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Résumé		

 
 

La métabolomique par résonance magnétique nucléaire (RMN) permet d’étudier la 

réponse métabolique globale d’un système biologique à un stimulus ou un événement 

physiopathologique (maladie, manipulation génétique, etc.). Cette discipline connaît un essor 

important dans la recherche clinique et biologique, et constitue ainsi un outil à fort potentiel 

pour la découverte de biomarqueurs de maladies, et l’étude de la fonction des gènes.  

 

Cette thèse est dédiée à l’application de la métabolomique par RMN à hauts champs 

pour l’étude des pathologies associées à la signalisation thyroïdienne chez la souris. L’objectif 

global est d’identifier des biomarqueurs spécifiques liés aux différentes maladies 

hormonales : l’hypothyroïdie et la maladie génétique émergente résistance à l’hormone 

thyroïdienne due à une mutation au niveau du récepteur TRα1 (RTHα). Cette dernière est 

particulièrement difficile à diagnostiquer à cause du manque de marqueurs biochimiques et de 

symptômes spécifiques à cette maladie. De plus, elle présente des similitudes avec 

l’hypothyroïdie au niveau symptomatique. Des modèles murins de RTHα et de 

l’hypothyroïdie ont été analysés, et l’investigation a été menée sur l’urine et le plasma 

sanguin dans le but de différencier métaboliquement ces maladies et d’identifier des 

biomarqueurs spécifiques à RTHα. Des signatures métaboliques liées à chaque maladie ont 

été identifiées dans l’urine et le plasma sanguin. Cinq métabolites qui varient de façon 

significative ont été identifiés dans l’urine comme étant liés à la maladie RTHα : 

trimethylamine, dimethylamine, isovalerylglycine, N-acetylglucosamine et la choline. Dans le 

sang, ce sont les lipides insaturés qui varient de façon significative chez les souris mimant la 

maladie RTHα. 



	 5	

 

L’impact des hormones thyroïdiennes (HT) et le récepteur TRβ sur le métabolisme 

hépatique a été également étudié dans ce présent manuscrit. Un modèle murin présentant une 

inactivation du récepteur TRβ au niveau des hépatocytes (LTRβ-KO) a été généré pour 

étudier cette question. Pour comprendre la fonction des HT médiée par le récepteur TRβ, les 

réponses métaboliques hépatiques à HT, obtenues sur des extraits hépatiques aqueux et tissus 

hépatiques intacts,  des souris TRβ-KO et des souris sauvages ont été comparées. Les résultats 

obtenus suggèrent la présence d’un effet direct (par le récepteur TRβ) et un effet indirect des 

hormones thyroïdiennes sur le métabolisme hépatique.  
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Abstract	

 
 

Metabolomics by nuclear magnetic resonance (NMR) allows studying the metabolic 

response of a global biological system to a stimuli or a physiopathological even (diseases, 

genetic modifications, etc.). This discipline is growing especially in the clinical and biological 

fields, and represents a strong potential tool to identify biomarkers related to diseases, and 

study the function of genes.  

 

This thesis is dedicated to the application of metabolomics by high field NMR to study 

thyroid signalisation pathologies in mice. The main goal is to identify biomarkers related to 

the emerging genetic disease called resistance to thyroid hormone due to a mutation in thyroid 

hormone receptor TRα1 (RTHα). This disease is particularly difficult to diagnose because of 

the lack of biochemical markers and specific symptoms. In addition, it presents common 

features with hypothyroidism in term of symptoms. Mice models of RTHα and 

hypothyroidism were analysed, and the investigation were driven on urine and blood plasma 

in order to differentiate metabolically theses diseases and identify biomarkers related to 

RTHα. Metabolic fingerprints related to each disease were identified in both urine and blood 

plasma. Five metabolites vary significantly in the urine of RTHα mice: trimethylamine, 

dimethylamine, isovalerylglycine, N-acetylglucosamine and choline. Unsaturated lipids vary 

significantly in the blood plasma of RTHα mice. 

 

The impact of thyroid hormones (TH) and the thyroid hormone receptor TRβ on the 

liver metabolism were also studied in the present manuscript through NMR-based 

metabolomics. A mouse model, with a specific knock-out of TRβ gene in hepatocytes (LTRβ-



	 7	

KO), were used to study this question. To understand the function of TH mediated by TRβ, 

the liver metabolic response to TH, obtained from liver aqueous extracts and intact liver 

tissues, TRβKO and wild-type mice were compared. The results suggest the presence of 

direct and indirect effects of thyroid hormones on the liver metabolism. 
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Introduction		

 

The relation between the variation in the composition and the aspect of biofluids or 

tissues and pathologies was identified hundreds of years back1. This concept exists from the 

Middle age, in a “urine charts”, the colors, smells and tastes were related to specific medical 

conditions (Figure 1). These variations come, of course, from the metabolism, which is 

influenced by certain conditions. Nowadays, modern-day metabolomics uses the same 

principle to analyze biological samples, but with modern techniques.  

	

																											 	

Figure 1: “Urine charts”.  

Ulrich Pinder published this illustration in 1506, in his book “Epiphanie Medicorum”. This chart 

connects colors, smells and tastes of urine to diseases.  

 

The big challenge in biological and clinical studies is to discover biological markers, 

which lead to diagnose easily and at early stage of a disease to improve human health. The 

goal is to take care of patients as soon as possible to curb the disease. Biomarkers are 
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“biological characteristics that are measured and evaluated as indicators of normal or 

pathological processes, and pharmacologic responses to a therapeutic intervention”2. A good 

biomarker must be easily measurable, and help for the diagnosis. High throughput “-omics” 

methods (genomics, transcriptomics, proteomics, metabolomics, etc.) lead to a new diagnostic 

approach and to targeted therapies.  

 

In practical terms, metabolomics consists in the measurement of the small molecules, 

named metabolites, involved in biochemical processes present in a biological system (tissue, 

cells, biofluids, etc.). Metabolites are the final products of interactions between genes, 

proteins and the impact of environment. Thus, each individual has his own metabolic state at 

a specific time, which is also defined by the metabotype3.  Analyzing metabolites provides 

information that cannot be obtained only from the genome or the proteome. With this 

approach, the overall response of a biological system to a physiological or pathological event 

(disease, genetic manipulation, drugs, nutrition, lifestyle, etc.) can be defined.   

 

Metabolomics was applied to different biological and clinical conditions like cancers, 

cardiovascular diseases, diabetes, inborn errors of metabolism, etc4-12. Metabolomics studies 

in this field aim to understand the impact of diseases on the organism, and to discover 

biomarkers that predict disease incidence, severity, and progression and detect abnormalities. 

In addition to its application in the discovery of biomarkers, metabolomics is often used to 

understand biological processes of diseases and genetic mutations3,10,13-15. Metabolomics is 

now developing as an important functional genomics tool to evaluate the impact of gene 

change16.  

 

This thesis is dedicated to the application of NMR-based metabolomics for the 

investigation of thyroid signalisation pathologies in mice. We prospectively explored urine 

and blood plasma of murine models to obtain metabolic fingerprints of hypothyroidism, 

excess of thyroid hormone and the emerging genetic disease called resistance to thyroid 

hormone due to a mutation in thyroid hormone receptor TRα1 (RTHα). RTHα is particularly 

difficult to diagnose because of the lack of biochemical markers and specific symptoms. 

Nowadays, only few researchers were carried out to understand this disease, and try to 

identify biomarkers to facilitate its diagnosis. RTHα patients present common features with 

hypothyroid patients with near normal thyroid function tests. The study of hypothyroidism 

here serves as a base to understand RTHα. We investigate in the end the impact of thyroid 
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hormones and the role of thyroid hormone nuclear receptor β in the liver, by using liver 

samples.  

 

The first chapter presents the metabolomics approach and its application as a 

diagnostic tool in the medical field. We set then in the second chapter the background of the 

present study.  We describe thyroid hormone functions, molecular actions, their receptors and 

the different hormonal diseases. Materials and methods are detailed in the chapter 3. The 

different steps of our metabolomics studies are described.  

 

The fourth chapter is dedicated to the investigation by using non-targeted 1H-NMR-

based metabolomics of two biofluids (urine and blood plasma) issue from mice to identify 

non-hormonal biomarkers related to hypothyroidism. It was crucial for us to study this disease 

at first to understand then the specific metabolic changes caused by RTHα. Here, murine 

models for hypothyroidism were compared to a control group to obtain metabolic fingerprints 

related to each disease in both urine and plasma. Clear discriminations between murine model 

for hypothyroidism and the control group were observed and specific metabolic signatures of 

the hypothyroid condition were identified. 

 

The fifth chapter concerns the study of the new emerging genetic disease called 

resistance to thyroid hormone due to a mutation in thyroid hormone receptor TRα (RTHα), 

which its symptoms are close to those of hypothyroidism. Patients present a high variability in 

clinical features (skeletal dysplasia, growth retardation, intellectual disability, etc.), and the 

absence of reliable biochemical markers make the diagnosis of this disease difficult. The main 

goal of the study is to find, by the use of NMR based-metabolomics approach, a metabolic 

signature related to RTHα in mice, identify specific biomarkers and differentiate it from 

hypothyroidism. Five mice models carrying a mutation in Thra gene were studied, and the 

investigation were driven on urine and blood. Five metabolites vary significantly in the urine 

of RTHα mice: trimethylamine, dimethylamine, isovalerylglycine, N-acetylglucosamine and 

choline. Unsaturated lipids vary significantly in RTHα mice blood plasma. 

 

In the sixth chapter, the impact of thyroid hormones (TH) and the thyroid hormone 

receptor TRβ on the liver metabolism were studied through NMR-based metabolomics. A 

mouse model, with a specific knockout of TRβ gene in hepatocytes (LTRβ-KO), was 

generated to study this question. To understand the function of TH mediated by TRβ, the liver 
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metabolic response to TH, obtained from liver aqueous extracts and intact liver tissues, 

LTRβ-KO and wild-type mice were compared. The results suggest the presence of direct and 

indirect effects of thyroid hormones on the liver metabolism.  
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1. Metabolomics: from fundamentals to 

clinical applications  

1.1. Metabolomics approach  

1.1.1. Definitions  

Metabolites are low molecular weights molecules (less than 1.5kDa) that are involved 

in metabolic pathways. They are the reactants, intermediates and end products of complex 

multiple cascade, which is initiated by the genome followed by the transcriptome and 

proteome. They can be endogenous (from the organism) or exogenous (i.e. nutrition, 

medication, microbiota, etc.). They include polysaccharides, lipids, steroids, organic acids, 

amino acids, ketones and peptides, or else. They fulfill diverse functions, ranging from signal 

transduction to energy fuels17,18. Each type of biological sample (fluid, tissue, cells, organism) 

or each subtype (type of cell, type of fluid, etc.) has his own characteristic set of metabolites3.  

 

The Metabolome represents the entire set of metabolites present in a biological 

system19. The human metabolome is estimated to contain about 150 000 metabolites 

(endogenous and exogenous) or more20. Environmental factors (diet, gut microbial activity, 

disease, medication, stress level, physical activity, etc.) have an effect on the metabolism, 

which lead to changes in the concentrations of metabolites, and thus in the metabolome.  

 

Metabolomics19,21 corresponds to the quantification and identification as many as 

possible of the metabolites present in a biological system (biological fluid, cell, tissue, 

organism, etc.). Analyzing metabolites in a biological system provides information on the 

metabolic phenotype or metabotype of individuals or populations3. Thanks to technological 

advances in the identification, quantification and analysis of metabolites, metabolomics has 

grown significantly in different fields1,22.  Metabolomic analyses are often built as case-

control studies, which aim to compare two groups of samples coming from two different 
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physio-pathological states. By the use of bioinformatics and biostatistics tools, the difference 

between the two groups in term of molecules can be identified23.  

 

The application of metabolomics in different fields has increased strongly over the 

past years (Figure 1.1.1).  

 

                        

 

Figure 1.1.1: Number of metabolomics publications per year. 

The research was performed in the Web of science (WOS) database, using metabolomics or 

metabonomics as keywords. The data was collected up to 2017. 

1.1.2. From genomics to metabolomics  

Omics strategies represent an important step in sciences area, and they are widely used 

nowadays. The principle of these approaches is to identify and quantify the entire set of 

biomolecules (genes, transcripts, proteins, metabolites, etc.) present in a given biological 

matrix (tissues, cells, organisms, biofluids), and to determine the relationship between their 

variations and specific pathophysiological states or external perturbations. Studying only 

genes, transcripts or proteins is insufficient to understand the complete phenotypic changes 

induced by these factors24. The number of metabolites is smaller than the estimated number of 

genes (25.000), transcripts (100.000) and proteins (1.000.000) found in humans10. Metabolites 

represent a more sensitive level25 than the other biomolecules, and they are the result of the 

interaction between theses biomolecules and the environment. In addition to the interactions 
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between metabolites and the other biomolecules, metabolites are also the building blocks of 

proteins (amino-acids), genes and transcripts (nucleotides).  Metabolic pathways reflect the 

genome and proteome states with up to 10.000-fold increase in metabolite concentration 

resulting from a single amino acid change in a protein or base change in a gene22,26. Metabolic 

changes are detectable within minutes of a biological event and thus provide an almost ‘real-

time’ feedback22.  

 

Now, metabolomics is considered as a strong phenotyping tool, which provides 

molecular information that complement data obtained from genomics, transcriptomics and 

proteomics (Figure 1.1.2).  

 

 

 

	

Figure 1.1.2: Correlation between omics sciences.  

Omics strategies (Genomics, Transcriptomics, Proteomics and Metabolomics) aim at identifying all 

the biomolecules present in biological system (genes, RNA, proteins, metabolites).  

1.1.3. Platforms for metabolomics  

The two main technologies that are amply employed in metabolomics studies are 

NMR spectroscopy and mass spectrometry24,27,28. NMR spectroscopy is used in metabolomics 

studies to detect hydrogen atoms in metabolites, and identify compounds with identical 

masses8. Each metabolite, with concentrations above the detection limit, gives a 1H NMR 

spectrum. Thus, a 1H NMR spectrum of a complex mixture (biofluids, cells/tissue extracts) 

corresponds to the superposition of the spectra of all the present metabolites, which means 
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that NMR provides a direct fingerprint of all observable metabolites in a short time. NMR has 

several advantages like a minimal sample preparation, low cost per sample, excellent data 

acquisition and reproducibility29,30. However, NMR has a low sensitivity and limited 

detection range (micromolar) compared to MS (nanomolar). NMR is not destructive; samples 

can be reused for other analyses, and has also the ability to analyze intact tissues like biopsies. 

 

In the other hand, MS31 is highly sensitive and has the capability to detect a broader 

range of metabolites. But samples are usually separated before analysis using chromatography 

(gas chromatography (GC), liquid chromatography (LC), ultraperformance (UP), high 

pressure (HP)) or electrophoresis (capillary electrophoresis/electrospray ionization).  

 

NMR and MS are thus highly complementary17,18, and their use is often necessary for 

full molecular characterization32.  

 

Whatever the technique used, the result of the detection and quantification of metabolites 

is called a spectrum. 

1.2 Nuclear magnetic resonance  

NMR was first described in 1938, and become rapidly a powerful and interdisciplinary 

method33. Demonstration of the use of protons (1H) NMR and the development of Fourier 

Transformation (FT) were developed in the followed few years32. The first use of 1H NMR for 

metabolic studies was described in 197734, where some metabolites were identified in a 

suspension of red blood cells. From here, 1H NMR was recognized to have a promising role in 

the investigation of diseases, especially since the development of modern spectrometers and 

software.  

1.2.1 The principle of NMR  
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Atom is composed of a nucleus and electrons. The nucleus, itself, is composed of 

protons and neutrons. All these particles possess an intrinsic property called spin. NMR is a 

nuclei specific spectroscopy, which detects only nuclei with a non-zero nuclear spin because 

they act as elementary magnet contrary to nuclei with zero nuclear spin.  The isotopes of 

particular interest and use to organic chemists are: 1H, 13C, 15N, 19F and 31P. 1H NMR remain 

the best described and the most used in metabolomics, because approximately all the 

metabolites present in a biological sample contain hydrogens26,27.  

 

In practical terms, when the sample is placed in a strong magnetic field, an 

electromagnetic radiation (radiofrequency pulses) is used to excite the hydrogens. After their 

excitation, the protons returns to equilibrium, and the energy is recorded as an oscillating 

electromagnetic signal, named the free induction decay (FID). A mathematical algorithm, 

Fourier transformation (FT), is applied to the FID to produce 1H NMR spectra of intensity 

versus chemical shift (δ) using the computer. The magnitude or intensity of NMR resonance 

signals is displayed along the vertical axis of a spectrum, and is proportional to the molar 

concentration of the different metabolites present in the sample. NMR can calculate 

metabolites concentration by using an internal or external standard with a known 

concentration. 
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Figure 1.2.1: Diagram of NMR spectrometer.  

A supraconducting magnet is present in the heart of the spectrometer. 5 mm glass tube is oriented 

between the poles of a powerful magnet. Radio frequency (RF) radiation of appropriate energy is 

broadcast into the sample from an antenna coil. A receiver coil surrounds the sample tube, and 

dedicated electronic devices and a computer monitor emission of absorbed RF energy. A free 

induction decay (FID) is acquired and then converted to NMR spectrum by Fourier transformation 

(FT) algorithm.   

1.2.2 NMR Parameters  

Each signal in a 1H NMR spectrum may be split into one or more peaks, which is 

named signal multiplicity (1 peak = singlet, 2 peaks = doublet, 3 peaks = triplet, 4 peaks = 

quartet, and several peaks = multiplet). The multiplicity tells us how many neighbouring 

hydrogen atoms are present around the hydrogens producing a specific peak. The chemical 

shift δ (expressed in ppm) and the multiplicity are central to provide information about the 

structure of the molecule, and then facilitate its identification. Coupling constant J (expressed 
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in Hz) corresponds to the measure of the interaction between a pair of protons is also often 

used in the identification of metabolites.  

 

 In order to standardize the NMR scale it is necessary so set a 0 reference point to 

which all protons can then be compared. This association with the reference signal is called 

the chemical shift. This shift is measured in parts per million (ppm).  

 

 

 

 

 

 

Figure 1.2.2: Schematic representation of NMR parameters. 

 

The spectrum of a complex mixture like biological samples, which contain hundreds 

of metabolites, corresponds to the sum of individual metabolites spectra (Figure 1.2.2).  
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Figure 1.2.3: Example of a 600 MHz 
1
H-NMR urine spectrum.   

123456789

1H chemical shift (ppm)



	 25	

1.2.3 NMR methods  

Biofluids and tissue or cell extracts are considered as homogenous liquids. All the 

molecules present inside are in a homogeneous chemical environment. They are thus analyzed 

by liquid state NMR experiments in metabolomics. The obtained spectra are well resolved 

and the resonances are well defined. A minimal sample preparation by the addition of specific 

buffer to the samples is needed here.  

 

Other biological samples like cells, biopsies or small organisms (Caenorhabditis 

elegans, Daphnia, etc.) are used to understand the cellular metabolisms of physiological and 

pathological processes. This kind of sample is considered as semi-solid samples. They are 

heterogeneous, and a different NMR technique is used in this case. The use of liquid NMR 

state experiments here gives spectra with very poor resolution.  

The development of a technique called high-resolution 1H magic angle spinning (MAS) NMR 

spectroscopy has enabled to acquire high-resolution NMR data on small pieces of intact 

tissues with no pretreatment35-38. The sample heterogeneity causes line broadening. This 

method is based on the fact that the sample is spinning at an angle (so-called magic angle) of 

54.7°, which reduces the loss of information caused by line broadening effect39.  
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Figure 1.2.4: Typical NMR spectra.  

(A) Typical spectrum of liver extract acquired at 700MHz. (B) Typical spectrum of intact liver tissue 

acquired at 700MHz with HR-MAS technique.  

	

 

The limited of the 1D spectra is the presence of overlapped signals; a given pic can hide 

two different metabolites.  To facilitate metabolite identification, two-dimensional (2D) 1H 

NMR spectra are highly recommended to provide additional information about metabolite 

content. Total Correlation SpectroscopY (TOCSY)40 and J-resolved41 experiments reveal 

molecular connectivities and the multiplicity of resonances, respectively. 1H-13C HSQC 

(Heteronuclear Single Quantum Correlation), which investigate heteronuclear coupling, is 

also used. 2D NMR spectroscopy is useful for increasing signal dispersion and to clarify the 

connectivities between signals. They help to identify metabolites.	 
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1.3 NMR-based metabolomics for the investigation of biological 

samples 

1.3.1 Biological samples explored by metabolomics 

Different sample types can be used in metabolomics studies: biofluids (whole blood, 

plasma, serum, urine, saliva, amniotic fluid, faecal water, etc.), intact cells and tissues 

(cardiac, liver, kidney, etc.). To answer to a specific biological or clinical issue, it is 

primordial to choose the more appropriate type of sample. In clinical studies, the priority is 

given to biofluids because there is a real need to non-invasive methods to understand and 

diagnose diseases. For biological studies, tissues and cells in addition to biofluids are used to 

understand mechanisms in a specific organ. In this case, animal models are investigated 

because it is ethically non acceptable to take biopsies from healthy individuals.  

 

Biofluids are easily obtained, and non-invasive compared to biopsies17,18,24.  Urine, 

one of the most widely studied biofluids in metabolomics, reflects a more short-term state of 

the organism. Urine contains endogenous and exogenous (like drugs, food) metabolites, 

which made it very interesting in disease biomarker discovery2 and  toxicology29.  

About 3000 urine metabolites were identified18. For metabolomics studies, it is important to 

collect the first morning voids, which are following by an overnight fast to reduce the impact 

of food or mediation42.  Fasting plasma and serum changes reflect more chronic and long-

term snapshots of the system43. However, it is very important to consider external factors 

related to ethnicity, diet, diurnal rhythm, etc., for human samples before drawing conclusions. 

Analyzing cerebrospinal fluid (CSF) offers great understanding of neurological disorders. 

Saliva is a good source of biomarkers related to pathologies44. Sweat and breast milk is used 

in metabolomics to improve the infants nutrition.  

Metabolomic study on the whole organism does not provide information about a 

specific cell type or organ. Investigate specific cells and organs is more appropriate to 

understand the local mechanisms. These two approaches can be combined to provide 

complementary information.  

Standardization of protocols has enabled to work in the same conditions and make the 

data comparable45,46.  
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1.3.2 Targeted and untargeted analyses  

A targeted metabolomics consists in looking for specific metabolites in a biological 

system. In practical terms, it is the quantification (concentrations are determined) or semi-

quantification (intensities are determined) of a set of metabolites that might be associated to 

the common classes, to study specific metabolic pathways for example. Lipidomics9, a 

subtype of metabolomics, which aim to study only lipids, can be considered as targeted 

metabolomics. This discipline can be also considered as untargeted metabolomics because 

there are different types of lipids.  An extraction step for wanted metabolites is often needed 

in this approach.  

In the other hand, untargeted metabolomics is the quantification or semi-quantification 

of all the detectable metabolites present in a biological sample. Sample preparation is usually 

minimal.  

1.4 Metabolomics and biomarkers   

1.4.1 Metabolomics to study pathologies  

Clinical metabolomics is nowadays an area of intense investigation. This use was born 

from the need to diagnose diseases, understand their mechanisms, identify new drugs targets, 

and monitor therapeutic outcomes. Specific investigations are carried to identify potential 

biomarkers related to pathologies10,13,47. Metabolic changes as a disease symptom have 

already been recognized in ancient medicine1. The challenge of biological and clinical 

researches is to develop fast and reliable methods for diagnosing the disease non-invasively.  

Since the start of metabolomics, the number of studies in biological and clinical researches 

has grown quickly. The study design consists often in the comparison between control 

(healthy) and case subjects, and the same thing in terms of cells, tissues and biofluids, in 

human and/or animal models. We can find also epidemiologic studies, which aim to 

determine the causes of diseases outcomes.  
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Several pathologies were highly investigated through metabolomics especially cancer 

including lung, colorectal, breast, prostate, bladder, gastric and thyroid28,38,48-55. It was 

discovered that blood acetate is associated with biliary tract cancer54, urine taurine are 

associated to bladder cancer48. Investigation of cerebrospinal fluid revels a deregulation in 

cholesterol and phospholipids metabolisms in brain cancer56.  

For Cardiovascular diseases, amino-acid metabolism were found altered, and an increase of 

methylated arginine species and lipids (specially fatty acids) were noticed6,7,57.. In 

neurological field, Alzheimer and depression are highly studied20,58. Other diseases like 

infectious diseases59,60 and diabetes12 and others were also investigated.   

1.4.2 Metabolomics and genetic diseases 

The association of genetic variation with metabolite levels is well documented61,62. A 

number of studies have highlighted the influence of genetics on the metabolites levels 63,64. It 

was discovered more than 150 genetic loci that associate with blood levels of more than 300 

distinct metabolites65,66. For example, metabolomics approach was used to explore several 

genetic diseases like Inborn errors metabolism, which is actually implemented in clinical 

routines67. Mitochondrial diseases, a group of disorders that can result from abnormalities in 

the mitochondrial and nuclear genomes, could be also recognized by metabolomics68.  

 

1.5 Conclusion  

The application of metabolomic approach in medical research is a dynamic field, and 

has a high potential in disease diagnosis. These discoveries make metabolomics a promising 

diagnostic tool, with has the advantage to be non-invasive and highly reproducible. 

Metabolomic technologies offer a sensitive means to search human biofluids for metabolite 

profiles potentially usable as biomarkers for diseases. In this thesis, we will use a 1H NMR 

based metabolomics to investigate murine models for thyroid hormone pathologies.  



	 30	

2 Thyroid hormone system and diseases  

2.1 Thyroid hormone system  

2.1.1 Thyroid hormone functions  

Thyroid hormones (TH), thyroxine (T4) and 3,5,3’-triiodothyronine (T3), the main 

secretion products of the thyroid gland, are essential for normal growth, development and 

metabolism regulation69-71. T4 is more abundant in the blood, T3 is considered as the major 

active hormone due to its high affinity for nuclear receptors and intracellularly generated from 

T4.  

 

TH play significant roles during embryogenesis and childhood. They are involved in 

nearly all tissues, with major effects on the basal metabolic rate and oxygen consumption72,73. 

TH are known to maintain heart rate, myocardial contractility and vascular function74.  They 

are also key regulators of thermogenesis, which allows the maintenance of body internal 

temperature75,76. They are involved in body weight regulation, in the development and 

maintenance of adult bone mass and strength77. It is well established that changes in TH level, 

compared to the reference range, is associated with body weight change in both men and 

women78. Skeletal muscle is an important TH target for contractile function and 

regeneration79. TH regulate lipids metabolism such as: cholesterol synthesis and efflux, bile 

acid synthesis, fatty acid metabolism. Carbohydrates are also regulated by thyroid hormones 

(Figure 2.1.1).  
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Figure 2.1.1: The hypothalamus-pituitary-thyroid (HPT) axis and thyroid hormones (TH) 

actions.  

HPT axis regulates and maintains thyroid hormones homeostasis. Hypothalamus secretes TRH in 

response to low concentration of circulating T4/T3. This secretion stimulates the pituitary gland, 

which secretes TSH in turn. This leads to T4/T3 release in the blood. T3 negative feedback on TRH 

and TSH levels keeps the T3/T4 ration constant in circulation.  Thyroid hormones have a central role 

in development, growth and metabolism regulation.  
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Thyroid hormones exert their effects via thyroid hormone receptors (TRs), member of 

the superfamily of hormone-responsive nuclear transcription factors. These receptors share a 

similar structure and mechanism of action80. THRA and THRB encode the two major TR 

isoforms: TRα1 and TRβ (β1 and β2), which are distributed differentially in tissues. TRα1 is 

predominantly expressed in brain (central nervous system), heart (myocardium), skeletal 

muscle, adipose tissue and gastrointestinal tract. TRα2 and TRα3 are variants of TRs, which 

are non TH-binding proteins, and their function is not understood81. TRβ is expressed in the 

sensory tissue (the inner ear and retina), the kidney, the liver and cardiac ventricles82.  

As described in figure 2.1.2, all these receptors contain three conserved domains: a N-

terminal domain, a DNA-binding domain (DBD) and a ligand-binding domain (LBD). The α 

and β receptors have a similar DBD and LBD, but differ in their N-terminal domain. The 

three receptors (TRα1, TRβ1, TRβ2) bind the same ligand due to these structural 

homologies69.  

 

TRs are considered as transcription factors because they regulate target gene 

expression directly through DNA response element (TRE)83. 

Non-genomic actions of thyroid hormone were also reported and are little studied 84. They 

have extranuclear actions, which are not TRE-mediated. 

 

                 

 

 

Figure 2.1.2: Schematic alignment of thyroid hormone receptors: TRβ1, TRβ2 and TRα1.  

TH receptors are composed of three domains: N-terminal domain (activation function), DNA-binding 

domain (DBD) and Ligand-binding domain (LBD). DBD and LBD are highly conserved domains 

between the three TH receptors, contrary to the N-terminal domain.  
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2.1.3 Mechanisms of action  

The thyroid gland secretes T4 and T3 hormones, which are transported into the cells 

by membrane transporters like the monocarboxylate transporter (MCT) family85, and more 

precisely MCT8. T3 is secreted by the thyroid gland, but also converted from T4 under the 

action of type 1 or type 2 of 5’ deiodinase, which are tissue-dependent. Unliganded TR in the 

nucleus forms a heterodimer with the retinoid X receptor (RXR), which then binds the thyroid 

hormone response element (TRE) in the regulatory sequences of TH-responsive gene. This 

results in the activation or repression of TH target genes transcription. 

In the absence of T3, corepressor proteins are associated to the TR-RXR complex and 

prevent genes transcription86. However, in the presence of T3, corepressor proteins leave the 

complex, and coactivator proteins are recruited, which lead to target genes transcription87 

(Figure 2.1.3).  

 

Figure 2.1.3: Mechanisms of action of thyroid hormones. 
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Membrane transporters transport T4 and T3, after their secretion by thyroid gland, into the cell. A 

part of T4 is converted to T3 under the action of type 1 and 2 5’ deiodinase (D1 and D2). Unliganded 

TR heterodimerizes with RXR, and then the complex recognizes TRE. In the absence of T3, 

corepressor proteins bind the complex to repress target gene expression. In the presence of T3, 

corepressor proteins are dropped and coactivator proteins are recruited, which lead to target gene 

transcription. 

2.1.4 Regulation  

TH regulates a large amount of genes, which are involved in growth, metabolic 

balance and thermogenesis88. TH synthesis and secretion are regulated by a negative-feedback 

system that involves the hypothalamus, pituitary, and thyroid gland 

(hypothalamic/pituitary/thyroid (HPT) axis)89. Hypothalamus secretes TRH. Thyrotropes, 

endocrine cells from pituitary, secrete then Thyroid-Stimulating hormone (TSH). TSH acts on 

the thyroid gland to induce thyroxine (T4) and 3,5,3’-triiodothronine (T3) hormones 

production, which then act on body growth and development and metabolism regulation. High 

levels of T4 and T3 in turn feed back lead to TSH level secretion diminution in the pituitary, 

which then regulate T4 and T3 levels.  

2.1.5 Alterations in thyroid hormone system  

TH action requires (i) the availability of TH (production/secretion, conversion of T4 to 

T3) (ii) intact and adapted membrane transport (iii) cytosolic and nuclear processing (iv) 

association with intact receptors (v) interaction with co-regulators (co-activator or co-

repressor proteins). Alteration in one of these steps can lead to a heavy metabolic disorder90.  

 

Associated diseases are the most common endocrine disorders worldwide91. In addition to 

clinical symptoms, biochemical tests like determination of TSH and free T4 levels in blood 

are used to suspect thyroid disorder. Hypothyroidism and hyperthyroidism lead to alterations 

in metabolism (lipids, carbohydrates), growth and energy homeostasis92. Hypothyroidism, 
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results from low levels of TH, presents a low metabolic rate, and leads to cardiovascular 

diseases, whereas hyperthyroidism, which is a catabolic syndrome, is associated with a high 

metabolic rate, and leads to tachycardia and loss of body mass. These diseases are related to 

the secretion and production of the thyroid hormones by the organism.  

Other diseases are known to lead to hypothyroid or hyperthyroid phenotypes, without 

alteration in TH production, but caused by genetic mutations. Thyroid hormone cell transport 

defects (THCTD) caused by a mutation in MCT8 gene lead to production of defective cell-

transport proteins, which reduce hormone transport and causes reduced levels of intracellular 

TH90. Thyroid hormone metabolism defect (THMD) is caused by a mutation in 

selenocysteine-binding protein 2, which interferes with conversion of T4 to T3, resulting in a 

low T3 and high T493.  

 

Other diseases known under the name of resistance to thyroid hormone (RTH)94 were 

discovered.  The first described cause was a mutation in TRβ gene in 1989, which is 

characterized by high serum concentration of free T4 and T3, and normal or slightly elevated 

TSH concentration. This disease is called RTHβ. Twenty-four years later, the first mutation in 

TRα gene was discovered, and the disease has been named RTHα. 

2.2 Resistance to thyroid hormones α 

Resistance to thyroid hormone (RTH) was first described as a clinical entity in 196795. 

Patients are hyposensitive to TH and they present reduced clinical and biochemical 

manifestations of TH action relative to the circulating hormone levels. The molecular 

explication of this syndrome was determined in 1989 when the first case of RTH caused by a 

mutation in the THRB gene was discovered. This disorder was named resistance to thyroid 

hormone due to a mutation in the thyroid hormone receptor β, abbreviated by RTHβ96,97.  

 

RTHβ is characterized by the impairment of the HPT axis: elevated levels of thyroid 

hormone, normal or elevated levels of TSH. Patients present with different degree of goiter, 

hearing abnormalities, tachycardia, mental retardation, attention-deficit, and delayed bone 

growth and maturation94,97,98. They present features of hypothyroidism and hyperthyroidism, 
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which is explained by variable resistance in different tissues. The incidence of RTHβ is 

actually estimated to be 1 in 40.000 with 160 different mutations approximately99,100. Patients 

with RTHβ are currently found in more than 400 families101. This syndrome can be suspected 

in patients with these features and can easily be recognized by physicians.  

2.2.1 The first cases  

Patients with mutations in THRA were not identified until 2012. The first case of RTHα 

was discovered, after a whole-exome sequencing, in a little 6-year-old girl, which presents 

classical features of hypothyroidism (e.g. growth retardation, developmental retardation, 

skeletal dysplasia, low heart rate, and severe constipation) and nearly normal thyroid function 

biochemical tests102.  

 

Other cases, female and male of different ages, were discovered with different mutations 

in TRα1100,103-112. The phenotype of the identified patients consists of varying degrees of 

growth impairment, mental and motor development, delayed bone, constipation, and near-

normal thyroid function tests. Some cases have specific health issues like autism106, chronic 

anaemia104,110,113, epilepsy114, etc. (Appendix 1).   

 

2.2.2 RTHα is different from RTHβ 

RTHα is clinically distinct from RTHβ. TRα and TRβ, are differentially expressed during 

development and are differentially distributed in adult tissues, which explains the difference 

between the two diseases.  TRβ has an important role in inner ear, cerebellar, and retinal 

development, TSH regulation, and mediating the metabolic actions of T3 in the liver71. TRα 

has specific roles in the heart, brain, intestine and in mediating adaptive thermogenesis in 

brown adipose tissue (BAT)71,115. RTHα is thus characterized by a tissue-selective 

hypothyroidism (e.g. skeleton, gastrointestinal tract, myocardium, etc.) and near-normal 

thyroid function biochemical tests. In figure 3.2.1, organs that present a dominance of TRα 

(bones, heart, intestine, brain and particularly the central nervous system, and muscles) are 

resistant to TH. While, liver that presents more than 80% of TRβ is resistant to TH. The 

pituitary-thyroid axis in RTHα is not dysregulated as noticed in RTHβ patients.  
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Figure 2.2.1: The sensitivity of organs to thyroid hormones depends on the type of thyroid 

receptor present. 

2.2.3 A high variability in the clinical features  

The high variability of clinical features and the absence of specific traits and reliable 

biochemical markers make the diagnosis of this disease difficult. In addition, identified RTHα 

patients present some common features with hypothyroid patients, which may delay the 

diagnosis in some cases. Since its first description, 45 cases of RTHα have been reported 

worldwide, corresponding to 25 different mutations of TRα1. In 2015, the sequence of 60 000 

anonymous exomes were released by the Exac database (http://exac.broadinstitute.org), 

revealing the existence of 68 THRA missense or frameshift, which almost certainly alter TRα1 

function. It is thus thought that the incidence of RTHα may be similar to RTHβ incidence. 
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The inability to quickly recognize patients with RTHα is regrettable because the 

developmental consequences of the disease can be greatly reduced by an early therapeutic 

intervention. Motor skills and body growth have been restored in a young patient treated with 

an excess of thyroxine to overcome tissue resistance108,109. Two adult patients with normal 

adult stature received thyroxine treatment during childhood by chance105. Authors suggest 

here that the neurocognitive abnormalities are may be less severe because of this treatment105. 

Another study on a murine model (Arg384cys) showed also that increased concentrations of 

thyroid hormones can reverse neurological abnormalities116. 

 

It is thus primordial to find a reliable way to identify these patients, and to manage them at 

early stage to minimize the consequences of this disease. 

2.2.4 Molecular aspect  

All the identified patients are heterozygous for THRA mutation, which generate a mutant 

receptor that inhibits wild-type receptor function in a dominant negative manner106,108,112. All 

the known mutations are present in the carboxyterminus, the ligand-binding domain (LBD) of 

the receptor (Figure 3.2.2), to which the helix 12 belongs. These mutations lead to the 

destabilization of this helix102. 

 

Two types of mutations were identified in RTHα patients: frameshift 103,104,107,114 and 

missense mutations102,105-108. 

Amino acid substitutions (D211G, H361Q, R384H, A263V) reduce the affinity of TRα1 for 

T3. While, c-terminal substitutions (P398R and E403K), truncations (C392X and E403X), 

and frameshift mutations (C380fs387X, A382PfsX7, F397fs406X, and F401S) alter ligand 

binding, by modifying or eliminating the helix 12, and prevent thus coactivator recruitment117. 

This kind of mutation is more deleterious and present severe loss of function.  
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Figure 2.2.2: THRA mutations consequences.  

Thyroid hormones regulate target genes transcription via nuclear receptors TRα and TRβ. These 

receptors are composed of 3 distinct regions: N-terminal domain, DNA binding domain (DBD) and 

ligand binding domain (LBD). All the known RTHα mutations are located in the LBD (A). Mutations 

in TRα1 disturb target gene transcriptional regulation. Two functional alterations were observed in 

the presence of T3: the dissociation of corepressor proteins is prevented (B), or affinity between TRα1 

and T3 is reduced (C). 

 

2.2.5 Relation between genotype and phenotype?  

There are thus different mutations with different degrees of severity of the disease. Two 

patients (6-year-old and 15-year-old girls), which were found with the same mutation 

(E403X)102,118 present similar features.  Two other patients were found with TRα1 mutation in 

the same position (A263V and A263S), but, as noticed, the original amino acid alanine was 

substituted by valine in the first case and by serine in the other case. The functional analysis 

of the A263V mutant indicates a greater defect in transcriptional activity of TRα1 than that 

induced by the A263S mutation. It was also noticed that a more up-stream mutation lead to a 

more severe phenotype, like the mutation C392X118.  
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All these observations suggest that the variability in the symptoms is maybe related to the 

type of the mutation and its position.  The relationship between genotype and phenotype need 

to be further discerned. To understand this relationship and to study the impact of RTHα 

disease on the whole organism, different murine models were developed. 

2.2.6 Mouse models to study RTHα 

Mouse Thra and human THRA genes present sequence similarities. The two TRα1 

amino acid sequences differ at three positions only (AA34, 37, and 170), which makes mouse 

lines with Thra mutations highly relevant animal models for RTHα disease.  Prior to the 

identification of human RTHα cases, several researchers were done using TRα knockout and 

knockin mouse models to predict the phenotype of human disorder99,115,119-124. The first mouse 

model of RTHα was a knockout of Thra gene, in which TRα1 and TRα2 isoforms were 

inactivated124. Mice failed to survive 5 weeks after birth, and features of hypothyroidism and 

serious delayed maturation in the small intestine and bones were observed in these mice124. It 

was reported also in another study that a mutation in TRα1 exhibit several distinct 

neurological abnormalities: extreme anxiety, reduced recognition memory, and locomotor 

dysfunction116. Another model was developed before its discovery in a human patient107,121. 

Other researchers showed the significant implication of TRα1 on metabolic homeostasis119. 

The phenotype of mice models is often close to the clinical features of RTHα patients.  

 

These models allowed the good understanding of the function of THRA gene and the 

TRα receptor, and facilitate the comprehension of RTHα disease and its impact on the 

organism.  

 

For the metabolomic study presented in this thesis, we have used mouse models that 

were previously generated by Markossian et al117 to understand the relationship between 

specific THRA mutations and phenotype. Five novel germline mutations (four frameshift: 

E395fs401X, E395fs485X, E395fs406X, and K389fs479X; and one missense N359Y), which 

are closely modeling the mutations found in RTHα patients, were introduced in mouse Thra 

gene. Markossian et al have investigated skeleton, blood, heart, cerebellum and intestinal 

epithelium. They concluded that like human patients, mutant mice displayed a hypothyroid-
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like phenotype, with altered development. Phenotype severity varied between the different 

mouse models117.  

 

From a global literature screening, about a hundred of research studies have been 

conducted to study the thyroid system by metabolomics approaches. About 50% of these 

studies address about thyroid cancer, which is explained by its increased incidence 

worldwide. The main medical treatment in the case of thyroid cancer is the total 

thyroidectomy (removal of the thyroid), even if the tumour is benign. A number of studies, 

with different methods, were performed to distinguish between cancer patients and healthy 

individuals, and between benign and malignant thyroid nodules55,125 to improve thyroid 

cancer diagnosis. Several toxicological studies, which highlight the harmful impact of certain 

chemicals (mainly glyphosphate-based herbicide and decabromodiphenyl) on the thyroid 

hormone system126,127. A few studies, also aimed providing deeper understanding of thyroid 

disease mechanism, such Graves’ disease14, hypothyroidism128, hyperthyroidism129, 

depression, low T3 syndrome, type 2 diabetes12 and selenium deficiency. Others correspond 

to population-based studies seeking for linear relationship between either TSH or free T4 

(FT4) and metabolite levels55,129. Other works focused on the direct effect of thyroid 

hormones status on the brain130 or hepatic lipids, to provide deeper understanding of the 

mechanism behind the biological phenomenon.  

 

At this point, metabolomics investigations of genetic diseases that disturb thyroid 

system such as RTH (α and β) or THCTD or THMD, have never been reported in the 

literature. 

 

We notice overall that the thyroid system has little been explored by metabolomics 

approaches, and more precisely genetic diseases.  A number of studies have highlighted the 

influence of genetics on the metabolites levels 63,64. The association of genetic variation with 

metabolite levels is well documented61. For example, metabolomics approach was used to 

explore several genetic diseases like Inborn errors metabolism, which is actually implemented 

in clinical routines67. Mitochondrial diseases, a group of disorders that can result from 

abnormalities in the mitochondrial and nuclear genomes, could be also recognized by 

metabolomics68.  
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In the work described in the following chapters of this thesis, we study different 

pathologies related to the thyroid hormone system. We exploit the metabolic fingerprint of 

hypothyroidism. We investigate the same series of mouse models of RTHα used by 

Markossian et al. 117 to assess the capacity of 1H NMR analysis of body fluids to recognize the 

presence of Thra mutations. And in the end, we study the impact of thyroid hormone on the 

hepatic metabolism and the specific role of the thyroid hormone receptor β in this mediation. 	
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3 Materials,	methods	and	analytical	

workflow	

 

3.1 Introduction 

 

The NMR metabolomic global workflow contains several steps: sample preparation, 

NMR data acquisition, data processing, statistical analysis, metabolite identification, and 

interpretation. Two different approaches can be used: untargeted approach (with no a priori 

hypothesis) and targeted approach (applied on a predefined set of metabolites). The different 

steps are detailed in the following section (Figure 3.1).  
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Figure 3.1: Analytical workflow for NMR-based metabolomics studies  
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3.2 Biological samples preparation 

3.2.1 Collection and storage  

NMR liquid samples preparation is straightforward and the protocols46 are 

standardized and highly reproducible. This step can be automated by using a robotic liquid 

handling technology. It is very important to collect the biofluids with the same manner, and to 

handle properly the samples. Because, in some cases, errors related to samples handling (time 

of collection, contaminations) can introduce variations in signal intensity that are not from 

metabolism.  

 

• Urine 

Time of collection for urine samples can make a quantitative and qualitative difference in 

the urine metabolome. The first morning void is the preferred type, because it is collected 

after several hours of fasting, which minimizes the impact of food or medication on the urine 

metabolome. It is important to respect the same time of collection between subjects, and 

between time points in the case of longitudinal studies. For human subjects, urine collection is 

easy contrary to animals. Animal houses need to be clean before their first urine, which are 

around 7 am for the majority. In addition, in some cases, we find urine and feces in the same 

place, which can alter considerably the composition of urine. The volume of mouse urine 

needed for classical metabolomics studies is 200µl. This quantity is sometimes not reached, 

and we need to wait for a second sample, in fasting condition also, to obtain the needed 

volume. Urine is then quickly stored at -80°C after collection, before NMR analysis.  

 

• Blood 

The main difference between blood serum and plasma is the presence or absence of 

clotting. For plasma, the whole blood is collected into tubes with anti-coagulant and then a 

centrifugation step lead to separate the liquid state from blood cells. For serum, whole blood 

is collected into tubes and is allowed to clot for a specified time and temperature before 

centrifugation to pellet the clot and cells. Different studies showed that there is not a 

difference between these two types in term of metabolite composition. In our study, we 
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collected mice blood from the abdominal aortic, and we investigated the plasma. The timing 

of blood collection is also important. The volume collected from mice is also limited given 

the quantity of their whole blood, which is around 1ml. After the coagulation step, we obtain 

about 200-300 µl of plasma from each mouse. Samples are stored at -80°C after their 

collection.  

 

• Liver biopsies 

Tissues are metabolically active and therefore require rapid metabolic quenching when 

they have been collected. Liver used for the work described in chapter 6 of this thesis, were 

flash-frozen in liquid nitrogen just after their collection, and then stored at -80°C. We 

collected about 100-150mg of liver for each sample, which provides good coverage of the 

tissue metabolome131.   

3.2.2 Preparation and handling 

• Urine 

The samples were prepared according to standard protocol (Bruker Biospin GmbH, 

Rheinstetten, Germany). Urine samples were thawed at room temperature, and then 

centrifuged for 5 min at 6000 rpm. 200 µl of the supernatant were mixed with 300 µl of water 

and 50 µl of buffer solution (1.5M KH2PO4, 2mM sodium azide (NaN3), 0.1% trimethylsilyl 

propionate (TSP) pH7.4 in D2O).  

Variations in chemical shift of the same metabolite signals can be observed due to small 

differences in pH between samples. It is crucial to homogenise the PH in the samples, where 

the use of a buffer solution here. NaN3 is used to prevent microbial contamination, and TSP as 

an internal standard. 550 µl of the mixture were then transferred into 5mm NMR tubes.  

 

• Plasma 

Plasma sample were thawed at room temperature, coagulated particles were removed 

by centrifugation at 6000 rpm during 5 minutes. It was difficult to have 300µl of plasma from 

all mice. We decided thus to dilute the samples and then normalize data before statistical 

analysis performing. The liquid phase (200µl) was mixed with 100µl of water and 300µl of 
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buffer (0.142M Na2HPO4, 0.1%NaN3, 0.1% TSP pH7.4 in 20% D2O). Samples were kept at 

4°C until analysis.  

 

• Liver tissue  

30µL disposable Kel-F® inserts with sealing caps for 4 mm NMR rotors were filled 

with intact liver fragments and 5µL of D2O. Inserts were stored at -80 °C before high-

resolution magic angle spinning nuclear magnetic resonance (1H HR-MAS NMR) analyses.  

 

Extractions of polar and lipophilic metabolites was performed as described in 

Beckonert protocol46. A liver fragment (0.3 g) was homogenized in 1.2 mL 80% methanol at 

4°C. The homogenates were sonicated twice in an ice-cold water bath for 10 s. Homogenates 

were then transferred into a glass tube and 3 mL of chloroform were added. Tubes were 

vortexed again and diluted adding by adding 1.2 mL of chloroform and 1.2 mL of water. 

Tubes were vortexed, kept on ice for 15 min, and the phases were separated by centrifugation 

(1500 g, 20 min, 4°C). Each phase (aqueous / lipophilic) was collected and vacuum. The dry 

residue was dissolved in 600 µL of deuterated phosphate buffer (pH = 7.2, 100 % D2O)46.  

An additional series of quality control (QC) samples for each type of samples was 

included to evaluate the quality and the reproducibility of the NMR data acquisition. 

3.3 NMR-based metabolomics  

3.3.1 Data acquisition  

• Urine 

All NMR experiments were performed on a Bruker Avance III spectrometer operating 

at 600.55 MHz (proton resonance frequency), with a 5mm standard TCI cryoprobe, and an 

automated sample changer with sample cooling (4°C). The temperature was controlled at 

300K for urine. Standard one-dimensional 1H NMR spectra were acquired with the 

‘noesygppr1d’ pulse sequence for each sample. A total of 128 transient free induction decays 

(FID) were collected for each experiment with a spectral width of 20 ppm. The acquisition 



	 48	

time was set to 1.5s with relaxation delay of 2s. The noesy mixing time was set to 10ms. All 

FIDs were multiplied by an exponential function corresponding to a 0.3Hz line-broadening 

factor, prior Fourier transformation.  

 

• Plasma  

All NMR experiments were performed on a Bruker Avance III spectrometer operating 

at 600.55 MHz (proton resonance frequency), with a 5mm standard TCI cryoprobe, and an 

automated sample changer with sample cooling (4°C). The temperature was controlled at 

310K for plasma samples. Standard one-dimensional 1H NMR spectra were acquired with the 

‘noesygppr1d’ and ‘cpmgpr1d.be’ pulse sequences for each sample. A total of 128 transient 

free induction decays (FID) were collected for each experiment with a spectral width of 20 

ppm. The acquisition time was set to 1.5s with relaxation delay of 2 s. The noesy mixing time 

was set to 10ms. All FIDs were multiplied by an exponential function corresponding to a 

0.3Hz line-broadening factor, prior Fourier transformation.  

 

• Liver extracts  

Experiments were carried out on a Bruker Avance III spectrometer, operating at 

600.55 MHz (1H resonance frequency), equipped with a TCI cryoprobe and an automated 

sample changer with cooling capacity. The experiment temperature was controlled at 300°K. 

1D 1H NOESY NMR experiments with water presaturation and gradients were performed on 

each aqueous extract sample to derive metabolic profiles. 256 FIDs were co-added, with a 20 

ppm spectral width and an acquisition time of 1.36 s, corresponding to 32 k data points, with a 

relaxation delay of 2 s, for a total experimental time of 15 minutes per spectrum. The NOESY 

mixing time was set to 10 ms and the delay for gradient recovery was set to 200 µs. The 1H 

90° hard pulse length was automatically calibrated at around 13 µs for each sample. 2D NMR 

experiments, including 1H-1H TOCSY and 1H-13C HSQC experiments, were carried out on a 

subset of selected samples to characterize structural connectivity between nuclei and refine 

metabolite identification. A simple 1D Bloch decay 1H NMR experiment was performed on 

each lipid extract sample. 

 

• Intact liver tissue  

Experiments were carried out on a Bruker Avance II spectrometer, operating at 700.09 

MHz (1H resonance frequency), equipped with a 4 mm HR-MAS double resonance (1H-13C) 

probe. Temperature was controlled at 10°C throughout the experiments and the magic-angle 
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spinning frequency was set to 3.5 kHz. 1D 1H NOESY NMR experiments with water 

presaturation were performed on each sample to derive metabolic profiles. 256 free induction 

decays (FIDs) were co-added, with a 12 ppm spectral width and an acquisition time of 1.36 s, 

corresponding to 22856 data points, with a relaxation delay of 2 s, for a total experimental 

time of 15 minutes per spectrum. The NOESY mixing time was set to 100 ms. The 1H 90° 

hard pulse length was calibrated at 6.5µs.  

 

2D NMR experiments (1H-13C HSQC, 1H-1H TOCSY and J-Resolved) were recorded on a 

subset of samples (urine, plasma and liver aqueous extracts) to achieve structural assignment 

of the metabolic signals. 

3.3.2 NMR data processing  

• Baseline correction and spectra calibration  

NMR spectra are processed by baseline and phase corrections, and then calibrated.  

The calibration is performed on a metabolite signals with stable chemical shift (uninfluenced 

by PH) like α-glucose anomeric proton (δ = 5.23 ppm) for blood plasma, and with an internal 

standard like TSP (3-trimethylsilylpropionic acid) introduced in samples for urine. HR-MAS 

spectra were calibrated on the CH3 alanine doublet at δ = 1.48 ppm and spectra of aqueous 

extracts were referenced to the anomeric glucose doublet at δ = 5.23 ppm. 

 

• Bucketing  

Before performing statistical analysis, spectral data are converted to a mathematical 

matrix (X matrix) by a simple binning approach (Figure 3.2.1). Each row corresponds to a 

spectrum (a sample) and each column corresponds to regions of individual NMR spectra 

denoted NMR buckets. After a bucketing with a resolution of 0.001 ppm and a spectral width 

between 0 and 10 ppm, 10 000 variables are generated for each spectrum. These variables 

reflect spectral peak intensities or metabolite concentrations at a given point of the spectra.  

Biological samples contain a large amount of water, and its residual signal is important. The 

residual water signal is excluded in this step. Other signals can be excluded like molecules 

coming from contaminations (e.g. ethanol used to decontaminate animals) or solvents used 
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during extraction. Regions of the spectrum containing only noise (in the beginning and the 

end of the spectrum) can be removed.  

 

 

 

 

Figure 3.2.1: Bucketing step.  

Spectral data are converted to a mathematical matrix, where each row relates to a given sample and 

each column corresponds to a single measurement in that experiment. 

 

 

• Alignment  

Some variations in the chemical shift of certain peaks signals can be noticed, and this 

is mainly due to differences in pH or osmolarity between samples. Spectra need to be 

perfectly stackable to ensure that each column of the X matrix corresponds to the same 

metabolite before statistical analysis. Icoshift132 is a very effective tool for the alignment of 

NMR spectra. This method was employed as described in figure 3.2.2.  Other alignment tool 

exist29,30. 
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Figure 3.2.2: Overview of the Icoshift algorithm results. 

 

 

• Normalization  

NMR samples preparation is straightforward and the protocols are standardized and 

highly reproducible. However, sample handling and dilution can introduce variations in signal 

intensities, which are not related to the metabolism. These variations can interfere with 

multivariate statistical analysis. The goal of normalization133 is thus to remove or minimize 

these variations to make the data from all samples directly comparable with each other.  

Normalization is essential for urine samples because urine concentration is highly 

related to the amount of ingested water, drugs, toxins and treatments. The most appropriate 

normalization in this case is PQN (Probabilistic Quotient Normalization)134, which looks for 

the most probable coefficient of dilution between each spectrum and a reference spectrum to 

normalize spectra. 

For blood plasma, metabolite concentrations are highly regulated by homeostasis, and 

changes caused by a physiological situation are generally small but significant. It is not 

necessary to normalize in this case, unless the volume differs slightly from one sample to 

another. Normalization on total intensity, where each bucket is divided by the total intensity 

of the spectrum, is used in this case to eliminate the effects of variable concentration.  

 

• Scaling  
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Variables (metabolite concentrations) often have different numerical ranges. A 

variable with a large range has a large variance, whereas a variable with a small range has a 

small variance. The scaling methods aim to adjust the variance of the different metabolites135. 

There is several ways to scale the data. The most known is Auto scaling or Unit Variance 

(UV), data are mean-centered and then each value is divided by the standard deviation. Pareto 

scaling is also widely used, it aims to reduce the relative importance of large values, and keep 

data structure partially intact. Here, data are mean-centered, and then divided by the square 

root of the standard deviation. Both methods make the metabolites equally important.  

3.3.3 Multivariate analysis of metabolic profiles  

In biological studies, several variables (intensities at a specific NMR chemical shift, 

age, height, weight, sex…) are used to characterize samples (observations). These data can be 

arranged in a table, where each row represents an observation and the columns represent the 

different variables.  

The high number of variables generated in metabolomics studies makes the analyses 

difficult. It is complicated to overview and summarizes the data. The development of 

chemometrical tools constitutes an important step in sciences, which help to extract 

information out of data. This discipline is defined as “ the chemical discipline that uses 

mathematical, statistical, and other methods employing formal logic, to design or select 

optimal measurement procedures and experiments, and to provide maximum relevant 

chemical information by analyzing chemical data”136. Contrary to statistics, Chemometrics is 

based on computing intensive methods. They are in general multivariate. The main objective 

of NMR-based metabolomics is to classify a spectrum based on its chemical composition, and 

then identify which spectrum areas or metabolites are responsible for this classification. With 

other words, the goal is to interpret chemical and biological changes related to class 

differences.  

 

Multivariate statistical analyses based on projection methods can be classified in two 

complementary approaches for modeling data: unsupervised and supervised statistical 

approaches. Unsupervised analysis like principal component analysis (PCA), which is 

considered as the basis of for other multivariate analysis, is widely used in metabolomics 



	 53	

studies as an exploratory tool in the beginning of any analysis 137. Peaks intensities in the 

spectra are used as coordinates in multidimensional plots of metabolic activity. PCA helps to 

detect trends, identify outlier samples (resulting from error in sampling, preparation or 

spectrum acquisition), and delineate classes. This approach is only based on the spectra and 

no information about samples is provided. Other unsupervised methods can be used like 

Hierarchical Clustering Analysis (HCA)138 and self-organizing maps.  

In supervised analyses, samples are characterized in classes and they are associated to an 

outcome yi value. Projection to latent structures (PLS) 139,140and its extension orthogonal 

partial least squares (OPLS)  are based on linear regression method, which aim to find a 

relationship between a descriptor matrix X (areas from the spectra) and a response matrix Y 

(e.g. a specific disease). PLS and OPLS can be used for discrimination in the form of PLS-

DA141 and OPLS-DA142. Discrimination means the separation between two classes and then 

find the cause (e.g. biomarkers related to a specific disease) of this separation. OPLS-DA, 

contrary to PLS-DA, has the ability to separate predictive from non-predictive (orthogonal) 

variation, which facilitate the interpretation. It is actually the method of choice for 

discrimination and classification. Data can be visualized as score plot, which each point 

represents a sample, and as loading plot, which shows the contribution of variables 

(metabolite) involved in the discrimination (Figure 3.2.3).  

 

 

 

 

Figure 3.2.3: Visualization of data from an OPLS-DA analysis. 

 5A) This score plot shows a clear discrimination between the group 1 and the group 2. Each point 

represents a sample. 5B) This loading plot shows the contribution of each metabolite involved in the 

difference between the two groups. Here, we see that acetate is associated with group 2 and lipids 

with group 1.  
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After multivariate analysis, univariate analyses are performed to identify significant 

changes in metabolite concentrations. Statistical recoupling of variables (SRV)49 is a 

homemade tool, which aims to extract the significant differences in metabolite levels between 

groups defining a metabolic signature.  

 

• Models validation 

Several methods are used to ensure the robustness, to validate the performance of the 

discrimination. R2 and Q2 parameters correspond to the explained variance and the predictive 

power of the model. They aim to assess the quality of the model. To validate PLS and OPLS 

models, CV-ANOVA143 and permutation test144 are generally used. The values in Y matrix 

are randomly permuted a thousand of times, and for each Y matrix permuted, R2 and Q2 are 

calculated and compared to the original values. If the original values are higher than the new 

calculated values, this indicates the good quality of the model by rejecting the null hypothesis 

(Figure 3.2.4).  

                            

Figure 3.2.4: Resampling under the null hypothesis to check model robustness.  
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3.3.4 Metabolite identification  

In addition, 1D 1H-NMR and 2D NMR experiments (1H–13C HSQC, 1H–1H TOCSY and 1H 

J-resolved experiments) were recorded on a subset of samples to achieve structural 

assignment of the metabolite signals. Metabolite identification was performed using academic 

spectral databases (HMDB145 and MMMDB146,147), as well as proprietary databases (NMR 

Suite v. 7.1, Chenomx Inc., Edmonton, Canada; AMIX SpectraBase v. 1.1.2, Bruker GmbH). 
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4. 1H NMR-based metabolomics for the 

study of the impact of the excess and 

the privation of thyroid hormones on 

murine metabolism 

	

4.1 Introduction 

Hypothyroidism is due to a defective thyroid gland or thyroid hormone biosynthetic 

dysfunction148,149. The most common form of hypothyroidism is due to a problem in the 

thyroid gland, itself, and presents low levels of circulating thyroid hormones and raised levels 

of thyrotropin at birth150. Central hypothyroidism, another form of hypothyroidism, is caused 

by impaired Thyroid-Stimulating hormone (TSH)-mediated stimulation of the thyroid gland. 

Delayed treatment of neonatal hypothyroidism may result in profound neurodevelopmental 

delay150. As described in the previous sections, RTHα patients present some common features 

with hypothyroid patients. This chapter is dedicated to the study of metabolic changes caused 

by hypothyroidism, in order to distinguish them from those caused by THRA mutations.   

In the present study, we carried out a metabolomic study investigating urine and blood 

plasma to obtain a reference metabolic signature of hypothyroidism to study RTHα disease. 

Different anti-thyroid drugs and techniques (thyroidectomy), with their advantages and 

disadvantages, exist to control TH synthesis128,151. Propylthiouracil (PTU) is often used to 

induce hypothyroidism in mice and rats models to study this disease128,152. The inconvenience 

is that this treatment was associated with liver toxicity151,153. The prevalence of this toxicity is 

extremely low, but should be suspected in research studies. For this metabolomic study, we 

used PTU-induced hypothyroidism mice models to find biomarkers related to 

hypothyroidism. The metabolic signature of this condition reflects thus the metabolic changes 

caused by the hypothyroid condition, and probably the presence of a toxic effect of the PTU 

treatment. To distinguish between hypothyroid effects from PTU toxic effect, we used another 

group, treated with PTU followed by T3 treatment during 4 days. The goal is to assess the 
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reversibility of PTU-induced hypothyroidism. A quick reversibility could reflect a direct 

effect of TH and the absence of secondary effects of PTU. For this group, a longitudinal study 

was performed to characterize the kinetic of the metabolic changes. Here we will call this 

group of mice “TH treated” group.  
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4.2 Study design 

In this study, 30 adult male mice divided in 3 different groups of 10 mice each one were 

used.  The first group is a control group without any treatment. A hypothyroid phenotype was 

induced in mice by two weeks propylthiouracil (PTU) treatment containing diet154. PTU 

inhibits the enzyme thyroperoxidase, which has an action in thyroid hormone synthesis155.  

 

In the third group, mice were treated during 14 days with PTU, and underwent three 

injections of T3 the last 4 days. This group has an excess of thyroid hormones compared to 

control group (Figure 4.2.1). Urine was collected at different time points: at D11 and D14 for 

control and hypothyroid groups, and from D11 to D14 for TH treated group. Mice from 

hypothyroid group and TH treated group have the same status at D11. D12, D13 and D14 

correspond to 1 day, 2 days and 3 days after the beginning of T3 injection in TH treated 

group. At D14, urine was collected from the 3 groups, and mice were then anesthetized in 

order to collect blood. Mice were killed after this step because the blood volume taken is 

important and can be lethal. After blood collection, we proceeded to plasma preparation. 

Urine and plasma samples were then stored at -80°C until NMR analysis.  

 

 

Figure 4.2.1: Study design. 

Wild-type mice underwent 14 days of PTU treatment to obtain hypothyroid phenotype.  For the 

control and the hypothyroid groups, urine was collected at D11 and D14, and blood was collected at 

D14. To study the response of hypothyroid group to TH, wild-type mice underwent 14 days of PTU 

TH treated groupPTU+T3

Days

Hypothyroid group PTU

Control group

PTU

D
11

D
12

D
13

D
14

Days
D

11
D

14
D

0

D
0



	 59	

treatment, and three injections of T3 (at D11, D12 and D13).   Urine was collected at D11 (before the 

first T3 injection), D12, D13 and D14. Blood was collected at D14.  

 

Forty-five metabolites were identified in urine and 33 in blood plasma (Figure 4.2.2 and 

appendices 2 and 3).  

 

 

	

	

Figure 4.2.2: Mean 600MHz 
1
H NMR spectra from mice urine (A) and plasma (B), with 

metabolites annotations.  
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4.3 Results  

4.3.1 Quality of the 
1
H NMR data 

A principal component analysis (PCA) was performed for urine and plasma samples 

separately. The goal is to assess the quality and the reproducibility of the 1H NMR data sets in 

on the hand, and clean the data sets by identifying and then removing outliers, on the other 

hand. We can also identify trends in this step.  

 

Here, the good stability and reproducibility is proven by the clustering of the QC 

samples in both urine and plasma data sets (Figure 4.3.1). In urine PCA, 4 samples are 

identified as outliers (Figure 4.3.1.A). Three of them are issue from the same mice. These 

samples were removed from the data set. No outliers were identified in plasma PCA.  

The two PCA show a clear separation between the different groups, which mean that they 

have a different chemical composition. It is so strong that we see it in this unsupervised 

statistical analysis.  

 

 

 

 

Figure 4.3.1: Quality of the model and outliers identification in urine and plasma samples.  

(A) Principal component analysis (score plot) based on 
1
H NMR spectra of QC samples and all urine 

samples from all times points. A= 12, N= 96, R
2
X= 0.851 (B) PCA score plot based on 

1
H NMR 

spectra of QC samples and all plasma samples from all time points. A= 9, N= 33, R
2
X= 0.959. The 

QC samples clustering (in red) show the good stability and reproducibility of the experiments.  
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4.3.2 Discrimination according to mice phenotype in urine  

Hypothyroid and TH treated groups had received the same PTU treatment at D11. Thus, 

mice from these two groups are hypothyroid at this point. The principal component analysis 

of samples collected at D11 shows a clear discrimination between control group and 

hypothyroid group, which mean that they are chemically different (Figure 4.3.2.A). At D14, 

after 3 injections of thyroid hormone T3 to TH treated group, which was usually hypothyroid, 

we see a separation between hypothyroid and TH treated groups (Figure 4.3.2.B). Samples 

were clearly separated into three distinct groups, indicating that the controls, TH treated group 

and hypothyroid group had different metabolic profiles. 

 

 

 

Figure 4.3.2: Discrimination between control, hypothyroid and TH treated groups at D11 and D14 

in urine.  

At D11, hypothyroid and TH treated groups had received the same PTU treatment. (A) PCA score plot 

of urine samples at D11 shows a clear separation between control group and hypothyroid-TH treated 

group. A= 4, N= 27, R
2
X= 0.68 (B) PCA score plot of urine samples at D14 shows a clear separation 

between control, hypothyroid and TH treated groups. A= 2, N= 28, R
2
X= 0.68. 
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The PCA and the OPLS-DA analyses score plots (Figure 4.3.3.A and B) show a clear 

discrimination between hypothyroid and control populations. The metabolic signature 

associated with hypothyroidism (Figure 4.3.3.D) shows a decrease of alanine, lactate, acetate, 

malate, succinate, oxoglutarate, dimethylamine, trimethylamine, oxoglutarate; and an increase 

in formate, hippurate, indoxylsulfate, phenylalanine, allantoin, urea, cis-aconitate, 

trigonelline, creatinine, guanidoacetate, isovalerylglycine, dimethylamine, taurine, glutamine, 

acetoacetate and butyrate.  

 

 

 

Figure 4.3.3: Discrimination between hypothyroid phenotype and control groups in urine. 

(A) PCA score plot. A= 2, N= 18, R
2
X= 0.65. (B) OPLS-DA score plot. A= 1+1, N= 18, R

2
Y= 0.98, 

Q
2
= 0.96, p-value=4.76.10

-9
. (C) OPLS-DA model validation by resampling 1000 times under the null 

hypothesis. (D) OPLS-DA multivariate metabolic signature discriminating control group from 

hypothyroid phenotype group.  
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The PCA and the OPLS-DA analyses score plots (Figure 4.3.4.A and B) show a clear 

discrimination between hypothyroid and control populations. The metabolic signature 

associated with hypothyroidism (Figure 4.3.4.D) shows an increase of lipids and a decrease in 

the high-density lipoprotein (HDL), some amino-acids (leucine, isoleucine, valine, alanine), 

sugars (glucose and mannose), hydroxybutyrate, citrate, lactate, acetoacetate, pyruvate, 

choline, phosphocholine, creatine and allantoin.  

 

 

 

 

 

Figure 4.3.4: Discrimination between hypothyroid phenotype and control groups in plasma. 

(A) PCA score plot. A= 5, N= 19, R
2
X= 0.9. (B) OPLS-DA score plot. A= 1+7, N= 19, R

2
Y= 0.99, 

Q
2
= 0.56, p-value= 0.0015. (C) OPLS-DA model validation by resampling 1000 times under the null 

hypothesis. (D) OPLS-DA multivariate metabolic signature discriminating control group from 

hypothyroid phenotype group.  

 

 

NMR investigation of urine and plasma allowed also distinguishing between 

hypothyroid and control groups. A metabolic signature associated with this disease was 

identified in each biofluid. Hypothyroidism is characterized by a hypo-metabolic state leading 

to reduced energy expenditure, increased cholesterol levels, reduced lipolysis and 
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It was reported that HDL levels are normal, elevated or in some cases decreased in 

hypothyroidism156. Here we notice a significant decrease of these lipoproteins in the plasma.  

 

The high level of urinary creatinine in hypothyroid group could be explained by renal 

abnormalities that occur because of the deficiency of thyroid TH reduces the cardiac output 

leading to generalize hypo-dynamic state of the circulatory system. The vital substances of 

Krebs cycle like succinate, oxoglutarate and citrate decrease in hypothyroid mice compared to 

control mice. This can be explained by the reduced biogenesis and respiratory capacity in free 

mitochondria and neuronal oxygen consumption in the cerebral cortex in developing rats 

induced by hypothyroidism157. Our results are quite agreed with the results of previous studies 

about thyroid disorder152,157. Metabolites related to gut microbiota (hippurate and 

indoxylsulfate) are present in high concentrations compared to the control group, suggesting 

probably a modification in the intestine. Variation in the urinary concentration of 

phenylalanine suggests a perturbation in phenylalanine metabolism. Wu et al. found showed 

that some metabolites related to phenylalanine metabolism vary in hypothyroid rats.  

4.3.4 Impact of thyroid hormones on the metabolism 

Unsupervised and supervised multivariate analyses were performed in order to study the 

evolution of TH treated group over time. Supervised analysis OPLS-DA was applied to 

remove information unrelated to T3 treatment. A clear separation between samples at 

different time points is noticed in both PCA and OPLS-DA (Figure 4.3.5 A and B). The 

OPLS-DA model shows a strong discrimination of the 4 classes, reflected by the explained 

variance (R2Y= 0.8), the prediction power (Q2= 0.55), CV-ANOVA p-value (p-value= 1.5.10-

5). In addition, the robustness of the OPLS-DA model was validated using permutations 

(1000) under the null hypothesis (Figure 4.3.5.C).  

We noticed an important evolution of samples metabolome from D11 to D12, and from D12 

to D13, compared to D13 to D14, which reflect the rate of reaction of the metabolism in 
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response to TH over time (Figure 4.3.5 B). This suggests that changes related to TH 

administration are important in the beginning, and then the metabolome stagnates gradually.  

 

 

 

Figure 4.3.5: Metabolomic urine profiles showing the evolution of hyperthyroid phenotype group 

over time.   

(A) PCA score plot. A= 5, N= 40, R2X= 0.74. (B) OPLS-DA score plot. A= 3+2, N= 40, R
2
Y= 0.8, 

Q
2
= 0.55, p-value= 1.5.10

-5
. (C) OPLS-DA model validation by resampling 1000 times under the null 

hypothesis. 
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To understand the metabolic changes caused by TH treatment, unsupervised and 

supervised analyses were performed in data sets generated from urine and plasma NMR 

analysis. 

 

• Determination of a metabolic signature associated with TH treatment in 

urine 

 

Unsupervised and supervised analyses were done to identify variations in the urine 

dataset related to TH treatment. Both methods, PCA and OPLS-DA, show a clear separation 

between control and TH treated groups. A strong discrimination of the two classes is noticed, 

with R2Y= 0.995, Q2= 0.97, p-value=1.9.10-8 (Figure 4.3.6.A and B). The model is well 

validated after resampling (Figure 4.3.6.C).  

The metabolites with a key role on the OPLS model were evaluated by analyzing the 

loadings plots color-coded based on the correlation coefficients. The metabolic signature 

associated with TH response (Figure 4.3.6.D) shows a decrease of trimethylamine, creatine, 

taurine, isovalerylglycine and indoxylsulfate, and an increase of alanine, lactate, acetate, 

glutamine, succinate, oxoglutarate, dimethylamine, dimethylglycine, creatinine, 

guanidoacetate, and allantoin.  

 

Here, we were able to distinguish between control and TH treated populations using 
1H NMR metabolomic profile for urine samples.  
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Figure 4.3.5: Discrimination between control and TH treated groups in urine.  

(A) PCA score plot. A= 2, N= 19, R
2
X= 0.72. (B) OPLS-DA score plot. A= 1+2, N= 19, R

2
Y= 0.995, 

Q
2
= 0.97, p-value= 1.9.10

-8
. (C) OPLS-DA model validation by resampling 1000 times under the null 

hypothesis. (D) OPLS-DA multivariate metabolic signature discriminating control group from TH 

treated group. The signature is colored according to the correlation between NMR variables and 

case-control status after significance to univariate ANOVA testing followed by Benjamini-Hochberg 

multiple corrections. NMR variables that do not achieve the FDR threshold of 0.05 are represented in 

grey. DMA (dimethylamine), DMG (dimethylglycine), OG (oxoglutarate), TMA (trimethylamine).  

 

 

• Determination of a metabolic signature associated with TH treatment in 
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The PCA unsupervised model and OPLS-DA supervised model show a good 

discrimination between control and TH treated groups in plasma (Figure 4.3.6.A and B). The 

explained variance is 0.88, the predictive power is 0.8, and the p-value is 8.7.10-5.The 

statistical model is also well validated (Figure 4.3.6.C). The metabolic signature related to TH 

treatment in plasma is represented with a relative increase in glucose, glutamine, lactate, 

succinate and alanine, and a decrease in lipids level. Among these metabolites, glutamine and 

lipids vary significantly (Figure 4.3.6.D).  
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Figure 4.3.6: Discrimination between TH treated and control groups in plasma. 

(A) PCA score plot. A= 9, N= 19, R
2
X= 0.97. (B) OPLS-DA score plot. A= 1+1, N= 19, R

2
Y= 0.88, 

Q
2
= 0.8, p-value= 8.7.10

-5
. (C) OPLS-DA model validation by resampling 1000 times under the null 

hypothesis. (D) OPLS-DA multivariate metabolic signature discriminating control group from TH 

treated group.  
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tryptophan metabolism, which is probably related to a modification in the intestine. A relation 

between these metabolites and the TH status was already reported in a mass spectrometry-

based metabolomics study152.   

 

The metabolic signature related to TH treatment is different from that related to PTU-

induced hypothyroidism, which suggests that TH reversed quickly the impact of PTU on the 

metabolism.  

4.4 Conclusion  

The present study, using a 1H NMR-based approach, shows that the metabolomics profile 

is deeply influenced by the TH levels. The three different groups (euthyroid, hypothyroid and 

“TH treated”) present different metabolic profiles. A global urine and blood metabolomic 

analysis based on 1H NMR was applied to provide comprehensive and complementary 

insights into hypothyroidism and the impact of TH at the metabolic level.  Specific metabolic 

signatures were identified for each condition in each biofluid.  

 

Determination of TSH and free thyroxine (FT4) levels represent the gold standard in 

evaluation of thyroid function. Despite the huge amount of publications studying the action of 

thyroid hormones on metabolism, so far only the tip of the iceberg have been discovered, with 

an unexplored “metabolic world” under the surface. The need to a new method for the 

discovery of new markers of thyroid function and to detect novel pathways of thyroid 

hormone action is important. Through this study, we showed that NMR-based metabolomics 

could be an important tool to investigate hypothyroidism, and eventually hyperthyroidism.  

 

The hypothyroid signature described in this chapter in urine and plasma is further 

exploited in the chapter 5 to evaluate the specificity of metabolic markers for the emerging 

genetic disease resistance to thyroid hormone α (RTHα).  
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5. NMR	as	a	putative	diagnostic	tool	for	

the	 presence	 of	 thyroid	 hormone	

receptor	alpha	1	mutations	

5.1 Introduction 

Resistance to thyroid hormone (RTHα) is an emerging genetic disease due to mutations in 

the THRA gene, which encodes thyroid hormone receptor alpha (TRα1). Since its first 

description in 2012, 45 cases of RTHα have been reported worldwide, corresponding to 25 

different mutations of TRα1100,105,109,110,112,163. The high variability of clinical features and the 

absence of reliable biochemical markers make the diagnosis of this disease difficult. In 

addition, identified RTHα patients present some common features with hypothyroid patients, 

which may delay the diagnosis in some cases108. Some of these mutations have been recently 

modelled in mice. In our study, we used five germline mutations (four frameshift and the 

N359Y missense mutation) in the mouse Thra gene, closely modelling the mutations found in 

RTHα patients117. Two of the four frameshift mutations are very close to human mutations, 

while the two others do not exist in human patients. N359Y missense mutation used here was 

found in a French patient, with very different symptoms compared to RTHα patients. This 

patient suffers from extreme skeletal malformations, macrocytic anaemia, chronic diarrhea, 

and hypercalcemia110.  

We characterized the metabolic phenotypes of urine and plasma samples collected from 

the five animal models using an untargeted Nuclear Magnetic Resonance (NMR)-based 

metabolomics approach. Multivariate statistical analysis of the metabolomic profiles shows 

that biofluids of mouse models that carry human-like mutations can be discriminated from 

controls. Metabolic signatures associated with Thra mutations in urine and plasma are stable 

over time and clearly differ from the metabolic fingerprint of hypothyroidism in the mouse. 
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Our results provide a proof-of-principle that easily accessible NMR metabolic 

fingerprints of biofluids could be used to diagnose RTHα in humans. This chapter describes in 

details results that were submitted recently for publication164. 

. 

.   
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5.2 Study design   

The research project was approved by a local ethic committee and subsequently authorized by 

the French Ministry of Research (licence #6711), and carried out in accordance with the 

European Community Council Directives of September 22, 2010 (2010/63/EU) regarding the 

protection of animals. Mice with Thra were all with a major contribution of the C57Bl/6 

genetic background. We studied 5 mutations of Thra, which introduce a translation 

frameshift, eliminating the C-terminal helix, which normally interacts with transcription 

coactivators. E395fs401X and E395fs406X mutations are +1 frameshifts, introducing stop 

codons few nucleotides downstream to the mutated codon, and shortening the protein 

(Thra
S1/+ and Thra

S2/+ mice; S for small) as in some severe cases of RTHα found in patients. 

This results in a complete loss of transactivation capacity and a marked dominant-negative 

activity in heterozygous mice, leading to altered development. The two other mutations, 

E395fs485X and K389fs479X are +2 frameshifts, which have no known equivalent in human 

patients, and result in the production of an amphigoric protein of high molecular weight 

(Thra
L1/+ and Thra

L2/+ mice; L for large) which has little dominant-negative activity. 

Regarding N359Y mutation, there is no frameshift in this model. Therefore, apart from the 

N359Y amino acid substitution, the C- terminal part of TRα1, including helix 12, is intact. 

The N359Y amino acid substitution reduces the affinity of TRα1 for T3, but does not alter the 

interface required for coactivator or corepressor recruitment (Figure 5.2.1).   

 

 

 



	 73	

 

	

Figure 5.2.1: Mice models  

Four mice models for RTHα were generated in order to understand their impact on the metabolism. 

Thra
S1

 and Thra
S2

 mutations are short receptors and are closed to mutations found in human patients, 

and Thra
L1

 and Thra
L2

 are long receptors and are different from those found in human patients. 

 

95 mice (12 Thra
S1/+

, 10 Thra
2/+

, 10 Thra
L1/+

, 12 Thra
L2/+

, 7 N359Y and 44 wild-type) 

were followed during 6 months for this study. Littermates without mutation were used as 

controls. Urine and plasma samples were collected at two time points: urine samples were 

collected at 3 and 6 months of age in order to study the RTHα fingerprint stability over time, 

and plasma samples were collected in anti-coagulant tubes at 6 months (Figure 5.2.2). 

 

 

                        

Figure 5.2.2: Study design.  

Mutants and wild-type mice were followed during 6 months. Urine samples were collected from 

different mice groups at 3 and 6 months old and blood at 6 months old. NMR analysis was performed 

for all urine and blood plasma samples.  
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The steps of metabolomic analyses and multivariate statistical analysis were described in 

the chapter 3.  

5.3 Results  

5.3.1 Quality of the 
1
H NMR data 

A principal component analysis (PCA) was performed for each set of samples, urine and 

blood plasma, to assess the reproducibility of the 1H NMR data sets. Here, the good stability 

and reproducibility is proven by the clustering of the QC samples in each models (Figure 

5.3.1).  

 

Figure 5.3.1: PCA based on 
1
H NMR spectra of QC and samples (urine or plasma).  

The good stability of the NMR setup and reproducibility of the experiment is attested by the grouped 

set of QC samples on the PCA score plots. (A) PCA based on urine samples of 3 months old mice (A= 

9, N= 95, R
2
= 0,792). (B) PCA based on urine samples of 6 months old mice (A= 13, N= 101, R

2
= 

0,811). (C) PCA based on plasma samples of 6 months old mice (A= 29, N= 102, R
2
= 0,985). 

5.3.2 Discrimination between the group of mutants and wild-type group 
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We considered the different groups of mice models as a single group, with the 

hypothesis that these mutations have the same impact on the metabolome. A PCA and an 

OPLS-DA of the metabolic profiles were performed to compare mutants mice group to wild-

type group, in both urine and blood plasma. No discrimination between the two groups was 

noticed in both biofluids (Figure 5.3.2).  

 

	

 

Figure 5.3.2: Discrimination between wild-type and mutants groups.  

(A) PCA score plot for 3 months old mice urine (A= 14, N= 91, R
2
= 0.86). (B) PCA score plot for 6 

months old mice urine (A= 15, N= 88, R
2
= 0.84). (C) PCA score plot for 6 months old mice plasma 

(A= 18, N= 95, R
2
= 0.97).  

5.3.3 Discrimination between each mutant group and wild-type group 

We then asked whether each mutant group could be discriminated from wild-type group. 

The goal was to understand the specific impact of each mutation on the metabolism. We 

performed an OPLS-DA for each comparison (mutant vs. wild-type), in urine (at different 

ages) and plasma. As described in Tables 5.1 and table 5.2, in urine, only Thra
S1/+ group

 can 

be discriminated from wild-type group. We notice also here that there is a conservation of the 

metabotype overtime, because we obtain the same results at 3 and 6 months old. 
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Statistical models Discrimination A N R2 Q2 p-value 

Thra
S1/+ vs. WT Yes 1+2 52 0.695 0.347 0.003 

Thra
S2/+ vs. WT No 0 51 - - - 

Thra
L1/+ vs. WT No 0 50 - - - 

Thra
L2/+ vs. WT No 1+1 52 0.425 0.134 0.14 

N359Y vs. WT No 0 48 - - - 

 

Table 5.1: Discrimination between each mutant group and wild-type group in 3-month-old mice 

urine. 

 

Statistical 

models 

Discrimination A N R2 Q2 p-value 

Thra
S1/+ vs. WT Yes 1+2 51 0.697 0.368 0.0018 

Thra
S2/+ vs. WT No 0 51 - - - 

Thra
L1/+ vs. WT No 0 50 - - - 

Thra
L2/+ vs. WT No 0 52 - - - 

N359Y vs. WT No 0 48 - - - 

 

Table 5.2: Discrimination between each mutant group and wild-type group in 6-month-old mice 

urine. 

 

In plasma, both Thra
S1/+

 and Thra
S2/+groups can be discriminated from wild-type 

group (Table 5.3). We notice also that the discrimination is slightly better in the blood plasma, 

and here an additional group can be discriminated from wild-type group.  

 

Statistical models A N R2 Q2 p-value 

Thra
S1/+ vs. WT 1+6 55 0.832 0.422 0.034 

Thra
S2/+ vs. WT 1+4 54 0.745 0.44 0.002 

Thra
L1/+ vs. WT 0 53 - - - 

Thra
L2/+ vs. WT 0 54 - - - 

N359Y vs. WT 0 51 - - - 

 

Table 3.4: Discrimination between each mutant group and wild-type group in 6-month-old mice 

plasma. 
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These results suggest that we cannot consider the set of mutants group as a homogenous 

group, theses mutations do not impact the metabolism with the same manner. Thra
S1/+ and 

probably Thra
S2/+ have a bigger effect than the other mutations. Our results are in line with 

the findings of Markossian et al117. They noticed that Thra
S1/+ and Thra

S2/+ display very 

similar phenotypes, reproducing several developmental traits present in RTHα patients, while 

Thra
L1/+ and Thra

L2/+ mice have an almost normal phenotype117. Discrimination between 

N359Y group and wild-type group were not possible. It was reported that the patient carrying 

this mutation has also other mutations in her genome (Appendix 1), and the biological study 

done by Markossian et al117 show that N359Y mice do not have the same features that the 

N359Y patient. We decided to focus only on the four frameshift mutations for the next 

sections.  

5.3.4 Metabolomic analysis segregates two types of frameshift mutations 

We addressed whether metabolic profiling could differentiate Thra
S1/+, Thra

S2/+, Thra
L1/+ 

and Thra
L2/+ mice. A four-classes orthogonal partial least square discriminant analysis 

(OPLS-DA) of the metabolic profiles was performed to evaluate the impact of the different 

Thra mutations on urine metabolome. Although the 4 groups were not separated, we noted 

that mutants with short receptors (Thra
S1/+ and Thra

S2/+) were clustered in this statistical 

model as are mutants with long receptors (Thra
L1/+ and Thra

L2/+), and that the two groups tend 

to separate (Figure 5.3.3). Within each group, a new OPLS-DA analysis was unable to 

discriminate between the two mutations (Thra
L1/+ from Thra

L2/+ mice, and Thra
S1/+ from 

Thra
S2/+ mice, in both urine and plasma; data not shown).  
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Figure 5.3.3: Discrimination between Thra
S1/+

, Thra
S2/+

, Thra
L1/+ 

and Thra
L2/+

. 

(A) OPLS-DA score plot for 3 months old mice urine, discriminating Thra
S1/+

, Thra
S2/+

, Thra
L1/+ 

and 

Thra
L2/+

 (N = 40, 3+2 components, R
2
Y = 0.661, Q

2
 = 0.355, ANOVA of the cross-validated residuals 

(CV-ANOVA) p-value = 0.005). (B) The OPLS-DA model validation by resampling 1000 times under 

the null hypothesis. 

 

 

As no clear discrimination was observed, we pooled the mutant mice according to the 

type of frameshift mutation that they carry  (Thra
L/+ group and Thra

S/+ group), and repeated 

OPLS-DA analysis. This improved the statistical power of the analysis and led to a clear 

distinction between these two groups. Statistical significance of these models was assessed by 

high values of goodness-of-fit parameters R2 and Q2 (which explain the variance and 

predictive power of the model, respectively) and CV-ANOVA p-values < 0.05 and model 

resampling under the null hypothesis. Altogether, these results show a clear distinction 

between Thra
L/+ and Thra

S/+ mice, as expected from previous phenotyping.  
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Figure 5.3.4: Discrimination between the two type of frameshift mutations: Thra
S/+

 and Thra
L/+

. 

(A) OPLS-DA model for 3 months old mice urine (N = 41, 1+3 components, R
2
Y = 0.908, Q

2
 = 0.669, 

CV-ANOVA p-value = 6.6.10
-6

). (B) Corresponding OPLS-DA model validation by resampling 1000 

times under the null hypothesis. (C) OPLS-DA model for 6 months old mice urine (N = 43, 1+4 

components, R
2
Y = 0.924, Q

2
 = 0.57, CV-ANOVA p-value = 8.10

-5
). (D) Corresponding OPLS-DA 

model validation by resampling 1000 times under the null hypothesis. (E) OPLS-DA model for 6 

months old mice blood plasma (N = 44, 1+5 components, R
2
Y = 0.829, Q

2
 = 0.458, CV-ANOVA p-

value = 0.04). (F) Corresponding OPLS-DA model validation by resampling 1000 times under the 

null hypothesis. 
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contrast similar comparisons were unable to discriminate the group of Thra
L/+ mice from the 

wild-type group, as expected from the very limited consequences of these mutations on 

phenotype (data not shown).   

 

 

 

Figure 5.3.5: Significant discrimination between human-like mutations Thra
S/+

 and wild-type 

groups.  

(A) OPLS-DA model for 3 months old mice urine, discriminating Thra
S/+

 and wild-type (N = 62, 1+3 

components, R
2
Y = 0.744, Q

2
 = 0.453, CV-ANOVA p-value = 4.5.10

-5
). (B) The OPLS-DA model 

validation by resampling 1000 times under the null hypothesis. (C) OPLS-DA model for 6 months old 
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mice urine, discriminating Thra
S/+

 and wild-type (N = 62, 1+1 components, R
2
Y = 0.457, Q

2
 = 0.217, 

CV-ANOVA p-value = 7.10
-3

). (D) Corresponding OPLS-DA model validation by resampling 1000 

times under the null hypothesis. (E) OPLS-DA model for 6 months old mice plasma, discriminating 

Thra
S/+

 and wild-type (N = 66, 1+4 components, R
2
Y = 0.768, Q

2
 = 0.591, CV-ANOVA p-value = 

9.24.10
-8

). (F) Corresponding OPLS-DA model validation by resampling 1000 times under the null 

hypothesis. 

5.3.6 Determination of metabolic signature of Thra mutation in urine and blood plasma 

The most significant variations of individual metabolites discriminating the Thra
S/+ 

group from wild-type were identified with univariate analysis of spectral variables from urine 

and plasma NMR profiles. Urine metabolic signatures of Thra
S/+ mice were characterized by 

increased levels of hippurate, formate, fumarate, and decreased levels of Krebs cycle 

metabolites (acetate, succinate, citrate and cis-aconitate), urea, allantoin, creatine, creatinine, 

isovalerylglycine, trimethylamine, dimethylamine, taurine and oxoglutarate with respect to 

wild-type animals (Figure 5.3.6 A-B). Meanwhile, plasma metabolic signature was 

characterized by higher levels of formate, phenylalanine, valine, isoleucine, allantoin and 

lactate, and lower levels of Krebs cycle metabolites (acetate, succinate, ketobutyrate), lipids, 

lipoproteins (VLDL, LDL), phosphocholine, glucose, creatine, threonine, glutamine and 

pyruvate when compared to wild-type mice (Figure 5.3.6 C). The metabolic signatures of 

Thra
S/+ obtained from urine and plasma metabolic profiles share similarities in the 

composition and variations of 4 metabolites:  formate, creatinine, acetate and citrate.  

 

Concentrations of dimethylamine, trimethylamine, isovalerylglycine, choline and N-

acetylglucosamine were shown to be significantly lower in urine of Thra
S/+ mice, while 

polyunsaturated lipids were lower in the blood. Overall, this study provides metabolic 

signatures associated with RTHα in urine and plasma that present common and 

complementary information.   

 

Comparison between the metabolic signatures of urine of 3 and 6 months old mice 

provides useful information on the temporal stability of the observed metabolic changes. 

Overall, a large similarity in metabolites composition and variations was observed, 13 
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metabolites varying in the same way at both ages (Figure 5.3.6).   Few differences were 

noticed, notably for formate and fumarate, which differential concentration only appear in 6 

months old mice. Variation in oxoglutarate content was also amplified in 6 months old mice. 

Dimethylamine, trimethylamine and choline remained present in both signatures but became 

statistically significant, in univariate analysis, only after 6 months. This shows that the urine 

metabolic signature associated with RTHα is globally stable over time, while variations 

become more visible with age for some metabolites.  

 

         

  

Figure 5.3.6: Determination of a metabolic signature of Thra
S/+

 mutation in urine and blood 

plasma.  
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(A) OPLS-DA loading plot for 3 months old mice urine, discriminating Thra
S/+

 and wild-type, after 

significance to ANOVA tests followed by Benjamini-Hochberg multiple correction. The coloured 

spectral regions correspond to the statistically significant signals.  Non-significant NMR variables are 

colored in grey. (B) OPLS-DA loading plot for 6 months old mice urine, discriminating Thra
S/+

 and 

wild-type. (C) OPLS-DA loading plot for 6 months old mice plasma, discriminating Thra
S/+

 and wild-

type. 

5.3.7 RTHα signature is different from hypothyroidism signature 

RTHα patients share symptoms with hypothyroid patients. We thus investigated 

whether the metabolic signatures found for Thra mutations can be distinguished from a 

signature of hypothyroidism.  We compared thus these results with the results detailed in the 

chapter 2, where wild-type mice were made hypothyroid with propyl-thio-uracyl treatment, 

and 1H-NMR analysis was performed to obtain a signature related to hypothyroidism in urine 

and plasma. We noticed that there is a strong discrimination was observed between 

hypothyroid and control groups. We noticed also that 24 and 17 metabolites vary in 

hypothyroid condition with respect to the non-treated group.  

 

When the Thra
S/+ and hypothyroidism metabolic signatures were compared, clear 

differences were obvious. Only 6 common metabolites variations were found in urine: 

increased level of hippurate, and decreased levels of acetate, citrate, succinate, dimethylamine 

and trimethylamine (Figure 5.3.7 A). In plasma, only 7 metabolites were shared between 

RTHα and hypothyroidism metabolic signatures. Both were characterized by a decrease in 

low density lipoprotein (LDL), very low density lipoprotein (VLDL), acetate, citrate, 

pyruvate, choline, phosphocholine and glucose (Figure 5.3.7 B).  

 

These results show that RTHα and hypothyroidism metabolic signatures present few 

similarities. The metabolic profiles recorded in urine and plasma could therefore potentially 

contribute to the specific diagnosis of RTHα, which is a rare disease, much less frequent than 

hypothyroidism. 
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Figure 5.3.7: Summary of key metabolites associated with Thra
S/+ 

and hypothyroid phenotypes. 

↑ : present in higher level compared to control group. ↓: lower ever compared to control group. 

Metabolites in red vary significantly in Thra
S/+ 

condition.  

5.4 Discussion  

The main objective of our study was to establish that metabolomic fingerprinting can be 

used as a diagnostic tool for a rare genetic disease, RTHα. Multivariate analysis of urine 
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spectra provides a metabolic fingerprint that enables to recognize mice carrying a pathological 

mutation in the Thra gene, relevant to the human genetic disease. By contrast, the method did 

not identify the presence of a weak allele, which has little consequences on the development 

and physiology, and has never been reported in humans. Also the method did not identify a 

single metabolite, which presence in urine or plasma would be the hallmark of RTHα. Its 

statistical power rather relies on the capacity to evaluate the concentrations of a large number 

of metabolites simultaneously.  

 

Considering that mouse Thra and human THRA genes display extensive sequence 

similarities, mouse lines with Thra mutations are highly relevant animal models for RTHα. 

We thus expect that 1H NMR can be used for RTHα diagnostic in humans. However, clinical 

implementation of this method would imply to address additional issues: first, the 

environment and genetic background of lab animals is highly controlled, and the body fluid 

composition is certainly more variable in human populations. Therefore, the predictive 

capacity of the method remains to be tested on a human cohort. Second, the interpretation of 

the metabolic signatures is not straightforward, and we thus cannot ascertain at this point that 

the underlying biochemical mechanisms are conserved in humans. In the following, we thus 

attempt to give hypothetical interpretations of the observed changes. 

 

One encouraging observation is that, although 1H NMR is instrumental to recognize 

hypothyroidism, privation of thyroid hormone provides a very different signature than Thra 

mutations. Our analyses show that, while Thra mutations and hypothyroidism may have a 

similar impact on glucose metabolism, they impact differently the plasma content in lipids 

and cholesterol. In particular, variations in the plasma content in fatty acids are in opposite 

direction. This is expected if one considers that liver, which secretes a large fraction of the 

lipids found in serum and urine, expresses Thrb at much higher level than Thra. Liver is thus 

expected to be more sensitive to changes in TH status than to Thra mutations. Studying both 

urine and plasma is also useful because they provide common and complementary 

information. For example, coordinated variations suggest that changes in urine reflect 

variations initially present in plasma, for creatinine, citrate and acetate and not an alteration of 

the renal function. 

 

Additional features of the metabolic signature can be tentatively interpreted in 

biochemical terms. Isovalerylglycine is a product of leucine degradation to acetyl-CoA, which 
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is an important feeder into the Krebs cycle165. A significant decrease in urinary level of 

isovalerylglycine, and the decrease in the levels of citrate, succinate and acetate may thus 

indicate a change in the degradation of leucine.  

Finally, the lower concentration of dimethylamine, trimethylamine, choline and hippurate 

observed in the urine of mutant mice and hypothyroid mice may reflect intestinal alterations. 

Gut microbial metabolism of choline, present in diet, leads to the production of 

trimethylamine, which, once absorbed, is metabolized to generate dimethylamine. Hippurate, 

is also synthesized by the gut microbiota and its decreased concentration in urine is a marker 

of bowel inflammation166. It is tempting to speculate that changes for these metabolites are 

direct or indirect consequences of the defect in the intestinal epithelium, reported in 

hypothyroid167 and Thra mutant mice117,168. Also providing a snapshot of only a fraction of 

metabolome, 1H NMR analysis of Thra mutant mice may thus be revealing changes in 

metabolic pathways and physiology, which are expected to be conserved in humans. 
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6. Functional	 genomics	 by	

metabonomics	 to	 study	 the	 thyroid	

hormone	receptor	β	

	

 

The previous chapters were dedicated to the application of metabolomics for biofluids 

analysis in order to discover biomarkers related to hormonal diseases (hypothyroidism, 

hyperthyroidism and RTHα). In this chapter, we propose to use metabolomics to address a 

specific biological question. Metabolomics has the potential to get insight into molecular 

mechanisms and metabolic pathways and can be used by biological studies as a strategy to 

read-out metabolism. Among model organisms, genetically modified organisms using 

knocking-in or knocking-out (KO) technologies can be viewed as functional genomic tools for 

which the study of the resulting altered phenotype can serve to elucidate the role of the 

protein products of the targeted genes. In this chapter, we provide a description of the impact 

of the regulation by thyroid hormone of liver metabolism using a mouse model that is 

characterized by a specific deletion of the gene encoding the thyroid hormone receptor β 

(TRβ) in hepatocytes, i.e. LTRβ-KO mice169. 

 

This project was started few years ago with another PhD student (A. Fages). The obtained 

results were very interesting, but a supplementary experiment done by another student from 

the laboratory then challenged one of the results. My work, in this project, was to repeat the 

same experiment to validate it, and extend the analysis to extract deeper information. This 

chapter contains a combination of the previous results and the new analysis. To improve the 

statistical analysis, larger groups for the liquid NMR analysis were used. This chapter 

describes in details results that were submitted recently for publication170. HR-MAS NMR 

experiments and their analysis were done exclusively by A. Fages.   
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6.1 Introduction  

TH regulates metabolism in a global manner, acting in the brain, white fat, brown fat, 

skeletal muscle, pancreas and liver. In the liver, the major TH receptor is TRβ1. Individual 

organs also respond to TH in an indirect manner, as TH can trigger various humoral 

responses, change the sensitivity of an organ to exogenous signals, and exert an important 

influence on the autonomous nervous system88,157. In vivo analysis of the metabolic function 

of TH is thus challenging, due to the intricate combination of multiple levels of regulation. 

 

Here we used metabolomics analyses of the hepatic metabolome by nuclear magnetic 

resonance (NMR) to gain a deeper understanding of the effect of TH on the mouse liver 

metabolism. This method proved to be well suited to analyze the hydrophilic fraction of the 

metabolome and identified novel liver metabolites sensitive to hypothyroidism and/or 

subsequent TH replacement. We also determined the metabolome modifications induced by 

the elimination of TRβ1 receptors selectively in mice hepatocytes using a Cre/loxP 

recombination strategy. Both intact tissues and hydrophilic fraction were investigated by 

NMR to characterize metabolic fingerprints for these TRβ1 KO mice with respect to wild-

type. By selectively eliminating TRβ1 from hepatocytes we were able to identify a subset of 

metabolites that are related to the direct influence of TH on this cell type.   
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6.2 Study design  

Thrβlox/lox mice171 were crossed to AflpCre mice172 to selectively eliminate TRβ1 from 

hepatocytes. The resulting mice are designated in the following as HepTRβ-KO mice. 

Littermates without Cre were kept as control. All mice were fed ad libitum and housed under 

recommended standard conditions for 3 to 5 months. TH deficiency in adult animals was 

induced by 14 days of propyl-thio-uracyl (PTU) treatment as described 173. For TH 

replacement, T3 treatment was performed for the last 4 days of PTU treatment using daily 

intraperitoneal injections (Figure 6.2.1). Liver biopsies were immediately flash-frozen after 

dissection in liquid nitrogen and subsequently stored at -80°C. Biopsies of the right lobe were 

used for metabolomics studies.  

 

 

                        

 

Figure 6.2.1: Representation of the protocol.  

Wild-type mice and LTRβ-KO mice underwent ten days of PTU treatment prior to four days of 

PTU+TH or PTU only in order to induce hyperthyroid phenotype (PTU-TH) and hypothyroid 

treatment (PTU), respectively.  

 

6.3 Results  

6.3.1 Untargeted NMR Metabolomics analysis of the liver response to thyroid hormone 

We attempted to gain a broad view of the liver metabolome for the four groups of 

mice (WT-PTU, WT-PTU+TH, TRβ-KO-PTU, and TRβ-KO-PTU+TH) by using 1H NMR 

spectroscopy by following two distinct experimental approaches. We used HR-MAS analysis 

day 0 day 10 day 14

Mice dissection

PTU PTU

PTU + TH

Hypothyroid phenotype
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of intact tissues, a direct method associated with minimal sample processing, as well as 

solution NMR investigation of aqueous liver extracts. HR-MAS NMR analysis enabled us to 

detect a range of lipophilic and hydrophilic low molecular weight metabolites, while the 

solution NMR data provided a high-resolution, though more indirect, picture of water-soluble 

metabolite extracted from liver tissues, allowing us to detect up to 40 hydrophilic metabolites. 

The extraction process has removed proteins and lipids. Representative metabolic profiles 

obtained using the two techniques are illustrated in figure 6.3.1. 

 

                  

 

Figure 6.3.1: Metabolites assignment 
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(A) 600 MHz 
1
H NOESY NMR spectrum of aqueous liver extract with metabolites assignment. The 

spectrum has been divided into two parts (from 0.5 to 4.7 ppm and from 5 to 9 ppm). (B) Typical 700 

MHz 
1
H NOESY HR-MAS NMR spectrum of mouse liver tissue with metabolites assignment. The 

spectrum has been divided into two parts (from 0.5 to 5.5 ppm and from 5.5 to 9 ppm).  

6.3.2 Impact of TH nuclear receptor on liver metabolism 

TRβ represents about 70 to 80% of thyroid hormone receptors in the liver, studying 

wild-type liver, and comparing PTU group to PTU+TH group provide information on the 

direct and indirect impact of TH on liver metabolism. Here we performed NMR analysis on 

aqueous liver extracts (1H liquid NMR) and intact liver (1H HR-MAS NMR).  

The O-PLS supervised model based on the 1H HR-MAS NMR spectra of liver tissue 

of the wild type mice shows a good discrimination between PTU and PTU+TH groups 

(Figure 6.3.2.A). The predictivity of the model is 0.58 and the explained variance is 0.76. The 

model is also well validated after resampling (data not shown). The metabolic signature 

associated with hyperthyroidism is represented by a relative decrease of the lipid content, 

phosphocholine, along with an increase of glucose in the liver (Figure 6.3.2.B). 

The analysis of the aqueous liver extracts gives further details of the systematic difference due 

to small hydrophilic metabolites. In agreement to what was observed by the analysis of the 1H 

HR-MAS NMR spectra of liver biopsies, we could discriminate PTU from PTU+TH 

treatment within wild type mice based on the analysis of metabolic profiles (Figure 6.3.2.C-

D). Based on the explained variance (89%) and the predictive variance (61%), the O-PLS 

model obtained from liver extracts seems to discriminate better the two treatments. But the 

information obtained from the two techniques are highly complementary.  

  

From these results, we were able to discriminate hypothyroid phenotype from 

hyperthyroid phenotype.  Metabolic fingerprints associated to this condition, which reflects 

the impact of TH on the liver metabolism, were identified in both aqueous liver extracts and 

intact liver tissue.  



	 92	

 

 

Figure 6.3.2: Discrimination between PTU and PTU+TH groups in aqueous liver extracts and 

intact liver.  

 (A) 
1
H HR-MAS spectra of liver tissue from wild-type mice. O-PLS-DA model discriminating PTU 

treatment from PTU-TH treatment with (N = 41, R
2
Y = 0.76, Q

2
 = 0.58). (B) The O-OPLS loading 

plot after SRV analysis and Benjamini-Hochberg multiple testing correction. The coloured spectral 

regions correspond to the statistically significant signals. (C) OPLS-DA model of the liver extracts of 

wild-type mice, discriminating PTU treatment from PTU-TH treatment with (N = 32, 1+4 

components, R
2
Y = 0.89, Q

2
 = 0.61, CV-ANOVA p-value = 0.01). (D) The corresponding OPLS-DA 

loading plot. Acetate (Ace), acetoacetate (Aca), alanine (Ala), anserine (Ans), choline (Cho), 

deoxyuridine (Deo), glutamate (Glu), glutamine (Gln), glycine (Gly), guanidoacetate (Gua), inosine 

(Ino), isocitrate (Iso), isoleucine (Ile), lactate (Lac), leucine (Leu), maltose (Mal), mannose (Man), 

methionine (Met), niacinamide (Nia), succinate (Suc), taurine (Tau), tyrosine (Tyr), UDP-glucose 

(UDP-Glc), valine (Val), α-glucose (α-Glc), β-glucose (β-Glc), N-acetylglucosamine (N-aga), 3-

hydroxybutyrate (3-hb). 

 

 

6.3.3 Impact of TRβ on liver metabolism 

To understand the metabolic function of TRβ in the liver, we studied the impact of TH 

on mice having a specific KO of TRβ in the liver (LTRβ-KO mice). This leads also to identify 

the indirect effect of TH on the liver metabolism.  
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The supervised statistical analysis of the 1H HR-MAS NMR spectra highlighted 

systematic variation between PTU and PTU-TH mice (Figure 6.3.3.A). While no significant 

variation identified from multiple univariate testing (after Benjamini-Hochberg correction), 

the global metabolic signature shows that TH treatment is associated with a relative decrease 

of glucose content and an increase of lipid content in the liver (Figure 6.3.3.B).  

These results are in agreement with the results obtained from the analysis of the aqueous 

extracts that also display a relative decrease of glucose in the PTU-TH group. Figure 6.3.3.C 

presents the O-PLS analysis of the liver extract. The explained variance and the predicted 

variance of the model are enhanced to 0.77 and 0.65, respectively. The metabolic signature 

also shows a relative increase of choline and AMP and a relative decrease of phosphocholine 

for mice that had undergone TH treatment compared to PTU treatment (Figure 6.3.3.D).  

 

 

 

Figure 4.4.3: The indirect effect of thyroid hormones on the liver metabolism. 

(A) 
1
H HR-MAS spectra of liver tissue from LTRβ-KO mice. O-PLS-DA model discriminating PTU 

treatment from PTU-TH treatment with (N = 42, R
2
Y = 0.74, Q

2
 = 0.5). (B) The corresponding OPLS-

DA loading plot. (C) OPLS-DA model of the liver extracts of LTRβ-KO mice, discriminating PTU 

treatment from PTU-TH treatment with (N = 33, 1+1 components, R
2
Y = 0.773, Q

2
 = 0.651, CV-

ANOVA p-value = 4.07.10
-6

). (D) The corresponding OPLS-DA loading plot. All these models are 

validated by resampling 1000 times. Acetate (Ace), acetoacetate (Aca), alanine (Ala), anserine (Ans), 

choline (Cho), deoxyuridine (Deo), glutamate (Glu), glutamine (Gln), glycine (Gly), guanidoacetate 

(Gua), inosine (Ino), isocitrate (Iso), isoleucine (Ile), lactate (Lac), leucine (Leu), maltose (Mal), 
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mannose (Man), methionine (Met), niacinamide (Nia), succinate (Suc), taurine (Tau), tyrosine (Tyr), 

UDP-glucose (UDP-Glc), valine (Val), α-glucose (α-Glc), β-glucose (β-Glc), N-acetylglucosamine (N-

aga), 3-hydroxybutyrate (3-hb).  

6.3.4 Summary 

If we compare the composition of the TH signature obtained from aqueous liver 

extracts in both wild type and LTRβ-KO mice, we notice that there are 20 common 

metabolites that vary in the same way (Table 6.1). This suggests that the activity of TH is 

maintained despite the absence of TRβ. So, there is an indirect effect of TH on liver 

metabolism.  

 

We notice a relative increase of the lipid content within hyperthyroid mice compared 

to hypothyroid mice. Besides the increase of energy expenditure associated with 

hyperthyroidism, liver of LTRβ-KO mice is no longer able to provide fuel through lipolysis or 

cholesterol release. This result strengthens the idea that in normal condition, the effect of 

lipolysis is stronger than the effect of lipogenesis. We also notice a relative decrease of 

glucose content within hyperthyroid mice. The action of TH on glucose metabolism in the 

liver is complex and includes stimulation by a direct action of TH on the liver but also 

probably by an indirect effect of TH through the sympathetic nervous system.  
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Table 6.1: Summary of metabolite variation in the different condition. 

 1
H liquid NMR of liver extracts 

1
H HR-MAS of intact liver tissue 

Metabolites T3 response wild-

type 

T3 response 

LTRβ-KO 

T3 response wild-

type 

T3 response 

LTRβ-KO 

Niacinamide ↑ ↑   

Inosine ↑ ↑   

Deoxyuridine ↑ /   

Glucose ↑ ↓ ↓ ↓ 

Taurine ↑ ↑   

Succinate ↑ ↑   

Alanine ↑ ↑ ↓ ↑ 

Lactate ↑ ↑   

Leucine ↑ ↓   

AMP ↓ ↓   

ADP ↓ ↓   

NAD/NADP+ ↓ ↓   

UDP-Galactose/UDP-

Glucose 

↓ /   

Glutathione ↓ ↑   

Phosphocholine, choline ↓ ↓ ↑ ↓ 

Isocitrate ↓ ↓   

Hydroxybutyrate ↓ ↑   

Isoleucine ↓ ↓   

Valine ↓ ↓   

Acetate ↓ ↑  ↓ 

Guanidoacetate ↓ ↑   

Methylhistidine ↓ ↓   

Glutamine ↓ ↓   

Glycine ↓ ↓   

N-acetylglucosamine ↓ ↓   

Tyrosine ↓ ↓   

Maltose ↑ ↑   

Betaine ↓ ↓   

Mannose ↑ /   

Acetoacetate ↓    

Glutamate / ↑   

Anserine   ↓  

Glycogen    ↓ 

Methionine   ↓  

Lipids   ↑ ↑ 
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6.4 Conclusion  

In the present study we used 1H HR-MAS of unprocessed liver biopsies and NMR of 

liver aqueous extracts for a global and unbiased analysis of the metabolomic consequences of 

eliminating TRβ1 from hepatocytes. 

  

We expected that the elimination of TRβ1 from the hepatocytes would abrogate the 

liver response to T3. Surprisingly, although the metabolic signature to T3 was modified and 

the changes induced by T3 of generally of lesser amplitude as compared to controls, the 

response remained significant. The residual response of HepTRβ-KO mice could have 

different sources. The first possible explanation would be that it reflects the response of non-

hepatocyte cell types, which represent 20% of the liver cell mass, and in which both TRα1 

and TRβ1 could be present. The second possibility would be that hepatocytes have enough 

TRα1 to mediate a significant response. Thra gene expression is very low in adult mice liver, 

and previous transcriptome analyses concluded that Thrb knock-out, but not Thra knock-out, 

alters the liver response to T396,174,175. More targeted approaches also concluded that only 

TRβ1 is required for the T3 response of hepatocytes176,177. However, the combination of both 

Thra and Thrb mutations seems to aggravate the liver phenotype, leaving open the possibility 

that TRα1 can partially compensate for the absence of TRβ1 after Thrb knock-out96. While 

these mutations are not restricted to hepatocytes, and might thus affect liver function in a very 

indirect manner, Cre/loxP recombination has already been used to restrict to hepatocytes the 

expression of a Thra mutant encoding the dominant-negative TRα1L400R receptor. This 

selective alteration appeared sufficient to reduce the expression of the genes encoding 

pyruvate kinase and phosphoenolpyruvate carboxykinase, which should notably impact 

hepatic neoglucogenesis178. Overall, the possibility exists that TRα1 fulfills a specific function 

in hepatocytes. Finally the residual metabolomics response of the HepTRβ-KO liver might 

reflect a T3 response-taking place outside of the liver. One important pathway has been 

identified, which involves a T3-dependent sympathetic stimulation of the liver while 

stimulates hepatic glucose production75. It can be hypothesized that this pathway is important 

to control blood glucose and triglyceride concentration. As TH normally controls several 

aspects of glucose and glycogen metabolism, a combination of cell-autonomous and distant 

regulations could explain why the glucose content of liver is decreased by hypothyroidism in 

control mice and paradoxically increased in HepTRβ-KO mice.  
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Our metabolomic analysis provides a static view of liver metabolism. Therefore 

interpreting our data in terms of metabolism should thus be made with caution. It also 

provides a partial of the metabolome, as lipids, which metabolism is highly sensitive to T3 

cannot be precisely analyzed. For example, we observed significant changes in acetate and 

hydroxybutyrate content, two molecules that are key elements of fatty acids metabolism, and 

these changes should probably correlate with changes in fatty acid composition. Only few of 

the changes in liver metabolites content caused by the thyroid hormone status are clearly 

altered in HepTRβ-KO mice and thus reflect the cell-autonomous influence of TRβ1. This 

allows to distinguish two categories of metabolites: for choline, glutamine, glutathione, 

glycine, guanidoacetate the liver content differ between HepTRβ-KO and control liver only 

when mice are made hypothyroid. By contrast for in leucine, isoleucine, succinate and valine, 

only the TH response of hypothyroid HepTRβ-KO mice is clearly blunted. This distinction 

between metabolites parallels the conclusion of transcriptome studies, which showed that 

some metabolic genes are more sensitive to the negative regulation exerted by the unliganded 

TRβ1, while others are not sensitive to hypothyroidism but quickly upregulated after T3 

treatment96.  

 

The decrease of glutathione observed in response to T3 has been reported before179. It 

is likely to reflect a T3-induced oxidative stress {Mancini, 2016 #11488}, and increased 

glutathione consumption180. The presence of AMP and succinate in the metabolic signature of 

T3 response is also compatible with an increase in metabolic rate, succinate and ATP 

consumption reported before181. The presence of branched chain amino acids (leucine, 

isoleucine, valine) among these metabolites is a novel information which interpretation will 

require deeper investigation. It is noticeable that a recent metabolomic study in which an 

excess of TH was given to healthy subjects also identified an increase of leucine and 

isoleucine content in the serum158. A urine metabolome analysis also found a positive 

correlation between the circulating level of T4 and the urinary content in glycine and alanine 

in euthyroid subjects182. A unifying hypothesis would be that the release of branched amino-

acids reflects an increase in protein catabolism.   
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Conclusion	and	perspectives	

 

Metabolomic is a comprehensive technique that allows capturing an instant metabolic 

picture of an organism, reflecting molecular and pathophysiological states. Metabolic profiles 

are sensitive to environmental factors, genetic, diseases lifestyle and pathophysiological 

stimuli, making metabolomics as a promising tool to identify disease biomarkers and to get 

insight into metabolism to address specific fundamental biological questions.  

 

In this thesis, untargeted 1H NMR-based metabolomics was applied to study the 

emerging genetic disease RTHα, for which absence of biochemical markers and specific 

symptoms make it hard to diagnose. RTHα features present common features with 

hypothyroidism. By studying both urine and plasma collected from dedicated mice models for 

RTHα and hypothyroidism, we were able to identify metabolic fingerprint related to 

hypothyroidism and RTHα, and differentiate them. Our results suggest that 1H NMR of body 

fluids might be able to recognize a metabolic signature of RTHα in humans. These findings 

could be the starting point for further investigations aimed at translating these results into 

clinical practice with carefully designed and controlled prospective studies. Metabolomics 

could be used in the near future as a systematic, cheap, and automatic analysis of the urinary 

metabolome at birth, which would detect many common or rare diseases including RTHα. 

 

Studying both urine and blood plasma is highly useful because they provide common 

and complementary information. The difference between the two biofluids is that blood 

analysis provides information about lipids, lipoproteins and glucose metabolisms. While, 

urine analysis gives an idea about kidney function and gut microbial state, for example. A 

number of issues should be addressed before clinical implementation of 1H NMR for RTHα 

diagnostic: first of all, the plasma and urine metabolome are downstream readouts of complex 

physiological processes, which are different in humans and rodents. Second, the environment 

and genetic background of lab animals is highly controlled, and the body fluid metabolomes 

are certainly more variable in human populations. Performing this study on patients is 

primordial to complete and validate our findings. However, the majority of RTHα patients are 

treated with thyroid hormone, which improve their condition, and this can skew the study. 
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These different factors must be taken into account for the further and additional studies in 

humans. Pr. K. Chatterjee, director of Cambridge clinical centres, who discovered the first 

RTHα case, owns urine samples of RTHα patients. Collaboration between the two 

laboratories is foreseen in the near future to carry out new investigations on RTHα human 

samples.  

 

We also used NMR-based metabolomics to investigate mouse model to gain a deeper 

understanding of impact of thyroid hormones and TRβ nuclear receptor loss of function on 

the liver metabolism. Both intact liver tissues and hydrophilic liver fraction were investigated. 

We were able here to identify a subset of metabolites that are related to the influence of TH 

on the liver metabolism. We would have liked to perform a lipidomic study to understand the 

roles of lipids in our biological question, but our technical tools limited us because it needs 

specific methodologies. The new advances in analytical technologies, in particular, the 

development of new MS, chromatographic and of course NMR tools183 for the 

characterization and quantification of the wide array of diverse lipid species in the cellular 

lipidome45,184 are nowadays very interesting.  

 

Metabolomics is certainly a promising tool to understand biological processes, and 

identify diseases biomarkers, but bias can be easily inserted in the different steps (study 

design, sample collection and preparation, statistical analysis, data interpretation, etc.).  On 

the other hand, metabolites assignment is a very delicate step because we need to be sure that 

a specific peak is referred to a specific metabolite. The situation is further complicated by 

peak shifts and overlaps typical in the spectra. Identification is time consuming because it 

requires the use of 1D and 2D spectra and different reference databases to assign peaks. In 

addition, in reference databases, many NMR peaks are not assigned to metabolites. This is an 

active research area, where improvements in metabolite identification, in particular its 

automation, are underway, and they will considerably reduce the needed time for this 

fastidious task.  

 

Most of the untargeted studies show the ability of metabolomics to distinguish 

between disease and healthy control cohorts. However, only few studies follow up to replicate 

and validate their discoveries in accordance with clinical performance standards. Biomarker 

identification represents only the starting point in the translation from discovery phase to 

clinical diagnostics. The interpretation of the obtained metabolic signature is a very delicate 
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step. Combination of genomics, transcriptomics, proteomics and metabolomics and other 

disciplines can be a formidable technological resource to further expand our knowledge of the 

complexities of human diseases. 

 

This thesis allows a deeper understanding of three different diseases (hypothyroidism, 

hyperthyroidism and RTHα) and the impact of thyroid hormone on the global system and on 

liver metabolism. It also contributes to identify a specific metabolic signature of the emerging 

genetic disease resistance to thyroid hormone receptor RTHα, which is a first step to facilitate 

its diagnosis in humans.  
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Appendix 1  

Clinical features of RTHα identified patients.  
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TRα mutation 
position 

Patient Symptoms Remarks Refer
ences 

E403X Female 
child, age 
6 years 
 

• Growth retardation 
• Developmental 

retardation 
• Delayed bone 

development  
• Severe constipation. 
• Low heart rate 
• Low blood pressure  
• Borderline-abnormal 

thyroid hormone levels 

Thyroxine treatment was 
commenced at the age 6 
years  

102 

E397fs406X Female 
child, 
11 years 
 
 

In the first 3 years: 
 

• Macroglossia 
• Omphalocele 

Congenital hip 
dislocation 

• No hip ossification 
centers 

• Delayed closure of skull 
sutures 

• Delayed tooth eruption 
• Delayed motor 

development  
• Low serum levels of 

free T4  
• High levels of T3 

Normal levels of TSH  
 

At the age of 11: 
 

• Delayed bone 
development 

• Macrocephaly  
• Delayed motor 

development 
• Short stature  
• Dry skin and hair 
• Slow deep tendon 

reflexes 
• Slow reactions and 

drowsiness 
• Severe constipation 

 

Her father (47 years of 
age) has the same 
mutation and similar 
phenotype (short stature, 
thyroid function tests and 
constipation, mild 
cognitive deficit) and high 
cholesterol level  
 
Thyroxine treatment had 
improved her condition 
and the condition of her 
father  
 

103 

A263V A 60-year-
old woman 

• Large head 
circumference  

• Normal stature (mild 
parental height) 

• Skin tags 
• Dysarthric speech 
• Low ratio of T3 
• Anemia 

Two sons (30 and 26 
year-old) with the same 
features. The third son is 
unaffected 
 
The same mutation is 
found in TRα2. 
 
She was treated with 
thyroxine 

105 

R384C   Detected after whole 
genome sequencing in 
human autism spectrum  
 

106 
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This amino acid change is 
almost certainly 
pathogenic 
 
Mice model were 
investigated 

N359Y A 27-year-
old female 
 

• Congenital macrocytic 
anemia 

• Severe bone 
malformation 

• Growth retardation 
• Dwarfism 
• Clavicular agenesis 
• Abnormalities of the 

fingers and toes 
• Elbow joints 
• Chronic motor diarrhea 
• Hypercalcemia 
• Lower TSH 
• Higher FT3 levels 

 

TR1 and the non-receptor 
isoform TRα2 affected 
 
This case differs from 
previous reported cases of 
RTHα. 
 
This phenotype is not only 
the result of TRα 
mutation. Other mutations 
were found in her 
genome. 

110 

C380fs387X Female child First evaluation at the age of 

16 months:  
• Can not control her 

head until the age of 8 
months (normal < 2 
months) 

• Not able to sit at 16 
months (normal < 8 
months) 

• No teeth eruption 
(normal at 13months) 

• Constipation 
• Horse sounding cry 
• Coarse facies 
• Macroglossia 
• Umbilical hernia 
• Normocytic anemia 
• Normal TSH 
• Low FT4 
• High T3 
• Normal TSH response 

to TRH 
 
At the age of 2 years: 
 

• Treatment with 
thyroxine 

 
• Sitting occurred at 26 

months 
• Resolution of umbilical 

hernia at 3 years 
  
At the age of 12, 7 years 

 

• Severely handicapped 
• Not able to walk 

Her parents are not 
affected 

107 
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• Mild scoliosis 
• Severe defects in 

growth, mental, and 
motor development 

 
A263S 7 patients 

from the 
same family  

First evaluation at the age of 

13 months  
• Because of frequent 

infections.  
• Low FT4 
• Normal FT3 and TSH 
• Delay in tooth eruption 
• Constipation 

 
Second examination at the age 

of 2 years and 7 months 

• Mild growth retardation  
• Mild clinical features 
• Mildly increased head 

circumference 
• TSH levels were normal 
• Serum free T3 ranged 

from high-normal to 
high and serum free T4 
and rT3 from normal to 
low 

 

One of his two older 
sisters is affected (mild 
growth retardation) 
 
Two of his three cousins 
are affected  
 
Constipation is the 
common feature between 
these family members. 
 
Low/borderline low 
hemoglobin level in six of 
the seven affected 
subjects but in none of the 
unaffected relatives 
 

R384H 
 

Male child  At birth 

 

• Macroglossia 
 

First evaluated at the age of 8 

months  

 

• High FT3, low FT4, and 
a normocytic 
normochromic anemia 
were detected 

• High head 
circumference 

• Bone age corresponded 
to 6 months 

• Cognitive ability 
moderately impaired 

• Motor development 
severely impaired 

• Serum free T3 ranged 
from high-normal to 
high and serum free T4 
and rT3 from normal to 
low 

 

The child and his mother 
are affected 

35-year-old 
mother 

In adulthood  

 

• Constipation  
• Slow speech  
• Borderline intellectual 

functioning 
• Impaired executive 

Her parents were not 
affected 
 
A mice model were 
developed  
(Results: impairment of 
postnatal development 
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functioning 
• Mild deficits in memory 
• Elevated serum T3 and 

T3 to rT3 ratio 
• Mild anemia 

 

and growth) 
 

A263V 17 year-old 
male 

In infancy  

 

• Small umbilical hernia 
• Slow movements 
• Walked at 24 months (< 

12 months) 
 
In childhood 

 

• Problems with 
coordination: inability 
to use stairs, hop, use a 
ball, tie shoelaces (until 
11 years of age) 

• Delayed dentition 
• Delayed puberty at 16 

years of age 
• Neurodevelopmental 

delay Skeletal dysplasia  
• Growth retarded 

 
 
In the age of 17 

 

• Macrocephaly 
• Delayed dentition 
• Constipation, 
• Subnormal 

T4/triiodothyronine 
(T3) ratio and low 
reverse T3 levels 

• Mild anemia 
• Increased head 

circumference 
• Mild neurocognitive 

impairment 
 

Both TRα1 and TRα2 
proteins are affected 
 
Healthy parents  
 

 

L274P 15-year-old 
male 

 

• Umbilical hernia 
• Sat at 12 months 
• Walked at two and a 

half years Significant 
speech delay 
Dysmorphic facies 

• Truncal hypotonia 
• Delayed dentition 
• Myopic astigmatism 
• Genu valgum 
• Ankyloglossia 
• Skeletal dysplasia 
• Macroglossia 
• Skin tags 

TRα1 and α2 proteins 
 

108 
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• Increased head 
circumference  

• Constipation. 
• Persistent learning 

disability 
• Short stature 
• Subnormal 

T4/triiodothyronine 
(T3) ratio, low reverse 
T3 levels,  

• Mild anemia 
 

Hypothyroidism  • Patent cranial sutures 
• Delayed dentition 
• Femoral epiphyseal 

digenesis (disordered, 
endochondral 
ossification)  

• Wormian bones 
(disordered, 
intramembranous 
ossification) 

 
• Flattened nasal bridge 
• Slow-transit 

constipation with 
colonic dilatation 

• Ileus  
• Delayed bone age in 

childhood Adult short 
stature 

 

 148 
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Appendix 2 

 

Metabolites identified from 1D and 2D NMR profiles of mice urine.  

 
ID Metabolite 

1
H [ppm] 

13
C [ppm] Multiplicity  

1 1-Methylhistidine 3,03 30,85   

3,18 31,01 m 

3,69 36,24 s 

3,94 56,58 dd 

7,00 122,70 s 

7,67 144,85   

2 1-methylicotinamide 4,47 51,48 s 

8,18 131,27 m 

8,96 150,37 m 

9,27 148,13 m 

3 2-oxoglutarate 2,44 33,67 t 

3,00 38,54 t 

4 3-Indoxyl sulfate 7,19  m 

7,27 125,04 m 

7,35 119,26 s 

7,54 114,82 d 

7,69 120,44 d 

5 3-hydroxybutyrate 1,18 24,60 d 

2,30   dd 

2,39   dd 

4,14 68,54 m 

6 3-hydroxyisovalerate 1,26 30,83 s 

2,35 52,28 s 

7 Acetate 1,91 26,19 s 

8 Acetoacetate 2,28 32,20 s 

3,46 55,91 s 

9 Alanine 1,48 19,05 d 

3,78 53,61 q 

10 Allantoin 5,38 66,28 s 

6,05  s 

11 Betaine 3,25 56,17 s 

3,89   s 

12 Butyrate 0,90  t 

1,55  m 

2,14  t 

13 Choline 3,19   s 

3,51 70,57   

4,06 58,89 m 

14 Cis-aconitate 3,10 46,36 s 

5,68 126,82 d 
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15 Citrate 2,51 48,39 d 

2,67 48,30 d 

16 Creatine 3,03 39,93 s 

3,92 56,83 s 

17 Creatinine 3,03 33,16 s 

4,04 59,26 s 

18 Dimethylamine 2,71 37,59 s 

19 Dimethylglycine 2,91 46,51 s 

3,71 62,81 s 

20 Formate 8,45 151,19 s 

21 Fumarate 6,51 138,00 s 

22 Glutamine 2,12  m 

2,46  m 

3,76  t 

23 Glycine 3,55 44,57 s 

24 Glycolate 3,95 63,27 s 

25 Guanidoacetate 3,79 47,58 s 

26 Hippurate 3,96 46,67 d 

7,54 131,87 m 

7,63 135,22 m 

7,82 130,02 dd 

8,55  s 

27 Isovalerylglycine 0,92 23,51 d 

2,03 28,76 m 

2,17 47,72 d 

3,75 46,27 d 

7,96   s 

28 Lactate 1,32 22,80 d 

4,10 71,64 q 

29 Leucine 0,92 23,51 d 

0,94 23,99 d 

1,66 27,24 m 

30 Malate 2,36  dd 

2,66  dd 

4,29  dd 

31 Methylamine 2,59   s 

32 Methylguanidine 2,82 30,17 s 

33 N-acetylcholine 2,14   s 

3,21   s 

34 N-acetylglucosamine 2,05 25,05 s 

2,06  s 

8,08  d 

8,18  d 

35 N-acetylglycine 2,03 24,95   

3,77 46,07   
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36 Phenylalanine 3,10 39,62 q 

3,25 38,45 dd 

7,34 132,04 d 

7,35 130,33 m 

7,42 131,81 m 

37 Phosphocholine 3,21 56,94 s 

3,60 68,43 m 

4,14 60,05 m 

38 Succinate 2,39 37,05 s 

39 Taurine 3,25 50,57 t 

3,41 38,38 t 

40 Trigonelline 8,89 146,93  

9,11  s 

41 Trimethylamine 2,85 45,66 s 

42 Tryptophan 3,48 31,73 dd 

4,04 57,14 dd 

7,49 115,04 d 

7,19 122,56 m 

7,26 125,31 m 

43 Tyrosine 3,05 38,01 dd 

3,19   dd 

3,94 59,65 q 

6,88 118,79 d 

7,18 133,70 d 

44 Urea 5,8  s 

45 Valine 0,98 19,5 d 

1,03 20,76 d 

2,26 31,9 m 

3,6 63,34 d 
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Appendix 3 

Metabolites identified from 1D and 2D NMR profiles of mice blood plasma.  

 

ID Metabolite 
1
H [ppm] 

13
C [ppm] Multiplicit

y  

1 3-Hydroxybutyrate 1,19 24,3 d 

2,29   q 

2,4   q 

4,15   m 

2 Acetate 1,91 26,1 s 

3 Acetoacetate 2,27 32,2 s 

3,43 56,2 s 

4 Alanine 1,47 18,89 d 

3,78 53,1 q 

5 Allantoin 5,39 66,27 s 

6 Betaine 3,25 56,29 s 

3,89  s 

7 Choline 3,19 42   

4,4 56,5   

8 Citrate 2,53 48,7 d 

2,68 48,71 d 

9 Creatine 3,03   s 

3,92   s 

10 Creatinine 3,04  s 

4,05  s 

11 Formate 8,45   s 

12 Fumarate 6,51 138 s 

13 β-glucose 3,24 76,78 dd 

3,4 72,2 dd 

3,46 78,37 m 

3,49 78,4 t 

3,9 63,3 dd 

4,64 98,5 d 

14 α-glucose 3,4 72,2 q 

3,54 74 dd 

3,71 75,3 t 

3,72 63,4 dd 

3,76  m 

3,82 74 ddd 

3,85 63,1 m 

5,23 94,5 d 

15 Glutamine 2,11 29,5 m 

2,43 33,5 m 

2,46   m 

3,77 57 t 

16 Glycine 3,54 44,5 s 

17 Histidine 7,05   s 
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7,87   s 

18 Isoleucine 0,92  t 

1  d 

19 Lactate 1,32 22,7 d 

4,1 71 q 

20 Leucine 0,94  d 

0,96  d 

1,71  m 

21 Lipids (mainly LDL) 0,84 16,4 m 

22 Lipids (mainly VLDL) 0,86 23,4 m 

1,25 34,3 m 

1,55 27,35 m 

23 Lipids 0,93 27,3 m 

1,26 25 m 

1,7 29 m 

2,22 36,3 m 

2,7 27,8 m 

24 Methionine 2,12  s 

25 O-Phosphocholine 3,19   s 

26 Phenylalanine 3,12  q 

7,32  m 

7,37  m 

7,42  m 

27 Pyruvate 2,37   s 

28 Succinate 2,39  s 

29 Threonine 1,325   d 

3,61   d 

4,24   m 

30 Trimethylamine 2,88  s 

31 Tyrosine 6,89   m 

7,19   m 

32 Urea 5,73   

33 Valine 0,98 19,2 d 

1,035 20,5 d 

3,6 63,2 d 
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Appendix 4  

 

Metabolites identified from 1D and 2D NMR profiles of mice liver aqueous extracts.  

	

	

ID Metabolite 
1
H [ppm] 

13
C [ppm] Multiplicity  

1 3-Hydroxybutyrate 1,2 24,45 d 

2,314 49,23 m 

2,414 49,23 m 

4,16 65,5 m 

2 Acetate 1,91 25,97 s 

3 Acetoacetate 2,27 32,26 s 

3,43 56 s 

4 ADP 4,15 83 m 

4,16 65,4 m 

4,57 73,7 m 

5,94 87 m 

8,29 148,38 s 

8,54 140,4 s 

5 L-Alanine 1,48 19 d 

3,76 53,5 q 

6 AMP 4,01 66,2 dd 

4,36 87,14 dd 

4,5 73,3 dd 

6,12   d 

8,23 155 s 

8,58 142,6 s 

7 Aspartate 2,66 39 dd 

2,8 39,5 dd 

3,89 55 dd 

8 ATP 4,21 67,7 m 

4,28 67,78 m 

4,39 86,6 m 

4,5 73 m 

4,619 76,9 t 

6,14 89,27 d 

8,239 155,36 s 

8,528 142,5 s 

9 Carnosine 2,68 34,8 dt 

3,03 30,8 dd 

3,19 30,8 dd 

3,24 38,57 dt 

4,48 57,57 m 

7,09 119,87 s 
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8,1 137,4 s 

10 Choline 3,19 56,7 s 

3,5 70,15 dd 

4 58,5 ddd 

11 Creatine 3,02 56,43 s 

3,92 39,5 s 

12 Glucose 3,23 77 dd 

3,39 72,34 m 

3,45 78,57 m 

3,53 74,2 dd 

3,72 75,63 m 

3,82 74,14 m 

3,89 63,47 dd 

4,63 98,7 d 

5,22 94,93 d 

13 Glutamate 2,04 29,8 m 

2,12   m 

2,34 36,35 m 

3,75 57,64 dd 

14 Glutamine 2,12 29,28 m 

2,44 33,9 m 

3,76 57,23 t 

15 Glutathione 4,2 58 q 

3,78 57/46 m 

2,97 28,32 dd 

2,54 34 m 

2,15 29 m 

16 Histidine 3,16 30 dd 

3,23 30 dd 

3,98   dd 

7,09   d 

7,9   d 

17 Isoleucine 0,93 13,9 t 

0,99 17,36 d 

1,24 27 m 

1,45 27 m 

1,98 38,68 m 

3,66 62,5 d 

18 Lactate 1,32 22,9 d 

4,1 71,3 q 

19 Leucine 0,95 24 t 

1,7 42.5/26.7 m 

3,72 56,2 m 

20 Lysine 1,46 24 m 
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1,71 29 m 

1,89 32,6 m 

3,02 42 t 

3,74 57,45 t 

21 Methionine 2,16 32,7 m 

2,63 31,58 t 

3,85 56,8 dd 

22 N-Acetylcysteine       

23 N-Acetylglutamate 4,1 58,14 m 

2,22 36,8 t 

2,05   m 

2,02 24,75 s 

1,87 31,2 m 

24 NAD+       

25 Niacinamide 7,58 126,8 dd 

8,24 139,3 dd 

8,7 154,5 dd 

8,92 150,4 s 

26 O-Acetylcarnitine 2,13 23,2 s 

2,48 42,8 dd 

2,61 42,8 dd 

3,18 56,4 s 

3,61   d 

3,82 70,7 dd 

5,57 69,5 q 

27 O-Phosphocholine 3,21    s  

28 O-Phosphoethanolamine 3,24 43,35 td 

4,01 63 t 

29 Phenylalanine 3,19   m 

3,98 59 dd 

7,32 132,12 d 

7,36 130,42 m 

7,42 132,8 m 

30 Sarcosine 2,73 35,6 s 

3,6 53,5 s 

31 Succinate 2,39 36,8 s 

32 Taurine 3,25 50,37 t 

3,42 38,3 t 

33 Trimethylamine N-oxide 3,25 62,2 s 

34 Tyrosine 3,02 38,27 dd 

3,17 38,27 dd 

3,92 59 dd 

6,87 118,9 m 

7,17 133,5 m 
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35 Valine 0,98 19,4 d 

1,03 20,75 d 

2,26 31,9 m 

3,6 63,35 d 

36 N-Methylhistidine 7,92 141,14 s 

7,05 127,2 s 

3,93 56,2 dd 

3,7 34,5 s 

3,24 27,6 m 

	
 

 

	


