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Chance Constrained Problem and Its

Applications

A dissertation submitted to

Université Paris Sud
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Résumé

L’incertitude est une propriété naturelle des systèmes complexes. Les paramètres
de certains modèles peuvent être imprécis ; la présence de perturbations aléatoires
est une source majeure d’incertitude pouvant avoir un impact important sur les
performances du système. L’optimisation sous contraintes en probabilités est une
approche naturelle et largement utilisée pour fournir des décisions robustes dans
des conditions d’incertitude. Dans cette thèse, nous étudierons systématiquement
les problèmes d’optimisation avec contraintes en probabilités dans les cas suivants
:

En tant que base des problèmes stochastiques, nous passons d’abord en revue
les principaux résultats de recherche relatifs aux contraintes en probabilités selon
trois perspectives: les problèmes liés à la convexité en présence de contraintes
probabilistes, les reformulations et les approximations de ces contraintes, et les
contraintes en probabilités dans le cadre de l’optimisation distributionnellement
robuste.

Pour les problèmes d’optimisation géométriques stochastiques, nous étudions
les programmes avec contraintes en probabilités géométriques rectangulaires joint-
es. A l’aide d’hypothèses d’indépendance des variables aléatoires elliptiquement
distribuées, nous déduisons une reformulation des programmes à contraintes géom-
étriques rectangulaires jointes. Comme la reformulation n’est pas convexe, nous
proposons de nouvelles approximations convexes basées sur la transformation des
variables ainsi que des méthodes d’approximation linéaire par morceaux. Nos
résultats numériques montrent que nos approximations sont asymptotiquement
serrées.

Lorsque les distributions de probabilité ne sont pas connues à l’avance ou que
la reformulation des contraintes probabilistes est difficile à obtenir, des bornes
obtenues à partir des contraintes en probabilités peuvent être très utiles. Par
conséquent, nous développons quatre bornes supérieures pour les contraintes
probabilistes individuelles, et jointes dont les vecteur-lignes de la matrice des con-
traintes sont indépendantes. Sur la base de l’inégalité unilatérale de Chebyshev,
de l’inégalité de Chernoff, de l’inégalité de Bernstein et de l’inégalité de Hoeffding,
nous proposons des approximations déterministes des contraintes probabilistes.
En outre, quelques conditions suffisantes dans lesquelles les approximations sus-
mentionnées sont convexes et solvables de manière efficace sont déduites. Pour
réduire davantage la complexité des calculs, nous reformulons les approxima-
tions sous forme de problèmes d’optimisation convexes solvables basés sur des
approximations linéaires et tangentielles par morceaux. Enfin, des expériences
numériques sont menées afin de montrer la qualité des approximations déterminis-
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tes étudiées sur des données générées aléatoirement.
Dans certains systèmes complexes, la distribution des paramètres aléatoires

n’est que partiellement connue. Pour traiter les incertitudes complexes en ter-
mes de distribution et de données d’échantillonnage, nous proposons un ensem-
ble d’incertitude basé sur des données obtenues à partir de distributions mixtes.
L’ensemble d’incertitude basé sur les distributions mixtes est construit dans la
perspective d’estimer simultanément des moments d’ordre supérieur. Ensuite,
à partir de cet ensemble d’incertitude, nous proposons une reformulation du
problème robuste avec contraintes en probabilités en utilisant des données issues
d’échantillonnage. Comme la reformulation n’est pas un programme convexe,
nous proposons des approximations nouvelles et convexes serrées basées sur la
méthode d’approximation linéaire par morceaux sous certaines conditions. Pour
le cas général, nous proposons une approximation DC pour dériver une borne
supérieure et une approximation convexe relaxée pour dériver une borne inférieure
pour la valeur de la solution optimale du problème initial. Nous établissons
également le fondement théorique de ces approximations. Enfin, des expériences
numériques sont effectuées pour montrer que les approximations proposées sont
pratiques et efficaces.

Nous considérons enfin un jeu stochastique à n joueurs non-coopératif. Lorsque
l’ensemble de stratégies de chaque joueur contient un ensemble de contraintes
linéaires stochastiques, nous modélisons les contraintes linéaires stochastiques de
chaque joueur sous la forme de contraintes en probabilité jointes. Pour chaque
joueur, nous supposons que les vecteurs lignes de la matrice définissant les con-
traintes stochastiques sont indépendants les unes des autres. Ensuite, nous for-
mulons les contraintes en probabilité dont les variables aléatoires sont soit nor-
malement distribuées, soit elliptiquement distribuées, soit encore définies dans le
cadre de l’optimisation distributionnellement robuste. Sous certaines conditions,
nous montrons l’existence d’un équilibre de Nash pour ces jeux stochastiques.
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Abstract

Uncertainty is a natural property of complex systems. Imprecise model parame-
ters and random disturbances are major sources of uncertainties which may have
a severe impact on the performance of the system. The target of optimization
under uncertainty is to provide profitable and reliable decisions for systems with
such uncertainties. Ensuring reliability means satisfying specific constraints of
such systems. An appropriate treatment of inequality constraints of a system
influenced by uncertain variables is required for the formulation of optimization
problems under uncertainty. Therefore, chance constrained optimization is a nat-
ural and widely used approaches for this purpose. Moreover, the topics around
the theory and applications of chance constrained problems are interesting and
attractive.

Chance constrained problems have been developed for more than four decades.
However, there are still some important issues requiring non-trivial efforts to
solve. In view of this, we will systematically investigate chance constrained prob-
lems from the following perspectives.

(1) As the basis for chance constrained problems, we first review some main re-
search results about chance constraints in three perspectives: convexity of chance
constraints, reformulations and approximations for chance constraints and distri-
butionally robust chance constraints. Since convexity is fundamental for chance
constrained problems, we introduce some basic mathematical definitions and the-
ories about the convexity of large classes of chance constrained problems. Then,
we state some tractable convex reformulations and approximations for chance
constrained problems. For distributionally robust optimization, we illustrate mo-
ments based uncertainty set, and distance based uncertainty set and show their
applications in distributionally robust chance constrained problems, respectively.

(2) For stochastic geometric programs, we first review a research work about
joint chance constrained geometric programs with normal distribution and in-
dependent assumptions. As an extension, when the stochastic geometric pro-
gram has rectangular constraints, we formulate it as a joint rectangular geometric
chance constrained program. With elliptically distributed and pairwise indepen-
dent assumptions for stochastic parameters, we derive a reformulation of the joint
rectangular geometric chance constrained programs. As the reformulation is not
convex, we propose new convex approximations based on the variable transfor-
mation together with piecewise linear approximation methods. Our numerical
results show that our approximations are asymptotically tight.

(3) When the probability distributions are not known in advance or the refor-
mulation for chance constraints is hard to obtain, bounds on chance constraints
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can be very useful. Therefore, we develop four upper bounds for individual and
joint chance constraints with independent matrix vector rows. Based on the one-
side Chebyshev inequality, Chernoff inequality, Bernstein inequality and Hoeffd-
ing inequality, we propose deterministic approximations for chance constraints.
In addition, various sufficient conditions under which the aforementioned ap-
proximations are convex and tractable are derived. Therefore, to reduce further
computational complexity, we reformulate the approximations as tractable con-
vex optimization problems based on piecewise linear and tangent approximations.
Finally, based on randomly generated data, numerical experiments are discussed
in order to identify the tight deterministic approximations.

(4) In some complex systems, the distribution of the random parameters is
only known partially. To deal with the complex uncertainties in terms of the dis-
tribution and sample data, we propose a data-driven mixture distribution based
uncertainty set. The data-driven mixture distribution based uncertainty set is
constructed from the perspective of simultaneously estimating higher order mo-
ments. Then, with the mixture distribution based uncertainty set, we derive
a reformulation of the data-driven robust chance constrained problem. As the
reformulation is not a convex program, we propose new and tight convex ap-
proximations based on the piecewise linear approximation method under certain
conditions. For the general case, we propose a DC approximation to derive an
upper bound and a relaxed convex approximation to derive a lower bound for the
optimal value of the original problem, respectively. We also establish the theo-
retical foundation for these approximations. Finally, simulation experiments are
carried out to show that the proposed approximations are practical and efficient.

(5) We consider a stochastic n-player non-cooperative game. When the strat-
egy set of each player contains a set of stochastic linear constraints, we model
the stochastic linear constraints of each player as a joint chance constraint. For
each player, we assume that the row vectors of the matrix defining the stochastic
constraints are pairwise independent. Then, we formulate the chance constraints
with the viewpoints of normal distribution, elliptical distribution and distribu-
tionally robustness, respectively. Under certain conditions, we show the existence
of a Nash equilibrium for the stochastic game.
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Chapter 1

Introduction

Consider the following constrained optimization problem:

min
x

g (x)

s.t. c1(x, ξ) ≤ 0, · · · , cd(x, ξ) ≤ 0,
x ∈X,

(1.1)

where X ∈ Rm is a deterministic set, x ∈ X is the decision vector, ξ is
a k-dimensional parameter vector, g (x) : Rn → R and ci (x, ξ) : Rn+k →
R, i = 1, · · · , d, are real value functions. Furthermore, we assume that g (x)
and ci (x, ξ) , i = 1, · · · , d are convex in x and X is a compact and convex set.
Then, problem (1.1) is a constrained convex optimization problem. This kind of
problem has broad applications in communications and networks, product design,
system control, statistics, and finance, and it can be solved efficiently.

However, in many practical problems, the parameter ξ of problem (1.1) might
be uncertain. If we ignore the uncertainty, such as using the expectation of ξ,
the obtained optimal solution might be infeasible with high probability.

To take the uncertainty into consideration, we can formulate the problem as
a chance constrained optimization problem:

min
x

g (x)

s.t. PF {c1(x, ξ) ≤ 0, · · · , cd(x, ξ) ≤ 0} ≥ ε,
x ∈X,

(1.2)

where ξ is a random vector defined on some probability space (Ω,F ,P), F is the
joint probability distribution function of the random vector ξ and ε ∈ (0, 1) is the
tolerance probability, say, 0.95 or 0.99. Therefore, the solution to problem (1.2)
is guaranteed to be a feasible solution to the original problem (1.1) with a proba-
bility at least ε. Problem (1.2) is called a joint chance constrained problem, and
the chance constraint is called a joint chance constraint. When d = 1, problem
(1.2) is called an individual chance constrained problem because it requires only
a single constraint to be satisfied with probability ε.

Chance (probabilistic) constrained optimization problems were firstly pro-
posed by Charnes et al.[17] and Miller and Wagner [75]. In the paper of Charnes
et al. [17], chance constraints are imposed individually on each constraint involv-
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ing random variables. The paper by Miller and Wagner [75] takes the chance
constraint jointly on the stochastic constraints but handles only independent
random variables appearing on the right hand sides of the stochastic constraints.
Prékopa [87] initiated the research on this topic, where the chance constraint is
taken jointly for the stochastic constraints and the random variables involved are
stochastically dependent, in general. Applications of probabilistic constraints are
substantial in engineering and finance. For an overview on the theory, solution
and applications of chance constrained optimization problems, one can refer to
the monographs [13], [89] and [96].

1.1 Convexity

A fundamental issue for chance constrained problems is the convexity of chance
constraints, which is widely considered as a considerable difficulty. Both from
theoretical and computational perspectives, it was recognized that chance con-
strained problems are hard to treat. Van de Panne and Popp [79] proposed a
solution method for a linear chance constrained problem with one-row normally
distributed constraint, transformed to a nonlinear convex constraint. Kataoka
[59] studied an individual chance constrained problem with random right-hand
side following a normal distribution.

Apart from the above simple problems, chance constrained problems often
lead to a non-convex feasible solution set. Various conditions and techniques were
developed to handle this issue. Miller and Wagner [75] considered a joint chance
constrained model with independent random right-hand side. The convexity of
their problem is ensured when the probability distribution possesses a property
of decreasing reversed hazard function. Jagannathan [56] extended this result to
the dependent case, and also considered a linear joint chance constrained problem
with normally distributed independent rows.

Prékopa [88] made an essential step by proving the convexity of the feasi-
ble solution set of linear chance constrained problems with dependent random
right-hand sides in the chance constraint when the probability distribution is
logarithmically concave. This kind of distributions include normal, Wishart and
Dirichlet distributions. Borell [9] and Brascamp and Lieb [11] generalized loga-
rithmical concavity to a concept called r-concave measures. A generalized defini-
tion of r-concave function on set, which is also suitable for discrete distributions,
was proposed by Dentcheva et al. [28]. Concretely, Calafiore and El Ghaoui [15]
reformulated an individual chance constraint as a second order cone constraint
by using a similar notion of Q-radial distribution.

Despite this progress, the problem of convexity remains to be a big challenge
for chance constrained problems, especially for joint chance constrained prob-
lems. However, there are still some extensions about the convexity. Prékopa et
al. [90] asserted that a joint linear chance constrained problem is convex if the
rows are independently normally distributed and the covariances matrices of the
rows are constant multiples of each other. Henrion [49] gave a completely struc-
tural description of the feasible solution set defined by individual linear chance
constraints, which can be seen as a more promising direction. Following this
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direction, by using the r-concavity and introducing a notion of r-decreasing func-
tion, Henrion and Strugarek [50] further proved the convexity of joint chance
constraints with independent random variables separated from decision vectors.
For the dependent case with random right-hand side, Henrion and Strugarek [51]
and Ackooij [1] extended the result by using the theory of copulas, respectively,
while Houda [54] considered the dependent case by using a variation to the mixing
coefficient. In addition, handling the dependence of the random vectors by copu-
las, Cheng et al. [23] proposed a mixed integer linear reformulation and provide
an efficient semidefinite relaxation of 0–1 quadratic programs with joint prob-
abilistic constraints. Lagoa et al. [62] proved the convexity when the random
vector have a log-concave symmetric distribution. Recently, Lubin et al. [66]
showed the convexity of two-sided chance constrained program when ξ follows
normal (or log-concave) distribution.

1.2 Reformulations and approximations for Chance

Constraints

Generally, the probability associated with chance constraints is difficult to com-
pute due to the multiple integrals. For this reason, many equivalent reformula-
tions for chance constraints or their approximations have been proposed. When
the random vector ξ in individual linear chance constraints follows normal dis-
tribution, elliptical distribution or radial distribution, the chance constraint in
the individual linear chance constrained problem can be reformulated as a sec-
ond order conic programming (SOCP) constraint ([15, 49, 56, 88]). For the joint
linear chance constrained problem with normally distributed coefficients and in-
dependent matrix rows, Cheng and Lisser [24] proposed SOCP approximations
by using piecewise linear and piecewise tangent approximations. And for the joint
chance constrained geometric programming problem with independent normally
distributed parameters, Liu et al [65] derived asymptotically tight geometric pro-
gramming approximations based on variable transformation and piecewise linear
approximations. Using Archimedean copula, Cheng et al. [22] considered ellipti-
cally distributed joint linear chance constraints with dependent rows and derived
SOCP approximation schemes. Luedtke and Ahmed [68] constructed a mixed in-
teger linear programming reformulation for joint linear chance constrained prob-
lems when the random vector has finite support.

In order to solve chance constrained problems efficiently, we need both the
convexity of the corresponding feasible set and efficient computability of the con-
sidered probability [76]. This combination is rare, and very few are the cases in
which a chance constraint can be processed efficiently (see [28, 62, 91]). When-
ever this is the case, tractable approximations of chance constraints can be very
useful in practice.

A computationally tractable approximation of chance constrained problems
is given by the scenario approach, based on Monte Carlo sampling techniques.
With this kind of techniques, one can recur to approximate solutions based on
constraint sampling. And the constraint consists in taking into account only
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a finite set of constraints, chosen at random among the possible continuum of
constraint instances of the uncertainty. The attractive feature of this method
is to provide explicit bounds on the measure of the original constraints that are
possibly violated by the randomized solution. The properties of the solutions pro-
vided by this approach, called scenario approach, have been studied in [12, 16, 40],
where it has been shown that most of the constraints of the original problem are
satisfied provided that the number of samples is sufficiently large. The constraint
sampling method has been extensively studied within the chance constraint ap-
proach through different directions by [36] and [78]. More concretely, Nemirovski
and Shapiro [77] solved joint linear chance constrained problems through sce-
nario approximation and studied the conditions under which the solution of the
approximation problem is feasible for the original problem with high probability.
By using the sample approximation method, Luedtke and Ahmed [67] derived
the minimal sample size and the probability requirement such that a solution
of the approximate problem is feasible for the original joint chance constrained
problem. Based on Monte Carlo sampling techniques, Hong, Yang and Zhang
[53] proposed a difference of convex (DC) functions approximation for the joint
nonlinear chance constrained problem, and solved it by a sequence of convex
approximations.

Besides the scenario approximation approach, Ben-Tal and Nemirovski [6]
proposed a conservative convex approximation, which includes the quadratic ap-
proximation for individual linear chance constraints. Nemirovski and Shapiro [76]
provided the CVaR approximation and Bernstein approximation for individual
chance constraints.

An alternative to the above approximated approaches consists in providing
bounds based on using deterministic analytical approximations of chance con-
straints. For the case of individual chance constraint, the bounds are mainly
based on extensions of Chebyshev inequality together with the first two moments
[8, 52, 85]. For joint chance constraints, deterministic equivalent approximations
have been widely studied in [23, 24, 25, 65, 99].

In the literature, several bounding techniques have been proposed for two-
stage and multistage stochastic programs with expectation (see for instance [8,
84]). This class of problems brings computational complexity which increases
exponentially with the size of the scenario tree, representing a discretization of
the underlying random process. Even if a large discrete tree model is constructed,
the problem might be untractable due to the curse of dimensionality. In this
situation, easy-to-compute bounds have been proposed in the literature (see for
instance [2, 37, 70, 71, 72]) by solving small size problems.

1.3 Distributionally Robust Chance Constrained

Problems

In many practical situations, one can only obtain the partial information about
the probability distribution of ξ. If we replace the real distribution by an esti-
mated one, the obtained optimal solution may be infeasible in practice with high
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probability [108]. For this reason, the distributionally robust chance constrained
problems are proposed in [15, 36, 108].

min
x

g (x)

s.t. inf
F∈D

PF {c1(x, ξ) ≤ 0, · · · , cd(x, ξ) ≤ 0} ≥ ε,

x ∈X,

(1.3)

where D is an uncertainty set of the joint probability distribution F .

Early uncertainty sets of distribution are based on exact moments information
of the random parameter. With this kind of uncertainty sets, El Ghaoui et al. [35],
Popescu [86] and Chen et al. [18] studied the distributionally robust counterparts
of many risk measures and expected value functions. Calafiore and El Ghaoui
[15] reformulated a distributionally robust individual linear chance constrained
problem as a SOCP problem with known mean and covariance. Zymler et al.[108]
approximated the distributionally robust joint chance constrained problem as a
tractable semidefinite programming (SDP) problem, and the authors prove that
the proposed SDP is a reformulation when the chance constraint is individual.
Li et al. [63] studied a single chance constraint with known first and second
moments and unimodality of the distributions.

Considering the uncertainties in terms of the distribution and of the first two
order moments, Delage and Ye [27] introduced the uncertainty set characterized
by an elliptical constraint and a linear matrix inequality. Based on that, they
transformed expected utility problems into optimization problems with linear ma-
trix inequality constraints. Cheng et al.[21] established a distributionlly robust
chance constrained knapsack problem where the first order moment is fixed and
the second order moment in the uncertainty set is contained in an elliptical set.
Yang and Xu [103] showed that the distributionally robust chance constrained
optimization is tractable if the uncertainty set is characterized by its mean and
variance in a given set, and the constraint function is concave with respect to the
decision variables and quasi-convex with respect to the uncertain parameters. In
addition, Zhang et al. [104] developed a SOCP reformulation for a distributional
family subject to an elliptical constraint and a linear matrix inequality. More-
over, Xie and Ahmed [102] showed that a distributionally robust joint chance
constrained optimization problem is convex when the uncertainty set is specified
by convex moment constraints.

Except for the above two kinds of uncertainty sets, Hanasusanto et al. [48]
studied distributionally robust chance constraints where the distribution of un-
certain parameters belongs to an uncertainty set characterized by the mean, the
support and the dispersion information instead of the second order moment.

It is well known that the distributions of financial security returns are often
skewed with high leptokurtic ([29]). This suggests to consider higher moments
(especially skewness and kurtosis) in some realistic models. A tractable way to
take higher order moments into consideration is to adopt the mixture distribution
framework. Simply speaking, a mixture distribution is a convex combination of
some component distributions. In this aspect, Hanasusanto et al.[46] considered a
risk-averse newsvendor model where the demand distribution is supposed to be a
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mixture distribution with known weights and unknown component distributions.
Zhu and Fukushima [107] considered a robust portfolio selection problem with
the finite normal mixture distribution, where the unknown mixture weights are
restricted in linear or elliptical uncertainty sets.

However, for quite a few complex decision making problems under uncertainty,
the precise knowledge about the necessary partial information is rarely available
in reality. Hence, a strategy based on erroneous inputs might be infeasible or
exhibit poor performance when implemented. To deal with such complex decision
problems, a new framework called ’data-driven’ robust optimization is proposed.
This new scheme directly uses the observations of random variables as the inputs
to the mathematical programming model and is now receiving particular attention
in operations research community.

Basically, there are two kinds of data-driven approaches for distributionally
robust optimizations. The first one estimates the parameters in an uncertainty set
through statistical methods. For example, from the parametric estimation per-
spective, Delage and Ye [27] showed that the uncertainty set characterizing the
uncertainties of first and second order moments can be estimated through statisti-
cal confidence regions, which can be calculated directly from the data. Bertsimas
et al. [7] proposed a systematic scheme for estimating uncertainty sets from data
by using statistical hypothesis tests. And they proved that robust optimization
problems over each of their uncertainty sets are generally tractable. However, as
far as we know, the tractable data-driven uncertainty sets can only characterize
the first and the second moments. From the non-parametric perspective, Zhu
et al.[106] showed that the data-driven uncertainty sets of mixture distribution
weights can be estimated through Bayesian learning. Recently, Gupta [43] pro-
posed a near-optimal Bayesian uncertainty set, which is smaller than uncertainty
sets based on statistical confidence regions.

The second kind of data-driven approaches directly characterizes the uncer-
tainty of a distribution through a probabilistic distance, and thus forms a new
type of data-driven uncertainty sets. One of the most frequently used data-driven
uncertainty sets is characterized by the distance function based on probability
density, such as φ-divergence and Wasserstein distance. By utilizing sophisti-
cated probabilistic measures, Ben-Tal et al.[4] proposed a class of data-driven
uncertainty sets based on φ-divergences. Hu and Hong [55] studied distribu-
tionally robust individual chance constrained optimization problems where the
uncertainty set of the probability distribution is defined by the Kullback-Leibler
divergence, which is a special case of φ-divergences, the authors showed that the
distributionally robust chance-constrained problem can be reformulated as the
chance constrained problem with an adjusted confidence level. Jiang and Guan
[57] considered a family of density-based uncertainty sets based on φ-divergence
and proved that a distributionally robust joint linear chance constraint is equiv-
alent to a chance constraint with a perturbed risk level. Recently, Esfahani and
Kuhn [38] and Zhao and Guan [105] showed that under certain conditions, the
distributionally robust expected utility optimization problem with Wasserstein
distance is tractable. On the other hand, Hanasusanto et al. [47] showed that
the distributionally robust joint linear chance constrained program with the un-
certainty set characterized by Wasserstein distance is strongly NP-hard.
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1.4 Contribution and Outline of the Disserta-

tion

Motivated by the literature review, we conduct a systematic research in this
dissertation on chance constrained problem and its applications. The main work
of this dissertation is stated as following:

(1) First of all, as the basic knowledge of chance constrained problems, we
review some standard work about chance constraints in Chapter 2. We firstly
state some mathematical theories about convexity of large classes of chance con-
strained problems. Then, we review some standard research results about convex
reformulations and solvable approximations for chance constraints. These results
are fundamental for solving chance constrained problems. At last, we introduce
moments based uncertainty set and distance based uncertainty set, which are
important and popular uncertainty sets in research about distributionally robust
chance constrained problems.

(2) Chance constrained geometric programs play an important role in many
practical problems. Therefore, as a first step, we first review the recent results
about geometric programs with joint chance constraints, where the stochastic
parameters are normally distributed and independent of each other. To extend
this work, we discuss joint rectangular geometric chance constrained programs
under elliptical distribution with independent components. With standard vari-
able transformation, a convex reformulation of rectangular geometric chance con-
strained programs can be derived. As for the quantile function of elliptical dis-
tribution in the reformulation, we propose convex approximations with piecewise
linear approximation method, which are asymptotically tight approximations.
This result is discussed in Chapter 3.

(3) As equivalent reformulations of chance constrained problems are hard to
obtained in most cases, finding bounds of chance constraints is a tractable and fea-
sible approach for solving chance constrained problems. From this viewpoint, we
develop bounds for individual and joint chance constrained problems with inde-
pendent matrix vector rows. The deterministic bounds of chance constraints are
based on the one-side Chebyshev inequality, Chernoff inequality, Bernstein and
Hoeffding inequalities, respectively. Under various sufficient conditions related to
the confidence parameter value, we show that the aforementioned approximations
are convex and tractable. To obtain the approximations by applying probability
inequalities, Chebyshev inequality requires the knowledge of the first and second
moments of the random variables while Bernstein and Hoeffding ones require their
mean and their support. On the contrary, Chernoff inequality requires only the
moment generating function of the random variables. In order to reduce further
the computational complexity of the problem, we propose approximations based
on piecewise linear and tangent. This work is illustrated precisely in Chapter 4.

(4) For data-driven robust optimization problems, to catch the fat-tailness,
skewness and high leptokurticness properties of the random variables, we con-
struct a data-driven mixture distribution based uncertainty set, which can char-
acterize higher order moments information from data. Such a data-driven un-
certainty set can more efficiently match non-Guassian characters of real random
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variables. Then, with the data-driven mixture distribution based uncertainty set,
we study a distributionally robust individual linear chance constrained problem.
Under certain conditions of parameters, the distributionally robust chance con-
strained problem can be reformulated as a convex programming problem. As the
convex equivalent reformulation contains a quantile function, we further propose
two approximations leading to tight upper and lower bounds. Moreover, under
much weaker conditions, the distributionally robust chance constrained problem
can be reformulated as a DC programming problem. In this case, we propose
a sequence convex approximation method to find a tight upper bound, and use
relaxed convex approximation method to find a lower bound. This work is shown
in Chapter 5.

(5) As an application of chance constrained problems, we consider an n-player
non-cooperative game with stochastic strategy sets, which is constructed by a set
of stochastic linear constraints. For each player, the stochastic linear constraint
is formulated as a joint chance constraint. In addition, we further assume that
each random vector of the matrix defining stochastic linear constraints is pairwise
independent. Under certain conditions, we propose new convex reformulations
for the joint chance constraints, following normally, elliptically distributed and
distributionally robust framework, respectively. We show that there exists a Nash
equilibrium of such a chance constrained game if the payoff function of each player
satisfies certain assumptions. This part of work is stated in Chapter 6.

In Chapter 7, we conclude the main work of this dissertation and develop a
discussion on open issues and questions and future work.
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Chapter 2

Chance Constraints

In this chapter, we summarize some standard work about chance constraints.
We first introduce some mathematical theories which can be used to prove the
convexity of large classes of chance constrained problems. Then, we state some
convex reformulations and approximations for chance constraints which lead to
chance constrained problems tractable. Finally, we discuss distributionally robust
chance constrained problems with moments based uncertainty set and distance
based uncertainty set.

2.1 α-concave measures and convexity of chance

constraints

Logconcave measure was introduced by Prékopa [88] in the stochastic program-
ming framework but they became widely used also in statistics, convex geometry,
mathematical analysis, economics, etc.

Definition 2.1. A function f(z) ≥ 0, z ∈ Rn, is said to be logarithmically concave
(logconcave), if for any z1, z2 and 0 < λ < 1 we have the inequality

f(λz1 + (1− λ)z2) ≥ [f(z1)]λ [f(z2)](1−λ) . (2.1)

If f(z) > 0 for z ∈ Rn, then this means that log f(z) is a convex function in Rn.

Definition 2.2. A probability measure defined on the Borel sets of Rn is said to
be logarithmically concave (logconcave) if for any convex subsets of Rn: A,B and
0 < λ < 1 we have the inequality

P(λA+ (1− λ)B) ≥ [P(A)]λ [P(B)](1−λ) , (2.2)

where λA+ (1− λ)B = {z = λx+ (1− λ)y|x ∈ A, y ∈ B}.

Theorem 2.1. If the probability measure P is absolutely continuous with respect
to Lebesgue measure and is generated by a logconcave probability density function
then the measure P is logconcave.

In [88], Prékopa also proved the following simple consequences of Theorem
2.1.
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Theorem 2.2. If P is a logconcave probability distribution and A ∈ Rn is a
convex set, then P(A+ x), x ∈ Rn, is a logconcave function.

Theorem 2.3. If ξ ∈ Rn is a random variable, whose probability distribution
is logconcave, then the probability distribution function F (x) = P(ξ ≤ x) is a
logconcave function in Rn.

Theorem 2.4. If n = 1 in Theorem 2.3 then also 1 − F (x) = P(ξ > x) is a
logconcave function in R1.

With these fundamental theorems, some convexity results of chance con-
straints can be derived. Consider the following minimization problems:

min f(x)

s.t. P{g1(x) ≥ β1, · · · , gm(x) ≥ βm} ≥ ε, (2.3)

where β1, · · · , βm are random variables, ε ∈ (0, 1) is a prescribed probability and
g1(x), · · · , gm(x) are convex functions in the whole space Rn.

With Theorem 2.1-Theorem 2.4, Prékopa proved that the function h(x) =
P{g1(x) ≥ β1, · · · , gm(x) ≥ βm} is logarithmic concave in the whole space Rn. By
taking the logarithm of both sides of the constraint (2.3), we can obtain a convex
problem.

As generalizations of logconcave measures, Borell [9] and Brascamp and Lieb
[11] introduced the α-concave measure.

Definition 2.3. A nonnegative function f(x) defined on a convex set Ω ⊂ Rn is
said to be α-concave, where α ∈ [−∞,+∞], if for all x, y ∈ Ω and all λ ∈ [0, 1]
the following inequality holds true:

f(λx+ (1− λ)y) ≥ mα(f(x), f(y), λ),

where mα : R+ × R+ × [0, 1]→ R is defined as follows:

mα(a, b, λ) = 0 if ab = 0,

and if a > 0, b > 0, 0 ≤ λ ≤ 1, then

mα(a, b, λ) =


aλb1−λ if α = 0,
max{a, b} if α =∞,
min{a, b} if α = −∞,
(λaα + (1− λ)bα)1/α otherwise.

In the case of α = 0, the function f is called logarithmically concave or log-
concave because ln f(·) is a concave function. In the case of α = 1, the function
f is simply concave. In the case of α = −∞, the function f is quasi-concave.

By the definition of the α-concave function, we have the following theorems.

Theorem 2.5. Let f be a concave function defined on a convex set C ⊂ Rs and
g : R → R be a nonnegative nondecreasing α-concave function, α ∈ [−∞,∞].
Then the function g ◦ f is α-concave.
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Theorem 2.6. If the functions fi : Rn → R+, i = 1, · · · ,m, are αi-concave and
αi are such that

∑m
i=1 α

−1
i > 0, then the function g : Rnm → R+, defined as

g(x) =
∏m

i=1 fi(xi) is γ-concave with γ =
(∑m

i=1 α
−1
i

)−1
.

We point out that for two Borel measurable sets A,B in Rs, the Minkowski
sum A+B = {x+ y : x ∈ A, y ∈ B} is Lebesgue measurable in Rs.

Definition 2.4. A probability measure P defined on the Lebesgue measurable
subsets of a convex set Ω ⊂ Rs is said to be α-concave if for any Borel measurable
sets A,B ⊂ Ω and for all λ ∈ [0, 1], we have the inequality

P(λA+ (1− λ)B) ≥ mα(P(A),P(B), λ),

where λA+ (1− λ)B = {λx+ (1− λ)y : x ∈ A, y ∈ B}.

Then, as shown [96], we have the following theorems about convexity of chance
constraints.

Theorem 2.7. Let the functions gi : Rn → Rs, i = 1, · · · ,m, be quasi-concave.
If Z ∈ Rs is a random vector that has an α-concave probability distribution, then
the function

G(x) = P{gi(x, Z) ≥ 0, i = 1, · · · ,m}

is α-concave on the set

D = {x ∈ Rn : ∃z ∈ Rs such that gi(x, z) ≥ 0, i = 1, · · · ,m}.

As a consequence, we obtain convexity statements for sets described by prob-
abilistic constraints.

Theorem 2.8. Assume that the functions gi(·, ·), i = 1, · · · ,m, are quasi-concave
jointly in both arguments and that Z ∈ Rs is a random vector that has an α-
concave probability distribution. Then the following set is convex and closed:

X0 = {x ∈ Rn : P{gi(x, Z) ≥ 0, i = 1, · · · ,m} ≥ ε} .

We consider the case of a separable mapping g when the random quantities
appear only on the right-hand side of the inequalities.

Theorem 2.9. Let the mapping g : Rn → Rm be such that each component
gi is a concave function. Furthermore, assume that the random vector Z has
independent components and the one-dimensional marginal distribution functions
FZi , i = 1, · · · ,m, are αi-concave. Furthermore, let

∑k
i=1 α

−1
i > 0. Then the set

X0 = {x ∈ Rn : P{g(x) ≥ Z} ≥ ε}

is convex.

For elliptical distributions, Henrion [49] gave a convexity result of the feasible
solution set defined by individual linear chance constraints.

A multivariate distribution is said to be elliptical if its characteristic function
φ(t) is of the form φ(t) = eit

Tµψ
(
tTΣt

)
for a specified µ, positive-definite matrix
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Σ, and the characteristic generator function ψ. For an s-dimensional random
vector ξ, we denote ξ ∼ Ellip (µ,Σ;φ) if ξ has an elliptical distribution.

When the density functions exist, they have the following structure:

f (x) =
c√

det Σ
g
(√

(x− µ)TΣ−1(x− µ)
)
, (2.4)

where function g : R+ → R++ is the so-called radial density, x is an n-dimensional
random vector with median vector µ (which is also the mean vector if exists),
Σ is a positive definite matrix which is proportional to the covariance matrix if
exists, and c > 0 is a normalization factor ensuring that f integrates to one.

Law Characteristic generator Radial density
normal exp

{
−1

2
t
}

exp
{
−1

2
t2
}

t ∗ (1 + 1
ν
t2)−(n+ν)/2

Cauchy exp
{
−
√
t
}

(1 + t2)−(n+1)/2

Laplace
(
1 + 1

2
t
)−1

exp
{
−
√

2|t|
}

logistic 2π
√
t

eπ
√
t−e−π

√
t

e−t
2

(1+e−t2 )2

Table 2.1: Table of selected elliptical distributions.

Remark 2.1. Table 2.1 provides a short selection of prominent multivariate el-
liptical distributions, together with their characteristic generators and radial den-
sities. Note that Cauchy distribution is a special case of the t distribution with
ν = 1.

Consider the following linear chance constraint sets

Mα
p := {x ∈ Rn|P(〈q(x), ξ〉 ≤ p) ≥ ε}

Here, ξ is an s-dimensional random vector defined on a probability space (Ω,F ,P)
and q : Rn → Rs is a mapping from the space of decision vectors to the space of
realizations of the random vector. p ∈ R, ε ∈ (0, 1).

In the following, the norm induced by a positive definite matrix C is ‖x‖C =√
〈x,Cx〉. Moreover, for a one-dimensional distribution function F , we define

its ε-quantile as F−1(ε) = inf{t|F (t) ≥ ε}. Among many properties of elliptical
distributions, we notice that the class of elliptical distributions is closed under
affine transformation. Then, we have the following lemma (Proposition 2.1 in
[49]).

Lemma 2.1 ([49]). Let q be an arbitrary mapping and let ξ have an elliptically
symmetric distribution with parameters Σ, µ, where Σ is positive definite. Denote
by ψ its characteristic generator. Then,

Mp
ε :=

{
x ∈ Rn|〈µ, q(x)〉+ Ψ(−1)(ε)‖q(x)‖Σ ≤ p

}
where Ψ is one-dimensional distribution function induced by the characteristic
function φ(t) = ψ(t2).
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Theorem 2.10 ([49]). In addition to the setting of Lemma 2.1, let one of the
following assumptions hold true.

• q is affine linear

• q has nonnegative, convex components, µi for i = 1, · · · , s and all elements
of Σ are nonnegative.

Then, Mα
p is convex for all p ∈ R and all ε > 0.5. If moreover, the random vector

ξ in Lemma 2.1 has a strictly positive density, then Mp
ε is convex for all p ∈ R

and all ε ≥ 0.5.

As generalization, Henrion and Strugarek [50] further proved the convexity of
joint chance constraints, where random vectors appear separated from decision
vectors. More precisely,

M(ε) = {x ∈ Rn|P(ξ ≤ q(x)) ≥ ε} , (2.5)

where g : Rn → Rm is some vector-valued mapping. With F : Rm → R denoting
the distribution function of ξ, the same set can be rewritten as

M(ε) = {x ∈ Rn|F (q(x)) ≥ ε} .

We focus on conditions on F and g such that M(ε) becomes a convex set for all
ε ≥ ε∗, where ε∗ < 1.

Definition 2.5. We call a function f : R → R r-decreasing for some r ∈ R, if
it is continuous on (0,∞) and if there exists some t∗ > 0 such that the function
trf(t) is strictly decreasing for all t > t∗.

Lemma 2.2. Let F : R→ [0, 1] be a distribution function with (r+1)-decreasing
density f for some r > 0. Then, the function z 7→ F (z−1/r) is concave on
(0, (t∗)−r), where t∗ refers to Definition 2.5. Moreover, F (t) < 1 for all t ∈ R.

Theorem 2.11 ([50]). For (2.5), we make the following assumptions for i =
1, · · · ,m:

1. There exists ri > 0 such that the components gi are (−ri)-concave.

2. The components ξi of ξ are independently distributed with (ri+1)-decreasing
densities fi.

Then, M(ε) is convex for all ε > ε∗ := max{Fi(t∗i )|1 ≤ i ≤ m}, where Fi denotes
the distribution function of ξi and the t∗i refers to Definition 2.5 in the context of
fi being (ri + 1)-decreasing.
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2.2 Reformulations and approximations for chance

constraints

2.2.1 Individual chance constraints

As shown in [49], for elliptically distributed random vector ξ ∼ Ellip (µ,Σ;φ),
consider the following chance constraint:

S(α) := {x ∈ Rn|P(ξTx ≤ h) ≥ ε}. (2.6)

From Lemma 2.1, we have

S(α) :=
{
x ∈ Rn|µTx+ Ψ(−1)(ε)

√
xTΣx ≤ h

}
,

where Ψ is the one-dimensional distribution function induced by the characteristic
function φ(t) = ψ(t2).

For some elliptical distributions, the inverse function Ψ(−1)(ε) can be written in
a closed form. Thus, the set S(α) can be reformulated as the following examples.

Example 2.1. (Cauchy distribution) Suppose that ξ follows a Cauchy dis-
tribution with parameters µ,Σ. The inverse function of cumulative distribution
function of Cauchy distribution is as follows:

Ψ−1(α) = tan

[
π

(
α− 1

2

)]
, α ∈ (0, 1).

The set S(α), defined in (2.6), can be rewritten as

S(α) =

{
x ∈ X

∣∣∣∣µTx+ tan

[
π

(
α− 1

2

)]√
xTΣx ≤ h

}
.

Since tan

[
π

(
α− 1

2

)]
≥ 0 when α ≥ 1

2
, the set S(α) is convex if α ≥ 1

2
. While

the set S(α) is concave if α <
1

2
.

Example 2.2. (Laplace distribution) Suppose that ξ follows a Laplace dis-
tribution with parameters µ,Σ. The inverse function of cumulative distribution
function of Laplace distribution is as follows:

Ψ−1(α) =

{
ln(2α), α ∈ [0, 1

2
],

− ln[2(1− α)], α ∈ [1
2
, 1].

The set S(α), defined in (2.6), can be rewritten as

S(α) =


{
x ∈ X

∣∣∣µTx+ ln(2α)
√
xTΣx ≤ h

}
, α ∈ [0, 1

2
],{

x ∈ X
∣∣∣µTx− ln[2(1− α)]

√
xTΣx ≤ h

}
, α ∈ [1

2
, 1].

It is easy to see that when α ∈ [1
2
, 1], the set S(α) is convex since − ln[2(1−α)] ≥
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0. Otherwise, the set S(α) is concave.

Example 2.3. (Logistic distribution) Suppose that ξ follows a Logistic dis-
tribution with parameters µ,Σ. The inverse function of cumulative distribution
function of Logistic distribution is as follows:

Ψ−1(α) = ln

(
α

1− α

)
, α ∈ (0, 1).

The set S(α), defined in (2.6), can be rewritten as

S(α) =

{
x ∈ X

∣∣∣∣µTx+ ln

(
α

1− α

)√
xTΣx ≤ h

}
.

Since ln

(
α

1− α

)
≥ 0 when α ≥ 1

2
, the set S(α) is convex if α ≥ 1

2
. While the

set S(α) is concave if α < 1
2
.

Besides elliptical distributions, Calafiore and El Ghaoui [15] reformulated in-
dividual chance constraints under Q-radial distribution.

Definition 2.6. A random vector d ∈ Rn has a Q-radial distribution with defining
function g(·) if d−E{d} = Qω where Q ∈ Rn×ν, ν ≤ n, is a fixed, full-rank matrix
and ω ∈ Rν is a random vector with probability density fω that depends only on
the norm of ω; i.e., fω(ω) = g(‖ω‖). The function g(·) that defines the radial
shape of the distribution is named the defining function of d.

The family of Q-radial distributions includes all probability densities whose
level sets are ellipsoids with shape matrix Q � 0 and may have any radial behav-
ior. Another notable example is the uniform density over an ellipsoidal set.

Theorem 2.12 ([15]). For any α ∈ [0.5, 1), the chance constraint

P{ξTx ≤ 0} ≥ ε,

where ξ has a Q-radial distribution with defining function g(·) and covariance Γ,
is equivalent to the convex second-order cone constraint

κα,r
√
xTΓx+ ξTx < 0, (2.7)

where κε,r = vΨ−1(α), with v :=
(
Vν
´∞

0
rν+1g(r)dr

)−1/2
, Vν denotes the volume

of the Euclidean ball of unit radius in Rν, Ψ the cumulative probability function
of density f(ξ) = Sν−1

´∞
0
g(
√
ρ2 + ξ2)ρν−2dρ, Sn denotes the surface measure of

the Euclidean ball of unit radius in Rn.

In the case where ξ follows a normal distribution with mean µ̂ and covariance
Γ, which is Q-radial with v = 1, Q = Γf , Γ = ΓfΓ

T
f , the function g(r) is

g(r) =
1

(2π)1/2
e−

r2

2 .
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Therefore, for ε ∈ (0, 0.5], the parameter κε,r is given by κε,r = Ψ−1
G (1− ε), where

ΨG is the standard normal cumulative distribution function. Hence, (2.7) can be
rewritten as

Ψ−1
G (α)

√
xTΓx+ ξTx < 0,

which is convex.

2.2.2 Normally distributed joint linear chance constraints

For joint chance constrained problems, Cheng and Lisser [24] considered the fol-
lowing normally distributed linear program with joint chance constraint:

min
x

cTx

s.t. P{Tx ≤ D} ≥ ε,
x ∈X,

(2.8)

whereX ⊂ Rn+ is polyhedron, c ∈ Rn, D = (D1, · · · , DK) ∈ RK , ε is a prespecified
confidence parameter, T = [T1, · · · , TK ]T is a K×n random matrix, where Tk, k =
1, · · · , K, is a normally distributed random vector in Rn with mean vector µk =
(µk1, · · · , µkn)T and covariance matrix Σk. Moreover, the multivariate normally
distributed vectors Tk, k = 1, · · · , K, are independent.

Then, a deterministic reformulation of (2.8) can be derived as follows:

min
x

cTx

s.t. µTkx+ F−1(εyk)‖Σ1/2
k x‖ ≤ Dk, k = 1, · · · , K∑K

k=1 yk = 1, yk ≥ 0
x ∈X

(2.9)

Because of the nonelementary function F−1(εyk), two piecewise linear approx-
imations are applied to F−1(εyk).
Piecewise tangent approximation of F−1(εz)

The authors of [24] use the linear tangents asz + bs, s = 1, · · · , S, between
z1, z2, · · · , zS ∈ (0, 1] to form a piecewise linear function

l(z) = max
s=1,··· ,S

{asz + bs} ,

where
as = (F−1)′(εzs)εzs ln ε, bi = F−1(εz)− aszs.

Then, (2.9) can be approximated by the following second order cone program-
ming:

min
x

cTx

s.t. µTkx+ ‖Σ1/2
k z̃k‖ ≤ Dk, k = 1, · · · , K

z̃k ≥ asxi + bsyki, s = 0, 1, · · · , S, i = 1, · · · , n∑K
k=1 yki = xi, yki ≥ 0, i = 1, · · · , n

x ∈X,

(2.10)

where a0 = 0, b0 = 0. Additionally, the optimal value of problem (2.10) is a lower
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bound of problem (2.9).

Piecewise segment approximation of F−1(εz)

To get the piecewise segment approximation of F−1(εz), the linear segments
āsz+ b̄s, s = 1, · · · , S, between z1, z2, · · · , zS ∈ (0, 1] are used to form a piecewise
linear function

l̄(z) = max
s=1,··· ,S

{
āsz + b̄s

}
,

where

ās =
F−1(εzs+1)− F−1(εzs)

zs+1 − zs
, b̄i = F−1(εz)− āszs.

Then, (2.9) can be approximated by the following second order cone program-
ming:

min
x

cTx

s.t. µTkx+ ‖Σ1/2
k z̃k‖ ≤ Dk, k = 1, · · · , K

z̃k ≥ āsxi + b̄syki, s = 0, 1, · · · , S, i = 1, · · · , n∑K
k=1 yki = xi, yki ≥ 0, i = 1, · · · , n

x ∈X,

(2.11)

where ā0 = 0, b̄0 = 0. In addition, the optimal value of problem (2.11) is an upper
bound of problem (2.9).

2.2.3 Integer programming approaches for joint linear chance
constraints

When a random vector in chance constraints has a finite distribution, Luedtke
et. al. [68] considered a joint chance constrained linear programming problem
with random right-hand side given by

min
x

cTx

s.t. P{Tx ≥ ξ} ≥ 1− ε,
x ∈X,

(2.12)

where X ⊂ Rd+ is polyhedron, T is an m × d matrix, ξ is a random vector in
Rm, ε ∈ (0, 1) and c ∈ Rd. Assume that ξ has finite support, that is, there exists
vectors, ξi ∈ Rm, i = 1, · · · , n such that P{ξ = ξi} = πi for each i where πi > 0
and

∑n
i=1 πi = 1. Without loss of generality, they assume that ξi ≥ 0. In the

following, we assume πi ≤ ε for each i.

To formulate (2.12) as a mixed-integer program, we introduce for each i a
binary variable zi, where zi = 0 guarantees that Tx ≥ ξi. Observe that because
ε < 1 we must have Tx ≥ ξi for at least one i. Since ξi ≥ 0 for all i, this implies
Tx ≥ 0 in every feasible solution of (2.12). Then, let v = Tx , we obtain the
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MIP formulation of (2.12):

min
x

cTx

s.t. x ∈X, Tx− v = 0
v + ξizi ≥ ξi, i = 1, · · · , n∑n

i=1 πizi ≤ ε
z ∈ {0, 1}n

(2.13)

The assumption of finite distribution may seem restrictive. However, if the
possible values for ξ are generated through Monte Carlo sampling from a general
distribution, the resulting problem can be viewed as an approximation of a prob-
lem with general distribution. There is theoretical and empirical evidence which
demonstrates that such a sample approximation can indeed be used to approx-
imately solve problems with continuous distribution. A standard result will be
introduced in subsection 2.2.5.

2.2.4 Convex approximations for chance constraints

An alternative to the above approaches consists in providing tractable convex
approximations for chance constraints. Nemirovski and Shapiro [76] studied the
following optimization problem:

min
x∈X

f(x) subject to P{F (x, ξ) ≤ 0} ≥ 1− ε. (2.14)

Here ξ is a random vector with probability distribution P supported on a set
Ξ ⊂ Rd, X ⊂ Rn is a nonempty convex set, ε ∈ (0, 1), f : Rn → R is a real valued
convex function, F = (f1, · · · , fm) : Rn × Ξ→ Rm, and P(A) denotes probability
of an event A.

The chance constraint of problem (2.14) is equivalent to the constraint

p(x) := P{F (x, ξ) > 0} ≤ ε.

Let 1A denotes the indicator function of a set A, i.e., 1A(z) = 1 if z ∈ A and
1A(z) = 0 if z /∈ A.

Let ψ : R → R be a nonnegative valued, nondecreasing, convex function
satisfying the following property:

ψ(z) > ψ(0) = 1 for any z > 0.

We refer to function f(z) which satisfies the above properties as a (one-dimensional)
generating function. It follows from the property that for t > 0 and random vari-
able Z,

E[ψ(tZ)] ≥ E[1[0,+∞)(tZ)] = P{tZ ≥ 0} = P{Z ≥ 0}.

By taking Z = F (x, ξ) and changing t to t−1, we have

p(x) ≤ E[ψ(t−1F (x, ξ))] (2.15)
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for all x and t > 0. Let

Ψ(x, t) = tE[ψ(t−1F (x, ξ))].

Then, we have

inf
t>0

[Ψ(x, t)− tε] ≤ 0 implies p(x) ≤ ε

Therefore, we obtain, under the assumption that X, f(·) and F (·, ξ) are convex,
that

min
x∈X

f(x) subject to inf
t>0

[Ψ(x, t)− tε] ≤ 0 (2.16)

gives a convex conservative approximation of the chance constrained problem
(2.14).

Since ψ(0) = 1 and ψ(·) is convex and nonnegative, we conclude that ψ(z) ≥
max{1 + az, 0} for all z, so that the upper bounds (2.15) can be only improved
when replacing ψ(z) with the function ψ̂(z) := max{1 + az, 0}, which is also a
generating function. But the bounds produced by the latter function are, up to
scaling z ← z/a, the same as those produced by the function

ψ∗(z) := [1 + z]+, (2.17)

where [a]+ := max{a, 0}. That is, from the point of view of the most accurate
approximation, the best choice of the generating function ψ is the piecewise linear
function ψ∗ defined in (2.17). For the generating function ψ∗ defined in (2.17),
the approximate constraint in problem (2.16) takes the form

inf
t>0

[
E
[
[F (x, ξ) + t]+

]
− tε

]
≤ 0. (2.18)

Replacing in the left-hand side inf
t>0

with inf
t

, we clearly do not affect the validity

of the relation; thus, we can equivalently rewrite (2.18) as

inf
t∈R

[
E
[
−tε+ [F (x, ξ) + t]+

]]
≤ 0.

In that form, the constraint is related to the definition of conditional value at
risk (CVaR) Then, the constraint

CVaR1−ε[F (x, ξ)] ≤ 0.

defines a convex conservative approximation of the chance constraint in problem
(2.14).

2.2.5 Sample average approximations for chance constraints

Besides the above approaches for chance constraints, the sample average approx-
imation (SAA) method is also a computationally tractable approximation for
chance constrained problems.

19



In [96], the authors considered a chance constrained problem of the form

min
x∈X

f(x) s.t. p(x) ≤ ε, (2.19)

where X ⊂ Rn is a closed set, f : Rn → R is a continuous function, ε ∈ (0, 1)
is a given tolerance level, and p(x) = P{C(x, ξ) > 0}. We assume that ξ is a
random vector, whose probability distribution P is supported on set Ξ ∈ Rd, and
the function C : Rn → R is a Carathéodory function.

For the sake of simplicity, we assume that the objective function f(x) is given
explicitly and only the chance constraints should be approximated. We can write
the probability p(x) with the expectation form,

p(x) = E[1(0,∞)(C(x, ξ))],

and estimate this probability by the corresponding SAA function

p̂(x) =
1

N

N∑
j=1

1(0,∞)

(
C(x, ξj)

)
.

Consequently we can write the corresponding SAA problem as

min
x∈X

f(x) s.t. p̂N(x) ≤ ε. (2.20)

Denote ϑ∗ and S the optimal value and the optimal solution set of problem
(2.19), respectively, and ϑN and SN the optimal value and the optimal solution set
of problem (2.20), respectively Then, we have the following consistency properties
of the optimal value ϑ̂N and the set ŜN of optimal solutions of the SAA problem
(2.20).

Theorem 2.13 ([96]). Suppose that X is a compact set, the function f(x) is
continuous, C(x, ξ) is a Carathéodory function, the samples are iid, and the fol-
lowing condition holds: (a) there exists an optimal solution x̄ to the true problem
such that for any δ > 0, there exists an x ∈ X with ‖x − x̄‖ ≤ δ and p(x) < ε.

Then ϑ̂N → ϑ∗ and D
(
ŜN , S

)
→ 0 w.p.1 as N →∞.

2.3 Distributionally robust chance constraints

Since in many practical situations, one can only obtain the partial information
about probability distributions. Replacing the real distribution by an estimated
one, we may obtain an infeasible solution in practice with high probability. There-
fore, the distributionally robust chance constrained approaches are proposed.

2.3.1 Distributionally robust individual chance constraints
with known mean and covariance

With given mean and covariance, Calafiore and El Ghaoui [15] studied a distri-
butionally robust individual chance constrained problem where the family P of
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probability distributions on the random vector is composed of all distributions
with given mean µ and covariance Σ. The distribution family is denoted by
P = (µ,Σ). Then, the authors of [15] proved the following theorem.

Theorem 2.14 ([15]). For any ε ∈ (0, 0.5], the distributionally robust chance
constraint

inf
ξ∼(µ,Σ)

P{ξTx ≤ 0} ≥ 1− ε (2.21)

is equivalent to the convex second-order cone constraint

κε
√
xTΣx+ µTx ≤ 0, κε =

√
(1− ε)/ε. (2.22)

2.3.2 Distributionally robust joint chance constraints with
known mean and covariance

As a generalization of distributionally robust individual chance constrained prob-
lem, Zymler et al. [108] studied a distributionally robust problem with joint
chance constraint.

Let µ ∈ Rk be the mean vector and Σ ∈ Sk be the covariance matrix of a ran-
dom vector ξ. Here, Sk denotes the space of symmetric matrices of dimension k.
Furthermore, let P denote the set of all probability distributions on Rk that have
the same first- and second-order moments µ and Σ. For notational simplicity, we
let

Λ =

[
Σ + µµT µ
µT 1

]
.

be the second-order moment matrix of ξ.
Then, the following theorem is obtained.

Theorem 2.15 ([108]). Let L : Rk → R be a continuous loss function that is
either

(i) concave in ξ, or

(ii) (possibly nonconcave) quadratic in ξ.

Then, the following equivalence holds:

sup
P∈P

P− CVaRε (L(ξ)) ≤ 0⇔ inf
P∈P

P (L(ξ) ≤ 0) ≥ 1− ε. (2.23)

Define the feasible set X JCC of the distributionally robust joint chance con-
straint as

X JCC =

{
x ∈ Rn : inf

P∈P
P
(
y0
i (x) + yTi ξ ≤ 0,∀i = 1, · · · ,m

)
≥ 1− ε

}
.

The joint chance constraint in X JCC can be reformulated as

inf
P∈P

P

(
max

i=1,··· ,m

{
ai
(
y0
i (x) + yTi ξ

)}
≤ 0

)
≥ 1− ε
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for any vector of strictly positive scaling parameters a ∈ A = {a ∈ Rm : a > 0}.
Thus, for any a ∈ A, the requirement

x ∈ ZJCC(a) =

{
x ∈ Rn : sup

P∈P
CVaRα

(
max

i=1,··· ,m

{
ai
(
y0
i (x) + yTi ξ

)})
≤ 0

}
implies x ∈ X JCC .

Then, it can be shown that ZJCC(a) provide a convex approximation for X JCC

with an exact tractable representation in terms of linear matrix inequalities.

Theorem 2.16 ([108]). For any fixed x ∈ Rn and a ∈ A, we have

ZJCC(a) =

x ∈ Rn :

∃(β,M) ∈ R× Sk+1,
β + 1

ε
〈Λ,M〉 ≤ 0,M � 0,

M −
[

0 1
2
aiyi(x)

1
2
aiy

T
i (x) aiy

0
i (x)− β

]
� 0,∀i = 1, · · · ,m

 .

2.3.3 Distributionally robust joint chance constraints with
uncertain mean and covariance

In practice, the models’ parameters, such as mean and covariance, themselves are
unknown and can only be estimated from data. For this case, distributionally ro-
bust optimization problem with uncertain mean and covariance was first proposed
and studied by Delage and Ye [27], and was also investigated for distributionally
robust chance constrained problem by Cheng et al. [21].

In [21], the authors’ interest lies in solving a distributionally robust knapsack
problem with chance constraint:

(DRSKP ) max
x

inf
F∈D

EF [u(xT R̃x)]

s.t. inf
F∈D

PF
(
w̃T
j x ≤ dj ∀j ∈ {1, 2, · · · ,M}

)
≥ 1− ε, (2.24)

xi ∈ {0, 1} ∀i ∈ {1, 2, · · · , n}, (2.25)

where u(·) is some concave utility function that captures risk aversion with respect
to the total achieved reward. x is a vector of binary values indicating whether
each item is included in the knapsack. R̃ ∈ Rn×n is a random matrix whose
(i, j)th term describes the linear contribution to reward of holding both items i
and j. w̃j ∈ Rn is a random vector of attributes whose total amount must satisfy
some capacity constraint dj.

Distributionally robust one-dimensional knapsack problem

In this case, we have M = 1. To ensure that the approximation model obtained
can be solved efficiently, a few assumptions are made.

Definition 2.7. Let ξ be a random vector in Rm on which R̃ and w̃ depend
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linearly:

R̃ =
n∑
i=1

AR̃ξi, w̃ = Aw̃ξ.

Assumption 2.1. The utility function u(·) is piecewise linear, increasing and
concave. In other words, it can be represented in the form

u(y) = min
k∈{1,2,··· ,K}

aky + bk,

where a ∈ RK and a ≥ 0.

Assumption 2.2. The distributional uncertainty set accounts for information
about the convex support §, mean µ in the strict interior of §, and an upper
bound Σ � 0 on the covariance matrix of the random vector ξ:

D (§, µ,Σ) =

F
∣∣∣∣∣∣∣
P (ξ ∈ §) = 1

EF [ξ] = µ

EF
[
(ξ − µ)(ξ − µ)T

]
� Σ

 .

Theorem 2.17 ([21]). Under Assumptions 2.1 and 2.2, M = 1 and given that the
support of F is ellipsoidal, § =

{
ξ|(ξ − ξ0)TΘ(ξ − ξ0) ≤ 1

}
, problem (DRSKP )

reduces to the following problem

max
x,t,q,Q,v,s,t̄,q̄,Q̄,s̄

t− µTq −
(
Σ + µµT

)
•Q

s.t.

[
Q q+akv

2
qT+akv

T

2
bk − t

]
� −sk

[
Θ −Θξ0

−ξT0 Θ ξT0 Θξ0 − 1

]
∀k,

vj = AR̃j • (xxT ) ∀j ∈ {1, 2, · · · ,m},
t̄+ 2µT q̄ + (Σ + µµT ) • Q̄ ≤ εs̄1,[
Q̄ q̄
q̄T t̄

]
� −s̄2

[
Θ −Θξ0

−ξT0 Θ ξT0 Θξ0 − 1

]
,[

Q̄ q̄ −Aw̃Tx

(q̄ −Aw̃Tx)T t̄+ 2d− s̄1

]
� −s̄3

[
Θ −Θξ0

−ξT0 Θ ξT0 Θξ0 − 1

]
,

Q � 0, Q̄ � 0, s ≥ 0, s̄ ≥ 0,

xi ∈ {0, 1} ∀i ∈ {1, 2, · · · , n}.

Alternatively, if the support of F is polyhedral, i.e., § = {ξ|Cξ ≤ c} with C ∈
Rp×m and c ∈ Rp, then problem (DRSKP ) reduces to

max
x,t,q,Q,v,s,t̄,q̄,Q̄
λ1,λ2,··· ,λK+2

t− µTq −
(
Σ + µµT

)
•Q

s.t.

[
Q q+akv+CTλk

2
qT+akv

T+λTkC

2
bk − t− cTλk

]
� 0 ∀k ∈ {1, 2, · · · , K},
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vj = AR̃j • (xxT ) ∀j ∈ {1, 2, · · · ,m},
t̄+ 2µT q̄ + (Σ + µµT ) • Q̄ ≤ s,[

Q̄ q̄ + 1
2
CTλK+1

q̄T + 1
2
λTK+1C t̄− cTλK+1

]
� 0,[

Q̄ q̄ −Aw̃Tx+ 1
2
CTλK+2

(q̄ −Aw̃Tx)T + 1
2
λTK+2C t̄+ 2d− s− cTλK+2

]
� 0,

Q � 0, Q̄ � 0, s ≥ 0, λk ≥ 0,∀k ∈ {1, 2, · · · , K + 2},
xi ∈ {0, 1} ∀i ∈ {1, 2, · · · , n},

where λk ∈ Rp for all k are the dual variables associated with the linear inequal-
ities Cξ ≤ c for each infinite set of constraints. Finally, if the support of F is
unbounded (i.e., § = Rm), then problem (DRSKP ) reduces to

max
x,t,q,Q,v,s,z,τ

t− µTq −
(
Σ + µµT

)
•Q

s.t.

[
Q q+akv

2
qT+akv

T

2
bk − t

]
� 0 ∀k = {1, 2, · · · , K},

vj = AR̃j • (xxT ) ∀j ∈ {1, 2, · · · ,m},
Q � 0, τk ≥ 0 ∀k = {1, 2, · · · , K},[

0 Σ1/2z
zTΣ1/2 0

]
�
√

ε

1− ε
(µTz − d)I,

z = Aw̃Tx,

xi ∈ {0, 1} ∀i ∈ {1, 2, · · · , n}.

Distributionally robust multidimensional knapsack problem

In this case, we consider problem (DRSKP ) with M > 1, where F now describes
the joint distribution of all types of “weights” of all items, {w̃j}Mj=1 ∼ F , and D
now describes a set of such joint distributions.

Definition 2.8. Without loss of generality, for all j = 1, · · · ,M , let ξj be a
random vector in Rm on which the w̃j depend linearly and let R̃ depend linearly
on {ξj}Mj=1:

R̃ =
M∑
j=1

m∑
i=1

AR̃
ji(ξj)i, w̃j = A

w̃j
j ξj, j = 1, · · · ,M.

Assumption 2.3. The distributional uncertainty set accounts for information
about the mean µj, and an upper bound Σj on the covariance matrix of the random
vector ξj, for each j = 1, · · · ,M :

D (µj,Σj) =

{
Fj

∣∣∣∣∣EFj [ξj] = µj

EFj
[
(ξj − µj)(ξj − µj)T

]
� Σj

}
.
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Furthermore, the random vectors ξi and ξj are independent when i 6= j. Note
that the support of Fj is unbounded, i.e., § = Rm.

Theorem 2.18 ([21]). Under Assumptions 2.2 and 2.3, the following problem is
a conservative approximation of problem (DRSKP ):

max
x,t,q,Q,v,y

t− µTq −
(
Σ + µµT

)
•Q

s.t.

[
Q q+akv

2
qT+akv

T

2
bk − t

]
� 0 ∀k = {1, 2, · · · , K},

v(j−1)M+i = AR̃ji • (xxT ) ∀j ∈ {1, 2, · · · ,M}∀i ∈ {1, 2, · · · ,m},
Q � 0,

µTj A
w̃jx+

√
pyj

1− pyj
‖Σ1/2

j Aw̃jTx‖2 ≤ d2,

M∑
j=1

yj = 1, yj ≥ 0,

xi ∈ {0, 1} ∀i ∈ {1, 2, · · · , n},

where p = 1− ε, q,v ∈ RmM , and Q ∈ RmM×mM , and with

µ :=


µ1

µ2
...
µM

 and Σ =


Σ1 0m,m 0m,m · · · 0m,m

0m,m Σ2 0m,m · · · 0m,m
0m,m 0m,m Σ3 · · · 0m,m

...
...

...
. . .

...
0m,m 0m,m 0m,m · · · ΣM

 .

Furthermore, this approximation is exact when u(·) is linear, i.e. the attitude is
risk neutral.

2.3.4 Distributionally robust chance constrained problem
based on φ-divergence

An alternative to moments based uncertainty set of probability distributions is
the distance based uncertainty set. Jiang and Guan [57] applied φ-divergence to
construct the uncertainty set of probability distributions. Then, they considered
the following distributionally robust chance constrained problem:

min
x

ψ(x)

s.t. inf
P∈Dφ

P{C(x, ξ)} ≥ 1− ε,

x ∈X,

(2.26)

where ψ : Rn → R represents a convex function, X ⊂ Rn represents a tractable
bounded convex set, ξ ∈ RK is a random vector defined on a probability space
(Ω,F ,P), ε ∈ (0, 1). Dφ is the uncertainty set based on φ-divergence, which is
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defined as follows:

Dφ = {P ∈M+ : Dφ(f ||f0) ≤ d, f = dP/dξ}.

Here, M+ represents the set of all probability distributions and the divergence
tolerance d can be chosen by the decision makers to represent their risk-aversion
level or can be obtained from statistical inference. Dφ(f ||f0) is the φ-divergence
defined as

Dφ(f ||f0) =

ˆ
Ω

φ

(
f(ξ)

f0(ξ)

)
f0(ξ)dξ,

where f and f0 denote the true density function and its estimate respectively,
and φ : R→ R is a convex function on R+ such that

1. φ(1) = 0,

2. 0φ(x/0) :=

{
x limp→+∞ φ(p)/p if x > 0,
0 if x = 0,

3. φ(x) = +∞ for x < 0.

Definition 2.9. Let φ : R → R be a convex function such that φ(1) = 0 and
φ(x) = +∞ for x < 0. Define m(φ∗) := sup{m ∈ R : φ∗ is a finite constant on
(−∞,m]} and m(φ∗) := inf{m ∈ R : φ∗(m) = +∞}.

Theorem 2.19 ([57]). Let P0 represent the probability distribution defined by f0.
Then the

inf
P∈Dφ

P{C(x, ξ)} ≥ 1− ε (2.27)

is equivalent to
P0{C(x, ξ)} ≥ 1− ε′+, (2.28)

where

ε′ = 1− inf
z>0,z0+πz<lφ,

m(φ∗)≤z0+z≤m(φ∗)

{
φ∗(z0 + z)− z0 − εz + d

φ∗(z0 + z)− φ∗(z0)

}
,

ε+ = max{ε, 0} for ε ∈ R, φ∗ is the conjugate function of φ, lφ = limx→+∞ φ(x)/x,
and

π =


−∞ if Leb{[f0 = 0]} = 0,
0 if Leb{[f0 = 0]} > 0 and Leb{[f0 = 0] \ C(x, ξ)} = 0,
1 otherwise,

Leb{·} represents the Lebesgue measure and [f0 = 0] := {ξ ∈ Ω : f0(ξ) = 0}.

By applying different φ-divergences in Theorem 2.19, the following proposition
can be obtained.

Proposition 2.1 ([57]). 1. Suppose that Dφ is constructed by using the χ di-
vergence of order 2 with φ(x) = (x− 1)2 and ε < 1/2. Then

ε′ = ε−
√
d2 + 4dε(1− ε)− (1− 2ε)d

2d+ 2
,
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2. Suppose that Dφ is constructed by using the variation distance with φ(x) =
|x− 1|. Then

ε′ = ε− d

2
,

3. Suppose that Dφ is constructed by using the KL divergence with φ(x) =
x log x− x+ 1. Then

ε′ = 1− inf
x∈(0,1)

{
e−dx1−ε − 1

x− 1

}
.

2.3.5 Distributionally robust chance constrained problem
based on Wasserstein distance

Besides φ-divergence based uncertainty set, Wasserstein distance based uncer-
tainty set is another popular distance based uncertainty set. Wasserstein distance
is a natural way of comparing two distributions when one is obtained from the
other by perturbations.

The type-1 Wasserstein distance dW (P1,P2) between two distributions P1 and
P2 on RK , equipped with a general norm ‖ · ‖, is defined as the minimal trans-
portation cost of redistributing mass from P1 to P2 in terms that the cost of
moving a Dirac point mass from ξ1 to ξ2 is ‖ξ1 − ξ2‖. Mathematically,

dW (P1,P2) = inf
P∈(P1,P2)

EP[‖ξ̃1 − ξ̃2‖],

where ξ̃1 ∼ P1, ξ̃2 ∼ P2, and (P1,P2) represents the set of all distributions on
RK × RK with marginals P1 and P2. The Wasserstein ambiguity set F (θ) is then
defined as a ball of radius θ ≥ 0 with respect to the Wasserstein distance, centered
at a prescribed reference distribution P̂:

F(θ) = {P ∈ P(RK)|dW (P, P̂) ≤ θ}.

If only a finite training dataset {ξ̂i}i∈[N ] is available, a natural choice for P̂ is the

empirical distribution P̂ = 1
N

∑N
i=1 δξ̂i , which represents the uniform distribution

on the training samples.

Assume that P̂ is the empirical distribution as above, Chen et al. [19] study
distributionally robust chance constrained programs of the form

(DRCCW ) min
x∈X

cTx

s.t. P[ξ̃ ∈ S(x)] ≥ 1− ε ∀P ∈ F(θ),

where the goal is to find a decision x from within a compact polyhedron X ∈
RL that minimizes a linear cost function cTx and ensures that the exogenous
random vector ξ̃ falls within a decision-dependent safety set S(x) ⊂ RK with
high probability 1− ε under every distribution P ∈ F(θ).
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Theorem 2.20 ([19]). The chance constrained program (DRCCW ) is equivalent
to

min
s,t,x

cTx

s.t. εNt− eTs ≥ θN

dist(ξ̃i, S̄(x)) ≥ t− si ∀i ∈ [N ]

s ≥ 0, x ∈ X ,

where 0 and e respectively correspond to the zero vector and the vector of all
ones, [N ] = {1, 2, · · · , N} represents the set of all integers up to N , dist(ξ̃i, S̄(x))
denotes the distance of ξ̃i to the set S̄(x), and S̄(x) denotes the closed complement
of S(x).

With Theorem 2.20, the following corollaries can be obtained.

Corollary 2.1 ([19]). Given A ∈ RL×K ,a ∈ RL, b ∈ RK , b ∈ R. Assume that
ATx 6= b for all x ∈ X . For the safety set S(x) = {ξ ∈ RK |(Aξ + a)Tx ≤
bTξ + b}, problem (DRCCW ) is equivalent to the mixed integer conic program

min
q,s,t,x

cTx

s.t. εNt− eTs ≥ θN‖b−ATx‖∗
(b−ATx)T ξ̃i + b− aTx+Mqi ≥ t− si ∀i ∈ [N ]

M(1− qi) ≥ t− si ∀i ∈ [N ]

q ∈ {0, 1}N , s ≥ 0, x ∈ X ,

where ‖ · ‖∗ denotes the dual norm of a general norm ‖ · ‖ and M is a suitably
large (but finite) positive constant.

Corollary 2.2 ([19]). Given am ∈ RL, bm ∈ RK , bm ∈ R,m ∈ [M ]. For the
safety set S(x) = {ξ ∈ RK |aTmx < bTmξ + bm ∀m ∈ [M ]}, where b 6= 0 for all
m ∈ [M ], the chance constrained problem (DRCCW ) is equivalent to the mixed
integer conic program

min
p,q,s,t,x

cTx

s.t. εNt− eTs ≥ θN

pi +Mqi ≥ t− si ∀i ∈ [N ]

M(1− qi) ≥ t− si ∀i ∈ [N ]

bTmξ̃i + bm − aTmx
‖bm‖∗

≥ pi ∀m ∈ [M ], ∀i ∈ [N ]

q ∈ {0, 1}N , s ≥ 0, x ∈ X ,

where M is a suitably large (but finite) positive constant.
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2.4 Conclusion

In this chapter, we introduce some standard results of chance constrained prob-
lems covering convexity, reformulation/approximation approaches for chance con-
straints and distributionally robust chance constraints. These results have impor-
tant influences on development of chance constrained problems. As this kind of
problems are widely applied in many practical areas, such as finance, energy prob-
lems, water resources, telecommunication, production and inventory, the theory
and application of chance constrained problems are still important issues which
attract a lot of attentions from different researchers.
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Chapter 3

Geometric Chance Constrained
Programs

In this chapter, we first review a work of Liu et al. [65] about geometric programs
with joint chance constraints, where the stochastic parameters are normally dis-
tributed and independent of each other. Then, we extend the work in [65] and
discuss joint rectangular geometric chance constrained programs with elliptical
distribution.

3.1 Stochastic geometric optimization with joint

chance constraints

In this section, we review the work of Liu et al. [65] about geometric programs
with joint chance constraints. When the stochastic parameters are normally
distributed and independent of each other, the problem is approximated by using
piecewise linear functions, and the approximation problem is transformed into a
convex geometric program. The authors proved that this approximation method
provides a lower bound and designed an algorithm under the sequential convex
optimization scheme to find an upper bound. Finally, numerical tests are carried
out with a stochastic shape optimization problem.

3.1.1 Introduction

Geometric programming is an important topic in operations research where the
objective function and the constraints of the corresponding optimization prob-
lems have a special form. Geometric optimization has been studied for several
decades, it was introduced by Duffin et al. in the late 1960s [30]. Applications
of geometric programming can be found in several surveys papers, namely Boyds
et al. [10], Ecker [33] and Peterson [83]. A numerous practical problems can be
formulated as geometric programs, e.g., electrical circuit design problems [10], in-
formation theory [26], queue proportional scheduling in fading broadcast channels
[95], mechanical engineering problems [101], economic and managerial problems
[69], nonlinear network problems [60]. A geometric program can be formulated

31



as

(GP ) min
t
g0(t) s.t. gk(t) ≤ 1, k = 1, · · · , K, t ∈ RM++ (3.1)

with

gk(t) =
∑
i∈Ik

ci

M∏
j=1

t
aij
j , k = 0, · · · , K. (3.2)

Usually, ci
∏M

j=1 t
aij
j is called a monomial, ci needs to be non-negative and gk(t)

is called a posynomial. We denote by Q the number of monomials in (3.1), and
{Ik, k = 0, · · · , K} is the disjoint index sets of {1, · · · , Q}.

Geometric programs are not convex with respect to t whilst they are convex
with respect to {z : zj = log tj, j = 1, · · · ,M}. Hence, interior point method
can be efficiently used to solve geometric programs.

In real world applications, some of the coefficients in (3.1) may not be known
precisely. Hence, the stochastic geometric programming is proposed to model
geometric problem with random parameters. For instance, in [31, 92], individual
probabilistic constraints have been used to control the uncertainty level of the
constraints in (3.1):

P

(∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ 1

)
≥ 1− εk, k = 1, · · · , K, (3.3)

where εk is the tolerance probability for the k-th constraint in (3.2).

In this section, we furthermore consider the following joint probabilistic con-
strained stochastic geometric programs

(SGP ) min
t∈RM++

E

[∑
i∈I0

ci

M∏
j=1

t
aij
j

]
(3.4)

s.t. P

(∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ 1, k = 1, · · · , K

)
≥ 1− ε. (3.5)

Unlike [31, 92], we require that the overall probability of meeting the K geometric
constraints is above a certain probability level 1− ε, where ε ∈ (0, 0.5].

3.1.2 Stochastic geometric optimization under Gaussian
distribution

We suppose that the coefficients aij, i ∈ Ik,∀k, j = 1, . . . ,M, are deterministic
and the parameters ci, i ∈ Ik,∀k are normally distributed and independent of
each other, i.e., ci ∼ N(Eci , σ

2
i ) [31]. Moreover, we assume that Eci ≥ 0. As ci
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are independent of each other, constraint (3.5) is equivalent to

K∏
k=1

P

(∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ 1

)
≥ 1− ε. (3.6)

By introducing auxiliary variables yk ∈ R+, k = 1, · · · , K, (3.6) can be equiva-
lently transformed into

P(
∑

i∈Ik ci
∏M

j=1 t
aij
j ≤ 1) ≥ yk, k = 1, · · · , K, (3.7)

and

K∏
k=1

yk ≥ 1− ε, 1 ≥ yk ≥ 0, k = 1, · · · , K. (3.8)

It is easy to see that for independent normally distributed ci ∼ N(Eci , σ
2
i )

[31], constraint (3.7) is equivalent to

∑
i∈Ik Eci

M∏
j=1

t
aij
j + Φ−1(yk)

√∑
i∈Ik σ

2
i

M∏
j=1

t
2aij
j ≤ 1, k = 1, · · · , K. (3.9)

Here, Φ−1(yk) is the quantile of the standard normal distribution N(0, 1). How-
ever, biconvex inequalities (3.9) are still very hard to solve within an optimization
problem [41].

Standard variable transformation

The standard variable transformation rj = log(tj), j = 1, · · · ,M and xk =
log(yk), k = 1, · · · , K applied to (3.8) and (3.9) leads to the following constraints:

∑
i∈Ik

Eci exp

{
M∑
j=1

aijrj

}
+

√√√√∑
i∈Ik

σ2
i exp

{
M∑
j=1

(2aijrj + log(Φ−1(exk)2))

}
≤ 1, k = 1, · · · , K, (3.10)

K∑
k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, · · · , K. (3.11)

Φ−1(·) is also called the probit function and can be expressed in terms of the
inverse error function:

Φ−1(yk) =
√

2 erf−1(2yk − 1), yk ∈ (0, 1).

The inverse error function is a nonelementary function which can be repre-
sented by the Maclaurin series:

erf−1(z) =
∞∑
p=0

λp
2p+ 1

(√
π

2
z

)2p+1

,
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where λ0 = 1 and λp =
∑p−1

i=0
λiλp−1−i

(i+1)(2i+1)
> 0, p = 1, 2, · · · . Thus, we know that

Φ−1(yk) is convex for 1 > yk ≥ 0.5, and concave for 0 > yk ≤ 0.5. Moreover,
Φ−1(yk) is always monotonic increasing.

Under constraint (3.11), we have 0.5 ≤ 1 − ε ≤ yk = exk < 1. Hence, we
can only focus on the right tail part of Φ−1(exk). This means the feasible set
constrained by both (3.10) and (3.11) is convex. However, as Φ−1(·) is nonele-
mentary, we still need to approximate it for practical use. Unlike the approxi-
mation method in [21], we approximate log(Φ−1(exk)2) rather than Φ−1(yk) by a
piecewise linear function.

Approximation of log(Φ−1(exk)2)

We choose S different linear functions:

Fs(xk) = dsxk + bs, s = 1, · · · , S,

such that

Fs(xk) ≤ log(Φ−1(exk)2), ∀xk ∈ [log(1− ε), 0), s = 1, · · · , S. (3.12)

log(Φ−1(exk)2) is then approximated by a piecewise linear function

F (xk) = max
s=1,··· ,S

Fs(xk). (3.13)

Constraints (3.12) and (3.13) guarantee that F (xk) provides a lower bound of
log(Φ−1(exk)2).

For a practical use, we can choose the tangent lines of log(Φ−1(exk)2) at dif-
ferent points in [log(1− ε), 0), say ξ1, ξ2, · · · , ξS. Then, we have

ds =
2eξs(Φ−1)(1)(eξs)

Φ−1(eξs)
(3.14)

and

bs = −dsξs + log(Φ−1(eξs)2), s = 1, · · · , S. (3.15)

Remark 3.1. By changing the variables into yk, we can see that the piecewise
linear approximation of log(Φ−1(exk)2) with respect to xk is equivalent to the piece-

wise power function approximation max
s=1,··· ,S

e
bs
2 y

ds
2
k for Φ−1(yk).

Convex geometric approximation

After obtaining the piecewise linear approximation of log(Φ−1(exk)2), we can re-
place log(Φ−1(exk)2) by F (xk) in (3.13).

Theorem 3.1. Using the piecewise linear function F (xk), we have the following
convex approximation of the stochastic geometric program with a joint probabilistic
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constraint (SGP ):

(SGPA) min
r∈RM ,x∈RK

∑
i∈I0

Eci exp

{
M∑
j=1

aijrj

}
(3.16)

∑
i∈Ik

Eci exp

{
M∑
j=1

aijrj

}
+

√√√√∑
i∈Ik

σ2
i exp

{
M∑
j=1

(2aijrj + dsxk + bs)

}
≤ 1, s = 1, · · · , S, k = 1, · · · , K, (3.17)

K∑
k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, · · · , K. (3.18)

The optimal value of the approximation problem (3.16)-(3.18) is a lower bound
of problem (GP ). Moreover, when S goes to infinity, (SGPA) is a reformulation
of problem (SGP ).

We call this approximation a piecewise linear approximation. As problem
(SGPA) is convex, it can be solved efficiently by interior point methods.

Proof. From (3.7) and (3.8), we know that 0 ≤ yk ≤ 1. Moreover, we have
from (3.8) that for any k, yk ≥

∏K
k=1 yk ≥ 1 − ε ≥ 0.5 and hence xk ≥ log(1 −

ε) ≥ log(0.5). Then, from the convexity of log(Φ−1(exk)2) with respect to xk in
[log(1− ε), 0), we have

log(Φ−1(exk)2) ≥ dsxk + bs, ∀xk ∈ [log(1− ε), 0), s = 1, · · · , S. (3.19)

where ds and bs are defined in (3.14) and (3.15). As yk = exk , (3.19) is equivalent
to

Φ−1(yk) ≥ e
bs
2 y

ds
2
k , ∀yk ∈ [1− ε, 1), s = 1, · · · , S. (3.20)

Furthermore, constraint (3.17) is equivalent to

∑
i∈Ik

Eci

M∏
j=1

t
aij
j +

(
max

s=1,··· ,S
e
bs
2 y

ds
2
k

)√√√√∑
i∈Ik

σ2
i

M∏
j=1

t
2aij
j ≤ 1, k = 1, · · · , K. (3.21)

As e
bs
2 y

ds
2
k ≤ Φ−1(yk), ∀s, any feasible solution for (3.9) is feasible for (3.17)

or (3.21). From the equivalence between (3.5) and (3.9) under the Guassian
distribution assumption, the optimal solution of (SGP ) is feasible for (SGPA).
This means that the approximation problem (SGPA) provides a lower bound for
the original problem (SGP ).

Moreover, the S tangent functions in (3.19) are chosen differently and for
xk ∈ {ξ1, · · · , ξS}, log(Φ−1(exk)2) = dsxk + bs. Hence, when S goes to infinity,
inequality (3.19) becomes tight. Furthermore, from the biconvexity of (3.9) and
(3.21), we know the distance between the sets constrained by (3.9) and (3.21) is
small enough when S goes to infinity. As the objective functions of (SGP ) and
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(SGPA) are the same, i.e., (SGPA) is a reformulation of (SGP ) when S goes to
infinity.

Sequential convex approximation

In order to come up with an upper bound of the joint probabilistic constrained
problem (SGP ), which is equivalent to minimize (3.4) subject to the constraints
(3.8) and (3.9), we use the popular sequential convex approximation. The basic
idea of the sequential convex approximation consists in decomposing the original
problem into subproblems where a subset of variables is fixed alternatively. For
our problem, we first fix y = yn and update t by solving

(SQ1) min
t∈RM++

∑
i∈I0

Eci

M∏
j=1

t
aij
j (3.22)

s.t.
∑
i∈Ik

Eci

M∏
j=1

t
aij
j + Φ−1(ynk )

√√√√∑
i∈Ik

σ2
i

M∏
j=1

t
2aij
j ≤ 1, k = 1, · · · , K (3.23)

and then fix t = tn and update y by solving

(SQ2) min
y∈RK+

K∑
k=1

φk yk (3.24)

s.t. yk ≤ Φ

1−
∑

i∈Ik Eci
∏M

j=1(tnj )aij√∑
i∈Ik σ

2
i

∏M
j=1(tnj )2aij

 , k = 1, · · · , K. (3.25)

K∏
k=1

yk ≥ 1− ε, yk ≥ 0, k = 1, · · · , K. (3.26)

Here, φk is a chosen searching direction. The sequential approximation is given
by the following algorithm:

Algorithm 1 Sequential convex approximation

Initialization:
Choose an initial point y0 of y feasible for (3.8). Set n = 0.

Iteration:
while n ≥ 1 and ||yn−1 − yn|| is small enough do
• Solve problem (SQ1); let tn, θn and vn denote an optimal solution of t, an
optimal solution of the Lagrangian dual variable θ and the optimal value,
respectively.

• Solve problem (SQ2) with φk = θnk · (Φ−1)′(ynk )
√∑

i∈Ik σ
2
i

∏M
j=1(tnj )2aij ; let

ỹ denote an optimal solution.
• yn+1 ← yn + τ(ỹ − yn), n← n+ 1. Here, τ ∈ (0, 1) is the step length.

end while
Output: tn, vn
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Theorem 3.2. Algorithm 1 converges in a finite number of iterations and the
returned value vn is a upper bound for the optimal value of problem (SGP ).

Proof. For given feasible yn, problem (SQ1) is bounded from below because of
the positivity of t and Ec. Moreover, it has at least a feasible solution tj =

min

{(
1

2Qmaxi{Eci}

) 1
M maxi{ai,j} ,

(
1

2Φ−1(yn)
√
Qmaxi{σ2

i }

) 1
M maxi{ai,j}

}
. Hence, the op-

timal value sequence {vn} is bounded.
Both tn−1 and tn are feasible for problem (SQ1) with y = yn. Hence, we know

{vn} is non-increasing. Together with the boundness, this means the sequential
convex approximation algorithm converges.

Moreover, at each iteration, yn and tn give a feasible solution for problem
(3.4) subject to constraints (3.8) and (3.9). As (3.5) is equivalent to (3.8) and
(3.9), the optimal values of the approximation problems with fixed yn is an upper
bound for the original problem (SGP ).

Problems (SQ1) and (SQ2) are both geometric programs, hence they can be
transformed into a convex programming problem, and solved by interior point
methods.

3.1.3 Numerical experiments

We test the performance of our approximations by considering a joint probabilistic
constrained stochastic shape optimization problem.

The shape optimization problem is widely applied in the design and construc-
tion of structural mechanics and in the optimal control of distributed parameter
systems [97]. The shape optimization problem consists in finding a geometry of
the structure which minimizes a cost functional w.r.t. given constraints [10]. In
this subsection, we consider a shape optimization problem in which we maximize
the volume of a box-shaped structure with height h, width w and depth ζ. We
have a joint probabilistic constraint on the total wall area 2(hw + hζ), and the
floor area wζ. Here the limits on the total wall area and the floor area are con-
sidered as random variables. Moreover, there are some lower and upper bounds
on the aspect ratios h/w and w/ζ. This example is a generalization of the shape
optimization problem with random parameters [10]. It can be formulated in the
standard form of a geometric program as follows:

(SCP ) min
h,w,ζ

h−1w−1ζ−1 (3.27)

s.t. P
(
(2/Awall)hw + (2/Awall)hζ ≤ 1, (1/Aflr)wζ ≤ 1

)
≥ 1− ε, (3.28)

αh−1w ≤ 1, (1/β)hw−1 ≤ 1, (3.29)

γwζ−1 ≤ 1, (1/δ)w−1ζ ≤ 1. (3.30)

We set α = γ = 0.5, β = δ = 2, ε = 5%, and assume 1/Awall ∼ N(0.005, 0.01)
and 1/Aflr ∼ N(0.01, 0.01).

We use Algorithm 1 to compute an upper bound for problem (SCP ), the nu-
merical results are given in Table 1. We solve five piecewise linear approximation
problems to compute five lower bounds for problem (SCP ).

37



The first column in Table 1 gives the number of segments S used in the piece-
wise linear approximation for solving (SGPA). The second and third columns
give the number of variables and the number of constraints of the five problems,
respectively. Notice that the number of variables is composed by the number of
decision variables and the slack variables. Similarly, the number of constraints
concerns both the original constraints and the added constraints. The forth and
the fifth columns give the lower bounds and the CPU time for the five approxi-
mation problems, respectively. Algorithm 1 converges within 7 outer iterations,
the corresponding upper bound and the CPU time are given by columns 6 and
7 respectively. We use Sedumi solver from CVX package [42] to solve the ap-
proximation problems with Matlab R2012b, on a PC with a 2.6 Ghz Intel Core
i7-5600U CPU and 12.0 GB RAM. For better illustration, we compute gaps of
the piecewise linear approximation bounds, which are the percentage differences
between these lower bounds and the upper bound, and show them in the last
column.

Table 3.1: Computational results of piecewise linear approximations and Algo-
rithm 1.

S Var. Num. Con. Num. Lower bound CPU(s) Upper bound CPU(s) Gap(%)

1 133 60 0.232 0.5955 0.256 5.5274 9.655

2 184 91 0.234 0.6272 0.256 5.5274 8.789

5 283 153 0.241 0.9480 0.256 5.5274 6.044

10 513 273 0.252 1.3554 0.256 5.5274 1.713

20 973 513 0.256 1.9986 0.256 5.5274 0

From Table 3.1, we can see that as the number of segments S increases, the
gap of the corresponding piecewise linear approximation becomes smaller. When
the number of segments is equal to 20, the gap is tight.

Although the problem size is increasing with the number of segments, the CPU
time does not increase proportionally. This means our approximation approaches
together with an increasing number of segments keeps a good structure of the
problem to be solved.

3.2 Joint rectangular geometric chance constrained

programs

In this section, we extend the results in section 3.1 to joint rectangular geometric
chance constrained programs. When the stochastic parameters are elliptically
distributed and pairwise independent, we present a reformulation of the joint
rectangular geometric chance constrained programs. As the reformulation is not
convex, we propose new convex approximations based on the variable transfor-
mation together with piecewise linear approximation method. Numerical results
show that our approximations are tight.
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3.2.1 Introduction

A rectangular geometric program can be formulated as

(GP ) min
t∈RM++

g0(t)

s.t. αk ≤ gk(t) ≤ βk, k = 1, . . . , K,

where αk, βk ∈ R, k = 1, . . . , K and

gk(t) =

Ik∑
i=1

cki

M∏
j=1

t
akij
j , k = 0, . . . , K. (3.31)

Usually, cki
∏M

j=1 t
akij
j is called a monomial where cki , i = 1, . . . , Ik, k = 0, . . . , K,

are nonnegative and gk(t), k = 0, . . . , K, are called posynomials.

We require that 0 < αk < βk, k = 1, . . . , K. When αk ≤ 0, k = 1, . . . , K, the
rectangular geometric program is equivalent to the geometric program discussed
in [30, 83, 10].

Both geometric programs and rectangular geometric programs are not convex
with respect to [t1, t2, . . . , tM ]>. However, geometric programs are convex with
respect to [log(t1), log(t2), . . . , log(tM)]>. Hence, interior point methods can be
used to efficiently solve geometric programs. To the best of our knowledge, there
is no variable transformation method to derive a convex equivalent reformulation
for a rectangular geometric program.

Stochastic geometric programming is used to model geometric problems when
some of the parameters are not known precisely. Stochastic geometric programs
with individual chance constraints are discussed in [31] and [92] where the authors
showed that an individual chance constraint is equivalent to several determinis-
tic constraints involving posynomials and common additional slack variables. In
their work, the parameters akij,∀k, i, j, are deterministic and cki ,∀k, i, are uncor-
related normally distributed random variables. When akij ∈ {0, 1},∀k, i, j and∑

j a
k
ij = 1, ∀k, i, stochastic geometric programs are equivalent to stochastic lin-

ear programs.

In the rest of this chapter, we consider the following joint rectangular geomet-
ric chance constrained programming problem

(SGP ) min
t∈RM++

E

[
I0∑
i=1

c0
i

M∏
j=1

t
a0
ij

j

]
(3.32)

s.t. P

(
αk ≤

Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk, k = 1, . . . , K

)
≥ 1− ε.(3.33)

Here 1 − ε is a prespecified probability with ε < 0.5, akij, k = 0, 1, . . . , K,
i = 1, . . . , Ik, j = 1, . . . ,M , are given parameters and cki , k = 0, 1, . . . , K,
i = 1, . . . , Ik, are random parameters with non-negative mean values.
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3.2.2 Elliptically distributed stochastic geometric prob-
lems

In this section, we consider the joint rectangular geometric chance constrained
programs under the elliptical distribution assumption.

Assumption 3.1. ck = [ck1, c
k
2, . . . , c

k
Ik

] follows a multivariate elliptical distribu-
tion EllipIk(µ

k,Γk, ϕk) with a mean vector (location parameter) µk = [µk1, µ
k
2, . . . , µ

k
Ik

]> ≥
0, and a scale matrix Γk. The element in the ith row and the pth column of Γk

is σki,p, i, p = 1, . . . , Ik, k = 0, 1, . . . , K. We require that µki > 0, i = 1, . . . , Ik,
and σki,p ≥ 0, i, p = 1, . . . , Ik, k = 0, 1, . . . , K. Moreover, we assume that ck,
k = 1, . . . , K are pairwise independent.

Definition 3.1. A L-dimensional random vector ξ follows an elliptical distribu-
tion EllipL(µ,Γ, ϕ) if its characteristic function is given by Eeiz

>ξ = eiz
>µϕ(z>Γz)

where ϕ is the characteristic generator function, µ is the location parameter, and
Γ is the scale matrix.

Elliptical distributions include normal distribution with ϕ(t) = exp{−1
2
t},

student’s t distribution with ϕ(t) varying with its degree of freedom [61], Cauchy
distribution with ϕ(t) = exp{−

√
t}, Laplace distribution with ϕ(t) = (1 + 1

2
t)−1,

and logistic distribution with ϕ(t) = 2π
√
t

eπ
√
t−e−π

√
t
. The mean value of an elliptical

distribution EllipL(µ,Γ, ϕ) is µ, and its covariance matrix is E(r2)
rank(Γ)

Γ, where r is

the random radius [39].

Proposition 3.1 (Embrechts et al., 2005). If a L-dimensional random vector
ξ follows an elliptical distribution EllipL(µ,Γ, ϕ), then for any (N × L)-matrix
A and any N-vector b, Aξ + b follows an N-dimensional elliptical distribution
EllipN(Aµ+ b, AΓA>, ϕ).

Moreover, we have some restrictions on ε as follows.

Assumption 3.2. We assume that

*
φ′ϕk

(Φ−1
ϕk

(1−ε))
φϕk (Φ−1

ϕk
(1−ε))Φ

−1
ϕk

(1− ε) < −1, k = 1, . . . , K,

* (Φ−1
ϕk

(1− ε))2σki,p − µki µkp > 0, i, p = 1, . . . , Ik, k = 1, . . . , K,

* 2σki,p

(
1− φ′ϕk

(Φ−1
ϕk

(z))

φϕk (Φ−1
ϕk

(z))
Φ−1
ϕk

(z)

)(
(Φ−1

ϕk
(z))2σki,p − µki µkp

)
− (2σki,pΦ

−1
ϕk

(z))2 ≥ 0,

for z ∈ [1− ε, 1], i, p = 1, . . . , Ik, k = 1, . . . , K.

Here, Φϕ(·) is the distribution function of an univariate standard elliptical dis-
tribution Ellip1(0, 1, ϕ). We assume that the elliptical distribution Ellip1(0, 1, ϕ)
associated with ϕ has a density function φϕ(·), and Φϕ(·) is continuous and in-
creasing. We denote that, Φ−1

ϕ (·) is the inverse function of Φϕ(·), i.e., the quantile
of the standard elliptical distribution. We assume Φ−1

ϕ (·) to be continuous and
φϕ(·) is positive a.s., and denote the first order derivative of φϕ(·) by φ′ϕ(·).

For some distributions in elliptical distribution group, such as a normal dis-
tribution, Assumption 3.2 has some simpler equivalent formulation.
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Proposition 3.2. For an univariate standard normal distribution N(0, 1), ε ≤
1− Φϕk(1) implies

φ′ϕk
(Φ−1
ϕk

(1−ε))
φϕk (Φ−1

ϕk
(1−ε))Φ

−1
ϕk

(1− ε) < −1.

Proof. We denote Φ−1
ϕk

(1− ε) by ς for short. The left hand side of the conclusion

can be rewritten as ς
φ′ϕk

(ς)

φϕk (ς)
. We have

ς
φ′ϕk(ς)

φϕk(ς)
= ς

1√
2π
e−

ς2

2 (−ς)
1√
2π
e−

ς2

2

= −ς2.

Moreover, ε ≤ 1− Φϕk(1) implies ς ≥ 1, which furthermore implies ς
φ′ϕk

(ς)

φϕk (ς)
<

−1.

Theorem 3.3. Given Assumption 3.1, the joint rectangular geometric chance
constrained programs (SGP ) can be equivalently reformulated as

(SGPr)

min
t∈RM++

I0∑
i=1

µ0
i

M∏
j=1

t
a0
ij

j (3.34)

s.t. Φ−1
ϕk

(z+
k )

√√√√ Ik∑
i=1

Ik∑
p=1

σki,p

M∏
j=1

t
akij+a

k
pj

j −
Ik∑
i=1

µki

M∏
j=1

t
akij
j ≤ −αk,

k = 1, . . . , K, (3.35)

Φ−1
ϕk

(z−k )

√√√√ Ik∑
i=1

Ik∑
p=1

σki,p

M∏
j=1

t
akij+a

k
pj

j +

Ik∑
i=1

µki

M∏
j=1

t
akij
j ≤ βk,

k = 1, . . . , K, (3.36)

z+
k + z−k − 1 ≥ yk, 0 ≤ z+

k , z
−
k ≤ 1, k = 1, . . . , K, (3.37)

K∏
k=1

yk ≥ 1− ε, 0 ≤ yk ≤ 1, k = 1, . . . , K. (3.38)

Proof. As cki are pairwise independent, constraint (3.33) is equivalent to

K∏
k=1

P

(
αk ≤

Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
≥ 1− ε. (3.39)

By introducing auxiliary variables yk ∈ R+, k = 1, . . . , K, (3.39) can be equiva-
lently written as

P

(
αk ≤

Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
≥ yk, k = 1, . . . , K, (3.40)
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and

K∏
k=1

yk ≥ 1− ε, 0 ≤ yk ≤ 1, k = 1, . . . , K. (3.41)

(3.40) is also equivalent to

P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≥ αk

)
+ P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
− 1 ≥ yk, k = 1, . . . , K.

(3.42)

Let z+
k , z

−
k ∈ R+, k = 1, . . . , K, be two additional auxiliary variables. Constraint

(3.42) can be equivalently expressed by

P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≥ αk

)
≥ z+

k , k = 1, . . . , K, (3.43)

P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
≥ z−k , k = 1, . . . , K, (3.44)

z+
k + z−k − 1 ≥ yk, 0 ≤ z+

k , z
−
k ≤ 1, k = 1, . . . , K. (3.45)

From Proposition 3.1, we know that
∑Ik

i=1 c
k
i

∏M
j=1 t

akij
j follows an elliptical

distribution Ellip1(
∑Ik

i=1 µ
k
i

∏M
j=1 t

akij
j ,
∑Ik

i=1

∑Ik
p=1 σ

k
i,p

∏M
j=1 t

akij+a
k
pj

j , ϕk). By using

the quantile function Φ−1
ϕk

(z+
k ), we can equivalently rewrite constraint (3.43) as

−
Ik∑
i=1

µki

M∏
j=1

t
akij
j + Φ−1

ϕk
(z+
k )

√√√√ Ik∑
i=1

Ik∑
p=1

σki,p

M∏
j=1

t
akij+a

k
pj

j ≤ −αk, k = 1, . . . , K,

and rewrite constraint (3.44) as

Ik∑
i=1

µki

M∏
j=1

t
akij
j + Φ−1

ϕk
(z−k )

√√√√ Ik∑
i=1

Ik∑
p=1

σki,p

M∏
j=1

t
akij+a

k
pj

j ≤ βk, k = 1, . . . , K.

This gives the equivalent reformulation of the joint chance constrained problem.
As ck ∼ EllipIk(µ

k,Γk, ϕk), its expected value is µk. Hence, from the additivity
property of the expectation operator, we can get the equivalent reformulation of
the objective function.

In (SGPr), both constraints (3.35) and (3.36) are nonconvex constraints. In
the next section, we propose inner and outer convex approximations of the feasible
solution set.
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3.2.3 Convex approximations of constraints (3.35) and (3.36)

Convex approximations of constraint (3.35)

We first denote

wk =

[
M∏
j=1

t
ak1j
j , . . . ,

M∏
j=1

t
akIkj
j

]
∈ RIk , k = 1, . . . , K.

Constraint (3.35) can be reformulated as

−(µk)>wk + Φ−1
ϕk

(z+
k )
√

(wk)>Γkwk ≤ −αk, k = 1, . . . , K. (3.46)

As we assume that ε ≤ 0.5 and ck follows a symmetric distribution, it is easy
to see that (µk)>wk − αk ≥ 0. Hence, (3.46) is equivalent to

(Φ−1
ϕk

(z+
k ))2((wk)>Γkw

k) ≤ ((µk)>wk − αk)2, k = 1, . . . , K,

which can be reformulated as

(wk)>
(
(Φ−1

ϕk
(z+
k ))2Γk − µk(µk)>

)
wk + 2αk(µ

k)>wk ≤ α2
k, k = 1, . . . , K. (3.47)

As wk =

[∏M
j=1 t

ak1j
j , . . . ,

∏M
j=1 t

akIkj
j

]
, k = 1, . . . , K, constraint (3.47) is equiv-

alent to

2αk

Ik∑
i=1

µki

M∏
j=1

t
akij
j +

Ik∑
i=1

Ik∑
p=1

((Φ−1
ϕk

(z+
k ))2σki,p − µki µkp)

M∏
j=1

t
akij+a

k
pj

j ≤ α2
k,

k = 1, ...K. (3.48)

From (3.37) and (3.38), we know that z+
k ≥ 1− ε ≥ 0.5. Moreover, we know

from Assumption 3.2 that

(Φ−1
ϕk

(z+
k ))2σki,p − µki µkp ≥ (Φ−1

ϕk
(1− ε))2σki,p − µki µkp > 0,

for all z+
k ∈ [1−ε, 1), i, p = 1, . . . , Ik, k = 1, . . . , K. Hence, given Assumption 3.2,

we can apply the standard variable transformation rj = log(tj), j = 1, . . . ,M , to
(3.48). Therefore, we have an equivalent formulation of (3.48)

2αk

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ log((Φ−1
ϕk

(z+
k ))2σki,p − µki µkp)

}
≤ α2

k, k = 1, . . . , K. (3.49)

Proposition 3.3. Given Assumption 3.2, fi,p,k(z
+
k ) = log((Φ−1

ϕk
(z+
k ))2σki,p−µki µkp)

is monotone increasing and convex for z+
k ∈ [1 − ε, 1), i, p = 1, . . . , Ik, k =

1, . . . , K.
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Proof. From the continuity and monotonicity of Φϕk(·) and the positiveness of
φϕk(·), we know Φϕk(·) is strictly monotone a.s.. Hence, from the formula for
the derivative of the inverse function, we have that Φ−1

ϕk
(z) is differential and its

derivative is 1
d
dx

Φϕk (x)
= 1

φϕk (x)
, where x = Φ−1

ϕk
(z). Furthermore, we have that

fi,p,k(z
+
k ) is differential and its first and second order derivatives are

f ′i,p,k(z+
k ) =

dfi,p,k(z+
k )

dz+
k

=
σki,p((Φ

−1
ϕk

(z+
k ))2)′

(Φ−1
ϕk (z+

k ))2σki,p − µki µkp
=

2σki,pΦ
−1
ϕk

(z+
k )(Φ−1

ϕk
(z+
k ))′

(Φ−1
ϕk (z+

k ))2σki,p − µki µkp

=
2σki,pΦ

−1
ϕk

(z+
k )

φϕk
(Φ−1

ϕk (z+
k ))((Φ−1

ϕk (z+
k ))2σki,p − µki µkp)

,

f ′′i,p,k(z+
k ) =

d2fi,p,k(z+
k )

d(z+
k )2

=
2σki,p(Φ

−1
ϕk

(z+
k ))′

(φϕk
(Φ−1

ϕk (z+
k )))((Φ−1

ϕk (z+
k ))2σki,p − µki µkp)

−
2σki,pΦ

−1
ϕk

(z+
k )(φϕk

(Φ−1
ϕk

(z+
k ))((Φ−1

ϕk
(z+
k ))2σki,p − µki µkp))′

(φϕk
(Φ−1

ϕk (z+
k )))2((Φ−1

ϕk (z+
k ))2σki,p − µki µkp)2

=

2σki,p

(
1−

φ′ϕk
(Φ−1

ϕk
(z+k ))

φϕk
(Φ−1

ϕk
(z+k ))

Φ−1
ϕk

(z+
k )

)(
(Φ−1

ϕk
(z+
k ))2σki,p − µki µkp

)
−
(
2σki,pΦ

−1
ϕk

(z+
k )
)2

(φϕk
(Φ−1

ϕk (z+
k )))2((Φ−1

ϕk (z+
k ))2σki,p − µki µkp)2

.

From Assumption 3.2, we know that
dfi,p,k(z+

k )

dz+
k

≥ 0 and fi,p,k(z
+
k ) is monotone

increasing for z+
k ∈ [1 − ε, 1), i, p = 1, . . . , Ik, k = 1, . . . , K. From Assumption

3.2, we know that
d2fi,p,k(z+

k )

d(z+
k )2 ≥ 0 and fi,p,k(z

+
k ) is convex for z+

k ∈ [1 − ε, 1),

i, p = 1, . . . , Ik, k = 1, . . . , K.

Thanks to the convexity and the monotonicity of fi,p,k(z
+
k ), we use the piece-

wise linear approximation method to find a lower approximation of fi,p,k(z
+
k ) [65].

Then, we propose a piecewise linear approximation method to find an lower ap-
proximation of fi,p,k(z

+
k ).

We choose S different linear functions:

FL
s,i,p,k(z

+
k ) = ds,i,p,kz

+
k + bs,i,p,k, s = 1, . . . , S,

which are the tangent segments of fi,p,k(z
+
k ) at given points in [1 − ε, 1), e.g.,

ξ1, ξ2, . . . , ξS. Here, we choose ξS = 1 − δ, where δ is a very small positive real
number. We have

ds,i,p,k = f ′i,p,k(ξs)

and

bs,i,p,k = fi,p,k(ξs)− f ′i,p,k(ξs)ξs, s = 1, . . . , S.

Then, we use the piecewise linear function

FL
i,p,k(z

+
k ) = max

s=1,...,S
FL
s,i,p,k(z

+
k )

to approximate fi,p,k(z
+
k ).
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Proposition 3.4. Given Assumption 3.2, FL
i,p,k(z

+
k ) ≤ fi,p,k(z

+
k ), ∀z+

k ∈ [1−ε, 1).

Proof. The proof can be drawn from the convexity of fi,p,k(z
+
k ) shown in Propo-

sition 3.3.

We use the piecewise linear function FL
i,p,k(z

+
k ) to replace log((Φ−1

ϕk
(z+
k ))2σki,p−

µki µ
k
p) in (3.49). Hence, we have the following convex approximation of constraint

(3.35):



2αk

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ ωLi,p,k

}
≤ α2

k, k = 1, . . . , K,

ds,i,p,kz
+
k + bs,i,p,k ≤ ωLi,p,k, s = 1, . . . , S, i, p = 1, . . . , Ik, k = 1, . . . , K.

(3.50)

As log((Φ−1
ϕk

(z+
k ))2σki,p − µki µkp) is convex, (3.50), together with (3.36)-(3.38), pro-

vides an outer approximation of the feasible set of (SGP ).
To get an upper approximation of the function fi,p,k(z

+
k ), we sort 1−ε, ξ1, ξ2, . . .,

ξS in the increasing order and denote the sorted array by ξ̃1, ξ̃2, . . . , ξ̃S+1. The
segments

FU
s,i,p,k(z

+
k ) = d̃s,i,p,kz

+
k + b̃s,i,p,k, s = 1, . . . , S,

form a piecewise linear function

FU
i,p,k(z

+
k ) = max

s=1,...,S
FU
s,i,p,k(z

+
k ).

Here,

d̃s,i,p,k =
fi,p,k(ξ̃s+1)− fi,p,k(ξ̃s)

ξ̃s+1 − ξ̃s

and

b̃s,i,p,k = −d̃s,i,p,kξ̃s + fi,p,k(ξ̃s), s = 1, . . . , S.

Using the piecewise linear function FU
i,p,k(z

+
k ) leads to the following convex

approximation of constraint (3.35):

2αk

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ ωUi,p,k

}
≤ α2

k, k = 1, . . . , K,

d̃s,i,p,kz
+
k + b̃s,i,p,k ≤ ωUi,p,k, s = 1, . . . , S, i, p = 1, . . . , Ik, k = 1, . . . , K.

(3.51)

As log((Φ−1
ϕk

(z+
k ))2σki,p − µki µkp) is convex, (3.51), together with (3.36)-(3.38), pro-
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vides an inner approximation of the feasible set of (SGP ).

Convex approximation of constraint (3.36)

In constraint (3.36), the terms

√∑Ik
i=1

∑Ik
p=1 σ

k
i,p

∏M
j=1 t

akij+a
k
pj

j and
∑Ik

i=1 µ
k
i

∏M
j=1 t

akij
j

are convex with respect to rj = log(tj), j = 1, . . . ,M .

From [50], we know that Φ−1
ϕk

(z−k ) is convex with respect to z−k on [1 − ε, 1),
if φϕk is 0-decreasing with some threshold t∗(0) > 0, and ε < 1 − Φϕk(t

∗(0)).
The definition of r-decreasing and t∗(0) can be found in [50]. Hence, given some
conditions, constraint (3.36) is a biconvex constraint on [1 − ε, 1). One can use
the sequential convex approach to solve this problem. However, Φ−1

ϕk
(z−k ) cannot

be expressed explicitly, it is still not easy to compute the optimal z−k with fixed
tj. In this section, we use the piecewise linear approximation method proposed
in [65], and its modified approximation method to find tight lower and upper
bounds of (3.36).

We first make the standard variable transformation rj = log(tj), j = 1, . . . ,M
to (3.36) in order to get an equivalent formulation of (3.36)√√√√ Ik∑

i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2 log(Φ−1
ϕk

(z−k )) + log(σki,p)

}

+

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
≤ βk, k = 1, . . . , K. (3.52)

Lemma 3.1. Given Assumption 3.2, log(Φ−1
ϕk

(z−k )) is monotone increasing and
convex on [1− ε, 1).

Proof. The first order and second order derivatives of log(Φ−1
ϕk

(z−k )) are

d(log(Φ−1
ϕk

(z−k )))

dz−k
=

1

Φ−1
ϕk

(z−k )φϕk(Φ
−1
ϕk

(z−k ))
,

and

d2(log(Φ−1
ϕk

(z−k )))

d(z−k )2
= −

1 + Φ−1
ϕk

(z−k )
φ′ϕk

(Φ−1
ϕk

(z−k ))

φϕk (Φ−1
ϕk

(z−k ))

(Φ−1
ϕk

(z−k )φϕk(Φ
−1
ϕk

(z−k )))2
.

From Assumption 3.2, we know that

1 + Φ−1
ϕk

(1− ε)
φ′ϕk(Φ

−1
ϕk

(1− ε))
φϕk(Φ

−1
ϕk

(1− ε))
< 0.

As 1+Φ−1
ϕk

(z−k )
φ′ϕk

(Φ−1
ϕk

(z−k ))

φϕk (Φ−1
ϕk

(z−k ))
is monotone decreasing with respect to z−k in [1− ε, 1),

we can find that the second order derivative of log(Φ−1
ϕk

(z−k )) is larger than or
equal to zero on z−k ∈ [1 − ε, 1), which implies the convexity of log(Φ−1

ϕk
(z−k )) on

[1− ε, 1), k = 1, . . . , K.
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From the convexity and monotonicity, we can use the piecewise linear ap-
proximation methods introduced in the last section to find tight piecewise linear
approximations for log(Φ−1

ϕk
(z−k )). We choose S different linear functions:

GL
s,k(z

−
k ) = ls,kz

−
k + qs,k, s = 1, . . . , S,

which are the tangent segments of log(Φ−1
ϕk

(z−k )) at ξ1, ξ2, . . . , ξS, respectively. We
have

ls,k =
1

φϕk(Φ
−1
ϕk

(ξs))Φ−1
ϕk

(z−k )

and

qs,k = log
(
Φ−1
ϕk

(ξs)
)
− ξs
φϕk(Φ

−1
ϕk

(ξs))Φ−1
ϕk

(z−k )
, s = 1, . . . , S.

Then, we use the piecewise linear function

GL
k (z−k ) = max

s=1,...,S
GL
s,k(z

−
k )

to approximate log(Φ−1
ϕk

(z−k )), and derive the following convex approximation of
(3.52):

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
+

√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃Lk + log(σki,p)

}
≤ βk, k = 1, . . . , K,

ls,kz
−
k + qs,k ≤ ω̃Lk , s = 1, . . . , S, k = 1, . . . , K.

(3.53)
As log(Φ−1

ϕk
(z−k )) is convex, (3.53) together with (3.35), (3.37)-(3.38) provides an

outer approximation of the feasible set of (SGP ).

Moreover, we use the segments

GU
s,k(z

−
k ) = l̃s,kz

−
k + q̃s,k, s = 1, . . . , S,

between ξ̃1, ξ̃2, . . . , ξ̃S+1 to form a piecewise linear function

GU
k (z−k ) = max

s=1,...,S
GU
s,k(z

−
k ).

Here,

l̃s,k =
log(Φ−1

ϕk
(ξ̃s+1))− log(Φ−1

ϕk
(ξ̃s))

ξ̃s+1 − ξ̃s
,

and

q̃s,k = −l̃s,kξ̃s + log(Φ−1
ϕk

(ξ̃s)), s = 1, . . . , S.

47



Using the piecewise linear function GU
k (z−k ) to replace log(Φ−1

ϕk
(z−k )) in (3.52)

gives the following convex approximation of the constraint (3.52):

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
+

√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃Uk + log(σki,p)

}
≤ βk, k = 1, . . . , K,

l̃s,kz
−
k + q̃s,k ≤ ω̃Uk , s = 1, . . . , S, k = 1, . . . , K.

(3.54)
As log(Φ−1

ϕk
(z−k )) is convex, (3.54) provides an inner approximation.

Main result

Theorem 3.4. Given Assumptions 3.1 and 3.2, we have the following convex
approximations for the joint rectangular geometric chance constrained programs
(SGP ):

(SGPL) min
r,z+,z−,
x,ωL,ω̃L

I0∑
i=1

µ0
i exp

{
M∑
j=1

a0
ijrj

}
s.t. ds,i,p,kz

+
k + bs,i,p,k ≤ ωi,p,k, s = 1, . . . , S,

i, p = 1, . . . , Ik, k = 1, . . . , K,

2αk

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ωLi,p,k

}
≤ α2

k, k = 1, . . . , K,√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃Lk + log(σki,p)

}

+

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
≤ βk, k = 1, . . . , K,

ls,kz
−
k + qs,k ≤ ω̃Lk , s = 1, . . . , S, k = 1, . . . , K,

z+
k + z−k − 1 ≥ exk , 0 ≤ z+

k , z
−
k ≤ 1, k = 1, . . . , K,

K∑
k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, . . . , K.

(SGPU) min
r,z+,z−,
x,ωU ,ω̃U

I0∑
i=1

µ0
i exp

{
M∑
j=1

a0
ijrj

}

s.t. d̃s,i,p,kz
+
k + b̃s,i,p,k ≤ ωUi,p,k, s = 1, . . . , S,

i, p = 1, . . . , Ik, k = 1, . . . , K,
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2αk

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ωUi,p,k

}
≤ α2

k, k = 1, . . . , K,√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃Uk + log(σki,p)

}

+

Ik∑
i=1

µki exp

{
M∑
j=1

akijrj

}
≤ βk, k = 1, . . . , K,

l̃s,kz
−
k + q̃s,k ≤ ω̃Uk , s = 1, . . . , S, k = 1, . . . , K,

z+
k + z−k − 1 ≥ exk , 0 ≤ z+

k , z
−
k ≤ 1, k = 1, . . . , K,

K∑
k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, . . . , K.

The optimal value of the approximation problem (SGPL) is a lower bound
of problem (SGP ). The optimal value of the approximation problem (SGPU) is
an upper bound of problem (SGP ). Moreover, if the feasible set of (SGP ) is
nonempty, both (SGPL) and (SGPU) are reformulations of (SGP ) when S goes
to infinity, .

Proof. (SGPL) is obtained from the reformulation (SGPr) of (SGP ) and the
two outer approximations (3.50) and (3.53). Besides, we transform the variable
y into xk = log(yk), k = 1, . . . , K. The outer approximations guarantee that
the feasible region of (SGPL) contains the feasible region of (SGP ). Hence the
optimal value of (SGPL) is a lower bound of problem (SGP ).

Meanwhile, (SGPI) is obtained from the reformulation (SGPr) of (SGP ),
the two inner approximations (3.51) and (3.54) and the variable transformation
xk = log(yk), k = 1, . . . , K. The inner approximations guarantee that the feasible
region of (SGPU) is contained in the feasible region of (SGP ). Hence the optimal
value of (SGPU) is an upper bound of problem (SGP ).

Finally, when S goes to infinity, GL(z−k ) uniformly converges to log(Φ−1
ϕk

(z−k ))
for z−k ∈ [1 − ε, 1) due to the convexity of the two terms given in Assumption
3.2 and the property of the piece-wise linear approximation. Hence, the left
hand side term of (3.53) converges to the left hand side term of (3.52) uniformly.
Given Assumption 3.2, left hand side terms of both (3.52) and (3.53) are convex.
Moreover, both feasible sets are closed and the feasible set constrained by (3.52)
are nonempty. Hence, the convex feasible set constrained by (3.53) converges to
the convex feasible set constrained by (3.52) when S is large enough. Similarly,
when S goes to infinity, GU(z−k ) uniformly converges to log(Φ−1

ϕk
(z−k )) for z−k ∈

[1− ε, 1), and the feasible set constrained by (3.54) converges to the feasible set
constrained by (3.52). Moreover, both FL(z+

k ) and FU(z+
k ) uniformly converge

to log((Φ−1
ϕk

(z+
k ))2σki,p−µki µkp). From the convexity of the feasible sets constrained

by (3.49), (3.50) and (3.51), we know the feasible sets constrained by (3.50) and
by (3.51) both converge to the feasible set constrained by (3.49). By taking the
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intersection of the feasible sets constrained by (3.50) and by (3.53), we can find
that the distance between the feasible sets of (SGPL) and (SGP ) converges to
zero when S goes to infinity. Similarly, by taking the intersection of the feasible
sets constrained by (3.51) and by (3.54), we can find that the distance between
the feasible sets of (SGPU) and (SGP ) converges to zero when S goes to infinity.
This means both (SGPL) and (SGPU) are reformulations of (SGP ) when S goes
to infinity.

Both (SGPL) and (SGPU) are convex programming problems. Interior point
methods can be used to solve them efficiently.

3.2.4 Numerical experiments

We test the performances of our approximation methods by considering the fol-
lowing stochastic rectangular shape optimization problem with a joint chance
constraints:

min
x1,...,xm

m∏
i=1

x−1
i

s.t. P

[
αwall ≤

m−1∑
j=1

(
m− 1

Aj
x1

m∏
i=2,i 6=j

xi) ≤ βwall, αflr ≤
1

Aflr

m∏
j=2

xj ≤ βflr

]
≥ 1− ε,

xix
−1
j ≤ γi,j, ∀i 6= j.

Here, 1/Aflr and 1/Aj, j = 1, . . . ,m− 1, are considered as random variables.
We assume 1/Afl to be independent of 1/Aj, j = 1, . . . ,m− 1. This example is
a generalization of the shape optimization problem with random parameters in
[65]. In all following experiments, we set γi,j = 2, ∀i 6= j, αwall = 1, βwall = 2,
αflr = 1, βflr = 2 and ε = 5%.

In order to test the tightness of the piecewise linear approximation, we first
consider three different examples in the elliptical distribution group.

Example 3.1. We set m = 10. We let 1/Aflr follow a normal distribution
N(0.02, 0.02), and the random vector [1/A1, 1/A2, . . . , 1/Am−1] follow a (m− 1)-
dimensional normal distribution, such that E[1/Aj] = 0.01, j = 1, . . . ,m − 1,
and cov[1/Ai, 1/Aj] = 0.01, i, j = 1, . . . ,m − 1. Moreover, 1/Aj and 1/Aflr are
independent, j = 1, . . . ,m− 1.

Example 3.2. We set m = 15. We let 1/Aflr follow a logistic distribution
with location parameter 0.02 and scale parameter 0.078, i.e., E[1/Aflr] = 0.02
and Var[1/Aflr] = 0.02. We let [1/A1, 1/A2, . . . , 1/Am−1] follow a (m − 1)-
dimensional logistic distribution, such that E[1/Aj] = 0.01, j = 1, . . . ,m − 1,
and cov[1/Ai, 1/Aj] = 0.01, i, j = 1, . . . ,m − 1. Moreover, 1/Aj and 1/Aflr are
independent, j = 1, . . . ,m− 1.

Example 3.3. We set m = 20. We let 1/Aflr follow a Student’s t distribution,
with location parameter 0.02, scale parameter 0.02 and degree of freedom 4. We
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let [1/A1, 1/A2, . . . , 1/Am−1] follow a (m−1)-dimensional Student’s t distribution
with location vector µ, scale matrix Γ and degree of freedom 4, where µj = 0.01,
j = 1, . . . ,m− 1, and Γi,j = 0.01, i, j = 1, . . . ,m− 1. Moreover, 1/Aj and 1/Aflr
are independent, j = 1, . . . ,m− 1.

We should verify the satisfaction of the three conditions in Assumption 3.2
before we make the upper and lower approximations. We set three indexes:

Index 1 = max
k

φ′ϕk
(Φ−1
ϕk

(1−ε))
φϕk (Φ−1

ϕk
(1−ε))Φ

−1
ϕk

(1− ε),

Index 2 = min
i,p,k

(Φ−1
ϕk

(1− ε))2σki,p − µki µkp,

Index 3 = min
i,p,k,z∈[1−ε,1]

2σki,p

(
1− φ′ϕk

(Φ−1
ϕk

(z))

φϕk (Φ−1
ϕk

(z))
Φ−1
ϕk

(z)

)(
(Φ−1

ϕk
(z))2σki,p − µki µkp

)
− (2σki,pΦ

−1
ϕk

(z))2.

We compute the three indexes for the three examples, shown in Table 3.2.

Table 3.2: Verification on the satisfaction of Assumption 3.2.

Index 1 Index 2 Index 3

Example 3.1 -2.7055 0.027 0.0009

Example 3.2 -2.6500 0.0263 0.0009

Example 3.3 -2.6594 0.0453 0.0015

From the negativeness of Index 1 and the positiveness of Index 2 and Index
3, we can verify that Assumption 3.2 holds for all the three examples.

Then we use the proposed convex approximations, (SGPU) and (SGPL), to
obtain lower and upper bounds for the stochastic rectangular shape optimization
problem. For each example, we let the number of segments S go from 1 to 2000
and solve 10 groups of (SGPU) and (SGPL). Computation results of Example 3.1
are shown in Table 3.3, computation results of Example 3.2 are shown in Table
3.4, and computation results of Example 3.3 are shown in Table 3.5,

The first column in the three Tables gives the number of segments S used in
(SGPU) and (SGPL). The second and third columns give the numbers of variables
and the numbers of constraints of (SGPU), respectively. The sixth and seventh
columns give the numbers of variables and the numbers of constraints of (SGPL),
respectively. The forth and the fifth columns give the upper bounds and the
CPU times of (SGPU), respectively. The eighth and the ninth columns give the
lower bounds and the CPU times of (SGPL), respectively. We use SDPT3 solver
from CVX package to solve the approximation problems with Matlab R2012b,
on a PC with a 2.6 Ghz Intel Core i7-5600U CPU and 12.0 GB RAM. For bet-
ter illustration, we compute the gaps of the two piecewise linear approximation
bounds, which are the percentage differences between the lower bound and the
corresponding upper bound, and show them in the last column.
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Table 3.3: Computational results of approximations for normal distribution in
Example 3.1.

S Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)

1 681 216 8.1507 13.3390 681 216 6.6180 10.6090 23.1583

2 685 216 8.1368 13.8255 685 216 7.4902 10.7009 8.6325

5 697 216 8.1311 14.7254 697 216 8.0253 13.4361 1.3186

10 717 216 8.1311 15.5340 717 216 8.1116 14.6222 0.2403

20 757 216 8.1303 15.7734 757 216 8.1279 14.9508 0.0300

100 1077 216 8.1303 17.9095 1077 216 8.1303 17.8283 0.0000

200 1477 216 8.1303 18.0155 1477 216 8.1303 18.3668 0.0000

500 2677 216 8.1303 20.4507 2677 216 8.1303 20.2324 0.0000

1000 4677 216 8.1303 24.5032 4677 216 8.1303 24.3255 0.0000

2000 8677 216 8.1303 33.3699 8677 216 8.1303 33.8009 0.0000

Table 3.4: Computational results of approximations for Logistic distribution in
Example 3.2.

S Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)

1 1526 466 20.3036 27.0223 1526 466 17.0253 25.1127 19.2557

2 1530 466 19.8479 32.8251 1530 466 18.7557 25.9661 5.8232

5 1542 466 19.6918 35.1827 1542 466 19.5681 32.7463 0.6320

10 1562 466 19.6740 36.5728 1562 466 19.6583 35.3287 0.0800

20 1602 466 19.6701 39.4038 1602 466 19.6681 42.9635 0.0100

100 1922 466 19.6701 39.2123 1922 466 19.6701 41.7810 0.0000

200 2322 466 19.6701 39.2405 2322 466 19.6701 40.4707 0.0000

500 3522 466 19.6701 41.2078 3522 466 19.6701 40.4667 0.0000

1000 5522 466 19.6701 46.4123 5522 466 19.6701 46.5576 0.0000

2000 9522 466 19.6701 54.0321 9522 466 19.6701 53.9358 0.0000

Table 3.5: Computational results of approximations for Student’s t distribution
in Example 3.3.

S Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)

1 2721 816 57.2656 73.8665 2721 816 43.3974 51.5729 31.9562

2 2725 816 49.5113 74.7218 2725 816 46.5860 57.3962 6.2793

5 2737 816 47.4843 91.6425 2737 816 47.2853 79.1193 0.4209

10 2757 816 47.3326 80.6797 2757 816 47.2853 82.1539 0.1001

20 2797 816 47.3042 94.3056 2797 816 47.2853 85.8753 0.0400

100 3117 816 47.2901 87.8563 3117 816 47.2901 91.1235 0.0000

200 3517 816 47.2901 86.2648 3517 816 47.2901 84.5257 0.0000

500 4717 816 47.2901 89.6698 4717 816 47.2901 87.5018 0.0000

1000 6717 816 47.2901 95.3347 6717 816 47.2901 92.2044 0.0000

2000 10717 816 47.2901 106.3244 10717 816 47.2901 104.3638 0.0000
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From the three tables, we can see that as the number of segments S increases,
the gap of the corresponding piecewise linear approximation bounds for the prob-
lem becomes smaller. For all the three examples, the gap is tight when the number
of segments is equal to or larger than 100. Notice that the CPU time does not
increase proportionally with the increase of S. When S = 2000, the CPU time is
less than twice of the CPU time when S = 2.

We further study the effect on the approximation precision and CPU time of
mean value, increasing variance and m.

We use Example 3.1 as the basic setting. We set E[1/Aflr] = µflr, E[1/Aj] =
µA, j = 1, . . . ,m − 1, and let them vary from 0.02 to 0.2 and from 0.01 to 0.1,
respectively. All other parameters are fixed at the same values as Example 3.1.
We should verify the satisfaction of the conditions in Assumption 3.2. Like what
we do in Table 3.2, we compute three indexes for each group of the distributions
with different mean values, and show them in Table 3.6. From the table, we
can easily see that Assumption 3.2 holds for all the groups of distributions with
different mean values.

Table 3.6: Verification on the satisfaction of Assumption 3.2 with increasing mean
value.

µA 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µflr 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Index 1 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055

Index 2 0.0270 0.0267 0.0262 0.0255 0.0246 0.0235 0.0222 0.0207 0.0190 0.0171

Index 3 0.0009 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006 0.0004 0.0003 0.0002

Then we use the proposed convex approximations, (SGPU) and (SGPL), to
obtain lower and upper bounds for the stochastic rectangular shape optimization
problem. We set the number of segments S to be 200. Computation results,
including sizes of programming problems, lower/upper bounds and CPU times,
and bound gaps, are shown in Table 3.7. From Table 3.7, we can obverse that
upper bound and lower bound are tight under all the settings with different mean
values. The CPU times are almost the same when we let the mean values vary.

Table 3.7: Computational results with increasing mean value.

µA µflr Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)

0.01 0.02 1477 216 8.1303 18.3817 1477 216 8.1303 19.5148 0

0.02 0.04 1477 216 8.6504 18.7815 1477 216 8.6504 19.2838 0

0.03 0.06 1477 216 9.1724 21.7914 1477 216 9.1724 22.3960 0

0.04 0.08 1477 216 9.6978 22.3719 1477 216 9.6978 22.5001 0

0.05 0.1 1477 216 10.3026 18.5951 1477 216 10.3026 21.5380 0

0.06 0.12 1477 216 11.9317 18.6117 1477 216 11.9317 22.3053 0

0.07 0.14 1477 216 13.9698 18.1727 1477 216 13.9698 21.3361 0

0.08 0.16 1477 216 16.1110 18.1408 1477 216 16.1110 21.4588 0

0.09 0.18 1477 216 18.3055 18.3133 1477 216 18.3055 21.5131 0

0.1 0.2 1477 216 20.5385 18.2731 1477 216 20.5385 18.7971 0

Nextly, we let the variance and covariance vary. In detail, we use Example
3.1 as the basic setting, set Var[1/Aflr] = σ2

flr, Cov[1/Ai, 1/Aj] = σ2
A, i, j =

1, . . . ,m − 1, and let σ2
flr and σ2

A vary from 0.02 to 0.2 and from 0.01 to 0.1,
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respectively. We verify the satisfaction of the conditions in Assumption 3.2 by
computing the three indexes shown in Table 3.8. Then we set S = 200 and
use (SGPU) and (SGPL), to obtain lower and upper bounds for the stochastic
rectangular shape optimization problem. Computation results, including sizes of
programming problems, lower/upper bounds and CPU times, and bound gaps, are
shown in Table 3.9. From Table 3.9, we can obverse that upper bound and lower
bound are tight under all the settings with different variances and covariances.
The CPU times are almost the same when we let variances and covariances vary.

Table 3.8: Verification on the satisfaction of Assumption 3.2 with increasing
variance.

σ2
A 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

σ2
flr 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Index 1 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055 -2.7055

Index 2 0.0270 0.054 0.0811 0.1081 0.1352 0.1622 0.1893 0.2163 0.2434 0.2705

Index 3 0.0009 0.0037 0.0083 0.0147 0.023 0.0332 0.0452 0.0590 0.0747 0.0922

Table 3.9: Computational results with increasing variance.

σ2
A σ2

flr Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)

0.01 0.02 1477 216 8.1303 18.4132 1477 216 8.1303 19.2847 0

0.02 0.04 1477 216 11.7271 18.8420 1477 216 11.7271 19.8981 0

0.03 0.06 1477 216 14.5661 18.7148 1477 216 14.5661 19.2016 0

0.04 0.08 1477 216 17.0083 18.6797 1477 216 17.0083 19.3238 0

0.05 0.1 1477 216 19.2036 18.5938 1477 216 19.2036 22.4753 0

0.06 0.12 1477 216 21.2424 18.7255 1477 216 21.2424 22.0337 0

0.07 0.14 1477 216 23.1872 18.1202 1477 216 23.1872 21.7534 0

0.08 0.16 1477 216 25.0757 18.5851 1477 216 25.0757 21.698 0

0.09 0.18 1477 216 26.9343 18.5935 1477 216 26.9343 18.8600 0

0.1 0.2 1477 216 28.7719 18.3161 1477 216 28.7719 19.0957 0

Table 3.10: Computational results for increasing m.

m Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)

3 880 32 1.4430 4.5124 880 32 1.4430 5.9128 0

5 982 66 1.6864 7.4550 982 66 1.6864 7.9741 0

7 1138 114 3.5648 10.7008 1138 114 3.5648 11.1916 0

10 1477 216 8.1303 19.1872 1477 216 8.1303 20.4025 0

20 3517 816 36.4121 86.0015 3517 816 36.4121 95.0357 0

Finally, we test the effect of m. In detail, we use Example 3.1 with different
m. For each group, we let 1/Aflr follow a normal distribution N(0.02, 0.02), and
the random vector [1/A1, 1/A2, . . . , 1/Am−1] follow a (m−1)-dimensional normal
distribution, with E[1/Aj] = 0.01, j = 1, . . . ,m− 1, and Cov[1/Ai, 1/Aj] = 0.01,
i, j = 1, . . . ,m − 1. As the parameters of each component are set the same, the
satisfaction of the conditions in Assumption 3.2 can be observed from Example
3.1. Then we set S = 200 and use (SGPU) and (SGPL), to obtain lower and upper
bounds for the stochastic rectangular shape optimization problem. Computation
results, including sizes of programming problems, lower/upper bounds and CPU
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times, and bound gaps, are shown in Table 3.10. From Table 3.10, we can again
obverse that the upper bound and the lower bound are both tight for all the
examples with different sizes. However, the CPU time increases faster than a
linear way with respect to m. It increases even faster when m is larger.

3.3 Conclusion

In this chapter, we first review a work of Liu et al. [65] about geometric programs
with joint chance constraints. As an extension, we then discuss joint rectangular
geometric chance constrained programs. We propose tight convex approximations
for them under elliptical distributions and some conditions on the parameters.

This chapter corresponds to a paper submitted to Engineering and Optimiza-
tion.

55



56



Chapter 4

Bounds for Chance Constrained
Problems

In this chapter, we develop four upper bounds for individual and joint chance con-
straints with independent matrix vector rows. The deterministic approximations
of the probability constraints are based on the one-side Chebyshev inequality,
Chernoff inequality, Bernstein in-equality and Hoeffding inequality, respectively.
Various sufficient conditions under which the aforementioned approximations are
convex and tractable are derived. Therefore, we approximate the chance con-
strained problems as tractable convex optimization problems based on piecewise
linear and tangent approximations allowing to reduce further the computational
complexity. Finally, numerical results on randomly generated data are discussed
allowing to identify the tight deterministic approximations.

4.1 Introduction

In this chapter, we consider the following chance constrained linear program:

min
x

cTx

s.t. P {Ξx ≤ H} ≥ α,

x ∈ X, (4.1)

where H = (h1, . . . , hK) ∈ RK , Ξ = [ξ1, . . . , ξK ]T is a K × n random matrix,
where ξk, k = 1, . . . , K is a random vector in Rn. P is a probability measure, x
is a decision vector, set X ⊆ Rn+, c ∈ Rn and 0 < α < 1 a prespecified confidence
parameter.

An individual chance constrained problem can be written as

min
x

cTx

s.t. P
{
ξTx ≤ h

}
≥ α,

x ∈ X. (4.2)
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One of the main goals in problems with an individual chance constraint is
to come up with a deterministic equivalent problem such that the feasible set
S(α) = {x ∈ X : P

{
ξTx ≤ h

}
≥ α} of problem (4.2) is convex.

For instance, if we consider the case of a multivariate normally distributed
vectors ξ with mean ξ̄ = E(ξ) and positive definite variance-covariance matrix Σ,
the following relations hold true:

P(ξTx ≤ h) ≥ α, (4.3)

m
ξ̄Tx+ F−1(α)

∥∥Σ1/2x
∥∥ ≤ h , (4.4)

where F−1(·) is the inverse of F , the standard normal cumulative distribution
function. The same scheme can be applied to elliptical distributions, e.g., Laplace
distribution, t-Student distribution, Cauchy distribution, Logistic distribution.
[24, 65].

When the probability distributions are not elliptical or not known in advance,
lower and upper bounds on P

{
ξTx ≤ h

}
≥ α, can be very useful.

4.2 Chebyshev and Chernoff Bounds

In the following, we provide bounds based on deterministic approximations of
probabilistic inequalities such as the one side Chebyshev and Chernoff inequali-
ties.

4.2.1 Chebychev bounds

We consider the one-side Chebyshev inequality [64, 85]. We assume that ξ has
finite second moments and denote by σ2

ξ = V ar(ξ) the variance of ξ, and ξ̄ = E(ξ)
the mean of ξ. The one-side Chebyshev inequality is given by

P(ξ − ξ̄ ≥ h) ≤
σ2
ξ

σ2
ξ + h2

. (4.5)

For the individual chance constrained problem, we have the following results:

Theorem 4.1. Assume that ξ has finite first and second moments. Under one-
sided Chebyshev inequality (4.5), we have an inner approximation of problem (4.2)
as follows

min
x

cTx

s.t. ξ̄Tx+

√
α

1− α
∥∥Σ1/2x

∥∥ ≤ h,

x ∈ X , (4.6)

Moreover, problem (4.6) is a convex problem.
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Proof. First, we note that

P
(
ξTx ≤ h

)
≥ α, (4.7)

m
P
(
ξTx > h

)
≤ 1− α, (4.8)

m
P
(
ξTx− ξ̄Tx > h− ξ̄Tx

)
≤ 1− α . (4.9)

Then, we apply (4.5) to (4.9):

P
(
ξTx− ξ̄Tx > h− ξ̄Tx

)
≤ P

(
ξTx− ξ̄Tx ≥ h− ξ̄Tx

)
≤

σ2
ξ

σ2
ξ + (h− ξ̄Tx)2

,

(4.10)

where σ2
ξ = xTΣx with variance-covariance matrix Σ. If

σ2
ξ

σ2
ξ+(h−ξ̄T x)2 ≤ 1−α, then

(4.7) will be satisfied. Therefore,

xTΣx

xTΣx+ (h− ξ̄Tx)2
≤ 1− α,⇐⇒ α

1− α
xTΣx ≤ (h− ξ̄Tx)2,

which is equivalent to √
α

1− α
∥∥Σ1/2x

∥∥ ≤ h− ξ̄Tx. (4.11)

In the following, we extend our results to the case of independent joint chance
constraints.

Remark 4.1. For the sake of clarity, we replace the constraints x ∈ X by x ∈ Rn+
for the joint chance constraints case in the remainder of this chapter. Notice
that additional constraints could be considered if their logarithm transformation
preserves the convexity. See [82] for examples preserving the convexity.

If we assume that ξk, k = 1, . . . , K are multivariate normally distributed inde-
pendent row vectors with mean vector µk = (µk1, . . . , µkn), and covariance matrix
Σk, we can derive a deterministic reformulation of problem (4.1). P {Ξx ≤ H} ≥
α is equivalent to

K∏
k=1

P
{
ξTk x ≤ hk

}
≥ α =

K∏
k=1

αyk , (4.12)

with
∑K

k=1 y
k = 1, yk ≥ 0, k = 1, . . . , K and y = (y1, · · · , yK)T .

We provide now an upper bound to problem (4.1) based on the one-side Cheby-
shev inequality. We assume that ξk, k = 1, . . . , K, has finite second moments.
Let Σk denote the covariance matrix of ξk and ξ̄k = E(ξk) denote its mean, we
have
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Theorem 4.2. Based on one-side Chebyshev inequality, an upper bound for prob-
lem (4.1) can be obtained by solving the following deterministic equivalent problem

min
x,y

cTx

s.t. ξ̄Tk x+

√
αyk

1− αyk
∥∥∥Σ

1/2
k x

∥∥∥ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X . (4.13)

Proof. From the reformulation (4.12) and the proof of Theorem 4.1, we can im-
mediately obtain the conclusion.

Assumption 4.1. X = Rn+ ∩ L, L is selected such that Z = {z ∈ Rn : zj =
ln(xj), j = 1 · · · , n, x ∈ L} is convex.

Problem (4.13) is not convex but biconvex ([41]) because of the first group of
constraints. To come-up with a tractable convex reformulation, with Assumption
4.1, we use the following logarithmic transformation z = lnx.

In this case, problem (4.13) can be reformulated as follows

min
z,y

cT ez

s.t. ξ̄Tk e
z +

∥∥∥∥Σ
1/2
k e

ln
(√

αyk

1−αyk

)
·en+z

∥∥∥∥ ≤ hk k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, z ∈ Z, (4.14)

where en is an n× 1 vector of ones
We now prove that problem (4.14) is convex for all α ∈ [0, 1].

Lemma 4.1. Given sets X, Y, Z where X, Y are convex. Let f : X → Y be a
convex function, g : Y → Z be a nonincreasing concave function. Then, we have
g ◦ f : X → Z is a concave function.

Proof. Since f is convex, we have that for λ ∈ [0, 1] and x1, x2 ∈ X, f(λx1 +
(1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). Therefore, as g : Y → Z be a nonincreasing
concave function, we have

g ◦ f(λx1 + (1−λ)x2) ≥ g(λf(x1) + (1−λ)f(x2)) ≥ λg ◦ f(x1) + (1−λ)g ◦ f(x2).

This conclude this lemma.

Assumption 4.2. For each k = 1, . . . , K, all the components of ξ̄k and Σk are
non-negative.

Theorem 4.3. If Assumption 4.2 holds, then problem (4.14) is convex for all
α ∈ [0, 1].
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Proof. To show the convexity of problem (4.14), we firstly need to show the

convexity of ln
(√

αyk
1−αyk

)
. As ln

(√
αyk

1−αyk

)
= 1

2
(yk lnα− ln (1− αyk)), we can

deduce the convexity of function ln
(√

αyk
1−αyk

)
if ln (1− αyk) is concave.

Since log (1− p) is decreasing and concave with respect to p and αyk is convex
with respect to yk. we have that ln (1− αyk) is concave with respect to yk as
shown by Lemma 4.1.

Since the norm is a convex function and it is also a nondecreasing function

on nonnegative space, the composition function

∥∥∥∥Σ
1/2
k e

ln
(√

αyk

1−αyk

)
+z

∥∥∥∥ is a convex

function. The term ξ̄Tk e
z is a convex function because ξ̄k ≥ 0. Hence, the problem

(4.14) is convex for all α ∈ [0, 1].

4.2.2 Chernoff bounds

We consider now the Chernoff bound :

P(ξ ≥ h) ≤ E(etξ)

eth
, (4.15)

where E(etξ) is the moment generating function of the random variable ξ and
t > 0. ξ̄ is the mean of ξ and σ2 = V ar(ξ) is the variance.

First, we proof the convexity of E(etξ
T x).

Lemma 4.2. For any t > 0, E(etξ
T x) is a convex function with respect to x.

Proof. Since etξ
T x is convex with respect to x ∈ X, we have that for λ ∈ [0, 1]

and x1, x2 ∈ X, etξ
T (λx1+(1−λ)x2) ≤ λetξ

T x1 + (1− λ)etξ
T x2 . Therefore,

E(etξ
T (λx1+(1−λ)x2)) ≤ E(λetξ

T x1 + (1− λ)etξ
T x2) = λE(etξ

T x1) + (1− λ)E(etξ
T x2).

Theorem 4.4. If ξ follows a normal distribution with mean vector ξ̄ and variance-
covariance matrix Σ, under Chernoff bound, problem (4.2) can be formulated as
follows

min
x

cTx

s.t. ξ̄Tx+

√
2 ln

1

(1− α)

∥∥Σ1/2x
∥∥ ≤ h,

x ∈ X (4.16)

Moreover, problem (4.16) is a convex problem.

Proof. First, we have from (4.8)

P(ξTx ≤ h) ≥ α⇐⇒ P(ξTx ≥ h) ≤ 1− α.
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This implies

P(ξTx ≥ h) ≤ E(etξ
T x)

eth
. (4.17)

Given t > 0, if we choose E(etξ
T x)

eth
≤ 1−α, then we get an upper bound to problem

(4.2) with feasible region

S̄(α) =
{
x ∈ X ⊆ Rn+|E(etξ

T x) ≤ (1− α)eth
}
, (4.18)

which is convex as E(etξ
T x) is convex with respect to x, as shown by Lemma 4.2.

If ξ is a normal distribution with mean ξ̄ and variance-covariance Σ, i.e.
ξ ∼ N(ξ̄,Σ) then in (4.18) we have E(etξ

T x) = etξ̄
T x · e 1

2
xTΣxt2 . The feasible

region S̄(α) can be written as:

S̄(α) =

{
x ∈ X ⊆ Rn+|∃ t > 0 :

1

2
xTΣxt2 + tξ̄Tx− th ≤ ln(1− α)

}
. (4.19)

The set (4.19) is equivalent to:

inf
t>0

{
1

2
xTΣxt2 + tξ̄Tx− th

}
≤ ln(1− α). (4.20)

The first derivative of 1
2
xTΣxt2 + tξ̄Tx − th equal to zero with respect to t at

h−ξ̄T x
xTΣx

. If h− ξ̄Tx < 0, the constraint (4.20) is equivalent to 0 < ln(1− α), which
is impossible. Hence, let h− ξ̄Tx ≥ 0. Therefore (4.19) is equivalent to

S̄(α) =
{
x ∈ X ⊆ Rn+| − (h− ξ̄Tx)2 ≤ 2 ln(1− α)xTΣx

}
, (4.21)

which is equivalent to the following convex set:

S̄(α) =

{
x ∈ X ⊆ Rn+|h− ξ̄Tx ≥

√
2 ln

1

(1− α)
‖Σ1/2x‖

}
. (4.22)

We extend our results to the case of independent joint chance constraints.

If we assume that ξk, k = 1, . . . , K are multivariate normally distributed
independent row vectors with mean vector ξ̄k = (ξ̄k1, . . . , ξ̄kn)T and covariance
matrix Σk, we can derive a deterministic reformulation of problem (4.1) based on
(4.12).

We consider now an upper bound to problem (4.1) based on Chernoff bound.

Theorem 4.5. If ξk, k = 1, . . . , K are independent with each other and normally
distributed with mean vector ξ̄k and covariance matrix Σk, based on Chernoff
bound, an upper bound for problem (4.1) can be obtained by solving the following
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problem

min
z,y

cTx

s.t. ξ̄Tk x+

√
2 ln

(
1

1− αyk

)
‖Σ1/2

k x‖ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X . (4.23)

Proof. First, we note that

P(ξTk x ≤ hk) ≥ αyk ⇐⇒ P(ξTk x ≥ hk) ≤ 1− αyk .

Chernoff bound leads to

P(ξTk x ≥ hk) ≤
E(etξ

T
k x)

ethk
, k = 1, . . . , K, (4.24)

with t > 0. An upper bound to problem (4.1) is then obtained by solving the
following problem with t > 0:

min
z,y

cTx

s.t. E(etξ
T
k x) ≤ (1− αyk)ethk , k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X .

(4.25)

However, if the probability distributions of ξk, k = 1, . . . , K are not known,
the main difficulty of the model (4.25) is given by the computation of E(etξ

T
k x).

On the other hand, if we assume ξk, k = 1, . . . , K are normal distributions with
mean ξ̄k and variance-covariance Σk, i.e. ξk ∼ N(ξ̄k,Σk), then we have that

E(etξ
T
k x) = etξ̄

T
k x · e 1

2
xTΣkxt

2
, k = 1, . . . , K. Consequently problem (4.25) can be

written as

min
z,y

cTx

s.t. 1
2
xTΣkxt

2 + tξ̄Tk x− thk ≤ ln(1− αyk), k = 1, . . . , K,
K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X .

(4.26)

Similarly to the individual chance constraint case, we have:

min
z,y

cTx

s.t. hk − ξ̄Tk x ≥
√

2 ln
(

1
1−αyk

)
‖Σ1/2

k x‖, k = 1, . . . , K,
K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X .
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Similarly, problem (4.23) is not a convex optimization problem. Therefore,
with Assumption 4.1, we apply the transformation z = lnx and get:

min
z,y

cT ez

s.t. ξ̄Tk e
z +

∥∥∥∥∥Σ
1/2
k e

ln

(√
2 ln
(

1
1−αyk

))
+z

∥∥∥∥∥ ≤ hk k = 1, . . . , K ,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, z ∈ Z , (4.27)

Moreover, if ξ̄k ≥ 0, k = 1, 2, · · · , K, and the function ln
(√

2 ln( 1
1−αyk )

)
is

convex, then problem (4.27) is convex. The following lemma shows the convexity

of ln
(√

2 ln( 1
1−αyk )

)
.

Lemma 4.3. If α ≥ 1 − e−1 ≈ 0.6321, then ln
(√

2 ln( 1
1−αyk )

)
is convex with

respect to yk.

Proof. By the convexity theorem of composite function, we only need to prove

the convexity of ln
(√

2 ln( 1
1−p)

)
with respect to p, since the convexity of compos-

ite function ln
(√

2 ln( 1
1−αyk )

)
is implied when ln

(√
2 ln( 1

1−p)
)

is nondecreasing

and convex. As ln
(√

2 ln( 1
1−p)

)
is monotone, we need to show the convexity of

ln
(√

2 ln( 1
1−p)

)
. We can notice that ln

(√
2 ln( 1

1−p)
)

=
1

2
ln
(

2 ln( 1
1−p)

)
. There-

fore, we only need to focus on the convexity of ln
(

2 ln( 1
1−p)

)
.

The second order derivative of ln
(

2 ln( 1
1−p)

)
can be written as

−
[
(1− p)−2 (ln(1− p))−1 + (1− p)−2 (ln(1− p))−2] ,

= −(1− p)−2 (ln(1− p))−2 (ln(1− p) + 1) .

Then, ln
(

2 ln( 1
1−p)

)
is convex if and only if

ln(1− p) + 1 ≤ 0.

Therefore, we have p ≥ 1− e−1.

As αyk is convex with respect to yk and αyk ≥ α for any 0 ≤ yk ≤ 1, if

α ≥ 1− e−1, then the function ln
√

2 ln( 1
1−αyk ) is convex.

Therefore, when c ≥ 0, α ≥ 1− e−1, ξ̄k ≥ 0, k = 1, 2, · · · , K, problem (4.27)
is convex.
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4.3 Bernstein and Hoeffding Bounds

Bernstein and Hoeffding bounds are considered as exponential type estimates of
probabilities. These inequalities are frequently used for investigating the law of
large numbers for instance. They are also often used in statistics and probability
theory. In this section, we investigate these bounds for the case of individual and
joint chance constraints.

4.3.1 Bernstein bounds

In this section, we consider Berstein bound [85]. We assume that the mean and
the range parameters for all independent components ξi of the random vector ξ
are known, i.e. li ≤ ξi ≤ ui, and E(ξi) = ξ̄i, for i = 1, . . . , n. Then, the respective
values for the random variable ξixi are l′i = lixi, u

′
i = uixi, and ξ̄′i = ξ̄ixi. From

Bernstein-type exponential estimate, we have that

e−g
∗a

n∏
i=1

{
ui − ξ̄i
ui − li

eg
∗lixi +

ξ̄i − li
ui − li

eg
∗uixi

}
≤ α (4.28)

with arbitrary constant g∗ > 0 implies P(
∑n

i=0 ξixi ≥ a) ≤ α.

Theorem 4.6. An upper bound for problem (4.2) can be obtained by solving the
following problem

min
x

cTx

s.t.
n∑
i=1

ln

{
ui − ξ̄i
ui − li

eg
∗lixi +

ξ̄i − li
ui − li

eg
∗uixi

}
≤ ln(1− α) + g∗h,

x ∈ X (4.29)

with arbitrary g∗ > 0.

Proof. Applying Bernstein inequality to the chance constraint in (4.2), and pass-
ing to the logarithm both sides, we obtain the conclusion.

We provide now an upper bound to problem (4.1) based on the Berstein
bound. We assume that the mean and the range parameters for all independent
components (ξk)i of the random vectors ξk are known, i.e. (lk)i ≤ (ξk)i ≤ (uk)i,
and E[(ξk)i] = (ξ̄k)i, for k = 1, . . . , K and i = 1, . . . , n. Then, the respective
values for the random variable (ξk)ixi are (l′k)i = (lk)ixi, (u′k)i = (uk)ixi, and
(ξ̄′k)i = (ξ̄k)ixi.

Theorem 4.7. With the assumption of ξ mentioned above, an upper bound to
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problem (4.2) can be obtained by solving the following problem

min
x,y

cTx

s.t.
n∑
i=1

ln

{
(uk)i − (ξ̄k)i
(uk)i − (lk)i

eg
∗
k(lk)ixi +

(ξ̄k)i − (lk)i
(uk)i − (lk)i

eg
∗
i (uk)ixi

}
≤ g∗khk +

ln(1− αyk), k = 1, . . . , K,
K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X . (4.30)

with arbitrary g∗ > 0.

Proof. According to Berstein-type exponential estimate, we have

e−g
∗
kak

n∏
i=1

{
(uk)i − (ξ̄k)i
(uk)i − (lk)i

eg
∗
k(lk)ixi +

(ξ̄k)i − (lk)i
(uk)i − (lk)i

eg
∗
k(uk)ixi

}
≤ αyk , k = 1, . . . , K ,

(4.31)
with arbitrary g∗k > 0 which implies P(

∑n
i=0(ξk)ixi ≥ ak) ≤ αyk , k = 1, . . . , K.

We note that

P
(
ξTk x ≤ hk

)
≥ αyk , k = 1, . . . , K, (4.32)

m

P

(
n∑
i=1

(ξk)ixi ≥ hk

)
≤ 1− αyk , k = 1, . . . , K. (4.33)

Constraints (4.33) can be approximated by

n∑
i=1

ln

{
(uk)i − (ξ̄k)i
(uk)i − (lk)i

eg
∗
k(lk)ixi +

(ξ̄k)i − (lk)i
(uk)i − (lk)i

eg
∗
k(uk)ixi

}
≤ ln(1− αyk) + g∗khk

(4.34)
for any g∗k > 0, k = 1, . . . , K.

From Proposition 4.1 in [85] and the concavity of function ln(1−αyk), problem
(4.30) is convex.

4.3.2 Hoeffding bounds

We consider now an approximation based on Hoeffding inequality ([85]):

P(
ξT en
n
− ξ̄T en

n
≥ h) ≤ e

−2n2h2∑n
i=1

(ui−li)2 , (4.35)

with the range parameters for all independent components ξi of the random vector
ξ, i.e. li ≤ ξi ≤ ui, for i = 1, . . . , n, ξ̄ = E(ξ) and en ∈ Rn is a vector with all
elements equal to 1.
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Theorem 4.8. With the assumption of ξ mentioned above, an upper bound for
problem (4.2) can be obtained by solving the following convex programming prob-
lem

min
x

cTx

s.t. ξ̄Tx+

√
2

2

√
− ln(1− α)‖Mx‖ ≤ h,

x ∈ X

(4.36)

where M = diag(u− l), u = (u1, . . . , un)T , l = (l1, . . . , ln)n.

Proof. We note that

P
(
ξTx ≤ h

)
≥ α, (4.37)

m
P
(
ξTx− ξ̄Tx ≥ h− ξ̄Tx

)
≤ 1− α . (4.38)

Then, we apply (4.35) to (4.38) and get:

P
(
ξTx− ξ̄Tx ≥ h− ξ̄Tx

)
≤ e

−2(h−ξ̄T x)2∑n
i=1

(ui−li)2x2
i . (4.39)

If

e
−2(h−ξ̄T x)2∑n
i=1

(ui−li)2x2
i ≤ 1− α , (4.40)

then (4.37) will be satisfied. Logarithmic transformation of (4.40) leads to

−2(h− ξ̄Tx)2∑n
i=1(ui − li)2x2

i

≤ ln(1− α) , (4.41)

which can be written as

h− ξ̄Tx ≥
√

2

2

√
− ln(1− α)‖Mx‖, (4.42)

where M = diag(u− l) and then (4.42) is a convex inequality.

Theorem 4.9. Assume that the mean and the range parameters for all indepen-
dent components (ξk)i of the random vectors ξk are known, i.e. (lk)i ≤ (ξk)i ≤
(uk)i, for k = 1, . . . , K and i = 1, . . . , n. An approximation of problem (4.1)
based on Hoeffding’s inequality can be given by

min
x,y

cTx

s.t. ξ̄Tk x+

√
2

2

√
ln
(

1
1−αyk

)
‖Mkx‖ ≤ hk, k = 1, . . . , K,∑K

k=1 yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X,

(4.43)

where Mk = diag(uk − lk), uk = ((uk)1, . . . , (uk)n)T , lk = ((lk)1, . . . , (lk)n)T , k =
1, . . . , K.
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Proof. With almost the same proof method of Theorem 4.8, the conclusion can
be obtained.

Additionally, with Assumption 4.1, an equivalent upper bound for problem
(4.1) based on Hoeffding inequality can be obtained by applying the following
transformation z = lnx:

min
z,y

cT ez

s.t. ξ̄Tk e
z +

1

2
‖Mke

ln

(√
2 ln
(

1
1−αyk

))
+z
‖ ≤ hk, k = 1, . . . , K,∑K

k=1 yk = 1, yk ≥ 0, k = 1, . . . , K, z ∈ Z.

(4.44)

From Lemma 4.3, function ln
(√

2 ln( 1
1−αyk )

)
is convex, when α ≥ 1 − e−1.

Hence, if c ≥ 0, α ≥ 1− e−1, problem (4.44) is convex.

4.4 Computational Results

Although the problems which give upper bounds obtained by Chebyshev inequal-
ity, Chernoff inequality, Bernstein inequality and Hoeffding inequality, respec-
tively, for problem (4.1) are convex under some conditions, they are still hard to

solve directly by current tools because of the following terms: ln
(√

αyk
1−αyk

)
and

ln
(√

2 ln( 1
1−αyk )

)
.

In the following, we denote these functions by Υ(yk). We propose piecewise
linear approximations for Υ(yk) based on tangent and segment approximations.

Tangent approximation

We choose S different linear functions:

ls(yk) = asyk + bs, s = 1, . . . , S,

such that
ls(yk) ≤ Υ(yk), ∀yk ∈ [ρ, 1), k = 1, . . . , K.

Here ρ ≥ 0 is a constant such that Υ(yk) is convex on [ρ, 1). Then, Υ(yk) can be
approximated by the following piecewise linear function

l(yk) = max
s=1,...,S

ls(yk),

which provides a lower approximation for Υ(yk).

In order to achieve the expected precision, we set ls(yk) as the tangent line of
Υ(yk) at S points τ1, . . . , τS with τs ∈ [ρ, 1), s = 1, . . . , S. Then, we have

as =
dΥ(yk)

dyk

∣∣∣∣
yk=τs

, bs = Υ(τs)− asτs.
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Thanks to these piecewise linear approximations for Υ(yk), we have the fol-
lowing results:

Theorem 4.10. Under the aforementioned convexity conditions, if we replace in
problems (4.14), (4.27), (4.44) Υ(yk) by l(yk), we obtain their convex approxima-
tions. The optimum values of the approximation problems are lower bounds for
problems (4.14), (4.27), (4.44), respectively. Moreover, the approximation prob-
lems become an equivalent reformulation of problems (4.14), (4.27), (4.44) when
S goes to infinity.

Proof. As the approximation problems are obtained by relaxing some constraints
in problems (4.14), (4.27), (4.44), it is easy to see that the optimal values of
the approximation problems are lower bounds for problems (4.14), (4.27), (4.44),
respectively.

We know under convexity conditions for problems (4.14), (4.27), (4.44), Υ(yk)
is convex for each problem. As the S tangent functions are selected differently,
when S goes to infinity, the constraints in the approximation problems are equiv-
alent to the constraints in problems (4.14), (4.27), (4.44), respectively. As the
original problems and the corresponding approximation problems are all convex
programs, the approximation problems become an equivalent reformulation of
problems (4.14), (4.27), (4.44), respectively, when S goes to infinity.

Segment approximation

In order to come up with conservative bounds for the optimum values of problems
(4.14), (4.27), (4.44), we use the linear segments āsyk + b̄s, s = 1, . . . , S, between
τ1, τ2, . . . , τS+1 ∈ [ρ, 1) to construct a piecewise linear function

l̄(yk) = max
s=1,...,S

{
āsyk + b̄s

}
, (4.45)

where

ās =
Υ(τs+1)−Υ(τs)

τs+1 − τs
, b̄s = Υ(τs)− āsτs, s = 1, . . . , S.

Using the piecewise linear function l̄(yk) to replace Υ(yk) in problems (4.14),
(4.27), (4.44), gives the corresponding approximation problems.

Similar to Theorem 4.10, we can derive the following result for the linear
approximation:

Theorem 4.11. Under the aforementioned convexity conditions, if we replace in
problems (4.14), (4.27), (4.44) Υ(yk) by l̄(yk), we obtain the convex approxima-
tions of these problems. The optimum values of the approximation problems are
an upper bound for problems (4.14), (4.27), (4.44), respectively. Moreover, the
approximation problems become an equivalent reformulation of problems (4.14),
(4.27), (4.44), respectively, when S goes to infinity.

The proof of this theorem follows the same pattern as the proof of Theorem
4.10.
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Numerical experiments

The four bounds have been implemented and compared under Matlab environ-
ment using CVX software, a modeling system for constructing and solving convex
programs. We run the bounds for 100 instances randomly generated with the fol-
lowing characteristics: in the individual chance constraint (4.2) we set n = 10,
h = 0.5, α = 0.95, the constraint x ∈ X ∈ Rn+ is given by

∑n
i=1 xi = 1, c is a

random vector from a uniform distribution in the interval [0, 1]n, ξ̄T is uniformly
generated in the interval [0, 10]n and σ2

ξ is uniformly generated in the interval
[0, 1]n×n. In the following, we assume that the random variable ξ is distributed
according to a normal distribution with mean ξ̄ and variance σ2

ξ generated as
described above. This will allow us to make a fair comparison of the bounds with
the exact SOCP reformulation. For joint chance constrained problem(4.1), we
set n = 10, K = 5 and hi = 0.5, i = 1, · · · , K. The other parameters are the
same as those in the individual case.

As upper and lower bounds for random vector ξ are needed in Bernstein and
Hoeffding bounds, 5000 samples following a normal distribution with mean ξ̄ and
variance σ2

ξ described above are generated. And the maximal value of these 5000
samples is selected as upper bound while the minimal value is selected as lower
bound

Numerical results for the individual chance constraint case are reported in
Figure 4.1: Figure 4.1(a) shows a comparison of the objective function values of
the four bounds (Chebyshev, Chernoff, Bernstein and Hoeffding) with the exact
SOCP reformulation for 100 different randomly generated instances, while Fig-
ure 4.1(b) shows the corresponding box-and-whisker plots where the extrema of
the box represents the 1/4 and 3/4 quartiles, the band inside the box is the me-
dian and the whiskers the minimum and maximum obtained from 100 randomly
generated instances.
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Figure 4.1: (a) Comparison of SOCP versus bounds for individual chance con-
straint. (b) box-and-whisker plots from the same 100 randomly generated in-
stances of (a).

The average CPU times and gaps for different bounds and SOCP are shown
in Table 4.1 in second and third rows, respectively. Results from Figure 4.1 and
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Table 4.1 show that the best upper bound is obtained by Chernoff inequality,
followed by Bernstein which in all the instances outperfoms one-side Chebyshev
and Hoeffding ones. The worst bound is in all the cases obtained by Hoeffding
approximation. Notice that the CPU times for Chebyshev, Chernoff, Bernstein,
Hoeffding and SOCP are relatively comparable. The reason for the good perfor-
mance of Chernoff bound compared to the others, could be due to the explicit
assumption that the moment generating function of the random variable ξ fol-
lows a normal distribution, information not taken into account in all the other
approaches. Very good is the performance of the Bernstein bound, considering
that only the mean and the range of the random variable are known.

Table 4.1: Average results over 100 instances of different bounds and SOCP for
individual chance constrained problem.

Bound Chebyshev Chernoff Bernstein Hoeffding SOCP

CPU time(s) 0.9815 0.9727 1.2761 1.0850 0.9932

Gap (%) 7.55 1.58 2.8 13.64 -

Numerical results for the joint chance constraints case are reported in Figure
4.2: Figure 4.2(a) shows a comparison of the objective function values of the four
bounds (Chebyshev, Chernoff, Bernstein and Hoeffding) with the SOCP refor-
mulation for 100 different randomly generated instances, where SOCP, Hoeffding
and Chernoff are obtained both with tangent and segment approximations with
S = 50. Figure 4.2(b) shows the corresponding box-and-whisker plots where the
extrema of the box represents the 1/4 and 3/4 quartiles, the band inside the box
is the median and the whiskers the minimum and maximum obtained from 100
randomly generated instances.
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Figure 4.2: (a) Comparison of SOCP versus bounds for the joint chance con-
strained problem. (b) Box-and-whisker plots from the same 100 randomly gener-
ated instances of (a).

Table 4.2 shows the average CPU time (second row) for different bounds and
SOCP and the average gap (third row) between different bounds and SOCP for
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the joint chance constraints case. Results from Figure 4.2 and Table 4.2 show
that Chebyshev bound always provide the worst bound, while there are not much
differences among other bounds. As in the individual chance constraint case,
the best bound is the Chernoff one followed by the Bernstein’s bound. Notice
that the CPU times for Chebyshev, Chernoff, Bernstein, Hoeffding and SOCP
are relatively comparable.

Table 4.2: Average results of different bounds and SOCP for the joint chance
constrained problem.

Bound Chebyshev Chernoff Bernstein Hoeffding SOCP

CPU time(s) 2.9932 2.8255 3.2030 2.2845 2.2551

Gap (%) 12.30 3.69 3.91 4.01 -

Notice that in the upper bound problems obtained by Chernoff and Hoeffd-
ing inequalities for problem (1), we use tangent and segment approximations,

as described above, to approximate the complex terms: ln
(√

2 ln
(

1
1−αyk

))
and

ln

(√
2 ln

(
1

1−yk

))
, respectively.

A sensitivity analysis of the segment and tangent approximations on the num-
ber of segments S = 3, 10, 20, 50 is reported in Figure 4.3 with corresponding
box-and-whisker plots in Figure 4, for 100 instances randomly generated. Results
show that when S = 50, there’s almost no gap between the results obtained by
tangent and segment approximations, respectively. And for each S, Chernoff in-
equality and Hoeffding inequality always provide an upper bound for the result
obtained by SOCP.

4.5 Conclusion

In this chapter, we propose deterministic approximations for individual and joint
chance constraints with independent matrix vector rows. The bounds are based
on classical inequalities from probability theory such as the one-side Chebyshev
inequality, Bernstein inequality, Chernoff inequality and Hoeffding inequality and
allow to reformulate the problem in in a tractable convex way. Approximations
based on piecewise linear and tangent are also provided in case of Chernoff and
Hoeffding inequalities allowing to reduce the computational complexity of the
problem. Finally numerical results on randomly generated data are provided al-
lowing to identify that the Chernoff bound provides the tighter deterministic ap-
proximation while the Chebyshev bound, requiring the knowledge of the first and
second moments, is very loose both for individual and joint chance constrained
problems. Remarkable is also the performance of Bernstein’s bound, considering
that only the mean and the range of the random variables are assumed to be
known. In terms of CPU times all the considered bounds are relatively compa-
rable.

This chapter correrponds to the reference [81].
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Figure 4.3: Comparison of SOCP versus bounds for the joint chance constrained
problem with different values of S for segment and tangent approximations.
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Figure 4.4: Box-and-whisker plots corresponding to Figure 4.3 for different values
of S = 3, 10, 20, 50 with segment and tangent approximations.
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Chapter 5

Data-Driven Robust Chance
Constrained Problems: A
Mixture Model Approach

This chapter discusses the mixture distribution based data-driven robust chance
constrained problem. We construct a data-driven mixture distribution based
uncertainty set from the perspective of simultaneously estimating higher order
moments. Then, we derive a reformulation of the data-driven robust chance con-
strained problem. As the reformulation is not a convex programming, we propose
new and tight convex approximations based on the piecewise linear approxima-
tion method under certain conditions. For the general case, we propose a DC
approximation to derive an upper bound and a relaxed convex approximation
to derive a lower bound for the optimal value of the original problem, respec-
tively. We establish the theoretical foundation for these approximations. Finally,
the results of simulation experiments show that the proposed approximations are
practical and efficient.

5.1 Mixture Distribution Based Uncertainty Set

As a preparation for our later construction of the data-driven robust chance
constrained problem, we first define the uncertainty set under the mixture distri-
bution framework, and then consider the moments estimation from sample data
to determine the parameters of the data-driven uncertainty set.

We assume that the n-dimensional random vector ξ has a continuous proba-
bility density function. For notational clarity, we use f to denote the distribution
of ξ and f(·) to denote the probability density function of ξ.

To ensure a reliable estimation of the real distribution, we assume that ξ
follows a finite normal mixture distribution. This means that f(·) can be explicitly
defined by

f(·) =
M∑
m=1

wmfm(·), (5.1)

here fm(·) is the probability density function of the m-th component. In this
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chapter, we assume that the m-th component follows a n-dimensional normal
distribution with the mean vector being µm = (µm1, · · · , µmn)> and the covari-
ance matrix being Σm =

{
σmij
}

, which is positive semidefinite, m = 1, · · · ,M .
wm ∈ R+ is the weight assigned to the m-th component, m = 1, · · · ,M , with∑M

m=1wm = 1.
As the exact distribution of the random vector is never completely known in

practice, it is reasonable to assume certain kind of uncertainties when modeling
the distribution. One advantage of the normal mixture distribution is that it
can fairly represent different types of distributions with respective means and
variances. Many popular distributions, such as elliptical distribution, skew-t dis-
tribution and generalized hyperbolic distribution, can be viewed as (infinite) nor-
mal mixture distributions (see McNeil et al.[74]). Considering both the descrip-
tion accuracy and the tractability, we assume in the rest of this chapter that all
the component distributions of the assumed mixture distribution are completely
specified. Therefore, establishing a confidence region of the original distribution
is equivalent to constructing a confidence region of the mixture weights. For this
reason, we introduce the following data-driven uncertainty set:

Definition 5.1. A mixture distribution based uncertainty set is expressed as

D =

{
M∑
m=1

wmfm(·) : w ∈ W

}
,

where W =
{
w : ‖Ukw‖ ≤ γk, k = 1, · · · , I,

∑M
m=1wm = 1,w ≥ 0

}
. I is an pos-

itive integer. For k = 1, · · · , I, the constraint ‖Ukw‖ ≤ γk corresponds to the
k-th order moment constraint, γk ∈ R++ is a given reference scalar parameter,
Uk ∈ Rn×M is the reference matrix given as

Uk =
(
µ(k) − µ(k)

1 , · · · ,µ(k) − µ(k)
M

)
∈ Rn×M ,

where µ
(k)
m =

(
µ

(k)
m,1, · · · , µ

(k)
m,n

)>
, µ

(k)
m,j =

´
ξkj fm(ξ)dξ, j = 1, · · · , n, m = 1, · · · ,M ,

and µ(k) denotes the empirical estimation of
∑M

m=1 wmµ
(k)
m .

Mixture distribution has already been studied in robust statistics and used in
modeling the distribution of financial data, see, for example, Hall et al. [45], Peel
and McLachlan [80] and Zhu and Fukushima [107].

The above uncertainty set is based on the moment estimation. It can incor-
porate the information of the arbitrary order moments of ξ, which is different
from the uncertainty set in Zhu et al.[106] and Gupta [43], where the uncertainty
sets were defined with only first two order moments constraints, or specified from
the viewpoint of Bayesian learning. And our uncertainty set focuses on the mo-
ments and includes higher order moments, which are often concerned in practical
problems, like financial management.

Mixture distribution can efficiently describe the shape of a distribution. Eisen-
berger [34] showed that the density of a mixture of two univariate normal compo-
nents with means and variances being µ1, σ

2
1 and µ2, σ

2
2, respectively, is unimodal
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if (µ1 − µ2)2 <
27σ2

1σ
2
2

4(σ2
1+σ2

2)
. For the case that (µ1 − µ2)2 >

27σ2
1σ

2
2

4(σ2
1+σ2

2)
, there exist

values of the weights for which the density function is bimodal. For the unimodal
case, first two order moments can describe the location and dispersion, while the
density shape can be described through concepts like skewness and kurtosis [93].
For the multimodal case, a probability distribution can be characterized by its
enough moments [73]. Then, the multimodality can be described efficiently with
enough moments. For the above reasons, we use the mixture distribution with
uncertain weights to construct the uncertainty set and use moments to estimate
the size of uncertainty set. Our approach is a complementary to the existing
uncertainty sets which focus on the unimodal case [63].

We will show that the parameters Uk, γk, k = 1, · · · , I, of the uncertainty set D
can be determined by a set of independently observed samples from the underlying
distribution of ξ, and the confidence region defined by Uk, γk, k = 1, · · · , I, is
assured with high probability to contain the first four componentwise moments
of ξ.

5.1.1 Data-Driven Confidence Region for Moments

In order to get the confidence region for moments of ξ, we use a measurable
function π(ξ) to denote a vector valued or matrix valued mapping of ξ, while
the norm ‖ · ‖ with respect to π(ξ) is the Euclidean norm when π(ξ) is vector
valued, and is the Frobenius norm when π(ξ) is matrix valued. Suppose that we
have a sample set S of ξ with N observations ξ(l), l = 1, · · · , N . Then we denote
π̄S = 1

N

∑N
l=1 π(ξ(l)).

To derive the basic conclusion of this subsection, we utilize an inequality
known as the “independent bounded differences inequality”, which is estabilshed
by McDiarmid in [44].

Lemma 5.1. Let X = (X1, · · · , Xn) be a family of independent random variables
with Xk taking values in a set Ak for each k, 1 ≤ k ≤ n. Suppose that the
real-valued function Γ defined on

∏n
k=1 Ak satisfies

|Γ(x)− Γ(x′)| ≤ ck, k = 1, · · · , n,

whenever the vectors x and x′ differ only in the k-th coordinate. Then for any
τ ≥ 0,

P{Γ(X)− E[Γ(X)] ≥ τ} ≤ exp

(
−2τ 2∑n
k=1 c

2
k

)
.

With this lemma, we have the following theorem for chosen ε ∈ ]0, 1[ .

Theorem 5.1. Let S be a sample set with N observations which are generated
independently at random according to the distribution of ξ whose density function
is defined by (5.1), and suppose that there exists an R <∞ such that P{‖π(ξ)‖ ≤
R} ≥ 1− ε. Then with probability at least 1−∆, we have

‖π̄S − Eξ[π(ξ)]‖ ≤ 1√
N

(
2ρM +R

√
2 ln

1− ε
∆− ε

)
, (5.2)
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where ε < ∆ < 1, ρ2
M = max

m=1,··· ,M

{´
‖π(ξ)‖2fm(ξ)dξ

}
and ρM ≥ 0.

Proof. Let g(S) = ‖π̄S−Eξ[π(ξ)]‖ denote the measure of the estimation accuracy
based on the sample S.

By Lemma 2.3.1 in [100], we have

ES[g(S)] = ES[‖π̄S − Eξ[π(ξ)]‖] ≤ 2Er,S[‖ 1

N

N∑
l=1

rlπ(ξ(l))‖],

where r = (r1, · · · , rN)> and rl, l = 1, · · · , N , are Rademacher variables which
have 50% chance of being +1 or −1 and are independent of S. It is then known
from the Jensen’s inequality that

Er,S[‖ 1

N

N∑
l=1

rlπ(ξ(l))‖] =
1

N
Er,S[‖

N∑
l=1

rlπ(ξ(l))‖]

=
1

N
Er,S


〈 N∑

l=1

rlπ(ξ(l)),
N∑
l̂=1

rl̂π(ξ(l̂))

〉1/2


≤ 1

N

Er,S

 N∑
l,l̂=1

rlrl̂

〈
π(ξ(l)), π(ξ(l̂))

〉1/2

,

where 〈·, ·〉 denotes the inner product with respect to π(ξ). When π(ξ) is a vec-

tor,
〈
π(ξ(l)), π(ξ(l̂))

〉
=
(
π(ξ(l))

)>
π(ξ(l̂)). Otherwise, 〈·, ·〉 denotes the Frobenius

inner product. Thus, by utilizing the fact that rlrl̂, l 6= l̂, takes the two possible
values {+1,−1} with equal probabilities, we haveEr,S

 N∑
l,l̂=1

rlrl̂

〈
π(ξ(l)), π(ξ(l̂))

〉1/2

=

(
ES

[
N∑
l=1

‖π(ξ(l))‖2

])1/2

.

Therefore,

ES[g(S)] ≤ 2

N

(
ES

[
N∑
l=1

‖π(ξ(l))‖2

])1/2

=
2

N

(
NEξ

[
‖π(ξ)‖2

])1/2
=

2√
N

(
Eξ
[
‖π(ξ)‖2

])1/2
,

Eξ
[
‖π(ξ)‖2

]
=

ˆ M∑
m=1

‖π(ξ)‖2wifm(ξ)dξ

=
M∑
m=1

wm

ˆ
‖π(ξ)‖2fm(ξ)dξ =

M∑
m=1

wmρ
2
m.
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Here, ρ2
m =

´
‖π(ξ)‖2fm(ξ)dξ and ρm ≥ 0. Let ρ2

M = max
m=1,··· ,M

{ρ2
m}. Then, we

have Eξ [‖π(ξ)‖2] ≤ ρ2
M and ES[g(S)] ≤ 2ρM√

N
.

On the other hand, we can obtain a sample Ŝ by replacing the ξ(l) of the
sample S with ξ̂(l) for some l ∈ {1, 2, · · · , N}. Then we have∣∣∣g(S)− g(Ŝ)

∣∣∣ = |‖π̄S − Eξ[π(ξ)]‖ − ‖π̄Ŝ − Eξ[π(ξ)]‖|

≤ ‖π̄S − π̄Ŝ‖ =
1

N
‖π(ξ(l))− π(ξ̂(l))‖.

(5.3)

We get from (5.3) the following inequality with probability at least 1− ε,∣∣∣g(S)− g(Ŝ)
∣∣∣ ≤ 2R

N
,

since P{‖π(ξ)‖ ≤ R} ≥ 1− ε.
Consequently, we have for any τ > 0 that

P

{
g(S) ≤ τ +

2ρM√
N

}
≥ P

{
g(S) ≤ τ +

2ρM√
N

∣∣∣∣ ∣∣∣g(S)− g(Ŝ)
∣∣∣ ≤ 2R

N

}
· P
{∣∣∣g(S)− g(Ŝ)

∣∣∣ ≤ 2R

N

}
≥ P

{
g(S)− ES[g(S)] ≤ τ

∣∣∣∣∣∣∣g(S)− g(Ŝ)
∣∣∣ ≤ 2R

N

}
(1− ε)

≥ (1− exp

(
−2Nτ 2

4R2

)
)(1− ε).

The last inequality is deduced from Lemma 5.1 with ck =
2R

N
, k = 1, · · · , N . Let

∆ = 1− (1− exp

(
−2Nτ 2

4R2

)
)(1− ε), from which we have τ =

R√
N

√
2 ln

1− ε
∆− ε

,

and thus the inequality (5.2) holds with probability at least 1−∆.

With respect to the sample S, we denote, for k = 1, · · · , I,

π(k)(ξ) = (ξk1 , · · · , ξkn)>, µ(k) = Eξ[π(k)(ξ)], µ̄
(k)
S = 1

N

∑N
l=1 π

(k)(ξ(l)),

ρ
(k)
M = max

m=1,··· ,M

{´ (∑n
j=1 ξ

2k
j

)
fm(ξ)dξ

}
= max

m=1,··· ,M

{∑n
j=1

´
ξ2k
j fm(ξ)dξ

}
.

(5.4)

Then, we can derive the following corollary from Theorem 5.1.

Corollary 5.1. Under the same assumptions as those in Theorem 5.1, for k =
1, · · · , I, the following inequality holds with probability at least 1−∆:

‖µ̄(k)
S − µ

(k)‖ ≤ 1√
N

(
2ρ

(k)
M +Rk

√
2 ln

1− ε
∆− ε

)
, (5.5)
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where ρ
(k)
M , 1 ≤ k ≤ I, are defined in (5.4) and ∆ is the same as that in Theorem

5.1.

Proof. For k = 1, · · · , I, consider the mapping π̃ : ξ 7→ π(k)(ξ). Then we have

‖π̃(ξ)‖ =

√√√√ n∑
m=1

ξ2k
m ≤

√√√√( n∑
m=1

ξ2
m

)k

= (‖ξ‖)k.

Therefore, by applying Theorem 5.1 to the mapping π̃, the inequality (5.5) follows
since P{‖π̃(ξ)‖ ≤ Rk} ≥ P{‖ξ‖ ≤ R} ≥ 1− ε.

The determination of parameters ρ
(k)
M , 1 ≤ k ≤ I, in Theorem 5.1 amounts

to calculating
´
ξ2k
j fm(ξ)dξ, j = 1, · · · , n, m = 1, · · · ,M, which are actually the

2k-th order origin moments of the j-th random variable whose density function is
fm(·). For m = 1, · · · ,M , as fm(·) is the density function of a given n-dimensional
normal distribution with the mean vector being µm and the covariance matrix
being Σm,

´
ξ2k
j fm(ξ)dξ, j = 1, · · · , n, can be easily computed with the help of

the moment generation function of normal distribution.

All the above derivations assume that one can pre-specify a ball which contains
the support with probability at least 1− ε. To make the results more tractable,
we need to estimate the radius R from the samples. Concretely, we have the
following conclusion.

Corollary 5.2. Let S be an N sample set, with observations ξ(l), l = 1, · · · , N ,
generated independently at random according to the distribution of ξ whose density
function is defined by (5.1), and the support of ξ is contained in a ball with

probability at least 1− ε. Let µ̄
(k)
S = 1

N

∑N
l=1 π

(k)(ξ(l)) and

R = max
{
‖ξ(l)‖, l = 1, · · · , N

}
be a sample-based estimation for the radius R of the ball. If

N ≥ 2

ε
ln

1

∆
+ 2n+

2n

ε
ln

2

ε
,

then with probability at least (1−∆)2, the inequality (5.5) holds with R replaced
with R.

Proof. Consider the following optimization problem:

min
R
R s.t. P{‖ξ‖ ≤ R} ≥ 1− ε.

We use the scenario approach to bound the above chance constraint such that
it holds with probability 1 −∆. Specifically, the scenario approach replaces the
chance constraint with the following deterministic constraints:

‖ξ(l)‖ ≤ R, l = 1, · · · , N. (5.6)
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This means that we have R = max
{
‖ξ(l)‖, l = 1, · · · , N

}
to be the optimum

value under constraints (5.6). We know from Corollary 1 in [14] that, if N ≥
2

ε
ln

1

∆
+ 2n +

2n

ε
ln

2

ε
, the original chance constraint will hold with probability

no smaller than 1−∆, or more formally,

P
{

P{‖ξ‖ ≤ R} ≥ 1− ε
}
≥ 1−∆.

Here, the inner probability is with respect to ξ, while the outer probability is
with respect to R, since R is also random due to the randomness of the sample
S from a statistical point of view.

Given that the event A0: P{‖ξ‖ ≤ R} ≥ 1 − ε occurs, we conclude from
Corollary 5.1 that with probability at least 1 − ∆, the inequality (5.5) holds.
The probability of the event E that constraint (5.5) holds is necessarily at least
(1−∆)2:

P{E } ≥ P{E |A0}P{A0} ≥ (1−∆) (1−∆) = (1−∆)2,

which completes the proof.

5.1.2 Data-Driven Confidence Region for Mixture Weights

With the above results, we can concretely specify the uncertainty set D in Defini-

tion 5.1 by using historical samples. To this end, we denote µ
(k)
m =

(
µ

(k)
m,1, · · · , µ

(k)
m,n

)>
,

here µ
(k)
m,j =

´
ξkj fm(ξ)dξ, j = 1, · · · , n, m = 1, · · · ,M , and denote the empirical

estimation of µ(k) by µ(k), k = 1, · · · , I.
As ξ follows the mixture distribution whose density function is defined by

(5.1), we have µ(k) =
∑M

m=1wmµ
(k)
m , and the support of ξ can be contained in a

ball with any specified probability 1 − ε. Therefore, by applying Corollary 5.2,
we have

‖µ(k) −
M∑
m=1

wmµ
(k)
m ‖ ≤ γk, k = 1, · · · , I, (5.7)

hold with probability at least (1−∆)2. Here

γk =
1√
N

(
2ρ

(k)
M +R

k

√
2 ln

1− ε
∆− ε

)
, k = 1, · · · , I. (5.8)

To derive a proper presentation for the uncertainty set, we now show that
the confidence region for mixture weights can be described as the intersection of
some ellipsoidal sets. Concretely, for k = 1, · · · , I, we have

‖µ(k)−
M∑
m=1

wmµ
(k)
m ‖ ≤ γk ⇔

∥∥∥∥∥
M∑
m=1

wm
(
µ(k) − µ(k)

m

)∥∥∥∥∥ ≤ γk ⇔ ‖Ukw‖ ≤ γk, (5.9)

where
Uk =

(
µ(k) − µ(k)

1 , · · · ,µ(k) − µ(k)
M

)
∈ Rn×M . (5.10)
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By now, we have obtained an easily implemented representation for the mix-
ture distribution based uncertainty set D given in Definition 5.1, with γk and
Uk, k = 1, · · · , I, being defined in (5.8) and (5.10), respectively.

From (5.8) and the first inequality in (5.9), we see that when N increases, the
distance between the estimated moments and true moments becomes smaller.
This means that the estimated moments become more accurate and the uncer-
tainty set D becomes smaller when N increases, which is consistent with intuition.
Moreover, as N increases, the estimated values of moments tend to their true val-
ues. All these observations tell us that when N becomes large, the true values
of weights w are contained in the uncertainty set, which implies the feasibility of
our obtained uncertainty set.

5.2 Data-Driven Robust Chance Constrained Prob-

lems

With the data-driven uncertainty set specified in Definition 5.1, we now consider
the correspondingly data-driven robust chance constrained problem:

(P) min
z

g (z) , s.t. inf
f∈D

Pf
{
ξ>z ≤ d

}
≥ 1− α, z ∈ Z,

where ξ ∈ Rn is a random vector defined on some probability space (Ω,F ,P),
Z ⊆ Rn is a deterministic closed and convex set, g (z) : Rn → R is a continuous
function, d ∈ R is a constant. f is the joint probability distribution function
of ξ. D, defined in Definition 5.1, is an uncertainty set of the joint probability
distribution f and α ∈]0, 1[ is the tolerance probability, say, 0.01 or 0.05.

5.2.1 Reformulation of Problem (P)

As ξ follows a mixture distribution f in the uncertainty set D, we have that

Pf
{
ξ>z ≤ d

}
=

ˆ
ξ>z≤d

M∑
m=1

wifm(ξ)dξ =
M∑
m=1

wm

ˆ
ξ>z≤d

fm(ξ)dξ = p(z)>w,

where p(z) = (p1(z), · · · , pM(z))>, pm(z) =
´
ξ>z≤d fm(ξ)dξ. Therefore,

inf
f∈D

Pf
{
ξ>z ≤ d

}
= inf
w∈W

p(z)>w. (5.11)

To derive the reformulation of problem (P), we need the following assumption.

Assumption 5.1. Assume that for any z ∈ Z, the Slater’s conditions hold for
problem (5.11).

According to the definition of W , we have from the duality theory in [5] that
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the dual problem of problem (5.11) is:

(D) sup
β,η,ϕk

β − γ>η

s.t. βe+
I∑

k=1

U>k ϕk ≤ p(z), (5.12)

‖ϕk‖ ≤ ηk, k = 1, · · · , I, (5.13)

where e = (1, 1, · · · , 1)> ∈ RM , γ = (γ1, · · · , γI)>, β ∈ R, η ∈ RI , ϕk ∈ Rn,
k = 1, · · · , I.

For notational brevity, we denote the m-th row of Uk by uk,m, m = 1, · · · ,M .
Then, constraint (5.12) can be rewritten as

β +
I∑

k=1

u>k,mϕk ≤ pm(z), m = 1, · · · ,M. (5.14)

In addition,

pm(z) =

ˆ
ξ>z≤d

fm(ξ)dξ = Φ

(
d− µ>mz√
z>Σmz

)
,

here Φ(·) is the cumulative distribution function of the standard normal distri-
bution N(0, 1). Consequently, (5.14) is equivalent to

d− µ>mz − Φ−1

(
β +

I∑
k=1

u>k,mϕk

)√
z>Σmz ≥ 0, m = 1. · · · ,M,

where Φ−1 (·) is the inverse function of Φ(·). As the strong duality holds for the
dual representation of min

f∈D
Pf
{
ξ>z ≤ d

}
under Assumption 5.1, problem (P) can

be equivalently reformulated as the following optimization problem by introducing
auxiliary variables θ = (θ1, · · · , θM)> ∈ RM :

(P̃) min
z,β,η,ϕk,θ

g (z)

s.t. β − γ>η ≥ 1− α, (5.15)

β +
I∑

k=1

u>k,mϕk ≤ θm, m = 1, · · · ,M, (5.16)

d− µ>mz − Φ−1 (θm)
√
z>Σmz ≥ 0, m = 1, · · · ,M, (5.17)

‖ϕk‖ ≤ ηk, k = 1, · · · , I, (5.18)

z ∈ Z.

To be more precise, we have the following theorem:

Theorem 5.2. Suppose that Assumption 5.1 holds. Then if (z∗, β∗,η∗,ϕ∗k,θ
∗)

is an optimal solution to problem (P̃), z∗ is an optimal solution to problem (P);
conversely, if z∗ is an optimal solution to problem (P), (z∗, β∗,η∗,ϕ∗k,θ

∗) is
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an optimal solution to problem (P̃), here (β∗,η∗,ϕ∗k) is an optimal solution to

problem (D) and θ∗ = Φ

(
d−µ>mz√
z>Σmz

)
.

Proof. Let (z∗, β∗,η∗,ϕ∗k,θ
∗) be an optimal solution to problem (P̃). By the

weak duality theorem, we have

inf
f∈D

Pf
{
ξ>z ≤ d

}
= inf
w∈W

p(z)>w ≥ β∗ − γ>η∗ ≥ 1− α,

where the last inequality follows from (5.15). This implies that z∗ is feasible for
problem (P). In the following, we prove that it is also optimal to problem (P).

Suppose that, on the contrary, z∗ is not optimal to problem (P), i.e., there ex-
ists an optimal solution z̄∗ such that g (z̄∗) < g (z∗). Let (β̄∗, η̄∗, ϕ̄k

∗) be the cor-

responding optimal solution to problem (D) and θ̄∗ = p(z̄∗) = Φ

(
d−µ>mz̄∗√
(z̄∗)>Σmz̄∗

)
.

From Assumption 5.1 and the strong conic duality theory in [5], we have

β̄∗ − γ>η̄∗ = inf
w∈W

p(z̄∗)>w ≥ 1− α.

This and other constraints in problems (P) and (D) mean that (z̄∗, β̄∗, η̄∗, ϕ̄k
∗,

θ̄∗) is feasible for problem (P̃). This contradicts the fact that (z∗, β∗,η∗,ϕ∗k,θ
∗)

is an optimal solution to problem (P̃) since g (z̄∗) < g (z∗). Therefore, z∗ is an
optimal solution to problem (P).

On the other hand, let z∗ be an optimal solution to problem (P), (β∗,η∗,ϕ∗k)

be an optimal solution to problem (D) and θ∗ = Φ

(
d−µ>mz√
z>Σmz

)
. Then, (z∗, β∗,

η∗,ϕ∗k,θ
∗) must constitute an optimal solution to problem (P̃). Otherwise, there

would exist an optimal solution (z̄∗, β̄∗, η̄∗, ϕ̄k
∗, θ̄∗) to problem (P̃) such that

g (z̄∗) < g (z∗). And we know from the first part of the proof that z̄∗ must be an
optimal solution to problem (P), which contradicts the fact that z∗ is an optimal
solution to problem (P) since g (z̄∗) < g (z∗).

Problem (P̃) is a non-convex programming problem due to the third group of
constraints (5.17). We will derive its convex approximations in subsection 5.2.2 ,
and its DC programming approximations in subsection 5.2.3.

5.2.2 Convex Approximation

In this part, we will show that, under certain conditions, problem (P̃) can be
reformulated as a convex programming problem. Liu et al [65] proposed tight
convex approximations to a kind of joint geometric chance constrained problems.
We extend their method and propose tight convex approximations to problem
(P̃) under some conditions. To this end, we need the following assumption:

Assumption 5.2. Denote et = (et1 , · · · , etn)
>

for t = (t1, · · · , tn)>. Assume
that

1) α ≤ 1− Φ(1),
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2) the function h(t) = g (et) is convex with respect to t,

3) µmj ≥ 0, σmjl ≥ 0, j = 1, · · · , n, l = 1, · · · , n, m = 1, · · · ,M ,

4) Z = Rn+ ∩ L, L is selected such that L̃ = {z̃ ∈ Rn : z̃j = log(zj), j =
1 · · · , n,z ∈ L} is closed and convex.

To illustrate the possible selections of L, we consider the following two exam-
ples.

Example 5.1. Let L =
{
z ∈ Rn++ : c>z ≤ h

}
, here c = (c1, · · · , cn)> ∈ Rn+ and

h ∈ R+ are constants. Then, L̃ =
{
z̃ ∈ Rn :

∑n
j=1 cje

z̃j ≤ h
}

is a closed and

convex set.

Example 5.2. Define L =
{
z ∈ Rn++ : f(z) ≤ h

}
, here f : Rn++ → R is a non-

decreasing convex function and h ∈ R is a constant. Then, L̃ = {z̃ ∈ Rn :
f(ez̃) ≤ h

}
is a closed and convex set. Here ez̃ = (ez̃1 , · · · , ez̃n).

Then, we have the following lemma.

Lemma 5.2. Constraints (5.15), (5.16) and (5.18) imply that

(a) if α ≤ 1
2
, Φ−1(θm) ≥ 0, m = 1, · · · ,M ,

(b) if α ≤ 1 − Φ(1), the function log (Φ−1(θm)) is convex with respect to θm,
m = 1, · · · ,M .

Proof. (a) Firstly, we determine the range of θm, m = 1, · · · ,M . We have from
(5.15) and (5.16) that

1− α + γ>η +
I∑

k=1

u>k,mϕk ≤ θm, m = 1, · · · ,M.

Hence,

Lm := min
η,ϕk

1− α + γ>η +
∑I

k=1 u
>
k,mϕk

s.t. ‖ϕk‖ ≤ ηk, k = 1, · · · , I,
(5.19)

is smaller than or equal to θm, m = 1, · · · ,M . Problem (5.19) can be
decomposed into I subproblems, and correspondingly Lm =

∑I
k=1 Lm,k,

where

Lm,k = min
ηk,ϕk

γkηk + u>k,mϕk

s.t. ‖ϕk‖ ≤ ηk.
(5.20)

Since γk > 0, k = 1, · · · , I, it is easy to deduce that Lm,k = 0, and Lm =
1 − α. Hence, θm ≥ 1 − α, m = 1, · · · ,M . Therefore, if α ≤ 1

2
, we have

Φ−1(θm) ≥ Φ−1(1− α) ≥ 0, m = 1, · · · ,M.
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(b) The second order derivative function of log (Φ−1(θm)) is − φ(y)+yφ′(y)

(yφ(y))2φ(y)
, where

y = Φ−1(θm), φ(·) is the probability density function of the standard normal
distribution N(0, 1) and φ′(·) is its first order derivate.

− φ(y)+yφ′(y)

(yφ(y))2φ(y)
≥ 0 if and only if log (Φ−1(θm)) is convex. Moreover, we have

that

−φ (y) + yφ′ (y)

(yφ(y))2 φ (y)
≥ 0⇔ φ (y) + yφ′ (y) ≤ 0

⇔ 1√
2π
e−

y2

2 + y 1√
2π
e−

y2

2 (−y) ≤ 0

⇔ 1− y2 ≤ 0⇔ θm ≥ Φ(1) or θm ≤ Φ(−1).

As θm ≥ 1 − α,m = 1, · · · ,M , we can conclude that if α ≤ 1 − Φ(1), the
function log (Φ−1(θm)) is convex with respect to θm, m = 1, · · · ,M .

From Lemma 5.2, we have that Φ−1(θm) ≥ 0 holds for α ≤ 1
2
. Hence, the

inequality constraint (5.17) can be rewritten as

d− µ>mz −

√√√√ n∑
j=1

n∑
l=1

σmjl zjzl (Φ
−1(θm))2 ≥ 0, m = 1, · · · ,M. (5.21)

By introducing tm = log(zm),m = 1, · · · ,M , we have that (5.21) is equivalent to√√√√ n∑
j=1

n∑
l=1

σmjl e
tj+tl+2 log(Φ−1(θm)) +

n∑
j=1

µmje
tj − d ≤ 0, m = 1, · · · ,M.

By now, problem (P̃) can be reformulated as

(PC) min
t,β,η,ϕk,θ

g
(
et
)

s.t.

√√√√ n∑
j=1

n∑
l=1

σmjl e
tj+tl+2 log(Φ−1(θm))

+
n∑
j=1

µmje
tj − d ≤ 0, m = 1, · · · ,M,

(5.15), (5.16), (5.18), t ∈ L̃.

From Lemma 5.2, we have that log (Φ−1(θm)) is convex with respect to θm,m =
1, · · · ,M , when α ≤ 1−Φ(1). From Assumption 5.2, we have that α ≤ 1−Φ(1)
and µmj ≥ 0, σmjl ≥ 0, j = 1, · · · , n, l = 1, · · · , n, m = 1, · · · ,M . Hence,√∑n

j=1

∑n
l=1 σ

m
jl e

tj+tl+2 log(Φ−1(θm)) is convex with respect to (t, θm) under As-

sumption 5.2. This means that, under Assumption 5.2, problem (PC) is a convex
programming problem.

However, it is still difficult to directly solve problem (PC) because of the
nonelementary function log (Φ−1(θm)). We thus propose two piecewise linear
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approximations to log (Φ−1(θm)), and then derive two approximations to problem
(PC), which provide lower and upper bounds to the optimum value of problem
(PC), respectively.

Lower Approximation

We choose K different linear functions:

li(θm) = aiθm + bi, i = 1, · · · , K,

such that

li(θm) ≤ log
(
Φ−1(θm)

)
, ∀θm ∈ [1− α, 1[ , i = 1, · · · , K.

Then log (Φ−1(θm)) can be approximated by the following piecewise linear func-
tion

l(θm) = max
i=1,··· ,K

li(θm),

which provides a lower approximation to log (Φ−1(θm)).
In order to achieve a satisfactory accuracy, we set li(θm) as the tangent line

of log (Φ−1(θm)) at K points τ1, · · · , τK with τi ∈ [1−α, 1[ , i = 1, · · · , K. Then,
we have

ai =
(
Φ−1(τi)φ

(
Φ−1(τi)

))−1
, bi = log

(
Φ−1(τi)

)
− aiτi.

Remark 5.1. In general, we can choose the K tangent points uniformly dis-
tributed in the interval [1− α, 1[ .

To demonstrate the reasonability of the above piecewise linear approxima-
tion to log (Φ−1(θm)), we first introduce some notations. For sets A,B ⊂ Rn, let
dist(x,A) = infx′∈A ‖x− x′‖, and D(A,B) = supx∈A dist(x,B) denote the devia-
tion of the set A from the set B (see Shapiro et al. [96]). We denote the feasible
solution set, the optimal solution set and the optimal value to problem (PC) by

Z̃, Õ and ṽ, respectively. Then for the above piecewise linear approximation to
log (Φ−1(θm)), we have the following theorem.

Theorem 5.3. Under Assumption 5.2, replacing log (Φ−1(θm)) in problem (PC)
by l(θm) generates the following convex approximation to problem (PC):

(PC
L ) min

t,β,η,ϕk,θ
g
(
et
)

s.t.

√√√√ n∑
j=1

n∑
l=1

σmjl e
tj+tl+2(aiθm+bi)

+
n∑
j=1

µmje
tj − d ≤ 0, m = 1, · · · ,M, i = 1, · · · , K,

(5.15), (5.16), (5.18), t ∈ L̃.

The optimum value of problem (PC
L ) is a lower bound to that of problem (P).

What’s more, we have Z̃ = lim
K→∞

Z̄L
K, lim

K→∞
D(ŌL

K , Õ) = 0 and ṽ = lim
K→∞

v̄LK, here
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Z̄L
K, ŌL

K and v̄LK are the feasible solution set, the optimal solution set and the
optimal value to problem (PC

L ), respectively.

Proof. As problem (PC
L ) is deduced by relaxing constraints (5.17) in problem

(PC), it is obvious that the optimal value of problem (PC
L ) is a lower bound to

that of problem (PC), which is equivalent to problem (P).
Let

T ∗ =
{

(t,θ) :
√∑n

j=1

∑n
l=1 σ

m
jl e

tj+tl+2 log(Φ−1(θm))

+
∑n

j=1 µmje
tj − d ≤ 0, m = 1, · · · ,M

}
,

TLK =
{

(t,θ) :
√∑n

j=1

∑n
l=1 σ

m
jl e

tj+tl+2(aiθm+bi)

+
∑n

j=1 µmje
tj − d ≤ 0, m = 1, · · · ,M, i = 1, · · · , K

}
,

and Z0 = Z̃ \ T ∗. Because Z̃ = Z0 ∪ T ∗ and Z̄L
K = Z0 ∪ TLK , we just need to

verify T ∗ =
∞⋃
K=1

clT̄LK to establish the rest conclusions.

Since for any K, TLK ⊃ TLK+1, by Exercise 4.3 in [94], we have lim
K→∞

TLK =
∞⋂
K=1

clTLK . It is obvious that T ∗ ⊂
∞⋂
K=1

clTLK . Then we will show that T ∗ ⊃
∞⋂
K=1

clTLK .

For any τ ∈
∞⋂
K=1

clTLK , we have τ ∈ clTLK ,∀K. If τ /∈ T ∗, since T ∗ is closed and

convex, τ can be separated strictly from the set T ∗ by a hyperplane. This implies
that there must be a K̂ such that t /∈ clTL

K̂
, which is contrary with t ∈ clTLK ,∀K.

Thus we get T ∗ =
∞⋂
K=1

clTLK . Therefore, we have Z̃ = lim
K→∞

Z̄L
K .

Denote x = (t, β,η,ϕk,θ). Let ḡ(x) = g (et) + IZ̃(x) and ḡLK(x) = g (et) +

IZ̃LK
(x), where IA(x) = 0 if x ∈ A, otherwise IA(x) = +∞. As Z̃ = lim

K→∞
Z̄L
K , by

Proposition 7.4(f) in [94], we have that IZ̃LK
(·) epi-converges to IZ̃(·) as K → +∞.

Since g (et) is continuous, we then have that ḡLK(·) epi-converges to ḡ(·). As

Z̃ and Z̄L
K are closed and convex sets, we have that ḡLK(·) and ḡ(·) are lower

semi-continuous. Then, by Theorem 7.33 in [94], we have ṽ = lim
K→∞

v̄LK and

lim sup
K→∞

ŌL
K ⊂ Õ. It can thus be deduced from the discussions in Example 4.13

in [94] that lim
K→∞

D(ŌL
K , Õ) = 0.

Upper Approximation

In order to come up with an upper bound to the optimum value of problem (PC),
we use the linear segments āiθm + b̄i, i = 1, · · · , K, between τ1, τ2, · · · , τK+1 ∈
[1− α, 1[ to form a piecewise linear function

l̄(θm) = max
i=1,··· ,K

{
āiθm + b̄i

}
,
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where

āi =
log (Φ−1(τi+1))− log (Φ−1(τi))

τi+1 − τi
, b̄i = log (Φ−1(τi))− āiτi, i = 1, · · · , K.

Using the piecewise linear function l̄(θm) to replace log (Φ−1(θm)) in problem
(PC) gives the following approximation problem:

(PC
U) min

t,β,η,ϕk,θ
g
(
et
)

s.t.

√√√√ n∑
j=1

n∑
l=1

σmjl e
tj+tl+2(āiθm+b̄i)

+
n∑
j=1

µmje
tj − d ≤ 0, m = 1, · · · ,M, i = 1, · · · , K,

(5.15), (5.16), (5.18), t ∈ L̃.

Similar to the proof of Theorem 5.3, we can establish the following conclusion:

Theorem 5.4. Under Assumption 5.2, problem (PC
U) is a conic programming

and the optimum value of problem (PC
U) is an upper bound to that of problem

(P). What’s more, we have Z̃ = lim
K→∞

Z̄U
K, lim

K→∞
D(ŌU

K , Õ) = 0 and ṽ = lim
K→∞

v̄UK,

here Z̄U
K, ŌU

K and v̄UK are the feasible solution set, the optimal solution set and
the optimal value to problem (PC

U), respectively.

5.2.3 DC reformulation

Assumption 5.2 might not always hold in practice. Therefore, in this subsection,
we assume g (z) is convex and bounded from below on the feasible solution set of

problem (P̃) instead of Assumption 5.2, and then demonstrate that problem (P)
is still solvable, since it can be equivalently represented as a DC programming.

Let pm = Φ−1 (θm) and introduce auxiliary variables σm,m = 1, · · · ,M , prob-

lem (P̃) can be rewritten as

(PDC) min
z,β,η,ϕ,p,σ

g(z)

s.t. β − γ>η ≥ 1− α, (5.22)

β +
I∑

k=1

u>k,mϕk ≤ Φ (pm) , m = 1, · · · ,M, (5.23)

‖ϕk‖ ≤ ηk, k = 1, · · · , I, (5.24)

pmσm ≤ d− µ>mz, m = 1, · · · ,M, (5.25)∥∥∥Σ
1
2
mz
∥∥∥ ≤ σm, m = 1, · · · ,M, (5.26)

z ∈ Z,

here σ = (σ1, · · · , σM)>. In problem (PDC), the constraints (5.25) can be rewrit-
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ten as
1

2
(pm + σm)2 − 1

2

(
p2
m + σ2

m

)
≤ d− µ>mz, m = 1, · · · ,M,

which are DC constraints. Meanwhile, the function Φ (pm) in (5.23) can also be
written as a DC function, which means the inequality constraints (5.23) are also
DC constraints. Therefore, problem (PDC) is essentially a DC programming.

We know from Lemma 5.2 that pm = Φ−1 (θm) ≥ 0 when α < 1
2
. This implies

that the second group of constraints (5.23) become convex constraints, since the
function Φ(·) is concave on positive axis. Thus the number of the DC constraints
in problem (PDC) is reduced. On the other hand, we always have α < 1

2
in

practice. Hence, we only consider problem (PDC) with α < 0.5 in the rest of this
chapter. Similar to that in subsection 5.2.2, we approximate Φ (pm) by a lower
piecewise linear function.

Upper bound

From Lemma 5.2, we have that Φ (pm) is concave when α < 0.5. Therefore, we

can obtain an upper bound approximation of problem (P̃) by replacing Φ (pm)
with its lower piecewise linear function.

Concretely, we construct a piecewise linear function through K ≥ 2 different
points {τ1 = Φ−1 (1− α) , τ2, · · · , τK} which are arranged in an ascending order,
as follows:

l̃(pm) = min
i=1,··· ,K

{
ãipm + b̃i

}
, (5.27)

where

ãi =

{
Φ(τi+1)−Φ(τi)

τi+1−τi , 1 ≤ i < K

0, i = K
; b̃i = Φ(τi)− ãiτi.

By replacing Φ(pm) with l̃(pm) in problem (PDC), we get the following DC
upper bound approximation:

(PDC
U ) min

z,β,η,ϕ,p,σ
g(z)

s.t. β − γ>η ≥ 1− α,
β +

∑I
k=1 u

>
k,mϕk ≤ ãipm + b̃i, m = 1, · · · ,M, i = 1, · · · , K,

‖ϕk‖ ≤ ηk, k = 1, · · · , I,
1
2

(pm + σm)2 − 1
2

(p2
m + σ2

m) ≤ d− µ>mz, m = 1, · · · ,M,∥∥∥Σ
1
2
mz
∥∥∥ ≤ σm, m = 1, · · · ,M,

z ∈ Z.

We denote the feasible solution sets of problem (PDC) and problem (PDC
U )

by Z̃DC and Z̄K , respectively. Let ÕDC and ṽDC be the optimal solution set and
the optimal value of problem (PDC), ŌK and v̄K be the optimal solution set and
optimal value of problem (PDC

U ), respectively. Then, similar with Theorem 5.4,
we have the following theorem.

Theorem 5.5. The optimal value of problem (PDC
U ) is an upper bound for the op-

timal value of problem (P̃). What’s more, we have Z̃DC = lim
K→∞

Z̄K, lim
K→∞

D
(
ŌK , ÕDC

)
=
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0 and ṽDC = lim
K→∞

v̄K.

Proof. Let

T ∗DC =

{
p : β +

I∑
k=1

u>k,mϕk ≤ Φ (pm) , m = 1, · · · ,M

}
,

T̄K =

{
p : β +

I∑
k=1

u>k,mϕk ≤ aipm + bi, m = 1, · · · ,M, i = 1, · · · , K

}
,

and Z0 = Z̃DC \T ∗DC . It is obvious that T̄K ⊂ T ∗DC . This means that the optimal
value of problem (PDC

U ) is an upper bound for the optimal value of problem

(PDC), which is equivalent to problem (P̃).

As Z̃DC = Z0 ∪ T ∗DC and Z̄K = Z0 ∪ T̄K , to establish the rest conclusions, we

just need to verify T ∗DC =
∞⋃
K=1

clT̄K .

Since for any K, T̄K ⊂ T̄K+1, by Exercise 4.3 in [94], we have lim
K→∞

T̄K =

cl
∞⋃
K=1

T̄K . It is obvious that T ∗DC ⊃ cl
∞⋃
K=1

T̄K . So we only need to show that

T ∗DC ⊂ cl
∞⋃
K=1

T̄K .

As T ∗DC is closed and convex, we have cl (intT ∗DC) = T ∗DC . Therefore, for any

t ∈ intT ∗DC , there exists a K̃ such that t ∈ T̄K̃ . This implies intT ∗ ⊂ cl
∞⋃
K=1

T̄K ,

which means T ∗DC ⊂ cl
∞⋃
K=1

T̄K . Then we conclude T ∗DC = cl
∞⋃
K=1

T̄K . Therefore,

we have Z̃DC = lim
K→∞

Z̄K .

As lim
K→∞

Z̄K = Z̃DC , the rest of the conclusions can be established by using

the same argument as that in the proof of Theorem 2 in [53].

SCA Algorithm for DC programming

In this part, we discuss how to solve the DC programming problem (PDC
U ). DC

programming problems have been studied extensively in recent years. Hong et
al.[53] proposed an efficient method to solve the optimization problem with one
DC constraint. We extend this method so that it can be used to solve problem
(PDC

U ) which has K DC constraints.
The basic idea of the SCA algorithm in [53] is to convexify the DC constraint

via a first-order Taylor approximation. Specially, for each DC constraint in prob-
lem (PDC

U ), we can use the first-order Taylor expansion

1

2

(
p̂2
m + σ̂2

m

)
+ p̂m (pm − p̂m) + σ̂m (σm − σ̂m)

at any feasible point with (p̂m, σ̂m) to approximate 1
2

(p2
m + σ2

m). With the con-
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vexity of the function 1
2

(p2
m + σ2

m), we have

1

2

(
p2
m + σ2

m

)
≥ 1

2

(
p̂2
m + σ̂2

m

)
+ p̂m (pm − p̂m) + σ̂m (σm − σ̂m) ,

and the original constraint is replaced by

1

2
(pm + σm)2 − 1

2

(
p̂2
m + σ̂2

m

)
− p̂m (pm − p̂m)− σ̂m (σm − σ̂m) ≤ d− µ>mz.

Let CP((p̂, σ̂)) denote the following optimization problem:

min
z,β,η,ϕk,p,σ

g(z)

s.t. β − γ>η ≥ 1− α,
β +

∑I
k=1 u

>
k,mϕk ≤ aipm + bi, m = 1, · · · ,M, i = 1, · · · , K,

‖ϕk‖ ≤ ηk, k = 1, · · · , I,
1
2

(pm + σm)2 − p̂m (pm − p̂m)− σ̂m (σm − σ̂m)
≤ d− µ>mz + 1

2
(p̂2
m + σ̂2

m) , m = 1, · · · ,M,∥∥∥Σ
1
2
mz
∥∥∥ ≤ σm, m = 1, · · · ,M,

z ∈ Z.

Here, p̂ = (p̂1, · · · , p̂M)> and σ̂ = (σ̂1, · · · , σ̂M)>. And the feasible set to problem
(PDC

U ) is denoted by Z̄(p̂,σ̂). Then for any feasible point with (p̂, σ̂) of problem
(PDC

U ), problem CP((p̂, σ̂)) is a convex conservative approximation to problem
(PDC

U ). Therefore, we can repeat solving problem CP((p̂, σ̂)) at the newly ob-
tained solution, which leads to the following algorithm.

Algorithm 2 SCA method for solving problem (PDC
U )

Step 1. Choose an initial feasible point with (p0,σ0), set j = 0.

Step 2. Solve problem CP((pj,σj)) and obtain (pj+1,σj+1).

Step 3. Stop if the optimal solution of problem CP((pj,σj)) is a KKT point of
problem (PDC

U ). Otherwise, let j = j + 1 and go to Step 2.

Algorithm 2 is easy to implement since we only need to solve at each iteration
the convex optimization problem CP((pj,σj)), which is actually a SOCP and
can thus be solved in polynomial time.

We say the Slater’s condition holds at the feasible point with (p̂, σ̂) if the
interior of the feasible solution set of problem CP((p̂, σ̂)) is nonempty. The
Slater’s condition is one of the most commonly used constraint qualifications for
convex optimization. Then we have the following theorem.

Theorem 5.6. Suppose that {zj, βj,ηj,ϕjk,pj,σj} is a sequence of solutions
generated by 2. Then

(a) {zj, βj,ηj,ϕjk,pj,σj} is contained in the feasible solution set of problem
(PDC

U ) and {g (zj)} is a convergent non-increasing sequence.
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(b) If a cluster point of {zj, βj,ηj,ϕjk,pj,σj} satisfies the Slater’s condition,
the cluster point is a KKT point of problem (PDC

U ), whose corresponding
objective function value also provides an upper bound for the optimal value
of problem (P).

Proof. (a) For any j ≥ 0, {zj+1, βj+1,ηj+1,ϕj+1
k ,pj+1,σj+1} is an optimal solu-

tion to problem CP((pj,σj)). Then, it is also a feasible solution to problem
(PDC

U ), since the feasible solution set of problem CP((pj,σj)) is a subset
of the feasible solution set of problem (PDC

U ).

As {zj+1, βj+1,ηj+1,ϕj+1
k ,pj+1,σj+1} is an optimal solution to problem

CP((pj,σj)) and {zj, βj,ηj,ϕjk,pj,σj} is a feasible solution to problem
CP((pj,σj)), we have g (zj+1) ≤ g (zj). This shows that {g (zj)} is non-
increasing. Because the continuous function g (z) is bounded from below
on the feasible solution set, {g (zj)} is thus bounded from below, which
implies that {g (zj)} is a convergent non-increasing sequence.

(b) Let

gm1 :=
1

2
(pm + σm)2 + µ>mz − d

and

gm2 :=
1

2

(
p2
m + σ2

m

)
,

for m = 1, · · · ,M , and we denote the mappings g1 =
(
g1

1, · · · , gM1
)>

and

g2 =
(
g1

2, · · · , gM2
)>

. Then, the DC constraints in problem (PDC
U ) can be

rewritten as
g1 − g2 ≤ 0.

With this representation, we can then use the same argument as that in
the proof of Property 3 in [53] to prove the conclusion (b), which is thus
omitted.

The property (a) in 5.6 shows that we always search for better solutions in
the feasible region, which is similar to the framework of classical interior-point
methods. It also shows that we make improvement at each iteration and the
sequence of objective function values converges to a certain value. The second
property (b) ensures that all accumulation points of the sequence of solutions
generated are KKT points of problem (PDC

U ). If problem (PDC
U ) has a unique

KKT point or has only one KKT point that is better than the initial solution, 2
guarantees to converge to a global optimal solution of problem (PDC

U ).

Lower bound

In order to evaluate how conservative the solution of the above upper bound
approximation is when it is compared to the true solution of problem (P̃), we
need a procedure that could provide a lower bound for the optimal value of
problem (P̃). For this purpose, we apply the tangent approximation technique
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where the function Φ(pm) is approximated by its upper bound tangent piecewise
linear function.

From Lemma 5.2, we have that Φ (pm) is concave when α < 1
2
. We select K

different tangent functions:

li(pm) = āipm + b̄i, i = 1, · · · , K,

with
āi = φ (τi) , b̄i = Φ(τi)− āiτi,

where τ1, · · · , τK are K points with τi ∈ [Φ−1 (1− α) ,∞), 1 ≤ i ≤ K. Therefore,
we have

l(pm) = min
i=1,··· ,K

li(pm) ≥ Φ (pm) , ∀pm ∈ [Φ−1 (1− α) ,∞).

With the above tangent piecewise linear approximation l(pm) of Φ (pm), we
obtain the following lower bound approximation of problem (PC).

(PDC
L0

) min
z,β,η,ϕ,p,σ

g(z)

s.t. β − γ>η ≥ 1− α,
β +

∑I
k=1 u

>
k,mϕk ≤ āipm + b̄i, m = 1, · · · ,M, i = 1, · · · , K,

‖ϕk‖ ≤ ηk, k = 1, · · · , I,
pmσm ≤ d− µ>mz, m = 1, · · · ,M,∥∥∥Σ

1
2
mz
∥∥∥ ≤ σm, m = 1, · · · ,M,

z ∈ Z.

By approximating the biconvex term pmσm with Cheng and Lisser’s method
in [24], we have the following conclusion.

Theorem 5.7. Replacing Φ (pm) in problem (PC) by l(pm), we get the following
convex approximation of problem (PDC):

(PDC
L ) min

z,β,η,ϕ,p,σ
g(z)

s.t. β − γ>η ≥ 1− α,
β +

∑I
k=1 u

>
k,mϕk ≤ āipm + b̄i, m = 1, · · · ,M, i = 1, · · · , K,

‖ϕk‖ ≤ ηk, k = 1, · · · , I,
ym ≤ d− µ>mz, m = 1, · · · ,M,∥∥∥Σ

1
2
mz
∥∥∥ ≤ σm, m = 1, · · · ,M,

Φ−1 (1− α)σm ≤ ym, m = 1, · · · ,M,
κmpm ≤ ym, m = 1, · · · ,M,
z ∈ Z,

where κm = min
z∈Z

∥∥∥Σ
1
2
mz
∥∥∥. Then, the optimal value of problem (PDC

L ) is a lower

bound to that of problem (P).
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Proof. Let

T ∗ =

{
p : β +

I∑
k=1

u>k,mϕk ≤ Φ (pm) , m = 1, · · · ,M

}
,

and

T̄S =

{
p : β +

I∑
k=1

u>k,mϕk ≤ āipm + b̄i, m = 1, · · · ,M, i = 1, · · · , K

}
.

It is obvious that T ∗ ⊂ T̄S.
In addition, for m = 1, · · · ,M , we replace pmσm by ym. As pm ≥ Φ−1 (1− α),

the constraint ym = pmσm can be relaxed by Φ−1 (1− α)σm ≤ ym and κipm ≤ ym,

where κm = min
z∈Z

∥∥∥Σ
1
2
mz
∥∥∥. Therefore, the optimal value of problem (PDC

L ) is a

lower bound to that of problem (P).

5.3 Numerical Results

In this section, we apply the proposed data-driven robust chance constrained
optimization problem (P) to two practical problems. The data is generated ran-
domly. We use the CVX package to solve all the approximation problems in this
section with Matlab R2015a, on a Laptop with a 2.60 GHz Intel Core m5-4300M
CPU and 4.0 GB RAM.

5.3.1 Convex approximation

In this subsection, we test the performance of our convex approximations by con-
sidering a data-driven robust production problem with the Cobb-Douglas utility.

Cobb-Douglas utility function delicately captures the practical characteristics
of different multi-factor input-output contexts besides production. Here, we gen-
eralize the model in [32] by maximizing the Cobb-Douglas utility with chance
constraints. Suppose that there are n goods, and the random price of good j is
ξj, j = 1, · · · , n. Suppose the distribution of ξ = (ξ1, · · · , ξn) is contained in the
uncertainty set D where M = 3 and I = 4. Let z = (z1, · · · , zn) ≥ 0 denote
the quantities of n goods purchased in the market. Then, the agent solves the
following optimization problem

(PP) min
z

∏n
j=1 z

−rj
j

s.t. min
f∈D

Pf
{
ξ>z ≤ W

}
≥ 1− α,

z ≥ 0,

where n = 10, α = 0.1, rj = 0.1, j = 1, · · · , 10, W = 10000. The problem
(PP) can be approximated by piecewise linear approximation problems (PC

L ) and
(PC

U), respectively, to find the lower bound and upper bound to its optimal value,
respectively.
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To generate the necessary data, we adopt the following framework in [106] to
determine the parameters of the component distributions f1(·), f2(·) and f3(·) in
the uncertainty set D:

ymk = amk + biky
m
base + emk , m = 1, · · · 3, k = 1, · · · , 10,

where ymk represents the random realization of the kth component of the random
vector, corresponding to the mth component distribution fm(·); amk and bmk are
constants which are randomly selected in [0, 1] and [1, 1.5], respectively; ybase =
(y1

base, y
2
base, y

3
base)

> denotes the base random vector, which is normally distributed
with the mean vector being E (ybase) = (5, 10, 15) and the covariance matrix being
Cov (ybase) = diag(0.2, 0.4, 0.6); and emk is a normally distributed residual term
with zero mean and the variance randomly selected in [0, 2 × 10−2], which is
independent of ybase.

In this simulation, 5000 samples are randomly generated according to the
mixture distribution with the mixture weight vector being w = (0.3, 0.4, 0.3).
With the generated data and the parameters of the component distributions
f1(·), f2(·) and f3(·), and setting ε = 0.02 and ∆ = 0.03, we can determine the
values of parameters Uk, γk, k = 1, 2, 3, 4, in the uncertainty set D given in 5.1.
Under 5.2, the problem (PP) is actually a convex programming problem, which
can be approximated by problem (PC

L ) to find a lower bound to its optimal value
and by problem (PC

U) to find an upper bound to its optimal value, respectively.
By setting K to 3,5,10, and 20, respectively, we solve problem (PC

L ) and
problem (PC

U) four times and find four groups of respective lower bounds and
upper bounds. The results are presented in Table 1. The first column in 5.1 gives
the value of K. The second and third columns give the lower bound and the
corresponding CPU time in seconds to solve problem (PC

L ). The forth and fifth
columns give the upper bound and the CPU time in seconds to solve problem
(PC

U). For better illustration, we compute the relative difference between the
lower bound and the respective upper bound, which is shown in the last column
of 5.1.

Table 5.1: Computational results of convex reformulation problems.

K lower bound time(s) upper bound time(s) Gap(%)

3 0.01262726 4.1763 0.01388198 3.6563 9.04

5 0.01291510 6.4696 0.01359047 6.5156 4.97

10 0.01310726 8.0135 0.01326751 8.7344 1.21

20 0.01314893 11.7500 0.01314893 12.5469 0 (< 10−8)

From Table 5.1, we can see that as K increases, the difference between the
lower bound and corresponding upper bound monotonically decreases. When
the number of tangent points is 20, these bounds become tight. Meanwhile, the
solution times in the third and fifth columns tell us that our convex approximation
problems can be solved within a few seconds. These results demonstrate that,
with a suitable size of linear approximations, our convex approximations can
provide a very good approximate solution quickly.
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5.3.2 DC approximation

In this subsection, we examine the performance of our DC approximation by
considering a data-driven robust portfolio selection problem under the safety-first
principle.

Suppose there are n risky securities and one riskless security in the stock
market. The random loss of the jth stock is ξj, 1 ≤ j ≤ n, and the proportion

of the wealth invested in the jth asset is zj, 1 ≤ j ≤ n. Let ξ = (ξ1, · · · , ξn)>,

z = (z1, · · · , zn)>. Therefore, the loss of the portfolio z can be determined as ξ>z.
In addition, we assume that the distribution of ξ is contained in the uncertainty
set D with M = 3. Then the data-driven robust portfolio selection model under
the safety-first principle can be established as follows:

(PS) min
z,RL

RL

s.t. min
f∈D

Pf
{
ξ>z ≤ RL

}
≥ 1− α,

e>nz ≤ 1, z ≥ 0.

where n = 10, α = 0.1, en denotes the 10−dimensional vector with all ones.

The data generation procedure is almost the same as that in 5.3.1. The
only difference is that the mean vector and covariance matrix of ybase are set as
E (ybase) = (−1,−1.5,−2) and Cov (ybase) = diag(0.02, 0.04, 0.06), respectively.
Similarly, 1000 samples are randomly generated, and we can then obtain the
values of parameters Uk, γk, k = 1, 2, 3, 4. It is obvious that Assumption 5.2 does
not hold for problem (PS). Therefore, we solve problems (PDC

U ) and (PDC
L ) to

find an upper bound and a lower bound for the optimal value of problem (PS).

For the piecewise linear approximations, we set the number of points K to
3, 5, 10, 15, 20, 30, 40, 60, 80 respectively, and denote the corresponding point sets
asK3, K5, K10, K15, K20, K30, K40, K60, K80 which satisfyK3 ⊂K5 ⊂K10 ⊂
K15 ⊂K20 ⊂K30 ⊂K40 ⊂K60 ⊂K80.

The first column in Table 5.2 gives the value of K. The second and third
columns give the lower bound and the CPU time in seconds. The forth and
fifth columns provide the upper bound and the CPU time in seconds. For better
illustration, we compute the percentage difference between the lower bound and
the corresponding upper bound, which are shown in the last column of Table 5.2.

We can see from Table 5.2 that our DC algorithms can find lower and up-
per bounds quickly. What’s more important, as K increases, the gap between
the lower bound and corresponding upper bound becomes smaller and smaller.
When the number of tangent points reaches 80, the gap is very small and doesn’t
decrease significantly. Hence, the respective bounds provide a very good approx-
imation to the optimal return value of (PS).

All the above results demonstrate the practicality and efficiency of the al-
gorithms proposed in this chapter for the solution of data-driven robust chance
constrained problems.
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Table 5.2: Computational results of DC reformulation problems.

K lower bound time(s) upper bound time(s) Gap(%)

3 -0.822313 0.4212 -0.608109 3.2136 35.22

5 -0.822312 0.5460 -0.613951 3.3400 33.94

10 -0.822311 0.5928 -0.631720 3.6052 30.17

15 -0.822311 0.7020 -0.655087 3.7768 25.53

20 -0.822310 0.7176 -0.708550 3.9484 16.06

30 -0.822310 0.9204 -0.780821 5.9256 5.31

40 -0.822309 1.2012 -0.822271 7.8222 0.0046

60 -0.822309 1.6068 -0.822276 11.6689 0.0040

80 -0.822309 1.7004 -0.822276 13.1197 0.0040

5.4 Conclusion

In this chapter, we discuss a data-driven robust chance constrained problem.
Starting from the available data, we construct a mixture distribution based un-
certainty set of the ambiguous underlying distribution. And the uncertainty set
takes the first four moments into consideration simultaneously. In addition to the
robustness, the mixture distribution employed in our model enable us to refor-
mulate the chance constraint. Moreover, we propose tight convex approximations
for the problem under some conditions on the parameters for the uncertainty set.
And we propose a tight DC approximation for the upper approximation and a
relaxed convex approximation for the lower approximation in the general case.
Finally, simulation experiments are carried out to illustrate the practicality and
efficiency of our approach.

This chapter correrponds to the reference [20].
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Chapter 6

Chance Constrained Stochastic
Game Theory

In this chapter, we consider an n-player non-cooperative game with continuous
strategy sets. The strategy set of each player contains a set of stochastic lin-
ear constraints. We model the stochastic linear constraints of each player as a
joint chance constraint. We assume that the row vectors of a matrix defining
the stochastic constraints of each player are pairwise independent. We model
the stochastic constraints with normal distribution, elliptical distribution and
distributionally robustness, respectively. Under certain conditions we show the
existence of a Nash equilibrium for this game.

6.1 The model

We consider an n-player non-cooperative game. Let I = {1, 2, · · · , n} be the set
of players. A generic element of the set I is denoted by i. The payoffs of player
i is defined by a function ui : Rm1

++ × Rm2
++ × · · · × Rmn++ → R, where Rmi++ (Rmi+ )

denotes the positive (non-negative) orthant of Rmi . The set X i ⊂ Rmi++ denotes
the set of all strategies of player i. We assume X i to be a convex and compact
set. The product set X =

∏
i∈I X

i denotes the set of all strategy profiles. We
denote the set of all vectors of strategies of all the players except player i by
X−i =

∏n
j=1;j 6=iX

j. The generic elements of X i, X−i, and X are denoted by xi,

x−i, and x respectively. We define (yi, x−i) to be a strategy profile where player
i chooses a strategy yi and each player j ∈ I, j 6= i, chooses a strategy xj. We
consider the case where the strategies of player i are further constrained by the
following stochastic linear constraints

Aixi ≤ bi, (6.1)

where Ai = [Ai1, A
i
2, · · · , AiKi ]

T is a Ki × mi random matrix, and bi ∈ RKi ; T
denotes the transposition. For each k = 1, 2, · · · , Ki, A

i
k is the kth row of Ai.

We consider the case where the constraints of player i given by (6.1) are jointly
satisfied with at least a given probability level. Let αi be a given probability level
of player i. We formulate the stochastic linear constraints (6.1) as a joint chance
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constraint given by
PFi
{
Aixi ≤ bi

}
≥ αi, (6.2)

where P is a probability measure, Fi is the distribution of Ai. Therefore, for an
αi ∈ [0, 1], the feasible strategy set of player i is defined by

Siαi =
{
xi ∈ X i | PFi

{
Aixi ≤ bi

}
≥ αi

}
, i ∈ I.

We assume that the set Siαi is non-empty, and the probability distribution of the
random matrix Ai and the probability level vector (αi)i∈I are known to all the
players. Then, the above chance-constrained game is a non-cooperative game
with complete information. A strategy profile x∗ is said to be a Nash equilibrium
of a chance-constrained game if and only if for each i ∈ I

ui(x
i∗, x−i∗) ≥ ui(x

i, x−i∗), ∀ xi ∈ Siαi .

Assumption 6.1. For each player i, i ∈ I, the following conditions hold.

1. The payoff function ui(·, x−i) is a concave function of xi for every x−i ∈
X−i.

2. The payoff function ui(·) is a continuous function of x.

Such game theoretic situations arise in a renewable energy markets based on
wind turbine and solar panels with n-players. Each player aims at maximizing
his payoff subject to technical, operational and budget constraints. Both energy
technologies are highly concerned by uncertainties. For the wind turbine case,
the constraints are related to tensile strength, tip deflection rate, blade natural
frequency, turbulence, turbine size. For the solar energy, the constraints are
related to generation sites, storage and inter-regional power transmission, the
size of the panels. Such constraints could be modeled as chance constraints and
considered either as individual chance constraints or joint chance constraints.
And it is well known that joint chance constraints are highly reliable compared
to individual ones

6.2 Existence of Nash equilibrium with normal

distribution

We consider the case where for each i ∈ I, the row vector Aik, k = 1, 2, · · · , Ki,
follows a multivariate normal distribution with mean µik = (µik1, µ

i
k2, · · · , µikmi)

and a covariance matrix Σi
k, i.e., Aik ∼ N (µik,Σ

i
k). We assume Σi

k to be a positive
definite matrix. Moreover, the row vectors are also independent. In this case we
have the following results.

Lemma 6.1. For each i ∈ I, let the row vector Aik ∼ N (µik,Σ
i
k) with posi-

tive definite covariance matrix Σi
k, k = 1, 2, · · · , Ki. Moreover, the row vec-

tors of Ai, i ∈ I, are independent. Then, Siαi, i ∈ I, is a convex set when
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αi > F
(
max

{√
3, v̄i

})
, where F (·) is the one-dimensional standard normal dis-

tribution function,

v̄i = max
k=1,2,··· ,Ki

4λi,kmax

(
λi,kmin

)− 3
2 ∥∥µik∥∥ ,

and λi,kmax, λi,kmin refer to the largest and smallest eigenvalues of Σi
k; ‖·‖ denotes the

Euclidean norm.

Proof. The proof follows from Theorem 5.1 of [50].

Remark 6.1. If the value of v̄i is smaller than
√

3, Siαi is a convex set when

αi > F (
√

3) ≈ 0.958.

Lemma 6.2. For each i ∈ I, let the row vector Aik ∼ N (µik,Σ
i
k) with positive

definite covariance matrix Σi
k, k = 1, 2, · · · , Ki. Moreover, the row vectors of Ai,

i ∈ I, are independent. Then, Siαi, i ∈ I, is a compact set provided

αi > min
k=1,2,··· ,Ki

F
(∥∥(Σi

k)
−1/2µik

∥∥) .
Proof. The proof directly follows from Theorem 2.3 of [49].

For each i ∈ I, the set of best response strategies of player i for a fixed strategy
profile x−i of other players is given by

Bαii (x−i) =
{
x̄i ∈ Siαi | ui(x̄

i, x−i) ≥ ui(x
i, x−i), ∀ xi ∈ Siαi

}
.

Denote, Sα =
∏

i∈I S
i
αi

, where α = (α1, α2, · · · , αn)T . Let P(Sα) be the power
set of Sα. Then, for an α ∈ [0, 1]n, define a set-valued map

Gα : Sα → P(Sα)

such that
Gα(x) =

∏
i∈I

Bαii (x−i).

A point x is said to be a fixed point of Gα(·) if x ∈ Gα(x). It is clear that a fixed
point of Gα(·) is a Nash equilibrium of a chance-constrained game.

Theorem 6.1. Consider an n-player non-cooperative game where the payoff func-
tion of player i, i ∈ I, satisfies the Assumption 6.1. The stochastic linear con-
straints of player i are jointly satisfied with at least a given probability αi ∈ [0, 1].
For each i ∈ I, let the row vector Aik ∼ N (µik,Σ

i
k) with positive definite co-

variance matrix Σi
k, k = 1, 2, · · · , Ki. Moreover, the row vectors of Ai, i ∈ I,

are independent. Then, there exists a Nash equilibrium for a chance-constrained
game for all α ∈ (α̂1, 1]× (α̂2, 1]× · · · × (α̂n, 1], where for each i ∈ I

α̂i = max{ᾱi, α̃i},

and

ᾱi = F
(

max
{√

3, v̄i

})
, where v̄i = max

k=1,2,··· ,Ki
4λkmax

(
λkmin

)− 3
2
∥∥µik∥∥ ,
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α̃i = min
k=1,2,··· ,Ki

F
(∥∥(Σi

k)
−1/2µik

∥∥) .
Proof. Fix α ∈ (α̂1, 1] × (α̂2, 1] × · · · × (α̂n, 1]. To show the existence of a Nash
equilibrium for a chance-constrained game, it is enough to show that Gα(·) has
a fixed point. We show that Gα(·) satisfies all the conditions of Kakutani fixed
point theorem [58] as given below:

(i) Sα is a non-empty, convex, and compact subset of a finite dimensional
Euclidean space.

(ii) Gα(x) is a non-empty and convex set for all x ∈ Sα.

(iii) The graph of set-valued map Gα(·), defined by {(x, y) | y ∈ Gα(x)}, is a
closed subset of Sα × Sα: if (xn, x̄n) → (x, x̄) with x̄n ∈ Gα(xn) for all n,
then x̄ ∈ Gα(x).

Sα is a non-empty set because for each i ∈ I, Siαi is a non-empty set. The
convexity of Sα follows from Lemma 6.1 and the compactness of Sα follows from
Lemma 6.2. To show the condition (ii), it is enough to show that Bαii (x−i) is a
non-empty and convex set for all i ∈ I. The set Bαii (x−i) in non-empty because
ui(·, x−i) is a continuous function of xi and Siαi is a compact set. The set Bαii (x−i)
is convex because ui(·, x−i) is a concave function of xi. Since, the payoff function
ui(·), i ∈ I, is a continuous function of x, then the closed graph condition can be
proved using the similar arguments given in the proof of Theorem 3.2. [98] (see
also Theorem 4.4 of [3]).

From Theorem 6.3, a Nash equilibrium for a chance-constrained game exists
for sufficiently large values for αi, i ∈ I. Therefore, in most of the cases we do not
have an answer for the existence of a Nash equilibrium for a chance-constrained
game defined in Section 6.1. In order to answer this question we first propose a
new reformulation for (6.2).

Under independent and normally distributed assumption on matrix Ai, we
have the following equivalent deterministic reformulation for the joint chance-
constraint (6.2)

Qi
αi

=


(µik)

Txi + F−1
(
α
zik
i

)∥∥∥(Σi
k

)1/2
xi
∥∥∥ ≤ bik, ∀ k = 1, 2, · · · , Ki, (i)

Ki∑
k=1

zik = 1, (ii)

zik ≥ 0, ∀ k = 1, 2, · · · , Ki, (iii)

where F−1(·) is a quantile function for a standard normal distribution [24]. For

an αi ∈ [0.5, 1], the set Qi
αi

is a bi-convex set as it is a convex set in xi
(

resp.

(zik)
Ki
k=1

)
for a fixed (zik)

Ki
k=1

(
resp. xi

)
.

We propose a new convex reformulation of the set Qi
αi

. Let αi ∈ [0.5, 1], i ∈ I.

For 0 ≤ zik ≤ 1, F−1
(
α
zik
i

)
≥ 0 for all αi ≥ 0.5. Therefore, the constraint (i) of
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the set Qi
αi

can be written as(
µik
)T
xi +

∥∥∥(Σi
k

)1/2
(
F−1

(
α
zik
i

)
xi
)∥∥∥ ≤ bik, ∀ k = 1, 2, . . . , Ki. (6.3)

We use a change of variables technique under logarithmic transformation [65].
The logarithmic transformation is well defined because X i ⊂ Rmi++. We transform
the vector xi ∈ X i into a vector yi ∈ Rmi , where yij = log xij, j = 1, 2, . . . ,mi.
Then, constraint (6.16) can be written as

(µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

logF−1

(
α
zik
i

)
1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, . . . , Ki,

where 1mi is anmi×1 vector of ones, and ey
i

=
(
ey

i
1 , · · · , eyimi

)T
and e

logF−1

(
α
zik
i

)
1mi+y

i

=(
e

logF−1

(
α
zik
i

)
+yi1

, · · · , e
logF−1

(
α
zik
i

)
+yimi

)T

. Therefore, we have the following de-

terministic reformulation for (6.2)

Q̃i
αi

=



(µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

logF−1

(
α
zik
i

)
1mi+y

i

∥∥∥∥∥ ≤ bik,

∀ k = 1, 2, . . . , Ki, (i)

Ki∑
k=1

zik = 1 (ii)

zik ≥ 0, ∀ k = 1, 2, . . . , Ki. (iii)

Let Y i be an image of X i under logarithmic function. Since, the logarithmic
function is continuous and X i is a compact set, Y i is also a compact set. Broadly
speaking, the convexity may not be preserved under logarithmic transformation.
In this section, we consider the sets X i for which the sets Y i remain convex.
We give hereafter few examples of convex sets X i which are invariant under
logarithmic transformation.

Example 6.1. Consider a set

X i =

{
xi ∈ Rmi++ | cTxi ≤ h

}
,

where c = (c1, · · · , cmi)T ∈ Rmi+ and h ∈ R+ are all constant. Then,

Y i =

{
yi ∈ Rmi |

mi∑
j=1

cje
yij ≤ h

}
,

is a convex set.
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Example 6.2. Consider a set

X i =

{
xi ∈ Rmi++ |

mi−1∑
j=1

xij ≤ ximi

}
.

Then, Y i can be reformulated as

Y i =

{
yi ∈ Rmi |

mi−1∑
j=1

ey
i
j−yimi ≤ 1

}
,

which is also a convex set.

Example 6.3. Consider a set

X i =

{
xi ∈ Rmi++ |

mi∑
j=1

(xij)
2 ≤ h

}
,

where h ∈ R++ is a constant. Then,

Y i =

{
yi ∈ Rmi |

mi∑
j=1

e2yij ≤ h

}
,

is a convex set.

Example 6.4. Consider a set

X i =

{
xi ∈ Rmi++ | f(xi) ≤ h

}
,

where f : Rmi++ → R++ is a log-convex and non-decreasing function of xi, and
h ∈ R++ is a constant. Then,

Y i =

{
yi ∈ Rmi | f(ey

i

) ≤ h

}
,

is a convex set.

The reformulation of feasible strategy set Siαi of player i, i ∈ I, is given by

S̃iαi =
{

(yi, zi) ∈ Y i × RKi | (yi, zi) ∈ Q̃i
αi

}
.

Assumption 6.2. For each player i, i ∈ I, ui(·, x−i) is a non-increasing function
for every x−i ∈ X−i.

Assumption 6.3. For each i ∈ I and k = 1, 2, . . . , Ki, all the components of Σi
k

and µik are non-negative.
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Under Assumption 6.3, we show that the set S̃iαi is convex. It is enough

to show that constraint (i) of Q̃i
αi

is convex. We present Lemma 6.3 on the
composition of convex functions. It is used to prove Lemma 6.4 which is the key
to prove the convexity of the sets S̃iαi , i ∈ I.

Lemma 6.3. Let Γ1,Γ2 ⊆ R and Γ1,Γ2 are convex sets. Suppose f1 : Γ1 → Γ2 is
a convex function on Γ1, and f2 : Γ2 → R is a non-decreasing and convex function
on Γ2. Then, the composition function f2 ◦ f1 is a convex function on Γ1.

Proof. Consider any two points x1, x2 ∈ Γ1 and λ ∈ [0, 1]. Since, f1 is a convex
function on Γ1, we have

f1(λx1 + (1− λ)x2) ≤ λf1(x1) + (1− λ)f1(x2).

Using the non-decreasing and convexity properties of f2 on Γ2, we have

(f2 ◦ f1)(λx1 + (1− λ)x2) ≤ λ(f2 ◦ f1)(x1) + (1− λ)(f2 ◦ f1)(x2).

Hence, f2 ◦ f1 is a convex function on Γ1.

Lemma 6.4. For each i ∈ I and k = 1, 2, . . . , Ki, logF−1
(
α
zik
i

)
is a convex

function of zik on [0, 1] for all αi ∈ [F (1), 1] where F (1) ≈ 0.84.

Proof. Let g1 : [0, 1] → [F (1), 1] such that g1(zik) = α
zik
i , and g2 : [F (1), 1] → R

such that g2(p) = logF−1(p) be two functions. Then, the function composition

(g2 ◦ g1)(zik) = logF−1
(
α
zik
i

)
. From Lemma 6.3, logF−1

(
α
zik
i

)
is a convex func-

tion of zik if g1(·) is a convex function and g2(·) is convex and non-decreasing
function on their respective domains.

Since, 0 ≤ zik ≤ 1 and F (1) ≤ αi ≤ 1, then α
zik
i ≥ αi. Therefore, the function

g1(·) is well defined and it is also a convex function of zik. The function g2(·) is
a non-decreasing function because the quantile function F−1(·) as well as log(·)
are non-decreasing functions. The only thing remains to show is that logF−1 (p)
is a convex function. It is enough to show that the second order derivative of
logF−1 (p) is non-negative. The second order derivative of logF−1 (p) can be
written as

−ψ(y) + yψ′(y)

(yψ(y))2ψ(y)
.

where y = F−1(p), and ψ(·) is the probability density function of a standard
normal distribution, and ψ′(·) is the first order derivate of ψ(·). We have

ψ(y) + yψ′(y) =
1√
2π
e−

y2

2 (1− y)(1 + y) ≤ 0,

because 1 + y = 1 + F−1(p) ≥ 0 and 1 − y = 1 − F−1(p) ≤ 0 for all p ∈
[F (1), 1]. Hence, the second order derivative of logF−1 (p) is non-negative for all

p ∈ [F (1), 1]. Therefore, logF−1
(
α
zik
i

)
is a convex function of zik on [0, 1] for all

αi ∈ [F (1), 1].
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Lemma 6.5. For each i ∈ I, let the convex set X i be such that Y i is a convex
set. Let Assumption 6.3 hold. Then, the set S̃iαi, i ∈ I, is a convex set for all
αi ∈ [F (1), 1].

Proof. Fix i ∈ I and αi ∈ [F (1), 1]. Then,

(
(Σi

k)
1/2
e

logF−1

(
α
zik
i

)
1mi+y

i

)
is an

mi×1 vector. Each component of the vector is a non-negative linear combination
of the convex functions. Hence, it is a vector of non-negative convex functions.
The Euclidean norm is a convex function and it is also a non-decreasing function in
each argument when the arguments are non-negative. Therefore, the composition

function

∥∥∥∥∥(Σi
k)

1/2
e

logF−1

(
α
zik
i

)
1mi+y

i

∥∥∥∥∥ is a convex function. The term (µik)
T ey

i
is

a convex function because µik ≥ 0. Hence, the constraints

(µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

logF−1

(
α
zik
i

)
1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, · · · , Ki,

are convex. It is easy to see that the other constraints of S̃iαi are convex. Hence,

S̃iαi is a convex set.

Theorem 6.2. Consider an n-player non-cooperative game where the payoff func-
tion of player i, i ∈ I, satisfies the Assumptions 6.1 and 6.2 . The stochastic
linear constraints of each player are jointly satisfied with at least a given proba-
bility αi ∈ [0, 1]. For each i ∈ I, let the row vector Aik ∼ N (µik,Σ

i
k) where mean

vector µik and positive definite covariance matrix Σi
k, k = 1, 2, · · · , Ki, satisfies

Assumption 6.3. Moreover, the row vectors of Ai, i ∈ I, are independent. Then,
there exists a Nash equilibrium of a chance-constrained game for all α ∈ [F (1), 1]n.

Proof. Let α ∈ [F (1), 1]n. For each i ∈ I, define a composition function Ci =
−ui ◦ di, where di : Rm1 × Rm2 × · · · × Rmn → Rm1

++ × Rm2
++ × · · · × Rmn++, such that

di
(
y1, y2, · · · , yn

)
=
(
ey

1

, ey
2

, · · · , eyn
)
.

Then, define a best response set for player i for a fixed y−i ∈ Y −i

B̃αii (y−i) =
{

(ȳi, z̄i) ∈ S̃iαi | Ci(ȳ
i, y−i) ≤ Ci(y

i, y−i), ∀ (yi, zi) ∈ S̃iαi
}
.

Denote S̃α =
∏

i∈I S̃
i
αi

. Then, define a set-valued map

G̃α : S̃α → P(S̃α)

such that
G̃α(y, z) =

∏
i∈I

B̃αii (y−i).

It follows from Lemma 6.5 that S̃α is a convex set. It is also a closed and bounded
set. Both the functions ui(·) and di(·) are continuous functions. Therefore, the
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composition function Ci(·) is also a continuous function. Since, S̃iαi is a compact

set, then the best response set B̃αii (y−i) is non-empty. The function di(·) is a
convex function and −ui(·, x−i) is a convex and non-decreasing function of xi.
Then, the composition function Ci(·, y−i) is a convex function of yi which, in

turn, implies that the best response set B̃αii (y−i) is a convex set. Hence, G̃α(y, z)
is a non-empty and convex set for each (y, z). The closed graph condition for

G̃α(·) follows from the continuity of the functions Ci(·), i ∈ I. Therefore, from
Kakutani fixed point theorem there exists a fixed point (y∗, z∗) for the set-valued

map G̃α(·). Then, for each i ∈ I

Ci(y
i∗, y−i∗) ≤ Ci(y

i, y−i∗), ∀ (yi, zi) ∈ S̃iαi .

Under the hypothesis of theorem, S̃iαi is a reformulation of Siαi , where xi = ey
i
.

This implies
ui(x

i∗, x−i∗) ≥ ui(x
i, x−i∗), ∀ xi ∈ Siαi .

Hence, x∗ is a Nash equilibrium of a chance-constrained game for all α ∈ [F (1), 1]n.

6.3 Existence of Nash equilibrium with ellipti-

cal distribution

In this section, we will prove the existence of Nash equilibrium with elliptical
distribution. The definition of elliptical distribution is shown in subsection 2.1
and density function is given by (2.4).

Then, we assume that the row vector Aik, k = 1, 2, · · · , Ki all follow some
elliptical distributions, that is, Aik ∼ Ellip (µik,Σ

i
k;φ

i
k) , k = 1. · · · , K, where φik

is the characteristic function as defined in subsection 2.1. Moreover, Aikr and
Aiks are independent of each other when kr 6= ks. In this case, with the help of
Theorem 3 in [22], we can reformulated the joint chance-constraint (6.2) as

Qi
αi

=


(i) (µik)

Txi +
(
F i
k

)−1
(
α
zik
i

)
||
(
Σi
k

)1/2
xi|| ≤ bik, ∀ k = 1, 2, · · · , Ki

(ii)

Ki∑
k=1

zik = 1

(iii) zik ≥ 0, ∀ k = 1, 2, · · · , Ki,
(6.4)

where F i
k is one-dimensional distribution function induced by the characteristic

function φik(t) = ϕik(t
2), ϕik is the characteristic generator function.

The reformulation of feasible strategy set Siαi of player i, i ∈ I, is given by

Ŝiαi =
{

(xi, zi) ∈ X i × RKi+ | (xi, zi) ∈ Qi
αi

}
.

Denote Ŝα =
∏

i∈I Ŝ
i
αi

.

To prove the convexity of set Ŝiαi , we introduce the following definition.
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Definition 6.1. ([50]) A function f : R → R is called r−decreasing for some
r ∈ R with threshold t∗(r) > 0 if it is continuous on (0,+∞) and the function
t 7→ trf(t) is strictly decreasing for all t > t∗(r).

The following proposition shows the thresholds of some elliptical distributions.

Proposition 6.1. ([22]) The following one-dimensional elliptical distributions
have r−decreasing densities for some r:

1. normal distribution, for r > 0 with the threshold t∗(r) = 1
2

(
µ+

√
µ2 + 4rσ2

)
;

2. Student’s t distribution with ν degrees of freedom, for 0 < r < ν + 1 with
the threshold t∗(r) =

√
rν

ν+1−r ;

3. Laplace distribution, for all r > 0 with the threshold t∗(r) = rσ√
2
.

With the definition of threshold, we have the following theorem about the
convexity of Ŝiαi :

Theorem 6.3. For each i ∈ I, Ŝiαi is a convex set when

1. the densities associated with F i
k are (rik + 1)−decreasing with thresholds

tik
∗
(rik + 1) > 0 for some rik > 1, or at least 2−dereasing if µik = 0;

2. the probability level αi satisfies

αi > max
k

{
F i
k

(
max

{
tik
∗
(rik + 1),

rik+1

rik−1

(
λkmin

)− 1
2 ‖µik‖

})
, µik 6= 0

F i
k

(
tik
∗
(2)
)
, µik = 0

Proof. The proof follows derectly from [22].

Similar with the case of normal distribution, we have the following theorem
about the existence of Nash equilibrium with elliptical distribution. And the
proof is exactly the same with the proof of Theorem 6.3.

Theorem 6.4. Consider an n-player non-cooperative game where the payoff func-
tion of player i, i ∈ I, satisfies the Assumption 6.1. The stochastic linear
constraints of each player are jointly satisfied with at least a given probability
αi ∈ [0, 1]. Let the row vector Aik ∼ Ellip (µik,Σ

i
k;φ

i
k) , k = 1. · · · , Ki, of random

matrix Ai. Moreover, Aikr and Aiks are independent of each other when kr 6= ks.
Then, there always exists a Nash equilibrium for a chance-constrained game for
all α ∈ (ᾱ1, 1]× (ᾱ2, 1]× · · · × (ᾱn, 1], where for each i ∈ I

ᾱi = max
k

{
F i
k

(
max

{
tik
∗
(rik + 1),

rik+1

rik−1

(
λkmin

)− 1
2 ‖µik‖

})
, µik 6= 0,

F i
k

(
tik
∗
(2)
)
, µik = 0.

(6.5)

From Theorem 6.4, a Nash equilibrium for a chance-constrained game exists
for very high values for αi, i ∈ I. This is because the reformulation Ŝi(αi) of
the joint chance constraint (6.2) is not a convex set. Therefore, for most of the
cases we do not have an answer for the existence of a Nash equilibrium for a
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chance-constrained game. In order to answer this question we propose a new
reformulation for (6.2).

From the constraints (i) in (6.4), we can find that the feasible strategy set
Si(αi) is nonconvex in general. In the following, we will consider a convex refor-
mulation of set Si(αi).

When α ≥ 0.5, we have (F i
k)
−1
(
α
zik
i

)
≥ 0 where 0 ≤ zk ≤ 1. Therefore, the

first group constraints in (6.4) can be reformulated as

(µik)
Tx+ ||

(
Σi
k

) 1
2

((
F i
k

)−1
(
α
zik
i

)
xi
)
|| ≤ bik, ∀ k = 1, 2, · · · , K (6.6)

We transform the vector xi ∈ X i into a vector yi ∈ Rmi , where yij = lnxij,
j = 1, 2, . . . ,mi. Then, constraint (6.6) can be written as

(µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

log (F ik)
−1
(
α
zik
i

)
·1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, . . . , Ki,

where 1mi is an mi × 1 vector of ones, and ey
i

=
(
ey

i
1 , · · · , eyimi

)T
and

e
log (F ik)

−1
(
α
zik
i

)
·1mi+y

i

=

(
e

log (F ik)
−1
(
α
zik
i

)
+yi1

, · · · , e
log (F ik)

−1
(
α
zik
i

)
+yimi

)T

.

Therefore, we have the following deterministic reformulation for (6.4)

Q̃i
αi

=



(i) (µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

log (F ik)
−1
(
α
zik
i

)
1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, . . . , Ki,

(ii)

Ki∑
k=1

zik = 1

(iii) zik ≥ 0, ∀ k = 1, 2, . . . , Ki.
(6.7)

Let Y i =
{
yi ∈ Rmi | yij = lnxij, x

i = (xi1, · · · , ximi)
T , xi ∈ X i

}
. The set Y i

is an image of X i under logarithmic function. Since, the logarithmic function is
continuous and X i is a compact, Y i is also compact set. The reformulation of
feasible strategy set Siαi of player i, i ∈ I, is given by

S̃iαi =
{

(yi, zi) ∈ Y i × RKi | (yi, zi) ∈ Q̃i
αi

}
.

Assumption 6.4. For each i ∈ I and k = 1, 2, . . . , Ki, all the components of Σi
k

and µik are non-negative.

Under Assumption 6.4, we show that the set S̃iαi is convex. It is enough to

show that the constraint (i) of Q̃i
αi

is convex.
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Lemma 6.6. log (F i
k)
−1

(αzki ) is convex, if αi satisifies

rik

((
F i
k

)−1
(αzki )

)
+
(
F i
k

)−1
(αzki ) · (rik)′

((
F i
k

)−1
(αzki )

)
≤ 0, ∀0 ≤ zk ≤ 1 (6.8)

where rik is the radial density corresponding to F i
k, (rik)

′ is the first order derivative
function of rik, k = 1, · · · , K.

Proof. As αzki is a convex function, with Lemma 6.3 and the monotonicity of

function log (F i
k)
−1

, we only need to show the convexity of log (F i
k)
−1

, which is
equivalent with

−ψ
i
k(y) + y(ψik)

′(y)

(yψik(y))2ψik(y)
≥ 0.

where y = (F i
k)
−1

(p), ψik(·) is the probability density function corresponding to

F i
k, (ψik)

′(·) is the derivate of ψik(·). Then, log (F i
k)

(−1)
(p) is convex if and only if

ψik(y) + y(ψik)
′(y) ≤ 0. Therefore, we have

rik

((
F i
k

)−1
(αzki )

)
+
(
F i
k

)−1
(αzki ) · (rik)′

((
F i
k

)−1
(αzki )

)
≤ 0.

Since αzki is convex, if (6.8) is satisfied, we have log (F i
k)
−1

(αzki ) is convex.

Example 6.5. (Normal distribution) For normal distribution, the radial den-
sity function can be expressed as rik(z) = exp

{
−1

2
z2
}

. Then inequality (6.8) can
be written as αzki ≥ F i

k(1), ∀0 ≤ zk ≤ 1 . Since αzki ≥ αi, ∀0 ≤ zk ≤ 1 , then

from Lemma 6.6, we have when αi ≥ F i
k(1), log (F i

k)
−1

(αzki ) is convex.

Example 6.6. (t distribution) For t distribution with degree ν, the radial den-

sity function can be expressed as g(z) =
(
1 + 1

ν
z2
)−(1+ν)/2

. Then inequality (6.8)
can be written as αzki ≥ F i

k(1), ∀0 ≤ zk ≤ 1 . Then from Lemma 6.6 we have

when αi ≥ F i
k(1), log (F i

k)
−1

(αzki ) is convex.

Example 6.7. (Cauchy distribution) For Cauchy distribution, the radial den-
sity function can be expressed as g(z) = (1 + z2)

−1
. TThen inequality (6.8) can

be written as αzki ≥ F i
k(1), ∀0 ≤ zk ≤ 1 . Then from Lemma 6.6 we have when

αi ≥ F i
k(1), log (F i

k)
−1

(αzki ) is convex.

Example 6.8. (Laplace distribution) For Laplace distribution, the radial den-

sity function can be expressed as g(z) = e−
√

2|z|. Then inequality (6.8) can be

written as αzki ≥ F i
k(
√

2
2

), ∀0 ≤ zk ≤ 1 . Then from Lemma 6.6 we have when

αi ≥ F i
k(
√

2
2

), log (F i
k)
−1

(αzki ) is convex.

With Lemma 6.6, we can deduce the following lemma:

Lemma 6.7. For each i ∈ I, let the convex set X i ⊂ Rmi+ be such that Y i is a

convex set. Let Assumption 6.4 holds. Then, the set S̃iαi, i ∈ I, is a convex set
for all αi satisifying the conditions in Lemma 6.6.
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Proof. Fix i ∈ I and αi satisfies the conditions in Lemma 6.6. Then,((
Σi
k

)1/2
e

log (F ik)
−1
(
α
zik
i

)
·1mi+y

i

)

is an mi × 1 vector. Each component of the vector is a linear combination of the
convex functions where the coefficients are nonnegative. The norm is a convex
function and it is also a nondecreasing function when the arguments are nonneg-

ative. Therefore, The composition function

∥∥∥∥∥(Σi
k)

1/2
e

log (F ik)
−1
(
α
zik
i

)
·1mi+y

i

∥∥∥∥∥ is a

convex function. The term (µik)
T ey

i
is a convex function because µik ≥ 0. Hence,

the constraints

(µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

log (F ik)
−1
(
α
zik
i

)
·1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, · · · , Ki,

are convex. It is easy to see that the other constraints of S̃iαi are convex. There-

fore, S̃iαi is a convex set.

Hence, similar with Theorem 6.2, we have the following theorem about the
existence of Nash equilibrium for elliptically distributed case.

Theorem 6.5. Consider an n-player non-cooperative game where the payoff func-
tion of player i, i ∈ I, satisfies the Assumption 6.1. The stochastic linear
constraints of each player are jointly satisfied with at least a given probability
αi ∈ [0, 1]. Let the row vector Aik ∼ Ellip (µik,Σ

i
k;φ

i
k) , k = 1. · · · , Ki, of random

matrix Ai with the mean vector µik and the covariance matrix Σi
k which satisfy

Assumption 6.4. Moreover, Aikr and Aiks are independent of each other when
kr 6= ks. Then, there always exists a Nash equilibrium for a chance-constrained
game for all αi satisfying the conditions in Lemma 6.6.

6.4 Existence of Nash equilibrium for distribu-

tionally robust model

As mentioned in section 6.1, we formulate the stochastic linear constraints (6.1)
as a joint chance constraint given by (6.2):

PFi
{
Aixi ≤ bi

}
≥ αi.

However, in practical, the assumption of full knowledge of the distribution Fi fails
In this case, we take the uncertainty of Fi into consideration. The only knowledge
we have is that Fi is in some uncertainty set Di. Therefore, the stochastic linear
constraints (6.1) can be formualted as

inf
Fi∈Di

PFi
{
Aixi ≤ bi

}
≥ αi, (6.9)
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Therefore, for an αi ∈ [0, 1], the feasible set of player i, i ∈ I, is defined by

Siαi =

{
xi ∈ X i | inf

Fi∈Di
PFi
{
Aixi ≤ bi

}
≥ αi

}
. (6.10)

For each i ∈ I, we assume Siαi to be a nonempty set, and the uncertainty set Di

and the probability level vector (αi)i∈I are known to all the players. Then, above
chance-constrained game is a non-cooperative game.

In the following, we consider four kinds of popular uncertainty sets: φ-divergence
uncertainty set and three moment based uncertainty sets. With these four uncer-
tainty sets of distribution of Ai, we will show the existence of Nash equilibrium
of the non-cooperative game.

6.4.1 φ-divergence uncertainty set

In this subsection, we consider the case that the uncertainty sets Di, ı ∈ I are all
defined as

Di =
{
fi|Dϕ

(
fi||f 0

i

)
≤ εi

}
, (6.11)

where

Dϕ

(
fi||f 0

i

)
=

ˆ
Ω

ϕ

(
fi(ξ)

f 0
i (ξ)

)
f 0
i (ξ)dξ,

f 0
i denotes the estimated density function of Ai. Furthermore, the corresponding

estimated distribution of row vector Aik, k = 1, 2, · · · , Ki, is a multivariate normal
distribution with mean µik = (µik1, µ

i
k2, · · · , µikmi) and a covariance matrix Σi

k. A
i
kr

and Aiks are independent of each other when kr 6= ks. Moreover, ϕ : R → R is a
convex function on R+ such that

1. ϕ(1) = 0,

2. 0ϕ(x/0) :=

{
p limp→+∞ ϕ(p)/p if x > 0,
0 if x = 0,

3. ϕ(x) = +∞ for x < 0.

By using Theorem 1 in Jiang and Guan [57], we have

Theorem 6.6. For player i, with the uncertainty set (6.11), the constraint (6.9)
is equivalent to

Pf0
i

{
Aixi ≤ bi

}
≥ α′i, (6.12)

where

α′i0 = inf
z > 0, z0 + παiz < lϕ,

m(ϕ∗) ≤ z0 + z ≤ m(ϕ∗)

{
ϕ∗(z0 + z)− z0 − (1− αi)z + εi

ϕ∗(z0 + z)− ϕ(z0)

}
,

α′i = min{α′i0, 1} for α′i0 ∈ R, ϕ∗ is the conjugate function of ϕ, lϕ = limx→+∞ ϕ(x)/x,
m(ϕ∗) = sup{m ∈ R : ϕ∗ is a finite constant on (−∞,m]} and m(ϕ∗) = inf{m ∈
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R : ϕ∗ = +∞}, and

παi =


−∞ if Leb{[f0 = 0]} = 0,
0 if Leb{[f0 = 0]} > 0 and Leb{[f0 = 0][Aixi ≤ bi]} = 0,
1 otherwise,

Leb{·} represents the Lebesgue measure and [f0 = 0] := {ξ ∈ Ω : f0(ξ) = 0}.

From the Proposition 2-4 in Jiang and Guan [57], we have the following propo-
sition.

Proposition 6.2. 1. Suppose that Dϕ is constructed by using the χ divergence
of order 2 with ϕ(x) = (x− 1)2 and αi ≥ 1/2. Then

α′i = αi +

√
ε2i + 4εiαi(1− αi)− (2αi − 1)εi

2εi + 2
,

2. Suppose that Dϕ is constructed by using the variation distance with ϕ(x) =
|x− 1|. Then

α′i = αi +
εi
2
,

3. Suppose that Dϕ is constructed by using the KL divergence with ϕ(x) =
x log x− x+ 1. Then

α′i = inf
x∈(0,1)

{
e−εixαi − 1

x− 1

}
.

With Theorem 6.6, we can rewrite the set Siαi as

Siαi =
{
xi ∈ X i | Pf0

i

{
Aixi ≤ bi

}
≥ α′i

}
, (6.13)

where α′i is defined in Theorem 6.6. As the estimated distribution of row vector
Aik is a multivariate normal distribution, the existence of Nash equilibrium can
be derived directly from the case of normal distribution in section 6.2.

Theorem 6.7. Consider an n-player non-cooperative game where the payoff func-
tion of player i, i ∈ I, satisfies the Assumptions 6.1 and 6.2 . The stochastic lin-
ear constraints of each player are jointly satisfied with at least a given probability
αi ∈ [0, 1] and uncertainty set Di defined as (6.11). For each i ∈ I, mean vector
µik and positive definite covariance matrix Σi

k, k = 1, 2, · · · , Ki, satisfies Assump-
tion 6.3. Moreover, the row vectors of Ai, i ∈ I, are independent. Then, there
exists a Nash equilibrium of a chance-constrained game for all α′ ∈ [F (1), 1]n,
where α′ = (α′1, · · · , α′n) and α′i, i = 1, · · · , n, are defined in Theorem 6.6.
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6.4.2 Moments based uncertainty set I

In this section, we consider the case that the uncertainty sets Di, i ∈ I are all
defined as

Di =

Fi
∣∣∣∣∣∣

E[Aik] = µik, k = 1, · · · , Ki

E[(Aik − µik)(Aik − µik)T ] = Σi
k, k = 1, · · · , Ki

Aik and Aij are independent when k 6= j

 (6.14)

In this case, from [15], we have the following deterministic reformulation for
distributionally robust joint chance-constraint (6.9)

Qi
Di

(αi) =



(i) (µik)
Txi +

√√√√ α
zik
i

1− αz
i
k
i

∥∥∥(Σi
k

)1/2
xi
∥∥∥ ≤ bik, ∀ k = 1, 2, · · · , Ki

(ii)

Ki∑
k=1

zik = 1

(iii) zik ≥ 0, ∀ k = 1, 2, · · · , Ki.
(6.15)

The reformulation of feasible strategy set Si(αi) of player i, i ∈ I, is given by

S̄iαi =
{

(xi, zi) ∈ X i × RKi+ | (xi, zi) ∈ Qi
Di

(αi)
}
.

Denote S̄α =
∏

i∈I S̄
i
αi

.

To propose a convex reformulation of joint chance-constraint (6.9), we start
with the deterministic reformulation (6.15). Therefore, the constraint (i) of (6.15)
can be written as

(
µik
)T
xi +

∥∥∥∥∥∥(Σi
k

)1/2


√√√√ α

zik
i

1− αz
i
k
i

· xi
∥∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, . . . , Ki. (6.16)

We use a change of variables technique under logarithmic transformation. The
logarithmic transformation is well defined because X i ⊂ Rmi+ . We transform the
vector xi ∈ X i into a vector yi ∈ Rmi , where yij = lnxij, j = 1, 2, . . . ,mi. Then,
constraint (6.16) can be written as

(µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, . . . , Ki,

where 1mi is an mi × 1 vector of ones, ey
i

=
(
ey

i
1 , · · · , eyimi

)T
and

e
1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

=

(
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
+yi1

, · · · , e
1
2

(
zik logαi−log

(
1−α

zik
i

))
+yimi

)T

.
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Therefore, we have the following deterministic reformulation for (6.9)

Q̃i
Di

(αi) =



(i) (µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥ ≤ bik,

(ii)

Ki∑
k=1

zik = 1

(iii) zik ≥ 0, ∀ k = 1, 2, . . . , Ki.

(6.17)

Let Y i =
{
yi ∈ Rmi | yij = lnxij, x

i = (xi1, · · · , ximi)
T , xi ∈ X i

}
. The set

Y i is an image of X i under logarithmic function. Since, the logarithmic function
is continuous and X i is a compact, Y i is also compact set. The convexity need
not to be preserved under logarithmic transformation. We consider the set X i

for which the set Y i remains convex. Such sets indeed exists.
The reformulation of feasible strategy set Siαi of player i, i ∈ I, is given by

S̃iαi =
{

(yi, zi) ∈ Y i × RKi | (yi, zi) ∈ Q̃i
Di

(αi)
}
.

Assumption 6.5. For each i ∈ I and k = 1, 2, . . . , Ki, all the components of Σi
k

and µik are non-negative.

Under Assumption 6.5, we show that the set S̃iαi is convex. It is enough to

show that the constraint (i) of Q̃i
Di

(αi) is convex.

Lemma 6.8. Let f : X → Y be a nonincreasing concave function, g : Z → X be
a convex function. Then we have that f(g) : Z → Y is a concave function.

Proof. To show that f(g) is a concave function, it is enough to show that the
second order derivative of f(g) is nonpositve. The second order derivative of f(g)
can be written as

f ′′(g)(g′)2 + f ′(g)g′′.

Since f is nonincreasing and concave, g is convex, we have f ′′(g) ≤ 0, f ′(g) ≤ 0
and g′′ ≥ 0. Therefore, f ′′(g)(g′)2 +f ′(g)g′′ ≤ 0, which means f(g) is concave.

With Lemma 6.8, we can deduce the following lemma:

Lemma 6.9. For each i ∈ I, let the convex set X i ⊂ Rmi+ be such that Y i is a

convex set. Let Assumption 6.5 holds. Then, the set S̃iαi, i ∈ I, is a convex set
for all αi ∈ [0, 1] .

Proof. Fix i ∈ I. Then,

(
(Σi

k)
1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

)
is an mi × 1

vector. Since log (1− p) is decreasing and concave with respect to p and α
zik
i is

convex with respect to zik, from Lemma 6.8, we have that log
(

1− αz
i
k
i

)
is concave

with respect to zik. Each component of the vector is a linear combination of the
convex functions where the coefficients are nonnegative. The norm is a convex
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function and it is also a nondecreasing function when the arguments are nonnega-

tive. Therefore, The composition function

∥∥∥∥∥(Σi
k)

1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥
is a convex function. The term (µik)

T ey
i

is a convex function because µik ≥ 0.
Hence, the constraints

(µik)
T ey

i

+

∥∥∥∥∥(Σi
k

)1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, · · · , Ki,

are convex. It is easy to see that the other constraints of S̃i(αi) are convex.

Therefore, S̃iαi is a convex set.

Then, with the same proof statement of Theorem 6.2, we get the following
theorem about existence of Nash equilibnum:

Theorem 6.8. Consider an n-player non-cooperative game where the payoff func-
tion of player i, i ∈ I, satisfies the Assumptions 6.1 and 6.2. The stochastic lin-
ear constraints of each player are jointly satisfied with at least a given probability
αi ∈ [0, 1] and uncertainty set Di defined as (6.14). The mean vectors µik and
the covariance matrixes Σi

k in (6.14) satisfy Assumption 6.5. Then, there always
exists a Nash equilibrium for a chance-constrained game for all α ∈ [0, 1]n.

6.4.3 Moments based uncertainty set II

In this section, we consider the case that the uncertainty sets Di, i ∈ I are all
defined as

Di =

Fi
∣∣∣∣∣∣

E[Aik] = µik, k = 1, · · · , Ki

E[(Aik − µik)(Aik − µik)T ] � Σi
k, k = 1, · · · , Ki

Aik and Aij are independent when k 6= j

 (6.18)

In this case, from [21], we have the following deterministic reformulation for
distributionally robust joint chance-constraint (6.9)

Qi
Di

(αi) =



(i) (µik)
Txi +

√√√√ α
zik
i

1− αz
i
k
i

∥∥∥(Σi
k

)1/2
xi
∥∥∥ ≤ bik, ∀ k = 1, 2, · · · , Ki

(ii)

Ki∑
k=1

zik = 1

(iii) zik ≥ 0, ∀ k = 1, 2, · · · , Ki.
(6.19)

The reformulation of feasible strategy set Siαi of player i, i ∈ I, is given by

S̄iαi =
{

(xi, zi) ∈ X i × RKi+ | (xi, zi) ∈ Qi
Di

(αi)
}
.
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Denote S̄α =
∏

i∈I S̄
i
αi

, which is same with the case in subsection 6.4.2. Then, the
existence of Nash equilibrium is exactly same with the case in subsection 6.4.2.

Theorem 6.9. Consider an n-player non-cooperative game where the payoff func-
tion of player i, i ∈ I, satisfies the Assumptions 6.1 and 6.2. The stochastic lin-
ear constraints of each player are jointly satisfied with at least a given probability
αi ∈ [0, 1] and uncertainty set Di defined as (6.20). The mean vectors µik and
the covariance matrixes Σi

k in (6.14) satisfy Assumption 6.5. Then, there always
exists a Nash equilibrium for a chance-constrained game for all α ∈ [0, 1]n.

6.4.4 Moments based uncertainty set III

In this section, we consider the case that the uncertainty sets Di, i ∈ I are all
defined as

Di =

Fi
∣∣∣∣∣∣

(E[Aik]− µik)
>

(Σi
k)
−1

(E[Aik]− µik) ≤ γik1, k = 1, · · · , Ki

E[(Aik − µik)(Aik − µik)T ] � γik2Σi
k, k = 1, · · · , Ki

Aik and Aij are independent when k 6= j

 (6.20)

By applying the Corollary 4 in Yang and Xu [103], we have the following de-
terministic reformulation for distributionally robust joint chance-constraint (6.9)

Qi
Di

(αi) =



(i) k2 ·
〈
Qi
k,Σ

i
k

〉
+

α
zik
i

1− αz
i
k
i

· rik + (µik)
Txi

+
√
k1

∥∥∥(Σi
k

)1/2
xi
∥∥∥ ≤ bik, ∀ k = 1, 2, · · · , Ki

(ii)

(
Qi
k −xi

2

−xi

2

>
rik

)
� 0,

(iii)

Ki∑
k=1

zik = 1

(iv) zik ≥ 0, ∀ k = 1, 2, · · · , Ki.

(6.21)

The reformulation of feasible strategy set Siαi of player i, i ∈ I, is given by

S̄iαi =
{

(xi, zi, ri, Qi) ∈ X i × RKi+ × RKi+ × SKi+ | (xi, zi, ri, Qi) ∈ Qi
Di

(αi)
}
.

Here, S+ denote the set of semidefinite matrixes. Denote S̄α =
∏

i∈I S̄
i
αi

.

To propose a convex reformulation of joint chance-constraint (6.9), we start
with the deterministic reformulation (6.21). Therefore, because of the nonnega-
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tivity of rik, the constraints (i) and (ii) of (6.21) can be written as

(i) k2 ·
〈
Qi
k,Σ

i
k

〉
+

α
zik
i

1− αz
i
k
i

+ (µik)
Tχik

+
√
k1

∥∥∥(Σi
k

)1/2
χik

∥∥∥ ≤ bik
(
rik
)−1

, ∀ k = 1, 2, · · · , Ki

(ii)

(
Qi
k −χi

2

−χi

2

>
1

)
� 0,

(iii) rikχ
i
k = xi.

(6.22)

We use a change of variables technique under logarithmic transformation. The
logarithmic transformation is well defined because X i ⊂ Rmi+ . We transform the
vector xi ∈ X i into a vector yi ∈ Rmi , where yij = lnxij, j = 1, 2, . . . ,mi. And

rik = eγ
i
k , χik = eβ

i
k , where k = 1, 2, · · · , Ki. Therefore, we have the following

deterministic reformulation for (6.9)

Q̃i
Di

(αi) =



(i) k2 ·
〈
Qi
k,Σ

i
k

〉
+

α
zik
i

1− αz
i
k
i

+ (µik)
T eβ

i
k

+
√
k1

∥∥∥(Σi
k

)1/2
eβ

i
k

∥∥∥ ≤ bike
−γik , ∀ k = 1, 2, · · · , Ki

(ii)

 Qi
k − eβ

i
k

2

− eβ
i
k

2

>
1

 � 0,

(iii) γik + βik = yi

(iv)

Ki∑
k=1

zik = 1

(v) zik ≥ 0, ∀ k = 1, 2, · · · , Ki.

(6.23)

Let Y i =
{
yi ∈ Rmi | yij = lnxij, x

i = (xi1, · · · , ximi)
T , xi ∈ X i

}
, The

reformulation of feasible strategy set Siαi of player i, i ∈ I, is given by

S̃iαi =
{

(yi, zi, γi, βi, Qi) ∈ Y i×RKi+ ×RKi×RKi×SKi+ | (yi, zi, γi, βi, Qi) ∈ Q̃i
Di

(αi)
}
.

Assumption 6.6. For each i ∈ I and k = 1, 2, . . . , Ki, b
i
k are negative.

Since p
1−p is a convex and increasing function on [0, 1) and α

zik
i is convex for

∀α ∈ [0, 1], from Lemma 6.3, we have that function
α
zik
i

1−α
zi
k
i

is convex with respect

to zik for ∀α ∈ [0, 1]. Hence, with Assumptions 6.2, 6.5 and 6.6, we have every

constraints in Q̃i
Di

(αi) are convex. Hence, the set S̃iαi , i ∈ I, is a convex set for
all αi ∈ [0, 1].

Then, with the exactly the same proof of Theorem 6.2, we get the following
theorem about existence of Nash equilibnum:
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Theorem 6.10. Consider an n-player non-cooperative game where the payoff
function of player i, i ∈ I, satisfies the Assumptions 6.1 and 6.2. The stochas-
tic linear constraints of each player are jointly satisfied with at least a given
probability αi ∈ [0, 1] and uncertainty set Di defined as (6.11). The mean vec-
tors µik and the covariance matrixes Σi

k in (6.11) satisfy Assumption 6.5. And
bik satisfy Assumption 6.6. Then, there always exists a Nash equilibrium for a
chance-constrained game for all α ∈ [0, 1]n.

6.5 Conclusion

In this chapter, we modeled an n-player non-cooperative game with continu-
ous strategy sets containing stochastic linear constraints by chance constrained
problem. And the row vectors in chance constraints of each player are pairwise
independent. We considered the existence of Nash equilibrium for the chance
constrained stochastic game in three cases: normal distribution, elliptical distri-
bution and distributionally robustness, respectively. Under certain conditions we
showed the existence of Nash equilibrium for this stochastic game in all above
three cases, respectively.

The work about stochastic games with normal distribution correrponds to the
reference [82].
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Chapter 7

Conclusions and Prospects

7.1 Conclusions

Chance constrained problem was first introduced in 1959 [17]. Since then the
theory and applications of chance constrained problem have been developed. Up
to now, there are still some important issues about chance constrained problems
unsolved. Therefore, the topics around the theory and applications of chance
constrained problem are still attractive. Based on the above statements, this
dissertation has been dedicated to addressing the chance constrained problems
and their applications. And the following research results were obtained:

(1) In Chapter 3, we reviewed the work about geometric programs with joint
chance constraints, where the stochastic parameters are normally distributed and
independent of each other. As an extension, we considered a joint rectangular
geometric chance constrained programs under elliptical distribution with inde-
pendent components. By using the standard variable transformation, we derived
a convex reformulation of rectangular geometric chance constrained programs. As
there was a quantile function of elliptical distribution in the reformulation which
is nonelementary, we proposed new tight convex approximations based on the
variable transformation together with piecewise linear approximation method.

(2) In Chapter 4, we developed upper bounds for linear individual and joint
chance constrained problems with independent matrix vector rows. The uncer-
tainty was considered in the coefficient matrix. The deterministic approximations
of probability inequalities were based on the one-side Chebyshev inequality, Cher-
noff inequality, Bernstein and Hoeffding inequalities. We derived various sufficient
conditions related to the confidence parameter value under which the aforemen-
tioned approximations are convex and tractable. The approximations could be
computed under different assumptions: more specifically Chebyshev inequality
requires the knowledge of the first and second moments of the random variables
while Bernstein and Hoeffding ones, their mean and support. On the contrary,
Chernoff inequality required only the moment generating function of the random
variables. Approximations based on piecewise linear and tangent were also pro-
vided in order to reduce further the computational complexity of the problem.
Finally, numerical results on randomly generated data were discussed.

(3) In Chapter 5, we considered a mixture distribution based data-driven un-
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certainty set which can characterize higher order moments information. When we
can only estimate the proposed uncertainty set from data, we proposed a date-
driven approach, which is based on confidence region for higher order moments.
Such a data-driven uncertainty set can more efficiently match non-Guassian char-
acters of real random variables. Then, we used the proposed data-driven mixture
distribution based uncertainty set in a distributionally robust individual linear
chance constrained problem. We showed that, under certain conditions of param-
eters, the distributionally robust chance constrained problem can be reformulated
as a convex programming problem, with the data-driven mixture distribution
based uncertainty set. As the convex equivalent reformulation contains a quan-
tile function, we further proposed two approximations leading to tight upper and
lower bounds. Moreover, under much weaker conditions, we showed that, the
distributionally robust chance constrained problem can be reformulated as a DC
programming problem. We proposed a sequence convex approximation method
to find a tight upper bound, and used relax convex approximation method to find
a lower bound.

(4) In Chapter 6, we considered an n-player non-cooperative game with contin-
uous strategy sets. We investigated the case where the strategy sets are stochas-
tic in nature. We assumed that the strategy set of each player contains a set of
stochastic linear constraints. We formulated the stochastic linear constraints of
each player as a joint chance constraint. We assumed that the row vectors of
the matrix defining stochastic linear constraints are independent and each row
vector follows a multivariate normal distribution. Under certain conditions, we
proposed a new convex reformulation for the joint chance constraints in this case.
We showed that there always exists a Nash equilibrium of such a chance con-
strained game if the payoff function of each player satisfies certain assumptions.

7.2 Prospects

In this dissertation, we discuss some research fields about chance constrained
problems, including chance constrained stochastic games, bounds for chance con-
straints, joint rectangular geometric chance constrained programs and data-driven
chance constrained problems. However, there are still some open issues and future
works about chance constrained problems worth studying:

(1) In Chapter 3, we reformulated a joint rectangular geometric chance con-
strained programs under elliptical distribution with independent components and
certain conditions about parameters. Therefore, finding tight convex approxima-
tions with weaker conditions or under other distributions, such as the generalized
hyperbolic distributions, are still open questions for joint rectangular geometric
chance constrained programs.

(2) In Chapter 4, we developed upper bounds for linear individual and joint
chance constrained problems with independent matrix vector rows. Then, propos-
ing a bound for joint chance constrained problem with dependent matrix vector
rows is an interesting issue. What’s more, another future work will be devoted on
the application of the bounds addressed in Chapter 4 to more general stochastic
optimization problems with chance constraints.
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(3) In Chapter 5, we focused on a data-driven robust chance constrained
problem. The proposed approaches in Chapter 5 just focus on the individual
linear chance constraints. Therefore, application for practical problems of our
approaches is limited. Different approaches for joint nonlinear chance constrained
problems still have not been proposed. A further research topic is how to apply
our approaches to data-driven robust joint nonlinear chance constrained prob-
lems.

(4) In Chapter 6, we discuss the existence of Nash equilibrium with certain
conditions under elliptical distribution and distributionally robust framework.
How to characterize the Nash equilibria under elliptical distribution and distri-
butionally robust framework still needs to be solved. In addition, proving Nash
equilibrium with weaker conditions or under different distributions, such as gen-
eralized mixture distributions, is also an open question.
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Titre : Optimisation stochastique avec contraintes en probabilités et applications

Mots clés : Contraintes en probabilités, Programmation convexe, Distributionnellement robuste, Distributions
mixtes, Théorie des jeux stochastiques

Résumé : L’incertitude est une propriété naturelle
des systèmes complexes. Les paramètres de certains
modèles peuvent être imprécis ; la présence de per-
turbations aléatoires est une source majeure d’incerti-
tude pouvant avoir un impact important sur les perfor-
mances du système. L’optimisation sous contraintes
en probabilités est une approche naturelle et large-
ment utilisée pour fournir des décisions robustes dans
des conditions d’incertitude. Dans cette thèse, nous
étudierons systématiquement les problèmes d’optimi-
sation avec contraintes en probabilités dans les cas
suivants :
En tant que base des problèmes stochastiques, nous
passons d’abord en revue les principaux résultats
de recherche relatifs aux contraintes en probabi-
lités selon trois perspectives: les problèmes liés à
la convexité en présence de contraintes probabi-
listes, les reformulations et les approximations de ces
contraintes, et les contraintes en probabilités dans le
cadre de l’optimisation distributionnellement robuste.
Pour les problèmes d’optimisation géométriques sto-
chastiques, nous étudions les programmes avec
contraintes en probabilités géométriques rectangu-
laires jointes. A l’aide d’hypothèses d’indépendance
des variables aléatoires elliptiquement distribuées,
nous déduisons une reformulation des programmes
à contraintes géométriques rectangulaires jointes.
Comme la reformulation n’est pas convexe, nous
proposons de nouvelles approximations convexes
basées sur la transformation des variables ainsi que
des méthodes d’approximation linéaire par morceaux.
Nos résultats numériques montrent que nos approxi-
mations sont asymptotiquement serrées.
Lorsque les distributions de probabilité ne sont pas
connues à l’avance ou que la reformulation des
contraintes probabilistes est difficile à obtenir, des
bornes obtenues à partir des contraintes en pro-
babilités peuvent être très utiles. Par conséquent,
nous développons quatre bornes supérieures pour
les contraintes probabilistes individuelles, et jointes
dont les vecteur-lignes de la matrice des contraintes
sont indépendantes. Sur la base de l’inégalité uni-
latérale de Chebyshev, de l’inégalité de Chernoff, de
l’inégalité de Bernstein et de l’inégalité de Hoeffding,
nous proposons des approximations déterministes
des contraintes probabilistes. En outre, quelques
conditions suffisantes dans lesquelles les approxima-
tions susmentionnées sont convexes et solvables de
manière efficace sont déduites. Pour réduire davan-

tage la complexité des calculs, nous reformulons les
approximations sous forme de problèmes d’optimisa-
tion convexes solvables basés sur des approximations
linéaires et tangentielles par morceaux. Enfin, des
expériences numériques sont menées afin de montrer
la qualité des approximations déterministes étudiées
sur des données générées aléatoirement.
Dans certains systèmes complexes, la distribu-
tion des paramètres aléatoires n’est que partiel-
lement connue. Pour traiter les incertitudes com-
plexes en termes de distribution et de données
d’échantillonnage, nous proposons un ensemble d’in-
certitude basé sur des données obtenues à par-
tir de distributions mixtes. L’ensemble d’incertitude
basé sur les distributions mixtes est construit dans
la perspective d’estimer simultanément des moments
d’ordre supérieur. Ensuite, à partir de cet ensemble
d’incertitude, nous proposons une reformulation du
problème robuste avec contraintes en probabilités
en utilisant des données issues d’échantillonnage.
Comme la reformulation n’est pas un programme
convexe, nous proposons des approximations nou-
velles et convexes serrées basées sur la méthode
d’approximation linéaire par morceaux sous certaines
conditions. Pour le cas général, nous proposons une
approximation DC pour dériver une borne supérieure
et une approximation convexe relaxée pour dériver
une borne inférieure pour la valeur de la solution opti-
male du problème initial. Nous établissons également
le fondement théorique de ces approximations. En-
fin, des expériences numériques sont effectuées pour
montrer que les approximations proposées sont pra-
tiques et efficaces.
Nous considérons enfin un jeu stochastique à
n joueurs non-coopératif. Lorsque l’ensemble de
stratégies de chaque joueur contient un ensemble de
contraintes linéaires stochastiques, nous modélisons
les contraintes linéaires stochastiques de chaque
joueur sous la forme de contraintes en probabilité
jointes. Pour chaque joueur, nous supposons que
les vecteurs lignes de la matrice définissant les
contraintes stochastiques sont indépendants les unes
des autres. Ensuite, nous formulons les contraintes en
probabilité dont les variables aléatoires sont soit nor-
malement distribuées, soit elliptiquement distribuées,
soit encore définies dans le cadre de l’optimisation
distributionnellement robuste. Sous certaines condi-
tions, nous montrons l’existence d’un équilibre de
Nash pour ces jeux stochastiques.
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Title : Chance constrained problem and its applications

Keywords : Chance constraints, Convex programming, Distributionally robust, Mixture distribution, Stochastic
game theory

Abstract : Chance constrained optimization is a natu-
ral and widely used approaches to provide profitable
and reliable decisions under uncertainty. And the to-
pics around the theory and applications of chance
constrained problems are interesting and attractive.
However, there are still some important issues re-
quiring non-trivial efforts to solve. In view of this,
we will systematically investigate chance constrained
problems from the following perspectives.
As the basis for chance constrained problems, we
first review some main research results about chance
constraints in three perspectives: convexity of chance
constraints, reformulations and approximations for
chance constraints and distributionally robust chance
constraints.
For stochastic geometric programs, we formu-
late consider a joint rectangular geometric chance
constrained program. With elliptically distributed and
pairwise independent assumptions for stochastic pa-
rameters, we derive a reformulation of the joint rec-
tangular geometric chance constrained programs. As
the reformulation is not convex, we propose new
convex approximations based on the variable trans-
formation together with piecewise linear approxima-
tion methods. Our numerical results show that our ap-
proximations are asymptotically tight.
When the probability distributions are not known in ad-
vance or the reformulation for chance constraints is
hard to obtain, bounds on chance constraints can be
very useful. Therefore, we develop four upper bounds
for individual and joint chance constraints with in-
dependent matrix vector rows. Based on the one-
side Chebyshev inequality, Chernoff inequality, Bern-
stein inequality and Hoeffding inequality, we propose
deterministic approximations for chance constraints.
In addition, various sufficient conditions under which
the aforementioned approximations are convex and
tractable are derived. To reduce further computatio-
nal complexity, we reformulate the approximations as

tractable convex optimization problems based on pie-
cewise linear and tangent approximations. Finally, ba-
sed on randomly generated data, numerical experi-
ments are discussed in order to identify the tight de-
terministic approximations.
In some complex systems, the distribution of the ran-
dom parameters is only known partially. To deal with
the complex uncertainties in terms of the distribution
and sample data, we propose a data-driven mixture
distribution based uncertainty set. The data-driven
mixture distribution based uncertainty set is construc-
ted from the perspective of simultaneously estimating
higher order moments. Then, with the mixture distribu-
tion based uncertainty set, we derive a reformulation
of the data-driven robust chance constrained problem.
As the reformulation is not a convex program, we pro-
pose new and tight convex approximations based on
the piecewise linear approximation method under cer-
tain conditions. For the general case, we propose a
DC approximation to derive an upper bound and a re-
laxed convex approximation to derive a lower bound
for the optimal value of the original problem, respec-
tively. We also establish the theoretical foundation for
these approximations. Finally, simulation experiments
are carried out to show that the proposed approxima-
tions are practical and efficient.
We consider a stochastic n-player non-cooperative
game. When the strategy set of each player contains
a set of stochastic linear constraints, we model the
stochastic linear constraints of each player as a joint
chance constraint. For each player, we assume that
the row vectors of the matrix defining the stochastic
constraints are pairwise independent. Then, we for-
mulate the chance constraints with the viewpoints of
normal distribution, elliptical distribution and distribu-
tionally robustness, respectively. Under certain condi-
tions, we show the existence of a Nash equilibrium for
the stochastic game.
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