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I.1. Fundamentals of supercapacitors (SCs) 

Electrochemical capacitors (also called supercapacitors) are a class of electrochemical energy 

storage devices well suited to the rapid storage and release of energy1. SCs first emerged on the 

market in 1978 as farad-sized devices for backup power of computer memory2. The last four 

decades have seen a tremendous burgeoning of scientific and industrial interest into the potential 

applications of SCs, mainly due to their high power density and long cycle life3. In general, a 

supercapacitor consists of two electrodes in contact with an electrolyte electrically isolated by a 

separator. During charge process, the charges can be stored and separated across the two 

electrode/electrolyte interfaces, which would provide electric energy for the external load upon 

discharge, as illustrated in Figure I.1. According to charge storage mechanism, supercapacitors can 

be classified into two types: electrical double layer capacitors (EDLCs), which store charges by 

electrostatic adsorption of electrolyte ions at the electrode-electrolyte interface, typically are based 

on carbon materials4-8; pseudocapacitors, whose energy is stored by fast and reversible redox 

reactions between the electrolyte and electroactive species on the electrode surface at characteristic 

potentials, are commonly based on transition metal oxides and conducting polymers (CPs)9-13. 

Though a SC cell usually involves both EDL capacitance and pseudocapacitance in practical 

applications, it is clearer to discuss them separately. 

 

 

Figure I.1. Schematic illustration of a SC in a charged and discharged state. 
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I.1.1. Electrical double layer capacitors (EDLCs) 

EDLCs store the electrical charge in a physical process without any faradaic reactions on the 

electrode surface14. Only electrons need to be moved to and from the electrode surfaces through an 

external circuit, and electrolyte ions with counterbalancing charge diffuse in the solution to the 

charged interfaces to keep electroneutrality. It is thus highly expected that EDLCs have a high 

degree of recyclability, on the order of 105-106 times, because there is no chemical phase and 

composition changes during the charging and discharging of EDLCs1. For each electrode, the 

charge separation at the electrode/electrolyte interface upon polarization produces the double layer 

capacitance (C) based on the Helmholtz model15, which is shown in Figure I.2a8 and can be 

defined by Equation I.1: 

0 r

A
C

d
                                     (I.1) 

where 0  (in Fm-1) is the vacuum permittivity, r (in Fm-1) is the relative permittivity of the 

electrolyte, A (in m2) is the surface area of the electrode accessible to the electrolyte ions, and d (in 

m) is the effective thickness of the electrical double layer (EDL), often approximated as the Debye 

length5, 16. The Helmholtz model describes the charge separation at the electrode/electrolyte 

interface by an atomic distance. Since this simplified Helmholtz EDL model does not take into 

consideration the diffusion of ions in the solution and the dipole moment of the solvent and the 

electrode5. To address this issue, a modified Helmholtz EDL model was proposed by Gouy17 and 

Chapman18, in which a diffuse layer exists from the electrode surface to the fluid bulk (Figure I.2b). 

However, the Gouy-Chapman model is not valid for highly charged electrodes5, 19 and in 1924, 

Stern20 put forward a model combining the Helmholtz model with the Gouy-Chapman model. Two 

regions of ion distribution were suggested, i.e., the Stern layer and diffuse layer (Figure I.2c). Stern 

layer is an accumulation of ions strongly adsorbed on the electrode surface, which consists of 

specifically adsorbed ions and non-specifically adsorbed counterions; whereas the diffuse layer 

refers to a continuous distribution of ionic species in the electrolyte with a hydrodynamic motion, as 

what the Gouy-Chapman model defines8. There two regions are equivalent to two capacitors in 

series. Therefore, the capacitance of the EDL (CDL) can be expressed by Equation I.2: 

1 1 1

DL H DC C C
                                  (I.2) 
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where CH and CD denote the capacitance from the Stern layer and diffuse layer, respectively. 

 

 

Figure I.2. EDL models at a positively charged surface: (a) the Helmholtz model, (b) the 

Gouy-Chapman model and (c) the Stern model, showing the inner Helmholtz plane (IHP) and outer 

Helmholtz plane (OHP). The IHP refers to the distance of closest approach of specifically adsorbed 

ions and OHP refers to that of the non-specifically adsorbed ions8. 

 

It has been demonstrated that the correlation between the pore size and ion size plays an 

important role in maximizing the energy storage characteristics of EDLCs21-23. The solvated ions 

were thought not capable of participating in the formation of EDL owing to their inaccessibility to 

the micropores, if their size exceeded the pore dimensions. However, the distortion of the solvation 

shell and even a partial desolvation of hydrated ions were confirmed based on the significant 

enhancement of the specific capacitance from micropores6, 24. For example, as shown in Figure I.3, 

the normalized capacitance for the carbons increases at pore size less than 1 nm, which is smaller 

than the size of solvated ions6. These findings further illuminate the relationships between the 

electrode pore dimensions and ion sizes. It unveils the important contributions of micropores with 

smaller sizes than solvated ions to increase the capacitance values.  
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Figure I.3. (A) normalized capacitance for the carbons; B to D schematically illustrate the solvated 

ions in electrode pores with distance between adjacent pore walls (B) greater than 2 nm, (C) 

between 1 and 2 nm, and (D) less than 1 nm6. 

 

Nevertheless, the anomalous increase in carbon capacitance at pore size less than that of 

solvated ion size cannot be fully interpreted by current EDL charge storage mechanism because of 

the space confinement for accommodating both Stern layer and diffuse layer. An approach with 

consideration of pore curvature of carbon-based SC has been suggested to address this issue25. For 

mesoporous carbon electrodes, an electric double-cylinder capacitor (EDCC) model can be applied, 

as illustrated in Figure I.4a, where the pores are sufficiently large so that the effect of pore 

curvature is not significant. Actually, the EDCC model can be simplified to the classical EDL model 

shown in Figure I.2c. Whereas for microporous carbon electrodes, an electric wire-in-cylinder 

capacitor (EWCC) model can be proposed, as shown in Figure I.4b, where the pores are 

sufficiently confined and the pore curvature plays an important role in charge storage. 
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Figure I.4. Schematic diagrams (top views) of (a) a negatively charged mesopore with solvated 

cations approaching the pore wall to form an EDCC and (b) a negatively charged micropore with 

solvated cations lining up to form an EWCC25. 

 

I.1.2. Pseudocapacitors 

By contrast with EDLC, Pseudocapacitors based on conducting polymers (CPs) and transition 

metal oxides store the electric energy through fast and reversible redox reactions occurring which 

can provide significantly higher capacitances26-28. Conway identified the pseudocapacitance arises 

from thermodynamic reasons when there is a continuous dependence of a charge (q), passed 

faradaically in oxidation or reduction, upon the electrode potential (V)1. The dq/dV corresponds to a 

pseudocapacitance. What differentiates the pseudocapacitance with respect to EDL capacitance lies 

in the fact that pseudocapacitance is faradic in nature. The most commonly used pseudocapacitive 

materials involve (i) CPs such as poly(3,4-ethylenedioxythiophene) (PEDOT)29-30, polypyrrole 

(PPy)31-32, polyaniline (PANI)27, 33 and polythiophene (PTh)34-35, and (ii) transitional metal oxides 

such as ruthenium oxide (RuO2)
36, MnO2

37, ZnO38 and NiO39. Although the pseudocapacitance can 

be much higher than EDL capacitance, it suffers from low power density and poor stability upon 

cycling. 

The pseudocapacitance of CPs relies on ion doping and dedoping (intercalation/deintercalation), 

which are normally accompanied with volumetric swelling-shrinking during charge/discharge 

process40-41. The ionic fluxes generally accompanied with the free solvent molecules transfer during 

charging-discharging process may bring about the periodic potential-dependent volumetric 
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alternations of the conducting polymer electrodes (i.e., swelling and shrinking) 3, 35. These processes 

are likely to lead to a wide variety of unpredictable mechanical defects (such as polymer electrode 

fatigue, stress concentration and delamination from current collector) and thus fast capacitance 

decay of the CP electrodes27, 42. Furthermore, a stringent potential window is required for CP-based 

SCs. If the potential is beyond this critical potential, the CP can be degraded (or overoxidized) at 

more positive potentials43; whereas the CP may become insulating (un-doped state) at too negative 

potential. Therefore, a suitable potential window plays an essential role in the performance of 

CP-based SCs. Table I.1 summarizes the operating potentials of the commonly used CP-based 

electrodes. 

 

Table I.1. The electrochemical performance of some CP-based electrode materials 

CP-based electrodes Potential window (V) Electrolyte Specific capacitance (F g-1) Reference 

PPy/carbon cloth -0.8-0.5 vs. SCE 5 M LiCl 699 at 1 A g-1 44 

PPy/graphene -0.4-0.6 vs. SCE 1 M KCl 237 at 10 mVs-1 45 

PPy/MnO2/CNT 0-0.85 vs. Ag/AgCl 1 M Na2SO4 461 at 0.2 A g-1 46 

PANI/CNT -0.2-0.7 vs. SCE 1 M H2SO4 1030 at 5.9 A g-1 47 

PANI 0-0.6 1 M H2SO4 554 at 1 A g-1 43 

PANI/CNT 0-0.4 1 M H2SO4 606 at 1 A g-1 43 

PTh/CNT -0.6-0.8 vs. SCE 0.5 M H2SO4 110 at 1 A g-1 48 

PTh/CNT -0.6-1 vs. Ag/AgCl  1 M Na2SO4 216 at 1 A g-1 49 

 

For transition metal oxides, three different types of faradic mechanisms were suggested leading 

to pseudocapacitance1, 26, 50: (1) underpotential deposition (such as Pb on Au), (2) redox 

pseudocapacitance (such as RuO2.nH2O), and (3) intercalation pseudocapacitance (such as Nb2O5), 

as shown in Figure I.526. Underpotential deposition refers to the deposition of a monolayer of metal 

atoms onto a metal substrate at potentials positive with respect to the reversible Nernst potential51. 

Redox pseudocapacitance originates from the reduction-oxidation reactions of electrode materials 

with a concomitant faradaic charge-transfer from ions electrochemically adsorbed onto the surface 

or near the surface of a material. The occurrence of intercalation pseudocapacitance is interpreted as 
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a result of the intercalation of ions into the tunnels or layers of electrode materials accompanied by 

a faradaic charge-transfer with no crystallographic phase change26. The intercalation mechanism is 

featured by a capacity that does not vary significantly with charging time, a proportional linearity 

relationship between currents and the sweep rate and peak potentials that are not sweep-rate 

dependent52. 

Pseudocapacitance can be intrinsic or extrinsic to a material53-55. Intrinsic pseudocapacitive 

materials (such as RuO2.nH2O
56, MnO2

57 and Nb2O5
52) exhibit the characteristics of capacitive 

charge storage irrespective of the material’s morphology; extrinsic ones (such as LiCoO2
58, MoO2

59 

and V2O5
60) do not display pseudocapacitance in the bulk state due to phase transformations during 

ion storage26. When they are engineered at the nanoscale so that the charge storage sites are on the 

surface or near-surface region, the pseudocapacitance emerges53. Additionally, it should be noted 

that the oxygen or nitrogen containing functional groups on the carbon materials61-65, which are 

typically served as EDLC materials, can also contribute to pseudocapacitance.  

 

 

Figure I.5. Different types of reversible redox mechanisms that give rise to pseudocapacitance: (a) 

underpotential deposition, (b) redox pseudocapacitance, and (c) intercalation pseudocapacitance26. 

 

I.1.3. SC capacitance, energy and power density 

As shown in Figure I.1, the entire SC cell is equivalent to two capacitors in series. The 

corresponding RC equivalent circuit representation is illustrated in Figure I.6. Therefore, the total 

capacitance of an entire cell (CT) can be described by Equation I.34, where Cp and Cn are positive 
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electrode capacitance and negative electrode capacitance, respectively.  

1 1 1

T p nC C C
               (I.3) 

Thus, it is obvious that CT is mainly dependent on the electrode with smaller capacitance and 

that a high capacitance of both electrode materials is simultaneously required in order to optimize 

the CT  of the SC.  

 

 

Figure I.6. Representation of the equivalent circuit of a symmetric EDL capacitor. Rn/p represents 

resistors and Cn/p denotes capacitance.  

 

At the packaged cell level, Energy density (E, in Wh kg-1) and power density (P, in W kg-1) are 

two key parameters to evaluate the practical performance of a SC. These two parameters depend 

extensively upon package specific parameters such as the mass of dead components and the cell 

architecture, so the evaluation of energy and power densities should be performed in the condition 

of a full-sized and well-packaged SC with the consideration of the mass of all cell components66. 

The energy density represents the capacity to perform work, whereas the power density exhibits 

how fast the energy can be delivered. During charge process, a voltage (V) will build up across the 

two electrodes of the SC. The maximum energy and power densities of the SC are calculated 

according to Equations I.4 and I.58: 

21

2
TE C V                     (I.4) 

21

s

P V
4R

                     (I.5) 

in which Rs denotes the equivalent series resistance (ESR, in Ω) of the system. The capacitance of 

the cell relies significantly on the electrode materials. The cell operating voltage is restricted by the 

electrolyte’s stability. The ESR corresponds to the sum of various types of the resistances related to 
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the intrinsic resistivity of the electrodes, the ionic resistance of the electrolyte and the interface 

resistances between the current collector and the electrode67. Based on Equations I.4 and I.5, it can 

be seen that a large capacitance, high operating potential and minimum ESR are simultaneously 

required to obtain a superior performance for a SC8. Therefore, the development of both electrode 

materials and electrolytes is highly desirable in terms of optimizing the overall performance of SC 

devices. 

According to the aforementioned discussion, the higher the E and P are, the better a SC device 

should perform. Unfortunately, higher energy densities do not necessarily mean high power 

densities for supercapacitors68. The relationship between energy and power densities is usually 

illustrated by a Ragone plot, where the specific P is plotted against the specific E. The Ragone plot 

is often used to evaluate the practical performances of electrochemical energy storage devices. 

Figure I.7 compares the Ragone plots for various electrochemical energy storage devices14. It 

presents that the SCs possess higher P and lower E than batteries. Therefore, how to enhance the 

energy density becomes a major research focus in the development of SC. 

 

 

Figure I.7. Ragone plot of various electrical energy storage devices14.  
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I.2. Challenges and applications of SCs 

Supercapacitor is featured by high power capability, supreme cyclability and fast dynamics of 

charge propagation with low maintenance8, 69-70. It possesses much higher power density than 

battery and much larger energy density than conventional capacitors2, 71-72. Many advantages though 

SCs have, they still face some challenges at the contemporary technological stage. Table I.268 

summarizes the advantages and challenges of supercapacitors. 

 

Table I.2. Advantages and Challenges of Supercapacitors68 

Advantages  Challenges 

Long life with little degradation over 

cycling 

Low energy density (~ 5Wh kg-1) compared to batteries 

(> 50 Wh kg-1) 3 

Low cost per cycle High self-discharging rate1, 73 

Superior reversibility Voltage across supercapacitor drops significantly upon 

discharge; effective energy storage requires 

sophisticated electronic control and switching 

equipment 

Very high rates of charge and 

discharge. 

Very low internal resistance allows extremely rapid 

discharge when shorted, resulting in spark hazard 

Extremely low internal resistance 

(ESR), consequent high cycle 

efficiency (95% or more), and 

extremely low heating levels 

Raw material costs are significantly high and play 

important role in pricing of supercapacitor  

High output power  Adoption rates increase only gradually as end users  

realize benefits  

High specific power  Power only available for very short duration  

 

New technologies associated with electrochemical energy storage are being widely used in the 
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form of SCs due to their many advantages. The application of SCs has extended to portable 

electronics (such as digital cameras and mobile phones), electric vehicles, electric hybrid vehicles, 

electrical tools, pulse laser techniques, uninterruptible power supplies and storage of energy 

generated by solar cells. In general, the application of SCs includes: 

(1) Transportation. Since SC can be charged/discharged in an order of seconds, it can be 

readily used in dynamic braking of transport systems19. The energy can be stored in SC during 

braking and then released upon accelerating. The most promising market for supercapacitors is in 

the transportation industry. SCs can be used in automobiles by coupling them with other energy 

sources such as batteries. They can store energy when an automobile is braking and then releasing 

the energy when it accelerates, thus enhancing the fuel efficiency. Automobiles powered by 

coupling fuel cells with SCs are ideal choices for stop-and-go traffic where SCs provide sudden 

bursts of energy during start-up and fuel cells provide sustained energy74. 

(2) Portable electronics. Supercapacitors are widely used in consumer electronics as back-up 

energy sources for system memories, microcomputers, system boards and clocks, toys, and mobile 

phones. They are ideal for devices requiring quick charges. Supercapacitors are cost-effective 

options because they have extremely long lifetimes and do not need replacement during the 

lifetimes of the devices they power. For some portable electronic devices with moderate energy 

demands, SCs may act as rechargeable stand-alone power sources. Currently, batteries are the most 

convenient power supplies. However, they require long recharge time. SCs can be recharged quickly, 

and the repeated charging and discharging can proceed without significant losses in efficiency68. 

(3) Uninterrupted power supply (UPS) systems. Supercapacitors can be used for temporary 

back-up power in UPS systems. They can provide instantaneous supplies of power without delays, 

helping to prevent malfunctions of mission-critical applications. Supercapacitors quickly bridge the 

power applications for stationary UPS systems that are augmented with fuel cells. In addition, 

supercapacitors are best suited to provide power for start-up and during peak load buffering. 

(4) Other applications. Supercapacitors show promise for critical-load operations such as 

hospitals, banking centers, airport control towers, and cell phone towers. The critical time between a 

power outage and the start of a generator can be bridged effectively by supercapacitors because they 

provide power within milliseconds to a few seconds after an outage. 



Chapter I: Introduction 

12 

 

I.3. Electrode materials 

The most important component in SC is electrode material with high surface area and high porosity3. 

Currently, the three major categories of electroactive electrode materials in SC are based on carbon 

materials75-76, conducting polymers35, 77 and transition metal oxides78-81. In this part, these three 

major electrode materials are reviewed in detail with new trends in the material development of SC 

electrode. Their advantages/disadvantages and performances as SC electrode materials are also 

discussed and summarized.  

 

I.3.1. Carbon materials 

As they exhibit high conductivity, porosity and superior electrochemical stability, carbon 

materials are widely used as EDLC electrode materials, as described in Table I.382. Among them, 

activated carbon, carbon nanotubes (CNTs) and graphene are the most common ones, which will be 

separately discussed in detail in this part.  

 

Table I.3. Different Carbon Structures Used in EDLCs82  

 

   

(1) Activated carbons (ACs) 

ACs are the most widely used electrode materials due to their wide accessibility, low cost and 

high specific surface area (SSA)4, which are generally prepared by creating a three-dimensional 

porous network in the bulk of carbon materials through a carbonization and subsequent activation 

process, which involves a controlled oxidation of a very wide selection of natural and synthetic 

precursors using various activation techniques, such as oxidation in water vapor or KOH75, 82-83. 

Low-cost ACs are generally prepared from natural precursors, including wood, nutshells, fruit pits, 
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anthracite, coal, petroleum coke, pitch, peat, sucrose, corn grain, leaves, and straw84-86. Synthetic 

precursors (polymers) like polyvinyl chloride (PVC)87, polypyrrole (PPy)88, polyaniline (PANI)89 

are used for AC synthesis to obtain a more homogeneous microstructure and a better developed 

porosity.  

The carbonization process aims to eliminate non-carbon species of the raw precursors through a 

thermal decomposition process, whereas activation process is performed to develop the porous 

structure, which can be generally categorized into two types, i.e., thermal (or physical) and 

chemical75, 90. The thermal activation consists of the pyrolysis of precursor in an inert atmosphere 

and the following gasification with an oxidizing agent (CO2, steam and a mixture of both); the 

chemical activation involves the reaction of a precursor with a chemical agent, such as KOH83, 

ZnCl2
91 and H3PO4

92, and then annealing at elevated temperatures. By contrast with thermal 

activation, chemical activation is more effective for tuning structure and pore size distribution93. 

Figure I.8 is an example of the effect of activation temperature on the AC structure and porosity. 

Table I.3 compares the ACs and other typical carbons commonly used in EDLCs. ACs have been 

widely employed as electrode materials in many types of SCs, due to their high SSA, porous 

structure as well as low cost and industrial large-scale production84, 94. Currently, the decreasing 

availability of fossil-based carbons has boosted a pursuit of sustainable precursors to synthesize 

ACs. The utilization of biomass materials85-86, such as corn grain95, lignocellulosic materials96 and 

starch94, and recycling of waste products, such as tires97, to produce ACs become of interest with 

consideration of costs, availability and environmental friendliness.  

 

 

Figure I.8. SEM images of the samples obtained by annealing the slurry of PPy and KOH at 

various temperatures: (a) 500 oC, (b) 600 oC, (c) 700 oC and (d) 750 oC93. 
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(2) Carbon nanotubes (CNTs) 

CNTs are of particular interest for the development of SC electrodes because of their superior 

electrical conductivity, unique tubular structures and superior mechanical, thermal and chemical 

stability8. CNTs can be categorized into two subgroups based on the number of graphitic layers: 

single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs): 

SWCNTs consist of a single graphite sheet seamlessly wrapped into a cylindrical tube (Figure 

I.9a-c ), whereas MWCNTs comprise an array of such nanotubes that are concentrically nested like 

rings of a tree trunk98. Though sharing a structural similarity with a single sheet of graphite, which 

is a semiconductor with zero band gap, SWCNTs can be either semiconducting or metallic, 

depending on the rolling direction of graphite sheet to from a nanotube cylinder98. Moreover, the 

conductivity of perfect MWCNTs is rather comparable to that of perfect SWCNTs because the 

coupling between nanotubes is weak98. CNTs are usually regarded as a promising candidate for 

high-power electrode material because of the aforementioned properties. Although the surface area 

of CNTs (500 m2 g−1) is small as compared to ACs (2000-3000 m2 g−1)8, 99, they can offer a 

reasonable specific capacitance100. It is speculated to stem from their aligned pore structures, which, 

therefore, contribute to higher ion diffusion kinetics, as illustrated in Figure I.9d101.   

Additionally, CNTs are commonly used as a support for electroactive materials because of their 

high mechanical resilience and open tubular network, such as CNT/Ni(OH)2
102, CNT/PPy103, 

CNT/PPy/MnO2
104 and CNT/PANI105.  

 

 

Figure I.9. Schematic illustrations of the structures of (a) armchair, (b) zigzag, and (c) chiral 
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SWCNTs. Projections normal to the tube axis and perspective views along the tube axis are on the 

top and bottom, respectively98. The panel (d) presents a schematic model comparing the ion 

diffusion for activated carbon and the SWCNT solid material101. 

 

(3) Graphene 

Graphene, a sp2-bonded carbon monolayer, was believed not to exist in a free state until 2004, 

when Novoselov and co-workers isolated a single-atom-thick layer of carbon106. In recent years, 

graphene has gained tremendous research attention towards the application of electrochemical 

energy storage/delivery due to many appealing features, such as high surface area (theoretically as 

high as 2630 m2
·g

−1), superior mechanical properties, excellent electronic conductivity and chemical 

resilience7, 61, 107-111. Graphene’s properties vary strongly as a function of its production method, 

which plays an important role in determining the performances of final products112. The common 

methods adopted for graphene production include reduction of graphene oxide (GO)62, 113, 

liquid-phase exfoliation114, mechanical exfoliation106, synthesis on SiC115, bottom-up synthesis116 

and chemical vapour deposition115. The comparison among the aforementioned techniques is 

presented in Figure I.10112. Although many different methods continue to be explored, the 

large-scale production of graphene still remains the key challenge before its widespread 

application65, 112. 

Reduction of GO is widely employed for the bulk production of graphene because of its low 

cost, high scalability and competitive yield112, 117. GO is usually obtained through oxidation and 

expansion of graphite, which can be reduced and subsequently exfoliated to form graphene-like 

materials with similar structure and properties of pristine graphene118-119. Reduction of GO leads to 

the (partial) restoration of the structure and property of graphene by removing the oxygen 

functionalities on its layers with the recovery of the conjugated system. Different reduction 

processes result in different structures and properties of reduced GO. Over the past few years, 

numerous strategies such as thermal, (electro)chemical and even multi-step reduction have been 

performed to produce reduced graphene oxide (RGO)120. The most straightforward goal of GO 

reduction is to remove functional groups and heal structural defects. Thermal reduction is usually 

realized at high temperature by thermal, microwave or photo-irradiation, which is accompanied 

with a sudden deoxygenating reactions of GO films. Contrarily, chemical reduction based on 
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chemical reactions between chemical reagents (such as hydrazine) and GO is generally carried out 

at room temperature or by moderate heating. Multi-step reduction is also explored to meet some 

special purposes. For example, a combination of hydrazine vapour exposure and low-temperature 

annealing treatment at 200 oC was reported to produce an RGO film with better conductivity than 

that produced by only thermal annealing at 550 oC120-121. Notably, electrochemical reduction is 

another efficient method to produce reduced GO (ERGO), which relies on electron exchange 

between GO and electrodes and thus avoids the stringent requirement on high temperature for 

thermal reduction and the use of chemical reagent for chemical reduction. In this sense, it seems to 

be a promising protocol for large-scale production of graphene-like materials. This method is 

adopted in the present thesis and will be discussed in Chapter IV. 

 

 

Figure I.10. Schematic of the most common graphene production methods. Each method has been 

evaluated in terms of graphene quality (G), cost aspect (C; a low value corresponds to high cost of 

production), scalability (S), purity (P) and yield (Y) of the overall production process112.  

 

I.3.2. Conducting polymers (CPs) 
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CPs are thought to have enticing potential in SC applications because of their high charge 

capacity, low cost (compared with metal oxides), environmental friendliness, high conductivity in a 

doped state and relatively wide potential window3, 122-123. The conductivity of CPs stems from the 

conjugated π system along the polymer backbone, which is strongly related to the doping level of 

counter ions during oxidation process (chemically or electrochemically) of the monomer35, 124. CPs 

can be either p-doped with counter anions upon oxidation or n-doped with counter cations upon 

reduction. These two charge/discharge processes are expressed as35: 

(1) Cp ↔ Cpn+ (A-)n + ne-
      (p-doping) 

(2) Cp + ne-
 ↔ (C+)n Cpn-      (n-doping) 

The conductivity of these CPs can be tuned in a wide range with different dopants and the 

doping levels. Due to their redox behavior and superior conductivity, CPs have been readily used as 

SC electrode materials125. However, their poor cyclability is the major obstacle hindering the 

practical application of CPs in SC. It is caused by continuous swelling/shrinkage of CP-based 

electrode during charge/discharge process, resulting in a failure of the mechanical integrity and 

leading to an eventual cyclability fading. Therefore, synthesis of binary or ternary composites such 

as CPs/metal oxides, CPs/carbon materials and CPs/metal oxides/carbon materials was proposed in 

order to uprate the performance of CP-based capacitors. 

The most commonly studied CPs for SC electrode materials are Polypyrrole (PPy), polyaniline 

(PANI), polythiophene (PTh) and their derivatives. The structures and specific properties of the 

three typical CPs are presented in Figure I.11 and Table I.4, respectively. The specific properties of 

them will be discussed further in the following sections. 

 

 

Figure I.11. Structures of (a) PPy, (b) PANI and (c) PTh. 
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Table I.4. Properties of different CPs with their theoretical specific capacitance (Cth)
126 

 

M signifies molecular weight per monomer unit. 

 

(1) Polypyrrole (PPy) 

PPy has been exploited in considerable amount of researches, due to its relatively high 

volumetric capacitance, ease of fabrication, low cost, as well as its particularly supreme flexibility 

in morphology and structure127-128. Additionally, PPy can provide a higher capacitance per unit 

volume because of its relatively high density, which makes PPy a promising candidate for SC 

electrode materials used in miniature portable electronics. PPy has been known as an inherent 

electrically CP due to the conjugated π-π system along the polymer backbone. However, undoped 

PPy has a low electrical conductivity of ~ 10-6 S cm-1. It can be significantly enhanced by doping 

process, where an adequate amount of counter ions, from the solution are incorporated to balance 

the electrogenerated positive charges (polarons and bipolarons) during the oxidation process129.  

PPy (as well as PANI, which will be discussed in the following section) can only be p-doped 

since their n-doping potentials are much lower than the reduction potential of common electrolyte 

solutions, and thus it has only found use as a cathode material3, 35. Single-charged anions such as 

dodecyl sulfate (DS-), perchlorate (ClO4
-) and Cl- are typically used as dopants. 

The electrochemical properties of PPy are highly related to the synthesis approaches, involving 

chemical polymerization and electrochemical polymerization. Chemical polymerization is based on 

the oxidation of the monomer with all kinds of chemical oxidants, whereas electrochemical 

polymerization stems from the electrode oxidation of monomers under the applied potential or 

current125. The mass and thickness of the synthesized PPy are more easily controlled in 

electrochemical polymerization by adjusting the input parameters (such as electrodeposition time, 

the value of potential and current).   

A theoretical capacitance up to 620 F g-1 can be anticipated in PPy electrodes126. However, like 



Chapter I: Introduction 

19 

 

most of CPs, PPy exhibits the poor cycling stability, which fundamentally restricts their practical 

application as SC electrode materials. To address this limitation, CPs are generally incorporated 

with other nanostructured materials, such as carbon materials or metal oxides125. The introduction 

of these materials not only improves the charge storage capability of the PPy nanocomposites, but 

also significantly enhances their cycling performance. For example, CNT embedded PPy nanowires 

can retain 85 % of initial capacitance after 1000 cycles at 1 Ag-1 due to the robust support of the 

CNTs, which enhances the mechanical strength of the composites and prevents the PPy from 

swelling/shrinking during the long-term cycling130. Similarly, PPy/graphene composites can 

maintain 82% of the original capacitance (249 of 305 F g-1) after 1000 cycles131. It is ascribed to the 

large elastic buffer spaces provided by the mechanically flexible graphene sheet for the 

swelling/shrinking of PPy. Besides, the intimate π-π interaction between PPy and graphene can 

hinder the re-stacking of graphene layers, which played an important role in superior capacitance 

and improved cyclability of the electrode. It is also reported that a thin carbonaceous shell deposited 

onto PPy surface can significantly enhance the cycling stability of PPy electrodes27. This 

carbonaceous shell-coated polypyrrole electrodes achieve remarkable capacitance retentions of ~ 85% 

after 10000 cycles and exhibit comparable specific capacitance and pseudocapacitive behavior as 

the bare PPy electrodes. It is crucial because the improved cyclability is not at the expense of the 

electrochemical performance of PPy electrodes.  

 

(2) Polyaniline (PANI) 

PANI, which can be synthesized with aniline monomer via chemical or electrochemical methods, 

is another promising electrode material for SC due to its relatively facile synthesis, environmental 

stability and promising electrochemical behaviors132. However, it should be noted that proton type 

electrolytes are required for PANI to be properly charged and discharged, therefore, a protic solvent, 

an acidic solution or a protic ionic liquid is required47, 133.  

The electrochemical performance of PANI is intimately related with its morphology, which 

relies on the synthesis strategies. A better electrochemical behavior can be expected through tuning 

the PANI morphology during the synthesis process. In general, chemical synthesis can provide a 

better flexibility for controlling the nucleation and growth during the polymerization, while 

electrochemical synthesis can generate the PANI directly onto different substrates132. Therefore, 
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chemical synthesis is preferably adopted for preparing a PANI-based nanocomposite and 

electrochemical counterpart presents its unique advantage for processing binder-free capacitive 

electrode. 

PANI is often composited with other active nanomaterials (especially CNTs) for the practical 

development of PANI-based SCs. For example, the addition of sulfonated CNTs in PANI (76.4 wt%) 

exhibited a superior cycling stability, with only 5.4% loss from their initial specific capacitance 

(515.2 F g-1) after 1000 cycles. it was attributed to the exceptional mechanical support of CNT and 

the formation of the charge-transfer complex between the PANI and CNTs134. It has also been 

reported that the combination of a vertically aligned CNT array framework and PANI can provide a 

hierarchical porous structure, large surface area, and superior conductivity for the composite 

electrode. This tube-covering-tube nanostructured PANI/CNT composite electrode exhibit a specific 

capacitance of 1030 F g-1 and a high stability (5.5% capacity loss after 5000 cycles)47. 

 

(3) Polythiophene (PTh)  

PTh and its derivatives are another promising electrode materials for SCs and have raised 

enormous attractions owing to their flexibility, facile synthesis, favorable cyclability and 

environmental stability128, 135. Unlike PPy and PANI, PTh and its derivatives are both n- and 

p-dopable. Table I.5 presents an example of the differences between n- and p-dopable PTh 

derivatives. It is found that the gravimetric specific capacitance in the n-doped form generally 

presents a lower value than that in the p-doped one. Additionally, the n-doped PTh-based CP 

exhibits inferior conductivity, which limits their use in the n-doped from as an anode material. 

Consequently, they are often employed as the positive electrode (p-doped) in SC with a negative 

electrode made from another materials such as carbon35.  

It should be mentioned that poly(3,4-ethylenedioxythiophene) (PEDOT), one of the PTh 

derivatives has recently gained a lot of research attention. It is highly conductive (300-500 Scm-1)126 

and has higher potential window (see Table I.4). Due to its high surface area coupled with high 

conductivity, this polymer exhibits high charge mobility, resulting in fast electrochemical kinetics35. 

Additionally, it possesses superior thermal and chemical stability as well as good film-forming 

properties. However, its large molecular weight leads to a relatively low specific capacitance 

compared with other CPs (see Table I.4). 
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Table I.5. Specific capacitance of p- and n-dopable PTh derivatives136. 

CP p-Doping  n-Doping 

 Potential range 

(V vs. SCE) 

Capacitance 

(F g-1) 

 Potential range 

(V vs. SCE) 

Capacitance 

(F g-1) 

PFPT -0.2/1.0 95  -1.7/-1.0 80 

PDTT1 -0.2/1.0 110  -1.5/-0.2 75 

PMeT -0.2/1.15 220  -2.0/-1.0 165 

PFPT is poly(3-(4-fluorophenyl)thiophene), PDTT is poly(ditheno(3,4-b:3′4′-d) thiophene) and 

PMeT is poly(3-methyl thiophene). 

 

I.3.3. Transition metal oxides  

Transition metal oxides have been intensively studied as electrode materials due to their fast 

and reversible redox reactions occurring at the electrode surface14, which can offer additional 

pseudocapacitances during electrochemical performance. Generally, metal oxides can offer higher 

energy density than conventional carbon materials and better electrochemical stability than CPs3. 

The metal oxides for SC electrode materials are expected to be sufficiently conductive and to 

present superior phase stability with intercalation/deintercalation of ions during redox reactions. To 

date, ruthenium oxide (RuO2), manganese dioxide (MnO2) and zinc oxide (ZnO) are amongst the 

most commonly studied metal oxides, which will be discussed in detail in this section. 

 

(1) Ruthenium oxide (RuO2)  

RuO2 is widely studied because of its excellent electronic conductivity and multiple oxidation 

states accessible within 1.2 V. Its pseudocapacitive behavior in acidic solutions has been widely 

studied over the past years and can be described as a fast and reversible electron transfer coupled 

with an electro-adsorption of protons on the surface of RuO2 particles, which can be expressed by 

the following equation3, 14: 

RuO2 + xH+ + xe- ↔ RuO2-x(OH) x   (0 ≤ x ≤ 2) 

In RuO2 electrodes, EDL charging only contributes to ~10% of the accumulated charge, and 
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parallelly, the redox pseudocapacitance mechanism can occur3. Since the pseudocapacitance of 

RuO2 originates from the surface redox reactions, where the SSA plays an important role, thus 

increasing the surface area of the RuO2 becomes one of the most effective methods to enhance the 

specific capacitance of RuO2-based electrodes. Figure I.12 offers a strategy to synthesize the high 

SSA SC electrode materials to increase energy and power densities14. The nano-sized RuO2 

pseudocapacitive active materials can be deposited onto the high SSA carbon supports, such as 

carbon grains and CNTs. 

 

 

Figure I.12. Possible strategies to improve both energy and power densities for SCs14. 

 

RuO2 electrodes, with faradaic nature in charge storage, present an almost rectangular shape as 

that of EDL in cyclic voltammogram137-138. However, it is not a consequence of pure EDL charging, 

but of a consequence of fast, reversible successive surface redox reactions74. Although very high 

specific capacitance exceeding 700 F g-1 was reported in hydrated RuO2 electrodes26, the active 

material itself turned out to be too expensive and environmentally unfriendly, which greatly limits 

its widespread application. Therefore, other transition metal oxides such as MnO2 and ZnO have 

been proposed as alternatives for SC electrode materials. 

 

(2) Manganese dioxide (MnO2) 

MnO2 has gained significant attentions as an alternative SC electrode material due to its low 
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cost, low toxicity, abundant resource, environmental friendliness, as well as high specific 

capacitance139-140. The capacitance of MnO2 mainly comes from pseudocapacitance. Two charge 

storage mechanisms have been proposed in MnO2 electrodes. The first one implies the intercalation 

of protons (H+) or alkali metal cations (C+) such as Na+ in the electrode during reduction and their 

deintercalation during oxidation141-144: 

MnO2 + C+ + e- ↔ MnOOC 

The second mechanism is based on the surface adsorption of cations from electrolyte on the 

electrode:  

(MnO2)surface + C+ + e- ↔ (MnO2
-C+)surface 

It should be noted that, like RuO2, MnO2 can also exhibit a rectangular cyclic voltammetry shape 

(typically for EDL), though it possesses a redox nature for charge storage14, 138, 145.  

While MnO2 is a promising material for pseudocapacitor applications, they suffer from low 

electrical and ionic conductivities, which are significantly related to its crystallinity and crystal 

structure. MnO2 can crystallize into several crystallographic structures, as shown in Figure I.1357. 

High crystallinity brings about high conductivity whereas loss of surface area available for 

electrolyte. Contrarily, although low crystallinity leads to a highly porous microstructure of MnO2, 

the resulting electrical conductivity is low3. Therefore, a trade-off between electrical conductivity of 

MnO2 and its porous structure for ionic transportation would be reached for specific purposes 

depending on applications.  

Relatively high conductivity of MnO2 can be obtained by increasing the content of crystallinity 

and tuning the crystal structure, but its conductivity is still poor (ranging from 10-7 to 10-3 S cm-1 

based on different crystal structures) compared with bulk single crystal of RuO2 (104 S cm-1)26. 

Consequently, charge storage of MnO2-based electrodes confines in a very thin layer of the MnO2 

surface, translating into significantly lower specific capacitance values for thick MnO2-based 

electrodes. Nanostructuring is believed to be a highly effective method for accessing all of the 

MnO2 storage sites26, which might be a strategy to develop the high-loading MnO2 electrodes for 

SCs.  
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Figure I.13. Schematic representation of various crystal structure of MnO2: (a) pyrolusite-MnO2, (b) 

ramsdellite, (c) birnessite -MnO2 and (d) spinel -MnO2
57. 

 

(3) Zinc oxide (ZnO) 

ZnO is another promising electrode material for SCs due to its low cost, natural abundance, 

superior electrochemical performance and environmental friendliness9, 78, 146. ZnO nanomaterials 

can be solely deposited on the substrate38 or composited with other metal oxides147, conducting 

polymers148 or carbon-based materials149 to serve as energy storage electrodes. However, its poor 

electrical conductivity remains a major challenge and limits rate capability for high power 

performance, thus hindering its wide application in energy storage150.  

Therefore, one dimensional (1D) ZnO nanostructures have been widely studied because they 

can provide short diffusion path for ions and efficient mechanical support for other electroactive 

materials. A high specific capacitance up to 405 F g-1 at 10 mVs-1 was achieved by coating a layer of 

MnO2 shell onto the 1D single-crystal ZnO nanorod147. Besides, The hybridization of carbon 

materials with ZnO offers the benefits of both the EDL capacitance of the carbon materials with 

large SSA and faradaic capacitance of the ZnO, thereby optimizing the electrochemical performance 

of the ZnO-based SCs. For example, ZnO/reduced graphene oxide/ZnO sandwich-structured 

composite presented a specific capacitance of 275 F g-1 at scan rate of 5 mVs-1 in 1.0 M Na2SO4 as 

well as high cycling stability150. Similarly, a high specific capacitance of 314 F g-1 can be delivered 
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by decorating reduced graphene oxide with ZnO nanoparticles without obvious capacitance decay 

after 1000 cycles151. The electrode composed of 1D ZnO nanostructures sheltered by a thin 

electrochemically reduced graphene oxide (ERGO) film will be de described in Chapter VI. 

 

I.4. Evaluation tools for SC electrode materials 

Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical 

impedance spectroscopy (EIS) are the most commonly used techniques to evaluate the 

electrochemical properties of SCs. Additionally, a coupled electrochemical characterization method, 

electrical quartz crystal microbalance (EQCM) and a non-conventional method derived from EIS 

and QCM, the so-called ac-electrogravimetry, has been employed to study the electrochemical 

performances of SCs. Considering the mechanical properties which are also of importance for an 

efficient and cyclable SC electrode, a method to study the electrode’s viscoelasticity, namely 

electroacoustic impedance has also been introduced. 

 

I.4.1. Cyclic Voltammetry (CV) 

CV is an effective and basic tool to identify the capacitive behavior of SC electrode materials. 

The experimental procedure involves potential cycling within a voltage window preselected for a 

given electrolyte1. Specifically, CV test applies a linear change of potential between positive and 

negative electrodes for two-electrode configurations, and between reference and working electrodes 

for three-electrode systems152. The range of potential change is designated as potential window, and 

the speed of the potential change is called scan rate. Generally, a plot of the current vs. potential is 

the output and used to evaluate the electrochemical processes of the electrode152.  

In a CV experiment, the current response to an applied scan rate will vary depending on 

whether the electrochemical reaction is diffusion-controlled or surface-controlled (capacitive)26, 

153-155. The current response stemmed from capacitive process is proportional to the scan rate, while 

the current limited by semi-infinite diffusion of electrolyte ions varies with the square root of the 

scan rate. Therefore, the instantaneous current at a certain potential can be expressed as153: 

1/2

1 2( )i V k v k v                                    (I.6) 

Or 
1/2 1/2

1 2( )/i V v k v k                                 (I.7) 
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where k1v is the surface-controlled current and k2v
1/2 is the diffusion-controlled current. The 

coefficients k1 and k2 can be obtained through the linear fitting of voltammetric currents at each 

potential. It leads to the calculation of k1v and k2v
1/2, which, therefore, allows for the separation of 

capacitive and diffusion currents155-157.  

A CV response originated from the EDL generally exhibits a rectangular shape14, and the 

charging and discharging voltammograms are almost mirror images of one another. Contrarily, the 

pseudocapacitors usually present some redox peaks, leading to a deviation from the rectangular 

shape in CV curves125, 158-159. It should be noted that the fast, reversible successive surface redox 

reactions may also present a similar shape as that of EDL in CV14, 137-138, as shown in Figure I.1414. 

The specific capacitance can be calculated by integrating the voltammetric charges from a CV curve 

based on Equation I.830, 160: 
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
                  (I.8) 

where m is the mass loading of SC electrodes, v is the scan rate, E1 and E2 are the low and high end 

potentials, and I(E) depicts the response in current.  

 

 

Figure I.14. (a) Schematic of CV for a MnO2 electrode cell in mild aqueous electrolyte (0.1 M 

K2SO4) shows the successive multiple surface redox reactions leading to the pseudocapacitive 

charge storage mechanism14. (b) CV of Fe2O3/nitrogen-doped graphene composite tested in 2 M 

KOH solution at 10 mV s−1, and the shadowed areas represent the capacitive contribution155. 
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I.4.2. Galvanostatic Charge-Discharge (GCD) 

GCD is another widely used technique to characterize the electrochemical performance of SCs 

under a constant current density161. A consecutive charging/discharging of the working electrode is 

performed at a constant current density with or without a dwelling period (a time period between 

charging and discharging while the peak voltage V0 remains constant). A linear response of potential 

(in V) with respect to charge/discharge time (in s) is anticipated for EDLC, whereas the 

non-linearity of charge/discharge curves is normally obtained from the pseudocapacitors, which is 

distinct from the triangular shape from EDLC response117, as shown in Figure I.15162. Generally a 

plot of the potential (E) vs. time (t) is the output. Choosing a proper level of the applied constant 

current is critical to produce consistent and comparable data from a GCD test. 

GCD test is regarded as the most versatile and accurate approach in characterizing SC devices. 

All three core parameters of SC devices, cell (total) capacitance CT, operating voltage V0, and 

equivalent series resistance Rs, can be obtained through this methodology and subsequently used to 

derive most of the other properties, such as power and energy densities, and leakage and peak 

current152. GCD can also be used to test the cycling performance of SCs. Furthermore, the specific 

capacitance (Cs) can be calculated via GCD using the following equation: 

 s

I t
C

m V





                    (I.9) 

where I is the applied current, Δt is the discharge time, m is the mass loading of SC electrodes and 

ΔV is the potential drop during discharge64, 113, 162. 

 

 

Figure I.15. Schematic galvanostatic charge/discharge response of supercapacitor devices: 

pseudocapacitor and ideal EDLC162. 
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I.4.3. Electrochemical Impedance Spectroscopy (EIS) 

EIS is powerful diagnostic tool that not only enables the equivalent series resistance and 

potential-dependent faradaic resistance of the device to be separately evaluated, but also allows the 

calculation of capacitance of the electrode1, 68. More generally, the mechanism of different 

electrochemical reactions can be discover by the EIS approach when an appropriate model is used. 

It is conducted by applying a sinusoidal potential perturbation with a small amplitude (typically 

10-20 mV) over a range of frequencies, which must not cause the system to shift from its 

equilibrium state1, 68. The impedance (Z) is defined as Z=Z' jZ" , where Z´and Z" are the real 

and imaginary part, respectively. The resulting data are usually expressed graphically either in a 

Bode plot to visualize the dependence of both the absolute value of impedance and phase angle on 

the frequency, or in a Nyquist plot to show the imaginary and real parts of the electrochemical 

impedance on a complex plane66, 163.  

EIS has been widely used to characterize the electrochemical properties of SC electrodes. As 

presented in Figure I.16a and b, it is performed to evaluate the effect of carbonaceous coating on 

the interfacial charge transfer in PANI and PPy nanowires covered by a thin layer of carbonaceous 

shell of ~5 nm (i.e., PANI@C and PPy@C electrodes)27. The Rs of PANI@C and PPy@C electrodes 

are higher than the bare polymer electrodes owing to the presence of additional contact resistance 

between carbonaceous shell and polymer core. Besides, the EIS study of 2D Ti3C2Tx (MXene), a 

promising material in electrochemical energy storage applications, has also been reported164. Figure 

I.16c shows a comparable spectra in the low-frequency domains of the Ti3C2Tx electrode measured 

in 1 M LiCl and MgCl2 solutions at -0.2 V vs. Ag/AgCl. However, the high-frequency domain of 

the electrode spectra in MgCl2 solution exhibits a depressed semicircle, which is absent in the 

impedance spectrum measured in LiCl (inset in Figure I.16c). This semicircle is believed to stem 

from the ion transfer across the electrode/electrolyte interface and the Mg2+ transfer is much slower 

than the transfer of singly charged Li+. Furthermore, the effect of cycling on the capacitive behavior 

of the electrode is investigated in MgCl2 solution (Figure I.16d), demonstrating that an aging 

process (100 cycles at a rate of 1 mV s−1 ) can result in a further retardation of the interfacial Mg2+ 

ion transfer in the high-frequency domain (inset in Figure I.16d). 
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Figure I.16. (a, b) Nyquist plots of polymer and carbonaceous shell-coated polymer electrodes 

measured in 1 M H2SO4 at open circuit potential. Insets show the Rs values of the electrodes27; (c, d) 

impedance spectra of Ti3C2Tx electrode (inset presents enlarged view of high-frequency domain)164.  

 

I.4.4. Electrical Quartz crystal microbalance (EQCM) 

EQCM is based on quartz crystal microbalance (QCM) technology. The QCM comprises a thin 

piezoelectric quartz crystal sandwiched between two metal electrodes, where an alternating electric 

field across the crystal is established and causes thickness-shear vibrations of the crystal around its 

resonant frequency165-167. The signal transduction mechanism of the QCM originates from the 

piezoelectric property of the quartz crystal, which was first discovered in 1880 by Curie brothers168. 

They discovered that the application of a mechanical stress to the surfaces of various crystals, 

including quartz, rochelle salt (NaKC4O6·4H2O) and tourmaline, produced a corresponding 

electrical potential across the crystal whose magnitude was proportional to the applied stress. The 
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name “piezoelectricity” was proposed by Hankel after one year.  

Shortly after their initial discovery, the Curie brothers experimentally verified the reverse 

piezoelectric effect by which the application of an electric field across the crystal afforded a 

corresponding mechanical strain. As shown in Figure I.17165, the shear strain is induced through the 

reorientation of the dipoles in a piezoelectric material by an applied potential. Additionally, the 

motion of the material is proportional to the applied potential. It should be noted that the reverse 

piezoelectric effect is the basis of the QCM. The application of an alternating electric field across a 

quartz crystal produces a vibrational (or oscillatory) motion in the quartz crystal parallel to the 

surface of the crystal. It leads to the establishment of a transverse acoustic wave that propagates 

across the crystal thickness (dq). An acoustic standing wave can be formed when the acoustic wave 

length =2 dq
165. The quartz oscillator vibrates with minimal energy dissipated at a characteristic 

resonant frequency, therefore it is deemed as an nearly ideal oscillator169.  

 

 

Figure I.17. Schematic representation of the converse piezoelectric effect for shear motion. The 

electric field induces reorientation of the dipoles of the acentric material, resulting in a lattice strain 

and shear deformation of the material. Direction of shear is dependent upon the applied potential 

while the extent of shear strain depends on the magnitude of the applied potential165. 

 

The nodes of the acoustic wave are positioned in the quartz interior (in the center of the quartz 

crystal at the fundamental frequency, i.e., at the overtone order, n = 1), while the antinodes are 

located on both surfaces. Correspondingly, when a material is deposited on the surface of the quartz, 

the acoustic wave will span the quartz/film interface and propagate through the deposited film 

(Figure I.18a). It is implicitly assumed that a continuous displacement (or shear stress) exists 

across the quartz/film interface, which is referred to as the “no-slip” condition165. In other words, 
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the deposited film could be regarded as an extension the quartz. The film-deposited quartz crystal 

performs as a composite resonator165, 170. It, in turn, can be affected by the electrolyte solution in 

which it is immersed170-171. The thickness increase of this composite resonator due to the deposited 

film is equivalent to the increase of the wavelength (=2 dq) and results in a decrease of the quartz 

fundamental frequency169. The composite resonator performs in such a situation that can be 

modeled by an equivalent electrical circuit, of which the most commonly used is the 

Butterworth-Van-Dyke (BVD) model (Figure I.18b)170. This will be discussed later in the 

description of the electroacoustic impedance measurements (Section 1.4.6). 

 

 

Figure I.18. (a) An oscillating mass-loaded quartz crystal immersed in a liquid medium acting as a 

composite resonator. (b) The corresponding equivalent electrical circuit as per the 

Butterworth-Van-Dyke Model170. 

 

In 1957, Sauerbrey reported a description of the linear relationship between the mass deposited 

on the quartz surface and the microbalance frequency shift172, which can be expressed by Equation 

I.10165. 
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where Δf denotes the measured frequency shift, f0 is the frequency of the quartz in air prior to the 

film deposited, Δm is the corresponding mass change, A is the piezoelectrically active area, µq is the 

shear modulus and q is the quartz density. When a QCM is used in conjunction with 

electrochemical measurements, such as CV and GCD, it is frequently referred to as electrochemical 

quartz crystal microbalance (EQCM).   

EQCM has developed into a powerful in situ technique to measure ionic fluxes in different 

electrochemical systems167, 173-174, such as conducting polymers, carbon materials and metal oxides, 

Here, not only the current response but also the simultaneous mass variation of the electrode is 

tracked during an electrochemical process.  

For example, a mass increase/decrease upon reduction/oxidation was observed in PPy film by 

EQCM, which is presumably due to the insertion/expulsion of cations (Figure I.19a)175. Moreover, 

the mass response, translated from EQCM frequency shift, can separate the ionic fluxes in some 

basic case for carbon electrode due to adsorption of cations on the negatively charged surface (Q<0) 

and anions on the positively charged surface (Q>0) (Figure I.19b)176. Furthermore, EQCM has also 

been used to study the relationship between the pore sizes of the electrode and ion sizes in the 

electrolyte. The different ion adsorption behaviors of two carbide-derived carbons with average 

pore sizes of 1 nm (CDC-1 nm) and 0.65 nm (CDC-0.65 nm) in neat and solvated 

1-Ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide (EMI-TFSI) (2 M EMI-TFSI in 

acetonitrile) electrolytes have been reported. Figure I.19c167 describes an example for CDC-1 nm 

electrode, whose pore size is larger than ion size (0.76 and 0.79 nm for the EMI+ cation and TFSI− 

anion). Both (solvated)cations and anions are able to participate in charge balance mainly 

depending on the potential of zero charge, i.e., cations at Q<0 and anions at Q>0. However, for 

CDC-0.65 nm electrode, whose pore size is smaller than ion size, no mass change is detected in neat 

EMI-TFSI electrolyte, and only solvated cation (EMI+ hydrated with 1.6 acetonitrile (AN) molecule 

averagely, i.e., EMI+ + 1.6 AN) response is observed in solvated electrolyte (2 M EMI-TFSI/AN) 

when the CDC-0.65 nm electrode is negatively charged. Additionally, the electrochemical behavior 

of a transition metal oxide, MnO2, has been characterized in 0.5 M LiClO4 and NaClO4 electrolytes. 

The current response and the simultaneous mass change are obtained by EQCM measurements 

(Figure I.19d)177, from which the mass per mole of electrons (MPE) exchanged between the 

electrode and the electrolyte can be estimated according to MPE = F Δm/Δq. 
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Figure I.19. EQCM measurements for a polypyrrole film in 0.1 M Na2SO4 (a),175 a carbon 

electrode in a 0.5 M NH4Cl aqueous solution at a scan rate of 20 mVs-1 (b),176 a carbide-derived 

carbon with average pore size of 1 nm in neat 1-Ethyl-3-methylimidazolium 

bis(trifluoromethane-sulfonyl)imide (EMI-TFSI) electrolyte167 (c) and a film of Li-birnessite type 

MnO2 in 0.5 M LiClO4 and 0.5 M NaClO4 at a scan rate of 25 mVs-1 (d).177 

 

As discussed above, classical EQCM response allows for insights into the ionic flux exchanged 

between the electrode and the electrolyte. But it remains challenging for the deconvolution of the 

global electrogravimetric response into gravimetric and temporal components since the 

measurements are limited to scan rates or current densities. To overcome these limitations, the 

ac-electrogravimetry is suggested as a complementary tool to the EQCM, where the different 

scenarios of the charge compensation process in different electrodes can be scrutinized. 

 

I.4.5. Ac-electrogravimetry 

Ac-electrogravimetry is based on a QCM used in dynamic regime and coupled with 

electrochemical impedance spectroscopy, which was proposed in 1988 by Gabrielli178. When a 
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uniform thin layer of a foreign material is added to the surface of the quartz crystal resonator, it can 

be used as the working electrode (WE) following a classical electrochemical configuration179. When 

a sinusoidal potential perturbation is applied to an electroactive film, it induces concentration 

variation of the species which results from the species transfer for charge compensation purposes. 

These concentration or mass variations of species can be tracked thanks to the frequency variation 

of a specific QCM used under dynamic regime, i.e., under frequency potential modulation of the 

WE. Through this method, the species transferred, if they intervene with different kinetics in an 

electrochemical process, can be separated and a clear identification of the species with their molar 

mass can be achieved175, 177, 180-184.  

 

 

Figure I.20. The working mechanism of ac-electrogravimetry. 

 

The working mechanism of this technology is schematically described in Figure I.20. The 

QCM working electrode is firstly polarized at V0 by a potentiostat. Species exchange (not only ionic 

but also non-charged species like free solvent) occurs at the film/electrolyte interface upon a 

sinusoidal small amplitude potential perturbation, ΔVsin(ωt), superimposed on the stationary 

potential, V0. It can lead to a mass change of the electrode, reflected by a frequency variation of the 

QCM, Δf. Then the frequency response is translated into a voltage change (ΔVf) by 

frequency/voltage converter which is sent to a four-channel Frequency Response Analyzer (FRA), 

which cannot directly analyze the frequency response. Briefly, the response of the quartz electrode 

modified with a thin electroactive film to this sinusoidal small amplitude potential perturbation (ΔV) 

is the current (ΔI) and the mass response (in the form of ΔVf). Then, thanks to a four-channel FRA, 
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the following transfer functions (ΔV/ΔI) and the (ΔVf/ΔV) are obtained which are converted to the 

classical impedance (ΔE/ΔI) and electrogravimetric or mass/potential (Δm/ΔV) transfer function 

with a mathematical treatment (description of the ac-electrogravimetry and the theoretical 

background will be given in Chapter II). 

 

 

Figure I.21. Electrogravimetric TFs for a polypyrrole film in 0.25 M NaCl at -0.55 V vs. SCE 

(a),182 a CNT film in 0.5 M NaCl (pH=7) at -0.4 V vs. Ag/AgCl (b),185 an ERGO film in 0.5 M LiCl 
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at -0.5 V vs. Ag/AgCl (c)186 and a film of Li-birnessite type MnO2 in 0.5 M NaClO4 at 0.6 V vs. 

Ag/AgCl (d).177 (e) and (f) compare the mass variation reconstructed from ac-electrogravimerty and 

obtained from EQCM.185 

 

This technique has already been fruitful in differentiating the species contributions in various 

capacitive and faradaic processes of conducting polymers,181-182 carbon materials185-186 and 

transitional metal oxides.177 For example, three species with different transfer kinetics are identified 

in the charge balance of PPy film in 0.25 M NaCl at -0.55 V vs. SCE by ac-electrogravimetric 

measurements, i.e., Na+ hydrated with two water molecules (Na+
·2H2O), free water molecules and 

Cl- (Figure I.21a). The usage of ac-electrogravimetry in CNT-based electrode (Figure I.21b) 

reveals that two cations (Na+
·H2O and H+) and free water molecules participate in the 

electroadsorption process when a CNT film is polarized at-0.4 V vs. Ag/AgCl in 0.5 M NaCl 

(pH=7). Figure I.21c shows that hydrated cations (Li+
·nH2O) present a higher transfer kinetics in 

charge compensation process of ERGO-based electrode than its counterpart (Li+) in 0.5 M LiCl at 

-0.5 V vs. Ag/AgCl. Similar phenomena are observed in a film of Li-birnessite type MnO2 (Figure 

I.21d), where Na+
·H2O exhibits a higher transfer kinetics than Na+. Notably, free water molecules 

have the same and opposite flux direction with the cationic species in Figure I.21c and d, 

respectively. Altogether, ac-electrogravimetry contributes to disentangle the subtleties of global 

charge compensation process involving multiple species, offering a quantitative picture of each 

participant with their transfer kinetics and identifying them by their molar masses. Besides, it can 

provide complementary information for EQCM results (Figure I.21e and f). The complementarity 

between EQCM and ac-electrogravimetry is highly anticipated, limitations of either of which can be 

compensated by the other to unveil the intricacy of the charge storage mechanisms185.  

 

I.4.6. Electroacoustic measurements 

Besides superior electrochemical properties, long-term cycling performances are also of 

importance for an efficient SC electrode. Upon cycling, periodical ion 

electroadsorption/electrodesorption and/or insertion/extraction are possibly accompanied with 

solvent flux which lead to repeated species-transfer-induced deformation as well as viscoelastic 

changes of the SC electrode. Such viscoelastic changes which are not completely relaxed at the end 
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of each cycle and tend to gradually accumulate, thereby result in a failure of the mechanical 

integrity and lead to an eventual cyclability fading. Nevertheless, of practical and fundamental 

importance but scarcely touched is the correlation between electrode viscoelasticity and its 

electrochemical performance164, 187-188. Electroacoustic impedance technique has been used to 

estimate the two important parameters for describing the viscoelasticity of the SC electrode, i.e., the 

storage (G´) and loss moduli (G")180, 189-190. G´ represents the electrode stiffness whereas G" 

reflects its viscosity. Here, two models are discussed, BVD (Butterworth-Van Dyke) model and 

viscoelastic model. BVD model is used for sufficiently thin and rigid film, whereas viscoelastic 

model for non-rigid or thick films191-193. 

 

(1) BVD (Butterworth-Van Dyke) model 

The BVD circuit consists of two parallel branches, as illustrated in Figure I.22. C0 in the static 

arm refers to the static capacitance of the quartz crystal, which is parallel with a series branch, 

known as the motional arm. The motional arm consists of an inductance (L1), a capacitance (C1) and 

a resistance (R1). L1 is the inertial component related to the displaced mass, C1 is the compliance of 

the quartz element presenting the elasticity of the composite resonator and R1 denotes the energy 

dissipation during oscillation because of internal friction, mechanical losses in the mounting system 

as well as acoustical losses to the environment165. The relationship between the components of the 

motional arm and the mechanical properties of the quartz resonator is established. An increase in L1 

and R1 will result in the corresponding increase in mass loading and dissipated energy, while an 

increase in C1 will lead to a decrease in rigidity165, 170, 194. The use of the BVD circuit to model the 

composite resonator is limited to the thin rigid film deposited on the quartz, where the QCM 

response can be regarded solely from gravimetric contributions. The electromechanical 

characteristics of the quartz resonators can be reflected by BVD model.  

When the surface of the quartz resonator is loaded with some foreign materials, the surface 

loading can modify the electrical impedance of the unperturbed quartz resonator, which can be 

expressed by adding an inductance L2 and a resistance R2 in the BVD circuit. L2 Represents the 

inertial mass of the film and liquid coupled upon oscillation, whereas R2 represents the energy 

dissipation in the form of viscoelastic and damping effects of the film and liquid overlayer194. The 

Sauerbrey equation can be directly used to interpret the relationship between frequency shift of the 
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quartz resonator and loading mass under the condition that the acoustic deformation across the film 

can be neglected, i.e., R2 is ~ 0193. 

 

 

Figure I.22. BVD equivalent circuit model for a QCM resonator with a surface loading. The 

surface loading is resolved into motional inductance L2 and resistance R2
194. 

 

(2) Viscoelastic model 

It is worth noting that the QCM measures frequency changes instead of mass changes. The 

interpretation of frequency changes is performed according to the Sauerbrey equation. Therefore, an 

ideally rigid behavior of deposited film is assumed to meet the criterion of Sauerbrey equation. 

However, in some cases, the quartz is loaded with non-rigid materials, like polymers, which possess 

an obvious viscoelastic behaviors and thus, cause a lack of conformance with the Sauerbrey 

equation. The rheology of these materials should be well defined, because their QCM response is 

due to both gravimetric and viscoelastic contributions. The latter should be removed in order to get 

access to the pure gravimetric response. When a viscoelastic film is deposited on the quartz 

resonator surface (Figure I.23)192, the shear displacement launched at the inner film/quartz interface 

propagates across the film, reflecting back into the film at the outer film surface193. The breakdown 

of the BVD approximation with thick films occurs because of the unsynchronized movement of the 

upper film surface and lower film surface191. As shown in Figure I.24, for thin and stiff films, a 

linear Sauerbrey approximation establishes; additionally, the stiffer the film, the higher mass 

loading it requires to induce deviation from the linear Sauerbrey approximation191. It should be 
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mentioned that, besides viscoelastic effects, other factors, such as high mass loadings, surface 

roughness, surface stress, interfacial slippage can also cause the failure of Sauerbrey equation165.  

 

 

Figure I.23. Cross-sectional view of a quartz resonator with a viscoelastic film coating the upper 

surface. The thickness of the film is exaggerated relative to that of the quartz. The potential, V, 

creates the shear deformation in the crystal192. 

 

 

Figure I.24. Side cross-sectional view of AT-cut quartz wafer, showing shear displacement profiles 

for the fundamental (a) and third-harmonic resonances (b). Calculated effect of polymer stiffness 

for lossless polymers in contact with water at fundamental quartz resonance (c) and third-harmonic 

quartz resonance (d)191. 
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Figure I.25. EQCM-D data for composite LFP electrodes with PVdF (a) or NaCMC (b) containing 

small LFP particles. Dashed arrows show the direction of increasing n195. 

 

Besides, multiharmonic EQCM with dissipation monitoring (EQCM-D) has also been used not 

only for the electrode structure characterization174, 196 but also for the investigation of gravimetric 

and viscoelastic changes of electrodes during charge storage process. It has two output 

characteristics, i.e., resonant frequency normalized by overtone order (f/n) and dissipation factor (D), 

defined as the ration between the full resonance peak width and the resonance frequency, 

(W/n)/(f/n)195, 197-198. The raw experimental EQCM-D data collected for the electrodes are fitted by 

different models depending on the composition of the electrodes in order to retrieve the geometric 

and mechanical structural characteristics of the probed electrodes. An example of EQCM-D 

responses for composite LiFePO4 (LFP) electrodes ( LFP/PVdF and LFP/NaCMC, with a mass 

ratio of 90:10) is presented in Figure I.25195. It shows for the stiff PVdF-containing composite 

electrode the values of Δf/n and ΔD are independent of the time after immersion of the 

PVdF-containing composite electrode into 0.1 M Li2SO4 solution. Contrarily, the soft 

NaCMC-based electrode reveals the n-dependent changes of Δf/n and ΔD with time, which is 

typical for a progressing material softening. 

 

I.5. Objectives and outline of the thesis 

The primary objectives of the present thesis are to explore the species transfer in the charge 

storage mechanisms of commonly used supercapacitor electrode materials, i.e., conducting 

polymers, carbon materials and transitional metal oxides. Additionally, the viscoelastic evolutions 
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of some specific electrodes are also studied in order to shed light on the correlation between 

electrochemical and viscoelastic evolutions.  

In the present thesis, dodecyl sulfate-doped polypyrrole (PPy-DS) film, electrochemically 

reduced graphene oxide (ERGO) film and ZnO nanostructures are synthesized as the representative 

of conducting polymer-, carbon- and metal oxide-based electrode, respectively. To achieve the 

research goal mentioned above, a combined methodology involving electrochemical quartz-crystal 

microbalance (EQCM), ac-electrogravimetry and electroacoustic impedance measurements is 

adopted. Specifically, EQCM is used for an in situ capturing of the global transfer of the species at 

the electrode/electrolyte interface, whereas its complementary counterpart ac-electrogravimetry 

contributes to disentangle the subtleties of global charge compensation process involving multiple 

species, offering a quantitative picture of each participant with their transfer kinetics and identifying 

them by their molar masses. Therefore, coupling EQCM with ac-electrogravimetry provides a 

strategy to unveil the charge storage mechanism of the electrode during electrochemical process. 

Furthermore, its corresponding viscoelastic evolution can be tracked through the electroacoustic 

impedance measurements. By and large, the usage of this combined methodology may pave the way 

to understand the charge storage mechanism and the relationship between electrode’s 

electrochemical and mechanical properties, facilitating the fabrication of highly efficient SC 

electrodes with superior cyclability. 

As for conducting polymer-based electrodes, the most critical challenge is the cycling stability. 

Accordingly, after introducing the general experimental methods in Chapter II, Chapter III describes 

the correlation between electrochemical and viscoelastic variations of PPy-DS film during cycling. 

The ionic transfer and viscoelastic properties of PPy-DS film will be investigated after it is 

progressively cycled. The ion adsorption behavior and viscoelastic changes of ERGO with different 

content of the oxygen functionalities on its layers are presented in Chapter IV, where (i) the 

influence of the oxygen functionality contents on the ionic response will be investigated and (ii) the 

viscoelastic effect of the deposited loading on the QCM will be explored for the validity of 

Sauerbrey equation. The interfacial charge transfer behaviors of ZnO and its composite ZnO/ERGO 

are tracked in Chapter V and VI. The complementarity between EQCM and ac-electrogravimetry is 

highlighted in these two chapters. Last but not the least, the general conclusion of this thesis is 

presented in Chapter VII. 
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II.1. Materials characterization techniques 

This section summarizes the techniques for structural and morphological characterizations of the 

materials used in the present thesis, involving their operation principles, instrument type as well as 

specific sample preparations. 

 

II.1.1. Fourier transform infrared (FTIR) spectroscopy 

FTIR is an analytical spectroscopy technique for the identification of materials and molecules 

based on their specific infrared absorption, which utilizes the infrared light spectrum to probe sample 

interactions1-3. In principle, when a beam of infrared (IR) light passes through a sample, some of the 

IR light is absorbed by the material and some is transmitted through it. The absorbed photons can 

excite molecules into a higher vibrational energy state. The energy absorbed corresponds to the 

vibrational frequency of the sample molecules’ functional groups and thus permits its identification2. 

At the heart of every FTIR is an optical device named an interferometer. The oldest and perhaps 

the most common type of interferometer in use today is the Michelson interferometer, which consists 

of four arms (Figure II.1a)1. The top arm comprises an infrared source and a collimating mirror, 

which is used to collect the light from the source and parallelize its rays; a fixed mirror is contained 

in the bottom arm, which is contrary to the moving mirror capable of moving left and right (right 

arm); the sample and the detector are located in the left arm. In the center of the interferometer is an 

optical device called a beam splitter, which can transmit and reflect some of the light incident upon 

it. The light transmitted and reflected by the beam splitter travels towards the fixed mirror and moving 

mirror, respectively. Then, the light will be reflected from these two mirrors and travel back to the 

beam splitter, where they are recombined into a single light beam that leaves the interferometer, 

interacts with the sample, and strikes the detector1. 

An interferogram is the fundamental measurement obtained by an FTIR, which is Fourier 

transformed to yield a spectrum giving information about the infrared energy corresponding to the 

sample absorption1, 4. As shown in Figure II.1b, a FTIR spectrum is a plot of the infrared intensity 
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versus the wavenumber (in cm-1) obtained after a FT of the interferogram. 

The FTIR spectra were recorded on VERTEX 70 spectrometer (BRUKER Co., USA) from 2000 

to 650 cm-1 using the Attenuated Total Reflectance (ATR) mode with a 4 cm-1 resolution. Before each 

measurement, background spectra were collected in order to eliminate the interference from the 

environment. The films used for FTIR spectroscopy measurements were prepared on ITO coated 

glass slides and cycled under the same conditions as those on gold electrode of the quartz resonators. 

 

 

Figure II.1. (a) The optical diagram of a Michelson interferometer and (b) the Fourier transformation 

of an interferogram to a single beam spectrum1. 

 

II.1.2. Ultraviolet-visible (UV-vis) spectroscopy 

UV-vis spectroscopy is an analytical technique routinely used for the quantitative determination 

of a large number of analytes, including inorganic, organic and biological species5. Spectroscopy in 

the UV-vis spectral region of the electromagnetic spectrum is often called electronic spectroscopy 

because electrons are transferred from low-energy to high-energy molecular orbitals when the 

material is irradiated with light6-7.  

In principle, energetically favored electronic transitions in the molecule are from the highest 

occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). 
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Absorption of light in the UV-vis range promotes the electrons in a lone pair (n) or bonding (or ) 

orbital to an antibonding (or ) orbital. The wavelength of light absorbed depends on the energy 

gap between the ground state (lower energy state) and the excited state (higher energy level) of 

molecular orbitals. If the energy gap is large, photons with higher energy are absorbed, corresponding 

to the short wavelength. When the energy gap in the molecule becomes smaller, the wavelength 

absorbed moves towards the low energy range of UV-vis spectral region, leading to a red shift8.  

As described in Figure II.2a, a longer conjugated π system results in a smaller HOMO-LUMO 

gap, leading to a longer wavelength of the light absorbed8. Therefore, it is a useful tool to track the 

electrochemical activity loss of conducting polymers upon cycling. An example of UV-vis spectra of 

dodecylsulfate-doped polypyrrole (PPy-DS) film during electrochemical cycling process is presented 

in Figure II.2b.  

UV-vis spectra were used in this PhD work to determine the change of band energies of PPy 

during cycling, reflecting the evolution of its conjugation length. UV-vis spectra were collected with 

a Hitachi U-4001 spectrophotometer. The films used for UV-vis spectroscopy measurements were 

prepared on ITO coated glass slides and cycled under the same conditions as those on gold electrode 

of the quartz resonators. 

 

 

Figure II.2. (a) The relationship between the conjugated length in the molecule and the corresponding 

HOMO-LUMO gap8. (b) UV-vis spectra of fresh, 100- and 175-cycled PPy-DS film9. 

 

II.1.3. Scanning electron microscopy (SEM) 

SEM is one of the most versatile techniques available for the examination and analysis of the 

morphology of materials. 
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The SEM technique uses a focused electron beam to scan the surface of the sample, as shown in 

Figure II.32. SEM is performed under high vacuum in order to exclude the obstruction of the electron 

beam through the microscope by small particles, gas molecules or air, which could deflect the 

electrons and thus modify the obtained results4. Samples must be electronically conductive, at least 

on the surface, to prevent the accumulation of electrostatic charges that can blur the image quality at 

higher resolutions. Therefore, nonconductive samples are usually sputtered with an ultrathin coating 

of electrically conducting materials, such as gold or platinum10-11, to provide a nanometer-thick 

conductive layer.  

The sample is irradiated by a focused electron beam, which is typically generated from an 

electron gun fitted with a tungsten filament cathode. Instead of bouncing off immediately, the incident 

electrons penetrate for some distance before they collide with surface atoms of the sample and a 

region of primary excitation, where signals such as secondary electrons, backscattered electrons, 

Auger electrons and characteristic X-rays are produced, is created2. Secondary electrons and 

backscattered electrons are commonly used for imaging. The secondary electrons are low energy 

electrons, which can reach the detector in great number depending on the incidence angle and generate 

topographic information of the sample surface with good edge details; whereas the backscattered 

electrons are electrons with higher energy deflected elastically or scattered back to the detector. They 

produce images of different brightness based on the sample composition: heavier elements present 

brighter images compared with lighter elements due to greater backscattering intensity. Therefore, 

the surface composition can be obtained through the images generated from the backscattered 

electrons2, 4. 

The SEM analyses of the materials in this present thesis were performed under vacuum 

conditions using a field emission gun scanning electron microscope (FEG-SEM, Zeiss, Supra 55). 
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Figure II.3. (a) Signals generated by interaction of electron beam and specimen and regions from 

which each signal type can be detected. (b) Scanning electron microscope2. 

 

II.1.4. X-ray diffraction (XRD) 

X-rays are high-energy electromagnetic radiations. They have energies ranging from about 200 

eV to 1 MeV, locating between -rays and ultraviolet (UV) radiation in the electromagnetic 

spectrum12. XRD is a nondestructive analytical technique where a sample is bombarded with an x-

ray beam to analyze the transmitted and diffracted beams2, which can be used for characterizing and 

identifying crystalline structures. As shown in Figure II.4a12, X-rays are generated in an x-ray tube 

consisting of two electrodes enclosed in a vacuum chamber. The cathode (usually a tungsten filament) 

is heated to produce the electron emission. They are accelerated by a high potential towards the anode 

(usually a copper), which is grounded. The electrons with high velocity can collide with the anode 

and thus induce the emission of x-ray radiations12.  

Each quantum of electromagnetic radiation, or photon, has an energy, E, which is proportional 

to its frequency, v: 

E hv             (II.1) 

The wavelength (λ) of X-rays related to its frequency is characteristic of the anode material and 

can be expressed by:

hc

E
              (II.2) 

where h is the Planck’s constant and c is the speed of light. 
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XRD can be effectively used to characterize and identify the crystal structures of materials. It is 

possible to determine the average spacings between layers or rows of atoms, where Bragg’s law plays 

a fundamental role13: 

2 sinn d             (II.3) 

where d presents the interplanar spacing (the difference in path length for the ray scattered from the 

top plane and the ray scattered from the bottom plane),  is the scattering angle and n is an integer 

representing the order of the diffraction peak, shown in Figure II.4 (b)4. It demonstrates that the 

constructive wave interference (strong diffraction) occurs when the difference in path length for the 

top and bottom rays is equal to an integer multiple of the wavelength. 

The XRD measurements were performed at ambient conditions using Phillips PANalytical X’Pert 

Pro diffractometer with Cu Kα radiation (λ = 1.54184 Å). 

 

 

Figure II.4. (a) Schematic showing the essential components of a modern x-ray tube12 and (b) 

illustration for the Bragg’s law4. 

 

II.1.5. X-ray photoelectron spectroscopy (XPS) 

XPS is one of the most powerful and common chemical analysis techniques to analyze the surface 

of a sample, i.e., the elements constituting the sample, surface composition and its chemical bonding 

state by irradiating the sample surface with photons of characteristic energy (usually MgKα radiation, 

hv = 1253.6 eV, linewidth 0.70 eV; and AlKα radiation, hv = 1486.6 eV, linewidth 0.85 eV)14-16. 

These photons directly interact with core electrons of the sample atoms. As a result, ionized states are 
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created, and photoelectrons are emitted15.  

Based on the photoelectric effect, the binding energy (EB) of a core-level electron is overcome 

by the energy (hv) of the incident X-ray photon, resulting in the core-level electron excited and ejected 

from the sample. The kinetic energies (EK) of the ejected photoelectrons are measured by an electron 

spectrometer whose work function is . Therefore, the (EB) of each emitted electron can be described 

by the following relationship17:   

B KE hv E                      (II.4) 

In practice, a sample is illuminated with a monochromatic single wavelength x-ray beam, causing 

core electrons of the sample surface to overcome their binding energy and thus escape from the 

sample surface where they are detected2. The binding energy of the photoelectron is characteristic of 

the orbital from which the photoelectron originates17. It provides detailed information about the 

surface elements and composition.  

XPS spectra are usually plotted by intensity (counts per second) as a function of the EB of the 

electrons detected, which quantify both peak intensity and peak position. The former measures how 

much of a material is at the sample surface, while the latter indicate the elemental and chemical 

composition4, 15.  

In the present thesis, XPS measurements were performed using a Thermo Scientific K-Alpha X-

ray photoelectron spectrometer with monochromatized Al Kα excitation. Survey and high-resolution 

spectra were acquired with a pass energy of 100 eV and 20 eV, respectively. The experimental data 

were analyzed using the Avantage software. The sample elemental composition was determined by 

measuring the photopeak area after a Shirley background subtraction. 

 

II.2. Electrochemical and electrogravimetric characterization  

The electrochemical and electrogravimetric characterizations were performed based on quartz 

crystal microbalance (QCM). In the present PhD work, the global electrochemical behaviors of 

different SC electrodes were tracked by coupling the QCM with cyclic voltammetry (CV) and 

galvanostatic charge/discharge (GCD) techniques, namely, electrochemical quartz crystal 

microbalance (EQCM). A method coupling QCM with electrochemical impedance spectroscopy 

(EIS), i.e., ac-electrogravimetry, was employed to disentangle the subtleties of global charge 
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compensation process, offering a quantitative picture of each participant with their transfer kinetics 

and identifying them by their molar masses. 

 

II.2.1. Electrochemical quartz crystal microbalance (EQCM) 

EQCM, also called cyclic electrogravimetry, is a technique coupling Quartz Crystal 

Microbalance (QCM) and electrochemical measurements, which cannot only track the current 

response but also the simultaneous mass change occurring in the working electrode during an 

electrochemical process18-20. 

The gravimetric measurements were performed based on quartz crystal microbalance (QCM) 

with piezoelectric effect. Figure II.5 schematically illustrates the piezoelectric effect through the 

generating of an electric charge as the result of a force exerted on the piezoelectric material21. The 

gravity centers of the negative and positive charges of each molecule coincide before the material 

subjected to the external force (Figure II.5a), resulting in the reciprocal cancellation of the external 

effects from negative and positive charges; upon an external force, dipoles can be formed because of 

the separation of the positive and negative gravity centers of the molecules (Figure II.5b); Then, an 

electric field appears in the material (Figure II.5c). Contrarily, when a voltage is applied on a 

piezoelectric material, a corresponding mechanical deformation would be produced, which is called 

reverse piezoelectric effect and serves as the fundamental principle for the microbalance operation.   

 

Figure II.5. Simple molecular model for explaining the piezoelectric effect: (a) unperturbed molecule; 

(b) molecule subjected to an external force, and (c) polarizing effect on the material surfaces21. 
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In the present work, the gold (0.2 cm2) coated quartz resonator with a diameter of 14 mm (9 

MHz-AWS, Valencia, Spain) is used. The electrochemical performances of different electroactive 

materials-loaded quartz resonator were characterized by CV and GCD. The QCM was coupled with 

both measurements to track the simultaneous frequency shift (Δf) of the quartz resonator electrode 

during electrochemical process, which can be converted into mass response (Δm) according to 

Sauerbrey equation22:  

Δf = -Cf ×Δm          (II.5) 

where Cf  is the sensitivity factor of the quartz crystal resonator and can be checked by the 

electroacoustic measurements23 and Δm presents the film mass change per unit area. It should be 

noted that electroacoustic measurements are necessary for the correction of sensitivity factor of the 

quartz resonator since Sauerbrey equation is only valid for sufficiently thin and rigid film. 

The EQCM measurements were performed employing a standard three-electrode electrochemical 

cell (Figure II.6a), which consisted of electroactive materials-loaded quartz resonator (9 MHz-AWS, 

Valencia, Spain) as the working electrode, a saturated calomel electrode (SCE) or Ag/AgCl (3 M KCl 

saturated with AgCl) as the reference electrode, and platinum grid as the counter electrode. The cell 

is connected to a Yokogawa frequency counter and a potentiostat (Biologic SP200 or Autolab 

PGSTAT 100). Figure II.6b presented an example of EQCM result from quartz resonator loaded by 

electrochemically reduced graphene oxide (ERGO) with the different content of oxygen 

functionalities on its basal planes in 1 M NaCl at a scan rate of 10mV/s, which will be discussed in 

detail in Chapter IV. 
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Figure II.6. (a) A lab-made EQCM cell and (b) EQCM results of ERGO electrodes with the different 

content of oxygen functionalities. The inset in (a) is the picture of quartz resonator used in the present 

work. The upper curve in (b) is the current response whereas the lower curve is the corresponding 

mass vs. potential profile during cycling. 

 

II.2.2. Ac-electrogravimetry 

Ac-electrogravimetry is a pertinent method to study the mechanism of transfer of different species 

directly or indirectly involved in the charge compensation process associated to an electrochemical 

process. In this approach, these transferred species at different kinetics can be separated and their  

identification can also be clearly achieved24-25.  

In ac-electrogravimetry, one of the most important components of the experimental set-up is the 

frequency/voltage (F/V) converter, where the analog processing was obtained by means of a phase 

lock loop circuit, as described in Figure II.726. More precisely, the microbalance frequency signal is 

translated into the voltage signal in frequency/voltage converter and sent to the Frequency Response 

Analyzer (FRA, SOLARTRON 1254), as shown in Figure II.8. The electrogravimetric transfer 

function (TF), ( )




m

E
 can be simultaneously obtained with the electrochemical impedance, 

( )




E

I
 . It should be noted that these two TFs are not directly obtained.  The raw TFs,  ( )





fV

V

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and ( )




V

I
 are directly measured by the FRA from which the ( )





m

E
 and ( )





E

I
  are obtained 

after a numerical treatment in Mathcad software. 

 

 

Figure II.7. Block diagram of the experimental set-up.26 

 

Although the electrochemical impedance and the electrogravimetric TF are simultaneously 

measured, the frequency range of measurement for impedance is from ~65 KHz to ~10 mHz but only 

from ~1 KHz to ~10 mHz for the electrogravimetric TF, which is ascribed to a distortion of working 

frequency signal (phase shift and modulus attenuation) occurring in the detection device (F/V 

converter).26 The F/V converter sensitivity in the linear part is around 29mVHz-1.27-28 

Compared to ( )




E

I
  TF, only considering the ionic species transfer, the ( )





m

E
 TF also takes 

the free solvent contribution into account. It should be noted that the microbalance frequency change, 

Δfm, is generally around tens of hertz while the carrier frequency, fm, is around 9 MHz. In order to 

have a higher level of performance of the F/V converter, the carrier frequency is reduced to a few 

hundred hertz (generally ~ 400 Hz). Herein, a reference frequency synthesizer (Agilent 33250A) is 

used to obtain a frequency difference of ~ 400 Hz between the microbalance quartz frequency (shown 

on the frequency counter) and that from the reference synthesizer. Finally, the raw TF ( )




fV

V
 and 
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( )




V

I
 were measured by the FRA, which leads to the electrogravimetric TF ( ( )





m

E
 ) and the 

electrical TF ( ( )




E

I
 ) to be obtained simultaneously at a given potential and frequency modulation, 

f (pulsation =2f).  

Based on the electrochemical impedance ( ( )




E

I
 ), the experimental charge/potential ( )





q

E


TF can be calculated in order to have a clearer view on the ionic species involved in the 

electrochemical process: 

exp exp

1
( ) ( )

Iq

E j E
 






 
                           (II.6) 

Correspondingly, from the experimental electrogravimetric TF, ( )




m

E
 , several partial 

mass/potential transfer functions can also be calculated by removing one of the participants in the 

charge compensation process. For example, if four species are involved in the electrochemical process: 

cation 1 (c1) with valence Zc1, cation 2 (c2) with valence Zc2, anion (a) with valence Za and solvent 

(s), the different experimental partial mass/potential TFs can be estimated by extracting contributions 

from anion, cation 1 and cation 2, respectively, which can be expressed as following equations: 

1 2

exp exp exp

( ) ( ) ( )

c c s

a

a

Mm m q

E E FZ E
  

  
 

  
                       (II.7) 

2

1

1exp exp exp

( ) ( ) ( )

c as

c

c

Mm m q

E E FZ E
  

  
 

  
                       (II.8) 

1

2

2exp exp exp

( ) ( ) ( )

c as

c

c

Mm m q

E E FZ E
  

  
 

  
                       (II.9) 

From a theoretical point of view, the concentration variation of each species, ΔCi, under a 

sinusoidal potential perturbation, ΔE, at the film/electrolyte interface can be described as25, 29:  

( )i i

th f i

C G

E j d K




 


 
             (II.10) 

where Ki and Gi are the partial derivatives of the flux (Ji) with respect to the concentration and the 

potential, respectively and df is the film thickness.  

Ki represents the transfer kinetics of each species related to the characteristic frequency of one species 
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(fi) while Gi is the reciprocal of the transfer resistance (
1

i

i

Rt
FG

). It represents the ease or difficulty 

of the species transfer at the film/electrolyte interface. Similarly, four species are considered in the 

electrochemical process, cation 1 (c1) with valence Zc1, cation 2 (c2) with valence Zc2, anion (a) with 

valence Za and solvent (s), the faradic impedance, ZF() can be expressed as: 

1 2

1 2

1

( ) ( ) ( ) ( ) ( )
c c a

F f c c ath
F th

C C CE
Z j Fd Z Z Z

I E E E
     



    
      
     

     (II.11) 

where ΔCc1, ΔCc2 and ΔCa are the concentration changes for cation 1, 2 and anion, F is the Faraday 

constant and  is the pulsation.  

Then, the global electrochemical impedance, ( )




E

I
  can be defined as: 

1 2

1 2

1 2

1

( ) R
c c a

dl f c c a el

f c f c f ath

G G GE
j C j Fd Z Z Z

I j d K j d K j d K
  

  



  
      

       

   (II.12) 

where Cdl and Rel are the interfacial capacitance and electrolyte resistance, respectively. 

Parallelly, the electrogravimetric transfer function, ( )




m

E
 can be expressed as Equation II.13, 

where Mi (i = c1, c2, a and s) is the molar mass for each participant. 

1 2

1 2

1 2

( )
c c a s

f c c a s

th f c f c f a f s

G G G Gm
d M M M M

E j d K j d K j d K j d K


   

 
     

      
    (II.13) 

Charge/potential transfer function, ( )




q

E
 only takes into consideration ionic species transfer 

and it can be defined as:  

1 2

1 2

1 2

1
( ) ( )

c c aF
f c c a

th f c f c f a

G G GIq
Fd Z Z Z

E j E j d K j d K j d K
 

   

 
    

      
        (II.14) 

Additionally, the partial TFs are used to provide a crosscheck for validation of hypothesis 

involving a multiple species transfer. For example, the partial TF, 
1 2

( )

c c s

th

m

E





 can be obtained by 

removing the anion contribution:  

1 2

1 2( ) ( ) ( ) ( ) ( )

c c s

c c a
a

th

C C Cm m
M

E E E E E
    

   
     

     
 



Chapter II: Experimental procedures 

66 

 

1 2

1 2

1 2
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Similarly, removing the contribution from cation 1 or 2 leads to the partial TF 
2
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To illustrate what the experimental ac-electrogravimetry data may look like, the , 

 and  TFs are shown schematically in Figure II.8. For a single ion transfer at the 

electrode/electrolyte interface, a typical cation and anion contribution appear characteristically on the 

III and the I quadrant (Cartesian system) of the  TF (Figure II.8c), respectively. It is 

important to note that the  is the only TF that can discriminate between the cations or anions 

and identify them by their molar mass. In a more complex electrochemical process, where a multi-

ion transfer occurs, the above mentioned TFs may look like as shown in Figure II.8d-f. The low 

frequency response of the  (Figure II.8d) may translate into two separate loops if the 

respective time constants of the participating ions are different enough. However, it is noted that the 

four different configurations given in Figure II.8e result in the same response in terms of  

( )
E

I





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


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TF. The utility and the power of the  TF is more evident in Figure II.8f, where 4 possibilities 

of ionic transfers (two cations, two anions, a cation/anion and an anion/cation) can be distinguished, 

with further kinetic resolution depending on the dynamics of interfacial transfer (i.e., the 

configuration 1 shows the case where the cation transfer is faster than that of anion and the 

configuration 3 presents the case which is the vice versa. Configurations 2 and 4 show two other 

different cases). For the sake of clarity, the H2O contribution was not taken into account, which can 

participate in charge compensation (i) in the free form with the same direction of a cation or an anion 

flux or (ii) in the hydration shell of a cation or an anion. 

 

  

   

( )
m

E





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Figure II.8. Representation of the some of the possible experimental Transfer Functions (TFs) for 

ΔE/ΔI() (a, d), Δq/ΔE() (b, e) and Δm/ΔE() (c, f). The response of one and two charged species 

was depicted in (a, b, c) and (d, e, f), respectively. Note: H2O contribution was not taken into account, 

which can participate in charge compensation either in the free form with the same direction of a 

cation/anion flux or in the hydration shell of cation/anion. In these representations, the time constants 

of ionic species are different enough so that they are seen as separate contributions. 

 

 

Figure II.9. Ac-electrogravimetry setup. 
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Ac-electrogravimetry measurements were performed in the same three-electrode cell as described 

in EQCM measurements (Figure II.9). The QCM was performed under dynamic regime, and the 

modified working electrode was polarized at selected potentials to which a sinusoidal small amplitude 

potential perturbation (80 mV rms) was superimposed.  

 

II.3. Electroacoustic impedance measurement 

Electroacoustic impedance/admittance measurement is an effective technique to investigate the 

viscoelastic properties of thin films. It can be used to study the viscoelastic effect of the deposited 

film on the QCM and if necessary, to correct the gravimetric sensitivity coefficient given by the 

Sauerbrey equation23. Due to the piezoelectric nature of the quartz crystal, the film’s viscoelastic 

properties are reflected in the electrical response of the film-loaded quartz resonator, as measured in 

an electroacoustic impedance experiment30. The surface mechanical impedance (
V

mZ ) at the quartz 

resonator surface determining the electrical response of the film-loaded quartz resonator, can be 

expressed by the following equation23, 30-31: 

               

2

2

tanh( )
( )

4 tanh( )

q s f f fV

m f

q f s f f

h Z Z h
Z Z

e A Z Z h






  
  
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               (II.18) 

where qh  is the quartz thickness, qe  is the quartz piezoelectric constant, A is the active mass area, 

fZ  is the acoustic impedance of the film, sZ  is the acoustic impedance of the liquid, f  is the 

complex propagation constant of the film and fh  is its thickness. Moreover, fZ  and f  can be 

described as: 

f f fZ G                                   (II.19) 

                f

f

fG


                                   (II.20) 

where f  is the film density and fG  is the shear thickness modulus of the film, which can be written 

as a complex number with a real and imaginary part, ´ "fG =G jG , where j2=-1.  

Two methods were proposed to obtain a mass sensitivity coefficient of the Sauerbrey equation, 
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which eliminates the viscoelastic contribution of the loaded film23. The first is based on the 

assumption that the thickness of the loaded film is constant: 

max min
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f f f
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


 
                    (II.21) 

And the second is based on a constant film density: 
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Figure II.10. (a) Electroacoustic impedance set-up and (b) an example for the fitting of the 

experimental response for ERGO-1 at -0.2 V. Fitting parameters: G´  = 6.29×105 N.m-2, G" = 

0.84×105 N.m-2,  fd = 146 nm and  f = 2 g.cm-3. 

 

In the present thesis, an Agilent 4294A impedance analyzer coupled with a lab-made potentiostat 
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(SOTELEM-PGSTAT), as shown in Figure II.10a, was used to perform the electroacoustic 

admittance measurements under polarization. The electroacoustic impedance measurements of neat 

quartz resonator in air and in solution were firstly conducted. Then, the film was (electro)deposited 

on the same quartz resonator, namely, a film-loaded quartz resonator. Similarly, the electroacoustic 

impedance measurements of the film-loaded quartz resonator were also carried out in air and in 

solution, respectively. In the end, the electroacoustic measurements were performed at different 

polarization values. 

A software developed in our laboratory (Simad) was used for fitting the experimental data of 

quartz resonator in air and in solution to get its characteristic parameters, which can be used for 

extracting the storage moduli (G´) and the loss moduli (G") of the film. Figure II.10b shows an 

example for the fitting of the experimental response of ERGO-1 at -0.2 V, which takes into 

consideration four parameters of the film, i.e., film thickness (  fd ), film density (  f ), G´and G". 

These results will be discussed in details in Chapter IV. 
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In this chapter, the correlation between electrochemical and viscoelastic properties of 

electrodeposited dodecylsulfate-doped polypyrrole (PPy-DS) during electrochemical cycling 

process was described through combining electrochemical quartz crystal microbalance (EQCM), 

ac-electrogravimetric characterizations and electroacoustic measurements. As the PPy-DS electrode 

evolves during the course of consecutive cycling in aqueous NaCl electrolyte, the film exhibits (i) 

an obvious ion-selective transition from cations to anions in the charge compensation process; (ii) 

an inferior electrochemical performance accompanied with increased stiffness (increased storage 

moduli, G´); and (iii) depleted capability of ionic exchange through film/electrolyte interface. 

PPy-DS conducting polymer electrodes (CPEs) are of interest in energy storage and the relationship 

between electrochemical and viscoelastic properties during electrochemical cycling process is 

essential for promoting the performance of these devices. In this perspective, ac-electrogravimetry 

combined with electroacoustic measurements can be suggested as an alternative method to 

synchronously probe the electrochemical and mechanical evolution and has the potential to offer a 

generalized route to study aging mechanism of CPEs.  

 

III.1. Preamble and Objectives 

Species transfer in conducting polymer electrodes (CPEs) plays a key role in numerous 

applications, such as electrochemical sensors1-2, batteries3-4, supercapacitors5-6. Up to date, 

significant attention has been drawn to enhance the ionic transfer/transport and cycling stability of 

CPEs to devise electronics with effective energy storage capability7-10, thereby demanding a 

thorough understanding of the ion transfer behavior at the CPEs/electrolyte interface. Another issue 

is that the CPEs experience inevitable structural changes in practical applications primarily due to 

the electrochemical aging of the polymer. The latter may aggravate the mechanical properties of 

CPEs which can be reflected in the viscoelastic variations of polymer electrodes during 

electrochemical cycling11-13. Many CPEs have been studied for their appealing electrochemical 

properties14, such as poly(3,4-ethylenedioxythiophene) (PEDOT)15-16, polypyrrole (PPy)17-19, 

Chapter III: Electrochemical and viscoelastic evolution of dodecyl 

sulfate-doped polypyrrole films during electrochemical cycling 
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polyaniline (PANI)8, 20 and polythiophene (PHT)21-22. PPy has been exploited in considerable 

amount of researches, due to its relatively higher pseudocapacitance and lower cost, as well as its 

particularly supreme flexibility in morphology and structure23. However, inferior cycle stability 

caused by significant dimensional changes during charge-discharge process greatly hinders their 

applications. Therefore, the relationship between internal structure and film properties has been 

scrutinized with the purpose of promoting the performance of CPEs in applications (i.e., energy 

storage).  

Electrochemical quartz crystal microbalance (EQCM) and its coupling with electrochemical 

impedance spectroscopy (the so-called ac-electrogravimetry) have proved themselves as baseline 

analytical tools to probe electrochemical processes, with tremendous benefits in in situ capturing 

ionic fluxes in various electrodes, including carbon based electrodes24-26 and CPEs27-28. 

Considerable amount of work have focused on the exploration of electrochemical properties of 

CPEs, which has been regarded as a prerequisite for improving performances of electrochemical 

devices29-30. However, their physical or viscoelastic properties are of equal importance especially 

for the electrode cycling stability and should not be neglected. The ionic fluxes accompanied the 

free solvent molecules transfer during charging-discharging process may bring about the periodic 

potential-dependent volumetric changes of the electrodes (i.e., swelling and shrinking)14, 22. These 

processes are likely to result in a wide variety of unpredictable mechanical defects, i.e. polymer 

electrode fatigue, stress concentration and delamination from current collector. Thus, a 

measurement methodology capable of capturing the ionic transfer as well as viscoelastic evolution 

of the CPEs synchronously is highly desirable.     

The viscoelastic properties of CPEs have been extensively investigated through the 

electroacoustic impedance method31-33, by which the storage (G´) and loss moduli (G") of the 

polymer film can be determined. As the film ages, the viscoelastic changes may occur inside the 

film due to polymer chain rearrangements and species transfer through film/electrolyte interface32. 

Hillman and co-workers have reported an increase in the stiffness of PANI films due to insertion of 

anions and the expulsion of the solvent molecules12, 34. Bund et al. observed that the influx of anions 

may increase the stiffness of PEDOT film and the variations of G  ́ and G" were correlated with 

concentrations of charged species within film35-36. It is considered that such viscoelastic changes are 

somewhat associated with the electrochemical performance of the film, as the flux of ions and 

solvent during the charge-discharge process can modify the intermolecular interactions between 
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polymer chains, which in turn substantially affect the film viscoelasticity. Herein, a methodology 

which combines the EQCM, ac-electrogravimetry and electroacoustic measurements was proposed 

to get a broader view of the physico-chemical interactions inside the CPEs over the course of 

electrochemical aging. The particularity of this methodology stems from the utility of EQCM 

together with ac-electrogravimetry and electroacoustic impedance for electrogravimetric evaluation 

and for viscoelastic tests, respectively. 

With the aim of synchronous description of the relationship between electrochemical properties 

and viscoelastic evolution during PPy electrode electrochemical aging, the combined methodology 

(involving EQCM, ac-electrogravimetry and electroacoustic impedance measurements) was applied 

to characterize PPy film doped with DS- anions (PPy-DS) after every 25 charge/discharge cycles in 

aqueous electrolytes until 175th cycle was reached. Due to the nanometric film thickness, 

film/electrolyte configuration can be considered as a zoom of a real macroscopic 

electrode/electrolyte interface. During the limited number of cycles, various phenomena might be 

amplified which can permit to predict an eventual degradation of CPEs. This systematic study is 

expected to provide insights into the relationship between the internal structure of the CPE film and 

the ability to maintain its electrochemical and mechanical performance. To the best of our 

knowledge, such systematic study has not yet been reported. In previous works of our group11, 27, 

either materials and dopants or the methods for exploration in mechanical properties were different. 

The influences of aging degree and applied potential on the species transfer (charged or uncharged), 

hydration/dehydration of ions and free solvents motion and intimately related viscoelastic changes 

of PPy-DS electrode were investigated during film aging upon cycling and a model was proposed to 

illustrate the electrochemical cycling process.  

 

III.2. Experimental Methods and Theoretical Background  

III.2.1. Film preparation and characterization  

Pyrrole solution (Py), sodium dodecyl sulphate (NaDS) and NaCl salts were purchased from 

Sigma Aldrich. The Py monomer was distilled before use and kept at -20 oC. All the solutions were 

prepared with bi-distilled water. 

Polypyrrole films doped with DS- anions were electrodeposited on the gold electrode (0.2 cm2) 

of a quartz crystal resonator (9 MHz-AWS, Valencia, Spain) where a platinum grid and a saturated 

calomel electrode (SCE) are used as counter and reference electrode, respectively. The PPy-DS 
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films were electrodeposited by cyclic voltammetry (2 cycles from the higher potential to the lower 

potential) from 0.675 V to 0 V vs. SCE at 10 mV·s
-1 in a solution of 0.1 M pyrrole and 0.05 M 

NaDS27, 37. The average film thickness of the electrogenerated PPy-DS film and 175-cycled film 

was analyzed using a field emission gun scanning electron microscope (FEG-SEM, Zeiss, Supra 55). 

Fourier transform infrared (FTIR) spectra were recorded on VERTEX 70 spectrometer (BRUKER 

Co., USA) from 2000 to 650 cm-1 with a 4 cm-1 resolution. Ultraviolet-visible (UV-vis) spectra were 

recorded with a U-4001 spectrophotometer. The films used for FTIR and UV-vis were prepared on 

ITO coated glass slides and cycled under the same conditions as those on gold electrode of the 

quartz resonators. 

 

III.2.2. Electrogravimetric measurements 

All of the electrochemical experiments were carried out using an Autolab 

potentiostat-galvanostat electrochemical workstation (PGSTAT302). After the PPy-DS film 

electrogeneration, the ac-electrogravimetry cannot be conducted immediately because the film 

composition is not under equilibrium. Thus, it was stabilized by 15 scan cycles from -1.3 V to 0.5 V 

vs. SCE at 50 mV·s
-1 in 0.25 M NaCl aqueous electrolyte. This stabilized film was deemed as fresh 

film. Subsequently, ac-electrogravimetric investigation of fresh PPy film was performed at two 

different potentials -0.6 V and -0.2 V vs. SCE, respectively. The ac-electrogravimetric 

measurements of the film were tracked after each 25 CV cycles up until 175 cycles were reached, 

where the electrogravimetric response is too weak to be analyzed. The procedure is illustrated 

schematically in Figure III.1a. Two key potentials were selected: (i) -0.6 V, located between the 

reduction (-0.68 V) and oxidation (-0.5 V) peak for fresh film and thus, can be regarded to be a 

representative potential of the Faradic process. (ii) -0.2 V, approximately a constant current 

response was observed for fresh film in the vicinity of this potential, therefore, it can be considered 

to be indicative of a non-Faradaic process. In order to have a coherent comparison, it is decided to 

keep monitoring the changes at these two potentials, even slight shifts may occur during the 

electrochemical cycling.  
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Figure III.1. Schematic illustration of the measurement procedures for (a) ac-electrogravimetry and 

(b) electroacoustic tests during film electrochemical cycling. The panels (c) and (d) are the 

morphological observations of electrodeposited fresh and 175-cycled PPy-DS film by FEG-SEM, 

respectively. 

 

For ac-electrogravimetry, a four-channel frequency response analyser (FRA, Solartron 1254) 

and a lab-made potentiostat (SOTELEM-PGSTAT) were used. The QCM was used under dynamic 

regime, the working electrode (WE) was polarized at previously selected potentials, and sinusoidal 

small amplitude potential perturbation (80 mV rms) was superimposed. The microbalance 

frequency change (Δfm) related with the mass response (Δm) of the modified working electrode was 

measured simultaneously with the charge response (Δq) of the electrochemical system. The 

resulting signals were sent to the four-channel FRA, which allowed the electrogravimetric transfer 

function ( ( )




m

E
 ) and the charge/potential transfer function ( ( )





q

E
) to be obtained 

simultaneously at the given potential and frequency modulation, f (pulsation =2f). The 

charge/potential transfer function ( ( )




q

E
 ) and mass/potential transfer function ( ( )

m

E





) can be 

theoretically calculated by using the Equations III.1, III.2 and III.3, where Δci presents the change 

of the concentration of each species (ions and free solvent) in the film,  the pulsation, df the film 

thickness (here 200 nm estimated through QCM measurements), Ki and Gi are the partial 
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derivatives of the flux (Ji) with respect to the concentration and the potential, respectively. Ki 

describes the kinetics of transfer. Gi is the reciprocal of the transfer resistance (Rti), exhibiting the 

ease or difficulty in the transfer at the film/electrolyte interface for respective species (more details 

about ac-electrogravimetry are given in Chapter II).                                                  

( )
( )

i i

f i

c G

E j d K







 
                                     (III.1) 
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On the basis of the above parameters, the characteristic frequency of transfer (fi), the transfer 

resistance (Rti) and the instantaneous capacitance (Ci) of each species are further considered and 

calculated using Equations III.4 to III.6. 
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After the ac-electrogravimetry measurements, the experimental data obtained from fresh film, 

100 and 175 times-cycled films were fitted with the theoretical functions given in Equations III.2 

and III.3 by using the Mathcad software.  

 

III. 2. 3. Electroacoustic impedance measurements 

The viscoelastic properties of the PPy-DS film during electrochemical aging were explored 

through the electroacoustic admittance method. To track the viscoelastic variation of our films and 

to corroborate with the ac-electrogravimetry results, electroacoustic measurements were performed 

at the same stationary potentials (-0.6 V and -0.2 V) after each 25 cycles up to the 175th cycle was 

reached (Figure III.1b). To perform the electroacoustic admittance measurements under 

polarization, an Agilent 4294A impedance analyzer associated to a lab-made potentiostat 

(SOTELEM-PGSTAT) was used. 

A software developed in our laboratory (Simad) was used for fitting the experimental data for 
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extracting the storage moduli (G´) and loss moduli (G") of the film. The real component (G´) 

describes the energy storage capability of the polymer chains and the imaginary part (G") is 

associated with the energy dissipation of the film due to irreversible deformation of polymer 

chains38 . 

The complete theoretical electrical admittance, ( )V

thY  , of the loaded quartz resonator is: 

                
1 1

( )
( ) ( )

V

th pV V

th m

Y i C
Z Z

 
 

                            (III.7) 

where 2 f    Cp is the parasitic capacitance and V

mZ  is the motional impedance of the 

loaded quartz resonator calculated with a viscoelastic model.  

The motional impedance, V

mZ , can be completely modelled according to the work of Martin 

etal.39 If the characteristics of the quartz and of the liquid are considered as constants, the motional 

electrical impedance, V

mZ  of the coated resonator is: 
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where 
qh  is the quartz thickness, 

qe  is the quartz piezoelectric constant, A is the active mass area, 

fZ  is the acoustic impedance of the film, sZ  is the acoustic impedance of the liquid, 
f  is the 

complex propagation constant of the film and 
fh  is its thickness. Moreover, 

fZ  and 
f  can be 

described as: 

f f fZ G                                  (III.9) 

        
f

f

fG


                                 (III.10) 

where 
f  is the film density and 

fG  is the shear thickness modulus of the film, which can be 

written as a complex number with a real and imaginary part, ´ "fG =G jG , where j2=-1. 

The acoustic impedance of the solution, sZ , is defined as Equation III.9 except that G´ 

becomes negligible and for a Newtonian liquid, G"=2πfs, where f is the frequency and s the 

liquid viscosity. 
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III.3. Results and Discussion 

III.3.1. Cyclic electrogravimetric behavior 

The cross-sectional morphology of electrodeposited PPy-DS films were observed by FEG-SEM 

(Figure III.1c and d). The average film thickness is ~130 nm and ~110 nm for the fresh and 

175-cycled film, respectively. These values correspond to the shrunken state of the film under the 

vacuum conditions of the measurements. Parallelly, the Sauerbrey equation was used to convert the 

microbalance frequency shift, (Δf) to mass change (Δm) during the PPy-DS electrodeposition40: Δf 

= -Cf ×Δm, where Cf  is the sensitivity factor of the quartz crystal resonator (Cf =16.3×107 

Hz.g-1.cm2) and Δm presents the film mass change per unit area. The estimated film thickness from 

the Sauerbrey equation is around 216 nm and 184 nm for the fresh and 175 times cycled films, 

respectively. An average film thickness of 200 nm is used for the fitting of the ac-electrogravimetric 

and electroacoustic data. 

 

 

Figure III.2. Cyclic voltammetry (a), mass change (Δm) (b), the maximum mass change (c) and 

F(dm/dq) function calculated from the reduction branch (d) of PPy-DS film in 0.25 M NaCl 

aqueous solution between -1.3 V and 0.5 V vs. SCE at a scan rate of 50 mV·s
-1.  
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First of all, to explore the effect of electrochemical cycling on the electrochemical responses of 

the PPy-DS film, cyclic electrogravimetry (EQCM) was exploited to follow the current and the 

simultaneous mass responses as a function of the electrochemical aging in aqueous 0.25 M NaCl. 

The two anodic peaks of fresh film in Figure III.2a are likely to be related to creation of the 

polarons and bipolarons in agreement with the previous works41-42 without any clear attribution of 

each peak to either of them. Alternately, reference 27 and 42 has reported indications that the first 

oxidation peak I at -0.5 V and the second oxidation peak II at 0.3 V are related to cations and 

anions’ transfer, respectively 27. As shown in Figure III.2a, the redox peaks progressively disappear 

and the shape of CV curves tends to become quasi rectangular. This observation indicates the fading 

of the pseudocapacitive capability and/or an increase in the contribution of capacitive response to 

the charge compensation process. In spite of the fairly clear CV responses, the evolution of the mass 

response (Figure III.2b) during cycling is rather complex. For a fresh film, a mass increase and a 

decrease were observed during the reduction and the oxidation process, respectively. After 100 

cycles, the global mass response has been significantly decreased suggesting the presence of either 

smaller mass changes of the film or different flux directions of the species participating in the 

charge compensation process. After the film was cycled 175 times, the mass response displayed an 

opposite behavior relative to that of fresh film, i.e., mass decrease during reduction and mass 

ingress during oxidation. Therefore, from a global point of view, it can be suggested that the fresh 

film experiences cation insertion and expulsion during reduction and oxidation, respectively, 

whereas the 175 times-cycled film undergoes anion expulsion during reduction and insertion during 

oxidation. Concerning the 100 times-cycled film, both cations and anions can participate in the 

charge compensation and they may play an equal part in the electrochemical response without 

consideration of solvent exchange. Thus, the mass contribution from cations and anions may offset 

which leads to this almost “no mass response” for 100-cycled film, which is illustrated in Figure 

III.2c-zone II.  

The maximum mass change (Mmax) during a redox cycle was tracked after every 25 scan cycles, 

as depicted in Figure III.2c. The Mmax value of the film decreases and reaches to a minimum after 

100 cycles, i.e. 0.23 g.cm-2, which is approximately 7 times less than that of a fresh film. After that, 

Mmax values gradually increase to 1.4 g.cm-2 for 175-cycled film. This “quasi-U” shape describes 

an obvious transition where the predominance of cation participation is gradually replaced by anion 

participation in the charge compensation process as the film is electrochemically cycled.  
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The above discussion considers the ionic species as the major contribution but the free solvent 

contributions cannot be excluded. It has been widely reported that the ion exchanges during redox 

reactions are commonly accompanied with flux of solvent 43-44. To get insights into the nature of the 

ionic species and possible free solvent molecules’ contribution, the EQCM results are further 

analyzed. The molar mass, Mi, of each species involved in the charge compensation process can 

provide a better understanding of the species transfer as a function of the number of cycles.  

To do this, the 
m

F
q




 function was calculated as a function of applied potential using the 

current and the mass response of the film (Figure III.2a and b), as follows: 

                     
1

( )  i

dm dm
M F F

dq dt i
                             (III.11) 

This function provides a global estimation of the molar mass of the species (Mi) that may 

participate in the charge compensation process. The 
m

F
q




 function was calculated from the 

reduction branch of the EQCM data and Figure III.2d compares Mi of the species involved in the 

reduction process as the film is electrochemically cycled. It is evident that Mi presents a potential 

and cycling dependence. For fresh film, Mi exhibits a negative value reaching -88 g.mol-1 at -0.7 V 

without an evident plateau in the reduction sweep regime. It should be kept in mind that the ions 

present in the electrolyte are only sodium cations (Na+, 23 g.mol-1) and chloride anions (Cl-, 35.5 

g.mol-1). In the 
m

F
q




 function, negative and positive values are characteristic of cations and 

anions, respectively28, 43. The values higher than expected molar mass of the cations suggest that 

cations are inserted into the fresh film accompanied with water in either free form with the same 

flux direction or in the hydration shell of Na+. After the film is 100 times-cycled, the potential 

corresponding to the max Mi value is moved to more cathodic potential (from -0.7 V to -1.05 V). 

When the film is further cycled up to 175 cycles, the peak intensity dramatically increases 

approximately 5 times up to 479 g.mol-1 compared to that observed after 100 times cycling. This 

indicates that the nature of the species involved in the charge compensation are dependent on the 

film cycling state. The film exhibits unexpected behavior: the cations dominate charge balance 

when the film is fresh, while anion’s contribution increases as the film is electrochemically cycled 

and predominates in charge balance in the end. Since the estimated molar mass values are much 

higher than the theoretical ones (Na+, 23 g.mol-1 and Cl-, 35.5 g.mol-1), the water molecules are 
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speculated to play a significant role in the electrochemical process.      

However, it is not straightforward to separate each species contribution and the possible 

synergistic effect among them. Indeed, the deconvolution of the global cyclic electrogravimetry 

response into gravimetric and dynamic components is quite challenging since the measurements are 

done at a certain scan rate. Therefore, coupling of the QCM with electrochemical impedance 

spectroscopy (ac-electrogravimetry) was suggested27. To shed light on the subtleties of the charge 

compensation process during electrochemical aging, an ac-electrogravimetric study was performed 

to understand the relationship between film cycling and charge compensation process.  

 

III.3.2. Ac-electrogravimetric investigations 

To gain insights into the dynamic behavior of the species transfer at the film/electrolyte 

interface at the temporal scale, ac-electrogravimetry was performed to probe the influence of film 

cycling on the transfer of charged and non-charged species. Figure III.3 compares the 

charge/potential transfer function ( )




q

E
 TF, obtained at -0.6V and -0.2V at different cycling 

state of the film, respectively.  
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Figure III.3. Experimental and theoretical ( )




q

E
transfer functions for PPy film at different 

cycled state: (a), (c) and (e) were measured for fresh film, 100- and 175-cycled film at -0.2V, while 
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(b), (d) and (f) at -0.6V, respectively. Panels (g) and (h) are theoretical TFs of ( )




q

E
as film 

cycled at -0.2V and -0.6V. 

 

Theoretically, the ( )




q

E
 TF in Figure III.3 appears as a single loop if there is only one 

charged species transferred. In this study, the ( )




q

E
 TF shows mainly one suppressed loop (a 

composition of several loops) at both potentials at different cycled state of the film, suggesting the 

presence of more than one species participating in the charge compensation. It is also likely that 

their time constants are not significantly different to have them appear as separate loops. The 

experiment data were fitted using theoretical Equation III.2 and two ionic species were involved. 

Their corresponding values of Ki and Gi, obtained through the fitting process are given in Table 

III.1. As the film ages, the diameter of the global loop gets smaller, which may indicate that the 

population of the ions involved in the charge compensation is reduced as clearly indicated in Figure 

III.3g and h for both potentials. This result is coherent with the decrease of the current values 

observed in Figure III.2a. 

 

Table III.1. Fitting parameters, Ki and Gi, obtained from ac-electrogravimetry. 

  Kc (×10-4) Gc (×10-8) Ka (×10-6) Ga (×10-9) Ks (×10-5) Gs (×10-8) 

-0.2V 

fresh film 6.518 26.17 25.51 -47.19 8.796 24.63 

100-cycle 3.826 11.86 17.59 -23.75 25.95 33.73 

175-cycle 3.607 7.934 11.61 -11.61 31.67 23.75 

-0.6V 

fresh film 7.213 28.85 40.46 -32.37 15.83 31.67 

100-cycle 8.005 7.204 39.58 -18.21 17.59 24.63 

175-cycle 5.278 1.847 9.676 -4.645 2.815 3.659 

Note: cm·s
-1 and mol·s

-1
·cm-2

·V
-1 are for the units of Ki and Gi parameters, respectively. Cation, 

anion and solvent in the Table III.1 refer to Na+ or hydrated Na+, Cl- and free H2O. For 175-cycle 

film at -0.6 V, the fitting parameters for DS- are K=2.815×10-3 cm·s
-1 and G=-2.815×10-8 



Chapter III: Conducting polymer based electrodes – an electrogravimetric and viscoelastic study 

87 

 

mol·s
-1

·cm-2
·V

-1. 

 

Apart from the charge/potential TF, the electrogravimetric response, ( )
m

E





, which can 

provide information on both the charged and non-charged species transfer, was simultaneously 

obtained (Figure III.4). For all ( )
m

E





fittings (except Figure III.4f), three species, Na+ (hydrated 

or not), free water molecules and Cl- were identified, which led to a good agreement between the 

experimental and theoretical curves. Our data presented in Figure III.4 indicate that the cations 

appear at high frequencies, followed by free water molecules at intermediate frequencies and anions 

at low frequencies, independently of the cycling degree of the film at both potentials. At -0.6 V, a 

fairly good agreement between the experimental and theoretical ( )
m

E





data was obtained by 

considering the molar mass of hydrated cations (Na+
·2H2O) for fresh film (Figure III.4a). It seems 

that the solvation shell of the Na+ is gradually removed at -0.6 V as the film is electrochemically 

cycled (Figure III.4 c and e). At -0.2 V, the electrogravimetric response is rather constant and only 

desolvated sodium at high frequencies, free water contribution at intermediate frequencies and 

chloride at low frequencies were detected (Figure III.4b, d and f). It is interesting to note that a 

small loop appears in the first quadrant at very high frequencies for the 175-cycled film (Figure 

III.4f). It is supposed that some of the DS- anions anchored on the polymer chains are removed and 

start to participate in the charge compensation process, as the molar mass of DS- was determined. 

This is probably related to the periodic swelling-shrinking process of the film cycling which 

modifies the film structure and permits the exchange of DS-. It will be further explored in the 

electroacoustic part (III.3.3). 
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Figure III.4. Evolution of transfer function of ( )
m

E





with film cycling: (a), (c) and (e) were 

measured for fresh film, 100-cycled and 175-cycled film at -0.2 V, (b), (d) and (f) at -0.6 V, (g) and 

(h) theoretical TFs of ( )
m

E





as film is cycled at -0.2 V and -0.6 V, respectively.  

The ( )
m

E





TFs at both potentials for all cycled films (Figure III.4g and h) present one big 

loop in the third quadrant at high and intermediate frequencies (HF and IF), and another one in the 

fourth quadrant at lower frequencies (LF). It is worth mentioning here that the loops in the third 

quadrant are characteristic of contributions originated from cations and/or free solvent with the 

same flux direction as cations27. These loops in the third quadrant are reduced in diameter as the 

film is electrochemically cycled (Figure III.4a-e) which indicates either a decrease of the 

cation/free solvent contributions or a decrease of the molar mass of the cations by losing their 

solvation shell.  

The characteristic frequencies, fi, in Figure III.5a and b display that cations (hydrated or not) 

have the highest kinetics of transfer at the electrode/electrolyte interfaces, followed subsequently by 

H2O molecules and Cl- anions (f c > f s > f a) at both potentials as the film is electrochemically cycled. 

Additionally, it is noted that only for the 175-cycled film at -0.6 V, the DS- anions are observed in 

the charge compensation process where they possess the highest kinetics of transfer (DS- anions 

were not taken into account in Figure III.5b, d and f as they are only detected for 175-cycled film 

at -0.6 V). 
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Figure III.5. (a), (b) Evolution of characteristic frequency (f i). (c), (d) transfer resistance (Rti) and 

(e), (f) instantaneous capacitance (Ci) for each species at two different potentials as the film is 

electrochemically cycled. Herein, anion only refers to Cl-. 

 

At -0.2 V (Figure III.5a), the fi of H2O molecules is enhanced nearly 3 times up to 1.75 Hz in 

the region II, accompanied with a decrease in cation transfer kinetics (from 3.45 Hz to 2.15 Hz). 

When the film is electrochemically cycled up to region III, the fi value of the cation and solvent 

molecules approaches and they eventually exhibit equivalent transfer kinetics. The transfer of 
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anions remain as the slowest contribution at both potentials over the course of film cycling, which is 

in agreement with the higher Rt value of anions compared to that of cations and water molecules, as 

shown in Figure III.5c.    
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Figure III.6. (a) Dehydration process for hydrated cations (Na·2H2O) transferred at the 

film/solution interface at -0.6 V as the film is electrochemically cycled, and (b) proportion of 

exchanged H2O (calculated using Equations III.12 and III.13) participating in charge 

compensation at both potentials. Global H2O represents the sum of free H2O and the H2O molecules 

within the hydration shell of cations. 

 

On the contrary, the cation transfer kinetics become faster in the end of region II at -0.6 V 

(Figure III.5b), which can be attributed to the dehydration process of hydrated cations (Na+
·2H2O) 

on the course of film cycling as depicted in Figure III.6a. Meanwhile, it also demonstrates higher 

transfer capability of dehydrated Na+ relative to the hydrated counterparts due to its smaller size.  

An interesting phenomenon is observed in the transfer of H2O molecules at -0.6 V (Figure 

III.5b) as follows. The fi of H2O molecules experience a slight decrease (from 0.90Hz to 0.35Hz) in 

region I, followed by a surge up to 3.9Hz at the beginning of region II. Afterwards, it progressively 

decreases to 0.21Hz at the end of region III. Correspondingly, the Rt of H2O molecules (Figure 

III.5d) shows an approximate mirror symmetry, except that the peak value of fi is reached after 75 

cycles whereas the minimum value of Rt appears after 125 cycles (i.e. ~50 cycles lag between the fi 

and Rt). In fact, this is not contradictory because the fi is related with the transfer kinetics of the 

species, while the Rt is correlated to the ease/difficulty of their transfer. As the film is 75 

times-cycled, the hydration shell of cations becomes smaller (one H2O molecule removed), and the 

cation motion is somewhat released from the restriction of H2O shell, resulting in an increase of fc. 
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Meaningwhile, much more steric spaces inside the film would become accessible for free H2O 

molecules due to the smaller size of cations. This can lead to an ease in the solvent transfer which is 

translated into a decrease of Rt (H2O) values. After that, the cations completely remove their 

hydration shell towards the 125 times-cycled state (the end of region II), i.e. bare cations (Figure 

III.6a). Due to the relatively smaller size of bare cations, free H2O molecules inside the film may be 

better accommodated leading to a minimum of Rt (H2O) value observed at around 125 cycles 

(Figure III.5d). In this case, H2O molecules possess the greatest potential to be transferred at the 

film/electrolyte interface, which can be further confirmed in Figure III.6b. For the measurements at 

-0.6 V, the proportion of free H2O transferred through the film/electrolyte interface (calculated using 

Equations III.12 and III.13) reaches maximum at the end of region II, i.e. 80% after 125 cycles 

(Figure III.6b). This observation can be discussed by consideration of an increased amount of 

space available inside the film provided by the dehydration process of the cations in region II. This 

results in a minimum value of the Rts lagging behind ~50 cycles to the peak of fs (Figure III.5b and 

d). Additionally, the film at -0.6 V undergoes more H2O exchange than that at -0.2 V for the major 

portions of the cycling period (Figure III.6b). This finding may indicate a relatively higher swollen 

state and porosity of the film when polarized at -0.6 V. It can facilitate the transfer of bigger ions 

and may be the reason for (i) the transfer of hydrated cations (Na+
·2H2O) at -0.6 V rather than at 

-0.2 V as the film is electrochemically cycled in region I, and (ii) the transfer of bigger anions (DS-) 

after the film is cycled ~ 175 times.  
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The Rti and Ci (instantaneous capacitance) of cations and anions (Cl-, without consideration of 

DS-) possess a similar dependence on the electrochemical cycling (Figure III.5c-f). When the data 

obtained at -0.2 V is taken as an example, the Rti of ions shows a progressive increase with 

electrochemical cycling, indicating that the more the film is cycled, the more difficult the ionic 

transfer becomes. Accordingly, the ionic capacitance, Ci decreases for both cations and anions. This 
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observation may indicate that transfer process of ions progressively degrades. Hence, it can be 

suggested that the periodic charging-discharging process can weaken the capability of CPEs to 

exchange ions at the film/electrolyte interface as a function of cycle number.  

 

III.3.3. Viscoelastic property changes upon film aging  

Numerous studies have reported that the viscoelastic properties of the electroactive polymer 

play a crucial role in the electrogravimetric response if the film is not sufficiently thin or rigid45. 

More importantly, the viscoelastic change with electrochemical cycling is supposed to have a great 

influence on the electrochemical performance of the film primarily because volumetric changes 

during the redox process (insertion or expulsion of charged and non-charged species) are strongly 

associated with the viscoelastic properties of the polymer chains. Thus, the variation of the 

viscoelastic properties of the film during electrochemical cycling process was examined and the 

correlation between electrochemical and viscoelastic properties was further considered with regard 

to long term performance of CPEs.  

Figure III.7a displays a similar change of G  ́and G" at the two selected potentials. Taking the 

film measured at -0.6 V for example, the storage modulus (G )́ is increased by approximately 200% 

as the film is electrochemically cycled. However, G" shows an entirely opposite tendency with film 

cycling, decreasing from 0.77×105 N.m-2 to 0.19×105 N.m-2 at -0.6 V. It has been revealed that the 

G  ́ is correlated with the film stiffness, while G" is a measure of the film viscosity12, 38. The 

progressively increased G  ́and decreased G" suggest that the periodical cycling renders the PPy-DS 

film stiffer and less viscous. Nevertheless, this should not be attributed to the overoxidation of PPy 

because it starts at potentials greater than 0.7 V vs. SCE 46-47. Additionally, FTIR spectra of the fresh 

and cycled PPY-DS films (Figure III.8a) exhibit the characteristic vibrational bands associated 

with the doped polypyrrole structure. The spectra of the fresh, 100- and 175-cycled film do not 

show remarkable differences which suggests the absence of polymer crosslinking phenomena upon 

electrochemical cycling. The absence of a band at ~1700 cm-1 (corresponding to C=O functions) 

further indicates that there is no overoxidation of the polymer film48.  
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Figure III.7. (a) Evolution of real and imaginary components of complex shear modulus and (b) 

film loss tangent, G”/G’, during cycling at -0.2 V and -0.6 V, respectively. 
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Figure III.8. (a) FTIR and (b) UV-vis spectra of fresh, 100- and 175-cycled PPy-DS film. The peak 

in (a) at 1533 cm-1 corresponds to the C=C stretching of PPy; the peak at 1297 cm-1 corresponds to 

the C-H in-plane deformation; two doping-induced bands at 1165 cm-1 and 964 cm-1 correspond to 

C-N stretching vibration and C-H out-of-plane vibration, respectively; the band at 1030 cm-1 

corresponds to C-H in-plane stretching vibration49-50.  

 

In this work, we hold that the reconformation of the polymer chains resulted from cycling 

process endows the film more rigid (increased G )́ and less viscous (decreased G"). It has been 

reported that the requirement of co-planarity of π orbitals for long conjugation leads to the stiffness 

of poly (3-alkylthiophene)s through the reconfiguration and rearrangements of polymer chains32. 

Briefly, redox process of PPy-DS films involves a sequence of events: (i) electrons transferred 

between the film and the working electrode, (ii) exchange of cations and/or anions between the film 

and electrolyte to satisfy electroneutrality which is often coupled with free solvent transfer to meet 

the volumetric confinement of the viscoelastic film and lastly, (iii) reconformation of polymer 

chains to be compatible with such new spatial architecture of the film. In a redox process, PPy 
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chain’s reconformation takes place to keep sufficient π orbital overlaps for conduction structure, 

where a co-planarity of π orbitals is required within 40o.51 Therefore, upon electrochemical aging 

process, the structure of the polymer chains can be progressively altered due to such conformational 

changes. Specifically, for fresh PPy-DS film, pyrrole rings possess a coplanar conformation47, and 

the movement of DS- ions is greatly restricted by strong interactions from large conjugated π 

systems. During film aging process, the coplanar conformation of PPy is gradually forced to 

approach a non-coplanar one by means of PPy chain’s motions, giving rise to a progressive 

deterioration of long conjugated systems and consequently loss of electroactive sites or electronic 

conductivity, as it is approved by the fading electrical response of cyclic voltammetry in Figure 

III.2a or charge/potential TF in Figure III.3g and h. When the film is further electrochemically 

cycled (175 cycles), the DS- ions are released out of the film and embark on the charge 

compensation process, as supported by Figure III.4f. Altogether, the electrochemical cycling 

process causes the reconformation of the polymer chains, which brings about the stiffness of the 

film with fading electronic conductivity. 

The film loss tangent, G"/G  ́was further used for describing the viscoelastic evolution of the 

film upon cycling process. As depicted in Figure III.7b, the film loss tangent shows a comparable 

decrease upon cycling at the two different potentials. It indicates that the cycling process confers 

increasing stiffness on the film. Namely, region I can be generally regarded as viscous region, 

region II becomes viscoelastic while region III is fairly elastic in the film electrochemical cycling 

evolution.  

The stiffness of the film can restrict the volumetric changes and make it more difficult for ionic 

species not only to be transferred at the film/electrolyte interface but transported in the film bulk as 

well, which is in agreement with results obtained from the present cyclic electrogravimetric and 

ac-electrogravimetric studies, i.e., i) fading of the pseudocapacitive capability ii) increase of the 

ionic transfer resistance, Rti, and iii) decrease of the instantaneous capacitance, Ci, of each charged 

species. 

As a matter of fact, the volume of the PPy-DS film can be varied from cathodic to anodic 

potentials within one cycle (Figure III.9-Route I) and also at the same potential after many cycles 

(Figure III.9-Route II). As Figure III.9-Route I shows, the PPy-DS film undergoes successive 

swelling and shrinking cycles during the redox process. In addition, a dehydration process of 

cations for freshly prepared films has been reported during anodic potential sweep due to the lower 

porosity of PPy-DS film in a relatively shrunken state38. As for route II which is explored in this 
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work, the volumetric change capability of the film can become poorer upon cycling, and the 

solvation shell of cation at -0.6 V is removed during the cycling process. Figure III.9 elucidates the 

two different ways which can stiffen the PPy-DS film, i.e. anodic sweep and film cycling. Both can 

prohibit the transfer of hydrated Na+. On the course of electrochemical cycling, the film would 

hardly experience volumetric change any more, which is accompanied with a fading of the 

electrochemical performance as seen in CV responses (Figure III.2a) and charge/potential response 

(Figure III.3g and h). The electrochemical activity loss upon cycling is further investigated by 

UV-vis spectroscopy. Figure III.8b indicates the presence of a distinct band appearing below ~480 

nm which is due to π–π* transitions52. When the PPy-DS films are cycled for 100 and 175 times, a 

decrease of the intensity and a shift to lower wavelength values of this characteristic band are 

observed. A blue shift and a decrease in the intensity of this band indicate an increase in the band 

gap of the PPy-DS films and a decrease in the conjugation length of the conducting polymer upon 

electrochemical cycling. This observation is in agreement with (i) the cyclic voltammetry 

investigations showing a considerable electrochemical activity loss and (ii) with the viscoelastic 

property investigations indicating a stiffening of the polymer which is likely to render the charge 

transfer more difficult. To the best of our knowledge, it is the first time that the correlation between 

electrochemical and viscoelastic properties in an electrochemical cycling process has been 

systematically investigated53. 

 

 

Figure III.9. Schematic of volumetric evolution of PPy electrode during film cycling, without 

considering the exchange of free H2O molecules. 
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III.4. Conclusions 

The combination of EQCM, ac-electrogravimetry and electroacoustic measurements was 

proposed to track the electrochemical and viscoelastic evolution during the electrochemical cycling 

of PPy-DS films. An obvious ion-selective transition from cations to anions for charge 

compensation is observed during film cycling process. A predominant role is played by cations for 

fresh and slightly cycled films, whereas anions dominate the charge balance in relatively long-time 

cycled films.   

The electrochemical performance was investigated at two different potentials. At -0.6 V, the 

film presents a relatively more swollen state than that at -0.2 V due to the higher amount of H2O 

molecules insertion, facilitating the transfer of bigger ions, i.e., Na+ with two H2O molecules in the 

hydration shell and DS- anions. Kinetics of H2O molecule in region II (50-125th cycle in Figure 

III.5b) show a complex and cycling-dependent property due to the competitive relationship 

between availability for accommodation inside the film provided by cation’s dehydration process 

(favoring H2O transfer) and polymer chain’s increasing stiffness during film cycling (increased G ,́ 

prohibiting H2O transfer). At -0.2 V, desolvated Na+ is the only form of cations participating in the 

charge compensation. The cation is the fastest species (except the DS- at -0.6 V for 

175-times-cycled film) transferred at the film/electrolyte interface followed by free H2O molecules 

at intermediate frequencies and anions are the slowest species at both potentials irrespective of 

cycling degree of the film. 

For PPy-DS electrodes, the ionic transfer becomes more difficult upon electrochemical cycling 

process followed in the present work. It should be noted that this modification can also be 

influenced by the film thickness, the nature and the concentration of electrolytes, and the scan rate. 

The observed ionic transfer change is not only due to the loss of electroactive sites inside the film 

but also due to the increasing stiffness of the polymer chains. It is attributed to the reconformation 

of the PPy chains which consequently result in the deterioration of the conjugated π systems. This 

study presents an example showing the utility of complementary electrochemical methods to 

investigate the correlation between electrochemical performance and viscoelastic variations of 

PPy-DS electrodes upon cycling. The suggested diagnostic strategy can be applied to other CPEs 

and may help to develop new synthetic strategies for designing highly efficient electrodes in energy 

devices with improved performance. 
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Slightly electrochemically reduced graphene oxide (ERGO) presents an anion preference for 

charge storage and delivery, while with the progressive removal of oxygen functionalities on its 

basal planes, cations begin to predominate in charge compensation. This “anion-to-cation” 

evolution in neutral aqueous media can not only affect the electrochemical charge storage, but also 

play an important role in electrode’s viscoelasticity. It was demonstrated that oxygen functionalities 

could modify the interactions between graphene layers and even contribute to pseudocapacitances. 

However, the role of oxygen functional groups in species transfer and viscoelastic variations still 

remains poorly understood. Herein, a combined methodology of electrochemical quartz crystal 

microbalance (EQCM), ac-electrogravimetry and electroacoustic impedance measurements was 

proposed for characterizing the electrochemical and viscoelastic responses of graphene oxides with 

various degree of electrochemical reduction. With the removal of oxygen containing functional 

groups, ERGO electrode exhibits (i) a gradually enhanced specific capacitance (Cs) with increased 

flexibility (decreased storage moduli, G´); (ii) a dehydration process of cations (i.e. from Na+
·2H2O 

to Na+
·H2O); and (iii) a potential-dependent “stiffened-softened” behavior. These results open the 

door for a suitable design of GO-based materials for electrochemical energy storage and shed light 

on electronic devices where ion-selective behavior plays a key role. 

 

IV.1. Preamble and Objectives 

Owing to high power density and superior cycling performance, supercapacitor (SC) has 

boosted numerous research efforts in electrochemical energy storage and offered a wide range of 

potential applications, such as portable electronics, electric vehicles and stand-free power systems1-6. 

The most important component in SC is the electrode material with high surface area and high 

porosity7-8. Among those, carbon-based materials are considered as prospective SC electrode 

candidates for bulk production9-10. Graphene, a sp2-bonded carbon monolayer, has demonstrated 

itself significantly effective for electrochemical energy storage/delivery due to many appealing 

features, such as high surface area (theoretically as high as 2630 m2
·g

−1), superior mechanical 
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properties, excellent electronic conductivity and chemical resilience2, 10-15. Reduction of graphene 

oxide (GO) is widely adopted for the production of graphene because of its low cost, high 

scalability and competitive yield16-17. As a highly defective form of graphene functionalized by 

enriched oxygen-containing groups, GO may offer higher capacitance than graphene through 

additional pseudo-capacitive behavior18-21. However, the oxygen containing functional groups can 

also restrain the sp2 hybridization and thus render the GO less conductive due to degraded π-π 

stacking. From this perspective, the electrochemical charge storage performance of GO is strongly 

associated with the content of oxygen functional groups on its layers: i) high content of oxygen 

functional groups brings about more pseudocapacitance from reversible redox reactions and 

improves the wettability of GO electrodes with aqueous solution but results in an inferior 

conductivity and less electroactive surfaces for electrical double-layer capacitance (EDLC); 

contrarily, ii) low content of oxygen functional groups leads to an enhanced electronic conductivity 

due to the restoration of the π-π network and a higher electroactivity of the surfaces for charge 

adsorption/desorption, thereby promoting improvements in electrochemical performances of SC. 

Thus, a direct correlation between the oxygen-containing groups of the GO and the final 

electrochemical performance of the SCs cannot be disregarded.  

Under the consideration that most of the graphenes synthesized through reduction of GO bear 

some unavoidable extrinsic defects from oxygen-containing groups16, 22, a systematic investigation 

on the electrochemical behavior of GO with different content of oxygen functionalities is highly 

desirable for well-designed SC electrodes. Additionally, although it has been demonstrated that 

oxygen containing functional groups could bring about reversible electrochemical reactions, thus 

contributing to capacitance18-19, the mechanism of ionic fluxes during charge-discharge process in 

GO-based electrodes still remains poorly understood. 

Besides superior electrochemical properties, long-term cycling performances are also of 

importance for an efficient SC electrode. Upon cycling, periodical ion 

electroadsorption/electrodesorption and/or insertion/extraction are possibly accompanied with 

solvent flux which lead to repeated species-transfer-induced deformation as well as viscoelastic 

changes of the GO electrode (stiffened/softened). Such viscoelastic changes which are not 

completely relaxed at the end of each cycle and tend to gradually accumulate, thereby result in a 

failure of the mechanical integrity and lead to an eventual cyclability fading. Multiharmonic EQCM 

with dissipation monitoring (EQCM-D) has been used for the investigation of gravimetric and 

viscoelastic changes of electrodes during charge storage process by the interpretation of both 
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frequency (Δf/n, n is the overtone order) and resonance width (ΔW/n) changes23. Nevertheless, of 

practical and fundamental importance but scarcely touched is the correlation between electrode 

viscoelasticity and its electrochemical performance24-26.  

Electrochemical quartz crystal microbalance (EQCM) and its coupling with electrochemical 

impedance spectroscopy (the so-called ac-electrogravimetry) have proved themselves significantly 

effective for evaluating the electrochemical behaviors of carbon-based electrodes27-28, particularly in 

situ capturing ionic transfer between the electrode and electrolyte. Besides identifying each species 

participating in the charge compensation process, it can provide a quantitative picture together with 

the kinetics of transfer of each species, thereby providing a kinetic and gravimetric deconvolution. 

In addition to the utility of the electrogravimetric methods, the viscoelastic evolutions of the GO 

electrodes in the process of oxygen-containing groups removal and at different 

states-of-polarization can be tracked by electroacoustic impedance method29-31, from which two 

important parameters for describing the viscoelasticity of the GO electrodes, i.e., the storage (G´) 

and loss moduli (G") can be estimated. G´ represents the electrode stiffness whereas G" reflects its 

viscosity. These parameters can be further utilized to estimate the sensitivity coefficients of the 

QCM when it is not under gravimetric regime and thus help to differentiate the effect of the 

mechanical property changes from purely gravimetric responses29. 

In the current study, ERGO electrodes with different content of oxygen functionalities were 

prepared and a combined methodology of EQCM, ac-electrogravimetry and electroacoustic 

impedance method was proposed to acquire a deeper insight into (i) the influence of oxygen 

containing functional groups on the ionic transfer in ERGO electrodes and (ii) the correlation 

between electrochemical and viscoelastic evolution during the gradual removal of these groups.  

To the best of our knowledge, such a systematic study is unprecedented and is distinguished 

from the previous works thanks to the non-conventional electrochemical characterization methods 

employed, which provides the correlation between oxygen containing functional groups and 

nanostructure of the ERGO layers and their effect on the species (ions or solvent) transfer kinetics, 

hydration/dehydration of ions and the electrochemical and viscoelastic properties of the electrodes. 

 

IV.2. Experimental Methods and Theoretical Background  

IV.2.1 Synthesis of ERGO electrodes and structural characterization 

GO was synthesized by a modified Hummers method32. GO suspension of 1 mg/mL was 
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prepared from addition of GO powder to bi-distilled water, followed by a consecutive 

ultrasonication for 5h to get a homogeneous solution. About 40 µL GO suspension were deposited 

on the gold electrode (0.2 cm2) of a quartz crystal microbalance resonator (9 MHz-AWS, Valencia, 

Spain) with the help of a lab-made mask, which ensures the exposure of the gold electrode only. GO 

film was generated after being dried at 70 oC for 1h in an oven. The electrochemical reduction was 

carried out by a standard three electrode configuration, where GO-coated gold electrode of quartz 

resonator was used as a working electrode, with a platinum gauze and Ag/AgCl (3 M KCl saturated 

with AgCl) as a counter and a reference electrode, respectively. The reduced GO films were 

electrochemically synthetized by chronoamperometry with a Biologic SP-200 potentiostat using 

EC-Lab software at -0.9 V vs. Ag/AgCl in a solution of 0.5 M NaNO3. Nitrogen gas was bubbled in 

the solution prior to the electrochemical reduction and was maintained over the solution until the 

end of the reduction to ensure a complete saturation in NaNO3 solution. The resulting ERGO 

electrodes were designated as ERGO-1, ERGO-2 and ERGO-3 in accordance with the reduction 

time of 15 s, 1 min and 5 min, respectively (Scheme IV.1).  

 

 

Scheme IV.1. Synthesis process and the expected structural changes for ERGO-1, -2 and -3. 

 

The morphologies of the electrogenerated ERGO electrodes were observed under vacuum 

conditions using a field emission gun scanning electron microscope (FEG-SEM, Zeiss, Supra 55). 

The crystallographic structures were determined by X−ray diffraction (XRD), which was performed 
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at ambient conditions using Phillips PANalytical X’Pert Pro diffractometer with Cu Kα radiation (λ 

= 1.54184 Å). The electrodes used for XRD were prepared on ITO-coated glass slides and reduced 

under the same conditions as those on gold electrode of the quartz resonators. X-ray photoelectron 

spectroscopy analyses were performed using an Omicron Argus X-ray photoelectron spectrometer 

with monochromatized Al Kα excitation (1486.6 eV) with a pass energy of 100 eV and 20 eV for 

acquisition of the survey and high-resolution spectra, respectively. The emissions of photoelectrons 

from the sample were analyzed at a take-off angle of 90°. The XPS peak areas were determined 

after subtraction of a background using Shirley’s method. Element peak intensities were corrected 

by Scofield factors. The experimental data were analyzed using the Avantage software. 

 

IV.2.2 Electroacoustic impedance measurements 

The viscoelastic evolutions of ERGO electrodes were explored by the electroacoustic 

impedance method to elucidate the relationship between electrochemical and viscoelastic changes 

of the ERGO electrodes. Electroacoustic impedance measurements were carried out in the potential 

range between -0.4 V to 0.4 V (at nine different potentials with an interval of 100 mV). An Agilent 

4294A impedance analyzer coupled with a lab-made potentiostat (SOTELEM-PGSTAT) was used 

in order to perform the electroacoustic admittance measurements under polarization. A lab-made 

software Simad was used for extracting the storage moduli (G´) and loss moduli (G") of the ERGO 

films through fitting the experimental data. G´ is associated with the energy storage capability of 

the ERGO layers whereas G" describes the energy dissipation of the electrode due to internal 

friction and irreversible deformation of ERGO sheets.  

The complete theoretical electrical admittance, ( )V

thY  , of the loaded quartz resonator is: 

           
1 1

( )
( ) ( )

V

th pV V

th m

Y G iB i C
Z Z

 
 

                          (IV.1) 

where G is conductance, B depicts susceptance, 2 f    Cp is the parasitic capacitance and 

V

mZ  is the motional impedance of the loaded quartz resonator calculated with a viscoelastic model.  

The motional impedance, 
V

mZ , can be modelled according to the work of Martin et al33. If the 

characteristics of the quartz and of the liquid are considered as constants, the motional electrical 

impedance, 
V

mZ  of the coated resonator is: 
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where qh  is the quartz thickness, qe  is the quartz piezoelectric constant, A is the active mass area, 

fZ  is the acoustic impedance of the film, sZ  is the acoustic impedance of the liquid, f  is the 

complex propagation constant of the film and fh  is its thickness. Moreover, fZ  and f  can be 

described as: 

f f fZ G                                   (IV.3)   

          
f

f

fG


                                   (IV.4) 

where f  is the film density and fG  is the shear thickness modulus of the film, which can be 

written as a complex number with a real and imaginary part, ´ "fG =G jG , where
2j 1  . 
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Figure IV.1. Electroacoustic admittance measurements: experimental and fitted conductance and 

susceptance over frequency for ERGO-1 at -0.2 V. Fitting parameters: G´ = 6.29×105 N.m-2, G" = 

0.84×105 N.m-2, 
 fd = 146 nm and 

 f = 2 g.cm-3.  

 

The acoustic impedance of the solution, sZ , is defined as in Equation IV.3 except that G´ 

becomes negligible and for a Newtonian liquid, G"=2πfs, where f is the frequency and s the 
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liquid viscosity. Figure IV.1 shows an example for the fitting of the experimental response of 

ERGO-1 at -0.2 V, which takes into consideration four parameters of the film, i.e., film thickness 

(
 fd ), film density (

 f ), G´and G". 

 

IV.2.3 Electrogravimetric measurements 

The electrogravimetric response of a pristine GO thin film from ac-electrogravimetry was too 

weak to be analyzed due to its poor electronic conductivity. Therefore, it was slightly reduced for 15 

s at -0.9 V vs. Ag/AgCl (ERGO-1) with the expectation of maintaining as much oxygen containing 

functional groups as possible on its sheets, and meanwhile being sufficiently conductive for 

obtaining a cognitive response in ac-electrogravimetry. The electrochemical performances of ERGO 

electrodes were measured employing a standard three-electrode electrochemical cell which 

consisted of a ERGO-loaded quartz resonator as the working electrode, Ag/AgCl (3 M KCl 

saturated with AgCl) as the reference electrode, and platinum gauze as the counter electrode. 

Electrochemical experiments were carried out at ambient temperature in 1 M NaCl solution as the 

electrolyte. The potential window for galvanostatic charging-discharging (GCD) tests at different 

current densities (0.5, 1 and 2 mA·cm-2) was confined between -0.5 V and 0.5 V vs. Ag/AgCl, which 

was applied to cyclic voltammetry measurements as well. 

For ac-electrogravimetry measurements, a four-channel frequency response analyzer (FRA, 

Solartron 1254) and a lab-made potentiostat (SOTELEM-PGSTAT) were used. The QCM was 

performed under dynamic regime, and the modified working electrode was polarized at selected 

potentials to which a sinusoidal small amplitude potential perturbation (80 mV rms) was 

superimposed. The frequency range for this potential perturbation was between 63 kHz and 10 mHz. 

The microbalance frequency shift (Δfm) corresponding to the mass change (Δm) of the modified 

working electrode was measured simultaneously with the charge response (Δq) of the 

electrochemical system. The resulting signals were sent to the four-channel FRA, which allowed the 

electrochemical impedance ( ( )
E

I





), the electrogravimetric transfer function ( ( )





m

E
 ) and the 

charge/potential transfer function ( ( )




q

E
) to be obtained simultaneously at a given potential and 

frequency modulation, f (pulsation =2f). Various transfer functions such as ( )
E

I





, ( )




q

E
  

and ( )
m

E





 can be theoretically calculated through the following Equations IV.5 to IV.827, 34. 
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More details about ac-electrogravimetry are given in Chapter II. 
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where ΔCi presents concentration variation for each species (ions and free solvent) in ERGO 

electrodes,  the pulsation, df the film thickness (estimated through QCM measurements), Mi the 

atomic weight of involved species, Ki and Gi are the partial derivatives of the flux (Ji) with respect 

to the concentration and the potential, respectively. Ki represents the transfer kinetics of each 

species whereas Gi describes the level of difficulty for each species transferred at the 

electrode/electrolyte interface.  

 

IV.3. Results and Discussion 

IV.3.1 Morphology and structure of ERGO electrodes 

ERGO thin films with progressively decreased content of oxygen functionalities were 

electrochemically fabricated as illustrated in Scheme IV.1. With increased reduction time, the 

ERGO sheets gradually lost the oxygen functional groups which was accompanied by a decrease of 

interspacing between the layers. The morphology of the GO and ERGO electrodes was observed by 

FEG-SEM as shown in Figure IV.2. Both GO and ERGO electrodes displayed a typical wrinkled 

morphology, which is formed by thin crumpled sheets. Initially, the average GO film thickness was 

~160 nm (Figure IV.2). Upon subsequent electrochemical reduction, it gradually decreased to ~135 

nm for ERGO-1 (Figure IV.2b), ~110 nm for ERGO-2 (Figure IV.2c) and ~70 nm for ERGO-3 

(Figure IV.2d), implying a decrease in the interspacing of reduced graphene oxide layers probably 

due to the removal of oxygen containing functional groups and intercalated water molecules27. 

These measured values can be considered to correspond to the shrunken state of the GO and ERGO 

films owing to the vacuum condition of the FEG-SEM measurements.  
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Figure IV.2. Morphological observations of graphene oxide film (a) and GO films with different 

degree of reduction, ERGO-1 to ERGO-3 (b-d). Inset images are higher magnification of each film. 

 

Sauerbrey equation was also employed to calculate the film thickness in air through the 

relationship between mass change (Δm) of the ERGO electrode and microbalance frequency shift 

(Δf) before and after the electrochemical reduction of the film35, i.e., Δf = -Cf ×Δm, where Cf  is the 

modified sensitivity factor of the quartz crystal resonator (Cf = 19.5×107, 18.7×107 and ~17.8×107 

Hz.g-1.cm2 for ERGO-1, -2 and -3, respectively. See details in section IV.3.2). The estimated 

thickness from Sauerbrey equation is ~146, ~122 and ~100 nm for ERGO-1, -2 and -3, respectively. 

These values were used for the fitting of the electroacoustic and ac-electrogravimetric data 

thereafter. Meanwhile, thanks to the QCM measurements, the mass loss of the GO electrode upon 

electrochemical reduction process was also estimated with a value of ~6.8, ~24.0 and ~36.1 wt% 

corresponding to ERGO-1, -2 and -3 respectively, which was attributed to the loss of oxygen 

functionalities and certain amounts of water molecules sandwiched between the layers. 

The structural difference of GO electrodes before and after electrochemical reduction was 

characterized with XRD. Figure IV.3 shows the XRD patterns of the pristine GO on ITO coated 

glass slides, revealing a sharp and intense diffraction peak centered at 2θ = 11.5o (002), 

corresponding to an interplanar spacing (d-spacing) of 0.77 nm. This value is dependent on the 

preparation method and the number of water molecules between the layers36. After 15 s of 
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electrochemical reduction, ERGO-1 displayed almost the same reflection peak, confirming that 

ERGO-1 shared almost the same structural geometry as GO in spite of a measurable thickness 

decrease observed by FEG-SEM and weight loss by QCM. It may be attributed to the superficial 

oxygen functional groups on GO layers and water molecules located in the shallow sites between 

GO layers, which can be easily removed during electrochemical reduction process. However, in the 

case of ERGO-2, the intensity of the peak (002) drastically faded and a new, broad peak emerged at 

2θ = 23.5o corresponding to a d-spacing of 0.38 nm. The decreased value of d-spacing in ERGO-2 

implied that a significant portion of oxygen functional groups had been removed from GO sheets. 

Moreover, in the pattern of ERGO-3, the peak at 2θ = 11.5o disappeared and was markedly shifted 

to 23.5o, indicating that at least a partial reduction of GO was achieved.  
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Figure IV.3. XRD patterns of pristine GO and GO with various degree of electrochemical 

reduction.  

 

The reduction degree of GO electrodes is further investigated by XPS. C1s spectrum of GO 

electrode (Figure IV.4a) displays its two main components of C-O (epoxy and hydroxyl, ~286.9 eV) 

and C=C/C-C (~284.8 eV) in aromatic rings, and two minor components i.e., C=O (carbonyl, 

~288.6 eV) and O-C=O (carboxyl, ~290.0 eV) groups37-40. After electrochemical reduction for 5 

min, all intensities of the oxygen functionalities remarkably decrease (Figure IV.4b), especially 

C-O groups, evidencing that the majority of oxygen functionalities (C-O groups) have been 

successfully removed. Furthermore, a stronger π-π* shake-up satellite peak around 290.7 eV 

resumes in ERGO-3, which is a characteristic of aromatic or conjugated systems41. Figure IV.4c 

presents the variation of the two major groups (C=C and C-O) as a function of reduction time. It 
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clearly shows that the main oxygen functional group (C-O) is gradually removed upon 

electrochemical reduction and ERGO electrode can be sufficiently reduced after 5 min, which is 

also confirmed by the C/O ratio in Figure IV.4d. These results, combined with XRD analysis, 

indicate the formation of ERGO with different content of oxygen functionalities.  
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Figure IV.4. XPS spectra of GO (a) and ERGO-3 (b), where the curves were fitted considering the 

following contributions: C=C (sp2; peak 1), C-C (sp3; peak 2), C-O (epoxy and hydroxyl; peak 3), 

C=O (carbonyl; peak 4), O-C=O (carbonyl; peak 5) and π-π*. The panel (c) presents the relative 

percentage of C=C and C-O groups and the panel (d) is the C/O ratio from XPS as a function of 

polarization time. The lines are a guide to eyes. 

 

IV.3.2 Viscoelasticity of ERGO electrodes and its influence on electrogravimetric performance 

Long term mechanical integrity is of significant importance for a high performance SC 

electrode. However, it is known that the periodical exchange of the species between the electrode 

and the electrolyte commonly results in the accumulation of unrelaxed structural deformations thus 

leading to the mechanical failure. Furthermore, it has been demonstrated that the viscoelastic 
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properties of the deposited film play an essential role in the validity of Sauerbrey equation and can 

modify the gravimetric response of a quartz resonator29. Therefore, when quartz crystal 

microbalance based methodologies are employed to study the electroadsorption or insertion 

behavior, special attention should be given to distinguish between the (electro)gravimetric and the 

(electro)mechanical property changes of the electrodes. Hence, in this study, prior to the 

electrogravimetric investigations, electroacoustic impedance tests (Figure IV.1) were carried out to 

explore the influence of the progressive removal of oxygen functionalities from ERGO sheets on its 

viscoelastic evolution, which is described by the storage modulus (G´) and the loss modulus (G").  
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Figure IV.5. Evolution of real (a) and imaginary (b) components of complex shear modulus of 

ERGO electrodes. 

 

As shown in Figure IV.5a, ERGO layers exhibit a decrease in the rigidity with progressive 

removal of oxygen containing functional groups from ERGO-1 to -3. For instance, G  ́ of the 

ERGO-1 is reduced by approximately 58% from ~6.2×105 N·m
-2 to ~2.6×105 N·m

-2 for ERGO-3, 

which are comparable to that of graphene hydrogel42 and that of a composite LiFePO4 electrode 

used in batteries43. By contrast, G" shows a more complex evolution behavior (Figure IV.5b). 

Specifically, G" of ERGO-1 remains at lower values at most potentials and decreases gradually 

from cathodic to anodic potentials (from 0.89×105 N·m
-2 to 0.65×105 N·m

-2). However, in the case of 

ERGO-2 and -3, G" exhibits an entirely opposite variation tendency with respect to ERGO-1, 

increasing from 1.17×105 N·m
-2 to 2.13×105 N·m

-2 and 0.37×105 N·m
-2 to 1.38×105 N·m

-2, 

respectively.  

It has been revealed that the G  ́ describes the film rigidity (energy storage), whereas G" is 
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correlated with film viscosity (energy dissipation)44. The decreased G  ́ and increased G" from 

ERGO-1 to -2 reveal that the removal of oxygen containing functional groups and the 

corresponding restoration of the π network endow the reduced graphene oxide (RGO) layers with 

less rigidity and more viscosity. It is speculated that strong polar interactions exist between the 

reduced graphene oxide interlayers mainly from enriched oxygen functionalities in ERGO-1 

electrode, resulting in an inferior electrode conductivity and thus poor ions’ transfer between 

electrode/electrolyte interface and transport in electrode bulk. Correspondingly, the friction between 

the ions and oxygen containing functional groups is greatly weakened and the relative displacement 

between ERGO layers hardly occurs, through which the energy dissipates during electrochemical 

process. With the removal of oxygen functionalities from ERGO-1 to -2, such strong polar 

interactions can be gradually replaced by restored π system, which brings about the exchange of 

ions in a higher quantity between the electrode and electrolyte. Also, the corresponding deformation 

of ERGO sheets can be compatible for the accommodation to these increased amount of ions under 

different states-of-polarization. It in turn enhances energy dissipation in this process by means of i) 

enhanced friction from exchanged species and ERGO layers and ii) relative displacement between 

ERGO layers. Such properties can be presented by high flexibility and high viscosity, i.e., low G  ́

and high G".  

In contrast with ERGO-2, ERGO-3 displays a further decreased G  ́due to the further removal 

of hetero-oxygen groups, however, a smaller G" instead, implying that the graphene oxide sheets 

with higher degree of reduction become more flexible and less viscous. As a matter of fact, the 

gradual removal of oxygen containing functional groups (from ERGO2 to ERGO3) results in a 

further approach of the adjacent layers (the d-spacing of 0.38 nm was achieved in ERGO-3 as 

shown by XRD, Figure IV.3) and leads to the further restoration of its π network with much larger 

conjugated length as compared to ERGO-2, which may weaken the internal friction between ERGO 

layers and thus attenuate the dissipation (lower G"). Besides, it may facilitate the ionic transfer and 

thus allow much more species to be accommodated on the electrode during charge storage/delivery. 

It is speculated that exchanged H2O molecules play an essential part in the variation of G" by 

means of plasticizing effect45. These points will be scrutinized in the discussion part of the 

ac-electrogravimetry data (section IV.3.4). 

In addition to providing information on the electromechanical behavior, the electroacoustic 
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studies on the ERGO layers may also permit the exploration of the validity of the gravimetric 

regime for the further analysis with the QCM and its satellite electrochemical methods. To estimate 

the influence of viscoelastic variations of ERGO electrode on its electrogravimetric performance, 

the experimental sensitivity factor of the quartz crystal resonator (Cf =16.3×107 Hz.g-1.cm2 under the 

hypothesis of a sufficiently rigid electrode28) was modified with the consideration of the rheological 

properties of the electrodes. The calculation was performed by Equation IV.9 as previously 

reported29. Briefly, the film thickness was maintained constant (~146, ~122 and ~100 nm for 

ERGO-1, -2 and -3, respectively), 
max

f and 
min

f  were confined between 
   0.5%f   (

 f  was 

obtained by the fitting procedure). The series frequency, V

sf , was calculated at each potential given 

that G  ́and G" were constant upon a small potential perturbation. 
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The resulting modified Cf values for ERGO-1, -2 and -3 are ~19.5×107, ~18.7×107 and ~17.8×107 

Hz.g-1.cm2, respectively. These modified values will be used in the EQCM (section IV.3.3) and for 

the fitting of the ac-electrogravimetric part (section IV.3.4). 

 

IV.3.3 Cyclic electrogravimetric behavior 

The electrochemical behavior of ERGO electrodes was characterized by galvanostatic 

charging/discharging (GCD) and cyclic voltammetry (CV). The QCM was coupled with both 

measurements to track the simultaneous frequency shifts of the ERGO electrodes during cycling, 

which can be converted into mass responses. Typical galvanostatic charge/discharge curves of three 

different reduced graphene oxide electrodes obtained at a current density of 0.5, 1 and 2 mA·s
-1 are 

shown in Figure IV.6a, c and e, while the corresponding mass changes are displayed in Figure 

IV.6b, d and f. The charge/discharge curve of the ERGO-3 electrode presents a typical triangle 

shape with little distortion and much prolonged over the ERGO-1 and -2 electrodes at various 

current densities, demonstrating that the capacitive behavior plays the major contribution in charge 

storage and that the specific capacitance of ERGO-3 electrode is significantly higher than that of 
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ERGO-1 and -218. This reveals that significantly larger surface areas of the ERGO sheets become 

electroactive and accessible for ions in charge storage/delivery with the progressive removal of 

oxygen functionalities. Unlike the fairly clear evolution of potential responses, the mass responses 

of graphene oxides with different degree of reduction display a complex signature. As for ERGO-1, 

the mass-time response proceeds in a synchronously positive-going pace with potential response, 

i.e., mass increase during charging and mass decrease during discharging, which is characteristic of 

anion participation in charge compensation process. By contrast, in the case of ERGO-2 and -3, the 

mass response (Figure IV.6d and f) shows a reverse triangular shape, evidencing a transition in the 

charge storage/delivery process, specifically from anions to cations.  

 

 

Figure IV.6. Galvanostatic charge-discharge of ERGO-1 (a, b), -2 (c, d) and -3 (e, f) at a current 

density of 0.5, 1 and 2 mA·cm-2, respectively.  

 

To confirm this “anion-to-cation” preference of the ERGO electrodes in electrochemical 

performance upon a progressive removal of oxygen functionalities, the cyclic electrogravimetry 

(EQCM) measurement was also performed, which tracked the current and the simultaneous mass 

responses between -0.5 and 0.5 V at various scan rates. Figure IV.7a-c shows approximately 

rectangular shaped CV responses of ERGO electrodes with the slight contribution of broad redox 

peaks in the potential range of -0.5-0.2 V vs. Ag/AgCl, indicating that the charge storage is mostly 

from EDLC behavior. The minor deviations of an ideal rectangular response are due to the 
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additional pseudo-capacitances, which stem from the electrochemical reactions of remaining 

oxygen containing functional groups on ERGO layers at the electrode/electrolyte interface, e.g., 

->C-OH >C=O+H +e 46-47. In general, the specific capacitance (Cs) of the electrode is 

proportional to its CV area48. If the ERGO (1-3) electrodes at 10 mV·s
-1 are taken as an example 

(Figure IV.7d), an increase in the Cs values is observed with the progressive removal of oxygen 

functional groups, as evidenced by the enlarged CV area. The specific capacitance can be calculated 

based on CV curves using the following equation and listed in Table IV.1: 

2

1
2 1

1
( )

2 ( )

E

s
E

C I E dE
mv E E


                              (IV.10) 

where m is the mass loading of different ERGO electrodes obtained by QCM, v is the scan rate, E1 

and E2 are the working voltage, and I(E) depicts the response in current. The maximum Cs of 

~160.8 F·g
-1 was obtained at a scan rate of 10 mV·s

-1 for the ERGO-3 electrode, which exhibits 

superior conductivity and a very promising charge storage capability2, 36. 
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Figure IV.7. Cyclic voltammetry (a, b and c), mass change (Δm) (e, f and g) of ERGO electrodes in 

1 M NaCl aqueous solution between -0.5 V and 0.5 V vs. Ag/AgCl at different scan rates. Panels (d) 

and (h) are CV and mass change of ERGO electrodes obtained at 10 mV·s
-1. 

 

Table IV.1. Specific capacitance (F·g
-1) of ERGO electrodes from CV. 

 Scan rate (mV·s-1 ) 

 10 50 100 

ERGO-1 25.7 23.2 22.5 

ERGO-2 113.5 110.8 108.7 

ERGO-3 160.8 143.1 137.5 

 

Contrary to the fairly unambiguous CV responses, the mass responses of ERGO electrodes 

exhibit an obvious reversed response upon the electrochemical reduction, as shown in Figure 

IV.7e-h. For slightly-reduced GO electrode (ERGO-1), a mass decrease occurs during cathodic 
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sweep while mass increase during anodic sweep, which is characteristic of anion participation34 and 

in agreement with the observation from GCD measurement (Figure IV.6b). For the 

intermediately-reduced electrode (ERGO-2), the mass response displays an opposite behavior 

relative to ERGO-1, i.e., mass ingress/egress during cathodic/anodic sweep, respectively. With a 

further reduction, the same mass change behavior persists for the ERGO-3 electrode, but exhibits 

less and even negligible hysteresis between the mass response during the cathodic and anodic 

potential sweep.  

Both GCD and CV analysis coupled with the corresponding mass responses suggested that 

ERGO-1 experiences anion desorption and adsorption during cathodic/anodic sweep, respectively; 

whereas ERGO-2 and -3 undergo cation adsorption/desorption during cathodic/anodic sweep. In 

spite of displaying the similar behavior in mass response as ERGO-2 electrode, ERGO-3 shows 

relatively overlapped mass increase/decrease during the cathodic and anodic sweep without a 

significant hysteresis, implying a more homogeneous layer structure and composition of the 

ERGO-3 electrode. 

Concerning the aforementioned discussion, anions seem to dominate in charge balance for 

ERGO-based electrodes with relatively high content of oxygen functionalities while cations’ 

contribution is progressively enhanced with the decrease of oxygen functional groups on its layers. 

Therefore, it is likely to modify the microstructures of GO-based electrodes by means of tuning the 

content of oxygen functionalities on its layers, which can affect not only the electrochemical 

performances but also the nature of the ionic species participating in this process.  

However, the GCD and EQCM alone are not qualified to separate each species contribution and 

to provide their interfacial transfer kinetics since the measurements are done at a certain current 

density or scan rate28, 49. For the deconvolution of the global electrogravimetric response into 

gravimetric and temporal components, the ac-electrogravimetry was suggested as a complementary 

tool to EQCM. The different scenarios of the charge compensation process for ERGO electrodes in 

the process of removal of oxygen functional groups are scrutinized. 

 

IV.3.4 Ac-electrogravimetric investigations 

To shed light on the subtleties of the charge compensation process observed in cyclic 

electrogravimetry analysis and to gain insights into the dynamic behavior of each species’ transfer 

at ERGO electrodes interface, ac-electrogravimetry measurements were carried out at various 

states-of-polarization from -0.4 V to 0.4 V with an interval of 100 mV. Figure IV.8 and IV.9 
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compare the electrochemical impedance, ( )
E

I





 and charge/potential transfer function (TF), 

( )




q

E
  of ERGO electrodes at selective potentials of ±0.2 V vs. Ag/AgCl, respectively, which 

can only reveal the contribution of charged species participating in the charge compensation process. 

These two potentials were shown herein as representatives of cathodic and anodic states of 

polarization. The electrochemical impedance, ( )
E

I





 (Figure IV.8g and h) at low frequencies 

exhibits a slightly distorted straight line implying a multi-ion contribution to charge compensation. 

The experimental data of ( )
E

I





 and ( )





q

E
 were fitted using theoretical functions in 

Equations IV.6 and IV.7 and revealed the involvement of three ionic species which resulted in a 

good agreement between the experimental and the theoretical curves. Two parameters for each ionic 

species, Ki and Gi, could be obtained through this fitting process as listed in Table IV.2.  
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Figure IV.8. Experimental and theoretical ( )
E

I





 transfer functions (TFs) for ERGO electrodes. 

(a), (c) and (e) were measured for ERGO-1, -2 and -3 at -0.2V, while (b), (d) and (f) at 0.2V, 

respectively. Panels (g) and (h) are theoretical ( )
E

I





 TFs of ERGO electrodes at ±0.2 V.  
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Figure IV.9. Experimental and theoretical ( )




q

E
  TFs for ERGO electrodes. Panels (a), (c) and (e) 

are for ERGO-1, -2 and -3 at -0.2 V, while (b), (d) and (f) at 0.2 V, respectively. Panels (g) and (h) 
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are theoretical ( )




q

E
 TFs of ERGO electrodes at ±0.2 V. 

 

Table IV.2. Fitting parameters, Ki and Gi, obtained from ac-electrogravimetry. 

  Kc1 

×104 

 

(×10-4) 

Gc1 

×108 

 

(×10-8) 

Kc2 

×105 

 

(×10-6) 

(×10-5) 

Gc2 

×109 

 

(×10-9) 

Ks  

×106 

Gs 

×109 

Ka 

×106 

Ga 

×109 

  

ERGO-1 34.75 5.56 7.26 16 299 -1200 2859 -1086 

-0.2 V  

ERGO-2 15.83 46.7 90.5 1810 151 302 17 -13.74 

  

ERGO-3 3.77 60.3 28.3 481 189 141 1.63 -2.581 

  

ERGO-1 34.31 54.9 2.86 1.43 106 -475 1935 -309.6 

0.2 V  

ERGO-2 20.73 62.2 109.3 1300 1.7 1.27 0 0 

  

ERGO-3 18.85 79.2 157.1 1890 251 163 19.8 -2.573 

Note: cm·s
-1 and mol·s

-1
·cm-2

·V
-1 are for the units of Ki and Gi parameters, respectively. Cation 1 (c1), 

cation 2 (c2), solvent (s) and anion (a) in the Table refer to hydrated Na+ (Na+
·nH2O, n=1 or 2), Na+, 

H2O and Cl-. 

 

The ( )




q

E
  of the ERGO-1 exhibits a relatively small suppressed loop (or a composition of 

several loops) at both potentials (Figure IV.9a and b), demonstrating the presence of more than one 

charged species with similar time constant. In the case of ERGO-2, the ( )




q

E
  TF is 

distinguished by an enhancement of the loop diameter. After a further electrochemical reduction, 

ERGO-3 exhibits even a larger ( )




q

E
  TF loop at -0.2 V with an upward tail at low frequency 

(LF). This suggests that at LF, another species may participate to the process and this species 

possesses a significantly different time constant to appear as a beginning of a separate loop. 

However, almost equal diameter of ( )




q

E
  loops is observed for ERGO-3 and ERGO-2 at 0.2 V, 
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illustrating that approximately the same amount of charged species are involved in charge 

compensation for these two electrodes at this polarized state. Additionally, it can be clearly seen that 

all ERGO electrodes exhibit a much larger ( )




q

E
  loop at -0.2 V relative to 0.2 V, which is 

consistent with the observation from CV in Figure IV.7 (much larger area enclosured at cathodic 

potentials), i.e., higher amount of charges transferred during cathodic potential region (-0.5-0 V) 

relative to that of the anodic potential region (0-0.5 V).  
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Figure IV.10. Evolution of ( )




m

E
  TFs with progressive reduction of the ERGO electrodes: (a), 

(c) and (e) were measured for ERGO-1, -2 and -3 at -0.2V, while (b), (d) and (f) at 0.2V, 

respectively. Panels (g) and (h) are theoretical ( )




m

E
  TFs of ERGO electrodes at ±0.2 V. 

 

( )
E

I





 and ( )





q

E
  TFs provide the contribution of charged species but do not permit their 

identification. Thus, ( )




m

E
  TFs were explored for tracking the flux of both charged and neutral 

species with their identification as well as for their kinetics of interfacial transfer (Figure IV.10). 

Two parameters for each ionic species, Ki and Gi previously obtained from the ( )
E

I





 and 

( )




q

E
  were used in the fitting process of the ( )





m

E
  TF. The additional parameters, Ki and Gi 

for the solvent molecules and the molar mass (Mi) of each species were estimated (listed in Table 
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IV.2 at selective potentials of ±0.2 V vs. Ag/AgCl). All the parameters for Ki and Gi at various 

potentials in the range of -0.4 V to 0.4 V are summarized in Figure IV.11.  
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Figure IV.11. Fitting parameters in ac-electrogravimetry, Ki and Gi for each species: (a, b) for 

cation 1, c1; (c, d) for cation2, c2; (e, f) for solvent, s; and (g, f) for anion, a. 

 

Figure IV.10 depicts the evolution of ( )




m

E
  response of ERGO electrodes at ±0.2 V vs. 

Ag/AgCl with progressive removal of oxygen functionalities. Four different species, i.e., hydrated 

cations (Na+
·nH2O, n=1 or 2), cations (Na+), H2O molecules and anions (Cl-) were identified which 

resulted in a good agreement between the experimental and the theoretical curves. As shown 

schematically in Figure II.8 (Chapter II), the ( )




m

E
  response in the first (I) quadrant is 

characteristic of an anion contribution, while a cation contribution appears in the third (III) 

quadrant50. For ERGO-1, at both potentials, relatively small amount of hydrated cations (Na+
·2H2O) 

were identified at high frequencies (HFs). They were followed by a significant contribution of 

anions (Cl-) and H2O molecules with the same flux direction with anions at high-intermediate and 

intermediate-low frequencies, respectively. Lastly, cations without hydration shell (Na+) were 

observed at very low frequencies. Besides, no significant differences of ( )




m

E
  responses were 

observed between -0.2 V and 0.2 V. This illustrates a persistent electrochemical performance of 

ERGO-1 electrode with anions playing a major part in the charge compensation (Figure IV.10a and 

b). On the contrary, the electrogravimetric response of ERGO-2 electrode presents an obvious 

potential-dependent behavior. Specifically, at -0.2 V, a fairly good agreement between the 

experimental and theoretical ( )




m

E
  data was achieved by considering the contribution of anions 

(Cl-) at low frequency (Figure IV.10c). However, at 0.2 V, this contribution disappeared and 

replaced by the extension of the contribution from H2O molecules with the same flux direction as 
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cations (Figure IV.10d). It was observed that the H2O molecules in the solvation shell of the Na+ is 

gradually removed at anodic potential of 0.3 and 0.4 V, i.e., Na+
·2H2O losing half of its hydration 

shell to become Na+
·H2O, as shown in Figure IV.12.  

 

 

Figure IV.12. The evolution of number of H2O molecules in cation’s hydration shell at different 

polarized state from -0.4 to 0.4 V for ERGO electrodes. 

 

ERGO-3 electrode presents one big loop of ( )




m

E
  TF in the third (III) quadrant at high and 

intermediate frequencies, and a small one in the II quadrant at lower frequencies, independently of 

the applied potential (Figure IV.10e and f). It suggests a more homogeneous nanostructure of 

reduced graphene layers in ERGO-3 electrode with cations as a major charge carrier for charge 

balance in the potential range studied (-0.4 to 0.4 V). Herein, it is worth mentioning that a drastic 

decrease of the loop diameter in the III quadrant was observed when the measurement potential was 

changed from -0.2 V to 0.2 V for ERGO-2 and -3 electrodes, implying a decrease of the cation/free 

solvent contributions.  

It is interesting to mention that hydrated cation (Na+
·nH2O, n=1 or 2) transfers at the 

electrode/electrolyte interface with a higher kinetics than dehydrated one (Na+), as shown in Figure 

IV.10. This can be explained by putting forward the existence of shallow electroactive sites close to 

the edge of ERGO layers and deep electroactive sites located in the inner of ERGO layers with 
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higher activation energy for ion adsorption, which has been demonstrated in another 2D material, 

Ti3C2Tx MXenes24. The shallow electroactive sites are quite accessible for hydrated cation 

adsorption and desorption due to lower activation energy for ion adsorption, leading to high transfer 

kinetics. However, deep electroactive sites are exclusively approachable for cations only after 

removing its hydration shell, which requires much more energy and results in lower transfer 

kinetics of Na+. After removing the oxygen functionalities during electrochemical reduction, the 

“d-spacing” decreased (as shown by XRD patterns in Figure IV.3) and it could be speculated that 

the gap between the layers may close up at the edges from electrolyte side. This can shelter the 

accessibility for ions especially to shallow electroactive sites, which might cause the dehydration 

behavior of Na+
·2H2O to Na+

·H2O from ERGO-1 to -3 electrode (Figure IV.12).  
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Figure IV.13. Exchanged free H2O (a) and global H2O (b) (calculated by Equations IV.11 and 

IV.12) participating in charge compensation at each polarized state. 

 

It has been demonstrated that during charge-discharge cycles, the exchange of ions between 

electrode and electrolyte is often accompanied with free solvent flux to satisfy the dimensional 

confinement of the electrode materials30 and the relative displacement of graphene sheets 

synchronously takes place to meet the geometric requirement of this newly developed structure. 

Moreover, the solvent exchanged often plays an important role in electrode’s viscoelasticity through 

plasticizing effect45.  

The exchanged free H2O and global H2O participating in charge compensation at each polarized 

state were calculated by Equations IV.11 and IV.12. Global H2O represents the sum of free H2O 

and the H2O molecules within the hydration shell of cations. As shown in Figure IV.13, the 

increased H2O exchanged between electrode/electrolyte interface in ERGO-1 from cathodic to 
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anodic potentials (except -0.4 V) brings about progressively stronger plasticizing effect, 

contributing to the decrease of electrode’s viscosity, i.e., lower G" (Figure IV.5b). Contrarily, in 

ERGO-2 and ERGO-3, less H2O exchanged from cathodic to anodic potentials which may account 

for a higher G" (Figure IV.5b). Briefly, the viscoelasticity of the ERGO electrodes can be tuned 

through adjusting the content of the hetero-oxygen groups on its layers. More flexibility and less 

viscosity is expected during the process of removing oxygen functional groups. 
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IV.4. Conclusions 

The ion-selective properties of the reduced graphene oxides have been reported for the very 

first time through tuning the content of the oxygen containing functional groups on the graphene 

oxide layers. It was found out that under the experimental conditions of this study, the anions play 

the major part in the charge balance for ERGO electrode with a high amount of oxygen 

functionalities. On the contrary, the cation contribution dominates for ERGO electrode with a low 

content of these groups.  

The ERGO electrodes are likely to possess relatively larger gaps between their layers in the 

cathodic potential range than those in the anodic potential range, permitting a higher amount of 

species transferred between the electrode and the electrolyte. Besides, for graphene oxide with 

intermediate reduced state (ERGO-2), this slight decrease in the interlayer distance during a shift 

from cathodic to anodic potentials leads to the dehydration phenomena of Na+
·2H2O, which may be 

attributed to the hydrated cations’ fading accessibility to shallow electroactive sites near the edge of 

ERGO layers. With the removal of oxygen functionalities on the ERGO layers which results in the 

restoration of π-π conjugated system, the ERGO electrodes behave more flexible, leading to an 

enhanced electrochemical energy storage capability. 

The present study exhibited the significance of such an integrated methodology of 

electroacoustic, EQCM and ac-electrogravimetry measurements to be able to probe the viscoelastic 

and electrochemical evolution of ERGO electrodes with the different content of oxygen 

functionalities. The viscoelastic parameters obtained from the electroacoustic impedance were 
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further utilized to estimate the deviation of the sensitivity coefficients of the quartz crystal 

microbalance when it is not under the gravimetric regime and thus provided the differentiation of 

the effect of the mechanical property changes from purely gravimetric responses. This combined 

research methodology can also be employed to obtain insights into the electro(chemical and 

mechanical) behavior for other 2D materials and might pave the way to understand the charge 

storage mechanism, facilitating the fabrication of highly efficient SC electrodes with ion-selective 

properties and superior long-term performance. 
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In this chapter, the mechanism of species fluxes during charge-discharge process in 

nanostructured ZnO electrode was studied by a combined methodology of electrochemical quartz 

crystal microbalance (EQCM) and ac-electrogravimetry. Under the conditions of this study, anions 

(SO4
2-) possess the highest kinetics to be transferred at the electrode/electrolyte interface in charge 

balance while cations (identified as Na+
·5H2O and Na+) play the major part as charge carriers. Free 

H2O molecules present a sluggish behavior and their interfacial transfer occurs at low scan rate or 

low frequencies. These findings shed light on the nature of ions and solvent participation in charge 

balance of hydrothermally synthesized ZnO nanostructures directly grown on the QCM device. The 

combined methodology proposed herein provides dynamic and gravimetric analysis of interfacial 

charge transfer and can be extended to investigate other nanostructured metal oxide-based 

electrodes for energy storage. 

 

V.1. Preamble and Objectives  

 Supercapacitors (SCs) are a class of electrochemical energy storage devices well suited to the 

rapid storage and release of energy1. The last four decades have seen a tremendous burgeoning of 

scientific and industrial interest into the potential applications of SCs, mainly due to their high 

power density and long cycle life2-3. Numerous research efforts have been dedicated to investigating 

the electrode materials, which play an essential role in optimizing the electrochemical performance 

of SCs. 

Transition metal oxides have been intensively studied as electrode materials due to their fast 

and reversible redox reactions occurring at or near the electrode surface, which can provide 

significantly higher capacitances4-7. Generally, metal oxides can offer higher energy density than 

conventional carbon materials and better electrochemical stability than conducting polymers2. To 

date, transitional metal oxides, such as ruthenium oxide (RuO2)
8, manganese dioxide (MnO2)

9, zinc 

oxide (ZnO)10 and nickel oxide (NiO)11 have been intensively studied as electrode materials, which 
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can offer additional pseudocapacitances during electrochemical performance. Among these 

candidates, ZnO nanomaterials have been widely used due to its low cost, easy fabrication, 

morphological diversity and electrochemical activities12-15. ZnO nanomaterials can be solely 

deposited on the substrate10 or composited with other metal oxides14, conducting polymers16 and 

carbon-based materials17 to serve as energy storage electrodes. However, of great fundamental 

importance but almost barely touched is the mechanism of ionic/non-ionic fluxes during 

charge-discharge process in ZnO-based electrodes, which plays an essential role in the design of 

supercapacitor electrodes with high efficiency. 

Electrochemical quartz-crystal microbalance (EQCM) has gained wide applicability to evaluate 

the electrochemical behaviour of electrodes18-22, particularly in situ capturing of the global transfer 

of the species at the electrode/electrolyte interface. Mass and charge variations measured 

simultaneously during the electrode cycling allow the derivation of the global mass per mole of 

electrons (MPE) that is exchanged between the electrode and the electrolyte according to the 

equation: ( )
m

MPE F
q







, where F is the Faraday number, ∆m and ∆q are the mass and charge 

variations, respectively. If only one species is exchanged, then the MPE corresponds to its molar 

mass. In the cases where multiple ion transfer occurs, using Faraday’s law to interpret classical 

EQCM data reaches its limitations. To discriminate between the involved species, Donnan-type 

electrical double layer models were incorporated into the gravimetric EQCM equations23. 

Additionally, it has been demonstrated that coupling the QCM with electrochemical impedance 

spectroscopy (the so-called ac-electrogravimetry) contributes to disentangle the subtleties of global 

charge compensation process involving multiple species, offering a quantitative picture of each 

participant with their transfer kinetics and identifying them by their molar masses.  

Under a fixed potential with a small sinusoidal perturbation, frequency dependant mass and 

charge variations are obtained and used to generate both the classical EIS transfer function (TF), 

( )




E

I
  and the mass/potential TF, ( )





m

E
 . These TFs are then fitted with an appropriate model 

to obtain detailed identification of the species involved in the charge transfer mechanism, along 

with the kinetics and the relative concentrations associated with each species24.  

In the chapter, this non-classical but emerging methodology in the energy storage domain25-27 is 

adopted to characterize the electrochemical energy storage behaviour of ZnO-based electrodes and 

elucidate the subtleties in transfer of species during charge balance. To the best of our knowledge, 



Chapter V: Metal oxide based pseudo-capacitive electrodes - an electrogravimetric study  

136 

 

this is the first time that ZnO is grown on QCM devices for energy storage purposes and 

investigated by the classical EQCM and its complementary counterpart ac-electrogravimetry for 

understanding its charge storage mechanism. Electroacoustic study has not been conducted 

assuming that the ZnO structures are rigid. 

 

V.2. Experimental Methods and Theoretical Background 

V.2.1. Electrode preparation and characterization 

A precursor solution was prepared with 0.02 M zinc nitrate hexahydrate and 0.02 M 

hexamethylenetetramine (HMTA). A quartz resonator (9 MHz-AWS, Valencia, Spain) was 

immersed in the solution, which was transferred to a Teflon-lined stainless steel autoclave and 

maintained at 120 °C for 12 h. After the hydrothermal process, ZnO nanostructures generated on the 

resonators were rinsed several times with deionized water. 

EQCM and ac-electrogravimetry measurements were performed in 0.25 M Na2SO4 under 

nitrogen atmosphere. ZnO nanostructures grown on the quartz resonator were used as the working 

electrode, with Ag/AgCl (3 M KCl saturated with AgCl) and platinum gauze as the reference and 

counter electrode, respectively. The potential window for EQCM was confined between 0 V and 0.6 

V vs. Ag/AgCl in cyclic voltammetry (CV) and 0 V and 0.8 V vs. Ag/AgCl in galvanostatic 

charge/discharge (GCD). A lab-made QCM device (Miller oscillator) was used to measure 

frequency shift (∆f) of the quartz crystals. The mass change (Δm) of ZnO electrode on the quartz 

crystals during electrochemical process can be estimated by the microbalance frequency shift (Δf) 

through Sauerbrey equation28, i.e., Δf = -Cf ×Δm, where Cf is the experimental sensitivity factor of 

the quartz crystal resonator (Cf =16.3×107 Hz·g
-1

·cm2)25.  

For ac-electrogravimetry measurements, a four-channel frequency response analyzer (FRA, 

Solartron 1254) and a lab- made potentiostat (SOTELEM-PGSTAT) were used. The QCM was 

performed under dynamic regime, and the modified working electrode was polarized at selected 

potentials to which a sinusoidal small amplitude potential perturbation was superimposed. The 

frequency range was between 63 KHz and 10 mHz. The mass change, Δm of the working electrode 

was measured simultaneously with the ac response, ΔI of the electrochemical system. 

Frequency/voltage converter is the key component of the ac-electrogravimetry set-up which 

translates the QCM frequency response (Δf) to a continuous voltage change (ΔVf) with the aim of 

obtaining a transfer function (TF) via a frequency response analyzer (FRA) (which cannot directly 
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analyze the frequency response). Finally, the resulting signals ( )




fV

V
 and ( )





V

I
 were sent to 

a four-channel FRA, which led to the electrogravimetric TF ( ( )




m

E
 ) and the electrical TF 

( ( )




E

I
 ) to be obtained simultaneously at a given potential and frequency modulation, f (pulsation 

=2f). More details about ac-electrogravimetry are given in Chapter II. 

 

V.2.2. Theoretical considerations for ac-electrogravimetry 

Under the effect of a sinusoidal potential perturbation with low amplitude, ΔE, imposed to the 

electrode/film/electrolyte system, sinusoidal fluctuations of concentration, ΔCi are observed. The 

theoretical TFs are calculated through the following equations26, 31: 

( )i i

f i

C G

E j d K




 


 
      (i: ions and non-charged species)    (V.1) 
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( ) i
f i

i f i
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d M

E j d K





 

 
   (i: ions and non-charged species)     (V.4) 

where ΔCi presents concentration variation for each species,  is the pulsation, df is the film 

thickness, Mi depicts the molar mass of involved species, Ki and Gi are the partial derivatives of the 

flux (Ji) with respect to the concentration and the potential, respectively. Ki represents the transfer 

kinetics of each species while Gi is the reciprocal of the transfer resistance (Rti=1/FGi), exhibiting 

the ease or difficulty in the species transfer at the film/electrolyte interface.   

The theoretical expressions (Equations V.2-4) were used to fit the experimental responses of 

the electrochemical impedance, ( )




E

I
 , the charge/potential TF, ( )





q

E
  and the 

electrogravimetric TF, ( )




m

E
 , which provided the key parameters (Mi, Ki, Gi and Rti) related to 

each species (where i can be a cation, an anion or solvent) to be extracted. 
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V.3. Results and Discussion 

The synthesis of the nanostructures was performed directly on the quartz resonators by 

hydrothermal method. As shown in Figure V.1a, ZnO nanostructures are densely grown on the 

quartz resonator, formed by flower-like bundles of individual nanorods with a diameter of ~300-800 

nm and length of ~2-7 µm. The discrete ZnO nanorods may facilitate the exposure to the electrolyte 

and thus offer a large surface area for the electrochemical processes. XRD patterns are recorded 

(Figure V.1b) and the peaks present between 32° and 69° demonstrate that the synthesized ZnO 

nanorods exhibit the crystalline nature of wurtzite hexagonal structure, which is in good agreement 

with standard ZnO peaks (JCPDS 36-1451)29-30. 
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Figure V.1. (a) FEG-SEM image and (b) XRD spectra of ZnO nanostructures hydrothermally 

synthesized on the gold electrode of the quartz resonator. The peaks centered at 2θ = 32°, 34°, 36°, 

47°, 56°, 63°, 66°, 68° and 69° correspond to the lattice planes (100), (002), (101), (102), (110), 

(103), (200), (112) and (201), respectively. The inset in (b) is the magnification of the spectra 

between 2θ = 42.5° and 80°. 
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V.3.1. Cyclic Electrogravimetry (EQCM) and QCM-coupled GCD:  

The electrochemical performance of ZnO nanorods was characterized by cyclic voltammetry 

(CV) and galvanostatic charge-discharge (GCD) techniques. The QCM was coupled with both 

measurements to track the simultaneous frequency shifts of the ZnO-based electrode during cycling, 

which can be converted into mass responses through Sauerbrey equation28. Figure V.2a exhibits 

approximately rectangular CV curves, with a cathodic peak around 0.1 V and an anodic peak 

around 0.2 V. This electrochemical behaviour due to the dominant capacitive response in the CV 

curve can be attributed to an electroadsorption process of Na+ ions occurring at different 

electroactive sites of the ZnO electrode: 

ZnO + Na+ + e- ↔ (ZnO)-
surface Na+ 

However, this simplified scheme does not take into account of (i) the ion solvation effect, (ii) 

the possible presence of more than one ionic species which may participate in the charge 

compensation process and affect the charge/discharge rates, and (iii) the influence of free electrolyte 

molecules that can interact, indirectly, with the electrodes.  

 

 

Figure V.2. Cyclic voltammetry (a) and galvanostatic charge/discharge (c) measurements of ZnO 
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electrode on the gold electrode of the quartz resonator with the corresponding mass variations of the 

electrode (b and d) measured in 0.25 M Na2SO4. 

 

Utilizing the simultaneous QCM measurements permits the corresponding mass responses 

(Δm-E) to be obtained during CV scans (Figure V.2b). Mass response mainly presents 

ingress/egress during cathodic/anodic sweep, which is indicative of cation participation in charge 

compensation process31. GCD curves were measured to further evaluate the electrochemical 

performance of ZnO-based electrode. The corresponding mass-time response proceeds in an inverse 

pace with potential-time response, i.e., mass decrease during charging and mass increase during 

discharging, which indicates that the cation plays a major role in charge balance.  
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Figure V.3. MPE calculated from CV curve during a cathodic and an anodic sweep at a scan rate of 

50 mV/s. 

 

To obtain indications on the nature of the transferred species, the MPE=FΔm/Δq was calculated 

from the EQCM data (Figure V.3). If only one species is exchanged, then the MPE corresponds to 

its molar mass. Positive and negative values of the MPE correspond to a major contribution to the 

energy storage mechanism by anions and cations, respectively. Here, we obtain a MPE of ~-100 

g·mol-1 below 0.3 V and ~-50 g·mol-1 above 0.4 V for the cathodic sweep and anodic sweep, 

respectively. The lower value for the cathodic sweep suggests that the cations are hydrated and/or 

accompanied by free solvent molecules. This value increases during the anodic sweep (~-50 

g·mol-1), indicating that multiple species are exchanged and interfacial behaviour is complex.  

QCM-coupled CV and GCD measurements are performed at a certain scan rate or current 

density, therefore they require either the incorporation of Donnan-type models into the gravimetric 
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EQCM equations23 or complementary methods to elucidate if there is a multiple species 

contribution to the charge compensation process32. To get a deeper insight into the charge 

compensation behaviour occurring in the ZnO-based electrode, from both gravimetrical and kinetic 

point of view, the ac-electrogravimetry was suggested. The different scenarios of the charge 

compensation process for ZnO-based electrodes are scrutinized by this coupled method emerging in 

the field of energy storage25, 27. 
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Figure V.4. ( )




q

E
  (a) and ( )





m

E
  (b) Transfer Functions (TFs) at 0.3V vs. Ag/AgCl. 

Schematic representation of the TFs for ( )




q

E
  (c) and ( )





m

E
  (d). The following parameters 

were used in the fitting of the experimental data: Ki (kinetics of transfer, in cm·s
-1), Gi (the inverse of 

the transfer resistance, in mol·s
-1

·cm-2
·V

-1 ): Kc1: 0.0088, Gc1: 2.375 × 10-7; Kc2: 2.199 × 10-4, Gc2: 

9.456 × 10-9; Ks: 3.77 × 10-5, Gs: 4.524 × 109; Ka: 0.06, Ga: -2.149 × 10-6. C1: Na+
·5H2O (113 
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g·mol-1), C2: Na+ (23 g·mol-1), S: H2O (18 g·mol-1) and A: SO4
2- (96 g·mol-1). 

 

V.3.2. QCM-coupled to Electrochemical Impedance Spectroscopy (Ac-electrogravimetry) 

Ac-electrogravimetry measurements were performed in the same potential range used for CV 

measurements, at various states-of-polarization from 0 V to 0.6V vs. Ag/AgCl with an interval of 

100 mV. Figure V.4a and b present ( )




q

E
  (calculated from the electrochemical impedance, 

theoretical part in Equations V.2 and V.3) and ( )




m

E
 TFs at 0.3V, where the experimental data 

were fitted using theoretical functions in Equations V.3 and V.4. It is important to note that for the 

( )




m

E
 TF, the experimental data were not visualized at high frequency region in Figure V.4b 

beyond ~ 100 Hz due to the instrumental limitations, i.e., the validity region of the 

frequency-voltage convertor is ~ 100 Hz to ~ 1 mHz. This may indicate that there is a fast species 

contributing to the charge storage but cannot be detected by ac-electrogravimetry with the current 

frequency-voltage convertor. Theoretically, anions and cations share the same response behaviour in 

( )




q

E
 TF, but anions characteristically appear in the quadrant I (Cartesian system) in 

( )




m

E
 while cations locate in the quadrant III, as shown in Figure V.4c and d. Therefore, in the 

present work, the mass response at high frequency emerging in the quadrant I can originate from 

either anions or free H2O molecules with the same transfer direction as anions24. Herein, four 

species based on different kinetics, i.e., anions (SO4
2-), hydrated cations (Na+

·5H2O), cations (Na+) 

and H2O molecules were proposed which led to a good agreement between the experimental and the 

theoretical functions in terms of both the shape and the frequencies (Figure V.4). It is highlighted 

that the identification of the species can be achieved thanks to the electrogravimetric TF 

( ( )




m

E
 which involves the molar mass (Mi) of the species involved in the charge compensations 

(Equation V.4).  

Then, the ac-electrogravimetry data obtained at various states-of-polarization from 0 V to 0.6V 

vs. Ag/AgCl were analysed and it was observed that the presence of several species persists. This 

finding is further supported by comparing the ac-electrogravimetry data with that of EQCM (see the 
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section: V.3.3. Comparison of the EQCM and Ac-electrogravimerty mass responses).  

The transfer kinetics of each species, Ki, are summarized in Figure V.5a. SO4
2- anions exhibit 

the highest kinetics of transfer at the electrode/electrolyte interface in the charge compensation 

process, followed by hydrated cations (Na+.5H2O) and dehydrated cations (Na+), and H2O 

molecules present the lowest kinetics, i.e., K (SO4
2-) > K (Na+

·5H2O) > K (Na+ )> K (H2O). It is in 

good agreement with the inverse order of their transfer resistances: Rt (SO4
2-) < Rt (Na+

·5H2O) < Rt 

(Na+) < Rt (H2O), as depicted in Figure V.5b. The contribution of various species to electrochemical 

reactions with different kinetics of transfer has already been observed in the earlier work of Hillman 

et al. on nickel hydroxide thin films by combining probe beam deflection (PBD) technique and 

EQCM33-35, and also in our recent work on SWCNT based electrodes25. 

 

 

Figure V.5. Transfer kinetics, Ki (cm·s
-1) (a) and corresponding transfer resistances, Rti (Ω·cm2) (b) 

for each species participating in charge balance. 

 

The charge storage mechanism of another transitional metal oxide, MnO2, has been widely 

investigated, and it was proposed that the charge could be stored by either i) the surface adsorption 

of alkali metal cations (C+)36 or ii) the intercalation of both protons (H+) and alkali metal cations 

(C+)37-38 in the electrolyte. However, direct analogy of the charge storage mechanism proposed for 

the other metal oxides may not be applicable to ZnO. In the present work, SO4
2- and Na+

·5H2O 

present a quick response upon potential perturbation, which is presumably ascribed to their fast 

electroadsorption behaviour. Dehydrated Na+ is also considered to be electroadsorbed but in the 

ZnO bulk, onto the less accessible sites, due to a relatively slow transfer kinetics (Figure V.6). 
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Furthermore, free H2O molecule exhibits a sluggish behaviour and participates in charge balance at 

lowest frequencies. It is supposed to be electrodragged by Na+,25 as evidenced by the same flux 

direction of H2O and Na+.  

 

 

Figure V.6. A schematic presentation of ions participating in the charge balance, where cations with 

blue shell (1st step) represent the hydrated cation, i.e., Na+
·nH2O (n=5). 

 

Actually, it is speculated that there exist at least two different electroactive sites for charge 

storage in synthesized ZnO nanostructures. The first is on the surface of ZnO, where the charge 

storage occurs (under the conditions of this study) either by the electroadsorption and 

electrodesorption of SO4
2- and Na+

·5H2O, respectively (Figure V.6). After the surficial electroactive 

sites are saturated with SO4
2- and Na+.5H2O by a fast electroadsorption behaviour, contributing to 
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the responses at high frequency (HF) in ac-electrogravimetry (Figure V.4b), the second 

electroactive sites in the bulk of ZnO may begin to come into use. Dehydrated Na+·5H2O (i.e., Na+)  

may electrodrag free H2O molecules into/out of ZnO bulk and, consequently, bring about a response 

from free H2O molecules at lowest frequency (LF) in ac-electrogravimetry (Figure V.4b).  

 

V.3.3. Comparison of the EQCM and Ac-electrogravimerty mass responses 

In order to validate our hypothesis involving multi-species contribution to the charge storage 

and also to confirm the presence of the anionic species appearing at the HF region (see theoretical 

curve in Figure V.4b), a methodology benefiting from the complementarity of the EQCM and 

ac-electrogravimetry is developed as follows25: From ac-electrogravimetry, the relative 

concentration changes of each species (ΔCi) with respect to the potential variation can be estimated 

by using Equation V.5; specifically, the estimation of the relative concentration change with respect 

to the individual species (Ci – C0) can be obtained after integration of Equation V.5: 

( )i i

i

C G

E K


 



   ( 0 )                   (V.5) 

The concentration variation of individual species (Ci – C0) obtained from ac-electrogravimetry is 

shown in Figure V.7a. These (Ci – C0) values are transformed into corresponding mass variations of 

each species (Figure V.7b). Subsequently, the total mass change (total Δm from 

ac-electrogravimetry in Figure V.7c) is reconstructed by the addition of individual mass 

contribution from all species concerned in ac-electrogravimetry. A good agreement between the 

total mass change from ac-electrogravimetry and the EQCM response obtained at 10 mV/s emerges. 

It is further highlighted that ac-electrogravimetry results are obtained from individual 

measurements at stationary potentials and the reconstructed mass response is in good agreement 

with the EQCM data from cyclic voltammetry at the lowest scan rate measured. This is highly 

significant since it evidences that the ac-electrogravimetry result in Figure V.7b is indeed a 

deconvolution of the global EQCM mass response into distinct contributions.  
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Figure V.7. Relative concentration change (a) and the corresponding mass change (b) of each 

species as a function of potential; mass variation (total and partial Δm) reconstructed from 

ac-electrogravimetry (c) and the comparison of mass variation between ac-electrogravimetry and 

EQCM (d). 

 

Furthermore, to explain the scan rate dependent mass response in Figure V.7d, the following is 

considered based on the ac-electrogravimetry findings: free H2O molecules display the lowest 

transfer kinetics in charge balance (the slowest species), therefore, a partial mass change (partial Δm 

in Figure V.7c) can be obtained with the removal of the mass contributions from free H2O 

molecules. This presents the mass response at high, intermediate and intermediate-low frequencies. 

Then, a close agreement between the partial Δm from ac-electrogravimetry and EQCM response at 

a high scan rate (100 mV/s) (Figure V.7d) can also be achieved. This implies that all of these 4 

species detected by ac-electrogravimetry including the free H2O molecules can be transferred at the 

electrode/electrolyte interface at low scan rate (10 mV/s). However, it hardly occurs for H2O to be 

transferred at the electrode/electrolyte interface at a higher scan rate (100 mV/s). These 

comparisons present further evidence for the fitting hypothesis of the ac-electrogravimetry data that 
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the missing responses at HF are from anion contributions. It is evident that if the contribution of the 

anions is neglected, a good agreement between the EQCM and ac-electrogravimetry would not be 

achieved (Figure V.7). These results highlight the complementarity of the EQCM and 

ac-electrogravimetry, the limitations of either of which can be compensated by the other to unveil 

the subtleties of the charge storage mechanisms. 

 

V.4. Conclusions 

The complementary combination of EQCM and ac-electrogravimetry was proposed herein to 

study the charge storage mechanism of hydrothermally synthesized ZnO nanostructures. EQCM 

provides a global mass response from cations in charge storage/delivery process, while 

ac-electrogravimetry offers a gravimetric and dynamic picture on the subtleties during this process: 

four different species (SO4
2-, Na+

·5H2O, Na+, and H2O) were detected to participate in charge 

balance with different kinetics to transfer the electrode/electrolyte interface. This study further 

emphasizes the complementarity of the EQCM and ac-electrogravimetry where certain instrumental 

limitations that challenge the detection of fast ion dynamics can be overcome by exploiting the two 

methods. This combined methodology can be extended to investigate the charge storage mechanism 

and species fluxes in other nanostructured electrodes, facilitating the design of optimized SC 

electrodes. 
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This chapter presents the synthesis and characterization of vertically aligned ZnO 

nanostructures sheltered by electrochemically reduced graphene oxide (ERGO), i.e., ZnO@ERGO, 

which are directly generated on quartz resonators of microbalance sensors. The vertical orientation 

of the ZnO nanorods are distinct from the random orientation of the ZnO structures studied in 

Chapter V and achieved by a two-step synthesis method involving an electrochemically grown seed 

layer and a subsequent hydrothermal growth. Furthermore, the deposited ERGO thin layer turned 

out to be highly effective to enhance the electrochemical performances of vertically oriented ZnO 

nanorods as supercapacitor electrodes. The charge storage mechanism of ZnO@ERGO electrodes 

with this unique architecture was firstly studied by classical electrochemical quartz crystal 

microbalance (EQCM), showing a global cation-exchange behavior in Na2SO4 electrolyte. A 

complementary technique, ac-electrogravimetry, was then used to deconvolute the EQCM response 

into individual contributions from Na+
·H2O, SO4

2- and H2O molecules, offering a quantitative 

picture of each participant in the charge balance process with their transfer kinetics.  

 

VI.1. Preamble and Objectives  

One dimensional (1D) ZnO nanostructures have been widely studied as supercapacitor (SC) 

electrodes since they cannot only provide short diffusion path for ions and but also serve as efficient 

mechanical support for other electroactive materials1-4. However, the inferior electrical conductivity 

of ZnO remains a major obstacle and limits rate capability for high power performance, thus 

hindering its wide applications in energy storage5. The hybridization of carbon materials with ZnO 

offers the benefits of both the electrical double layer (EDL) capacitance of the carbon materials with 

large specific surface area (SSA) and the faradaic contribution of the ZnO, thereby optimizing the 

electrochemical performance of the ZnO-based SCs6. Among carbon materials, graphene has 

spurred significant interest in electrochemical energy storage due to its high SSA, superior 

electronic conductivity and chemical resilience7-9. Therefore, an integration of 1D ZnO 

Chapter VI: Reduced graphene oxide-sheltered ZnO nanosctructures 

showing enhanced electrochemical performance revealed by an in situ 

electrogravimetric study 
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nanostructures and graphene seems to be promising for electrode materials. Though SCs employing 

ZnO and graphene composites have been extensively investigated, the ionic flux into the electrode, 

which plays a fundamental role in practical use, has not yet been studied by an in situ approach. 

EQCM has developed into a powerful in situ technique to measure ionic fluxes in different 

electrochemical systems10-13, in which not only the current response (ΔI) but also the in situ 

capturing of global gravimetric change (Δm) at the electrode/electrolyte interface is tracked during 

an electrochemical process. Insights into the ionic flux are anticipated through evaluating the 

average mass per mole of electrons (MPE) exchanged between the electrode and the electrolyte14-16. 

To further explore the transfer dynamics and exact identity of each participant during 

electrochemical process, a non-conventional complementary technique, ac-electrogravimetry, was 

proposed. A kinetic and gravimetric deconvolution of the EQCM response has been attained by 

coupling electrochemical impedance spectroscopy (EIS) with a fast QCM, which generates both the 

classical EIS transfer function (TF), ( )




E

I
  and the mass/potential TF, ( )





m

E
 . Then, these TFs 

are fitted with an appropriate model to scrutinize the identity of the species involved in the charge 

transfer mechanism, along with the kinetics and the relative concentration changes associated with 

each species17-19.  

Herein, a thin ERGO sheltering incorporated onto 1D ZnO nanorods (ZnO@ERGO) was 

prepared as the electrode, showing an advancement in the synthesis of novel nanostructured 

electrode materials for supercapacitors. The electrochemical processes involved in the ZnO@ERGO 

electrode were investigated by a complementary methodology comprising EQCM and 

ac-electrogravimetry. Electroacoustic study has not been conducted assuming that the ZnO 

structures are rigid and the ERGO constituted of only a few layers, can be considered acoustically 

thin enough. 

 

V.2. Experimental Methods and Theoretical Background 

VI.2.1. Synthesis of ZnO seed layer 

As schematically shown in Figure VI.1a, a ZnO seed layer was firstly electrodeposited on the 

surface of a gold coated quartz resonator (9 MHz-AWS, Valencia, Spain) under polarization at -1.0 

V vs. Ag/AgCl (3 M KCl saturated with AgCl) for 15 s in a solution of 5 mM Zn(NO3)2·6H2O (98%, 

Sigma-Aldrich) and 0.1 M KCl, which is held at 80 oC.  
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VI.2.2. Synthesis of ZnO nanostructures  

The vertically aligned ZnO nanostructures were synthesized by a hydrothermal process (Figure 

VI.1a). A precursor solution was prepared with 0.01 M Zn(NO3)2·6H2O and 0.01 M 

hexamethylenetetramine (HMTA; 99%, Sigma-Aldrich) and then, transferred to a Teflon-lined 

stainless steel autoclave. The ZnO-seeded quartz resonator was immersed into the precursor 

solution. After that, the autoclave was maintained at 120 oC for 4 h and then, cooled down to room 

temperature naturally. After the hydrothermal growth, ZnO nanostructures generated on the 

resonator were rinsed several times with bi-distilled water. 

 

 

Figure VI.1. Schematic representation of synthetic process for ZnO@ERGO composites (a) and 

FEG-SEM images of ZnO nanostructures (b) and ZnO@ERGO composites (c) synthesized on the 

gold electrode of the quartz resonator.  

 

VI.2.3. Preparation procedures for ZnO@ERGO electrode 

GO was synthesized via a modified Hummers method20. GO suspension of 1 mg/mL was 
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prepared by adding GO powder into bi-distilled water followed by 5 h of sonication. Then ~ 10 µL 

of the GO suspension was deposited on the ZnO-loaded gold electrode (0.2 cm2) of the quartz 

resonator by a lab-made mask, which ensures the only exposure of the gold electrode. After dried at 

70 oC in an oven for 30 min, GO thin film deposited on ZnO nanostructures (ZnO@GO) was 

generated. Subsequently, GO film was electrochemically reduced using the same three electrode 

configuration as described for the electrodeposition of ZnO seed layer. The reduction of the GO 

film deposited on the ZnO (ZnO@ERGO) was realized by chronoamperometry with a Biologic 

SP-200 potentiostat using EC-Lab software at -0.9 V vs. Ag/AgCl for 10 min in a solution of 0.5 M 

NaNO3. Nitrogen gas was bubbled in the solution prior to the electrochemical reduction and was 

maintained over the solution until the end of the reduction to ensure a complete saturation in NaNO3 

solution. 

 

VI.2.4. Morphological observation of the electrode 

The morphologies of the electrogenerated ZnO- and ZnO@ERGO-loaded electrodes were 

observed under vacuum conditions using a field emission gun scanning electron microscope 

(FEG-SEM, Zeiss, Supra 55). 

 

VI.2.5. Complementary electrogravimetric characterizations (EQCM and 

ac-electrogravimetry) 

EQCM tests were conducted by coupling cyclic voltammetry (CV) and galvanostatic 

charge/discharge (GCD) with QCM to track the simultaneous microbalance frequency changes of 

the electrode during cycling. Both EQCM and ac-electrogravimetry measurements were performed 

in 0.25 M Na2SO4 under nitrogen atmosphere, where a ZnO- or ZnO@ERGO-loaded quartz 

resonator was used as the working electrode, Ag/AgCl (3 M KCl saturated with AgCl) as the 

reference electrode and a platinum grid as the counter electrode. The potential window for EQCM 

was confined between -0.6 V and 0.6 V vs. Ag/AgCl. The mass change (Δm) of the electrode during 

electrochemical process can be estimated by the microbalance frequency change (Δf) through 

Sauerbrey equation21, i.e., Δf = -Cf ×Δm, where Cf is the experimental sensitivity factor of the quartz 

crystal resonator (Cf =16.3×107 Hz.g-1.cm2)18. 

Ac-electrogravimetry measurements were performed in dynamic regime, where the frequency 

range was between 63 KHz and 10 mHz (for details, see Ref.17, 19). Two important experimental TFs, 



Chapter VI: Metal oxide/Carbon based composite electrodes - an electrogravimetric study 

154 

 

( )




q

E
  and ( )





m

E
  can be obtained simultaneously and fitted through the following 

theoretical expressions at a given potential and frequency modulation, f (pulsation =2f)22.  

( )i i

f i

C G

E j d K




 


 
                (VI.1) 

( ) i
f

i f i

Gq
Fd

E j d K







 
   (i: ions)             (VI.2) 

( ) i
f i

i f i

Gm
d M

E j d K





 

 
   (i: ions and non-charged species)  (VI.3) 

( )i i

i

C G

E K


 



   (if 0 )                        (VI.4) 

where ΔCi presents concentration variation for each species in the film,  is the pulsation, df is the 

film thickness, F is the Faraday constant, Mi depicts the molar mass of involved species, Ki and Gi 

are the partial derivatives of the ionic/free solvent flux (Ji) with respect to the concentration and the 

potential, respectively. Ki represents the transfer kinetics of each species while Gi is the reciprocal 

of the transfer resistance (
1

i

i

Rt
FG

), exhibiting the ease or difficulty in the species transfer at the 

film/electrolyte interface (more details about ac-electrogravimetry are given in Chapter II).  

 

VI.3. Results and Discussion 

The synthesis of ZnO@ERGO nanocomposite is schematically illustrated in Figure VI.1a, 

which was performed on the surface of quartz resonator for the first time. Figure VI.1b and c show 

the morphologies of ZnO nanostructures, exhibiting vertically aligned individual nanorods with a 

length of ~800 nm. A transparent thin ERGO layer on the top of ZnO nanostructures is clearly 

observed in Figure VI.1c. This unique architecture is anticipated to provide the benefits of both 

EDL capacitance of the ERGO layers and faradaic reaction of the ZnO. Additionally, both the upper 

and lower surfaces of ERGO layer are accessible to electrolyte, offering a higher SSA for the 

electrochemical processes. 

Figure VI.2a displays the CV curves of vertically aligned ZnO nanostructures and 

ZnO@ERGO composites. Their simultaneous mass responses converted from the frequency 

changes of QCM are shown in Figure VI.2b. It is noted that the current responses of the vertically 
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aligned and randomly oriented ZnO nanostructures (See Figure V.2 in Chapter V) are in the same 

order of magnitude. The modest current response of the both ZnO nanostructures, probably due to 

the inferior conductivity is envisaged to be improved with a composite approach. A current surge is 

observed after a thin ERGO layer incorporated onto the vertically aligned ZnO nanostructures. 

Thereafter, the electrochemical/electrogravimetric behaviors of vertically aligned ZnO and 

ZnO@ERGO composites are discussed in a comparative manner. 

The deviation of rectangular shape of typical EDL is ascribed to pseudocapacitive behaviors of 

ZnO nanorods6 and the residual oxygen functionalities on ERGO nanosheets23. Unlike the 

negligible mass variation of ZnO nanostructures (Figure VI.2b), the ZnO@ERGO composites 

present a mass ingress around 0.25 g·cm-2 during cathodic scan and highly reversible egress during 

anodic scan, implying a cation-exchange behavior at the electrode surface. GCD measurements 

were performed to further explore the electrochemical properties of ZnO- and ZnO@ERGO-loaded 

electrodes (Figure VI.2c and d). The non-linear charge/discharge curves of both electrodes further 

evidence their pseudocapacitive behaviors, which are different from the triangular shape of pure 

EDL device23. Apparently, E-t curves of ZnO@ERGO-loaded electrode (Figure VI.2d, the upper 

panel) is substantially prolonged over that of ZnO-loaded electrode (Figure VI.2c, the upper panel) 

at each current density, showing markedly improved electrochemical performance. Furthermore, the 

m-t response of ZnO@ERGO-loaded electrode (Figure VI.2d, the down panel) proceeds in an 

inversely-proportional pace with respect to potential-time response, i.e., mass decrease during 

charging and increase during discharging, indicative of cation participation in charge balance. 

Interestingly, almost the same amount of mass is exchanged (0.26 g·cm-2) at different current 

densities during a charge/discharge process compared to that in a CV cycle, demonstrating the 

highly reversible charge storage behavior.  
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Figure VI.2. CV curves at 100 mV·s
-1 (a, b) and GCD curves at 0.5, 1 and 2 mA·cm-2 (c, d) in 0.25 

M Na2SO4 solution; (e) and (f) are the corresponding MPE of ZnO@ERGO-loaded electrode 

calculated from a CV and GCD cycle, respectively. 

 

The MPE = FΔm/Δq calculated from the EQCM data can provide indications of the nature of 

transferred species during cycling. If only one species is involved in the charge storage process, the 

value of MPE would be its molar mass. The cation and anion contributions lead to the negative and 

positive signs of MPE values, respectively22. Figure VI.2e and f compare the MPE of species 

involved in a CV and GCD cycle, presenting a value ranging from -25 to -15 g·mol-1, respectively. 

From these two values, Na+, with a MPE of -23 g·mol-1, seems to be the main charge carrier during 

electrochemical processes, but this deviation between the experimental and theoretical MPE values 

merits special analysis. The potential-dependent and time-dependent behaviors of MPE value in CV 

and GCD demonstrate a multi-species transfer and complex interfacial behavior, which, however, 

cannot be interpreted by conventional EQCM analysis based on Faraday’s law. In such cases, 

sophisticated models, i.e., Donnan-type electrical double layer were applied to identify various 

species intervening in the charge compensation16. Yet, the analysis in transfer kinetics of involved 

species still remains challenging since the measurements are performed at a certain scan rate (in CV) 
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or current density (in GCD). Hence, from both gravimetric and kinetic point of view, the 

ac-electrogravimetry was alternatively suggested to get a deeper insight into the charge 

compensation behavior occurring in the ZnO@ERGO electrode.   
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Figure VI.3. ( )




q

E
 (a and b) and ( )





m

E
 (c and d) transfer functions at -0.5V and 0.4V vs. 

Ag/AgCl. Transfer kinetics, Ki (cm·s
-1) (e) and transfer resistances, Rti (Ω·cm2) (f) for each species 
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participating in charge balance.  

 

Ac-electrogravimetry measurements were conducted at various states-of-polarization from -0.6 

V to 0.6 V vs. Ag/AgCl with an interval of 100 mV. This range corresponds exactly to that used in 

the EQCM measurements. Compared to ( )




q

E
 TF, only considering the ionic species transfer, 

the ( )




m

E
 TF also takes the free solvent contribution into account. The experimental data were 

fitted using theoretical functions in Equations VI.2 and VI.3, where a configuration involving the 

transfer of hydrated cations (Na+
·H2O), anions (SO4

2-) and free H2O molecules is proposed at all 

potentials to achieve a good agreement for both ( )




q

E
 and ( )





m

E
 TFs, between experimental 

and theoretical data. Figure VI.3a-d display the ( )




q

E
  and ( )





m

E
 TFs at selective 

potentials of 0.4 V and -0.5 V vs. Ag/AgCl (one in the cathodic and another in the anodic part). At 

both potentials, Na+
·H2O cations were identified at high frequencies (HFs), followed by the transfer 

of SO4
2-. Lastly, H2O molecules were exchanged at low frequencies (LFs), exhibiting the opposite 

flux direction to anions. The transfer kinetics (Ki) and resistances (Rti) for each species estimated at 

all potentials are summarized in Figure VI.3e and f. Na+
·H2O persists in presenting a higher transfer 

kinetics than its anionic counterpart (SO4
2-) transferred in charge balance. The transfer of the 

hydrated cationic species and the hydration number found here is in line with the cosmotropic-type 

behavior of Na+ as described in the work of Levi and co-works24-25. H2O molecules are exchanged 

at the lowest kinetics rate, which is ascribed to their highest transfer resistance, i.e., Rt (H2O) > Rt 

(SO4
2-) > Rt (Na+

·H2O). According to the aforementioned discussion, it is speculated that the 

insertion of SO4
2- anions could push out the water molecules trapped between ERGO layers due to 

the volume-exclusion effect and hence, result in the response from free H2O molecules at LFs, 

which is also verified by other ions with a low charge-per-size ratio24-25. 

To further shed light on the multi-species contribution to the charge storage in ZnO@ERGO 

electrode, an approach benefiting from the complementarity of the EQCM and ac-electrogravimetry 

is proposed. Specifically, the relative concentration changes for each species (Figure VI.4a) can be 

estimated by integration of Equation VI.4, which can be transformed into corresponding mass 

variations (Figure VI.4b). Then, the gravimetric reconstruction is obtained by the addition of 
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individual mass contributions from all species concerned in ac-electrogravimetry (Figure VI.4c). A 

good agreement between m(global) measured with EQCM and reconstructed m from 

ac-electrogravimetry is achieved (Figure VI.4d). It evidences the complementarity of the EQCM 

and ac-electrogravimetry: the former can provide a global response of species transfer, which can 

be deconvoluted into individual contribution of each species together with their dynamics of 

transfer by the latter.      
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Figure VI.4. Relative concentration change (a) and the corresponding masschange (b) of each 

species as a function of potential; mass variation reconstructed from ac-electrogravimetry (c) and 

the comparison of mass variations obtained from EQCM and ac-electrogravimetry (d). 

 

VI.4. Conclusions 

The ZnO@ERGO nanocomposites were successfully synthesized on the gold coated quartz 

resonators. A thin ERGO sheltering onto ZnO nanostructures noticeably enhanced the 

electrochemical performance of the pristine ZnO electrode. The charge storage mechanism of the 

ZnO@ERGO supercapacitor electrode was scrutinized via complementary electrogravimetric 
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methods, EQCM and ac-electrogravimetry. The nanocomposite exhibits a global cation-exchange 

behavior for energy storage according to EQCM, which is actually resulted from the addition of a 

multi-species contribution revealed by ac-electrogravimetry. Compared with its anionic counterpart 

(SO4
2-), Na+

·H2O with a higher transfer kinetics plays a major role in charge storage. 
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The individual conclusions on each aspect carried out in this thesis are given in the conclusion 

section at the end of preceding chapters. Here, conclusions that have been generalized based on this 

thesis are highlighted as below: 

Complementarity of the electrogravimetric and electroacoustic methods 

Combining EQCM and ac-electrogravimetry is demonstrated as a powerful in situ methodology 

to analyze species’ transfer behavior in different electrochemical systems which is of particular 

interest for energy storage, as discussed from Chapter III to VI. EQCM provides a global 

species-transfer response during electrochemical process, while its complementary counterpart, i.e., 

ac-electrogravimetry, offers a quantitative picture of each participant in charge balance with their 

transfer kinetics. The systems studied in Chapters V and VI constitute examples further highlighting 

the complementarity between EQCM and ac-electrogravimetry, the limitations of either of which 

can be compensated by the other to unveil the subtleties of the charge storage mechanisms. It is also 

the first time where a parallel and comparative study is done systematically by using the two 

approaches for each system considered. Additionally, the electrode’s viscoelastic properties can be 

tracked through the electroacoustic impedance measurements, as described in Chapters III and IV. 

Therefore, the use of this combined methodology involving EQCM, ac-electrogravimetry and 

electroacoustic impedance measurements paves the way to understand the charge storage 

mechanism and the relationship between electrode’s electrochemical and mechanical properties, 

facilitating the fabrication of highly efficient SC electrodes with superior cyclability. Overall, the 

beneficial aspects of the QCM and its satellite electrochemical/electroacoustic methods are 

consolidated during this thesis by extending them to characterize sophisticated materials in terms of 

composition and morphology: they are achieved by adapting the materials synthesis methods to be 

realized directly on QCM resonators. 

Ion-selective behavior of electrode materials in charge storage 

Ionic flux into electrode materials plays a fundamental role in energy storage systems like 

General Conclusions 
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supercapacitors. Obvious ion-selective behaviors in charge storage were observed in PPy- and 

ERGO-based electrodes, as discussed in Chapters III and IV. Specifically, for fresh and slightly 

cycled PPy-based electrodes, cations are mainly exchanged at the electrode/electrolyte interface for 

charge balance while anions turn out to be the major charge carrier for aged electrodes. As for 

ERGO-based electrode with a high amount of oxygen functionalities, anions play a major role for 

the charge compensation, which, however, is replaced by cations with the progressive removal of 

oxygen functionalities on its layers related to an electrochemical reduction reaction. Especially, the 

work on ERGO thin films is an example showing that ion-exchange behavior can be tuned by a 

careful modification of the surface functional properties which was monitored by electrogravimetric 

methods. 

Desolvation of hydrated cations 

It was demonstrated that the hydrated cations were capable of participating in the charge storage 

after a (partial) desolvation. In PPy-based electrodes, the hydrated cations (Na+
·2H2O) gradually 

remove their hydration shell for charge compensation at -0.6 V vs. SCE during film aging process in 

NaCl media, as discussed in Chapter III. This effect is also correlated to an increase of the PPy-film 

rigidity which prevents the large solvated cations from entering the material. In a similar manner, 

the removal of oxygen functionalities on ERGO layers leads to a dehydration process of exchanged 

cations (i.e., from Na+
·2H2O to Na+

·H2O), which also exhibits potential-dependent behavior for 

ERGO-2 electrode as discussed in Chapter IV. 

The indirect role of free H2O in charge storage 

Although the ionic flux is essential in charge balance, the accompanied exchange of free H2O 

still plays a non-negligible role, which is revealed in PPy-, ERGO-, ZnO- and ZnO@ERGO-based 

electrodes (discussed in Chapters III, IV, V and VI, respectively). For PPy-based electrode, a higher 

amount of H2O insertion at more cathodic potential leads to a swollen state of the electrode, 

facilitating the transfer of bigger ions, such as Na+
·2H2O and DS- as discussed in Chapter III; for 

ERGO-based electrode, the H2O exchanged often plays an important role in electrode’s 

viscoelasticity through plasticizing effect (discussed in Chapter IV); free H2O presents a sluggish 

transfer behavior in both ZnO- and ZnO@ERGO-based electrodes (discussed in Chapter V and VI, 

respectively), which is believed to be electrodragged by ions or caused by the dimensional 
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confinement of the electrode. 

Viscoelastic effects on charge storage 

Viscoelastic changes of electrodes caused by periodical ion electroadsorption/electrodesorption 

and/or insertion/extraction play an important role in charge storage. As discussed in Chapter III, the 

charge storage capability of PPy-based electrode is gradually faded due to the increasing rigidity of 

the PPy film, which prohibits not only the ions’ transfer between electrode/electrolyte interface but 

also the transport in PPy bulk; in ERGO-based electrode, oxygen functionalities could modify the 

interactions between graphene layers. The electrode viscoelastic and electrochemical performances 

can be tuned through adjusting the content of the hetero-oxygen groups on its layers: increased 

flexibility of the electrode allows for a higher amount of ions exchanged, leading to an enhancement 

of specific capacitance. 
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Études électrochimiques et électromécaniques d’électrodes nanostructurées pour 

supercondensateurs 

 

Les supercondensateurs (SCs) sont une classe de dispositifs de stockage d'énergie 

électrochimique bien adaptés au stockage et à la libération rapide de cette énergie. L’étude du flux 

d'espèces à l’interface d'électrodes/électrolyte est un point essentiel pour améliorer les performances 

de ces supercondensateurs. Cette thèse explore de manière très approfondie, et avec une 

combinaison d’outils originaux, le transfert d'espèces dans les mécanismes de stockage de charge au 

sein de matériaux d'électrodes de supercondensateurs couramment utilisés, comme les polymères 

conducteurs, les matériaux carbonés ou les oxydes de métaux de transition. De plus, l’évolution 

mécanique de certaines électrodes ont également été étudiées afin de mettre en lumière la 

corrélation entre les évolutions électrochimiques et viscoélastiques de ces films à l’origine des SCs. 

Dans cette thèse, des films de polypyrrole dopés au dodécylsulfate de sodium (PPy-DS), des 

films d'oxyde de graphène réduit électrochimiquement (ERGO) et des films nanostructurés de ZnO 

ont été synthétisés comme représentatifs des électrodes conductrices à base de polymère, de carbone 

et d'oxyde métallique, respectivement. Pour atteindre l'objectif de recherche mentionné ci-dessus, 

une méthodologie combinée impliquant la microbalance à quartz électrochimique (EQCM), 

l'électrogravimétrie à courant alternatif (ac-électrogravimétrie) et les mesures d'impédance 

électroacoustique a été adoptée. Plus précisément, l’EQCM est utilisée pour une visualisation in situ 

du transfert global des espèces à l'interface électrode/électrolyte, alors que son homologue 

l’ac-electrogravimétrie contribue à démêler les subtilités du processus global de compensation de 

charge impliquant plusieurs espèces. Elle offre une image quantitative de chaque participant avec 

leur cinétique de transfert et une identification par leurs masses molaires. Par conséquent, le 

couplage de l'EQCM avec l'ac-électrogravimétrie fournit un puissant outil pour dévoiler les 

subtilités des mécanismes de stockage de charge au sein de l'électrode pendant le processus 

électrochimique. De plus, l'évolution viscoélastique de ces films peut être suivie grâce aux mesures 
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d'impédance électroacoustique. Par conséquent, l'utilisation de cette méthodologie combinée ouvre 

la voie à la compréhension du mécanisme de stockage de charge et de la relation entre les propriétés 

électrochimiques et mécaniques des électrodes, facilitant la fabrication d'électrodes SC hautement 

efficaces avec une éventuelle cyclabilité supérieure. 

En ce qui concerne les électrodes à base de polymères, le défi le plus important est la stabilité 

lors de cycles successifs. En conséquence, après avoir présenté l'état de l'art sur SCs dans le chapitre 

I et les méthodes expérimentales générales dans le chapitre II, le chapitre III décrit la corrélation 

entre les variations électrochimiques et viscoélastiques d'un film de PPy-DS pendant des cycles 

successifs. Les phénomènes d'adsorption ionique et les changements viscoélastiques des films 

d’ERGO avec différentes teneurs en oxygène sont présentés dans le chapitre IV. Les comportements 

de transfert de charge interfacial du ZnO et de son composite ZnO/ERGO sont examinés dans les 

chapitres V et VI, où la bonne complémentarité entre l'EQCM et l'ac-électrogravimétrie est mise en 

évidence. Enfin, la conclusion générale de la présente thèse est présentée dans le chapitre VII. 

 

Chapitre I 

Le chapitre I présente tout d'abord les principes fondamentaux d’un supercondensateur, puis, 

les défis qui se présentent pour faire des dispositifs efficaces et enfin, les applications possibles. En 

général, un supercondensateur est constitué de deux électrodes en contact avec un électrolyte isolé 

électriquement par un séparateur. Pendant le processus de charge, les charges peuvent être stockées 

et séparées à travers les deux interfaces électrode/électrolyte, ce qui fournira de l'énergie électrique 

pour le circuit externe lors de la décharge, comme illustré Figure 1.  

 

 

Figure 1. Illustration schématique d'un SC à l'état chargé et déchargé. 
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Selon le mécanisme de stockage de charge, les supercondensateurs peuvent être classés selon 

deux types: les condensateurs électriques à double couche (EDLC), qui stockent les charges par 

adsorption électrostatique des ions à l'interface électrode/électrolyte, sont généralement basés sur 

des matériaux à base de carbone; les pseudocondensateurs, dont l'énergie est stockée par des 

réactions redox rapides et réversibles entre l'électrolyte et les espèces électroactives à la surface de 

l'électrode à des potentiels caractéristiques, sont généralement basés sur des oxydes de métaux de 

transition et des polymères conducteurs. Dans ce dernier cas, les phénomènes d’électroadsorption 

sont toujours actifs. 

Les supercondensateurs se caractérisent par une puissance élevée, une excellente cyclabilité et 

une charge rapide avec peu d'entretien. Ils possèdent une densité de puissance beaucoup plus élevée 

que les batteries et une densité d'énergie beaucoup plus importante que les condensateurs 

conventionnels. L'application des SCs s'est étendue à l'électronique portable (comme les appareils 

photo numérique et les téléphones portables), aux véhicules électriques, aux véhicules hybrides 

électriques, aux outils électriques, aux techniques laser à impulsions, aux alimentations stabilisées 

et au stockage de l'énergie générée par les cellules solaires. Bien qu'ils présentent de nombreux 

avantages, les CSs doivent encore faire face à certains défis, comme une faible densité énergétique 

(~ 5Wh kg-1) par rapport aux batteries (> 50 Wh kg-1) et un taux d'autodécharge élevé.  

Trois grandes catégories de matériaux d'électrodes électroactives pour fabriquer des SCs sont 

disponibles: les matériaux à base de carbone, de polymères conducteurs ou d'oxydes de métaux de 

transition. Ils seront examinés en détail avec les nouvelles tendances dans le développement des 

électrodes pour les SCs: avantages/désavantages et performances seront étudiées. Les matériaux à 

base de carbone sont largement utilisés comme matériaux d'électrode EDLC, car ils présentent une 

conductivité, une porosité et une stabilité électrochimique excellente; les polymères conducteurs 

sont considérés comme ayant un potentiel séduisant dans les applications SCs en raison de leur 

capacité de charge élevée, leur faible coût (par rapport aux oxydes métalliques), leur respect de 

l'environnement, leur conductivité élevée dans un état dopé et leur large fenêtre de potentiel; les 

oxydes métalliques des métaux de transition ont été intensivement étudiés comme matériaux 

d'électrode en raison de leurs réactions redox rapides et réversibles, avec une densité énergétique 

plus élevée par rapport aux matériaux à base de carbone conventionnels ainsi qu’une meilleure 

stabilité électrochimique que les polymères conducteurs. 
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Les outils d'évaluation des performances des matériaux d'électrodes SCs sont également passés 

en revue dans cette partie. La voltampérométrie cyclique (CV), la charge/décharge galvanostatique 

(GCD) et la spectroscopie d'impédance électrochimique (EIS) sont les techniques les plus 

couramment utilisées pour évaluer les propriétés électrochimiques des SCs. De plus, une méthode 

non conventionnelle de caractérisation électrochimique, la microbalance électrique à quartz (EQCM) 

et l'électrogravimétrie en courant alternatif (ac-électrogravimétrie) ont été utilisées conjointement 

pour étudier les performances électrochimiques des SCs. Considérant que les propriétés mécaniques 

sont également importantes pour une électrode SCs efficace, une méthode d'étude de ces propriétés,  

via des mesures électroacoustique, a également été discutée. Enfin, les objectifs et les grandes 

lignes de la thèse sont présentés à la fin de ce chapitre. 

 

Chapitre II 

Le chapitre 2 présente tout d'abord les techniques de caractérisation des matériaux utilisées 

dans cette thèse: spectroscopie infrarouge à transformée de Fourier (FTIR), spectroscopie 

ultraviolet-visible (UV-vis), microscopie électronique à balayage (MEB), diffraction des rayons X 

(XRD), spectroscopie photoélectronique à rayons X (XPS). Ensuite, les caractérisations 

électrochimiques et électrogravimétriques sont présentées : la microbalance électrochimique à 

quartz (EQCM) et l'électrogravimétrie en courant alternatif (ac-électrogravimétrie). Des mesures 

d’impédance électroacoustique sont aussi décrites afin de caractériser la mécanique des films pour 

SCs. 

 

Chapitre III 

Le chapitre 3 étudie la corrélation entre les propriétés électrochimiques et viscoélastiques d’un 

film éléctrogénéré de polypyrrole dopé au dodécylsulfate de sodium (PPy-DS) pendant le cyclage 

électrochimique. Cette étude a été menée en combinant des caractérisations EQCM, 

ac-électrogravimétriques et électroacoustiques. La procédure expérimentale est illustrée 

schématiquement Figure 2. 

L’électrode PPy-DS évolue au cours des cyclages successifs dans un électrolyte aqueux de type 

NaCl et présente: (i) une transition sélective ionique évidente des cations aux anions dans le 

processus de compensation de charge (Figure 3) ; (ii) une performance globale électrochimique 
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inférieure accompagnée d'une rigidité accrue lors des cyclages successifs (Figure 4); et (iii) une 

capacité d'échange ionique diminuée à l'interface film/électrolyte. Les électrodes en polymère 

conducteur PPy-DS présentent un intérêt pour le stockage de l'énergie et la relation entre les 

propriétés électrochimiques et viscoélastiques pendant le cycle électrochimique est essentielle pour 

assurer les performances de ces dispositifs. Dans cette perspective, l'ac-électrogravimétrie 

combinée à des mesures électroacoustiques peut être suggérée comme méthode pour sonder de 

façon synchrone et profonde l'évolution électrochimique et mécanique de ces films. Cela constitue 

une méthode expérimentale nouvelle pour étudier le mécanisme de vieillissement des électrodes 

conductrices à base de polymère. 

Enfin, un mécanisme de l'évolution structurale de l'électrode PPy-DS pendant les cycles est 

proposé, comme le montre la Figure 5. Cela permet de rigidifier le film PPy-DS de deux façons: le 

balayage anodique et des cyclages successifs du film. Les deux phénomènes peuvent limiter le 

transfert des Na+ hydratés. À la fin des cycles électrochimique, le film ne connaît plus guère de 

changement de volume, ce qui s'accompagne d'une diminution de la performance électrochimique. 

 

 

Figure 2. Illustration des procédures de mesure pour (a) l'ac-électrogravimétrie et (b) l’impédance 

électroacoustique pendant le cyclage électrochimique du film; (c) et (d) sont les observations 

morphologiques du film PPy-DS frais et après 175 cycles par le FEG-SEM, respectivement. 
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Figure 3. Voltampérométrie cyclique (a), variation de masse (Δm) (b), variation de masse maximale 

(c) et fonction F(dm/dq) calculée à partir de la branche de réduction (d) du film PPy-DS dans une 

solution aqueuse de NaCl 0,25 M entre -1,3 V et 0,5 V vs ECS à une vitesse de balayage de 50 

mV·s
-1. 

 

     

Figure 4. (a) Évolution des composantes réelles et imaginaires du module de cisaillement complexe 

et (b) évolution de la tangente du coefficient de perte du film entre -0,2V et -0,6V lors des cycles 

successifs. 
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Figure 5. Schéma de l'évolution structurale de l'électrode PPy-DS pendant le cyclage du film, sans 

tenir compte de l'échange des molécules d'eau libre. 

 

Chapitre IV 

Le chapitre 4 montre que l'oxyde de graphène légèrement réduit électrochimiquement (ERGO) 

présente une préférence anionique pour le stockage de charges, tandis qu'avec l'élimination 

progressive des fonctionnalités de l'oxygène sur ses plans basaux, les cations commencent à 

prédominer dans la compensation de charge (Figure 6). Cette évolution "anion-cation" en milieu 

aqueux neutre peut non seulement affecter le stockage de charge électrochimique, mais aussi jouer 

un rôle important dans les propriétés mécanique de l'électrode (Figure 7). Il a été démontré que les 

fonctions oxygène pouvaient modifier les interactions entre les couches de graphène et même 

contribuer au comportement pseudocapacitif des films. Cependant, le rôle des groupes fonctionnels 

à base d'oxygène dans le transfert d'espèces et les variations viscoélastiques restent encore mal 

compris. Une méthodologie combinée de microbalance électrochimique à quartz (EQCM), 

d'ac-électrogravimétrie et de mesures d'impédance électroacoustique a été proposée pour 

caractériser les réponses électrochimiques et viscoélastiques des oxydes de graphène avec différents 

degrés de réduction électrochimique. Au cours de l'élimination des groupes fonctionnels contenant 

de l'oxygène, l'électrode d’ERGO présente: (i) une capacité spécifique progressivement améliorée 
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avec une flexibilité accrue (coefficient de rigidité, G ,́ diminué); (ii) un processus de déshydratation 

des cations avec passage de Na+
·2H2O à Na+

·H2O (Figure 8). Ces résultats ouvrent la porte à une 

mise au point appropriée de matériaux à base de GO pour le stockage d'énergie électrochimique où 

le comportement sélectif des ions joue un rôle primordial. 

 

 

Figure 6. Charge-décharge galvanostatique de différents films ERGO-1 (a, b), -2 (c, d) et -3 (e, f) à 

une densité de courant de 0,5, 1 et 2 mA·cm-2, respectivement. 
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Figure 7. Évolution de (a) composantes réelles et (b) imaginaires du module de cisaillement 

complexe des électrodes d’ERGO. 
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Figure 8. Évolution de la fonction de transfert de Δm/ΔE() avec réduction progressive des 

électrodes ERGO: (a), (c) et (e) ont été mesurés pour ERGO-1, -2 et -3 à -0,2 V, tandis que (b), (d) 

et (f) à 0,2 V. 
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Chapitre V 

Le chapitre 5 explore le mécanisme des flux d'espèces pendant le processus de charge-décharge 

d’une électrode de ZnO nanostructurée synthétisée hydrothermiquement (Figure 9) par une 

méthodologie combinée de microbalance électrochimique à quartz (EQCM) et 

d'ac-électrogravimétrie. Dans les conditions de notre étude, les anions (SO4
2-) possèdent la 

cinétique de transfert la plus élevée à l'interface électrode/électrolyte tandis que les cations 

(identifiés comme Na+·5H2O and Na+) jouent le rôle principal en tant que porteurs de charge avec 

une cinétique de transfert plus lente (Figure 10). Les molécules de H2O libre présentent un 

comportement léthargique et leur transfert interfacial se produit à basse fréquence. Ces résultats 

mettent en lumière la nature des ions et la participation du solvant dans l'équilibre des charges au 

sein des nanostructures de ZnO directement sur le dispositif QCM. De plus, ce chapitre met l'accent 

sur la complémentarité de l'EQCM et de l'ac-électrogravimétrie (Figure 11), où certaines 

limitations instrumentales qui mettent en cause la détection de la dynamique des ions rapides 

peuvent être surmontées en exploitant les deux méthodes. La méthodologie combinée proposée ici 

fournit une analyse dynamique et gravimétrique du transfert de charges interfaciales et peut être 

étendue à l'étude d'autres électrodes nanostructurées à base d'oxyde métallique pour le stockage 

d'énergie. 
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Figure 9. (a) Image FEG-SEM et (b) spectres XRD de nanostructures ZnO synthétisées 

hydrothermiquement sur l'électrode en or du résonateur à quartz. Les pics centrés à 2 = 32°, 34°, 

36°, 47°, 56°, 63°, 66°, 68° et 69° correspondent aux plans (100), (002), (101), (102), (110), (103), 

(200), (112) et (201), respectivement. L'incrustation en (b) est le grossissement pour 2 entre 42,5° 

et 80°. 
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Figure 10. ( )




q

E
  (a) et ( )





m

E
  (b) fonctions de transfert à 0,3V vs Ag/AgCl dans une 

solution de Na2SO4 0,25 M. 

 

  

  

Figure 11. Changement de la concentration relative (a) et changement de masse correspondant (b) 

de chaque espèce en fonction du potentiel; variation de masse (Total et Partiel Δm) reconstruite à 
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l'ac-électrogravimétrie et l'EQCM (d). 

 

Chapitre VI 

Le chapitre 6 porte sur la synthèse et la caractérisation de nanotiges de ZnO alignées 

verticalement et recouvertes par un film d’oxyde de graphène réduit électrochimiquement (ERGO). 

Une structure ZnO@ERGO ainsi été générée directement sur les résonateurs à quartz (Figure 12). 

La couche mince d’ERGO déposée s'est avérée très efficace pour améliorer les performances 

électrochimiques des nanocomposites ZnO@ERGO en tant qu'électrodes de SCs (Figure 13). Le 

mécanisme de stockage de charge des électrodes ZnO@ERGO a d'abord été étudié par 

microbalance à quartz électrochimique (EQCM). Cela montre un comportement global d'échange 

cationique dans l'électrolyte Na2SO4. Une technique complémentaire, l’ac-électrogravimétrie, a 

ensuite été utilisée pour déconvoluer la réponse de l’EQCM. La contribution individuelle de 

différentes espèces Na+
·H2O, SO4

2- et H2O a été mise en évidence avec des cinétiques de transfert 

différentes (Figure 14). 

 

 

Figure 12. Images FEG-SEM des nanostructures ZnO (a) et des composites ZnO@ERGO (b) 

synthétisés sur l'électrode d'or du résonateur à quartz. 
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Figure 13. Courbes d’électrogravimétries à 100 mV/s (a, b) et courbes GCD à différentes densités 

de courant (c, d) dans une solution de Na2SO4 0,25 M ; (e) et (f) sont la masse correspondante par 

mole d'électrons de l'électrode chargée ZnO@ERGO calculée à partir d'un cycle CV et GCD, 

respectivement. 
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Figure 14. ( )




q

E
  (a et b) et ( )





m

E
  (c et d) fonctions de transfert à -0,5V et 0,4V vs Ag/AgCl 

dans une solution de Na2SO4 0,25 M. 

 

Conclusion Générale 

Certaines conclusions basées sur la thèse sont généralisées dans ce chapitre. 

1. Comportements sélectifs d'ions au sein de matériaux utilisables pour le stockage de charges 

Le flux ionique dans les matériaux d'électrodes joue un rôle fondamental dans le stockage de 

charges au sein des supercondensateurs. Un comportement sélectif ionique évident dans le stockage 

de charge a été observé dans les électrodes à base de PPy et d’ERGO, tel que discuté dans les 

chapitres III et IV. En particulier, pour les électrodes fraîches et peu cyclées à base de PPy, les 

cations sont principalement échangés à l'interface électrode/électrolyte tandis que les anions 

s'avèrent être le principal support de charges pour les électrodes de PPy vieillissantes; pour les 

électrodes d’ERGO à haute teneur en oxygène, les anions jouent un rôle majeur pour le stockage de 

charge, qui, cependant, sont remplacés par des cations avec élimination progressive des 

fonctionnalités à base d'oxygène dans ces films d’ERGO. 
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2. Désolvation de cations hydratés 

Les cations hydratés sont capables de participer au stockage de charge avec une désolvation 

(partielle) de leur coquille de solvatation. Dans l'électrode à base de PPy, les cations hydratés 

(Na·2H2O) perdent progressivement la coquille de solvatation pour la compensation de charge à -0,6 

V vs ECS pendant le processus de vieillissement du film, comme discuté au chapitre III; 

l'élimination des fonctionnalités à base d’oxygène dans les couches d’ERGO conduit à un processus 

de déshydratation des cations, passage de Na+
·2H2O à Na+

·H2O, comme discuté au chapitre IV. 

 

3. Rôle de l'eau libre dans le stockage de charge 

Bien que le flux ionique soit essentiel à l'équilibre des charges, cet échange est souvent 

accompagné d’un flux de H2O libre qui joue un rôle non négligeable. Ce phénomène a été observé 

dans le cas des électrodes à base de PPy, ERGO, ZnO et ZnO@ERGO examinées dans les chapitres 

III, IV, V et VI, respectivement. Pour les électrodes à base de PPy, une grande quantité de H2O est 

déterminée pour les potentiels les plus cathodiques ce qui conduit à un état gonflé du film; Cela 

facilite le transfert d'ions plus gros, tels que Na+
·2H2O et DS- (voir chapitre III); pour les électrodes 

à base d'ERGO, le H2O échangé joue souvent un rôle important dans la viscoélasticité de l'électrode 

par un effet plastifiant (voir chapitre IV); l’eau libre présente un comportement de transfert lent 

pour les électrodes à base de ZnO et ZnO@ERGO comme discuté dans les chapitres V et VI, 

respectivement. Ce mouvement d’eau résulte d’un effet d’entrainement de la part des ions ou d’un 

effet d’exclusion. 

 

4. Effets viscoélastiques sur le stockage de charge 

Les variations viscoélastiques des électrodes causées par l'électrodésorption/électrodésorption 

ionique et/ou l'insertion/extraction jouent un rôle important dans le stockage de charge. Comme 

indiqué dans le chapitre III, la capacité de stockage de charge des électrodes à base de PPy 

s'estompe progressivement en raison de la rigidité croissante des chaînes PPy, ce qui interdit non 

seulement le transfert d'ions à l'interface électrode/électrolyte mais aussi le transport au sein du PPy. 

Dans le chapitre IV, la flexibilité accrue de l'électrode d’ERGO permet d'échanger une plus grande 

quantité d'ions, ce qui conduit à une amélioration de la capacité spécifique. 
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