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Abstract

With significantly growing number of smart low-power devices during recent years,

the issue of energy efficiency has taken an increasingly essential role in the communi-

cation systems’ design. This thesis aims at designing distributed and energy efficient

transmission schemes for wireless networks using game theory and instantly decod-

able network coding (IDNC) which is a promising network coding subclass. We study

the cooperative data exchange (CDE) scenario in which all devices cooperate with

each other by exchanging network coded packets until all of them receive all the re-

quired information. In fact, enabling the IDNC-based CDE setting brings several

challenges such us how to extend the network lifetime and how to reduce the number

of transmissions in order to satisfy urgent delay requirements. Therefore, unlike most

of existing works concerning IDNC, we focus not only on the decoding delay, but also

the consumed energy.

First, we investigate the IDNC-based CDE problem within small fully connected net-

works across energy-constrained devices and model the problem using the cooperative

game theory in partition form. We propose a distributed merge-and-split algorithm

to allow the wireless nodes to self-organize into independent disjoint coalitions in a

distributed manner. The proposed algorithm guarantees reduced energy consumption

and minimizes the delay in the resulting clustered network structure. We do not only

consider the transmission energy, but also the computational energy consumption.

Furthermore, we focus on the mobility issue and we analyse how, in the proposed

framework, nodes can adapt to the dynamic topology of the network.

Thereafter, we study the IDNC-based CDE problem within large-scale partially con-

nected networks. We considerate that each player uses no longer his maximum trans-

mission power, rather, he controls his transmission range dynamically. In fact, we

investigate multi-hop CDE using the IDNC at decentralized wireless nodes. In such

model, we focus on how these wireless nodes can cooperate in limited transmission

ranges without increasing the IDNC delay nor their energy consumption. For that

purpose, we model the problem using a two-stage game theoretical framework. We

first model the power control problem using non-cooperative game theory where users
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jointly choose their desired transmission power selfishly in order to reduce their en-

ergy consumption and their IDNC delay. The optimal solution of this game allows the

players at the next stage to cooperate with each other through limited transmission

ranges using cooperative game theory in partition form. Thereafter, a distributed

multihop merge-and-split algorithm is defined to form coalitions where players maxi-

mize their utilities in terms of decoding delays and energy consumption. The solution

of the proposed framework determines a stable feasible partition for the wireless nodes

with reduced interference and reasonable complexity. We demonstrate that the co-

operation between nodes in the multihop cooperative scheme achieves a significant

minimization of the energy consumption with respect to the most stable cooperative

scheme in maximum transmission range without hurting the IDNC delay.



Résumé

Au cours ces dernières années, avec le nombre croissant d’appareils intelligents à faible

puissance, la question de l’efficacité énergétique a joué un rôle de plus en plus indis-

pensable dans la conception des systèmes de communication. Cette thèse vise à con-

cevoir des schémas de transmission distribués à faible consommation d’énergie pour

les réseaux sans fil, utilisant la théorie des jeux et le codage réseau instantanément

décodable (IDNC), qui est une sous-classe prometteuse du codage réseau. En outre,

nous étudions le modèle de l’échange coopératif de donnée (CDE) dans lequel tous

les périphériques coopèrent en échangeant des paquets codés dans le réseau, jusqu’à

ce qu’ils récupèrent tous l’ensemble des informations requises. En effet, la mise en

œuvre du CDE basé sur l’IDNC soulève plusieurs défis intéressants, notamment la

prolongation de la durée de vie du réseau et la réduction du nombre de transmissions

afin de répondre aux besoins des applications temps réel. Par conséquent, contraire-

ment à la plupart des travaux existants concernant l’IDNC, nous nous concentrons

non seulement sur le délai, mais également sur l’énergie consommée.

En premier lieu, nous étudions le problème de minimisation de l’énergie consommée

et du délai au sein d’un petit réseau IDNC coopératif, entièrement connecté et à faible

puissance. Nous modélisons le problème en utilisant la théorie des jeux coopératifs

de formation de coalitions. Nous proposons un algorithme distribué (appelé “merge

and split“) permettant aux nœuds sans fil de s’auto-organiser, de manière distribuée,

en coalitions disjointes et indépendantes. L’algorithme proposé garantit une consom-

mation d’énergie réduite et minimise le délai de complétion dans le réseau clustérisé

résultant. Par ailleurs, nous ne considérons pas seulement l’énergie de transmission,

mais aussi la consommation de l’énergie de calcul des nœuds. De plus, nous nous

concentrons sur la question de la mobilité et nous analysons comment, à travers la

solution proposée, les nœuds peuvent s’adapter à la topologie dynamique du réseau.

Par la suite, nous étudions le même problème au sein d’un réseau large et partielle-

ment connecté. En effet, nous examinons le modèle de CDE multi-sauts. Dans un

tel modèle, nous considérons que les nœuds peuvent choisir la puissance d’émission,

et change ainsi de rayon de transmission et le nombre de voisin avec lesquels il peut
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entrer en coalition. Pour ce faire, nous modélisons le problème avec un jeu à deux

étages ; un jeu non-coopératif de contrôle de puissance et un jeu coopératif de for-

mation de coalitions. La solution optimale du premier jeu permet aux joueurs de

coopérer à travers des rayons de transmission limités en utilisant la théorie des jeux

coopérative. En outre, nous proposons un algorithme distribué “merge and split“

afin de former des coalitions dans lesquelles les joueurs maximisent leurs utilités en

termes de délai et de l’énergie consommée. La solution proposée permet la création

d’une partition stable avec une interférence réduite et une complexité raisonnable.

Nous démontrons que la coopération entre les nœuds au sein du réseau résultant, per-

met de réduire considérablement la consommation d’énergie par rapport au modèle

coopératif optimal qui maintient le rayon de transmission maximal.



viii



Acknowledgments
G

First and foremost, I thank ALLAH subhanahu-wa-taala for giving me opportunity,

guidance, motivation and ability to undertake this thesis. Without His mercies, this

work would not have been possible.

I would like to express my deepest thanks and gratitude to my supervisor Oussama

Habachi for having faith in me and for the tremendous support, personnally and pro-

fessionally. His useful suggestions and fruitful ideas have helped me a lot to improve

my research as well as my writing skills. My appreciation for his precious guidance

during this thesis is immeasurable.

I am also grateful to my supervisors Vahid Meghdadi and Tahar Ezzedine for giving

me the chance to do this PhD and offering me the best opportunities and conditions

to succeed. I also thank them for their continuous support and encouragement.

I would like to thank Professor Jean Pierre cances, head of XLIM-SRI at the university

of Limoges, for his great encouragement and support, especially during my conference

presentations.

I would like to thank Mr. Thierry Chonavel, professor at Télécom Bretagne, France
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Mécanique, Morocco, for accepting to evaluate my thesis work and for their insightful

comments and encouragement.

I also thank Mrs. Atika Rivenq, professor at Université Polytechnique Hauts-de-
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4 Introduction

1.1 Research context

During the last decade, with the proliferation of wireless devices, the diverse range of

new applications and services, and the exponential increase of subscriber base, several

concepts have emerged, including Internet of Things (IoT) [1, 2] and smart cities [3]

which can be considered as key pillar for the future wireless networks. As a result,

machine-to-machine communications (M2M), known also as machine type communi-

cations (MTC), have emerged as new communication paradigm refering generally to

automated data communications among machines, devices and equipment that may

occur directly without any human intervention [4, 5]. Indeed, a recent report from

Cisco [6] suggests that the number of MTC connections is foreseen to grow from under

a billion in 2017 to 3.9 billion in 2022. Hence, innovative solutions at both device and

system levels are of prime interest in order to address fast and reliable data exchange

along with operational and environmental costs.

In this dissertation, we more specifically address the context of the smart city in

which all the city’s assets are virtually connected and electronically managed. There

is a plenty of smart city applications such as tracking systems in shipping and man-

ufacturing sectors, medical applications gathering patient records and health status

transitioning from hospital-centric to patient-centric, online education, e-library, on-

line surveillance and environment monitoring. For such type of applications, a huge

number of autonomously operated low-cost devices (i.e. sensors or actuators) need to

be connected to physical objects. These devices are generally equipped with limited

capacity batteries and are proposed to operate for a long duration without the need to

battery charging; hence, very low energy consumption is essential in order to extend

the network lifetime. Therefore, such diverse traffic imposes various requirements on

the energy-constrained wireless networks in terms of energy efficiency, packet delivery

deadline and scalability as well. These requirements, in addition to erasure wireless

channels raise a number of challenges for sharing the data among energy-constrained

users without degrading the Quality of Service (QoS). In this regard, substantial

efforts have been made to integrate the applications requirements into wireless com-

munications and protocols design. Interestingly, in this thesis, we focus on designing

novel distributed transmission schemes, mainly aware of the network lifetime along

with the QoS for MTC users.
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First, we study real-time energy efficient applications having two distinct character-

istics: they require quick and reliable decoding of the packets, and they are powered

using limited capacity batteries. Besides, the involved agents exchange the transmit-

ted data in a distributed manner without the intervention of any central unit. For

example, consider a number of geographically scattered drones that are interested in

receiving multiple data broadcasted by a base station (BS), each of which is encap-

sulated in a packet. In such scenario, communication conditions are unreliable due

to the high mobility of nodes. Hence, some packets may be lost during the BS trans-

mission. Indeed, in some practical scenarios, such as VANET and fleets of drones,

mobile nodes may be out of the range of the BS when attempting to recover the miss-

ing packets. Instead, they tend to cooperate by exchanging network coded packets

until recovering all their missing ones. Moreover, we address another challenging issue

faced by the UAV network (Unmanned Aerial Vehicle) in the same scenario, which is

how to mitigate the effects of frequent topology changes on the network performance.

In other words, how can drones adapt to dynamic topology without degrading the

QoS. For example, monitoring applications, such as forest surveillence, require that

only some drones move through the target area. As a result, the distribution of drones

as well as the area dimension may change, and the designed scheme may be no longer

efficient. This is because the prior transmission scheme design accounts for drones

positions and topology. Even though this scheme is scalable and can tolerate such

situation, this may adversely affect the computational energy consumed by the whole

fleet. As we see from the examples above, it is crucial to design dynamic transmis-

sion schemes based on smart strategies whereby the MTC network can meet the low

energy consumption and decoding delay of packets.

Thereafter, to overcome the problem of short ranges and limited power transmissions,

multihop communications represent a promising solution to extend the coverage of

the energy constrained network [7]. Generally, in a multihop network, an intermedi-

ate node relays packets either between a central unit and another node or between

two nodes. We are interested in the latter case where nodes manage autonomously

and cooperatively the data exchange over multihop communications. Specifically,

we consider real-time energy efficient applications based on three distinct features.

Transmissions have strict deadline, nodes communicate over short ranges and are

powered using limited batteries’ capacity. For example, consider a wireless sensor
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network (WSN) deployed in hostile environments in which low-power sensors have to

accumulate and store the sensed data until the visit of the mobile sink to gather it.

In fact, the scattered surviving sensors should quickly cooperate and retrieve their

lost packets to achieve the maximum copies of sensed data at the mobile sink agent.

Therefore, it is crucial to investigate how these wireless nodes can cooperate over

short ranges while controling delays and energy consumption in order to simplify the

design of efficient multihop transmission schemes.

To this end, having highlighted the meaning of incorporating the application re-

quirements into future technologies and protocols design, this dissertation deals with

designing specific solutions for energy constrained communications having hard dead-

line requirement. In the next section, we present the adopted network configuration,

our main challenges in this thesis and the scenarios that motivate our work.

1.2 Motivation and problems description

Assume we have a base station (BS) broadcasting a set of packets to a number of wire-

less nodes that are geographically distributed. All nodes are interested in receiving

the same set of packets. We suppose that communication conditions are unreliable or

the nodes are highly mobile. In such cases, some packets may be have been lost by

some users. It is worth noting that mobile nodes are not necessarly in the range of the

BS when trying to recover their missed packets. An interesting strategy to recover

them, instead of relying on the BS, is the cooperation among the nodes by exchanging

network coded packets until all of them have received all required packets. This con-

figuration is called cooperative data exchange (CDE) [8]. Indeed, CDE is considered

as a future research direction for several applications. The benefits of its use are mul-

tifold. First, it reduces the load of the BS which can serve more clients in the system.

Second, it optimizes the use of additional equipements to deal with the demand of

network size/throughput growth. Finally, it allows short range links among wireless

nodes that ensure cheaper, more reliable and faster information delivery compared to

long-range links.

The CDE setting can be enabled either in a fully connected network or in a partially

connected network. In the former case, all nodes can reach each others via single hop

whatever is the network size. Moreover, one single node should transmit in each time
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slot to avoid interference induced by simultaneous transmissions. In doing so, each

sending node may use its expensive maximum transmission power in order to reach all

receivers in the field, which is not suited for battery-powered devices. However, taking

advantage from the spatial diversity, it is possible for different nodes to transmit

simultaneously using the same wireless resource while being free of interference and

guaranteeing less energy consumption. Thus, it seems interesting to create local

CDEs by partitioning the network into small, and geographically separated groups for

reliable and energy efficient cooperative trasmissions. Indeed, exchanging packets over

short ranges may significantly save the nodes’ energy. Nonetheless, the transmitting

node of such a group may hold a subset of packets which are wanted by some nodes

but not required by others. It may also not have enough needed energy to target all

receivers even if its packets are quite wanted. Hence, there is a need to efficiently select

the local CDE groups, the transmitting devices as well as the transmitted packets.

To this end, the CDE configuration needs to be investigated especially in wireless

networks with energy constraint so that to tap into its full advantages.

Interestingly, the aim of this thesis is to investigate cooperation strategies thoroughly

focusing on jointly minimizing the energy consumption and the overall completion

time. For this purpose, several important concepts are used including game theory and

network coding. Indeed, we propose in this dissertation distributed game theoretical

frameworks using the network coding that capture main features of energy constrained

networks, and can consequently, serve as a basis for promising solutions for more

general networks.

Motivations

The need for cooperation within wireless networks arises naturally when improving

the network efficiency. In this regard, many practical scenarios that motivate our

work in this thesis are illustrated in figure 1.1; the first scenario is when a drone fleet

collects information from the sink of wireless sensor network. Indeed, during the last

decade, the use of UAVs system to cooperatively monitor a given area has been regu-

larly increased, and has overcome the interest of using a single drone [9–11]. In such

systems, small UAVs can autonomously cooperate, make decisions and take actions

in order to meet the objectives of a particular mission [9, 10]. Another important

application for WSN, deployed in hostile environments, is called the distributed data
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Figure 1.1: Four use cases of our framework: a) A drone fleet collecting informa-
tion from the sink of a WSN, b) A WSN deployed in a hostile environment, c)
A roadside base station broadcasting data to moving vehicles, d) A distributed
surveillance camera network

storage (DDS) [12]. In such application, sensors have to accumulate and store the

sensed data until the visit of the mobile sink to gather it. Our proposed framework

is also interesting for a roadside base station broadcasting data to vehicles that can

miss some packets due to their high-speed mobility. Last but not least, the distributed

surveillance camera network where a number of cameras are monitoring moving tar-

gets into a given area. All cameras are exchanging their own local information about

each captured target in order to recover all the scene over the entire network.

1.3 Road map

This dissertation contains two parts. In the following two chapters, we provide the

necessary theoretical foundations for the understanding of this thesis; In chapter 2,

we review the background of game theory which represents our principal tool. We
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introduce cooperative, as well as non cooperative game theoretic frameworks. The

former is particularly important since it sustains the CDE setting by enabling players

to form cooperative groups to strengthen their utility. In chapter 3, we provide

some insights into the network coding technology that has proved valuable abilities

to significantly enhance the network performance. In particular, we introduce its

main variants, as well as the interesting instantly decodable network coding (IDNC)

which we adopt throughout all this dissertation.

In the second part of this thesis, we propose our game theoretic framework focusing

on the joint CDE problem for delay and energy minimization. In chapter 4, we

investigate the cooperation among players in the IDNC based CDE within small

connected networks where all wireless nodes can reach each others via single hop.

We model the problem using coalitional game theory in partition form. In addition,

we address the mobility issue in the UAV networks use-case and we analyse how,

in the proposed framework, the nodes can adapt to the dynamics of the network.

In chapter 5, we extend the network model introduced in the previous chapter, to

study the cooperation within large-scale energy-constrained networks. In fact, we

address the problem of multi-hop CDE through the two-stage game framework in

order to extend the cooperation coverage. We conclude this dissertation in chapter

6 by summarizing our contributions and discussing new future research directions.

We provide all publications of this thesis in Appendix A.
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2.1 Introduction

Thanks to its benefits discussed in chapter 1, the NC-based CDE will potentially yield

significant performance improvements required by the future networks, especially for

energy-constrained networks. Nonetheless, a successful distributed recovery of data

needs novel smart techniques to keep up with various applications requirements in

terms of data rate, delays, energy efficiency,etc.

The key idea of designing a CDE system is to shift from conventional centralized

schemes toward self-optimizing and self-organizing approaches. Thus, wireless nodes

are allowed to use some intelligence to make the packet recovery operations energy-

efficient and reliable. Moreover, the dynamic nature of the CDE network arises new

challenges regarding the scalability of the system, its stability and computational

complexity.

In this regard, game theory is introduced in the literature as an increasingly impactful

tool to solve numerous distributed optimization problems in wireless networks [13]. In

this chapter, we review some game theoretic frameworks, taking into account specific

characteristics of the CDE-based system.

2.2 Game formulation

Game theory is a branch of applied mathematics with a set of frameworks that model,

analyse and structure different interactions among rational players. These interactions

can be a conflict as it can be a cooperation. It is worth noting that rational player is a

player who wants to maximize his own good. Basically, game theory is used to study

the behavior of inviduals in economics, and then it has been applied to solve a wide

variety of problems in almost all disciplines due to its various games classifications.

First, let us start with a standard representation of a game(normal form or strategic

form game):

• A set of players M = {1...m}.

• A set of actions Ai for player i.

• A set of action profiles or pure strategies, denoted by A = A1 × ...×Am.
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• An utility function of player i, ui : A −→ R, called also payoff function or value

function for cooperative games, which quatifies the degree of preference across

a given action. The utility function assigns a certain outcome to each player

depending on his strategy and the strategies of other players.

Generally, almost all games consist of the same strategic form game components which

we have defined above. However, components may take several forms, even terminolo-

gies may be changed, depending on the game classification, aims and applications. In

particular, in this dissertation, we are interested in two important categories of games

that have been intensively applied in wireless networks and have served in solving nu-

merous challenges. First, the cooperative game theory is used to model how players

cooperate and compete as coalitions through unstructured interactions in order to

maximize their mutual utilities [14]. On the other hand, the non-cooperative game

theory is used to investigate interactions between competing (self-interested) play-

ers, each of which tries to maximize his payoff by acting individually in a defined

procedure.

2.3 Cooperative game theory

Cooperative game theory [15] includes a set of various analytical frameworks to inves-

tigate cooperation behaviors of rational players. Thus, depending on players’ inter-

ests, there are two main branches of cooperative games: Bargaining theory [16] and

coalitional games [17]. The former is applied when players have conflicting interests,

seeking to mutually benefit from finding an agreement, while the latter focuses on

what coalitions of players, rather than a single player, can achieve. The basis of this

theory was firstly conceived by John von Neumann and Oskar Morgenstern in [18]

with transferable utility coalitional games. Since then, several interesting subclasses

of cooperative games have been proposed and several solution concepts have been

introduced.

Specifically, during the past few years, coalitional games have shown their robustness

in wireless networks to model cooperation for many scenarios [17], especially when

several agents must share a common resource among them, such as relay nodes,

wireless channel, and mobile nodes. Basically, these games may answer the two

following questions:
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• Which is the suitable coalition that should be formed?

• How should such coalition divide its utility among its members?

The two main classes of cooperative game are: canonical games and coalition forma-

tion games [13]. In the first games class, forming the grand coalition, which is the

coalition of all players in the game, is always beneficial. In other words, no group of

players has the incentive to cooperate into a smaller coalition since they will receive a

worse payoff. This property is referred to as the superadditivity [17]. Also, canonical

games aim at studying the stability of the grand coalition and the way the players

split their received payoff.

The second games class studies how should the players arrange themselves into an

optimal structure. Interestingly, several properties of this structure are analysed

in this framework, namely its stability, the optimal coalition size, etc. Generally,

coalition formation games are not superadditive. In what follows in this section, we

focus on a selection of the main properties, basic notions and solution concepts of this

class of games.

2.3.1 Coalition-formation games: preliminaries

Coalition-formation games are designed for agents that are willing to cooperate and

share their goods in order to achieve a certain purpose that they could not achieve

alone. In doing so, in such games, players often attempt to construct an appropriate

structure where they maximize their utilities collectively. The unit of this new formed

structure is called coalition, corresponding to a group of players. Indeed, cooperating

within a small unit rather than a bigger one may be quite interesting for several

applications in wireless networks [19–21].

Generally, the formation process is based on a set of negociations, an information

exchange in the context of communications networks, and a set of rules. Interestingly,

using coalition-formation game frameworks, players may reach a stable architecture

where all entities are not motivated to form further coalitions anymore. To this end,

the main challenge of coalition-formation game is to investigate the optimal network

structure with respect to a set of network constraints.

To introduce the main components and the basic notions, we consider a finite non-
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empty set of players M = {1, . . . ,m}. Each subset Si ⊂ 2M represents a coalition1.

The set M is referred to as the grand coalition and ∅ is referred to as the empty

coalition.

Definition 2.1. A collection of coalitions denoted S = {S1 . . . Sk}, is a set of a

number of subsets of M , not necessarly involving all players of M . If a collection

involves all players of M , it is called a partition of M .

Definition 2.2. A coalitional game is a pair 〈M,v〉 consisting of a set of players M

and a value function v that determines the worth each player can obtain when he

cooperates with its coalition members.

Based on the value function outcome, we identify two different types of coalitional

games defined as follows:

Definition 2.3. A coalitional game is said to be a transferable utility game (TU-

game) when the respective value function is defined as follows v : 2M → R. In other

words, the worth of each coalition Si ∈ 2M is a single scalar value that is divided

among the coalition members.

Definition 2.4. A coalitional game is said to be a non-transferable utility game (NTU-

game) when the corresponding value function v assigns for each coalition a payoff

vector, where each element represents the payoff of a given player, as follows:

v : Si ∈ 2M → R|Si|. Indeed, in NTU-games, the value of each member of Si depends

on the actions that all coalition members take jointly.

Moreover, in a given partition of M , the dependence of a given coalition Si outcome

on the structure of the remaining coalitions identifies two coalitional formation games

forms, defined as follows:

• Characteristic form: It is the most basic form of the coalitional game proposed

by [18]. In fact, the characteristic form implies that the outcome of a coalition

Si ⊂ M depends only on the members within Si, without focusing on how the

rest of coalitions are arranged.

• Partition form: In contrast, a coalitional game in partition form [22] implies

1Note that 2M represents the set of all possible subsets of M .
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Figure 2.1: Example of a coalitional game in a UAV network. The focus is on the
utility of coalition S1 when S3 and S4 are disjoint and when they are combined
into S5.

that the outcome of a coalition Si ⊂M does not depend solely on the members

within Si but also on how remaining coalitions are arranged.

Figure 2.1 illustrates the difference between the two forms through a simple coalitional

UAVs network game example.

In the following section, we go through the main goal of this game, which is the

coalition formation process, and we present different related approaches and solutions

concepts.

2.3.2 Coalition-formation games solution concept: Algorithmic ap-

proaches

After introducing the general coalition-formation model and its related properties,

our goals now are: to discover how can players form an optimal coalitional structure

dynamically through algorithmic solutions and to investigate the appropriate solution

concepts that can be achieved by an optimal structure.

The key question is why do we use algorithmic solutions? Basically, the coalition

formation game determines the optimal coalitional structure that finds a final stable

allocation of payoffs to every players. To reach such a result, we have to check all

possible partitions of the player setM, which is equal to the M-th Bell number. Note
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that the Bell number is obtained by the recursion Bn+1 =
∑n

k=0

(
k
n

)
Bn, B0=B1=1.

However, this centralized approach is proven to be NP-hard [23]. Moreover, there is a

need for many distributed applications to perform the coalition formation process in

a distributed manner. Hence, several solutions have been proposed in the literature

aiming to design distributed and low complex algorithms for forming coalitions. Merge

and split [23] and hedonic games [24] represent the main algorithms that have been

applied in many practical scenarios. In what follows, before moving on to both games

definitions, we present first the concept of the preference order, which is a crucial

ingredient of coalition formation game.

2.3.2.1 Preference orders

By means of algorithmic approaches, players can make decisions autonomously through-

out the coalition formation process, such as joining or leaving coalitions, breaking or

combining them, etc. All decisions are made using preference orders, called also

comparison orders, in order to compare different groups in the network.

Definition 2.5. Given a partition Π consisting of a set of coalitions in M, a prefer-

ence order . is defined as a monotonic, transitive binary relation that compares any

two coalitions of nodes S and T ∈ Π by comparing their utilities.

Generally, a preference order can be either reflexive or irreflexive. Moreover, as stated

in [23], there exist two categories of preference orders; coalition-value orders and

individual-value orders. The former compares two coalitions using their value (which

is a single real number). Indeed, this category is well suitable for TU-games. The

latter compares two coalitions using their individual players payoffs. In this regard,

utilitarian order and Pareto order make up the most important preference orders,

defined as follows:

• The utilitarian order: belongs to coalition-value orders category. It is suitable

for TU games where a group of players prefers to organize themselves into a col-

lection A = {A1, · · · , Al} instead of B = {B1, · · · , Bs} if the total social welfare

achieved in A is strictly greater than in B, i.e.,
∑l

i=1 v(Ai) >
∑s

i=1 v(Bi).

• The Pareto order: belongs to coalition-value orders category. It is suitable for

both TU and NTU games. The comparison is performed using the individual
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payoffs received by the players. A is preferred over B by Pareto order if a ≥ b

with at least one element ai of a, such that ai > bi, where a and b are the payoff

vectors of A and B.

2.3.2.2 Merge and split approach

Merge and split procedure is proposed by Aumann and Dreze [25] in 1974 and since

then it has been used in various areas of application such as computer science and

economics, etc. This approach is quite simple. In fact, it is based mainly on the

following two rules.

Definition 2.6. (Split rule) In a given partition Π1, a coalition
⋃l

i=1 Si decides to

split when ({S1, · · · , Sl},Π1).(
⋃l

i=1 Si,Π2). Thus,
⋃l

i=1 Si → {S1, · · · , Sl} and Π1 →
Π2, where Π2 is the new formed partition after the operation of split.

Definition 2.7. (Merge rule) In a given partition Π1, the set of coalitions {S1, · · · , Sl}
decides to merge when (

⋃l
i=1 Si,Π2) . ({S1, · · · , Sl},Π1). Thus, {S1, · · · , Sl} →

{
⋃l

i=1 Si} and Π1 → Π2, where Π2 is the new formed partition after the operation of

merge.

Thus, a decision to split (resp. merge) is an agreement among all coalition players

to break (resp. form) a coalition. Note that the decision making depends on the

preference order. Let us consider a coalitional game (v,M) and two partitions of the

set {s1, s2, · · · , sr} ⊂ M, denoted by P1 = {C1, C2, · · · , Ck} and P2 = {
⋃k

i=1Ci}. On

the one hand, using utilitarian order ensures that the coalition decision improves the

social welfare as the two rules suggest;

• Merge rule

P1 → P2 if
∑k

i=1 v(Ci) > v(
⋃k

i=1Ci)

• Split rule

P2 → P1 if
∑k

i=1 v(Ci) < v(
⋃k

i=1Ci)

On the other hand, using the Pareto order guarantees that no single player is worse

off through split or merge;

• Merge rule
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P1 → P2 if
∑k

i=1 vj(Ci) ≥ vj(
⋃k

i=1Ci)∀j ∈ {1, 2, ...r}
with at least one strict inequality for a player sl

• Split rule

P1 → P2 if
∑k

i=1 vj(Ci) ≤ vj(
⋃k

i=1Ci)∀j ∈ {1, 2, ...r}
with at least one strict inequality for a player sl

It is worth noting that since merge and split algorithm supports partition form, deci-

sion to merge or split a given coalition Ci should not hurt not only its members but

also all remaining coalitions members belonging to M.

Merge and split algrithm can be implemented in a distributed fashion with no reliance

on any centralized unit. It consists of a finite number of merge and split iterations that

finally converge and result a new stable partition. Besides the adaptation possibility

to distributed networks, this algorithm has shown its potential ability to be adapted

to environmental changes that may occur in low-power wireless networks such as

mobility, dysfunction of some users or deployment of new ones, etc. Figure 2.2 shows

the main algorithm stages and how it can be adapted to a mobility scenario in which

players should re-organize themselves in order to meet a certain goal.

2.3.2.3 Stability notions

In the context of coalitional games, stability is referring to the state in which players

would not have incentive to quit their current coalitions. Indeed, by achieving a

stable partition network, players can obtain the maximum worth by cooperating.

Specifically, there are two stability forms whereby we can evaluate the stability of the

final network partition obtained through the merge and split algorithm [26]. Both of

thse stability forms are based on the defection function notion, denoted by D, defined

as follows:

Definition 2.8. A defection function is a mapping that assigns to each partition of

M some collections of the grand coalition.

Two defection functions are considered: Dhp defection function that allows formation

of all possible partitions of the grand coalition by merge and split operations, and

Dc defection function that allows formation of all possible collections in the grand

coalition. Hence, if the final resulting partition is Dhp stable, then no player, or
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Figure 2.2: Merge and split algorithm main stages

group of players can deviate via split or merge operation. Differently, if the final

resulting partition is Dc stable, then it is the unique outcome of any split or merge

iteration so that no player can deviate to form a new collection. Indeed, Dc stability

is the strongest type of stability.

2.3.2.4 hedonic games

Hedonic games is a specific class of coalition formation games. This class of games con-

sists of several interesting properties and well-defined solutions that can be adopted

in the local and distributed ways especially by dynamic environments [27]. Formally,

a hedonic game is defined as a coalitional game satisfying two conditions:1) The pay-

off of any player depends uniquely on the coalition members to whom he belongs

(characteristic form game), and 2) The coalition formation is performed based on the

individual preferences of the players over their possible coalitions set.
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In a hedonic coalition formation algorithm, each player uses the switch rule, intro-

duced as follows:

Definition 2.9. Given a partition Π = S1, S2, ..., Sk of M, player j ∈M, decides to

leave its current coalition Sh(j) and join another coalition S′h ∈ Π where h 6= h′, if

and only if S′h ∪{j} >j Sh. Therefore, the switch transformation can be expressed as

{Sh, S′h} → {Sh\{j}, S′h ∪ {j}}

Each player makes a selfish decision to move from its current coalition to a new one,

regardless of the effect of his move on the remaining players. Moreover, the preference

order that he uses is individual, it compares only its utility with each other one’s

utility. After a finite number of iterations, the stability of the final partition can be

investigated by numerous stability concepts. As stated in [24], there exist four forms

of stability: core, Nash, contractually individual stability and individual stability. All

of them capture the idea that no player or a group of players has an incentive to move

from its existing coalition (See [28] for more details). Specifically, the Nash-stability

in hedonic games is the strongest notion of stability. Interestingly, it is similar to the

Nash Equilibrium in the noncooperative games ensuring that no player has incentive

to leave a coalition.

2.4 Non-cooperative game theory

Non-cooperative game naturally captures the interactions among agents, having con-

flict interests, that are competing against each other, each of which acts alone trying

to maximize its own payoff selfishly. In communication networks, such game may

model several scenarios. For example, players can be base stations (BSs) or users

seeking to allocate the resources in a cellular network in order to ensure a good sys-

tem throughput. Also, they can be users operating with the same frequency and

controlling their transmit power in order to reduce the interference and meet the

desired QoS.

The most important property in game theory, specifically in the non-cooperative game

category, is the Nash Equilibrium (NE) [29]. The NE represents the most stable profile

of actions in the non-cooperative game in the sense that any player cannot profit from

unilateral deviation given the other players actions. Formally, the NE is defined as
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follows:

Definition 2.10. Given the set of strategies a∗ = (a∗1, a
∗
2, . . . , a

∗
M ), a∗ is a Nash

Equilibrium if;

∀j ∈ {1 . . .M}, a∗j = argmaxajUj(aj , a
∗
−j) (2.1)

where U is the utility function and a∗−j denotes an individual strategy from the NE

of any player who is different from j.

2.5 Synthesis and Conclusion

Althought we have not mentioned all aspects of the coalitional-formation games, we

denote the richness of these frameworks, the variety of the games forms and how they

are enough accurate to deal with many specific scenarios in wireless communication

networks. Indeed, in this chapter the focus was mainly on coalitional-formation games

since it represents the crucial modeling tool to almost all the proposed solutions in

this dissertation.

One of the key ideas in these games is how can we assess the obtained result? In

other words, which are the most suitable solution concepts we can adopt for our

designed game? Actually, many notions have been proposed as solutions concepts

dealing with a wide range of coalition-formation games. Several researches on stable

partitions have focused on characteristic form games. Indeed, most popular solutions

concepts for coalitional games are designed for characteristic form model [23]. In

fact, in addition to those that we have introduced in Section 2.3, there exist also

the core [30] and the shapley value [17] which are purely dedicated to such games.

The former stands for a set of payoff profiles of all players implying that no coalition

tends to deviate and become better off. Note that the existence of the Core is not

guaranteed. For many games, it can be empty. The latter represents a unique payoff

profile called value as a possible solution concept which is characterized by means of

three concepts (See [17]).

On the other hand, it is more challenging to solve partition form games for which

only few solutions have been proposed. To cope with this problem, it is crucial to

devise new algorithms and redefine some existing solution concepts to form the stable

coalitional network. For example, it is recommended to redefine merge and split rules
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within the coalition formation algorithm so that to deal with its respective solutions

introduced in Section 2.3. Another example has been introduced in [31], where the

authors borrowed concepts from the stability notions of hedonic games and extended

them to handle the partition form.

Last but not least, given the importance of distributed applications, it is necessary to

develop coalition formation algorithms in a distributed fashion. In doing so, there are

three steps to be followed. first, choosing the adequate rules for forming coalitions.

Second, fixing the suitable order to compare collections of coalitions. Finally, finding

the appropriate solution concepts.

We introduce in the following chapter one of the promising technologies that pro-

motes distributed applications due to its progressive execution, which is the Instantly

decodable network coding.
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3.1 Introduction

In this chapter, we provide some insights into the network coding technology and

its main variants, as well as the instantly decodable network coding (IDNC), which

represents one of the theoretical foundations of this thesis. Furthermore, we introduce

the significant strides that have been made in this particular subclass and we highlight

our major related contributions that bridge the gap between IDNC, distributed low-

power networks, game theory and a variety of today’s applications requirements.

In the next section, a general overview of the network coding basics is given. The

instantly decodable network code is introduced in section 3.3. Some performance

aware IDNC works are investigated in section 3.4. We present our contributions in

section 3.5 and finally section 3.6 concludes the chapter.

3.2 Introduction to network coding

Instead of delivering bits in information flows as commodities, we can significantly

improve the efficiency of the bandwidth utilization by mixing them. This new type of

information delivery can be performed as long as we make sure that the receiving node

has enough ”clues” to be able to recover the original packets from the sending node.

Simply, that is the definition of network coding (NC). Indeed, the network coding

technology has been pioneered by the seminal work [32] where it was proposed that

the source and the intermediate nodes can perform linear functions of the incoming

data packets to create the outgoing data packets. In this regard, an important subclass

of network coding is the linear network coding [33], in which the nodes should solve

a set of linear equations over a finite field in order to reconstruct the original packets

from the coded ones. In multicast networks, the min-cut capacity can be achieved by

network coding to each destination [34].

Actually, tremendous works have appeared, studying the network coding for a variety

of wireless networks and demonstrating its benefits to improve throughput, reduce

the delay, enhance packet transmission, flexibility as well as network security [34,35].

Let us illustrate the network coding concept through a basic example using XOR

operation.

Example 3.1. Figure 3.1 depicts a wireless network that connects three nodes A-R-
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Figure 3.1: A basic network coding example

B. The capacity of each channel is a single packet per time slot. Initially, nodes A and

B hold respectively the packets a and b. Moreover, node A needs to receive b from B

as well as node B needs to receive a from A. Both nodes take 2 time slots to transmit

their packets via the relay node R. This latter broadcasts the coded packet a ⊕ b in

one time slot. Therefore, A and B decode the received coded packet by XORing it

and recover a and b respectively. Thus, network coding minimizes the transmissions

number (from 4 to 3) and boosts the throughput by 33.33%.

3.3 The instantly decodable Network codes

Basically, two special subclasses of network coding are identified in the literature:

random network coding (RNC) and opportunistic network coding (ONC). Using the

RNC, at each transmission, the sender combines all source packets into one coded

packet using random coefficients from a given finite field. However, in the ONC, the

sender detects coding opportunities such as received and lost packets at receivers and

combines only the suitable packets to achieve a certain optimization goal [36].

In broadcast scenarios, RNC is shown to be optimal in minimizing the number of

packet transmissions [37, 38]. Moreover, it can reach the broadcast capacities for a

significant number of source packets and allows packet recovery without any feedback.

However, RNC is proven to be beneficial only for delay-tolerant applications as it does

not allow progressive decoding of packets, instead it uses a bloc of all packets at once.

Futhermore, as mentioned before, it requires random coefficients from a Galois Field

to code packets, then a high computational capacity for matrix inversion to decode
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them, which is not well suited for energy-constrained applications as well as mobile

applications. Along with this, RNC cannot be employed either in multicast or unicast

scenarios where some nodes in the network require receiving distinct subsets of the

frame.

On the other hand, a promising opportunistic subclass of NC, which can be adapted

to delay-sensitive applications having low-computation requirement, is the instantly

decodable network coding (IDNC) [36, 39]. Indeed, IDNC have seen rise of interest

as an online network code in the wake of massive enhancements of QoS for users in

real-time applications. The key property of IDNC is its simplicity in almost all stages

of the encoding/decoding process from the detection of coding opportunities (known

as side information) by the sender, to the packet recovery at the receivers. The main

IDNC features, therefore, are multifold:

• The flexibility of the packets selection stategy at the sender that reflects the

optimization goal of a particular application.

• Encoding is performed using only XOR binary operation.

• Once they are successfully received, the coded packets are instantly decoded using

the XOR operation as well, which avoids the expensive computational complex-

ity.

• Decoding is allowed in a progressive manner at receivers which can reduce sig-

nificantly the decoding delay.

• No need for buffers to store non-instantly decodable packets for future decodings.

Instead, they are immediately rejected.

It is worth mentioning that there is generally two configurations in which IDNC can be

implemented, including the point-to-multipoint (PMP) network and the cooperative

data exchange (CDE) network. In the former setting, a set of nodes receive their

required packets exclusively from a central unit such as a BS that is in charge of

packet recovery. In the latter setting, a local and cooperative exchange of received

packets is allowed at the devices so that all of them receive all the required packet.

The potential of IDNC has been recently identified by numerous studies in both

settings. In the next section, we present some of these studies taking into account a
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variety of performance parameters.

3.4 QOS aware Instantly Decodable Network Coding

The mostly considered performance parameters in IDNC are the decoding delay and

the completion time. The former refers to the individual delay experienced by each

receiver when he cannot recover immediatly one of his missing packets and the latter

refers to the overall packet recovery time. Moreover, the mostly proposed solutions

were implemented over PMP networks where the BS is responsible for sending and

recovering packets. Indeed, minimizing both metrics over centralized schemes have

been the subject of intensive works in the past decade [40–56]. For example, authors

in [40], addressed the problem of minimizing the completion delay in wireless multicast

and broadcast settings in which every receiver demands a different set of packets. For

this purpose, the problem has been formulated as a stochastic shortest path and a two-

stage maximum weight clique selection algorithm was designed. On the other hand, in

[41], the authors studied the problem of reducing the decoding delay for IDNC. They

showed that the minimum decoding delay problem could be formulated as a maximum

weight clique problem over a well defined graph. Since finding the maximum weight

clique of the graph is intractable, they designed a simple heuristic algorithm. Douik et

al. proposed in [48] to establish a novel relationship between the completion time and

the decoding delay. In fact, completion time expression is developed in function of the

decoding delay and the expected erasure probabilities. Therefore, this relationship

allows minimizing the completion time through the decoding delay control. The

solution in [41] aimed at minimizing the completion time through the approach of

decoding delay in both scenarios: perfect and imperfect feedback over persistent

erasure channels. The problem was formulated as a maximum weight clique problem

in the IDNC graph and two heuristic algorithms were proposed to solve this problem.

Actually, not only the decoding delay and completion time metrics are studied in

IDNC networks, but also some additional performance metrics are considered to fit a

specific range of applications. In particular, in a PMP network, authors in [42] con-

sidered the problem of reducing video distortion of a set of devices using IDNC. All

devices are interested in receiving in real time a video sequence broadcasted from a

BS. To study order-constrained and time-critical applications, authors in [46] adressed
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the problem of minimizing the dual delivery delay in a heterogeneous network archi-

tecture. This metric measures the packet order degradation compared to the optimal

in-order delivery of packet to the devices. In doing so, a dual interface IDNC graph

was constructed in order to catch the suitable coding opportunities.

However, few studies on IDNC were conducted in cooperative data exchange networks.

Douik et al. introduced, in [44], a non-cooperative game theoretic framework in order

to solve the completion delay minimization problem in a fully connected IDNC-based

cooperative data exchange. Afterwards, in [45], the authors extended the study of [44]

to deal with D2D enabled systems in imperfect feedback environments. They proposed

more games to reduce further delay metrics including the maximum decoding delay

and the sum decoding delay. Furthermore, they proposed to employ the reinforcement

learning to deal with the imperfect feedback.

For a content-aware IDNC network, in which not all devices are interested in the same

content quality, the work in [43] provided a novel content and loss aware IDNC scheme

that improves jointly the completion time and content quality. The comprehensive

survey [36] discusses different IDNC characteristics and presents recent advances in

IDNC application.

As it has been seen in the previous studies, various relevant metrics have been con-

sidered in order to meet enough QoS requirements over several interesting real-time

IDNC-based applications. However, such metrics are not sufficient for wireless net-

works with energy constraint. Such networks need to guarantee the energy efficiency

as a fundamental requirement in addition to QoS requirements where the energy

consumption metric must be highly concerned.

Since IDNC is a lightweight network code that requires low computational energy

consumption, this computational of energy cost is not comparable to the expensive

wireless communications energy cost that battery-powered devices should also control.

Therefore, IDNC needs to incorporate the energy constrained networks features in

order to address such issue and take advantage of its full potential. To the best of

our knowledge, there is no prior work that considers the energy efficiency issue in

the IDNC literature neither with PMP networks nor with CDE setting. Thus, this

thesis aims to optimize the IDNC utilization by focusing on the challenges raised by

numerous distributed real time and energy efficient applications. Specifically, we are
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interested in designing IDNC frameworks accounting for various properties of these

applications, such as devices’ scarce batteries, hard deadline, mobility, scalability,

erasure wireless channels and limited communication ranges.

3.5 Joint QoS and energy aware Instantly Decodable

Network Coding

In this dissertation, we focus on autonomous wireless networks where devices are

battery-powered and have some QoS requirements that must be achieved. We study

the cooperative data exchange scheme over erasure channels in which network coded

packets are transfered, then decoded in a progressive, distributed and cooperative way.

Specifically, we consider the IDNC as a suitable technology for energy-constrained de-

vices that enables progressive decoding, enhances the network throughput, reduces

the computational complexity and memory use by preventing receiving devices from

storing non-decodable packets. Moreover, to design the distributed solution, we con-

sider game theory as a suited tool for distributed and self-adaptive schemes.

Note that most of the proposed performance aware solutions in the IDNC literature

focus on the design of heuristics algorithms affecting coding decisions in order to

optimize the desired metric. However, in this thesis, our key strategy is to focus

on optimizing the IDNC encoding/decoding process and designing game theoretical

frameworks taking into account jointly the completion time and energy consumption.

The first major contribution of this dissertation is the design of coalitional game-

theoretic framework for cooperative data exchange using IDNC over a fully connected

wireless network. In fact, we introduce a novel framework from coalitional game

theory to model the cooperation in the IDNC game among nodes for energy efficient

CDE. We consider jointly the completion time and the consumed energy to increase

the network lifetime. In particular, we propose a merge-and-split algorithm, which

iteratively operates the coalition formation process in a distributed fashion, and we

prove that it converges to a stable coalitional network structure. Moreover, we focus

on the mobility issue and we analyse how nodes can adapt to the dynamics of the

network. We show that the proposed framework is of low complexity compared to

the non-coalitional model, especially for high number of nodes, which increases the

scalability of the proposed model. Thereafter, we evaluate the proposed framework
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using two practical scenarios: A wireless sensor network and a network of flying fleet

of drones. Finally, we show that we can reduce the completion delay by considering

additional constraint, i.e. the energy consumption. Indeed, we illustrate that the

proposed framework reduces the energy consumption and the completion delay at the

same time.

For a more realistic scenario, we focus on how wireless nodes can cooperate in limited

transmission ranges without increasing the IDNC delay nor their energy consumption.

For that purpose, our second contribution consists in designing a game theoretic

framework dealing with multihop IDNC-based CDE network. In fact, we model the

problem using a two stage game theory framework. Firstly, we consider that each

node determines dynamically its transmission power in a decentralized manner using

non-cooperative game theory. The optimal solution of this game allows the players

in the next step to cooperate with each other through limited transmission ranges

using cooperative game theory in partition form framework. In fact, we propose a

constrained coalition formation game that forms an appropriate multihop coalitions.

Indeed, the defined framework is of low interference and complexity compared to

the maximum transmission range model. Moreover, we analyze the stability of the

cooperative game, and demonstrate that the algorithm converges to a stable coalition

structure, where all the players do not have incentives to change the coalition they

are part of. Thereafter, we show that we are able to improve the energy consumption

without hurting the IDNC delay compared to the maximum range cooperative model.

3.6 Conclusion

Throughout this chapter, we have highlighted some key ideas of this thesis. First,

we have introduced the instantly decodable network coding as a useful paradigm for

distributed cooperative low-power networks. We have identified its potential benefits

and detailed the major existing related works. Second, we have demonstrated the

necessity of considering the energy efficiency over IDNC networks. Given this demon-

stration, we have presented our main challenges as well as our principal contributions

in this thesis under the umbrella of delay and energy aware IDNC networks.

In the following part, we study the IDNC-based CDE network focusing on jointly

minimizing the energy consumption and the completion time using game theory. In
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particular, the next chapter investigates the cooperation among players within a small

connected MTC network where all wireless nodes can reach each others via single hop.
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4.1 Introduction

The rapid growth of MTC devices using scarce batteries and dealing with a high

content quality brings a number of challenges for the communication community to

achieve both the energy efficiency and the QoS requirements of MTC users. These

devices are supposed to operate in an area of interest in a relatively uncontrolled

way, or rather, they are expected to rely on themselves to meet the aforementioned

goals. Hence, innovative and scalable solutions at system and device levels are always

welcomed in order to address both operational and environmental costs.

One alternative solution is the cooperative data exchange which is considered as a

promising approach wherein wireless nodes are allowed to exchange their packets

quickly over a short range and reliable communication channels, for example using

IEEE 802.11 adhoc mode. Specifically, a significant attention has been recently drawn

by the network coded cooperative data exchange to take advantages of both nodes’

cooperation and network coding [36,51,52]. Such solutions have been shown efficient

to increase the throughput and reduce the delay as well as the traffic of wireless

networks.

On the other hand, the energy efficiency has received a considerable interest when

designing communication protocols. In fact, ecological concerns increasingly attract

attention in communication systems [57]. Furthermore, game theory seems a great

tool not only to improve distributed solutions but also to design wireless networks

architectures according to the desired system performance.

Interestingly, the present chapter develops a unified game theoretic framework that

improves both the completion time and the network lifetime of an MTC network in

a distributed fashion. In particular, we maintain the XOR based IDNC technology.

In [45], authors studied an MTC network similar to the one considered in this chapter.

They introduced a noncooperative game theoretic framework in a fully connected

(D2D) network in order to solve the IDNC delay minimization problem. For this

purpose, they addressed the problem of the selection of the transmiting device in

order to serve a maximum number of receivers with a new recovered packet in each

transmission. The problem was modeled as a non-cooperative potential game with

self-interested players.
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In a fully connected multicast IDNC based CDE system, authors in [54] focused jointly

on reducing the completion time and avarage decoding delay. To do so, they formu-

lated the selection problem of the optimum coded packet and the suitable transmitting

sender using maximum clique selection and the stochastic shortest path (SSP) tech-

nique. Since finding both respective optimum solutions intractable, they proposed

two heuristic algorithms to solve the problem.

According to most of the existing IDNC based CDE schemes, including the aforemen-

tioned works in [44, 45, 49, 52, 54, 55] that involve battery-powered devices over D2D

networks, an optimal IDNC packet combination can target a device that optimizes

for example the transmission rate or the decoding delay. However, does the selected

sender have enough stored energy to target any decoding receiver in the field ? Can

he really reach all interested receivers ? Thus, an ideal energy efficient scheme should

address explicitly the energy efficiency as a central issue. Hence, we found a great

interest to develop a framework that involves energy-constrained MTC devices in a

CDE network using IDNC. Motivated by improving the network efficiency and mod-

elling aspect for a fully autonomous wireless nodes, we design the CDE among wireless

nodes using cooperative game theoretical framework in partition form. Moreover, we

propose a distributed merge-and-split algorithm that creates appropriate coalition

groups accounting for the completion time and the energy efficiency.

The major contributions are summarized as follows:

• We introduce a novel framework from coalitional game theory to model the

cooperation in the IDNC game among nodes for energy efficient CDE.

• We focus jointly on the completion time and the consumed energy to increase

the network lifetime.

• We propose a merge-and-split algorithm, which iteratively operates the coalition

formation process in a distributed fashion, and show that it converges to a stable

coalition network structure.

• The proposed framework is of low complexity compared to the non-coalitional

model, especially for high number of nodes, which increases the scalability of

the proposed model.

• We evaluate the proposed framework using two practical scenarios: A Wireless
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sensor network and a network of flying fleet of drones.

• We reduce the completion delay by considering additional constraint, i.e. the

energy consumption. Indeed, we illustrate that the proposed framework reduces

the energy consumption and the completion delay at the same time.

The remainder of this chapter is organized as follows. In the next section, we de-

scribe the system model. Section 4.3 defines all useful parameters related to the new

proposed IDNC recovery protocol as well as the IDNC graph. Thereafter, we present

in Section 4.4 the coalitional game model and the utility function. The description

of the merge-and-split algorithm is provided in section 4.5. Section 4.6 compares

and analyzes the performance of the proposed scheme, and Section 4.7 concludes the

chapter.

4.2 System model

We consider a BS trying to deliver a frame N of N source packets {1, · · · , N} to

a group M of M wireless nodes, denoted {1, · · · ,M}, each of which requires the

reception of all source packets. Note that the wireless nodes can be arranged in a

unique cluster or in multiple clusters. The first source sender can be a simple node as

it can be a wireless base station. Node k ∈Mmay lose a packet from node l ∈M with

a probability qk,l that depends mainly on the distance between them. In this model,

we assume that the BPSK modulation is used in the physical layer transmission. The

bit error probability is defined using the Q-function Pb = Q(
√
δ), where δ represents

the signal to noise ratio (SNR). δ ∼= SNR0

dβ
, where d is the inter-node transmission

distance, and β is the path loss exponent. Thus, the packet erasure probability is

given by p = 1− (1− Pb)
L, where L is the number of data bits per packet.

At the beginning, the BS transmits sequentially the N uncoded packets of the frame.

For each successfully received packet, each user sends an acknowledgement to the

BS. The retransmission of the packet is required only if it is not received by no user.

Therefore, when at least each packet is acknowledged once, this initial phase ends.

We assume that all transmission feedbacks are perfect.

For every node k ∈M, packets from N belong to one of the two following sets :

• The HAS set (Hk): packets successfully received by node k.
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Figure 4.1: Representation of the IDNC-based CDE system model. Each node
is interested in receiving a frame of packets, and firstly losts some of them. The
lost packets are crossed by an X mark. Afterwards, nodes arrange themselves
into a new partition P = {S1, S2} according to the proposed cooperative scheme.
Each cooperates with the appropriate cluster members until all of them recover
all requested packets.

• The WANTS set (Wk): missed packets for node k.

The feedback matrix L = [lk,j ], k ∈M, j ∈ N , is expressed as follows:

lkj(t) =

{
0 if j ∈ Hk

1 if j ∈Wk

(4.1)

Before starting the recovery phase, nodes may arrange themselves by forming a novel

partition Π of collaborating nodes. A partition Π is defined as a set {S1, · · · , Sm}
of m mutually disjoint clusters such that

⋃m
i=1 Si =M, with m cluster heads CH =

{CH1, · · · , CHm}. Thus, this coalition formation phase is performed under the con-

trol of coalition heads CH according to our proposed delay and energy aware IDNC

cooperative scheme which will be introduced in the next section. Note that the clus-

ter heads designation is beyond the scope of this chapter. In fact, many works have

studied methods of cluster head selection (see [58], [59] and [60]). In our proposed

solution, the node that has more residual energy is supposed to be elected as a cluster

head. Figure 4.1 illustrates clearly the described system model.

Subsequently, once the coalitions are formed, the recovery phase begins. It consists



42
A Coalitional Game-theoretic Framework for Cooperative Data Exchange using

IDNC

of two successive subphases:

1. Intra-cluster recovery phase: In this sub-phase, nodes in the same coalition

may cooperate to recover their missing packets. In fact, at every time slot t,

one sender is selected to transmit a binary XOR encoded packet by exploiting

the diversity of its HAS sets and the received feedbacks from the remaining

cluster members. During this phase, since the sender targets only its cluster

members, we assume that the same transmission frequency can be reused in

different clusters at the same time. Note that spatial frequency reuse have been

extensively investigated in [61]. The process is repeated until all cluster members

recover all missing packets. However, it may happen that in a given cluster not

all the N packets are available. In such case, the inter-cluster recovery process

begins.

2. Inter-cluster recovery phase: Only cluster heads CH perform this phase. After

finishing their intra-cluster recovery phase, they cooperate with each other to

recover the remaining packets. We assume that CH broadcast immediately the

decoded packet to their coalition members. This process is repeated until all

cluster heads recover all the packets.

Note that the Inter-cluster recovery phase is required only in the case of the non-

availability of the N packets in at least one coalition.

We assume that single hop transmissions are used within the clusters. Furthermore,

the packets sets (feedbacks) of each user are known by all the other cluster mem-

bers since they can overhear each-other’s feedbacks. Indeed, maintaining a feedback

matrix of the cluster is of lower complexity and of lower overhead than the

non-coalitional model.

Example 4.1. Let us consider an example of a schedule of a clustered IDNC-network,

illustrated in figure 4.2, where 6 devices are arranged into two clusters each of which

is trying to recover a set of 3 packets {p1, p2, p3}. In the intra-cluster recovery phase,

devices in S1 receive all their wanted packets after exchanging two network-coded

packets p2⊕ p3 and p1. However, since no device in S2 has the packet p3, their intra-

cluster recovery phase is blocked after their first recovery transmission. In that case,

the inter-cluster recovery phase is required so that all devices in the second cluster



System model 43

receive p3.

At each recovery stage, the suitable decoding packet in the cluster with its corre-

sponding sender is selected by the CH taking into account the completion time and

the consumed energy. In this setup, although the same frequency is reused through-

out the clusters, the interference between nodes is reduced since the intra-recovery

transmissions are made over short ranges. Nevertheless, in some cases where we have

some scattered coalitions, collisions may happen during the recovery process. More-

over, executing the intra-cluster recovery phase simultanously in every cluster reduces

significantly the duration of recovery process. Note that in the reference paper [45],

the delay-aware decision making of the suitable combined packets and the transmit-

ting device is made by all nodes in the network and the network-coded packets are

transmitted for all nodes whatever the network size is.

A packet received by node k can be one of the following:

• Non-innovative if it does not bring new packet to the receiver.

• Instantly Decodable if it contains exactly one source packet from Wk.

• Non-Instantly Decodable if it contains two or more source packets from Wk.

Example 4.2. Let us consider again Figure 4.2. p2 ⊕ p3 is instantly decodable for

k2 and k3 since p2 ∈ H3 and p3 ∈ H2. However, if k2 broadcasts in the first time

slot p1⊕ p3, it will be non-instantly decodable for k3 since {p1, p3} ∈ W3, but it

is instantly decodable for k1 since p1 ∈ H1.

Energy consumption model

We consider that each node k has a battery with a residual energy of Esk, k ∈ M.

The simple energy model, that we have used in this chapter, is introduced in [62].

It considers the inter-node distance d and the free space εf (d2 power loss) or multi

path fading εm (d4 power loss) channel model. Hence, the required energy for node

k to send an L−bit coded packet using the electrical energy Eelec per bit and the

threshold distance dth is:

Eck =

{
L× Eelec+ L× εfd2 if d ≤ dth
L× Eelec+ L× εmd4 if d > dth

(4.2)
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Figure 4.2: An example of a schedule in a network composed of 6 devices arranged
into two clusters S1 and S2 where the clustered-CDE using IDNC is enabled; in
the first time-slot k1 and k5 transmit at the same time, each of which in its
cluster. The intra-cluster recovery phase of S2 is blocked at t = 2 since packet
3 is unavailable. Members of S1 finish recovering their missing packets after the
second transmission. At t = 3, the inter-cluster recovery phase begins involving
only cluster-heads k1 and k4.

4.3 Recovery protocol

4.3.1 Definitions

This subsection presents all the definitions of cluster-IDNC delays. In addition to en-

ergy consumption minimization, this chapter aims to minimize the number of required

recovery stages in every cluster Si, called the cluster-completion time CSi defined as

follows:

Definition 4.1. For node k, the individual completion time Ck∈Si is the required

number of recovery transmissions to receive all the missing packets. Thus, the cluster-

completion time CSi is the total number of needed transmissions by cluster Si so that
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all its members recover their packets i.e. CSi = maxk∈Si Ck.

Inspired by the study in [41], we consider the approach of decoding delay control in

order to reduce the completion time. To re-express the cluster-completion time, let

us first define the decoding delay. Let t denote the time slot index or the recovery

stage index when one node in every cluster performs a recovery transmission. For

example, t = 2 refers to the second transmission.

Definition 4.2. In each cluster Si, a node k ∈ Si, with non-empty Wk, encouters

one unit increase of decoding delay, denoted by dtk∈Si, if it receives a non-innovative

or non-instantly decodable packet or if it does not receive any decoding packet. This

can happen when the recovery process is stopped (due to the non-availability of the

N packets in the HAS sets of the cluster members) in that cluster waiting for the

execution of the inter-cluster recovery phase.

Definition 4.3. In each cluster Si ∈ S, the accumulative decoding delay Dt
k∈Si is the

summation of the decoding delays units experienced by receiver k until the time slot

t. Thus, the overall decoding delay Dk∈Si, experienced by k, is the summation of the

decoding delays units throughout both recovery phases.

Corollary 1. The overall decoding delay experienced by node k ∈ Si is expressed as

follows:

Dk∈Si =


∑t

Si
max
s=1 (dsk∈Si) +

∑Ck
s=t∗(d

s
k∈Si) + t∗ − tSimax − 1

if |
⋂

j∈Si Hj | < N ∀j ∈ Si∑Ck
s=1(d

s
k∈Si) if |

⋂
j∈Si Hj | = N ∀j ∈ Si

(4.3)

where tSimax is the last intra-cluster recovery stage for Si in the case of the non-

availability of the N packets at cluster members and t∗ is the first recovery stage of

the inter-cluster recovery phase.

Proof. To demonstrate the expression of the overall decoding delay of each cluster

member k ∈ Si throughout the entire scenario, two cases are analysed in terms of

decoding delay: (i) all the N packets are available in the cluster, (ii) not all the N

packets are available in the cluster. The complete proof is provided in Appendix A.
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Corollary 2. For each cluster member k ∈ Si, the individual completion time expe-

rienced throughout both recovery phases can be approximated as follows:

Ck∈Si =
|Wk|+Dk∈Si − qk

1− qk
(4.4)

where |Wk| is the size of the WANTS set of k and qk is the packet erasure probability,

which is the average packet erasure probability linking k to all remaining cluster

members.

Proof. The proof of this corollary is inspired by the work in [41] that considers a

centralized scheme where the BS is the only transmitter of the decoding packets over

one single recovery phase for all users. However, in our work since we consider a

clustered CDE, multiple devices transmit to each other inside their clusters over both

phases. The complete proof is provided in Appendix B.

4.3.2 IDNC packet construction and graph overview

The problem of finding the optimal coded packet was examined in plenty of recent

works to optimize IDNC performance metrics [40]- [54]. In our model, we use the

packet combination technique that optimizes the completion time through decoding

delay control, proposed in [41]. In fact, since this problem is proven to be NP-

hard, [41] proposes a heuristic algorithm that minimizes the probability of increasing

the completion time through a layered control of the decoding delay of each transmis-

sion. Therefore, the problem is shown to be equivalent to a maximum weight clique

problem in which they designed a multi-layered IDNC graph [40] where each layer

contains vertices that generate the bigger decoding delay values than those gener-

ated in the next layer and so on. The solution is the maximum clique composed of

a number of vertices from where the suitable packets are extracted, combined and

then transmitted. Let us discover the IDNC graph: To construct an IDNC graph

G = (V, E), a vertex vij ∈ V is created for every receiver i missing packet j ∈ Wi.

Two vertices vij and vlm are connected with an edge e ∈ E if one of the two following

conditions is verified:

• The receivers i and l miss the same packet, i.e. j = m
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• The coded packet j ⊕m is instantly decodable by both receivers i and l, that

is, j ∈ Hl and m ∈ Hi

In order to efficiently reduce the complexity, and by the way the completion time, at

every recovery transmission only the CH, in a partition Π = {S1, S2, ..., Sm}, construct

a local IDNC graph for their cluster members in order to determine the candidate

network codes. Consequently, the graph G is a set of disjoint local graphs as follows:

G =



{G1,G2, ...,Gm} if the second recovery phase

is not required

{G1,G2, ...,Gm,G∗} if it exists a second recovery

phase in which CH construct G∗

4.4 Coalitional game in partition form for IDNC-based

CDE network

Our main goal is to provide a distributed framework that can model the collaborations

among the wireless nodes of an IDNC-based CDE network. To this end, we use the

analytical framework of Cooperative Game Theory which involves a set of players that

interact with each other to form a partition. Particularly, in the present section, we

model the CDE as a coalition formation game in partition form with non-transferable

utility mainly accounting for the energy efficiency and the completion time.

Definition 4.4. A coalitional game in partition form with non-transferable utility

(NTU) is defined by a pair (M, ψ), where M is the set of players and ψ is a mapping

such that for every partition Π, and coalition S ⊆ M, S ∈ Π, ψ(S,Π) is a subset of

IR|S| representing the payoff vectors that players in S can receive when cooperating

(|S| is the number of players in coalition S).

The value of each coalition S is a set of |S| utilities, each of which is a function of

the range of this coalition, the availability of the packets at members and also the

availability of their stored energy. Thus, we propose a value function that takes into

account the key metrics as follows:

Given coalition S ∈ Π, we define the coalition value set (obtained by all the coalitions)
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at stage t ≥ 1 by:

ψ(S,Π)(t) = {ψk(S,Π)(t) = −α× Eck(t)

Esk(t− 1)
− TS ,∀k ∈ S} (4.5)

where ψ(S,Π) is a |S|-dimensional real vector whose element k represents the util-

ity that player k can obtain within coalition S in partition Π, TS = ‖Ck(t)‖∞ +

‖Dk(t)−Dk(t− 1)‖1 ∀ k ∈ S, and α is a coefficient that tunes the weight of the

energy consumption in the decision-making.

As one can clearly see, the utility of node k ∈ S in (4.5) includes two main parts:

energy consumption and cooperative delay. Both of them indicate the gain of forming

coalitions. Indeed, several studies have considered a utility function as a combination

of heterogeneous terms, such as energy and throughput in [63] and energy and delay

in [64]. The first term of the proposed utility function, which is the expected energy

efficiency Eck(t)
Esk(t−1) ∈ [0, 1], captures the impact of the consumed energy when trans-

mitting the recovery packet by player k at stage t. Eck(t) is the energy required to

broadcast the recovery packet and Esk(t − 1) is the stored energy of k in the previ-

ous stage. Note that the energy cost increase when the residual energy of the node

decreases. On the other hand, TS is the cooperative delay that takes into account the

cluster completion time and the increase of the sum decoding delay over all players

in the cluster between two consecutive stages. Moreover, in order to minimize both

parameters simultaneously, there is a need to weight the terms of the value function.

Therefore, we multiply the energy consumption part by a coefficient α that tunes the

weight of the energy consumption in the decision-making.

Note that this utility function is used by CH in order to select the suitable packet

combination as well as the sender node. In fact, every CH chooses the best coalition

member that sends the decoding packet with less consumed energy and targeting the

maximum decoding nodes in the cluster.

Proposition 4.1. The proposed clustered IDNC-based CDE is formulated as an

(M, ψ) coalitional game in partition form with non-transferable utility.

Proof. As introduced in definition 2.4, the coalition value in an NTU game is a set of

payoff vectors. In our game, ψ(S,Π) in (4.5) is a set of utility vectors since the term

of the expected energy efficiency is related to each player in the coalition at every
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packet recovery transmission. Thus, it can be deduced that the proposed game is

with NTU. On the other hand, if some packets are not existing in such a cluster S,

the cluster head CHk∈{1,··· ,|S|} cooperates with the other CH l∈{1,··· ,|S|}\k to recover

the remaining missing packets in the inter-cluster recovery phase. Thus, TS , and

consequently ψ(S,Π), does not only depend on players inside S, but also on players

outside S ie. Π\S. Hence, we conclude that the proposed coalitional game is in

partition form with NTU.

4.5 Proposed coalition formation algorithm

According to the considered coalitional game model, we propose a merge-and-split

algorithm to ensure the formation of the appropriate coalitional structure based on

the nodes’ preferences. Note that the proposed decision-making, i.e. two coalitions

are merged or one is split is based on a preference order.

Since we have characterized our CDE game as an NTU-game in partition form, we

choose an individual-value order called Pareto order ., which is adequate for NTU-

games. This order is used only to compare partitions of the same set of players.

Let us consider two partitions of the set {s1, s2, · · · , sr} ⊂ M, denoted by P1 =

{C1, C2, · · · , Ck} and P2 = {C ′1, C ′2, · · · , C ′l}. Consider two different partitions of

M : Π1 = {P1, S1, S2 . . . Sn} and Π2 = {P2, S1, S2 . . . Sn} where {S1, S2 . . . Sn} is a

collection of M.

We say that P1 is preferred over P2 by pareto order if and only if:

(P1,Π1) . (P2,Π2)⇔ ψ(si,Π1) ≥ ψ(si,Π2), ∀i ∈ {1, · · · , n} (4.6)

where there exists at least one node sj such that: ψ(sj ,Π1) > ψ(sj ,Π2).

ψ(si,Π1) is the utility of the node si when cooperating in partition Π1 and ψ(si,Π2) is

the utility of the node si when cooperating in Π2. Note that this preference order can

also compare two coalitions in the same partition as well as two different coalitions

in two different partitions.

In order to allow the nodes to build their suitable new structure based on the pro-

posed preference order, we have chosen the merge and split algorithm which is mainly

based on the merge and split rules, defined in Section 2.3 of Chapter 2. Such algo-
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rithm allows the partition of nodes in a distributed fashion. Indeed, it is the most

suitable algorithmic solution for our proposed game theoretic solution due to its low

complexity, its adaptability for partition form games and the distributed nature of

the CDE problem.

4.5.1 The merge and split coalition formation process

Using the preference order, only the CHmake the merge and split decisions. Moreover,

in order to reduce the complexity of the proposed algorithm, the split as well as the

merge investigations are limited to dividing the coalition into two coalitions or merging

two coalitions respectively. Consequently, a coalition of players Si ∈ Π1 can be split,

forming a new partition Π2 where at least one node can enhance strictly its utility

without hurting the payoffs of all remaining nodes in the new structure. Similarly,

the decision of merging two disjoint coalitions Sj and Si is assigned to both cluster

heads CHj and CHi.

Remark 1 : In the proposed coalition formation algorithm, it is worth noting that

the split and merge investigations depend on the payoffs of all players in the partition,

due to the dependence of the game on externalities (partition form game).

In the initial phase, all players broadcast their feedback matrix allowing CH to per-

form the first split iteration. Subsequently, merge operation begins. In fact, every

CHi investigates all merge possibilities seeking the best coalition for merging. This

candidate is determined in such a way that merge process improves both: coopera-

tive delay and consumed energy of at least one player without harming any individual

payoff. We assume that any CHi can start the merge process. The objective of the

CH is to find a coalition structure that guarantees the lowest energy consumption

and delay through a repetitive application of the above rules. Hence, when no further

split nor merge operations happens, a new final partition is created in which all nodes

will perform their clustered IDNC recovery phases. More details about our proposed

algorithm are provided in Algorithm 1.

Theorem 4.1. Any network partition resulting from the proposed merge and split

algorithm is IDhp stable.

Proof. In our merge and split algorithm, we are using the Pareto order to merge or
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split two coalitions. Hence, after a merge or a split operation, the utility of the nodes

in the target coalitions is higher or equal to their utility in the current configuration

(at least one node should strictly increase its utility without harming other nodes).

Hence, successive merge and split iterations produce a sequence of partitions Π1, Π2,

· · · with Πi+1.Πi ∀i ≥ 1. However, the number of different partitions of a finite set of

node is finite. Therefore, by transitivity and irreflexivity of Pareto order, a partition

Π cannot be revisited by the merge and split algorithm and the sequence of merge

and split is finite. Thus, the termination of the two rules iterations is guaranteed and

then we conclude that the proposed merge-and-split algorithm converges to a final

partition Πfin. Suppose that this final resulting partition Πfin = {S1, · · · , Sl} is not

IDhp stable. Then there exists two coalitions Si, Sj ∈ Π that are interested to perform

a merge, i.e. (Sj∪Si,Π
′
fin).({Sj , Si},Πfin) with i 6= j or a coalition Si ∈ Π interested

in splitting over two coalitions Si = S1
i ∪ S2

i , i.e. ({S1
i , S

2
i },Π

′
fin) . (Si,Πfin). Hence,

there exists a new partition Π
′
fin resulting from merge or split operations such that

Π
′
fin .Πfin, which leads to a contradiction since Πfin is preferred over all the possible

partitions obtained through merge and split operations. Thus, any obtained partition

resulting from the proposed merge-and-split algorithm is IDhp stable.
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Algorithm 1: Coalition formation algorithm for CDE

A-Initial phase
We start with a random partition Π1 of M denoted by {S1, S2 · · · , Sm}.
B-Split and merge phase
repeat

a) Based on pareto order in (5.5), CH check the split action:

Π2 = Split(Π1)

We obtain a novel partition Π2 = {S1, ..., Sp}

b) for all CHi, i ∈ {1, · · · , p} do

1. TO MERGE LIST i = {}
2. CHi looks for coalition candidates j for performing

merge process and add them to its TO MERGE list,
each of which with its corresponding gain G{i,j}:

TO MERGE LIST i = Examine(Π2)

while TO MERGE LIST i is non-empty do

j∗ = argmax j∈Π2\{i}{G{i,j}}
1. CHi sends REQ TO JOIN to CHj∗ ;

Π1 = Merge(Π2)

end while
end for

until no successive merge and split operations occurs.

C-Cooperative data exchange recovery phase
All formed clusters in the final formed partition perform their intra-cluster recovery
phases simultaneously and the inter-cluster recovery phase if necessary as described in
Section 4.2.

4.5.2 Complexity analysis

The merge-and-split algorithm has a complexity far lower than the coalition forma-

tion problem in optimal manner which is NP-hard [17]- [65]. In fact, to find the

optimal solution of the coalition formation problem, we have to check all the possible

partitions, which is equal to the M -th Bell number BM , in order to find the optimal

partition of a set of M players. Note that the Bell number is obtained by the recursion

Bn+1 =
∑n

k=0

(
k
n

)
Bn, B0=B1=1.
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The complexity of the proposed merge and split algorithm depends on the number

of merge-and-split investigations performed in every iteration, which depends on the

number of nodes in the network. In fact, each coalition needs to test the merge with

all the other coalitions in Π (worst case scenario). Hence, the total number of merge

attempts is at most O(|Π|2), which depends on the number of coalitions and not on

the number of nodes in the network. However, since the merge operation is executed

by coalition heads CH in a distributed manner, the complexity of the merge operation

for each coalition is O(|Π|).

Regarding the splitting operation, the total number of attempts in the worst case

implies finding all possible partitions of the coalition, which gives a worst case com-

plexity for the coalition Sk of O(
{

2
|Sk|
}

) where
{

2
|Sk|
}

is the second order Stirling

number of the second kind that counts the number of ways to divide the coalition Sk

into two new coalitions. Therefore, the complexity of the split operation is closely

related to the size of the coalition and not on the total number of users in the system.

On the other hand, as mentioned in section III.C, in our proposed scheme, only CH
are in charge of executing the heuristic algorithm [48] for determining the suitable

combined packets. Hence, the complexity of cheking the connectivity of each vertex

with the other vertices and renewing its corresponding weight and layer is limited to

the cluster size. It is equal to O(|Sk|N) where |Sk| is the size of a cluster Sk and

N is the number of packets. The reason is that each vertex can be only connected

to vertices in the same local graph Gk which is composed of at most |Sk|N vertices.

Therefore, the total complexity for all the network is O(|CH||Sk|N). However, for one

grand coalition as in the model considered in [44], only one big graph is constructed

by every node in the network which consists at most of MN vertices. Then, the total

complexity for determining the suitable packet is O(M2N).

In the next section, we address the topology changes issue across the multi-UAV

network enabling the proposed energy and delay aware coalitional scheme and we

discuss how to mitigate its effects on the energy efficiency and the overall completion

time.

4.5.3 Mobile cooperative UAV network: a case study

As a special form of mobile ad hoc network (MANET) and vehicular ad hoc net-

work (VANET), the network of multi-UAV is classified as flying ad hoc network
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(FANET) [9]- [11] since it presents different characteristics such us node density,

power consumption, computation power, frequency of topology changes and node

mobility compared to other categories of ad hoc network. Indeed, during last decade,

the use of a team of small unmanned aerial vehicles to cooperatively monitor a given

area, track target or detect events in real time, has been steadily increased, and has

overcome the use of sophisticated drones. Hence, in such events, small UAVs need

to cooperate timely and reliably despite their limited flight time and their scarce

batteries capacity.

Let us focus on topology changes and node mobility. For example, consider a network

of drones that are arranging into a random partition of collaborating coalitions. Ap-

plications like data-collection from the sink of a sensor network or monitoring an area

do not require the drones fleet configuration to change. However, applications like

forest surveillance and monitoring require that some drones move across the target

area. Consequently, the distribution of some coalitions may change, making its mem-

bers scattered or the inter-drone distance may increase, and then the recovery phases

execution could not be energy-efficient anymore. In such case, they have to execute

the proposed coalition formation process to be able to re-arrange themselves into a

novel energy-efficient stable partition. When starting, they may use two different

configurations:

• They act as a single grand coalition where it exists a cluster head that will start

by the split investigation or

• They keep their current clustered partition where every cluster head iteratively

applies the merge and split rules.

As small UAVs have limited computational capabilities [9], deciding how they can be

arranged upon starting is crucial. In fact, the more there are drones per coalition,

the higher is the number of split investigations and the higher the complexity of the

algorithm is.

4.6 Simulation results

This section presents a comprehensive Matlab-based simulation of the proposed so-

lution. Simulation results show the average cluster-completion time and the total
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consumed energy, with an energy coefficient α = 10 of M devices until recovering all

N packets of the frame over several runs. The packet size is 8 bytes. In each run,

all wireless nodes are randomly located in a square field of 150 × 150 m2 and the

node-to-node packet erasure probability is changed for each new run. All simulation

parameters are listed in Table 1.

In particular, two applications are considered: a UAV network and a wireless sensor

network, each of which is evaluated in a seperate part as follows.

In the first part, the performance of our proposed solution is compared against the

two following IDNC-based schemes:

• ‘Delay-aware and energy-unaware non-coalitional CDE’ which considers a non-

cooperative game in a D2D configuration to select a single transmitting device

among a number of players arranged in a single big cluster in order to reduce

only the overall completion time [44].

• ‘Delay and energy-aware non-coalitional CDE’ which uses the same model of the

previous scheme but with a modified utility function. In fact, in this scheme,

our proposed utility function is considered to select the transmitting device in

order to reduce both the overall completion time and the total consumed energy.

Note that the total consumed energy consists of the energy consumed when sending

the recovery packets in addition to the consumed energy when exchanging feedback

messages after every reception of a decoding packet throughout all the scenarios. All

results are presented while increasing the packet erasure probability Q from the sender

(the BS for example) to all wireless nodes during the initial phase. Moreover, we do

the same analysis with respect to the number of devices while the packet erasure

probability Q remains constant.

Moreover, a scenario of topology change is considered in a UAV network which is

already partitioned, where a number of mobile drones move randomly from their lo-

calization. Thus, we analyse and compare the performance of both resulting partitions

in the two following cases:

• when they start from the grand coalition,

• when they start from their current clustered partition.
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Obviously, in each run, for the same distribution of nodes, we measure the parameters

of the two aformentioned resulting partitions using different state matrices and then

average them over all runs. In particular, in such analysis, not only the consumed

communication energy is considered but also the total computation energy consumed

by cluster heads when running the proposed merge-and-split algorithm is also taken

into account. Thus, we use the computation energy model introduced in [66]. Drones

are powered by Intel Atom x7-Z8700 processor [67]. Then, we calculated the number

of instructions in our merge-and-split algorithm acccording to the intel Instruction

Set Reference [68].

In the second part, we assess our proposed scheme in a WSN where the sensors are

randomly clustered at the beginning in order to guarantee low complexity processing

of the coalition formation algorithm.

Table 4.1: Simulation Parameters

Parameter Value

Area 150× 150 m2

εf 10 pJ/bit/m2

εm 0.0013 pJ/bit/m4

Eelec 50 nJ/bit
dth 25 m
α 10

Packet size 64 bits

4.6.1 Application in a drone fleet network

In this section, we focus on a drone fleet that collects information from the sink

of wireless sensor network. Since drones are of high mobility, we investigate the

topology changes at the end of this section. Figures 4.3 and 4.4 depict respectively

the average completion time per cluster and the consumed energy by all drones in

the network depending on the erasure probability Q for a scenario where M = 10

drones and N = 20 packets. From the aformentioned figures, it can be observed

that the proposed cooperative framework provides a significant completion time and

energy consumption reduction as compared to the two other non-coalitional schemes.

Moreover, figure 4.5 illustrates the delay gain and energy-consumption gain per node

when using our proposed cooperative scheme. It can be observed that gains on delay
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decrease as Q increases. This can be explained by the fact that when Q increases,

the cardinality of the HAS set per drone decreases, and thus the probability that the

union of the HAS sets of devices in a smaller coalition is equal to N is low. Hence, the

inter-cluster recovery phase is always required for all the clusters which would slow

down the recovery phase. Therefore, drones would have less incentive to cooperate.

Furthermore, energy gains shown in figure 4.5 increase until Q = 0.4 and despite a

very high packet erasure probability, the proposed coalition formation algorithm yields

a performance improvement on energy consumption of 31.38% (Q = 0.6) against the

Delay-aware and Energy-unaware non-coalitional CDE.
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Figure 4.3: Average cluster-completion time of the resulting clustered network
versus the two non-coalitional models with respect to packet erasure probability
Q.

Figures 4.6 and 4.7 illustrate respectively the total energy consumption in the network

and the average completion time per cluster as a function of the drone fleet size, for

a scenario of Q = 0.2, N = 20 packets. It can be observed that the proposed scheme

outperforms the Delay-aware and Energy-unaware non-coalitional CDE in terms of

both: completion time and energy consumption. From figure 4.8, we notice that

the benefit of cooperation in terms of energy and delay increases with the number

of drones. In other words, the presence of more drones in the field enhances the

incentive of cooperation. This is mainly due to two reasons: On one hand, small
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Figure 4.4: Total energy consumption in the resulting clustered network versus
the two non-coalitional models with respect to packet erasure probability Q.
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Figure 4.5: Average gains per node achieved by the resulting clustered network
with respect to packet erasure probability Q. The non-coalitional model 1 is delay-
aware and energy-unaware non-coalitional CDE and the non-coalitional model 2
is delay-aware and energy-aware non-coalitional CDE.
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coalitions attempt simultanously to finish earlier their recovery phases compared to

the one big coalition. On the other hand, exchanging recovery packets combinations

and feedback matrices among a reduced number of drones is performed in a smaller

range compared to the grand coalition.

All these figures demonstrate the significant advantage of using our clustered CDE

scheme in terms of both delay and energy, which is increasing with the drone fleet size

reaching up to 39.75% of improvement in energy consumption and 40% of improve-

ment in completion time compared to the non-coalitional model of the Delay-aware

and Energy-unaware non-coalitional CDE when M = 16 drones.

8 9 10 11 12 13 14 15 16
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of drones M

T
ot

al
 c

on
su

m
ed

 E
ne

rg
y 

(J
)

Q=0.2  N=20

 

 
Delay−aware and Energy−unaware non−coalitional CDE
Delay and Energy−aware non−coalitional CDE
Delay and Energy−aware coalitional CDE

Figure 4.6: Total energy consumption of the drones in the resulting clustered
network versus the two non-coalitional models with respect to drone fleet size.

The impact of the topology changes on the performance of CDE

After an environmental change, the objective is to investigate the adequate starting

partition that allows drones to converge to a novel partition where they can reduce not

only the communication energy and delay but also the computation energy consumed

when running the coalition formation process. In figure 4.9, we can clearly observe

that at any size of the fleet, when drones process the coalition formation phase as a

single grand coalition, they completely decode their missed packets faster than start-
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Figure 4.7: Average cluster-completion time achieved by the resulting clustered
network versus the two non-coalitional models with respect to drone fleet size.

8 9 10 11 12 13 14 15 16

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of drones M

A
ve

ra
ge

 G
ai

n 
(%

)

Q=0.2  N=20

 

 
Gain on delay % non−coalitional model1
Gain on delay % non−coalitional model2
Gain on energy % non−coalitional model1
Gain on energy % non−coalitional model2

Figure 4.8: Average gains per node achieved by the resulting clustered network
with respect to drone fleet size. The non-coalitional model 1 is delay-aware and
energy-unaware non-coalitional CDE and the non-coalitional model 2 is delay-
aware and energy aware non-coalitional CDE.
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ing with a random clustered structure. As we have detailed in section 5.1, this result

is expected since the number of possible partitions that are examined by cluster heads

throughout all the phase is significantly high. Hence, finding the lower completion

time among all those possibilities is guaranteed. On the other hand, figure 4.10 de-

picts the total consumed energy taking into account the computation energy of both

resulting partitions with respect to the number of drones. It is particularly interesting

to observe that when the size of the fleet is less than 12 drones, starting as a single

grand coalition allows drones in the resulting structure to further reduce their energy

consumption. However, once exceeding 12 drones, starting with grand coalition is

not the optimal choice anymore. In fact, it requires processing a very high number

of split attempts, then processing a very high number of instructions that causes a

substancial increase of the computation energy compared to the clustered starting

partition as it is illustrated in figure 4.10.
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Figure 4.9: Average cluster-completion time achieved by the resulting clustered
network when starting from the grand coalition versus the resulting clustered
network when starting from a random clustered partition with respect to drone
fleet size.
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Figure 4.10: Total energy consumption taking into account the computational
energy achieved by the resulting clustered network when starting by the grand
coalition versus the resulting clustered network when starting by a random clus-
tered partition with respect to drone fleet size

4.6.2 Application in a wireless sensor network

We consider, in this section, a WSN where nodes are interested in receiving the same

set of packets. Figures 4.12 and 4.13 depict respectively the total energy consumption

in the network and the average completion time per cluster as the number of sensors

increases, for a scenario of N = 20 when the packet erasure probability Q = 0.2.

Figure 4.12 illustrates that the benefit of using our cooperative scheme is increasing

with the number of users. We can clearly observe that the gap between the total con-

sumed energy of our proposed coalition formation algorithm and the total consumed

energy of the initial partition is increasing as M increases, reaching up 33.55% of

improvement of energy consumption when we have 60 cooperating sensors. In fact,

the more we have sensors in the field, the more they have an incentive to create more

clusters in order to exchange the recovery packets combination as well as the feed-

back matrices among a reduced number of sensors in a smaller range. In figure 4.11,

we present an example of a simulated scenario consisting of M = 30 sensor nodes.
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At the beginning, sensors are arranged into three large coalitions. Therefore, after

the execution of our proposed algorithm, a final resulting IDhp-stable network parti-

tion is generated. As we can cleary see, it consists of ten disjoint smaller coalitions

each of which is composed at least of two sensors. On the other hand, figure 4.13

illustrates the significant improvement of the completion time in the new structure

reaching 29.8% when M = 60 sensors. In fact, the presence of more sensors in the

field enhances the incentive to form more cooperating coalitions number attempting

to finish earlier their recovery phase.
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Figure 4.11: Convergence of the algorithm to a final IDhp-stable partition.

4.7 Conclusion

In this chapter, we have studied the problem of joint-minimization of completion

time and energy consumption in the cooperative data exchange using the instantly

decodable network coding across wireless nodes having a limited battery capacity.

We modeled the problem using cooperative game theory in partition form in which

the players seek to form a disjoint coalitions that reduce both the completion time

and energy consumption. To solve the game, we have proposed a distributed merge

and split algorithm that is guaranteed to converge to a stable network. Moreover, we

addressed the mobility issue through multi-UAVs network. Simulation results have

shown that our proposed cooperative game theoretical framework, by considering an

additional constraint that is the energy consumption, reduces both average completion
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Figure 4.12: Total energy consumption of the sensors in the resulting clustered
network versus the starting partition with respect to the number of sensors.
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Figure 4.13: Average cluster-completion time achieved by the resulting clustered
network versus the starting partition with respect to the number of sensors.

time and energy consumption for the resulting clustered network. Note also that using

the coalitional game theoretic framework enhances the scalability of the system since
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each cluster head have to maintain a feedback matrix of the cluster’s members instead

of the global feedback matrix, like the non-cooperative model.

In the next chapter, we extend the network model to study the cooperation within

large-scale energy-constrained networks. In such model, we consider that each player

uses no longer his maximum transmission power, rather, he adjusts it dynamically.

To do so, we address the problem of multi-hop CDE through the two-stage game

framework in order to extend the network coverage.
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5.1 Introduction

MTC communications represent the next step evolution of our today communica-

tions where any device with computation capability can be seamlessly incorporated

to the network. Indeed, these communications can involve large scale deployments.

However, energy efficiency is seen one of the major challenges hampering large-scale

networks of resource-constrained devices. Therefore, there is a substantial need to de-

sign energy efficient MTC communications that can successfully scale to large number

of MTC devices, without sacrificing the QoS.

In this chapter, we consider a large scale network and we focus on the CDE scenario

using IDNC. Unlike the previous chapter that considers a fully connected network, this

chapter deals with a partially connected network in which battery-powered devices

cooperate with each other over limited transmission ranges. In fact, in the former

network, each node can reach all members of its cluster over a single hop transmission,

whatever the size of cluster is. All recovery transmissions and coalition formation

operations are permitted without any range limitation constraint. However, the aim

of this chapter is to provide a new multihop CDE-based IDNC approach for energy

and delay reduction in which every node adjusts dynamically its transmission power.

Several works considered partially connected CDE-based IDNC network [49, 55, 56,

69]). In [55], authors addressed the problem of reducing the decoding IDNC delay

in a partially connected D2D network similar to the one studied in this chapter. To

solve this problem, they considered the joint optimization issue of selecting the trans-

mitting user and the packet combination. Using a graph-theoretic approach, they

introduced the cooperation graph from which the optimal solution was derived. Af-

terward, in [49], the authors extended the study of [55] by extending the cooperation

graph formulation. They introduced a clustering mechanism for nodes in order to

generate non-interfering clusters. Specifically, this mechanism partitions only a fixed

set of transmitting devices. There are many differences between this work and ours.

First, we consider not only the decoding delay, but also the energy consumption in

order to extend the network lifetime. Second, they considered that limited commu-

nication ranges are fixed for all nodes. However, we consider that communication

ranges are dynamically adjusted to achieve an efficient coalition formation phase, in

a distributed way. Furthermore, they suggested that the proposed solution is ensured
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by a central coordinator, and here we consider that packet recovery is achieved in a

distributed manner.

Differently, authors of [56] addressed the problem of reducing the average video dis-

tortion to deal with real-time distribution of a video sequence to a set of cooperative

devices that are partially connected. They started by updating the IDNC scheme to

fit the considered video application features. Then, they formulated the problem us-

ing finite horizon Markov decision process (MDP). Since finding the optimal solution

is intractable, they developed a two-stage algorithm to solve the problem.

It is woth noting that there is no work, to the best of our knowledge, that aims at

optimizing both IDNC delays and energy consumption in CDE-enabled systems over

limited transmission ranges, which represents a more realistic scenario.

Interestingly, we consider no longer a fixed transmission range for every node. An

optimal profile of transmission powers is rather determined, in a decentralized manner,

taking into account the delay and the energy efficiency. Furthermore, a new coalition

formation algorithm is defined, in order to form clusters executing the multihop energy

efficient IDNC-based CDE. In doing so, we establish a two-stage game using two

theoretical games concepts; the first is a non-cooperative game theory for choosing

the suitable transmission powers, and the second is a cooperative game theory in

partition form for modeling the multihop CDE between wireless nodes. Hence, our

main contributions in this chapter are summurized as follows:

• We consider that each node adjusts dynamically its transmission power in a

decentralized fashion.

• We propose a muti-hop coalition formation game that constructs a suitable

multihop coalitions. Indeed, the defined framework is of low complexity and

interference compared to the maximum transmission range model.

• We analyze the stability of the cooperative game, and demonstrate that the

algorithm converges to a stable coalition structure, where all the players do not

have incentives to change the coalition they are part of.

• Our simulation results show that we are able to improve the energy consumption

without hurting the IDNC delay compared to the maximum range cooperative

model.
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In the following, we start by describing the system model as well as the recovery

process under the limited transmission range constraint in Section 5.2. Afterwards,

we illustrate our game theoretical approach using cooperative game in Section 5.3.

Section 5.4 proposes the coalition formation process using merge and split algorithm.

Then, we formalise the power control game taking into account energy and delay

constraints in Section 5.5. The evaluation of the two-stage game theoretical approach

is depicted in Section 5.6.

5.2 System model

In this chapter, we consider the same scenario investigated in chapter 4, in a large

scale setting, where the BS tends to deliver a frame N of N source packets {1, · · · , N}
to a fleet M of M drones, denoted {1, · · · ,M}. The source sender can be a wireless

base station as it can be a simple drone. This drone fleet can be arranged in a number

of clusters or in one big cluster. Let Sk be a cluster consisting of |Sk| − 1 members

and a cluster head CHk. All the drones are interested in receiving all the N source

packets. However, node j may miss a packet from the node i with a probability qi,j .

In this model, the BPSK modulation, introduced in chapter 4, is supposed to be used

in the physical layer transmission. Moreover, not all the drones can reach each other

due to their limited communication ranges. In fact, only those that are in mutual

coverage can establish direct links. Hence, in a coalition, we assume that only the

cluster head is necessarily in mutual coverage with all cluster members. Moreover,

we assume that each drone j has a battery with a residual energy of Esj , j ∈M.

At the beginning, the BS transmits the N uncoded packets. We assume that every

packet is successfully received by at least one drone. Then, each drone j has two

feedback sets:

• The Wants set (Wj): missing packets for drone j.

• The Has set (Hj): packets successfully received by j.

Given the feedback sets of all nodes, we define the state matrix S(t) = [sj,i(t)], j ∈M,

i ∈ N as follows:

sji(t) =

{
0 if i ∈ Hj

1 if i ∈Wj

(5.1)
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In addition, we refer to the local state matrix as the state matrix of a particular

cluster. Note that since it is reachable by all members, only the cluster head can

construct the local state matrix.

Example 5.1. Let us consider the network illustrated in Figure 5.1 that represents

our system model at the initial phase. We focus on cluster S1 = {J1, J2, J3, J4, J5}
consisting of 5 drones, where J2 is selected as the cluster head. Each node is in-

terested in receiving all the packets of the frame, and may have lost some of them.

Consequently, J2 constructs the following state matrix which will serve, in the next

step, as a crucial basis to find the suitable coded packets:

SM1 =



0 0 1 1

1 0 0 0

1 1 0 0

0 0 1 1

1 1 1 0


After the initial transmission, under the control of cluster heads, nodes organize

themselves to form a coalitional partition Π of collaborating nodes. A partition Π

is defined as a set {S1, · · · , Sk} of k mutually disjoint clusters of drones such that⋃k
i=1 Si =M, with k cluster heads CH, denoted by {CH1, · · · , CHk}. Subsequently,

once a new partition is formed, nodes start the IDNC intra-cluster recovery phase.

Devices in the same coalition may cooperate to recover their missing packets by

exchanging binary XOR encoded packets. Since they are partially connected, not all

drones within the coalition can overhear the sent feedbacks. As a result, we assume

that every cluster head fulfill the following missions:

• Determining the suitable packet combination,

• Selecting the suitable drone that will broadcast this recovering packet to all

cluster members,

• Relaying the packet combination toward all the remaining cluster members if

the selected drone connot reach all of them.

In our model, in order to select and combine the suitable packets, we use the packet

selection technique that we have used in chapter 4. However, the N packets are not
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Figure 5.1: An example of a multihop UAV network composed of 10 devices
initially arranged into two clusters S1 and S2. Only cluster heads, coloured in
blue, are in mutual coverage with all their cluster members. The focus is on S1

in which the feedback sets appear besides every drone.

necessarily available in a given cluster and then the cluster is not able to recover all

the packets. Thus, some packets may be still missing after the intra-cluster recovery.

Consequently, the drones retrieve a number of their requested packets as possible as

they can in the cluster, and wait for the other clusters finishing their intra-cluster

recovery phases. Then, the IDNC inter-cluster recovery phase begins. Only cluster

heads CH perform this phase. In fact, since it remains a few uncoded packets, they

cooperate with each other using their maximum transmission powers in order to

recover the remaining missing packets. Note that the selection of the coalition heads

is beyond the scope of this work. We consider that the node that has mutual coverage

with all the cluster members and also has more residual energy is elected as a coalition

head. Moreover, during the inter-cluster recovery phase, we assume that once a cluster

head is able to recover a missing packet, it broadcasts it immediately to its cluster

members. All the received packets can be one of the following:
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• Instantly Decodable if it contains only one source packet from Wj .

• Non-Instantly Decodable if it contains several source packets from Wj .

• Non-innovative if all encoded packets are in Hj .

Denote by t the time slot or the recovery stage when drones perform recovery trans-

missions and by tmax the last stage in which all drones in the network obtain the

required packets. We define the cluster-IDNC delays as follows:

Definition 5.1. At any recovery transmission, in each cluster Sk, a node j ∈ Sk,

with non-empty Wj , implies one unit increase of decoding delay denoted dtj∈Sk if

it receives a non-innovative or non-instantly decodable packet. Thus, the overall

clustered decoding delay Dj∈Sk is the summation of the decoding delays experienced

by receiver j throughout both recovery phases, i.e. Dj∈Sk =
∑tmax

s=1 (dsj∈Sk).

Definition 5.2. For node j, the individual completion time Cj∈Sk is the required

number of transmissions so that all its missing packets are recovered. Thus, the

cluster-completion time CSk , is the total number of required transmissions by cluster

Sk so that all cluster members recover their packets i.e. CSk = maxj∈Sk Cj .

Note that we use the following individual completion time expression derived from [44],

which takes into account the overall decoding delay, Wants set size, and packet era-

sure probability qj , that is the average packet erasure probability linking player j to

all remaining players in the cluster.

Cj∈Sk =
|wj |+Dj∈Sk − qj

1− qj
(5.2)

As we have already mentioned, in our multi-hop IDNC network, every drone has a

battery with a residual energy of Esj , ∀j ∈M. The simple energy model that we have

used considers the inter-drone distance d, the free space εf (d2 power loss) or multi

path fading εm (d4 power loss) [62]. Hence, the required energy for node j to send an

L−bit packet including the electronic energy Eelec and the threshold distance dth is

computed as follows: {
L× Eelec+ L× εfd2 if d ≤ dth
L× Eelec+ L× εmd4 if d > dth

(5.3)
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5.3 A coalition formation game in partition form for a

multihop CDE

In this section, we model the multihop CDE as a coalition formation game in par-

tition form with non-transferable utility taking into account energy efficiency and

IDNC delay. Thus, we refer to cooperative game theory which provides a theoretical

framework for designing distributed algorithms.

Given coalition S ∈ Π, we define the coalition value set (obtained by all the coalitions)

at stage t ≥ 1 by:

φ(S,Π)(t) = {φj(S,Π)(t) = −α ∗
Ecj (t)

Esj (t− 1)
− TS , ∀j ∈ S} (5.4)

where TS = ‖Cj(t)‖∞+‖Dj(t)−Dj(t− 1)‖1 ∀ j ∈ S and φ(S,Π) is a |S|-dimensional

real vector, whose element φj(S,Π) represents a utility that player j can obtain within

coalition S in partition Π.

As the energy efficiency and delay minimization are our main purposes, the utility of

drone j ∈ S in (5.4) includes two parts: energy consumption and cooperative delay.

Both of them indicate the gains by forming the coalitions. The former is the expected

energy efficiency
Ecj(t)

Esj(t−1) ∈ [0, 1] that captures the impact of the consumed energy

when transmitting the recovery packet by drone j whether the transmission is direct

or through the cluster head. Ecj(t) is the energy required to broadcast the recovering

packet and Esj(t − 1) is the stored energy of j in the previous stage. The latter

is TS the cooperative delay taking into account the cluster completion time and the

augmentation of the sum decoding delay between two successive stages. Additionally,

in order to minimize both parameters in the same time, there is a need to weight the

terms of the value function. Consequently, we multiply the energy consumption part

by a coefficient α that tunes the weight of the energy consumption in the decision-

making.

Proposition 5.1. The proposed clustered CDE is formulated as an (M, φ) coalitional

game in partition form with NTU.

Proof. As expressed in (5.4), since the expected energy efficiency term is associated
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to each player in the coalition after the packet recovery transmission, we can deduce

that the defined game is with NTU. In other hand, if some packets aren’t available

in a cluster S, the cluster head CH i∈{1,··· ,|S|} cooperates with the other cluster heads

CHj∈{1,··· ,|S|}\i to recover the remaining packets in the inter-cluster recovery phase.

Thus, the dependency of TS , then φ(S,Π), is not only on players inside S, but also

on the distribution outside S. Consequently, from Definition 3, we conclude that the

proposed coalitional game is in partition form with NTU.

5.4 The proposed coalition formation algorithm

In this section, we present how can wireless nodes cope with their limited transmission

power in order to create a new optimal structure that jointly reduces the overall

completion time and the network lifetime. In doing so, we develop a constrained

merge and split algorithm whereby the nodes can achieve a stable architecture and

meet the desired optimization.

Our algorithm is based on two simple rules of merge and split that modify a partition

Π1 ofM. Note that in our CDE game, we use the Pareto order as a preference order

to compare two coalitions of nodes. S1 ∈ Π1, S2 ∈ Π2, as follows:

(S1,Π1) . (S2,Π2)⇔ φ(S1,Π1) ≥ φ(S2,Π2) (5.5)

where at least one drone j ∈ S1, S2 such that:

φj(S1,Π1) > φj(S2,Π2)

where φ(Si,Πk) is the payoff of the drones in coalition S1 and φ(S2,Π2) is the payoff

of the drones in coalition S2. Recall that we use this order because it is the most

suitable for NTU games.

Since only the cluster head CHi is always in mutual coverage with all coalition mem-

bers, he makes the decision of split. Therefore, a coalition of nodes Si ∈ Π1 can be

split, forming a new partition Π2 as long as in the new structure, CHi guarantees two

conditions:

• (CS1): At least one drone can enhance strictly its utility without hurting the

payoffs of all the remaining nodes
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• (CS2): In each resulting cluster, it exists at least one drone is in mutual coverage

with all the new cluster members.

Similarly, the decision of merging of two independent coalitions Si and Sj is affected

to both cluster heads CHi and CHj . Specifically, a coalition Si ∈ Π2 can decide to

merge with another coalition Sj , forming a new partition Π1, as long as in the new

structure, both cluster heads verify the two following conditions:

• (CM1): At least one drone in the resulting coalition can improve its individual

payoff without decreasing the payoff of all the other players

• (CM2): Each cluster head should be in mutual coverage with all the other

cluster members.

Moreover, note that the cluster heads can test merge possibilities only with the coali-

tions that are in mutual transmission range. In the maximum transmission range

scheme, all the merge and split operations and tests performed in coalition formation

phase, may spread over the entire network. Thus, the more it spreads, the more

energy consumption and the higher is the complexity to find a stable solution. How-

ever, following the above conditions, the number of split and merge tests decreases

and thus the execution time of the coalition formation phase decreases. Hence, we

obtain a lower complexity compared to the maximum transmission range model.

In the initial phase, all drones broadcast their feedback matrix to allow cluster heads

performing their first split iteration. Subsequently, after verifying CM1 and CM2,

every coalition head investigates its coverage zone looking for candidate coalitions for

merging. All these candidates are chosen when merge process must improve both:

delay and energy consumption of at least one player without hurting any individual

payoff. After that, merge operation begins. We assume that any coalition head CH i

can start the merge operation. The objective of the coalition head is to find a coali-

tion that guarantees the lowest delay and energy consumption through an iterative

application of the above rules. Hence, when no further merge nor split operations oc-

curs, a new final partition is formed where nodes will perform their recovery phases.

A summary of our coalition formation algorithm is given in Algorithm 2.
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Algorithm 2: Coalition formation algorithm for multihop CDE

Data: Random starting partition Πinit = {S1, · · · , Sl}
Result: Coalition partition Πfin

Phase 1-Cluster members discovery:
• Each drone i ∈ Sk discovers its neighboring drones

and sends its feedback matrix to its associated cluster head CHk.
• Update the existing partition: Πexi = Πinit

Phase 2-Coalition formation:
Cluster heads CH perform merge and split processes.
repeat

foreach CHi ∈ CH do
• CHi analyses all possible split operations

testing (CS1) and (CS2) (split conditions)
using the pareto order given in (5).

• if a split occurs, the current partition Πexs

is modified.
end
foreach CHi ∈ CH do

• CHi analyses all possible merge operations
testing (CM1) and (CM2) (merge conditions)
using the pareto order given in (5).

• if a merge occurs, the current partition Πexs

is modified.
end

until no further merge nor split operations occurs.
Phase 3-Multihop CDE recovery phase
• Drones are arranging using Πfin = Πexs

• Intra-cluster recovery phase and inter-cluster recovery
phase (if necessary) are performed.

Theorem 5.1. Given any initial starting partition Πinit, the proposed coalition for-

mation algorithm always converges to a final partition Πf composed of a number of

disjoint coalitions of drones.

Proof. Note that every iteration, i.e. a merge or split, produces a new partition.

Hence, starting from the initial partition Πinit, we obtain the following sequence of

partitions:

Πinit → Π1 → Π2 → · · · (5.6)

where Πi+1 . Πi, and the operator → indicates a merge or split operation. Since the
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Pareto order introduced in (5.5) is irreflexive, transitive and monotonic, a partition

cannot be revisited. Given that the number of different partitions of a finite set

is finite, the sequence (5.6) will finish after a finite number of iterations and the

algorithm converges to Πf .

Theorem 5.2. Every network partition resulting from the proposed split and merge

algorithm is IDhp stable.

Proof. Let us focus on the final partition resulting from Algorithm 2. From Theo-

rem 5.1, we have that coalitions belonging to this partition have no interest to perform

further merge and split operations. Consequently, from the definition of the IDhp sta-

blity concept, we deduce that the final resulting partition is IDhp stable.

5.5 Power control game formulation

In the previous section, merge and split decision making throughout the coalition

formation phase depends closely on the transmission range of each node. In other

words, varying the transmission power may significantly impact the performance of

the final structure. For example, one node may choose a large transmission range that

can generate uselessly more merge and split investigations. On the other hand, he may

use a very short transmission range that prevents him from joining useful coalitions

and therefore reducing his energy consumption and completion time as well.

To that end, nodes cannot expect the optimal range to meet such goals, but rather,

they can play a power game that allows them to switch to the suitable power that

guarantees the maximization of their payoffs in terms of energy and delay. Indeed,

in the present section, we establish such non-cooperative power control game. The

key idea is to determine what is the well-suited transmission power for each node

to perform the best possible coalition formation game that maximizes its battery

lifetime and reduce its completion delay. Figure 5.2 captures main components of the

proposed two stage-game theoretical framework.

Formally, we define the non-cooperative power control game as follows:

• Players. The drones in the set M
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Figure 5.2: Representation of the proposed two-stage IDNC game

• Strategies. Each player has n possible transmission powers IP denoted by

(p1, · · · , pn).

• Payoffs. The payoff for a drone j is the utility gained from using the power

transmission pj ∈ IP throughout all phases of the new scheme. It is given as

follows:

uj(pi) = −α ∗ Ecj
Esj
− TS ,∀pi ∈ IP (5.7)

where the quotient
Ecj
Esj

represents how much the drone j consumes energy Ecj com-

pared to his starting residual energy Esj when using the transmission power pi. TS

and α represent respectively the cooperative delay and the tuning parameter already

defined in Section 3. The similarity of the utility function of the non-cooperative game

with the value function (5.4) of the cooperative game guarantees the non-deviation

of the system from the main purpose of this chapter. Thus, in this non-cooperative

game stage, every player aims to choose the transmission power that maximizes his

utility as given in (5.7). The stable strategy profile (list of players strategies) with
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the property that no player can increase his payoff by changing his action given other

players’ actions is defined by the notion of Nash Equilibrium [29].

Theorem 5.3. A mixed-strategy Nash equilibrium always exists for the proposed

non-cooperative game.

Proof. In the proposed game, there is a finite number of players and strategies. Since

every finite non-cooperative game in strategic form has a mixed strategy Nash equilib-

rium [29], there exists at least one Nash equilibrium for the proposed non-cooperative

game.

5.6 Simulation results

In this section, we assess the performance of the proposed scheme to efficiently reduce

total consumed energy and the average cluster completion time. We compare both

metrics of M=8 drones applying the multihop clustered CDE scheme in which each

drone uses his optimal transmission power resulting from the non-cooperative game

against the clustered CDE system over maximum transmission range introduced in

[70]. In every iteration, the drones are randomly distributed in a square field of 100×
100 m2. The total consumed energy per network and the average cluster-completion

delay are measured by frame, then the average over all iterations is presented. First,

we illustrate the aforementioned comparison while increasing the frame size N when

the packet erasure probability (between the BS and drones) Q = 0.2. Second, we do

the same analysis versus Q while N = 20.

Figures 5.3 and 5.4 show respectively the average consumed energy and the aver-

age completion time per cluster depending on the frame size N . Figure 5.3 suggests

that our proposed multihop CDE scheme outperforms the maximum transmission

range CDE scheme [70] in terms of total consumed energy without hurting the IDNC

completion time as shown in Figure 5.4. Furthermore, as we can clearly observe in

Figure 5.3, the more the frame size N increases, the more the total consumed energy

is reduced when drones execute our proposed scheme reaching 70.69% of improve-

ment (N=50). Figures 5.5 and 5.6 show respectively the consumed energy and the

average completion time per cluster depending on erasure probability Q requiring the

reception of the N=20 packets. In Figure 5.3, our proposed multi-hop CDE scheme
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Figure 5.3: Total energy consumption in the resulting multihop clustered network
versus one-hop clustered network with respect to number of packets.

outperforms the maximum transmission range CDE in terms of total consumed en-

ergy without decreasing the IDNC completion time as shown in Figure 5.6. Also,

this energy consumption gain increases as the erasure probablity increases reaching

62.49% of improvement (Q=0.5). The increasing improvement of total energy con-

sumption illustrated in Figures 5.3 and 5.5 is explained by the fact that the exchanged

recovery packets and feedback matrices (due to the increase of the frame size or the

erasure probability) are performed over limited ranges compared to the maximum

range CDE scheme. Although the partial connectivity of cluster heads and the con-

ditions for the coalition formation limit considerably the number of merge and split

investigations, drones achieve the same performance of the average completion time as

the maximum transmission range scheme where all merge and split tests are allowed

(figures 5.4 and 5.6). This result is due to the first stage of the proposed scheme that

allows each node to switch to the suitable power that guarantees the maximization of

their payoffs in terms of energy and delay. Of course, if the number of drones in the

network increases, the average completion time for the limited range scheme will be

higher than CDE with maximum transmission range, however, the consumed energy

for this latter will be far higher since not only transmission energy will increase but

also computing energy will increase exponentially due to the number of merge and
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Figure 5.4: Average cluster-completion time in the resulting multihop clustered
network versus one-hop clustered network with respect to number of packets.

split attempts.

5.7 Conclusion

In this chapter, we considered the CDE using the IDNC in a large scale network. We

studied the problem of minimizing completion time and energy consumption across

wireless nodes having limited communication ranges. We modeled the problem using

a two-stage game theoretical framework; the first stage is the non-cooperative game

theory and the second stage is the cooperative game theory in partition form in order

to maximize their battery lifetime without increasing the IDNC delay. Moreover, we

proposed a merge and split algorithm that deals with limited range constraint. Simu-

lation results have proved that our proposed scheme reduces significantly the energy

consumption without hurting the average completion time achieved by the result-

ing clustered network with limited transmission range versus the resulting clustered

network with maximum transmission range.
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Figure 5.5: Total energy consumption in the resulting multihop clustered network
versus one-hop clustered network with respect to erasure probability.
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Chapter 6

Conclusion and perspectives
G

In recent years, there has been a growing interest among signal processing and commu-

nication communities in energy efficient research. Indeed, a large number of proposals

for all communication layers have been proposed, but the system infrastructure has

not been clearly defined. This dissertation strives to address the following research

question: How to design suitable communication schemes that achieve the energy effi-

ciency along with the QoS improvement across MTC devices? In this thesis, we were

motivated by overcoming the need of reliable and energy efficient communications

for today’s applications in MTC networks. Therefore, we investigated IDNC-based

CDE scheme under various applications requirements, considering different network

dimensions.

In this manuscript, we presented thoroughly our main contributions in order to re-

spond to the aforementioned question. In the next section of this final chapter, we

summarize our contributions and we introduce our future research directions in Sec-

tion 6.2.

6.1 Summary of contributions

Firstly, we have studied the CDE using IDNC in small fully connected networks taking

into account the energy consumption constraint in addition to the IDNC delay. In

fact, we have introduced a novel framework from coalitional game theory to model

the cooperation in the IDNC game among nodes for energy efficient CDE. To solve

the game, we have proposed a merge-and-split algorithm, which iteratively operates

the coalition formation process in a distributed fashion, and we have shown that
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it converges to a stable coalition network structure. We have demonstrated that

the proposed coalitional game theoretical framework is of low complexity compared

to the non-coalitional model, especially for high number of nodes. This solution,

also enhances the scalability of the system since each cluster head has to maintain a

feedback matrix of the cluster’s members instead of the global feedback matrix, such as

the non-cooperative model. Moreover, we have addressed the mobility issue through

multi-UAVs network. We have evaluated the proposed framework using two practical

scenarios: a wireless sensor network and a network of flying fleet of drones. Simulation

results have proved that our proposed cooperative game theoretical framework, by

considering an additional constraint that is the energy consumption, reduces both

average completion time and energy consumption.

Thereafter, we have considered the energy and delay aware IDNC based CDE prob-

lem in large scale networks in which the wireless nodes have limited communication

ranges. We have considered that each node adjusts dynamically its transmission

power in a decentralized manner. In fact, we have modeled the problem using a two-

stage game theoretical framework; the first stage is the non-cooperative game theory

and the second stage is the cooperative game theory in partition form in order to

maximize their battery lifetime without increasing the IDNC delay. We have pro-

posed a coalition formation game that forms an appropriate multihop coalitions. In

doing so, we have proposed a merge and split algorithm that deals with limited range

constraint. Furthermore, we have analyzed the stability of the cooperative game, and

demonstrated that the algorithm converges to a stable coalition structure, where all

the players do not have incentives to change the coalition they are part of. Indeed, the

defined framework is of low interference and complexity compared to the maximum

transmission range model. Simulation results have shown that our proposed scheme

reduces significantly the energy consumption without hurting the average completion

time achieved by the resulting clustered network with limited transmission range ver-

sus the resulting clustered network with maximum transmission range.
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6.2 Perspectives

6.2.1 Dense CDE-based IDNC network

We are currently working on extending our contribution introduced in Chapter 5.

Specifically, we are focusing on the first stage of the two-stage game that consists

in finding the appropriate transmission powers profile for the wireless nodes in a

decentralized way. In fact, this stage relies on the existence of a mixed strategy

equilibrium for convergence. However, in this study, we aim to use the reinforcement

learning to deal with denser deployments. For that purpose, we are focusing on

online learning, more exactly, the Multi-Player Multi-Armed Bandit (MP-MAB) [71].

Indeed, The MP-MAB framework permits to reduce the complexity of distributed

problems in wireless environments, since detailed information about the network are

learned by players instead of being considered or processed in advance [72].

Generally, the MP-MAB game represents a class of problems of squential decision

making with limited information. At each test t, any player k ∈ {1 . . .M} pulls some

arm (action) a ∈ {1 . . . A}. Upon being chosen, the selected action generates some

reward which depends not only on the player action but also on the joint actions of

the remaining players in the network.

Therefore, for a large and dense network, we model the IDNC based CDE problem

as a two-stage game: the first game is MP-MAB game whereby the players learn to

select the best transmission power in order to form the suitable coalitions through the

second game which is the coalitional formation game. In this model, all players tend

to update (through repeated coalition formation trials) their beliefs about the impact

of changing their transmission powers on the coalitional payoffs, in order to achieve

the most suitable coalitional structure. To do so, we propose a distributed learning

algorithm of the ε-greedy policy, dealing with exploration-exploitation strategy from

the MP-MAB game.

6.2.2 Security aware CDE-based IDNC scheme

Security in network coding is an important issue and it is more challenging for co-

operative data exchange setting. Actually, network coding has shown its benefits

for network robustness by allowing the nodes in a network to mix different packets

through various algebraic combinations [73]. Even though all exchanged packets in
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CDE are coded, the network is still vulnerable to misuse and attack. For instance,

a wiretapper located in the proximity of the nodes that exchange information may

intercept some transmitted packets and obtain information about main messages.

Another scenario that may occur when an intermediate attacker modifies arbitrar-

ily a transmitted packet to achieve a certain confusion at the attacked destination.

Furthermore, he may inject corrupted packets that may easily corrupt the whole in-

formation flow. Recently, several studies have addressed these problems in order to

secure the data against the attackers in the network coding based CDE scheme [74].

We are currently working on that issue by analysing the robustness of our proposed

IDNC-based CDE scheme against the wiretappers.

6.2.3 Ultra-dense CDE-based IDNC network

In ultra-dense cooperative IDNC network, we are going beyond the coalitional game

theory for energy and delay aware network formation. Indeed, in our future works,

we tackle the problem of delay and energy aware clustering for the CDE-based IDNC

network involving an enormous finite number of MTC devices. Specifically, the prob-

lem can be modeled using the evolutionary coalitional game (EC). The idea of EC

deals with the evolution of coalitions over time, given several factors that may occur

such as mobility, depletion of battery life of some devices and joining of some others,

etc. Note that this game class needs less exchanged overhead among players. To solve

this game, a full distributed clustering algorithm should be proposed in order to find

an evolutionary stable coalitional structure.
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Appendix B

Proof of Corollary 1

Suppose we have a partition of coalitions composed of n coalitions of collaborating

nodes S = {S1, S2, ..Sn}. All clusters in the network are executing the clustered IDNC

protocol to recover their missing packets. Let us consider a cluster Si composed of

m nodes and let k be the kth node in Si. To compute the overall decoding delay of k

throughout both recovery phases, we have to consider two cases:

1. All packets are available in Si ⇔ |
⋂m

j=1∈Si Hj | = N . In that case, nodes in Si

do not need to wait for the inter-cluster phase to receive their remaining wanted

packets. Note that node k completes receiving all its erased packets in the Ck-th

transmission. Therefore, according to definition 4.3, the overall decoding delay

experienced by k is simply expressed as follows: Dk∈Si =
∑Ck

s=1(d
s
k∈Si)

2. Not all packets are available in Si ⇔ |
⋂m

j=1∈Si Hj | < N In that case, the overall

decoding delay of node k can be divided into three terms D1, D2 and D3, each of

which expresses the effect of an occuring event on the decoding delay as follows:

• D1 is the accumulative decoding delay experienced by k during the intra-

cluster recovery phase until all cluster members still miss only the un-

available packets (at t = tSimax), ie. ∀j ∈ Si,Wj = Wj̃∈Si\{j}. Therefore,

D1 =
∑t

Si
max
s=1 (dsk∈Si)

• After completing the first recovery phase at t = tSimax, nodes in Si should

wait other clusters in the network completing their intra-cluster recovery

processes. Since there is no decoding packets, the decoding delay of each

device is increased by D2 units. Therefore, D2 = (t
Sj
max + 1) − (tSimax + 1)
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where Sj is the last finishing cluster. Note by t∗ the first recovery stage of

the second phase, then D2 = t∗ − tSimax − 1.

• D3 is the decoding delay experienced by the cluster head CHi in the inter-

cluster recovery phase. In fact, if the received packet is instantly decodable,

it will be forwarded by CHi to its cluster members, otherwise, no packet

is forwarded. Therefore, in that case, the decoding delay of device k is the

same as the cluster head: D3 =
∑Ck

s=t∗(d
s
k∈Si).



Appendix C

Proof of Corollary 2

Let us first examine all possible packet transmissions closely among cluster members

that may affect the individual completion time throughout both recovery phases. Let

Fk(t) be the total number of erased coded packets at receiver k until time slot t. Note

that a device k receives its last instantly decodable packet at time t = Ck. Thus,

until t = Ck − 1, one of the following cases may happen:

• The coded packet is erased, thus Fk(t) = Fk(t− 1) + 1.

• The coded packet is successfully received. Two cases are possible:

- The combination of packets is instantly decodable for device k so it needs

|Wk(0)| − 1 such coded packets to recover all the remaining missing ones.

- The combination of packets is non-innovative or not instantly decodable

for device k. Thus, its accumulative decoding delay Dt
k∈Si at t <= Ck − 1

increases by one unit.

• No coded packet is received. One of the two following reasons can be considered

for this case:

- The non-availability of a number of packets at any member of the cluster

Si of device k. In that case, the decoding delay of k is increasing by one

unit at every stage until the beginning of the inter-cluster recovery phase

when all remaining clusters finish their intra-cluster recovery exchanges as

detailed in Corollary 1.

- The reception of the cluster head of a coded packet (from another coop-
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erating cluster head) which is non-innovative or non instantly decodable

in the second phase. Therefore, there is no relayed decoded packet for its

cluster members.

Consequently, the number of required recovery transmission Ck until device k belong-

ing to cluster Si receives all its wanted packets can be expressed as follows:

Ck∈Si = |Wk(0)|+DCk
k + Fk(Ck − 1) (C.1)

Since the Ck-th transmission is the last successfull transmission that allows node k

to complete the reception of lost packets, Fk(Ck − 1) = Fk(Ck), therefore:

Ck∈Si = |Wk(0)|+DCk
k + Fk(Ck) (C.2)

Let Yk(t) be a bernoulli random variable that is equal to 0 if the packet is successfully

received at time t and 1 if it is erased:

P(Yk(t) = y) =

{
qk if y = 1

1− qk if y = 0
(C.3)

Let J (t) be a random variable taking the chosen sender index k′ within the cluster

Si. The probability of packet erasure at device k in the transmission t is calculated

as:

P(Yk(t) = 1) =
∑
k′∈Si

P(Yk(t) = 1|J (t) = k′)P(J (t) = k′) (C.4)

Note that if the sender is itself the receiver ie. k′ = k, the coded packet cannot be

erased, thus P(Yk(t) = 1|J (t) = k) = 0 otherwise (if k 6= k′) and according to the

system model, the erasure probability between two nodes k and k′ is equal to:

P(Yk(t) = 1|J (t) = k′) = qk′k (C.5)

On the other hand, since all devices start with the same residual energy supply, all

devices have the same chance to be selected as a sender in its cluster. Hence:

P(J (t) = k′) =
1

|Si|
, ∀k′ ∈ Si (C.6)
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Replacing C.5 and C.6 in C.4, the probability that the coded packet is erased at

device k is expressed as follows:

P(Yk(t) = 1) =
1

|Si|
∑

k′ 6=k∈Si

qk′k =
|Si| − 1

|Si|
q̄k (C.7)

where q̄k = 1
|Si|−1

∑
k′ 6=k∈Si qk′k is the average packet erasure probability of device k

in the cluster Si. Hence, the cumulative number of erased packets at device k until

t = Ck − 1 is the sum of Ck − 1 bernoulli variable as follows:

Fk(Ck − 1) =

Ck−1∑
t=1

Yk(t) (C.8)

For a large number of packets, the individual completion time Ck would be automat-

ically large. Using the law of numbers, Fk(Ck − 1) is approximated as follows:

Fk(Ck − 1) = (Ck − 1)
|Si| − 1

|Si|
q̄k (C.9)

After substituting C.9 into the completion time expression C.1, the individual com-

pletion time for device k can be finally calculated as follows:

Ck∈Si =
|Wk(0)|+Dk∈Si −

|Si|−1
|Si| q̄k

1− |Si|−1|Si| q̄k
(C.10)
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