Président Du

M Noureddine Manamanni

M Faiz

Ben Amar

Mme Annemarie Kokosy

M Juan

Diego Sánchez Torres -Maitre

M Abdul Muis

M Mohamed Djemai -Professeur

M Michael Defoort

M Juan Diego

Sánchez Torres

Professor, LAMIH -UPHF M Mohamed

Associate Professor, LAMIH -UPHF M Michael

Decentralized Leader-Follower Consensus for Multiple Cooperative Robots under Temporal Constraints

Nowadays, robots have become increasingly important to investigate hazardous and dangerous environments. A group of collaborating robots can often deal with tasks that are difficult, or even impossible, to be accomplished by a single robot. Multiple robots working in a cooperative manner is called as a Multi-Agent System (MAS). The interaction between agents to achieve a global task is a key in cooperative control. Cooperative control of MASs poses significant theoretical and practical MOTS-CLES: Contrôle coopératif; Système multi-agents; Consensus Meneur/Suiveur; Robot mobile; Stabilité à temps fixe; Commande prédictive; Robotic Operating System (ROS) for the continuous support of my Ph.D study and related research, for his patience, motivation and immense knowladge. He has been helping me come up with the thesis topic of multi-agent systems whilst allowing me the room to work in my own way.

Greatest thanks must go to my coordinating supervisor, Dr. Michael DEFOORT, for his valuable discussions, helpful suggestions,

challenges. One of the fundamental topics in cooperative control is the consensus where the objective is to design control protocols between agents to achieve a state agreement. This thesis improves the navigation scheme for MASs, while taking into account some practical constraints (robot model and temporal constraints) in the design of cooperative controllers for each agent, in a fully decentralized way. In this thesis, two directions are investigated.

On one hand, the convergence rate is an important performance specification to design the controller for a dynamical system. As an important performance measure for the coordination control of MASs, fast convergence is always pursued to achieve better performance and robustness. Most of the existing consensus algorithms focus on asymptotic convergence, where the settling time is infinite.

However, many applications require a high speed convergence generally characterized by a finite-time control strategy. Moreover, finite-time control allows some advantageous properties but the settling time depend on the initial states of agents. The objective here is to design a fixed-time leader-follower consensus protocol for MASs described in continuous-time. This problem is studied using the powerful theory of fixed-time stabilization, which guarantee that the settling time is upper bounded regardless to the initial conditions. Sliding mode controllers and sliding mode observers are designed for each agent to solve the fixed-time consensus tracking problem when the leader is dynamic.

On the other hand, compared with continuous-time systems, consensus problem in a discrete-time framework is more suitable for practical applications due to the limitation of computational resources for each agent. Model Predictive Control (MPC) has the ability to handle control and state constraints for discrete-time systems. In this thesis, this method is applied to deal with the consensus problem in discrete-time by letting each agent to solve, at each step, a constrained optimal control problem involving only the state of neighboring agents. The tracking performances are also improved in this thesis by adding new terms in the classical MPC technique. The proposed controllers will be simulated and implemented on a team of multiple Mini-Lab Enova Robots using ROS (Robotic Operating System) which is an operating system for mobile robots. ROS provides not only standard operating system services but also high-level functionalities. In this thesis, some solutions corresponding to problem of connection between multiple mobile robots in a decentralized way for a wireless robotic network, of tuning of the sampling periods and control parameters are also discussed. KEYWORDS: Cooperative control; Multi-agent system; Leader-Follower consensus; Mobile robot; Fixedtime stability; Model predictive control; Robotic Operating System (ROS)

Résumé

Un groupe de robots collaboratifs peut gérer des tâches qui sont difficiles, voire impossibles, à accomplir par un seul. On appelle un ensemble de robots coopérant un système multi-agents (SMA).

L'interaction entre agents est un facteur clé dans la commande coopérative qui pose d'importants défis théoriques et pratiques. L'une des tâches du contrôle coopératif est le consensus dont l'objectif est de concevoir des protocoles de commande afin de parvenir à un accord entre leurs états respectifs. Cette thèse améliore la navigation pour les SMA, tout en tenant compte de certaines contraintes pratiques (modèle du robot et contraintes temporelles) dans la conception de contrôleurs coopératifs pour chaque agent, de manière décentralisée. Dans cette thèse, deux directions sont étudiées.

D'une part, le taux de convergence est une spécification de performance importante pour la conception du contrôleur pour un système dynamique. La convergence rapide est toujours recherchée pour améliorer les performances et la robustesse. La plupart des algorithmes de consensus existants se concentrent sur la convergence asymptotique, où le temps d'établissement est infini. Cependant, de nombreuses applications nécessitent une convergence rapide généralement caractérisée par une stratégie de commande à temps fini. De plus, la commande à temps fini autorise certaines propriétés intéressantes, mais le temps de stabilisation dépend des conditions initiales des agents. L'objectif ici est de concevoir un protocole de consensus leader-follower à temps fixe pour les SMA décrits en temps continu. Ce problème est étudié en utilisant la théorie de la stabilisation à temps fixe, qui garantit que le temps de stabilisation est borné quelles que soient les conditions initiales. Les contrôleurs et les observateurs à modes glissants sont conçus pour que chaque agent résolve le problème du consensus à temps fixe lorsque le leader est dynamique.

D'autre part, par rapport aux systèmes à temps continu, le problème du consensus dans un cadre à temps discret convient mieux aux applications pratiques en raison de la limitation des ressources de calcul pour chaque agent. Le modèle de commande prédictive (MPC) permet de gérer les contraintes de commande et d'état des systèmes. Dans cette thèse, cette méthode est appliquée pour traiter le problème du consensus en temps discret en laissant chaque agent résoudre, à chaque étape, un problème de commande optimale contraint impliquant uniquement l'état des agents voisins. Les performances de suivi sont également améliorées dans cette thèse en ajoutant de nouveaux termes à partir du MPC classique. Les contrôleurs proposés sont simulés et implémentés sur un groupe composé de plusieurs robots réels en utilisant ROS (Robotic Operating System). Dans cette thèse, quelques solutions correspondant au problème de la connexion entre plusieurs robots mobiles de manière décentralisée, du réglage des périodes d'échantillonnage et des paramètres de contrôle sont également abordées.

General Introduction

This chapter illustrates some general introductory knowledge about cooperative control of multi-agent systems (MASs).

Context

Nowadays, mobile robots become more and more complex, integrate capacities of perception, communication and adaptation to diverse situations and aim at bigger and bigger requirements in terms of robustness, ergonomics and safety. Through the last century, robots have changed the structure of the society and have allowed for safer conditions for work.

For the society, robots can assist humans by taking place on the jobs that are dirty, dull or dangerous. Beyond the factory floor, robots have been instrumental in performing tasks that would be impossible for humans. In automobile industry, robots are used to assist in building cars. These high-powered machines have mechanical arms with tools, wheels and sensors that make them ideal for assembly line jobs. Not only robots save more money in manufacturing systems, but they also perform tough tasks at a pace no human could possibly do. Robots have become increasingly important for investigating hazardous and dangerous environments. These robots are capable of entering an active volcano to collect data or a burning building to search for victims. In addition, the implementation of advanced robotics in the military and NASA fields has changed the landscape of national defense and space exploration.

The introduction of multiple robots increases robustness through redundancy. A group of collabo-rating robots can often deal with tasks that are difficult, or even impossible, to be accomplished by a single robot. The problem of cooperative control between various robots around a common objective is a stake both from the economic and the scientific point of view. Multiple robots working in a cooperative manner is called as Multi-Agent System (MAS). We denote any system with sensing, computing and communicating capabilities, such as robots, sensors with the word "agent". This set of agents interact with each other, situated in a common environment, eventually, building or participating to, an organisation.

There are many applications of MASs (see Fig. 1). It usually concerns robots in hostile environments realizing dangerous or very painful tasks for men. A classical application is the monitoring of a geographical area by measuring the temperature, pollution or humidity of a specified area. Mining robotics, certain applications of robotics in the construction field (i.e. the transport of heavy objects by means of several autonomous vehicles), or robotics in high-risk areas (i.e. mine clearance, intervention in a radioactive environment) also belong to this kind of applications. The interaction between agents to achieve a global task is a key in cooperative control. Cooperative control of MASs poses significant theoretical and practical challenges. One of the fundamental topics in cooperative control is the consensus where the objective is to design control protocols between agents to achieve a state agreement, such as position and velocity. Since the exchange of information can only occur between the agent and its neighbours, the state consensus control of MASs becomes difficult and challenging.

Objectives and Motivation

In this thesis, we will improve the navigation scheme for Multi-Agent Systems, while taking into account some practical constraints. We are mainly interested in designing cooperative controllers for each agent, in a fully decentralized way, while considering the robot model and temporal constraints.

To consider the temporal constraints, two directions will be investigated:

• The consensus problem in a fixed-time framework. Indeed, for many practical applications (including manufacturing systems, missile guidance, spacecraft, etc.), the convergence rate is an important performance specification to design the controller for a dynamical system.

As an important performance measure also for coordination control of multi-agent systems, fast convergence is always pursued to achieve better performance and robustness, such as hybrid formation flying, consensus subject to switching topology, etc. In practice, the communication bandwidth and connectivity of multiple agents are often limited and the information exchange among agents may be unreliable. In manufacturing systems, the navigation of multi-agents while taking into account the temporal constraints is very important. Hence, it is interesting to achieve consensus in a predefined-time, i.e. the settling time is uniformly bounded and independent of initial conditions. The estimation of the settling time could be very useful when switching topology or networks of clusters are considered.

Most of the existing consensus algorithms focus on asymptotic convergence, where the settling time is infinite. However, many applications require a high speed convergence generally characterized by a finite-time control strategy. Moreover, finite-time control allows some advantageous properties such as good disturbance rejection and good robustness against uncertainties. For instance, a recursive terminal sliding mode controller has been introduced for the tracking control of unicycle-type mobile robots in finite-time. The finite-time consensus problem for multi-agent systems has been studied for single integrator, double integrator and inherent non-linear dynamics.

Using finite time controller, an estimation of the settling time could be very useful when switching topology or networks of clusters are considered. It is worthy of noting that, for the abovementioned works, the explicit expressions for the bound of the settling time depend on the initial states of agents. Therefore, the knowledge of these initial conditions usually prevent us from the estimation of the settling time using distributed architectures. A new approach, called fixed-time stability has been recently proposed to define algorithms which guarantee that the settling time is upper bounded regardless to the initial conditions.

Based on the above observations, the objective will be to design a fixed-time leader-follower consensus protocol for MASs described in continuous-time. This problem will be studied using the powerful theory of fixed-time stabilization. Sliding mode controllers and sliding mode observers will be designed for each follower to solve the fixed-time consensus tracking problem when the leader is dynamic.

• The consensus problem in a discrete-time framework. Compared with continuous-time systems, discrete-time systems are more suitable for practical applications. The limitation of computational resources of each agent becomes a significant challenge. If the communication network among agents allows continuous communication or if the communication bandwidth is sufficiently large, then the information state update of each agent can be modeled using a differential equation. On the other hand, if the communication data arrives in discrete packets, then the information state update is modeled using a difference equation.

The dynamic behavior of discrete-time multi-agent systems with general communication topologies and the associated consensus problem have been considered by many researchers. It was proved that the states of internal agents converge to a convex combination of boundary agents in the case of communication time delays. Furthermore, Model Predictive Control (MPC) has ability to handle control and state constraints for discrete-time systems. This method can be applied for the control of a group of agents by letting each agent solve, at each step, a constrained finite-time optimal control problem involving the state of neighboring agents. MPC is a form of control in which the output of the system can be predicted from some prediction horizon. The output of the MPC controller is determined based on input and output at a previous time and the control signal along the control horizon.

Here, the motivation of this research direction comes from the lack of decentralized discrete-time controllers which solve the consensus problem for multi-agent systems with double integrator dynamics. The proposed methodology will be based on decentralized model predictive control.

Furthermore, in contrast to classical model predictive controllers, we propose to modify the classical methodology in order to improve the tracking performances.

Finally, the proposed controllers will be implemented on a team of mobile robots using multiple Mini-Lab Enova Robots and ROS (Robotic Operating System).

Previously, every robotics designer and researcher have spent a considerable amount of time to design the embedded software within a robot, as well as the hardware itself. This requires skills in mechanical engineering, electronics and embedded programming (to name a few). There was a considerable re-use of programs, as they were strongly linked to the underlying hardware. The main idea of a robotics OS is to avoid continuously reinventing and to offer standardized functionalities performing hardware abstraction, just like a conventional OS for PCs.

Robot Operating System (ROS) is an operating system for robots. In the same way as operating systems for PCs, servers or standalone devices, ROS is a full operating system for service robotics.

It provides not only standard operating system services (hardware abstraction, contention management, process management), but also high-level functionalities (asynchronous and synchronous calls, centralised database, a robot configuration system, etc.).

Some of the theoretical results on the consensus problem will be experimentally implemented and validated on a mobile actuator and sensor network platform using ROS using a wireless network. This research motivation comes from the challenge of the implementation of our proposed controllers in a decentralized way using Mini-Lab mobile robots in the ROS environment. This implementation will require the resolution of some problems corresponding to the connection of multiple mobile robots in a decentralized way in wireless robotic networks, finding good sampling to implement the control algorithm, etc.

Thesis Outline

The remainder of this thesis is organized into five chapters as follows:

Chapter 1. The first chapter is a brief overview on multi-agent systems, fixed-time control strategy and model predictive control. First, the formal definition of consensus for multi-agent systems is given. After, some recalls on fixed-time stability, the concepts of stability for fixed-time control are discussed. We will present some results on fixed-time stability to establish the foundation for the understanding of our work. At the end, an overview on model predictive control for discrete-time multi-agents systems is given.

Chapter 2. In this chapter, we will propose fixed-time control strategies to solve the tracking problem for a mobile robot. Then, the fixed-time approach is applied to solve the leader-follower consensus problem for multi-agent systems in this chapter. A decentralized observer-based control protocol is proposed for each agent to solve the leader-follower consensus problem in a fixed-time. Some simulations will show the effectiveness of the proposed scheme.

Chapter 3. We analyse in this chapter the consensus for multi-agent systems using distributed MPC. In the first part, we will deal with the consensus control problem for multi-agent systems with single-integrator dynamics. We will present, the distributed MPC scheme. The criteria function is designed using the difference between two consecutive inputs. Furthermore, multi-agent systems with double-integrator dynamics will discuss. Illustrative examples will be given.

Chapter 4. We will present in this chapter an experimental platform for the implementation of the theoretical results using mini-lab robots. Also, the architecture of multi-master ROS and the wireless robot network connectivity will be discussed in this chapter.

Chapter 5. In this chapter, we apply the consensus-based design scheme to two applications, single agent and multi-agents systems. In single agent application, we design node of path planning in ROS such that the robot can track the desired trajectory in termd of fixed-time tracking. In multiple mobile robots application, we explore issues and challenges in cooperative control with communication constraints.

General conclusion and perspectives. This chapter is a general conclusion. A contribution of the works performed in this thesis and the results given in the study of consensus under time constraints will be presented as well as perspectives on future works. Several problems and methods remain open and need to be developed.

Scientific productions

International refereed journals: Chapter 1

• Pipit Anggraeni, Michael

State of the art

In this chapter, at first we will introduce some basic concepts of algebraic graph theory. Then, we will make a brief state of the art on the consensus control problem in cooperative control for multi-agent systems. The literature review of convergence rate analysis will be then presented. Since the study of MASs under the discrete-time framework is very convenient for a discrete-time implementation, we will recall, the concepts of consensus for multi-agent systems in continuous-time and discrete-time separately. At the end of this chapter, we will introduce some concepts on model predictive control as a solution of the multi-agent consensus problem in discrete-time.

Algebraic Graph Theory Background

Cooperative control studies the dynamics of multi-agent dynamical systems linked to each other by a communication graph. The graph represents the allowed information flow between the agents.

Graph Theory Basics

Here, we present some basic graph theory concepts that are essential in the study of multi-agent dynamical systems. Suppose that there are n mobile robots in the group of MAS which interact with each other through a communication or sensing network or a combination of both. The interaction pattern between agents can be modeled by describing the communication topology in the form of a graph. A graph is built from a finite set, where each set has a finite number of elements. Each element is called a vertex and denoted by V. The set of vertices can have several vertices and are represented by V n .

A graph can be defined by G n (V n , E n), where V n {1, . . . , n} defines the set of nodes, corresponding to the agents and E n ⊆ V n × V n defines the edge set, called edges. Figure 1.1 shows an undirected graph of 5 agents. It is natural to model the interaction among agents by directed or undirected graphs. A link (i, j)

in the edge set of a directed graph denotes that agent j can obtain information from agent i, but not necessarily vice versa. Self-edges (i, i) are not allowed unless otherwise indicated. For the edge (i, j), i is the parent node and j is the child node. If an edge (i, j) ∈ E, then node i is a neighbor of node j. The set of neighbors of node i is denoted as

N i = {j = i : (j, i) ∈ E}.
In contrast to a directed graph, the pairs of nodes in an undirected graph are unordered, where the edge (i, j) denotes that agents i and j can obtain information from each other. Note that an undirected graph can be viewed as a special case of a directed graph, where an edge (i, j) in the undirected graph corresponds to the edges (i, j) and (j, i) in the directed graph. A weighted graph associates a weight with every edge in the graph. The union of a collection of graphs is a graph whose node and edge sets are the unions of the node and edge sets of the graphs in the collection. A directed path is a sequence of edges in a directed graph of the form (i 1 , i 2), (i 2 , i 3), An undirected path in an undirected graph is defined analogously. In a directed graph, a cycle is a directed path that starts and ends at the same node. A directed graph is strongly connected if there is a directed path from every node to every other node. An undirected graph is connected if there is an undirected path between every pair of distinct nodes. An undirected graph is fully connected if there is an edge between every pair of distinct nodes. A directed graph is complete if there is an edge from every node to every other node. A directed tree is a directed graph in which every node has exactly one parent except for one node, called the root, which has no parent and which has directed paths to all other nodes. Note that a directed tree has no cycle because every edge is oriented away from the root. In undirected graphs, a tree is a graph in which every pair of nodes is connected by exactly one undirected path.

A subgraph (V 1 , E 1) of (V, E) is a graph such that V 1 ⊆ V and E 1 ⊆ E ∩ (V 1 × V 1). A directed span- ning tree (V 1 , E 1) of the directed graph (V, E) is a subgraph of (V, E) such that (V 1 , E 1) is a directed tree and V 1 = V .
An undirected spanning tree of an undirected graph is defined analogously. The directed graph (V, E) has or contains a directed spanning tree if a directed spanning tree is a subgraph of (V, E). Note that the directed graph (V, E) has a directed spanning tree if and only if (V, E) has at least one node with directed paths to all other nodes. In undirected graphs, the existence of an undirected spanning tree is equivalent to being connected. However, in directed graphs, the existence of a directed spanning tree is a weaker condition than being strongly connected.

Graphs, can also be represented by a matrix for further analysis. For undirected graphs G n , the degree of vertex d(v i) is related to the neighbor set N i , and equals to the number of adjacent vertices with vertex v i in graph G n . In Figure 1.1, the degree of vertex is:

d(v 1) = 3; d(v 2) = 2; d(v 3) = 3; d(v 4) = 2; d(v 5) = 1
The vertex degree above can be expressed with a degree matrix (G), in the form of a diagonal matrix measuring n × n whose diagonal component is the degree of vertex in graph G, as:

(G) =        d(v 1) 0 • • • 0 0 d(v 2) • • • 0 0 0 • • • d(v n)        (1.1)

Adjacency Matrices

The adjacency matrix A [a ij] ∈ R n×n of a directed graph (V, E) is defined such that a ij is a positive weight if (j, i) ∈ E and a ij = 0 if (j, i) / ∈ E . Self-edges are not allowed (i.e., a ii = 0) unless otherwise indicated. The adjacency matrix of an undirected graph is defined analogously except that a ij = a ji for all i = j because (j, i) ∈ E implies (i, j) ∈ E . Note that a ji denotes the weight for the edge (j, i) ∈ E. If the weight is not relevant, then a ji is set equal to 1 if (j, i) ∈ E. The in-degree and out-degree of node i are defined as, respectively, n j=1 a ij and n j=1 a ji . A node i is balanced if

n j=1 a ij = n j=1 a ji . A graph is balanced if n j=1 a ij = n j=1 a ji ,
for all i. For an undirected graph,

A is symmetric, and thus every undirected graph is balanced.

Here below are the degree matrix and the adjacency matrix for the undirected graph given in Figure 1.1:

(G) =          3 0 0 0 0 0 2 0 0 0 0 0 4 0 0 0 0 0 2 0 0 0 0 0 1          A(G) =          0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0         
For the directed graph in Figure 1.2, the degree matrix and the adjacency matrix are as follows:

(D) =        2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1        A(D) =        0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0       

Laplacian Matrices

Many properties of a graph may be studied in terms of its Laplacian. In fact, we shall see that the Laplacian matrix is of extreme importance in the study of cooperative control of multi-agent systems.

Define the matrix L [l ij] ∈ R n×n as

l ii = n j=1,j =i a ij , l ij = -a ij , i = j (1.2) Note that if (j, i) / ∈ E then l ij = -a ij = 0. The matrix L satisfies l ij ≤ 0, i = j, n j=1 l ij = 0, i = 1, ..., n. (1.3)
L is called the Laplacian matrix. For an undirected graph, L is symmetric. However, for a directed graph, L is not necessarily symmetric and is sometimes called the nonsymmetric Laplacian matrix or directed Laplacian matrix. In both the undirected and directed cases, since L has zero row sums, 0 is an eigenvalue of L with the associated eigenvector 1 [1, . . . , 1] T , the n × 1 column vector of ones.

Note that L is diagonally dominant and has nonnegative diagonal entries. If follows from Gershgorin's disc theorem [?] that, for an undirected graph, all of the nonzero eigenvalues of L are positive (L is positive semidefinite), whereas, for a directed graph, all of the nonzero eigenvalues of L have positive real parts. Therefore, all of the nonzero eigenvalues of -L have negative real parts.

For example, the Laplacian matrix for the undirected graph in Figure 1.1 is:

L(G) = (G) -A(G) =          3 -1 -1 -1 0 -1 2 -1 0 0 -1 -1 4 -1 0 -1 0 -1 2 0 0 0 -1 0 1         
For Figure 1.2, the Laplacian matrix is:

L(D) = (D) -A(D) =        2 -1 -1 0 0 1 0 0 0 0 1 -1 0 0 0 1       
For an undirected graph, 0 is a simple eigenvalue of L if and only if the undirected graph is connected [?]. For a directed graph, 0 is a simple eigenvalue of L if the directed graph is strongly connected [5, Proposition 3], although the converse does not hold. For an undirected graph, let

λ i (L) be the i t h smallest eigenvalue of L with λ 1 (L) ≤ λ 2 (L) ≤ . . . ≤ λ n (L) so that λ 1 (L) = 0.

Consensus Control Strategy 1.2.1 Overview of Cooperative Control

A multi-agent system is a system that consists of multiple intelligent agents and their environment.

The word "agent" represents any system with sensing, computing and communicating capabilities, such as a wheeled mobile robot, an unmanned air vehicle (UAV), an autonomous underwater vehicle (AUV), a manipulator or sensors. The agents interact with one-another to achieve a global task. To successfully interact, they will require the ability to cooperate, coordinate and negotiate with each other. The interaction between agents to achieve a global task is called cooperative control. Over the last decade, an enormous amount of researchers have drawn great interest on cooperative control of MAS) because of its variety of applications in several areas, e.g., unmanned aerial vehicle surveillance, hazardous material handling, mine-sweeping and deep sea exploration. Figure 1.4 illustrates some applications of MAS. To enable these applications, various cooperative control [?] [?] [?], etc. In these works, it has been shown that the use of multi-agent cooperative systems enables to accomplish complex tasks which are difficult or impossible compared to the use of a single one. Cooperative control of multi-agent systems poses significant theoretical and practical challenges.

Indeed, the objective is to develop a system of subsystems rather than a single system that has team goals and individual goals which have to be negotiated, while taking into account the limited computa-tional resources of each individual agent, the locally sensed information, and limited inter-component communications. The consensus/agreement/synchronization/rendezvous problem is one fundamental research topic of cooperative control of MASs, which focuses on designing distributed controllers to drive agents to achieve state agreement or forcing a group of agents states to reach an agreement on a quantity of interest such as the rendezvous position, velocity and heading direction. It is crucial to design appropriate control protocols for agents with information interactions over the network.

In

Communication Graphs and Consensus

A network may be considered as a set of nodes or agents that collaborate to achieve a common objective. To capture the notion of dynamical agents, each node i of a graph endowed with a timevarying state vector x i (t) ∈ R n . A graph with node dynamics [START_REF] Zhan | Flocking of multi-agent systems via model predictive control based on position-only measurements[END_REF] is G(x) with (G being a graph having n nodes and x = [x T 1 , ..., x T n] T a global state vector, where the state of each node evolves according to the following differential equation:

ẋi (t) = F (x i (t), u i (t)) with i = 1, 2, ..., n. (1.4)
where u i (t) ∈ R m is the control input of agent i (resp. control input) of the multi-agent system,

F : R n × R m → R n .
Definition 1 Decentralized Control Protocol. The control given by u i = k i (x i1 , x i2 , ..., x im i)

for some function k i (.) is said to be distributed if m i < n, ∀i, that is, the control input of each node depends on some proper subset of all the nodes. It is said to be a protocol with topology G if

u i = k i (x i , {x j |j ∈ N i })
, that is, each node can obtain information about the state only of itself and its neighbors.

Cooperative control, or control of distributed dynamical systems on graphs, refers to the situation where each node can obtain information for control design only from itself and its neighbors. The graph might represent a communication network topology that restricts the allowed communications between the nodes. This has also been referred to as multi-agent control, but is not the same as the notion of multi-agent systems used by the Computer Science community [START_REF] Susca | Monitoring environmental boundaries with a robotic sensor network[END_REF].

Consensus Algorithm

When agents reach an agreement on a certain common feature, they are said to have reached consensus. Information consensus guarantees that agents sharing information over a network topology have a consistent view of information that is critical to the coordination task. To achieve consensus, there must be a shared variable of feature, called the information state, as well as appropriate algorithmic methods for negotiating to reach consensus on the value of that variable, called the consensus algorithm. The information state represents an instantiation of the coordination variable for the team.

The basic idea of a consensus algorithm is to impose similar dynamics on the information states of each agents. If the communication network among agents allows continuous communication or if the communication bandwidth is sufficiently large, then the information state update of each agent is modeled using a differential equation. On the other hand, if the communication data arrive in discrete packets, then the information state update is modeled using a difference equation.

A basic control design objective is the following.

Definition 2 Consensus Problem. Find a distributed control protocol that drives several or all states to the same values x i = x j , ∀i, j . This value is known as a consensus value.

The most common continuous-time consensus algorithm [?],[?] [?] [?]

[?] is given by:

ẋi (t) = - n j=1 a ij [x i (t) -x j (t)], i = 1, . . . , n. (1.5)
where a ij (t) is the (i, j) entry of adjacency matrix A ∈ R n×n associated with G and x i is the information state of the i th agent. A consequence of Equation (1.5) is that the information state x i (t) of agent i is driven toward the information state x j (t) of its neighbors j.

Average Consensus

The average consensus is discussed in

Leaderless and Leader-Follower Consensus

According to the number of leaders in a group of multi-agent system, current researches about the consensus problem are classified into three fields, i.e., leaderless consensus, leader-following consensus problem with a single leader, and containment control with multiple leaders.

Leaderless Consensus

In leaderless consensus, all agents have the same role. For leaderless consensus, control strategies are proposed for first-order [?] [?], second-order [?] [?], high-order [?] [?] multi-agent systems. In [?], it has been shown that for MAS represented by a simple integrator, the algebraic connectivity, that is to say, the smallest positive eigenvalue of the Laplacian graph, determines the convergence time.

[?] provides an overview of consensus for first-order multi-agent systems and also some theoretical results on information consensus-seeking under both time-invariant and time-varying communication topologies. Figure 1.7 described the leaderless consensus problem where the state of all agents converge to a consensus point. The objective of containment control is to drive the states of followers into a convex hull spanned by those multiple leaders. In practical scenarios, it is sometimes more interesting if followers move to an area stretched by several leaders instead of tracking a specific desired path [?]. One possible scenario is that groups of vehicles moves from one place to a target while only a small portion of vehicles has sensing capabilities to detect dangerous obstacles. In this case, all groups have to safely reach the destination as long as followers (vehicles without sensing capabilities) remain in the safe zone formed by leaders (vehicles with sensing capabilities). Some results are reported on the containment control problem for single-integrator [?] or double-integrator [?] multi-agent systems.

Convergence Rate Analysis

The consensus problem of multi-agent systems has received much attention in recent years and many interesting results have been discussed from different directions. An important topic in the study of the consensus problem is the settling time, which characterizes the rate of convergence rate of a closed-loop system. It is well recognized as one of the performance specifications for the control system design. Fast convergence is usually pursued in practice in order to achieve better performance and robustness. It is clear that for the cooperative control of MAS, the convergence rate is one critical index to evaluate the proposed control methods.

To illustrate this important specification index, let us consider the first-order system

ẋ = u (1.6)
where x ∈ R is the state and u ∈ R is the control input. shows that for MAS represented by a simple integrator, the algebraic connectivity, that is to say, the smallest eigenvalue of the Laplacian graph, determines the convergence rate. In

[?], the authors have proposed an approach to increase this algebraic connectivity. However, linear algorithms have only focused on asymptotic convergence, where the time to reach consensus can be arbitrarily large. In [?], the convergence rate can be enhanced by maximizing the algebraic connectivity of the communication topology.

Finite-time stability

Most aforementioned consensus works can only achieve state agreement over an infinite time horizon, which fails to meet specific convergence requirements in an unknown environment. Nevertheless, in some practical cases, finite-time convergence is very interesting in terms of accuracy (which depends on the sampling period) and robustness against perturbations [?].

Before giving a brief state of the art on finite-time consensus, let us recall some basics on finitetime stability. The key point in finite time stability is that the power exponent should be less than one.

Generally, consider the following system

ẋ(t) = F (t, x(t)) x(0) = x 0 (1.7)
where x ∈ R n is the state, F : R + × R n → R n is an upper semicontinuous mapping in an open neighborhood F (t, 0) = 0 for t > 0. The solution of system (1.7) are understood in the Filippov sense

[?] if F (t, x) is discontinuous. Let x(t, x 0) be an arbitrary solution of the Cauchy problem of system (1.7).

Definition 3 [?] The origin of system (1.7) is a globally finite-time equilibrium if there is a function T : R n → R + such that for all x 0 ∈ R n , the solution x(t, x 0) of system (1.7) is defined and

x(t, x 0) ∈ R n for t ∈ [0, T (x 0)) lim t→T (x 0) x(t, x 0) = 0 x(t, x 0) = 0 ∀t > T (x 0) (1.8)
T (x 0) is called the settling time function.

Finite-time stability of the origin implies the asymptotic stability of the origin.

Lemma 1 [?] Assume that there exists a continuously differentiable positive definite and radially unbounded function

V : R n → R + such that V (x) ≤ -αV p (x) (1.9)
with α > 0 and 0 < p < 1. Then, the origin of system (1.7) is globally finite-time stable with settling time estimate

T (x 0) ≤ 1 α(1 -p) V 1-p (x 0) (1.10)
In [?], the authors provide a finite-time consensus protocol for single-integrator MAS using an appropriate Lyapunov function and time-varying weighted directed graphs. In [?], the authors have introduced a terminal-sliding mode controller to deal with the finite-time consensus problem of secondorder linear uncertain systems. In [?], [?], the finite-time tracking problem has been addressed for second-order MAS. In [?], a recursive terminal sliding mode controller has been introduced for the tracking control problem of uncertain chained-form systems in finite-time. Nevertheless, in these studies, the estimated bound of the settling time depends on the initial states of all the agents.

Therefore, this bound cannot be a priori estimated in decentralized architectures. Hence, in some practical applications, it is required to achieve consensus in a prescribed time.

Fixed-time stability

Although finite-time consensus has many advantages, the estimation of convergence time depends on initial states of the networked agents. This will give limitation in practice since the knowledge of initial conditions is usually unavailable. This motivation gives rise to provide the convergence information in advance to yield more options for designers. According to this issue, a new strategy called fixed-time consensus is proposed.

Let us first recall the basics on fixed-time stability. Let us consider system ẋ(t) = F (t, x(t))

x(0) = x 0 (1.11) where x ∈ R n is the state, F : R + × R n → R n is a nonlinear function and F (t, 0) = 0 for t > 0. The solution of (1.11)

→ R + such that V (x) ≤ -αV p (x) -βV q (x) (1.12)
with α > 0, β > 0, 0 < p < 1 and q > 1. Then, the origin of system (1.11) is globally fixed-time stable with settling time estimate

T (x 0) ≤ T max = 1 α(1 -p) + 1 β(q -1) (1.13)
Remark 1 [?] If p = 1 -1 µ and q = 1 + 1 µ with µ > 1, the settling time can be estimated by a less conservative bound:

T (x 0) ≤ T max = πµ 2 √ αβ (1.

Notation and Basic Definition

We use Z + to denote the set of all nonnegative integers. Euclidean norm is denoted simply as | • |.

For any function φ :

Z + → R n , φ = sup{|φ(k)| : k ∈ Z + } ≤ ∞. B r is the closed ball of radius r, i.e. B r = {x ∈ R n ||x| ≤ r}. A continuous function α(•) : R + → R + is a K function if α(0) = 0, α(s) > 0
for all s > 0 and it is strictly increasing. A continuous function β :

R + × Z + → R + is a KL function if β(s, t
) is a K function in s for any t ≥ 0 and for each s > 0 β(s, •) is decreasing and β(s, t) → 0 as t → ∞. M Ω is the set of signals in some subset Ω.

Definition 5 [?] [?] (Stability) Given the discrete-time dynamic system

x(k + 1) = f (x(k)) (1.15)
where the origin x * = 0 ∈ Ω ⊂ R n is an equilibrium point. If there exists a function V : R n → R + and functions α and

β of class K such that α(||x||) ≤ V (x) ≤ β(||x||), ∀x ∈ Ω ⊂ R n (1.16)
Then, the origin of system (1.15) is said

1. Stable if ∆V (x(k)) ≤ 0, ∀x ∈ Ω, x = 0 (1.17) with ∆V (x(k)) = V (x(k + 1)) -V (x(k)) = V (f (x(k))) -V (x(k)) (1.18)
2. Asymptotically stable if there exists a function ϕ of class K such that

∆V (x(k)) ≤ -ϕ(||x||), x ∈ Ω, x(k) = 0 (1.19)
3. Exponentially stable if there exists a constants α 1 , α 2 , α 3 , p > 0 such that the following properties are satisfied for all

x ∈ Ω ⊂ R n α 2 ||x|| p ≤ V (x) ≤ α 1 ||x|| p (1.20)
and

∆V (x(k)) ≤ -α 3 ||x|| p (1.21)

Discrete-time Consensus Algorithm

When interaction among agents occurs at discrete instants, the information state is updated using a difference equation. The most common discrete-time consensus algorithm has the following form [?]

[?] [?] [?]:

x i (k + 1) = - n j=1 a ij (x i (k) -x j (k)), i = 1, . . . , n. (1.22)
where k denotes a sampling variable, a ij is the (i, j) entry of the adjacency matrix of the graph that represents the communication topology. Intuitively, the information state of each vehicle is updated as the weighted average of its current state and the current states of its neighbors. Note that a vehicle maintains its current information state if it does not exchange information with other vehicles at that sampling time instant. The discrete-time consensus algorithm (1.22) is written in matrix form as

x(k + 1) = -Lx(k)
where L is the Laplacian matrix. Similar to the continuous case, consensus is achieved if, for all x i (0) and for all i, j = 1, . . . , n,

|x i (k) -x j (k)| → 0 as k → ∞.
One interesting scheme to design the consensus algorithm for discrete-time multi-agent systems is to use a model predictive controller. This is the main topic of the next subsection.

Model Predictive Control (MPC)

A brief history of MPC techniques is shown in Figure 1.12 shows the general concepts of MPC algorithm for a single-input-single-output (SISO) system. At current time, say k, the system's future response (predicted output) y p (k) on a finite horizon H p , say [k|k + H p], is predicted using the system model and the predicted control input u p (k),

[k|k + H u].
H p is named as the prediction horizon and H u is named as the control horizon (H u ≤ H p).

Usually, the system's future response is expected to return to a desired set point s(k) by following a reference trajectory r(k) from the current states. The difference between the predicted output y p (k)

and the reference trajectory r(k) is called the predicted error. A finite horizon optimal control problem with a performance index that usually penalizes the predicted control input and the predicted error is solved online and an optimal control input u * (k), [k|k + H u], is obtained. Only the first element of u * (k) is implemented to the plant. All the other elements are discarded. Then, at the next time k + 1, the whole procedure is repeated. The predicted control input u p (k + 1) at time k + 1 can be built by u * (k) with linear extrapolation. Since the prediction horizon and control horizon move one step further into future at each time interval, MPC is also named as receding horizon control (RHC).

For cooperative behavior mechanism and effective control of MAS, MPC technique has several advantages such as the acceleration of the convergence speed, the possible consideration of multivariable constraints and the increase of the range of sampling periods. In a distributed architecture, each agent uses only local information. According to their own and neighbors's information (both actual and past), MPC may precisely reflect the autonomy of an agent. The predictive mechanism of MPC is used to predict the output state in the short-term prediction horizon. Each agent solves an optimization problem using its own and neighbor information data, to design the control input at each moment, and then realize the cooperative control.

One of the major advantages of the MPC approach is that the cooperative control will be conducted from an optimization point of view. Some physical limits such as input bounds, safety regions for the collision avoidance can be formulated as constraints in the optimization problem. MPC has the ability to handle control and state constraints for discrete-time systems [?]. This method can be applied for the control of a group of agents by letting each agent solve, at each step, a constrained finite-time optimal control problem involving the state of neighboring agents. For agents modeled by a discretetime system, [?] proposed decentralized MPC schemes with control input constraints and showed that under the proposed decentralized schemes, multi-agent systems with single-and double-integrator dynamics asymptotically achieves consensus under mild assumptions. However, it was assumed that the control horizon equals the prediction control, which reduced the degree of freedom for the controller design. To remove the problem in degree of freedom for the controller design, [1] proposed a consensus scheme for discrete-time single-integrator MAS under switching directed interaction graphs where the control horizon can be arbitrarily picked from one to prediction horizon. Another result of MPC is

[?] which proposed a MPC strategy to increase the consensus convergence rate in MASs under some special communication networks.

Conclusion

We have discussed in this chapter the basic concepts of algebraic graph theory for describing the communication topology among the agents. Consensus control problem in cooperative control for multi-agent systems has been also introduced. Convergence rates are discussed, which motivates us to conduct a more in-depth study to investigate how a fast controller can be designed. The concepts of consensus for multi-agent systems in continuous-time and discrete-time are separately discussed where discrete-time systems are more suitable for practical applications. Model predictive control as a solution of the multi-agent consensus problem in discrete-time has been introduced.

Chapter 2

Fixed-Time Leader-Follower Consensus Control Strategy for MAS

Introduction

This chapter is concerned with the fixed-time leader-follower consensus problem of multi-agent systems.

The first part of this chapter formulates the general control objective and the considered assumptions to solve the fixed-time leader-follower consensus problem. The second and third part of this chapter deal with the consensus tracking problem for linear multi-agent systems (i.e. single-integrator and double-integrator dynamics). Here, the leader (which can be dynamic) only transmits its state to its neighbors. A decentralized controller, which uses the available local information, is designed to track the desired trajectory of the leader in a prescribed time. Using the proposed controller, an upper bound of the settling time is provided regardless of the initial conditions.

The fourth part of this chapter studies the fixed-time tracking problem for a single unicycle-type mobile robot. First, the resulting tracking error dynamics is transformed into two second-order coupled subsystems. Then, the two subsystems are studied and a step-by-step fixed-time control strategy is designed. An upper bound of the settling time, which only depends on the controller parameters is estimated regardless of the initial conditions. Finally, some simulation results are given to show the effectiveness of the proposed controller.

The fifth part is concerned with the fixed-time consensus problem of multi-agent system for unicycle-type mobile robots. For each agent, a distributed observer is designed to estimate the leader state in a fixed-time. Contrary to finite-time schemes, the estimation of the settling time does not require the knowledge of the initial state, allowing a step by step design for the controller. A decentralized observer-based control protocol is proposed for each agent to solve the leader-follower consensus problem in a fixed-time.

The main contributions of the proposed scheme can be summarized as follows:

i) To remove the problem of the communication loop due to the dependence of the control inputs of the followers on the inputs of its neighbors in [?][?], distributed observers are designed to estimate the leader state in a prescribed time which does not depend on the initial state contrary to existing finite-time observers.

ii) A new decentralized observer-based control protocol is proposed for each follower to solve the fixed-time consensus tracking problem when the leader is dynamic.

iii) Robustness properties against matched perturbations are guaranteed.

iv) An upper bound of the settling time, which only depends on the controller parameters is estimated independently of the initial conditions, contrary to existing finite-time controllers.

The remaining parts of this chapter are organized as follows. Section 2.2 introduces some assumptions and formulates the general control objective. The main theoretical results on the consensus tracking problem are presented for single-integrator and double-integrator dynamics in Section 2.3 and 2.4. In Section 2.5, a fixed-time tracking control law for a single agent with unicycle-type dynamics is provided. In section 2.6, the main theoretical results on the consensus tracking problem are presented for unicycle-type dynamics. Section 2.7 concludes this chapter.

Problem Statement and Assumptions

Let us consider a group of N + 1 agents with one leader (which could be virtual) labeled by 0 and N followers, labeled by i ∈ {1, . . . , N }. The dynamics of the leader is given by the following general system

ẋ0 (t) = F (x 0 (t), u 0 (t)) (2.1)
where x 0 ∈ R n is the leader state and u 0 ∈ R m is the leader control input.

F : R n × R m → R n is known.
Here, it should be highlighted that solutions of (2.1) are understood in the Filippov sense [?].

The dynamics of the ith follower is as follows

ẋi (t) = F (x i (t), u i (t)) with i = 1, 2, . . . , N. (2.2)
where x i ∈ R n is the state and u i ∈ R m is the control input of the ith follower. The unknown perturbation of the ith agent is given by d i (t) ∈ R n . Here, it should be highlighted that solutions of (2.2) are understood in the Filippov sense [?].

Among the N followers, the communication topology can be represented by graph G = {V, E} where V = {1, . . . , N } defines the set of nodes, corresponding to the followers, and E ⊆ {V × V} defines the edge set. A link (j, i) ∈ E, with i = j, exists if agent i receive information from its neighbor j. The adjacency matrix

A = (a ij) ∈ R N ×N satisfies a ij > 0 if (j, i) ∈ E and a ij = 0,
otherwise. The corresponding Laplacian matrix is given by L = (l ij) ∈ R N ×N with l ii = N j=1, j =i a ij and l ij = -a ij for i = j. The links between the leader and the followers are characterized by matrix

B = diag(b 1 , . . . , b N)
where b i > 0 if the leader state is available to follower i and where b i = 0 otherwise.

Hereafter, it is assumed that the following hypotheses hold to derive the proposed fixed-time controllers.

Assumption 1 It is assumed that the communication topology among the N followers is undirected, fixed, connected. It means that the adjacency matrix A is symmetric. It is also assumed that there is at least one strictly positive parameter b i .

Assumption 2 The followers do not know the leader control input u 0 . Nevertheless, its neighboring agents know its upper bounds.

Assumption 3 For each follower, the perturbation d i (t) is unknown but it is bounded by a known constant.

Remark 2 Assumption 1 is conventional to deal with the leader-follower consensus problem. Hypothesis 2-3 are not restrictive since the bounds of perturbations and leader input can be estimated a priori for any system.

Here, the purpose is to derive a decentralized controller u i (i = 1, . . . , N) for each follower, based on available information, such that the leader-follower consensus problem is solved in a fixed-time, in spite of matched external perturbations. It means that there exists a positive constant T , such that

∀x i (0), ∀i = 1, . . . , N , lim t→T x i (t) -x 0 (t) = 0 x i (t) = x 0 (t), ∀t ≥ T (2.3)
Remark 3 One can note that the settling time T does not depend on the initial states of the agents. It removes some limitations on existing finite-time consensus schemes for the application in decentralized architectures. The settling time can be prescribed according to some high-level policies (for instance in flexible manufacturing systems, when an operation should be performed before a deadline), or when cluster networks or switching communication topologies are considered [?].

Consensus of MAS with Single-Integrator Dynamics

Let us first consider a holonomic mobile robot moving in a two-dimensional plane. The axes of the workspace are shown in Figure 2.1. Since we assume that motions along the x and y-axes are

(t) = u x (t) ẏi (t) = u y (t) (2.4)
where x i (t) ∈ R and y i (t) ∈ R are the position, u x (t) ∈ R and u y (t) ∈ R are the control inputs along the x-axis and y-axis, respectively. Remark 4 In the following, let us only consider the dynamics along the x-direction.

Along the x-direction, the leader dynamics is given by the following single-integrator system ẋ0 (t) = u 0 (t) (2.5) where x 0 ∈ R (resp. u 0 ∈ R) is the leader state (resp. leader control input). Along the x-direction, the dynamics of the ith follower is as follows

ẋi (t) = u i (t) + d i (t) (2.6)
where

x i ∈ R (resp. u i ∈ R)
is the state (resp. control input) of the ith follower. The unknown perturbation of the ith agent is given by d i ∈ R.

Fixed-Time Observer-Based Consensus Protocol

For single-integrator dynamics MAS under matched perturbations, we propose an observer-based consensus protocol to deal with the leader-follower consensus problem.

Distributed fixed-time observer

To estimate the leader state in a prescribed time, distributed observers are designed for each follower i ∈ {1, . . . , N }. Indeed, the leader state is only available to its neighboring followers. Let us introduce the following observer

ẋi = ρ sign   N j=1 a ij (x j -xi) + b i (x 0 -xi)   + σ     N j=1 a ij (x j -xi) + b i (x 0 -xi)     2 (2.7)
where xi is the estimation of the leader state x 0 for the ith follower, ρ and σ are positive constants, which will be given hereafter.

The fixed-time stabilization of the estimation errors

xi = xi -x 0 (i = {1, . . . , N }) (2.8)
is introduced in the following theorem.

Theorem 1 Suppose that Assumptions 1-2 are satisfied. If the gains of the distributed observer (2.7)

verify    σ = √ N (2λ min (L+B)) 3 2 ρ = u max 0 + λmax(L+B) 2λ min (L+B) (2.9)
with > 0, then, for any initial condition, the estimation errors (2.8) converge to zero. An upper bound of the convergence time can be given as

T o = π (2.10)
Proof. Using (2.7), the dynamics of the observation error is given by ẋi

= ρ sign   N j=1 a ij (x j -xi) -b i xi   + σ     N j=1 a ij (x j -xi) -b i xi     2 -u 0 (2.11) Let us denote x = [x 1 , . . . , xN] T (2.12)
Then, for x, one can obtain

ẋ = -ρ sign ((L + B)x) -σ (L + B)x 2 -1u 0 (2.13)
We complete the proof by consider the candidate Lyapunov function for system (2.13)

V 1 = 1 2 xT (L + B)x (2.14)
Its time derivative is given by

V1 = xT (L + B) -ρ sign ((L + B)x) -σ (L + B)x 2 -1u 0 ≤ -(ρ -u max 0) (L + B)x 1 -σN -1 2 (2λ min (L + B)) 3 2 V 3 2 ≤ -V 1 2 1 -V 3 2 1
Using Lemma 2, this inequality ensures that x converges to zero in a finite-time bounded by π .

Remark 5

The conditions (2.9) on the observer gains are relatively strong since global information like N , λ min (L + B) and λ max (L + B) is required to guarantee the fixed-time convergence. Hence, each agent must have some global knowledge about the communication topology similarly to existing works on fixed-time consensus. One should highlight that such global information is needed to provide an explicit estimate of the settling time (which is a very interesting feature of the proposed scheme).

It is worthy of noting that if a prescribed convergence time T o is required, one can easily tune the observer gains according to (2.9) to estimate the leader state. Similarly to the work of [?], parameter should be tuned to obtain a good compromise between robustness against measurement noises (in the presence of measurement noises, only a neighborhood of the origin of the observation error system, which depends on the size of noise and , could be fixed-time stable) and sufficiently fast estimation.

When the observer gains are selected, through conditions (2.9), the proposed scheme can be considered as a decentralized one since each neighboring agent only exchanges local information during the process.

Decentralized fixed-time controller

From Theorem 1, one can conclude that xi = x 0 for all t ≥ T o . Hence, after time T o , each follower is able to indirectly access to the state of the leader and uses the estimate xi in the consensus protocol.

Let us denote the tracking errors as follows

e i = x i -xi = x i -x 0 -xi (2.15)
From (2.5)-(2.6) and using Theorem 1, for each follower i = {1, . . . , N } and for all t ≥ T o , the tracking error dynamics becomes

ėi = u i + d i -u 0 (2.16)
It is clear that dynamics (2.16) is a first-order system.

In the following theorem, the control strategy is derived to solve the leader-follower consensus problem for MAS with single-integrator dynamics, in a fixed-time, in spite of the presence of matched perturbations.

Theorem 2 Let us consider the leader-follower system (2.5)-(2.6). Suppose that Assumptions 1-3 are satisfied and the gains of the distributed observer (2.7) verify Eq. (2.9). The leader-follower consensus problem is solved in a fixed-time using the decentralized controller

u i = 0 , ∀t < T o -(α + a i) e i 2 -β sign (e i) , ∀t ≥ T o (2.17)
where α, β are positive constants and a i is a positive constant given hereafter. The settling time is explicitly defined as

T = T o + π √ αβ (2.18)
Proof. We complete the proof by showing that the origin is fixed-time stable with the settling time estimate T under the control law (2.17). It will be also proved that in spite of the presence of matched perturbations, the fixed-time leader-follower consensus problem is solved.

Let us first consider system (2.16).

ėi = u i + d i -u 0
According to Assumptions 2-3, let us denote a i as

a i ≥ d i + u 0 (2.19)
Following [?], let us consider the candidate Lyapunov function

V 2 = 1 2 |e i | 2 . Its derivative is, V2 ≤ -α|e i | 3 + β|e i | ≤ -α(2V 2) 3 2 + β(2V 2) 1 2
(2.20)

It is clear using Lemma 2 that e i = 0 when t ≥ T .

This concludes the proof.

Simulation Results

The simulation results for all the following subsections (i.e. simple integrator, double integrator, chained-form system) are done using the same topology. A multi-agent system with N = 6 followers labeled by 1 -6 and one leader labeled by 0 is considered. Figure 2.2 shows the communication topology. One can see that it is fixed and connected. It is characterized by the following Laplacian L and the matrix B which describes links between the leader and the followers given as follows From matrix B, it is clear that agents 1, 3, 4 and 6 do not have direct link with agent 0. Assumption 1 is satisfied.

L =             2 -1 0 0 0 -1 -1 2 -1 0 0 0 0 -1 3 -1 0 -1 0 0 -1 1 0 0 0 0 0 0 1 -1 -1 0 -1 0 -1 3             , B =             0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0            
The performances of the proposed observer-based leader-follower consensus controller for single integrator are studied through numerical simulations. The dynamics of the leader (resp. the followers) is given by Eq. (2.5) (resp. Eq. (2.6)).

Let us set α = β = 0.5 and a i = 0.3 for protocol (2.17). Using Theorem 1, the distributed observer (2.7) guarantees the stabilization of the estimation errors (2.8) to the origin in a finite-time bounded by T o = 1s. Figure 2.3 shows that the distributed observers accurately reconstruct the leader state for each agent before T o . One can obtain T = 7.28s. Hence, the origin of the closed-loop system is globally finite-time stable contrary to existing controllers which only provide semi-global finite-time stability property. Furthermore, since T does not depend on the initial states of agents, the proposed protocol is distributed.

The tracking errors are depicted in Figure 2.4. One can see that the tracking errors between each follower and the leader converge to zero before T . One can conclude that using the proposed controller, the leader-follower consensus is achieved in a prescribed time. The control inputs for each agent are shown in Figure 2.5. One can note that the magnitude of control inputs may be large during the transients to achieve a fast convergence of the sliding surfaces given by the different steps of the consensus protocol. Hence, the control parameters should be adjusted to obtain a good compromise between magnitude of the control inputs and settling time.

Consensus of MAS with Double-Integrator Dynamics

Consider a multi-agent system consisting of a leader (which could be virtual) labeled by 0, and N followers, labeled by i ∈ {1, . . . , N }. In the following, let us only consider the dynamics along the

x-direction. The leader dynamics is given by the following double-integrator system ẋ1,0 (t) = x 2,0 (t) ẋ2,0 (t) = u 0 (t) (2.21) where

x 0 = [x 1,0 , x 2,0] T ∈ R 2 (resp. u 0 ∈ R)
is the leader state (resp. leader control input) along the

x-axis. The dynamics of the ith follower is as follows

ẋ1,i (t) = x 2,i (t) ẋ2,i (t) = u i (t) + d i (t) (2.22)
where

x i = [x 1,i , x 2,i] T ∈ R 2 (resp. u i ∈ R)
is the state (resp. control input) of the ith follower. The unknown perturbation of the ith agent is given by d i ∈ R.

Fixed-Time Observer-Based Consensus Protocol

For double-integrator dynamics MAS under matched perturbations, we propose an observer-based consensus protocol to deal with the leader-follower consensus problem.

Distributed fixed-time observer

To estimate the leader state in a prescribed time, distributed observers are designed for each follower i ∈ {1, . . . , N }. Indeed, the leader state is only available to its neighboring followers. Let us introduce the following observer as follows

               ẋ1,i = x2,i + ρ 1 sign N j=1 a ij (x 1,j -x1,i) + b i (x 1,0 -x1,i) +σ 1 N j=1 a ij (x 1,j -x1,i) + b i (x 1,0 -x1,i) 2 ẋ2,i = ρ 2 sign N j=1 a ij (x 2,j -x2,i) + b i (x 2,0 -x2,i) +σ 2 N j=1 a ij (x 2,j -x2,i) + b i (x 2,0 -x2,i) 2 (2.23)
where xk,i (k = {1, 2}) is the estimation of the leader state x k,0 for the ith follower, ρ k and σ k are positive constants, which will be given hereafter.

The fixed-time stabilization of the estimation errors

xk,i = xk,i -x k,0 (i = {1, . . . , N }, k = {1, 2}) (2.24)
is introduced in the following theorem.

Theorem 3 Suppose that Assumptions 1-2 are satisfied. If the gains of the distributed observer (2.23)

verify          σ k = √ N (2λ min (L+B)) 3 2
, ∀k = 1, 2

ρ 1 = λmax(L+B) 2λ min (L+B) ρ 2 = u max 0 + λmax(L+B) 2λ min (L+B) (2.25)
with > 0, then, for any initial condition, the estimation errors (2.24) converge to zero. An upper bound of the convergence time can be given as

T o = 2π (2.26)
Proof. Using (2.23), the dynamics of the observation error is given by

ẋ1,i = x2,i + ρ 1 sign N j=1 a ij (x 1,j -x1,i) -b i x1,i +σ 1 N j=1 a ij (x 1,j -x1,i) -b i x1,i 2 ẋ2,i = ρ 2 sign N j=1 a ij (x 2,j -x2,i) -b i x2,i +σ 2 N j=1 a ij (x 2,j -x2,i) -b i x2,i 2 -u 0 (2.27) Let us denote xk = [x k,1 , . . . , xk,N] T (2.28)
Then, for x1 and x2 , one can obtain

ẋ1 = x2 -ρ 1 sign ((L + B)x 1) -σ 1 (L + B)x 1 2 (2.29) ẋ2 = -ρ 2 sign ((L + B)x 2) -σ 2 (L + B)x 2 2 -1u 0 (2.30)
We complete the proof by two steps. • After x2 converges to zero (i.e. when t ≥ π), the dynamics of x1 becomes

ẋ1 = -ρ 1 sign ((L + B)x 1) -σ 1 (L + B)x 1 2 (2.31)
Similarly to the previous step, the x1 dynamics converges to zero. Indeed, consider the candidate Lyapunov function for system (2.31)

V 3 = 1 2 xT 1 (L + B)x 1 (2.32)
Its time derivative along (2.31) is given by

V3 = xT 1 (L + B) -ρ 1 sign ((L + B)x 1) -σ 1 (L + B)x 1 2 ≤ -ρ 1 (L + B)x 1 1 -σ 1 N -1 2 (2λ min (L + B)) 3 2 V 3 2 2 ≤ -V 1 2 3 -V 3 2 3
Hence, one can conclude that x1 converges to zero and after that x2 converges to zero in a finite-time bounded by 2 π .

Hence, one can conclude that the estimation errors (2.24) converge to zero in a fixed-time bounded by T o .

Decentralized fixed-time controller

From Theorem 3, one can conclude that xi = [x 1,i , x2,i] T = x 0 for all t ≥ T o . Hence, after time T o , each follower is able to indirectly access to the state of the leader and uses the estimate xi in the consensus protocol.

Let us denote the tracking errors as follows

e k,i = x k,i -xk,i = x k,i -x k,0 -xk,i (i = {1, 2}, k = {1, 2}) (2.
u i = 0 , ∀t < T o - α 1 +3β 1 e 2 1,i +2a i 2 sign (s i) -α 2 s i + β 2 s i 3 1 2 , ∀t ≥ T o (2.35)
with the sliding surface

s i = e 2,i + e 2,i 2 + α 1 e 1,i + β 1 e 1,i 3 1 2
(2.36)

where α 1 , α 2 , β 1 and β 2 are positive constants, a i is a positive constant given hereafter. The settling time is explicitly defined as

T = T o + 2 √ α 2 + 2 √ β 2 + 2 √ 2 √ α 1 + 2 √ 2 √ β 1 (2.37)
Proof. We complete the proof by two steps.

• Following [?], let us consider the candidate Lyapunov function

V 4 = |s 1,i |. Its derivative is, V4 = ė2,i sign (s i) + |e 2,i | ė2,i sign (s i) + α 1 +3β 1 e 2 1,i 2 e 2,i sign (s i) | e 2,i 2 + α 1 e 1,i + β 1 e 1,i 3 | 1 2 (2.38) Since α 2 s i + β 2 s i 3 1 2 sign (s i) = (α 2 |s i | + β 2 |s i | 3) 1 2 one has ė2,i sign (s i) = (u i + d i -u 0) sign (s i) = - α 1 +3β 1 e 2 1,i 2 -(α 2 |s i | + β 2 |s i | 3) 1 2 -(a i -(d i -u 0) sign (s i))
Setting

a i ≥ d i + u 0 (2.39) one can conclude that V4 ≤ -(α 2 V 4 + β 2 V 3 4) 1 2
(2.40)

From Lemma 2, it is clear that

s i = 0 when t ≥ T o + 2 √ α 2 + 2 √ β 2 .
• The sliding dynamics (s i = 0) can be expressed as

ė1,i = - α 1 e 1,i + β 1 e 1,i 3
2 1 2
(2.41)

Using the candidate Lyapunov function

V 5 = |e 1,i |, one can obtain V5 = -(α 1 2 V 5 + β 1 2 V 3 5) 1 2
(2.42)

It is clear using Lemma 2 that e 1,i = 0 when t ≥ T s . Furthermore, since e 1,i = 0 and s i = 0, then e 2,i = 0.

This concludes the proof.

Simulation Results

In this subsection, some simulation results are provided to verify the theoretical analysis. We consider the leader-follower MAS with double-integrator dynamics (2.22). We use the same topology as in the previous section, where agents 1, 3, 4 and 6 do not have direct link with agent 0. Assumption 1 is satisfied.

The trajectory of the leader is generated by (2.21) with u 0 (t) = 0.1 sin(t). From the control input of the leader, one can see that Assumption 2 is verified. The control objective is that the followers, described by Eq.

Consensus of MAS with Unicycle-Type Dynamics

Let us now consider a nonholonomic mobile robot moving in a two-dimensional plane. The axes of the workspace are shown in Figure 2.9. The kinematics of the unicycle-type mobile robot is described under the nonholonomic constraints (contains the time derivatives of the generalized coordinates of the system and is not integrable). The configuration of the robot i can be represented by:

q i (t) = (x i (t), y i (t), θ i (t)) T (2.43)
where x i (t) ∈ R, y i (t) ∈ R describe the robot position and θ i (t) is its orientation in the global frame.

The pure rolling and nonslipping conditions are described by:

G T (q i) qi = 0 with G T (q i) = (-sin(θ i) cos(θ i) 0) (2.44)
Under the hypothesis of pure rolling and nonslipping condition, the kinematic equations can be written as follows:

qi (t) = f (q i (t), u i (t)) (2.45)
where vector field f : R 3 × R 2 → R 3 and control inputs u i are defined as:

                 f (q i (t), u i (t)) =     cos(θ i) 0 sin(θ i) 0 0 1     u i (t) u i (t) = (υ i (t), ω i (t)) T (2.46)
υ i (t) and ω i (t) are the linear and angular velocities, respectively. Before designing the consensus protocol, let us consider the classical transformation

                 q i1 (t) = θ i (t)
q i2 (t) = x i sin(θ i (t)) -y i cos(θ i (t))

q i3 (t) = x i cos(θ i (t)) + y i sin(θ i (t)) u i1 (t) = ω i (t) u i2 (t) = υ i (t) -q i2 (t)ω i (t) (2.47)
Using (2.47), system (2.45) can be written in chained-form as follows:

qi1 (t) = u i1 (t) qi2 (t) = q i3 (t)u i1 (t) qi3 (t) = u i2 (t) (2.48)
To deal with the robustness properties, some matched perturbations are added. Furthermore, for the purpose of the controller design, an additional dynamic extension is added to the chained-form dynamics. Therefore, the dynamics (2.48) becomes: The dynamics of the desired trajectory is generated using the following system:

ẋ1 (t) = x 2 (t) ẋ2 (t) = u 1 (t) + d 1 (t) ẋ3 (t) = x 4 (t)x 2 (t) ẋ4 (t) = u 2 (t) + d 2 (t) (2.49) where x = [x 1 , x 2 , x 3 , x 4] T ∈ R 4 (resp. u = [u 1 , u 2] T ∈ R 2)
ẋ1,d (t) = x 2,d (t) ẋ2,d (t) = u 1,d (t) ẋ3,d (t) = x 4,d (t)x 2,d (t) ẋ4,d (t) = u 2,d (t)
(2.50)

where Remark 6 Hypothesis 4 is not restrictive since the bounds of perturbations can be estimated a priori for any system. Assumption 10 is relatively not restrictive since only the case x 2,d (t) = 0 is not considered in the proposed scheme. Therefore, the motion planner for the desired trajectory should take into account this constraint (to avoid any loss of controllability). Indeed, when x 2,d (t) = 0, we loose controllability since the state x 3,d cannot be controlled. Since the agent track the leader, it also looses controllability in this case.

x d = [x 1,d , x 2,d , x 3,d , x 4,d] T ∈ R 4 (resp. u d = [u 1,d , u 2,d] T ∈ R 2)
Remark 7 Note that there exist several tools to plan the trajectory for the leader. For instance, in

[?], based on nonlinear programming and flatness properties, a constrained receding horizon planner is applied to design the state and the control input of the leader. One can easily extend this work while taking into account constraints given in Assumptions 4-10.

Let us define the tracking errors as

e(t) = x(t) -x d (t) (2.52)
with e = [e 1 , e 2 , e 3 , e 4] T ∈ R 4 . The tracking error dynamics satisfy the following differential equations:

(Σ 1) ė1 (t) = x 2 (t) -x 2,d (t) ė2 (t) = u 1 (t) + d 1 (t) -u 1,d (t) (Σ 2) ė3 (t) = x 4 (t)x 2 (t) -x 4,d (t)x 2,d (t) ė4 (t) = u 2 (t) + d 2 (t) -u 2,d (t)
(2.53)

To simplify the controller design, dynamics (2.53) is divided into two second-order coupled subsystems. To solve the fixed-time trajectory tracking problem, two steps are defined:

• Stabilization of subsystem Σ 1 in a fixed time T s using control u 1 ,

• After t > T s , stabilization of subsystem Σ 2 in a fixed time T using control u 2 .

Figure 2.11 illustrated how the fixed-time trajectory tracking problem solved.

To design the fixed-time consensus tracking algorithm for a single unicycle-type mobile robot, the following theorem is derived.

u 1 = u 1,d + ϕ 1 e 1 , e 2 u 2 = 1 ,∀t < T s u 2,d - e 4 u 1,d x 2,d + 1 x 2,d ϕ 2 e 3 , ζ 4 ,∀t ≥ T s (2.54) with ζ 4 = e 4 x 2,d .
The sliding mode controllers are as follows: (2.56)

ϕ 1 e 1 , e 2 = - α 1 +3β 1 e 2 1 +2d
The switching time is

T s = 2 √ α 2 + 2 √ β 2 + 2 √ 2 √ α 1 + 2 √ 2 √ β 1
and constants α i , β i (i = 1, 2) are positive.

Then, the origin of system (2.53) is globally fixed-time stable with settling time:

T = 2T s (2.57)
Hence, the fixed-time trajectory tracking problem is solved.

Proof. The proof is divided into two steps.

• Let us first consider the time interval t ∈ [0, T s]. Using controller (2.54), it is clear that subsystem Σ 1 has been already discussed in the section double-integrator system. One can conclude that e 1 = 0 and e 2 = 0.

• Let us now consider t > T s . From previously, subsystem Σ 2 can be written as:

ė3 = e 4 x 2,d ė4 = u 2 + d 2 -u 2,d (2.58)
Setting ζ 4 = e 4 x 2,d , system (2.58) can be expressed as:

ė3 = ζ 4 ζ4 = (u 2 + d 2 -u 2,d)x 2,d + e 4 u 1,d (2.59)
Using controller (2.54), system (2.59) becomes:

ė3 = ζ 4 ζ4 = ϕ 2 + d 2 x 2,d (2.60)
Using Assumptions 4-10 and following the same procedure as in the first step, one can conclude that the origin of system (2.59) is globally fixed-time state with settling time T given by Eq.

(2.57). It is clear that the origin of system (2.53) is globally fixed-time stable with settling time

T .
Remark 8 It should be highlighted that since the settling time T is independent of the initial system conditions and can be estimated a priori, global finite-time stability of the closed-loop system is guaranteed (contrary to many existing works which only guarantee semi-global finite-time stability).

Simulation Results

In this subsection, some simulation results are provided to verify the theoretical analysis.

We consider the unicycle-type mobile robot (2.49) where the perturbations are d 1 = sin(20t) and

Consensus of MAS with Unicycle-Type Mobile Robot Dynamics

Consider a multi-agent system consisting of a leader (which could be virtual) labeled by 0, and N followers, labeled by i ∈ {1, . . . , N }. The leader dynamics is given by the following chained-form unicycle-type mobile robot

             ẋ1,0 (t) = x 2,0 (t) ẋ2,0 (t) = u 1,0 (t) ẋ3,0 (t) = x 4,0 (t)x 2,0 (t) ẋ4,0 (t) = u 2,0 (t)
(2.61) where

x 0 = [x 1,0 , x 2,0 , x 3,0 , x 4,0] T ∈ R 4 (resp. u 0 = [u 1,0 , u 2,0] T ∈ R 2)
is the leader state (resp. leader control input). The dynamics of the ith follower is as follows

             ẋ1,i (t) = x 2,i (t) ẋ2,i (t) = u 1,i (t) + d 1,i (t) ẋ3,i (t) = x 4,i (t)x 2,i (t) ẋ4,i (t) = u 2,i (t) + d 2,i (t)
(2.62)

where

x i = [x 1,i , x 2,i , x 3,i , x 4,i] T ∈ R 4 (resp. u i = [u 1,i , u 2,i] T ∈ R 2) is the state (resp. control input)
of the ith follower. The unknown perturbation of the ith chained-form is given by

d i = [d 1,i , d 2,i] T ∈ R 2 .
Figure 2.15 provides an illustration of fixed-time consensus tracking problem. To solve this problem, the following assumptions are considered.

Assumption 6 It is assumed that the communication topology among the N followers is undirected, fixed, connected. It means that the adjacency matrix A is symmetric. It is also assumed that there is at least one strictly positive parameter b i .

Assumption 7

The followers do not known the leader control input. Nevertheless, its neighboring agents know its upper bounds u 1,0 and u 2,0 , defined as follows

|u 1,0 (t)| ≤ u max 1,0 |u 2,0 (t)| ≤ u max 2,0 (2.63
) Assumption 8 For each follower, the perturbation d i (t) is unknown but it is bounded as follows

with u max 1,0 , u max 2,0 ∈ R + .
|d 1,i (t)| ≤ d max 1,i |d 2,i (t)| ≤ d max 2,i (2.64
)

with d max 1,i , d max 2,i ∈ R + .
Assumption 9 It is assumed that the leader state x 2,0 satisfies the following condition

x 2,0 (t) = 0 (2.65)

Fixed-Time Observer-Based Consensus Protocol

For chained-form dynamics MAS under matched perturbations, we propose an observer-based consensus protocol to deal with the leader-follower consensus problem. Figure 2.16 illustrates the proposed control strategy to solve the consensus problem of MAS with chained-form dynamics.

Distributed fixed-time observer

To estimate the leader state in a prescribed time, distributed observers are designed for each follower i ∈ {1, . . . , N }. Indeed, the leader state is only available to its neighboring followers. Let us introduce the following observer as follows

                                         ẋ1,i = x2,i + ρ 1 sign N j=1 a ij (x 1,j -x1,i) + b i (x 1,0 -x1,i) +σ 1 N j=1 a ij (x 1,j -x1,i) + b i (x 1,0 -x1,i) 2 ẋ2,i = ρ 2 sign N j=1 a ij (x 2,j -x2,i) + b i (x 2,0 -x2,i) +σ 2 N j=1 a ij (x 2,j -x2,i) + b i (x 2,0 -x2,i) 2 ẋ3,i = x4,i x2,i + ρ 3 sign N j=1 a ij (x 3,j -x3,i) + b i (x 3,0 -x3,i) +σ 3 N j=1 a ij (x 3,j -x3,i) + b i (x 3,0 -x3,i) 2 ẋ4,i = ρ 4 sign N j=1 a ij (x 4,j -x4,i) + b i (x 4,0 -x4,i) +σ 4 N j=1 a ij (x 4,j -x4,i) + b i (x 4,0 -x4,i) 2 (2.66)
where xk,i (k = {1, . . . , 4}) is the estimation of the leader state x k,0 for the ith follower, ρ k and σ k are positive constants, which will be given hereafter.

The fixed-time stabilization of the estimation errors

xk,i = xk,i -x k,0 (i = {1, . . . , N }, k = {1, . . . , 4}) (2.67)
is introduced in the following theorem.

Theorem 6 Suppose that Assumptions 6-7 are satisfied. If the gains of the distributed observer (2.66)

verify                      σ k = √ N (2λ min (L+B)) 3 2
, ∀k = 1, . . . , 4

ρ 1 = λmax(L+B) 2λ min (L+B) ρ 2 = u max 1,0 + λmax(L+B) 2λ min (L+B) ρ 3 = λmax(L+B) 2λ min (L+B) ρ 4 = u max 2,0 + λmax(L+B) 2λ min (L+B) (2.68)
with > 0, then, for any initial condition, the estimation errors (2.67) converge to zero. An upper bound of the convergence time can be given as

T o = 2π (2.69)
Proof. Using (2.66), the dynamics of the observation error is given by

ẋ1,i = x2,i + ρ 1 sign N j=1 a ij (x 1,j -x1,i) -b i x1,i +σ 1 N j=1 a ij (x 1,j -x1,i) -b i x1,i 2 ẋ2,i = ρ 2 sign N j=1 a ij (x 2,j -x2,i) -b i x2,i +σ 2 N j=1 a ij (x 2,j -x2,i) -b i x2,i 2 -u 1,0 ẋ3,i = ρ 3 sign N j=1 a ij (x 3,j -x3,i) -b i x3,i +σ 3 N j=1 a ij (x 3,j -x3,i) -b i x3,i 2 + x4,i x2,i -x 4,0 x 2,0 ẋ4,i = ρ 4 sign N j=1 a ij (x 4,j -x4,i) -b i x4,i +σ 4 N j=1 a ij (x 4,j -x4,i) -b i x4,i 2 -u 2,0 (2.70)
ẋ1 = x2 -ρ 1 sign ((L + B)x 1) -σ 1 (L + B)x 1 2 (2.72) ẋ2 = -ρ 2 sign ((L + B)x 2) -σ 2 (L + B)x 2 2 -1u 1,0 (2.73) ẋ4 = -ρ 4 sign ((L + B)x 4) -σ 4 (L + B)x 4 2 -1u 2,0 (2.74)
We complete the proof by three steps.

• Let us first study subsystems (2.72)-(2.73). Consider the candidate Lyapunov function for subsystem (2.73):

V 5 = 1 2 xT 2 (L + B)x 2 (2.75)
Its time derivative is given by

V5 = -ρ 2 xT 2 (L + B) sign ((L + B)x 2) +x T 2 (L + B) -σ 2 (L + B)x 2 2 -1u 1,0 ≤ -(ρ 2 -u max 1,0) (L + B)x 2 1 -β 2 N -1 2 (2λ min (L + B)) 3 2 V 3 2 5 ≤ -V 1 2 5 -V 3 2 5
Using Lemma 2, this inequality guarantees that x2 is fixed-time stable at the origin with the settling time bounded by π .

After x2 converges to zero (i.e. when t ≥ π), the dynamics of x1 reduces to

ẋ1 = -ρ 1 sign ((L + B)x 1) -σ 1 (L + B)x 1 2 (2.76)
Similarly to the previous step, the x1 dynamics converges to zero. Indeed, consider the Lyapunov function:

V 6 = 1 2 xT 1 (L + B)x 1 (2.77)
Its time derivative is given by

V6 = -ρ 1 xT 1 (L + B) sign ((L + B)x 1) -σ 1 xT 1 (L + B) (L + B)x 1 2 ≤ -ρ 1 (L + B)x 1 1 -σ 1 N -1 2 (2λ min (L + B)) 3 2 V 3 2 6 ≤ -V 1 2 6 -V 3 2 6
Hence, one can conclude that x2 converges to zero and after that x1 converges to zero in a fixed-time bounded by 2 π .

• Let us now study subsystem (2.74).

The time derivative of the following candidate Lyapunov function

V 7 = 1 2 xT 4 (L + B)x 4 (2.78) is given by V7 = xT 4 (L + B) -ρ 4 sign ((L + B)x 4) -σ 4 (L + B)x 4 2 -1u 2,0 ≤ -(ρ 4 -u max 2,0) (L + B)x 4 1 -σ 4 N -1 2 (2λ min (L + B)) 3 2 V 3 2 7 ≤ -V 1 2 7 -V 3 2 7
Using Lemma 2, this inequality ensures that x4 converges to zero in a finite-time bounded by π .

• After x2 and x4 converge to zero (i.e. when t ≥ π), the dynamics of x3 becomes Let us denote the tracking errors as follows

e k,i = x k,i -xk,i = x k,i -x k,0 -xk,i (i = {1, . . . , N }, k = {1, . . . , 4}) (2.80)
For each follower i = {1, . . . , N } and for all t ≥ T o , the tracking error dynamics becomes

(Σ 1) ė1,i = e 2,i ė2,i = u 1,i + d 1,i -u 1,0 (Σ 2) ė3,i = e 4,i x 2,0 + (e 4,i + x 4,0)e 2,i ė4,i = u 2,i + d 2,i -u 2,0 (2.81)
It is clear that dynamics (2.81) is divided into two coupled second-order subsystems (i.e. Σ 1 and Σ 2).

To deal with the observer-based consensus tracking problem, for each follower i = {1, . . . , N }, the following two steps are introduced:

• Design u 1,i such that the origin of subsystem Σ 1 is fixed-time stable with the settling time estimate T 1 < T .

• For t ≥ T 1 , design u 2,i such that the origin of subsystem Σ 2 is fixed-time stable with the settling time estimate T . Note that for t ≥ T 1 , subsystem Σ 2 becomes ė3,i = e 4,i x 2,0

ė4,i = u 2,i + d 2,i -u 2,0 (2.82)
It is clear that for t ≥ T 1 , the two subsystems are decoupled.

In the following theorem, the control strategy is derived to solve the leader-follower consensus problem for MAS with chained-form dynamics, in a fixed-time, in spite of the presence of matched perturbations.

Theorem 7 Let us consider the leader-follower system (2.61)-(2.62). Suppose that Assumptions 6-9 are satisfied and the gains of the distributed observer (2.66) verify Eq. (2.68). The leader-follower consensus problem is solved in a fixed-time using the decentralized controllers

u 1,i = 0 , ∀t < T o - α 1 +3β 1 e 2 1,i +2a i 2 sign (s 1,i) -α 2 s 1,i + β 2 s 1,i 3 1 2 , ∀t ≥ T o (2.83)
with the sliding surface

s 1,i = e 2,i + e 2,i 2 + α 1 e 1,i + β 1 e 1,i 3 1 2
(2.84)

and

u 2,i = 0 , ∀t < T s -1 x2,0 e 4,i ẋ2,0 + α 1 +3β 1 e 2 3,i +2b i 2 sign (s 2,i) + α 2 s 2,i + β 2 s 2,i 3 1 2 , ∀t ∈ [T s , T] -b i sign (e 4,i) , ∀t > T (2.85)
with the sliding surface

s 2,i = e 4,i x 2,0 + e 4,i x 2,0 2 + γ 1 e 3,i + µ 1 e 3,i 3 1 2 (2.86)
where α 1 , α 2 , β 1 and β 2 are positive constants, a i and b i are positive constants given hereafter, and the switching time is explicitly defined as

T s = T o + 2 √ α 2 + 2 √ β 2 + 2 √ 2 √ α 1 + 2 √ 2 √ β 1 (2.87)
Proof. We complete the proof by three steps. First, it will be shown that the origin of subsystem Σ 1 is fixed-time stable with the settling time estimate T s under the control law (2.83)-(2.84). Then, the protocol (2.83)-(2.86) guarantees that the origin of subsystem Σ 2 is fixed-time stable with the settling time estimate T . At last, it will be proved that in spite of the presence of matched perturbations, the fixed-time leader-follower consensus problem is solved.

• Let us first consider subsystem Σ 1 . Following [?], let us consider the candidate Lyapunov function

V 9 = |s 1,i |. Its derivative is, V9 = ė2,i sign (s 1,i) + |e 2,i | ė2,i sign (s 1,i) + α 1 +3β 1 e 2 1,i 2 e 2,i sign (s 1,i) | e 2,i 2 + α 1 e 1,i + β 1 e 1,i 3 | 1 2 (2.88) Since α 2 s 1,i + β 2 s 1,i 3 1 2 sign (s 1,i) = (α 2 |s 1,i | + β 2 |s 1,i | 3) 1 2
one has ė2,i sign (s

1,i) = (u 1,i + d 1,i -u 1,0) sign (s 1,i) = - α 1 +3β 1 e 2 1,i 2 -(α 2 |s 1,i | + β 2 |s 1,i | 3) 1 2 -(a i -(d 1,i -u 1,0) sign (s 1,i))
Setting

a i ≥ d max 1,i + u max 1,0 (2.89) one can conclude that V9 ≤ -(α 2 V 9 + β 2 V 3 9) 1 2
(2.90)

From Lemma 2, it is clear that s

1,i = 0 when t ≥ T o + 2 √ α 2 + 2 √ β 2 .
The sliding dynamics (s 1,i = 0) can be expressed as

ė1,i = - α 1 e 1,i + β 1 e 1,i 3 2 1 2
(2.91)

Using the candidate Lyapunov function

V 10 = |e 1,i |, one can obtain V10 = -(α 1 2 V 10 + β 1 2 V 3 10) 1 2
(2.92)

It is clear using Lemma 2 that e 1,i = 0 when t ≥ T s . Furthermore, since e 1,i = 0 and s 1,i = 0, then e 2,i = 0.

+ 2 √ β 2 + 2 √ 2 √ α 1 + 2 √ 2 √ β 1
. Furthermore, since e 3,i = 0 and s 2,i = 0, then e 4,i = 0.

• The last step is to study subsystem Σ 2 for t > T . From subsystem Σ 2 , one can obtain

ė4,i = -b i sign (e 4,i) + d 2,i -u 2,0 (2.95)
The controller u 2,i is used to reject the effect of uncertain terms d 2,i and u 2,0 . Let us consider the candidate Lyapunov function V 11 = 1 2 e 2 4,i . Its derivative is given by

V11 = -b i |e 4,i | + e 4,i (d 2,i -u 2,0) ≤ -(b i + d max 2,i + u max 2,0)|e 4,i | ≤ 0 (2.96)
For the previous step, one has e 3,i (T) = e 4,i (T) = 0. Hence, one can conclude that for any initial condition, the tracking errors converge to zero in a finite-time bounded by T and remains there in spite of the presence of matched perturbations. This concludes the proof. Remark 9 When the settling time T is prescribed, the switching time T s should be appropriately tuned using α 1 , α 2 , β 1 and β 2 through Eq. (2.87).

Remark 10 In the presence of measurement noise or unmatched perturbations, only practical consensus (i.e. uniformly ultimate boundedness of the tracking errors) can be achieved.

Remark 11

The design guidelines for our fixed-time controller are as follows:

• Select the parameter . Parameter should be tuned to obtain a good compromise between robustness against measurement noises and sufficiently fast estimation (T o can be computed according to Eq. (2.69)).

• Design the observer gain parameters using Eq. (2.68).

• Select the settling time T . This parameter T should be tuned to obtain a good compromise between the control magnitudes and sufficiently fast convergence for the tracking errors.

• Select the switching time T s as follows:

T s = T -T o 2
It enables to divide the time interval [T o , T s] into two equal parts. This is useful for our two steps procedure described previously (i.e. fixed-time stabilization of system Σ 1 and system Σ 2 described in Eq. (2.81)).

• Knowing T o and T s , select the parameters γ 1 , γ 2 , µ 1 and µ 2 according to (2.87). A possible choice for these parameters is the following:

(µ 1 /2) = µ 2 = (γ 1 /2) = γ 2 = 64 (T s -T o) 2
(2.97)

• Select the control parameters a i and b i which satisfy inequalities (2.89) and (2.94).

Simulation Results

Here, the performances of the proposed observer-based leader-follower consensus controller are studied through numerical simulations. Suppose that the MAS is composed of N = 6 followers labeled by 1-6 and one leader labeled by 0. The nonlinear dynamics of the leader (resp. the followers) is given by Eq.

(2.61) (resp. Eq. (2.62)). Hereafter, the leader control input is set as u 0 = [0.1 sin(t), -0.5 cos(0.5t)].

Each follower is affected by the unknown perturbation d i = 0.2 sin(x 1,i), 0.3e -t) . Therefore, one can easily verify that Assumptions 7-8 are fulfilled with u 1,max = 0.1, u 2,max = 0.5, d 1,max = 0.2 and

d 2,max = 0.3.
Using the same topology as previous section, from matrix B, it is clear that agents 1, 3, 4 and 6 do not have direct link with agent 0. Assumption 6 is satisfied. The initial leader state is set as

x 0 (0) = [3, 2, 2, 0.5] T . From the control input of the leader, one can see that Assumption 9 is verified.

The parameters of the distributed observer are selected as ρ 1 = ρ 3 = 10, ρ 2 = 10.1, ρ 4 = 10.5

and σ k = 24, ∀k = 1, . . . , 4. The parameters of the decentralized controller are chosen as follows:

α 1 = 5.12, β 1 = 5.12, α 2 = 2.56, β 2 = 2.56, a i = 0.3 and b i = 0.8.

Using Theorem 6, the distributed observer (2.66) guarantees the stabilization of the estimation errors (2.67) to the origin in a finite-time bounded by T o = 1s. Figure 2.17 shows that the distributed observers accurately reconstruct the leader state for each agent before T o . Contrary to [?, ?], the proposed fixed-time observer removes the problem of the communication loop due to the dependence of the control inputs of the followers on the inputs of its neighbors. The switching time can be calculated using Eq. (2.69). One can obtain T s = 4.5s. Hence, the origin of the closed-loop system is globally finite-time stable contrary to existing controllers which only provide semi-global finite-time stability property. Furthermore, since T s does not depend on the initial states of agents, the proposed protocol is distributed.

Here, an upper bound of the settling time, independently of the initial conditions, can be estimated using Eq. (2.87), i.e. T = 9s from Theorem 7. The tracking errors are depicted in Fig. 2. [START_REF] Islam | Effective coverage control for mobile sensor networks with guaranteed collision avoidance[END_REF]. One can see that the tracking errors between each follower and the leader converge to zero before T . From Fig.

2.18, one can conclude that using the proposed controller, the leader-follower consensus is achieved in a prescribed time. The control inputs for each agent are shown in Fig. 2.19. One can note that the magnitude of control inputs may be large during the transients to achieve a fast convergence of the sliding surfaces given by the different steps of the consensus protocol. Hence, the control parameters should be adjusted to obtain a good compromise between magnitude of the control inputs and settling time.

Based on the simulation results, one can see that the proposed observer-based controller achieves the fixed-time leader-follower consensus for MAS with chained-form dynamics in spite of the presence of matched perturbations.

Conclusion

For the second and third section, the fixed-time consensus problem of linear multi-agent systems (i.e.

single-integrator and double-integrator dynamics) has been considered. The proposed distributed observers has been used to estimate the leader state in a fixed-time. A decentralized controller has been designed for each agent to solve the leader-follower consensus problem in a prescribed-time.

For the fourth section, the fixed-time trajectory tracking problem for unicycle-type mobile robots has been considered. A switching controller has been proposed to solve this problem. An upper bound

Introduction

This chapter is concerned with the consensus problem for a group of mobile agents which have a discrete-time dynamics using distributed model predictive control (DMPC). The first part of this chapter formulates the general control objective and the considered assumptions to solve the consensus problem under switching topologies. The second and third part of this chapter deal with the consensus problem for linear multi-agent systems (i.e. single-integrator and double-integrator dynamics). The proposed consensus control protocol is distributed and is designed by combining graph theory with a predictive control algorithm to take into account the switches on the communication topology. The predictive strategy is used to estimate input and output of agent through a receding horizon. Contrary to many existing works, the cost function is designed using the difference between two consecutive inputs. The controller has integrator properties to eliminate steady-state errors.

The objective is to develop a DMPC protocol such that the states of all agents reach an agreement eventually. The main features of the proposed scheme can be summarized as follows:

i) The control horizon can be arbitrarily picked from one to less than the prediction horizon, which increases the degree of freedom in controller design.

ii) The communication topolgy is assumed to be directed and dynamically switching.

iii) The sampling period can be arbitrarily large provided that each communication topology has a directed spanning tree.

The remaining parts of this chapter are organized as follows. Section 3.2 introduces some assumptions and formulates the general control objective. The distributed model predictive controller based consensus strategy is introduced in Section 3.3. Some simulation results are given in Section 3.4 to illustrate the effectiveness and advantages of the proposed scheme for single and double integrator dynamic. Section 3.5 concludes this chapter.

Problem statement and considered assumptions

Let us consider a group of N agents labeled by i ∈ {1, . . . , N }. The dynamics of each agent is expressed by the following discrete-time equation

x i (k + 1) = F (x i (k), u i (k)) (3.1)
where

x i (k) ∈ R n is the state of agent i and u i (k) ∈ R m is the control input of agent i. F : R n × R m → R n is known. T ∈ R + is
(k) = (l ij (k)) ∈ R N ×N
with l ii (k) = N j=1, j =i a ij (k) and l ij (k) = -a ij (k) for i = j. Hereafter, it is assumed that the following hypothesis holds to derive the proposed DMPC scheme.

Assumption 10 It is assumed that the communication topology among the N agents is directed and dynamical switching and at each time kT it contains a directed spanning tree.

Such time-varying graphs can be found in many engineering applications due to the creation or failure of communication links, reconfiguration of formations, presence of obstacles and so on.

Here, the purpose is to derive a decentralized controller u i (i = 1, . . . , N) for each agent, based on available information, such that the consensus problem is solved. It means that lim

k→∞ x i (k) -x j (k) = 0 ∀i, j ∈ V, i = j (3.2)
3.3 Distributed model predictive controller based consensus

Generalities on model predictive controller

MPC (Model Predictive Control) is a kind of finite horizon optimal control. It solves a finite horizon optimal control and applies the first part of the resulting optimal control sequence to the plant at every sampling instant.

In this subsection, the general structure of MPC is briefly introduced. Let us consider a discretetime linear system described by

x(k + 1) = Ax(k) + Bu(k) (3.3)
where x(k) ∈ R n and u(k) ∈ R m are the state and control input, respectively. A ∈ R n×n and B ∈ R n×m are the state and input matrices, respectively.

The MPC implementation can be formulated by introducing the following optimization problem at every time instant kT :

min u(.) J (Hp,Hu) (k) (3.4) subject to x(k + l|k) = Ax(k + l -1|k) + Bu(k + l -1|k), l = 1, 2, . . . , H p x min ≤ x(k + l|k) ≤ x max , l = 1, 2, . . . , H p u min ≤ u(k + l|k) ≤ u max , l = 0, 1, 2, . . . , H u -1 (3.5)
The performance index is defined as

J (Hp,Hu) (k) = Hp l=1 x T (k + l|k)Qx(k + l|k) + Hu-1 l=0 u T (k + l|k)Ru(k + l|k) (3.6)
where Q ∈ R n×n and R ∈ R m×m are the weighting matrices, with The generic MPC algorithm can be described as follows, 1. At current time kT , measure the current state x(k).

Q = Q T > 0, R = R T > 0.
2. Solve the optimization control problem (3.4) with the initial condition x(k). It yields the optimal control sequence u(k + l|k) over the control horizon.

3. Apply the first element in control sequence u(k + l|k) to the system. The remaining elements of the control sequence is discarded.

4. At time (k + 1)T , repeat from step 1.

Further improvements on MPC

In classical MPC, the control objective is to minimize the cost function (3.4). In the following, in order to improve the performances in terms of steady state error, we introduce in the cost function the difference ∆u between two consecutive inputs.

Therefore, let us define the following optimization problem at every time instant kT :

min u(.) J (Hp,Hu) (k) (3.7) subject to x(k + l|k) = Ax(k + l -1|k) + B(∆u(k + l -1|k) + u(k + l -1|k)), l = 1, 2, . . . , H p x min ≤ x(k + l|k) ≤ x max , l = 1, 2, . . . , H p u min ≤ u(k + l|k) ≤ u max , l = 0, 1, 2, . . . , H u -1 (3.8)
The performance index is defined as

J (Hp,Hu) (k) = Hp l=1 x T (k + l|k)Qx(k + l|k) + Hu-1 l=0 ∆u T (k + l|k)R∆u(k + l|k) (3.9)
The difference ∆u between two consecutive inputs is as follows

∆u(k + l|k) = u(k + l|k) -u(k + l -1|k) 0 ≤ l ≤ H u -1 0 H u ≤ l ≤ H p (3.10)

Distributed MPC for linear MAS

Next, we will introduce the common method to design MPC input u i (k) for agent i at instant k.

Let us consider a group of N agents. The dynamics of each agent is expressed by the following discrete-time linear equation as:

x i (k + 1) = Ax i (k) + Bu i (k) ∀i ∈ {1, . . . , N } (3.11)
where x i (k) ∈ R n and u i (k) ∈ R m are the state and the control input of agent i, respectively.

Basically, the distributed model predictive control (DMPC) strategy is a model predictive control (MPC) strategy in the form of a distributed optimization problem for each agent. The proposed DMPC controller is designed by optimizing a quadratic optimization function which depends on the difference between the state of the agent and the reference value of the agent state along the prediction horizon H p . H u denotes the control horizon. Using the proposed scheme, each agent in the fleet design its own control protocol for each DMPC iteration, by only taking into account the state of the neighbor agents. The proposed method solves the consensus problem even in the presence of switched communication topologies. Indeed, the proposed DMPC strategy is able to adapt to the changes in the MAS parameters (for instance the topology) and to predict the state of the agent up to a few steps along the prediction horizon H p .

Define the quadratic cost function as below:

J i (k) = Hp l=1 (x T i (k + l|k) -r T i (k))Q(x i (k + l|k) -r i (k)) + Hu-1 l=0 u T i (k + l|k)Ru i (k + l|k) = Hp l=1 x i (k + l|k) -r i (k) 2 Q + Hu-1 l=0 u(k + l|k) 2 R (3.12)
subject to

x i (k + l|k) = Ax i (k + l -1|k) + Bu i (k + l -1|k), l = 1, 2, . . . , H p x i min ≤ x i (k + l|k) ≤ x i max , l = 1, 2, . . . , H p u i min ≤ u i (k + l|k) ≤ u i max , l = 0, 1, 2, . . . , H u -1 (3.13)
The reference state is chosen as

r i (k) = 1 |N i (k)| + 1 j∈N i (k) i x j (k) (3.14)
It is important to note that this reference only depends on the states of the ith agent and its neighbors.

This implies that the cost function is distributed. Furthermore, it evolves during time according to the communication topology through the set N i (k).

Similarly to the previous subsection, let us introduce the difference ∆u i between two consecutive inputs proposed. The control input for each agent is then defined as

∆u i (k + l|k) = u i (k + l|k) -u i (k + l -1|k) 0 ≤ l ≤ H u -1 0 H u ≤ l ≤ H p (3.15)
Hence, the first equation of (3.13) can be rewritten as

x i (k + l|k) = Ax i (k + l -1|k) + B(∆u i (k + l -1|k) + u i (k + l -1|k)), l = 1, 2, . . . , H p (3.16)
Therefore, the prediction states x i (k + l|k), (l = 1, 2, ..., H p) at time k can be derived as follows:

x i (k + 1|k) = Ax i (k) + B(∆u i (k) + u i (k)) x i (k + 2|k) = Ax i (k + 1|k) + Bu i (k + 1) = A Ax i (k) + B(∆u i (k) + u i (k))) + B(∆u i (k + 1) + ∆u i (k) + u i (k)) = A 2 x i (k) + AB + B)∆u i (k) + B∆u i (k + 1) + (AB + B)u i (k) x i (k + 3|k) = Ax i (k + 2|k) + Bu i (k + 2) = A 3 x i (k) + (A 2 B + AB + B)∆u i (k) + (AB + B)∆u i (k + 1) + B∆u i (k + 2) +(A 2 B + AB + B)u i (k) x i (k + H p |k) = A Hp x i (k) + Hp-1 l=0 A l B ∆u i (k) + Hp-2 l=0 A l B ∆u i (k + 1) + . . . B∆u i (k + H p -1) + Hp-1 l=0 A l B u i (k)
Hence, one can write the previous equalities as follows:

          x i (k + 1|k)
x i (k + 2|k)

x i (k + 3|k) . . .

x i (k + H p |k)           =           A A 2 A 3 . . . A Hp           x i (k) +            B AB + B A 2 B + AB + B . . . Hp-1 l=0 A l B            u i (k)+             B 0 0 0 AB + B B 0 0 A 2 B + AB + B AB + B B Hp-1 l=0 A l B Hp-2 l=0 A l B . . . B                       ∆u i (k) ∆u i (k + 1) ∆u i (k + 2) . . . ∆u i (k + H p -1)          
In a compact form, the dynamic system becomes as follows:

X i (k) = P x x i (k) + P u u i (k) + P ∆U i (k) (3.17) with X i (k) =           x i (k + 1|k)
x i (k + 2|k)

x i (k + 3|k) . . .

x i (k + H p |k)           , ∆U i (k) =           ∆u i (k) ∆u i (k + 1) ∆u i (k + 2) . . . ∆u i (k + H p -1)           , P x =           A A 2 A 3 . . . A Hp           , P u =            B AB + B A 2 B + AB + B . . . Hp-1 l=0 A l B            and P =             B 0 0 0 AB + B B 0 0 A 2 B + AB + B AB + B B Hp-1 l=0 A l B Hp-2 l=0 A l B . . . B            
.

Then, we select the MPC cost function for agent i as follows:

J i (k) = P x x i (k) + P u U i (k) -r i (k) 2 Q + P ∆U i (k) 2 R (3.18)
where Q and R represent the associated state-weighted matrix and control-weighted matrix with appropriate dimensions, respectively. r i (k) denotes the reference state for agent i over the future H p prediction steps.

Furthermore, equation (3.18) is described as follows:

J i (k) = (P x x i (k) + P u U i (k) -r i (k)) T Q(P x x i (k) + P u U i (k) -r i (k)) + (P ∆U i (k)) T R(P ∆U i (k)) = (P T x x T i (k) + P T u U T i (k) -r T i (k))(QP x x i (k) + QP u U i (k) -Qr i (k)) + (P T ∆U T i (k)RP ∆U i (k)) = P T x x T i (k)QP x x i (k) + P T x x T i (k)QP u U i (k) -P T x x T i (k)Qr i (k) + P T u U T i (k)QP x x i (k) + P T u U T i (k)QP u U i (k) -P T u U T i (k)Qr i (k) -r T i (k)QP x x i (k) -r T i (k)QP u U i (k) + r T i (k)Qr i (k) + (P T ∆U T i (k)RP ∆U i (k))
Remark 12 It should be notified that the proposed cost function (3.18) is distributed since the reference state r i (k) only depends on the neighboring agents of agent i at time k.

After the design of the control protocol, one must guarantee that the consensus problem is solved (i.e. Eq. (3.2)). Equation (3.2) illustrates that a MAS has reached a consensus if for time goes to infinity, the difference in the state between two agents is zero. It is clear the minimization of the cost function (3.18) implies that

x i (k + 1) = 1 |N i (k)| + 1 j∈N i (k) i x j (k) (3.20)
In a compact form, Eq. (3.21) is equivalent to

x(k + 1) = D(k)x(k) (3.21)
Due to properties of matrix D, the consensus is achieved.

Simulation results

The simulation results for all the following subsections (i.e. simple integrator, double integrator) are done using the switching topology. A multi-agent system with N = 4 followers labeled by 1 -4 is considered.

First-order integrator MAS

Consider a multi-agent system consisting of N agents with discrete-time single-integrator model

x i (k + 1) = x i (k) + T u i (k) (3.22)
where T ∈ R + is the sampling period, x i (k) ∈ R m and u i (k) ∈ R m are the state and the control input to be designed for agent i, respectively.

Let us define the quadratic optimization problem as (3.18) subject to (3.16). It is clear that Assumption 10 is satisfied. The initial states of the agents are given as x 1 (0) = 50, x 2 (0) = -35,

x 3 (0) = 60, x 4 (0) = -200. The parameters are set as H u = 2 and different values of H p (i.e.

H p = 3, 6, 9.
As shown in Figure 3.2, the consensus problem for MAS with dynamics (3.22) is achieve using the control protocol (3.15). We can see that the state of all agents converge to a consensus point. Figure 3.2.a. shows that the state x converges toward the consensus point. consensus point less then t = 10s while in Figure 3.4, the state of all agents converge to a consensus point more then t = 30s. Hence, our results shows a faster convergence rate.

Second-order integrator MAS

Consider a multi-agent system consisting of N agents with double-integrator model:

ẋ1,i (t) = x 2,i (t) ẋ2,i (t) = u i (t) i = 1, 2, ..., N (3.23)
where x 1,i (t) ∈ R n and x 2,i (t) ∈ R n denote the position and the velocity of the ith agent at time t, respectively. u i (t) ∈ R n is the corresponding control input. Let us discretize (3.23) using the forward-difference approximation:

x 1,i (k + 1) = x 1,i (k) + T x 2,i (k) x 2,i (k + 1) = x 2,i (k) + T u i (k) (3.24)
where T indicates the sampling period and k indicates the discrete-time index.

x 1,i (k) ∈ R n , x 2,i (k) ∈
R n and u i (k) ∈ R n denote, respectively, the position, velocity and the control input of agent i at t = kT . Following (3.2), the consensus is reached if

lim k→∞ x 1,i (k) -x 1,j (k) = 0 lim k→∞ x 2,i (k) -x 2,j (k) = 0 ∀i, j ∈ V, i = j (3.25)
In a compact form, Eq. (3.24) can be written as, ∀i = 1, . . . , 4,

p i (k + 1) = 1 0.1 0 1 p i (k) + 0.005 0.1 u i (k) (3.26)
The control parameter are selected as H p = 3, H p = 6, H p = 9 and H u = 2. The initial states of each agent are given by:

x 1 (0) = 10 0 , x 2 (0) = 0 0 , x 3 (0) = -2 0 , x 4 (0) = 6 0
The consensus problem described in Equation 3.25 is achieved using the proposed distributed model predictive control. We can see that the state of all agents converge to a consensus point. The corresponding control input is given in Figure 3.6. In this process, control algorithms are programmed using ROS (Robotic Operating System) with Gazebo-ROS as a reality virtual simulation. Generally, in ROS environment, we can control one robot by one or several machines/ workstations.

Except in the case of using Gazebo simulator, we can perform simulation for several robots by only one workstation. Instead of using multiple machines/ workstation, in this chapter we demonstrate the idea of gazebo simulator into real robots to reduce cost and utilisation of several workstations. Since we are working on consensus problem for multi-agent systems and we are using only one workstation, we need to appropriately select the wifi configuration and design multiple master ROS in a decentralized architecture for multiple robots. Furthermore, since there are some difficulties to create the leaderfollower topology in this ROS multi-agent system network, we have to propose an algorithm to solve this problem.

The remainder of this chapter is organized as follows. Section 4.2 describes the Minilab Enova robot platform. Section 4.3 introduces the robotic operating system (ROS). In Section 4.4, reality virtual simulation using Gazebo-ROS examples are provided. MiniLab robots as platform for cooperative control of multi-agent systems are given in Section 4.5. Section 4.6 concludes this chapter.

Minilab Enova Robot

The Minilab robot, as shown in Figure 4.3, is a medium-sized two wheels mobile robot designed by Enova Robotics. The left and right wheels, are controlled independently using two DC motors to design the linear and angular speed such that robot can move in its environment. The robot can navigate autonomously or be teleoperated using its camera, which transmits video in real time. Each MiniLab robot is equipped with an intel X86 main board, an hard drive and also a wide variety of parts and sensors that are useful for navigation tasks, such as 5 ultrasonic sensors, 5 infra-red (IR) distance sensors which provide the distance from obstacles to the robot, orbbec depth camera, encoders with a resolution of 16 bits, LED indicators, buttons and arduino microcontroller. Table 4.1 illustrates some hardware configurations of the Minilab. Some hardware descriptions of the Minilab Enova robot will be explained in the following subsection.

MiTAC Board Intel X86

The processing on the Minilab is performed by an Intel X86. Intel Atom is the brand name for a line of ultra-low-voltage x86-64 microprocessors by Intel Corporation. Atom is mainly used in netbooks, nettops, embedded applications ranging from health care to advanced robotics, and mobile Internet devices (MIDs). The line was originally designed in 45 nm complementary metal-oxide-semiconductor (CMOS) technology and subsequent models, codenamed Cedar, used a 32 nm process.

TL-WR802N 300Mbps Wireless N Nano Router

Each robot equipped with one TL-WR802N wireless router as shown in

D-Link USB HUB

The DUB-H7 as shown in Figure 4.8 is fully compliant to USB 2.0 specifications with data transfer rates of up to 480 Mbps. It is an ideal solution for transferring data between intel x86 and USB devices (Orbbec Camera and Roboteq controller). The DUB-H7 features 7 USB fast charging ports which are designed to feed high currents up to 2.4A when the DUB-H7 is powered by the included power adapter in fast charging mode or of up to 1.5A via battery charging. Power input for this USB hub is 5 V / 3A DC.

DC Motor

The maximum speed of the robot is 1.5 m/s in both forward and backward movement but for safety reason maximum allowed speed is 0.8 m/s. The maximum slope angle is 10 o . Each wheel has a driving DC motor mounted on his axis. The wheels have been chosen to provide more accurate odometry The controller features a high-performance 32-bit microcomputer and quadrature encoder inputs to perform advanced motion control algorithms in open loop or closed loop (speed or position). The SDC21xx features several analog, pulse and digital I/Os which can be remapped as command or feedback inputs, limit switches, or many other functions. For mobile robotic applications, the controller two motor channels can either be operated independently or mixed to set the direction and rotation of a vehicle by coordinating the motion of each motor.

Roboteq Controller

Arduino Micro Board

The Arduino Micro board, illustrated in

Infrared SHARP 2Y0A21

Infrared SHARP as shown in Figure 4.12 is a distance measuring sensor unit, composed of an integrated combination of PSD (position densitive detector), IRED (infrared emitting diode) and signal processing circuit. This device outputs the voltage corresponding to the detection distance between 10 to 80 cm.

So this sensor can also be used as a proximity sensor.

Orbbec Astra Pro Camera

Orbbec Astra Pro is optimized for applications that require high RGB stream quality. Astra Pro is world first 3D sensor that can stream 30 FPS HD RGB stream and VGA depth at the same time through USB 2.0. Astra Pro now comes in a bundle with the powerful gestural Interaction SDK by Gestoos. Gestoos interact using C++, Java and Processing to develop and enhance applications.

Power-Sonic Battery

The Minilab use 12V rechargeable batteries for all its system, as shown in

Robotic Operating System

Robot Operating System (ROS) is an open-source platform, meta-operating system that is widely used in robotics. The philosophy is to make a piece of software that could work in other robots by making little changes in the code. What we get with this idea is to create functionalities that can be shared and used in other robots without much effort so that we do not reinvent the wheel. It provides libraries and tools to help software developers create robot applications. Primary goal of ROS is to support code reuse in robotics research and development. ROS framework is easy to implement in any modern programming language such as Python, C++, and Lisp (experimental libraries in Java and Lua). by adding hardware and sharing their code samples. Also, the companies have started to adapt their products to be used in ROS.

The sensors and actuators used in robotics have also been adapted to be used with ROS. Every day an increasing number of devices are supported by this framework. ROS provides standard operating system facilities such as hardware abstraction, low-level device control, implementation of commonly used functionalities, message passing between processes, and package management. It is based on graph architecture with a centralized topology where processing takes place in nodes that may receive or post, such as multiplex sensor, control, state, planning, actuator, and so on. ROS currently only runs on Unix-based platforms. Software for ROS is primarily tested on Ubuntu and Mac OS X systems. While a port to Microsoft Windows for ROS is possible, it has not yet been fully explored.

The ROS architecture has been designed and divided into three sections or levels of concepts:

• File system level • Computation Graph level • Community level
More detailed for ROS architecture explanations will be given in the following subsection.

ROS File System Level

The first level is the Filesystem level. In this level, a group of concepts are used to explain how ROS is internally formed, the folder structure, and the minimum number of files that it needs to work.

Node

A node is a participant in the ROS graph. ROS nodes use a ROS client library to communicate with other nodes. Nodes can publish or subscribe to a topic using typed messages. Nodes can also provide or use a Service. Services means request / response paradigm (think of method or operation) via typed messages. There are configurable parameters associated with a node. Connections between nodes are established through a distributed discovery process. Nodes may be located in the same process, in different processes, or in different machines. Nodes are processes which perform specific computations, for example: control robot wheel motors, acquire data from laser scanner, acquire images from camera, perform localisation, perform path planning, provide graphical visualisation of the system

Master

The ROS Master provides name registration and lookup to the rest of the Computation Graph.

Without the Master, nodes would not be able to find each other, exchange messages, or invoke services.

Master is the core node of ROS, called roscore. Roscore is a collection of nodes and programs that are pre-requisites of a ROS-based system. We must have a roscore running in order for ROS nodes to communicate. It is launched using the roscore command in the terminal.

Messages

Nodes communicate with each other by passing messages. A message is simply a data structure, comprising typed fields. Standard primitive types (integer, floating point, boolean, etc.) are supported, and arrays of primitive types. Messages can include arbitrarily nested structures and arrays (much like C structs).

Topic

Messages are routed via a transport system with publish / subscribe semantics. A node sends out a message by publishing it to a given topic. The topic is a name that is used to identify the content of the message. A node that is interested in a certain kind of data will subscribe to the appropriate topic. There may be multiple concurrent publishers and subscribers for a single topic, and a single node may publish and/or subscribe to multiple topics. In general, publishers and subscribers are not aware of each others' existence. The idea is to decouple the production of information from its consumption. Logically, one can think of a topic as a strongly typed message bus. Each bus has a name, and anyone can connect to the bus to send or receive messages as long as they are the right type.

Services

The publish / subscribe model is a very flexible communication paradigm, but its many-to-many, one-way transport is not appropriate for request / reply interactions, which are often required in a distributed system. Request / reply is done via services, which are defined by a pair of message structures: one for the request and one for the reply. A providing node offers a service under a name and a client uses the service by sending the request message and awaiting the reply. ROS client libraries generally present this interaction to the programmer as if it were a remote procedure call.

Bags

Bags are a format for saving and playing back ROS message data. Bags are an important mechanism for storing data, such as sensor data, that can be difficult to collect but is necessary for developing and testing algorithms.

Computation graph example

Community level

The third level is the Community level, which comprises a set of tools and concepts to share knowledge, algorithms, and code between developers. This level is of great importance. As with most open source software projects, having a strong community not only improves the ability of newcomers to understand the intricacies of the software as well as solve the most common issues, it is also the main force driving its growth.

ROS General Communication

In general, Minilab robot has its own ROS network (either wired, wireless or a combination of both), where a single roscore manages all the communications between all the ROS nodes, either in a single computer or multiple computers in the same network (depending on the complexity and computational needs of the system).

Gazebo-ROS Simulation

Gazebo-ROS is a robot simulator that allows to accurately design, simulate and test robots in various environments. It uses the URDF file format, which is an XML format used to describe objects and environments in robot simulators and was originally developed specifically for Gazebo. Below we quickly go through some of the XML tags that are important to understand and show what kind of environments we use.

With Gazebo we are able to create a 3D scenario on our computer with robots, obstacles and many other objects. Gazebo also uses a physical engine for illumination, gravity, inertia, etc. We can evaluate and test our robot in difficult or dangerous scenarios without any harm to our robot. Most of the time it is faster to run a simulator instead of starting the whole scenario on our real robot.

Originally Gazebo was designed to evaluate algorithms for robots. For many applications it is essential to do some tests, like error handling, battery life, localization, navigation and grasping.

Gazebo was developed and improved as well as significant requirement on multi-robot simulation.

Gazebo provides a set of ROS APIs that allows users to modify and get information about various aspects of the simulated world. The complete list of ROS messages and services for gazebo can be found here also.

The simulation world and minilab objects can be created for only one robot and multiple ones. We verify the computation graph for Gazebo-ROS using rqt graph. Figure 4.24 shows the rqt graph for controlling minilab3 robot in the Gazebo-ROS simulation. From Figure 4.24, we can verify that all nodes are connected in the network as required. For example, this figure shows that node minilab3 On the other hand, if there is any broken chained link, using this graph, we can detect and locate the problem.

MiniLab as Platform for Cooperative Control of Multi-Agent

Systems

In this section, we will present the procedure for the implementation of the wireless configuration among robots described in Figure 4.25 and the decentralized communication architecture described in Figure 4.29. First, we need to configure address reservation and verify the reservation from the PC workstation. To have a proper configuration of the network, we need to modify the /etc/hosts file for each robot and PC. Afterward we can start multimaster fkie package for our topology. Then, we can implement our cooperative control protocol on this ROS network configuration.

Multi-Robots Wireless Configuration

Let we consider Figure 4.25. This is an example of possible hardware configuration for a wireless decentralized communication architecture between multiple robots. Note that in Figure 4.25, the multi-agent system consists of master and two slaves which are connected to the master wireless network and one monitoring workstation which is also connected to the master.

Router Address Reservation

We need to specify a dedicated IP address for all robots and workstation in the ROS Network, such that all robots and workstation will always receive the same IP address each time when it connects

Master-slave wireless configuration

To verify the reservation of the IP address for the PC workstation, we have just to connect to the wifi of the leader. Then, we can check from connection information of the PC workstation as shown in

Host name and IP address binding

For each robot and workstation, it is necessary to modify the /etc/hosts file using text editor. Figure 4.27 shows the contents of this file for the workstation for the example presented in Figure 4.25. Figure To verify the appropriate configuration of the network, before launching any ROS nodes, it is interesting to ping all other robots from the workstation, using both the host name and the IP address. If all the pings return a reply, the network has been properly configured. Using the current console, the following command should be executed, where hostname or IP address must be the IP address or host name of each robot and the workstation.:

$export ROS MASTER URI=http://<host ip>:11311 $ROS MASTER URI command is required to inform the nodes where they able to locate the master. For all robots and the workstation, we have to verify if the multicast feature (group communication) is temporary enabled using the following command:

$sudo sh -c "echo 0 /proc/sys/net/ipv4/icmp echo ignore broadcasts"

If this command returns 0, the multicast feature is enabled. However, when all robots and workstation restart, this configuration will be lost. Now, the ROS wireless network for multiple robots has been configured. The next step is to discover and synchronize each robot and the workstation to obtain a decentralized communication architecture.

Decentralized communication architecture

In multi-agent systems, multiple robots need to exchange information. Using ROS, there is two possible solutions which can create a single large ROS network managed by a single roscore node or create a configuration to allow information to be exchanged between ROS sub-systems.

Multimaster fkie

ROS multi-master system is built from two or more ROS networks, each one with its own roscore node. For this purpose, we need a package called multimaster fkie [?]. This package can be easily installed as shown below:

$sudo apt-get install ros-indigo-multimaster-fkie

This package offers a set of nodes to establish and manage a multi-master network. This requires no or minimal configuration. The changes are automatically detected and synchronized. The multimaster fkie allows two substantial nodes: the master discovery and the master sync nodes to run simultaneously. The main features of master discovery is to send multicast messages periodically to the ROS network to make the other roscore environments aware of its presence. It also detects the changes in the local network and informs all roscore about these changes. The other nodes called

Multi-master Configuration

Now, we can launch the multimaster fkie nodes and take a first look at how it works. First of all, it is needed to launch a local roscore on each computer, i.e.

$roscore

Then, the master discovery node should be launched in each computer, passing as an argument the mcast group parameter to specify the multicast address to be used, i.e.

$rosrun master discovery fkie master discovery mcast group:=224.0.0.1

Afterwards, the master sync node should be launched in each computer. Without any additional parameter, all topics and services on all computers will be synchronized with all others, i.e.

$rosrun master sync fkie master sync

When both nodes are running on all robots and workstation, the following command will list all the available ROS masters on the common network:

$rosservice call /master discovery/list masters

Leader-Follower Node Communication

This subsection deals with node communication in terms of multi-robot configuration. "Node" is the ROS term for an executable that is connected to the ROS network. Here, we define a publisher node which will continually broadcast a message and a subscriber node which will continually receive a message. Both publisher and subscriber nodes are configured according to the communication topology. For example, in our case as shown in Figure 4.32, we will define the leader "minilab 3" as a publisher of his position and velocity to follower "minilab 1". Furthermore, the follower "minilab 1" is also configured as a subscriber of the leader "minilab 3". At the same time, follower "minilab 1" also sets as a publisher to follower "minilab 2" and follower "minilab 2" is configured as a subscriber of follower "minilab 1".

The example code of publisher and subscriber are shown below. The first one is the leader's code and the second one is the follower's code. NodeHandle is the main access point to communications with the ROS system. The first constructed NodeHandle will fully initialize this node, and the last destructed NodeHandle will close down the node.

The advertise() function is how we tell ROS that we want to publish on a given topic name.

This invokes a call to the ROS master node, which keeps a registry of who is publishing and who is subscribing. After this advertise() call is made, the master node will notify anyone who is trying to subscribe to this topic name, and they will in turn negotiate a peer-to-peer connection with this node.

advertise() returns a Publisher object which allows us to publish messages on that topic through a call to publish(). Once all copies of the returned Publisher object are destroyed, the topic will be automatically unadvertised. The second parameter to advertise() is the size of the message queue used for publishing messages. If messages are published more quickly than we can send them, the number here specifies how many messages to buffer up before throwing some away.

Conclusion

The multi-agent system framework was presented using Robot Operating System (ROS). Due to the requirements of the proposed consensus algorithms, we first introduce the robot hardware specifications, communication network configuration and minimum amount of workstation we can use for the coordination of multi-robots using ROS and multi Minilab robots.

Using a wireless master-slave scheme, it is possible that multiple robots communicate through a wireless network with only one workstation for monitoring and control. This configuration is a low cost configuration. For decentralized architectures, multimaster fkie is a solution to the multimaster ROS problem. Node calling algorithm has allowed to create leader-follower topology in this ROS multi-agent system network. This algorithm has used a publisher and a subscriber to broadcast and/or receive messages continually from each other.

In next chapter, a group of Minilab are used to test the decentralized leader-follower consensus algorithms.

Chapter 5

Experimental results on Consensus for a Group of Minilab Robots

Introduction

In this chapter, using our experimental setup described in the previous chapter, we apply the schemes designed in Chapter 2 for two applications, e.g. fixed-time trajectory tracking and leader-follower consensus. First, we study the fixed-time trajectory tracking control algorithms for one agent with single-integrator dynamics. Then, we analyze the results for the leader-follower consensus algorithms.

The same is done for double-integrator dynamics. At last, since nonholonomic dynamics can better describe the motion of mobile robots in a real world, we implement the proposed scheme to achieve fixed-time consensus tracking for a multi-agent system with unicycle-type dynamics.

The fixed-time methodology used in this chapter guarantees that a settling time bound can be prescribed without depending on the initial states of the agents. More specifically, for the consensus problem, a distributed protocol based on fixed-time stability techniques is implemented for each follower to accomplish the consensus tracking in a desired time. We provide experiment to demonstrate the effectiveness of the proposed controllers for fixed-time trajectory tracking and consensus.

Using Gazebo ROS simulation and Minilab Enova robotic platform, the experimental results show the effectiveness and robustness of the proposed algorithms.

The experiments for all the following subsections (i.e. simple integrator, double integrator, chainedform dynamics) are done using the same fixed topologies.

L =             2 -1 -1 0 0 0 -1 1 0 0 0 0 -1 0 2 -1 0 0 0 0 -1 1 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1             , B =            
1 0 1 0

0 0 0 0 0 0            
From matrix B, it is clear that agents 2, 3, 4 and 6 do not have direct link with agent 0. Assumption 1 is satisfied.

For the implementation using the available multiple minilab robots, since we have only three robots, the topology, shown in Figure 5.2 corresponds to node 0 as leader, 1 -2 as followers.

Fixed-Time tracking for agents with Single-Integrator dynamics

In this section, we show some experimental results using Gazebo-ROS and Minilab robot platform for tracking and consensus with Single-Integrator Dynamics to verify the theoretical analysis.

Fixed-Time trajectory Tracking for Single-Integrator Dynamics

For the trajectory tracking application, the Minilab robots are modeled as a single-integrator system:

ẋ(t) = u(t) (5.1)
where x ∈ R (resp. u ∈ R) is the state (resp. control input) of the single-integrator system. In this experiment, the state can be described as the robot position x(t) and the control input u(t) as the linear velocity of the robot.

The dynamics of the desired trajectory is generated using the following system:

ẋd (t) = u d (t) (5.2)
where x d ∈ R (resp. u d ∈ R) is the state (resp. control input) of the desired trajectory. The control objective is that system (5.1) follows the desired trajectory (5.2) in a fixed-time.

As described in Chapter 2, the fixed-time tracking problem is solved using the following controller:

u = -(α + a) e 2 -β sign (e) (5.3)
where e = x -x d , α, β and a are positive constants. The settling time is explicitly defined as

T = π √ αβ (5.4)
The corresponding algorithm is given in Algorithm 1. At each sampling time instant t k , we calculate the desired position and determine the error position between the desired trajectory and the actual robot position. After calculating the controller u, we implement the corresponding linear velocity input of the robot.

Step Linear Velocity Input for the desired trajectory

The control parameters are selected as: α = β = 0.5 for protocol (5.3). The initial state of the robot is x = -2. Based on the control parameters, the settling time is T = 6.28s.

Fixed-Time Consensus for MAS with Single-Integrator Dynamics

For the consensus tracking application, the Minilab robots are modeled as system (5.1). The dynamics of the leader is generated by (5.2). The control objective is that system (5.1) follows the leader (5.2) in a fixed-time using only local exchanged information. The communication topology is given by Figure 5.1.

The initial position of the robots is given by the following vector x(0) = [3, 2, 1, -1, - When t ≥ T o , compute the tracking error e i = x i -xi

7: Compute u = -(α + a i) e i 2 -β sign (e i) 8:
Implement the linear velocity 9: end if

x i (t k) is the x position of Minilab robot i at instant t k , x 0 (t k) is x leader position at instant t k
The performances of the proposed observer-based leader-follower consensus controller for single integrator MAS are studied through the following experimental results.

Sinusoidal Linear Velocity Input for the leader trajectory

The control parameters are selected as: α = β = 1.5, a i = 1, = 0.52 for protocol (2.17). The initial state of the robots is x(0) = [3, 2, 1, -1, -2, -3] T . The desired trajectory of the leader is generated by (2.5) with x 0 (0) = 0, u 0 (t) = 0.2sin(2πt). Based on the control parameters, the settling time is T = 10.71s (T o = 6s). The control objective is that each system (2.6) tracks the leader x 0 using only local information.

The fixed-time consensus tracking performance of the MAS with single-integrator dynamics when the leader input has a sinusoidal linear velocity is shown in Figure 5.6. Using Theorem 2, the robust controller 2.17 solves the fixed-time trajectory tracking problem with an estimation of the settling time less than T .

Fixed-Time Tracking for agents with Double-Integrator Dynamics

In this section, we show some experimental results using Gazebo-ROS and Minilab robot platform for tracking and consensus with double-integrator dynamics to verify the theoretical analysis.

Fixed-Time trajectory Tracking for Double-Integrator Dynamics

For the trajectory tracking application, the Minilab robots are modeled as a double-integrator system:

ẋ1 (t) = x 2 (t) ẋ2 (t) = u (t) (5.5)
where x = [x 1 , x 2] T ∈ R 2 (resp. u ∈ R) is the state (resp. control input) of the double-integrator system. In this experiment, the state can be described as the robot position x 1 (t) and the linear velocity x 2 (t) with the control input u(t) as the linear acceleration of the robot.

The dynamics of the desired trajectory is generated using the following system:

ẋ1,d (t) = x 2,d (t) ẋ2,d (t) = u d (t) (5.6)
where

x d = [x 1,d , x 2,d] T ∈ R 2 (resp. u d ∈ R)
is the state (resp. control input) of the desired trajectory.

The control objective is that system (5.5) follows the desired trajectory (5.6) in a fixed-time.

Let us define the tracking errors as

e(t) = x(t) -x d (t) (5.7)
As described in Chapter 2, the fixed-time tracking problem is solved using the following controller:

u = u d + ϕ e (
T = 2 √ α 2 + 2 √ β 2 + 2 √ 2 √ α 1 + 2 √ 2 √ β 1 (5.11)
The corresponding algorithm is given in Algorithm 3. At each sampling time instant t k , the robot calculates the desired position and velocity. Then, it determines the error position between the desired trajectory and the actual robot position and velocity. After calculating the controller u, we implement the corresponding input of the robot.

Algorithm 3 Fixed-time Tracking for Double-Integrator dynamics Input:

x 1,d (t k), x 2,d (t k), x 1 (t k), x 2 (t k) Parameter: α 1 , β 1 , α 2 , β 2 , a Output: v(t), t k ≤ t < t k+1 1: if t = t k then 2: Compute e(t k) = x(t k) -x d (t k) 3: Compute ϕ(e), u = u d + ϕ(e) 4:
Implement the linear velocity v(t) Step Linear Acceleration Input for the desired trajectory

The initial state of the robot is

x = [x 1 = -1.5, x 2 = 0] T ∈ R 2 .
Based on the control parameters, the settling time is T = 3.05s. The desired trajectory is generated by (5.6) with x d (0) = 0, u d (t) = 0.2.

Since a ≥ d + u d , we set a = 1. The control objective is that system (5.5) follows the desired trajectory

x d .
Using Theorem 4, the tracking controller (5.8) guarantees the stabilization of the tracking errors to the origin in a finite-time bounded by T = 3.05s. 0.2sin(2πt). The control objective is that system (5.5) follows the desired trajectory x d .

Figure 5.9 shows that the tracking controller (5.8) guarantees the stabilization of the tracking errors to the origin in a finite-time bounded by T = 2.67s for all the state. Figure 5.9 shows the actual and desired state position trajectories (convergence at 1.25s).

Fixed-Time Consensus for MAS with Double-Integrator Dynamics

Similarly as previously, the communication topology is given by Figure 5.1. It is fixed and connected where the agent 2, 3, 4 and 6 do not have direct link with agent 0. Assumption 1 is satisfied. For the consensus tracking application, the Minilab robots are modeled as system (5.5). The dynamics of the leader is generated by (5.6). The control objective is that system (5.5) follows the leader (5.6) in a The initial position of the robots is given by the following vector x(0) = [3, 2, 1, -1, -2, -3] T .

Recall that T o is time needed for an agent to estimate the leader state (prescribed time observation).

It should be noted that the estimation in (2.26) depends on the gains of observer. The settling time is explicitly defined as When t < T o , v i (t) = 0 3:

T = T o + 2 √ α 2 + 2 √ β 2 + 2 √ 2 √ α 1 + 2 √ 2 √
Agent i samples its current states x i (t), its estimate of the leader xi (t) and broadcasts it to its When t ≥ T o , compute the tracking error e i = x i -xi 7:

Compute u according to Equation (2.35)

8:

Implement the linear velocity The performances of the proposed observer-based leader-follower consensus controller for double integrator MAS are studied through the following experimental results.

Step Linear Input for the leader trajectory

The control parameter are selected as: α 1 = α 2 = β 1 = β 2 = 10 for protocols 2.35. The initial position of the robots is [3, 2, 1, -1, -2, -3] T while the initial velocity is 0. The desired trajectory is generated by (5.6) with x 1,0 (0) = 0, x 2,0 (t) = 0.2. Hence, we set a = 1. The control objective is that each system

Fixed-Time Tracking for agents with Unicycle-type Dynamics

In this section, we show some experimental results using Gazebo-ROS and Minilab robot platform for tracking and consensus with unicycle-type dynamics to verify the theoretical analysis.

Fixed-Time Trajectory Tracking for Unicycle-type Dynamics

The algorithm for trajectory tracking is given in Algorithm 5. At each sampling time instant t k , the robot calculates the desired position and velocity. Then, it determines the error position between the desired trajectory and its actual position. After calculating the controller u, we implement the corresponding linear and angular velocity input of the robot. Compute the tracking errors e(t) = x(t) -x d (t)

3:

Compute s 1 , ϕ 1 , u 1

4:

Compute s 2 , ϕ 2 , u 2

5:

Implement the linear velocity 6:

Implement the angular velocity The communication topology is given in Figure 5.2. Assumption 1 is satisfied. For the consensus tracking application, the Minilab robots are modeled as system (2.49). The dynamics of the leader is generated by (2.61). The control objective is that systems (2.49) follow the leader in a fixed-time using only local exchanged information.

The initial x -y position of the robots is given by the following vector (-1, -1) and (1, 1) for robot 1 and 2 respectively. Recall that T o is time needed for agents to estimate the leader state (in a prescribed time). It should be note that the estimation in (2.26) depends on the gains of observer.

The settling time is explicitly defined as

T = T o + 2 √ α 2 + 2 √ β 2 + 2 √ 2 √ α 1 + 2 √ 2 √ β 1 .
The corresponding fixed-time algorithm for MAS with unicycle-type is given in Algorithm 6. At each sampling time instant t k , based on local exchanged information, each agent i estimates the leader position xi and compute the tracking error between the leader, itself and neighboring agents. After calculating the controller u, we implement the corresponding linear and angular velocity input of the robot.

Algorithm 6 Fixed-time consensus algorithm for MAS with Unicycle-type dynamics For each agent i, Input: x 1,0 (t k), x 2,0 (t k), x 3,0 (t k), x 4,0 (t k) (if b i = 1), x 1,i (t k), x 2,i (t k), x 3,i (t k), x 4,i (t k),

x 1,j (t k), x 2,j (t k), x 3,j (t k), x 4,j (t k) (for all j such that a ij = 0)

Parameter: ρ 1 and σ 1 , ρ 2 and σ 2 , α Agent i samples its current states, its estimate of the leader and broadcasts it to its neighbors When t ≥ T o , compute the tracking error 6:

Compute the control inputs 7:

Implement the linear and angular velocities Unlike the previous sections, the results presented herein have proven the consensus to be harder to achieve due to multiple hardware constraints. In fact, the maximum sampling rate in the Minilab robots are limited to 10 Hz maximum, and collisions often occurred while agents tried to achieve their convergence.

Conclusion

In this chapter, the fixed-time consensus tracking problem for a group of Minilab robots is investigated.

Both of tracking and consensus algorithms for single-integrator, double-integrator, and unicycle-type systems was developed respectively. The observer gains are properly chosen and sufficient conditions are established in terms of the graph connectivity to ensure consensus. The effectiveness is validated by experimental results.

However, when it came to real robot experimentations, hardware constraints imposed limitations on the proposed scheme, and therefor, convergence was harder to attain in optimal conditions. The robots' sampling rates restrict the performances of our proposed controller and prevent it from working properly. The collisions have often occurred while robots tried to achieve their convergence. The real robot experiments also depend on the performance of the workstation. The latter is responsible for the control as well as monitoring the experiments. An increasing amount of robots would require better workstation performances.

chained-form dynamics in consideration of unmatched perturbations and noise measurement.

We have also dealt with fixed topology and undirected graph. Hence, it would be an interesting direction if the communication network is switching and include a collection of directed graphs.

Obviously, new controllers and Lyapunov functions should be designed to deal with general switching directed graphs.

We have investigated the fixed-time leader-follower consensus problem for MAS with singleintegrator, double-integrator and unicycle-type mobile robot dynamics separately. However, in a leader-following architecture, it is possible that leaders have different dynamics from the followers. In fact, in the group of leaders or followers, the dynamics could also be different to build a complex network. Hence, it will be interesting to investigate the fixed-time leader-follower consensus problem for MAS with heterogeneous dynamics.

The fixed-time leader-follower consensus developed in this thesis is achieved and guarantees that the settling time is estimated regardless of the initial condition of the agents. However, this estimate is sometimes too large. To improve this estimate, the concept of predefined-time stability could be interesting to obtain the least upper bound of the settling time.

• In chapter 3, we have studied a distributed model predictive control protocol consensus for MASs with discrete-time linear dynamics under time-varying directed topologies. The proposed controller has only focused on the leaderless case. We plan to extend the results to the leaderfollower consensus problem. Another interesting concern for the future work of Chapter 3 can be design of distributed model predictive control protocol consensus for MASs with unicycle-type dynamics. A proof of stability should also be investigated.

• The works presented in Chapters 4 and 5 have focused on the implementation of consensus protocols for a group of multiple Minilab robots. This work for the coordination between robots only use the odometry sensors of each minilab robot. Hence, it may be interesting to develop a visual based motion for future works.

Due to the method of multimaster fkie, the obtained results depend on the specification of the Mas- ter Workstation. It will be interesting to have good specifications for the Master Workstation. Another physical limitation is the sampling rate which significantly influences the performances of the proposed controllers. Interesting extensions of this work can also be pursued to consider physical hardware specifications of the agents and workstation.

It should be noted that in our experiments, the results of fixed-time leader-following consensus are obtained without considering the collision avoidance. Collision between agents and obstacle avoidance are not discussed in this thesis, which motivates us to conduct a more in-depth study to investigate consensus while avoiding collisions.

Figure 1 :

 1 Figure 1: Applications of MASs.

Figure 1 . 1 :

 11 Figure 1.1: A communication graph of MAS with 5 vertices and 6 edges.

Figure 1 .

 1 Figure 1.2 shows the communication graph among 4 agents in the directed graph. An arrow from node i to node j indicates that agent j receives information from agent i.

Figure 1 . 2 :

 12 Figure 1.2: A directed graph with 4 vertices.

Figure 1 . 3 shows

 13 different types of agents (Figure 1.3(a) for wheeled mobile robots, Figure 1.3(b) for unmanned air vehicles, Figure 1.3(c) for autonomous underwater vehicles).

Figure 1 . 3 :

 13 Figure 1.3: Example of different agents.

Figure 1 . 4 :

 14 Figure 1.4: Multi-agent system applications.

Figure 1 . 5 ,

 15 figure shows that agent 3 receives information from agent 2, but the information of agent 3 can not be transmitted to agent 2. The bidirectional communication channel between agent 1 and 2 or agent 3 and 4 means that two agents can receive information from each other.

Figure 1 . 5 :

 15 Figure 1.5: Illustration of a MAS: A group of five mobile robots.

 [?], [?], [?], [?]. All agents in the MAS will converge to the exact average value of their initial states. When an agent moves, the average value of the states can remain constant by changing another agent's states with the same magnitude in the opposite direction [?], [?]. More complicated situations such as switching topologies, time-varying delays in the average consensus problem are discussed in [?]. Figure 1.6 illustrated the average consensus problem where the state of all agents converge to an average value.

Figure 1 . 6 :

 16 Figure 1.6: Average Consensus.

Figure 1 . 7 :

 17 Figure 1.7: Leaderless Consensus.

Figure 1 . 8 :

 18 Figure 1.8: Graph of Leader Follower Model

Figure 1 . 9 :

 19 Figure 1.9: Leader Follower Consensus

Figure 1 .

 1 [START_REF] Zhan | Flocking of multi-agent systems via model predictive control based on position-only measurements[END_REF] shows the trajectory of system (1.6) under different control input (u = -x, u = -sign(x) and u = -(|x| 2 + 1)sign(x)). One can see the asymptotic, finite-time and fixed-time properties of the corresponding closed-loop system.

Figure 1 .

 1 Figure 1.10: Asymptotic, finite-time and fixed-time properties of the first-order system

 Some interesting works related to the topic of first-order discrete-time consensus stability analysis were reported in [?] [?] [?]. The main objective of [?] was to theoretically study the coordination of a group of autonomous agents using the Vicsek model. In [?], some consensus protocols for discrete-time systems with switching topology were provided and the robustness against time delays was analyzed. These two kinds of protocols are based using the same data at two time-steps. The dynamic behavior of discrete-time multi-agent systems with general communication topologies was considered in [?]. For topologies that have a spanning tree, the consensus problem was studied. It was proved that the states of internal agents converge to a convex combination of boundary agents in the case of communication time delays. Much attention on discrete-time consensus can be found in [?] [?] [?], etc. Despite much effort has been produced for the two types of time domain above, the solutions are not yet satisfied because MASs are usually operated using the analog measurement and embedded microcontrollers to process digital signals. In sampled-data control system, the work requires both continuous-time dynamics and discrete-time controllers. The sampling is usually assumed periodic and synchronized for all agents [?] [?].

Figure 1 . 11 .

 111 It depicts the evolution of the most significant MPC algorithms, illustrating their connections in a concise way. The story begins with the modern control concept of the Kalman's work, i.e. a great solution of the problem known as Linear Quadratic Gaussian (LQG) controller. The first description of MPC applications was presented by Richalet et al. in 1976. They described their approach as model predictive heuristic control (MPHC). The solution software was referred to as IDCOM, an acronym for Identification and Command [?]. Then, engineers at Shell Oil developed their own independent MPC approach in the early 1970s, with an initial application in 1973. Cutler and Ramaker presented details of an unconstrained multivariable control algorithm which they named dynamic matrix control (DMC) at the 1979 National AIChE meeting [?]. In the late 1980's, engineers at Shell Research in France developed the Shell Multivariable Optimizing Controller (SMOC) which they described as a bridge between state-space and MPC algorithms [?].

Figure 1 . 11 :

 111 Figure 1.11: Evolution of the most significant MPC algorithms.

Figure 1 . 12 :

 112 Figure 1.12: MPC concepts.

Figure 2 . 1 :

 21 Figure 2.1: Top view of the considered mobile robot

Figure 2 . 2 :

 22 Figure 2.2: Communication topology for the considered MAS.

Figure 2 . 3 :

 23 Figure 2.3: Evolution of the estimation errors (2.8) for each follower

Figure 2 . 5 :

 25 Figure 2.5: Control input for each agent

 (2.22) track the leader in spite of matched perturbations ith d i = 0.2 sin(t). It is clear that Assumption 3 is also verified. The control parameter are selected as:α 1 = 20, α 2 = 10, β 1 = 20,β 2 = 10, a i = 0.3 and = 4.18. For the simulation purpose, the initial leader state x 0 (0) = [3, 2] T . Using Theorem 3, the distributed observer (2.23) guarantees the stabilization of the estimation errors (2.27) to the origin in a finite-time bounded by T o = 1.5s.

 Figure 2.6 shows that the distributed observers accurately reconstruct the leader state for each agent before T o Using Theorem 4, the origin of the closed-loop system is globally finite-time stable contrary to existing controllers which only provide semi-global finite-time stability property. Furthermore, the settling time T = 4s does not depend on the initial states of agents. Also, the proposed protocol is distributed. The tracking errors are depicted in Figure2.4. One can see that the tracking errors between each follower and the leader converge to zero before T s . One can conclude that using the proposed controller, the leader-follower consensus is achieved in a prescribed time. The control inputs for each agent are shown in Figure2.8. One can note that the magnitude of control inputs may be large during the transients to achieve a fast convergence of the sliding surfaces given by the different steps of the consensus protocol. Hence, the control parameters should be adjusted to obtain a good compromise between magnitude of the control inputs and settling time.

Figure 2 . 6 :

 26 Figure 2.6: Evolution of the estimation errors (2.27) for each follower.

Figure 2 . 7 :

 27 Figure 2.7: Evolution of the tracking errors between each agent and the leader.

Figure 2 . 8 :

 28 Figure 2.8: Control input for each agent.

Figure 2 . 9 :

 29 Figure 2.9: Top view of the considered mobile robot.

 is the state (resp. control input) of the chained-form unicycle-type mobile robot, d = [d 1 , d 2] T ∈ R 2 represents the unknown disturbances of the chained-form dynamics.

 is the state (resp. control input) of the desired trajectory. Before dealing with the consensus tracking problem, let us study the fixed-time trajectory tracking problem for only one single unicycle-type mobile robot.Figure 2.10 illustrates the control objective studied in the next subsection, i.e. the unicycle-type mobile robot tracks a desired trajectory in a prescribed-time.

Figure 2 . 10 :

 210 Figure 2.10: Illustration of the fixed-time trajectory tracking problem for a single agent.

Figure 2 . 11 :Theorem 5

 2115 Figure 2.11: Stabilization of the two subsystems.

d 2 =

 2 10 cos(10t). The desired trajectory is generated by(2.50) with x d (0) = [0, 2, 0, 0] T , u 1,d (t) = 2 + sin(t) and u 2,d (t) = 1.The control objective is that system (2.49) follows its derived trajectory x d . It is clear that Assumptions 4-10 are verified. The control parameter are selected as: α 1 = 20, α 2 = 10, β 1 = 20, β 2 = 10 and T s = 2.5s. For the simulation purpose, the initial conditions of system (2.49) are set as: x(0) = [10, 1, 3, 1] T . Using Theorem 5, the robust controller (2.54) solves the fixed-time trajectory tracking problem with an estimation of the settling time T = 4.5s. Figure2.12 shows that the origin of subsystem Σ 1 is globally fixed-time stable with a settling time less than T s = 2.5s.

Figure 2 .

 2 Figure 2.13 shows that the origin of subsystem Σ 2 is globally fixed-time stable with a settling time less than T = 5s.

Figure 2 .

 2 Figure 2.14 displays the tracking errors. It can be seen that the trajectory tracking problem is solve in fixed-time.

Figure 2 . 12 :Figure 2 . 13 :

 212213 Figure 2.12: Actual trajectory x 1 , x 2 and desired state trajectories x 1,d , x 2,d

Figure 2 . 14 :

 214 Figure 2.14: Tracking errors e

Figure 2 . 15 :

 215 Figure 2.15: Illustration of the fixed-time consensus tracking problem.

Figure 2 . 16 :

 216 Figure 2.16: Proposed control strategy to solve the consensus problem of MAS with chained-form dynamics.

 Let us denote xk = [x k,1 , . . . , xk,N] T (2.71) Then, for x1 , x2 and x4 , one can obtain

ẋ3 = -ρ 3 2 (2 . 79) 2 xT 3 (

 3227923 sign ((L + B)x 3) -σ 3 (L + B)x 3Similarly to previously, considering the candidate Lyapunov function V 8 = 1 L + B)x 3 yields in the fixed-time stable at the origin of x3 with the settling time bounded by 2 π . Hence, one can conclude that the estimation errors (2.67) converge to zero in a fixed-time bounded by T o .Decentralized fixed-time controllerFrom Theorem 6, one can conclude that xi = [x 1,i , x2,i , x3,i , x4,i] T = x 0 for all t ≥ T o . Hence, after time T o , each follower is able to indirectly access to the state of the leader and uses the estimate xi in the consensus protocol.

Figure 2 . 17 :

 217 Figure 2.17: Evolution of the estimation errors (2.67) for each follower

Figure 2 . 18 :

 218 Figure 2.18: Evolution of the tracking errors between each agent and the leader.

Figure 2 . 19 :

 219 Figure 2.19: Control input for each agent

 the sampling period.Among the N agents, at time t = kT , the communication topology can be represented by the time-varying digraph G(k) = {V, E(k)} where V = {1, . . . , N } defines the set of nodes, corresponding to the agents, and E(k) ⊆ {V × V} defines the edge set at time kT . An edge (j, i) ∈ E(k), with i = j, exists if at time kT agent i receive information from its neighbor j. At time k, the set of neighbors tothe node i ∈ V is N i (k) = {j ∈ V : (j, i) ∈ E(k)} and |N i (k)|, i ∈ V,is the valency or degree of i-th node at time k. The adjacency matrix A(k) = (a ij (k)) ∈ R N ×N satisfies a ij (k) > 0 if (j, i) ∈ E at time kT and a ij (k) = 0, otherwise. The corresponding Laplacian matrix is given by L

 H p and H u denote the length of the prediction horizon and the length of the control horizon, respectively.Usually, H p ≥ H u . The first term is called the state penalty while the second one is called the control penalty.Equations (3.3)-(3.8) define a quadratic optimization problem and many algorithms and software packages are available to solve it. When the optimal control sequence u(k + l|k), l = 0, . . . , H u -1 is obtained, only the first control input uk|k)(0|x(k) is applied to the system at time kT according to the so-called receding horizon principle. The rest of the control sequence is discarded. Then, at the next time (k + 1)T a new quadratic optimization problem (Equation (3.4)) begins and the process is repeated.

Figure 3 . 1 Figure 3 . 1 :

 3131 Figure 3.1: Switching communication topologies between agents

Figure 3 .Figure 3 . 2 :

 332 Figure 3.2 illustates the influence of the prediction horizon H p especially in terms of convergence time. The higher H p is, the fast convergence rate for to achieve consensus is. When H p = 3, the consensus is achieved at t = 10s and when H p = 9, the consensus point achieved at t = 6s

Figure 3 . 3 :Figure 3 . 4 :

 3334 Figure 3.3: Evolution of agent state x and control input u using our proposed DMPC

Figure 3 .Figure 3 . 5 :

 335 Figure 3.5: Evolution of agent state x 1,i and x 2,i with a.H p = 3, b.H p = 6, c.H p = 9

Figure 3 . 6 :

 36 Figure 3.6: Evolution of the control input u i

Figure 4 .

 4 1 shows the architecture of the experimental platform.

Figure 4 . 1 :

 41 Figure 4.1: Multiple Minilab robots with wireless communication architecture.

Figure 4 . 2 :

 42 Figure 4.2: Illustration of the experimental setup.

Figure 4 . 3 :

 43 Figure 4.3: Minilab Enova Robot.

Figure 4 . 4 :

 44 Figure 4.4: Minilab physical dimensions.

Figure 4 .

 4 5 shows the hardware features of Minilab robot.

Figure 4 . 6

 46

Figure 4 . 5 :

 45 Figure 4.5: Minilab hardware features.

Figure 4 .

 4 [START_REF] Li | Robust second-order consensus tracking of multiple 3-dof laboratory helicopters via output feedback[END_REF] to connect the Minilab to the network. It allows to design a communication network for multiple robots. This device performs the functions of a router and also includes functions of wireless access point. It is used to

Figure 4 . 6 :

 46 Figure 4.6: Intel Atom N2800.

Figure 4 . 7 :

 47 Figure 4.7: TL-WR802N Wireless routers.

Figure 4 . 8 :

 48 Figure 4.8: DUB-H7 7-Port USB 2.0 HUB.

Figure 4 . 9 :

 49 Figure 4.9: Buhler Motor DC.

Fitting into a very

 compact 73x73mm enclosure, Roboteq's SDC2130 controller is designed to convert commands received from an RC radio, Analog Joystick, wireless modem, PC (via RS232 or USB) or microcomputer into high voltage and high current output for driving one or two DC motors. A CAN bus interface allows up to 127 controllers to communicate at up to 1Mbit/s on a single twisted pair.

Figure 4 .

 4 Figure 4.10 illustrates the Roboteq controller.

Figure 4 . 10 :

 410 Figure 4.10: Roboteq SDC2130 controller.

Figure 4 .

 4 [START_REF] Li | Analysis of flocking of cooperative multiple inertial agents via a geometric decomposition technique[END_REF], is a microcontroller board based on the AT-mega32u4, developed in conjunction with Adafruit. It has 20 digital input/output pins (of which 7 can be used as PWM outputs and 12 as analog inputs), a 16 MHz crystal oscillator, a micro USB connection, an ICSP header, and a reset button. It contains everything needed to support the microcontroller. Micro USB cable is used to connect Arduino board with computer. It has a form factor that enables it to be easily placed on a breadboard.The Micro has built-in USB communication, eliminating the need for a secondary processor. This allows the Micro to appear to a connected computer as a mouse and keyboard, in addition to a virtual (CDC) serial / COM port. It also has other implications for the behavior of the board.

Figure 4 . 11 :

 411 Figure 4.11: Arduino Micro Board.

Figure 4 . 12 :

 412 Figure 4.12: Infrared sensor SHARP.

Figure 4 .

 4 Figure 4.13 illustrates the camera.

Figure 4 . 13 :

 413 Figure 4.13: Orbbec Astra Pro Camera.

Figure 4 .

 4 [START_REF] Gasparri | A swarm aggregation algorithm based on local interaction for multi-robot systems with actuator saturations[END_REF], with 4 hours of autonomy. Power-Sonic battery are lead-lead dioxide systems. The dilute sulphuric acid electrolyte is suspended and thus immobilised. Otherwise, the battery is completely sealed and is, therefore, maintenance-free and leak proof.

Figure 4 . 14 :

 414 Figure 4.14: Power-Sonic Battery

 ROS was originally developed in 2007 by the Stanford Artificial Intelligence Laboratory (SAIL) with the support of the Stanford AI Robot project. As of 2008, development continues primarily at Willow Garage, a robotics research institute, with more than 20 institutions collaborating within a federated development model. A lot of research institutions have started to develop projects in ROS

Figure 4 .

 4 Figure 4.15 illustrated level in ROS Filesystem.

Figure 4 .

 4 Figure 4.15: ROS File System Level.

Figure 4 .

 4 Figure 4.18 illustrates all explanation for a simple computation graph level. Wheel odometer node sends out a message of x, y, z robot position by publishing it to /odom topic. The topic type is defined by the message type publishing on it. Path planner subscribe /odom topic to receive messages as well as publish messages of linear velocity x, y and angular velocity z to a /cmd vel topic. Then motor controller subscribe /cmd vel topic to make motor movement.

Figure 4 . 18 :

 418 Figure 4.18: Computation graph for control wheel motor.

Figure 4 .

 4 [START_REF] Sun | Optimal dynamic formation control of multi-agent systems in constrained environments[END_REF] shows rqt graph for control wheel motor of minilab3 robot in the real platform.

Figure 4 .

 4 Figure 4.19 shows that by using rqt graph, we can perform diagnostic and localize where the problem occurred. It depicts a chained topic from one node to another. By determining any broken chain in the graph, we could detect and locate any occurred problem.

Figure 4 .

 4 Figure 4.19: rqt graph for control wheel motors.

Figure 4 .

 4 [START_REF] Susca | Monitoring environmental boundaries with a robotic sensor network[END_REF] shows a generic hardware setup/ configuration as explained above.

Figure 4 . 20 :

 420 Figure 4.20: MiniLab robot setup for a single ROS system.

Figure 4 . 21 :

 421 Figure 4.21: Wireless network setup on the host PC.

Figure 4 .

 4 [START_REF] Defoort | Sliding-mode formation control for cooperative autonomous mobile robots[END_REF] shows an example of successful connection.

Figure 4 . 22 :

 422 Figure 4.22: Communication checking results.

Figure 4 .

 4 Figure 4.23(a) shows visualisation of Gazebo-ROS simulation for one minilab robot and Figure 4.3 (b) shows visualisation of Gazebo-ROS simulation for multiple-minilab robots.

Figure 4 . 23 :

 423 Figure 4.23: Gazebo-ROS simulation for minilab robot.

Figure 4 .

 4 Figure 4.24: rqt graph for minilab in Gazebo-ROS

Figure 4 . 25 :

 425 Figure 4.25: Network topology for the illustrative example.

Figure 4 .

 4 Figure 4.21(b).

Figure 4 .

 4 Figure 4.26: TP-Link address reservation.

Figure 4 . 27 :

 427 Figure 4.27: Contents of the /etc/hosts file for the workstation for the example presented in Fig. 4.1.

Figure 4 . 28 :

 428 Figure 4.28: Contents of the /etc/hosts file for each robot for the example presented in Fig. 4.1.

Figure 4 . 29 :

 429 Figure 4.29: MiniLab robot runs its own master managing local communication.

Figure 4 .

 4 Figure 4.29 illustrates the configuration of 3 robots to allow information to be exchanged between ROS sub-systems. With this distributed approach, every robot executes its own master. Local interprocess communication is handled by the local master while global communication between robots is handled by a special communication package. Robots may communicate directly forming an ad hoc wireless network and do not rely on a central controller.

 master sync enable us to select which hosts, topics and services which should be synchronized or ignored between different roscore. It also helps to register and update information of topics and services to the local roscore.

Figure 4 .

 4 Figure 4.30 presents an illustration of ROS multi-master system. For our experimental setup, we have four master ROS (workstation, Minilab 1, Minilab 2 and Minilab 3). Each ROS Master will be detected and discovered by any other master in the network.

Figure 4 . 30 :

 430 Figure 4.30: Multimaster fkie for multiple-minilab robots.

Figure 4 .

 4 Figure 4.31 shows the information reported by this command for the example presented in Figure 4.1.

Figure 4 . 31 :

 431 Figure 4.31: rosservice call command result.

Figure 4 . 32 :

 432 Figure 4.32: Communication topology.

} 4 . 1 :} 4 . 2 :

 4142 i n t main (i n t argc , c h a r * * argv) { . . . ROS INFO(" s t a r t ") ; r o s : : i n i t (argc , argv , " m o v e f i x L e a d e r ") ; r o s : : NodeHandle n ; r o s : : S u b s c r i b e r sub odometry = n . s u b s c r i b e (" / m i n i l a b 3 /odom" , 1 0 , odomCallbackLeader) ; r o s : : P u b l i s h e r movement pub = n . a d v e r t i s e <geometry msgs : : Twist >(" / m i n i l a b 3 / cmd vel " , 1 0) ; // f o r s e n s o r s t h e v a l u e a f t e r , s h o u l d be h i g h e r t o g e t a more a c c u r a t e r e s u l t (queued) pub pose2d = n . a d v e r t i s e <geometry msgs : : Pose2D>(" / m i n i l a b 3 / pose2d " , 1 0) ; r o s : : Rate r a t e (1 0 0 0) ; // t h e l a r g e r t h e v a l u e , t h e " smoother " . . . Listing Leader 's program. and i n t main (i n t argc , c h a r * * argv) { . . . ROS INFO(" s t a r t ") ; r o s : : i n i t (argc , argv , " m o v e f i x a g e n t 1 x ") ; r o s : : NodeHandle n ; r o s : : S u b s c r i b e r sub odometryAgent1 = n . s u b s c r i b e (" / m i n i l a b 1 /odom" , 1 0 , odomCallbackagent1) ; r o s : : P u b l i s h e r movement pubAgent1 = n . a d v e r t i s e <geometry msgs : : Twist >(" / m i n i l a b 1 / cmd vel " , 1 0) ; pub pose2dAgent1 = n . a d v e r t i s e <geometry msgs : : Pose2D>(" / m i n i l a b 1 / pose2d " , 1 0) ; r o s : : Rate r a t e (1 0 0) ; // t h e l a r g e r t h e v a l u e , t h e " smoother " r o s : : S u b s c r i b e r sub odometry = n . s u b s c r i b e (" / m i n i l a b 3 /odom" , 1 0 , odomCallbackLeader) ; pub pose2d = n . a d v e r t i s e <geometry msgs : : Pose2D>(" / m i n i l a b 3 / pose2d " , 1 0) ; . . . Listing Follower 's program.

Figure 5 .

 5 1 shows the communication topology for the leader-follower MAS scenario in ROS-Gazebo. A MAS with N = 6 followers labeled by 1 -6 and one leader labeled by 0 is considered. One can see that the communication topology is fixed and connected. It is characterized by the following Laplacian L and the matrix B which describes links between the leader and the followers given as follows

Figure 5 . 1 :

 51 Figure 5.1: Topology of MAS using ROS for six agents.

Figure 5 . 2 :

 52 Figure 5.2: Topology of MAS using using our Minilab Enova robot platform.

2 : 3 : 4 :

 234 Compute e(t k) = x(t k) -x d (t k) Compute u = -(α + a) e 2 -β sign (e) Implement the linear velocity v(t) 5: end if x(t k) is the x position of the Minilab robot at instant t k , x d (t k) is the x desired position at instant t k Using Theorem 1, the tracking controller (5.3) guarantees the stabilization of the tracking errors to the origin in a finite-time bounded by T = 6.28s. Figure 5.3.a. shows that the actual state trajectory x accurately tracks the desired state x d before T in spite of the presence of disturbances and uncertainties inherent to the experimental setup. Hence, the origin of the closed-loop system is globally finite-time stable. Furthermore, since T does not depend on the initial states, the proposed protocol is a fixed-time controller.

Figure 5 . 3 :

 53 Figure 5.3: Experimental results for Algorithm 1: Time response of actual state trajectory x and desired state trajectory x d with constant linear desired velocity.

Figure 5 .Figure 5 . 4 :

 554 Figure 5.4 shows that the tracking controller (5.3) guarantees the stabilization of the tracking errors to the origin in a finite-time bounded by T = 3.14s. From Figure 5.4.b., one can see that the actual state trajectory x accurately tracks the desired state x d before 2.5s.

Figure 5 . 6 :

 56 Figure 5.7, one can see that the corresponding control inputs.

Figure 5 . 7 :

 57 Figure 5.7: Experimental results for Algorithm 2: Control input for each agent and the leader.

Figure 5 .Figure 5 . 8 :

 558 Figure 5.8: Experimental results for Algorithm 3: Time response of actual state trajectory x and desired state trajectory x d with constant linear desired control input.

Figure 5 .

 5 10.a. shows the actual and desired velocities (convergence at 1.3s). The control inputs are shown in Figure 5.10.b.

Figure 5 . 9 :

 59 Figure 5.9: Experimental results for Algorithm 3: Time response of actual position trajectory x 1 and desired position trajectory x 1,d with sinusoidal linear desired control input.

Figure 5 . 10 :

 510 Figure 5.10: Experimental results of Algorithm 3: Time response of actual velocity trajectory x 2 and desired velocity trajectory x 2,d and the corresponding control inputs.

neighbors 4 : 5 :

 45 Compute the estimation error xi = xi -x 0 Update the distributed observer (2.23) (convergence in time T o) 6:

(5 . 5)Figure 5 . 11 :

 55511 Figure 5.11: Experimental results for Algorithm 4: Time response of the actual state trajectory of the followers and of the leader with a step linear leader trajectory.

Figure 5 . 12 :

 512 Figure 5.12: Experimental results for Algorithm 4: Time response of the actual state trajectory of the followers and of the leader with a sinusoidal leader trajectory.

7 :

 7 end ifFirst, the desired trajectory is illustrated in Figure5.[START_REF] Das | Chaotic dynamics in social foraging swarms-an analysis[END_REF]. It is composed of a line and a circle (see the curve in blue color). The control parameter are selected as:α 1 = β 1 = 20, α 2 = β 2 = 10, a = b = 1for controller(2.54). The initial state of the robot is x(0) = -2, y(0) = -2, θ(0) = 0. Based on the control parameters, the settling time is T = 2.6s. Figure5.13 shows the time response of x and y position of the robot. The robot successfully tracks the desired trajectory with an offset 0.25m (which has been added for collision avoidance consideration).Using Theorem 5, the tracking controller (2.54) guarantees the stabilization of the tracking errors to the origin in a finite-time bounded by T = 2.6s. Figure5.14 shows the actual and desired trajectories in x (both in position and velocity). It is shown that the actual position x accurately tracks the desired state x d before T (i.e. 0.8s) in spite of the presence of disturbances and uncertainties inherent to the experimental setup.

Figure 5 . 13 :Figure 5 . 14 :Figure 5 .Figure 5 . 15 :

 5135145515 Figure 5.13: Actual and desired trajectory of the robot in the plane

3 : 4 :

 34 Compute the estimation error xi = xi -x 0Update the distributed observer (convergence in time T o) 5:

8 :

 8 end ifThe performances of the proposed observer-based leader-follower consensus controller for unicycletype are studied through experimental results. The control parameter are selected as:α 1 = β 1 = 12, α 2 = β 2 =12 for protocols (2.85). The desired trajectory is generated by (2.61) with initial desired position (0,0), u linear d (t) = 0.2 and u angular d (t) = 0.8. Hence, since a ≥ d 1 + u 1,d and b ≥ d 2 + u 2,d , we set a = b = 1. The control objective is that system (2.62) tracks the leader x 0 and y 0 using only local information. Based on the control parameters, the settling time is T = 6.78s.

Figure 5 . 16 :Figure 5 . 17 :

 516517 Figure 5.16: Time response of the tracking for x position and v x linear velocity

 Figures 5.18(a) and (b) show that the real orientation θ i and angular velocity ω i have converged to their respective desired trajectories θ d and ω d .

Figure 5 . 18 :

 518 Figure 5.18: Time response of the tracking for θ position and ω angular velocity

 The research work was done in Automation and Control Department of LAMIH UMR CNRS 8201 (Laboratory of Industrial and Human Automation control, Mechanical engineering and Computer Science) which has been structured into two complementary themes: Robustness Complexity (ROC) and Cooperating Intelligent Systems (SIC). Since we deal with MASs, this research work is in the intersection of Robustness Complexity and Cooperating Intelligent Systems themes.

More precisely, it deals with decentralized cooperative control for MASs while taking into account the time constraints.

 are understood in the Filippov sense [?].

	Definition 4 [?] The origin of system (1.11) is a globally fixed-time equilibrium if it is globally finite-
	time stable and the settling time function T (x 0) is bounded by a positive number T max > 0, i.e.
	T (x 0) ≤ T max , ∀x 0 ∈ R n
	Lemma 2 [?] Assume that there exists a continuously differentiable positive definite and radially
	unbounded function V : R n

 Assumption 4 It is assumed that the perturbations d 1 (t) and d 2 (t) are unknown but are bounded by known constants (i.e. d 1,max and d 2,max).

	Assumption 5 It is assumed that the desired state x 2,d satisfies the following condition	
	x 2,d (t) = 0	(2.51)

 -α 2 s 2 e 3 , ζ 4 + β 2 s 2 e 3 , ζ 4

		(2.55)
	α 1 +3β 1 e 2 3 +2d 2,max 2	sign s 2 e 3 , ζ 4
		3 1 2
	with sliding surfaces	

1,max 2 sign s 1 e 1 , e 2 -α 2 s 1 e 1 , e 2 + β 2 s 1 e 1 , e 2 3 1 2 ϕ 2 e 3 , ζ 4 =s 1 e 1 , e 2 = e 2 + e 2 2 + α 1 e 1 + β 1 e 1 3 1 2 s 2 e 3 , ζ 4 = ζ 4 + ζ 4 2 + α 1 e 3 + β 1 e 3 3 1 2

Table 4 . 1 :

 41 Parts of the Minilab components

	Component	Description
	Main board	Intel X86
	Wifi module	TL-WR802N 300Mbps Wireless N Nano Router
	USB HUB	D-Link DGS-105 Gigabit Ethernet Switches
	Motors	Max speed of the robot is 1.5m/s
	Wheels controller	Roboteq SDC2130 Controller
	Encoders	16 bits resolution
	Sensor board	Arduino Micro Board
	Infrared array	5 SHARP 2Y0A21 F 46 sensors, range from 10 cm to 80 cm
	Ultrasound	5 MaxSonar-EZ0 sensors, range from 0 m to 6.45 m, resolution 2.54 cm
	ORBBEC depth camera ORBBEC Asrtra pro camera
	Batteries	12 Volts/ 10 Ampere-hour, sealed lead/acid battery
	depicts the processor board of Intel Atom N2800 1.86GHz Dual-Core 4Gb DDR3-1066MHz Mini ITX
	Motherboard.	

 Fixed-time Tracking controller for Single Integrator dynamics Input: x d (t k), x(t k)

	Parameters: α, β, a
	Output: v(t), t k ≤ t < t k+1

The desired trajectory is generated by (5.2) with x d (0) = 0, u d (t) = 0.2. Since a ≥ d + u d , we set a = 1. The control objective is that system (5.1) tracks the desired trajectory x d .

Algorithm 1

1: if t = t k then

 2, -3] T .Recall that T o is time needed for an agent to estimate the leader state (prescribed time observation).It should be noted that the estimation in (2.10) depends on the gains of observer. The settling time is explicitly defined asT = T o + πThe corresponding fixed-time algorithm for MAS with single integrator dynamics is given in Algorithm 2. At each sampling time instant t k , based on local exchanged information, each agent i estimates the leader position xi and compute the tracking error between the leader, itself and neighboring agents. After calculating the controller u, we implement the corresponding linear velocity input of the robot.

		√	αβ .
	4:	Compute the estimation error xi = xi -x 0
	5:	Update the distributed observer (2.7) (convergence in time T o)

Algorithm 2 Fixed-time consensus for MAS with Single Integrator dynamics For each agent i,

Input: x 0 (t k) (if b i = 1), x i (t k), x j (t k) (for all j such that a ij = 0) Parameters: ρ, σ, α, β, a i Output: v i (t), t k ≤ t < t k+1 1: if t = t k then 2: When t < T o , v i (t) = 0 3:

Agent i samples its current states x i (t), its estimate of the leader xi (t) and broadcasts it to its neighbors 6:

 , e 2 = e 2 + e 2 2 + αe 1 + β 1 e 1 , α 2 , β 1 , β 2 and a are positive constants. The settling time is explicitly defined as

	and				
		s e 1 3 1 2	(5.10)	
	where α 1				
					5.8)
	with	ϕ e = -	α 1 +3β 1 e 2 1 +2dmax 2	2 3 1	(5.9)

sign s 1 e 1 , e 2 -α 2 s e 1 , e 2 + β 2 s e 1 , e 2

β 1 .

 1 The corresponding fixed-time algorithm for MAS with double integrator dynamics is given in Algorithm 4. At each sampling time instant t k , based on local exchanged information, each agent i estimates the leader position xi and compute the tracking error between the leader, itself and neighboring agents. After calculating the controller u, we implement the corresponding linear velocity input of the robot.Algorithm 4 Fixed-time consensus for MAS with Double Integrator dynamics For each agent i, Input:x 1,0 (t k), x 2,0 (t k) (if b i = 1), x 1,i (t k), x 2,i (t k), x 1,j (t k), x 2,j (t k) (for all j such that a ij = 0) Parameter: ρ 1 and σ 1 , ρ 2 and σ 2 , α 1 , β 1 , α 2 , β 2 , a Output: v i (t), t k ≤ t < t k+1 1: if t = t k then

	2:

 Algorithm 5 Fixed-time Tracking for Unicycle-type DynamicsInput: x 1 (t k), x 2 (t k), x 3 (t k), x 4 (t k), x 1,d (t k), x 2,d (t k), x 3,d (t k), x 4,d (t k)

Parameters: α 1 , β 1 , α 2 , β 2 , a Output: v linear x (t), v angular (t), t k ≤ t < t k+1 1: if t = t k then 2:

 1 , β 1 , α 2 , β 2 , a Output: v linear,i (t), v angular,i (t), t k ≤ t < t k+1 1: if t = t k then

	2:

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Mohamed DJEMAI,

to thank to Dr. Zongyu ZUO, from Beihang Universityfoundation of this thesis.

My sincere thanks also goes to Dr. Abdul MUIS and Dr.Aries SUBIANTORO, from Indonesia University, who provided me an opportunity to join their team as part of NUSANTARA Project and who gave research facilities. Without their precious support it would not be possible to conduct this research.

I am immensely grateful to The Directorate General of Resources for Science, Technology and Higher Education (DG-RSTHE) of the Indonesia Republic for its continuous financial support over my Ph.D period of time and its very generous donation, your contribution has dramatically helped

By letting ∂J i (k)/∂U i = 0, one can obtain the optimal control vector

Then, Equation (3.19) yields

Package

Packages are the software organization unit of ROS code. Each package can contain ROS runtime processes (nodes), a ROS-dependent library, datasets, configuration files, or anything else that is usefully organized together. ROS uses packages to organize its programs. A package can be describe as all the files that a specific ROS program contains; all its cpp files, python files, configuration files, compilation files, launch files, and parameters files.

Catkin is the official build system of ROS and the successor to the original ROS build system, rosbuild. Catkin combines CMake macros and Python scripts to provide some functionality on top of CMake's normal workflow. Catkin was designed to be more conventional than rosbuild, allowing for better distribution of packages, better cross-compiling support, and better portability. Catkin's workflow is very similar to CMake's but adds support for automatic 'find package' infrastructure and building multiple, dependent projects at the same time.

All those files in the package are organized with the following structure:

Meta-Package

This is a collection of packages forming a higher level library (previously called stacks). The concept of stacks was removed with catkin command to simplify the growing code base and to support better distribution of packages.

Manifests

Manifests (manifest.xml) provide metadata about a package, including its license information and dependencies, as well as language-specific information such as compiler flags.

Stacks

Stacks are collections of packages that provide aggregate functionality, such as a "navigation stack".

Stacks are also how ROS software is released and have associated version numbers.

Stack Manifests

Stack manifests (stack.xml) provide data about a stack, including its license information and its dependencies on other stacks.

Message (msg) types

Message descriptions are stored in a package msg MyMessageType.msg. It defines the data structures for messages sent in ROS.

Service (srv) types

Service descriptions are stored in a package srv MyServiceType.srv. It defines the request and response data structures for services in ROS.

ROS Computation Graph Level

The second level is the Computation Graph level where communication between processes and systems happens. In this subsection, we will see all the concepts and mechanisms that ROS has to set up systems, handle all the processes, and communicate with more than a single computer, and so on. Step Linear Velocity Input for the leader trajectory

The control parameters are selected as: α = β = 1 for protocol (2.17). The initial state of the robots is

The desired trajectory of the leader is generated by (2.5) with x 0 (0) = 0, u 0 (t) = 0.2. Since a i ≥ d i + u 0 , we set a i = 1. The control objective is that each system (2.6) tracks the leader x 0 using only local information.

Using Theorem 1, the distributed observer (2.

General conclusion and perspectives

The work of this thesis has been focussed on the study of the navigation scheme for MAS, while taking into account some practical constraints. We were mainly interested in designing cooperative controllers for each agent, in a fully decentralized way, while considering the robot model and temporal constraints. The temporal constraints have been investigated in two directions: consensus problem in a fixed-time framework and consensus problem in a discrete-time framework.

General conclusion

The main results of this thesis are summarized as follows:

• In the first chapter, we have presented the basic concepts of algebraic graph theory for describing the communication topology among the agents. Furthermore, we have given a brief general overview on MAS and consensus control problem in cooperative control both in continuous-time and discrete-time. Convergence rates motivated us to investigate how a fast controller can be designed.

• In the second chapter, it was considered fixed-time leader-follower consensus tracking problem for MAS. Over a fixed topology, distributed observers and decentralized controllers have been designed for each agent to solve the leader-follower consensus problem in a fixed time. Distributed observers have been proposed for each agent to estimate the leader state in a fixed-time. A switching controller has been proposed to solve the consensus problem. An upper bound of the settling time, which only depends on the controller parameters has been estimated regardless of the initial conditions. First, the study of fixed-time leader-follower consensus has been addressed

for linear MAS (i.e. single-integrator and double-integrator dynamics). Subsequently, the fixedtime consensus tracking problem has been investigated for multiple unicycle-type mobile robots under matched perturbations.

• In chapter 3, we have proposed a distributed model predictive control protocol for consensus of MAS with discrete-time linear dynamics under time-varying directed topologies. The control protocol is designed by combining graph theory with a predictive control algorithm to take into account the switches on the communication topology. Our proposed controller has been designed using the difference between two consecutive inputs. The controller has also integrator properties to eliminate the steady-state errors. The convergence time of the closed-loop system depends on the prediction horizon parameters. First, the study of distributed model predictive control consensus protocol has focussed on MAS with single-integrator dynamics. Some comparative studies have shown the advantage of the proposed scheme compared to existing ones. Then, the extension to MAS with double-integrator dynamics have been successfully done.

• In chapter 4, we have discussed about the implementation of the proposed control schemes for MAS. Due to the requirements of the proposed consensus algorithms, we have first introduced the robot hardware specifications, communication network configuration and minimum amount of workstations we can use for the coordination of multi-robots using Robot Operating System (ROS) and multiple Minilab robots. Multiple robots communicate through a wireless network with only one workstation for monitoring and control using a wireless master-slave scheme. This configuration is a low cost configuration.

In this ROS MAS network, decentralized architectures were solved using multi-master ROS. The package of multimaster fkie is shown as a solution for a decentralized implementation. Node calling algorithm has allowed to create the leader-follower topology. This algorithm has used a publisher and a subscriber to broadcast and/or receive messages continually from each other.

• In chapter 5, we have experimentally implemented and validated the fixed-time consensus tracking controller on a group of Minilab robots using ROS with a wireless network. The sampling rate of the minilab robot is only 10 Hz. Both tracking and consensus algorithms for single-integrator, double-integrator, and unicycle-type systems were successfully implemented. The effectiveness of the theoretical results was validated by experimental results.

Perspectives

Despite the results that have been proposed in this thesis, there are still several aspects that could be further investigated in future works. Some of related topics for future research are highlighted as follows.

• In chapter 2, we have dealt with the fixed-time leader-follower consensus problem for MAS with linear dynamics and multiple unicycle-type mobile robots under matched perturbations. It will be possible to investigate the fixed-time leader-follower consensus control problem for MAS with

List of Figures