92
Aspergillus intermedius	<u>CBS 117329</u> , <u>CBS 523.65</u> , <u>CBS 108.55</u> , <u>CBS 116.62</u> , <u>CBS 117315</u>
Aspergillus lacticoffeatus	<u>CBS 101884</u> , CBS 101885, <u>CBS 101886</u> <u>CBC 117525</u> , CBS 101886, <u>CBS 101886</u>
Apergillus misclerotigenes	<u>LBS 11/635</u> , LBS 11/635, LBS 11/654, LBS 11/624, LBS 11/639 <u>CBS 11723</u> , CBS 917.06, CBS 110276, CBS 290.05, CBS 519.65
Aspergillus nidulans	UBOCC-A-110152, UBOCC-A-101069, CBS 126972
Aspergillus niger	UBOCC-A-112064, UBOCC-101073, UBOCC-112080, UBOCC-A-112082, UBOCC-A-101075, UBOCC-A-101076, UBOCC-A-101072, UBOCC-
	112268, <u>UBOCC-A-101074</u> , <u>CBS 554.65</u>
Aspergillus	<u>CBS 126849</u> , CBS 126850
novoparasiticus Aspergillus ochraceus	UROCC-A-111102 UROCC-A-105011 CR5 547 65 CR5 588 68 CR5 108 08
Aspergillus parasiticus	UBOCC-A-111039, UBOCC-A-111041, UBOCC-A-111038, CBS 100926, CBS 100939
Aspergillus penicilloides	CBS 540.65
Aspergillus proliferans	<u>UBOCC-A-101081, CBS 121.45</u> , CBS 115.46
Aspergillus pseudoglaucus	UBOCC-A-112083, UBOCC-A-112117, UBOCC-A-112075, <u>CBS 123574</u> , <u>CBS 117314</u>
Aspergillus restrictus Aspergillus ruher	<u>LBS 341.65</u> <u>CBS 135680</u> CBS 530.65 CBS 137.61 CBS 104.18
Aspergillus svdowii	UBOCC-A-108052, UBOCC-A-108050, UBOCC-A-110137, UBOCC-A-108053
Aspergillus tamarii	UBOCC-A-111046, UBOCC-A-111043, UBOCC-A-111045, CBS 129.49, CBS 104.14, CBS 104.13, CBS 590.68
Aspergillus terreus	<u>UBOCC-A-101084</u> , UBOCC-A-114003, CBS 116878, <u>CBS 601.65</u> , CBS 116757
Aspergillus	<u>UBOCC-A-101204</u> , <u>CBS 208.92</u> , <u>CBS 100504</u> , <u>CBS 110899</u> , <u>CBS 117074</u>
Aspergillus tubingensis	CRS 116417 CRS 115 29 CRS 626 66 CRS 134 48 CRS 117765
Aspergillus versicolor	UBOCC-111047, UBOCC-101087, UBOCC-102012, UBOCC-4101088
Aspergillus wentii	<u>UBOCC-A-111049</u> , <u>UBOCC-A-111051</u> , <u>UBOCC-A-101090</u> , <u>CBS 229.67</u> , <u>CBS 127.28</u>
Aspergillus westerdijkiae	<u>UBOCC-A-101078, UBOCC-A-105012, UBOCC-A-105006</u> , CBS 121983, <u>CBS 112803</u>
Aureobasidium pullulans	<u>UBOCC-A-101092</u> , <u>UBOCC-A-108056</u> , <u>UBOCC-A-108057</u> , <u>UBOCC-A-101091</u>
Botrytis cinerea Chaeotomium alohosum	<u>UBOCC-A-101098</u> , <u>UBOCC-A-101099</u> , <u>UBS 810.69</u>
Cladosporium	UBOCC-A-112148, UBOCC-A-101114, UBOCC-A-101109, UBOCC-A-111114, UBOCC-A-111115, UBOCC-A-101108
cladosporioides	
Cladosporium	<u>UBOCC-A-113071, UBOCC-A-113069, UBOCC-A-113070, CBS 119145</u>
dominicanum	UDGCC 4 112070 CDC 110114
Cladosporium jusijorme Cladosporium	<u>UBOCC-A-113072, LBS 119414</u> UBOCC-A-113072, UBOCC-A-113075, UBOCC-A-113074, CBS 139586, CBS 119416
halotolerans	
Cladosporium herbarum	<u>UBOCC-A-108074, UBOCC-A-101112, CBS 673.69</u>
Cladosporium langeronii	UBOCC-A-112121, UBOCC-A-112132, UBOCC-A-112084, CBS 123171, CBS 601.84
Cladosporium oxysporum	<u>CBS 125991</u> , CBS 120813 <u>UROCC 4 112072</u> CBS 110412
psychrotolerans	<u>UBUCC-A-115077</u> , <u>UBUCC-A-115078</u> , <u>CBS 119412</u>
Cladosporium	UBOCC-A-108073, UBOCC-A-108072, CBS 109501, CBS 118.24, CBS 109031
ramotenellum	
Cladosporium	UBOCC-A-112116, <u>UBOCC-A-108054</u> , <u>UBOCC-A-101110</u> , <u>UBOCC-A-101111</u>
sphaerospermum Cladosporium velov	LIROCC A.113087 LIROCC A.113081 CRS 119417
Didvmella glomerata	UBOCC-A-109091. CBS 834.84. CBS 133.72. CBS 304.49. CBS 134109
Didymella pinodella	CBS 318.90, CBS 531.66, CBS 133.92, CBS 123522, CBS 403.65
Epicoccum nigrum	UBOCC-A-113084, <u>UBOCC-A-101131</u>
Fusarium acuminatum	<u>UBOCC-A-109036</u> , UBOCC-A-109086, CBS 102796, CBS 140913, CBS 680.74
Fusarium arthrosporiolaes	<u>UBOCC-A-109001, UBOCC-A-10949, UBOCC-A-109034</u> UBOCC A-109018, UBOCC A-101136, UBOCC A-109048, UBOCC A-109141, UBOCC A-109012, CBS 408 86
Fusarium cerealis	CBS 195.80. CBS 82.85. CBS 589.93
Fusarium culmorum	UBOCC-A-107001, UBOCC-A-109110, UBOCC-A-109108, UBOCC-A-109123, UBOCC-A-101139
Fusarium domesticum	UBOCC-A-109095, UBOCC-A-113010, CBS 244.82
Fusarium equiseti	UBOCC-A-109041, UBOCC-A-109029, UBOCC-A-109045, UBOCC-A-109030, UBOCC-A-109097, UBOCC-A-109016
Fusarium graminearum	UBOCC-A-109032, UBOCC-A-109011, UBOCC-A-109106, UBOCC-A-109026, UBOCC-A-109130, UBOCC-A-101143 UBOCC-A-111066, CBS 163 57, CBS 161 25, CBS 701 70
Fusarium langsethiae	UBOCC-A-110061, UBOCC-A-110063, UBOCC-A-110062, UBOCC-A-109148, CBS 113234
Fusarium lateritium	UBOCC-A-102014, UBOCC-A-101146, UBOCC-A-101147
Fusarium oxysporum	UBOCC-A-108128, UBOCC-A-109131, UBOCC-A-101157, UBOCC-A-109009, CBS 221.49

(continued on next page)

3

4

ARTICLE IN PRESS

L. Quéro et al. / Food Microbiology xxx (2018) 1–13

Table 1 (continued)

Species	Strain number*
Fusarium poae	UBOCC-A-109111, UBOCC-A-109135, UBOCC-A-109113, UBOCC-A-109136, UBOCC-A-109021
Fusarium proliferatum	<u>UBOCC-A-109147, UBOCC-A-109134, UBOCC-A-109028, UBOCC-A-109133</u>
Fusarium sambucinum	<u>UBOCC-A-109024, UBOCC-A-109020, UBOCC-A-109027, UBOCC-A-109019</u>
Fusarium solani	<u>UBOCC-A-109146</u> , <u>UBOCC-A-110136</u> , <u>UBOCC-A-114086</u> , <u>CBS 181.29</u>
Fusarium sporotrichioides	UBOCC-A-109116, UBOCC-A-109132, UBOCC-A-109132, UBOCC-A-109115, UBOCC-A-102015
Fusarium temperatum	UBOCC-A-11070, UBOCC-A-109107, CB5119351, CB52177, CB521570
Fusarium tricinctum	CBS 119842, CBS 253 50, CBS 119841, CBS 393.93, CBS 410.86
Fusarium venenatum	UBOCC-A-109013, UBOCC-A-109003, CBS 148.95, CBS 140949, CBS 127.95
Fusarium verticillioides	UBOCC-A-109145, UBOCC-A-109122, UBOCC-A-109118, UBOCC-A-109121, CBS 218.76, CBS 447.95
Geotrichum candidum	<u>UBOCC-A-101172, UBOCC-A-101173, UBOCC-A-108081, UBOCC-A-101169, CBS 615.84</u>
Lasiodiplodia theobromae	<u>CBS 110495, CBS 112874, CBS 124.13, CBS 118843</u>
Lichtheimia corymbifera Macrophomina phasaolina	UBOCC-A-102023, UBOCC-A-101228 - CBC 460-70, CBC 11 92, CBC 162, 32, CBC 217, 22, CBC 416, 62
Microdochium maius	CBS 121795
Microdochium nivale	UBOCC-A-105026. UBOCC-A-105027
Mucor circinelloides	UBOCC-A-109188, UBOCC-A-109183, UBOCC-A-109192, UBOCC-A-109182
Mucor fragilis	<u>UBOCC-A-109071, UBOCC-A-101356, UBOCC-A-109199</u>
Mucor hiemalis	<u>UBOCC-A-101360, UBOCC-A-101359, UBOCC-A-109059</u>
Mucor lanceolatus	UBOCC-A-109074, UBOCC-A-101355, UBOCC-A-109158, UBOCC-A-109153, UBOCC-A-101148, UBOCC-A-101329
Mucor plumbeus	UBOCC-A-102004, UBOCC-A-103032, UBOCC-A-109053, UBOCC-A-108086, UBOCC-A-109152, UBOCC-A-109061, UBOCC-A-101363, UBOCC-A-109054, UBOCC-A-109054
Mucor racemosus	10902, Cb5 129.41 UROCC_A_109155 UROCC_A_109186 UROCC_A_109162 UROCC_A_109213 UROCC_A_109212 UROCC_A_109159 UROCC_A_101352 UROCC_A_
macor racemosas	109177. CBS 113.08. CBS 260.68
Paecilomyces divaricatus	<u>CBS 113956</u> , CBS 131275, <u>CBS 110429</u> , <u>CBS 113955</u>
Paecilomyces formosus	<u>CBS 990.73B, CBS 628.66, CBS 296.93</u> , CBS 113248, CBS 121584
Paecilomyces fulvus	UBOCC-A-101005, CBS 135.62, CBS 113245, CBS 146.48, CBS 132.33
Paecilomyces saturatus Paecilomyces variotii	<u>UBOCC A-101210, LSS 251.55, LSS 492.84, LSS 990.73A</u>
Penicillium adametzioides	CBS 140499 CBS 313 59
Penicillium antarcticum	CBS 100492, CBS 116938, CBS 121927, CBS 100491, CBS 116939
Penicillium	<u>UBOCC-A-110001, UBOCC-A-101384</u> , UBOCC-A-111185, UBOCC-A-111184, <u>UBOCC-A-101385</u>
aurantiogriseum	
Penicillium bialowiezense	<u>UBOCC A 1990A UBOCC A 110055</u> UBOCC A 10102, US 110102, US 118865
hrevicompactum	UBOCC-A-100034, UBOCC-A-101003, UBOCC-A-101383, UBOCC-A-10008, UBOCC-A-100033, UBOCC-A-100037, UBOCC-A-100033, UBOCC-A-100037,
Penicillium camemberti	UBOCC-A-102018, UBOCC-A-112058, UBOCC-A-113026, UBOCC-A-113011, UBOCC-A-108097, UBOCC-A-101455, UBOCC-A-101392, UBOCC-A-
	113060, <u>UBOCC-A-108125</u> , <u>CBS 299.48</u>
Penicillium carneum	<u>UBOCC-A-111171, CBS 112489, CBS 468.95, CBS 466.95</u>
Penicillium chermesinum	<u>UBOCC-A-111054</u> , UBOCC-A-112184, UBOCC-A-112188
Penicillium citreonigrum	UBOCC-A-110007, UBOCC-A-11430, UBOCC-A-10024, LBS 111214, LBS 478.84
Penicillium citrinum	UBOCC-A-111025, UBOCC-A-111010, UBOCC-A-111159, CBSC 3/9 48, CBS 252.55
Penicillium commune	UBOCC-A-108098, UBOCC-A-111014, CBS 311.48, CBS 115505, CBS 343.51
Penicillium corylophilum	<u>UBOCC-A-109224</u> , <u>UBOCC-A-109219</u> , UBOCC-A-112193, <u>UBOCC-A-109222</u> , <u>UBOCC-A-101405</u>
Penicillium crustosum	<u>UBOCC-A-101407, UBOCC-A-110068</u> , UBOCC-A-112189, <u>UBOCC-A-111011, UBOCC-A-108101, UBOCC-A-108100, CBS 115503</u>
Penicillium decumbens	UBOCC-A-112118, UBOCC-A-112067, UBOCC-A-113037, UBOCC-A-112072, UBOCC-A-111240
Penicillium digitatum	<u>UBOCC - A 111013</u> , <u>LBS 304.46</u> , LBS 172.44, LBS 229.81 UBOCC - A 111019 UBOCC - A 11064 UBOCC - A 11102 UBOCC - A 111015 UBOCC - A 101408
Penicillium discolor	CBS 474.84. CBS 969.97. CBS 551.95. CBS 547.95. CBS 112568
Penicillium expansum	UBOCC-A-101452, UBOCC-A-101410, UBOCC-A-110032, UBOCC-A-110028, UBOCC-A-110030, UBOCC-A-110030, UBOCC-A-110034, UBOCC-A-
	101406, UBOCC-A-110024, CBS 325.48
Penicillium fuscoglaucum	UBOCC-A-108104, UBOCC-A-108129, UBOCC-A-108127
Penicillium italicum	UBOCC-A-108114, UBOCC-A-10303, UBOCC-A-109089, UBOCC-A-109088, UBOCC-A-108107
Penicillium nalgiovense	UBOCC-A-112103, UBOCC-A-112101, UBOCC-A-111230, UBOCC-A-101430, UBOCC-A-101431
Penicillium nordicum	UBOCC-A-112105, UBOCC-A-112106, CBS 483.84, CBS 110770, CBS 323.92
Penicillium oxalicum	UBOCC-A-101438, UBOCC-A-102021, UBOCC-A-101437, UBOCC-A-111029, UBOCC-A-101436, UBOCC-A-101435
Penicillium palitans	UBOCC-A-112147, UBOCC-A-113024, <u>UBOCC-A-113023, UBOCC-A-101387, CBS 311.48</u>
Penicillium paneum	UBOCC-A-101450, UBOCC-A-109218, UBOCC-A-111183, UBOCC-A-101448, CBS 303.97
Penicillium polonicum	UBOCC-A-102002, UBOCC-A-101429, CBS 116689, CBS 222.28, CBS 112650
Penicillum Toquejorti	UBOCC-A-TITTR, UBOCC-
Penicillium salamii	CBS 135391, CBS 135392, CBS 135395, CBS 135393, CBS 135396
Penicillium	<u>UBOCC-A-101427</u> , UBOCC-A-111189, <u>UBOCC-A-101428</u>
simplicissimum	
Penicillium solitum	UBOCC-A-113015, UBOCC-A-108113, UBOCC-A-113038, UBOCC-A-111055, CBS 141.85
Penicillium viridicatum	UBOCC-A-111198. UBOCC-A-111200. UBOCC-A-111199. UBOCC-A-111201. HROCC-A-108115
Purpureocillium lilacinum	UBOCC-A-108030, UBOCC-A-108014, UBOCC-A-108027, UBOCC-A-111264, UBOCC-A-101208
Rhizopus oryzae	UBOCC-A-101372, CBS 146.90, CBS 278.38, 515.94, CBS 127.08
Rhizopus stolonifer	UBOCC-A-108116, <u>CBS 382.52</u> , CBS 819.96, CBS 109.76
Scopulariopsis fusca	UBOCC-A-108120, UBOCC-A-101272, UBOCC-A-108119, UBOCC-A-101271, UBOCC-A-113016 UBOCC-A-101035, CBS 296-48, CBS 116927, CBS 110774, CBS 158-67
Talaromyces macrosporus	CBS 317.63. CBS 118884. CBS 130.89
,	

Please cite this article in press as: Quéro, L, et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

L. Quéro et al. / Food Microbiology xxx (2018) 1-13

ľ			
	5	ı	

Tab	le 1	(continued)
-----	------	------------	---

Species Strain number* Trichoderma harzianum UBOCC-A-112175, CBS 226.95 Trichoderma viride UBOCC-A-111251, UBOCC-A-101292 Trichothecium roseum UBOCC-A-101293, CBS 281.28, CBS 566.50	Table I (continueu)	
Trichoderma harzianum UBOCC-A-112175, <u>CBS 226.95</u> Trichoderma viride UBOCC-A-111251, UBOCC-A-101292 Trichothecium roseum <u>UBOCC-A-101293, CBS 281.28, CBS 566.50</u>	Species	Strain number*
Umbellopsis isabellina CBS 208.32, CBS 100559, CBS 560.63 Wallemia sebi UBOCC-A-110069, UBOCC-A-112060, UBOCC-A-101324, CBS 818.96, CBS 184.28	Trichoderma harzianum Trichoderma viride Trichothecium roseum Umbellopsis isabellina Wallemia sebi	UBOCC-A-112175, <u>CBS 226.95</u> UBOCC-A-111251, UBOCC-A-111252, <u>UBOCC-A-101292</u> <u>UBOCC-A-101293, CBS 281.28, CBS 566.50</u> <u>CBS 208.32, CBS 100559, CBS 560.63</u> UBOCC-A-112069, UBOCC-A-112060, UBOCC-A-101324, CBS 818.96, CBS 184.28

*UBOCC, Université de Bretagne Occidentale Culture Collection; CBS, Centraalbrueau voor Schimmelcultures Collection; Underlined strain number indicates that strain identification was confirmed by DNA-sequencing.

ethanol (Carlo Erba, Val de Reuil, France) in a microcentrifuge tube, vortexed for 5 s and then centrifuged at $14,000 \times g$ for 2 min. Supernatant was discarded and the pellet was suspended into 40 µL of 70% formic acid (Sigma-Aldrich, St. Quentin Fallavier, France), followed by vortexing for 5 s after addition of 40 µL of acetonitrile (Carlo Erba, Val de Reuil, France). Prior to MALDI-TOF MS analysis, all samples were centrifuged again at $14,000 \times g$ for 2 min.

2.3. Spectra acquisition

One microliter of the obtained suspension was deposited on the target slide and allowed to dry, in duplicate for each sample. Then, 1 μL of α-cyano-hydroxycinnamic acid matrix solution (CHCA; bioMérieux, Marcy l'Etoile, France) was added to each spot and allowed to dry for 15 min. Spectra were acquired using the VITEK MS system (bioMérieux, Marcy l'Etoile, France) equipped with the Launchpad V2.8.4 acquisition software. All spectra were acquired in linear positive ion extraction mode in a mass range from 2000 to 20,000 Da. Individual spectra were accumulated from 500 laser shots (100 profiles with 5 shots per profile) with the 'Auto-Quality' option activated. The system was calibrated externally with fresh cells of Escherichia coli ATCC 8739. Raw spectra were automatically processed by smoothing and peak detection procedures implemented in Launchpad acquisition software. After acquisition, individual spectra from each strain were considered separately.

2.4. Spectra quality control

Raw spectra were controlled for peak resolution, signal to noise ratio, and absolute signal intensity. Good quality spectra were then transformed into peak lists and for each species, dendrograms with new spectra (and old spectra for species already in the clinical FDAcleared VITEK MS database) were analyzed to assess intra-specific similarity and to detect any doubtful strains before integration of the spectra into the database.

2.5. Development of spectral database

As described by Girard et al. (2016), peak lists were binned and a log base scaling of the peak intensities was applied followed by a L1-normalization (Strubel et al., 2013). A predictive model was established for each species using the Advanced Spectra Classifier (ASC) algorithm developed by bioMérieux. This procedure provided a specific weighed bin matrix for each species and for identification, new spectra were compared to the bin weight matrix and the sum of matching bin weights was calculated and considered as an intermediate score. All species-specific scores were then transformed into multiclass probability estimates using a Gaussian based calibration procedure that took into account the score distributions within species compared to all other species (Strubel et al., 2013). A decision algorithm retained only significant matches and a single choice identification was obtained when only one species was retained. When more than one species was retained, a low discrimination result was proposed. In case more than 4 species were retained or if no significant match was found, it was considered as a non-identification result.

2.6. Optimization and performance evaluation of the database

A 5-fold cross validation was used to optimize the VITEK MS database and to assess how accurately it would perform on independent new spectra. The spectral data were randomly split into 5 subsets. One round of cross-validation involved a learning phase on 4 subsets, and validated the identification performance on the remaining subset. Five rounds of cross-validation were performed by permutation of the subsets. The results were combined across rounds to get an estimation of identification performance. A correct identification was defined when the same identification occurred between cross-validation result and the reference identification. Low discrimination results were considered as correct if the expected identification was included in the matches. A misidentification was defined as discordant identification between the crossvalidation result and the reference identification.

2.7. Evaluation of identification performances

The database was challenged with 73 external strains corresponding to 276 spectra that met the quality criteria described above, in order to assess whether correct identification could be achieved for the species claimed in the database and whether no identification was provided for the species absent from the database.

3. Results and discussion

3.1. Selection of spectra for the reference database

A total of 6477 spectra and 618 strains were retained for database construction. For each strain, spectra were acquired on at least 3 different culture media and 2 different incubation times (2 and 8 days). Species with great relevance were represented by 5-10 strains whereas rare species were represented by a small number of strains. The average number of strains and spectra per species was 5 and 50, respectively.

3.2. Effects of incubation time and growth medium on spectral similarity

Concerning the effects of incubation time and growth medium on spectral classification, two different cases were observed. For most of the tested species, all spectra derived from a same strain clustered together according to the medium used for growth without any separation according to incubation time. This result indicated that spectra from a same species differed mainly according to the strains used to build the database and that the effects of growth medium and incubation time were less important than that of intra-species diversity.

For certain species such as Aspergillus flavus, Aureobasidium

Please cite this article in press as: Quéro, L., et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

6

ARTICLE IN PRESS

L. Quéro et al. / Food Microbiology xxx (2018) 1-13

Table 2

Species used for external validation and their strain collection and Genbank accession numbers.

Strain number	Name	Genbank accession number
UBOCC-A-101330	Absidia glauca	MH102058
3a18a	Acremonium sp.	KX928832.1
UBOCC-A-101046	Alternaria brassicicola	MH102059
UBOCC-A-101055	Aspergillus clavatus	MH122641
UBOCC-A-101060	Aspergillus flavus	KF225050.1
UBOCC-A-106016	Aspergillus fumigatus	MH122642
UBOCC-A-101054	Aspergillus intermedius	MH122643
UBOCC-A-110208	Aspergillus nidulans	KF499566
UBOCC-A-112119	Aspergillus niger	MH122644
UBOCC-A-111044	Aspergillus tamarii	MH122645
UBOCC-A-101082	Aspergillus versicolor	MH122646
UBOCC-A-111050	Aspergillus wenti	MH122647
UBOCC-A-111234	Aureobasidium pullulans	MH102060
UBUCC-A-110185	Chaetomium globosum	MH102061
Jd 14d	Cladosportum balotolorans	KA920034.1
12a1 12a17	Cladosporium ovusporum	KA520554.1 VV029029 1
12217	Cladosporium ramotenellum	KX920920.1 KX92855 1
	Cladosportum rumotenenum	KI596622 1
516	Cladosporium sphaerospermum	KX928840 1
1i2a	Didymella glomerata	KX928948.1
1114	Didymella heteroderae	KX928949.1
lfllc	Didymella pinodella	KX928846.1
UBOCC-A-101137	Fusarium avenaceum	MH122636
UBOCC-A-109124	Fusarium culmorum	IF278586.1
UBOCC-A-109101	Fusarium delphinoides	EU926311.1
ATCC 20273	Fusarium graminearum	MH122637
1i17b	Fusarium merismoides	KX928848.1
UBOCC-A-101151	Fusarium oxysporum	MH122638
UBOCC-A-109112	Fusarium poae	JF278578.1
UBOCC-A-101164	Fusarium solani	MH122639
UBOCC-A-109014	Fusarium sporotrichioides	MH122640
UBOCC-A-216001	Geotrichum candidum	KX928847.1
UBOCC-A-109155	Mucor racemosus	JF723961.2
5f24	Mucor circinelloides	KX928835.1
UBOCC-A-108087	Mucor fuscus	KX928837.1
UBOCC-A-102007	Mucor racemosus	MH102062
5i3	Mucor racemosus	KX928839.1
CBS 133.37	Paecilomyces niveus	FJ390000.1
UBOCC-A-103043	Paecilomyces variotii	MH122648
1110	Penicillium adametzioides	KX928888.1
517 LIDOCC A 109003	Penicillum antarticum	KX928902.1
UBUCC-A-108092	Periicillium durunuogriseum Donicillium biolowiozoneo	NR_121247.1 KX028044.1
	Penicillium bravicompactum	KX928944.1 KX028020.1
	Penicillium camambarti	MH122640
CRS 112297	Penicillium carneum	AV674386 1
LIBOCC-A-101400	Penicillium chrysogenum	KF225057 1
3a1a	Penicillium chrysogenum	KX928918 1
515	Penicillium commune	KX928952.1
UBOCC-A-110017	Penicillium corylophilum	KF225058.1
1i7b	Penicillium dierckxii	KX928892.1
UBOCC-A-111030	Penicillium digitatum	MH122650
5i1	Penicillium discolor	KX928906.1
12a3b	Penicillium echinulatum	KX928926.1
LCP 07.5414	Penicillium expansum	MH122651
UBOCC-A-108106	Penicillium glabrum	KF225079.1
12a4b	Penicillium glabrum	KX928905.1
UBOCC-A-110039	Penicillium granulatum	MH122652
5i4	Penicillium nalgiovense	KX928943.1
5i9	Penicillium nordicum	KX928912.1
5i25	Penicillium palitans	KX928947.1
CBS 464.95	Penicillium paneum	HQ442324.1
UBOCC-A-101449	Penicillium roqueforti	KM503582.1
5t23 (-3)	Penicillium roqueforti	KX928910.1
5111	Penicillium solitum	KX928946.1
	Penicillum spathulatum	KX928913.1
UBUCC-A-114054	Purpureocillium Illacinum	KX928845.1
12d9 5:0	Stereum sp.	KA928844.1
	mammanum elegans	IVIT113133 MU102062
UDUCC-A-101290	Inchouerma longibracmatum Vorticillium dablige	IVITI 102003
UBOCC A 101225	venucinium aannae Wallomia sobi	IVIA 102004 MU102065
UDUCC-A-101325	vvunenna sebi	IVIN 102005

pullulans and *Penicillium expansum*, a small effect of incubation time and growth medium was observed as shown in Fig. 1 for *P. expansum*. Indeed, for these species, different groups of spectra corresponding to the same medium (i.e. SDA or other media) and incubation time clustered together independently of the strain used (Fig. 1). This spectral grouping by medium and incubation time could be explained by the morphological changes that occurred as the culture aged, the main change being spore production. Consistent with this hypothesis, we observed that in these species, sporulation was strongly affected by incubation time and that sporulation was less important on SDA than for the other tested media (PDA, MEA and YGC agar). Despite these observations, identification performances were not affected as 100% of *P. expansum* spectra were correctly identified during crossvalidation.

Two other media commonly used for food borne fungi cultivation were also tested, i.e., DG 18 and DRBC but were not chosen for database construction. Indeed, spectra acquired from closely related fungal species grown on these media could not be discriminated and a large proportion of spectra did not reach the chosen quality criteria (data not shown). This could be explained by the composition of these media which did not allow an optimal development of all fungi. Indeed, both media contain dichloran which is known to slow down mold growth (Henson, 1981) while DG18, a selective medium for xerophilic molds, has a low water activity and is therefore not adapted for growth of less xerotolerant fungi.

Fig. 1. Dendrogram showing spectral similarity of different strains belonging to *Penicillium expansum* cultivated on different growth media and for different incubation times.

There is little information about the impact of growth media on spectral similarity of fungi as most studies dealing with MALDI-TOF MS fungal identification were performed using only one cultivation medium. Concerning the effect of incubation time, several studies highlighted its impact on MALDI-TOF MS spectra classification. Alanio et al. (2011) observed differences between spectra of *Aspergillus* species obtained from young (<2 days of growth) and older thalli (4–10 days of growth) and developed their database with spectra from both young and mature thalli for more robustness as performed in the present study.

3.3. Performance evaluation by cross-validation

Global performance of the database was estimated by crossvalidation. Overall, 94.12% of spectra were correctly identified to the species-level, 4.49% of spectra were not identified and 1.39% of spectra were discordant, meaning that they were incorrectly identified. Moreover, for species previously included into the VITEK MS database (e.g. *Aspergillus westerdijkiae* or *Epicoccum nigrum*), the new added spectra of the present study had no negative impact on the identification performances. Interestingly, Buskirk et al. (2011) argued that darkly-pigmented species such as *Aspergillus niger* had inhibitory effects on MALDI-TOF mass spectra analysis due to the presence of fungal melanin. However, in the present study, we did not observe such an impact on identification performances as more than 90% of *A. niger* spectra were correctly identified during cross-validation (Table 3).

Overall, detailed analysis of results (Table 3) showed that spectra from 113 out of the 136 species integrated into the database vielded an overall correct identification percentage above 90% with less than 10% spectra with low discrimination except for 7 species, i.e. Aspergillus lactticoffeatus, Cladosporium oxysporum, Microdochium majus, Mucor hiemalis, Penicillium camemberti, Penicillium carneum and Trichiderma viride. Noteworthy, most of these 113 species e.g. Aspergillus flavus, Cladosporium halotolerans or Penicillium citrinum had no discordant spectra and less than 5% unidentified spectra even within genus for which a large species diversity and closely related species were represented in the database e.g. Penicillium and Aspergillus spp. Spectra of the 23 remaining species had levels of correct identification <90% ranging from 42.9% to 89.8% for Fusarium acuminatum and Cladosporium cladosporioides, respectively. Not surprisingly, most species for which a low overall correct identification was achieved, were closely related with another species also represented in the database or belonged to species complex. For example, Penicillium bialowiezense spectra were not well discriminated from those of Penicillium brevicompactum and it is well established that both species are closely related and share similar colony and micromorphological characteristics (Samson et al., 2002). It was also the case for Aspergillus foetidus and Aspergillus lacticoffeatus for which a high percentage of discordant spectra (~39%) and low discrimination spectra (~37%) were obtained, respectively. These species are members of the A. niger clade together with A. niger and Aspergillus tubingensis and were misclassified with A. niger. Varga et al. (2011), based on sequence data and extrolite production, considered Aspergillus foetidus and Aspergillus lacticoffeatus as synonyms of A. niger. Interestingly, in Fig. 2 showing spectra similarity between these species, each species formed separated clusters except for A. niger and A. lacticoffeatus, thus only confirming partly results of Varga et al. (2011) as A. foetidus spectra were separated from those of A. niger and A. lacticoffeatus. Within Fusarium spp., identification percentages (<60%) were observed for Fusarium acuminatum and Fusarium avenaceum spectra, which are also closely related to Fusarium arthrosporioides and Fusarium tricinctum (Stakheev et al., 2016). When comparing spectra similarity, two distinct clusters could be

Please cite this article in press as: Quéro, L., et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

8

ARTICLE IN PRESS

L. Quéro et al. / Food Microbiology xxx (2018) 1–13

Table 3

Performance evaluation by cross-validation results.

Species	Overall correct (%) ^b	Single choice (%)	Low discrimination (%)	No identification (%)	Discordant (%)
Actinomucor elegans ^a	100	100	0	0	0
Alternaria alternata	98.97	98.97	0	1.03	0
Aspergillus arachidicola ^a	100	100	0	0	0
Aspergillus calidoustus	100	100	0	0	0
Aspergillus candidus	61.54	61.54	0	38.46	0
Aspergillus carbonarius ^a	93.18	93.18	0	6.82	0
Aspergillus chevalieri ^a	98.28	98.28	0	1.72	0
Aspergillus fennelliae ^a	100	100	0	0	0
Aspergillus flavus	99.59	99.59	0	0.41	0
Aspergillus foetidus"	44.44	25.93	18.52	16.67	38.89
Aspergillus glaucus	99.39	99.39 54.55	0	0.41	0
Aspergillus intermedius ^a	100	100	0	0	0
Aspergillus lacticoffeatus ^a	100	62.86	37.14	0	0
Aspergillus minisclerotigenes ^a	100	98.15	1.85	0	0
Aspergillus montevidensis ^a	100	98.48	1.52	0	0
Aspergillus nidulans	100	100	0	0	0
Aspergillus niger	90.74	87.04	3.7	6.17	3.09
Aspergillus novoparasiticus ^a	100	100	0	0	0
Aspergillus ochraceus	96.23	96.23	0	3.77	0
Aspergillus parasiticus ^a	87.5	87.5	0	12.5	0
Aspergillus penicilloides	66.67	25	41.67	0	33.33
Aspergillus proliferans	100	100	0	0	0
Aspergillus restrictus ^a	98.15	98.15	0	1.85	0
Aspergillus ruber ^a	96.97	03.04	3 03	3 03	0
Aspergillus sydowii	100	100	0	0	0
Aspergillus tamarii	100	100	0	0	0
Aspergillus terreus	99.54	99.54	0	0.46	0
Aspergillus thermomutatus	95.71	95.71	0	4.29	0
Aspergillus tubingensis	81.25	71.88	9.38	17.19	1.56
Aspergillus versicolor	95.4	95.4	0	4.6	0
Aspergillus wentii ^a	92.59	92.59	0	7.41	0
Aspergillus westerdijkiae	100	100	0	0	0
Aureobasidium pullulans	94.37	92.96	1.41	5.63	0
Botrytis cinerea ^a	100	100	0	0	0
Chaetomium globosum	100	100	0	0	0
Cladosporium dominicanum ^a	89.8	84.30 07.06	5.44	10.2	0
Cladosporium fusiforme ^a	100	97.00 100	0	2.94	0
Cladosporium halotolerans ^a	100	100	0	0	0
Cladosporium herbarum ^a	77.08	77.08	0	5.21	17.71
Cladosporium langeronii ^a	94.59	94.59	0	5.41	0
Cladosporium oxysporum ^a	100	86.44	13.56	0	0
Cladosporium psychrotolerans ^a	100	100	0	0	0
Cladosporium ramotenellum ^a	100	100	0	0	0
Cladosporium sphaerospermum	100	100	0	0	0
Cladosporium velox ^a	100	100	0	0	0
Didymella glomerata ^a	83.93	64.29	19.64 r	14.29	1.79
Diaymella pinoaella ⁻	55	50 100	5	0	45
Epicoccum nigrum Fusarium acuminatum ^a	42.86	26.53	16 33	38 78	18 37
Fusarium arthrosporioides ^a	90.91	90.91	0	9.09	0
Fusarium avenaceum ^a	58.93	57.14	1.79	41.07	0
Fusarium cerealis ^a	100	100	0	0	0
Fusarium culmorum ^a	96.55	91.38	5.17	0	3.45
Fusarium domesticum ^a	100	100	0	0	0
Fusarium equiseti ^a	67.14	67.14	0	31.43	1.43
Fusarium graminearum ^a	100	100	0	0	0
Fusarium incarnatum ^a	83.33	76.67	6.67	13.33	3.33
Fusarium langsethiae"	100	100	0	0	0
Fusarium lateritium"	100	100	0	0	0 75
Fusarium poge ^a	97.06	97.01	0.75	2.94	0.75
Fusarium proliferatum	97.22	963	0 93	2.78	0
Fusarium sambucinum ^a	100	100	0	0	0
Fusarium solani	96	96	0	4	0
Fusarium sporotrichioides ^a	98	94	4	2	0
Fusarium subglutinans ^a	86.67	80	6.67	13.33	0
Fusarium temperatum ^a	100	97.83	2.17	0	0
Fusarium tricinctum	95.45	92.42	3.03	1.52	3.03
Fusarium venenatum ^a	100	100	0	0	0
Fusarium verticillioides	71.01	71.01	0	26.09	2.9
Geotrichum candidum	98.72	98.72	U	1.28	U

L. Quéro et al. / Food Microbiology xxx (2018) 1-13

Table 3 (continued)

Species	Overall correct (%) ^b	Single choice (%)	Low discrimination (%)	No identification (%)	Discordant (%)
Lasiodiplodia theobromae ^a	100	100	0	0	0
Lichtheimia corymbifera	100	100	0	0	0
Macrophomina phaesolina ^a	93.33	86.67	6.67	0	6.67
Microdochium majus ^a	100	83.33	16.67	0	0
Microdochium nivale ^a	100	100	0	0	0
Mucor circinelloides	95.83	93.75	2.08	4.17	0
Mucor fragilis ^a	100	97.06	2.94	0	0
Mucor hiemalis ^a	100	90.91	9.09	0	0
Mucor lanceolatus	97.56	97.56	0	0	2.44
Mucor plumbeus ^a	100	100	0	0	0
Mucor racemosus	100	100	0	0	0
Paecilomyces divaricatus ^a	100	100	0	0	0
Paecilomyces formosus ^a	98.41	98.41	0	1.59	0
Paecilomyces fulvus	93.06	93.06	0	6.94	0
Paecilomyces saturatus ^a	100	100	0	0	0
Paecilomyces variotii	98.6	98.6	0	1.4	0
Penicillium adametzioides ^a	100	100	0	0	0
Penicillium antarcticum ^a	100	100	0	0	0
Penicillium aurantiogriseum ^a	93.55	83.87	9.68	4.84	1.61
Penicillium bialowiezense ^a	87.72	85.96	1.75	12.28	0
Penicillium brevicompactum	98.48	93.18	5.3	1.52	0
Penicillium camemberti	95.65	77.39	18.26	0	4.35
Penicillium carneum ^a	100	80.85	19.15	0	0
Penicillium chermesinum ^a	91.67	91.67	0	8.33	0
Penicillium chrysogenum	96.18	96.18	0	2.55	1.27
Penicillium citreonigrum ^a	100	100	0	0	0
Penicillium citrinum	98.46	98.46	0	1.54	0
Penicillium commune ^a	62.35	42.35	20	12.94	24.71
Penicillium corylophilum ^a	100	100	0	0	0
Penicillium crustosum ^a	98.72	96.15	2.56	1.28	0
Penicillium decumbens	100	100	0	0	0
Penicillium dierckxii ^a	100	100	0	0	0
Penicillium digitatum ^a	100	100	0	0	0
Penicillium discolor ^a	79.55	77.27	2.27	0	20.45
Penicillium expansum	100	100	0	0	0
Penicillium fuscoglaucum ^a	84.62	76.92	7.69	0	15.38
Penicillium glabrum	100	100	0	0	0
Penicillium italicum	100	100	0	0	0
Penicillium nalgiovense ^a	96.43	96.43	0	3.57	0
Penicillium nordicum ^a	100	100	0	0	0
Penicillium oxalicum ^a	81.43	81.43	0	18.57	0
Penicillium palitans ^a	63.16	57.89	5.26	23.68	13.16
Penicillium paneum ^a	95.92	95.92	0	4.08	0
Penicillium polonicum ^a	94.64	92.86	1.79	5.36	0
Penicillium roqueforti	92.86	92.26	0.6	0.6	6.55
Penicillium salamii ^a	100	100	0	0	0
Penicillium simplicissimum ^a	100	100	0	0	0
Penicillium solitum ^a	100	100	0	0	0
Penicillium verrucosum ^a	93.48	93.48	0	6.52	0
Penicillium viridicatum ^a	65.63	65.63	0	34.38	0
Purpureocillium lilacinum	100	100	0	0	0
Rhizopus oryzae complex	92.86	89.29	3.57	7.14	0
Rhizopus stolonifer ^a	94.74	92.11	2.63	5.26	0
Scopulariopsis asperula ^a	100	100	0	0	0
Talaromyces bacillisporus ^a	98.28	98.28	0	1.72	0
Talaromyces macrosporus ^a	100	100	0	0	0
Trichoderma harzianum ^a	100	100	0	0	0
Trichoderma viride ^a	100	84.85	15.15	0	0
Trichothecium roseum ^a	96.67	96.67	0	3.33	0
Umbelopsis isabellina ^a	100	100	0	0	0
Wallemia sebi ^a	100	100	0	0	0
		•			

^a Species not previously represented in the VITEK MS fungal database.

^b Single choice percentage corresponds to spectra identified to the correct species, low discrimination percentage corresponds to spectra which matched with several species including the correct one while overall correct percentage is the addition of single choice and low discrimination percentages.

observed i.e., one containing *F. acuminatum* and *F. tricinctum* spectra and another one containing *F. avenaceum* and *F. arthrosporoides* spectra (data not shown). Among *Penicillium* spp., low levels of correctly identified spectra were achieved for members of the *Penicillium camemberti*/*Penicillium commune* species complex, i.e., *P. commune*, *Penicillium fuscoglaucum* and *Penicillium palitans*. Indeed, all these species including *P. camemberti* are also phylogenetically closely related (Giraud et al., 2010). While

P. camemberti and *P. commune* only differ slightly in their morphological characteristics as they produce respectively white and green conidia, it has been shown that they cannot be distinguished using molecular data (Giraud et al., 2010). Giraud et al. (2010) also proposed to re-introduce the old name *P. fuscoglaucum* (previously synonymized with *P. commune*) based on tubulin gene and PC4 microsatellite genealogies while it was shown that *P. palitans* was closely related but distinguishable from

Please cite this article in press as: Quéro, L., et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

L. Quéro et al. / Food Microbiology xxx (2018) 1-13

Fig. 2. Dendrogram showing spectral similarity of different strains belonging to 4 species from the *A. niger* clade and *A. carbonarius*.

P. camemberti/*P.commune.* Based on these data and the present results, it may not be possible to identify these closely related species accurately using MALDI-TOF and it would be necessary to group these species into a complex as it was already done for closely related bacterial species such as those from the *Mycobacterium tuberculosis* complex (Girard et al., 2016). Interestingly, we were able to accurately identify all members of the *Cladosporium sphaerospermum* complex, e.g. *C. dominicanum, C. psychrotolerans, C. halotolerans, C. sphaerospermum, C. fusiforme, C. velox* and *C. langeronii* (Table 3) as these species harboured quite different MALDI-TOF spectra (Fig. 3).

This method appears as powerful as the molecular gold standard to identify most of the species we implemented in the database, even for closely related species. Indeed, as underlined recently by Normand et al. (2013), the analysis of a high number of subcultures from each strain and of strains representing each species are key to improve the effectiveness of spectral libraries for fungal identification. However, this method may also have limitations for certain species complex.

Fig. 3. Dendrogram showing spectral similarity of different strains and species belonging to the *Cladosporium sphaerospermum* complex.

Although these results were very promising, this first crossvalidation could only estimate the database performances and give a first idea on how the different species behaved. In order to go further in the evaluation and validation of the method performances, we then tested external strains not used to build the database, in order to assess whether they could be correctly identified or not.

3.4. Database validation with external isolates

The database was challenged with external isolates to evaluate its performances. Of the 73 external strains used, corresponding to 19 genera and 67 species, 52 strains belonged to species represented in the database and 15 belonged to species absent from it. Depending on the analyzed strains, different cases were observed. For 69 out of 73 strains, spectra acquired from the same strain showed identical results (either a good, bad or no identification) (Table 4). Exceptions were *Penicillium aurantiogriseum* UBOCC-A-108092 and *Penicillium expansum* UBOCC-A-108103 for which spectra were either correctly or not identified, and *Penicillium granulatum* UBOCC-A-110039, *Penicillium spathulatum* 12a5c and *Verticillium dahliae* UBOCC-A-101312 for which spectra were either incorrectly identified or not identified. There were not any strains for which spectra were assigned to two or more different species as single choice.

For species integrated into the database, 89.45% of spectra were correctly identified to the species-level, 4.13% of spectra were not identified and 6.42% of spectra were erroneously identified (discordant). The misidentification corresponded to spectra of *Cladosporium oxysporum* identified as *Cladosporium cladosporioides* complex; *P. commune* spectra identified as *P. camemberti*; *P. palitans* spectra identified as *Didymella glomerata*. It can be emphasized that spectra which were misidentified corresponded to species from the same genus and in the case of *P. commune* and *P. camemberti*, for undistinguishable species based on molecular data. For the 15 species not represented into the database, 70.69% of spectra were not identified and 29.31% of spectra were identified spectra were assigned to species of the same genus.

Although some of the tested spectra for this external validation were not correctly identified, their assignment at the genus level was correct. For the species present in the database, all spectra acquired from 52 out of 58 strains were correctly assigned. Since they were obtained with a non-optimized database, these results are promising and should improve as the database is further optimized. Optimization could consist in grouping closely related species into species complex as mentioned above, adding spectra from other species and new strains for the species already present in the database.

In comparison to the present study, the three most clinically comprehensive mold databases were developed by Lau et al. (2013), Gautier et al. (2014) and Becker et al. (2015), with respectively 152, 347 and 525 claimed fungal species. When challenged with external isolates, identification performances of these databases respectively yielded 88.9%, 98.8% and 84% of correctly identified spectra. The levels of correctly identified spectra obtained by Lau et al. (2013) and Becker et al. (2015) were close but below those obtained in the present study, with 89.45% of correctly identified external spectra. As mentioned previously, these results demonstrate the good reliability of the spectral database covering 136 species for identification of food spoilage fungi.

4. Conclusion

MALDI-TOF MS appears to be a rapid and reliable tool for the

Please cite this article in press as: Quéro, L., et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

L. Quéro et al. / Food Microbiology xxx (2018) 1-13

Table 4

Detailed results for the set of external strains used to evaluate the database performances.

	Species (number of strains)	Number of spectra	Number of correctly identified spectra	Number of non-identified spectra	Number of misidentified spectra
Species present in the	Aspergillus flavus (1)	4	4	0	0
database	Aspergillus fumigatus (1)	4	4	0	0
	Aspergillus intermedius (1)	4	4	0	0
	Aspergillus nidulans (1)	4	4	0	0
	Aspergillus niger (1)	4	4	0	0
	Aspergillus tamarii (1)	4	4	0	0
	Aspergillus versicolor (1)	4	4	0	0
	Aspergilius wentii (1)	4	4	0	0
	Chaetomium globosum (1)			2	0
	Cladosporium cladosporioides	4	4	0	0
	(1)	-	-	-	-
	Cladosporium halotolerans	4	4	0	0
	(1)				
	Cladosporium oxysporum (1)	4	0	0	4 (C. cladosporioides
					complex)
	Cladosporium ramotenellum	4	4	0	0
	(1)	<u> </u>		2	2
	Cladosporium	6	6	0	0
	Didumella alemerata (1)	4	4	0	0
	Didymella ninodella (1)	4	4	0	0 2 (D. glomerata)
	Fusarium avenaceum (1)	2	0	2	0
	Fusarium culmorum (1)	4	4	0	0
	Fusarium graminearum (1)	2	2	0	0
	Fusarium oxysporum (1)	4	4	0	0
	Fusarium poae (1)	4	4	0	0
	Fusarium solani (1)	2	2	0	0
	Fusarium sporotrichioides (1)	4	4	0	0
	Geotrichum candidum (1)	4	4	0	0
	Mucor circinelloides (1)	4	4	0	0
	Mucor racemosus (3)	12	12	0	0
	Paecilomyces variolii (1) Panicillium adamatzioidas (1)	4	4	0	0
	Penicillium antarcticum (1)	4	4	0	0
	Penicillium aurantiogriseum	4	2	2	0
	(1)	1	2	2	0
	Penicillium bialowiezense (1)	4	4	0	0
	Penicillium brevicompactum	4	4	0	0
	(1)				
	Penicillium camemberti (1)	4	4	0	0
	Penicillium carneum (1)	4	4	0	0
	Penicillium chrysogenum (2)	8	8	0	0
	Penicillium commune (1)	4	0	0	4 (P. camemberti)
	Penicillium digitatum (1)	4	4	0	0
	Penicillium discolor (1)	4	4	0	0
	Penicillium expansum (1)	4	3	1	0
	Penicillium dierckxii (1)	4	4	0	0
	Penicillium glabrum (2)	8	8	0	0
	Penicillium nalgiovense (1)	4	4	0	0
	Penicillium nordicum (1)	2	2	0	0
	Penicillium palitans (1)	4	0	0	4 (P. aurantiogriseum)
	Penicillium paneum (1)	4	4	0	0
	Penicillium roqueforti (2)	8	8	0	0
	Penicilium solitum (1)	4	4	0	0
	Trichoderma longibrachiatum	4	4	0	0
	(1)	7	7	0	0
	Wallemia sebi (1)	4	4	0	0
Succion about from the	Abaidia alawaa (1)	4			0
database	Adsidia glauca (1)	4	_	4	0
aaabase	Alternaria brassicicola (1)	2 4	_	0	4 (A. alternata)
	Aspergillus clavatus (1)	4	_	4	0
	Didymella heteroderae (1)	4	_	0	4 (D. glomerata)
	Fusarium delphinoides (1)	4	_	4	0
	Fusarium merismoides (1)	4	-	4	0
	Mucor fuscus (1)	4	_	4	0
	Paecilomyces niveus (1)	4	_	0	4 (P. fulvus)
	Penicillium echinulatum (1)	4	-	4	U 2 (Phizonus arrithus
	renicilium granulatum (1)	4	-	2	complex)

(continued on next page)

12

ARTICLE IN PRESS

L. Quéro et al. / Food Microbiology xxx (2018) 1-13

Table 4 (continued)

S	Species (number of strains)	Number of spectra	Number of correctly identified spectra	Number of non-identified spectra	Number of misidentified spectra
P S T	Penicillium spathulatum (1) Stereum sp. (1) Fhamnidium elegans (1)	4 4 4		2 4 4	2 (P. brevicompactum) 0 0
V	/erticillium dahliae (1)	4	-	3	1 (Fusarium solani complex)

identification of filamentous fungi. Using the present standardized extraction protocol, it is rapid and easy to implement as compared to phenotypic and genotypic methods. Moreover, this method is robust enough to allow the use of several different culture media and incubation time for identification and to our best knowledge. this database is the most comprehensive one developed for the identification of food spoilage fungi. It appeared as powerful as DNA sequencing to identify most of the species we implemented in the database, even for closely related species. However, it also had limitations for certain species complex. All together, these results also emphasize the need to use well characterized strains to build a spectral database for identification and to identify its potential limits. With the implementation of this new database and the constant evolution of fungal taxonomy and phylogeny (Houbraken and Samson, 2017), one challenge will be to keep the database taxonomy updated and to regularly add new species and new strains for species already represented in the database. Another challenge to address will be to assess whether MALDI-TOF MS can be applied for intra-specific differentiation or species complex resolution as already shown for certain yeast (Stübiger et al., 2016) and bacterial (Dieckmann et al., 2008) species.

Conflicts of interest

LQ, VG, SA, BC, VM and AVB are employees of bioMérieux, a company developing and selling in vitro diagnostic assays including the VITEK MS used in this study.

Acknowledgements

This work was done as part of a CIFRE PhD funded by bio-Mérieux and the French Association for Research and Technology (ANRT) [Convention #2015/0821] in collaboration with the LUBEM laboratory.

References

- Alanio, A., Beretti, J.-L., Dauphin, B., Mellado, E., Quesne, G., Lacroix, C., Amara, A., Berche, P., Nassif, X., Bougnoux, M.-E., 2011. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin. Microbiol. Infect. 17, 750–755. https://doi.org/10.1111/j.1469-0691.2010.03323.x.
- Basile, F., Beverly, M.B., Voorhees, K.J., Hadfield, T.L., 1998. Pathogenic bacteria: their detection and differentiation by rapid lipid profiling with pyrolysis mass spectrometry. TrAC Trends Anal. Chem. (Reference Ed.) 17, 95–109. https://doi. org/10.1016/S0165-9936(97)00103-9.
- Becker, P.T., Stubbe, D., Claessens, J., Roesems, S., Bastin, Y., Planard, C., Cassagne, C., Piarroux, R., Hendrickx, M., 2015. Quality control in culture collections: confirming identity of filamentous fungi by MALDI-TOF MS. Mycoscience 56, 273–279. https://doi.org/10.1016/j.myc.2014.08.002.
- Buskirk, A.D., Hettick, J.M., Chipinda, I., Law, B.F., Siegel, P.D., Slaven, J.E., Green, B.J., Beezhold, D.H., 2011. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal. Biochem. 411, 122–128. https://doi.org/10.1016/j.ab.2010.11. 025.
- Cassagne, C., Ranque, S., Normand, A.-C., Fourquet, P., Thiebault, S., Planard, C., Hendrickx, M., Piarroux, R., 2011. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 6. https://doi.org/10.1371/journal.pone.0028425.
- Chalupová, J., Raus, M., Sedlářová, M., Šebela, M., 2014. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. In: Biotechnol. Adv., Plant Biotechnology 2013: "Green for Good II", vol. 32, pp. 230–241. https://doi.org/

10.1016/j.biotechadv.2013.11.002.

- Chen, A.J., Hubka, V., Frisvad, J.C., Visagie, C.M., Houbraken, J., Meijer, M., Varga, J., Demirel, R., Jurjević, Ž., Kubátová, A., Sklenář, F., Zhou, Y.G., Samson, R.A., 2017. Polyphasic taxonomy of Aspergillus section Aspergillus(formerly Eurotium), and itsoccurrence in indoor environments and food. Stud. Mycol. 88, 37–135. https://doi.org/10.1016/j.simyco.2017.07.001.Chen, H.-Y., Chen, Y.-C., 2005. Characterization of intact Penicillium spores by
- Chen, H.-Y., Chen, Y.-C., 2005. Characterization of intact Penicillium spores by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 3564–3568. https://doi.org/10.1002/rcm.2229.
- Dieckmann, R., Helmuth, R., Erhard, M., Malorny, B., 2008. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74, 7767–7778. https://doi.org/10.1128/AEM.01402-08.
- Filtenborg, O., Frisvad, J.C., Thrane, U., 1996. Moulds in food spoilage. In: Int. J. Food Microbiol., Specific Spoilage Organisms, vol. 33, pp. 85–102. https://doi.org/10. 1016/0168-1605(96)01153-1.
- Fournier, R., Wallet, F., Grandbastien, B., Dubreuil, L., Courcol, R., Neut, C., Dessein, R., 2012. Chemical extraction versus direct smear for MALDI-TOF mass spectrometry identification of anaerobic bacteria. Anaerobe 18, 294–297. https://doi.org/ 10.1016/j.anaerobe.2012.03.008.
- Garnier, L., Valence, F., Pawtowski, A., Auhustsinava-Galerne, L., Frotté, N., Baroncelli, R., Deniel, F., Coton, E., Mounier, J., 2017. Diversity of spoilage fungi associated with various French dairy products. Int. J. Food Microbiol. 241, 191–197. https://doi.org/10.1016/j.ijfoodmicro.2016.10.026.
- Gautier, M., Ranque, S., Normand, A.-C., Becker, P., Packeu, A., Cassagne, C., L'Ollivier, C., Hendrickx, M., Piarroux, R., 2014. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis 20, 1366–1371. https://doi.org/10.1111/1469-0691.12750.
- Ge, M.-C., Kuo, A.-J., Liu, K.-L., Wen, Y.-H., Chia, J.-H., Chang, P.-Y., Lee, M.-H., Wu, T.-L., Chang, S.-C., Lu, J.-J., 2016. Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: success rate, economic analysis, and clinical outcome. J. Microbiol. Immunol. Infect. https://doi.org/10.1016/j.jmii.2016.06.002.
- Geiser, D.M., Jiménez-Gasco, M. del M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T.J., Zhang, N., Kuldau, G.A., O'donnell, K., 2004. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110, 473–479. https://doi.org/10.1023/B. EJPP.0000032386.75915.a0.
- Girard, V., Mailler, S., Welker, M., Arsac, M., Cellière, B., Cotte-Pattat, P.-J., Chatellier, S., Durand, G., Béni, A.-M., Schrenzel, J., Miller, E., Dussoulier, R., Dunne, W.M., Butler-Wu, S., Saubolle, M.A., Sussland, D., Bell, M., van Belkum, A., Deol, P., 2016. Identification of mycobacterium spp. and nocardia spp. from solid and liquid cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Diagn. Microbiol. Infect. Dis. 86, 277–283. https://doi.org/10.1016/j.diagmicrobio.2016.07.027.
- Giraud, F., Giraud, T., Aguileta, G., Fournier, E., Samson, R., Cruaud, C., Lacoste, S., Ropars, J., Tellier, A., Dupont, J., 2010. Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing. Int. J. Food Microbiol. 137, 204–213. https://doi.org/10.1016/j. ijfoodmicro.2009.11.014.
- Hawksworth, D.L., 2015. Naming fungi involved in spoilage of food, drink, and water. In: Curr. Opin. Food Sci., Food Engineering and Processing Food Mycology, vol. 5, pp. 23–28. https://doi.org/10.1016/j.cofs.2015.07.004.
- Henson, O.E., 1981. Dichloran as an inhibitor of mold spreading in fungal plating media: effects on colony diameter and enumeration. Appl. Environ. Microbiol. 42, 656–660.
- Hettick, J.M., Green, B.J., Buskirk, A.D., Kashon, M.L., Slaven, J.E., Janotka, E., Blachere, F.M., Schmechel, D., Beezhold, D.H., 2008. Discrimination of Penicillium isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Rapid Commun. Mass Spectrom. RCM 22, 2555–2560. https://doi.org/10.1002/rcm.3649.
- Houbraken, J., Due, M., Varga, J., Meijer, M., Frisvad, J.C., Samson, R.A., 2007. Polyphasic taxonomy of Aspergillus section Usti. In: Stud. Mycol., Aspergillus Systematics in the Genomic Era, 59, pp. 107–128. https://doi.org/10.3114/sim.2007. 59.12.
- Houbraken, J., Samson, R.A., 2017. Current taxonomy and identification of foodborne fungi. In: Curr. Opin. Food Sci., Food Engineering and Processing 2017 Food Mycology, vol. 17, pp. 84–88. https://doi.org/10.1016/j.cofs.2017.10.010.
- Lau, A.F., Drake, S.K., Calhoun, L.B., Henderson, C.M., Zelazny, A.M., 2013. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 51, 828–834. https://doi.org/10.1128/JCM.02852-12.

Please cite this article in press as: Quéro, L., et al., Development and application of MALDI-TOF MS for identification of food spoilage fungi, Food Microbiology (2018), https://doi.org/10.1016/j.fm.2018.05.001

- Marinach-Patrice, C., Lethuillier, A., Marly, A., Brossas, J.-Y., Gené, J., Symoens, F., Datry, A., Guarro, J., Mazier, D., Hennequin, C., 2009. Use of mass spectrometry to identify clinical Fusarium isolates. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis 15, 634–642. https://doi.org/10.1111/j.1469-0691. 2009.02758.x.
- Nacef, M., Chevalier, M., Chollet, S., Drider, D., Flahaut, C., 2017. MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: the Maroilles. Int. J. Food Microbiol. 247, 2–8. Special Issue: CBL 20th edition: New challenges for research and industry. https://doi.org/10.1016/j. ijfoodmicro.2016.07.005.
- Nagy, E., Maier, T., Urban, E., Terhes, G., Kostrzewa, M., 2009. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 15, 796–802. https:// doi.org/10.1111/j.1469-0691.2009.02788.x.
- Normand, A.C., Becker, P., Gabriel, F., Cassagne, C., Accoceberry, I., Gari-Toussaint, M., Hasseine, L., Geyter, D.D., Pierard, D., Surmont, I., Djenad, F., Donnadieu, J.L., Piarroux, M., Ranque, S., Hendrickx, M., Piarroux, R., 2017. Validation of a new web application for identification of fungi by use of matrix-assisted laser desorption ionization—time of flight mass spectrometry. J. Clin. Microbiol. 55, 2661–2670. https://doi.org/10.1128/JCM.00263-17.
- Normand, A.-C., Cassagne, C., Ranque, S., L'ollivier, C., Fourquet, P., Roesems, S., Hendrickx, M., Piarroux, R., 2013. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol. 13 (76). https://doi.org/10.1186/ 1471-2180-13-76.
- Pitt, J., Hocking, A., 2009. Fungi and Food Spoilage, third ed. Springer Science & Business media, New York, USA.
- Perrone, G., Susca, A., Cozzi, G., Ehrlich, K., Varga, J., Frisvad, J.C., Meijer, M., Noonim, P., Mahakarnchanakul, W., Samson, R.A., 2007. Biodiversity of Aspergillus speciesin some important agricultural products. Stud. Mycol. 59, 53–66. https://doi.org/10.3114/sim.2007.59.07.
- Rodrigues, P., Santos, C., Venàncio, A., Lima, N., 2011. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches. J. Appl. Microbiol. 111, 877–892. https://doi.org/10.1111/j.1365-2672.2011.05116.x.
- Rychert, J., Slechta, E.S., Barker, A.P., Miranda, E., Babady, N.E., Tang, Y.-W., Gibas, C., Wiederhold, N., Sutton, D., Hanson, K.E., 2017. Multi-center evaluation of the VITEK MS v3.0 system for the identification of filamentous fungi. J. Clin. Microbiol. https://doi.org/10.1128/JCM.01353-17. JCM.01353-17.
- Samson, R., Frisvad, J.C., Hoekstra, E., Filtenborg, O., 2002. Introduction to Food and Airborne Fungi, sixth ed. ASM Press, Utrecht, The Netherlands.
- dos Santos, J.L.P., Bernardi, A.O., Pozza Morassi, L.L., Silva, B.S., Copetti, M.V., Sant'Ana, A.S., 2016. Incidence, populations and diversity of fungi from raw materials, final products and air of processing environment of multigrain whole meal bread. Food Res. Int. 87, 103–108. https://doi.org/10.1016/j.foodres.2016. 07.002.
- Sanguinetti, M., Posteraro, B., 2017. Identification of molds by matrix-assisted laser desorption ionization—time of flight mass spectrometry. J. Clin. Microbiol. 55, 369—379. https://doi.org/10.1128/JCM.01640-16.
- Schnürer, J., Magnusson, J., 2005. Antifungal lactic acid bacteria as biopreservatives. In: Trends Food Sci. Technol. Second International Symposium on Sourdough – from Fundamentals to Applications, vol. 16, pp. 70–78. https://doi.org/10.1016/j. tifs.2004.02.014.
- Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Consortium, F.B., List, F.B.C.A., Bolchacova, E., Voigt, K., Crous, P.W., Miller, A.N., Wingfield, M.J., Aime, M.C., An, K.-D., Bai, F.-Y., Barreto, R.W., Begerow, D., Bergeron, M.-J., Blackwell, M., Boekhout, T., Bogale, M., Boonyuen, N., Burgaz, A.R., Buyck, B., Cai, L., Cai, Q., Cardinali, G., Chaverri, P., Coppins, B.J., Crespo, A., Cubas, P., Cummings, C., Damm, U., Beer, Z.W., de, Hoog, G.S., de, Del-Prado, R., Dentinger, B., Diéguez-Uribeondo, J., Divakar, P.K., Douglas, B., Dueñas, M., Duong, T.A., Eberhardt, U., Edwards, J.E., Elshahed, M.S., Fliegerova, K., Furtado, M., García, M.A., Ge, Z.-W., Griffith, G.W., Griffiths, K., Groenewald, J.Z., Groenewald, M., Grube, M., Gryzenhout, M., Guo, L.-D.,

Hagen, F., Hambleton, S., Hamelin, R.C., Hansen, K., Harrold, P., Heller, G., Herrera, C., Hirayama, K., Hirooka, Y., Ho, H.-M., Hoffmann, K., Hofstetter, V., Högnabba, F., Hollingsworth, P.M., Hong, S.-B., Hosaka, K., Houbraken, J., Hughes, K., Huhtinen, S., Hyde, K.D., James, T., Johnson, E.M., Johnson, J.E., Johnston, P.R., Jones, E.B.G., Kelly, L.J., Kirk, P.M., Knapp, D.G., Köljalg, U., Kovács, G.M., Kurtzman, C.P., Landvik, S., Leavitt, S.D., Liggenstoffer, A.S., Liimatainen, K., Lombard, L., Luangsa-ard, J.J., Lumbsch, H.T., Maganti, H., Maharachchikumbura, S.S.N., Martin, M.P., May, T.W., McTaggart, A.R., Methven, A.S., Meyer, W., Moncalvo, J.-M., Mongkolsamrit, S., Nagy, L.G., Nilsson, R.H., Niskanen, T., Nyilasi, I., Okada, G., Okane, I., Olariaga, I., Otte, J., Papp, T., Park, D., Petkovits, T., Pino-Bodas, R., Quaedvlieg, W., Raja, H.A., Redecker, D., Rintoul, T.L., Ruibal, C., Sarmiento-Ramírez, J.M., Schmitt, I., Schüßler, A., Shearer, C., Sotome, K., Stefani, F.O.P., Stenroos, S., Stielow, B., Stockinger, H., Suetrong, S., Suh, S-O., Sung, G.-H., Suzuki, M., Tanaka, K., Tedersoo, L., Telleria, M.T., Tretter, E., Untereiner, W.A., Urbina, H., Vágvölgyi, C., Vialle, A., Vu, T.D., Walther, G., Wang, Q.-M., Wang, Y., Weir, B.S., Weiß, M., White, M.M., Xu, J., Yahr, R., Yang, Z.L., Yurkov, A., Zamora, J.-C., Zhang, N., Zhuang, W.-Y., Schindel, D., 2012. Nuclear ribosomal internal transribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. Unit. States Am. 109, 6241–6246. https://doi.org/10.1073/pnas.1117018109.

- Stakheev, A.A., Khairulina, D.R., Zavriev, S.K., 2016. Four-locus phylogeny of Fusarium avenaceum and related species and their species-specific identification based on partial phosphate permease gene sequences. Int. J. Food Microbiol. 225, 27–37. https://doi.org/10.1016/j.ijfoodmicro.2016.02.012.
- Strubel, G., Arsac, M., Desseree, D., Cotte-Pattat, P.-J., 2013. Method for Identifying Microorganisms by Mass Spectrometry. WO2013080170 A1.
- Stübiger, G., Wuczkowski, M., Mancera, L., Lopandic, K., Sterflinger, K., Belgacem, O., 2016. Characterization of yeasts and filamentous fungi using MALDI lipid phenotyping. J. Microbiol. Meth. 130, 27–37. https://doi.org/10.1016/j.mimet. 2016.08.010.
- van Baar, B.L.M., 2000. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol. Rev. 24, 193–219. https://doi.org/10.1016/S0168-6445(99)00036-4.
- van Belkum, A., Chatellier, S., Girard, V., Pincus, D., Deol, P., Dunne, W.M., 2015. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev. Proteomics 12, 595–605. https:// doi.org/10.1586/14789450.2015.1091731.
- van Belkum, A., Welker, M., Pincus, D., Charrier, J.P., Girard, V., 2017. Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: what are the current issues? Ann. Lab. Med. 37, 475–483. https:// doi.org/10.3343/alm.2017.37.6.475.
- van WuijcKhuijse, A.L., Stowers, M.A., Kleefsman, W.A., van Baar, B.L.M., Kientz, C.E., Marijnissen, J.C.M., 2005. Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: development of a fast detector for airborne biological pathogens. In: J. Aerosol Sci., Measurement and Characterization of Bioaerosols, 36, pp. 677–687. https://doi.org/ 10.1016/j.jaerosci.2004.11.003.
- Varga, J., Frisvad, J.C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., Samson, R.A., 2011. New and revisited species in Aspergillus section Nigri. In: Stud. Mycol., Taxonomic Studies on the Genus Aspergillus, 69, pp. 1–17. https://doi.org/10. 3114/sim.2011.69.01.
- Visagie, C.M., Houbraken, J., Frisvad, J.C., Hong, S.-B., Klaassen, C.H.W., Perrone, G., Seifert, K.A., Varga, J., Yaguchi, T., Samson, R.A., 2014. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78, 343–371. https://doi. org/10.1016/j.simyco.2014.09.001.
- Waśkiewicz, A., 2014. MYCOTOXINS natural occurrence of mycotoxins in food. In: Batt, C.A., Tortorello, M.L. (Eds.), Encyclopedia of Food Microbiology, second ed. Academic Press, Oxford, pp. 880–886 https://doi.org/10.1016/B978-0-12-384730-0.00231-7.
- Welham, K.J., Domin, M.A., Johnson, K., Jones, L., Ashton, D.S., 2000. Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 14, 307–310.

III. Résultats supplémentaires: Evaluation des performances d'identification de champignons filamenteux par spectrométrie de masse MALDI-TOF après prélèvement directe de matériel biologique à partir d'aliments contaminés

En complément des travaux de cette étude, une étude préliminaire a été réalisée pour identifier des champignons filamenteux d'altération directement à partir d'un aliment contaminé sans passer par une étape de culture préalable. Brièvement, trois souches appartenant respectivement à trois espèces fongiques responsables d'altération et isolées de produits laitiers, Cladosporium halotolerans UBOCC-A-116001, Mucor racemosus UBOCC-A-116002 et Penicillium commune UBOCC-A-116003 ont été testées. Ces trois espèces sont fréquemment responsables d'altérations des produits laitiers et de boulangerie-viennoiseriepâtisserie et avaient été intégrées dans la base de données spectrales développée durant les travaux de thèse, avec des performances satisfaisantes d'identification (>90 % de spectres correctement identifiés). Les performances d'identification de ces trois espèces a été évaluée en utilisant trois matrices alimentaires différentes, pain de mie, fromage frais, et crème fraîche. Chacune des matrices alimentaires a été contaminée de manière artificielle par une des trois espèces fongiques. Pour cela, 50 spores ont été déposées à la surface des aliments, puis ces derniers ont été incubés jusqu'à 8 jours à 25°C. En parallèle, des milieux contenant du PDA ont également été ensemencés avec les mêmes suspensions de spores afin de vérifier la pureté des souches puis du matériel biologique a été prélevé puis analysé par MALDI-TOF MS en suivant le même protocole que celui décrit dans l'étude précédente. Après développement d'une quantité suffisante de biomasse à la surface des aliments contaminés, le même protocole d'extraction protéique et d'analyse par MALDI-TOF MS utilisé lors du développement de la base de données a été appliqué. La seule différence était qu'au lieu de prélever de la biomasse à la surface du milieu gélosé, le matériel biologique était prélevé directement à la surface de l'aliment contaminé. La manipulation a été répétée 2 fois et 4 spectres étaient acquis pour chaque répétition biologique. Les résultats d'identification sont présentés dans le Tableau 6, où sont indiqués les pourcentages de spectres identifiés à l'espèce pour chaque souche testée et chaque matrice alimentaire en fonction du temps de prélèvement. Sur pain de mie, une croissance visible du champignon était observée après 3, 7 et 3 jours pour C. halotolerans, M. racemosus et P. commune, respectivement. Sur fromage frais, une croissance visible a été observée à partir de 4, 3 et 3 jours pour C. halotolerans, M. racemosus et P. commune. Enfin, sur crème fraîche, aucune croissance visible de C.

halotolerans n'a été observée après 8 jours d'incubation, tandis qu'une croissance a été observée après 3 jours pour *M. racemosus* et *P. commune*.

Souches	PDA	Pain de mie	Fromage	Crème	Total (matrices
			frais	fraîche	alimentaires)
Cladosporium halotolerans	90%	0% (5 j*)	0% (4-6 j*)	Non testé	15%
UBOCC-A-116001	(3-8 j*)	20% (6-8 j*)	22% (7-8 j*)		
Maaannaannaana	1000/	10007	2607 (2 5 :*)	0007 (2 0 :*)	750
Mucor racemosus	100%	100%	50% (5-5 J*)	88% (3-8 J*)	13%
UBOCC-A-116002	(3-8 j*)	(7-8 j*)	80% (6-8 j*)		
Penicillium commune	91%	0% (3 j*)	55% (3-8 j*)	0% (3-5 j*)	35%
UBOCC-A-116003	(3-8 j*)	21% (4-8 j*)		88% (6-8 j*)	
Pourcentage total de	94%	27%	45%	70%	
spectres correctement					
identifiés					

Table 6 : Performances d'identification (pourcentage de spectres correctement identifiés à l'espèce par la base de données VTEK MS) de 3 espèces fongiques prélevées directement de matrices alimentaires en fonction du temps de prélèvement

*Temps d'incubation avant analyse par MALDI-TOF MS

Les performances d'identification se sont avérés très variables en fonction de la matrice alimentaire et de l'espèce fongique étudiée. Les résultats les plus satisfaisants ont été obtenus pour *M. racemosus*, pour lequel 75% des spectres obtenus à partir des matrices alimentaires ont pu être identifiés correctement. Ces résultats ne sont pas surprenants, car il s'agit d'un champignon filamenteux à croissance rapide, qui sporule abondamment. Il est intéressant de noter que si une identification correcte est obtenue dès 3 jours après culture sur milieu PDA et crème fraîche, les performances ne sont satisfaisantes sur fromage frais qu'à partir de 6 jours d'incubation. Quant au pain de mie, la croissance de *M. racemosus* est visible qu'après 7 jours d'incubation et tous les spectres obtenus à 7 et 8 jours ont été bien identifiés. L'identification de *P. commune* a également été possible sur les trois matrices testées, avec des résultats variables. Sur la crème fraîche, 6 jours d'incubation ont été nécessaires pour obtenir une identification correcte alors qu'une croissance était visible dès 3 jours. De même, pour le pain de mie, les premières identifications correctes n'ont été obtenues qu'à partir de 4 jours d'incubation, avec des pourcentages d'identification faibles (seulement 21% de spectres correctement identifiés). Enfin pour le fromage frais, une identification a pu être obtenue dès 3 jours d'incubation mais de nombreux spectres n'étaient pas correctement assignés à l'espèce. Par comparaison avec M. racemosus, P. commune se développe plus lentement, même si cette espèce n'est pas considérée comme une moisissure à croissance lente, ce qui

explique peut-être les moins bonnes performances d'identification de cette espèce. Enfin, de moins bons résultats ont été obtenus pour C. halotolerans. Pour les deux matrices sur lesquels C. halotolerans avaient pu croître, des performances similaires à celles obtenues avec P. commune ont été observées, avec seulement 20% de spectres correctement identifiés. Cette espèce est celle qui se développe le moins rapidement parmi les espèces testées. Ces tests préliminaires semblent indiquer qu'il est nécessaire d'attendre un développement important du contaminant fongique pour obtenir une identification fiable, particulièrement pour les espèces fongiques à vitesse de croissance moyenne voire lente. En effet, en l'absence d'un développement suffisant, les spectres sont de qualité suffisante pour permettre leur identification. Toutefois, il est intéressant de noter que le prélèvement direct sur matrice n'a pas conduit à des erreurs d'identification, lorsque seule la biomasse fongique a été prélevée. Pour évaluer l'impact de la matrice, certains spectres ont été acquis sur un mélange biomasse fongique/matrice alimentaire (en prélevant un peu de chaque lors du protocole d'extraction) et les performances d'identification de ces spectres se sont révélées proches de zéro, ce qui semble confirmer l'importance de prélever uniquement de la biomasse fongique pour l'analyse (résultats non montrés). Il sera nécessaire de conduire d'autres essais sur d'autres contaminants fongiques mais également sur d'autres matrices alimentaires pour confirmer les résultat obtenus. En conclusion, ces premiers résultats sont prometteurs et semblent indiquer une possible application de la technique à l'identification directe sans modification du protocole, contrairement aux résultats obtenus par Freimoser et al. (2016). En effet, dans cette étude, une modification du protocole d'extraction avait dû être réalisée afin d'identifier des espèces de Monilinia directement à partir de fruits contaminés.

Chapitre 2 : Application de la spectrométrie de masse MALDI-TOF à la différenciation de complexes d'espèces et au typage de champignons filamenteux d'altération – Application aux espèces appartenant à *Aspergillus* section *Flavi* et à *Penicillium roqueforti*

I. Résumé des travaux

Comme évoqué dans le chapitre précédent, les champignons filamenteux sont fréquemment impliqués dans l'altération des denrées alimentaires et représentent une cause majeure de pertes économiques (Filtenborg et al. 1996; Pitt et Hocking 2009). Les champignons filamenteux ont la capacité de se développer sur de nombreux substrats, et certaines espèces peuvent également produire des mycotoxines, représentant ainsi un danger pour la santé humaine et animale (Waśkiewicz, 2014). L'identification de ces contaminants est donc une étape clé dans la maîtrise de la qualité et de la sécurité des denrées alimentaires. Depuis plusieurs années, la spectrométrie de masse MALDI-TOF a été appliquée avec succès à l'identification de micro-organismes, d'abord aux bactéries (Basile et al. 1998) puis aux organismes fongiques (Welham et al. 2000). Aujourd'hui, plusieurs instruments et bases de données spectrales commerciales sont disponibles pour une utilisation en routine de la technique appliquée à l'identification microbienne (Deak et al. 2015). De plus, cette technique a également été appliquée à la discrimination de complexes d'espèces d'intérêt clinique comme le complexe Fusarium fujikuroi (Al-Hatmi et al. 2015), qui comprend des espèces cryptiques. Fegan et Prior (2005) ont défini les complexes d'espèces comme des clusters d'isolats très proches, qui peuvent correspondre à une ou plusieurs espèces, tandis que les espèces cryptiques sont des unités biologiques et phylogénétiques qui ne sont pas différenciables morphologiquement (Hawksworth et al. 2006). Dans la plupart des cas, l'identification de ces espèces repose sur l'analyse de plusieurs gènes spécifiques et requiert une expertise pour l'analyse des données (Balasundaram et al. 2015). Ces complexes d'espèces et espèces cryptiques peuvent être problématiques en industrie, notamment concernant la production de mycotoxines. Par exemple, au sein de la section Flavi du genre Aspergillus, plusieurs espèces très proches sont connues pour produire diverses mycotoxines, notamment A. flavus, A. nomius et A. parasiticus (Baquião et al. 2013). Une autre problématique de cette section est l'identification fiable entre A. flavus (toxinogène) et A. oryzae qui est non-toxinogène et utilisée dans la production d'aliments fermentés comme le saké ou la sauce soja. Selon plusieurs auteurs, A. oryzae serait une forme domestiquée d'A. flavus qui aurait perdu sa capacité à produire des mycotoxines (Gibbons et al. 2012; Chang et al. 2006), voire même un simple écotype d'A. flavus et non une espèce distincte (Rokas et al. 2007). Aujourd'hui, l'identification fiable et la classification des espèces du genre Aspergillus reposent généralement sur la combinaison de plusieurs méthodes (approche polyphasique) comme l'étude de plusieurs gènes, de la morphologie, des métabolites produits

et/ou encore la capacité à produire des mycotoxines (Frisvad et al. 2019). Quelques études se sont intéressées avec succès à l'application de la spectrométrie de masse MALDI-TOF pour l'identification d'espèce proches dans le genre Aspergillus, mais la plupart portaient seulement sur une dizaine d'espèces, quand chaque section compte généralement plus de 20 espèces (Gautier et al. 2016). Pour aller plus loin, la spectrométrie de masse MALDI-TOF a également été appliquée avec succès à la discrimination intra-spécifique (typage) de souches bactériennes (Kuhns et al. 2012; Ueda et al. 2015; Fujinami et al. 2011), se révélant un outil aussi fiable que les techniques classiques de typage, basées sur l'analyse de l'ADN (Hafiane et Ravaoarinoro 2008; Mathimaran et al. 2008). Les techniques généralemet utilisées sont la Pulsed-Field Gel Electrophoresis (PFGE, basée sur la comparaison du profil de restriction des génomes par électrophorèse en champ pulsé), la Restriction Fragment Length Polymorphism (RFLP, basée sur la restriction de l'ADN par des enzymes puis sur la comparaison des fragments générés par électrophorèse), la Random Amplified Polymorphic DNA (RAPD, basée sur l'amplification aléatoire de l'ADN par des amorces courtes définies arbitrairement), le MultiLocus Sequence Typing (MLST, basée sur la comparaison du polymorphisme nucléotidique de 5 à 7 gènes). Et enfin l'utilisation des microsatellites ou « simple sequence repeats » qui sont de petites séquences nucléotidiques répétées très abondantes dans le génome des eucaryotes, qui peuvent être amplifiées et séquencés afin d'évaluer la diversité génétique. La spectrométrie de masse MALDI-TOF a également été utilisée pour le typage d'organismes d'intérêt industriel comme les levures de brasserie (Lauterbach et al. 2017) ou les bactéries d'altération également retrouvée dans la bière (Kern et al. 2014). Par comparaison aux bactéries, les relations phylogénétiques des organismes fongiques sont plus complexes, et les limites entre espèces plus difficiles à définir, constituant un défi majeur pour le typage des champignons filamenteux (Bader, 2013). Cependant, une méthode de typage fongique rapide et fiable présenterait de nombreux intérêts parmi lesquels une meilleure compréhension des processus de domestication des espèces technologiques, une identification précise de l'origine des champignons filamenteux d'altération ou encore une différenciation des isolats toxinogènes et non toxinogènes au sein d'une même espèce (Belen-Florez et al., 2007). Au cours des quinze dernières années, plusieurs études ont porté sur la classification des souches de champignons filamenteux, en particulier les isolats technologiques utilisés dans la production fromagère. L'espèce P. roqueforti a fait l'objet de plusieurs études (Belen-Florez et al., 2007, Fontaine et al., 2015) qui ont permis via la technique RAPD de classer les souches étudiées en fonction de leur origine (fromage ou environnement). L'utilisation de marqueurs microsatellites (Ropars et al., 2014, Gillot et al.,

2015) a également permis la classification d'isolats de P. roqueforti en plusieurs populations génétiques. Via l'utilisation de quatre marqueurs sur 164 isolats de P. roqueforti, Gillot et al. (2015) ont pu mettre en évidence 28 haplotypes classés en trois populations distinctes. Alors que la spectrométrie de masse MALDI-TOF a pu être appliquée à la discrimination d'espèces proches et au typage chez les bactéries, peu d'études ont porté sur son application aux champignons filamenteux d'intérêt alimentaire. Dans ce contexte, l'objectif de notre étude était dans un premier temps d'évaluer le potentiel de la spectrométrie de masse MALDI-TOF pour l'identification de 23 espèces d'Aspergillus appartenant à la section Flavi. Puis, dans un deuxième temps, d'évaluer l'application de la technique à la différenciation d'isolats de P. roqueforti appartenant à trois populations génétiquement différenciées, décrites par Gillot et al. (2015). Pour cela, des spectres ont été acquis pour 68 souches correspondant à 23 espèces et 7 clades d'Aspergillus section Flavi. La similarité des spectres obtenus a ensuite été évaluée par une analyse MDS, qui a permis de visualiser les distances entre les spectres des différentes espèces étudiées. Lorsque tous les spectres étaient représentés, trois groupes ont pu être visualisés, deux groupes correspondant aux spectres des espèces du clade Aspergillus flavus, ainsi qu'à ceux des espèces des clades nomius et avenaceus. Deux autres MDS ont donc été réalisés pour représenter plus précisément chacun des deux groupes identifiés. Concernant les espèces du clade A. flavus, les spectres d'une même espèce étaient correctement regroupés et la plupart des espèces étaient bien distinguées les unes des autres. Pour les espèces très proches, deux cas ont été observés. Les spectres d'A. parasiticus et A. sojae présentaient une forte similarité, tandis que les spectres d'A. flavus et A. oryzae étaient assez éloignés, les spectres d'A. flavus présentant plus de similarité avec ceux d'A. minisclerotigenes qu'avec ceux d'A. oryzae, ces trois espèces figurant dans le même cluster lors de l'analyse combinée de trois gènes (Frisvad et al., 2019). Lors de la représentation des spectres des autres clades étudiés, plusieurs groupes ont pu être identifiés. Les spectres des espèces du clade A. tamarii se sont avérés peu similaires avec trois groupes distincts, un groupe avec les spectres d'A. tamarii, un avec les spectres d'A. pseudotamarii, et un autre groupe avec les spectres de deux espèces proches, A. caelatus et A. pseudocaelatus. Les spectres de ces espèces présentaient a priori peu de similarité avec les spectres des espèces des autres clades étudiés, qui étaient regroupés au sein d'un même groupe. Les spectres ont ensuite été analysés et intégrés à une base de données spectrales selon la même méthodologie que celle utilisée pour la construction de la base de données spectrales présentée au chapitre 1 des travaux de thèse (Quéro et al., 2018), c'est-à-dire en utilisant l'algorithme ASC. Suite à la construction de la base de données, les performances d'identification ont été évaluées par validation croisée et plus de 99% des spectres ont été correctement attribués à l'espèce. Aucune confusion n'a été observée entre les spectres appartenant à des clades différents, et au sein d'un même clade, les espèces testées ont également pu être parfaitement séparées. Ces résultats montrent que l'analyse des spectres obtenus par spectrométrie de masse MALDI-TOF a permis une séparation des espèces d'*Aspergillus* section *Flavi* équivalente aux résultats obtenus par une approche polyphasique reposant sur l'analyse combinée de 3 gènes codant respectivement pour la β -tubuline, la calmoduline et le RPB2, sur l'analyse de la morphologie et des métabolites produits (Frisvad et al. 2019). Ces résultats sont très prometteurs quant à l'utilisation de la spectrométrie de masse MALDI-TOF pour la différenciation et l'identification en routine de complexes d'espèces, il serait toutefois intéressant de poursuivre cette étude avec l'ajout d'autres espèces de la section *Flavi* et également avec une étape de validation externe pour évaluer les performances d'identification sur des isolats non utilisés pour construire la base de données spectrales.

Concernant l'étude portant sur Penicillium roqueforti, 63 isolats appartenant à trois populations génétiques ont été choisis parmi les 164 étudiés par Gillot et al. (2015) et des spectres ont été acquis pour chacun de ces isolats. Les spectres étant issus de souches provenant de la même espèce, il a été nécessaire de passer par une double étape de recalibration des spectres afin de pouvoir obtenir une différenciation optimale de ces derniers. Dans un premier temps, une calibration linéaire a été appliqué, les pics spécifiques de P. roqueforti ont été identifiés parmi les spectres présents dans la base de données spectrales commerciale (version 3.2) et ont été recherchés dans les spectres acquis pour notre étude. Parmi ces pics spécifiques, 9 ont été retrouvés dans plus de 70% des isolats et sélectionnés pour évaluer les différences entre les masses théoriques de ces pics et les masses observées dans les spectres acquis, et ainsi corriger les éventuelles déviations de masses mesurées. Après cette étape de re-calibration linéaire, une seconde étape de re-calibration quadratique a été appliquée sur toute la gamme des masses mesurées (3000-20000 Da). Dans cette gamme de masse, 42 pics présents dans 83% des spectres ont été utilisés pour construire un modèle quadratique entre les masses théoriques et observées, permettant un alignement correct des spectres en corrigeant les éventuelles déviations. Pour évaluer l'impact de la re-calibration sur la séparation des spectres, une analyse MDS a été utilisée pour représenter les distances entre ces derniers en fonction de leur similarité. Les spectres ont été représentés avant et après re-calibration. De manière générale, la re-calibration des spectres a permis une meilleure séparation de ces derniers en 3 populations distinctes, les spectres des souches appartenant à la population 2 étant bien isolés, tandis que ceux des populations 1 et 3 présentaient plus de similarité. Les spectres des souches de la population 2 étaient plus dispersés que ceux des deux autres populations, indiquant une plus grande hétérogénéité de ces derniers, ce qui concorde avec les résultats obtenus par Gillot et al. (2015) qui avaient observé une diversité génétique plus importante au sein de cette population. En effet, la population 2 correspond majoritairement aux souches de *P. roqueforti* ne provenant pas de fromage tandis que les populations 1 et 3 contiennent majoritairement des souches isolées de différents fromages.

Par la suite, les spectres de 42 souches ont été utilisés pour construire une base de données spectrales, les spectres des 21 souches restantes étant destinés à être utilisés pour une étape de validation externe. Après construction de la base de données spectrales, les performances de cette dernière ont été évaluées par validation croisée, ce qui a permis d'obtenir des résultats satisfaisants. En effet, 94,1% des spectres ont été correctement attribués à leur population génétique d'origine. Les spectres des populations 2 et 3 ont été correctement attribués à 96,67% et 98,72% respectivement, tandis que les spectres des souches appartenant à la population 1 ont été correctement attribués à 86,90%. Les 13,1% de spectres incorrectement attribués à la population 3, 1 spectre n'a été attribué à aucune population et les 2 spectres ont été correctement attribués, indiquant une forte variabilité pour les spectres obtenus à partir de cette souche. L'autre souche était la souche F77-1 pour laquelle les 6 spectres acquis ont été incorrectement attribués à la population 2, ce résultat n'étant pas surprenant car lors de la représentation des spectres par analyse MDS, les spectres de cette souche présentaient une forte similarité avec ceux des souches de la population 2.

Suite à la validation croisée, les performances de la base de données spectrales ont également été évaluées par validation externe. Pour cela, les spectres de 21 souches appartenant aux 3 populations ont été analysés pour évaluer la capacité de l'algorithme à les attribuer à la bonne population. De manière générale, les résultats ont été satisfaisants avec 95,24% de spectres correctement attribués. Tous les spectres des souches appartenant aux populations 1 et 2 ont été correctement attribués à l'exception de 4 spectres, correspondant à deux souches pour chacune desquelles deux spectres n'ont été attribués à aucune espèce ou incorrectement attribués. Pour les souches de la population 3, seuls 71,43% des spectres ont été correctement attribués à aucune population 3, seuls 71,43% des spectres ont été correctement attribués à aucune population 4 deux souches, la souche F28-3, pour laquelle 5 spectres n'ont été attribués à aucune population et 1 spectre a été incorrectement attribué à la

population 2. Concernant la souche UBOCC-A-101449, 3 spectres ont été incorrectement attribués à la population 1, et 3 spectres ont été faiblement discriminés et incorrectement attribués aux populations 1 et 2. Il est intéressant de noter que les souches sélectionnées pour la validation externe l'ont été car elles présentaient des profils alléliques atypiques lors de leur analyse génétique par Gillot et al. (2015). En effet, bien qu'elles aient été attribuées à une des trois populations génétiques, elles ne présentaient pas toutes un profil typique et partageaient parfois des allèles avec les autres populations, ce qui pourrait expliquer la difficulté à les classer dans la bonne population lors de notre analyse. Cependant, les souches aux profils alléliques atypiques des populations 1 et 2 ont été attribuées sans problème à leurs populations respectives lors de la validation externe, indiquant que leurs profils étaient probablement similaires à ceux des spectres référencés dans la base de données.

Pour aller plus loin, et afin de comprendre les différences principales entre les profils des spectres des différentes populations, les intervalles de masses ayant le plus d'impact (positif ou négatif) dans l'attribution des spectres à une population ont été examinés. Tous les intervalles se situaient dans la gamme de masse 3000 à 7116,1 Da et les intervalles ayant le plus d'impact sur l'identification se sont avérés différents pour les 3 populations, sauf pour l'intervalle 3000 à 3004 Da, qui a permis de discriminer la population 3 des deux autres populations. A terme, l'utilisation de la spectrométrie de masse MALDI-TOF en tandem pourrait permettre d'identifier les protéines correspondant à ces intervalles de masses et ainsi déterminer les marqueurs utilisés pour discriminer les 3 populations.

De manière générale, les résultats obtenus pour *P. roqueforti* lors de notre étude montrent que la spectrométrie de masse MALDI-TOF a permis d'obtenir des résultats similaires à ceux générés par l'analyse génétique de 3 marqueurs microsatellites pour la différenciation d'isolats en trois populations distinctes. De la même manière, l'analyse spectrale de différentes espèces d'*Aspergillus* de la section *Flavi* a généré des résultats d'identification similaires à ceux obtenus par une approche polyphasique impliquant l'analyse de plusieurs caractères comme la morphologie et surtout l'analyse combinée de plusieurs gènes d'intérêt. En conclusion, bien qu'elle ne soit pas basée sur les mêmes marqueurs, la spectrométrie de masse MALDI-TOF s'est avérée presque aussi puissante que l'analyse génétique pour différencier non seulement des espèces fongiques proches, mais également pour discriminer des isolats d'une même espèce en différentes populations. Ces résultats sont très prometteurs et permettent d'élargir le champ des possibles pour les applications de la spectrométrie de masse MALDI-TOF en contexte industriel.

II. Article à soumettre dans International Journal of Food Microbiology

Quéro L., Courault P., Cellière B., Lorber S., Jany J., Puel O., Girard V., Vasseur V., Nodet P., Mounier J., 2017. Application of MALDI-TOF MS to species complex differentiation and strain typing of food related fungi : case studies with *Aspergillus* section *Flavi* species and *Penicillium roqueforti* isolates. *To be submitted to International Journal of Food Microbiology*.

Application of MALDI-TOF MS to species complex differentiation and strain typing of
 food related fungi : case studies with *Aspergillus* section *Flavi* species and *Penicillium roqueforti* isolates.

4

5 Laura Quéro^{a,b}, Priscillia Courault^b, Beatrice Cellière^b, Sophie Lorber^c, Jean-Luc Jany^a,

6 Olivier Puel^c, Victoria Girard^b, Valérie Vasseur^a, Patrice Nodet^a, Jérôme Mounier^a

7

8 ^aUniversité de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie

9 Microbienne, LUBEM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané

10 ^bbioMérieux, R&D Microbiologie, route de Port Michaud, 38390 La Balme les Grottes

11 ^cToxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse

12

13 Keywords : MALDI-TOF MS ; filamentous fungi ; species complex ; strain typing

14

15 Abstract

16 Filamentous fungi are one of the main causes of food losses worldwide, with an estimated 17 waste of 1 billion tons each year. Moreover, their ability to produce mycotoxins which can 18 later be found in food and feed products represents a hazard for human and animal health. 19 Their correct and rapid identification is thus crucial to manage food safety. In recent years, 20 MALDI-TOF MS has emerged as a rapid and reliable tool for the identification of fungi both 21 in clinical and industrial context, with the implementation of several commercial spectral 22 databases. Beyond species identification, the technique was also applied to fungal species 23 complex resolution and typing of bacteria and yeasts, but few studies focused on its 24 application to filamentous fungi. Therefore, the aim of this study was first to evaluate the 25 potential of MALDI-TOF MS to accurately identify species of the Aspergillus Flavi section, 26 and then to assess if it could differentiate *Penicillium roqueforti* isolates previously described 27 as belonging to three distinct genetic populations. To this end, spectra were acquired for 68 28 strains of Aspergillus species from the Flavi section, integrated into a spectral database with 29 the ASC algorithm and performances of the database were evaluated by cross validation. 30 Morethan 99% of the spectra were correctly attributed to the right species even for closely related species like A. parasiticus and A. sojae. For P. roqueforti, spectra were acquired for 31 32 63 strains and a two-step calibration procedure was applied prior toanalysis to allow better 33 spectra alignment and comparison. a spectral database was then constructed and 34 performances were evaluated by cross-validation and external validation. Cross-validation lead to 94% of spectra correctly attributed to the right genetic population and 95% of spectra used for external validation were also attributed to the correct genetic population. Overall, results obtained here suggested very good agreement between MALDI-TOF MS spectra analysis and genetic data analysis for both closely related *Aspergillus* species and *P. roqueforti* genetic populations. This study demonstrates the applicability of MALDI-TOF MS as an fast and easy alternative to molecular techniques for species complex differentiation and strain typing of filamentous fungi.

42

43 **1. Introduction**

44 Fungi are frequently involved in food spoilage and represent a major cause of food and 45 economic losses. Indeed, among food losses and waste which represent 1 billion tons each 46 year (FAO, 2011), it is estimated that 5 to 10% of them are due to fungal spoilage (Filtenborg 47 et al. 1996; Pitt and Hocking 2009). Fungi can spoil a large variety of feeds and foods, 48 causing organoleptic properties deterioration such as visible growth on the product surface, 49 off-flavor production, texture and color changes. Moreover, a large number of species such as 50 Penicillium and Aspergillus spp. are potential mycotoxin producers, and may represent a 51 great hazard for human health (Waśkiewicz, 2014). Hence, rapid and reliable identification 52 of filamentous fungi is a key step for a better management of food safety and quality.

53 For several years now, MALDI-TOF MS has been successfully applied to microorganism 54 identification, from bacteria (Basile et al. 1998) to fungi (Welham et al. 2000) including 55 food-related fungi (Quéro et al. 2018). In the latter study, a spectral database comprising 619 56 strains belonging to 136 species of food interest was built and 90 % correct identification at the species level were achieved after external validation. Several commercial instruments and 57 58 databases are available (Deak et al. 2015) for routine identification. Besides identification at 59 species level, MALDI-TOF MS has been shown as a powerful tool to discriminate fungal 60 species complex and cryptic fungal species. As an example, Al-Hatmi et al. (2015) were able 61 to correctly identify species of clinical interest belonging to the Fusarium fujikuroi complex, 62 some of which being cryptic species. (Allen et al. 2005) defined species complex as a cluster of related isolates which individuals may represent more than one species while cryptic 63 species are morphologically indiscernible biological/phylogenetic units that are only revealed 64 65 using DNA-based molecular analysis (Hawksworth, 2006). In most cases, the identification of such species requires the analysis of several specific genes and expertise in data analysis 66 67 (Balasundaram et al. 2015). Species complex are an issue not only in clinical context but also 68 in the food context, particularly regarding mycotoxin production. For example, in the 69 Aspergillus genera, and more particularly in the Flavi section, species have different 70 mycotoxin production abilities, some species being able to produce B1, B2, G1 and G2 71 aflatoxins (e.g. A. nomius, A. novoparasiticus, A. parasiticus) while others only produce B1 72 and B2 aflatoxins (A. flavus, A. pseudotamarii and A. togoensis) or no aflatoxins (A. 73 caelatus, A. subflavus and A. tamarii) (Frisvad et al. 2019). Another challenge within this 74 section is the discrimination between the toxigenic Aspergillus flavus and A. parasiticus and the non-toxigenic A. oryzae and A. sojae, the latter being used in the production of numerous 75 76 fermented products like sake or soy sauce (Gibbons et al. 2012). In order to discriminate 77 these species, MALDI-TOF MS could be a good alternative to molecular techniques and 78 several studies already pointed out its use for different Aspergillus sections including the 79 Flavi section. For example, Alanio et al. (2011) used MALDI-TOF MS for discriminating 10 80 species of Aspergillus section Fumigati while (Hettick et al. 2008b) and (De Carolis et al. 81 2012) could differentiate A. flavus from A. parasiticus, and A. parasiticus, A. flavus and A. 82 oryzae, respectively. In a more extensive study, (Rodrigues et al. 2011) could identify 9 species of Aspergillus section Flavi but could not distinguish aflatoxigenic and non-83 84 aflatoxigenic isolates of A. flavus. However, it should be noted that section Flavi currently 85 comprises 33 phylogenetically distinct species as recently shown by Frisvad et al. (2019).

86 To another extent, MALDI-TOF MS could also be of great interest for differentiating strains 87 from a same species, i.e. for strain typing. In the past 10 years, it has been applied to bacteria 88 of different genera and species such as Salmonella enterica (Kuhns et al. 2012), Staphylococcus aureus (Ueda et al. 2015), Legionella spp. (Fujinami et al. 2011) or 89 90 Arthrobacter spp. (Vargha et al. 2006) and could be in some cases as effective as traditional typing methods such as multi-locus sequence typing (MLST) or Pulsed-Field Gel 91 92 Electrophoresis (PFGE). In a recent study, (Kern et al. 2014) showed the ability of MALDI 93 TOF MS to differentiate *Lactobacillus brevis* isolates at the strain level, and correlations 94 could also be made between spectra classification and strain physiological properties. 95 MALDI-TOF MS typing was also applied to yeasts of clinical interest, for which it could be 96 as powerful as microsatellite markers for monitoring the spread of nosocomial infections (Pulcrano et al. 2012). This technique was also recently applied for the typing of brewing 97 98 yeast strains allowing their classification into different major beer types (Lauterbach et al. 99 2017) as well as for the typing of 33 wine yeasts which could be sorted according to their 100 genetic background (Usbeck et al. 2014). One of the main challenges of fungal typing is that, 101 as compared to bacteria, their phylogenetic relationships are more complex and species 102 boundaries are not easily drawn (Bader, 2013). Nevertheless, a rapid and reliable method for 103 fungal typing would be of great interest in several contexts, e.g., to help understanding the 104 domestication process and history of numerous species used in industry, for source-tracking 105 of spoilage fungi in the food industry, to differentiate toxigenic and atoxigenic strains of a 106 same species, to discriminate the different strains involved in natural fermentation processes 107 for the selection of starter cultures and for deciphering the tenuous limits between 108 contaminant and biotechnological isolates (Belén Flórez et al. 2007). In the past 15 years, 109 several studies focused on strain-level classification of filamentous fungi with technological interest such as those used in cheese manufacture. Belén Flórez et al. (2007) and Fontaine et 110 111 al. (2015), using randomly amplified polymorphic DNA (RAPD)-PCR, could discriminate, at 112 the intraspecies level, P. roqueforti isolates from cheese and environmental origins. 113 Microsatellite markers were also used to investigate the genetic diversity within *Penicillium* 114 roqueforti isolates (Ropars et al. 2014; Gillot et al. 2015), and these studies allowed the 115 differentiation of isolates in several genetically divergent populations. For instance, Gillot et al. (2015), using 4 polymorphic microsatellite markers, distinguished 28 haplotypes among a 116 worldwide collection of 164 P. roqueforti isolates from cheese and other environments. 117 118 Furthermore, these 28 haplotypes could be clustered into three well-defined genetically 119 differentiated populations.

120 While there is a strong body of evidence that MALDI-TOF MS can be applied to 121 discriminate closely-related bacterial species and bacterial strains, only few studies have 122 evaluated MALDI-TOF MS as a rapid tool to differentiate closely-related fungal species and 123 strains or genetic populations from a same species. Therefore, the aim of this study was first 124 to evaluate the potential of MALDI-TOF MS to accurately identify 23 closely-related 125 species of Aspergillus section Flavi, and then to assess whether this technique could be used 126 for discriminating *Penicillium roqueforti* isolates previously shown by Gillot et al. (2015) to 127 belong to three distinct genetic populations.

128

129 2. Materials and methods

130 **2.1 Fungal strains and cultivation**

Sixty-eight strains belonging to 23 species from the *Aspergillus* section *Flavi* were obtained
from different culture collections. They are listed in Table 1.

133 Sixty-three Penicillium roqueforti isolates obtained from the Université de Bretagne

134 Occidentale Culture Collection (UBOCC), Centraalbureau voor Schimmelcultures (CBS),

135 Mycology laboratory of the Institute of Hygiene and Epidemiology (IHEM), Mycothèque de

136 l'Université Catholique de Louvain (MUCL), Deutsche Sammlung von Mikroorganismen
- und Zellkulturen (DSMZ), and Laboratoire Cryptogamie Paris (LCP) collections belonging to
 28 haplotypes and classified into three genetically distinct populations (1, 2 and 3) were
 chosen among the 164 isolates which were studied by Gillot et al. (2015). Twenty-one, 22
 and 20 isolates belonged to population 1, 2 and 3, respectively (Supplementary Table 1).
- 141

142 To assess viability and purity before spectra acquisition, all strains were first cultivated at 143 25°C on Malt Extract Agar (20 g.L⁻¹ malt extract, 3 g.L⁻¹ yeast extract, 15 g.L⁻¹ agar) and 144 Potato Dextrose Agar (PDA, bioMérieux, Marcy l'Etoile, France), for *Aspergillus* spp. and *P*. 145 *roqueforti*, respectively. Then, they were cultivated on their respective media for 8 days at 146 25°C before spectra acquisition. Three culture replicates were made for each strain.

147

148 2.2 Sample preparation and spectra acquisition

After cultivation, isolates were processed following the manufacturer's instructions (bioMérieux, Marcy l'Etoile, France) as described previously (Quéro et al. 2018). Briefly, fungal biomass was suspended in 70% ethanol, before formic acid/acetonitrile protein extraction and centrifugation. After samples and matrix were deposited on target slides, spectra were acquired using the VITEK MS system (bioMérieux, Marcy l'Etoile, France) equipped with the Launchpad V2.8.4 acquisition software. Each sample was analyzed in duplicate.

All spectra were acquired in linear positive ion extraction mode in a mass range from 2000 to 20,000 Da. Individual spectra were accumulated from 500 laser shots (100 profiles with 5 shots per profile) with the 'Auto-Quality' option activated. The system was calibrated externally with fresh cells of *Escherichia coli* ATCC 8739. Raw spectra were automatically processed by smoothing and peak detection procedures implemented in the Launchpad acquisition software (bioMérieux, Marcy l'Etoile, France).

162 Raw spectra were then controlled for peak resolution, signal-to-noise ratio and absolute
163 signal intensity as described previously (Girard et al. 2016). The spectra that did not reach the
164 specified quality criteria were discarded.

165

166 2.3 Discrimination of Aspergillus section Flavi species complex

167 Two approaches were used to evaluate the power of MALDI-TOF MS to discriminate 168 *Aspergillus* species from the *Flavi* section. First, a non-supervised approach was used in 169 which the distances between all spectra were determined using the classical multidimensional 170 scaling function (cmdscale) of Matlab (2014, The Mathworks Inc., USA). The calculated 171 distances between spectra were based on the absence or presence of peaks and their 172 intensities. These distances were then visualized using a multidimensional scaling (MDS) 173 graphic. Secondly, a supervised approach was used after building a spectral database with 61 174 strains as previously described (Girard et al. 2016; Quéro et al. 2018). Briefly, peak lists were 175 binned and a predictive model was established using the Advanced Spectra Classifier (ASC) 176 algorithm developed by bioMerieux (Marcy l'Etoile, France). Briefly, the ASC algorithm 177 assigns weights to each bin depending on the absence or presence of a peak. For example, if a peak is always present in a bin for spectra of population 1 and absent in the same bin for the 178 other groups, the algorithm will assign a high positive weight to that bin for classification of 179 180 unknown spectra. On the contrary, if a peak is always absent for population 1 and present in 181 the other populations, it will have a high negative weight. Moreover, if a peak is either 182 present or absent in spectra of the same population, it will have a low weight as it is poorly discriminant. This decision algorithm was applied to only retain significant matches and a 183 184 single choice identification was obtained when only one species was retained. When more than one species was retained, a low discrimination result was proposed. In case more than 4 185 186 species were retained or if no significant match was found, it was considered as a non-187 identification result.

188 Spectra acquired from 7 species, i.e., A. bertholletius, A. coremiiformis, A. cerealis, A. 189 mottae, A. oryzae, A. pseudocaelatus and A. pseudonomius were not included in the database 190 as the number of tested strains was not sufficient. Indeed, the ASC algorithm used for database construction requires a minimum of 2 strains per species. Performances of this 191 192 database were then evaluated by cross-validation as described previously (Quero et al. 2018). 193 The spectral data were randomly split into 5 subsets, 4 subsets used as learning phase and the 194 last one used to validate the identification performances (or in this case, the attribution to the 195 right group). This procedure was repeated 5 times, each subset being used once as a test. A 196 correct identification was defined when the same identification occurred between cross-197 validation result and the reference identification. Low discrimination results were considered 198 as correct if the expected identification was included in the matches. A misidentification 199 result was defined as a discordant identification between the cross-validation result and the 200 reference identification.

- 201
- 202

203 2.4 Discrimination of *Penicillium roqueforti* isolates

Prior to similarity comparison of spectra and database construction, a two-step calibration
was applied on all spectra, involving a linear calibration step to correct any possible global
mass shift and a quadratic calibration step on the spectra entire mass range.

207 For linear calibration, specific MS peaks of *P. roqueforti* spectra were used. To do so, MS 208 spectra of P. roqueforti isolates recorded in the bioMérieux commercial database (version 209 3.2) were screened for specific MS peaks, which were then searched in the spectra acquired 210 in the present study. Thirteen specific MS peaks with masses ranging from 3704.84 to 14431.15 Da were found. Then, only MS peaks present in more than 70% of isolates 211 212 belonging to two of the three genetic populations were kept which led to the selection of 9 213 MS peaks with a mass of 3704.84, 3746.12, 4972.23, 6242.47, 6777.90, 6840.56, 7409.58, 214 7437.67 and 14431.14 Da. The selected theoretical MS peaks were then compared to those 215 observed in the spectra acquired in the present study, allowing the application of a linear 216 model to correct eventual mass deviations. After mass correction with linear calibration, a 217 quadratic calibration was applied. For this calibration step, the entire mass range (3000-20000 218 Da) was targeted, in which masses ranging between 3000 and 6000 Da, 6000 and 10000 Da 219 and 10000 and 20000 Da were screened using a 1-,2- and 3-Da interval, respectively. For 220 quadratic calibration, mass tolerance was more restrictive than previously and only MS peaks 221 present in more than 83% of isolates belonging to two of the three genetic populations were 222 kept. These selected masses which included 42 MS peaks (data not shown) were then used to 223 build a quadratic model between theoretical and observed masses, allowing a good alignment 224 of spectra.

225

A spectral database in which the spectra derived from *P. roqueforti* isolates were assigned to
one of the three genetic populations identified by Gillot et al. (2015) was then implemented,
using an algorithm derived from the ASC one (unpublished data).

Performances of this database were first evaluated by cross-validation as described above and database performances were also evaluated by external validation using 21 strains not used to build the database. Spectra derived from these strains were used to challenge the database to assess whether they could be correctly assigned to the correct genetic population.

- 233
- 234

235 **3. Results and discussion**

236 3.1 Evaluation of MALDI-TOF MS for discriminating Aspergillus section Flavi species

237 The distances between spectra of all the tested species can be visualized in Figure 1, which 238 shows the results of MDS analysis for all spectra (Figure 1A), spectra of the A. *flavus*-clade (Figure 1B) and spectra from the other clades (Figure 1C). Overall, spectra from each species 239 240 were quite well separated (Figure 1A). Based on spectra similarity, 3 groups of species could 241 be distinguished except for spectra of A. pseudotamarii which stood apart from these groups 242 (Figure 1A). The first two groups (group A and B, Figure 1A) contained spectra of all species 243 of the A. flavus-clade with the exception of A. mottae and A. oryzae as well as spectra from 244 A. pseudonomius and A. avenaceus from the nomius- and avenaceus-clade. Interestingly, 245 Group B contained all species that are closely phylogenetically related to A. parasiticus, 246 namely A. arachidicola, A. novoparasiticus, A. transmontanensis, A. sojae and A. sergii. All 247 of these species are considered in the litterature as pertaining to the A. parasiticus-clade (Rodrigues et al. 2011; Carvajal-Campos et al. 2017). It is worth mentioning that the separate 248 249 grouping of A. parasiticus-clade MALDI-TOF MS spectra from other A. flavus-clade species 250 was also reported by Rodrigues et al. (2011) but on a smaller number of species. Group C 251 contained all the species from the other clades.

252 When only representing spectra from species of the A. flavus-clade (Figure 1B), it can be 253 observed that most of these species were clearly separated. Interestingly, spectra of A. flavus 254 and A. oryzae (the likely domesticated form of A. flavus) clearly stood apart despite their very 255 close phylogenetic relatedness (Frisvad et al. 2019), reflecting the fact that A. oryzae 256 expressed many proteins that differed from those of A. flavus. Indeed, it is well established 257 that domestication of A. flavus has led to important genetic and functional changes in its 258 metabolism (Gibbons et al. 2012). Instead, spectra of A. oryzae were more similar to those of 259 A. minisclerotigenes which is also closely phylogenetically related to A. oryzae (Frisvad et 260 al., 2019). In contrast to A. flavus and A. oryzae, spectra profiles of A. parasiticus and its 261 likely domesticated form, A. sojae, shared much more common characteristics. Figure 1C 262 shows the distance between spectra of the 11 other tested species belonging to the other 263 clades of Aspergillus section Flavi. Spectra of species from the A. tamarii-clade were 264 completely separated from the other ones but not grouped together. Indeed, spectra of A. 265 tamarii and A. pseudotamarii were clearly separated from each other while those of A. 266 *caelatus* and *A. pseudocaelatus* were more similar. Though they belonged to different clades, spectra of the remaining species were grouped together except those of A. pseudonomius 267 268 stains and A. avenaceus which were grouped together. Overall, spectra of the tested species were quite well separated, indicating that it should be possible to differentiate and identifythem using a supervised approach.

271 Spectra of the 16 species which were represented by at least two strains were integrated into 272 the bioMérieux spectral database and identification performances were assessed by cross-273 validation (Table 2). Overall, more than 99% of spectra (271/272) were assigned to the 274 correct species. Only one spectrum of A. novoparasiticus was not identified, and one 275 spectrum of A. avenaceus was attributed to both A. avenaceus and A. flavus. These results 276 show that, even if the species of Aspergillus section Flavi tested here are closely related, their 277 spectra are sufficiently different to yield correct identification when implemented into a 278 spectral database and analyzed with the ASC algorithm. Results obtained here are of 279 particular interest, especially for A. parasiticus and A. sojae whose spectra were perfectly 280 separated and identified during cross-validation. It should be noted that these species are very 281 similar from a morphological point of view; cannot be distinguished from each other based 282 only on gene sequencing of taxonomic markers such as β -tubulin, calmodulin and RPB2 283 genes and an extrolite analysis is necessary to differentiate them (i.e., in contrast to A. 284 flavus, A. sojae does not produce aflatoxins and aflatrem) (Frisvad et al. 2019). In the same 285 way, A. parasiticus and A. novoparasiticus were shown to share similar β -tubulin sequences, 286 requiring the sequencing of other specific genes for identification (Frisvad et al. 2019), 287 whereas the analysis of their MS spectra was enough to discriminate them. This analysis also 288 allowed separation of aflatoxin-producing species (A. alflatoxiformans, A. arachidicola, A. 289 flavus, A. luteovirescens, A. minisclerotigenes, A. nomius, A. novoparasiticus, A. parasiticus, 290 A. pseudotamarii, A. sergii, A. transmontanensis) from non-aflatoxin producing ones (A. 291 avenaceus, A. caelatus, A. leporis, A. sojae, A. tamarii). To our best knowledge, this is the 292 first time that as many species of the Flavi section are studied and correctly identified by 293 MALDI-TOF MS analysis. Indeed, several papers focused on the identification of 294 Aspergillus section Flavi species of clinical interest such as A. flavus, A. oryzae, A. nomius or 295 A. tamarii and though a separate clustering of species was obtained using hierarchical 296 analysis, no commercial databases were able to accurately identify them (De Carolis et al. 297 2012; Li et al. 2017; Masih et al. 2016; Park et al. 2017; Rodrigues et al. 2011; Tam et al. 298 2014). This underlines the need of expanding spectral databases to reach good identification 299 performances.

Regarding the results obtained in the present study, MALDI-TOF MS spectra analysis appeared as powerful as the polyphasic approach commonly used to identify *Aspergillus* species of this section which may include morphological, physiological, molecular and/or 303 extrolite data analysis (Frisvad et al., 2019). These results are very promising even though 304 they are based on a relatively low number of strains and spectra. The next step would be to 305 integrate more species and strains to the database and also to challenge the database with 306 external isolates, in order to assess if spectra and strains that were not used to build the 307 database can be correctly identified.

308

309 **3.2** Evaluation of MALDI-TOF MS for typing of *P. roqueforti* isolates

310 **3.2.1 Two-step calibration**

Screening of the experimental spectra led to the selection of 58 MS peaks present in all spectra and among these MS peaks, 42 were present in more than 83% of isolates belonging to 2 of the 3 genetic populations and were used in the quadratic model for spectra alignment.

314

315 3.2.2 Similarity comparison and effect of calibration on the grouping of *P. roqueforti*316 isolates

317 The distances between all spectra according to their genetic populations and the impact of 318 calibration on the separation of these three populations can be visualized in Figure 2 which 319 shows the results of MDS analysis before (Figure 2A) and after calibration (Figure 2B). 320 Overall, there was a good separation of *P. roqueforti* MS spectra according to their respective 321 genetic population and the two-step calibration approach applied in the present study 322 improved separation of these spectra, thus confirming the potential of MALDI-TOF MS to 323 discriminate filamentous fungi at the intraspecific level when combined with recalibration. 324 Indeed, P. roqueforti isolates from population 2 were clearly separated from those of 325 populations 3 and 1 (Figure 2B), even though, for the latter population, spectra from few 326 strains, e.g., strain F77-1 which belonged to population 1, showed a high similarity with other 327 spectra from population 2. It is also worth mentioning that spectra derived from population 2 328 isolates, in contrast to population 1 and 3 spectra, showed a high heterogeneity, as underlined 329 by the distances between spectra of population 2 isolates. It was especially true for spectra 330 derived from strain F41-4 that formed a separated group from other population 2 isolates. A 331 higher genetic diversity was also reported in isolates from this population as compared to 332 other populations in the study of Gillot et al. (2015), which confirms the results obtained 333 here. Indeed, population 2 contained almost all non-cheese isolates which harbored a larger 334 number of allelic profiles to that of cheese isolates (Gillot et al. 2015). Moreover, cheese isolates from this population were systematically retrieved from a given Protected 335 336 Designation of Origin (PDO) or Protected Geographical Indication (PGI) cheese type (i.e.

337 Roquefort, Bleu d'Auvergne and Bleu de Gex). The two-step calibration approach used in the 338 present study also improved separation of spectra derived from populations 1 and 3 isolates 339 which mainly corresponded to cheese isolates from different PDO or PGI, with population 3 340 and 1 isolates originating mainly from Gorgonzola-Type cheeses and other cheeses (i.e. 341 Stilton, Cabrales, Danablu, Fourme d'ambert Bleu de Gex and Jihoceska Niva), respectively. 342 It is also worth mentioning that, as previously reported by Gillot et al. (2015), a common 343 macroscopic aspect was observed within population 3 isolates, with both a velvety to weakly 344 floccose texture and a light greenish gray to pale green color. As shown in Figure 2B, spectra 345 of several isolates from these two populations could not be clearly distinguished using MDS 346 analysis underlining the fact that they shared highly similar MS profiles and therefore 347 expressed features. The fact that spectra derived from populations 1 and 3 isolates shared 348 quite similar MS profiles may be explained by the fact that most isolates from these 2 349 populations were cheese isolates, which have been selected by cheese producers and/or by the 350 natural conditions prevailing during cheese ripening (Gillot et al. 2015). Similar results were 351 also obtained after investigating the relationship between the intraspecific variability of the 352 biological response to temperature and a_w and the different genetic populations within the 353 selected P. roqueforti strains (Nguyen et al. submitted).

354

355 3.2.3 Database construction and validation

356 To go further in the assessment of the MALDI-TOF MS discriminative power at the 357 intraspecific level, a database was constructed with 252 spectra, representing 42 strains, with 358 14, 15 and 13 isolates belonging to populations 1, 2 and 3, respectively. Cross-validation 359 results are shown in Table 3. Overall, the results of cross-validation showed that 94.1% of all 360 spectra (235 out of 252 spectra) were correctly assigned to their corresponding genetic 361 population. All spectra derived from population 2 and 3 isolates were either correctly 362 assigned to the right population (96.67-98.72 % of all spectra) or not identified at all (3.33-363 1.28 % of all spectra corresponding to 3 and 1 spectra, respectively). These non-identified 364 spectra were derived from strain F41-4 from population 2 and strain F34-1 from population 3. 365 Other spectra derived from these strains were correctly assigned to their respective genetic 366 population. Identification performances of spectra derived from population 1 isolates were 367 lower than those obtained with the other two populations with 84.52% of spectra (71 out of 368 84 spectra) correctly assigned. The two spectra which yielded low discrimination results 369 corresponded to two spectra of strain F84, that were either attributed to population 1 and 3 370 while other spectra of this strain were correctly identified. One of the two unidentified spectra with no identification results corresponded to one spectrum of strain F21-1, for which the other five spectra were correctly assigned. The second one corresponded to one spectrum of strain F81, for which three other spectra yielded discordant results as they were attributed to population 3, while the last two were correctly assigned to population 1. Finally, the six incorrectly assigned spectra belonged to strain F77-1 for which all spectra were incorrectly assigned to population 2. This result could be explained by the fact that this isolate had MS spectra which were more similar to those of several population 2 isolates (Figure 2B).

378 For external validation, 126 spectra corresponding to 21 independent isolates including 7 379 isolates from each genetic population, were used to challenge the database. The results are 380 shown in Table 4. 95.24 % of all spectra (110 out of 126 spectra) were correctly assigned to 381 their corresponding population. Spectra acquired from external isolates from populations 1 382 and 2 were all correctly assigned, with the exception of one spectrum from the strain IHEM3196 and F53 from population 1 and two spectra from strain LCP03969 from 383 384 population 2. Finally, for external isolates from population 3, 71.43% of spectra (30 out of 42 spectra) were accurately assigned to their respective population. All incorrectly assigned 385 386 spectra (either yielding no or discordant identification) belonged to strains F28-3 and 387 UBOCC-A-101449. For strain F28-3, five out of six spectra were not identified, and the last 388 one was incorrectly attributed to population 2 while for strain UBOCC-A-101449, three out 389 of six spectra were incorrectly identified to population 1 and the other three were assigned to 390 both populations 1 and 2 by the algorithm. Interestingly, when looking in details at the allelic profiles of strains F28-3 and UBOCC-A-101449, we observed that the 2 strains, despite being 391 392 classified in population 3 by Gillot et al. (2015), shared 1 similar allele with that of isolates 393 from population 2 and 1, respectively. Hence, it could explained why their assignment to the 394 right population was problematic.

395 Noteworthy, several strains from populations 1 and 2 that were chosen for external validation 396 also shared common alleles with isolates from other populations (Gillot et al. 2015). Indeed, 397 strains IHEM3196 and F53, that were assigned to population 1 by Gillot et al. (2015), also 398 shared 1 common allele with isolates from population 2, while strains UBOCC-A-111178, 399 DSMZ1999 and UBOCC-A-111170, assigned to population 2 by Gillot et al. (2015) shared 2 400 common alleles with population 2 and for the two other alleles, presented alleles that were 401 different from those of other isolates from population 3. Nevertheless, spectra of these 402 isolates were correctly assigned after external validation suggesting that their MS peak 403 profiles were much more closely related to that of the isolates which were used to build the 404 database.

405 As indicated in the 'Materials and methods' section, for database construction, peak lists of 406 spectra from each population were binned and a predictive model was established. In order to 407 understand what were the main differences in the MS spectra of the three P. roqueforti 408 populations, we investigated which bins (or mass-intervals) had a high impact (positive or 409 negative) for population assignment. The two bins that had the higher and lower impact on 410 population assignment are shown in Table 5. All these bins had masses ranging from 3000 to 411 7716.1 Da. In comparison, Hettick et al. (2008) found differences between spectra of Aspergillus flavus isolates in a mass range from 7000 to 10000 Da, but in contrast to the 412 413 present study in which the ASC algorithm was used, such comparison was performed on 414 whole spectra based on peak lists. It is also interesting to note that high-impact weights for 415 population 2 were slightly higher than those of the two other populations and that overall, 416 high-impact bins were different depending on the population, except for the [3000.0;3004.0] 417 bin which allowed to discriminate population 3 isolates from population 1 and 2 isolates (Table 5). Thus, it would be of great interest to look closer into the different bins that allowed 418 population separation during MALDI-TOF MS analysis, especially those which were 419 420 identified by the algorithm as having a high-impact weight. The application of MALDI-TOF 421 MS/MS could help to determine the exact m/z of proteins which allowed to discriminate P. 422 *roqueforti* isolates at the population level as performed previously by Freimoser et al. (2016) 423 on different Monilinia species. Then, after comparison with theoretical masses of proteins 424 predicted from available sequenced genomes of *P. roqueforti*, it may be possible to identify 425 which are the proteins (and their functions) that permit to discriminate one population from 426 another. However, such comparison can lead to the identification of several different proteins 427 for one single peak because different proteins can share the same m/z value (Spinali et al. 428 2015).

429 Altogether, these results suggest that there is a very good agreement between genetic data and 430 MS peak profiles and that MALDI-TOF MS could be used as a rapid tool for typing of P. 431 roqueforti isolates using a dataset of well characterized isolates at the intraspecific level. 432 Indeed, MALDI-TOF MS was able to highlight intra-specific polymorphism and yielded 433 similar results to those obtained from genetic analysis based on the study of three 434 microsatellites markers of *Penicillium roqueforti* isolates. In addition, it was even possible to 435 assign external isolates to the right populations by constructing a spectral database. However, 436 two strains which possessed allelic profiles found in other genetic populations, could not be 437 classified accurately with the approach used in the present study. Despite a very good 438 agreement between genetic data and MS profiles, it must be noted that that differentiation between the three populations is not made on the same markers in each analysis. Indeed,
genetic analysis is based on microsatellite markers, short and repeated DNA sequences
(Mathimaran et al. 2008), while MALDI-TOF MS detects predominantly ribosomal proteins
and other proteins, that are constantly expressed and highly abundant (Santos et al. 2010).

443

444 In conclusion, the results obtained in this study, together with those previously published by 445 Quéro et al. (2018) confirm that MALDI-TOF MS can be a powerful tool to differentiate and identify filamentous fungi not only at the species level but can also be applied to differentiate 446 447 species complex and cryptic species as well populations from a same species. This method 448 could be of great interest for the management of mycological safety and quality of foods. Indeed, correct species identification of moulds is of high importance and the possibility of 449 450 going beyond species identification could also be a valuable asset for source tracking of fungi 451 in the food chain.

452

453 Acknowledgements

454 This work was done as part of a CIFRE PhD funded by bioMérieux and the French
455 Association for Research and Technology (ANRT) [Convention #2015/0821] in collaboration
456 with the LUBEM laboratory.

457

458 **Conflict of interest**

- LQ, PC, BC and VG are employees of bioMérieux, a company developing and selling *in vitro*diagnostic assays including the VITEK MS used in this study.
- 461

462 **References**

- 463 Alanio, A., J. -L. Beretti, B. Dauphin, E. Mellado, G. Quesne, C. Lacroix, A. Amara, P. Berche, X. 464 Nassif, and M. -E. Bougnoux. 2011. "Matrix-assisted Laser Desorption Ionization Time-of-flight 465 Mass Spectrometry for Fast and Accurate Identification of Clinically Relevant Aspergillus Species." 466 Clinical Microbiology and Infection 17 (5): 750–55. https://doi.org/10.1111/j.1469-467 0691.2010.03323.x. 468 Al-Hatmi, Abdullah MS, Anne-Cécile Normand, Anne D van Diepeningen, Marijke Hendrickx, G
- 469 Sybren de Hoog, and Renaud Piarroux. 2015. "Rapid Identification of Clinical Members of Fusarium
 470 Fujikuroi Complex Using MALDI-TOF MS." Future Microbiology 10 (12): 1939–52.
- 471 https://doi.org/10.2217/fmb.15.108.

- 472 Allen, C., Ph Prior, and A. C. Hayward, eds. 2005. Bacterial Wilt Disease and the Ralstonia
 473 Solanacearum Species Complex. St. Paul, Minn: American Phytopathological Society.
- 474 Bader, Oliver. 2013. "MALDI-TOF-MS-Based Species Identification and Typing Approaches in
 475 Medical Mycology." PROTEOMICS 13 (5): 788–99. https://doi.org/10.1002/pmic.201200468.
- 476 Balasundaram, Sudhagar V., Ingeborg B. Engh, Inger Skrede, and Håvard Kauserud. 2015. "How
- 477 Many DNA Markers Are Needed to Reveal Cryptic Fungal Species?" Fungal Biology 119 (10): 940–
- 478 45. https://doi.org/10.1016/j.funbio.2015.07.006.
- 479 Basile, Franco, Michael B Beverly, Kent J Voorhees, and Ted L Hadfield. 1998. "Pathogenic
- Bacteria: Their Detection and Differentiation by Rapid Lipid Profiling with Pyrolysis Mass
 Spectrometry." TrAC Trends in Analytical Chemistry 17 (2): 95–109. https://doi.org/10.1016/S01659936(97)00103-9.
- 483 Belén Flórez, Ana, Pablo Álvarez-Martín, Teresa María López-Díaz, and Baltasar Mayo. 2007.
- 484 "Morphotypic and Molecular Identification of Filamentous Fungi from Spanish Blue-Veined Cabrales
- 485 Cheese, and Typing of Penicillium Roqueforti and Geotrichum Candidum Isolates." International
- 486 Dairy Journal 17 (4): 350–57. https://doi.org/10.1016/j.idairyj.2006.04.002.
- 487 Carvajal-Campos, Amaranta, Ama Lethicia Manizan, Souria Tadrist, David Koffi Akaki, Rose Koffi488 Nevry, Geromy G. Moore, Stephen O. Fapohunda, et al. 2017. "Aspergillus Korhogoensis, a Novel
- 489 Aflatoxin Producing Species from the Côte d'Ivoire." Toxins 9 (11).
 490 https://doi.org/10.3390/toxins9110353.
- 491 De Carolis, Elena, Antonietta Vella, Ada R. Florio, Patrizia Posteraro, David S. Perlin, Maurizio
 492 Sanguinetti, and Brunella Posteraro. 2012. "Use of Matrix-Assisted Laser Desorption Ionization-Time
- 493 of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus
- 494 Species." Journal of Clinical Microbiology 50 (7): 2479–83. https://doi.org/10.1128/JCM.00224-12.
- 495 Deak, Eszter, Carmen L. Charlton, April M. Bobenchik, Shelley A. Miller, Simon Pollett, Ian H.
- 496 McHardy, Max T. Wu, and Omai B. Garner. 2015. "Comparison of the Vitek MS and Bruker
- 497 Microflex LT MALDI-TOF MS Platforms for Routine Identification of Commonly Isolated Bacteria
- 498 and Yeast in the Clinical Microbiology Laboratory." Diagnostic Microbiology and Infectious Disease
- 499 81 (1): 27–33. https://doi.org/10.1016/j.diagmicrobio.2014.09.018.
- 500 Filtenborg, O., J. C. Frisvad, and U. Thrane. 1996. "Moulds in Food Spoilage." International Journal
- 501 of Food Microbiology, Specific Spoilage Organisms, 33 (1): 85–102. https://doi.org/10.1016/0168502 1605(96)01153-1.
- 503 Fontaine, Kévin, Nolwenn Hymery, Marlène Z. Lacroix, Sylvie Puel, Olivier Puel, Karim Rigalma,
- 504 Vincent Gaydou, Emmanuel Coton, and Jérôme Mounier. 2015. "Influence of Intraspecific Variability
- 505 and Abiotic Factors on Mycotoxin Production in Penicillium Roqueforti." International Journal of
- 506 Food Microbiology 215 (December): 187–93. https://doi.org/10.1016/j.ijfoodmicro.2015.07.021.
- 507 Freimoser, Florian Matthias, Maja Hilber-Bodmer, René Brunisholz, and David Drissner. 2016.
- 508 "Direct Identification of Monilinia Brown Rot Fungi on Infected Fruits by Matrix-Assisted Laser

- 509 Desorption/Ionization (MALDI) Mass Spectrometry." Chemical and Biological Technologies in
 510 Agriculture 3 (1): 7. https://doi.org/10.1186/s40538-016-0058-4.
- 511 Frisvad, J. C., V. Hubka, C. N. Ezekiel, S. -B. Hong, A. Nováková, A. J. Chen, M. Arzanlou, et al.
- 512 2019. "Taxonomy of Aspergillus Section Flavi and Their Production of Aflatoxins, Ochratoxins and
- 513OtherMycotoxins."StudiesinMycology93(June):1-63.514https://doi.org/10.1016/j.simyco.2018.06.001.
- 515 Fujinami, Yoshihito, Hitomi S. Kikkawa, Yohei Kurosaki, Koichi Sakurada, Mineo Yoshino, and Jiro
- 516 Yasuda. 2011. "Rapid Discrimination of Legionella by Matrix-Assisted Laser Desorption Ionization
- 517 Time-of-Flight Mass Spectrometry." Microbiological Research 166 (2): 77–86.
 518 https://doi.org/10.1016/j.micres.2010.02.005.
- 519 Gibbons, John G., Leonidas Salichos, Jason C. Slot, David C. Rinker, Kriston L. McGary, Jonas G.
- 520 King, Maren A. Klich, David L. Tabb, W. Hayes McDonald, and Antonis Rokas. 2012. "The
- 521 Evolutionary Imprint of Domestication on Genome Variation and Function of the Filamentous Fungus
- 522
 Aspergillus
 Oryzae."
 Current
 Biology:
 CB
 22
 (15):
 1403–9.

 523
 https://doi.org/10.1016/j.cub.2012.05.033.

 1403–9.
- Gillot, Guillaume, Jean-Luc Jany, Monika Coton, Gaétan Le Floch, Stella Debaets, Jeanne Ropars,
 Manuela López-Villavicencio, et al. 2015. "Insights into Penicillium Roqueforti Morphological and
 Genetic Diversity." PLOS ONE 10 (6): e0129849. https://doi.org/10.1371/journal.pone.0129849.
- 527 Girard, Victoria, Sandrine Mailler, Martin Welker, Maud Arsac, Béatrice Cellière, Pierre-Jean Cotte-
- 528 Pattat, Sonia Chatellier, et al. 2016. "Identification of Mycobacterium Spp. and Nocardia Spp. from
- 529 Solid and Liquid Cultures by Matrix-Assisted Laser Desorption Ionization-time of Flight Mass
- 530 Spectrometry (MALDI-TOF MS)." Diagnostic Microbiology and Infectious Disease 86 (3): 277–83.
- 531 https://doi.org/10.1016/j.diagmicrobio.2016.07.027.
- Hawksworth, David L. 2006. "Pandora's Mycological Box: Molecular Sequences vs. Morphology in
 Understanding Fungal Relationships and Biodiversity." Revista Iberoamericana De Micologia 23 (3):
 127–33.
- Hettick, Justin M., Brett J. Green, Amanda D. Buskirk, Michael L. Kashon, James E. Slaven, Erika
 Janotka, Francoise M. Blachere, Detlef Schmechel, and Donald H. Beezhold. 2008. "Discrimination
 of Aspergillus Isolates at the Species and Strain Level by Matrix-Assisted Laser
 Desorption/Ionization Time-of-Flight Mass Spectrometry Fingerprinting." Analytical Biochemistry
- 539 380 (2): 276–81. https://doi.org/10.1016/j.ab.2008.05.051.
- 540 Kern, Carola C., Rudi F. Vogel, and Jürgen Behr. 2014. "Differentiation of Lactobacillus Brevis
- 541 Strains Using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with
- 542 Respect to Their Beer Spoilage Potential." Food Microbiology 40 (June): 18–24.
- 543 https://doi.org/10.1016/j.fm.2013.11.015.
- 544 Kuhns, Martin, Andreas E. Zautner, Wolfgang Rabsch, Ortrud Zimmermann, Michael Weig, Oliver
- 545 Bader, and Uwe Groß. 2012. "Rapid Discrimination of Salmonella Enterica Serovar Typhi from Other

- 546 Serovars by MALDI-TOF Mass Spectrometry." PloS One 7 (6): e40004.
 547 https://doi.org/10.1371/journal.pone.0040004.
- Lauterbach, Alexander, Julia C. Usbeck, Jürgen Behr, and Rudi F. Vogel. 2017. "MALDI-TOF MS
 Typing Enables the Classification of Brewing Yeasts of the Genus Saccharomyces to Major Beer
- 550 Styles." PLOS ONE 12 (8): e0181694. https://doi.org/10.1371/journal.pone.0181694.
- Li, Ying, He Wang, Yu-Pei Zhao, Ying-Chun Xu, and Po-Ren Hsueh. 2017. "Evaluation of the
- 552 Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
- 553 System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media."
- 554 Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.01209.
- Masih, Aradhana, Pradeep K. Singh, Shallu Kathuria, Kshitij Agarwal, Jacques F. Meis, and
 Anuradha Chowdhary. 2016. "Identification by Molecular Methods and Matrix-Assisted Laser
 Desorption Ionization–Time of Flight Mass Spectrometry and Antifungal Susceptibility Profiles of
 Clinically Significant Rare Aspergillus Species in a Referral Chest Hospital in Delhi, India." Journal
- 559 of Clinical Microbiology 54 (9): 2354–64. https://doi.org/10.1128/JCM.00962-16.
- 560 Mathimaran, Natarajan, Laurent Falquet, Kurt Ineichen, Cyril Picard, Dirk Redecker, Thomas Boller,
- and Andres Wiemken. 2008. "Microsatellites for Disentangling Underground Networks: StrainSpecific Identification of Glomus Intraradices, an Arbuscular Mycorrhizal Fungus." Fungal Genetics
 and Biology 45 (6): 812–17. https://doi.org/10.1016/j.fgb.2008.02.009.
- Park, Ju Heon, Jong Hee Shin, Min Ji Choi, Jin Un Choi, Yeon-Joon Park, Sook Jin Jang, Eun Jeong
 Won, et al. 2017. "Evaluation of Matrix-Assisted Laser Desorption/Ionization Time-of-Fight Mass
 Spectrometry for Identification of 345 Clinical Isolates of Aspergillus Species from 11 Korean
 Hospitals: Comparison with Molecular Identification." Diagnostic Microbiology and Infectious
- 568 Disease 87 (1): 28–31. https://doi.org/10.1016/j.diagmicrobio.2016.10.012.
- 569 Pitt, John, and Ailsa Hocking. 2009. Fungi and Food Spoilage. 3rd ed. New York, USA: Springer570 Science & Business media.
- 571 Pulcrano, G., E. Roscetto, V. D. Iula, D. Panellis, F. Rossano, and M. R. Catania. 2012. "MALDI-
- 572 TOF Mass Spectrometry and Microsatellite Markers to Evaluate Candida Parapsilosis Transmission in
- 573 Neonatal Intensive Care Units." European Journal of Clinical Microbiology & Infectious Diseases:
- 574 Official Publication of the European Society of Clinical Microbiology 31 (11): 2919–28.
- 575 https://doi.org/10.1007/s10096-012-1642-6.
- 576 Quéro, Laura, Victoria Girard, Audrey Pawtowski, Sylvie Tréguer, Amélie Weill, Sandrine Arend,
 577 Béatrice Cellière, et al. 2018. "Development and Application of MALDI-TOF MS for Identification
- 578 of Food Spoilage Fungi." Food Microbiology, May. https://doi.org/10.1016/j.fm.2018.05.001.
- 579 Rodrigues, P., C. Santos, A. Venâncio, and N. Lima. 2011. "Species Identification of Aspergillus
- 580 Section Flavi Isolates from Portuguese Almonds Using Phenotypic, Including MALDI-TOF ICMS,
- 581 and Molecular Approaches." Journal of Applied Microbiology 111 (4): 877–92.
- 582 https://doi.org/10.1111/j.1365-2672.2011.05116.x.

- Ropars, Jeanne, Manuela López-Villavicencio, Joëlle Dupont, Alodie Snirc, Guillaume Gillot,
 Monika Coton, Jean-Luc Jany, Emmanuel Coton, and Tatiana Giraud. 2014. "Induction of Sexual
 Reproduction and Genetic Diversity in the Cheese Fungus Penicillium Roqueforti." Evolutionary
 Applications 7 (4): 433–41. https://doi.org/10.1111/eva.12140.
- Santos, C., R. R. M. Paterson, A. Venâncio, and N. Lima. 2010. "Filamentous Fungal
 Characterizations by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass
 Spectrometry." Journal of Applied Microbiology 108 (2): 375–85. https://doi.org/10.1111/j.1365-
- **590** 2672.2009.04448.x.
- 591 Spinali, Sébastien, Alex van Belkum, Richard V. Goering, Victoria Girard, Martin Welker, Marc Van
- 592 Nuenen, David H. Pincus, Maud Arsac, and Géraldine Durand. 2015. "Microbial Typing by Matrix-
- 593 Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Do We Need Guidance for
- 594 Data Interpretation?" Journal of Clinical Microbiology 53 (3): 760–65.
 595 https://doi.org/10.1128/JCM.01635-14.
- 596 Tam, Emily W. T., Jonathan H. K. Chen, Eunice C. L. Lau, Antonio H. Y. Ngan, Kitty S. C. Fung,
- 597 Kim-Chung Lee, Ching-Wan Lam, Kwok-Yung Yuen, Susanna K. P. Lau, and Patrick C. Y. Woo. 598 2014. "Misidentification of Aspergillus Nomius and Aspergillus Tamarii as Aspergillus Flavus: 599 Characterization by Internal Transcribed Spacer, β-Tubulin, and Calmodulin Gene Sequencing, 600 Metabolic Fingerprinting, and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass 601 Spectrometry." Journal of Clinical Microbiology 52 (4): 1153–60.
- 602 https://doi.org/10.1128/JCM.03258-13.
- 603 Ueda, O., S. Tanaka, Z. Nagasawa, H. Hanaki, T. Shobuike, and H. Miyamoto. 2015. "Development
 604 of a Novel Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrum (MALDI605 TOF-MS)-Based Typing Method to Identify Meticillin-Resistant Staphylococcus Aureus Clones."
 602 Loss M. M. S. Tanaka, Z. Nagasawa, H. Hanaki, T. Shobuike, and H. Miyamoto. 2015. "Development
 604 of a Novel Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrum (MALDI605 TOF-MS)-Based Typing Method to Identify Meticillin-Resistant Staphylococcus Aureus Clones."
- 606
 Journal of Hospital Infection 90 (2): 147–55. https://doi.org/10.1016/j.jhin.2014.11.025.
- 607 Usbeck, Julia C., Caroline Wilde, Dave Bertrand, Jürgen Behr, and Rudi F. Vogel. 2014. "Wine Yeast
 608 Typing by MALDI-TOF MS." Applied Microbiology and Biotechnology 98 (8): 3737–52.
 609 https://doi.org/10.1007/s00253-014-5586-x.
- Vargha, Márta, Zoltán Takáts, Allan Konopka, and Cindy H. Nakatsu. 2006. "Optimization of
 MALDI-TOF MS for Strain Level Differentiation of Arthrobacter Isolates." Journal of
 Microbiological Methods 66 (3): 399–409. https://doi.org/10.1016/j.mimet.2006.01.006.
- 613 Waśkiewicz, A. 2014. "MYCOTOXINS | Natural Occurrence of Mycotoxins in Food." In
 614 Encyclopedia of Food Microbiology (Second Edition), edited by Carl A. Batt and Mary Lou
 615 Tortorello, 880–86. Oxford: Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00231-7.
- 616 Welham, K. J., M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton. 2000. "Characterization of
- 617 Fungal Spores by Laser Desorption/Ionization Time-of-Flight Mass Spectrometry." Rapid
- 618 Communications in Mass Spectrometry 14 (5): 307-10. https://doi.org/10.1002/(SICI)1097-
- 619 0231(20000315)14:5<307::AID-RCM823>3.0.CO;2-3.

620	Table 1 : Aspergillus spp. isolates from Aspergillus section Flavi analyzed by MALDI-TOF MS in the
621	present study.

Clade	Species	Strain number	Origin substrate
Avenaceus	Aspergillus avenaceus	NRRL 517 ^T	Green pea
		NRRL 4517	Unknown
Bertholletius	Aspergillus bertholletius	CCT 7615 ^T	Rain forest soil
Coremiiformis	Aspergillus coremiiformis	NRRL 13603 ^T	Soil
Flavus	Aspergillus aflatoxiformans	CBS 121.62	Arachis hypogea
	(ex A. parvisclerotigenus)	SF1	Rain forest soil
		SF6	Rain forest soil
Flavus	Aspergillus arachidicola	UBOCC-A-117374 = CBS 117612	Arachis glabrata leaf
		UBOCC-A-117375 = CBS 117611	Arachis glabrata leaf
		UBOCC-A-117376 = CBS 117614	Arachis glabrata leaf
		UBOCC-A-117377 = CBS 117615	Arachis glabrata leaf
		$UBOCC-A-117373 = CBS 117610^{T}$	Arachis glabrata leaf
Flavus	Aspergillus cerealis	NRRL 66708	Peanut pods
	(ex A. korhogoensis)		- canac pour
Flavus	Aspergillus flavus	UBOCC-A-108068 = LCP 89 4253	Molten cheese
	Tisper ginnes juantes	$UBOCC_{-}A_{-}108067 - CBS_{-}100927^{T}$	Cellophane
		$UBOCC_{-A-101061}$	Dig feed
		UBOCC A 101063	Cotton oil cake
		UBOCC-A-106028	Wheat
		UBOCC-A-106029	Pig feed
		UBOCC-A-106030	Wheat
		UBOCC A 106031	Maize
		UBOCC A 106032	Borley
		UBOCC A 106032	Dailey Doultry feed
		0B0CC-A-100035	Poultry leed
lavus	Aspergillus minisclerotigenes	UBOCC-A-117303 = CBS 117635 T	Arachis hypogea seed
		UBOCC-A-117304 = CBS 117633	Arachis hypogea seed
		UBOCC-A-117305 = CBS 117634	Arachis hypogea seed
		UBOCC-A-117306 = CBS 117620	Arachis hypogea seed
		UBOCC-A-117307 = CBS 117639	Arachis hypogea seed
		NRRL 29000	Peanut soil
Tlavus	Aspergillus mottae	MUM 10.231 ^T	Maize kernel
Flavus	Aspergillus novoparasiticus	AFc32 = NRRL 62795	Cassava
	•	UBOCC-A-117379 = CBS 126850	Air sample
		UBOCC-A-117378 = CBS 126849 ^T	Human sputum
		LEMI 267	Human sputum
lavus	Aspergillus oryzae	CBS 100925 ^T	Unknown
Flavus	Aspergillus parasiticus	UBOCC-A-111038 = CBS 100308	Unknown
		UBOCC-A-111039	Unknown
		UBOCC-A-111041 = CBS 971 97	Indian sweets
		$UBOCC-A-110223 = CBS 100926^{T}$	Sugar cane mealy bug
		NRRI 492	Unknown
		INKKL 472	UIIKIIUWII

Clade	Species	Strain number	Origin substrate
Flavus	Aspergillus sergii	MUM 10.219 ^T	Prune fruit
		MUM 10.251	Almond shell
Flavus	Aspergillus sojae	CBS 134.52	Soy sauce
		CBS 100928 ^T	Soy sauce
Flavus	Aspergillus transmontanensis	MUM 10.205	Almond
		MUM 10.214 ^T	Almond
Leporis	Aspergillus leporis	NRRL 3216 ^T	Dung of Lepus townsensii
		NRRL 6599	Soil
Nomius	Aspergillus luteovirescens (ex	NRRL 25010	Frass in silkworm house
	A bombycis)	NRRL 25593	Frass in silkworm house
Nomius	Aspergillus nomius	CBS 123901	Keratitis
		NRRL 13137 ^T	Wheat
		NRRL 6552	Pine sawfly
Nomius	Aspergillus pseudonomius	NRRL 3353 ^T	Diseased alkali bee
Tamarii	Aspergillus caelatus	CBS 763.97 ^T	Soil
		NRRL 25568	Soil
Tamarii	Aspergillus pseudocaelatus	CBS 117616 ^T	Arachis burkartii leaf
Tamarii	Aspergillus pseudotamarii	CBS 766.97 ^T	Teafield soil
		CBS 117628	Teafield soil
		NRRL 443	Unknown
		NRRL 25518	Teafield soil
Tamarii	Aspergillus tamarii	UBOCC-A-110176 = CBS 104.13 ^T	Charcoal
		UBOCC-A-110179 = CBS 104.14	Tomato
		UBOCC-A-110219 = CBS 129.49	Coffee tree seed
		UBOCC-A-110225 = CBS 590.68	Nutmeg
		UBOCC-A-111043	Charcoal
		UBOCC-A-111045	Coffee tree seed
		UBOCC-A-111046	Nutmeg

622 ^TType strain

623 UBOCC, Université de Bretagne Occidentale Culture Collection ; CBS, Centraalbureau voor

624 Schimmelcultures Collection ; MUM, Micoteca da Universidad do Minho ; NRRL, National Center

625 for Agricultural Utilization Research

626	Table 2 :	Identification	performances	of	Aspergillus	section	Flavi	species	after	cross-
627	validation.									

Species	Overall correct	Single choice	Low discrimination	No identification	Discordant
A. aflatoxiformans	100%	100%	0%	0%	0%
	(11/11)*	(11/11)	(0/11)	(0/11)	(0/11)
A. arachidicola	100%	100%	0%	0%	0%
	(18/18)	(18/18)	(0/18)	(0/18)	(0/18)
A. avenaceus	100%	90%	10%	0%	0%
	(10/10)	(9/10)	(1/10)	(0/10)	(0/10)
A. luteovirescens	100%	100%	0%	0%	0%
	(12/12)	(12/12)	(0/12)	(0/12)	(0/12)
A. caelatus	100%	100%	0%	0%	0%
	(12/12)	(12/12)	(0/12)	(0/12)	(0/12)
A. flavus	100%	100%	0%	0%	0%
	(38/38)	(38/38)	(0/38)	(0/38)	(0/38)
A. leporis	100%	100%	0%	0%	0%
	(12/12)	(12/12)	(0/12)	(0/12)	(0/12)
A. minisclerotigenes	100%	100%	0%	0%	0%
	(25/25)	(25/25)	(0/25)	(0/25)	(0/25)
A. nomius	100%	100%	0%	0%	0%
	(12/12)	(12/12)	(0/12)	(0/12)	(0/12)
A. novoparasiticus	95%	95%	0%	5%	0%
	(19/20)	(19/20)	(0/20)	(1/20)	(0/20)
A. parasiticus	100%	100%	0%	0%	0%
	(20/20)	(20/20)	(20/20)	(20/20)	(20/20)
A. pseudotamarii	100%	100%	0%	0%	0%
	(24/24)	(24/24)	(0/24)	(0/24)	(0/24)
A. sergii	100%	100%	0%	0%	0%
	(11/11)	(11/11)	(0/11)	(0/11)	(0/11)
A. sojae	100%	100%	0%	0%	0%
	(12/12)	(12/12)	(0/12)	(0/12)	(0/12)
A. tamarii	100%	100%	0%	0%	0%
	(26/26)	(26/26)	(0/26)	(0/26)	(0/26)
A. transmontanensis	100%	100%	0%	0%	0%
	(9/9)	(9/9)	(0/9)	(0/9)	(0/9)
Global performances	99.65%	99.3%	0.35%	0.35%	0%
	(271/272)	(270/272)	(1/272)	(1/272)	(0/272)

628 *number of spectra out of the total number of spectra acquired

Population	Overall correct	Single choice	Low discrimination	No identification	Discordant
1	86.9 %	84.52%	2.38%	2.38%	10.71%
	(73/84)*	(71/84)	(2/84)	(2/84)	(9/84)
2	96.67 %	96.67%	0%	3.33%	0%
	(87/90)	(87/90)	(0/90)	(3/90)	(0/90)
3	98.72 %	98.72%	0%	1.28%	0%
	(77/78)	(77/78)	(0/78)	(1/78)	(0/78)
Total	94.1 %	93.3%	0.79%	2.33%	3.57%
	(237/252)	(235/252)	(2/252)	(6/252)	(9/252)

Table 3 : Classification performance of *P. roqueforti* isolates into three genetic populations aftercross-validation.

631 *number of spectra out of the total number of spectra acquired

632

633 Table 4 : Classification performance of *P. roqueforti* isolates into three genetic populations after 634 external validation.

Population	Correct identification	No identification	Discordant
1	95.24%	4.76%	0%
	(40/42)*	(2/42)	(0/42)
2	95.24%	2.38%	2.38%
	(40/42)	(1/42)	(1/42)
3	71.43%	11.90%	16.67%
	(30/42)	(5/42)	(7/42)
Total	87.3%	6.35%	6.35%
	(110/126)	(8/126)	(8/126)

^{635 *}number of spectra out of the total number of spectra acquired

636

639

Table 5 : List of bins allowing classification with the ACS algorithm of *P. roqueforti* isolates intothree distinct genetic population after MALDI-TOF MS analysis.

	High positive weight group 1	High negative weight group 1	High positive weight group 3	High negative weight group 3
High negative weight group 2	[4423.3;4429.3]* [3938.5;3943.8]		[3943.8;3949.1] [3382.8;3387.3]	
High positive weight group 2		[7208.4;7218.1] [6470.0;6478.6]		[3000;3004] [7705.8;7716.1]
High negative weight group 3	[3000.0;3004.0] [44423.3;4429.3]			
High positive weight group 3		[5410.7;5417.9] [3056.6;3060.6]		

640 *Mass range in Da

Strain number	Origin substrate	Haplotype number	Genetic population
IHEM 3196*	Human sputum	13	1
F20-1	Cabrales cheese	14	1
F21-1	Cabrales cheese	14	1
F24-2*	Blue cheese	14	1
PTX.PR.8.4	Blue cheese	14	1
UBOCC-A-111277*	Pitted prunes	14	1
F75-6	Blue cheese	14	1
F77-1	Blue Stilton cheese	14	1
F81	Jihoceska Niva cheese	14	1
F89*	Danablu cheese	14	1
F9-1	Fourme d'Ambert cheese	15	1
F15-3*	Blue cheese	15	1
F26-2	Blue cheese	15	1
PTX.PR.6.1	Blue cheese	15	1
PTX.PR.20.2	Blue cheese	15	1
PTX.PR.22.2	Bleu de Gex cheese	15	1
F54	Blue cheese	15	1
F84	Jihoceska Niva cheese	15	1
F36-1	Blue cheese	15	1
PTX.PR.19.1*	Blue cheese	17	1
F53*	Blue cheese	21	1
DSMZ 1999*	Beef meat	1	2
UBOCC-A-111170*	Surface (dairy industry)	2	2
CBS 304.97	Mozarella cheese	3	2
MUCL 18048	Cork	4	2
F52	Blue cheese	5	2
F18-6	Blue cheese	6	2
F41-4	Bleu d'Auvergne cheese	6	2

641 Supplementary Table 1 : *P. roqueforti* isolates analysed by MALDI-TOF MS in the present study,642 origin, haplotype and genetic population as determined by Gillot et al. (2015).

Strain number	Origin substrate	Haplotype number	Genetic population
PTX.PR.11.2*	Roquefort cheese	6	2
PTX.PR.18.3	Roquefort cheese	6	2
F43-1	Roquefort cheese	7	2
F65	Blue cheese	8	2
UBOCC-A-110052	Olive brine	9	2
UBOCC-A-111178*	Air (dairy industry)	10	2
CBS 112579	Sulphite liquor	19	2
MUCL 35036	Wood in process of drying in the open air	20	2
CBS 498.73	Apple	22	2
UBOCC-A-109090	Apricot preparation	23	2
UBOCC-A-111033	Corn silage	25	2
LCP 03969*	Fruit compote	26	2
CBS 221.30*	Roquefort cheese	27	2
PTX.PR.27.2*	Bleu de Gex cheese	28	2
UBOCC-A-111172	Air (dairy industry)	28	2
F28-3*	Blue cheese	11	3
F2-1	Blue cheese	12	3
F6-1*	Gorgonzola cheese	12	3
F6-3*	Gorgonzola cheese	12	3
F7-1	Gorgonzola cheese	12	3
F8-1	Gorgonzola cheese	12	3
F28-1	Blue cheese	12	3
F29-1	Soft ripened cheee	12	3
F30-1*	Blue cheese	12	3
F33-1	Soft ripened cheese	12	3
F34-1	Blue cheese	12	3
PTX.PR.13.6*	Blue cheese	12	3
PTX.PR.13.7	Blue cheese	12	3
FM164*	Gorgonzola cheese	12	3

Strain number	Origin substrate	Haplotype number	Genetic population
F59-2	Blue cheese	12	3
F60-1	Blue cheese	12	3
F61-6	Blue cheese	12	3
F62-4	Blue cheese	12	3
F74-3	Soft ripened cheese	12	3
UBOCC-A-101449*	Fruit preparation	18	3

643 *Strain used for external validation of the database

644 UBOCC, Université de Bretagne Occidentale Culture Collection ; CBS, Centraalbureau voor

645 Schimmelcultures Collection ; IHEM, Mycology laboratory of the Institute of Hygiene and

646 Epidemiology ; MUCL, Mycothèque de l'Université Catholique de Louvain ; DSMZ, Deutsche

647 Sammlung von Mikroorganismen und Zellkulturen ; LCP, Laboratoire Cryptogamie Paris.

648

Figure 1A : Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS
analysis of 23 species of *Aspergillus* belonging to the *Flavi* section. Spectra are colored according to
the respective species to which they belong. Spectra circled in dashed-red, dashed-blue and dashed
green correspond to spectra of group A, B and C, respectively.

653

654

Figure 1B : Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS analysis of 12 species of *Aspergillus* belonging to the *A. flavus* clade of *Flavi* section. Spectra are colored according to the respective species to which they belong.

658 659 Figure 1C : Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS 660 analysis of 11 species of Aspergillus belonging to the A. tamarii, A. bertholletius, A.nomius, A. 661 coremiiformis, A. leporis and A. avenaceus clades of Flavi section. Spectra are colored according to

662 the respective species to which they belong.

663

Y3

Figure 2A : Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS
analysis of *P. roqueforti* isolates based on 6 replicates per strain (3 biological replicates and 2 technical
replicates), before calibration of the spectra. Spectra are colored according to the respective genetic
populations to which the isolates belong.

Figure 2B : Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS
analysis of *P. roqueforti* isolates based on 6 replicates per strain (3 biological replicates and 2 technical
replicates), after calibration of the spectra. Spectra are colored according to the respective genetic
populations to which the isolates belong. Spectra circled in dashed-green and –blue correspond to spectra
from *P. roqueforti* F41-4 and F77-1 respectively.

Chapitre 3 : Evaluation de la néphélométrie laser comme méthode haut-débit pour déterminer la résistance fongiques aux conservateurs – Etude préliminaire

I. Résumé des travaux

Afin de prévenir et de contrôler les altérations fongiques des produits alimentaires, de nombreuses méthodes peuvent être utilisées comme par exemple l'application de traitements thermiques, le conditionnement sous atmosphère modifiée, ou encore l'ajout de conservateurs. Au sein des conservateurs, les acides organiques faibles tels que les acides benzoïque et sorbique sont généralement ajoutés sous la forme de sels pour faciliter leur solubilisation dans les aliments, et leur activité est dépendante du pH des aliments. Ces acides sont utilisés dans de nombreux produits alimentaires comme les produits de boulangerie et les boissons. Dans d'autres produits et particulièrement les fromages et salaisons, la natamycine est un antibiotique de la famille des polyènes, et peut être appliquée en surface afin de prévenir leur altération par les organismes fongiques. Cependant, l'utilisation prolongée des conservateurs à des concentrations sub-inhibitrices peut conduire au développement de tolérances à ces derniers chez les champignons filamenteux (Piper et al. 2011). C'est pourquoi il est crucial de déterminer la réponse des contaminants fongiques aux conservateurs couramment utilisés, afin de détecter d'éventuelles résistances, mais également afin de pouvoir adapter les concentrations utilisées. Pour évaluer l'impact de facteurs abiotiques sur la croissance fongique, plusieurs méthodes peuvent être mises en place comme le suivi de la germination des spores ou la mesure de croissance radiale. Ces méthodes sont peuvent être fastidieuses, surtout lorsque de nombreuses conditions doivent être testées, et longues, notamment pour le suivi de croissance radiale qui peut être effectué sur plusieurs semaines. Dans ce contexte, des méthodes alternatives ont été évaluées, comme les méthodes spectrophotométriques, basées sur la mesure de densité optique (DO) mais l'inconvénient majeur de ces méthodes est que la relation DO / densité cellulaire n'est proportionnelle que pour de faibles valeurs de DO (Meletiadis et al. 2003). La technique de néphélométrie laser, quant à elle, ne souffre pas de cet inconvénient car elle est basée sur la mesure de la lumière dispersée. Son utilisation pour mesurer la croissance fongique a été décrite par Joubert et al. (2010), et une relation linéaire entre la mesure des unités relatives néphélométriques (RNU) et la mesure du poids sec a été établie chez Alternaria alternata. Cette technique a également été appliquée pour évaluer l'efficacité de composés antifongiques contre Aspergillus fumigatus et Alternaria dauci (Joubert et al. 2010, Lecomte et al. 2012).

Dans ce contexte, l'objectif de notre étude était d'évaluer le potentiel de la néphélométrie laser comme outil haut-débit pour suivre la croissance fongique en présence de conservateurs,

et d'évaluer si les cinétiques obtenues pouvaient être utilisées pour estimer les concentrations minimales inhibitrices (CMI) de ces conservateurs.

Pour cela, 64 souches fongiques appartenant à 14 espèces de champignons filamenteux fréquemment retrouvés en tant que flore d'altération ont été sélectionnées. La croissance de ces souches a ensuite été mesurée par néphélométrie laser en présence de 3 conservateurs, le benzoate de sodium, le sorbate de potassium et la natamycine, à différentes concentrations. Les cinétiques de croissance obtenues ont ensuite été ajustées avec un modèle primaire pour déterminer les paramètres de croissance μ_{max} (taux de croissance maximale) et λ (temps de latence) dans chacune des conditions testées. Les paramètres de croissance obtenus ont ensuite été ajustés avec un modèle secondaire en fonction des concentrations testées de conservateur afin d'estimer leur concentration minimale inhibitrice (CMI). Enfin, les CMI estimées avec le modèle secondaire ont été validées en milieu liquide et en milieu solide pour 6 souches appartenant à 3 espèces fongiques. Pour ce faire, la capacité à croitre, aux bornes supérieures et inférieures de l'intervalle de confiance des valeurs de CMI estimées a été évaluée.

La néphélométrie laser s'est avérée être un outil efficace pour suivre la croissance fongique pour la plupart des souches testées avec l'obtention de cinétiques de croissance répétables et utilisables pour déterminer les paramètres μ_{max} et λ . Cependant, une formation d'enchevêtrements de mycélium assimilés à des pellets a été observée au cours de la croissance des souches testées d'Aspergillus niger et d'une souche de Cladosporium sphaerospermum en présence de benzoate de sodium, et chez les souches de Penicillium brevicompactum dans toutes les conditions, même en l'absence de conservateur. La présence de pellets dans les puits n'a pas permis d'obtenir des cinétiques de croissance exploitables pour en déterminer les paramètres associés. En effet, l'acquisition des données en néphélométrie repose sur la mesure de la lumière dispersée en un point central du puits, et donc nécessite une répartition homogène de la biomasse afin d'obtenir une mesure représentative, ce qui n'était pas le cas lors de la formation de pellets. Une alternative pour pallier à cet inconvénient pourrait être d'effectuer la mesure en plusieurs points du puits et de moyenner les valeurs obtenues, mais cette fonctionnalité n'était pas disponible sur l'instrument utilisé. La formation de pellets est un phénomène connu lors de la culture en milieu liquide des champignons filamenteux et certains auteurs ont démontré qu'il était possible de réduire leur formation en modifiant les paramètres d'incubation comme l'agitation ou la taille de l'inoculum (Nielsen et al. 1995). Il est intéressant de noter que les

souches d'A. *niger* et de *C. sphaerospermum* n'ont formé des pellets qu'en présence de benzoate de sodium, indiquant qu'il pourrait s'agir d'une réponse au stress provoqué par l'ajout de conservateur, la formation de pellet procurant potentiellement une protection aux cellules fongiques comme cela peut être observé chez les levures ou les bactéries se développant sous forme de biofilms (Chandra et al. 2001).

De manière générale, la natamycine était le conservateur le plus antifongique, suivie par le sorbate de potassium et le benzoate de sodium. Plusieurs espèces, notamment *Cladosporium halotolerans* et *Fusarium domesticum*, se sont avérées très sensibles au benzoate de sodium et au sorbate de potassium, avec une inhibition totale de leur croissance dès la première concentration testée. *Penicillium bialowiezense* était quant à lui, très sensible à la natamycine. Par conséquent, le modèle secondaire n'a pas pu être utilisé pour estimer les CMI de ces espèces.

L'effet des acides organiques était variable selon les espèces étudiées. Pour le benzoate de sodium, les CMI estimées allaient de 0,25 g/L pour les espèces les plus sensibles (*C. halotolerans* et *F. domesticum*) à 1,8 g/L pour *A. niger* qui s'est avérée être l'espèce la plus tolérante. Pour les autres espèces étudiées, plusieurs cas ont été observés. Certaines espèces, *Aspergillus* et *Mucor* spp., *Penicillium commune* et *Penicillium roqueforti*, présentaient une forte tolérance au benzoate de sodium avec des CMI suprérieures ou égales à 1 g/L. Les autres espèces testées de *Penicillium, C. sphaerospermum* et *Rhizopus stolonifer* avaient une résistance intermédiaire avec des CMI comprises entre 0,5 et 0,83 g/L. Concernant les paramètres de croissance, une concentration croissante de benzoate de sodium diminuait μ_{max} chez toutes les souches étudiées, tandis que le λ des souches d'*A. niger, A. flavus, P. commune* et *P. roqueforti* n'était pas influencé par la présence de benzoate de sodium.

Concernant le sorbate de potassium, les CMI estimées se trouvaient entre 0,1 g/L pour les espèces les plus sensibles (*C. halotolerans* et *F. domesticum*) et 0.7 g/L pour *P. roqueforti*. Pour les autres espèces, deux groupes ont été observés, avec des espèces sensibles dont les CMI étaient comprises entre 0,22 et 0,3 g/L (*A. versicolor, C. sphaerospermum, P. bialowiezense, P. chrysogenum* et *P. commune*) et des espèces plus tolérantes dont les CMI étaient comprises entre 0,34 et 0,6 g/L (*A. flavus, A. niger, M. circinelloides, M. racemosus* et *P. brevicompactum*). Concernant les paramètres de croissance, le sorbate de potassium engendrait une augmentation du temps de latence chez toutes les souches testées sauf chez une souche de *P. commune*, tandis que μ_{max} n'était impacté chez aucune des espèces étudiées.

Dans l'ensemble, les CMI estimées des acides faibles étaient du même ordre de grandeur que celles obtenues dans d'autres études (Le Lay et al. 2016, Lopez-Malo et al. 2005), bien que celles-ci soient légèrement inférieures à celles de la littérature. Il est à noter que la plupart des CMI retrouvées dans la littérature ont été déterminées en milieu solide, dans certains cas, sur des milieux de composition différente à celui utilisé lors de cette étude et avec des inoculums de concentrations différentes.

Concernant la natamycine, les CMI estimées étaient comprises entre 1,25 mg/L pour P. bialowiezense et 7,5 mg/L pour R. stolonifer. La plupart des espèces testées (9 sur 14) se sont avérées relativement sensibles avec des CMI comprises entre 1,25 et 3,5 mg/L tandis que les 5 espèces restantes étaient plus tolérantes, avec des CMI comprises entre 4 et 7,5 mg/L. Concernant les paramètres de croissance, la natamycine avait un impact plus marqué λ que sur μ_{max} , mais il n'y avait pas de relation linéaire entre les paramètres de croissance estimés et la concentration en natamycine. De plus, bien que la gamme de concentrations testées ait été choisie d'après les travaux existants, la croissance d'un nombre important de souches a été inhibée dès la deuxième concentration testée (2,5 mg/L). Par conséquent, le modèle secondaire n'a pas pu être appliqué pour estimer les CMI de ces souches. L'effet de concentrations intermédiaire devra être testé. Lorsque le modèle secondaire a pu être appliqué, il est apparu que les valeurs de CMI estimées à partir des valeurs de µmax étaient largement surestimées par rapport aux CMI apparentes pour la plupart des espèces. Les CMI estimées à partir du temps de latence se sont avérées plus cohérentes. De manière générale, les résultats obtenus pour la natamycine semblent indiquer un effet « tout ou rien » plutôt qu'une relation dose-effet. De plus, la relation entre la concentration en natamycine et les paramètres de croissance n'étant pas linéaire, le modèle secondaire choisi pour cette étude n'est pas approprié pour estimer la CMI. En revanche, les CMI apparentes des espèces testées sont cohérentes avec celles retrouvées dans la littérature (Lalitha et al. 2008, Streekstra et al. 2016, Xu et al. 2009).

Dans cette étude, la résistance de plusieurs souches de chaque espèce a été déterminée afin d'évaluer si, au sein d'une même espèce, la réponse aux conservateurs variait en fonction de la souche étudiée. Dans le cas du benzoate de sodium, les souches de la plupart des espèces testées (12 sur 14) avaient des CMI identiques. Deux espèces présentaient une certaine variabilité intra-spécifique, *P. bialowiezense*, pour lequel trois souches étaient très sensibles au benzoate de sodium (CMI apparente de 0,25 g/L) tandis que les deux autres souches testées étaient quatre fois plus tolérantes (CMI apparente de 1 g/L) et *P. chrysogenum*, pour

lequel, deux souches étaient deux plus sensibles (CMI apparente de 0,5 g/L) que les trois autres testées (CMI apparente de 1 g/L). La variabilité de réponse au sorbate de potassium était légèrement plus importante. Chez 6 des 14 espèces testées, la résistance des différentes souches de chaque espèce au sorbate de potassium était similaire. Pour six autres espèces, une des souches s'est avérée plus sensible ou plus tolérante que les autres. La plus grande variabilité a été observée chez P. bialowiezense, pour lequel deux souches étaient plus sensibles (CMI apparente de 0,1 g/L) que les trois autres (CMI apparente de 0,3 g/L) et pour P. roqueforti, pour lequel deux souches étaient plus tolérantes (CMI apparente de 1 g/L) que les trois autres (CMI de 0,5 g/L). Enfin, concernant la natamycine, alors que les souches de la plupart des espèces testées avaient une tolérance similaire, une des souches appartenant aux espèces A. flavus, A. niger, F. domesticum et M. racemosus s'est avérée plus sensible ou plus tolérante que les autres, et une variabilité plus importante a été observée pour les trois espèces restantes, C. halotolerans, M. circinelloides et R. stolonifer. En effet, deux souches de C. halotolerans et M. circinelloides étaient deux fois plus tolérantes à la natamycine que les autres, et pour R. stolonifer, l'espèce la plus tolérante, la CMI apparente était de 5 mg/L pour deux souches et de 10 mg/L pour les deux autres.

La validation des CMI estimée a été réalisée en milieu de culture liquide et solide chez respectivement deux souches d'Aspergillus flavus, Mucor racemosus et Penicillium chrysogenum. La croissance ou l'absence de croissance a été évaluée pour ces souches aux bornes de l'intervalle de confiance à 95% des CMI estimées précédemment pour le benzoate de sodium et pour le sorbate de potassium. La validation des CMI estimées pour la natamycine n'a pas été effectuée car les CMI obtenues par le modèle n'étaient pas cohérentes avec les CMI apparentes. En milieu liquide, les valeurs supérieures de l'intervalle de confiance de la CMI ont été validées pour deux souches de *M. racemosus* pour le benzoate de potassium, et pour deux souches de P. chrysogenum et une souche de M. racemosus pour le sorbate de potassium. Cependant, chez les autres souches et indépendamment du conservateur, une croissance a été détectée, mais après un temps plus long que celui utilisé pour estimer les valeurs de CMI. En milieu solide, des résultats similaires ont été obtenus mais après un temps plus long, la croissance étant détectée après 3 à 14 jours d'incubation. Ces résultats sont cohérents car le suivi de croissance par néphélométrie laser permet une détection précoce de la croissance fongique et notamment de la germination des spores, tandis que la mesure en milieu solide repose sur l'observation de la formation d'un thalle, qui correspond généralement à la fin de la germination des spores (Marin et al. 2008).

En conclusion, les résultats obtenus montrent que parmi les espèces fongiques testées, *Fusarium domesticum* ainsi que les espèces de *Cladosporium* et *Penicillium* sont plus sensibles aux conservateurs testés, tandis que *Rhizopus stolonifer* et les *Aspergillus* et *Mucor* spp. sont plus tolérantes. La plupart des espèces testées ont présenté une faible variabilité intra-spécifique quant à leur sensibilité aux conservateurs, et ces derniers ont eu un impact plus important sur μ_{max} que sur λ sauf dans le cas de la natamycine, ce qui avait déjà été mis en évidence par d'autres auteurs (Yogendrarajah et al. 2016). Enfin, la néphélométrie laser a permis d'effectuer un suivi rapide et haut-débit de la croissance fongique comparée aux méthodes classiques. Cependant, les données ont souligné que pour estimer de manière plus précise la CMI, il serait nécessaire d'augmenter le temps de suivi aux concentrations sub-inhibitrices et d'utiliser un modèle secondaire différent, particulièrement dans le cas de la natamycine.

II. Article à soumettre dans International Journal of Food Microbiology

Quéro L., Didelot F., Vasseur V., Coroller L., Nodet P., Mounier J., 2018. Evaluation of laser nephelometry as a high-throughput method for determining the resistance of filamentous fungi towards food preservatives : a preliminary study. *To be submitted to International Journal of Food Microbiology*.

```
1 Evaluation of laser nephelometry as a high throughput method for determining the
```

- 2 resistance of filamentous fungi towards food preservatives: a preliminary study
- 3

4 Laura Quéro^a, Frédérique Didelot^b, Valérie Vasseur^a, Louis Coroller^c, Patrice Nodet^a, Jérôme

- 5 Mounier^a
- 6
- 7 ^aUniversité de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie
- 8 Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané
- 9 ^bUniversité d'Angers, UMR 1345, Institut de Recherche en Horticulture et Semences, 42 rue
- 10 Geroges Morel, 49071 Beaucouzé
- 11 ^cUniversité de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie
- 12 Microbienne, ESIAB, 6 rue de l'Université, 29334 Quimper
- 13
- 14 Keywords
- 15 Laser nephelometry, Fungal growth, Preservatives, Minimal inhibitory concentration
- 16

17 Abstract

18 A large diversity of filamentous fungi can spoil food products including raw materials and 19 processed foods, causing major food and economic losses. Preservatives such as weak 20 organic acids and natamycin are commonly used in the food industry to control fungal 21 growth. In this context, it is important to assess fungal sensitivity towards these preservatives. 22 Traditionally, the determination of fungal resistance towards biocides is performed by 23 measuring spore germination or radial growth in liquid or solid agar media, respectively. 24 However, such experiments are laborious and time-consuming. The aim of this study was 25 therefore to evaluate whether laser nephelometry could be applied as a high throughput 26 method to follow fungal growth for determining such resistance. To this end, growth in the 27 presence of sodium benzoate, potassium sorbate and natamycin (5 tested concentrations) of 28 64 strains belonging to 14 fungal species commonly involved in food spoilage was monitored 29 for 30 to 72h by laser nephelometry. The logistic model modified by Zwietering was then 30 used to determine μ_{max} (i.e., the maximum specific growth rate) and λ (i.e., the lag time) 31 growth parameters. These two parameters were then modeled as a function of preservative 32 concentration to determine minimal inhibitory concentrations (MIC). The obtained MIC 33 values \pm confidence intervals at 95% were then evaluated in potato dextrose broth (PDB) and 34 potato dextrose agar (PDA) for 6 strains belonging to 3 species to check whether these MIC

35 were representative of growth/no growth boundaries. In most tested conditions, laser 36 nephelometry allowed to monitor fungal growth. However, for several strains, in the presence 37 or not of preservative, growth occurred in the form of pellets precluding accurate growth 38 measurements. Depending on the tested fungi, apparent MIC ranged from 0.25 to 2 g/L, 0.1 39 to 0.5 g/L and 1.25 to 5 mg/L for sodium benzoate, potassium sorbate and natamycin, respectively. When data modelization was possible, predicted MIC were in the same range as 40 41 apparent MIC, except for strains exposed to natamycin. Overall, Cladosporium, Fusarium 42 and Penicillium species were more sensitive to the tested preservatives than Aspergillus, 43 *Mucor* and *Rhizopus* species. Validation of the predicted MIC showed that growth/no growth 44 boundaries of the tested strains were only validated for one to three of the tested strains 45 depending on the medium used for validation and the tested preservative. In conclusion, laser 46 nephelometry can be applied as a tool for monitoring fungal growth in the presence of 47 various preservative concentrations. However, the results obtained in this study also suggest that increased duration of fungal growth follow-up at high sub-inhibitory doses (which in turn 48 will reduce the throughput of laser nephelometry) and the use of other secondary models are 49 50 necessary for accurate MIC determination of the tested preservatives.

51

52 1. Introduction

Filamentous fungi are able to grow on a wide variety of substrates that makes them a very important group among the spoilage microorganisms (Pitt and Hocking 2009). Contamination by fungal spores can occur at different stages of production, from raw materials to processing and storage. Their growth in food products can lead to changes in aspect, odor and/or taste causing food and economic losses for industrials and consumers. Moreover, many species responsible for spoilage of food product such as *Aspergillus, Fusarium* and *Penicillium* spp. may produce mycotoxins that can be toxic for human health (Bryden, 2012).

60 Several methods including preventive and control methods are implemented in the industry to 61 prevent fungal spoilage of foods. Among control methods, the use of preservatives combined 62 with other so-called hurdle technologies (pH, aw, temperature, modified atmosphere 63 packaging etc.) is commonly used in a large variety of food products (Plumridge et al. 2004). Preservatives are often added as salts to facilitate their solubility in aqueous solution and their 64 65 effectiveness is related to their dissociation level, that depends on their pKa and food pH. 66 Among weak organic acids, benzoic and sorbic acids are widely used to lengthen the shelf-67 flife of foods such as dairy products, bakery products, jams and soft drinks (Guynot et al. 68 2005). Another commonly used preservative is natamycin, a polyethylene antibiotic produced by *Streptomyces natalensis*, which can be applied for surface treatment of cheeses and
sausages to prevent spoilage mold growth (Delves-Broughton, 2008).

71 Besides the fact that natural fungal resistance to preservatives is species- and strain-72 dependent (León Peláez et al. 2012), fungal strains may adapt and develop increased 73 tolerance towards those molecules (Piper, 2011; Streekstra et al. 2016), especially when they 74 are exposed repeatedly to sublethal concentrations. That is why it is crucial to assess the 75 resistance of spoilage fungi to preservatives so the right concentrations can be used in food 76 products to prevent spoilage mold growth and ensure food safety and quality. To assess the 77 impact of abiotic factors such as temperature or preservatives, spore germination or mycelial 78 growth are usually monitored in liquid or solid agar medium using phase-contrast microscopy 79 or by measuring thallus diameter, respectively. However, such approaches are generally time-80 consuming and fastidious, especially if many different experimental conditions have to be 81 evaluated. Spectrophotometric methods, which are well adapted for growth measurement of 82 most bacteria, have also been adapted to filamentous fungi in a small number of studies, mainly in the medical field (Meletiadis et al. 2001) but one drawback is the fact that optical 83 84 density (OD) measurements are only proportional to cell density at low OD values 85 (Meletiadis et al. 2003). As an alternative, laser nephelometry does suffer from this drawback 86 as it measures scattered light, in contrast to spectrophotometry that measures non-transmitted 87 light. Since its first application to yeasts growth measurements (Peskett, 1927), laser 88 nephelometry has successfully been applied for growth monitoring of filamentous fungi. Joubert et al. (2010) showed that there was a linear relationship between Relative 89 90 Nephelometric Unit (RNU) values and dry weight measurements during growth of Alternaria 91 alternata. Growth monitoring by laser nephelometry yields typical growth curves with a lag 92 phase, an exponential growth phase and a plateau, which usually corresponds to detector 93 saturation rather than a classical stationary phase. Joubert et al. (2010) and Lecomte et al. 94 (2012) also successfully applied this technique to evaluate the effect of antifungal compounds 95 on growth parameters of Aspergillus fumigatus and Alternaria dauci. However, it should be 96 noted that such an approach has never been applied on a large extent of fungal species of food interest and besides the determination of growth parameters, data modelization to 97 98 predict MIC values was not undertaken in the latter studies.

99 Thus, the objective of this study was to evaluate whether laser nephelometry could be applied 100 as a high throughput method to monitor fungal growth of 14 spoilage fungal species in the 101 presence of three food preservatives. Growth parameters were then modeled as a function of

- preservative concentration to estimate minimal inhibitory concentrations (MIC) and predictedvalues were then validated.
- 104

105 2. Materials and methods

106 2.1 Fungal isolates

Sixty-four strains, representing 14 species, were selected (Table 1). They were obtained from
the Université de Bretagne Occidentale Culture Collection (UBOCC, Plouzané, France) and
previous research project (Gillot et al. 2015) for *Penicillium roqueforti* isolates.

110

111 2.2 Growth monitoring of fungi using laser nephelometry

Fungal strains were first pre-cultured on Potato Dextrose Agar (PDA, bioMérieux, Marcy l'Etoile, France) and incubated at 25°C for 10 days. Spores were harvested from the PDA cultures by gently washing the agar surface with 0.01% Tween 80. Conidial concentrations were determined using a haemocytometer (Malassez, Preciss, Paris, France) and standardized to $3x10^5$ conidia/mL.

117 Resistance to sodium benzoate, potassium sorbate and natamycine was evaluated in vitro at 118 pH 5 for concentrations ranging from 0 to 2 g/L for sodium benzoate (tested concentrations : 119 0, 0.25, 0.5, 1 and 2 gl/L), from 0 to 1 g/L for potassium sorbate (tested concentrations : 0, 120 0.1, 0.3, 0.5 and 1 g/L) and from 0 to 10 mg/L for natamycin (tested concentrations : 0, 1.25, 121 2.5, 5 and 10 mg/L). For weak acid preservatives, the adequate amount of sodium benzoate and potassium sorbate was added to Potato Dextrose Broth (PDB) and the pH was adjusted to 122 123 5 with 1 M NaOH or HCl before sterilization at 121°C for 20 min. The pH was then verified 124 after sterilization. For natamycin, it was directly dissolved in sterile PDB (pH 5) at the 125 required concentration. After distribution of 290µL of the tested medium into sterile flat-126 bottomed 96-well plates (Thermo Fisher Scientific, Illkirch, France), 10µL of the 127 standardized spore suspension was added to each well. For all experimental conditions, 128 growth at 25°C was automatically recorded for 30h to 70h, depending on the species, using a 129 nepehelometric reader (NEPHELOstar Galaxy, BMG Labtech, Offenburg, Germany), equipped with a 635-nm laser source. During incubation, the 96-well plates were shaken at 130 131 300 rpm for 10 sec before each reading. Measurements were made every 10 min with a laser intensity of 80%. Each well was measured for 0.4 sec with a laser beam focus of 2.5 mm. 132 133 Growth of each strain in all tested conditions was monitored in triplicate.

- 134
- 135
136 **2.3** Growth parameters calculation and MIC estimation

137 After incubation, growth in each well was visually checked as well as an eventual pellet 138 formation into the well. Relative nephelometric unit (RNU) data were exported from 139 Nephelostar Galaxy software (NEPHELOstar Galaxy, BMG Labtech, Offenburg, Germany) 140 and further processed with Microsoft Excel 2010 to visualize growth curves. For each strain 141 and preservative, apparent Minimum Inhibitory Concentration (MIC) was determined as the 142 lowest concentration for which no growth was observed during incubation. For each experimental condition, both lag time (λ, h^{-1}) and maximal growth rate $(\mu_{max}, RNU.h^{-1})$ 143 parameters were calculated from the growth curves using the Matlab curve fitting tool (2014, 144 145 The Mathworks Inc., USA) with Eq. (1) (Zwietering et al. 1994) :

- 146
- 147

$$RNU = RNU0 + \frac{A}{(1+e^{\left(\frac{4\mu max}{A} \times (\lambda-t)+2\right)})}$$
 Eq. (1)

148

149 Where RNU_0 is the measured RNU value at t=0, A is the RNU_{max} or the maximum RNU value 150 reached in stationary phase.

151 Then, for each species, the μ_{max} and λ values were plotted against the tested concentrations 152 and MIC values were estimated using Eq. (2) (Judet-Correia et al. 2011) :

 $a = b \times (1 - (\frac{c}{MIC}))$

- 153
- 154
- 155

156 Where *a* is either μ_{max} or λ , *b* is either μ_{max} or λ for *C*=0, *C* is the tested concentration and 157 *MIC* is the estimated MIC.

Eq. (2)

158

159 2.4 Validation of MIC prediction

160 In order to investigate whether the MIC values estimated with the model were accurate, 161 growth was assessed at the MIC obtained for 3 of the tested species (2 strains tested per 162 species), i.e., Aspergillus flavus, Mucor racemosus and Penicillium chrysogenum. Two concentrations of each preservative were tested including the upper and lower boundaries of 163 164 the estimated MIC 95% confidence interval (Table 2). Monitoring of liquid growth was used 165 according to the protocol described above. This validation was performed in PDB medium as 166 described above and in solid agar medium. Briefly, Potato Dextrose Agar (PDA) was supplemented with the appropriate concentration of each preservative and distributed into 24-167 well plates. After solidification, wells were centrally inoculated using 10 μ L of a 3x10⁵ 168 conidia/mL suspension. Both 96-well and 24-well plates were incubated at 25°C for 21 days. 169

For validation in PDB, growth or absence of growth was automatically recorded using laser
nephelometry as described above while for validation in PDA, 24-well plates were visually
inspected every day to evaluate time to visible growth.

173 174

175 **3. Results and discussion**

176 **3.1** Application of laser nephelometry for growth monitoring of filamentous fungi

177 Laser nephelometry was confirmed as a useful tool for monitoring growth of filamentous 178 fungi exposed to biocide such as food preservatives as previously described in the literature 179 for other antifungal molecules such as antifungal drugs (Joubert et al. 2010). Indeed, 180 characteristic growth curves could be obtained for 55 out of the 64 tested strains as shown in 181 supplementary Figure 1 for strain UBOCC-A-109063 of Mucor racemosus exposed to 182 various concentrations of sodium benzoate. However, for several species grown under certain 183 conditions, characteristic growth curves could not be obtained. Indeed, for these species, i.e., 184 Aspergillus niger (all tested strains in the presence of sodium benzoate), Cladosporium 185 sphaerospermum UBOCC-A-101111 (in the presence of sodium benzoate) and Penicillium 186 brevicompactum (all tested strains in all tested conditions including those in the absence of 187 preservatives), we observed the formation of mycelial pellets into the wells. One possible 188 explanation is that the formation of pellets led to an inhomogeneous distribution of fungal 189 biomass precluding correct measurement of scattered light. In addition, scattered light 190 measurements were only performed in the central position of each well. This drawback could 191 be overcome by making several measurements at different positions of a single well, but this 192 functionality was not available for kinetic measurements in the instrument used in the present 193 study. Pellet formation is a frequently occurring phenomenon during submerged cultivation 194 of filamentous fungi. As underlined recently by (Nair et al. 2016), pellet formation, which 195 results from the agglomeration of mycelial hyphae, may be induced by various environmental 196 factors (nutrient availability, oxygen transfer rate, etc.) and greatly depends on the species 197 and strains studied. As shown for Penicillium chrysogenum (Nielsen et al. 1995), pellet 198 formation may be reduced by modulating the cultivation parameters such as the inoculum 199 size and increasing the agitation rate during cultivation. Such parameters as well as other 200 parameters including agitation duration and frequency could be optimized for reducing pellet 201 formation in the studied strains. Regarding our observation that pellet formation in A. niger 202 and C. sphaerospermum occurred only in the presence of sodium benzoate, but not with other 203 preservatives, it can be hypothesized that sodium benzoate triggered a specific stress response, different from that obtained with other preservatives, which led to mycelial pellet formation. It can be speculated that pellet formation provided a protection of fungal cells inside the pellet similar to that observed for bacterial and yeast cells growing in biofilms, thereby increasing fungal resistance to this specific preservative (Chandra et al. 2001). As a consequence, for these strains and conditions, only apparent MIC could be determined by visually inspecting the absence of growth into the wells after incubation.

210

211 **3.2 Fungal resistance to food preservatives**

212 For all other tested strains, apparent MIC were determined by visually inspecting each well 213 and analyzing their respective growth curves (Table S1). Growth parameters (μ_{max} and λ) 214 were estimated, and when possible, MIC were estimated after secondary modelling of the 215 effect of preservative concentrations on λ and μ_{max} (Table S1). Apparent and estimated MIC 216 of each species are shown in Table 3. Overall, natamycin followed by potassium sorbate and 217 sodium benzoate were the most effective preservatives as previously reported (Le Lay et al. 218 2016; Garnier et al. 2017). Several species showed a very high sensitivity to the tested 219 preservatives as their growth was inhibited at the lowest tested preservative concentration, 220 i.e., all strains of Cladosporium halotolerans and Fusarium domesticum exposed to sodium 221 benzoate and potassium sorbate and all strains of Penicillium bialowiezense exposed to 222 natamycin. Therefore, their MIC could not be estimated and their tolerance to preservatives 223 was not investigated further. Noteworthy, for several strains and conditions, an increase in 224 RNU signal could be visually inferred at the end of the incubation time but growth curves 225 were not complete so growth parameters could not be determined.

226

227 **3.3 Effect of weak organic acids**

228 In the present study, fungal resistance to two weak organic acids, i.e. sodium benzoate and 229 potassium sorbate was evaluated. As expected based on literature data (Praphailong and Fleet 230 1997; Guynot et al. 2005) and independently of the studied fungal species, potassium sorbate 231 was more effective than sodium benzoate (Table 3). Indeed, MIC of potassium sorbate were 232 \sim 2 to 4 times lower than that of sodium benzoate. Sodium benzoate totally inhibited growth 233 of the tested strains at concentrations ranging from 0.25 g/L (i.e., C. halotolerans and F. 234 domesticum) to 1.80 g/L for A. niger, which was the most resistant species to this 235 preservative. At least 1 g/L of sodium benzoate was required to completely inhibit growth the 236 two tested Aspergillus species, as well as Mucor species, P. commune and P. roqueforti 237 (Table 3). The three other *Penicillium* species tested showed higher sensitivity with apparent 238 mean MIC ranging between 0.55 and 0.83 g/L, while Rhizopus stolonifer sensitivity was in 239 the same range. Finally, for C. sphaerospermum, sodium benzoate had an apparent MIC of 240 0.5 g/L, which was higher than that obtained for C. halotolerans. Concerning growth 241 parameters, we observed that sodium benzoate had more impact on μ_{max} than on λ . Indeed, 242 lag time was not affected by sodium benzoate in all tested A. niger, A. flavus, P. commune 243 and *P. roqueforti* strains (which precluded MIC determination using this parameter for these 244 strains) whereas μ_{max} decreased with increased benzoate concentration for all strains for which this parameter could be estimated (Figure 2A). Overall, MIC obtained in this study 245 246 were also in agreement but slightly lower than those obtained in previous studies. For 247 example, Le Lay et al. (2016) found sodium benzoate MIC of <1.12 g/L in solid agar medium at pH 5 for A. versicolor, C. sphaerospermum, P. bevicompactum, P. chrysogenum and P. 248 249 roqueforti and 2 g/L for A. niger, while (López-Malo et al. 2005) obtained MIC of 1.5 g/L for 250 A. flavus. However, it should be noted that different strains were used in the latter studies and 251 that experimental procedures to determine MIC were different. For example, Le Lay et al. 252 (2016) used a different medium, i.e., malt extract agar which was supplemented with 5% 253 NaCl.

254

255 Potassium sorbate showed a higher efficacy than sodium benzoate with apparent MIC 256 ranging from 0.1 g/L (C. halotolerans and F. domesticum) to 0.7 g/L (P. roqueforti). Several 257 species were quite sensitive with MIC between 0.22 and 0.3 g/L, i.e., P. bialowiezense, C. sphaerospermum, A. versicolor, P. chrysogenum, P. commune and R. stolonifer. A. flavus, P. 258 259 brevicompactum, M. circinelloides, M. racemosus and A. niger showed higher tolerance with MIC ranging from 0.34 to 0.6 g/L. Potassium sorbate had an effect on µmax for most strains 260 261 except for all strains of A. niger, M. circinelloides, 3 strains of A. versicolor, 2 strains of P. 262 bialowiezense and 1 strain of C. sphaerospermum for which µmax did not vary as a function 263 of potassium sorbate concentration. In contrast, λ values varied as a function of potassium 264 sorbate concentration, except for P. commune UBOCC-A-110177. Overall, MIC estimated 265 from μ_{max} and λ values were consistent with apparent MIC for most species, but when compared to previous studies, MIC obtained in the present study were generally lower than 266 267 the one obtained on solid media in other studies. Le Lay et al. (2016) obtained MIC of 1 g/L for A. versicolor, C. sphaerospermum, P. bevicompactum, P. chrysogenum and P. roqueforti 268 269 and 4 g/L for A. niger, while López-Malo et al. (2005) obtained MIC of 0.8 gL for A. flavus.

271 As 3 to 5 strains per species were studied, eventual intra-specific variability towards 272 preservatives could be observed in our study. Phenotypic heterogeneity at the strain level and 273 within clonally-derived population is a well-established phenomenon, and is reported across a 274 wide range of phenotypes including preservative resistance (Hewitt et al. 2016). For most 275 species, i.e., A. flavus, A. versicolor, C. halotolerans, C. sphaerospermum, F. domesticum, 276 M. racemosus, P. commune and P. roqueforti, all tested strains showed the same response to 277 sodium benzoate. One strain was more sensitive than the other ones for A. niger, P. 278 brevicompactum and R. stolonifer, while one strain was more tolerant than the others for M. 279 circinelloides. In contrast, a larger variability was observed in Penicillium bialowiezense, for 280 which 3 strains were very sensitive to sodium benzoate (MIC of 0.25 g/L), and 2 strains were 281 more tolerant (MIC of 1 g/L) while for *Penicillium chrysogenum*, 2 strains were slightly more 282 sensitive (MIC of 0.5 g/L) than the 3 other tested ones (MIC of 1 g/L).

283

Regarding potassium sorbate MIC at the intra-species level, a higher variability was observed 284 285 as compared to that observed with sodium benzoate except for all tested strains of C. 286 halotolerans, F. domesticum, M. circinelloides, M. racemosus, P. commune and R. stolonifer 287 which had similar MIC (Table S1). For A. flavus, A. niger and P. brevicompactum, one strain 288 was slightly more tolerant than the others while for A. versicolor, C. sphaerospermum and P. 289 chrysogenum, one strain was more sensitive than the others. Finally, the two species that 290 presented the higher intra-specific variability were P. bialowiezense (2 strains with a MIC of 0.1 g/L and 3 strains with a MIC of 0.3 g/L) and P. roqueforti (3 strains with a MIC of 0.5 291 292 g/L and 2 strains with a MIC of 1g/L). Interestingly, P. bialowiezense UBOCC-A-116016 293 and P. chrysogenum UBOCC-A-112077, which were more sensitive to potassium sorbate 294 than the other tested strains of those species, were also more sensitive to sodium benzoate.

295

296 **3.4 Effect of natamycin**

297 Natamycin inhibited growth of the tested species at concentrations ranging from 1.25 mg/L 298 (P. bialowiezense) to 7.5 mg/L (R. stolonifer). Most species were quite sensitive with MIC 299 values comprised between 1.25 and 3.5 mg/L, i.e., A. niger, both Cladosporium species, F. 300 domesticum and all tested Penicillium species. The remaining species showed less sensitivity 301 with MIC values between 4 and 7.5 mg/L, i.e., A. flavus, A. versicolor, both tested Mucor 302 species and R. stolonifer. Concerning the effect of natamycin on growth parameters, 303 natamycine had a more important impact on λ values than on μ_{max} values. Even when an 304 effect was observed, there was not a good linear relationship between growth parameters and natamycin concentration as illustrated by the relatively low r² values of the models (Table
S1). Although the range of tested concentrations was chosen based on literature values,
several strains belonging to *A. flavus*, *A. niger*, *F. domesticum*, *M. racemosus* (one strain
each), *M. circinelloides* (2 strains), *C. halotolerans* (3 strains), *C. sphaerospermum* and all
tested *Penicillium* species (all strains), only grew in the presence of 1.25 mg/L natamycin
(i.e., the lowest tested concentration) meaning their apparent MIC was 2.5 mg/L.

311 For these species, MIC could not be predicted after secondary modelling and testing the 312 effect of intermediate concentrations on growth parameters would be necessary to modelize 313 their tolerance to natamycin. For strains for which growth parameters could be determined for at least two natamycin concentrations, we observed that MIC estimated with μ_{max} values were 314 highly over-estimated when compared to apparent MIC values for C. halotolerans, both 315 316 Mucor species and P. chrysogenum but were concordant for R. stolonifer. Results were slightly better for MIC estimated with λ values as they were in good agreement with the 317 318 apparent MIC for A. flavus, M. circinelloides, M. racemosus and Rhizopus stolonifer but 319 discordant for A. versicolor, C. halotolerans, C. sphaerospermum, P. chrysogenum and P. 320 roqueforti. Overall, our data suggested that natamycin induced an "all-or-nothing" response 321 rather than a dose-response effect. As it can be seen in Figure 2B for A. versicolor and Mucor 322 strains, natamycin had no or little impact on $1/\lambda$ values at a concentration of 1.25 mg/L while 323 at 2.5 mg/L, a sudden decrease in $1/\lambda$ values was observed. These results show that the model 324 used in the present study is not appropriate for predicting natamycine MIC values. When 325 compared with data from the literature, the apparent MIC obtained here for natamycin are in 326 agreement with results from previous studies. Natamycin MIC values for Fusarium spp., A. 327 flavus and A. niger corresponded to 2-8, 8 and 1-4mg/L, respectively (Lalitha et al. 2008; Xu 328 et al. 2009). In a recent study, Streekstra et al. (2016) obtained MIC values ranging from 1 to 329 8 mg/L for several species of Aspergillus, Mucor and Penicillium. Concerning intra-specific 330 variability, there were no differences in MIC values in strains of A. versicolor, C. 331 sphaerospermum, and all 5 tested Penicillium species. For A. flavus and M. racemosus, one 332 strain showed a higher sensitivity than the other ones, whereas for A. niger and F. 333 *domesticum*, one strain showed lower sensitivity than the other ones. Finally, more variability 334 was observed for C. halotolerans and M. circinelloides, for which higher MIC were observed for 2 and 3 strains, respectively. R. stolonifer was the most tolerant species to natamycin with 335 336 two strains with apparent MIC of 5 mg/L and the other two with an apparent MIC of 10 337 mg/L.

339 **3.5 Validation of predicted MIC**

In the last part of this study, we checked whether predicted MIC \pm confidence intervals at 340 95% reflected growth/no growth boundaries in PDB and PDA on a subset of 6 strains 341 belonging to 3 fungal species (Table 4). The validation of predicted MIC was only 342 343 performed for sodium benzoate and potassium sorbate, because for natamycin, the utilized model yielded low r^2 and predicted MIC values were not in agreement with the apparent 344 ones. As shown in Table 4, in PDB, predicted MIC of sodium benzoate and potassium 345 346 sorbate were validated for 2 (M. racemosus UBOCC-A-109063 and UBOCC-A-109155) and 347 3 (M. racemosus UBOCC-A-109155 and P. chrysogenum UBOCC-A-106023 and UBOCC-348 A-112108) strains, respectively, at concentrations equal to the upper confidence limit (CL). 349 However, for all other strains, growth was still detected, but within a longer time range than 350 the one used to estimate the MIC. For example, in the validation experiment, A. flavus 351 UBOCC-106033 growth was detected after 35h (upper CL of 0.9 g/L for sodium benzoate) 352 while initially, no growth was observed after 31h (apparent MIC of 1 g/L). The only 353 exceptions were A. flavus UBOCC-A-111232 exposed to sodium benzoate and P. chrysogenum UBOCC-A-112108 exposed to potassium sorbate, for which growth was 354 355 observed after an incubation time slightly lower (~8h) than that observed for the 356 determination of their respective MIC indicating a certain biological variability.

357

358 Concerning validation of predicted MIC in PDA, the predicted values corresponding to the MIC upper confidence limits were validated for 3 and 1 strains exposed to sodium benzoate 359 360 and potassium sorbate, respectively. In contrast to the study of Streekstra et al. (2016), 361 growth on solid medium was detected within a longer time range than on liquid medium, 362 which is not surprising since growth monitoring in liquid medium was performed using laser 363 nephelometry which allowed early detection of conidial germination corresponding to the 364 latency of germination, while growth monitoring on agar medium was performed visually 365 and corresponded to radial growth latency (Marín et al. 2008). Finally, growth of several 366 strains such as those of *P. chrysogenum* was inhibited in PDB but could grow on PDA in the 367 presence of potassium sorbate, while the opposite was observed for the same strains 368 cultivated in the presence of sodium benzoate. Such differences are not surprising giving the great differences between solid and liquid cultivation parameters such as oxygen availability, 369 aw or exposure to the tested preservative. Indeed, Marin et al. (2008) stated that the use of 370 liquid media for modeling fungal growth was not realistic, due to the explorative nature of 371

filamentous fungi for colonizing solid substrates though Joubert et al. (2010) proved good
correlation between laser nephelometry measurements in liquid medium and radial growth on
solid agar medium.

375

376 In conclusion, data obtained for this study suggest that among the tested species, 377 Cladosporium and Penicillium species altogether with Fusarium domesticum were quite 378 sensitive to the tested preservatives, whereas *Rhizopus stolonifer* as well as Aspergillus and 379 Mucor species appeared to be more tolerant. Overall, low intra-specific variability was 380 observed among the tested strains. Potassium sorbate appeared to be effective on fungal 381 growth at lower concentrations than sodium benzoate, which was already observed in other 382 studies (Guynot et al., 2005). As for growth parameters (μ_{max} and λ), the tested preservatives 383 had a stronger impact on μ_{max} than on λ , which was already observed in most papers dealing with fungal growth modelization (Marin et al. 2008). As reported by Yogendrarajah et al. 384 385 (2016), there does not seem to be a systematic trend in lag phases of many strains/species as compared to growth rate. Hence, growth rate appears as a more suitable indicator of fungal 386 387 growth than lag phase. Finally, laser nephelometry allowed rapid and high-throughput 388 screening of fungal growth over short period of time scales compared to conventional 389 methods although more concentration points would have been needed for more accurate MIC 390 estimations. Nevertheless, it is clear from this data that MIC prediction based on laser 391 nephelometry growth measurements needs further work that would include an increased 392 duration of fungal growth follow-up at high sub-inhibitory doses (which in turn will reduce 393 the throughput of laser nephelometry) and the use of another secondary model especially in 394 the case of natamycin. Future work should also include validation of predicted MIC in real 395 food products.

396

397 Acknowledgements

This work was done as part of a CIFRE PhD funded by bioMérieux and the French
Association for Research and Technology (ANRT) [Convention #2015/0821] in collaboration
with the LUBEM laboratory.

401

402 References

Bryden, Wayne L. 2012. "Mycotoxin Contamination of the Feed Supply Chain: Implications forAnimal Productivity and Feed Security." Animal Feed Science and Technology, Special Issue:

- 405 Nutrition and Pathology of Non-Ruminants, 173 (1): 134–58.
 406 https://doi.org/10.1016/j.anifeedsci.2011.12.014.
- 407 Chandra, Jyotsna, Duncan M. Kuhn, Pranab K. Mukherjee, Lois L. Hoyer, Thomas McCormick, and
- 408 Mahmoud A. Ghannoum. 2001. "Biofilm Formation by the Fungal PathogenCandida Albicans:
- 409 Development, Architecture, and Drug Resistance." Journal of Bacteriology 183 (18): 5385–94.
- 410 https://doi.org/10.1128/JB.183.18.5385-5394.2001.
- 411 Delves-Broughton, J. 2008. "16 Use of the Natural Food Preservatives, Nisin and Natamycin, to
- 412 Reduce Detrimental Thermal Impact on Product Quality." In In-Pack Processed Foods, edited by
- 413 Philip Richardson, 319–37. Woodhead Publishing Series in Food Science, Technology and Nutrition.
- 414 Woodhead Publishing. https://doi.org/10.1533/9781845694692.4.319.
- 415 Garnier, Lucille, Florence Valence, Audrey Pawtowski, Lizaveta Auhustsinava-Galerne, Nicolas
- 416 Frotté, Riccardo Baroncelli, Franck Deniel, Emmanuel Coton, and Jérôme Mounier. 2017. "Diversity
- 417 of Spoilage Fungi Associated with Various French Dairy Products." International Journal of Food
- 418 Microbiology 241 (Supplement C): 191–97. https://doi.org/10.1016/j.ijfoodmicro.2016.10.026.
- 419 Gillot, Guillaume, Jean-Luc Jany, Monika Coton, Gaétan Le Floch, Stella Debaets, Jeanne Ropars,
- 420 Manuela López-Villavicencio, et al. 2015. "Insights into Penicillium Roqueforti Morphological and
- 421 Genetic Diversity." PLOS ONE 10 (6): e0129849. https://doi.org/10.1371/journal.pone.0129849.
- 422 Guynot, M. E., A. J. Ramos, V. Sanchis, and S. Marín. 2005. "Study of Benzoate, Propionate, and
- 423 Sorbate Salts as Mould Spoilage Inhibitors on Intermediate Moisture Bakery Products of Low PH
- 424 (4.5–5.5)." International Journal of Food Microbiology 101 (2): 161–68.
 425 https://doi.org/10.1016/j.ijfoodmicro.2004.11.003.
- Hewitt, Sarah K., David S. Foster, Paul S. Dyer, and Simon V. Avery. 2016. "Phenotypic
 Heterogeneity in Fungi: Importance and Methodology." Fungal Biology Reviews 30 (4): 176–84.
 https://doi.org/10.1016/j.fbr.2016.09.002.
- Joubert, Aymeric, Benoît Calmes, Romain Berruyer, Marc Pihet, Jean-Philippe Bouchara, Philippe
 Simoneau, and Thomas Guillemette. 2010. "Laser Nephelometry Applied in an Automated
 Microplate System to Study Filamentous Fungus Growth." BioTechniques 48 (5): 399–404.
 https://doi.org/10.2144/000113399.
- 433 Judet-Correia, D., C. Charpentier, M. Bensoussan, and P. Dantigny. 2011. "Modelling the Inhibitory
- 434 Effect of Copper Sulfate on the Growth of Penicillium Expansum and Botrytis Cinerea." Letters in
 435 Applied Microbiology 53 (5): 558–64. https://doi.org/10.1111/j.1472-765X.2011.03149.x.
- Applied with oblology 55(5). 556-64. https://doi.org/10.1111/j.1472-705A.2011.05149.X.
- 436 Lalitha, P., R. Vijaykumar, N. V. Prajna, and A. W. Fothergill. 2008. "In Vitro Natamycin
- 437 Susceptibility of Ocular Isolates of Fusarium and Aspergillus Species: Comparison of Commercially
 438 Formulated Natamycin Eye Drops to Pharmaceutical-Grade Powder." Journal of Clinical
 439 Microbiology 46 (10): 3477–78. https://doi.org/10.1128/JCM.00610-08.
- Le Lay, Céline, Jérôme Mounier, Valérie Vasseur, Amélie Weill, Gwenaëlle Le Blay, Georges
 Barbier, and Emmanuel Coton. 2016. "In Vitro and in Situ Screening of Lactic Acid Bacteria and

- 442 Propionibacteria Antifungal Activities against Bakery Product Spoilage Molds." Food Control 60
 443 (Supplement C): 247–55. https://doi.org/10.1016/j.foodcont.2015.07.034.
- 444 Lecomte, Mickaël, Romain Berruyer, Latifa Hamama, Cora Boedo, Piétrick Hudhomme, Stéphanie 445 Bersihand, Joseph Arul, et al. 2012. "Inhibitory Effects of the Carrot Metabolites 6-Methoxymellein 446 and Falcarindiol on Development of the Fungal Leaf Blight Pathogen Alternaria Dauci." 447 Plant 80 Physiological and Molecular Pathology (October): 58-67. 448 https://doi.org/10.1016/j.pmpp.2012.10.002.
- 449 León Peláez, A. M., C. A. Serna Cataño, E. A. Quintero Yepes, R. R. Gamba Villarroel, G. L. De
- Antoni, and L. Giannuzzi. 2012. "Inhibitory Activity of Lactic and Acetic Acid on Aspergillus Flavus
 Growth for Food Preservation." Food Control 24 (1): 177–83.
 https://doi.org/10.1016/j.foodcont.2011.09.024.
- 453 López-Malo, Aurelio, Stella Maris Alzamora, and Enrique Palou. 2005. "Aspergillus Flavus Growth
- 454 in the Presence of Chemical Preservatives and Naturally Occurring Antimicrobial Compounds."
- 455 International Journal of Food Microbiology 99 (2): 119–28.
 456 https://doi.org/10.1016/j.ijfoodmicro.2004.08.010.
- 457 Marín, Sonia, Dolors Cuevas, Antonio J. Ramos, and Vicente Sanchis. 2008. "Fitting of Colony 458 Diameter and Ergosterol as Indicators of Food Borne Mould Growth to Known Growth Models in 459 Solid Medium." International Journal of Food Microbiology 121 (2): 139-49. 460 https://doi.org/10.1016/j.ijfoodmicro.2007.08.030.
- Meletiadis, Joseph, Debbie T. A. te Dorsthorst, and Paul E. Verweij. 2003. "Use of Turbidimetric
 Growth Curves for Early Determination of Antifungal Drug Resistance of Filamentous Fungi."
 Journal of Clinical Microbiology 41 (10): 4718–25. https://doi.org/10.1128/JCM.41.10.4718464 4725.2003.
- Meletiadis, Joseph, Jacques F. G. M. Meis, Johan W. Mouton, and Paul E. Verweij. 2001. "Analysis
 of Growth Characteristics of Filamentous Fungi in Different Nutrient Media." Journal of Clinical
 Microbiology 39 (2): 478–84. https://doi.org/10.1128/JCM.39.2.478-484.2001.
- 468 Nair, Ramkumar B., Patrik R. Lennartsson, and Mohammad J. Taherzadeh. 2016. "Mycelial Pellet
- 469 Formation by Edible Ascomycete Filamentous Fungi, Neurospora Intermedia." AMB Express 6 (1):
 470 31. https://doi.org/10.1186/s13568-016-0203-2.
- 471 Nielsen, Jens, Claus L. Johansen, Michael Jacobsen, Preben Krabben, and John Villadsen. 1995.
- 472 "Pellet Formation and Fragmentation in Submerged Cultures of Penicillium Chrysogenum and Its
- 473 Relation to Penicillin Production." Biotechnology Progress 11 (1): 93–98.
 474 https://doi.org/10.1021/bp00031a013.
- 475 Peskett, Geoffrey Lewis. 1927. "Studies on the Growth of Yeast." Biochemical Journal 21 (3): 460–476 66.
- 477 Piper, Peter W. 2011. "Resistance of Yeasts to Weak Organic Acid Food Preservatives." Advances in
- 478 Applied Microbiology 77: 97–113. https://doi.org/10.1016/B978-0-12-387044-5.00004-2.

- 479 Pitt, John, and Ailsa Hocking. 2009. Fungi and Food Spoilage. 3rd ed. New York, USA: Springer480 Science & Business media.
- 481 Plumridge, Andrew, Stephan J. A. Hesse, Adrian J. Watson, Kenneth C. Lowe, Malcolm Stratford,
- 482 and David B. Archer. 2004. "The Weak Acid Preservative Sorbic Acid Inhibits Conidial Germination
- 483 and Mycelial Growth of Aspergillus Niger through Intracellular Acidification." Appl. Environ.
- 484 Microbiol. 70 (6): 3506–11. https://doi.org/10.1128/AEM.70.6.3506-3511.2004.
- Praphailong, W, and G. H Fleet. 1997. "The Effect of PH, Sodium Chloride, Sucrose, Sorbate and
 Benzoate on the Growth of Food Spoilage Yeasts." Food Microbiology 14 (5): 459–68.
 https://doi.org/10.1006/fmic.1997.0106.
- 488 Streekstra, Hugo, Alex E. E. Verkennis, Robbert Jacobs, Angelina Dekker, Jacques Stark, and Jan
 489 Dijksterhuis. 2016. "Fungal Strains and the Development of Tolerance against Natamycin."
 490 International Journal of Food Microbiology 238 (December): 15–22.
 491 https://doi.org/10.1016/j.ijfoodmicro.2016.08.006.
- 492 Xu, Yan, Guangren Pang, Chuanwen Gao, Dongqing Zhao, Lutan Zhou, Shengtao Sun, and Bingliang
- 493 Wang. 2009. "In Vitro Comparison of the Efficacies of Natamycin and Silver Nitrate against Ocular
- 494 Fungi." Antimicrobial Agents and Chemotherapy 53 (4): 1636–38.
 495 https://doi.org/10.1128/AAC.00697-08.
- 496 Yogendrarajah, Pratheeba, An Vermeulen, Liesbeth Jacxsens, Evangelia Mavromichali, Sarah De
- 497 Saeger, Bruno De Meulenaer, and Frank Devlieghere. 2016. "Mycotoxin Production and Predictive
- 498 Modelling Kinetics on the Growth of Aspergillus Flavus and Aspergillus Parasiticus Isolates in Whole
- 499 Black Peppercorns (Piper Nigrum L)." International Journal of Food Microbiology 228 (July): 44–57.
- 500 https://doi.org/10.1016/j.ijfoodmicro.2016.03.015.
- Zwietering, M. H., J. C. de Wit, H. G. A. M. Cuppers, and K. van 't Riet. 1994. "Modeling of
 Bacterial Growth with Shifts in Temperature." Applied and Environmental Microbiology 60 (1): 204–
- 503 13.

504 Table 1 : Fungal strains used in this study

Species	Strain number	Origin
Aspergillus flavus	UBOCC-A-108068	Molten cheese
Aspergillus flavus	UBOCC-A-111232	Aromatised drink
Aspergillus flavus	UBOCC-A-111076	Surface (dairy industry)
Aspergillus flavus	UBOCC-A-108066	Butter
Aspergillus flavus	UBOCC-A-106033	Poultry feed
Aspergillus niger	UBOCC-A-112064	Small sweet bun
Aspergillus niger	UBOCC-A-111267	Fresh dairy product
Aspergillus niger	UBOCC-A-111099	Fresh dairy product
Aspergillus niger	UBOCC-A-112080	Small sweet bun
Aspergillus niger	UBOCC-A-112068	Chocolate croissant
Aspergillus versicolor	UBOCC-A-110226	Cheese
Aspergillus versicolor	UBOCC-A-102012	Egg product
Aspergillus versicolor	UBOCC-A-101088	Rotten sponge
Aspergillus versicolor	UBOCC-A-101087	Wheat
Aspergillus versicolor	UBOCC-A-112085	Pound cake
Cladosporium halotolerans	UBOCC-A-113075	Unknown
Cladosporium halotolerans	UBOCC-A-113074	Unknown
Cladosporium halotolerans	UBOCC-A-113073	Unknown
Cladosporium halotolerans	UBOCC-A-117047	Indoor air
Cladosporium halotolerans	UBOCC-A-116001	Raw milk
Cladosporium sphaerospermum	UBOCC-A-101111	Melon
Cladosporium sphaerospermum	UBOCC-A-112116	Pound cake
Cladosporium sphaerospermum	UBOCC-A-101107	Wheat
Cladosporium sphaerospermum	UBOCC-A-113079	Unknown
Fusarium domesticum	UBOCC-A-117075	Cheese
Fusarium domesticum	UBOCC-A-113010	Unknown
Fusarium domesticum	UBOCC-A-118040	Food
Mucor circinelloides	UBOCC-A-109201	Soda

Species	Strain number	Origin
Mucor circinelloides	UBOCC-A-109192	Factory air
Mucor circinelloides	UBOCC-A-109189	Cheese
Mucor circinelloides	UBOCC-A-109187	Dairy product
Mucor circinelloides	UBOCC-A-112187	Yoghurt
Mucor racemosus	UBOCC-A-109063	Yoghurt
Mucor racemosus	UBOCC-A-109155	Industry
Mucor racemosus	UBOCC-A-109215	Dry sausage
Mucor racemosus	UBOCC-A-108091	Cheese
Mucor racemosus	UBOCC-A-102007	Egg product
Penicillium bialowiezense	UBOCC-A-116015	Salmon cake
Penicillium bialowiezense	UBOCC-A-115023	Chesnut
Penicillium bialowiezense	UBOCC-A-117365	Cheese
Penicillium bialowiezense	UBOCC-A-117332	Bread
Penicillium bialowiezense	UBOCC-A-116016	Cake
Penicillium brevicompactum	UBOCC-A-110065	Crepe
Penicillium brevicompactum	UBOCC-A-108095	Cheese maker
Penicillium brevicompactum	UBOCC-A-101383	Cheese
Penicillium chrysogenum	UBOCC-A-106023	Bread
Penicillium chrysogenum	UBOCC-A-112108	Dry sausage
Penicillium chrysogenum	UBOCC-A-112077	Small sweet bun
Penicillium chrysogenum	UBOCC-A-110067	Grape
Penicillium chrysogenum	UBOCC-A-106024	Milk
Penicillium commune	UBOCC-A-117076	Cheese
Penicillium commune	UBOCC-A-117056	Cheese
Penicillium commune	UBOCC-A-116003	Cheese
Penicillium commune	UBOCC-A-110177	Cheese
Penicillium commune	UBOCC-A-101402	Cheese
Penicillium roqueforti	F75-6	Cheese
Penicillium roqueforti	PTX.PR.22.2	Cheese

Species	Strain number	Origin
Penicillium roqueforti	PTX.PR.18.3	Cheese
Penicillium roqueforti	F41-4	Cheese
Penicillium roqueforti	FM164	Cheese
Rhizopus stolonifer	UBOCC-A-108116	Dry sausage
Rhizopus stolonifer	UBOCC-A-117300	Unknown
Rhizopus stolonifer	UBOCC-A-110252	Bread
Rhizopus stolonifer	UBOCC-A-110251	Waffle

507 Table 2 : Tested fungal trains and concentrations of sodium benzoate, potassium sorbate and

 $508 \qquad natamycin \ for \ validation \ of \ predicted \ MIC \ .$

	Sodium benzoa	ate MIC (g/L)	Potassium sorbate MIC (g/I					
Tested species/strains	Lower CL*	Upper CL	Lower CL	Upper CL				
Aspergillus flavus UBOCC-A-106033	0.59	0.89	0.23	0.3				
UBOCC-A-111232	0.73	0.87	0.37	0.52				
<i>Mucor racemosus</i> UBOCC-A-109063	1.10	1.6	0.37	0.42				
UBOCC-A-109155	1.43	1.53	0.48	0.58				
Penicillium chrysogenum UBOCC-A-106023	0.32	0.6	0.35	0.54				
UBOCC-A-112108	0.68	0.9	0.36	0.56				

509 *CL, confidence limit at MIC ± confidence interval at 95%

	Sod	lium benzoate (g/L)	Pota	ssium sorbate	(g/L)	Natamycin (mg/L)					
Species	Apparent MIC $\pm \sigma^*$	μ_{max} estimated MIC ± σ	λ estimated MIC ± σ	Apparent MIC ± σ	μ_{max} estimated MIC ± σ	λ estimated MIC ± σ	Apparent MIC ± σ	μ_{max} estimated MIC ± σ	λ estimated MIC ± σ			
A. flavus	1.00 ± 0.00	0.76 ± 0.04	nd	0.34 ± 0.09	0.26 ± 0.08	0.72 ± 0.47	4.50 ± 1.12	nd	4.91 ± 1.21			
A. niger	1.80 ± 0.45	nd*	nd	0.60 ± 0.22	nd	0.73 ± 0.07	1.50 ± 0.56	nd	nd			
A. versicolor	1.00 ± 0.00	0.55 ± 0.04	nd	0.26 ± 0.09	0.22 ± 0.09	0.23 ± 0.07	5.00 ± 0.00	nd	9.64 ± 5.49			
C. halotolerans	0.25 ± 0.00	nd	nd	0.10 ± 0.00	nd	nd	3.50 ± 1.37	10.07 ± 4.65	7.34 ± 2.28			
C. sphaerospermum	0.50 ± 0.00	0.39 ± 0.02	0.84 ± 0.32	0.25 ± 0.1	0.19 ± 0.06	0.23 ± 0.02	2.5 ± 0.00	4.65 ± 2.07	12.65 ± 10.89			
F. domesticum	0.25 ± 0.00	nd	nd	0.10 ± 0.00	nd	nd	1.67 ± 0.72	nd	nd			
M. circinelloides	1.20 ± 0.45	1.37 ± 0.45	1.33 ± 0.17	0.50 ± 0.00	nd	0.48 ± 0.06	4.00 ± 1.37	8.09 ± 5.54	4.91 ± 1.75			
M. racemosus	1.00 ± 0.00	1.68 ± 0.58	1.27 ± 0.14	0.50 ± 0.00	0.42 ± 0.07	0.52 ± 0.13	4.50 ± 1.12	7.01 ± 3.41	5.92 ± 3.00			
P. bialowiezense	0.55 ± 0.41	0.40 ± 0.21	0.69 ± 0.60	0.22 ± 0.11	0.31 ± 0.15	0.20 ± 0.10	1.25 ± 0.00	nd	nd			
P. brevicompactum	0.83 ± 0.29	nd	nd	0.37 ± 0.12	nd	nd	2.5 ± 0.00	nd	nd			
P. chrysogenum	0.80 ± 0.27	0.50 ± 0.03	0.75 ± 0.23	0.26 ± 0.09	0.37 ± 0.08	0.54 ± 0.14	2.5 ± 0.00	12.39 ± 6.94	13.59 ± 5.97			
P. commune	1.00 ± 0.00	0.53 ± 0.02	nd	0.30 ± 0.00	0.14 ± 0.01	0.55 ± 0.18	2.5 ± 0.00	nd	nd			
P. roqueforti	1.00 ± 0.00	0.55 ± 0.03	nd	0.70 ± 0.27	0.44 ± 0.09	0.78 ± 0.34	2.5 ± 0.00	nd	6.85 ± 2.62			
R. stolonifer	0.88 ± 0.25	1.92 ± 1.90	0.65 ± 0.09	0.30 ± 0.00	0.30 ± 0.04	0.17 ± 0.02	7.50 ± 2.89	7.34 ± 0.98	6.43 ± 0.77			

510 Table 3 : MIC of sodium benzoate, potassium sorbate and natamycin for the tested fungal species

511 *nd = not determined, σ = standard deviation

512 Table 4 : Validation of predicted growth/no growth boundaries in PDB and PDA media

		Liquid n	nedium		Solid medium						
	Sodium ber	zoate MIC	Potassium s	sorbate MIC	Sodium ber	nzoate MIC	Potassium sorbate MIC				
Tested species/strains	Lower CL	Upper CL	Lower CL	Upper CL	Lower CL	Upper CL	Lower CL	Upper CL			
Aspergillus flavus UBOCC-A-106033	G* (24h)	G (35h)	G (35h)	G (42h)	G (3d)	G (3d)	G (3d)	G (3d)			
UBOCC-A-111232	G (30h)	G (30h)	G (40h)	G (40h)	G (3d)	G (3d)	G (5d)	G (5d)			
<i>Mucor racemosus</i> UBOCC-A-109063	G (89h)	NG	G (24h)	G (48h)	G (5d)	NG	G (5d)	G (5d)			
UBOCC-A-109155	NG*	NG	NG	NG	NG	NG	NG	NG			
Penicillium chrysogenum UBOCC-A-106023	G (48h)	G (128h)	G (133h)	NG	NG	NG	G (5d)	G (14d)			
UBOCC-A-112108	G (64h)	G (80h)	G (40h)	NG	G (3d)	G (3d)	G (5d)	G (7d)			

513 *G = Growth, NG = No Growth

Table S1 : Apparent and predicted MIC estimated on the maximal growth rate and latency of the tested strains in presence of sodium benzoate, potassium

515 sorbate and natamycine

sorbate and natan	nychie																
		Sodium benzoate (g/L)						Potassiu	um sorba	ate (g/L)		Natamycin (mg/L)					
Species	Strain number	App.	μ_{max}	r ²	λ	r ²	App.	μ_{max}	r ²	λ	r ²	App.	μ_{max}	r ²	λ	r ²	
		MIC	MIC		MIC		MIC	MIC		MIC		MIC	MIC		MIC		
A. flavus	UBOCC-A-108068	1	0.71	0.93	nd	nd	0.3	0.38	0.96	0.44	0.98	5	nd	nd	5.26	0.94	
A. flavus	UBOCC-A-111232	1	0.81	0.97	nd	nd	0.5	0.25	0.92	0.47	0.96	2.5	3.30	0.66	2.87	0.88	
A. flavus	UBOCC-A-111076	1	0.75	0.85	nd	nd	0.3	0.25	0.95	0.53	0.90	5	nd	nd	6.10	0.88	
A. flavus	UBOCC-A-108066	1	0.76	0.92	nd	nd	0.3	0.15	0.98	1.56	0.53	5	nd	nd	5.11	0.89	
A. flavus	UBOCC-A-106033	1	0.75	0.86	nd	nd	0.3	0.28	0.98	0.61	0.99	5	nd	nd	5.18	0.97	
A. niger	UBOCC-A-112064	2	nd	nd	nd	nd	0.5	nd	nd	0.82	0.68	1.25	nd	nd	nd	nd	
A. niger	UBOCC-A-111267	2	nd	nd	nd	nd	0.5	nd	nd	0.69	0.93	1.25	nd	nd	nd	nd	
A. niger	UBOCC-A-111099	2	nd	nd	nd	nd	0.5	nd	nd	0.78	0.97	1.25	nd	nd	nd	nd	
A. niger	UBOCC-A-112080	2	nd	nd	nd	nd	0.5	nd	nd	0.7	0.95	2.5	1.68	0.97	nd	nd	
A. niger	UBOCC-A-112068	1	nd	nd	nd	nd	1	nd	nd	0.65	0.89	1.25	nd	nd	nd	nd	
A. versicolor	UBOCC-A-110226	1	0.58	0.84	nd	nd	0.3	0.22	0.73	0.24	0.97	5	nd	nd	4.46	0.76	
A. versicolor	UBOCC-A-102012	1	0.56	0.87	nd	nd	0.3	nd	nd	0.16	0.99	5	nd	nd	7.64	0.75	
A. versicolor	UBOCC-A-101088	1	0.57	0.88	nd	nd	0.3	nd	nd	0.15	0.99	5	nd	nd	13.1	0.68	
A. versicolor	UBOCC-A-101087	1	0.49	0.81	nd	nd	0.1	nd	nd	0.34	0.82	5	nd	nd	5.57	0.78	
A. versicolor	UBOCC-A-112085	1	0.56	0.76	nd	nd	0.3	0.16	0.91	0.24	0.95	5	nd	nd	17.4	0.70	
C. halotolerans	UBOCC-A-113075	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	2.5	11.9	0.72	10.2	0.9	
C. halotolerans	UBOCC-A-113074	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	5	16.1	0.46	6.17	0.98	
C. halotolerans	UBOCC-A-113073	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	5	11.5	0.39	9.45	0.94	
C. halotolerans	UBOCC-A-117047	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	2.5	4.54	0.87	5.64	0.92	
C. halotolerans	UBOCC-A-116001	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	2.5	6.32	0.78	5.30	0.98	
C. sphaerospermum	UBOCC-A-101111	0.5	nd	nd	nd	nd	0.3	0.24	0.89	0.25	0.92	2.5	4.16	0.66	12.0	0.99	
C. sphaerospermum	UBOCC-A-112116	0.5	0.37	0.96	0.59	0.85	0.3	0.15	0.99	0.22	0.98	2.5	7.47	0.5	7.19	0.7	
C. sphaerospermum	UBOCC-A-101107	0.5	0.40	0.99	1.20	0.93	0.3	nd	nd	0.23	0.94	2.5	4.45	0.65	28.1	0.62	
C. sphaerospermum	UBOCC-A-113079	0.5	0.40	0.97	0.73	0.99	0.1	nd	nd	nd	nd	2.5	2.51	0.91	3.35	0.86	
F. domesticum	UBOCC-A-117075	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	1.25	nd	nd	nd	nd	
F. domesticum	UBOCC-A-113010	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	1.25	nd	nd	nd	nd	
F. domesticum	UBOCC-A-118040	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	2.5	6.83	0.87	2.81	0.93	
M. circinelloides	UBOCC-A-109201	1	1.06	0.84	1.58	0.99	0.5	nd	nd	0.41	0.99	5	16.0	0.68	6.79	0.82	
M. circinelloides	UBOCC-A-109192	1	1.16	0.9	1.30	0.99	0.5	nd	nd	0.43	0.99	2.5	3.02	0.83	3.04	0.81	
M. circinelloides	UBOCC-A-109189	1	1.30	0.93	1.24	0.99	0.5	nd	nd	0.55	0.92	2.5	3.03	0.82	3.04	0.82	

M. circinelloides	UBOCC-A-109187	1	2.15	0.94	1.13	0.98	0.5	nd	nd	0.53	0.97	5	7.31	0.90	5.82	0.85
M. circinelloides	UBOCC-A-112187	2	1.15	0.95	1.39	0.98	0.5	nd	nd	0.48	0.95	5	11.1	0.75	5.86	0.88
M. racemosus	UBOCC-A-109063	1	2.63	0.89	1.31	0.99	0.5	0.42	0.92	0.37	0.99	5	11.3	0.80	10.6	0.87
M. racemosus	UBOCC-A-109155	1	1.20	0.95	1.48	0.98	0.5	0.50	0.93	0.53	0.98	2.5	2.32	0.89	2.36	0.92
M. racemosus	UBOCC-A-109215	1	1.28	0.95	1.15	0.99	0.5	0.31	0.98	0.73	0.72	5	5.20	0.93	4.74	0.88
M. racemosus	UBOCC-A-108091	1	1.79	0.96	1.14	0.99	0.5	0.46	0.98	0.49	0.94	5	8.52	0.85	5.92	0.79
M. racemosus	UBOCC-A-102007	1	1.52	0.96	1.27	0.99	0.5	0.40	0.96	0.46	0.93	5	7.69	0.98	5.98	0.80
P. bialowiezense	UBOCC-A-116015	1	0.61	0.93	1.41	0.94	0.3	nd	nd	0.32	0.99	1.25	nd	nd	nd	nd
P. bialowiezense	UBOCC-A-115023	0.25	nd	nd	nd	nd	0.3	0.53	0.63	0.20	0.99	1.25	nd	nd	nd	nd
P. bialowiezense	UBOCC-A-117365	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	1.25	nd	nd	nd	nd
P. bialowiezense	UBOCC-A-117332	1	0.64	0.93	1.28	0.94	0.3	nd	nd	0.29	0.95	1.25	nd	nd	nd	nd
P. bialowiezense	UBOCC-A-116016	0.25	nd	nd	nd	nd	0.1	nd	nd	nd	nd	1.25	nd	nd	nd	nd
P. brevicompactum	UBOCC-A-110065	1	nd	nd	nd	nd	0.3	nd	nd	nd	nd	2.5	nd	nd	nd	nd
P. brevicompactum	UBOCC-A-108095	0.5	nd	nd	nd	nd	0.3	nd	nd	nd	nd	2.5	nd	nd	nd	nd
P. brevicompactum	UBOCC-A-101383	1	nd	nd	nd	nd	0.5	nd	nd	nd	nd	2.5	nd	nd	nd	nd
P. chrysogenum	UBOCC-A-106023	0.5	0.46	0.91	0.54	0.95	0.3	0.43	0.90	0.44	0.94	2.5	9.79	0.86	19.6	0.59
P. chrysogenum	UBOCC-A-112108	1	0.51	0.9	nd	nd	0.3	0.44	0.73	0.46	0.95	2.5	nd	nd	13.8	0.69
P. chrysogenum	UBOCC-A-112077	0.5	0.47	0.96	0.59	0.83	0.1	nd	nd	nd	nd	2.5	20.3	0.21	18.9	0.70
P. chrysogenum	UBOCC-A-110067	1	0.51	0.9	nd	nd	0.3	0.34	0.85	0.74	0.85	2.5	nd	nd	5.36	0.80
P. chrysogenum	UBOCC-A-106024	1	0.54	0.94	0.60	0.79	0.3	0.28	0.77	0.51	0.75	2.5	7.13	0.70	10.3	0.65
P. commune	UBOCC-A-117076	1	0.55	0.88	nd	nd	0.3	0.15	0.98	0.39	0.97	2.5	nd	nd	nd	nd
P. commune	UBOCC-A-117056	1	0.52	0.89	nd	nd	0.3	0.14	0.99	0.69	0.87	2.5	nd	nd	nd	nd
P. commune	UBOCC-A-116003	1	0.54	0.90	nd	nd	0.3	0.16	0.98	0.41	0.95	2.5	nd	nd	nd	nd
P. commune	UBOCC-A-110177	1	0.50	0.83	nd	nd	0.3	0.12	0.96	nd	nd	2.5	6.35	0.67	nd	nd
P. commune	UBOCC-A-101402	1	0.54	0.87	nd	nd	0.3	0.13	0.99	0.71	0.75	2.5	nd	nd	nd	nd
P. roqueforti	F75-6	1	0.57	0.89	nd	nd	1	0.56	0.82	0.65	0.88	2.5	nd	nd	5.89	0.92
P. roqueforti	PTX.PR.22.2	1	0.58	0.86	nd	nd	1	0.32	0.99	0.67	0.97	2.5	nd	nd	10.6	0.85
P. roqueforti	PTX.PR.18.3	1	0.56	0.93	nd	nd	0.5	0.50	0.77	1.39	0.83	2.5	nd	nd	nd	nd
P. roqueforti	F41-4	1	0.51	0.89	nd	nd	0.5	0.44	0.93	0.55	0.82	2.5	15.6	0.32	4.60	0.87
P. roqueforti	FM164	1	0.55	0.93	nd	nd	0.5	0.39	0.75	0.63	0.90	2.5	nd	nd	6.27	0.90
R. stolonifer	UBOCC-A-108116	1	4.73	0.38	0.68	0.98	0.3	0.26	0.94	0.17	0.98	5	7.13	0.9	5.75	0.81
R. stolonifer	UBOCC-A-117300	0.5	0.53	0.96	0.52	0.98	0.3	0.31	0.87	0.20	0.99	10	8.48	0.84	nd	nd
R. stolonifer	UBOCC-A-110252	1	1.28	0.96	0.65	0.99	0.3	0.29	0.95	0.15	0.99	10	7.60	0.70	7.27	0.85
R. stolonifer	UBOCC-A-110251	1	1.15	0.97	0.75	0.99	0.3	0.36	0.81	0.15	0.93	5	6.14	0.83	6.26	0.81

*App. MIC = apparent MIC, μ_{max} MIC = MIC estimated on μ_{max} values, λ MIC = MIC estimated on λ values, nd = not determined

- 518 Figure 1 : Nephelometric growth curves of *Mucor racemosus* UBOCC-A-109063 exposed to different concentrations of sodium benzoate, measurements
- 519 were done in triplicates. Green dots curves, orange dots curves, red dot curves and black dots curves correspond to sodium benzoate concentrations of 0 –
- 520 0.25 0.5 and 1 g/L respectively

Figure 2A : Secondary models describing the effect of sodium benzoate, potassium sorbate and natamycine on maximal growth rates for the tested species.
 Tested concentrations for which no growth was detected are shown as orange circles

Figure 2B : Secondary models describing the effect of sodium benzoate, potassium sorbate and natamycine on latency for the tested species. Tested
 concentrations for which no growth was detected are shown as orange circles

Discussion générale et perspectives

A l'échelle mondiale, l'altération des matières premières et des produits alimentaires par les microorganismes représente un enjeu majeur, car elle est à l'origine d'importantes pertes et gaspillages alimentaires ayant un fort impact économique. Mais aussi car cette altération peut représenter un danger sanitaire à cause de la production potentielle de mycotoxines par certains champignons filamenteux d'altération. Dans ce contexte, la maîtrise du développement de ces contaminants représente un défi important pour les industriels et cette maîtrise passe par une bonne connaissance des champignons filamenteux d'altération. Une des étapes clé de la lutte contre les contaminants fongiques est leur identification, qui peut permettre d'accéder à de nombreuses informations telles que par exemple leur réponse à l'ajout de conservateurs et aux traitements thermiques, mais aussi la production éventuelle de mycotoxines, toutes ces informations permettant de mieux appréhender les mesures correctives et préventives à mettre en place afin d'éviter les altérations. Actuellement, les méthodes d'identification des champignons filamenteux font majoritairement appel à des techniques phénotypiques et génotypiques, qui peuvent s'avérer fastidieuses et requièrent une certaine expertise, ce qui souligne le besoin de techniques alternatives d'identification fiables, rapides et haut-débit. Pour cela, le premier axe des travaux effectués dans le cadre de cette thèse a été consacré au développement d'une base de données spectrales afin de permettre l'identification des champignons filamenteux d'altération par spectrométrie de masse MALDI-TOF. Le développement de bases de données spectrales doit répondre à plusieurs problématiques, afin d'obtenir des performances d'identification satisfaisantes. La première problématique concernait le choix des espèces à intégrer, qui ont été choisies en fonction de plusieurs critères afin de représenter au mieux les espèces les plus retrouvées en contexte agro-alimentaire et la diversité taxonomique existant au sein des champignons d'altération. Parmi ces critères, on retrouvait la fréquence d'apparition de l'espèce dans les aliments, la capacité de l'espèce à croitre sur différents types d'aliments ou encore si la production de mycotoxines était connue ou non. Nous avons ainsi pu sélectionner les 136 espèces fongiques à intégrer dans la base de données. Outre le choix des espèces, un autre critère important est la sélection des souches utilisées pour chaque espèce. Il peut exister une importante diversité intra-spécifique au sein des flores d'altération, en terme de morphologie (Gillot et al., 2015), de croissance ou de métabolisme (Garcia et al. 2011). De plus, il a été démontré que le nombre de souches et de spectres par souche utilisé pour développer une base de données spectrales avait une influence directe sur les performances d'identification de cette dernière. Cet amélioration était valide jusqu'à un certain point, par exemple l'utilisation de 40 spectres par souches générait des performances similaires à celles obtenues avec 10 spectres par souches (Normand et al., 2013). De manière générale, il est préférable d'utiliser un nombre minimal de 3 souches par espèce et de 10 spectres acquis pour chaque souche. Cependant, et nous avons pu l'observer lors de notre étude, il est parfois difficile d'atteindre un nombre de souches satisfaisant, particulièrement pour les espèces rares ou récemment décrites. Dans ce cas, une alternative proposée par certains auteurs (Normand et al. 2013) serait d'augmenter le nombre de réplicats biologiques d'une même souche plutôt que d'augmenter le nombre de spectres. Il faut également rappeler qu'il est nécessaire d'utiliser, dans la mesure du possible, des souches fongiques bien caractérisées, dont l'identification et l'assignation taxonomique sont vérifiées afin de ne pas introduire de biais ou de source d'erreur lors de l'utilisation de cette base de données. La spectrométrie de masse MALDI-TOF étant une méthode basée sur l'analyse de caractères phénotypiques, les variations éventuelles de ces derniers peuvent également avoir une influence sur les performances d'identification. C'est pourquoi il est nécessaire de prendre en compte les paramètres de culture pouvant influencer le développement et la morphologie des champignons filamenteux tels que le milieu de culture, le temps de culture ou encore la température d'incubation. L'utilisation de conditions de culture standardisées et limitées (un seul milieu, un seul temps de culture et une seule température) permet de restreindre la variabilité phénotypique des champignons. Mais plus une méthode est limitée et stricte, moins elle sera aisée à utiliser et implémenter dans un contexte de routine exigeant du haut-débit. Il est donc nécessaire de proposer des protocoles rapides et robustes, permettant l'utilisation de différents milieux et temps de culture, et pour cela, construire les bases de données spectrales en utilisant des conditions expérimentales variées. Dans ce but, nous avons développé la base de données en utilisant 4 milieux solides et 2 temps de culture différents, et nous n'avons pas observé d'impact significatif des conditions expérimentales sur les performances de la base de données. De nombreux auteurs ont souligné l'avantage d'utiliser un milieu de culture solide plutôt que liquide, qui permet d'effectuer l'analyse dès qu'il y a une croissance visible, alors que les protocoles liquides exigent une pré-culture en milieu solide ce qui allonge la durée d'analyse (Panda et al. 2015; Paul et al. 2018). Pour l'acquisition des spectres, certains auteurs ont proposé des méthodes directes (Marchetti-Deschmann et al. 2012; De Carolis et al. 2012), où le matériel biologique était analysé directement sans pré-traitement avant acquisition des spectres, mais ces méthodes ont été abandonnées au profit de protocoles d'extraction protéique, permettant d'obtenir des spectres de manière plus répétable et de prévenir une éventuelle contamination par la dissémination de spores lors du dépôt direct (Paul et al. 2017). Ces protocoles sont rapides et simples à exécuter ce qui facilite leur utilisation en routine. La prise en compte de

tous ces paramètres nous a permis de sélectionner 620 souches correspondant aux 136 espèces sélectionnées, pour lesquelles nous avons acquis près de 6500 spectres, qui ont été intégrés à la base de données spectrales. Lors de l'évaluation des performances de cette base de données avec des souches externes, près de 90% des spectres ont été correctement identifiés. Ces résultats viennent confirmer la fiabilité de la spectrométrie de masse MALDI-TOF pour l'identification à l'espèce d'un grand nombre de champignons filamenteux d'altération à l'espèce, comme alternative aux méthodes classiques telles que le séquençage de l'ADN, et ouvrent également de nouvelles perspectives, notamment concernant l'application de la technique à l'identification directe des contaminants fongiques à partir de matrice alimentaire. Il est cependant à noter que la base de données développée au cours de ce projet n'est pas exhaustive et devra être élargie afin de répondre aux attentes des industriels et de représenter au mieux la très grande diversité des espèces fongiques d'altération.

Lors de ce travail, la technique s'est avérée moins puissante pour l'identification d'espèces fongiques proches, notamment au sein de complexes d'espèces. Par exemple, il n'a pas été possible de différencier totalement Aspergillus foetidus et Aspergillus lacticoffeatus, qui font partie du complexe Aspergillus niger. De plus, certaines espèces phylogénétiquement proches telles que Penicillium camemberti et Penicillium commune n'ont pas pu être séparées sur la base de leurs spectres, par l'algorithme utilisé pour construire la base de données. Au contraire, les espèces du complexe Cladosporium sphaerospermum intégrées à la base de données ont pu être parfaitement différenciées et correctement identifiées. Ces résultats révèlent donc les limites potentielles de la spectrométrie de masse MALDI-TOF pour la différenciation d'espèces fongiques proches et soulèvent la question de son application à la résolution de complexes d'espèces et au typage intra-spécifique qui pourrait être d'un grand intérêt en contexte agro-alimentaire. Notamment pour permettre la différenciation entre des espèces d'altération toxinogènes et des espèces technologiques non toxinogènes très proches comme Aspergillus flavus et Aspergillus oryzae, ou encore la différenciation d'isolats au sein d'une même espèce afin de mieux comprendre les processus de domestication des espèces technologiques impliquées dans la production d'aliments fermentés mais également de sélectionner les isolats les plus performants impliqués dans ces processus. A ce jour, de nombreuses publications ont mis en évidence l'applicabilité de la spectrométrie de masse MALDI-TOF à la résolution de complexes d'espèces et au typage chez les bactéries (Fujinami et al., 2011, Ueda et al., 2015, Vargha et al., 2006) en contexte clinique. Certains auteurs ont également pu appliquer la technique en contexte industriel, par exemple pour la différenciation des levures utilisées en brasserie (Lauterbach et al. 2017), avec des résultats équivalents à ceux obtenus grâce aux méthodes conventionnelles de typage basées sur l'analyse de l'ADN. En revanche, très peu d'études se sont intéressées à cette problématique chez les champignons filamenteux d'intérêt agro-alimentaire. C'est pourquoi la deuxième partie de ce travail de thèse s'est consacrée à évaluer le pouvoir discriminant de la spectrométrie de masse MALDI-TOF dans deux cas de figure, au sein d'un complexe d'espèces, puis au sein d'une même espèce. Lors de notre étude, des spectres ont été acquis pour 23 espèces du complexe Aspergillus section Flavi, parmi lesquelles se trouvent des espèces responsables d'altération, des espèces toxinogènes mais également des espèces utilisées en tant que flore technologique, leur identification correcte et leur différenciation sont donc essentielles. La construction d'une base de données grâce à l'algorithme utilisé précédemment a permis d'obtenir une séparation parfaite des espèces analysées, même dans le cas d'espèces proches telles que A. parasiticus et A. sojae, qui ne peuvent être différenciées d'un point de vue morphologique et nécessitent une analyse polyphasique comprenant l'analyse de plusieurs gènes et des métabolites produits pour être identifiées (Frisvad et al. 2019). Ces résultats viennent mettre en lumière le pouvoir discriminant de la technique pour différencier des espèces proches sur la base de spectres avec des résultats similaires à ceux obtenus par une approche polyphasique. Ces résultats soulignent également l'importance de disposer de bases de données exhaustives car des études menées sur un nombre restreint d'espèces de ce complexe n'ont pas pu séparer les espèces les plus proches telles que A. parasiticus et A. sojae (Rodrigues et al. 2011). Bien que les résultats obtenus ici soient prometteurs, il sera nécessaire de les valider avec des souches externes, pour évaluer la capacité de la base de données construite à identifier des isolats inconnus. De plus, il faudra s'assurer que des résultats similaires peuvent être obtenus pour d'autres complexes d'espèces, comme par exemple Aspergillus section Nigri, pour laquelle des espèces proches (A. lacticoffeatus et A. foetidus notamment) n'ont pas pu être différenciées lors du développement de la base de données. En effet, seules 5 espèces sur les 26 de cette section (Varga et al. 2011) avaient été intégrées à la base de données, il sera intéressant de déterminer si comme pour Aspergillus section Flavi, l'ajout d'un grand nombre d'espèces de ce complexe permet d'arriver à une identification satisfaisante. Après s'être intéressée à la discrimination d'un complexe d'espèce, la deuxième partie de cette étude a été consacrée à l'application de la spectrométrie de masse MALDI-TOF pour différencier des populations génétiques au sein de l'espèce Penicillium roqueforti. En effet, plusieurs études ont démontré via différentes méthodes de typage (Belen-Florez et al., 2007, Fontaine et al., 2015) qu'il était possible de séparer des isolats de P. roqueforti en fonction de leur origine (souches fromagères ou souches issues de l'environnement). De plus, une étude menée sur 164 souches via l'analyse de marqueurs microsatellites (Gillot et al. 2015) a permis de distinguer 28 haplotypes différents, qui ont été regroupés en trois populations génétiques distinctes. C'est sur la base de ce travail que 63 isolats appartenant aux 3 populations génétiques décrites ont été sélectionnées et pour lesquels des spectres ont été acquis afin d'évaluer si ces isolats pouvaient être classés de la même manière sur la base de l'analyse des spectres. S'agissant d'isolats d'une même espèce, les spectres obtenus présentaient un fort pourcentage de similarité et n'étaient donc pas discriminés de manière satisfaisante lors de leur analyse. Pour améliorer les performances, une re-calibration des spectres a été effectuée, afin de corriger les éventuels décalages de masses et ainsi permettre une meilleure comparaison des spectres entre eux. Suite à cette re-calibration, une base de données a été construite avec les spectres des différents isolats permettant d'attribuer 94% des spectres à la bonne population génétique. De plus, lors de la validation avec des souches externes, 95% des spectres ont également été correctement attribués. Cette étude démontre que l'analyse des spectres obtenus par MALDI-TOF a permis de regrouper les isolats de P. roqueforti en 3 populations distinctes, générant des résultats similaires à ceux obtenus grâce à l'analyse génétique de marqueurs microsatellites. De plus, les spectres obtenus lors de cette étude ont été acquis en utilisant les paramètres habituels d'acquisition, indiquant qu'il serait possible d'effectuer le même type d'étude pour des spectres acquis dans les mêmes conditions lors d'études précédentes. La démarche utilisée ici était basée sur l'utilisation d'une base de données préalablement constituée avec les spectres d'isolats bien caractérisés. Cependant, il est à noter qu'une autre approche possible basée sur une analyse bioinformatique a été décrite pour le typage des bactéries. Cette démarche consiste à identifier les protéines présentes au sein des spectres de masse en comparant les m/z obtenus avec les masses théoriques de protéines obtenues grâce aux données de génomes séquencés. L'avantage de cette approche est qu'elle ne requiert pas la constitution de bases de données, cependant, elle repose sur la disponibilité et la fiabilité des génomes présents au sein des bases de données publiques qui est encore à améliorer pour les champignons filamenteux (Vu et al. 2019).

Ces résultats soulèvent de nombreuses questions car le typage par MALDI-TOF ne repose pas sur les mêmes marqueurs que ceux utilisés lors du typage génétique. L'analyse génétique repose sur l'utilisation de marqueurs constants contenus dans l'ADN, qui ne sont pas modifiés par les conditions environnementales et qui peuvent être exprimés différemment en fonction des individus. Or, dans le cas de la spectrométrie de masse MALDI-TOF, les spectres d'un même individu peuvent présenter des variations importantes, rendant plus difficile la détermination de marqueurs spécifiques d'une même population. De plus, les gammes de masse mesurées conditionnent également les marqueurs utilisés, par exemple, les marqueurs de virulence ou de résistance de haut poids moléculaire (m/z > 20kDa) ne sont pas détectés. C'est pourquoi il est nécessaire de standardiser les protocoles de culture et d'acquisition des spectres pour s'assurer que les marqueurs utilisés pour différencier les isolats seront exprimés de la manière la plus homogène possible. Il est également nécessaire d'inclure un nombre important d'isolats lors des analyses pour assurer la robustesse et la validité des marqueurs choisis (Spinali et al., 2015). Toutes ces conditions ont été remplies dans le cadre de notre étude, renforçant la fiabilité des résultats obtenus, mais pour aller plus loin, il serait intéressant de pouvoir déterminer à quelles molécules correspondent les pics ou intervalles de masses utilisés comme marqueurs pour différencier les trois populations mais également d'évaluer si au-delà des populations, l'analyse des spectres permet aussi de séparer les différents haplotypes identifiés génétiquement.

Et de manière plus générale, de déterminer également les marqueurs utilisés pour différencier les espèces fongiques lors de leur identification par spectrométrie de masse. En effet, la technique repose sur l'utilisation d'une « signature » ou « empreinte » spectrale globale qui est assez spécifique pour permettre l'identification, mais on ne sait pas exactement quels biomarqueurs protéiques constituent cette signature. Il est aujourd'hui admis que les marqueurs protéiques utilisés en MALDI-TOF pour l'identification de micro-organismes sont des protéines hautement conservées et abondantes avec des masses comprises entre 4 et 15 kDa, et sur la base d'études menées sur quelques taxons bactériens, il s'agirait majoritairement de protéines ribosomales. Afin de d'identifier précisément les molécules présentes au sein des spectres, une approche par spectrométrie de masse MALDI-TOF en tandem pourrait être utilisée (Fagerquist, 2017). Pour conclure, de nombreux auteurs ont souligné que les deux problématiques majeures de l'identification par spectrométrie de masse sont la nécessité de protocoles standardisés, tant pour la culture des moisissures que pour l'étape d'extraction précédant l'acquisition des spectres et surtout la disponibilité de bases de données les plus exhaustives possibles en terme d'espèces référencées. A travers le travail effectué lors de cette thèse, nous avons essayé de répondre à ces problématiques via le développement d'une base de données spectrales référençant plus de 130 espèces de champignons filamenteux d'intérêt alimentaire, en utilisant plusieurs milieux et temps de culture ainsi qu'un protocole d'extraction protéique standardisé et facile à exécuter. De plus, nos études ont permis de démontrer la fiabilité de la spectrométrie de masse MALDI-TOF

appliquée à l'identification des champignons filamenteux d'altération, mais également pour la discrimination de complexes d'espèces et le regroupement d'isolats au sein d'une même espèce, ouvrant de nouvelles perspectives pour l'utilisation de cette technique en contexte agro-alimentaire. De manière plus générale, la spectrométrie de masse MALDI-TOF est potentiellement capable d'identifier n'importe quel composé ionisable et pourrait donc à terme, être utilisée pour d'autres applications comme la détection d'antibiorésistance via l'identification de protéines spécifiques ou de produits de dégradation des antibiotiques (Florio et al. 2018), ou encore la détection de mycotoxines dans les produits alimentaires (Sivagnanam et al. 2017).

Dans le cadre de la maîtrise du développement de la flore d'altération fongique, plusieurs moyens de contrôle peuvent être utilisés par les industriels, parmi lesquels l'utilisation de conservateurs. Cependant, leur utilisation prolongée, notamment à des concentrations subinhibitrices pourrait conduire au développement de résistances à ces conservateurs par les champignons filamenteux d'altération. C'est pourquoi il est important d'évaluer la réponse des contaminants fongiques aux conservateurs, afin de détecter d'éventuelles résistances, et surtout afin de déterminer les concentrations adaptées à utiliser pour maîtriser leur développement. Pour évaluer l'impact des conservateurs, plusieurs méthodes de suivi de la croissance fongique existent, la plus utilisée étant la mesure de la croissance radiale en milieu solide. Mais cette technique peut s'avérer fastidieuse dans le cas où beaucoup de conditions différentes doivent être évaluées, et également longue car le suivi s'effectue généralement sur plusieurs jours voire des semaines. Dans ce contexte, la troisième partie du travail de thèse a été consacrée à l'évaluation de l'utilisation de la néphélométrie laser comme alternative aux méthodes actuelles pour suivre la croissance fongique de manière rapide et haut-débit. Cette étude a permis de suivre la croissance fongique de plusieurs espèces d'altération en présence de trois conservateurs, le benzoate de sodium, le sorbate de potassium et la natamycine, et également d'estimer les paramètres de croissance associés afin d'évaluer l'impact de ces conservateurs sur la vitesse de croissance maximale et la phase de latence. Ces résultats ont permis d'obtenir des concentrations minimales inhibitrices (CMI) apparentes et d'évaluer l'utilisation d'un modèle linéaire pour estimer les CMI à partir des paramètres de croissance obtenus.

Les résultats obtenus dans le cadre de cette étude préliminaire ont permis de faire émerger plusieurs problématiques concernant l'utilisation de la néphélométrie laser comme technique de suivi de la croissance fongique et son application à la détermination de CMI. La néphélométrie laser s'est avérée efficace comme technique de suivi de la croissance fongique avec l'obtention de cinétiques de croissance répétables et adaptées pour estimer les paramètres de croissance en l'absence de conservateur. Cependant, les résultats obtenus ont permis de souligner l'importance du temps de suivi pour la réalisation des cinétiques de croissance en présence de conservateurs. En effet, l'ajout de conservateurs à des concentrations sub-inhibitrices peut conduire à une augmentation importante du temps de latence, au-delà du temps de mesure, provoquant une sous-estimation de la concentration minimale inhibitrice. Le choix des concentrations testées est également un élément important car plusieurs points sont nécessaires pour obtenir un bon ajustement du modèle secondaire. En outre, la modélisation secondaire appliquée pour estimer les valeurs de CMI lors de cette étude a mis en évidence que le modèle linéaire choisi n'était pas parfaitement adapté pour représenter les données. Cela souligne l'importance du choix du modèle en mycologie prévisionnelle, il sera nécessaire de tester un autre modèle permettant un meilleur ajustement des données, comme par exemple celui développé par Judet et al. (2011) dans le cadre de la modélisation de l'effet du sulfate de cuivre sur la croissance radiale de Penicillum expansum et Botrytis cinerea. La réalisation de cette étude a également mis en lumière la nécessité de développer des protocoles standardisés pour étudier le comportement des champignons filamenteux en présence de conservateurs. En effet, afin de pouvoir comparer les résultats entre différentes études, il est préférable que les données aient été acquises dans des conditions similaires. Mais dans la littérature, les protocoles utilisés peuvent fortement varier d'une étude à l'autre en terme de milieu de culture (liquide ou solide, composition, pH), de concentration de l'inoculum, de temps de suivi de la croissance, de température d'incubation et également de technique utilisée pour mesurer la croissance fongique (estimation visuelle, calcul du pourcentage de germination, mesure de la croissance radiale). Or, tous ces paramètres sont connus pour avoir non seulement un impact sur la croissance des organismes fongiques mais également sur certains conservateurs, comme les acides organiques faibles dont l'efficacité dépend du pH.

Le choix d'étudier plusieurs souches pour chacune des espèces sélectionnées a permis de révéler chez certaines espèces une tolérance différente face aux conservateurs testés en fonction des souches et une différence de réponse aux conservateurs a également été observée en fonction des espèces. Pour essayer de comprendre et expliquer ces différences, il serait intéressant de déterminer les mécanismes d'action de ces conservateurs. La théorie des acides faibles développée en 1997 par Stratford et Anslow a longtemps été utilisée pour expliquer leur mode d'action, la diffusion de la forme non dissociée à l'intérieur du cytosol où le pH proche de la neutralité va provoquer la dissociation en anions et protons qui par leur

accumulation vont abaisser le pH et inhiber le métabolisme intracellulaire. Cette théorie a été validée pour certains acides organiques tels que l'acide acétique ou l'acide benzoïque mais au vu de la diversité des organismes fongiques et des acides organiques, il est probable que cette théorie ne puisse pas être validée pour tous les acides faibles. Par exemple, Stratford et al. (2009) ont démontré que les acides sorbique et acétique n'avaient pas le même effet sur les conidies de plusieurs espèces fongiques. L'acide acétique provoquait une chute du pH intracellulaire, ce qui correspond à la théorie des acides faibles, alors que l'acide sorbique ne provoquait pas de modification majeure du pH intracellulaire. Les auteurs ont ainsi suggéré que l'acide sorbique avait probablement une action sur les lipides membranaires ce qui a été confirmé par une autre étude (Sergeeva et al., 2009) au cours de laquelle des modifications dans la composition lipidique de la membrane chez *Penicillium roqueforti* en présence de sorbate de potassium ont été observées. Enfin, Stratford et al. (2013) ont établi que l'acide sorbique inhibait une pompe membranaire H⁺-ATPase dépendante chez la levure *Saccharomyces cerevisiae*, confirmant également un mode d'action de cet acide faible sur la membrane fongique.

La natamycine est un antibiotique de la famille des macrolides au même titre que la nystatine, et le mode d'action de cette dernière consiste en une interaction hydrophobique avec les stérols membranaires pour former des demi-pores, la combinaison de ces demi-pores conduisant à la perméabilisation de la paroi fongique. La nystatine et la natamycine ayant des structures proches, leurs modes d'action ont été considérés comme similaires pendant longtemps. Mais une étude de 2008 (Te Welscher et al. 2008) a démontré que la natamycine se liait effectivement à l'ergostérol mais qu'elle ne provoquait pas de perméabilisation de la membrane plasmique chez les levures. (Leeuwen et al. 2009) ont obtenu les mêmes résultats sur des conidies de *Penicillium discolor* et sont allés plus loin en démontrant que la natamycine inhibait également l'endocytose.

Les études citées ci-dessus ont permis d'obtenir des informations sur le mode d'action des conservateurs étudiés mais ces informations sont souvent parcellaires, et ne concernent qu'une fonction phénotypique ou physiologique. Aujourd'hui, le développement des techniques « omiques » permet de déterminer les fonctions métaboliques ciblées par les conservateurs. Parmi ces méthodes, l'analyse transcriptomique permet d'étudier l'ensemble des ARNm ou transcrits présents dans une population de cellules dans des conditions données, donnant ainsi accès au niveau d'expression de milliers de gènes. Cependant, l'analyse des données requiert une expertise importante ainsi que de disposer du génome annoté de l'organisme fongique étudié.

L'étude du transcriptome de conidies d'*Aspergillus niger* en présence de différentes concentrations de natamycine Leeuwen et al. (2013) a permis de mettre en évidence que plusieurs gènes impliqués dans la biosynthèse de l'ergostérol étaient sous-exprimés tandis que des gènes associés à une résistance au stress étaient activés lors de l'exposition à une forte concentration de natamycine. L'analyse transcriptomique permet de générer une grande quantité de données dont l'analyse pourrait conduire à l'obtention d'informations précieuses sur les voies métaboliques impactées par les conservateurs, permettant de mieux comprendre les mécanismes d'action de ces derniers.
Références bibliographiques

- Aguilar-González, Ana Elena, Enrique Palou, et Aurelio López-Malo. 2015. « Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries ». *Innovative Food Science & Emerging Technologies* 32 (décembre): 181-85. https://doi.org/10.1016/j.ifset.2015.09.003.
- Alanio, A., J. L. Beretti, B. Dauphin, E. Mellado, G. Quesne, C. Lacroix, A. Amara, P. Berche, X. Nassif, et M. E. Bougnoux. 2011. « Matrix assisted laser desorption ionization time of flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species ». *Clinical Microbiology and Infection* 17 (5): 750-55. https://doi.org/10.1111/j.1469-0691.2010.03323.x.
- Alcano, María de J., Raquel C. Jahn, Cátia D. Scherer, Évelin F. Wigmann, Vivian M. Moraes, Marcelo V. Garcia, Carlos A. Mallmann, et Marina V. Copetti. 2016.
 « Susceptibility of Aspergillus spp. to acetic and sorbic acids based on pH and effect of sub-inhibitory doses of sorbic acid on ochratoxin A production ». *Food Research International* 81 (mars): 25-30. https://doi.org/10.1016/j.foodres.2015.12.020.
- Al-Hatmi, Abdullah MS, Anne-Cécile Normand, Anne D van Diepeningen, Marijke Hendrickx, G Sybren de Hoog, et Renaud Piarroux. 2015. «Rapid identification of clinical members of Fusarium fujikuroi complex using MALDI-TOF MS ». *Future Microbiology* 10 (12): 1939-52. https://doi.org/10.2217/fmb.15.108.
- Allen, C., Ph Prior, et A. C. Hayward, éd. 2005. *Bacterial wilt disease and the Ralstonia solanacearum species complex*. St. Paul, Minn: American Phytopathological Society.
- Aly, Amal H., Abdessamad Debbab, et Peter Proksch. 2011. « Fifty Years of Drug Discovery from Fungi ». *Fungal Diversity* 50 (1): 3. https://doi.org/10.1007/s13225-011-0116-y.
- Anhalt, John P., et Catherine. Fenselau. 1975. « Identification of bacteria using mass spectrometry ». *Analytical Chemistry* 47 (2): 219-25. https://doi.org/10.1021/ac60352a007.
- Antonissen, Gunther, An Martel, Frank Pasmans, Richard Ducatelle, Elin Verbrugghe, Virginie Vandenbroucke, Shaoji Li, Freddy Haesebrouck, Filip Van Immerseel, et Siska Croubels. 2014. « The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases ». *Toxins* 6 (2): 430-52. https://doi.org/10.3390/toxins6020430.
- Atalay, Altay, Ayse Nedret Koc, Ahmet Suel, Hafize Sav, Gonca Demir, Ferhan Elmali, Nuri Cakir, et Seyedmojtaba Seyedmousavi. 2016. «Conventional Morphology Versus PCR Sequencing, Rep-PCR, and MALDI-TOF-MS for Identification of Clinical Aspergillus Isolates Collected Over a 2-Year Period in a University Hospital at Kayseri, Turkey». Journal of Clinical Laboratory Analysis 30 (5): 745-50. https://doi.org/10.1002/jcla.21932.
- Baar, Ben L. M. van. 2000. « Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry ». *FEMS Microbiology Reviews* 24 (2): 193-219. https://doi.org/10.1016/S0168-6445(99)00036-4.
- Bader, Oliver. 2013. «MALDI-TOF-MS-Based Species Identification and Typing Approaches in Medical Mycology». *PROTEOMICS* 13 (5): 788-99. https://doi.org/10.1002/pmic.201200468.
- Balasundaram, Sudhagar V., Ingeborg B. Engh, Inger Skrede, et Håvard Kauserud. 2015.
 « How many DNA markers are needed to reveal cryptic fungal species? » *Fungal* Biology 119 (10): 940-45. https://doi.org/10.1016/j.funbio.2015.07.006.
- Baldauf, S. L., et J. D. Palmer. 1993. «Animals and Fungi Are Each Other's Closest Relatives: Congruent Evidence from Multiple Proteins ». *Proceedings of the National Academy of Sciences of the United States of America* 90 (24): 11558-62.

- Baldauf, Sandra L. 2008. «An overview of the phylogeny and diversity of eukaryotes ». *Journal of Systematics and Evolution* 46 (3): 263-73. https://doi.org/10.3724/SP.J.1002.2008.08060.
- Baquião, Arianne Costa, Maitê Martins Melo de Oliveira, Tatiana Alves Reis, Patricia Zorzete, Danielle Diniz Atayde, et Benedito Correa. 2013. « Polyphasic Approach to the Identification of Aspergillus Section Flavi Isolated from Brazil Nuts ». *Food Chemistry* 139 (1-4): 1127-32. https://doi.org/10.1016/j.foodchem.2013.01.007.
- Basile, Franco, Michael B Beverly, Kent J Voorhees, et Ted L Hadfield. 1998. « Pathogenic bacteria: their detection and differentiation by rapid lipid profiling with pyrolysis mass spectrometry ». *TrAC Trends in Analytical Chemistry* 17 (2): 95-109. https://doi.org/10.1016/S0165-9936(97)00103-9.
- Batt, Carl A. 2016. « Microbial Food Spoilage ». In *Reference Module in Food Science*. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.03440-5.
- Becker, Pierre T., Dirk Stubbe, Jessie Claessens, Sam Roesems, Yves Bastin, Chantal Planard, Carole Cassagne, Renaud Piarroux, et Marijke Hendrickx. 2015. «Quality control in culture collections: Confirming identity of filamentous fungi by MALDI-TOF MS ». *Mycoscience* 56 (3): 273-79. https://doi.org/10.1016/j.myc.2014.08.002.
- Belén Flórez, Ana, Pablo Álvarez-Martín, Teresa María López-Díaz, et Baltasar Mayo. 2007.
 « Morphotypic and molecular identification of filamentous fungi from Spanish blueveined Cabrales cheese, and typing of Penicillium roqueforti and Geotrichum candidum isolates ». *International Dairy Journal* 17 (4): 350-57. https://doi.org/10.1016/j.idairyj.2006.04.002.
- Bennett, J. W. 1998. «Mycotechnology: the role of fungi in biotechnology1Based on a lecture held at the symposium, 'Progress in US Biotechnology', at the 8th European Congress on Biotechnology (ECB8) in Budapest, Hungary, August 1997.1 ». *Journal of Biotechnology* 66 (2): 101-7. https://doi.org/10.1016/S0168-1656(98)00133-3.
- Bensch, K., U. Braun, J. Z. Groenewald, et P. W. Crous. 2012. « The genus Cladosporium ». *Studies in Mycology*, The genus Cladosporium, 72 (juin): 1-401. https://doi.org/10.3114/sim0003.
- Bhat, Rajeev, Ravishankar V. Rai, et A. A. Karim. 2010. « Mycotoxins in Food and Feed: Present Status and Future Concerns ». *Comprehensive Reviews in Food Science and Food Safety* 9 (1): 57-81. https://doi.org/10.1111/j.1541-4337.2009.00094.x.
- Blackburn, C. de W. 2006. «6 Managing microbial food spoilage: an overview ». In *Food Spoilage Microorganisms*, édité par Clive de W. Blackburn, 147-70. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing. https://doi.org/10.1533/9781845691417.2.147.
- Boa, E. R. 2004. *Wild edible fungi: a global overview of their use and importance to people.* Non-wood forest products 17. Rome: Food and Agriculture Organization of the United Nations.
- Brul, S., et P. Coote. 1999. « Preservative Agents in Foods. Mode of Action and Microbial Resistance Mechanisms ». *International Journal of Food Microbiology* 50 (1-2): 1-17.
- Bryden, Wayne L. 2012. « Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security ». *Animal Feed Science and Technology*, Special Issue: Nutrition and Pathology of Non-Ruminants, 173 (1): 134-58. https://doi.org/10.1016/j.anifeedsci.2011.12.014.
- Bumbrah, Gurvinder Singh, et Rakesh Mohan Sharma. 2016. «Raman spectroscopy Basic principle, instrumentation and selected applications for the characterization of drugs

of abuse ». *Egyptian Journal of Forensic Sciences* 6 (3): 209-15. https://doi.org/10.1016/j.ejfs.2015.06.001.

- Cain, Teresa C., David M. Lubman, Walter J. Weber, et A. Vertes. 1994. « Differentiation of Bacteria Using Protein Profiles from Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry ». *Rapid Communications in Mass Spectrometry* 8 (12): 1026-30. https://doi.org/10.1002/rcm.1290081224.
- Campbell, Colin K., et Elizabeth M. Johnson. 2013. *Identification of Pathogenic Fungi*. John Wiley & Sons.
- Cantrell, Sharon A., Lilliam Casillas-Martínez, et Marirosa Molina. 2006. « Characterization of Fungi from Hypersaline Environments of Solar Salterns Using Morphological and Molecular Techniques ». *Mycological Research* 110 (Pt 8): 962-70. https://doi.org/10.1016/j.mycres.2006.06.005.
- Carvajal-Campos, Amaranta, Ama Lethicia Manizan, Souria Tadrist, David Koffi Akaki, Rose Koffi-Nevry, Geromy G. Moore, Stephen O. Fapohunda, et al. 2017.
 « Aspergillus Korhogoensis, a Novel Aflatoxin Producing Species from the Côte d'Ivoire ». *Toxins* 9 (11). https://doi.org/10.3390/toxins9110353.
- Cassagne, Carole, Stéphane Ranque, Anne-Cécile Normand, Patrick Fourquet, Sandrine Thiebault, Chantal Planard, Marijke Hendrickx, et Renaud Piarroux. 2011. « Mould Routine Identification in the Clinical Laboratory by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry ». *PLoS ONE* 6 (12). https://doi.org/10.1371/journal.pone.0028425.
- Chaix, Estelle, Olivier Couvert, Carole Guillaume, Nathalie Gontard, et Valerie Guillard. 2015. «Predictive Microbiology Coupled with Gas (O2/CO2) Transfer in Food/Packaging Systems: How to Develop an Efficient Decision Support Tool for Food Packaging Dimensioning ». *Comprehensive Reviews in Food Science and Food Safety* 14 (1): 1-21. https://doi.org/10.1111/1541-4337.12117.
- Chalupová, Jana, Martin Raus, Michaela Sedlářová, et Marek Šebela. 2014. « Identification of fungal microorganisms by MALDI-TOF mass spectrometry ». *Biotechnology Advances*, Plant Biotechnology 2013: « Green for Good II »., 32 (1): 230-41. https://doi.org/10.1016/j.biotechadv.2013.11.002.
- Chandra, Jyotsna, Duncan M. Kuhn, Pranab K. Mukherjee, Lois L. Hoyer, Thomas McCormick, et Mahmoud A. Ghannoum. 2001. « Biofilm Formation by the Fungal PathogenCandida Albicans: Development, Architecture, and Drug Resistance ». *Journal of Bacteriology* 183 (18): 5385-94. https://doi.org/10.1128/JB.183.18.5385-5394.2001.
- Chang, Perng-Kuang, Kenneth C. Ehrlich, et Sui-Sheng T. Hua. 2006. « Cladal Relatedness among Aspergillus Oryzae Isolates and Aspergillus Flavus S and L Morphotype Isolates ». *International Journal of Food Microbiology* 108 (2): 172-77. https://doi.org/10.1016/j.ijfoodmicro.2005.11.008.
- Chang, Susane, Mariele Porto Carneiro-Leão, Benny Ferreira de Oliveira, Cristina Souza-Motta, Nelson Lima, Cledir Santos, et Neiva Tinti de Oliveira. 2016. « Polyphasic Approach Including MALDI-TOF MS/MS Analysis for Identification and Characterisation of Fusarium verticillioides in Brazilian Corn Kernels ». *Toxins* 8 (3). https://doi.org/10.3390/toxins8030054.
- Chen, A. J., V. Hubka, J. C. Frisvad, C. M. Visagie, J. Houbraken, M. Meijer, J. Varga, et al. 2017. « Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food ». *Studies in Mycology* 88 (Supplement C): 37-135. https://doi.org/10.1016/j.simyco.2017.07.001.

- Chen, Hun-Yun, et Yu-Chie Chen. 2005. « Characterization of Intact Penicillium Spores by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry ». *Rapid Communications in Mass Spectrometry* 19 (23): 3564-68. https://doi.org/10.1002/rcm.2229.
- Chowdappa, P., M. Jyothi Lakshmi, et S. Madhura. 2013. « Matrix Assisted Laser Desorption Ionization-time of Flight (MALDI-TOF) Mass Spectrometry for Identification of Plant Pathogenic Alternaria Species ». *Phytoparasitica* 41 (2): 169-79. https://doi.org/10.1007/s12600-012-0276-7.
- « Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding (Text with EEA Relevance) ». 2006. 32006H0576. http://data.europa.eu/eli/reco/2006/576/oj/eng.
- Crous, Pedro W. 2009. Fungal Biodiversity. CBS-KNAW Fungal Biodiversity Centre.
- Croxatto, Antony, Guy Prod'hom, et Gilbert Greub. 2012. « Applications of MALDI-TOF Mass Spectrometry in Clinical Diagnostic Microbiology ». *FEMS Microbiology Reviews* 36 (2): 380-407. https://doi.org/10.1111/j.1574-6976.2011.00298.x.
- Cruz Cabral, Lucía da, Virginia Fernández Pinto, et Andrea Patriarca. 2013. « Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods ». *International Journal of Food Microbiology* 166 (1): 1-14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026.
- Dagnas, Stéphane, et Jeanne-Marie Membré. 2013. «Predicting and Preventing Mold Spoilage of Food Products». *Journal of Food Protection* 76 (3): 538-51. https://doi.org/10.4315/0362-028X.JFP-12-349.
- Dantigny, Philippe, Audrey Guilmart, et Maurice Bensoussan. 2005. « Basis of Predictive Mycology ». *International Journal of Food Microbiology* 100 (1-3): 187-96. https://doi.org/10.1016/j.ijfoodmicro.2004.10.013.
- De Carolis, E., B. Posteraro, C. Lass-Flörl, A. Vella, A. R. Florio, R. Torelli, C. Girmenia, et al. 2012. « Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry ». *Clinical Microbiology and Infection* 18 (5): 475-84. https://doi.org/10.1111/j.1469-0691.2011.03599.x.
- De Carolis, Elena, Antonietta Vella, Ada R. Florio, Patrizia Posteraro, David S. Perlin, Maurizio Sanguinetti, et Brunella Posteraro. 2012. «Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus Species ». Journal of Clinical Microbiology 50 (7): 2479-83. https://doi.org/10.1128/JCM.00224-12.
- De Gussem, Kris, Peter Vandenabeele, Annemieke Verbeken, et Luc Moens. 2007. « Chemotaxonomical Identification of Spores of Macrofungi: Possibilities of Raman Spectroscopy ». *Analytical and Bioanalytical Chemistry* 387 (8): 2823-32. https://doi.org/10.1007/s00216-007-1150-1.
- De reynal, Béatrice. 2009. Additifs et auxiliaires de fabrication dans les industries agroalimentaires: à l'exclusion des produits utilisés au niveau de l'agriculture et de l'élevage : pesticides, hormones, etc....
- Deak, Eszter, Carmen L. Charlton, April M. Bobenchik, Shelley A. Miller, Simon Pollett, Ian H. McHardy, Max T. Wu, et Omai B. Garner. 2015. «Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory ». *Diagnostic Microbiology and Infectious Disease* 81 (1): 27-33. https://doi.org/10.1016/j.diagmicrobio.2014.09.018.

- Del Chierico, Federica, Andrea Masotti, Manuela Onori, Ersilia Fiscarelli, Livia Mancinelli, Gabriella Ricciotti, Federico Alghisi, et al. 2012. « MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin ». *Journal of Proteomics* 75 (11): 3314-30. https://doi.org/10.1016/j.jprot.2012.03.048.
- Delves-Broughton, J. 2008. «16 Use of the natural food preservatives, nisin and natamycin, to reduce detrimental thermal impact on product quality ». In *In-Pack Processed Foods*, édité par Philip Richardson, 319-37. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing. https://doi.org/10.1533/9781845694692.4.319.
- Denning, David W., et William W. Hope. 2010. « Therapy for fungal diseases: opportunities and priorities ». *Trends in Microbiology* 18 (5): 195-204. https://doi.org/10.1016/j.tim.2010.02.004.
- Dijksterhuis, Jan, Jos Houbraken, et Robert A. Samson. 2013. « 2 Fungal Spoilage of Crops and Food ». In *Agricultural Applications*, édité par Frank Kempken, 35-56. The Mycota. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36821-9_2.
- Dulla, E. L., C. Kathera, H. K. Gurijala, T. R. Mallakuntla, P. Srinivasan, V. Prasad, R. D. Mopati, et P. K. Jasti. 2016. «Highlights of DNA Barcoding in identification of salient microorganisms like fungi ». *Journal de Mycologie Médicale* 26 (4): 291-97. https://doi.org/10.1016/j.mycmed.2016.05.006.
- Emonet, S., H. N. Shah, A. Cherkaoui, et J. Schrenzel. 2010. « Application and Use of Various Mass Spectrometry Methods in Clinical Microbiology ». *Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases* 16 (11): 1604-13. https://doi.org/10.1111/j.1469-0691.2010.03368.x.
- Erhard, Marcel, Uta-Christina Hipler, Anke Burmester, Axel A. Brakhage, et Johannes Wöstemeyer. « Identification Dermatophyte 2008. of Species Causing Onychomycosis and Tinea Pedis by MALDI-TOF Mass Spectrometry ». Experimental Dermatology 17 (4): 356-61. https://doi.org/10.1111/j.1600-0625.2007.00649.x.
- Fagerquist, Clifton K. 2017. «Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization ». *Expert Review* of Proteomics 14 (1): 97-107. https://doi.org/10.1080/14789450.2017.1260451.
- Fazio, Alejandra T., Mónica Mamián López, Marcia L. A. Temperini, et Dalva Lúcia A. de Faria. 2018. « Surface enhanced Raman spectroscopy and cultural heritage biodeterioration: Fungi identification in earthen architecture from Paraíba Valley (São Paulo, Brazil) ». Vibrational Spectroscopy 97 (juillet): 129-34. https://doi.org/10.1016/j.vibspec.2018.06.002.
- Fenselau, C., et P. A. Demirev. 2001. « Characterization of Intact Microorganisms by MALDI Mass Spectrometry ». *Mass Spectrometry Reviews* 20 (4): 157-71. https://doi.org/10.1002/mas.10004.
- Filtenborg, O., J. C. Frisvad, et U. Thrane. 1996. «Moulds in food spoilage ». International Journal of Food Microbiology, Specific Spoilage Organisms, 33 (1): 85-102. https://doi.org/10.1016/0168-1605(96)01153-1.
- Fischer, Guido, Silvia Braun, Ralf Thissen, et Wolfgang Dott. 2006. «FT-IR Spectroscopy as a Tool for Rapid Identification and Intra-Species Characterization of Airborne Filamentous Fungi ». Journal of Microbiological Methods 64 (1): 63-77. https://doi.org/10.1016/j.mimet.2005.04.005.

- Florio, Walter, Arianna Tavanti, Emilia Ghelardi, et Antonella Lupetti. 2018. « MALDI-TOF MS Applications to the Detection of Antifungal Resistance: State of the Art and Future Perspectives ». Frontiers in Microbiology 9. https://doi.org/10.3389/fmicb.2018.02577.
- Fontaine, Kévin, Nolwenn Hymery, Marlène Z. Lacroix, Sylvie Puel, Olivier Puel, Karim Rigalma, Vincent Gaydou, Emmanuel Coton, et Jérôme Mounier. 2015. « Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti ». *International Journal of Food Microbiology* 215 (décembre): 187-93. https://doi.org/10.1016/j.ijfoodmicro.2015.07.021.
- Fournier, Rémi, Frédéric Wallet, Bruno Grandbastien, Luc Dubreuil, René Courcol, Christel Neut, et Rodrigue Dessein. 2012. « Chemical extraction versus direct smear for MALDI-TOF mass spectrometry identification of anaerobic bacteria ». *Anaerobe* 18 (3): 294-97. https://doi.org/10.1016/j.anaerobe.2012.03.008.
- Freimoser, Florian Matthias, Maja Hilber-Bodmer, René Brunisholz, et David Drissner. 2016.
 « Direct Identification of Monilinia Brown Rot Fungi on Infected Fruits by Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry ». *Chemical and Biological Technologies in Agriculture* 3 (1): 7. https://doi.org/10.1186/s40538-016-0058-4.
- Frisvad, J. C., V. Hubka, C. N. Ezekiel, S. -B. Hong, A. Nováková, A. J. Chen, M. Arzanlou, et al. 2019. «Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins ». *Studies in Mycology* 93 (juin): 1-63. https://doi.org/10.1016/j.simyco.2018.06.001.
- Fujinami, Yoshihito, Hitomi S. Kikkawa, Yohei Kurosaki, Koichi Sakurada, Mineo Yoshino, et Jiro Yasuda. 2011. « Rapid Discrimination of Legionella by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry ». *Microbiological Research* 166 (2): 77-86. https://doi.org/10.1016/j.micres.2010.02.005.
- Garcia, Daiana, Antonio J. Ramos, Vicente Sanchis, et Sonia Marín. 2011. « Intraspecific Variability of Growth and Patulin Production of 79 Penicillium Expansum Isolates at Two Temperatures ». *International Journal of Food Microbiology* 151 (2): 195-200. https://doi.org/10.1016/j.ijfoodmicro.2011.08.021.
- Garnier, Lucille, Florence Valence, et Jérôme Mounier. 2017. « Diversity and Control of Spoilage Fungi in Dairy Products: An Update ». *Microorganisms* 5 (3): 42. https://doi.org/10.3390/microorganisms5030042.
- Garnier, Lucille, Florence Valence, Audrey Pawtowski, Lizaveta Auhustsinava-Galerne, Nicolas Frotté, Riccardo Baroncelli, Franck Deniel, Emmanuel Coton, et Jérôme Mounier. 2017. « Diversity of spoilage fungi associated with various French dairy products ». *International Journal of Food Microbiology* 241 (Supplement C): 191-97. https://doi.org/10.1016/j.ijfoodmicro.2016.10.026.
- Gautier, M., A. -C. Normand, et S. Ranque. 2016. «Previously unknown species of Aspergillus ». *Clinical Microbiology and Infection* 22 (8): 662-69. https://doi.org/10.1016/j.cmi.2016.05.013.
- Gautier, M., S. Ranque, A. -C. Normand, P. Becker, A. Packeu, C. Cassagne, C. L'Ollivier, M. Hendrickx, et R. Piarroux. 2014. «Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections ». *Clinical Microbiology and Infection* 20 (12): 1366-71. https://doi.org/10.1111/1469-0691.12750.
- Geiser, D. M., M. A. Klich, J. C. Frisvad, S. W. Peterson, J. Varga, et R. A. Samson. 2007. « The current status of species recognition and identification in Aspergillus ». *Studies*

in Mycology, Aspergillus systematics in the genomic era, 59: 1-10. https://doi.org/10.3114/sim.2007.59.01.

- Geiser, David M., María del Mar Jiménez-Gasco, Seogchan Kang, Izabela Makalowska, Narayanan Veeraraghavan, Todd J. Ward, Ning Zhang, Gretchen A. Kuldau, et Kerry O'donnell. 2004. «FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium ». *European Journal of Plant Pathology* 110 (5-6): 473-79. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0.
- Ghosal, Sutapa, Janet M. Macher, et Kadra Ahmed. 2012. «Raman Microspectroscopy-Based Identification of Individual Fungal Spores as Potential Indicators of Indoor Contamination and Moisture-Related Building Damage ». *Environmental Science & Technology* 46 (11): 6088-95. https://doi.org/10.1021/es203782j.
- Gibbons, John G., Leonidas Salichos, Jason C. Slot, David C. Rinker, Kriston L. McGary, Jonas G. King, Maren A. Klich, David L. Tabb, W. Hayes McDonald, et Antonis Rokas. 2012. « The Evolutionary Imprint of Domestication on Genome Variation and Function of the Filamentous Fungus Aspergillus Oryzae ». *Current Biology: CB* 22 (15): 1403-9. https://doi.org/10.1016/j.cub.2012.05.033.
- Gillot, Guillaume, Jean-Luc Jany, Monika Coton, Gaétan Le Floch, Stella Debaets, Jeanne Ropars, Manuela López-Villavicencio, et al. 2015. «Insights into Penicillium roqueforti Morphological and Genetic Diversity ». *PLOS ONE* 10 (6): e0129849. https://doi.org/10.1371/journal.pone.0129849.
- Girard, Victoria, Sandrine Mailler, Martin Welker, Maud Arsac, Béatrice Cellière, Pierre-Jean Cotte-Pattat, Sonia Chatellier, et al. 2016. « Identification of mycobacterium spp. and nocardia spp. from solid and liquid cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) ». *Diagnostic Microbiology and Infectious Disease* 86 (3): 277-83. https://doi.org/10.1016/j.diagmicrobio.2016.07.027.
- Guynot, M. E., A. J. Ramos, V. Sanchis, et S. Marín. 2005. « Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5–5.5) ». *International Journal of Food Microbiology* 101 (2): 161-68. https://doi.org/10.1016/j.ijfoodmicro.2004.11.003.
- Hafiane, A., et M. Ravaoarinoro. 2008. « Différentes méthodes de typage des souches de Pseudomonas aeruginosa isolées des patients atteints de mucoviscidose ». Médecine et Maladies Infectieuses 38 (5): 238-47. https://doi.org/10.1016/j.medmal.2008.02.005.
- Hahn, F. 2002. « AE—Automation and Emerging Technologies: Fungal Spore Detection on Tomatoes using Spectral Fourier Signatures ». *Biosystems Engineering* 81 (3): 249-59. https://doi.org/10.1006/bioe.2001.0036.
- Hawksworth, David L. 2006. «Pandora's Mycological Box: Molecular Sequences vs. Morphology in Understanding Fungal Relationships and Biodiversity ». *Revista Iberoamericana De Micologia* 23 (3): 127-33.
- Hawksworth, David L. 2015. « Naming fungi involved in spoilage of food, drink, and water ». *Current Opinion in Food Science*, Food Engineering and Processing • Food Mycology, 5 (octobre): 23-28. https://doi.org/10.1016/j.cofs.2015.07.004.
- Hawksworth, David L., et Robert Lücking. 2017. «Fungal Diversity Revisited: 2.2 to 3.8MillionSpecies ».MicrobiologySpectrum5(4).https://doi.org/10.1128/microbiolspec.FUNK-0052-2016.
- Hermet, Antoine, Delphine Méheust, Jérôme Mounier, Georges Barbier, et Jean-Luc Jany. 2012. « Molecular systematics in the genus Mucor with special regards to species

encountered in cheese ». *Fungal Biology* 116 (6): 692-705. https://doi.org/10.1016/j.funbio.2012.04.002.

- Hettick, Justin M., Brett J. Green, Amanda D. Buskirk, Michael L. Kashon, James E. Slaven, Erika Janotka, Francoise M. Blachere, Detlef Schmechel, et Donald H. Beezhold. 2008a. « Discrimination of Penicillium Isolates by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Fingerprinting ». *Rapid Communications in Mass Spectrometry: RCM* 22 (16): 2555-60. https://doi.org/10.1002/rcm.3649.
- 2008b. « Discrimination of Aspergillus Isolates at the Species and Strain Level by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Fingerprinting ». *Analytical Biochemistry* 380 (2): 276-81. https://doi.org/10.1016/j.ab.2008.05.051.
- Hewitt, Sarah K., David S. Foster, Paul S. Dyer, et Simon V. Avery. 2016. « Phenotypic heterogeneity in fungi: Importance and methodology ». *Fungal Biology Reviews* 30 (4): 176-84. https://doi.org/10.1016/j.fbr.2016.09.002.
- Hocking, A. D. 2014. « SPOILAGE PROBLEMS | Problems Caused by Fungi ». In Encyclopedia of Food Microbiology (Second Edition), édité par Carl A. Batt et Mary Lou Tortorello, 471-81. Oxford: Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00315-3.
- Holland, R. D., J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, et J. O. Lay. 1996. « Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns Using Matrix-Assisted Laser Desorption/Ionization with Time-of-Flight Mass Spectrometry ». *Rapid Communications in Mass Spectrometry: RCM* 10 (10): 1227-32. https://doi.org/10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6.
- Houbraken, J., M. Due, J. Varga, M. Meijer, J. C. Frisvad, et R. A. Samson. 2007. « Polyphasic taxonomy of Aspergillus section Usti ». *Studies in Mycology*, Aspergillus systematics in the genomic era, 59: 107-28. https://doi.org/10.3114/sim.2007.59.12.
- Houbraken, Jos, Jens C. Frisvad, et Robert A. Samson. 2011. «Fleming's Penicillin Producing Strain Is Not Penicillium Chrysogenum but P. Rubens ». *IMA Fungus* 2 (1): 87-95. https://doi.org/10.5598/imafungus.2011.02.01.12.
- Houbraken, Jos, et Robert A Samson. 2017. «Current taxonomy and identification of foodborne fungi ». *Current Opinion in Food Science*, Food Engineering and Processing 2017 Food Mycology, 17 (Supplement C): 84-88. https://doi.org/10.1016/j.cofs.2017.10.010.
- Hussein, H. S., et J. M. Brasel. 2001. « Toxicity, Metabolism, and Impact of Mycotoxins on Humans and Animals ». *Toxicology* 167 (2): 101-34.
- Hyodo, F., I. Tayasu, T. Inoue, J.-I. Azuma, T. Kudo, et T. Abe. 2003. « Differential Role of Symbiotic Fungi in Lignin Degradation and Food Provision for Fungus-Growing Termites (Macrotermitinae: Isoptera) ». *Functional Ecology* 17 (2): 186-93. https://doi.org/10.1046/j.1365-2435.2003.00718.x.
- Jacobs, K., et A. Botha. 2008. « Mucor renisporus sp. nov., a new coprophilous species from Southern Africa ». *Fungal Diversity* 29: 27-35.
- Joubert, Aymeric, Benoît Calmes, Romain Berruyer, Marc Pihet, Jean-Philippe Bouchara, Philippe Simoneau, et Thomas Guillemette. 2010. « Laser Nephelometry Applied in an Automated Microplate System to Study Filamentous Fungus Growth ». *BioTechniques* 48 (5): 399-404. https://doi.org/10.2144/000113399.

- Judet-Correia, D., C. Charpentier, M. Bensoussan, et P. Dantigny. 2011. «Modelling the Inhibitory Effect of Copper Sulfate on the Growth of Penicillium Expansum and Botrytis Cinerea ». Letters in Applied Microbiology 53 (5): 558-64. https://doi.org/10.1111/j.1472-765X.2011.03149.x.
- Kabak, Bulent. 2009. « The Fate of Mycotoxins during Thermal Food Processing ». *Journal* of the Science of Food and Agriculture 89 (4): 549-54. https://doi.org/10.1002/jsfa.3491.
- Kallow, W., I. Santos, M. Erhard, R. Serra, A. Venancio, et N. Lima. 2006. «Aspergillus ibericus: A new species of section Nigri characterised by MALDI-TOF MS ». In , 189-93. Cairns, Australia: MEDIMOND.
- Kern, Carola C., Rudi F. Vogel, et Jürgen Behr. 2014. « Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential ». *Food Microbiology* 40 (juin): 18-24. https://doi.org/10.1016/j.fm.2013.11.015.
- Khan, Imran, Charles Nkufi Tango, Sumaira Miskeen, Byong H. Lee, et Deog-Hwan Oh. 2017. «Hurdle technology: A novel approach for enhanced food quality and safety – A review ». *Food Control* 73 (mars): 1426-44. https://doi.org/10.1016/j.foodcont.2016.11.010.
- Kosegarten, Carlos E., Nelly Ramírez-Corona, Emma Mani-López, Enrique Palou, et Aurelio López-Malo. 2017. « Description of Aspergillus flavus growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration, pH, and cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-detection models ». *International Journal of Food Microbiology*, Special Issue: 9th International Conference on Predictive Modelling in Food (Rio de Janeiro, Brazil), 240 (Supplement C): 115-23. https://doi.org/10.1016/j.ijfoodmicro.2016.04.024.
- Koster, Chris G de, et Stanley Brul. 2016. « MALDI-TOF MS identification and tracking of food spoilers and food-borne pathogens ». *Current Opinion in Food Science*, Innovation in food science Foodomics technologies, 10 (août): 76-84. https://doi.org/10.1016/j.cofs.2016.11.004.
- Krebs, H A, D Wiggins, M Stubbs, A Sols, et F Bedoya. 1983. « Studies on the mechanism of the antifungal action of benzoate. » *Biochemical Journal* 214 (3): 657-63.
- Krska, R., M. de Nijs, O. McNerney, M. Pichler, J. Gilbert, S. Edwards, M. Suman, et al. 2016. « Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach ». World Mycotoxin Journal 9 (4): 487-95. https://doi.org/10.3920/WMJ2016.2136.
- Kuhns, Martin, Andreas E. Zautner, Wolfgang Rabsch, Ortrud Zimmermann, Michael Weig, Oliver Bader, et Uwe Groß. 2012. «Rapid Discrimination of Salmonella Enterica Serovar Typhi from Other Serovars by MALDI-TOF Mass Spectrometry ». *PloS One* 7 (6): e40004. https://doi.org/10.1371/journal.pone.0040004.
- Lalitha, P., R. Vijaykumar, N. V. Prajna, et A. W. Fothergill. 2008. « In Vitro Natamycin Susceptibility of Ocular Isolates of Fusarium and Aspergillus Species: Comparison of Commercially Formulated Natamycin Eye Drops to Pharmaceutical-Grade Powder ». *Journal of Clinical Microbiology* 46 (10): 3477-78. https://doi.org/10.1128/JCM.00610-08.
- Latgé, Jean-Paul. 2007. « The Cell Wall: A Carbohydrate Armour for the Fungal Cell ». *Molecular Microbiology* 66 (2): 279-90. https://doi.org/10.1111/j.1365-2958.2007.05872.x.

- Lau, Anna F., Steven K. Drake, Leslie B. Calhoun, Christina M. Henderson, et Adrian M. Zelazny. 2013. « Development of a Clinically Comprehensive Database and a Simple Procedure for Identification of Molds from Solid Media by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry ». *Journal of Clinical Microbiology* 51 (3): 828-34. https://doi.org/10.1128/JCM.02852-12.
- Lauterbach, Alexander, Julia C. Usbeck, Jürgen Behr, et Rudi F. Vogel. 2017. «MALDI-TOF MS Typing Enables the Classification of Brewing Yeasts of the Genus Saccharomyces to Major Beer Styles ». *PLOS ONE* 12 (8): e0181694. https://doi.org/10.1371/journal.pone.0181694.
- Le Lay, Céline, Jérôme Mounier, Valérie Vasseur, Amélie Weill, Gwenaëlle Le Blay, Georges Barbier, et Emmanuel Coton. 2016. « In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds ». *Food Control* 60 (Supplement C): 247-55. https://doi.org/10.1016/j.foodcont.2015.07.034.
- Lecellier, A. 2013. « Caractérisation et identification des champignons filamenteux par spectroscopie vibrationnelle ». Université de Reims.
- Lecellier, A., V. Gaydou, J. Mounier, A. Hermet, L. Castrec, G. Barbier, W. Ablain, M. Manfait, D. Toubas, et G. D. Sockalingum. 2015. «Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds ». *Food Microbiology*, Spoilers, wonder spores and diehard microorganisms: New insights to integrate these super foes in food spoilage risk management, 45 (Part A): 126-34. https://doi.org/10.1016/j.fm.2014.01.002.
- Lecellier, A., J. Mounier, V. Gaydou, L. Castrec, G. Barbier, W. Ablain, M. Manfait, D. Toubas, et G. D. Sockalingum. 2014. « Differentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia ». *International Journal of Food Microbiology* 168 (Supplement C): 32-41. https://doi.org/10.1016/j.ijfoodmicro.2013.10.011.
- Lecomte, Mickaël, Romain Berruyer, Latifa Hamama, Cora Boedo, Piétrick Hudhomme, Stéphanie Bersihand, Joseph Arul, et al. 2012. «Inhibitory effects of the carrot metabolites 6-methoxymellein and falcarindiol on development of the fungal leaf blight pathogen Alternaria dauci ». *Physiological and Molecular Plant Pathology* 80 (octobre): 58-67. https://doi.org/10.1016/j.pmpp.2012.10.002.
- Leeuwen, M. R. Van, T. M. Van Doorn, E. A. Golovina, J. Stark, et J. Dijksterhuis. 2010. «Water- and Air-Distributed Conidia Differ in Sterol Content and Cytoplasmic Microviscosity ». *Appl. Environ. Microbiol.* 76 (1): 366-69. https://doi.org/10.1128/AEM.01632-09.
- Leeuwen, M. R. Van, E. A. Golovina, et J. Dijksterhuis. 2009. « The Polyene Antimycotics Nystatin and Filipin Disrupt the Plasma Membrane, Whereas Natamycin Inhibits Endocytosis in Germinating Conidia of Penicillium Discolor ». *Journal of Applied Microbiology* 106 (6): 1908-18. https://doi.org/10.1111/j.1365-2672.2009.04165.x.
- Leeuwen, M. R. van, P. Krijgsheld, T. T. Wyatt, E. A. Golovina, H. Menke, A. Dekker, J. Stark, et al. 2013. «The effect of natamycin on the transcriptome of conidia of Aspergillus niger ». *Studies in Mycology*, Development of, 74 (mars): 71-85. https://doi.org/10.3114/sim0013.
- Leistner, Lothar, et Leon G. M. Gorris. 1995. «Food preservation by hurdle technology ». *Trends in Food Science & Technology* 6 (2): 41-46. https://doi.org/10.1016/S0924-2244(00)88941-4.
- León Peláez, A. M., C. A. Serna Cataño, E. A. Quintero Yepes, R. R. Gamba Villarroel, G. L. De Antoni, et L. Giannuzzi. 2012. « Inhibitory activity of lactic and acetic acid on

Aspergillus flavus growth for food preservation ». *Food Control* 24 (1): 177-83. https://doi.org/10.1016/j.foodcont.2011.09.024.

- Levinskaite, Loreta. 2012. « Susceptibility of Food-Contaminating Penicillium Genus Fungi to Some Preservatives and Disinfectants ». *Annals of Agricultural and Environmental Medicine: AAEM* 19 (1): 85-89.
- Lew, Roger R. 2011. « How Does a Hypha Grow? The Biophysics of Pressurized Growth in Fungi ». *Nature Reviews Microbiology* 9 (7): 509-18. https://doi.org/10.1038/nrmicro2591.
- Li, Jichun, Volha Shapaval, Achim Kohler, Robert Talintyre, Jürgen Schmitt, Richard Stone, Andrew J. Gallant, et Dagou A. Zeze. 2016. « A Modular Liquid Sample Handling Robot for High-Throughput Fourier Transform Infrared Spectroscopy ». In *Advances in Reconfigurable Mechanisms and Robots II*, édité par Xilun Ding, Xianwen Kong, et Jian S. Dai, 769-78. Mechanisms and Machine Science. Springer International Publishing.
- Li, Ying, He Wang, Yu-Pei Zhao, Ying-Chun Xu, et Po-Ren Hsueh. 2017. «Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media ». Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.01209.
- López-Malo, Aurelio, Stella Maris Alzamora, et Enrique Palou. 2005. « Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds ». *International Journal of Food Microbiology* 99 (2): 119-28. https://doi.org/10.1016/j.ijfoodmicro.2004.08.010.
- Lücking, Robert, Sabine Huhndorf, Donald H. Pfister, Eimy Rivas Plata, et H. Thorsten Lumbsch. 2009. « Fungi Evolved Right on Track ». *Mycologia* 101 (6): 810-22.
- Ludemann, Vanesa, Graciela Pose, Alfonsina Moavro, Maria G. Maliaviabarrena, Rosario Fandiño, Giselle Ripoll, Juan C. Basílico, et Alejandro G. Pardo. 2009.
 « Toxicological Assessment of Penicillium Nalgiovense Strains for Use as Starter Cultures in the Manufacture of Dry Fermented Sausages ». Journal of Food Protection 72 (8): 1666-70.
- Maquelin, K., C. Kirschner, L.-P. Choo-Smith, N. A. Ngo-Thi, T. van Vreeswijk, M. Stämmler, H. P. Endtz, H. A. Bruining, D. Naumann, et G. J. Puppels. 2003.
 « Prospective Study of the Performance of Vibrational Spectroscopies for Rapid Identification of Bacterial and Fungal Pathogens Recovered from Blood Cultures ». *Journal of Clinical Microbiology* 41 (1): 324-29. https://doi.org/10.1128/JCM.41.1.324-329.2003.
- Marchetti-Deschmann, M., W. Winkler, H. Dong, H. Lohninger, C. P. Kubicek, et G. Allmaier. 2012. «Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry ». Food Technology and Biotechnology 50 (3): 334-42.
- Marín, Sonia, Dolors Cuevas, Antonio J. Ramos, et Vicente Sanchis. 2008. «Fitting of colony diameter and ergosterol as indicators of food borne mould growth to known growth models in solid medium ». *International Journal of Food Microbiology* 121 (2): 139-49. https://doi.org/10.1016/j.ijfoodmicro.2007.08.030.
- Marinach-Patrice, C., A. Lethuillier, A. Marly, J.-Y. Brossas, J. Gené, F. Symoens, A. Datry, J. Guarro, D. Mazier, et C. Hennequin. 2009. « Use of Mass Spectrometry to Identify Clinical Fusarium Isolates ». *Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases* 15 (7): 634-42. https://doi.org/10.1111/j.1469-0691.2009.02758.x.

- Masih, Aradhana, Pradeep K. Singh, Shallu Kathuria, Kshitij Agarwal, Jacques F. Meis, et Anuradha Chowdhary. 2016. « Identification by Molecular Methods and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Antifungal Susceptibility Profiles of Clinically Significant Rare Aspergillus Species in a Referral Chest Hospital in Delhi, India ». *Journal of Clinical Microbiology* 54 (9): 2354-64. https://doi.org/10.1128/JCM.00962-16.
- Mathimaran, Natarajan, Laurent Falquet, Kurt Ineichen, Cyril Picard, Dirk Redecker, Thomas Boller, et Andres Wiemken. 2008. «Microsatellites for disentangling underground networks: Strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus». *Fungal Genetics and Biology* 45 (6): 812-17. https://doi.org/10.1016/j.fgb.2008.02.009.
- McLaughlin, David J., David S. Hibbett, François Lutzoni, Joseph W. Spatafora, et Rytas Vilgalys. 2009. « The Search for the Fungal Tree of Life ». *Trends in Microbiology* 17 (11): 488-97. https://doi.org/10.1016/j.tim.2009.08.001.
- McMullen, Allison R., Meghan A. Wallace, David H. Pincus, Kathy Wilkey, et Carey-Ann D. Burnham. 2016. « Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi ». *Journal of Clinical Microbiology* 54 (8): 2068-73. https://doi.org/10.1128/JCM.00825-16.
- Medina, Angel, Ronald J. W. Lambert, et Naresh Magan. 2012. «Rapid Throughput Analysis of Filamentous Fungal Growth Using Turbidimetric Measurements with the Bioscreen C: A Tool for Screening Antifungal Compounds ». *Fungal Biology* 116 (1): 161-69. https://doi.org/10.1016/j.funbio.2011.11.001.
- Meletiadis, Joseph, Debbie T. A. te Dorsthorst, et Paul E. Verweij. 2003. «Use of Turbidimetric Growth Curves for Early Determination of Antifungal Drug Resistance of Filamentous Fungi ». *Journal of Clinical Microbiology* 41 (10): 4718-25. https://doi.org/10.1128/JCM.41.10.4718-4725.2003.
- Meletiadis, Joseph, Jacques F. G. M. Meis, Johan W. Mouton, et Paul E. Verweij. 2001.
 « Analysis of Growth Characteristics of Filamentous Fungi in Different Nutrient Media ». Journal of Clinical Microbiology 39 (2): 478-84. https://doi.org/10.1128/JCM.39.2.478-484.2001.
- Nacef, Menouar, Mickaël Chevalier, Sylvie Chollet, Djamel Drider, et Christophe Flahaut. 2017. «MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles ». *International Journal of Food Microbiology*, Special Issue: CBL 20th edition: New challenges for research and industry, 247 (Supplement C): 2-8. https://doi.org/10.1016/j.ijfoodmicro.2016.07.005.
- Nagy, E., T. Maier, E. Urban, G. Terhes, et M. Kostrzewa. 2009. « Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-offlight mass spectrometry ». *Clinical Microbiology and Infection* 15 (8): 796-802. https://doi.org/10.1111/j.1469-0691.2009.02788.x.
- Nair, Ramkumar B., Patrik R. Lennartsson, et Mohammad J. Taherzadeh. 2016. «Mycelial Pellet Formation by Edible Ascomycete Filamentous Fungi, Neurospora Intermedia ». *AMB Express* 6 (1): 31. https://doi.org/10.1186/s13568-016-0203-2.
- Nakamura, Sayaka, Hiroaki Sato, Reiko Tanaka, et Takashi Yaguchi. 2016. « Verification of Ribosomal Proteins of Aspergillus fumigatus for Use as Biomarkers in MALDI-TOF MS Identification ». Mass Spectrometry 5 (1). https://doi.org/10.5702/massspectrometry.A0049.
- Nielsen, Jens, Claus L. Johansen, Michael Jacobsen, Preben Krabben, et John Villadsen. 1995. « Pellet Formation and Fragmentation in Submerged Cultures of Penicillium

Chrysogenum and Its Relation to Penicillin Production ». *Biotechnology Progress* 11 (1): 93-98. https://doi.org/10.1021/bp00031a013.

- Nielsen, L. K., A. F. Justesen, J. D. Jensen, et L. N. Jørgensen. 2013. « Microdochium nivale and Microdochium majus in seed samples of Danish small grain cereals ». *Crop Protection* 43 (janvier): 192-200. https://doi.org/10.1016/j.cropro.2012.09.002.
- Normand, Anne-Cécile, Carole Cassagne, Stéphane Ranque, Coralie L'ollivier, Patrick Fourquet, Sam Roesems, Marijke Hendrickx, et Renaud Piarroux. 2013. « Assessment of Various Parameters to Improve MALDI-TOF MS Reference Spectra Libraries Constructed for the Routine Identification of Filamentous Fungi ». *BMC Microbiology* 13 (avril): 76. https://doi.org/10.1186/1471-2180-13-76.
- Norvell, Lorelei L. 2011. «Fungal nomenclature. 1. Melbourne approves a new Code ». *Mycotaxon* 116 (juin): 481-90. https://doi.org/10.5248/116.481.
- O'Donnell, Kerry, Deanna A. Sutton, Michael G. Rinaldi, Cécile Gueidan, Pedro W. Crous, et David M. Geiser. 2009. «Novel Multilocus Sequence Typing Scheme Reveals High Genetic Diversity of Human Pathogenic Members of the Fusarium Incarnatum-F. Equiseti and F. Chlamydosporum Species Complexes within the United States ». *Journal of Clinical Microbiology* 47 (12): 3851-61. https://doi.org/10.1128/JCM.01616-09.
- Ollé Resa, Carolina P., Rosa J. Jagus, et Lía N. Gerschenson. 2014. « Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces ». *Food Control* 35 (1): 101-8. https://doi.org/10.1016/j.foodcont.2013.06.049.
- Packeu, Ann, Marijke Hendrickx, Hugues Beguin, Delphine Martiny, Olivier Vandenberg, et Monique Detandt. 2013. « Identification of the Trichophyton Mentagrophytes Complex Species Using MALDI-TOF Mass Spectrometry ». *Medical Mycology* 51 (6): 580-85. https://doi.org/10.3109/13693786.2013.770605.
- Panda, Ashutosh, Anup K. Ghosh, Bijay R. Mirdha, Immaculata Xess, Saikat Paul, Jyotish C. Samantaray, Alagiri Srinivasan, Shehla Khalil, Neha Rastogi, et Yubhisha Dabas. 2015. « MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers ». *Journal of Microbiological Methods* 109 (février): 93-105. https://doi.org/10.1016/j.mimet.2014.12.014.
- Parfitt, Julian, Mark Barthel, et Sarah Macnaughton. 2010. «Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050 ». *Philosophical Transactions of the Royal Society B: Biological Sciences* 365 (1554): 3065-81. https://doi.org/10.1098/rstb.2010.0126.
- Park, Ju Heon, Jong Hee Shin, Min Ji Choi, Jin Un Choi, Yeon-Joon Park, Sook Jin Jang, Eun Jeong Won, et al. 2017. «Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification ». *Diagnostic Microbiology and Infectious Disease* 87 (1): 28 -31. https://doi.org/10.1016/j.diagmicrobio.2016.10.012.
- Paterson, R. R. M., et P. D. Bridge. 1994. «Biochemical Techniques for Filamentous Fungi.» *Biochemical Techniques for Filamentous Fungi.*, n° No. 1. https://www.cabdirect.org/cabdirect/abstract/19942307431.
- Paterson, Robert R. M., et Nelson Lima. 2010. « Toxicology of Mycotoxins ». *EXS* 100: 31-63.
- Paul, Saikat, Pankaj Singh, Shivaprakash M. Rudramurthy, Arunaloke Chakrabarti, et Anup K. Ghosh. 2017. « Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry: Protocol Standardization and Database Expansion for Rapid

Identification of Clinically Important Molds ». *Future Microbiology* 12: 1457-66. https://doi.org/10.2217/fmb-2017-0105.

- Paul, Saikat, Pankaj Singh, Savitri Sharma, Gandham Satyanarayana Prasad, Shivaprakash Mandya Rudramurthy, Arunaloke Chakrabarti, et Anup K. Ghosh. 2018. «MALDI-TOF MS Based Identification of Melanized Fungi Is Faster and Reliable After the Expansion of In-House Database ». *PROTEOMICS – Clinical Applications* 0 (ja): 1800070. https://doi.org/10.1002/prca.201800070.
- Peskett, Geoffrey Lewis. 1927. « Studies on the Growth of Yeast ». *Biochemical Journal* 21 (3): 460-66.
- Pinches, S. E., et P. Apps. 2007. « Production in food of 1,3-pentadiene and styrene by Trichoderma species ». *International Journal of Food Microbiology* 116 (1): 182-85. https://doi.org/10.1016/j.ijfoodmicro.2006.12.001.
- Piper, Peter W. 2011. «Resistance of Yeasts to Weak Organic Acid Food Preservatives ». *Advances in Applied Microbiology* 77: 97-113. https://doi.org/10.1016/B978-0-12-387044-5.00004-2.
- Pitt, John, et Ailsa Hocking. 2009. *Fungi and food spoilage*. 3rd éd. New York, USA: Springer Science & Business media.
- Pitt, John I. 1979. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces. Acad. Press.
- Plamen A. Demirev, *, Yen-Peng Ho, and Victor Ryzhov, et Catherine Fenselau. 1999. « Microorganism Identification by Mass Spectrometry and Protein Database Searches ». Research-article. 27 mai 1999. https://doi.org/10.1021/ac990165u.
- Plumridge, Andrew, Stephan J. A. Hesse, Adrian J. Watson, Kenneth C. Lowe, Malcolm Stratford, et David B. Archer. 2004. «The Weak Acid Preservative Sorbic Acid Inhibits Conidial Germination and Mycelial Growth of Aspergillus Niger through Intracellular Acidification ». *Appl. Environ. Microbiol.* 70 (6): 3506-11. https://doi.org/10.1128/AEM.70.6.3506-3511.2004.
- Plumridge, Andrew, Petter Melin, Malcolm Stratford, Michaela Novodvorska, Lee Shunburne, Paul S. Dyer, Johannes A. Roubos, et al. 2010. « The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp. » Fungal Genetics and Biology 47 (8): 683-92. https://doi.org/10.1016/j.fgb.2010.04.011.
- Praphailong, W, et G. H Fleet. 1997. « The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts ». *Food Microbiology* 14 (5): 459 -68. https://doi.org/10.1006/fmic.1997.0106.
- Prieto, María, et Mats Wedin. 2013. « Dating the Diversification of the Major Lineages of Ascomycota (Fungi) ». *PLOS ONE* 8 (6): e65576. https://doi.org/10.1371/journal.pone.0065576.
- Pulcrano, G., E. Roscetto, V. D. Iula, D. Panellis, F. Rossano, et M. R. Catania. 2012. « MALDI-TOF Mass Spectrometry and Microsatellite Markers to Evaluate Candida Parapsilosis Transmission in Neonatal Intensive Care Units ». European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 31 (11): 2919-28. https://doi.org/10.1007/s10096-012-1642-6.
- Quéro, Laura, Victoria Girard, Audrey Pawtowski, Sylvie Tréguer, Amélie Weill, Sandrine Arend, Béatrice Cellière, et al. 2018. « Development and application of MALDI-TOF MS for identification of food spoilage fungi ». *Food Microbiology*, mai. https://doi.org/10.1016/j.fm.2018.05.001.

- Rahi, Praveen, Om Prakash, et Yogesh S. Shouche. 2016. «Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists ». *Frontiers in Microbiology* 7. https://doi.org/10.3389/fmicb.2016.01359.
- Ranque, Stéphane, Anne-Cécile Normand, Carole Cassagne, Jean-Benjamin Murat, Nathalie Bourgeois, Frédéric Dalle, Martine Gari-Toussaint, Patrick Fourquet, Marijke Hendrickx, et Renaud Piarroux. 2014. «MALDI-TOF Mass Spectrometry Identification of Filamentous Fungi in the Clinical Laboratory ». *Mycoses* 57 (3): 135 -40. https://doi.org/10.1111/myc.12115.
- Rédou, Vanessa, Marion Navarri, Laurence Meslet-Cladière, Georges Barbier, et Gaëtan Burgaud. 2015. « Marine Fungi from Deep Subseafloor Sediments: Species Richness and Adaptation. » *Appl. Environ. Microbiol.*, mars, AEM.04064-14. https://doi.org/10.1128/AEM.04064-14.
- Rico-Munoz, Emilia, Robert A. Samson, et Jos Houbraken. 2018. « Mould spoilage of foods and beverages: Using the right methodology ». *Food Microbiology*, mars. https://doi.org/10.1016/j.fm.2018.03.016.
- Rodrigues, Inês, et Karin Naehrer. 2012. «A Three-Year Survey on the Worldwide Occurrence of Mycotoxins in Feedstuffs and Feed ». *Toxins* 4 (9): 663-75. https://doi.org/10.3390/toxins4090663.
- Rodrigues, P., C. Santos, A. Venâncio, et N. Lima. 2011. «Species Identification of Aspergillus Section Flavi Isolates from Portuguese Almonds Using Phenotypic, Including MALDI-TOF ICMS, and Molecular Approaches ». Journal of Applied Microbiology 111 (4): 877-92. https://doi.org/10.1111/j.1365-2672.2011.05116.x.
- Rokas, A., G. Payne, N. D. Fedorova, S. E. Baker, M. Machida, J. Yu, D. Ryan Georgianna, et al. 2007. «What Can Comparative Genomics Tell Us about Species Concepts in the Genus Aspergillus? » *Studies in Mycology* 59: 11-17. https://doi.org/10.3114/sim.2007.59.02.
- Ropars, Jeanne, Corinne Cruaud, Sandrine Lacoste, et Joëlle Dupont. 2012. « A taxonomic and ecological overview of cheese fungi ». *International Journal of Food Microbiology* 155 (3): 199-210. https://doi.org/10.1016/j.ijfoodmicro.2012.02.005.
- Ropars, Jeanne, Manuela López-Villavicencio, Joëlle Dupont, Alodie Snirc, Guillaume Gillot, Monika Coton, Jean-Luc Jany, Emmanuel Coton, et Tatiana Giraud. 2014.
 « Induction of Sexual Reproduction and Genetic Diversity in the Cheese Fungus Penicillium Roqueforti ». *Evolutionary Applications* 7 (4): 433-41. https://doi.org/10.1111/eva.12140.
- Samson, R. A., K. A. Seifert, A. F. A. Kuijpers, J. Houbraken, et J. C. Frisvad. 2004. « Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences ». *Studies in Mycology* 49: 175-200.
- Samson, Robert A. 2010. Food and Indoor Fungi. CBS-KNAW Fungal Biodiversity Centre.
- Sanguinetti, Maurizio, et Brunella Posteraro. 2014. « MALDI-TOF Mass Spectrometry: Any Use for Aspergilli? » *Mycopathologia* 178 (5-6): 417-26. https://doi.org/10.1007/s11046-014-9757-1.
- Santos, C., R. R. M. Paterson, A. Venâncio, et N. Lima. 2010. «Filamentous Fungal Characterizations by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry ». Journal of Applied Microbiology 108 (2): 375-85. https://doi.org/10.1111/j.1365-2672.2009.04448.x.
- Santos, Juliana Lane Paixão dos, Angélica Olivier Bernardi, Letícia L. Pozza Morassi, Beatriz S. Silva, Marina Venturini Copetti, et Anderson S. Sant'Ana. 2016. « Incidence, populations and diversity of fungi from raw materials, final products and

air of processing environment of multigrain whole meal bread ». Food ResearchInternational87(SupplementC):103-8.https://doi.org/10.1016/j.foodres.2016.07.002.103-8.103-8.

- Sauer, Sascha, Anja Freiwald, Thomas Maier, Michael Kube, Richard Reinhardt, Markus Kostrzewa, et Klaus Geider. 2008. «Classification and Identification of Bacteria by Mass Spectrometry and Computational Analysis ». *PLOS ONE* 3 (7): e2843. https://doi.org/10.1371/journal.pone.0002843.
- Schoch, Conrad L., Barbara Robbertse, Vincent Robert, Duong Vu, Gianluigi Cardinali, Laszlo Irinyi, Wieland Meyer, et al. 2014. «Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi ». *Database: The Journal of Biological Databases and Curation* 2014 (juin). https://doi.org/10.1093/database/bau061.
- Schoch, Conrad L., Keith A. Seifert, Sabine Huhndorf, Vincent Robert, John L. Spouge, C. André Levesque, Wen Chen, et al. 2012. «Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi ». *Proceedings of the National Academy of Sciences* 109 (16): 6241-46. https://doi.org/10.1073/pnas.1117018109.
- Schulthess, Bettina, Raphael Ledermann, Forouhar Mouttet, Andrea Zbinden, Guido V. Bloemberg, Erik C. Böttger, et Michael Hombach. 2014. « Use of the Bruker MALDI Biotyper for Identification of Molds in the Clinical Mycology Laboratory ». *Journal* of Clinical Microbiology 52 (8): 2797-2803. https://doi.org/10.1128/JCM.00049-14.
- Sergeeva, Ya E., L. A. Galanina, G. A. Kochkina, et E. P. Feofilova. 2009. « The Effect of the Preservative Sorbic Acid on the Lipid Composition of the Ascomycete Fungus Penicillium Roqueforti Thom ». *Microbiology* 78 (5): 630-35. https://doi.org/10.1134/S0026261709050166.
- Shapaval, V., J. Schmitt, T. Møretrø, H. P. Suso, I. Skaar, A. W. Åsli, D. Lillehaug, et A. Kohler. 2013. « Characterization of Food Spoilage Fungi by FTIR Spectroscopy ». *Journal of Applied Microbiology* 114 (3): 788-96. https://doi.org/10.1111/jam.12092.
- Singh, Maya Prakash. 2009. « Application of Biolog FF MicroPlate for substrate utilization and metabolite profiling of closely related fungi ». *Journal of Microbiological Methods* 77 (1): 102-8. https://doi.org/10.1016/j.mimet.2009.01.014.
- Sivagnanam, Kumaran, Emy Komatsu, Christoph Rampitsch, Hélène Perreault, et Tom Gräfenhan. 2017. « Rapid Screening of Alternaria Mycotoxins Using MALDI-TOF Mass Spectrometry ». Journal of the Science of Food and Agriculture 97 (1): 357-61. https://doi.org/10.1002/jsfa.7703.
- Sleiman, Sue, Catriona L. Halliday, Belinda Chapman, Mitchell Brown, Joanne Nitschke, Anna F. Lau, et Sharon C.-A. Chen. 2016. « Performance of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium Spp. in the Australian Clinical Setting ». *Journal of Clinical Microbiology* 54 (8): 2182-86. https://doi.org/10.1128/JCM.00906-16.
- Spatafora, Joey. 2011. «1000 Fungal Genomes to Be Sequenced ». Text. décembre 2011. https://www.ingentaconnect.com/content/ima/imafung/2011/00000002/00000002/art0 0002.
- Spatafora, Joseph W., M. Catherine Aime, Igor V. Grigoriev, Francis Martin, Jason E. Stajich, et Meredith Blackwell. 2017. «The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies ». *Microbiology Spectrum* 5 (5). https://doi.org/10.1128/microbiolspec.FUNK-0053-2016.

- Spinali, Sébastien, Alex van Belkum, Richard V. Goering, Victoria Girard, Martin Welker, Marc Van Nuenen, David H. Pincus, Maud Arsac, et Géraldine Durand. 2015.
 « Microbial Typing by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Do We Need Guidance for Data Interpretation? » Journal of Clinical Microbiology 53 (3): 760-65. https://doi.org/10.1128/JCM.01635-14.
- Stanojevic, D., L. Comic, O. Stefanovic, et S. Solujic-Sukdolak. 2009. « Antimicrobial effects of sodium benzoate, sodium nitrite and potassium sobrate and their synergistic action in vitro ». *Bulgarian Journal of Agricultural Science* 15 (4): 307-11.
- Stratford, M., et P. A. Anslow. 1996. «Comparison of the Inhibitory Action on Saccharomyces Cerevisiae of Weak-Acid Preservatives, Uncouplers, and Medium-Chain Fatty Acids ». *FEMS Microbiology Letters* 142 (1): 53-58.
- Stratford, Malcolm, Gerhard Nebe-von-Caron, Hazel Steels, Michaela Novodvorska, Joerg Ueckert, et David B. Archer. 2013. «Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae ». *International Journal of Food Microbiology* 161 (3): 164-71. https://doi.org/10.1016/j.ijfoodmicro.2012.12.013.
- Stratford, Malcolm, Andrew Plumridge, Gerhardt Nebe-von-Caron, et David B. Archer. 2009. «Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory ». *International Journal of Food Microbiology* 136 (1): 37-43. https://doi.org/10.1016/j.ijfoodmicro.2009.09.025.
- Streekstra, Hugo, Alex E. E. Verkennis, Robbert Jacobs, Angelina Dekker, Jacques Stark, et Jan Dijksterhuis. 2016. «Fungal Strains and the Development of Tolerance against Natamycin ». *International Journal of Food Microbiology* 238 (décembre): 15-22. https://doi.org/10.1016/j.ijfoodmicro.2016.08.006.
- Susca, Antonia, Antonio Moretti, Gaetano Stea, Alessandra Villani, Miriam Haidukowski, Antonio Logrieco, et Gary Munkvold. 2014. « Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy ». *International Journal of Food Microbiology* 188 (octobre): 75 -82. https://doi.org/10.1016/j.ijfoodmicro.2014.06.031.
- Tam, Emily W. T., Jonathan H. K. Chen, Eunice C. L. Lau, Antonio H. Y. Ngan, Kitty S. C. Fung, Kim-Chung Lee, Ching-Wan Lam, Kwok-Yung Yuen, Susanna K. P. Lau, et Patrick C. Y. Woo. 2014. «Misidentification of Aspergillus Nomius and Aspergillus Tamarii as Aspergillus Flavus: Characterization by Internal Transcribed Spacer, β-Tubulin, and Calmodulin Gene Sequencing, Metabolic Fingerprinting, and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry ». *Journal of Clinical Microbiology* 52 (4): 1153-60. https://doi.org/10.1128/JCM.03258-13.
- Tolan, Jeffrey S. 2002. « Iogen's Process for Producing Ethanol from Cellulosic Biomass ». *Clean Technologies and Environmental Policy* 3 (4): 339-45. https://doi.org/10.1007/s10098-001-0131-x.
- Torruella, Guifré, Alex de Mendoza, Xavier Grau-Bové, Meritxell Antó, Mark A. Chaplin, Javier del Campo, Laura Eme, et al. 2015. « Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi ». *Current Biology:* CB 25 (18): 2404-10. https://doi.org/10.1016/j.cub.2015.07.053.
- Turner, Nicholas W., Sreenath Subrahmanyam, et Sergey A. Piletsky. 2009. « Analytical Methods for Determination of Mycotoxins: A Review ». Analytica Chimica Acta 632 (2): 168-80. https://doi.org/10.1016/j.aca.2008.11.010.
- Ueda, O., S. Tanaka, Z. Nagasawa, H. Hanaki, T. Shobuike, et H. Miyamoto. 2015. « Development of a novel matrix-assisted laser desorption/ionization time-of-flight mass spectrum (MALDI-TOF-MS)-based typing method to identify meticillin-

resistant Staphylococcus aureus clones ». *Journal of Hospital Infection* 90 (2): 147-55. https://doi.org/10.1016/j.jhin.2014.11.025.

- Usbeck, Julia C., Caroline Wilde, Dave Bertrand, Jürgen Behr, et Rudi F. Vogel. 2014. «Wine Yeast Typing by MALDI-TOF MS». *Applied Microbiology and Biotechnology* 98 (8): 3737-52. https://doi.org/10.1007/s00253-014-5586-x.
- Valencia-Chamorro, Silvia A., María B. Pérez-Gago, Miguel A. Del Río, et Lluís Palou. 2010. « Effect of Antifungal Hydroxypropyl Methylcellulose-Lipid Edible Composite Coatings on Penicillium Decay Development and Postharvest Quality of Cold-Stored "Ortanique" Mandarins ». *Journal of Food Science* 75 (8): S418-26. https://doi.org/10.1111/j.1750-3841.2010.01801.x.
- Varga, J., J. C. Frisvad, S. Kocsubé, B. Brankovics, B. Tóth, G. Szigeti, et R. A. Samson. 2011. «New and revisited species in Aspergillus section Nigri ». *Studies in Mycology*, Taxonomic studies on the genus Aspergillus, 69 (juin): 1-17. https://doi.org/10.3114/sim.2011.69.01.
- Vargha, Márta, Zoltán Takáts, Allan Konopka, et Cindy H. Nakatsu. 2006. « Optimization of MALDI-TOF MS for Strain Level Differentiation of Arthrobacter Isolates ». Journal of Microbiological Methods 66 (3): 399-409. https://doi.org/10.1016/j.mimet.2006.01.006.
- Varma, Ajit, et Amit C. Kharkwal, éd. 2009. *Symbiotic Fungi: Principles and Practice*. Soil Biology. Berlin Heidelberg: Springer-Verlag. //www.springer.com/us/book/9783540958932.
- Vaughan, M., D. Backhouse, et E.M. Del Ponte. 2016. «Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review ». World Mycotoxin Journal 9 (5): 685-700. https://doi.org/10.3920/WMJ2016.2053.
- Vidrih, Rajko, et Janez Hribar. 2016. «Mead: The Oldest Alcoholic Beverage». In *Traditional Foods: General and Consumer Aspects*, édité par Kristberg Kristbergsson et Jorge Oliveira, 325-38. Integrating Food Science and Engineering Knowledge Into the Food Chain. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-7648-2_26.
- Visagie, C. M., J. Houbraken, J. C. Frisvad, S. -B. Hong, C. H. W. Klaassen, G. Perrone, K. A. Seifert, J. Varga, T. Yaguchi, et R. A. Samson. 2014. «Identification and nomenclature of the genus Penicillium ». *Studies in Mycology* 78 (Supplement C): 343-71. https://doi.org/10.1016/j.simyco.2014.09.001.
- Vitale, R., E. Roine, D. H. Bamford, et A. Corcelli. 2013. « Lipid fingerprints of intact viruses by MALDI-TOF/mass spectrometry ». *Biochimica et Biophysica Acta (BBA)* -*Molecular and Cell Biology of Lipids* 1831 (4): 872-79. https://doi.org/10.1016/j.bbalip.2013.01.011.
- Vu, D., M. Groenewald, M. de Vries, T. Gehrmann, B. Stielow, U. Eberhardt, A. Al-Hatmi, et al. 2019. «Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation ». *Studies in Mycology* 92 (mars): 135-54. https://doi.org/10.1016/j.simyco.2018.05.001.
- Wambacq, Eva, Ilse Vanhoutte, Kris Audenaert, Leen De Gelder, et Geert Haesaert. 2016.
 « Occurrence, Prevention and Remediation of Toxigenic Fungi and Mycotoxins in Silage: A Review ». *Journal of the Science of Food and Agriculture* 96 (7): 2284-2302. https://doi.org/10.1002/jsfa.7565.
- Wang, Hwa L., E. W. Swain, et C. W. Hessel Tine. 1975. «MASS PRODUCTION OF Rhizopus Oligosporus SPORES AND THEIR APPLICATION IN TEMPEH

FERMENTATION ». *Journal of Food Science* 40 (1): 168-70. https://doi.org/10.1111/j.1365-2621.1975.tb03762.x.

- Waśkiewicz, A. 2014. « MYCOTOXINS | Natural Occurrence of Mycotoxins in Food ». In Encyclopedia of Food Microbiology (Second Edition), édité par Carl A. Batt et Mary Lou Tortorello, 880-86. Oxford: Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00231-7.
- Welham, K. J., M. A. Domin, K. Johnson, L. Jones, et D. S. Ashton. 2000. « Characterization of Fungal Spores by Laser Desorption/Ionization Time-of-Flight Mass Spectrometry ». *Rapid Communications in Mass Spectrometry* 14 (5): 307-10. https://doi.org/10.1002/(SICI)1097-0231(20000315)14:5<307::AID-RCM823>3.0.CO;2-3.
- Welscher, Yvonne M. te, Hendrik H. ten Napel, Miriam Masià Balagué, Cleiton M. Souza, Howard Riezman, Ben de Kruijff, et Eefjan Breukink. 2008. « Natamycin Blocks Fungal Growth by Binding Specifically to Ergosterol without Permeabilizing the Membrane ». *The Journal of Biological Chemistry* 283 (10): 6393-6401. https://doi.org/10.1074/jbc.M707821200.
- Welscher, Yvonne Maria te, Martin Richard van Leeuwen, Ben de Kruijff, Jan Dijksterhuis, et Eefjan Breukink. 2012. « Polyene Antibiotic That Inhibits Membrane Transport Proteins ». Proceedings of the National Academy of Sciences of the United States of America 109 (28): 11156-59. https://doi.org/10.1073/pnas.1203375109.
- Willis, K. J. 2018. « State of the World's Fungi 2018 ». Royal Botanic Gardens.
- Witkowska, Evelin, Tomasz Jagielski, et Agnieszka Kamińska. 2018. « Genus- and specieslevel identification of dermatophyte fungi by surface-enhanced Raman spectroscopy ». Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 192 (mars): 285-90. https://doi.org/10.1016/j.saa.2017.11.008.
- Wuijckhuijse, A. L. van, M. A. Stowers, W. A. Kleefsman, B. L. M. van Baar, Ch. E. Kientz, et J. C. M. Marijnissen. 2005. « Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: development of a fast detector for airborne biological pathogens ». *Journal of Aerosol Science*, Measurement and Characterization of Bioaerosols, 36 (5): 677-87. https://doi.org/10.1016/j.jaerosci.2004.11.003.
- Xu, Yan, Guangren Pang, Chuanwen Gao, Dongqing Zhao, Lutan Zhou, Shengtao Sun, et Bingliang Wang. 2009. «In Vitro Comparison of the Efficacies of Natamycin and Silver Nitrate against Ocular Fungi ». *Antimicrobial Agents and Chemotherapy* 53 (4): 1636-38. https://doi.org/10.1128/AAC.00697-08.
- Yilmaz, N., C. M. Visagie, J. Houbraken, J. C. Frisvad, et R. A. Samson. 2014. « Polyphasic Taxonomy of the Genus Talaromyces ». *Studies in Mycology* 78 (juin): 175-341. https://doi.org/10.1016/j.simyco.2014.08.001.
- Yogendrarajah, Pratheeba, An Vermeulen, Liesbeth Jacxsens, Evangelia Mavromichali, Sarah De Saeger, Bruno De Meulenaer, et Frank Devlieghere. 2016. « Mycotoxin production and predictive modelling kinetics on the growth of Aspergillus flavus and Aspergillus parasiticus isolates in whole black peppercorns (Piper nigrum L) ». *International Journal of Food Microbiology* 228 (juillet): 44-57. https://doi.org/10.1016/j.ijfoodmicro.2016.03.015.
- Zwietering, M. H., J. C. de Wit, H. G. A. M. Cuppers, et K. van 't Riet. 1994. « Modeling of Bacterial Growth with Shifts in Temperature ». Applied and Environmental Microbiology 60 (1): 204-13.

Valorisations scientifiques

Publications

Quéro L., Girard V., Pawtowski A., Tréguer S., Weill A., Arend S., Cellière B., Polsinelli S., Monnin V., Van Belkum A., Vasseur V., Nodet P., Mounier J., 2018. Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiology, doi: 10.1016/j.fm.2018.05.001

Communications orales

Quéro L., Girard V., Pawtowski A., Arend S., Desforges I., Vasseur V., Nodet P., Mounier J., 2017. Development and application of MALDI-TOF MS for identification of food spoilage fungi. Microbial Spoilers in Food, Quimper, France

Quéro L., Girard V., Pawtowski A., Tréguer S., Weill A., Arend S., Vasseur V., Nodet P., Mounier J., 2018. Développement et application de la spectrométrie de masse MALDI-TOF pour l'identification des moisissures d'intérêt alimentaire. 7^{ème} journées Mycotoxines, Bordeaux, France

Microbial Spoilers in Food 2017, Quimper, France

Development and application of MALDI-TOF MS for identification of food spoilage fungi

QUERO Laura (1), GIRARD Victoria (2), PAWTOWSKI Audrey (1), AREND Sandrine (2), DESFORGES Isabelle (3), VASSEUR Valérie (1), NODET Patrice (1), MOUNIER Jérôme (1)

(1) Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB Technopôle Brest-Iroise, 29280 Plouzané, France;bioMérieux, R&D Microbiologie, route de Port Michaud, 38390 La Balme les Grottes, France

(2) bioMérieux, R&D Microbiologie, route de Port Michaud, 38390 La Balme les Grottes, France

(3) bioMérieux, Marketing scientifique, Chemin de l'Orme, 69280 Marcy l'étoile, France

Presenting author : Laura Quero

KEYWORDS MALDI-TOF MS ; spoilage fungi ; identification

INTRODUCTION

Filamentous fungi are frequently involved in food spoilage and represent a major cause of food and economic losses. Rapid and accurate identification of fungi is a key step to better manage food safety and quality. MALDI-TOF MS has emerged as a powerful tool to identify microorganisms and can be applied to spoilage fungi identification.

MATERIAL & METHODS

The VITEK MS 3.1 industry database already contains 200 fungal species (yeasts and molds). The aim of this project is to implement in this database additional species of filamentous fungi responsible for spoilage of various foods including agricultural, dairy and bakery products. These 150 additional species, covering 30 genera, were selected based on scientific literature and customer feedback. Following a rapid extraction step, spectra were acquired on a minimum of 5 fungal strains per species, after incubation for 2 and 8 days on 4 media commonly used for food mycological analysis. The performance of this database was then evaluated by cross-validation.

RESULTS

So far, 3000 spectra from 50 species were successfully acquired and integrated in the database. Overall, 95% correct identifications to the species level were obtained by cross-validation, independently of the cultivation medium and incubation time. Integration of the other fungal species is ongoing and an external database evaluation will also be performed.

SIGNIFICANCE

MALDI-TOF MS is an attractive solution with high added-value for industrials to identify spoilage fungi.

Développement et application de la spectrométrie de masse MALDI-TOF pour l'identification des moisissures d'intérêt alimentaire

Laura Quéro^{1,2}, Victoria Girard², Audrey Pawtowski¹, Sylvie Tréguer¹, Amélie Weill^{1,3}, Sandrine Arend², Valérie Vasseur¹, Patrice Nodet¹, Jérôme Mounier¹

1- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB Technopôle Brest-Iroise, 29280 Plouzané, France 2- bioMérieux, R&D Microbiologie, route de Port Michaud, 38390 La Balme les Grottes, France

3- Université de Bretagne Occidentale Culture Collection, Université de Brest, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France

laura.quero@biomerieux.com

Résumé

Les moisissures peuvent être impliquées dans l'altération des matières premières et des aliments transformés et sont responsables de gaspillage alimentaire, de pertes économiques importantes mais peuvent aussi présenter un danger pour la santé humaine et animale avec la production potentielle de mycotoxines. C'est pourquoi leur identification fiable et rapide est une étape clé pour garantir la qualité et la sécurité des denrées alimentaires. Dans ce contexte, la spectrométrie de masse MALDI-TOF constitue un outil efficace pour l'identification des micro-organismes et plus particulièrement les moisissures d'intérêt alimentaire. La base de données VITEK MS 3.1 (bioMérieux, Marcy l'Etoile), dédiée à l'identification des microorganismes par spectrométrie de masse MALDI-TOF, comprend actuellement 200 espèces fongiques d'intérêt médical. Le but de ce travail était d'augmenter cette base de données en intégrant des espèces fongiques d'intérêt alimentaire comme celles retrouvées par exemple dans les produits de boulangerie, les produits laitiers ou les céréales. Ainsi, 150 espèces supplémentaires, correspondant à 30 genres différents, ont été sélectionnées sur la base de leur présence dans les aliments contaminés et de leur capacité à produire des mycotoxines. Après un protocole d'extraction rapide, les spectres ont été acquis pour au moins 5 souches par espèce, après croissance pendant 2 et 8 jours sur 4 milieux différents fréquemment utilisés en mycologie alimentaire. Les performances de la base de données contenant ces espèces supplémentaires ont été estimées par crossvalidation puis validées en testant un jeu de données externes. A ce stade de l'étude, 6000 spectres issus de 130 espèces fongiques ont été acquis et intégrés à la base de données. Plus de 90% d'identifications correctes à l'espèce ont été obtenus lors de l'estimation des performances de celle-ci par crossvalidation. La base de données a également été évaluée avec succès pour l'identification de souches externes (90% d'identification correcte pour les espèces revendiquées). L'analyse des résultats a également permis d'éliminer un effet milieu ou temps de culture sur les performances d'identification. La spectrométrie de masse MALDI-TOF est donc une solution rapide et fiable pour l'identification des champignons filamenteux retrouvés dans les denrées alimentaires et l'environnement industriel.

Mots-clés : Spectrométrie de masse MALDI-TOF, moisissures, altérations alimentaires, identification.

UNIVERSITE / ECOLOGIE BRETAGNE \ GEOSCIENCES LOIRE / AGRONOMIE ALIMENTATION

Titre : Développement de la spectrométrie de masse MALDI-TOF pour l'identification des champignons filamenteux d'intérêt alimentaire et étude de leur résistance aux molécules biocides

Mots clés : Moisissures d'altération, identification, spectrométrie de masse MALDI-TOF, complexes d'espèces, néphélométrie laser, croissance

Résumé : Les moisissures d'altération sont à l'origine de pertes alimentaires et économiques importantes et certaines espèces peuvent présenter un danger pour la santé humaine et animale avec la production de mycotoxines. Dans ce contexte, la maîtrise de la qualité et de la sécurité des aliments passe par une bonne connaissance des espèces impliquées. Cette connaissance repose sur une identification fiable et rapide et l'obtention d'informations sur les facteurs abiotiques impactant leur développement, tels que les conservateurs, largement utilisés dans l'industrie. Dans ce cadre, les objectifs de thèse de développer l'utilisation étaient de la spectrométrie de masse MALDI-TOF pour l'identification des moisissures et d'évaluer son application à la résolution de complexe d'espèces et au typage, et enfin d'évaluer la néphélométrie laser pour mesurer en haut-débit leur croissance en présence de conservateurs.

Dans un premier temps, une base de données robuste a été construite avec près de 6500 spectres correspondant à 136 espèces fongiques. Dans un deuxième temps, la technique MALDI-TOF a été appliquée avec succès à la différenciation de 23 espèces du complexe Aspergillus section Flavi et a permis différencier des isolats de Penicillium roqueforti appartenant à 3 populations génétiquement différenciées. Enfin, la néphélométrie laser a permis un suivi haut-débit de la croissance de 14 espèces fongiques d'altération en présence de 3 conservateurs et ainsi d'obtenir des informations sur les concentrations minimales inhibitrices de derniers. Ces travaux ont démontré ces de techniques l'applicabilité alternatives permettant d'identifier et de caractériser les moisissures d'altération.

Title : Development of MALDI-TOF MS to identify filamentous fungi and study of their resistance towards biocidal molecules

Keywords : Food spoilage fungi, identification, typing, MALDI-TOF, laser nephelometry, growth

Abstract : Spoilage fungi represent a major cause of food and economic losses and certain species, which may produce mycotoxins, may also pose a threat to human and animal health. Thus, food safety and quality management relies notably on a good knowledge of the involved species. This knowledge is notably based on their fast and reliable identification and on the study of abiotic factors affecting their growth such as food preservatives, which are commonly used in the food industry. In this context, the objectives of this PhD. thesis were to develop MALDI-TOF mass spectrometry for mold identification and to evaluate its potential for species complex differentiation and strain typing, and finally, to evaluate the use of laser nephelometry to monitor fungal growth in the presence of food preservatives.

First, a robust database was developed with 6500 spectra corresponding to 136 spoilage fungi. Then, MALDI-TOF MS was successfully applied to differentiate 23 species of Aspergillus section Flavi and Penicillium roqueforti isolates belonging to 3 genetically distinct populations. Finally, in 14 fungal species, laser nephelometry allowed a high-throughput monitoring of their growth after exposition to 3 different food preservatives and the determination of their associated minimal inhibitory concentrations. Overall, the obtained results demonstrate the of usefulness alternative techniques for identification and characterization of food spoilage fungi.