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ABBREVIATIONS

APT Attosecond Pulse Train
ATI Above Threshold Ionization
CCD Charge Coupled Device
CFT Cumulative Fourier Transform
CM Cooper Minimum
COLTRIMS Cold Target Recoil Ion Momentum Scpetroscopy
EWP Electron Wave Packet
FAB Femtosecond-Attosecond Beamlines
FROG Frequency Resolved Optical Gating
FT Fourier Transform
FWHM Full Width at Half Maximum
GVD Group Velocity Dispersion

HE-
TOPAS

High Energy Tunable Optical Parametric Amplifier

HHG High Harmonic Generation
IAP Isolated Attosecond Pulse
IR Infra-Red
LDA Local-Density Approximation
MBES Magnetic Bottle Electron Spectrometer
MCP Micro Channel Plate
MCHF Multi-Configuration Hartree-Fock
MIR Middle Infra-Red
OPA Optical Parametric Amplifier
PECD PhotoElectron Circular Dichroism
PLFA Plateforme Laser Femtoseconde Accordable

RABBIT Reconstruction of Attosecond harmonic Beating by Interference of
Two-photon Transitions

RPA Random Phase Approximation
RPAE Random Phase Approximation with Exchange
RRPA Relativistic Random Phase Approximation
SFA Strong Field Approximation
STFT Short Time Fourier Transform
TDLDA Time-Dependent Local-Density Approximation
TDSE Time Dependent Schrödinger Equation
TSI Two Sources Interferometry
VMI Velocity Map Imaging spectrometer
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Abbreviations

VUV Vacuum Ultra-Violet
WV Wigner-Ville
XUV eXtreme Ultra-Violet
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ABSTRACT

The interaction of intense laser pulses with atomic and molecular gases results in
exceptionally short bursts of XUV light, through the process of high-order harmonic
generation of the fundamental laser frequency. This ultrashort radiation, in the at-
tosecond (10−18 s) range, allows detailed investigations of ultrafast electron dynam-
ics in matter. The work of this thesis consists in studying the photoionization delays
close to different types of resonances, using the Rainbow RABBIT technique. This
is a two-color interferometric technique (XUV + IR) that allows access to the time
required for the electron to escape the atomic potential with high resolution. We are
particularly interested in two cases: i) autoionizing resonances which are spectrally
narrow (tens of meV) and ii) Cooper-type minima which have a spectral width of
some eV. The effect of these continuum structures on the corresponding ionization
dynamics is studied.

More specifically, we investigate the sp2+ and sp3+ autoionizing resonances in he-
lium and the 3s4p autoionizing resonance in argon. In the case of helium, we intro-
duce different time-frequency representations of the emitted electron wave packet
(EWP) such as the Gabor and Wigner representations that give more insight into
the corresponding ionization dynamics. Moreover, tuning the driving laser allows
us to excite simultaneously the two above-mentioned resonances in a coherent way
and thus to create a complex two-electron wave packet, whose complicated dynam-
ics is reconstructed. In the case of argon, Rainbow RABBIT allows us to resolve the
spin-orbit (s-o) splitting (180 meV) in the measured spectral amplitude and phase
of the resonant EWP. Furthermore, we isolate the two S-O contributions by imple-
menting a numeric technique, allowing the reconstruction of the temporal buildup
of the 3s4p resonance for the J=3/2 component.

The Cooper minimum (CM) in argon is then investigated, where we measure the
difference in ionization delays between electrons emitted from the 3s and 3p shells
over a large energy range (up to 68 eV) for the first time. Our measurements reveal
a previously unknown change of sign of the 3s-3p delay at 41 eV, just on the edge
of the spectral region of the CM in the 3s channel. A maximum delay difference
is obtained at 47 eV, position of the 3p CM. These experimental results are com-
pared with different theoretical models that predict widely conflicting results, in
particular in the 3s CM that is due to inter-shell correlation, and is thus particularly
difficult to simulate accurately. Our measurements thus provide stringent tests for
advanced theories describing electron correlation effects.
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SYNTHÈSE

L’interaction de puissantes impulsions laser avec des gaz atomiques ou molécu-
laires entraîne l’émission de flashs exceptionnellement brefs de lumière dans
l’extrême ultraviolet (XUV) grâce au processus de génération d’harmoniques
d’ordre élevé (GHOE) de la fréquence laser fondamentale. Ce rayonnement ultra-
bref, dans la gamme attoseconde (10−18 s), permet des investigations détaillées de la
dynamique électronique ultra-rapide dans la matière. Le travail de cette thèse a con-
sisté à étudier les délais de photoionisation au voisinage de différents types de ré-
sonances, en utilisant la technique Rainbow RABBIT. Il s’agit d’une technique inter-
férométrique à deux couleurs (XUV + IR) qui permet d’accéder au temps nécessaire
à l’électron pour s’échapper du potentiel atomique avec une haute résolution. Nous
nous intéressons particulièrement à deux cas: i) les résonances auto-ionisantes spec-
tralement étroites (dizaines de meV) et ii) les minima de type Cooper ayant une
largeur spectrale de quelques eV. L’effet de ces structures du continuum sur la dy-
namique d’ionisation correspondante est étudié.

Plus précisément, nous étudions les résonances auto-ionisantes sp2+ et sp3+ dans
l’hélium et la résonance auto-ionisante 3s4p dans l’argon. Dans le cas de l’hélium,
nous introduisons différentes représentations temps-fréquence du paquet d’ondes
électroniques (POE) émis, telles que les représentations de Gabor et de Wigner, qui
permettent de mieux comprendre la dynamique d’ionisation correspondante. De
plus, l’accordabilité du laser fondamental nous permet d’exciter simultanément les
deux résonances susmentionnées de manière cohérente et de créer ainsi un paquet
d’ondes à deux électrons, dont la dynamique complexe est reconstruite. Dans le
cas de l’argon, Rainbow RABBIT nous permet de résoudre la séparation spin-orbite
(180 meV) dans l’amplitude spectrale et la phase mesurées du POE résonant. De
plus, nous isolons les deux contributions spin-orbite en mettant en œuvre une tech-
nique numérique, permettant la reconstruction de la dynamique temporelle de la
résonance 3s4p pour la composante J = 3/2.

Nous étudions ensuite le minimum de Cooper (CM) dans l’argon, où nous
mesurons la différence de retards d’ionisation entre les électrons émis par les
couches 3s et 3p sur une large gamme d’énergie (jusqu’à 68 eV) pour la première
fois. Nos mesures révèlent un changement de signe du retard 3s-3p à 41 eV aupar-
avant inconnu, juste au bord de la région spectrale du CM dans le canal 3s. Une
différence de retard maximale est obtenue à 47 eV, position du CM 3p. Ces résultats
expérimentaux sont comparés à différents modèles théoriques, qui prédisent des
résultats très contradictoires, en particulier dans le CM 3s, en raison de la corréla-
tion inter-couches, qui est particulièrement difficile à simuler avec précision. Nos
mesures fournissent ainsi des tests sévères pour les théories avancées décrivant les
effets de corrélation électronique.
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CHAPTER 1

INTRODUCTION

This thesis is dedicated to the study of ionization dynamics, meaning the move-
ment of electrons as they escape their parent atom after interaction with light and
the subsequent rearrangement of the electronic cloud. Monitoring these processes
can give us insight into information about the atomic structure as well as features
like resonances, electron-electron interaction and so on. In order to access these in-
formation we use pump-probe techniques such as the RABBIT method where we
use XUV light to pump the system and then IR pulses to probe and record the
induced dynamics. The idea behind the operating principle of this type of sophisti-
cated experiments can be compared to chrono-photography.

In Figure 1.1 (a) there is one of the first photos of Paris, taken by Louis Daguerre
in 1838, showing Boulevard du Temple. Even though, it is a quite busy street, the
photo shows only two men near the bottom left corner, where one of them ap-
parently is having his boots polished by the other. This is of course due to the

Figure 1.1: (a) Paris by Louis Daguerre (1838), (b)Flapping heron by Étienne-
Jules Marey (around 1870), (c) Helium absorption spectrum with Fano resonances
(1996 [Domke et al., 1996]), (d) Temporal reconstruction of the sp2+ Fano resonance
in helium (2016 [Gruson et al., 2016a]).
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fact that the exposure lasted for several minutes and thus the moving traffic left
no trace on the photographic film, while the two men remained in one place long
enough to be visible. Around 30 years later the british photographer Eadweard
J. Muybridge and french physiologist Étienne-Jules Marey, introduced the idea of
chrono-photography. There by using an ’ultra-fast’ shutter, thus smaller exposure
time, they were able to record the movement of a flapping heron as shown in Fig-
ure 1.1 (b). In their case ’ultra-fast’ meant anything the human eye could no longer
resolve, i.e. milliseconds (1× 10−3s).

In the same spirit, Figure 1.1 (c) shows the absorption spectrum of helium in a syn-
chrotron experiment where a family of Fano resonances is visible. This is a static
picture that shows only the last step/result of the autoionization process which is
these asymmetric -non Lorentzian line shapes. On the other hand in Figure 1.1 (d)
one can see the ’chrono-photography’ of the first of these resonances and its build-
up in time, which reveals the dynamics behind it. The ’exposure time’ for this photo
is now only some hundreds of attoseconds (1× 10−18s). So how did we go from mil-
lisecond down to attosecond temporal resolution?

Dynamics or movement in quantum systems arises when two eigenstates, ∣φ1⟩ and
∣φ2⟩, with energies differing by ∆E are superposed coherently. A beating term will
appear with a half-period of τ = πh̵/∆E, giving the fundamental time-scale of dy-
namics between the two states. The mass of the nuclei leads to typical energy dis-
tances between vibrational states of ∼10 meV, and thus the time resolution nec-
essary to observe such dynamics is τ ∼100 fs. Electronic bound states are much
further apart and consequently much faster dynamics are expected. For ∆E >2 eV,
the fundamental time-scale of dynamics becomes smaller than a femtosecond. At-
tosecond pulses that have a duration of about 100 attosecond, will thus, allow us to
observe electron dynamics as demonstrated 8 years ago by Schultze et al. [Schultze
et al., 2014], who performed the first measurement of delays between photoelec-
trons from different atomic orbitals. But how can we generate so short pulses?

High Harmonic Generation

In the case of a pulse with a duration of 100 as, the relation ∆ω∆t = 4ln2 requires
that the spectrum has a width greater than or equal to 18 eV (equal if the pulse
is ’Fourier limited’), the central energy must then be at least 9 eV, which falls in
the region of vacuum ultraviolet (VUV: 10 - 200 nm) / extreme ultraviolet (XUV:
10 - 100 nm). One way to produce such large spectra is based on the high order
harmonic generation process (HHG), especially in gases. This strongly nonlinear
process is accessible thanks to the significant increase of the laser pulse energy (see
the Brabec and Krausz review [Brabec and Krausz, 2000]), making it possible to
achieve intensities of the order of 1015W/cm2. Under these conditions, the electric
field is comparable to the electrostatic field seen by an electron in an outer atomic
orbital.

HHG in gases was discovered in the 80’s, almost simultaneously by Ferray et al.
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Introduction

[Ferray et al., 1988] at CEA-Saclay and McPherson et al. [McPherson et al., 1987]
at the University of Rochester. This highly non-linear process results from the in-
teraction between an intense electric field, generally linearly polarized, and a set of
atoms or molecules in the gas phase. The emitted spectrum can extend over several
tens or hundreds of electronvolts, even up to keV (Popmintchev et al [Popmintchev
et al., 2012]). The spectrum is composed of three parts: a so-called perturbative
region, where the intensity of the harmonics produced decreases rapidly, a region
called ’plateau’, where the intensity of the harmonics is constant and finally the
cutoff region, where the intensity decreases quickly until the signal goes out com-
pletely.

HHG in gases can be described by a semi-classical ’three-step’ model
(Corkum [Corkum, 1993], Lewenstein et al [Lewenstein et al., 1994], Schafer et
al [Schafer et al., 1993]): tunnel ionisation of the atom into the laser field, accel-
eration of the ejected electron by the laser field and radiative recombination of the
electron with the ionic core, with the excess energy being released in the form of
an attosecond light pulse in the XUV. In a laser field with several optical cycles, the
harmonic emission corresponds to a train of attosecond pulses spaced by an op-
tical half-period, perfectly synchronized with the fundamental field (Hentschel et
al. [Hentschel et al., 2001], Mairesse et al. [Mairesse et al., 2003b], Paul et al. [Paul
et al., 2001], Tzallas et al. [Tzallas et al., 2003]). It is also possible to generate isolated
attosecond pulses using different techniques (Sansone et al. [Sansone et al., 2006],
Sola et al. [Sola et al., 2006]). The characteristics of the XUV light generated by HHG
were intensively studied during the 1990’s, notably in order to improve the IR /
XUV conversion efficiency. The emission is coherent both spatially and temporally,
in the sense that the phase of the XUV field varies regularly in space and time, with
small divergence, typically a few mrad.

Attosecond science

Attosecond physics can be divided into two main categories (Salieres et al. [Salières
et al., 2012]). The first, adapts the techniques used in femtosecond science to the
attosecond scale. Thus in a pump-probe scheme, XUV attosecond pulses-isolated
or in the form of a pulse train- are used to pump and/or probe the system under
study. These can be atoms or molecules in the gas, liquid or solid state. There, the
XUV light can excite the system to a continuum (ionization) or to a bound state
(dissociation). When the pump-probe scheme uses the XUV light to photoionize
the system under study, then one can access the amplitude and phase of the emit-
ted electron wave packet with the help of interferometric techniques like: RABBIT
(Muller et al. [Muller, 2002]), attosecond streaking (Itatani et al. [Itatani et al., 2002]),
FROG-CRAB (Mairesse and Quéré [Mairesse and Quéré, 2005]). These type of mea-
surements enable us to extract information about the intra-atomic/molecular dy-
namics.

The above techniques have served in the study of the attosecond dynamics of nu-
merous systems (Calegari et al. [Calegari et al., 2014], Eckle et al. [Eckle et al., 2008],
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Mauritsson et al. [Mauritsson et al., 2008], Sansone et al. [Sansone et al., 2010], Sola
et al. [Sola et al., 2006], Uiberacker et al. [Uiberacker et al., 2007]). The RABBIT tech-
nique plays a prominent role, especially for time-resolved studies. This method
was initially developed for the measurement of the spectral phase of the emitted
harmonics which allows the reconstruction of the attosecond pulse train in the time
domain (Paul et al. [Paul et al., 2001]). However it was soon shown that RABBIT
could also be used to characterize the electron wave packets produced by the two-
photon ionization (XUV-pump + IR-probe), of an atomic/molecular system (Mau-
ritsson et al. [Mauritsson et al., 2005]). For example, in the case of photoionization
in a ’flat’ continuum, meaning resonance-free, the RABBIT method has allowed the
extraction of the ionization delays of electron wave packets emitted from different
atomic shells, showing that there is a difference of some hundreds of attoseconds
between them (Klünder et al. [Klünder et al., 2011]).

The RABBIT technique can also be used to study the ionization delays in the vicin-
ity of a resonance. A first study was carried out by Haessler et al. [Haessler et al.,
2009], who studied the photoionization of the N2 molecule near an autoionization
resonance. There a phase shift of 0.9π rad has been observed for the electrons pro-
duced in the ionization channels corresponding to the X2Σ+

g , v′= 1 and v′= 2 states
of the molecular ion. The authors observe that the phase of the two-photon transi-
tion amplitude varies significantly around the resonance. Later on the same group
of Saclay, by using an energy-resolved version of the RABBIT method namely the
Rainbow RABBIT technique were able to access the evolution of this phase in the
vicinity of the sp2+ autoionization resonance in the helium atom by tuning the gen-
eration wavelength. The authors also showed that by choosing precisely the experi-
mental parameters, it is possible to completely measure the phase variation around
the resonance with a single measurement (Gruson et al. [Gruson et al., 2016a]).
Several studies of the dynamics associated with resonances have been performed
both theoretically (Chu and Lin [Chu and Lin, 2012], Morishita et al. [Morishita
et al., 2007], Tong and Lin [Tong and Lin, 2005], Wikkenhauser et al. [Wickenhauser
et al., 2005], Zhao and Lin [Zhao and Lin, 2005]) and experimentally (Gilbertson et
al. [Gilbertson et al., 2010], Mauritsson et al. [Mauritsson et al., 2010], Ott et al. [Ott
et al., 2013a],[Kaldun et al., 2016]). These studies have made it possible to trace back
the life time of the studied resonances and confirm the experimental spectroscopic
results. Furthermore, the buildup in time of such resonances becomes observable,
bringing new information on the dynamics of the ionization process.

The second direction of attosecond physics, is Harmonic spectroscopy developed
notably at CEA-Saclay. Like classical linear or weakly nonlinear spectroscopy,
strongly nonlinear harmonic spectroscopy extracts information about the radiat-
ing system by characterizing completely, in amplitude, in phase and in polariza-
tion, the harmonic emission induced in the system by a fundamental laser pulse.
High Harmonic spectroscopy can act as a probe in the time-resolved studies men-
tioned in the previous paragraphs, with the pump being supplied independently
by a first pulse. High Harmonic spectroscopy can also be considered as a variant of
the pump-probe scheme, when one wants to study in particular the dynamics in-
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Introduction

duced by strong field ionization. To better understand this, let’s take the three-step
model. The first step is the pump pulse that induces tunnel ionization of the sys-
tem. The excursion of the electron wave packet into the continuum can be seen as
the pump-probe delay, during which the ionized system evolves. Finally, the radia-
tive recombination of the electron wave packet with the parent ion acts as an ultra-
short probe. This ’self-probe’ scheme then makes it possible to extract information
on the structure and/or the dynamics of the tunnel ionization and the ionized sys-
tem. Many studies have been performed using this technique revealing rotational
dynamics (Jin et al. [Jin et al., 2012], Levesque et al. [Levesque et al., 2007a], Vozzi et
al. [Vozzi et al., 2005]), vibrational nuclear dynamics (Li et al. [Li et al., 2008], Wagner
et al. [Wagner et al., 2006]) or even dissociation dynamics (Haessler et al. [Haessler
et al., 2009], Tehlar et al. [Tehlar, 2013], Worner et al. [Wörner et al., 2010], Mairesse
et al. [Mairesse et al., 2010], Cireasa et al. [Cireasa et al., 2015], Bruner et al. [Bruner
et al., 2016]).

Harmonic spectroscopy also provides access to the ultra-fast electron dynamics, for
example by following the evolution of the spatial structure of an electronic valence
orbital in the ion. The reconstruction of molecular orbitals was originally proposed
by Itatani et al. [Itatani et al., 2004]. It is based on the fact that the electron wave
functions of the highest occupied orbitals (HOMO) involved in the HHG, are con-
tained in the recombination dipole. In the case of small linear molecules that we are
able to laser-align, we can then reconstruct not only the time-dependent orbital in
the molecular ion, but also the HOMO stationary orbitals that have been ionized.
Several experiments have indeed allowed the reconstruction of the HOMO of N2

(Haessler et al. [Haessler et al., 2010]) and CO2 (Vozzi et al. [Vozzi et al., 2012]) from
the measurement of the amplitude and the spectral phase of the harmonic emission
from these molecules.

Thesis Outline

The aim of the work presented in this thesis is to enrich our knowledge regarding
the atomic photoionization dynamics in the presence of strong structural features as
well as to assess and improve the existing theoretical models. As it will be detailed
later on, the presence of a resonance can alter significantly the ionization dynamics
of a system as well as the interpretation of the measured ionization time delays. The
studied structures were the Fano autoinizing resonances and the Cooper minimum.
Both are the result of different physical processes and involve inter- and intra-shell
electron correlation effects. Fano resonances have a spectral width of some tens of
meV on the contrary, Cooper minimum (in argon) is a feature that spreads along
almost 15 eV. By using the Rainbow RABBIT interferometric technique we were
able to measure the corresponding ionization delays in both cases showing also the
robustness and versatility of the technique. The manuscript is organized as follows:

In the first part we give an overview of both the theoretical background of the HHG
process, which is the tool, and the photoionization dynamics which is the subject of
study. In Chapters 2, we present the simple semi-classical model that accounts for
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the main characteristics of the harmonic radiation that are also detailed, as well
as its more complex quantum-mechanical counterpart. In Chapter 3 a detailed
description of the fundamental concepts of collision theory necessary to interpret
Wigner’s photoionization delays, is conducted. Then a connection with the delays
measured by RABBIT interferometry is discussed.

The second part consists of the description of our experimental tools. Chapter 4
details the technical aspects of the two beam-lines used in our experiments, the one
in AttoLab and the one in Lund University. Further on, in Chapter 4.1, we explain
in detail the Rainbow RABBIT method and compare with the standard RABBIT
technique.

The last part includes the experimental work on Fano resonances and the Cooper
minimum. In Chapter 6 we first discuss the results of the study of the sp2+ Fano
resonance in helium. Its transition amplitude and phase measured by the Rainbow
RABBIT method allow us to reconstruct the dynamics of the ejected EWP (Electron
Wave Packet) from the Fano resonance in the time domain and different representa-
tion methods were also explored. The intensity dependence of the EWP’s phase and
line shape of the resonance is studied. The dynamics of the complex EWP resulting
from simultaneous excitation of the sp2+ and the next Fano resonance, namely the
sp3+, is also presented. The 3s4p Fano resonance in argon was also studied where
the resolution in the measured spectral phase of the two spin-orbit components was
achieved. These measurements were carried out in collaboration with the team of
Anne L’Huillier in Lund University, Sweden.

Finally, Chapter 7 presents the results of the first experiment performed in Attolab,
CEA-Orme des merisiers, where the ionization delay differences between the 3s
and 3p ionization channels of argon are measured in a large energy range including
the effect of the Cooper minima on both channels. These results are then compared
with various theories.

MEDEA project

This thesis work has been a part of the MEDEA network (MEDEA) . MEDEA is a
Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN) funded in the
framework of the HORIZON 2020 program. The main objective of MEDEA is to
create a platform where Early Stage Researchers receive an interdisciplinary and
intersectoral comprehensive research training in one of the major field of Photonics
that is contributed by leading universities and research centers, and by keyplayer
companies in the development and commercialization of state-of-the-art ultrafast
laser sources and detection systems.
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CHAPTER 2

HIGH HARMONIC GENERATION

High order Harmonic Generation (HHG) is a strong field, highly non-linear phe-
nomenon observed for the first time in 1987 by McPherson et al [McPherson et al.,
1987] and Ferray et al [Ferray et al., 1988]. By submitting an atomic or molecular gas
to a laser field with high enough intensity and in good phase matching conditions,
the generation of harmonics that are odd multiples of the driving field’s frequency
can be observed. It is this phenomenon of HHG that served as the basic tool for the
photoionization studies of this thesis. In this part, we are going to display the main
theoretical aspects of this non-linear process starting with the microscopic interpre-
tation of the effect and continuing with the macroscopic conditions necessary for
this process to take place.

2.1 Microscopic effects

2.1.1 Semi-classical approximation: The three-step model

The semi-classical model of high order harmonic generation was proposed in 1993
by Schafer et al. [Schafer et al., 1993] and Corkum [Corkum, 1993] and allows a
qualitative understanding of the phenomenon. Briefly, the interaction between an
intense laser field and an atom or a molecule distorts the potential felt by the elec-
trons of the system. An electron wave packet (EWP) can then be emitted by tunnel
ionization (1). Then the released EWP is accelerated by the laser field (2) and finally,
when the field changes sign, the wave packet is brought back to the parent ion with
which it can recombine by emitting the accumulated kinetic energy in the field, in
the form of an extreme ultraviolet (XUV) photon (3). In the following, these three
different stages are going to be detailed.

1. Tunnel ionization Let us consider an isolated atom in its ground state. An elec-
tron in this state is subjected to the Coulomb potential of the nucleus, V0(x) = −1/∣x∣,
where x is the distance between the electron and the nucleus (Figure 2.1 (a)). In the
presence of a linearly polarized (along the x-axis, x̂) electric field E(t) = E0cos(ωt)x̂
with angular frequency ω, the total potential V(x,t) felt by the electron will become:

V(x,t) = V0(x)+ xE(t) (2.1)

There are different schemes of ionization due to the influence of the laser. The
electron can be ionized from the simultaneous absorption of several photons corre-

11



2.1.1 Semi-classical approximation: The three-step model

Figure 2.1: Potential felt by an electron in argon, Ip = 15.76 eV = 0.58 a.u., in
the absence of an electric field (a), in the presence of a field E0= 0.04 a.u. (I =
5.5×1013W/cm2) (b) and in the presence of a field at the saturation illumination of
argon E0 = Esat = 0.084 a.u. (I = 2.4 ×1014W/cm2) (c). Adapted from Ref. [Barreau,
2017].

sponding to an energy greater than the ionization potential, which is referred to as
multi-photon ionization. If the absorbed number of photons is larger than the min-
imum number required to reach the ionization threshold, Above Threshold Ioniza-
tion (ATI) takes place. When the electric field is comparable to the binding electric
field between the nucleus and the electron, it distorts the potential. This "intra-
atomic" field can be estimated as Eatom = e

4πε0a2
0
∼ 5× 1011V/m that corresponds to an

intensity of Iatom ∼ 3.5 × 1016W/cm2, where a0 is the Bohr radius, ε0 is the vacuum
permeability and e the charge of the electron. Thus, in the presence of an intense
laser field of the order of I ∼ 1014W/cm2, the interaction with the electric field is no
longer perturbative. In that case, the laser field lowers the potential barrier felt by
the electron and part of the EWP can cross it by tunneling with a probability that
depends on its height and width, as well as the time that the barrier is lowered (Fig-
ure 2.1 (b)). In the extreme case of Figure 2.1 (c), the laser field is intense enough
to completely remove the potential barrier [Augst et al., 1989],[Bauer and Mulser,
1999]. Ionization will be completed when the potential barrier is fully suppressed,
below the fundamental energy of the electron, meaning that for x < 0 :

∂V
∂x

= − 1
x2 + E0 = 0 (2.2)

The maximum of the barrier is obtained when ∂V
∂x = 0, which results in xm = −1/

√
E0

and writes V(xm) = −2
√

E0 = −Ip. Thus the intensity needed to suppress the poten-
tial barrier will be :

Isat =
I4

p

16
(2.3)

Isat[W/cm2] = 4× 109 I4
p[eV]

The various saturation intensities for different gases commonly used in HHG are
listed in Table 2.1.1. For the HHG process to be effective, the laser intensity must
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be lower than the saturation intensity so that the ground state is not completely
"emptied".

Ip [eV] Isat [W/cm2]
He 24.58 14.62
Ne 21.56 8.65
Ar 15.76 2.47
Kr 14.00 1.54
Xe 12.13 0.87

Table 2.1: Ionization potential Ip and saturation intensities Isat for different gases,
commonly used in HHG.

The image above, for a quasi-static field should be complemented in the case of an
oscillating laser field due to the fact that tunnel ionization also depends on the time
during which the barrier is lowered, proportional to the laser field. To distinguish
various ionization regimes of the light matter interaction, we then introduce the
Keldysh parameter [Keldysh et al., 1965]:

γ =

¿
ÁÁÀ Ip

2Up
= ω

2Ip

I
= Ttunel

T
, (2.4)

where Ip is the ionization potential, I = E2 is the intensity of the laser field, Up =
E2/4ω2 ∝ Iλ2 is the ponderomotive potential, i.e. the mean quiver energy of a free

electron in the laser field. Ttunnel = 2π
√

2me Ip

eE is the ionization time needed for an
electron to cross the Coulomb barrier, and the period of the oscillation, T = 2π/ω.
When γ < 1 we are in the tunnel ionization regime. For example, in the case of
argon with a laser field centered at 800 nm and of intensity 2× 1014W/cm2 it will be:
Up=12 eV and γ= 0.8. This falls well in the tunnel ionization regime.

2. Acceleration by the laser field After the tunnel ionization process, the electron
is found in the continuum, accelerated by the linearly polarized laser field E(t).
At this point, it is assumed that its dynamics is governed only by the laser field
which is strong enough that allow us to neglect the effect of the long-range tail of
the atomic potential. Due to the strength of the laser field we can use a classical
description of the EWP’s dynamics. The only force acting on the electron now is the
Lorentz force and thus the equation of motion is then written as:

mẍ = −eE0cos(ωt) (2.5)

For the initial conditions, we note as ti the moment when the EWP is ionized, and
we suppose that x(ti) = 0 and ẋ(ti) = 0, meaning that we neglect the movement
across the barrier and that all its kinetic energy is lost while crossing the barrier. By
integrating equation 2.5 we obtain:

ẋ(t) = u(t) = − eE0

mω
[sin(ωt)− sin(ωti)] (2.6)
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and
x(t) = eE0

mω2 [cos(ωt)− cos(ωti)]+
eE0

mω
sin(ωti)(t − ti) (2.7)

Figure 2.2: Electron oscillation after ionization driven by the laser field. Adapted
from [Schoun, 2015]

From equation 2.7, we obtain the electron trajectories corresponding to different
ionization times ti, as shown in Figure 2.2. For ionization times such that ωti corre-
sponds to [0, π / 2] and [ π, 3 π / 2], the electron follows a closed path and returns
to the origin. For ωti corresponding to [π / 2, π ] and [3π / 2,2π ], the electron
drifts away and does not return to the parent ion. Moreover, some trajectories indi-
cate several recollisions. However the spreading of the EWP, increases with time so
that it reduces the importance of the later collisions. Phase matching effects also de-
crease the contribution of longer trajectories to the macroscopic signal. Therefore,
we only consider the first recollisions.

3. Recombination The last step is the "radiative" recombination of the electron
with the parent ion, converting the kinetic energy Ek of the EWP into a high energy
photon h̵ω = Ip + Ek. In recombination, we associate a recombination time tr, ob-
tained as a function of the ionization time ti by solving the equation x(t) = 0 from
equation 2.7. This recombination time tr makes it possible to go back to the energy
Ek = mu2(tr)/2. Figure 2.3 shows the evolution of Ek as a function of time, for dif-
ferent pairs of (ti, tr). This curve makes it possible to extract the maximum energy
that an electron acquires, and thus a photon can have:

h̵ωmax = Ip + 3.17Up (2.8)

This is the so-called cut-off law and was first determined empirically by Krause
et al. [Krause et al., 1992]. The expression 2.8 of the maximum energy, known as
the cutoff energy, indicates that the extent of the HHG spectrum depends on the
medium (Ip) but also the intensity and wavelength of the laser via Up ∝ Iλ2. By in-
creasing the intensity, the position of the cut-off is shifted; however, one is quickly
limited by the saturation intensity Isat of the ionized medium. One can then increase
the driving laser’s wavelength towards the midIR, for example at 3.9 nm which will
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shift the position of the cut-off energy at 1.6 keV. However, this increase of the spec-
trum is accompanied by a decrease of the generation efficiency. By increasing the
wavelength, the time spent by the electron in the continuum is increased. The as-
sociated wave packet will therefore spread spatially decreasing the recombination
efficiency. The λ dependence of the generation efficiency is not yet fully character-
ized, but the different simulations / experiments indicate an evolution in λ−(5−9)

[Shan and Chang, 2001], [Tate et al., 2007], [Popmintchev et al., 2009], [Shiner et al.,
2009]. By optimizing the phase matching, it is possible to go towards a λ−2 depen-
dency [Popmintchev T.].

Figure 2.3: Kinetic energy at recollision as a function of the ionization (squares) and
recombination times (circles) calculated by the semi-classical model, for a driving
pulse centered at 800 nm with I= 2.5×1014W/cm2. Two examples of short (red) and
long (blue) trajectories are given. The position of the cut-off is plotted in grey.

In Figure 2.3 we observe two pairs of (ti, tr) that correspond to two different tra-
jectories leading to the same kinetic energy. These trajectories are called short and
long trajectory, respectively. The first corresponds to short propagation times in the
continuum, which increases with the harmonic order. The second corresponds to
the case where the electron is ionized near the maximum of the electric field and
has a propagation time which decreases with the harmonic order. The harmonics
emitted during these different trajectories have distinct properties, which will be
detailed later.

High order Harmonic spectrum This three-step process is repeated coherently at
each extreme of the electric field, thus each half-cycle with a change of sign of the
induced dipole. It therefore, has a periodicity of T/2, where T =2π/ω is the period of
the generation laser. This temporal periodicity is reflected in the spectral domain by
a periodicity of 2ω. Due to the centro-symmetric nature of the generation medium,
only the odd harmonics are emitted. Thus, for a sufficiently long laser pulse (several
cycles), the spectrum obtained consists of a comb of odd harmonics separated by
2ω as shown in Figure 2.4.
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Figure 2.4: Schematic visualization of a high order harmonic spectrum [Salières and
Lewenstein, 2001].

In this model, the step of tunnel ionization is treated quantum mechanically, while
the dynamics of the free electron in the field are treated in a classical way, hence its
’semi-classical’ name. In this way we have a simple picture of the process which al-
lows access to important quantities such as cutoff energy and ionization and recom-
bination times. However, the HHG process is the result of the interference between
part of the ionized EWP and its remaining part in the ground state. Thus, in order
to study this process in detail and verify the validity of the semi-classical model, it
is necessary to compare it to a more rigorous fully quantum mechanical model.

2.1.2 Quantum mechanical description: the model of Lewenstein

The quantum mechanical treatment of the HHG process was developed in 1994 by
Maciej Lewenstein [Lewenstein et al., 1994]. This model justifies the assumptions
used before in the semi-classical model and allows to take into account quantum ef-
fects such as tunnel ionization, the diffusion of the EWP and interferences between
quantum paths. Here we briefly describe the basics of this model.

We consider an atom in the approximation of a single active electron interacting
with the laser field

Ð→
E (t) linearly polarized along the x̂ direction. The electronic

dynamics is described by the Schrödinger equation (in atomic units):

i
∂

∂t
∣ψ(Ð→x ,t)⟩ = (− 1

2
∇2 +V0(Ð→x )− E0xcos(ωt))∣ψ(Ð→x ,t)⟩ (2.9)

In the Strong Field Approximation (SFA), one makes the following assumptions:
1. Among the bound states, only the ground state contributes to the high-order
harmonic radiation. The other bound states are neglected.
2. The depletion of the ground state is considered negligible in the first step.
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3. The electrons in the continuum states are seen as free electrons that are only
affected by the laser field, and ignore the Coulomb potential of the ionic core.

This allows to calculate the wavefunction ψ(x,t), and then the dipole moment x(t) =
⟨ψ(t)∣x∣ψ(t)⟩. This model gives the x(tr) at the moment of recombination as:

x(tr) = i∫
tr

0
dti ∫ d3Ð→p

Ð→
d ∗

Ð→p +
Ð→
A(tr)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C

eiS(Ð→p ,ti ,tr)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

Ð→
E (ti)

Ð→
d Ð→p +Ð→A(ti)

+ c.c.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

, (2.10)

whereÐ→p is the canonical momentum,
Ð→
d is the dipole matrix element for bound-free

transitions and
Ð→
A is the vector potential associated with electric field

Ð→
E . S(Ð→p ,ti,tr)

is the quasi-classical action. The effects of the atomic potential are assumed to be
small between ti and tr so that S(Ð→p ,ti,tr) actually describes the motion of an electron
freely moving in the laser field with a constant momentumÐ→p .

Equation 2.10 recovers and justifies the semi-classical three-step model. More
specifically:

A First,
Ð→
E (ti)

Ð→
d Ð→

d +
Ð→
A(ti)

represents the probability amplitude for the laser-induced

transition to the continuum state with momentumÐ→p at time ti.

B Next, the EWP gains kinetic energy during the laser oscillation and acquires an
extra phase:

S(Ð→p , ti, tr) = −∫
tr

ti

(Ip +
(Ð→p +

Ð→
A(t))2

2
)dt (2.11)

.

C Finally,
Ð→
d ∗

Ð→p +
Ð→
A(tr)

indicates that the electronic wave function eventually recom-

bines to the ground state at time tr and releases the energy in the form of
photon emission.

The Fourier transform of equation 2.10 will be:

x(Ω) = ∫ dtr ∫ dti ∫ d3Ð→p b(tr,ti,
Ð→p )e

[iS(Ð→p ,ti ,tr)+iΩtr]

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
iφΩ(

Ð→p ,ti ,tr)
(2.12)

In this expression, the sum is performed on all the ionization, recombination times
and all the canonical momenta, meaning on all the electronic trajectories. This enor-
mous number of possible paths makes the calculation difficult. The calculation is
simplified if the sum is only made on the trajectories that contribute significantly to
the emission. In order to determine these contributions, the saddle point approxi-
mation is applied. The phase of the integral in expression 2.12 varies much faster
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than its amplitude. For a path whose phase varies very rapidly, the various contri-
butions cancel out in the sum, making the contribution of this path negligible. The
main trajectories then correspond to the points where the phase does not vary along
the three variablesÐ→p , ti and tr. This condition results in the following equations:

∂φΩ(Ð→p ,ti,tr)
∂ti

= Ip +
(Ð→p 2 +

Ð→
A(ti))2

2
= 0 (2.13)

∂φΩ(Ð→p ,ti,tr)
∂tr

= −Ip −
(Ð→p 2 +

Ð→
A(tr))2

2
+Ω = 0 (2.14)

∇Ð→p φΩ(Ð→p ,ti,tr) = −x(tr)+ x(ti) = 0 (2.15)

These three conditions correspond to the assumptions made in the semi-classical
description of the HHG: equation 2.15 states that the dominating quantum paths
correspond to closed trajectories. Equation 2.13 means the kinetic energy of the
tunneling electron is negative at the ionization time ti so that the real part of the
initial velocity is 0, as it is foreseen by the classical description. This imaginary-
valued velocity can be obtained if ti is complex, which can be seen as a trace of the
tunnel ionization process [Zhao and Lein, 2013]. This has important consequences
since all quantities will then be complex. In particular, the imaginary part of the
action will give the well known Keldysh exponential factor characteristic of tunnel
ionization. Finally, equation 2.14 implies that the energy of the emitted photon is
the sum of the electron kinetic energy and the binding energy, which corresponds
to the energy conservation law at recombination. By solving these three equations
we get triplets of (Ð→p , ti, tr) , from which we find the relation between ti, tr and the
photon energy, as plotted in Figure 2.5.

The simple semi-classical model turns out to be in reasonable agreement in the
plateau region but, obviously, the more rigorous quantum mechanical calculation
yields a more precise description, i.e. the quantum calculation leads to the gener-
ation of more high harmonic orders than the classical simulation by taking the ef-
fects of quantum tunneling and quantum diffusion into account [Lewenstein et al.,
1994]. The cutoff energy given by the quantum calculation is Emax ≈ 3.17Up + 1.32Ip,
for Ip ≪ Up.

2.1.3 HHG Temporal structure

In the previous paragraphs, we have seen that the harmonic emission in the spectral
domain, is made of a large number of frequencies, odd multiples of the fundamental
laser frequency. The spectral bandwidth emitted, supports pulses with attosecond
duration [Farkas and Tóth, 1992] [Harris et al., 1993], if all emitted spectral compo-
nents have the proper phase relationship. Here we consider a spectrum composed
of N monochromatic harmonics of spectral amplitude En and spectral phase φn. The
temporal profile of the emission is then written as :
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Figure 2.5: Ionization and recombination times as a function of the photon energy.
Thick and thin lines correspond to quantum and classical calculations respectively.
Full and dashed lines mark the short and long trajectories. The calculation was
performed in argon with Ip=15.76 eV with a laser centered at 800 nm and intensity
I=1.2×1014W/cm2 . The trajectories are calculated by Thierry Auguste.

I(t) = ∣
n
∑
n=1
Ene−inωt+iφn ∣

2

(2.16)

If φn is constant for every n, the pulse is Fourier transform limited. Its duration is
then minimal given its spectral width. This case is illustrated in Figure 2.6: the pulse
corresponding to a harmonic spectrum of total bandwidth N where each harmonic
has a width δω, is an attosecond pulse train. The temporal width of the train is
1/δω, and each pulse in the attosecond pulse train has a duration of 1/N. If φn is
linear with n, the time profile is the same as before, but has a temporal offset of te =
∂φn/∂ω, this group delay is also called "emission time". If φn has another behavior,
then the pulse is longer than the duration given by the Fourier limit. In that case
the different spectral components of the pulse are not emitted at the same time.
te(ωn) is then the group delay associated with the frequency ωn. In the extreme
case where the phase between each harmonic is random, the light emission becomes
continuous. Therefore in order, to study the harmonics and the attosecond pulses it
is important to know the spectral phase.

Two types of spectral phases are to be considered: the phase relationship between
consecutive harmonics that influences the pulses duration in the train, and the spec-
tral phase of a given harmonic which globally modifies the train. These two phases
are responsible for the attosecond frequency derivative, the so-called attochirp and
the harmonic frequency derivative also called harmonic/femto-chirp , respectively.
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Figure 2.6: Temporal structure of a Fourier limited harmonic comb. Taken from
[Mairesse, 2005] .

2.1.4 Attosecond temporal structure: Attochirp

The two models presented previously show that the different harmonics are not
emitted at the same time (Figures 2.5 and 2.3) where for short/long trajectories,
high energies are emitted after/ before the low energies. Ref. [Mairesse, 2005]
shows that te(ωn) is directly connected to the recombination time tn(ωn). As part
of the Lewenstein model, the variation of te with the harmonic order is linear in
the plateau, with an opposite slope for both families of trajectories, and constant in
the cut-off. So, provided that we have selected a type of trajectories, the harmonic
phase is quadratic in the plateau and linear in the cut-off. This spectral phase can
be measured (e.g. with the RABBIT method described later in the thesis), and the
measurement for the short trajectories are in very good agreement with the theoret-
ical model (Figure 2.7 ) [Mairesse et al., 2003a], [Mairesse et al., 2004]. The attochirp
is intrinsically linked to the HHG process: in a half cycle, the frequencies emitted
correspond to different electronic trajectories and are therefore not synchronized.

The attochirp in the plateau corresponds to a quadratic spectral phase and therefore
to a temporal widening of the attosecond pulses in the train. However, we note
that by selecting spectrally only the harmonics of the cut-off region, whose spectral
phase is linear, makes it possible to obtain Fourier limited pulses but whose dura-
tion can not be very short due to the exponential decay of the harmonic intensity.
Note that this linear group delay can be partially compensated if the pulse is prop-
agated through a metallic filter of opposite group delay. This method can be used
to compress the attosecond pulses [López-Martens et al., 2005], [Gustafsson et al.,
2007]. The shortest pulse measured up to now is 43 as by Gaumnitz et al. [Gaumnitz
et al., 2017]. Another possible method used for the compression of this group delay
is the use of chirped mirrors [Morlens et al., 2005], [Bourassin-Bouchet et al., 2011].

In Figure 2.7 (a) Mairesse et al. [Mairesse et al., 2004] measured the effect of the
driving laser intensity on the attochirp. There, the slope te(ωn) decreases as the
intensity increases in the case of short trajectories. This can be simply explained by
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Figure 2.7: (a) Intensity and (b) emission time of harmonics generated in xenon at
3× 1013W/cm2 (red) and 6× 1013W/cm2 (green), and in argon at 9× 1013W/cm2 (blue).
RABBIT measurements are shown in symbols and the continuous lines correspond
to the recombination times for the calculated short trajectory with the Lewenstein
model. Taken from [Mairesse et al., 2004].

the cut-off law where Up ∝ I. Thus, as the intensity increases the cut-off energy in-
creases and thus the slope of tr(ωn) decreases as the absolute value of te(ωn)∝ 1/I
for both trajectory families. The generation of shorter attosecond pulses is therefore
favored at high intensity.

2.1.5 Femtosecond temporal structure: Harmonic chirp

For a given harmonic, the spectral phase of a trajectory j is given by the following
dipole phase:

φ
j
n = ωntj

r −∫
tj
r

tj
i

Ip +
(Ð→p j +

Ð→
A(t))2

2
dt (2.17)

The second term represents the phase accumulated by the EWP along the consid-
ered path and depends on the laser intensity through the vector potential

Ð→
A(t).

Figure 2.8 (a) shows SFA calculations for the intensity dependence of the phase of
harmonic 19 for both trajectories. For a low intensity, harmonic 19 is in the cut-off
region and thus the two trajectories are mixed. For both trajectories, φ

j
n is approxi-

mately linear with the intensity with a proportionality coefficient dependent on the
considered trajectory, φ

j
n = −α

j
n × I with αshort

n ≪ α
long
n .

In the HHG process with a femtosecond laser pulse, the laser intensity varies at
the scale of the envelope I(t), which implies a modification of the dipole phase.
The harmonic femtosecond emission is thus not Fourier limited but has a chirp
proportional to αn [Salières et al., 1995]. This harmonic chirp is intrinsically linked
to the variation of the laser intensity at the femtosecond envelope scale. From a
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2.1.5 Femtosecond temporal structure: Harmonic chirp

Figure 2.8: SFA calculations (a) Variation of the phase φ
j
n with the laser intensity

for H19 generated in argon by 800 nm. (b) Variation of ∂φi
n/∂I = −α

j
n as a function

of the harmonic order for 1.5× 1014W/cm2. The short trajectory is in solid line and
the long trajectory in dashed lines. Taken from [Varjú et al., 2005].

half-cycle to the other, the electron trajectories leading to the emission of a photon
with a given energy, are modified. Within the attosecond pulse train, one observes
a change in the spacing of the pulses in the train [Varjú et al., 2005]. In practice, atto-
and harmonic- chirp are both present, as shown in Figure 2.9.

Figure 2.9: Illustration of the simultaneous presence of harmonic and attochirps
in the spectral and temporal domains. (a) Spectral intensity (purple, left scale) and
phase (solid blue, right scale) for a group of 5 harmonics of slowly decreasing ampli-
tudes. The dashed red line connects the phases at the central harmonic frequencies.
(b) Corresponding temporal intensity (purple, left scale) and phase (solid red, right
scale). The dashed blue line connects the phases corresponding to the peaks of the
attosecond pulses. Taken from [Varjú et al., 2005].
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High Harmonic Generation

The chirp is very different for the two trajectories, since α
j
n is very different for short

trajectories and long. For a given harmonic, the contribution of the long trajec-
tory will present a much larger spectral broadening than that of the short trajectory,
which makes it possible to differentiate these two contributions with a spectrome-
ter [Zaïr et al., 2008]. Moreover, for a Gaussian beam, the intensity also presents a
radial modulation I(r). The intensity dependence of the induced dipole phase is
also different for short and long trajectories. For the lowest harmonics, the short
trajectories have a divergence much lower than the long ones [Bellini et al., 1998].
When the harmonic order increases, the divergence of short/long trajectories in-
creases/decreases until they mix at the cut-off.

2.2 Macroscopic effects

The spatio–temporal characteristics of XUV pulses produced via HHG, depend not
only on the single atom response, but are affected by amplitude and phase varia-
tions across the three dimensional nonlinear medium. Macroscopic aspects of the
HHG process, including dispersion, absorption and phase matching effects, com-
monly denote effects arising from the propagation of the XUV field and the gener-
ating laser field along the optical axis ẑ through the nonlinear medium.

As illustrated in Figure 2.10, if the different microscopic contributions are not in
phase, destructive interference will prevent the efficient XUV emission in a specific
direction (1D approach). Let us consider the propagation equation of the total har-

monic field
Ð→
E (r,t) = ∑n Enei(

Ð→

k n ⋅
Ð→r −nωt) in the PNL

n non-linear polarization medium.
In the paraxial and slowly varying envelope approximations (which consists of the
assumption that the temporal variations of the envelope of the IR probe field are
negligible at the optical cycle scale), we have:

∆�En + 2ikn
∂En

∂z
= −n2ω2

ε0c2 PNL
n ei(n

Ð→

k 1−
Ð→

k n)z (2.18)

The phase mismatch is given by the quantity ∆
Ð→
k (n) = n

Ð→
k 1 −

Ð→
k n +∇arg[PNL

n ]. This
last term contains the variation of the nonlinear dipole phase (equation 2.17) in the
medium (in particular due to the geometric variation of the laser intensity in the
focal region).

The influence of phase mismatching on the HHG can be demonstrated simply by a
one-dimensional model. For En(z), the harmonic signal Sn is the coherent sum on
all the atoms of the medium of length L:

Sn ∝ ∣∫
L

0
xnei(∆k+iηn)(L−z)ρdz∣

2

, (2.19)
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2.2 Macroscopic effects

where xn is the dipole amplitude corresponding to harmonic n, ρ the density and
ηn the absorption coefficient of the medium at the energy of harmonic n. If xn, ∆, ρ

and ηn do not depend on z, Sn becomes [Constant et al., 1999], [Heyl, 2014]:

Sn ∝ ∣dn∣2 e−ηn L cosh(ηnL)− cos(∆kL)
∆k2 + η2

n
(2.20)

Finally, for ηn → 0 we get:

Sn ∝ ∣dn∣2 L2( sin(∆kL/2π)
∆kL/2π

) (2.21)

Figure 2.10: Phase-matched (first row) and non phase-matched (second row) har-
monic generation, illustrated using the example of second harmonic generation.
The red shading indicates the fundamental field. Taken from [Heyl, 2014] .

For ∆k = 0 (perfect phase matching), the harmonic signal increases with L2. In
contrast, if ∆k ≠ 0, at a constant medium length the harmonic intensity is very
sensitive to ∆k. Optimization of the HHG therefore requires phase matching, ∆

Ð→
k =

Ð→
0 .

We can summarize the most important quantities to determine the generation effi-
ciency as:

1. The length L of the medium.

2. The coherence length Lc = 1/∆k

3. The absorption length Labs = 1/ηn = 1/(σρ), where σ is the absorption cross-
section.

4. The amplification length Lampl on which the dipole xn has a significant ampli-
tude.
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High Harmonic Generation

The relative value of these different lengths will determine the macroscopic emis-
sion.

2.2.1 Phase matching

For a gas medium, the phase mismatch is the sum of four contributions [Balcou
et al., 1997]:

∆
Ð→
k = ∆

Ð→
k a +

Ð→
k el +

Ð→
k f oc +

Ð→
k traj

dip (2.22)

For convenience we consider only the ∆
Ð→
k component along z, the propagation

direction of the field. ∆ka is the phase mismatch due to atomic dispersion, and is
expressed as a function of the refractive indices of the medium at the fundamental
N1 and harmonic frequency Nn , ∆ka = n ω

c (N1 −Nn). In general Nn < 1 < N1 , thus
∆ka > 0. This term depends on the density of neutral gas atoms in the medium and
thus of the generation pressure. ∆

Ð→
k el is the phase mismatch due to scattering by the

free electrons of the medium (produced by ionization), of density Ne. Its expression
is analogous to the previous term by replacing the refractive indices by the index of
refraction of the plasma

∆ka = n
ω

c
(N e

1 −N
e
n) (2.23)

with

N e
n =

¿
ÁÁÀ1−

ω2
p

ω2
n
≈ 1−

ω2
p

2ω2
n

(2.24)

where ω2
p = e2

mε0
Ne is the plasma frequency. By replacing it in equation 2.23 we

finally obtain:

∆kel ≈
qωω2

p

2c
( 1

ω2
n
− 1

ω2 ) < 0 (2.25)

This term depends on the density of free electrons in the medium an thus the gen-
eration gas density and the intensity. ∆k f oc is the phase mismatch due to the Gouy
phase. The focus of the laser beam used for the HHG induces a longitudinal phase,
which for a Gaussian beam is written arctan(z/zR) with zR the Rayleigh length.
∆ktraj

dip is the phase mismatch due to the dipole phase φ
j
n from 2.17. This term comes

from the single atom response that was presented previously and depends on the
considered trajectory. We also have:

∆kdip
traj = −αj ∂I

∂z
(2.26)

This contribution changes sign on either sides of the generation beam’s focal point
with ∆kdip

traj ∝ sign(z) > 0 after the focus and ∆kdip
traj < 0 before the focus. This term

depends on the relative position of the generation medium and the focal point, and
is different for the two trajectory families.

To summarize, the experimental parameters to optimize the phase matching in the
HHG process are the gas pressure, the laser intensity and the conditions of the fo-
cus [Kazamias et al., 2011]. The phase matching is also a good way to isolate the
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2.2.2 Accessing the recombination moment

contribution of a type of trajectories (usually the short ones): when the gas jet is
placed after the focus the short trajectories are favored, while long trajectories are
favored when the jet is placed before the focus [Salières et al., 1995], [Antoine et al.,
1996], [Balcou et al., 1997].

2.2.2 Accessing the recombination moment

If only the contribution of the short trajectories is selected, the macroscopic HHG
emission is a replica of the single atom response, which is supported by theoretical
investigations [Ruchon et al., 2008] and numerous experimental results [Mairesse
et al., 2003b], [Doumy et al., 2009], [Dudovich et al., 2006], [Goulielmakis et al.,
2008], [Varjú et al., 2005]. In this case based on the SFA, the harmonic emission can
be written as the quantum version of the three-step model [Ivanov et al., 1996], [Le
et al., 2008a], [Levesque et al., 2007b]:

En(Ω) = 2πΩ2an(k)drec (2.27)

with Ω = k2/2+ Ip the emitted XUV frequency, k the kinetic energy of the electron,
an(k) the complex amplitudes and drec = ⟨ψi∣z∣ψ+

k ⟩ the recombination dipole matrix
element between the initial bound state ψi and the continuum state ψ+

k . For access-
ing drec one needs to calibrate for the gn(k) = 2πΩ2 and an(k) factors. In the case of
diatomic or linear molecules, Itatani et al. [Itatani et al., 2004] suggested the calibra-
tion of the harmonic emission of the wanted molecule with that of a reference atom
of same Ip and in the same generation condition, and whose dipole matrix element
can be calculated precisely. In the case that we investigate in Chapter 7.2, we are in-
terested in measuring the drec of an atom, then the reference will be a molecule with
similar ionization potential Ip. If the experimental conditions are kept unchanged
then one gets:

Satom
n (Ω) = E

atom
n (ω)eiφatom

XUV(ω)

Emol
n (ω,θ)eiφmol

XUV(ω,θ)
= datom

rec

T(θ)dmol
rec (θ)

(2.28)

datom
rec = E

atom
n (ω)
Emol

n (ω,θ)
T(θ)dmol

rec (θ)ei(φatom
XUV(ω)−φmol

XUV(ω,θ)) (2.29)

where the gn and an factors cancel out, with only the T(θ) factor, corresponding to
the dependence of the ionization rate with θ, the alignment angle of the molecule
with respect to the laser field. From equation 2.29 becomes clear that one needs to
completely characterize the phases φatom

XUV(ω)− φmol
XUV(ω,θ), which can be achieved

either by Two Source Interferometry [Lin, 2013] or by the RABBIT technique with
which one can measure the spectral phases (i.e. ω dependence) by performing sep-
arate scans for the reference molecule and the atom respectively.
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CHAPTER 3

PHOTOIONIZATION DYNAMICS

In his first article of 1905, Albert Einstein lays the foundations of modern quan-
tum mechanics by explaining the photoelectric effect [Einstein, 1905]. When a sys-
tem absorbs a photon of energy greater than its ionization potential, an electron is
emitted. For a long time, the emission of the photoelectron is considered a quasi-
instantaneous phenomenon. If the one-photon transition is instantaneous, the "exit
time" of the electron from the potential is not. This became clear in the 1950’s with
the development of scattering theory. When a particle (i.e. an electron) is scattered
by a potential, the associated wave packet is asymptotically out of phase with re-
spect to that of a free particle of same energy. The spectral derivative of this phase is
homogeneous to a group delay and can be interpreted as a delay between the scat-
tered particle and the free particle [Wigner, 1955]. These tiny delays have remained
theoretical until the advent of attosecond spectroscopy.

In this chapter, we will present the results of the scattering theory by a potential
that leads to the definition of the Wigner delay. Then we will connect this delay to
the quantities measured in two-color photo-ionization experiments that will help
the interpretation of our experimental results presented later on.

In the last part of this chapter a brief presentation of some of the most well-
established theoretical models that describe the one-photon ionization process in-
cluding electron-correlation effects, will also be briefly presented.

3.1 Scattering in a central potential

We consider an electron wave packet (EWP) in the continuum (energy E > 0) as the
superposition of "monochromatic" continuum states with amplitudes a(E)

Ψ(t,r) = ∫
+∞

0
a(E)ψ(E,r)eiEt/̵hdE (3.1)

where Ψ is the solution of the time-dependent Schrödinger equation

ih̵
∂Ψ
∂t

= [− h̵2

2µ
∇2 +V(r)]Ψ(t,r) (3.2)

It is assumed here that the potential V is independent of time and corresponds only
to the interaction with the scattering center. It is also assumed that the potential V is
central, meaning that it depends only on the distance r between the electron and the
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3.1 Scattering in a central potential

scattering center. The states there are therefore solutions of the time-independent
Schrödinger equation, expressed in spherical coordinates of the electron (r, θ, φ) in
reference with the system’s center of mass, which is almost the center of the ion
in the case of an interaction between an electron and an ion. µ corresponds to the
reduced mass of the system which in this case is almost equal to the electron mass.

In order to study the scattering of the EWP of equation 3.1 in a potential V, one
needs to know the stationary states ψ

[Ĥ0 +V
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

Ĥ

]ψ(r,θ,φ) = Eψ(r,θ,φ) (3.3)

[− h̵2

2µ
∇2 +V(r)]ψ(r,θ,φ) = Eψ(r,θ,φ) (3.4)

In spherical coordinates, the Laplacian will write:

∆ψ(r,θ,φ) = 1
r

∂2

∂r2 (rψ)+ 1
r2 (

1
sinθ

∂

∂θ
(sinθ

∂ψ

∂θ
)+ 1

sin2θ

∂2ψ

∂φ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−L̂2/̵h2ψ

) (3.5)

Comparing the previous expression with that of the angular momentum operator
L̂2, we get a new expression for the eigenfunctions, where a centrifugal term ap-
pears:

[− h̵2

2µ

1
r

∂2

∂r2 r + 1
2µr2 L̂2 +V(r)]ψ(r,θ,φ) = Eψ(r,θ,φ) (3.6)

The angular momentum operator L̂ acts only on the angular variables θ and φ. The
angular dependence of the Hamiltonian is therefore entirely contained in the L̂2

term. This Hamiltonian commutes with the operators L̂2 and L̂z. We can then look
for a basis of the particle states space, consisting of the common eigenfunctions, to
the three observables Ĥ, L̂2 and L̂z with the respective eigenvalues h̵2k2/2µ, l(l +
1)h̵2 and mh̵. The eigenfunctions common to L̂2 and L̂z are well known and are the
spherical harmonics Ym

l (θ,φ). So the solutions of equation 3.6 will have the form:

ψ(r,θ,φ) = R(r)Ym
l (θ,φ) (3.7)

the corresponding wave functions ψ will be called partial waves. By putting this
expression in equation 3.6, we obtain the radial expression:
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(− h̵2

2µ

1
r

d2

dr2 r + l(l + 1)h̵2

2µr2 +V(r))R(r) = ER(r) (3.8)

The particular case where V is a Coulombic potential (∝ 1/r) requires a particular
treatment. Nevertheless, the study of the partial waves, solutions of expression 3.6
in the case of a V potential at short range - meaning a decrease faster than 1/r at
infinity - allows an approach of the phase shift concept due to the scattering on the
potential V.

In this section, we will first study the solutions of equation 3.6 in the case where V
is zero, known as the free spherical waves. We will then study solutions in the case
where the potential V is a short-range potential, and their long-range asymptotic
behavior r. We will highlight the existence of a phase shift δE,l between the free
spherical waves and the partial waves introduced by the scattering by the potential
V which will finally lead us to the definition of the Wigner delays.

3.1.1 Free spherical waves

At long distance r from the scattering center, it is expected that the electron will
not feel the effects of short-range potential V. The solutions of equation 3.6 must
therefore have an asymptotic behavior similar to free spherical waves ψ(0)(r,θ,φ) =
R(0)(r)Ym

l (θ,φ), eigenfunctions of the Hamiltonian Ĥ0. One would need therefore
to solve the radial equation 3.8 for V = 0:

(− h̵2

2µ

1
r

d2

dr2 r + l(l + 1)h̵2

2µr2 )R(0)(r) = ER(0)(r) (3.9)

It can be shown, noting that the radial equation can be reduced to the spherical
Bessel equation, that the solutions of equation 3.6 are of the form:

ψ
(0)
k,l,m(r,θ,φ) =

√
2k2

π
jl(kr)Ym

l (θ,φ) (3.10)

with k, l and m parameterizing the eigenvalues of the potential-free Hamiltonian
Ĥ0, L̂2 and L̂z:

Ĥ0ψ
(0)
k,l,m(r,θ,φ) = h̵2k2

2µ
ψ

(0)
k,l,m(r,θ,φ) (3.11)

L̂2ψ
(0)
k,l,m(r,θ,φ) = l(l + 1)h̵2ψ

(0)
k,l,m(r,θ,φ) (3.12)

L̂zψ
(0)
k,l,m(r,θ,φ) = mh̵ψ

(0)
k,l,m(r,θ,φ) (3.13)
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3.1.1 Free spherical waves

and jl a spherical Bessel function defined as

jl(ρ) = (−1)lρ2(1
ρ

d
dρ

)l sinρ

ρ
(3.14)

The first three spherical Bessel functions j0, j1 and j2 are represented in Figure 3.1.
Note that the function j0 is identified with the cardinal sinus function.

Figure 3.1: Spherical Bessel functions jl(ρ) (a) and ρ2 j2l (ρ), giving the radial depen-
dence of the probability of presence in the state ∣ψ(0)

k,l,m⟩ (b) for l=0,1,2. Taken from
Ref. [Barreau, 2017].

The angular dependence of the free spherical wave is contained in the spherical
harmonic Ym

l (θ,φ). It is therefore fixed by the quantum numbers l and m and not by
the energy (∝ k2). In the state ∣ψ(0)

k,l,m⟩ the probability of finding the particle in a solid
angle dΩ0 around a given direction (θ0,φ0) and between r and r + dr is proportional
to r2 j2l (kr) ∣Ym

l (θ0,φ0)∣
2 drdΩ0. The function ρ2 j2l (ρ) is presented in Figure 3.1. This

function takes small values for ρ <
√

l(l + 1). In the state ∣ψ(0)
k,l,m⟩, the probability of

finding the particle in r < 1
r

√
l(l + 1), is therefore almost zero. This means that the

particle is almost insensitive to what happens in a sphere of center O and radius
1
k

√
l(l + 1). A potential of shorter range than this radius will then have no influence

on the wave. This critical distance can be interpreted semi-classically as an impact
parameter.

Asymptotic behavior We want to determine the behavior of the long-distance
wave function of the scattering center ψ

(0)
k,l,m(r → +∞,θ,φ), which is the asymptotic

behavior of the spherical Bessel functions. By applying the operator ( 1
ρ

d
dρ) a first

time to the function sinρ
ρ , jl(ρ) will be:

jl(ρ) = (−1)lρl(1
ρ

d
dρ

)
l−1

(
cosρ

ρ2 −
sinρ

ρ3 ) (3.15)
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For ρ → +∞, we get sinρ
ρ3 ≪ cosρ

ρ2 . If we apply the operator ( 1
ρ

d
dρ) once more, the

dominant term will come again from the derivative of the cosine. Thus

jl(ρ → +∞) ∼ (−1)lρl 1
ρl

1
ρ
( d

dρ
)lsinρ (3.16)

With ( d
dρ

)lsinρ = (−1)lsin(ρ − lπ/2), we finally obtain

jl(ρ → +∞) ∼ 1
ρ

sin(ρ − lπ/2) (3.17)

The asymptotic behavior of the free spherical wave ψ
(0)
k,l,m(r,θ,φ) is therefore:

ψ
(0)
k,l,m(r → +∞,θ,φ) ∼

√
2k2

π
Ym

l (θ,φ) sin(kr − lπ/2)
kr

(3.18)

which is a real function that can be written in a complex form in order to interpret
its expression as a wave :

ψ
(0)
k,l,m(r → +∞,θ,φ) ∼ −

√
2k2

π
Ym

l (θ,φ) e−ikreilπ/2 − eikre−ilπ/2

2ikr
(3.19)

For r → +∞, ψ
(0)
k,l,m is the superposition of an incoming e−ikr/r and an outgoing e+ikr/r

spherical wave whose relative phase is lπ.

3.1.2 Partial waves

We are now interested in solving equation equation 3.8 in the general case of a
central potential V(r) at a short range, meaning decreasing more rapidly than 1/r
for r → +∞.

For R(r) = 1
r u(r) , equation 3.8 becomes:

(− h̵2

2µ

d2

dr2 +
l(l + 1)

2µr2 +V(r))u(r) = h̵2k2

2µ
u(r) (3.20)

to which the initial condition, u(r = 0) = 0, must be added .

Asymptotic behavior The centrifugal potential and the potential V(r) at short
range, are negligible and the previous equation becomes:

d2u
dr2 + k2u(r) ≈ 0 (3.21)
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3.1.2 Partial waves

the general solution of which writes:

u(r → +∞) ∼ Acos(kr)+ Bsin(kr) (3.22)

If the potential V is real, we can find real solutions u and therefore choose the con-
stants A,B ∈ R. We can then rewrite:

u(r → +∞) ∼
√

A2 + B2(sinβlcos(kr)+ cosβlsin(kr)) (3.23)

and with sinβl = A
√

A2+B2
and cosβl = B

√

A2+B2
it will become:

u(r → +∞) ∼ Csin(kr − βl) (3.24)

The scattering phase βl is determined by the continuity of equation’s 3.20 solution,
vanishing in r = 0. In the case of a zero potential V, we showed previously that the
scattering phase βl is equal to lπ/2. We can then choose this value as a reference by
defining the phase shift δE,l such that:

u(r → +∞) ∼ Csin(kr − lπ/2+ δE,l) (3.25)

δE,l depends on the angular momentum l and energy E.

In order now to interpret physically the meaning of this dephasing we inject the
previous expression of u in the general expression of the wave function and obtain
the asymptotic expression of the partial wave ψk,l,m(r → +∞,θ,φ):

ψk,l,m(r → +∞,θ,φ) ∼ CYm
l (θ,φ)

sin(kr − lπ/2+ δE,l)
r

(3.26)

or else, by multiplying by a phase factor eiδE,l , and by choosing the constant C to
facilitate comparison with the asymptotic expression of the spherical free wave of
equation 3.19

ψk,l,m(r → +∞,θ,φ) ∼ CYm
l (θ,φ) e−ikreilπ/2 − eikre−ilπ/2e2δE,l

2ikr
(3.27)

In the same way as for the case of the free spherical wave of equation 3.19, the
partial wave for r → +∞ is the superposition of an incoming e−ikr/r and an outgoing
eikr/r spherical wave, which are out of phase by lπ + 2δE,l . We can interpret this
expression as follows. The incoming wave is identical to that of the free particle
case, and approaches the area of action of the potential V being more and more
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disturbed by the potential. After reversing direction and being transformed into
an outgoing wave, it has accumulated a phase shift 2δE,l with respect to the free
outgoing wave which would have been obtained in the case of V = 0. This 2δE,l

dephasing, is a very important quantity since it characterizes the whole effect of
the potential on the particle with angular momentum l and energy E. For example,
it is possible to express the scattering cross section as a function of 2δE,l [Cohen-
Tannoudji et al., 1973].

The theory of scattering by a central potential presented previously originates from
the scattering theory where a wave moving in the direction of positive r "from the
left to the right ", and scattered by a potential located in r = 0 has a phase shift 2δE,l

in r → +∞, compared to the same wave propagating without any potential.

Scattering in a Coulombic potential For a Coulombic potential created by an ion
of charge Z which is proportional to Z/r, the previous analytical treatment of short-
range potentials does not apply. However, it can be shown that the scattering phase
on a Coulombic potential is expressed as [Friedrich, 1991]:

Φk,l(r) = Zln(2kr)
k

− l
π

2
+ σk,l + δk,l
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ηk,l

(3.28)

where σk,l is the Coulomb phase, due to the long-range potential and is defined by

σk,l = arg[Γ(l + 1− iZ
k
)] (3.29)

with function Γ being:

Γ(z + 1) = ∫
+∞

0
tze−tdt (3.30)

and δk,l the dephasing due to the short-range potential. The phase Φk,l(r) depends
on the distance r at the scattering center, even for r → +∞. Thus the long-range
Coulombic potential deforms the wave function, even at great distance from the
ion.

3.1.3 Wigner delay

Taking now the case of the short-range potential, according to the above, for r → +∞
we can rewrite the radial part of the outgoing wave as:

Ψ−(t,r)∝ 1
r
∑

l
∫

+∞

0
∣Al(E)∣ei(kr+2δE,l)e−iEt/̵hdE (3.31)
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which is dephased by 2δE,l compared to the EWP not scattered by the potential
EWP:

Ψ−

V=0 ∝
1
r
∑

l
∫

+∞

0
∣Al(E)∣eikre−iEt/̵hdE (3.32)

These two integrals contain terms that oscillate rapidly with energy. The most im-
portant contribution will therefore be due to the points where the phase is station-
ary. Deriving the phases of equation 3.31 and 3.32, we obtain the following rela-
tions:

r
dk
dE

+ 2
dδE,l

dE
− t

h̵
= 0 (3.33)

r
dk
dE

− t
h̵
= 0 (3.34)

which gives

t = r
v
+ 2h̵

dδE,l

dE
(3.35)

t = r
v

(3.36)

The scattered EWP is temporally shifted compared to a free one by the quantity:

τW = 2h̵
dδE,l

dE
(3.37)

, where τW is the so-called Wigner delay [Eisenbud, 1948], [Wigner, 1955], [Smith,
1960].

For the better understanding of the Wigner delay it would be instructive to see
an example of a weak potential. By using the semi-classical Brillouin-Kramers-
Wentzel approximation to solve the Schrödinger equation for an electron subjected
to a potential V, the phase shift δE,l will be [Friedrich, 1991], [Dahlström et al., 2012]:

δE,l(E) = 1
h̵

limx→+∞∫
x

−∞

(
√

2m(E −V(x′))−
√

2mE)dx′. (3.38)

For a V ≪ E, we have
√

2m(E −V(x′)) ≈
√

2mE(1− V(x′)
2E ) from where

δE,l(E) ≈ −1
h̵

√
m
2E ∫

+∞

−∞

V(x′)dx′ = −1
h̵

√
m
2E

Iv (3.39)
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where the integral of the potential Iv, is defined to be independent of the energy.
The corresponding Wigner delay is then calculated as

τW = 2h̵
dδE,l

dE
=
√

m
2

Iv

E3/2
(3.40)

For an attractive potential we have Iv < 0 so τW < 0. This means that the electron
scattered by the potential, is ahead of the free electron. Indeed, at a constant energy,
the kinetic energy of the scattered electron is greater when it passes near an attrac-
tive potential compared to the case of a zero potential. The delay introduced is even
greater when the potential is important. We also note that the Wigner delay is pro-
portional to E−3/2, meaning that an electron will be more affected by the potential if
its energy is low.

Figure 3.2: Schematic representation of the Wigner time delay. As the electron
wave packet (blue symbols) scatters off the potential, it acquires a phase shift η
compared to a reference free electron (orange symbols). This phase shift is related
to the time elapsed between the detection of the scattered EWP and the detection
of the unscattered free electron, called the Wigner time delay . Taken from [Argenti
et al., 2017].

3.2 Measuring the photoionization delays

3.2.1 Photoionization delays and one-photon transition matrix

During the photo-ionization process, the electron is "released" into the ion poten-
tial and scatters out of it. The measurement of the time of photo-ionization con-
sists in determining the time taken by the electron to be emitted, which means the
time between the absorption of the photon and the exit of the electron from the
atomic potential. The question that arises now is how this time delay is connected
to the Wigner delay and the scattering phase. In the following section the work of
Dahlström et al. [Dahlström et al., 2012], Guenot et al. [Guénot et al., 2012] and Ar-
genti et al. [Argenti et al., 2017] on this subject will be presented. Atomic units are
used throughout this section.
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3.2.1 Photoionization delays and one-photon transition matrix

Lets consider the case of an atom in its ground state ∣ψg⟩ ionized by a XUV E(t)
pulse, centered at tXUV = 0. E is polarized along the z direction, is monochromatic
and Fourier limited; its spectrum is centered at E0 − Eg, where E0 and Eg are the
energies of the final and fundamental state, respectively. The Fourier transform of
E(t) is noted as Ẽ(Ω). We choose as eigenfunctions of the continuum (of energy
E = k2/2 > 0) in the absence of an electric field, the functions ∣ψ−

Ð→

k
⟩ , that correspond

to the outgoing waves. The ionized EWP is then written as

∣Ψ(t)⟩ = −i
√

2π∫ ∣ψ−

k ⟩e
−iEt M(1)

k dE (3.41)

where M(1)
k is the transition dipole between ∣ψg⟩ and ∣ψ−

Ð→

k
⟩. In the frame of the first-

order perturbation theory and the dipole approximation we get:

M(1)
k = i⟨ψÐ→

k
∣− zẼ(Ω)∣ψg⟩ = −iẼ(Ω)⟨ψÐ→

k
∣z∣ψg⟩ (3.42)

The wave function of the ground state is separated into a radial and an angular part
:

ψg(Ð→r ) = Rng,lg(r)Ymg

lg
(θ,φ) (3.43)

We have seen previously that the functions ∣ψÐ→
k
⟩ are not plane waves, but scattering

waves. We use their decomposition in partial waves [Landau and Lifshitz, 1977]:

ψÐ→
k
(Ð→r ) = (8π)3/2 ∑

L,M
iLe−iδk,LYM∗

L (
Ð→
k )YM

L (θ,φ)Rk,L(r) (3.44)

By substituting equation 3.43 and 3.44 in expression 3.42 and by using the expres-
sion of the operator in spherical coordinates z = rcosθ and separating the angular
and radial parts, we will have:

M(1)
k = −iẼ(Ω)(8π)3/2 ∑

L,M
i−Leiδk,LYM

L (
Ð→
k )⟨YM

L (θ,φ)∣cosθ∣Ymg

lg
(θ,φ)⟩

×⟨Rk,L(r)∣r∣Rng,lg(r)⟩ (3.45)

With cosθ =
√

4π
3 Y0

1 (θ), we obtain according to the 3j Wigner symbols [Landau and
Lifshitz, 1977]:
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⟨YM
L (θ,φ)∣Y0

1 (θ)∣Ymg

lg
(θ,φ)⟩ = (−1)−M

√
2L + 1

√
2lg + 1× [L 1 lg

0 0 0
] [ L 1 lg

−M 0 mg
]

(3.46)

The selection rules for the one-photon transition impose L = lg ± 1 and M = mg. The
transition matrix M(1)

k will then become:

M(1)
k ∝ ∑

L=lg±1;M=mg

(−1)−Mi−Leiδk,LYM
L (
Ð→
k )

√
2L + 1

√
2lg + 1× (3.47)

[L 1 lg

0 0 0
] [ L 1 lg

−M 0 mg
] ⟨Rk,L(r)∣r∣Rng,lg(r)⟩ (3.48)

The radial matrix element and the 3j-symbols are real [Cohen-Tannoudji et al.,
1973]. If we consider only one ionisation channel, the matrix element is simplified.
This situation occurs in the case of ionization of an s electron or if the transition
L = lg + 1 is favored compared to the L = lg − 1 one, according to the propensity rule
[Fano, 1985]. We then have the following simple relation between the transition
matrix element and the scattering phase of the continuum state:

ArgM(1)
k = δk,L + cste (3.49)

which gives the photoionization delay:

τ =
∂argM(1)

k
∂ω

= 1
2

τW (3.50)

The photoionization delay is half the Wigner delay. The photoionization process
can then be interpreted as a semi-scattering event. This delay is much shorter than
the resolution of any electronic detector used experimentally and thus seems im-
possible to measure directly.

3.2.2 Two-photon transition matrix

The first measurements of photo-ionisation delays were possible thanks to the de-
velopment of the RABBIT (Reconstruction of Attosecond Beating by Interference of
two-photon Transitions) technique [Véniard et al., 1995], [Paul et al., 2001], [Muller,
2002] or the attosecond streaking method [Kienberger et al., 2004], [Goulielmakis
et al., 2004].
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3.2.2 Two-photon transition matrix

These two methods include a second electric field which is used as probe of the
photoionization process. The question that arises now is how one can access the
information about the one-photon ionization process from a two-photon measure-
ment. Throughout this thesis the RABBIT technique (experimental implementation
detailed in Chapter 4.1 is used. In this method the dressing field can be treated in a
perturbative way. The formalism of Marcus Dahlström [Dahlström et al., 2013] and
the team of Richard Taïeb of LCPMR Paris are used.

Figure 3.3: XUV-IR two-photon ionization from the initial state with energy Eg to

a continuum state with energy EÐ→
k

. Two quantum paths lead to
Ð→
k : a photon of

energy Ω is absorbed first (a) or second (b). The second path is negligible compared
to the first one.

We consider the two-color ionization process outlined in Figure 3.3. The initial
energy system Eg is ionized by the absorption of a photon of energy Ω and a photon
of energy ω. In general in the RABBIT interferometry we have Ω > ω, the first
being an XUV and the second an IR photon. The IR photon can be absorbed first or
second. However, there are very few states below the ionization threshold, which
makes the absorption of the IR photon first a negligible process. We will thus focus
on the two-photon process described in Figure 3.3 (a).

The XUV and IR fields are both polarized in the z direction that is chosen as the
quantization axis. According to the second-order perturbation theory, the two-
photon transition element corresponding to the absorption of the XUV photon fol-
lowed by the IR photon, is written as the sum-integral on all the intermediate en-
ergy states Ev (discrete for Ev < 0 and continuum for Ev > 0):

M(2)
Ð→

k
= −iEΩEω lim

ε→0+⨋v

⟨
Ð→
k ∣z∣v⟩⟨v∣z∣g⟩

Eg +Ω − Ev + iε
(3.51)

As before, we separate the ground state wave function in the radial and angular
part (equation 3.43):
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M(2)
Ð→

k
= 4π

3i
(8π)3/2EΩEω ∑

L,M
(−i)LeiηL(

Ð→

k )YM
L (
Ð→
k )∑

λ,µ
⟨YM

L ∣Y0
1 ∣Y

µ
L ⟩⟨Y

µ
λ ∣Y0

1 ∣Y
mg

lg
⟩×

[ ∑
v,Ev<

⟨Rk,L∣r∣Rv,λ⟩⟨Rv,λ∣r∣Rng,lg⟩
Eg +Ω − Ev

+ lim
ε→0+∫

+∞

0
dEv

⟨Rk,L∣r∣Rv,λ⟩⟨Rv,λ∣r∣Rng,lg⟩
Eg +Ω − Ev + iε

] (3.52)

The intermediate states are characterized by the quantum numbers v, λ and µ. The
angular moment of intermediate and final states obey the selection rules, allowing
dipole transitions only for λ = lg ± 1, L = lg or lg ± 2 and M = µ = mg. The term
in square brackets in equation 3.52 will be later noted as TL,λ,lg(k). It corresponds
to the radial part of the transition amplitude, in which we have separated the con-
tribution of the discrete states under the ionization threshold (in the sum) and the
states of the continuum (in the integral). In RABBIT interferometry , the energy of
the XUV photon is greater than the ionization potential of the atom Ω > ∣Eg∣, there-
fore greater than the energy of the discrete states below the threshold. We have
then the denominator of the first term : Eg +Ω − Ev, to be positive and large, which
makes the contribution of the discrete states in TL,λ,lg(k) negligible compared to that
of the continuum states. In the integral, the denominator is pure imaginary for the
moment κ such that Eκ = κ2/2 = Eg +Ω. We then obtain the following expression for
the integral, where P represents the Cauchy principal value :

lim
ε→0+∫

+∞

0
dEv

⟨Rk,L∣r∣Rv,λ⟩⟨Rv,λ∣r∣Rng,lg⟩
Eg +Ω − Ev + iε

=

P ∫
+∞

0
dEv

⟨Rκ,L∣r∣Rv,λ⟩⟨Rv,λ∣r∣Rng,lg

Eg +Ω − Ev
− iπ⟨Rk,L∣r∣Rκ,L⟩⟨Rκ,λ∣r∣Rng,lg⟩ (3.53)

The calculation of TL,λ,lg(k), and in particular of its phase, is a complex task analyt-
ically and numerically. M. Dahlström [Dahlström et al., 2013] therefore developed
an approximation to compute the TL,λ,lg(k), based on the analysis of the asymptotic
behavior of the radial functions, similar to the analysis presented in sections 3.1.1
and 3.

Asymptotic behavior One can re-write TL,λ,lg(k) under the form

TL,λ,lg = ⟨Rk,L∣r∣ρκ,λ⟩ (3.54)

where ρκ,λ(r) is a scattering wave function whose expression is given by identifica-
tion with equation 3.52
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ρκ,λ(r) = ∑
v,Ev<0

Rv,λ(r)⟨Rv,λ∣r∣Rng,lg⟩
Eκ − Ev

+P ∫
+∞

0
dEv

Rv,λ(r)⟨Rv,λ∣r∣Rng,lg⟩
Eκ − EL

− iπRκ,λ∣r∣Rng,lg⟩ (3.55)

In the case of scattering on a Coulombic potential, it has been shown that for r → +∞
the radial part of the wave function of the final state is written as:

Rk,L(r → +∞) ∼ Ck

r
sin(kr +Φk,L(r)), (3.56)

where the dephasing Φk,L(r) is given by equation 3.28. According to the previous
paragraph, the contribution of the discrete states to ρκ,λ(r) is negligible compared
to that of the continuum states, thus:

R e[ρκ,λ(r)] ≈ P ∫
+∞

0 dEv
Rv,λ(r)⟨Rv,λ ∣r∣Rng ,lg⟩

Eκ−Ev
(3.57)

We then, extend the integration to −∞ and replace Rv,λ by its asymptotic form

R e[ρκ,λ(r → +∞)] ≈ P ∫
+∞

−∞
dEv

Cκ
r sin(κr +Φκ,λ(r))

⟨Rv,λ ∣r∣Rng ,lg ⟩

Eκ−En
(3.58)

R e[ρκ,λ(r → +∞)] ≈ −πCκ
r cos(κr +Φκ,λ(r))⟨Rκ,λ∣r∣Rng,lg⟩ (3.59)

The asymptotic form of the imaginary part of ρκ,λ is obtained by simply replacing
expression 3.56 into 3.55:

Im[ρκ,λ(→ +∞)] ≈ −πCκ

r
sin(κr +Φκ,λ(r))⟨Rκ,λ∣r∣Rng,lg⟩ (3.60)

Finally, the asymptotic form of ρκ,λ will become:

ρκ,λ(r → +∞) ≈ −πCκ

r
ei(κr+Φκ,λ(r))⟨Rκ,λ∣r∣Rng,lg⟩ (3.61)

By replacing equation 3.61 and 3.56 into equation 3.54 one gets:

TL,λ,lg(k) ≈ −πCkCκ⟨Rκ,λ∣r∣Rng,lg⟩∫
+∞

0

sin(kr +Φk,L(r))
r

r
ei(κr+Φκ,λ(r))

r
r2dr (3.62)

By expressing the sine in the integral in an exponential form, we will obtain a sum
of two oscillating terms : ei((κ+k)r+Φκ,λ(r)+Φk,L(r)) and ei((κ−k)r+Φκ,λ(r)−Φk,L(r)). In RAB-
BIT interferometry, the energy h̵ω of the IR photon that is absorbed after the XUV
photon, is equal to the energy difference between the intermediate and final states.
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This energy is much smaller than the energy of the final state k2/2− κ2/2 = ω ≪ k2/2.
Thus the term ∝ ei(κ+k) oscillates more rapidly than the second term ∝ ei(κ−k) and
subsequently the integral is simplified as:

TL,λ,lg(k) ≈ −CkCκ⟨Rκ,λ∣r∣Rng,lg⟩∫
+∞

0
− 1

2i
ei((κ−l)r+Φκ,λ(r)−Φk,L(r))rdr (3.63)

By replacing the dephasings with their expressions, after changing variable and
using the integral expression of the Gamma function defined by the equation 3.30,
one obtains:

∫
+∞

0
ei((κ−k)r+Φκ,λ−Φk,L)rdr = ∫

+∞

0
rei(κ−k)rei( Zln2κr

κ
Zln2kr

k )ei(ηλ−ηL)eiπ/2(L − λ)dr (3.64)

= (2κ)iZ/κ

(2k)iZ/k ei(ηλ−ηL)iL−λ ∫
+∞

0
r1+iZ(1/κ−1/k)ei(κ−k)rdr (3.65)

= (2κ)iZ/κ

(2k)iZ/k ei(ηλ−ηL)iL−λ( i
κ − k

)2+iZ(
1
κ
−

1
k )Γ(2+ iZ(1

κ
− 1

k
)) (3.66)

Noticing that iiZ(1/κ−1/k) = e−π/2Z(1/κ − 1/k), we obtain the final asymptotic expres-
sion of the radial transition element:

TL,λ,lg(k) ≈ π

2
CkCκ⟨Rκ,λ∣r∣Rng,lg⟩

e−
π
2 Z(

1
κ
−

1
k )

(κ − k)2

×ei(ηλ−ηL)iL−λ+1 (2κ)iZ/κ

(2k)iZ/k Γ(2+ iZ(1
κ
− 1

k
))(κ − k)−iZ( 1

κ
−

1
k) (3.67)

The first line of this expression is real and contains an exponential term which de-
scribes the transition between two continuum states κ and k. The exponential de-
creases with the energy of the dressing IR photon ω = k2/2 − κ2/2 and at a fixed
photon energy ω, the exponential increases with the final angular moment k.

Phase From the previous expression we deduce the phase of the radial transition
matrix element as:

argTL,λ,lg(k) = π

2
(L − λ + 1)+ ηλ − ηL + arg((2κ)iZ/κ

(2k)iZ/k

Γ(2+ iZ( 1
κ −

1
k))

(κ − k)iZ(
1
κ
−

1
k )

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
φcc(k,κ)

, (3.68)
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where the phase φcc is related to the transition between the intermediate state and
the final continuum of a Coulombic potential. This means that it doesn’t depend
neither on the initial state nor on the XUV field. It is a measurement induced quan-
tity and is considered global [Dahlström et al., 2013]. It is now possible to express
the phase of the total two-photon transition matrix 3.52 as:

argM(2)
Ð→

k
= argYmg

L (k)+ φΩ + φω − λ
π

2
+ ηλ(κ)+ φcc(k,κ), (3.69)

where φΩ and φω are the phases of the XUV and IR fields respectively. The phase
terms due to the final state L, compensate for each other and do not contribute in the
final expression 3.69. Thus, surprisingly, except for the contribution of the spherical
harmonic, the terms contained in expression 3.69 depend solely on the intermediate
state, meaning the one-photon transition.

3.2.3 Phase and delay measured by RABBIT interferometry

The RABBIT technique measures the phase difference between two two-photon
transitions. More specifically, the absorption of a harmonic followed by the ab-
sorption of a dressing photon which will interfere with the absorption of the next
harmonic followed by the stimulated emission of an other dressing photon as is
schematically outlined in Figure 3.4.

Figure 3.4: Two-photon quantum paths interfering in RABBIT interferometry: the
absorption of the XUV photon of energy Ωn followed by the absorption of IR pho-
ton of energy ω(a) and the absorption of the XUV photon of energy Ωn+2 followed
by the stimulated emission of the IR photon of energy ω(e) leads to the same final
state.

The signal of a sideband is then expressed as a function of the two-photon transition
matrix elements as:
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SSB ∝ ∣Mα + Me∣2 = ∣Mα∣2 + ∣Me∣2 + 2∣Mα∣∣Me∣cos[arg(Mα Me∗)] (3.70)

Assuming that only one intermediate angular momentum contributes to the transi-
tion in both paths α and e and taking into account equation 3.69 we obtain:

arg(Mα Me∗) ≈ 2ωτ + φΩn+2 − φΩn + ηL(κn+2)− ηL(κn)+ φcc(κn+2)− φcc(κn) (3.71)

with φΩn+2 − φΩn the spectral phase difference between two consecutive harmonics
and τ the delay between the IR and XUV pulses. By dividing by 2ω the phase of
the oscillating component at 2ω, in a RABBIT spectrogram, we obtain an approxi-
mation of the group delays.

τRABBIT ≈ tXUV + τW + τcc, (3.72)

where tXUV is the harmonic group delay (Chapter 2), τW the Wigner delay and τcc

the continuum-continuum, measurement-induced delay.

So, in the case of an unstructured continuum, there is a simple relation between the
phase of the two-photon transition amplitude and the photoionization delay. Dur-
ing a RABBIT measurement, this delay can be directly measured with an additional
"continuum-continuum" delay. These developments allowed the interpretation of
two-color attosecond photoionization experiments in terms of photoionization de-
lays.
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Part III

Experimental Apparatus and
Methods
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CHAPTER 4

EXPERIMENTAL APPARATUS FOR XUV+IR PHOTOIONIZATION
SPECTROSCOPY

The experiments presented in this thesis have been performed on two different
laser facilities: ATTOLab in Saclay, France and the Lund Attosecond Science Center
(LASC) in Sweden. In this chapter, the RABBIT method will be first presented, fol-
lowed by a detailed description of the 1 kHz (SE1) beam-line in ATTOlab and the 1
kHz beam-line in Lund.

4.1 RABBIT technique

In the attosecond spectroscopy field, the ’reconstruction of attosecond beating by
interference of two-photon transitions’, also know as the RABBIT technique, plays a
prominent role. Historically, the first to introduce the RABBIT scheme was Veniard
et al. [Véniard et al., 1996] in 1996 where it was theoretically shown that by changing
the delay τ between a XUV pump and a weaker IR probe pulse, the intensity of the
so called sidebands oscillates. These oscillations contain valuable information for
both the XUV ionizing radiation and the target atom. Later on, Paul et al. [Paul
et al., 2001] in 2001 and Muller [Muller, 2002] in 2002, demonstrated experimentally
the technique for the first time.

The principle of the method is recalled schematically in Figure 4.1. A comb of co-
herent harmonics is used to ionize the system of interest creating one-photon EWPs.
After adding a weak IR field (∼ 1011W/cm2) we create two-photon replicas of the
initial EWPs that will now interfere giving rise to the so-called sidebands (SB) that
lie ±h̵ω0 between the harmonic peaks. Their intensity oscillates with 2ω0 frequency
as a function of the delay τ between the XUV and IR pulses as given by equa-
tion 3.70 which in order to facilitate readability, is rewritten here as :

Sn+1(τ,E) = ∣Mn(E)∣2 + ∣Mn+2(E)∣2

+2∣Mn(E)∣∣Mn+2(E)∣cos(2ω0τ +∆φXUV(E)+∆φatom(E)), (4.1)

where Mn(E),Mn+2(E) are the transition amplitudes of the two-photon EWPs af-
ter absorbing/emitting a dressing IR photon, ω0 is the driving laser frequency.
In Chapter 3.2.3 it was shown (equation 3.71) that the measured phase by the
RABBIT method consists of i) the phase difference between two consecutive har-
monics ∆φXUV = φΩn+2 − φΩn, ii) the difference between the scattering phases of
the one-photon EWPs produced by harmonics n and n+2 respectively, ∆ηscat =
ηL(κn+2)− ηL(κn) and finally iii) the term ∆φcc = φcc(κn+2)− φcc(κn) which is called
the ’continuum-continuum phase’ and is due to the absorption/emission of the
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dressing IR photon. Thus in total the measured RABBIT phase is φRABBIT =

∆φXUV +

∆φatom
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∆ηscat +∆φcc. ∆φXUV is connected to the atttochirp (Chapter 2.1.4) while

∆ηscat is intrinsic to the target atom and ∆φcc is a small and constant quantity which
becomes important for lower energies especially in angle resolved measurements
when more than one ionization channels are present.

To access the spectral phase of the 2ω0 oscillations (∆φXUV +∆φatom) one may in-
tegrate Sn+1(τ,E) over the energy inside each sideband and then apply a Fourier
transform to the oscillating signal.

Figure 4.1: RABBIT principle: The two different quantum paths (n + 2) − IR and
(n)+ IR, end up at the same energy and their interference creates the oscillating SB
signal.

The RABBIT method was initially developed as a characterization tool of the At-
tosecond Pulse Trains (APT) generated from focusing an intense (∼ 1014W/cm2) ul-
trashort IR pulse into a gas medium. If ∆φatom is known or considered negligible
then one has direct access to ∆φXUV . In combination with the measured harmonic
intensities the reconstruction of the initial harmonic comb is achieved [Paul et al.,
2001], [Mairesse et al., 2003a], [Muller, 2002],[Agostini and DiMauro, 2004]. How-
ever, it was soon demonstrated ([Mauritsson et al., 2005]) that the same method
could also be used for the study of the photo-ionization dynamics of the detection
atomic gas by measuring the atomic phases ∆φatom if now the harmonic phase is
known. In this way, by measuring the spectral phase and amplitude of the ionized
EWP it is possible to reconstruct the dynamics of the photo-emission event ([Guénot
et al., 2012], [Klünder et al., 2011], [Haessler et al., 2009], [Dahlström and Lindroth,
2014]).
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4.2 SE1 beam line in ATTOlab

ATTOlab is a consortium between nine laboratories situated on the plateau of
Saclay, France, dedicated to the interdisciplinary studies of ultra-fast electronic and
nuclear dynamics at femtosecond and attosecond timescales in systems in the gas,
condensed and plasma phase (Attolab). The experimental site at CEA-l’Orme-les-
merisiers, inaugurated officially in February 2017, is specialized in gas phase and
solid state studies. It consists of two Femtosecond-Attosecond Beamlines (FAB1
and FAB10), each including an IR femtosecond laser and a HHG-based attosecond
XUV source, respectively at 1 kHz (SE1) and 10 kHz (SE10) repetition rates, coupled
to experimental end-stations (Figure 4.2).

Figure 4.2: overall view of the experimental space: hall for FAB1-FAB10 lasers,
experimental rooms with HHG attosecond sources and endstations (SE1, SE10)

The experiments presented in Chapter 7 were the first to be realized in the SE1
beam-line driven by the FAB1 laser (25 fs duration,15 mJ per pulse, centered at 800
nm, with carrier-envelope phase stabilization).

4.2.1 FAB1 and FAB10 dual laser system

This laser system has been developed by Amplitude Technologies in collaboration
with CEA Saclay within the joint laboratory Impulse. An original full water-cooled
10 kHz front-end is used to seed different amplification stages. The front-end out-
put is split in two parts, seeding simultaneously two beam-lines operating respec-
tively at 1 and 10 kHz. Figure 4.3 (b) shows schematically the outline of the 10
kHz front-end where CEP-stable pulses from a Rainbow CEP4 (Femtolasers) oscil-
lator are temporally stretched by an Öffner-triplet stretcher. In order to optimize the
pulse duration and correct the CEP slow drift, a Dazzler module (acousto-optic pro-
grammable dispersive filter - AOPDF) that provides a dispersion compensation is
placed after the stretcher. Next, a 6-pass amplifier boosts the pulse energy up to 50
nJ when pumped with 15 W. The pulses are then amplified in a double Ti:Sa crystal
regenerative cavity. Gain narrowing effects during the amplification are counter-
counted by the use of an intracavity Mazzler (acousto-optic programmable gain
filter - AOPGF). Next, a double Ti:Sa crystal pre-amplifier is used. When pumped
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with 25 W this pre-amplifier can provide pulses with 7 W power after a two-crystal
single pass.

The front-end output pulses are then seeded into two high energy amplifiers as it is
shown in Figure 4.3 (a). 30% of the energy is sent to a Pockels cell to reduce the pulse
repetition rate from 10 kHz to 1 kHz, resulting in 180 µJ. These pulses are firstly
amplified to 4.3 mJ in a water cooled 5-pass pre-amplifier and further boosted up to
23 mJ with 70 W of pump power in the 4-pass main cryo-cooled amplification stage.
The rest of the output power from 10 kHz front-end, corresponding to 5.1 W , is sent
to the 10 kHz main cryo-cooled amplifier. With 100 W pump power, 28 W output is
achieved at 10 kHz. After an expansion telescope, each amplified laser beam is send
to a CEP (carrier envelope phase)-compatible reflection grating-based compressor.
For a full description of the system and its detailed characteristics consult [Golinelli
et al., 2018]. The FAB1 laser beam after the compressor delivers pulses centered at
800 nm with 25 fs duration, 15 mJ energy, with energy stability of 0.8% (rms) and
shot-to-shot CEP stability of 350 mrad at 1kHz repetition rate.

Figure 4.3: (a) Schematic representation of the FAB1-FAB10 dual laser system. (b)
Scheme of the 10 kHz laser front-end. PC – Pockels cell. The amplifiers are pumped
by two 10 kHz Continuum MESA lasers. Amplified pulses can be compressed by
a grating-based compressor or seeded in the main amplifiers as in the layout pre-
sented in (a) [Golinelli et al., 2018].
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4.2.2 SE1 attosecond beam-line

As it is demonstrated in Figure 4.2, the initial beam is split into two parts: the IR
spatiotemporal shaping line for the generation of single attosecond pulses and the
beam-line for the generation and characterization of attosecond pulse trains and
photoionization spectroscopy studies. The latter consists mainly of the RABBIT
experimental apparatus

Figure 4.4 shows the schematic outline of the attosecond pulse train beam-line. Be-
fore the initial beam enters the main configuration, it passes through an attenuator
consisting of a rotatable half-wave plate and two reflective polarizers setting an s-
polarization. This enables the control of the incoming energy and allows its adjust-
ment in a range of 0.8 mJ to 9.4 mJ, according to the needs of each experiment. The
main set up [Weber et al., 2015] consists of a Mach-Zehnder interferometer where a
part of the incoming beam is used for the generation of the attosecond pulse train
and the rest is used as a probe. More specifically, 90% of the initial beam is focused
by a f = 2000 mm lens into a gas cell of 3mm - 10 mm length, placed on a translation
stage (path 1, Figure 4.4). An anti-reflective coated silica plate, set at grazing inci-
dence (78.5○), is used to transmit the strong generating IR beam and to reflect the
generated XUV light. By turning the silica plate, the XUV beam can then either be
directed to an XUV spectrometer (path 2, Figure 4.4) or to the time-of-flight electron
spectrometer (path 3, Figure 4.4).

Figure 4.4: SE1 beam line for XUV generation and characterization/application.

The XUV spectrometer consists of a concave grating which will focus each harmonic
in the range 15–100 eV (in order to image the full spectrum one needs to move the
detector perpendicularly to the beam propagation direction) on a position sensi-
tive detector made of two micro-channel plates (MCPs) in chevron configuration
coupled to a phosphor screen. A micro-channel plate is a slab made from highly
resistive material of typically 2 mm thickness with a regular array of tiny tubes
or slots (microchannels) leading from one face to the opposite, densely distributed
over the whole surface. The microchannels are typically approximately 6-10 mi-
crometers in diameter and spaced apart by approximately 15 µm. ’Chevron con-
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figuration’ means that our MCP detectors consist of two microchannel plates with
angled channels rotated 180○ from each other producing a v-like (chevron) shape.
In a chevron MCP the electrons that exit the first plate start the cascade in the next
plate. The angle between the channels reduces ion feedback in the device, as well as
producing significantly more gain at a given voltage compared to a straight channel
MCP.

The 2D fluorescence signal , showing the spectrum in the horizontal direction and
the spatial profile in the vertical direction, will then be recorded with a cooled CCD
(charge-coupled device) camera. A system like this gives the possibility of fine tun-
ing the generation parameters in order to optimize the spatio-spectral characteris-
tics of the produced XUV radiation before using it for photoionization experiments.
Path 3 (Figure 4.4) indicates the second option where the silica plate is rotated to
reflect the XUV beam through a filter that removes the remaining IR light (usually
200 nm thick aluminum filters are used due to their high transmission between ∼
20-73 eV), towards a gold coated toroidal mirror (f=500mm). Used in the 2f-2f con-
figuration, this mirror refocuses the beam in a gas jet in the interaction region of
a 2m-long MBES (Magentic bottle electron spectrometer , see chapter 4.2.3 below),
where it produces photo-ionization.

Figure 4.5: Pointing stability of the pump and probe beams when the number of
reflections between the two arms is uneven (a) or even (b)[Platzer, 2017].

The produced photoelectrons are then collected and guided by magnetic fields to-
wards a pair of MCPs and a phosphor plate. In order to record a cleaner signal with
the less possible ringing and other noise contamination a bandpass filter is added
after the second MCP.

The remaining 10% of the initial beam is used as a probe as is shown in path 4
(Figure 4.4). In order to be able to adjust the pulse energy to the experimental con-
ditions, an attenuator identical to the one discussed above is mounted in the beam
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path. The pulse then passes through a delay line for fine adjustment and scan of
the probe delay by translating a set of two mirrors. Coarse adjustment is provided
by a microcontrole translation while fine by a piezo-electric actuator with a 75 µm
range and 2 nm resolution. The dressing IR beam is then focused and recombined
with the XUV beam by a drilled mirror (d=2 mm) that reflects the IR and transmits
the XUV. This recombination mirror is placed on a three axis translation stage with
remote control, that enables its alignment under vacuum directly on the XUV beam.
In order however, to find the best spatial overlap between the pump and the probe
beam, after removing the gas cell and the Al filter, thus letting only the generating
IR beam through, a mirror is inserted into the common path. In this way the two
co-propagating beams are now focusing outside the vacuum chamber and it is pos-
sible to image both their foci by the same IR camera (path 5 of Figure 4.4) and adjust
accordingly the position of the drilled mirror to maximize their interference.

A big challenge for this kind of experiments is to achieve good spatio-temporal
stability between the two long (∼ 4 m) arms of the interferometer. Since the physical
processes we are interested in measuring are of the order of some tens-hundreds of
attoseconds the stability of our interferometer should be of the same order or less.
Many sources of beam path fluctuations may occur. Our 1 kHz intense laser system
is susceptible of long term fluctuations. Moreover, slow temperature variations as
well as vibrations from the location of the experimental setup in the building and
from the vacuum pumping system may arise.

To solve these issues, we took care to setup our beam-line with the best possible
passive stabilization. In order to avoid all these instability sources, we installed a
single main optical table supporting all the beam steering of the beam-line. Op-
tics are clamped on thick posts of the minimum possible height in order to reduce
vibrations. Vacuum chambers are fixed, using a bridge like design, on two heavy
sand filled steel containers to decouple turbo pumps’ vibrations from the optical
setup. Vacuum chambers are therefore connected to the main optical table only
through the floor. The optical breadboard inside the square chamber (path 4 and 2)
rests on four feet mounted on the optical table and is only connected to the vacuum
chamber through highly flexible bellows used as vacuum seals (for more details see
Ref [Weber et al., 2015]). The entire beam-line is also covered in order to isolate the
system during the measurements.

Additionally, in order to achieve better stability between the two interferometric
arms the number of reflections for the two paths should be even. A configuration
of two lenses with f1 = 1140 mm and f2 = 400 is chosen (path 4, Figure 4.4). The first
lens is placed on a translation stage (outside the vacuum chamber) which enables
us to move the lens in the beam propagation direction to ensure the best possible
overlap between the IR and XUV foci. The stability of the system is measured by
using path 5 of Figure 4.4 to image the vertical displacement of the IR foci of the
pump and probe beam over time. In Figure 4.5 the spatial stability of the system is
plotted for the case of uneven (a) and even (b) reflections between the two arms. In
the case of uneven reflections, the probe arm consists of one lens (f = 1140 mm) and
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an additional mirror as is shown in Figure 4.6.

Figure 4.6: Dressing arm for the ’uneven reflection’ configuration.

In Figure 4.5 (a), we notice that after a few hours, the foci move in opposite di-
rections and are separated by more than 100 µm, which is of the same order of
magnitude as the focal spot. However, this drift is corrected in Figure 4.5 (b), where
the two beams move in the same way and thus remain superimposed during the
experiment.

In order now to estimate the corresponding temporal stability of the system, we
superimpose the two foci, and introduce a fixed delay τ between the two arms. We
then measure the spectrum of the two overlapped beams using an IR spectrometer.
In the spectral domain the sum of the two identical beams will give :

S(ω) = A(ω)eiφ(ω) + A(ω)eiφ(ω)eiωτ = A(ω)eiφ(ω)(1+ eiωτ) (4.2)

,where A(ω) and φ(ω) are the spectral amplitude and phase of the first pulse. The
spectral intensity measured by the spectrometer will be :

∣S(ω)∣2 = ∣A(ω)∣2 ∣1+ eiωτ ∣2 = 4 ∣A(ω)∣2 (1+ cosωτ) (4.3)

which corresponds to the spectral intensity of a single pulse ∣A(ω)∣2 modulated by
a factor (1+ cosωτ) due to which spectral fringes appear. By Fourier transforming
equation 4.3, we thus obtain the delay τ which is the quantity plotted in Figure 4.7.
The corresponding temporal stability is ∼ 3 fs over three hours. In a usual RABBIT
measurement the signal for each delay is accumulated for 1000 laser shots, so for
a typical delay range of 26 fs with 0.1 fs sampling, we need ∼3 minutes to record
a full RABBIT trace. This means that the spatio-temporal stability of the system is
satisfactory for this type of measurements.

4.2.3 Detection of photoelectrons: Magnetic Bottle Electron
Spectrometer (MBES)

The results of this thesis have been obtained by detecting the photoelectrons using
a magnetic bottle electron spectrometer. In this instrument the kinetic energy of
the photoelectrons, is analyzed by determining the photoelectron flight-time in a
drift tube. The main advantage of this instrument is its high collection efficiency,
which is enabled by a magnetic field designed to direct the electrons towards the
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Figure 4.7: Delay drift between the pump and the probe pulse over three hours
[Platzer, 2017].

microchannel plates at the end of the drift tube, independently of their emission
angle and without altering their kinetic energy [Kruit and Read, 1983].

The scheme of the MBES used in SE1 beam line is shown in Figure 4.8. It consists
of a 2m long flight tube which is wrapped with a sheet of µ-material (a material
with very large magnetic permeability) to shield the magnetic field of the earth. A
permanent magnet that creates a strong magnetic field of ∼1 T close to the gas target
and a solenoid wrapped around the drift tube that creates a weak homogeneous
magnetic field of ∼1 mT, are used in order to create the ’bottle’ type field that allows
to collect electrons ejected over a large angle. Additionally, electrodes that provide
a retarding/accelerating electric field are placed close to the entrance of the drift
tube and are used for the optimization of the system’s resolution. Finally there is
the detector which consists of a set of MCPs and a phosphor screen in the end of
the tube.

Figure 4.8: Design of the MBES electron spectrometer: (1) permanent magnet with a
soft iron cone mounted inside the vacuum chamber enabling a 4π sr collection angle
, (2) solenoid, (3) drift tube, (4) µ-metal shield, (5) copper mesh, (6) double-stack of
MCP, (7) phosphor screen coupled to an analog-to-digital converter Agilent DP1400
with a 500 ps resolution, (8) nozzle to introduce the sample. The orange lines are
the schematic outline of the guiding magnetic field. Figure adapted from [Kothe
et al., 2013].

Its working principle is simple and based on the free-field time-of-flight electron
spectrometer: depending on its velocity, an electron will arrive on the detector at a
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specific time t

Ekin =
me

2
L2

(t − t0)2 (4.4)

where Ekin = Eph − EIp, Eph is the photon energy, EIp is the ionization energy of the
gas target, me is the electron mass, L is the time-of-flight tube length and t0 accounts
for the time offset of the trigger (usually the time resolution of the detector and
the electronics is on the order of 100 ps to 1 ns). To make the transition from the
temporal domain to the energy domain, a Jacobian transform function is used and
in combination with equation 4.4 we obtain the calibration function 4.5

I(Ekin)dEkin = I(t)dt → I(Ekin) =
L
√

me

(2Ekin)3/2
I(t) (4.5)

where I(Ekin) and I(t) are the intensities of the peaks in the spectral and temporal
domain respectively. From equation 4.5 derives that the relative energy resolution
will be:

∆E
E

= 2
L

√
2E
me

∆t. (4.6)

It becomes clear that it depends on both the temporal resolution ∆t that is con-
strained to the reaction time of the detection electronics (∼1 ns) and the length of
the flight tube. The MBES used for the experiments in Chapter 7 has ∆E/E ∼ 1.9%
resulting in an energy resolution ∆E of 190 meV at 10 eV electron energy (Attolab)
whereas the one used for the experiments described in Chapter 6 has a resolution
of 89 ±5 meV at 10 eV (Lund).

An alternative way to increase the resolution of the spectrometer is to decrease the
effective energy of the traveling photoelectrons. This can be done by slowing down
the electron before it enters the tube by applying a bias voltage between the gas
interaction region and the drift tube (Figure 4.8). The drawback in this case is that
electrons with initial energy less than the bias voltage cannot enter the drift tube
[Chang].

As stated earlier, the main advantage of this instrument in comparison with its sim-
ple field-free version is the large collection angle of 4π sr while at the same time
maintaining the high energy resolution. This is achieved by the ’bottle’ shaped
magnetic field. An electron emitted in the interaction region with speed v and a
velocity component perpendicular to the magnetic field lines, vsin(θi), will follow
a helical trajectory. In a plane perpendicular to the magnetic field lines, the electron
will travel in a circular, cyclotron motion with a radius

ri =
vm sin(θi)

eBi
(4.7)

while drifting into the parallel-field region, due to its longitudinal velocity compo-
nent. If the variation of the magnetic field that the electron experiences changes
negligibly during one revolution of the cyclotron motion, the component of the
electron angular momentum that is parallel to the magnetic field lines is conserved.
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We can therefore equate the final angular momentum of the cyclotron motion in the
homogeneous field of the drift region, with the initial angular momentum,

rimv sin(θi) = r f mv sin(θ f ), (4.8)

which together with equation 4.7 gives a relation between the initial and the final
traveling angles relative to the magnetic field lines,

sin(θ f )
sin(θi)

=

¿
ÁÁÀB f

Bi
(4.9)

The momentum of the electron is thus essentially parallel to the lines once it reaches
the drift region. The transition from the high to the low field region should be made
relatively short, a few mm, so that the travel time of the electron from the interaction
region to the detector is a good measure of the particle speed, independently of
the emission angle from the target. However, the transition should not be made
over too short distance. The magnetic field gradient then becomes too large for
the adiabatic approximation to be valid, i.e. the magnetic field strength changes
significantly during one revolution of the electron cyclotron motion [Roedig, 2012].

4.2.4 A typical RABBIT measurement from SE1 beam line

In Figure 4.9 we show a typical RABBIT measurement using the experimental ap-
paratus described above where we used neon as the generation and detection gas.
In Figure 4.9 (a) the RABBIT spectrogram along with its integrated signal over the
delays (yellow line) are shown. The sidebands’ intensity is kept lower than the
harmonics’ one in order to remain in the perturbative region where the RABBIT
analysis described in Chapter 4.1 is valid. By integrating the electron signal over
the sideband energy width for each sideband, we get oscillating curves like the
one shown in Figure4.9 (b) for SB38. The Fourier transform with respect to delay
exhibits a peak at 2ω0, as shown in (d). The spectral phase at this peak for each
sideband is reported in Figure4.9 (c). It contains the spectral phase of the ionizing
harmonics (or rather their group delay as well as the ’atomic’ phase delay of the
ionized target) , as explained in Chapter 2. In the case where the latter is negligi-
ble (neon target gas), we can use the information on the former to reconstruct the
corresponding APT [Mairesse et al., 2003a], [Paul et al., 2001] in Figure 4.10.

One of the criteria of the measurement’s quality is the spatio-temporal overlap
between the pump and the probe beams which is mirrored on the quality of the
sidebands’ oscillations and subsequently on the form of the 2ω0 peak. A well de-
fined and well centered around 2ω without any sidelobes peak, as the one in Fig-
ure 4.9 (d) is the desired result. Measuring the ratio between the 0th and 2nd order
peak we derive the contrast of the sideband oscillations which is typically around
0.52.
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Figure 4.9: (a) RABBIT spectrogram for harmonics generated and detected in neon,
with the corresponding delay-integrated signal shown in yellow. (b) The energy-
integrated signal of sideband 38 (orange line) along with its cosine fit (magenta
line). (c) The spectral phases (see Chapter 4.1) of each sideband and (d) the intensity
of the Fourier transform of the signal in (b).

Figure 4.10: Reconstruction of the attosecond pulse train (APT) from harmonics
H21-H39 and their corresponding spectral phases from Figure 4.9. The pulses are
separated by a half laser period, i.e. 1.3 fs and have a duration of about 200 as at
FWHM.

4.3 Beam line in Lund University

The experimental work discussed in Chapter 6 was performed in collaboration with
Lund university and the group of Anne L’Huillier. In this section the 1kHz laser-
chain and the RABBIT apparatus of the Lund beam-line will be presented.

1 kHz laser-chain
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Figure 4.11 displays the schematic outline of the 1kHz CPA laser-chain in Lund. A
KLM-mode-locked Ti:sapphire CEP-stable, RAINBOW oscillator from Femtolasers
delivers 7 fs long pulses of 2.5 nJ energy that are then stretched in a single grating
configuration stretcher. A Dazzler is then used to reshape and also limit the band-
width of the seed pulses. The spectral width of the final pulses is ∼100 nm (cor-
responds to Fourier transform limited pulses of 20 fs ) that can be reduced down
to ∼50 nm. In this way longer pulses are generated along with the possibility of
tuning the central wavelength of the final pulse. For the first amplification stage a
multi-pass amplifier increases the pulse’s energy up to about 250 nJ. A pulse picker
is then used to reduce the pulse repetition rate and let only the wanted pulses pass
in the second amplification stage. This consists of the regenerative amplifier com-
bined with a Mazzler which operates as a spectral amplitude filter. After traveling
14 round-trips in the regenerative amplifier, the ∼0.5 mJ pulse passes through the
last amplification stage that consists of two 3-pass amplifiers, ending up with an
energy of 6 mJ per pulse. Finally, the pulse is recompressed via a double pass on
a grating pair in parallel configuration giving pulses with 20 fs duration, 3.5 mJ
energy and 1kHz repetition rate.

Figure 4.11: Outline of the 1 kHz CPA laser chain in Lund. Adapted from [Kroon,
2016].

RABBIT set up

The main design of the set up is very similar to the one in Attolab. The optical set
up is schematically outlined in Figure 4.12. The initial beam is split by a 70:30 beam
splitter and the most energetic part of the beam is used to generate the harmonics
(pump beam) while the rest of the power is used as the probe beam. In the pump
arm, the beam is first focused by an on-axis spherical mirror (f=50cm) into a pulsed
gas cell, then the XUV is separated by a thin foil from the remaining IR and is re-
focused by a gold coated toroidal mirror (f=30 cm) in the interaction region of the
MBES. The remaining 30% of the IR pulse goes into the probe arm of the interferom-
eter and after passing through a piezo-controlled delay stage, the outer part of the
beam is reflected off the recombination mirror and overlapped in time and space
with the XUV beam in the MBES. The harmonics are simultaneously monitored on
an XUV spectrometer mounted after the MBES.

The set up there is stabilized in two ways: 1. The initial IR beam is actively sta-
bilized with an Aligna 4d beam pointing system at a frequency of 100 Hz. 2. A
second interfometer is added to the beam-line in order to monitor and control the
probe pulse delay (yellow beam-path in Figure 4.12). The part of the probe beam
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Figure 4.12: Attosecond beamline with RABBIT setup in Lund University. Adapted
from [Marcus et al., 2017].

that leaks through the hole in the recombination mirror is combined on a beam
splitter with a part of the generation beam picked off by a small d-shaped mirror.
The two beams are then sent to a camera. The spatial interference pattern is then
used in a feed-back loop that controls the piezo-electric delay stage of the probe
arm. Thus for a measurement of 6 minutes the rms in the measured delay drops
from 200 as to 50 as when the active stabilization is switched on.
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CHAPTER 5

RAINBOW RABBIT METHOD

5.1 Rainbow RABBIT principle

Even though the ’classic’ RABBIT technique detailed in Chapter 4.1, is well estab-
lished and widely used it has a main drawback when it comes to cases of spectrally
narrow features such as resonances. In such an occasion the phase inside the side-
bands involving transitions through the resonant harmonic (Figure 5.1) will not be
flat, on the contrary, it will have fast variations.When the atomic phase varies slowly
in between two harmonic orders, the RABBIT technique allows a precise access to
it with a sampling of 3 eV (for 800 nm fundamental wavelength). When faster vari-
ations occur, due to structural features such as Cooper minima or resonances, a
finer sampling can be obtained by tuning the driving wavelength and performing
RABBIT scans for different wavelengths. This is the approach chosen by Klünder et
al. [Klünder et al., 2011]. However, when fast phase variation occur within the side-
band width, the integration of the signal over this width, intrinsic to the RABBIT
technique, leads to a smearing of the phase information. This restricts the access to
the full ionization dynamics of the corresponding system.

Figure 5.1: Schematic representation of the excitation of a spectrally narrow reso-
nance by harmonic n+2. The spectral phase and amplitude of the structured reso-
nant one-photon EWP will be ’transferred’ to the resonant two-photon EWP (n+2
-IR), that interferes with the non-resonant EWP (n+IR). The sideband encodes the
interference between these two quantum paths.

A solution to this challenge was proposed for the first time by Gruson and cowork-
ers [Gruson et al., 2016a] who developed the spectrally resolved version of this
technique, known as the Rainbow RABBIT. Its principle is shown schematically in
Figure 5.2. In contrast to the regular RABBIT, in order to extract the corresponding
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spectral phases and amplitudes a Fourier transform is applied on the 2ω0 oscilla-
tions at each energy E inside the sideband’s spectral width.

Figure 5.2: Rainbow RABBIT principle on a resonant sideband: For each energy
in the spectral width of the sideband, a fourier transform is applied and the total
evolution of the spectral phase and amplitude can be retrieved.

To make the difference between the two methods more clear let us consider
S(n+1)(τ,E) the signal of a resonant sideband. Monitoring its 2ω0 oscillations
as τ varies, gives access to the total phase Φ(n+1),tot(E) = ∆φ(n+1),XUV(E) +
∆φ(n+1),atom(E). Assuming the variations of the harmonic phase difference
∆φ(n+1),XUV(E) = φ(n+2),XUV(E) − φ(n),XUV(E) over the sideband width to be very
small and considering that for ∆φ(n+1),atom(E) = φ(n+2)−1,atom(E) − φ(n)+1,atom(E),
the atomic phase φ(n)+1,atom(E) varies smoothly since it is related to the transition
through the non resonant harmonic Hn (Figure 5.1), the phase measured with the
Rainbow RABBIT method will eventually become Φ(n+1),tot(E)∝ φ(n+2)−1,atom(E)+
constant. Similarly, the phase measured in the sideband ’above’ the resonant har-
monic Hn+2 writes: Φ(n+3),tot(E)∝ −φ(n+2)+1,atom(E)+ constant. These phases corre-
spond to the intrinsic phases of the resonant 2-photon EWPs.

On the other hand, the phase measured by the ’classic’ RABBIT can be written as
Φ(n+1),tot = arg2ω0[FTτ(∫ S(n+1)(τ,E)dE)] = ∆φ(n+1),XUV − ∆φ(n+1),atom. The ’mean’
phases in this equation are not equivalent to the averages over the sideband width
of the corresponding spectrally-resolved phases. In non-resonant conditions (small
∆φ(n+1),atom), the RABBIT phase is dominated by the mean phase difference of con-
secutive harmonics. The latter displays a linear spectral variation inherited from
the harmonic generation process, and related to the so-called attochirp (see Chap-
ter 2.1.4). In order to correct Φ(n+1),tot from this contribution and access the atomic
phase ∆φ(n+1),atom, it is needed to measure the RABBIT phase of nonresonant side-
bands and interpolate in order to get a trustable estimate of the attochirp that is very
sensitive to the actual generation conditions. The mean scattering phase ∆φ(n+1),atom

then appears in the measurement as a deviation from this linear spectral variation
(Figure 5.3). Note that the sideband phase variation induced by the attochirp within
the sideband width is very small so that is does not affect the energy-resolved phase
Φ(n+1),tot(E) measured by the Rainbow RABBIT except for a shift of the phase origin
[Gruson et al., 2016b].

Figure 5.3, demonstrates schematically the above discussion for the case of sp2+
Fano resonance in helium. This resonance occurs at 60.15 eV and has a narrow spec-
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tral width of 37 meV (for comparison the spectral width of our sidebands is ∼1 eV).
When using the ’classic’ RABBIT method, we measure the sideband phases Φn+1,tot,
with the magenta dashed line being the linear slope due to the term ∆φ(n+1),XUV

that is related to the attochirp as mentioned above. The deviation of the blue cir-
cles from the magenta line then, corresponds to the energy-integrated atomic phase
∆φ(n+1),atom. For a driving wavelength of 800 nm, the resonant sidebands are SB38
and SB40. The presence of the resonance is then clear with the corresponding side-
band phases exhibiting a symmetric deviation from the linear behavior of about
0.5 rad. The insets show the same measurement conducted by the Rainbow RAB-
BIT method. Here the energy-resolved atomic phase ∆φ(n+1),atom(E) within each
sideband is directly measured. Now the entire evolution of this phase is recorded
within the two resonant sidebands and shows an abrupt jump of ±1.4 rad . Note
that the nonresonant ones exhibit a flat behavior as expected.

In order to access the spectral variation of ∆φn+1,atom around the resonance with the
standard RABBIT, a number of traces have to be recorded when tuning the driv-
ing wavelength so that the resonant harmonic Hn scans the resonance, as first per-
formed by Kotur et al. [Kotur et al., 2016].

Figure 5.3: Classic RABBIT phase measurement for the sp2+ Fano resonance in
helium. The insets show the corresponding Rainbow RABBIT measurements. For a
driving wavelength of 800 nm, the resonance is excited by H39.

In the same spirit Gruson et al. [Gruson et al., 2016b] by using the tunability of an
OPA, they scanned the resonance and for each wavelength measured the phase of
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the resonant sidebands with the ’classic’ RABBIT. For the driving wavelengths used
(λ= 1305 nm -1285 nm) the resonant sidebands are SB62 and SB64. The variation
of ∆φ(n+1),atom inferred from the SB62 and SB64 RABBIT phases at several driving
wavelengths is plotted in Figure 5.4 against each sideband’s central energy. The
comparison with the spectrally-resolved analysis is instructive: the phase jump oc-
curring when H63 scans the resonance is much broader and of smaller amplitude in
the RABBIT measurement than in the spectrally resolved one. This is a consequence
of the integration of the signal over the sideband spectral bandwidth (dominated
by the 400-meV width of the resonant harmonic H63), which ’dilutes’ the phase
distortions that occur within the much narrower resonance width. The phase at the
maximum of the resonant amplitude thus plays a dominant role in determining the
spectral variation of ∆φ(n+1),atom that consequently does not reflect the actual shape
of ∆φ(n+1),atom(E). In these conditions, ∆φ(n+1),atom is therefore only approximately
representative of the full EWP phase. Using harmonics spectrally much narrower
than the resonance width and finely tuning the driving wavelength would allow
performing more accurate measurements of ∆φ(n+1),atom(E).

Figure 5.4: Experimental (colored circles) and theoretical (black dashed line) phase
∆φ(n+1),atom extracted from RABBIT scans at different OPA wavelengths for SB62
and SB64, as compared to the experimental (violet line) phase ∆φ(n+1),atom(E) mea-
sured with the spectrally-resolved technique at λOPA = 1295 nm. All these phases
are directly obtained from the phase of the sidebands after removal of the linear
group delay of the exciting harmonic radiation, which sets the phase origin to 0.
For the experimental ∆φ(n+1),atom , each point corresponds to a generating wave-
length. The energy axis is the corresponding SB62/ SB64 central energy for each
wavelength. Figure taken from Ref. [Gruson et al., 2016b].

5.2 Reconstruction of the two-photon EWP in the spectral
domain

Here we will discuss how from the spectral amplitudes and phases measured by
the Rainbow RABBIT one can access the resonant two-photon EWP. To facilitate
the discussion we will consider the specific case where a resonance is involved as
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depicted in Figure 5.1

The measured spectrogram provides SB signals Sn+1 resulting from the coherent
superposition of two different two-photon EWPs. If the exciting harmonic and
IR fields had finite short pulse durations, the corresponding transition amplitudes
would be calculated by convolving the two-photon transition matrix element with
the field spectra (see Chapter 6.2.1.3 for details). In the case where the spectral
width of the IR field is much smaller than the harmonic and resonance widths,
one recovers a simplified expression for the sideband intensity where the different
phase contributions are nicely separated [Véniard et al., 1996].

We then rewrite equation 4.1:

S(n+1)(τ,E) = ∣M(2)
(n)+1(E)∣2 + ∣M(2)

(n+2)−1(E)∣2

+2∣M(2)
(n)+1(E)∣∣M(2)

(n+2)−1(E)∣cos(2ω0τ +∆φ(n+1),XUV(E)+∆φ(n+1),atom(E)), (5.1)

where M(2)
(n)+1(E) and M(2)

(n+2)−1(E) are the two-photon transition amplitudes as-
sociated with the two paths and the two phase terms write: ∆φ(n+1),XUV(E) =
φ(n+2),XUV(E + h̵ω0) − φ(n),XUV(E − h̵ω0) and ∆φ(n+1),atom(E) = φ(n+2)−1,atom(E) −
φ(n)+1,atom(E). In this interferometric scheme, we consider the resonant M(n+2)−1(E)
to be probed by the non-resonant M(n)+1(E). The aim is thus to retrieve
∣M(n+2)−1(E)∣ and φ(n+2)−1,atom(E) out of the measurements and access the ’intrin-
sic’ two-photon EWP that would result from Fourier- limited excitation:

M(2)
(n+2)−1(E) = ∣M(2)

(n+2)−1(E)∣eiφ(n+2)−1,atom(E) (5.2)

Phase As stated earlier Φ(n+1),tot(E) = ∆φ(n+1),XUV(E) + ∆φ(n+1),atom(E) ∝
φ(n+2)−1,atom(E). For this relation to be valid,some approximations were made

we assumed that the variations within the sideband spectral width, the harmonic
phase difference is negligible and that the ’non-resonant’ atomic phase φ(n)+1,atom is
also small compared to the ’resonant’ φ(n+2)−1,atom.

i) As stated above, we assumed the variations within the sideband spectral width of
the harmonic phase difference ∆φ(n+1),XUV(E) to be very small as compared to the
variations of the atomic phase difference ∆φ(n+1),atom(E) – since the latter is strongly
affected by the resonant transition through harmonic H(n+2). We therefore neglect
∆φ(n+1),XUV(E) and consider Φ(n+1),tot(E) = φ(n+2)−1,atom(E)− φ(n)+1,atom(E).

ii) Since the transition through harmonic H(n) involves a smooth continuum, we
expect the variations of φ(n)+1,atom to be very small compared to the resonance-
driven ones of φ(n+2)−1,atom so that we neglect it. Subsequently, we consider the mea-
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sured Rainbow RABBIT phase to be the phase of the probed EWP: Φ(n+1),tot(E) ∝
φ(n+2)−1,atom(E).

Amplitude The Rainbow RABBIT trace provides the intensity of each sideband av-
eraged over the delay τ:

I(n+1)(E) = ∣M(2)
(n)+1(E)∣

2
+ ∣M(2)

(n+2)−1(E)∣
2

(5.3)

as well as its 2ω0-oscillation amplitude:

A(n+1)(E) = 2∣M(2)
(n)+1(E)∣∣M(2)

(n+2)−1(E)∣. (5.4)

In principle, this set of equations gives access to the modulus of the two interfering
EWP, ∣M(2)

(n)+1(E)∣ and ∣M(2)
(n+2)−1(E)∣. However, the presence of a spurious back-

ground in the spectra may prevent the accurate evaluation of the average intensity
I(n+1)(E), such that approximate methods relying solely on the 2ω0-component of

the sidebands could be more efficient for retrieving ∣M(2)
(n+2)−1(E)∣.

A first approach is to assume that the non-resonant EWP ∣M(2)
(n)+1(E)∣ displays a

smooth gaussian shape, so that its variations within the width of the resonant EWP
could be neglected, which means:

A(n+1)(E)∝ ∣M(2)
(n+2)−1(E)∣ (5.5)

An alternative method consists in calibrating the EWP of interest using a neighbor-
ing non-resonant sideband, with assumptions reminiscent of the soft-photon ap-
proximation [Maquet and Taïeb, 2007]. For sideband S(n−1)(E) equation 5.4 will
be:

A(n−1)(E − 2h̵ω) = 2∣M(2)
(n)−1(E − 2h̵ω)∣∣M(2)

(n−2)+1(E − 2h̵ω)∣ (5.6)

with the two paths ’(n)-1’ and ’(n-2)+1’ being non-resonant. Far from the ionization
threshold, one can consider the amplitudes of the two paths involving the same
harmonic equal and simply shifted by the energy of two IR photons

∣M(2)
(n)+1(E)∣ ≈ ∣M(2)

(n)−1(E − 2h̵ω)∣. (5.7)

In addition, if the harmonics H(n) and H(n)−2 have similar profiles, we can approx-
imate:

∣M(2)
(n)−1(E − 2h̵ω)∣ ≈ ∣M(2)

(n−2)+1(E − 2h̵ω)∣. (5.8)

Thus, the 2ω amplitude of sideband S(n−1) can be written as:

A(n−1)(E − 2h̵ω) = 2 ∣M(2)
(n)+1(E − 2h̵ω)∣

2
. (5.9)
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After inserting equation 5.9 in 5.4, one finally gets:

∣M(2)
(n+2)−1(E)∣ =

A(n+1)(E)

2∣M(2)
(n)+1(E − 2h̵ω)∣

(5.10)

⇓

∣M(2)
(n+2)−1(E)∣ =

A(n+1)(E)
√

2A(n−1)(E − 2h̵ω)
. (5.11)

This approach is in principle more accurate, but it is expected that the correspond-
ing amplitude will be more sensitive to the experimental noise and possible spectral
resolution variations of the electron spectrometer [Gruson et al., 2016b].

The Rainbow RABBIT method is utilized throughout this thesis. Its implementation
in different experimental set ups and conditions did not alter neither the procedure
nor the physical meaning of the results showing its robustness. Additionally, it is a
versatile technique since it can serve various measurement purposes. For example
in Chapter 6 Rainbow RABBIT is used to measure the spectral phases and ampli-
tudes in the vicinity of autoionizing resonances as in [Gruson et al., 2016a],[Busto
et al., 2018] and [Kotur et al., 2015]. In Chapter 7 on the other hand, the technique
is used to spectrally isolate the contribution of the almost overlapping 3s and 3p
ionization channels of argon close to the corresponding two Cooper minima. Nev-
ertheless there are still a number of different experimental aspects that could affect
the phase and amplitude extraction that will be discussed in detail in the following
Chapter (see section 6.2.1).
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CHAPTER 6

AUTOIONIZING DYNAMICS IN HELIUM AND ARGON

Autoionizing dynamics is a topic of broad and current interest in attosecond sci-
ence, since it can serve as a fine probe of electron-electron interactions. An autoion-
izing resonance can be seen as the result of a quantum interference. In Figure 6.1,
the case of the sp2+ resonance at 60.15 eV in helium, is schematically shown as an
example. After the absorption of an XUV photon of such energy by the helium
atom there are two possibilities: (1) One of the electrons can be sent directly to the
continuum leaving the rest of the system in the He+1 state or (2) both electrons will
be excited to the sp2+ (also written as 2s2p) doubly excited state that is coupled to
the 1s continuum by configuration interaction. It will decay with a 17 fs lifetime by
liberating one electron to the continuum and returning the other one to the He+1s
state. These direct and indirect ionization paths end up at the same final energy and
interfere.

Figure 6.1: Schematic representation of the sp2+ autoionizing resonance in helium.
Where ∣ΨE′⟩ are the continuum states, VE′ is the configuration interaction matrix
element and ∣φ⟩ and ∣g⟩ are the discrete and ground state respectively.

Historically, the first observation of an autoinizing resonance, was in 1935 when
H. Beutler [Beutler, 1935] measured the absorption spectra of argon, krypton and
xenon and observed unusual asymmetric peak profiles as presented in Figure 6.2.
However, it was not until almost thirty years later that a theoretical explanation of
this phenomenon was published by Ugo Fano using configuration interaction in
[Fano, 1961] (this was actually an upgraded version of his first paper [Fano, 1935]
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published in 1935 in Italy). Since then, a vast number of studies both theoretical and
experimental has been performed concerning this type of resonances, today known
as the ’Fano resonances’. A broad spectrum of scientific areas is covered; from at-
tosecond atomic and molecular spectroscopy ([Gruson et al., 2016a], [?]) to studies
where Fano resonances have been utilized as potential candidates to build a wide
range of biomedical sensors probed by THz radiation ([Singh et al., 2014]). For a re-
view of the generality and wide applicability of the Fano formalism from molecules
and nanostructures to surfaces, see the review article of Ref. [Miroshnichenko et al.,
2010].

Figure 6.2: Krypton absorption spectra measured by [Beutler, 1935].

In this chapter the photoionization dynamics in the vicinity of different Fano reso-
nances in the simple system of helium as well as in the more complex argon atom
will be studied. The chapter is structured as follows:

First, the principles of Fano’s theoretical model will be briefly presented. Then, we
concentrate on the helium atom and by using the prototype example of the sp2+
resonance, a detailed study of the effect of different experimental parameters on
the retrieved spectral amplitudes and phases by the Rainbow RABBIT method will
be presented. Since Rainbow RABBIT is used throughout this thesis, it is of great
importance to be able to disentangle the physical processes from the measurement-
induced features that could lead to the misinterpretation of the measured EWP dy-
namics. Later on, Rainbow RABBIT measurements close to the independently ion-
ized single resonances sp2+ and sp3+ are presented along with different types of
representation of the corresponding ionization dynamics (i.e. temporal reconstruc-
tion of the ejected EWP, Gabor and Wigner-Ville representations). The effect of the
increasing dressing beam intensity on the line-shape of the sp2+ resonance as well
as on the spectral phase of the resonant EWP is also studied. Finally, the dynam-
ics of the complex EWP created after the simultaneous excitation of both sp2+ and
sp3+ resonances is presented.

The second part of the chapter is dedicated to argon and the study of the ionization
dynamics around the 3s4p Fano resonance. The main complexity of this system
comes from its spin-orbit splitting of only 180 meV. We first discuss a method to
isolate numerically the two S-O components and then the measured Rainbow RAB-
BIT phases and amplitudes, resolved for each S-O component are presented along
with the temporal reconstruction of the resonant EWP. Finally, our preliminary sim-
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ulations developed in order to better understand the measured spectral phases are
detailed.

6.1 Theoretical aspects

6.1.1 Fano’s original work

Eigenfunctions

In this section the formalism of [Fano, 1961] and [Maquet, 2015] will be used.
Fano’s theory of configuration interaction describes an atomic system that consists
of a discrete state ∣φ⟩ which is coupled to a continuum with states ∣ψE′⟩, by VE′ .
This means that the energy Eφ of the bound state is degenerate with the energetic
spectrum E of the continuum states. Neither ∣φ⟩ nor ∣ψE′⟩ are eigenstates of the
complete system. However, these states can be chosen as a full basis set into which
the new eigenstate ∣ΨE⟩ is expanded. In Fano’s original treatment, the problem is
described in a time independent manner, expressed in the energy domain.

In the absence of any external field the Hamiltonian Ĥ0 needs to be diagonalized,
one has:

⟨φ∣Ĥ0∣φ⟩ = Eφ (6.1)

⟨ψE′ ∣Ĥ0∣ψE′′⟩ = E′δ(E′′ − E′) (6.2)

⟨ψE′ ∣Ĥ0∣φ⟩ = VE′ (6.3)

with δ being the Dirac function. The off-diagonal term VE′ is the configuration inter-
action matrix element which describes the interaction of the discrete state at energy
Eφ with a continuum state at energy E’, therefore in general depends on E’. The
eigenstates ∣ΨE⟩ of the system can be expanded in a complete basis set of this form:

∣ΨE⟩ = aE∣φ⟩+∫ bE′ ∣ψE′⟩dE′ (6.4)

and the task now will be to define the energy-dependent expansion coefficients aE

and bE′ which are determined as solutions of this system of equations:

aEEφ +∫ bE′V∗

E′dE′ = EaE (6.5)

aEVE′ + bE′E′ = EbE′ (6.6)

.
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This will result in the following formal solution of bE′ involving the z(E) function to
be determined:

bE′ = ( 1
E − E′

+ z(E)δ(E − E′))VE′aE (6.7)

To determine the function z(E) one needs to substitute bE′ given in equation 6.7 in
the expression 6.5 which will now become:

aEEφ + aEP ∫
∣VE′ ∣2

E − E′
dE′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F(E)

+aEz(E)∫ δ(E − E′) ∣VE′ ∣2 dE′ = EaE (6.8)

z(E) =
E − Eφ −P ∫

∣VE′ ∣
2

E−E′ dE′

∣VE′ ∣2
, (6.9)

with F(E) being the energy shift between the resonance position and Eφ and P de-
notes the principle value of the integral, i.e. circumventing the pole at E=E’ via
integration in the complex plane. To find aE, one needs to normalize the ∣ΨE⟩ which
in its final form will be:

∣aE∣2 =
1

∣VE∣2 (π2 + z(E)2)
= ∣VE∣2

(E − Eφ − F(E))2 +π2∣VE∣4
(6.10)

which can be seen as a Lorentzian with FWHM given by Γ = 2π ∣VE∣2. If the states
ψE′ are represented by wavefunctions with asymptotic behavior then at large dis-
tance r we can write:

ψE′(r → inf)∝ 1
r

sin(k(E′)r + δ). (6.11)

Inserting equation 6.11 in equation 6.7 will give the following result:

∫ bE′ ∣ψE′⟩dE′ ∝ ∫ bE′sin(k(E′)r + δ)dE′

∝ P ∫ VE′aEsin(k(E′)r + δ)dE′

+∫ VE′aEsin(k(E′)r + δ)z(E)δ(E − E′)dE′ (6.12)

and if VE′ cancels out quickly for E′ ≠ E then equation 6.12 will become:

∫ bE′ ∣ψE′⟩dE′ ∝ VEaE[−πcos(k(E)r + δ)+ z(E)sin(k(E)r + δ)] (6.13)
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which after defining tan(∆) = − π
z(E) = −

π∣VE ∣
2

E−Eφ−F(E) = −
Γ/2

E−Eφ−F(E)
can be rewritten as:

∫ bE′ ∣ΨE′⟩dE′ ∝ VEaEsin(k(E)r + δ +∆)] (6.14)

with the ∆ being interpreted as the phase shift due to the configuration interaction
of ∣ψE′⟩ with the discrete state ∣φ⟩. By using the phase shift ∆ one can rewrite the
expressions of aE and bE′ as:

∣aE∣2 =
1

∣VE∣2 π2(1+ 1/tan2∆)
(6.15)

hence

aE = sin∆
πVE

and bE′ =
VE′sin∆

πVE

1
E − E′

− cos∆δ(E − E′). (6.16)

Finally, the wavefunction ∣ΨE⟩ will become:

∣ΨE⟩ =
sin∆
πVE

∣φ⟩+∫ [VE′sin∆
πVE

1
E − E′

− cos∆δ(E − E′)]∣ψE′⟩dE′ (6.17)

Cross-section

The excitation probability of the stationary state ∣ΨE⟩ , may be represented as the
square matrix element of a transition operator T̂ between an initial state ∣g⟩ and the
Fano resonance ∣ΨE⟩:

⟨ΨE∣T̂∣g⟩ = sin∆
πV∗

E
⟨φ∣T̂∣g⟩+ sin∆

πV∗

E
P ∫ dE′

VE′

E − E′
⟨ψE′ ∣T̂∣g⟩− cos∆⟨ψE∣T̂∣g⟩ (6.18)

= sin∆
πV∗

E
⟨Φ∣T̂∣g⟩− cos∆⟨ψE∣T̂∣g⟩

(6.19)

where

∣Φ⟩ = ∣φ⟩+P ∫ dE′
VE′

E − E′
∣ψE′⟩ (6.20)

represents the discrete state ∣φ⟩ modified by a mixture with the continuum states
due to configuration interaction. Thus the cross-section will be
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σ ∝ ∣⟨ΨE∣T̂∣g⟩∣2 (6.21)

∝ ∣ sin∆
πV∗

E
⟨Φ∣T̂∣g⟩− cos∆⟨ψE∣T̂∣g⟩∣

2

(6.22)

∝ ∣⟨ψE∣T̂∣g⟩∣2 × ∣ sin∆
πV∗

E

⟨Φ∣T̂∣g⟩
⟨ψE∣T̂∣g⟩

− cos∆∣
2

. (6.23)

By defining σ0 ∝ ∣⟨ψE∣T̂∣g⟩∣2 and introducing the q asymmetry parameter as

q = 1
πV∗

E

⟨Φ∣T̂∣g⟩
⟨ψE∣T̂∣g⟩

(6.24)

equation 6.23 becomes σ = σ0 ∣qsin∆ − cos∆∣2. Fano defines also the reduced energy
ε as

ε = −cos∆ =
E − Eφ − F(E)

π ∣VE∣2
=

E − Eφ − F(E)
Γ/2

. (6.25)

Finally, the Fano profile is obtained by taking into account that sin2∆ = 1/(1+ cos2∆)
as:

σ = σ0
(q + ε)2

1+ ε2 (6.26)

Thus, the cross-section is defined by only the three parameters q, the resonant en-
ergy ER = Eφ + F(E) and its spectral width Γ. By writing equation 6.24 in this way

1
2

πq2 =
∣⟨Φ∣T̂∣g⟩∣2

∣⟨ψE∣T̂∣g⟩∣2 Γ
, (6.27)

it now becomes clear that the q parameter characterizes the ratio between the tran-
sition probabilities to the continuum-modified discrete state and to the continuum
states. Different values of q correspond to different line profiles as is shown on Fig-
ure 6.3. One can see that the larger the q value the more asymmetric the line shape
with the maximum value corresponding to ε = 1/q and the minimum to ε = −q. The
direction of the asymmetry has to do with the sign of the q parameter: when q is
negative then the asymmetric peak falls at negative reduced energy values whereas
positive q results in an asymmetric peak at the positive reduced energy side. In
the particular case where q = 0 the cross-section takes the form of a well known
’window resonance’ or ’anti-resonance’.
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Figure 6.3: Absorption cross-sections for different q values.

6.1.2 Phase properties of the Fano transition amplitude

According to the work of [Jiménez-Galán et al., 2016], the Fano characteristic wave
function can be written as:

∣ΨE⟩ =
ε

ε − i
∣ψE⟩+

1
πVE

1
ε − i

∣Φ⟩ (6.28)

and thus the transition amplitude between the ground state ∣g⟩ and ∣ΨE⟩ will be:

M(1)
k = ⟨ΨE∣T̂∣g⟩ = ε

ε + i
⟨ψE∣T̂∣g⟩+ 1

πV∗

E

1
ε + i

⟨ΦE∣T̂∣g⟩ (6.29)

= ⟨ψE∣T̂∣g⟩(
ε + q
ε + i

) (6.30)

= ⟨ψE∣T̂∣g⟩×R(ε). (6.31)

One can see that the absolute value of this expression is the same as the Fano cross-
section given by equation 6.26, however this form exposes its physical meaning
[Gruson et al., 2016a]:

R(ε) =
ε + q
ε + i

= 1+
q − i
ε + i

(6.32)

⇓

∣R(ε)∣2 = (1+
q2 + 1
1+ ε2 +

2(qε − 1)
1+ ε2 ). (6.33)

Equation 6.33 consists of three terms: the first term is a unit which corresponds to
the contribution of the continuum, the second term is a Lorenzian that corresponds
to the discrete state. The third term is due to the interference between the two
former terms. The dipole phase will be:

arg M(1)
k = argR(ε) = arctan ε −πΘ(ε + q)+π/2 (6.34)
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where Θ is the so-called Heaviside function. In Figure 6.4 (b) we plot this phase for
different q parameters.
The resonant Fano factorR(ε) can be rewritten as a function of (ε − i)/(ε + i) :

R(ε) =
1− iq

2
+

1+ iq
2

ε − i
ε + i

. (6.35)

This re-writing puts forward the fact that the trajectory ofR(ε) in the complex plane
is a circle of center 1/2 − iq/2, of radius r =

√
1+ q2/2, ending at 1 for ε = ±∞ and

intercepting the origin at ε = −q. Figure 6.4 (a) illustrates the trajectories followed
byR(ε) for different values of q. Value q = −2.77 corresponds to the sp2+ resonance
of helium, one of the cases that will be studied later in this chapter.

Figure 6.4: (a) Trajectories of the resonant Fano factor R(ε) in the complex plane
as a function of the reduced energy ε around the resonance (ε = 0) and the corre-
sponding phases (b) for different q values. Figure adapted from [Jiménez-Galán
et al., 2016].

6.1.3 Resonant two-photon transition amplitude

In the previous section, the phase of the one-photon transition in the vicinity of a
Fano resonance was extracted according to the work of Fano and its interpretation
by [Jiménez-Galán et al., 2016]. This phase information however is lost in classic
absorption spectroscopy experiments where it is possible to measure only the cross-
section. On the contrary, the RABBIT technique presented in Chapter 4.1, provides
access to the phase of the two-photon dipole matrix element. In specific cases where
the continuum is flat and the atomic potential is described as Coulombic, these
phases can be related to the corresponding one-photon dipole phases. The link
between the one- and two-photon dipole matrix phase in the vicinity of a Fano
resonance has been studied extensively by the group of F. Martin. In this section
the specific work of [Jiménez-Galán et al., 2016], and [Jiménez-Galán et al., 2014]
will be briefly presented.

Here, one seeks a simple expression of the two-photon photoionization matrix el-
ement M(2)

⃗k
, which can be obtained by using second-order time-dependent pertur-
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bation theory. This will be :

M(2)
⃗k,Fano

= 1
i
EΩEω lim

a→0+⨋
⟨k⃗∣z∣ΨE⟩⟨ΨE∣z∣g⟩
Eg +Ω − Ev + iα

, (6.36)

where ∣k⃗⟩ and ∣ΨE⟩ are the final and intermediate states respectively, EΩ,Eω are the
spectral amplitudes of the XUV and IR fields and Ω, ω denote the XUV and IR
photon frequencies. After replacing ∣ΨE⟩ (equation 6.28) in expression 6.36 and by
considering the case of a resonant two-photon transition where the XUV photon
is absorbed before the IR probe photon, following a long demonstration it can be
shown that in the case where there is no resonance in the final state, the expression
of the two-photon transition amplitude will be:

M(2)
⃗k,Fano

≈ 1
i
EΩEω

⟨k⃗∣z∣ψE⟩⟨ψE∣z∣g⟩
ω

×
ε + q(1− γ)+ iγ

ε + i
. (6.37)

For this expression to be valid another important condition that should be fulfilled
is that the duration of both XUV and IR pulses should be greater than the lifetime
of the intermediate resonant state. A new parameter γ is introduced as:

γ =
⟨k⃗∣z∣φ⟩

⟨k⃗∣z∣ψE⟩VE/ω
. (6.38)

γ measures the ratio of the two transitions between the resonance and the final
continuum. More specifically, the direct transition between the bound state and the
continuum ⟨k⃗∣z∣φ⟩ and the indirect transition that passes through the intermediate
continuum involving the coupling between the bound state ∣φ⟩ and ∣ψE⟩ followed
by the radiative transition between between ∣ψE⟩ and ∣k⃗⟩, ⟨k⃗∣z∣ψE⟩VE/ω.

By comparing the result of equation 6.37 with the corresponding one-photon case
(equation 6.30), one can clearly see the similarity. Thus we introduce a complex q
effective parameter:

qe f f = q(1− γ)+ iγ (6.39)

which will result also in an effective resonant Fano factor:

Re f f (ε) =
ε + qe f f

ε + i
(6.40)

= γ + (1− γ)
ε + q
ε + i

(6.41)

= γ + (1− γ)×R(ε). (6.42)

The trajectories in the complex plane as well as the evolution of the phase for dif-
ferent values of γ and q = 1 are shown in Figure 6.5. If γ = 0 (orange curve), the
intermediate bound state is not radiatively coupled with the state of the final con-
tinuum. In this case, we find qe f f = q and thus the results of the one-photon case.
However, when γ ≠ 0, the complex trajectories no longer pass through the origin.
In the case where γ < 0 (blue curve), the circle is widened compared to the case of
γ = 0 and it cuts the real axis for ε = γ and 1, thus encircling the origin. In this case,
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6.1.3 Resonant two-photon transition amplitude

the two-photon transition phase has a sudden variation of 2π. Finally, when γ > 0
(green curve), the circle is contracted and misses the origin.

Moreover, since the value of γ is proportional to ω, the sign of γ for the emission
of the second photon (IR) is opposite to that for absorption. In this case, both the
complete 2π phase excursion and the finite phase excursion are present simulta-
neously and are observable on the two sidebands on either side of the resonance:
q±e f f = q ∓ 2(q − i)βω/Γ, where β is a pure number that depends solely on the prop-

erties of the atomic system and is connected to γ by the expression: γ = ωβ
Γ/2 .

Finally, the corresponding phases will be:

arg M(2)
⃗k,Fano

≈ arg M(2)
⃗k

+ arg[Re f f ] (6.43)

where

M(2)
⃗k,Fano

≈ −1
i
EΩEω

⟨k⃗∣z∣ψE⟩⟨ψE∣z∣g⟩
ω

×Re f f , (6.44)

with M(2)
⃗k

being a two-photon transition element that involves only continuum
states.

Figure 6.5: (a) Trajectories of the effective resonant Fano factorRe f f (ε) in the com-
plex plane as a function of the reduced energy ε around the resonance (ε = 0) and
the corresponding phases (b) for different γ values with constant q=1.

Multichannel case

The results obtained thus far are valid only for the case of a single intermediate and
a single final continuum channel. However, when the Fano resonance is coupled
to several continua, the system can be shown to be equivalent to an "interactive"
continuum and a "non-interactive" continuum. So for the two-photon transition,
one has:
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M(2)
Ð→

k ,multichannel
∝ r +

ε + qe f f

ε + i
(6.45)

with

r =
⟨
Ð→
k ∣z∣Ψnon−int

E ⟩⟨Ψnon−int
E ∣z∣g⟩

⟨
Ð→
k ∣z∣Ψint

E ⟩⟨Ψint
E ∣z∣g⟩

. (6.46)

The constant term r expresses the strength of the dipolar coupling to the final
continuum through ’non-interactive’ intermediate continuum relative to the one
through the ’interactive’ continuum. The phase of M(2)

Ð→

k ,multichannel
thus depends on

the coupling with different continua [Jiménez-Galán et al., 2016].

6.1.4 Non monochromatic pulses

When non monochromatic XUV and IR pulses are used, they will obviously contain
more frequency components than Ω0 and ω0, respectively. Therefore, for a given fi-
nal energy in the sideband, the energy conservation condition will be satisfied by
several different pairs of frequency components, which results in separate contri-
butions that interfere to give rise to the total transition amplitude. A schematic
representation of the effect is shown in Figure 6.6.

Figure 6.6: Schematic representation of the finite pulses effect. When the XUV and
IR pulses are not monochromatic then many different energy combinations Ω+ω

can lead to the same final state.

Jiménez-Galàn et al. [Jiménez-Galán et al., 2016] showed analytically that in the sim-
ple case of a non-resonant sideband, the finite pulse effects can be described as the
convolution of the spectral envelopes of the harmonic and dressing beams with the
harmonic pulse. However, this is not the case when intermediate resonant states are
involved, because the two-photon transition matrix element has a sharp frequency
dependence. In order to account for these effects one needs to sum coherently the
contributions for all the possible combinations of the XUV+IR (Ω+ω) pulses for ev-
ery final energy E f in the resonant sideband. The two-photon transition amplitude
of equation 6.36 will now become:
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M(2)
⃗k,Fano

≈ 1
i

lim
a→0+∫ dEEω(E f − E)EΩ(E)

⟨k⃗∣z∣ΨE⟩⟨ΨE∣z∣g⟩
Eg +Ω − E + iα

. (6.47)

6.2 Helium

The asymmetric Fano line shapes in helium were measured for the first time by
Maden and Codling [Madden and Codling, 1963] a couple of years after the pub-
lication of the theoretical work of Fano. According to the theoretical explanation
of Fano the autoionizing resonances are a very good example of electron-electron
interaction however the synchrotron measurements of absorption spectroscopy ex-
periments did not allow phase measurements and thus the study of the ionization
dynamics of a system like this was only relying on theoretical models.

Figure 6.7: Absorption spectra of helium where the asymmetric line shapes of au-
toionization resonances are visible: (a) taken from Ref. [Madden and Codling, 1965]
and (b)from Ref. [Madden and Codling, 1963].

Since then and with the advent of the XUV table top sources the Fano resonances in
helium have been well studied. In 2014, Ott et al. [Ott et al., 2014] by perform-
ing transient absorption experiments were able to monitor the decay of a com-
plex 2-electron wave packet including the effect of the sp2+ and sp3+ resonances.
Two years later Gruson et al. [Gruson et al., 2016a] by using the Rainbow RABBIT
method measured the spectral phase and amplitude of the ejected resonant EWP
and reconstructed the build up of the resonance in the time domain. This study re-
vealed a fast variation of the spectral phases as was predicted by theory [Jiménez-
Galán et al., 2014], something that was previously measured in the case of argon
[Kotur et al., 2016] . At the same time Kaldun et al. [Kaldun et al., 2016] could also
study the buildup of the resonance using transient absorption experiments.

In the following subsections, after a study on the effect of different experimental
parameters on our measurement technique, the Rainbow RABBIT, in the same con-
text as the experiment of Gruson et al. we will study the dynamics of the sp2+ and
sp3+ autoionization in helium, the influence of the intensity of dressing field on the
line profiles and the corresponding spectral phases. A study on the simultaneous
excitation of both resonances (sp2+ and sp3+) and their corresponding dynamics,
will also be presented. The experiments that will be presented in this chapter are
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a collaboration with the group of Anne L’Huillier from Lund University and the
group of Reimund Feifel from Gotemburg University.

6.2.1 Study of the experimental limiting factors on Rainbow RABBIT
measurements: example on sp2+ Fano resonance in helium

This section presents a detailed study on the influence of the experimental condi-
tions on the spectral phase and amplitude extraction procedure via the Rainbow
RABBIT technique. This will help to get a clear view on the potentials and draw-
backs of the technique and could also serve as a ’textbook’ for future experiments.
The full mapping of the method is of great importance in order to distinguish the
physical from the measurement-induced effects. We will study the influence of
the following parameters: the spectrometer resolution, the spectral width of the
resonant harmonic and the dressing pulses’ as well as the energy position of the
resonant harmonic. We will see that they can potentially distort both the retrieved
spectral phase and amplitude and may lead later on to a misinterpretation of the
corresponding dynamics. These aspects will be studied both theoretically and ex-
perimentally in the following sections. The Rainbow RABBIT algorithm used in
this thesis was written in Python by Margherita Turconi based on the initial Matlab
code of Thierry Ruchon.

As was detailed earlier in Chapter 5.1 the main advantage of this method is its ca-
pability of accessing directly the full evolution of the intrinsic atomic phase (Chap-
ter 3) of the system under study, by spectrally resolving the 2ω0 oscillations of the
corresponding sidebands. This property becomes very useful in cases that involve
spectrally narrow features as resonances that cause fast variations in the phase and
structured amplitudes. For example in [Gruson et al., 2016a] and [Busto et al., 2018]
the Rainbow RABBIT method was used to study the sp2+ autoionizing resonance
of helium. As was already discussed earlier in this chapter, autoionization occurs
when a system is excited in structured spectral regions where resonant states are
embedded into a continuum. The system can then either be directly ionized or
transiently remain in the resonant bound state before ionizing. The interference
between these two quantum paths will give rise to a spectral amplitude with the
characteristic asymmetric Fano line shape [Domke et al., 1996] and a spectral phase
that exhibits a π jump around the resonance. These characteristics along with its
small spectral width (Γ = 37meV), make the sp2+ resonance, the perfect candidate
for this study. However these results are rather general, applicable to any case with
similar features.

Simulation of a RABBIT spectrogram

In order to simulate a RABBIT trace of a resonant sideband, we use equation 4.1
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rewritten as:

SBR(τ,E) = ∣MNR∣2 + ∣MR∣2

+2∣MR∣∣MNR∣cos(2ω0τ +∆φXUV +∆φatom
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆φtotal

). (6.48)

As was discussed earlier in this chapter, the resonant two-photon transition am-
plitude (equation 6.37) is given by : MR ∝ En+2Re f f , with Re f f (ε) = ε+qe f f

ε+i from
equation 6.40 being the effective Fano factor expressed as a function of the reduced
energy ε. The nonresonant two-photon transition amplitude is: MNR ∝ En, with
En+2 and En being the electric fields of the resonant and nonresonant harmonic re-
spectively. We then describe the ionizing harmonics as Gaussians:

Eharm(E) = 1
sharm

√
2π

e−(E−Eharm)
2
/2s2

harm (6.49)

with
sharm = FWHMharm

2
√

2ln2
(6.50)

where Eharm is the central energy of the harmonic. For the purpose of this study
the resonant harmonic will be scanned around the resonance: Esp2+ = 60.15 eV. The
central energy of the resonant harmonic will then be called Etun. The harmonic
spectral width in intensity, FWHMharm, will also be varied.

Since the phase between consecutive harmonics, in the Rainbow RABBIT analysis
doesn’t affect the extracted intra-harmonic phase apart from adding a global off-
set we assume here ∆φXUV = 0. This means that ∆φtotal = arg[MR] − arg[MNR] ≈
∆φatom = arg[Re f f ]. Here we consider the case where we excite the resonance from
below. In the opposite case where the resonance is excited from above we would
have ∆φatom = −arg[Re f f ].

In Figure 6.8 we plot the experimentally measured RABBIT trace of the resonant
sideband 38 and the corresponding retrieved spectral phase and amplitude along
with the simulated ones. We observe significant differences: the experimental phase
jump(1 rad) is less than the simulated one and the shape of the two 2ω0 amplitudes
differs. Moreover, the measured amplitude and phase appear to be smoother and
less contrasted than the simulated ones in the ideal case. In order to better approach
the experimental results we need to take into account a number of different experi-
mental parameters as will be presented in the following sections.

6.2.1.1 Spectrometer resolution

The resolution of the detection system is one of the main factors that limits the
spectral resolution of a RABBIT measurement. In [Gruson et al., 2016a] and [Busto
et al., 2018] 2-m long MBES with energy resolution of 190 meV and 89 meV ±5
meV respectively, were used. In order to simulate this effect, the sideband signal
(equation 6.48 ) is convoluted with the electron spectrometer response function fsp
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Figure 6.8: RABBIT traces of sideband 38 and the corresponding spectral phases
and amplitudes retrieved by the Rainbow RABBIT method for experimental data
(left panel) and simulation (right panel) for the sp2+ resonance in helium.

for each delay: SBR(τ,E)⊗ fsp . We describe the response function as the following
Gaussian:

fsp =
1

ssp
√

2π
e−E2

/2s2
sp (6.51)

with

ssp =
FWHMsp

2
√

2ln2
(6.52)

For this study the position of the harmonic with respect to the resonance along with
the harmonic spectral width are kept constant (Etun = 60.22 eV, FWHMharm = 200
meV) while the spectrometer resolution FWHMsp is varied. By using the analysis
described in the previous section (chapter 5.1) we extract the spectral amplitudes
and phases reported in Figure 6.9.

In the spectral domain, the main effect of a low spectrometer resolution (increas-
ing FWHMsp), is the smoothing of both amplitude and phase. More specifically,
the amplitude’s asymmetric shape converges to a gaussian and the maximum
signal level is decreased. The phase jump becomes less than π and is shifted
towards higher energies following the local minimum of the amplitude caused
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Figure 6.9: (a) Spectral amplitude (top panel) and phase (bottom panel) extracted
by the rainbow RABBIT algorithm, for a 200meV wide resonant harmonic, tuned
at Etun = 60.22eV. The values of the spectrometer resolution vary: (blue curve) no
spectrometer; (red curve) 100 meV, similar value to [Busto et al., 2018];(green curve)
200 meV ,similar value to [Gruson et al., 2016a]. The vertical lines show the drifting
position of the phase jump along with the position of the dip on the amplitude
which occur to the resonance energy position. (b) Corresponding temporal profiles
of the resonant EWP M̃R(t) = FT[MR(E)] .

by the resonance. By expressing the resonant EWP in the spectral domain as
MR(E) ≈ M2ω0(E)eφ2ω0(E) and by applying a Fourier transform we obtain the corre-
sponding temporal profile (section 6.2.5):

M̃R(t) = 1
2π ∫

+∞

−∞

∣MR(E)∣eiφ2ω0(E)eiEt/̵hdE (6.53)

The normalized temporal profiles are shown in Figure 6.9 (b). As was discussed in
[Gruson et al., 2016a] and further detailed later in this chapter (section 6.2.5), the
shape of the temporal amplitudes has two peaks: the first one, centered around
0 fs, corresponds to the ionization via the direct path and thus is related to the
characteristics of the ionizing harmonics, while the second peak is associated with
the resonance decay. It now becomes clear that a low spectral resolution measure-
ment will affect mainly the indirect path contribution and thus the interference
will be less contrasted and the signal will decay faster, extending to shorter times:
tno−spectrometer ≈ 100 f s, tsp=100meV ≈ 30 f s, tsp=200meV ≈ 18 f s. On the contrary, the tem-
poral phase is not affected since a convolution in the energy domain is translated,
in the time domain, into a simple multiplication with fsp which is a real function
without any phase factor.

6.2.1.2 Width of the resonant harmonic

The width of the harmonics depends on various experimental parameters like the
wavelength, duration, energy of the generating pulse as well as on the generat-
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ing gas conditions, like its pressure, the use of a jet or a cell and their respective
specifications, etc (Chapter 2). In this section we will discuss the effects of different
harmonic spectral widths on the retrieved spectral phases and amplitudes and their
result on the reconstructed ionization dynamics.

For this study we tune the resonant harmonic at Etun = 60.22 eV and we do not
take into account the convolution with the spectrometer. By changing the width
of the resonant harmonic we obtain the spectral amplitudes and phases of Fig-
ure 6.10 (a). As the width of the harmonic increases, the spectral amplitude becomes
also broader. However the position of the local minimum doesn’t shift and its
asymmetric shape is not distorted. The FWHMharm values were chosen to be larger
than the resonance itself, similar to the conditions of Ref. [Gruson et al., 2016a] and
Ref. [Busto et al., 2018]. In the case where the harmonic width is close to the reso-
nance width, the shape of the spectral amplitude would be severely distorted since
only a part of the resonance would be excited. The corresponding spectral phases
are not affected since it is just a multiplication with a real number.

Figure 6.10: (a) Spectral amplitude and phase for Etun = 60.22 eV, without spectrom-
eter resolution for three different harmonic widths: (blue curve) FWHMharm = 100
meV; (red curve) FWHMharm = 180 meV similar to [Busto et al., 2018] and (green
curve) FWHMharm = 400 meV similar to [Gruson et al., 2016a]. (b) Corresponding
temporal amplitudes and phases of the resonant EWP.

In contrast to the previous section, where the effect of the spectrometer was only
measurement induced, now there is a physical meaning. This is clear in Fig-
ure 6.10 (b) and the corresponding temporal profiles of the resonant electron
wavepacket. As the spectral width of the harmonic increases, the contribution of
the direct path to the temporal amplitude becomes more important with a first
peak more intense and narrower (FWHMharm = 400 meV), and the destructive
interference occurs earlier (FWHMharm=100meV = 7.3 f s,FWHMharm=180meV = 6.8 f s,
FWHMharm=400meV = 5 f s). Even though the contributions of the direct and indirect
path differ for the three cases, the amplitude decay is very similar, extending to 100
fs. The temporal phases are also affected. The position of the phase jump happens
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earlier as the harmonic width increases since it follows the destructive interference
the overall shape and size are very similar (phase jumpharm=400meV = 1.6 rad, phase
jumpharm=180meV = 1.5 rad, phase jumpharm=100meV = 1.8 rad).

6.2.1.3 Finite pulse effect

The ideal case for RABBIT measurements is a spectrally short dressing pulse so
the assumption that the two-photon EWP created after the absorption/emission
of a dressing IR photon is an exact replica of the initial one-photon EWP is valid.
However, experimentally this is not always the case. When spectrally large dressing
pulses are used, they will contain more frequency components than ω0. Therefore,
for a given final energy in the sideband, the energy conservation condition will
be satisfied by several different pairs of frequency components, which results in
separate contributions that interfere to give rise to the total transition amplitude as
was detailed in Chapter 6.1.4. The following simulations were performed by David
Busto of Lund University.

Figure 6.11: (a) Spectral amplitude (top panel) and phase (bottom panel) ex-
tracted by the rainbow RABBIT algorithm, for a 310 meV wide resonant harmonic,
tuned at Etun = 60.22eV and two values of the probe’s pulse spectral width: (red
curve) FHWMdressing=180 meV, similar value to [Busto et al., 2018]; (green curve)
FHWMdressing= 248 meV ,similar value to [Gruson et al., 2016a]. The blue curve
shows the one-photon EWP for reference. The vertical lines show the drifting po-
sition of the phase jump along with the position of the dip on the amplitude. (b)
Corresponding temporal profiles.

In Figure 6.11 (a) we compare the retrieved spectral phases and amplitudes for the
three following cases: the one-photon EWP, the two-photon EWP with a dressing
pulse of FWHMdres = 180 meV or FWHMdres = 248. The width of the harmonic
(FWHMharm = 310 meV) and its position (Etun = 60.22eV) are kept constant. The
spectrometer convolution is not taken into account. Looking at the spectral ampli-
tude, the effect of the finite dressing pulse is similar to the spectrometer resolution
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since as it is getting broader the amplitude is smoothed out. The spectral phase
is also smoothed but its evolution is not linear as a function of the pulse width.
More specifically, the phase jump that corresponds to a 248 meV pulse is 0.3 rad
bigger than the one for the pulse of 180 meV. This makes evident the fact that this
is not a simple convolution. In addition, both phase jumps are almost half of the
one-photon case and shifted towards higher energies. The corresponding temporal
profiles are presented in Figure 6.11 (b). Concerning the amplitudes, the strength
of the interference is decreased and the decay is faster between the one-photon and
the two-photon cases however, the spectrally wider dressing pulse will result in
a higher contribution of the indirect path than the 180 meV case. The temporal
phases are almost identical with a sub-femtosecond shift that corresponds to the
destructive interference minimum of the amplitudes that exhibit the same shift.

6.2.1.4 Energy position of the resonant harmonic (Etun)

The way by which the harmonic will excite the resonance depends on the energy
tuning around it. This will result in different population ratios between the direct
and indirect paths and thus the interference between these two quantum paths will
differ. An example is shown in Figure 6.12 (a) where the energy position of the har-
monic as compared to the resonance varies while the harmonic width is kept con-
stant (300 meV) and the convolution with the fsp is not taken into account. There-
fore the induced effects on the retrieved phases and amplitudes are purely physical.
In more details, even though the spectral phase is not affected the amplitude gets
dramatically distorted as we move the harmonic away from the resonance. The
physical meaning of this change is better understood by looking at the amplitudes
in the temporal domain (Figure 6.12 (b)). When the harmonic is more centered
around the resonance (Etun = 60.22 eV), the intensity of the second peak is larger.
On the other hand, when the resonance is excited by the tail of the gaussian har-
monic (Etun = 60.51 eV) the dominant contribution originates from direct ionization
with the resonant path being almost zero. However the corresponding temporal
phase exhibits a 1.8 rad jump at a very delayed time (and thus reduced amplitude)
which indicates the presence of the resonance even though it is not visible in the am-
plitude. The temporal phases differ in size and position of the jump depending on
the shape of the temporal amplitudes. Therefore, by scanning the harmonic around
the resonance one can shape the resonant EWP. However the physical meaning of
the measured characteristics can be distorted by the spectrometer resolution and
the finite pulse effect as is discussed below.

Spectrometer Resolution

In order to approach better the real experimental conditions, we now include the
effect of the spectrometer. As was detailed earlier (chapter 6.2.1.1) the effect intro-
duced by the convolution with the fsp is the smoothing of the corresponding am-
plitudes and phases which also leads to a shift of the corresponding phase jumps
in the spectral domain. For this part of the study a spectrometer with relatively
low resolution of FWHMsp = 200 meV is used similar to the [Gruson et al., 2016a]
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Figure 6.12: (a) Spectral amplitude (top panel) and phase (bottom panel) extracted
by the rainbow RABBIT algorithm, for a 300meV wide resonant harmonic, without
any effect of the spectrometer. The position of the harmonic with respect to the
resonance is varied: (blue curve) Etun = 60.22 eV; (red curve) Etun = 60.35 eV; (green
curve) Etun = 60.51 eV. (b) Corresponding temporal profiles.

conditions. The results are shown in Figure 6.13 (a), where the effects are clear with
both amplitude and phase being smoothed out: the phase jump is reduced to 1 rad,
and the amplitude is ∼ 30% of the non-convoluted one. The maximum shift is ∼140
meV between Etun = 60.22 eV and Etun = 60.51 eV. Furthermore, by comparing the
temporal profiles of Figure 6.13 (b) with the ones of Figure 6.12 (b) where there is
no spectrometer effect, one can see that the temporal phases remain the same as
was expected from chapter 6.2.1.1. On the contrary, the temporal amplitudes show
a faster decay of the EWP as was expected.

Finite pulse effect

As demonstrated in chapter 6.2.1.3, the effects of a finite dressing pulse on the spec-
tral phase and amplitude are different from the simple convolution with the spec-
trometer. In order to approach more the experimental conditions of [Busto et al.,
2018] where the main resolution limiting factor was the large spectral width of the
dressing pulse, we will use the two extreme cases of Figure 6.12 and add a dressing
pulse with spectral width of FWHMdres ≈ 250 meV. Comparing 6.14 (a) with Fig-
ure 6.13 (a), it is evident that even though a spectrally broad dressing pulse results
in a smoothing of the spectral amplitudes and phases, the effect of a low spectrom-
eter resolution is more invasive on the measurement. The amplitude still decreases,
its shape is less deformed. Additionally, the phase jump is ∼ 1.5 rad and there is a
shift of only 10 meV between the phases corresponding to the two different energy
tuning. In the temporal domain (Figure 6.14 (b)) the amplitudes are less affected
since the smoothing effect is less than for the spectrometer, for Etun = 60.22 eV the
resonance now will decay at 30 fs instead of 15 fs that was the spectrometer case.
By looking at these two examples it is evident that a low spectrometer resolution
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Figure 6.13: (a) Spectral amplitude (top panel) and phase (bottom panel) extracted
by the rainbow RABBIT algorithm, for a 300 meV wide resonant harmonic, con-
voluted with a spectrometer of FWHMsp=200 meV. The position of the harmonic
with respect to the resonance is varied: (blue curve) Etun = 60.22 eV; (red curve)
Etun = 60.35 eV; (green curve) Etun = 60.51 eV. (b) Corresponding temporal profiles.

will be more invasive on the measurement as compared to the width of the dressing
pulse. Nonetheless, the effect that will dominate depends on each specific experi-
ment.

Figure 6.14: (a) Spectral amplitude (top panel) and phase (bottom panel) extracted
by the rainbow RABBIT algorithm, for a 300meV wide resonant harmonic, without
any effect of the spectrometer for dressing pulse with spectral width of 250 meV.
The position of the harmonic with respect to the resonance is varied: (blue curve)
Etun = 60.22 eV; (green curve) Etun = 60.51 eV. (b) Corresponding temporal profiles.

Experimental examples The purpose of the above studies was the better under-
standing of the experimental parameters affecting the spectral amplitude and phase
extraction using the Rainbow rabbit technique in order to be able to disentangle the
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physical processes from the various measurement induced factors. In this section
we demonstrate the effect of some parameters discussed above on experimentally
measured spectral phases and amplitudes in the same conditions as [Gruson et al.,
2016a] and [Busto et al., 2018]. In both of these cases, the rainbow RABBIT method
was utilized for the retrieval of the EWP dynamics in the vicinity of the sp2+ reso-
nance in helium. The main experimental differences of the two independent exper-
iments are listed in Table 6.1. In the case of [Gruson et al., 2016a] the main limiting
factor was the spectrometer whereas in [Busto et al., 2018] it was the spectrally large
dressing pulses.

Figure 6.15: Simulations compared with experimental measurements for different
Etun in the [Gruson et al., 2016a] conditions (a) and in the [Busto et al., 2018] condi-
tions (b).

In Figure 6.15 (a) we plot the measured spectral amplitudes and phases for two
different harmonic energy tunings. These measurements are realized in the same
conditions as [Gruson et al., 2016a]. Looking at the phases, there is a ∼80 meV shift
of the phase jump towards higher energies as the Etun decreases. The main param-
eter responsible for this effect is the restricted spectrometer resolution of ∼190 meV.
Indeed by including only the spectrometer convolution we are able to simulate very
similar results.

A similar set of measurements was realized in the conditions of [Busto et al., 2018],
shown in Figure 6.15 (b). As the Etun decreases we obtain the same behavior as in
Figure 6.15 (a). In this case as the main resolution limiting factor is indicated the
spectral width of the dressing pulse. However, as was discussed in chapter 6.2.1.4,
the energy shift of the phase jump induced only by the finite pulse effect is small
and not enough to reproduce the experimental result. By adding the contribution of
the spectrometer we are able to obtain a similar phase shift of ∼50 meV, even though
in this case the comparison with our experiments is only qualitative with slightly
different positions and amplitudes of the phase jumps.
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λ (nm) ∆t (fs) FWHMsp (meV) FWHMdressing (meV) FWHMharm (meV)
Gruson et al. 1295 70 190 26 400
Busto et al. 800 30 89 125 180

Table 6.1: Experimental parameters for Ref. [Gruson et al., 2016a] and Ref. [Busto
et al., 2018].

6.2.1.5 Conclusions

To summarize, we presented a complete study on the effects of various experimen-
tal parameters on the retrieved spectral phases and amplitudes by the Rainbow
RABBIT method, on the prototype example of sp2+ resonance of helium. It was
demonstrated that measurement-induced effects related to the spectrometer resolu-
tion or the spectral width of the dressing pulses could distort the extracted phases
and amplitudes and thus lead to a distorsion of the recontructed EWP dynamics.
The ideal experimental conditions for Rainbow RABBIT measurements were found
to be a spectrally narrow dressing pulse in order to create exact replicas of the one-
photon EWP and spectrally large harmonics, enough to fully excite the resonance
which has a specific spectral width (Γsp2+ = 37 meV). Figure 6.16 summarizes the
most important points. Additionally, a comparison between our numerical simu-
lations and experimental data for two independent experiments was realized. De-
spite the differences between the two experiments, the similarity of the results show
the flexibility and the robustness of the Rainbow RABBIT technique.

The goal of this work was to point out the possible experimental factors that could
contaminate the spectral phases and amplitudes measured by the Rainbow RAB-
BIT technique so one can later decouple them from the actual results as was done
in [Busto et al., 2018] by deconvoluting from the spectrometer response, or at least
be aware of the effect that they could have on the results. As the Rainbow RAB-
BIT is a largely applicable technique that is being increasingly used in attosecond
spectroscopy, this detailed study could serve as a textbook for experiments similar
to the ones described above or to any case that involves fast phase variations and
structured amplitude variations.

6.2.2 Rainbow RABBIT measurements for single resonances: sp2+, sp3+

These experiments aim at pushing forward the analysis of autoionization dynamics
in helium that was presented in Gruson et al. [Gruson et al., 2016a]. The experiments
are performed in different experimental conditions, over a broader energy range
that allows us to investigate both the sp2+ resonance and the next sp3+ resonance.
The characteristics of the two Fano resonances including their energy Eres, asymme-
try parameter q, linewidth Γ and lifetime τ = h̵/Γ are summarized in Table 6.2. The
influence of the different experimental parameters such as the spectrometer reso-
lution and the spectral width of the IR and XUV pulses is discussed and linked to
the numerical calculation presented in Chapter 6.2.1. We then investigate different
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Figure 6.16: Summary of the effects of the different experimental parameters on the
retrieved spectral phases and amplitudes by the Rainbow RABBIT technique.

time–frequency representations and we fully characterize the sp2+ resonant EWP
using short time Fourier transforms (STFT) and Wigner time–frequency representa-
tions. This, together with theoretical calculations, allows us to resolve the ionization
dynamics, and in particular, to disentangle the contributions of the two ionization
paths.

We use the Rainbow RABBIT method in order to access and study both the spectral
amplitude and phase of the resonant EWPs. The experimental set up used here is
the one detailed in Chapter 4.3. Briefly we use a tunable Ti:Saph laser system that
gives pulses of ∼5 mJ with duration of 25 fs FWHM at 1 kHz repetition rate. We
use a comb of coherent harmonics generated in neon to photoionize helium atoms.
The remaining IR radiation is blocked with a 200 nm -thick Al filter. The ejected
photoelectrons are detected with a MBES of sub-100 meV spectral resolution. By
adding a weak IR field and varying its delay with the XUV field, we are able to
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Figure 6.17: Principle of the RABBIT measurement for the study of the (a) first
(sp2+) and (b) second (sp3+) autoionizing resonance.

obtain the RABBIT spectrograms. As detailed in Chapter 4.3, a Dazzler allows us
to tune the central wavelength of the laser pulses, and thus, to tune the harmonic
energies around the sp2+ and sp3+ resonances. The EWP interferometry schemes
are shown in Figure 6.17.

Ered [eV] q Γ [meV] τ [fs]
sp2+ 60.15 -2.77 37 17
sp3+ 63.66 -2.58 8 82

Table 6.2: Spectroscopic characteristics of sp2+ and sp3+ autoionization resonances
of helium [Domke et al., 1996].

Part of the work of this chapter is based on the results of Article I available at the
end of this manuscript.

6.2.3 Experimental limitations

In this section a number of limitations inherent to the measurement process are
presented. Their influence on the retrieved spectral amplitudes and phases, and on
the reconstructed dynamics have been studied in detail through simulations earlier
in this chapter (6.2.1).

Spectrometer resolution

The low spectrometer resolution has a direct influence on the measured spectral
amplitudes and phases. In the case of Gruson et al. this was the main reason for
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the widening of the phase curve and the reduction of the phase jump. In the series
of experiments that we performed in Lund a deconvolution process was applied in
order to avoid this effect.

The procedure described below was developed by Margherita Turconi and differs
from the one used in Busto et al., however it exhibits very similar results. The effect
of the spectrometer is modeled by a convolution with a Gaussian function S of
width DE (here DE = 100 meV):

G = S ⊗F , (6.54)

where G is the measured spectrum and F the spectrum to be determined. In the
Fourier domain, the convolution becomes a multiplication and subsequently we
get the following relation between the Fourier transforms of the previously defined
quantities:

F̃ = G̃
S̃

(6.55)

In practice, the experimental noise will make the quantity of expression 6.55, di-
verge beyond a certain interval. The method of Biraud [Biraud, Y.G., 1976] is then
used to extrapolate the function F̃ over a larger range. The deconvoluted spec-
trum F is calculated by the inverse Fourier transform of the extrapolated function.
This procedure is applied to each delay of the RABBIT spectrogram in order to re-
construct a "deconvoluted" spectrogram. This spectrogram is then analyzed by the
Rainbow RABBIT method. Figure 6.18 shows the comparison between the spectral
amplitudes and phases from SB38 to SB42, before and after the deconvolution treat-
ment. The effect of the deconvolution is clear on the amplitudes, with more marked
local minima at the resonance, and a little less effective on the phases, with slightly
sharper phase jumps. Thus, the spectral broadening due to the spectrometer reso-
lution is not the dominant process in this experiment

Figure 6.18: Rainbow RABBIT amplitudes (top panels) and phases (bottom panels)
for raw (blue) and deconvoluted (orange) data for the resonant sidebands SB38 (a)
and SB40 (b) and the non-resonant SB42 (c).
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Finite pulse effect

The spectral width of the dressing pulses used in Lund was ≈130 meV (for 70 nm
bandwidth) whereas Gruson et al. used Fourier limited pulses of 26 meV. This
means that in our case the dressing pulses will have a stronger effect on the mea-
sured spectral amplitudes and phases (see Chapter 6.2.1.3). In Ref. [Jiménez-Galán
et al., 2016] a complete model of the two-photon transition amplitude via a Fano
resonance that includes the effect of the dressing pulse is presented. If the har-
monic and the dressing pulse are broad spectrally, a particular energy of the side-
band can be reached by different ω +Ω combinations of the IR and XUV photons,
respectively. Thus the amplitudes of two-photon transitions will be "mixed" in the
sideband, which deforms the phase arg[M(2)

Ð→

k ,Fano
] (equation 6.44). The wider the

IR spectrum is, the more the phase will be distorted with the phase variations be-
coming weaker and spectrally broader. This effect is more complex than a simple
convolution by the width of the IR pulse, so it is not possible to avoid it with a
simple deconvolution algorithm. In these conditions, the two-photon EWP is not
an exact replica of the one-photon resonant EWP. In addition, if the dipole coupling
between the resonance and the final continuum (quantified by the parameter γ) is
strong, the IR bandwidth will have an even bigger distorting effect on the phase
measured in the sideband.

Harmonic blue shift

During the high harmonic generation process, when the initial laser beam is fo-
cused in the gas cell, the laser intensity is high enough so that the front of the pulse
may partially ionize the medium, thus creating a low density plasma in which the
pulse propagates. The interaction of the IR pulse with the plasma leads to a blue
shift of the laser central frequency that results in harmonics separated in frequency
by 2(ω0 + δω) [Wahlström et al., 1993]. Since the probe IR pulse does not propagate
through the gas cell and is thus not blue-shifted, the contributions from the lower
and higher harmonics to the sideband do not perfectly overlap in frequency. In
the absence of blue shift, the quadratic phase variation inside the harmonic lines
(due to the harmonic chirp, not to be confused with the attochirp [Salières et al.,
1995],[Varjú et al., 2005]) does not influence our measurement. Indeed, the varia-
tions of φn+2 and φn are similar over the pulse bandwidth so that ∆φXUV only con-
tributes by a constant phase in equation 4.1.In the presence of a blue shift, ∆φXUV

varies linearly with frequency, with a coefficient equal to −8δωφn”, where φn” is the
harmonic group delay dispersion. In the experimental results, a linear phase vari-
ation was indeed observed inside the non-resonant sidebands. This linear phase
is removed in all the results presented below. To do so, we apply a linear fit on
the measured phase of each sideband and then the corresponding linear slope is
subtracted for.
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Figure 6.19: Photoelectron XUV spectra for different wavelengths of the driving
laser with a bandwidth of 70 nm. At λ=799 nm we excite only the sp2+ resonance,
whereas for λ=794 nm we reach sp3+ with a very weak excitation of sp2+. For a
wavelength in between 795 nm and 796 nm we excite simultaneously both with
significant amplitudes.

6.2.4 Results

The sp2+ and sp3+ resonances are independently excited by tuning, respectively,
harmonics H39 and H41 to the autoionizing states’ energies (Figure 6.19). Fig-
ure 6.20 displays the phases measured for sidebands SB38, SB40 and SB42 when
harmonic H39 is resonant with the sp2+ state (upper row) and when harmonic H41
is resonant with the sp3+ state (lower row). For both resonances, we can measure a
clear phase variation induced by the resonance while the third non-resonant side-
band, shown for comparison (either SB42 in the first row or SB38 in the second row),
exhibits a flat phase, since the two-photon ionization occurs through a smooth con-
tinuum.

Due to the broad harmonic profile, the amplitude exhibits a double structure which
results from the ionization via both resonant and non-resonant continua. The first
peak, centered at 58.89 eV and the dip at 59 eV result from ionization via the sp2+
resonance and present the typical constructive and destructive interference charac-
teristic of the Fano profile. The second peak, centered at 59.1 eV, originates from the
ionization via a non-resonant continuum which is probed by the high energy part
of the harmonic. When harmonic H41 is resonant with the sp3+ state, the ampli-
tude of M41−1 is smoother than that of M39−1 in the previous case. The width of the
sp3+ resonance (8 meV) is extremely small compared to that of the harmonics (180
meV) and IR pulses (125 meV), so that the sp3+ signature in the sideband is subject
to a strong broadening due to the finite pulse effects.

This behavior is well reproduced by theory and indicates that, in our experimental
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Figure 6.20: Phases measured (blue) in SB38 (first column), SB40 (second column)
and SB42 (third column) in the cases where H39 is resonant with the sp2+ state (first
row) and where H41 is resonant with the sp3+ state (second row). A clear phase
variation linked to the two resonances is observed on the sidebands originating
from the resonant harmonics (SB38 and SB40 for sp2+, SB40 and SB42 for sp3+),
while the phase on the other sidebands is flat. The theoretical calculations (black
line) agree very well with the measured phases.

conditions, the modification of the amplitude of the two-photon wave packet due to
the sp3+ resonance cannot be resolved. The corresponding theoretical calculations
were performed by the group of Fernando Martin of Madrid University, using a
model based on second-order perturbation theory and Fano’s theory. The phase
variations observed for the sidebands where the resonance is one IR photon above
or below are similar, except for an opposite sign. For the sp2+ resonance, a fast
phase variation of 1.2 rad is observed across the resonant part of the sideband. For
the sp3+ resonance, despite the smooth amplitude of the resonant wave packet, a
phase variation of 0.3 rad is measured, indicating that the EWP is affected by the
sp3+ state. Despite their similar q values, the phase jump measured for the sp3+ is
smaller than the one measured for the sp2+ state. This difference originates from
the finite pulse effects that lead to a broadening and dilution of the phase jump.

Furthermore, our measurements are in very good agreement with the ones carried
out by Gruson et al including the amplitude of the phase jump for sp2+. However,
as already mentioned, the limitations to the spectral resolution in the two experi-
ments have different origins. Table 6.1 summarizes the different experimental pa-
rameters in the two studies. In Gruson et al, the IR bandwidth was smaller than
the resonance width, strongly reducing the influence of the finite pulse effects so
that the limiting factor was the MBES resolution. In our case, the RABBIT spectro-
gram is deconvolved from the MBES response but the broad IR bandwidth limits
our spectral resolution. Despite the different experimental parameters in the two
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experiments, the good agreement between the results shows the flexibility of the
Rainbow RABBIT technique and its applicability to a wide range of experimental
conditions (see Chapter 6.2.1 for a detailed study).

6.2.5 Spectro-temporal representation of the sp2+ resonance

Having measured the spectral amplitudes and phases of the 2ω0 oscillations of the
Rainbow RABBIT trace, we can get the spectral amplitude and phase of the resonant
two-photon EWP (see Chapter 5.2):

Mres(E) ≈ Mres
39−1(E)eφ39−1,atom(E). (6.56)

In order to study its dynamics, we will use three different types of analysis: cumu-
lative Fourier transform, Gabor representation and Wigner representation.

Temporal domain The resonant two-photon EWP can be expressed in the time
domain as [Desrier et al., 2018]:

M̃res(t) = 1
2π ∫

+∞

−∞

∣Mres
39−1(E)∣eiφ39−1,atom(E)−iEt/̵hdE. (6.57)

Here we use the approximations φ39−1,atom(E) ≈ Φ38(E) and ∣Mres(E)∣ ≈ A38(E) as is
discussed in Chapter 5.2 as well as in Ref. [Gruson et al., 2016b] and Ref [Barreau,
2017].

Using the amplitudes and phases deconvoluted from the spectrometer response,
Figure 6.18 and the expression 6.57 for the temporal profile of the resonant EWP, we
obtain its corresponding temporal amplitude and phase as shown in Figure 6.21.

Figure 6.21: Temporal amplitude of the two-photon resonant EWP obtained from
the Fourier transform of the spectral amplitude and phase of SB38.

The temporal profile shows a large Gaussian-like peak centered at t=0 fs corre-
sponding to the ionizing XUV pulse. On this time scale, the dominant ionization
channel is the direct one. As the autoionizing state decays in the continuum, the
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contribution of both paths becomes comparable and strong destructive interfer-
ences between the two channels lead to a sharp decrease of the temporal intensity
around t=7 fs which is followed by a revival of the EWP. When the intensity goes
to this minimum the temporal phase exhibits a jump of ∼2.5 rad. The intensity
decreases rapidly after ∼10 fs, much faster than the theoretical lifetime of 17 fs (Ta-
ble 6.1). This apparently faster decay of the autoionizing state results from the finite
pulse effects which occur because the short IR pulse probes the decay during a lim-
ited amount of time (less than 15 fs). The measured lifetime of the decay, along with
the exact position in time of the interference depend on the excitation and dressing
conditions as was also presented in Chapter 6.2.1. We note that in Gruson et al. the
apparent lifetime of the resonance was also reduced, but this was due to the spectral
broadening caused by the photoelectron spectrometer. In our case, the latter does
not play any role since the experimental results are deconvoluted from this effect.

Cumulative Fourier transform (CFT) From the amplitude and phase of the res-
onant EWP, it is possible to obtain the buildup of its spectral profile over time as
it was shown theoretically by Wickenhauser et al. [Wickenhauser et al., 2005]. For
this, we introduce a time-energy analysis based on a local Fourier transform that
shows how the spectral profile is built up to a time of accumulation tacc:

W(E,tacc) = ∫
tacc

−∞

M̃res(t)iEt/̵hdt. (6.58)

The results are presented in Figure 6.22 where the evolution of the resonance profile
∣W(E,tacc)∣2 is plotted as a function of the accumulation time tacc. Up to tacc ≈ 7
fs, the spectrum is quasi-Gaussian and reproduces the spectrum of the ionization
pulse. At these short times, only direct ionization contributes to the spectrum of
photoelectrons. When tacc increases, the contribution of the autoionizing resonance
is becoming more important and we observe the progressive appearance of spectral
interferences. After 20 fs, the spectrum converges towards the spectral intensity
measured by the experiment (Figure 6.18 (a), top panel).

Gabor representation Using a different local Fourier transform, it is possible to
obtain the spectrum of photoelectrons emitted at different moments of the interac-
tion. Here we use the Gabor transformation of the EWP, which is the inverse Fourier
transformation of M̃res multiplied by a time window g(t):

G(E,τ) = ∫
+∞

−∞

g(t − τ)M̃res(t)eiEt/̵hdt (6.59)

In contrast to the Cumulative Fourier Transform case showing the spectral ampli-
tude accumulated until time t, the Gabor representation depicts the spectral ampli-
tude emitted within a time window and shows the evolution of the ’instantaneous’
frequencies emitted in the continuum. In Figure 6.23 we plot the corresponding re-
sults. As in the previous case, during the first 7 fs a Gaussian-like EWP emerges in
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Figure 6.22: (a) Intensity of the cumulative Fourier transform ∣W(E,tacc)∣2 as a func-
tion of the accumulation time tacc. (b) Lineout of (a) every 2 fs, where we first
distinguish the construction of the profile of the direct ionization up to a maximum
towards ∼6 fs, then the appearance of spectral interference and after ∼24 fs the con-
vergence towards the measured spectrum (dashed black line).

Figure 6.23: (a) Square modulus of the Gabor transform of the EWP ∣G(E,t)∣2 with
a g Gaussian window of 20 fs width at FWHM. (b) Lineouts of (a) every 2.3 fs.

the continuum, with its shape reflecting the ionizing pulse, revealing that the direct
ionization path is dominant. Passed this time, the direct and resonant paths start
interfering giving rise to destructive interferences at the center of the wave packet
(around 58.7 eV) and constructive interferences on both sides. After 8 fs, the two
representations start to differ. The Gabor representation shows that the interfer-
ences disappear and a weak, spectrally narrow decay is observed around 58.6 eV.
This energy corresponds to the sp2+ resonance position shifted down by one IR
photon (60.15-1.55=58.6eV) . The XUV pulse has then passed the interaction region
and the atoms cannot be directly ionized. However, the sp2+ state can still decay
in the continuum thus giving rise to this weak decay. In contrast, the ∣W(E,tcc)∣2

barely changes after 8 fs because of the small contribution from the decay to the
accumulated spectral amplitude.

Wigner representation The two previous time-energy representations rely on lo-
cal Fourier transforms. The first one allows to observe progressive modification of
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the photoelectron spectrum over time due to interference between direct and res-
onant ionization paths; it does not allow though to temporally separate these two
processes (except at short times dominated by the direct path). The second, shows
the spectrum of ’instantaneous’ photoelectrons and highlights symmetric spectra at
short and long times due to direct and resonant paths and asymmetric spectra at
intermediate times due to their interference, but the temporal and spectral resolu-
tions are limited by the principle of uncertainty (or Fourier). David Busto from the
university of Lund proposed to represent the dynamics of the resonant EWP by a
pseudo-probability distribution of Wigner-Ville [Wigner, 1932]. This distribution is
defined in the time and frequency domain:

WV(E,t) = ∫
+∞

−∞

M̃res(t + τ/2)M̃res∗(t − τ/2)eiEτ/̵hdτ (6.60)

= ∫
+∞

−∞

Mres(E + ξ/2)Mres∗(E − ξ/2)e−iξt/̵hdξ. (6.61)

It can be seen as the Fourier transform of the auto-correlation function of the
EWP. Additionally, one of the properties of this distribution is that the projections
along the time (respectively, frequency) axes (referred to as marginals in the liter-
ature) generates the spectral (respectively, temporal) intensity of the wave packet:

∫ W(E,t)dt = ∣Mres(E)∣2 and 2π ∫ W(E,t)dE = ∣M̃res(t)∣2. Finally, an interesting fea-
ture of this representation is that it is not a positive distribution. In the WV of co-
herent multicomponent signals, the different components interfere with each other
and the distribution can take negative values.

Figure 6.24 (a) shows the experimental WV of the two-photon EWP emitted through
the sp2+ resonance. The spectrally large peak centered at t=0 fs represents, like
for the Gabor representation, the direct ionization path. The temporally long and
spectrally narrow feature centered at 58.6 eV describes the decay of the sp2+ state.
Because these two processes have such distinct spectral–temporal representations,
it is very easy to disentangle the direct ionization to the continuum states from the
autoionization through the sp2+ state. The negative peak (in blue) and the shoul-
der between 58.7 eV and E = 58.8 eV represent the interferences between the two
ionization paths. These results agree very well with the theoretical calculations
as shown in Figure 6.24 (b). These interference effects provide information on the
correlation between the direct and resonant ionization amplitudes. In our experi-
mental conditions, the IR pulses were too short to allow a complete visualization of
these correlation effects. In Figure 6.24 (c) we show the simulation of the WV that
would be obtained using the same XUV pulses but spectrally narrower IR pulses
of 10 nm bandwidth corresponding to a pulse duration of roughly 100 fs. Very
clear oscillations appear between 58.6 and 58.9 eV compared to the simulation in
the experimental conditions (Figure 6.24 (b)). These oscillations are characterized
by a frequency that increases linearly with the detuning and an amplitude that is
damped as a function of time.
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Figure 6.24: Wigner-Ville distribution of the resonant EWP. (a) Experimental WV,
(b) simulated WV using the finite pulse model with experimental parameters for
the XUV and IR pulses, (c) simulated WV using the finite pulse model with exper-
imental parameters for the XUV and a 10 nm broad IR pulse. Taken from Busto et
al. [Busto et al., 2018].

6.2.6 Dressing IR Intensity dependence: study on sp2+

A big advantage of the RABBIT technique is the fact that it is a perturbative tech-
nique. This means that the IR dressing beam is weak enough (of the order of
I∼ 1011W/cm2), in order to act only as a ’reader’ of the photo-ionization event with-
out perturbing the dynamics. However, the increase of the dressing power can give
us interesting information about the system under study and additionally one can
pass from the observation to the control of the corresponding ionization dynam-
ics. In particular, it has been shown in transient absorption experiments that a high
dressing power can alter the q parameter of a Fano resonance and thus change the
corresponding line profiles [Ott et al., 2013b]. Regarding the RABBIT method itself
it has been shown that the phase information imprinted in the sidebands can also be
extracted from the harmonics by analyzing higher Fourier components [Swoboda
et al., 2009].

In this section, the effect of an increasing dressing IR intensity on the sp2+ resonance
will be presented, both on the resonant line shape, and on the RABBIT phase.
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Figure 6.25: Modification of the absorption profiles of doubly excited resonances
in helium. (a) Absorption spectrum of helium after being ionized by a single at-
tosecond pulse without any dressing IR. (b) Absorption spectrum of helium when
a pulse of 7 fs at 730 nm is focused at an intensity of ∼ 2× 1012W/cm2, arriving 5 fs
after the few-pulse XUV train. Taken from Ref. [Ott et al., 2013b].

6.2.6.1 Effect on the resonant line shape

As a reminder, we recall in Figure 6.25 A the spectactular results of Ref. [Ott et al.,
2013b] which shows the absorption spectrum of helium after the excitation of dou-
bly excited Fano resonances located below the N=2 threshold of He+ by a single
broadband attosecond pulse. It exhibits the characteristic Fano line profiles, for ex-
ample in the case of sp4+ resonance where qsp4+= -2.55. After adding a probe pulse
centered at 750 nm, of 7 fs duration (at FWHM) and of intensity I∼ 2× 1012W/cm2

the absorption line profiles are modified as shown in Figure 6.25 B, where is now
clear that the observed lines are almost Lorentzian (q = 0).

The question we address in this section is whether it is possible to observe a change
in the line profile in a RABBIT type scheme, that is to say in photo-ionization spec-
troscopy rather in transient absorption spectroscopy, using XUV pulse trains and a
longer driving laser pulse.

Taking advantage of the active stabilization system of the Lund beam-line we were
able to measure the photoelectron spectra at a constant delay, varying the intensity
of the dressing pulse. In order to change the dressing intensity without affecting
the temporal overlap of the XUV and IR fields, or the size of the focus in the pho-
toelectron spectrometer, a λ/2 waveplate in combination with a polarizer was used
instead of a varying diaphragm.

Figure 6.26 shows the photoelectron spectra measured when the harmonic H39 is
resonant with sp2+ state (λ = 793 nm, IR bandwidth 85 nm) for several dressing
intensities. Under these conditions, the harmonic H41 is not resonant with the sp3+
state. The dressing power is measured after the spectrometer (behind the window
of the vacuum chamber) and as a consequence, we cannot unfortunately link these
values to the actual IR intensity in the focus and thus an exact quantitative study is
not possible. However, the general behavior is evident. When the dressing power
increases, there is an increase of the sidebands’ signal while at the same time the

105



6.2.6 Dressing IR Intensity dependence: study on sp2+

Figure 6.26: XUV photoelectron spectra for different powers of the dressing IR field.
H39 is resonant with the sp2+ state.

signal of the non-resonant harmonic H41 decreases up to P = 22 mW. For the power
values between 22 mW and 30 mW, the signals of the sidebands and harmonic H41
reach saturation and remain the same. The line-shape of the non-resonant H41 is
not modified with the increase of the dressing power, in contrast to the behavior of
the resonant H39, which undergoes a large change.

In order to quantify this profile modification, we calculated the parameter q cor-
responding to the line shape observed at each intensity according to the following
procedure developed by Lou Barreau: The profile of the non-resonant harmonic
H41 for the lowest dressing power value, is used to determine the shape of the
harmonic profile. The photoelectron peak measured at the energy of H41 is the
harmonic profile multiplied by the cross section of helium at this energy (consid-
ered constant), convoluted by the response function of the MBES. The photoelec-
tron spectrum is then deconvoluted from the spectrometer response function with
an algorithm of blind deconvolution (deconvblind function of Matlab) to obtain the
harmonic profile. The response function at the energy of harmonic H41 has a width
of 150 meV at FWHM. The harmonic profile is shifted by two photons to the posi-
tion of the resonant harmonic H39, then multiplied by a Fano profile with Γ = 37
meV and ER = 60.15 eV and finally convoluted with a Gaussian corresponding to
the response function extracted from H41. We thus assume here that the width is
not significantly different at H39 despite the 3 eV lower electron energy. The value
of q is optimized on the difference between the calculated profile and the measured
spectrum.

S = [H(E41 − 2h̵ω)×
(q + ε)2

1+ ε2 ]⊗ fsp, (6.62)

where fsp is given by equation 6.51. The measured spectra are compared with the
results of the optimization in Figure 6.27 (a) and the corresponding q values for
the different intensities are shown Figure 6.27 (b). At the minimum intensity we
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obtain q = qsp2+ = -2.77. When the dressing intensity increases, the photoelectron
line profile becomes less asymmetrical, which corresponds also to an increase of
the q value.

Figure 6.27: (a) Photoelectron spectral profile of harmonic H39 as measured (thin
lines) and simulated (thick lines) and after the q optimization procedure (b) Corre-
sponding q values as a function of the incresing dressing power.

The interpretation of these observations remains open for the moment. Simula-
tions in the strong field approximation are in progress, in collaboration with Marcus
Dahlström from Lund University.

6.2.6.2 Effect on the RABBIT phase

Having shown that the q parameter can be altered by an increasing dressing IR
intensity, the subsequent question that arises is what is the effect on the spectral
phase extracted from RABBIT spectrograms. In order to investigate this, we per-
formed Rainbow RABBIT measurements for different probe intensities as shown in
Figure 6.28. From left to right, the probe pulse power changes from 20 mW to 110
mW. At the lowest intensity, the presence of a weak IR field leads to weak side-
bands between the odd harmonic orders. These sidebands originate from Ω ±ω0

two-photon transitions as is shown in Figure 6.29 (a). The two possible pathways
to each final state lead to the observed interference pattern. This probe intensity
regime is the so-called RABITT regime.

With increasing dressing IR intensity, the amplitude of the sidebands becomes com-
parable to direct photoionization by the harmonics. These two-photon processes
induce a depletion of the peaks at odd harmonic energies, at the delays where the
sidebands are maximum. At higher probe intensities, processes involving more
than one IR photon become significant. When the dressing intensity reaches a few
1012W/cm2, the so-called streaking regime is reached, where the AC-streak cam-
era becomes the preferred characterization method [Mairesse and Quéré, 2005]. In
our measurements we didn’t have intense enough IR dressing pulses to reach the
streaking regime. We observe however up to four-photon transitions.
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Figure 6.28: RABBIT scans for increasing dressing power.

Figure 6.29: (a) Possible transitions involving a single harmonic and multiple IR
photons. (b) Amplitude of the FFT of the oscillating RABBIT signal at two different
dressing powers, showing the appearance of a 4ω0 peak at 110 mW power.

Swoboda et al. [Swoboda et al., 2009] have shown analytically based on third-order
perturbation theory, that the intensity of the 4ω0 modulation of a harmonic H2n will
be

S(4ω0)

2n ∝ cos(4ω0τ + ∆φXUV
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

φ2n−2−φ2n+2

+∆φ
(2)
atom) (6.63)

where ∆φ
(2)
atom corresponds to the phase difference of the 3 photon (XUV + 2IR)

dipole matrix elements. The next order of perturbation leads to a 6ω0 component in
the sidebands and the next to an 8ω0 component again in the harmonics. Higher IR
intensities lead to new couplings of states lying further apart and thus higher mod-
ulation frequencies. A Fourier transform that isolates these components will allow
us to access the spectral phase ∆φ

(i)
atom in the same way as with the conventional

RABBIT.
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Consequently, the presence of the resonance will be now imprinted on the phase
and amplitude of harmonics H37 and H41. After applying the Rainbow RABBIT
analysis we obtain Figure 6.30 where for a dressing power of ∼80 mW, we plot the
4ω0 phases and amplitudes of the harmonics H37 and H41. For comparison we
also show the 2ω0 phases and amplitudes of sidebands SB38 and SB40, for a low
dressing power of 20 mW.

Figure 6.30: RABBIT amplitudes (top pannels) and phases (bottom pannels) ex-
tracted from the 2ω0 oscillations of sidebands SB38(a) and SB40(b) (blue) and from
the 4ω0 oscillations of H37 (a) and H41(b) (orange)

It seems that the 4ω0 spectral phase of the harmonics, carries some information on
the resonance. It is however less pronounced, with the phase jump of H41 being
∼1.5 times smaller than the corresponding 2ω0 one of SB40. Similarly, the phase
jump of H37 is ∼3.3 times smaller than that of of SB38. The comparison between
the amplitudes is more difficult since, as discussed throughout this thesis, they are
more sensitive as a parameter to the experimental conditions. Thus the effect of the
sp2+ resonance on the 4ω0 spectral amplitudes is not so evident.

A complementary investigation in order to support the assumption that for high
dressing IR intensities the harmonic 4ω0 spectral phase may carry similar infor-
mation as the sideband 2ω0 spectral phase for low IR intensity, is to compare the
attochirp measured by the classic RABBIT method for both cases as was performed
in Ref. [Swoboda et al., 2009].

The attochirp measured for the two cases is atto4ω0= 28 as per harmonic order and
atto2ω0= 39 as per sideband order. Even though the two values are not the same they
are of the same order of magnitude. A possible reason for this discrepancy is the fact
that the dressing IR intensity is not high enough as in the case of Ref.[Swoboda et al.,
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Figure 6.31: Classic RABBIT phases measured for high (4ω0) and low (2ω0) dressing
power .

2009], something that could also justify the fact that the harmonic 4ω0 Rainbow
phases exhibit smaller phase jumps than the corresponding 2ω0 sideband phases.

6.2.7 Simultaneous excitation of sp2+ and sp3+

Earlier in this chapter it was shown that by tuning the wavelength of the driving
laser we were able to excite either the sp2+ or the sp3+ resonance (Figure 6.19).
However, for a proper wavelength and pulse bandwidth it is possible to ionize
simultaneously and thus in coherent way both resonances and create a complex
two-electron wave packet. The dynamics of a system like this can be probed ei-
ther by transient absorption experiments [Ott et al., 2014] or by photoionization
spectroscopy. In Figure 6.32 the RABBIT principle is outlined schematically for this
particular case.

For these measurements we tuned the central laser wavelength at λ=795 nm with
a pulse bandwidth of 90 nm. After applying the Rainbow RABBIT analysis we ob-
tain the spectral amplitudes and phases of Figure 6.33. The phases of SB38 and SB42
have a clear imprint of the sp2+ and sp3+ resonances respectively. Interestingly, the
phase of SB40 includes the contribution of both resonances, well separated. It is
worth-mentioning at this point, that the energy distance between the two autoion-
izing states is ∆Esp3+−sp2+=3.5 eV. On the other hand we use photons of ∼1.5 eV
(∆EIR−−IR+ ∼3.1 eV) thus due to this energy difference of 0.4 eV we are not able to
couple directly with the dressing field the two resonances. The phase of SB40 is the
proof that the two resonances are coherently excited. As was already mentioned
for the case of the single resonances, also here, the experimentally measured spec-
tral phases are in good agreement with numerical simulations performed by Alvaro
Jiménez-Galàn based on second order perturbation theory and the Fano formalism
taking also into account the finite pulse effect.

We have seen previously that under the experimental conditions of the Lund set
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Figure 6.32: Schematic representation of the measurement principle. H39 excites
the sp2+ resonance and in parallel H41 excites the sp3+ resonance. The energy dif-
ference between the two resonances is 0.4 eV larger than the energy of 2 IR photons
so we are not able to couple directly the two resonances with the IR field, but indi-
rectly in the intermediate sideband. Indeed, the signature of this double excitation
is imprinted in the Rainbow RABBIT amplitude and phase of SB40.

Figure 6.33: Rainbow RABBIT amplitudes and phases of SB38, SB40 and S42 for a
driving pulse centered at λ=795 nm with a bandwidth of 90 nm in order to excite
simultaneously both sp2+ and sp3+. SB38 and SB42 carry the signature of only
sp2+ or sp3+ separately while SB40 has the imprint of both resonances due to their
coherent excitation. The black solid lines in the bottom pannels are the results of
calculations by the group of Fernando Martin.

up, the sidebands are not an exact replica of the initial one-photon EWPs, espe-
cially when the bandwidth of the IR pulses is 90 nm. However, the similarities be-
tween the reconstructed dynamics in the preceding paragraph and those of Gruson
et al. [Gruson et al., 2016a], indicate that this approximation remains qualitatively
valid and that the spectral broadening by the dressing photon mainly modifies the
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the apparent lifetimes of the resonances. We can therefore approximate the ampli-
tudes and phases of this complex one-photon EWP as:

M2res(E) = M39(E)+ M41(E) (6.64)

= A39(E)eiφ39,atom(E) + A41(E)eiφ41,atom(E)) (6.65)

≈ A38(E + h̵ω)eiΦ38,atom(E+̵hω) + A42(E − h̵ω)e−iΦ42,atom(E−̵hω)) (6.66)

In Equation 6.66, the replicas extracted from sideband SB38 and SB42 are reposi-
tioned at the energies of harmonics H39 and H41, respectively.Note that a minus
sign is applied on the phase extracted from SB42 to account for the inverted phase
in the sidebands located above resonances. The spectral amplitude and phase of
the reconstructed doubly resonant EWP M2res are shown in Figure 6.34 (deconvo-
luted from the spectrometer response). The dynamics of the corresponding EWP
are described by the temporal evolution of M̃2res(t) as

M̃2res(t) = 1
2 ∫

+∞

−∞

M2res(E)e−iEt/̵hdE (6.67)

Figure 6.34: Amplitude and phase of the complex EWP created by the coherent exci-
tation of the sp2+ and sp3+ resonances by the harmonics H39 and H41 respectively.

In order to study the influence of resonances on the wave packet, we compare it
with a non-resonant, reference wave packet Mre f defined as

M̃re f (t) = 1
2 ∫

+∞

−∞

Mre f (E)e−iEt/̵hdE (6.68)

with

Mre f (E) ≈ A44(E − 5h̵ω)eiΦ44,atom(E−5̵hω) + A44(E − 3h̵ω)eiΦ44,atom(E−3̵hω)) (6.69)

In equation 6.69, we build the reference, non-resonant EWP by duplicating the wave
packet of sideband SB44 and positioning the two replicas to the energies of harmon-
ics H39 and H41. This assumes that harmonics H39 to H45 have rather similar char-
acteristics and that the spectral resolution does not vary too much on this electron
energy range.
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Figure 6.35: Temporal profile of the complex EWP created by the coherent excitation
of the two resonances (magenta). This profile is compared with the reference non-
resonant one created by the coherent excitation of a smooth continuum (cyan).

Figure 6.35 shows the temporal evolution of M̃2res(t) and M̃re f (t). The spectral
width of the harmonics increases with the order and thus the reference EWP pro-
duced from the data of SB44 has a smaller temporal width than the corresponding
resonant one where the data of SB38 and SB42 were used. The two highly struc-
tured, with fast oscillations EWPs are interestingly enough, getting gradually out
of phase for t> 0. Looking more into detail, one can distinguish three regions where
the dephasing between the resonant and reference EWP is different. This is pre-
sented more clearly in Figure 6.36, where we zoom in the three temporal regions A,
B and C. In addition we plot the results of preliminary simulations that were built
according to the procedure detailed in Chapter 6.2.1. In the left column ((a),(b),(c))
we plot experimental data and in the right ((d),(e),(f)) the corresponding results of
our preliminary simulations. The comparison between the experiment and the the-
oretical curves is only qualitative. Full TDSE simulations from Antoine Desrier of
LCPMR, Université Pierre et Marie Curie are in progress.

Between t=0 fs and ∼3 fs (region A) the beating period for both resonant and ref-
erence EWPs is TA=1.3 fs that corresponds to an energy difference of ∆E ≈ 3.1 eV.
Later on (region B : ∼4 fs - 12 fs) an increasing dephasing between the two EWPs is
observed with the resonant being in advance from ∆τ ∼40 as at t= 6.5 fs to ∆τ ∼150
as at t= 9.1 fs. Finally, after 12 fs (region C : ∼12 fs - 40 fs) the non-resonant EWP
does not oscillate any more whereas the resonant one continues with a change of
the beating period at TA=1.15 fs that corresponds to ∆E ≈ 3.5 eV.

We can explain these three different dynamics as follows. Around t = 0, the two
continua are excited by the harmonics and the two direct ionization paths interfere,
resulting in a beating of ∆E = 2h̵ω. For t greater than the width of the pulse, we
observe a beating between the two resonant paths at ∆E = Esp3+ − Esp2+. During the
intermediate times, all the four paths of ionization interfere and the frequency of
oscillations corresponds to a transition between these two limit frequencies. When
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Figure 6.36: Zoom in the three different regions of Figure 6.35. Temporal region A:
(a),(d) the beating period is 1.3 fs, corresponding to ∆EIR+−IR− = 3.1 eV; Temporal
region B: (c),(e)there is a dephasing between the resonant and non-resonant EWP
which increases gradually; Temporal region C: (c),(f) There is a tail only in the res-
onant EWP that oscillates with a period of 1.15 fs, that corresponds to ∆Esp3+−sp2+ =
3.5 eV. The resonant EWP is shown in magenta and the non-resonant one in cyan.

t increases, the oscillation period decreases. Even though the comparison between
experiment and theory can only be qualitative, we find very similar behavior (Fig-
ure 6.36 (d)-(f)).

6.3 Argon

The first experiment that measured the spectral phase close to a Fano resonance
was performed in argon and its 3s23p6 → 3s13p64p resonance by Kotur et al. [Ko-
tur et al., 2016]. The presence of autoionizing resonances in argon was known since
1935 (Ref.[Lukirskii et al.]). Synchrotron experiments have measured very precisely
photoionization cross-sections like the one in Figure 6.37 (a) where one recognizes
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the asymmetric form of the absorption line profiles. These line shapes exhibit a
different form than that the helium resonances discussed above, due to a very dif-
ferent q parameter (qsp2+,He = −2.77, q3s4p,Ar = −0.25). The result in this case is a
well-shaped resonance which is often called a ’window-resonance’.

Figure 6.37: (a)Photoionization cross-section of argon taken from Ref [Samson,
1966]. (b) Spin–orbit-resolved partial electron yield across the 3s23p6 → 3s3p6np
(n = 4–9) resonances in argon atoms. Taken from Ref [Zhang et al., 2009].

In Kotur et al. by using the classic RABBIT method they were able to measure the
spectral phases of the two resonant sidebands in the vicinity of the 3s4p Fano res-
onance as is shown in Figure 6.38. There, the authors measure a phase variation
of ∼ 0.6 rad for the two sidebands SB16 and SB18 located on either side of the res-
onance. In order to record the phase through the entire width of the resonance
they used a Dazzler to tune the wavelength of the driving laser which is initially
centered at 800 nm. The set up used for this experiment is very similar to the one
detailed in Chapter 4.3. A comparison with the theory developed in Jiménez-Galán
et al. [Jiménez-Galán et al., 2014] was performed showing a rather good agreement.

Figure 6.38: Spectral phase of (a) SB16 and (b) SB18 measured with the standard
RABBIT technique as a function of the photon energy shifted to the position of har-
monic H17. Experimental results correspond to squares. The theoretical results are
represented by the green / red curves with / without taking into account the laser
coupling between the resonant state and the final state in the continuum. Taken
from Ref. [Kotur et al., 2016]

Earlier this year, Cirelli et al. [Cirelli et al., 2018] carried out a similar experiment
where by using a VMI, they were able to measure the corresponding angle-resolved

115



6.3 Argon

delays in the vicinity of 3s4p and 3s5p autoionizing resonances as is shown in Fig-
ure 6.39. The presence of an autoionizing state is clear in SB16 where a fast decrease
of the measured delays is recorded for different emission angles. This effect of the
resonance on the angular dependence of the atomic delay is due to the existence
of several open channels with different angular emission properties and with a
varying amplitude across the resonance. The anisotropy parameters extracted from
time-integrated photoelectron angular distributions generated by two-photon ab-
sorption, were also recorded. These results demonstrate not only that the phase of
the EWP can be distorted in the presence of resonances, which prevents one from
interpreting the Wigner delay as the photoemission time delay, but also that this
distortion depends on the electron emission angle.

Figure 6.39: Energy and angle-resolved time delays as a function of sideband pho-
ton energy for different emission angles for SB14 (a) and SB16 (b). Taken from
Ref. [Cirelli et al., 2018]

In both previous studies however, a very interesting aspect that was not taken into
account, is the spin-orbit (S-O) splitting. The S-O splitting is essentially an energy
shift due to the interaction between the magnetic field that is created by the rela-
tive motion between the nucleus and the electron, and the electron’s spin angular
momentum.

An interesting case is also that of krypton and xenon who exhibit a S-O splitting of
EKr = 0.67 eV and EXe = 1.31 eV, respectively. Jordan et al. [Jordan et al., 2017] mea-
sured the photoionization delay differences between the two S-O channels. The
presence of the S-O splitting complicates the RABBIT spectrograms since for a 800
nm driving wavelength, the energy distance between a harmonic and a sideband
is 1.55 eV. Consequently, in xenon harmonics J = 1/2 are overlapping significantly
with sidebands J = 3/2. In order to measure the corresponding delays, they mea-
sure for each delay a photoelectron spectrum without dressing field and then sub-
tract it from the RABBIT spectrogram for each delay step. In the case of krypton
a small delay of ∼ 6 as was measured in between 20 and 40 eV, while in xenon de-
lays up to 30 as that vary a lot with the energy were extracted. These experimental
results were compared with theoretical simulations based on the Time-Dependent
Configuration-Interaction Singles (TDCIS) and Relativistic Random Phase Approx-
imation (RRPA) model (Figure 6.40). For xenon, a disagreement between the theo-
retical calculations and the experimental results is obtained especially in the vicinity
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of the Fano resonances around 30 eV (gray dashed lines in Figure 6.40). These res-
onances were not taken into account in the simulations.

Figure 6.40: Delay between photoelectrons associated with states 2P1/2 and 2P3/2 of
Kr+ (a) and Xe+ (b). RABBIT measurements (black circles) are compared to two
types of calculations (red and blue symbols). The green and gray lines represent
respectively single and double excited states of the atom. Taken from Ref. [Jordan
et al., 2017]

In the case of argon this energy shift between the J = 1/2 and J = 3/2 component is
∼180 meV which makes it comparable with the 76 meV-width of the 3s4p Fano res-
onance. In Figure 6.37 (b) one can see the corresponding cross-sections for each S-O
component, compared with the total signal as measured in Ref [Zhang et al., 2009].
The question that arises now is whether this is an effect of the S-O splitting can be
resolved in the spectral phase of the resonant sidebands and whether the two S-O
components have a different resonant phase evolution. In the following chapter we
are going to address these questions by carrying out experimental measurements
similar to the ones presented for helium and complementing them with numerical
simulations of the examined experimental system.

6.3.1 Rainbow RABBIT measurements : resolution of the S-O splitting

The following experiments were also a collaboration with the group of Anne
L’Huillier from Lund university and the group Raimund Feifel from university of
Gothenburg, as part of the same campaign. The experimental set up that was used,
is the same as in section 6.2.2.

In Figure 6.41, the scheme of the experiment is outlined schematically. The har-
monic peaks in the photoelectron spectra exhibit complicated line-shapes as is
shown by the spectra in Figure 6.42. The 3s4p resonance lies at 26.6 eV [Samson
and Stolte, 2002] and thus affects harmonic 17 of the 800 nm driving laser. As the
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Figure 6.41: Schematic representation of a RABBIT measurement in argon close to
the 3s4p Fano resonance, taking also into account the S-O splitting.

wavelength of the driving radiation changes (the tunability is achieved by a Daz-
zler, see Chapter 4.3), the line-shape of the resonant harmonic H17 changes dramat-
ically. More specifically, while the non-resonant harmonics (H19 and H21) exhibit
a double structure due to the S-O splitting that is not affected by the wavelength
change, H17 for lower wavelengths shows a similar but more pronounced struc-
ture (λ = 783 nm) probably due to the better spectrometer resolution at this lower
electron energy. As we move to higher wavelengths (λ = 785 nm and λ = 786 nm),
there are now be three peaks whose ratio changes with the wavelength. Finally,
for λ = 789 nm the line-shape goes back to its initial shape meaning that we have
scanned through the entire resonance.

Figure 6.42: Photoelectron spectra produced in argon by the harmonic beam only
for different wavelengths of the driving laser. The grey and blue areas in harmonic
17 mark the position of the ∣3s4p⟩ resonance at Ekin = 10.66 eV for the J=1/2 compo-
nent and at Ekin = 10.84 eV for the J=3/2 component (photon energy: 26.6 eV).
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The goal of this study is to disentangle the contribution from the two S-O compo-
nents and to study the influence of the Fano resonance as imprinted on the spec-
tral phase and amplitude of the photoionized EWPs. This can give us insight in
electron-electron correlation in more complicated systems than He.

6.3.2 Algorithm for the S-O separation

In order to separate the two S-O contributions numerically, a method that was first
demonstrated by Zürch et al. [Zürch et al., 2017] in transient absorption experiments
was used. There they were interested in the electron-hole dynamics in germanium,
which has a larger S-O splitting of 0.58 eV. The idea, transposed to our case, is that
one can describe the measured photoelectron spectra as the incoherent sum of the
independent spectra corresponding to the J=1/2 and J=3/2 S-O components:

Stot(E) = S1/2(E)+ S3/2(E). (6.70)

If we consider that the two spectra are identical but shifted by the ES−O of the S-O
splitting and that are scaled in amplitude by the degeneracy then S1/2(E) = S(E)
and S3/2 = 2S(E − ES−O), equation 6.70 will become:

Stot(E) = S1/2(E)+ 2S1/2(E − ES−O) (6.71)

and its Fourier transform writes:

S̃tot(η) = (2e−iηES−O + 1)S̃1/2(η). (6.72)

By dividing by the phase factor (2e−iηES−O + 1) and after applying an inverse Fourier
transform one can recover the contribution of a single channel:

S1/2(E) = FT−1[
S̃tot(η)

(2e−iS−O + 1)
]. (6.73)

The spectrum of the other channel is obtained by simply multiplying this result
by the degeneracy and applying the energy shift ES−O. As the energy calibration
of the photoelectron spectrum may be imperfect, the value of ES−O is optimized
by an algorithm minimizing the difference between the experimentally measured
spectrum and the spectrum calculated from S1/2,exp(E) = S1/2(η):

Stot,exp(E) = S1/2,exp(E)+ 2S1/2,exp(E − ES−O,opt) (6.74)
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The extracted value ES−O,opt = 180 meV, is very close to the values found in the
literature. An example is shown in Figure 6.43 where this algorithm is applied on a
spectrum for λ = 789 nm.

Figure 6.43: Photoelectron spectra produced in argon by the harmonic beam only,
generated with λ = 789 nm, decomposed into the two S-O components (J=1/2:
green line, J=3/2: blue line). The total retrieved signal (red line) is in excellent
agreement with the measured harmonic signal (black dashed line).

Note that possible discrepancies between the retrieved data and the actual measure-
ments could be caused by the fact that we impose the ratio between the two com-
ponents to be P3/2 = 2P1/2. Ref. [Canton-Rogan et al., 2000] measured the ratio of
the two S-O cross-sections as σP3/2 ≈ 1.9σP3/2 . Moreover, according to Ref.[Caldwell
et al., 2000] this ratio can vary in the vicinity of Fano resonances and for the specific
case of the 3s4p resonance it can vary between 1.7 and 2.2.

6.3.3 Rainbow RABBIT phase measurements in the vicinity of the 3s4p
resonance

A typical spectrogram is shown in Figure 6.44. We generate and detect in argon with
driving pulses of λ= 786 nm, pulse bandwidth of 50nm which means that the finite
pulse effect is less present as compared to the helium data. The deconvolution from
the spectrometer response was also applied in this case however the result was very
similar to the raw data. We are interested in harmonic H17 which is the resonant
one and its corresponding sidebands SB16 and SB18, thus a retarding potential of 9
V is applied to the MBES in order to shift the sidebands of interest to lower kinetic
energies, where the electron spectrometer exhibits its best resolution.

Applying the algorithm described above to the spectrum of each delay of the RAB-
BIT spectrogram, we end up with two separate RABBIT traces for each S-O compo-
nent that then are analyzed with the Rainbow RABBIT method described in Chap-
ter 5.1. The resulting spectral amplitudes and phases are shown in green and blue
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Figure 6.44: RABBIT spectrogram of SB16, H17 and SB18. The integrated signal
over the delay is plotted as the red line.

for the two S-O components in the two resonant sidebands SB16 and S18 along with
a non-resonant one (SB20) in Figure 6.46. A spectrogram is recalculated by apply-
ing the relation 6.71. Like in the spectra without any dressing IR (Figure 6.43), the
agreement with the analysis of the measured spectra is very good, especially on
the higher energy sidebands, such as SB20. The reason for this effect is that SB16
for example, that is detected on the lower kinetic energies and thus that is better
resolved, it is also more sensitive to the electronic noise of the detector.

To highlight the good agreement between the analysis and the measured data we
plot in Figure 6.45, the raw RABBIT trace (a), the retrieved one (b) and the differ-
ence between the two (c) and it is clear that the residual difference is very small.
Additionally, in figure 6.46, are also plotted the measured data (black dashed lines),
that are in very good agreement with the retrieved total curves (red curves) for both
amplitudes and phases. This overall good agreement tells us that the assumptions
performed for extracting the two S-O components are consistent with the measured
trace.

The green traces correspond to the retrieved spectral amplitudes and phases of the
J=1/2 component whereas the blue ones to the J=3/2 component. In SB18, the am-
plitude of each component has the imprint of the window resonance and a phase
jump of ∼0.5 rad in the vicinity of the minimum of the amplitude at 28.45 eV (J=1/2)
and 28.65 eV (J=3/2). For SB16 the phase jumps are larger ∼1 rad at 25.43 eV (J=1/2)
and 25.61 eV (J=3/2). The phase variations between the two resonant sidebands are
symmetric but the size of the phase jump is twice larger for SB16. This however,
could be explained by the fact that the qe f f parameters differ between the two side-
bands if γ is significantly nonzero since q±e f f = q∓ 2(q− i)βω/Γ, as already invoked in
Ref. [Kotur et al., 2016]. Related examples will be given in the section that follows
where our preliminary simulations are presented. As was expected, the spectral
phase of the non-resonant SB20 exhibits a flat behavior with no fast variations. The
comparison between the measured total phases is shown in Figure 6.47.

At this point it is interesting to compare with the results of Kotur et al. [Kotur et al.,
2016], where the classic RABBIT in combination with the tunability of the driving
laser were used in order to extract the corresponding phases. A comparison is pre-
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Figure 6.45: (a) Measured RABBIT trace, (b) reconstructed RABBIT trace using the
procedure described in the text and (d) the residual difference when the trace (b) is
subtracted from the trace (a).

sented Figure 6.48. A striking difference is that the phase evolution in Kotur et al.
is much smoother and of smaller amplitude (especially for SB16) than the Rainbow
rabbit results. In particular, it has no sign of the double structure related to the S-O
components. This is a consequence of the integration of the sideband signal over
the entire spectral width that smears out the fast structures due to the resonance
in both S-O components. The phase of the integrated sideband is not just a mean
phase in the arithmetic sense of the term, but rather a weighted average value by
the intensity distribution of the sideband(Chapter 5.1).

Now that the spectral phase and amplitude of the two S-O components have been
resolved and taking into account the propensity rule which favors transitions to
states with larger angular momenta [Fano, 1985], it is possible to obtain the two-
photon EWP of the J=3/2 component in the time domain. After applying a Fourier
transform to the two-photon electron wave packet with amplitude and phase as
given below:

∣M17+1,3/2(E)∣ =
A18,3/2(E)

√
2A20,3/2(E + 2h̵ω)

(6.75)

Φ17+1,3/2(E) ≈ −φatom
17+1,3/2(E) (6.76)

M̃(2)
res (t) = 1

2 ∫
∣M17+1,3/2(E)∣ ⋅ eiφatom

17+1,3/2(E) ⋅ e−iEt/̵hdE, (6.77)
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Figure 6.46: Experimentally measured Rainbow RABBIT amplitudes and phases for
SB16, SB18 and SB20 (black dashed lines). The phases of the two S-O components
retrieved using the procedure detailed in the text are shown in green for J=1/2, blue
for J=3/2 and red for the total, respectively. The linear slope has been removed from
all the plotted phases.

we obtain the temporal amplitude and phase of Figure 6.49 (a). We observe a Gaus-
sian component centered in t = 0 fs followed by an amplitude minimum associated
with a phase jump of 2.5 rad characteristic of the interference between direct ion-
ization and ionization via the auto-ionizing state, and finally a small bump corre-
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6.3.4 Preliminary simulations

Figure 6.47: Measured RABBIT phases of SB16, SB18 and SB20. All have been
shifted on the resonance energy position (SB16 +1h̵ω0, SB18 −1h̵ω0, SB20 −3h̵ω0).
The phase of SB18 has been inverted.

Figure 6.48: Comparison between the phases of SB16 and SB18 measured by the
Rainbow (red squares) and the classic (blue squares) RABBIT method.

sponding to the decay of the latter. The build up of the resonant two-photon EWP
in time, ∣W(E,tacc)∣2, is also calculated as described in section 6.2 and presented in
Figure 6.49 (b). The spectrum first reproduces the excitation harmonic spectrum
and then we observe the appearance of the window resonance for a photon energy
∼ 28.65 eV at tacc ∼3 fs.

6.3.4 Preliminary simulations

In order to understand the above experimental results we performed preliminary
numerical simulations similar to the ones described in Chapter 6.2.1.

Resonant Harmonic

We first illustrate the simulation technique in the simple case of the resonant one-
photon transition. As already mentioned in section 6.1.3 the presence in argon of
two continua (s and d) to which the resonance is coupled by CI, results in a modified
expression of the resonant one-photon (as well as two-photon) transition, as follows
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Figure 6.49: (a) Temporal profile and phase of the EWP corresponding to the
J=3/2 component of SB18. (b) Temporal build up of the resonant sideband
∣W3/2,SB18(E,tacc)∣

2

[Kotur et al., 2015]:
M(1)

res = M1,(1) q + ε

ε + i
+ M2,(1). (6.78)

The parameters of the 3s4p resonance are: q = -0.25, Γ=76 meV, Eres=26.65 eV and
M1,(1) = 3.766 − 9.545i, M2,(1) = 0.459 − 4.462i (values taken from Kotur et al [Ko-
tur et al., 2015]) corresponding to the transition via an an ’interacting’ and a ’non-
interacting’ continuum respectively, as detailed in section 6.1.3. The resonant har-
monic intensity is then described as a Gaussian (see Chapter 6.2.1 for a detailed ex-
pression) multiplied by the resonant amplitude of equation 6.78. In Figure 6.50 (a)
we plot the Gaussians (same Gaussian shifted by the ES−O = 180 meV) and the cor-

responding cross-sections (σ3/2 ≈ 2σ1/2 = ∣M(1)
res ∣

2
) for each S-O component. The

simulated resonant harmonic H17 is shown in Figure 6.50 (b) where the total yield
is the sum of the two S-O contributions.

To estimate the corresponding experimental values as well as the FWHM of the
spectrometer response described by a Gaussian (equation 6.51), we fit the profile
of a simulated non-resonant harmonic to the experimental one. For this series
of experiments we find FWHMharmonic=180 meV and a spectrometer resolution of
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FWHMsp= 90 meV. The resonant harmonic line in these conditions exhibits a three-
peak lineshape.

Figure 6.50: (a) cross-sections of the Fano resonance for the two S-O components,
scaled by the degeneracy σ1/2 = 1

2 σ3/2 and shifted by ∆ES−O along with the excitation
gaussian pulses. (b) The resulting line-profile of the resonant harmonic H17.

RABBIT spectrogram

We now move on to the simulation of the RABBIT spectrogram. For these calcula-
tions narrow dressing IR pulses are assumed since the experimental data have been
obtained with the narrow 50-nm laser bandwidth and thus we don’t take into ac-
count the finite pulses effect. The resonant two-photon transition amplitude is now
given by Ref. [Kotur et al., 2016]:

M(2)±
res = M1,(2)

q±e f f + ε

ε + i
+ M2,(2) (6.79)

with
q±e f f = q ∓ 2(q − i)βω0/Γ, (6.80)

where β = 0.005 as calculated by Alvaro Jiménez Galán . M1,(2) = −0.459+ 5.462i and
M2,(2) = 16.36+ 38i, extracted from Ref. [Kotur et al., 2016] and now q has become
a complex number q±e f f in order to include the effect of the dressing IR pulses with
the + sign for SB18 and the - sign for SB16 [Jiménez-Galán et al., 2014].

In order to build the RABBIT trace of a resonant sideband we first construct the
RABBIT traces of the two S-O components J=1/2 and J=3/2 by using the expres-
sion 6.48, with harmonic intensity ∣A(E)J=1/2∣

2 = 1/2 ∣A(E)J=3/2∣
2
. After summing

the two, the total trace is convoluted with the spectrometer response function as is
shown schematically in Figure 6.51 for the resonant SB16.

Results

126



Autoionizing dynamics in Helium and Argon

Figure 6.51: Schematic representation of the procedure followed for simulation of
the resonant sidebands. First the RABBIT traces of both S-O components (scaled by
the degeneracy) are calculated separately, then they are summed to give the total
RABBIT trace that is finally convoluted with the spectrometer response function.

After applying the Rainbow RABBIT analysis to the simulated RABBIT traces of the
resonant sideband SB18 for different driving wavelengths (tunings) we obtain the
results of Figure 6.52. The effect of the different tuning is clear in both the spectral
amplitudes and phases. It is worth-mentioning that when the resonant harmonic is
red(blue)-tuned compared to the resonance, the phase jump corresponding to the
J=3/2(J=1/2) is entirely retrieved as is shown in (a),(b)(in (e),(f))). The simulated
results show a very similar behavior with the experimental measurements when
compared to the case of λ=794 nm. However, for a more rigorous comparison,
simulations of the exact phase in the vicinity of the window resonance 3s4p and
for the two S-O components should be performed. Simulations based on second
order perturbation theory and the Fano formalism are in progress, carried out by
the group Fernando Martín of university of Madrid.
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Figure 6.52: Top and middle row: Simulated Rainbow RABBIT amplitudes and
phases of the total (red), P1/2 (green) and P3/2 (blue) contributions for different
wavelengths for SB18.

6.4 Conclusions

In this chapter an extended study on the photoionization dynamics in the vicinity
of Fano resonances was presented. First, the theoretical background of the original
work of Fano was reminded along with its extension to the two-photon ionization
conditions (performed by the group of F. Martin) in order to simulate the RABBIT
measurement technique.

The experimental work of this chapter is divided into two main parts: i) the study
of the sp2+ and sp3+ resonances in Helium and ii) the study of the 3s4p resonance
in Argon. Starting by Helium, we first discuss the influence of the experimental con-
ditions on the spectral phase and amplitude extraction procedure via the Rainbow
RABBIT technique. We studied the influence of the following parameters: the spec-
trometer resolution, the spectral width of the resonant harmonic and the dressing
pulses’ as well as the energy position of the resonant harmonic. We saw that they
can potentially distort both the retrieved spectral phase and amplitude which may
lead later on to a misinterpretation of the corresponding dynamics. These aspects
were studied theoretically for the prototypical case of sp2+ resonance however the
above results apply for every feature that exhibits fast spectral phase and amplitude
variations.

Next, in the spirit of Gruson et al. and in order to push further this analysis of au-
toionization dynamics, we performed measurements around the sp2+ and sp3+ res-
onances. First, after ionizing each resonance separately, which was possible thanks
to the tunability of the driving wavelength provided by a Dazzler, we recorded the
corresponding Rainbow RABBIT phases and amplitudes. The influence of the dif-
ferent experimental parameters such as the spectrometer resolution and the spectral
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width of the IR and XUV pulses was discussed and linked to the numerical calcu-
lation above. We then investigated different time–frequency representations and
we fully characterized the sp2+ resonant EWP using short time Fourier transforms
(STFT) and Wigner time–frequency representations. This, together with theoretical
calculations, allowed us to resolve the ionization dynamics, and in particular, to
disentangle the contributions of the two ionization paths.

Then, the influence of the increasing dressing intensity was explored. We first inves-
tigated its effect on the line-shape of the sp2+ resonance. The observed distortion
was linked to a change of the value of the q parameter. The effect on the RABBIT
phases was also discussed. There it was shown that when the dressing intensity
is sufficiently high, the information encoded in the sidebands’ 2ω0 oscillations is
transferred, somewhat smeared out, to the 4ω0 oscillations of the harmonics.

Finally, for a proper wavelength and pulse bandwidth we were able to ionize si-
multaneously this time the two resonances sp2+ and sp3+ creating a complex two-
electron wave packet. The dynamics of this complex EWP revealed that there are
different processes involved in different times.

In the case of Argon we were able to resolve its spin-orbit splitting of 180 meV due
to the sub-100 meV resolution of the electron spectrometer. The Rainbow RABBIT
phases and amplitudes in the vicinity of the 3s4p resonance were measured and
then separated into the two spin-orbit components using a numerical procedure.
This gave consistent results, allowing us to reconstruct the build up in time of the
resonant EWP of the J=3/2 component. Preliminary simulations were performed
and gave a physical insight into our experimental results.

129





CHAPTER 7

COOPER MINIMUM IN ARGON

Figure 7.1: (a)[Lawrence and Edlefsen, 1929]: The ionization per unit light intensity
Bv as a function of the wavelength. The small circles represent the data of the re-
ported experiments. The large circles represent earlier observations by Lawrence,
and the crosses Williamson’s data [Williamson, 1923]. (b) [Ditchburn, 1943]: Ab-
sorption curves in the vapor-pressure range 1.6-8.5 mm.

Historically, the first measurement of a Cooper minimum (CM) was performed in
1923 by Williamson [Williamson, 1923] who was studying the photo-electric emis-
sion from potassium vapors using ultra-violet light. Later on in 1929 [Lawrence
and Edlefsen, 1929] Lawrence and Edlefsen (Figure 7.1 (a)) performed a similar ex-
periment with improved resolution and along with the complementary work of
[Ditchburn, 1943] in 1943 (Figure 7.1 (b)), who measured the continuous absorption
spectrum of the potassium vapors, showed that as the frequency of the incident ra-
diation increases, the cross-section falls, reaches a minimum and then rises rapidly.
Even though the conditions at the time were exceptionally difficult and as stated
in [Ditchburn, 1943] ’The experiments have been interrupted owing to war con-
ditions’, these first experiments revealed the presence of a minimum that was not
affected by experimental parameters such as the vapor pressure and was positioned
at a specific energy. The basic explanation for the phenomenon in the alkali-metal
atoms was given by Bates ([Bat, 1947] ,[Bates and Massey, 1946]) and extended to
include relativistic interactions by Seaton ([Sea, 1951]). However it was only after
more than twenty years that John W. Cooper showed that this phenomenon was
not limited to the outer shells of the alkali-metal atoms but was a very general oc-
currence and interpreted the origin of this minimum as a result of the cancellation
of the radial integral for some transitions, depending on the overlap between the
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wavefunctions of the initial and final quantum states of the atoms [Cooper, 1962].

Around the same time, in the 1960’s, the advent of synchrotron radiation allowed
the measurement of the photoionization cross sections of atoms and molecules up
to high energies. A particular interest was then drawn towards the CM since it
constitutes a signature of the atomic structure. Numerous theoretical studies have
been performed along with experiments studying the Cooper minima in atoms,
molecules and solids( [Aymar et al., 1976], [Alexander, 1965], [Becker and Shirley,
1996], [Kim et al., 1981], [Rossi et al., 1983], [Abbati et al., 1983], [Lahiri and Manson,
1982], [Manson, 1985], [Berezhko et al., 1978], [Carlson et al., 1982], [Carlson et al.,
1984], [Lahiri and Manson, 1982], [Beterov et al., 2012]). However, due to their
simpler and more convenient theoretical description, noble gases became a main
topic of discussion both experimentally and theoretically especially when Cooper
minima were found in argon, krypton, xenon and radon. One of the first measure-
ments of the CM in argon was performed by Houlgate et al. in 1974 ([Houlgate
et al., 1974]), who measured the photoionization cross section in both 3s and 3p ion-
ization channels. Later on a large number of studies confirmed these preliminary
results ([Samson and Gardner, 1974], [Houlgate et al., 1976], [Yeh and Lindau, 1985]
, [Adam et al., 1985], [Chan et al., 1992], [Huang et al., 1981], [Kennedy and Manson,
1972], [Duzy and Hyman, 1980], [Samson et al., 1991], [Möbus et al., 1993], [Samson
and Stolte, 2002]).

Nowadays, with the advent of ultrashort XUV table top sources, new possibilities
are being opened. By using techniques like RABBIT (Chapter 4.1) one can access
not only the spectral amplitudes but also the spectral phases of the emitted photo-
electron wavepackets and thus retrieve the ionization dynamics in the vicinity of
structures like the CM. Moreover, a new type of nonlinear spectroscopy namely the
High-order harmonic spectroscopy, based on the advanced characterization of the
harmonic emission, is able to retrieve structural information about the generating
atom and thus give supplementary information about the CM and its effect on the
HHG process itself.

In this chapter, a brief description of Cooper’s original work will be given in Chap-
ter 7.1, followed by our experimental study of the CM in argon using both Photoion-
ization and High-order Harmonic spectroscopy (Chapter 7.2 and Chapter 7.3). In
Chapter 7.4 we discuss the electron dynamics in the sense of ionization delays, close
to the CM of both 3s and 3p ionization channels. This is followed in Chapter 7.5 by
preliminary simulations in order to test the validity of our experimental results.
Finally, a comparison with different theoretical models is carried out (Chapter 7.6).
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7.1 Theoretical aspects

7.1.1 Cooper’s original work

The motivation behind Cooper’s theoretical calculations was the fact that at the time
the experimental work on atomic photoionization at lower energies, i.e. in the range
from threshold to 100 eV, was very poor. Work on rare gases was very difficult since
the spectral region of interest lies in the far ultra-violet and synchrotron radiation
as well as XUV attosecond pulses were not available. Alkalis were the other option
since they could also be studied as free atoms, but their low cross-sections and the
difficulty of obtaining purely monochromatic vapors resulted in very complicated
experiments, limited in an extremely narrow range of energies.

In this section the work of [Cooper, 1962] will be presented, where Cooper calcu-
lated the radial wavefunctions Pnl(r) and Pεl(r) (see below) using the Hartree-Fock
wavefunctions [Kennedy and Manson, 1972]. Even though this method provides
qualitative agreement with experiment, it is often inaccurate in its prediction of
the exact energy of spectral features. Much better accuracy can be obtained by
taking into account electron-electron correlations by using the Random-Phase Ap-
proximation with Exchange (RPAE or simply RPA) ([Amusia et al., 1971], [Kheifets,
2013]), Many-Body Perturbation Theory (MBPT) ([Dahlström et al., 2012a]), or the
Time-Dependent Local Density Approximation (TDLDA) ([Dixit et al., 2013], [Ma-
grakvelidze et al., 2015a]). Pseudopotential methods ([Worner et al., 2009], [Miller
et al., 1977], [Miller and Dow, 1977]) show similar accuracy as RPAE but are much
simpler to implement [Swarts et al., 1979]. The outer subshells of heavy atoms,
Kr and Xe for instance, require a relativistic treatment such as the Relativistic RPAE
(RRPAE) ([Johnson and Cheng, 1979], [Huang et al., 1981],[Fink and Johnson, 1986],
[Johnson, 1989], [Johnson and Lin, 1979], [Saha et al., 2014]). For a more detailed
description of the methods and a comparison with experimental results see Chap-
ter 7.6.

In the non-relativistic approximation, the cross section for absorption of photons
with energy Eph=hv>Ip, where Ip is the first ionization potential of the atom, in
the dipole approximation depends on the radial overlap between the ground state
wave function and the final continuum wave function. Thus it can be written as:

σ(Eph) =
4παa2

0

3
hv ∣∫ ψ0(r1,r2,...rN)∑

i
riψ f (r1,r2,...rN)dτ∣

2

, (7.1)

where a0 is the atomic radius, α the fine-structure constant, ψ0 and ψ f are the wave
functions of a single atom before and after absorption, respectively, expressed in
terms of electron coordinates ri. The wave functions are expressed in atomic units,
the integration is over the entire electron configuration space τ, the sum is over all
atomic electrons and ψ0 is normalized to unit amplitude and ψ f per unit energy.
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7.1.1 Cooper’s original work

The multiple ionization is ignored and thus ψ f represents a system consisting of an
ion plus a free electron of energy ε.

In order to numerically evaluate equation 7.1, Cooper made the following assump-
tions to estimate the ψ0 and ψ f . First, he assumes that ψ0 and ψ f are antisym-
metrized products of one-electron wave functions which leads to the Hartree-Fock
equations and the central-field description of the atomic structure. The second hy-
pothesis is that out of the N one-electron wave functions that form the ψ0 and ψ f ,
N-1 are exactly the same for initial and final states. This implies that the ionic core
is unrelaxed which leads to the interpretation of the one-electron orbital energies
for the various electron orbitals of an atom, as ionization potentials for the electrons
in the respective subshells. Taking also into account that the one-electron wave
functions are separable in radial and angular coordinates (spin is ignored here) and
that the cross section is averaged over the orientation of the axis of quantization,
the integral of equation 7.1 is now reduced to M = ∫ φ0(r1)r1φ f (r1)dτ1. The last
assumption made is that the one-electron free wave functions are eigen-functions
of the same effective central potential as the ground state functions φ0(r1). This
means that the effects of electron exchange are ignored since the ionized electron is
described as moving in the same effective central field both before and after ioniza-
tion.

In order to estimate the one-electron wave functions φ0(r1) and φ f (r1), Cooper de-
fines a central potential Vnl(r) for the nl subshell by means of the radial Schrödinger
equation:

[ d2

dr2 +Vnl(r)+ εnl −
l(l + 1)

r2 ]Pnl(r) = 0, (7.2)

where Pnl(r) is the Hartree-Fock radial bound-state orbital and εnl is the orbital
energy. By combining equation 7.2 with the radial Hartree-Fock equation for an
electron in the nl subshell of an atom:

[ d2

dr2 +Gnl(r)+ εnl −
l(l + 1)

r2 ]Pnl(r) = Xnl(r), (7.3)

with Gnl(r) and Xnl(r) are the potential and exchange terms, Cooper finds Vnl(r) =
Gnl(r)−Xnl(r)/Pnl(r) and then he is able to evaluate the Pnl(r) numerically through
equation 7.2.

For the continuum states he replaces Pnl(r) and εnl(r) by Pεl(r) and ε in equa-
tion 7.2, and obtains the continuum state radial wave functions Pεl(r) for positive
electron energy ε. After normalization at large distances (r →∞) they become

Pεl(r) ∼ π−1/2ε−1/4 sin[ε1/2r − lπ
2
− zε−1/2(ln 2ε1/2r)+ σl(ε)+ δl(ε)] (7.4)
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with σl(ε) = arg(l + 1 − iε(−1/2)) being the Coulomb phase shift, δl(ε) a constant
non-Coulombic phase shift and z the ionic charge (=1)([Manson, 1985]).

7.1.1.1 Radial Matrix Elements and Photoionization Cross Sections

The photoionization cross section of equation 7.1 now becomes

σnl(ε) =
4παa2

0

3
(ε − εnl)(Cl−1R2

l−1 +Cl+1R2
l+1), (7.5)

where the numerical factors Cl±1 arise from averaging over all the initial states of
angular momentum quantum number m and summing over all the final states. The
dipole matrix elements will be

Rl±1 ≡ ⟨Pnl ∣r∣Pε,l±1⟩∫
∞

0
Pnl(r)rPε,l±1(r)dr (7.6)

with Pnl(r) and Pε,l±1(r) the radial parts of the discrete and continuum wave func-
tions described above.

Figure 7.2: (a) Outer subshell radial wave functions and d waves for ε = 0 for Ne,
Ar and Kr. (b) Radial integrals Rl±1 for s waves (full line), d waves (dashed line)
for argon as a function of the emitted photon energy as calculated by [Worner et al.,
2009]. (c) Matrix elements for p→d transitions in Ne, Ar, and Kr.

Figure 7.2 illustrates the origin of the CM: In Figure 7.2 (b), taking the example of
argon, the radial matrix element Rl−1 which corresponds to the 3p→ εs transition,
decreases slightly and remains positive. On the other hand the value of the Rl+1

element (transition 3p → εd) undergoes much larger modulations, and in particular
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goes to zero and changes sign for a photoelectron energy of 30.6 eV, which corre-
sponds to a photon energy of 30.6 + Ip = 46.3 eV. This change in the sign of the
integral Rl+1 can be explained by studying the radial wave functions of valence and
continuum. These functions are represented in 7.2 (a) (middle panel):
- For low photon energies, the main contribution to the radial integral comes
from the part between r ≈ 0.5 a0 and r ≈ 6.5 a0, where Pnl = P31 is negative and
Pε,l±1 = Pε2 positive and therefore the total radial integral is generally negative,

∫ P31(r)Pε2(r)rdr < 0.
- At 70 eV, the corresponding d wave oscillates much faster so that Pε2 becomes neg-
ative in the (0.5 − 6.5)a0 region. The radial integral will then be globally positive.
This change of sign on the 3p → εd component, and thus the crossing from zero
of the radial integral for this term, is the origin of the CM in the photoionization
cross section. The contribution of the 3p → εs component, which does not change
sign, prevents the cross section from passing through a zero. In general for atoms
in their ground state, zeros are found in the l → l + 1 transitions, not in the l → l − 1.
There is, usually a single zero for a given l → l + 1 transition. This zero crossing
of the radial matrix element of one angular momentum channel is equivalent to
an instantaneous π phase jump in that channel. For transitions involving a bound
orbital with nonzero angular momentum (l > 0), the two dipole-allowed transition
channels l → l ± 1 interfere, causing the phase jump of the total transition dipole, to
be spread out in energy, rather than instantaneous. In Figure 7.3 the corresponding
cross sections for neon, argon and krypton calculated by Cooper are plotted. The
calculations take into account only the ionization from outer subshells.

Figure 7.3: Photoionization cross sections for Ne, Ar and Kr.

Later on, it was shown theoretically that the photoionization cross section of specific
atoms could exhibit multiple minima. An example is the atom of Cs where three
zeros were found in 9d→ εf transition and one in the 9d→ εp transition ([Lahiri
and Manson, 1982]). The dependence of the minima on the atomic number Z has
been also studied by numerical calculations which showed that minima occur over
the entire periodic table for all outer and near-outer subshells whose wavefunctions
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have nodes, except for the 2s state ([Manson, 1985]).

7.1.2 Cooper minimum in photoionization of Argon

Within the non-relativistic SAE approximation, the photoionization cross section
for a transition from an initial bound state ψi to the final continuum state ψ−

k due
to a linearly polarized field, is proportional to the modulus square of the transition
dipole:

dk,n(ω) = ⟨ψ−

k ∣r ⋅n∣ψi⟩ (7.7)

with n being the direction of the light polarization and k the momentum of the
ejected photoelectron. In spherical coordinates, the bound wavefunction can be
factorized into radial and angular terms:

ψi(r) = Rnli(r)Ymi
li

(Ωr), (7.8)

where Rnli(r) is the radial and Ymi
li

(Ωr) the angular term. The incoming scattering
wave will then be expanded in terms of partial waves as:

ψ−

k (r) = 1√
k

∞

∑
l=0

+l
∑

m=−l
ile[−i(σl+δl)]Rεl(r)Ym

l (Ωr)Ym∗
l (Ωk) (7.9)

with σl and δl the same as in equation 7.4. When the polarization direction n is
parallel to the z axis the transition dipole writes:

dz(ω) = ⟨ψ−

k ∣z∣ψi⟩ =
1√
k
∑
lm

ile−i(σl+δl)⟨Rεl ∣r∣Rnli⟩⟨Y
m∗
l ∣cosθ∣Ymi

li
⟩ (7.10)

In the specific case of the 3p ionization channel of argon, it becomes ([Le et al.,
2013]):

dz(ω) = 1√
3πk

[e−i(σ0+δ0)⟨Rε0∣r∣R31i⟩/2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s−wave

− e−i(σ2+δ2)⟨Rε2∣r∣R31i⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d−wave

], (7.11)

where we have only the contributions of l=li-1=0 (s-wave) and l=li+1=2 (d-wave)
with the latter being in general the dominant component. When the real d-wave
radial dipole matrix element approaches zero, a minimum in the photoionization
cross-section appears at an energy where the interference between the two terms
in equation 7.11 is the most destructive. In the following section a comparison be-
tween the experimentally measured CM in the photoionization and in the recombi-
nation process will be performed.
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7.2 Cooper minimum in Photoionization (PI) and
Photorecombination (PR)

7.2.1 State of the art

As discussed above, the CM has been extensively studied in PI cross-sections. A
possibility to study it in PR was brought about by the advent of high harmonic
spectroscopy. In 2002, M. Lein ([Lein et al., 2002]) showed theoretically that minima
encoding the molecular structure could appear in the harmonic spectra generated
from aligned H2 and H+

2 molecules. Further works [Itatani et al., 2004], [Haessler
et al., 2011] then established that the harmonic dipole in the strong-field approx-
imation could be factorized in a form involving the field-free PR dipole moment.
This amounts to neglecting the presence of the strong laser electric field during the
PR step of the HHG process ([Worner et al., 2009], [Le et al., 2008b], [Jin et al., 2011],
[Frolov et al., 2011]). The assumption of time-reversal symmetry between PR and PI
which follows the principle of detailed balancing [Landau and Lifshitz, 1977] then
allows to connect the PR and PI dipoles. Therefore, for the case where the XUV
light is polarized along the z direction, one can write the PR and PI dipole matrix
elements as:

drec = ⟨ψi∣z∣ψ+

k ⟩, (7.12)

dion = ⟨ψ−

k ∣z∣ψi⟩ (7.13)

In the case of an atom with ground state of angular momentum l, and for electron
emission/recombination in the same direction, one gets the simple expressions(for
the detailed proof see Appendix D of [Schoun, 2015]):

dz,rec =
⎧⎪⎪⎨⎪⎪⎩

dz,ion , for l odd

−dz,ion , for l even
(7.14)

In fact, the PI and PR differential cross-sections are related by:

d2σrec

ω2dΩndΩk
= d2σion

k2dΩkdΩn
(7.15)

and the corresponding spectral phases as:

arg[dz,rec] =
⎧⎪⎪⎨⎪⎪⎩

arg[dz,ion] , for l odd

π + arg[dz,ion] , for l even
(7.16)

According to that, one would expect that measurements from high-order harmonic
spectroscopy and photoionization spectroscopy would give very similar results.
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However this is not the case neither for the cross-sections nor for the spectral
phases.

Cross-section

As was already mentioned in the discussion above, the first measurements of the
argon CM were performed in PI experiments as the ones of [Marr and West, 1976],
[Samson and Gardner, 1974] using synchrotron radiation. Later on the CM was
measured also in the high-order harmonic spectra [L’Huillier and Balcou, 1993],
[Wahlström et al., 1993] but it was only almost 20 years later that studies on the na-
ture of this minimum and its dependence on experimental conditions were carried
out [Worner et al., 2009], [Jin et al., 2011], [Farrell et al., 2011], [Higuet et al., 2011],
[Minemoto et al., 2008]. In Figure 7.4 we plot the harmonic (PR) and PI signals
for different phase matching conditions as well as for variations of the laser field
parameters.

There are two interesting points to discuss:
- Firstly, the position of the CM differs from 49 eV for PI to ∼54 eV for PR. A pos-
sible reason for this uncertainty is the different experimental conditions for HHG.
Minemoto et al. [Minemoto et al., 2008] and Farrell et al. [Farrell et al., 2011] showed
that the position of the laser focus relative to the gas jet can shift the CM. In addi-
tion, Schoun et al. [Schoun et al., 2014] reported different positions of the CM when
two different wavelengths of the driving laser are used. On the other hand, Wörner
et al. [Worner et al., 2009], Minemoto et al. [Minemoto et al., 2008] and Higuet et
al. [Higuet et al., 2011] measured no difference in the CM position when the inten-
sity and the wavelength of the driving laser is changed. Furthermore, Higuet et
al. [Higuet et al., 2011] showed that conditions like the backing pressure, the laser
beam aperture and the laser focus position do not affect the position of the CM.
- Secondly, the PR CM is redshifted compared to the PI one. The reason of this effect
will be discussed below.

Spectral Phase

In order to measure the total dipole phase, one needs an interferometric technique.
A perfect tool for this type of measurements is the RABBIT method for the reasons
detailed in 4.1. In 2014 Schoun et al. [Schoun et al., 2014] was the first to measure this
phase in the PR process by using the RABBIT method. Later the same year Palatchi
et al. [Palatchi et al.] performed similar measurements studying the PI process.
In Figure 7.5 we plot these results along with our corresponding measurements,
presented below.

7.2.2 Cross-section and phase measurements at ATTOlab

The driving laser used for this experiment has a central wavelength around 800 nm
with pulse duration of 25 fs at 1 kHz repetition rate. For the PR case we generate

139



7.2.2 Cross-section and phase measurements at ATTOlab

Figure 7.4: (a) Harmonic signal generated in argon. The position of the CM dif-
fers between measurements. (orange curve): Generation: λ= 780 nm, I= 2.5− 3.5×
1014W/cm2, duration= 8 fs , Detection: XUV spectrometer, CM position: 53 eV ±3 eV
[Worner et al., 2009]; (green curve): Generation: λ= 1800 nm, I= 8× 1013W/cm2, du-
ration= 50 fs, Detection: XUV spectrometer, CM position: 53.8 eV ±0.7 eV [Higuet
et al., 2011]; (red curve): Generation: λ= 780 nm, duration= 30 fs, the Detection:
XUV spectrometer, CM position: 51 eV [Farrell et al., 2011]; (blue curve): Genera-
tion: λ= 1300 nm, I= 1.6× 1014W/cm2, duration= 60 fs, Detection: MBES, detection
gas= neon, CM position: 49 eV [Schoun et al., 2014]; (magenta triangles) our mea-
surements: Generation: λ= 800 nm, I= 3.7× 1014W/cm2, duration= 25 fs , Detection
: MBES, detection gas= neon, CM position: 53.9 eV. (b) PI signal and cross section
of argon. (blue curve): Ionization cross-section from Synchrotron experiment with
CM position at 48 eV [Samson and Gardner, 1974]; (orange curve): PI signal for
generation conditions: λ= 780 nm, I= 9 × 1014W/cm2, duration= 60 fs, generation
gas= neon, Detection: MBES, CM position: 50.3 eV [Palatchi et al.] ; (magenta tri-
angles) our measurements: Generation: λ= 800 nm, I= 4 × 1014W/cm2, duration=
25 fs, generation gas= neon, Detection: MBES, CM position: 48.3 eV. (gray dashed
curve): Ionization cross-section extracted from the magenta triangles (see text) with
CM position at 47 eV.
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harmonics in argon using a gas cell of 10 mm and the estimated laser intensity at
the focus is ∼ 2× 1014W/cm2. As detection gas in the MBES we used neon due to its
relatively structureless cross section and atomic phase around the energies of inter-
est. For the PI case the generation gas is neon and for the detection argon is now
used. For the same conditions we take also reference measurements with neon as
generation and detection gas. The estimated laser intensity at focus is 4×1014W/cm2.
The proper calibration of our MBES spectra (Chapter 4.2.3) is crucial to accurately
determine the position of the CM. A reference is provided by using a 200 nm alu-
minum filter since it transmits energies between 20 eV and 73 eV. The latter energy
corresponds to the sudden absorption L-edge, and is thus very useful to determine
the order of the last measured harmonic.

The magenta triangles shown in Figure 7.4 correspond to the peak intensity of the
photoelectron harmonic spectra generated in argon for PR and in neon for PI. In the
case of PI in order to access the cross-section we need to subtract the influence of
the HHG process which is achieved by calibrating with a reference measurement
as the one mentioned above. We can then extract the cross-section in the follow-
ing way: the measured argon photoelectron spectrum SPI

Ar can be expressed as the
multiplication of the generating neon harmonics HNe

n by the argon PI cross-section
σPI

Ar:
SPI

Ar = σPI
Ar × HNe

n . (7.17)

For the reference measurement the neon photoelectron spectrum is:

SPI
Ne = σPI

Ne × HNe
n . (7.18)

The ratio between the two gives σPI
Ar = σPI

Ne
SPI

Ar
SPI

Ne
and with the neon PI cross-section

known from the literature we can indeed estimate the PI cross-section of argon as
plotted in Figure 7.4 (b) as the gray dashed line. On the other hand, the PR case is
more complicated and in the frame of this experiment it was not possible to access
the PR argon cross-section. Here the measured neon photolectron spectrum writes
SPI

Ne = σPI
Ne × HAr

n ≈ σPI
Neσ

PR
Ar ∣an∣2, where an is a complex amplitude including the ac-

cumulated phase and the spreading of the EWP during its excursion and before
recombining with the parent ion (for a more detailed discussion see Chapter 2.2.2).
The reference in this case should be an element with the same Ip as argon (for ex-
ample nitrogen) which would allow to replicate the same HHG conditions and thus
the same value of an. Unfortunately, such measurement was not performed.

The phase values shown in Figure 7.5 correspond to the sideband phases extracted
by the traditional RABBIT method. For each sideband we integrate over the FWHM
which is approximately 400 meV however this depends on the order since for
higher energies the spectrometer resolution decreases. The plotted curves are aver-
aged over a number of independent measurements. It should also be emphasized
that we lack the knowledge of the absolute delay between the APT and the IR field,
which leads to an unknown constant shift in the delay of the RABBIT scans. We
thus shift vertically the curves of Figure 7.5 to zero in order to overlap them with
Palatchi et al. and Schoun et al. and facilitate the comparison.
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Figure 7.5: (a) RABBIT phases for the PR scheme measured in this work (orange
circles) along with similar measurements of [Schoun et al., 2014] (blue circles) and
the reference neon phases (green dashed line). (b) RABBIT phases for the PI scheme
measured in this work (orange circles) along with similar measurements of [Palatchi
et al.] (blue circles) and the reference neon phases (green dashed line).

Figure 7.5 shows that the CM appears as a jump in the sidebands’ phase that devi-
ates from the normally linear evolution. In the PR case, the phase jump is ∼0.9 rad
at 49.6 eV and for PI is ∼0.4 rad at 46.5 eV. For both PR and PI, our measurements
are in good agreement with previous experiments (±2 eV): Schoun et al. finds a
minimum of ∼0.5 rad at ∼49.7 eV and Palatchi et al. measures ∼0.2 rad at ∼45.8 eV.
Another interesting point is that even though Schoun et al. finds an energy shift of
the CM when they use different driving laser wavelengths (for λ = 1300 nm the CM
is at ∼49.7 eV while for λ = 2000 nm it is found at ∼52 eV), we agree perfectly with
the λ = 1300 nm case even though we use λ = 800 nm. This is in agreement with the
work of [Worner et al., 2009],[Minemoto et al., 2008] and [Higuet et al., 2011] who
claim that the driving laser conditions do not affect the position of the CM, as was
discussed earlier.

In Figure 7.6 (a,b), we report our measured PI and PR intensities and phases. In the
PI case, the measured phases correspond to: ∆φNe,Ar

RABBIT = ∆φNe
XUV +∆φAr

atom. The con-
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Figure 7.6: (a) Harmonic signal for the PR (blue line) and PI signal (orange line)
measured in argon. (b) PR (blue line) and PI (orange line) spectral phases mea-
sured by RABBIT. (c) Group delays for PI (orange line) , PR (blue line) which after
integration will result in the phases φAr

atom (orange line) and φAr
PR (blue line) of (d). In

green we plot previous PR measurements from Ref [Schoun et al., 2014].

tribution of the phase difference between consecutive harmonics ∆φNe
XUV , namely

the attochirp (Chapter 2.1.3) appears as a global linear slope that needs to be re-
moved in order to access the atomic phase of argon. To do so we calibrate with
the reference measurement shown as a green dashed line in Figure 7.5. This will
give: ∆φNe,Ne

RABBIT = ∆φNe
XUV +∆φNe

atom and after subtracting it from ∆φNe,Ar
RABBIT one gets

∆φAr
atom − ∆φNe

atom and since ∆φNe
atom is slowly varying we can consider it negligible

compared to argon’s atomic phase. We thus get ∆φAr
atom, shown in Figure 7.6 (c)
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when divided by 2ω to get the corresponding group delay.

In the PR case, the measured phases correspond to: ∆φAr,Ne
RABBIT = ∆φAr

XUV + ∆φNe
atom.

Here the first term contains both the attochirp and the recombination dipole phase.
Thanks to the factorization of the HHG field given by equation 2.27, one can write:

∣EAr
n ∣eiφAr

XUV = ∣aAr
n ∣eiφAr

EWP ∣dAr
PR∣e

iφAr
PR , (7.19)

with φPR and φEWP the phases of the PR transition dipole and of the EWP (related to
the attochirp), respectively. This means that the measured phase ∆φAr

XUV ∝ ∆φAr
PR +

∆φAr
EWP. The atomic phase ∆φNe

atom can be considered negligible also in this case.

In order now to access ∆φAr
PR/2ω one needs to subtract the group delay GDEWP =

∆φAr
EWP/2ω related to the attochirp. This is shown in Figure 7.6 (c). Mairesse et

al. [Mairesse et al., 2003b], [Mairesse et al., 2004] have shown that the GD increases
linearly up to the cutoff region and then stays constant. In our conditions, the es-
timated laser intensity is about I ∼ 1.8× 1014W/cm2, which corresponds to a cutoff
around 50 eV. Thus, we subtract an attochirp of 50 as per harmonic order up to
SB32 and for the rest a constant value is subtracted. By integrating over energy the
quantities of Figure 7.6 (c) one can access φAr

atom and φAr
PR as shown in Figure 7.6 (d).

Previous PR results by Schoun et al. are also plotted for comparison. Looking
the ∆φAr

atom the position of the minimum remains at 46.5 eV while ∆φAr
PI exhibits a

slightly shifted minimum at ∼ 49.5 eV, which is in good agreement with Schoun et
al. Our PR measurements however, exhibit a deeper minimum.

The comparison between the PI and PR phases and the corresponding signals of
Figure 7.6 highlights two points: i) a much stronger CM effect in PR leading to a
deeper cross section minimum and a larger phase jump; ii) a blue shift of the CM
position in PR observed in both cross section and phase. There are two main reasons
for this behavior. HHG is an inherently differential process that allows the coherent
summation of the s and d waves ([Worner et al., 2009], [Higuet et al., 2011], [Farrell
et al., 2011]) and thus gives a much deeper interference effect. Indeed, during the
PR process, the quantization axis of the atomic orbital, the electron ejection direc-
tion and the XUV photon polarization are parallel which leads to a coherent sum
over the s and d partial waves. On the contrary, the integration over the angles in PI
leads to an incoherent sum of the s and d waves which partly shifts the position of
the minimum and smoothes out the interference effect. The second contribution ac-
cording to [Higuet et al., 2011] comes from the structure of the recombining electron
wave packet. In the frame of the classical trajectory Monte Carlo quantum electron
scattering theory (CTMC-QUEST), they calculated the corresponding density of the
returning wave packet ρret(E) and found, for the short trajectories, a significant de-
crease with increasing energy. This results in a shift of the minimum observed in
the PR probability distribution to higher energies.

To summarize, in this section a comparison between the PR and PI process was pre-
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sented, by measuring the spectral phases and cross-sections of argon in the vicinity
of the 3p CM. Although at first sight PI and PR appear to be strictly reverse pro-
cesses, which would lead to a simple conjugation relation between the associated
transition dipoles, the experimental observations show a systematic shift of the CM
in both the cross section and the spectral phase and a much stronger CM effect
in PR on both observables. This is compatible with the behavior predicted by the
theoretical work of [Higuet et al., 2011].

7.3 Loss of contrast in RABBIT traces

Another way that the CM is expressed in our PI measurements, is by a loss of con-
trast that was observed in the RABBIT traces around that region, as is shown in
Figure 7.7. In the same figure, we plot as reference the contrast from measurements
where neon is used as the generation and detection gas. It is clear that in that case
the contrast shows a constant behavior. Further on, we have used two ways to
calculate the contrast in order to ensure the validity of the result. One is to fit a
cosine function on the oscillating signal of each sideband and then calculate the
Imax − Imin/Imax + Imin value. The other is to calculate from the Fourier transform of
the RABBIT oscillations the ratio between the 2ω peak intensity multiplied by a fac-
tor of 2 and the zero order peak intensity that corresponds to the background of the
measurement. In both cases, we get almost identical results. The plotted curves cor-
respond to the average value over a number of independent measurements while
the error bars are calculated by the standard deviation.

The fact that the contrast of our measurements is not 1 (Figure 7.7 (b)), could be
the result of many different factors. First, there are physical parameters like the fact
that the two interference paths Hn + IR, Hn+2 − IR may not end up at exactly the
same energy (due to, e.g., a blueshift of the fundamental) and thus the interference
between the two is weaker. The fact that the interfering pathways have different
amplitudes due to the ionization cross-section of argon as well as due to the har-
monic generation process, can also play a role to the decrease of the contrast, not
to mention an intrinsic asymmetry between the +/- IR two-photon transitions close
to the ionization threshold that disappear at high energy where the soft photon
approximation applies. Additionally, there are technical parameters related to the
experimental conditions/set-up that affect the contrast. The stability of the interfer-
ometer, the spatio-temporal overlap of the XUV and IR foci in the interaction region
of the MBES as well as the common phase variation of the two beams at focus, is of
great importance for the overall contrast. Additionally, the electronic noise sets an
offset to the measured signal which decreases the overall contrast as the signal to
noise ratio decreases.

The minimum in the contrast observed in the energy region of the CM is probably
caused by two different effects. First, it can be due to the argon photoionization
cross section. This is shown in Figure 7.8. There we plot the contrast calculated as
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Figure 7.7: (a) Raw RABBIT spectrogram in the photoionization scheme (generation
in neon - detection in argon). The loss of contrast happens in the region of the 3p CM
that is enclosed in the red square. (b) The corresponding measured contrast (blue
squares) along with the contrast of a RABBIT spectrogram where neon is used both
as the generation and detection gas and serves as the reference (orange squares) as
well as for the case where we generate in argon and detect in neon (green squares).

explained above (blue curve) along with the "spectrum contrast" (red curve) which
is extracted from the expression:

c = S/N − 1
S/N + 1

, (7.20)

where S is the intensity of the photoelectron spectrum and N is the noise level.
When N is varied, the overall behavior of this "spectrum contrast" remains the same,
with a local minimum around 50 eV. This means that its shape is due to argon’s
PI cross-section. The two quantities in Figure 7.8 exhibit a similar trend up to ∼
56 eV, even though for higher energies the contrast increases in opposition to the
"spectrum contrast". This suggests that the strong decrease of the PI signal due to
the argon Cooper minimum probably plays a role in the decreased contrast.

Another possible cause originates from the fact that the detection system used for
these photoionization experiments is a 4π collection angle MBES, thus our measure-
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ments are angle-integrated. As was discussed earlier in this chapter, this suggests

Figure 7.8: Contrast extracted from equation 7.20 (red curve) compared with the
contrast calculated by the procedure detailed in the text (blue curve). Both are nor-
malized to 1.

the incoherent summation of the transition dipoles to the s and d partial waves of
the 3p ionization channel. Since the s-dipole phase is flat and the d-dipole phase ex-
hibits a π jump at ECM (energy position of the Cooper minimum) the corresponding
RABBIT oscillations will get dephased at some point. Below ECM, they will initially
oscillate in phase. Then, when passing by ECM they will get dephased and even-
tually will get back again in phase after moving away from the CM energy region.
This process is depicted figuratively in Figure 7.9.

In order to understand the process in depth, we performed simple simulations
where we describe the oscillating signal of a sideband S(n+1) as follows. If we define
the signal of the neighboring harmonics as

Hn = ∣En∣2 ⋅ σ(En) (7.21)

then the sideband will be:

S(n+1)s or d = ∣
√

Hn∣
2
+ ∣

√
Hn+2∣

2
+ 2∣

√
Hn∣∣

√
Hn+2∣ ⋅ cos(2ωτ +∆φs or d), (7.22)

where En the central energy of the nth harmonic, En a Gaussian as defined by equa-
tion 6.49, σ(En) the photoionization cross-section as calculated by [Dahlström and
Lindroth, 2016], ω the frequency of the driving laser, τ the delay between the XUV
and the IR pulse and ∆φs or d the phases of the s and d partial waves as calculated
by [Magrakvelidze et al., 2015b]. Then the total signal of sideband S(n+1) will be:

S(n+1) total = sbranch ⋅ S(n+1) s + dbranch ⋅ S(n+1) d, (7.23)

with sbranch and dbranch are the branching ratios for s and d waves respectively taken
from [Magrakvelidze et al., 2015b]. Finally, both harmonic and sideband signals are
convoluted with fsp, the response function of the spectrometer.
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Figure 7.9: The central panel (c) shows the s and d dipole phases. In the other
panels one can see the oscillating signal of the sidebands that correspond to the s
and d wave separately and the total one. In (a) and (b) SB26 and SB28 are plotted
which are positioned before the π phase jump of the d-wave thus the partial s and
d sidebands are in phase. SB30 plotted in (d) falls on exactly on the π phase jump
and there the dephasing between the partial s and d sidebands is clear. This sub-
sequently results in a decrease of the contrast of the oscillations of the total signal.
Finally, SB32 is shown in (e) where the two partial sidebands are back in phase since
the s and d wave phases are both flat in that energy region.

By taking into account the decreasing signal and spectrometer resolution as the
energy increases, we obtain the contrast of Figure 7.10 which is qualitatively simi-
lar to the experimental results. It is worth mentioning that by taking into account
only the photoionization cross-section without the incoherent sum of s and d waves
the retrieved contrast does not exhibit the characteristic decrease and then increase
around the CM position.
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Figure 7.10: Experimentally measured (blue squares) and simulated contrast (or-
ange circles) of a RABBIT trace in the photoionization scheme, normalized to 1.

7.4 Delay difference between 3s and 3p ionization channels

Half a century after their theoretical description by Wigner [Wigner, 1955], scatter-
ing time-delays can now be measured with experiments combining high-harmonic
generation and electron interferometry. They characterize the dephasing of the
emitted electron wave-packet as compared to a free electron and as such are sen-
sitive probes of the system’s potential. Since reference free electron wavepackets
are not available in experiments, the delay measurements are performed either be-
tween different atomic/molecular shells or bands in solids, or between different
systems, e.g., atoms in a gas mixture. Following the observation of attosecond de-
lays in the photoemission from core-states and conduction band of a metal [Cav-
alieri et al., 2007], time-delays -or equivalently, phase differences- have been mea-
sured in the valence ionization of molecules [Haessler et al., 2009] , [Huppert et al.,
2016], [Vos et al., 2018], atoms [Palatchi et al.] ,[Guénot et al., 2014], [Jordan et al.,
2017] and in-between different atomic shells [Schultze et al., 2010], [Klünder et al.,
2011], [Guénot et al., 2012], [Isinger et al., 2017]. The latter might appear as the
most straightforward to interpret. However, the first experiment at 110 eV in the
s and p shells of neon by Schultze et al. triggered extensive theoretical work re-
garding the understanding of laser-induced delays [Ivanov and Smirnova, 2011],
[Dahlström et al., 2013] and electron correlation effects [Kheifets and Ivanov, 2010],
[Moore et al., 2011], [Dahlström et al., 2012a], [Kheifets, 2013]. Only in 2017 did the
experimental capabilities make the measurement of these atomic delays possible
over a ≥ 30 eV spectral range [Isinger et al., 2017]. The authors measured a negative
τA(2s)− τA(2p) between 70 and 100 eV, implying that the 2p electron wavepacket
is formed after the 2s. The results of [Isinger et al., 2017] also showed that intershell
interactions need to be accounted for in the photoionization of neon s electrons, but
their influence remains small [Dahlström et al., 2012a], reflecting the fairly unstruc-
tured ionization cross-section [Bizau and Wuilleumier, 1995].
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The case of the argon M-shell is even more challenging. Indeed, the 3p and 3s
partial photoionization cross-sections show signatures of intrashell and intershell
electronic correlations. The sign change in the 3p radial wavefunction leads to
a zero of the dipole transition to the electronic continuum d-wave around 53 eV
[Cooper, 1962] and subsequently, the 3p cross-section goes through a minimum
[Samson and Gardner, 1974] as was discussed in the previous sections of this chap-
ter. The appearance of the CM allows the otherwise negligible 3p → εs ionization
channel to dominate. Furthermore, the 3p → εd channel is strongly coupled to the
3s → εp by intershell correlation [Amusia et al., 1972], resulting in the appearance of
a "replica" of the Cooper minimum in the 3s partial ionization cross-section around
42 eV ([Möbus et al., 1993]) as is schematically shown in Figure 7.11 (b).

Figure 7.11: (a) Photoionization cross-sections of the 3s and 3p channels as a func-
tion of the photoelectron kinetic energy as measured by [Möbus et al., 1993] and
[Samson and Stolte, 2002]. (b) Schematic representation of the two-photon (XUV
and IR) ionization of both 3s and 3p subshells including the different channels and
the corresponding CM. Inspired from [Guénot et al., 2012].

A number of calculations have been performed in order to predict the ionization
delays between the 3s and 3p electrons of argon [Klünder et al., 2011], [Guénot
et al., 2012], [Kheifets, 2013], [Dahlström and Lindroth, 2016] , [Magrakvelidze et al.,
2015b], [Bray et al., 2018]. The different methods qualitatively agree on the behavior
of the 3p atomic delays, the zero in the 3p → εd dipole transition being associated
with a π phase jump and therefore large negative delays around the Cooper mini-
mum, which are however smoothed by the incoherent addition of the 3p → εs chan-
nel. However, for the 3s shell the atomic delays can differ in magnitude and in sign
depending on the degree of correlation included [Dahlström and Lindroth, 2016].
Up to now, two experiments using the classic RABBIT technique have aimed at
measuring the photoionization time-delay difference in the M-shell of argon [Klün-
der et al., 2011], [Guénot et al., 2012]. Unfortunately, for experimental reasons the
results of [Klünder et al., 2011] and [Guénot et al., 2012] are limited to the 34-40 eV
photon energy range, that is before the strong correlation region of argon, prevent-
ing the comparison with conflicting theories.

In this section, as an extent to the work of [Klünder et al., 2011] and [Guénot et al.,
2012], the photoionization delays of 3s and 3p shells of argon will be examined for
a more extended energy range (32 - 68 eV). Consequently, the Cooper minima of
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Figure 7.12: Bottom panel: schematic representation of the RABBIT process. Pho-
toionization of the 3s and 3p channels is achieved by using the same harmonic
comb. Due to the difference of 13.5 eV in the binding energy of the two channels, the
corresponding harmonic and sideband peaks are almost overlapping as is shown
by the intensity of the XUV+IR spectrum (top panel: black line). The spectrum of
the XUV alone is plotted for reference (top panel: orange line).

3s and 3p shells, located around 43 eV and 48 eV respectively [Möbus et al., 1993],
[Samson and Stolte, 2002] will be included.

The measurements were performed using the experimental set up of the SE1 beam-
line in ATTOlab which is detailed in Chapter 4.2. To extract the corresponding
delays the Rainbow RABBIT method was used. In Figure 7.12 the principle of
the RABBIT measurement is schematically outlined for this particular experimen-
tal case (lower panel) along with the corresponding intensity spectrum for a nar-
row photoelectron energy range of 7 eV (upper panel). By Fourier transform-
ing the oscillating signal (Equation 4.1) of the sidebands of interest one can ac-
cess (∆φXUV + ∆φatom), where ∆φXUV = φn+2 − φn is the phase difference between
two consecutive harmonics and ∆φatom is the phase difference that arises from the
two-photon ionization process. The atomic phase difference has two contributions
∆φatom = ∆η +∆φcc, where ∆η is the phase accumulated by the EWP when scattering
out of the potential after the one-photon (XUV) transition and is intrinsic to the tar-
get atom; φcc is a measurement induced phase shift due to the electron being probed
by the IR laser field in a long-range potential with a Coulomb tail [Dahlström et al.,
2012b].

The corresponding ionization delays are calculated through Wigner’s formula τ ≈
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7.4 Delay difference between 3s and 3p ionization channels

∂φ/∂ω, as follows (Chapter 3.2.3)

τatom = τWigner + τcc (7.24)

where
τWigner =

ηn+2 − ηn

2ω
and τcc =

∆φcc

2ω
(7.25)

where ηn, ηn+2 are the scattering phases corresponding to the one-photon ionization
by harmonics Hn and Hn+2. In a similar way we define τXUV = ∆φXUV/2ω which can
be seen as the group delay of the attosecond pulses, related to the attochirp. Since
the 3s and 3p photoelectrons are ionized by the same harmonic comb this contribu-
tion of the ionization radiation can be removed from the final 3s-3p delay difference
and thus access directly the τatom. It should be emphasized that our measurement is
conducted without absolute knowledge of the delay between the APT and IR field,
which leads to an unknown constant shift in delay of the RABBIT scans. This how-
ever does not affect our study since we are interested in the delay differences that
are extracted from the 3s and 3p phases measured simultaneously in one RABBIT
scan.

Figure 7.13: Rainbow RABBIT amplitude and phase of the entire RABBIT spectro-
gram. A typical case for the lowest energies is shown in (a) and for higher ones
in (b). In between the red lines we show the contributions of the 3s sidebands. In
both cases a sudden phase jump between the 3p harmonics and the 3s sidebands is
apparent.

The specific nature of the experiment makes it a difficult task to be accomplished,
which is also underlined by the fact that up to now there have been only two similar
attempts. The main experimental difficulty, is the separation of the 3s and 3p contri-
butions since the 3s ionization cross section is much lower than the corresponding
3p one (Figure 7.11(a)). Moreover, the 3s sidebands fall only 0.46 eV from the 3p
harmonic peaks (∆E3s−3p = 13.49eV = 9ω0 − 0.46eV). The previous two studies of
[Klünder et al., 2011] and [Guénot et al., 2012] managed to spectrally isolate the two
contributions by using a combination of Cr and Al filters, 200 nm-thick each, while
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generating the ionizing harmonics in argon in order to benefit from its relatively
large cross-section (before the CM) and thus of the intense XUV light generated.
The main drawback of this approach is that it constrains the usable energy range to
only a 10 eV window and thus allows measurements only up to ∼ 41eV. As a result
the delays in the vicinity of the 3s and 3p CM were not accessible.

In the present work, harmonics generated in neon were used as the excitation ra-
diation. Even though it has a lower cross section than argon, neon exhibits a quite
flat behavior for the energy region of interest and has a longer cut-off energy for the
same generation conditions (Ecuto f f = Ip + 3.17Up). In combination with the use of
a single 200 nm-thick Al filter we obtain a spectrum that includes harmonics from
H13 to H45. However the two peak families are almost completely overlapped
with the 3p harmonics overshadowing the 3s sidebands. In order to separate the
two contributions, the Rainbow RABBIT technique is used. As was demonstrated
throughout this thesis, by using the Rainbow RABBIT technique one can resolve
fast variations inside the spectral phase and amplitude of a structured EWP. Tak-
ing advantage of this technique’s unique property, we apply the Rainbow RABBIT
analysis to the entire spectrum and record the evolution of the phase and amplitude
of the 2ω0 oscillations of all harmonics and sidebands that lie between the energies
of 20 eV to 73 eV (photon energy). An example is shown in Figure 7.13 for two
different energy regions. In (a) the 3s-3p pairs measured also by [Klünder et al.,
2011] and [Guénot et al., 2012] are plotted whereas (b) shows the spectral phases
and amplitudes for higher order harmonics and sidebands.

By looking at the corresponding phases, it is clear that after each 3p harmonic, there
is a sudden phase jump. It is expected that between consecutive harmonics and
sidebands of the same ionization channel, a dephasing of π occurs as a result of
the conservation of the total number of electrons. Indeed, in RABBIT, the dressing
field is a weak perturbation inducing only 2 photon XUV+IR transitions: it only re-
distributes electrons between the neighboring harmonic peaks and the sidebands.
When the sideband signal is maximum, the neighboring harmonic signal is mini-
mum, hence a dephasing of π of the sideband oscillations with respect to the neigh-
boring harmonic ones. However in the case of Figure 7.13, the phase jumps occur
almost 1 eV before the 3p sidebands and always on the ’blue’ side of the harmonic.
We note that the same behavior (phase jump on the ’blue side’) can be observed on
the 3p sidebands, that are close to the 3s harmonic peaks. In order to find the origin
of these phase jumps, we examine the spectral amplitudes. We observe that the 2ω

amplitudes of the 3p harmonic and sideband peaks are of similar magnitude, de-
spite their very different integrated intensities in the RABBIT trace (see Figure 7.12).
This is another consequence of the electron conservation mentioned above.

At the energy regions where the phase jumps occur, one can distinguish small but
clear peaks. Having excluded the possibility that these peaks are due to noise of
the spectrometer since in that case they wouldn’t oscillate at 2ω0 and after compar-
ing with the spectrum of the 3s ionization channel, we conclude that these corre-
spond to the 3s channel contribution. To strengthen this argument, in the upper

153



7.4 Delay difference between 3s and 3p ionization channels

panel of Figure 7.12 we plot the integrated RABBIT signal (XUV+IR) and the XUV
spectrum alone. There, one can distinguish the contribution of the 3s SBs on the
XUV+IR spectrum, as a shoulder on the blue side of the 3p harmonics, which then
disappears when the IR field is blocked. It is worth-mentioning that in this kind of
measurements, the spectral phase is a more robust quantity, less affected by the ex-
ternal experimental conditions than the corresponding amplitudes and intensities.
In general, phase measurements are more sensitive to the presence of features that
induce fast variations than amplitude measurements. In the absence of a features
like this, the phase is flat, while the amplitude reflects that of the excitation pulse.
Phase measurements are thus background-free, while amplitude measurements are
not.

Figure 7.14: Measured sideband phases (∆φXUV +∆φatom) for the 3s (red squares)
and 3p (blue squares) ionization channels as a function of the photon energy. The
measured phases include the phase term due to the ionizing radiation which is
responsible for the linear slope. This slope is the same for both channels since they
were ionized by the same harmonic comb and thus is removed when calculating
the corresponding delay differences giving access to the ∆τatom. The blue and grey
shaded area corresponds to the region of the 3s and 3p CM respectively.

As mentioned earlier, using only one 200 nm - thick Al filter, gives the advantage
of obtaining a large spectrum (21 eV - 73 eV, photon energies) which allows us to
study the effect of the 3s and 3p CM on our measurements. However the spectrom-
eter resolution decreases with the energy which renders the spectral separation of
the 3s and 3p channels more and more difficult. To avoid that, an increasing re-
tarding potential is added to shift the sidebands of interest towards lower kinetic
energies where the spectrometer performs best. This way, the spectral phases inside
the 3s and 3p sideband peaks, are quite flat without any fast variations apart from a
linear slope that could be attributed to the harmonic blue shift ([Busto et al., 2018],
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Figure 7.15: Atomic delay differences between 3s and 3p ionization channels in the
vicinity of the two corresponding minima. Comparison between experimental data
of this work (orange circles) and previous measurements by [Klünder et al., 2011]
(cian squares) and [Guénot et al., 2012] (magenta diamonds). The blue and grey
shaded area corresponds to the region of the 3s and 3p CM respectively.

Chapter 6.2.3 ). However this does not affect the measurement and therefore we
can integrate in energy to improve the signal to noise ratio and extract one phase
value for each sideband. The energy range in which the 3s phases are integrated,
is narrow (typically ∼ 400 meV), and often confined by two phase jumps on either
side. The 3p contributions are easily distinguishable with well defined 2ω0 oscilla-
tions and thus in this case the size of the energy integral doesn’t affect the extracted
value.

Using different retarding potentials, we were able to measure the RABBIT phases of
the 3s and 3p sidebands up to 68 eV as is shown in Figure 7.14. For photon energies
around 60-68 eV, the signal to noise ratio becomes low due to the decrease in the
ionizing harmonic signal (end of the plateau of neon emission spectrum). This may
affect the extracted 3s phases in this energy region. In order to ensure the accuracy
of our results, supplementary measurements were performed by adding a 200 nm
- thick zirconium filter. In this case the combination of the two filters will transmit
the narrow energy window of 60-73 eV and allows the clear spectral separation of
the 3s and 3p peaks. Therefore the phases of the 3p and 3s sidebands 40, 42 and 44
were measured also in these conditions and were found very similar with the ones
measured when only one Al filter was used.

The corresponding τ3s − τ3p delay differences are plotted in Figure 7.15. Each value
corresponds to the average of independent measurements and the corresponding
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3s - 3p delay difference
SB22 SB24 SB26

Guénot et al [as] -80 (±50) -100 (±50) 10 (±50)
Klünder et al [as] -90 (±50) -110 (±50) -80 (±50)
This work [as] -97 (±37) -112 (±37) -36 (±56)

Table 7.1: 3s - 3p delay differences for SB22, SB24, SB26, measured in different ex-
periments.

error bars are their standard deviation. Additionally, in Table 7.4, we compare our
measurements for SB22, 24 and 26 with the previous results of [Guénot et al., 2012]
and [Klünder et al., 2011] and find a good agreement within the error bars. Thanks
to the large range of our measurements, we are able to observe a very interesting
fact: the change of sign at 41 eV. This means that between 34 eV - 41 eV the 3p pho-
toelectrons leave the argon atom later than the 3s ones. However this changes as we
go through the 3s CM where we observe a maximum at 57 as with the 3s photoelec-
trons being now emitted later than the 3p ones. A local maximum is also noted in
the region of the 3p CM. The delay difference is converging towards zero for higher
energies where the 3s and 3p cross sections are mostly flat. Indeed, away from reso-
nances, the Wigner delay in a given channel decreases as E−3/2 (equation 3.40), and
thus is quickly dampened at high energy.

In order to explain the physical meaning behind these measurements, a comparison
with simulations based on different theories will be conducted in Chapter 7.6. Be-
fore that however, it is worth testing the robustness and the reliability of the above
phase measurements as well as the possible effects of the 3p harmonics on the 3s
sidebands phases. To answer these questions we perform the numerical study pre-
sented in the following section.

7.5 Preliminary simulations

A delicate point of the analysis above is the ability of the Rainbow RABBIT to re-
solve the spectral phases of the two ionization channels despite the fact that the
corresponding sidebands and harmonics are almost overlapping. The reasonable
question that arises is how and if the spectral phase of the less intense 3s channel
is affected by the presence of the 3p channel. In order to answer this question and
show the validity of our measurements a series of simulations were performed and
will be presented in this section.

We are interested in simulating the RABBIT traces of the combination H2n−1,3p +
SB2N,3s + SB2n,3p, where n and N symbolize the different orders of the two peak
families. The case of H25,3p, SB34,3s and SB26,3p will be used here as an example to
demonstrate the working principle of our simulations. The two sidebands can be
described as:
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SB26,3p(E,τ) = ∣M25,3p∣
2 + ∣M27,3p∣

2 + 2 ∣M25,3p∣ ∣M27,3p∣ ⋅ cos(2ωτ + φSB26,3p) (7.26)

and

SB34,3s(E,τ) = ∣M33,3s∣2 + ∣M35,3s∣2 + 2 ∣M33,3s∣ ∣M35,3s∣ ⋅ cos(2ωτ + φSB34,3s), (7.27)

where ∣Mn,3i∣ = ∣En∣
√

σn,3i are the amplitudes of the harmonic fields described by
the gaussian curves of equation 6.49 detailed in Chapter 6.2.1 and multiplied by
the square root of the corresponding one-photon ionization cross-sections given
by [Möbus et al., 1993] for the 3s and [Samson and Stolte, 2002] for the 3p chan-
nel (depicted in Figure 7.11). We assume that the peak amplitudes of the different
harmonic orders are identical since they are in the emission plateau of the neon
generating gas. For the sideband phases φSB26,3p and φSB34,3s that decompose into
the XUV phase difference and the atomic phase difference, we assume: i) for the
former, no attochirp leading to a 0 value; and ii) for the latter, we use the values
calculated by Marcus Dahlström using the RPAE model including the interaction
with all orbitals (averaged over the electron emission angle for the 3p electrons and
at 0o for the 3s electrons[Dahlström and Lindroth, 2014]) (see next section).

To describe the oscillating signal of a harmonic one needs to know the correspond-
ing spectral phase which demands some additional approximations ([Ruchon and
Camper, 2013]). In a first-order approximation, a harmonic peak H2n+1 will be mod-
ulated due to the loss of electrons that are transferred to the neighboring sidebands
SB2n and SB2n+2 as:

H2n+1(E,τ) ≈ α ∣M2n+1∣2 − SB2n − SB2n+2 =

α ∣M2n+1∣2 − (∣M2n−1∣2 + ∣M2n+1∣2 + 2∣M2n−1∣∣M2n+1∣ cos(2ωτ + φSB,2n)+

∣M2n+1∣2 + ∣M2n+3∣2 + 2∣M2n+1∣∣M2n+3∣ cos(2ωτ + φSB,2n+2)) (7.28)

where α accounts for the difference in intensity of the harmonic and SB peaks (1-
photon with respect to 2-photon transitions, typically a factor 10). Assuming now
a slowly-varying cross-section and harmonics with similar intensity, equation 7.28
becomes:

H2n+1(E,τ) = (α − 4) ∣M2n+1∣2 − 2 ∣M2n+1∣ ∣M2n−1∣

⋅ cos(2ωτ +
φSB,2n + φSB,2n+2

2
) ⋅ cos(

φSB,2n − φSB,2n+2

2
) (7.29)

and for the specific case of H25,3p will be:
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H25,3p(E,τ) = 10 ∣MH25,3p∣
2 − 2 ∣MH25,3p∣ ∣MH23,3p∣

⋅ cos(2ωτ +
φSB24,3p + φSB26,3p

2
) ⋅ cos(

φSB24,3p − φSB26,3p

2
) (7.30)

where α = 14 was chosen to fit as well as possible the experimental measurements.
The attochirp is not taken into account. After convolving the oscillating signals of
the two sidebands and the harmonic with the spectrometer response function fsp

(Chapter 6.2.1) for each delay, we add them incoherently:

RABBITtotal(E,τ) = H25,3p(E,τ)⊗ fsp + SB34,3s(E,τ)⊗ fsp + SB26,3p(E,τ)⊗ fsp (7.31)

and eventually obtain the RABBIT trace in Figure 7.16. Even though SB34,3s is very
weak compared to H25,3p, it is clear that they oscillate in opposite phase. This can
be easily seen when applying the Rainbow RABBIT analysis.

Figure 7.16: Simulated RABBIT spectrogram of harmonic 25 and sideband 26 of
the 3p ionization channel and sideband 34 of the 3s channel. The black line is the
intensity averaged over the delays.

The treatment of the simulated RABBIT spectrograms is identical to the one of the
experimental data described in Chapter 5.1. The extracted spectral amplitudes and
phases are plotted in Figure 7.17 for different values of the spectrometer resolution
which constitutes the main limiting factor of this specific experimental set up. Be-
tween the phase of H25,3p and SB34,3s we obtain a jump of π as was expected. The
decrease of the spectrometer resolution doesn’t seem to affect the size of the jump
however it shifts it towards higher energies. An interesting point is that a smaller
phase jump of ∼0.04 rad appears between the sidebands of the two different ion-
ization channels which is due to the fact that they correspond to different orders
and thus different atomic phases. The decreasing spectrometer resolution shifts the
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jump towards smaller energies and it smooths it out. For less spectral resolution this
second phase jump disappears completely. Note that if we take into account the in-
trinsic GDD of the ionizing harmonics, related to the attochirp, then the amplitude
of this second phase jump is modified by the difference in group delay between
SB24 and SB36 (i.e., 19 as ∗8 ∼ 150 as amounting to 0.7 rad).

Figure 7.17: Simulated spectral amplitude and phase of harmonic 25, sideband 26
(3p channel) and sideband 34 (3s channel) for different values of the spectrometer
resolution. The width of the harmonics is kept constant at 300 meV. The insets show
in more detail the effect of the spectrometer resolution on the two phase jumps.

The use of the 200 nm filter (spectral window : 15-73 eV) to block the remaining
IR radiation in combination with the use of neon as the generation gas, has the
advantage of allowing the transmission of a large number of harmonics (H13-H45
of the 3p channel). In Figure 7.18 the simulated spectral phases and amplitudes for
the entire spectrum including the 3s sidebands are plotted. In order to highlight the
effect, the spectrometer resolution is not taken into account and the width of the
harmonics is kept relatively small (100 meV). The spectral phases show the same
behavior as in Figure 7.13 with a π jump between the 3p harmonics and the 3s
sidebands and a smaller one between the two families of sidebands. It is worth

159



7.5 Preliminary simulations

mentioning the fact that even for the lower order 3s sidebands that lie in the vicinity
of the 3s Cooper-like minimum and have a small cross section (inset in the top
panel Figure 7.18) the corresponding phases are well resolved. This shows that
the spectral phase extracted by the Rainbow RABBIT method is less affected by
the experimental conditions than the corresponding spectral amplitudes. Note that
we did not include in these simulations the harmonic peaks of the 3s channel that
induce opposite jumps on the blue side of the 3p sidebands.

Figure 7.18: Simulated spectral amplitudes and phases extracted by the Rainbow
RABBIT algorithm for a range of kinetic energies [7-40] eV. The red highlighted ar-
eas correspond to the 3s sidebands. The inset is a zoom in energies [7-22] eV, to
highlight the presence of the 3s sidebands even in the vicinity of the corresponding
Cooper minimum. For this figure the harmonic width is 100 meV and the spectrom-
eter resolution is not taken into account.

Another interesting case that demonstrates the ability of our technique to re-
solve the spectral phase is shown in Figure 7.19. There the combination of
H15,3p+SB24,3s+SB16,3p is simulated including the convolution with a spectrometer
resolution of 100 meV and a relatively large harmonic width of 300 meV. In Fig-
ure 7.18, due to the low cross-section, the spectrometer resolution and the har-
monic width, the presence of SB24,3s is now almost completely overshadowed by
the more intense 3p harmonic. This can be clearly seen in the intensities of Fig-
ure 7.19 (a) where the presence of SB24,3s becomes visible only when the RABBIT
spectrogram (XUV+IR) is compared with the spectrum of H15,3p alone (XUV). The
extracted spectral amplitudes in Figure 7.19 (b), despite being smoothed as com-
pared to Figure 7.18 where the harmonic width was 3 times less broad and the
spectrometer was not taken into account, reveal the peak of SB24,3s. Moreover, the
corresponding spectral phases are not affected displaying the expected π jump be-
tween H15,3p and SB24,3s and the second smaller one between SB24,3s and SB16,3s. The
good agreement between these preliminary simulations and the experimental data
is shown in Figure 7.20, where some typical cases throughout the whole spectrum
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Figure 7.19: (a) Simulated RABBIT spectrogram integrated over the delays of
H15,3p+SB24,3s+SB16,3p (blue curve) and of H15,3p alone normalized to the previous
curve (orange curve). (b) Corresponding Rainbow RABBIT amplitudes (top panel)
and phases (bottom panel). For this figure the harmonic width is 300 meV and the
spectrometer resolution 100 meV.

are plotted. In all the plotted examples the spectral phases are in better agreement
with the simulations than the corresponding amplitudes since the latter are more
easily affected by the experimental conditions as mentioned above.

7.6 Comparison with theory

Measuring the ionization delays in atomic or molecular systems is of great interest
since they evidence the correlated electronic motion and the correlation between
electron and nuclear motion. The use of ultrashort XUV radiation has allowed the
study of these motions on their natural sub-femtosecond time scale. At the same
time, the theoretical description of a process involving electron correlation is ex-
tremely challenging where only the most simple systems have been exactly solved.
In order to describe more complex multi-electron systems, a number of different
approximations have been introduced. Thus comparison with experimental data is
of extreme importance for the validation of the different theoretical approaches. In
this section a brief overview of the existing theoretical models concerning the spe-
cific case of the ionization delays in argon will be presented. The comparison with
the experimental data discussed in Chapter 7.4, will follow.

Argon is one of the most convenient atoms for this kind of studies for the following
reasons. Firstly, the ionization delay differences between the 3s and 3p ionization
channels contain information about the electron - electron intra- and inter-shell in-
teractions, especially in the vicinity of the 3s CM which arises solely due to inter-
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Figure 7.20: Main panel: Measured spectral amplitude of the entire RABBIT
spectrogram of neon harmonics photoionizing argon after a 200 nm thick alu-
minum filter (black line) and the corresponding simulated amplitudes for some
harmonics (red lines). Small panels: simulated (red) and measured (blue) spec-
tral phases and amplitudes extracted by the Rainbow RABBIT method for (a)
HH15,3p +SB24,3s +SB16,3p, (b) HH21,3p +SB30,3s +SB22,3p, (c) HH25,3p +SB34,3s +SB26,3p

and (d) HH29,3p + SB38,3s + SB30,3p.

channel coupling with the 3p photoionization channels ([Amusia et al., 1972]) Sec-
ondly, the presence of the 3p CM constitutes a signature of the electronic atomic
structure and thus of the intra-shell dynamics and the correlation between the s
and d photoelectrons. Additionally, argon provides a good benchmark because it is
comparatively light, so a non-relativistic description can be used.

The above characteristics are the reason for which this system has been used as a
prototype on which many different theoretical approaches have been developed.
The main ones will be now briefly outlined.

Ab-initio
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Figure 7.21: Comparison between the theoretical curve calculated in [Dahlström
et al., 2012a] (blue circles) and our experimental measurements (orange circles). The
τcc are taken into account. The blue and grey shaded area corresponds to the region
of the 3s and 3p CM respectively.

This is a large group of methods that rely on fitting some free parameters to exper-
imental or ab-initio data. A characteristic example is the work of [Carette et al.,
2013], where they presented a method, based on the Atomic Structure Package
(ATSP2K)([Fischer et al., 2007]), to obtain a general, many-electron atomic wave
function in a close-coupling expansion. The structure of the localized part of the
wave function is represented using the multiconfiguration Hartree-Fock (MCHF)
method, which represents complex many-body effects with a limited number of
configurations. By using B-splines to describe the radial components of the photo-
electron in the allowed partial-wave channels, they obtain a multichannel method
that, for the description of one active electron in a box, is complete. This approach
is developed in combination with the exterior complex scaling method of use, in
particular, in the description of monochromatic wave packets. Unfortunately they
have only investigated up to 42 eV photon energy, which means that neither the 3s
nor 3p CM is included.

Another example of ab-initio calculation tested on the case of argon was performed
one year earlier by the same group and presented in [Dahlström et al., 2012a] where
a large spectrum of energies (20-80 eV) was covered. This study was focused
on establishing a connection between the single-photon ionization and the two-
photon ionization process used for the measurement. The correlation effects were
accounted for "all orders" of single-particle excitations, including the non local ex-
change interaction and ground-state correlation. The correlated photoelectron and
ion are represented using the perturbation diagrams (Fig. 2 of [Dahlström et al.,
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2012a]), including linear screening for the absorption of the XUV photon.

Firstly, the two-photon transition amplitude, expressed as a one-photon dipole ma-
trix element from an intermediate to the final state ∣s⟩ is defined as Ms,ω,Ω,a =
⟨s∣dω ∣ρΩ,a⟩, where ∣ρΩ,a⟩ is the perturbed wave function for absorption of one XUV
photon Ω from an initial atomic orbital ∣a⟩ with energy εa. A Hartree-Fock (HF) ba-
sis with exterior complex scaling in the radial dimension is used to set up the ∣ρΩ,a⟩.
A broad range of correlation effects between the photoelectron and the ion are then
accounted for using infinite-order, many-body perturbation theory (MBPT). The fi-
nal form of ∣ρΩ,a⟩ (equation 4 and 5 of Dahlström et al. [2012a]) will contain a term
corresponding to the direct and exchange interactions and a term representing the
ground-state correlation. This can be solved by numerical iteration including the
outermost n orbitals. Once convergence is found, this solution is used to evaluate
the two-photon matrix element Ms,ω,Ω,a. The argument of this complex expres-
sion will give the corresponding phases and atomic ionization delays including the
measurement induced delay term τcc (equation 7.24).

Finally, it is shown that the atomic delays from the outer 3p orbital are mostly in-
sensitive to the coupling with the inner orbitals. In contrast, the delays from the
inner 3s orbital are strongly altered by the coupling to the outer orbitals which re-
sults in the observation of sharp delay structures close to the CM from the 3p and
3s orbitals, respectively. The delay peak from the 3s orbital is only observed in the
correlated calculation and not in the single active orbital approximation case as is
shown in Fig. 4 of [Dahlström et al., 2012a].

In Figure 7.21 we compare the above simulated 3s-3p atomic delay differences with
our experimentally measured ones shown in Figure 7.15. The agreement is good
for the energies above 59 eV where both 3s and 3p atomic delays are quite flat since
we move away from the two CM. In addition, satisfactory accordance between ex-
periment and theory is found for the energy range 46.5 eV - 49.6 eV and around 37
eV, so between the two CM and before the 3s CM, a region which is quite sensitive
to the presence of the τcc as will be discussed further on. It is important to stress the
fact that the above simulations are implemented along the polarization direction
of the field which does not correspond to the angle integrated nature of our mea-
surements. This affects however mostly the 3p delays around the corresponding
CM.

Time-Dependent Local-Density Approximation [TDLDA]

This category of simulations uses an approach based on firstly calculating the one-
photon dipole transition amplitude by using different types of the LDA ([Mad-
jet et al., 2001], [Zangwill and Soven, 1980a], [Stener et al., 1997]) potential in
the independent-particle approach. In order then to include collective effects, the
TDLDA code ([Zangwill and Soven, 1980b], [Zangwill and Liberman, 1984]) is used
and results in the full transition amplitude that includes a complex induced po-
tential, proportional to the induced frequency dependent changes in the electron
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density that accounts for the electron correlations.

Two characteristic examples of this method are the work of [Magrakvelidze et al.,
2015b] and [Pi and Landsman, 2018]. In both cases the one-photon dipole transition
amplitude dk = ⟨ψk∣z∣ψ0⟩ is calculated along the polarization axis z, for a transition
from a bound state ψ0 to a continuum state ψk. Both initial and final wave functions
are calculated using the LDA potential:

VLDA(r) = −Z
r
+∫

ρ(r′)
∣r − r′∣

dr′ +VXC[ρ(r)] (7.32)

, where Z is the atomic number, ρ(r)is the charge density and VXC is the exchange-
correlation functional. Since the exact VXC is unknown, different approximations
are used in the two articles. A change of the charge density δρ(r,ω) occurs under
the influence of the laser field, inducing a change δV(r,ω) in the potential. The
dipole transition will then become Dk = ⟨ψk∣z + δV(r,ω)∣ψ0⟩. The solution of the
equation will give the corresponding Wigner delays τWigner = d

dE arg[Dk]. In [Ma-
grakvelidze et al., 2015b] they tried to include also the measurement-induced τcc by
finite-differencing their TDLDA phases using 1.55 eV half steps.

Figure 7.22: Comparison between the theoretical curves calculated in [Ma-
grakvelidze et al., 2015b] (green circles) and in [Pi and Landsman, 2018] (red cir-
cles) with our experimental measurements (orange circles). The τcc are taken into
account only in the calculations of [Magrakvelidze et al., 2015b] whereas [Pi and
Landsman, 2018] calculates only the τWigner. The blue and grey shaded area corre-
sponds to the region of the 3s and 3p CM respectively.

Figure 7.22 shows the comparison between our experimental points and the cor-
responding simulated TDLDA delays. Even though the model used for the cal-
culation of the two theoretical curves is the same, the change of parameters like
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the potential VLDA, results in completely different behavior of the delay differences
especially for the 3s CM region. The two curves start converging around 52.7 eV
where our results also show a similar tendency. On the other hand, for lower ener-
gies the experimental results do not agree with none of the two theoretical cases.

Random Phase Approximation with Exchange [RPAE]

The random phase approximation was applied to calculate photoionization cross
sections and angular anisotropy parameters in valence shells of noble gas atoms
some forty years ago [12]. Since then, it became a standard technique to account
for inter- and intra- shell effects in valence shell photoionization in atoms, based
on the work of M. Ya Amusia ([Becker and Shirley, 1996]). As in the previous case
the one-photon transition matrix element is first defined using lower-order pertur-
bation theory as M(1)(k) = −iEΩ⟨k∣z∣i⟩, where EΩ is the complex amplitude of the
harmonic field. In order to include the different correlation effects the single pho-
toionization dipole matrix element is then replaced by a "screened" matrix element
⟨k∣Z∣i⟩. In some studies as [Guénot et al., 2012] and [Dahlström and Lindroth, 2016]
the model is taken one step further by calculating the corresponding two-photon
transition matrix element in order to mimic in the best possible way the experimen-
tal measurement process.

About the one-photon matrix element, there are several issues to discuss regarding
the choice of basis functions. The first issue is the choice of implementation poten-
tial; a common choice is a HF potential with a correction that provides an asymp-
totically correct long-range interaction for the photoelectrons. A second point is the
numerical representation of the basis function; a common choice is the use of the
B-splines. Finally, one needs to construct the outgoing wave packet and a numeri-
cal stable and efficient way to do so, is provided by the method of complex scaling
([Nicolaides and Beck, 1978]).

In order to include correlated interaction into the photoionization process, a pertur-
bation δV = 1

r12
− uHF − uproj is considered. The screened matrix elements will then

be defined by the self-consistent equation:

⟨k∣Z∣i⟩ = ⟨k∣z∣i⟩+ lim
ε→0+⨋v

[
⟨v∣Z∣j⟩⟨jk∣V∣vi⟩
Ω − εv + εj + iε

−
⟨j∣Z∣v⟩⟨vk∣V∣ji⟩

Ω + εv − εj
] (7.33)

where i and j are 3s or 3p or vice versa and V = 1/r12 is the Coulomb interaction.
The sum is performed over the discrete as well as continuum spectra. The Coulomb
interaction matrices ⟨jk∣V∣vi⟩ and ⟨vk∣V∣ji⟩, describe the so-called time-forward and
time-reversed correlation processes. For a single dominant channel L, the phase of
the one-photon matrix element becomes arg[M(1)(k)] = ηL(k)+ δL(k)− Lπ/2, where
δL(k) = δi→kLdenotes the additional phase due to the correlations accounted within
the RPAE.

In Figure 7.23 our experimental data are compared with RPAE simulations from

166



Cooper minimum in Argon

Figure 7.23: (a) Comparison between the theoretical curves calculated in [Kheifets,
2013] (green circles) and [Bray et al., 2018] (blue circles) with our experimental mea-
surements (orange circles). The τcc are taken into account only in the calculations of
[Bray et al., 2018] whereas [Kheifets, 2013] calculates only the τWigner. (b) Compar-
ison between our experimental measurements (orange circles) and the theoretical
curves calculated in [Guénot et al., 2012] (blue circles), in [Dahlström and Lindroth,
2014] (black dashed line) where delays have been calculated for 0o electron emis-
sion angle for both channels and the corrected version [Dahlström and Lindroth,
2016] (green circles) where the 3p delays are averaged over the electron emission
angle. The τcc are taken into account in all three theoretical curves. The blue and
grey shaded area corresponds to the region of the 3s and 3p CM respectively.

different studies. In (a) we compare with the work of [Kheifets, 2013] and [Bray
et al., 2018]. The two models are in good agreement with each other from ∼40 eV
on. For lower energies there is a discrepancy due to the measurement-induced de-
lay τcc that is not taken into account in [Kheifets, 2013]. The comparison with our
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Figure 7.24: Atomic delays in argon as calculated by M. Dahlström, for 0o electron
emission angle for the 3s channel [Dahlström and Lindroth, 2014] and averaged
over the electron emission angle for the 3p channel [Dahlström and Lindroth, 2016].

experimental results is very similar as in the case of [Dahlström et al., 2012a] with
a good agreement only after 55.9 eV which corresponds to the end of the 3p CM. In
the vicinity of both 3s and 3p CM the experimental points are not in good agreement
with any of the two theoretical models, with the exception of the delay at 46.47 eV
that lies between the two CM. As in the case of [Dahlström et al., 2012a] the two the-
oretical curves are calculated for electron emission along the XUV polarization axis
which does not correspond to the angle-integrated nature of our detection method.

[Dahlström and Lindroth, 2016] has calculated the 3s and 3p delays for multiple
correlation combinations. The one that fits best our data accounts for the correla-
tion of the 3s and 3p channels with all the orbitals from theM and L-shells. It is
plotted in Figure 7.23 (b) and corresponds to the angle-integrated 3p delays (On
the contrary the 3s delays were calculated along the polarization axis, however the
authors claim that the 3s CM is not sensitive to the detection angle). The excel-
lent agreement along the whole range of the 3p CM is clear (from 46.4 eV to 68
eV). Unfortunately, the agreement for lower energies is not very good like in the
previous cases.A slightly better agreement at low energy is obtained by [Guénot
et al., 2012], in particular for the delay difference at 34 eV. Unfortunately, this curve
is given only up to 42 eV. In Figure 7.24 we plot the calculated atomic delays for
each channel separately that correspond to the delay difference of the green curve
of Figure 7.23 (b).

At this point it is worth-mentioning the effect of the τcc, the measurement induced
delay. As has already been mentioned earlier, this additional delay term is due
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Figure 7.25: Continuum-continuum delays τcc as presented in [Dahlström and Lin-
droth, 2014].

to the electron being probed by an IR laser field in a long-range potential with a
Coulomb tail ([Dahlström et al., 2012b]). Most of the times it is not taken into ac-
count since it is quite small compared to the actual τWigner . However, it has been
shown that τcc can play a role in the experimentally measured delays ([Heuser et al.,
2016]). In our case the induced effect is a downshift of the delay differences for the
lower energies (33 eV - 40 eV) as can be easily understood by looking at Figure 7.25
where the argon τcc are plotted as calculated in [Dahlström and Lindroth, 2014]. Be-
tween ∼5 eV and ∼35 eV one remarks a fast increase in the τcc values as a function
of the photoelectron energy, whereas for higher energies saturation is obtained. In
the previous figures, it was clear that the theoretical curves that included this extra
delay term were in better agreement with the experimental measurements at low
energy.

Relativistic Random Phase Approximation [RRPA]

The relativistic photoionization theory should take into account the spin-orbit split-
ting of atomic shells. The relativistic counterpart of RPAE, the RRPA, considers a
one-electron transition from an initial state characterized by the quantum number
nljm to a final continuum state kl jm. In Figure 7.26 the corresponding delay dif-
ferences are plotted as calculated in [Saha et al., 2014]. As compared to the RPAE
calculation of [Kheifets, 2013], the relativistic effects induce a global shift in energy
of the time delay difference (above 35 eV) by ∼-1 eV, the overall shape staying very
similar. Like in the previous cases the agreement between experiment and theory is
best after 55.8 eV where the impact of the 3p CM is fading out, but still quite bad at
lower energy.

In conclusion, in this section the experimentally measured 3s-3p delay differences
presented in Chapter 7.4, were compared with the numerous existing theoretical
calculations. Using the technique described in Chapter 7.4 we were able to record
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Figure 7.26: Comparison between the theoretical curve calculates in [Saha et al.,
2014] (red circles) with our experimental measurements (orange circles). The τcc are
not taken into account. The blue and grey shaded area corresponds to the region of
the 3s and 3p CM respectively.

these delays up to 68 eV photon energy, a range that includes both 3s and 3p CM
which in our knowledge has never been measured before. This is a valuable input
for a stringent test of the various theories. According to this study the best agree-
ment with our experimental measurements is achieved for high photon energies,
with the RPAE calculations presented in Dahlström and Lindroth [2016]. The ex-
perimental points are in excellent agreement for photon energies between 46 eV -
68 eV where the 3p CM is included. However, for lower energies (34eV -43 eV)
we only have a similar qualitative trend between experiment and theory with the
best agreement being with the RPAE calculations of Guénot et al. [2012]. A possible
reason for not being able to resolve the fast delay variation of the 3s CM could be
that the energy spacing of our harmonics generated by 800 nm radiation (∼3.1 eV)
is not fine enough. This could be resolved by using an OPA to generate the excita-
tion radiation with longer wavelength (the HE-TOPAS available in SE1 can provide
from 1100 to 2100 nm). This would provide better sampling and at the same time
tunability of the driving wavelengths which would allow us to scan over the 3s CM.

7.7 Conclusions

In this Chapter the Cooper minimum in argon was studied in multiple ways. First,
a comparison between the photo-ionization and photo-recombination (from high
harmonic spectroscopy) cross-sections and the corresponding atomic phases was
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performed in the vicinity of the 3p CM. Even though these two processes are usually
considered as time-reversed, the experimental observations show a systematic shift
of the CM in both the cross section and the spectral phase and a much stronger CM
effect in PR on both observables. This is compatible with the behavior predicted by
the theoretical work of [Higuet et al., 2011]. There are two reasons for this behavior:
i) the fact that HHG is an inherently differential process that allows the coherent
summation of the s and d waves (in contrast to the incoherent summation in PI
angle-integrated measurements) and thus gives a much deeper interference effect
in the PR case and ii) the structure of the recombining EWP which will result in a
shift of the minimum observed in the PR case to higher energies.(Chapter 7.2)

Following this investigation, a study on the RABBIT spectrogram’s contrast was
performed. In more details, a loss of contrast close to the 3p CM energy region was
observed. In order to understand the origin of this behavior, a number of simula-
tions were performed. It was then, showed that this loss was mainly due to two
effects: i)The PI cross-section of argon and ii) the incoherent sum of the 3p s and d
waves due to the angular-integrated nature of our detection method. (Chapter 7.3)

Further on, since we were able to resolve the 3s photoelectrons, by using the Rain-
bow RABBIT technique we managed to measure the delay differences between the
two ionization channels 3s-3p for an extended energy region spanning from 34 eV
to 68 eV. This includes both the 3s and the 3p CM and to our knowledge has never
been measured before. (Chapter 7.4)

In order to test the validity of our phase measurements and more specifically the
effect of the 3p harmonic peaks on the less intense and almost overlapping 3s side-
bands, we performed preliminary simulations of this specific system. The agree-
ment with experimental data was very satisfactory, showing that the phase extrac-
tion procedure was meaningful. (Chapter 7.5)

Finally, our measurements can be a valuable input for theories that describe the
inter- and intra-shell correlations. We have compared with the predictions of dif-
ferent models. More specifically, in the case of the 3p CM the sign of the delay is
negative for all the theoretical models tested above, which is expected since it is
an intra-shell effect caused by the annihilation of the 3p → εd dipole moment. The
negative 3p delay implies that the photoelectron escape faster due to the −π-shift of
the dipole phase. The Cooper minimum is, in this sense, behaving in the opposite
way as compared to an autoionizing resonance that holds the photoelectron close
to the atom for an extended time.

On the contrary, the 3s delays in the vicinity of the CM can change dramatically
from a positive to a negative peak depending on the theoretical model and thus on
the correlation effects taken into account. This implies that the 3s atomic delays are
very sensitive to inner-shell electron correlation. In the case where the 3s delay peak
is positive it is suggested that the photoelectrons are delayed by the correlation-
induced CM and that the dipole phase increases by a +π-shift, in direct contrast
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to the case of the 3p-channel. This discrepancy between the different theoretical
models highlights the importance of our experimental measurements. In our case
the best agreement was found with the RPAE calculations presented in Dahlström
and Lindroth [2016] where the correlation with all the orbitals is taken into account.
For this particular case the τcc is included and the 3p delays are calculated for an
angle-integrated electron emission with respect to the XUV polarization axis which
corresponds to our angle-integrated measurements. A very good agreement is ob-
tained in the region of the 3p CM, but it is much less satisfactory in the region of the
3s CM, despite the same trend. (Chapter 7.6)
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

The work presented in this thesis focuses on the study of the ionization dynamics
induced in an atomic system by an XUV pulse train. The main goal was to measure
the spectral phases and amplitudes of the emitted EWPs when features like reso-
nances are involved and study the effect that they can induce on the corresponding
dynamics. Using the Rainbow RABBIT interferomentric technique, we investigated
the case of two structural features with different physical origins, that also happen
in different energy scales. First, in the scale of some tens of meV, we studied several
autoionizing resonances in helium and argon and second, in the scale of some tens
of eV, the Cooper minimum in argon was investigated.

Rainbow RABBIT:

Throughout this work the Rainbow RABBIT along with the classic RABBIT
technique was used. The Rainbow RABBIT was introduced for the first time by
Gruson et al. [Gruson et al., 2016a] in 2016. This energy-resolved version of the
classic RABBIT method allows the resolution of fast variations in the spectral
phase and amplitude of the emitted EWP. In the study of Fano resonances, we
used it in order to record the exact phase evolution inside the resonant sidebands
whereas in the case of the Cooper minimum in argon, it allowed us to isolate
the contributions from the two ionization channels (3s and 3p), which normally
is a difficult task since the two peak families almost overlap. Since the Rainbow
RABBIT method is new, the effect of the various experimental parameters on
the phase extraction, had not been studied. Thus an in depth study including
simulations and comparison with experimental measurements was performed for
the possible effects of the spectrometer resolution, the spectral width and detuning
of the excitation harmonics (pump beam) as well as the spectral width of the IR
pulses (probe beam). The ideal experimental conditions for Rainbow RABBIT
measurements were found to be a spectrally narrow dressing pulse in order
to create exact replicas of the one-photon EWP and spectrally large harmonics,
enough to fully excite the resonance. The spectrometer resolution was shown to
potentially induce distortions both of the retrieved spectral phase and amplitude,
which may lead to a misinterpretation of the reconstructed dynamics.

Fano resonances [meV scale]:

Helium
Gruson et al. [Gruson et al., 2016a] along with Kaldun et al. [Kaldun et al., 2016]
measured for the first time the temporal evolution of the autoionizing sp2+
resonance in helium. More specifically, it was shown that in the first 3 fs there is
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a dominant contribution of the direct ionization path that is then followed by the
interference with the indirect path that passes through the doubly excited sp2+
state. In the same spirit, we extended this study with the introduction of different
time-frequency representations of the emitted EWP, such as the Gabor and Wigner
representations that can give supplementary information in more complicated
systems ([Busto et al., 2018]). This set of studies included also the measurements
around the sp3+ resonance which is more difficult to investigate since its spectral
width (8 meV) is ∼5 times narrower than the sp2+ one. Additionally, thanks
to the tunability of the driving laser, we were able to excite simultaneously the
two above-mentioned resonances in a coherent way and thus create a complex
two-electron wave packet, whose complicated dynamics was later investigated.
Three different regimes were found: i) a direct excitation to the continuum with
2ω-beatings due to the excitation radiation; then ii) a complex interference be-
tween the four ionization channels (two direct and two indirect channels for both
resonances) ; and finally iii) the decay of the two resonances into the continuum
with beatings at (Esp3+ − Esp2+).These experimental results agreed qualitatively,
with preliminary simulations while exact calculations performed by the group
of Richard Taïeb of LCPMR, Université Pierre et Marie Curie are in progress. A
study on the intensity dependence of the probe pulse on the spectral phase and
amplitude of the EWP emitted through the sp2+ resonance was also conducted.
We observed the distortion of the lineshape with a significant variation of the
corresponding q parameter and the fact that the phase information is transferred
-somewhat smoothed out- to the 4ω-oscillations of the neighboring harmonic
peaks.

Argon
In the same spirit, we investigated the 3s4p autoionization resonance in argon. This
case becomes more complicated since argon exhibits a spin-orbit splitting of only
180 meV. Thanks to to the Rainbow Rabbit technique and to the sub-100 meV resolu-
tion of the MBES, we were able to resolve this structure on the measured photoelec-
tron spectra. Furthermore, we managed to isolate the two S-O contributions both
in the measured spectral phase and amplitude of the emitted EWP, by implement-
ing a numeric technique based on the work of Zürch et al. [Zürch et al., 2017]. Our
findings are consistent with a similar imprint of the resonance on both S-O compo-
nents. The temporal buildup of the resonance was reconstructed for the J=3/2 case.
Preliminary simulations show a very similar behavior and suggest that by tuning
the driving laser, it is possible to encode the complete resonant phase variation of a
single S-O component in the total measured spectral phase. Exact calculations are
in progress by the group of Fernando Martin of Universidad Autónoma de Madrid.
A comparison with the classic RABBIT results of Kotur et al. [Kotur et al., 2015], was
also performed. The results are in good agreement and highlight the properties of
the Rainbow RABBIT since the S-O is resolved in the resonant sidebands’ phase
while we also obtain larger phase jumps for both components.

The above experiments were performed in Lund, in collaboration with the group
of Anne L’Huillier from University of Lund, who welcomed us in her laboratory
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as well as with the group of Raimund Feifel from University of Gothenburg who
provided us with the photoelectron spectrometer.

Cooper minimum [eV scale]:

3p-shell Ionization-Recombination
The first experiments performed on the SE1 beam-line of the new ATTOLab facility
at CEA-Orme des Merisiers were the investigation of the Cooper minimum (CM)
in argon. We first studied its influence on the amplitude and phase of the photoion-
ization (PI) from the 3p outer shell, and compared it to the photorecombination
(PR) as obtained from high harmonic spectroscopy. The comparison between the
PI and PR phases and amplitudes highlighted two points: i) a much stronger CM
effect in PR leading to a deeper cross-section minimum and a larger phase jump;
ii) a blue shift of the CM position in PR observed in both cross section and phase.
These differences were attributed mainly to the stronger interference effect in PR
due to the coherent summation of the s and d channels whereas the integration
over the angles in PI leads to an incoherent sum which partly shifts the position of
the minimum.

3s-3p ionization delays
Seven years ago Klünder et al. [Klünder et al., 2011], [Guénot et al., 2012], measured
the difference of the ionization delays between electrons emitted from the 3s and
3p shells of argon. However in order to separate the two peak families that lie only
0.46 eV apart and with the 3p peaks overshadowing the much less intense 3s ones,
they used a combination of Cr and Al filters, that transmitted only a window of
10 eV (four harmonics). This limited the measurement range up to 41 eV, and thus
could not reach 43 eV and 46.7 eV where are located the Cooper minima of the 3s
and 3p channels respectively. We took this first effort to the next step by measur-
ing these photoionization delay differences up to 68 eV for the first time. By using
the Rainbow RABBIT method and only one Al filter (transmits energies up to 73
eV) we managed to separate the two peak families thanks to the phase jumps be-
tween the 3p harmonics and 3s sidebands. A numerical study was also performed
in order to investigate how much the overlapping of the two peak families could
affect the extracted Rainbow RABBIT phase. It recovers the experimental trends ,
evidencing the meaningfulness of the phase extraction. Our measurements over a
large range reveal a previously unknown change of sign of the 3s-3p delay at 41
eV, just on the edge of the spectral region of the CM in the 3s channel. A maxi-
mum delay difference is obtained at 47 eV, position of the 3p CM. The measured
delays are then compared to various theoretical models. The Cooper minimum in
the 3p channel is a feature well described by many theories which is not the case
of the 3s CM because the latter originates from inter-shell correlation.The descrip-
tion of electron correlation effects has always been a very demanding task, thus our
results can serve as a valuable input for advanced theories. Among the different
theories predicting widely conflicting results, the best agreement was found with
the RPAE calculations presented in [Dahlström and Lindroth, 2014] where the cor-
relation with all the orbitals was taken into account. However, our measurements
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do not show the strong increase in delay predicted at the position of the 3s CM, pos-
sibly due to the large energy sampling of 3 eV. This calls for further studies where
a finer sampling will be obtained either with mid-IR driving wavelength or with a
tunable laser.

OUTLOOK

As for the future work, the Rainbow RABBIT technique that was initially de-
veloped by V. Gruson and L. Barreau and that we pushed one step further in this
thesis, exhibits enormous potential for the study of all types of fine atomic and
molecular resonances, as well as stuctures in solid-state physics. This is a new
type of spectroscopy, maybe more complete, where we measure both the transition
dipole amplitudes and phases, giving access to the whole ionization dynamics.

One of the perspectives opened by this work is the measurement of angularly re-
solved photoionization times in atoms and molecules. Indeed, the wave functions
of the emitted photoelectrons can be decomposed into different partial waves that
exhibit different angular emission distributions. Performing a RABBIT type exper-
iment with a Velocity Map Imaging spectrometer (VMI) or a Cold Target Recoil Ion
Momentum Spectrometer (COLTRIMS), it is possible to resolve angularly the side-
bands’ oscillations and thus measure the angular variation of the photoionization
delay for different ejection directions of the electron [Heuser et al., 2016], [Hockett
et al., 2016]. Recently, the team of A. L’Huillier in Lund and the team of U. Keller
from ETH Zurich , performed RABBIT measurements in the vicinity of the 3s4p
resonance in argon with both a VMIS and a COLTRIMS [Cirelli et al., 2018].

These types of measurements are particularly relevant for molecules where a strong
spatial variation is expected due to the anisotropic nature of the molecular poten-
tial. A first example is provided by photoelectron circular dichroism (PECD).The
team of Y. Mairesse in Bordeaux carried out Above Threshold Ionization (ATI) ex-
periments with a circularly polarized pulse in a chiral molecule in the presence of
a dressing beam. Photoionization of chiral molecules by circularly polarized ra-
diation gives rise to a strong forward/backward asymmetry in the photoelectron
angular distribution[Beaulieu et al., 2016]. Using the Rainbow RABBIT, they mea-
sured a delay between electrons ejected forward and backward, which depends
on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape
of electron wave packets emitted through an autoionizing state further reveals the
chiral character of strongly correlated electronic dynamic [Beaulieu et al., 2017].

Indeed, the presence of resonances can largely influence the spectral and spa-
tial variation of the delays. For example, in the vicinity of Fano resonances, the
anisotropy parameter β which characterizes the angular distribution of the electron,
varies greatly with energy. We then expect different phase variations for the differ-
ent partial waves involved. Another example are shape resonances, that induce
strong angular variations. H. J. Wörner’s group in Zurich measured photoioniza-
tion delays in N2O using an MBES, i.e. integration over the angular distribution
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of the ejected electrons, that already showed evidence of a population of molec-
ular shape resonances trapping the photoelectron for a duration of up to ∼110 as
[Huppert et al., 2016]. Resolving completely molecular ionization dynamics is a
big challenge. In the molecular frame, the simulations of Ref. [Hockett et al., 2016]
reveal many structures, depending on both energy and angle, with delays rang-
ing between -200 and +200 attoseconds, in particular due to the presence of shape
resonances that can ’trap’ the electron during its emission.

This type of complete study of the photoionization in the molecular frame is
planned on the ATTOlab platform, in collaboration with D. Dowek’s team, taking
advantage of the relatively high rate (10 kHz) of the FAB10 laser for coincidence
measurements in a COLTRIMS. A first experimental campaign has already been
completed and the measurements are currently under analysis. Using the lower
rate (1 kHz) but higher energy per pulse (15 mJ) of the FAB1 laser, one can first align
the molecules and then detect angularly the ejected electrons with a VMI. Such an
experiment is in the process of mounting. All these measurements will allow the
access to all spatial dimensions of the resonant wave packet, allowing a 4D recon-
struction (time + space) of the latter. This complete imaging of an ultrafast wave
packet is a sort of holy grail for attosecond physics.
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Titre : Spectroscopie attoseconde : Étude de la dynamique de photoionisation de gaz atomiques au 

voisinage des résonances 
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Cooper  

Résumé:  L'interaction des puissantes impulsions laser avec les gaz atomiques et moléculaires 
entraîne l’émission de flashs exceptionnellement  brefs de lumière XUV grâce au processus de 
génération harmonique d'ordre élevé (GHOE) de la fréquence laser fondamentale. Ce rayonnement 
ultra-bref, dans la gamme attoseconde (10-18 s), permet des investigations détaillées de la 
dynamique électronique ultra-rapide dans la matière. Le travail de cette thèse consiste à étudier les 
délais de photoionisation au voisinage de différents types de résonances, en utilisant la technique 
Rainbow RABBIT. Il s'agit d'une technique interférométrique à deux couleurs (XUV + IR) qui permet 
d'accéder au temps nécessaire à l'électron pour s'échapper du potentiel atomique avec une haute 
résolution. Nous nous intéressons particulièrement à deux cas: i) les résonances auto-ionisantes 
spectralement étroites (dizaines de meV) et ii) les minima de type Cooper ayant une largeur 
spectrale de quelques eV. L'effet de ces structures de continuum sur la dynamique d'ionisation 
correspondante est étudié. 
 

 

Title : Attosecond spectroscopy: Study of the photoionization dynamics of atomic gases close to 

resonances 

Keywords : Attosecond, Photoionization, Dynamics,  Autoionization resonances, Cooper minimum 

Abstract:  The interaction of intense laser pulses with atomic and molecular gases results in 
exceptionally short bursts of XUV light, through the process of high-order harmonic generation of 
the fundamental laser frequency. This ultrashort radiation, in the attosecond (10-18 s) range, allows 
detailed investigations of ultrafast electron dynamics in matter. The work of this thesis consists in 
studying the photoionization delays close to different types of resonances, using the Rainbow 
RABBIT technique. This is a two-color interferometric technique (XUV + IR) that allows access to the 
time required for the electron to escape the atomic potential with high resolution. We are 
particularly interested in two cases: i) autoionizing resonances which are spectrally narrow (tens of 
meV) and ii) Cooper-type minima which have a spectral width of some eV. The effect of these 
continuum structures on the corresponding ionization dynamics is studied.   
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