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Abstract

In this thesis, we propose wavenumber explicit convergence analyses of some
finite element methods for time-harmonic Maxwell’s equations with impedance
boundary condition and for the Helmholtz equation with Perfectly Matched Layer
(PML).

We first study the regularized formulation of time-harmonic Maxwell’s equa-
tions with impedance boundary conditions (where we add a V div-term to the
original equation to have an elliptic problem) and keep the impedance boundary
condition as an essential boundary condition. For a smooth domain, the well-
posedness of this formulation is well-known. But the well-posedness for convex
polyhedral domain has been not yet investigated. Hence, we start the first chap-
ter with the proof of the well-posedness in this case, which is based on the fact
that the variational space is embedded in H'. In order to perform a wavenumber
explicit error analysis of our problem, a wavenumber explicit stability estimate is
mandatory. We then prove such an estimate for some particular configurations.

In the second chapter, we describe the corner and edge singularities for such
problem. Then we deduce the regularity of the solution of the original and the
adjoint problem, thus we have all ingredients to propose a explicit wavenumber
convergence analysis for h-FEM with Lagrange element.

In the third chapter, we consider a non conforming hp-finite element approxi-
mation for domains with a smooth boundary. To perform a wavenumber explicit
error analysis, we split the solution of the original problem (or its adjoint) into a
regular but oscillating part and a rough component that behaves nicely for large
frequencies. This result allows to prove convergence analysis for our FEM, again
explicit in the wavenumber.

The last chapter is dedicated to the Helmholtz equation with PML. The
Helmholtz equation in full space is often used to model time harmonic acous-
tic scattering problems, with Sommerfeld radiation condition at infinity. Adding
a PML is a way to reduce the infinite domain to a finite one. It corresponds to
add an artificial absorbing layer surrounding a computational domain, in which
scattered wave will decrease very quickly. We first propose a wavenumber explicit
stability result for such problem. Then, we propose two numerical discretizations:
an hp-FEM and a multiscale method based on local subspace correction. The
stability result is used to relate the choice of the parameters in the numerical
methods to the wavenumber. A priori error estimates are shown.

At the end of each chapter, we perform numerical tests to confirm our
theoritical results.

KGYWOI’dS: Finite element method, Helmholtz equation, Pollution effect,
Maxwell’s equations, Impedance boundary condition, Perfectly Matched Layer
(PML).



Résumé

Dans cette these, nous étudions la convergence de méthode de type éléments
finis pour les équations de Maxwell en régime harmonique avec condition au bord
d’impédance et 1’équation de Helmholtz avec une couche parfaitement absorbante
(PML).

On étudie en premier, la formulation régularisée de I’équation de Maxwell en
régime harmonique avec condition au bord d’impédance (qui consiste a ajouter le
term V div a I’équation originale pour avoir un probléme elliptique) et on garde
la condition d’impédance comme une condition au bord essentielle. Pour des
domaines a bord régulier, le caractere bien posé de cette formulation est bien
connu mais cela n’est pas le cas pour des domaines polyédraux convexes. On
commence alors le premier chapitre par la preuve du caractere bien posé dans le
cas du polyedre convexe, qui est basé sur le fait que I’espace variationnel est inclus
dans H'. Dans le but d’avoir des estimations explicites en le nombre d’onde k
de ce probleme, il est obligatoire d’avoir des résultats de stabilité explicites en ce
nombre d’onde. C’est aussi proposé, pour quelques situations particulieres, dans
ce chapitre.

Dans le second chapitre on décrit les singularités d’arétes et de coins pour notre
probleme. On peut alors déduire la régularité de la solution du probleme original,
ainsi que de son adjoint. On a tous les ingrédients pour proposer une analyse de
convergence explicite en k& pour une méthode d’éléments finis avec éléments de
Lagrange.

Dans le troisieme chapitre, on considere une méthode d’éléments finis hp non
conforme pour un domaine a bord régulier. Pour obtenir des estimations explicites
en k, on introduit un résultat de décomposition, qui sépare la solution du probleme
original (ou de son adjoint) en une partie réguliere mais fortement oscillante et
une partie moins réguliere mais peu oscillante. Ce résultat permet de montrer des
estimations explicites en k.

Le dernier chapitre est dédié a 1’équation de Helmholtz avec une PML.
L’équation de Helmholtz dans I'espace entier est souvent utilisée pour modéliser
la diffraction d’onde acoustique (en régime harmonique), avec la condition de
radiation a l'infini de Sommerfeld. L’ajout d’'une PML est une fagon pour passer
d’un domaine infini a un domaine fini, elle correspond a l’ajout d'une couche
autour du domaine de calcul qui absorbe tres vite toutes les ondes sortantes. On
propose en premier un résultat de stabilité explicite en k. On propose alors deux
schémas numériques, une méthode d’éléments finis hAp et une méthode multi-
échelle basée sur un sous-espace local de correction. Le résultat de stabilité est
utilisé pour mettre en relation de choix des parametres des méthodes numériques
considérées avec k. Nous montrons aussi des estimations d’erreur a priori. A
la fin de ces chapitres, des tests numériques sont proposés pour confirmer nos
résultats théoriques.

Mots clés: Méthode des éléments finis, équation de Helmholtz, effet
de pollution, équations de Maxwell, condition au bord d’impédance, Perfectly
Matched Layer (PML).
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Introduction

Time-harmonic wave equation (acoustic or electromagnetic) are widely used in
physics, as for example for scattering problems which describe how a wave will
bounce off of some obstacles or will be absorbed. One of the main parameter in
such problems is the wavenumber k that become difficult to solve numerically,
when k is large. In particular, finite element methods applied to such problems
are well-known for their lack of stability: it appears that the numerical solution,
if it exists, is possibly far from the best approximation (in the finite element
space) of the exact solution for large wavenumber k. This phenomena is called
the pollution effect. This lack of stability is due to the fact that the associated
sesquilinear forms are not coercive. Consequently the quasi-optimality of the
finite element solution is not guaranteed for arbitrary meshes, but is achieved
only in an asymptotic range, i.e., for small enough mesh sizes, that depends on
the wavenumber and the discretization order.

In this thesis, we analyse two problems, the first one is the time-harmonic
Maxwell equation with impedance boundary condition, while the second one is
the Helmholtz equation with a Perfectly Matched Layer.

The scattering problem for time-harmonic Maxwell equation is

curlE—ikH=0 and cwlH+3kE=J in R*\O,

with O C R? a bounded obstacle. Here E is the electric part and H is the
magnetic part of the electromagnetic field, and the constant k£ corresponds to the
wavenumber. The right hand side J is the current density which — in the absence
of free electric charges — is divergence free, namely

divJ =0 1in Q.

For the sake of simplicity, we suppose that the domain is the vacuum, hence the
relative permittivity and permeability are equal to 1 (for more details, see [55]).
When the wavenumber k£ is different from 0, we can eliminate H by the first
relation in this equation to have a second order system, i.e.

(1) curl curl E — £°E = ikJ in R*\ O.

The standard scattering problem leads to find E = E® + E¢ solution of (1), where
E' is a given incident field (or waves) and E° is the unknown scattered field. A

3



4 INTRODUCTION

typical incident field might be a plane wave, i.e.,
E'(x) = pexp(ikz - d),

with d € R? is a unit vector that gives the direction of propagation of the wave,
p # 0 is called the polarization and must be orthogonal to d. We suppose that E?
satisfies:

curlcurl E — k?E’ = J in R?,

where J is a given function describing the current source (in the plane wave case,
J = 0). To expect uniqueness of the solution, we need to impose a boundary
condition on the obstacle and a radiation condition at infinity. The condition on
the obstacle is dependent of the physical properties of the obstacle, it can be a
perfect conductor (E x n =0 and H-n = 0 on 00) or an imperfectly conductor
(it is also called impedance boundary condition), for example. The condition at
infinity is called the Silver-Miiller radiation condition,

lim |z|((curl E¥) x - — ikE®) = 0.

But, in order to use a finite element method for this problem, we must reduce
the computational domain. Let  C R? be such O C €, hence the computational
domain will be 2\ O. We need to add a boundary condition on J2 and a standard
way is formally to impose the Silver-Miiller radition condition on 052, i.e.

(curl E®) x n — ikE® = 0 on 012,

or equivalently
(curl E*) x n — ikE;] = 0 on 09,

where n is the outward normal vector and Ef = (n x E®) x n is the tangential
component of E®. This condition is also called Leontovich condition, or absorbing
boundary condition and it is an impendance boundary condition. Obviously, there
is no reason that the scattered field in R*\ O and the scattered field in Q\ O should
be equal but if 2 is large enough (and so the boundary of Q is far from 00O) the
difference will be small. The transparent boundary condition can also be used on
02, but it provides a non-local operator on the boundary (Capacity or Calderon’s
operators, see [55, 59]). In this case, computing the finite element solution is quite
expensive (as the associate linear system will be not sparse, more precisely, some
blocks will be dense as each boundary nodes are connected to each other). S.
Sauter and J.M. Melenk have recently studied this problem (without obstacle)
in [53], and proposed a wavenumber explicit hp-FEM analysis for curl-conforming
FEM (with Nédélec elements or also refered to Nédélec-Raviart-Thomas elements).

For this thesis, we consider the case with impedance boundary condition, but
without obstacle.

2 {mﬂE—MH:O and curlH+ikE=J in Q,

Hxn—Ay,pE: =0 on 09,
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where the impedance Ay, is a smooth positive function. It is a more general
boundary condition than the standard absorbing condition (when Aiy,, = 1).
Moreover, we study the case when € is either a polyhedron or a smooth domain
1

As variational formulation of (2), a first attempt is to eliminate H by the

relation H = X curl E, that transforms the impedance condition in the form

ik
(curlE) x n — ikAimp E; =0 on OS2

Unfortunately such a boundary condition has no meaning in H(curl, 2), hence a
solution is to introduce the subspace

Hipp (Q) = {u € H(cur]; Q) : you, € L*(00Q)}.

Then eliminating H in the second identity of (2), and multiplying by a test func-
tion, we arrive at

(3) /Q(curl E - cullE — kK°E - E)dz — ik /39 Nimp Et - B} do

:ik/J-E’dx, VE' € Hipp(Q).
Q

Error analysis of (3) using Nédélec elements are available in [55, 31], but no
explicit dependence with respect to k is proved. Note that a stability analysis has
been performed in [36]. Moreover there is no hope to get easily regularity results
of the solution by applying the theory of elliptic boundary value problems to the
system associated with (3) because it is not elliptic (see [22, §4.5.d]).

A second attempt, proposed in [22, §4.5.d] for smooth boundaries and inspired
from [59, §5.4.3], is to keep the full electromagnetic field and use the variational
space

V = {(E,H) € (H(curl, 2) N H(div,2))*: H x n = A\ppE; on 99},

considering the impedance condition in (2) as an essential boundary condition.
Hence the proposed variational formulation is: Find (E, H) € V such that

(4)  a, (B H),(E,H)) = /

(z’kJ B 47T curl ﬁ’) dr, Y(E,H') € V,
Q

with the choice
ays((E,H),(E\H')) =a; s(E,E') + a;s(H,H')

1
- zk/ (Niwop Bt - B +
00 A

imp

Ht : I:I;) dO-J

with a positive real parameter s that may depend on k but is assumed to be in a
fixed interval [sg, s1] with 0 < sy < s1 < oo independ of k (see section 1.4 below
for more details) and

ais(u,v) = /(curlu ceurl v + sdivudivv — k*u - v) dz.
Q

'We mean by smooth domain a domain at least of class C?
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The natural norm ||-||, of V associated with problem (4) is defined by
2 2 : 2 2
1B, H)[; = llewrl Eflg2(q) + [divEll{2q) + & | Ell2(q)
2 : 2 2
+ [[eurl H|[p2q) + [[div HI|{2q) + K 1H[2(q) -

This new formulation (4) has the advantage that its associated boundary value
problem is an elliptic system (see [22, §4.5.d]), hence standard shift regularity
results can be used. The pollution effect talked above is present here, so we need
first to show the well-posedness of the problem (4).

The first chapter is devoted to the well-posedness of the problem (4). The
smooth case is already known if we supose that —k—; is not an eigenvalue of the
Laplace operator A with Dirichlet boundary condtion in € (cf. Lemma 4.5.9
of [22]). In this case, for J € H(div;(2), the problem (4) has a unique solution
and thus this solution is solution of the original problem (2). The proof of the
well-posedness in this case is based on the fact that our variational space V
is continously embedded into (H!(€))? (and then V is compactly embedded
in (L?(Q))?), see for instance [3] or Lemma 4.5.5 of [22] and the Fredholm
alternative. In the polyhedron case, we must adopt these arguments: then we
first show that a similar embedding is still valid in this case (for the largest
possible class of polyhedra, namely this embedding holds if and only if condition
() is convex), this property correspond to Theorem 1.2.4. To use the Fredholm
alternative, we need to show that the solution of (4) is unique, this is achieved by
combining Lemma 1.3.3 and 1.3.4 (cf. proof of Theorem 1.3.5). One of the main
result required to analyse the FEM is the stability estimate explicit in k of the
problem (and its adjoint). This is performed in section 1.4 and the choice of s is
also explained. For practical reason, we compute our tests on the TE formulation,
it can be understood as two dimension Maxwell’s equations, its description is
given at the end of this chapter.

In the second chapter, we present an error estimate of the problem (4) for
standard Lagrange finite element method in a polyhedral domain. Such error
estimates are usually based on regularity results of the solution, but as our
domain is not smooth, we need to determine the corner and edge singularities of
our system. This is here done by adapting the techniques from [25, 21]. With
the corner and edge singularities, we can determine the minimal regularity of
the adjoint problem, and with stability results we can achieved a wavenumber
explicit error bounds in an asymptotic range, in the same spirit of [15, 14] (with
an expansion in power of k). Since the minimal regularity could be quite poor,
this asymptotic range could be quite strong for quasi-uniform meshes, hence in
the absence of edge singularities, we improve it by using adapted meshes, namely
meshes refined near the corners of the domain. Some numerical tests, with the
TE formulation, are proposed to confirm our theoretical analysis.

The third chapter is focused on error estimates of the problem (4) for a
non-conforming Lagrange finite element method in a smooth domain. As the
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domain is smooth, we cannot impose the essential impedance boundary condition
in the finite element space, this is why we add a penalization term on the
boundary (corresponding to the impedance condition). In the first section, we
present the discrete problem and we proved its well-posedness under a condition
on the adjoint approximation quantity 7(Vj,) (defined in (2.40), where Vj,
is the finite element space). After that, we analyse in two different ways the
case of analytical boundary and the case of a boundary of class C**11. The
analytical case is treated by following a similar approach as S. Sauter and J.M.
Melenk have proposed in [48, 49, 51]. We split up the solution of (4) into a
regular but oscillating part and a rough component that behaves nicely for large
frequencies. This decomposition allows then to estimate 7(Vy,), hence to get
the well-posedness of the discrete problem under a condition on the meshsize
and the polynomial degree, as well as to obtain some error estimates. Note
that the estimation of the regular part heavily depends on analytic regularity
of the solution of an elliptic system with lower order terms depending on the
wavenumber k with bounds that explicitly depends on k. These bounds are
obtained by combining analytic estimates of the same problem corresponding to
k = 0 with bootstrapping and induction arguments. These analytical regularity
results are postponed to an Appendix since we prove such results for general
elliptic systems. For the case of a boundary of class C?*!, to estimate the adjoint
approximation quantity, we use an expansion of the solution in power of k, in
the same spirit as S. Nicaise and T. Chaumont-Frelet did in [15, 14]. We propose
some numerical tests that confirm our theoretical results.

The second problem discussed in this thesis is the Helmholtz equation with
a Perfectly Matched Layer (PML). Let us first introduce time-harmonic acoustic
scattering problem in a full space with a sound-soft obstacle, modelled through
the Helmholtz equation subject to the Sommerfeld radiation condition [20]. This
equation is

—Au—FKu=0inR"\ O

u® = —u' on 00
Jim 2“2 (Oau’ (x) — ikus(z)) = 0,

where u = u® + u', v’ is an incident wave (for example, a plane wave) and u*
is the scattered wave (again, the ”"true unknown”) and n € {1,2,3}. To use a
finite element method, we must reduce the computational domain and then add
an artificial boundary. Then we take 2 C R™ such that O C €2, and the equation
becomes

—Au—ku=0inQ\ O,

u® = —u’ on 00,

Opu® = T'(u®) on 0L,

with 7" an operator. The two usual ways to define T', corresponds either to the
transparent boundary condition (7" is called the Dirichlet-to-Neumman operator)
or an absorbing boundary condition (7'(u®) = iku®, this is a Robin type boundary
condition). The main advantage of the Dirichlet-to-Neumman operator is that is
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a transparent condition, hence the solution of this problem is the same than the
one in the full space restricted to 2. But the principal disadvantage is that this
operator has not a simple explicit form, hence computing a finite element solution
is difficult [54]. Absorbing boundary condition is more effective numerically, as
it is local. But it is an approximation of the Sommerfeld radiation condition
hence the artificial boundary must be far enough from the obstacle and so the
computational domain may be large. Another problem of this condition is that
we can have reflective wave at the boundary, obviously without any physical sense
(cf. [33]). Wavenumber explicit convergence analysis for FEM of these problems
has been widely studied these last years. hp-FEM analysis can be found in [48,
49, 51] for analytic or convex polyhedral domain with Robin boundary condition
or Dirichlet-to-Neumman operator. h-FEM for Robin boundary condition with
C7*11 domain is presented in [14], with polyhedral domain in [15] (both based on
expansion of the solution in power of k). A different approach based on fine-scale
correction techniques was proposed by [63]. It is based on low-order polynomials
(in opposition of hp-FEM results), but the diameter of the support of the fine-
scale corrections must grow logarithmically with k. This type of methods, called
multiscale methods, have also been studied in [9, 30, 63] .

A different method to restrict the computational domain, introduced first
by J.P Bérenger for Maxwell’s equations in [5], is to add a Perfectly Matched
Layer (PML). It is a absorbing layer surrounding € that has the remarkable
property of being perfectly reflectionless, for a layer of infinite thickness. But it
is well-known that we obtain an exponential decay for the wave inside a PML of
finite thickness, this decay depending on the thickness of the layer.Hence for a
PML with finite thickness, the property of being perfectly reflectionless is lost,
but as the decay of the wave is very fast (in the PML), spurious reflections can
be made exponentially small for large enough PML. Furthermore, the solution
with the PML converges to the solution in the full space, restricted to the
computational domain without PML, when the thickness of the layer tends to
infinity (see for instance [40, 41, 8]). As this method is local (because it is a
suitable change of variables), finite element methods are quite appropriate to
approach the continuous problem.

In the fourth chapter, we analyse a hp-FEM and a multiscale method for
two dimensional Helmholtz equation with PML. We start by giving the PML
setting in polar coordinates (as in [19, 40]). The key ingredient to obtain analysis
of a FEM explicit in k£ is to have the stability estimate explicit in k, this is
given by Theorem 4.2.5. The proof is based on the combination of a direct
estimate obtained in the PML region with a multiplier method (in the case of
absorbing boundary conditions this last procedure corresponds to the choice of
an appropriate test function, see [47]). The setting of our equation do not fit
with those used in [14], to obtain an expansion in power of k of the solution,
so we introduce an another equation with a sponge layer in place of a PML in
which we applied the result from [14]. Hence, in Section 4.3 we compared the
solution with the PML with those in presence of the sponge layer. The section
4.4 is devoted to the numerical discretization, with a hp-FEM and a multi-scale
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method. The asymptotic range for hp-FEM is obtained in the same way as in [14].
We also propose a pre-asymptotic error estimate, in the spirit of [28], by using an
appropriate elliptic projection to get existence of the FEM solution under weaker
condition than in the asymptotic range. A multiscale approach is analysed in the
same way as in [40, 41, 8]. We propose some numerical tests in section 4.5. The
appendix of this chapter lists a couple of elementary but important properties of
the PML functions that we often refer to.

The majority of the numerical tests presented in this thesis are performed
with the help of XLife++, a FEM library developed in C++ by P.O.E.M.S.
(Ensta) and I.R.M.A.R. (Rennes) laboratories.

Let us finish this chapter with some notations used in the remainder of the
thesis. For a bounded domain D, the usual norm and semi-norm of H*(D) (¢t > 0)
are denoted by | - ||+.p and |- |¢,p, respectively. For ¢ = 0, we will drop the index ¢.
For shortness, we further write HY(D) = H!(D)3?. Here and below 7, is a generic
notation for the trace operator from H'(O) to H'"z(90O), for all t > 1. The space
of smooth functions with compact support in D is denoted by D(D). Furthermore,
the notation A < B (resp. A 2 B) means the existence of a positive constant C
(resp. Cs), which is independent of A, B, the wave number k, the parameter s
and any mesh size h such that A < C1B (resp. A > (C3B). The notation A ~ B
means that A < B and A 2 B hold simultaneously.
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Chapter 1

General considerations for
Maxwell’s system

1.1 General setting

We are interested in the time-harmonic Maxwell equations for electromagnetic
waves in a bounded, simply connected polyhedral domain  of R?® with a Lipschitz
boundary (simply called polyhedron later on) or smooth domain ! filled by an
isotropic homogeneous material with an absorbing boundary condition (also called
Leontovich condition) that takes the form

1) {curlE—z’kHzO and curlH+ikE=J in Q,

Hxn—X\ypE; =0 on 09Q.

Here E is the electric part and H is the magnetic part of the electromagnetic
field, and the constant k£ corresponds to the wave number or frequency and is, for
the moment, supposed to be non-negative. The right hand side J is the current
density which — in the absence of free electric charges — is divergence free, namely

divJ =0 in Q.

As usual, n is the unit vector normal to 9 pointing outside Q2 and E, = E — (E -
n)n is the tangential component of E. The impedance Ay, is a smooth function
2 defined on 0 satisfying

(1.2) Aimp : 02 — R, such that Vz € 0Q, Aimp(z) # 0,

see for instance [59, 55]. The case A\ymp = 1 is also called the Silver-Miiller boundary
condition [3].

In practice absorbing boundary conditions are used to reduce an unbounded
domain of calculations into a bounded one, see [59, 55].

'We mean by smooth domain a domain at least of class C?
2Aimp € C®1(0Q) is sufficient

11
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As variational formulation, we use that which is proposed in [22, §4.5.d] for
smooth boundaries and inspired from [59, §5.4.3], is to keep the full electromag-
netic field and use the variational space

(1.3) V= {(E,H) € (H(curl, 2) N H(div,2))*: H x n = A\ypE, on 90},

considering the impedance condition in (1.1) as an essential boundary condition.
Hence the proposed variational formulation is: Find (E,H) € V such that

(14)  a((EH), (1)) = /

(z’kJ B 47T curl H) dr, V(E,H') € V,
Q

with the choice
ak,s((E, H), (E/, H/)) :ak,s(E, E,) —+ ak’s(H, H/)

— Zk/ ()\imp Et . E; + Ht . I:I;) dO',
o0

imp

with a positive real parameter s that may depend on k but is assumed to be in a
fixed interval [sg, s1] with 0 < sp < s1 < oo independ of k (see section 1.4 below
for more details) and

ags(u,v) = /(curlu ceurl v + sdivudivv — k*u - v) dz.
Q

The natural norm ||-||, of V' associated with problem (1.4) is defined by

I(E, H)|; = ||CUTIE||?J2(Q) + || div EH?}(Q) + K ||E||i2(s2)
+ [leurl H[f ) + |div H|[ {2 () + & [H] 2 () -

This new formulation (1.4) has the advantage that its associated boundary
value problem is an elliptic system (see [22, §4.5.d]), hense standard shift regularity
results can be used.

1.2 Hidden regularity of the variational space
If O is of class C?, it is well known that the continuous embedding

(1.5) V — (H'(Q))?

holds, which means that V C (H*(€2))? with the estimate

(1.6) 1E, H)||g g S [lewrl Ellpzq) + [[divE| > ) + [[EllL2 g
+ chr1H|lL2(Q) + HdiVHl|L2(Q) + ”HHL2(Q) ,V(E,H) e V.

A proof of this result is available in [3] for a smooth boundary and in Lemma
4.5.5 of [22] for a C? boundary. In both cases, the three main steps of the proof
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are
1. The continuity of the trace operator

H(curl, Q) — H %(div;0Q) : U = U x n,

proved in [62] (see also [59, Theorem 5.4.2]).

2. The elliptic regularity of the Laplace-Beltrami operator Ay = div; V,; on a
smooth manifold without boundary that implies that A;g — I is an isomorphism
from H?2(I') into H~2(T'), see for instance [42].

3. The operator

H*(Q) — L*(Q) x H%(F) cu— (—Au, you),

is an isomorphism, see again [42].

If we want to extend this result to polyhedra, we then need to check if the
three main points before are available. This is indeed the case, since point 1 can
be found in [10], point 2 is proved in [12, Thm 8] under a geometrical assumption
(see (1.9) below), while point 3 is a consequence of [25].

To be more precise, let us first introduce the following notations (see [10] or
(60, Chap. 2]): as Q is a polyhedron, its boundary I' is a finite union of (open
and disjoint) faces I';,j = 1,--- , N such that I' = Uj-vzlf‘j. As usual, n is the unit
outward normal vector to 2 and we will set n; = nyp, its restriction to I';, When
I'; and I'; are two adjacent faces, we denote by e;; their common (open) edge and
by 7;; a unit vector parallel to e;;. By convention, we assume that 7;; = 7;;. We
further set n;; = 7;; x n;. Note that the pair (n;;, 7;;) is an orthonormal basis of
the plane generated by I'; and consequently n;; is a normal vector to I'; along e;;.
For shortness, we introduce the set

& =1{(i,j) i < j and such that [; N T; = &;}.

We denote by C the set of vertices of I' (that are the vertices of €2). Furthermore for
any ¢ € C, we denote by GG, the intersection between the infinite three-dimensional
cone =, that coincides with {2 in a neighbourhood of ¢ and the unit sphere centred
at ¢ and by w, the length of (in radians) of the boundary of G..

We first introduce the set

L)) ={weL*I):w-n=0onT}

For a function v € L*T), we denote by v; its restriction to I';. As T is
Lipschitz, we can define H'(T') via local charts, but we can notice that

HYT) = {ueL*T):u; € H(Ty),Vj=1,---,N satisfying
You; = You; on e;;, V(i,7) € E}.

As T is only Lipschitz, we cannot directly define H*(T") for ¢ > 1, but following
[10] (or [12]), we define

3
2

H2(T) = {yu:uec H*(Q)},
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with
inf |ull2,0-

w =
|| || %’F u€EH?(Q)you=w
Let us notice that according to Theorem 3.4 of [10], we have

H2() ={we H'(I): Vw € HH (M)},

with 3
lwllyr ~ lwlle + [Vl 2 p Yo € HA),

where V,u is the tangential gradient of v and H|| (I") is defined by

: {ueLf(r):uie(Hé( DR Vi=1,- N}

1.7 H () =
(1.7) 10 and ./\fzu(u) < oo, V(i,j) €&
where | (1) 2
uz - Tig Y) - Tij
N)(u / / |;3 B 1 do(z)do(y),
and finally
N 1
lallf e =D lwlld o+ D Nj(w), Yu e Hi(D).
I3 l
=1 (3,7)€€
For further uses, we also introduce
by [ weLiD) suy € (H3(I))P, ¥i=1,- N,
(18) HE(T) = { and NL( ) < o0, V(i,j) € E ’
where | (1) :
uz -1y y) -y
w= [ O S do(raoy),
and finally
N
[l e = Sl + 3 A (), Ve HE(D)
1=1 (i,)€€
_1 1
Let us also define (cf. [10]) H *(I") as the dual of Hj(I') (with pivot space
_1
:H, 2(I') = H 2(I) as the

LZ(T")) and introduce the tangential divergence div,

adjoint of —V;, namely

. -1 3
<dlvt u7 SO>H7%(F)7H%(F) = _<u7 Vt¢>H7%(F)7H§(F)’ vu € H“ 2 (F)7 90 € H2 (F)

Finally, let us define

Hy 2 (diviT) = {w € H V() « divew € H7AI)}

and recall the next result proved in [10, Theorem 3.9
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Theorem 1.2.1. [13, Thm 4.1] The trace mapping
H(curl, Q) — Hr/Q(div; I'):U—-Uxn,
18 linear, continuous, and surjective.
Theorem 1.2.2. If Q) is a polyhedron satisfying
(1.9) we < 4m, Ve e C,

then for any h € H™2(T'), there exists a unique u € H2(T) such that

(1.10) w— div, Vou = h in H 2(T),
with
(1.11) Jullz p < (1720l -2 p-

Proof. Fix h € H=2(I'). Then there exists a unique solution v € H*(I') of
/(Vtu V0 +uv) do(z) = (h,v), Yo € H(T).
r

This solution clearly satisfies (1.10). Furthermore owing to our assumption (1.9),
Theorem 8 from [12] (with ¢ = 3, valid since i—“ > 1 for all corners ¢) guarantees
that u € Hz2(T') since h — u belongs to H~2(T").

To obtain the estimate (1.11), we take advantage of the closed graph theorem.
Indeed introduce the mapping

T:{ve H%(F) divy Vv € H_%(F)} — H_%(F) tu— u — divy Vyu,

that is well defined and continuous. Since the above arguments show that it is
bijective, its inverse is also continuous, which yields

HUHgF S [Ju — divy VtUH,%,p,
and is exactly (1.11). O

Remark 1.2.3. Any convex polyhedron satisfies (1.9), since by [69, Problem
1.10.1], one always have w. < 2m, for all ¢ € C. But the class of polyhedra
satisfying (1.9) is quite larger since the Fichera corner and any prism D X I,
where D is any polygon with a Lipschitz boundary and [ is an interval satisfy
(1.9).

Theorem 1.2.4. IfQ) is a convex polyhedron, then the continuous embedding (1.5)
remains valid.
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Proof. The proof follows the one of Lemma 4.5.5 of [22] with the necessary adap-
tation. Let (E,H) € V. Let us prove that E € H'(Q2). The proof for H is
similar.

By Theorems 2.17 and 3.12 of [1], there exists a vector potential w € Hp(Q2) =
{weH(Q)?:w-n=0on T} such that divw = 0 and

curlw = curl E in €,
and satisfying
(1.12) [wllie S [l curl Efjq.
Thus, there exists a potential p € H*(£2) such that
(1.13) Vo=E-—w,
with (by assuming that [, ¢ dz = 0)
lele S IEle + [[wlo S 1l #Ewo)-

Therefore, as a consequence of divE € L?(2) we find that

(1.14) divVp € L*(Q).
with
(1.15) | div Vylla < || div E||q.

By (1.13) the trace E; coincides with w; + V¢, i.e.,
Et = W; + thO on I'.

As H belongs to H(curl,Q2), by Theorem 1.2.1 its trace H x n belongs to
Hfl/ 2(diV' I'). By the impedance condition H x n = A\, E;, we deduce that

/\lmpEt also belongs to H/ 12 (div; T') with

(1'16) H/\impEt”H[l/Q(div;p) 5 “HHH(curl,Q)-

Likewise, as w-n = 0 and w € Hz2(I'), let us show that w; also belongs
Hﬁlm(div; I') with

(1.17) HWtHHF/?(div;r) < || curl Ef|g.

Indeed the above properties imply that
(1.18) W, =W € H1/2(F)

Namely to show that property we simply need to show that for any (7, j) € &€, one
has

(1.19) // [wile) - — w; (y) - il do(x)do(y) < w2,

|z —y[?

()
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But for such a pair, n;; is a linear combination of n; and n; and consequently

I PO doto)ants) < L/ ) _y“f;ﬂ'Qda(x)da(y)

_ /F /F wiz) -1 — w;(y) - ny|® do(z)do (y)

|z —y?

since w; -n; = 0 on I'; and w; -nj = 0 on I';. This shows that

[ P wtesns [ [ O et

J
S Iwily

as well as (by exchanging the role of I'; and I')

|WJ nj’L < )
/ / "T_?J’g da( Jdo(y) S HWHH%(F)'

Hence (1.19) holds. As mentioned in [11, p. 39], Theorem 1.2.1, 2 density argu—

ment and a duality argument lead to the continuity of div, from H? 2(I) to H2 (D),
and by (1.18) we deduce that

din W; = dith < H_%(F)

Altogether we finally obtain that A, Vie belongs to Hr/ *(div;T) and since
Aimp 18 smooth and never 0 on I', we conclude that

div, Vyp € H2(T),
and since ¢ is in H2(T),
o — div, Vip € H2(T).
with
(1.20) lp = dive Vil -1 0 S [1H [lraeurs) + Bl cue).
By Theorem 1.2.2, we deduce that

(1.21) pir € H (D),
with
(1.22) lells r < I [aeuo) + [1Ellaeuno)-

Now, using the elliptic regularity for ¢ solution of the Dirichlet problem (1.14)-
(1.21) in Q (see [25, Corollary 18.19]), we find p € H*(Q) with

(1.23) el S 1div Vel + [lells r
S IH|Hewso) + 1EllHewso) + || div E[o.
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Coming back to (1.13), we have obtained that E € H*(Q) with
[Ellie < [[wllhie +[[Vellie
Hence taking into account (1.12) and (1.23) we arrive at the estimate
IEll0 S H][aeuse) + [Ellaeose) + [divE]|q .
As said before, exchanging the role of E and H we can show that H € H(Q) with
Hll1o S [Hl[aeue) + [[Ellaeuse) + [|divH|q .
The proof is then completed. O

It turns out that the convexity condition is a necessary and sufficient condition
that guarantees the continuous embedding (1.5), namely we have the

Corollary 1.2.5. If Q is a polyhedron. Then ) is convex if and only if the
continuous embedding (1.5) is valid.

Proof. 1t suffices to prove that the convexity condition is a necessary condition.
For that purpose, we use a contradiction argument. Assume that €2 is not convex,
then by [25] (see also [21, §1]), there exists a (singular) function p € H(2)\ H%(9)
such that

Ayp € L*(9).
In that way the pair (V¢, V) belongs to V, but that cannot be in H'(Q)? since
© & H*(Q). This proves that (1.5) is not valid. O

1.3 Well Posedness

Let us start with a coerciveness result for the sesquilinear form ay, .

Theorem 1.3.1. If Q is a convexr polyhedron or a smooth domain, then the
sesquilinear form ay (-, ) is weakly coercive on 'V, in the sense that there exists
¢ > 0 independent of k and s such that for all (E,H) € V

(1.24) Reay,,((B,H), (B, H) = ¢ (B o + [HI} o) — (624+1) (IEJ, + [HI,)

Proof. For the smooth case, the domain is at least C2, hence the weak coercivity is
proven in Theorem 4.5.6 of [22]. In the same spirit of the smooth case, polyhedral
case is a direct consequence of Theorem 1.2.4, recalling our assumption on Ay, to
be real valued. O]

Remark 1.3.2. Under the assumptions of the previous Theorem, for k > 1, we
have

(B, 2 1B, H) g g

The existence of a weak solution to (1.4) for k£ > 0 directly follows from this
coerciveness and the next uniqueness result for problem (1.1).
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Lemma 1.3.3. Let (E,H) € V be a solution of

curlE—ikH=0 and curlH4+kE=0 1n Q,
(1.25)

Hxn—A\npE, =0  on 09,

for k € R and 2 a convex polyhedron or a smooth domain. Moreover if k = 0,
we suppose that Q is simply connected. Assume that E and H are divergence free.
Then (E,H) = (0,0).

Proof. By Green’s formula (see [32, Thm 1.2.11]) we have
/(| curl E? + |curl H*) dz = @'k:/(curlH ‘E—cuwlE-H)dx
0 Q
= ik‘/(H-curlE—curlE-fI)das
Q

—z’k:/ (H x 1 B) do(z).
1)
Hence using the impendance boundary condition in (1.25), we find that

/(|cur1E|2+ |curlH\2)dx—ik/(H~curlE—curlE~H) dx
Q Q

—ik/ Nimp | B |* do(z).
o0

Taking the imaginary part of this identity we find that

k;/ Nanp B2 dor(z) = 0.
a0
Hence if k£ # 0, we deduce that

Et =0 on (9(2,

as Aimp 1s different from 0 on 0€2. Again by the impendance boundary condition,
H also satisfies
H x n =0 on 09.

This means that we can extend E and H by zero outside {2 and that these ex-
tensions belong to H(curl, R?). Owing to Theorem 4.13 of [55] we conclude that
(E,H) — (0,0).

For k = 0, we notice that (1.25) implies that E and H are curl free, hence
as ) is supposed to be simply connected, by Theorem 1.2.6 of [32], there exist
Op, &y € H'(Q) such that

E=Vd, H=Vdy.

Due to the H' regularity of E and H, ®5 and @5 both belong to H*(2). Now
using the impendance boundary condition, we have

divi(Aimp ViPg) = dive(V®y x n) on 052,
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and by the standard property
divi(v x n) = curlv - n,
valid for all v € H(curl, Q) (see [10, p.23]), we deduce that
divi(Aimp VP ) = 0 on 09.

By its definition (see [10, Def 3.3]), this property implies that
|/\imth(I>E\2 dO(ZL‘) =0.
80

Consequently @5 is constant on the whole boundary. As E is divergence free, ®g
is harmonic in ) and consequently it is constant on the whole 2, which guarantees
that E = 0. With this property and recalling the impedance boundary condition,
we deduce that V,®y = 0 on the whole boundary. As H is also divergence free,
®y is harmonic in €2 and we conclude that H = 0. O

Our next goal is to prove an existence and uniqueness result to problem (1.4),
that can be formulated in the more general form

(1.26) ay((E, H); (E', H')) = (F; (E, H')), V(E', H') € V,

with F € V', First, we need to show extra regularities of the divergence of any
solution (E, H) of this problem under the assumption that F belongs to L*(2) x
L2(2) in the sense that

(1.27) (F; (B, H')) = /

) <f1-E’+f2-I_{’> de,

with 1, £, € L2(Q).

Lemma 1.3.4. If ) is a convexr polyhedron or a smooth domain, the impedance
function Ay satisfies (1.2) and —k*/s is not an eigenvalue of the Laplace operator
A with Dirichlet boundary conditions in S0, then for all f;,f, € L*(Q), any solution
(E,H) € V to the problem

(128)  a.((B,H); (B, H)) = /

(f1 i FI) dr, ¥(E,H') € V,
Q

satisfies
divE,divH € H}(Q),
with
divE = —(sA + k371 dive, divH = —(sA + k)1 divf,.

Proof. For a convex polyhedron, we basically follow the proof of Lemma 4.5.8 of
[22] (which corresponds to the smooth case) with a slight adaptation due to the
change of right-hand side in (1.28) with respect to [22]. In (1.28) we first take test
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functions in the form (V¢, 0) with an arbitrary ¢ € H*(Q) N Hj(€2). This directly
implies that (V¢, 0) belongs to V, and therefore we get

3/ divE divVedr — k:2/E -Vodr = / f, - Vodz.

Q Q Q

Consequently, one deduces that

(1.29) / divE (sA + ko dr = —(div f1; ), Yo € H*(Q) N Hy(Q).
Q

On the other hand, as —k?/s is not an eigenvalue of the Laplace operator A with
Dirichlet boundary conditions in H%(f2), there exists a unique solution ¢ € H}(Q2)
to

(sA + k?)qg = — divf,.

Taking the duality with ¢ € H?(Q) N H}(Q), after an integration by parts, we
obtain equivalently that

/ q (sA+ k) pdr = —(divfi; ), Vo € H*(Q) N Hy ().
Q
Comparing this identity with (1.29), we find that
/(divE —q) (A + k) pdr =0, Yo € HX(Q) N HL(Q),
0

and since the range of (sA + w?) is the whole L*(Q2), one gets that divE = ¢, as
announced.
The result for H follows in the same way by choosing test functions in the form

(0,Vo). O
We are now ready to prove an existence and uniqueness result to (1.26).

Theorem 1.3.5. If ) is a convex polyhedron or a smooth domain, the impedance
function Ay satisfies (1.2) and —k? /s is not an eigenvalue of the Laplace operator
A with Dirichlet boundary conditions in 2, then for any F € V', the problem (1.26)
has a unique solution (E,H) € V.

Proof. We associate to problem (1.26) the continuous operator Ay, from V into
its dual by
(Apsu)(v) = ags(u,v), Yu,v € V.

Now according to Theorem 1.3.1, the sesquilinear form
ao((E, H), (B, H)) + (K + 1) (IE|f20) + [H] 20 )

is strongly coercive in V and by Lax-Milgram lemma, the operator Ay s+ (k*+1)I
is an isomorphism V into its dual. As V is compactly embedded into L?(€)S,
the operator Ay s is a Fredholm operator of index zero. Hence uniqueness implies
existence and uniqueness.
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So let us fix (E,H) € V be a solution of (1.26) with F = 0. Then by Lemma
4.5.9 of [22] (valid due to Lemma 1.3.3 for the polyhedral case), we find that (E, H)
is solution of the original problem (1.1) with J = 0, namely (1.25). We further
notice that Lemma 1.3.4 guarantees that E and H are divergence free (only useful
for k = 0). As Lemma 1.3.3 yields that (E,H) = (0,0), we conclude an existence
and uniqueness result. O

As already mentioned, for the particular choice

(F;(E,H')) = / (in B +7J. curlﬁ') dx,
Q

with J € L%(Q), problem (1.26) reduces to (1.4). Hence under the assumptions of

Theorem 1.3.5 and if J € L?(Q2), this last problem has a unique solution (E, H) €

V, that owing to Lemma 4.5.9 of [22] is moreover solution of the original problem

(1.1) under the additional assumption that J € H(div;2).

Now under the assumptions of Theorem 1.3.5, given two functions fi,f; €
L?(Q), we denote by (E,H) = Sy (fi,f2), the unique solution of (1.26) with F
given by (1.27) or equivalently solution of (1.28). Note that the general considera-
tions from [22, §4.5.d] implies that (E, H) is actually the solution of the boundary
value elliptic system

L. (E) =f
k() l}inQ,

Li.(H) =1
(1.30) . dive =0
divH =0
on 0,
TEH) =0

L Biy(E,H) =0
where

Ly +(E) = curlcurl E — sV div E — k*E,
T(E,H) =H x n — \ypEy,
ik

Bi(E,H) = (curlH) x n + 3
imp

(curl E); —

H, +kE x n.
)\imp
Remark 1.3.6. As suggested by its definition, under the assumptions of Theorem
1.3.5, Sy s(f1,f5) depends on s, but if the data f; and f, are divergence free, then
as Lemma 1.3.4 guarantees that each component of Sy (f, f2) is divergence free,
we deduce that

Sk,s(f1, f2) = S (f1, £2),

for all s > 0 such that —k?/s’ is not an eigenvalue of the Laplace operator A
with Dirichlet boundary conditions in 2. In other words, in that case S s(fi, f2)
does not depend on s and hence the parameter s can be chosen independent of k.
This is of particular interest for practical applications (see problem (1.4)), since
the data f; and f; are divergence free. The interest of considering non divergence
free right-hand side will appear in the error analysis of our numerical schemes, see
Remark 2.2.6.
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Let us end up this section with an extra regularity result of the curl of each
component of S ,(f1, fy) if f;, fy € L*(Q) are divergence free.

Lemma 1.3.7. Under the assumptions of Theorem 1.3.5, let (E,H) = Sy s(fi1, f2),
with £y, f, € L?(Q) such that

div fl = dinl =0.

Then (U, W) = (curl E—ikH, curl H+ikE) belongs to V and satisfies the Mazwell

system
(1.31) curlU+ kW =f;  and curlW —ikU =1, in Q.

Proof. According to Lemma 1.3.4, E and H are divergence free, hence U and W
as well. Hence the identities (1.31) directly follows from the two first identities of
(1.30). This directly furnishes the regularities

curl U, curl W € L*(Q).
Finally the boundary conditions
W xn—XAp, U, =0 on 09,

directly follows from the last boundary conditions in (1.30). O

1.4 Wavenumber explicit stability analysis

The basic block for a wavenumber explicit error analysis of problem (1.30) (or
(1.28)) is a so-called stability estimate at the energy level; for the Helmholtz
equation, see [23, 27, 35]. Hence we make the following definition.

Definition 1.4.1. We will say that system (1.30) satisfies the k-stability property
with exponent o > 0 (independent of k and s) if there exists ko > 0 such that for
all k > ko and all £;,f, € L2(2), the solution (E,H) € V of (1.28) satisfies

(1.32) IE, H)[[x <k ([[fillo.c + [[fllog):

Before going on, let us show that this property is valid for bounded domains
with a = 2. But for some domains, in particular it holds with o = 1, it will be valid
for rectangular cuboids of rational lengths, some tetrahedra and some prisms. To
prove such a result, we first start with a similar property with divergence free data.
In this case, our proof is a simple consequence of a result obtained in [61] for the
time-dependent Maxwell system with impedance boundary conditions combined
with the next result of functional analysis [65, 38].

Lemma 1.4.2. A Cy semigroup (e'X)i>o of contractions on a Hilbert space H is
exponentially stable, i.e., satisfies

le“Us|| < Ce |\ Uollm, YUs € H, Vt>0,
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for some positive constants C' and w if and only if

(1.33) p(L) D{iB | B € R} =R,

and

(1.34) sup | (i1 — L)~ < oo,
BER

where p(L) denotes the resolvent set of the operator L.

Theorem 1.4.3. In addition to the assumptions of Theorem 1.3.5, assume that
Q is star-shaped with respect to a point. Then for all k > 0 and all £, £, € L*(Q)
such that divf; = divfy = 0, the solution (E,H) € V of (1.28) satisfies (1.32)
with o = 1.

Proof. As the data are divergence free, by Lemma 1.3.7, the auxiliary unknown
(U, W) = (curl E—ikH, curl H+ikE) belongs to V, is divergence free and satisfies
the Maxwell system (1.31).

Now we notice that Theorem 4.1 of [61] (valid for star-shaped domain with a
Lipschitz boundary) shows that the time-dependent Maxwell system

OGE+curlH=0 and OH-curlE=0 in(,
Hxn—-AypEi =0 on E,

is exponentially stable in # = {(E,H) € L*(Q) x L*(Q) : divE = divH = 0}.
This equivalently means that the operator £ defined by

L(E,H) = (—cwlH, cwlE), V(E,H) € D(L),

with domain

D(L)={(E,H) € V:divE = divH = 0},

generates an exponentially stable Cy semigroup in H. Hence by Lemma 1.4.2; we
deduce that its resolvent is bounded on the imaginary axis. This precisely implies
that

(1.35) IUlle + [[Wlle S lIfille + [[fllo,

for all £ > 0. But coming back to the definition of U and W, we can look at
(E,H) as a solution in D(L) of the Maxwell system

curlE —ikH = U, curl H 4+ ikE = W.
Hence the previous arguments show that
IEllq + [Hllo S [Ullo + [W]lo.
By the estimate (1.35), we deduce that

(1.36) [Elle + [Hlle < Ifillo + If2]lo-
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Finally as
(B, H)[[x, ~ || curl Eljq + || curl Hllq + k(||Elle + [[H]|o),
by the triangular inequality, we get that

I(E;H)||; < ||curlE —ikH||q + || curl H 4 ikE||q + k(|| El|o + ||H||a)

~Y

S Ulle+ Ve + E(IElle + [[Hlo).
By the estimates (1.35) and (1.36), we conclude that
IE, H) s < k(Ifille + lIf:lle),
as announced. O

Now we leave out the divergence free constraint on the data. Before let us
denote by {A, }nen+, the set of eigenvalues enumerated in increasing order (and
not repeated according to their multiplicity) of the positive Laplace operator —A
with Dirichlet boundary conditions in 2. For each n € N* we also denote by
One, = 1,--+ ,m(n), the orthonormal eigenvectors associated with \,. For all
k > 0 and each s € [1,2], let us define the unique integer n(k, s) such that

k2
(137) )\n(k,s) < ? < An(k,s)+17

and denote by
In(k,s) = An(k,s)Jrl - An(k,s)v

the gap between these consecutive eigenvalues. Now we show that if g, ) satifies
some uniform lower bound, then the k-stability property holds.

Lemma 1.4.4. In addition to the assumptions of Theorem 1.4.3, assume that
there exists a non negative real number [ and two positive real number vy and k;
such that

(1.38) Vk > ki 3s € [1,2] : gugrs) > Y0k

Then there exist two positive real numbers sg, $1 such that sy < s1 (depending on
B, 7o and ki) and for an appropriate choice of s € [so, s1] (but such that —k*/s is
not an eigenvalue of the Laplace operator A with Dirichlet boundary conditions in
Q), the k-stability property with exponent o = 23 + 1 holds.

Proof. The first step is to reduce the problem to divergence free right-hand sides.
For that purpose, for i = 1 or 2, we consider w;, ¢; € H} () variational solutions

of

Au; = divf; in €,
kQ
(Ap; + ?gol) = —s Yy, in Q.



26 CHAPTER 1. MAXWELL’S SYSTEM

Then simple calculations show that (E, H) = (E — Vi1, H — V) belongs to V
and is solution of (1.30) with divergence free right-hand side, namely

([ L (B) =fi=f —Vuy, | .
- - in ,
Lk S(H) = f2 = f VUQ,
(1.39) divB =0
divH =0
~ on 0,

T(E,H) =0
| B(E,H) =0

In a first step we estimate the H'-norm of ¢,;. Since we assume that % does not
encounter the spectrum of the Laplace operator, by the spectral theorem, we can
write

m(n)
(pi:_silz __)\ 12“17907% QPn,e-
neN* (=1
Consequently, we have
(1.40) lpillia ~ s> (=) D (i eno)al* A
neN* (=1

Hence our goal is to chosse s in an interval [sg, s1] with sy and s; independent of
k satistying 0 < so < 51 < oo and such that
k?

W
S

(1.41) > k7% ¥n e N*, k> ko,

with ko large enough. Indeed if this estimate is valid, then (1.40) can be trans-

formed into
m(n)

||()01||1Q§k462 Z| uw(pné n-

neN* /=1

and therefore
leillie S K llulle.

As clearly

(1.42) [uillLe < [Ifillo;
we conclude that

(1.43) leillie S &l
As

(144)  [[(Ver, Vo) e ~ Vs([[Agilla + |Ags[la)) + E(lleille + 02ll10),
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we need to estimate the L?-norm of A¢p;. But from its definition, we have

k,2
Api + —pi = —s
s

and taking the L?-inner product with ¢;, we get

k2 _
(Api pi)o + —lleille = =57 (wi, i),

Using Cauchy-Schwarz’s inequality, we get

2

el < s~ ullallgillo + il
With the help of (1.42) and (1.43), we obtain

Bleilla < Ifillelleille + &7 1£]15.
Hence by Young’s inequality, we get

K leille, < KIS,

which proves that
(1.45) leilla < K77 HIElo-

This directly implies that

k2 .
Iagilla < —ligilla + 57 luillo S K70

Using this estimate and (1.43) in (1.44) leads to
(1.46) (Ve Vo)l S B ([flle + [If2ll0).
At this stage, we use Theorem 1.4.3 that yields
1B )l S k(If o+ [I]lo).
Hence by the definition of f; and (1.42), we deduce that
IEH)|x S k(IElle + [If[lo)-

As (E,H) = (E,H) + (Vy1, Vi), the combination of this last estimate with
(1.46) leads to

(1.47) 1B, ), < & (Ifille + If2]l),

which proves the stability estimate with a = 23 + 1.

It remains to prove that (1.41) holds for an appropriate choice of s. This is
done with the help of our assumption (1.38), by an eventual slight modification
of s from this assumption. To be more precise, for all k& > ki, we fix one s € [1, 2]
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such that (1.38) holds and denote it by s(k). We now distinguish between three
cases.

a) If Ak sk)) ’(“;) < An(k,s(k)) + 3795, then we fix s such that
(1.48) k; Al (e) 3225
With this choice, we clearly have
ko _
S n(k,s(k) = 31557
while 12 5
An(k,s(k)+1 — s An(k,s(k)+1 = An(k,s(k)) — 322[3 > 3;2%7

which proves that (1.41) holds. Let us now show that s remains in a (uniformly)
bounded interval. Indeed (1.48) is equivalent to

k‘2
An(h,s(k)) t 5388

S =

As by assumption k2 < s(k) (An(k,sk)) + 3135 ), we directly deduce that s < s(k) <
2. Conversely, from (1.37), we deduce that
k? k?
Ank,s(k) + 3328 r O
s(k)
_o0s(k)

1+ 3E2(B+1)
1

v

v

L+ 3k2(5+1)

b) If Nk, s(k))+1 < %}i) < An(k,s(k))+1, then we fix s such that

_ 0
3k26

2
k Yo

—= An(k,s(k))+1 — 3425

We check exactly as in the first case that (1.41) holds. Furthermore, by assumption
s > 1, while for the lower bound we see that

k2 k? s(k) 2
s = Y Yo S k2 Yo S s(k)vo — 2%
nhs)+1 T 328 3y —wer l— g 13

Hence s < 3 for k > ky with kg large enough.
2
¢) If ks + 5088 < %k) < An(k,s(k))+1 — 3395, then we fix s = s(k). In such a
case, we directly see that (1.41) holds since

Yo 2 Yo
Z%—Qﬁ, and Ay s(k))+1 — K 23]4;25'

The proof is then complete. [

2
K™ = Anh,s())
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Remark 1.4.5. The parameter s fixed in the previous Lemma clearly depends on
k. Furthermore if S is positive, the quantity k—j approaches the spectrum of —A,

and hence the norm of the resolvent operator A + % blows up, but the estimate
(1.47) controls this blow up since it yields

I div Ellq + || divHl]lo < &7 ([fi]lo + [£2]l)-
Let us now show that (1.38) always holds with § = 3.

Lemma 1.4.6. For all bounded domain Q (of R?), the assumption (1.38) holds
with § = %

Proof. Assume that (1.38) does not hold with 8 = 1, in other words

(1.49) VY0 >0, ki > 03k > k1 Vs € [1,2] : gngrs) < Y0k

We first fix vy such that

1

1.50 < =

1

5 is the universal constant such that

where || is the measure of Q and ¢ =
Weyl’s formula

N(#)

o Q¢

(1.51)

holds, where N () is the eigenvalue counting function of the positive Laplace opera-
tor —A with Dirichlet boundary conditions in €2, i.e., the number of its eigenvalues,
which are less than ¢t. Then we fix k; large enough, namely &k > 127,. Then for
all k > kq, we define the real numbers

3"}/02

Sizl—i—?,V’é:l,"',Nk,

where Nj, = L%J —1 (where |z] is the integral part of any real number x, namely
the unique integer such that © < |z] < x + 1). By our assumption Ny is larger
than 1 and for k large it behaves like k®. It is easy to see that all s; belongs to
[1,3]. Now we look at the intervals
o B 1w
L == 02 L 0 wvi—1... N
i |:3i 2k’ si ok | 2 ) y 4 Vky

and show that they are disjoint, i.e.,

(1.52) LNI =0,Yi#j,

and included into the closed interval [k—;, 2k2}:

2
(1.53) I; C {%,21@2} Ni=1,-, Ny
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Indeed for the second assertion it suffices to show that

k’2 Yo k2
1.54 T B
( ) s; 2k~ 27
and that

E
1. - > 2k2,
(1.55) “Hop 2

This second estimate holds if and only if

Ky
> 2k?,
FRRIT
or equivalently
]
81 2k3
Since sy = 1+ k3 , this holds if and only if
3%
2——)(14+—-—)>1,
(2- 20+ 20 >

which means that J§ has to satisfy

11 — /145 <o 11+\/14
6 - k3 =6
that is valid owing to our assumption on k; (and the fact that k£ > k).
In the same spirit, the estimate (1.54) holds if and only if

2

SNk_l—F’YO’

which holds because our assumption on k; implies that
3 2
< .
271420

Now to prove (1.52), it suffices to show that
[im[i+1 :Q,VZ: 1, ,Nk—l,

o k’Z ]{72
70
Si+1 Qk S; Qk 1= b

By the definition of the s;, this holds if and only if

SiSiy1 < 3.

Since ;8,41 < %, we deduce that (1.52) is valid.
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Since the length of I; is exactly equal to 32 and due to our assumption (1.49),
An(k,s:) OF An(k,s;)+1 belongs to I;. Due to (1. 52) and (1.53), for all k& > ky, we have

found Ny distinct eigenvalues in the interval [ ,2k?]. This implies that
k3 k3
NRK) >Ny > — —1> — Vk >k
670 127

But Weyl’s formula (1.51) implies that there exists ks > 0 large enough such that
N(2K?) < 2¢/Q|(2k%)2,Vk > k.

These two estimates yield
1

> —7
NGRS
which contradicts (1.50). O

We now notice that (1.38) may hold for g < %, in particular it holds with
B = 0 once the next gap condition

(156) Elg() >0: )\n+1 — >\n Z 90, Vn € N*,
holds.

Lemma 1.4.7. Assume that (1.56) holds, then the assumption (1.38) is valid with
B =0 and o = go.

Proof. 1f % is different from A, 2), then we take s = 2 and find
In(k,2) = 90,

hence the result. On the contrary if % = An(k,2), then we choose s = 2 — ¢ with
e € (0,1) small enough such that

k2
2—¢

< An(k,2)+1

Since k2 = 2An(k,2), this means that we additionally require that

An
£ <2 (1 - ﬂ) ,
An(k,2)+1
which is always possible since this right-hand side is positive. With this choice,
we have that n(k,s) = n(k,2) and we conclude that g, s > go- O

Corollary 1.4.8. Assume that Q = (0, /a1) % (0,+/az) x (0,/as), with positive
real numbers a;, 1 = 1,2,3 such that “Z 1 a rational number, 1 = 2,3. Then the
gap condition (1.56) holds with f = O and hence for an appropriate choice of s,
the k-stability property with exponent o = 1 holds.
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Proof. For such a cuboid, it is well known that the spectrum of the Laplace oper-
ator —A with Dirichlet boundary condition is given by
k2 k2 k2
T,
ap az as
for any k; € N*, 7 = 1,2, 3. Hence writting % = =, with n;,d € N*, the spectrum
is equivalently characterized by the set of

7T2

2 2 2
(kinans + kining + k3ninsg),
ainani3

for any k; € N*,i = 1,2, 3. Since, in our situation, kingns + kinins + k3ning is a
natural number, the spectrum is a subset of

gON*v
where gy = aTnans- Hence the distance between two consecutive different eigenval-
ues is at most larger than go. O]
Remark 1.4.9. If the cuboid Q = (0, ‘/ 1) X (0,4/az) x (0, /asz), with positive
real numbers a;, i = 1,2,3 such that 2 = 2—3 is an irrational number badly

approximable. Then by the same arguments than before and the use of Proposition
2.1 of [7], the gap condition (1.56) holds with § = 1 and hence for an appropriate
choice of s, the k-stability property with exponent o« = 3 holds.

Corollary 1.4.10. Assume that Q is a prism in the form Q = T, x (0, \/ﬁ),
with positive real numbers a and h such that % 18 a rational number and T, is
an equilateral triangle of side of length v/a. Then the gap condition (1.56) holds
with B =0 and hence for an appropriate choice of s, the k-stability property with
exponent o = 1 holds.

Proof. For such a prism, using a separation of variables, a scaling argument and
Theorem 1 of [64] (see also Theorem 3.2 of [37], case of type As), we deduce that
the spectrum of the Laplace operator —A with Dirichlet boundary condition is
given by ) )

12677; (K2 + k2 + ko) + k‘f ,
for any k3 € N* and k; € Z*, ky € Z such that k; + ko # 0. Hence writting % =5
with n,d € N*, the eigenvalues can be written as

2

27an

for the previous parameters k;. As in the previous Corollary, this means that
the distance between two consecutive different eigenvalues is at most larger than
go = 2;—%. ]
Remark 1.4.11. By Theorem 3.2 of [37] (case of type Cy or Do, see also [4, Prop.
9]), Corollary 1.4.10 remains valid is 7, is an isosceles right triangle with two sides
of lenght y/a, with a positive number a.

(k2 + ko + k1ko)n + 27dK3),
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Corollary 1.4.12. Assume that ) is a tetrahedron with wvertices (0,0,0),
(\/57 0, O)a (\/5/27 \/5/27 _\/5/2)7

(Va/2,v/a/2,y/a/2), with a positive number a. Then the gap condition (1.56)
holds with 8 = 0 and hence for appropriate choice of s, the k-stability property
with exponent o = 1 holds.

Proof. For such a tetrahedron, by a scaling argument and Theorem 3.2 of [37]
(case of type As = Ds, see also [4, Prop. 9]) we deduce that the spectrum of the
Laplace operator —A with Dirichlet boundary condition is given by

472 3 1

T(lcf + Z(kg + k3) + kiko + kiks + §k:2k;3),
for any k; € N*,7 = 1,2, 3. This means that the distance between two consecutive
different eigenvalues is at most larger than gy = %2 O

Remark 1.4.13. By Theorem 3.2 of [37] (see also [4, Prop. 9),
Corollary  1.4.12 remains valid for a tetrahedron 7, with ver-

tices  (0,0,0), (va,0,0), (vVa/2,v/a/2,0), (Va/2,Va/2,/a/2) (case

of type Bs) and for a tetrahedron T, with vertices (0,0,0),

(\/5/27 0, 0)7 (\/6/27 \/5/2, 0)7 (\/5/2, \/6/27 \/6/2) (Case of type 03)7 with a

positive number a.

1.5 2D Maxwell’s equations: the TE/TH formu-
lation

In this part, we recall how to deduce a 2d formulation of Maxwell’s equations, also
called TE/TH formulation from the 3d-one. So we suppose that:

Q=D x R with D C R?, a bounded domain.

ny
The outward normal along 02 is then n = | ny
0
Ey H,y
Also, we assume that the vector fields E = b, and H = H, are
Es Hj
independent of the third variable, namely
(1.57) 8;3 = aasz =0 for ¢ € {1,2,3}.
Hence, by simple calculations we have
OyEs — 0,E, Oy Es
curl E = 8ZE1 — ang = —8IE3
Oy Fy — 0y 0. Fy — 0y
—
curl(E3)
B curl ( £y ) ’
Ey
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and
—Nn
—n2E3 E3 < n 2 )
Exn= n1E3 = E ! )
n2E1 — n1E2 - ( E,i )
t
and then

E,=E—(E-n)n

El — (Eln% -+ Egngnl)

= E2 — (E1n1n2 + EQH%)
Es

Eln% — Egﬂgﬂl

= | —Eimng + Epn?

Ey

((2).00)

Es

So, we can rewrite problem (1.1) in

(158 { cwlE — ikH =0 and curlH + ikE = J in O

Hxn— AnpE: =0 on 0f).

—)
in terms of curl and 2D-curl as follows

N
curl(Es) H,
curlE —ikH =0 & E; — ik H, =0in Q
curl ( r )
2

— H
curl(Es3) — ik ( ' ) =0
H, :
in D.

< E
curl L tkH; =0
\ 12

— E
curl(Hs) +ik | ' ] = 1
. Es Ja )
curlH+#kE =J & in D.
curl (

H
1>+m&=k

(

and

2
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Similarly, for the essential boundary condition, we have

H —TNy El )
Hxn— \ppE =0 < S\ oy — Aimp Ey )\ m =0

ht E3
)
E
Hy — iy | ") 2
Ey —ny
& " t
' AimpEs = 0
H,

\
(
E
H3_)\imp( ' > =
Ey
PN t

H
! - /\impE3 = 0
\ H2 t

This mean that problem (1.58) can be expressed in two independent boundary
value problems, namely, it is equivalent to

— H
curl(E3) — ik ( ' > =0
Hy :
inD

H
(1.59) curl ( H1 > +ikEs = Js

2

H
( ! ) - )\impE3 =0 on (9D,
H. t

(

I

2

( N E
curl(Hs) + ik Lo
By Ja :
in D

E Y
(1.60) curl ( ' ) —ikH; =0
Es

E
H3_)\imp<E1> =0 on 0D.
t

and

2

\

The first system is called the TH formutation and the second one the TE formu-
lation.

As the two equations are independent and are identical by replacing k into —k
and exchanging E with H, we will just study the TE formulation.

1.5.1 Weak formulation

We first recall Green’s formula for curl in 2D: Let H3 € H'(D) and E € H(curl, D),
then

— — J— R
(1.61) / (H3 curl E — curlHy - E> dv = | HE, do.
D oD
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.
By taking the first equation of (1.60) and multiplying by curlHj and using
(1.61), we obtain

— —_— - —_—
/ (Curng + zkE)) -curl Hidx = / VH; - VH; +ikE - curlHidx
D D
= / VH; - VH} + ik curl EHydx
D
- / ikE,Hj do
oD
:/ VHs - VH — k*HsHjdx
D
- / ikNimp B B} dor.
oD

By taking the second equation of 1.60 and multiplying by curl E' and using
(1.61), we get

/ (curl E — ik Hj) curl E'dx = / curl B curl E' — ik Hs curl E'dx
D D

_ — _

= / curl E curl B/ — ikcurlHs - E'dx

D

—ik | HsE] do

oD

= / curl Ecurl B — k*E - Fldx

D

1k

)‘imp oD

HsHY do.

Hence by summing the two previous equations and adding the divergence term,
we get the following weak formulation: find (£, H3) € V such that:

(1.62) ars((E, H3), (E', H})) = b((E', H)), Y(E', Hy) € V,

with

o ( Ex ) € H(curl, D) N H(div, D) and H3 € HY(D)

V — EQ
avec Hy — A\ipp By = 0 on 0D

)

ars((E, H3), (E', Hy)) = / (curl Ecwrl B + sdiv Ediv B/ — kK*EE’) dx
0
+ / (VH;VH} — k*H3 H}) da
Q

I T
ik / (AimpEtE; + —H3H§> ds.
29 A

imp
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and

(e ) = [

(ikJE" + curl Jﬁg) dzr — / J HdS
Q

09
= / fi- B+ foHidx,
Q

with f; = ikJ and fy, = curlJ if we suppose that the support of J is strictly
included in D and divJ = 0. In the more general case, we just suppose that
fi € L*(D)? and f, € L*(D).

Then, the continuous problem associated with the variational problem (1.62)
is

( —

curlcurl £ — sVdivE — k?E = f, in D,

—~AH;3 — k*H; = fyin D,

(1.63) Hz — A\imp B =0on 0D,
div B =0on 0D,

| Bx(E, Hs) =0on 0D,

with Bk(E, Hg) = LCllI'lEv — ’L]CEt + aan - )\’Lk H3.

)\imp im

Now, we want to check that the solution of (1.63) is also solution of the original
problem (1.60).

Theorem 1.5.1. If J is divergence free and —k—; is not an eigenvalue of the
Laplacian with Dirichlet boundary condition in D, then E s also divergence free.

Proof. Let ¢ € H*(D) N Hy(D), hence (V¢,0) € V and by using (1.62), we get

ars((E, Hs), (V,0)) = 5/ div E divV¢ — k*E - Vodz

D

— ik / ANimpFr(V @), do
oD
= / ikJV gpdx
D
Hence, by Green’s formula, we obtain
/ div E (—sA — k%) ¢dx = 0,
D

and then div £ = 0 if —% is not an eigenvalue of the Laplacian with Dirichlet
boundary condition in D. O

Theorem 1.5.2. Let (R, W) € V such that
curl R —ikW =0 1in D,

=
(1.64) curlW +ikR =0 in D,
_)\impRt + W =0 on 8D,

then R=W = 0.
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Proof. By Green’s formula,
— _ —_—
/ | curl R|? + |curlW |*dz = / —ikW curl R + ik ReurlWdx
D D

— _ —_—r I
= / —tkcurlW R + ik ReurlWdx — ik RW do
D oD

— ik 9
=2k | Im(RcurlW)dz — |R:|* do.
D )‘imp oD
By taking the imaginary part, we get
Rt =0 on 8D

Hence, by the impedance boundary condition, W = 0 on dD. Moreover, the
*)

second equation of (1.64) allows us to have (curlW), = 0,W = —ikR; = 0 on 0D.
Hence, by using the second equation of (1.64) to replace R in the first one, W
verifies

—AW — k*W =01in D,
o,W =W =0ondD.
Then, by Holmgren uniqueness theorem, W =0 in D and R = 0 also. [

Theorem 1.5.3. If J is divergence free, hence (E, Hs) solution of (1.63) is also
solution of the original problem (1.60).

Proof. By Theorem 1.5.1, (F, H3) is solution of

(

curlewl E — K2E = fiin D,
“AH;— k*Hy; = fpin D,
(1.65) div E =0in D,
Hs + Aimp B =0 on 0D,
| Br(E, Hs) =0on 0D,

Let

N
R = curl(Hs) + tkE — J,
W =curl B — 1k Hs.

Hence, by (1.65)
—
curl R = curl curl(Hs) + ik curl E — curl J

= k?Hy + curl J + ik curl E — curl J
= k*H;s + ik curl B,

and
— — —
curlW = curl curl £ — ikcurl Hs

.
= k*E + ikJ — ikcurl Hs.



1.5. 2D MAXWELL’S EQUATIONS: THE TE/TH FORMULATION 39

Hence,

curl R — ikW = 0,

—

curlW +1kR = 0.
It remains to show that
(1.66) —AimpRe + W =0 on 0D.
But

N
—Wm&+W:—%m®m%+%E—ﬂ4%ME—M%
t

= )\impaan - Zng - )\impikEt + curl £
— _)\imkaz(Ea Hg) — O

curl R —ikW =0in D,
curlW +ikR =0 in D,
—Aimple + W =0o0n 0D,
We conclude, by theorem 1.5.2, that
R=W =0.
Then (E, H3) is indeed solution of (1.60). O

Theorem 1.5.4. Let D a convex polygon or a smooth domain, hence V is con-
tinuously embedded in (H'(D))3.

Proof. Let (E, H3) € V and fix n € D(]0, 1]) a cut-off function. If D is a polygon,
then we define {91y = Dx]0,1[. Let

El(Il,LL’Q) 0
E = 77(.%’5) EQ(IL‘l,ZL’Q) and H = 77(1’3) 0
0 Hg(xl,l‘g)

We can easly show that (E,H) € V(Qo4;), with
V(Q]QJ[) = {(E, H) € (H(curl, Q)mH(le, Q]071[))2 . H xXn = /\impEt on 891071[}.

Hence, we can apply Theorem 1.2.4 to prove that (E, H3) € (H*(D))? (as E,H €
(H'(40,11))° and 7 is smooth). The continuity of the embedding directly follows
from the continuity in Theorem 1.2.4. A similar approach allows us to show this
result for a smooth domain.

]

Theorem 1.5.5. If D is a convex polygon or a smooth domain, then the problem
(1.62) is well-posedness.

Proof. The proof follows the one of Theorem 1.3.5, based on the compact embed-
ding of H' into L? and the Fredholm alternative. O
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CHAPTER 1. MAXWELL’S SYSTEM



Chapter 2

Maxwell’s system in polyhedral
domains

In this chapter, we assume that €2 is a convex polyhedron.

2.1 Corner/edge singularities

Here for the sake of simplicity we assume that Ai,p = 1 and want to describe the
regularity /singularity of Sy s(fi, f2) with fi,f, € HY(Q), for ¢ > 0. As said before
as the system (1.30) is an elliptic system, the shift property will be valid far from
the corners and edges of €2, in other words, Sy (fi, f2) belongs to H2(Q\ V) x
H!"2(Q\ V), for any neighborhood V of the corners and edges.

We therefore need to determine the corner and edge singularities of system

(1.30).

2.1.1 Corner singularities

For ¢ be a corner of ), we recall that =, is the three-dimensional cone that coincides
with €2 in a neighbourhood of ¢ and that G. is its section with the unit sphere. For
shortness, if no confusion is possible, we will drop the index c¢. As usual denote
by (r,9) the spherical coordinates centred at c¢. The standard antsatz [25, 34, 39|
is to look for the corner singularities (E, H) of problem (1.30) in the form

(2.1) (B, H) = r*(U(¥), V(9)),

with A € C such that ReA > —1 and U,V € H'(G) that is solution of (as our
system is invariant by translation)

curlcurl E — sVdivE =0 in =,
(2.2) curlcurlH — sVdivH =0 in X7,
' div E=divH=0 on 0=,

H xn—E; = (curlH) x n+ (curlE); =0 on 0=.

Remark 2.1.1. For the sake of simplicity, we consider here the spectral condition
that is stronger than the notion of injectivity modulo the polynomials (from [25])

41
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that consists in replacing the right-hand side in the two first identities of (2.2) by
a polynomial of degree A — 2. As a consequence, we eventually add some integer
> 2 in the set of corner singular exponent, that at least do not affect the regularity
results up to %

Inspired from [21], we introduce the auxiliary variables
qge =div E, gy =div H,¥g =curl E, ¢z = curl H,
and re-write the above system in the equivalent form

Agg =01in =, Agyg =01in =,
(2.32) { qe = 0 on 0=, { qg = 0 on 0=,
curl g = sVqg in Z,
curlyy = sVqy in Z|
div ’QZJE = leZbH =0 on 35,
Yr xn=—(¢p); on 0=,
curl E =Yg, div E=¢qg in =,
(2.3¢) curl H = ¢y, div H = ¢y in =,
H xn=E, on 0=.

(2.3b)

Then three types of singularities appear:
Type 1: (¢g,qu) = (0,0), (Yg,¥y) = (0,0) and (E, H) general non-zero solution
of (2.3¢).
Type 2: (¢g,qu) = (0,0), (¥g, ¥g) general non-zero solution of (2.3b) and (E, H)
particular solution of (2.3c).
Type 3: (qg, qu) general non-zero solution of (2.3a), (¢, ¥ y) particular solution
of (2.3b) and (E, H) particular solution of (2.3c).

These singularities are different from those from [21] essentially due to the
boundary conditions

H x n—E; = (curl H) x n+ (curlE); = 0 on 0=.

Some singularities from [21] will be also singularities of our problem but not the
converse, see below. To describe them, we recall the corner singularities of the
Laplace operator with Dirichlet boundary conditions in =, see [34, 25, 21| for
instance. We first denote by L2 the positive Laplace-Beltrami operator with
Dirichlet boundary conditions on G. Recall that L2 is a self-adjoint operators
with a compact resolvent in L?(G), hence we denote its spectrum by o(L2). Then
we make the following definition.

Definition 2.1.2. The set Api(I') of corner singular exponents of the Laplace
operator with Dirichlet boundary conditions in = is defined as the set of A € C
such that there exists a non-trivial solution ¢ € H}(G) of

(2.4) A(r*p(0)) = 0.

We denote by Z{),. the set of such solutions.
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Due to the relation
A = (r0,)* + (ro,) + Ag,

for any A € C and ¢ € H'(G), we have

(2.5) A(rre) = 2L(N)g,
where
(2.6) LA =Agp + AN+ 1),

with Ag the Laplace-Beltrami operator on G. Consequently, the set Ap; (') is
related to the spectrum o(L2") of LA™ as follows (see [21, Lemma 2.4]):

AoilT) = {5 & fu+ 7 e o (LR}

For A € Ap;(T'), the elements of Z3,. are related to the set Vpi()\) of eigenvectors
of L2 associated with u = A(A + 1) via the relation

Zpy = {r'v: 0 € Vou(W)}.

Recalling from the previous section that w,. is the length of the network R.,
we finally set

2
T.=/{ kﬂ:kGZ},
as well as ok
T::{w”;keZ\{o}}.

We are ready to consider our different types of singularities. We start with
singularities of type 1.

Lemma 2.1.3. Let A € C be different from —1. Then (E,H) in the form (2.1) is
a singularity of type 1 if and only if A +1 € Apy(I') U Y.

Proof. (E,H) in the form (2.1) is a singularity of type 1 if and only if it satisfies

curl E=0,div E=01in Z,
(2.7) curl H=0,div H=0in Z,
H xn=E,; on 0=.

i) Since a singularity of type 1 from [21] is a vector field E¢p that satisfies

curl ECD = O,diV ECD =01n E,
Ecp xn =0 on 0=,

by Lemma 6.4 of [21], we deduce that any A € C such that A+1 € Ap;(I") induces
a singularity of type 1 for our problem (pairs like (E¢p, 0) for instance).



11 CHAPTER 2. MAXWELL’S SYSTEM IN POLYHEDRAL DOMAINS

ii) We now show that other singular exponents appear. As A # —1, by Lemma
6.1 of [21], the scalar fields

1 1
bp,=—FE -xdy=—H-
E \ + 1 X, Py \ T 1 X,
are scalar potentials of E and H, namely

Consequently by the divergence free property of E and H, we deduce that

Hence if we set

1 1
- _E®)- - _HW-
up(0) = B0 - . un(d) = 5 HE) -0,
we have
(210) CI)E == T)\+IUE(Q9),¢)H = ’I“A+1UH(19)7

and by the identity (2.5), we get
(2.11) LA+ 1Vug =LA+ 1)ug =0in G.

Now we come back to the boundary condition in (2.7) that can be written in
polar coordinates (r,6) in the form

{ ar¢H :_%89¢E'7
L0p0y = 0r0p.

Due to (2.10), in term of ug and ugy, this is equivalent to

Ug = —%HC%UE,

These two identities imply that uy is known if ug is (or the converse) and then
ug has to satisfy

(2.12) Ojug + (A +1)*up =0 on R..

In other words, ug is an eigenvector of the positive Laplace operator on R, of
eigenvalue (X + 1)2. As the set of such eigenvalue is precisely made of p?, with
u € Y., two alternatives occur:

a. A+ 1 does not belong to T, hence in that case up = uyg = 0 and therefore

$y = Oy =0 on =,

and we conclude as in Lemma 6.4 of [21] that A + 1 € Ap; ().
b. A+ 1 belongs to T, hence a non trivial solution ug of (2.12) exists (it is a
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multiple of an associated eigenvector) and then uy = —)\LHC%UE. This means
that the trace of ug and uy are prescribed on G (that is R.), call them ¢ and
¢wn. Recalling (2.11), this means that up and uy are respective solution of the
following boundary value problems on G:

LA+ 1)ug =01in G, and LA+ 1)ug =0in G,
ug = g on 0G, ug = @y on 0G.

For both problems, either A + 1 ¢ Ap;(I") and a solution exists, or A+ 1 €
Api:(I") and no matter that a solution exists or not, because, by point i), this case
already gives rise to a singular exponent. O

We go on with singularities of type 2.

Lemma 2.1.4. Let A € C. If (E,H) in the form (2.1) is a singularity of type 2,
then \ € ADir(F) U Tz

Proof. 1f (E,H) in the form (2.1) is a singularity of type 2, then (see (2.3b))
(Y, ) satisfies

curlyp =01in =,

curl gy =0 in =,

div wE = leiﬂH =0 on 85,

Yy xn=—(¢g); on O=.
If we compare this system with (2.7), we deduce equivalently that A belongs to

Api(T) UT?, recalling that (1g, 1) behaves like r*~1. Hence we have found that
A € Api(I') UT? is a necessary condition. O

We end up with singularities of type 3.

Lemma 2.1.5. Let A € C. If (E,H) in the form (2.1) is a singularity of type 3,
then A —1 € ADir(F)-

Proof. 1f (E,H) in the form (2.1) is a singularity of type 3, then (¢g,qy) is a
solution of (2.3a), which means equivalently that A — 1 € Ap; (') is a necessary
condition. O

Among the corner singular exponents exhibited in the previous Lemmas, ac-
cording to Lemma 1.3.4, we have to remove the ones for which

divE ¢ HL .(Z) or divH ¢ H} .(Z).

No more constraint appears for singularities of type 1 or 2 since E and H are
divergence free. On the contrary for singularities of type 3 as divE = ¢g (resp.
divH = qpy), we get the restriction

1
A—1>——.
2
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As Lemma 2.1.5 also says that A — 1 € Ap;, (') and as the set Ap;(T') N [—1,0] is
always empty, we get the final constraint

A—1>0.

In summary if we denote by A. the set of corner singular exponents of the
variational problem (1.30) (in H'), we have shown that

(2.13) Ayt CAcC AT UALUA3,
where we have set
1
Ac71 = {/\ ER: A > —5 and A +1 € ADir(F) UT:},

1
Az ={NER:A>— and A€ Ap(I) U T},
Acs={AeR:A>1and A —1€ Ap,(I)}.

Note that in the particular case of a cuboid, for all corners we have w, = 2F

2
while Proposition 18.8 of [25] yields
Api(T) = {3+2d:d e NYU{—(4+2d) : d € N}.

Consequently, one easily checks that
4k .
AC71:{2—|—2dd€N}U{§—1k’€N },

4k
Ac72:{3+2d:d€N*}U{?:/{:EN*},
Acs={4+2d:d e N}.

Hence the smallest corner singular exponent is equal to %

Similarly with the help of Lemma 18.7 of [25], the sets A.;,7 = 1,2,3 can
be characterized for any prism D x I, where D is any polygon with a Lipschitz
boundary and [ is an interval.

2.1.2 Edge singularities

Our goal is to describe the edge singularities of problem (1.30). Let us then fix
an edge e of €2, then near an interior point of e, as our system (1.30) is invariant
by translation and rotation (using a Piola transformation, that in this case cor-
responds to the covariant transformation), we may suppose that Q@ behaves like
W, = C. x R where C, is a two-dimensional cone centred at (0,0) of opening
we € (0,27), with w, # 7. Here for the sake of generality, we do not assume that
we < m. Below we will also use the polar coordinates (r,6) in C. centred at (0,0).
Let us recall that the set Ap;(Ce) of singular exponents of the Laplace operator
with Dirichlet boundary conditions in C, is defined by

Apae(C.) = {Z—f kez\{0}}.
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Similarly we recall that the set of singular exponents of the Laplace operator with
Neumann boundary conditions in C, is defined by

Aval©) = {2 -k e 2}

e

For convenience, when no confusion is possible, we will drop the index e.
As usual, for A € C, the edge singularities are obtained by looking for a non-
polynomial solution (E, H) (independent of the x5 variable) in the form of

Q
(2.14) (B, H) =Y (Inr)(Uy(9), V,(9)),
q=0
of
curlcurl E — sVdivE = Fpg in W,
(2.15) curlcurlH — sVdivH = Fgy in W,
) div E=divH=0 on OW,

Hxn—E; = (curlH) x n+ (curlE); =0 on oWV,

Fg,Fy being a polynomial in the xy, x5 variables. In that way, we see that the
pair E = (E}, Ey) made of the two first components of E and the third component
h := Hj of H satisfy

curlcurlE — sVdivE =Fg in C,
Ah =g in C,
div E=0 on 0C,
h+E =9,h—curlE=0 on 0C,

(2.16)

F, g being a polynomial (in the x, s variables) and as usual
curlE = 01 Fy — 0o E1,

and
Et = nlEQ - n2E1 on 80,

if n = (ny,n2) on OC, further for a scalar field ¢ we have

curl p = ( agip > .
4!

The pair (Hy, Hy) made of the two first components of H and —FEj3, where
FEj5 is the third component of E satisfy the same system, hence we only need to
characterize the singularities of (2.16).

Inspired from [21], the singularities of system (2.16) are obtained by in-
troducing the scalar variables ¢ = divE and ¢ = curl E. In this way, if
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A& Ny :={n e N:n > 2} (or equivalently A is not an integer or is an inte-
ger < 1), we find the equivalent system

Ag=0in C,
(2.17a) { ~ 0 on 9C,
curly = sVq in C,
(2.17b) Ah=0in C,

Op,h — 1 =0 on 0C,

curl E=1,div E=¢q in C|
(2.17¢) { E; = —h on OC.

As before three types of singularities appear:
Type 1: ¢ =0, ¢» = 0 and E general non-zero solution of (2.17c¢).
Type 2: ¢ = 0, ¢ general non-zero solution of (2.17b) and E particular solution
of (2.17¢c).
Type 3: ¢ general non-zero solution of (2.17a), ¢ particular solution of (2.17b)
and E particular solution of (2.17c).

The singularities of type 1 were treated in [21, §5¢|, where it is shown that
A & Ny is such that A+ 1 € Ap;,(C) \ {2}.

Let us now look at singularities of type 2.

Lemma 2.1.6. Let A\ € Ny be such that Re A > 0. Then A is a singularity of type
2 if and only if X € Aneu(O).

Proof. 1f (E, h) in the form

Q Q
(2.18) E=1r" Z(ln r)U(d), h = r* Z (In7)%v, (Y
— q=0
is a singularity of type 2, then 1) = curl E satisfies (see (2.17b))
curly =0 in C,
Ah=0in C,

On,h — 1 =0 on 0C.

In this case, v is constant in the whole C'. Hence we distinguish the case A =1 or
not:

1. If A # 1, then ¢ = 0 and consequently h satisfies

{ Ah =0 in C,

(2.19) 9,h = 0 on OC,

which means that A belongs to Ane,(C') and A is in the form
h = 1 cos(\).

2. If A = 1, then there exists a constant ¢ such that ¢y = ¢ and consequently h
satisfies

(2.20) { Ah=01in C,

On,h = con OC,
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For two parameters ¢; and ¢y, denote by
ho = 121 + cax9 = 1(c1 cosf + cosin b).
Clearly hg is harmonic and satisfies

8nh0(9:()) = —Ca,

Onho(0 =w) = —cysinw + 3 cosw,
hence it fulfils (2.20) if and only if (¢, c2) satisfies the 2 x 2 linear system
Cy = —C, —C1 SINW 4 Co cosw = c.

Since sinw is different from zero, such a solution exists and therefore d = h — hyg
satsifies (2.19). This would mean that 1 belongs to Axea(C), which is not possible.

Once 9 and h are found, we look for a particular solution E of (2.17c) with
¢ = 0. From its curl free property, we look for E in the form

E=Vo,
with
O =ry(6),
where ¢ has to satisfy

{ ©" 4+ (A +1)2p =01in (0,w),
A+ 1)p(0) = -1, (A + 1)p(w) = — cos(\w).

As A+ 1 does not belong to Ap;(C) and is different from zero, such a solution ¢
always exists. O]

Lemma 2.1.7. Let A\ & Ny be such that Re A > 0. Then A is a singularity of type
3 if and only if A — 1 € Ap(C).

Proof. 1f (E, h) in the form (2.18) is a singularity of type 3, then ¢ = div E satisfies
(2.17a) and consequently A — 1 belongs to Ap;(C') and ¢ is equal to

q=r""tsin((A —1)8),

up to a non-zero multiplicative factor (that we then fix to be 1).
Now we look for (1, h) a particular solution of (2.17b). As simple calculations
yield
curl(r* " cos((A — 1)) = =Vr*tsin((\ — 1)8),

we deduce that
Y = —sr*Leos((A — 1)) + k,

for some constant k, that we can fix to be zero since we look for particular solutions.
Hence it remains to find h solution of

Ah=01in C,
Oph = —sr* "t cos((A — 1)6) on OC.
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Such a h exists in the form

h =1r*n(0),

since the previous problem is equivalent to

{ 0"+ MNn=0in (0,w),
17'(0) = 5,7 (w) = £s(=1)F,

when A = 7% and this system has a unique solution since A Z Aneu(C).
Now we look for E a particular solution of (2.17¢) with the functions ¢, ¥ and
h found before, which then takes the form

curl E = —sr*~!cos((A — 1)0) in C,
div E = r*sin((A — 1)) in C,
E; = —r*n(f) on OC.

Hence we look for E in the form

E= —i curl(r**! cos((A — 1)8)) + V.

As simple calculations yield
curl curl(r**! cos((A — 1)8)) = 4X cos((A — 1)6),

we deduce that the previous system in E is equivalent to

(2.21)

A® = r*1sin((A — 1)0) in C,
0,®(r,0) = cor*, 0,®(r,w) = c,r,

for two constants c¢g and ¢,,. If A+ 1 & Ap;,(C), then a solution ® of this problem
always exists in the form

o),

since it is then equivalent to

{ ¢+ (A +1)%0 = sin((A — 1)0) in C,
©(0) = 337, 0r (I)(r w) = 337

On the contrary if A+ 1 € Ap;(C) (that only occurs when w = 2F), then we look
for ® in the form

(2.22) (o (0) + logrei(0)).
Since, in this particular choice, problem (2.21) is equivalent to

{ AD = r*Lsin((A —1)0) in C,

O(r,0) = LML D(r, w) = Lol

A+1 A+1

by Theorem 4.22 of [60], we deduce that a solution ® in the form (2.22) exists.
In both cases, a solution ® exists, hence the existence of E. O
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As before among the edge singular exponents, we have to remove the ones for
which
divE ¢ HL (W) or divH ¢ H} (W).
No more constraint appears for singularities of type 1 or 2 since E and H are
divergence free. On the contrary for singularities of type 3, we get the restriction

A> 1.

In summary if we denote by A, the set of edge singular exponents &€ Ny of the
variational problem (1.30) (in H', i.e., with Re A > 0), we have shown that

(2.23) Ae=Ac1UA 2 UA3,
where we have set

Aci={AeR:A>0and A +1 € Ap(C) \ {2}},
Aea={AER: A >0and A € Axeu(C)},
Acs={AeR:A>1and A —1€ Ap,(C)}.

Note that in the particular case of a cuboid, for all edges we have w, = 7, and
consequently A, = () (recalling that the natural number in Ny are excluded from
this set). Since one can show that A = 2 is a singular exponent, the maximal
regularity along the edge is H37¢, for any ¢ > 0.

In conclusion, for any polyhedral domain satisfying the assumption (1.9), there

exists tq € (1,2] such that for any fi,f, € L*(Q), Sis(fi1, f2) belongs to H'(Q)?,

for all ¢ < tg. For instance for a cuboid, we have to = %.

2.2 h-finite element approximations

For the sake of simplicity, we here perform some error analyses when Ajnp = 1,
but for polyhedral domains satisfying the assumption (1.9) and for which the
stability estimate is valid. Before stating some convergence results for different
finite element approximations, we state some regularity results and a priori bounds.

2.2.1 Some regularity results and a priori bounds

Theorem 2.2.1. Assume that Ainp = 1, and that 2 is a polyhedron satisfying the
assumption (1.9) and that the k-stability property with exponent o holds. Then
for any 1, £, € L2(Q), Sp(f1, £2) belongs to HY(Q)?, for all t < to with

(2.24) ISk,s(fr, f2) 0 < (1 + £ | (F1, £2) [l
Proof. Since the regularity of Sy s(fy, f2) was already stated in section 2.1, we only
concentrate on the estimate (2.24). It indeed holds by looking at Sj s(fi,f2) as
solution of (1.26) with £ = 0 and a right-hand side defined by
(F,(E\H)) = /((f1 +k’E) - E + (f + *H) - H')) do
Q

4 zk/ (E, - B, + H, - F) do.
oN
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By elliptic regularity and the stability estimate (1.32), we obtain

1Sk.5(f1, £2) | 0 (1 £2)lle + E*[[Sr,s (£, £2) o + KISk (£, £2) 1 o0

S
S (L ET(E, ),

which proves (2.24). O

Now we show similar results in weighted Sobolev spaces (in the absence of edge
singularities), namely for all / € N,/ > 2, and all non-negative real numbers v, if
r(x) is the distance from x to the corners of €, then we introduce the weighted
space

HY(Q) = {v e H'(Q): r*DPv € L*(Q), VB e N*: 2 < |B| < ¢},
which is a Hilbert space with its natural norm || - ||¢..q-

Theorem 2.2.2. In addition to the assumptions of Theorem 2.2.1, assume that
we < 5, for all edge e of Q and that \ # %, for all A € A, and all corners ¢ of Q).
Then for any f1,fy € L%(Q), Sks(f1,£2) can be decomposed as follows:

(2.25)  Sgs(fi,f2) = (Eg,Hg) + Z Z RenTe (PB.en(Ve), ren(Ve)),

c€C AeAn(~1,1)

with (Er,Hg) € H2(Q)?, C is the set of corners of Q, (r.,9.) are the spherical
coordinates centred at c, k. s a constant and Qg.x, Pa.ex belongs to HQ(GC).
Furthermore we will have

(2.26) I(BrHe)llaa+ Y > |real S A+ ET)|(F, )]

c€C XeA0<A<3
In particular it holds Sy 4(f1,£2) € H**(Q)®, for all v > 2 — to with
(2.27) 1Sk,s(F1, £2) 200 S (1 4+ KT [[(£1, ) [l

Proof. Since there is no edge singular exponent in the interval [0, 1], the results of
section 2.1 and of section 8.2 of [39] (global regularity results in weighted Sobolev
spaces for elliptic systems on domains with point singularities) allow to show that
the splitting (2.25) and the estimate (2.26) hold. The regularity Sis(fi,f2) €
H? ”(Q) for all v > 2 — tg and the estimate (2.27) directly follow from the fact
that 7 (¢r.er(9e), erer(de)) belongs to H**(Q)°, for all v > 2 — tq. O

Finally still in the absence of edge singularities, we want to improve the pre-
vious result for a regular part almost in H?3, namely we prove the next result.

Theorem 2.2.3. Under the assumptions of Theorem 2.2.2, for any £y, f, € L*(Q),
Sk.s(f1,fa) can be decomposed as follows:

(228) Sk,s(fla f2) = SO,s(fla f2) + (RE,reg7 RH,reg) + (RE,singa RH,sing>7
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with So s(f1,f2) € H**(Q)®, for any v > 2 — tq, satisfying
(2.29) 1S0,s(f1, £2) [[2.050 < [I(f1, £2) [l

(RE regs Rirreg) € H*(Q)? and (Rp sing, Rusing) € H>(Q)° (for shortness their
dependence in s is skipped), for any € > 0 and any vy > 3 — tq, such that

(2-30) ||(RE,reg’ RH,reg)HS—aQ + ||(RE,sing7 RHasing)H&Vo;Q 5 (1 + k2+a)||(f17 f2)||Q'

Proof. In a first step, we split up (E,H) := S;(f;,f;) (see [14] for a similar
approach in domains with a smooth boundary) as follows:

(2'31) Sk,s(fla f2) = SO,s(fb f2) + (RE7 RH)?

where the remainder (Rg, Ry) € V (for shortness it dependence in s is skipped)
satisfies

a0.((Re. Ra), (BVH)) = 1 [ (BB H-H) ds
Q
(2.32) ~ ik / (E,-E,+H,-H) do, ¥(E ,H) € V.
o0N

By Theorem 1.3.5, the existence and uniqueness of Sy (fi,f;) and of (Rg, Rpy)
are guaranteed. Moreover from the estimate (2.27) (with & = 0), we see that
So.s(f1, f2) belongs to H** ()8, for any v > 2 — to and that the estimate (2.29)
holds. A similar result is valid for (Rg, Ry), but we are interested in an improved
regularity. More precisely, we want to show that

(2.33) (Re,Ri) = (REreg; Rireg) + (REsing, R sing),

with (Rg reg; Rirreg) and (Rpging, Rusing) as stated in the Theorem. Indeed we
first notice that the volumic term in the right-hand side of (2.32) has the appro-
priate regularity to obtain a decomposition of (Rg,Rpy) into a regular part in
H37¢(Q)? and a singular (corner) part. Unfortunately this is not the case for the
boundary term, because (E,H) is not in H*(Q2)2, but due to its splitting (2.25),
we can use a lifting of the singular part. More precisely by using Lemma 6.1.13 of
39], for all corners ¢, and all A € N(—3, 3), there exists a field (E., H,,») in the

2
form
k()

(Ec,)\> Hc,/\) = Ti+)\ Z @C,A,é(ﬁc)(ln rc)fa

=0
with £(A\) € N and ¢, € H*7%(G,) such that

p
L s Ec =0 .
" ( 7>\) } m =,

Lk,s(Hc,)\) =0
div EQ)\ =0
divH, =0 —
’ on 0=,.
T<Ec,)\7 Hc,)\) =0

(. Bo(E.),Hc)) =20pca:
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Hence for any corner c¢ by fixing a smooth cut-off function 7, equal to 1 near ¢
and equal to 0 near the other corners, we introduce

(234) (RE7 RH) (RE7 RH — ik Z Z /{c,)\nc<EC,)\7 Hc,)\)7

c€C xeAcn(—3,3)

that still belongs to V and is solution of
(2.35) aos((Rg,Ry), (B H)) = I<:2/(E ‘E+H-H)de
— ikF?E',H’), V(E ' H) eV,
where
FE H) = / (E;-E, +H,-H)}) do

o Z Z ’ic,,\ao,s(nc(Ecv H,), (E/’ H/)>

c€C XeAcn(—3,3)

= / (ER,t . Eé + HR,t . I:IQ) dU
o0

Y ke /mréu—nc)(soE,C,A,t-E;wH,c,A,t-ﬂo do

c€C reAcn(-1,2)

o Z Z Fex / (Lk75<770EC,>\) ‘E + Lk75<ncHC,>\) : I:I/) dz.
Q

c€C xeAcn(-1,1)

Since (1 —1nc)ppents (1= ne)@ments Lies(MeEen), Lis(n:He, ) are sufficiently reg-
ular, by the shift theorem, we deduce that (Rg, Ry) admits a decomposition into
a regular part in H>7¢(Q)? for any € > 0 and a singular part that corresponds to
corner singularities, namely

(236) (REa RH) (RE reg» RH reg + Z Z ’il)\,csi\’

ce€C NeA.N(— 5% €)

where (R e, Rirreg) € H>75(Q)?, S) is the singular function associated with A,
and /ﬁ’/\,c € C. Furthermore we have the estimate

||(RE,rega RH,reg)HB—s,Q + Z Z |’<0/>\,c| 5 k2HSk,S(flu fZ)HQ

c€C AeAN(~L,3—¢)

+k|(Er, Hg) ||2,Q+k’z Z K-

c€C xeAcn(-1,2)

Hence by the stability estimate (1.32) and the estimate (2.26), we get

(2.37) [|(Rppeg: Ritpeg)ls—co Y D KA S L+ EF)I(EL )l

c€C XeAcn(—3,3-¢)
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Coming back to the definition (2.34) of (Rg, Ry) and using its splitting (2.36),
we find the decomposition (2.33) of (Rg, Ry) with

(RE,Singa RH,Sing) = ik Z Z "ic,)\nc(Ec,)\y Hc,)\)

c€C xeAcn(-1.2)

D D D

c€C XeAcn(—3,3-¢)

that clearly belongs to H>"°(Q)% for any vy > 3 — tg, with the estimate

I(Resing Rusing) lsmoe Sk Y Jreal +> D> |kl

AeAN(—1.1) c€C XeAcn(—1,2—e)

Using the estimates (2.26) and (2.37), we conclude that (2.30) is valid. O

Obviously the same regularity results are valid for the solution (E* H*) =
S;.«(F, G) of the adjoint problem

(2.38) (B, H)), (E*, H")) = /Q(F E+G-H),V(E,H)eV.

Indeed as

s (B HY), (B HY)) = a o (B, BY) + ap (", ) + ik / (B E,+ H -H.) do,
o0

we deduce that
(E*,H*) = S;.4(F, G).

2.2.2 Wavenumber explicit error analyses

With the above regularity results from Theorems 2.2.1 or 2.2.2 in hands, we can
perform some error analyses following a standard approach (see [47, Chap. 8] and
48, §4]), the differences with these references are the loss of regularity and/or
the use of refined meshes. The situation from Theorem 2.2.3 is different and uses
similar ideas than in [14].

P;-elements with regular meshes

We start with the simplest case where we approximate V by a subspace made of
piecewise polynomials of degree 1 on a regular (in the Ciarlet sense) mesh 7y, of
made of tetrahedra, namely we take

Vh =VnN Pl,h;
where

Pl,h = {(Ehth> € L2<Q)2 : Eh|T7Hh\T € (]P)l(T))g, VT € 771}
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At this stage, a finite element approximation of (E, H) = S; ;(fi,f;) € V with
£, f; € L?(Q) consists in looking for (Ep,, Hy,) = S s(f1, £2) € V), solution of

(2.39) ay,s((En, Hy); (B, H')) = /(fl -Ej, +fi - H},), V(E}, H),) € V.

Q
To analyse the existence of such a solution Sy s 5 (f1, f2) and the error between this
approximated solution and Sy (fy,fs), according to a general principle (see for
instance [48, 49] for the Helmholtz equation), we introduce the adjoint approx-
imability

S; (F,G) — (U, V
(240) n(Vh) _ sup inf || k,s( ) ( h h)”k:
(F.G)eL2(2)?\{(0,0)} (Un VW€V I(F, G)lla
By Theorem 4.2 of [48] (that directly extends to our setting), the existence and
uniqueness of a solution to (2.39) is guaranteed if kn(Vy) is small enough (stated
precisely below).

To show such a result we will use the standard Lagrange interpolant. Namely

for any (E,H) € H'(Q)?, with ¢t > 2, by the Sobolev embedding theorem, its

Lagrange interpolant [;,(E, H) (defined as the unique element of IP; , that coincides
with (E,H) at the nodes of the triangulation) has a meaning. If furthermore
(E,H) belongs to V, then I,(E,H) will be also in V, hence in Vj,, since the
normal vector is constant along the faces of €.

Recall that for any ¢ > %, we also have the error estimate

(2.41) I(B, H) — L(E, H)[lno < 2 (B, H) g,

for £ = 0 or 1, see [17, Thm 3.2.1] in the case ¢ € N and easily extended to
non-integer ¢.
These estimates directly allow to bound 7n(Vy).

Lemma 2.2.4. In addition to the assumptions of Theorem 2.2.1, assume that
tog > % Then for all t € (%,tg) and all k > ko, we have

(2.42) n(Vy) S KRN+ kh).
Proof. Fix an arbitrary datum (F, G) € L*(Q)* and denote (E*, H*) = S; (F, G).
Then owing to (2.41), we have
(B HY) = L(ES ) < KI(E", HY) — L,(E" HY)log
+HI(E", HT) — [h(E", H) |10
S (B4 BB HY) e

The estimate (2.24) allows to obtain the result. O

Corollary 2.2.5. Under the assumptions of Lemma 2.2.4, for any fizedt € (%, ta),
there exists C' > 0 (small enough and depending only on Q and t) such that if

(2.43) Keih < C,

then for all k > ko and all £,,f, € L*(Q), problem (2.39) has a unique solution
Sk.sn(f1, f2) and the following error estimate holds

(2.44) IS.s(F1, £2) — Sposn(Er, B)[[5 < KR
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Proof. We first notice that the assumption (2.43) is equivalent to
k,2+aht—1 < Ct—l

and also implies that

kh < C,

since t < 2. As (2.42) means that there exists Cy > 0 (independent of k, s, and h)
such that
kn(Vy) < Cok* h!™1(1 + kh),

we deduce that
kn(Vy) < Cok® R (1 + kh) < CoC* (1 + O).

As mentioned before, the existence of Sy ;4 (fi, f2) then follows from Theorem 4.2
of [48] if

=11 <
GCH1+C) < 7

where C. is the continuity constant of a s (that here is equal to max{1, s1}).
Now, we use the arguments from Theorem 4.2 of [48]. Namely, we notice that

Reay,((U, W), (U, W)) = min{1, 5o} | (U, W)| = 22 (U, + W)

where for shortness we write (U, W) = Sy ;(fi,f5) — Sgsn(fi,f2). Therefore by
(2.38), one has

Re ak,s((Ua W)> (U7 W) + 2kZSZ,S(U> W))
= Reay,,((U,W), (U, W)) + 2k’ Re ay,((U, W), S; (U, W))
= Reay,,((U,W), (U,W)) +2&* (| Ul + [WII5) ,

and by the previous estimate we deduce that
min{1, so}[[(U, W)[|2 < Rea.((U, W), (U, W) + 24}, (U, W)).

By Galerkin orthogonality, we can transform the right-hand side of this estimate
as follows:

Re ak,s((Ua W)7 (U’ W) + 2k? Z,s(U’ W))
= Re ak,s((U7 W)7 Sk,s(fh f2) - (Yh7 Zh))
+ 2k’ Reay s(U, W), §; (U, W)) — (Uy, Wy)),

for any (Up, W), (Yh,Zy) € Vi. By the continuity of the sesquilinear form a
with respect to the norm || - ||, the previous estimate and identity yield

100, W)l S 10, W)k (ISk.s (£ £2) = (Y, Z) i+ (IS5 (U, W) = (Up, W) [
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As (Up, W) and (Y}, Zy,) are arbitrary in V,, by taking the infimum, we deduce
that
(U W)le < inf  [[See(fi ) — (Ya, Za)llk + E*0(Va) (U, W)]lo
(Yh,Zn)€EVy
< inf Sks(fi,£5) — (Y, Z + En(V) (U, W)
S I ka6, ) = (Y0 Zale + kn(Vi) (U, W)l
Hence for kn(V},) small enough we deduce that

2.45 UW): < inf  [|Ses(fi, £) — (Y, Zn)lle.
(2.45) IO W) S it S ) = (Yo Za)

By the estimates (2.24) and (2.41), we conclude that
1, W)l S (k! + 1) = BHpi=1(1 4 k) S g,
[l

Remark 2.2.6. The interest of considering non divergence free right-hand side
in problem (1.28) appears in the definition of 1n(V;) (and its estimate) and in
the above proof. In both cases, the problem comes from the fact that even for
divergence free fields fi, f,, each component of Sy ;5 (f1, f2) is not divergence free.
As a consequence, S, (S (f1,f2) — Sgn(fi, f2)) depends on s, but this plays no
rule in the estimate (2.44), except that s has to be fixed so that the stability
estimate holds. Consequently at least theoretically Sy, s 5 (fy, f2) has to be computed
with such an s, even if Si;(f1,fs) is independent of s in case of divergence free
fields fy,f,, while practically (see below) it is fixed by comparing k? with the
spectrum of the Laplace operator —A with Dirichlet boundary condition in € (or
an approximation of it).

Remark 2.2.7. For the unit cuboid, as o = 1 (see Corollary 1.4.8) and ¢ can be
as close as we want to 4, the condition (2.43) is mostly ks h small enough.

Remark 2.2.8. Let us notice that the estimate (2.45) is valid under the above
assumptions, but if Sy ¢(f1, f2) belongs to HP™(2)? and polynomials of degree p
will be used to define Vy, then the rate of convergence in h in the estimate (2.44)
will be improved, passing from h*~! to h?.

P;-elements with refined meshes

Here we assume that the assumptions of Theorem 2.2.2 hold and want to take
advantage of the regularity of Si(f;,fy) in H**(Q)%, for any v > 2 — tq (see
estimate (2.27)). More precisely following the arguments from [44, Thm 3.3] (see
also [2]) using a family of refined meshes 7, satisfying the refined rules

(2.46) hr < h in; r(x)” if T is far away from the corners of €2,
XE

(2.47) hy < ki if T has a corners of Q as vertex,

~Y

with a fixed but arbitrary v € (2 — tg,1) (as close as we want from 2 — tq), we
have that
(B, H) — 1,(E, H)||eo < 2*7| (B, H) |20,
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for £ = 0 or 1. Consequently as in the previous subsection, for V;, build on such
meshes, there exists a positive constant C' (independent of k, s and h) such that
if

E*en < C,
then for all k > kq and all f;,f, € L), problem (2.39) has a unique solution
Sk.sn(f1, f2) and the following error estimate holds

(2.48) ISk.s(f1,F2) — Skon(fr, £2)|lx S KA.

Py-elements with refined meshes

Under the assumptions of Theorem 2.2.2 we can improve the previous orders of
convergence and reduce the constraint between k and h. For that purposes, we
use the splitting (2.31) of Si (1, f2) and the estimates (2.29) and (2.30) (recalling
(2.33)). Then as in the previous subsection, we need to use a family of refined
meshes 7, satisfying the refined rules

(249) hr S h ingr(x)%0 if T is far away from the corners of €2,
xe

2

(2.50)  hy < h?w  if T has a corners of ) as vertex,

~

with a fixed but arbitrary vy € (3 — tq,2). In such a situation, again by (2.41)
and by [44, Thm 3.3] we have

(2~au0RE,reg7 RH,reg) - Ih<RE,reg7 RH,reg) HE,Q S h’3_8_£” (RE,reg> RH,reg) HS—E,Qa
(QHBQRE,singa RH,sing) - Ih(RE,sing7 RH,sing) ||€,Q 5 h3_€ || (RE,sing7 RH,sing) ||3,1/0;Qa

for £ =0 or 1.
Let us now show that (2.49) (resp. (2.50)) guarantees that (2.46) (resp. (2.47))

holds with v = vy — 1. In the first case, we simply notice that
r(x)¥ =r(x)T,

and therefore
if and only if

r(x)" T < r(x).

This last estimate is valid for any € T because v belongs to (0,1) and r(x) is
bounded. The second implication is a simple consequence of the fact that

hﬁ:h%yghﬁ.

Since our family of meshes then satisfies (2.46) and (2.47) with v = vp—1 > 2—tg,
we deduce that

(2.53) IS0 (f1, £2) — 1nSo(f1, £2)|le0 S h2_€||So(f17 £2)ll2.0:0,

for £ = 0 or 1. With such estimates in hand, we can estimate the adjoint approx-
imability.
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Lemma 2.2.9. For V}, build on meshes satisfying (2.49) and (2.50), we have
(2.54) (Vi) S (L4 kh) (h+ k*h*7F) .

Proof. Fix an arbitrary datum (F, G) € L*(Q2)?, we denote (E*, H*) =S} (F, G).
Then we use its splitting

(E*7 H*> = SS(F’ G) + (RE,rey R?{,reg) + (R*E,sing7 R*H,sing)'
Owing to (2.51), (2.52), and (2.53), we have

[(E*, H") — L(E" H )|l < (14 kR)A|So(fr, £2)[2,:0
+ (1 + kh)h27€H<RE,reg7 RE,reg)Hi‘*&Q
+

(1 + kh)h2||(RE,Singa RH,sing)Hi’),zlo;Q-
The estimates (2.29) and (2.30) allow to obtain the result. O

Consequently as in the previous subsection, for V;, build on such meshes, there
exists a positive constant C' (independent of k, s and h) such that if

k_4hj276 S 07

then for all k& > kq and all f;,f, € L*(Q), problem (2.39) has a unique solution
Sk.s.n(f1, f2) with the error estimate

ISk.s(f1, £2) — Sksn(f1, £2) || < k*h?e.

Remark 2.2.10. Note that the impedance boundary conditions are imposed as
essential boundary conditions. As we are dealing with polyhedral domains, La-
grange elements can be used to construct conforming subspaces V;,. The extension
to curved domains seems to be difficult, but a penalisation technique can be used
(cf. Chapter 3).

2.2.3 Some numerical tests

For the sake of simplicity, we restrict ourselves to the TE /T H polarization of the
problem (1.30). In other words, we take

Q=D xR,

where D is a two-dimensional polygon and assume that the solution of our problem
is independent of the third variable. In such a case, the original problem splits up
into a T'F polarization problem in (E;, Es, H3) in D (correspond to (1.60)), and
a TH polarization one in (Hy, Hy, F3) in D (correspond to (1.59)). We restrict
ourselves to the T'F polarization here, as the T'H is fully similar. The variational
form is given by (1.62).

Furthermore the singularities of such problems correspond to the edge singularities
of the original one.
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We first use a toy experiment in the unit square D = (0,1)? to illustrate our
results. In such a case, as exact solution, we take

Ey(z1,25) = —{mwcos(lmzy)sin(frxs),
Ey(x1,29) = {rsin(fnxq) cos(fmxs),
Hs(xy,29) = sin(fmaxy)sin(fras),

where ¢ € N*. With such a choice, we notice that (F1, Es) is divergence free, that
AEl + k2E1 = AEl -+ k’2E2 - AHg -+ k2H3 = 0,

with k2 = 20?72 and that they satisfy the impedance boundary condition for all
Aimp Satisfying (1.2), then we choose Aiyyp, = —1 for this test. We then compute
the right-hand side of (1.26) accordingly (where only a boundary term occurs).
In our numerical experiments, we have chosen either ¢/ = 2, 5, 8, 10, 15 or 29
and s = 14.3. This choice of s is made because it yields satisfactory numerical
results, but it is also in accordance with the condition that —% is different from
the eigenvalues of the Laplace operator A with Dirichlet boundary conditions in
D, which in this case means that

k2
(2.55) — # B+ B,

for all positive integers ¢1, ¢5. Indeed in the first case £ = 2, the ratio % is smaller
than the smallest eigenvalue 272, while in the other cases, it is strictly between
two eigenvalues.

In Figures 2.1 to 2.3, we have depicted the different orders of convergence for
different values of h,k, and p = 1,2, and 4. From these figures, we see that if
polynomials of order p are used, then in the asymptotic regime, the convergence
rate is p for A small enough as theoretically expected, since the solution is smooth
(see Remark 2.2.8).

The second main result from subsections 2.2.2 and 2.2.2 states that if kPT2hP <
1 with p=1 or 2 (up to ¢ for p = 2), then

(2.56) ISk,s(£1, £2) — Sk s n(£1, £2) [ S |ISk,s (1, £2) — PS5 (1, £2) |,

where Py, is the orthogonal projection on Vy, for the inner product associated with
the norm || - ||, namely for (U, V) € V, P,(U, V) is the unique solution of

(]P)h<U7V)>( ;wv,h))k = ((U7V>7( /h>V;z))k> V( ;7,7V;L) € Vp,
where
(U, V), (U, V")), = /(curlU ccurl U’ + sdivUdivU’ + k*U - U') do
Q

+ /(cuer ceurl V' + sdiv Vdiv V' + k*V - V') dx.
Q
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In order to see if this bound is sharp or not, we compute Sin(fi,f2) and
PySk s (f1, £5) for different values of h,p, and k. For each k and p, we denote by
h*(k) the greatest value hy such that

(2.57) |ISk.s(f1,£2) — Sksn(f1,£2) || < 2|ISks(f1, f2) — PuSks(f1,£2) |k, YA < ho.

The value of h*(k) for a given k is obtained by inspecting the ratio

[Sk,s(f1, £2) — Spsn(fr, £2)][
1Sk, (£1, £2) — PrSp s (F1, £2) [l

Condition (2.57) state that the finite element solution must be quasi optimal in
the || - ||z norm, uniformly in k& (with the arbitrary constant 2).

The graph of h*(k) is represented in Figure 2.4(a), 2.4(b) and 2.4(c) for Py,
P, and P, elements, respectively. We observe that in both cases h*(k) ~ k=171/7,
which is better than the condition k**2h? < 1 that would furnish h*(k) ~ k=172/7,
Indeed, it means that quasi-optimality in the sense of (2.57) is achieved un-
der the condition that h < h*(k) ~ k='7Y/P  which is equivalent to kPT'1h? <
kP [h*(k))P < 1, that is better than kP*2h? < 1. We thus conclude that our
stability condition seems to be not sharp and can probably be improved. Note
that our experiments indicate that this stability condition remains valid for values
of p larger than the theoretical one, that is here equal to 2.

+||U - Uh,l”k for k = 2\/§7T+||U - VV}LJ”;C for k = 2\/§7T
= ||U — upq||x for k = 8v2r —=—||U — W1 ||y, for k = 8v/2x

10% ¢

107 E

10° ¢ E

error in energy norm

107 E
10! 102

1
h

Figure 2.1: Rates of convergence for p = 1,k = 221 or 82« U =
Sk,s(ﬁ: fZ)a Uh,p == Sk,s,h(fh f2)7 Wh,p = Phsk,s(fly f2 )

As a second example, we take on the square (—1,1)? the exact solution given

by

Ei(z1,m5) = p9e™™,
Ey(21, 1) = —mie*™
H3(361, 33'2) = )\impeikxl?
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——||U — Upz||y for k = 521 —a— U — Whal|lg for k= 5V 27
—o— ||U — upolx for k = 10v/27 = ||U — Wia||), for k = 10v/27

10% 1
g i |
£ g ]
=} 2 | i
o 10%¢
o0 S |
g [ i
i 10t £ E
PR 2 i 1
§ 100

10! 10%

==

Figure 2.2: Rates of convergence for p =2,k = 5v/21 or 10v/27.

+||U - Uh,/l”k for k = 15\/§7T+”U - Wh;i”k for k = 15\/§7T
o ||U — upallx for k = 29721 ——||U — Wi4||1, for k = 29v/2m

10* |

101

error in energy norm

Figure 2.3: Rates of convergence for p = 4, k = 15v/27 or 29/2.

that satisfies the homogeneous impedance boundary condition
H3 — )‘impEt =0 on dD.

We have computed the numerical approximation of this solution for £ = 30, the

choice s = 14.3 (again with this choice, % is smaller than the smallest eigenvalue
27?), and for different values of Aimp, namely we have chosen Aip,, = —1, =10, =50,

and —100. In Figure 2.5, we have depicted the different orders of convergence for
p = 1,2, and 4 and different values of h. Again since the solution is regular, the
rate of convergence p is observed in the asymptotic regime and seems not to be
affected by the variation of Ajpp.

Finally, we have tested the case when a corner singularity appears. Namely on
the L-shaped domain L = (—1,1)?\ ((0,1) x (—1,0)), we take as exact solution
(written in polar coordinates (r, ) centred at (0,0))

E(r,0) =V <7"§ sin(t—e)eikr) :

Hg(T', 9) =0.
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Figure 2.4: Asymptotic range of h*(k) for p = 1,2, 4.
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Figure 2.5: Rates of convergence for \;,,, = —1, =10, =50, =100 with p = 1,2, 4.

This solution exhibits the typical edge singularity of our Maxwell system described
in subsection 2.1.2.

This solution does not satisfies the homogeneous impedance boundary condi-
tion (with Aimp = —1), hence we have imposed to our numerical solutions (Ej, Hsp)
to satisfy

Hs,(v) + Epg(v) = Eg(v),

at all nodes of the boundary of L. The convergence rates for £ = 1,50 and 100 are
presented in Figures 2.6 and 2.7 for different values of h and p. There we observe,
in the asymptotic regime, that for £ = 1, the use of quasi-uniform meshes affects
the rate of convergence since for p = 1 it is equal to %, while the use of refined
meshes restores the optimal rate of convergence 1 (as theoreticaly expected). On
the contrary for £ = 50 or 100, we see, again in the asymptotic range, that the rate
of convergence is p. This observation is in accordance with a recent result proved
in [15] for Helmholtz problems in polygonal domains, which shows that in high
frequency the dominant part of the solution is the regular part of the solution

(which in our case is zero). Note that we have also chosen s = 14.3. Indeed
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Figure 2.6: Rates of convergence for the singular solution in the L-shaped domain
for £ = 1 with uniform and refined meshes for p = 1.
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Figure 2.7: Rates of convergence for the singular solution in the L-shaped domain
for k =50 or 100 with p =1 (left) and p = 2 (right).
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for k = 1, the spectral condition on % holds since the smallest eigenvalue of the
Laplace operator with Dirichlet boundary conditions in L is approximatively equal
to 9.6387, see [29, 68]. We are not able to check if the spectral condition is valid
for k = 50 or 100 since the approximated values of the eigenvalues of the Laplace
operator with Dirichlet boundary conditions in L seem to be only available up to
97, see [68, Table 1], but since our numerical results are satisfactory, we suppose
that it is satisfied.
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Chapter 3

Maxwell’s system in smooth
domains

3.1 The discrete problem

3.1.1 The hp-nonconforming finite element method

To approximate problem (1.28) we will use a nonconforming finite element method,
because we can not impose the impedance boundary condition (the essential
boundary condition) in the finite element space. Futhermore we cannot build
an interpolation operator which preserves the essential condition. So, we have
decided to penalize this condition.

Let T, be a partition of {2 into ”simplicial” elements which are the image of
the reference tetrahedron, denoted by K , via an element map Fk : K — K that
satisfies (see Assumption 5.1 in [50]) the next assumption:

Hypothesis 3.1.1. (Quasi-uniform reqular triangulation) For each K € Ty, there
exist mappings Ry and Ax which verify Fx = Ry o A, K = Ag(K) with
(recalling that Jy is the Jacobian of f)

- Ak is an affine transformation and Ry is a C* transformation,
- HJAKHQO,R < Caﬁinehf H(JAK)_I”OO,K < Caﬁineh_la
- ||(JRK>71||OO’R S Cmetric; ||VnRK||oo7f{ S Cmetricﬁnnb Vn € N7

with Cofiine, Cmetric; B > 0 independent of the maximal meshsize h = IIPa%( hi,
€/n

where hy is the diamenter of the element K.

Let Sy, be the hp-FEM space (without constraint on the boundary)

(3.1) Shp = Snp(Q)°,
with
(3.2) Snp(Q) ={ve H'(Q) | v, o Fx €P? VK € T, }.

69
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As we cannot add the essential boundary condition to our finite element space, we
will use a discrete sesquilinear form, where we penalyse this boundary condition.
Therefore we define the discrete sesquilinear form ay, g 5, (-, ) : H* ()6 x H' ()% —
C as follow

1
a5 hp(,v) =ags(u,v) — / (curl E x n +ikE,) (E] — H’' x n) do
o0 imp
1
—/ (E; — " H x n)(curl E' X n +ikE}) do
o0 imp

2 1 1
+%Zaf/f(Et— HXn)(EQ—)\ H' x n) do,

i .
feeB imp imp

with u = (E,H) and v = (E,H’), and where £? is the set of faces of the
triangulation included into 0€2. Note that the last term of this right-hand side is
a penalization term, while the two other added ones are introduced to guaranbee
the consistency of the approximation scheme. The parameters oy are positive

constants that will be fixed large enough to ensure the coercivity of the form
agsnp (cf. (3.4) below).

Let us first check the consistency of the formulation, that is

Lemma 3.1.2. Let £ € L2(Q)° and u = Sy, (f) (i.e., solution of (1.28)), then

asnp(u,v) = (f,v), Vv € H'(Q)%

Proof. Indeed, as u = (E, H) satisfies H x n — Ay, By = 0 on 052, one has

agshp(,v) =ags(a,v) — / (curl E x n +ikE;) - (E} — H’ x n) do.

o0 imp

As £ € L2(Q)° then (E,H) € H2(Q)? (cf. [22]) and by Green’s formula,

/(curlE-curlE—l—sdiVE diVE—kZE'E) dx
Q

—/Lk,sE-E da:+/ (curlExn~E’t+sdivEE~n) do.
Q Blg)

Applying the previous identity to E and H, noticing that divE = divH = 0 on
0f), we obtain
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a,shp(U, V) = / (Lk,s(E) B+ Ly (H) ﬁ) dzx
Q

1
— ((curlE x n) +ikE;) - (E} — H’' x n) do
o0 imp

+/ ((cwlE x n)-E] + sdivEE - n) do
onN

+/ ((curlH x n) - H + sdivHH' - n) do
o0

I 1 —
ik / (AimpEt-E;Jr , Ht-H;) do
o0 imp

:/Lk,s(E)-E dx+/Lk,s(H)-ﬁ dm+/ By(E,H) - H, do.
Q Q oN

As B(E,H) = 0, we conclude the consistency of the problem. O

The discrete norm (related to the space Sy ,) associated with the discrete
sesquilinear form ay, g, iS

1 2

Hxn

2
2 2 P
lallypg = llall + 5 > oy
fe&EB

imp

-

f
Remark 3.1.3. We can remark that for all v € V, [[v[, . = [[VI];-

In order to compensate the negative term in aysp,(-,-), we introduce the
sesquilinear form by s ,(*, ") = @k s np(-, -) +2k%(-, -), which turns to be continuous
and coercive. Before proving these properties, we introduce a useful technical
lemma.

Lemma 3.1.4. Let E,E' H' € S,,(Q)3, then

1
/ (—curlE x n + (kE,) - (E} — H' xn) do
o0 imp
< P (/(| |2 2| |2> ? Z / 1 ! ’ ’
S — curl E|* + k7| E dx) X E, - H xn| do
\/E Q feEB )\imp f
Proof. First, by Cauchy-Schwarz inequality, we have
: 1
/ (—curlE x n + ikE,) - (Ej — H' x n) do
o0 )‘imp
1 1
5 1 2\ 2
<) (/(|curlE x n|? + k*|E,|?) da) X HE;— ——H' xn
fees I P f
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By using a covariant transformation, which preserves the curl, namely

DFy (%)
JFK( )

with an inverse trace inequality (cf. Lemma 4.3 of [51]), we have

(3.3) curl E(z) = = curl E(2), for z = Fi(#),

2
/ (JcurlE x nf* + K*|E;*) do < v (|curl E|* + K*|E?) da
! h Ky
where Ky € 7T, is the unique tetrahedron such that f C JK;. The conclusion
follows from the two above inequalities. n

Now, we can show the coercivity of by s, Let u = (E,H) € S;,,, be fixed.
Then

1
Re(bgsnp(u,u)) = [[uf; — 2Re (/ (curl E x n —ikE,) - (E, — H x n) da)
o0 imp
1 2
+ 2 Re Zaf/Et Hxn| do
! Aimp
feEB

We then need to estimate A = Re (fm (—curlE x n + ikE;) - (E; — +~H x n) da).

)\1mp

But Lemma 3.1.4 and Young’s inequality yield

2

P 2 2112 : 1
A5—</(\cur1E| +k|E|)dm) E,— — Hxn
\/E Q feng )‘imp f
2
%/ (| curl E|* + K*|EJ? du 2—% Z H x nf| |,
ceB lmp f

for all e > 0. Hence there exists a positive constant C' such that

Re(bysnp(u, 1)) > HUHi — Ce([[curl Ellg, + £ ||E]|g)

Zaf—— 1

E
t— A -
feeB

Hxn

Y

!

for all e > 0. We then fix € = % and therefore by choosing ay > 0 large enough
such that oy > % = 4C?, we deduce that

2
(3.4) Re(bsnp(a,u)) 2 [[ally,, -
The continuity of by s 5, namely
(3.5) [bk,snp (W, V) Sl VI > YO,V € Shyp,

directly follows from the continuity of a;s and Lemma 3.1.4. Note that this
argument also allows to show the continuity of ay s p.
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Let £ = (fy,£) € L%(Q)°, we define the following approximated problem: Find
uy, € Spp such that

(3.6) A shp(Unp, V) = (£,v), Vv €S,

Such uy ,, if it exists, is called a Galerkin solution.
We will now show that under an appropriate condition, (3.6) has an unique solution
u,, € Sy, and give some error estimates.

Lemma 3.1.5. Let £ = (fi,£,) € L2(Q)°, u = S;.(f) and if u,, € Sh, is a
solution of (3.6), then we have

. |(u — Up , Wi, )|
3.7 u—u < inf Jlu—-v +k sup PP
( ) H h’ka’h’p ™ Vi p€Shp ” h’kaﬁ’p Wh,pESh,p Hwh,pHQ

Proof. Let vy, € Sy, be arbitrary, then by the triangle inequality, we have

u— uh,ka,h,p < flu— Vh,ka,h,p + [Vip — uh,p”/.c,h,p-

Moreover

2
[Vhp — uh,ka,h,p S R(Okshp(Vip = Whp, Vip — Unp))

S Pk (Vi — W Vi — Wnp) | + [Brsnp(0 — Whp, Vi, — app)|.

By the fact that by sp, = arsn, + 2k%(+,-) and the Galerkin orthogonality, we
have

IVhp — uh,pHi,h,p S bkshp(Vap = W Vi — W) 4 287 | (W = Wy, Vip — Unyp))|

S vy — U-Hk,hp [Vhp — Unp |k,h,p R (0= Wpp, Vi — W)
We then have

(U — Wpp, Vi — Upy)|

Vhp — uh,pHQ

u— uh:p”k7h7p S fla— Vh,ka,hm +k

We conclude by the bound

(0 — g, Vip — up,)| (U —up,, Wiyl

< sup )
||Vh,p - uh,pHQ Wi p€Sh,p ||Wh,p||Q
and then by taking the infimum on v, € Sp . O

In order to control the second term of the right-hand side of (3.7), we introduce
the quantity 7(Sy,), called adjoint approximation quantity (cf. [48, 52, 14]):

Sio(£) — v,
(3.8) n(Sh,) = sup  inf Isi ”H’W,
£€L2(0Q)6 Vh,pE€Shp Hf”Q

where Sj, () = S.s(f) is the adjoint operator of Sy, 4(f).

Now we will use the Schatz argument (Aubin-Nitsche trick for the Helmholtz
equation) [66] in order to bring out 7(S) and [[u — wppl|, ,  in (3.7) and obtain
the following theorem.
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Theorem 3.1.6. There exists a positive constant C' such that if n(Sp,) < %,
then for any £ = (f1,£,) € L2(Q)°, if u = Sk,s(f) and if upy, € Sy, is a solution of
(3.6), then

(39 o=l S inf a =Vl
(3.10) =yl S () 0= W,

Proof. Let ¢ =S [(Whp), with wy,;, € Sj, p, then for any ¢, , € Sy, owing to the
continuity of ay 55, and the Galerkin orthogonality, one has

[(W = Whp, Whp)| = |ag,s pp(U — Wpyp, D)
- |ak,s,h,p(u — Upp, ¢ - ¢h,p)|

S Jla - uhﬁ””k,h,p H¢ - ¢)h:ka,h,p'

By the definition of 7(S;,) we can conclude that

’(u_uh, 7wh,)‘
(3.11) k £ P2 S kn(Snp) o —wnplly,, -
[Whallg o

We obtain by Lemma 3.1.5 and (3.11) the existence of a constant C' > 0 such that
(1 = Ckn(Shp)) [[a— uh,ka,hm S inf  Jlu-— Vh,ka,h,p'
VhJ;EShm
This means that (3.9) holds as soon as 1 — Ckn(S;,,) is positive.
It remains to estimate the L? norm. First by the definition of Sj, and the
Galerkin orthogonality, one has
2 *
[u — uh,p”g = Ao np(0 — Uy, Sk,s(u — Upnp))
= A s np(W— Unp, Sp (W =) — Vi),
for all v;, € Sj,. By the continuity of ay s, and the defintion of n(S;,), we
conclude that
2 *
[u — uh,pHQ < Celu— uh,p”/g,hm HSk,s(u - uh,p) - Vh,pH&hJO
< Cellu— uh,p”/g,h,p N(Shp) [lu—wnpllg, -

which proves (3.10). O

Corollary 3.1.7. Let f = (f,£,) € L2(Q)® and u = Sy,,(£). If 1(Shp) < 75, then
problem (3.6) has a unique solution uy,, € Sp,,.

Proof. As S;, is finite-dimensional, problem (3.6) is a linear system. So, we
just need to prove uniqueness to have existence. Let u,, € Sj, be such that
ak s hp(Unp, v) =0, Vv € Sp, . By Theorem 3.1.6 and if n(S;,) < we have
(since 0 is the unique solution of (1.28) with f = 0)

1
kC>

sl S 0 [Vl =

which shows the uniqueness. O
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We have shown that under the condition n(S,) < %, there exists a unique

(discrete) solution uy,, to (3.6), this solution may then be called Sy 5, ,(f). In the
next sections, we will give reasonable conditions between k, h and p such that this
condition holds. But before, we recall some interpolation error estimates.

3.1.2 Some interpolation error estimates

We will use the same interpolation operators as in the papers [52] and [48]. These
operators are built from the following definition:

Definition 3.1.8. (element-by-element construction, from [52])
Let K be the reference simplex of R3. A polynomial 11 is said to permat an
element-by-element construction of polynomial of degree p for u € H*(K), s > %,

of
(i) TI(V)) = u(V) for each vertices of K,
(ii) for each edge e of K, I, € P, is the unique minimizer of

1
II—=pz||u—-10|, + [[u—=I0)| 1+
=10+ u =11y
2
where 11 verifies (i) and ||v]|2 ;

I L e
(iii) for each face f of K, I}, € P, is the unique minimizer of
I = pllu =TIl + flu—1I]|
where 11 verifies (i) and (ii).
J. M. Melenk and S. Sauter propose in [52] (see [48] for more details) two

interpolants satisfying the conditions (i) to (iii) from Definition 3.1.8, the first

one for general H*(f2) functions (s > 2) and the second one more specific for

2
analytic functions.

Lemma 3.1.9. Let v € H™ () with m > 0, and hx the diameter of an element
K, then we have

and, for 0 € HY(K)?, withp+1>1t > 3, there exists f[pﬁ € Sh, (satisfying the
conditions (i) to (iii) from Definition 3.1.8), such that

la-ma| <ol v e o1
Hu 1L s p O, ¢, V€ (0,8 —1/2].
v, ’
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Combining the two above results, for all u € HY(Q)?, we obtain

h t—t’
w—nwwKscg aloge, ¥ € [0,4],

n t—t/'—1/2
lu—ul, ; < (5) lujex, V¢ € [0, — 1/2],

as well as
h t—t’
Hu—mmmﬂs(g) ale, ¥ € [0,

Proof. The proof of this lemma can be found in [48, Theorem B.4] (applied to
each component of the vector fields). ]

Lemma 3.1.10. For 8 > 0, there exists o > 0 such that for all analytic function
uy satisfying

ludlnx < (268max(n,k))"Ck, Yn € N:n > 2,

for all K € Ty, and some Cx > 0 (independent of n and k), there exists Il,us €
Shp (which respect to Definition 3.1.8) such that for q € {0, 1,2},

- h p+1 kh p+1
et ((5) 7+ (5)7)

Proof. With a scaling argument, we can apply Lemma C.3 of [48] to each compo-
nent. ]

3.2 The analytical case

Here, following the approach from [48, 49], we will split up the solution of the
adjoint problem (appearing in the definition of 7(S;,)) in a H?-part and an an-
alytical part. This decomposition allows to give an estimate of kn(Sy,), which
depends on k, h and p and obtain some error estimates.

3.2.1 A splitting lemma

The aim of this part is to split the solution u = (E, H) of problem (1.30) in two
parts: an analytical part but strongly oscillating and a part only in H?(2)? but
weakly oscillating.

We start by introducing some technical tools:

e First, a frequency splitting, based on Fourier transform, which will be applied
to the right-hand side f; (i € {1,2}). More precisely, we will split up f; in
two parts, one part just in L? and the other one being analytic.

e Second, we will introduce two auxiliary problems and give a stability result
for these problems.
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Frequency splitting

The frequency splitting is done with the help of the Fourier transform and an
extension operator. We recall that for a compactly supported function u € L?(R3),
its Fourier transform is

ile) = Fu)©) = 1) [ e ue) do
R4
and this mapping can be extended into an isometry from L?*(R?) into itself. Hence
we denote by F~! its inverse transformation.
Let n > 0, we denote by X, the indicator function of the ball B, (0). Then,
we define the low-pass frequency projection

(3.12) Lya(f) = F~' (xnF(f))
and the high-pass frequency projection
(3.13) Hga(f) = F (1 = xop) F(f)) , Vf € LX(RY).

For f € L*(Q), we set
fin Q,

Eolf) = {0 outside (2.

as well as

Lao(f) = Lra(Ea(f))la
Ho(f) = Hga(Eqa(f))lo-

Theorem 3.2.1. Let n > 0 be the parameter which is in the definition of Hga and
Lyga, then for all0 <t <t, p € N*, and for each f € H'(R?), we have

1Hrs (Pl s S )1 f e
| Les (f)lprs < () (| fllgs »
while for all f € L*(Q), we have

1Ha(Nlla S 1l
[La(Hlpo S k)" [ fllq

with a constant independent of p.

Proof. Cf. Lemmas 4.2 and 4.3 of [52]. O

Auxiliary problems

We will introduce two well-known problems which are useful for our splitting of
u.
The first problem is to consider E = Ny (f) solution of

(3.14) curlcurl E — sV divE — k°E = f in R®.
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As usual, Ni(f) is obtained with the help of the Green function G (here, it is a
matrix) of this problem, namely the distribution that satifies

curl curl G(z) — sV div G(z) — k*G(x) = 6,1d3.

Applying the Fourier transfom to this identity, direct calculations show that G
satisfies

M(&)G(&) = 1ds,

with
’§|2 — k- (1—- 3)5% —(1=5)&& —(1=5)&83
M(¢) = —(1 = 5)&:& EP =k — (1 - 5)&3 —(1 — 5)&&3
—(1—8)6i&3 —(1 = 5)&¢&3 €7 — k2 — (1 —5)&3
Therefore

G(&) = M(£)'1ds.

By direct calculations, we check that the eigenvalues of M (£)™! are

Recalling that s € [1, 2], we get

‘§|2 2 and
1

€[2—K2 "
1

€[ — k2
For f € L?(R?), we define Ni(f) as the convolution product of G with f, namely

(3.15) 1M (&)~ = 5 i [E] > k.

Ni(f)(z) = (G +f)(2) = | Gz —y)f(y)dy,

R3

which verifies (3.14).
Now we want to estimate the norm of Ny (Hqf).

Lemma 3.2.2. Let f € L3(Q)°, if E = Nj(Hof) then for all ¢ € (0,1), there
exists 1 > 0 (appearing in the definition of Lg) such that

(3.16) 1Bl < gk~ [Ifllo, [Elq S Ifllo-

Proof. We recall that E = G % (Hqf) and fix n > 1. We start by estimating the
L? norm of E:

[El[gs = 7 (G * Ho.f)l|gs
( Xnk)

0
(L

R3

MM 1 — xu(€)E()

2\ 2
dg)
af lief'ae)

IN

\6!2
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this last estimate following from (3.15). As [¢| > nk on R*\ B(nk), we deduce that

[Ellgs < . K72 N fllg -
Now, we estimate the H! norm of E:
%
L2
Bl = (Z [ Jerm© 1@ - @i df)
R
3 2 3
&i & |?
< | |f©)] a
(; /]1@3\3(771@) €2 — k2 ©
As before we deduce that
Tk IE]lg -
"
We end up with the H? norm of E:
1
L2
Bl = (Z [ Jsennera - i) ds)
i,j=1 %
Z / §Z§J ’f )
521 IRAB(nk) [3
And again we obtain
1

E[2 s < -1 £l
,,72
Hence, we have proved (3.16), for n large enough. O

Now, we will study the second problem, namely: For f = (f}, f;) € L2(Q)6, we
consider (V1, Vy) = S (f) solution of

( LE(V1) = Lf (Nu(Hafy)) 0
Ly (Vo) = L (Ni(Hofs)) 7

(3.17) divV, =0
div VQ =0

on 0f).
T(Vl, VQ) - O

L Bk(Vl,V2> :O

where L} (E) = —AE + (1 — 5)V divE + k’E. The existence of this solution as
well as norm estimates are the goal of the next lemma.

Lemma 3.2.3. Let f = (f,£,) € L%(Q)°, then problem (3.17) has a unique solu-
tion and for all q €]0,1[, there exists n > 0 such that

(3.18) Hsz,s<f>uk<q% K]
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Proof. We first notice that the variational formulation of problem (3.17) is
b (SE (), V) = (L (Ni(Hof1), L (Ni(Hof2))) , v'), W' = (B, H') € V,
with

by s(v,v') = / (curl V; - curlE/ + sdiv V, divE’ + k*V, E) dz
0

+ / (Curl V- curl H' + sdiv Vo div(H') + k*V, ﬁ) dx
Q

imp

+ ik / (Aimp(vl)t~ﬁg+ (Vz)t-ﬁg) do,
o0

forall v=(V},Vy),v = (E H)eV.

The existence and uniqueness of a solution follows from Lax-Milgram lemma
since the sesquilinear form by s is coercive and continuous on V.

Now by taking v/ = S (f) = (V1, V3) and the real part, we have:

IS (5)]]2 = Re(by.(S1,(£), 7 (£)))
= Re (/Q (L (Ni(Hof1)) - Vi + L (Nie(Hofy)) - V) dx) :

But by Green’s formula, for ¢ = 1 or 2, we notice that

/ L (Ne(Hofy)) - Vi da
Q

/ (curl Nip(Hof;) - curl V; + s div N (Hof;) divvi) dx
Q
Q Py

+/ leNk(HQfZ)VZn do
o0

S INk(Hof) |l [[SE 0],

+ +

o0

/ curl Ny (Hof;) x n-V; do|.
80

Now, we must estimate the boundary term. First Cauchy-Schwarz’s inequality
yields

< [[div Nk(Hsz‘)”aQ ||Vi||8Q )

o0

S ||cur1 Nk(Hﬂfi) ||aQ ||ViH6Q :

/ curl Ny (Hof;) x n-V; do
oN

Second by a trace estimate and Young’s inequality, we have
IVillsg S IVilld IVilli o
B (RIVillo + Vil o)
SE Sl
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Thirdly by Lemma 3.2.2, we also get

1 1
leurl Ni(Hof;) [[og S [lcurl Ne(Hafi)[[§ [|eurl Ne(Hof)|l5 o
S INk(Hofi) 17 [Nk (Hofi) |5 o
S a2k 2 ||fillg -
In the same way, we obtain
. 1,1
[div N (Hofi)llog < @22 [Ifillg -

These estimates lead to

< kg IS,

~

o0N

~

< k7 Ifillg (ST

/ curl Ny (Hof;) x n-V; do
o0

.
Hence, by the previous estimates and Lemma 3.2.2, we have

ISt < a2k [1llg [|S, ()]

k Y

which proves (3.18).

To estimate the H* norm of S (f), we apply Theorem 2.D of [22] (the constant
being independent of s since the ellipticity of LZS is continuous in s € [1,2]) to
get

ISt ®ll, 0 S K ISEOll < F S50

279/\/ ~ k?

which proves (3.19) owing to (3.18). O

The splitting result

Now, we can state the main result of this part, namely the following decomposition
theorem:

Theorem 3.2.4. Assume that the k-stability property (1.32) holds with o > 1.
Let u = (E,H) = Sy ,(f), where f = (f;,£,) € 12(Q)°, then there exist uy an
analytical function and ug2 a H? function such that:

u = uy + ugz,

with

(3.20) Juall, <& Ifllg

(3.21) lwalpo < KPmax(p, k)Pk*" ||f]lg, Vp € N,p > 2,
(3.22) lugzl, S+ Ifllg

(3.23) [amllyq < (Ifllq

for some constant K > 1.
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To prove this theorem, we will need the following lemma:
Lemma 3.2.5. Under the assumption of Theorem 3.2.4, let £ = (f1,£,) € L2(Q)°.
Then u = Sy 5(f) admits the splitting
u=ug:+uy+u,

where 1t = Sy, 4(F) for some f € L2(Q)° with

<41
[E] < neig
for some ¢’ € (0,1) and the following estimates hold

Juall, S & [fllg
[walpe S KP max(p, k)Pk* " ||f]lq, VpEN:p > 2,
gz, < k7 IElg

g2y S Ifllq -
Proof. We set
ug = Sgs(Lo(f)) and uge = S;S(f).

Then, we see that
Uu=u—Uuy— Uuge

verifies
(L. (E f
k s( - ) ~17 in Q,
Lk,s(H) = f2a
(3.24) divE =0
divH =0
_ on 0.
T(E,H) =0
\ B(E7 I:I) = O

where f = 2k%(S}(f) — Ni(Hq(f)).

Now, we will estimate the different norms. First the estimate on the norms of
uy2 directly follows from Lemma 3.2.3. Secondly by Lemmas 3.2.3 and 3.2.2, we
have

|8 = 282 (ISt )l + 1N 0) < Cab il < ' g

where ¢ = Cq2 that belongs to |0, 1] for ¢ small enough.
To estimate ||uul|,, we simply use the k-stability property (1.32) to get

(3.25) laall, < & [La(B)llq <k [fllq -
To estimate |u4l|, o with p > 2, we apply Theorem 3.5.1 below and (3.25) to get

[walpo S KPmax(p, k)" (||fllg + 57" [luall,)
< K" max(p, k)P k[l -

Lemma 3.2.3 directly furnishes the estimate of the norms of uge. O
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Now, we can prove Theorem 3.2.4.
Proof of Theorem 3.2.4. Let u = S ,(f), we apply the previous lemma, and
obtain that there exists ¢’ € (0,1) such that

1 1 ~ 1
u=uy+ug +u,

where @' = S, (f) with Hf1H < |Ifllg.
Q
We iterate this procedure to get

We then have the right estimates by the previous lemma and the fact that ¢’ < 1
(so that the associated geometric series converge).

3.2.2 Estimation of kn(S;,)

The approximation quatity 1(Sy,) will be estimated by using the decomposition
theorem applied to the adjoint problem.

Theorem 3.2.6. Assume that the k-stability property (1.32) holds with o > 1 and
that % S 1. Let Sy, be previously defined, then we have

(3.26) kn(Snp) S (k—\/% + & (p (h f_ U)P o (%Y)) '

Proof. For any f € LQ(Q)G, we apply the decomposition theorem 3.2.4 to u =
S; 4(f) and obtain

u = Up2 + Uy.
The analytical part highly dependent on k, while the H? part is less dependent
on k, so we will estimate separately the two parts.

For uy2, we use the same construction as in Theorem B.4 of [48] (Lemma 3.1.9),
hence there exists wp2(= [Iug2) € Sj, such that

h

2—t
s — wirsllq < (];) Izl

for all 0 <t < 2. Hence

hk hi\ 2
kllage — wie|, < —+<—) f|q, -
lug a2l <p » )H o
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We now have to estimate the boundary term in ||ugz — wp2||, np- Lhis essentially
follows from Lemma 3.1.9 and the estimate (3.23).

(3.27)
P 2P 2
T o | wh - (- | S5 S o e - i
feeB mp f feeB
2 3
P h
S5 (2) 3 st
p feeB
h?
< (—) S agfugelis,
p feebB
h 2
< ( —) ||f|rﬂ)
/P
We hence obtain
kh
(3.28) gz — will < (%> £,

We now estimate the analytical part. The estimate (3.21) gives us
luslna < C(ymax(n, k))"k* " ||f]lg,, ¥n € Nyn > 2.

We then define C'x by

, |9l
k= 2 marn kPP

neNn>2
to have
[udlnkx < (2ymax{n,k})"Ck, ¥n e N:n > 2,
but also
(3.29) >k < ORI .

KeT

We use Lemma 3.1.10 (cf. Lemma C.3 of [48]), to get, for ¢ > 0, the following
estimate, for ¢ = 0, 1,2, with w4 = Il qu4:

B h p+1 kh p+1
(330) HUA _WAHq,K < Ch™1Ck (h—I—O‘) + (U_p> .

This estimate for ¢ = 0 and 1 leads to

K g = wally = &) (Jua — wal? e + & lua — wall%)
KeT

SE (W k) ((h i 0)1’“ " (%)pH)Q (%C%) |
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Simple calculations yield

() (3

recalling that %h < 1. These two estimates and (3.29) give

h P Eh\?
_ < _h rh «
(3.31) Elluga —wall, S (29 (h+0> +k <Up) )k 1£]lq -

As before we need to estimate the boundary term in [|u4 — wall,

2

2
P 1
B:E Z ay [(ua —wa)y — —— (a4 — Wa) X1
fecB b f
By using the trace estimate
2 - 2
||U||8K <C (HUHK |U|1,K +h! ||U||K) )
we get
P’ 2
BSH > agllua—wallig,
fe&EB
P’ 2
ST ap (= walli, fa = walise, + 7 = wallk, )
feeB

By (3.30) with ¢ = 0 or 1, we obtain

2 p+1 p+1 2
P h kh )
B () @) (5

fe&EB

Again simple calculations yield

p+1 p+1 P P
h h+o op ~ h+o op

These two estimates and (3.29) give

ho\? ER\P\ >
B < —— k(22 E2e=1) )12
~ (p<h+o> + <0p) ) || ”Q
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Combining this estimate with (3.31), we get

h ' (kR\P\ .
332 bl wal S (0 (s )+ 5 (5 ) ) 4 el

We can now estimate kn(Sp,,), indeed the triangle inequality yields

klw—=wre = wWally ), < kllame = Wizl , +Fllaa=wall,, -

By (3.28) and (3.32), we deduce that

kho ho\? kh\?
kllu—wuz —wally,, S (% +k (p (m) + k <o_p) )) £l ,

which proves (3.26) because wy2 + w4 belongs to Sy, . O

Remark 3.2.7. In the previous proof, we can see that the term k—}; in the right-

hand side of (3.26) appears because of the penalisation term (see (3.27)). Since this

term is, up to the factor ip, bounded by the H?-norm of ug: in a neighborhood

of the boundary, we beleave that this penalisation term is neglectable and that
kh

the term 5 can be replaced by %h. This fact is confirmed by our numerical

experiments.
In the same manner, we obtain the following convergence result:

Theorem 3.2.8. Assume that kn(Sy,) < &. Let u be the solution of (1.30) and
uy,, the solution of (3.6). Then, we have

h h p ER\?
. < T k,Ol*]. ka R
[u uh,p”k,h,pw \/]3+ p(h—i—a) + (ap> ’
b ho\? kh\"\?
_ < —+kp | — kL — :

Proof. We use Theorem 3.1.6 and the same decomposition technique as for the
estimate of 7(Sy,). O

For practical purposes, we formulate explicit conditions that guarantee
kn(Shp) < & (compare with [48, Corollary 5.6]).

Theorem 3.2.9. There exist three positive constants Cy, Cy and kg, such that if
k > ko and

kh
(3.33) o < (i and Ink < Cop,

then kn(Sh,) < &-
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Proof. We just need to find some positive constants C; and Cy, such that

kh < 1
3.34 VP — = kn(S < —.
(3:34) {m ey, WG

By (3.26), it is sufficient to control its right-hand side, namely to show that

kh h\* kh\" 1
: — + K — <—=C"
(3.35) \/ﬁ+k <p(h+0> +k:<ap>>_c C

We will first show that for all C' > 0, v € (0,1) and § > 0, there exist § > 0 and
ko > 0 such that if

(3.36) 6mk§§mﬂk>%,

then we have
(3.37) ke pPP < C.
First we want to find g > 0 such that

o lnc<ﬁlk
——Ink — —— n
| In~| |Iny| — ’

_ InC §<ﬂ— o )lnk;.
| In~| | In~|

Consequently for 8 > ﬁ + 1 and ko > eiﬁ, (3.38) is valid.
Second, there exists py > 0 such that for p > py we have

(3.38)

or equivalently

P Olnp
. —<p-
(339 2 =77 Tinr]
By (3.36), (3.38) and (3.39), we obtain
“ InC Sp_dlnp.
[ Tn 7| [ Tn 7| | Tny

And, since Invy < 0,
alnk+ (Iny)p+dlnp <InC.

By taking the exponential, we get (3.37) with § > max (Ilr?vl +1, 21’;—%())

Now, we can control each term of the left hand-side of (3.35):

!

1. k<&
vp — 3

lnc—,

2. there exist C3 > 0 and ko1 > ¢~ Tl with v = % and 0 = 1 such that
if CsInk <p and k > ko1, then we have

h \’ diam(2) C’
k< < k“
P (h + (T) (

<

P diam(Q2) + o 3
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C/

In %

3. there exist C4y > 0 and koo > ¢~ Tl with v o= % and 6 = 0, such that if
Cyilnk < pand k > koo, then we have

ka-ﬁ-l (%)p S %/
Hence if % < kho< %, then

N
k,Ol+1 <_h>p < g
p) — 3

Hence, (3.34) holds with ¢} = min (%/, ), CLQ = max (C5,Cy) and ko >
max(ko,l, k’o72). ]

>

NI

Remark 3.2.10. From the above proof, we see that C; and ky depend on é (in
such a way that if C' is large, then ) is small and ky is large), while Cy depends
only on «, diam({2) and o.

3.3 The case of a boundary of class C?"*!!

In this part, we suppose that Q is of class C**1!. To treat this case, we take
advantage of a recent paper from S. Nicaise and T. Chaumont-Frelet [14] which
proposes a decomposition of the solution of general wave propagation problems
into a sum of functions which are more and more regular and dependent of k. As
their method is built for general elliptic second order operator but with standard
boundary condition (Dirichlet or Neumann/Robin), we need to check if the method
can be applied to our setting.
In order to estimate kn(Sy,,), we first prove a decomposition result.

3.3.1 Expansion of u in power of k

We want to decompose u = (E,H) = Sj s(f), in a serie of powers of k. First, we
recall that

Lo s(u) :=(Los(E), Lo,s(H))
=(curlcurl E — sV div E, curl curl H — sV div H).

In order to simplify the notation, we write here

divE 0
B(u) := divH and Gu = 0
B0<E7 H) _Z%Et - th

We recall that u = S, 4(f) is the solution of

Los(u) = f+ku inQ,
T(u) =0 on 012,
Bu) = kGu on 0f).
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Idea of the construction

Assume that u admits the formal expansion u = )
Lo s(u) = f + k*u is equivalent to

>0 ¥/u;, thus the identity

L()’S(ll) = LO’S(Z kjuj) = Z k?jLO’S(u])

>0 >0

J=0
By identification of powers of k, we get

Lo,s(uo) =1,
Lo,s(ul) =0,
L()’S(u]‘) = llj_Q, Vj Z 2.

In the same way,

and

In summary, we have

Lo,s(uj) = U2 in Q,
(3.40) T(u;)) =0 on 02,
B(Uj) = Guj_l on 89,

for all j > 0, with u_y =u and u_; =f.
Hence, we can get the following theorem:

Theorem 3.3.1. Let u; verify (3.40), for j € {0,...,01 — 1}, withl <~y —1 and
r = u-— Z_ZI kiu;. We also assume that the k-stability property with exponent
a>0 hold;.ZOThen u; € H2(Q)%, r, € H2(Q)? and we have

515400 S Ifllg

HrlHl+2,Q N ot 1£llg, -

Proof. We first state a shift theorem.
Theorem 3.3.2. Let u be a solution of

Lo,s(ll) = f m Q,
(3.41) Tu) = 0 ondQ,
Bu) = g onodQ,

with Q of class CItY, £ € HI(Q)? and g € HI2(99Q). Then u € HI2(Q)? with

||u||j+2,§z S HfHJQ + ||g||j+%,8Q’
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Proof. (3.41) is an elliptic boundary value problem with an ellipticity constant
bounded independently from s, since s € [1,2]. Then, the result directly follows
from a standard elliptic regularity result (cf. [22])), with a constant independent
of s. =

Initialization is done directly from the definition of ug and u;. For j > 2, one
has

Los(r;) = Los(u) = D K Los(w)

0<I<j—1

= Lo,s(u) - Lo,s(uo) - Lo,s(ul) - Z k'lLo,s(Uz)

2<I<j—1

2<i<j—1
= k*(u — Z k')
0<I<5—3
= kQI'J,Q
and
T(r;)=T(u)—T(a) - Y KT(w)
1<i<j—1
=0
and

Hence, we conclude that

L0,5<rj) = k2rj_2 in Q
(3.42) T(r;) =0 on 0€2,
B(r;) = kGrj_; on 09,

for j > 1, withr_; =1y =u.
By the shift Theorem 3.3.2 and the k-stability property, we get
Irills0 < flully g + & 1Gully 1 o0
Skl g+ E lallyg
< K] .



3.3. THE CASE OF A BOUNDARY OF CLASS C7+1! 91

And, similarly

||r2||H4(Q) S K ||u||29 +k ||Gr1||2+%,ag
S K ully g + ks
S K g,

Hence, for j > 2,

Il 20 S K Irialljo + R IIGrj-1ll1 1 50

< K.

3.3.2 Estimation of kn(S,).

We hence assume that p < v+ 1. In this part, the constants depend on p, so we
analyse only h-FEM.
Let f € L2(Q)°, by Theorem 3.3.1, we can split S s(f) in the following way

p—2
(3.43) Spo(f) = Kuj+r,.
=0
So,
p—2
vélsli,p |55 () — VHlah,p < . (Ku; — Ik a;) +rpeq — I,
J=0 k,h,p
p—2
(3.44) < k[l — Hpuij;,h,p +rp-1 — Hprp71|’k;7h7p'
=0

By Theorem 3.3.1, the definition of II,, and as hk < 1 , we have
(3.45) [uy = Tuyll, < (L +Rk)R w0 S PR (E]lg -
In the same way, we get

(3.46) [rp—1 — ILrpal, S hPRPT £, -

It remains to estimate the ”discrete part” of the norm, namely by Lemma 3.1.9

2 2

ot

fe&B

2
p 2
<D a7 [lwy — yuf;
f fegB

pg h 25+3 )
ST o (2) Il

feEB p
j 2
< Z B206+1) Huj”j—i—Q,Kf
fees
S P f]f5

1
(Hj — ILE;) — +(E; — IL,H;) x n
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In the same way, writing r,_1 = (E,_1,H,_1), we have

2

2
1
Z O‘f% (Ep—1 —ILE, 1) — X(prl —I,H, 1) xn
feeB f
P’ 2
S Z A [rp-1 — Hprp—lnf
feEB
2 2p+1
p° (h 2
Sl (B) Il
feeB
S WP (]l
In summary, we obtain
lay = Thuglly , S A7 (fllg
[Tp—1 — Hprp—IHk,h,p S KPR (|f]| -
Then, by (3.44), we get
p—2
vgslip HSZ,S(f) - VHk,h,p S Z K’ Huj B Hpuj||k7h7p + Hrp—l - le"p—1||k,h,p
, =
p—2
S kIpitl + karozhp) HfHQ
§=0

S (B +ETR) (Ifl,
Thanks to Theorem 3.1.6, we can conclude that

Theorem 3.3.3. If 0 is of class C'™1t and p < v+ 1, then for hk small enough,
we have

(3.47) kn(Sh,) < hk + EPTITepp,

And if hk + kPTYTORP 4s small enough, then problem (3.6) has a unique solution
us, , € S, and we have

(3.48) |u— uShmHk,h,p S h+ KPYORP.

3.4 Some numerical tests

For the sake of simplicity, we restrict ourselves to the TE /T H polarization of the
problem (1.30). In other words, we take

Q=D xR,
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where D is a two-dimensional disk and assume that the solution of our problem
is independent of the third variable. In such a case, the original problem splits up
into a T'E' polarization problem in (E;, Es, H3) in D (correspond to (1.60)), and a
T H polarization one in (Hy, Hy, F3) in D (correspond to (1.59)). We restrict our-
selves to the T'E polarization here. The variational formulation for the continuous
problem is given by (1.62). The discrete formulation of this problem is:

ak,&’%p((Ev H3)7 (Elv H:IS)) = ak,s((Ev H3)7 (E/7 Hé))

v 1
oD )\imp

1
[ OB~ H)(—
oD

curl £ + ik Ey)(AimpEf — HY) do

curl B — ik E}) do

imp
p’a / 7
+ — ()\impEt - HS)()\impEt - H3) do.
h Jop
In our tests, we take D = B(0,1) and use meshes built with the help of
quadrangles of order 2. We choose Ai,p, = —1, hence the impedance boundary

condition is then:
H3+Et:00n oD.

As the discrete space, we take Sy, ,(D)3. To illustrate our results, we consider two
exact solutions, the first one is given by

1.1

Eo(x,y) = (_yx> Hieo(z,y) and Hs (2, y) = RCEN

that belongs to H?(D) but is not in H3(D), while as second example we consider

Eex(xv y) = (_yx) H3,ea:(xa y) and H3,e:c(xa y) = eilm’

that, in this case, is analytical. In both cases, we compute the right-hand side of
(1.28) accordingly. In our numerical experiments, we have chosen s = 14.3 and
ay = 10, because they yield satisfactory numerical results. Figure 3.1 corresponds
to the tests for the first solution, while Figure 3.2 corresponds to the tests for the
one.

First to validate our method, we have computed the error in the norm || -
|k.,np and compare it with the projection error ||u — Py, ,ul/xnp, where Py, is the
orthogonal projection on S, for the inner product associated with the norm
| - llk,np, namely for (E', H}) € V, Py, ,(E', H}) € Sy, is the unique solution of

(Pu(E", Hy), (U, @)knp = (B, Hy), (U, q)) i, V(U q) € Shp,

where

(E', HY), (U, Q) knyp = /D(curlE-curlU+sdivEdivU+k2E-U) dx

D

10p?

h (E: + Hg)(Ut +q) do.
oD
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In Figures 3.1(a) and 3.1(b), we have depicted the two errors for the non

smooth solution with k& = 30 or 60, h = 5 or h = 75 and various values of p,
there we see that for p large enough we enter in the asymptotic regime (since both
errors are almost equal) and the convergence rate is around 1.1 as theoretocally
expected. Similarly for the analytical solution, we can see in Figures 3.2(a) and
3.2(b), the convergence rate seems to be exponential. Let us notice that in the
asymptotic regime, the error seems to reach a lower bound for the largest degrees
of freedom. This can be explained by the fact that the error due to the variational
crime (caused by the nonconformity of our meshes) becomes predominant with
respect to the approximation error.

The second main result from section 3.2 states that if (3.33) holds, then
(3.49)  [ISks(f1,£2) — Sksnp(fr, £2)llknp S [ISks(Fr, £2) — PrpSk,s(f1, £2)[[k.1.p-

In order to see if this bound is sharp or not, we compute Sj g ,(fi,f2) and
Py Sk s(f1, f2) for different values of h,p, and k. For different values of k, h, and
p, we denote by p* the smallest value py such that
(3.50)
[Sk,s(F1, £2) = Spspn(£1, £2)[[k0p < 2|[Sks(F1, £2) — PrpSis(f1, £2) |kpp, Y0 < po.

The value of p* for a given pair (k, h) is obtained by inspecting the ratio

|Sk,s(f1, £2) — Sk s p.n (1, £2) |1
1Sk,s(f1, £2) — PrpSk.s (F1, £2) |l knps

Condition (3.50) state that the finite element solution must be quasi optimal in
the || - [|x,np norm, uniformly in & (with the arbitrary constant 2).

We have compute p*(k) in two different ways: First, we have chosen the mesh
size h independent of k. So, three values of the meshsize h = {5, 75 and 5 have
been fixed and we have computed the value of p* for k varying from 5 to 80.
The graph of p*(k) is represented in Figures 3.1(c) and 3.2(c). There we observe
that in both cases p*(k) ~ k, which is better than conditions (3.33) since for
h bounded from below, these conditions are equivalent to p > Ck? for C large
enough (but in accordance with our conjecture from Remark 3.2.7). Moreover,
the slope seems to depend linearly on h, in other words, the condition on p*(k)
seems to be p*(k) = Chk. Secondly, we fix the product kh to be constant (equal
to bm) with k varying from 20 to 320 for the non smooth solution (and 160 for the
smooth solution) and again compute p* as before. In that case, the conditions
(3.33) are satisfied if p > C'lnk for C large enough. This is confirmed exper-
imentally since Figures 3.1(d) and 3.2(d) show a behavior of p* of the order of In k.

3.5 Appendix: Analytic regularity with bounds
explicit in the wavenumber

In this section, we will prove the analytical regularity for the solution of the
problem (1.30) with estimates explicit in the wavenumber k. For that purpose,



3.5. APPENDIX 95

—o— || — wpp||knp for k=30-8—|ju — P pticy||k,n,p for k=30 —o— || — wp p||k,np for k=308 ||u — Py pticy||k,n,p for k=30
—o— ||t — wpp||khp for k=60 ——||u — P ptic||,n,p for k=60 —o— || — wp p||k,hp for k=60 —— || — Py pUcy||k,n,p for k=60
g f ] £ g ]
=g [ 1 3 [ 1
= 100} 4 =100 .
] E E| ) r E|
5 5 f
Q <) —
ERT : Z101f .
i r i g
10 g7 E
2107} 4 £107° ¢ ]
= RN 11 ]
E 1074 [ 7 g 10—4 E & E
Ll L Lol L Lol =) Eroil L Lol L Lol -
10° 10* 10° 103 10* 10°
Number of Dofs Number of Dofs
(a) Convergence curves with h = {5 and k = (b) Convergence curves with h = 55 and k =
30 and 60 30 and 60
T
15 F 8
15 |
—o—p*
10 : .
o 10 logk
5 .|
5 [ .
O L I I I I | | | | | | |
0 20 40 60 80 0 50 100 150 200 250 300
k k
(c) p* for different values of k and h. (d) p* for different values of k, with kh =
%S

Figure 3.1: First experiment with E..(z,y) = (v, —2)¢e(z,y) and ge.(z,y) =
ile‘l
e

the right-hand side f is supposed to be an analytic function such that
(3.51) f|p.0 < CeAf max(p, k)P, Vp € N.

Theorem 3.5.1. Let 2 C R", n < 3, be a bounded domain with an analytical
boundary, and (L, D, B) an elliptic system in the sense of Definition 2.2.27 of [22]
with L (resp. D and B) a N x N (resp. No x N and Ny x N with Ny, N; € N*
such that No+ N1 = N ) system of differential operators of order 2 (resp. 0 and 1)
with N € N* and k > 1. Let £ be an analytical function which verifies hypothesis
(3.51) and G a matriz with analytical coefficients. If u is a solution of

Lu) = f+ku inQ,
(3.52) D(u) = 0 on 092,
B(u) = kGu on 082,

then we have
’u’PaQ S CUKP ma’X(p7 k>p7 vp S Nap Z 27

with Cy = C(Ce + |lullg + k1 Jull; 0)-
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Figure 3.2: Second experiment with Ec, = (v, —2)qes (7, y) and qe,(7,7y) = e

Corollary 3.5.2. When Q C R? is a bounded domain with an analytical bound-
ary and if we take L = (Log,Los), D = T, B = (div,div, By) and Gu =
0

0 , then if u is a solution of (1.30) with £ verifying the same
—Exn—+H,

/\imp

hypothesis as in Theorem 3.5.1. Then we have
lulpo < CuKPmax(p, k)", Vp € N, p > 2,
with Cy = C(Cr + [luflg + &7 ully ).

Proof. The proof is the same as the previous Theorem, but in this case, L depends
on s, which in pratice depends on k. As s is supposed to be in the compact set
[1,2], the ellipticity constant can be bounded independently from s. Hence, the
estimates (3.64) and (3.71) below (standard elliptic regularity results in balls or
half balls) remain valid with some constants independent of k. O

Remark 3.5.3. Theorem 3.5.1 is applicable for the Helmholtz equation with the
standard absorbing boundary conditions (of Robin type), see [49, p. 1225]. But
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it is also applicable for the time-harmonic elastodynamic system in an isotropic
medium with the so-called Lysmer-Kuhlemeyer absorbing boundary conditions
45, 18, 24].

In order to prove this theorem, we will first introduce two auxiliary lemmas
which give us regularity results in half balls with a boundary condition on the flat
part (Lemma 3.5.8) and balls without boundary condition (Lemma 3.5.10).

By a covering of € by some well chosen balls, we can apply these two auxiliary
lemmas to obtain Theorem 3.5.1.

3.5.1 Analytic regularity near the boundary
Let Bf: = B(0, R) N {z|z, > 0} and 'y = {x € B} |z, = 0}, with R € (0,1].

Let f be an analytical function and G a matrix with analytical coefficients defined
in B}, such that

(3.53) l0°Fl5 < CeA max(|al, k), Va e N,

(3.54) |0°Gll 57 < Ce\la|!, Vo € N7,

for some k£ > 1 for some positive constants Ct, A¢ , Cq and Ag independent of k.
Let u € H?(B}) be a solution of

L(u) = f+k*u in By,
(3.55) D(u) 0 on I'g,
B(u) = kGu on I'g,

where (L, D, B) is an elliptic system with analytical coefficients (in the above
sense), with 7' (resp. B) an operator of order 0 (resp. 1).
For further purposes, we define a few norms

ful, 55 = max 0]l 5

4
[[u]]p,q,ng = 02/1)?2% pp|u|p’qu§_pp, for all p > 0,
HUHO,O,B; = HU-Hngv
Pl ms = Ogg% pp+2yu!p,q,B;_<p+1)p,
by ey = e (107l
3
p= [[u]]p,%,l—‘R = ogg% pp+%|u|pé7FR—(p+1)p’

for all p,q € N, ¢ < p.

We will first estimate the norm of the tangential derivatives (and the normal
derivative up to 2) by using standard analytic regularity of elliptic systems. Then,
we will be able to estimate the complete norm [u], B So we start with an
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estimation of the norm of tangental derivatives [u],, B} Before let us prove the
next technical results that allow to pass from a sum on the multi-indices into a
sum on their lengths.

Lemma 3.5.4. Let h be a mapping from N into [0,00) and a multi-index o/ €
N1 forn =2 or 3. Then we have

(3.56) S g <2 Z Jelo'lp.

ﬁ’GN"iliﬂ’Sa’ :0

Proof. The extimate (3.56) being trivial for n = 2, we only need to consider
the case n = 3. In this case, without loss of generality, we can assume that
o/ = (aq, ) is such that ap < ay. Now since in the left-hand side of (3.56) the
summand depends only on the length of 5/, we may write

(3.57) > gl = Zh

B'eN2:p/ <o’

where N, is the number of pairs 8’ = (31, 52) < o' of length p that can be explicitly
computed:
p+1 if0<p<as,
Npy=4 as+1 ifay <p< oy,
| —p+1 ifa <p<|d.
Since
x < e’ Vrel0,00),
we easily see that
Np S 26'0/‘_1)’ vp € {07 ) |O./,|}.
This estimate and (3.57) yield (3.56). O

Corollary 3.5.5. Let h be a mapping from N into [0,00) and a multi-index o € N™
with o, < 1. Then we have

|al

(3.58) S a8 <2010+ ) > k).

BeEN": <o p=0

Proof. It n = 1, (3.58) is direct, so we assume that n = 2 or 3. If o, = 0, the
assertion is a direct consequence of (3.56), while if a,, = 1, we write

> nish= > mIED+ Y, AT+,
BeEN™: < B=(p',0)eN":8'<a’ B=(p’",1)eN":8'<a’
Then we apply the estimate (3.56) to each term of this right-hand side to get

|o]

> w(B) = ZZh el 123 " h(p+ 1)el .

BeEN": < p=0

We conclude by performing a simple change of unknowns in the second sum of
this right-hand side and adding some non negative terms. O]
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Lemma 3.5.6. There exist a positive constant C' (depending on n), a positive
constant Cy. g (depending only on R < 1), and a positive constant \g > Ag such
that for alll € N and any u € H'Y(B}), we have

3 I+1
(359)  p2IGul,s r, < CChaCa S ()™ Pmax(l+ 1, k) P[ul, , 5.

p=0

Proof. G being a matrix with analytical coefficients defined in B}, by a standard
trace theorem, there exists a positive constant C},. p depending only on R < 1 such
that

(3.60) pi HGUHZ,%,FR < Cir.r ([[Gu]]l,o,B;; + HGU]]1+1,1,B§> .

We now estimate each term of this right-hand side. First for any |o| < I + 1,
Leibniz’s rule and the assumption (3.54) yields

oGl <Y (§) 177Gy 0%l

Bl
(6% ol—
<nCa 3 () 26l - 8! 0%l
BLa
As one easily checks that
p!
(361) aﬁpp_q>Vpaq€NZQSp7

together with the combinatorial inequality (that can be shown using the combi-
natorial interpretation of binomial coefficients, see [16, p. 328] or [22, p. 48])

|
FAE= = B8 =Y

we deduce that

(3.62) 10°Gu] i < nCa Y AG ™ max(|al, k)17 10l 5.

B<a

Therefore, we may write

[Gui.55 = max, p'max [0°Gul 5

R lp
SP>3

|a|=1

< nCg max p' max )\glﬁl max(l, k)' =1l HﬁﬁuHB+ .
=<k B o

As R <1 and as |3] <[, we have p' < pBl and then

[[Gu]]l707Bl4{» <nCg maxz /\l(;\ﬁl max(l, k)7 max pl?! HaBuHB+

on=0 _R R—
\g|:l B<a O§p§2‘3| 1Blp
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In the above estimate as f < a and «,, = 0, 3, is trivially equal to zero, and we
deduce that

[Gu],, 5r <nCaq maxz Ao max(l, k)l_w'[[u]]mo’B;.

an=0
lal=l B<La

Applying Lemma 3.5.4 to the sum on 3 (recalling that a,, = 0), we deduce that

I
(3.63) [Gu], s < 2nCq D (era) P max(l, k) Plul, 0 -
p=0
Similarly, using (3.62) we have
I+1

<
[[Gu]]z+1113+ o< r1<1ax p max 10° GUHB; (1)
SP>30+1) \al z+1

<nCg max Pt max Z/\Ia\ 1B gled=161 max(|al, k)e=1A H@Bu”

—(+1)p

O<p< 2(l+1) \a\ l+1 B<a
Since |o| =1+ 1, we get as before
[[Gu]]l+1,1,3;
<nCe max p max Y AZ P max(i + 1, k)11 |0°u]| .+
0<p< 5y o B B
I+1- -
<nCqg max Z Aa Pl max(l + 1, k) |ﬁ|[[u]]|5|71,B§.
la|=1+1 Bl
Applying Corollary 3.5.5 to the summation on 3, we conclude that
1 I+1
[[Gu]]lﬂ,l,Bj; <2(1+ ;)HCG Z(e)\G)lep max(l + 1, /f)’+1*p[[u]]p,1,3;'
p=0
This estimate and (3.63) in the estimate (3.60) lead to (3.59) with A\ = eAg (as

Now we can estimate the different derivatives.

Lemma 3.5.7. Let u € H*(B}) be a solution of (3.55) with £ and G analytic
and satisfying (3.53)-(3.54). Then there exist K > 1 and Cr > 1 such that for all
p=2,

[[u]]p’Q,B;5 < Cu(B3)KP max(p, k)?,

with Cy(Bf) = Cr(Ce + [u]l s + 57" [[ull, ).

Proof. We will prove this result by induction, by applying a standard analytic
regularity result (i.e. Proposition 2.6.6 of [22]), which gives us a real number
A > 1 such that for all p > 2

(3.64)

p—2 1

[[u]]p,ng < ZAp—l—l (pi[[Lm)]]l,o,ng + p2 [[B(u)]]l’%,FR) + APt Z[[u]]lvlﬁfa'
1=0

=0
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Initialization: For p = 2, by (3.64), we have
3

[y < A (PPILWg0m5 + 2B o0, ) +AD [0y

3
<A (,03 [f + k2u]]0,0,3§ + pi [[kGu]]O’%’FR> +4 Z[[u]]lyl,B}E
1=0

1

< A(IflLgs + 1 s + K Gl )+ A ]

1=0

< A (€] + K+ 1) Jull gy + kConr |Gully gy + 1l )

with the positive constant C}, g introduced before. By noticing that
kCur [|Gully i < CkCy rkCa(llully 5 + A [[ull5:),
we then have
[l < A (IFl 55 + (k2 + 1+ CCipCaak) [ull
+H(CCynCak +1) [l )

< Ak? (Ce + 2+ CCypCaa) [ull gy + (CCurCa + DE [[ully gy )
< Ak*max(2 + CCy,rCele, CCurCa + 1)(Ce + [Jull p + &7 ull, 5)
< Cu(Bf) max(2, k)? < Cyu(Bf)K? max(2, k)?,

with CR Z Amax(? + OCtT’ROGAg, OCtr,RCG + 1) Z 1 and since K Z 1.
Induction hypothesis: For all 2 < p’ < p, we have

(3.65) [ul, 5.5 < Cu(Bi)K” max(p', k)"
We will show this estimate for p 4+ 1: Using (3.64), we may write

p—1 3 1
(3.66) Huﬂp+l,2,BE < Z AP (Pz[[L(u)ﬂz,o,Bg + pi HB(U)]]I,%,FR> + AP Z[[u]]l,l,B;-
1=0

=0

Now we need to estimate each term of this right-hand side. We start by estimating
P> [[L(u)]]w’B; for [ < p— 1: First we notice that

pi[[L(u)]]l,O,BE <[f+ k2u]]l,0,Bj5 < [[f]]z,o,B;,; + kQ[[u]]l,Q,Bg-
By the induction hypothesis (3.65), we then have

PAL(W)] o 51 < CeApmax(l, k) + k*Cu(BE)K' max(l, k)’

!
< k2 max(l,k‘)lcu(BE)Kl (kz)\[f(l + 1) :
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As 1+ 2 < p+1, this estimate directly implies that

l
PRI, 55 < max(p+ 1, B Cu(BEK' ((?) + 1)
< 2max(p + 1, k)P Cu(BL) K,

for K > A¢. Multiplying this estimate by AP~ and summing on [, one gets

p—1 p—1
2
> Aty [L(w)], .55 < Cu(BE) K™ max(p + 1, k)P > AR

=0

=
N o~
LL

1 12 ANP!
< CU(BE)KPJF max(p + 1, k)er & (_) '
K =0 K

p—1 0
If K > 24, then Y (4)"7 <3 (4)' <1, which yields
=0 =1
(3.67) Z AP p? [[L(u)]]l,o,Bg < Cu(By) K" max(p + 1, k)pH?-

Estimation of p2 [B(u)] 110" By the boundary condition on u, we have

3 3
pi [[B(u)]]l,%,FR = kp: [[Gu]]l,%,rm
and by the estimate (3.59), we get

3 +1 , )
(3.68) p2[B(w)],1r, <kCCirCa > (M) max(l 4 1, k) [u] 2.5

p'=0

The induction hypothesis (3.65) then leads to

3
pi [[B(u)l]l,%,FR
I+1
< kCChrCaCu(BE) Y (N) ™7 K max(l + 1, k) max(p/, k)"

p'=0

L1y N\ P
< kCCy rCaCu(Bf) max(l + 1, f) R Z <?G> .

p'=0

1,0, N\ 1—p/

Hence for K > 2)\g (recalling that [ +2 < p+1 and that ) <%> <2), we
p'=0

deduce

* ol

p2[BW)]1r, <200, rCaCu(BE) K™ max(p+ 1, k).
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Multiplying this estimate by AP~! and summing on [, we get

p—1 p—1

Z Ap_lp§ [[B(u)]]lé’FR < Cu(BH) K" max(p + 1, k)P12CC,,. rCa Z AP
=0 =0
20C;, RCaA A [ A
+ +1 +1 tr,RY G
< CulBip) K" max(p + 1, k! =S ; (?) .

Again, for K > 2A, we arrive at

p—1
3 4 A
(369) Z Ap_lpf [[B(U—)]]l,%,r,{ S CU(B;'?')KP-&J maX(p —+ ]_, k)p-i—l%'

Finally using the definition of Cy(B3), we directly check that

1

k
(3.70) Z llB+< RC (BE),

1=0
and therefore (since we assume that K > 2A)

1
1
AP Tulyy g < C—Rcu(B;)Kp max(p + 1, k)P,

=0

In summary, using this estimate, (3.67), and (3.69) in (3.66), we have obtained
that

(2+40CnCaA+ &)
- .

[[u]]p+1,2,BE S CU(BE)KPJFI maX(p + 17 k)p+1

This yields (3.65) for p+ 1 if

1
K Z max ()\f, 2A7 2)\/(;, 24+ 400,57» RC(;A + C_)
R

]

Now, we will show an equivalent lemma but which also estimates the norm of
the normal derivatives of higher order.

Lemma 3.5.8. Let u € H*(B}) be a solution of (3.55) with £ and G analytic
and satisfying (3.53)-(3.54). Then there exist K1, Ko > 1 such that for all p,q > 2
with ¢ < p, we have

[[u]]p,q,B; < Cu(B)KY K max(p, k)P,

with Cy(Bf) = Cr(Cy + HUHB;g + k7 ”qu,Bg)'
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Proof. Again, we will show this lemma by induction and by using a standard
analytical regularity result for elliptic problem (i.e. proposition 2.6.7 of [22]),
which gives us

(3.71)
p— min(l,g—2) .
[[u]]p,quE < ZAP_H Z BT p [[L(u)]]l,u,Bg + B pz [[B(U)]]l,%,m
= v=0

1
+ APt Bt Z[[u]]z,l,Bga
=0

for some positive constants A and B > 1. The induction is done on ¢, the initial-
ization step ¢ = 2 is obtained from Lemma 3.5.7, by taking K; > K and Ky > 1.
The induction hypothesis is: For all p > 3,2 < ¢ < ¢ < p—1, it holds

(3.72) [ul, g 5; < Cu(Bf)KVES max(p, k).
We use the estimate (3.71) to get
(3.73)
p—2 min(l,g—1)
[l gy € 2470 X B+ Bip: [B(w)], 1 1,
=0

1

+ AP BYY [u], g

=0

We start with the estimate of p? [[L(u)]]z,y,Bg- By the induction hypothesis (3.72),
we may write

pi [[L<u)]]z,u,Bg < [[f]]z,u,Bg + kQHqu,u,Bg
< Cedmax(l, k) + k*Cu(BR) KL KY max(1, k)

)1
< Co(BH)KLKY K max(l, k) ((é) wr t 1)
2

l—p+1 p-v—¢q
Kl KQ )

< CulB) KTKS max(p, kY -

if K, > \¢. Multiplying this estimate by AP~'='B%" and summing on v and I,
one gets

min(l,g—1)
ZAP - Z BT 2 )Hl,y,Bg

p—2 min(l,g—1)

2
AP~ 1-1 BI I/Kl p+1KV q
K 2 >

v=0

9 p—2 A p—1 | min(l,g—1) B q—v
< Cu(BH)KPKI™ max(p, k)P —— (—) (—> :
( R) 1829 (p )KlKQ; K, K,

v=0

< Cu(B3)KPKS™ max(p, k)P
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Choosing K7 > 2A and K5 > 2B, we conclude that

(3.74)
p—2 min(l,q—l) 8
—1-1 —v 9 N N
;AP VZ:O B1 Px HL(u>]]l7V,B§ S Cu(BR)Kl K2 max(p7 k;)l’m

3
Estimation of p2 [[B(u)]]lé,FR for [ < p—2: We use the estimate (3.59) and the
induction hypothesis (3.72) to get

3
p2[B(w)]1r, < kCCurCaCu(Bf) K3
+1
x> () K max(l+ 1, k)P max(p, k)

p'=0
In the above right-hand side as [ + 2 < p and p’ < p — 1, we obtain

3 +1 )\/ l+1fp/
PIB L, < COrCaCuB R maxtp PRI S (78]

Ky
p'=0

For Ky > 2\, we deduce that
3
(3.75) p2[BW)],1 1, < 20C, rCeCu(BE) K max(p, k)P K1+

Multiplying this estimate by AP~!~! B4 and summing on [, as before one gets (since
K1 Z 2A and K2 Z 2B)

p—2

4CCy, AK.
> A Bt (B, < CuBHRTAY max(p kp (CCACOAE )
=0
Finally using (3.70), one has
- 1
AriBe Z[[u]]z,z,Blg < Cu(Bjp) KT K3 max(p, /f)pm~

=0

Using this estimate and the estimates (3.74)-(3.75) into (3.66), we can conclude
that

K K> K, CrK 1K,
< Cu(BL) YK max(p, k)P,

[[u]]p7q+1,B§ < Co(B) KV KT ( + wrCGRy )

for K; and K, large enough. O]

Remark 3.5.9. In Lemma 3.5.8, if we take p = q, we obtain
[[u]]p,p,BE < Cu(BE)Kp max(p, k),



106 CHAPTER 3. MAXWELL’S SYSTEM IN SMOOTH DOMAINS

3.5.2 Interior analytic regularity

Let Bg = B(0, R), L an elliptic system of order 2 defined in Bg, and k > 1. Here
we consider a solution u of

(3.76) L(u) = f + k*u in By.
We now define the following semi-norms

[uly.5, == max maxp?[0%ullp,

0<p<% |a|=p

2 +2 le'
“lu ‘= max max 0%u :
lulyg = s g [l
We suppose that f is analytic with
(3.77) Hao‘fHBR < CeNemax(|a, k)|a|, Vo € N,

for some positive constants C¢ and A¢ independent of k.

Lemma 3.5.10. Let u € H?(Bg) be a solution of (3.76) with f satisfying (3.77).
Then there exists K > 1 such that

[[u]]P»BR < Cu(BR>Kp maX(p7 k/,)p7
with Cu(Br) = Cr(Ct + [[ull g, + &k~ [ull, 5.), for Cr > 1.

Proof. The proof is exactly the same as the one of Lemma 3.5.7 when we use
Proposition 1.6.3 of [22] (a standard interior regularity result) instead of Proposi-
tion 2.6.6 of [22]. O

3.5.3 Proof of Theorem 3.5.1

The first step of the proof is to consider a covering of €2 by some balls, which
verifies
N P N

where B, = B(z;,&;) and B; = B(x;, %), with £ > 0 small enough such that
B(x;,&) C Qif z; € Q. This yields

N
a0 D [l g0
=1

SO ulgt+ Y.l see

1<i<N:z; €Q 1<i<N:z; €00

In the case of an interior ball, namely for ¢ such that x; € 2, we simply perform
a translation to apply Lemma 3.5.10. Hence, the operator L does not change and
we directly have

’u’p,Bi S p"[ulp, s, S p"Cu(Bi) KP max(p, k).
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By the definition of Cy(B;), we then arrive at

(3.78) [l g, S (Cr+ Iull, + 5 July g, ) (K7 max(p, k).

p.B; ~

In the case when a ball intersects the boundary of 2, namely for each ¢ such
that x; € 02, we apply a change of variables which allow to pass from B; N €2 to
B . First thanks to a Faa-di-Bruno formula, we obtain (see [22, (1.b)])

cp—i—l . k! ~
|u’meQN ; Zﬂ|u|z,35/2

=0

with a positive constant ¢; which depends only on the transformation that allows
to pass from B; N €} to Bg; . Then we can can apply Lemma 3.5.8 (see Remark
3.5.9) and get

K'max(l, k)"

Mﬁ

k!
[l g0 S @ CalBH D 1

l

I
o

Using (3.61), and a change of variables (in Cy(B{) and again Faa-di-Bruno for-
mula) we obtain

|u|pB o S 6p0p+1 <Cf

1||u||1BﬂQ> max(p, k ZKZ

This yields

CZ‘K —
|u|p,éim N K_1 (Of + HuHBmQ +k7 “u”l,BmQ> (cieK)P max(p, k)"

The combination of this estimate with (3.78) yield the result.
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Chapter 4

Helmholtz equation with
Perfectly Matched Layer (PML)

4.1 The scattering problem with a polar PML

We consider the Helmholtz equation set in the outside of a smooth, star-shaped
sound-soft obstacle @ C R2. In order to approximate this problem with finite
elements, it is required to truncate the computational domain. Here, we propose
to analyze the Helmholtz equation when a Perfectly Matched Layer (PML) is
employed.

Without losing generality, we select the coordinate system so that O is star-
shaped with respect to the origin. We introduce two positive numbers a < b
such that O is contained in B(0,a), the ball of R? centered at 0 with radius
a, and we employ the notation Qy = B(0,a) \ O. In addition, we assume that
the computational domain §2 is convex and contains B(0,b). We also introduce
the notation I' = {|x| = a} = 90B(0,a). The geometric setting is displayed in
Figure 4.1. The relevant definitions and properties of the involved functions are
listed in Appendix 4.7.

As usual we denote by (p, ) the polar coordinates centred at 0. According to
[19, §3] and using the notations from Appendix 4.7, for an arbitrary real number
k, we consider the boundary value problem

~ 10 Ju 1 0%u ~
4.1 2 29 () s 2 n QO
(4.1) kddu+pap (qpﬁp)+qp2892 ddf in €,
(4.2) u = 0 on 05,

where the datum f is supposed to be in L*(Q). As d = d =1 in Qp, the problem
reduces to the Helmholtz equation in €y, the PML being situated in £\ Q.
Multiplying the partial differential equation by ¢, we obtain the equivalent problem

qg 0

5 ou 1 0%u ~
4. 242 - - — = &finQ
(4.3) kdu+pap(qpap>+p2892 d°f in Q,
(4.4) u = 0 on 09Q.

The variational formulation of this problem is obtained by multiplying the partial
differential equation by a test-function v € Hg(€2) and by using formal integration

109
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Figure 4.1: Hlustration of the geometric setting.

by parts. Hence we look for u € H}(£2) solution of

ou 0 1 Ou v ~ ~
4, ——(q0) + = — 2| dPuv :/2 H(Q).
( %}{qapap(qv)+p28989}dx+k /Qduvdx Qd fodz,Yv € HL(Q)

By Leibniz’s rule, this formulation is equivalent to
(4.6) bi(u,v) = —/ d* fodz,Yv € HE (),
Q

where the sesquilinear form b is defined by

Oudv 1 0udv dq Ou ~
b = 4 g—~—0—-k*dPuv} d HNQ).

By Theorem 2 of [19], this problem has a unique solution for all real numbers
k except possibly a discrete set. For this exceptional discrete set, as we are in a
Fredholm setting, uniqueness of a solution is equivalent to existence and unique-
ness.

4.2 The stability estimate

Let us start with the following definition.

Definition 4.1. We will say that system (4.6) satisfies the k-stability property if
there exists kg > 0 large enough such that for all k > ko and all f € L*(Q) the
solution u € Hy(Q) of (4.6) satisfies

(4.7) kllulle + ulia < 11l

for all k > k.
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According to this definition, the k-stability property directly implies that for
k > ko, problem (4.6) is well-posed since the only solution u of problem (4.6) with
f =0 is zero.

Let us further remark that once we assume that the k-stability property holds,
then the best constant in the right-hand side of (4.7) is equivalent to 1. More
precisely, we can prove the next result.

Lemma 4.2.1. Assume that (4.7) holds for all k > ko > 0 and introduce

k|u + |u
Con(h) = sup  udlle T lusho
FEL2(Q):f#£0 Hf”ﬂ

where uy € Hg () is the unique solution of (4.6). Then one has
(4.8) Copt (k) ~ 1,Vk > k.

Proof. The bound Cy(k) < 1 being trivial since (4.7) is assumed, we only con-
centrate on the converse estimate. For that purpose, fix a non zero real valued
function x € D(2) that vanishes in the PML region Qppsr. Then for all & > ko,
define

u(x) = ey (x),vx € Q,

where z; is the first component of x, that is considered as solution of (4.6) with
f = Au+ k*u (as u is zero in the PML). Then direct calculations yield

[flle ~ [[Ax]le + Kl[dixle,

and
Ellullo + [ulio ~ Ellx|la + x|

Consequently as || x|lq > 0, we find

kllullo + [uli0
1/l
which proves that Cyui(k) 2 1, for all k > k. O

2L

Let us also notice that any solution u € HJ () of (4.6) satisfies
5 10 ou 10%u - dq Ou
4.9 k*d? ——  ¢p=— ——— =d —— in D'(Q
(4.9) u+p3p<qp8p)+p2892 f+qapap1n (€2),

which is equivalent to (4.3) in the distributional sense. As ¢ tends to 1 as k goes
to infinity (cf. Lemma 4.7.2), we deduce that the system

10 (4, Ou n 1 9%u
pop \' Pop) T 12 00°
is strongly elliptic (uniformly in k) for k& large enough. By elliptic regularity, we

deduce that, for k large enough, any solution u € Hj(2) of (4.6) belongs to H?(12)
with the estimate

(4.10) lullze < 1flle + &[lulle.
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Combined with (4.7), we obviously deduce that

(4.11) [ullz0 S Bl fllo;

for k large enough. Note finally that in such a case (4.9) holds strongly, i.e., as an
equality in L*(Q).

The goal of this section is to prove the k-stability property. This will be made
in different steps.

Lemma 4.2.2. For k large enough, we have

(4.12) /Q+

PML

ou?

dp

- ou
dot [ okude S flallulla + 15 lon o,
Qpmr P

Proof. In (4.6), we take v = u and the imaginary part to obtain

s

By Cauchy-Schwarz inequality, the fact that ¢ = d =11in Qo and Lemma 4.7.3,
we find

/ —Im ¢?
Qpmr

By the identities (4.75) to (4.77), the previous estimate can be equivalently written
(4.13)

/ 2vkpa’(p)
QpumrL k? + o (P)
Since ¢’ and o are positive in Qpjysr, in the left-hand side of this estimate, we can
reduce the integral over the first summand to Q3,,;, namely

/ 2vkpa’(p)
at,,, k*+0%(p)

PML

dp

+k21md2|u|2}dx—Im/d2fudx+1m/ ——ﬂdx.

1,0

2
u ~ u
al T K Imd2|ﬂ|2} dz S [ fllellulle + 215~ ap lepare 1l -

oul?

dp

- 1., 0u
+2/<JUIU|2}dl’§||fHQHU||Q+ ||a lepa lullapy. -

ou|?

dp

1, 0Ou
d$+/ 2kalul’de S || fllellullo+ ||a opar llwll@pa-
QpmL

By (4.71) and the fact that v tends to 1 as k tends to infinity, we conclude that
(4.12) holds for k large enough. O

Lemma 4.2.3. For k large enough, we have
(4.14) /Q Vul* de S K ullg + | fllallulle S K llulld + [1£1:

Proof. In (4.6), we take v = u and the real part to obtain

/ {Req }dw
Q
dq Ou

:k2/ReJQ\ul2dx—Re/d2fud:c—Re q——udz.
Q 8,08p

ou?
ap

8u
00
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By Cauchy-Schwarz’s inequality, the boundedness of d and ¢ for k large (see
Lemma 4.7.2) and Lemma 4.7.3, we obtain

/ {Req

As ¢ tends to 1 as k tends to infinity (see Lemma 4.7.2), for k large enough, we
get

I

By Young’s inequality, we can absorb the last term of this right-hand side, namely

I

for some C' > 0 independent of k. Consequently we get

<1—%>/ﬂ{

which yields (4.14) for k large enough since |Vu|* =

oul?
ap

8u
00

1, 0u
} dx < k2||u||Q + ||f||Q||U||Q + - ||8 ”QPJWLHUHQPML

L|ouf
> | 06

@2
dp

1 0Ou
} dx 5 k2||u||522 + ”fHQHUHQ + - “a HQPMLH HQPML

@2
dp

ou
00

1
} de < CK|[ullg + Cl fllallulo + 55 ”_HQ +C?lullg

%2
dp

ou
00

}d < CRully + Cllallullo + C2llulla,

2
& +i2\g—\. O

In view of this Lemma, we see that the k-stability property will be proved if
we can estimate k||ul|q. Since Lemma 4.2.2 gives an estimate of this quantity
in QF,,;, it remains to estimate it in Q\ Q},,,. This is made via a multiplier
method originally introduced by [56, 57, 58]. For the cut-off function 7 fixed in
the Appendix 4.7, let us introduce the multiplier

m(x) = zn(p), vz € Q,

the functions (depending only on the radial variable p)

. _0q

(4.15) a=1(¢—-2Req®) + 2nqa—p,
- O /-~
_ 92 Y (5

(4.16) §=2dn+py (d n),

as well as the expressions

(@.17 s = [@ =g (05 dn
=2 ou
(4.18) ¥ = /Q(d —d*)n(p )pa—pudx

With these notations, we can prove the following identity with multiplier:
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Lemma 4.2.4. The next identity holds

(4.19) /Q< K28Jul? + py’ |- 1 0ul”

p 00

ou

2
) dm—l—/ |V - n|*z - ndo(z)
20

dqOu. Ou
=%~ k*%, +2Re [ (& —
1+ e/ﬂ( f+q8pa )npap x
Proof. For shortness, let us set fi = d*f + ¢ BZ g“, then as already said before u
satisfies (4.9) or equivalently

0u> 1 9%u 4

~ 10
KdPu+ - — —2
P (q o) " 2 op?

Multiplying this identity by m - Vu = npg—z and integrating in 2 (meaningful as
u € H?(Q)), we find

(4.20) K21, + KT+ Ju + Jrad + Jang = /fmp— dz,
where we have set
0 ou ou
Jrad = / (q ) — dx,
* 7 Jowa 00 \"0p) "op
190%u Ou
Jong = / ——n—dz,
J 2\ p 06% " dp
1 = / apunp% dz,
2\ Q0 dp
I, = /u(m-Vu)dx,
Qo

Jo = /Au(m-Vu)dx.
Qo

We now transform these expressions by using some integrations by parts.
a) Transformation of I: As 7 is zero outside B(0,b), we have

2w b —
I :/ / d%mﬂ@ dpdb.
0 a ap

By integration by parts in p, we have

2m
/ / dzunp udpd& /a!u\ do(x),

the boundary term being zero since 7(b) = 0. By Leibniz’s rule, we deduce that
27 b
o /-

— — (d®np? 2 dpdh

/0 / ap< np)IUI p

27 b
/ / danz@ﬂ dpdf — / alul*do(z).

0 a ap T
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The second term of this right-hand side would be equal to —I if d2? were real, hence
by introducing >;, we find that

(4.21) 2Rel = — Blul*dx + X, — / alu|*do(z).
0\ Qo r

b) Transformation of /,: By the Green formula, we have

2Rel, = 2Re/ u(m - Vu)dx
Qo
= m - V|u|® dx
Qo

= —/ 2|ul? dx + m - n|u|?® do(z).
) Qo
Since u = 0 on 00, we have
(4.22) 2Rel, = — [ Bluf*dx + / alul*do(z).
Q r

c) Transformation of J,,,: As before we have

2 b 02 —
0*u Ou
= Z n2—dpdd,
Jang / . 0629

and by integration by parts in 6, we find

2 b au 827]
Jang = _/0 i @n(‘%ﬁp d,Od9

2 _
ou 0*u
= 2Re (% aeap) ’

0

u
00

Since

9
dp

2 b
0
2Re Jyno = — —
@ Jang /0 /anap

By integration by parts in p, we deduce that

2
d:L'+/a
r

d) Transformation of J,.,4: As before we have

by ou\  Ou
sz/ /—(2—) — dpds,
=] a3, \TPa, ) g, 0

du
00

we then have

2
dpdo.

2

L Ou do(z).

p 00

10u

p 00

(4.23) 2Re Jyny = / on'
Qo
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and an integration by parts in p yields

2m ou 0 ou Ju
Jrad = / / qpapa (npa )dpde—/FG % do(z)
2.7 u
= — —| dpdf
/ / arm Pap P
ou d [ du Ou|?
- / / I np@pap( 8/)) apdf - /r 9| )
This can be equivalently written as
2 pb ou 2
(4.24) Jrad = —K—/ / > 5 dde—/a —| do(x),
o Jo P r

where we have set

™ b —
K = / / q2nwa—w dpdf and w = p—.
o Jo dp dp

Introducing 32, we see that

21 b —
K=Y+ / / qznwa—w dpd?,
0 0 dp

hence integrating by parts in p in the second term of this right-hand side, we get

K = / / q nw w dpdf — /
r P
= / / (7°n) |w|* dpdb — / a
This yields

2Re K =% — / / (7°n) |w|* dpdf — /a

Taking the real part of the identity (4.24), we conclude that

2
dm—/a
r

e) Transformation of J,: By integration by parts, we have

oul?

do(x)

ap

ou|?

ou
4.25 2Re J,q :—E—/ozp —
( ) ! Q dp

dp

do(z).

Jo = / Au(m - Vu)dx
Qo
= — [ Vu-V(m-Vu)dr+ / Vu-n(m-Vau)do(z)
Q0 r

+ [ Vu-n(m-Va)do(z),
00
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We recall that m = z in €. In addition, since u = 0 on 0O, we also have Vu-t = 0
on 0O for the unit tangent vector t. It follows that

m-Vu=m-nVu-n+m-tVu-t=Vu-nx-n,

and
Vu-n(m-Va) = |Vu-n|*z - n,

on JO. On the other hand, Rellich’s identity yields that

2Re Vu-V(m-Vu):/

Qo 0Qo

|Vu|2:1:~n:/|Vu|2x-n+/ IV - nl?z - n.
r 20

Recalling that m = x in Qy and Vu -t = 0 on 00, and using Rellich’s identity, we
find that

(4.26) 2Re J, = / |Vu-n]2:v-n—/|Vu|2as-n+2/Vu-n(m-Vu)
20 r r

2
10u

= Vu-nga:-n—i—/a —/a’——
/aol | r r |pdb

Coming back to (4.20), taking the real part and using (4.21), (4.22), (4.23),
(4.25) and (4.26), we arrive at (4.19). O

2

du
dp

The previous Lemmas allow to conclude the
Theorem 4.2.5. System (4.6) satisfies the k-stability property.
Proof. We first look at the behavior of § as k is large. By Leibniz’s rule, we have
B =By + pdy,
with
Bo = 2(d* + Pda—p)ﬁ-
With this splitting, (4.19) implies that

2
(4.27) /ﬂ <k2ﬁo|u|2 — ) dx
U

<Y HEY — 2Re/ finp—dx
Q

0
dp
/ ou
Q “p dp

10u

p 06

2
dx — k:Q/ pd* [u)? d.
Q+

PML

Since d? tends to 1 as k goes to infinity and g—i = % tends to 0 as k goes to
infinity, we directly see that

(4.28) Re By > n, for k large enough.



118 CHAPTER 4. HELMHOLTZ EQUATION WITH PML

Using this property, the boundedness of d and the fact that 5’ < 0 in (4.27), we
find that

(4.20) = / nlul? dz < 5] + km el ulle
Q

+ [ lalo|5

for k large enough. Now by the definition of o and Lemmas 4.7.2 and 4.7.3, we

have
2 2
dm+k2/ |u|2dx§/ + Eul? | dz
Q+ Q;ML

/ |a|p\a—“
Q ap PML

dx + k:2 u|? d,

P]ML

ou

dp

1 ou |’
+—/ 2 e,
k QpmL dp
With the help of (4. 12) we then obtain
/ |a|p d:p+k2 lu|? dz
P]\IL
1, 0u
S Elfllallulle + H HQPMLHUHQPML k\la—l\gpm
This estimate in (4.29) leads to
@30) B [ gl de S 514 RIS+ el Val
Q
1,0u
+k|’f‘|9|lu||9 + H ||QPML||U||QPML kHa_HQpMLv

for k large enough.
It then remains to estimate || and &%|%].
i) By the definition (4.18) and (4.81), it holds

k2|21| 34/ ~1/2 ou
QpmrL a

Cauchy-Schwarz’s inequality and the boundedness of /2 then lead to

k& ?|ul d.

k2|21| S ” ||QPAJL||k01/2u||QPhIL'

Using Young’s inequality (with an arbitrary A > 0) and (4.12) we infer

1 .
EDINES /\H ||QPML + X/ Fk*|ul*dx
QppmL

(4.31) S Alla—pllépm (kIIfIIQIIUIIQ +ll5- IIQPMLIIUIIQPML> :
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For the second term of this right-hand side using Young’s inequality we find

1 oOu
IR
1 ou|?
+ —— o |—| dz
615\/% Qpmr Ip
+ 0 82uzdx
\/E QpmL 8,02 ,

for all § > 0. Using (4.13), the fact that v tends to 1 as k goes to infinity and the
property WIZ? > % valid for k large enough, we find

1., 0u
DS EH_pHQpML
1., 0u
+ 5\/—(||f||sz|| ullo + k”a lepa lltllapy:)
) 0%u
+ — — dI,
\/E Qpmr apQ

for all 6 > 0 and for k large enough. For the last term of this right-hand side,
using the estimate (4.10), we arrive at

1 0Ou
2l S Zll5o HQPML
1, 0u
+ 5\/—(||f||ﬂ|| HQ+ ||a ||QPML||UHQPML)
)
+ —=(IFIE + B ulld)-

Vi

This estimate and (4.31) in (4.30)

R / fulde < | fllelVule

1
+ kllfllellulle + H HQPMLHUHQPML (A+ )HVUHQPML
k 1 1 ., 0u
+ (_ (5\/—)HfHQ” HQ—{_()\ + 5k%)”a_p”QPMLHuHQPML

+ 3k [ull3,

ﬁHfHQ

for k£ large enough.
Comparing this estimate with (4.12) and recalling that n = 1 in Q\ Q},,; and
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(4.71) for large k, we have shown that

¢ [ updr < c(nfluﬂnwug
Q

1
+ kaHnHUHnH! HQPMLHUHQPML (A + )HVUHQPML
k 1 1 ., 0u
+ (_ 5\/—>HfHQ”UHQ+()\ + M_%)Ha_p”QPMLHu“QPML
+ — +8kE||ull3),
\/E\IfHQ Jull?)

for k large enough and some positive constant C' independent of k. We now chose
0 > 0 so that

k2
g5 o— o
(0] 5
or equivalently
k=3
0= )
2C
With this choice we find
¢ [ e S Al Vel
Q
ou
+ k(14 DIl + 0+ D15 b Tl

1 ou 1
+ ()\ + E)HVUHEZPML + ||6_pHQP]WL||uHQP1WL + ﬁ”f”?)?

for k large enough. Recalling the definition of f; and Lemma 4.7.3, we get
< 1
Ifille S £l + 2 Vulla,
and consequently
kQ/QIuIQde S el Vulle + (A + )HVUHQ
+ k(14 )||f||Q|IUI|Q+(1+ )IIVU||Q||U||Q+||f||Q

for k large enough. By Young’s inequality, this estimate implies that

kQ/QIUIde < —||f||Q+M||VUIIQ+C(>\+ )IIVUIIQ

C
+ E(1+—)Hf\|g+u1(1+

C
usz( )IIVUI!Q+M2(1+ )kZIIUIIQJrCIIme

1
X)kznuué
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for k large enough, for any positive real numbers pu, p; and po and a positive
constant C' independent of k (and pu,p; and ps). Choosing py = pus = (4(1 +
1/X))~!, we find that

1 1 C 1
2 2 g < < L2 2 “ 132 2
¢ [l do < €O+ S0+ 3P+ (1+ A+ T+ 37) IVl

for k large enough, for any positive real numbers p, A and a positive constant C
independent of k, u, A\. At this stage we take advantage of (4.14) to obtain

1 1 C 1
¢ [ ufdo < O((L4 S04 57 4k ON+ T+ DI
Q H A

A k
1
+ (4 OV [lullg + kC(1+ 1) [ullg.
Choosing p = % and A = %, we find that

R / u? dz < C|LFI3 + Chlull3,

for k large enough and a positive constant C' independent of k. As for k large
enough C'k < %2, we have proved that

kllullo < [1flle,

for k large enough. Coming back to (4.14), we conclude that

/Q Val? de < 11115,

for k large enough. O

4.3 Comparison with a sponge layer

The boundary value problem corresponding to a sponge layer consists in looking
at Usponge sOlution of

(432) Lspongeusponge = flIl Q7
(4.33) Usponge = 0 on 05,

where the operator Lgponge is defined by
» 10 Ov 1 0%v N
Leponge? = Av + (k? + 2ick)v = T (p8_p> + 2 902 + (k* + 2i6k)v.

This problem (4.32) enters in the framework developed recently in [14] if the
boundary of Q is C*! or if it is a convex polygon, since it satisfies the assumption
of Section 2 of that [14] (with the choices Ly = —Id, L1 = —261d, and Lo = —A),

and since its variational formulation is given by

(434) asponge(”spongeav) == / f@ dfﬂ,V’U € Hé<Q)7
Q
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where the sesquilinear form agponge(-, ) is defined by
Asponge (U, W) = / (Vv Vo — (k* 4 2i6k)vw) dz,Yv,w € Hy(Q).
Q

This sesquilinear form trivially satisfies
|asponge (v, w)| < [Mvll] [[Jwll], Yo, w € Hy (),

where

N

ol = (K llvll + [vliq)?
and

Re Gponge (v, v) = [0]] o = K*[[v]lg, Vo € Hy ().

Consequently the associated operator Agponge is a Fredholm operator from H&(Q)
into H~1(Q), therefore it is an isomorphism if and only if it is injective. But the
injectivity is not difficult to show because u € H{(€2) solution of (4.34) with f =0
satisfies in particular

asponge(u7 U) = 07

and taking the imaginary part we get
u =0 on QPML-

Since u also satisfies
Au+ (K* + 2i6k)u = 0 in €,

by Holmgrem’s theorem we deduce that u = 0.
In order to compare (4.32) with (4.9), we rewrite (4.9) as

Lpyvpu = J2f7

with

5 2
LpMLU = /{326121) + q—g (

81}) 10>  9qov
p Op

Pop) T 2 aer T 0,0

We can look at u as solution of

(4.35) Loponget = f®) in Q,
(4.36) u = 0 on 09,

where f (k) — Lgponget — LpnLu + d? f and consequently

k) _ 2 910 [ Ou 2 oz g232), _ 990U
(4.37%) = f + (1 q)pap(pap)+<(k + 2ick) kd)u q :

Let us now estimate the L*norm of f®*).

Lemma 4.3.1. For k large enough, it holds

(4.38) 17PNl < 1/ lla-
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Proof. As d is uniformly bounded in €, it suffices to estimate the L2-norm of the
three other terms of the right-hand side of (4.37). For the second term of (4.37),
by (4.84), we have

1= 2 (22 0 S 112 (62 g S 1l
q ,0(9/) (9/) Q N L pap pap QpumrL N L 2QpmLe
By (4.11), we conclude that

10 ou
4. 1—¢?)-—
(4.39) =35 (052) 1o 5 1l

for k large enough.
The definition of d shows

(k2 + 2i5k) — k2d® = &°.
This identity and the bound (4.7) show that the the third term of (4.37) satisfies
(4.40) (82 + 2i50) = 12 ulla S ulla S £ lo.

for k large enough.
For the last term of (4.37), using Lemma 4.7.3 and again (4.7), we directly
conclude that
8q ou

for k large enough. This estlmate, (4.39), and (4.40) lead to the asserted estimate.
O

HQ S k;l ulro S flle,

At this stage, we can look at u € H}(Q) as the unique solution of (4.32)
with a datum f*) instead of f. The L? norm of f%* is uniformly bounded in k.
Consequently applying Theorem 1 of [14], we directly get the next result.

Theorem 4.3.2. Let v be a natural number and assume that the boundary of €2
is of class C7TYY. Then for k large enough, for all £ € {0,--- ,~}, the unique
solution uw € HY(Q) of (4.6) admits the splitting

/—1

(4.41) u=Y Kul +rl
§=0

where ug-k) € HIT2(Q) with
k

(4.42) 145 15420 5 1f [l

for0<j<{¢—1 and T’ék) € H™*2(Q) with

(4.43) 17 o0 S ESY flla.

Remark 4.3.3. This result remains valid for a convex polygon with v = 0.
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4.4 Finite element discretizations

4.41 hp-FEM

Here we want to take advantage of the splitting from Theorem 4.3.2 to derive
stability conditions and error estimates for hp finite element discretizations of
(4.6).

We look for a finite element approximation uy,, to u. To this end, we consider a
family of regular (in Ciarlet’s sense) meshes {7}, of Q, where each mesh is made
of triangular elements K. To simplify the analysis, we assume that the boundary
of Q) is exactly triangulated, and therefore, we consider curved Lagrange finite
elements [6]. Also, for each element K, we denote by Fy the mapping taking the
reference element K to K.

Then, for all p <~ + 1, the finite element approximation space V}, ,, is defined
as

Vi = {unp € HYQ) [vn,li o i € By(K) VK € To}

~

where P, (K) stands for the set of polynomials of total degree less than or equal
to p.

As the family of meshes is regular, for each v € H*H(Q) N HL(Q)® (0 <1 < p),
there exists an element Zj, ,u € V}, , such that

(4.44) [v = Znpvlie S KT olliag,  (0<5 <)

We refer the reader to [6, Corollary 5.2] (see also [17]).
Then a finite element approximation of u is obtained by looking for uy, € Vj ),
such that

(445) bk(uh,p, Uh7p) = —/ (1~2f@h7pdl', Vvhm € Vh,p.
Q

Asymptotic error estimate

Now we are ready to prove a convergence result in an appropriate asymptotic
range.

Theorem 4.4.1. Assume that the boundary of Q is of class C71t for some nat-
ural number «y (or a convex polygon) and let f € L*(2). Then there exists ko large
enough and 6 > 0 small enough such that if k > ko, kh < 6 and kPT h? < 6 with
p<~v+1(p=1ifQ is a convex polygon), there exists a unique finite element
solution up,, € Vi, to (4.45), and the estimate

4.46 — < inf —
(4.46) lfw = unplll S 1nf - [llw = ]

holds. Furthermore, we have

(4.47) w = unplll S Fh fllo-
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Proof. The proof of this Theorem is exactly the same as the one of Theorem 2 from
[14], by using Theorem 4.3.2 and the fact that the sesquilinear form b, satisfies
Assumption 1 from [14]. Indeed the continuity property

b (v, w)| < (Mol [wl]], Yo, w € Hy(€),

is a direct consequence of Cauchy-Schwarz’s inequality. Let us now prove the
Garding inequality

(4.48) Rebi(u, )| 2 Juliq — K*[lullg,  Yu € Hy().

Fix an arbitrary u € H} (). First by the properties (4.78), (4.80) and (4.82), for
k large enough we have

1 C
Re by (u, u)| > =|ul? o — 2k%||ul|§ — —/ |Vul|u| dz,
2 k Qpmr

for some C' > 0 independent of k. Cauchy-Schwarz’s inequality and Young’s
inequality then lead to

2

1 C
Reby.(u, u) = ;L|U|ig — (2K + E)HUH?r

This proves (4.48). O

Pre-asymptotic error estimate

In this part, we aim at giving a pre-asymptotic error estimate for the problem
(4.5). As in [28], we use an appropriate elliptic projection, in order to obtain
the existence of a solution uy, to (4.45) under a weaker condition than in the
asymptotic range.

First, we define:

,0?u 1 0%°u ¢*0u dq Ou

Lo(u) =Lt 20 T, %
o) qapQ p2392+p8p+q8p8p
_ 49 (, 0w 18
“pop\"op) T o0
0%u 10u  dqou
—Au+ (11— T - )= T 2
u+( q)ap2+( q)paerqapap

Then, we look at the following problem: find u € H}(Q) N H?(2) solution of

Ly(u)=f inQ,
u=>0 on 0f).

The variational form of this problem is: Find v € HJ({2) such that

(4.49) ar(u,v) = (f,v)r2@ Yo € Hy(),
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with f € L*(Q2) and

o Oud(qu) 1 0udv
ag(u,v) = /Q <q(9p op + 200 80) dz

/ 0u0y  10udv = Ogou_y
~Jo\Yapap " 2osoe T Topap '

Lemma 4.4.2. There exist a unique solution u € Hg () to problem (4.49), further
we have u € H*(Q) with

(4.50) lullo0 < 11l -

Proof. We first prove that ay is continuous and coercive. Indeed one trivially has

0
jar(w,0)] S (|6 + D) llully g o]0 + Hq_q

2| 19ala el e € @)

Hence, with Lemma 4.7.2, 4.7.3, we have the existence of a constant independent
from k such that

Jar(u, )] S lull g llvll g, Yu, v € Hy(Q).

On the other hand, if k is large enough, we have

. 0
Reau(u, u) > min(Req, 1) [ Vall}, — an—ZH 19ullg 0]l

&
> G| Val}y - 2l

C.
> (€= ) it

2
2 Ml -

Then, since ay, is continuous and coercive, by Lax-Milgram Lemma, we have the
existence and uniqueness of a solution u € Hj () to (4.49). The strong ellipticity
of L, gives us the H*(Q) regularity of u. So, u € H*(Q) N H} (), and we have

[ully 0 S 1Aullg
< 2 2 aq
S Lol + |11 = (| lullyo + |1 = @[] llull, o + 9, [ull; o
1
S fllg + 7 llullog + llull o

hence for k large enough, we obtain (4.50). O]

Lemma 4.4.3. We define the projections P pu € Vi, and Py ju € Vi, as unique
solutions to

ai(Phpt, Vpp) = ag(u,vnp)  Yopy € Vi,

ag(vp, P,f’pu) = ag(vp, u) YUhp € Vip-
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If uy € H(Q) solves by(ugy,v) = (¢,v) for all v € Hy(Q) for some ¢ € L*(Q),
then we have
[ug = P sl < (h* + KPR [lgllg

and
[us = Prpuoll, o S (h+ (RR)P) |6l

In addition, we have

(4.51) lus = Tnpuslly o S (h+ (kR)) [0l -

Proof. The existence and uniqueness of P, ,u and of Pj ju comes from the coer-
civity and continuity of a,. We recall that, by Theorem 4 3.2 (withl=p—1), w

have

Zk’j% L
with
452 H () <
(4.52) o e
(4.53) Iroll,ii0 S E 16l -

By Céa’s lemma, we have

Hu¢ - P;:,pu¢||1,9 S o ig‘f/hp |ug — Uh,p“l,Q S Jlug — Ih,p“¢”1,9 ‘

To estimate this right-hand side, we use (4.52) and (4.53) and (4.44) to obtain

— Ihpu((;)

2
lug — Tnpugll g S DK |uf)

0

.
o + v — Znproll o
J

p—2
< LI pitt Hu((;)
0

R

i

- Jj+
]:
p—2

<hS KR

J=0

+ (kh)P [l¢llq -

()
u
o1l

This proves (4.51), and hence

H“¢ Phpu¢H1Q S (h+ (kb)) ||9llg »
Similarly we can show that
(4.54) lug = Inpugllg S h(h+ (kh)P) |9l -

This estimate cannot be used to bound the L*-norm of uy — Py ug, hence we use
an Aubin-Nitsche trick. For this, we introduce £ € H} () solution to a(&,v) =
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(ug — Pp yug,v), for all v € Hy(Q2). The existence and uniqueness of £ follow from
the properties of a; and we have

g = Pr sy = an(€, us — Py yus)
= ay(§ — Phpé, up — PpyUs)
< Jus = Piyusll, o 1€ = Pustlli g
S (W4 (kR)P) [l P [[ug — P pus |,
S 02+ R (10l [|us — Pr sl
O

Now, since we have introduced the elliptic projection and its approximation
properties in Lemma 4.4.3, we can follow [28] to produce a pre-asymptotic error
estimate.

Theorem 4.4.4. Assume that kPT2hPHL is small enough, then there exists a unique
solution upy, € Vi, of problem (4.45) and it holds

(4.55) e = unpll| S (kb + KT R2) || fllg

Proof. We use Aubin-Nitsche’s trick, that is why we introduce £ € H{(£2), which
verifies bg(v,&) = (v,u — uy), for all v € H}(Q2). Hence we have, by the above
lemma,
lu = wnpllg = br(w = unp, €) = br(u — wny, & = Pj )

= _kQ(dQ(u - uh7p>’ 5 - P;zk,pg) + a’k’(u - uh7p7£ - 7);;126)

- _k2(d2(u - uh,l’)? g - P;,pg) + ak(u - Ih,p“aé - P;,pé-)

N k? llu — uh,pHQ Hf - P}t,prQ + |lu — Ih,puHLQ Hf - P;,ngLQ

S (KR + KPR [lu = [l + (B + (RR)?) || fllg lu = wnyllg

Then, if kP*2hP*! and kh are small enough,
(4.56) lu = unpllg S (0 + (ER)*) (|l -
This allows to estimate the energy norm of u — uy , as follows:

1w = wnpl[[* S K2 [lu = unpllg + o — unplig
S lu = unpllg + lar(u = wnp, u — uny)|
SE |lu— uh,pH?2 + ag(u = upp, u — upp) — k2(d* (w0 — upp), u — upy)|
SR =l + [br(u = wppy 1w — )|
S E Ju— uh,p”?z + bk (u — ungp, u — Ippu)

2
S K llu = unpll + [llw = ungplll - [llw = Zypull]-
Young’s inequality gives us

lw = unyll| S K llu = unpllg + [l = Znpull]-
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By (4.56), (4.51) and (4.54), we deduce that
1 = unglll < (k(h* + (KR)*) + b+ (kh)?) || fllg -
which proves (4.55) as kh? < kh and h + (kh)? < kh.

4.4.2 A multiscale approach

An alternative to high-order polynomials for achieving stability is the computation
of subscale corrections in a multiscale fashion. The approach was first used for
numerical homogenization problems [46] and later applied to Helmholtz problems
by [63]. A Petrov—Galerkin variant of this approach is studied in [30], while [9]
discusses the case of variable coefficients, which is closely related to the present
case of a PML. In order to state the PML setting in the framework of [9], it is
convenient to reformulate the original boundary-value problem (4.1) in Cartesian
coordinates as follows

—V - AVu — K*ddu = —ddf in Q and u =0 on 0.

The resulting coefficient matrix A has been provided by [19] and reads

A(p,0) = geos®f +q~'sin®0 (¢ — ¢ ") cosfsing
P (q—q ") cosfsinb gsin®0 + g~ cos? 0

where it is understood that ¢ = ¢(p). This problem is equivalent to (4.1) (and
thereby to (4.3)) in the sense that they have the same unique solution u. The
reason why the multiscale method is stated for this version of the equation it
has the structure of a standard Helmholtz equation with a nontrivial diffusion
coefficient. For this case, stability and error estimates have been formulated in
9, 30, 63], and they immediately apply to the present situation. As the equations
are equivalent on the PDE level, the stability results from Section 4.2 remain

valid. The corresponding alternative variational formulation (equivalent to (4.1)
or (4.3)) reads: find u € H}(Q) such that

(4.57) Ar(u,v) = (f, )20
where f := —ddf and the sesquilinear form Ay, is defined by
A (v, w) == (AVv, Vw)2q) — k2<ddu,U>L2(Q) for any v, w € Hy(Q).

With help of the results from Section 4.2 it can be shown that A satisfies the
following inf-sup condition.

Lemma 4.4.5. The sesquilinear form A, satisfies

Re Ay (v,
(4.58) v(k) < inf sup Re Ay(v, w)
veHJ N0} wemy @ oy |011] [[wl]]

where y(k) > 0 satisfies y(k)™' ~ k.
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Proof. Let v € H}(Q) be given. We follow the approach of [47] and denote by
z € H} () the solution to the following dual problem

Ag(n, 2) = 2k*(n,v) 2y for all np € Hy(€2).

The form Ay is symmetric (but not self-adjoint) and so the stability bound from
Theorem 4.2.5 applies to z and reads

211l S 150l 2y < koIl
After setting w := v 4 2z one concludes
Ak(vv U}) = Ak(vv U) + Ak(va Z) = Ak’(v7v) + 2]{32“1}”%2(9) = |||’U|||2

as well as
wl[| < (l[oll] + 121 S (T + B[] S Kol

for k large enough. The combination of these estimates yields

Re A (v,w) = [[[o][[* Z &[]][] [[[w]]

which implies the claimed stability condition with y(k)™! < k.
Conversely, if we assume that (4.58) holds, then we have

R
Y(E)|[ull] S sup Re A (u, w)
werg@n oy W]l

for the solution u € HJ(2) of (4.57) with f € L*(Q2). Consequently by Cauchy-
Schwarz’s inequality one gets

fllog
Al 5 1o2,
or equivalently
1
<

According to the definition of Cypt(k) from Lemma 4.2.1, we deduce that

1
—— 2 Copi(k),
k’y(k) ~Y Pt( )
which proves the converse bound for (k)~! due to the equivalence (4.8). O

The numerical method is based on a coarse quasi-uniform finite element grid
Tr and first-order conforming finite elements V1. The mesh size is indicated by
the symbol H because h will refer to the fine-scale discretization parameter in the
two-scale method. Let Jp : H}(2) — Vi1 denote a quasi-interpolation operator
satisfying the usual first-order approximation and stability property

H v = Tuvll 2y + IVTavllzery S IVl 2very,
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for all T € Ty and all v € H}(Q)). Here, N(T) = NY(T) is the union of all
elements from 7y that have a nonempty intersection with 7. More generally, we
define N°(T) := T and

N™T) :=| J{K € Ty : KN N""Y(T) # 0}

for any positive integer m. On quasi-uniform meshes, the cardinality of N™(T')
grows polynomially with m.

Let h denote the fine-scale mesh parameter and consider the finite element
space Vj, 1 related to the mesh 7. It is supposed that 7j, is sufficiently fine such
that the finite element method over V},; is stable in the sense that

(4.59) v(k) < inf sup Re Ay (vn, wn)

~ 'Uhe‘/h,l\{o} whthyl\{O} |||Uh||| |||wh|||

where «y(k) is the inf-sup constant of Ay from Lemma 4.4.5. More precisely, if we
assume that k2h is small enough, then (4.59) holds. Indeed let us introduce

o ISEf = walll
n(Vha) =  sup inf ——xL__ 20
rerz@nfoynevin | fllog

where S} f € H} () is the solution of the adjoint problem of (4.57) with a right-
hand side f. Then by standard interpolation estimates and the H? regularity of

S;.f, we can see that
N(Via) S kh.

Consequently by using the arguments of [48, Thm 4.2] and the stability bound
from Theorem 4.2.5, we deduce that (4.59) as soon as k*h is small enough.

Since global computations with 7, are too costly, only certain functions from
Vi1 with quasi-local support will be utilized to stabilize a scheme over 7. The
stabilization is as follows. The kernel of Jy reads

Wh = {Uh S Vh,l : jHUh = 0}

Given T € Ty and vy € Vi1, its so-called element correction Crvy, € W), is defined
as the solution to the following variational problem

(460) Ak(wh,CTvH) = Ak;f(wh, UH) for all wy, € Wy,

Here and throughout this section, the notation Ay, indicates the spatial restriction
of the form A to a subdomain w. Problem (4.60) is well-posed due to the next
result.

Lemma 4.4.6. Provided Hk < 1, we have the coercivity
vahH%Z(Q) 5 ReAk(wh,wh) fO?" all wy, € Wy,

The constants involved in “S” only depend on the bounds of the coercivity and
continuity constant of A as well as on the maximal modulus of dd.
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Proof. The proof almost verbatim follows [9, Lemma 1]. O
This result readily implies boundedness of Cr,
[Crvulll S llvalllr  for all vy € Vi
By linearity, one can see that the “global corrector” Cvgy := ZTeTH Crvy solves
A (wp, Coy) = Ag(wp,vy)  for all wy, € Wy,
and thus satisfies the continuity
Cvulll S [llvalll - for all vy € Va.

As mentioned above, the correctors from (4.60) shall serve as an additive stabi-
lizing component to the coarse finite element basis functions. But at this stage
(4.60) defines a global fine-scale problem and, thus, Crvy is not computationally
available. The key observation from [46] is that such computations can be local-
ized to certain neighbourhoods of T'. Let ¢ € N be a localization (or oversampling)
parameter and define

Qp = int NY(T)

and
Wi () := {wy, € Wy, : wy, = 0 outside Qr}.

These objects depend on the parameter ¢, which will, however, be suppressed for
convenient notation. Problem (4.60) is now approximated by seeking Cr,vg €
W3 (1) such that

(461) .Ak7QT (wh,CT,ﬂ)H) = Ak,T(wh,vH) for all wy, € Wy,

Note that the numerical computation of each of the problems (4.61) is feasible
(with O(¢H/h)? vertices in 2D) as long as £ is of moderate size. The global
localized version of C is defined as

CgUH = Z CTygUH.

TeTa
The localized approximation is justified by the following exponential decay result.

Theorem 4.4.7. Provided kH < 1, there exists 0 < § < 1 such that any vy € Vi,
any T € Ty, and any ¢ € N satisfy

IV(Cr — Cro)vullze S B Vorllr2m),
IV(C = Co)vullrz S CU)B Vol 2.

with a constant C({) that grows not faster than polynomially with (.

Proof. For a proof we refer to [30]. See also [9, Theorem 4]. O
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The multiscale scheme is a Petrov—Galerkin method and referred to as multi-
scale Petrov—Galerkin scheme (MSPG). It seeks ug) € Vi1 such that

(4.62) Al (1= Coon) = (F, (1 = Co)vr) 12 for all vy € Vigy.

Well-posedness of (4.62) is ensured through an appropriate parameter choice that
will be described in the following. Suppose the fine-scale mesh size h is small
enough such that (4.59) is satisfied. The important property of the multiscale
method is that it suffices to relate the oversampling lengths logarithmically to the
wave number k.

Theorem 4.4.8. Suppose kH <1 and (4.59) as well as

(4.63) £2 |10g(k)| / [1og .

Then, the Petrov—Galerkin bilinear form from (4.62) satisfies

Re Ak(UH, (1 - Cg)wH)

v(k) < inf
on €V i\ O wyevi\oy  [oall] [|[well]
Proof. For a proof we refer to [30]. See also [9, Theorem 5. O

As in [30, Thm 3], it can be shown that

_ .0 < inf _
llen = 1S it = vl

Thus, the triangle inequality and classical approximation properties together with
the H? bound (4.11) show for h sufficiently small that

Y4
llu =i Il S Hllull w2y S HEIf |20

In particular, this means that the standard resolution condition kH < 1 for ap-
proximation is also sufficient for stability of the multiscale scheme.

4.5 Some numerical examples

4.5.1 A first example

For the first test, we have taken Q = [—6,6]*\B(0,1), the fictious absorption
coeflicient o and the exact solution u., as follows:

0 if p<4 .
o(p) = {(,;—4)2 np= and U (z,y) = (22 — 36)(y* — 36)e™.

= otherwise

In Figure 4.2, we have depicted the rates of convergence for different values
of h and k, for p = 1 and 2. We can see that, when h is small enough, the
order of convergence is p, as expected from the theory. From these plots we can
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—o—|||u — up ||| for k=3 —=|||u — Py 1uc||| for k=3 —o—|||u — ups|| for k=4 —8|||u — P, 2uc,||| for k=4
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Figure 4.2: First experiment with hp FEM: convergence curves for different values
of k and p.
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Figure 4.3: First experiment with hp FEM: Asymptotic range of h*(k) for p = 1,
2 and 6.

observe three states of convergence: no convergence range/ pre-asymptotic range
/ asymptotic range.

Theorem 4.4.1 states that, provided kPTh? < 1, the following error bound
holds

ez = unplll S [lltee = Phpticalll,

where P, pu., the orthogonal projection of u., on V}, for the inner product asso-
ciated with the norm ||| - |||. For different values of k, h and p, we compute
and P, pue,, and denote by h*(k) the greatest value of h such that

vea = unplll < 2[[tes = P pticall|-

Figure 4.3 displays the graph of h*(k) (in a log-log scale) for p = 1 and 2.
In both cases, we observe that h*(k) ~ k~'~'/P which means that the condition
kPHLhr <1 is optimal. Figure 4.4 displays the relative errors in the preasymptotic
range dependent on the wavenumber k, while & and h are coupled (depending
on p) as in Theorem 4.4.4. As predicted by the theory, the relative error stays
constant, which means that the discretization is stable with that choice of h and
p.

Next, we report numerical results for the multiscale scheme. We consider ),
(bilinear) finite elements on a sequence of uniformly refined square meshes of mesh
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Figure 4.5: First experiment. Relative error plots for the nodal interpolation
Iy qu, the @1 FEM, and the multiscale Petrov-Galerkin method (‘MSPG’) with
oversampling parameter ¢ = 1,2, 3.

size H = 3/4,3/8,...,3/128. The reference mesh has the mesh size h = 3/256.
The very regular structure of square meshes allows a quite efficient numerical
implementation [30] of the method in which the correctors C, outside the PML are
computed on a reference patch and re-used where the same configuration occurs.
For simplicity, we disregard the possibility of resolving the curved boundary within
the corrector problems, although this can be done in principle [26, 67]. We do not
further analyze the error caused by this geometric perturbation. For wave numbers
k = 8,12,16, Figure 4.5 compares the relative errors in the energy norm ||| - |||,
namely the nodal interpolation by @) finite element functions, the @);-FEM error,
and the error of the MSPG method where the oversampling parameter varies from
¢ =1to ¢ = 3. For the FEM, pollution is clearly visible, while the MSPG scheme
produces smaller errors that are close to the best approximation for appropriate
(. Especially in the case £k = 16, the choice of £ = 1 seems to be insufficient,
while ¢ = 2,3 lead to better results. This indicates the necessity of the coupling
¢ ~log k. Since the accuracy of the MSPG method is limited by that of the FEM
on the reference mesh, the last two mesh refinements for £ = 16 do no provide a
reasonable improvement. We finally mention that the mesh resolution condition
“hk? small” is not fully satisfied for k¥ = 16, but we empirically observe that this
choice of h seems to be sufficient.
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4.5.2 A scattering problem

Here we want to show the efficiency of our method by approaching a real scattering
problem. Namely as obstacle O we take the unit disc and take

= J; (k) , y
scat (0, p) = 7 ! J;(k Y;(kp)) e’
U t( 7p) j;ool (Jj(k?)—i-ZYJ(k?))( J( p)+7' J( p)>€

as exact solution of the Helmholtz equation in R? \ O, which corresponds to the
scattered solution of the incidence wave e?**1 (see [43, (3.3)] or [20]). As fictitious

absorption coefficient, we choose

0 if p<a
a(p) = Blp—=a)®

b—a)? otherwise ’

with 8 > 0. Now, consider the solution w;, of (compare with (4.3))

p Op p? 062
(4.64) up = ek on 00,
up =0 on 002\ 00,

k2d2u, + 12 (qp%ﬁ’) + 12w ipQ,

where 0 = B(0,b) (see section 4.1) with 1 < a < b. It is well-known (see for
instance [40, 41, 8]) that u;, converges to ug.; (even exponentially but the constant
being dependent of the wave number k) in H'(B(0,a)) as b goes to infinity. For
our tests, we take a = 3 and b = 6.

As an approximation we compute

Upp € f/h,P = {Uhp c HI(Q> | Uh7p|[( O}_Izl € Pp(f() VK € E} ,

the FEM solution of (4.64).
As w;, is unknown, we compare the FEM solution uy, ,, with ugcat, and the relative

I[eeh p—uscat |ll2q

error in energy norm means that we compute Mo e
sca a

. The full error clearly
satisfies

(4.65) unp = vsearlllan < lunp = |l + |[[u = tscas] [

Figure 4.6 shows convergence curves for different values of k, given in the
relative energy norm by using polynomials of degree 2. On the left, we have chosen
B = 3 small enough so that the error |||u, — uscat||| is not negligible. Accordingly,
the error does not tend to 0 when h is small. On the right, with g = 6, the term
|||1p — Useat ||| is negligible compared to the FEM error. As o € C*(f2), we know that
up is at least H3(Q), which is the reason why we have 2 for the convergence rate.
Figure 4.7 shows for polynomials of degree 6 that the empirical convergence rate
is not higher than 2.5, which indicates that the solution w; might not be smoother
than H™/?. In comparison with the case p = 2, in the case f = 6, the term
|||up — Uscat|]| sSeems here more dominant as the rate of convergence deteriorates
more rapidly.
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Figure 4.7: Second experiment with Ap FEM: Convergence curves for different
values of k and (3, with p = 6.

We also made a pre-asymptotic test (see Figure 4.8) with p = 2 and 8 = 3
or 6. We observe that when k5h* is constant, the relative error in energy norm
is constant too, which is in accordance with the estimate (4.65) since in the pre-
asymptotic range the second term of the right-hand side is negligible, while the
first one is constant due to Theorem 4.4.4.

Figure 4.9 displays the real part of usc, and wp,, for £ = 20, p = 6 and 8 = 10,
where we see a good agreement between the exact solution and its approximation

in €.

The computational results obtained by the MSPG method are displayed in
Figure 4.10. The parameters H, h, £, and k are chosen as in the first experiment,
and S = 10. As in the first experiment, the FEM suffers from pollution, which is
mitigated by the MSPG method. The precision increases with larger /.
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4.6 Conclusion

We have shown that the PML model problem satisfies the k-stability property.
This result enables is key to the numerical analysis of the two schemes presented
in this work. The numerical results underline that the stability conditions for the
numerical methods are sharp. Instead of comparing the two proposed schemes,
we rather mention that they are are designed for different types of applications:
the hp FEM is of high order for smooth domains, while the multiscale scheme is
pollution-free without smoothness, but restricted to first order.

4.7 Appendix: Useful properties of the PML
functions

We recall from [19] that the fictious absorption coefficient ¢ is supposed to be a
non decreasing function in C*(0, 0o) such that

=0,Vp <a,
> 0,Vp > a.

(166) o) ={

Then we define & € C[0, 00) as follows

N =0,Vp < a,
(4.67) olp) = { %fap o(s)ds,¥p > a.

From this expression, we deduce that

P
po(p) :/ o(s)ds,Vp > a,

and therefore

a(p) = (p5)'(p),¥p > a.
By Leibniz’ rule, we get
(4.68) pi'(p) = a(p) — &(p),Yp > a.

In addition, as o is non decreasing, (4.67) directly implies

(4.69) 5(p) <2 ; Co(p) < a(p),¥p > a.

These two estimates directly lead to
(4.70) a'(p) > 0,Vp > a,

and therefore & is a also a non decreasing function. Furthermore ¢ € C'[0, c0)
because from (4.68) and the continuity at a of o and &, one has

=———> =0, as p—a.
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From (4.66), (4.67) and (4.70) and the C" property of &, for all € > 0, there exists
0 > 0 such that

(4.71) o(p) > 0,6(p) > 6,6'(p) > 6,Yp > a+ g

We then fix € > 0 small enough such that a + ¢ < b and fix a cut-off function
n € D(R) with " < 0 such that

B LVp<a+5,
T](p)—{ 0,Vp>a+e.

For convenience, we denote by 2py,r, the PML region, i. e.,
Qpyrp ={z € Q: |z| > a}.

We also set
€
by ={r e |z >a+§}.

Lemma 4.7.1. We always have
(472) o S 5', m QPML-

Proof. By (4.69), one has

. g .
0< lim —= < lim
P o(p) = pas p

which shows that

im 2P g
p=at o(p)
Using (4.68), we then have
a'(p) 1

li = —.
poat o(p)  a

Consequently for p > a but close to a, we trivially have (4.72). On the other hand,
for p € [a+¢1,b], with €; > 0 as small as we want, (4.71) and the continuity of &
directly yield (4.72). The proof is then complete. O

As in [19], we set

(4.73) d=1+2, andd=1+2.
k k
Let us also define
d
4.74 = —.
(4.74) ¢=-
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Lemma 4.7.2. The next properties hold

kpa' (p)
(4.75) Im g(p) = TRrop =Y
(4.76) Im¢® = 2vImg,
. 25
(4.77) Imd? = % >0,
(4.78) qg—1, as k — oo,
(4.79) d—1, as k — oo,
(4.80) d—1, as k — oo,
- 4i
(4.81) 2= —%5
where 0 < v = % that tends to 1 as k goes to infinity.
)

Proof. The properties (4.77) to (4.81) are direct. To prove (4.75) and (4.76), we
notice that ¢ admits the writing

ik
1=7+ 15720 0)
which directly yields the results recalling (4.68). O
Lemma 4.7.3. We have
(4.82) ’(%(ﬂ S % in Qpyr,
(4.83) qg=11in Q,
(4.84) lg—1 < % n Qpar-

Proof. The second identity being immediate, let us concentrate on the two other
ones. By direct calculations, we see that

The estimate (4.82) follows as |d| > 1 as well as |d| > 1 and since ¢’ and & are
bounded.

Concerning the last one, we see that
li(c—o
q —_ 1 = —g'

Hence the estimate (4.84) holds because |1 4+ 2| > 1 and because o and & are
bounded. O
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