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We prove the uniqueness and the stability of the network steady states, and validate the

continuous and deterministic model with a stochastic model.
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Résumé étendu en français

Dans cette thèse, j’aborde le problème de consensus pour les réseaux orientés et non-

orientés ayant une topologie fixe. Nous proposons un nouvel algorithme de consensus

qui comporte des retards et où tous les agents du réseau utilisent de l’information passé

pour estimer les opinions (ou les états) futurs des agents voisins. Une contribution con-

ceptuelle du modèle proposé concerne la nature différente des retards : dans la littérature

au sujet du problème du consensus, les retards modélisent généralement soit les temps

morts nécessaires aux agents du réseau pour traiter l’information (le temps de réaction,

par exemple), soit les temps nécessaires à la transmission effective de l’information (le

temps nécessaire pour que l’information circule parmi les agents du réseau considéré).

Dans notre modèle, les retards ont une nature différente, car ils peuvent anticiper. De

plus, l’algorithme que nous proposons a l’avantage d’être facile à implémenter et il ne

comporte pas de techniques sophistiqués de nature prédictive ou adaptative, habituelle-

ment retrouvées dans les autres résultats de la littérature spécialisée. Encore mieux, nous

démontrons que le modèle proposé est extrêmement efficace quand un choix optimal des

paramètres est fait. Plus exactement, nous manipulons deux paramètres décrivant dans

quelle mesure les agents devraient chercher dans le passé pour estimer les états futurs.

Une autre contribution du chapitre 3 concerne le calcul des conditions nécessaires et

suffisantes qui dépendent de ces deux paramètres, pour que le réseau atteigne le con-

sensus. Nous étudions également un indicateur appelé delay margin et qui décrit dans

quelle mesure les retards peuvent augmenter dans le réseau. Les résultats obtenus ont

plusieurs niveaux d’interprétation. Une première interprétation importante est que la

nature anticipative de l’algorithme proposé peut considérablement améliorer les perfor-

mances, mais si les agents essayent d’anticiper trop loin dans le futur, le système peut

diverger. Cette conclusion n’est pas très surprenante : en utilisant de l’information qui

n’est pas mise à jour, nous pouvons rendre le système instable. Cependant, une deuxième

xii
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interprétation des résultats concerne les réseaux orientés, pour lesquels nous démontrons

l’existence d’une liaison fortement non-triviale entre comment régler les deux paramètres

et la topologie du réseau. Celle-ci représente une autre différence, si nous comparons

notre algorithme avec d’autres protocoles du consensus dans la littérature : notre condi-

tion pour atteindre le consensus est une condition nécessaire et suffisante pour les réseaux

non-orientés, mais pas suffisante pour les réseaux orientés. Nous testons notre algorithme

sur des réseaux ayant des topologies différentes et nous présentons les résultats des simu-

lations qui montrent que la vitesse de convergence peut être considérablement améliorée

en utilisant notre protocole. Cette amélioration est notamment visible dans le cas des

réseaux qui ne sont pas très bien connectés. Une contribution considérable de notre

algorithme consiste en un réglage des paramètres assurant une vitesse de convergence

extrêmement rapide, qui est valable pour n’importe quelle topologie du réseau. En effet,

ce choix des paramètres représente un choix optimal et assure une vitesse de conver-

gence qui correspond à une connectivité algébrique égale à 1. Nous discutons également

quelques propriétés et remarques intéressantes sur les réseaux orientés : nous considérons

quelques topologies circulaires et montrons que les valeurs propres du Laplacien suivent

un motif très typique. Une partie de ces résultats a été publiée et présentée lors de deux

conférences internationales [6, 7] et un article de journal et en cours de préparation.

Si la première partie de la thèse se concentre sur les réseaux avec une topologie fixée

et le Laplacien normalisé, nous considérons par la suite une étude théorique qui peut

correspondre par exemple aux réseaux ayant une topologie changeante, avec un Lapla-

cien normalisé. Un tel type de réseau peut même être déconnecté. Le nombre de

sous-graphes connexes correspond au nombre de valeurs propres égales à zéro du Lapla-

cien. Cela montre l’intérêt d’étudier la valeur maximale des racines multiples à l’origine,

comme présenté dans le chapitre 4. Cette étude sort du cadre des réseaux ; elle est

plutôt générale pour une classe de systèmes à retards. La contribution principale de ce

chapitre consiste en une formule pour trouver la limite supérieure du nombre de racines

multiples à l’origine. Quand cette limite maximale est atteinte, nous démontrons que

les paramètres du système satisfont quelques conditions algébriques. Nous comparons

notre résultat avec des résultats similaires dans la littérature. Cette comparaison in-

dique premièrement que notre limite est plus précise et deuxièmement que les méthodes

utilisées pour dériver cette limite sont différentes par rapport à un autre résultat trouvé

dans la littérature : nous utilisons des techniques de l’algèbre linéaire et non pas de
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l’analyse complexe. Les résultats de cette étude ont été publiés dans un chapitre

d’ouvrage [8] et publiés et présentés lors d’une conférence internationale [9].

Si le Laplacien n’est pas normalisé, nous pouvons avoir des racines imaginaires, qui ne

sont pas à l’origine. Nous attaquons dans le chapitre 5 un problème encore plus général,

mais qui peut concerner aussi les réseaux : le cas de racines caractéristiques doubles sur

l’axe des imaginaires pour les systèmes qui comportent deux retards. Cette étude résout

partiellement quelques problèmes connexes aux systèmes à retard qui étaient considérés

des questions ouverts depuis 2005. Nous étudions le comportement des racines car-

actéristiques imaginaires multiples (multiplicité deux, trois et quatre) lors d’une petite

perturbation des paramètres. Ces paramètres peuvent être soit deux retards, soir un

retard et un autre paramètre, ou bien deux autres paramètres du système. Une contri-

bution importante de ce travail est que les résultats peuvent être généralisés et utilisés

sur une classe beaucoup plus grande de systèmes, avec ou sans retards, ou même avec

des retards distribués. Les techniques utilisées se basent sur l’approche géométrique,

alors que les autres résultats dans la littérature utilisent les séries de Puiseux. Une

contribution qu’il faut citer est le calcul d’un critère pour décider si la paire de racines

doubles et complexe conjuguées se dirige vers la stabilité ou vers l’instabilité quand les

paramètres sont soumis à une perturbation. Autrement dit, nous trouvons un critère qui

implique un nombre limité de calculs qui sont relativement faciles à faire (des dérivés par-

tiels d’un quasi-polynôme par rapport aux paramètres). Nous vérifions notre méthode

sur des exemples très variés et nous montrons comment la méthode peut s’étendre aux

case des racines de multiplicité trois et quatre. Pour le cas de racines doubles, nous

comparons la méthode géométrique avec une méthode algébrique. Nous vérifions que les

deux méthodes donnent des résultats cohérents et nous discutons leurs points forts, leurs

limitations et les questions ouvertes qu’elles posent. Tous ces résultats ont été publiés

et présentés lors de trois conférences internationales [10–12] et une partie des résultats

a été acceptée pour publication dans le journal Automatica.

La dernière partie de cette thèse présente une application fortement interdisciplinaire

des réseaux génétiques. Ce travail se trouve à l’intersection de l’ingénierie et de la

biochimie. Nous modélisons un circuit génétique qui fonctionne comme un multiplexeur.

Plus précisément, il s’agit d’un modèle de réseau génétique qui réagit à trois signaux

en entrée en répondant soit par un signal unique parmi les deux signaux possibles à la

sortie, soit en ne répondant rien. Ce modèle est conçu pour être intégré dans une cellule
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minuscule (d’un volume de quelques femtolitres). Le but de la biologie synthétique,

un sujet relativement récent de recherche, est de finalement connecter plusieurs cel-

lules de ce type pour construire des réseaux plus grands, avec des fonctionnalités plus

complexes. Dans ce contexte, le travail présenté dans le chapitre 6 a pour but juste

de poser une brique. Néanmoins, le modèle proposé dépasse en fonctionnalité et en

complexité d’autres modèles de multiplexeurs dans la littérature, où un seul type de

signal est produit à la sortie. Nous étudions et analysons la stabilité du modèle en

prenant en compte les retards correspondant au temps nécessaire à la transcription et

à la traduction des gènes. Une contribution notable, par rapport à d’autres circuits de

la littérature, est que nous prouvons l’unicité et la stabilité des points d’équilibre. Pour

simuler et tester notre modèle, nous utilisons des valeurs de paramètres expérimentales

trouvées dans la littérature. Nous effectuons également un test de robustesse, pour

vérifier si le comportement du circuit change lorsqu’une petite perturbation se produit

sur l’un des paramètres. Le modèle est décrit en utilisant des diagrammes génétiques

standards. Le modèle déterministe comporte des équations différentielles avec des re-

tards. Néanmoins, la méthodologie utilisée dans la biochimie nécessite une validation du

modèle déterministe par le modèle stochastique, ce qui implique 23 réactions chimiques

avec 15 espèces en interaction. Cette validation ouvre les perspectives d’une mise en

place d’une expérience. Ce travail est en préparation pour une soumission à un journal

interdisciplinaire et les résultats préliminaires ont déjà été présentés lors d’une session

de posters à l’Université de Lethbridge.
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Chapter 1

Introduction

1.1 Context and motivation

In general, a multi-agent system (MAS) consists of a finite number of agents that are in-

terconnected under a given topology and aim to achieve a certain cooperative behaviour.

Thus, we say that the agents are interconnected on a network (see Figure 1.1). Exam-

ples for such a network in engineering are smart grids, multi-agent learning, wireless

communication, sensor networks and robotics. It is very common that the dynamics of

such networks are affected by delays. The origin of these delays has different sources:

transmission delays, information processing delays, measurement delays, scheduling de-

lays, queuing delays. The communication aspects play a central role in such networks,

aiming to fulfill a cooperative control task. There are many different cooperative control

applications for large groups of individuals that can be found in nature. Common exam-

ples are schools of fish, flocks of birds and collective food-gathering in ant colonies [13].

A fundamental property of such cooperation tasks is that the group behaviour is the

result of the interactions between all the individuals in the group, and it is generally not

dictated by only one of the individuals. A well-known illustration of this behaviour is a

school of fish, where every fish only knows where the neighbouring fish are heading, but

have no idea towards which direction the whole school is heading [14]. This situation is

depicted in Figure 1.2.

Nevertheless, practical applications show other properties of multi-agent systems [15].

In power networks, the power generators have to provide a constant voltage no matter

how many consumers are connected to the network [16]. Transport systems are made

up of airplanes, trains and buses, and their common task for instance is to bring people

and food from one place to another, irrespective on the number of available transporta-

tion vehicles [17]. Communication on the Internet consists on many routers aiming to

1
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Figure 1.1: Example of how a network can be depicted. This network can illustrate
a transport system made up of airplanes. Their common task for instance is to bring

people and food from one place to another within European Union countries.

transmit the information from millions of sources to equally many receivers, no matter

how the transmission capacity changes. All these examples show that it is quite com-

mon for a network to change the topology in time. Moreover, this illustrates that in a

large network the number of agents can be time-varying, as individuals join or leave the

network. We call such networks complex systems.

Complex systems are often decomposed into subsystems. If the subsystems are identical

or similar, they can be modeled as nodes of a network. The interactions between these

subsystems represents the links connecting the nodes. One example describing this

situation can be the Internet: the servers and routers represent the nodes of the network,

and the connection between them is described by the links. Here the delays could model

the communication time between the nodes, or the time requested by a node to process

the information before sending it to its neighbouring nodes. For this example, the

analysis of the network dynamics is crucial for understanding the process of information

transfer. This analysis usually relies on the study of network behaviour with respect to

some of its parameters (the communication delays, the information processing delays,

or other parameters). The study of such complex systems allows not only to investigate

the conditions under which the information transfer is stable or robust, but also to draw

some conclusions on the relation between the dynamics and the topology of the network.

As an example for the latter, we may consider how computer viruses are spread on the

Internet. We suppose that the routers are connected under a certain topology, and

that the probability that an infected computer infects its neighbours needs to exceed
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a threshold in order to allow the virus to persist [18]. Then, the network’s topology is

directly linked to the probability that the virus persists. This example also shows the

relevance of network science in the fields of biology.

Network models are used in ecology to study the population dynamics in complex ecosys-

tems. The interaction between populations of all kinds are studied, starting from the

relation between a potential infected population and a virus, between predator and prey

to more mutual interactions, like the interactions between plants and pollinators. A

natural question arising in ecology concerns the stability and robustness of such ecosys-

tems. When studying such population dynamics, delays arise naturally by modeling

growth, decay, maturation and regeneration in ecological network models. Knowledge

about interactions in these networks may be used to maintain biodiversity and to pre-

vent diseases spreading [19]. Another example illustrating why the study of time-delay

dynamics on networks in biology is important concerns the activation and inhibition of

genes in gene regulatory networks. Indeed, synthetic genetic networks have been recently

created to implement processing units such as toggle-switches [20] and basic logical op-

erations [21–23]. These networks have by far a less complex topology, when compared to

large networks such as the Internet, but their study is certainly challenging, due to the

biochemical processes involved and the tiny volume a cell commonly used for this study

has. Because it is a relatively recent area of research, synthetic biology focuses on the

design and fabrication of biological systems that generally do not exist in the natural

world. New circuits and biological pathways have already been constructed by synthetic

biologists. Given this background, an immediate extension of this relatively recent field

will arise naturally, by putting together some (sub)systems already implemented to cre-

ate larger, complex systems, with new functionalities. Actually, a few steps have already

been made in this direction [1].

1.2 Related work

As stated in [24], three great works laid the foundation of modern mechanics: Galilei’s

”Discourses on Two New Sciences”(1638), Huygens’s ”Horo–logium Oscillatorium”(1673),

and Newton’s ”Philosophiae Naturalis Principia Mathematica”(1687). Of these, coop-

erative behaviour has been first studied in Christian Huygens’ work [25], when he dis-

covered synchronization of pendulum clocks. Even if this study took place more than

300 years ago, the mechanisms behind this type of synchronization, but also other types,

have been analyzed only recently, in the last decades. For instance, pioneering defini-

tions of cooperative systems can be found in [26]. Enslow introduced the cooperative

nomenclature in distributed data processing. However, the term of cooperative system
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focal

fish

influential

neighbours

Figure 1.2: Example of cooperative behaviour in nature: in a school of fish, every fish
(red fish denoting the focal fish) only knows where the neighbouring fish (depicted in
blue) are heading, but have no idea towards which direction the whole school (all fish,

including the ones represented in gray) is heading.

was redefined in 1981 [27] in the context of systems with common goals, like problem

solving tasks. An overview of other early works on cooperative systems is given in [28],

and one of the first PhD theses on this topic is [29].

Pioneering work on the consensus problem dates a half-century back in the context of

horse race bettors [30]. A formal study of consensus investigating linear multi-agent

systems in the discrete-time domain dates back to the 1960s (see [31] and references

therein). In recent years, there has been a tremendous amount of renewed interest in co-

operative control tasks (see [32] and references therein), as consensus (micro-controllers

with local clocks agreeing on a common time), rendezvous (robots meeting at a point or

achieving a certain formation), flocking (cars moving with the same velocity and with

a certain distance between each other), and synchronization (phase synchronization of

generators in power networks).

However, it is beyond the scope of this thesis to review all important publications in this

area. The key papers and the work we focus on are cited throughout the chapters of

this thesis. Here we cite only a few studies on the consensus problem [15, 33–42] related

to multi-agent systems and cooperative control: cooperative behaviour of flocks and

swarms [43–48], synchronization of coupled oscillators [49–53], algebraic connectivity of

complex networks [34, 54, 55],
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Time-delay systems are widely used to model systems in various disciplines, including

cooperative control. Numerous classic examples of such systems can be found, for in-

stance, in [56]. More recent applications in networked system abound [57, 58]. Other

studies on the analysis and control of time-delay systems are [59–61]. An accurate es-

timate of delays is often rather difficult, which made it especially important to analyze

how the system stability may change as the delays deviate from the nominal values.

One such study for systems with two delays can be found in [62]. Another study on

complex time-delay systems is [63], where various problems, such as coupled oscillators,

the suppression of oscillations by time-delays, the stabilization of periodic solutions, the

stability of neural networks, and traffic flow when time-delays are present are discussed.

Such networks require a wide range of methods and techniques to address major chal-

lenges of modelling, analyzing, and understanding the link between the self-organization

and the evolution of the network. A collection of recent work on delays and networked

control systems, discussing different approaches and cooperative control techniques can

be found in [64].

1.3 Focus and contributions of the thesis

We address the consensus problem in both directed and undirected networks with fixed

topology. We propose a new consensus algorithm with delays, where all agents in the

network use past information to estimate future opinions (or states) of their neighbours.

One conceptual contribution of the proposed model consists in the different source of

delays: in the consensus problem literature, delays are commonly modelling either the

time needed by the network agents to process the information (for instance, the reaction

time), or the transmission delay (i.e. the necessary time for the information to be

transmitted among the agents). In our model, the delays are conceptually different

by their anticipatory nature. Moreover, the proposed algorithm is simple: it does not

involve sophisticated techniques of predictive or adaptive control, when compared to

other results in the literature. Even better, it turns out that our model is also efficient

when a good choice of parameters is made. More precisely, we use two parameters

describing how far in the past the agents should look to estimate future states. One

other contribution of Chapter 3 is that we derive (necessary and sufficient) conditions

on these two parameters, and we study the delay margin for consensus reaching. The

results we find have multi-faceted interpretations. The first important interpretation is

that the anticipation can improve performance in networks of interacting agents, but

when the agents try to anticipate too far in the future the system can diverge. This

interpretation is something that we would have expected: using very old information

can destabilize the system. However, a second important interpretation is that, in
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the case of directed networks, there is a non-trivial link between how far back in the

past the agents should look and the network topology. This is another difference when

compared to other consensus protocols in the literature: the condition for consensus

reaching in the case of undirected networks is necessary and sufficient, whereas for

directed networks it is not sufficient. We give simulation results from networks with

various topologies to show that the consensus convergence speed can be considerably

improved when using our algorithm (without changing the network topology, as in other

results from the literature). This improvement is especially notable in networks with

poor connectivity. One important contribution is that we find a formula for parameters

choice that guarantees ultrafast convergence speed for any type of networks, when using

the proposed algorithm. Moreover, we show that this choice is a local optimum in

terms of network performances, as it can guarantee a convergence speed corresponding

to an algebraic connectivity equal to 1. Additionally, we also discuss some interesting

observations on directed circulant networks’ eigenvalues: we consider some circulant

topologies and show that their Laplacian eigenvalues follow a specific pattern, depending

on the topology type. A part of these results has been published and presented at

two international conferences [6, 7], and another part is in preparation for a further

submission.

If we focus in the first part of this thesis on connected networks with fixed topology and

with normalized Laplacian, we also consider a theoretical study that can correspond, for

instance, to switching topology networks, with normalized Laplacian. When considering

such a network, we can end up with a disconnected graph. The number of connected sub-

graphs in a disconnected graph corresponds to the number of Laplacian zero eigenvalues.

This motivates the theoretical study on the bound of maximal multiplicity at the origin

in systems with time-delays, presented in Chapter 4. This study exceeds the networks

context, and the results can apply to a rather general class of systems with more than

one time-delay (but still, with a finite number of time-delays). The main contribution

relies on a derived formula for the theoretical upper bound of algebraic multiplicity of

the zero characteristic root. Moreover, when this bound is reached, algebraic conditions

on a system’s parameters are given. We compare our results to other results in the

literature. This comparison has two implications. First, it points out that the bound we

find is more precise and it cannot be exceeded. Second, the methods we use to derive the

bound formula are conceptually different (we basically use linear algebra techniques, and

not complex analysis) when compared to the other result. This work has been published

in a book chapter [8] and published and presented at an international conference [9].

If the Laplacian is not normalized, it can even have imaginary non-zero eigenvalues. We

address in Chapter 5 a more general problem, which can also concern networks, of double

imaginary characteristic roots in time-delay systems with two constant delays. This
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study partially solves some issues related to time-delay systems considered to be an open

problem since 2005. We focus on studying the multiple imaginary characteristic roots (of

multiplicity two, three and four) behaviour under a small perturbation of parameters.

The parameters can be the two delays, but also a delay and another parameter, or

two other system parameters. One important contribution of this work is that the

results can be extended and applied to a quite general class of systems, with or without

delays, even with distributed time-delays. The techniques involved rely on what is called

a geometric approach in the literature, whereas other results addressing this problem

in the time-delay systems community made use of Puiseux series. Another important

contribution is that we derive an algebraic criterion to decide whether the pair of complex

conjugated double roots move towards stability or instability under a small deviation

of parameters. In other words, we propose a criterion involving a limited number of

relatively simple computations (only partial derivatives of the quasi-polynomial with

respect to the parameters, up to the third order). We illustrate the proposed method on

various examples, and we even show how to extend this study to the case of imaginary

characteristic roots of multiplicity three and four. Moreover, for the double non semi-

simple roots case, we also compare the geometric approach we use to so-called algebraic

approach. We verify that the two approaches give coherent results, and discuss their

advantages and limitations, but also the open questions they raise. These results have

been published and presented at three international conferences [10–12], and part of the

work has been accepted for publication in Automatica journal.

The last part of this thesis focuses on a challenging interdisciplinary application of a

gene network, lying at the intersection of engineering and biochemistry. We design a

biochemical circuit made of genes that functions like a multiplexer. More precisely,

we propose a model of a gene network that reacts to three input signals by producing

either only one of two possible output signals, or none. This model is designed to be

integrated in a tiny cell (of a volume of a few femtolitres). The aim of a relatively

recent field called synthetic biology is to eventually connect several such cells into a

larger network with a more complex functionality. In this sense, the work presented

throughout Chapter 6 is a small piece in the puzzle. Nevertheless, the proposed model

exceeds in functionality and complexity other multiplexer models in the literature, where

only one type of output signal is produced. We study and analyze the stability of

the model, and we take into account the delays corresponding to the required time of

gene transcription and translation. One notable contribution, when compared to other

such circuits in the literature, is that we prove the uniqueness and the stability of the

steady states. To simulate and test the model, we use experimental parameter values

found in the literature. Even so, given the biochemical nature of the model, we also

do a parameter scan (similar to, but less rigorous than a robustness study) to check
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whether the circuit behaviour changes when a small perturbation occurs on any of the

relevant parameters. The model is described by using standard gene diagrams. The

deterministic model involves differential equations with time-delays. Nonetheless, the

biochemistry methodology requires a deterministic model validation by the stochastic

model, which implies 23 chemical reactions with 15 interacting species. This validation

opens the perspectives of an experimental bench setup. This work is in preparation for

a submission to an interdisciplinary journal, and preliminary results have been already

presented during a poster session at the University of Lethbridge.

1.4 Thesis outline

We give a set of definitions and notations used throughout all other chapters of this

thesis in Chapter 2. We introduce and analyze a new consensus model with delays

in Chapter 3. Chapter 4 focuses on the study of multiple characteristic roots at the

origin. Then, Chapter 5 extends this study to characteristic roots lying on the imaginary

axis, except the origin. A gene network application is presented in Chapter 6, where

we propose a multiplexer design. Finally, we discuss the extensions, perspectives and

general conclusions in Chapter 7.



Chapter 2

Definitions, notations and

prerequisites

Throughout this chapter we introduce a set of definitions, concepts and notations rel-

evant for other chapters of this thesis. More precisely, we give a non-exhaustive, but

necessary background for graph theory, time-delay systems and synthetic biology, and

discuss preliminary concepts used throughout the following chapters of the thesis.

2.1 Graph theory

We briefly review some relevant concepts and notations from graph theory. For details,

the reader is referred to standard texts such as [65] or [66].

A graph G can be defined by using a vertex set V and an edge set E. We view the edges

as a set of connections between the vertices. Graphically, a graph can be represented by

drawing a point for each vertex in the V set, and a curve joining the endpoints for each

edge in the E set. The corresponding notation is G = (V,E). A finite graph is a graph

where the V and E sets are finite. In this thesis, we consider finite graphs.

loops

Figure 2.1: Example of loops in a graph.

9
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multiple

edges

Figure 2.2: Multiple edges in a graph.

We say that two vertices in V set are adjacent when they are endpoints of an edge. The

elements of a square matrix called the adjacency matrix, usually denoted by A, indicate

whether a pair of vertices are adjacent or not. If two endpoints of an edge are the

same vertex, this is called a loop (see Figure 2.1). When the edges of the graph are not

uniquely determined by their endpoints, we call them multiple edges (see an example in

Figure 2.2). A graph having no loops or multiple edges is called a simple graph. In the

case of a simple graph, the adjacency matrix A has only 1 and 0 elements, with zero on

the diagonal. An example of such a graph is depicted in Figure 2.3.

A path is a simple graph whose vertices can be ordered such that two vertices are adjacent

if and only if they are consecutive in the ordering. A cycle is similar to a path, but where

a cyclic order on the vertices can be imposed such that the first vertex is also the last

vertex. A subgraph of a graph is also a graph defined by a subset of the larger graph

vertex set and a subset of the larger graph edge set. Note that the paths and the cycles

can be subgraphs of a given graph.

Figure 2.3: Example of a simple graph.

We say that a graph G = (V,E) is connected if for every u, v ∈ V there exist a

path from u to v in the graph. Otherwise, G is called disconnected. A walk is a

list v0, e1, v1, . . . , ek, vk of vertices and edges such that for 1 ≤ i ≤ k, the edge ei has

endpoints vi−1 and vi. A trail is a walk with no repeated edge. Note that a path is

a walk with no repeated vertices. When the first and the last vertex of a walk or a

trail are the same, we say that they are closed. A closed trail is also called a circuit

(see Figure 2.4). In the same spirit, we can see a cycle as a closed path, even if this

definition is not used in the literature, because by definition no vertex is repeated in

a path. Instead, we can call a trivial circuit a circuit that has a single vertex and no
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Cycles

Circuits

(closed trails)

Path

(no vertex is

repeated)

Trails (no edge is repeated)

Walks

Figure 2.4: A summary of walk, trail, path, circuit and cycle definitions.

edges, and define a cycle as a non-trivial circuit in which the only repeated vertex is the

first/last one. Figure 2.4 depicts a summary of these definitions: a walk is a sequence

of alternating vertices and edges; the trails set is a subset of the walks set, where no

edge is repeated; paths are a subset of the trails set (no vertex is repeated); the circuits

represent a subset of the trails (they are closed trails) and don’t intersect the path set

because at least one vertex is repeated; finally, cycles are a subset of the circuits, and

don’t intersect the paths subset, as they have only one repeated vertex.

Figure 2.5: Example of trees.

If a graph has any two of the following properties, it has all three.

1. the graph is connected.

2. the graph has no cycles.

3. |E|= |V |−1.

Therefore, any graph with any two of these properties is called a tree. Examples of trees

are depicted in Figure 2.5. A spanning tree of a graph is a subset of the graph that is

a tree and that has the same vertex set as the graph. A random graph is a graph in

which properties such as the number of graph vertices, graph edges, and connections

between them are determined in some random way. A complete graph is a simple graph
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where the vertices are pairwise adjacent. A few examples of complete graphs are given

in Figure 2.6.

Figure 2.6: Examples of complete graphs.

undirected

graph

oriented

graph

directed

graph

Figure 2.7: Example of an undirected, an oriented and a directed graph.

Depending on whether the edges are directed or not, we can have undirected graphs,

oriented graphs and directed graphs (also called digraph), as illustrated in Figure 2.7.

Note that in an undirected graph an edge is an unordered pair of vertices. An ordered

pair of vertices is called a directed edge. Edges in an oriented graph are directed edges

that can be traversed on only one direction. For directed graphs, the directed edges can

be traversed in one or two directions.

A graph G is called a bipartite graph (or a bigraph) if its vertices set can be decomposed

into two disjoint sets such that no two vertices within the same set are adjacent. Some

examples of bipartite graphs are given in Figure 2.8. A circulant graph is a graph of

n vertices in which the ith vertex is adjacent to the (i + j)th and (i − j)th vertices for

Figure 2.8: Examples of bipartite graphs.
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some fixed values of j. Note that if j takes values in {1, 2, . . . , n} set, then the graph is

a complete graph.

2.2 Time-delay systems

The delay concept models a physical transfer phenomenon, i.e. the transport or prop-

agation of energy, information or even material that take place when an interaction

between two physical systems occurs. The time-delay systems are also called systems

with aftereffect or dead-time of hereditary systems [67]. As many dynamic processes

contain this very aftereffect phenomenon, the worldwide engineers present a great inter-

est for investigating time-delay systems, provided that they need their models to fit as

much as possible with the real processes.

This type of systems’ modelling applies to many scientific areas like physics, mechanics,

biology, chemistry, economics or population dynamics, but there is a particular interest

for time-delay systems in the control engineering field.

Modeling

Time-delay systems of retarded type belong to the class of functional differential equa-

tions (FDE) which are infinite dimensional, opposing to ordinary differential equations

(ODE), which are finite. In physical processes modelling, a classical hypothesis assumed

is that we can predict the future behavior of a deterministic system by taking into ac-

count the present state of the system. But to some extent we can suppose that the past

states also affect the system future responses.

Thus, instead of an n-dimensional vector moving through Euclidean space Rn, in the case

of time-delay systems of retarded type the state vector is a function xt corresponding to

a past time-interval [t− τ, t] and not to a single discrete value of time t (as in the case

of ODEs).

A more rigorous mathematical approach for describing time-delay systems is by aid of

delay differential equations (DDE). This is a type of differential equation where the

derivative of the unknown function depends not only on present time and the unknown

variable at the present time, but also on the values of the function at previous times.

Generally, a delay differential equation is written as

d

dt
x(t) = f(t, x(t), xt), (2.1)
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where x(t) ∈ Rn and xt = {x(τ)|τ ≤ t} is the trajectory of the solution in the past.

Considering this general form, f is a functional operator mapping R × Rn × C into R.

We denote by C the Banach space of continuous functions [−τ, 0] → Cn with norm

‖φ‖ = sup−τ≤θ≤0 |φ(θ)|, where |·| is any norm in Cn.

The representation (2.1) corresponds to the case of time-delay systems of retarded type.

Even if it is beyond the scope of this thesis, we briefly mention the time-delay systems of

neutral type that involve a more complex mathematical approach, where the right-hand

side also contains the same highest derivative order for some components of x(t) at both

present time t or past times.

d

dt
x(t) = f(t, xt, ẋt, ut),

where, if x : [−τ, α] → Cn, α > 0, is a continuous function, then xt, ut ∈ C, 0 ≤ t ≤ α

are defined by

xt(θ) = x(t+ θ)

ut(θ) = u(t+ θ)
,

for −τ ≤ θ ≤ 0.

In the following paragraphs, we consider DDEs in which x(t) and x(t−τi) appear linearly,

giving time-delay systems of retarded type written as

ẋ(t) = A0x(t) +
m∑
i=1

Aix(t− τi), (2.2)

where the state variable at time t, x(t), has the dimension n and Ai ∈ Rn×n, i = 0,m

are real matrices. Generally, the time-delays τi are constants, but there is also a great

interest in systems with time-dependent delays τi(t) or state-dependent delays τi(t, x(t)).

Another case is the case where the delays are distributed over some delay interval.

Throughout this thesis, we simply suppose that the problem is non-singular, meaning

that the delays are constant and bounded by a maximal positive constant. Thus, in

the equation (2.2) we can consider that the time-delays τi, i = 0,m are distinct positive

numbers, sorted in ascending order (0 < τ1 < τ2 < · · · < τm). This case is studied into

more detail in Chapter 4.
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A general form for modelling linear, time-invariant (LTI) systems containing delays, as

written in [67], is

ẋ(t) =
∑q

l=1Dlẋ(t− τDl ) +
∑m

i=0(Aix(t− τi) +Biu(t− τi))

+
∑r

j=1

∫ t
t−τGj

(Gj(θ)x(θ) +Hj(θ)u(θ))dθ,

where the matrices Di corresponds to the neutral part, τ0 = 0, A0 represents the instan-

taneous feedback gain, the matrices Ai, i = 1,m represent discrete-delay phenomena and

the sum of integrals corresponds to distributed-delay effects, weighted by the matrices

Gj , j = 1, r over the time intervals [t− τGj , t]; Bi and Hj are input matrices, and u(t) is

the control signal.

Next we discuss the initial values problem and the spectral proprieties w.r.t. the equation

(2.2), i.e. we consider the retarded case (Dl = 0), where the time-delays are point-wise

or discrete, meaning that the memory effect is “selective” (Gj = 0). Note that there are

no input matrices (Bi = 0 and Hj = 0).

The initial values problem

Unlike the ODEs, in the case of DDEs the initial values x(t) is not enough so determinate

the solution for t ≥ 0. It is necessary to specify a history function, also called a segment

function, i.e. it is necessary to know x(t) for the interval τ ≤ t ≤ 0 for the DDE

to be defined for the interval 0 ≤ t ≤ τ . Thus, the initial condition for a time-delay

system of retarded type described by (2.2) is a history (or segment) function φ belonging

to a Banach space of continuous functions mapping [−τm, 0] into Rn, equipped with a

supremum norm defined as [68].

‖f(x)‖s = sup{|f(x)| : x ∈ C([τm, 0],Rn)}.

We consider the general form of a DDE

ẋ(t) = f(t, xt). (2.3)

A function x is said to be a solution on the interval [σ − τ, σ + a] of the (2.3), where

f is defined on a subset Ω of R × C with values in the n-dimensional state space,

f : Ω ⊂ R× C → Rn, if there exist σ ∈ R and a > 0 such that conditions

• x ∈ C([σ − τ, σ + a],Rn),
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• (t, xt) ∈ Ω,

• x(t) satisfies (2.3) for t ∈ [σ − τ, σ + a]

hold. A solution x(σ, φ, f) of (2.3) with initial values φ at σ is called a solution through

(σ, φ) if there is a positive a such that the following conditions are satisfied:

• x(σ, φ, t) is a solution of (2.3) on t ∈ [σ − τ, σ + a], a > 0,

• xσ(σ, φ, f) = φ.

Supposing that Ω is an open subset of R×C and f is a continuous function, f ∈ C(Ω,R),

we call x ∈ C([σ − τ, σ + α],Rn) with α > 0 a backward continuation of the solution

through (σ, φ) if

• xσ = φ and

• (σ1, xσ1) ∈ Ω and x is a solution of (2.3) on [σ1 − τ, σ] through (σ1, xσ1) for any

σ1ε[σ − α, σ], α > 0 [67].

Concerning the techniques involved for solving a system of DDEs, usually it is possible

to reduce the DDE to a sequence of ODEs and to adapt the methods used for solving

the initial values problem of ODEs. The method of steps [68], for example, is used to

build the solution step by step beginning with a given initial condition. The solution

on [0, τ ] (σ = −τ and a = 2τ) is computed using the function φ defined on [−τ, 0], by

solving the ODE

ξ̇1(t) = A0ξ1(t) +
m∑
i=1

Aiφ(t− τi),

with the initial condition ξ1(0) = x(0) = φ(0). The next iterations are based on the

same idea: at the kth step the evolution of (2.2) is determined by solving the ODE

ξ̇k(t) = A0ξk(t) +

m∑
i=1

Aiξk−1(t− τi),

with the initial condition ξk((k − 1)τ) = x((k − 1)τ) = ξk−1((k − 1)τ).

Finally a unique, globally defined forward solution of (2.2) is obtained, consisting of all

ξk defined on [(k − 1)τ, kτ ] with k > 0. It is obvious that if t increases, the solution

becomes smoother, since it is k-continuously differentiable on [(k − 1)τ, kτ ]. This also

applies to a backward continuation of the solution: the initial function φ can become

smoother, meaning for example p-continuously differentiable on [−τ, 0].
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This method guarantees by construction the existence and uniqueness of solutions. How-

ever, the existence of solutions is commonly proven using fixed point theorems [69].

Similar to ODEs, we can say that there is a solution as defined in (2.3) with initial

function φ at σ if f is continuous, belonging to the class C(Ω,R), where Ω is an open

subset in R × C. Moreover, if f(t, φ) is Lipschitz in φ for each compact set in Ω, then

the uniqueness of the solution is guaranteed.

2.2.1 Spectrum properties

The solutions of (2.2) are based on the characteristic equation

detM(s) = 0, (2.4)

where M(s) is the characteristic matrix, defined by

M(s) := sI −A0 −
m∑
i=1

Aie
−sτi . (2.5)

The spectrum σ(A) corresponds to the transcendental equation (2.4) that has an infinite

number of roots (called as in the finite-dimensional case characteristic roots), meaning

that #σ(A) =∞.

Similarly to the finite-dimensional case, a complex number s as an eigenvalue of A has

an algebraic multiplicity (the multiplicity as a root of the characteristic matrix M(s))

and a geometric multiplicity (the dimension of the nlsull space of M(s)). Moreover, an

eigenvalue is called simple if the corresponding algebraic multiplicity is one and multiple

otherwise. More precisely, a multiple eigenvalue is called semi-simple if its algebraic

multiplicity is (greater than 1 and) equal to its geometric multiplicity, and non semi-

simple otherwise.

Like in the finite-dimensional case, an eigenvalue of A, s ∈ σ(A), has a corresponding

eigenvector that can be either a right eigenvector u ∈ C\{0} corresponding to a right

eigenfunction uesθ, with θ ∈ [−τ, 0], such that

M(s)u = 0,

or a left eigenvector v 6= 0 corresponding to a left eigenfunction, such that

v∗M(s) = 0. (2.6)
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In other words, the maximal number of linearly independent eigenvectors corresponding

to a multiple eigenvalue is called geometric multiplicity of the eigenvalue.

If there is a single eigenvector corresponding to a multiple eigenvalue, then the eigen-

value is called nonderogatory. For instance, the nonderogatory case of zero eigenvalue,

s = 0, with algebraic multiplicity two and geometric multiplicity one is known as

Bogdanov-Takens singularity, and it has been extensively studied in the literature, in-

cluding in the models with time delays (see [70], [71], [9], [72], [73], [74]).

We denote by quasi-polynomial the left-hand side of equation (2.4), i.e. a function of

the form

q(s) =

n∑
i=1

pi(s)e
τis, (2.7)

where for 1 ≤ i ≤ n, pi(s) are polynomials of s with complex coefficients and τi are

complex numbers, also called the delays of the quasi-polynomial. Supposing that the

delays are distinct and the complex polynomials are not identically null, we call the

degree of the quasi-polynomial q(z) (see also [75]) the number:

deg q(s) := n− 1 +
n∑
i=1

di,

where di, for 1 ≤ i ≤ n represents the degree of pi(s) polynomial:

di = deg pi(s).

However, this thesis discusses real quasi-polynomials, that is the delays τi are real num-

bers such that

0 ≤ τ1 < τ2 < · · · < τn,

and polynomials pi with 1 ≤ i ≤ n have real coefficients.

A polynomial p(s) is called sparse if di << n, i.e. if most of its coefficients are zero.

Furthermore, we say that a quasi-polynomial q(s) is regular if all the polynomials pi(s)

in (2.7) have non-zero coefficients, i.e. ∀ pi(s) =
∑deg(pi)

k=0 aiks
k, with 1 ≤ i ≤ n and

∀ k = 0, . . . , deg(pi) the condition aik 6= 0 holds. Several other definitions can be

encountered in the literature describing sparsity. Among others, we mention the lacunary

polynomials [76].

When referring to spaces and subspaces, (but also manifolds and sub-manifolds, or

algebraic varieties and subsets) we define the codimension of a subspace Y in a space X
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as the difference between its dimensions:

codim(Y ) = dim(X)− dim(Y ).

The following definition is important, as it plays a crucial role in Chapter 5.

Definition 2.1. We say that the characteristic equation (2.4) (thus, the quasi-polynomial

(2.7)) has a multiple root s = s0 of multiplicity m if

∂kp

∂sk

∣∣∣∣
s=s0

= 0, for k = 0 . . .m− 1

∂mp

∂sm

∣∣∣∣
s=s0

6= 0.

In the sequel, we provide some examples illustrating the definitions and prerequisites

above. More precisely, we consider three finite dimensional cases where s1 = 1 is a

simple, non semi-simple, respectively, semi-simple root.

Example 2.1 (s1 = 1 simple eigenvalue). We consider the matrix

A =

(
0 −1

2 3

)
.

Its characteristic polynomial (the quasi-polynomial) is

q(s) = det(A− sI2) =

∣∣∣∣∣ −s −1

2 3− s

∣∣∣∣∣ = (s− 1)(s− 2).

Note that the root s1 = 1 has the algebraic multiplicity 1. Next, we find the eigenvectors

corresponding to s1 = 1, by writing(
−s1 −1

2 3− s1

)(
u1

u2

)
=

(
0

0

)
.

Therefore, the root s1 = 1 has the algebraic multiplicity 1 and the geometric multiplicity

also 1, since there is only one linearly independent (right) eigenvector, which is

u =

(
1

−1

)
.

Example 2.2 (s1 = 1 non semi-simple eigenvalue). Given the matrix

A =

(
1 1

0 1

)
,
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we solve the characteristic equations to find the characteristic eigenvalues and eigenvec-

tors. The characteristic polynomial can be written det(A− sI2) = (1− s)2; thus, s1 = 1

has the algebraic multiplicity 2. There is only one linearly independent (right) eigenvec-

tor corresponding to this eigenvalue, which is u =

(
1

0

)
. The geometric multiplicity is

1, different from the algebraic multiplicity, so in this case s1 = 1 is a non semi-simple

root.

Example 2.3 (s = 1 semi-simple eigenvalue). Consider that the matrix A is the

identity matrix

A =

(
1 0

0 1

)
.

The characteristic polynomial is the same as in Example 2.2, but here we find two linearly

independent (right) eigenvectors corresponding to s1 = 1. This means that the geometric

multiplicity of this characteristic root is 2, equal to its algebraic multiplicity. That being

the case, we call s1 = 1 a semi-simple root.

2.2.2 Geometric approach

Control systems often depend on parameters, such that their characteristic equation

may be written as

q(s, p) = 0, (2.8)

where s is the Laplace variable and p ∈ Rn is a vector of n parameters. We may have

parameters due to internal dynamics. For instance, modelling in physical, biological or

social sciences sometimes requires taking into account the time delays inherent in the

phenomena. Depending on the model complexity, but also on how much information

is known, we may choose a model with continuous constant delays, or a model with

distributed delays [77, 78]. For instance, in the case of a time-delay system with two

constant delays, the characteristic equation is written of the form

q1(s, τ1, τ2) = r0(s) + r1(s)e−τ1s + r2(s)e−τ2s, (2.9)

where rk(s), k = 0, 1, 2 are polynomials of s with real coefficients, and the delays τ1, τ2

are the two parameters.

Also common is the case when p contains controller parameters. Classical example are

PI, PD and PID controllers, where the continuous time domain controller is expressed
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in the Laplace domain as

q2(s) = KP

(
1 +

1

Tis

)
, (2.10)

q3(s) = KP (1 + Tds) , (2.11)

q4(s) = KP

(
1 +

1

Tis
+ Tds

)
, (2.12)

respectively, where KP is the proportional gain, Ti the integral time, and Td the deriva-

tive time. Furthermore, in many practical applications, a time delay of the process model

τm may be involved [79, 80]. These include proportional plus delay (2.13), integrator

plus delay model (2.14), first order lag plus delay (2.15), first order lag plus integral plus

delay (2.16) expressed below:

q5(s) = Km(1 + e−sτm) (2.13)

q6(s) =
Kme

−sτ

s
(2.14)

q7(s) =
Kme

−sτ

1 + sTm
(2.15)

q8(s) =
Kme

−sτm

s(1 + sTm)
(2.16)

If in equation (2.13) there are two different proportional gains, then we obtain the model

of a proportional retarded controller:

q9(s) = Kp +Kre
−sτm . (2.17)

Furthermore, [81] showed that proportional retarded controller outperforms a PD con-

troller on an experimental DC-servomotor setup. Obviously, any control among (2.10)

to (2.17) results in a characteristic equation that depends on the control parameters.

Many studies have been conducted on the stability of systems that depend on param-

eters. For example, for systems with a single delay as the parameter, methods of iden-

tifying all the stable delay intervals are given in [82] and [83]. For system with two

parameters, a rich collection of stability charts (the parameter regions where the system

is stable) for time delay systems are presented in [84]. For systems with two delays as

the parameters, a geometric approach is introduced in [62]. The analysis is based on

the continuity of the characteristic roots as functions of parameters (which needs to be

carefully evaluated in the case of time delay systems of neutral type [68, 85]), and con-

sists of identifying the parameters that correspond to imaginary characteristic roots and

judging the direction of crossing of these roots as parameters change. Such an analysis

is often known as D-subdivision method [86].
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Challenges due to non-differentiability arise when the imaginary roots concerned are

multiple roots. Such problems have traditionally been solved using Puiseux series [87,

88], see, for example, [89–91] for systems with one parameter.

In Chapter 5, we study systems with two delays, and the extension to two parameter-

dependent systems can be found in Chapter 7. More precisely, we present a method to

analyze the migration of roots in a neighborhood of the parameter corresponding to a

multiple imaginary characteristic root. The method of analysis uses traditional complex

analysis, and does not require Puiseux series. A preliminary version of this method,

which is restricted to the case of two delays as the parameters, was presented in [10].

2.3 Synthetic biology

Synthetic biology is a relatively recent interdisciplinary branch of biology and engineer-

ing. Even if its name has been first used at the beginning of twentieth century [92],

the first description close to our understanding of synthetic biology today was given by

Polish geneticist Wac law Szybalski in 1974 [93]. However, defining synthetic biologic is

a debatable topic even nowadays. Still, it is commonly accepted that the central aim

of synthetic biology is to design new biological components and systems that do not

already exist in the natural world, but also to re-design existing biological systems.

As mentioned in chapter 2 of [94], an important aspect of synthetic biology is the sys-

tematic design based on engineering principles such as modularity, characterization and

standardization. The modularity means the reduction of a biological device or system in

its component parts, also called bioparts. Each part need to be characterized in detail.

This means for instance that a biopart behaviour has to be rigorously studied under dif-

ferent conditions. The standardization means that these parts should be build so that

they can be easily combined into devices with well defined functions (e.g. logic gates).

Thus, new devices can be created from existing standard parts. Another concept widely

used in synthetic biology, as in control theory is referring to systems. One example of a

system realization in synthetic biology field is a counter [95], but researchers aim to be

able to build intracellular control functions in the future.

In order to engineer new biological systems, it is important not only to understand how

information flows in biological systems, but also how the information flow is controlled.

Biology has highly complex aspects, rather different when compared to engineering com-

plexity issues. A biological system is nevertheless different from an electrical circuit: it

can be subject to modifications based on natural selection, which is not the case of
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Figure 2.9: The central dogma of molecular biology.

printed circuit boards for instance. Still, a robustness study of biological systems is

relevant, even if under slightly different definitions and measure of robustness.

DNA (deoxyribonucleic acid) is the molecule that stores the biological systems infor-

mation (see chapter 1 of [94] and references therein). Its double-helical structure is

well-know, even by non-specialists. DNA structure contains two separate strands. Each

of the strands is actually a molecule formed by individual blocks (called nucleotides)

linked together. There are four different bases: A (adenine), G (guanine), C (cytosine)

and T (thymine). In order to understand how the information flows in biological sys-

tems, we need to know how the two strands interact. Geneticists know that each of the

four bases can only pair with one of the others. This gives a complementary feature that

allows the cell to always have two copies of the information stored by the DNA. Thus,

in case one strand is damaged, no information is lost.

The information flow in biological system is usually represented by the central dogma, as

depicted in Figure 2.9. The information is stored in the DNA. A message in DNA can

be transcribed into an intermediate messenger molecule called mRNA (messenger RNA

molecule), and then translated into the final product, which is the protein. Thus, we can

say that DNA stores the information, but the majority of cell functions are carried out

by proteins. The fundamental unit of hereditary information is called a gene. The basic

structure of a gene is depicted in Figure 2.10. Generally the final product of genes are

proteins, but there are genes that produces only some functional RNA molecules. The

transcription begins with the biding of the RNA polymerase complex to a special DNA

sequence at the beginning of the gene known as the promoter. The RNA polymerase

(RNAP) is basically the enzyme doing the transcription and making (with some help

from other molecules) the mRNA molecule from a strand of DNA. We typically have

regulation of transcription via interactions of proteins with the promoter of the DNA

sequence. The process that follows is called translation, in which the ribosomes in a

cell’s cytoplasm create the final product. Translation can be regulated by proteins or

RNAs that bind at or near the ribosome binding site of the mRNA. A protein (or
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Figure 2.10: The basic structure of a gene.

other functional molecule) is produced (or expressed) when the gene is turned on (its

promoter is activated). The gene does not produce anything when it is off. Note that

the ribosome binding site depicted in Figure 2.10 can inhibit or not the gene expression.

In other words, a molecule that will bind this site can either activate or to prevent the

expression of the gene.

Proteins perform a great deal of organism roles. They can form structural materials,

such as the spider silk or the nails and hair keratin; they can transform chemical energy

into mechanical energy (myosin in muscles); they can have regulation roles (the insulin

hormone regulates the sugar levels in blood). This remarkable repertoire of proteins’

properties and functions arises actually from a limited set of 20 amino acids (molecules

possessing an amine NH2 and a carboxylic acid COOH).

Knowing how the information flow is controlled in biological systems, means knowing

how the system responds to external signals and how much time they need to do so.

This is highly influenced by when a gene or a set of genes are expressed. In eukaryotes,

this can trigger the process by which cells specialise and become either skin cells, or

brain cells. In prokaryotes for instance, a bacterium can respond to external signals

by changing its gene expression pattern in response to new food sources. In a similar

manner, the aim of synthetic biology is to build new biological parts, devices or systems

that respond to external signals by producing a desired chemical compound.



Chapter 3

A smart consensus algorithm for

multi-agent systems

3.1 Chapter overview

In this chapter we introduce and analyze a delayed consensus algorithm as a model for

interacting agents using anticipation of their neighbors’ states to improve convergence.

The contribution of the proposed model mainly relies on the different nature of the delays

used in the model, namely the anticipatory nature: every agent in the network uses past

information to estimate future states of its neighbours. Other models in the literature

include delays coming form other sources, as information transmission or information

processing delays. We analyze the proposed model for directed and undirected networks

of all type of fixed topologies, and derive conditions for the systems to reach consensus.

We explicitly calculate the dominant characteristic root of the consensus problem as a

measure of the speed of convergence.

Another important contribution of this chapter is that we illustrate how choosing the

model parameters can be critical for consensus reaching. We give simulation results

from networks with various topologies and show that the speed of consensus can be

dramatically improved, especially in networks with poor connectivity. Moreover, we

show how the two parameters of the proposed model can be chosen to guarantee an

ultrafast convergence speed for any type of network, and prove that this choice is even

a local optimum in terms of network performances.

Part of the research presented in this chapter was carried out during a visit to Max

Planck Institute for Mathematics, Leipzig, Germany, during the summer of 2015, under

financial support from DAAD Research Grant. Part of the work (the case α = 1) has

25



Chapter 3. A smart consensus algorithm for multi-agent systems 26

been published and presented at two international conferences [6, 7], and another part

of the work (the general case, where α 6= 1, together with Sections 3.5 and 3.6) are in

preparation for a further submission.

3.2 Problem statement

Consensus problems arise in a wide range of applications in distributed computing [96],

management science [31], flocking and swarming theory [97], distributed control [17],

and sensor networks [35], among others. In these applications, multi-agent systems

interact to agree on a common value for a certain cooperative behaviour. The interaction

rule that specifies the information exchange between the agents is called the consensus

protocol or consensus algorithm. The consensus problem on networks in continuous time

can be formulated as

ẋi = ui(t), i = 1, . . . , n, (3.1)

where n is the number of agents in the network, xi ∈ R is the state of the agent i at time

t, which changes under the interaction with other agents as described by the consensus

protocol ui(t).

Definition 3.1. The system (3.1) is said to reach consensus if for any set of initial

conditions {xi(0)} there exists c ∈ R such that

lim
t→∞

xi(t) = c

for all i, in which case the number c is called the consensus value.

In the classical linear case, the consensus protocol typically has the form

ui(t) ∼
n∑
j=1

aij(xj(t)− xi(t)). (3.2)

where aij are nonnegative numbers describing the strength of the influence of agent j on

agent i. It can be shown, under certain conditions regarding the network connectivity,

that the system (3.1) under the protocol (3.2) reaches consensus from arbitrary initial

conditions. There are several consensus protocols studied in the literature, some of

them including delays from different sources (transmission delays, information processing

delays).

In this chapter, we study another delayed consensus protocol where the delay comes

from a quite different source, namely from the anticipatory nature of the agents. In

other words, we consider a network of intelligent agents who try to anticipate the future



Chapter 3. A smart consensus algorithm for multi-agent systems 27

states of their neighbors in their interaction, which is a common situation, for instance,

in economic systems.

We therefore consider an anticipatory algorithm of the form

ui(t) ∼
n∑
j=1

aij(x̂j(t+ δ)− xi(t)), (3.3)

where x̂j(t + δ) is the anticipated state of the neighbor xj at some time (t + δ) in the

future. In other words, every node in the network will adjust its state by anticipating

its neighbors’ states, based on the present and past states. Note that aij = aji in the

case of undirected networks, i.e. the communication is bidirectional between every two

interconnected nodes in the network in this case.

Obviously, the future state of a node is an unknown, and we need a mechanism to

estimate it. One possible solution for the agents is to use a first order estimation derived

from past observations (we say that they employ memory), as follows. Agent i, knowing

the current state xj(t) of a neighbor j and remembering its past state xj(t− τ) as well,

uses a first-order estimation to get the future state x̂j(t+ δ) by linear extrapolation:

x̂j(t+ δ) = xj(t) +
xj(t)− xj(t− τ)

τ
δ

= (1 + α)xj(t)− αxj(t− τ), (3.4)

where

α =
δ

τ
. (3.5)

The idea is graphically summarized in Figure 3.1. By comparison, the classical consensus

algorithm (3.2) can be viewed as a zero-order estimation where an agent’s expectation

of the short-term future of its neighbors is represented simply by the present states,

x̂j(t+ δ) = xj(t).

Substituting (3.4) into (3.3), we obtain the consensus algorithm

ui(t) ∼
n∑
j=1

aij [(1 + α)xj(t)− αxj(t− τ)− xi(t)], (3.6)

on which we focus in the sequel. More precisely, in this chapter we study the convergence

of the following consensus problem

ẋi(t) =
1

di

n∑
j=1

aij [(1 + α)xj(t)− αxj(t− τ)− xi(t)], (3.7)
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first-order estimate
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Figure 3.1: Estimating the future state xj(t + δ) of an agent j from its present and
past states.

where aij ≥ 0 ∀i, j and di =
∑n

j=1 aij is the (generalized) degree of node i. Dividing

the summation by the degrees di gives rise to a normalized Laplace operator, which is a

natural choice in several applications and has some advantageous properties, as will be

briefly reviewed in Section 3.3. In particular, the normalization bounds the spectrum of

Laplacian regardless of the network size, thus allowing comparison of networks of very

different sizes.

Equation (3.7) is a delay differential equation; however, the source of the delay and the

form of the resulting equation is quite different here from the existing literature. For

example, in the well-known delayed consensus protocol considered in [33], namely

ui(t) ∼
n∑
j=1

aij (xj(t− τ)− xi(t− τ)) , (3.8)

the delay can be viewed as modeling delayed information processing, since the protocol

feeds back the same information
∑

(xj − xi) to the system, as in (3.2), but only after

a delay τ ≥ 0. In this case, it is known that there exists an upper limit τmax such

that the system (3.1) under the protocol (3.8) reaches consensus from arbitrary initial

conditions if and only if τ < τmax [33]. Another type of interaction, which models delayed

information transmission, is given by the consensus protocol [57, 58, 98, 99]

ui(t) ∼
n∑
j=1

aij (xj(t− τ)− xi(t)) . (3.9)

Here the interpretation is that the information coming from a neighbouring node j takes

some time τ to reach site i. It was shown that the system (3.1) under the protocol (3.9)

reaches consensus from arbitrary initial conditions regardless of the value of the delay τ

as long as the network contains a spanning tree [57, 99].
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As mentioned above, in both (3.8) and (3.9), the delay τ is imposed by system con-

straints. By contrast, the delay in (3.7) comes from a quite different source, namely

from the anticipatory nature of the agents. As such, τ in (3.7), together with α, is to be

seen as a design parameter. Note that the anticipative consensus protocol (3.6) reduces

to the classical undelayed case (3.2) by setting either α = 0 or τ = 0, whereas putting

α = −1 yields the consensus protocol under signal transmission delay (3.9).

In this chapter, we consider (3.7) for general α, τ ∈ R+. We investigate if and under

what conditions the system (3.7) can reach consensus from arbitrary initial states, and

furthermore, whether the introduction of a positive τ , namely anticipation, really brings

any advantages into the consensus dynamics. Nevertheless, we note that system (3.7)

is still described by delay-differential equations and its analysis is subject to the same

difficulties one faces in studying infinite-dimensional systems on Banach spaces.

3.3 Preliminaries

We briefly present some concepts and notations from graph theory, relevant for this

chapter. For more details, the reader is referred to standard texts such as [65] or [66].

Let G = (V,E) be a directed graph with a finite set V of vertices and a set of directed

edges E ⊂ V × V consisting of ordered pairs of vertices. We denote by A = [aij ] the

(weighted) adjacency matrix of the graph, where aij > 0 if there is a link from j to i,

and aij = 0 otherwise. For a network with n agents, A is a square matrix of dimension n

and aij describes the strength of the influence of agent j on agent i. Note that aij = aji

∀i, j in the case of undirected networks, which means that A is a symmetric matrix.

The in-degree di of node i is defined as di =
∑n

j=1 aij , i.e., the sum of the elements

of the ith row of A, and D = diag(d1, . . . , dn) denotes the diagonal degree matrix. We

consider simple non-trivial graphs without self-loops; in particular, di is assumed to be

nonzero for all i.

The normalized Laplacian matrix is defined as

L = I −D−1A, (3.10)

where I denotes the identity matrix. The normalized Laplacian naturally arises in a

class of important problems, in particular in random walks on networks, as D−1A is

the transition matrix for probability distributions arising from such walks [65]. The

eigenvalues {λi} of L lie in the unit-diameter disc centered at 1 on the complex plane,
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that is,

|1− λk|≤ 1, k = 1, 2, . . . , n, (3.11)

which can be seen by an application of Gershgorin’s circle theorem (see e.g. [100]).

The sum of each row of L equals zero by the definition of in-degree di; hence, L al-

ways has a zero eigenvalue, which we denote by λ1, corresponding to the eigenvector

v1 = (1, 1, . . . , 1)>.

The eigenvectors of L form a complete set that span Rn, and the eigenvalues λi are real

numbers and can be ordered as

0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2.

The second eigenvalue λ2, which is also called the spectral gap, is positive if and only if

the graph is connected. In fact, the multiplicity of the zero eigenvalue equals the number

of connected components of the graph. In a connected graph, λ2 gives an indication of

how difficult it is to disconnect the graph into two large pieces by removing a small

number of edges, and is thus directly related to graph connectivity.

Remark 3.2. Among undirected networks, only complete graphs have all their eigenval-

ues (except λ1) greater than 1, i.e. λ1 = 0 and λ2 = · · · = λn = n
n−1 > 1 where n is the

number of nodes in the network [65].

In matrix form, (3.7) becomes

ẋ(t) = D−1A[(1 + α)x(t)− αx(t− τ)]− x(t), (3.12)

with x = (x1, x2, . . . , xn)>. For simplicity, we make the standing assumption that L has

a complete set of eigenvectors {vk}, a condition which generically holds for matrices in

Rn×n. Then we can write x(t) =
∑n

k=1 uk(t)vk for some scalar coefficients uk, which

transforms (3.12) into a system of n decoupled scalar equations

u̇k(t) = [(1− λk)(1 + α)− 1]uk(t)− α(1− λk)uk(t− τ), k = 1, . . . , n. (3.13)

The characteristic equation corresponding to the eigenmode (3.13) is

ψk(s) := s− (1 + α)(1− λk) + 1 + α(1− λk)e−sτ = 0. (3.14)

Consequently, the characteristic equation for the whole system (3.12) can be written as

Ψ(s) :=

n∏
k=1

ψk(s) = 0. (3.15)
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The linear equation (3.13) has solutions of the form est corresponding to characteristic

roots s of (3.15). Note that s = 0 is always a characteristic root for the first factor

ψ1(s) = s−α+αe−sτ corresponding to the first eigenmode, λ1 = 0. Thus, points on the

synchronization subspace spanned by v1 = (1, 1, . . . , 1)> can be at best neutrally stable.

If that is the case, and in addition limt→∞ uk(t) = 0 for all k ≥ 2, then the system

converges to a point on v1, i.e. it reaches consensus, from arbitrary initial conditions.

This clearly happens if and only if zero is a simple root of Ψ and all other roots of Ψ

have negative real parts. Moreover, in this case the speed of convergence from general

initial conditions depends on the slowest of these modes uk, k ≥ 2. Hence, we factor

(3.15) into directions along and transverse to the synchronization subspace span(v1) as

Ψ(s) = ψ1(s)Ψ̃(s), where

Ψ̃(s) :=
n∏
k=2

ψk(s), (3.16)

and use the transverse part to quantify the speed of convergence, which motivates the

following definition.

Definition 3.3. The number s∗ ∈ C is called the dominant transverse root of the

consensus algorithm (or dominant root, for short) if Ψ̃(s∗) = 0 and all roots s of Ψ̃

satisfy Re(s) ≤ Re(s∗).

Note that zero is simple root of ψ1 and all its other roots have negative real parts.

Although s∗ may not be unique, its real part is unique and essentially determines the

speed of convergence to consensus in case it is negative.

When τ = 0, system (3.7) reduces to the classical consensus problem (3.1)–(3.2), and

the characteristic equation (3.15) reduces to

Ψ(s) =
n∏
k=1

(s+ λk); (3.17)

whose roots are directly given by the negative Laplacian eigenvalues. In particular, the

dominant root equals the negative of the eigenvalue having the smallest real part, among

the set {λk}k≥2. Note that Re(λk) = 0 if and only if λk = 0, by (3.11). Hence, reaching

consensus under the undelayed protocol (3.2) is possible if and only if the following

condition is satisfied.

(H) Zero is a simple eigenvalue of the Laplacian matrix L.

Condition (H) is a requirement on the connectivity of the network. In fact, for undirected

networks, i.e., when aij = aji ∀i, j, the eigenvalues λk of L are all real and can be ordered

as
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0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2.

Thus, condition (H) is equivalent to λ2 > 0, which is a well-known necessary and suf-

ficient condition for the network to be connected. In fact, the second eigenvalue λ2,

which is called the algebraic connectivity of the graph, is also a quantitative measure of

how well the network is connected [101]. Since the slowest mode e−λ2t determines the

speed of convergence to consensus, we have a direct relation between consensus speed

and graph connectivity in the undelayed/non-predictive case (3.2). Note that λ2 can

be arbitrarily small even if the network is connected, so consensus can be a very slow

process depending on the connection structure.

In this chapter we study the conditions under which the predictive consensus algorithm

(3.7) can yield much faster convergence independent of the network structure, and we

show how to choose appropriate values for the design parameters α and τ to achieve

this.

3.4 Convergence of the consensus algorithm

We begin this section by some observations on the roots of a certain complex function.

We introduce here some results on the roots of the complex function

ψ(s) = s− β
(
1− e−s

)
, β ∈ C, (3.18)

that are used in the proofs of results in subsections 3.4.1 and 3.4.2.

When β is real, ψ(s) becomes a special case of the function

ψ̃(s) := s− a1 − a2e
−s, a1, a2 ∈ R, (3.19)

which has been studied in the classical paper of Hayes [102]. The properties for (3.19)

are therefore well-known; here we recall the stability region depicted in Figure 3.2. In

particular, for the parameter values on the semi-infinite line L = {a1, a2 : −a2 = a1 < 1}
in the figure, ψ̃ has a simple root at zero (except for the intersection point with the curve

C), and all its remaining roots have negative real parts. The next lemma extends this

observation to the function (3.18) with a complex parameter β.



Chapter 3. A smart consensus algorithm for multi-agent systems 33

a
1

-2 -1 0 1 2 3

a 2

-3

-2

-1

0

1

2

L

C

Stable
region

Figure 3.2: The stability region of the function ψ̃ given in (3.19) in the parameter
space.

Lemma 3.4. The function ψ given in (3.18) has a simple root at zero and all its other

roots have negative real parts if and only if

β < 1 (3.20)

if β ∈ R, or

Re(β) < Im(β) cot(Im(β)) (3.21)

if Im(β) 6= 0.

Proof. Clearly ψ(0) = 0; so zero is always a root of ψ. Moreover, ψ′(0) = 1 − β is

nonzero if and only if β 6= 1, in which case zero is a simple root. For β ∈ R, one has

a special case of (3.19) with a1 = −a2 = β, for which the condition (3.20) follows from

considering the line L in Figure 3.2, as mentioned above. Now for β ∈ C, knowing that

the statement of the lemma holds on the ray R := {Im(β) = 0 and Re(β) < 1}, we

check roots crossing the imaginary axis as β is varied in the complex plane. Thus, we

let s = iω in equation (3.18), noting that ω 6= 0 provided β 6= 1. Separating the real

and imaginary parts gives

− Re(β) + Re(β) cosω + Im(β) sinω = 0

ω − Re(β) sinω + Im(β)(cosω − 1) = 0.

Since (cosω − 1) 6= 0, from the first equation we can solve for Re(β) and substitute it

into the second equation, obtaining Im(β) = ω
2 , and Re(β) = ω sinω

2(1−cosω) . This gives the
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Figure 3.3: The locus of numbers β ∈ C satisfying condition (3.18) is the open set
enclosed by the blue curve.

explicit curve on the complex plane described by

Re(β) =
Im(β) sin(2 Im(β))

1− cos(2 Im(β))
= Im(β) cot(Im(β)), (3.22)

which is depicted in Figure 3.3. It can be seen (for instance by taking the limit

Im(β)→ 0) that this curve encloses the ray R defined above, on which the statement

of the lemma was shown to hold. Hence for the values of β described by the condition

(3.21), all roots of ψ have negative real parts except for a simple root at zero.

3.4.1 Undirected networks

We can now state a convergence result for the consensus problem (3.7) in undirected

networks.

Theorem 3.5. The system (3.7) defined on a connected undirected graph reaches con-

sensus from arbitrary initial conditions if and only if

ατ < 1. (3.23)

Proof. To begin with, we show that the characteristic equation (3.15) has a simple root

at zero and all the remaining roots have negative real parts if and only if condition (3.23)

holds. Consider first the roots of the first factor ψ1(s) = s− α + αe−sτ in (3.15). By a

change of variable s′ = sτ , we can equivalently consider the roots of

ψ̂1(s′) = s′ − τα+ ταe−s
′
.
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Lemma 3.4 gives that ψ̂1, and therefore ψ1, has a simple root at zero and all the other

roots have negative real parts if and only if (3.23) holds. It then suffices to show that all

roots of the remaining factors ψk, k = 2, . . . , n, in (3.15) have negative real parts under

condition (3.23). We note that the roots s of ψk satisfy

s = ak + bke
−sτ , (3.24)

with

ak = (1 + α)(1− λk)− 1

bk = −α(1− λk).

(3.25)

(3.26)

For τ = 0, (3.24) reduces to

s = ak + bk = −λk < 0 for k ≥ 2, (3.27)

and the roots are on the open left complex plane. We next look for roots that may cross

the imaginary axis as τ is increased from zero. Letting s = iω, ω ∈ R, the imaginary

part of (3.24) gives

ω = −bk sin(ωτ).

Therefore,

|ω|= |bk sin(ωτ)|≤ |bk ωτ |. (3.28)

Notice from (3.24) and (3.27) that ω 6= 0. Hence, dividing (3.28) by |ω|,

1 ≤ |bkτ |= |ατ(1− λk)|≤ ατ,

where we have substituted for bk from (3.26) and used (3.11). This shows that, as long

as condition (3.23) holds, no roots can cross the imaginary axis, and so all roots of ψk

for k = 2, . . . , n have negative real parts. This completes the proof of the theorem.

The performance of the consensus algorithm depends on the transverse dominant root

of the problem, as defined in Definition 3.3. We use Lambert W function to solve for

the characteristic roots.

Recall that the Lambert W function is defined as the inverse function of the mapping

z 7→ zez,

f(z) = zez

for z ∈ C [103]; in other words, W (z) satisfies

W (z)eW (z) = z. (3.29)
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Since f is not one-to-one, W (z) is multi-valued. We let W0 denote the principal branch

of the Lambert function.

Proposition 3.6. The root of the characteristic equation (3.14) having the largest real

part is given by

s =
1

τ
W0(τbke

−akτ ) + ak, (3.30)

where W0 is the principal branch of the Lambert W function and ak and bk are defined

in (3.25)–(3.26). Consequently, the dominant transverse root of the consensus problem

equals

max
2≤k≤n

{
1

τ
W0(τbke

−akτ ) + ak

}
. (3.31)

Proof. As seen in the proof of Theorem 3.5, the roots of ψk satisfy equation (3.24),

which can be re-written as

s− ak = bke
−(s−ak)τe−akτ .

A change of variables s′ → (s− ak)τ gives

s′ = τbke
−akτe−s

′
,

from which, by the definition (3.29) of Lambert function, we immediately have s′ =

W (τbke
−akτ ). Going back to the original variable s shows that the roots of ψk are given

by

s =
1

τ
W (τbke

−akτ ) + ak, (3.32)

It follows by a recent result from [104] that the root with largest real part is given by the

principal branch of the Lambert function, which establishes (3.30). Then, Definition 3.3

and the fact that the eigenvalues of the normalized Laplacian matrix L are real numbers

imply (3.31).

Using Proposition 3.6 and equation (3.30), we calculate the dominant root for any eigen-

mode (3.13) of system (3.7) corresponding to a generic Laplacian eigenvalue λ. This

gives a universal map of the dominant roots of the consensus problem (3.7) for any

graph topology and delay value, which is depicted in Figure 3.4 for the case α = 1.

Note that this result can be depicted for every possible generic value of eigenvalues, λ,

as we can solve the characteristic equation of the system in view of (3.32), taking into

account different values of the delay τ .
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Figure 3.4: Map of the dominant characteristic root of eigenmodes corresponding to
a generic Laplacian eigenvalue λ and delay value τ for the case α = 1. The colour
represents the real part of the dominant root of a factor (3.14) of the characteristic
equation. The region above the black line corresponds to the case when there is a root
with positive real part. Note that, since zero is always an eigenvalue of the Laplacian
in every network and α = 1, the condition τ < 1 actually defines the region for reaching

consensus, in accordance with Theorem 3.5.

In the color map of Figure 3.4, lighter colors correspond to more negative real parts for

the roots. Hence we note, from the change in color as we move vertically upwards from

the horizontal axis, that a positive value of τ can indeed improve convergence speed for

a given eigenmode.

In Section 3.5 we confirm this observation through actual simulation of several networks.

3.4.2 Directed networks

Unlike the case of undirected networks, the condition (3.23) is not sufficient for con-

sensus in directed networks. The distinction clearly lies in the fact that the Laplacian

eigenvalues are real for undirected networks but not necessarily for directed ones. It

is therefore of interest to have some understanding of the network structures and the

corresponding Laplacian eigenvalues that give rise to reduced delay margins1. We take

up this task in the sequel: we state a necessary condition for consensus, which serves as

1 Roughly speaking, we define here the delay margin as the maximum delay value in the proposed
model (3.7), guaranteeing the consensus reaching.
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an upper bound for the delay margin. This necessary condition is given by the following

theorem.

Theorem 3.7. The inequality

ατ < 1 (3.33)

is a necessary condition for (3.7) to reach consensus from arbitrary initial conditions.

In other words, the delay margin for the stability of consensus in (3.7) is at most 1
α .

Proof. Consider the first factor ψ1(s) = s− (1−λ1)(1−α) + 1 +α(1−λ1)e−sτ in (3.15),

where λ1 = 0. Since ψ1(0) = 0 and ψ′1(0) = 1− ατ , zero is always a root of ψ1 and is a

simple root unless ατ = 1. For ατ > 1, on the other hand, ψ1 is unstable; in fact, it has

a real and positive root, which can easily be seen by plotting the real functions α − s
and αe−sτ and observing that they must intersect at a positive value of s if ατ > 1.

Therefore, (3.33) is a necessary condition that ψ1, and hence the characteristic equation

(3.15), has a simple zero root and all the remaining roots have strictly negative real

parts.

As we have seen in Subsection 3.4.1, the root having the largest real part is given by

the principal branch W0 of the Lambert function. Hence, for the stability of (3.14) it

suffices to calculate

s =
1

τ
W0(τbe−aτ ) + a,

and check whether its real part is negative.

As a first step in numerical investigations, we randomly generate complex numbers λ

satisfying

|1− λ|≤ 1 (3.34)

and check the stability of (3.14) using (3.30) for the range of delay values τ ∈ (0, 1) with

α = 1. The results of the experiment are shown in Figure 3.5 for one million randomly

generated λ. It can be seen that only a small fraction of λ actually yield an unstable ψ.

To gain further insight into the nature of instability, we plot in Figure 3.6 the location of

the stable and unstable Laplacian eigenvalues λ in the complex plane. As expected, for

sufficiently small delays consensus is stable, and as the delay increases, two regions of

unstable eigenvalues (shown with red color) grow from the circle boundary, eventually

meeting at λ = 0 as τ ↑ 1 (Figure 3.6 (a) through (d)). The value τ = 1 is the upper

value of allowable delay for any network, since at this value the characteristic equation

(3.14) has a double zero root (see Theorem 3.7 and its proof).
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Figure 3.5: Fraction of complex numbers λ that make the characteristic equation
(3.14) unstable, from among 106 randomly selected complex numbers inside the shifted

unit circle (3.34).

At first it might appear from Figures 3.5–3.6 that most networks would have a delay

margin equal to 1, when we fix α = 1. While this is true in a certain sense, a class of

networks commonly used in the literature does turn out to belong to the exceptional

unstable category. In Subsection 7.1.1, we investigate in detail these networks that have

a poor delay tolerance.

In the sequel, we have chosen two networks to show that condition (3.33) is only nec-

essary, but not sufficient for the directed networks case. We set α = 1, τ = 0.8 and

choose two different topologies: an Erdös-Rényi random oriented graph generated using

the probability p = 0.06 and a cyclic oriented network where the arrows direction is

counterclockwise. Both networks have 50 nodes and same initial conditions. Figure 3.7

shows the comparison of standard deviation (classical protocol (3.2) in dashed line vs.

the proposed protocol (3.7) in continuous line) for both networks. We remark that for

the same value of τ the first network converges under protocol (3.7), whereas the second

network does not reach consensus.

To sum up, Figures 3.7(a) and 3.7(b) show that for the same values of τ and α satisfying

condition (3.33) the proposed algorithm might converge or not, function of the network

topology. This is not the case for undirected networks. In other words, choosing the

values for τ and α is a very important for consensus reaching. Next section gives us some

insights about an efficient way to choose the two parameters in order to reach consensus

with a certain speed.
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(a) τ = 0.65 (b) τ = 0.75

(c) τ = 0.85 (d) τ = 0.99

Figure 3.6: Values of random complex numbers λ inside the shifted unit circle, colored
according to the stability of the characteristic equation (3.14). Red points represent
unstable values and blue points represent stable values of λ, shown for four different

values of the delay.

3.5 Ultrafast consensus with predictive algorithm

This section puts some light on one of the main advantages of the proposed model. We

show that by well choosing τ and α, we not only avoid instability, but also guarantee

a very fast convergence speed for any network. More precisely, the convergence speed

corresponds to λ2 = 1, for τ chosen equal to

τ∗ := ln

(
1 + α

α

)
. (3.35)

Theorem 3.8. Let α ∈ R+ and choose τ = τ∗, as defined in equation (3.35). Then

the characteristic equation (3.15) has a root s = −1. Moreover, all characteristic roots

satisfy Re(s) ≤ −1 (we say that s = −1 is the “dominant root” and it corresponds to

τ = τ∗) if and only if the connected network has all eigenvalues satisfying
λk > 1− 1

(1+α) ln( 1+α
α

)
if Im(λk) = 0

Re(λk) > 1− Im(λk) cot
[
Im(λk)(1 + α) ln

(
1+α
α

)]
if Im(λk) 6= 0

. (3.36)
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(a) Erdös-Rényi random oriented graph generated with the prob-
ability p = 0.06.
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(b) Cyclic oriented network.

Figure 3.7: Standard deviation function of time in the case of classical consensus
problem (dashed line) and algorithm (3.7) with α = 1 and τ = 0.8 (continuous line) for

a directed network with 50 nodes.

Proof. Put τ = τ∗ in one factor of the characteristic equation (3.15):

Φk(s) = s− (1− λk)(1 + α) + 1 + α(1− λk)
(

1 + α

α

)−s
.

Evidently, Φk(−1) = 0, meaning that s = −1 is always a real root of the characteristic

equation (3.15). In order to prove the second part of the theorem we consider s′ = s+1.

Clearly, Re(s) ≤ −1⇔ Re(s′) ≤ 0. We write Φk(s
′−1) = 0 as s′−(1−λk)(1+α)+α(1−

λk)
(

1+α
α

)1−s′
= 0, which means s′ + (1 − λk)(1 + α)

[
−1 +

(
1+α
α

)−s′]
= 0. We replace(

1+α
α

)−s′
by e− ln( 1+α

α )s′ in the last equation, and we change the variables in order to

obtain s′+ ln
(

1+α
α

)
(1−λk)(1 +α)(−1 + e−s

′
) = 0. This is nothing else but an equation

of the form (3.18), with β = ln
(

1+α
α

)
(1−λk)(1 +α). So we can use Lemma 3.4 and say
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that Re(s′) ≤ 0 when condition (3.20) hold for undirected networks, and when condition

(3.21) holds for directed networks.

For λk with Im(λk) = 0, we can rewrite condition (3.20) of the form of the first equation

of (3.36). This applies to real eigenvalues of directed networks and to all eigenvalues of

undirected networks. As for the directed networks where ∃λk such that Im(λk) 6= 0, the

condition (3.21) of Lemma 3.4 can be written of the form

(1 + α)(1− Re(λk))τ
∗ < −(1 + α) Im(λ)τ∗ cot (−(1 + α) Im(λk)τ

∗) .

As τ∗ > 0, we can cancel it without changing the sign. Then, taking into account the

odd parity of function cot, we obtain exactly the second relation of (3.36).

Corollary 3.9. Let α ∈ R+ and choose τ = τ∗, as defined in equation (3.35). Then the

characteristic equation (3.15) has a root s = −1. Moreover, if and only if the undirected

network has all eigenvalues satisfying

λ2 > 1− 1

(1 + α) ln(1+α
α )

, (3.37)

then all characteristic roots satisfy Re(s) ≤ −1 (we say that s = −1 is the “dominant

root” and it corresponds to τ = τ∗).

Proof. Since in the case of an undirected network the normalized Laplacian L has all the

eigenvalues real numbers between 0 and 2, with 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn, we can

conclude that for any given connected undirected network by choosing τ = τ∗ we get

s = −1 the dominant root of the characteristic equation (3.15) if and only if condition

(3.37) holds.

Theorem 3.10. Let τ = τ∗, as defined in equation (3.35). If zero is a simple eigen-

value of the normalized Laplacian L, then we can always find α > 0 satisfying (3.36)

∀k ≥ 2, such that the characteristic equation (3.15) has all characteristic roots satisfying

Re(s) ≤ −1 (we say that s = −1 is the “dominant root” and it corresponds to τ = τ∗).

Proof. Using l’Hôpital rule we remark that

lim
α→∞

(1 + α) ln

(
1 + α

α

)
= 1. (3.38)

In the case of undirected networks, this means that α > 0 can be as large as we need,

since condition λk > 0 always holds ∀k ≥ 2. We can conclude thus that for any given
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Figure 3.8: Right-hand side of (3.37) as a function of α.

connected undirected network by choosing τ = τ∗ we get s = −1 the dominant root of

the characteristic equation (3.15) if and only if the first condition of (3.36) holds.

For the case of directed networks, given equation (3.38), we can see that α > 0 can be

chosen as large as we need if all Laplacian eigenvalues λk satisfy

Re(λk) > 1− Im(λk) cot(Im(λk)). (3.39)

We do a change of variables λ′ = λ− 1 = σ + iω. Then equation (3.39) can be written

as σ > −ω cot(ω). Assume, without loss of generality, that ω > 0. This means that

ω cot(ω) > 0. If σ < 0, condition ω cot(ω) > σ is immediately satisfied. On the other

hand, if σ > 0, instead of condition (3.39) we can check condition ω2 cot2(ω) > σ2. The

fact that the eigenvalues are in the unit circle is translated into the inequality σ2+ω2 ≤ 1.

So we can write σ2 ≤ 1−ω2. But because we assumed ω > 0, we have |ω|
|sin(ω)| > 1, which

leads to 1−ω2 < ω2 cot2(ω). This means that condition (3.39) is true for all eigenvalues

of the normalized Laplacian. Thus, we conclude by saying that if we set τ = τ∗, for any

given directed network we can always choose α > 0 satisfying condition (3.36) such that

s = −1 the dominant root of the characteristic equation (3.15).

Remark 3.11. For any given undirected and connected network we can find α such that

equation (3.37) is satisfied. Indeed, the right-hand side of (3.37) is a continuous function

going down to zero, as Figure 3.8 shows. This is to say that for any given undirected

and connected network we can guarantee dominant root s = −1.

This result is remarkable because it means for instance that we can reach consensus 10

times faster in the case of a sparse network (with the algebraic connectivity 0.1), with-

out rewiring the network (see [34], where the proposed algorithm leads to a significant
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Figure 3.9: Example 3.1. Standard deviation function of time in the case of clas-
sical consensus problem (dashed line) and algorithm (3.12) with α = 1 and τ = τ∗

(continuous line).

increase of the speed of convergence - even up to 100 times faster - but by using a slightly

more complex procedure and by actually changing the network structure).

In the sequel, we present a couple of examples to compare the convergence speed of

the proposed model with the classical consensus problem. We shall see that the perfor-

mances’ improvement is even more dramatic in the case of sparse networks.

Example 3.1. Consider a Erdös-Rényi random oriented graph with 100 nodes. We

generate it using a probability p = 0.05. We choose α = 1 and τ = τ∗ for the proposed

model (3.12). We compare the performances of our model with the case of classical

consensus problem. The comparison between the standard deviation for the two cases is

shown in Figure 3.9. We can see that using the proposed algorithm (3.12) and carefully

selecting the parameters τ and α as above, the value of consensus is reached faster than

in the case of classical consensus problem: using the proposed algorithm (3.12) we obtain

dominant root s = −1, whereas in the case of classical consensus problem the dominant

root is 0.5706.

Example 3.2. Another type of topology commonly used in real-life networks is circular

topology. We consider now an undirected circular network made up of 20 nodes. We

choose α = 10 and τ = τ∗. Figure 3.10 shows the evolution in time of the states xi,

i = 1, . . . , 20 for the two cases: classical consensus problem and consensus problem with

prediction. Note that the initial conditions are the same. Obviously, the consensus in

reached faster (less than 6 units of time) if we use our model. Furthermore, Figure 3.11

depicts the comparison of the standard deviation in the two cases. We add that if for the

classical consensus problem λ2 = 0.048943, using the algorithm (3.12) we obtain λ2 = 1.

This means that for this network, algorithm (3.12) is more than 20 times faster.
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Figure 3.10: Example 3.2. Time evoluation of network’s agents in the case of classical
consensus problem (top) and algorithm (3.12) with α = 1 and τ = τ∗ (bottom).
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Figure 3.11: Example 3.2. Standard deviation function of time in the case of clas-
sical consensus problem (dashed line) and algorithm (3.12) with α = 1 and τ = τ∗

(continuous line).

Now we know how to choose τ and α in order to have convergence for the case of directed

networks. Next section is dedicated to the optimality question.

3.6 Optimality of the delay parameter

This section gives further evidence to show that choosing τ = τ∗ is even a local optimum

choice in terms of network performances. Consider a directed network of the form (3.12)

and let α ∈ R+ . Consider only a factor of the characteristic equation (3.15):
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s− (1− λ)(1 + α) + 1 + α(1− λ)e−sτ = 0.

In the equation above, s can be seen as a function of τ . We would like to know what

happens to the real part of s when τ = τ∗ changes. This is why we first differentiate

with respect to τ the equation above, in order to find an expression for the derivative of

s with respect to τ evaluated in τ = τ∗:[
∂s

∂τ
− α(1− λ)e−sτ

(
∂s

∂τ
τ + s

)]
τ=τ∗

= 0.

As we know that s = −1 when τ = τ∗, we can replace e−sτ = 1+α
α in the last equation,

and obtain
∂s

∂τ
[1− τ∗(1− λ)(1 + α)] + (1− λ)(1 + α) = 0,

which leads to
∂s

∂τ
=

(1− λ)(1 + α)

(1− λ)(1 + α)τ∗ − 1
.

Note that in the case of undirected networks there is no difference between the real part

of the right-hand part of the equation above and the right-hand side itself, as all involved

variables are real. So, in order to see what happens with the sign of the real part of the

left-hand side we shall study two cases.

Case 1. If λ > 1, then we immediately obtain ∂s
∂τ > 0.

Case 2. If λ < 1, then the numerator (1 − λ)(1 + α) is positive, but the denumerator

is negative, as we had already chosen (1 − λ)(1 + α)τ∗ < 1 (see Lemma 3.4, where

β = (1− λ)(1 + α)τ∗). Thus, we obtain ∂s
∂τ < 0.

For λ = 1 we can easily see that the sign does not change.

This is to say that a perturbation on τ = τ∗ will make the characteristic roots to move

one way (towards left or right), corresponding to eigenvalues of the Laplacian L, λ > 1,

and to move in the opposite direction for λ < 1. This situation is depicted in Figure 3.12.

For the case of directed networks, we have a similar situation, only that instead of λ we

have Re(λ):

Re

(
∂s

∂τ

)
τ=τ∗

= Re

(
(1− λ)(1 + α)

(1− λ)(1 + α)τ∗ − 1

)
.

If we write λ = Re(λ) + i Im(λ), we multiply the fraction with the complex conjugate,

and separate real and imaginary part, then we obtain
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Figure 3.12: Evolution of real part of dominant characteristic roots as a function of
τ for α = 1. We note that for τ = ln 2, the dominant root is −1. Moreover, we note

that the network can reach consensus up to τ = (1/α) = 1.

Re

(
∂s

∂τ

)
τ=τ∗

=
(1− Re(λ))2(1 + α)2τ∗ − (1− Re(λ))(1 + α) + Im2(λ)(1 + α)2τ∗

[(1− Re(λ))(1 + α)τ∗ − 1]2 + [Im(λ)(1 + α)τ∗]2
.

It is straightforward that if Re(λ) > 1 in the equation above, then Re
(
∂s
∂τ

)
τ=τ∗

> 0,

∀α > 0. Further, we claim that for any given network there always exists an eigenvalue

λk of the normalized Laplacian L such that Re(λk) > 1. If not, suppose there is an

eigenvalue λk with Re(λk) ≤ 1. Then we have
∑n

k=2 Re(λk) ≤ n−1. But this contradicts

the property of the normalized Laplacian
∑n

k=2 Re(λk) = n, and thus proves the claim.

Given that every network has an eigenvalue of L with real part greater that 1, for which

Re
(
∂s
∂τ

)
τ=τ∗

> 0, we have now the sufficient condition to prove that Re(s) = −1 is a

local optimum for τ = τ∗.

This argument shows that, in networks where Re(λk) > 1 for all k ≥ 2, the derivative

Re(∂s/∂)τ > 0; so, decreasing τ from τ∗ will improve convergence speed. An example of

such a network is given in Example 3.3, and the accompanying Figure 3.13 demonstrates

the situation. This difficulty does not occur in undirected networks, since Re(∂s/∂τ)

takes both negative and positive values over the set of Laplacian eigenvalues (except for

complete graphs, in case of binary aij).

As stated above, τ∗ is only locally optimum. There are cases where the classical con-

sensus protocol (3.2) performs better than using τ∗ in the proposed algorithm (3.7), as

depicted in Example 3.3.
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Example 3.3. We consider a directed network made up of 9 nodes. The adjacency

matrix is

A =



0 1 1 0 0 0 0 1 0

0 0 1 1 1 1 0 1 0

1 0 0 0 1 0 0 1 1

0 1 1 0 0 0 0 0 0

1 0 1 0 0 1 0 1 1

0 1 1 1 1 0 0 0 0

1 1 1 1 0 1 0 1 0

0 0 0 1 0 1 0 0 1

0 1 0 1 1 0 1 0 0



.

The eigenvalues of the corresponding Laplacian L are: 0, 1.0740 ± 0.3691i, 1.3590,

1.1899± 0.1679i, 1.0576, and 1.0278± 0.2463i.

It is easy to see here that we obtain s = −1 dominant root, but the consensus value is

reached slower than in the case of classical consensus problem. Figure 3.13 depicts the

value of the real part of the dominant root corresponding to each (pair of) eigenvalue(s),

as a function of τ , for α = 1. The figure shows that for τ = ln 2 we obtain Re(s) = 1

for all eigenvalues, but this value is a bit “slower” compared to the case τ = 0.
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Figure 3.13: Real part of the dominant root function of τ , corresponding to eigenval-
ues 1.0740± 0.3691i, 1.3590, 1.1899± 0.1679i, 1.0576, and 1.0278± 0.2463i.

This example is important not only for showing that the proposed model can significantly

improve the convergence speed for some networks, but also for putting a light on an open

problem in the graphs community: how should a network be organized in order to reach

consensus faster. It turns out, at least judging from this sort of examples, that a network

with all eigenvalues of L greater than 1 is more likely to reach consensus faster.
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Example 3.3 shows that the local optimum given by τ∗ may not always perform better

than the undelayed algorithm. Nevertheless, even in such cases we can still find (under

some conditions on the network) a delay τ for protocol (3.7) in order to obtain better

performances that in the case of classical protocol (3.2).

3.7 Concluding remarks

We have introduced, in Sections 3.2 and 3.3, the basic notation and review relevant

background information from graph theory. Section 3.2 also introduces the proposed

model and its contribution with respect to other models in the literature. All other

sections of this chapter present our results: we have presented a graphical depiction of

the dominant roots for arbitrary eigenmodes of the system as a function of the delay

value τ , thereby deriving a universal picture applicable for any undirected graph. By

giving necessary and sufficient conditions, we have shown that (3.7) reaches consensus

from arbitrary initial states if and only if ατ < 1. Another result focuses on directed

networks, where we prove that the same condition is not sufficient.

Anticipation can improve performance in networks of interacting agents if the parameter

τ is chosen judiciously, otherwise the system can diverge as agents try to anticipate too

aggressively into the future. We have given simulation results from various networks

and shown that a positive τ can indeed improve speed of consensus, in some cases

dramatically, especially in networks with poor connectivity.

For both undirected and directed networks, we show that by well choosing τ and α the

proposed model guarantees a very fast convergence speed for any network, and moreover,

this choice is a local optimum in terms of network performance.



Chapter 4

A theoretical bound for maximal

multiplicity at the origin

4.1 Chapter overview

This chapter focuses on a rather general class of time-delay systems, with a finite number

of delays. We study the case where such systems have multiple characteristic roots at the

origin, and show the link between the system parameters and the maximal multiplicity

at the origin. Part of the work discussed in this chapter has been published in a book

chapter [8] and published and presented at an international conference [9].

The chapter is structured as follows. The considered class of systems is described in Sec-

tion 4.2. An exact formula for the theoretical bound of the maximal algebraic multiplicity

of the zero characteristic root is given in Section 4.3. Moreover, algebraic conditions on

a system’s parameters are given for this maximal bound to be reached. These results are

briefly compared to other results in the literature in Section 4.4, where our contribution

is highlighted: we use two simple examples to illustrate that our bound is more precise.

Two mechanical examples are discussed in Section 4.5 in order to illustrate the results.

50
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4.2 Problem formulation

In the case of an n-dimensional linear system of ordinary differential equations ẋ = Ax,

where x ∈ Rn and A ∈Mn(R), the n eigenvalues of the matrix A are at the same time

the spectral values of the system. Since the corresponding characteristic equation is a

polynomial of degree n in the Laplace variable s, it has at most n complex roots - the

eigenvalues of the system. So, we can say that the (algebraic) multiplicity of a given

spectral value can at most be equal to the dimension of the state-space.

On the other hand, the case of time-delay systems is slightly different as, in this case,

the characteristic equation has an infinite number of roots. Consider a system described

by the following delay-differential equation:

ẋ =
N∑
i=0

Aix(t− τi), (4.1)

under appropriate initial conditions belonging to the Banach space of continuous func-

tions C([−τN , 0],Rn). Here, x = (x1, . . . , xn) denotes the state-vector, matrices Ai ∈
Mn(R) for i = 0 . . . N (see [105, 106]). The N constant delays τi, i = 1 . . . N satisfy

0 = τ0 < τ1 < τ2 < · · · < τN . In the corresponding characteristic equation (a transcen-

dental equation in the Laplace variable) some exponential terms appear due to the

delays. In this chapter, we consider matrices Ai, i = 1 . . . N , such that the system (4.1)

has the characteristic function q : C× RN+ → C defined as:

q(s, τ) = r0(s) +

N∑
i=1

ri(s) e
−τis, (4.2)

where τ is the vector containing all delays, and ri(s) are polynomials of s with real

coefficients.

Without any loss of generality, assume that the polynomial r0 is a monic polynomial of

degree n in s and the polynomials ri are such that deg(ri) ≤ (n− 1),∀1 ≤ i ≤ N.

The study of zeros of the quasi-polynomial (4.2) plays a crucial role in the analysis

of asymptotic stability of zero solution of system (4.1). Indeed, the zero solution is

asymptotically stable if all the zeros of (4.2) are in the open left half-complex plane [68].

According to this definition, the parameter space which is spanned by the coefficients

of the polynomials ri, can be split into stability and instability domains (the so-called

D-decomposition, see [68, 86] and references therein). These two domains are separated

by a boundary corresponding to a spectrum consisting of roots with zero real parts.
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Moreover, under appropriate algebraic restrictions, a given root corresponding to the

boundary can have high multiplicity.

A typical example of a non-simple (multiple) zero spectral value is the Bogdanov-Takens

singularity which has an algebraic multiplicity two and a geometric multiplicity one.

Cases with higher order multiplicities of the zero spectral value are known as generalized

Bogdanov-Takens singularities and could be involved in concrete applications [72]. For

instance, the Bogdanov-Takens singularity is identified in [107] where the case of two

coupled scalar delay equations modeling a physiological control problem is studied. In

[108], this type of singularity is also encountered in the study of coupled axial-torsional

vibrations of an oilwell rotary drilling system.

Commonly, the time-delay induces desynchronizing and/or destabilizing effect on the

dynamics. However, new theoretical developments in control of finite-dimensional dy-

namical systems suggest the use of delays in the control laws as controller parameters

for stabilization purposes. For instance, the papers [109, 110] are concerned with the

stabilization of the inverted pendulum by delayed control laws. In [109], the authors

prove that some appropriate delayed proportional-derivative (PD) controller stabilizes

the inverted pendulum by identifying a singularity of multiplicty three for a system

of two coupled delayed equations. In [110], the same singularity is studied by using a

particular delay block configuration.

In this chapter we investigate this type of singularity (multiple zero singularity) and

give an answer to the question concerning its maximal multiplicity (as a function of

the coefficients of the polynomials ri(s), i = 1 . . . N). This work is motivated by the

importance of the multiplicity of singularities in nonlinear stability analysis [111–114].

4.3 Maximal algebraic multiplicity of zero singularity

We consider N non-zero distinct delays 0 < τ1 < τ2 < . . . < τN in equation (4.2), and the

polynomials ri such that r0 is a monic polynomial with deg(r0) = n and deg(ri) ≤ (n−1)

for 1 ≤ i ≤ N . Let n0 = max1≤i≤N deg(ri). We denote by ai,k the coefficient of sk for

the polynomial ri, with 0 ≤ i ≤ N . Note that a0,n = 1. Using these notations, we write

the following proposition.

Proposition 4.1. Consider the regular quasi-polynomial function (4.2). The maximal

multiplicity of zero singularity cannot be larger than 0m = N(n0 + 1) + n, where N is

the number of non-zero distinct delays, n0 is the upper degree of the polynomial family

ri, with 1 ≤ i ≤ N and n is the degree of r0.
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Moreover, such a bound is reached if and only if for 0 ≤ k ≤ 0m − 1, the parameters of

(4.2) simultaneously satisfy :

a0,k = −
N∑
i=1

[
ai,k +

k−1∑
l=0

(−1)l+k+1ai,lτi
k−l

(k − l) !

]
. (4.3)

4.3.1 Proof of Proposition 4.1

We need to introduce some notations. Denote by q(k)(s) the k-th derivative of q(s)

with respect to the variable s. Recall that zero is an eigenvalue of algebraic multiplicity

m ≥ 1 for (4.1) if q(0) = q(k)(0) = 0 for all k = 1, . . . , (m− 1) and q(m)(0) 6= 0.

We first prove condition (4.3), which follows directly from the Lemma 4.2.

Lemma 4.2. Zero is a root of q(k)(s) for k ≥ 0 if and only if all coefficients of ri, with

0 ≤ i ≤ N , satisfy condition (4.3).

Proof. We define the family ∇k for all k ≥ 0 by

∇k(s) =

N∑
i=1

dk

dsk
ri(s) +

k−1∑
j=0

(
(−1)j+k

(
k

j

) N∑
i=1

τk−ji

dj

dsj
ri(s)

)
, (4.4)

where d0

ds0
f(s) := f(s) and

(
k
j

)
denote the binomial coefficient equal to k!

j!(k−j)! . We

prove by induction that zero is a root of q(k)(s) for k ≥ 0 if and only if zero is a root of

∇k(s). Note that the defined family (4.4) is polynomial since ri and their derivatives are

polynomials. As for the induction, we prove that differentiating k times q(s) we obtain

a recursive formula:

q(k)(s) =

N∑
i=1

dk

dsk
ri(s)e

τis +

k−1∑
j=0

(
(−1)j+k

(
k

j

) N∑
i=1

τk−ji

dj

dsj
ri(s)e

τis

)
,

where we can set e−τis = 1, since we study the multiplicity at s = 0. Thus, we obtain

the relation (4.4) that finally leads to the condition (4.3).

Example 4.1. To illustrate Lemma 4.2, consider the scalar delay differential equation:

ẋ(t) + a0,0x(t) + a1,0x(t− τ1) + a2,0x(t− τ2) = 0,

where a0,0, a1,0, a2,0 ∈ R. The corresponding characteristic quasi-polynomial function is

given by:

q(s, τ) = s+ a0,0 + a1,0e
−τ1s + a2,0e

−τ2s.
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For k = 0, equality (4.3) gives the first sufficient condition guaranteeing a multiplicity at

least one for s = 0. Indeed, q(0, τ) = 0 = a0,0+a1,0+a2,0 which gives a0,0 = −(a1,0+a2,0).

A sufficient condition for an algebraic multiplicity at least two for s = 0 is obtained

by computing the first partial derivative of q with respect to s. This leads to condition

a0,1 = 1 = τ1a1,0 + τ2a2,0, which satisfies equality (4.3) with k = 1.

In a similar way, one can easily show that if equality (4.3) is satisfied for all k = 0, 1, 2,

then the zero singularity is of multiplicity three (which is the maximal multiplicity) if

and only if

a0,0 = −τ1 + τ2

τ1τ2
, a1,0 = − τ2

(τ1 − τ2) τ1
, a2,0 =

τ1

τ2 (τ1 − τ2)
.

In the sequel, we consider the variety corresponding to polynomials ∇k vanishing, i.e.

∇0(0) = . . . = ∇m−1(0) = 0 and ∇m(0) 6= 0. Recall that we aim to find the maximal

algebraic multiplicity m of zero singularity. The first elements from the family ∇k for

s = 0 are

∇0(0) = 0⇔
N∑
i=0

ai,0 = 0,

∇1(0) = 0⇔
N∑
i=0

ai,1 −
N∑
i=1

ai,0 τi = 0,

∇2(0) = 0⇔ 2!
N∑
i=0

ai,1 − 2!
N∑
i=1

ai,0 τi +
N∑
i=1

ai,0 τ
2
i = 0.

If we consider ai,k and τi as variables, the obtained algebraic system is nonlinear and

solving it without giving values for n and N becomes a very difficult task. Even by using

Gröbner basis methods [115], this task is still complicated because the set of variables

depends on N , n and n0. This is why we additionally assume that all the polynomials

ri satisfy the condition deg(ri) = n0 for all 1 ≤ i ≤ N . We consider ai,k as variables and

τi as parameters and we use the following notation: a0 = (a0,0, a0,1, . . . , a0,n−1)T and

ai = (ai,0, ai,1, . . . , ai,n0) for 1 ≤ i ≤ N , τ = (τ1, τ2, . . . , τN ), and a = (a1, a2, . . . , aN )T .

Consider the ideal I1 generated by the n polynomials < ∇0(0), ∇1(0), . . . ,∇n−1(0) >.

As it can be seen from Lemma 4.2, the variety V1 associated with the ideal I1 has

the linear representation a0 = M1(τ) a, where the matrix M1 ∈ Mn,N(n0+1)(R[τ ]). In

other words, we write a matrix equation for equality (4.3), where a0 contains all a0,k

coefficients with 0 ≤ k < n corresponding to r0 polynomial, and a contains all coefficients

corresponding to ri polynomials, with 1 ≤ i ≤ N .
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Note that in this variety there is no restriction on the components of a when a0 is left

free. Since a0,k = 0 for all k > n, the remaining equations consist in an algebraic system

only in a and parametrized by τ .

Consider now the ideal I2 generated by the N(n0 + 1) polynomials:

I2 =< ∇n+1(0), ∇n+2(0), . . . , ∇n+N(n0+1)(0) > .

We remark that the variety V2 corresponding to ideal I2 can be written as M2(τ)a =

0, which is nothing else that a homogeneous linear system with the matrix M2 ∈
MN(n0+1)(R[τ ]). More precisely, M2 is a functional Vandermonde matrix:

M2(τ) =(V (τ1),
d

dτ1
V (τ1), . . . ,

dn0

dτn0
1

V (τ1), . . . , V (τN ), . . . ,
dn0

dτn0
N

V (τN )), where

V (x) = ((−x)n+1, (−x)n+2, . . . , (−x)n+N(n0+1))T . (4.5)

We note that every subset of vectors Fk = (V (τk), . . . ,
dn0

dτ
n0
k

V (τk)) is a family of vectors

in RN(n−1)([τk]). Denote by Vk the k-th component of the vector V , and by deg(Vk) the

degree of the polynomial Vk(x). Using equation (4.5), we can show that for any i 6= l,

deg(Vi) 6= deg(Vl). This means that the vectors in family Fk are linear independents.

Moreover, no element from Fl (the family of vectors in RN(n−1)([τl])) can be written as

a linear combination of elements of Fk with l 6= k. The direct computation of det(M2)

gives

det(M2) =

∣∣∣∣∣∣
∏

1≤k≤n−2

(n0 + 1− k)!N

∣∣∣∣∣∣ ˙

∣∣∣∣∣∣
∏

1≤i<l≤N
(τi − τl)(n0+1)2

∏
1≤h≤N

τ
(n0+1)(n+1)
h

∣∣∣∣∣∣ .
Recall that the distinct delays are strictly positive. Thus, the determinant of matrix M2

cannot vanish. This means that the only solution for the subsystem M2(τ)a = 0 is the

zero solution, that is a = 0.

Next, we can write

∇n(0) = 0⇔ 1 = −
N∑
i=1

n−1∑
l=0

(−1)l+n+1 ai,lτi
n−l

(n− l) !
.

Substituting the unique solution of V2 into the last equality leads to a contradictory

result. This shows that the maximal algebraic multiplicity of the zero singularity is less

or equal to N(n0 + 1) + n.
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4.4 Discussion on results

We begin this section with two examples.

Example 4.2 (A vector disease model). We consider the scalar delay-differential

equation

ẋ(t) = −bx(t) + cx(t− τ)− cx(t)x(t− τ), (4.6)

presented by Cooke in [116] to describe the spread of a communicable disease carried

by a vector. This very simple deterministic biological model describes the evolution of

infectious persons. More precisely, x designates the infected host population governed

by the law (4.6), where b is the recovery rate (assuming that the host recovery is an

exponential process) and c is the contact rate between infected and uninfected populations.

We linearize equation (4.6) near the point x = 0, to obtain

ẋ(t) = −bx(t) + cx(t− τ), (4.7)

where b, c and τ are positive constants. The corresponding characteristic (transcenden-

tal) function is

q(s) = s− b+ ce−sτ . (4.8)

Zero is a spectral value for (4.7) if and only if (4.8) vanishes at zero, i.e. condition

−b+ c = 0 holds. We compute the first derivative of (4.7) with respect to s, and obtain

q′(s) = 1− τce−sτ .

Thus, it is easy to see that s = 0 has an algebraic multiplicity two (i.e. q(0) = 0,

q′(0) = 0, and q′′(0) 6= 0) under conditions b = c and τ = 1/c. Note that for satisfying

the vanishing of the second derivative of (4.7),

q′′(s) = τ2ce−sτ ,

the domain in which the positive parameters b, c and τ can take values is empty. We

can thus conclude that the maximal multiplicity of the zero spectra value, s = 0, is at

most two. This upper bound is less than the number of free parameters (b, c, and τ) of

the system. Using the QPmR software package (see appendix B), we choose b = 0.5 and

represent the spectrum of system (4.7) in Figure 4.1.

Example 4.3 (Inverted pendulum on a cart). There are a few ways of modeling

an inverted pendulum on a cart (see Figure 4.2). This system is an example commonly

found in the control theory literature due to its various applications. The motion equa-

tions usually refer to the motion of both the pendulum itself and the cart, under some
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Figure 4.1: Spectrum distribution for a vector disease model. b = c = 0.5 and τ = 2.
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Figure 4.2: Inverted pendulum.

assumptions (the absence or not of the friction or other resistance to movement). Here

we consider the simple case of an inverted pendulum on a cart governed by a second-order

differential equation (as in [117]):(
1− 3ε

4
cos2 θ

)
θ̈ +

3ε

8
θ̇2 sin(2θ)− sin θ + F cos θ = 0,

where ε = m
m+M is the relative mass, M is the mass of the cart, m is the mass of the

pendulum, and F is the driving force, representing the control law. If we choose F of

the form

F = k1θ(t− τ1) + k2θ(t− τ2)
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and set ε = 3
4 , then the characteristic transcendental function is

q(s) = s2 − 16

7
+

16k1

7
e−sτ1 +

16k2

7
e−sτ2 . (4.9)

Some simple computations show us that for

k1 = − 7

8 τ1
2 − 7

k2 =
8 τ1

2

8 τ1
2 − 7

τ2 =
7

8 τ1

(4.10)

(4.11)

(4.12)

we have q(s = 0) = 0, q′(s = 0) = 0, q′′(s = 0) = 0 and q(3)(s = 0) 6= 0, i.e. for this

system the zero root has multiplicity 3. The spectrum corresponding to τ1 = 1 is depicted

in Figure 4.3.

Re(s)
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Im
(s

)

-100

0

100

Figure 4.3: Spectrum distribution for an inverted pendulum. τ1 = 1.

In Section 4.3, we have found the algebraic multiplicity upper bound for zero singularity

s = 0. In the case of vector disease model (see Example 4.2), this multiplicity reaches

its maximum value, which is 2. Indeed, the corresponding quasi-polynomial (4.8) has

one delay N = 1, degP1 = 0, degP0 = 1; this gives the maximal algebraic multiplicity

2 = 1(0 + 1) + 1.

Before discussing the implication of Proposition 4.1 on the inverted pendulum example,

we introduce the following result.

Proposition 4.3 (Pólya-Szegö, [118], pp. 144). Let τ1, . . . , τN denote real numbers

such that

τ1 < τ2 < . . . < τN ,
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and d1, . . . , dN positive integers satisfying

d1 ≥ 1, d2 ≥ 1 . . . dN ≥ 1, d1 + d2 + . . .+ dN = D +N.

Let fi,j(s) stands for the function fi,j(s) = sj−1 eτi s, for 1 ≤ j ≤ di and 1 ≤ i ≤ N .

Let ] be the number of zeros of the function

f(s) =
∑

1≤i≤N,1≤j≤di

ci,j fi,j(s),

that are contained in the horizontal strip α ≤ Im(s) ≤ β.

Assuming that ∑
1≤k≤d1

|c1,k|> 0, . . . ,
∑

1≤k≤dN

|cN,k|> 0,

then

(τN − τ1) (β − α)

2π
−D −N + 1 ≤ ] ≤ (τN − τ1) (β − α)

2π
+D +N − 1.

Idea of the proof. We apply the argument principle (see Appendix A) on a rectangle

{s : α ≤ Im(s) ≤ β and − a ≤ Re(s) ≤ a} and then let a tend to ∞.

We apply Proposition 4.3 on the inverted pendulum example, and obtain that the maxi-

mal multiplicity of the zero characteristic root s = 0 is 6. One of the main contributions

of the result given by Proposition 4.1 is that it provides a sharper upper bound. Indeed,

as proven in [110], the maximal multiplicity of the zero root s = 0 in the case of the

inverted pendulum is three. Obviously, this bound is more precise than the result given

by Pólya-Szegö: 3 < 6. This is because the approach presented in this chapter is a con-

structive one: it is obvious that the maximal multiplicity of zero root decreases below

the limit given by the Pólya-Szegö result if a component of the vector parameters is not

left free (because we’ll have more restrictions on the parameters).

Moreover, according to Proposition 4.1, this bound is reached when the parameters of

characteristic equation (4.9) satisfy condition (4.3). We note that formula (4.3) can be

actually translated into equations (4.10)–(4.12).

We can thus conclude that the upper bound given by Proposition 4.1 is the same as the

maximal number of roots in the horizontal strip found by Pólya-Szegö, but only when

all the parameters of the quasi-polynomial are left free. In all other cases this bound is

sharper than Pólya-Szegö’s one.
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4.5 Illustrative examples

In the sequel, we have chosen two mechanical systems, benchmarks in the field of control

theory and robotics, to illustrate previous results: an inverted pendulum on a slope and

a double inverted pendulum on a cart.

4.5.1 Inverted pendulum on a slope

We consider an inverted pendulum on a cart, moving on a slope with angle α, as in

Figure 4.4. The mass of the pendulum is m and is small enough comparing to the mass

of cart M . We denote by θ the angle between the vertical direction of the slope and

the inverted pendulum, and we assume that it can be measured or observed. The cart

moves on the slope due to the external force F and we can measure its position d, as

the distance between a fixed reference point and its center of gravity. We also denote

by L the length of the inverted pendulum and by J the moment of inertia with respect

to its center of gravity.

a d

Mg

F

q

mg

J

Figure 4.4: Inverted pendulum on a slope

Under the assumptions above, we have the following model for the system depicted in

Figure 4.4 (see [119]):

θ̈ −
g
L′ sin(θ − α) + 1

L′ d̈ cosα = 0

Md̈+ bḋ = F −Mg sinα
, (4.13)

where L′ = J+mL2

mL .
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We choose a control law with 2 delays

F = k1θ(t− τ1) + k2θ(t− τ2), (4.14)

where τ1 and τ2 are two positive distinct delays and the gains k1 and k2 real numbers.

Using the set of equations (4.13), we obtain a state-space representation of our sys-

tem: we choose the state vector x =
(
d L′θ ḋ L′θ̇

)T
and we linearize around the

equilibrium point (0, L′α, 0, 0).

Thus, we can write the state-space representation

ẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ2), (4.15)

where

A0 =


0 0 1 0

0 0 0 1

0 0 − b
M 0

0 g
L′

b cosα
M 0

 ;

A1 =


0 0 0 0

0 0 0 0

0 k1
L′M 0 0

0 −k1 cosα
M 0 0

 ; A2 =


0 0 0 0

0 0 0 0

0 k2
L′M 0 0

0 −k2 cosα
M 0 0

 .

We assume the measured physical parameters are: m = 0.05kg, M = 0.5kg, L = 2.5m,

J = 1
3mL

2[kg m2], α = π
6 , b = 1Ns/m, g = 9.8m/s2.

The characteristic equation of (4.15) is det q(s, τ) = 0, where the characteristic tran-

scendental function q(s, τ) = sI6 −A0 −A1e−sτ1 −A2e−sτ2 can be written as:

q(s, τ) = P0(s) +

2∑
i=1

Pi(s)e
−sτi , where

P0(s) = s4 + 2 s3 − 147

50
s2 − 147

25
s,

P1(s) =
√

3 k1 s
2 +

7
√

3 k1

5
s,

P2(s) =
√

3 k2 s
2 +

7
√

3 k2

5
s.

Proposition 4.4. Under the effect of the delayed feedback given by (4.14) the multiplicity

of the zero spectral value s = 0 for system (4.15) is at most 4.
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Proof. It is easy to see that q(0) = 0, since s is a common factor for all Pi, with

i ∈ {0, 1, 2}. The first derivative of q(s) is

q′(s) = 6 s2 − 147 s

25
+ 4 s3 +

7
√

3 k1 e−s τ1

5
+

7
√

3 k2 e−s τ2

5

+ 2
√

3 k1 s e−s τ1 + 2
√

3 k2 s e−s τ2 −
√

3 k1 s
2 τ1 e−s τ1 −

√
3 k2 s

2 τ2 e−s τ2

− 7
√

3 k1 s τ1 e−s τ1

5
− 7
√

3 k2 s τ2 e−s τ2

5
− 147

25
.

If k1 is of the form

k1 =
7
√

3

5
− k2 (4.16)

with the parameter k2 left free, then q′(0) = 0 and the maximal multiplicity of the zero

spectral value is at least 2.

Next, we compute the second derivative of q(s) and find that under conditions

k1 = 7
√

3
5 −

42 τ1−9
10
√

3 τ1−10
√

3 τ2

k2 = 42 τ1−9
10
√

3 τ1−10
√

3 τ2
,

(4.17)

and assuming that the delays are positive and distinct, the multiplicity at the origin is

at least 3.

Furthermore, if 

k1 = 1729
√

3
20 (−147 τ12+63 τ1+55)

k2 = −7
√

3 (14 τ1−3) (42 τ1−9)
20 (−147 τ12+63 τ1+55)

τ2 = 63 τ1+110
294 τ1−63

τ1 > 0.215

(4.18)

holds, then the third derivative of q(s) vanishes at zero, i.e. the multiplicity at origin

is 4. This is also the maximal multiplicity of the zero spectral values, since there is

no set of real values (k1, k2, τ1, τ2) with τ1 and τ2 positive and distinct, that satisfies

q(4)(0) = 0.

Remark 4.5. Note that in conditions set (4.18) τ1 is a parameter left free, such that

τ1 > 0.215. If the choose for instance τ1 = 1, we obtain k1 = −5.16, k2 = 7.59 and

τ2 = 0.75. We replace those values in the polynomials P0, P1 and P2; the coefficients

obtained verify

a0,k = −
N∑
i=1

[
ai,k +

k−1∑
l=0

(−1)l+k+1ai,lτi
k−l

(k − l) !

]
.

for 1 ≤ k ≤ 4 and 1 ≤ i ≤ 2. Choosing τ1 = 1, k1 = −5.16, k2 = 7.59, and τ2 = 0.75, we

obtain the spectrum distribution represented in Figure 4.5. Using the QPmR software
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package, we obtain that we have no spectral values in the right half-plane and that there

are four spectral values in zero.
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)

-100
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Figure 4.5: Inverted pendulum on a slope: spectrum distribution for τ1 = 1.

Remark 4.6. Using a constructive approach we found an upper bound of the multiplicity

at the origin. Since a component of vector of parameters a (containing the coefficients of

P0) is not left free, we have more constraints on the gains and delays, and consequently

the maximal multiplicity of the zero spectral values decreases under the bound given by

Pólya-Szegö result (4 < 6).

Remark 4.7. The upper bound of the multiplicity at the origin is linked not only to

the vanishing coefficients of a, but also to system’s physical parameters. For instance,

for the same choice of parameters except for the length L of the inverted pendulum

(the distance from the pivot to the center of gravity of the pendulum) we can obtain

a sharper bound. More precisely, if we consider that L decreases under 2.5m, then the

maximal multiplicity of the zero spectral value is 3.

4.5.2 Double inverted pendulum

We consider a double inverted pendulum described in Figure 4.6, where θ1 and θ2 are

the angular position of the lower and upper pendulum with respect to the vertical axis,

and r is the position of the cart with respect to a reference point.

The motion of the system can be described by the Lagrange equation

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= Q (4.19)
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where L = T − V is the Lagrangian, T is the kinetic energy, V is the potential energy

and Q is a vector of generalized forces. The kinetic and potential energies, T and V, of

the system can be written as the sum of energies of each individual component, the cart

and the two inverted pendulums. The kinetic and potential energy are written in the

form

T = T0 + T1 + T2

V = V0 + V1 + V2

,

where

T0 =
1

2
m0ṙ

2

T1 =
1

2
m1

[(
ṙ + l1θ̇1 cos θ1

)2
+
(
l1θ̇1 sin θ1

)2
]

+
1

2
I1θ̇

2
1

=
1

2
m1ṙ

2 +
1

2

(
m1I

2
1 + I1

)
θ̇2

1 +m1l1ṙθ̇1 cos θ1

T2 =
1

2
m2

[(
ṙ + L1θ̇1 cos θ1 + l2θ̇2 cos θ2

)2
+
(
L1θ̇1 sin θ1 + l2θ̇2 sin θ2

)2
]

+
1

2
I2θ̇

2
2

=
1

2
m2ṙ

2 +
1

2
m2L

2
1θ̇

2
1 +

1

2

(
m2l

2
2 + I2

)
θ̇2

2 +m2L1ṙθ̇1 cos θ1 +m2l2ṙθ̇2 cos θ2

+m2L1l2θ̇1θ̇2 cos (θ1 − θ2)

V0 = 0

V1 = m1gl1 cos θ1

V2 = m2g (L1 cos θ1 + l2 cos θ2) .

Then, the Lagrangian of the system can be written

L =
1

2
(m0 +m1 +m2) ṙ2 +

1

2

(
m1l

2
1 +m2L

2
1 + I1

)
θ̇2

1 +
1

2

(
m2l

2
2 + I2

)
θ̇2

2

+ (m1l1 +m2L1) cos (θ1) ṙθ̇1 +m2l2 cos (θ2) ṙθ̇2 +m2L1l2 cos (θ1 − θ2) θ̇1θ̇2

− (m1l1 +m2L1) g cos θ1 −m2l2g cos θ2

We differentiate the Lagrangian with respect to θ̇ and θ and rewrite the equation (4.19)

as
d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= u

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0
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Figure 4.6: Double inverted pendulum

More precisely, we obtain

u =

(
2∑
i=0

mi

)
r̈ + (m1l1 +m2L1) cos (θ1) θ̈1

+m2l2 cos (θ2) θ̈2 − (m1l1 +m2L1) sin (θ1) θ̇2
1 −m2l2 sin (θ2) θ̇2

2

0 = (m1l1 +m2L1) cos (θ1) r̈ +
(
m1l

2
1 +m2L

2
1 + I1

)
θ̈1

+m2L1l2 cos (θ1 − θ2) θ̈2 +m2L1l2 sin (θ1 − θ2) θ̇2 − (m1l1 +m2L1) g sin θ1

0 = m2l2 cos (θ2) r̈ +m2L1l2 cos (θ1 − θ2) θ̈1

+
(
m2l

2
2 + I2

)
θ̈2 −m2L1l2 sin (θ1 − θ2) θ̇1

2 −m2l2g sin θ2.

Thus, the system model described by three nonlinear differential equations of second

order can be translated into a state-space representation, consisting of six first order

ODEs (see for more details [120] and [121]).

We chose θ =
(
r θ1 θ2

)T
, where r is the position of the cart with respect to the origin;

m1 = 0.5kg and m2 = 0.5kg are the masses of the lower, respectively upper pendulum

and L1 = 0.5m, L2 = 0.5m are the corresponding lengths. We consider that only the

position of the cart is affected by the command and we linearize around θ1 = θ2 = 0

and r = 0. Finally we obtain a state-space representation

ẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ2), (4.20)
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where x =
(
θ θ̇

)T
∈ R6,

A0 =


03 I3

0 −441
46

147
230

0 2499
23 −3087

115 03
0 −3087

23
7791
115

 ;

A1 =


03 03

0 14γ11

23
14γ12

23

0 −36γ11

23 −36γ12

23 03
0 12γ11

23
12γ12

23

 ; A2 =


03 03

0 14γ21

23
14γ22

23

0 −36γ21

23 −36γ22

23 03
0 12γ21

23
12γ22

23

 ,

γih above are the gains of the command u of the form

u = γ11θ1(t− τ1) + γ12θ2(t− τ1) + γ21θ1(t− τ2) + γ22θ2(t− τ2), (4.21)

and τ1 and τ2, satisfying 0 < τ1 < τ2 are the delays. We denote by 03 and I3 the zero

matrix and the identity matrix of dimension three, respectively.

The characteristic equation of (4.20) is det q(s, τ) = 0, where the characteristic tran-

scendental function q(s, τ) = sI6 −A0 −A1e−sτ1 −A2e−sτ2 can be written as:

q(s, τ) = P0(s) +
2∑
i=1

Pi(s)e
−sτi , where

P0(s) = s6 − 882

5
s4 +

86436

23
s2,

P1(s) = −12

23
s4γ12 +

36

23
s4γ11 −

10584

115
γ11s

2 − 3528

23
s2γ12,

P2(s) = −12

23
s4γ22 +

36

23
s4γ21 −

10584

115
γ21s

2 − 3528

23
s2γ22.

Proposition 4.8. Under the effect of the delayed feedback given by (4.21) the multiplicity

of the zero spectral value s = 0 for system (4.20) is at most 7.

Proof. It is easy to see that q(0) = q′(0) = 0, since s2 is a common factor for all Pi, with

i ∈ {0, 1, 2}. Moreover, if γ11 has the form (4.22), with the parameters γ12, γ21 and γ22

left free,

γ11 =
245

6
− 5

3
γ22 − γ21 −

5

3
γ12, (4.22)

then the multiplicity at the origin is at least 3, since q(2)(0) = 0. Next, we compute the

third derivative of q(0), under the condition (4.22), in order to check if there is a real
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set of (γ11, γ12, γ21, γ22, τ1, τ2) with 0 < τ1 < τ2 that satisfies q(3)(0) = 0. Thus, we find

the condition

γ21 = −5

6

2 γ22τ1 − 2 τ2γ22 − 49 τ1

τ1 − τ2
. (4.23)

Now we know that if the system’s parameters satisfy conditions (4.22) and (4.23), γ12,

γ22, τ1 and τ2 are left free and 0 < τ1 < τ2, then the multiplicity at the origin is

at least 4 (since q(0) and its first three derivatives at origin are zero). Following the

same reasoning, we are looking for constraints on γ12, γ22, τ1 and τ2 such that the next

derivative of q at the origin vanishes, and we obtain

γ12 =
2401

4
τ1τ2 − γ22 −

539

15
. (4.24)

So, under (4.22)-(4.24) the multiplicity at the origin is at least 5. Furthermore, if (4.25)

hold, the multiplicity at the origin is at least 6,

γ22 =
49

60

τ1

(
490 τ1τ2 − 245 τ2

2 − 44
)

τ1 − τ2
, (4.25)

and in addition, for the sixth derivative of q at the origin to vanish, the condition (4.26)

must be also satisfied,

−2593080 τ3
1 τ2

23
+

7779240 τ1
2 τ2

2

23
− 2593080 τ1 τ2

3

23
− 63504 τ1 τ2 + 720 = 0. (4.26)

Given that the delays are real positive numbers, the relation (4.26) restricts the domain

in which τ1 and τ2 can take values, as we can see in Figure 4.7.
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0.1

0.2

0.3

0.4

0.5

0.6

0

τ
1

τ
2

τ
1

,τ
2

= (0.1, 0.115)

Figure 4.7: Equation (4.26) solution in τ1–τ2 domain
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Next, we can easily check that q(7) 6= 0, i.e. there is no set of real values for

(γ11, γ12, γ21, γ22, τ1, τ2) with 0 < τ1 < τ2, that satisfies q(7)(0) = 0, so s = 0 multiplicity

at the origin is 7.

Remark 4.9. If we chose a value for τ1 contained in the restricted domain, τ1 = 0.1 for

instance, we obtain γ11 = 709.783, γ12 = −245.367, γ21 = −620.637, γ22 = 216.379

and τ2 = 0.115. If we replace these values in polynomials P0, P1 and P2, the obtained

coefficients verify

a0,k = −
N∑
i=1

[
ai,k +

k−1∑
l=0

(−1)l+k+1ai,lτi
k−l

(k − l) !

]
.

for 1 ≤ k ≤ 6 and 1 ≤ i ≤ 2. The spectrum distribution obtained by choosing the values

above is represented like in Figure 4.8. We notice that there are no spectral values in

the right half-plane.

Re(s)
-50 -40 -30 -20 -10 0 10

Im
(s

)

-500

0

500

Figure 4.8: Double inverted pendulum: spectrum distribution for τ1 = 0.1 and
τ2 = 0.115

4.6 Concluding remarks

The work in this chapter focuses on the study of spectral values at the origin, in the

general case of time-delay systems. We have found a bound for maximal multiplicity of

zero spectral value.

In the case of a regular quasi-polynomial (i.e. all coefficients are non-zero) we have

actually recovered the result of Pólya-Szegö. The difference lies in the essential elements
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of the proof. Our approach is a rather constructive one: we have made use of linear

algebra, Vandermonde matrices, and mathematical induction, whereas Pólya-Szegö’s

proof is based on some elements of complex analysis like the argument principle (see

Appendix A). Moreover, the real bound is sharper than the one given by the Pólya and

Szegö result. For instance, for the case of a vector disease model, the quasi-polynomial

is a regular one, so the bound given by the Pólya and Szegö result is equal to the one

we obtain (which is 2). On the other hand, in the inverted pendulum example, where

the corresponding quasi-polynomial is sparse (i.e. there are some null coefficients), the

Pólya and Szegö result claims that the maximal multiplicity at the origin is 4, but in fact

it cannot be greater than 3. The results has been illustrated on other two systems, the

inverted pendulum on a slope and double inverted pendulum, and the relation between

the quasi-polynomial coefficients has been verified.



Chapter 5

Insights into geometric approach

5.1 Chapter overview

This chapter discusses the behaviour of multiple imaginary characteristic roots under a

small deviation of parameters. More precisely, we study the cases of multiplicity two,

three and four, by considering a class of control systems depending on two parameters.

In this chapter, we discuss only the case where the two parameters are the delays; a

more general case, with a larger parameter domain, is presented in Chapter 7.

One of the main contributions of the geometric approach discussed in this chapter is that

it does not use Puiseux series, as compared to other results in the literature. Moreover,

we show how an algebraic criterion can be derived in order to judge what happens

to a pair of complex conjugated double roots, when the parameters move into a small

sector. The work in this chapter has been published and presented at three international

conferences (see [10–12]) and a paper has been accepted for publication in Automatica

journal.

The chapter is structured as follows. The considered class of systems is discussed in

more details in Section 5.2. The double root case is presented in Section 5.3. A concrete

example of a time-delay system is given, illustrating how to apply the theory. The

same example is also used in Subsection 5.3.5, to illustrate the comparison between the

geometric approach and an algebraic approach to the same problem. This comparison

sheds some light on the differences between the two methods, their limitations and the

open questions to which they give rise. An extension of the proposed method is made in

Section 5.4 to study characteristic roots with higher multiplicity: three and four. The

concluding remarks can be found in Section 5.5.

70
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5.2 Problem statement

Consider a system with the characteristic equation of the form

q(s, p) = 0, (5.1)

where s is the Laplace variable and p ∈ Rn is the vector parameter of dimension n. In

the first part of this chapter, we discuss the case n = 2. Note that the characteristic

equation (5.1) can be alternatively written as q(s, p1, p2) = 0. For p1 = p10 and p2 = p20,

we assume q(s, p1, p2) has an imaginary root s0 = iω0 of mth order. In other words,

∂kq

∂sk

∣∣∣∣ s=s0
p1=p10
p2=p20

= 0, for k = 0 . . .m− 1. (5.2)

We further assume that s0 is not a root of order (m+ 1), i.e.

∂mq

∂sm

∣∣∣∣ s=s0
p1=p10
p2=p20

6= 0. (5.3)

We make the following additional non-degeneracy assumption:

D = det

(
Re

(
∂q
∂p1

)
Re

(
∂q
∂p2

)
Im

(
∂q
∂p1

)
Im

(
∂q
∂p2

)
)

s=s0
p1=p10
p2=p20

6= 0, (5.4)

where Re(·) and Im(·) denote the real and imaginary part of a complex number, respec-

tively. Note that D in (5.4) may also be written as

D = Im

(
∂q∗

∂p1
· ∂q
∂p2

)
s=s0
p1=p10
p2=p20

,

where (·)∗ denotes the complex conjugate of a complex number.

Equations (5.2)-(5.4) will be the standing assumptions in the remaining part of this

chapter. Assumption (5.4) contains the first-order partial derivatives of q with respect

to the two parameters p1 and p2. If it had had zero-order instead of first-order partial

derivatives, then the condition D = 0 would have been a degenerate case. We can

refer to a condition evoking all second-order derivatives as a “more degenerate” case for

instance. The following definition sets this terminology.

Definition 5.1. We call a system of the form (5.1) least degenerate if assumptions

(5.2)-(5.4) are satisfied.
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Obviously, if (5.1) satisfies (5.2), then (5.3) and (5.4) represents the least degenerate

case. Therefore, we will refer to (5.2) and (5.4) as the least degeneracy assumptions, and

such a point (s0, p0) as the least degenerate root of order mth.

In this chapter, we will study the behaviour of multiple imaginary characteristic roots

as (p1, p2) varies in a small neighborhood of (p10, p20) under the least degeneracy as-

sumptions. In the sequel, we present double roots case (m=2) in Section 5.3 and we

discuss imaginary characteristic roots of multiplicity three (m = 3) and four (m = 4) in

Section 5.4.

5.3 Double root case

We assume that q(s, p) is analytic with respect to s, and continuously differentiable

with respect to (s, p) up to a third order. In view of the implicit function theorem, a

consequence of inequality (5.4), which is part of the non-degeneracy assumption, is that

the characteristic equation (5.1) defines the pairs (p1 p2) in a small neighbourhood of

the critical point p0 = (p10 p20) as a function of s, in a sufficiently small neighbourhood

of s0.

Introduce the notation:

Nε(x0) = {x | |x− x0| < ε} ,

N ◦ε (x0) = {x | 0 < |x− x0| < ε} ,

to describe the concept of neighbourhood of a point x0 in an n-dimensional space. Then

the above can be more precisely stated as follows.

Proposition 5.2. There exists an ε > 0 and a sufficiently small δ > 0 such that for

all s ∈ Nδ(s0), we may define p1(s) and p2(s) as the unique solution of (5.1) with

(p1(s), p2(s)) ∈ Nε(p10, p20). The functions so defined are differentiable up to the third

order.

It should be pointed out that in general, for s ∈ Nδ(s0), characteristic equation (5.1)

may have other solutions outside of Nε(p10, p20).

Recall that stability crossing curves are defined in [62] as the set of all points (p1, p2) ∈ R2
+

such that q(s) has at least one zero on the imaginary axis. Therefore, the set

T(ω0,p10,p20) = {(p1(iω), p2(iω)) ∈ Nε(p10, p20) | iω ∈ Nδ(iω0)} ,
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which is a curve in the p1-p2 space that passes through the point (p10, p20), is the restric-

tion of stability crossing curves to a neighborhood of (p10, p20). Therefore, T(s0,p10,p20)

will be known as the local stability crossing curve. Roughly speaking, it is a separation

curve that divides the parameter space into regions, such that the number of charac-

teristic roots on the right half complex plane remain constant as the parameters vary

within each such region.

We will also denote two curves as follows

T +
(ω0,p10,p20) = {(p1(iω), p2(iω)) ∈ Nε(p10, p20) | iω ∈ Nδ(iω0), ω > ω0} ,

and

T −(ω0,p10,p20) = {(p1(iω), p2(iω)) ∈ Nε(p10, p20) | iω ∈ Nδ(iω0), ω < ω0} .

The curves T +
(ω0,p10,p20) and T −(ω0,p10,p20) will be known as the positive and negative local

stability crossing curves, respectively.

5.3.1 Geometric insights: cusp and local bijection

Parameterize a neighborhood of s0 by a radial variable u and an angle θ. Then, a point

in the neighbourhood of s0 can be written as

s = s0 + ueiθ. (5.5)

Moreover, p1 and p2 can be considered as functions of u and θ. Note that ∂s
∂u = eiθ. For

the sake of convenience, we write

γ = eiθ =
∂s

∂u
. (5.6)

We first fix the angular variable θ (i.e. fix γ), and calculate the derivatives of p1 and

p2 with respect to the radial variable u. This can be easily achieved by differentiating

(5.1), yielding

∂q

∂p1

∂p1

∂u
+

∂q

∂p2

∂p2

∂u
+
∂q

∂s
γ = 0. (5.7)

We set u = 0, and use condition (5.2) for m = 1 in equation (5.7). Thus, we obtainRe
(
∂q
∂p1

)
Re
(
∂q
∂p2

)
Im
(
∂q
∂p1

)
Im
(
∂q
∂p2

)
s=s0
p1=p10
p2=p20

(
∂p1

∂u
∂p2

∂u

)
u=0

= 0,
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from which we conclude (
∂p1

∂u
∂p2

∂u

)
u=0

= 0, (5.8)

in view of (5.4). Equation (5.8) has two important implications.

First, if we set γ = i, the equation (5.8) indicates that the local stability crossing curve

T(ω0,p10,p20) may have a cusp at (p10, p20) in the parameter space (see [122]). Indeed,

as will be confirmed by considering the second-order derivative in the next subsection,

T(ω0,p10,p20) partitions a sufficiently small neighborhood of (p10, p20) into a great sector

(or G-sector) and a small sector1 (or S-sector) as shown in Figure 5.1. We investigate

how the double roots at iω0 migrate as (p1, p2) moves from (p10, p20) to the G-sector or

the S-sector.

To obtain the second implication, we first show the following.

Lemma 5.3. Consider sa ∈ N ◦δ (s0), δ > 0 sufficiently small, and let p1a = p1(sa),

p2a = p2(sa) as defined in Proposition 5.2. Then

∂

∂s
q(s, p1a, p2a)

∣∣∣∣
s=sa

6= 0. (5.9)

Proof. Let

sa = s0 + uγ, |γ| = 1,

then,

∂q

∂s

∣∣∣∣ s=sa
p1=p1a
p2=p2a

=
∂q

∂s

∣∣∣∣ s=s0
p1=p10
p2=p20

+
∂2q

∂s2

∣∣∣∣ s=s0
p1=p10
p2=p20

γu+
∂2q

∂s∂p1

∣∣∣∣ s=s0
p1=p10
p2=p20

∂p1

∂u

∣∣∣∣
u=0

u

+
∂2q

∂s∂p2

∣∣∣∣
s=s0
p1=p10
p2=p20

∂p2

∂u

∣∣∣∣
u=0

u+ o(u)

= 0 +
∂2q

∂s2

∣∣∣∣ s=s0
p1=p10
p2=p20

γu+ 0 + 0 + o(u),

from which we may conclude (5.9) in view of (5.3) for m = 2.

The implicit function theorem allows us to conclude the following from Lemma 5.3.

Proposition 5.4. Let sa, p1a and p2a be defined as in Lemma 5.3. Then there exists a

sufficiently small neighborhood of (p1a, p2a) such that the equation (5.1) defines a unique

function s(p1, p2) with the function value restricted in a small neighborhood of sa.

1We have used the word “small” in a sense analogous to “small solution”: a small sector is contained
by a sector with straight sides with arbitrarily small angle when the neighborhood is sufficiently small.
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Figure 5.1: G-sector and S-sector.

Thus, the second implication of the equation (5.8) may be stated as the following corol-

lary, which is a consequence of Propositions 5.2 and 5.4.

Corollary 5.5. Let sa, p1a and p2a be defined as in Lemma 5.3. Then equation (5.1)

defines a bijection between s in a small neighborhood of sa and (p1, p2) in a small neigh-

borhood of (p1a, p2a).

Obviously, the small neighborhoods referred in Proposition 5.4 and Corollary 5.5 above

should not include s0 and (p10, p20) in view of condition (5.2) for m = 1. Moreover, in

view of continuity of solutions of (5.1) with respect to the parameters (p1, p2), Corol-

lary 5.5 may be equivalently stated as follows.

Corollary 5.6. For all (p1, p2) ∈ N ◦ε (p10, p20) with ε > 0 sufficiently small, the charac-

teristic equation (5.1) has exactly two simple roots in a small neighborhood of s0.

5.3.2 Geometric insights: mapping in a neighborhood of a double root

In this section, it will be shown that we can very clearly describe the mapping between s

and (p1, p2) in the neighborhood of s0 based on the second order derivative when s− s0

is restricted to one quadrant. From this description, we may obtain the information

on how the double root migrates as (p1, p2) moves from (p10, p20) to the G-sector or

the S-sector in Figure 5.1 according to the sign of D, and whether the negative local

stability crossing curve T −(ω0,p10,p20) is on the clockwise side or on the counterclockwise

side of T +
(ω0,p10,p20) in the S-sector.

Taking a derivative of (5.7) with respect to the radial variable u, we obtain

∂2q

∂p2
1

(
∂p1

∂u

)2

+ 2
∂2q

∂p1∂p2

∂p1

∂u

∂p2

∂u
+ 2

∂2q

∂p1∂s

∂p1

∂u
γ +

∂q

∂p1

∂2p1

∂u2
+
∂2q

∂p2
2

(
∂p2

∂u

)2

+2
∂2q

∂p2∂s

∂p2

∂u
γ +

∂q

∂p2

∂2p2

∂u2
+
∂2q

∂s2
γ2 = 0. (5.10)
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We set u = 0, and apply (5.8) in equation (5.10), to arrive at[
∂q

∂p1

∂2p1

∂u2
+

∂q

∂p2

∂2p2

∂u2
+
∂2q

∂s2
γ2

]
s=s0
p1=p10
p2=p20

= 0.

The above may be solved for ∂2p1

∂u2 and ∂2p2

∂u2 to obtain,

(
∂2p1

∂u2

∂2p2

∂u2

)
s=s0
p1=p10
p2=p20

= −

[Re
(
∂q
∂p1

)
Re
(
∂q
∂p2

)
Im
(
∂q
∂p1

)
Im
(
∂q
∂p2

)−1Re
(
∂2q
∂s2

γ2
)

Im
(
∂2q
∂s2

γ2
)]

s=s0
p1=p10
p2=p20

, (5.11)

which may also be written in a complex form

(
∂2p1

∂u2

∂2p2

∂u2

)
s=s0
p1=p10
p2=p20

=
1

D

 Im
(
∂q∗

∂p2

∂2q
∂s2

γ2
)

− Im
(
∂q∗

∂p1

∂2q
∂s2

γ2
) 

s=s0
p1=p10
p2=p20

. (5.12)

In view of (5.8), the tangent of the curve describing (p1, p2) as a function of u at (p10, p20)

is determined by the second order derivative given in (5.11) or (5.12).

Before proceeding further, it is helpful to recall the following well known fact. It can be

found in various elementary books that deal with geometry, see for example [123].

Lemma 5.7. Let x(0) ∈ R2 and M ∈ R2×2 be fixed. For any x ∈ R2, let θ be the angle to

rotate x(0) to the direction of x in the counterclockwise direction. Let φ(θ) be the angle to

rotate Mx(0) to the direction of Mx in the counterclockwise direction if det(M) > 0, and

in the clockwise direction if det(M) < 0. Then the function φ(θ) satisfies the following:

i) φ(θ) is a continuous and increasing function of θ

ii) 0 < φ(θ) < π if and only if 0 < θ < π.

We now make the following two observations about the second order derivative expres-

sion (5.11).

First, set γ = i and γ = −i, the expression determines the tangent of T(ω0,p10,p20) as

ω → ω0 from each side. As
(

∂2p1

∂u2
∂2p2

∂u2

)T
given in (5.11) for γ = i and −i have the

same value, T −(ω0,p10,p20) and T +
(ω0,p10,p20) (A′C ′ and C ′B′ in Figure 5.1) are tangent to

each other at the point (p10, p20), thus forming a cusp.

Second, as γ rotates through an angle of π/2 radians in a counterclockwise direction,
∂2q
∂s2

γ2 rotates through a 180◦ angle in the same direction; and
(

∂2p1

∂u2
∂2p2

∂u2

)T
given

in (5.11) also rotates through a 180◦ angle in a direction determined by the sign of
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D, which is the determinant of the matrix inverted: the rotation is counterclockwise if

D > 0, and it is clockwise if D < 0 (according to Lemma 5.7).

i Im (s)

Re (s)

p

2

p

1

C E

B

P

|S - S

0

| = δ

(a)

B'

C'

E'

P'

(b)

Figure 5.2: The mapping (p1(s), p2(s)) with s− s0 in the first quadrant.

With the above observations, and the fact that(
p1(s)

p2(s)

)
=

(
p10

p20

)
+
u2

2

(
∂2p1

∂u2

∂2p2

∂u2

)
s=s0
p1=p10
p2=p20

+ o(u2)

we may describe the local mapping (p1(s), p2(s)) in a very informative manner when

s-s0 is restricted to one quadrant. The situation for s-s0 in the first quadrant

Q1 =
{
s = s0 + ueiθ | 0 < u < δ, 0 ≤ θ ≤ π/2

}
with D > 0 is illustrated in Figure 5.2: the line segment CE (from s0 to s0 + δ) is

mapped to the curve C ′E′ in the p1-p2 space, the arc EPB (s = s0 + δeiθ, 0 ≤ θ ≤ π/2)

is mapped to the curve E′P ′B′, and the line segment BC (from s0+δi to s0) is mapped to

the curve B′C ′. In view of the second order derivatives, B′C ′ and C ′E′ have the same

tangent at C ′. Continuity and local bijectivity (Corollary 5.5) imply that the singly

connected region bounded by the line segments BC, CE and the arc EPB is mapped

by (p1(s), p2(s)) bijectively to the singly connected region bounded by the curves B′C ′,

C ′E′ and E′P ′B′.

When D < 0, the curve E′P ′B′ is roughly clockwise (instead of counterclockwise as in

Figure 5.2) relative to the point C ′. The mapping with s-s0 in the other three quadrants

are similar.

The complete mapping (p1(s), p2(s)) with s-s0 in all four quadrants may be divided

into four possible cases depending on the sign of D and whether T −(ω0,p10,p20) is on the

counterclockwise or on the clockwise side of T +
(ω0,p10,p20) in the S-sector. The migration

of the double roots in all cases is summarized in the following theorem.
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Theorem 5.8 (Migration of Double Roots). If (p1, p2) is in the G-sector in a

sufficiently small neighborhood of (p10, p20), then one root of (5.1) in the neighborhood

of s0 is in the right half-plane, the other is in the left half-plane.

When (p1, p2) is in the S-sector, then the two roots are either both in the left half-plane

or both in the right half-plane. More specifically,

Case i. If D > 0, and T −(ω0,p10,p20) is on the counterclockwise side of T +
(ω0,p10,p20) in the

S-sector, then both roots are on the left half-plane.

Case ii. If D > 0, and T −(ω0,p10,p20) is on the clockwise side of T +
(ω0,p10,p20) in the S-sector,

then both roots are on the right half-plane.

Case iii. If D < 0, and T −(ω0,p10,p20) is on the counterclockwise side of T +
(ω0,p10,p20) in

the S-sector, then both roots are on the right half-plane.

Case iv. If D < 0, and T −(ω0,p10,p20) is on the clockwise side of T +
(ω0,p10,p20) in the S-sector,

then both roots are on the left half-plane.

Proof. Consider Case i. The situation is illustrated in Figure 5.3. Let the region bounded

by the arc EPB and line segments BC and CE be denoted as I, and the region bounded

by the curves E′P ′B′, B′C ′ and C ′E′ be denoted as I ′. Similarly, region II is bounded

by BQF , FC, CB, and region II ′ is bounded by B′Q′F ′, F ′C ′, C ′B′; region III is

bounded by FRA, AC, CF , and III ′ is bounded by F ′R′A′, A′C ′, C ′F ′; region IV

is bounded by ASE, EC, CA, and region IV ′ is bounded by A′S′E′, E′C ′, C ′A′. As

discussed before the theorem, (p1(s), p2(s)) is a bijection from I to I ′ when s is restricted

to I. Similarly, (p1(s), p2(s)) is a bijection from II to II ′ when restricted to II, or from

III to III ′ when restricted to III, or from IV to IV ′ when restricted to IV . As

the S-sector (in a sufficiently small neighborhood) is contained in II ′ ∩ III ′, we may

conclude that for any (p1, p2) in the S-sector, one of the two characteristic roots in the

neighborhood of s0 must be in region II, the other must be in region III, and obviously

both in the left half-plane. Similarly, the G-sector (in a sufficiently small neighborhood)

is contained in (I ′ ∪ IV ′) ∩ (II ′ ∪ IV ′). Therefore, for any (p1, p2) in the G-sector, one

of the two characteristic roots in the neighborhood of s0 must be in I ∪ IV (in the

right half-plane), and the other must be in II ∪ III (in the left half-plane). Case ii is

illustrated in Figure 5.4. In this case, the S-sector is contained in I ′∩IV ′, and therefore,

the two characteristic roots in the neighborhood of s0 must be in regions I and IV , both

in the right half-plane. The G-sector can still be expressed as (I ′ ∪ IV ′) ∩ (II ′ ∪ IV ′).
Case iii is illustrated in Figure 5.5, and Case iv is illustrated in Figure 5.6, and the

conclusions can be drawn in a similar manner.
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Figure 5.3: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case i: D > 0, and
T −(ω0,p10,p20)

is on the counterclockwise side of T +
(ω0,p10,p20)

in the S-sector.
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Figure 5.4: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case ii: D > 0, and
T −(ω0,p10,p20)

is on the clockwise side of T +
(ω0,p10,p20)

in the S-sector.
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Figure 5.5: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case iii: D < 0, and
T −(ω0,p10,p20)

is on the counterclockwise side of T +
(ω0,p10,p20)

in the S-sector.

5.3.3 Geometric insights: algebraic S-sector condition

Theorem 5.8 indicates that the migration pattern of the two roots in the G-sector is

always the same under the least degeneracy assumptions, which is the only case discussed

in this chapter. However, judging the migration pattern of the two roots in the S-sector

requires knowing the sign of D and which side of T +
(ω0,τ10,τ20) the curve T −(ω0,τ10,τ20) is in the

S-sector. Fortunately, by considering the third order derivatives, an explicit algebraic

condition is possible.
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Figure 5.6: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case iv: D < 0, and
T −(ω0,p10,p20)

is on the clockwise side of T +
(ω0,p10,p20)

in the S-sector.

Corollary 5.9 (S-sector Criterion). If (p1, p2) is in the S-sector in a sufficiently

small neighborhood of (p10, p20), then the two characteristic roots in the neighborhood of

s0 are both in the left half-plane if

κ < 0, (5.13)

where

κ = Re

[
∂2q

∂s2

(
−∂

3q

∂s3
+ 3

∂2q

∂p1∂s

∂2p1

∂u2
+ 3

∂2q

∂p2∂s

∂2p2

∂u2

)]
s=s0
p1=p10
p2=p20
γ=i

,

and
∂2pi
∂u2 may be evaluated by (5.11) or (5.12) with γ = i. If

κ > 0 (5.14)

instead, then both roots are in the right half-plane.

Proof. Differentiate equation (5.10) with respect to u, we obtain

∂3q

∂p3
1

(
∂p1

∂u

)3

+ 3
∂3q

∂p2
1p2

(
∂p1

∂u

)2 ∂p2

∂u
+ 3

∂3q

∂p2
1∂s

(
∂p1

∂u

)2

γ + 3
∂2q

∂p2
1

∂p1

∂u

∂2p1

∂u2

+3
∂3q

∂p1∂p2
2

∂p1

∂u

(
∂p2

∂u

)2

+ 6
∂3q

∂p1∂p2∂s

∂p1

∂u

∂p2

∂u
γ + 3

∂2q

∂p1∂p2

∂2p1

∂u2

∂p2

∂u

+3
∂2q

∂p1∂p2

∂p1

∂u

∂2p2

∂u2
+ 3

∂3q

∂p1∂s2

∂p1

∂u
γ2 + 3

∂2q

∂p1∂s

∂2p1

∂u2
γ +

∂q

∂p1

∂3p1

∂u3

+
∂3q

∂p3
2

(
∂p2

∂u

)3

+ 3
∂2q

∂p2∂s

∂2p2

∂u2
γ +

∂q

∂p2

∂3p2

∂u3
+
∂3q

∂s3
γ3 = 0. (5.15)

We set u = 0 and use (5.8) in equation (5.15), yielding[
3
∂2q

∂p1∂s

∂2p1

∂u2
γ +

∂q

∂p1

∂3p1

∂u3
+ 3

∂2q

∂p2∂s

∂2p2

∂u2
γ+ +

∂q

∂p2

∂3p2

∂u3
+
∂3q

∂s3
γ3

]
s=s0
p1=p10
p2=p20

= 0,
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which can be solved to obtain

(
∂3p1

∂u3

∂3p2

∂u3

)
s=s0
p1=p10
p2=p20

= −

Re
(
∂q
∂p1

)
Re
(
∂q
∂p2

)
Im
(
∂q
∂p1

)
Im
(
∂q
∂p2

)−1

s=s0
p1=p10
p2=p20

(
Re (B)

Im (B)

)
, (5.16)

where

B =

[
∂3q

∂s3
γ3 + 3

∂2q

∂p1∂s

∂2p1

∂u2
γ +3

∂2q

∂p2∂s

∂2p2

∂u2
γ

]
s=s0
p1=p10
p2=p20

.

Let (
∂kp1

∂uk

∂kp2

∂uk

)
±

=

(
∂kp1

∂uk

∂kp2

∂uk

)
s=s0
p1=p10
p2=p20
γ=±i

, k = 1, 2, 3,

and (
p1

p2

)
±

=

(
p1(s0 ± δi)
p2(s0 ± δi)

)
.

Then the Taylor series gives(
p1

p2

)
±

=

(
p10

p20

)
+ δ

(
∂p1

∂u
∂p2

∂u

)
±

+
δ2

2

(
∂2p1

∂u2

∂2p2

∂u2

)
±

+
δ3

6

(
∂3p1

∂u3

∂3p2

∂u3

)
±

+ o(δ3).

But according to (5.8) and (5.11), we have(
∂p1

∂u
∂p2

∂u

)
±

= 0,

(
∂2p1

∂u2

∂2p2

∂u2

)
+

=

(
∂2p1

∂u2

∂2p2

∂u2

)
−

.

Therefore,

(
∆p1

∆p2

)
∆
=

(
p1

p2

)
+

−

(
p1

p2

)
−

=
δ3

6

(∂3p1

∂u3

∂3p2

∂u3

)
+

−

(
∂3p1

∂u3

∂3p2

∂u3

)
−

+ o(δ3)

= −δ
3

6

Re
(
∂q
∂p1

)
Re
(
∂q
∂p2

)
Im
(
∂q
∂p1

)
Im
(
∂q
∂p2

)−1

s=s0
p1=p10
p2=p20

(
Re(∆B)

Im (∆B)

)
+ o(δ3), (5.17)

where

∆B = B|γ=i−B|γ=−i

= 2i

[
−∂

3q

∂s3
+ 3

∂2q

∂p1∂s

(
∂2p1

∂u2

)
+

+ 3
∂2q

∂p2∂s

(
∂2p2

∂u2

)
+

]
s=s0
p1=p10
p2=p20

.
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As the tangent direction of the local stability crossing curve T(ω0,p10,p20) at the cusp

(p10, p20) is
(
∂2p1

∂u2 ,
∂2p2

∂u2

)T
+

, it can be easily seen that the T −(ω0,p10,p20) is in the counter-

clockwise side of T +
(ω0,p10,p20) if we may reach the direction of

(
∂2p1

∂u2 ,
∂2p2

∂u2

)T
+

by rotating

(∆p1,∆p2) counterclockwise through an angle θ ∈ (0, π) as is shown in Figure 5.7.

Let
(
−∂2q
∂s2

)
0

=
(
−∂2q
∂s2

)
s=s0
p1=p10
p2=p20

. Comparing the expressions (5.17) and (5.11) and using

Lemma 5.7, we can see that the above can be achieved if we can reach the direction

of
(
−∂2q
∂s2

)
0

by rotating ∆B counterclockwise through an angle of θ ∈ (0, π) if D > 0

(which is Case i in Theorem 5.8). The rotation from ∆B to
(
−∂2q
∂s2

)
0

needs to be clock-

wise if D < 0 (which is Case iii). The counterclockwise rotation from ∆B to
(
−∂2q
∂s2

)
0

may be expressed as

Re(∆B) Im

(
−∂

2q

∂s2

)
0

− Im(∆B) Re

(
−∂

2q

∂s2

)
0

> 0,

which is equivalent to (5.13), and the conclusion is valid in this case in view of Case i

in Theorem 5.8. It can be similarly shown that if we can rotate ∆B to the direction

of
(
−∂2q
∂s2

)
0

clockwise through an angle of θ ∈ (0, π), then (5.14) is satisfied, and the

conclusion is valid in this case also in view of Case iii in Theorem 5.8.
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Figure 5.7: T −(ω0,p10,p20)
is on the counterclockwise side of T +

(ω0,p10,p20)
, and the angle

φ needed to rotate A′B′ to the direction of
(
∂2p1
∂u2 ,

∂2p2
∂u2

)T
γ=i

must satisfy 0 < φ < π.

Similarly, we can show that κ > 0 and D > 0, or κ < 0 and D < 0 can guarantee that

we can reach the direction of
(
∂2p1

∂u2 ,
∂2p2

∂u2

)T
+

by rotating (∆p1,∆p2) clockwise through

an angle θ ∈ (0, π), and the conclusions are true in view of Case ii and Case iv in

Theorem 5.8. We have exhausted all possibilities, and the corollary is proven.

If κ = 0, higher order derivatives may be used to evaluate conditions in Theorem 5.8.
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It should be noticed that the roots of the characteristic equation discussed in Theorem 5.8

and Corollary 5.9 are restricted to a sufficiently small neighborhood of s0 = jω0. Because

characteristic roots are distributed symmetrically with respect to the real axis, there is

also a double root at s∗0 = −jω0 when p1 = p10, p2 = p20. When (p1, p2) deviates from

(p10, p20), the migration of the two roots in the neighborhood of s∗0 follows the same

pattern as those in the neighborhood of s0.

There may also be roots on the imaginary axis outside of the neighborhoods of s0 and

s∗0. The migration of these imaginary roots needs to be analyzed separately.

Finally, the roots on the right half-plane remain on the right half-plane as long as (p1, p2)

stay within a sufficiently small neighborhood of (p10, p20). Similarly, the roots on the

left half-plane remain on the left half-plane when the deviation of (p1, p2) is sufficiently

small.

5.3.4 Illustrative example

In this subsection, we consider an example of time-delay system with two delay param-

eters and we show how to apply the results discussed in this chapter on such a system.

Example 5.1. Consider a time-delay system with the following characteristic quasi-

polynomial

q(s, τ) = s2 − 2s+ 2

+ [(2 cos 1) s− 2 (cos 1 + sin 1)] e−τ1s + e−τ2s. (5.18)

Note that the function given in (5.18) is of the form (2.9), with polynomials r0, r1 and

r2 of order 2, 1, and 0, respectively. For (τ1, τ2) = (1, 2), system (5.18) has double

imaginary roots at s = s0 = ±iω0 with ω0 = 1. It can be computed that

D ' 1.74159 > 0

κ ' 30.7082 > 0
.

From the sign of D and κ, it can be concluded that this system belongs to Case ii of

Theorem 5.8, i.e., T −(ω0,τ10,τ20) is on the clockwise side of T +
(ω0,τ10,τ20) in the S-sector.

The stability crossing curve T (which contains both positive and negative local stability

crossing curves) is plotted in Figure 5.8. It can be seen that T divides the region into

three regions: region A is connected to the origin, region B is the small region on the

upper side, and region C is the small region on the lower side. For τ1 = 0, τ2 = 0, the

characteristic quasipolynomial is reduced to a polynomial, and it can be easily calculated
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Figure 5.8: τ1–τ2 parameter space for Example 5.1. Characteristic equation (5.18)
has two roots (region A), four roots (region B), and no roots (region C) with positive

real part.

that both roots are on the right half-plane. Therefore, the region connected to the origin

has two right half-plane roots.

According to Corollary 5.9 or Theorem 5.8, both imaginary roots move to the right half-

plane as (τ1, τ2) moves to the S-sector (which is connected to region B). According to

Theorem 5.8, as (τ1, τ2) moves to the G-sector (which is connected to region A), one of

the two imaginary roots moves to the right half-plane, the other moves to the left half-

plane. In other words, as (τ1, τ2) moves from region B to region A through (1, 2), one

root moves from the right half-plane to the left half-plane passing through the point i on

the imaginary axis, another root on the right half-plane moves to touch the imaginary

axis at i then returns to the right half-plane.

Due to symmetry, another left half-plane root moves to the right half-plane through the

point −i. Therefore, there are two more right half-plane roots when (τ1, τ2) is in region B

as compared to the case when (τ1, τ2) is in region A. Thus, we conclude that there are

four roots on the right half-plane when (τ1, τ2) is in region B.

For region C, it can be easily calculated using the method described in [62] that the two

right half-plane roots cross the imaginary axis to the left half-plane as (τ1, τ2) moves

from region A. Therefore, there is no right half-plane root in this region, and the system

is stable for (τ1, τ2) in region C.
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5.3.5 Link with the algebraic approach

We have presented, throughout this chapter, a geometric approach allowing us to analyze

the behaviour of double characteristic roots for time-delay systems with two delays, when

a small perturbation occurs on the parameters. However, we can find other studies in

the literature aiming to identify the direction in which double roots cross the imaginary

axis when the delay parameters change. We cite here, for instance, Chapter 5 of [68] and

[124], where an algebraic approach is derived. In this subsection, we compare the two

approaches and discuss how they are conceptually different. We check in Example 5.1

that both methods provide consistent results, and highlight the corresponding limitations

and open questions.

Consider a linear time-delay system

ẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ2), (5.19)

where x ∈ Rn is the state vector, the constant delays τ1 and τ2 are real and positive,

with A0, A1, A2 ∈ Rn×n. The characteristic matrix of the system (5.19) is given by (2.5).

In particular, the characteristic matrix for the considered time-delay system with two

delays is

M(s, τ) = sI −A0 −A1e
−sτ1 −A2e

−sτ2 , (5.20)

where τ = (τ1 τ2)T , I is the n × n identity matrix, and s is the Laplace variable.

Here we suppose that real matrices A0, A1, A2 are such that the characteristic function

p(s, τ) := detM(s, τ) (also called quasi-polynomial) of system (5.19) has the form

q(s, τ) = p0(s) + p1(s)e−sτ1 + p2(s)e−sτ2 , (5.21)

where pk(s), k ∈ {0, 1, 2} are polynomials of s with real coefficients.

Remark 5.10. For n = 2, consider

A0 =

(
a11 a12

a21 a22

)
,

A1 =

(
b11 b12

b21 b22

)
, A2 =

(
c11 c12

c21 c22

)
.
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If at least one of the conditions

(C1): {b11 = 0, b12 = 0, c11 = 0, c12 = 0}

(C2): {b11 = 0, b21 = 0, c11 = 0, c21 = 0}

(C3): {b12 = 0, b22 = 0, c12 = 0, c22 = 0}

(C4): {b21 = 0, b22 = 0, c21 = 0, c22 = 0}

is satisfied, the characteristic function of system (5.19) can be written of the form (5.21).

Note that conditions (C1)–(C4) are satisfied when matrices A1 and A2 are of rank 1.

Recall that, similar to the finite-dimensional case, the characteristic equation of system

(5.19) is given by (2.4). The roots of the characteristic equation are called characteristic

roots of system (5.19). Thus, the finite-dimensional nonlinear eigenvalue problem of

system (5.19) can be written as

M(s, τ)u = 0, (5.22)

where the vector u ∈ Cn \ {0} is called a right eigenvector corresponding to the char-

acteristic root s. Note that, in a similar manner, we can construct a left eigenvector

vT ∈ Cn \ {0} corresponding to the eigenvalue s, satisfying vTM(s, τ) = 0.

Remark 5.11 (An equivalent eigenvalue problem). The eigenvalue problem (5.22) corre-

sponding to the functional differential equation (5.19) is nonlinear and finite-dimensional.

By considering (as, for instance, in [112]) a linear operator A = A0x(t) +A1x(t− τ1) +

A2x(t− τ2), with the domain

D(A) =

{
φ

∣∣∣∣φ, dφdθ ∈ C ([−max{τ1, τ2}, 0] ,Rn) ,

φ(0) = A0φ(0) +A1φ(−τ1) +A2φ(−τ2)} ,

such that Aφ = dφ
dθ , where C ([−max{τ1, τ2}, 0] ,Rn) is the space of continuous func-

tions from [−max{τ1, τ2}, 0] to Rn, we can rewrite system (5.19) as an abstract ordinary

differential equation ẋt = Axt, where xt(φ) ∈ C ([−max{τ1, τ2}, 0] ,Rn) is the func-

tion segment defined by xt(φ)(θ) = x(φ)(t + θ), θ ∈ [−max{τ1, τ2}, 0] . Note that

the characteristic roots are the eigenvalues of A. This allows us to write an infinite-

dimensional and linear eigenvalue problem equivalent to (5.22), (sI − A)u = 0, with

u ∈ C ([−max{τ1, τ2}, 0] ,Cn). In addition, the corresponding eigenfunctions of eigen-

value s take the form uesθ, with θ ∈ [−max{τ1, τ2}, 0]. However, the algebraic approach

described in the sequel is based on the finite-dimensional and nonlinear form of eigen-

value problem (5.22).



Chapter 5. Geometric approach 87

We consider the characteristic matrix

M(s, τ) =

(
s+ 2e−sτ1 cos(1)− 1 1

−1− e−sτ2 + 2e−sτ1 sin(1) s− 1

)
. (5.23)

We compute the characteristic function corresponding to the characteristic matrix (5.23),

and obtain the quasi-polynomial (5.18) of Example 5.1. We recall that for τ = τ0 =

(τ10, τ20)T = (1, 2), the characteristic function (5.18) has a double imaginary root s =

s0 = ±iω0 at ω0 = 1. Thus, the eigenvalue s0 = ±iω0 = ±i in Example 5.1 is double

and non semi-simple. This implies that there exist u0 and v0, a right, respectively left,

eigenvector, and u1 and v1 a right, respectively left, generalized eigenvector, such that

conditions

M0u0 = 0 (5.24)

M0u1 +M0
1u0 = 0 (5.25)

vT0 M0 = 0 (5.26)

vT1 M0 + vT0 M
0
1 = 0 (5.27)

are simultaneously satisfied (see [72], Chapter 7 in [112]), where

M0 = M(s0, τ0), (5.28)

M0
1 =

∂M(s, τ)

∂s

∣∣∣∣s=s0
τ=τ0

. (5.29)

Proposition 5.12. Eigenvectors u0, u1, v0 and v1 satisfy

vT0 M
0
1u0 = 0 (5.30)

vT1 M
0
1u0 = vT0 M

0
1u1 6= 0. (5.31)

Proof. Multiply equation (5.25) by vT0 on the left and obtain (5.30) in view of (5.26).

Multiply equation (5.25) by vT1 on the left and obtain vT1 M0u1 = −vT1 M0
1u0. Multiply

equation (5.27) by u1 on the right and obtain vT1 M0u1 = −vT0 M0
1u1. Thus, we have

(5.31) because vT1 M
0
1 6= 0 and M0

1u1 6= 0.

We consider a simple case, where the delay parameters are under a small perturbation

ε > 0:

τ1(ε) = τ10 + ετ11, (5.32)

τ2(ε) = τ20 + ετ21. (5.33)
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As τ(ε) is smooth, we can write a Taylor series expansion of the characteristic ma-

trix (5.20). Moreover, provided that the eigenvalue is non semi-simple, we can write

a Puiseux series expansion of it and of the corresponding right eigenvector (see, for

instance, [87]):

s(ε) = s0 + ε
1
2 s1 + εs2 + . . . (5.34)

u0(ε) = u0 + ε
1
2w1 + . . . (5.35)

We can now replace equations (5.32), (5.33), (5.34), and (5.35) in the eigenvalue problem

(5.22) and write

M(s(ε), τ(ε))u(ε) = 0.

Note that we use series expansion of exponential functions, as ε → 0 (for instance, we

write e−εs0τ10 = 1 − εs0τ11 +
ε2s20τ

2
11

2 ). We collect the terms of equal powers of ε, more

precisely we collect only the first three orders (ε0, ε
1
2 , ε1) and obtain

M0u0 = 0,

M0w1 + s1M
0
1u0 = 0, (5.36)

s1M
0
1w1 +

(
s2

1

2
M0

2 + s2M
0
1 +M1

1

)
u0 = 0, (5.37)

where the matrices M0, M0
1 , M0

2 , and M1
1 are given by

M0 = s0I −A0 −A1e
−s0τ10 −A2e

−s0τ20 , (5.38)

M0
1 = I + τ10A1e

−s0τ10 + τ20A2e
−s0τ20 , (5.39)

M0
2 = −τ2

10A1e
−s0τ10 − τ2

20A2e
−s0τ20 , (5.40)

M1
1 = τ11s0A1e

−s0τ10 + τ21s0A2e
−s0τ20 . (5.41)

Notice that equations (5.38) and (5.39) are explicit expressions of (5.28) and (5.29),

respectively. For the sake of uniqueness of u0 and without any loss of generality, we can

use the normalization

vT1 M
0
1u0 = 1 = vT0 M

0
1u1. (5.42)

Divide equation (5.36) by s1 6= 0 and obtain 1
s1
M0w1 = M0u1 in view of (5.25). Since

M0 6= 0, we can write w1 as

w1 = s1u1. (5.43)

Replace (5.43) in equality (5.37) and multiply by vT0 on the left. We obtain

s2
1v
T
0 M

0
1u1 +

s2
1

2
vT0 M

0
2u0 + s2v

T
0 M

0
1u0 + vT0 M

1
1u0 = 0. (5.44)
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Now we use the second equality from the normalization (5.42), and condition (5.30) from

Proposition 5.12 in equation (5.44), and write the expression of s1:

s1 = ±

√
− vT0 M

1
1u0

1 + 1
2v

T
0 M

0
2u0

. (5.45)

Given the continuity properties of the spectrum (Chapter 1 in [69]) and the Puiseux

series expansion (5.34), it is easy to see that under a small perturbation of delay pa-

rameters (5.32)–(5.33) the double characteristic root s0 = iω0 splits up into two simple

characteristic roots, which will move to the right or left half-plane function of the sign

of Re(s(ε)). These results can be summarized in the following proposition and remarks.

Proposition 5.13. Assume that a double and non semi-simple characteristic root of

system (5.21) is located on the imaginary axis, but not at the origin. Then, under a small

perturbation of delay parameters of the form (5.32)–(5.33) this double characteristic

root splits up into two simple roots, and each one of them will move towards stability

(instability) if Re(s(ε)) < 0 (Re(s(ε)) > 0).

Remark 5.14. Provided that Re(s0) = 0, we might suppose, in general, that the sign of

Re(s(ε)) is given by the sign of Re(s1) as defined in equation (5.45), when ε is very small.

However, knowing the sign of Re(s1) is not enough to conclude over a global tendency

of the double root to move towards stability or instability, as we shall illustrate in the

sequel. This is why we take a further step, multiply equation (5.37) with vT1 on the left,

and obtain the following expression of s2,

s2 =
vT0 M

1
1u0

1 + 1
2v

T
0 M

0
2u0

(
vT1 M

0
1u1 +

1

2
vT1 M

0
2u0

)
− vT1 M1

1u0, (5.46)

in view of normalization (5.42). Other terms of s(ε) might be found in a similar way.

Remark 5.15. In order to approximate the value of s(ε), as a function of ε, τ11, and τ21,

we use s(ε) defined as in equation (5.34), where s1 is given by (5.45), s2 is given by

(5.46), with M0
1 , M0

2 , and M1
1 given by (5.39)–(5.41), u0 and vT0 are normalized right,

respectively left, eigenvectors, satisfying (5.42), and u1 and v1 are generalized right,

respectively left, eigenvectors, satisfying equations (5.24)–(5.27).

Remark 5.16. Note that the double non semi-simple root will split up into two simple

roots. The plus sign from equation (5.45) corresponds to one of these simple roots, and

the minus sign corresponds to the other simple root.

Remark 5.17. Roughly speaking, the double root will split up into two simple roots that

will follow one of the two tendencies: either one root moves towards a half-plane, and

the other root towards the other half-plane, or both roots moves towards the same half-

plane. This means that we have two types of qualitative behaviour when a perturbation

ε arises. We illustrate both situations in Example 5.1.
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In the sequel, we consider the characteristic matrix (5.23) in Example 5.1. A right

eigenvector u0 satisfying (5.24) is of the form

u0 =

(
α1 + iα2

−(cos(2)− i(−1 + sin(2))) (α1 + iα2)

)
,

where α1, α2 ∈ R. We compute the generalized right eigenvector u1 = (β1 + iβ2 u12)T ,

verifying (5.25), with β1, β2 ∈ R and

u12 = (cos(2)− i sin(2))α1 + (i cos(2) + sin(2))α2 −

− (i+ cos(2)− i sin(2)) (β1 + iβ2) .

In the same manner we write the left eigenvector vT0 satisfying equation (5.26)

v0 =

(
(1− i) (γ1 + iγ2)

γ1 + iγ2

)
,

and the left generalized eigenvector vT1 such that condition (5.27) holds:

v1 =

(
−γ1 − iγ2 + (1− i)δ1 + (1 + i)δ2

δ1 + iδ2

)
,

with γ1, γ2, δ1, δ2 ∈ R. The normalization condition (5.42) leads to the following con-

straint on α1, α2, γ1, and γ2:

α1 = 0, α2 = − 1

γ2 (cos 2 + sin 2 tan 2)
,

γ1 = −γ2 tan 2, γ2 6= 0.

Therefore, the normalized eigenvectors satisfy

u0 =
1

γ2

(
−i cos 2

cos 2(−1 + i cos 2 + sin 2)

)
,

u12 =
cos 2(−i cos 2− sin 2)

γ2
− (cos 2− i(−1 + sin 2)) (β1 + iβ2) ,

v0 = γ2

(
(1 + i)(1 + i tan 2)

− tan 2 + i

)
,

v1 =

(
(−i+ tan 2)γ2 + (1− i) (δ1 + iδ2)

δ1 + iδ2

)
.
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Now we write M0
2 and M1

1 of the form

M0
2 =

∂2

∂s2
M(s, τ)

∣∣∣∣s=s0
τ=τ0

,

M1
1 = τ11

∂

∂τ1
M(s, τ)

∣∣∣∣s=s0
τ=τ0

+ τ21
∂

∂τ2
M(s, τ)

∣∣∣∣s=s0
τ=τ0

,

and recover the explicit formulae (5.40) and (5.41), respectively. More precisely, we

obtain

M0
2 =

(
2e−i cos 1 0

−i− (4− i)e−2i 0

)
,

M1
1 =

(
−2ie−i cos 1τ11 0

e−2i
(
iτ21 −

(
−1 + e2i

)
τ11

)
0

)
.

We compute s1 as a function of τ11 and τ21, using equation (5.45):

s1 = ±

√
(2i+ (4 + 2i)e2i) τ11 − 2iτ21

−1 + (1− 2i)e2i
.

Using formula (5.46), we write s2 as a function of τ11 and τ21

s2 =

(
3
80 + i

80

)
sec 2(cos 1− i sin 1)

(cos 1− (1− i) sin 1)((1 + i) cos 1 + sin 1)
[(1 + i)((115 + 82i) cos 1

+ (87 + 14i) cos 3 + (61− 2i) cos 5 + (9 + 18i) cos 7− (73− 194i) sin 1

− (53 + 70i) sin 3− (25− 70i) sin 5− (45 + 18i) sin 7)τ11

+ 2(cos 1− i sin 1)((42− 40i)− (21− 4i) cos 2 + (22− 40i) cos 4

− (3− 4i) cos 6 + (4 + 28i) sin 2 + (4 + 4i) sin 4− (4− 24i) sin 6)τ21].

Now that we have concrete expressions of s1 and s2 as functions of τ11 and τ21 for

Example 5.1, we proceed with giving values to τ11, τ21, and ε in order to illustrate

Proposition 5.13. Suppose γ2 = β1 = β2 = γ1 = γ2 = 1. We consider two simple cases,

as follows, and compute the value of s(ε) for each case:

case τ11 τ21 ε s(ε)

(a) 0 1 0.001
0.0076423 + 0.963458i

0.0000623462 + 1.02993i

(b) 0 -1 0.001
0.0293821 + 1.0071i

−0.0370867 + 0.999517i
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We notice that if we fix τ1 and increase τ2, then the double root splits up into two simple

roots moving towards instability (with positive real part), as depicted in Figure 5.9, left.

On the other hand, if we fix τ1 and decrease τ2, then the two simple roots will move

one towards instability, and the other one towards stability, as illustrated in Figure 5.9,

right.

Re(s)
case (a)

-0.2 0 0.2 0.4

Im
(s

)

-2

-1

0

1

2

Re(s)
case (b)

-1 0 1
Im

(s
)

-2

-1

0

1

2

Figure 5.9: Double characteristic root behaviour for Example 5.1. Yellow points
(lying on the imaginary axis) correspond to τ10 = 1 and τ20 = 2. Case (a): fix τ1 = 1
and increase τ2 from 2 to 3. Case (b): fix τ1 = 1 and decrease τ2 from 2 to 1.9. For
both cases, the double root s = ±i splits up into two simple roots. ε = 0 corresponds
to yellow points, and these points become red as the value of τ2 increases or decreases

with a step of 10−3.

Figure 5.9 was obtained by using the QPmR algorithm developed by [125]. Characteristic

roots s(ε) are represented by coloured points. Yellow points s = ±i correspond to ε = 0,

τ1 = 1 and τ2 = 2. We remark that these points become red as τ2 increases, i.e. as

perturbation ε increases. Fix τ1 = 1 (i.e. τ11 = 0). For case (a), the characteristic roots

of the quasi-polynomial are computed by using the QPmR algorithm, for each value of

τ2, from 2 to 3 using a step of 10−3. We can see that double root s = ±i splits up into

two simple roots that will move towards the right half-plane. This is coherent to our

computation of s(ε) of the form (5.34), using equations (5.45) and (5.46). For case (b),

we decrease τ2 from 2 (yellow points) to 1.9 (red points) using a step of 10−3, and we

notice in Figure 5.9 right that the double root splits up into two simple roots going in

opposite directions, one to the left half-plane, and the other one to the right half-plane.

This is also consistent with our prediction based on computing s(ε) as in (5.34).

We notice that despite the fact that the two methods (algebraic and geometric ap-

proaches) are rather different, they both point out that characteristic roots follow the

same pattern when the parameters are perturbed. The former method is based on
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eigenvector computation. Even if in this section we have only discussed the non semi-

simple double roots case, a similar study can be made for double semi-simple charac-

teristic roots. The latter method involves the computation of partial derivatives of the

quasi-polynomial with respect to the delays, up to the third order. Using the geomet-

ric approach implies that condition (5.4) must be satisfied. Nonetheless, the geomet-

ric approach applies to both semi-simple and non semi-simple characteristic roots. In

other words, the main limitation when using the algebraic approach is that we have to

separately treat semi-simple and non semi-simple double characteristic roots, and the

geometric approach’s main limitation is that assumption (5.4) has to be satisfied.

Both approaches show that there are typically two types of situations when a deviation

on the delays occurs in the parameter space: either the two imaginary roots move to

the same half-plane of the complex plane, or one of the imaginary roots moves to the

left half-plane and the other one moves to the right half-plane. This is rather surprising

in the case of double non semi-simple characteristic roots: the trajectory of such a root

when a perturbation ε occurs is described by the equation (5.34), where s0 lies on the

imaginary axis, and s1 is given by equation (5.45). Note that the double root splits

up into two simple roots, the positive real part s1 corresponding to a root, and the

s1 with negative real part corresponding to the other simple root. Some publications

in the literature suggest that this is why non semi-simple double roots always split up

into two simple roots following only one type of tendency, which is to move towards

different half-planes of the complex plane. The main message of this section is that we

have to pay attention to the quantification of the small neighbourhood, which remains

an open problem at least for the algebraic approach. We can briefly illustrate this in

Example 5.1, as follows.

We consider a point in S-sector, (τ1, τ2) = (1.1, 2.6), as depicted in Figure 5.8. We

have seen in this chapter that in this case both imaginary roots move to the right half-

plane. We can verify that we obtain the same result by using the algebraic approach, by

choosing ε = 0.1, τ11 = 1 and τ21 = 6 in equations (5.32)–(5.33). Thus, we compute s(ε)

written of the form (5.34), yielding the value of the two roots s = 0.975521− 0.254494i

and s = 0.826199 − 1.58361i. As both roots have positive real part, they are both in

the right half-plane. Of course, we can always find an extremely small value for ε such

that we end up with two simple roots lying on different sides of the imaginary axis, but

this choice gives rise to a natural question regarding the relevance of considering such a

value for the control community. We conclude by saying that when choosing values for

ε, τ11 and τ21 we have to decide upon what a small neighbourhood means, which remains

an open question.
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5.4 Extension: multiplicity three and four

The geometric approach presented throughout this chapter can be extended for charac-

teristic roots with multiplicity greater than two. In the sequel, we briefly discuss the

case of multiplicity three and four for characteristic roots lying on the imaginary axis.

5.4.1 Multiplicity three

In this subsection, we study the migration of triple roots.

Theorem 5.18. Suppose system (2.8) satisfies (5.2) and (5.3) for m = 3, and assump-

tion (5.4) holds. Then, as (p1 p2) moves from (p10 p20) to one of the two regions of

Nε(p10, p20) divided up by T(ω0,p10,p20), at least one root moves to the right half-plane,

and one other root moves to the left half-plane. The remaining root may move to either

the left half-plane, or the right half-plane. Specifically:

Case i. D > 0 and (p1 p2) moves in the region on the clockwise side of T +
(ω0,p10,p20)

and on the counterclockwise side of T −(ω0,p10,p20). In this case, two characteristic roots

of (2.8) move to the right-half complex plane, and the third root moves to the left-half

plane.

Case ii. D > 0 and (p1 p2) moves in the region on the clockwise side of T −(ω0,p10,p20)

and on the counterclockwise side of T +
(ω0,p10,p20). In this case, two characteristic roots

of (2.8) move to the left-half complex plane, and the third root moves to the right-half

plane.

Case iii. D < 0 and (p1 p2) moves in the region on the clockwise side of T −(ω0,p10,p20)

and on the counterclockwise side of T +
(ω0,p10,p20). In this case, two characteristic roots

of (2.8) move to the right-half complex plane, and the third root moves to the left-half

plane.

Case iv. D < 0 and (p1 p2) moves in the region on the clockwise side of T +
(ω0,p10,p20)

and on the counterclockwise side of T −(ω0,p10,p20). In this case, two characteristic roots of

(2.8) move to the left-half complex plane, and the third root moves to the right-half plane.

Proof. In the complex plane consider a point s in the neighbourhood of s0, as described

by equation (5.5). Similar to the way we obtained (5.8) from (5.7), we may conclude

from (5.10) using (5.2) for k = 2 and equation (5.8) that

∂2p1

∂u2

∂2p2

∂u2


u=0

= 0. (5.47)
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Differentiating (5.10) again with respect to u yields

∂3q

∂p3
1

(
∂p1

∂u

)3

+ 3
∂2q

∂p2
1

∂2p1

∂u2

∂p1

∂u
+ 3

∂3q

∂p2
1∂p2

(
∂p1

∂u

)2 ∂p2

∂u
+ 3

∂3p

∂p2
1∂s

(
∂p1

∂u

)2

γ+

+3
∂2p

∂p1∂p2

∂2p1

∂u2

∂p2

∂u
+ 3

∂3p

∂p1∂p2
2

∂p1

∂u

(
∂p2

∂u

)2

+ 3
∂2q

∂p1∂p2

∂p1

∂u

∂2p2

∂u2
+

+6
∂3q

∂p1∂p2∂s

∂p1

∂u

∂p2

∂u
γ + 3

∂3q

∂p1∂s2

∂p1

∂u
γ2 +

∂q

∂p1

∂3p1

∂u3
+ 3

∂2q

∂p1∂s

∂2p1

∂u2
γ+

+
∂3p

∂p3
2

(
∂p2

∂u

)3

+ 3
∂2q

∂p2
2

∂p2

∂u

∂2p2

∂u2
+ 3

∂3p

∂p2
2∂s

(
∂p2

∂u

)2

γ + 3
∂2p

∂p2∂s

∂2p2

∂u2
γ+

+3
∂3q

∂p2∂s2

∂p2

∂u
γ2 +

∂q

∂p2

∂3p2

∂u3
+
∂3q

∂s3
γ3 = 0. (5.48)

If we set u = 0 and use (5.8) and (5.47) in equation (5.15), we obtain(
∂q

∂p1

∂3p1

∂u3
+

∂q

∂p2

∂3p2

∂u3
+
∂3q

∂s3
γ3

)∣∣∣∣ s=s0
p1=p10
p2=p20

= 0

or (
∂q

∂p1

∂3p1

∂u3
+

∂q

∂p2

∂3p2

∂u3

)∣∣∣∣ s=s0
p1=p10
p2=p20

=

(
−∂

3q

∂s3
γ3

)∣∣∣∣ s=s0
p1=p10
p2=p20

.

We separate real and imaginary part to obtain Re
(
∂q
∂p1

)
Re
(
∂q
∂p2

)
Im
(
∂q
∂p1

)
Im
(
∂q
∂p2

)


s=s0
p1=p10
p2=p20

 ∂3p1

∂u3

∂3p2

∂u3


s=s0
p1=p10
p2=p20

= −

 Re
(
∂3q
∂s3

γ3
)

Im
(
∂3q
∂s3

γ3
)


s=s0
p1=p10
p2=p20

.

Thus

∂3p1

∂u3

∂3p2

∂u3


s=s0
p1=p10
p2=p20

= −

Re
(
∂q
∂p1

)
Re
(
∂q
∂p2

)
Im
(
∂q
∂p1

)
Im
(
∂q
∂p2

)

−1

s=s0
p1=p10
p2=p20

Re
(
∂3p
∂s3

γ3
)

Im
(
∂3p
∂s3

γ3
)


s=s0
p1=p10
p2=p20

. (5.49)

Using Lemma 5.7 and in view of (5.49), we know that a π/2 counterclockwise rotation

of γ in the complex plane will generate a 3π/2 rotation in τ1-τ2 parameter space, in the

counterclockwise direction if D > 0, and in the clockwise direction if D < 0.

Accounting for higher order terms, the situation is illustrated in Figure 5.10 for Cases

i and ii (D > 0), and in Figure 5.11 for Cases iii and iv (D < 0). In both Figures 5.10

and 5.11, the line segment CD in the diagram on the left is mapped to C ′D′ (in Re(+))

in the diagram on the right. Similarly, CB, CE and CA in the diagram on the left



Chapter 5. Geometric approach 96

p

2

p

1

Im (s)

Re (s)

Im (-)

Im (+)Re (-)

Re (+)

- -

+

+ +

-

+ -

+

+ -

-

IV

III

III

C

B

E

A

D

A'

C'

D'

B'

E'

Figure 5.10: The mapping (p1(s), p2(s)) in a neighborhood of s0. D > 0.
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Figure 5.11: The mapping (p1(s), p2(s)) in a neighborhood of s0. D < 0.

are mapped to C ′B′ (in Im(+) or T +
(ω0,p10,p20)), C

′E′ (in Re(−)) and C ′A′ (in Im(−) or

T −(ω0,p10,p20)) in the diagram on the right.

Consider Cases i and ii shown in Figure 5.10. The arc BD in darker solid curve on the

diagram on the left is mapped to the arc B′D′ in the same line type on the diagram on

the right that goes around point C ′ about 3π/2 radians. Therefore, region I bounded

by BC, CD, and arc DB in the diagram on the left is mapped bijectively to the singly

connected region bounded by the arcsB′C ′, C ′D′ and the darker solid arcD′B′, which we

will denote as I ′, in the diagram on the right. Similarly, region II is mapped bijectively

to region II ′ bounded by E′C ′, C ′B′ and the darker dotted arc B′E′, region III is

mapped bijectively by region III ′ bounded by A′C ′, C ′E′ and the lighter solid arc E′A′,

region IV is mapped bijectively to region IV ′ bounded by D′C ′, C ′A′ and the lighter

dotted arc A′D′. Notice, the region on the clockwise side of Im(+) (or T +
(ω0,p10,p20)) and

on the counterclockwise side of Im(−) (or T −(ω0,p10,p20)) in the neighbourhood of C ′ (or

(p10, p20)) may be expressed as I ′ ∩ (II ′ ∪ III ′)∩ IV ′. Therefore, for any (p1, p2) in this

region, there must be one root in region I, one root in either region II or region III,

and one root in region IV . In other words, there must be two roots on the right half

plane, and one root on the left half plane. This proves Case i. Case ii can be shown

by noticing that the region on the clockwise side of Im(−) (or T −(ω0,p10,p20)) and on the

counterclockwise side of Im(+) (or T +
(ω0,p10,p20)) in the neighborhood of (p10, p20) may be

expressed as (I ′ ∪ IV ′) ∩ II ′ ∩ III ′. Cases iii and iv may be shown similarly.
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Remark 5.19. Note that (
∂3p1

∂u3

)
γ=−i

= −
(
∂3p1

∂u3

)
γ=i

in view of (5.49). This means, in view of (5.8) and (5.47), that T +
(ω0,p10,p20) has the

same tangent as T −(ω0,p10,p20) at (p10 p20). Thus, T(ω0,p10,p20)is a smooth curve. In other

words, unlike the double root case discussed in Section 5.3, the stability crossing curve

is smooth without a cusp at (p10 p20).

5.4.2 Multiplicity four

In this section we study the migration of quadruple roots. For system (5.1), s0 is a

quadruple root if conditions (5.2) and (5.3) hold for m = 4.

Parameterize s by u and θ (or γ) as in (5.5). From (5.8), (5.47) and (5.49), we immedi-

ately conclude ∂kp1

∂uk

∂kp2

∂uk


u=0

= 0 for k = 1, 2, 3. (5.50)

The above is true for k = 3 due to (5.49) and equation (5.2) for k = 3.

Differentiate (5.15) again with respect to u, taking into account (5.50); we obtain

(
∂q

∂p1

∂4p1

∂u4
+

∂q

∂p2

∂4p2

∂u4

)
u=0
s=s0
p1=p10
p2=p20

= −
(
∂4p

∂s4
γ4

)
s=s0
p1=p10
p2=p20

.

This can be solved to obtain

∂4p1

∂u4

∂4p2

∂u4


s=s0
p1=p10
p2=p20

= −

Re
(
∂q
∂p1

)
Re
(
∂q
∂p2

)
Im
(
∂q
∂p1

)
Im
(
∂q
∂p2

)

−1

s=s0
p1=p10
p2=p20

Re
(
∂4p
∂s4

γ4
)

Im
(
∂4p
∂s4

γ4
)


s=s0
p1=p10
p2=p20

. (5.51)

Similar to the triple root case, the last equation above shows that
(
∂4p1

∂u4
∂4p2

∂u4

)T
rotates

four times as fast as γ does. To understand this case, we shall divide the circle in

s domain in 45◦ pieces in the complex plane, in order to work with singly connected

regions (see Figures 5.12 to 5.15, left).

Considering (5.50) and (5.51) for γ = i and γ = −i, we see that the local stability

crossing curve T(ω0,p10,p20) have a cusp at (p10, p20) [122]. Indeed, T(ω0,p10,p20) partitions

a sufficiently small neighborhood of (p10, p20) into a great sector (or G-sector) and a
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Figure 5.12: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case i: D > 0, and
T −(ω0,p10,p20)

is on the counterclockwise side of T +
(ω0,p10,p20)

in the S-sector.
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Figure 5.13: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case ii: D > 0,
and T −(ω0,p10,p20)

is on the clockwise side of T +
(ω0,p10,p20)

in the S-sector.
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Figure 5.14: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case iii: D < 0,
and T −(ω0,p10,p20)

is on the counterclockwise side of T +
(ω0,p10,p20)

in the S-sector.
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Figure 5.15: The mapping (p1(s), p2(s)) in a neighborhood of s0. Case iv: D < 0,
and T −(ω0,p10,p20)

is on the clockwise side of T +
(ω0,p10,p20)

in the S-sector.

small sector (or S-sector) as shown in Figure 5.1. The next theorem shows how the

quadruple roots at iω0 migrate as (p1, p2) moves from (p10, p20) to the G-sector or the

S-sector.
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Theorem 5.20. Suppose system (5.1) satisfies (5.2) and (5.3) for m = 4, and assump-

tion (5.4) holds.

If (p1, p2) is in the G-sector in a sufficiently small neighborhood of (p10, p20), then two

roots of (5.1) in the neighborhood of s0 are in the right half-plane, and the other two are

in the left half-plane.

When (p1, p2) is in the S-sector, then three roots move into one half-plane, and the fourth

one moves into the other half-plane. More precisely,

Case i. If D > 0, and T −(ω0,p10,p20) is in the counterclockwise side of T +
(ω0,p10,p20) in the

S-sector, then three roots are in the left half-plane, and one root is in the right half-plane.

Case ii. If D > 0, and T −(ω0,p10,p20) is in the clockwise side of T +
(ω0,p10,p20) in the S-sector,

then three roots are in the right half-plane, and one root is in the left half-plane.

Case iii. If D < 0, and T −(ω0,p10,p20) is in the counterclockwise side of T +
(ω0,p10,p20) in the

S-sector, then three roots are in the right half-plane, and one root is in the left half-plane.

Case iv. If D < 0, and T −(ω0,p10,p20) is in the clockwise side of T +
(ω0,p10,p20) in the S-sector,

then three roots are in the left half-plane, and one root is in the right half-plane.

Proof. Denote the sector ACE in the left-hand side of Figures 5.12-5.15 by region I.

In the same manner, region II the sector ECF , region III the sector FCG, and so

on. Thus, the neighbourhood of s0 shown in left side of Figures 5.12 to 5.15 as a disk

centered in C is divided into 8 regions, denoted by I, II, . . . , V III. The mapping of

these regions to the p1-p2 parameter space is represented in the right side of the figures.

Note that we obtain another 8 singly connected regions: region I ′ is bounded by curves

A′C ′, C ′E′ and A′E′, region II ′ by C ′E′, E′F ′ and F ′C ′, and so on.

The neighbourhood Nε(p10 p20) is divided into S-sector and G-sector by the curves A′C ′

and B′C ′. In general, F ′ and I ′ each may be either in the S-sector, or in the G-sector.

We shall only show the case where they are in the S-sector. Their locations do not affect

the validity of the conclusion. When one or both points F ′ and I ′ are outside of the

S-sector, the proof for the G-sector is slightly more involved, but still possible.

Similar to the case discussed in Section 5.3 (see Corollary 5.5) we can show that

(p1(s) p2(s)) is a bijection from R to R′ when s is restricted to R, with R a region from

the set {I, II, . . . V III}, and R′ the corresponding region in the set {I ′, II ′, . . . , V III ′}.

Consider Case i. The S-sector (in a sufficiently small neighbourhood) can be expressed

as (II ′ ∪ III ′) ∩ V ′ ∩ (V I ′ ∪ V II ′) ∩ V III ′, as depicted in Figure 5.12 right. But the

corresponding regions are (II∩III), which is in the right-half plane, and V , (V I ∪ V II)
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and V III, which are all in the left-half plane. So we may conclude that when (p1 p2) is

in the S-sector, the characteristic equation (5.1) has a root in the right-half plane, and

three others in the left-half plane. As for the G-sector, Figure 5.12 shows that it can be

expressed as (I ′ ∪ II ′)∩ (III ′ ∪ IV ′)∩ (V ′ ∪V I ′)∩ (V II ′ ∪V III ′). Thus, the character-

istic equation (5.1) has two unstable roots in G-sector, within the regions (I ∪ II) and

(III ∪ IV ), and two stable roots, within the regions (V ∪ V I) and (V II ∪ V III).

Case ii: The S-sector can be expressed as I ′ ∩ (II ′ ∪ III ′) ∩ IV ′ ∩ (V I ′ ∪ V II ′), as

shown in Figure 5.13. Therefore, for any (p1 p2) in S-sector, one characteristic root

must be in (V I ∪ V II) (in the left half-plane), and the remaining three roots in right

half-plane (one in I, one in II ∪ III, and one in IV ). Next, G-sector can be expressed

as (I ′ ∪ II ′) ∩ (III ′ ∪ IV ′) ∩ (V ′ ∪ V I ′) ∩ (V II ′ ∪ V III ′). Therefore, we can conclude

that there are two roots on the left-half plane and two roots on the right-half plane.

For case iii and case iv, the conclusions can be drawn in a similar manner. Case iii is

illustrated in Figure 5.14. S-sector can be expressed as I ′∩(II ′∪III ′)∩IV ′∩(V I ′∪V II ′),
and G-sector as (I ′∪II ′)∩ (III ′∪IV ′)∩ (V ′∪V I ′)∩ (V II ′∪V III ′). Case iv is depicted

in Figure 5.15, S-sector can be expressed as (II ′∪ III ′)∩V ′∩ (V I ′∪V II ′)∩V III ′, and

G-sector as (I ′ ∪ II ′) ∩ (III ′ ∪ IV ′) ∩ (V ′ ∪ V I ′) ∩ (V II ′ ∪ V III ′).

5.4.3 Illustrative example

In this subsection we consider an example of a systems with two delays as parameters,

τ1 and τ2. The corresponding characteristic equation has the form (2.9). In other words,

consider the quasi-polynomial

q(s, τ1, τ2) = s4 + a03s
3 + a02s

2 + a01s+ a00+

+
(
a12s

2 + a11s+ a10

)
e−sτ1+

+ (a21s+ a20) e−sτ2 .

The system has a triple imaginary root at s = s0 = iω0, with ω0 = 1, for (τ1 τ2) =

(3, 5), a03 = 1, a12 = 1, a21 = 1, and the values of other coefficients are given in

Table 5.1, where sk stands for sin k, and ck stands for cos k. The approximate values

of the coefficients in Table 5.1 are: a20 = −2.19272, a11 = 6.27284, a02 = −2.19272,

a10 = 2.03748, a00 = −2.52733, and a01 = 5.60094.

As depicted in Figure 5.16, the local stability crossing curves divide the neighbourhood

of (3, 5) in the τ1-τ2 plane into two regions. Next, it can be calculated that D > 0.

Therefore, for (τ1 τ2) taking values in the region below the curve, which is on the

clockwise side of T −(ω0,τ10,τ20) and on the counterclockwise side of T +
(ω0,τ10,τ20), two roots
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Coeff. Exact value

a20
630+193s1+219s3–583s5+108s6–s9+2s11–172c1+216c3–10c5+18c6+2c11

223s1–337s5+2s11+105c1+435c5

a11
–58s1+1836s2+271s3–200s5+223s7+336s8–2s11+2s13+466c1–380c2–1515c3+250c5+15c7+20c8+4c11

223s1–337s5+2s11+105c1+435c5

a02
–1439+606s1–418s2–5s4+1626s5–30s6+47s8+30s10+24s11–528c1+996c2–225c4+1620c5–100c6+84c8–36c10–12c11

446s1–674s5+4s11+210c1+870c5

a10
–194s1+684s2+1119s3–679s5+167s7–96s8–s11–2s13+37c1–1742c2+486c3+145c5–188c7+302c8–2c11+2c13

223s1–337s5+2s11+105c1+435c5

a00
–1849+1116s1–490s2–117s4+2112s5+66s6–73s8–2s10–12s11–850c1+1396c2–301c4+2430c5+76c6–38c8+44c10+4c11

446s1–674s5+4s11+210c1+870c5

a01
808+261s1+290s2+3s4–1815s5–92s6+65s8–44s10–6s11+691c1–628c2+95c4+225c5+50c6–67c8–18c10–16c11

223s1–337s5+2s11+105c1+435c5

Table 5.1: Coefficients’ values for illustrative example subsection.
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Figure 5.16: The positive local stability crossing curve T +
(ω0,τ10,τ20)

is the curve on the

left-hand side of the point (τ10, τ20) = (3, 5). The negative local stability crossing curve
T −(ω0,τ10,τ20)

is the curve on the right-hand side of the point (τ10, τ20) = (3, 5). These

two curves divide τ1-τ2 space into two regions.

will move in the left-half plane, and one root in the right-half plane. Similarly, for (τ1 τ2)

taking values above the curve, two roots will move on the right-half plane, and one root

on the left-half plane.

5.5 Concluding remarks

The migration of double roots of characteristic equations that depend on two parameters

(which are two delays) is studied in Section 5.3 under the least degeneracy assumption.

It is shown that in the parameter space, the local stability crossing curve has a cusp

and divides the neighbourhood of the critical point into two regions: an S-sector and

a G-sector. As the parameter pair moves to the G-sector, one root moves to the left

half-plane and the other moves to the right half-plane. If the parameter pair moves to

the S-sector, a simple algebraic criterion may be used to judge whether both roots move

to the right half-plane or the left half-plane. The proposed approach is also compared to
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a conceptually different, algebraic method. The differences between the two approaches

are commented on, and it is shown that they give the same results.

The migration of imaginary characteristic roots of multiplicity three and four is discussed

in Section 5.4. Note that both studies make use of a conventional approach, without

using Puiseux series.

Under the least degeneracy assumption, neither the triple root case, nor the quadruple

case may be stable under a small deviation of the parameters. More precisely, in the case

of triple roots the local stability crossing curve divides the neighbourhood of (p10 p20)

into two regions of roughly equal size. In one region, there are two roots on the right-half

plane, and one root on the left-half plane. In the other region, there are two roots on

the left-half plane, and one root on the right-half plane.

In the case of quadruple roots, the stability crossing curve has a cusp (similar to the

double root case), and divides the neighbourhood of (p10 p20) into a S-sector and a

G-sector. When the parameters move into the G-sector, there are two roots on the

right-half plane and the other two on the left-half plane. When the parameters move

into the S-sector, either there are three right-half plane roots and one left-half plane

root, or there are three left-half plane roots and one right-half plane root.



Chapter 6

Design of a biochemical

multiplexer

6.1 Chapter overview

In the last two decades an increasing number of studies have focused on designing bi-

ological circuits implementing new behaviours (controlled oscillations for instance) and

logical control (NOT, AND, OR and NAND gates). In this chapter we take a further

step and design a biochemical multiplexer circuit: we model a new gene network by

coding three input signals in order to select only one out of two possible outputs. Thus,

the network responds with the expected signal and produces either the green fluorescent

protein (GFP), or the red fluorescent protein (RFP), depending on the states of two

signal lines and of a control line that selects one of the signals. If the input signals code

corresponds neither to GFP activation, nor to RFP activation, no output is generated.

The contribution of this design with respect to other circuits proposed in the literature

relies first on the design conception (the proposed gene network has not only one output,

but two different outputs) and second on the methods involved: we study, analyze and

prove the uniqueness and the stability of the steady states and we consider delays in

the model corresponding to the gene transcription and translation times. Even if we use

experimental values found in the literature for the model parameters, we also analyze

what happens with the steady-state values when the parameters change.

Part of the research presented in this chapter was carried out during a visit to the

University of Lethbridge, Alberta, Canada, under financial support from Mitacs Globalink

Research Award in partnership with Inria. The work in this chapter and part of the

work in Chapter 7 are in preparation for a submission to an interdisciplinary journal.
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Figure 6.1: Multiplexer circuit.

6.2 Motivation and functionality

The engineering of synthetic gene circuits with predicted or desired functionality in

living cells remains an outstanding problem of the synthetic biology field. In the last two

decades, an increasing number of studies have focused on designing biological circuits

implementing new behaviours, such as controlled oscillations [126, 127] and counters

[95, 128]. Recent studies abound in designing logic gates: NOT gates [21, 22], AND

gates [1, 21–23], NAND gates [21, 22], OR, NOR, and XOR gates [22]. Moreover, it has

been shown that gates can be layered in order to implement more complex circuits; for

instance an AND gate with four inputs was obtained using three AND gates with two

inputs each in [1], and circuits with five inputs were designed in [129]. Designing new,

more complex behaviours is important in synthetic biology: in [130] there is an attempt

to control two signals with one single input. In this work we design a new circuit: we

control two signals using three inputs. One of the inputs is the one that selects the

expected output.

This new device can have the functionality of a multiplexer (or the selector part of a

multiplexer, see for instance 74LVC1G157 data sheet, page 3). There are a few multi-

plexing and demultiplexing logic circuits in the literature, but usually they have only one

single controlled output. For instance, in [131] both inputs generate the same product.

The multiplexer from [131] is also considered in a (theoretical) modular design in [132].

Other multiplexer implementations can be found in [133] and [134]. The contribution

of our device is that it has two different outputs, designed to select only one of two

incompatible biochemical pathways that could be carried out in a single cell. The idea

is that at most one output can be selected at a time.

In other words, we would like to design a gene network similar to a multiplexer circuit.

In Figure 6.1, the gene network is represented as a black box. There are three input

signals (signal A, signal B and signal S), and two outputs (signal a and signal b). The

expected behaviour is as follows: output a is activated when signal A is activated, and

more than this, when signal S is off; output b is activated when input B and input S are

both on. Otherwise, no output is selected. The complete truth table is:



Chapter 6. Design of a biochemical multiplexer 105

A B S output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 b

1 0 0 a

1 0 1 0

1 1 0 a

1 1 1 b

In this truth table, 1 means that a signal is activated (or on), and 0 means that the

signal is off. Note that signal S is used to select an output (signal a when S is off, and

signal b when S is on). A short version of the true table would then be

case A B S output

(i) 1 ? 0 a

(ii) ? 1 1 b

where ? can be either 1, or 0. Any other combination of input signals than case (i) or

case (ii) would produce 0.

In terms of utility, the device can be used to select one of two pathways, but does not

allow both to operate at the same time. This would be useful to allow two incompatible

pathways to coexist in a cell. In the natural world, this happens for example in some

cyanobacteria where it is necessary to alternate between photosynthesis and nitrogen

fixation because one of the key enzymes that carries out nitrogen fixation is damaged

by oxygen [135]. Thus, the circuit can be use to segregate two incompatible metabolic

activities, like nitrogen fixation and photosynthesis, or other pairs of biochemically in-

compatible activities that could be carried out in a single cell.

Another possible application would be the block copolymerization (the formation of

block copolymers, consisting of two or more blocks of different polymers clustered to-

gether [136]). The circuit could be used to choose which of two polymerization processes

is active, and therefore build up a block copolymer, essentially by switching from one

polymerization process to the other. However, the ultimate goal of this study would be

to put this gene network into living cells. The usual cells used in genetic engineering are

Escherichia coli (E. coli) cells. Researchers usually prefer E. coli cells to other bacteria
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Figure 6.2: Proposed model.

because of their properties: the fast growth rate (one generation per twenty minutes on

average), the genetic simplicity (E. coli cells have about 4400 genes), and their reduced

cost.

6.3 Proposed model

The model is depicted in Figure 6.2. The three inputs are Ara (corresponding to sig-

nal B), aTc (signal S) and IPTG (signal A). The outputs are RFP (signal b) and GFP

(signal a). Genes araC, tetR, LuxI, and LacI are always on.

Gene RFP will produce RFP when both Ptet and PBAD promoters are activated. As

tetR is always produced, it inhibits the Ptet promoter. But the presence of aTc can

release this repression. This means that the presence of aTc (signal S) will activate

promoter Ptet. On the other hand, AraC is also always produced and it inhibits in turn

the PBAD promoter of the RFP gene. Still, the presence of Ara (signal B) releases the

repression and thus the PBAD promoter will be activated. In other words, the presence

of both Ara (signal B) and aTc (signal S) allows the expression of RFP (signal b).
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At the same time, tetR represses the Ptet promoter of the λcI gene. Having aTc on

releases this repression. Thus, the production of λcI will inhibit the expression of the

LuxR gene. So, the absence of aTc will allow the expression of LuxR. As LuxI is always

on and produces the AHL enzyme, LuxR, if activated by the absence of aTC, will bind

AHL and activate the Plux promoter of the GFP gene. LacI represses the PTac promoter

of the GFP gene, but IPTG can release this repression, and activate the PTac promoter.

This means that the presence of IPTG (signal A) and the absence of aTc (signal S)

activate both promoters, and let gene GFP to be expressed (i.e. activate signal a). Note

that we don’t consider uptake or decay kinetics for input signals.

6.4 Kinetics

The activity of promoters PBAD, Ptet, Plux, and PTac can be expressed as (see Sup-

plementary Information of [1]; note that here we did not take into account the RNA

polymerase reactions):

PBAD =
Kbad

1 f badTL

1 +Kbad
1 f badTL +Kbad

2 f badT

Ptet =
1

1 + 2Ktet
1 f tetT + (Ktet

1 )2(f tetT )2

Plux =
K lux

1 f luxTL

1 +K lux
1 f luxTL

PTac =
1

1 +Ktac
1 f tacT

(6.1)

(6.2)

(6.3)

(6.4)

where

fkTL =
(Lk)n

k

(Kk
D)nk + (Lk)nk

, (6.5)

and

fkT = 1− fkTL, (6.6)

with k ∈ {bad, tet, lux, tac}. We have chosen the parameters for equations (6.1)–(6.6)

as in Table 6.1.

The value of Ktet
D given in [1] is 3.6 ng/ml. The molar mass of TetR is 23 328 g/mol.

Using this information, we write the value of Ktet
D in M.

Note that for each promoter, PBAD, PTac, Plux, Ptet and PλcI , we consider the states

depicted in Figure 6.3. Thus, PλcI activity is given by

PλcI =
1

1 +Kλ
1D +Kλ

2D + αKλ
1K

λ
2D

2
, (6.7)
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PBAD Ptet Plux PTac

L [Ara] [aTc] [LuxR:AHL] [IPTG]

n 2.2 2 1.7 1.6

KD 10−4M 1.5 · 10−10M 10−8M 3 · 10−6M

K1 12 51 8.3 1950

K2 4.4 – – –

Table 6.1: Parameters for promoters PBAD, Ptet, Plux, and PTac (see Supplementary
Information of [1]).
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Kλ 2 · 10−8M

α 132

Kλ
1 6.9 · 108 M−1

Kλ
2 2.7 · 107 M−1

D [(λcI)2]

Table 6.2: PλcI parameters [2].

and it depends on the dimers concentration D. The reaction describing the formation

of dimers (λcI)2 is: (λcI)2
Kλ

−−⇀↽−− 2λcI.

We can then find the dimers’ concentration, D =[(λcI)2], by solving the system:


[λcI]total = [λcI] + 2 [(λcI)2]

Kλ =
[λcI]

2

[(λcI)
2
]

. (6.8)

Parameter values for equations (6.7)–(6.8) are given in Table 6.2.

Using the law of mass action from chemical kinetics, we can write the following set of

differential equations describing the chemical species of the proposed model:

d[RFP ]

dt
= krfpmaxPtet(t− τ rfp)PBAD(t− τ rfp)− krfpd [RFP ]

d [λcI]total
dt

= kλmaxPtet(t− τλ)− kλd [λcI]total

d[LuxR]

dt
= klxrmaxPλcI(t− τ lxr)− klxrd [LuxR]

− kcmpa [LuxR][AHL] + kcmpd [LuxR : AHL]

d [LuxI]

dt
= kluxsyn − kluxd [LuxI]

d[AHL]

dt
= kahlmax [LuxI]− kahld [AHL]

− kcmpa [LuxR][AHL] + kcmpd [LuxR : AHL]

d[LuxR : AHL]

dt
= kcmpa [LuxR][AHL]− kcmpd [LuxR : AHL]

d[GFP ]

dt
= kgfpmaxPTac(t− τ gfp)Plux(t− τ gfp)− kgfpd [GFP ]

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

where the dissociation constant kd can generally be written as

kjd =
ln 2

tj1/2
,
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where j ∈ {rfp, λ, lxr, lux, ahl, cmp, gfp}.

Note that even if we assumed that LuxI is always on, we also consider the differential

equation (6.12) describing the time evolution of the concentration of LuxI, in order to

make sure that this concentration is reasonable, given the volume of an E. coli bac-

terium, which is about 1.7 · 10−15 L. We have used this equation to set deterministic

simulations, but when considering the stochastic model (as in Chapter 7) this equation

can be dropped from the model, as there is no interest to consider the dynamics of a gene

that is always on (as LuxI gene, or LacI gene) in a stochastic model. Nevertheless, we

have considered the equation (6.12) in the preliminary model presented in this chapter,

in order to verify that the steady-state value, and the transient regime value of LuxI

make sense from a biophysical point of view.

Note also that both transcription and translation require a significant amount of time

to form the completed product, hence the necessity to include a delay term τ j in the

modeling. This delay term is simulated by considering the past ligand concentration Lj

corresponding to equations (6.9)–(6.12) and (6.15).

The half-life constant tj1/2 or the degradation rate kjd, the maximum protein synthesis

rate kjmax, the synthesis rate kjsyn, the association constant kja, and the delay τ j for

equations (6.9)–(6.15) are given in Table 6.3.

Choice of parameters

Estimating gene expression times mainly relies on the length of the genes and the av-

erage transcription/translation speeds. Using the values given in [5], we compute the

transcription and translation delays for λ repressor and LuxR. Moreover, we estimate

the RFP and GFP transcriptional and translational delays at about 2 min.

The values chosen for maximum protein synthesis rates and for half-life time or degra-

dation rates are justified by some similar values found in Supplementary Information of

[137] and [138]. For kcmpd we have chosen the value estimated in [140], as for kcmpa we

have chosen a value of the same order of values found in [142, 143].

Parameter kluxsyn has the same order as the value of LuxI protein synthesis rate given in

[141]. We have initially designed a version of the model where the LuxI was induced by

λcI, and LuxR was constitutive (always on). But because this version was two times

slower than the case where LuxR is induced by λcI, and LuxI is constitutive, we have

chosen the latter for our design.

The half-lives of GFP and RFP have an influence on the amplitude (the steady-state) of

the concentrations of the two proteins. More precisely, increasing the half-life will also
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Param. Description Value Reference

trfp1/2 half-life of RFP 26 min [137, 138]

tλ1/2 half-life of λcI 1 min [137, 138]

tlux1/2 half-life of LuxI 30 min [137, 138]

tahl1/2 half-life of AHL 60 min [137, 138]

klxrd degradation rate of LuxR 0.15 min−1 [139]

kcmpd unbinding rate of LuxR to AHL 10 min−1 [140]

tgfp1/2 half-life of GFP 15.5 min [137, 138]

krfpmax maximum RFP synthesis rate 2 · 10−8 M min−1 [137]

kλmax maximum λcI protein synthesis rate 10−7 M min−1 [137]

klxrmax maximum LuxI protein synthesis rate 10−8 M min−1 [137]

kahlmax maximum AHL protein synthesis rate 10−2 min−1 estimated

kluxsyn LuxI protein synthesis rate 5 · 10−9 M min−1 [141]

kcmpa association constant of LuxR to AHL 107 M−1 min−1 [142, 143]

kgfpmax maximum GFP synthesis rate 5 · 10−8 M min−1 [137]

τ rfp RFP transcription and translation delay 2 min [5]

τλ λcI transcription and translation delay 0.55 min [5]

τ lxr LuxR transcription and translation delay 0.59 min [5]

τ gfp GFP transcription and translation delay 2 min [5]

Table 6.3: Parameters values for equations (6.9)–(6.15).

increase the amplitude (and the fall and rise time1 as depicted in Figures 6.7 and 6.8).

Additionally, we have chosen GFP and RFP half-lifes such that when the output signals

are on, their amplitudes are similar. The optimal values would be 15.5 and 26 minutes,

respectively, which is reasonable considering references [137, 138].

Another important parameter is klxrd , because it plays a crucial role in GFP fall time.

Even if in [139] we can find the value 0.0231 min−1, we have chosen klxrd = 0.15 min−1 in

order to decrease the GFP fall time and to improve the circuit design. This chosen value

depends on the half-life of LuxR and can be engineered. A more detailed explanation

of this choice can be found in Section 6.6.

1By fall time we understand the time required for a signal to fall from 90% to 10% of its final value.
By rise time we understand the time required for a signal to rise from 10% to 90% of its final value.
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6.5 Steady-states study

We will generally denote steady-state values by an asterisk. For instance, [LuxI]∗ is

the steady-state value of [LuxI]. In a similar way, P ∗lux denotes the promoter activity

when the corresponding ligand, [LuxR : AHL] in this case, has its steady-state value.

Moreover, P ∗BAD corresponds to a constant [Ara] input concentration. Given these

notations, the following proposition holds.

Proposition 6.1. For any set of constant inputs ([IPTG], [Ara], [aTc]), the gene net-

work described by equations (6.9)–(6.15) has a unique steady-state given by

[RFP ]∗ =
krfpmax

krfpd

P ∗tetP
∗
BAD

[λcI]∗total =
kλmax
kλd

P ∗tet

[LuxR]∗ =
klxrmax
klxrd

P ∗λcI

[LuxI]∗ =
kluxsyn

kluxd

[AHL]∗ =
kahlmax

kahld

kluxsyn

kluxd

[LuxR : AHL]∗ =
kcmpa

kcmpd

klxrmax
klxrd

kahlmax

kahld

kluxsyn

kluxd
P ∗λcI

[GFP ]∗ =
kgfpmax

kgfpd

P ∗TacP
∗
lux

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

Remark 6.2. Note that the unique steady-state (6.16)–(6.22) does not depend on time-

delays τ rfp, τλ, τ lxr and τ gfp. Thus, Ptet, PBAD, PλcI , PTac, and Plux have constant

values depending on the input signals. Remark that the concentrations [LuxI] and

[AHL] do not depend on the input signals. This is due to the fact that the LuxI gene

is always on.

Proof. At steady-state, the concentrations of all chemical species involved in the gene

network are constant; this means that the left-hand side of equations (6.9)–(6.15) is

zero. Moreover, we don’t consider uptake kinetics or decay kinetics for input signals;

this means that each promoter’s activity is a constant at a given concentration of the

input signals. Thus, we obtain the following set of nonlinear equations.
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krfpmaxP
∗
tetP

∗
BAD − k

rfp
d [RFP ] = 0

kλmaxP
∗
tet − kλd [λcI]total = 0

klxrmaxP
∗
λcI − klxrd [LuxR]

−kcmpa [LuxR][AHL] + kcmpd [LuxR : AHL] = 0

kluxsyn − kluxd [LuxI] = 0

kahlmax [LuxI]− kahld [AHL]

−kcmpa [LuxR][AHL] + kcmpd [LuxR : AHL] = 0

kcmpa [LuxR][AHL]− kcmpd [LuxR : AHL] = 0

kgfpmaxP
∗
TacP

∗
lux − k

gfp
d [GFP ] = 0

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

In the sequel, we solve the set of equations (6.23)–(6.29) and show that each concen-

tration ([RFP ], [λcI]total, [LuxR], [LuxR : AHL], [LuxI], [AHL] and [GFP ]) can be

written as a function of the parameters and depending on input concentrations ([aTc],

[IPTG] and [Ara]). From equation (6.26), we can easily see that equation (6.19) holds.

We can also write, from equation (6.23), the equality (6.16), where P ∗tet and P ∗BAD can

be expressed as a function of [aTc] and [Ara], respectively, in view of Table 6.1 and equa-

tions (6.1)–(6.2) and (6.5)–(6.6). In the same manner, the concentration [λcI]total can be

written using equation (6.24). Thus, we obtain equation (6.17), where P ∗tet depends on

[aTc]. Note that equation (6.28) gives kcmpa [LuxR][AHL] = kcmpd [LuxR : AHL]; using

this equality in (6.25) and (6.27) and replacing the expression of [LuxI] concentration

(6.19), we obtain equalities (6.18) and (6.20) where P ∗λcI depends on ([λcI]total con-

centration, which depends on) [aTc] concentration. Knowing the concentration (6.18)

of [LuxR] and (6.20) of [AHL], we can now write [LuxR : AHL] concentration from

equation (6.28) as in (6.21). Finally, from equation (6.29) we write the steady state

(6.22) where P ∗Tac can be expressed as a function of [IPTG], and P ∗lux depends on

[LuxR : AHL], which depends on [λcI]total, which depends on [aTc].

We have implemented the delay differential equations with Hill functions (6.9)–(6.15)

in Matlab/Simulink. For the simulation, we have considered constant inputs. Then,

for different sets of constant input signals, we have compared the analytic steady-state

values given by equations (6.16)–(6.22) with the steady-states given by Simulink, and

we have obtained the same results. The steady-state values are given in Table 6.4. The

concentration of input and output signals are given in M, as well as the corresponding

boolean values. This simulation confirms the fact that the steady-state does not depend

on time-delays.
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INPUTS OUTPUTS

[IPTG] [aTc] [Ara] [GFP] [RFP]

(Signal A) (Signal S) (Signal B) (Signal a) (Signal b)

0 0 0 0 0 0 10−10 0 0 0

0 0 0 0 10−5 1 10−10 0 10−12 0

0 0 10−6 1 0 0 10−15 0 0 0

0 0 10−6 1 10−5 1 10−15 0 10−8 1

10−5 1 0 0 0 0 10−8 1 0 0

10−5 1 0 0 10−5 1 10−8 1 10−12 0

10−5 1 10−6 1 0 0 10−14 0 0 0

10−5 1 10−6 1 10−5 1 10−14 0 10−8 1

Table 6.4: Steady-state response for constant input signals. For each signal we show
the concentration order of magnitude in M (left sub-column), and the corresponding

logical values in bold (right sub-column).

6.5.1 Stability analysis

Proposition 6.3. The unique steady-state (6.16)–(6.22) is stable.

Proof. Parts of the stability analysis of this device reduce to one-dimensional analyses.

We first consider equation (6.10). Ptet depends on the select signal [aTc]. Since we don’t

consider uptake or decay kinetics for the input signals, Ptet is in fact constant for a given

set of inputs. The differential equation (6.10) reduces to

d [λcI]total
dt

= kλmaxPtet − kλd [λcI]total .

It is easy to see that the following conditions hold:

d[λcI]total

dt
> 0 if [λcI]total < [λcI]∗total,

d[λcI]total

dt
= 0 if [λcI]total = [λcI]∗total,

and
d[λcI]total

dt
< 0 if [λcI]total > [λcI]∗total,

with the steady-state [λcI]∗total defined as in (6.17). The phase-space flow on the [λcI]total

axis therefore is depicted in Figure 6.4. The arrows indicate the direction of motion

along the axis, and the dot marks the stable steady state value of [λcI]total. Accordingly,

[λcI]total → [λcI]∗total asymptotically.

The stability of the steady-state values of [RFP ] and [LuxI] can be similarly dealt with.

We consider equation (6.9). Ptet depends on the select signal [aTc], and PBAD on the

input signal [Ara]. Since we don’t consider uptake or decay kinetics for the input signals,
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total[ λcI] *

Figure 6.4: Phase-space flow on the [λcI]total axis.

Ptet and PBAD are in fact constants for a given set of inputs. The differential equation

(6.9) simplifies to
d[RFP ]

dt
= krfpmaxPtetPBAD − k

rfp
d [RFP ].

Similar to the case of [λcI]total stability analysis, we can write

d[RFP ]

dt
> 0 if [RFP ] < [RFP ]∗,

d[RFP ]

dt
= 0 if [RFP ] = [RFP ]∗,

and
d[RFP ]

dt
< 0 if [RFP ] > [RFP ]∗,

where the steady-state value [RFP ]∗ is defined as in equation (6.16). Thus, we can

immediately show that [RFP ]→ [RFP ]∗ asymptotically.

The stability of the [LuxI]∗ steady-state can be proven in the same manner. We can

analyze equation (6.12) by writing

d[LuxI]

dt
> 0 if [LuxI] < [LuxI]∗,

d[LuxI]

dt
= 0 if [LuxI] = [LuxI]∗,

and
d[LuxI]

dt
< 0 if [LuxI] > [LuxI]∗,

where the steady-state value [LuxI]∗ is defined in equation (6.19). Following the same

reasoning as in the case of the [λcI]total analysis, we can see that [LuxI] → [LuxI]∗

asymptotically. The stability analysis is different in the case of [LuxR], [AHL], and

[LuxR : AHL], which are coupled to each other and to the value of [λcI]total. We can

dispose of the latter dependence, as we already know that [λcI]total tends asymptotically

to [λcI]∗total, by showing that for any positive value of [λcI]total, the system of equations

(6.8) has a unique positive solution. This can be proven geometrically. First, rewrite

system (6.8) to the form

[(λcI)2] =
1

2
([λcI]total − [λcI]) ,

[(λcI)2] = [λcI]2/Kλ.

(6.33a)

(6.33b)

We know that system (6.8) has a solution wherever these two curves intersect in the
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λcI]
λ

[(
c
I)

2
]

[

Figure 6.5: Geometry of the system (6.8). The parameters of the two equations affect
the intercept of the line, which must however remain positive, and the steepness of the

parabola. There is always exactly one intersection.

([λcI], [(λcI)2]]) plane. Note that equation (6.33a) is the equation of a line with a posi-

tive intercept ([λcI]total/2) and a negative slope (−1). At the same time, equation (6.33b)

is the equation of a parabola that passes through the origin, a strictly increasing function

of [λcI]. The two must therefore intersect at a unique point in the positive quadrant,

as depicted in Figure 6.5. Since [λcI]total → [λcI]∗total asymptotically, and since system

(6.8) has a unique solution for every value of [λcI]total, the solution to system (6.8) also

approaches a unique asymptotic value. Specifically, let D∗ be the asymptotic concen-

tration of dimers corresponding to [λcI]total = [λcI]∗total. Thus, PλcI also approaches an

asymptotic value P ∗λcI. We saw earlier that [LuxI] also tends to an asymptotic value

[LuxI]∗. Thus, equations (6.11), (6.13), and (6.14) asymptotically reduce to

d[LuxR]

dt
= klxr

maxP
∗
λcI − klxr

d [LuxR]

− kcmp
a [LuxR][AHL] + kcmp

d [LuxR : AHL],

d[AHL]

dt
= kahl

max[LuxI]∗ − kahl
d [AHL]

− kcmp
a [LuxR][AHL] + kcmp

d [LuxR : AHL],

d[LuxR : AHL]

dt
= kcmp

a [LuxR][AHL]− kcmp
d [LuxR : AHL].

We consider the state vector [LuxR AHL (LuxR : AHL)]T , and compute the Jacobian

matrix

A =


−klxrd − k

cmp
a [AHL]∗ −kcmpa [LuxR]∗ kcmpd

−kcmpa [AHL]∗ −kahld − kcmpa [LuxR]∗ kcmpd

kcmpa [AHL]∗ kcmpa [LuxR]∗ −kcmpd

 .

In view of steady-state equations (6.18) and (6.17), we note that the matrix A depends
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on the select input concentration [aTc], but not on [IPTG] or [Ara]. This is consistent

with the fact that LuxI gene is always on, so that AHL is always produced. The

[LuxR : AHL] concentration depends on the expression of the LuxR gene, i.e. on the

input signal [aTc], as depicted in Figure 6.2. For [aTc]∗ = 0 and [aTc]∗ = 5 · 10−6,

all eigenvalues of matrix A have negative real part, which means that the steady-state

[LuxR∗ AHL∗ (LuxR : AHL)∗]T is stable. More precisely, for [aTc]∗ = 0, the real

part of the eigenvalues of A are -16.2076, -0.0211 and -0.0078, and for all values of

[aTc]∗ between 0 and 5 · 10−5, the real part of the eigenvalues of A are constants, equal

to -11.8775, -0.0195, and -0.0116. This proves that [LuxR AHL (LuxR : AHL)]T →
[LuxR∗ AHL∗ (LuxR : AHL)∗]T . We consider now the differential equation (6.15). As

we don’t take into account uptake or decay kinetics for [IPTG], PTac is in fact a constant

at a given [IPTG] concentration. Provided that [LuxR : AHL] asymptotically tends

to [LuxR : AHL]∗, Plux is also a constant corresponding to [LuxRAHL]∗ steady-state

given at a constant [aTc] concentration. Thus, the differential equation (6.15) reduces

to
d[GFP ]

dt
= kgfpmaxPTacPlux − k

gfp
d [GFP ].

We can next write

d[GFP ]

dt
> 0 if [GFP ] < [GFP ]∗,

d[GFP ]

dt
= 0 if [GFP ] = [GFP ]∗,

and
d[GFP ]

dt
< 0 if [GFP ] > [GFP ]∗,

where the [GFP ]∗ steady-state is defined as in (6.22). Using the same arguments as

for the [RFP ], [λcI]total, and [LuxI] cases, we can conclude that [GFP ] → [GFP ]∗

asymptotically.

Remark 6.4. Note that the stability analysis is delay independent: the delays drop out of

the stability calculations, so their values clearly affect neither the steady-state values, nor

their stability. The stability is also independent of the functional forms of the promoter

activities.

Remark 6.5. We have chosen a geometrical stability analysis, rather than computing a

Jacobian matrix of dimension 7 due to the complexity of the latter task.

6.5.2 Transient regime

We vary the three input concentrations with time and observe the time dependence of

GFP and RFP outputs, predicted by our model, in Figure 6.6. We can remark that RFP

is activated when signals aTc and Ara are both on, and GFP is activated when IPTG is
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Figure 6.6: Imposed time evolution of the inputs (above) vs. time evolution of the
outputs (below).

on and aTc is off. Note that the threshold switch between GFP and RFP is around half

of the maximum amplitude of the signals, which is close to 0.5 · 10−8. Moreover, if we

zoom in (see Figure 6.7), we can see that the rise time for the GFP signal when [aTc]

switches from on to off and [IPTG] from off to on is around 110 minutes, and the fall

time when [aTc] switches from off to on and [IPTG] from on to off is 60 minutes. As

for the RFP signal, the rise and fall times, when [Ara] and [aTc] switch from off to on,

and when both [Ara] and [aTc] switch from on to off, respectively, are 70-80 minutes,

as depicted in Figure 6.8.

More precisely, no matter in what order signals aTc and Ara switch, the rise and fall

times of RFP output is always around 70-80 minutes (figures not shown). As for the

GFP output, the rise and fall times are in general around 110 and 60 minutes, respec-

tively, independent on the order of signal switching. The GFP rise time reduces to 60

minutes in three situations: when aTc remains off and IPTG switches from off to on,

when IPTG remains on and aTc switches from on to off, and when aTc switches from

on to off and IPTG from off to on.

We note that these transition times are comparable, which gives an appropriate be-

haviour to our multiplexer design. For instance, we consider the time evolution of [GFP ]

and [RFP ] concentrations when [IPTG] and [Ara] input signals are both on. The case

when the select signal [aTc] changes from off to on is depicted in Figure 6.9, and the

case when it switches from on to off is illustrated in Figure 6.10. We remark that, given

that the rise and fall times of GFP and RFP are similar, the transition takes place so

that there is only one output signal activated at a given time (either GFP , or RFP ).
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Figure 6.7: GFP signal when [aTc] switches from off to on and [IPTG] switches from
on to off.
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Figure 6.8: RFP signal when [Ara] and [aTc] switch from on to off.
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Figure 6.9: [GFP ] (green line) and [RFP ] (red line) concentrations as functions of
time, when the select signal [aTc] changes from off to on, and [IPTG] and [Ara] input

signals are on.
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Figure 6.10: [GFP ] (green line) and [RFP ] (green line) concentrations as functions
of time, when the select signal [aTc] changes from on to off, and [IPTG] and [Ara]

input signals are on.

6.5.3 Parameter scan

The half-lives are experimentally manipulable, which means that the degradation rates

are manipulable [126]. We can shorten the half-lives (i.e. increase the degradation rates)

to study how the proposed circuit behaviour changes. Moreover, we can also decrease

the (maximum) protein synthesis rates and remark how the concentrations [GFP ] and

[RFP ] vary.

In the sequel (see Figures 6.11–6.24), we consider low concentrations of input signals (i.e.

the concentration is zero) and high concentrations of these signals (i.e. [IPTG] = 2·10−5,

[Ara] = 1 · 10−5 and [aTc] = 5 · 10−6), and we analyze how output concentrations

[RFP] and [GFP] change when the parameters above mentioned vary. We recall that

one perspective of this study would be to put this gene network into E. coli bacteria.

Thus, by saying that a molar concentration stays well below the threshold for physical

relevance, we consider the order of magnitude of the concentration with respect to a

typical E. coli cell volume. The interpretation of Figures 6.11–6.24 is that, overall, the

gene network’s behaviour does not change when one half-life time or one synthesis rate

varies: the proposed circuit still follows the truth table depicted in Section 6.2, which

corresponds to the desired functionality.
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Figure 6.11: Dependence of [RFP ] on trfp1/2 . Left: for low [IPTG] and high [Ara]

and [aTc] concentrations, the increase of [RFP ] concetration is linear, as described by
equation (6.9). Right: for high [Ara] and low [IPTG] and [aTc] concentrations, [RFP ]
increases also in a linear way, but stays well below the threshold for physical relevance.

The red dot corresponds to the value of the parameter considered in Table 6.3.
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Figure 6.12: Dependence of [RFP ] on krfpmax. Left: for low [IPTG] and high [Ara]
and [aTc] concentrations, the increase of [RFP ] concetration is linear, as described by
equation (6.9). Right: for high [Ara] and low [IPTG] and [aTc] concentrations, [RFP ]
increases also in a linear way, but stays well below the threshold for physical relevance.

The red dot corresponds to the value of the parameter considered in Table 6.3.
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Figure 6.13: Dependence of [GFP ] on tλ1/2. Left: for high [IPTG] and low [Ara] and

[aTc] concentrations, [GFP ] concentration does not vary that much. Right: for low
[IPTG] and high [Ara] and [aTc] concentrations, the decrease in [GFP ] saturates for
sufficiently large tλ1/2, and always stays well below the threshold for physical relevance.

The red dot corresponds to the value of the parameter considered in Table 6.3.
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Figure 6.14: Dependence of [GFP ] on tlux1/2. Left: for high [IPTG] and low [Ara] and

[aTc] concentrations, the increase in [GFP ] concentration saturates for sufficiently large
values of tlux1/2. Right: for low [IPTG] and high [Ara] and [aTc] concentrations, [GFP ]
concentration increases, but stays well below the threshold for physical relevance. The

red dot corresponds to the value of the parameter considered in Table 6.3.
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Figure 6.15: Dependence of [GFP ] on tahl1/2. Left: for high [IPTG] and low [Ara] and

[aTc] concentrations, the increase in [GFP ] concentration saturates for sufficiently large
values of tahl1/2. Right: for low [IPTG] and high [Ara] and [aTc] concentrations, [GFP ]
concentration increases, but stays well below the threshold for physical relevance. The

red dot corresponds to the value of the parameter considered in Table 6.3.
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Figure 6.16: Dependence of [GFP ] on klxrd . Left: for high [IPTG] and low [Ara] and
[aTc] concentrations, the [GFP ] concentration decreases as klxrd increases. Right: for
low [IPTG] and high [Ara] and [aTc] concentrations, the decrease in [GFP ] concentra-
tion saturates for sufficiently large klxrd , and always stays well below the threshold for
physical relevance. The red dot corresponds to the value of the parameter considered

in Table 6.3.
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Figure 6.17: Dependence of [GFP ] on kcmpd . Left: for high [IPTG] and low [Ara] and
[aTc] concentrations, the [GFP ] concentration decreases as klxrd increases. Right: for
low [IPTG] and high [Ara] and [aTc] concentrations, the decrease in [GFP ] concentra-
tion saturates for sufficiently large kcmpd , and always stays well below the threshold for
physical relevance. The red dot corresponds to the value of the parameter considered

in Table 6.3.
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Figure 6.18: Dependence of [GFP ] on tgfp1/2 . Left: for high [IPTG] and low [Ara] and

[aTc] concentrations, [GFP ] concentration increases linearly as tgfp1/2 increases. Right:

for low [IPTG] and high [Ara] and [aTc] concentrations, the increase in [GFP ] concen-
tration is also linear, as described by equation (6.15), but stays well below the threshold
for physical relevance. The red dot corresponds to the value of the parameter considered

in Table 6.3.
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Figure 6.19: Dependence of [GFP ] on kλmax. Left: for high [IPTG] and low [Ara]
and [aTc] concentrations, [GFP ] concentration does not vary that much. Right: for low
[IPTG] and high [Ara] and [aTc] concentrations, the decrease in [GFP ] concentration
saturates for sufficiently large values of kλmax, and always stays well below the threshold
for physical relevance. The red dot corresponds to the value of the parameter considered

in Table 6.3.

k
max
lxr  (M min-1) #10-8

0 2 4

[G
F

P
] (

M
)

#10-8

0

0.2

0.4

0.6

0.8

1

1.2

k
max
lxr  (M min-1) #10-8

0 2 4

[G
F

P
] (

M
)

#10-14

0

0.5

1

1.5

2

2.5

3

Figure 6.20: Dependence of [GFP ] on klxrmax. Left: for high [IPTG] and low [Ara] and
[aTc] concentrations, the increase in [GFP ] concentration saturates for sufficiently large
values of klxrmax. Right: for low [IPTG] and high [Ara] and [aTc] concentrations, [GFP ]
increases when klxrmax increases, but stays well below the threshold for physical relevance.

The red dot corresponds to the value of the parameter considered in Table 6.3.

6.6 Discussion on performance

We have mentioned in Section 6.4 that the klxrd degradation rate plays a crucial role

in the GFP fall time. Indeed, if we compare the performance of the proposed design

with all the parameters chosen as in Table 6.3 to the same design where we choose

klxrd = 0.0231 min−1 (as in [139]), tgfp1/2 = 15.5 min and trfp1/2 = 26 min, we find that the

latter design has a slower transient regime. We note that the half-lives of GFP and RFP

affect their steady-state concentrations. Thus, the output steady-states are of same
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Figure 6.21: Dependence of [GFP ] on kahlmax. Left: for high [IPTG] and low [Ara] and
[aTc] concentrations, the increase in [GFP ] concentration saturates for sufficiently large
values of kahlmax. Right: for low [IPTG] and high [Ara] and [aTc] concentrations, [GFP ]
increases when kahlmax increases, but stays well below the threshold for physical relevance.

The red dot corresponds to the value of the parameter considered in Table 6.3.
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Figure 6.22: Dependence of [GFP ] on kluxsyn. Left: for high [IPTG] and low [Ara] and
[aTc] concentrations, the increase in [GFP ] concentration saturates for sufficiently large
values of kluxsyn. Right: for low [IPTG] and high [Ara] and [aTc] concentrations, [GFP ]

increases when kluxsyn increases, but stays well below the threshold for physical relevance.
The red dot corresponds to the value of the parameter considered in Table 6.3.

order for the two designs. We can easily check this by using equations (6.22) and (6.16):

we remark that increasing tgfp1/2 and trfp1/2 , [GFP ]∗ and [RFP ]∗ will increase, respectively.

If in the case of the former design the rise and fall times are as indicated in Subsec-

tion 6.5.2, switching times are different for the latter design. For GFP the rise and fall

times are 80 minutes, and for RFP the rise and fall times are about 60 minutes, except

for the case when IPTG is on and aTc switches from off to on, when the GFP fall time

is 140 minutes. In order to improve this switch time, the decay rate of LuxR should be

engineered as in Table 6.3.
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Figure 6.23: Dependence of [GFP ] on kcmpa . Left: for high [IPTG] and low [Ara] and
[aTc] concentrations, the increase in [GFP ] concentration saturates for sufficiently large
values of kcmpa . Right: for low [IPTG] and high [Ara] and [aTc] concentrations, [GFP ]
increases when kcmpa increases, but stays well below the threshold for physical relevance.

The red dot corresponds to the value of the parameter considered in Table 6.3.
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Figure 6.24: Dependence of [GFP ] on kgfpmax. Left: for high [IPTG] and low [Ara]
and [aTc] concentrations, [GFP ] linearly increases when kgfpmax increases, as described
by equation (6.15). Right: for low [IPTG] and high [Ara] and [aTc] concentrations,
[GFP ] also increases when kgfpmax increases, in a linear way, but stays well below the
threshold for physical relevance. The red dot corresponds to the value of the parameter

considered in Table 6.3.

We remark that increasing the value of klxrd decreases GFP fall time, but slightly increases

the GFP rise time. Overall, we obtain better switching times.

We might even further improve the performances and decrease the GFP rise time by

taking into account an eighth differential equation describing [LacI] evolution in time.

The differential equation corresponding to this concentration would depend on LacI

degradation rate.
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6.7 Concluding remarks

New logic circuits are important building blocks in synthetic biology. As very little

analysis has been carried out for multiplexer genetic networks in the literature, we

propose a multiplexer model where two outputs are controlled by three input signals.

Our design is described by a set of differential equations with delays. All the parameters

involved in the model have been chosen according to experimental values found in the

literature. We have seven variables in our design and have proven the uniqueness and

stability of their steady states.

We show, as the simulations point out, that the temporal characteristics of the device

are parameter- (in particular, delay-)dependent, even though the stability of the unique

steady-state is unconditional. In effect, the device has three distinct behaviors for rea-

sonable parameters values, even though they don’t arise from a bifurcation. The delays

considered in this model play a role only in the transient regime. Moreover, we have

done a parameters scan and conclude that the circuit behaviour does not change when

its parameters vary in a quite large range, which point out that the proposed design is

relatively robust.



Chapter 7

Extensions and perspectives

7.1 Consensus problem in networks

The study of the proposed consensus algorithm (3.7) presented in Chapter 3 is only the

tip of the iceberg. Further research should be carried out in connection with the optimal

choice of τ and α parameters. For instance, an adaptive algorithm can be derived for

a global optimum choice of parameters, based on the difference between the estimation

and the real value of the neighbours’ states. Another issue worthy to study is what

happens if there is no normalization by di in equation (3.7). In this case, an equivalent

normalization for the network should be found.

For some applications, it would be interesting to derive the discrete case of this algorithm,

and to compare it to the continuous case (3.7). Moreover, extensions of the proposed

model can be made for other cooperative behaviours, like synchronization.

Another problem that has not been studied in this thesis is the consensus value. A

natural question would be whether the consensus values given by the proposed model

always coincide to the value obtained in the case of classical consensus problem, or

other protocols in the literature. In this work, we have considered constant initial

conditions. One question would be what happens in the case of sinusoidal or random

initial conditions: will the consensus value change?

There are different issues that can be studied with respect to the robustness of the

proposed algorithm. Are there networks where a small perturbation on τ = τ∗ param-

eter drastically changes the network performance or bring instability? How does our

algorithm react when one agent in the network suddenly changes its opinion in a very

unpredictable way? Furthermore, the case where the network has an uncertainty on its

129
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topology, or even the case on switching topology networks should be studied under the

protocol (3.3).

Other perspective studies can focus on the analysis of the proposed protocol in some

particular networks, like bipartite networks. In the sequel however, we present some

observations on other types of network topology, namely circulant networks.

7.1.1 Some observations on directed circulant networks’ eigenvalues as

prototypes for worst delay tolerance

In this subsection, we first consider a network configuration that has all its eigenvalues

on the circle, namely the directed cycle shown in Figure 7.1(a). We refer to this config-

uration as Network A. Indeed, it is easy to calculate that the characteristic polynomial

for the Laplacian for Network A is

(1− λk)n = 1;

thus the eigenvalues λk are roots of unity shifted by one:

λk = 1− exp(2πi(k − 1)/n), k = 1, . . . , n;

see Figure 7.1(e).

It follows that for very small network sizes n, the eigenvalues are outside the red region

of Figure 3.6 (although they are still all on the circle); so Network A will have a delay

margin equal to 1. As the network size n becomes larger, the eigenvalues move into the

red region and the delay margin decreases, as shown in Figure 7.2.

We next consider circulant networks with in-degree equal to two. Here we have two

natural variations as extensions of Network A: either all connections follow the same

direction, or connections of distance one and two have opposite directions. We refer to

these networks as Network B and Network C, respectively; see Figure 7.1 (b)–(c).

For directed circulant networks with three connections per node, there are more possibili-

ties for the choice of connection directions. We only show one possibility in Figure 7.1(d),

where all connections point in the same direction. We refer to this connection topology

as Network D.

The Laplacian eigenvalues of network types B, C and D no longer all fall on the shifted

unit circle (3.11), as those of Network A did. Nevertheless, the locus of eigenvalues still

comes close to the circle near the origin, as shown in Figure 7.1(f)–(h). Hence, we have

a similar conclusion: up to a certain network size, these networks have a delay margin
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(a) Circulant network A:
every node is connected
to the next one counter-
clockwise.

(b) Circulant network B:
every node is connected
to the next two nodes
counterclockwise.

(c) Circulant network C:
similar to B, except the
outer connection direc-
tion is counterclockwise
and the inner direction is
clockwise.

(d) Circular network D:
every node is connected
to the next three nodes
counterclockwise.
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(e) Laplacian eigenval-
ues of circulant networks
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(f) Laplacian eigenval-
ues of circulant networks
of type B.
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(g) Laplacian eigenval-
ues of circulant networks
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(h) Laplacian eigenval-
ues of circulant networks
of type D.

Figure 7.1: Example of directed circulant networks (upper row) and their Laplacian
eigenvalue patterns (lower row). The eigenvalues are plotted in the complex plane for
the network sizes n = 20 (black dots), and n = 100 (blue crosses); the red circle depicts

the shifted unit circle (3.11) in the complex plane.

of 1, and for larger sizes the delay tolerance of the networks decreases. This critical

network size, for which the delay margin equals 1, is smallest for Network A and largest

for Network C, as confirmed by the horizontal segments of the curves in Figure 7.2.

Interestingly, Network C has a much higher delay tolerance than B, although all nodes

in both networks have the same in-degrees.

We also test the accuracy of the curves in Figure 7.2 by direct simulation of the system

(3.7). We pick τ = 0.9 and choose network sizes close to the curves in Figure 7.2. Starting

from random initial conditions, the time evolution of (3.7) is depicted in Figure 7.3 for

α = 1. The simulations confirm that there exists a critical network size, whose value

agrees with the information in Figure 7.2, below which the systems reaches consensus

and above which it diverges.
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Figure 7.2: Delay margin as a function of the network size n for various types of
circulant networks: type A (blue circles), type B (green points), type C (red crosses),

and type D (purple triangles).

7.2 Insights into geometric approach: extension to two

parameter-dependent systems

The results presented in Chapter 5 apply not only to time-delay systems with two de-

lays, but to a rather more general class of systems with two parameters, as discussed

in Subsection 2.2.2. In the sequel, we give a few examples of various nature (linear,

parameter-dependent polynomials, or non-linear, distributed delays systems) to illus-

trate the application of the theory synthesized in Theorem 5.8 and Corollary 5.9. These

extensions also contain degenerate cases, that are identified and discussed.

7.2.1 Parameter-dependent polynomial

Polynomial characteristic equations are the most commonly seen in the undergraduate

textbooks. An algebraic study on the stability of parameter-dependent polynomial can

be found in [144]. A representative study on robust stability of parameter dependent

polynomials can be found in [145]. A Puiseux series approach has been used to study

the perturbation of the multiple roots under small parameter deviation in [89] and [90].

In the following example, we will use the method we have arrived at to analyze such a

system.
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Figure 7.3: Time evolution of system (3.7) for directed circulant networks of type C
of various sizes n. If we fix α = 1, at a chosen delay value τ = 0.9, the critical network
size for consensus equals 24, as read off from Figure 7.2. For smaller sizes Network C
reaches consensus, while for larger sizes it diverges. The trajectories of only 5 nodes

are shown for clarity.

Example 7.1. Consider the characteristic equation

s5 + p1s
4 + p2s

3 + p2
1s

2 + s+ 2 = 0, (7.1)

where p1 and p2 are real parameters. For (p1, p2) = (2, 2), systems (7.1) has double

imaginary roots at s = ±s0 = ±iω0, where ω0 = 1. In addition, it has a root at −2,

which is in the left half-plane. The local stability crossing curve T(1,2,2) is plotted in

Figure 7.4, where C ′A′ is T −(1,2,2), and C ′B′ is T +
(1,2,2). We can compute

κ = −128 < 0.

According to Corollary 5.9, this means that both roots at i moves to the left half-plane

as (p1, p2) moves into S-sector. Furthermore, we may compute

D = 3 > 0.
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Figure 7.4: p1–p2 parameter space for Example 7.1.

Therefore, the system (7.1) belongs to Case i of Theorem 5.8, i.e. T −(ω0,p10,p20) is on the

counterclockwise side of T +
(ω0,p10,p20) in the S-sector, which is consistent with Figure 7.4.

The stability crossing curve T , defined as the set of (p1, p2) such that the character-

istic equation has at least one imaginary root, is plotted in Figure 7.4 for the range

1.5 ≤ p1 ≤ 4.5 and 2 ≤ p2 ≤ 4. We can see that T divides the double root neighbourhood

into two regions: region A (the S-sector) and region B (the G-sector). For p1 = 3 and

p2 = 3.5 (inside S-sector), the characteristic equation (7.1) has all roots with negative

real part. Therefore, the region A which is connected to this point, has all roots with

negative real part. Also according to Theorem 5.8, as (p1, p2) moves from (2, 2) to the

G-sector, one of the two imaginary roots at i moves to the right half-plane, and the other

one moves to the left half-plane. The movement of the double roots at −i is symmetric

to those at i.

To summarize, for (p1, p2) = (2, 2), the system has four roots on the imaginary axis and

one root on the left half-plane. When (p1, p2) moves into the S-sector, all five roots are

on the left half-plane. When (p1, p2) moves into the G-sector, there are two roots on the

right half-plane, and the remaining three roots are on the left half-plane.

7.2.2 Distributed delays

Distributed delays also appear in many practical systems. An early example is given by

Cushing [77] to model population dynamics as follows
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Figure 7.5: τ1–τ2 parameter space for Example 7.2. Characteristic equation (7.3) has
no roots on the right half-plane when (τ,τ2) is in region A and two roots with positive

real part when (τ1, τ2) is in region B.

ẋ(t) = ax(t) + b

∫ 0

−σ
w(θ)x(t+ θ) dθ, (7.2)

where w(θ) is the kernel function. In chapter 2 of [146], the special case of w(θ) ≡ 1 was

studied. In this case, the characteristic function becomes

q(s) = s− a− b1− e−sσ

s
, s 6= 0.

The next example considers the case with two such distributed delays.

Example 7.2. Consider the “Cushing-like” system with the following characteristic

quasi-polynomial:

q(s, τ1, τ2) = s− a− b1− e−sτ1
s

− c1− e−sτ2
s

, (7.3)

where

a = −0.214104

b = −0.996801

c = 0.5.
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System (7.3) has double imaginary roots at s0 = ±iω0 with ω0 = 1 for τ1 = τ10 =

3.8403026849 and τ2 = τ20 = 10.44866732901. We compute D and κ to obtain

D ' 0.159228 > 0,

κ ' −105541 < 0.

Judging from the sign of D and κ, we can see that this example belongs to Case i in

Theorem 5.8, i.e. D > 0 and T −(ω0,τ10,τ20) is on the counterclockwise side of T +
(ω0,τ10,τ20)

in the S-sector.

The stability crossing curve T is depicted in Figure 7.5 for the range 2 ≤ τ1 ≤ 4,

8.5 ≤ τ2 ≤ 10.5. We remark that T divides this area into two regions: region A is

the region containing S-sector and connected to the origin, and region B contains the

G-sector. For τ1 = τ2 = 0, the characteristic quasi-polynomial reduces to a polynomial

that has only one root equal to a. As a is negative, we conclude that for (τ1, τ2) in

region A the quasi-polynomial (7.3) has no root with positive real part, and the system

is stable.

Next, according to Corollary 5.9 or Theorem 5.8, both imaginary roots at i move to the

left half-plane as (τ1, τ2) moves from the cusp to the S-sector (region A). Furthermore,

according to Theorem 5.8, as (τ1, τ2) moves to G-sector (region B), one of the imaginary

roots moves to the right half-plane, and the other one to the left half-plane. In other

words, as (τ1, τ2) moves from region A to region B through (τ10, τ20), one of the two

imaginary roots moves from the left half-plane to the right half-plane passing through the

point i of the imaginary axis, and the other root moves in the left half-plane to touch

the imaginary axis at i and then returns to the left half-plane.

Due to symmetry reasons, another left half-plane root moves to the right half-plane

through the point −i. Thus, in region B there are two more roots with positive real part,

as compared to the region A. Thus, we conclude that there are two roots on the right

half-plane when (τ1, τ2) is in region B.

7.2.3 Degenerate cases

In this subsection, two examples will be presented to illustrate degenerate cases. The

first example shows the local stability crossing curve may not have a cusp when one of

the least degeneracy assumptions, D 6= 0, is violated. The second example shows that

the S-sector may be empty.
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Figure 7.6: p1–p2 parameter space for Example 7.3. Point (p10, p20) = (1, 2) corre-
sponds to double root at ω0 = 1. D = 0. The stability crossing curve T does not have

a cusp.

Example 7.3. Consider the characteristic equation

s5 + s4 + p2s
3 + (p1 + 1) s2 + s+ p1 = 0, (7.4)

where p1 and p2 are real parameters. For p1 = 1 and p2 = 2, (7.4) has a double root at

s0 = ±iω0 with ω0 = 1. We can compute D = 0, and therefore (5.4) is violated. The

local stability crossing curve is plotted in Figure 7.6. It can be seen that there is no cusp

at (1, 2), and S-sector and G-sector are not well defined.

Example 7.4. Consider the characteristic equation

s4 + (p1 + p2) s3 + 2 (p1p2 + 2) s2 + + (p1 + p2) s+ p1p2 +
7

4
= 0, (7.5)

with two parameters, p1 and p2.

For (p1, p2) = (p10, p20) =
(√

3
2 ,−

√
3
2

)
, system (7.5) has double imaginary characteris-

tic roots at s = ±s0 = ±iω0 for ω0 =
√

2
2 . We compute D and κ and obtain

D =
√

3
4 > 0

κ = −96
√

2 < 0
.

We note that in a neighbourhood of (p10, p20) we can easily confirm that p1 = p2 for

p1 ≤ p10 results in two imaginary roots in the neighbourhood of s0. This means that

the positive and negative local stability crossing curves, T +
(ω0,p10,p20) and T −(ω0,p10,p20), co-

incide and the S-sector is empty. This situation is depicted in Figure 7.7. However, the

conclusion about the G-sector still holds, i.e. there is a characteristic root in the right
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corresponds to ω0 =
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2
2 . S-sector is empty. In G-sector, characteristic equation (7.5)

has two unstable roots.

half-plane in the neighbourhood of s0, and another one in the neighbourhood of −s0, as

(p1, p2) moves to the G-sector.

7.3 Designs of a biochemical multiplexer: the stochastic

model

Part of the research presented in this section was carried out during a visit to the

University of Lethbridge, Alberta, Canada, in 2017, in the context of a further collabo-

ration with Prof. Marc R. Roussel. The financial support was provided by Prof. Roussel

from his Natural Sciences and Engineering Research Council (NSERC) grant, and by

L2S laboratory, France.

The aim of synthetic biology is to design and build new biological systems that respond to

external signals by producing a desired chemical compound. More precisely, as specified

in Section 2.3, the parts (bioparts) encoding biological functions have to be characterized,

so that devices encoding human defined functions can be built. In our case, such a device

implements a multiplexer. This circuit has to be implemented and tested in order to

improve the design, as described in Figure 7.8. Of course, in the synthetic biology design

cycle, a precise control of biological pathways is critical for a successful design. In our

model (as presented in Chapter 6), we have basically considered a proportional (P)

controller for the device: the input signals can be either on or off, and we neglect their

uptake and decay kinetics (which is reasonable for a first implementation version).
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Our model specifications (basically the first step in the cycle) can be summarized under

the two truth tables that can be found in Section 6.2. The design phase in Figure 7.8

can be depicted as in Figure 6.2 and the corresponding comments in Section 6.3. The

device modeling can be described by the ordinary differential equations (6.9)–(6.15). To

sum up, the work presented throughout Chapter 6 only reduces to three steps of the

synthetic biology design cycle: specifications statement, design and modeling. Before

the implementation step, it is important to rigorously study and analyze the model. We

have completed the stability analysis, we have studied the transient regime, and done a

parameter scan. However, the study of the stochastic model can also be carried out to

complete the modelling phase. Such a study can also be motivated by the following.

The reaction-rate equations given in Section 6.4 are continuous and deterministic. How-

ever, the time evolution of the chemical network is not a continuous process, as the

number of molecules can only change by integer amounts dictated by the stoichiometry

of the elementary reactions. Moreover, chemical reactions are stochastic rather than

deterministic processes [147]. Treating transcription and translation in detail for each

gene would require a very large and unwieldy model, although it can be done [148, 149].

As in differential equation models, the use of delays allows a considerable simplification

of stochastic models of gene expression [150–152]. Delay-stochastic simulation algo-

rithms [150, 151, 153, 154] and software [155, 156] are available.

We recall here the continuous model, and we remove the differential equation corre-

sponding to LuxI, and adjust the value of kahl
max accordingly.

d[RFP]

dt
= krfp

maxPtet(t− τ rfp)PBAD(t− τ rfp)− krfp
d [RFP]

d [λcI]total

dt
= kλmaxPtet(t− τλ)− kλd [λcI]total

d[LuxR]

dt
= klxr

maxPλcI(t− τ lxr)− klxr
d [LuxR]

− kLA
+c [LuxR][AHL] + kLA

−c [LuxR ·AHL]

d[AHL]

dt
= kahl

max − kahl
d [AHL]

− kLA
+c [LuxR][AHL] + kLA

−c [LuxR ·AHL]

d[LuxR ·AHL]

dt
= kLA

+c [LuxR][AHL]− kLA
−c [LuxR ·AHL]

d[GFP]

dt
= kgfp

maxPTac(t− τgfp)Plux(t− τgfp)− kgfp
d [GFP]

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

The stochastic simulation we discuss in the sequel are based on Markov-chain and Monte

Carlo simulations. We note that if the DDE model (7.6)–(7.11) works with concentra-

tions, the species in the case of stochastic simulations are expressed in numbers of
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Figure 7.8: The synthetic biology design cycle.

molecules. This is why the first step when carrying out stochastic simulations is to

convert the deterministic model, equations (7.6)–(7.11) in our case, into the equivalent

set of chemical reactions. For the model described in detail in Chapter 6 there are parts

already framed as chemical reactions, such as equations (6.8) for instance. Other parts,

such as degradation terms, can be easily converted into chemical reactions. For instance,

the degradation term of equation (7.11) implies the decay reaction

GFP
kgfp
d−−→ ∅.

Converting the protein synthesis terms from the deterministic model into chemical re-

actions, on the other hand, represents a complex process. Thus, we need to carefully

make a set of assumptions that can simplify this process without compromising the ki-

netics of our model. The first assumption we make concerns the Hill coefficients: for

the stochastic simulations we suppose that the Hill coefficients are integers. Indeed, a

parameter scan we carried out on the deterministic model shows that the proposed cir-

cuit has the same qualitative behaviour when Hill coefficients are rounded to the closest

integer. The second assumption we make is that the promoters only have two states: on

and off. Thus, we consider that there is only one promoter controlling GFP expression

(basically we take Plux and PTac promoters as a single promoter), and this promoter can

switch from on to off and the other way around, giving the process

Ggfp
off

kgfp
on−−−⇀↽−−−
kgfp

off

Ggfp
on , (7.12)

where Ggfp
on/off represents the two states of the GFP gene promoter. When the gene is

on, it produces proteins according to the delayed mass-action reaction [157]

Ggfp
on (t)

kgfp
max−−−→ Ggfp

on (t) + GFP(t+ τgfp). (7.13)

We note that considering the same value for the delay τgfp in equation (7.13) as in the
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deterministic model represents another assumption we made, in order to keep consistency

with equation (7.11). In other words, we consider the transcription and translation as a

single process by assuming that the GFP gene is expressed with some mean delay τgfp.

By using this assumption, we avoid the proliferation of reactions and parameters in the

model, and expanding it too much.

Reactions (7.12) and (7.13) together give the same kinetics for the synthesis of GFP

as the first term on the right-hand side of equation (7.11) provided the rate constants

conform to the equilibrium distribution between the on and off states of the gene, viz.

kgfp
on

kgfp
off

=
P gfp

on

P gfp
off

, (7.14)

where

P gfp
on (t) = Plux(t)PTac(t),

P gfp
off (t) = 1− Pon(t).

(7.15a)

(7.15b)

This clearly requires that

kgfp
on = kswP

gfp
on (t),

kgfp
off = kswP

gfp
off (t),

(7.16a)

(7.16b)

where ksw is a characteristic rate of switching, a new parameter added in the stochastic

model when converting the first term of equation (7.11) to reactions (7.12) and (7.13).

In order to avoid an unnecessary increase in the number of parameters in the model,

we also assume that all the genes have the same rate of switching ksw. When we carry

out the stochastic simulations, we choose an arbitrary value for ksw such that its value

is larger than the largest of the other stochastic rate constants.

The effective chemical reactions can be derived in a similar way for other genes in the

model. The LuxR expression implies the process

Glxr
off

klxr
on−−−⇀↽−−−
klxr

off

Glxr
on , (7.17)

where Glxr
on/off represents the two states of the λcI promoter. Also, the gene expression

produces protein according to the delayed mass-action reaction

Glxr
on (t)

klxr
max−−−→ Glxr

on (t) + LuxR(t+ τ lxr). (7.18)
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Similarly to the case of GFP expression control, we can write

klxr
on = kswP

lxr
on (t),

klxr
off = kswP

lxr
off (t),

(7.19a)

(7.19b)

where

P lxr
on (t) = PλcI(t),

P lxr
off (t) = 1− PλcI(t).

(7.20a)

(7.20b)

We remind the reader that in principle, each gene could have its own characteristic

switching rate. However, to avoid a proliferation of parameters, we take the same ksw

for all genes, keeping in mind that we only need this parameter to be sufficiently large

in order to reproduce the kinetics of (7.8).

We also need consider decay of LuxR:

LuxR
klxr
d−−→ ∅.

The remaining terms in (7.8) correspond to the binding equilibrium

LuxR + AHL
kLA

+c−−−⇀↽−−−
kLA
−c

LuxR ·AHL.

The first term of equation (7.9) corresponds to AHL synthesis, which is assumed to

proceed at constant rate. There is also a decay term:

∅ kahl
max−−−→ AHL

kahl
d−−→ ∅.

For the case of λcI expression, the first term of equation (7.7) gives the same kinetics as

the process

Gλ
off

kλon−−−⇀↽−−
kλoff

Gλ
on

with

Gλ
on(t)

kλmax−−−→ Gλ
on(t) + λcI(t+ τλ).

The corresponding rate constants are selected as above:

kλon = kswP
λ
on(t),

kλoff = kswP
λ
off(t),

(7.21a)

(7.21b)
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and

P λon(t) = Ptet(t),

P λoff(t) = 1− Ptet(t).

(7.22a)

(7.22b)

In order to obtain the same decay kinetics as in equation (7.7), both λcI and (λcI)2 must

decay with the same rate constant:

λcI
kλd−−→ ∅,

(λcI)2
kλd−−→ ∅.

(7.23a)

(7.23b)

We additionally have the reversible reaction

(λcI)2

kλ+c−−−⇀↽−−
kλ−c

2λcI

from (6.8), where the rate constants ratio satisfy
kλ+c
kλ−c

= Kλ.

For the rfp gene, the corresponding process is

Grfp
off

krfp
on−−−⇀↽−−−
krfp

off

Grfp
on , (7.24)

with

krfp
on = kswP

rfp
on (t),

krfp
off = kswP

rfp
off (t),

(7.25a)

(7.25b)

and

P rfp
on (t) = PBAD(t)Ptet(t),

P rfp
off (t) = 1− PBAD(t)Ptet(t).

(7.26a)

(7.26b)

When it is on, the rfp gene produces proteins according to the delayed mass-action

reaction

Grfp
on (t)

krfp
max−−−→ Grfp

on (t) + RFP(t+ τ rfp). (7.27)

The kinetics of the second term of this equation are given by the decay reaction

RFP
krfp
d−−→ ∅.

After writing all the equivalent chemical reactions, we also need to convert the rate

constants into stochastic rate constants [147]. This can be done by using some formulas

based on the conversion from concentration to number of molecules, which depends on

the type of the rate constants. We can have zero-, first-, or second-order rate constants.
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Moreover, we can further improve the deterministic model, by taking into account the

number of plasmids and the dimerisation of [LuxR ·AHL], which adds a few other reac-

tions and parameters to our model. The effective chemical reactions can be derived in

a similar way, as described above. Thus, once we have all the equations needed for the

stochastic model simulation, we can validate the continuous model.

7.4 Global conclusions and perspectives

We introduce multi-agent systems and consensus problem in Chapter 3, where a new

consensus protocol for networks with anticipatory agents is proposed. The network

stability under the proposed protocol is investigated and consensus conditions are given.

Chapters 4 and 5 discuss stability issues for a larger class of systems. Limit cases

are considered, when multiple characteristic roots lay on the imaginary axis. More

precisely, Chapter 4 presents a set of conditions on the system parameters such that

the characteristic root at the origin reaches its maximal multiplicity. Chapter 5 focuses

on systems with two parameters and multiple roots on the imaginary axis, except the

origin. A criterion to decide if a small deviation on the parameters induces a tendency

toward the stability or instability is given for the considered type of systems with two

parameters. An extension to multiplicity three and four is also studied in Chapter 5. A

gene network model is presented in Chapter 6. This design is similar to a multiplexer

circuit: two outputs are controlled using three input signals. The differential equations

describing the systems are given, as well as steady-state values obtained analytically and

by using simulations. A brief robustness study is presented, showing how the circuit

behavior changes when the parameters vary.

The analysis of time-delay dynamics on networks may give some insights into the under-

standing of complex systems, from engineering to life sciences and economics. Adapting

to and addressing problems relevant to our changing world is of great importance for

the control community. Thus, more research should be carried out to answer a chal-

lenging demand of understanding the self-organization and evolution of large networks

with common tasks. As new opportunities to apply control principles and methods are

exploding, it is high time for researchers from control theory to join researchers from

different domains (e.g. computer science or biochemistry) and come up with new break-

throughs in engineering and technology that can considerably improve the world we live

in.
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Other mathematical tools

relevant for Chapter 4

In this appendix, we briefly review some definitions from complex analysis, linear algebra

and numerical analysis. For details, the reader is referred to standard texts such as [158]

and [159].

Complex analysis

Definition A.1. A holomorphic function is a complex-valued function of one or more

complex variables that is complex differentiable in a neighborhood of every point in its

domain.

Next we denote by H(D) the set of holomorphic functions that take values in the domain

D. Moreover, we denote by Cr,R the annulus centered at the origin, of internal radius r

and external radius R, and by Cρ the circle centered at the origin with a radius of ρ > 0.

Theorem A.2 (Laurent). We consider z0 ∈ C and two real numbers r and R, such

that 0 < r < R. Every function f belonging to H(z0 + Cr,R) can be written as a series,

called a Laurent series, as:

f(z0 + h) =
∑
n∈Z

cnh
n,

with h ∈ Cr,R and, for each ρ ∈ (r,R):

cn =

∫
z0+Cρ

f(z)

(z − z0)n−1
dz

145
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Definition A.3. We consider an open subset Ω of the complex plane and a function

f ∈ H(Ω\S), where S ⊂ Ω is a (finite or not) set containing the poles zi of f , at each

of which the function must have a Laurent series. Then, we say that f is a meromorphic

function on the open subset Ω.

We notice that actually a meromorphic function on Ω is holomorphic on all Ω except a

set of isolated points zi.

Definition A.4. Let f be a meromorphic function on the open subset Ω of the complex

plane, s ∈ Ω and f(z) =
∑

n∈Z cn(z − s)n the Laurent series of f in the neighborhood

of s. Then, we call residue of f around the point s:

Res
s

(f) = c−1.

Proposition A.5. If Ω is a domain where the function f ∈ H(Ω) is non-null and z

belongs to the set Z(f) denoting the zeros of f , then z is a zero of order Res
z

(
f ′

f

)
, called

logarithmic residue of f in z.

Sketch of the proof. We consider z0 ∈ Z(f) a zero of f . Since f is non-null on Ω, there

is m ≥ 0 such that f(z) = (z − z0)mφ(z), where φ ∈ H(Ω) and φ(z0) 6= 0. A trivial

computation shows that f ′

f (z) = m
z−z0 + φ′

φ (z), where φ′

φ is holomorphic on Ω.

Proposition A.6 (Calculating residues). Let Ω be an open subset of the complex plane,

f and g two meromorphic functions on Ω and z0 ∈ Ω. Then:

1. If z0 is a simple pole of f , then Res
z0

(f) = limz→z0(z − z0)f(z);

2. If z0 is a kth-order pole of f , then Res
z0

(f) = limz→z0
dk−1

dzk−1

(
(z−z0)k

(k−1)! f(z)
)

;

3. If z0 is a simple pole of f
g , then Res

z0
(fg ) = f(z0)

g′(z0) .

The next proposition, known as the argument principle (see [118]), use the winding

number of a closed, continuous, oriented curve in the plane around a given point which

defines the total number of times that the curve turns in the given direction (and returns

to its starting point) around the point.
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Proposition A.7 (Argument Principle). Let γ denote a closed continuous curve without

double points and Ω the closed interior of γ. The function f(z) is assumed to be regular

in Ω, except possibly at finitely many poles, finite and non-zero on γ. As the point

z moves along γ in the positive sense, the point w = f(z) describes a certain closed

continuous curve the winding number of which is equal to the number of zeros inside γ

minus the number of poles inside γ. The proposition remains true also when f(z) is only

continuous and non-zero on γ.

This graphical interpretation is equivalent with an analytical representation that can be

written:

Z − P =
1

2iπ

∮
γ

f ′

f
,

where Z is the number of zeros and P is the number of poles of the function f inside

the contour γ.

Proof. We denote by Zγ(f) and Pγ(f) the sets of zeros and poles of f inside the contour

γ. Proposition A.5 shows that for z ∈ Zγ(f), the residue in z of f ′

f is the order of the

zero z. A complex number p belongs to Pγ(f) if and only if p is a zero of 1
f , thus p is

a pole of order Res
p

(
1/f ′

1/f

)
= −Res

p

(
f ′

f

)
. We use next the proposition A.6 for f ′

f on γ

and we obtain

1

2iπ

∮
γ

f ′

f
=

∑
z∈Zγ(f)

Res
z

(
f ′

f

)
+

∑
p∈Pγ(f)

Res
p

(
−f
′

f

)
= Z − P.

The formulation of the next theorem can also we found in [118].

Theorem A.8 (Rouché’s Theorem). We suppose that f(z) and g(z) are two functions

that are regular in the interior of Ω, continuous in the closed domain Ω and that further-

more |f(z)|> |g(z)| on the boundary γ of Ω. Then the function f(z) + g(z) has exactly

the same number of zeros inside Ω as f(z).

Proof. We assume that f(z) and g(z) are regular on γ since f(z) and f(z) + g(z) are

different from 0 and |f(z)|> |g(z)| sufficiently close to γ. Moreover, the last condition

is equivalent to |g(z)||f(z)| < 1, so we can say that the function 1 + g(z)
f(z) has (on γ) a positive

real part. That means that, as z moves on γ, the change of its argument is equal to 0.

Furthermore f(z) + g(z) can be also written as f(z)
(

1 + g(z)
f(z)

)
. Given that the winding

number of the image under the product w = f(z)
(

1 + g(z)
f(z)

)
of γ is equal to the sum of

the winding numbers of the images of γ under w = f(z) and w = 1 + g(z)
f(z) respectively,

i.e. the image of γ under f(z)+g(z) has the same winding number as the one under f(z)
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plus the one under 1 + g(z)
f(z) (which is zero), we can conclude that f(z) and f(z) + g(z)

has exactly the same number of zeros inside Ω.

Linear algebra and numerical analysis

A matrix with the terms of a geometric progression in each row (or column) is called a

Vandermonde matrix. For instance, an m× n matrix

V =



1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

1 x3 x2
3 . . . xn−1

3

1
...

...
. . .

...

1 xm x2
m . . . xn−1

m


is a Vandermonde matrix.

Sometimes we need a mathematical representation showing a relationship between two

objects. We consider two objects belonging to different classes, A and B. An incidence

matrix is a matrix having one row for each element of A and one column for each element

of B. By convention, its elements are either 1 or 0, 1 if the corresponding row and column

are related, and 0 if they are not.
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Software Tools

We mention in this appendix a few open source Matlab packages very useful for spectra

study in the case of time-delay systems. The results of this thesis have been illustrated

not only by using code developed by the author, but also by making use of some Matlab

packages named below.

B.1 DDE-Biftool

The second version of DDE-BIFTOOL is a free Matlab package for the stability and

bifucation analysis of delay differential equations. It consists actually in a set of Matlab

routines that allow to compute and analyze branches of solutions and bifurcations (see for

more details the manual http://www.cs.kuleuven.ac.be/publicaties/rapporten/

tw/TW330.abs.html). Generally, the user has to write at least four files in order to

define the system one would like to study: an initialization file containing the dimension

and the name of the system, a second file describing the system of the form

ẋ = f(coefficients, x(t), delayedx(t)),

the Jacobian file that can be replaced with df deriv.m, and another file called sys tau

containing the position of the delays in the parameter vector. The manual also provides

some step-by-step examples of how to define a time-delay system (with constant delays

or state-dependent delays) and what function to use for stability analysis and branch

manipulation.
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B.2 QPmR

QPmR (Quasi-Polynomial Mapping Based Rootfinder) is a Matlab file containing several

functions for computation and analysis of the spectra of characteristic quasi-polynomials

of both retarded and neutral time delay systems. It is easy to use (and it has quite a good

degree of stability, even if it is based on a recursive algorithm) and is well-documented.

The main input is a quasi-polynomial represented either by two arrays, or by a function

handle; the routine finds the zeros of the quasi-polynomial (in some specified region, with

some specified precision), using the algorithms that can been found in the referenced

bibliography (see http://www.cak.fs.cvut.cz/algorithms/qpmr).

B.3 TRACE-DDE

An alternative for plotting the spectral values is to use the TRACE-DDE package. It

has a friendly graphical user interface, computes the characteristic roots, and provides

stability charts (sets of asymptotically stable/unstable regions in the parameters plane)

for the robust stability analysis. It is intuitive and its documentation can be found at

http://sole.dimi.uniud.it/~dimitri.breda/research/software/.

B.4 SOSTOOLS

It is noteworthy to also mention this Matlab toolbox, even if its aim is rather differ-

ent compared to DDE-Biftool, QPmR and TRACE-DDE. SOSTOOLS [160] is a free

software designed for sum of squares optimization problems. It can determine whether

a polynomial is the sum of squares (of other polynomials), it can be used to search

Lyapunov functions, to find bounds for minimization problems, to decide upon the

copositivity of a given matrix, to find an upper bound for structured singular values in

robustness problems and many other problems.

http://www.cak.fs.cvut.cz/algorithms/qpmr
http://sole.dimi.uniud.it/~dimitri.breda/research/software/
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sity of Bucharest, 2006.

[125] Tomáš Vyhĺıdal and Pavel Źıtek. Mapping based algorithm for large-scale com-

putation of quasi-polynomial zeros. IEEE Transactions on Automatic Control, 54

(1):171–177, 2009. doi: 10.1109/TAC.2008.2008345.

[126] Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network of tran-

scriptional regulators. Nature, 403:335–338, 1990. doi: 10.1038/35002125.

[127] Tal Danino, Octavio Mondragón-Palomino, Lev Tsimring, and Jeff Hasty. A syn-

chronized quorum of genetic clocks. Nature, 463:326–330, 2010.

[128] Ari E. Friedland, Timothy K. Lu, Xiao Wang, David Shi, George Church, and

James J. Collins. Synthetic gene networks that count. Science, 324:1199–1202,

2009. doi: 10.1126/science.1172005.

[129] Zhen Xie, Liliana Wroblewska, Laura Prochazka, and Yaakov Benenson. Multi-

input rnai-based logic circuit for identification of specific cancer cells. Science, 333

(6047):1307–1311, 2011. doi: 10.1126/science.1205527.

[130] Jesus Fernandez-Rodriguez and Christopher A. Voigt. Post-translational control

of genetic circuits using potyvirus proteases. Nucleic Acids Research, 44(13):6493–

502, 2016. doi: 10.1093/nar/gkw537.

[131] Lorenzo Pasotti, Mattia Quattrocelli, Daniela Galli, Maria Gabriella Cusella De

Angelis, and Paolo Magni. Multiplexing and demultiplexing logic functions for

computing signal processing tasks in synthetic biology. Biotechnology Journal, 6

(7):784–795, 2011. doi: 10.1002/biot.201100080.

[132] Linh Huynh, Athanasios Tsoukalas, Matthias Koppe, and Ilias Tagkopoulos.

Sbrome: A scalable optimization and module matching framework for auto-

mated biosystems design. ACS Synthetic Biology, 2(5):263–273, 2013. doi:

10.1021/sb300095m. URL http://dx.doi.org/10.1021/sb300095m. PMID:

23654271.

[133] Tae Seok Moon, Elizabeth J. Clarke, Eli S. Groban, Alvin Tamsir, Ryan M. Clark,

Matthew Eames, Tanja Kortemme, and Christopher A. Voigt. Construction of a

genetic multiplexer to toggle between chemosensory pathways in Escherichia coli.

J Mol Biol., 406(2):215–227, 2011. doi: 10.1016/j.jmb.2010.12.019.

[134] Sergi Regot, Javier Macia, Nuria Conde, Kentaro Furukawa, Jimmy Kjellen, Tom

Peeters, Stefan Hohmann, Eulalia de Nadal, Francesc Posas, and Ricard Sole.

http://dx.doi.org/10.1021/sb300095m


Bibliography 163

Distributed biological computation with multicellular engineered networks. Nature

Letter, 469:207–211, 2011. doi: 10.1038/nature09679.

[135] David G. Adams. Heterocyst formation in cyanobacteria. Current Opinion in

Microbiology, 3(6):618–624, 2000. ISSN 1369-5274. doi: http://dx.doi.org/10.

1016/S1369-5274(00)00150-8. URL http://www.sciencedirect.com/science/

article/pii/S1369527400001508.

[136] A. D. McNaught and A. Wilkinson. Compendium of Chemical Terminology. Black-

well Scientific Publications, Oxford, second edition, 1997.

[137] A. Pai and L. You. Optimal tuning of bacterial sensing potential. Mol Syst Biol.,

286(5), 2009. doi: 10.1038/msb.2009.43.

[138] Michael Lynch and Georgi K. Marinov. The bioenergetic costs of a gene. PNAS,

112(51):15690–15695, 2015.

[139] A. B. Goryachev, D. J. Toh, and T. Lee. Systems analysis of a quorum sens-

ing network: Design constraints imposed by the functional requirements, net-

work topology and kinetic constants. Biosystems, 83(2–3):178–187, 2006. doi:

http://dx.doi.org/10.1016/j.biosystems.2005.04.006.

[140] M. Weber and J. Buceta. Dynamics of the quorum sensing switch: stochastic and

non-stationary effects. BMC Syst Biol., 7(6), 2013. doi: 10.1186/1752-0509-7-6.

[141] Subhayu Basu, Yoram Gerchman, Cynthia H. Collins, Frances H. Arnold, and

Ron Weiss. A synthetic multicellular system for programmed pattern formation.

Nature, 434(7037):1130–1134, 2005. doi: 10.1038/nature03461.

[142] Yuriko Takayama and Norihiro Kato. Switch of spnr function from activating to

inhibiting quorum sensing by its exogenous addition. Biochemical and Biophysical

Research Communications, 477(4):993–997, 2016. doi: http://dx.doi.org/10.1016/

j.bbrc.2016.07.017.

[143] M. L. Urbanowski, C. P. Lostroh, and E. P. Greenberg. Reversible acyl-homoserine

lactone binding to purified vibrio fischeri luxr protein. Journal of Bacteriology,

186(3):186–631, 2004.

[144] A. A. Mailybaev. On stability of polynomials depending on parameters. Journal

of Computer and Systems Sciences International, 39(2), 2000.

[145] B. R. Barmish. New Tools for Robusteness of Linear Systems. Macmillan Coll

Div, 1993.

http://www.sciencedirect.com/science/article/pii/S1369527400001508
http://www.sciencedirect.com/science/article/pii/S1369527400001508


Bibliography 164

[146] T. Insperger and G. Stepan. Semi–discretization method for delayed systems.

Springer, 2011.

[147] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The

Journal of Physical Chemistry, 81(25):2340–2361, 1977. doi: 10.1021/j100540a008.

URL http://dx.doi.org/10.1021/j100540a008.

[148] Marc R. Roussel and Rui Zhu. Stochastic kinetics description of a simple

transcription model. Bull. Math. Biol., 68:1681–1713, 2006. doi: 10.1007/

s11538-005-9048-6.
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Abstract: This thesis discusses diverse types of 
interconnected systems through networks. We 
address networks of agents with cooperative 
tasks and propose a new consensus protocol 
with delays and anticipatory agents. We study 
the consensus reaching conditions for networks 
organized under the proposed model. 
Moreover, we derive some theoretical results, 
which can apply to a more general class of 
systems, concerning stability issues when the 
considered system has multiple imaginary 
roots. In terms of networks, this situation can 
correspond to the case of switching topology 
networks, when the network can even be 
disconnected at some point. 

We separately discuss the case of zero 
characteristic roots, and roots laying on the 
imaginary axis, except the origin. Finally, we 
propose a gene network model with a 
functionality similar to a multiplexer circuit. 
Thus, we control two outputs with three input 
signals, and we carry out a stability analysis. 
We prove the uniqueness and the stability of 
the network steady states, and validate the 
continuous and deterministic model with a 
stochastic model. 
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séparément le cas des racines multiples à 
l’origine et racines multiples sur l’axe des 
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important comporte un nouveau modèle pour 
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entrées pour commander deux signaux de 
sortie. Nous effectuons une analyse de 
stabilité pour le modèle proposé et nous 
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unique et stable. Pour valider ce réseau 
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stochastique dérivé du modèle déterministe. 
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