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Résumé

Cette thèse se situe à l’interface entre combinatoire et probabilités, et contribue à l’étude

de différents modèles issus de la mécanique statistique : polymères, marches aléatoires

inter-agissantes ou en milieu aléatoire, cartes aléatoires.

Le premier modèle que nous étudions est une famille de mesures de probabilités sur les

chemins auto-évitants de longueur infinie sur un réseau régulier, construites à partir de

marches aléatoires biaisées sur l’arbre des chemins auto-évitants finis. Ces mesures, intro-

duites par Beretti et Sokal, existent pour tout biais strictement supérieur à l’inverse de

la constante de connectivité, et leur limite en ce biais critique serait l’une des définitions

naturelles de la marche aléatoire uniforme en longueur infinie. Le but de ce travail, en

collaboration avec Vincent Beffara, est de comprendre le lien entre cette limite, si elle

existe, et d’autres chemins aléatoires notamment la mesure de Kesten (qui est la limite

faible de la marche auto-évitante uniforme dans le demi-plan) et les interfaces de perco-

lation de Bernoulli critique ; d’une certaine façon le modèle constitue une interpolation

entre les deux.

Dans une deuxième partie, nous considérons des marches aléatoires en conductances

aléatoires sur un arbre quelconque, dans le cas où la loi des conductances est à queue

lourde. L’objectif de notre travail, en collaboration avec Andrea Collevecchio et Daniel

Kious, est de montrer une transition de phase par rapport au paramètre de la queue ;

on exprime le paramètre critique comme une fonction explicite de l’arbre sous-jacent.

Parallèlement, nous étudions des modèles de marches aléatoires excitées sur des arbres

et leurs transitions de phase. En particulier, nous étendons une conjecture de Volkov et

généralisons des résultats de Basdevant et Singh.

Enfin, une troisième partie en collaboration avec Vincent Beffara et Benjamin Lévêque

porte sur les cartes aléatoires en genre supérieur : nous montrons l’existence de limites

d’échelle, le long de sous-suites, pour les triangulations simples uniformes sur le tore,

étendant à ce cas les résultats d’Addario-Berry et Albenque (sur les triangulations

simples de la sphère) et de Bettinelli (sur les quadrangulations du tore). La question

de l’unicité de la limite et de son universalité restent ouvertes, mais nous obtenons des

résultats partiels dans ce sens.
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Abstract

This thesis is at the interface between combinatorics and probability, and contributes to

the study of a few models stemming from statistical mechanics: polymers, self-interacting

random walks and random walks in random environment, random maps.

The first model that we investigate is a one-parameter family of probability measures on

self-avoiding paths of infinite length on a regular lattice, constructed from biased random

walks on the tree of finite self-avoiding paths. These measures, initially introduced by

Beretti and Sokal, exist for every bias larger than the inverse connectivity constant, and

their limit at the critical bias would be aamong the natural definitions of the uniform

self-avoiding walk of infinite length. The aim of our work, in collaboration with Vincent

Beffara, is to understand the link between this limit, if it indeed exists, and other random

infinite paths such as Kesten’s measure (which is the weak limit of uniformly random

finite self-avoiding walks in the half-plane) and critical Bernoulli percolation interfaces;

the model can be seen as an interpolation between these two.

In a second part, we consider random walks with random conductances on a tree, in

the case when the law of the conductances has heavy tail. Our aim, in collabration

with Andrea Collevecchio and Daniel Kious, is to show a phase transition in the tail

parameter; we express the critical point as an explicit function of the underlying tree.

In parallel, we study excited random walks on trees and their phase transitions: we

extend a conjecture of Volkov’s and generalize results by Basdevant and Singh.

Finally, a third part in collaboration with Vincent Beffara and Benjamin Lévêque con-

tributes to the study of random maps of higher genus: we show the existence of subse-

quential scaling limits for uniformly random simple triangulations of the torus, extending

to that setup fromer results by Addario-Berry and Albenque (on simple triangulations

of the sphere) and by Bettinelli (on quadrangulations of the torus). The question of

uniqueness and universality of the limit remain open, but we obtain partial results in

that direction.
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Chapter 1

Introduction

1 Percolation

1.1 A little bit of graph theory

In this section, we review some basic definitions of graph theory. We refer the readers

to [19, 37, 87, 88, 91] for more details.

Graphs

A graph is a pair G = (V,E) that satisfies the condition E ⊂
(
V
2

)
, where

(
V
2

)
denotes the

set of pairs of elements of V . The elements of V = V (G) are called the vertices (or sites)

of G while the elements of E = E(G) are called edges of G. If u and v satisfy {u, v} ∈ E,

then u and v are neighbours (or adjacent) as well as the endpoints of the edge {u, v}. In

this case, we also says that the edge {u, v} connects u and v.

A subgraph of a graph G1 is a graph G2 which satisfies V (G2) ⊂ V (G1) and E(G2) ⊂ E(G1).

If V ′ is a subset of V (G) of a graph G, then the restriction of G to V ′ is the graph

(V ′,
(
V ′

2

)
∩ E(G)). We also say that G induces the graph structure (V ′,

(
V ′

2

)
∩ E(G)) on

V ′.

One can define the product of two graphs Gi = (Vi, Ei) for i ∈ {1, 2} in various ways.

One of the most popular ways is the Cartesian product G = (V,E) with V = V1 × V2

and

E = {((u1, u2), (v1, v2)) : (u1 = v1, (u2, v2) ∈ E2) or (u2 = v2, (u1, v1) ∈ E1)}.

A morphism of G1 to G2 is a application φ from V (G1) to V (G2) such that for any

{x, y} ∈ E(G1), we also have {φ(x), φ(y)} ∈ E(G2). A isomorphism is a morphism

which is bijective and such that the reciprocal is a morphism. A automorphism is a

isomorphism from a graph to itself.

11



12 CHAPTER 1. INTRODUCTION

Let G be a graph. If v ∈ V (G), then the degree of v is the number of its neighbors,

denoted by deg v. A path in a graph is a sequence of vertices where each successive

pair of vertices is an edge in the graph. The path is called self-avoiding if no pair of

vertices are the same. In the remain of this thesis, we assume that we consider only the

self-avoiding paths.

A finite path with at least one edge and whose first and last vertices are the same is

called a cycle. A cycle is called simple if no pair of vertices are the same except for its

first and last ones. The length of a path (or cycle) is the number of edges of path (or

cycle). A graph is called connected if for all u, v ∈ V , there exists a path joining u to v.

The distance between u and v is the minimum number of edges among all paths joining

u to v and denoted by d(u, v).

Finally, a graph is called locally finite if every vertex of G have finite degree, d-regular

if each of its vertices is of degree d, and regular if there exists d ∈ N such that it is

d-regular

Trees: Definitions and a few examples

A graph with no cycles is called a forest. A tree is a connected forest. In a tree, we can

choose a particular vertex, denoted by %, this vertex is called root of tree.

Let T = (V,E) be an infinite, locally finite, rooted tree with the root %.

Given two vertices ν, µ of T , we say that ν and µ are neighbors, denoted ν ∼ µ, if {ν, µ}
is an edge of T .

Let ν, µ ∈ V \ {%}, the distance between ν and µ, denoted by d(ν, µ), is the minimum

number of edges of the unique self-avoiding paths joining x and y. The distance between

ν and % is called height (or generation) of ν, denoted by |ν|. A vertex with no child is

called leaf. The parent of ν is the vertex ν−1 such that ν−1 ∼ ν and |ν−1| = |ν| − 1. We

also call ν as a child of ν−1.

Denote by Tn the set of vertices at generation n. We define an order on V (T ) as follows:

if ν, µ ∈ V (T ), we say that ν ≤ µ if the simple path joining o to µ passes through ν.

For each ν ∈ V (T ), we define the sub-tree of T rooted at ν, denoted by T ν , where

V (T ν) := {µ ∈ V (T ) : ν ≤ µ} and E(T ν) = E(T )|V (T ν)×V (T ν).

In the remain of this thesis, we only consider the infinite, locally finite and rooted tree.

A tree T is called spherically symmetric if for any vertex ν of T , deg ν depends only on

|ν|. In the other word, all the vertices in the same generation have the same number of

children.

Remark 1.1. A regular tree is a spherically symmetric tree.
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Definition 1.2. Let N ≥ 0: an infinite, locally finite and rooted tree T with the root

%, is said to be

— N -sub-periodic (resp. periodic) if for every ν ∈ V (T ), there exists an injective

(resp. bijective) morphism f : T ν → T f(ν) with |f(ν)| ≤ N .

— N -super-periodic if for every ν ∈ V (T ), there exists an injective morphism f :

T → T f(%) with f(%) ∈ T ν and |f(%)| − |ν| ≤ N .

Example. Consider the finite paths in the lattice Z2 starting at the origin that go through

no vertex more than once. These paths are called self-avoiding and are of substantial

interest to mathematical physicists. Form a tree TZ2 whose vertices are the finite self-

avoiding paths and with two such vertices joined when one path is an extension by one

step of the other. Then TZ2 is 0-subperiodic and we refer the interested readers to the

next chapter for more details on this object.

There is an important class of trees whose structure is periodic. Let G be a finite graph

and x0 ∈ V (G). We define a tree T in the following way: its vertices are the finite path

(x0, x1, x2, · · · , xn) satisfy xi 6= xi+1 for any 0 ≤ i ≤ n − 2. Join two vertices in T by

an edge when one path is an extension by one vertex of the other. The tree T is called

universal cover (based on x0) of G. See Figure 1.1 for an example.

x0

Figure 1.1 – A graph and part of its universal cover

Suppose that G is a finite directed multigraph and x0 ∈ V (G) is any vertex in G. That

is, edges are not required to appear with both orientations, and two vertices can have

many edges joining them. Loops are also allowed. We define a tree T in the following

way: its vertices are the finite paths (e1, e2, e3, · · · , en) in G that starts at x0. The root

is the empty path. We join two vertices in T as we did in the case of universal cover.

The tree T is called directed cover (based on x0) of G. See Figure 1.2 for an example.
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Figure 1.2 – A graph and part of its directed cover

Remark 1.3. All universal cover and directed cover are periodic trees. Conversely, each

periodic tree is a directed cover of a graph.

A infinite path starting at the root of a tree T is called ray. The set of rays of T is

called the boundary of T , denoted by ∂T . Define a distance on ∂T in the following way:

if ξ, η ∈ ∂T have n common edges, we define the distance between ξ, η:

d(ξ, η) := e−n. (1.1)

Proposition 1.4 ([87], page 12). (∂T , d) is a compact metric space.

Trees: Branching number and growth rate

Let T be an infinite, locally finite and rooted tree. A cutset in T is a set π of edges such

that every infinite simple path from a must include an edge in π. The set of cutsets is

denoted by Π.

Example. If T is a tree, then for any n ≥ 1, we have Tn is a cutset.

Definition 1.5 ([87], page 81). Let T be a tree, the branching number of T is defined

by:

br(T ) = sup

{
λ ≥ 1; inf

Π

∑
e∈Π

λ−|e| > 0

}
where we take the inf on the cutsets.
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In general, it is difficult to compute the branching number of a tree. So, we will define

another quantity that is easy to calculate and to establish relations between this quantity

and the branching number.

Definition 1.6. (Growth rate)

Let T be a tree and we define:

gr(T ) = lim sup |Tn|
1
n (1.2)

gr(T ) = lim inf |Tn|
1
n (1.3)

In the case of gr(T ) = gr(T ), we define the growth rate of T , denoted by gr(T )

gr(T ) = gr(T ) = gr(T ). (1.4)

Example. If T is a d-regular tree, then its growth rate is d− 1.

In the remain of this section, we establish some relations between the branching number

and growth rate of a tree.

Proposition 1.7. Let T be an infinite, locally finite and rooted tree. We then have

br(T ) ≤ gr(T ) (1.5)

In general, the inequality in Proposition 1.7 may be strict. For instance, we construct a

tree T (called 1-3 tree) in the following way: its root is %. We’ll have |Tn| = 2n, but we

will connect them in a funny way. List Tn in counterclockwise order as (xn1 , · · · , xn2n).

Let xnk have one child if k ≤ 2n−1 and three children otherwise (see Figure 1.3).

By the definition of growth rate, we have gr(T ) = 2. By using Definition 1.5, we can

prove that br(T ) = 1. Indeed, it is suffices to prove that:

∀λ > 1, inf
Π

∑
e: e−∈Π

λ−|e| = 0 (1.6)

We fix λ > 1. Consider x ∈ V (T ) and recall that T x is the largest subtree of T rooted

at x. For all n and 1 ≤ i ≤ 2n, let xni denote the i–th vertex at generation n (see

Figure 1.4). We can see that for all k > 0, there exists ` > 0 such that: for all n ≥ `

and i such that xni /∈ T
xk
2k , then xni have only one child. We define:

Πk
n :=

{
xk2k ; Tn \ T x

k
2k

}
,∀n ≥ ` (1.7)
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Figure 1.3 – Arbre 1-3

Figure 1.4

We then obtain ∑
e: e∈Πkn

λ−|e| ≤ 1

λk
+

c

λn
(1.8)

where c is the cardinal of Tn \ T x
k
2k , n ≥ ` which do not depend on n.

By letting n go to +∞ and then k goes to +∞, we obtain

inf
Π

∑
e: e∈Π

λ−|e| = 0. (1.9)

It is easy to arise a question: When will the inequality in Proposition 2.4 become an

equality? In the remain of this part, we will answer this question in 3 particular classes

of trees: spherically symmetric, sub-periodic and super-periodic.
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Theorem 1.8 ([87] page 83). For all T spherically symmetric such that gr(T ) exists,

we have br(T ) = gr(T ).

Theorem 1.9 ([87] page 85). For all sub-periodic tree T , the growth rate gr(T ) exists

and gr(T ) = br(T ).

Theorem 1.10 ([87] page 87). For all super-periodic tree T with gr(T ) < ∞, gr(T )

exists and gr(T ) = br(T ).

1.2 Percolation

In this section, we review some definitions and properties of percolation theory. We refer

the interested readers to [26, 56, 91, 119] for more details.

Percolation is a model of statistical mechanics that was introduced in 1957 by Broadbent

and Hammersley [26]. Let G = (V,E) be a graph. A percolation (or edge-percolation

on G is a probability measure on 2E , the set of subsets of E. A site-percolation is a

probability measure on 2V . When X denotes E or V , we identify 2X and {0, 1}X . A

element of 2E or 2V will be denoted by ω.

We think of a (site- or -edge) percolation as encoding a random subgraph of G. In the

case of an edge percolation, an element ω ∈ {0, 1}E has an associated graph Gω = (V, ω).

An edge in ω is called open while an edge in E \ω is called closed. A open path is a path

formed by the open edges. For a site percolation, the graph associated to ω ∈ {0, 1}V is(
V (G),

(
ω
2

)
∩ E

)
. A site in ω is called open while a site in V \ ω is called closed, and a

path formed by open sites is called open path.

Bernoulli percolation

Given a parameter p ∈ [0, 1] and a graph G = (V,E). We define the Bernoulli percolation

as:

Pp := B(p)⊗E = (pδ1 + (1− p)δ0)⊗E .

This definition means that we construct a random configuration ω ∈ {0, 1}E by declaring

each edge open with probability p and closed otherwise, independently for different edges.

Fix a vertex 0 ∈ V , denote {0←→∞} the event that there exists an infinite open path

from 0, and we define:

θ(p) = Pp(0←→∞).

It is easy to see that θ is an increasing function on [0, 1], then there exists an unique

parameter pc = pc(G) ∈ [0, 1] which depends on G, called critical parameter of G such

that
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θ(p)

{
= 0 if p < pc
> 0 if p > pc

We say that there is a phase transition at pc. But it is unsuitable to speak of a phase

transition if one of the phases is empty (or almost empty), it means pc is equal to 0 or

1. Peierls’ argument guarantees that pc is positive for every transitive graph.

Proposition 1.11 (Peierls, [100]). Let d ≥ 2 and G be a graph satisfy every vertex of G
has degree at most d. Then, the critical parameter of G is at least 1

d−1

Proof. Let p < 1
d−1 and o be a vertex of G. For any n ≥ 1, there are at most d(d− 1)n−1

self-avoiding paths of length n starting at the vertex o. For Bernoulli percolation of

parameter p, the probability that there is an open self-avoiding path of length n starting

at o is at most d(p(d− 1))n−1 . Since p < 1
d−1 , therefore d(p(d− 1))n−1 tends to 0 when

n goes to infinity, and hence p ≤ pc.

Remark 1.12. — One can use a similar argument to show that the critical param-

eter of Z2 is not equal to 1. This time, one does not give an upper bound for

the number of paths starting at the origin but for the number of dual cycles that

surround the origin; see [26, 62, 61]. If we proved that pc(Z2) < 1, then for any

d ≥ 2 we also have pc(Zd) < 1. Indeed, if d is at least 2, then the graph Zd conta

ins Z2 as a subgraph, and therefore pc(Z) ≤ pc(Z2) < 1.

— Note that if G is d-regular tree, then the inequality of Proposition 1.11 becomes

an equality. This is a consequence of Theorem 1.21 below.

— When is pc equal to 1? It is easy to see that the graph Z is an example of an

infinite transitive graph that satisfies pc = 1. What else? The tree in Figure 1.3

is an other example. Indeed, we proved that its branching number is equal to 1

and by Theorem 1.21 below, we obtain the result.

— When is pc equal to 0? By Proposition 1.11, the necessary condition for pc = 0 is

that the maximum degree of G is unbounded. Consider a spherically symmetric

tree T be such that for any x ∈ V (T ), we have deg x = |x|. In this case, we obtain

its branching number is∞ and then its critical parameter is 0. For another reason,

for any d ≥ 2, the tree T contains a d-regular tree as a subgraph and therefore

pc(T ) ≤ 1
d−1 . As a result, when d goes to infinity, we obtain pc(T ) = 0.

The set Ω = {0, 1}E has a partial ordering ≤ defined by:

ω1 ≤ ω2 ⇐⇒ ω1(e) ≤ ω2(e) for all e ∈ E.

An event A is called increasing if

ω1 ≤ ω2 and ω1 ∈ A =⇒ ω2 ∈ A.
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Example. Let x, y be two sites of G, the event that there exists a open path starting

from x to y, denoted by {x←→ y} is an increasing event.

A function f : Ω −→ R is called increasing if f(ω) ≤ f(ω′) for any ω ≤ ω′. The

following theorem, due to Harris [67], which is often called FKG inequality, shows that

the incresing events have positively correlated:

Theorem 1.13 (FKG inequality). If A and B are two increasing events, then

Pp(A ∩ B) ≥ Pp(A)Pp(B)

More generally, if f and g are two increasing functions in L2(Pp), then

Ep(fg) ≥ Ep(f)Ep(g).

Remark 1.14. Forgetting the case where B has probability 0, one can think of this

inequality in terms of conditional probabilities:

Pp(A|B) ≥ Pp(A).

This inequality is quite intuitive from a Bayesian point of view: “since B is increasing,

conditioning this event to happen prompts the edges to be more open than without

conditioning, which in return increases the probability of the increasing event A”.

The next inequality, known as the BK inequality , was proved by Van den Berg and

Kesten (see [116]), it provides an inequality in the other direction of the FKG inequality.

For any finite set S ⊂ E, we introduce the cylinder

[ωS ] := {ω′ ∈ Ω : ∀e ∈ S, ω′(e) = ω(e)}.

Consider two events A and B depending only on the edges in a finite subset F =

{e1, e2, · · · , en} ⊂ E. The disjoint occurrence of A and B is the event:

A ◦ B := {ω ∈ Ω : ∃S ⊂ F for which [ω]S ∈ A and [ω]F\S ∈ B}

This definition has a simple intuitive: It means that we can find a set of edges S such

that, at the same time, S is enough to ensure that A holds ( it means A depends only

on edges of S) and Sc is enough to ensure that B holds.

Example. If A = {x1 ←→ y1} and B = {x2 ←→ y2}, then A ◦ B is the event that there

exist two open paths γ and γ′, from x1 to y1 and from x2 to y2, respectively, which have

no an common edge, but they can have a common vertex.
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Theorem 1.15 (BK inequality). Let A and B be two increasing events, and depend only

on finitely many edges, then we have

Pp(A ◦ B) ≤ Pp(A)Pp(B).

Bernoulli percolation on the square lattice

In this paragraph, we review quickly the Bernoulli percolation on the square lattice.

Consider the bond Bernoulli percolation on Z2. As we have discussed in the previous

paragraph, the critical parameter is not trivial, i.e pc ∈ (0, 1). Moreover, the exact value

of pc was known (see [119], theorem 4.8): For the bond Bernoulli percolation on Z2,

we have pc = 1/2. A natural question is risen: What happens at pc?. The following

theorem is due to Harris [67]:

Theorem 1.16. For Bernoulli bond percolation on the square lattice, we have θ(1/2) =

0.

An important property of critical bond Bernoulli percolation is the box-crossing property,

which is often called ”RSW”. This result was first obtained by Russo [109] and Seymour

and Welsh [111]:

Theorem 1.17. For any t > 0, there exist two constant c(t) > 0 and N(t) ≥ 1 such

that for every n ≥ N(t), we have:

1− c(t) ≥ P1/2 [H ([0, b2tnc]× [−n, n])] ≥ c(t),
where H ([0, b2tnc]× [−n, n]) is the event that there exists an open horizontal crossing

in the box [0, b2tnc]× [−n, n].

In the case p < pc, let Λn = [−n, n] × [−n, n] and consider the event {0 ↔ ∂Λn}. We

know that lim
n→∞

Pp(0 ↔ ∂Λn) = θ(p) = 0. The following theorem give the speed that it

decreases to 0:

Theorem 1.18 (see [92], [2], [40]). Consider the bond Bernoulli percolation on Z2. For

any p < pc, there exists c = c(p) > 0 and n0 ∈ N such that for all n > n0

Pp(0↔ ∂Λn) ≤ exp (−cn).

We also have the similar result for the case p > pc:

Theorem 1.19 (see [119], page 80). Consider the bond Bernoulli percolation on Z2.

For any p > pc, there exists c = c(p) > 0 and n0 ∈ N such that for all n > n0

Pp(0↔ ∂Λn) ≤ θ(p) + exp (−cn).
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At the critical parameter, we have no the exponential decay:

Theorem 1.20 (see [119], page 49). Consider the critical bond Bernoulli percolation on

Z2. There exists n0 ∈ N such that for all n > n0,

Pp(0↔ ∂Λn) ≥ 1

2n
.

Percolation on trees

In this paragraph, we review some result about percolation on trees. Consider the

Bernoulli percolation on a tree T , thanks to Lyons [85], we can determine the value of

critical parameter pc(T ):

Theorem 1.21. For every locally finite, infinite and rooted tree T , we have

pc(T ) =
1

br(T )
.

The idea of the proof of Theorem 1.21 is to use the relation between percolation and

random walk on a network which we will introduce in Section 3.

We are interested in the number of survivors in Bernoulli percolation on a tree. The

following proposition give us a answer:

Proposition 1.22 (Surviving rays in Bernoulli percolation, see [87], Proposition 5.27).

For 0 < p < 1 and every tree T , the number of surviving ray from the root under

Bernoulli percolation on T a.s. either is 0 or has the cardinality of the continuum.

More generally, the same holds for every independent percolation on T such that each

ray in T individually has probability 0 to survive.

The idea of the proof of Proposition 1.22 is to use the Lévy zero-one law and FKG

inequality, we refer the reader to [87] for the proof of this proposition.

To finish this paragraph, we introduce an other type of percolation on a tree which play

an important role to study some non-markovian models (for instance, excited random

walk, see Chapter 5). Consider a tree T with the root %. We call a percolation quasi-

independent if there exists M <∞ such that for all x, y ∈ V (T ) with P[%↔ x ∧ y] > 0,

then we have:

P[%↔ x, %↔ y|%↔ x ∧ y] ≤MP[%↔ x|%↔ x ∧ y]P[%↔ y|%↔ x ∧ y],

or equivalent, if P[%↔ x]P[%↔ y] > 0, then
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P[%↔ x, %↔ y]

P[%↔ x]P[%↔ y]
≤ M

P[%↔ x ∧ y]
.

Remark 1.23. The Bernoulli percolation is the percolation quasi-independent.

Example. Consider a family of independent random variables (Z(e))e∈E(T ) that take

the values in {1,−1} with probability 1/2 each. Fix an integer N > 0. For any x ∈ V ,

we define S(x) =
∑

e≤x Z(e). Consider the percolation

ωN := {e : S(e−) ∈ [0, N ], S(e+) ∈ [0, N ]}.

We can see that the component of the root in ω1 is the same as the component of the

root in the case of Bernoulli(1/2) percolation. Now, we verify that for any N ≥ 1,

the percolation ωN is quasi-independent. Indeed, we write qk(n) for the probability that

simple random walk on Z stay in the interval [0, N ] for n steps when it starts at k. It

is easy to see that there exists a constant M such that for any n ≥ 0 and k, k′ ∈ [0, N ],

we have qk(n) ≤ Mqk′(n). Fix x, y and we let r = |x ∧ y|, m = |x| − r and n = |y| − r.
We also write pk for the probability that simple random walk at time r is at position k

given that it stays in [0, N ] for r steps when it starts at %. Then we have:

P[%↔ x, %↔ y|%↔ x ∧ y] =

N∑
k=0

qk(m)qk(n)pk ≤M min
k
qk(n) ×

N∑
k=0

qk(m)pk

≤M
N∑
k=0

qk(n)pk

N∑
k=0

qk(m)pk = M P[%↔ x|%↔ x ∧ y]P[%↔ y|%↔ x ∧ y],

this implies that ωN is quasi-independent.

For this particular percolation ωN , we define the critical parameter Nc = inf{N ≥ 1 :

PωN (%↔∞) > 0}. We have several questions:

1. What is the critical parameter for this percolation ωN?

2. How is the number of surviving rays?

The answer for the first question is due to Benjamini and Peres [16]:

Proposition 1.24. If br(T ) > 1/ cos( π
N+2), the root belongs to an infinite cluster with

probability positive whereas if br(T ) < 1/ cos( π
N+2) then the root belongs to an infinite

cluster with probability zero.

Proof. See Exemple 3.3.

By inspiring the proof of Proposition 1.22, we can prove that:
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Proposition 1.25. For all N ∈ N and every tree T , the number of surviving ray from

the root under the percolation ωN on T a.s. either is 0 or has the cardinality of the

continuum.

2 Self-avoiding walks

In this section, we review some basic definitions and properties on self-avoiding walk; we

refer the reader to the books [11, 89] for a more developed treatment.

2.1 Some definitions

Self-avoiding walk (SAW) is a model in statistical mechanics which is defined easily but

not to study. This model was first introduced by the chemist Paul Flory [48] in order to

model the real-life behavior of chain-like entities such as solvents and polymers, whose

physical volume prohibits multiple occupation of the same spatial point. Although physi-

cists have provided numerous conjectures believed to be true and be strongly supported

by numerical simulations, there is still many openned questions on the self-avoiding walk

from a mathematical perspective.

Consider a regular lattice G with a particular site called origin (such that hypercube

lattice Zd, hexagonal lattice...), a self-avoiding walk on G is a path on G such that it

does not visit the same site more than once. Formally, an n-step self-avoiding walk γ on

G, starting from a site x, defined as a sequence of sites [γ(0) = x, γ(1), · · · , γ(n)], with

{γ(i), γ(i + 1)} ∈ E(G) and γ(i) 6= γ(j) for all i 6= j. We write |γ| = n to denote the

length of γ, and we denote γ1(j) for the first coordinate of γ1(j). The number of n-step

self-avoiding walk starting from the origin is denoted by cn and by convention, c0 = 1.

0

Figure 1.5 – A 111-step self-avoiding walk on Z2

We will define a notion of concatenation of paths. If γ1 =
[
γ1

0 , γ
1
1 , ..., γ

1
m

]
and γ2 =[

γ2
0 , γ

2
1 , ..., γ

2
n

]
are two SAWs with γ1

m = γ2
0 . We define γ1⊕γ2 to be the m+n-step walk
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(not necessary sel-avoding walk):

γ1 ⊕ γ2 =
[
γ1

0 , γ
1
1 , ..., γ

1
m, γ

2
1 , γ

2
2 , ..., γ

2
n

]
.

An n-step bridge in Zd is an n-step self-avoiding walk γ such that:

∀i = 1, 2, · · ·n, γ1(0) < γ1(i) ≤ γ1(n).

The number of n-step bridge starting from the origin is denoted by bn and by convention,

b0 = 1.

0

Figure 1.6 – A 86-step bridge on Z2

2.2 The connective constant

Definition of connective constant

Recall that cn is the number of n-step self-avoiding walk starting from origin. One of

the first result on the self-avoiding walk is the speed that cn increase. This result was

first observed by Hammersley and Morton [63]:

Proposition 2.1 (Connective constant). There exists a constant µ = µ(G) depending

on the lattice such that:

lim
n→∞

c1/n
n = µ,

this constant is called the connective constant.

Proof. We claim that for any m,n ∈ N, we have cm+n ≤ cm cn. Indeed, the product

cm cn is the cardinality of the set of (m + n)-step walks which are self-avoiding for the

m firts steps and the final n steps but not be completely self-avoiding. Then we have:

log cm+n ≤ log cm + log cn.

Then the existence of the limit is a consequence of lemma sub-additive.
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The concatenation of two bridges is an another bridge, so bm bn ≤ bm+n and then

− log bm+n ≤ − log bm − log bn. By lemma of sub-additive, the limit

µbridge = lim
n→∞

b1/nn ,

exists. Moreover, it is clear that bn ≤ cn, therefore µbridge ≤ µ. In fact, Hammersley-

Welsh proved that µbridge = µ (see Section 2.3).

The value of connective constant on some particular lattices

In the case G = Zd, by counting only walks that move in positive coordinate directions,

and by counting walks that are restricted only to prevent immediate reversals of steps,

we obtain:

dn ≤ cn ≤ 2d(2d− 1)n, it implies that d ≤ µ ≤ 2d− 1.

d lower bound estimate upper bound

2 2, 62562a 2, 6381585b 2, 67919c

3 4, 43733d 4, 6839066e 4, 756f

4 6, 71800d 6, 7720g 6, 832f

5 8, 82128d 8, 83861h 8, 881f

6 10, 871199d 10, 87879h 10, 903f

Table 1.1 – Current best rigorous upper bound and lower bound of the connective con-
stant on hypercube lattice: a. Jensen[70], b. Guttmann and Enting[60], c. Ponitz and
Tittmann[105], d. Hara and Slade[65], e. Guttmann[59], f. Alm[6], g. Guttmann[57], h.
Guttmann[58].

In the case G is the hexagonal lattice, in 1982, the arguments based on a Coulomb

gas formalism led Nienhuis[99] to predict that on the hexagonal lattice the connective

constant is equal to
√

2 +
√

2. This was proved by Duminil-Copin and Smirnov:

Theorem 2.2 (Duminil-Copin and Smirnov [39]). For the hexagonal lattice, we have

µ =

√
2 +
√

2.

2.3 The Hammersley-Welsh method

In this paragraph, we assume that G = Zd. It is predicted that for each d there is a

constant γ such that cn ∼ Aµn nγ−1. The predicted values of γ are:

γ =


43
32 if d = 2

1.162 if d = 3

1 with logarithmic corrections if d = 4

1 if d ≥ 5
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In the case of d ≥ 5, this conjection was proved by Hara and Slade. There is still no

rigorous proof of the critical value γ in dimensions two, three and four. The best rig-

orous upper bounds is cn/µ
n are essentially of the form exp (O(Np) for some constant

0 < p < 1. It is a major open problem to replace this bound by a polynomial in N .

In this paragraph, we review a bound on cn/µ
n which is called bound Hammersley-Welsh.

Definition 2.3. An n-step half-space walk is an n-step SAW γ with γ1(0) < γ1(i), ∀i.

We set hn be the number of n-step half-space walk with γ(0) = 0.

Definition 2.4. The span of an n-step SAW γ is

max
0≤i≤n

γ1(i)− min
0≤i≤n

γ1(i).

We denote bn,A is the number of n-step bridges with span A.

We have bn =
n∑

A=1

bn,A.

Theorem 2.5 (Hardy-Ramanujan [66]). For n ∈ N∗, let PD(n) be the number of way

to write n = n1 + n2 + · · ·+ nk with n1 > n2 > · · · > nk ≥ 1 for any k, then

lnPD(n) ∼ π
(n

3

) 1
2

as n→ +∞.

Proposition 2.6. hn ≤ PD(n) · bn for all n ≥ 1.

Proof. Set n0 = 0, we define Ai+1 = max
j>ni

(−1)i (γ1(j)− γ1(n)) and ni+1 = max{j > ni :

(−1)i (γ1(j)− γ1(n) = Ai+1)}.
We set hn(a1, a2, . . . , ak) be the number of n-step half-space walks with

A = k,Ai = a.

We have
hn(a1, a2, . . . , ak) ≤ hn(a1 + a2, a3, . . . , ak)

≤ . . . ≤
≤ hn(a1 + a2 + · · ·+ ak) = bn,a1+a2+···+ak .

Thus,

hn =
∑
k≥1

∑
1≤a1<a2<···<ak

hn (a1, a2, . . . , ak)

≤
∑
k≥1

∑
1≤a1<a2<...<ak

bn,a1+a2+···+ak

≤
n∑

A=1

PD(A) · · · bn,A ≤ PD(n) · · ·
n∑

A=1

bn,A︸ ︷︷ ︸
bn
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We obtain hn ≤ PD(n) · bn.

Theorem 2.7 (Hammersley and Welsh [64]). Let d ≥ 2. For any constant B > π
(

2
3

) 1
2 ,

there exist a constant B0(B) independent of d such that:

∀n > B0(B) : cn ≤ bn+1 · eB
√
n+1.

Proof. We will prove that

cn ≤
n∑

m=0

hn−m · hm+1.

We set x1 = max
0≤i≤n

γ1(i) and m = max {i : γ1(i) = x1}. We erase the edge {γ(m −
1), γ(m)} and add 3 edges {a1, a2, a3} of the square .

The walk (γ(0), γ(1), . . . , γ(m− 1), a1, a2) is a (m+1)-step half-space walk, and the walk

(a5, γ(m+ 1), . . . , γ(n)) is (n−m)-step half-space walk. Thus,

cn ≤
n∑

m=0

hn−m · hm+1

By using Proposition 2.6, we obtain:

cn ≤
n∑

m=0

hn−m · hm+1 ≤
n∑

m=0

PD(n−m) · PD(m+ 1) · bn−m · bm+1

≤
n∑

m=0

PD(n−m) · PD(m+ 1) · bn+1

By Theorem 2.5, we have: PD(n) ∼ π
(
n
3

) 1
2 as n → +∞, then ∃α : PD(n) ≤ αeB

′·(A2 )
1
2

where B > B′ > π
(

2
3

) 1
2 .

We obtain

PD(n−m) · PD (m+ 1) ≤ α2e
B′
[√

n−m
2

+
√
m+1

2

]
≤ α2eB

′√n+1,

thus

cn ≤ (n+ 1)α2eB
′√n+1 · bn+1

and

∃B0(B), ∀n ≥ B0(B) : cn ≤ eB
√
n+1bn+1.

Corollary 2.8. µ = µbridge.
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By Theorem 2.7, we have:

cn ≤ eB
√
n+1bn+1 ⇒ c

1
n
n ≤ e

B
√
n+1
n b

1
n+1
·n+1
n

n+1 ⇒ µ ≤ µb.

Thus µ = µb.

2.4 Some conjectures

In this section, we assume that G = Zd. Consider the uniform measure on the set of

n-step self-avoiding walk. The average distance (squared) from the origin after n steps

is given by the mean-square displacement :

E[|γn|2] =
1

cn

∑
ω:|ω|=n

|ωn|2.

The sum over ω is the sum over all n-step self-avoiding walks beginning at the origin.

The first conjecture on the self-avoiding walk is the behavior of cn and E[|γn|2].

Conjecture 2.9. There exists four constants A, B, γ and ν that depend on the dimen-

sion, such that:

cn ∼ Aµn nγ−1 and E[|γn|2] ∼ Bn2ν .

The conjectured values of γ and ν are as follows:

γ =


43
32 if d = 2

1.162 if d = 3

1 with logarithmic corrections if d = 4

1 if d ≥ 5

and,

ν =


3
4 if d = 2

0.59 if d = 3
1
2 with logarithmic corrections if d = 4

1
2 if d ≥ 5

Currently the only rigorous results which confirm the conjectured values of γ and µ for

d ≥ 5.

In 1963, Kesten [71] proved that

lim
n→∞

cn+2

cn
= µ2,

but it remains an open problem to prove that the limit cn+1

cn
exists.
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Conjecture 2.10. Let d ≥ 2, the conjecture is:

lim
n→∞

cn+1

cn
= µ

Currently the only rigorous results which confirm the conjecture for d ≥ 5.

To finish this paragraph, we state a conjecture on the scaling limit of self-avoiding walk

in dimension two. Let Ω be a simply connected domain in R2 with two points a and b

on the boundary. For δ > 0, let Ωδ be the largest connected component of Ω ∩ δZ2 and

let aδ, bδ be the two sites of Ωδ closest to a and b respectively. Let x > 0, on (Ωδ, aδ, bδ),

define a probability measure on the finite set of self-avoiding walks in Ωδ from aδ to bδ
by the formula:

P(Ωδ,aδ,bδ)(γ) =
x|γ|

Z(Ωδ,aδ,bδ)(x)
,

where Z(Ωδ,aδ,bδ)(x) is a normalizing factor. A random curve γδ with law

P(Ωδ,aδ,bδ)

is called self-avoiding walk with parameter x in the domain (Ωδ, aδ, bδ). We are interested

in the scaling limit of self-avoiding walk with parameter x when δ go to 0. The limit

will depend on the value of x.

When x < 1
µ , γδ converges to a deterministic curve which is the geodesic between a and

b in Ω. We refer the reader to Ioffe [69] for the details.

When x = 1
µ , the scaling limit is conjectured to be the Schramm-Lowner Evolution of

parameter 8/3. In fact, Lawler-Schramm-Werner [78] proved that if the scaling limit

exists, then the limit is the Schramm-Lowner Evolution of parameter 8/3.

When x > 1
µ , the scaling limit is predicted in [112] that it should be the Schramm-

Lowner Evolution of parameter 8. In 2014, Duminil Copin-Kozma-Yadin [38] proved a

result which quantifies how γδ becomes space filling. In particular, the probability that

γδ reaches the boundary of Ω tends to 1 when δ go to 0. In chapter 2, we introduce a

new measure on the set of self-avoiding walk through the random walk on trees. This

measure depends much on the geometric of the self-avoiding walk. We also prove that

the self-avoiding walk reaches the boundary an infinite many times almost surely with

this new measure.

The model makes formal sense for x = +∞, where it corresponds to a uniformly random

path of maximal length. In that case, the scaling limit is known to be a Schramm-

Loewner Evolution of parameter κ = 8. For the super-critical measure in chapter 2, we
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expect the scaling limit to be the same as for critical percolation, which is conjectured

to be a Schramm-Lowner Evolution of parameter κ = 6.

3 Random walks on trees

Recall that our trees will usually infinite, locally finite and rooted. In this section, we

review some results of random walk on trees through an important tool which is the

theory of electric networks. This theory is also an important tool that I used in two-

thirds of my thesis (Chapters 2, 4 and 5), therefore I desire to review this theory in

detail. We refer the reader to the excellent book [87] in more details.

3.1 Random walks and electrical networks

Our principal interest in this section is to develop a mathematically rigorous tools from

electrical network theory, to study transience and recurrence of random walks on trees. A

network is a connected graph G = (V,E) endowed with positive edge weights, {c(e)}e∈E
(called conductances). The reciprocals r(e) = 1/c(e) are called resistances.

Harmonic functions and voltages

Let G = (V,E) be a finite network. In physic, we know that when we impose specific

voltages at fixed vertices a and z, then current flows through the network according to

certain laws (such as the series and parallel laws). An immediate consequence of these

laws is that the function from V to R giving the voltage at each vertex is harmonic at

each x ∈ V \ {a, z}.

Definition 3.1. A function h : V −→ R is called harmonic at a vertex x if:

h(x) =
1

π(x)

∑
y:y∼x

c({x, y})hy where π(x) =
∑
y:y∼x

c({x, y}).

Let S ⊂ V , we say that h is harmonic on V if h is harmonic at any vertex x ∈ S.

Instead of starting with the physical laws and proving that voltage is harmonic, we take

the axiomatically equivalent approach of definition of voltage to be a harmonic function

and deriving the law as corollaries.

Definition 3.2. Given a network G = (V,E) and two distinct vertices a and z of G. A

voltage is a function h : V −→ R which is harmonic on V \ {a, z}.

We finish this paragraph with an important property of voltage:

Proposition 3.3 (Uniqueness principle, see [87], page 20). For every α, β ∈ R, if h, h′

are two voltages satisfying h(a) = h′(a) and h(z) = h′(z), then h1 ≡ h2.
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Here is a consequence of the uniqueness principle: If h, h1 and h2 are harmonic on

some finite proper subset W ⊂ V and a1, a2 ∈ R with f = a1f1 + a2f2 on V \W , then

f = a1f1 + a2f2 on V . This property is called superposition principle.

Flows and currents

Let G = (V,E) be a finite network and we denote
−→
E the set of edges of G and each edge

of G endowed with two orientations. We write (x, y) (resp. (y, x) ) for the orientation

of edge {x, y} from x to y (resp. from y to x). Given two subsets A and Z of vertices of

G.

Definition 3.4. A flow from A to Z in a network G is a function θ :
−→
E −→ R satisfying

θ(x, y) = −θ(y, x) for all neighbors x, y and
∑

y: y∼x
θ(x, y) = 0 for all x /∈ A ∪Z. The first

condition is called antisymmetry and the second condition is called Kirchhoff’s node law.

Definition 3.5. Given a voltage h, the current i associated with h is defined by i(x, y) :=

c(x, y)[h(y)− h(x)].

In other words, the voltage difference across an edge is the product of the current along

the edge with the resistance of the edge. This is known as Ohm’s law.

Definition 3.6. The strength of a flow θ is

‖θ‖ =
∑
a∈A

∑
x:x∼a

θ(a, x)

The unit current from A to Z is the unique current from A to Z of strength 1.

Claim 3.7. The current i associated with a voltage h is a flow

Proof. By definition, it is easy to see that the current i is antisymmetric. For any

x /∈ A ∪ Z, we have h is harmonic at x and therefore:∑
y: y∼x

i(x, y) =
∑
y: y∼x

c(x, y)h(y)−
∑
y: y∼x

c(x, y)h(x) = π(x)h(x)− π(x)h(x) = 0.

Claim 3.8. The current i associated with a voltage h satisfies Kirchhoff’s cycle law,

that is, for every directed cycle −→e1 , ...,
−→en, we have

n∑
k=1

r(ek)i(
−→ek) = 0
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Effective resistance and probabilistic interpretation

In this paragraph, we assume that A = {a} is a singleton. Consider the Markov chain

{Xn} on the state space V with transition probability

p(x, y) := P(Xn+1 = y|Xt = x) =
c(x, y)

π(x)
.

This Markov chain is a weighted random walk. Note that if c(x, y) = 1 for all (x, y) ∈ E,

then this Markov chain is simple random walk. We write Px and Ex for the probability

and expectation conditioned on X0 = x. For each vertex x ∈ V , we define the hitting

time of x as follows:

τx := min{n ≥ 0 : Xn = x}
If the chain {Xn} starts at x, then we define the hitting time of x by letting:

τx+ := min{n > 0 : Xn = x}.

We also write τZ := min{n ≥ 0 : Xn ∈ Z} for the hitting time of Z. We want to

compute the probability that weighted random walk starting at a will hit Z before it

returns to a. We write it as

P[a→ Z] := Pa[τZ < τa+ ].

Impose a voltage of v(a) at a and 0 on Z. Since v(·) is linear in v(a) by the super

position principle, then we have Px[τa < τZ ] = v(x)/v(a), whence

P[a→ Z] =
∑
x

p(a, x) (1− Px[τa < τZ ]) =
∑
x

c(a, x)

π(a)

[
1− v(x)

v(a)

]

=
1

v(a)π(a)

∑
x

c(a, x)[v(a)− v(x)] =
1

v(a)π(a)

∑
x

i(a, x).

Or equivalent,

v(a) =

∑
x
i(a, x)

π(a)P[a→ Z]
.

Since
∑
x
i(a, x) is the total amount of current flowing into the network at a, we may

regard the entire circuit between a and Z as a single conductor of effective conductance

Ceff := π(a)P[a→ Z] =: C(a↔ Z) (3.1)

If we need to indicate the dependence on network G, we will write C(a ↔ Z;G). We

define the effective resistance R(a↔ Z) to be the reciprocal of the effective conductance.

Finally, we have P[a→ Z] = C(a↔ Z)/π(a) and we will see some ways to compute the

effective conductance in the next paragraph.
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Network reduction

In this paragraph, we review some ways to calculate effective conductance of a network

between, say, two vertices a and z. Since we want to replace a network by an equivalent

single conductor, it is natural to attempt this by replacing more and more of G through

simple transformations, leaving a and z but possibly removing other vertices. There are,

in fact, three such simple transformations: series, parallel, and star-triangle. Remark-

ably, these three transformations suffice to reduce all finite planar networks according to

a theorem of Epifanov (see Truemper [115]). Recall that a conductor c is an edge with

a conductance c.

Claim 3.9 (Parallel law). Two conductors c1 and c2 in parallel are equivalent to one

conductor c1 + c2. In other words, if two edges e1 and e2 that both join vertices v1, v2 ∈
V (G) are replaced by a single edge e joining c1 and c2 of conductance c(e) := c(e1)+c(e2),

then all voltages and currents in G \ {e1, e2} are unchanged and the current i(e) equals

i(e1) + i(e2).

Claim 3.10 (Series law). Two resistors r1 and r2 in series are equivalent to a single

resistor r1 + r2 . In other words, if w ∈ V (G) (A ∪ Z) is a node of degree 2 with

neighbors u1, u2 and we replace the edges (ui, w) by a single edge (u1, u2) having resistance

r(u1, w)+r(w, u2), then all potentials and currents in G w are unchanged and the current

that flows from u1 to u2 equals i(u1, w).

Claim 3.11 (Star-Triangle law). The configurations in Figure 1.7 are equivalent when

∀i ∈ {1, 2, 3} c(w, ui)c(ui−1, ui+1) = γ,

where indices are taken mod 3 and γ :=
∏
i c(w,ui)∑
i c(w,ui)

w

u1 u2

u3

u1

u2u3

Figure 1.7 – The star-triangle equivalence

Besides these three transformations, we have also an other operation which is called

gluing. The operation of gluing a subset of vertices S ⊂ V consists of identifying the

vertices of S into a single vertex and keeping all edges and their conductances. By this

operation, we can generate parallel edges or loops.
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Claim 3.12 (Gluing). Gluing vertices of the same voltage does not change the effective

conductance between A and Z.

Before finishing this paragraph, we give an example:

Example. Consider a network G as in Figure 1.8, where each edge of G has conductance

1. By Following the transformations indicated in Figure 1.8, we have C(a ↔ z) = 3/4

and then:

P[a→ z] =
C(a↔ z)

π(a)
=

3/4

2
= 3/8.

a
z a z

a za z

a z

1

1

1
1

1
1

1

1
1

1 1/2

1/2

1/2
1

1/2

1/2

1

1

1/21/2

1/4

3/4

Figure 1.8 – The sequence of transformations

Energy

In this section, we review the ways to bound the effective resistance. Our Physics

intuition asserts that the energy of the unit current is minimal among all unit flows from

a to z. The notion of energy can be made precise and will allow us to obtain valuable

monotonicity properties. For instance, removing any edge from an electric network

can only increase its effective resistance. Hence, any recurrent graph remains recurrent

after removing any subset of edges from it. We will see in this section, the Thomson’s
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principle, which is used to bound the effective resistance from the above and Dirichlet’s

principle, allowing to bound it from below.

Definition 3.13. The energy of a flow θ from A to Z, denoted by E(θ), is defined by

E(θ) :=
1

2

∑
−→e ∈
−→
E

r(−→e )θ(−→e )2 =
∑
e∈E

r(e)θ(e)2.

Theorem 3.14 (Thomson’s Principle). Let G be a finite network and A and Z be two

disjoint subsets of its vertices. Then we have

R(A↔ Z) = inf{E(θ) : ‖θ‖ = 1 , θ is a flow from A to Z},

and the unique minimizer is the unit current flow.

The following powerful principle tells us how effective conductance changes, it is a con-

sequence of Thomson’s principle.

Corollary 3.15 (Rayleigh’s Monotonicity Principle). If {r(e)}e∈E and {r′(e)}e∈E are

edge resistances on the same graph G so that r(e) ≤ r′(e) for all edges e ∈ E, then

R(A↔ Z; (G, {r(e)}e∈E)) ≤ R(A↔ Z; (G, {r′(e)}e∈E)).

Proof. Let θ be a flow on G, then we have∑
e∈E

r(e)θ(e)2 ≤
∑
e∈E

r′(e)θ(e)2.

This inequality is preserved while taking infimum over all flows with strength 1. By

using Theorem 3.14, we obtain the result.

Definition 3.16. The energy of a function h : V → R, denoted by E(h), is defined by

E(h) :=
∑
{x,y}∈E

c(x, y)(h(x)− h(y))2.

The following theorem give us a lower bound of effective conductance:

Theorem 3.17 (Dirichlet’s Principle). Let G be a finite network and A and Z be two

disjoint subsets of its vertices. Then we have

1

R(A↔ Z)
= inf{E(h); h : V → R such that h|A ≡ 0, h|Z ≡ 1}.



36 CHAPTER 1. INTRODUCTION

Infinite networks

The way to study an infinite network G is to take large finite subgraphs of G. More

precisely, for an infinite network G, let (Gn)n≥1 be any sequence of finite subgraphs of

G that exhaust G, that is, Gn ⊂ Gn+1 and G = ∪Gn. Each edge in Gn is an edge in G,

so we simply give it the same conductance it has in G. We also assume that Gn is the

graph induced in G by V (Gn). Let Zn be the set of vertices in G \ Gn . Let GWn be the

graph obtained from G by identifying Zn to a single vertex, zn , and then removing loops

(but keeping multiple edges). This graph will have finitely many vertices but may have

infinitely many edges even when loops are deleted if some vertex of G has infinite degree.

Consider the weighted random walk associated to the network G, if we stop it the first

time it reaches Zn , then we obtain a weighted random walk on GWn until it reaches zn.

Now for every a ∈ G, it is easy to see that the events [a→ Zn] are decreasing in n, so the

limit limP[a → Zn] exists and it is the probability of never returning to a in G, which

we call the escape probability from a and it is denoted by P[a → ∞]. This is positive if

and only if the random walk on G is transient. By Equation 3.1, we have

P[a→∞] = lim
n→∞

P[a→ Zn] =
1

π(a)
lim
n→∞

C(a↔ Zn;GWn ).

We call lim
n→∞

C(a ↔ Zn;GWn ) the effective conductance from a to ∞ in G and denote it

by C(a ↔ ∞). Its reciprocal, effective resistance, is denoted R(a ↔ ∞). Note that the

limit lim
n→∞

C(a↔ Zn;GWn ) do not depend on the sequence Gn. Finally, we obtain

P[a→∞] =
C(a↔∞)

π(a)
. (3.2)

Theorem 3.18 (Transience and Effective Conductance). The weighted random walk

associated to on an infinite connected network is transient if and only if the effective

conductance from any of its vertices to infinity is positive.

Definition 3.19. Let G be an infinite network. A function θ : E(G)→ R is a flow from

a to∞ if it is anti-symmetric and satisfies the Kirchhoff’s node law on each vertex v 6= a.

The following theorem is an easy consequence of Theorem 3.14.

Theorem 3.20 (Thomson’s principle for infinite network). Let G be an infinite network,

then

R(a↔∞) = inf{E(θ) : ‖θ‖ = 1 , θ is a flow from a to ∞}

An infinite network G is called recurrent if the weighted random walk associated to G is

recurrent. Otherwise, it is called transient. The following corollary gives us a method

to study the recurrent/transient of a random walk:
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Corollary 3.21. Let G be an infinite network. The weighted random walk associated to

G is transient if and only if there exists a vertex a ∈ V (G) and an unit flow θ from a to

∞ with E(θ) <∞.

We have seen that effective conductance from any vertex to ∞ is positive if and only if

the random walk is transient. Thus, a lower bound on the effective resistance between

vertices in a network can be useful to show recurrence. Let A and Z be two disjoint

sets of vertices. A set Π of edges separates A and Z if every path with one endpoint in

A and the other endpoint in Z must include an edge in Π; we also call Π a cutset. We

say that a set Π of edges separates a and ∞ if every infinite simple path from a must

include an edge in Π. In this case, we also call Π a cutset.

Theorem 3.22 (Nash-Williams inequality). If a and z are distinct vertices in a finite

network that are separated by pairwise disjoint cutsets Π1,Π2, ...,Πn then

R(a↔ z) ≥
n∑
k=1

∑
e∈Πk

c(e)

−1

.

Theorem 3.23. If Πn is a sequence of pairwise disjoint finite cutsets in a locally finite

network G, each of which separates a from ∞, then

R(a↔∞) ≥
∞∑
n=1

(∑
e∈Πn

c(e)

)−1

.

In particular, if
∑∞

n=1

( ∑
e∈Πn

c(e)

)−1

=∞ then G is recurrent.

3.2 Biased random walks on trees

In this section, we use the tools from Section 3.1 to study the recurrent/transient of a

type of random walk which is called biased random walk. We refer the reader to the

book [87] for the details.

Firstly, we review some intuitions from the flow. Consider the tree as a network of pipes

and imagine water entering the network at the root. However, much water enters a

pipe leaves at the other end and splits up among the outgoing pipes (edges). This is

formalized in the previous section (see definition of flow in 3.4). We say that θ(e) is the

amount of water flowing along e and that the total amount of water flowing from the root

to infinity is
∑k

i=1 θ(%, xi), where the children of the root % are x1, ..., xk. Notice that if

there is a flow from a to∞ of finite energy on some network with conductances c(e)e∈E(G)

and if it is the unit current flow with corresponding voltage function v, then we have

|i(e)| = |c(e)(v(e+)− v(e−))| ≤ v(a)c(e) = R(a↔∞)c(e) for all edges e. In particular,



38 CHAPTER 1. INTRODUCTION

there is a nonzero flow bounded on each edge e by c(e) (for example, the nonzero flow is

i/v(a)). Then the existence of flows that are bounded by the conductances allows us to

study the recurrent/transient of network. A flow θ is called admissible if θ(e) ≤ c(e) for

every e ∈ E. To determine whether there is a nonzero admissible flow, we use a powerful

theorem of Ford and Fulkerson which is often called max-flow min-cut theorem.

Theorem 3.24 (Max-flow min-cut theorem, see [50]). If a is a vertex in a countable

directed network G, then

max { strength(θ); θ admissible flow from a to ∞}

= inf

{∑
e∈Π

c(e); Π separates a and ∞
}
.

The max-flow min-cut theorem gives an equivalent of the definition of branching number:

br(T ) := sup{λ; there exists a nonflow θ on T with ∀e ∈ E(T ) 0 ≤ θ(e) ≤ λ−|e|}.

The Nash-Williams criterion gave a condition sufficient for recurrence, but it was not

necessary for recurrence. However, a useful partial converse to the Nash-Williams crite-

rion for trees can be stated as follows.

Proposition 3.25 (Lyons [85]). Let c be conductances on a locally finite infinite tree

T and wn be positive numbers with
∑

n≥1wn < ∞. If θ is a flow on T satisfying

0 ≤ θ(e) ≤ w|e|c(e) for all edges e, then θ has finite energy.

We define the biased random walk with parameter λ on T , denoted by RWλ as the

weighted random walk associated to the network T with the conductances λ 7→ λ−|e|.

The following theorem give us the phase transion of biased random walk.

Theorem 3.26 (Lyons [85]). If T is a locally finite infinite and rooted tree. If λ < br(T )

then RWλ is transient and if λ > br(T ) then RWλ is recurrent.

Proof. Let λ ≥ 0 and consider the network (T , cλ) where cλ(e) = λ−|e| for all e ∈ E(T ).

Assume that the network (T , cλ) is transient, then there exists a nonzero admissible flow

from % to ∞. By Definition of branching number, we obtain λ ≤ br(T ). It remains to

prove that if λ < br(T ), then the network (T , cλ) is transient. For λ < br(T ), we choose

λ′ ∈ (λ, br(T )) and set wn := (λ/λ′)n. By Definition of br(T ), there is a nonzero flow θ

satisfying 0 ≤ θ(e) ≤ (λ′)−|e| = ω|e|λ
−|e| and since

∑
nwn <∞, then by Proposition 3.25,

this flow has finite energy. By Corollary 3.21, the network (T , cλ) is transient.

Remark 3.27. — Sometimes, we also define the biased random walk with param-

eter λ on T as the weighted random walk associated to the network T with the
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conductances λ 7→ λ|e| for any λ > 0. In this case, the theorem 3.26 becomes: If

T is a locally finite infinite and rooted tree. If λ < 1/br(T ) then RWλ is recurrent

and if λ > 1/br(T ) then RWλ is transient.

— In the case c(e) = λ|e|, we write C(λ) for the effective conductance of the network

(T , c), instead of C(%↔∞).

3.3 Percolation and random walks on trees

The relation between percolation and electric network was studied in Lyons [84, 85, 86].

In this section, we review the idea of the proof of Theorem 1.21 by using this relation.

This method is very useful to study the phase transion of random walk. We refer the

reader to Chapter 5 for another application of this method.

Proposition 3.28. Given a general percolation on T , we have

P[%↔∞] ≤ inf

{∑
e∈Π

P[%↔ e]; Π separates % from infinity

}

Proof. For any Π separating % from infinity, we have

[%↔∞] ⊂
⋃
e∈Π

[%↔ e]

Therefore, we obtain P[%↔∞] ≤ ∑
e∈Π

P[%↔ e].

In the case of Bernoulli percolation, we have P[% ↔ e] = p|e|. Therefore, by Proposi-

tion 3.28 and the definition of branching number, we obtain

pc(T ) ≥ 1

br(T )
. (3.3)

Given a general percolation on T . The adapted conductances to this percolation is a

familly of conductances (c(e))e∈E(T ) be such that for any x ∈ V (T ), we have:

{
c(e(x)) = 1 if |x| = 1

1/P[0↔ x] = 1 +R(0↔ x) if |x| > 1
,

or equivalent

{
c(e(x)) = 1 if |x| = 1

1/c(e(x)) = 1
P[0↔x] − 1

P[0↔x−1]
if |x| > 1

,

where e(x) is an edge such that (e(x))+ = x and x−1 is the parent of x.

These notions lead us to the following results:
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Theorem 3.29 (Lyons [85]). For an independent percolation and adapted conductances

on the same tree, we have

P[%↔∞] ≥ C(%↔∞)

1 + C(%↔∞)
.

Theorem 1.21 is an immediate corollary of Theorem 3.29, Theorem 3.18, Theorem 3.26

and 3.3.

Theorem 3.29 is an important tool to study the independent percolations. A generaliza-

tion of this Theorem to quasi-independent percolation is obtained by Lyons [84]. This

generalisation is also one of the central elements of the proofs in Chapter 5.

Theorem 3.30 (Lyons [84]). For a quasi-independent percolation with constant M and

adapted conductances on the same tree T , we have

P[%↔∞] ≥ 1

M

C(%↔∞)

1 + C(%↔∞)
.

Example. We have seen the important role of Theorem 3.29 to study the phase transi-

tion of Bernoulli percolation on trees. Let’s apply Theorem 3.30 to the proof of Propo-

sition 1.24 (see Chapter 5 for an other application of Theorem 3.30). This proof is due

Benjamini and Peres [16]:

If we consider simple random walk on [0, N ] killed on exiting the interval, the corre-

sponding substochastic transition matrix P is symmetric and so real diagonalizable. Let

λk be its eigenvalues and vk be the corresponding eigenvectors with ‖vk‖ = 1. Thus,

Pn(i, j) =
∑
k

λnkvk(i)vk(j).

By the Perron-Frobenius theorem, |λk| ≤ l, where l is the largest positive eigenvalue

and the corresponding eigenvector has positive entries. Since this Markov chain has

period 2, Then we obtain Pn(i, j) ∼ 2vk(i)vk(j)l
n when n and i − j have the same

parity. If n and i − j have no the same parity, then Pn(i, j) = 0. In our case, the

top eigenvalue equals cos π
N+2 (see Spitzer [114], Chapter 21, Proposition 1), whence

P(0↔ x) ∼ a|x|
(

cos π
N+2

)|x|
as |x| → ∞ for some constants am which depends only on

the parity of m. This implies that for the conductances c(e) adapted to this percolation,

there exists a′1 and a′2 such that:

a′1

(
cos

π

N + 2

)|e|
≤ c(e) ≤ a′2

(
cos

π

N + 2

)|e|
Thus, by using Theorem 3.30, we have P(%↔∞) > 0 if br(T ) > 1/ cos( π

N+2). It remains

to prove that if br(T ) < 1/ cos( π
N+2) then P(% ↔ ∞) = 0. It is an easy consequence

Proposition 3.28 and the definition of branching number.
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3.4 Self-avoiding walks and biased random walks on trees

The results that we state in this section will be proved in Chapter 2. We are inter-

ested in defining a natural probability measure on the set of infinite self-avoiding walks

(SAW∞). Such a measure on the set of the infinite self-avoiding half-plane walks has

been constructed before as the weak limit of the uniform measures on the finite self-

avoiding walks relying on results by Kesten (see [89, 72]), and it is part of our goal to

investigate whether that measure and our construction are related.

We consider a one-parameter family of probability measures on SAW∞, denoted by

(Pλ)λ>λc , defined informally as follows. Denote by H the upper-half plane in Z2 and

by Q the first quadrant; let TZ2 (resp. TH, TQ, with the appropriate modifications in

the definition which we will not specify in what follows) be the tree whose vertices are

the finite self-avoiding walks in the plane (respectively half-plane, quadrant), where two

such vertices are adjacent when one walk is a one-step extension of the other. We will

call this tree the self-avoiding tree on Z2.

Then, consider the continuous-time biased random walk of parameter λ > 0 on TZ2 ,

which from a given location jumps towards the root with rate 1 and towards each of its

children vertices with rate λ. If λ is such that the walk is transient, its path determines

an infinite branch in TZ2 which can be seen as a random infinite self-avoiding walk ω∞λ ;

we will denote by Pλ the law of ω∞λ , omitting the mention of Z2 in the notation, and

call it the limit walk with parameter λ.

It is well known that there exists a critical value λc such that if λ > λc the biased

random walk is transient and if λ < λc it is recurrent. In the general case of biased

random walk on a tree, the recurrence or transience of the random walk at the critical

point depends in subtle ways on the structure of the tree. The value of λc on the

other hand is easier to determine: indeed, Lyons [85] proved that it coincides with the

reciprocal of the branching rate of the tree. The following proposition give the critical

value for self-avoiding trees.

Theorem 3.31 (Beffara-Huynh, [13]). Let TZ2 , TH, TQ be defined as above. Then,

λc(TZ2) = λc(TH) = λc(TQ) =
1

µ
,

where µ is the connective constant of lattice Z2.

Notice that it is clear from the definition that µ is the growth rate of TZ2 ; there are rather

large classes of trees, including TZ2 , for which the branching and growth coincide (for

instance, this holds for sub- or super-periodic trees, cf. below, or for typical supercritical

Galton-Watson trees), but none of the classical results seem to apply to TH or TQ.

We now state some properties concerned with the geometry of the limit walk for this

family of probability measures.
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Theorem 3.32 (Beffara-Huynh, [13]). For all λ > λc, under the Pλ measure, the infinite

self-avoiding walk (in the plane or half-plane) reaches the line Z × {0} infinitely many

times almost surely.

Theorem 3.33 (Beffara-Huynh, [13]). For all λ > λc, then

Pλ(lim sup
n
<ω∞λ (n) = +∞) = 1; Pλ(lim inf

n
<ω∞λ (n) = −∞) = 1.

These theorems are proved in Section 6.3. We are mostly interested in the behavior

of the limit walk as λ → λc, since this is a natural candidate to be in relation with

uniformly sampled long SAWs. We did not quite manage to prove the existence of the

limit, but were able to obtain a partial result in this direction by restricting the process

to paths formed of bridges of bounded height m, and letting m increase; see Theorem 7.3

for more details.

A useful tool in our proofs is the effective conductance of the biased random walk on a

tree T , defined as the probability of never returning to the root o of T and denoted by

C(λ, T ). Along the way, we will be interested in several properties of it as a function of λ.

Most important for us will be the question of continuity: in a general tree, the effective

conductance is not necessarily a continuous function of λ. We will derive criteria for

continuity, which are forms of uniform transience of the random walk, and apply them

to prove that the effective conductance of self-avoiding trees is a continuous function

(see Section 5.4):

Theorem 3.34 (Beffara-Huynh, [13]). The functions C(λ, TH) and C(λ, TZ2) are con-

tinuous on (λc,+∞).

A related question is that of the convergence of effective conductance along a sequence

of trees. More precisely, let (fn)n denote the effective conductances for a sequence (Tn)

of infinite trees, and we assume that (fn)n converges uniformly towards f 6= 0. The

question is: is f the effective conductance of a certain tree? We study this question

on a class of particular trees, spherically symmetric trees (recall that T is spherically

symmetric if deg x depends only on |x|, where |x| denote its distance from the root o

and deg x is the number of its neighbors). If S denotes the set of spherically symmetric

trees and m ∈ N∗ is fixed, define

Am := {T ∈ S;∀x ∈ T, deg x ≤ m} and

Fm :=
{
f ∈ C0([0, 1]) : ∃T ∈ Am, C(λ, T ) = f(λ)

}
.

Then (see Section 4.2):

Theorem 3.35 (Beffara-Huynh, [13]). Let (fn)n be a sequence of functions in Fm.

Assume that fn converges uniformly towards f 6= 0. Then f ∈ Fm.
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4 Excited random walks and random walks in random

environment

We can define an interacting process as a random process evolving over time, such that,

at any moment, the future behavior of the process depends on its past trajectory. There

is the difference between these processes with Markov process: Unlike classical Markov

processes, the knowledge of the present state does not contain all the informations needed

to predict its future behavior. The study of these process is relatively recent and their

behaviors are still poorly understood except in the particular cases. The major diffi-

culty comes from the property non-Markovian of the dynamics that prohibits to use the

classical tools of Markov processes and therefore we need to develop new strategies. In

Sections 4.1 and 4.2, we study a process of this kind: Excited random walk.

The random walk in random environment is introduced in Section 4.3.

4.1 Excited random walk

Once-excited random walk on Zd

The model of the once-excited random walk on Zd was introduced by Benjamini and

Wilson [17]. Roughly speaking, it describes a walk which receives a push in some specific

direction each time it reaches a new vertex of Zd. More precisely, a random walk on Zd

is excited (with bias ε/d, ε > 0) if the first time it visits a vertex it steps right with

probability (1 + ε)/(2d), left with probability (1− ε/(2d)), and in other directions with

probability 1/(2d), while on subsequent visits to that vertex the walker picks a neighbor

uniformly at random. More formally, we therefore consider an excitation parameter

ε ∈ (0, 1) and a process that the marginals verify:

P{Xn+1 = Xn ± ei|X0, · · · , Xn} =

{
1±ε
2d if i = 1 or Xn /∈ {X0, · · · , Xn−1}
1
2d if i 6= 1 or Xn ∈ {X0, · · · , Xn−1}

where (e1, · · · , ed) denotes the canonical basis of Zd. In [17], Benjamini and Wilson

proved that the once-excited random walk is recurrent in dimension 1 and it is transient

in the direction of bias in dimension d ≥ 2, whatever the excitation value ε. They also

showed that it possessed a non-zero speed when the dimension d ≥ 4. These results

were completed by Kozma [76, 77] and by Bérard and Ramirez [18] who showed that

the speed of an once-excited random walk was also strictly positive in dimension 2 and

3 and they also proved the invariance principle:

Xn.e

n
−→
p.s

v > 0 and

(
Xbntc.e− vbntc√

n
, t ≥ 0

)
−→
(d)

(Bσ2t , t ≥ 0),

where B denotes a standard Brownian motion.
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Multi-excited random walk on Z

In [120, 121], Zerner introduced a generalization of this model called multi-excited ran-

dom walk (or cookie random walk) where the walk receives a push, not only on its first

visit to a site, but also on some subsequent visit. More precisely, the model of multi-

excited random walk is defined as follows. Let us first fix two quantities, a direction and

a constant k. In the case d = 1, we always choose ` = e1 ∈ Z to be the first standard unit

vector. In the case d ≥ 2, we choose l ∈ Rd be any direction with |`|1 = 1. The constant

k ∈ (0, 1/(2d)] will be a uniform lower bound for the probability of the walk to jump

from x to any nearest neighbor of x. We define an environment ω for an multi-excited

random walk is an element of

Ω :=

{((
((ω(x, e, i))|e|=1

)
i≥1

)
x∈Zd

∈ [k, 1− k]2d×N×Z
d |
}
,

satisfies two following conditions: For any x ∈ Zd and i ≥ 1, we have
∑

e∈Zd,|e|=1

ω(x, e, i) = 1∑
e∈Zd,|e|=1

ω(x, e, i)e.` ≥ 0

A multi-excited random walk starting at x ∈ Zd in an environment ω is a Zd-valued

process (Xn)n≥0 on some suitable probability space (Ω′,F ,Px,ω)for which the history

process (Hn)n≥0 defined by Hn := (Xm)0≤m≤n ∈ (Zd)n+1 is a Markov chain which

satisfies Px,ω-a.s.

Px,ω(X0 = x) = 1

Px,ω(Xn+1 = Xn + e|Hn) = ω(Xn, e, |{m ≤ n : Xm = Xn}|.

Thus ω(x, e, i) is the probability to jump upon the i-th visit to x from x to x + e. In

the case of Z, to simplify the statements, we consider here only the case of deterministic

excitations. The model is now parametrized by an integer M which represents the

number of cookies per site and a vector

p = (p1, · · · , pM ) ∈ [1/2, 1)M ,

where pi is the transition probability after eating the i-th cookie of a site. The multi-

excited random walk on Z is defined as a process X moving to nearest neighbor with

transition probabilities:

P{Xn+1 = Xn + 1|X0, · · · , Xn} =

{
pi if i = |m{≤ n : Xm = Xn}| ≤M

1
2 otherwise
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In [121], Zerner introduced this model and he proved the following result for the phase

transition:

Theorem 4.1 (Zerner [121]). There is a phase transition according to the value of

α(p) =
M∑
i=1

(2pi − 1).

— If α ≤ 1 then X is recurrent, it means lim supXn = − lim inf Xn = +∞
— If α > 1 then X is transient toward +∞, it means limXn = +∞.

We can deduce from this theorem that if M = 1 then the walk is recurrent whatever the

value of p1 ∈ [1/2, 1). The walk can become transient with just two cookies and α(p) is

enough. In the case of transience, it is natural to study the speed of the walk. In [121],

Zerner proved that:

Theorem 4.2 (Zerner, [121]). There exists a constant v = v(p) > 0 such that

lim
n→∞

Xn

n
= v p.s.

In [121], Zerner also proved that if M = 2 then v = 0. Then Mountford, Pimentel and

Valle [96] proved v > 0 if M is large enough and α(p) is large enough. A natural question

is to understand this second phase transition by determining under what condition, we

have v(p) > 0. The answer is due to Basdevant and Singh [8]:

Theorem 4.3 (Basdevant-Singh [8]). We have v(p) > 0 if and only if α(p) > 2.

Moreover, in the case α ∈ (1, 2], Basdevant and Singh [9] proved that:

Theorem 4.4 (Basdevant-Singh [9]). Assume that the multi-excited random walk X is

transient and the speed v = 0 i.e α ∈ (0, 1].

— If α < 2, we have
Xn

nα
−→
loi
Mα/2,

where Mα/2 is a law of Mittag-Leffler with parameter α.

— If α = 2, we have
log n

n
Xn −→

prob
C,

where C is a strictly positive constant.
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4.2 Phase transition for multi-excited random walk on trees

It is natural to define the multi-excited random walk on a tree. This model was consid-

ered in [118] and [10]. Let us be a bit more precise about the model. We consider an

infinite, locally finite and rooted tree T . At each vertex of the tree, we initially put a pile

of M ≥ 0 ”cookies” with strengths λ1, ..., λM ∈ [0, 1). The vector (λ1, ..., λM ) ∈ [0, 1)M

is called cookie environment. Let us also choose some other parameter λ ∈ (0, 1) rep-

resenting the bias of the walk after excitation. Then, a cookie random walk on T is

a nearest neighbor random walk X = (Xn)n≥0, starting from the root of the tree and

moving according to the following rules:

— If Xn = x and there remain the cookies with strengths λj , λj+1, ..., λM at this

vertex, then X eats the cookie with attached strength λj and then jumps at time

n + 1 to the parent of x with probability 1
1+∂(x)λj

and to each child of x with

probability
λj

1+∂(x)λj
, where ∂(x) is the number of children of x.

— If Xn = x and there is no remaining cookie at site x, then X jumps at time n+ 1

to the parent of x with probability 1
1+∂(x)λ and to each child of x with probability

λ
1+∂(x)λ , where ∂(x) is the number of children of x.

This model is a particular case of self-interacting random walk: the position of X at

time n+ 1 depends not only of its position at time n but also on the number of previous

visits to its present site. Therefore, X is not a Markov process.

We have some particular cases:

— If λj = 0 for all j, it is called M -digging random walk with parameter λ, denoted

by (M -DRWλ).

— If M = 0, it is called biased random walk with parameter λ (RWλ).

— If M = 1, it is called once-excited random walk ((λ1, λ)-OERW).

This model was considered the first time by Volkov [118] on a tree T which is an infinite,

locally finite and rooted tree, with the property that each vertex, except possibly the

root, is incident to at least three vertices. The following theorem was proved by Volkov:

Theorem 4.5 (Volkov [118]). Assume that T is an infinite, locally finite and rooted

tree, with the property that each vertex, except possibly the root, is incident to at least

three vertices.

— Let λ1 ≥ 0 and C = (λ1, 1). Then the walk in the cookie environment C is

transient.

— Let C = (0, 0, 1). Then the walk in the cookie environment C is transient.

The most significant question left open by his paper, is what happens with the M -digging

random walk for M ≥ 3. He conjectured that:

Conjecture 4.6 (Volkov [118]). Let T be an infinite, locally finite and rooted tree, with

the property that each vertex, except possibly the root, is incident to at least three vertices.

For any M ≥ 3, the M -digging random walk on T is transient.
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The case of the multi-excited random walk on a regular tree (b ary tree) Tb was considered

by Basdevant and Arvind Singh in [10]. To state this result, we start with the following

definition:

Definition 4.7. — Given a cookie environment C = (λ1, ..., λM ;λ), we denote by

(ξi)i≥1 a sequence of independent random variables taking values in {0, 1, ..., b},
with distribution:

P(ξi = 0) =

{
1

1+bλi
if i ≤M,

1
1+bλ if i > M,

P(ξi = 1) = ... = P(ξi = b) =

{
λi

1+bλi
if i ≤M,

λ
1+bλ if i > M,

We say that ξi is a ”failure” when ξi = 0.

— We call ”cookie environment matrix” the non-negative matrix (λi,j)i,j≥0 whose

coefficients are given by λ(0, j) = 1{j=0} and for any i ≥ 1, we have

λ(i, j) = P{
γi∑
k=1

1{ξk=1}=j} where γi = inf{n,
n∑
k=1

1{ξk=0} = i}.

Thus, p(i, j) is the probability that there are exactly j random variables taking

value 1 before the i-th failure in the sequence (ξ1, ξ2, ...)

Definition 4.8. Given an irreducible non negative matrix Q, its spectral radius is

defined as λ = lim
n→∞

(q(n)(i, j))1/n, where q(n)(i, j) denotes the (i, j) coefficient of the

matrix Qn.

Theorem 4.9 (Recurrence/Transience criterion, Basdevant-Singh [10]). Let C =

(λ1, ..., λM ;λ) be a cookie environment and let P (C) denote its associated cookie envi-

ronment matrix. This matrix has only a finite number of irreducible classes. Let λ(C)
denote the largest spectral radius of theses irreducible sub-matrices.

— If λ
1+bλ <

b
b+1 and λ(C) ≤ 1

b , then the walk in the cookie environment C is recurrent

i.e. it hits any vertex of Tb infinitely often with probability 1. Furthermore, if

λ(C) < 1
b , then the walk is positive recurrent i.e. all the return times to the root

have finite expectation.

— If λ
1+bλ ≥ b

1+b and λ(C) > 1
b then the walk is transient i.e. |Xn|

n→∞
= +∞.

The matrix P (C) of Theorem 4.9 is explicit. Its coefficients can be expressed as a rational

function of the λ′is and λ and its irreducible classes. However, we do not know, except

in particular cases, a simple formula for the spectral radius λ(C):

Corollary 4.10 (Once excited random walk, Basdevant-Singh[10]).
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Let X denote a (p; q) cookie random walk (i.e M = 1) on Tb and define

α :=
λ2 + (b− 1)λλ1 + λ1

1 + bλ1
(4.1)

Then X is recurrent if and only if λ ≤ 1/b.

Corollary 4.11 (M-digging random walk, Basdevant-Singh [10]).

Let X denote a (p; q) cookie random walk (i.e M = 1) on Tb and define

β := λM+1 (4.2)

Then X is recurrent if and only if β ≤ 1/b.

Note that Conjecture 4.6 is a consequence of Corollary 4.11.

In the remain of this section, we consider a general tree T and we want to extend

Conjecture 4.6. Here, we obtain a much finer description of the process and we can prove

that this random walk actually undergoes a phase transition on trees with polynomial

gowth, i.e. on trees T where the branching-ruin number brr(T ) is finite. The branching-

ruin number of a tree T , denoted by brr(T ), is best described as the polynomial version of

the branching number: if a well-behaved tree has spheres of size nb, then the branching-

ruin number of this tree is b. We refer the reader to [33] for more details on the definition

of branching-ruin number.

Theorem 4.12 (Collevecchio-Huynh-Kious, [32]). Let T be an infinite, locally-finite,

rooted tree, and let M ∈ N. If brr(T ) < M + 1 then M -DRW1 is recurrent and if

brr(T ) > M + 1 then M -DRW1 is transient.

Moreover, we generalize Corollary 4.11:

Theorem 4.13 (Collevecchio-Huynh-Kious, [32]). Let T be an infinite, locally-finite,

rooted tree, and let M ∈ N, λ > 0. Denote X the M -digging random walk on T with

parameters λ > 0. We have that

1. in the case λ = 1, if brr(T ) < M + 1 then X is recurrent and if brr(T ) > M + 1

then X is transient;

2. for any λ > 1, if br(T ) < λM+1 then X is recurrent and if br(T ) > λM+1 then X

is transient;

3. for any λ < 1, X is transient.

Note that, for a b-ary tree Tb, we have br(Tb) = b and Theorem 4.13 therefore agrees

with Corollary 4.11. In [10], Basdevant and Singh proved that the walk is recurrent at
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criticality on regular trees, but this is not expected to be true in general. However, we

prove the critical M -digging random walk is still recurrent on a particular class of trees

which contains the regular trees.

Theorem 4.14 (Huynh, [68]). Let M ∈ N and T be a superperiodic tree whose upper-

growth rate is finite. Then the critical M -digging random walk on T is recurrent.

Unlike the case of once-reinforced random walk in [33] or digging-random walk in [32],

the phase transition of once-excited random walk (OERW) does not depend only on the

branching-ruin number and the branching number of tree. In the case T is a spherically

symmetric tree, we give a sharp phase transition recurrence/transience in terms of their

branching number and branching-ruin number and others.

Recall that a tree T is said to be spherically symmetric if for every vertex ν, deg ν

depends only on |ν|, where |ν| denote its distance from the root and deg ν is its number

of neighbors. Let T be a spherically symmetric tree. For any n ≥ 0, let xn be the

number of children of a vertex at level n. For any λ1 ≥ 0 and λ > 0, we define the

following quantities:

α(T , λ1, λ) = lim inf
n→∞

(
n∏
i=1

λ2 + (xi − 1)λ1λ+ λ1

1 + xiλ1

)1/n

. (4.3)

β(T , λ1, λ) = lim sup
n→∞

(
n∏
i=1

λ2 + (xi − 1)λ1λ+ λ1

1 + xiλ1

)1/n

. (4.4)

γ(T , λ1) = lim inf
n→∞

−∑n
i=1 ln

[
1− (xi−1)λ1+2

(1+xiλ1)i

]
lnn

. (4.5)

η(T , λ1) = lim sup
n→∞

−∑n
i=1 ln

[
1− (xi−1)λ1+2

(1+xiλ1)i

]
lnn

. (4.6)

Theorem 4.15 (Huynh, [68]). Let T be a spherically symmetric tree, and let λ1 ≥ 0,

λ > 0. Denote X the (λ1, λ)-OERW on T . Assume that there exists a constant M > 0

such that supν∈V deg ν ≤M , then we have

1. in the case λ = 1, if η(T , λ1) < brr(T ) then X is transient and if γ(T , λ1) > brr(T )

then X is recurrent;

2. assume that λ1 ≥ 0, λ 6= 1 and br(T ) > 1, if β(T , λ1, λ) < 1
br(T ) then X is

recurrent and if α(T , λ1, λ) > 1
br(T ) then X is transient.
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Note that, for a b-ary tree Tb, we have br(Tb) = b and

α(Tb, λ1, λ) = β(Tb, λ1, λ) =
λ2 + (b− 1)λλ1 + λ1

1 + bλ1
(4.7)

and our result therefore agrees with Corollary 1.6 of [10]. In [10], the authors prove that

the walk is recurrent at criticality on regular trees, but this is not expected to be true

on any tree). For instance, if λ1 = λ, the (λ, λ)-OERW X is the biased random walk

with parameter λ. Therefore X may be recurrent or transient at criticality (see [13],

proposition 22).

Volkov [118] conjectured that, any cookie random walk which moves, after excitation,

like a simple random walk (i.e. λ = 1) is transient on any tree containing the binary

tree. This conjecture was proved by Basdevant and Singh [10]. Here, we extend this

conjecture to any tree T whose branching number is larger than 1:

Theorem 4.16 (Huynh, [68]). Let (λ1, ..., λM ) ∈ (R+)M and consider (λ1, ..., λM ; 1)

cookie random walk X on an infinite, locally finite, rooted tree T . If br(T ) > 1, then X

is transient.

4.3 Random walk in random environment

Random walks in random environments have been at the center of the probabilists’ in-

terest for several decades. This model is commonly used to represent some physical or

biological systems which it is essential to take account of the spatial heterogeneity of the

environment. Indeed, the presence of impurities in the environment leads to be different

behavior compared with observed one in the classical framework of a homogeneous envi-

ronment. The mathematical study of such models has grown considerably over the last

thirty years. This growth is due, on the one hand, to the desire to answer the questions

posed by physicists and biologists and, on the other hand, to the richness of observed

behaviors, we need to introduce the new tools to study these models.

A specific class of such random walks goes under the banner of the Random Conductance

Model (RWRC). Let us review some basic definitions on this models and we refer the

readers to [25] for more details.

We begin with the definition of the problem in the context of random walks in random

environments. Consider a countable set V and suppose that we are given a collection of

numbers (wxy)x,y∈V with the following properties: wxy ≥ 0 with

πw(x) :=
∑
y∈V

wxy ∈ (0,∞), x ∈ V, (4.8)

and the symmetry condition

wxy = wyx, x, y ∈ V. (4.9)
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The quantity is called the conductance of the pair (x, y).

When V has an unoriented-graph structure with edge set E , we often enforce wxy = 0

whenever (x, y) /∈ E ; in that case, it is called the nearest-neighbor model. Such a model

is then called uniformly elliptic if there is α ∈ (0, 1) for which

α < wxy <
1

α
, (x, y) ∈ E . (4.10)

When V := Zd, we use the phrase “nearest-neighbor model” for the situation when E is

the set of pairs of vertices that are at the Euclidean distance one from each other.

The random walk in environment w is technically a discrete time Markov chain with

state-space V and the transition probability:

Pw(x, y) :=
wxy
πw(x)

. (4.11)

Let Ω be the space of all configurations (wxy) of the conductances. This space is naturally

endowed with a product σ-algebra F . Let P be a probability measure on (Ω,F). Denote

by X := (Xn)n≥0 a sample path of the above Markov chain and let P xω denote the law

of X subject to the initial condition

Pωx (X0 = x) = 1. (4.12)

We call Pωx the quenched law. Finally, we denote by Px the annealed law of the (RWRC)

started at x as the semi-direct product

Px := P× Pωx . (4.13)

We are interested in considering the model of (RWRC) defined in a tree. The first kind

we shall review have proved useful in the study of random fractals ([45, 46]). This model

was study by Lyons [85]; Pemantle [101]; Lyons and Pemantle [86]. Let us define the

probability measure P of this model. Let T = (V,E) be an infinite, locally finite and

rooted tree with the root %. Assign to each edge σ of T a nonnegative random variable

Aσ. Let

ωσ =
∏
τ≤σ

Aτ (4.14)

this will be the conductance of the edge σ.

For a vertex v ∈ V , T (v) stands for the return time to v, that is

T (v) := inf{n > 0 : Xn = v}.

A RWRC is said to be recurrent if it returns to %, P%-almost surely. This process is

transient if it is not recurrent, that is

P%
(
T (%) =∞

)
> 0.
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Assume that the random variables {Aσ} are independent identically distributed, each

has mean p and let A be a random variable with this common distribution. By the Zero-

one law, a (RWRC) is a.s transient or recurrent. We shall detemine the phase transition

of (RWRC). The branching number of a tree T , denoted by br(T ), is a real number

greater than or equal to 1 that measures the average number of branches per vertex

of the tree. It was showed that, when A ≤ 1, the (RWRC) is transient or recurrent

according to whether E(A) br(T ) is greater or less than 1:

Theorem 4.17 (Lyons, [85]). Assume that A ≤ 1. If E(A) br(T ) < 1 then (RWRC) is

recurrent and if E(A) br(T ) > 1 the (RWRC) is transient.

We define

p := min
0≤x≤1

E(Ax). (4.15)

Note that in the case of A ≤ 1, we have p = E(A). In Theorem 2 of [101], it is shown

that if T is a homogeneous tree or the genealogical tree of a Galton-Watson process on

the event of nonextinction, then (RWRC) is a.s. transient or a.s. recurrent according to

whether p br(T ) is greater or less than 1:

Theorem 4.18 (Pemantle, [101]). Let T be a homogeneous tree or the genealogical tree

of a Galton-Watson process on the event of nonextinction. If p br(T ) < 1 then (RWRC)

is recurrent and if p br(T ) > 1 the (RWRC) is transient.

In [86], Lyons and Pemantle proved a generalized version of Theorems 4.17 and 4.18:

Theorem 4.19 (Lyons and Pemantle, [86]). Let T be tree. If p br(T ) < 1 then (RWRC)

is recurrent and if p br(T ) > 1 the (RWRC) is transient.

Now, we define a variant version of the probability measure P by the following way.

Instead of defining the random conductances as in Equation 4.14, we define

ωσ := Aσ. (4.16)

Assume that (we)e∈E is a collection of i.i.d. random variables that are almost surely

positive. Moreover, assume that

P

(
we ≤

1

t

)
=
L(t)

tm
, for t > 0, (4.17)

where L : R→ R is a slowly-varying function.

In order to see a phase transition, one needs to consider trees that grow polynomially fast,
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and therefore the branching number is not the quantity that would provide a relevant

information in this case. Indeed, the branching number does not allow us to distinguish

among trees with polynomial growth as the branching number of any tree with sub-

exponential growth is equal to 1. In [33], it was proved that the critical parameter for

the once-reinforced random walk on trees is equal to the branching-ruin number of the

tree (see (2.2)). The branching-ruin number of a tree T , denoted by brr(T ), is best

described as the polynomial version of the branching number: if a well-behaved tree has

spheres of size nb, then the branching-ruin number of this tree is b. Now, we give a sharp

phase transition of this model in term of the branching-ruin number :

Theorem 4.20 (Collevecchio, Huynh and Kious, [32]). Fix an infinite, locally finite,

tree T and let b = brr(T ) ∈ [0,∞] be its branching-ruin number. If b < 1, then RWRC

is recurrent. Assuming b > 1, if mb > 1 then RWRC is transient and if mb < 1 then it

is recurrent.

5 Random maps

In this section, we review some notions and results on random map. We refer the reader

to Grégory Miermont [93], Grégory Miermont and Jean-Francois Le Gall [82], Bettinelli

[22] for the details.

5.1 Some definitions

Here, we define maps in the geometric way as in Bettinelli ([22], Section 1.1.1) and

Grégory Miermont and Jean-Francois Le Gall ([82], Section 5.1). We refer the reader

to Bojan Mohar and Carsten Thomassen [95] for the other definition of maps and the

equivalence between these definitions.

The surface classification theorem states that the compact connected orientable surface

without boundary are characterized up to homeomorphism by an integer g ≥ 0 which is

called genus. The surface of genus 0 is the sphere S2 of R3, and for all g ≥ 1, the surface

of genus g, which is denoted by Tg and called g-torus, is obtained by connected sum of

g torus T1. We also define the torus Tg as the sphere S2 to which we add g anses.

Let G be a compact connected orientable surface without boundary. An oriented edge in

G is a continuous mapping e : [0, 1] −→ G satisfy either e is injective, or the restriction of

e to [0, 1) is injective and e(0) = e(1). In the latter case, e is called loop. An oriented edge

will always be considered up to reparametrization by a continuous increasing function

from [0, 1] to [0, 1] and we will always be interested in properties of edges that do not

depend on a particular parameterization. The extremities of e is e− = e(0) and e+ =

e(1). The reversal of e is the oriented edge e = e(1 − ·). An edge is a pair e = {e, e}
where e is an oriented edge. The interior of e is e ((0, 1)). Consider a finite graph
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G = (V,E) in which V and E are finite and multiple edges and loops are allowed. A

graph G is called embedded graph in G if the following conditions are satisfied:

— V is a subset of G
— E is a set of edges in G
— The vertices incident to e = {e, e} ∈ E are e+, e− ∈ V
— The interior of an edge e ∈ E does not intersect V nor the edges of E distinct

from e.

The support of an embedded graph G = (V,E) is supp (G) = V ∪⋃{e,e}∈E e([0, 1]). A

face of the embedding is a connected component of the set G \ supp (G). Now, we lead

to the following definition:

Definition 5.1. A map on G is a connected embedded graph on G. Equivalently, a

map is an embedded graph whose faces are all homeomorphic to the open disk in R2.

A rooted map is a pair (m , e) where m = (V,E) is a map and e ∈ −→E is a distinguished

oriented edge which is called the root of m.

Note that the root of a map can be a corner (see Section 5.2 for instance) of the map.

The genus of a map G on G is defined as the genus of surface G. Let m = (V,E) be

a map, and let
−→
E = {e ∈ e : e ∈ E} be the set of all oriented edges of m. Since G is

oriented, it is possible to define, for every oriented edge e ∈ −→E , a unique face fe of m,

located to the left of the edge e. We call fe the face incident to e. We define the degree

of a face f as follows:

deg(f) = card {e ∈ E : fe = f}.

The oriented edges incident to a given face f , are arranged cyclically in counter-clockwise

order around the face in what we call the facial ordering. With every oriented edge e,

we can associate a corner incident to e, which is a small simply connected neighborhood

of the vertex e− of e intersected with the face fe. It is easy to see that the corner of two

different oriented edges do not intersect. The degree of a vertex v ∈ V is defined by:

deg(v) = card {e ∈ −→E : e− = v}.

An important property of maps which is called Euler formula. Euler’s formula says that

any map m on an orientable surface of genus g satisfies |V (m)|+ |F (m)|− |E(m)| = 2,

where V (m) F (m) E(m) denote respectively the sets of all vertices, edges and faces of

the map m.

Until now, the set of maps G is infinity. For the problems of combinatorial and prob-

ability, we must identify the maps up to isomorphisms. This lead us to the following

definitions.
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Definition 5.2. The maps m,m′ on G are isomorphic if there exists an orientation-

preserving homeomorphism h of S2 onto itself, such that h induces a graph isomorphism

of m with m′.

The rooted maps (m, e) and (m’, e′) are isomorphic if m and m′ are isomorphic through

a homeomorphism h satisfy h(e) = e′.

Remark 5.3. If m and m′ are isomorphic, then the graphs associated to m,m′ are

isomorphic, but the reverse is not true.

An automorphism of a map m is an isomorphism of m with itself. It should be in-

terpreted as a symmetry of the map. An important property of automorphism is the

following.

Proposition 5.4. If an automorphism h of a map m that fixes an oriented edge, then

h is identity.

In a rooted map (m , e), the face fe incident to the root edge e is often called the external

face, or root face. The other faces of (m , e) are called internal. The vertex e− is called

the root vertex.

We end this section by introducing the notion of graph distance in a map m. A chain of

length k ≥ 1 is a sequence e(1), · · · , e(k) of oriented edges in
−→
E (m) such that e+

(i) = e−(i+1)

for all 1 ≤ i ≤ k − 1, and in this case we say that the chain starting at the vertex e−(1)

and ending at e+
(k). The graph distance between two vertices u, v ∈ V is the minimal

k such that there exists a chain with length k linking u and v. A chain with minimal

length between two vertices is called a geodesic chain.

5.2 Triangulations of the torus

A map m on the torus T1 is called toroidal map . The universal cover of the torus

is a surjective mapping from the plane to the torus that is locally a homeomorphism.

If the torus is represented by a square in the plane whose opposite sides are pairwise

identified, then the universal cover of the torus is obtained by replicating the square to

tile the plane. Given a property P defined on graphs, we say that a graph G embedded

on the torus is essentially P, if its universal cover (i.e. the infinite planar map G∞

obtained by replicating G in the plane) as property P. The notion of being essentially

”something” often appears naturally while considering toroidal maps.

Recall that a graph is simple if it has no loop nor multiple edges. Then a graph G

embedded on the torus is essentially simple if G∞. This is equivalent to the fact that

G has no contractible loops (i.e. an edge enclosing a region homeomorphic to an open

disk) nor homotopic multiple edges (two edges that have the same extremities and whose

union encloses a region homeomorphic to an open disk).
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We distinguish paths and cycles from walks and closed walks as the firsts have no re-

peated vertices. A triangle of a toroidal map is a closed walk of size 3 enclosing a region

that is homeomorphic to an open disk. This region is called the interior of the triangle.

Note that a triangle is not necessarily a face of the map as its interior may be not empty.

We say that a triangle is maximal (by inclusion) if its interior is not strictly contained in

the interior of another triangle. We define the corners of a triangle as the three angles

that appear in the interior of this triangle when its interior is removed (if non empty).

Definition 5.5. We call triangulation is a map whose faces are triangle.

For n ≥ 1, let T (n) be the set of essentially simple toroidal triangulations on n vertices

(up to isomorphisms) that are rooted at a corner of a maximal triangle.

5.3 Scaling limits

We are interested to the scaling limit of random maps. The concept of scale limit is

well known in probability theory and the general principle is as follows. Given a certain

class of combinatorial objects for which we have a notion of volume and a notion of

size. When the volume tends to infinity, we try to normalize the size to obtain an

interesting limit. More precisely, we choose a random object among the objects of

volume n belonging to this class. It may be that, once the size is properly renormalized,

this object tends in law towards a continuous limit object when n go to infinity. for

example, in the case of the standard random walk, if we call volume the number of

steps and size the value of the step, then the scaling limit of this object is Brownian

motion: We choose a path uniformly randomly among the paths consisting of n steps

of {+1,−1}, after renormalizing the time by n and space by
√
n, this path tends in law

towards a Brownian movement defined on [0, 1] according the Donker’s theorem. One

can also think of various models of trees, for which the volume is for example the number

of vertices and the size is the height.

Moreover, the limit object often has a interested property which is called universality :

one obtains the same scaling limit for several different (but similar) classes of objects.

For example, the Brownian motion which appears as the scaling limit of any random

walk which satisfy the law of its steps is centered and of finite variance. For two other

examples, the continuum real tree is the scaling limit of a lot models of random tree

(see David Aldous [4], [5]); or the Brownian map is the scaling limit of many classes of

random planar maps (see Le Gall [81]).

In our case, we consider the class of triangulation on torus T1 with its size as be the

number of its vertices. Since Tn has the finite cardinality, then we can choose a trian-

gulation Gn uniformly random on Tn. We must specify the space and its topology to

study the scaling limit of this class of maps. The space on which we work is then the

set M of classes of isometry of compact metric spaces. The topology of the space M is
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Gromov Hausdorff topology. We define formally the Gromov-Hausdorff distance between

two compact metric spaces. The Hausdorff distance between two non-empty subsets X

and Y of a metric space (G, d) is defined by

dHaus(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

Equivalently,

dHaus(X,Y ) = inf{ε ≥ 0 : X ⊂ Yε, Y ⊂ Xε},

where Zε denotes
⋃
z∈Z{m ∈M : d(m, z) ≤ ε}.

The Gromov-Hausdorff distance between two compact metric spaces (S, δ) and (S′, δ′)

is defined by

dGH((S, δ), (S′, δ′)) = inf{dHaus(ϕ(S), ϕ′(S′)},

where the infimum is taken over all isometric embeddings ϕ : S → S” and ϕ′ : S′ → S”

of S and S′ into the same metric space (S”, δ”). The Gromov Hausdorff distance is a

distance on M (see [28], theorem 7.3.30) and the metric space (M, dGH) is a Polonais

space (see [28], theorem 7.4.15).

We are wondering if it is possible to normalize the metric space (V (Gn), dGn) such that

it admits a convergence in distribution for the Gromov Hausdorff topology? We refer

the reader to Chapter 5.5 for a partial answer of this question.

5.4 Some recent results

Consider a random planar map Gn with n vertices which is uniformly distributed

over a certain class of planar maps (like planar triangulations, quadrangulations or d-

angulations). Equip the vertex set V (Gn) with the graph distance dGn . It is known

that the diameter of the resulting metric space is of order n1/4 (see for example [30]

for the case of quadrangulations). Thus one can expect that the rescaled random met-

ric spaces (V (Gn), n−1/4dGn) converges in distribution as n tends to infinity towards a

certain random metric space. In 2006, Schramm [110] suggested to use the notion of

Gromov-Hausdorff distance to formalize this question by specifying the topology of this

convergence. He was the first to conjecture the existence of a scaling limit for large

random planar triangulations.

Jean-Francois Marckert et Abdelkader Mokkadem [90] were then interested to the prob-

lem of the convergence of uniform planar quadrangulations, by considering maps as

metric spaces with the graph distance renormalized by n−1/4. They proved a conver-

gence, in a certain sense, of the discret space to a limit space which they called Brownian

map. The problem of the convergence in the sense of Gromov Hausdorff topology is still

open. One year later, Jean-Francois Le Gall [80] showed the convergence of discrete

metric spaces to a random metric space, but only to extraction of subsequences. More
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precisely, he showed that the sequence of the laws of these metric spaces is tight, which

implies that it admits adherence values, and conjectured that the extraction is not re-

quired, this means that there is only one adherence value. This conjecture is often called

the uniqueness of the Brownian map. This conjecture was proved by Grégory Miermont

[94] and Jean-Francois Le Gall [81]. In particular, Jean-Francois Le Gall [81] proved the

universality property of Brownian map and the Schramm’s conjecture for the scaling

limit of triangulation was also solved.

A question is risen in Jean-Francois Le Gall [81] and Jean-Francois Le Gall and Beltran

[15]: Does there exist the scaling limit for simple triangulation ? Addario-Berry Louigi

and Albenque Marie [1] obtained a positive answer for this question.

5.5 Scaling limits for random simple triangulations on the torus

We address the question of the existence of a scaling limit of random maps on higher

genus oriented surfaces. Chapuy, Marcus and Schaeffer [29] extended the bijection known

for planar bipartite quadrangulations to any oriented surfaces. This leads Bettinelli [22]

to show that random quadrangulations on oriented surface converges in distribution, at

least along a subsequence. He conjectured that there is the scaling limit for more general

classes of random maps. More precisely, the scaling limit still holds while replacing the

class of quadrangulations with some other “reasonable” class of maps. Moreover, he

believed that the extraction of subsequences is not required.

Our main result is the following convergence result:

Theorem 5.6 (Beffara-Huynh-Lévêque, [14]). For n ≥ 1, let Gn be a uniformly random

element of the set of all essentially simple toroidal triangulations on n vertices that are

rooted at a corner of a maximal triangle. Then, from any increasing sequence of integers,

one can extract a subsequence (nk)k≥0 along which the rescaled metric spaces(
V (Gnk), n

−1/4
k dGnk

)
k≥0

converge in distribution for the Gromov-Hausdorff distance.



6. OUTLINE OF THE MAIN BODY OF THE THESIS 59

6 Outline of the main body of the thesis

The remainder of this thesis is organized into several chapters, most corresponding to

separate articles. We give a brief outline of each paper below for the convenience of the

reader, and refer them either to the introduction above or to each chapter for precise

statements of mathematical results.

Chapter 2: Trees of self-avoiding walks [13] (with V. Beffara) In this chapter,

following Berretti and Sokal, we investigate biased random walks on the tree of all finite

self-avoiding paths on a lattice as a tool to contruct a probability measure on infinite

self-avoiding walks.

Chapter 4: The branching-ruin number as critical parameter of random pro-

cesses on trees [32] (with A. Collevecchio and D. Kious) Here, we extend a previ-

ous criterion by Collevecchio, Kious and Sidoravicius to characterize the recurrence or

transience of a biased random walk in random conductances and that of a particular

multi-excited random process, both on a tree, in terms of a quantity that can be seen

as the effective degree of polynomial branching of the tree.

Chapter 5: Phase transition for the Once-excited random walk on general

trees [68] In this chapter, we generalize the previous construction to the case of non-

infinitely excited walks as a way to characterize the behavior of the once-excited random

walk on a tree of polynomial branching.

Chapter 6: Scaling limits for random triangulations on the Torus [14] (with

V. Beffara and B. Lévêque) In this last chapter, we prove the existence of subsequential

scaling limits, in the Gromov-Hausdorff topology, of suitably rescaled simple triangu-

lations of genus 1, thus extending previous works by Addatio-Berry and Albenque (for

simple triangulations in genus 0) and by Bettinelli (for quadrangulations in genus 1).

One of the crucial steps in the argument is to construct a simple labeling on the map and

show its convergence to an explicit scaling limit. We moreover show that this labeling

approximates the distance to the root up to a uniform correction of order o(n1/4) (see

Theorem 1.15).

In addition, Chapter 3 gathers some work in progress and ideas about future research

directions related to the results in chapter 2.
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Chapter 2

Trees of self-avoiding walk

Abstract

We consider the biased random walk on a tree constructed from the set of finite

self-avoiding walks on a lattice, and use it to construct probability measures on

infinite self-avoiding walks. The limit measure (if it exists) obtained when the bias

converges to its critical value is conjectured to coincide with the weak limit of the

uniform SAW. Along the way, we obtain a criterion for the continuity of the escape

probability of a biased random walk on a tree as a function of the bias, and show

that the collection of escape probability functions for spherically symmetric trees of

bounded degree is stable under uniform convergence.

This chapter is based on [13], which is joint work with Vincent Beffara.
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1 Introduction

An n-step self-avoiding walk (SAW) (or a self-avoiding walk of length n) in a regular

lattice L (such as the integer lattice Z2, triangular lattice T, hexagonal lattice, etc) is

a nearest neighbor path γ = (γ0, γ1, . . . , γn) that visits no vertex more than once. Self-

avoiding walks were first introduced as a lattice model for polymer chains (see [48]);

while they are very easy to define, they are extremely difficult to analyze rigorously and

there are still many basic open questions about them (see [89], Chapter 1).

Let cn be the number of SAWs of length n starting at the origin. The connective constant

of L, which we will denote by µ, is defined by

cn = µn+o(n) when n→∞.

The existence of the connective constant is easy to establish from the sub-multiplicativity

relation cn+m ≤ cncm, from which one can also deduce that cn ≥ µn for all n; the

existence of µ was first observed by Hammersley and Morton [63]. Nienhuis [99] gave

a prediction that for all regular planar lattices, cn = µnnα+o(1) where α = 11
32 , and

this prediction is known to hold under the assumption of the existence of a conformally

invariant scaling limit, see e.g. [79].

We are interested in defining a natural probability measure on the set SAW∞ of infinite

self-avoiding walks (i.e., nearest-neighbors paths (γk)k≥0 visiting no vertex more than

once, see the sections 5.2 and 6). Such a measure was constructed before in the half-plane

case as the weak limit of the uniform measures on finite self-avoiding walks, relying on

results by Kesten (see [89, 72]), and it is part of our goal to investigate whether that

measure and our construction are related.

1.1 The model

In this paper, we consider a one-parameter family of probability measures on SAW∞,

denoted by (Pλ)λ>λc , defined informally as follows (see Notation 5.6 for a formal defini-

tion). Let TZ2 be the tree whose vertices are the finite self-avoiding walks in the plane

starting at the origin, where two such vertices are adjacent when one walk is a one-step

extension of the other. We will call this tree the self-avoiding tree on Z2. Denoting by H
the upper-half plane in Z2 and by Q the first quadrant, one can define the self-avoiding

trees TH and TQ accordingly, and all the constructions below can be extended to these

cases in a natural fashion which we will not make explicit in this introduction.

Then, consider the continuous-time biased random walk of parameter λ > 0 on TZ2 ,

which from a given location jumps towards the root with rate 1 and towards each of its

children vertices with rate λ. If λ is such that the walk is transient, its path determines

an infinite branch in TZ2 which can be seen as a random infinite self-avoiding walk ω∞λ ;

we will denote by PZ2

λ the law of ω∞λ , omitting the mention of Z2 in the notation when

it is clear from the context, and call it the limit walk with parameter λ.
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The idea of seeing the self-avoiding walk as a dynamical object is very natural, and not

new; it seems that the biased walk on the “self-avoiding tree” was first considered, mostly

for λ < λc, by Berretti and Sokal ([20], see also [113, 107]) as a Monte-Carlo method to

estimate connective constants and sample finite-size self-avoiding paths uniformly. The

model was discussed informally by one of the authors of the present paper (VB) with S.

Sidoravicius and W. Werner a number of years ago, as a failed attempt to understand

conformal invariance of the SAW model in the scaling limit, and in particular a proof

of Theorem 1.1 was obtained at that time but never written down; one of our informal

goals here is to revive this line of thought: even though the question of SAW proper

still seems out of reach, the link with critical percolation (cf. Section 6.2) could be a

promising direction for further research.

1.2 Main results

It is well-known that there exists a critical value λc = λc(TZ2) such that if λ > λc the

biased random walk is transient and if λ < λc it is recurrent (see Lyons [85]). In the

general case of biased random walk on a tree, the recurrence or transience of the random

walk at the critical point depends in subtle ways on the structure of the tree. The value

of λc on the other hand is easier to determine: indeed, Lyons [85] proved that it coincides

with the reciprocal of the branching number of the tree (for background on branching

numbers and trees in general, see e.g. [87]). The following proposition gives the critical

value for self-avoiding trees.

Theorem 1.1. Let TZ2 , TH, TQ be the self-avoiding trees defined as above, respectively in

the plan, half-plane and first quadrant. Then,

λc(TZ2) = λc(TH) = λc(TQ) =
1

µ
,

where µ is the connective constant of lattice Z2 as defined above.

This is a direct consequence of Proposition 5.9 below. Notice that it is clear from the

definition that µ is the growth rate of TZ2 ; there are rather large classes of trees, including

TZ2 , for which the branching and growth coincide (for instance, this holds for sub- or

super-periodic trees, cf. below, or for typical supercritical Galton-Watson trees), but

none of the classical results seem to apply to TH or TQ.

The geometry of the limit walk is our main object of interest. As a first property of it,

we obtain the following (see section 6.3):

Theorem 1.2. For all λ > λc, under the measures PZ2

λ and PH
λ , the limit walk almost

surely visits the line Z× {0} infinitely many times.
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A useful tool in our proofs is the effective conductance of the biased random walk on a

tree T , defined as the probability of never returning to the root o of T and denoted by

C(λ, T ) — see [87]. Along the way, we will be interested in several properties of it as a

function of λ. Most important for us will be the question of continuity: in a general tree,

the effective conductance is not necessarily a continuous function of λ. We will derive

criteria for continuity, which are forms of uniform transience of the random walk, and

apply them to prove that the effective conductance of self-avoiding trees is a continuous

function (see Section 5.4):

Theorem 1.3. The effective conductances C(λ, TQ), C(λ, TH) and C(λ, TZ2) are contin-

uous functions of λ on the interval (λc,+∞).

A related question is that of the convergence of effective conductance along a sequence

of trees. More precisely, let (Cn)n denote the effective conductances for a sequence (Tn)

of infinite trees, again seen as functions of the bias parameter λ, and assume that (Cn)n
converges uniformly towards a function C that is not identically 0. The question is: is

C the effective conductance of a certain tree? We study this question on the class of

spherically symmetric trees (a tree T is said to be spherically symmetric if for every

vertex ν, deg ν depends only on |ν|, where |ν| denote its distance from the root and

deg ν is its number of neighbors). If S denotes the set of spherically symmetric trees and

m ∈ N∗ is fixed, define

Am := {T ∈ S;∀ν ∈ T ,deg ν ≤ m} and

Fm :=
{
f ∈ C0([0, 1]) : ∃T ∈ Am,∀λ > 0, C(λ, T ) = f(λ)

}
.

Then (see Section 4.2):

Theorem 1.4. Let (fn)n be a sequence of functions in Fm. Assume that fn converges

uniformly towards f 6= 0. Then f ∈ Fm.

1.3 Open questions

One natural probability measure on the set of infinite self-avoiding walks is the limit of

PH
λ as λ → λc, assuming that this limit exists. We were not able to show convergence,

but obtained partial results in this direction by restricting the set of allowed paths. Our

conjecture is that the limit exists and has to do with Kesten’s measure, i.e. the weak

limit of uniform finite self-avoiding walks in the half-plane, in a way similar to the fact

that the two definitions of the incipient infinite cluster for percolation (seen as a limit

as p→ pc or as a limit of conditioned critical percolation) coincide, see [74].

This is motivated by a few observations. First, the model for λ < λc gives rise to a

recurrent random walk on TH for which the invariant measure µλ is rather explicit (by

reversibility, the mass of a vertex ν is proportional to λ|ν|), in particular it depends only
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on the distance to the root, and on the other hand it tends to be concentrated on longer

and longer walks as λ ↑ λc. This means that the initial segment of a walk distributed

as the stationary measure can be seen as the initial segment of a uniform self-avoiding

walk with random total length, and we get convergence to Kesten’s measure as soon as

we can show that for all ν, µλ({ν}) → 0 as λ ↑ λc. On the other hand, the behavior

of the biased walk in a fixed neighborhood of the origin changes very little when λ is

close to λc, so for λ slightly larger than λc it seems reasonable to predict that the walk

will spend a long time close to the origin, following an occupation measure close to µλ−c ,

before escaping to infinity. Unfortunately we were unable to formalize this intuition.

Another observation is that convergence of the law of the limit walk holds within the

class of paths for which the bridge decomposition involves only bridges of height less

than some fixed bound m > 0. More precisely: for fixed m, the critical parameter is

λc,m ≥ λc, and the limit λ ↓ λc,m followed by m → ∞ leads to Kesten’s measure, while

the limit m → ∞ for fixed λ coincides with the limit walk on TH with parameter λ

— see Theorem 7.3 for more detail. Exchanging the limits would lead to the claim.

Unfortunately, it is not true that this can be done in the general setting of biased walks

on trees, due to phenomena similar to those described in section 3, so it seems that a

deeper understanding of the structure of TH would be necessary to conclude.

1.4 Organization of the paper

The paper is structured as follows. In Section 2, we review some basic definitions on

graphs, trees, branching number and growth rate of a tree, as well as a few classi-

cal results about random walks on trees. Section 3 gathers some relevant examples

and counter-examples exhibiting some similarities to the self-avoiding trees while being

treatable explicitly. The criterion for the continuity of the effective conductance is given

in Section 4. Then Section 5 provides some background on self-avoiding walks and the

self-avoiding trees, and some properties of the limit walks are obtained in Section 6.

Finally, we state a few conjectures and conditional results in Section 7.

2 Notation and basic definitions

2.1 Graphs and trees

In this section, we review some basic definitions; we refer the reader to the book [87] for

a more developed treatment. A graph is a pair G = (V,E) where V is a set of vertices

and E is a symmetric subset of V × V (i.e if (ν, µ) ∈ E then (µ, ν) ∈ E), called the

edge set, containing no element of the form (ν, ν). If (ν, µ) ∈ E, then we call ν and µ

adjacent or neighbors and we write ν ∼ µ. For any vertex ν ∈ V , denote by deg ν its

number of neighbors. A path in a graph is a sequence of vertices, any two consecutive

of which are adjacent. A self-avoiding path is a path which does not pass through any
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vertex more than once. For any (ν, µ) ∈ V × V , the distance between ν and µ is the

minimum number of edges among all paths joining ν and µ, denoted d(ν, µ). A graph

is connected if, for each pair (ν, µ) ∈ V × V , there exist a path starting at ν and ending

at µ. A connected graph with no cycles is called a tree. A morphism from a graph G1

to a graph G2 is a mapping φ from V (G1) to V (G2) such that the image of any edge of

G1 is an edge of G2 We will always consider trees to be rooted by the choice of a vertex

o, called the root.

Let T = (V,E) be an infinite, locally finite, rooted tree with set of vertices V and set of

edges E. Let o be the root of T . For any vertex ν ∈ V \ {o}, denote by ν−1 its parent

(we also say that ν is a child of ν−1), i.e. the neighbour of ν with shortest distance

from o. For any ν ∈ V , let |ν| be the number of edges in the unique self-avoiding path

connecting ν to o and call |ν| the generation of ν. In particular, we have |o| = 0.

If a vertex has no child, it is called a leaf. For any edge e ∈ E denote by e− and e+ its

endpoints with |e+| = |e−| + 1, and define the generation of an edge as |e| = |e+|. We

define an order on V (T ) as follows: if ν, µ ∈ V (T ), we say that ν ≤ µ if the simple path

joining o to µ passes through ν. For each ν ∈ V (T ), we define the sub-tree of T rooted at

ν, denoted by T ν , where V (T ν) := {µ ∈ V (T ) : ν ≤ µ} and E(T ν) = E(T )|V (T ν)×V (T ν).

An infinite simple path starting at o is called a ray. The set of all rays, denoted by ∂T ,

is called the boundary of T . The set T ∪ ∂T can be equipped with a metric that makes

it a compact space, see [87].

The remaining part of this paper, we consider only infinite, locally finite and rooted

trees with the root o.

2.2 Branching and growth

Definition 2.1. Let T be an infinite, locally finite and rooted tree. A E-cutset (resp.

V-cutset) in T is a set π of edges (resp. vertices) such that, for any infinite self-avoiding

path (νi)i≥0 started at the root, there exists a i ≥ 0 such that [νi−1, νi] ∈ π (resp.

νi ∈ π). In other words, a E-cutset (resp. V-cutset) is a set of edges (resp. vertices)

separating the root from infinity. We use Π to denote the set of E-cutsets.

Definition 2.2. Let T be an infinite, locally finite and rooted tree.

— The branching number of T is defined by:

br(T ) = sup

{
λ ≥ 1 : inf

π∈Π

∑
e∈π

λ−|e| > 0

}

— We define also

gr(T ) = lim sup |Tn|1/n and gr(T ) = lim inf |Tn|1/n .
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In the case gr(T ) = gr(T ), the growth rate of T is defined by their common value

and denoted by gr(T ).

Remark 2.3. It follows immediately from the definition of branching number that if T ′
is a sub-tree of T , then br(T ′) ≤ br(T ).

Proposition 2.4 ([87]). Let T be a tree, then br(T ) ≤ gr(T ).

In general, the inequality in Proposition 2.4 may be strict: The 1–3 tree (see [87], page

4) is an example for which the branching number is 1 and the growth rate is 2. There

are classes of trees however where branching and growth match.

Definition 2.5. The tree T is said to be spherically symmetric if deg ν depends only

on |ν|.

Theorem 2.6 ([87] page 83). For every spherically symmetric tree T , br(T ) = gr(T ).

Definition 2.7. Let N ≥ 0: an infinite, locally finite and rooted tree T with the root

o, is said to be

— N -sub-periodic if for every ν ∈ V (T ), there exists an injective morphism f : T ν →
T f(ν) with |f(ν)| ≤ N .

— N -super-periodic if for every ν ∈ V (T ), there exists an injective morphism f :

T → T f(o) with f(o) ∈ T ν and |f(o)| − |ν| ≤ N .

Theorem 2.8 (see [53, 87]). Let T be an infinite, locally finite and rooted tree that is

either N -sub-periodic, or N -super-periodic with gr(T ) <∞. Then the growth rate of T
exists and gr(T ) = br(T ).

2.3 Random walks on trees

Let T be a tree, we now define the discrete-time biased random walk on T . Working

in discrete time will make some of the arguments below a little simpler, at the cost of

a slightly heavier definition here — notice though that the definition of the measure Pλ
and the main results of the paper are not at all affected by this choice.

Let λ > 0: the biased walk RWλ with bias λ on T is the discrete-time Markov chain on

the vertex set of T with transition probabilities given, at a vertex x 6= o with k children,

by

pλ(x, y) :=


1

1+kλ if y is the father of x,
λ

1+kλ if y is a child of x,

0 otherwise.

If the root has k > 0 children, then pλ(o, x) is 1/k if x is a child of o and 0 otherwise.

The degenerate case T = {o} where the root has no child will not occur in our context,

so we will silently ignore it. We also allow ourselves to consider the cases λ ∈ {0,∞},
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with the natural convention that RW0 remains stuck at the root and that RW∞ always

moves away from the root, getting stuck whenever it reaches a leaf.

Definition 2.9. Let G = (V,E) be a graph, and c : E → R∗+ be labels on the edges,

referred to as conductances. Equivalently, one can fix resistances by letting r(e) :=

1/c(e). The pair (G, c) is called a network. Given a subset K of V , the restriction of c to

the edges joining vertices in K defines the induced sub-network G|K . The random walk

on the network (G, c) is the discrete-time Markov chain on V with transition probabilities

proportional to the conductances.

Given a network (T , c) on a tree, let π(o) be the sum of the conductances of the edges

incident to the root, and denote by T (o) the first return time to the origin by the walk.

Following [87] (page 25), we can define the effective conductance of the network by

Cc(T ) := π(o)C̃c(T ), (2.1)

where C̃c(T ) := P[T (o) = +∞]. The reciprocal Rc(T ) of the effective conductance is

called the effective resistance.

The particular case where, on a tree T , for an edge e = (x, y) between a vertex x and

any of its children y, c(e) is chosen to be λ|x| will play a special role, because in that case

the random walk on the network is exactly the same process as the random walk RWλ

defined earlier. Is this setup, we will denote the effective conductance (resp. effective

resistance) by C(λ, T ) (resp. R(λ, T )) to emphasize its dependency on the parameter

λ. Let ν be a child of o, we write C̃(λ, T , ν) for the probability of the event that the

random walk RWλ on T , started at the root (i.e X0 = o), never returns to it and reached

ν at the first step (i.e X1 = ν).

Theorem 2.10 (Rayleigh’s monotonicity principle [87]). Let T be an infinite tree with

two assignments, c and c′, of conductances on T with c ≤ c′ (everywhere). Then the

effective conductances are ordered in the same way: Cc(T ) ≤ Cc̃(T ).

Corollary 2.11. Let T , T ′ be two infinite trees; we say that T ⊂ T ′ if there exists an

injective morphism f : T → T ′. If this holds, then for every λ > 0, C(λ, T ′) ≤ C(λ, T ).

In the case of spherically symmetric trees, the equivalent resistance is explicit:

Proposition 2.12 (see [87]). Let T be spherically symmetric and (c(e)) be conductances

that are themselves constant on the levels of T . Then Rc(T ) =
∑

n≥1
1

cn|Tn| , where cn is

the conductance of the edges going from level n− 1 to level n.

The following corollaries are the consequences of Proposition 2.12:

Corollary 2.13. Let T be a spherically symmetric tree. The effective conductance

C(λ, T ) is a continuous function on (λc,+∞).
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Corollary 2.14. Let T be a spherically symmetric tree. Then RWλ is transient if and

only if
∑

n
1

λn|Tn| <∞.

Theorem 2.15 (Nash-Williams criterion, see [97]). If (πn, n ≥ 0) is a sequence of

pairwise disjoint finite E-cutsets in a locally finite network G, then

Rc(T ) ≥
∑
n

(∑
e∈πn

c(e)

)−1

.

In particular, if
∑
n

(∑
e∈Πn

c(e)
)−1

= +∞, then the random walk associated to this

family of conductances (c(e), e ∈ E(T )) is recurrent.

We end this subsection by stating a classical theorem relating the recurrence or transience

of RWλ to the branching of the underlying tree:

Theorem 2.16 (see [85]). Let T be an infinite, locally finite and rooted tree. If λ < 1
br(T )

then RWλ is recurrent, whereas if λ > 1
br(T ) , then RWλ is transient. The critical value

of biased random walk on T is therefore λc(T ) := 1
br(T ) .

2.4 The law of the first k steps of the limit walk

Let T be a tree and (c(e)) be conductances on the edges of T such that the associated

random walk (Xn) is transient. For every k ≥ 0, the walk visits Tk finitely many times:

we can define an infinite path ω∞ on T by letting ω∞(k) be the last vertex of Tk visited

by the walk. Equivalently:

ω∞(k) = ν ⇐⇒ ν ∈ Tk and ∃n0,∀n > n0 : Xn ∈ T ν . (2.2)

Let k ∈ N∗ and ν0 = o, ν1, ν2, . . . , νk be k elements of V (T ) such that (ν0, ν1, ν2, . . . , νk)

is a simple path: we can then define

ϕc(ν0, ν1, ν2, . . . , νk) := P(ω∞(0) = ν0, ω
∞(1) = ν1, . . . , ω

∞(k) = νk). (2.3)

We will refer to this function as the law of first k steps of limit walk. In the case of the

biased walk RWλ, we will denote the function by ϕλ,k; this will not lead to ambiguities.

We finish this section with the following lemma.

Lemma 2.17. The value of ϕc(ν0, . . . , νk) depends continuously on any finite collection

of the conductances in the network. More precisely, given a finite set U = {e1, . . . , e`}
of edges and a collection (c(e)) of conductances, let c̃(u1, . . . , u`) be the family of con-

ductances that coincides with c outside U and takes value ui at ei: then the map

ψU,c : (u1, . . . , u`) 7→ ϕc̃(u1,...,u`)(ν0, . . . , νk)

is continuous on (R∗+)`.

Proof. The proof is simple, therefore it is omitted.
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3 A few examples

The self-avoiding tree in the plane, which we alluded to in the introduction and will

formally introduce in the next section, is sub-periodic but quite inhomogeneous, and the

self-avoiding tree in the half-plane sits in none of the classes of trees defined above. To

get an intuition of the kind of behavior we should expect or rule out, we gather here a

few examples of trees with some atypical features.

3.1 Trees with discontinuous conductance

Let 0 < λ0 ≤ 1. In the first part of this section, we construct two trees T , T with

λc(T ) = λc(T ) = λ0, such that the effective conductances C(λ, T ) and C(λ, T ) of the

biased random walk RWλ on T and T satisfy C(λc(T ), T ) = 0 but C(λc(T ), T ) > 0. In

the second part, we construct a tree T such that C(λ, T ) is not continuous on (λc, 1).

Proposition 3.1. For every x > 1, there exist two trees T and T such that:

— br(T ) = br(T ) = x;

— RW1/x is recurrent on T and transient on T .

Proof. We will construct spherically symmetric trees satisfying both conditions. Denot-

ing by byc be the integer part of y. We construct the sequence (`i)i∈N∗ inductively as

follows:

`1 = bxc , `2 =

⌊
x2

`1

⌋
, `3 =

⌊
x3

`1`2

⌋
, . . . , `n =

⌊
xn∏n−1
i=1 `i

⌋
, . . .

and let T be the tree where vertices at distance i from o have `i children, so that the

sizes of the levels of T are given by |Tn| =
∏n
i=1 `i. We construct the tree T from the

degree sequence (`′i)i∈N by posing `′i = 2li if i can be written under the form i = k2, and

`′i = `i otherwise. Notice that |T n| = 2[
√
n]|Tn|.

We first show that both trees have branching number x. Since they are spherically

symmetric, it is enough to check that their growth rate is x; the case x = 1 is trivial, so

assume x > 1. From the definition,

xn −
n−1∏
i=1

`i ≤
n∏
i=1

`i ≤ xn hence xn − xn−1 ≤ |Tn| ≤ xn

so gr(T ) = x; the case of T follows directly.

The recurrence or transience of the critical random walks can be determined using

lemma 2.14: ∑ 1

λnc |Tn|
≥
∑ 1

λnc x
n

= +∞
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so the critical walk on T (x) is recurrent, while for x > 1,∑ 1

λnc |T n|
≤
∑ 1

λnc (xn − xn−1)2b
√
nc =

x

x− 1

∑ 1

2b
√
nc <∞

so the critical walk on T (x) is transient. In the case x = 1 one gets
∑

2−b
√
nc < ∞

instead, and the conclusion is the same.

Proposition 3.2. For every k ∈ N∗ and λc ∈ (0, 1), there exists a tree T with critical

drift λc(T ) = λc such that the ratio C(λ)/(λ − λc)k remains bounded away from 0 as

λ→ λ+
c .

Proof. We construct a spherically symmetric tree T which satisfies the conditions of this

proposition in a similar way as before. Letting x = 1/λc > 1, define inductively:

`1 = bxc , `2 =

⌊
x2

2k`1

⌋
, . . . , `n =

⌊
xn

nk
∏n−1
i=1 `i

⌋
, . . . .

Let T be the spherically symmetric tree with degree sequence (`i). It is easy to check

that br(T ) = x like in the previous proposition; in a similar way,

xn − nk
n−1∏
i=1

`i ≤ nk
n∏
i=1

`i ≤ xn hence
xn

nk
− xn−1

(n− 1)k
≤ |Tn| ≤

xn

nk
.

Recall that x = 1/λc and by using Proposition 2.12, the effective resistance at parameter

λ > λc is given by

R(λ, T ) =
∑ 1

λn|Tn|
≥
∑ nk

(λx)n
∼ Ck

(λ− λc)k+1

with a lower bound of the same order but with a different constant, leading to the

conclusion.

We end this subsection with the following proposition, showing that discontinuities can

occur elsewhere than at λc:

Proposition 3.3. There exists a tree T such that the function C(λ, T ) is not continuous

on (λc, 1), i.e it will discontinuous at a certain λ′ ∈ (λc, 1).

Proof. Let 0 < λ1 < λ2 < 1. By proposition 3.1, there exist two trees H and G such

that λc(H) = λ1, λc(G) = λ2 and

C(λ1,H) = 0, C(λ2,G) > 0. (3.1)
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We construct a tree T rooted at o as follows:

T1 = {ν1, ν2} , T ν1 = H and T ν2 = G.

Hence,

λc(T ) = λ1.

Denote deg ν1 (resp. deg ν2) the degree of ν1 (resp. ν2) in the tree T . By an easy

computation, for any λ ∈ (λ1, 1), we obtain:

C(λ, T ) =
1

2
× λC(λ,H) deg ν1

1 + λC(λ,H) deg ν1
+

1

2
× λC(λ,G) deg ν2

1 + λC(λ,G) deg ν2
. (3.2)

By corollary 2.13, the function C(λ,H) is continuous on (λ1, 1) and since C(λ,G) = 0 for

any λ ∈ (λ1, λ2), therefore:

lim
λ→λ−2

C(λ, T ) =
1

2
× λ2C(λ2,H) deg ν1

1 + λ2C(λ2,H) deg ν1
. (3.3)

By Equations 3.1, 3.2 and 3.3, we obtain:

lim
λ→λ−2

C(λ, T ) < C(λ2, T ).

The latter inequality implies that the function C(λ, T ) is discontinuous at λ2.

Note that continuity properties at λ ≥ 1 are actually easier to obtain, and we will

investigate them further below.

3.2 The convergence of the law of the first k steps

If limλ→λc,λ>λc C(λ, T ) > 0, by Lemma 6.13 the limit of ϕλ,k(y1, . . . , yk) when λ decreases

to λc exists. If one has limλ↓λc C(λ, T ) = 0, the situation is more delicate and we cannot

yet conclude on the limit of the function ϕλ,k(ν0, . . . , νk) when λ decreases to λc. Indeed,

convergence does not always hold, as we will see in a counterexample. The idea of

what follows is easy to describe: we are going to construct a very inhomogeneous tree

with various subtrees of higher and higher branching numbers, at locations alternating

between two halves of the whole tree; a biased random walk will wander until it finds the

first such sub-tree inside which it is transient, and escape to infinity within this subtree

with high probability.

Proposition 3.4. There exists a tree T such that the function ϕλ,1(y0, y1) does not

converge as λ→ λc.
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Notation 3.5. Let T , T ′ be two trees and A ⊂ V (T ). We can construct a new tree by

grafting a copy of T ′ at all the vertices of A; we will denote this new tree by T
A⊕T ′.

Note that for all x ∈ A, (T
A⊕T ′)x ' T ′. In the case A = {x}, we will use the simpler

notation T
x⊕T ′ for T

{x}⊕T ′.
Proof. Fix ε > 0 small enough. By Proposition 3.1, for all 0 < a ≤ 1, there exists a tree,

denoted by T (a), such that its branching number is 1
a and C(a, T (a)) = 0. Let H = Z,

seen as a tree rooted at 0, so that the integers is the vertices of H (see the Figure 2.1).

We are going to construct a tree inductively.

Let (ai)i≥1 be a decreasing sequence such that a1 < 1. Denote ac := lim ai and assume

that ac > 0. Choose a sequence (bi)i≥1 such that bi ∈ (ai+1, ai) for all i. First, set

H0 := (H
−2⊕T (a1))

2⊕
T (a2). We consider the biased random walk RWb1 , then it is

recurrent on T (a1) and transient on T (a2). On H0, the biased random walk RWb1 is

transient, and in addition we know that it stays eventually within the copy of T (a2).

There exists then N1 > 2 such that the probability that the limit walk remains in that

copy after time N1 − 1 is greater than 1− ε.

Then we set H1 = (H0
−N1⊕ T (a3)). On H1, the walk of bias b1 is still transient and still

has probability at least 1 − ε to escape through the copy of T (a2), because T (a3) is

grafted too far to be relevant. On the other hand, consider the biased random walk

RWb2 : it is still transient on H1 but only through the new copy of T (a3). There exists

then N2 > 2 such that the probability that the limit walk remains in that copy after

time N2 − 1 is greater than 1− ε.

We can set H2 := (H1
N2⊕T (a4)) and continue this procedure to graft all the trees T (ai),

further and further from the origin and alternatively on the left and on the right; we

denote by H∞ the union of all the Hk.

0−2 2

T (a1)
T (a2)

Figure 2.1 – Tree H0

It remains to show that the function ϕλ,1(0, 1) for the biased random walk on the tree

H∞ does not converge. We have br(H∞) = maxi br(T (ai)) = 1
ac

and ϕbi,1(0, 1) ≥ 1− ε
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if i is odd while ϕbi,1(0,−1) ≥ 1− ε if i is even. Then,

∀k ≥ 0,

{
ϕbi,1(0, 1) ≥ 1− ε if i = 2k + 1

ϕbi,1(0, 1) ≤ ε if i = 2k + 2

This implies that the function ϕλ,1(0, 1) does not converge when λ go to ac.

The tree we just constructed is tailored to be extremely inhomogeneous. At the other

end of the spectrum, some trees have enough structure for all the functions we are

considering to be essentially explicit:

Definition 3.6. A tree T is called periodic (or finite type) if, for all v ∈ V (T ) \ {o},
there is a bijective morphism f : T v → T f(v) with f(v) in a fixed, finite neighborhood

of the root of T .

Definition 3.7. Let T be a finite tree and L(T ) be the set of leafs of T . We set

T 1 = T
L(T )⊕ T , T 2 = T 1

L(T 1)⊕ T , . . . , T n = T n−1
L(T n−1)⊕ T for every n ≥ 2. We continue

this procedure an infinite number of times to obtain an infinite tree T ∞,T . Note that

T ∞,T is also a periodic tree.

Fact 3.8 (see Lyons [85], theorem 5.1). Let T be a periodic tree and (ν0 = o, ν1, ν2, . . . , νk)

be a simple path on T . Then ϕλ,k(ν0, ν1, . . . , νk) converges when λ decreases to λc(T ).

In the rest of this section we provide a new proof of a particular case (the case of T ∞,T )

of fact 3.8:

Proposition 3.9. Let T be a finite tree and (ν0 = o, ν1, ν2, . . . , νk) be a simple path

on T ∞,T . Then the function ϕλ,k(ν0, ν1, . . . , νk) of T ∞,T converges when λ decreases to

λc(T ∞,T ).

Before showing the proposition 3.9, we need to show the following lemma:

Lemma 3.10. Let T be a tree rooted at o such that deg o = d0 and{ T1 = {ν1, ν2, . . . , νd0}
∀i ∈ {1, 2, . . . , d0} , λc(T ) = λc(T νi) = λc and C(λc, T ) = C(λc, T νi) = 0

Then for all i, we have C̃(λ, T , νi) =
(dνi−1)λC̃(λ,T νi )

d0(1+(dνi−1)λC̃(λ,T νi ))
, where dνi = deg νi.

Proof. Recall that C̃(λ, T , νi) = P(A), where A is the event that the random walk RWλ

on T , started at the root (i.e X0 = o), never returns to it and reached νi at the first step

(i.e X1 = νi). We can write

A =
⋃
k≥0

Ak
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where

Ak := {#{j > 0 : Xj = o} = 0} ∩ {X1 = ν} ∩ {#{j > 1 : Xj = νi} = k} .

Let m =
(dνi−1)λ

1+(dνi−1)λ and c = C̃(λ, T νi). Note that the sequence (Ak, k ≥ 0) are pairwise

disjoint and P(Ak) = mc(m(1−c))k
d0

, therefore we obtain:

C̃(λ, T , νi) =
mc

d0

∞∑
k=0

(m(1− c))k =
(dνi − 1)λC̃(λ, T νi)

d0(1 + (dνi − 1)λC̃(λ, T νi))
.

Proof of proposition 3.9. First, since T ∞,T is a periodic tree, therefore the biased ran-

dom walk RWλc on T ∞,T is recurrent (see [85]). Recall that L(T ) is the set of all leafs

of finite tree T and Si be the set of all finite paths starting at origin, ending at one

element of L(T ) and pass through νi. For all ν ∈ L(T ), we have (T ∞,T )ν = T ∞,T and

we apply several times successive Lemma 3.10 to obtain:

C̃(λ, T ∞,T , νi) =
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ)C̃(λ, (T ∞,T )γ|γ|),

where fγj (λ) =
mγjλ

mγj−1 (1+mγjλC(λ,T
γj ))

and mγj = dγj−1 if j > 1 and mγ0 = d0. Moreover,

we have

C̃(λ, (T ∞,T )γ|γ|) = C̃(λ, T ∞,T )

then

C̃(λ, T ∞,T , νi) =
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ)C̃(λ, T ∞,T ).

By Lemma 6.13, we obtain

ϕλ,1(o, νi) =
C̃(λ, T ∞,T , νi)
C̃(λ, T ∞,T )

=
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ).

Note that for all γ ∈ Si we have mγ0 = m(γ|γ|), this implies that ϕλ,1(o, νi) converges

when λ decreases towards λc(T ∞,T ) and

lim
λ→λc(T∞,T )

ϕλ,1(νi) =
∑
γ∈Si

λ|γ|c . (3.4)

Remark 3.11. The equation (3.4) gives us a way to calculate the critical value of RWλ

on T ∞,T , as the solution of the following equation:

mo∑
i=1

∑
γ∈Si

x|γ| = 1.
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4 The continuity of effective conductance

We end the first half of the paper with a few results on the conductance functions of

trees, namely we prove a criterion for the continuity of C(λ, T ) in λ (see Theorems 4.3

and 4.4 below) and study the set of conductance functions of spherically symmetric trees

of bounded degree (see Theorem 1.4).

4.1 Left- and right-continuity of C(T , λ)
Lemma 4.1. Let T be an infinite, locally finite and rooted tree. Then C(λ, T ) is right

continuous on (0,+∞).

Proof. Let (Xn, n ≥ 0) be the biased random walk with parameter λ on T . We define

S0 := inf {k > 0 : Xk = o} and for any n > 0,

Sn := inf {k > 0 : d(o,Xk) = n} .

Recall that the random walk on a network (T , c), where c(e) = λ|e| is exactly the same

process as the biased random walk with parameter λ. We use Equation 2.1 to obtain

C(λ, T ) = π(o) lim
n→+∞

P(Sn < S0).

We set C(λ, T , n) := π(o)P(Sn < S0). It is easy to see that C(λ, T , n) ≥ C(λ, T , n+ 1).

On the other hand, by Lemma 2.17, we obtain C(λ, T , n) is a continuous function. Hence,

C(λ, T , n) is a continuous increasing function for each n. It implies that C(λ, T ) is the

decreasing limit of increasing functions. Therefore C(λ, T ) is right continuous.

Definition 4.2. Let T be tree. For each ν ∈ T , we let Xν
n denote the biased random

walk on T ν (i.e Xν
0 = ν and ∀n > 0 : Xν

n ∈ T ν). We say that T is uniformly transient if

∀λ > λc, ∃αλ > 0,∀ν ∈ T ,P(∀n > 0, Xν
n 6= ν) ≥ αλ.

It is called weakly uniformly transient if there exists a sequence of finite pairwise disjoint

V-cutsets (πn, n ≥ 1), such that

∀λ > λc, ∃αλ > 0,∀ν ∈
+∞⋃
k=1

πk,P(∀n > 0, Xν
n 6= ν) ≥ αλ.

It is easy to see that if λc(T ) = 1, then T is uniformly transient.

Theorem 4.3. Let T be a uniformly transient tree. Then C(λ, T ) is left continuous on

(λc,+∞).
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Proof. Fix λ1 > λc, we will prove that C(λ, T ) is left continuous at λ1. Choose λ0 ∈
(λc, λ1). By Theorem 2.10, we can find a constant α > 0 (does not depend on λ ∈ [λ0, λ1])

such that

∀λ ∈ [λ0, λ1],∀ν ∈ V (T ),P(∀n > 0, Xν
n 6= ν) ≥ α.

Given a family of conductances c = c(e)e∈E(T ) ∈ (0,+∞)E , let Yn be the associated

random walk. Let A ⊂ (0,+∞)E be the subset of elements of (0,+∞)E such that Yn is

transient for those choices of conductances. Then we define the function ψ : A→ R∗+ as

ψ(c) := Cc(T ).

Recall that Tk is the collection of all the vertices at distance k from the root: then we

have

C(λ, T ) = ψ(λ, λ, . . . λ︸ ︷︷ ︸
|T1|

, λ2, λ2, . . . λ2︸ ︷︷ ︸
|T2|

, . . . .).

We will abuse notation until the end of the argument, writing

ψ(λ1, λ
2
2, λ

3
3, . . .) for ψ(λ1, λ1, . . . λ1︸ ︷︷ ︸

|T1|

, λ2
2, λ

2
2, . . . λ

2
2︸ ︷︷ ︸

|T2|

, . . .)

so that in particular C(λ, T ) = ψ(λ, λ2, λ3, . . .).

Let ε > 0, we choose L ∈ N such that (1 − α)L < ε. For λ ∈ (λ0, λ1) we have

|C(λ1, T )− C(λ, T )| =
∣∣ψ(λ1, λ

2
1, λ

3
1, . . .)− ψ(λ, λ2, λ3, . . .)

∣∣ and by the triangular in-

equality, we get

|C(λ1, T )− C(λ, T )| ≤
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣
+
∣∣ψ(λ, . . . , λL, b1)− ψ(λ, . . . , λL, b)

∣∣ (4.1)

where b := (λL+k)k≥1 and b1 := (λL+k
1 )k≥1.

Let λ′ ∈ [λ0, λ1] we denote Sλ
′

n the first hitting point of Tn by the random walk with

conductances

(λ, . . . , λ︸ ︷︷ ︸
|T1|

, λ2, . . . , λ2︸ ︷︷ ︸
|T2|

, . . . , λL, . . . , λL︸ ︷︷ ︸
|TL|

, (λ′)L+1, . . . , (λ′)L+1︸ ︷︷ ︸
|TL+1|

, . . .

We can see that the law of Sλ1L and the law of SλL are identical. Since T is uniformly

transient, then when the random walk reaches TL, it returns to o with a probability

strictly smaller than (1− α)L. It implies that∣∣ψ(λ, . . . , λL, b1)− ψ(λ, . . . , λL, b)
∣∣) ≤ 2(1− α)L ≤ 2ε. (4.2)

It remains to estimate
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣. By Theorem 2.10, we have

ψ(λ1, . . . , λ
L
1 , b1) ≥ C(λ0, T ) > 0 and ψ(λ, . . . , λL, b) ≥ C(λ0, T ) > 0.
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We apply the Lemma 2.17 to obtain

∃δ > 0,∀λ ∈ [λ1 − δ, λ1] ,
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣ < ε. (4.3)

We combine (4.1), (4.2) and (4.3) to get

∃δ > 0,∀λ ∈ [λ0, λ1] such that λ1 − λ < δ : |C(λ1, T )− C(λ, T )| ≤ 3ε.

This implies that C(λ, T ) is left continuous at λ1.

In the same method as in the proof of Theorem 4.3, we can prove the slightly stronger

result (the proof of which we omit):

Theorem 4.4. Let T be a weakly uniformly transient tree: then the effective conductance

C(λ, T ) is left continuous on (λc, 1].

4.2 Proof of Theorem 1.4

Definition 4.5. Let (T n, n ≥ 1) be a sequence of infinite, locally finite and rooted trees.

We say that T n converges locally towards T ∞ if ∀k, ∃n0,∀n ≥ n0, T n≤k = T ∞≤k, where T≤k
is a finite tree defined by:{

V (T≤k) := {ν ∈ V (T ), d(o, ν) ≤ k}
E(T≤k) = E|V (T≤k)×V (T≤k)

Recall from the introduction that Fm denotes the collection of all effective conductance

functions for spherically symmetric trees with degree uniformly bounded by m.

Lemma 4.6. Let (fn, n ≥ 1) be a sequence of functions in Fm. Assume that fn converges

uniformly towards f . Then, there exists a function g ∈ Fm such that, for any λ > 0,

f(λ) ≤ g(λ).

Proof. Let (T n, n ≥ 1) be a sequence of elements of Am such that, for any n > 0,

fn(λ) = C(λ, T n).

Since the degree of vertices of T n are bounded bym, we can apply the diagonal extraction

argument. After renumbering indices, there exists a subsequence of (T n, n ≥ 1), denoted

also by (T n, n ≥ 1), converges locally towards some tree, denote by T ∞. Moreover, we

can assume that for any n > 0,

T n≤n = T ∞≤n (4.4)

Since for any n > 0, we have T n ∈ Am, then

T ∞ ∈ Am (4.5)
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We set g(λ) = C(λ, T ∞), it remains to show that for any λ > 0,

f(λ) ≤ g(λ).

Assume that there exists λ0 such that f(λ0) > g(λ0) and we set c = f(λ0)− g(λ0) > 0.

Since the sequence (fn(λ0), n ≥ 1) converges towards f(λ0), hence

∃`1 > 0,∀n ≥ `1, fn(λ0) > f(λ0)− c

4
. (4.6)

Recall the definition of the function C(λ0, T , n) in the proof of Lemma 4.1, the sequence

(C(λ0, T
∞, n), n ≥ 1) decreases towards g(λ0), it implies that

∃`2 > 0,∀n ≥ `2, C(λ0, T ∞, n) < g(λ0) +
c

4
. (4.7)

Let ` := `1 ∨ `2, we use 4.6 and 4.7 to obtain:

f`(λ0) > f(λ0)− c

4
and C(λ0, T ∞, `) < g(λ0) +

c

4
. (4.8)

On the other hand C(λ0, T `, `) = C(λ0, T ∞, `) and by 4.8 we obtain:

f`(λ0) > f(λ0)− c

4
and C(λ0, T `, `) < g(λ0) +

c

4
. (4.9)

The sequence
(
C(λ0, T `, k), k ≥ 1

)
decreases towards f`(λ0) when k goes to +∞. Hence,

f`(λ0) ≤ C(λ0, T `, `) < g(λ0) +
c

4
. (4.10)

We combine 4.9 and 4.10 to get:

f(λ0)− c

4
< f`(λ0) < g(λ0) +

c

4
.

Hence,

c = f(λ0)− g(λ0) <
c

4
,

this is a contradiction.

Proof of theorem 1.4. Let (T n, n ≥ 1) be a sequence of elements of Am such that, for

any n > 0,

fn(λ) = C(λ, T n).

Fix a sub-sequence of (T n, n ≥ 1) which converges locally towards T ∞ and such that

4.4 holds as in the proof of the Lemma 4.6. We set g(λ) = C(λ, T ∞) and we need to

prove that f = g.
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By Lemma 4.6, we have f(λ) ≤ g(λ). Assume that there exists λ0 such that 0 < f(λ0) <

g(λ0). We prove that for any λ < λ0, we have f(λ) = 0.

We set β0 = 1
λ0

and we use Proposition 2.12 to obtain∀n > 0, R(λ0, T n) =
∑+∞

k=1
βk0
|T nk |

R(λ0, T ∞) =
∑∞

k=1
βk0
|T∞k |

(4.11)

We write

R(λ0, T n) =
+∞∑
k=1

βk0∣∣T nk ∣∣ =
∑
k≤n

βk0∣∣T nk ∣∣ +
∑
k>n

βk0∣∣T nk ∣∣ .
On the other hand, for any k ≤ n we have |T nk | = |T ∞k |, hence

R(λ0, T n) =
∑
k≤n

βk0∣∣T ∞k ∣∣ +
∑
k>n

βk0∣∣T nk ∣∣ . (4.12)

Since fn converges to f , then{
lim
n→∞

R(λ0, T n) = 1
f(λ0) <∞

lim
n→∞

R(λ0, T ∞) = 1
g(λ0) <

1
f(λ0)

(4.13)

By using 4.12 and 4.13, we obtain

lim
n→+∞

∑
k>n

βk0∣∣T nk ∣∣ =
1

f(λ0)
− 1

g(λ0)
> 0. (4.14)

Now we take β > β0 and we apply the Proposition 2.12 in order to get

R
(

1

β
, T n

)
=

+∞∑
k=0

βk∣∣T nk ∣∣ >
∑
k>n

βk∣∣T nk ∣∣ ≥
(
β

β0

)n∑
k>n

βk0∣∣T nk ∣∣ . (4.15)

We combine 4.14 and 4.15 to obtain:

lim
n→∞

R
(

1

β
, T n

)
=∞ (4.16)

It implies that f (1/β) = lim
n→∞

fn

(
1
β

)
= lim

n→∞
1

R
(

1
β
,T n

) = 0. Therefore, we proved that:

∀λ < λ0, f(λ) = 0.

As f 6= 0, we define λc := inf {0 ≤ λ ≤ 1 : f(λ) > 0}. We proved that

∀λ > λc, f(λ) = g(λ). (4.17)
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As the sequence (fn)n converges uniformly to f , then f is continuous, and then f(λc) = 0.

By Lemma 4.1, g is right continuous. Then we obtain:

f(λc) = lim
λ→λ+c

f(λ) = lim
λ→λ+c

g(λ) = g(λc) = 0. (4.18)

On the other hand, by Lemma 2.10 we obtain g is an increasing function, then:

∀λ < λc, g(λ) = 0 = f(λ) (4.19)

We combine 4.17, 4.18 and 4.19 to obtain f = g.

5 Self-avoiding walks

The main goal of this section is to prove Proposition 1.1 (Section 5.3) and Theorem 1.3

(Section 5.4).

5.1 Walks and bridges

In this section, we review some definitions on the self-avoiding walk, bridges and con-

nective constant (see [89]). Denote by cn the number of self-avoiding walks of length n,

starting at origin on the considered graph. If G is transitive, the sequence c
1/n
n converges

to a constant when n goes to infinity. This constant is called the connective constant of

G.

Definition 5.1. An n-step bridge in the plane Z2 (or half-plane H) is an n-step self-

avoiding walk (SAW ) γ such that

∀i = 1, 2, . . . , n, γ1(0) < γ1(i) ≤ γ1(n)

where γ1(i) is the first coordinate of γ(i). Let bn denote the number of all n-step bridges

with γ(0) = 0. By convention, set b0 = 1.

We have bm+n ≥ bm · bn, hence we can define

µb = lim
n→+∞

bn
1
n = sup

n
b

1
n
n .

Moreover, bn ≤ µnb ≤ µn.

Definition 5.2. Given a bridge γ of length n, γ is called an irreducible bridge if it can not

be decomposed into two bridges of length strictly smaller than n. It means, we can not

find i ∈ [1, n− 1] such that γ|[0,i], γ|[i,n] are two bridges. The set of all irreducible-bridges

is denoted by iSAW .
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5.2 Kesten’s measure

For this section, we refer the reader to ([72],[41]) for a more precise description. Denote

by SAW∞ the set of all self-avoiding walks on the plane Z2 or half-plane H. In this

section, we review the Kesten measure. He defined a probability measure on the SAW∞
of half-plane from the finite bridges. We use B (resp. I) to denote the set of bridges

(resp. irreducible bridges) starting at origin. Let pn denote the number of irreducible

bridges starting at origin, of length n.

We define a notion of concatenation of paths. If γ1 =
[
γ1(0), γ1(1), . . . , γ1(m)

]
and

γ2 =
[
γ2(0), γ2(1), . . . , γ2(n)

]
are two SAWs, we define γ1 ⊕ γ2 to be the (m + n)-step

walk (not necessarily self-avoiding walk)

γ1 ⊕ γ2 :=
[
0, γ1(1), . . . , γ1(m), γ1(m) + γ2(1)− γ2(0), . . . , γ1(m) + γ2(n)− γ2(0)

]
.

Similarly, we can define γ1 ⊕ γ2 ⊕ · · · ⊕ γk. We begin with the following equality

Fact 5.3 (Kesten [72], Theorem 5). We have

+∞∑
n=1

pn
µn

= 1.

Remark 5.4. We have also
∑

ω∈I β
|ω| <∞ if β < 1

µ and if β > 1
µ then

∑
ω∈I β

|ω| =∞.

Let us now define the Kesten measure on the SAW∞ in the half-plane. We fix β ≤ 1
µ

and let Qβ denote the probability measure on I defined by

Qβ(ω) =
β|ω|

Zβ
, ω ∈ I

where Zβ =
∑

ω∈I β
|ω|. By Fact 5.3 and Remark 5.4, Zβ is finite and thus Qβ is a

probability measure on I.

Let k ≥ 1, we consider the product space Ik and define the product probability measure

Qβ
k . We write Qβ

k for an extension to SAW in H as follows, Qβ(ω) = 0 if ω is not of

form ω1 ⊕ ω2 ⊕ · · · ⊕ ωk and

Qβ
k(H \ Ik) = 0;Qβ

k(ω1 ⊕ ω2 ⊕ · · · ⊕ ωk) = Qβ(ω1)×Qβ(ω2)× · · · ×Qβ(ωk).

We define Qβ
∞ on I∞, it is called the β-Kesten measure on SAW∞ in the half-plane.

Fact 5.5. Under the β-Kesten measure, the infinite self-avoiding walk, denoted by ω∞,βK ,

almost surely does not reach the line Z× {0}.

Proof. It follows immediately from the definition of β-Kesten measure.
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5.3 Proof of Proposition 1.1

Notation 5.6. Consider the self-avoiding walks in the lattice Z2 starting at the origin.

We construct a tree TZ2 , which is called self-avoiding tree, from these self-avoiding walks:

The vertices of TZ2 are the finite self-avoiding walks and two such vertices joined when

one path is an extension by one step of the other. Formally, denote by Ωn the set of

self-avoiding walks of length n starting at the origin and V :=
⋃+∞
n=0 Ωn. Two elements

x, y ∈ V are adjacent if one path is an extension by one step of the other. We then define

TZ2 = (V,E). In the same way, we can define other self-avoiding trees TH, TQ, where H
is a half-plane and Q is a quarter-plane.

Remark 5.7. Note that each vertex (resp. a ray) of TZ2 (or TH, TQ) is a finite self-

avoiding walk (rest. an infinite self-avoiding walk). Moreover, it is easy to see that the

number of vertices at generation n of TZ2 (or TH, TQ) is the number of self-avoiding walks

of length n in Z2 (resp. H, Q).

Notation 5.8. In [72], Kesten proved that all bridges in a half-plane can be decomposed

into a sequence of irreducible bridges in a unique way. For every m ∈ N∗, we set:

Am := {ω ∈ iSAB, |ω| ≤ m} .

An infinite self-avoiding walk starting at origin, is called ”m-good” if it possesses a

decomposition into irreducible bridges in Am. Denote by Gm the set of infinite self-

avoiding walk which are ”m-good”. Let T m be the sub-tree of TZ2 , which we will refer

to as the m-good tree, defined by E(T m) := E(TZ2)|V (T m)×V (T m) where,

V (T m) := {ω ∈ V (TZ2) : there exists γ ∈ Gm such that γ|[0,|ω|]= ω}.

Proposition 5.9. Let TH, TQ be defined as above. Then,

gr(TZ2) = br(TZ2) = gr(TH) = br(TH) = gr(TQ) = br(TQ) = µ,

where µ is the connective constant of the lattice Z2.

Proof. As explained in the introduction, there are rather large classes of trees, including

TZ2 , for which the branching and growth coincide (for instance, this holds for sub- or

super-periodic trees, cf. below, or for typical supercritical Galton-Watson trees), but

none of the classical results seem to apply to TH or TQ.

Note that TZ2 is a sub-periodic tree, by Theorem 2.8 and the definition of connective

constant, we have

gr(TZ2) = br(TZ2) = µ. (5.1)
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We know that (see [11], [64]) there exists a constant B and n0 ∈ N such that for any

n > n0, we have:

cn ≤ bn eB
√
n (5.2)

We use 5.2 to obtain:

µ ≤ lim
n→∞

(bn)
1
n ≤ gr(TH) ≤ gr(TZ2) = µ. (5.3)

Hence,

gr(TH) = µ. (5.4)

By Proposition 2.4, we have:

br(TH) ≤ µ. (5.5)

Let b
(m)
n be the number of bridges of length n which possess a decomposition into irre-

ducible bridges in Am. Recall that (T m)n is the number of vertices of T m at generation

n. Then for any n > 0, we have

|(T m)n| ≥ b(m)
n . (5.6)

Note that T m is also a sub-tree of TH, then by Remark 2.3 we have :

br(T m) ≤ br(TH). (5.7)

On the other hand, T m is m-super-periodic, so we can apply Theorem 2.8 to get gr(T m)

exists and,

br(T m) = gr(T m). (5.8)

We use 5.7 and 5.8 to obtain, for any m > 0,

br(TH) ≥ gr(T m). (5.9)

It remains to prove that lim
n→∞

gr(T m) = µ. By using 5.3 and noting that the concatena-

tion of two bridges is an another bridge, we see that for any m,n:

bm+n ≥ bm bn and b
(m)
n1+n2

≥ b(m)
n1

b(m)
n2

and lim
n→∞

(bn)
1
n = µ. (5.10)

By 5.10 and super-additivity lemma, we can define:

µm := lim
n→∞

(
b(m)
n

) 1
n

and b(m)
n ≤ (µm)n for all n > 0. (5.11)

Fix ε > 0, by 5.10 there exists m0 such that for all m ≥ m0,∣∣∣µ− (bm)
1
m

∣∣∣ ≤ ε. (5.12)
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As we know (see paragraph 5.8) all bridges in a half-plane can be decomposed into a

sequence of irreducible bridges in a unique way. Therefore each bridge in a half-plane

of length m possesses a decomposition into irreducible bridges in Am. Hence, for any

m > m0,

bm = b(m)
m . (5.13)

We use 5.10, 5.11, 5.12 and 5.13 to obtain, for any m > m0,

µm ≥ (b
(m)
km )

1
km ≥

(
(b(m)
m )k

) 1
km

= (b(m)
m )

1
m = (bm)

1
m ≥ µ− ε. (5.14)

By 5.11, the sequence (b
(m)
` )

1
` increases toward µm when ` goes to infinity, then (b

(m)
km )

1
km →

k→∞
µm. By using 5.6 and 5.14, for any m > m0, we have µ ≥ gr(T m) ≥ µm ≥ µ − ε and

then,

lim
n→∞

gr(T m) = µ. (5.15)

We combine 5.5, 5.9 and 5.15 to obtain br(TH) = µ. By following a strategy similar to

the proof of the case TH, we obtain gr(TQ) = br(TQ) = µ.

Proposition 1.1 is a consequence of Theorem 2.16 and Proposition 5.9.

5.4 Proof of Theorem 1.3

Now, we apply the results in Section 4.1 for the self-avoiding trees TQ, TH and TZ2 .

Notation

For any n ∈ N, let Λn := [[−n, n]]2 be a subdomain of Z2. Denote by ∂Λn the boundary

of Λn, i.e,

∂Λn := {(a, b) ∈ Λn : |a| = n or |b| = n} .

We write
◦
Λn := Λn \ ∂Λn for the interior of Λn.

Let γ be a finite self-avoiding walk. We say that γ is a self-avoiding walk of domain Λn
if for any 0 ≤ k ≤ |γ|, we have γ(k) ∈ Λn. Denote by Ω(Λn) the set of self-avoiding

walks starting at origin of domain Λn.

Lemma 5.10. The functions C(λ, TQ), C(λ, TH) and C(λ, TZ2) are right continuous on

(λc,+∞).

Proof. It follows immediately from Lemma 4.1.

Lemma 5.11. The functions C(λ, TQ), C(λ, TH) and C(λ, TZ2) are left continuous on

(λc,+∞).
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O O

∂Hn ∂Hn

γ
γ

γ|γ|

γ|γ|

Figure 2.2 – The boundary of Hn is green and the self-avoiding walk γ is red. Recall
that γ is a vertex of the tree TH. On the left (resp. right), we can add a new quadrant
Q (resp. new half-plane H) rooted at γ|γ|. Hence, on the left (resp. on the right) the
sub-tree (TH)γ contains the tree TQ (resp. TH).

Proof. We prove this Lemma for the case TH and we use the same argument for other

cases (TQ and TZ2). Note that TH is not uniformly transient, therefore we can not use

Theorem 4.3. Fortunately, we can prove that TH is weakly uniformly transient. For this

purpose, we define a sequence of cutsets (πn, n ≥ 1) as follows. Set Hn := Λn
⋂
H and

∂Hn := (∂Λn)
⋂
H (see Figure 2.2). Recall that Ω (Hn) is the set of self-avoiding walks

of domain Hn. For any n ≥ 1,

πn :=

{
γ ∈ Ω (Hn) : for any 0 ≤ k < |γ| , γ(k) ∈

◦
Hn and γ|γ| ∈ ∂(Hn)

}
Since Hn is a finite domain of H, therefore any infinite self-avoiding walk starting at

origin of H, must touch the boundary of Hn. Hence, for any n ≥ 1, we have πn is a

V-cutset of TH. We set Γ :=
⋃
n≥1

πn, it remains to verify that:

∀λ > λc(=
1

µ
), ∃αλ > 0,∀ν ∈ Γ,P(∀n > 0, Xν

n 6= ν) ≥ αλ. (5.16)

Note that for any γ ∈ Γ, the sub-tree (TH)γ contains the tree TH or TQ (see Figure 2.2).

Hence, 5.16 is a consequence of Proposition 1.1 and Theorem 2.10. We use Theorem 4.4

to complete the proof of Lemma.

Theorem 1.4 is a consequence of Lemmas 5.10 and 5.11.

6 The biased walk on the self-avoiding tree

We now begin the study of our main object of interest, which is the biased random walk

on the self-avoiding tree. We will use the results that were obtained in the previous

section to prove the properties of the limit walk. In the next section, we will gather a

few natural conjectures.
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6.1 The limit walk

Let λ ∈ [0,+∞] and consider the biased random walk RWλ on T where T = TH or

T = TZ2 . For λ > λc, the biased random walk is transient so almost surely, the random

walk does not visit Tk anymore after a sufficiently large time. We can then define the

limit walk, as denoted by ω∞λ in the following way:

ω∞λ (i) = xi ⇐⇒
{

xi ∈ Ti
∃n0,∀n > n0 : Xn ∈ T xi

}
.

ω∞λ is a random ray. Let PH
λ denote the law of ω∞λ in the half-plane H and PZ2

λ , the law

of ω∞λ in the plane Z2. We can see PH
λ (respectively PZ2

λ ) as a probability measure on

SAW∞ in the half-plane (respectively the plane).

For what follows, it will be useful to have the following definition: removing all the finite

branches of TR (where R is a regular lattice), leads to a new tree without leaf, which we

will denote by T̃R.

6.2 The case λ = +∞ and percolation

First, we review some definitions of percolation theory. Percolation was introduced by

Broadbent and Hammersley in 1957 (see [26]). For p ∈ [0, 1], we consider the triangular

lattice T, a site of T is open with probability p or closed with probability 1−p, indepen-

dently of the others. This can also be seen as a random colouring (in black or white) of

the faces of hexagonal lattice T∗ dual of T.

We define the exploration curve as follows (see [119], section 6.1.2 for more detail). Let

Ω be a simply connected subgraph of the triangular lattice and A, B be two points on

its boundary. We can then divide the hexagonal cells of ∂Ω into two arcs, going from

A to B in two directions (clockwise and counter-clockwise). These arcs will be denoted

by B and W such that A,B, B,W is in the clockwise direction. Assume that all of the

hexagons in B are colored in black and that all of the hexagons in W are colored in white.

The color of the hexagonal faces in Ω is chosen at random (black with probability p and

white with probability 1 − p), independently of the others. We define the exploration

curve γ starting at A and ending at B which separates the black component containing

B from the white component containing W.

Then the exploration curve γ is a self-avoiding walk using the vertices and edges of

hexagonal lattice T∗. We can define this interface γ in an equivalent, dynamical way,

informally described as follows. At each step, γ looks at its three neighbors on the

hexagonal lattice, one of which is occupied by the previous step of γ. For the next step,

γ randomly chooses one of these neighbors that has not yet occupied by γ. If there is

just one neighbor that has not yet been occupied, then we choose this neighbor and if

there are two neighbors, then we choose the right neighbor with probability p and the

left neighbor with probability 1− p.
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We know that there exists pc ∈ [0, 1] such that for p < pc there is almost surely no infinite

cluster, while for p > pc there is almost surely an infinite cluster. This parameter is called

critical point. It is known that the critical point of site-percolation on the triangular

lattice equals 1
2 . The lower bound of critical point was proven by Harris in [67]. A

similar theorem in the case of bond percolation on square lattice was given by Kesten

in [73], and the result on the triangular lattice is obtained in a similar fashion.

Now, take Ω = T∗+, the half-plane of hexagonal lattice. The hexagons on the boundary of

Ω (∂Ω) and on the right of origin (denoted by ∂+Ω) are colored in black and the hexagons

on ∂Ω and on the left of origin (∂−Ω) are colored in white. In this case, the exploration

curve is an (random) infinite self-avoiding walk. Denote by TT∗+ the self-avoiding tree

constructed from the self-avoiding walks in T∗+.

In the case λ = +∞, one can reinterpret the second construction of the exploration curve

as the limit walk ω∞ on T̃T∗+ . This is very useful because every feature of the curve γ is

also one for ω∞ and can therefore be restated in terms of the biased walk on the self-

avoiding tree. One of these properties is that γ almost surely reaches the boundary of Ω

an infinite times, which follows from Russo-Seymour-Welsh type arguments. As we will

see below, this property is still valid in the case RWλ, for all λ > λc (see Theorem 1.2).

6.3 Proof of Theorem 1.2

In this section, for any z ∈ Z2, we write <z (resp. =z) for the real part (resp. imaginary

part) of z. To prove the theorem 1.2, we need the following function (the “head of the

snake”):

p : x ∈ V (T ) 7→ x|x| ∈ Z2 where T = TH or T = TZ2 . (6.1)

The proof of theorem 1.2 has several steps. In the first step, we study the trajectory

of the biased random walk Xn. We prove that, under the measures PH
λ and PZ2

λ , p(Xn)

almost surely reaches the line Z×{0}. In the second step, we prove that it almost surely

reaches the line Z × {0} an infinite number of times. In the third step, we prove that

under PZ2

λ , the limit walk almost surely reaches the line Z × {0} an infinite number of

times. In the last step, we prove that under PH
λ , the limit walk almost surely reaches the

line Z× {0} an infinite number of times. For simplicity, we will write Yn for p(Xn).

The first step

In this step, we study the trajectory of RWλ. We begin with the following simple lemma:

Lemma 6.1. Let λ > λc and consider the biased random walk RWλ on TZ2 or TH. Then

almost surely lim sup |<(Yn)| = +∞.

Proof. We prove the lemma in the case TH; the result for TZ2 can be obtained in a

similar way. The idea of the argument is straightforward: if the real part of p(Xn) is
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n0 n0

i

XTi p(XTi)

`

n0 + 1

XTi+`

p(XTi+`)

XTi+2`

p(XTi+2`)

i

`

`

n0 + 1

Figure 2.3 – Illustration of the proof of Lemma 6.1

constrained, then its imaginary part has to take large values and every time it visits a

new height, the real part has a chance of becoming large: what follows is a formalization

of this. Assume that α := P(lim sup |<(Yn)| < +∞) > 0, then there exists a constant

n0 > 0 such that,

β := P { for all n > 0 : −n0 ≤ <(Yn) ≤ n0} > 0. (6.2)

For any i ≥ 0, define

T (i) := inf {n ≥ 0 : =(Yn) = i} . (6.3)

Note that T (i) < +∞ on the event {for all n > 0 : −n0 ≤ <(Yn) ≤ n0}. We remark that,

at time T (i), X can always go towards the left or the right. For any i ≥ 0, define

Si := {∃!k : |<(Yk)| = n0 + 1,=(Xk) = i and ∀n 6= k : −n0 ≤ <(Yn) ≤ n0}.

If the walk is at time T (i), then we go towards the left or the right to reach the domain

{<z = n0 + 1}
⋃
{<z = −n0 − 1} ,



92 CHAPTER 2. TREES OF SELF-AVOIDING WALK

and after, we go back to XT (i) (see Figure 2.3). We need at most 2n0 steps to do this.

Then, there exist a constant c > 0 such that for any i > 0,

P(Si) ≥ c β. (6.4)

On the other hand, we have

+∞⋃
i=0

Si ⊂ { for all n ≥ 0 : −n0 − 1 ≤ <(Yn) ≤ n0 + 1} . (6.5)

Since these Si are pairwise disjoint, by using 6.4 and 6.5 we obtain:

P ( for all n ≥ 0 : −n0 − 1 ≤ <(Yn) ≤ n0 + 1) ≥
∞∑
i=0

P(Si) ≥
∞∑
i=0

c β = +∞.

This is a contradiction and therefore almost surely lim sup |<(Yn)| = +∞.

Lemma 6.2. Let λ > λc and consider the biased random walk RWλ on TZ2 or TH. Then

# {n > 0 : =(Yn) = 0} ≥ 1 almost surely.

Proof. We again deal separately with two cases.

Case I: The tree TZ2 . Assume that α := P(∀n > 0,=(Yn) > 0) > 0, hence

YS

YS+1

(d)

O

n0 n0

n0 + 1

Figure 2.4 – Illustration of the proof of Lemma 6.2

0 < P(∃n > 0,=(Yn) = 0) = 1− α < 1. (6.6)
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Given that the sequence ({∃k ∈ (0, n] : =(Yk) = 0})n≥1 is an increasing sequence,

1− α = P(∃n > 0 : =(Yn) = 0) = lim
n

P(∃k ∈ (0, n] : =(Yk) = 0). (6.7)

Let ε > 0, by using 6.6, then there exist n0 such that for all n ≥ n0,

P(∃k ∈ (0, n] : =(Yk) = 0) ≥ 1− α− ε. (6.8)

We know that the biased random walk does not reach the line Z × {0} with a prob-

ability p > 0. By Lemma 6.1, the random walk Xn must reach the domain H :=

{<(z) = n0}
⋃ {<(z) = −n0} with a probability 1. We consider the first time S, that

the random walk Xn reaches H and we assume that it reaches the line {<(z) = n0}. We

continue one step on the random walk to reach the line {<(z) = n0 + 1}.
The key observation, which we will use several times in similar forms in what follows, is

that the behavior of the walk after time S, and until its first visit to the parent X−1
S ,

matches the similar process defined in the domain Z2 \ {XS(k) : 0 ≤ k < |XS |}. Here,

this domain contains the half-plane

YS := {(x, y) ∈ Z2 : x ≥ <(YS)}

and our running hypothesis implies that the random walk after the time S will stay in

this half-plane with probability α (see Figure 2.4). As a shortcut, we will later refer to

this kind of construction as considering a new half-plane with origin YS.

From the previous discussion,

P(∀k ≤ n0 : =(Yk) > 0 and ∃k > n0 : =(Yk) = 0) =
λα2

1 + 3λ
. (6.9)

Because the two events {∀k ≤ n0 : =(Yk) > 0 and ∃k > n0 : =(Yk) = 0)} and {∃k ∈ (0, n0] :

=(Yk) = 0} are disjoint and included in the event {∃n > 0 : =(Yn) = 0}, we use 6.8 and

6.9 to get

1− α = P({∃n > 0 : =(Yn) = 0}) ≥ 1− α− ε+
λα2

1 + 3λ
.

If we take small enough ε , then we obtain a contradiction.

Case II: The tree TH. Now, we prove that |{n : =(Yn) = 0}| ≥ 1 a.s for the tree TH.

We set α = P(∀n > 0 : =(Yn) > 0). Assume that p > 0, because the random walk in

the domain {=(z) > 0} of the half-plane has the same law as the random walk in this

domain of the plan. This implies that the random walk Xn on the plan does not reach

the line Z×{0} with a positive probability. This is a contradiction with step 1 and then

p = 0.
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The second step

The goal of this step is to prove the following lemma:

Lemma 6.3. Let λ > λc and consider the biased random walk RWλ on TZ2 or TH. Then

almost surely # {n > 0 : =(Yn) = 0} = +∞.

O′

Yn0

ω0 ∈ Ωn0

Yn0

ω0 ∈ Ωn0

O
O

Figure 2.5 – Illustration of the proof of Lemma 6.3, case TH

Proof. We again need to deal separately with two cases.

Case I: the tree TH. We denote by A the following event:

A := {# {n > 0 : =Yn = 0} =∞} .

Or equivalently, A = {∀k, ∃n > k : =Yn = 0}. Assume that P(A) < 1, we have then

P(Ac) > 0. Hence, there exists n0 > 0 such that,

P(∀n > n0 : =Yn > 0) > 0. (6.10)

Now, consider the random walk until time n0. Denote by Ωn0 the set of all configurations

(Y0, Y1, . . . , Yn0). For each ω ∈ Ωn0 , we define the event Aω as follows:

Aω := {for all n > n0, we have =(Yn) > 0 and (Y0, Y1, . . . , Yn0) = ω}. (6.11)

Hence,

P(∀n > n0 : =Yn > 0) =
∑
ω∈Ωn0

P(Aω) > 0. (6.12)

Since the cardinal of Ωn0 is finite, there exists ω0 ∈ Ωn0 such that P(Aω0) > 0. We add

a new line under the line Z × {0} and consider a new half-plane H′ with origin O′ (see

the Figure 2.5 and the discussion in the proof of Lemma 6.2).

Observe the biased random walk X ′n with parameter λ on TH′ and denote Y ′n = p(X ′n).

Conditioned on the events {Y0 = O′, Y ′1 = ω0(1), · · · , Y ′(n0) = ω0(n0)} and Aω0 , X and
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X ′ have the same law. This implies that the random walk X ′ on TH′ does not reach the

line Z×{0} of H′ with a positive probability. This is a contradiction and then P(A) = 1,

which concludes the proof of Lemma 6.3 in the case TH.

Case II: the tree TZ2 .

A1

A2

B2

A3

B3

O

(a, 0)

B1 ≡ A

B = (x, 1)

Yn0

C2

D2

O

C1

B

D1

(a, 0)

γ′1
γ′2

Figure 2.6 – Illustration of the proof of Lemma 6.3, case TZ2

C2

D2 C1

O

B

(a, 0)

D1 ≡ A

ω2

ω3

ω := ω1 ⊕ ω2 ⊕ ω3 ω1 = Ø

Figure 2.7 – Illustration of the proof of Lemma 6.3, case TZ2

Assume that the random walk reaches the line Z×{0} an infinite number of times with

a probability strictly less than 1. By using the same argument as in the case TH, there

exists a configuration ω0 and a positive number n0 such that P(Aω0) > 0 where Aω0 is

defined as in 6.11.

Let A1 = (a1, 0), B1 = (b1, 0) . . . , Ak = (ak, 0), Bk = (bk, 0) be 2k points of intersections

of the line Z × {0} with ω along the curve ω such that for any 1 ≤ i ≤ k, there exists

a self-avoiding walk γi in ω starting at (ai, 0) and ending at (bi, 0) which is below the



96 CHAPTER 2. TREES OF SELF-AVOIDING WALK

line Z × {0}. Denote by (a, 0) the last point of intersection of the line Z × {0} with

ω before that the random walk does not reach the line Z × {0}. Let A := (x, 0) to

be (ai, 0) or (bi, 0) which maximises the first coordinate and we set B = (x, 1) (see

Figure 2.6, on the left).

Consider a new plane Z2 with an origin at B and consider the random walk RWλ on

the tree TH starting at B. Let Γ = (γ1, γ2, . . . , γk) be a set of k self-avoiding walks

in ω which connect (ai, 0) to (bi, 0). If there exist i, j such that [aj ∧ bj , aj ∨ bj ] ⊂
[ai ∧ bi, ai ∨ bi], then we remove the self-avoiding walk γj from Γ. Finally, we obtain a

subset Γ′ = (γ′1, γ
′
2, . . . , γ

′
m) of Γ in which there are no i, j such that [aj ∧ bj , aj ∨ bj ] ⊂

[ai ∧ bi, ai ∨ bi]. We can assume that γ′i connect Ci = (ci, 0) to Di = (di, 0) and for all

i ∈ {1, · · · ,m}, we have c1 > c2 > · · · > cm and ci < di (see Figure 2.6, on the right).

Define a self-avoiding walk ω starting at B as follows (see the Figure 2.7):

Set u = sup {1 ≤ i ≤ m : ci > a} and define the three following self-avoiding walks:


ω1 := [BA]⊕ γ1 ⊕ [(d2, 0), (c1, 0)]⊕ γ2 ⊕ [(d3, 0), (c2, 0)]⊕ . . . , γu ⊕ [(cu, 0)(cu, 1)]

ω2 := [(cu, 1), (cm, 1)]⊕ [(cm, 1), (cm, 0)]⊕ γm ⊕ [(dm, 0), (cm−1, 0)] . . .⊕ γu+1, [(du+1, 0), (a, 0)]

ω3 := ω|[t,n0] where ω(t) = (a, 0),

and we define ω := ω1 ⊕ ω2 ⊕ ω3.

Consider the biased random walk Xn with parameter λ on TH, where H is the half-

plane with the origin B. Recall that Yn = p(Xn). Note that, conditioned to the event

{(Y0, ..., Y|ω|) = ω}, with a positive probability, the random walk reach a finite number

of times the half-plane H. This is a contradiction with the case TH above.

Remark 6.4. All of results that we proved in the first step and second step for TZ2 and

TH, are still valid for T̃H and T̃Z2 . Note that it is sufficient to prove the theorem 1.2 in

the case T̃H and T̃Z2 , which means the biased random walk on T̃H and T̃Z2 almost surely

reaches the line Z× {0} an infinite number of times).

The third step

In this step, we give a proof of Theorem 1.2 in the case PZ2

λ . We start with the following

definition

Definition 6.5. Let C be a closed, simple curve of Z2. The interior of C, denoted by

I(C) is a sub-domain of R2 which is surrounded by C (see Figure 2.8). Where S(C)

denotes the area of this domain. The exterior of C is defined by

E(C) := R2 \ I(C).

Lemma 6.6. Let ((a1, 0), (a2, 0), . . . , (a2n,0)) be a sequence of points on the line Z×{0}
such that a1 < a2 < · · · < a2n. For each i, we denote γi as the self-avoiding walk starting
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Figure 2.8 – A closed, simple curve C of Z2 with its interior in red

at (a2i−1, 0) and ending at (a2i, 0) which is below the line Z×{0}. Suppose that for any

i, we have

γi ∩ γj = ∅.

We set A :=
⋃
γi and B = ∂A

⋃
((∪ni=1 [a2i−1, a2i])× {0}) where,

∂A :=
{
z ∈ Z2 : ∃x ∈ A, 0 < d(x, z) ≤

√
2
}

and d is euclidean distance.

Then there exists a self-avoiding walk in B starting at (a1−1, 0) and ending at (a2n+1, 0).

Proof. The statement is intuitively clear. The proof is a simple but tedious issue of

book-keeping, and is omitted here.

%

v

p

TQ

Figure 2.9 – The tree T

Proof of Theorem 1.2 in the case of PZ2

λ . We denote by A the following event:

A := {# {n > 0 : =ω∞λ (n) = 0} =∞} .
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ωn0

O

(α) (β)

ω

V

Figure 2.10 – The self-avoiding walk ω is colored by red; the domain D is the union of
two quadrants α and β and the set V is colored by green.

Assume that P(A) < 1, by using the same argument as in the second step, there exist

n0 > 0 and a self-avoiding walk ω := [ω(0), ω(1), . . . , ω(n0)] starting at 0 such that the

following event has a strictly positive probability (see Figure 2.10):

B :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) < 0

Define

D :=
{

(x, y) ∈ Z2 : y ≥ 0 and x /∈ {<ω∞λ (i) : 0 ≤ i ≤ n0}
}
.

and let V be a subset of Z\D such that for all x ∈ V , there exists an infinite self-avoiding

walk in half-plane {=z ≤ 0}, starting at x and it does not reach the self-avoiding walk

ω (see Figure 2.10).

For each x ∈ V , we denote by Γx the set of self-avoiding walks starting at x, which does

not reach the path (ω(0), . . . , ω(n0)), and reaches the domain D at only one point and

such that, for each z ∈ γx, z belongs to the line Z × {0} or z belongs to the boundary

of self-avoiding walk (ω(0), ω(1), . . . , ω(n0)). By Lemma 6.6, Γx is not empty. We then

set p := supx∈V supγ∈Γx |γ|.
Let T be an infinite, locally finite and rooted tree defined by (see Figure 2.9):

|Ti| = 1 for all i ≤ p
Tp = {v}
T v = TQ

We apply Lemma 6.3. Almost surely, the random walk reaches the line Z × {0} an

infinite number of times and, thus, it almost surely reaches the line Z × {0} at least k
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times. Every time it reaches the line Z×{0} at a point x, we can go on the random walk

at most p steps to reach the domain D (we can do this because TSLZ2 have no leaf and

then x belongs to V ). Then, the limit walk stays within the half-plane {=z < 0} after

the step n0 with a probability smaller than (1− C(λ, T )), where C(λ, T ) is the effective

conductance for the network (T , c) with c(e) = λ|e|. Hence, for any k > 0, we have

P(B) ≤ (1− C(λ, T ))k

Because we have C(λ, T ) > 0 (and because it contains the tree TQ), then P(B) = 0. This

is a contradiction and implies Theorem 1.2 in the case Qλ-measure.

The last step

In this section, we give a proof of Theorem 1.2 in the case PH
λ .

O

`

Figure 2.11 – A bridge of a strip B`

Notation 6.7. A strip B` of size ` is a sub-domain of Z2, which is limited by two lines

{=z = a} and {=z = b} (or {<z = a} and {<z = b}) such that |a − b| = `. Fix an

origin O ∈ {=z = a}⋃{=z = b} (or {<z = a}⋃{<z = b}) of B`. Let γ be a finite

self-avoiding walk starting at O. We say that γ is a self-avoiding walk of the strip B` if

for any 0 ≤ k ≤ |γ|, we have γ(k) ∈ B`. We define the self-avoiding tree TB` from the

self-avoiding walks starting at O as in Notation 5.6.

Consider a strip B`. We define the bridge (resp. irreductible bridge) of B` in the same

way as the definition of bridge (resp. irreductible bridge) in half-plane. (see Figure 2.11).

Lemma 6.8 (The subadditivity property). Let `, n be two positive natural numbers,

denote by p
(`)
n the number of bridges of length n starting at origin of the strip B`. For
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any `, n,m, k ∈ N∗,
p

(2`)
n+m ≥ p(`)

m p(`)
n and p

(2`)
kn ≥ (p(`)

n )k.

Proof. Divide the strip B2` into two small strip B1
2`, B

2
2` of size ` (see Figure 2.12). For

any z ∈ Z2, denote by L(z) the line goes through z and orthogonal to Z× {0}. Denote

by Sz the orthogonal symmetry with respect to L(z).

B1
2` B2

2`

γ1

γ2 γ3

γ12(|γ12|)

S(γ3)

L(γ12(|γ12|)

Figure 2.12 – A concatenation of 3 bridges in B1
2L.

Consider γ1, γ2 two bridges of the strip B1
2` of length m and n, we concatenate γ1 and γ2

to obtain a new bridge γ12 := γ1 ⊕ γ2 of length m+ n of the strip B2` (see Figure 2.12).

Hence, for any `, n,m ∈ N∗,
p

(2`)
n+m ≥ p(`)

m p(`)
n .

If one takes the third bridge γ3 of B1
2` of length t, we concatenate γ12 and γ3 as follows

(see Figure 2.12): {
γ123 = γ12 ⊕ γ3 if γ12(|γ12|) ∈ B1

2`

γ123 = γ12 ⊕ Sγ12(|γ12|)(γ3) if γ12(|γ12|) ∈ B2
2`

Note that γ123 is a bridge of length m+n+p of the strip B2` . Hence, for any `, n,m, t ∈
N∗,

p
(2`)
n+m+t ≥ p(`)

m p(`)
n p

(`)
t .

By repeating the same strategy, we obtain the result of Lemma 6.8.

Lemma 6.9. Denote by µ(`) the connective constant of the strip B`. Then we have,

lim
`→∞

µ(`) = µ,
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where µ is the connective constant of Z2.

Proof. Denote by bQn the number of bridges of length n of Q, starting at origin. Note

that for any `, we have:

lim
n→∞

(p(`)
n )

1
n = µ(`) and p

(`)
` = bQ` . (6.13)

Moreover, we also have:

lim
n→∞

(
bQn

) 1
n

= µ. (6.14)

By using Lemma 6.8, for any `, n, k:

p
(2`)
kn ≥ (p(`)

n )k. (6.15)

Fix ε > 0 and by 6.14, there exists n0 such that for any n > n0, we have∣∣∣∣(bQn) 1
n − µ

∣∣∣∣ ≤ ε. (6.16)

Let ` > n0 and k > 0. By 6.13, 6.15 and 6.16, we have:(
p

(2`)
k`

) 1
k` ≥

(
p

(`)
`

) 1
`

=
(
bQ`

) 1
` ≥ µ− ε. (6.17)

Since the sequence (p
(2`)
k` )

1
k` converges towards µ(2`) when k goes to infinity, we use 6.17

to obtain:

µ ≥ µ2` ≥ µ− ε, (6.18)

where inequality µ ≥ µ2` is obvious. Hence, the sequence (µ(`), ` ≥ 1) converges towards

µ when ` goes to +∞.

Proposition 6.10. Denote by br(TB`) the branching number of TB`. Then we have,

lim
`→∞

br(TB`) = µ,

where µ is the connective constant of Z2.

Proof. Recall the definition of Am in the proof of Proposition 5.9:

Am := {ω ∈ iSAB, |ω| ≤ m} ,

where iSAB is the set of irreducible-bridges in half-plane H. Let γ be an infinite self-

avoiding walk starting at origin of B`, it is called ”m-nice walk” if it possesses a decompo-

sition into irreducible bridges in Am. Denote by Gm(B`) the set of infinite self-avoiding
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walk of B` which are ”m-nice”. Let T (m)
B`

be a sub-tree of TB` , which we will refer to as

the m-nice tree, defined by E(T (m)
B`

) := E(TB`)|V (T (m)
B`

)×V (T (m)
B`

)
where,

V (T (m)
B`

) := {ω ∈ V (TB`) : there exists γ ∈ Gm(B`) such that γ|[0,|ω|]= ω}.

Denote by p
(`,m)
n be the number of bridges starting at origin of B`, of length n which

possess a decomposition in Am. Recall that p
(`)
n is the number of bridges of length

n starting at origin of the strip B` and (T (m)
B`

)n is the number of vertices of T (m)
B`

at

generation n. Then for any n > 0, we have∣∣∣(T (m)
B`

)
n

∣∣∣ ≥ p(m)
n . (6.19)

By using Lemma 6.8, for any `,m, n, k we have:

p
(2`)
nk ≥ (p(`)

n )k and p
(2`,m)
nk ≥ (p(`,m)

n )k. (6.20)

As we know (see paragraph 5.8) all bridges in a half-plane can be decomposed into a

sequence of irreducible bridges in a unique. Therefore each bridge in B` of length m

possesses a decomposition into irreducible bridges in Am. Hence, for any m, ` > 0,

p(`)
m = p(`,m)

m . (6.21)

Fix ε > 0, by Lemma 6.9, there exists `0 such that for any ` > `0,

µ ≥ µ(2`) > µ− ε. (6.22)

Moreover, since µ(2`) = lim
n→∞

(p
(2`)
n )

1
n , then there exists n0 such that for any n > n0:

(p(2`)
n )

1
n > µ(2`)− ε. (6.23)

Hence by 6.21, 6.20, 6.22 and 6.23,

(p
(4`,n)
kn )

1
kn ≥ (p(2`,n)

n )
1
n = (p(2`)

n )
1
n ≥ µ(2`)− ε ≥ µ− 2ε. (6.24)

Therefore for ` > `0 and n > n0(`) (i.e n0 depends on `), we have

gr(T nB4`
) ≥ µ− 2ε. (6.25)

On the other hand, note that TnB4`
is (n + 4`)-super-periodic and gr(T nB4`

) < +∞, we

use Theorem 2.8 to get:

gr(T nB4`
) exists and gr(T nB4`

) = br(T nB4`
). (6.26)

Since T nB4`
⊂ TB4`

, by using 6.25, 6.26 and Proposition 2.4 we obtain for any ` > `0:

µ ≥ br(TB4`
) ≥ µ− 2ε, (6.27)

where we used TB4`
⊂ TH for the first inequality. Therefore, the sequence (br(TB`))`≥1

converges towards µ when ` goes to infinity.
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Proposition 6.11. We consider the biased random walk RWλ on T̃H. Let (B`)`≥1 be

the sequence of strips of H where B` is the strip between two lines =z = 0 and =z = n.

Suppose that λ > 1
µ , where µ is the connective constant of H. Then, there exists ` > 0

such that the limit walk ω∞λ almost surely touches the strip B` an infinite number of

times.

Proof. We fix λ > 1
µ . Assume that, for all ` > 0, the limit walk reaches the strip B`

a finite number of times with a strictly positive probability. By Proposition 6.10, there

exists `0 such that λ > 1
br(TB`0 ) . We use again the same argument as in the second step,

there then exists n0 > 0 and a self-avoiding walk ω = [ω(0), ω(1), . . . , ω(n0)] such that

the following event has a strictly positive probability:

B :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) > `0

By Lemma 6.3, we know that the random walk almost surely reaches the line Z×{0} an

infinite number of times and then it must reach the line {=z = `0} an infinite number

of times almost surely. By using the same argument as in the third step, for any k > 0,

we have:

P(B) ≤ (1− C(λ, TB`0 ))k.

Because we have C(λ, TBL0
) > 0 (and because we have taken λ > λc(TBL0

), then P(B) =

0. This is a contradiction. We conclude that there exists ` > 0 such that the limit walk

on the tree T̃H almost surely reaches the strip B`.

Proof of Theorem 1.2 in the case of PH
λ . By Proposition 6.11, we can fix a number `

such that the limit walk almost surely reaches the domain B` an infinite number of

times. Now, we prove that the limit walk almost surely reaches an infinite number of

times the line Z× {0}.
Assume that P(#{n : =ω∞(n) = 0} < +∞) > 0, then there exist n0 and a self-avoiding

walk ω of length n0 starting at origin such that the following event occurs with a strictly

positive probability:

C :=

{
ω∞λ (0) = ω(0);ω∞λ (1) = ω(1); . . . ;ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) > 0

Let T ∗ be a tree defined by 
|T ∗i | = 1 for all t ≤ `

T ∗` = {v}
(T ∗)v = TB`

Recall that Yn := p(Xn). Let U be a set of naturals n such that: <Yn = sup0≤i≤n;Yi∈B` <Yi
or <Yn = inf0≤i≤n;Yi∈B` <Yi. For each n ∈ U , we go on the walk in the vertical direction
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until it reaches the line Z×{0}. When it reaches the line Z×{0}, it remains in reach of

the line Z×{0} with a probability that is greater than c×C(λ, T ∗) where c is a constant

that does not depend on n.

Because the walk almost surely touches the line Z×{0} an infinite number of times, we

then have |U | = +∞, p.s. This implies that P(C) = 0. This is a contradiction.

6.4 The law of first k-steps of limit walk

We consider the biased random walk RWλ on TH. Recall that ω∞λ is the associated limit

walk and PH
λ denotes its law.

Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (TH) such that (o, y1, y2, . . . , yk) is a

simple path starting at o of TH. For each λ > λc, recall that the law of first k-steps is

defined by:

ϕλ,k(y1, y2, . . . , yk) = PH
λ (ω∞λ (1) = y1, ω

∞
λ (2) = y2, . . . , ω

∞
λ (k) = yk). (6.28)

We prove the continuity of this function.

Theorem 6.12. For every k ∈ N∗ and (y1, y2, . . . , yk) ∈ V k, the function ϕλ,k is a

continuous function of λ on (λc,+∞).

Let T be an infinite, locally finite and rooted tree and ν is a child of the root. Recall

the definition of C̃(λ, T ) and C̃(λ, T , ν) in Section 2.3. To prove the theorem 6.12, we

need the following lemma:

Lemma 6.13. We have

ϕλ,k(y1, y2, . . . , yk) =
C̃(λ, T , y1)

C̃(λ, T )
× C̃(λ, T

y1 , y2)

C̃(λ, T y1)
× · · · × C̃(λ, T

yk−1 , yk)

C̃(λ, T yk−1)
.

Proof. We prove this lemma in the case k = 1, and leave the (slightly more complicated,

but following the same lines) cases k ≥ 2 to the reader.

The case k = 1 We let C̃i(λ, T ) denote the probability return to origin k times before

going to infinite for the biased random walk on the tree T . We define the events A :=

{ω∞λ (1) = y1} and Ai denote the random walk return to origin k times before it goes to

infinity by passing through y1. In other words,

Ai := {ω∞λ (1) = y1 and #{n > 0 : Xn = o} = k} .

The events Ai are disjoints, we can then see that

A =

+∞⋃
i=0

Ai. (6.29)
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On the other hand, by the Markov property, for any i ≥ 0, we have

P(Ai) = C̃(λ, T , y1)
(

1− C̃(λ, T )
)i
. (6.30)

By 6.29 and 6.30, we obtain:

P(A) =

+∞∑
i=0

P(Ai) =
C̃(λ, T , y1)

C̃(λ, T )
.

Therefore, ϕλ,1(y1) = P(A) = C̃(λ,T ,y1)

C̃(λ,T )
.

Proof of Theorem 6.12. By Lemma 6.13, we have

ϕλ,k(y1, y2, . . . , yk) =
C̃(λ, T , y1)

C̃(λ, T )
× C̃(λ, T

y1 , y2)

C̃(λ, T y1)
× · · · × C̃(λ, T

yk−1 , yk)

C̃(λ, T yk−1)
.

It is enough to prove that C̃(λ, T yi , yi+1) and C̃(λ, T yi) are continuous. For the continuity

of C̃(λ, T yi), we use the same method as in the proof of theorem 1.3 (see Section 5.4).

For the continuity of C̃(λ, T yi , yi+1), this function can be written in terms of λ and

C̃(λ, T yi).

Remark 6.14. Theorem 6.12 is still valid in the case TZ2 .

7 The critical probability measure through biased

random walk

7.1 The critical probability measure

O

o

x1 x2 x3

y

H

Figure 2.13 – The upper-half plane on the left and the tree TH on the right.
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In this section, H is the upper-half plane (i.e H = {=z > 0}⋃{(0, 0)}) and consider the

self-avoiding tree TH which is defined from finite self-avoiding walks on upper-half plane

H (see Figure 2.13). Note that the root o of TH has only one child, denoted by y.

We aim to construct a critical probability measure through the biased random walk on

self-avoiding tree. First, we review the construction of Madras and Slade (see [89] for

detail). Recall that bn is the number of all n-step bridges that begin at O and Bn denote

the set of all n-step bridges that begin at O. Given n ≥ m and an m-step self-avoiding

walk γ in H. Let PBm,n(γ) denote the fraction of n-step bridges that extend γ, it means

PBm,n(γ) =
|Fn(γ) ∩ Bn|

bn
=
|Fn(γ)|
bn

, (7.1)

where Fn(γ) is the set of all n-step bridges which extend γ. The equality (7.1) is the

probability that a long bridge (uniformly chosen from among all n-step bridges) is an

extension of γ. Define

PBm(ω) := lim
n→∞

PBm,n(γ). (7.2)

Fact 7.1 ([89], Theorem 8.3.1). Let γ be an m-step self-avoiding walk in H. Then the

limit (7.2) exists.

The existence of the measures PBm allows us to define a measure PB∞ on the set SAW∞ of

H. For each γ∞ ∈ SAW∞, γ∞ [0,m] denote the initial segment (γ∞(0), γ∞(1), . . . , γ∞(m)),

then

PB∞(γ∞ [0,m] = γ) = PBm(γ), for every γ.

Fact 7.2 ([89], Theorem 8.3.2). PB∞ is the 1
µ -Kesten measure, where µ is the connective

constant of the square lattice.

Recall that for all m ≥ 1, T m is the m-good tree (see Notation 5.8). Fix k ≥ 1

and y0 = o, y1 = y, y2, . . . , yk ∈ V (TH), the function ϕm,λ,k(y0, y1, . . . , yk) (respectively

ϕH,λ,k(y0, y1, . . . , yk)) denotes the law of first k-steps of RWλ on T m (respectively TH)

(see 1.8). We write λc(=
1
µ) for the critical parameter of RWλ on TH.

Theorem 7.3. We have

1. The function ϕm,λ,k(y0, y1, . . . , yk) converges towards a limit, denoted by ϕm,λm,k(y0, y1, . . . , yk)

when λ decreases towards λm = λc(T
m).

2. The function ϕm,λm,k(y0, y1, . . . , yk) converges towards a limit, denoted by ϕλc,k(y0, y1, . . . , yk).

3. Moreover, we have the following diagram:

ϕm,λ,k(y0, y1, . . . , yk)
m→+∞
λ>λc(TH)

//

λ→λc(Tm)
��

ϕH,λ,k(y0, y1, . . . , yk)

?
��

ϕm,λm,k(y0, y1, . . . , yk)m→+∞
// ϕλc,k(y0, y1, . . . , yk)
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Proof of points 1 and 2 of Theorem 7.3. It is suffices to prove the theorem in the case

k = 2 and we use the same method for all k ≥ 3.

Proof of item 1: By using the same method as the proof of Proposition 3.9, for all

i ∈ {1, 2, 3}, we have:

lim
λ→λc(T m)

ϕm,λ,2(o, y, xi) =
∑
γ∈Si

λ|γ|m , (7.3)

where x1, x2, x3 are three children of y and Si is a set of all irreducible bridges which

pass through xi and λc(T m) = λm. Let pi,n be the number of irreducible bridges of

length n which are pass through xi. We use 7.3 to obtain:

lim
λ→λc(T m)

ϕm,λ,2(o, y, xi) =
m∑
n=1

pi,nλ
n
m. (7.4)

Hence,

ϕm,λm,2(o, y, xi) =
m∑
n=1

pi,nλ
n
m. (7.5)

Moreover, for all m we have λm ≥ λc(= λc(TH)) because T m ⊂ TH. Therefore,

ϕm,λm,2(o, y, xi) ≥
m∑
n=1

pi,nλ
n
c . (7.6)

Proof of item 2: We need to prove that ϕm,λm,2(o, y, xi) converges to ϕλc,2(o, y, xi)

when m goes to infinity. Assume that there exists a subsequence (mk)k such that for

any i ∈ {1, 2, 3}, we have:

lim
k→+∞

ϕmk,λmk ,2(o, y, xi) = αi. (7.7)

Moreover, we assume that there exists i ∈ {1, 2, 3} such that

αi >
+∞∑
n=1

pi,nλ
n
c . (7.8)

For any m > 0, we have
∑3

i=1 ϕ
m,λm,2(o, y, xi), therefore,

α1 + α2 + α3 = 1. (7.9)

By 7.6, for any i ∈ {1, 2, 3}, we have:

αi ≥
+∞∑
n=1

p1,nλ
n
c . (7.10)
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We use Fact 5.3 to obtain
3∑
i=1

+∞∑
n=1

pi,nλ
n
c = 1. (7.11)

By 7.8, 7.9, 7.10 and 7.11, we obtain the following contradiction:

1 = α1 + α2 + α3 >
3∑
i=1

+∞∑
n=1

pi,nλ
n
c = 1

We conclude that ϕm,λm,2(o, y, xi) converges towards
∑+∞

n=1 pi,nλ
n
c when m→ +∞.

Proof of point 3 of Theorem 7.3. It remains to prove that

lim
m→+∞,λ>λc(TH)

ϕm,λ,k(y1, . . . , yk) = ϕH,λ,k(y1, . . . , yk).

It is enough to prove the theorem in the case k = 2, we use the same method for k ≥ 3.

Fix λ > λc(TH) and ε > 0. By Proposition 6.10, we have

lim
m→+∞

λc(T m) = λc(TH). (7.12)

Therefore, there exists m0 > 0 such that for any m ≥ m0,

λ > λc(T m) and (1− C(λ, T m))m < ε. (7.13)

Let T be the tree defined by: 
|Ti| = 1 for all i ≤ m

Tp = {v}
T v = T m

We choose n0 (depends on m) such that for all n > n0, we have

(1− C(λ, T n))n < ε

By considering the self-avoiding walks in the rectangle whose vertices are (−n0, 1); (−n0,m0); (n0,m0); (n0, 1)

and by a simple argument, we can see that for all n > m0n0,∣∣∣ϕn,λ,k(y1, . . . , yk)− ϕH,λ,k(y1, . . . , yk)
∣∣∣ < 2ε.

Since ε is arbitrary, this complete the proof of theorem.

Remark 7.4. Theorem 7.3 allows us to define a critical probability measure Pλc on TH.

Note that this critical probability measure is exactly Kesten’s measure as in Section 5.2.
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7.2 Conjectures

If we take a sequence of cutsets πn := Tn and we set c(e) =
(

1
µ

)|e|
, then

∑
n

(∑
e∈πn

c(e)

)−1

=
+∞∑
n=1

µn

cn
.

If the prediction of Nienhuis [99] holds, we obtain

+∞∑
n=1

µn

cn
≥ c

+∞∑
n=1

1

n
11
32

= +∞

By Theorem 2.15, we can establish the following conjecture.

Conjecture 7.5. The biased random walk RWλc on TH (or TZ2) is recurrent.

Finally, we believe that for every k ≥ 1 and y1, y2, . . . , yk ∈ V (TH),

lim
λ→λc(TH)

ϕH,λ,k(y1, . . . , yk) = ϕλc,k(y1, . . . , yk).

Conjecture 7.6. The following convergence diagram holds

ϕm,λ,k(y0, y1, . . . , yk)
m→+∞
λ>λc(TH)

//

λ→λc(Tm)
��

ϕH,λ,k(y0, y1, . . . , yk)

λ→λc
��

ϕm,λm,k(y0, y1, . . . , yk)m→+∞
// ϕλc,k(y0, y1, . . . , yk)





Chapter 3

Perspectives and conjectures

1 A coupling between random walk and supercritical

percolation

Recall the definition of the self-avoiding tree T̃T∗+ as in (chapter 2, section 6.2). For any

vertex ν of T̃T∗+ , it has either two children, denoted by ν1, ν2 or just only one child,

denoted by ν. The parent of ν is denoted by p(ν) or ν−1. Denote by ∂(ν) the number

of children of ν.

Let λ > 0 and η ∈ [0, 1/2] be such that

λ

1 + 2λ
− η ≥ 0 (1.1)

Define a stochastic process X := (Xn)n≥0 on some probability space, taking the values

in T̃T∗+ with the transition probability defined by the following way.

P(X0 = %) = 1,

— If ∂(Xn) = 2, then

P (Xn+1 = (Xn)1|X0, · · · , Xn) =
λ

1 + 2λ
− η (1.2)

P (Xn+1 = (Xn)2|X0, · · · , Xn) =
λ

1 + 2λ
+ η (1.3)

P
(
Xn+1 = (Xn)−1|X0, · · · , Xn

)
=

1

1 + 2λ
(1.4)

— If ∂(Xn) = 1, then

P
(
Xn+1 = Xn|X0, · · · , Xn

)
=

λ

1 + λ
(1.5)

111
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P
(
Xn+1 = (Xn)−1|X0, · · · , Xn

)
=

1

1 + λ
(1.6)

(1.7)

Denote by ω∞λ,η the limit walk associated with the random walk X (see Chapter 2,

Equation 2.2).

Remark 1.1. — If η = 0, then X is the biased random walk with parameter λ.

— If λ = ∞, by the same argument as in (chapter 2, section 6.2), the limit walk

ω∞λ,η has the same law as the exploration curve of supercritical percolation with

parameter 1/2 + η.

We prove that if λ is large enough, then the limit walk ω∞λ,η has some properties that

are similar to the exploration curve of supercritical percolation with parameter 1/2 + η.

Theorem 1.2. Denote by β := C(3
5 ,N) the effective conductance of biased random walk

with parameter 3
5 on N. We then have,

∀η > 0, ∀λ > max

(
4

1 + 2η
,

1

2βη

)
, ∃ε > 0, c > 0,∀n ≥ 1,

P((ω∞ ∩ [n, 2n]) 6= ∅) ≥ (1− cn−ε)3.

In order to prove Proposition 1.2, we compare the limit walk ω∞ with the exploration

curve γ of site-percolation on the triangular lattice by the coupling method. Now, we

recall some results of site-percolation on the triangular lattice. We denote A [2n, n] being

the event that exists a path formed of the open sites which is contained in the rectangle

[0, 2n]× [0, n] and connects to {0} × [0, n] to {2n} × [0, n].

Theorem 1.3 (RSW [12]). For any p > 1
2 , there exists ε = ε(p) > 0 and c = c(p) > 0

such that for all n ≥ 1,

Pp(A [2n, n]) ≥ 1− cn−ε.

Theorem 1.4 (FKG [51]). For any p ∈ [0, 1] and A,B are two increasing events,

Pp(A ∩B) ≥ Pp(A)Pp(B).

Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (T̃T∗+) such that (o, y1, y2, . . . , yk) is a

simple path starting at o of T̃T∗+ . For each λ > λc, recall that the law of first k-steps is

defined by:

ϕλ,k(y1, y2, . . . , yk) = P
T̃T∗+
λ (ω∞λ (1) = y1, ω

∞
λ (2) = y2, . . . , ω

∞
λ (k) = yk). (1.8)

Recall Lemma 6.13 of Chapter 2:
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Lemma 1.5. We have

ϕλ,k(y1, y2, . . . , yk) =
C̃(λ, T , y1)

C̃(λ, T )
× C̃(λ, T

y1 , y2)

C̃(λ, T y1)
× · · · × C̃(λ, T

yk−1 , yk)

C̃(λ, T yk−1)
.

Theorem 1.6 (Rayleigh’s monotonicity principle [87]). Let T be an infinite tree with

two assignments, c and c′, of conductances on T with c ≤ c′ (everywhere). Then the

effective conductances are ordered in the same way: Cc(T ) ≤ Cc̃(T ).

Lemma 1.7. Let p > 1
2 , there exists ε = ε(p) > 0 and c = c(p) > 0 such that for any

n ≥ 1,

Pp(γ ∩ ([n, 2n]× {0}) 6= ∅) ≥ (1− cn−ε)3. (1.9)

Proof. Consider the following rectangles:

R1 = [−2n,−n]× [0, 2n]; R2 = [−2n, 2n]× [0, 2n];R3 = [n, 2n]× [0, 2n].

Denote by A1 (resp. A2, A3) the event R1 is crossed vertically (resp. R2 is crossed hor-

izontally and R1 is crossed vertically). By Theorem 1.3, there exists ε = ε(p) > 0 and

c = c(p) > 0 such that for any n ≥ 1,

Pp(A1) ≥ 1− cn−ε (1.10)

Pp(A2) ≥ 1− cn−ε (1.11)

Pp(A3) ≥ 1− cn−ε (1.12)

The events A1, A2, A3 are increasing, we use Theorem 1.4 to obtain:

Pp(A1 ∩A2 ∩A3) ≥
3∏
i=1

Pp(Ai) ≥ (1− cn−ε)3. (1.13)

It is simple to see that if there exists a path of open sites that joining [−2n,−n] × {0}
to [n, 2n]× {0}, then the exploration curve γ must touch the interval [n, 2n]× {0} (see

Figure 3.4). This implies that

3⋂
i=1

Ai ⊂ {γ ∩ ([n, 2n]× {0}) 6= ∅} . (1.14)

We concludes the proof of Lemma by combining 1.13 and 1.14.
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Fix η ∈ [0, 1/2] and λ > max
(

4
1+2η ,

β+2
2βη

)
. For each finite path ω of T̃T∗+ starting at o,

such that ω|γ| has two children, then we set

αω := P
(
ω∞|[0,|ω|+1] = ω ⊕ e(ω|ω|)2

∣∣∣ω∞|[0,|ω|] = ω
)
. (1.15)

By Lemma 1.5, we have

αω :=
P
(
ω∞|[0,|ω|+1] = ω ⊕ e(ω|ω|)2

)
P(ω∞|[0,|ω|] = ω)

=
C̃(λ, T ω(|ω|), e(ω|ω|)2)

C̃(λ, T ω(|ω|))
. (1.16)

Denote by A the set of finite paths ω of T̃T∗+ such that αω is well defined. We need the

following lemma:

Lemma 1.8. We have

∀η > 0,∀λ > max

(
4

1 + 2η
,

1

2βη

)
, ∃α = α(λ, η, β) >

1

2
, ∀ω ∈ A : αω ≥ α. (1.17)

Proof. Fix η > 0 and λ > max
{

4
1+2η ,

1
2βη

}
. It is simple to see that for any ω ∈ A

C̃(λ, T ω(|ω|), e(ω|ω|)2) ≥ 1

2
− 1

2λ
+ η − 1

λC̃(λ, T (ω|ω|)2)
. (1.18)

By Rayleigh’s monotonicity principle (see Theorem 1.6), for any ω ∈ A, we have

C̃(λ, T (ω|ω|)2) ≥ β. (1.19)

By 1.18 and 1.19 we have:

C̃(λ, T ω(|ω|), e(ω|ω|)2) ≥ 1

2
− 1

2λ
+ η − 1

λβ
. (1.20)

By using 1.16 and 1.20, for any ω ∈ A we have:

αω ≥
1

2
− 1

2λ
+ η − 1

λβ
. (1.21)

Because λ > 1
2βη , therefore αω >

1
2 uniformly in ω. Hence, there exists α > 1

2 depends

on λ and η such that for all ω ∈ A, we have αω ≥ α.
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ω∞(n− 1)

ω∞(n)

ω∞(n+ 1)

ω∞(n− 1)

ω∞(n)

ω∞(n+ 1)

ω∞(n− 1)

ω∞(n)

ω∞(n+ 1)

Figure 3.1

Proof of Theorem 1.2. Consider the supercritical Bernoulli percolation with param-

eter α(λ, η) > 1
2 . Given a configuration of percolation, we will construct the limit walk

ω∞λ,η thank to Lemma 1.8 by the following way:

Assume that we have constructed the limit walk ω∞λ,η until the step n. We construct the

(n+ 1)-th step by the following way:

1. If there is only one possibility to extend ω∞λ,η from n-th step to (n+ 1)-th step, we

take this extension.

2. Asumme that there are two possibilities to extend ω∞λ,η from n-th step to (n+ 1)-

th step. In this cas, we look at the color of the hexagon that is in front (see

Figure 3.1):

— If it is red (open), we will turn right.

— If it is green (closed), we have two possibilities:

— We turn right with probability
αγ−α(λ,η)
1−α(λ,η) ≥ 0 (by Lemma 1.8).
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— We turn left with probability
1−αγ

1−α(λ,η) .

It is simple to see that this is a construction of limit walk. Denote by An the event there

exists a path of open site that joining [−2n,−n]× {0} to [n, 2n]× {0}. By Lemma 1.7,

we have

Pα(An) ≥ (1− cn−ε)3 (1.22)

We need to prove that

P
T̃T∗+
λ (ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) ≥ Pα(An) (1.23)

Fix a configuration θ of An. Consider the path ` formed of red hexagons (open) which

minimizes the area of the domain between the path ` and the real axis. Denote by U`
the domain limited by path ` and the real axis. We consider the first time that the limit

walk ω∞λ,η leaves the domain Ul (i.e touch the black path, see Figure 3.4). We prove that

the limit walk will hit the black path the first time in point of intersection between the

path ` and the interval [n, 2n]× {0} (see Figure 3.4). If it does not, it will hit the black

path the first time at another point. There are possibilities, in every possibility, one find

a contradiction.

Case 1: In the Figure 3.5 and 3.6, it touches the black path the first time at step n

(the green arrow). Assume that the step n− 1 is like in these figures. In these cases, we

arrive a red hexagon after the step n−1. According to the construction of the limit walk

ω∞λ,η, we turn to the left if we can not extend the path to the right (it will be blocked

if we turn to the right). By analyzing the previous steps, we obtain: in Figure 3.5, the

limit walk ω∞λ,η is not a self-avoiding walk and in Figure 3.6, it touches the black path

the first time by the purple arrow that is not no green arrow. These are contradictions.

Case 2: In Figure 3.7, 3.8 and 3.9, it touches the black path the first time at step n

(the green arrow). Assume that the step n− 1 is like in these figures. By analyzing the

previous steps, we obtain the following contradiction: the limit walk touches the black

path at a step k < n.

We then obtain

P
T̃T∗+
λ (ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) ≥ Pα(An) ≥ (1− cn−ε)3 (1.24)

In particular, we have

lim
n→+∞

P(ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) = 1. (1.25)
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By using the same argument as in the proof of Theorem 1.2, we obtain the following

theorem:

Theorem 1.9. Denote by β := C(3
5 ,N) the effective conductance of biased random walk

with parameter 3
5 on N. We then have,

lim
n→+∞

P(ω∞λ,η ∩ ([−2n,−n]× {0}) 6= ∅) = 0.

If η = 0, then X is the biased random walk with parameter λ. It is hoped that by

comparing with the critical percolation, we can prove the property Russo-Seymour-

Welsh for this case:

Conjecture 1.10. For any λ > λc, there exists a constant c > 0 such that for all n > 0,

P
T̃T∗+
λ

(
(ω∞λ,0 ∩ [n, 2n]) 6= ∅

)
≥ c. (1.26)

2 The locality property

2.1 The space of continuous curves

In this section, we review some definitions on the space of continuous curves. We refer

the reader to [3] for more details.

We regard continuous curves as equivalence classes of continuous functions, modulo

reparametrizations. More precisely, two continuous functions f1 and f2 from R+ into C
describe the same curve if and only if there exist two monotone continuous bijections

ϕi : R+ −→ R+, i = 1, 2 such that f1(ϕ1(t)) = f2(ϕ2(t)) for all t ∈ R+.

The space of curves in a closed subset Ω of C is denoted by SΩ. In the remain of this

section, we take Ω the half-plane H of C and Ω′ is a bounded, simply connected domain

of C (for example the unit disk) such that there exists a conform application, denoted

by f , from Ω onto Ω′. The distance between two curves C1 and C2 of SΩ is measured by:

dΩ(C1, C2) = inf
ϕ1,ϕ2

sup
t∈R+

|f(f1[ϕ1(t))]− f(f2[ϕ2(t))]|, (2.1)

where f1 and f2 is any pair of continuous functions representing C1 and C2, and the

infimum is over the set of all strictly monotone continuous functions from R+ onto itself.

Lemma 2.1 (see [3]). Equation 2.1 defines a metric on the space SΩ.

Proof. Clearly, d(C1, C2) is nonnegative, symmetric, satisfies the triangle inequality and

d(C, C) = 0. To prove strict positivity, assume d(C1, C2) = 0, and choose parametrizations
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f1 and f2. We need to show that f1 and f2 describe the same curve, i.e., C1 = C2. We

may choose f1 and f2 to be non-constant on any interval. Under these assumptions,

there exist sequences of reparametrizations φi1 and φi2 such that

sup
t∈[0,1]

∣∣f1 ◦ φi1 ◦ (φi2)−1(t)− f2(t)
∣∣ = sup

t∈[0,1]

∣∣f1 ◦ φi1(t)− f2 ◦ φi2(t)
∣∣ −→i→∞ 0. (2.2)

Monotonicity and uniform boundedness imply (Helly’s theorem) that there are subse-

quences (again denoted φi1 and φi2) so that φi2 ◦ (φi1)−1 and their inverses φi1 ◦ (φi2)−1

converge pointwise, at all but countably many points, to monotone limiting functions

φ and φ̃, with f1 = f2 ◦ φ and f2 = f1 ◦ φ̃. To see that φ has no discontinuities, note

that jumps of φ would correspond to intervals where φ̃ is constant. But φ̃ cannot be

constant on an interval, since, by our choice of parametrization, f2 is not constant on

any interval.

Lemma 2.2 (see [3]). The space (SΩ, dΩ) is polonais (metric, complete, separated) but,

even for compact Ω it is not compact.

2.2 The locality property of limit walk

First, we review the definitions of Fortet distance and total variation distance.

Definition 2.3. Let (S, d) be a metric space, with the Borelian tribu. We define a

distance between two probability measures µ et ν, sometimes called the Fortet distance:

dF (µ, ν) = sup{|µ(f)− ν(f)|, f ∈ Lipb(S), ||f ||Lip ≤ 1, ||f ||∞ ≤ 1}, (2.3)

where Lipb(S) is the set of Lipschitz and bounded functions , from S into R, the total

variation distanceis defined by:

dV T (µ, ν) = sup{|µ(f)− ν(f)|, f ∈ Fb(S), ||f ||∞ ≤ 1}, (2.4)

where Fb(S) is the set of bounded functions from S into R.

Fact 2.4. Equations 2.3 and 2.4 define the metrics on the set of probability measure on

SH.

Fact 2.5. Let (S, d) be a separated metric space with the Borelian tribu. Then dF (µn, µ)→
0 if and only if µn converge weakly toward µ.

Lemma 2.6 (Skorokhod’s theorem). Let (S, d) be a metric space, with the Borelian tribu

B(S) and (µn)n≥1 be a sequence of probability measures on S such that µn converges

weakly to some probability measure µ∞ on S as n → ∞. Suppose that the support of

µ∞ is separable. Then there exists random variables Xn and X∞ defined on a common

probability space (Ω,F ,P) such that:
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— Xn → X∞ almost surely.

— For all n ∈ N, the law of Xn is µn and X∞ has law µ∞.

For each n ∈ N, denote by Hn the discrete half-plane with size 1
n . Fix λ > λc and consider

the biased random walk with parameter λ on THn and ω∞,nλ is the limit walk associated.

Assume that ω∞,nλ converge weakly in (SH, dH) toward a (random) continuous curve

γλ,H.

Theorem 2.7. For any λ > 1, the continuous curve γλ has the locality property.

Proof. Let A be a subset of H such that H \ A is simply connected. We need to prove

that

L((γλ,Ht )0≤t≤τA)
(d)
= L((γ

λ,H\A
t )0≤t≤τA), (2.5)

where τA := inf{t : γλ,H ∈ A}.

In the remain of this proof, we set

εn =
1√
n

(2.6)

and

An := A
⋂

Hn (2.7)

Aεn := {z ∈ R× R+ : d(z,A) ≤ εn} (2.8)

An,εn := (Aεn \A)
⋂

Hn. (2.9)

Note that An and An,εn are discrete subsets of C; A and Aεn are simply connected

subsets of C. Consider (Xλ
k )k≥1 (resp. (X̃λ

k )k≥1) the biased random walk on TH (resp.

TH\A). We define

τAn := inf{k : p(Xλ
k ) ∈ An} (2.10)

τAn,ε := inf{k : p(Xλ
k ) ∈ An,εn} (2.11)

where p is defined as in (chapter 2, equation 6.1). It is simple to see that

L(Xλ
k , k ≤ τAn) = L(X̃λ

k , k ≤ τAn). (2.12)

Because the branching number of N is equal to 1, we then have

β := C(λ,N) > 0. (2.13)
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For any τAn,ε ≤ k ≤ τAn , we have

N ⊂ (THn)p(X
λ
k ) (2.14)

N ⊂ (THn\An)p(X
λ
k ) (2.15)

We use Equations 2.13, 2.14 and 2.15, for any τAn,ε ≤ k ≤ τAn , we have:

C (λ, (THn)p(X
λ
n)) ≥ β et C

(
λ, (THn\An

)p(Xλ
n)

) ≥ β. (2.16)

Consider Xλ
k and X̃λ

k until the time τAn . If after this time, the random walks Xλ
k and

X̃a
k ) do not come back to Xλ

τAn,ε
, then

ω∞,H
n

λ [0, τAn,ε ] = ω
∞,Hn\An
λ [0, τAn,ε ]. (2.17)

Define on the same probability space, a coupling (X,Y ) such thatX has law L(ω∞,H
n

λ [0, τAn,εn ])

and Y has law L(ω
∞,Hn\An
λ 0, τAn,εn ]). We then obtain:

dTV (L(ω∞,H
n

λ [0, τAn,εn ]),L(ω
∞,Hn\An
λ [0, τAn,εn ])) ≤ P(X 6= Y ) ≤ 2(1− β)n(τAn,εn−τAn ).

(2.18)

We use Equation 2.6 to obtain:

τAn,εn − τAn ≥
1√
n
. (2.19)

By combining Equations 2.18 and 2.19, we obtain:

dTV (L(ω∞,H
n

λ [0, τAn,εn ]),L(ω
∞,Hn\An
λ [0, τAn,εn ])) ≤ 2(1− β)

√
n (2.20)

Because dF ≤ dTV , therefore:

dF (L(ω∞,H
n

λ [0, τAn,εn ]),L(ω
∞,Hn\An
λ [0, τAn,εn ])) ≤ 2(1− β)

√
n. (2.21)

By hypothesis, we have

ω∞,H
n

λ

(d)→ γλ,H and ω
∞,Hn\An
λ

(d)→ γλ,H\A. (2.22)

Because (SH, dH) is a polonais space, by Lemma Fait 2.6, we can assume the convergences

in 2.22 are almost surely. We then have

ω∞,H
n

λ [0, τAn,εn ]
p.s→ γλ,H[0, τ̃A] et ω

∞,Hn\An
λ [0, τAn,εn ]

p.s→ γλ,H\A[0, τ̃A]. (2.23)
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Because (SH, dH) is separated metric space, by Fact 2.5, we have:

dF (L(ω∞,H
n

λ [0, τAn,εn ]),L(γλ,H[0, τ̃A]))→ 0. (2.24)

dF (L(ω
∞,Hn\An
λ [0, τAn,εn ]),L(γλ,H\A[0, τ̃A]))→ 0. (2.25)

By triangular inequality, for any n > 0,

dF (L(γλ,H[0, τ̃A]),L(γλ,H\A[0, τ̃A])) ≤ dF (L(γλ,H0, τ̃A]),L(ω∞,H
n

λ [0, τAn,εn ]))

+ dF (L(ω∞,H
n

λ [0, τAn,εn ]),L(ω
∞,Hn\An
λ [0, τAn,εn ]))

+ dF (L(ω
∞,Hn\An
λ [0, τAn,εn ]),L(γλ,H\A[0, τ̃A])).

By 2.21, 2.24 and 2.25 we have:

dF (L(γλ,H[0, τ̃A]),L(γλ,H\A[0, τ̃A])) = 0. (2.26)

Hence,

L(γλ,H[0, τ̃A]) = L(γλ,H\A[0, τ̃A]), (2.27)

this completes the proof of Theorem.

Theorem 2.8. For any λ > λc, the continuous curve γλ has the weakly locality property.

Proof. This is a consequence of Lemma 2.9 and the same argument as the proof of

Theorem 2.7, therefore we omit the proof.

Consider a sequence of rectangles (Bi)i≥1 such that for each i, the rectangles Bi has the

size L×`i. We set ` = mini≥1 `i and we consider an infinite domain from these rectangles

by the following way: We attach a vertex of Bi+1 to a vertex of Bi such that Bi
⋂
Bi+1

has only one element for all i ≥ 1 and Bi
⋂
Bj = ∅ if |i − j| > 1 (see Figure 3.2). We

then obtain an infinite domain which is denoted by B∞,`L .

Consider the self-avoiding walks of B∞,`L which have the following property. It starts

from a vertex of one side of B1. If it touches the opposite side of B1, it will follow that

side up to the common vertex between B1 and B2. The following steps of the path are in

B2 and repeat the procedure. The tree is built from these self-avoiding walks is denoted

by T
B∞,`L

. Recall that BL (resp. TBL) the strip of size L (resp. the tree is built from the

self-avoiding walks in the strip BL).
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Figure 3.2

Lemma 2.9. For all λ > λc(TBL), there exist α > 0 and h(L) ∈ N, such that m` > h(L),

we have

C(λ, T
B∞,`L

) ≥ α. (2.28)

Before proving this Lemma, we need the following theorem:

Theorem 2.10 (Thomson’s principle [87]). Given disjoint vertex sets A and Z in a finite

network (T , c), we may express the effective resistance between A and Z by Thomson’s

principle as

R(A↔ Z) = min
θ

 ∑
e∈E(T )

r(e)θ(e)2


Proof of Lemma 2.9. Fix λ > λc(TBL) and we choose θ such that:

R(λ, TBL) =
∑

e∈E(T )

(
θ(e)2

λ|e|

)
. (2.29)

We can rewrite Equation 2.29:

R(λ, TBL) =
∑
n≥0

1

λn

∑
|e|=n

θ(e)2

 . (2.30)

We take ε = 1/2, there exists h(L) > 0 such that for any n0 ≥ h(L):
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∑
n≥n0

1

λn

∑
|e|=n

θ(e)2

 <
ελL

L
(2.31)

Define a flow θ′ on TB∞L ,` by the following way: For each finite self-avoiding walk γ

in B∞,`L , one can decompose in the unique ways into self-avoiding walks (γi)1≤i≤i0 and

(βi)1≤i≤i0 such that γi is a self-avoiding walk in Bi which intersects the side that does

not contain the starting point of this walk in Bi, in at most 1 point and βi := (γ\γi)
⋂
Bi

(see Figure 3.3).

γ1

β1

γ2

β2

γ3

Figure 3.3

For each i, we have Bi is a sub-domain of BL and then γi is also a self-avoiding walk of

the strip BL. Then we set:

θ′(γ) =

i0∏
i=1

θ({ϕBL(γi), p(ϕBL(γi))}), (2.32)

where p(ϕBL(γi)) is the parent of ϕBL(γi) in the tree TBL . We can see that θ′ is a flow

on T
B∞,`L

. We want to estimate the following difference:
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∣∣∣R(λ, T
B∞,`L

)−R(λ, TBL)
∣∣∣ (2.33)

Because T
B∞,`L

⊂ TBL , by Theorem 2.10, we have:

R(λ, T
B∞,`L

) ≥ R(λ, TBL) = E(θ) (2.34)

Moreover, by Theorem 2.10, we have:

R
(
λ, T

B∞,`L

)
≤ E(θ′). (2.35)

We then obtain:

E(θ′) ≥ R
(
λ, T

B∞,`L

)
≥ R (λ, TBL) = E(θ). (2.36)

We use Equation 2.36 to obtain:

∣∣∣R(λ, TB∞,`L

)
−R (λ, TBL)

∣∣∣ ≤ ∣∣E(θ′)− E(θ)
∣∣ . (2.37)

By the construction of θ′, if ` ≥ h(L) we have:

∣∣E(θ′)− E(θ)
∣∣ ≤ ∞∑

i=1

iL

(
1

λ

)iL λiL
Li

εi < 1. (2.38)

By Equations 2.37 and 2.38, if ` > h(L), we have:

R
(
λ, T

B∞,`L

)
≤ R (λ, TBL) + 1. (2.39)

Therefore, for any ` > h(L),

C
(
λ, T

B∞,`L

)
≥ C(λ, TBL)

1 + C(λ, TBL)
> 0, (2.40)

this completes the proof of lemma.
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Figure 3.4

Figure 3.5

Figure 3.6
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Figure 3.7

Figure 3.8

Figure 3.9
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Chapter 4

The branching-ruin number as

critical parameter of random

processes on trees

Abstract

The branching-ruin number of a tree, which describes its asymptotic growth and ge-

ometry, can be seen as a polynomial version of the branching number. This quantity

was defined by Collevecchio, Kious and Sidoravicius (2018) in order to understand

the phase transitions of the once-reinforced random walk (ORRW) on trees. Strik-

ingly, this number was proved to be equal to the critical parameter of ORRW on

trees.

In this paper, we continue the investigation of the link between the branching-ruin

number and the criticality of random processes on trees.

First, we study random walks on random conductances on trees, when the con-

ductances have an heavy tail at 0, parametrized by some p > 1, where 1/p is the

exponent of the tail. We prove a phase transition recurrence/transience with respect

to p and identify the critical parameter to be equal to the branching-ruin number of

the tree.

Second, we study a multi-excited random walk on trees where each vertex has M

cookies and each cookie has an infinite strength towards the root. Here again, we

prove a phase transition recurrence/transience and identify the critical number of

cookies to be equal to the branching-ruin number of the tree, minus 1. This result

extends a conjecture of Volkov (2003). Besides, we study a generalized version of

this process and generalize results of Basdevant and Singh (2009).

This chapter is based on [31], which is joint work with Andrea Collevecchio and Daniel

Kious.
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1 Introduction

Let us consider a random process on a tree which is parametrized with one parameter p.

We say that this process undergoes a phase transition if there exists a critical parameter

pc such that the (macroscopic) behavior of the random process is significantly different

for p < pc and for p > pc. This is, for instance, the case of Bernoulli percolation on

trees, biased random walks (see [85, 86, 87]) or linearly edge-reinforced random walks

[101] on trees.

In [85], R. Lyons proved the following beautiful result. Bernoulli percolation and bi-

ased random walks (among others) share the same critical parameter which is equal to

the branching number of the tree. The branching number, defined by Furstenberg [53],

is, roughly speaking, a quantity that provides a precise information on the asymptotic

growth and geometry of a tree, at the exponential scale (see (2.1) for a definition). For

instance, for trees that are “well-behaved” (such as spherically symmetric trees) and

whose spheres of diameter n have size mn, the branching number is equal to m. This

description is actually not accurate as some trees have a peculiar geometry, and the size

of their spheres is not a good indicator of their asymptotic complexity.

The phase transition of the once-reinforced random walk was studied in [33]. In order to

see a phase transition, one needs to consider trees that grow polynomially fast (see [75]),

and therefore the branching number is not the quantity that would provide a relevant

information in this case. Indeed, the branching number does not allow us to distinguish

among trees with polynomial growth as the branching number of any tree with sub-

exponential growth is equal to 1. In [33], it was proved that the critical parameter for

the once-reinforced random walk on trees is equal to the branching-ruin number of the

tree (see (2.2)). The branching-ruin number of a tree is best described as the polynomial

version of the branching number: if a well-behaved tree has spheres of size nb, then the

branching-ruin number of this tree is b. Again, this fact is not true in general because

of the possible complex asymptotic geometry of trees.

The purpose of the current paper is to emphasize two other examples where the branching-

ruin number appears as the critical parameter of a random process, as it was done for the

branching number. We study random walks on random conductances with heavy-tails

and a model of excited random walks called the M -digging random walk. In the next

two subsections, we describe our results. In the first one, we relate the branching-ruin

number to the critical weight of the tails of the conductances. In the second result,

we relate the critical number of cookies per site to the branching-ruin number and, in

particular, our result extends a conjecture of Volkov [118].

1.1 Random walk on heavy-tailed random conductances

First, we study random walks on random conductances in the case where the con-

ductances have heavy tails at zero. Consider an infinite, locally finite, tree T with
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branching-ruin number b (see (2.2) for a definition). Even though our results hold for

any branching-ruin number, for the sake of the following explanations, let us temporarily

assume that b > 1, so that simple random walk is transient on this tree (see Theorem

1.2, or [33]). Assign i.i.d. conductances, or weights, to each edge of T and let us de-

fine a nearest-neighbor random walk which jumps through an edge with a probability

proportional to the conductance of this edge. This model is very classical and has been

extensively study on various graph, including Z and Zd. The behavior of the walk de-

pends on the common law of the conductances.

For instance, if the conductances are bounded away from 0 and from the infinity, the

behavior of the walk is close to the one of simple random walk and it will therefore be

transient on T , moving at a speed similar to that of simple random walk.

If the conductances can be very large, i.e. unbounded and for instance with an heavy-tail

at infinity, this should not affect the transience of the walk. Nevertheless, this would

have an important impact on the time that the random walk spends on small areas of

the environment. We do not prove anything in this direction in this paper as our main

interest is in the recurrence/transience of the walk, but we would like to describe here

what should happen. If the conductances can be extremely large with a not-so-small

probability, then the walker will meet, here and there, an edge with an overwhelmingly

large conductance and will cross this edge back-and-forth for a very large number of

times before moving on. The consequence of this mechanism is that the random walker

will spend most of its time on these traps and will move at a speed much smaller than

simple random walk on the same tree. This phenomenon is reminiscent of Bouchaud’s

trap model, see [49, 42, 44, 43], or [52] where an explicit link is made between Bouchaud’s

trap model and biased random walk on random conductances.

The last possible scenario is when the conductances could be extremely small, which is

what we are mainly interested in here. The extreme case would be percolation where

the random walk is recurrent as soon as the percolation is subcritical. In our case, the

conductances remain positive but have an heavy-tail at 0. This creates “barriers” of

edges with atypically small conductances that can make the walker come back to the

root infinitely often, even when the tree is transient for simple random walk. Let us now

describe our results.

Recall that T is an infinite, locally finite, tree and let E be the set of all its edges. Let

(Ce)e∈E be a collection of i.i.d. random conductances that are almost surely positive.

Moreover, assume that

P

(
Ce ≤

1

t

)
=
L(t)

tm
, for t > 0, (1.1)

where L : R → R is a slowly-varying function. For simplicity, we will also assume that

P (Ce ≥ 1) > 0 without loss of generality.
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For a realisation of the environment (Ce), we can define a random walk on these con-

ductances which jumps through an edge e with a probability proportional to Ce. For

a formal definition of this random walk on random conductances (RWRC), we refer to

Section 2.3. In the following, we say that a walk is transient if it does not return to

its starting point with positive probability. If a walk is not transient, it comes back to

the root almost surely and it is called recurrent. We also give a formal definition of

recurrence and transience in Section 2.3.

Finally, the branching -ruin number of T , formally defined in (2.2), is denoted by brr(T ).

Theorem 1.1. Fix an infinite, locally finite, tree T and let b = brr(T ) ∈ [0,∞] be its

branching-ruin number. If b < 1, then RWRC is recurrent. Assuming b > 1, if mb > 1

then RWRC is transient and if mb < 1 then it is recurrent.

1.2 The M-digging random walk

Our second main result concerns a model of multi-excited random walks on trees, also

known as cookie random walks.

Excited random walks were introduced by Benjamini and Wilson in [17] on Zd, and

have been extensively studied (see [7, 18, 76, 77, 117]). Zerner [121, 120] introduced a

generalization of this model called multi-excited random walks (or cookie random walk).

These walks are well understood on Z, but not much is known in higher dimensions.

Here, we study an extreme case of multi-excited random walks on trees, introduced by

Volkov [118], called the M -digging random walk (M -DRW). We also study its biased

version and generalize a result by Basdevant and Singh [10], see Theorem 3.3, who stud-

ied it on regular trees.

Assign to each vertex M cookies, where M is a non-negative integer. Define a nearest-

neighbor random walk X as follows. Each time it visits a vertex, if there is any cookie

left there, it eats one of them and then jumps to the parent of that vertex. If no cookies

are detected, then it jumps to one of the neighbors with uniform probability. We refer

to section 2.3 for a formal definition of this process.

Volkov [118] conjectured that this process is transient on any tree containing the binary,

which was proved by Basdevant and Singh [10]. Here, we obtain a much finer description

of the process and we can prove that this random walk actually undergoes a phase

transition on trees with polynomial gowth, i.e. on trees T where the branching-ruin

number brr(T ) is finite.

[118]

Theorem 1.2. Let T be an infinite, locally-finite, rooted tree, and let M ∈ N. If

brr(T ) < M + 1 then M -DRW is recurrent and if brr(T ) > M + 1 then M -DRW is
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transient.

We refer to Theorem 3.3 for the more general result on the biased case and Theorem 3.1

for the case where the number of cookies on each vertex is inhomogeneous over the tree.

2 The models

In this section, we define relevant vocabulary and conventions. We then recall the

definition of the branching number and branching-ruin number of a tree, and finally

we formally define the models.

2.1 Notation

Let T = (V,E) be an infinite, locally finite, rooted tree with set of vertices V and set of

edges E. Let % be the root of T .

Two vertices ν, µ ∈ V are called neighbors, denoted ν ∼ µ, if {ν, µ} ∈ E.

For any vertex ν ∈ V \ {%}, denote by ν−1 its parent, i.e. the neighbour of ν with

shortest distance from %.

For any ν ∈ V , let |ν| be the number of edges in the unique self-avoiding path connecting

ν to % and call |ν| the generation of ν. In particular, we have |%| = 0.

For any edge e ∈ E denote by e− and e+ its endpoints with |e+| = |e−|+ 1, and define

the generation of an edge as |e| = |e+|.
For any pair of vertices ν and µ, we write ν ≤ µ if ν is on the unique self-avoiding path

between % and µ (including it), and ν < µ if moreover ν 6= µ. Similarly, for two edges

e and g, we write g ≤ e if g+ ≤ e+ and g < e if moreover g+ 6= e+. For two vertices

ν < µ ∈ V , we will denote by [ν, µ] the unique self-avoiding path connecting ν to µ. For

two neighboring vertices ν and µ, we use the slight abuse of notation [ν, µ] to denote the

edge with endpoints ν and µ (note that we allow µ < ν).

For two edges e1, e2 ∈ E, we denote e1 ∧ e2 the vertex with maximal distance from %

such that e1 ∧ e2 ≤ e+
1 and e1 ∧ e2 ≤ e+

2 .

2.2 The Branching Number and The Branching-Ruin Number

In order to define the branching number and the branching-ruin number of a tree, we

will need the notion of cutsets.

Let T be an infinite, locally finite and rooted tree. A cutset in T is a set π of edges

such that, for any infinite self-avoiding path (νi)i≥0 started at the root, there exists a

unique i ≥ 1 such that [νi−1, νi] ∈ π. In other words, a cutset is a minimal set of edges

separating the root from infinity. We use Π to denote the set of cutsets.



134
CHAPTER 4. THE BRANCHING-RUIN NUMBER AS CRITICAL PARAMETER

OF RANDOM PROCESSES ON TREES

The branching number of T is defined as

br(T ) := sup

{
γ > 0 : inf

π∈Π

∑
e∈π

γ−|e| > 0

}
∈ [1,∞]. (2.1)

branching-ruin number of T is defined as

brr(T ) := sup

{
γ > 0 : inf

π∈Π

∑
e∈π
|e|−γ > 0

}
∈ [0,∞]. (2.2)

These quantities provide good ways to measure respectively the exponential growth and

the polynomial growth of a tree. For instance, a tree which is spherically symmetric (or

regular) and whose n generation grows like bn, for b ≥ 1, has a branching number equal

to b. On the other hand, if such a tree grows like nb, for some b ≥ 0, its branching-ruin

number is equal to b. We refer the reader to [87] for a detailed investigation of the

branching number and [33] for discussions on the branching-ruin number.

2.3 Formal definition of the models

The random walk on heavy-tailed random conductances

In this section, we provide a formal definition of the random walk on random conduc-

tances (RWRC).

First let us define the environment of the walk. To the edges of T , we associate i.i.d. ran-

dom conductances Ce ∈ (0,∞), e ∈ E, with common law P, where E denotes the

corresponding expectation. We will assume that

P

(
Ce ≤

1

t

)
=
L(t)

tm
, for t > 0, (2.3)

where L : R→ R is a slowly varying function.

Given a realisation of the environment (Ce)e∈E , we define a reversible Markov chain

X = (Xn)n. We denote Pων the law of this Markov chain when it is started from a vertex

ν ∈ V . Under Pω% , we have that X0 = % and, if Xn = ν and µ ∼ ν, we have that

Pω% (Xn+1 = µ|Xn = ν) = Pων (X1 = µ) =
C[ν,µ]∑

µ′∼ν C[ν,µ′]
.

We call Pω· the quenched law of the random walk and denote Eω· the corresponding

expectation. We define the annealed law of X started at % as the semi-direct product

P% = P × Pω% , that is the random walk averaged over the environment. We denote E%
the corresponding annealed expectation.

For a vertex v ∈ V , T (v) stands for the return time to v, that is

T (v) := inf{n > 0 : Xn = v}.
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A RWRC is said to be recurrent if it returns to %, P%-almost surely. This process is

transient if it is not recurrent, that is

P%
(
T (%) =∞

)
> 0.

As P%
(
T (%) =∞

)
= E

(
Pω%

(
T (%) =∞

))
, X is transient if, with positive P-probability,

we have that

Pω%

(
T (%) =∞

)
> 0.

Finally, as X is a Markov chain under Pω· , we have that it is transient if and only if the

walk returns finitely often to the root % and, using a zero-one law on the environment, we

can prove that this happens with probability 0 or 1. Therefore, the notions of recurrence

and transience are well defined in the quenched and annealed sense.

The M-digging random walk

Let T = (V,E) be an infinite, locally-finite, tree rooted at a vertex %. We are going

to define a biased version of the M -DRW described above, which will also allow for an

inhomogeneous initial number of cookies.

Let M = (mν , ν ∈ V ) be a collection of non-negative integers, with m% = 0, and fix

λ > 0. For convenience, for e ∈ E, we denote me = me+ .

Let us define a random walk X = (Xn)n≥0 as follows. For any vertex ν ∈ V , define

`n(ν) = |{k ∈ {0, . . . , n} : Xk = ν}| . (2.4)

For each edge e ∈ E and each time n ∈ N, we associate the following weight:

Wn(e) :=
(

1− 1l{`n(e−)≤me−}

)
λ−|e|+1. (2.5)

As can be seen in (2.6) below, the model remains unchanged if, in the above definition,

we use λ−|e| instead of λ−|e|+1. Our choice turns out to be convenient in the proofs.

For a non-oriented edge [ν, µ], we will simply write Wn(ν, µ) = Wn(µ, ν) = Wn([ν, µ])

We start the random walk at X0 = %. At time n ≥ 0, for any ν ∈ V , on the event

{Xn = ν}, we define, for any µ ∼ ν,

P (Xn+1 = µ| Fn) =
Wn(ν, µ)∑

µ′∼νWn(ν, µ′)
, (2.6)

where Fn = σ(X0, . . . , Xn) is the σ-field generated by the history of X up to time n.

We call this walk an M -digging random walk with bias λ and denote it M -DRWλ.

It will be very convenient to observe X only at times when it is on vertices with no more

cookies. For this purpose, let us define X̃ = (X̃n)n a nearest-neighbor random walk on

T as follows. Let σ0 = 0 and, for any n ∈ N,

σn+1 = inf {k > σn : Xk 6= Xσn , `k(Xk) ≥ mXk + 1} . (2.7)
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We define, for all n ∈ N, X̃n = Xσn .

Next, we want to define notions of recurrence and transience for X. As above, we define

the return time of X, or X̃, to a vertex ν ∈ V by

T (ν) := inf{k ≥ 1 : X̃k = ν}. (2.8)

In words, we consider that a vertex ν is hit by X when it is hit by X̃ in the usual

sense. The fact to choose this time to be greater than 1 will be convenient technically

to accommodate with the particularities of the root.

We say that X, or X̃, is transient if

P (T (%) =∞) > 0. (2.9)

Otherwise, we say that X, or X̃, is recurrent.

Note that if we choose mν = M ∈ N for all ν ∈ V \ {%} and λ = 1, then X is the

M -DRW described in Section 1.2.

3 Main results

We are about to state a sharp criterion of recurrence/transience in terms of a quantity

RT (T ,X), first introduced in [33].

For a function ψ : E → R+, we define the quantity

RT (T , ψ) := sup

γ > 0 : inf
π∈Π

∑
e∈π

∏
g≤e

ψ(g)

γ

> 0

 . (3.1)

As we will see, for the relevant function ψ, the recurrence or transience of the walks will

be related to this quantity being smaller or greater than 1.

3.1 Main results about RWRC

It is straightforward to see that the two following results together imply Theorem 1.1.

The proof of Proposition 3.1 is given in Section 5.

Let us define, for any e ∈ E, ψRC(e) = 1 if |e| = 1 and, if |e| > 1,

ψRC(e) =

∑
g<eC

−1
g∑

g≤eC
−1
g
. (3.2)

Proposition 3.1. Fix an infinite, locally finite, tree T and let b = brr(T ) ∈ [0,∞] be

its branching-ruin number. If b < 1 then RT (T , ψRC) < 1, P-almost surely. Assuming

b > 1, we have that
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1. if mb > 1 then RT (T , ψRC) > 1 with positive P-probability;

2. if mb < 1 then RT (T , ψRC) < 1, P-almost surely.

The following result is a direct consequence of Theorem 5 of [33], recalling the discussion

at the end of Section 2.3 and noting that condition (2.5) in [33] is trivially satisfied

by Markov chains, which in that context is translated into non-reinforced environments.

Therefore, we will omit its proof.

Proposition 3.2 (Theorem 5 of [33]). Fix an infinite, locally finite, tree T . We have

that

1. if RT (T , ψRC) > 1 with positive P-probability then RWRC is transient;

2. if RT (T , ψRC) < 1 P-almost surely then RWRC is recurrent.

3.2 Main results about the M-DRWλ

The following Theorem is more general than Theorem 1.2 in the introduction and deals

with the homogeneous case where M = (mν ; ν ∈ V ) is such that m% = 0 and mν = M

for all ν ∈ V \ {%}. Let us emphasize that, in item (1) below, the phase transition is

given in terms of branching-ruin number whereas, in item (2), the phase transition is

given in terms of branching number.

Theorem 3.3. Let T be an infinite, locally-finite, rooted tree, and let M ∈ N, λ > 0.

Denote X the M -DRWλ on T with parameters λ > 0 and M = (mν ; ν ∈ V ) such that

m% = 0 and mν = M for all ν ∈ V \ {%}. We have that

1. in the case λ = 1, if brr(T ) < M + 1 then X is recurrent and if brr(T ) > M + 1

then X is transient;

2. for any λ > 1, if br(T ) < λM+1 then X is recurrent and if br(T ) > λM+1 then X

is transient;

3. for any λ < 1, X is transient.

Remark 3.4. If, for a tree T , br(T ) > 1, then we have that brr(T ) =∞, as proved of

Case V of the proof of Lemma 3.2. Therefore, the items (1) and (2) in Theorem 3.3 are

not contradictory.

Note that, for a b-ary tree, br(T ) = b and our result therefore agrees with Corollary

1.7 of [10]. In [10], the authors prove that the walk is recurrent at criticality on regular

trees, but this is not expected to be true in general.

We are about to state a sharp criterion of recurrence/transience in terms of a quantity

RT (T , ·) as defined in (3.1), which will apply to the general case M = (mν ; ν ∈ V ) ∈ NV .
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We will then prove that Theorem 3.3 is a simple corollary of this general result.

For this purpose, we need some notation. Let us define a function ψM,λ on the edges of

E such that, for any e ∈ E, ψM,λ(e) = 1 if |e| = 1 and, for any e ∈ E with |e| > 1,

ψM,λ(e) :=

(
λ|e|−1 − 1

λ|e| − 1

)me++1

if λ 6= 1,

ψM,λ(e) :=

( |e| − 1

|e|

)me++1

if λ = 1.

(3.3)

As we will see in Section 7, ψM,λ(e) corresponds to the probability that X, or X̃, when

restricted to [%, e+] (i.e. the path from the root to e+), hits e+ before returning to %,

after having hit e−.

We will prove the following result in Section 8.

Theorem 3.5. Consider an M -DRWλ X on an infinite, locally finite, rooted tree T ,

with parameters λ > 0 and M = (mν ; ν ∈ V ) ∈ NV . If RT (T , ψM,λ) < 1 then X is

recurrent. If RT (T , ψM,λ) > 1 and if

∃M ∈ N such that sup
ν∈V

mν ≤M, (3.4)

then X is transient.

The following result concerns the homogeneous case. Theorem 3.3 is a straightforward

consequence of Theorem 3.5 and Lemma 3.2.

Lemma 3.6. Consider an M -DRWλ X on an infinite, locally finite, rooted tree T ,

with parameters λ > 0 and M = (mν ; ν ∈ V ) such that m% = 0 and mν = M for all

ν ∈ V \ {%}. We have that

1. for λ = 1, if brr(T ) < M + 1 then RT (T , ψM,λ) < 1 and if brr(T ) > M + 1 then

RT (T , ψM,λ) > 1;

2. for λ > 1, if br(T ) < λM+1 then RT (T , ψM,λ) < 1 and if br(T ) > λM+1 then

RT (T , ψM,λ) > 1;

3. for λ < 1, we have RT (T , ψM,λ) < 1.

The proofs of Theorem 3.5 and Lemma 3.6 are given in Section 6.

4 Preliminary results

Proposition 4.2 below can be proved following line by line the argument in Section 8 of

[33]. For the sake of completeness, we give an outline of the proof in the Appendix 9.
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It relies on the concept of quasi-independent percolation defined as below (see also [87],

page 144). In the following, we denote by C(%) the cluster of open edges containing the

root %.

Definition 4.1. An edge-percolation is said to be quasi-independent if there exists a

constant CQ ∈ (0,∞) such that, for any two edges e1, e2 ∈ E with common ancestor

e1 ∧ e2, we have that

P
(
e1, e2 ∈ C(%)| e1 ∧ e2 ∈ C(%)

)
≤CQP

(
e1 ∈ C(%)| e1 ∧ e2 ∈ C(%)

)
×P

(
e2 ∈ C(%)| e1 ∧ e2 ∈ C(%)

)
.

(4.1)

This previous notion is useful when one tries to prove the super-criticality of a correlated

percolation.

Proposition 4.2. Consider an edge-percolation (not necessarily independent), such that

edges at generation 1 are open almost surely and, for e1 ∈ E with |e1| > 1,

P (e1 ∈ C(%)| e0 ∈ C(%)) = ψ(e1) > 0, (4.2)

where e0 ∼ e1 and e0 < e1. If RT (T , ψ) < 1 then C(%) is finite almost surely. If the

percolation is quasi-independent and if RT (T , ψ) > 1 then C(%) is infinite with positive

probability.

The proof of Proposition 4.2 above is postponed in Appendix 9.

Let us first apply this to a particular percolation in order to obtain a sufficient criterion

for subcriticality.

Corollary 4.3. Let T be a tree with branching ruin number brr(T ) = b ∈ [0,∞]. Fix a

parameter δ > 0 and perform a percolation (not necessarily independent) on T such that

(4.2) holds and assume moreover that ψ(e) = 1 − δ|e|−1 as soon as |e| > n0, for some

integer n0 > 1. If δ > b then the percolation is subcritical.

Proof. For a cutset π, let |π| = inf{|e| : e ∈ π}. First, note that for any α > b,

inf
π∈Π:|π|≤n0

∑
e∈π
|e|−α ≥ n−α0 > 0,

and therefore

inf
π∈Π:|π|>n0

∑
e∈π
|e|−α = inf

π∈Π

∑
e∈π
|e|−α = 0.
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Second, for any γ > b/δ, we have

inf
π∈Π

∑
e∈π

∏
g≤e

(ψ(g))γ ≤ inf
π∈Π:|π|>n0

∑
e∈π

∏
g≤e

(ψ(g))γ

≤ inf
π∈Π:|π|>n0

∑
e∈π

∏
g≤e

(
1− δ|g|−1

)γ
≤ inf

π∈Π:|π|>n0

∑
e∈π

exp

−γδ |e|∑
i=1

i−1


≤ inf

π∈Π:|π|>n0

∑
e∈π
|e|−γδ = 0.

(4.3)

Hence RT (T , ψ) < 1 and by using Proposition 4.2 the cluster Tδ is finite, almost surely.

Next, we use Proposition 4.2 and Corollary 4.3 to prove the following result.

Proposition 4.4. Let T be a tree with branching ruin number brr(T ) = b ∈ [0,∞]. Fix

a parameter δ > 0 and perform a quasi-independent percolation on T such that (4.2)

holds and assume moreover that ψ(e) ≥ 1− δ|e|−1 as soon as |e| > n0, for some integer

n0 > 1. Let Tδ be the connected cluster containing the root %. We have that

1. if δ < b then Tδ is infinite with positive probability;

2. for any δ ∈ (0, b) we have that, with positive probability, brr(Tδ) ≥ b− 2δ.

Proof. First we prove (1). For π ∈ Π, we define |π| = min{|e|; e ∈ π}. Notice that, for

any γ > 1, as ψ(e) > 0 for every e ∈ E,

inf
π∈Π:|π|≤n0

∑
e∈π

∏
g≤e

(ψ(g))γ > 0. (4.4)

If δ < b, then for any γ ∈ (1, b/δ), we have

inf
π∈Π:|π|>n0

∑
e∈π

∏
g≤e

(ψ(g))γ ≥ inf
π∈Π:|π|>n0

∑
e∈π

∏
g≤e

(
1− δ|g|−1

)γ
≥ c inf

π∈Π

∑
e∈π

exp

−γδ |e|∑
i=1

i−1


≥ 2−bc inf

π∈Π

∑
e∈π
|e|−γδ > 0,

(4.5)

where c is some positive constant. Putting (4.4) and (4.5) together, we have that

RT (T , ψ) > 1. By Proposition 4.2, as the percolation is quasi-independent, the cluster

Tδ is infinite with positive probability.
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Next, we turn to the proof of (2). Consider the previous percolation, with δ < b and fix

p < b− δ.
On the event {Tδ is infinite}, which has positive probability, we perform an independent

percolation on Tδ for which an edge e stays open with probability (1 − p|e|−1). We

proved that if p < brr(Tδ) then the percolation is supercritical and if p > brr(Tδ) then it

is subcritical. We denote T ′δ+p the resulting cluster of the root.

On the other hand, performing this percolation on Tδ is equivalent to performing a quasi-

independent percolation on the whole tree T where an edge e stays open with probability

ψ(e)(1 − p|e|−1). As ψ(e)(1 − p|e|−1) ≥ (1 − δ|e|−1)(1 − p|e|−1) ≥ 1 − (δ + p)|e|−1, for

|e| > n0, if p + δ < b, this percolation is supercritical, i.e. T ′p+δ is infinite with positive

probability.

This implies that, on the event {Tδ is infinite}, the cluster T ′δ+p is infinite with positive

probability. Therefore, by Corollary 4.3, brr(Tδ) ≥ p with positive probability. As this

holds for any p < b− δ, we obtain the conclusion.

5 Proof of Proposition 3.1 and Theorem 1.1

First, note that Theorem 1.1 is a straightforward consequence of Proposition 3.1 and

Proposition 3.2. Therefore, it remains to prove Proposition 3.1.

5.1 Transience: proof of the first item of Proposition 3.1

In this section, we will prove that RT (T , ψRC) > 1, where we recall that this quantity

is defined in (3.1) and ψRC is defined in (3.2).

In particular, we can rewrite

RT (T , ψRC) = sup

λ > 0 : inf
π∈Π

∑
e∈π

(
1∑

i≤eC
−1
i

)λ
> 0

 . (5.1)

Besides, notice that ψ(e) represents the probability that a one-dimensional random walk

on the conductances (Ce)e∈E , restricted to the ray connecting % to e+ and started at e−,

hits e+ before returning to %.

Proposition 5.1. For any p ∈ N, and for any τ > 0, there exists a positive finite

constant Kp,τ such that

E

[( n∑
i=1

C−1
i

)p ∣∣∣ n⋂
i=1

{C−1
i ≤ i 1+τm }

]
≤ Kp,τn

p(1∨ (1+τ)2

m
), for all n ∈ N. (5.2)

Proof. Recall that for any non-negative random variable Z we have, for a > 1,

E[Za] =

∫ ∞
0

aua−1P(Z ≥ u)du.
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For any b > 0 we have that any slowly varying function L(u) is o(ub), as u→∞. Hence,

for any τ > 0, there exists a constant Kτ , i0 > 0 depending only on L and τ , such that,

for i ≥ i0,

E[C−ai | C−1
i ≤ i 1+τm ] ≤

1 +

∫ i
1+τ
m

1
aua−1L(u)

um
du

( 1

1− i−(1+τ)L(i
1+τ
m )

)

≤ 2

(
1 +

Kτ

a−mia(1+τ)2/m−1 − 1

)
:= b(a,τ)i .

(5.3)

For simplicity we drop τ from the notation, and use (b(a)i )i. Notice that the sequence

(b(a)i )i, when a ≥ 1, is O(i
a(1+τ)2

m
−1 ∨ 1), that is there exists K̃a > 0 depending only on

L, a and τ such that

b(a)i ≤ K̃a

(
i
a(1+τ)2

m
−1 ∨ 1

)
,

for all i ∈ N. In order to prove the proposition, we proceed by double induction. First

we prove that (5.2) holds for p = 1 and all n ∈ N. In fact, for m > 0, we have

E

[( n∑
i=1

C−1
i

) ∣∣∣ n⋂
i=1

{C−1
i ≤ i 1+τm }

]
≤

n∑
i=1

K̃1(i
(1+τ)2

m
−1 ∨ 1) = O(n(

(1+τ)2

m
∨1)). (5.4)

Note that, in the previous inequality, we use that P[Ce ≥ 1] > 0 for any e ∈ E, so that

the conditional probability on the left-hand side is well-defined.

Assume that (5.2) holds for all p ≤ β− 1 and for all n ∈ N. Notice that (5.2) is trivially

true for n = 1 and p = β. Suppose it is true for all n ≤ N and for p = β. To simplify

the notation, set η = (1+τ)2

m ∨ 1. Next we prove the result for N + 1. We can suppose

that Kβ is larger than

β max
0≤j≤β−1

(
β

j

)
KjK̃β−j , (5.5)

where K0 = 1. We have

E

[(N+1∑
i=1

C−1
i

)β ∣∣∣ N+1⋂
i=1

{
C−1
i ≤ i 1+τm

}]

= E

( N∑
i=1

C−1
i

)β
+ C−βN+1 +

β−1∑
j=1

(
β

j

)( N∑
i=1

C−1
i

)j
C−β+j
N+1

∣∣∣ N+1⋂
i=1

{C−1
i ≤ i 1+τm }


≤ KβN

βη + b(β)N+1 +

β−1∑
j=1

(
β

j

)
E

[( N∑
i=1

C−1
i

)j ∣∣∣ N+1⋂
i=1

{C−1
i ≤ i 1+τm }

]
b(β−j)N+1

≤ KβN
βη + K̃β

(
(N + 1)

β(1+τ)2

m
−1 ∨ 1

)
+

β−1∑
j=1

(
β

j

)
KjN

jηK̃β−j

(
(N + 1)

(β−j)(1+τ)2
m

−1 ∨ 1
)
.

(5.6)
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In the step before the last one, we used independence between CN+1 and (Ci)i≤N . As

we can choose Kβ to be larger than (5.5), we have

E

[(N+1∑
i=1

C−1
i

)β ∣∣∣ N+1⋂
i=1

{C−1
i ≤ i 1+τm }

]
≤ Kβ

(
Nβη + (N + 1)βη−1

)
. (5.7)

It remains to prove that the right-hand side of (5.7) is less than Kβ(N + 1)βη. Notice

that the right-hand side of (5.7) equals

(N + 1)βηKβ

((
1− 1

N + 1

)βη
+

1

N + 1

)
≤ Kβ(N + 1)βη,

where we used (1− x)a ≤ 1− x for all x ∈ (0, 1) and a > 1.

Corollary 5.2. For any ε ∈ (0, 1), any t > 0, there exist Cε,t > 0 such that, for any

e ∈ E, we have that

P

∑
g≤e

C−1
g > |e|(1∨ 1

m)+m+3
m

ε

∣∣∣∣∣∣
⋂
g≤e

{
C−1
g ≤ |g| 1+εm

} ≤ Cε,t|e|−t.
Proof. Using Proposition 5.1 and Markov’s inequality gives that, for any p ∈ N,

P

∑
g≤e

C−1
g > |e|

(
1∨ (1+ε)2

m

)
+ε

∣∣∣∣∣∣
⋂
g≤e

{
C−1
g ≤ |g| 1+εm

} ≤ Kp,ε|e|−pε. (5.8)

This gives the conclusion by choosing p = dt/εe and by noting that
(

1 ∨ (1+ε)2

m

)
+ ε ≤(

1 ∨ 1
m

)
+ m+3

m ε

Next, we will define a quasi-independent percolation on the tree T . Let us fix ε ∈ (0, 1∧b)
small enough, such that the following conditions are satisfied

(1 + ε)
1 + (m+ 3)ε

m
≤ b− 2ε if bm > 1, (5.9)

(1 + 4ε)(1 + ε) ≤ b− 2ε if b > 1. (5.10)

Let us define the percolation such that, for e ∈ E with |e| = 1, e is open almost surely

and if |e| > 1 then

{e is open} :=
{
C−1
e ≤ |e| 1+εm

}
∩

∑
g≤e

C−1
g ≤ |e|(1∨ 1

m)+m+3
m

ε

 . (5.11)
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We will denote by TC the cluster of open edges containing the root. Let us define the

function ψC on edges such that ψC(e) = 1 if |e| = 1 and, if |e| > 1 and e0 is the parent

of e, that is the unique edge such that e+
0 = e−, then

ψC(e) := P (e ∈ TC | e0 ∈ TC) . (5.12)

Proposition 5.3. The percolation defined by (5.11) is quasi-independent. Moreover,

RT (T , ψC) > 1 and, with positive P-probability brr(TC) ≥ b− ε.

Proof. Let us prove that there exists a constant p0 > 0 such that, for any e ∈ E,

P

e ∈ TC∣∣∣ ⋂
g≤e

{
C−1
g ≤ |g| 1+εm

} = P

⋂
g≤e
{g ∈ TC}

∣∣∣∣∣∣
⋂
g≤e

{
C−1
g ≤ |g| 1+εm

}
≥ p0.

(5.13)

Indeed, the conditioning in the above expression is equivalent to picking a sequence of

independent conductances (Cj)j≥1 under a measure P̃ such that Cj is picked under the

conditioned law P(·|C−1
j ≤ j 1+ε

m ), and looking at the events corresponding to the second

event on the right hand side of (5.11), that is

Aj =

∑
i≤j

C−1
i ≤ j(1∨ 1

m)+m+3
m

ε

 .

By Corollary 5.2 (applied with t = 2 for instance) and Borel-Cantelli Lemma, there

exists k ∈ N (deterministic) such that P̃ (∩n≥kAn) > 0. Now, if one replaces Cj by

C̃j = max(Cj , 1) for 1 ≤ j ≤ k, and let Ãn be the the same event as An but where Cj

is replaced by C̃j , then Ã1, . . . , Ãk always happen and P̃
(
∩n≥1Ãn

)
≥ P̃ (∩n≥kAn) > 0.

Finally, we can choose

p0 = P̃ (∩n≥1An) = P̃
(
∩n≥1Ãn

)
× P̃ (∩1≤j≤k {Cj ≥ 1}) > 0,

which proves the claim (5.13).

Let us prove that the percolation is quasi-independent. Let e1, e2 ∈ E and let e be their
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common ancestor with highest generation. We have that

P
(
e1, e2 ∈ TC

∣∣∣e ∈ TC) =
P (e1, e2 ∈ TC)

P (e ∈ TC)

=
∏

e<g≤e1 or e<g≤e2

P
(
C−1
g ≤ |g| 1+εm

) P
(
e1, e2 ∈ TC

∣∣∣⋂g≤e1,e2

{
C−1
g ≤ |g| 1+εm

})
P
(
e ∈ TC

∣∣∣⋂g≤e

{
C−1
g ≤ |g| 1+εm

})
≤ 1

p0
×

∏
e<g≤e1 or e<g≤e2

P
(
C−1
g ≤ |g| 1+εm

)

=
1

p0
×
∏
g≤e1 P

(
C−1
g ≤ |g| 1+εm

)
∏
g≤e P

(
C−1
g ≤ |g| 1+εm

) × ∏g≤e2 P
(
C−1
g ≤ |g| 1+εm

)
∏
g≤e P

(
C−1
g ≤ |g| 1+εm

)
≤ 1

p3
0

×
∏
g≤e1 P

(
C−1
g ≤ |g| 1+εm

)
∏
g≤e P

(
C−1
g ≤ |g| 1+εm

) × ∏g≤e2 P
(
C−1
g ≤ |g| 1+εm

)
∏
g≤e P

(
C−1
g ≤ |g| 1+εm

)
×

P
(
e1 ∈ TC

∣∣∣⋂g≤e1

{
C−1
g ≤ |g| 1+εm

})
P
(
e ∈ TC

∣∣∣⋂g≤e

{
C−1
g ≤ |g| 1+εm

})2 P

e2 ∈ TC
∣∣∣ ⋂
g≤e2

{
C−1
g ≤ |g| 1+εm

}
=

1

p3
0

P
(
e1 ∈ TC

∣∣∣e ∈ TC)×P
(
e2 ∈ TC

∣∣∣e ∈ TC) ,

(5.14)

where the first equality simply uses the definition of conditional probability, the second

uses (5.13) and bounds the probability in the numerator by 1, the third is a simple

re-writing, the fourth uses again (5.13) and bounds the probability in the denominator

by 1 and, finally, the fifth one is just using the definition of conditional probability.

This proves that the percolation is quasi-independent.

Let e be a generic edge with |e| > 1, and denote by e0 its parent. Using (5.13), (5.11)
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and again Corollary 5.2, we have that, there exists c0 > 0 such that

P
(
e /∈ TC

∣∣∣C−1
e ≤ |e| 1+εm , e0 ∈ TC

)
=

P
(
e /∈ TC , C−1

e ≤ |e| 1+εm , e0 ∈ TC
)

P
(
C−1
e ≤ |e| 1+εm , e0 ∈ TC

)
=

P
(
e /∈ TC , C−1

e ≤ |e| 1+εm , e0 ∈ TC
)

P (e0 ∈ TC) P
(
C−1
e ≤ |e| 1+εm

)
=

P
(
e /∈ TC , C−1

e ≤ |e| 1+εm , e0 ∈ TC
)

P (e0 ∈ TC) P
(⋂

g≤e

{
C−1
g ≤ |g| 1+εm

})P

 ⋂
g≤e0

{
C−1
g ≤ |g| 1+εm

}
≤

P
(
e /∈ TC , C−1

e ≤ |e| 1+εm ,
⋂
g≤e0

{
C−1
g ≤ |g| 1+εm

})
P
(⋂

g≤e

{
C−1
g ≤ |g| 1+εm

}) P
(⋂

g≤e0

{
C−1
g ≤ |g| 1+εm

})
P (e0 ∈ TC)

≤
P
(
e /∈ TC

∣∣∣⋂g≤e

{
C−1
g ≤ |g| 1+εm

})
P
(
e0 ∈ TC

∣∣∣⋂g≤e0

{
C−1
g ≤ |g| 1+εm

}) ≤ c0

|e|1+ε
.

(5.15)

Thus, we obtain that

1− ψC(e) = P (e /∈ TC | e0 ∈ TC)

≤ P
(
C−1
e > |e| 1+εm

)
+ P

(
e /∈ TC

∣∣∣C−1
e ≤ |e| 1+εm , e0 ∈ TC

)
≤ c0 + L(|e| 1+εm )

|e|1+ε
.

(5.16)

Therefore, there exists n0 > 1 such that, for any e ∈ E with |e| > n0, we have that

ψC(e) ≥ 1− ε

2
|e|−1.

By Proposition 4.4, as the percolation defined by (5.11) is quasi-independent and ε < b,

we have that brr(TC) ≥ b− ε with positive probability.

Let us consider different cases and prove that RT (T , ψRC) > 1, where we refer to (5.1)

for a definition of this quantity.

Proposition 5.4. If m ∈ (0, 1) and bm > 1 then RT (T , ψRC) > 1 with positive P-

probability.

Proof. Recall the percolation TC defined in (5.11). Let us denote ΠC the set of all

the cutsets in TC . By Proposition 5.3, we have that brr(TC) ≥ b − ε with positive
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P-probability. On this event, we have that

inf
π∈Π

∑
e∈π

(
1∑

i≤eC
−1
i

)1+ε

≥ inf
π∈ΠC

∑
e∈π

(
1∑

g≤eC
−1
g

)1+ε

≥ inf
π∈ΠC

∑
e∈π

(
|e|− 1

m
−m+3

m
ε
)1+ε

≥ inf
π∈ΠC

∑
e∈π
|e|−(b−2ε) > 0,

(5.17)

where we used (5.9). This implies that RT (T , ψRC) > 1 with positive P-probability, as

defined in (5.1).

Proposition 5.5. If m ≥ 1 and if b > 1 then RT (T , ψRC) > 1 with positive P-

probability.

Proof. Recall the percolation TC defined in (5.11). By Proposition 5.3, we have that

brr(TC) ≥ b− ε with positive probability. Let us denote ΠC the set of all the cutsets in

TC . On this event, we have that, if b > 1,

inf
π∈Π

∑
e∈π

(
1∑

i≤eC
−1
i

)1+ε

≥ inf
π∈ΠC

∑
e∈π

(
1∑

g≤eC
−1
g

)1+ε

≥ inf
π∈ΠC

∑
e∈π

(
|e|−1−4ε

)1+ε

≥ inf
π∈ΠC

∑
e∈π
|e|−(b−2ε) > 0,

(5.18)

where we used (5.10). This implies that RT (T , ψRC) > 1 with positive P-probability,

as defined in (5.1).

5.2 Recurrence: proof of the second item of Proposition 3.1

We will again consider different cases and prove this time that RT (T , ψRC) < 1, where

we refer to (5.1) for a definition of this quantity.

Proposition 5.6. If b ≥ 1 and bm < 1 then RT (T , ψRC) < 1, P-almost surely.

Proof. Fix two positive parameters δ and ε such that (1/m)− δ > 0 and(
1

m
− δ
)

(1− ε) ≥ b+ δ. (5.19)

The latter is possible as mb < 1.
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We have that

P

∑
i≤e

C−1
i ≤ |e| 1m−δ

 ≤ P

⋂
i≤e

C−1
i ≤ |e| 1m−δ


=

1−
L
(
|e| 1m−δ

)
|e|( 1

m
−δ)m

|e| ≤ exp
{
−|e|δmL

(
|e| 1m−δ

)}
.

(5.20)

By the definition of branching-ruin number, there exists a sequence of cutsets (πn, n ≥ 1)

such that for any n > 0, ∑
e∈πn

1

|e|b+δ < exp{−n}. (5.21)

On the other hand, for any n > 0 we have,

P

 ⋃
e∈πn

{∑
i≤e

C−1
i ≤ |e| 1m−δ

} ≤ ∑
e∈πn

P

∑
i≤e

C−1
i ≤ |e| 1m−δ


≤
∑
e∈πn

exp
{
−|e|δmL

(
|e| 1m−δ

)}
.

(5.22)

Note that there exists n0 such that for any n > n0, we have,∑
e∈πn

exp
{
−|e|δmL

(
|e| 1m−δ

)}
≤
∑
e∈πn

1

|e|b+δ < exp{−n}

Therefore, we have that

∑
n≥1

P

 ⋃
e∈πn

{∑
i≤e

C−1
i ≤ |e| 1m−δ

} <∞.

In virtue of the first Borel Cantelli Lemma, all edges e ∈ ⋃
n≥1

πn, with the exception of

finitely many, satisty ∑
i≤e

C−1
i > |e| 1m−δ. (5.23)

Hence, for n large enough∑
e∈πn

1

(
∑

i≤eC
−1
i )(1−ε) ≤

∑
e∈πn

1

|e|( 1
m
−δ)(1−ε)

≤
∑
e∈πn

1

|e|b+δ < exp{−n}. (5.24)

where we used (5.19). Hence,

lim
n→∞

∑
e∈πn

1

(
∑

i≤eC
−1
i )(1−ε) = 0. (5.25)
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Therefore, we have that

0 ≤ inf
π∈Π

∑
e∈π

(
1∑

i≤eC
−1
i

)1−ε

≤ inf
n≥1

∑
e∈πn

(
1∑

i≤eC
−1
i

)1−ε

= 0. (5.26)

Hence RT (T , ψRC) ≤ 1− ε.

The next result concludes the proof of Theorem 1.1.

Proposition 5.7. If b < 1 then RT (T , ψRC) < 1, P-almost surely.

Proof. First, fix δ ∈ (0, 1) such that

(1− δ)2 > b+ δ. (5.27)

The latter is possible as b < 1. Then, note that, for any ε ∈ (0, 1), there exists η > 0

such that

P
(
C−1

0 > η
)
> 1− ε. (5.28)

In the following, we denote (Cj)j≥0 a sequence conductances distributed like a generic

conductance Ce. There exists a constant cδ,ε > 0 such that, for any e ∈ E,

P

∑
i≤|e|

C−1
i ≤ η|e|1−δ

 ≤ P

|e|/b|e|δc⋃
k=1

kb|e|δc⋂
j=(k−1)b|e|δc+1

{
C−1
j ≤ η

}
≤ 2

1− ε |e|
1−δP

(
C−1

0 ≤ η
)|e|δ

≤ 2

1− ε |e|
1−δε|e|

δ

≤ cδ,ε|e|−b−δ.

(5.29)

Indeed, to prove the first inequality above, note that
|e|/b|e|δc⋃
k=1

kb|e|δc⋂
j=(k−1)b|e|δc+1

{
C−1
j ≤ η

}
c

=

|e|/b|e|δc⋂
k=1

kb|e|δc⋃
j=(k−1)b|e|δc+1

{
C−1
j > η

}

⊂

∑
i≤|e|

C−1
i > η|e|1−δ

 =

∑
i≤|e|

C−1
i ≤ η|e|1−δ


c

.

(5.30)

By the definition of branching-ruin number, there exists a sequence of cutsets (πn, n ≥ 1)

such that for any n > 0, ∑
e∈πn

1

|e|b+δ <
1

cδ,ε
exp{−n}. (5.31)
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We use (5.29) and (5.31) to obtain

P

 ⋃
e∈πn

{∑
g≤e

C−1
g ≤ η|e|1−δ

} ≤ cδ,ε ∑
e∈πn
|e|−b−δ ≤ exp(−n). (5.32)

Therefore, by Borel-Cantelli Lemma, as soon as n is large enough, we have that⋂
e∈πn

{∑
i≤e

C−1
i > η|e|1−δ

}
holds, which implies that∑

e∈πn

1

(
∑

i≤eC
−1
i )(1−δ) ≤

1

η1−δ

∑
e∈πn

1

|e|(1−δ)(1−δ) ≤
1

η1−δ

∑
e∈πn

1

|e|b+δ <
exp{−n}
cδ,εη1−δ . ,

(5.33)

where we used (5.27). Hence, following a strategy similar to (5.25), (5.26), we have that

RT (T , ψRC) ≤ 1− δ, P-almost surely.

6 Proof of Theorem 3.3 and Lemma 3.6

In this section, we prove Lemma 3.6. With this in hand, Theorem 1.2 and Theorem 3.3

will then trivially follow from Theorem 3.5 (proved in Section 8) by noting that (3.4) is

satisfied when mν = M ∈ N for all ν ∈ V \ {%}.
For any e ∈ E, we define

ΨM,λ(e) :=
∏
g≤e

ψM,λ(g). (6.1)

As we will see in Section 7, ΨM,λ(e) corresponds to the probability that X, or X̃, when

restricted to [%, e+] and started from %, hits e+ before returning to %.

Proof of Lemma 3.6. Here, we assume that (mν ; ν ∈ V ) such that m% = 0 and mν =

M ∈ N for all ν ∈ V \ {%}. Thus, by (3.1) and (3.3), we have that, if λ 6= 1,

ΨM,λ(e) =

(
λ− 1

λ|e| − 1

)M+1

, (6.2)

and, if λ = 1,

ΨM,λ(e) = |e|−M−1. (6.3)

We will proceed by distinguishing a few cases.

Case I: if λ > 1 and br(T ) < λM+1.

By (2.1), there exists δ ∈ (0, 1) such that

inf
π∈Π

∑
e∈Π

(
λ(M+1)(1−δ)

)−|e|
= 0. (6.4)
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For any π ∈ Π, we have that

∑
e∈π

ΨM,λ(e)1−δ = (λ− 1)(M+1)(1−δ)
∑
e∈π

(
1

λ|e| − 1

)(M+1)(1−δ)

= (λ− 1)(M+1)(1−δ)
∑
e∈π

λ−|e|(M+1)(1−δ)

(1− λ−|e|)(M+1)(1−δ)

≤ (λ− 1)(M+1)(1−δ)

(1− λ−1)(M+1)(1−δ)

∑
e∈π

λ−|e|(M+1)(1−δ).

(6.5)

Therefore, by (6.4),

inf
π∈Π

∑
e∈π

ΨM,λ(e)1−δ = 0, (6.6)

which implies that RT (T , ψM,λ) < 1.

Case II: if λ < 1 or if λ > 1 and br(T ) > λM+1.

Next, we prove that there exists δ > 0 and ε > 0 such that

inf
π∈Π

∑
e∈Π

(
λ(M+1)(1+δ)

)−|e|
> ε. (6.7)

To prove the previous inequality, first note that this holds trivially if λ < 1; second, if λ >

1, we use the definition of the branching number and choose δ such that λ(1+δ)(M+1) <

br(T ). A computation similar to (6.5) yields

inf
π∈Π

∑
e∈π

ΨM,λ(e)1+δ ≥ (λ− 1)(M+1)(1+δ) inf
π∈Π

∑
e∈π

λ−|e|(M+1)(1+δ)

> ε.

(6.8)

Therefore, we have that RT (T , ψM,λ) > 1.

Case III: brr(T ) > M + 1 and λ = 1.

By (2.2) , we have that there exists δ > 0 and ε > 0 such that

inf
π∈Π

∑
e∈π
|e|−(1+δ)(M+1) > ε. (6.9)

Therefore, by (6.3), we have that

inf
π∈Π

∑
e∈π

(ΨM,λ(e))1+δ = inf
π∈Π

∑
e∈π
|e|−(1+δ)(M+1) > ε, (6.10)

which in turn implies that RT (T , ψM,λ) > 1.
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Case IV: brr(T ) < M + 1 and λ = 1.

We have that there exists δ > 0 such that

inf
π∈Π

∑
e∈π
|e|−(1−δ)(M+1) = 0. (6.11)

Therefore, by (6.3), we have that

inf
π∈Π

∑
e∈π

(ΨM,λ(e))1−δ = inf
π∈Π

∑
e∈π
|e|−(1−δ)(M+1) = 0. (6.12)

Therefore, we have that RT (T , ψM,λ) < 1.

Case V: br(T ) > λM+1 and λ = 1.

Let us prove that br(T ) > 1 implies that brr(T ) = ∞, which gives the conclusion by

Case III. We have that there exists δ > 0 and ε > 0 such that

inf
π∈Π

∑
e∈Π

(1 + δ)−|e| > ε. (6.13)

Therefore, for any γ > 0, there exists a constant c0 > 0 depending only on γ, δ and ε,

such that ∑
e∈π
|e|−γ ≥ c0

∑
e∈π

(1 + δ)−|e| > c0ε. (6.14)

Taking the infimum over π ∈ Π allows to conclude that brr(T ) ≥ γ, for any γ > 0, hence

brr(T ) =∞.

7 Extensions

Here, we define the same construction as in [31] and [33], which is a particular case of

Rubin’s construction. A large part of this section is a verbatim of Section 5 of [33].

The following construction will allow us to emphasize useful independence properties of

the walk on disjoint subsets of the tree.

Let (Ω,F ,P) denote a probability space on which

Y = (Y (ν, µ, k) : (ν, µ) ∈ V 2,with ν ∼ µ, and k ∈ N) (7.1)

is a family of independent random variables, where (ν, µ) denotes an ordered pair of

vertices, and such that

— if ν = µ−1 and k = 0, then Y (ν, µ, 0) a Gamma random variable with parameters

mµ + 1 and 1;

— otherwise, Y (ν, µ, k) is an exponential random variable with mean 1.
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Remark 7.1. Recall that a Gamma random variable with parameters mµ+1 and 1 has

the same distribution as the sum of mµ + 1 i.i.d. exponential random variables with

mean 1.

Below, we use these collections of random variables to generate the steps of X̃. Moreover,

we define a family of coupled walks using the same collection of ‘clocks’ Y.

Define, for any ν, µ ∈ V with ν ∼ µ, the quantities

r(ν, µ) := λ−|ν|∨|µ|+1 (7.2)

We are now going to define a family of coupled processes on the subtrees of T . For

any rooted subtree T ′ of T , we define the extension X̃
(T ′)

= (V ′, E′) on T ′ as follows.

Let the root %′ of T ′ be defined as the vertex of V ′ with smallest distance to %. For a

collection of nonnegative integers k̄ = (kµ)µ:[ν,µ]∈E′ , let

A
(T ′)
k̄,n,ν

= {X̃(T ′)
n = ν} ∩

⋂
µ:[ν,µ]∈E′

{#{1 ≤ j ≤ n : (X̃
(T ′)
j−1 , X̃

(T ′)
j ) = (ν, µ)} = kµ}.

Note that the event A
(T ′)
k̄,n,ν

deals with jumps along oriented edges.

Set X̃
(T ′)
0 = %′ and, for ν, ν ′ such that [ν, ν ′] ∈ E′ and for n ≥ 0, on the event

A
(T ′)
k̄,n,ν

∩

ν ′ = arg min
µ:[ν,µ]∈E′

{ kµ∑
i=0

Y (ν, µ, i)

r(ν, µ)

} , (7.3)

we set X̃
(T ′)
n+1 = ν ′, where the function r is defined in (7.2) and the clocks Y ’s are from

the same collection Y fixed in (7.1).

Thus, this defines X̃
(T )

as the extension on the whole tree. It is easy to check, from

properties of independent exponential and Gamma random variables, the memoryless

property and Remark 7.1, that this provides a construction of X̃ on the tree T .

This continuous-time embedding is classical: it is called Rubin’s construction, after

Herman Rubin (see the Appendix in [34]).

Now, if we consider proper subtrees T ′ of T , one can check that, with these definitions,

the steps of X̃ on the subtree T ′ are given by the steps of X̃
(T ′)

(see [31] for details).

As it was noticed in [31], for two subtrees T ′ and T ′′ whose edge sets are disjoint, the

extensions X̃
(T ′)

and X̃
(T ′′)

are independent as they are defined by two disjoint sub-

collections of Y.

Of particular interest will be the case where T ′ = [%, ν] is the unique self-avoiding path

connecting % to ν, for some ν ∈ T . In this case, we write X̃
(ν)

instead of X̃
([%,ν])

, and we
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denote T (ν)(·) the return times associated to X̃
(ν)

. For simplicity, we will also write X̃
(e)

and T (e)(·) instead of X̃
(e+)

and T (e+)(·) for e ∈ E. Finally, it should be noted that, for

any e ∈ E and any g ≤ e,

ψM,λ(g) = P
(
T (e)(g+) ◦ θT (e)(g−) < T (e)(%) ◦ θT (e)(g−)

)
, (7.4)

ΨM,λ(e) = P
(
T (e)(e+) < T (e)(%)

)
, (7.5)

where θ is the canonical shift on the trajectories.

Remark 7.2. Note that, for any vertex ν, only the clocks Y (ν, µ, 0) with µ ∼ ν, ν < µ,

have a particular law. They follow a Gamma distribution instead of following an Expo-

nential distribution. This resembles what would happen for a once-reinforced random

walk (see [33]). In this case, these clocks would still have an Exponential distribution

but with a different parameter than the other ones (related to the reinforcement).

This means that an M -DRWλ is, in nature, very close to a once-reinforced random walk.

8 Proof of Theorem 3.5

In this section, we follow the blueprint of Section 7 of [33]. In order to prove transience,

the idea is to interpret the set of edges crossed before returning to % as the open edges

in a certain correlated percolation.

A key step is to prove that this correlated percolation is emph quasi-independent, which

will allow us to conclude its super-criticality from the super-criticality of some indepen-

dent percolation.

Note that we will prove the transience of X̃ which is equivalent to the transience of X.

8.1 Link with percolation

Denote by C(%) the set of edges which are crossed by X̃ before returning to %, that is:

C(%) = {e ∈ E : T (e+) < T (%)}. (8.1)

This set can be seen as the cluster containing % in some correlated percolation. Next, we

consider a different correlated percolation which will be more convenient to us. Recall

Rubin’s construction and the extensions introduced in Section 7. We define:

CCP (%) = {e ∈ E : T (e)(e+) < T (e)(%)}. (8.2)

This defines a correlated percolation in which an edge e ∈ E is open if e ∈ CCP (%).

Lemma 8.1. We have that

P(T (%) =∞) = P(|C(%)| =∞) = P(|CCP (%)| =∞). (8.3)
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Proof. We can follow line by line the proof of Lemma 11 in [33], except that one should

replace X by X̃.

8.2 Recurrence in Theorem 3.5: The case RT (T , ψM,λ) < 1

The following result states the recurrence in Theorem 3.5.

Proposition 8.2 (Proof of recurrence in Theorem 3.5: the case RT (T , ψM,λ) < 1). If

RT (T , ψM,λ) < 1 then X is recurrent.

Proof. This follows directly from Lemma 8.1 and Proposition 4.2.

8.3 Transience in Theorem 3.5: The case RT (T , ψM,λ) > 1

Now, we want to prove the transience in Theorem 3.5. For this purpose, we need to

check that the assumptions in Proposition 4.2 are satisfied.

For simplicity, for a vertex v ∈ V , we write v ∈ CCP(%) if one of the edges incident to v

is in CCP(%). Besides, recall that for two edges e1 and e2, their common ancestor with

highest generation is the vertex denoted e1 ∧ e2.

Lemma 8.3. Assume that the condition (3.4) holds with some constant M . Then the

correlated percolation induced by CCP is quasi-independent, as defined in Definition 4.1.

Proof. Here, we need to adapt the argument from the proof of Lemma 12 in [33].

Recall the construction of Section 7. Note that if e1 ∧ e2 = %, then the extensions on

[%, e1] and [%, e2] are independent, then the conclusion of Lemma holds with C = 1.

Assume that e1∧e2 6= %, and note that the extensions on [%, e1] and [%, e2] are dependent

since they use the same clocks on [%, e1 ∧ e2]. Denote by e the unique edge of T such

that e+ = e1 ∧ e2. We define the following quantities

N(e) :=
∣∣∣{0 ≤ n ≤ T (e)(%) ◦ θT (e)(e+) : (X̃(e)

n , X̃
(e)
n+1) = (e+, e−)

}∣∣∣ ,
L(e) :=

N(e)−1∑
j=0

Y (e+, e−, j)

r(e+, e−)
,

(8.4)

where |A| denotes the cardinality of a set A and θ is the canonical shift on trajectories.

Note that L(e) is the time consumed by the clocks attached to the oriented edge (e+, e−)

before X̃
(e)

, X̃(e1) or X̃(e2) goes back to % once it has reached e+. Recall that these three

extensions are coupled and thus the time L(e) is the same for the three of them.

For i ∈ {1, 2}, let vi be the vertex which is the offspring of e+ lying the path from % to
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ei. Note that vi could be equal to e+
i . We define for i ∈ {1, 2}:

N∗(ei) =

∣∣∣∣{0 ≤ n ≤ T (ei)(e+
i ) : (X̃

[e+,e+i ]
n , X̃

[e+,e+i ]
n+1 ) = (e+, vi)

}∣∣∣∣ ,
L∗(ei) =

N∗(ei)−1∑
j=0

Y (e+, e−, j)

r(e+, e−)
.

(8.5)

Here, L∗(ei), i ∈ {1, 2}, is the time consumed by the clocks attached to the oriented

edge (e+, vi) before X̃
(ei)

, or X̃
[e+,e+i ]

, hits e+
i .

Notice that the three quantities L(e), L∗(e1) and L∗(e2) are independent, and we also

have:

{e1, e2 ∈ CCP (%)} = {T (e)(e+) < T (e)(%)} ∩ {L(e) > L∗(e1)} ∩ {L(e) > L∗(e2)}. (8.6)

Now, conditioned on the event {T (e)(e+) < T (e)(%)}, the random variable N(e) is simply

a geometric random variable (counting the number of trials) with success probability

λ|e|−1/
∑

g≤e λ
|g|−1. The random variable N(e) is independent of the family Y (e+, e−, ·).

As Y (e+, e−, j) are independent exponential random variable for j ≥ 0, we then have

that L(e) is an exponential random variables with parameter

p :=
λ|e|−1∑
g≤e λ

|g|−1
× λ−|e|+1 =

1∑
g≤e λ

|g|−1
. (8.7)

A priori, L∗(e1) and L∗(e2) are not exponential random variable, but they have a con-

tinuous distribution. Denote f1 and f2 respectively the densities of L∗(e1) and L∗(e2).

Then, we have that

P (e1, e2 ∈ CCP (%)| e1 ∧ e2 ∈ CCP (%)) = P (L(e) > L∗(e1) ∨ L∗(e2))

=

∫ +∞

0

∫ +∞

0

∫ +∞

x1∨x2
p e−ptf1(x1)f2(x2)dtdx1dx2

=

∫ +∞

0

∫ +∞

0
e−p(x1∨x2)f1(x1)f2(x2)dx1dx2.

≤
∫ +∞

0

∫ +∞

0
e
−p
2

(x1+x2)f1(x1)f2(x2)dx1dx2.

(8.8)

Thus, one can write

P (e1, e2 ∈ CCP (%)| e1 ∧ e2 ∈ CCP (%))

≤
(∫ +∞

0
e−px1/2f1(x1)dx1

)
·
(∫ +∞

0
e−px2/2f2(x2)dx2

)
.

(8.9)
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Note that, for i ∈ {1, 2},

∫ +∞

0
e−pxi/2fi(xi)dxi = P

(
L̃(e) > L∗(ei)

)
, (8.10)

where L̃(e) is an exponential variable with parameter p/2. Note that, in view of (8.7),

L̃(e) has the same law as L(e) when we replace the weight of an edge g′ by λ−|g
′|+1/2

for g′ ≤ e only, and keep the other weights the same.

For g ∈ E such that e < g, define the function ψ̃ in a similar way as ψ, except that we

replace the weight of an edge g′ by λ−|g
′|+1/2 for g′ ≤ e only, and keep the other weights

the same, that is, for g ∈ E, e < g,

ψ̃M,λ(g) =

(
2p−1 +

∑
ν:e<g′<g λ

|g′|−1

2p−1 +
∑

ν:e<g′≤g λ
|g′|−1

)mg+1

We obtain:

P(L̃(e) > L∗(e1)) =
∏

g:e<g≤e1

ψ̃(g) =
∏

g:e<g≤e1

(
2p−1 +

∑
g′:e<g′<g λ

|g′|−1

2p−1 +
∑

g′:e<g′≤g λ
|g′|−1

)mg+1

= P(L(e) > L∗(e1))×
∏

g:e<g≤e1

(
1 +

p−1

p−1 +
∑

g′:e<g′<g λ
|g′|−1

)mg+1

×
(

1− p−1

2p−1 +
∑

g′:e<g′≤g λ
|g′|−1

)mg+1

= P(L(e) > L∗(e1))

×
∏

g:e<g≤e1

1 +
p−1λ|g|−1(

p−1 +
∑

g′:e<g′<g λ
|g′|−1

)(
2p−1 +

∑
g′:e<g′≤g λ

|g′|−1
)
mg+1

(8.11)
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Hence,

P(L̃(e) > L∗(e1))

≤ P(L(e) > L∗(e1))

× exp

(M + 1)
∑

g:e<g≤e1

 p−1λ|g|−1(
p−1 +

∑
g′:e<g′<g λ

|g′|−1
)(

p−1 +
∑

g′:e<g′≤g λ
|g′|−1

)


≤ P(L(e) > L∗(e1)) exp

(M + 1)
∑

g:e<g≤e1

 p−1λ|g|−1(∑
g′:g′<g λ

|g′|−1
)(∑

g′:g′≤g λ
|g′|−1

)


≤ P(L(e) > L∗(e1)) exp

(M + 1)p−1
∑

g:e<g≤e1

 ∑
g′:g′≤g λ

|g′|−1 −∑g′:g′<g λ
|g′|−1(∑

g′:g′<g λ
|g′|−1

)(∑
g′:g′≤g λ

|g′|−1
)


≤ P(L(e) > L∗(e1)) exp

(M + 1)p−1
∑

g:e<g≤e1

(
1∑

g′:g′<g λ
|g′|−1

− 1∑
g′:g′≤g λ

|g′|−1

)
≤ P(L(e) > L∗(e1)) exp

[
(M + 1)p−1

(
1∑

g′:g′≤e λ
|g′|−1

− 1∑
g′:g′≤e1 λ

|g′|−1

)]
≤ exp(M + 1)× P(L(e) > L∗(e1)),

(8.12)

where we used condition (3.4), the fact that we have a telescopic sum and where we used

the definition (8.7) of p.

We have just proved that∫ +∞

0
e−px1/2f1(x1)dx1 ≤ exp{M + 1} × P(e1 ∈ CCP (%)|e1 ∧ e2 ∈ CCP (%)). (8.13)

By doing a very similar computation, one can prove that∫ +∞

0
e−px2/2f1(x2)dx2 ≤ exp{M + 1} × P(e2 ∈ CCP (%)|e1 ∧ e2 ∈ CCP (%)). (8.14)

The conclusion (4.1) follows by using (8.9) together with (8.13) and (8.14).

Proof of transience in Theorem 3.5: The case RT (T , ψM,λ) > 1. This follows directly from

Lemma 8.1, Lemma 8.3 and Proposition 4.2.

9 Appendix: Proof of Proposition 4.2

As above, we define a function Ψ on the set of edges such that, for e ∈ E,

Ψ(e) =
∏
g≤e

ψ(e). (9.1)
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By (4.2), we have that

P [e ∈ C(%)] = Ψ(e). (9.2)

9.1 Proof of Proposition 4.2 in the case RT (T , ψ) < 1

Proposition 9.1. If RT (T , ψ) < 1, then a percolation such that (4.2) holds is subcriti-

cal.

Proof. We use a first moment method. For any cutset π, we have

1l{|C(%)|=+∞} ≤
∑
e∈π

1l{e∈C(%)}

and then

P [|C(%)| = +∞] = E
[
1l{|C(%)|=+∞}

]
≤
∑
e∈π

E
[
1l{e∈C(%)}

]
=
∑
e∈π

P [e ∈ C(%)]

Therefore

P [|C(%)| = +∞] ≤
∑
e∈π

Ψ(e).

Taking the infimum over π ∈ Π allows to conclude that:

P [|C(%)| = +∞] ≤ inf
π∈Π

∑
e∈π

Ψ(e). (9.3)

If RT (T , ψ) < 1, the definition of RT (T , ψ) (see (3.1)) implies that

inf
π∈Π

∑
e∈π

Ψ(e) = 0 (9.4)

We conclude the proof of proposition thanks to (9.3) and (9.4).

9.2 Proof of Proposition 4.2 in the case RT (T , ψ) > 1

As we are considering a quasi-independent percolation, we are able to lower-bound the

probability of this correlated percolation to be infinite by the probability that some in-

dependent percolation is infinite. We do this by proving that a certain modified effective

conductance is positive.
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Definition 9.2. For any edge e ∈ E, let c(e) = 1 if |e| = 1 and, if |e| > 1, define the

adapted conductances

c(e) =
1

1− ψ(e)
Ψ(e). (9.5)

Define Ceff the effective conductance of T when the conductance c(e) is assigned to

every edge e ∈ E. For a definition of effective conductance, see [87] page 27.

Proposition 9.3. Let C(%) be the cluster of the root in a percolation such that (4.2)

holds. If the percolation is quasi-independent, then there exists CQ ∈ (0,∞) such that

1

CQ
× Ceff

1 + Ceff
≤ P(|C(%)| =∞).

Proof of Proposition 9.3. We can use the lower-bound in Theorem 5.19 (page 145) of

[87] to obtain the result.

Recall that a flow (θe) on a tree is a nonnegative function on E such that, for any e ∈ E,

θe =
∑

g∈E:g−=e+ θg. A flow is said to be a unit flow if moreover
∑

e:|e|=1 θe = 1.

A usual technique in order to prove that some effective conductance is positive is to find

a unit flow with finite energy. This is the content of the following statement, which is a

simple consequence of classical results.

Lemma 9.4. Assume that (3.4) is satisfied. Consider the tree T with the conductances

defined in Definition 9.2 and assume that there exists a unit flow (θe)e∈E on T from %

to infinity which has a finite energy, that is∑
e∈E

(θe)
2

c(e)
<∞.

Then, a quasi-independent percolation such that (4.2) holds is supercritical.

Proof. Using Proposition 9.3, if Ceff > 0 then a quasi-independent percolation such that

(4.2) holds is supercritical. By Theorem 2.11 (page 39) of [87], Ceff > 0 if and only if

there exists a unit flow (θe)e∈E on T from % to infinity which has a finite energy.

The following result, from [33], is inspired by Corollary 4.2 of R. Lyons [85], which is

itself a consequence of the max-flow min-cut Theorem. This result will provide us with

a sufficient condition for the existence of a unit flow with finite energy.

Proposition 9.5. For any collection of positive numbers (ue)e∈E such that
∑

e:|e|=1 ue =

1 and

inf
π∈Π

∑
e∈π

uec(e) > 0, (9.6)



9. APPENDIX: PROOF OF PROPOSITION 4.2 161

there exists a nonzero flow whose energy is upper-bounded by

lim
n→∞

max
e∈E:|e|=n

∑
g≤e

ug.

The proof is ended once we have proved the following proposition.

Proposition 9.6. If RT (T , ψ) > 1, then a quasi independent percolation such that (4.2)

holds is supercritical.

Proof. This proof follows line by line the proof of Proposition 18 in [33].

Fix a real number γ ∈ (1, RT (T , ψ)) and, for any edge e ∈ E, let us define ue = 1 if

|e| = 1 and, if |e| > 1,

ue = (1− ψ(e))
∏
g≤e

(ψ(g))γ−1 .

On one hand, we have that, for any e ∈ E,∑
g≤e

ug ≤ Cγ . (9.7)

Indeed, for each e ∈ E, we can apply Proposition 17 of [33] to functions fe defined by

fe(0) = 1 and, for n ≥ 1, fe(n) = 1− ψ(g) with g the unique edge such that g ≤ e and

|g| = n ∧ |e|. We emphasize that (9.7) holds with a uniform bound.

On the other hand, using (9.5), we have

inf
π∈Π

∑
e∈π

uec(e) = inf
π∈Π

∑
e∈π

(
(1− ψ(e)) (Ψ(e))γ−1

)
× Ψ(e)

1− ψ(e)

= inf
π∈Π

∑
e∈π

(Ψ(e))γ > 0.

Proposition 9.5 and (9.7) imply that there exists a nonzero flow (θe) whose energy is

bounded as ∑
e∈E

(θe)
2

c(e)
≤ lim

n→∞
max

e∈E:|e|=n

∑
g≤e

ug ≤ Cγ .

Therefore, there exists a unit flow with finite energy and Lemma 9.4 implies the result.





Chapter 5

Phase transition for the

Once-excited random walk on

general trees

Abstract

The phase transition of M -digging random walk on a general tree was studied by

Collevecchio, Huynh and Kious [32]. In this paper, we study particularly the critical

M -digging random walk on a superperiodic tree that is proved to be recurrent.

We keep using the techniques introduced by Collevecchio, Kious and Sidoravicius

[33] with the aim of investigating the phase transition of Once-excited random walk

on general trees.

In addition, we prove if T is a tree whose branching number is larger than 1, any

multi-excited random walk on T moving, after excitation, like a simple random walk

is transient.

This chapter is based on [68].
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1 Introduction

Excited random walks were introduced by Benjamini and Wilson in [17] on Zd, and

have been extensively studied(see [7, 18, 76, 77, 117]). Zerner [121, 120] introduced a

generalization of this model called multi-excited random walks (or cookie random walk).

These walks are well understood on Z, but not much is known in higher dimensions.

In this paper, we study a particular case of multi-excited random walks on trees, intro-

duced by Volkov [118], called the once-excited random walk.

Let M ∈ N, (λ1, ..., λM ) ∈ (R+)M and λ > 0. Let T be an infinite, locally-finite, tree

rooted at %. The (λ1, ..., λM , λ)-ERW on T , is a nearest-neighbor random walk (Xn)

started at % such that if Xn is on a site for the i-th time for i ≤ M , then the walker

takes a random step of a biased random walk with bias λi (i.e. it jumps on its parent with

probability proportional to 1, or jumps on a particular offspring of ν with probability

proportional to λi); and if i > M , then Xn takes a random step of a biased random

walk with bias λ. In the case of M = 1, it is called the once-excited random walk with

parameters (λ1, λ). We write (λ1, λ)-OERW for (λ1, λ)-ERW. A formal definition of

multi-excited random walk will be showed in Section 2.3.

The phase transition of once-reinforced random walk (see [33]) or digging-random walk

(see [32]) can be performed via the branching number and branching-ruin number.

Whereas the phase transition of OERW does not depend only on the branching-ruin

number and the branching number of tree (see Section 4 for more details). It can be

such that there is no explicit formula for the phase transition of OERW, except that

T is a spherically symmetric tree, we give a explicit formula for the phase transition

in terms of their branching number and branching-ruin number and others (see Theo-

rem 1.1 below). We refer the readers to Theorem 3.1 for the more general result about

once-excited random walk on a general tree.

In the following, we denote br(T ) the branching number of a tree T and brr(T ) the

branching-ruin number of a tree T , see (2.1) and (2.2) for their definitions. Let us simply

emphasize that, for any tree T , its branching number is at least one, i.e. br(T ) ≥ 1,

whereas the branching-ruin number is nonnegative, i.e. brr(T ) ≥ 0.

A tree T is said to be spherically symmetric if for every vertex ν, deg ν depends only

on |ν|, where |ν| denote its distance from the root and deg ν is its number of neighbors.

Let T be a spherically symmetric tree. For any n ≥ 0, let xn be the number of children

of a vertex at level n. For any λ1 ≥ 0 and λ > 0, we define the following quantities:

α(T , λ1, λ) = lim inf
n→∞

(
n∏
i=1

λ2 + (xi − 1)λ1λ+ λ1

1 + xiλ1

)1/n

. (1.1)



1. INTRODUCTION 165

β(T , λ1, λ) = lim sup
n→∞

(
n∏
i=1

λ2 + (xi − 1)λ1λ+ λ1

1 + xiλ1

)1/n

. (1.2)

γ(T , λ1) = lim inf
n→∞

−∑n
i=1 ln

[
1− (xi−1)λ1+2

(1+xiλ1)i

]
lnn

. (1.3)

η(T , λ1) = lim sup
n→∞

−∑n
i=1 ln

[
1− (xi−1)λ1+2

(1+xiλ1)i

]
lnn

. (1.4)

Theorem 1.1. Let T be a spherically symmetric tree, and let λ1 ≥ 0, λ > 0. Denote

X the (λ1, λ)-OERW on T . Assume that there exists a constant M > 0 such that

supν∈V deg ν ≤M , then we have

1. in the case λ = 1, if η(T , λ1) < brr(T ) then X is transient and if γ(T , λ1) > brr(T )

then X is recurrent;

2. assume that λ1 ≥ 0, λ 6= 1 and br(T ) > 1, if β(T , λ1, λ) < 1
br(T ) then X is

recurrent and if α(T , λ1, λ) > 1
br(T ) then X is transient.

Note that, for a b-ary tree, we have br(T ) = b and

α(T , λ1, λ) = β(T , λ1, λ) =
λ2 + (b− 1)λλ1 + λ1

1 + bλ1
(1.5)

and our result therefore agrees with Corollary 1.6 of [10]. In [10], the authors prove that

the walk is recurrent at criticality on regular trees, but this is not expected to be true

on any tree). For instance, if λ1 = λ, the (λ, λ)-OERW X is the biased random walk

with parameter λ. Therefore X may be recurrent or transient at criticality (see [13],

proposition 22).

Volkov [118] conjectured that, any cookie random walk which moves, after excitation,

like a simple random walk (i.e. λ = 1) is transient on any tree containing the binary

tree. This conjecture was proved by Basdevant and Singh [10]. Here, we extend this

conjecture to any tree T whose branching number is larger than 1:

Theorem 1.2. Let (λ1, ..., λM ) ∈ (R+)M and consider (λ1, ..., λM , 1)-ERW X on an

infinite, locally finite, rooted tree T . If br(T ) > 1, then X is transient.

The techniques used our paper rely on the strategy adopted in [33] or [32]. In particular,

for the proof of transience, we here too view the set of edges crossed by X before returning

to % as the cluster of the root in a particular correlated percolation.

There are two key ingredients that allow us to use the rest of the strategy from [33].



166
CHAPTER 5. PHASE TRANSITION FOR THE ONCE-EXCITED RANDOM

WALK ON GENERAL TREES

First, we need to define extensions of X, which are a family of coupled continuous-

time versions of X defined on subtrees of T . As in [33], we do this through Rubin’s

construction in Section 7. But we will see in Section 7, this construction is actually very

different to a once-reinforced random walk in [33] or M -digging random walk in [32].

Second, we need to prove that the correlated percolation mentioned above is in fact a

quasi-independent percolation, see Lemma 8.3. From there, the problem boils down to

proving that a certain quasi-independent percolation is supercritical.

We refer to Theorem 3.1 for the more general result on a general tree.

2 The model

First, we review some basic definitions of graph theory and then we define the model

of multi-excited random walk on trees which was introduced by Volkov[118] and then

made general by Basdevant and Singh[10].

2.1 Notation

Let T = (V,E) be an infinite, locally finite, rooted tree with the root %.

Given two vertices ν, µ of T , we say that ν and µ are neighbors, denoted ν ∼ µ, if {ν, µ}
is an edge of T .

Let ν, µ ∈ V \ {%}, the distance between ν and µ, denoted by d(ν, µ), is the minimum

number of edges of the unique self-avoiding paths joining x and y. The distance between

ν and % is called height of ν, denoted by |ν|. The parent of ν is the vertex ν−1 such that

ν−1 ∼ ν and |ν−1| = |ν| − 1. We also call ν is a child of ν−1.

For any ν ∈ V , denote by ∂(ν) the number of children of ν and {ν1, ..., ν∂ν} is the set

of children of ν. We define an order on T by the following way. For all ν and µ, we say

that ν ≤ µ if the unique self-avoiding path joining % and µ contains ν, and we say that

ν < µ if moreover ν 6= µ.

Denote by Tn the set of vertices of T at height n. For any ν ∈ T , denote by T ν the

biggest sub-tree of T rooted at ν, i.e. T u = T [V u], where

V u := {v ∈ V (T ) : u ≤ v} .

For any edge e of T , denote by e+ and e− its endpoints with |e+| = |e−| + 1, and we

define the height of e as |e| = |e+|.
For two edges e and g of T , we write g ≤ e if g+ ≤ e+ and g < e if moreover g+ 6= e+. For

two vertices ν and µ of T such that ν < µ, we denote by [ν, µ] the unique self-avoiding

path joining ν to µ. For two neighboring vertices ν and µ, we use the slight abuse of

notation [ν, µ] to denote the edge with endpoints ν and µ (note that we allow µ < ν).

For two edges e1 and e2 of E, denote by e1 ∧ e2 the vertex with maximal distance from
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the root such that e1 ∧ e2 ≤ e+
1 and e1 ∧ e2 ≤ e+

2 .

Finally, we define a particular class of trees, which is called superperiodic tree. Let

T1 = (V1, E1) and T2 = (V2, E2) be two trees. A morphism of T1 to T2 is a map

f : T1 → T2 such that whenever ν and µ and µ are incident in T1, then so are f(ν) and

f(µ) in T2.

Let N ≥ 0. An infinite, locally finite and rooted tree T with the root %, is said to be

N -superperiodic if for every ν ∈ V (T ), there exists an injective morphism f : T → T f(o)

with f(o) ∈ T ν and |f(o)| − |ν| ≤ N . A tree T is called superperiodic tree if there exists

N ≥ 0 such that it is N -superperiodic.

2.2 Some quantities on trees

In this section, we review the definitions of branching number, growth rate and branching-

ruin number. We refer the reader to ([53] , [87]) for more details on the branching number

and growth rate and [33] for more details on the branching-ruin number.

In order to define the branching number and the branching-ruin number of a tree, we

will need the notion of cutsets.

Let T be an infinite, locally finite and rooted tree. A cutset in T is a set π of edges such

that every infinite simple path from a must include an edge in π. The set of cutsets is

denoted by Π.

The branching number of T is defined as

br(T ) = sup

{
γ > 0 : inf

π∈Π

∑
e∈π

γ−|e| > 0

}
∈ [1,∞]. (2.1)

The branching-ruin number of T is defined as

brr(T ) = sup

{
γ > 0 : inf

π∈Π

∑
e∈π
|e|−γ > 0

}
∈ [0,∞]. (2.2)

These quantities depend on the structure of the tree. If T is spherically symmetric, then

there is really no information in the tree than that contained in the sequence (|Tn|, n ≥ 0).

Therefore, a tree which is spherically symmetric and whose n generation grows like bn

(resp. nb), for b ≥ 1, has a branching number (resp. branching-ruin number) equal to b.

For more general trees, this becomes more complicated. In the other word, there exists

a tree whose n generation grows like bn (resp. nb), for b ≥ 1, but its branching number

(resp. branching-ruin number) is not equal to b. For instance, the tree 1-3 in ([87], page

4) is an example.



168
CHAPTER 5. PHASE TRANSITION FOR THE ONCE-EXCITED RANDOM

WALK ON GENERAL TREES

Finally, we review the definition of growth rate of an infinite, locally finite and rooted

tree T . Define the lower growth rate of T by

gr(T ) = lim inf |Tn|
1
n . (2.3)

Similarly, we can define upper growth rate of T by

gr(T ) = lim sup |Tn|
1
n . (2.4)

In the case gr(T ) = gr(T ), we define the growth rate of T , denoted by gr(T ), by taking

the common value of gr(T ) and gr(T ).

Now, we state a relationship between the branching number and growth rate of a super-

periodic tree.

Theorem 2.1 (see [87]). Let T be a N -superperiodic tree with gr(T ) < ∞. Then the

growth rate of T exists and gr(T ) = br(T ). Moreover, we have |Tn| ≤ gr(T )n+N .

2.3 Definition of the model

Now, we define the model of multi-excited random walk on trees. Let C = (λ1, ..., λM ;λ) ∈
(R+)M × R∗+ and T = (V,E) be an infinite, locally finite and rooted tree with the root

%. A C multi-excited random walk is a stochastic process X := (Xn)n≥0 defined on some

probability space, taking the values in T with the transition probability defined by:

P(X0 = %) = 1,

P (Xn+1 = (Xn)i|X0, · · · , Xn) =

{
λj

1+∂(Xn)λj
if j ≤M

λ
1+∂(Xn)λ if j > M

P
(
Xn+1 = X−1

n |X0, · · · , Xn

)
=

{
1

1+∂(Xn)λj
if j ≤M

1
1+∂(Xn)λ if j > M

where i ∈ {1, · · · , k} and j = |{0 ≤ k ≤ n : Xk = Xn}|.
We have some particular cases:

— If C = (0, ..., 0;λ), then C multi-excited random walk is M -digging random walk

with parameter λ (M -DRWλ), which was studied in [32].

— If M = 0, then C multi-excited random walk is the biased random walk with

parameter λ, which was studied in [85].

— If C = (λ1;λ), then C multi-excited random walk is (λ1, λ)-OERW.
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The return time of X to a vertex ν is defined by:

T (ν) := inf{n ≥ 1 : Xn = ν}. (2.5)

We say that X is transient if

P (T (%) =∞) > 0. (2.6)

Otherwise, we say that X is recurrent.

3 Main results

3.1 Main results about Once-excited random walk

Let λ1 ≥ 0 and λ > 0 and we consider the model (λ1, λ)-OERW on an infinite, locally

finite and rooted tree T . First, we define the following functions. For any e ∈ E, we set

ψ(e, λ) = 1 and φ(e, λ1, λ) = 1 if |e| = 1 and, for any e ∈ E with |e| > 1, we set

ψ(e, λ) =
λ|e|−1 − 1

λ|e| − 1
if λ 6= 1,

ψ(e, λ) =
|e| − 1

|e| if λ = 1.

(3.1)

φ(e, λ1, λ) =
λ1

1 + ∂(e−)λ1
+

1

1 + ∂(e−)λ1
ψ(e, λ)ψ(e−1, λ) +

(∂(e−)− 1)λ1

1 + ∂(e−)λ1
ψ(e, λ) (3.2)

Finally, for any e ∈ E, we define:

Ψ(e, λ1, λ) =
∏
g≤e

φ(g, λ1, λ). (3.3)

We refer the reader to Lemma 7.2 for the probabilistic interpretation of these functions.

In the following, we assume that

∃M ∈ N such that sup{deg ν : ν ∈ V } ≤M. (3.4)

Let us define the quantity RT (T ,X) which was introduced in [33]:

RT (T ,X) = sup{γ > 0 : inf
π∈Π

∑
e∈π

(Ψ(e))γ > 0}. (3.5)

Theorem 3.1. Consider an (λ1, λ)-OERW on an infinite, locally finite, rooted tree

T , with parameters λ1 ≥ 0 and λ > 0. If RT (T ,X) < 1 then X is recurrent. If

RT (T ,X) > 1 and if (3.4) holds, then X is transient.
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In the following, we consider the case T is spherically symmetric.

Lemma 3.2. Consider a (λ1, λ)-OERW X on a spherically symmetric T , with pa-

rameters λ1 ≥ 0 and λ > 0. Assume that there exists a constant M > 0 such that

supν∈V deg ν ≤M . We have that

1. in the case λ = 1, if η(T , λ1) < brr(T ) then RT (T ,X) > 1 and if γ(T , λ1) >

brr(T ) then RT (T ,X) < 1;

2. assume that λ1 ≥ 0, λ 6= 1 and br(T ) > 1, if β(T , λ1, λ) < 1
br(T ) then RT (T ,X) <

1 and if α(T , λ1, λ) > 1
br(T ) then RT (T ,X) > 1.

Note that Theorem 1.1 is a consequence of Theorem 3.1 and Lemma 3.6.

3.2 Main results about critical M-Digging random walk

Let M ∈ N∗, λ > 0 and we consider the model M -DRWλ on an infinite, locally finite

and rooted tree T . In [32], Collevecchio-Huynh-Kious was proved that there is a phase

transition with respect to the parameter λ, i.e there exists a critical parameter λc. A

natural question that arises: what happens if λ = λc? As we said in the introduction,

there is no a good answer for this question.

In [10], Basdevant-Singh proved the critical M -digging random walk is recurrent on

the regular trees. In this paper, we prove the critical M -digging random walk is still

recurrent on a particular class of trees which contains the regular trees.

Theorem 3.3. Let M ∈ N∗ and T be a superperiodic tree whose upper-growth rate is

finite. Then the critical M -digging random walk on T is recurrent.

4 An example

In this section, we give an example to prove that the phase transition of once-excited

random walk (λ1, λ)−OERW on a tree T does not depend only on the branching-ruin

number and the branching number of T .

If T is a spherically symmetric tree, recall that xn(T ) is the number of children of a

vertex at level n.

Let T (resp. T̃ ) be a spherically symmetric such that for any n ≥ 0, we have xn(T ) = 2

(resp. xn(T̃ ) = 1 if n is odd and xn(T̃ ) = 4 if not). Then we obtain :

br(T ) = br(T̃ ) = 2. (4.1)

brr(T ) = brr(T̃ ) =∞. (4.2)
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Lemma 4.1. Consider a (1, (
√

3 − 1)/2)-OERW X (resp. Y) on T (resp. T̃ ). Then

X is recurrent, but Y is transient.

Proof. Note that T is a binary tree, then we can apply Corollary 1.6 of [10] to imply

that X is recurrent. On the other hand, by a simple computation we have

α

(
T̃ , 1,

√
3− 1

2

)
= β

(
T̃ , 1,

√
3− 1

2

)
>

1

2
. (4.3)

By Theorem 1.1 and 4.3, we obtain Y is transient.

5 Proof of Theorem 1.2

Lemma 5.1. Let T be an infinite, locally finite and rooted tree. If br(T ) > 1 then

brr(T ) = +∞.

Proof. See ([32], proof of Lemma 8, Case V).

Lemma 5.2. Let (λ1, ..., λM ) ∈ (R+)M and T be an infinite, locally finite and rooted

tree. If M -DRW1 is transient, then (λ1, ..., λM , 1)-ERW is transient.

Proof. See ([10], Section 3).

Remark 5.3. Let T (%) (resp. S(%)) the return of of M -DRW1 (resp. (λ1, ..., λM , 1)-

ERW) to the root % of T . It is simple to see that

P(T (%) <∞) ≤ P(S(%) <∞). (5.1)

Proposition 5.4. Let (λ1, ..., λM ) ∈ (R+)M and consider (λ1, ..., λM , 1)-ERW X on an

infinite, locally finite, rooted tree T . If br(T ) > 1, then X is transient.

Proof. Note that if λi = 0 for all 1 ≤ i ≤M and λ = 1, then X is a M -digging random

walk with parameter 1 (M -DRW1). On the other hand, we have (λ1, ..., λM , 1)-ERW is

more transient than M -DRW1, i.e if M -DRW1 is transient then (λ1, ..., λM , 1)-ERW is

transient. We complete the proof by using Lemma (5.1) and Theorem 2 in [32].

6 Proof of Lemma 3.2 and Theorem 1.1

In this section, we prove Lemma 3.2. Theorem 1.1 then trivially follows from Theorem

3.1.
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Lemma 6.1. Recall the definition of Ψ(e, λ1, λ) as in 3.3. We have that, if λ 6= 1, for

any |e| > 1,

Ψ(e, λ1, λ) =

 ∏
g≤e, |g|>1

λ2 + (∂(g−)− 1)λ1λ+ λ1

1 + ∂(g−)λ1

 ∏
g≤e, |g|>1

1− λ|g|
(

1+∂(g−)λ1
λ2+(∂(g−)−1)λ1λ+λ1

)
1− λ|g|

 .

(6.1)

and if λ = 1, for any |e| > 1,

Ψ(e, λ1, λ) =
∏

g≤e, |g|>1

(
1− (∂(g−)− 1)λ1 + 2

|g| (1 + ∂(g−)λ1)

)
. (6.2)

Proof. We compute the quantity Ψ(e, λ, λ1) by using (3.1), 3.2 and (3.3). We will proceed

by distinguishing two cases.

Case I: λ 6= 1.

By (3.1), 3.2 and (3.3), we have

Ψ(e, λ1, λ) =
∏

g≤e, |g|>1

φ(g, λ1, λ)

=
∏

g≤e, |g|>1

(
λ1

1 + ∂(g−)λ1
+

1

1 + ∂(g−)λ1
ψ(e, λ)ψ(e−1, λ) +

(∂(g−)− 1)λ1

1 + ∂(g−)λ1
ψ(e, λ)

)

=

 ∏
g≤e, |g|>1

1

1 + ∂(g−)λ1

 ∏
g≤e, |g|>1

(
λ1 + ψ(e, λ)ψ(e−1, λ) + (∂(g−)− 1)λ1ψ(e, λ)

)
By 3.1, we have:

λ1 + ψ(g, λ)ψ(g−1, λ) + (∂(g−)− 1)λ1ψ(g, λ)

=λ1 +

(
1− (1/λ)|g|−2

1− (1/λ)|g|

)
+

(
(∂(g−)− 1)λ1

1− (1/λ)|g|−1

1− (1/λ)|g|

)

=λ1 +

(
λ|g| − λ2

λ|g| − 1

)
+ (∂(g−)− 1)λ1

(
λ|g| − λ
λ|g| − 1

)

=
λ2 + (∂(g−)− 1)λ1λ+ λ1 − λ|g| (1 + ∂(g−)λ1)

1− λ|g|

=
(
λ2 + (∂(g−)− 1)λ1λ+ λ1

)1− λ|g|
(

1+∂(g−)λ1
λ2+(∂(g−)−1)λ1λ+λ1

)
1− λ|g|

 .

(6.3)
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Therefore we obtain 6.1.

Case II: λ = 1.

By (3.1), 3.2 and (3.3), we have

Ψ(e, λ1, λ) =
∏

g≤e, |g|>1

φ(g, λ1, λ)

=
∏

g≤e, |g|>1

(
λ1

1 + ∂(g−)λ1
+

1

1 + ∂(g−)λ1
ψ(e, λ)ψ(e−1, λ) +

(∂(g−)− 1)λ1

1 + ∂(g−)λ1
ψ(e, λ)

)

=

 ∏
g≤e, |g|>1

1

1 + ∂(g−)λ1

 ∏
g≤e, |g|>1

(
λ1 + ψ(e, λ)ψ(e−1, λ) + (∂(g−)− 1)λ1ψ(e, λ)

)
By 3.1, we have:

λ1 + ψ(g, λ)ψ(g−1, λ) + (∂(g−)− 1)λ1ψ(g, λ)

=λ1 +
|g| − 2

|g| + (∂(g−)− 1)λ1
|g| − 1

|g|

=
λ1|g|+ |g| − 2 + (∂(g−)− 1)λ1(|g| − 1)

g|

=1 + ∂(g−)λ1 −
(∂(g−)− 1)λ1 + 2

|g|

(6.4)

Therefore we obtain 6.2.

Proof of Lemma 3.2. We will proceed by distinguishing a few cases.

Case I: λ 6= 1, br(T ) > 1 and β(T , λ1, λ) < 1
br(T ) .

By (2.1), there exists δ ∈ (0, 1) such that

inf
π∈Π

∑
e∈Π

β(1−δ)2|e| = 0. (6.5)

As β < β(1−δ), there exists c > 0, for any n > 0,

n∏
i=1

λ2 + (xi − 1)λ1λ+ λ1

1 + xiλ1
≤ c β(1−δ)n. (6.6)

By 6.1 and 6.6, there exists C > 0 such that for any π ∈ Π,∑
e∈π

Ψ(e)1−δ ≤ C
∑
e∈Π

β(1−δ)2|e|. (6.7)
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Therefore, by (6.5),

inf
π∈Π

∑
e∈π

Ψ(e)1−δ = 0, (6.8)

which implies that RT (T ,X) < 1.

Case II: λ 6= 1, br(T ) > 1 and α(T , λ1, λ) > 1
br(T ) .

First, note that if λ > 1 and br(T ) > 1 then X is transient. Now, assume that λ < 1,

br(T ) > 1 and α(T , λ1, λ) > 1
br(T ) . We have that there exists δ > 0 and ε > 0 such that

inf
π∈Π

∑
e∈Π

α(1+δ)2|e| > ε. (6.9)

By 1.1 and λ < 1, we obtain α < 1, therefore α1+δ < α. We have that there exists c > 0,

for any n > 0,
n∏
i=1

λ2 + (xi − 1)λ1λ+ λ1

1 + xiλ1
≥ c α(1+δ)n. (6.10)

By 6.1 and 6.10, there exists C > 0 such that for any π ∈ Π,∑
e∈π

Ψ(e)1+δ ≥ C
∑
e∈Π

α(1+δ)2|e|. (6.11)

Therefore, by (6.9),

inf
π∈Π

∑
e∈π

Ψ(e)1+δ > 0, (6.12)

which implies that RT (T ,X) > 1.

Case III: λ = 1 and η(T , λ1) < brr(T ).

We have that there exists δ > 0 and ε > 0 such that

inf
π∈Π

∑
e∈π
|e|−(1+δ)2η > ε. (6.13)

As η < (1 + δ)η, by 1.4 there exists c > 0, for any n > 0,

n∏
i=1

[
1− (xi − 1)λ1 + 2

(1 + xiλ1)i

]
≥ c n−(1+δ)η. (6.14)

By 6.2 and 6.14, there exists C > 0 such that for any π ∈ Π,∑
e∈π

Ψ(e)1+δ ≥ C
∑
e∈Π

|e|−(1+δ)2η. (6.15)

Therefore, by (6.13),

inf
π∈Π

∑
e∈π

Ψ(e)1+δ > 0, (6.16)
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which implies that RT (T ,X) > 1.

Case IV: λ = 1 and γ(T , λ1) > brr(T )

We have that there exists δ > 0 such that

inf
π∈Π

∑
e∈π
|e|−(1−δ)2η = 0. (6.17)

As η > (1− δ)η, by 1.4 there exists c > 0, for any n > 0,

n∏
i=1

[
1− (xi − 1)λ1 + 2

(1 + xiλ1)i

]
≤ c n−(1−δ)η. (6.18)

By 6.2 and 6.18, there exists C > 0 such that for any π ∈ Π,∑
e∈π

Ψ(e)1−δ ≤ C
∑
e∈Π

|e|−(1−δ)2η. (6.19)

Therefore, by (6.17),

inf
π∈Π

∑
e∈π

Ψ(e)1−δ > 0, (6.20)

which implies that RT (T ,X) < 1.

7 Extensions

First of all, let us describe the dynamic of this model. If X visits a vertex ν for the first

time, three cases can occur for visiting ν1 (see Figure 5.1):

— It eats the cookie at ν and returns to the parent of ν (i.e. ν−1) with probability
1

1+∂(ν)λ1
. It then visits ν for the second time, and goes to ν1 with probability

λ
1+∂(ν)λ .

— It goes directly to ν1 with probability λ1
1+∂(ν)λ1

.

— It goes to one of the chidren of ν except for ν1, with probability (∂ν−1)λ1
1+∂(ν)λ1

. It then

visits ν for the second time, and goes to ν1 with probability λ
1+∂(ν)λ .

Now, we introduce a construction of once-excited random walk by using the Rubin’s

construction. Let (Ω,F ,P) denote a probability space on which

Y = (Y (ν, µ, k) : (ν, µ) ∈ V 2,with ν ∼ µ, and k ∈ N) (7.1)

Z = (Z(ν, µ) : (ν, µ) ∈ V 2,with ν ∼ µ) (7.2)

are two families of independent mean 1 exponential random variables, where (ν, µ) de-

notes an ordered pair of vertices. Let

U = (Uν : ν ∈ V ) (7.3)
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ν ν

ν−1 ν−1

ν1 ν2 ν3 ν1 ν2 ν3

ν−1

ν1 ν2 ν3

Xn Xn

Xn+1

Xn+1

Xn

Xn+1

Xn+1

(I)
(II)

(III)

Figure 5.1 – The movement of X to ν1 after visiting ν.

is a family of independent uniformly random variables on [0, 1] which is independent to

Y and Z.

For any pair vertices ν, µ ∈ V with ν ∼ µ, we define the following quantities

r(ν, µ) =

{
λ|ν|−1, if µ < ν,

λ|µ|−1, if ν < µ.
(7.4)

Let T ′ be a sub-tree of T , we define the extension X(T ′) = (V ′, E′) on T ′ in the following

way. Denote by %′ the root of T ′ which be defined as the vertex of V ′ with smallest

distance to the root of T . For any family of nonnegative integers k̄ = (kµ)µ:[ν,µ]∈E′ , we

let

A
(T ′)
k̄,n,ν

:= {X(T ′)
n = ν} ∩

⋂
µ:[ν,µ]∈E′

{#{1 ≤ j ≤ n : (X
(T ′)
j−1 , X

(T ′)
j ) = (ν, µ)} = kµ}. (7.5)

tν(n) := #{1 ≤ j ≤ n : X
(T ′)
j = ν}. (7.6)

hν := inf{i ≥ 1 : tν(i) = 2}. (7.7)

Ã
(T ′)
k̄,n,ν

:= {X(T ′)
n = ν} ∩

⋂
µ:[ν,µ]∈E′

{#{hν ≤ j ≤ n : (X
(T ′)
j−1 , X

(T ′)
j ) = (ν, µ)} = kµ}. (7.8)
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IT (ν) := #{i ∈ {1, 2, · · · , ∂(ν)} : νi ∈ V (T ′)}. (7.9)

Set X
(T ′)
0 = %′ and on the event A

(T ′)
k̄,n,ν

∩ {tν(n) ≤ 1}:
— If Uν <

1
1+∂(ν)λ1

, then we set X
(T ′)
n+1 = ν−1.

— If Uν ∈
[

1+(j−1)λ1
1+∂(ν)λ1

, 1+jλ1
1+∂(ν)λ1

]
and j ∈ IT (ν), then we set X

(T ′)
n+1 = vj .

— If Uν ∈
[

1+(j−1)λ1
1+∂(ν)λ1

, 1+jλ1
1+∂(ν)λ1

]
for some j /∈ IT (ν) and{

ν ′ = arg min
µ:[ν,µ]∈E′

{Z(ν, µ)

r(ν, µ

}}
,

we set X
(T ′)
n+1 = ν ′.

On the event

Ã
(T ′)
k̄,n,ν

∩ {tν(n) ≥ 2} ∩

ν ′ = arg min
µ:[ν,µ]∈E′

{ kµ∑
i=0

Y (ν, µ, i)

r(ν, µ)

} , (7.10)

we set X
(T ′)
n+1 = ν ′, where the function r is defined in (7.4) and the clocks Y ’s are from

the same collection Y fixed in (7.1).

Thus, this defines X(T ) as the extension on the whole tree. By using the properties of

independent exponential random variables, it is easy to check that this construction is

a construction of (λ1, λ)-OERW on the tree T . We refer the reader to ([32], section 7)

for more discussions on this construction.

In the case T ′ = [%, ν] for some vertex ν of T , we write X(ν) instead of X([%,ν]), and we

denote T (ν)(·) the return times associated to X(ν). For simplicity, we will also write X(e)

and T (e)(·) instead of X(e+) and T (e+)(·) for e ∈ E.

Remark 7.1. Let T ′ be a proper subtree of T . Note that X(T ′) is not (λ1, λ)-OERW on

T ′, that is different with M -digging random walk (see [32], section 7) and once-reinforced

random walk (see [33], section 5).

Finally, we give a probabilistic interpretation of the functions φ and Ψ:

Lemma 7.2. For any e ∈ E and any g ≤ e, we have

φ(g, λ1, λ) = P
(
T (e)(g+) ◦ θT (e)(g−) < T (e)(%) ◦ θT (e)(g−)

)
, (7.11)

Ψ(e, λ1, λ) = P
(
T (e)(e+) < T (e)(%)

)
, (7.12)

where θ is the canonical shift on the trajectories.
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Proof. Let e ∈ E and g ≤ e. For simplicity, we set

A := {T (e)(g+) ◦ θT (e)(g−) < T (e)(%) ◦ θT (e)(g−)},

I1 :=

[
1 + (j − 1)λ1

1 + ∂(g−)λ1
,

1 + jλ1

1 + ∂(g−)λ1

]
,

I2 := [0, 1] \
([

1 + (j − 1)λ1

1 + ∂(g−)λ1
,

1 + jλ1

1 + ∂(g−)λ1

]⋃[
0,

1

1 + ∂(g−)λ1

])
,

where j ∈ {1, ..., ∂(g−)} such that (g−)j = g+. We have that

P (A) = P
(
A
∣∣∣Ug− < 1

1 + ∂(g−)λ1

)
× P

(
Ug− <

1

1 + ∂(g−)λ1

)
+P (A|I1)× P

(
Ug− ∈ I1

)
+ P (A|I2)× P

(
Ug− ∈ I2

)
.

(7.13)

On the other hand, we have the following equalities:

P
(
A
∣∣∣Ug− < 1

1 + ∂(g−)λ1

)
× P

(
Ug− <

1

1 + ∂(g−)λ1

)
=

1

1 + ∂(g−)λ1
ψ(g, λ)ψ(g−1, λ)

(7.14)

P (A|I1)× P
(
Ug− ∈ I1

)
=

λ1

1 + ∂(g−)λ1
. (7.15)

P (A|I2)× P
(
Ug− ∈ I2

)
=

(∂(g−)− 1)λ1

1 + ∂(g−)λ1
ψ(g, λ). (7.16)

We use (7.13), (7.14), (7.15) and (7.16) to obtain the results.

8 Recurrence in Theorem 3.1: The case RT (T ,X) < 1

Proposition 8.1. If

inf
π∈Π

∑
e∈π

Ψ(e) = 0, (8.1)

then X is recurrent.

Proof. The proof is identical to the proof of Proposition 10 of [33].

9 Transience in Theorem 3.1: The case RT (T ,X) > 1

In order to prove transience, we use the relationship between the walk X and its associ-

ated percolation.
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9.1 Link with percolation

Denote by C(%) the set of edges which are crossed by X before returning to %, that is:

C(%) = {e ∈ E : T (e+) < T (%)}. (9.1)

We define an other percolation which will be more easy to study. In order to do this, we

use the Rubin’s construction and the extensions introduced in Section 7. We define

CCP (%) = {e ∈ E : T (e)(e+) < T (e)(%)}. (9.2)

We say that an edge e ∈ E is open if and only if e ∈ CCP (%).

Lemma 9.1. We have that

P(T (%) =∞) = P(|C(%)| =∞) = P(|CCP (%)| =∞). (9.3)

Proof. We can follow line by line the proof of Lemma 11 in [33].

For simplicity, for a vertex v ∈ V , we write v ∈ CCP(%) if one of the edges incident to v

is in CCP(%). Besides, recall that for two edges e1 and e2, their common ancestor with

highest generation is the vertex denoted e1 ∧ e2.

Lemma 9.2. Let λ1 ≥ 0, λ > 0 and T be an infinite, locally finite and rooted tree

with the root %. Assume that the condition (3.4) holds with some constant M . Then the

correlated percolation induced by CCP is quasi-independent, i.e. there exists a constant

CQ ∈ (0,+∞) such that, for any two edges e1, e2, we have that

P(e1, e2 ∈ CCP (%)|e1 ∧ e2 ∈ CCP (%)) ≤CQP(e1 ∈ CCP (%)|e1 ∧ e2 ∈ CCP (%))

× P(e2 ∈ CCP (%)|e1 ∧ e2 ∈ CCP (%)).
(9.4)

Proof. Recall the construction of Section 7. Note that if e1∧ e2 = %, then the extensions

on [%, e1] and [%, e2] are independent, then the conclusion of Lemma holds with C = 1.

Assume that e1∧e2 6= %, and note that the extensions on [%, e1] and [%, e2] are dependent

since they use the same clocks on [%, e1 ∧ e2]. Denote by e the unique edge of T such

that e+ = e1 ∧ e2. For i ∈ {1, 2}, let vi be the vertex which is the offspring of e+ lying

the path from % to ei. Note that vi could be equal to e+
i . Let i1 (resp. i2) be an element

of {1, ..., ∂(e+)} such that (e+)i1 = v1 (resp. (e+)i2 = v2).

As the events {e ∈ CCP } and Ue1∧e2 are independent, therefore:

P (e1, e2 ∈ CCP (%)|e ∈ CCP (%)) = A+B + C +D,

where

A = P
(
e1, e2 ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ <
1

1 + ∂(e+)λ1

)
P
(
Ue+ <

1

1 + ∂(e+)λ1

)
(9.5)



180
CHAPTER 5. PHASE TRANSITION FOR THE ONCE-EXCITED RANDOM

WALK ON GENERAL TREES

B = P
(
e1, e2 ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ ∈
[

1 + (i1 − 1)λ1

1 + ∂(e+)λ1
,

1 + i1λ1

1 + ∂(e+)λ1

])
×P
(
Ue+ ∈

[
1 + (i1 − 1)λ1

1 + ∂(e+)λ1
,

1 + i1λ1

1 + ∂(e+)λ1

])
.

(9.6)

C = P
(
e1, e2 ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ ∈
[

1 + (i2 − 1)λ1

1 + ∂(e+)λ1
,

1 + i2λ1

1 + ∂(e+)λ1

])
×P
(
Ue+ ∈

[
1 + (i2 − 1)λ1

1 + ∂(e+)λ1
,

1 + i2λ1

1 + ∂(e+)λ1

])
.

(9.7)

D = P

e1, e2 ∈ CCP (%)
∣∣∣e ∈ CCP (%), Ue+ ∈

⋃
i∈{1,··· ,∂(e+)}\{i1,i2}

[
1 + (i− 1)λ1

1 + ∂(e+)λ1
,

1 + iλ1

1 + ∂(e+)λ1

]
×P

Ue+ ∈ ⋃
i∈{1,··· ,∂(v)}\{i1,i2}

[
1 + (i− 1)λ1

1 + ∂(e+)λ1
,

1 + iλ1

1 + ∂(e+)λ1

] .

(9.8)

In the same way, for any j ∈ {1, 2}, we have:

P (ej ∈ CCP (%)|e ∈ CCP (%)) = Ej + Fj +Gj ,

where

Ej = P
(
ej ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ <
1

1 + ∂(e+)λ1

)
P
(
Ue+ <

1

1 + ∂(e+)λ1

)
(9.9)

Fj = P
(
ej ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ ∈
[

1 + (ij − 1)λ1

1 + ∂(e+)λ1
,

1 + ijλ1

1 + ∂(e+)λ1

])
×P
(
Ue+ ∈

[
1 + (ij − 1)λ1

1 + ∂(e+)λ1
,

1 + ijλ1

1 + ∂(e+)λ1

]) (9.10)

Gj = P

ej ∈ CCP (%)
∣∣∣e ∈ CCP (%), Ue+ ∈

⋃
i∈{1,··· ,∂(e+)}\{ij}

[
1 + (i− 1)λ1

1 + ∂(e+)λ1
,

1 + iλ1

1 + ∂(e+)λ1

]
×P

Ue+ ∈ ⋃
i∈{1,··· ,∂(e+)}\{ij}

[
1 + (i− 1)λ1

1 + ∂(e+)λ1
,

1 + iλ1

1 + ∂(e+)λ1

] .

(9.11)

Lemma 9.3. There exists four constants (α1, α2, α3, α) depend on T , λ and λ1 such

that:

A ≤ α1E1E2. (9.12)

B ≤ α2F1E2. (9.13)
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C ≤ α3F2E1. (9.14)

D ≤ α4G1G2. (9.15)

We deduce from Lemma 9.3 that

A+B + C +D ≤ α(E1 + F1 +G1)(E2 + F2 +G2),

where α = maxi∈{1,2,3,4} αi. The latter inequality concludes the proof of Proposition.

Proof of Lemma 9.3. Now, we will adapt the argument from the proof of Lemma 12

in [33]. We prove that there exists α1 such that A ≤ α1E1E2 and we use the same

argument for the other inequalities.

First, by using condition 3.4, note that,

P
(
Ue+ <

1

1 + ∂(e+)λ1

)
=

1

1 + ∂(e+)λ1
≥ 1

1 +Mλ1
, we then obtain:

P
(
Ue+ <

1

1 + ∂(e+)λ1

)
≤ (1 +Mλ1)

[
P
(
Ue+ <

1

1 + ∂(e+)λ1

)]2

. (9.16)

On the event
{
e ∈ CCP (%), Ue+ <

1
1+∂(e+)λ1

}
we have X

(e)

T (e)(e+)+1
= e−. We then define

T̃ (e)(e+) := inf
{
n ≥ T (e)(e+) + 1 : X

(e)
n = e+

}
. We define the following quantities:

N(e) =
∣∣∣{T̃ (e)(e+) ≤ n ≤ T (e)(%) ◦ θ

T̃ (e)(e+)
: (X(e)

n , X
(e)
n+1) = (e+, e−)

}∣∣∣ ,
L(e) =

N(e)−1∑
j=0

Y (e+, e−, j)

r(e+, e−)
,

(9.17)

where |A| denotes the cardinality of a set A and θ is the canonical shift on trajectories.

Note that L(e) is the time consumed by the clocks attached to the oriented edge (e+, e−)

before X(e), X(e1) or X(e2) goes back to % once it has returned e+ after the time T (e)(e+).

Recall that these three extensions are coupled and thus the time L(e) is the same for

the three of them.

For i ∈ {1, 2}, recall that vi is the vertex which is the offspring of e+ lying the path from

% to ei. Note that vi could be equal to e+
i . We define for i ∈ {1, 2}:



182
CHAPTER 5. PHASE TRANSITION FOR THE ONCE-EXCITED RANDOM

WALK ON GENERAL TREES

N∗(ei) =

∣∣∣∣{T̃ (e)(e+) ≤ n ≤ T (ei)(e+
i ) : (X

[e+,e+i ]
n , X

[e+,e+i ]
n+1 ) = (e+, vi)

}∣∣∣∣ ,
L∗(ei) =

N∗(ei)−1∑
j=0

Y (e+, e−, j)

r(e+, e−)
.

(9.18)

Here, L∗(ei), i ∈ {1, 2}, is the time consumed by the clocks attached to the oriented

edge (e+, vi) before X(ei), or X[e+,e+i ], hits e+
i .

Notice that the three quantities L(e), L∗(e1) and L∗(e2) are independent, and we also

have:

P
(
e1, e2 ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ <
1

1 + ∂(e+)λ1

)
= ψ(e, λ)P (L(e) > L∗(e1) ∨ L∗(e2)) .

(9.19)

P
(
e1 ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ <
1

1 + ∂(e+)λ1

)
= ψ(e, λ)P (L(e) > L∗(e1)) . (9.20)

P
(
e2 ∈ CCP (%)

∣∣∣e ∈ CCP (%), Ue+ <
1

1 + ∂(e+)λ1

)
= ψ(e, λ)P (L(e) > L∗(e2)) . (9.21)

Now, the random variable N(e) is simply a geometric random variable (counting the

number of trials) with success probability λ1−|e|/
∑

g≤e λ
1−|g|. The random variable N(e)

is independent of the family Y (e+, e−, ·). As Y (e+, e−, j) are independent exponential

random variable for j ≥ 0, we then have that L(e) is an exponential random variables

with parameter

p :=
λ1−|e|∑
g≤e λ

1−|g| × λ
|e|−1 =

1∑
g≤e λ

1−|g| . (9.22)

A priori, L∗(e1) and L∗(e2) are not exponential random variable, but they have a con-

tinuous distribution. Denote f1 and f2 respectively the densities of L∗(e1) and L∗(e2).

Then, we have that

P (L(e) > L∗(e1) ∨ L∗(e2)) =

∫ +∞

0

∫ +∞

0

∫ +∞

x1∨x2
p e−ptf1(x1)f2(x2)dtdx1dx2

=

∫ +∞

0

∫ +∞

0
e−p(x1∨x2)f1(x1)f2(x2)dx1dx2.

≤
∫ +∞

0

∫ +∞

0
e
−p
2

(x1+x2)f1(x1)f2(x2)dx1dx2.

(9.23)
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Thus, one can write

P (L(e) > L∗(e1) ∨ L∗(e2))

≤
(∫ +∞

0
e−px1/2f1(x1)dx1

)
·
(∫ +∞

0
e−px2/2f2(x2)dx2

)
.

(9.24)

Note that: ∫ +∞

0
e−px1/2f1(x1)dx1 = P

(
L̃(e) > L∗(e1)

)
, (9.25)

where L̃(e) is an exponential variable with parameter p/2. Note that, in view of (9.22),

L̃(e) has the same law as L(e) when we replace the weight of an edge g′ by λ−|g
′|+1/2

for g′ ≤ e only, and keep the other weights the same.

For simplicity, for any g ∈ E, we set w(g) = λ|g|−1. For g ∈ E such that e < g, define

the functions ψ̃ and φ̃ in a similar way as ψ and φ, except that we replace the weight of

an edge g′ by λ−|g
′|+1/2 for g′ ≤ e only, and keep the other weights the same, that is,

for g ∈ E, e < g,

ψ̃(g, λ) =

∑
g′<g w(g′)−1 +

∑
g′≤ew(g′)−1∑

g′≤g w(g′)−1 +
∑

g′≤ew(g′)−1
.

(9.26)

φ̃(g, λ1, λ) =
λ1

1 + ∂(g−)λ1
+

1

1 + ∂(g−)λ1
ψ̃(g, λ)ψ̃(g−1, λ) +

(∂(g−)− 1)λ1

1 + ∂(g−)λ1
ψ̃(g, λ).

(9.27)

We obtain:

P(L̃(e) > L∗(e1)) =
∏

e<g≤e1

φ̃(g, λ1, λ) =
∏

e<g≤e1

φ(g, λ1, λ)
∏

e<g≤e1

(
φ̃(g, λ1, λ)

φ(g, λ1, λ)

)

= P(L(e) > L∗(e1))×
∏

e<g≤e1

(
λ1 + ψ̃(g, λ)ψ̃(g−1, λ) + (∂(g−1)− 1)λ1ψ̃(g, λ)

λ1 + ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1ψ(g, λ)

)
= P(L(e) > L∗(e1))

×
∏

e<g≤e1

(
1 +

ψ̃(g, λ)ψ̃(g−1, λ)− ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1(ψ̃(g, λ)− ψ(g, λ))

λ1 + ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1ψ(g, λ)

)
.

(9.28)

Now, we compute the product:

∏
e<g≤e1

(
1 +

ψ̃(g, λ)ψ̃(g−1, λ)− ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1(ψ̃(g, λ)− ψ(g, λ))

λ1 + ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1ψ(g, λ)

)
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≤
∏

e<g≤e1

(
1 +

ψ̃(g, λ)ψ̃(g−1, λ)− ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1(ψ̃(g, λ)− ψ(g, λ))

λ1

)
.

≤ exp

 1

λ1

∑
e<g≤e1

(
ψ̃(g, λ)ψ̃(g−1, λ)− ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1(ψ̃(g, λ)− ψ(g, λ))

)
Lemma 9.4. There exists a constant c = c(λ1, λ) which do not depend on e, e1 and e2,

such that: ∑
e<g≤e1

(
ψ̃(g, λ)− ψ(g, λ)

)
≤ c. (9.29)

On the other hand, by using Lemma 9.4, for any e and e1 we have that

∑
e<g≤e1

(
ψ̃(g, λ)ψ̃(g−1, λ)− ψ(g, λ)ψ(g−1, λ)

)
≤ 2c. (9.30)

By using 9.30, Lemma 9.4 and condition (3.4), we obtain:

∏
e<g≤e1

(
1 +

ψ̃(g, λ)ψ̃(g−1, λ)− ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1(ψ̃(g, λ)− ψ(g, λ))

λ1 + ψ(g, λ)ψ(g−1, λ) + (∂(g−1)− 1)λ1ψ(g, λ)

)

≤ exp

(
Mc+

2c

λ1

)
.

(9.31)

We have just proved that∫ +∞

0
e−px1/2f1(x1)dx1 ≤ exp

(
Mc+

2c

λ1

)
× P(e1 ∈ CCP (%)|e1 ∧ e2 ∈ CCP (%)). (9.32)

By doing a very similar computation, one can prove that∫ +∞

0
e−px2/2f1(x2)dx2 ≤ exp

(
Mc+

2c

λ1

)
× P(e2 ∈ CCP (%)|e1 ∧ e2 ∈ CCP (%)). (9.33)

Moreover, we have

ψ(e, λ) ≥ λ

1 + λ
. (9.34)

The conclusion (9.4) follows by using (9.16), (9.24), (9.34), together with (9.32) and

(9.33).
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It remains to prove Lemma 9.4.

Proof of Lemma 9.4. By a simple computation, for any e < g ≤ e1,

ψ̃(g, λ)− ψ(g, λ) =

(∑
g′≤ew(g′)−1

)
w(g)−1(∑

g′≤g w(g′)−1 +
∑

g′≤ew(g′)−1
)(∑

g′≤g w(g′)−1
) . (9.35)

We will proceed by distinguishing three cases.

Case I: λ < 1.

By (9.35), we have that

ψ̃(g, λ)− ψ(g, λ) =

(
1− 1

λ|e|

)
1

λ|g|−1(
1− 1

λ|g|
+ 1− 1

λ|e|

)(
1− 1

λ|g|

) × (1− 1

λ

)
. (9.36)

Hence, there exists a constants c1 such that

0 ≤ ψ̃(g, λ)− ψ(g, λ) ≤ c1λ
|g|−|e|. (9.37)

Therefore we obtain∑
e<g≤e1

(
ψ̃(g, λ)− ψ(g, λ)

)
≤ c1

∑
e<g≤e1

λ|g|−|e| ≤ c1

∑
i≥0

λi <∞. (9.38)

Case II: λ = 1.

By (9.35), we have that

ψ̃(g, λ)− ψ(g, λ) =
|e|

|g|(|g|+ |e|) . (9.39)

Therefore we obtain∑
e<g≤e1

(
ψ̃(g, λ)− ψ(g, λ)

)
≤
∑
n≥|e|

( |e|
n(n+ |e|)

)
≤
∑
n≥|e|

(
1

n
− 1

n+ |e|

)

≤
2|e|−1∑
n=|e|

1

n
.

(9.40)

On the other hand, we have:

lim
n→∞

(
2n−1∑
k=n

1

k

)
= lim

k→∞

(
n−1∑
k=0

1

n+ k

)
= lim

k→∞

(
1

n

n−1∑
k=0

1

1 + k/n

)
=

∫ 1

0

dx

1 + x
. (9.41)
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We use (9.40) and (9.41) to obtain the result.

Case III: λ > 1.

By (9.35), we have that

ψ̃(g, λ)− ψ(g, λ) =

(
1− 1

λ|e|

)
1

λ|g|−1(
1− 1

λ|g|
+ 1− 1

λ|e|

)(
1− 1

λ|g|

) × (1− 1

λ

)
. (9.42)

Hence, there exists a constants c2 such that

0 ≤ ψ̃(g, λ)− ψ(g, λ) ≤ c2

λ|g|
. (9.43)

Therefore we obtain

∑
e<g≤e1

(
ψ̃(g, λ)− ψ(g, λ)

)
≤ c2

∑
e<g≤e1

1

λ|g|
≤ c2

∑
i≥0

(
1

λ

)i
<∞. (9.44)

9.2 Transience in Theorem 3.1: The case RT (T ,X) > 1

Proposition 9.5. If RT (T ,X) > 1 and if (3.4) is satisfied then X is transient.

Proof. The proof is now easy, we can follow line by line the Appendix A.2 of [32].

10 Proof of Theorem 3.3

This section is independent with the previous sections. In this section, we prove a cri-

terion which can apply to the critical M -digging random walk on superperiodic trees.

We will use the Rubin’s construction (resp. the definition of C(%), CCP (%)) from section

7 (resp. section 8.1) of [32]. We will allow ourselves to omit these definitions and refer

the readers to [32] for more details.

The main idea for the proof of Theorem 3.3 is that the number of surviving rays of the

percolation CCP (%) almost surely is either zero or infinite. This property was proved

in the case of Bernoulli percolation (see [87] proposition 5.27) or target percolation (see

[102], lemma 4.2). The main difficulty that we have to face is that the FKG inequality

is not true for our percolation.
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10.1 Some definitions

Let λ > 0, M ∈ N and T be an infinite, locally finite and rooted tree. For each v ∈ V (T ),

recall the definition of subtree T v of T from Section 2.1. Let Xv,λ be the M -digging

random walk on T v. We say that T is uniformly transient if for any λ such that the

M -digging random walk on T with parameter λ is transient (i.e. X%,λ is transient),

∃αλ > 0,∀v ∈ V (T ),P(∀n > 0, Xv,λ
n 6= v) ≥ αλ. (10.1)

It is called weakly uniformly transient if there exists a sequence of finite pairwise disjoint

πn such that

∃αλ > 0, ∀v ∈
⋃
n

V (πn),P(∀n > 0, Xv,λ
n 6= v) ≥ αλ (10.2)

where V (πn) = {e− : e ∈ πn}.

Remark 10.1. — If T is uniformly transient, then T is also weakly uniformly tran-

sient, but the reverse is not always true.

— The superperiodic trees are uniformly transient.

An infinite self-avoiding path starting at % is called a ray. The set of all rays, denoted

by ∂T , is called the boundary of T . Let φ : Z+ → R be a decreasing positive function

with φ(n)→ 0 as n→∞. The Hausdorff mearsure of T in gauge φ is

lim inf
Π

∑
v∈Π

φ(|v|),

where the lim inf is taken over Π such that the distance from % to the nearest vertex in

Π goes to infinity. We say that T has σ-finite Hausdorff measure in gauge φ if ∂T is the

union of countably many subsets with finite Hausdorff measure in gauge φ.

Finally, If λ is such that the M -digging random walk X with parameter λ on T is

transient, on the event {T (%) =∞}, its path determines an infinite branch in T , which

can be seen as a random ray ω∞, and call it the limit walk of X. Equivalently, on the

event {T (%) =∞}, we define the limit walk as follows: For any k ≥ 1,

ω∞(k) = v ⇐⇒ v ∈ Tk and ∃n0, ∀n > n0 : Xn ∈ T v. (10.3)

Note that P (ω∞(0) = %) = 1. For any k ≥ 1, we call the k-first steps of ω∞ is

(ω∞(0), · · · , ω∞(k)), denoted by ω∞|[0,n].

10.2 Proof of Theorem 3.3

We begin with the following proposition:
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%

v1

v2

v4

v3

v5

v6

ω∞

T v1

T v2

T v4

T v5

T v6

Figure 5.2 – The proof’s idea of Proposition 10.2. The limit walk ω∞ is in red. Condi-
tioning on the event {ω∞(0) = %, ω∞(1) = v1, ..., ω

∞(6) = v6} and denote by ` the last
time the critical M -digging random walk X on T visits v6. For each 1 ≤ i ≤ 6, running
the walk Xvi,λc on T vi . The property of uniformly transient implies that there exists a
surviving ray (in green) in T vi with probability is larger than a constant which do not
depend on i.

Proposition 10.2. Let X be a M -digging random walk with parameter λc on an uni-

formly transient tree T and recall the definition of CCP from X as in ([32], Section 7).

Consider the percolation induced by CCP and let φ(n) = P(%↔ v) for v ∈ Tn.

1. Almost surely, the number of surviving rays is either zero or infinite.

2. If ∂T has σ-finite Hausdorff measure in the gauge {φ(n)}, then P(% ↔ ∞) = 0.

In particular, X is recurrent.

The overall strategy for the proof of Proposition 10.2 is as follows. First, if X is recurrent,

then the percolation induced by CCP almost surely have no surviving ray. Next, assume

that X is transient. On the event {T (%) =∞}, the limit walk ω∞ is a surviving ray

of CCP (%). Given n ∈ N and conditioning on ω∞|[0,n], by using the Rubin’s construction

and the definition of uniformly transient, we prove that there exists a surviving ray in
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T ω∞(i) with probability larger than a constant c which do not depend on i and ω∞ (see

Figure 5.2). The following basic lemma is necessary:

Lemma 10.3. Let λ > 0 and T be an infinite, locally finite and rooted tree. Let

M := (mv, v ∈ V (T )) be a family of non-negative integers. Denote by X the M -digging

random walk with parameter λ and Y the M -digging random walk associated with the

inhomogeneous initial number of cookies M with parameter λ (see [32], section 2.3.2

for more details on the definition of M -digging random walk). Denote by TX(%) (resp.

TY(%)) the return time of X (resp. Y) to %. Assume that m(v) ≤M for all v ∈ V (T ),

we then have

P
(
TX(%) <∞

)
≤ P

(
TY(%) <∞

)
. (10.4)

Proof. The proof is simple, therefore it is omitted.

Proof of Proposition 10.2. Let Ak denote the event that exactly k rays survive and as-

sume that

P(Ak) > 0, (10.5)

Hence,

P (|CCP (%)| =∞) > 0. (10.6)

By (10.6) and Lemma 22 in [32], we have that:

P(T (%) =∞) > 0, (10.7)

and therefore X is transient.

On the event {T (%) = ∞}, the limit walk ω∞ of X is well defined and it is a surviving

ray. Let n be a positive integer and γ := (γ0 = %, γ1 = v1, · · · , γn = vn) be a path of

length n of T . Denote by Bn,γ the following event:

Bn,γ := {ω∞|[0,n] = γ}. (10.8)

For any 1 ≤ k ≤ n, define a sub-tree T vi of T in the following way (see Figure 5.2).

— The root of T vi is the vertex vi.

— If ∂(vi) < 2 then T vi is a tree with a single vertex vi: for example, T v3 in

Figure 5.2.

— If ∂(γi) ≥ 2, choose one of its children which is different to vi+1, denoted by v.

We then set: {
(T vi)1 = {v}
(T vi)v = T v
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Note that for every pair (i, j) ∈ [1, n]2, we have V (T vi) ∩ V (T vj ) = ∅.

Now, conditioning on the event Bn,γ . Let ` be the last time X visits vn, i.e.

` := sup{k > 0 : Xk = vn}. (10.9)

By the definition of limit walk, ` is finite on the event Bn,γ . For each i ∈ [1, n] and for

all v ∈ V (T vi), denote by mi(v) the remaining number of cookies at v after time `, i.e.

mi(v) := (M −#{k ≤ ` : Xk = v}) ∨ 0. (10.10)

By using the extensions introduced in ([32], Section 7), the next steps on the tree T vi are

given by the digging random walk associated with the inhomogeneous initial number of

cookies (mi(v), v ∈ V (T vi)) and the same parameter λc as X, denoted by Xvi,m
i,λc (see

[32], section 2.3.2 for more details on the definition of Xvi,m
i,λc). Denote by T vi,m

i,λc the

return time of Xvi,m
i,λc to the root vi of T vi . By the definition of uniformly transient

and Lemma 10.3, there exists a constant c > 0 which do not depend on n and γ such

that for any i,

P
(
T vi,m

i,λc <∞
)
> c. (10.11)

On the event {T vi,mi,λc <∞}, note that CCP contains a surviving ray in T vi . By (10.11),

we have

P(Ak|Bn,γ) ≤
(
n

k

)
(1− c)n−k (10.12)

On the other hand, we have Ak ⊂
⋃
γ:|γ|=n Bn,γ , therefore by (10.12) we obtain:

P(Ak) =
∑

γ:|γ|=n

P(Ak|Bn,γ)×P(Bn,γ) ≤
(

k∑
i=1

(
n

i

))
(1−c)n

∑
γ:|γ|=n

P(Bn,γ)

︸ ︷︷ ︸
≤1

≤
(

k∑
i=1

(
n

i

))
(1−c)n.

(10.13)

Since 10.13 holds for any n then we obtain the following contradiction

P(Ak) = 0. (10.14)

For part (2), the proof is similar to part (ii), Lemma 4.2 in [102].

In the same method as in the proof of Proposition 10.2, we can prove the slightly stronger

result (the proof of which we omit):
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Proposition 10.4. Let X be a M -digging random walk with parameter λc on a weakly

uniformly transient tree T and recall the definition of CCP from X as in ([32], Section

7). Consider the percolation induced by CCP and let φ(n) = P(%↔ v) for v ∈ Tn.

1. With probability one, the number of surviving rays is either zero or infinite.

2. If ∂T has σ-finite Hausdorff measure in the gauge {φ(n)}, then P(% ↔ ∞) = 0.

In particular, X is recurrent.

The following corollary is an immediate consequence of Proposition 10.4.

Corollary 10.5. Let M ∈ N and T be a weakly uniformly transient tree such that

∂T has σ-finite Hausdorff measure in the gauge {φ(n)} =
(

1
br(T )

)n
if br(T ) > 1 and

{φ(n)} = 1
nM+1 if br(T ) = 1. Then the critical M -digging random walk on T is recurrent.

Proposition 10.6. Let M ∈ N∗ and T be a superperiodic tree whose upper-growth rate

is finite. The critical M -digging random walk on T is recurrent.

Proof. This is a consequence of Corollary 10.5 and Theorem 2.1.

Remark 10.7. If M = 0, then M -DRWλ is the biased random walk with parameter

λ. The recurrence of critical biased random walk on T is a consequence of Theorem 2.1

and Nash-Williams criterion (see [87] or [97]).
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Chapter 6

Scaling limits for random

triangulations on the Torus

This chapter is based on [14], which is joint work with Vincent Beffara and Benjamin

Lévêque.

Abstract

We study the scaling limit of essentially simple triangulations on the torus. We

consider, for every n ≥ 1, a uniformly random triangulation Gn over the set of

(appropriately rooted) essentially simple triangulations on the torus with n vertices.

We view Gn as a metric space by endowing its set of vertices with the graph dis-

tance denoted by dGn
and show that the random metric space (V (Gn), ( 3

4n )1/4dGn
)

converges in distribution in the Gromov–Hausdorff sense when n goes to infinity, at

least along subsequences, toward a random metric space. One of the crucial steps in

the argument is to construct a simple labeling on the map and show its convergence

to an explicit scaling limit. We moreover show that this labeling approximates the

distance to the root up to a uniform correction of order o(n1/4).
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1 Introduction

1.1 Some definitions

Recall that the Hausdorff distance between two non-empty subsets X and Y of a metric

space (M,d) is defined as

dHaus(X,Y ) = inf{ε ≥ 0 : X ⊂ Yε and Y ⊂ Xε},

where Zε denotes {m ∈ M : d(m,Z) ≤ ε}. The Gromov-Hausdorff distance between

two compact metric spaces (S, δ) and (S′, δ′) is defined as

dGH((S, δ), (S′, δ′)) = inf{dHaus(ϕ(S), ϕ′(S′)},

where the infimum is taken over all isometric embeddings ϕ : S → S” and ϕ′ : S′ → S”

of S and S′ into a common metric space (S”, δ”). Note that dGH((S, δ), (S′, δ′)) is equal

to 0 if and only if the metric spaces S and S′ are isometric to each other. We refer

the reader to e.g. ([1], section 3) for a detailed investigation of the Gromov-Hausdorff

distance).

In this paper, we are considering some random graphs seen as random metric spaces and

consider their convergence in distribution in the sense of the Gromov-Hausdorff distance.

In general, the graphs we consider may contain loops and multiple edges. A graph is

called simple if it contains no loop nor multiple edges. A graph embedded on a surface

is called a map on this surface if all its faces are homeomorphic to open disks. In this

paper we consider orientable surface of genus g where the plane is the surface of genus

0, the torus the surface of genus 1, etc. For p ≥ 3, a map is called a p-angulation if

all its faces have size p. For p = 3 (resp. p = 4), such maps are respectively called

triangulations (resp. quadrangulations).

1.2 Random planar maps

Let us first review some results on random planar maps. Consider a random planar map

Gn with n vertices which is uniformly distributed over a certain class of planar maps (like

planar triangulations, quadrangulations or p-angulations). Equip the vertex set V (Gn)

with the graph distance dGn . It is known that the diameter of the resulting metric space is

of order n1/4 (see for example [30] for the case of quadrangulations). Thus one can expect

that the rescaled random metric spaces (V (Gn), n−1/4dGn) converge in distribution as

n tends to infinity toward a certain random metric space. In 2006, Schramm [110]

suggested to use the notion of Gromov-Hausdorff distance to formalize this question by

specifying the topology of this convergence. He was the first to conjecture the existence

of a scaling limit for large random planar triangulations. In 2011, Le gall [81] proved the

existence of the scaling limit of the rescaled random metric spaces (V (Gn), n−1/4dGn) for

p-angulations when p = 3, or, p ≥ 4 and p is even. The case p = 3 solves the conjecture
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of Schramm. Miermont [94] gave an alternative proof in the case of quadrangulations

(p = 4). Addario-Berry and Albenque [1] prove the case p = 3 for simple triangulations

(i.e. triangulations with no loop nor multiple edges). An important aspect of all these

results is that, up to a constant rescaling factor, all these classes converge toward the

same object called the Brownian map.

It is natural to address the question of the existence of a scaling limit of random maps

on higher genus oriented surfaces. Chapuy, Marcus and Schaeffer [29] extended the

bijection known for planar bipartite quadrangulations to any oriented surfaces. This

lead Bettinelli [22] to show that random quadrangulations on oriented surfaces converge

in distribution, at least along a subsequence. More formally:

Theorem 1.1 (Bettinelli [22]). For g ≥ 1 and n ≥ 1, let Gn be a uniformly random

element of the set of all corner-rooted bipartite quadrangulations with n vertices on the

oriented surface of genus g. Then, from any increasing sequence of integers, one can

extract a subsequence (nk)k≥0 along which the rescaled metric spaces(
V (Gnk), n

−1/4
k dGnk

)
k≥0

converge in distribution for the Gromov-Hausdorff distance.

Contrary to the planar case, the uniqueness of the subsequential limit is not proved

there. Nevertheless, a phenomenon of universality is expected: it is conjectured that the

sequence does converge and that moreover, up to a deterministic multiplicative constant

on the distance, the limit is the same for many models of random maps of a given genus.

In genus 1, the conjectured limit is described in [22] and referred to as the toroidal

Brownian map.

The goal of the present article is to extend Theorem 1.1 to the case of (essentially simple)

triangulations of the torus. In that respect, it is comparable to the paper of Addario-

Berry and Albenque [1] which did the same in the planar setup and contributes to the

understanding of universality for random toroidal maps.

1.3 Main results

A contractible loop is an edge enclosing a region homeomorphic to an open disk. A pair

of homotopic multiple edges is a pair of edges that have the same extremities and whose

union encloses a region homeomorphic to an open disk. A graph G embedded on the

torus is called essentially simple if it has no contractible loop nor homotopic multiple

edges. Being essentially simple for a toroidal map is the natural generalization of being

simple for a planar map.

In this paper, we distinguish paths and cycles from walks and closed walks as the firsts

have no repeated vertices. A triangle of a toroidal map is a closed walk of size 3 enclosing



198
CHAPTER 6. SCALING LIMITS FOR RANDOM TRIANGULATIONS ON THE

TORUS

a region that is homeomorphic to an open disk. This region is called the interior of the

triangle. Note that a triangle is not necessarily a face of the map as its interior may be

not empty. We say that a triangle is maximal (by inclusion) if its interior is not strictly

contained in the interior of another triangle. We define the corners of a triangle as the

three angles that appear in the interior of this triangle when its interior is removed (if

non empty).

Our main result is the following convergence result:

Theorem 1.2. For n ≥ 1, let Gn be a uniformly random element of the set of all

essentially simple toroidal triangulations on n vertices that are rooted at a corner of a

maximal triangle. Then, from any increasing sequence of integers, one can extract a

subsequence (nk)k≥0 along which the rescaled metric spaces(
V (Gnk), n

−1/4
k dGnk

)
k≥0

converge in distribution for the Gromov-Hausdorff distance.

Remark 1.3. The reason for the particular choice of rooting in Theorem 1.2 is of a

technical nature due to the bijection that we use in Section 2. It is a natural conjecture

that compactness, and thus also the existence of subsequential scaling limits, would

still hold e.g. for triangulations rooted at a uniformly random angle. This is based on

the following reasoning: if the inside of every maximal triangle has diameter of smaller

order than n1/4, then rooting inside such a triangle rather than at one of its corners

would affect distances by a quantity that would be smoothed out by the normalization.

On the other hand, having one maximal triangle containing αn vertices has very small

probability, because of the relative growths of the number of triangulations of genus 0

and 1. The remaining obstruction would be the existence of a maximal triangle with

an inside containing much fewer than n vertices but having diameter of order n1/4,

which would presumably be ruled out by a precise control of the geometry of simple

triangulations of genus 0. This is a possible direction for future work, but we chose not

to investigate it further due to the already large size of the present paper.

We also show in an appendix that with high probability, the labeling function that we

define as a crucial tool in our argument (see Section 3 for a formal definition) approx-

imates the distance to the root up to a uniform o(n1/4) correction (see Theorem 1.15).

Such a comparison estimate is an essential step in proving the uniqueness of the sub-

sequential scaling limit, and thus the convergence, in frameworks similar to that of our

main result — see [1] for the case of genus 0, it is also likely that a similar argument

would be applicable to quadrangulations of the torus [23] (those two quantities are actu-

ally equal in the case of bipartite quadrangulations on any surface with positive genus,

but it seems that a bound of the order o(n1/4) is enough).
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The overall strategy for the proof of Theorem 1.2 is the same as in [22], as well as in [81]

and [94]: obtain a bijection between maps and simpler combinatorial objects (typically

decorated trees), then show convergence of these objects to a non-trivial continuous

random limit from which relevant information can then be extracted about the original

model. As a result, most of the structure of the paper is largely inspired by [22] (for the

main argument) and [1] (for methods specific to triangulations).

The bijection that we use here is based on a recent generalization of Schnyder woods to

higher genus [55, 54, 83]. One issue when going to higher genus is that the set of Schnyder

woods of a given triangulation is no longer a single distributive lattice like in the planar

case, it is rather a collection of distributive lattices. Nevertheless, it is possible to single

out one of these distributive lattices, in the toroidal case, by requiring an extra property,

called balanced, that defines a unique minimal element used as a canonical orientation for

the toroidal triangulation. The particular properties of this canonical orientation leads

to a bijection between essentially simple toroidal triangulation and particular toroidal

unicellular maps [36] (a unicellular map is a map with only one face, i.e. the natural

generalization of trees when going to higher genus). Then the main difficulty that we

have to face is that the metric properties of the initial map are less apparent in the

unicellular map than in the planar case or in the bipartite quadrangulations setup. In

particular, lower bounds for the graph distance are more difficult to extract from the

labeling function, requiring a delicate argument involving rightmost paths and precise

control of its relation with shortest paths.

Structure of the paper

The bijection between toroidal triangulations and particular unicellular maps is pre-

sented in Section 2 with some related properties. In Section 3, we define a labeling

function of the angles of a unicellular map and prove some relations with the graph dis-

tance in the corresponding triangulation. In Section 4 we explain how to decompose the

particular unicellular maps given by the bijection into simpler elements with the use of

Motzkin paths and well-labeled forests. In Section 5, we review some results on variants

of the Brownian motion. The proof of Theorem 1.2 then proceeds in several steps. In

Section 6, we study the convergence of the parameters of the discrete map in the scaling

limit. In Sections 7, 8 and 9 we review and extend classical convergence results for

conditioned random walks and random forests. Finally, in Section 10, we combine the

previous ingredients to build the proof of the main theorem. In Appendix 1, we exploit

the canonical orientation of the triangulation to define rightmost paths and relate them

to shortest paths, thus obtaining the announced upper bound on the difference between

distances and labels.

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-

0025-01) funded by the French program Investissement d’avenir and the ANR project

GATO (ANR-16-CE40-0009-01) funded by the French Agence National de la Recherche.
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2 Bijection between toroidal triangulations and

unicellular maps

For n ≥ 1, let G(n) be the set of essentially simple toroidal triangulations on n vertices

that are rooted at a corner of a maximal triangle.

Consider an element G of G(n). The corner of the maximal triangle where G is rooted

is called the root corner. Note that, since G is essentially simple, there is a unique

triangle, called the root triangle whose corner is the root corner (and this root triangle

is maximal by assumption). The vertex of the root triangle corresponding to the root

corner is called the root vertex. We also define, in a unique way, a particular angle of

the map, called the root angle, that is the angle of G that is in the interior of the root

triangle, incident to the root vertex and the last one in counterclockwise order around

the root vertex. Note that it is possible to retrieve the root corner from the root angle

in a unique way (indeed, the root angle defines already one edge of the root triangle

and the side of its interior, thus it remains to find the third vertex of the root triangle

such that the interior is maximal). Thus rooting G on its root corner or root angle is

equivalent. We call root face, the face of G containing the root angle. We introduce in

the rest of this section some terminology and results adapted from [36] (see also [83]).

2.1 Toroidal unicellular maps

Recall that a unicellular map is a map with only one face. There are two types of toroidal

unicellular maps since two cycles of a toroidal unicellular map may intersect either on a

single vertex (square case) or on a path (hexagonal case). On the first row of Figure 6.1

we have represented these two cases into a square box that is often use to represent a

toroidal object (its opposite side are identified). On the second row of Figure 6.1 we have

represented again these two cases by a square and hexagon by copying some vertices and

edges of the map (here again the opposite sides are identified). Depending on what we

want to look at we often move from one representation to the other in this paper. We

call special the vertices of a toroidal unicellular map that are on all the cycles of the map.

Thus the number of special vertices of a square (resp. hexagon) toroidal unicellular map

is exactly one (resp. two).

Given a map, we call stem, a half-edge that is added to the map, attached to an angle

of a vertex and whose other extremity is dangling in the face incident to this angle.

For n ≥ 1, let Tr(n) denote the set of toroidal unicellular maps T rooted on a particular

angle, with exactly n vertices, n+ 1 edges and 2n− 1 stems distributed as follows (see

figure 6.2 for an example in Tr(7) where the root angle is represented with the usual

”root” symbol in the whole paper.). The vertex incident to the root angle is called the

root vertex. A vertex that is not the root vertex, is incident to exactly 2 stems if it is

not a special vertex, 1 stem if it is the special vertex of a hexagon and 0 stem if it is
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Square case Hexagonal case

Figure 6.1 – The two types of toroidal unicellular maps with two different representations
for each case.

the special vertex of a square. The root vertex is incident to 1 additional stem, i.e. it is

incident to exactly 3 stems if it is not a special vertex, 2 stems if it is the special vertex

of a hexagon and 1 stem if it is the special vertex of a square. Moreover, one of the stem

incident to the root vertex, called the root stem, is incident to the root angle and just

after the root angle in counterclockwise order around the root vertex.

3

4

5

1

62

7

Figure 6.2 – Example of an element of Tr(7).
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2.2 Closure procedure

Given an element of T of Tr(n), there is a generic way to reattach step by step all the

dangling extremities of the stems of T to build a toroidal triangulation. Let T0 = T ,

and, for 1 ≤ k ≤ 2n − 1, let Tk be the map obtained from Tk−1 by reattaching one of

its stem (we explicit below which stems can be reattached and how). The special face

of T0 is its only face. For 1 ≤ k ≤ 2n− 1, the special face of Tk is the face on the right

of the stem of Tk−1 that is reattached to obtain Tk (the stem is by convention oriented

from its incident vertex toward its dangling part). For 0 ≤ k ≤ 2n − 1, the border of

the special face of Tk consists of a sequence of edges and stems. We define an admissible

triple as a sequence (e1, e2, s), appearing in counterclockwise order along the border of

the special face of Tk, such that e1 = (u, v) and e2 = (v, w) are edges of Tk and s is a

stem attached to w. The closure of this admissible triple consists in attaching s to u,

so that it creates an edge (w, u) oriented from w to u and so that it creates a triangular

face (u, v, w) on its left side. The complete closure of T consists in closing a sequence of

admissible triples, i.e. for 1 ≤ k ≤ 2n− 1, the map Tk is obtained from Tk−1 by closing

any admissible triple.

Figure 6.3 is the hexagonal representation of the example of Figure 6.2 on which a

complete closure is performed. We have represented here the unicellular map as an

hexagon since it is easier to understand what happen in the unique face of the map.

The map obtained by performing the complete closure procedure is the clique on seven

vertices K7.

1

3

5

2 3

5

4

3

7

2

4

6

2

6 6

3

5

2 3

5

4

3

7

2

4

6

2

1

A unicellular map of Tr,s,b(7) The complete closure gives K7

Figure 6.3 – Example of the complete closure procedure.

Note that, for 0 ≤ k ≤ 2n − 1, the special face of Tk contains all the stems of Tk. The

closure of a stem reduces the number of edges on the border of the special face and the

number of stems by 1. At the beginning, the unicellular map T0 has n + 1 edges and
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2n− 1 stems. So along the border of its special face, there are 2n+ 2 edges and 2n− 1

stems. Thus there is exactly three more edges than stems on the border of the special

face of T0 and this is preserved while closing stems. So at each step there is necessarily

at least one admissible triple and the sequence Tk is well defined. Since the difference

of three is preserved, the special face of T2n−2 is a quadrangle with exactly one stem.

So the reattachment of the last stem creates two faces that have size three and at the

end T2n−1 is a toroidal triangulation. Note that at a given step there might be several

admissible triples but their closure are independent and the order in which they are

closed does not modify the obtained triangulation T2n−1.

When a stem is reattached on the root angle, then, by convention, the new root angle

is maintained on the right side of the extremity of the stem, i.e. the root angle is

maintained in the special face. A particularly important property when reattaching

stems is when the complete closure procedure described here never wraps over the root

angle, i.e. when a stem is reattached, the root angle is always on its right side in the

special face. The property of never wrapping over the root angle is called safe (an

analogous property is sometimes called ”balanced” in the planar case but we prefer to

keep the word ”balanced” for something else in the current paper). Let Tr,s(n) denote

the set of elements of Tr(n) that are safe.

Consider an element T of Tr,s(n) with root angle a0. Then for 0 ≤ k ≤ 2n− 2, let s be

the first stem met while walking counterclockwise from a0 in the special face of Tk. An

essential property from [36] is that before s, at least two edges are met and thus the last

two of these edges form an admissible triple with s. So one can reattach all the stems of

T by starting from the root angle a0 and walking along the face of T in counterclockwise

order around this face: each time a stem is met, it is reattached in order to create a

triangular face on its left side. Note that in such a sequence of admissible triples closure,

the last stem that is reattached is the root stem of T .

2.3 Canonical orientation and balanced property

For n ≥ 1, consider an element T of Tr(n) whose edges and stems are oriented w.r.t. the

root angle a0 as follows (see Figure 6.4 that corresponds to the example of Figure 6.2):

the stems are all outgoing, and while walking clockwise around the unique face of T

from a0, the first time an edge is met, it is oriented counterclockwise w.r.t. the face of

T . This orientation plays a particular role and is called the canonical orientation of T .

For a cycle C of T , given with a traversal direction, let γ(C) be the number of outgoing

edges and stems that are incident to the right side of T minus the number of outgoing

edges and stems that are incident to its left side. A unicellular map of Tr(n) is said to

be balanced if γ(C) = 0 for all its (non-contractible) cycles C. Let us call Tr,s,b(n) the

set of balanced elements of Tr,s(n).

Figure 6.4 is an example of an element of Tr,s,b(7). The value γ of the cycles of the
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Figure 6.4 – Orientation of the edges and stems of an element of Tr(7).

unicellular map are much more easier to compute on the left representation.

A consequence of [36] (see the proof of Theorem 7 where Tr,s,b(n) is called U ′r,b,γ0(n)

and G(n) is called T ′r (n)), is that, for n ≥ 1, the complete closure procedure is indeed a

bijection between elements of Tr,s,b(n) and G(n), that we note Φ here:

Theorem 2.1 ([36]). For n ≥ 1, there is a bijection between Tr,s,b(n) and G(n).

The left of Figure 6.3 gives an example of a hexagonal unicellular map in Tr,s,b(7). Note

that on the right of Figure 6.3, the face containing the root angle, after the closure

procedure, is indeed a maximal triangle, so the obtained triangulation is an element of

G(7) if rooted on the corner of the face corresponding to the root angle.

Given an element T of Tr,s,b(n), the canonical orientation of T , defined previously, induces

an orientation of the edges of the corresponding triangulation G of G(n) that is also called

the canonical orientation of G. Note that in this orientation of G, all the vertices have

outdegree exactly 3, we call such an orientation a 3-orientation. In fact this orientation

corresponds to a particular 3-orientation that is called the minimal balanced Schnyder

wood of G w.r.t. to the root face (see [83] for more on Schnyder woods in higher genus).

We extend the definition of function γ to G by the following. For a cycle C of G, given

with a traversal direction, let γ(C) be the number of outgoing edges that are incident

to the right side of T minus the number of outgoing edges that are incident to its left

side. As shown in [83], the canonical orientation of G as the particular property that

γ(C) = 0 for all its non-contractible cycles C, we call this property balanced.

Figure 6.5, gives the canonical orientation of K7 obtained from the canonical orientation

of its corresponding element in Tr,s,b(7) after a complete closure procedure.
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Figure 6.5 – The canonical orientation of K7.

2.4 Unrooted unicellular maps

Given an element T of Tr,s,b(n), we have seen that the root stem s0 can be the last stem

that is reattached by the complete closure procedure. Consequently, if one removes the

root stem s0 from T to obtain an unicellular map U with n vertices, n + 1 edges and

2n− 2 stems, one can recover the graph T2n−2 by applying the closure procedure on U .

For n ≥ 1, let U(n) denote the set of (non-rooted) toroidal unicellular maps, with exactly

n vertices, n+ 1 edges and 2n− 2 stems satisfying the following: a vertex is incident to

exactly 2 stems if it is not a corner, 1 stem if it is the corner of a hexagon and 0 stem if

it is the corner of a square. Thus, given an element T of Tr(n), the element U obtained

from T by removing the root angle and the root stem is an element of U(n).

Since an element U of U(n) is non-rooted, it has no ”canonical orientation” as define

previously for elements of Tr(n). Nevertheless one can still orient all the stems as outgo-

ing and compute γ on the cycles of U by considering only its stems in the counting (and

not the edges nor the root stem anymore). For a cycle C of U , given with a traversal

direction, let γ(C) be the number of outgoing stems that are incident to the right side

of U minus the number of outgoing stems that are incident to its left side. A unicellular

map of U(n) is said to be balanced if γ(C) = 0 for all its (non-contractible) cycles C.

Let us call Ub(n) the set of elements of U(n) that are balanced.

As remarked in [36], an interesting property is that an element U of U(n) is balanced if

and only if any element T of Tr(n) obtained from U by adding a root stem anywhere in U

is balanced (recall that in U we use the canonical orientation to compute γ). Moreover,

given an element T of Tr,b(n), then the element U of U(n), obtained by removing the

root angle, (the canonical orientation,) and the root stem is balanced.

Figure 6.6 is the element of Ub(7) corresponding to Figure 6.4.
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Figure 6.6 – Example of an element of Ub(7).

3 Labeling of the angles and distance properties

3.1 Definition and properties of the labeling function

For n ≥ 1, let T be an element of Tr,s,b(n), and G = Φ(T ) the corresponding element of

G(n) by Theorem 2.1. Let V (resp. E) denotes the set of vertices (resp. edges) of G. Let

a0 be the root angle of T and v0 be its root vertex. We use the same notations for the

root angle and vertex of G (while maintaining the root angle on the right side of every

stem during the complete closure procedure, as explained in Section 2). In this section,

we prove a relation between the graph distance in the triangulation G from a vertex to

the root vertex and a particular labeling of the vertices defined on the unicellular map

T as follows.

Let ` = 4n+1 be the number of angles of T . We add a special dangling half-edge incident

to the root angle of T , called the root half-edge (and not considered as a stem). Let Γ be

the obtained unicellular map. We define the root angle of Γ as the angle of Γ just after the

root half-edge in counterclockwise order around its incident vertex. Let A = (a0, . . . , a`)

be the sequence of consecutive angles of Γ in clockwise order around the unique face of

Γ such that a0 is the root angle. Note that a` is incident to the root half-edge. For

0 ≤ i ≤ l−1, two angles ai and ai+1 are either consecutive around a stem or consecutive

around an edge of Γ. We define a labeling function λ : A→ Z as follows. Let λ(a0) = 3.

For 0 ≤ i ≤ l − 1, let λ(ai+1) = λ(ai) + 1 if ai and ai+1 are consecutive around a stem,

and let λ(ai+1) = λ(ai) − 1 if they are consecutive around an edge. By definition, the

unicellular map Γ has n+ 1 edges and 2n− 1 stems. While going clockwise around the

unique face of Γ, each edge is encountered twice, so λ(a`) = 2n−1−2(n+1)+λ(a0) = 0.

Figure 6.7 gives an example of the labeling function of the unicellular map of Figure 6.4.

Given a stem s of Γ, we define the label λ(s) of s as the label of the angle that is just

before s in counterclockwise order around its incident vertex.
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Figure 6.7 – Labeling of the angles of the unicellular map.

The complete closure procedure is formally defined on T but we can consider that it

behaves on Γ since the presence of the root half-edge in Γ does not change the procedure

as T is safe (the root half-edge is maintained on the right of every stem during the

closure). Let Γ0 = Γ, and, for 1 ≤ k ≤ 2n− 1, let Γk be the map obtained from Γk−1 by

closing an admissible triple of Γk−1. By the bijection Φ we have that Γ2n−1 is the graph

G with an additional dangling half-edge incident to the root angle, we call this graph

G+. We propagate the labeling λ of Γ during the closure procedure by the following. For

1 ≤ k ≤ 2n− 1, when the stem s of Γk−1 is reattached, it splits an angle a of Γk−1 into

two angles of Γk that both inherit the label of a in Γk−1. In other words, the complete

closure procedure just splits some angles that keeps the same label on each side of the

split. We still note λ the labeling of the angles of Γk. It is clear that the labeling of

G+ = Γ2n−1 that is obtained is independent from the order in which the admissible

triples are closed. We denote A(i) the set of angles of G+ which are splited from ai by

the complete closure procedure. Note that for all a ∈ A(i), we have λ(a) = λ(ai). Given

a stem s of Γ, we denote a(s) the angle of Γ corresponding to where s is reattached

during the complete closure procedure (i.e. s is reattached to an angle that comes from

some splittings of a(s)).

Consider a stem s of T . Let i, j, be such that ai is the angle just before s in counter-

clockwise order around its incident vertex and aj = a(s). The fact that T is safe implies

that 0 ≤ i < j ≤ `.

Lemma 3.1. For 0 ≤ k ≤ 2n− 1, the rules that are used to define the labeling function

λ are still valid around the special face of Γk, i.e. the root angle of Γk is labeled 3, and

while walking clockwise around the special face of Γk, the labels are increasing by one

around a stem and decreasing by one along an edge until finishing at label 0 at the last

angle.
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In particular, for each stem s of Γ, we have λ(a(s)) = λ(s)− 1. Moreover, all the angles

of Γ that appear strictly between s and a(s) in clockwise order along the unique face of

Γ have labels that are greater or equal to λ(s).

Proof. We prove the first part of the lemma by induction on k. Clearly the statement is

true for k = 0 by definition and properties of λ. Suppose now that for 1 ≤ k ≤ 2n− 1,

the statement is true for Γk−1. Let s be the stem of Γk−1 that is reattached to obtained

Γk. Let (e1, e2, s) be the admissible triple of Γk−1 involving s, when s is reattached. Let

α0, α1, α2, α3 be the angles of the special face of Γk−1 that appears along the admissible

triple (e1, e2, s), such that α0, s, α1, e1, α2, e2, α3 appears consecutively in clockwise order

around the special face. So we have that the dangling part of s is attached to the angle

α3 to form Γk. Since T is safe, the root angle of Γk−1 is distinct from α1, α2. So,

by induction, the rules of the labeling function applies in Γk−1 from α0 to α3. Thus

λ(α1) = λ(α0) + 1, λ(α2) = λ(α1) − 1, λ(α3) = λ(α2) − 1. So λ(α3) = λ(α1) − 1, and

the rules still apply in the special face of Γk.

A direct consequence of the above paragraph, is that for each stem s of Γ, we have

λ(a(s)) = λ(s)− 1.

Suppose by contradiction that there is a stem s and an angle of Γ that appear strictly

between s and a(s) in clockwise order along the unique face of Γ whose label is less or

equal to λ(a(s)). We choose such an angle α whose label is minimum. With the same

notations of the angles α1, α2 as above, since λ(α2) = λ(a(s))+1 and λ(α1) = λ(a(s))+2,

we have that neither α1 nor α2 comes from a splits of α. So there exists an admissible

triple s′, closed before s is the complete closure procedure, and whose one of the two

internal angles α′1, α
′
2 (with analogous notations as above) is α (or comes from a split of

α). By the rule of the labeling, we have λ(α) ∈ {λ(a(s′))+1, λ(a(s′))+2} (depending on

which internal angle it is, either α′1 or α′2). Thus by minimality of α, we have a(s′) = a(s),

but then λ(α) ∈ {λ(a(s)) + 1, λ(a(s)) + 2}, a contradiction.

Lemma 3.2. Consider a (non-contractible) cycle C of Γ of length k that does not contain

the root vertex. Then there is exactly k − 1 stems attached to each side of C.

Proof. As explained in Section 2.4, when one remove from T the root stem, the canonical

orientation and the root angle, one obtain an element of Ub(n). So we have that the

number of stems attached to the left and right side of C are the same. In both cases,

whether Γ is a square or hexagonal unicellular map, we have that C is incident to exactly

2(k − 1) stems, so there is exactly k − 1 stems attached to each side of C.

Note that if v0 ∈ C then the conclusion of Lemma 3.2 is not true since there is an

additional stem attached to the root vertex.

Lemma 3.3. For 0 ≤ i ≤ `− 1, we have λ(ai) > 0.
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Proof. Assume that there exists 0 ≤ i ≤ ` − 1, such that λ(ai) ≤ 0. Let k =

max {0 ≤ i ≤ l − 1 : λ(ai) ≤ 0}. If ak and ak+1 are consecutive along an edge, then

we have λ(ak+1) = λ(ak) − 1 < 0. If ak and ak+1 are separated by a stem, then, by

Lemma 3.1, we have λ(a(s)) = λ(ak) − 1 , so there exists k′ > k such that λ(ak′) < 0.

In both cases, there is a contradiction to the definition of k.

Let VS be the set of special vertices of Γ (defined in Section 2). We call proper the edges

and vertices of Γ that are on at least one cycle of Γ. Let VP (respectively EP ) be the

set of proper vertices (respectively edges) of Γ. Note that VS ⊆ VP .

We call root path the (unique) shortest path of Γ from the root vertex to a proper vertex.

Note that the root path might have length 0 if v0 is proper. The sequence of vertices

along the root path is denoted VR = (r0, r1, ..., rs), with s ≥ 0, r0 = v0 and rs is proper.

The set of edges of the root path is denoted ER. Let VN = V \ (VP
⋃
VR) be the set of

normal vertices of Γ and EN = E \ (EP
⋃
ER) be the set of normal edges of Γ.

The canonical orientation of Γ is the orientation of the edges and stems of Γ that

corresponds to the canonical orientation of T (the special dangling half edge added in

the root angle has no particular orientation). Consider an edge e of Γ with its orientation

in the canonical orientation, then by the orientation rule, the angles of γ incident to e

that are on its right side have greater indices in the set A than the angles that are on its

left side, i.e. they are seen after while going in clockwise order around the unique face

of Γ starting from the root angle.

Lemma 3.4. Consider an edge e = uv of Γ that is oriented from u to v in the canonical

orientation of Γ. Let 0 ≤ i < j < ` such that ai, ai+1, aj , aj+1 appear in this order in

counterclockwise order around e with ai, aj+1 incident to v and ai+1, aj incident to u.

Then we have the following (see Figure 6.8):

λ(aj+1)− λ(ai) =


0 if e ∈ EN
−3 if e ∈ EP
−6 if e ∈ ER

and

λ(ai+1)− λ(aj) =


−2 if e ∈ EN
+1 if e ∈ EP
+4 if e ∈ ER

Proof. Note first that by the labeling rule we have λ(ai+1) = λ(ai) − 1 and λ(aj+1) =

λ(aj)− 1. So (λ(ai+1)− λ(aj)) + (λ(aj+1)− λ(ai)) = −2.

Suppose first that e ∈ EN . While going clockwise around the unique face of Γ starting

from ai to aj+1, we encounter only normal vertices and edges. So we go around a planar

tree whose edges are encountered twice and whose number of stems is equal to twice the

number of edges. This implies that λ(aj+1)− λ(ai) = 0 and so λ(ai+1)− λ(aj) = −2.
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The case where e ∈ ER is quite similar. While going clockwise around the unique face

of Γ starting from aj to ai+1, we are in the same situation as above except that we go

over the root vertex. The root vertex is incident to 1 more stem than normal vertices

and there is a jump of 3 from the label of a` to a0 around the root vertex. This implies

that λ(ai+1)− λ(aj) = 4 and so λ(aj+1)− λ(ai) = −6.

It only remains to consider the case where e ∈ EN . We suppose here that Γ is hexagonal.

The case where Γ is square can be proved similarly.

The value λ(aj+1) − λ(ai) is equal to the number of stems minus the number of edges

that are encountered while going clockwise around the unique face of Γ starting from ai
to aj+1, with i < j. Each normal edge that is met is encountered twice and the number

of stems that are met and attached to normal vertices is equal to exactly twice this

number of edges. So there number does not affect the value λ(aj+1) − λ(ai). Thus we

just have to look at proper edges and stems attached to proper vertices.

Let s be the first special vertex that is encountered. Note that s is encountered twice

along the computation and the other special vertex only once. Let P be the unique path

of Γ between v and s with no special inner vertices. Let k be the length of P . All the

stems attached to inner vertices of P are encountered exactly once and all the edges of

P are encountered exactly twice. Since each inner vertex of P is incident to exactly two

stems, and there one more edges in P than inner vertices, this part results in value −2

in the computation of λ(aj+1)− λ(ai).

It remains to look at the part encountered between the two copies of s. This corresponds

to exactly a cycle C of Γ of length k′, where all its edges and all the stems incident to

one of its side are encountered exactly once. Note that v0 does not belong to C since

i < j. Then by Lemma 3.2, there are exactly k′ − 1 stems attached to each side of C.

So this part results in value (k′ − 1)− k′ = −1 is the computation of λ(aj+1)− λ(ai).

Finally, in total we obtain λ(aj+1)− λ(ai) = −3 and so λ(ai+1)− λ(aj) = 1.

One can remark on Figure 6.8 that an incoming edge of Γ corresponds to a variation of

the labeling in counterclockwise order around its incident vertex that is always ≤ 0.

By Lemma 3.4, we can deduce the variation of the labels around the different kind of

possible vertices that may appear on Γ. They are many different such vertices, the 12

different cases are represented on Figures 6.9.(a) to (`). The stems are not represented

on the figures, except the root stem, but their number is indicated below each figure.

These stems can be incident to any angle of the figures, except the angles incident to the

root symbol that are marked with an empty set. Recall that each of this stem results

in a +1 in the variation of the labels while going counterclockwise around their incident

vertex. The incoming normal edges are not represented either. There can be an arbitrary

number of such edges incident to each angle of the figures. By Lemma 3.4, there is no

variation of the labels around them. When v = v0, i.e. v is the root vertex, we have
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Figure 6.8 – Variations of the labeling around the three different kind of edges of Γ.

represented the root stem and the special dangling root symbol. In this particular case,

there is no stem nor incoming normal edges incident to the angles incident to the root

symbol by the safe property.

For each u ∈ V , let A(u) be the set of angles incident to u, let m(u) = mina∈A(u) λ(a),

and let M(u) = maxa∈A(u) λ(a). On Figures 6.9.(a) to (`) we have represented the

position of the label M(v) and m(v) wherever the missing stems are. We also have given

the value of M(v) −m(v) or an inequality on it. This case analysis gives the following

lemma :

Lemma 3.5. For all v ∈ V , we have M(v)−m(v) ≤ 6.

Lemma 3.6. For all {u, v} ∈ E(G), we have |m(u)−m(v)| ≤ 7.

Proof. Let e ∈ E(G) with extremities u and v. We consider two cases whether e is an

edge of Γ or not.

— e is an edge of Γ: While walking clockwise around the special face of Γ from the

root angle, there is an angle α incident to u and an angle β incident to v that

appears consecutively. By definition of the labels, we have λ(β) = λ(α)−1. More-

over by Lemma 3.5, we havem(u) ∈ [[λ(α)− 6, λ(α)]] and m(v) ∈ [[λ(β)− 6, λ(β)]].

This implies that |m(u)−m(v)| ≤ 7.

— e is not an edge of Γ: Thus e comes from the reattachment of a stem s of

Γ by the complete closure procedure. W.l.o.g., we may assume that s is inci-

dent to u. By Lemma 3.1, we have λ(a(s)) = λ(s) − 1. By lemma 3.5, we

have m(u) ∈ [[λ(s)− 6, λ(s)]] and m(v) ∈ [[λ(s)− 7, λ(s)− 1]]. This implies that

|m(u)−m(v)| ≤ 7.
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Figure 6.9 – Variations of the labeling around the different kind of possible vertices of
Γ.
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3.2 Relation with the graph distance

For (u, v) ∈ V , we denoted by dG(u, v) the length (i.e. the number of edges) of a shortest

path in G starting at u and ending at v.

Given an angle α of Γ, let v(α) denote the vertex of Γ incident to α.

Lemma 3.7. For all v ∈ V , we have m(v)
7 ≤ dG(v0, v) ≤ m(v).

Proof. We proof first the left inequality. Let P = (w0, w1, ..., wk) be a shortest path in

G starting at w0 = v and ending at wk = v0, thus dG(v0, v) = k. We want to prove that

k ≥ m(v)
7 . By Lemma 3.6, for all 0 ≤ i ≤ k− 1, we have m(wi+1) ≥ m(wi)− 7. Thus we

have m(wk)−m(w0) =
∑k−1

i=0 (m(wi+1)−m(wi)) ≥ −7k. Moreover m(wk) = m(v0) = 0

and m(w0) = m(v). This implies that k ≥ m(v)
7 .

We now proof the right inequality. We define a walk W = (wi)i≥0 of G, starting at v by

the following. Let w0 = v and assume that wi is defined for i ≥ 0. If wi = v0, then the

procedure stops. If wi is distinct from v0, we consider an angle α incident to wi such

that λ(α) = m(wi). Let α′ be the angle of the unique face of Γ, just after α in clockwise

order around this face. If α and α′ are separated by a stem s, we set wi+1 = v(a(s)).

If α and α′ are consecutive along an edge of Γ, we set wi+1 = v(α′). In both cases,

we prove that m(wi+1) ≤ m(wi) − 1. When α and α′ are separated by a stem s, then,

by Lemma 3.1, we have m(wi+1) ≤ λ(a(s)) = λ(α) − 1 = m(wi) − 1. When α and α′

are consecutive along an edge of Γ, then, by the definition of the labeling function, we

have m(wi+1) ≤ λ(α′) = λ(α) − 1 = m(wi) − 1. So, the sequence (m(wi))i≥0 is strictly

decreasing along the walk W . By Lemma 3.3, the function m is ≥ 0, and equal to zero

only for v0. So the procedure ends on v0. Let k be the length of W , we have k ≤ m(v).

So finally, we have dG(v0, v) ≤ k ≤ m(v).

Recall that A = (a0, a1, ..., a`) is the set of angles of Γ and for v ∈ V , we have A(v) is

the set of angles incident to v. For v ∈ V , let b(v) = min{i : ai ∈ A(v)}.
For v ∈ V , we define the sequence J(v) = (j(i))i≥0 of elements of N by the following. Let

j(0) = b(v) and assume that j(i) is defined for i ≥ 0. If j(i) = `, then the procedure stops.

If j(i) 6= `, then we define j(i+ 1) by the following. If the two consecutive angles aj(i)
and aj(i)+1 of A are separated by a stem s, then let j(i+ 1) be such that aj(i+1) = a(s).

If aj(i) and aj(i)+1 are consecutive along an edge of Γ, then let j(i+ 1) = j(i) + 1. Note

that in both cases, by Lemma 3.1 or the labeling rule, we have λ(aj(i+1)) = λ(aj(i))− 1.

So (λ(aj(i)))i≥0 is decreasing by exactly one at each step. Let k = λ(ab(v)). Then

for i ≥ 0, we have λ(aj(i)) = k − i. Thus the procedure ends on ` after k steps, i.e.

J(v) = (j(i))0≤i≤k. Moreover we have that the sequence J(v) is strictly increasing since,

as already remarked, by the safe property, a stem s is always reattached to an angle with

greater index than the index of the angles incident to s. We also define the corresponding

walk WJ(v) = (v(aj(i)))0≤i≤k of G.
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We have the following lemma:

Lemma 3.8. Consider v ∈ V with k = λ(ab(v)) and J(v) = (j(i))0≤i≤k. Then, k > 0,

and for 0 ≤ i ≤ k, we have j(i) = min{z ≥ b(v) : λ(az) = k − i}.

Proof. First, suppose by contradiction that k = 0. Then we have b(v) = `, so v = v0

and thus b(v) = 0. This contradicts ` = 4n+ 1 and n ≥ 1. So k > 0.

Let y be such that 0 ≤ y < k. We claim that for all z such that j(y) ≤ z < j(y + 1),

we have λ(az) ≥ k − y. Recall that we have λ(aj(y)) = k − y so the claim is true for

z = j(y). If the two consecutive angles aj(y) and aj(y)+1 of A are consecutive along

an edge of Γ, then we are done since j(y + 1) = j(y) + 1. Suppose now that aj(y) and

aj(y)+1 are separated by a stem s, then we have aj(y+1) = a(s). By Lemma 3.1, for

j(y) < z < j(y + 1), we have λ(az) ≥ λ(aj(y)) = k − y. This concludes the proof of the

claim.

Let i be such that 0 ≤ i < k. So, by the claim applied for 0 ≤ y ≤ i, we have the

following: for b(v) ≤ z < j(i + 1), we have λ(az) ≥ k − i. Since λ(aj(i+1)) = k − i − 1,

we have j(i + 1) = min{z ≥ b(v) : λ(az) = k − (i + 1)}. Moreover, we clearly have

j(0) = min{z ≥ b(v) : λ(az) = k}.

We say that a vertex v is the successor of a vertex u if b(u) ≤ b(v) and denote this by

u � v. Then for all u, v ∈ V , we define

m(u, v) =

{
min{λ(ak) : b(u) ≤ k ≤ b(v)} if u � v
min{λ(ak) : b(v) ≤ k ≤ b(u)} if v � u

.

Lemma 3.9. For all u, v ∈ V , we have dG(u, v) ≤ m(u) +m(v)− 2m(u, v) + 14.

Proof. By symmetry, we can assume that u � v. If u = v, then, by Lemma 3.5, we have

m(u, v) ≤ m(u) + 6 and the lemma is clear since dG(u, v) = 0. If u is equal to v0, then

m(u, v) ≤ λ(b(v0)) = λ(a0) = 3 and the lemma is clear by Lemma 3.7. We now assume

that u is distinct from v and v0. Thus v is also distinct from v0 since u � v. Then, by

Lemma 3.3, we have m(u, v) > 0.

Let k = λ(b(u)) and k′ = λ(b(v)). Consider the two sequences J(u) = (j(i))0≤i≤k and

J(v) = (j′(i))0≤i≤k′ . By definition, we have m(u, v) ≤ k and m(u, v) ≤ k′. Moreover we

have m(u, v) > 0. Let t > 0 and t′ > 0 be such that k − t = k′ − t′ = m(u, v) − 1. By

Lemma 3.8, we have j(t) = min{z ≥ b(u) : λ(az) = k − t} and j′(t′) = min{z ≥ b(v) :

λ(az) = k′− t′}. By definition of m(u, v), we have j(t) > b(v) and so j(t) = j′(t′). So the

two walks WJ(u) and WJ(v) of G are reaching vertex v(aj(t)) = v(aj′(t′)) in respectively

t and t′ steps. So dG(u, v) ≤ t+ t′ ≤ k + k′ − 2m(u, v) + 2.

By Lemma 3.5, we have k ≤ m(u)+6 and k′ ≤ m(v)+6. So finally we obtain dG(u, v) ≤
m(u) +m(v)− 2m(u, v) + 14
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4 Decomposition of unicellular maps

4.1 Forests and well-labelings

We introduce a formal definition of forest from [98].

Let N = {0, 1, 2, ...} and N∗ = N \ {0}. Let F be the set of all n-uplets of elements of N∗

for n ≥ 1, i.e.:

F =
∞⋃
n=1

(N∗)n,

For n ≥ 1, if u ∈ (N∗)n, we write |u| = n. Let u = u1 u2 ... un and v = v1 v2 ... vp be

two elements of F , then u v = u1 u2 ... un v1 v2 ... vp is the concatenation of u and v. If

w = u v for some u, v ∈ F , we say u is an ancestor of w. In the particular case where

|v| = 1, we say that u is the parent of w, denoted by pa(w), and w is a child of u.

For F ⊆ F and i ≥ 1, we denote Fi = {u ∈ F : |u| = i} and F≥i = {u ∈ F : |u| ≥ i}.

Definition 4.1. A forest is a non-empty finite subset F of F satisfying the following

(see example of Figure 6.10):

1. There exists t(F ) ∈ N such that F1 = [[1, t(F ) + 1]].

2. If u ∈ F≥2, then pa(u) ∈ F .

3. For all u ∈ F , there exists cu(F ) ∈ N such that: for all i ∈ N∗, we have u i ∈ F if

and only if i ≤ cu(F ).

4. ct(F )+1(F ) = 0.

Given a forest F ∈ F. The integer t(F ) of Definition 4.1 is called the number of trees of

F . The set F1 is called the set of floors of F . For n ≥ 1, if u = u1 u2 ... un is an element

of F , then we denote fl(u) = u1. Note that fl(u) ∈ F by Definition 4.1 (item 2.). So

fl(u) is a floor of the forest that we call the floor of u. The set of ancestor of u in F

is denoted Au(F ). For 1 ≤ j ≤ t(F ), the j-th tree of F , denoted by F j , is the set of

elements of F that have floor j. We say that j is the floor of F j . The set of all forests

F with τ trees and ρ+ τ + 1 elements is denoted by Fρτ .

A plane rooted tree is a connected acyclic graph represented in the plane that is rooted

at a particular angle. We represent a forest as a plane rooted tree by the following

(see example of Figure 6.10). The set of vertices are the elements of F . The set of

oriented edges are the couples (u, v), with u, v in F , such that pa(v) = u, or there exists

i ∈ [[1, t(F )]] such that u = i and v = i+ 1. The tree is embedded in the plane such that

it satisfies the following:

— Around the vertex 1 appear in counterclockwise order : the root angle, then, if

c1(F ) ≥ 1, the vertices 1 1 to 1 c1(F ), then vertex 2.
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— Around a vertex i ∈ [[2, t(F )]] appear in counterclockwise order : the vertex (i−1),

then, if ci(F ) ≥ 1, the vertices i 1 to i ci(F ), then vertex (i+ 1).

— Around a vertex u ∈ F≥2 appear in counterclockwise order : the vertex pa(u),

then, if cu(F ) ≥ 1, the vertices u 1 to u cu(F ).

One can recover the set of floors of F from the plane rooted tree by considering, as on

figure 6.10, the left most path starting from the root angle. A vertex which is not a

floor, is called a tree-vertex. An edge between two floors is called floor-edge. An edge

which is not a floor-edge is called tree-edge

Note that there is indeed a bijection between Fρτ , and, plane rooted trees with τ + 1

floors and ρ tree-vertices.

612

61 51 2132

321

31

12367 5 4

1111

111112

11

511611

F = {1, 11, 111, 1111, 112, 2, 21, 3, 31, 32, 321, 4, 5, 51, 511, 6, 61, 611, 612, 7}

Figure 6.10 – Representation of a forest of F13
6 .

Definition 4.2. A labeled forest is a pair (F, `), where F is a forest and ` : F → Z such

that for all u ∈ F1, we have `(u) = 0,

Definition 4.3. A well-labeled forest is labeled forest (F, `), where ` satisfies the follow-

ing conditions (see example of Figure 6.11):

1. For all u ∈ F2, we have `(u) = −1,

2. For all u ∈ F≥2 and cu(F ) ≥ 1, we have `(u) − 1 ≤ `(u 1) ≤ `(u 2) ≤ · · · ≤
`(u cu(F )) ≤ `(u) + 1.

The set of all well-labeled forests (F, `) such that F ∈ Fρτ is denoted by Fρτ .

The function d of a well-labeled forest (F, `) can be represented on the plane rooted tree

representing F by adding two stems incident to each tree-vertex of F (see figure 6.12).

A variation into the value ` of two consecutive children indicates the position of a stem.
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−1−1

−1 −1 −1 −1 −1

0000 0 0 0

−2

−1

−1

−2−1−1

Figure 6.11 – Example of a well-labeled forest of F13
6 .

Note that there is a bijection between Fρτ , and, plane rooted tree with τ + 1 floors and

ρ tree-vertices each being incident to two additional stems.

Figure 6.12 – Representation of the well-labeled forest of Figure 6.11 by a plane rooted
tree with two additional stems incident to each tree-vertex.

We now encode forests and well-labeled forest similarly as in [22]. To do this, we need

to define the contour and labeling functions.

Consider a forest F of Fρτ .

We define the vertex contour function of F as the function rF : [[0, 2ρ + τ ]] → F , such

that rF (0) = 1 and for 0 ≤ i < 2ρ+ τ , we have the following:

— If rF (i) have children which do not belong to the set {rF (0), . . . , rF (i− 1)}, then

rF (i+ 1) = rF (i) j where j = min{k ∈ N∗ : rF (i) k /∈ {rF (0), . . . , rF (i− 1)}}.
— If all children of rF (i) belong to {rF (0), . . . , rF (i−1)} then, rF (i+1) = pa(rF (i))

if |rF (i)| ≥ 2, and, rF (i+ 1) = rF (i) + 1 otherwise
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Note that rF (2ρ+ τ) = τ + 1 by a simple counting argument.

The vertex contour function of a forest corresponds to a counterclockwise walk around

its representation, starting from the root angle. For the example of Figure 6.10, one

obtain the following vertex contour function:

rF ([[0, 2ρ+ τ ]]) = (1, 11, 111, 1111, 111, 11, 112, 11, 1, 2, 21, 2, 3, 31, 3, 32, 321, 32, 3,

4, 5, 51, 511, 51, 5, 6, 61, 611, 61, 612, 61, 6, 7)

We now define the contour function of F as the continuous function CF : [0, 2ρ+τ ]→ R
defined for i ∈ [[0, 2ρ+ τ ]] by

CF (i) = f(rF (i))− |rF (i)|

and linearly interpolated between integer values. Note that CF (0) = 0 and CF (2ρ+τ) =

τ .

For example, the contour function of the forest of Figure 6.10 is defined on its integer

values by:

CF ([[0, 2ρ+ τ ]]) = (0, -1, -2, -3, -2, -1, -2, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2,

3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 4, 5, 6)

Note that one can recover a forest F from its contour function CF .

Now consider (F, `) a labeled forest with F ∈ Fρτ .

We defined the labeling function of (F, `) as the continuous function L(F,`) : [0, 2ρ+τ ]→
R defined for i ∈ [[0, 2ρ+ τ ]] by

L(F,`)(i) = `(rF (i))

and linearly interpolated between integer values.

For example, the labeling function of the well-labeled forest of Figure 6.11 is defined on

its integer values by:

LF ([[0, 2ρ+ τ ]]) = (0, -1, -2, -1, -2, -1, -1, -1, 0, 0, -1, 0, 0, -1, 0, -1, -1, -1, 0,

0, 0, -1, -2, -1, 0, 0, -1, -1, -1, -1, -1, 0, 0)

Note that one can recover (F, `) from the pair (CF , L(F,`)). This pair is called the contour

pair of (F, `).
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4.2 Relation between well-labeled forests and 3-dominating binary

words

In this section, we show how to compute the value of |Fρτ |.
Consider b ∈ {0, 1}p. If b = b1 . . . bp, then we define the inverse of b by b−1 = bp . . . b1.

For x ∈ {0, 1}, we denote |b|x = |{1 ≤ i ≤ p : bi = x}|. We say that b is k-dominating, for

k > 0, if for 1 ≤ i ≤ p, we have |b1 . . . bi|0 > k |b1 . . . bi|1. For example, the sequence 01001

is not 1-dominating and the sequence 000011001 is 1-dominating but not 2-dominating.

We have the following lemma from [35]:

Lemma 4.4 ([35]). Consider b ∈ {0, 1}p+q with |b|0 = p and |b|1 = q. For k ∈ N∗, if

p ≥ k q, then there exist exactly p− k q elements of {bj bj+1 ... bp+q b1 b2 ... bj−1 : 1 ≤ j ≤
p+ q} that are k-dominating.

The set of elements b ∈ {0, 1}p+q with |b|0 = p and |b|1 = q that are 3-dominating is

denoted D3,p,q. The elements whose inverse is in D3,p,q are called inverse 3-dominating

binary words and their set is denoted D−1
3,p,q

Lemma 4.5. There is a bijection between Fρτ and D−1
3,3ρ+τ,ρ.

Proof. As already mentioned Fρτ is in bijection with plane rooted tree with τ floors and

ρ tree-vertices each being incident to two stems.

Similarly as in [106], we encode these plane rooted trees by the following method. Let

α be the (unique) angle of the last vertex of the left most path from the root angle. We

walk around the tree starting from the root angle in counterclockwise order, and ending

at α. We write a ”1” when going along an outgoing tree-edge, and a ”0” when going

along an ingoing tree-edge, or around a stem of F , or along an outgoing floor-edge (see

Figure 6.13). By doing so, we obtain an element b of {0, 1}4ρ+τ with |b|1 = ρ such that b

is the inverse of a 3-dominating word. Indeed, while walking around the tree in reverse

order, i.e. starting from α, walking in clockwise order around the tree and ending at

the root angle, we go along an outgoing tree-edge e, and the two stems incident to its

terminal vertex before going along this tree-edge e in the other direction. Thus we have

seen three ”0” before the ”1” corresponding to edge e. Moreover, this walk starts by

going along an ingoing floor-edge, therefore we start with an additional ”0”. Thus b−1

is 3-dominating so b ∈ D−1
3,3ρ+τ,ρ. As in [106], one can see that the rooted plane tree can

be recovered from b. Moreover, it is easy to see that any b ∈ D−1
3,3ρ+τ,ρ corresponds to

such a tree. So there is a bijection between Fρτ and D−1
3,3ρ+τ,ρ.

Lemma 4.6. For ρ ∈ N∗ and τ ∈ N∗, we have:

|Fρτ | =
τ

4ρ+ τ

(
4ρ+ τ

ρ

)
.



220
CHAPTER 6. SCALING LIMITS FOR RANDOM TRIANGULATIONS ON THE

TORUS

0

00

0

0
0

0

0 0
000 1

10 1

0

00

000

0
0

00000

00

00

000000

0

11111

111 1

1

0

0
00

0000

b = 1100100000100000010000100010100000001100000001010001000000

Figure 6.13 – Encoding a forest with two stem at each tree-vertex.

Proof. By Lemma 4.5, it is suffices to prove that

|D3,3ρ+τ,ρ| =
τ

4ρ+ τ

(
4ρ+ τ

ρ

)
.

The number of elements b ∈ {0, 1}4ρ+τ with |b|0 = 3ρ+ τ and |b|1 = ρ is

(
4ρ+ τ

ρ

)
.

By Lemma 4.4, for each such element b, there are exactly 3ρ + τ − 3ρ = τ elements of

{bj bj+1 ... b4ρ+τ b1 b2 ... bj−1 : 1 ≤ j ≤ 4ρ + τ} that are 3-dominating. Thus we obtain

the result.

4.3 Motzkin paths

A Motzkin path of length σ ∈ N, from 0 to γ ∈ Z, with |γ| ≤ σ, is a sequence of integers

M = (Mi)0≤i≤σ, such that M0 = 0, Mσ = γ, and for all 0 ≤ i ≤ σ − 1, we have

Mi+1 −Mi ∈ {−1, 0, 1}. The set of Motzkin path of length σ from 0 to γ is denoted

Mγ
σ.

An example of a Motzkin path in M−2
5 is the following:

M = (0, 1, 0, 0,−1,−2) (4.1)

Consider M ∈Mγ
σ.

We define the extension of M as a sequence of integers denoted M̃ = (M̃i)0≤i≤2σ+γ

and defined by the following. We obtain M̃ from M = (M0, . . . ,Mσ) by considering
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consecutive values Mi,Mi+1, for 0 ≤ i < σ. When Mi+1 = Mi we add the value (Mi+1)

between Mi and Mi+1 in the sequence of M̃ . When Mi+1 = Mi+1 we add the two values

(Mi+1), (Mi+2) between Mi and Mi+1 in the sequence of M̃ . When Mi+1 = Mi−1 we

add nothing between Mi and Mi+1 in the sequence of M̃ . So at each step i, the number

of values that are added to obtain M̃ is exactly Mi+1−Mi + 1. Note that the extension

of an element of Mγ
σ is an element of Mγ

2σ+γ .

With this definition, the extension of the example of Motzkin path M given by (4.1) is

the following element of M−2
8 (where added values from M are represented in red):

M̃ = (0, , , 1, 0, , 0,−1,−2) (4.2)

We also define the inverse of M as a sequence of integers denoted M = ((M)i)0≤i≤σ
and equal to (Mσ − γ,Mσ−1 − γ, . . . ,M0 − γ). Thus informally, M is the Motzkin path

obtained by ”reading” the variation of M in reverse order. Note that the inverse of an

element of Mγ
σ is an element of M−γσ .

With this definition, the inverse of the example of Motzkin path M given by (4.1) is the

following element of M2
5:

M = (0, 1, 2, 2, 3, 2) (4.3)

Then one can consider the extension of the inverse of M , that is defined by the compo-

sition of the inverse then the extension of a Motzkin path. It is thus denoted by (̃M)

or M̃ for simplicity. Note that the extension of the inverse of an element of Mγ
σ is an

element of M−γ2σ−γ .

The extension of the inverse of the example of Motzkin path M given by (4.1) is thus

the extension of the Motzkin path M given by (4.3), and thus the following element of

M2
12 (where added values from M are represented in red):

M̃ = (0, , , 1, , , 2, , 2, , , 3, 2) (4.4)

4.4 Decomposition of unicellular maps into well-labeled forests and

Motzkin paths

Consider n ≥ 1, and U an element of U(n) or Tr(n). As in Section 3, we call proper the

set of vertices of U that are on at least one cycle of U . The core C of U is obtained from

U by deleting all the vertices that are not proper (and keeping all the stems attached

to proper vertices). In C, or U , we call maximal chain a path P whose extremities

are special vertices and all inner vertices vertices of P are not special. Then the kernel

K of U is obtained from C by replacing every maximal chain P by an edge (and thus
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removing the inner vertices and the stems incident to them). Note that we keep the

stems incident to special vertices in the kernel.

Let Ur(n) be the set of elements U of U(n) that are rooted at a half-edge of the kernel

that is not a stem. Note that if U ∈ U(n) is hexagonal there is 6 such half-edges, and

if U is square there is 4 such half-edges. Let Ur,b(n) be the set of elements of Ur(n)

that are balanced. Finally, let UHr,b(n), USr,b(n), T Hr,s,b(n) and T Sr,s,b(n) be the elements of

Ur,b(n) and Tr,s,b(n) that are respectively hexagonal and square.

Next lemma enables to avoid the safe property while studying Tr,s,b(n).

Lemma 4.7. There is a bijection between [[1, 3]]× Tr,s,b(n) and

([[1, 3]]× USr,b(n))
⋃

([[1, 2]]× UHr,b(n)).

Proof. Let Z(n) be the set of elements of Tr,s,b(n) that are moreover rooted at a half-edge

of the kernel that is not a stem. Let ZH(n) (resp. ZS(n)) be the set of elements of Z that

are hexagonal (resp. square). Given an element of T Hr,s,b(n), there are 6 possible roots.

So there is a bijection between ZH(n) and [[1, 6]]×T Hr,s,b(n). Given an element of T Sr,s,b(n),

there are 4 possible roots. So there is a bijection between ZS(n) and [[1, 4]]× T Sr,s,b(n).

Given an element U of Ur,b(n), there are four angles where a root stem can be added

to obtain an element of Z(n). Indeed, these four angles corresponds to the four angles

remaining in the special face when the complete closure procedure is applied on U . So

there is a bijection between ZS(n) and [[1, 4]] × USr,b(n) and a bijection between ZH(n)

and [[1, 4]]× UHr,b(n). Finally Tr,s,b(n) = T Sr,s,b(n) ∪ T Hr,s,b(n) and we obtain the result.

Let n ≥ 1. There are different possible kernels for element of Ur(n), depending on the

position of the possible stems. All the possible kernels of elements of Ur(n) are depicted

on Figure 6.14 where the root half-edge of the kernel is depicted in pink. There are

exactly 10 such possibilities and, for 0 ≤ k ≤ 9, we say that an element of Ur(n) is of

type k if its kernel corresponds to type k of Figure 6.14. We decompose the elements

U ∈ Ur,b(n) depending on their types.

Given an element of U ∈ Ur,b(n) of a given type, we decompose it into its core C and a

set of forests. We orient and denote the maximal chains of U as on Figure 6.14. Each

of these maximal chain as two sides. For t = 3 when U is hexagonal and t = 2 when U

is square, we define 2t particular angles α1, . . . , α2t of U as depicted on Figure 6.15 and

moreover we set α2t+1 = α1. Note that the angles α1, . . . , α2t+1 are formally defined on

U but with a slight abuse of notations, we also consider them to be defined on C (with

exactly the same definition as Figure 6.15).

Let [α, β[ denote the set of angles of U between α and β, while walking along the border

of the unique face of U in clockwise order, including α and excluding β. Let [α, β[∩C
denote the set of angles of [α, β[ that are also incident to the core C. For 1 ≤ i ≤ t, let



4. DECOMPOSITION OF UNICELLULAR MAPS 223

W2

W1

Type 0

W1

W2

W3

W1

W2

W3

W1

W2

W3

Type 1 Type 2 Type 3

W1

W2

W3

W1

W2

W3

W1

W2

W3

Type 4 Type 5 Type 6

W1

W2

W3

W1

W2

W3

W1

W2

W3

Type 7 Type 8 Type 9

Figure 6.14 – The ten possible types of kernels for an element of Ur(n). The red half-edge
indicates the root half-edge.

Si (resp. Si+t) be the maximal chain Wi with all the stems of U that are incident to an

angle of [αi, αi+1[∩Ci (resp. [αi+t, αi+t+1[∩C). Then U is decomposed into its core C
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Figure 6.15 – Definition of the angles α1, . . . , α2t.

plus 2t parts where the i-th part is the part of U “attached to (the right side of) Si”.

More formally, for 1 ≤ i ≤ t, the i-th part (resp. the (i + t)-th part) corresponds to

all the components of U \ C that are connected to the rest of U via an edge of U that

is incident to an angle of [αi, αi+1[∩C (resp. [αi+t, αi+t+1[∩C). Each of these 2t parts

can be represented by one well-labeled forest (see Figure 6.16 where Si is represented in

green): the floor vertices of the forest corresponds to the angles of C in [αi, αi+1[ and

the tree-vertices, tree-edges and stems of the forest represents the part of U “attached”

to Si. Thus, the unicellular map U is decomposed into its core C plus 2t well-labeled

forests ((Fi, `i))1≤i≤2t. For 1 ≤ i ≤ 2t, let τi be the number of angles [αi, αi+1[∩C and

ρi be the number of vertices of the part of U attached to Si. So we have (Fi, `i) ∈ Fρiτi
for 1 ≤ i ≤ 2t.

αiαi+1

Figure 6.16 – The forest ”attached” to Si.
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We now decompose the core C of U .

For 1 ≤ i ≤ t, we define Ri as the maximal chain Wi of U with all the stems of U that

are incident to an inner vertex of Wi. Note that the “union” of Si and Si+t, almost gives

Ri except that Ri contains no stems incident to special vertices. Then we decompose C

into the type of its kernel (see Figure 6.14) plus (Ri)1≤i≤t.

For 1 ≤ i ≤ t, all the inner vertices of Ri are incident to exactly 2 stems. Let γi be half

of the number of stems incident to the right side of Ri minus half of the number of stems

incident to the left side of Ri. Note that γi is an integer. Let σi be the number of inner

vertices of Ri.

When U is square, we have γ1 = γ2 = 0 by the balanced property of U . In this case, for

1 ≤ i ≤ 2, the total number of angles of Ri and incident to inner vertices of Ri is 4σi.

So the number of angles of Ri on one of its side and incident to inner vertices is 2σi. So

for 1 ≤ i ≤ 2, τi = τi+2 = 2σi + 1. For convenience, let γ1 = γ2 = 0 in this case.

When U is hexagonal, the value of γ1 + γ2 and γ2 + γ3 is given by the type of U and

the fact that U is balanced, see Table 6.1. As for the square case, we have a relation

between τ and σ, but this times it depends on the type and of the γi’s. For 1 ≤ i ≤ 6,

let ci ∈ {0, 1} such that ci = 1 if and only if there is a stem incident to the angle αi. The

value of c1, . . . , c6 is given in Table 6.1. For 1 ≤ i ≤ 3, we have τi = 2σi + 1 + γi + ci,

and τ3+i = 2σi + 1− γi + c3+i.

γ1 + γ2 γ2 + γ3 c1 c2 c3 c4 c5 c6

Type 1 1 0 0 0 0 1 1 0

Type 2 1 1 0 0 0 0 1 1

Type 3 0 0 0 1 0 0 1 0

Type 4 0 -1 0 0 1 1 0 0

Type 5 0 0 0 0 1 0 0 1

Type 6 -1 -1 0 1 1 0 0 0

Type 7 0 0 1 0 0 1 0 0

Type 8 0 1 1 0 0 0 0 1

Type 9 -1 0 1 1 0 0 0 0

Table 6.1 – Values of γ1 + γ2, γ2 + γ3, c1, . . . , c6, depending of the type.

For 1 ≤ i ≤ t, we represent Ri by a Motzkin path Mi of length σi from 0 to γi, thus

Mi ∈ Mγi
σi . Two stems on the right (resp. left) side of Ri corresponds to a step of 1

(resp. −1) in the Motzkin path. A stem on each side of Ri corresponds to a step of 0 in

the Motzkin path.

The path Ri corresponding to the example Si of Figure 6.16 is represented on Figure 6.17

with the corresponding Motzkin path in M−2
5 (from right to left). This Motzkin path

is precisely the example given in (4.1). Note that from Figure 6.16, the stem that was
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incident to αi has been removed since Ri contains no stems incident to special vertices

(the Motzkin path Mi represents only the stems incident to inner vertices of Wi).

0−1 0 10−2αi+1 αi

Figure 6.17 – The Motzkin path corresponding to Ri (from right to left).

Finally, we have a relation between the number of vertices n and the value σi and ρi:

n = ρ1 + · · ·+ ρ2t + σ1 + · · ·+ σt + (t− 1)

Definition 4.8. For n ≥ 1, let

R0(n) =
⋃

(ρ1,...,ρ4)∈N4

(τ1,...,τ4)∈(N∗)4
(σ1,σ2)∈N2

Fρ1τ1 × · · · × Fρ4τ4 ×M0
σ1 ×M0

σ2

where

n = ρ1 + · · ·+ ρ4 + σ1 + σ2 + 1

and for 1 ≤ i ≤ 2, we have τi = τ2+i = 2σi + 1.

Thus, for n ≥ 1, there is a bijection between the set of (square) unicellular maps USr,b(n)

and R0.

Definition 4.9. For n ≥ 1 and 1 ≤ k ≤ 9, let

Rk(n) =
⋃

(ρ1,...,ρ6)∈N6

(τ1,...,τ6)∈(N∗)6
(γ1,γ2,γ3)∈Z3

(σ1,σ2,σ3)∈N3

Fρ1τ1 × · · · × Fρ6τ6 ×Mγ1
σ1 ×Mγ2

σ2 ×Mγ3
σ3

where

n = ρ1 + · · ·+ ρ6 + σ1 + σ2 + σ3 + 2

for 1 ≤ i ≤ 3, we have τi = 2σi + 1 + γi + ci and τ3+i = 2σi + 1− γi + c3+i

for 1 ≤ i ≤ 3, we have |γi| ≤ σi
with γ1 + γ2, γ2 + γ3, c1, . . . , c6 given by line k of Table 6.1.

Thus, by above discussion, for n ≥ 1 and 1 ≤ k ≤ 9, there exists a bijection between

elements of UHr,b(n) with kernel of type k and Rk(n).

So by Lemma 4.7 we have the following:
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Lemma 4.10. For n ≥ 1, there exists a bijection between [[1, 3]]× Tr,s,b(n) and

(
[[1, 3]]×R0(n)

) ⋃ [[1, 2]]×
⋃

1≤k≤9

Rk(n)


4.5 Relation with labels of the unicellular map

We use the same notations as in previous section where U is an element of Ur,b(n) that

is decomposed into the type k of its kernel, 2t well-labeled forests ((Fi, `i))1≤i≤2t, with

(Fi, `i) ∈ Fρiτi , and t Motzkin paths (Mi)1≤i≤t, with Mi ∈Mγi
σi .

We explain in this section how the well-label forests Motzkin paths and type are linked

to the labeling function λ defined in Section 3.

As in the proof of Lemma 4.7, there are four angles of U where a root stem can be

added to obtain an element of Tr,s,b(n) (after forgetting the root of U). Consider one

such element T ∈ Tr,s,b(n). Let G be the image of T by the bijection Φ of Theorem 2.1

and V the set of vertices of G. Let Γ be the unicellular map obtained from T by adding

a dangling root half-edge incident to its root angle. Let λ be the labeling function of the

angles of Γ as defined in Section 3. For all u, v ∈ V , let m(u) and m(u, v) be as defined

in as defined in Section 3.

Recall that the labeling function λ is defined on the angles of Γ by the following: while

going clockwise around the unique face of Γ starting from the root angle with λ equals

to 3, the variation of λ is “+1” if going around a stem and “-1” if going along an edge.

Recall that, for 1 ≤ i ≤ t, the Motzkin path Mi is used to represent the part Ri of

the unicellular map U (see Section 4.4). Consider the extension M̃i of Mi, defined in

Section 4.3. Note that M̃i can be used to encode the variation of the labels along the

path Ri between αi (excluded) and αi+1 (included) as if we were computing λ around

Ri. Figure 6.18 is an example obtained by superposing the example Ri of Figure 6.17

and the extension of the corresponding Motzkin path given by (4.2). One can check

that, from αi (excluded) to αi+1 (included), we get “+1” around a stem and “-1” along

an edge, like in the definition of λ.

10−1−2 20
1

1 0 αiαi+1

Figure 6.18 – The extension of the Motzkin path (from right to left).

Note also that M̃i encode the variation of the labels along the path Ri between αi+t
(excluded) and αi+t+1 (included). Figure 6.19 is an example obtained by superposing
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the example Ri of Figure 6.17 and the extension of the inverse of the corresponding

Motzkin path given by (4.4).

4

21

20 1 2 2 3 2

3

33αi+t αi+t+1

Figure 6.19 – The inverse of the extension of the Motzkin path (from left to right).

For convenience, we define M̃i = M̃i−t for t + 1 ≤ i ≤ 2t. So the sequence M̃1, . . . , M̃2t

corresponds to the parts of the Ri appearing consecutively while going clockwise around

the unique face of U .

Now we need to extend a bit more M̃i so it also encodes αi and a possible stem incident

to αi. For a Motzkin path M̃ ∈Mγ
2σ+γ and c ∈ {0, 1}, we define the c-shift of M̃ as the

following Motzkin path in Mγ+c−1
2σ+γ+c+1:

M̃ c =

{
(0, (M̃)1 − 1, . . . , (M̃)2σ+γ − 1) if c = 0

(0, 1, (M̃)1, . . . , (M̃)2σ+γ) if c = 1

For 1 ≤ k ≤ 9 and 1 ≤ i ≤ 6, let ci(k) be the value of ci given by line k of Table 6.1.

We also define c1(0) = c2(0) = c3(0) = c4(0) = 0. If k = 0, let γ1 = γ2 = 0. For

t+1 ≤ i ≤ 2t, let γi = −γi−t and σi = σi−t. With these notations, for 1 ≤ i ≤ 2t, we can

consider the Motzkin path M̃i
ci(k)

that is an element ofMγi+ci(k)−1
τi (see Definitions 4.8

and 4.9 for the relation between τ , γ, σ, c). Now M̃i
ci(k)

encode “completely” Ri from

αi to αi+1 (both included) with also the stems incident to special vertices depending on

the type.

Now we explain the links between λ and the well-labeled forests. Consider a tree of a

well-labeled forest (F, `). Figure 6.20 gives an example represented either with its labels

(on the left side) or with its stems (on the right side). Note that it is the first tree of

the well-labeled forest of Figures 6.11 and 6.12 (i.e. the one on the right).

If one computes the variation of λ on the angles of the tree “above the floor line”. Then

one can note that the first angle of each vertex that is encountered receive precisely

the label given by the function ` of (F, `). Figure 6.21, show this computation on the

example of Figure 6.20 where the correspondence with the values of ` is represented in

red.

Now with the help of the c-shift extensions of Motzkin paths we can encode completely

the variation of the labels around the well-labeled forests. For 1 ≤ i ≤ 2t, consider the

vertex contour function rFi and contour pair (CFi , L(Fi,`i)) of (Fi, `i). For 0 ≤ t ≤ 2ρi+τi,

let CFi(t) = maxs≤tCFi(s). Note that for 0 ≤ t ≤ 2ρi + τi the value of CFi(t) + 1 is the
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−2

−1

−1

0

−1

Figure 6.20 – Example of a tree of a well-labeled forest.

0

−1

−1

−2

−1

0

0

0

0

1

00

1

−1

1

−1

0

Figure 6.21 – Computation of the label λ around a tree of a well-labeled forest.

floor of the vertex rFi(t). For 0 ≤ t ≤ 2ρi + τi, we define

Si(t) = L(Fi,`i)(t) + M̃i
ci(k)

(CFi(t)).

With this definition, if one computes the variations of λ around Fi, starting from αi
with value 0, an ending at αi+1 then the first angle of each vertex v that is encountered

receives the value Si(t) where t is any value 0 ≤ t ≤ 2ρi + τi such that rFi(t) = v.

For f, g two functions defined on [[0, s]] and [[0, t]] respectively, taking values in Z and

such that g(0) = 0. We define the concatenation of f, g, denoted f • g, as the function

defined on [[0, s+ t]] by the following:

(f • g)(i) =

{
f(i) if 0 ≤ i ≤ s
f(s) + g(i− s) if s ≤ i ≤ s+ t
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Let I =
∑

1≤i≤2t(2ρi+τi). Let S• = S1•· · ·•S2t be the function defined on [[0,
∑

1≤i≤2t(2ρi+

τi)]]. Note that S•(0) = S•(I) = 0. Note also that I =
∑

1≤i≤2t(2ρi + τi) = (2n + 2) +

2× (σ1 + · · ·+ σt) + 2× 1k 6=0.

As in Section 3, we call proper, the vertices of U that are on at least one cycle of Γ. Let

P be the the unicellular map obtained from U by removing all the stems that are not

incident to proper vertices. We still denote by α1, . . . , α2t the angles of P corresponding

to the angles α1, . . . , α2t of U . Note that P has precisely I angles. So we see S• as a

function from the angles of P to Z by starting at α1 and walking clockwise around the

unique face of P .

We define the vertex contour function of P as the function rP : [[0, I]] → V as follows:

while walking clockwise around the unique face of P , starting at α1, let rP (i) denote the

i-th vertex of P that is encountered.

Recall that for u ∈ V , m(u) is the minimum of the values of λ that appears in the angles

incident u.

We explain that S•(i) is almost equal to m(rP (i)) −m(rP (0)). On one hand, we have

explain above that S• almost acts as computing a “variation” of λ around U from α1. On

the other hand the value of m is obtained by computing λ around Γ from its root angle

a0. This angle a0 can be anywhere in U . Since we are considering m(rP (i))−m(rP (0))

we have shifted m so its corresponds to “computing λ from α1. Let a0, a1, . . . , a` denote

the angles of Γ as in Section 3. There is a jump of 4 in the computation of λ from a`
to a1. Thus in the “variation” of λ computed around the well-labeled forests we can

get a +4 at some place. Moreover in such computations, we match the computation

of λ just at the first angle of each vertex that is encountered around the forest. So by

Lemma 3.5, at the other angles it can differ by ±6. Thus in total we have, for i ∈ [[0, I]],

|S•(i)− (m(rP (i))−m(rP (0)))| ≤ 4 + 6 + 6 = 16.

Note that P contains exactly 2×(σ1 + · · ·+σt)+2×1k 6=0 stems. Let Q be the unicellular

map obtained from P by removing all its stems. We also denote by α1, . . . , α2t the

corresponding angles of Q. Note that Q has exactly 2n + 2 angles. We now define the

vertex contour function of Q as the function rQ : [[0, 2n + 1]] → V as follows: while

walking clockwise around the unique face of W , starting at α1, let rQ(i) denote the i-th

vertex of Q that is encountered.

We define the sequence (S(i))0≤i≤2n+1 as the sequence that is obtained from (S•(i))0≤i≤I
by removing all the values of (S•) that appear in an angle of P that is just after a stem

of P in clockwise order around its incident vertex. So we see S as a function from the

angles of Q to Z by starting at α1 and walking clockwise around the unique face of Q.

We call S the shifted labeling function of the unicellular map U .

For i ∈ [[0, 2n+ 1]], we have

|S(i)− (m(rQ(i))−m(rQ(0)))| ≤ 16. (4.5)
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We now introduce the following pseudo-distance function. For i, j ∈ [[0, 2n+ 1]], let

do(i, j) = m(rQ(i)) +m(rQ(j))− 2m(rQ(i), rQ(j))

By (4.5), we obtained the following: for i, j ∈ [[0, 2n+ 1]],

|do(i, j)− (S(i) + S(j)− 2S(i, j))| ≤ 64 (4.6)

where S(i, j) = mini≤t≤j S(t).

5 Some variants of Brownian motion

Let

H =
⋃
x∈R+

C([0, x],R),

where C([0, x],R) is the set of continuous functions from [0, x] to R.

We use the following standard notation: x∧ y = min(x, y) for x, y ∈ R2. For an element

f ∈ H, let σ(f) be the only x such that f ∈ C([0, x],R). Then we define the following

metric on H:

dH(f, g) = |σ(f)− σ(g)|+ sup
y≥0
|f(y ∧ σ(f))− g(y ∧ σ(g))|.

Given a function f : [0, x]→ R, for 0 ≤ t ≤ x, let f(t) = supr∈[0,t] f(r).

Let p (resp. pa) denote the density of the standard Gaussian random variable (resp.

the centered Gaussian random variable with variance a), i.e. for x ∈ R, p(x) = 1
2πe

−x2
2

(resp. pa(x) = 1√
a
p( x√

a
)). Let p′a denotes the derivative of pa.

Let β be the standard Brownian motion.

Consider τ, ρ ∈ R∗+. Intuitively, the Brownian bridge B0→τ
[0,ρ] is the standard Brownian

motion on [0, ρ] conditioned to take value τ at time ρ and the first-passage Brownian

bridge F 0→τ
[0,ρ] is the Brownian bridge conditioned to take value τ at time ρ for the first

time. Since the probabilities of these conditioning events are equal to 0, these processes

need to be more formally defined. There are many equivalent definitions (see for example

[21, 24, 108]) and we use the following one (as explained in [47], lemma 1).

Then, the Brownian bridge B0→τ
[0,ρ] is the unique continuous process (Bt)t∈[0,ρ] taking value

τ at time ρ and satisfying, for every ρ′ ∈ [0, ρ[ and every continuous f : H → R, the

identity

E[f(B|[0,ρ′])] = E
[
f(β|[0,ρ′])

pρ−ρ′(τ − βρ′)
pρ(τ)

]
.
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Similarly, the first-passage Brownian bridge F 0→τ
[0,ρ] is the unique continuous process

(Ft)t∈[0,ρ] taking value τ at time ρ for the first time and satisfying, for every ρ′ ∈ [0, ρ[

and every continuous f : H → R, the identity

E[f(F |[0,ρ′])] = E

[
f(β|[0,ρ′])

p′ρ−ρ′(τ − βρ′)
p′ρ(τ)

1βρ′<τ

]
.

For convenience we define:

F̃ 0→τ
[0,ρ] =

1

2

(
F 0→τ

[0,ρ] + F 0→τ
[0,ρ]

)
.

Given a function f : [0, ρ]→ R, for 0 ≤ s ≤ t ≤ ρ, let f̌(s, t) = infr∈[s,t]

(
f(r)− f(r)

)
.

We now define the Brownian snake’s head driven by a first-passage Brownian bridge.

To simplify the notation, let F denote the first-passage Brownian bridge F 0→τ
[0,ρ] . The

Brownian snake’s head Z = Zτ[0,ρ] driven by F is, conditionally on F , define as the

centered Gaussian process satisfying, for 0 ≤ s ≤ t ≤ ρ:

Cov(Z(s), Z(t))= F̌ (s, t)

We can assume that Zτ[0,2ρ] is almost surely (a.s.) continuous.

Now, define an equivalence relation as follows: for any 0 ≤ s ≤ t ≤ ρ, we say that

s ∼F t if F̌ (s, s) = F̌ (t, t) = F̌ (s, t). Then the Brownian continuum random forest

(TF , dTF ) is defined as the space TF = [0, ρ]/∼F equipped with the distance function

dTF (s, t) = F̌ (s, s) + F̌ (t, t)− 2F̌ (s, t) for any pair (s, t) such that 0 ≤ s ≤ t ≤ 2ρ.

Remark 5.1. Note that if s ∼F t then E[(Zτ[0,ρ](s)− Zτ[0,ρ](t))
2] = 0, meaning that as

usual Zτ[0,ρ] can be seen as a continuous Gaussian process defined on TF .

We now give some definitions and results from ([22], see also [104]):

The maximal span of an integer-valued random variable X is the greatest h ∈ N for

which there exists an integer a such that almost surely X ∈ a+ hZ.

Consider (Xi)i≥0 a sequence of independent and identically distributed i.i.d. integer-

valued centered random variables with a moment of order r0 for some r0 ≥ 3. Let η2 =

V ar(X1), h be the maximal span of Xi and a be the integer such that a.s. Xi ∈ a+ hZ.

Let Σk =
∑k

i=0Xi and Qk(i) = P(Σk = i).

Lemma 5.2 ([22]). We have:

sup
i∈ka+hZ

∣∣∣∣ηh√k Qk(i)− p
(

i

η
√
k

)∣∣∣∣ = o(k−
1
2 ),

and, for all 2 ≤ r ≤ r0, there exists a constant C such that for all i ∈ Z and k ≥ 1,
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∣∣∣η
h

√
k Qk(i)

∣∣∣ ≤ C

1 +
∣∣∣ i
η
√
k

∣∣∣r .
Consider (ρn) ∈ NN and (τn) ∈ ZN two sequences of integers such that there exists

ρ, τ ∈ R∗+ satisfying:
ρn
n
→ ρ and

τn
η
√
n
→ τ

Let (Bn(i))0≤i≤ρn be the process whose law is the law of (Σi)0≤i≤ρn conditioned on the

event

Σρn = τn,

which we suppose occurs with positive probability.

We write Bn the linearly interpolated version of Bn and define its rescaled version by:

B(n) =

(
Bn(ns)

η
√
n

)
0≤s≤ ρn

n

Lemma 5.3 ([22]). There exists an integer n0 ∈ N such that, for every 2 ≤ q ≤ q0,

there exists a constant Cq satisfying, for all n ≥ n0 and 0 ≤ s ≤ t ≤ ρn
n ,

E[|B(n)(t)−B(n)(s)|q] ≤ Cq|t− s|
q
2 .

Theorem 5.4 ([22]). The process B(n) converges in law toward the process B0→τ
[0,ρ] , in

the space (H, dH), when n goes to infinity.

6 Convergence of the parameters in the decomposition

For all n ≥ 1, consider a random pair (un, Un) that is uniformly distributed over the set

[[1, 3]]× Tr,s,b(n). Let (rn, Rn) be the image of (un, Un) by the bijection of Lemma 4.10.

Let kn ∈ [[0, 9]] be such that Rn ∈ Rkn(n). We have rn ∈ [[1, 3]] if kn = 0 (i.e. U is a

square) and rn ∈ [[1, 2]] otherwise (i.e. U is hexagonal). In what follows, we need some

rather heavy additional notation, and the cases kn = 0 and kn > 0 have to be treated

slightly differently, even though the general approach is parallel between both.

If kn = 0, let (ρ1
n, . . . , ρ

4
n) ∈ N4, (τ1

n, . . . , τ
4
n) ∈ (N∗)4, (σ1

n, σ
2
n) ∈ N2, ((F 1

n , `
1
n), . . . , (F 4

n , `
4
n)) ∈

Fρ
1
n

τ1n
×· · ·×Fρ

4
n

τ4n
and (M1

n,M
2
n) ∈Mγ1n

σ1
n
×Mγ2n

σ2
n

be such thatRn = ((F 1
n , `

1
n), . . . , (F 4

n , `
4
n),M1

n,M
2
n)

(see Definition 4.8). If kn 6= 0, let (ρ1
n, . . . , ρ

6
n) ∈ N6, (τ1

n, . . . , τ
6
n) ∈ (N∗)6, (γ1

n, γ
2
n, γ

3
n) ∈

Z3, (σ1
n, σ

2
n, σ

3
n) ∈ N3, ((F 1

n , `
1
n), . . . , (F 6

n , `
6
n)) ∈ Fρ

1
n

τ1n
× · · · × Fρ

6
n

τ6n
, (M1

n,M
2
n,M

3
n) ∈

Mγ1n
σ1
n
×Mγ2n

σ2
n
×Mγ3n

σ3
n

be such that Rn = ((F 1
n , `

1
n), . . . , (F 6

n , `
6
n),M1

n,M
2
n,M

3
n) (see Defini-

tion 4.9).
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We define t(k), for k ∈ [[0, 9]], such that t(0) = 2 and t(k) = 3 if k ∈ [[1, 9]]. For

convenience again, we write tn for t(kn).

When kn = 0, let γ1
n = γ2

n = 0; for kn ∈ [[0, 9]] and i ∈ [[tn + 1, 2tn]], let γin = −γi−tnn and

σin = σi−tnn .

We often denote simply by x the vector (x1, . . . , x2t); in particular, ρn, τn, γn, σn denote

the families (ρin)1≤i≤2tn , (τ in)1≤i≤2tn , (γin)1≤i≤2tn , (σin)1≤i≤2tn , respectively. For k ∈
[[1, 9]], let (c1(k), . . . , c6(k)) ∈ {0, 1}6 denote the constants given by line k of Table 6.1.

Moreover, let c1(0) = · · · = c4(0) = 0. Let c(k) = (c1(k), . . . , ct(k)(k)). For convenience,

we write cn = c(kn), i.e. (c1
n, . . . , c

tn
n ) = (c1(kn), . . . , ctn(kn)).

With these notations, by Definitions 4.8 and 4.9, we have the following equality:

τn = 2σn + γn + cn + 1. (6.1)

Conditionally on the vector (kn, ρn, τn, γn, σn), the forests and paths F 1
n , . . . , F

2tn
n ,M1

n,M
2
n,M

tn
n

are independent and:

— for every i ∈ [[1, 2tn]], the well-labeled forest (F in, `
i
n) is uniformly distributed over

the set Fρ
i
n

τ in
,

— for every i ∈ [[1, tn]], the Motzkin path M i
n is uniformly distributed over the set

Mγin
σin

.

For every n > 0, we define the renormalized version ρ(n), γ(n), σ(n) by letting ρ(n) = ρn
n ,

γ(n) = ( 9
8n)1/4γn and σ(n) = σn√

2n
.

For k ∈ {0, . . . , 9}, we repeatedly use two vector spaces in what follows, a “small space”

(R+)2t(k)−1×Rt(k)−2× (R+)t(k) and a “big space” (R+)2t(k)×R2t(k)× (R+)2t(k), and use

the terms “small” and “big” in what follows as shortcuts for these spaces. The small

space can be seen as a subspace of the big one by imposing the following relations between

coordinates in the big space. Every triple (ρ, γ, σ) ∈ (R+)2t(k)−1×Rt(k)−2× (R+)t(k) can

be extended into a triple in (R+)2t(k) × R2t(k) × (R+)2t(k) by letting:

— ρ2t(k) = 1−∑2t(k)−1
i=1 ρi

— for i ∈ [[2, 2t(k)]], γi = (−1)i−1γ1,

— for i ∈ [[t(k) + 1, 2t(k)]], σi = σi−t(k),

The idea is that combinatorial constraints coming from our previous constructions will

impose these relations on the scaling limits: the natural limit takes place in the big

space, but the degrees of freedom correspond to the coordinates in the small space and

so will the integration variables in what follows. As a particularly useful notation, we

several times extend functions from the small space to the big space, more precisely:

if (ρ, γ, σ) ∈ (R+)2t(k)−1 × Rt(k)−2 × (R+)t(k) is a point in the small space and f :

(R+)2t(k)×R2t(k)× (R+)2t(k) → R, we denote by f(ρ, γ, σ) the value of f at the point in

the big space obtained by computing the extra coordinates as above.
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We make use of

∆k =

x ∈ (R+)2t(k) :

2t(k)∑
i=1

xi = 1

 ,

the simplex of dimension 2t(k)−1. Note that ρ lies in the simplex ∆k as long as ρ2t(k) ≥
0. Now, define a probability measure µ on the set L =

⋃
k∈[[0,9]]

(
{k} ×∆k × R2t(k) × (R+)2t(k)

)
as follows: for every non-negative measurable function ϕ on L, let

µ(ϕ) =
1

Υ

9∑
k=1

∫
X

(
1ρ6≥0 × ϕ(k, ρ, γ, σ)×

6∏
i=1

(
σi√
2 ρi
× 2√

6πρi
× e

−(σi)2

3ρi ×
(

4

3

)ci(k)+1
)
×

3∏
i=1

pσi(γ
i)

)
dX

where like above (c1(k), . . . , c6(k)) is given by line k of Table 6.1, where dX is the

Lebesgue measure on

X = (R+)5 × R× (R+)3,

and where the renormalization constant

Υ =

9∑
k=1

∫
X

(
1ρ6≥0

6∏
i=1

(
σi√
2 ρi
× 2√

6πρi
× e

−(σi)2

3ρi ×
(

4

3

)ci(k)+1
)
×

3∏
i=1

pσi(γ
i)

)
dX

is chosen so that µ has total mass 1. Note that µ is supported on a subspace of the big

space. The goal of this section is to prove the following convergence result:

Lemma 6.1. The law µn of the random variable (kn, ρ(n), γ(n), σ(n)) converges weakly

toward the probability measure µ.

We say that a random, infinite Motzkin path (Mi)i≥0 is uniform if its steps are inde-

pendent and uniformly distributed in {−1, 0, 1} (which means that for every σ > 0,

the restricted path (Mi)0≤i≤σ is uniformly distributed among Motzkin paths of length

σ). There is a relation between Motzkin paths with prescribed final value and uniform

Motzkin paths:

|Mγ
σ| = 3σP(Mσ = γ). (6.2)

Consider n ≥ 1 and k ∈ [[0, 9]]. Let Ckn ⊆ N2t(k) × (N∗)2t(k) × Z2t(k) × N2t(k) be the set of

t-uples (ρ, τ, γ, σ) satisfying the following conditions:

when k = 0: γ1 = γ2 = 0; (6.3)

when k 6= 0: γ1 + γ2, γ2 + γ3, are given by line k of Table 6.1; (6.4)

for i ∈ [[t(k) + 1, 2t(k)]]: γi = −γi−t(k) and σi = σi−t(k); (6.5)

n = ρ1 + · · ·+ ρ2t(k) + σ1 + · · ·+ σt(k) + t(k)− 1 (6.6)
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τ = 2σ + γ + c(k) + 1 (6.7)

for i ∈ [[1, 2t(k)]]: |γi| ≤ σi. (6.8)

For (k, ρ, τ, γ, σ) ∈ [[0, 9]]× Ckn, we define:

Pn(k, ρ, τ, γ, σ) = P
(

(kn, ρn, τn, γn, σn) = (k, ρ, τ, γ, σ)
)

Then, by Lemmas 4.6 and 4.10, Definitions 4.8 and 4.9, Equations (6.1) and (6.2), we

have:

Pn(k, ρ, τ, γ, σ) =
2 + 1k=0

3|Tr,s,b(n)|

2t(k)∏
i=1

|Fρi
τ i
|
t(k)∏
i=1

|Mγi

σi
|

=
2 + 1k=0

3|Tr,s,b(n)| ×
2t(k)∏
i=1

τ i

4ρi + τ i

(
4ρi + τ i

ρi

)
×
t(k)∏
i=1

3σ
i
P(Mσi = γi)

(6.9)

where (Mi)i≥0 is a uniform Motzkin path. To get a grasp on this quantity, we now

collect a few combinatorial results.

Lemma 6.2. For a, b ∈ N, we have(
4a+ b

a

)
=

(
4a

a

)
×
(

4

3

)b
×
∏b
p=1

(
1 + p

4a

)∏b
p=1

(
1 + p

3a

) .
Proof. A straightforward computation shows that(

4a+ b

a

)
(

4a

a

) =
(4a+ b)!

(a)! (3a+ b)!
× (a)! (3a)!

(4a)!
=

(4a+ b)!

(4a)!
× (3a)!

(3a+ b)!
=

∏b
p=1(4a+ p)∏b
p=1(3a+ p)

=
(4a)b

∏b
p=1

(
1 + p

4a

)
(3a)b

∏b
p=1

(
1 + p

3a

) =

(
4

3

)b ∏b
p=1

(
1 + p

4a

)∏b
p=1

(
1 + p

3a

)
By Lemma 6.2, the binomial term in (6.9) can be rewritten:(

4ρi + τ i

ρi

)
=

(
4ρi + 2σi + γi + ci(k) + 1

ρi

)

=

(
4ρi + 2σi + γi

ρi

) ci(k)+1∏
p=1

4ρi + 2σi + γi + p

3ρi + 2σi + γi + p

=

(
4ρi

ρi

)(
4

3

)2σi+γi
∏2σi+γi

p=1

(
1 + p

4ρi

)
∏2σi+γi

p=1

(
1 + p

3ρi

) ci(k)+1∏
p=1

4ρi + 2σi + γi + p

3ρi + 2σi + γi + p
.

(6.10)

For x ∈ R, let bxc denote the largest integer that is bounded above by x.
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Lemma 6.3. For (ρ, γ, σ) ∈ R∗+ × R× R∗+, as n goes to infinity

∏2b√2nσc+b(8n/9)1/4γc
p=1

(
1 + p

4bnρc

)
∏2b√2nσc+b(8n/9)1/4γc
p=1

(
1 + p

3bnρc

) → e
−σ2
3ρ .

Proof. For n ≥ 1, let an denote the left-hand term in the statement of the lemma. By

Lemma 6.2, we have:

an =

(
4 bnρc+ 2

⌊√
2nσ

⌋
+
⌊
(8n/9)1/4γ

⌋
bnρc

)
×
(

3

4

)2b√2nσc+b(8n/9)1/4γc
/

(
4 bnρc
bnρc

)

=
(4 bnρc+ 2

⌊√
2nσ

⌋
+
⌊
(8n/9)1/4γ

⌋
)! (3 bnρc)!

(3 bnρc+ 2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋
)! (4 bnρc)!

×
(

3

4

)2b√2nσc+b(8n/9)1/4γc
.

Using the Stirling formula, we obtain:

an ∼
(4 bnρc+ 2

⌊√
2nσ

⌋
+
⌊
(8n/9)1/4γ

⌋
)4bnρc+2b√2nσc+b(8n/9)1/4γc(3 bnρc)3bnρc

(3 bnρc+ 2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋
)3bnρc+2b√2nσc+b(8n/9)1/4γc(4 bnρc)4bnρc

×
(

3

4

)2b√2nσc+b(8n/9)1/4γc

∼

(
4bnρc+2b√2nσc+b(8n/9)1/4γc

4bnρc

)4bnρc

(
3bnρc+2b√2nσc+b(8n/9)1/4γc

3bnρc

)3bnρc

× (4 bnρc+ 2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋
)2b√2nσc+b(8n/9)1/4γc(

3 bnρc+ 2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋)2b√2nσc+b(8n/9)1/4γc

×
(

3

4

)2b√2nσc+b(8n/9)1/4γc

∼

(
1 +

2b√2nσc+b(8n/9)1/4γc
4bnρc

)4bnρc

(
1 +

2b√2nσc+b(8n/9)1/4γc
3bnρc

)3bnρc ×

(
1 +

2b√2nσc+b(8n/9)1/4γc
4bnρc

)2b√2nσc+b(8n/9)1/4γc

(
1 +

2b√2nσc+b(8n/9)1/4γc
3[nρ]

)2b√2nσc+b(8n/9)1/4γc

We have the following estimates as n→∞:(
1 +

2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋
4 bnρc

)4bnρc

∼ e2b√2nσc+b(8n/9)1/4γc−σ2/ρ, (6.11)
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1 +

2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋
3 bnρc

)3bnρc

∼ e2b√2nσc+b(8n/9)1/4γc− 4σ2

3ρ , (6.12)

(
1 +

2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋
4 bnρc

)2b√2nσc+b(8n/9)1/4γc
→ e2σ2/ρ, (6.13)

(
1 +

2
⌊√

2nσ
⌋

+
⌊
(8n/9)1/4γ

⌋
3 bnρc

)2b√2nσc+b(8n/9)1/4γc
→ e

8σ2

3ρ . (6.14)

Combining these completes the proof.

We are now ready to prove Lemma 6.1:

Proof of Lemma 6.1. Let ϕ be a bounded continuous function on the set L and define

En(ϕ) = E
(
ϕ(kn, ρ(n), γ(n), σ(n))

)
. We need to prove that En(ϕ) converges toward µ(ϕ)

as n goes to infinity.

Let n ∈ N. For a given value of k, we identify (ρ, γ, σ) ∈ N2t(k)−1 × Zt(k)−2 × Nt(k) with

an element p(ρ, γ, σ) = (ρ, τ, γ, σ) of (N2t(k)−1×Z)× (N∗)2t(k)×Z2t(k)×N2t(k) by setting

the missing coordinates so that they satisfy the conditions (6.3) to (6.7). Note that ρ2t(k)

depends not only on n and the ρi for i ≤ 2t(k) − 1 but also on the σi. Note also that

p(ρ, γ, σ) is an element of Ckn provided that the conditions lead to ρ2t(k) ≥ 0 and for any

i ∈ [[1, 2t(k)]] we have |γi| ≤ σi. By Equations (6.9) and (6.10) we have

En(ϕ) =

9∑
k=0

∑
(ρ,τ,γ,σ)∈Ckn

(
Pn(k, ρ, τ, γ, σ)ϕ

(
k,
ρ

n
,

(
9

8n

)1/4

γ,
σ√
2n

))

=
9∑

k=0

2 + 1k=0

3|Tr,s,b(n)|
∑

(ρ,τ,γ,σ)∈Ckn

(f(k, ρ, γ, σ)× g(k, γ, σ)× h(k, ρ, γ, σ))

where we introduced the functions

f(k, ρ, γ, σ) =

2t(k)∏
i=1

((
2σi + γi + ci(k) + 1

4ρi + 2σi + γi + ci(k) + 1

)(
4ρi

ρi

)(
4

3

)2σi+γi

∏2σi+γi

p=1

(
1 + p

4ρi

)
∏2σi+γi

p=1

(
1 + p

3ρi

) ci(k)+1∏
p=1

4ρi + 2σi + γi + p

3ρi + 2σi + γi + p

 ,

g(k, γ, σ) =

t(k)∏
i=1

3σ
i
P(Mσi = γi),

h(k, ρ, γ, σ) = ϕ

(
k,
ρ

n
,

(
9

8n

)1/4

γ,
σ√
2n

)
.
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In order to derive the asymptotic behavior of the discrete objects above, we are going

to compare discrete sums to integrals. To do that, we need some more notation.

For k ∈ [[0, 9]], n ≥ 0 and (ρ, γ, σ) ∈ (R+)2t(k)−1 × Rt(k)−2 × (R+)t(k), we define

(bρc, bγc, bσc) ∈ (N2t(k)−1×Z)×Z2t(k)×N2t(k) by the following. For every i ∈ {1, . . . , 2t(k)−
1}, let bρci = bρic. If k 6= 0, let bγc1 = bγ1c. For every i ∈ {1, . . . , t(k)}, let bσci = bσic.
Then we choose bρc2t(k), bγct(k)−1, . . . ,bγc2t(k), bσct(k)+1, . . . ,bσc2t(k) so that bρc, bγc,
bσc satisfies the relation (6.3), (6.4), (6.5), and (6.6).

Note that the set of all preimages of a given joint integral value for (bρc, bσc, bγc) is a

unit cube in the “small space”. Note as well that this definition does not coincide with

first computing the extra coordinates as before and then taking integral parts coordi-

natewise on the big space: we choose this particular definition so that the constraints

on coordinates match better between the discrete and continuous versions.

Writing the sum over Ckn in the form of an integral, we have:

En(ϕ) =

9∑
k=0

2 + 1k=0

3|Tr,s,b(n)|

∫
Xk

(
1Ekn(bρc, bγc, bσc)× f(k, bρc, bγc, bσc)

×g(k, bγc, bσc)× h(k, bρc, bγc, bσc)) dXk

where dXk is the Lebesgue measure on X k = (R+)2t(k)−1 × Rt(k)−2 × (R+)t(k) and

Ekn =
{

(ρ, γ, σ) ∈ (R+)2t(k)−1 × Rt(k)−2 × (R+)t(k) :

bρc2t(k) ≥ 0 and ∀i ∈ [[1, t(k)]], |γi| ≤ σi
}
.

We now do a change of variables by setting ρ′ = ρ
n , γ′ = ( 9

8n)
1
4γ, σ′ = σ√

2n
(but still write

the new variables as (ρ, γ, σ) below for simpler notation). The change of variables is linear

and acts like a multiplication by n on ρ ∈ (R+)2t(k)−1, by (8n/9)1/4 on γ ∈ (R)t(k)−2 and

by
√

2n on σ ∈ (R+)t(k), so its Jacobian is equal to n2t(k)−1(8n/9)(t(k)−2)/4(
√

2n)t(k).

Therefore we obtain:

En(ϕ) =

9∑
k=0

2 + 1k=0

3|Tr,s,b(n)|

∫
Xk

(
1Ekn

(
bnρc,

⌊
(8n/9)

1
4γ
⌋
,
⌊√

2nσ
⌋)

n2t(k)−1

(
8n

9

) t(k)−2
4

(
√

2n)t(k)


× f
(
k, bnρc,

⌊
(8n/9)

1
4γ
⌋
,
⌊√

2nσ
⌋)

× g
(
k,
⌊
(8n/9)

1
4γ
⌋
,
⌊√

2nσ
⌋)

×h
(
k, bnρc, b(8n/9)

1
4γc, b

√
2nσc

))
dXk.
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Note that, for every k ∈ [[0, 9]], due to the way we defined b·c, we have:

2t(k)∏
i=1

(
4

3

)2b√2nσic+b(8n/9)1/4γic t(k)∏
i=1

3b
√

2nσic

=

(
256

27

)∑t(k)
i=1b

√
2nσic

=

(
256

27

)n−∑2t(k)
i=1 bnρc

i−(t(k)−1)

.

Hence, we can rewrite En(ϕ) as

En(ϕ) =
9∑

k=0

2 + 1k=0

3|Tr,s,b(n)| n
t(k)−3

2

(√
2
)t(k)

(
9

8

)1/2(256

27

)n−t(k)+1 ∫
Xk(

1Ekn

(
bnρc,

⌊
(8n/9)

1
4γ
⌋
,
⌊√

2nσ
⌋)

h
(
k, bnρc, b(8n/9)

1
4γc, b

√
2nσc

)
2t(k)∏
i=1

((
√
n

2
⌊√

2nσi
⌋

+
⌊
(8n/9)1/4γi

⌋
+ ci(k) + 1

4 bnρic+ 2
⌊√

2nσi
⌋

+
⌊
(8n/9)1/4γi

⌋
+ ci(k) + 1

)

×√n
(

27

256

)bnρci (4
⌊
nρi
⌋

bnρic

)

×

∏2b√2nσic+b(8n/9)1/4γic
p=1 (1 + p

4bnρic)∏2b√2nσic+b(8n/9)1/4γic
p=1 (1 + p

3bnρic)


×

ci(k)+1∏
p=1

4
⌊
nρi
⌋

+ 2
⌊√

2nσi
⌋

+
⌊
(8n/9)1/4γi

⌋
+ p

3 bnρic+ 2
⌊√

2nσi
⌋

+
⌊
(8n/9)1/4γi

⌋
+ p


×
t(k)∏
i=1

(8n/9)1/4P
(
Mb√2nσic =

⌊
(8n/9)1/4γi

⌋)
dXk

We are now going to use dominated convergence to show that every integral term ap-

pearing in En converges. We have the following:

— bnρc2t(k) = n−∑2t(k)−1
i=1 bnρci −∑t(k)

i=1

⌊√
2nσ

⌋i − (t(k)− 1), and therefore

bnρc2t(k)

n
= 1−

2t(k)−1∑
i=1

bnρci
n
−

t(k)∑
i=1

⌊√
2nσ

⌋i
n

− t(k)− 1

n
→ 1−

2t(k)−1∑
i=1

ρi = ρ2t(k).
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On the other hand, for every i ∈ [[1, t(k)]] we have: 1{∣∣∣⌊(8n/9)
1
4 γi
⌋∣∣∣≤b√2nσic

} →
1{σi≥0}, and hence,

1Ekn

(
bnρc,

⌊
(8n/9)

1
4γ
⌋
,
⌊√

2nσ
⌋)
→ 1{ρ2t(k)≥0}.

— h
(
k, bnρc, b(8n/9)

1
4γc, b

√
2nσc

)
= ϕ

(
k, bnρcn ,

⌊
(8n/9)

1
4 γ
⌋

(8n/9)
1
4
,
b√2nσc√

2n

)
→ ϕ (k, ρ, γ, σ).

— By Lemma 6.3, we obtain:∏2b√2nσic+b(8n/9)1/4γic
p=1 (1 + p

4bnρic)∏2b√2nσic+b(8n/9)1/4γic
p=1 (1 + p

3bnρic)
−→ e

−(σi)2

3ρi .

— By Lemma 5.2 with (η, h) =
(√

2
3 , 1
)

, we obtain (with some simple calculus) :

(8n/9)1/4 P
(
Mb√2nσic =

⌊
(8n/9)1/4γi

⌋)
→ pσi(γ

i).

— If ρi > 0, then

√
n

(
27

256

)bnρci (4
⌊
nρi
⌋

bnρic

)
→ 2√

6πρi
.

—
∏ci(k)+1
p=1

4bnρic+2b√2nσic+b(8n/9)1/4γic+p
3bnρic+2b√2nσic+b(8n/9)1/4γic+p −→

(
4
3

)ci(k)+1
.

—
√
n

2b√2nσic+b(8n/9)1/4γic+ci(k)+1

4bnρic+2b√2nσic+b(8n/9)1/4γic+ci(k)+1
−→ σi√

2ρi
.

It remains to prove domination of the summand, which follow from the following bounds:

—

∣∣∣∣∣ϕ
(
k, bnρcn ,

⌊
(8n/9)

1
4 γ
⌋

(8n/9)
1
4
,
b√2nσc√

2n

)∣∣∣∣∣ ≤ ‖ϕ‖∞.

— If bnρic = 0, then
√
nρi < 1. Hence,

√
nρi

(
27

256

)bnρic(4
⌊
nρi
⌋

bnρic

)
≤ 1.

If on the other hand bnρic > 0, by using Stirling formula, there exists a constant

c do not depend on n, ρi such that:

√
n

(
27

256

)bnρic(4
⌊
nρi
⌋

bnρic

)
≤ c√

ρi
.

Let C = max{1, c}. For all n ≥ 1 and 0 < ρi < 1, we obtain:

√
n

(
27

256

)bnρic(4
⌊
nρi
⌋

bnρic

)
≤ C√

ρi
.
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— Since
∣∣⌊(8n/9)1/4γi

⌋∣∣ ≤ ⌊√2nσi
⌋
, ci(k) ∈ {0, 1} and

⌊√
2nσi

⌋
≥ 1, we get ci +

1 ≤ 2 ≤ 2
⌊√

2nσi
⌋
. By using the inequality bxc−1 ≤ 2/x for all x ≥ 1 and

| bxc | ≤ |x|+ 1, then we obtain:∣∣∣∣∣√n 2
⌊√

2nσi
⌋

+
⌊
(8n/9)1/4γi

⌋
+ ci(k) + 1

4 bnρic+ 2
⌊√

2nσi
⌋

+
⌊
(8n/9)1/4γi

⌋
+ ci(k) + 1

∣∣∣∣∣ ≤ 5
√

2σi

2ρi
.

—
∏ci(k)+1
p=1

4bnρic+2b√2nσic+b(8n/9)1/4γic+p
3bnρic+2b√2nσic+b(8n/9)1/4γic+p ≤ (4

3)c
i(k)+1.

— By using Lemma 5.2 with r = 2, there exists C1R+, such that

(8n/9)1/4P
(
Mb√2nσic =

⌊
(8n/9)1/4γi

⌋)
≤ C1√

σi

(
1 +

(γi)2

σi

)−1

.

— For any p ∈ N, we have
1+ p+1

4bnρic
1+ p+1

3bnρic
≤

1+ p

4bnρic
1+ p

3bnρic
and therefore, since

∣∣⌊(8n/9)1/4γi
⌋∣∣ ≤⌊√

2nσi
⌋
∏2b√2nσic+b(8n/9)1/4γic
p=1 (1 + p

4bnρic)∏2b√2nσic+b(8n/9)1/4γic
p=1 (1 + p

3bnρic)
≤

∏b√2nσic
p=
⌊√

2nσi

2

⌋(1 + p
4bnρic)∏b√2nσic

p=
⌊√

2nσi

2

⌋(1 + p
3bnρic)

≤

1 +

⌊√
2nσi

2

⌋
4bnρic

1 +

⌊√
2nσi

2

⌋
3bnρic


⌊√

2nσi

2

⌋
≤ e

−(σi)2

24ρi .

By the dominated convergence theorem, the integral in the term of index k in En(ϕ)

converges to ∫
Xk1{ρ2t(k)≥0}ϕ(k, ρ, γ, σ)×

2t(k)∏
i=1

(
σi√
2ρi
× 2√

6πρi
× e

−(σi)2

3ρi ×
(

4

3

)ci(k)+1
)
×
t(k)∏
i=1

pσi(γ
i)

 dXk.

The term n
t(k)−3

2 is equal to n−1/2 if k = 0 and 1 if k ∈ [[1, 9]] (so in the end the case

k = 0 will not contribute).

Choosing ϕ = 1 provides the estimate

|Tr,s,b(n)| ∼ 2 Υ

(
256

27

)n−2

.
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Finally, we obtain the convergence of En(ϕ) to

1

Υ

9∑
k=1

∫
Xk(

1{ρ6≥0} × ϕ(k, ρ, γ, σ)×
6∏
i=1

σi√
2 ρi
× 2√

6πρi
× e

−(σi)2

3ρi ×
(

4

3

)ci(k)+1

×
3∏
i=1

pσi(γ
i)

)
dXk,

For k ∈ [[1, 9]], we have X k = X which completes the proof of the lemma.

An immediate consequence of Lemma 6.1 is the following:

Corollary 6.4. There exists two constants c, c′ ∈ R∗+ such that for all n ≥ 1,

c ≤ n× P
(
∃i, i′ ∈ [[1, 2tn]] : ρin = ρi

′
n

)
≤ c′,

c ≤ √n× P
(
∃i, i′ ∈ [[1, tn]] : σin = σi

′
n

)
≤ c′.

In the proof of Lemma 6.1 we compute an asymptotic of Tr,s,b(n); by Theorem 2.1,

we obtain a reformulation of the asymptotic of the number of rooted essentially simple

triangulations:

Corollary 6.5. For n ≥ 1, the set G(n) of essentially simple toroidal triangulations on

n vertices that are rooted at a corner of a maximal triangle satisfies:

|G(n)| ∼ 2 Υ

(
256

27

)n−2

,

where Υ is the constant defined earlier.

It is possible that the formula defining Υ could be amenable to an explicit computation,

but we did not manage to find a simple way to do it.

7 Convergence of uniformly random Motzkin paths

Consider (σn) ∈ (N∗)N, (γn) ∈ ZN such that, there exist σ ∈ R∗+ and γ ∈ R satisfying :

σn√
2n
−→ σ and

(
9

8n

)1/4

γn → γ.

Let Mn be a uniformly random element of Mγn
σn and let Mn also denote its piecewise

linear interpolation which is therefore a random element of H. Let M(n) denote the

rescaled process defined as:

M(n) =

((
9

8n

)1/4

Mn(
√

2ns)

)
0≤s≤ σn√

2n
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By Theorem 5.4 with (η, h) = (
√

2
3 , 1), we have the following:

Lemma 7.1. The process M(n) converges in law toward the Brownian bridge B0→γ
[0,σ] in

the space (H, dH), when n goes to infinity.

Recall from Section 4.3 that M̃n is the extension of Mn and let M̃n also denote its

piecewise linear interpolation. When 2σn+γn < 2
√

2nσ, we assume that M̃n is extended

to take value γn on [2σn + γn, 2
√

2nσ]. Then we define the rescaled versions:

M̃(n) =

((
9

8n

)1/4

M̃n(
√

2ns)

)
0≤s≤max

(
2σn+γn√

2n
, 2σ
)

Lemma 7.2. The process M̃(n) converges in law toward the Brownian bridge B0→γ
[0,2σ] in

the space (H, dH), when n goes to infinity.

Proof. Let t ∈ [[0, σn]]. By the construction of M̃n, we have

Mn(t) = M̃n(2t+Mn(t))

Let t, s be distinct element of [[0, 2σn + γn]]. Note that there exist t1, s1 distinct element

of [[0, σn]] such that

|t− (2t1 +Mn(t1))| ≤ 2 and |s− (2s1 +Mn(s1))| ≤ 2

Therefore, we obtain∣∣∣M̃n(t)− M̃n(s)
∣∣∣

=
∣∣∣M̃n(t)− M̃n (2t1 +Mn(t1)) + M̃n (2t1 +Mn(t1))− M̃n (2s1 +Mn(s1))

+M̃n (2s1 +Mn(s1))− M̃n(s)
∣∣∣

≤
∣∣∣M̃n(t)− M̃n (2t1 +Mn(t1))

∣∣∣+
∣∣∣M̃n (2t1 +Mn(t1))− M̃n (2s1 +Mn(s1))

∣∣∣
+
∣∣∣M̃n (2s1 +Mn(s1))− M̃n(s)

∣∣∣
≤4 +

∣∣∣M̃n (2t1 +Mn(t1))− M̃n (2s1 +Mn(s1))
∣∣∣

≤4 + |Mn(t1)−Mn(s1)|

The convergence of M(n) by Lemma 7.1 implies that there exists α < 1/2 such that

∀ε > 0 ∃C ∀n P(‖M(n)‖α ≤ C) > 1− ε. (7.1)
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Consider ε > 0. Let C be such that (7.1) is satisfied.

Conditioned on ‖M(n)‖α ≤ C, we have

∣∣∣M̃n(t)− M̃n(s)
∣∣∣ ≤ 4 + C

(
8n

9

)1/4 ∣∣∣∣ t1√
2n
− s1√

2n

∣∣∣∣α (7.2)

Since α < 1/2, there exists a constant C1 which do not depend on t1 and s1 such that:

4 ≤ C1

(
8n

9

)1/4 ∣∣∣∣ t1√
2n
− s1√

2n

∣∣∣∣α (7.3)

By using (7.2) and (7.3), there exists a constant C2 such that:∣∣∣M̃n(t)− M̃n(s)
∣∣∣ ≤ C2

(
8n

9

)1/4 ∣∣∣∣ t1√
2n
− s1√

2n

∣∣∣∣α
Note that |t1 − s1| ≤ |t− s|+ 4 ≤ 5|t− s|. So there exist a constant C3, such that:∣∣∣∣M̃(n)

(
t√
2n

)
− M̃(n)

(
s√
2n

)∣∣∣∣ ≤ C3

∣∣∣∣ t√
2n
− s√

2n

∣∣∣∣α .
This inequality is satisfied for 0 ≤ x < y ≤ 2σn+τn√

2n
such that 2nx, 2ny ∈ N. It is also

satisfied for all 0 ≤ x < y ≤ 2σn+τn√
2n

by linear interpolation. So we have:

∀n P(‖M̃(n)‖α ≤ C3) > 1− ε.

Therefore the family of laws of
(
M̃(n)

)
n≥1

is tight in the space of probability measures

on H.

Let 0 ≤ t < 2σ and ε > 0. Since 2σn+γn√
2n

converge toward 2σ, there exists N such that

t ≤ minn≥N
2σn+γn√

2n
. Note that there exists 0 ≤ s < σ such that∣∣∣b√2ntc −

(
2b
√

2nsc+Mn

(
b
√

2nsc
))∣∣∣ ≤ 2.

Therefore we obtain:∣∣∣M̃n

(
b
√

2ntc
)
− M̃n

(
2b
√

2nsc+Mn

(
b
√

2nsc
))∣∣∣ ≤ 2.

Since M̃n

(
2b
√

2nsc+Mn

(
b
√

2nsc
))

= Mn

(
b
√

2nsc
)

and b
√

2nsc = 1
2

(
b
√

2ntc −Mn

(
b
√

2nsc
))

+

e, with e = O(1). We then obtain:

M̃n

(
b
√

2ntc
)

= Mn

[
1

2

(
b
√

2ntc −Mn

(
b
√

2nsc
))

+ e

]
.
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Since the family of laws of (M(n))n≥1 is tight, there exists a constant c1 such that

inf
n≥N

P

(
sup

k∈[[0,σn]]
|Mn(k)| < c1n

1/4

)
≥ 1− ε. (7.4)

Let En the event: {
sup

k∈[[0,σn]]
|Mn(k)| < c1n

1/4

}
.

Now we define a random variable Yn as follows:

Yn = Mn

[
1

2

(
b
√

2ntc −Mn

(
b
√

2nsc
)
1En

)
+ e

]

By Lemma 7.1, we have
((

9
8n

)1/4
Yn

)
n≥N

converge toward B0→γ
[0,σ] (t/2) when n goes to

infinity. Let f be a bounded continuous function from R to R. Thus by (7.4), there

exists n0 ≥ N such that for all n ≥ n0:

∣∣∣E[f(M̃(n)(t))]− E
[
f
(
B0→γ

[0,σ] (t/2)
)]∣∣∣

≤
∣∣∣∣∣E[f(M̃(n)(t))]− E

[
f

((
9

8n

)1/4

Yn

)]∣∣∣∣∣+

∣∣∣∣∣E
[
f

((
9

8n

)1/4

Yn

)]
− E

[
f
(
B0→γ

[0,σ] (t/2)
)]∣∣∣∣∣

≤ 2E[1− 1En ] ‖f‖∞ + ε.

≤ (2 ‖f‖∞ + 1)ε.

This implies that
(
E[f(M̃(n)(t))]

)
n≥N

converge toward E
[
f
(
B0→γ

[0,σ] (t/2)
)]

.

We now prove the finite dimensional convergence of M̃(n). Let k ≥ 1 and consider

0 ≤ t1 < t2 < ... < tk < 2σ. Let N such that tk ≤ minn≥N
2σn+γn√

2n
. By above arguments,

for 1 ≤ i ≤ k, we have (M̃(n)(ti))n≥N converge in law toward B0→γ
[0,σ] (ti/2)

It remains to deal with the point 2σ.∣∣∣M̃(n) (2σ)− γ
∣∣∣ =

∣∣∣∣M̃(n)

(
2σ ∧ 2σn + γn√

2n

)
− γ
∣∣∣∣

=

∣∣∣∣M̃(n)

(
2σ ∧ 2σn + γn√

2n

)
− M̃(n)

(
2σn + γn√

2n

)
+ M̃(n)

(
2σn + γn√

2n

)
− γ
∣∣∣∣

≤
∣∣∣∣M̃(n)

(
2σ ∧ 2σn + γn√

2n

)
− M̃(n)

(
2σn + γn√

2n

)∣∣∣∣+ |γn − γ|
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Consider ε > 0. Since the family of laws of M̃(n) is tight, there exists α and C such that

for all n: P
(
‖M̃(n)‖α ≤ C

)
> 1− ε. Condition on the event {‖M̃(n)‖α ≤ C}, we have∣∣∣∣M̃(n)

(
2σ ∧ 2σn + γn

2n

)
− M̃(n)

(
2σn + γn

2n

)∣∣∣∣ ≤ C ∣∣∣∣2σ ∧ 2σn + γn√
2n

− 2σn + γn√
2n

∣∣∣∣α
≤ C

∣∣∣∣2σ − 2σn + γn√
2n

∣∣∣∣α
Since 2σn+γn√

2n
→ 2σ and γn → γ, for n large enough, we have:∣∣∣M̃(n) (2σ)− γ

∣∣∣ ≤ ε
Therefore we obtain for n large enough:

P
(∣∣∣M̃(n) (2σ)− γ

∣∣∣ > ε
)
≤ P

(
‖M̃(n)‖α > C

)
≤ ε.

This implies that M̃(n) (2σ) converges in probability toward the deterministic value

γ. So Slutzky’s lemma shows that M̃(n) (2σ) converges in law toward γ. Note that(
B0→γ

[0,2σ](t)
)

0≤t≤2σ
and

(
B0→γ

[0,σ] (t/2)
)

0≤t≤2σ
have the same law. Thus we have proved the

convergence of the finite-dimensional marginals of M̃(n) toward B0→γ
[0,2σ]. Moreover, M̃(n)

is tight so Prokhorov’s lemma give the result.

8 Convergence of uniformly random 3-dominating binary

words

Consider (ρn) ∈ NN, (τn) ∈ NN and recall that D−1
3,3ρn+τn,ρn

is the set of elements b ∈
{0, 1}p+q with |b|0 = 3ρn + τn and |b|1 = ρn that are inverse of 3-dominating binary

words (see Section 4.2). The goal of this section is to prove the convergence of uniform

random elements of the set D−1
3,3ρn+τn,ρn

, in which we assume that, there exists ρ, τ ∈ R+,

such that:

ρ(n) =
ρn
n
−→ ρ and τ(n) =

τn√
n
→ τ.

Given a element b of D−1
3,3ρn+τn,ρn

, we can replace the bits “1” by −3 and the bits “0”

by 1, getting an encoding of a (random) inverse 3-dominating binary word of length

4ρn + τn by a (random) path of the same length w = (w(0), w(1), ..., w(4ρn + τn)) in Z
such that

w(0) = 0, w(4ρn + τn) = τn, w(4ρn + τn) < τn and w(i+ 1)− w(i) ∈ {−3, 1}(∀i),
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where w(t) = sups<tw(s). If b is uniformly distributed in D−1
3,3ρn+τn,ρn

, then w is uni-

formly distributed in the set P3,3ρn+τn,ρn of all paths of length 4ρn + τn starting at 0,

with increments in {−3, 1} and taking value τn at their last step for the first time.

Let Wn be a uniformly random element of P3,3ρn+τn,ρn and let Wn also denote its piece-

wise linear interpolation which is therefore a random element of H. Let W(n) denote the

rescaled process defined as:

W(n) =

(
Wn(2ns)√

3n

)
0≤s≤ 4ρn+τn

2n

(8.1)

The goal of this section is to prove the following convergence result:

Lemma 8.1. The process W(n) converges in law toward the first-passage Brownian bridge

F 0→τ
[0,2ρ] in the space (H, dH), when n goes to infinity.

8.1 Review and generalization of a result of Bertoin, Chaumont and

Pitman

We are going to extend a result in [21], showing that its proof is still valid for the case

of a random path with increments in {−3, 1} as above. Fix two integers β and n such

that 1 ≤ β ≤ n, and let (Xi)1≤i≤n be a sequence of i.i.d. random variables of law:

P(Xi = −3) =
1

4
and P(Xi = 1) =

3

4
.

Let S = (Si)0≤i≤n be the random path started at 0 and with increments given by the

Xi, conditioned on the event {Sn = β}. For any k = 0, 1, ..., n − 1, define the shifted

chain:

θk(S)i =

{
Si+k − Sk if 0 ≤ i ≤ n− k,
Sk+i−n + Sn − Sk if n− k ≤ i ≤ n.

For k = 0, 1, ..., β − 1, define the first time at which S reaches its maximum minus k as

follows:

mk(S) = inf

{
i : Si = max

0≤j≤n
Sj − k

}
.

For convenience, we write θmk(S) for θmk(S)(S) in what follows.

Denote by Γ the support of the law of S. For every γ ∈ Γ, define the sequence Λ(s) =

(s, θ1(s), ..., θn−1(s)). Let Λ(s) be the subsequence of the paths in Λ(s) which first hit

their maximum at time n. We need the following lemma.

Lemma 8.2. For every s ∈ Γ, Λ(s) contains exactly β elements and more precisely:

Λ(s) =
(
θmβ−1

(s), ..., θm0(s)
)
.
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Proof. One can see that the path θmk(s) is contained in Λ(s) and the cycle lemma gives

us that the cardinality of Λ(s) is exactly β.

The following is an extension of a result of Bertoin, Chaumont, Pitman [21]:

Lemma 8.3. Let ν be a random variable which is independent of S and uniformly dis-

tributed on {0, 1, ..., β−1}. The chain θmν (S) has the same law as that of S conditioned

on the event {m0 = n} and independent from mν .

Proof. For every bounded function f defined on {0, 1, ..., n} and every bounded function

F defined on Zn+1, we have

E [F (θmν (S))f(mν)] =
∑
s∈Γ

P(S = s)
1

β

β−1∑
j=0

F (θmj (s))f(mj). (8.2)

By Lemma 8.2, we obtain

β−1∑
j=0

F (θmj (s))f(mj) =

n−1∑
k=0

F (θk(s))f(k)1{m0(θk(s))=n}.

Replacing in (8.2), we get

E [F (θmν (S))f(mν)] =
n

β
E
[
F (θU (S))f(U)1{m0(θU (S))=n}

]
where U is uniform on {0, 1, ..., n− 1} and independent of S. This can be rewritten as

E [F (θmν (S))f(mν)] = E [F (S)|m0(S) = n]E [f(U)] ,

which concludes the proof of the lemma.

8.2 Convergence to the first-passage Brownian bridge

In this section, we prove Lemma 8.1. Let a ∈ (0, 1) and let (Xa
n)n≥1 be a sequence of

i.i.d. random variables with distribution aδ−3 +(1−a)δ1 (i.e. whose steps are in {−3, 1}
with probability a for “-3” and (1− a) for “1”). We define Sa0 = 0 and San =

∑n
i=1X

a
i .

We begin with the following basic lemma.

Lemma 8.4. For all a ∈ (0, 1) and ρ, τ ∈ N, we have:

L((Sa)0≤i≤4ρ+τ |Sa4ρ+τ = τ, Sa4ρ+τ−1 < τ) = U(P3,3ρ+τ,ρ),

where Sak = max0≤i≤k S
a
i and U(P3,3ρ+τ,ρ) is the uniform law on P3,3ρ+τ,ρ.
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Proof. Let w = (w0 = 0, w1, ..., w4ρ+τ = τ) ∈ P3,3ρ+τ,ρ.

P((Sa)0≤i≤4ρ+τ = ω|Sa4ρ+τ = τ, Sa4ρ+τ−1 < τ) =
(1− a)3ρ+τ aρ

P(Sa4ρ+τ = τ, Sa4ρ+τ−1 < τ)
,

which does not depend on ω. This concludes the proof of lemma.

We are now ready to prove Lemma 8.1:

Proof of Lemma 8.1. Let Sn = (Sn(i))0≤i≤4ρn+τn be the random path started at 0 and

with increments given by the Xi (defined in section 8.1). Let Fn be the random path Sn
conditioned to take value τn at time 4ρn+τn for the first time. Let the same notations Sn
and Fn denote their piecewise linear interpolation which is therefore a random element

of H. When 4ρn + τn < 4nρ, we assume that Fn is extended to take value τn on

[4ρn + τn, 4nρ]. Let S(n) and F(n) denote the rescaled processes:

S(n) =

(
Sn(2ns)√

3n

)
0≤s≤ 4ρn+τn

2n

F(n) =

(
Fn(2ns)√

3n

)
0≤s≤max( 4ρn+τn

2n
,2ρ)

Let Fi = σ {Sn(k), 0 ≤ k ≤ i} be the natural filtration associated with S.

By Lemma 8.4, the law of Wn is the same of Fn. By Donsker’s theorem and Skorokhod’s

theorem, we may assume that as n→∞, S(n) converges almost surely toward a standard

Brownian motion (βs)0≤s≤2ρ for the uniform topology.

Claim 8.5. Suppose ρ > 0 and consider 0 ≤ ρ′ < 2ρ. For n large enough 2nρ′ < 4ρn+τn
and (F(n)(s))0≤s≤ρ′ converge in law toward (F 0→τ

[0,2ρ])0≤s≤ρ′.

Proof. It is clear that for n large enough we have 2nρ′ < 4ρn+τn. Let f be a continuous

bounded function from H to R. We have

E[f((F(n)(s))0≤s≤ρ′)] =

E[f((S(n)(s))0≤s≤ρ′)|Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn].

By the definition of conditional probability and the fact that (S(n)(s))0≤s≤ρ′ is measur-

able with respect to F2nρ′ , we have:

E[f((F(n)(s))0≤s≤ρ′)] =

E

[
f((S(n)(s))0≤s≤ρ′)

P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn|F2nρ′)

P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn)

]
.
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Recall the notation QSk (i) = P(Sk = i); by Lemmas 8.2, we have:

P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn) =
τn

4ρn + τn
P(Sn(4ρn + τn) = τn).

Using the Markov property, we obtain, denoting by Tn an independent copy of Sn:

P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn|F2nρ′)

=P(Tn(4ρn + τn − 2nρ′) = τn − Sn(2nρ′), Tn(4ρn + τn − 2nρ′ − 1) < τn − Sn(2nρ′))

1Sn(2nρ′)<τn

=
τn − Sn(2nρ′)

4ρn + τn − 2nρ′
P(Tn(4ρn + τn − 2nρ′) = τn − Sn(2nρ′))1Sn(2nρ′)<τn

.

We now verify that the ratio

P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn|F2nρ′)

P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn)

converges almost surely to
p′
2ρ−ρ′ (τ−βρ′ )
p′2ρ(τ)

1β(ρ′)<τ . Indeed, by using the Lemma 5.2 for the

random walk S with (η, h) = (
√

3, 4), we obtain:

√
3

4

√
4ρn + τn × P(Sn(4ρn + τn) = τn)→ p

(τ
2

)
and

√
3

4

√
4ρn + τn − nρ′ × P(Tn(4ρn + τn − nρ′) = τn − Sn(nρ′))→ p

(
τ − βρ′√
2ρ− ρ′

)
.

We can see also that:

τn − Sn(nρ′)

4ρn + τn − nρ′
4ρn + τn

τn

√
4ρn + τn√

4ρn + τn − nρ′

=
4ρn + τn

4ρn + τn − nρ′
√

4ρn + τn
τn

τn − Sn(nρ′)√
4ρn + τn − nρ′

converges toward
8(τ−βρ′ )

τ(2ρ−ρ′)
3
2

. This implies that

P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn|Fnρ′)
P(Sn(4ρn + τn) = τn, Sn(4ρn + τn − 1) < τn)

converges toward
p′
2ρ−ρ′ (τ−βρ′ )

p′ρ(τ) 1βρ′<τ
, and the Lemma 5.2 ensures that this convergence

is dominated. So,

E[f((F(n)(s))0≤s≤ρ′)]→ E

[
f((βs)0≤s≤ρ′)

p′2ρ−ρ′(τ − βρ′)
p′2ρ(τ)

1β(ρ′)<τ

]
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= E
[
f

((
F 0→τ

[0,2ρ](s)
)

0≤s≤ρ′

)]
.

♦

Claim 8.6. There exists a constant α > 0 such that

∀ε > 0 ∃C ∀n P
(
‖F(n)‖α ≤ C

)
> 1− ε.

In particular, the family of laws of
(
F(n)

)
n≥1

is tight for the space of probability measure

on H.

Proof. For any α ∈ (0, 1/2) and X = (X(s))0≤s≤x ∈ H, we write

‖X‖α = sup
0≤s<t≤x

|X(t)−X(s)|
|t− s|α

its α-Holder norm. We prove a stochastic domination of the α-Holder norm of F(n) by

that of B(n), where Bn denotes the random walk Sn conditioned to have the appropriate

final value τn at time 4ρn + τn and B(n) is the rescaled version of Bn. By Lemma 8.3,

we can assume that Fn is realized as θmνn (Bn) . We consider the following two cases,

noticing that ∣∣F(n)(t)− F(n)(s)
∣∣ =

1√
3n

∣∣θmνn (Bn)(2nt)− θmνn (Bn)(2ns)
∣∣ .

— If 0 ≤ s ≤ t ≤ 4ρn+τn
2n − mνn (Bn)

2n , then by the definition of θ, we have:

θmνn (Bn)(2nt) = Bn(mνn(Bn) + 2nt)−Bn(mνn(Bn)),

θmνn (Bn)(2ns) = Bn(mνn(Bn) + 2ns)−Bn(mνn(Bn))

and we get:∣∣F(n)(t)− F(n)(s)
∣∣ =

1√
3n
|Bn(mνn(Bn) + 2nt)−Bn(mνn(Bn) + 2ns)|

=

∣∣∣∣B(n)

(
mνn(Bn)

2n
+ t

)
−B(n)

(
mνn(Bn)

2n
+ s

)∣∣∣∣ ≤ ∥∥B(n)

∥∥
α
|t− s|α

— If 4ρn+τn
2n − mνn (Bn)

2n ≤ s ≤ t ≤ 4ρn+τn
2n , then by the definition of θ, we have:

θmνn (Bn)(Bn)(2nt) =

Bn(mνn(Bn) + 2nt− (4ρn + τn))−Bn(mνn(Bn)) +Bn(4ρn + τn)),

θmνn (Bn)(Bn)(2ns) =
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Bn(mνn(Bn) + 2ns− (4ρn + τn))−Bn(mνn(Bn)) +Bn(4ρn + τn)),

and we get: ∣∣F(n)(t)− F(n)(s)
∣∣

=
1√
3n
|Bn(mνn(Bn) + 2nt− (4ρn + τn)))−Bn(mνn(Bn) + 2ns− (4ρn + τn)))|

=

∣∣∣∣B(n)

(
mνn(Bn)

2n
+ t− (4ρn + τn)

2n

)
−Bn

(
mνn(Bn)

2n
+ s− (4ρn + τn)

2n

)∣∣∣∣
≤
∥∥B(n)

∥∥
α
|t− s|α .

Using the triangular inequality to deal with the third case, i.e. 0 ≤ s ≤ 4ρn+τn
2n −

mνn (Bn)
2n ≤ t ≤ 4ρn+τn

2n , we obtain
∥∥F(n)

∥∥
α
≤ 2

∥∥B(n)

∥∥
α
.

Let ε > 0, thanks to Lemma 5.3 and Kolmogorov’s criterion, we can find some constant

C such that

sup
n

P(‖F(n)‖α > C) < ε.

By Ascoli’s theorem, this implies that the laws of F(n)’s are tight. ♦

Claim 8.5 shows that for any p ≥ 1 and 0 ≤ s1 < s2 · · · < sp < 2ρ,

(F(n)(s1), F(n)(s2), . . . , F(n)(sp))→
(
F 0→τ

[0,2ρ](s1), F 0→τ
[0,2ρ](s2), . . . , F 0→τ

[0,2ρ](sp)
)
.

It only remain to deal with the point 2ρ. Consider ε > 0. By Claim 8.6, there exists α

and C such that for all n, we have P
({
‖F(n)‖α ≤ C

})
> 1− ε.

Condition on the event
{
‖F(n)‖α ≤ C

}
, we have

∣∣∣∣F(n)

(
2ρ ∧ 4ρn + τn

2n

)
− F(n)

(
4ρn + τn

2n

)∣∣∣∣ ≤ C ∣∣∣∣2ρ ∧ 4ρn + τn
2n

− 4ρn + τn
2n

∣∣∣∣α
≤ C

∣∣∣∣2ρ− 4ρn + τn
2n

∣∣∣∣α
Since 4ρn+τn

2n → 2ρ and τn → τ , for n large enough, we have:∣∣F(n) (2ρ)− τ
∣∣ ≤ ε

Therefore we obtain for n large enough:

P
(∣∣F(n) (2ρ)− τ

∣∣ > ε
)
≤ P

(
‖F(n)‖α > C

)
≤ ε.

This implies that F(n) (2ρ) converges in probability toward the deterministic value τ . So

Slutzky’s lemma shows that F(n) (2ρ) converges in law toward τ . Thus we have proved

the convergence of the finite-dimensional marginals of F(n) toward F̃ 0→τ
[0,2ρ]. By Lemma 9.2,

F(n) is tight so Prokhorov’s lemma give the result.



254
CHAPTER 6. SCALING LIMITS FOR RANDOM TRIANGULATIONS ON THE

TORUS

9 Convergence of the contour pair of well-labeled forests

Consider (ρn) ∈ NN, (τn) ∈ NN such that, there exists ρ, τ ∈ R∗+ satisfying:

ρn
n
−→ ρ and

τn√
n
→ τ.

For n ≥ 1, let (Fn, `n) be a random well-labeled forest uniformly distributed in Fρnτn .

For convenience, we write (Cn, Ln) the contour pair (CFn , L(Fn,`n)) of (Fn, `n) (see Sec-

tion 4.1 for the definitions). Let the same notation Cn, Ln denote its piecewise linear

interpolation. When 2ρn + τn < 2nρ, we assume that Cn is extended to take value τn
on [2ρn + τn, 2nρ]. Then we define the rescaled versions:

C(n) =

(
Cn(2ns)√

3n

)
0≤s≤max( 2ρn+τn

2n
,ρ)

and L(n) =

(
Ln(2ns)

n1/4

)
0≤s≤ 2ρn+τn

2n

The goal of this section is to prove the following lemma:

Lemma 9.1. In the sense of weak convergence in the space (H, dH)2 when n goes to

infinity, we have: (
C(n), L(n)

)
→
(
F̃ 0→τ

[0,ρ] , Z
τ
[0,ρ]

)
.

9.1 Tightness of the contour function

Recall that ‖ · ‖α denotes the α-Hölder norm.

Lemma 9.2 (Tightness of contour function). There exists a constant α > 0 such that

∀ε > 0 ∃C ∀n P
(
‖C(n)‖α ≤ C

)
> 1− ε.

In particular, the family of laws of
(
C(n)

)
n≥1

is tight in the space of probability measures

on H.

Proof. By the bijection of Lemma 4.5 and Section 8, we can consider Wn the element

of P3,3ρn+τn,ρn corresponding to (Fn, `n). Note that Wn is a uniform random element of

P3,3ρn+τn,ρn .

The convergence of W(n) (see Lemma 8.1) implies that:

∃α > 0 ∀ε > 0 ∃C ∀n P(‖W(n)‖α ≤ C) > 1− ε.

Note that an integer k such that 0 ≤ k ≤ 2ρn + τn corresponds to an angle a(k) of the

plane rooted tree representing F (see Section 4.1). While encoding (F, d) with a binary

word of D−1
3,3ρn+τn,ρn

starting from the root angle, we denote k̃ the number of bits written

before reaching angle a(k).
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One can check that for all k, k′ ∈ [[0, 2ρn + τn]], we have:

|Cn(k)− Cn(k′)| ≤ |Wn(k̃)−Wn(k̃′)|,

and

|k − k′| ≤ |k̃ − k̃′| ≤ 3|k − k′|.

We use the definition of function f and rF defined in Section 4.1

Consider 0 ≤ x < y ≤ 2ρn+τn
2n such that 2nx, 2ny ∈ N. Let s = 2nx and t = 2ny. It is

always possible to choose u, v ∈ N, such that s ≤ u ≤ v ≤ t, and satisfying:

— if fl(rF (s)) 6= fl(rF (t)), then rF (u), rF (v) ∈ F1, rF (u) = fl(rF (s)) and rF (v) =

fl(rF (t))

— if fl(rF (s)) = fl(rF (t)), then u = v and rF (u) is the nearest common ancestor of

rF (s) and rF (t).

Using the triangular inequality, we get:

|Cn(s)− Cn(t)| ≤ |Cn(s)− Cn(u)|+ |Cn(u)− Cn(v)|+ |Cn(v)− Cn(t)|
≤ |Wn(s̃)−Wn(ũ)|+ |Wn(ũ)−Wn(ṽ)|+

∣∣Wn(ṽ)−Wn(t̃)
∣∣

We obtain∣∣C(n)(x)− C(n)(y)
∣∣ ≤ ∣∣W(n)(s̃/2n)−W(n)(ũ)

∣∣+
∣∣W(n)(ũ)−W(n)(ṽ)

∣∣
+
∣∣W(n)(ṽ)−W(n)(t̃)

∣∣
≤C(|s̃/2n− ũ|α + |ũ− ṽ|α +

∣∣ṽ − t̃∣∣α)

≤C
(

3

2n

)α
(|s− u|α + |u− v|α + |v − t|α).

Using the inequality aα + bα + cα ≤ 3(a+ b+ c)α, we get

∣∣C(n)(x)− C(n)(y)
∣∣ ≤ 3C

(
3

2n

)α
(|s− u|+ |u− v|+ |v − t|)α

≤ 3C

(
3

2n

)α
|s− t|α

≤ 3α+1C|x− y|α

This inequality is satisfied for 0 ≤ x < y ≤ 2ρn+τn
2n such that 2nx, 2ny ∈ N. It is also

satisfied for all 0 ≤ x < y ≤ 2ρn+τn
2n by linear interpolation.
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9.2 Conditioned Galton-Watson forest

In this section, we introduce the notion of Galton-Watson forest which allows us to

present the law of uniform random well-labeled forests.

Let (F, `) be a well-labeled forest in Fρτ . For convenience, in this section, we extend the

function d to the set of tree-edges of F by letting: for all u ∈ F such that cu(F ) ≥ 1, for

all i ∈ {1, · · · , cu(F )}, we define:

`({u, u i}) = `(u i)− `(u)

Note that the value of ` on the set of tree-edges of F is sufficient to recover `.

For τ ∈ N, let F∞τ =
⋃
ρ≥0 F

ρ
τ .

Let G be a random variable with geometric law of parameter 3/4 (i.e. P(G = c) = 3
4

(
1
4

)c
for c ∈ N). Let B be a random variable with law given by:

P(B = c) =

(
c+2

2

)
P(G = c)

E
[(
G+2

2

)] , for c ∈ N.

Definition 9.3. For τ ∈ N, a τ -Galton-Watson forest is a random element F ′ of F′∞τ
such that, independent for each u ∈ F ′, we have cu(F ′) has law G if u is a floor and

cu(F ′) has law B if u is a tree-vertex.

Let H be a τ -Galton-Watson forest conditioned to have ρ tree-vertices. For each tree-

vertex v of F ′, we add two stems incident to v, uniformly at random from among the(
cv(F ′)+1

2

)
+
(
cv(F ′)+1

1

)
=
(
cv(F ′)+2

2

)
possibilities. Let (H, `) be the resulting forest of Fρτ

(see Section 4.1 for the correspondence between stems and the function `).

Lemma 9.4. (H, `) is uniformly distributed over Fρτ .

Proof. Let (F, `′) ∈ Fρτ . For each 1 ≤ i ≤ τ , assume that the list of vertices of F i (the

i-th tree of F as in Section 4.1) in lexicographic order is vi1, vi2, ..., vini . Then (H, `)

is equal to (F, `′) if and only if all the vertices of H and F have the same number of

children and the stems are inserted at the right place to obtain (H, `) from H. Hence

we have:

P((H, `) = (F, `′)) ∝
τ∏
i=1

P(G = cvi1(F ))

ni∏
j=2

P(B = cvij (F ))(cvij (F )+2

2

)


=
τ∏
i=1

P(G = cvi1(F ))

ni∏
j=2

(cvij (F )+2

2

)(cvij (F )+2

2

) P(G = cvij (F ))

E
[(
G+2

2

)]
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=
3ρ+τ

42ρ+τ
(
E
[(
G+2

2

)])ρ .
Since the last term does not depend on (F, `′), this concludes the proof of the Lemma.

Definition 9.5. Consider (ρ, τ) ∈ N2, and µ = (µk)k≥1 where µk is a probability

measure on Rk. Let LGW (µ, ρ, τ) be the law of the well-labeled forest (F, `) ∈ Fρτ such

that:

— F has the law of the τ -Galton-Watson forest conditioned to have ρ tree vertices,

— Conditionally on H, independently for each tree-vertex v of H such that cv(H) ≥
1, let (`({v, v j}))1≤j≤cv(H) be a random vector with law µcv(H)

Consider ν = (νk)k≥1 where νk is the uniform law over non-decreasing vectors (X1, X2, ..., Xk) ∈
{−1, 0, 1}k (i.e. X1 ≤ . . . ≤ Xk).

Remark 9.6. A consequence of Lemma 9.4, is that if (F, `) is uniformly distributed on

Fρτ , then the law of (F, `) is LGW (ν, ρ, τ).

9.3 Symmetrization of a forest

We adapt a notion first applied in the case of plane trees [1] to well-labeled forest. We

begin this section with the following definition.

Definition 9.7. Let µ be a probability measure on Rk. The symmetrization of µ,

denoted by µ̂, is obtained by uniformly permuting the marginals of µ. In other words,

if (X1, X2, ..., Xk) has law µ, and σ is a uniformly random in the set of permutations of

{1, 2, ..., k}, then (Xσ(1), Xσ(2), ..., Xσ(k)) has law µ̂.

We now describe the symmetrization of ν = (νk)k≥1 where νk is the uniform law over non-

decreasing vectors of {−1, 0, 1}k (as in previous section). Assume that (X1, X2, ..., Xk)

has law νk, and σ is a uniform random element of the set of permutations of {1, 2, ..., k}.
Then, for x = (x1, x2, ..., xk) ∈ {−1, 0, 1}k, we have:

ν̂k{x} = P
{

(X1, X2, ..., Xk) = (xσx(1), xσx(2), ..., xσx(k)) ; σ−1 = σx
}
,

where σx is a permutation of {1, 2, ..., k} such that (xσx(1), xσx(2), ..., xσx(k)) is non-

decreasing. Thus, for x = (x1, x2, ..., xk) ∈ {−1, 0, 1}k, we have:

ν̂k{x} ∝ (n−1(x))!(n0(x))!(n1(x))!,

where n−1(x), n0(x), n1(x) denotes the number of occurrences of −1, 0, 1 in x, respec-

tively. Note that the marginals of ν̂k are not i.i.d, but that each of them has uniform

law on {−1, 0, 1}.
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Let (F, `) be a well-labeled forest in Fρτ for ρ, τ ∈ N. We define the following set of

vectors of permutations:

P(F ) = {(pv)v∈F, cv(F )>0 : pv is a permutation of {1, 2, ..., cv(F )}}.

The symmetrization of F with respect to p ∈ P(F ) is the forest Fp obtained from F by

permuting the order of the children at each tree-vertex v according to pv. More formally,

we have

Fp = {p(v) : v ∈ F },

where for v = v1 . . . vk in F , we define

p(v) = v1 pv1(v2)pv1v2(v3)...pv1...vk−1
(vk).

Note that F and Fp are isomorphic in terms of (non-embedded) graphs (the image of a

vertex v of F is precisely p(v) in Fp). We now define two variants of labeling function

`0p, `
1
p of Fp by the following: for each tree-edge {u, u i} of F , let

`0p(p(u),p(u)i) = `(u, ui)

`1p(p(u),p(ui)) = `(u, ui).

Informally, for `1p, the labels of F are attached to edges during the permutation of the

children and for `0p, the labels stay at their initial position and do not move.

The partial symmetrization of (F, `) with respect to p ∈ P(F ) is the well-labeled forest

(Fp, `
0
p). The complete symmetrization of (F, `) with respect to p ∈ P(F ) is the labeled

forest (Fp, `
1
p). Note that (Fp, `

1
p) is not necessarily a well-labeled forest.

Lemma 9.8. Let (F, `) be a random element on Fρτ with law LGW (ν, ρ, τ) and p be

a uniform element on P(F ), then (Fp, `
0
p) has law LGW (ν, ρ, τ) and (Fp, `

1
p) has law

LGW (ν̂, ρ, τ).

Proof. It follows from the branching property of Galton-Watson processes that F and

Fp have the same law. The rest follows from the definitions of `0p, `
1
p, ν̂.

Recall some notations from Section 4.1. For u ∈ F , with |u| ≥ 2, pa(u) denotes the

parent of u in F . For u ∈ F , Au(F ) denotes the set of ancestors of u in F . For u, v ∈ F ,

we say that v < u if v ∈ Au(F ). Similarly, we say that v ≤ u if v ∈ (Au(F ) ∪ {u}).
Let U be a set of tree-vertices of F . We denote AU (F ) = ∪u∈UAu(F ). Let OU (F ) denote

the set of vertices of F that have exactly one child in AU (F ). Note that OU (F ) ⊆ AU (F ).

We define PU (F ) as the subset of vectors p of P(F ) such that for all v ∈ (F \ OU (F )),

we have pv is equal to identity. For p ∈ PU (F ), we define p(U) = {p(u) : u ∈ U}.
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Lemma 9.9. Let (F, `) be a random element on Fρτ with law LGW (ν, ρ, τ). Let k ∈
[[0, ρ+ τ + 1]] and U be a set of k independent and uniformly random vertices of F . Let

p be a uniformly random element of PU (F ). Then (F, `, U) and (Fp, `
0
p,p(U)) have the

same law.

Proof. Let (F ′, `′) ∈ Fρτ , U ′ be a set of k vertices of F ′. We have:

P[(F, `, U) = (F ′, `′, U ′)] = P[(F, `) = (F ′, `′)]× 1

(ρ+ τ + 1)k

P[(Fp, `
0
p,p(U)) = (F ′, `′, U ′)]

=
∑

p′∈P(F,U)

[
P[(Fp, `

0
p) = (F ′, `′) ; p(U) = U ′; p = p′]

]
=

∑
p′∈P(F,U)

[
P[(Fp, `

0
p) = (F ′, `′) |p(U) = U ′; p = p′]× P[p(U) = U ′|p = p′]× P[p = p′]

]
for all p′ ∈ PU (F ) we have P[(Fp, `

0
p) = (F ′, `′) |p(U) = U ′; p = p′] = P[(F, `) = (F ′, `′)]

and

P[p(U) = U ′|p = p′] = 1
(ρ+τ+1)k

thus we obtain the result.

We obtain the following lemma (similar to [1, Corollary 6.7]).

Lemma 9.10. Let (F, `) be a random element on Fρτ with law LGW (ν, ρ, τ). Let k ∈
[[0, ρ+ τ + 1]] and U be a set of k independent and uniformly random vertices of F . Let

(F̂ , ̂̀) be a random element with law LGW (ν̂, ρ, τ). Let Û be a set of k independent and

uniformly random vertices of F̂ . Let U = {u1, . . . , uk} and Û = {û1, . . . , ûk} such that

u1, . . . , uk and û1, . . . , ûk are lexicographically ordered. For 1 ≤ i ≤ k, let

Si =
∑
v≤ui

w∈OU (F )
w=pa(v)

`(w, v)

Ŝi =
∑
v≤ûi

w∈O
Û

(F̂ )

w=pa(v)

̂̀(w, v).

Then (|u1|, . . . , |uk|, S1, . . . , Sk) and
(
|û1|, . . . , |ûk|, Ŝ1, . . . , Ŝk

)
have the same law.

Proof. Let p be a uniformly random element of PU (F ) and consider (Fp, `
0
p,p(U)). For

v ∈ F≥2, if {pa(v), v} is a tree-edge of F such that pa(v) ∈ OU (F ), then the partial

symmetrization of (F, `) with respect to p uniformly permutes the children of pa(v)
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but the labels are not permuted. Consider two distinct vertices u, v ∈ F such that

cu(F ), cv(F ) are at least 1. If u′, v′ are children of u, v, respectively, then the values of

`(u, u′) and `(v, v′) are independent. It follows that the random variables{
`0p(p(w),p(v)) : v ∈ F,w ∈ OU (F ) and w = pa(v)

}
are independent and uniformly distributed on {−1, 0, 1}.
Thus, by Lemma 9.9, the random variables

{`(w, v) : v ∈ F,w ∈ OU (F ) and w = pa(v)}
are independent and uniformly distributed on {−1, 0, 1}.
Finally, the trees F and F̂ have the same law, so (|u1|, . . . , |uk|)

(d)
= (|û1|, . . . , |ûk|).

Moreover, by the definition of ν̂, the random variables{̂̀(w, v) : v ∈ F̂ , w ∈ O
Û

(F̂ ) and w = pa(v)
}

are independent and uniformly distributed on {−1, 0, 1}, and the result follows.

9.4 Tightness of the labeling function of a symmetrized

Galton-Watson forest

Recall that ν = (νk)k≥1 where νk is the uniform law over non-decreasing vectors of

{−1, 0, 1}k and ν̂ is the symmetrization of ν as defined in previous section.

By Remark 9.6, (Fn, `n) is a random element with law LGW (ν, τn, ρn). Now consider

(F̂n, ̂̀n) a random element with law LGW (ν̂, τn, ρn). For convenience, we write (Ĉn, L̂n)

the contour pair (C
F̂n
, L

(F̂n,̂̀n)
) of (F̂n, ̂̀n). As before, we consider that Ĉn and L̂n

are linearly interpolated. We extend Ĉn to be equal to τn on [2ρn + τn, 2nρ] when

2ρn + τn < 2nρ. Then we define the rescaled versions:

Ĉ(n) =

(
Ĉn(2ns)√

3n

)
0≤s≤max( 2ρn+τn

2n
,ρ)

and L̂(n) =

(
L̂n(2ns)

n1/4

)
0≤s≤ 2ρn+τn

2n

The aim of this section is to prove the tightness of the labeling function L̂(n).

Since Fn and F̂n do not depend on ν and ν̂, they have the same law. So the contour

functions Ĉn and Cn have the same law (but not necessarily L̂n and Ln). Thus we can

couple the two labeled forests (F̂n, ̂̀n) and (Fn, `n) so that Ĉn = Cn.

We need the following classical inequality:

Lemma 9.11 (Rosenthal’s inequality, [103]). For each p ≥ 2, there exists a constant

Cp > 0 such that for k ≥ 1 we have the following. Consider X,X1, . . . , Xk a sequence of

i.i.d. centered random variables in R. Let Σ =
∑k

i=1Xi. Then:

E(|Σ|p) ≤ Cp
(
kE(|Xp|) + (kE(X2))p/2

)
.
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We now prove the main result of this section:

Lemma 9.12 (Tightness of the labeling function). The family of laws of
(
L̂(n)

)
n≥1

is

tight for the space of probability measure on H.

Proof. By Lemma 9.2, there exists a constant α > 0 such that

∀ε > 0 ∃C ∀n P
(
‖C(n)‖α ≤ C

)
> 1− ε.

Let ε > 0 and C that satisfies the above inequality.

We assume that C(n) is conditioned on ‖C(n)‖α ≤ C.

Let X be uniformly distributed in {−1, 0, 1}. Recall that the marginals of ν̂k for k ≥ 1,

have the same law as X. So for all a, b ∈ F̂ with a = p(b), we have ̂̀n(a, b) and X have

the same law.

One can check that for all i, j ∈ [[0, 2ρn + τn]], with u = r
F̂n

(i), v = r
F̂n

(j), u ∈ Av(F̂n),

we have:

L̂n(j)− L̂n(i) =
∑
u<b≤v
a=p(b)

̂̀
n(a, b)

Let k = |v| − |u|. Note that k = Cn(j) − Cn(i). Then by Lemma 9.11, we have, for

p ≥ 2, there exists a constant Cp > 0 such that:

E
(∣∣∣L̂n(j)− L̂n(i)

∣∣∣p) ≤ Cp (kE(|Xp|) + (kE(X2))p/2
)

≤ Cp
(

(Cn(j)− Cn(i))E(|Xp|) + ((Cn(j)− Cn(i))E(X2))p/2
)

≤ CpC
√

3n

(∣∣∣∣j − i2n

∣∣∣∣α E(|Xp|) +

(∣∣∣∣j − i2n

∣∣∣∣α E(X2)

)p/2)

As in the proof of Lemma 9.2, consider 0 ≤ x < y ≤ 2ρn+τn
2n such that 2nx, 2ny ∈ N.

Let s = 2nx and t = 2ny. Let u = r
F̂

(s) and v = r
F̂

(t). It is always possible to choose

p, q ∈ N, such that s ≤ i ≤ j ≤ t, and satisfying:

— if fl(u) 6= fl(v), then r
F̂

(i), r
F̂

(j) ∈ (F̂ )1, r
F̂

(i) = fl(u) and r
F̂

(j) = fl(v)

— if fl(u) = fl(v), then i = j and r
F̂

(i) is the nearest common ancestor of u and v.

Note that L̂n(i) = L̂n(j) = 0, so we have:

E
[∣∣∣L̂n(s)− L̂n(t)

∣∣∣p] ≤3p
(
E
[∣∣∣L̂n(s)− L̂n(i)

∣∣∣p]+ E
[∣∣∣L̂n(i)− L̂n(j)

∣∣∣p]
+E

[∣∣∣L̂n(j)− L̂n(t)
∣∣∣p])
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≤3pCpC
√

3n

(∣∣∣∣s− i2n

∣∣∣∣α E (|Xp|) +

(∣∣∣∣s− i2n

∣∣∣∣α E
(
X2
))p/2

+

∣∣∣∣j − t2n

∣∣∣∣α E (|Xp|) +

(∣∣∣∣j − t2n

∣∣∣∣α E
(
X2
))p/2)

Thus for the rescaled version, we have:

E
[∣∣∣L̂(n)(x)− L̂(n)(y)

∣∣∣p] ≤n−p/43pCpC
√

3n

(∣∣∣∣s− i2n

∣∣∣∣α E (|Xp|) +

(∣∣∣∣s− i2n

∣∣∣∣α E
(
X2
))p/2

+

∣∣∣∣j − t2n

∣∣∣∣α E (|Xp|) +

(∣∣∣∣j − t2n

∣∣∣∣α E
(
X2
))p/2)

≤n−p/43pCpC
√

3n
(
|x− y|α E (|Xp|) +

(
|x− y|α E

(
X2
))p/2)

Consider p such that p > 10. So we have n−p/4+1/2 ≤ 1/n2. Since 2nx, 2ny ∈ N,

and x 6= y, we have |x− y| ≥ 1
2n . So n−p/4+1/2 ≤ 4 |x− y|2. Moreover, we have

|x− y| ≤ 2ρn+τn
2n which converge to ρ. So there exists a constant C ′, such that:

E
[∣∣∣L̂(n)(x)− L̂(n)(y)

∣∣∣p] ≤ C ′|x− y|2
Since L̂n is linearly interpolated, the above inequality holds for for all x, y ∈

[
0, 2ρn+τn

2n

]
.

By Billingsley ([24], Theorem 12.3), the family of laws of
(
L̂(n)

)
n≥1

is tight, which

completes the proof of the Lemma.

9.5 Convergence of the contour function

We consider F̂n, ̂̀n L̂n, L̂(n) as in previous section.

Here, we prove the convergence of the contour function by using the convergence of

uniformly random 3-dominating binary words from Section 8 and the tightness of L̂(n)

from Section 9.4.

We need the following bound:

Lemma 9.13. For all ε > 0, there exists a constant C such that

sup
n

P
(

sup
v∈Fn

|`n(v)| ≥ C n1/4

)
< ε.

Proof. For any ε > 0, by Lemma 9.12, there exists a constant C such that:

sup
n

P

(
sup
v∈F̂n

|̂̀n(v)| ≥ C n1/4

)
< ε.
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Let p be a uniform random element of P(Fn). Denote by (`n)1
p the labeling function of

(Fn)p as defined in Section 9.3. For convenience we write `′n = (`n)1
p and F ′n = (Fn)p.

Note that for all v ∈ Fn, we have `n(v) = `′n(p(v)). Then we have

sup
v∈Fn

|`n(v)| = sup
v∈F ′n

|`′n(v)|.

By Lemma 9.8, we have (F ′n, `
′
n) has law LGW (ν̂, τn, ρn), i.e. (F ′n, `

′
n) and (F̂n, ̂̀n) have

the same law. So

sup
v∈Fn

|`n(v)| = sup
v∈F̂n

|̂̀n(v)|.

This completes the proof of the Lemma.

Lemma 9.14 (Convergence of contour function). The process C(n) converges in law

toward F̃ 0→τ
[0,ρ] in the space (H, dH), when n goes to infinity.

Remark 9.15. Note that the limit in this lemma is indeed F̃ 0→τ
[0,ρ] and not F 0→τ

[0,ρ] as the

corresponding result in [22] would seem to indicate. This is due to the fact that our

decomposition of the unicellular map into Motzkin paths and well-labeled forests is not

exactly the same as in the case of quadrangulations.

Proof. Let f be a bounded continuous function from R to R. Let 0 ≤ t < ρ and ε > 0.

Since 2ρn+τn
2n converge toward ρ, there exists N such that t ≤ minn≥N

2ρn+τn
2n . For n ≥ N ,

we define

Tn(t) = min {k ∈ [[0, 2ρn + τn]] : rFn(k) = fl(rFn(b2ntc))} .
Note that rFn(Tn(t)) is an integer that we denote by in.

As in the proof of Lemma 9.2, we consider Wn the element of P3,3ρn+τn,ρn corresponding

to (Fn, `n). Note that for k ∈ [[0, 2ρn + τn], such that rFn(k) is a floor of Fn, we have

Cn(k) = Wn(2k − rFn(k)). So in particular:

Cn(Tn(t)) = Wn(2Tn(t) + in).

For convenience, let jn = Ln(b2ntc) and kn = in− jn + |rFn(b2ntc)|. Note that we have:

Cn(b2ntc)− Cn(Tn(t)) =
1

2
(Wn(2b2ntc+ kn)−Wn(2Tn(t) + in)− jn) .

Thus we have:

Cn(b2ntc) =
1

2
(Wn(2b2ntc+ kn) +Wn(2Tn(t) + in)− jn) .

Note that Wn(2Tn(t) + in) = maxs≤2b2ntc+knWn(s), therefore:

Cn(b2ntc) =
1

2

(
Wn(2b2ntc+ kn) + max

s≤2b2ntc+kn
Wn(s)− jn

)
.
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By Lemma 9.2, there exists a constant c1 such that

inf
n≥N

P

(
sup

k∈[[0,2ρn+τn]]
|Cn(k)| < c1n

1/2

)
≥ 1− ε. (9.1)

Moreover, by Lemma 9.13, there exists a constant c2 such that

inf
n≥N

P

(
sup

k∈[[0,2ρn+τn]]
|Ln(k)| < c2n

1/4

)
≥ 1− ε. (9.2)

By (9.1) and (9.2), there exists a constant c > 0 such that:

inf
n≥N

P

(
sup

k∈[[0,2ρn+τn]]
|Cn(k)| < cn1/2 ; sup

k∈[[0,2ρn+τn]]
|Ln(k)| < cn1/4

)
≥ 1− 2ε.

So we have:

inf
n≥N

P
(
|in| ≤ c n1/2, |jn| ≤ c n1/4, |kn| ≤ c n1/2

)
≥ 1− 2ε. (9.3)

Let En the event: {
|in| ≤ c n1/2, |jn| ≤ c n1/4, |kn| ≤ c n1/2

}
.

Now we define a random variable Yn as follows:

Yn =
1

2

(
Wn(2b2ntc+ kn1En) + max

s≤2b2ntc+kn
Wn(s)− jn1En

)
.

By Lemma 8.1, we have
(
Yn√
3n

)
n≥N

converge toward 1
2

(
F 0→τ

[0,2ρ](2t) + F 0→τ
[0,2ρ](2t)

)
= F̃ 0→τ

[0,ρ] (t)

when n goes to infinity. Thus by (9.3), there exists n0 ≥ N such that for all n ≥ n0:

∣∣∣E[f(C(n)(t))]− E
[
f
(
F̃ 0→τ

[0,ρ] (t)
)]∣∣∣

≤
∣∣∣∣E[f(C(n)(t))]− E

[
f

(
Yn√
3n

)]∣∣∣∣+

∣∣∣∣E [f ( Yn√
3n

)]
− E

[
f
(
F̃ 0→τ

[0,ρ] (t)
)]∣∣∣∣

≤ 2E[1− 1En ] ‖f‖∞ + ε.

≤ (4 ‖f‖∞ + 1)ε.

This implies that
(
E[f(C(n)(t))]

)
n≥N converge toward E

[
f
(
F̃ 0→τ

[0,ρ] (t)
)]

.

We now prove the finite dimensional convergence of C(n). Let k ≥ 1 and consider

0 ≤ t1 < t2 < ... < tk < ρ. Let N such that tk ≤ minn≥N
2ρn+τn

2n . By above arguments,

for 1 ≤ i ≤ k, we have (C(n)(ti))n≥N converge in law toward F̃ 0→τ
[0,ρ] (ti)
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It remains to deal with the point ρ.∣∣C(n) (ρ)− τ
∣∣ =

∣∣∣∣C(n)

(
ρ ∧ 2ρn + τn

2n

)
− τ
∣∣∣∣

=

∣∣∣∣C(n)

(
ρ ∧ 2ρn + τn

2n

)
− C(n)

(
2ρn + τn

2n

)
+ C(n)

(
2ρn + τn

2n

)
− τ
∣∣∣∣

≤
∣∣∣∣C(n)

(
ρ ∧ 2ρn + τn

2n

)
− C(n)

(
2ρn + τn

2n

)∣∣∣∣+ |τn − τ |

Suppose that

Consider ε > 0. By Lemma 9.2, there exists α and C such that for all n: P
(
‖C(n)‖α ≤ C

)
>

1− ε. Condition on the event {‖C(n)‖α ≤ C}, we have∣∣∣∣C(n)

(
ρ ∧ 2ρn + τn

2n

)
− C(n)

(
2ρn + τn

2n

)∣∣∣∣ ≤ C ∣∣∣∣ρ ∧ 2ρn + τn
2n

− 2ρn + τn
2n

∣∣∣∣α
≤ C

∣∣∣∣ρ− 2ρn + τn
2n

∣∣∣∣α
Since 2ρn+τn

2n → ρ and τn → τ , for n large enough, we have:∣∣C(n) (ρ)− τ
∣∣ ≤ ε

Therefore we obtain for n large enough:

P
(∣∣C(n) (ρ)− τ

∣∣ > ε
)
≤ P

(
‖C(n)‖α > C

)
≤ ε.

This implies that C(n) (ρ) converges in probability toward the deterministic value τ . So

Slutzky’s lemma shows that C(n) (ρ) converges in law toward τ . Thus we have proved the

convergence of the finite-dimensional marginals of C(n) toward F̃ 0→τ
[0,ρ] . By Lemma 9.2,

C(n) is tight so Prokhorov’s lemma give the result.

Remark 9.16. In the case when τn = 1 for all n, this provides an alternative proof of

a particular case of a theorem of Aldous ([4], Theorem 2).

9.6 Convergence of the contour pair

We consider Fn, `n, Cn, Ln, F̂n, ̂̀n, L̂n, as in previous sections.

By Lemma 9.14, the rescaled contour function C(n) converge. So as in [22, Corollary 16]

one obtain the following lemma which proof is omitted:

Lemma 9.17. In the sense of weak convergence in the space (H, dH)2 when n does to

infinity, we have: (
C(n), L̂(n)

)
→
(
F̃ 0→τ

[0,ρ] , Z
τ
[0,ρ]

)
.
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Lemma 9.18. The family of laws of (L(n))n≥1 is tight in the space of probability mea-

sures on H.

Proof. We prove that for all ε > 0, there exists δ > 0 such that

lim sup
n

P

(
sup

|i−j|≤δ(2ρn+τn)
|Ln(i)− Ln(j)| > εn1/4

)
< ε (9.4)

For n ≥ 1, let pn be a uniformly random element of P(Fn) and let (F ′n, `
′
n) = ((Fn)pn , (`n)1

pn)

be the complete symmetrization of Fn with respect to pn (see Section 9.3 for the defini-

tion).

By Lemma 9.17, we have

((3n)−1/2Cn, n
−1/4L̂n)→ (F 0→τ

[0,ρ] , Z
τ
[0,ρ]). (9.5)

This implies that for all ε > 0, there exist α > 0 and β > 0 such that:

sup
n

P

(
sup

|i−j|≤α(2ρn+τn)
|L̂n(i)− L̂n(j)| > εn1/4

)
< ε and (9.6)

sup
n

P

 sup
i,j∈[[0,2ρn+τn]]

dF ′n
(p(rFn (i)),p(rFn (j)))≤βn1/2

|L̂n(i)− L̂n(j)| > εn1/4

 < ε. (9.7)

Indeed, the existence of α is a direct consequence of the convergence of the sequence

(n−1/4L̂n) seen as functions on the integers, while the existence of β follows from the

continuity of Zτ[0,ρ] on T = TF 0→τ
[0,ρ]

equipped with the distance dT (see Remark 5.1 and

the paragraphs before it): fix ε > 0 and η > 0, n0 after which dH((3n)−1/2Cn, F
0→τ
[0,ρ] ) < η

and dH(n−1/4L̂n, Z
τ
0,ρ) < ε/3 and use the domination of dT by dF (the limit of dFn) to

write for n ≥ n0

sup
i,j∈[[0,2ρn+τn]]

dFn (rFn (i),rFn (j))≤βn1/2

|L̂n(i)− L̂n(j)| ≤ 2ε

3
+ sup

u,v∈[0,ρ]
dT (u,v)≤β+2η

|Zτ[0,ρ](u)− Zτ[0,ρ](v)| (9.8)

which can be made smaller that ε by choosing β and η appropriately; the (finitely many)

cases n < n0 can be taken into account by making β even smaller if needed.

Next, one can see that, for all i, j ∈ [[0, 2ρn + τn]]:

dFn(rFn(i), rFn(j)) = dF ′n(p (rFn(i)) ,p (rFn(j))), and

|Ln(i)−Ln(j)| = |`n(rFn(i))−`n(rFn(j))| = |`′n(p (rFn(i)))−`′n(p (rFn(j)))| = |L̂n(i)−L̂n(j)|.



10. CONVERGENCE OF UNIFORMLY RANDOM TOROIDAL
TRIANGULATIONS 267

We have for all n ≥ 1 and δ ∈ [0, 1]:

P

 sup
i,j∈[[0,2ρn+τn]]
|i−j|≤δ(2ρn+τn)

|Ln(i)− Ln(j)| > εn1/4


=P

 sup
i,j∈[[0,2ρn+τn]]
|i−j|≤δ(2ρn+τn)

|L̂n(i)− L̂n(j)| > εn1/4


≤P
(
∃i, j : i, j ∈ [[0, 2ρn + τn]] , dF ′n(p (rFn(i)) ,p (rFn(j))) ≤ βn1/2, |L̂n(i)− L̂n(j)| > εn1/4

)
+ P

(
∃i, j : i, j ∈ [[0, 2ρn + τn]] , |i− j| ≤ δ(2ρn + τn), dF ′n(p (rFn(i)) ,p (rFn(j))) ≥ βn1/2

)
.

≤ε+ P
(
∃i, j : i, j ∈ [[0, 2ρn + τn]] , |i− j| ≤ δ(2ρn + τn), dFn(rFn(i), rFn(j)) ≥ βn1/2

)
.

Moreover, we can see that

sup {dFn(rFn(i), rFn(j)) : i, j ∈ [[0, 2ρn + τn]] , |i− j| ≤ δ(2ρn + τn)}
≤3 sup {|Cn(i)− Cn(j)| : i, j ∈ [[0, 2ρn + τn]] , |i− j| ≤ δ(2ρn + τn)}

≤3
√

3n sup

{∣∣C(n)(x)− C(n)(y)
∣∣ : x, y ∈

[
0,

2ρn + τn
2n

]
, |x− y| ≤ δ2ρn + τn

2n

}
.

By Lemma 9.14, C(n) converges in law toward F̃ 0→τ
[0,ρ] . Since F̃ 0→τ

[0,ρ] is almost surely

continuous on [0, ρ], there exists δ small enough such that:

sup
n

P(∃i, j : i, j ∈ [[0, 2ρn + τn]] , |i− j| ≤ δ(2ρn + τn), dFn(rFn(i), rFn(j)) ≥ βn1/2) < ε.

For this δ, we have:

sup
n

P

 sup
i,j∈[[0,2ρn+τn]]
|i−j|≤δ(2ρn+τn)

|Ln(i)− Ln(j)| > εn1/4

 < 2ε,

this completes the proof of the Lemma.

Then the proof of Theorem 9.1 follows from Lemmas 9.17 and 9.18 by applying exactly

the same steps as in [1]. We omit the details.

10 Convergence of uniformly random toroidal

triangulations

In this section, we prove our main theorem. Combining the results of previous sections,

we have all the necessary tools to adapt the method of Addario-Berry and Albenque ([1],
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lemma 6.1); we extend the arguments of Bettinelli ([22], Theorem 1) and Le Gall [80] to

obtain Theorem 1.2.

For n ≥ 1, let Gn be a uniformly random element of G(n). Let Vn be the vertex set

of Gn. Recall that Φ denotes the bijection from Tr,s,b(n) to G(n) of Theorem 2.1. Let

Tn = Φ−1(Gn). Therefore Tn is a uniformly random element of Tr,s,b(n).

We now consider tn that is uniformly distributed over [[1, 3]]. Then, the random pair

(tn, Tn) is uniformly distributed over the set [[1, 3]]×Tr,s,b(n). Then we consider (rn, Rn)

be the image of (tn, Tn) by the bijection of Lemma 4.10. Let kn ∈ [[0, 9]] be such that

Rn ∈ Rkn(n), so that we have rn ∈ [[1, 3]] if kn = 0 (i.e. T is a square) and rn ∈ [[1, 2]]

otherwise (i.e. T is hexagonal). By Lemma 6.1, almost surely k 6= 0 so we can consider

that Tn is always hexagonal.

By the discussion on the decomposition of unicellular map in Section 4.4, the elements

of ∪0≤j≤9Rj(n) are in bijection with Ur,b(n). Let Un be the element of Ur,b(n) that is

decomposed into Rn.

As in Section 4.5, we define Qn the unicellular map obtained from Un by removing all

its stems and let rn = rQn be the vertex contour function of Qn.

We define a pseudo-distance dn on [[0, 2n+ 1]] by the following: for i, j ∈ [[0, 2n+ 1]]2, let

dn(i, j) = dGn(rn(i), rn(j)).

Then we define the associated equivalence relation: for i, j ∈ [[0, 2n + 1]], we say that

i ∼n j if dn(i, j) = 0. Thus we can see dn as a metric on [[0, 2n + 1]]/ ∼n. We extend

the definition of dn to non-integer values by the following linear interpolation: for s, t ∈
[0, 2n+ 1], let

dn(s, t) = s tdn(dse, dte) + s tdn(dse, btc) + s tdn(bsc, dte) + s tdn(bsc, btc),

where bxc = sup {k ∈ Z : k ≤ x}, dxe = bxc+1, x = x−bxc and x = dxe−x. We define

its rescaled version by the following:

d(n) =

(
dn((2n+ 1)s, (2n+ 1)t)

n1/4

)
s,t∈[0,1]2

.

Note that the metric space
(

1
2n+1 [[0, 2n+ 1]]/ ∼n, d(n)

)
is isometric to

(
Vn, n

−1/4dGn
)
.

Therefore we obtain

dGH

((
1

2n+ 1
[[0, 2n+ 1]]/ ∼n, d(n)

)
,
(
Vn, n

−1/4dGn

))
= 0. (10.1)

The goal of this section is to prove the following lemma which implies Theorem 1.2
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Lemma 10.1. There exists a subsequence (nk)k≥0 and a pseudo-metric d on [0, 1] such

that

(
1

2nk + 1
[[0, 2nk + 1]]/ ∼nk , d(nk)

)
(d)−−−→
k→∞

([0, 1]/ ∼d, d)

for the Gromov-Hausdorff distance, where for x, y ∈ [0, 1]2, we say that x ∼d y if

d(x, y) = 0.

10.1 Convergence of the shifted labeling function of the unicellular

map

Let (ρ1
n, . . . , ρ

6
n) ∈ N6, (τ1

n, . . . , τ
6
n) ∈ (N∗)6, (γ1

n, γ
2
n, γ

3
n) ∈ Z3, (σ1

n, σ
2
n, σ

3
n) ∈ N3, ((F 1

n , `
1
n), . . . , (F 6

n , `
6
n)) ∈

Fρ
1
n

τ1n
×· · ·×Fρ

6
n

τ6n
, (M1

n,M
2
n,M

3
n) ∈Mγ1n

σ1
n
×Mγ2n

σ2
n
×Mγ3n

σ3
n

be such thatRn = ((F 1
n , `

1
n), . . . , (F 6

n , `
6
n),M1

n,M
2
n,M

3
n)

(see Definition 4.9). As in Section 6, for i ∈ [[4, 6]], let γin = −γi−3
n and σin = σi−3

n .

Moreover, for every n > 0, we define the renormalized version ρ(n), γ(n), σ(n) by letting

ρ(n) = ρn
n , γ(n) = ( 9

8n)1/4γn and σ(n) = σn√
2n

. For 1 ≤ k ≤ 9 and 1 ≤ i ≤ 6, let ci(k) be

the value of ci given by line k of Table 6.1.

As in Section 4.5, we need several definitions. For j ∈ [[0, 2ρin + τ in]], we define

Sin(j) = L(F in,`
i
n)(j) + M̃ i

n

ci(kn)
(CF in(j)),

Let S•n = S1
n • · · · •S2t

n . Let Pn be the the unicellular map obtained from Un by removing

all the stems that are not incident to proper vertices and its vertex contour function rPn .

We see S•n as a function from the angles of Pn to Z

Note that P contains exactly 2× (σ1 + · · ·+ σt) + 2× 1k 6=0 stems.

We define the sequence (Sn(i))0≤i≤2n+1 as the sequence that is obtained from S•n by

removing all the values that appear in an angle of Pn that is just after a stem of Pn in

clockwise order around its incident vertex. So Sn is the shifted labeling function of the

unicellular map Un (as defined in Section 4.5) and is seen as a function from the angles

of Qn to Z.

We consider that Sn is linearly interpolated between its integer values and define its

rescaled version:

S(n) =

(
Sn((2n+ 1)x)

n1/4

)
0≤x≤1

Lemma 10.2. S(n) converge converge in law toward a limit S in the space (H, dH) when

n goes to infinity.

Proof. By Lemma 6.1, the vector
(
kn, ρ(n), γ(n), σ(n)

)
converges in law toward a random

vector (k, ρ, γ, σ) whose law is the probability measure µ of Section 6.
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For convenience, for 1 ≤ i ≤ 6, let (Cin, L
i
n) denote the contour pair (CF in , L(F in,`

i
n)) of

the well-labeled forest (F in, `
i
n). As usual, (Cin, L

i
n) is linearly interpolated and we denote

the rescaled version by (Ci(n), L
i
(n)) as in Section 9. By 9.1, conditionally on (k, ρ, γ, σ),

we have (Ci(n), L
i
(n)) converge in law toward (Ci, Li) =

(
F̃ 0→τ i

[0,ρi]
, Zτ

i

[0,ρi]

)
.

Similarly as in Section 7 we consider that M̃ i
n and M̃ i

n

ci(kn)
are linearly interpolated and

we define their rescaled versions:

M̃ i
(n) =

((
9

8n

)1/4

M̃ i
n(
√

2ns)

)
0≤s≤ 2σin+γin√

2n

M̃ i
(n)

ci(kn)
=

((
9

8n

)1/4

M̃ i
n

ci(kn)
(
√

2ns)

)
0≤s≤ 2σin+γin√

2n

By Lemma 7.2, M̃ i
(n) converges in law toward M̃ i = B0→γi

[0,2σi]
. Note that M̃ i

(n)

ci(kn)
also

converge toward the same limit.

Note that the processes
(
Ci, Li

)
, i ∈ [[1, 6]] and M̃ i, i ∈ [[1, 3]] are independent. Moreover,

by Skorokhod’s theorem, we can assume that these convergences hold almost surely.

We consider that Sin is linearly interpolated between its integer values and we define its

rescaled version:

Si(n) =

(
Sin(2ns)

n1/4

)
0≤s≤ 2ρin+τin

2n

.

We have

Si(n)(s) =
1

n1/4
Sin(2ns)

=
1

n1/4
Ln(2ns) +

1

n1/4
M̃ i
n

ci(kn) (
Cn(2ns)

)
= L(n)(s) +

(
8

9

)1/4

M̃ i
(n)

ci(kn)
(√

3

2
C(n)(s)

)

So Si(n) converge in law toward a limit Si : [0, ρi] → R in the space (H, dH), where, for

t ∈ [0, ρi], we have:

Si(t) = Li(t) +

(
8

9

)1/4

M̃ i

(√
3

2
Ci(t)

)

We consider that S•n is linearly interpolated between its integer values and we define its

rescaled version:
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S•n =

(
S•n((2n)s)

n1/4

)
0≤s≤ 2n+

∑
i σi+4

2n

Therefore we have that the rescaled version of S•n converge in law toward S• = S1•. . .•S6

in the space (H, dH).

It remains to show the convergence of S(n) given that of S•(n). This is done by noticing

that Sn is within bounded distance (in the uniform topology on continuous functions)

from a time-change of S•n, where the time change itself is within O(
√
n) from the identity.

This and the tension of both sequences (or a priori bounds on their moduli of continuity)

imply that S(n) and S•(n) converge to the same limit.

10.2 Subsequential convergence of the pseudo-distance function of

the unicellular map

We now introduce several definitions similar to those in Section 3. Let a0
n be the root

angle of Tn and v0
n be its root vertex. Let `n = 4n + 1. Let Γn be the unicellular

map obtained from Tn by adding a special dangling half-edge, called the root half-edge,

incident to the root angle of Tn. Let λn be the labeling function of th angles of Γn as

defined in Section 3. For each u ∈ Vn, let An(u) be the set of angles of Γn incident to u.

For all u, v ∈ V , let m(u) and m(u, v) be as defined in as defined in Section 3.

As in Section 4.5, we define the following pseudo-distance: for i, j ∈ [[0, 2n+ 1]],

don(i, j) = mn(rn(i)) +mn(rn(j))− 2mn(rn(i), rn(j)).

We extend the definition of don to non-integer values and define its rescaled version do(n)

as for dn.

For s, t ∈ [0, 1], we define:

do(s, t) = S(s) + S(t)− 2 min
x∈[s,t]

S(x).

Lemma 10.3. do(n) converges in law toward do when n goes to infinity.

Proof. By (4.6) we have: for i, j ∈ [[0, 2n+ 1]],

|don(i, j)− (Sn(i) + Sn(j)− 2Sn(i, j))| ≤ 64 (10.2)

By Lemma 3.6 for any i, j ∈ [[0, 2n+ 1]], we have

don(i+ 1, j), don(i, j + 1), don(i+ 1, j + 1) ∈ [[don(i, j)− 28, don(i, j) + 28]].

Thus, for s, t ∈ [0, 2n+ 1], we have
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|don(s, t)− don(bsc, btc)| ≤ 28

So, for s, t ∈ [0, 1]2, we have:∣∣∣∣do(n)(s, t)− do(n)

(b(2n+ 1)sc
2n+ 1

,
b(2n+ 1)tc

2n+ 1

)∣∣∣∣ ≤ 28

n1/4

Since every vertex is incident to at most two stems and the variation of S• is at most 1,

we have for s, t ∈ [0, 2n+ 1]:

|Sn(s)− Sn(bsc)| ≤ 3

|Sn(s, t)− Sn(bsc, btc)| ≤ 6

So, for s, t ∈ [0, 1]2, we have:∣∣∣∣S(n)(s)− S(n)

(b(2n+ 1)sc
2n+ 1

)∣∣∣∣ ≤ 3

n1/4

∣∣∣∣S(n)(s, t)− S(n)

(b(2n+ 1)sc
2n+ 1

,
b(2n+ 1)sc

2n+ 1

)∣∣∣∣ ≤ 6

n1/4

Then by (10.2), for C = 28 + 3 + 3 + 2× 6 + 64 = 110, we have, for all s, t ∈ [0, 1]2:

|do(n)(s, t)− (S(n)(s) + S(n)(t)− 2S(n)(s, t)| ≤
C

n1/4
(10.3)

where S(n)(s, t) = maxx∈[s,t] S(n)(x).

By Lemma 10.2, S(n) converge in law toward S in the space (H, dH). So do(n) converges

in law toward do.

10.3 Convergence for the Gromov-Haussdorf distance

We use the same notations as in previous sections. We first prove the tightness of d(n)

and then the convergence for the Gromov-Haussdorf distance.

Lemma 10.4. The sequence of the laws of the processes(
d(n)(s, t)

)
0≤s,t≤1

is tight in the space of probability measures on C([0, 1]2,R).
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Proof. For every s, s′, t, t′ ∈ [0, 1], by triangular inequality for dGn , we have:

d(n)(s, t) ≤ d(n)(s, s
′) + d(n)(s

′, t′) + d(n)(t
′, t)

d(n)(s
′, t′) ≤ d(n)(s

′, s) + d(n)(s, t) + d(n)(t, t
′)

Therefore we obtain:∣∣d(n)(s, t)− d(n)(s
′, t′)

∣∣ ≤ d(n)(s, s
′) + d(n)(t, t

′).

By Lemma 3.9, we have, for s, t ∈ [0, 1]

d(n)(s, t) ≤ do(n)(s, t) +
14

n1/4
.

So we have: ∣∣d(n)(s, t)− d(n)(s
′, t′)

∣∣ ≤ do(n)(s, s
′) + do(n)(t, t

′) +
28

n1/4
.

Consider ε, η > 0. By Lemma 10.3, do(n) converge toward do, so by using Fatou’s lemma,

we have for every δ > 0,

lim sup
n→∞

P

(
sup
|s−s′|≤δ

do(n)(s, s
′) ≥ η

)
≤ P

(
sup
|s−s′|≤δ

do(s, s′) ≥ η
)
. (10.4)

Since do is continuous and null on the diagonal, therefore there exists δε > 0 such that:

P

(
sup

|s−s′|≤δε
do(s, s′) ≥ η

)
≤ ε. (10.5)

By (10.4),(10.5) there exists n0 ∈ N such that for every n ≥ n0 we have:

P

(
sup

|s−s′|≤δε
do(n)(s, s

′) ≥ η
)
≤ ε.

By taking n0 large enough (if necessary) such that 28
n1/4 ≤ η, we have for every n ≥ n0:

P

(
sup

|s−s′|≤δε;|t−t′|≤δε

∣∣d(n)(s, t)− d(n)(s
′, t′)

∣∣ ≥ 3η

)
≤ 2ε.

By Ascoli’s theorem, this completes the proof of lemma.

We are now able to prove the main result of this section.
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Proof of Lemma 10.1. By Lemma 10.4, there exists a subsequence (nk)k≥0 and a func-

tion d ∈ C([0, 1]2,R) such that

d(nk)
(d)−→ d. (10.6)

By the Skorokhod theorem, we will assume that this convergence holds almost surely.

As the triangular inequality holds for each d(n) function, the function d also satisfies

the triangular inequality. On the other hand, for s ∈ [0, 2n + 1], note that we have

d(n)(s, s) ≤ 1. So for x ∈ [0, 1], we have d(n)(x, x) = O(n−1/4). Therefore the function d

is actually a pseudo-metric. For x, y ∈ [0, 1]2, we say that x ∼d y if d(x, y) = 0.

We use the characterization of the Gromov-Hausdorff distance via correspondence. Re-

call that a correspondence between two metric spaces (S, δ) and (S′, δ′) is a subset

R ⊆ S×S′ such that for all x ∈ S, there exists at least one x′ ∈ S′ such that (x, x′) ∈ R
and vice-versa. The distortion of R is defined by:

dis(R) = sup
{∣∣δ(x, y)− δ′(x′, y′)

∣∣ : (x, x′), (y, y′) ∈ R
}
.

Therefore we have (see [28])

dGH((S, δ), (S′, δ′)) =
1

2
inf
R

dis(R),

where the infimum is taken over all correspondence R between S and S′.

We define the correspondence Rn between
(

1
2n+1 [[0, 2n+ 1]]/ ∼n, d(n)

)
and ([0, 1]/ ∼d, d)

as the set

Rn =

{(
πn (b(2n+ 1)xc)

2n+ 1
, π∞(x)

)
, x ∈ [0, 1]

}
,

where πn the canonical projection from [[0, 2n + 1]] to [[0, 2n + 1]]/ ∼n and π is the

canonical projection from [0, 1] to [0, 1]/ ∼d.
We have

dis(Rn) = sup
0≤x,y≤1

∣∣∣∣d(n)

(b(2n+ 1)xc
2n+ 1

,
b(2n+ 1)yc

2n+ 1

)
− d(x, y)

∣∣∣∣
By 10.6, we have dis(Rnk) converges toward 0 and thus the following convergence for

the Gromov-Hausdorff distance:

(
1

2nk + 1
[[0, 2nk + 1]]/ ∼nk , d(nk)

)
(d)−−−→
k→∞

([0, 1]/ ∼d, d) .
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1 Approximation of distance by labels

In this appendix, we show that with high probability, the labeling function defined in

Section 4.1 approximates the distance to the root up to a uniform o(n1/4) correction. As

we mentioned in the introduction, we believe that this is an essential step toward proving

uniqueness of the subsequential limit in Theorem 1.2. The proof is quite technical and

the estimate itself is not needed in the proof of Theorem 1.2; since it exploits the same

rather involved combinatorial construction, we chose to include it here as an appendix

rather than to write it as a separate article.

1.1 Rightmost walks and distance properties

Definition and properties of rightmost walks

We use the same notations as in Sections 2 and 3.

For n ≥ 1, let T be an element of Tr,s,b(n), and G = Φ(T ) the corresponding element of

G(n). The canonical orientation of G is noted D0. Recall that, as already mentioned,

every vertex of G as outdegree exactly three in D0.

For an (oriented) edge e of D0, we define the rightmost walk from e as the sequence

of edges starting by following e, and at each step taking the rightmost outgoing edge

among the three outgoing edges at the current vertex. Note that a rightmost walk is

necessarily ending on a periodic closed walk since G is finite.

We have the following essential lemma concerning rightmost walks:

Lemma 1.1. For any edge e of D0, the ending part of the rightmost walk from e is the

root triangle with the interior of the triangle on its right side.

Proof. The proof is based on results from [83]. Let e be an edge of D0. By [83,

Lemma 37], i.e. by the balanced property of the orientation D0, the end of the rightmost

walk from e is a triangle A with the interior of the triangle on its right side. By [83,

Lemma 25], i.e. by minimality of the orientation D0, the interior of A must contain the

root face f0 of G. The root face is incident to the root triangle A0 by definition. Since

the outdegree of all the edges is three, a classic counting argument using Euler’s formula

gives that all the edges in the interior of A0 and incident to it are entering A0. So it is

not possible that A is entering in the interior of A0. Since f0 is in the interior of both A

and A0, we have that the interior of A contains the interior of A0. Then by maximality

of A0, we have that A = A0.

By Lemma 1.1, any rightmost walk visit the root vertex. For an edge e of D0, we define

the right-to-root walk, noted WR(e), as the subwalk of the rightmost walk started from

e that stops at the first visit of the root vertex v0.
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Recall that, for 0 ≤ i ≤ `, the set A(i) denote the set of angles of G+ which are splited

from ai by the complete closure procedure. Let f be the mapping that associate to an

angle α of G+ the integer i such that α ∈ A(i). Let g be the mapping that associate to

an angle α of Γ the integer i such that α = ai.

Depending of the type of the unicellular map, i.e. hexagonal or square, and the fact that

rs is special or not, we define three particular angles x1, x2 and x3 of Γ, as represented on

Figure .22. Note that in the particular case where rs ∈ S, we have x1 = x2. Moreover,

let x0 = a0 and x4 = a`. Then, for 1 ≤ j ≤ 4, let Xj =
⋃
g(xj−1)≤i<g(xj)A(i). Note

that X2 = ∅ if x1 = x2. Thus the set of angles of G+ is partitioned into the four sets

X1, . . . , X4 such that if α ∈ Xi and α′ ∈ Xj , with i < j, then f(α) < f(α′).

x0

rs

rs

x3x2

x4

x1 x1

x0

rs

rs

rs

x2

x3

x4

rs

x4

x0

x3

rs

x2

x1

rs

x0

x4

x1

rs

x3

rs

x2

rs rs

Figure .22 – Definition of the angles x1, x2 and x3 depending on the type of unicellular
map.

The partition (X1, · · · , X4) has been defined to satisfied the following property. Consider

an edge e = uv of EP ∪ER, oriented from u to v in the canonical orientation, with angles

a, a′ of G+ incident to e that appears in counterclockwise order around v. Then, one

can see on Figure .22 that a ∈ (X1 ∪X3). Moreover if a in X1 (resp. in X3), then a′ is

in X2 ∪X3 ∪X4 (resp. in X4).
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Given an edge {u, v} of G+, we note a`(u, v) (respectively ar(u, v) ) the angle incident

to u that is just after {u, v} in counterclockwise order (resp clockwise order) around u.

Consider e ∈ D0, and WR(e) the right-to-root walk starting from e, whose sequence of

vertices is (uj)0≤j≤k, with k > 0. We define two sequence of angles of G+ incident to

the right side of WR. For 0 ≤ i ≤ k − 1, let αi = ar(ui, ui+1). For 1 ≤ i ≤ k, let

βi = a`(ui, ui−1). Note that, for 0 < i < k, we might have αi = βi if there is no edges

incident to the right side of WR(e) at ui.

Lemma 1.2. For 0 ≤ i ≤ k − 1, we have λ(βi+1) − λ(αi) = −1. For 1 ≤ i ≤ k − 1,

we have −6 ≤ λ(αi) − λ(βi) ≤ 0. Moreover |{i ∈ [[1, k − 1]] : λ(αi) < λ(βi)}| ≤ 2 and

f(α0) < f(β1) ≤ f(α1) < · · · < f(βk−1) ≤ f(αk−1) < f(βk).

Proof. Let 0 ≤ i ≤ k − 1 and consider the edge {ui, ui+1}. We have {ui, ui+1} is

either in E(Γ) or not. If {ui, ui+1} /∈ E(Γ), let s be a stem such that we reattach s

to an angle that comes from a(s) to form the edge {ui, ui+1} of G. By Lemma 3.1,

we have λ(βi+1) = λ(a(s)) = λ(s) − 1 = λ(αi) − 1. Moreover since U is safe, we

have f(βi+1) > f(αi). If {ui, ui+1} ∈ E(Γ), we also have λ(βi+1) = λ(αi) − 1 and

f(βi+1) > f(αi).

Consider 1 ≤ i ≤ k − 1. By Lemma 3.5, we have −6 ≤ λ(αi)− λ(βi). Let (γi1, . . . , γ
i
pi),

with pi ≥ 1, be the set of consecutive angles of G+ between βi = γi1 and αi = γipi in

counterclockwise order around ui. Since WR(e) is a right-to-root walk, if pi > 1, then

all the edges that are incident to ui between two consecutive angles γij and γij+1, with

1 ≤ j < p, are entering ui. So, by Lemma 3.4, for 1 ≤ j < pi, we have λ(γij+1)−λ(γij) ≤ 0.

Moreover, we have λ(γij+1) − λ(γij) < 0 if and only if the edge entering ui between γij
and γij+1 is in EP ∪ ER. Thus we have λ(αi)− λ(βi) ≤ 0, and, for 1 ≤ j < pi, we have

f(γij+1) ≥ f(γij).

We obtain that the sequence

(fp)0≤p≤r = (f(α0), f(γ1
1), . . . , f(γ1

p1), . . . , f(γk−1
1 ), . . . , f(γk−1

pk−1
), f(βk))

is increasing and thus f(α0) < f(β1) ≤ f(α1) < · · · < f(βk−1) ≤ f(αk−1) < f(βk). This

also implies that the sequence I = ({i : fp ∈ Xi})0≤p≤r is increasing.

If there is a couple (i, j), with 1 ≤ i ≤ k− 1, and 1 ≤ j < pi, such that the edge incident

to γij and γij+1 is in EP ∪ER, then either γij ∈ X1 and γij+1 ∈ X2 ∪X3 ∪X4, or, γij ∈ X3

and γij+1 ∈ X4. Since I is increasing, this implies that there is at most two such couples

(i, j). So |{i ∈ [1, k − 1] : λ(αi) < λ(βi)}| ≤ 2.

Lemma 1.3. For all e = uv ∈ D0, we have

m(u)− 18 ≤ |WR(e)| ≤ m(u) + 6.
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Proof. By Lemma 1.2, the sequence (λ(α0), λ(β1), λ(α1), . . . , λ(βk−1), λ(αk−1), λ(βk)) is

decreasing by one between αi and βi+1, for 0 ≤ i ≤ k − 1, it is constant between βi and

αi, for 1 ≤ i ≤ k−1, except for at most two value 1 ≤ i ≤ k−1 where it can decrease by

at most 6. So λ(α0)−λ(βk)−2×6 ≤ |WR(e)| ≤ λ(α0)−λ(βk). By Lemma 3.5, we have

m(u) ≤ λ(α0) ≤ m(u) + 6 and 0 ≤ λ(βk) ≤ 6. So m(u)− 18 ≤ |WR(e)| ≤ m(u) + 6.

We define

t =


3 if Γ is hexagonal and rs /∈ S
4 if Γ is hexagonal and rs ∈ S
4 if Γ is square and rs /∈ S
5 if Γ is square and rs ∈ S

and t− 1 particular angles y1, . . . , yt−1 of Γ, as represented on Figure .23. Moreover, let

y0 = a0 and yt = a`. Then, for 1 ≤ j ≤ t, let Yj =
⋃
g(yj−1)≤i<g(yj)A(i). Thus the set of

angles of G+ is partitioned into the t sets (Y1, · · · , Yt) such that if α ∈ Yi and α′ ∈ Yj ,
with i < j, then f(α) < f(α′).

The partition (Y1, · · · , Yt) has been defined to satisfied the following property. For any

vertex v, each set of consecutive angles around v that is delimited by edges of EP ∪ ER
lies in a different set Yj .

We define the right-to-root path PR(e) starting at e and ending at v0, obtained by deleting

edges from WR(e) by the following method. We follow WR(e) from e, the first time we

meet a vertex v that appears twice in the sequence of vertices (ui)0≤i≤k of WR(e). Let

m = min{i : ui = v} and M = max{i : ui = v}. Then we delete all the edges of WR(e)

between um and uM . We repeat the process until reaching v0. Note that PR(e) is not

“rightmost”. For e ∈ D0, let h(e) be the set of inner vertices of PR(e) that have outgoing

edges on the right side of PR(e).

Lemma 1.4. |PR(e)| ≤ |WR(e)| ≤ |PR(e)|+ 24 and |h(e)| ≤ 4.

Proof. Consider a vertex v appearing at least twice in the sequence (ui)0≤i≤k. Let

m = min{i : ui = v} and M = max{i : ui = v}. We have 0 ≤ m < M ≤ k. By

Lemma 1.2, we have f(αm) < f(βM ) and λ(βM ) ≤ λ(αm)− (M −m). By Lemma 3.5,

we have λ(αm)− 6 ≤ λ(βM ). So M −m ≤ 6.

Suppose by contradiction that there is 1 ≤ p ≤ t, such that αm and βm are in Yp.

Then α and β lie in the same set of consecutive angles around v delimited by edges of

EP ∪ ER. Since f(αm) < f(βM ), there is no edge of EP ∪ ER incident to v in the

counterclockwise sector from αm to βM . Moreover, all the edges of EN incident to v in

this sector are entering v. So By Lemma 3.4, the sequence of labels from αm to βM is
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y3

rs

rs
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rs
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Figure .23 – Definition of the angles y1, . . . , yt−1.

increasing around v in counterclockwise order. So λ(αm) ≤ λ(βM ), a contradiction. So

there exists 1 ≤ p < q ≤ t, such that αm ∈ Yp and βM ∈ Yq.
With the same notations as in Lemma 1.2, the sequence

(fp)0≤p≤r = (f(α0), f(γ1
1), . . . , f(γ1

p1), . . . , f(γk−1
1 ), . . . , f(γk−1

pk−1
), f(βk))

is increasing. Thus the sequence I = ({i : fp ∈ Yi})0≤p≤r is increasing.

The path PR(e) is obtained by following WR(e) from e, each time we meet a vertex v

that appears twice in the sequence of vertices of WR(e), then we delete all the edges of

WR(e) between um and uM . Since M −m ≤ 6, we have deleted at most 6 edges from

WR(e). Since there exists 1 ≤ p < q ≤ t ≤ 5 with αm ∈ Yp and βM ∈ Yq, and the

sequence I is increasing, there is at most 4 such steps of deletions. Thus in total, we
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have deleted at most 24 edges to obtained PR(e) from WR(e) and there are at most 4

inner vertices of PR(e) that have outgoing edges on the right side of PR(e).

Finally we obtain the following lemma by combining Lemmas 1.3 and 1.4:

Lemma 1.5. For all e = uv ∈ D0, we have

m(u)− 42 ≤ |PR(e)| ≤ m(u) + 6

Relation with shortest paths

Let e = uv ∈ D0. Consider PR(e) = (u0 = u, u1 = v, ..., uk = v0) the right-to-root path

starting at e and h(e) the set of inner vertices of PR(e) that have outgoing edges on the

right side of PR(e). Recall that |h(e)| ≤ 4 by Lemma 1.4.

Let S = (w0, w1, ..., wp) be a path of G with distinct extremities and meeting P (e) only

at w0 and wp, such that w0 = ui and wp = uj for 0 ≤ i < j ≤ k. Let C = (w0, . . . , wp =

uj , . . . , ui) be the cycle formed by the union of S and (ui, . . . , uj), given with the traversal

direction corresponding to S oriented from w0 to wp.

We say that S leaves PR(e) from the right if i > 0 and S leaves PR(e) by its right side.

Otherwise, we say that S leaves PR(e) from the left. In particular, if i = 0, then S leaves

PR(e) from the left, by convention. Likewise, we say that S enters PR(e) from the right

if j < k and S enters PR(e) by its right side. Otherwise, we say that S enters PR(e)

from the left. In particular, if j = k, then S enters PR(e) from the left, by convention.

We define different possible types for S, depending on whether S is leaving/entering on

the left or right side of PR(e), whether C is contractible or not, and whether C contains

some vertices of V (e) or not. We say that S has type LR (respectively type RR, type RL,

type LL) if S leaves PR(e) from the left (respectively right, right, left), enters PR(e) from

the right (respectively right, left, left). When C is contractible, we add the subscript `

or r depending on whether C delimits a region homeomorphic to an open disk on its left

or right side. When C is non-contractible, we add the subscript n. When C contains

some vertices of h(e), we add the superscript h. Thus we have define twenty-four types

LR`, RR`, RL`, LL`, LRr, RRr, RLr, LLr, LRn, RRn, RLn, LLn, LRh` , RRh` , RLh` ,

LLh` , LRhr , RRhr , RLhr , LLhr , LRhn, RRhn, RLhn, LLhn so that a path S as defined above is

of exactly one type.

We show the following inequality between p, i and j depending on the type:

Lemma 1.6. We have p ≥ j− i+ c where c is a constant given in Table .2 that depends

on the type of S.

Proof. Suppose first that C is contractible. Let R be the region homeomorphic to an

open disk that is delimited by C. Let t be the size of C, so t = j − i+ p. Let G′ be the
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LR` RR` RL` LL` LRr RRr RLr LLr LRn RRn RLn LLn
-2 0 -3 -5 4 6 3 1 1 3 0 -2

LRh` RRh` RLh` LLh` LRhr RRhr RLhr LLhr LRhn RRhn RLhn LLhn
-10 -8 -11 -13 -4 -2 -5 -7 -3 -1 -4 -6

Table .2 – Values of c in Lemma 1.6.

planar map formed by all the vertices and edges that lie in R (including its border). Let

n′,m′, f ′ be the number of vertices, edges, faces of G′ respectively. By Euler’s formula,

we have n′ −m′ + f ′ = 2. All inner faces of G′ have degree three and its outer face has

degree t, so 3(f ′−1) = 2m′−t. Let y be the number of edges in the interior of R incident

to C and leaving C. Since G is 3-orientation, it follows that m′ = 3(n′ − t) + y + t. So,

by combining the three equalities, we have

y = t− 3 (1.1)

Assume that S is of type LR`. For i < m ≤ j, the number of edges that are in the

interior of R and leaving um is 0. Then we obtain y ≤ 3p − p − 1. By (1.1), we obtain

p ≥ j − i− 2.

Assume that S is of type RR`. For i ≤ m ≤ j, the number of edges that are in the

interior of R and leaving um is 0. Then we obtain y ≤ 3(p− 1)− p. By (1.1), we obtain

p ≥ j − i.
Assume that S is of type RL`. For i ≤ m < j, the number of edges that are in the

interior of R and leaving um is 0. Then we obtain y ≤ 3p − p. By (1.1), we obtain

p ≥ j − i− 3.

Assume that S is of type LL`. For i < m < j, the number of edges that are in the

interior of R and leaving um is 0. Then we obtain y ≤ 3(p + 1) − p − 1. By (1.1), we

obtain p ≥ j − i− 5.

When S is of type LRh` , RRh` , RLh` , LLh` . The argument is exactly the same as above

except that there might be some vertices of h(e) along C. Each such vertex has at most

2 edges leaving in the interior of R and there is at most 4 such vertices along C. So we

obtain a difference of 8 between the two rows of Table .2 for these cases.

Assume that S is of type LRr. For i < m ≤ j, the number of edges that are in the interior

of R and leaving um is 2 if m < j and 3 if m = j. Then we obtain y ≥ 2(j − i− 1) + 3.

By (1.1), we obtain p ≥ j − i+ 4.

Assume that S is of type RRr. For i ≤ m ≤ j, the number of edges that are in the

interior of R and leaving um is 2 if m < j and 3 if m = j. Then we obtain y ≥ 2(j−i)+3.

By (1.1), we obtain p ≥ j − i+ 6.
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Assume that S is of type RLr. For i ≤ m < j, the number of edges that are in the

interior of R and leaving um is 2. Then we obtain y ≥ 2(j − i). By (1.1), we obtain

p ≥ j − i+ 3.

Assume that S is of type LLr. For i < m < j, the number of edges that are in the

interior of R and leaving um is 2. Then we obtain y ≥ 2(j − i− 1). By (1.1), we obtain

p ≥ j − i+ 1.

Again, when S is of type LRhr , RRhr , RLhr , LLhr . The argument is exactly the same as

above except that there might be some vertices of h(e) along C. Each such vertex has

at most 2 edges leaving on the right side of PR(e), i.e. outside R, and there is at most 4

such vertices along C. So we obtain a difference of 8 between the two rows of Table .2

for these cases.

Suppose now that C is non-contractible

Assume that S is of type LRn. For i < m ≤ j, the number of outgoing edges that are

incident to um and leaving C by its right side is equal to 2 if m < j and 3 if m = j.

So the number of edges leaving C by its right is at least 2(j − i− 1) + 3. Moreover the

number of edges leaving C by its left side is at most 3p − p − 1. Since D0 is balanced,

we have exactly the same number of outgoing edges incident to each side of C. Then we

obtain p ≥ j − i+ 1.

Assume that S is of type RRn. For i ≤ m ≤ j, the number of outgoing edges that are

incident to um and leaving C by its right side is equal to 2 if m < j and 3 if m = j. So

the number of edges leaving C by its right is at least 2(j − i) + 3. Moreover the number

of edges leaving C by its left side is at most 3(p−1)−p. Since D0 is balanced, we obtain

p ≥ j − i+ 3.

Assume that S is of type RLn. For i ≤ m < j, the number of outgoing edges that are

incident to um and leaving C by its right side is equal to 2. So the number of edges

leaving C by its right is at least 2(j − i). Moreover the number of edges leaving C by

its left side is at most 3p− p. Since D0 is balanced, we obtain p ≥ j − i.
Assume that S is of type LLn. For i < m < j, the number of outgoing edges that are

incident to um and leaving C by its right side is equal to 2. So the number of edges

leaving C by its right is at least 2(j − i − 1). Moreover the number of edges leaving C

by its left side is at most 3(p+ 1)− p− 1. Since D0 is balanced, we obtain p ≥ j− i− 2.

Again, when S is of type LRhn, RRhn, RLhn, LLhn. The argument is exactly the same as

above except that there might be some vertices of h(e) along C. There is a division by

two in the computation of these cases that results in a difference of 4 between the two

rows of Table .2 for these cases.

Let Q be a shortest path from u to v0 that maximizes the number of common edges

with PR(e). Subdivide Q into edge-disjoint sub-paths S1, S2, ..., St, each of which meets
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PR(e) only at its (distinct) endpoints. For 1 ≤ q ≤ t, note that Sq is not necessarily

edge-disjoint from PR(e), but if Sq share an edge with P (e) then it has length 1. We

assume that S1, S2, ..., St are ordered so that Q is the concatenation of S1, S2, ..., St, so

in particular, u0 is the first vertex of S1 and uk is the last vertex of St. For 1 ≤ q ≤ t,

note that Sq is not necessarily of a type define previously since such a path might starts

(resp. ends) at a vertex ui (resp. uj) of PR(e) such that j < i.

For i, j in {0, k}, the sub-path of PR(e) between ui and uj is denoted by PR(e)[i, j].

Likewise, if ui, uj are vertices of Q, then the sub-path of Q between ui and uj is denoted

by Q[i, j].

Lemma 1.7. Consider 1 ≤ q ≤ q + 9 ≤ q′ ≤ t such that Sq starts at a vertex ui, ends

at vertex uj, with i < j, and (ui′ , uj′) are the extremities of Sq′ with i′ ≤ j′ (note that

Sq′ may starts at ui′ or uj′). Then we have j < i′.

Proof. Suppose by contradiction that i′ ≤ j. We define:

q1 = min{q ∈ [[1, t]] : Sq starts at ui′′ , ends at uj′′ with i′′ ≤ i′ ≤ j′′}

Note that q1 ≤ q. Let (i1, j1) be such that Sq1 starts at ui1 , ends at uj1 . For 2 ≤
r ≤ 8, let qr = q1 + r. Note that q8 < q + 9 ≤ q′. Let p1, · · · , p8 be the lengths

of Sq1 , · · · , Sq8 respectively. By Lemma 1.6, we have p1 ≥ j1 − i1 − 13. Moreover,

we have |Q[i1, i
′]| ≥ p1 + · · · + p8 ≥ p1 + 7. Since Q is a shortest path, we have

|PR(e)[i′, j1]| ≥ |Q[j1, i
′]| ≥ p2 + · · ·+ p8 ≥ 7. We obtain the following contradiction:

|PR(e)[i1, i
′]| = |PR(e)[i1, j1]| − |PR(e)[i′, j1]| ≤ j1 − i1 − 7 ≤ p1 + 6 ≤ |Q[i1, i

′]| − 1.

For all types ξ ∈ {LR`, RR`, RL`, LL`, LRr, RRr, RLr, LLr, LRn, RRn, RLn, LLn}, let

nξ(Q, e) = |{j ∈ {1, ..., t} : Sj has type ξ}|.

Lemma 1.8. nLL`(Q, e) ≤ 2

Proof. Suppose by contradiction that nLL`(Q, e) ≥ 3. Let q1, q2, q3 be three distinct

elements of {1, · · · , t} such that Sq1 , Sq2 and Sq3 have type LL`. For 1 ≤ r ≤ 3, let

(uir , ujr), be the extremities of Sqr , such that Sqr starts at uir and ends at ujr . Let p1, p2

and p3 be the length of Sq1 , Sq2 and Sq3 . We assume, w.l.o.g., that i1 < i2 < i3. Then,

one can see that i1 < i2 < i3 < j3 < j2 < j1. By Lemma 1.6, we have p1 ≥ j1 − i1 − 5.

Let qm = min{q1, q2, q3} and qM = max{q1, q2, q3}. Since Q is a shortest path we have

|PR(e)[i1, im]|+ |PR(e)[jM , j1]| ≥ |Q[im, i1]|+ |Q[j1, jM ]|. Moreover, whenever q1 = qm,

q1 = qM or qm < q1 < qM , one can check that |Q[im, i1]|+ |Q[j1, jM ]| ≥ 4. We also have

|Q[im, jM ]| ≥ p1 + p2 + p3 + 2 ≥ p1 + 4.
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Then we obtain the following contradiction:

|PR(e)[im, jM ]| = |PR(e)[i1, j1]| − |PR(e)[i1, im]| − |PR(e)[jM , j1]|
≤ (j1 − i1)− |Q[im, i1]| − |Q[j1, jM ]|
≤ (j1 − i1)− 4

≤ p1 + 1

≤ |Q[im, jM ]| − 3

For 1 ≤ z ≤ |h(e)|, we define

tz = min{q ∈ [[1, t]] : Sq ends at uj with PR(e)[0, uj ] contains at least z elements of h(e)}

Let X = ∪1≤z≤h(e)[[tz, tz+18[[ and Y = [[1, t]]\X and Z = [[1, t]]\Y . So [[1, t]] is partitioned

into Y, Z. By Lemma 1.4, we have h(e) ≤ 4, so |Z| ≤ 4×18 = 72. Note that Y has been

defined so that it satisfies the following by Lemma 1.7: if q, q′ ∈ [[1, t]] are such that q ∈ Y ,

q−9 ≤ q′ ≤ q, and Sq′ has extremities (ui, uj), then PR(e)[i, j] contains no vertex of h(e).

For q ∈ {1, ..., t}, we say that Sq has type h if Sq is of one of the type LRh` , RR
h
` , RL

h
` , LL

h
` ,

LRhr , RR
h
r , RL

h
r , LL

h
r , LR

h
n, RR

h
n, RL

h
n, LL

h
n.

Lemma 1.9. Consider q1, q2 ∈ Y , such that q1 < q2 and Sq1 , Sq2 are of type LLn. If

i1, j1, i2, j2 are such that Sq1, Sq2 have extremities (ui1 , uj1) and (ui2 , uj2) with i1 < j1
and i2 < j2, then j1 ≤ i2.

Proof. Suppose by contradiction that i2 < j1. Let p1, p2 be the length of Sq1 and Sq2 .

By Lemma 1.6, we have p1 ≥ j1 − i1 − 2. Since q1 < q2 we have i1 6= j2, i1 6= i2 and

j1 6= j2. We consider the four following cases: j2 < i1 or i1 < j2 < j1 or i2 < i1 < j1 < j2
or i1 < i2 < j1 < j2.

— If j2 < i1: Let q0 = max{q ∈ [[1, q1[[ : Sq starts at ui, ends at uj with i ≤ j2 ≤ j}.
Let (ui0 , uj0) be the extremities of Sq0 with i0 ≤ j2 ≤ j0. Let p0 be the length

of Sq0 . Since i0 ≤ j2 ≤ j0, by definition of Y and Lemma 1.7, we have that

Sq0 is not of type h. By Lemma 1.6, we have p0 ≥ j0 − i0 − 5. Moreover, we

have |Q[i0, j2]| ≥ p0 + p1 + p2 + 1 ≥ p0 + 3. Since Q is a shortest path, we

have |PR(e)[j2, j0]| ≥ |Q[j0, j2]| ≥ p1 + p2 + 1 ≥ 3. We obtain the following

contradiction:

|PR(e)[i0, j2]| = |PR(e)[i0, j0]|−|PR(e)[j2, j0]| ≤ j0−i0−3 ≤ p0+2 ≤ |Q[i0, j2]|−1

— If i1 < j2 < j1: We have |Q[i1, j2]| ≥ p1 + p2 + 1 ≥ p1 + 2. Since Q is a shortest

path, we have |PR(e)[j2, j1]| ≥ |Q[j1, j2]| ≥ 1 + p2 ≥ 2. We obtain the following

contradiction:

|PR(e)[i1, j2]| = |PR(e)[i1, j1]| − |PR(e)[j2, j1]| ≤ j1 − i1 − 2 ≤ p1 ≤ |Q[i1, j2]| − 2
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— If i2 < i1 < j1 < j2: Let q0 = max{q ∈ [[1, q1[[ : Sq starts at ui, ends at uj with i ≤
i2 ≤ j}. Let (ui0 , uj0) be the extremities of Sq0 with i0 ≤ i2 ≤ j0. Let p0 be the

length of Sq0 . Since i0 ≤ i2 ≤ j0, by definition of Y and Lemma 1.7, we have that

Sq0 is not of type h. We consider two cases depending on whether j2 ≤ j0 or not.

— j2 ≤ j0: By Lemma 1.6, we have p0 ≥ j0 − i0 − 5. Moreover, we have

|Q[i0, j2]| ≥ p0 + p1 + p2 + 2 ≥ p0 + 4. Since Q is a shortest path, we have

|PR(e)[j0, j2]| ≥ p1 + p2 + 2 ≥ 4. We obtain the following contradiction:

|PR(e)[i0, j2]| = |PR(e)[i0, j0]| − |PR(e)[j2, j0]| ≤ j0 − i0 − 4 ≤ p0 + 1

≤ |Q[i0, j2]| − 3

— j0 < j2: We have i0 < i2 < j0 < j2 so one can remark that Sq0 is not of type

LL`. By Lemma 1.6, we have p0 ≥ j0− i0− 3. Moreover, we have |Q[i0, i2]| ≥
p0 + p1 + 1 ≥ p0 + 2. Since Q is a shortest path, we have |PR(e)[i2, j0]| ≥
|Q[j0, i2]| ≥ p1 + 1 ≥ 2. We obtain the following contradiction:

|PR(e)[i0, i2]| = |PR(e)[i0, j0]|−|PR(e)[i2, j0]| ≤ j0−i0−2 ≤ p0+1 ≤ |Q[i0, i2]|−1

— i1 < i2 < j1 < j2: We have |Q[i1, i2]| ≥ p1 + 1. Since Q is a shortest path, we

have |PR(e)[i2, j1]| ≥ |Q[j1, i2]| ≥ 1. We obtain the following:

|PR(e)[i1, i2]| = |PR(e)[i1, j1]| − |PR(e)[i2, j1]| ≤ j1 − i1 − 1 ≤ p1 + 1 ≤ |Q[i1, i2]|

Since Q is a shortest path, we obtain |PR(e)[i1, i2]| = |Q[i1, i2]|. Consider the

walk Q′ obtain by replacing the part Q[i1, i2] in Q by PR(e)[i1, i2]. Thus Q′ is

a walk from u0 to v0 that have the same length as Q, so Q′ is a shortest path.

Moreover Q′ has strictly more edges of PR(e) than Q, a contradiction.

Let nYLLn(Q, e) be the number of integers in q ∈ Y such that Sq has type LLn.

Lemma 1.10. nYLLn(Q, e) ≤ 2

Proof. Suppose by contradiction that nYLLn(Q, e) ≥ 3. Let q1, q2, q3 be three distinct

elements of Y such that Sq1 , Sq2 and Sq3 are of type LLn and q1 < q2 < q3. Let (ui1 , uj1),

(ui2 , uj2) and (ui3 , uj3) be the extremities of Sq1 , Sq2 and Sq3 . Then by Lemma 1.9, we

have i1 < j1 ≤ i2 < j2 ≤ i3 < j3. Let C1 (resp. C2, C3) be the cycle formed by the

union of S1 (resp. S2, S3) and PR(e)[i1, j1] (resp. PR(e)[i2, j2], PR(e)[i3, j3]). The two

non contractible cycle C1 and C3 are vertex disjoint. Thus we are in the situation of

Figure .24, where C1, C3 are homotopic but with opposite traversal direction. Then the

union of C1, C3 and PR(e)[j1, i3] delimit a contractible region whose interior contain all

the edges of S2. Then C2 is contractible, a contradiction.
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Figure .24 – Situation of Lemma 1.10.

Lemma 1.11.

|Q| ≥ |PR(e)| − 2nLR`(Q, e)− 3nRL`(Q, e)− 922.

Proof. By Lemmas 1.6, we have

|Q| =
t∑

q=1

|Sq| ≥ |PR(e)|−2nLR`(Q, e)−3nRL`(Q, e)−5nLL`(Q, e)−2nYLLn(Q, e)−13× |Z|.

Thus we obtain the lemma by Lemmas 1.8 and 1.10 and since |X| ≤ 72.

Lemma 1.12. Consider q1, q2 ∈ Y , such that q1 6= q2 and Sq1 , Sq2 are both of type LRl
or RL`. If Sq1, Sq2 have extremities (ui1 , uj1) and (ui2 , uj2) with i1 < j1, i2 < j2 and

i1 < i2, then q1 < q2.

Proof. Suppose by contradiction that q1 > q2. Let p1, p2 be the length of Sq1 and Sq2 .

By Lemma 1.6, we have p1 ≥ j1 − i1 − 3 and p2 ≥ j2 − i2 − 3. Since q2 < q1, we have

i2 6= j1. We consider the two following cases: i2 < j1 or j1 < i2.

— If i2 < j1: We have |Q[i2, j1]| ≥ p1 + p2 + 1 ≥ p2 + 2. Since Q is a shortest

path, we have |PR(e)[j1, j2]| ≥ |Q[j2, j1]| ≥ p1 + 1 ≥ 2. We obtain the following

contradiction:

|PR(e)[i2, j1]| = |PR(e)[i2, j2]|−|PR(e)[j1, j2]| ≤ j2−i2−2 ≤ p2+1 ≤ |Q[i2, j1]|−1.
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— If j1 < i2: Let q0 = max{q ∈ [[q1, q2[[ : the extremities i, j of Sq are such that i ≤
j1 ≤ j}. Let (ui0 , uj0) be the extremities of Sq0 with i0 ≤ j1 ≤ j0. Let p0 be the

length of Sq0 . Since i0 ≤ j1 ≤ j0, by definition of Y and Lemma 1.7, we have

that Sq0 is not of type h. By Lemma 1.6, we have p0 ≥ j0 − i0 − 5. Moreover, we

have |Q[i0, j1]| ≥ p0 + p1 + p2 + 1 ≥ p0 + 3. Since Q is a shortest path, we have

|PR(e)[j0, j1]| ≥ p1 + p2 + 1 ≥ 3. We obtain the following contradiction:

|PR(e)[i0, j1]| = |PR(e)[i0, j0]|−|PR(e)[j0, j1]| ≤ j0−i0−3 ≤ p0+2 ≤ |Q[i0, j1]|−1.

We now state two lemmas which are analogous to Proposition 11 and Proposition 12

of [1].

Consider C a contractible cycle of G, given with a traversal direction. Then C separates

the map G into two regions. We define V`(C) (respectively Vr(C)) the set of vertices

lying in the region on the left (resp. right) side of C, including C. The graphs G[V`(C)]

and G[Vr(C)] denotes the subgraph of G induced by these set of vertices.

Lemma 1.13. If nLR`(Q, e) > 0 (resp. nRL`(Q, e) > 0), then there exists a contractible

cycle C of G, given with a traversal direction, such that G[V`(C)] and G[Vr(C)] both

have diameter at least bnLR`(Q, e)/2c − 1 (resp. bnRL`(Q, e)/2c − 1), and, for all ι ∈
{`, r}, we have maxu∈Vι(C)m(u)−minu∈Vι(C)m(u) is at least bnLR`(Q, e)/2c− 79 (resp.

bnRL`(Q, e)/2c − 79).

Proof. We prove the lemma for nLR`(Q, e) > 0 (the proof for nRL`(Q, e) > 0 is similar).

For 1 ≤ q ≤ t, let nLR`(q) be the number of sub-paths of type LR` among {S1, · · · , Sq}.
Let s = bnLR`(Q, e)/2c, and let q ∈ [[1, t]] be minimal such that nLR`(q) = s. Note that

Sq is of type LR` and s ≤ q. Note also that q ≤ t − s. Let Sq = (w0, ..., wp) with

w0 = ui, wp = uj for some 0 ≤ i < j ≤ k and let C = (w0, . . . , wp = uj , . . . , ui). Since

s ≤ q ≤ t− s, we have |Q[0, i]| ≥ s− 1 and |Q[j, k]| ≥ s− 1. So G[V`(C)] and G[Vr(C)]

each have diameter at least s− 1

Finally, by Lemma 1.12, one of G[V`(C)] or G[Vr(C)] contains all sub-paths of type

LR` among (S1, · · · , Sq)
⋂{⋃

i∈Y Si
}

and the other contains all sub-paths of type LR`
among (Sq, · · · , St)

⋂{⋃
i∈Y Si

}
. Therefore, each of G[V`(C)] and G[Vr(C)] contains at

least s− 18× 4 vertices of PR(e). By Lemmas 1.2 and 3.5, we obtain maxu∈Vι(C)m(u)−
minu∈Vι(C)m(u) ≥ s− 72− 7 for all ι ∈ {`, r}.

Lemma 1.14. If nLR`(Q, e) > 3 (resp. nRL`(Q, e) > 3), then there exists a contractible

cycle C in G, given with a direction of traversal, of length at most 6|Q|
nLR` (Q,e)−3 + 2

(resp. 6|Q|
nRL` (Q,e)−3 + 3) such that G[V`(C)] and G[Vr(C)] both have diameter at least

bnLR`(Q, e)/3c−1 (resp. bnRL`(Q, e)/3c−1 ), and, for all ι ∈ {`, r}, we have maxu∈Vι(C)m(u)−
minu∈Vι(C)m(u) is at least bnLR`(Q, e)/3c − 79 (resp. bnRL`(Q, e)/3c − 79).
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Proof. We prove the lemma for nLR`(Q, e) > 3 (the proof for nRL`(Q, e) > 3 is similar).

The proof is very similar to that of Lemma 1.13 and we use the same notation nLR`(q)

as in Lemma 1.13. Let s = bnLR`(Q, e)/3c. Let Z be the set of elements 1 ≤ q ≤ t,

such that Sq is of type LR` and s + 1 ≤ nLR`(q) ≤ 2s. Let q? ∈ Z such that |Sq? | =

min{|Sq| : q ∈ Z}. Let Sq? = (w0, ..., wp) with w0 = ui, wp = uj for some 0 ≤ i < j ≤ k
and let C = (w0, . . . , wp = uj , . . . , ui). Then

|Q| ≥ s p ≥ nLR`(Q, e)− 3

3
p

By Lemma 1.6, we have p ≥ j − i− 2. Then |C| = p+ j − i ≤ 2p+ 2 ≤ 6|Q|
nLR` (Q,e)−3 + 2

edges.

From now, the rest of the proof is similar to the proof of Lemma 1.13 (with q? playing

the role of q) and is omitted.

1.2 Approximation of distances by labels

As in Section 10, for n ≥ 1, let Gn be a uniformly random element of G(n). Let dn
denote the graph distance dGn . Recall that Φ denotes the bijection from Tr,s,b(n) to

G(n) of Theorem 2.1. Let Tn = Φ−1(Gn). Therefore Tn is a uniformly random element

of Tr,s,b(n).

We need several definitions similar to Section 3. Let Vn be the set of vertices of Tn. Let

a0
n be the root angle of Tn and v0

n be its root vertex. Let `n = 4n+ 1. We define Γn as

the unicellular map obtained from Tn by adding a special dangling half-edge, called the

root half-edge, incident to the root angle of Tn. The root angle of Γn, still noted a0
n, is

the angle of Γn just after the root half-edge in counterclockwise order around its incident

vertex. Let An = (a0
n, . . . , a

`
n) be the sequence of consecutive angles of Γn in clockwise

order around the unique face of Γn starting from a0
n. Let λn be the labeling function of

Γn as defined in Section 3. For each vertex u of Vn, let mn(u) be the minimum of the

labels incident to u.

The main result of this section is the following:

Theorem 1.15. For all ε > 0, we have

lim
n→∞

P
(
∃u ∈ Vn : |dn(u, v0

n)−mn(u)| > εn1/4
)

= 0.

Before going into the proof, we need some additional notations. For 0 ≤ i ≤ `n, let rn(i)

be the vertex of Vn incident to angle ain (i.e the vertex contour function of Γ). Given an

integer 0 ≤ i ≤ `n and ∆ > 0, we denote

pn(i,∆) = max({0} ∪ {j < i : |mn(rn(j))−mn(rn(i))| ≥ ∆}),
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qn(i,∆) = min({`n} ∪ {j > i : |mn(rn(j))−mn(rn(i))| ≥ ∆}) and

Nn(i,∆) = | {rn(j) : ∃j ∈ Jpn(i,∆), qn(i,∆)K} |.

The proof of the following lemma is omitted, it is almost identical to [1, Lemma 8.2]:

Lemma 1.16. For all ε > 0 and β > 0, there exists α > 0 and n0 ∈ N such that for

every n ≥ n0,

P
(

inf
{
Nn(i, βn1/4) : 0 ≤ i ≤ 2n+ 1

}
≥ αn

)
≥ 1− ε.

We are now ready to prove the main theorem of this section.

Proof of Theorem 1.15. By Lemma 3.7, for n ≥ 1 and u ∈ Vn, we have dn(v0
n, u) ≤

mn(u). So it suffices to prove that for all ε > 0

lim
n→∞

P
(
∃u ∈ Vn : dn(v0

n, u) < mn(u)− ε n1/4
)

= 0.

This is equivalent to show that for all ε > 0,

lim sup
n→∞

P
(
∃u ∈ Vn : dn(v0

n, u) < m(u)− 15εn1/4 + 964
)
≤ 4ε.

Denote by diam(Gn) the diameter of the graph Gn. Consider ε > 0. By Lemma 10.4,

there exists y > 0 such that P{diam(Gn) ≥ yn1/4} < ε.

Now, assume that there exists n0 ∈ N, such that for all n ≥ n0, there exists un ∈ Vn such

that dGn(un, v
0
n) < m(un)−15εn1/4−964. Consider the canonical orientation of Gn and

let en be an outgoing edge of un. With the notations of Section 1.1, let Pn = PR(en)

be the right-to-root path starting at en. Let Qn be a shortest path from un to v0
n that

maximizes the number of common edges with Pn.

By Lemmas 1.5 and 1.11, we have

2nLR`(Qn, en) + 3nRL`(Qn, en) ≥ |Pn| − |Qn| − 922

≥(mn(u)− 42)− (mn(u)− 15εn1/4 − 964)− 922

≥15εn1/4

Thus for n0 large enough we have (for each n ≥ n0) either nLR`(Qn, en) ≥ max(3, 3εn1/4)

or nRL`(Qn, en) ≥ max(3, 3εn1/4). We call Bn the event Gn contains a contractile cycle

C of length at most (2y/ε + 4), given with a traversal direction, such that for both

ι ∈ {l, r}, we have

max
u∈Vι(C)

mn(u)− min
u∈Vι(C)

mn(u) ≥ εn1/4 − 79.
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We deduce from Lemma 1.14 that, for n0 large enough and all n ≥ n0, either diam(Gn) ≥
yn1/4 or Bn occurs.

Therefore it suffices to prove that

P(B, diam(Gn) ≤ yn1/4) ≤ 3ε.

Consider n ≥ n0 such that B occurs. Let C be as in the definition of B. Let F be

the subgraph of Tn induced by V (Gn) \ V (C). Recall that Gn[Vl(C)] (resp. Gn[Vr(C)])

is the sub-graph of Gn induced by Vl(C) (resp. Vr(C)). Then each component of F

is contained in Gn[Vl(C)] or Gn[Vr(C)]. By Lemma 3.6, for {u, v} ∈ E(Gn) we have

|m(u) −m(v)| ≤ 7. It follows that, for ι ∈ {l, r}, there exists one component Fι of F

such that

max
u∈V (Fι)

mn(u)− min
u∈V (Fι)

mn(u) ≥ ε2n1/4/(2y + 4ε)− 79.

By using Lemma 3.6, then for ι ∈ {l, r}, there exists vι ∈ Fι such that

min
v∈V (C)

|m(vι)−m(v)| ≥
(
ε2n1/4

2y + 4ε
− 79

)/
2− 7− (2y/ε+ 2)× 7

≥ ε2n1/4

4y + 8ε
− 19− 14y/ε.

Now for ι ∈ {`, r}, let jι = inf{0 ≤ i ≤ `n : rn(i) = vι}. Fix any β ∈ (0, ε2/(4y + 8ε)).

By Lemma 1.16, there exists α > 0 such that for n large enough,

P
(

min{|Nn(j`, βn
1/4)|, |Nn(jr, βn

1/4)|} ≤ αn
)
≤ ε.

For n sufficiently large, we have ε2n1/4

4y+8ε −19−14y/ε > βn1/4. Then we have for ι ∈ {`, r},
N(jι, βn

1/4) ⊂ Vι(C). It follows that for n large enough,

P(B, diam(Gn) ≤ yn1/4) ≤

ε+ P (∃C contractile cycle, |C| ≤ 2y/ε+ 4,min{|Vl(C)|, |Vr(C)|} ≥ αn) .

The event {∃C contractile cycle, |C| ≤ 2y/ε+4,min{|Vl(C)|, |Vr(C)|} ≥ αn} means that

Gn contains a separating contractile cycle of length at most 2y/ε+ 4 that separates Gn
into two sub-triangulations both of size at least αn. It remains to prove that this has

probability going to 0 when n goes to infinity. Let pn,m (resp. tn,m) be the number of

simple triangulation of an m-gon with n inner vertices (resp. the number of essentially

simple toroidal maps on the torus with n vertices, such that all faces have size three

except one that has size m), rooted at a maximal triangle. From previously known

estimates, there exist two constants Am (see [27]) and Bm (by Corollary 6.4) such that

pn,m ≤ Amn−5/2

(
256

27

)n
and tn,m ≤ Bm

(
256

27

)n
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(the upper bound for pn,m estimates the number of arbitrarily rooted triangulations, of

which there are more than the type counted by pn,m itself).

Let Γn be the event Gn contains a separating contractile cycle of length at most 2y/ε+4

that separates Gn into two sub-triangulations both of size at least αn. We have:

P(Γn) ≤ Υ−1

(
256

27

)−n b2y/ε+4c∑
k=3

b(1−α)nc∑
`=bαnc

p`,ktn−`,k

≤ Υ−1

(
256

27

)−n b2y/ε+4c∑
k=3

b(1−α)nc∑
`=bαnc

Ak`
−5/2

(
256

27

)`
Bk

(
256

27

)n−`

≤ Υ−1

b2y/ε+4c∑
k=3

AkBk

b(1−α)nc∑
`=bαnc

`−5/2 ≤ Υ−1

b2y/ε+4c∑
k=3

AkBk n (αn)−5/2.

Therefore P(Γn) converges towards 0 when n goes to infinity, which concludes the proof

of the Theorem.
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[83] B. Lévêque, Generalization of schnyder woods to orientable surfaces and appli-

cations, Habilitation manuscript, arXiv:1702.07589, (2017).

[84] R. Lyons, The ising model and percolation on trees and tree-like graphs, Commu-

nications in Mathematical Physics, 125 (1989), pp. 337–353.

[85] , Random walks and percolation on trees, The annals of Probability, (1990),

pp. 931–958.

[86] R. Lyons and R. Pemantle, Random walk in a random environment and first-

passage percolation on trees, The Annals of Probability, (1992), pp. 125–136.

[87] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge Univer-

sity Press, 2016. Available at http://pages.iu.edu/~rdlyons/.
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