Professeur Daoud-Aït-Kadi

Nadia Et Mohammed-Tahar

Mari Farid

Ma Fille Anaïs

Keywords:

Production scheduling is considered as one of the most important tasks carried out in manufacturing systems. It allows available resources to perform a number of tasks, over a given period of time, while optimizing one or more objectives such as reducing production delays or costs associated with storage.

In France, these industries contribute significantly to the regional and national economy, making the Hautsde-France region the fourth French economic region. In order to remain competitive, these companies must be based, on one side, on a reliable production system that is available at any time, and on the other side, on powerful Decision Support Systems to react quickly to any unpredictable situation such as failures, late deliveries of raw material or orders cancellation, etc.

Furthermore, maintenance is another aspect closely connected to production scheduling in real manufacturing settings. One of the most common assumptions in the scheduling literature is that the machines or resources are always available but, in practice, they may have to be stopped due to failures or to preventive maintenance. Taking into account that machines are an essential part of the production process and maintenance costs represent a large percentage of the total budget of operations, it is desirable to coordinate efficiently the maintenance planning and production scheduling.

This thesis addresses exactly this problem, while considering other constraints such as sequence-dependent setup times between tasks. The main objective of this work is to design and develop optimization methods for decision support systems applied to scheduling problems with unavailability constraints due to preventive maintenance. The proposed models and tools have been validated through academic problems and on the basis of simplified industrial problems. Therefore, the output of the thesis is to develop new algorithms and models based on integer linear programming, heuristics and metaheuristics to solve production scheduling problems.

Résumé

L'ordonnancement est considéré comme l'une des tâches les plus importantes en industrie, notamment dans les ateliers de production. Son but principal est d'allouer les ressources disponibles aux tâches sur une période donnée, tout en optimisant un ou plusieurs objectifs tels que la minimisation des délais de production et les coûts de stockage.

En France, ces industries contribuent de manière significative à l'économie régionale et nationale, faisant de la région Hauts-de-France la quatrième région économique française. Pour rester compétitives, ces sociétés doivent reposer, d'une part, sur un système de production fiable et disponible à tout moment, et d'autre part, sur de puissants outils d'aide à la décision permettant de réagir rapidement à toute situation imprévue telle qu'une panne ou un retard de livraison de matières premières, des annulation de commande, etc.

Par ailleurs, la maintenance est un autre aspect étroitement lié à l'ordonnancement de la production. L'une des hypothèses les plus courantes dans la littérature est que les machines ou les ressources sont toujours disponibles à tout moment, or, en pratique, il peut être nécessaire de les arrêter en raison de pannes ou de maintenance préventive. Compte tenu du fait que les machines sont un élément essentiel du processus de production et que les coûts de maintenance représentent un grand pourcentage du budget total des opérations, il est souhaitable de bien coordonner la planification de la maintenance et l'ordonnancement de la production.

Cette thèse aborde exactement ce problème, tout en considérant d'autres contraintes comme les temps de préparation dépendant de la sequence. L'objectif principal de ce travail est de concevoir et de développer des méthodes d'optimisation pour l'aide à la décision appliquées aux problèmes d'ordonnancement avec contrainte d'indisponibilité dûe à la maintenance préventive. Ces outils sont validés à travers des problèmes académiques et industriels simplifiés. Par conséquent, cette thèse a conduit au développement de nouveaux algorithmes et modèles basés sur la programmation linéaire en nombres entiers, des heuristiques et des métaheuristiques pour résoudre des problèmes d'ordonnancement de la production.

Mots-clefs : Ordonnancement -Maintenance -Temps de préparation -Rejet de tâches -Optimisation Average results for lower bounds compared to the MILP: case CL1D0 Table 3.7 Average results for lower bounds compared to the MILP: case CL1D1 Table 3.8 Average results for lower bounds compared to the MILP: case CL2D0 Table 3.9

List of Figures

List of Tables

Average results for lower bounds compared to the MILP: case CL2D1 Table 3.10 Average computational time of lower bounds: case CL1D0 Table 3.11 Average computational time of lower bounds: case CL1D1 Table 3.12 Average computational time of lower bounds: case CL2D0 Table 3.13 Average computational time of lower bounds: case CL2D1 Table 3.14 Average computational time of heuristics: case CL1D0 Table 3.15 Average computational time of heuristics: case CL1D1 Table 3.16 Average computational time of heuristics: case CL2D0 Table 3.17 Average computational time of heuristics: case CL2D1 Table 3.18 Performance of the heuristics with regard to the number of optimal solutions found for n = 2 to n = 20 jobs instances . Table 3. [START_REF] Arts | Some aspects of measuring maintenance performance in the process industry[END_REF] Computational results of H best for n = 2 to n = 20 jobs instances Table 3.20 Computational results of H best for n = 21 to n = 50 jobs instances,n = 100, n = 500 and n = 1000 jobs instances . Table 3.21 Average computational results of the overhead for n = 2 to n = 20 jobs instances Table 3.22 Average computational results of overhead for n = 21 to n = 50 jobs instances, n = 100, n = 500 and n = 1000 jobs instances . Table 3.23 Impact of Property 2 . Table 3.24 Comparison of lower bounds: LB 5 to LB 7 and LB RP . Table 3.25 GVNS performances . Comparison of the quality results between the two MILPs Table 4. 5 Comparison of the computational time results between the two MILPs Table 4.6 Local searches comparison for l EV AL = 8000 evaluations and n = 90 Table 4.7 Local searches comparison for for l EV AL = 200,000 evaluations and n = 90 Table 4.8 Local searches comparison for l EV AL = 10,000,000 and n = 90 Table 4.9

Impact of L max on MS-GVNS . Table 4.10 Impact of I M S-DSH on MS-DSH . Table 4.11 MS-DSH and MS-GVNS performances for small sized instances Table 4.12 MS-DSH and MS-GVNS performances for large sized instances Table 5.1 Average objective values of GrH based on f 1 for different values of q 1 Table 5. 2 Number of best solutions found by GrH based on f 1 for different values of q 1 Table 5.3 Average value of f 1 with regard to IterM ax 1 and instance size n Table 5.4 Average value of f 2 with regard to IterM ax 3 and instance size n Table 5. 5 Comparison of f 1 values for different problem sizes n and P r N values Table 5.6

Comparison of f 2 values for different problem sizes n and P r N values Table 5.7

Impact of different phases of MultTS . Table 5.8 Results comparison between the application of T S or DA in phase 2 of MultTS Table 5.9

Comparison between MultTS and ConsTS . Table 5.10 Average number of rejected jobs . Table 5.11 Performance of MulTS and ConsTS with regard to the number of best solutions found for n=200, 210 and 220 jobs . Table 5.12 Average time duration (seconds) for each phase of MultTS Table 5.13 Average time duration (seconds) for each phase of ConsTS

Introduction

In this chapter, we give the context of this thesis is defined, by presenting at first the research project in which this thesis is included. In the second part of this chapter, we present the working hypotheses on which our work is carried out given that the considered problem areas are theoretical and based mainly on simplified industrial problems. The chapter ends with the main contributions and the output of this thesis.

General context: ELSAT2020 project

This dissertation has been carried out in the context of the ELSAT1 (Ecomobility, Logistics, Security and Adaptability in Transport) Horizon 2020 project. This project is co-financed by the European Union with the European Regional Development Fund, the French State, and the Hauts-de-France Region Council.

The ELSAT2020 project aims to address significant societal challenges for Transport and Ecomobility, which are safer, more intelligent, more environmentally respectful, more integrated, customized, acceptable and economically efficient. It is built around major strategic objectives and is divided into 22 sub-projects. The research carried out in the ELSAT2020 project is mainly aimed at the economic sectors of the automobile, rail and logistics transportation and new mobility.

This thesis is considered as one of the contributions in the Project 2 (P2) defined in the Strategical Objective number 2 (named OS2) of the ELSAT 2020 project.

More specifically, OS2 deals with the optimization of mobility systems and logistics and the second project (P2) in which this thesis is included concerns the Optimization of Operations in Logistics and Maintenance of Transportation Systems (OLOGMAESTRO).

As mentioned in the objective of the OS2/PS project, current logistics chains are based on different modes of transportation interacting with each other. Thus their good functioning and optimization depends on the reliability of the means of transportation systems used. As a result, the maintenance policy plays an important role to ensure both the fluidity of trade of goods and the reduction of operating costs due to breakdowns for example. In addition, manufacturers are constantly developing their transportation systems to meet a variable and personalized demand while offering a good quality of service in terms of cost, quality and time. These manufacturers are also concerned by the environmental, social and social impact of these transportation systems. Therefore, they must ensure that the availability of their transportation systems and the infrastructure used for transport are improved. The objective of this project is to achieve these goals. To do this, our approach is to provide generic decision support systems for the management of logistics operations and maintenance. These tools must take into account the different types of constraints existing in logistics in general and in transportation systems in particular.

In addition, part of the present research work has been carried out in the context of the LIA (International Associate Laboratory) ROI-TML (Operational Research and Computer Science in Transportation, Mobility and Logistics) between the LAMIH UMR CNRS 8201 (France) and the CIRRELT2 (Canada).

Problem statement and objectives of the thesis

Nowadays, the majority of production is transported by national or international supply chains. The sites of production, processing, assembly, storage, repackaging, distribution, etc. can be scattered all over the world. The routing of goods between these sites is carried out through different modes of transport in interaction. This is especially true as the current transport systems are more and more complex and therefore require technically more maintenance. Consequently, the encountered problems in practical and industrial cases related to the transport systems mentioned above can be modeled using scheduling theory.

On the other hand, an effective maintenance policy plays an important role in ensuring both the fluidity of trade (goods, people) and the reduction of operating costs. For example, rail transport, considered for a long time as important by the European Union and also by the Hauts-de-France region, is particularly characterized by its ability to reduce congestion and its low impact on traffic for the environment in relation with roads or air transport.

In the above-mentioned context, this thesis focuses on solving scheduling and maintenance problems. Indeed, scheduling is a decision making problem that is used on a regular basis in many manufacturing and service industries as well as in most information processing environments. It plays an important role on allowing available resources to perform a number of tasks over a given period of time. More generally we say that scheduling problems involve jobs and machines, with the aim to find the optimal ordering of the jobs over the machines in such a way to optimize one or more objective functions. Obviously there can be some constraints on the possible orderings, so the objective is to find a schedule specifying when and on which machine every job must be processed. Thereby, one of the most important constraints considered throughout this dissertation is the unavailability of one or more machines of the workshop due to a preventive maintenance policy.

Indeed, the main objective of this thesis is to design and develop optimization decision support systems for scheduling problems with enrolled maintenance policy due to failures and machine breakdowns. The proposed models and tools have been validated on through academic problems, on the basis of simplified industrial problems.

Furthermore, the output of the thesis is, ultimately, to develop new algorithms and models based on mathematical models, heuristics and metaheuristics to solve that kind of scheduling problems. Testing and validation infrastructure are based on predefined designs of experiments, consistent with the above-mentioned aspects.

Work hypothesis

In this section we are mainly interested in the different hypotheses considered in this thesis.

Firstly, in scheduling theory, the type and number of considered machines differs from one problem to another. Here, we consider two cases. Scheduling with single machine and scheduling on multiple machines. Sections 1.3.1 and 1.3.2 explain in general the industrial interest of dealing with this two kind of problems. Secondly, when the number of machines in the workshop is fixed, we are usually interested in the production environment. Indeed, two other hypotheses are then introduced, scheduling with considering maintenance policy in section 1.3.3 and sequence dependent setup times between each two tasks that should be performed in section 1.3.4. Finally, There are several performance criteria to measure the quality of a schedule. In this thesis we are interested mainly by two criteria: The weighted sum of completion times and jobs rejection cost criteria. The interest of considering these two criteria are discussed respectively in sections 1. 3.5 and 1.3.6.

Critical machine based scheduling

In scheduling theory, a single-machine scheduling or single-resource scheduling is defined as the process which assigns a group of tasks (jobs) to a single machine or resource in the shop. Generally, this machine (resource) is defined as the critical machine (resource) in the shop floor in which the workload is accentuated. Is is also the most crucial or vital machine in a shop floor where jobs are ranked so that one or many performance measures (objective functions) should be optimized.

Figures 1.1 and 1.2 describe two critical machine cases in a workshop. Indeed, when a machine is in the middle of the production chain or at the very beginning of this one (other layouts are also possible), it is considered as critical because if it breaks down the whole workshop production will be delayed or blocked. of the time considered as critical machines because of their vital and crucial role in the whole system process. In this perspective, many researchers investigated this area. [START_REF] Luo | Modelling of integrated vehicle scheduling and container storage problems in unloading process at an automated container terminal[END_REF] investigated the integration of the two problems focusing on the unloading process in an automated container terminal, where all or part of the equipment are automated. Further details concerning the critical machine in the shop floor are available in [START_REF] Vivek | Critical machine based scheduling-a review[END_REF]. Furthermore, as mentioned by Pinedo in his book [START_REF] Pinedo | Scheduling: theory, algorithms, and systems[END_REF], in theory, single machine models are important for various reasons. The single machine environment is very simple and a special case of all other environments. Single machine models often have properties that neither machines in parallel nor machines in series have. Furthermore the results that can be obtained for single machine models not only provide insights into the single machine environment, they also provide a basis for heuristics that are applicable to more complicated machine environments. In practice, scheduling problems in more complicated machine environments are often decomposed into subproblems that deal with single machines. For example, a complicated machine environment with a single bottleneck may give rise to a single machine model.

Parallel machines based scheduling

The parallel machine scheduling is a natural extension of the single-machine structure and also the basic unit of the flexible job shop structure. It has been extensively studied due to its practical applications in various manufacturing systems [START_REF] Cheng | A state of the art review of parallel machine scheduling research[END_REF]; [START_REF] Baykasoglu | Dynamic scheduling of parallel heat treatment furnaces: A case study at a manufacturing system[END_REF], such as printed circuit board manufacturing [START_REF] Pearn | Scheduling integrated circuit assembly operations on die bonder[END_REF], group technology cells, semiconductor manufacturing, painting and plastic industries, injection molding processes, tracking and data relay Satellite System [START_REF] Rojanasoonthon | Algorithms for parallel machine scheduling: a case study of the tracking and data relay satellite system[END_REF], and recently on synchronizing loads in hub terminals [START_REF] Guo | Parallel machine scheduling with job synchronization to enable efficient material flows in hub terminals[END_REF], etc. Furthermore, it appears as a relaxation of more complex problems like the hybrid flow shop scheduling problem or the RCPSP (Resource-Constrained Project Scheduling Problem) [START_REF] Chen | Solving parallel machine scheduling problems by column generation[END_REF]; several methods are used to solve this problem as column generation strategies (for more details about this methods see the references [START_REF] Desrosiers | A primer in column generation[END_REF]; [START_REF] Barnhart | Branch-and-price: Column generation for solving huge integer programs[END_REF]; [START_REF] Desaulniers | Column generation[END_REF]), heuristics, linear programs, etc.

Maintenance policy in an industrial workshop Definition

Maintenance is a set of operations or techniques that allow to maintain or restore an equipment to a specific state and guarantee a given service. According to the British Standard Institute (BSI) [START_REF] Standard | British standard glossary of maintenance management terms in terotechnology[END_REF], the latter is defined as a combination of actions to restore an item to an acceptable condition. Applications and examples which reflect the growing importance of maintenance are provided by [START_REF] Daya | Handbook of Maintenance Management and Engineering[END_REF].

Maintenance actions can usually be classified into two major categories: Planned maintenance (proactive) and unplanned maintenance (reactive) as illustrated in Figure 1.5. In this dissertation, we focused on the first category of maintenance. Indeed, Proactive maintenance policy is organized and carried out with forethought, control and the use of records to a predetermined plan while reactive maintenance refers to repairs that are done when equipment has already broken down, in order to restore the equipment to its operating condition.

However, the goal of this subsection is not to present a state of the art of maintenance policies, but only to give sufficient information for an application in the context of this thesis.

Predictive Maintenance: PrM

It is a set of activities that detect changes in the physical condition of equipment (signs of failure) in order to carry out the appropriate maintenance work for maximizing the service life of equipment without increasing the risk of failure. Corrective maintenance is those actions carried out when the failure has already happened. It consists of detecting, isolating and correcting a fault in order to allow the equipment, the machine or the system to return to its normal operating state. Further details of CM are available in [START_REF] Banks | Handbook of simulation: principles, methodology, advances, applications, and practice[END_REF] and [START_REF] Adams | Traffic Operations Asset Management Systems (TOAMS): Study findings[END_REF].

Maintenance

Preventive maintenance: PM

Preventive maintenance actions are defined as systematic inspection, detection, correction, and prevention of incipient failures, before they become actual or major failures. In other words, PM is commonly conducted in order to keep a system at the desired level of operation and is performed when the system is idle at fixed time intervals. Variety of models have been developed to determine optimal PM period, such as in [START_REF] Mccall | Maintenance policies for stochastically failing equipment: a survey[END_REF] and [START_REF] Pierskalla | A survey of maintenance models: the control and surveillance of deteriorating systems[END_REF]. Therefore, several PM policies should be defined, with the aim of determining when it is necessary to carry out PM operations on the machines according to different criteria. According to [START_REF] Ruiz | Considering scheduling and preventive maintenance in the flowshop sequencing problem[END_REF], three possible policies are commonly defined:

• Policy I: preventive maintenance at fixed predefined time intervals,

• Policy II: optimum period model for the preventive maintenance maximizing the machines availability,

• Policy III: maintaining a minimum reliability threshold for a given production period t.

According to [START_REF] Ruiz | Considering scheduling and preventive maintenance in the flowshop sequencing problem[END_REF], the widely used policy in industry is Policy I. In this latter, PM operations are planned to be performed at predefined time intervals without considering probabilistic models for the time to failure and making the best use of scheduled stops after weekly, monthly, or even annual cyclical production periods. Policies II and III utilize probabilistic models to find an optimal preventive maintenance interval. For example, [START_REF] Singh | Maintenance planning and control of hand tools unit in india: a case study[END_REF] demonstrate that maintenance planning using probabilistic models helps to reduce downtime and increase the profits of companies.

More details about each policy II and III could be found in [START_REF] Ruiz | Considering scheduling and preventive maintenance in the flowshop sequencing problem[END_REF]. Hence, the first mentioned maintenance policies certainly influence the machine availability and the machine utilization ratio. Thereby, we can find in the literature two types of preventive maintenance as reported by [START_REF] Yang | Minimizing total completion time on a single machine with a flexible maintenance activity[END_REF]:

Deterministic maintenance: It means that maintenance periods are determined before jobs are scheduled, i.e., the starting times of the maintenance activities are fixed in advance. Scheduling dealing with this type of maintenance is often referred in literature as scheduling with availability constraints, scheduling with limited machine availability or scheduling with fixed non-availability intervals because during maintenance periods the machine is unavailable for processing any job.

Flexible maintenance: It means that the schedule of maintenance periods are determined jointly with the schedule of jobs, i.e., the starting times of the maintenance activities are allowed to be flexible and are determined in the scheduling process. This problem is known as scheduling with flexible maintenance, scheduling with unfixed availability constraints, integrating preventive maintenance planning and production scheduling, or (simultaneously/jointly) scheduling jobs and maintenance activities.

However, in both cases of flexible maintenance and deterministic maintenance policy, in many production systems, periodic inspection, periodic repair and preventive maintenance are usually conducted in the shops. These maintenance works are usually scheduled periodically in the production systems, we then speak about "periodic maintenance". With proper planning of periodic maintenance, the shop can concentrate on production efficiency and safety, resulting in increasing productivity and achieving high safety awareness as stated in [START_REF] Arts | Some aspects of measuring maintenance performance in the process industry[END_REF] and [START_REF] Liao | Single machine scheduling with periodic maintenance and nonresumable jobs[END_REF].

To the best of our knowledge, [START_REF] Liao | Single machine scheduling with periodic maintenance and nonresumable jobs[END_REF] are the first group of researchers that take periodic maintenance into consideration in the scheduling community.

Furthermore, we point out that the objective in this thesis is not to find the best time (period to perform a preventive maintenance as defined by policy II and III) but to find the best schedule of jobs taking into consideration the preventive maintenance policy. In other words, PM is considered as an unavailability constraint for the machines or equipment during the scheduling horizon that we should take into consideration. This matches with Policy I. Indeed, throughout this dissertation, we consider both the deterministic maintenance and flexible maintenance with periodic aspect in Chapters 3 and 4 respectively Chapter 5.

Sequence dependent setup-times constraint

Setup-times definition:

A setup is a set of operations that should be performed before or after processing a job on a machine to prepare it for processing the next job. It is also defined as a non-productive periods needed at machines in order to make cleanings, configurations or operations for the production between jobs. The interest in scheduling problems where setup times are explicitly considered began in the mid-1960s. The importance of considering the setup times in production scheduling can not be underestimated as pointed out by [START_REF] Allahverdi | The third comprehensive survey on scheduling problems with setup times/costs[END_REF]. Hence, ignoring setup times may be valid for some applications, but it adversely affects the solution quality of some other applications of scheduling. This is because setup process is not a value added factor, and hence, setup times need to be explicitly considered while scheduling decisions are made in order to increase productivity, eliminate waste, and improve resource utilization.

There exists three major variants of setup-times in the related literature:

• Independent setup-times which means that the setup time doesn't depend on any sequence and appears the same between all the scheduled jobs.

• Sequence dependent setup-times which means that the setup time depends on the job that is processed immediately before. This is frequently observed in real industry settings as in the textile industry, manufacturing printed circuit boards and chemical industry [START_REF] Chen | Scheduling with dependent setups and maintenance in a textile company[END_REF][START_REF] Gravel | Scheduling jobs in an alcan aluminium foundry using a genetic algorithm[END_REF].

• Job families setup times: According to [START_REF] Pinedo | Scheduling: theory, algorithms, and systems[END_REF], the jobs belong in this case to F different job families. Jobs from the same family may have different processing times, but they can be processed on a machine one after another without requiring any setup in between. However, if the machine switches over from one family to another then a setup is required.

However, in this dissertation we consider the case of scheduling with sequence dependent setup-times. Due to the great savings obtained, last decades have shown an increasingly interest in studying sequencing problems where the setup-times are explicitly incorporated in scheduling decisions. A recent review is provided in [START_REF] Allahverdi | The third comprehensive survey on scheduling problems with setup times/costs[END_REF].

Many works have assumed that there are no setup-times or they are independent of job sequence, however, this situation may not always be true in practice. In various real world industrial/service environments such as chemical, printing, pharmaceutical, and automobile manufacturing, the setup operations, such as cleaning up or changing tools, are not only often required between jobs but they are also strongly dependent on the immediately preceding process on the same machine [START_REF] Lee | Scheduling jobs on parallel machines with sequence-dependent setup times[END_REF]. The motivation behind this assumption is to obtain good savings when setup times are explicitly included in scheduling decisions.

Case study

• [START_REF] Baykasoglu | Dynamic scheduling of parallel heat treatment furnaces: A case study at a manufacturing system[END_REF] reported a case study in Heat Treatment Stage (HTS). Indeed, consecutive jobs, processed in HTS, might require different temperature levels. For this reason, a heat treatment furnace needs to be heated up or cooled down between these consecutive jobs. However, heating up and cooling down operations of the furnaces differ considerably. Heating the furnaces up from 400°C to 600°C is not identical to cooling them down from 600°C to 400°C. Thus, assuming that i = j, elapsed time while preparing a furnace from job i to job j is not equal to the elapsed time between jobs j and i. In the present problem, those elapsed times correspond to sequence-dependent setup times and setup only occurs while heating up or cooling down period of a heat treatment furnace, which means that a setup can be initialized whether the forthcoming job is released or not. This reveals an interesting practical situation.

• Chen (2009) reported a real-life scheduling problem in a textile company. The company specializes in the manufacturing textiles such as polypropylene, synthetic silk, and chemical chip. As the machine overload in 24 hours production, periodic maintenance is usually arranged in a planned schedule to avoid any sudden machine breakdowns which occur frequently in the shop. The production system of this company consists of an expensive main machine and some peripheral equipment, such as extractor, distribution pipe, spinning pump, quenching pipe, oil disk, idle roller, capstan roller, gear reel. The processing time of a job can be determined completely by the main machine. Thereby the problem can be treated as a single-machine scheduling problem. The considered workshop is running three shifts a day, 8 hours a shift, and 7 days a week for a fully utilization of the main machine and equipment already mentioned above. Each maintenance period is scheduled after a 20-day which is equivalent to 480 hours interval. The amount of time to perform one maintenance requires 24 h. Once maintenance is performed, the job being processed must be stopped. After the maintenance is completed, the unfinished job is resumed according to the original schedule. When switching between two radically different products, occurs more cleaning is required. Thus, a sequence-dependent setup times is considered. While only minor cleaning is involved when the switch is between two similar products, such as pure white and mixture white textile.

Weighted sum of completion times (WCT) criterion

Makespan of a schedule measures the time by which all the jobs in the schedule finish. However, when jobs are independent and competing for the same resource, a more natural measure of performance is the weighted sum of completion times of jobs (WCT). According to [START_REF] Pinedo | Scheduling: theory, algorithms, and systems[END_REF], the sum of completion times is in the literature often referred to as the flow time. The total weighted completion time is then referred to as the weighted flow time.

The pioneering work that considers this objective function was [START_REF] Smith | Various optimizers for single stage production[END_REF].

The weighted sum of completion times or average weighted completion time criterion is certainly less studied than the makespan. Nonetheless, many works dealing with this criterion are considered in the related literature. In [START_REF] Leung | Approximation algorithms for minimizing average weighted completion time[END_REF], the authors made a survey about the approximation algorithms (see Section 2.5.2) used to solve scheduling problems with aims of minimizing average (weighted) completion times.

WCT criterion remains interesting on the theoretical and practical level. Indeed, the weights can quantify the holding cost per unit of time of the products to transform. Thus, this criterion can represent the global holding cost. It also could represent the amount of value already added to a task or an order.

Moreover, in 1996 [START_REF] Chekuri | Profile-driven instruction level parallel scheduling with application to super blocks[END_REF] studied an application to instruction scheduling in VLIW processors. In this application the weight of a job (or instruction) is derived from profile information and indicates the likelihood of the program block terminating at that job. This is a compelling application for scheduling jobs with precedence constraints on a complex machine environment to minimize weighted sum of completion times.

In addition to applications, minimizing the weighted sum of completion times presents interesting theoretical problems and has spurred work on polyhedral formulations [START_REF] Schulz | Scheduling to minimize total weighted completion time: Performance guarantees of lpbased heuristics and lower bounds[END_REF] as well as combinatorial methods.

Jobs rejection cost (JR) criterion

Machine scheduling problems have been extensively studied in the literature under the assumption that all jobs have to be processed. However, in many practical cases, the manufacturer may wish to reject the processing of some jobs in the shop. The decision to reject jobs may be due to a low machine capacity or high scheduling costs. In such a case, a rejected job may be either outsourced or not get served at all, resulting in a rejection penalty either due to outsourcing cost or loss of income and reputation. In such a framework, the scheduler must first decide which jobs will be rejected and which will be accepted. Then the set of accepted jobs has to be efficiently scheduled among the machines as to minimize a given predefined scheduling criterion. An instance for a single machine scheduling problem with jobs rejection is defined by the number of jobs to be processed, the jobs processing times and rejection penalties. A solution is defined by a partition of the jobs into a set of accepted, and a set of rejected jobs, by an allocation of the jobs to the machines of the shop, and by a job sequence of the set of allocated jobs on each machine. Hence, the quality of a solution is measured by two criteria: The First is the total rejection cost and the second is generally a scheduling criterion depending on the jobs completion times. Since scheduling with rejection is essentially a problem with two criteria, in this dissertation, the WCT criterion is also optimized as a second criterion.

Main contributions and thesis outline

This thesis is organized as follows:

Chapter 2 is a literature review based on the scientific state of the art in the related field of research, mainly all that has been applied to define the addressed issues and the resolution methods used to process them.

Chapters 3, 4 and 5 detail the main contributions relating to this thesis. More precisely, Chapter 3 proposes solutions methods based on greedy constructive heuristics, mathematical models, and a metaheuristic to solve the single machine scheduling problem with periodic maintenance in order to minimize the weighted sum of completion times criterion. Also, three properties for this problem which generalize already existing works are presented and applied to construct the proposed heuristics.

To evaluate the performances of the proposed methods, several lower bounds are provided.

In Chapter 4, we propose two mathematical models, two heuristics based on a multistart strategy to solve the single machine scheduling problem with sequence dependent setup time. As already done in Chapter 3, the considered criterion to minimize is the weighted sum of completion times.

In Chapter 5 we solved a two parallel machine scheduling problem with periodic maintenance, jobs rejection and weighted sum of completion times using a greedy heuristic and two different methods based on a Tabu Search algorithm. A mathematical model is also proposed for solving small-sized instances.

Finally Chapter 6 is a discussion over the study and it also presents some of our prospects.

Chapter 2

State of the art

In the presented work, we favored the use of an exact method whenever the time required to find an optimal solution was considered as "acceptable" by the decision-maker. However, to deal with large-sized instances of the target problems, our works led us to use heuristics and/or metaheuristics methods to get one or more high quality solution(s) in reasonable time. The objective of this chapter is to introduce definitions and notations of scheduling theory and maintenance, to define combinatorial optimization tool and to present literature review about works dealing with joint optimization of scheduling and maintenance problems.

Shop scheduling

First researches on scheduling appeared in the 50's. From then on, problems became more and more complex because of the numerous practical constraints to take into account. . . Indeed, there are many variants of scheduling problems amongst the huge literature of this field. As mentioned in [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF]; [START_REF] Carlier | Problèmes d'ordonnancement, modélisation, complexité, algorithmes[END_REF]; [START_REF] Gotha | Les problèmes d'ordonnancement[END_REF]; [START_REF] Shmoys | Improved approximation algorithms for shop scheduling problems[END_REF]; [START_REF] Chrétienne | Scheduling theory and its applications[END_REF]; [START_REF] Pinedo | Scheduling -Theory, Algorithms, and Systems[END_REF]; [START_REF] Esquirol | L'ordonnancement[END_REF]; [START_REF] Pinedo | Operations Scheduling with applications in manufacturing and services[END_REF]; [START_REF] Allahverdi | A review of scheduling research involving setup considerations[END_REF], [START_REF] Billaut | Multicriteria scheduling -Theory, Models and Algorithms[END_REF]; [START_REF] Billaut | Flexibilité et robustesse en ordonnancement[END_REF]; [START_REF] Baptiste | Gestion de production et ressources humaines. Méthodes de planification dans les systèmes productifs[END_REF]; [START_REF] Artiba | A multi-model approach for production planning and scheduling in an industrial environment[END_REF]; [START_REF] Jarboui | Métaheuristiques pour l'ordonnancement monocritère des ateliers de production[END_REF], scheduling problems are present in all sectors of the economy: industry, hospitals, administrations, computer science. . . Scheduling is a crucial issue because the quality of generated schedules directly affects the production (in terms of efficiency, competitiveness, flexibility, deadlines fulfillment, customer satisfaction. . .).

Definitions

By definition, scheduling is "to forecast the processing of a work by assigning resources to tasks and fixing their start times" [START_REF] Billaut | Multicriteria scheduling -Theory, Models and Algorithms[END_REF][START_REF] Carlier | Problèmes d'ordonnancement, modélisation, complexité, algorithmes[END_REF]. A schedule is a solution to a scheduling problems. It consists of a set of start dates, and assigned resources (i.e. machines, operators, etc.) to each operation. Among the family of scheduling problems, our works focused on shop scheduling. A simplified definition of shop scheduling problems, largely inspired by [START_REF] Billaut | Flexibilité et robustesse en ordonnancement[END_REF], is the following: a shop scheduling problem corresponds to a model consisting of a set I of m different machines on which to run a set J of n jobs. Each job J j is described by n j tasks (named operations). The j th operation of job J j that has to be performed on machine M i is denoted by O ij . The operation of a same job cannot be performed simultaneously. We distinguish two types of task:

• Resumable job: a job is resumable if it cannot be finished before the unavailable period of a machine and can continue after the machine is available again.

• Non-resumable job: a job is nonresumable if it has to restart, rather than continue after the machine becomes available.

The following notations are associated with each job j:

Processing time (p ij): p ij is the processing time of job j on machine i. The index i is omitted if the processing time of job j does not depend on the machine or if job j is only to be processed on one given machine. Thus, the processing time will be denoted by p j instead of p ij .

Release date (r j): The release date r j of job j is the time the job arrives at the system, i.e., the earliest time at which job j can start its processing.

Due date (d j): The due date d j of job j represents the committed shipping or completion date (i.e., the date the job is promised to the customer). Completion of a job after its due date is allowed, but then a penalty is incurred.

Deadline (dj): When completion of a job j after its due date is forbidden, it is referred to as a deadline and denoted by dj .

Weight (w j): The weight w j of job j is basically a priority factor, denoting the importance of job j relatively to the other jobs in the system.

Rejection cost (u j): The cost u j is associated to each job j and represents the expense related to the decision of rejecting(i.e not scheduling) that job and not schedule it.

Here we give some standard notations used throughout this thesis:

• PM: Refers to a preventive maintenance action,

• T : Period between two consecutive PM,

• T i : Each machine M i must undergo a PM at intervals that cannot exceed T i time units,

• δ i : Maintenance duration in machine i. When only one machine is considered, δ i becomes δ,

• Batch: Refers to the set of jobs that can be scheduled in each period of time T ,

• Block: Refers to the set of jobs actually scheduled between two consecutive preventive maintenances.

In this thesis, the difference between the blocks and the batches is that a batch has always the same capacity T while a block does not necessarily have the same size.

• S: current solution of a predefined problem (P),

• S * : Best solution found by an algorithm for (P),

• S : Neighbor solution of S.

Shop scheduling description

Scheduling problems are described by a triplet α|β|γ. The field α describes the machine environment and contains just one entry. The field β provides details of processing characteristics and constraints and may contain no entry at all, a single entry, or multiple entries. The γ field describes the objective to be minimized and often contains a single entry. This notation is proposed in [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF] and extended by [START_REF] Billaut | Multicriteria scheduling -Theory, Models and Algorithms[END_REF].

Machine environment

Single machine(1): The case of a single machine is the simplest of all possible machine environments and is a special case of all other more complicated machine environments.

Parallel machines(Pm):

There are m identical machines in parallel. Job j requires a single operation and may be processed on any one of the m machines or on any one that belongs to a given subset. If job j cannot be processed on just any machine, but only on any one belonging to a specific subset M j , then the entry M j appears in the β field. There are three field kinds of parallel machines:

• Identical parallel machines (P): the operating times of the tasks do not depend on machines, i.e. the speed of execution of a task is the same on all machines.

• Uniform parallel machines (Q) : each machine has a clean and constant execution speed.

• Non-uniform parallel machines (R): the execution speed is different for each machine and for each task.

Dedicated machines:

In this class, each job consists of several operations o ij and the machines are specialized in carrying out certain operations. Three types of workshops are considered :

• Flow shop (F): in this workshop the sequencing tasks path is unique, the tasks to be realized go through all the machines in the same order. In the literature, particular case is often studied, for which the sequence of tasks going throw every machine is the same for all machines.

• Job shop (J): this workshop is considered as a generalization of the flow shop. Indeed, the operating range is different from one operation to another. In other words, the order of operations on machines can be different from one task to another.

• Open shop (O): this workshop is the least studied shop in the literature and the least used in the enterprises. The order of execution of the operations is not fixed.

Constraint characteristics

The set of constraints and characteristics can be various, so we will introduce just the ones used in this thesis: pmtn: This means that the job can be preempted, so it can be started on one machine, stopped, and resumed in a later time, also on a different machine. When preemptions are allowed pmtn is included in the β field, when pmtn is not included, preemptions are not allowed. r j : This indicates the presence of some release dates which means that for r j = x ≥ 0 the job j can be started only after x units of time from the origin of time.

St sd : According to [START_REF] Pinedo | Scheduling: theory, algorithms, and systems[END_REF], the st jk represents the sequence dependent setup time that is incurred between the processing of jobs j and k. s 0k denotes the setup time for job k if job k is first in the sequence and st j0 the clean-up time after job j if job j is last in the sequence (of course, st 0k and st j0 may be zero). If the setup time between jobs j and k depends on the machine, then the subscript i is included, i.e., s ijk . If no st jk appears in the β field, all setup times are assumed to be 0 or sequence independent, in which case they are simply included in the processing times.

PM: This notation refers to the preventive maintenance policy.

In problems with unavailability periods (due to preventive maintenance or not), that latter are considered as constraints related to the environment of execution. This notation has been presented in detail in the surveys on the problems with known unavailability by [START_REF] Schmidt | Scheduling with limited machine availability[END_REF] and [START_REF] Ma | A survey of scheduling with deterministic machine availability constraints[END_REF]. The followed notations are then introduced. h l,k : indicates that the processed scheduling problem has unknown number of unavailability periods on each machine k h 1 : Indicates that in one single machine environment, only one unavailability period is considered. h k : Indicates that k unavailability periods are considered.

Any other entry that may appear in the β field is self explanatory. For example, p j = p implies that all processing times are equal.

Optimization criterion

Examples of possible objective functions to be minimized are:

Makespan (Cmax): The completion time of job j is denoted by c j . The, the makespan is defined as max(c 1 , ..., c n) which is equivalent to the completion time of the last job in the schedule. A minimum makespan usually implies a good utilization of the machine(s).

Maximum Lateness (Lmax): The maximum lateness, Lmax, is defined as max(L 1 , ..., L n), with L j is the lateness of a job j computed as follows:

L j = c j -d j (2.1)
The maximum lateness measures the worst violation of the due dates.

Total weighted completion time (w j c j): This criterion is already introduced in Chapter 1.

Total weighted tardiness (n j=1 w j T j): This criterion is a more general cost function than the total weighted completion time. We define by T j the tardiness of a job which is computed as follows:

T j = max(c j -d j , 0) = max(L j , 0) (2.2)
Total rejection cost (n j=1 u j): This criterion is already defined in Chapter 1. Other criteria are defined in [START_REF] Pinedo | Scheduling: theory, algorithms, and systems[END_REF]. In this thesis, we focus on two types of shop scheduling problems: the single machine and the parallel machine environments.

Hence, the addressed scheduling problems in Chapters 3, 4 and 5 are denoted respectively as follows: 1/PM/ n i=1 w j c j , 1/PM, St sd / n i=1 w j c j and P2/PM, dj = d/ n i=1 u j , n i=1 w j c j .

Scheduling representation

Each schedule can be represented by a Gantt chart, which has been developed by H.-L. Gantt in 1910. The Gantt chart is also used in companies for project planning. In the case of production management, this diagram consists of several horizontal lines (or floors) that represent the machines. Tasks performed on a given machine are represented by rectangles of length proportional to their duration. Therefore, the Gantt chart gives an overview of the tasks performed on all machines over time. Figure 2.1 shows a Gantt chart for a three parallel machine shop. The processing times of each job are summarized in Table 2.1. jobs J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8 J 9 p j 4 2.5 1.5 3 3 3 1 1 2 Production scheduling and preventive maintenance planning are the most common and significant problems faced by the manufacturing industry. Scheduling the maintenance in manufacturing systems has gradually become a common practice in many companies. Indeed, according to practical experience, it sometimes can be found that some of the machines are awaiting maintenance while there are jobs waiting to be processed by these machines. This is due to the lack of coordination between maintenance planning and production scheduling. Therefore, there is a need to develop efficient scheduling methods to improve the situation by deriving a satisfactory schedule that considers both jobs and maintenance activities simultaneously. With proper planning of the maintenance activities, the shop can improve production efficiency and safety, resulting in increased productivity and heightened safety awareness [START_REF] Arts | Some aspects of measuring maintenance performance in the process industry[END_REF]. The scheduling of maintenance activities can be determined either before the scheduling of jobs, or jointly with the scheduling of jobs. In the first case, the maintenance periods are known and fixed in advance. Thus the problem of scheduling jobs with this kind of maintenance reduces to the problem often referred in the literature as scheduling with machine availability constraints.

Whereas scheduling tends to efficiently assign resources to jobs and generally suppose that all resources are always available when no jobs are processed.

The two activities are in conflict because, as we know, maintenance operations consume production time while delaying maintenance operations can increase the probability of machine failure.

Maintenance operations need to access to resource so as to maximize their efficiency while trying to reduce failure risks. Indeed, maintenance problems are crucial aspect of nowadays industrial problems. However, the quest of the efficient periodicity of maintenance for all components of a system is far from an easy task to accomplish when considering all the antagonistic criteria of the maintenance and production views of a production system. It is expected that production will be more efficient and revenues will increase if preventive maintenance is well managed.

In this thesis, we study the coupling between production and maintenance [START_REF] Roux | Optimization of preventive maintenance through a combined maintenance-production simulation model[END_REF]; [START_REF] Roux | Optimization of preventive maintenance through a combined maintenance-production simulation model[END_REF]; [START_REF] Benmansour | Simulation-based approach to joint production and preventive maintenance scheduling on a failure-prone machine[END_REF]; [START_REF] Benmansour | Scheduling of production and maintenance activities under reliability constraint[END_REF]; [START_REF] Benmansour | Minimizing the weighted sum of maximum earliness and maximum tardiness costs on a single machine with periodic preventive maintenance[END_REF]; [START_REF] Rivera Gómez | Joint production and major maintenance planning policy of a manufacturing system with deteriorating quality[END_REF]; [START_REF] Pozzetti | Decision support system for offers of fleet availability services[END_REF]. Thus, the objective is to simultaneously ensure a low frequency of failures by an efficient periodic preventive maintenance and minimize the unavailability of the system due to preventive maintenance. This implies a minimum impact on the production through an adequate maintenance strategy that takes production tasks into account.

A maintenance strategy is defined as a decision rule which establishes the sequel of maintenance actions. Each maintenance action allows one to maintain or restore the system in a specified state by using the appropriate resources. Cost and duration are incurred to execute each maintenance action. Many papers and books dealing with preventive maintenance and replacement strategies have been published previously [START_REF] Daya | Handbook of Maintenance Management and Engineering[END_REF]; [START_REF] Boschian | Contribution of simulation to the optimization of maintenance strategies for a randomly failing production system[END_REF]; [START_REF] Wang | A survey of maintenance policies of deteriorating systems[END_REF]. In this thesis, we consider one basic replacement policy (Bloc Replacement Policy BRP) and assume that the maintenance costs are negligible.

As in [START_REF] Barlow | Theory Of Modeling and Simulation[END_REF], we consider in Chapters 3 and 4 the BRP where the replacements are undertaken at exactly KT with K = 1, 2, . . . , T a fixed time, or at failures. while in Chapter 5, we consider a flexible preventive maintenance where the replacement takes place before each T i time of use of the machine M i . In both cases, items used in each replacement are supposed to be as good as new ones.

However, scheduling problems are often classified among the most difficult combinatorial problems. Thereby, using the exact methods to solve them is practically unusable and are to be banished in aim of finding optimal solutions in a reasonable time for large sized instances, especially in a just in time environment. Consequently, it becomes necessary to use approximate methods to solve them.

Scheduling problems complexity

The theory of complexity classifies problems according to their difficulties. In general, the computational time of an algorithm obviously depends on the machine on which it is running. However, if we count the number of steps in this algorithm, it is possible to ignore such environmental constraints. Thus, the time complexity function T (n) of an algorithm expresses the maximum time, in the sense of the number of steps, necessary to solve an instance of size n of a predefined problem.

However, the complexity of an algorithm can refer to the memory space that is needed when running the algorithm. Hence, in this dissertation we will only refers to the time complexity and then use the term of complexity instead of time complexity.

Two types of problems are often studied. Decision problems and search problems. Decision problems are those for which we try to answer a question by yes or no, and when we treat a research problems then, the goal is to find a solution to a given problem.

Optimization problems form a subclass of search problems. In this case, the solution must optimize an objective function.

In scheduling, we encounter both problems of decisions and optimization. Decision problems are mostly used to solve the optimization problems associated with it, or to help determining its complexity class. In general, scheduling problems are classified as difficult combinatorial problems which means that there are no universal optimal algorithms to solve all cases.

Depending on its complexity, a problem can belong to one of the following four classes [START_REF] Garey | Computers and Intractability; A Guide to the theory of NP-Completeness[END_REF]:

• P problems class: Called polynomials, P is the complexity class containing decision problems which can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. P is often taken to be the class of computational problems which are efficiently solvable or tractable. Problems that are solvable in theory, but cannot be solved in practice, are called intractable.

• NP problems class: NP (Non deterministic Polynomial time) is the set of decision problems solvable in polynomial time on a non deterministic Turing machine (for more details please refers to [START_REF] Bovet | Introduction to the Theory of Complexity[END_REF]; [START_REF] Vitanyi | An introduction to Kolmogorov complexity and its applications[END_REF]). Called NP-hard problems. The solutions obtained in a reasonable time can never be qualified as optimal. All the problems in this class have the property that their solutions can be checked effectively.

• NP -Complete problems class: N P -complete problems class is a sub-class of the NP problems. In complexity theory, the N P -complete problems are the most difficult problems in NP in the sense that they are the ones most likely not to be in P.

Moreover, NP-Complete class represents the set of all problems X in NP for which it is possible to reduce (for more details see [START_REF] Vitanyi | An introduction to Kolmogorov complexity and its applications[END_REF]) any other NP problem Y to X in polynomial time.

• NPhard problems class: These are the problems that are at least as hard as the NP-complete problems but are not necessarily in NP and do not have to be decision problems.

More precisely, a problem X is N P -hard, if there is an N P -complete problem Y, such that Y is reducible to X in polynomial time. But since any N P -complete problem can be reduced to any other N P -complete problem in polynomial time, all N P -complete problems can be reduced to any N P -hard problem in polynomial time. Then, if there is a solution to one N P -hard problem in polynomial time, there is a solution to all NP problems in polynomial time.

Combinatorial optimization

Nowadays, many real-world problems are complex and difficult to solve. We can enumerate problems in production systems, constraints management and routing problems in transport systems, image processing and air quality management in the environmental sector. When it becomes possible to model all these problems using mathematics, we give them the denomination of optimization problems. The goal is usually to optimize one or more criteria taking into account several constraints.

When enumerating all feasible solutions of research space of a given problem grows rapidly and becomes exponential, we speak then about combinatorial explosion of the search space. It becomes impossible to find optimal solutions to the considered problem in a reasonable time. More precisely, when the decision variables of the problem are discrete, these kind of problems are called combinatorial optimization [START_REF] Papadimitriou | Combinatorial optimization: algorithms and complexity[END_REF] problems. These latter are therefore divided into two categories: those solved by efficient algorithms (with polynomial complexity) which allow to find optimal solutions in a reasonable time, and those whose resolution can take an exponential time for the large size instances.

Hence, the main objectives of many researchers is to formulate a combinatorial optimization problem and try to solve it. For that, the procedure consists by first defining the parameters, the variables, the research space and the objectives to be optimized. Then, model them and at the end choose a method of resolution. at this level, a parameter comes into account: The complexity of the problem. This latter allows to decide between using exact methods or an approximate method. Before presenting this range of methods, let us briefly introduce combinatorial optimization.

Mathematical definition of a combinatorial optimization problem (COP)

The mathematical definition of a COP is generally formulated as follows: min S∈E f (s) with f defines a mathematical function with real values. It is the objective function that evaluates the solutions of E pointed out by S. Without loss of generality, we consider here a problem of minimization. That is, a maximization problem amounts to minimizing -f .

The deal is the minimize f of all the feasible solutions belonging to the search space E also called set of feasible solutions. Then, solving a COP amounts to find an optimal solution S * ∈ E for which the objective function f will return a minimal value, that is to say f (S *) ≤ f (S), ∀S ∈ E. Then, S * is called a global optimum of COP.

Before going farther in the explanation, let us introduce three fundamental notions:

Neighborhood operator: Let E be the feasible solution set. An operator or a move ∆ is defined as transformation in a solution S. Mathematically, ∆ is a function of E in itself (∆ ∈ E 2) which allows to go from a solution S to a neighbor solution S .

Neighborhood structure: The set of transformations that can be applied to the current solution S define a set of neighboring solutions in the search space that we denote by N (S). Formally, N (S) is a subset of the search space E defined by: N (S) = { solutions obtained by applying an operator (move) to S}. The size of a neighborhood corresponds to the number of solutions it contains, |N (S)|.

Local optimum: It is a solution for which a neighborhood does not contain any candidate solution for which the objective function value is better. In a context of minimization, a solution

S * ∈ E is a local optimum if ∀S ∈ N (S *), f (S *) ≤ f (S).
The solutions S can be a mathematical object of diverse nature, often S represents a vector with n dimensions when f designates a function in R n . The set of feasible solutions E is generally determined by constraints often expressed as inequalities. [START_REF] Veerapen | Contrôle autonome d'opérateurs pour la recherche locale[END_REF] illustrates an optimization problem to make the difference between local and global optima.

Note that when faced with a COP, we must:

• Develop a mathematical model: Expression of constraints to respect and objectives to optimize,

• Develop a resolution algorithm,

• Evaluate the quality of the solutions found, with benchmarks and / or performance indicators like lower bounds. A COP is characterized as cited above by the number of objectives to be optimized. We will therefore talk about mono-objective optimization problems and multi-objective optimization problems.

Multiobjective Optimization (MO)

Multiobjective optimization is a very important research area because of the multiobjective nature of the most real problems. First works on multiobjective problems area were carried out in the 19th century in economics studies by Edgeworth and generalized later by Pareto. A survey for multicriteria scheduling problems is done by T'kindt and [START_REF] Billaut | Multicriteria scheduling problems: a survey[END_REF].

Contrary to mono-objective optimization, which are treated in two problems described in Chapters 3 and 4, the goal of solving a multiobjective problem is to simultaneously optimize several objective functions, composed of several decision variables, to satisfy a specific problem. In most cases, these objectives are in conflict: The improvement of one objective causes the deterioration of another. Consequently, the optimization final result is no longer given by a single solution but rather by a set of solutions. We speak then of a multiplicity of solutions that represents a compromise between the different objectives. In chapter 5, we have studied a two-criteria scheduling problem (bi-objectives). Lexicographic optimization is used for the resolution.

Lexicographic Optimization (LO)

Lexicographic optimization approach establishes a hierarchical order among all the optimization objectives instead of giving them a specific weight. With this approach, the decision maker have to formulate preferences in order to establish a predefined ranking between the competing objectives (formally,

f 1 > f 2 > ...f k)
Consequently, two methods are considered. The first one consists in using a multi-stage sorting algorithm, comparing the solutions on the basis of f 1 , then on the basis of f 2 in case of identical values of f 1 then on the basis of f 3 in case of identical values of f 1 and f 2 , and so on. . . The second one is based on a specific weighted sum (see [START_REF] Duvivier | Contributions au couplage de l'optimisation et de la simulation[END_REF] for additional details) which computes

f = w 1 * f 1 + w 2 * f 2 + • • • + w k * f k ,
so that sorting solutions on the basis of f will result in the same result provided by a multi-stage sorting algorithm.

However, the goal of this subsubsection is not to present a state of the art of lexicographic methods, but only to give sufficient information for an application in the context of this thesis. Additional answers concerning "lexicographic optimization" are available in the book of [START_REF] Collette | Optimisation multiobjectif[END_REF]. This strategy is adapted to solve the tackled problem in Chapter 5.

Combinatorial optimization methods

It exists a large number of methods to solve optimization problems. Figure 2.3 inspired from the work of [START_REF] Talbi | Metaheuristics: From Design to Implementation[END_REF] and [START_REF] Reeves | Modern Heuristic Techniques for Combinatorial Problems[END_REF] suggests a possible hierarchy of these methods.

Following Figure 2.3, optimization methods could be separated into two main families : exact methods and approximate methods. The methods of the first family ensure to find an optimal solution for the considered instance whereas the methods of the second family do not give any guarantee on the optimality of the solution found.

Combinatorial optimization methods

Approximate

Exact methods

There are several families of exact methods: In this thesis, we briefly introduce dynamic programming, branch and bound and the linear programming. These methods take an exponential computational time to reach optimal solutions, this explains why they are used only for small sized instances of target problems.

Mathematical Programming: Linear programming (LP)

It is the most basic mathematical program denoted by LP and refers to an optimization problem in which the objective and the constraints are linear in the decision variables. An LP can be formulated as follows:

min f = n j=1 c j x j (2.3) subject to a 11 x 1 + a 12 x 2 + ... + a 1n x n ≤ b 1 (2.4) a 11 x 1 + a 12 x 2 + ... + a 1n x n ≤ b 2 (2.5) a 21 x 1 + a 22 x 2 + ... + a 2n x n ≤ b 3 (2.6) (2.7) a m1 x 1 + a m2 x 2 + ... + a mn x n ≤ b m (2.8) x j ≥ 0 ∀j = 1, ..., n (2.9)
The objective is the minimization of costs. The c 1 ,...,c n vector usually refers to the cost vector. The notations x 1 ,...,x n refers to decision variables that should be determined in such a way that the objective function is minimized. The column vector a 1j ,...,a mj is referred to as an activity vector j. The value of the variable x j refers to the level at which this activity j is utilized. The b 1 , ..., b m is usually referred to as the resources vector. Hence, n refers to the number of decision variables and m to the number of constraints, then n × m denotes the size of the defined problem LP.

However, in scheduling theory n usually refers to the number of jobs; and m denotes the number of resources (machines). Obviously, in linear programming this has nothing to do with the m refers to the number of machines in scheduling theory.

There are several algorithms or classes of algorithms for dealing with an LP. The most important ones is the simplex methods [START_REF] Sierksma | Linear and integer optimization: theory and practice[END_REF]. Although simplex methods work very well in practice, until today, there is no known version that solves the LP problem in polynomial time.

A special case of the linear program is the so-called Integer Program (IP). IP is basically a linear program with the additional requirement that the variables x 1 ,...,x n are integers.

When only a subset of the variables are required to be integer and the remaining ones are allowed to be real, the problem is referred to as a Mixed Integer Linear Program denoted by MILP. Contrast to the LP, an efficient (polynomial time) algorithm for the IP or MILP does not exist.

Dynamic programming method (DP)

Dynamic programming method was introduced by [START_REF] Bellman | The theory of dynamic programming[END_REF], [START_REF] Bellman | Dynamic programming[END_REF]. It is a method for efficiently solving a broad range of optimization problems which exhibits the characteristics of overlapping subproblems and optimal sub-structures. In one hand, overlapping sub-problems means that the problem can be broken down into sub-problems which are reused multiple times. More precisely, when solving the incumbent treated sub-problem, dynamic programming will try to use the results of more than one already treated subproblems. In the other hand, optimal sub-structures means that, if the problem was broken up into a series of sub-problems and the optimal solution for each sub-problem was found, then the resulting solution would be realized through the solution to these sub-problems. A problem that does not have this kind of structure cannot be solved with DP. More detailed informations are available in [START_REF] Cormen | Introduction to algorithms[END_REF].

Branch and Bound methods: (B & B)

This method is based on an implicit and intelligent enumeration of all feasible solutions of the domain of research. The "Separation" step consists of breaking down the set of solutions into several sub-solutions which are then decomposed according to an iterative process. This process can be visualized as an enumeration tree, the nodes of the tree correspond to the subsets and the leaves correspond to feasible solutions. To accelerate the search for optimal solutions by avoiding the unnecessary exploration of certain nodes, we use an "evaluation" procedure which allows to compute at each level of the tree, the value of each node and thus makes it possible to decide on the node to develop. For more details about this method please refer to [START_REF] Lee | Branch and bound synthesis of integrated process designs[END_REF]; [START_REF] Brusco | Branch-and-bound applications in combinatorial data analysis[END_REF]; Scholz (2011)

Approximate methods

When it becomes necessary to obtain solutions, not necessarily optimal, for large sized problems, in limited time, it becomes necessary to use the so-called approximated methods:

As illustrated in Figure 2.3, approximate methods could be divided in two sub-families: Heuristics and approximation algorithms. Approximation algorithms allow to provide a guarantee using a "ratio" which states how close to optimality is the obtained solution. On the other hand, heuristics does not guaranty any information in this regard.

Approximation algorithms

In operations research field, approximation algorithms are efficient algorithms that find approximate solutions to NP-hard optimization problems with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms mainly arise in the field of theoretical computer science as a consequence of the widely believed P = N P conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In the majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution.

However, there are also many approximation algorithms that provide an additive guarantee on the quality of the returned solution. A notable example of an approximation algorithm that provides both is the classic approximation algorithm done by [START_REF] Lenstra | Approximation algorithms for scheduling unrelated parallel machines[END_REF] for unrelated parallel machines scheduling problems.

The design and analysis of approximation algorithms crucially involves a mathematical proof certifying the quality of the returned solutions in the worst case [START_REF] Williamson | The design of approximation algorithms[END_REF]. This distinguishes them from heuristics and metaheuristic algorithms, which find reasonably good solutions on some inputs, but provide no clear indication on when they may succeed or fail.

Single machine scheduling problem with availability constraints that are solved using approximation algorithm are investigated in [START_REF] Kacem | Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval[END_REF]; [START_REF] Kacem | Fully polynomial time approximation scheme for the weighted flow-time minimization on a single machine with a fixed non-availability interval[END_REF]; [START_REF] Kacem | Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval[END_REF]; [START_REF] Breit | Improved approximation for non-preemptive single machine flow-time scheduling with an availability constraint[END_REF]; [START_REF] Sadfi | An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints[END_REF].

Heuristics

Regarding to [START_REF] Reeves | Modern Heuristic Techniques for Combinatorial Problems[END_REF], a heuristic is a method which seeks good (i.e. near-optimal) solutions at a reasonable computational cost without being able to guarantee optimality, and possibly not feasibility. Unfortunately, it may not even be possible to state how close to optimality a particular heuristic solution is.

Heuristics have been used since the beginnings of operations research to tackle difficult combinatorial problems. With the development of complexity theory in the early 1970s, it became clear that, since most of these problems were proved to be NP-hard, there was a little hope to find efficient exact solution procedures for these problems. This emphasized the role of heuristics for solving the combinatorial problems that were encountered in real life applications and that needed to be tackled, whether or not they were NP-hard.

These methods have the advantage of only covering a fraction of the search space to reach an acceptable solution. Consequently, the computational time of these methods are most of the time polynomial. This explains why they are generally used for large-sized problems.

Heuristics could be divided into metaheuristics, which are generic methods not dedicated to a particular problem and, dedicated heuristics, which concern specific methods to a given problem, as their name indicates it.

Metaheuristics

Based on [START_REF] Talbi | Metaheuristics: From Design to Implementation[END_REF] definition, metaheuristic search methods are upper level heuristic which can be defined as a general methodologies (templates) that can be used as guiding strategies in designing underlying heuristics to solve specific optimization problems.

Metaheuristics are not dedicated to a given problem, they are flexible and can be adapted to any problem. These methods are in most cases derived from mechanisms found in nature. Until today there is no exact definition of these methods. Jonson defines them as a set of generic strategies that form a set of procedures that can find good solutions quickly. [START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF] was the first to name these methods by metaheuristics.

According to [START_REF] Gendreau | Handbook of metaheuristics[END_REF], combinatorial optimization was shattered by the appearance of the work of [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] where it was shown that a new heuristic approach called Simulated Annealing (SA) could converge to an optimal solution of a combinatorial problem, but in infinite computing time. Based on an analogy with physical mechanics, SA can be interpreted as a form of controlled random walk in the space of feasible solutions. The emergence of SA indicated that it is possible to look for other ways to tackle combinatorial optimization problems and arouse the interest of the research community. In the following years, many other new approaches were proposed, mostly based on analogies with natural phenomena (like Tabu Search, Ant Colony Optimization, Particle Swarm Optimization) which with Genetic Algorithm [START_REF] Holland | Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[END_REF] gained an increasing popularity. Nowadays, these methods have become over the last 20 years the leading edge of heuristic approaches for solving combinatorial optimization problems. These methods include: Simulated Annealing (SA), Tabu Search (TS), Variable Neighborhood Search (VNS), Genetic Algorithm (GA), Memetic algorithms which combine genetic algorithms with local search methods, Ant Colony (AC) [START_REF] Dorigo | Ant colony optimization: a new meta-heuristic[END_REF], etc.

There are several classifications of metaheuristics, such as nature-inspired versus non-nature inspired, dynamic versus static objective function, One versus various neighborhood structures or memory usage versus memory-less methods. In this thesis, we investigated the single-solution versus population-based metaheuristic classification.

Single-solution based metaheuristics: They are based on a single solution, starting by constructing an initial solution either in a random way or by using a heuristic, which is iteratively improved by choosing a new solution in its neighborhood. The most popular of them are basic local searches heuristics.

Basic Local search heuristics (LS):

Local search heuristics (LS) are the basis of most metaheuristic search methods. LS is defined as an iterative search procedure that, starting from an initial feasible solution S, progressively improves it by moving to a neighbor solution that differs only slightly from the current one (in fact, the difference between the previous and the new solutions consists on applying local modifications mentioned above (definition of an operator). LS stops when all neighbors are inferior to the current solution. LS can find good solutions very quickly. However, it can be trapped in local optima in the search space that are better than all their neighbors, but not necessarily representing the best possible solution (a global optimum). In LS, the quality of the obtained solution and computing times are usually dependent on the effectiveness of the chosen transformations (operators) considered at each iteration of the heuristic. In the reminder of this thesis, let us denote by argmin S ∈N ∆ (S) f (S) the local search which returns the best solution found in the generated neighborhood of the solution S when using an operator ∆ and which depends on the objective function value of each generated neighboring solution S .

The most common search strategies used in a local search heuristic are the first improvement strategy and the best improvement strategy. The first strategy is to stops the search as soon as an improved solution SType equation here.

Search space E Neighborhood structure N(𝑆 𝑖)

N(𝑺 𝟏) N(𝑺 𝟐) N(𝑺 𝟑) N(𝑺 𝟒) N(𝑺 𝟓) N(𝑺 𝟎) 𝑺 𝟎 𝑺 𝟏 𝑺 𝟑 𝑺 𝟐 𝑺 𝟓 𝑺 𝟒 𝑺 𝟔
Moving from a solution to a better neighbour solution in a neighborhood structure N (S) is detected, it is defined to be the new existing solution, while for the second strategy, the best among all improving solutions is N (S) is set to be the new incumbent solution.

𝑆 𝑖 𝑆 𝑖+1
To improve the effectiveness of LS and escape from local optima, various techniques have been introduced over the years. These methods are presented in the next Section 2.5.2.

Descent search heuristic (DSH): One of the most popular local search algorithms is the descent search heuristic. Algorithm 1 describes the main steps of this heuristic. DSH stops once a local optima is reached. The name descent comes from the fact that implicitly a minimization problem is considered, therefore we are looking for the smallest value of the objective function. Moreover, the english term hill-climbing refers to the same method DSH but in a context of maximization. Furthermore, when repeating the call to DSH until a counter is reached by changing each time the initial solution and recording the best solution obtained, we then speak about a multiple DSH.

Variable Neighborhood Descent heuristic (VND):

A VND is a local search heuristic which tends to explore several neighborhood structures with the aim to improve a given solution. This heuristic has been successfully applied for solving different combinatorial optimization problems [START_REF] Hansen | Variable neighbourhood search: methods and applications[END_REF]; [START_REF] Hansen | Variable neighborhood decomposition search[END_REF]; [START_REF] Mjirda | Sequential variable neighborhood descent variants: an empirical study on the traveling salesman problem[END_REF].

The search strategy within VND may be either the first improvement strategy or the best improvement search strategy. A neighborhood change strategy is most of the time performed within VND in a deterministic way as described in the following paragraphs:

Sequential neighborhood change strategy: Several neighborhood structures are firstly ordered in a list N = {N 1 , N 2 , ..., N kmax } and after that examined one after another respecting the established order. As soon Algorithm 1: A basic Descent Search Heuristic Input: N a neighborhood structure, f an objective function, S initial solution Output: S * best solution found.

S * ←-S repeat S ←-argmin S ∈N ∆ (S) f (S) if f (S) < f (S *) then S * ←-S end until (f (S) ≥ f (S *);
as an improvement of the current solution in some neighborhood structures occurs, the best solution found is updated, then VND proceeds to the next (in the defined order) neighborhood structure of the new current solution. The whole process is stopped if the current solution can not be improved in any of the neighborhood structures k max or either if a stopping criterion is not reached.

Nested neighborhood change strategy: This strategy explores a large neighborhood structure obtained as a composition of several neighborhoods. This latter is defined by

N * = N 1 • N 2 •, ..., •N kmax .
Mixed neighborhood change strategy: This strategy combines ideas of sequential and nested strategies. Namely, it uses a set of Neighborhood structure: N = {N 1 , N 2 , ..., N kmax } to define a nested neighborhood and, after that, on each element in this nested neighborhood applies sequential strategy. The defined neighborhood structure is defined as follows:

N = {N 1 , N 2 , ..., N k max }.
More detailed study of the different methods and strategies used within VND is available in [START_REF] Todosijević | Contributions théoriques et pratiques pour la recherche dispersée, recherche à voisinage variable et matheuristique pour les programmes en nombres entiers mixtes[END_REF].

It should be emphasized that TS, SA and VNS metaheurisics are also defined as local searches [START_REF] Reeves | Modern Heuristic Techniques for Combinatorial Problems[END_REF].

Population-based metaheuristics: Biological phenomena have been the source of these algorithms. Population-based approaches maintain and improve multiple candidate solutions, often using population characteristics to guide the search. These methods make it possible to better understand the large areas of research because of their power when using diversification mechanism defined in the following paragraphs.

Genetic algorithms, particle swarm optimization (PSO) and Ant Colony Optimization (ACO) are the most famous population-based metaheuristics.

Some mechanisms used within metaheuristics: As an approximate method, a good metaheuristic has to cleverly conjugate two generally divergent objectives during the exploration of the search space:

Intensification mechanism: It is an algorithmic mechanism which consists on the ability to obtain increasing quality solutions by exploring deeply the portions of the search space that seem promising in order to make sure that the best solutions in these areas are indeed found.

Diversification mechanism: It is an algorithmic mechanism which allow to explore efficiently the research space by forcing the search into previously unexplored areas.

One of the main problems of all methods based on local search approaches, is that they tend to spend most of their time in a restricted area of the search space. In fact, the consequence is that these methods may fail to explore the most interesting parts of the search space and thus end up with solutions that are still pretty far from the optimal ones. Hence, diversification mechanism tries exactly to alleviate this problem.

Dedicated heuristics

Dedicated heuristics, constructive heuristics also called greedy algorithms are specific methods that are closely related to a given problem but stay irrelevant for other problems, this because there are usually built from information collected from the properties relative to optimal solutions of the studied problem. They are empirical methods that usually give good solutions without knowing if they are optimal solutions. They are based on simplified rules to optimize one or more criteria. The general principle of this category of methods lies in the framework of the scheduling problems and integrates decision strategies to try to build a solution close to optimal while seeking to have a reasonable computing time. Some of these rules are optimal for some scheduling problem. Among these strategies, we distinguish:

• The SPT rule: In the Shortest processing time rule (SPT), jobs are sequenced in order of the processing time required in the workshop. The job requiring the least processing time is scheduled first. The SPT rule is optimal for the 1// j c j and 1/h 1 , pmtn/ j c j .

• MSPT rule: This rule tries to optimize the solution returned by SPT by exchanging one job scheduled before the maintenance with another job scheduled after the period of maintenance in order to minimize the objective function.

• WSPT rule: This heuristic schedules jobs in increasing order according to the ratio p j /w j . It was introduced by [START_REF] Smith | Various optimizers for single stage production[END_REF]. Smith also proved that the WSPT rule solves optimally the scheduling problem 1// j w j c j .

• MWSPT rule: This rule tries to optimize the solution returned by WSPT by the same way used in MSPT.

• LPT rule: Longest Processing Time (LPT): LPT is a well-known dispatching rule which allows to schedule jobs according to an order of their decreasing processing times.

• EDD rule: Earliest Due Date is a well-known rule sometimes called as Jackson's rule due to R. Jackson who studied it in 1954. It processes jobs in non-decreasing order of their due dates d j . EDD is optimal for 1//L max , 1//T max and 1/r j , pmtn/T max .

Multistart methods

Multistarts methods are another aspect of heuristic approach that can be defined as strategies designed to provide diversity to the search and overcome local optima. A multistart method is one that executes multiple times from different initial points in the solution space. Once a new solution has been generated, a variety of options can be used to improve it, ranging from a simple greedy algorithm to a complex metaheuristic.

The earliest works in multistart methods were developed for non linear unconstrained optimization problems and consisted of a simply evaluation of the objective function at randomly generated points. In metaheuristic optimization, the multistart algorithms are composed generally of two phases:

• Diversification generator: Different strategies can be used to generate an initial solution.

• Improvement method: The aim of this phase is to improve the quality of the generated solution from the first phase. Then, each global iteration produces a solution (usually a local optimum) and the best overall is the multistart algorithm's output. For more details please refer to [START_REF] Martí | Advanced multi-start methods[END_REF].

In this dissertation, we propose to solve the studied scheduling problem in Chapter 4 by using a multistart method based on a Lehmer code [START_REF] Lehmer | Teaching combinatorial tricks to a computer[END_REF] to generate solutions in the first phase, while a Variable Neighborhood Search metaheuristic is investigated in the improvements phase. Further details about these methods are discussed in Chapter 4.

Investigated metaheuristics within this dissertation

In this thesis, we mainly used two very well known metaheuristics to solve the considered scheduling problems in the following chapters. We will present here the principle of functioning of the basic versions of these methods. More sophisticated versions of these metaheuristic have been studied and proposed in this thesis. The implementation of these methods are detailed in each concerned chapter.

Variable Neighborhood Search (VNS)

Variable neighborhood search (VNS) is a flexible framework for building heuristics proposed by [START_REF] Mladenović | Variable neighborhood search[END_REF]. It uses the idea of changing the neighborhood systematically in order to avoid being trapped in a local optimum during the search. According to (Hansen et al., 2010a) VNS is based on three simple facts:

• Fact 1: A local minimum with respect to one neighborhood structure is not necessarily so for another;

• Fact 2: A global minimum is a local minimum with respect to all possible neighborhood structures;

• Fact 3: For many problems, local minima with respect to one or several neighborhood structure N k are relatively close to each other.

VNS is originally designed for approximate solution of combinatorial optimization problems. It was extended to address mixed integer programs, nonlinear programs, and recently mixed integer nonlinear programs. VNS is applied to various fields problem as scheduling, vehicle routing, network design, lot-sizing, artificial intelligence, engineering, pooling problems, biology, phylogeny, reliability, geometry, telecommunication design, etc. [START_REF] Hansen | Variable neighborhood search for weighted maximum satisfiability problem[END_REF]; [START_REF] Mladenovic | A variable neighborhood algorithm: A new metaheuristic for combinatorial optimization[END_REF]; [START_REF] Moreno-Vega | Introduction to the special issue on variable neighborhood search[END_REF]; [START_REF] Zhang | A variable neighborhood search based genetic algorithm for flexible job shop scheduling problem[END_REF].

The basic VNS combines two search approaches: a deterministic approach in which a local search methods is applied to find a local optimum and a stochastic approach that is defined as a perturbation of the incumbent solution by jumping to the k th neighborhood in order to escape from local optima.

The perturbation phase: Known as "shaking procedure", the aim of this procedure used within a VNS heuristic is to hopefully escape from local minima traps by selecting a random solution from the k th neighborhood structure.

The pseudo-code of the basic VNS is illustrated in the Algorithm 2

Algorithm 2: A basic Variable Neighborhood Search Metaheuristic Input: N k a neighborhood structure(k ∈ {1, 2, ..., k max }), f an objective function, S initial solution Output: S * best solution found. S * ←-S while (k ≤ k max) do k ←-1 while stopping criterion is not reached do S ←-perturbation phase(N k) S ←-argmin S ∈N k (S) f (S) if f (S) < f (S *) then S * ←-S k ←-1 end else k ←-k + 1 end end end
When we replace the local search in the deterministic phase by the Variable Neighborhood Descent (VND), it can be seen as a generalization of a local search since it explores several neighborhood structures at once instead of one. The resulting algorithm is called a General VNS(GVNS). This latter has received much attention and showed good performances compared to other VNS variants. It has been applied to many optimization problems [START_REF] Ilić | A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem[END_REF][START_REF] Lei | A generalized variable neighborhood search heuristic for the capacitated vehicle routing problem with stochastic service times[END_REF][START_REF] Todosijević | Nested general variable neighborhood search for the periodic maintenance problem[END_REF].

Several other VNS approaches have been derived from the basic VNS namely, Reduced VNS, Skewed VNS, nested VNS, two-level VNS, variable neighborhood decomposition search (VNDS), The primal-dual VNS. All details about these variants can be found in (Hansen et al., 2010a); [START_REF] Todosijević | Contributions théoriques et pratiques pour la recherche dispersée, recherche à voisinage variable et matheuristique pour les programmes en nombres entiers mixtes[END_REF].

Tabu Search (TS)

TS is an extension of classical LS methods. In fact, basic TS is based on neighborhood search with local optima avoidance, but in a deterministic way which try to model human memory processes.

Tabu Search Algorithm (TS) is a well known generic metaheuristic for solving hard combinatorial optimization problem, like vehicle routing [START_REF] Gendreau | Parallel tabu search for real-time vehicle routing and dispatching[END_REF][START_REF] Gendreau | A tabu search heuristic for the vehicle routing problem[END_REF], job shop scheduling [START_REF] Kawaguchi | Reactive tabu search for job-shop scheduling problems[END_REF], quadratic assignments [START_REF] James | Multistart tabu search and diversification strategies for the quadratic assignment problem[END_REF], technician routing and scheduling [START_REF] Mathlouti | A Metaheuristic Based on Tabu Search for Solving a Technician Routing and Scheduling Problem[END_REF], and many others. This method was introduced by Fred Glover [START_REF] Glover | Tabu search?part i[END_REF].

The general idea of TS is to keep track of the regions of the solution space that have already been searched in order to avoid repeating the search near these areas. It starts from a random initial solution and successively moves to one of the neighbors of the current solution. The difference of TS from other metaheuristic approaches is based on the notion of tabu list, which is a special short term memory, that is composed of previously visited solutions that includes prohibited moves. In fact, short term memory stores only some of the attributes of solutions instead of whole solution. We call this characteristic a tabu status. So it gives no permission to revisited solutions and then avoids cycling and being stuck in local optima. During the local search only those moves that are not tabu will be examined if the tabu move does not satisfy the predefined aspiration criteria. These aspiration criteria are used because the attributes in the tabu list may also be shared by unvisited good quality solutions.

Tabu list concept: Tabu list is composed of previously visited solutions that includes prohibited moves. In fact, short term memory stores only some of the attributes of solutions instead of whole solution. This characteristic is called a "tabu status". So it gives no permission to revisited solutions in order to avoid cycling and being stuck in local optima.

During the local search only those moves that are not tabu will be examined. This is achieved by declaring tabu moves that reverse the effect of recent moves for some number of iterations. This number is called the "tabu tenure" of the move.

Aspiration criterion: It is described as algorithmic devices that allows revoking tabus. Indeed, tabus are sometimes too powerful. Consequently, they may prohibit attractive moves even when there is no danger of cycling and then they may lead to an overall stagnation of the search in process which certainly prohibits to reach best ever visited solutions.

Stopping criterion: As explained in [START_REF] Gendreau | Handbook of metaheuristics[END_REF], the most commonly used stopping criteria in TS are:

• After a fixed number of iterations (or a fixed amount of CPU time),

• After some number of iterations without an improvement in the objective function value (the criterion used in most implementations),

• When the objective reaches a pre-specified threshold value. Algorithm 3 describes the main steps of the basic version of a Tabu Search metaheuristic.

Algorithm 3: A basic Tabu Search Metaheuristic

Input: N a neighborhood structure, f an objective function, S initial solution, T l a tabu list.

Output: S * best solution found.

T l ←-∅ S * ←-S while stopping criterion in not reached do S ←-argmin S ∈N ∆ (S) f (S) if f (S) < f (S *
) then S * ←-S end record tabu for the current move in T l and delete oldest entry if necessary end 2.7 Literature review about integrating production scheduling and preventive maintenance Due to appropriate tradeoffs to be found between maintenance and production activities, many researchers have investigated ways to jointly schedule both activities. Integration of production scheduling and preventive maintenance have been studied by many researchers.

Single machine scheduling problem

The deterministic PM on a single machine research area, where the period and duration of maintenance is known in advance, has been addressed by a significant number of works. A survey of scheduling with deterministic maintenance has been provided by [START_REF] Ma | A survey of scheduling with deterministic machine availability constraints[END_REF]. [START_REF] Benmansour | Scheduling of production and maintenance activities under reliability constraint[END_REF] considered the minimization of the sum of maximum weighted earliness and tardiness costs on a single machine under reliability constraints. They proposed two mathematical models, and a simulation model to solve that problem in the case of stochastic failures. More efficient methods were proposed later in [START_REF] Benmansour | Minimizing the weighted sum of maximum earliness and maximum tardiness costs on a single machine with periodic preventive maintenance[END_REF]. They also proposed a MILP formulation and heuristics to solve the scheduling problem with PM in order to minimize the weighted sum of maximum earliness and maximum tardiness costs. Ángel-Bello et al. (2011) studied a single machine scheduling problem with availability constraints and sequence-dependent setup costs, with the aim of minimizing the makespan. They derived a mixed integer programming model and valid inequalities that strengthen the linear relaxation and proposed an efficient heuristic procedure that provides a starting feasible solution to the solver. Recently [START_REF] Nesello | Exact solution of the single-machine scheduling problem with periodic maintenances and sequence-dependent setup times[END_REF] proposed new index formulations to solve the problem with aim of minimizing the makespan.

However, there are some works in the literature which attempt to find the better periods of maintenance using simulation. [START_REF] Roux | Optimization of preventive maintenance through a combined maintenance-production simulation model[END_REF] proposed a hybridization of Nelder-Mead method and multimodel simulation which is able to integrate production aspects and maintenance strategies. [START_REF] Benmansour | Simulation-based approach to joint production and preventive maintenance scheduling on a failure-prone machine[END_REF] proposed a model of integrated production-maintenance strategy for a failure-prone machine in a just in time environment. Their works focuses on finding simultaneously the period at which preventive maintenance actions have to be performed and the sequence of jobs, in order to minimize the maintenance costs and the expected total earliness and tardiness costs.

Parallel machine scheduling problem

Xu and [START_REF] Xu | Makespan minimization for two parallel machines scheduling with a periodic availability constraint: mathematical programming model, average-case analysis, and anomalies[END_REF] addressed the problem of two parallel machines with a periodic availability constraint in order to minimize the makespan. In this purpose, they established a mathematical model by transforming the two parallel machine setting into a single machine setting. They also presented an average-case analysis of the Longest Processing Time first (LPT) algorithm and the List Scheduling (LS) to present the problem. Recently, [START_REF] He | Scheduling two parallel machines with machine-dependent availabilities[END_REF] studied the two parallel machine scheduling problem. The objective is to optimize the makespan. They proposed several heuristics with lower bounds to solve and evaluate the performance of their proposed algorithms. In (Li et al., 2017), the authors proposed two mathematical programming models and two improved heuristics to solve the m parallel machine scheduling problem.

Periodic preventive maintenance based scheduling problem

Let us turn to problems dealing with periodic PM. For the single machine problem, many criteria were considered in the literature. [START_REF] Lee | Single machine flowtime scheduling with scheduled maintenance[END_REF] treated the sum of job flow times. They proved the NP-hardness of the problem and stated a 2 7 worst-case error bound of the SPT rule. Maximum tardiness criteria was investigated by [START_REF] Liao | Single machine scheduling with periodic maintenance and nonresumable jobs[END_REF] who developed a heuristic and a branch-and-bound algorithm to solve the problem. The makespan criterion is also considered by [START_REF] Ji | Single machine scheduling with periodic maintenance to minimize makespan[END_REF]. They showed that the worst case ratio of the LPT rule is 2, and proved that there is no polynomial time approximation algorithm with a worst-case ratio less than 2 unless P = N P . [START_REF] Chen | An efficient algorithm for scheduling jobs on a machine with periodic maintenance[END_REF] proposed an efficient heuristic to minimize the total flow time and the maximum tardiness simultaneously. Many other researchers like [START_REF] Chen | Minimizing total flow time in the single-machine scheduling problem with periodic maintenance[END_REF]; [START_REF] Lee | Minimizing the number of tardy jobs in a single-machine scheduling problem with periodic maintenance[END_REF]; [START_REF] Low | A modified particle swarm optimization algorithm for a singlemachine scheduling problem with periodic maintenance[END_REF]; Ebrahimy Zade and Fakhrzad (2013) contributed among others in this topic.

Conclusion

This chapter gave a quick outline of scheduling theory and combinatorial optimization tools. Scheduling problems complexity were mentioned and methods for solving these problems were presented. Furthermore, we presented the literature review of scheduling problems under preventive maintenance consideration.

Chapter 3

Single machine scheduling with periodic maintenance policy and weighted sum of completion times (1-PMWCT)

This chapter tackles the single machine scheduling problem with periodic preventive maintenance in order to minimize the weighted sum of completion times. We denote it by 1-PMWCT. This latter is proved to be NPhard. In this purpose, a MILP formulation is proposed to solve small-sized instances. To solve large-sized instances, we present three properties which generalize already existing works. These properties have been of great use in designing efficient greedy heuristics capable of solving instances with up to 1000 jobs. A GVNS algorithm is also used to solve this problem in order to obtain near optimal solutions for the large-sized instances in a small amount of computational time. To evaluate the performances of the investigated methods, we used the job splitting approach and some special cases of 1-PMWCT to design lower bounds.

Introduction

In this chapter, we consider the case of a multitask machine where only minor negligible breakdowns appear (e.x: fuses or butt joint to replace, etc.) and where the cost of repairing big failures is very high. Consequently, the machine must undergo, with much lower cost, preventive maintenance policy to minimize the risk of failures. PM is carried out to meet a regulatory requirement or is applied at regular intervals, and for practical reasons, as a cleaning, cooling or a tool change. If we do not practice a preventive maintenance, a significant risk of failures can be detected on the machine (e.x: electric motor failure) what is going to engender higher cost to repair it. The risk of failures is negligible as the time duration of these latters is insignificant compared to the processing time of the jobs to schedule. Furthermore, PM remains necessary because if it is not carried out then the specified duration to repair the failures increases.

In this regard, we address in this chapter a scheduling problem with a single critical machine on the shop denoted as 1-PMWCT (Single machine with Preventive Maintenance and Weighted sum of Completion Times).

The considered machine on which a workload is accentuated is subject to unavailability constraints caused by periodic preventive maintenance activities. The aim is to minimize the weighted sum of completion times criterion. Indeed, the weights can represent the holding or inventory cost per time unit for the corresponding products and their priority level (importance, urgency). Firstly, we also proposed a mixed integer linear program (MILP) which can be applied to find an optimum solution on instances of small sizes. Secondly, To solve large-sized instances of the 1-PMWCT problem, we proposed heuristic approaches based on three properties which generalize already existing works. To evaluate the performances of the proposed heuristics, lower bounds based on special cases of the problem are provided. Computational experiments show that the average percentage error of the best heuristic is less than 10. Thirdly, we proposed a GVNS algorithm to solve this NP-hard problem. The proposed algorithm was tested and compared with a MILP model for small-sized instance, and with four lower bounds for instance sizes greater than 20, three of them based on job splitting procedure and one based on the relaxation of one integrity constraint. The computational results show that the proposed GVNS is very efficient both in terms of quality of the objective function values and computational time.

The remainder of this chapter is organized as follows: A formal description of 1-PMWCT is given in Section 3.2. In Section 3.3, we present a small comparison between the 1-PMWCT and the bin-packing problem. Then, a literature review of previous work dealing with PM activity and WCT criterion is proposed in Section 3.4. Basic properties of the optimal schedule and some special cases of the 1-PMWCT problem are presented in Section 3.5. In Section 3.6, we give a description of the whole developed methods to solve the 1-PMWCT namely, a MILP formulation to solve optimally small-sized instances of the problem, nine effective heuristics and a GVNS metaheuristic designed to solve large-sized instances of the problem. Lower bounds derived from special cases of 1-PMWCT and on job splitting approach are then proposed respectively in Sections 3.7 and 3.8. Computational experiments are given in section 3.9 to demonstrate the performance of all the developed methods. Section 3.10 concludes the chapter with a discussion and future extensions.

Formal description of 1-PMWCT

Formally, the addressed problem can be described as follows: We consider a set J = {1, 2, . . . , n} of n jobs to be processed non-preemptively on a single machine. This latter has to undergo a periodic preventive maintenance (PM) each fixed interval T at each time point jT -δ (j ∈ N *) during the time horizon of schedule where δ refers to the duration of each maintenance activity. Furthermore, we consider the following assumptions:

• The n independent jobs are simultaneously available for processing at the beginning of the planning horizon,

• Each job J i , with a deterministic processing time p i , has to be processed without preemption on a single machine that can handle only one job at a time,

• The machine is new at the beginning of the schedule (t = 0) and each preventive maintenance action P M renews the machine,

• The set of scheduled jobs between two consecutive maintenance activities is called a batch, denoted by B j with j ∈ {1, 2, . . . , n}. Generally, T is not enough to process all the jobs and more than one batch have to be programmed,

• Jobs can not be interrupted for a PM action,

• Let max 1≤i≤n {p i } ≤ T -δ, otherwise some jobs can not be scheduled,

• Since the time interval T cannot be reduced, idle times can occur before the maintenance activity. Before going further in the explanation, let us introduce some notations used in this chapter.

𝑇 -𝛿 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑇 -𝛿 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 PM 𝑇 -𝛿 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 PM PM … … 𝑇 2𝑇 𝑗𝑇 𝛿 𝛿 𝛿 𝐵 1 𝐵 2 𝐵 𝑗 Time

Notations:

• f (S): Objective function value of a feasible solution S of 1-PMWCT problem,

• m: The minimum number of batches that we can have in an optimal solution, m is computed as follows:

m = n i=1 p i T -δ (3.1)
• m * : The number of batches in an optimal solution, with m * ≥ m,

• n j : The number of jobs in the batch

B j with n = n 1 + n 2 + ... + n m ,
• W B j is the sum over the weights of all jobs belonging to a same batch. It is computed as follows:

W B j = i∈B j w i .
3.3 Bin-packing versus 1-PMWCT

Definition of the Bin-packing problem

Given n items of different weights and bins with each one of capacity c, assign each item to a bin such that number of total used bins is minimized. It is assumed that all items have weights smaller than bin capacity. More details about the bin-packing problem could be found in [START_REF] Garey | Computers and Intractability; A Guide to the theory of NP-Completeness[END_REF].

The Bin-Packing Problem, denoted by BPP, is stated to be NP-hard by [START_REF] Johnson | The np-completeness column: an ongoing guide[END_REF].

Greedy heuristics used to solve the bin-packing problem

There are many heuristics in the related literature dedicated to solve the bin-packing problem. We give here a small definition of the most famous greedy heuristics investigated in the related literature to solve BPP.

Best-Fit heuristic (BF)

Because of its simplicity and good performance, the best-fit heuristic is considered as one of the most effective heuristics to solve the bin-packing problem [START_REF] Garey | Computers and Intractability; A Guide to the theory of NP-Completeness[END_REF]. The heuristic BF assigns items to bins according to the order they appear in the list. It places item j in the bin whose current content is the largest but does not exceed the bin. The idea is to place the next item in the bin where a smallest empty space is left.

BF can be implemented in O(n log(n)) time by using Self-Balancing Binary Search Trees.

First-Fit heuristic (FF)

When processing the next item, assign it to the first bin whose current content is the largest but does not exceed the bin. Start a new bin only if it does not. In other words, when FF is called next time, the idea is to start the search of an empty space from the beginning and stop the search at the first bin found with a tightest spot.

The implementation of First Fit requires O(n 2) time, but First Fit can be implemented in O(n log(n)) time using Self-Balancing Binary Search Trees.

Next-Fit heuristic (NF)

When processing next item, check if it fits in the same bin as the last item (where it left off and not from the beginning). We place that item in a new bin only if it does not exceed the size of the bin. Next Fit is a simple algorithm. It requires only O(n) time to process n items.

Next-Fit is 2-approximate algorithm, which means that the number of bins used by this algorithm is bounded by twice of optimal.

Minimum Bin Slack heuristic (MBS)

MBS is a greedy heuristic which was developed by [START_REF] Gupta | A new heuristic algorithm for the one-dimensional bin-packing problem[END_REF]. It is defined as a bin-focused heuristic. At each step, MBS makes an attempt to find a set of items that fit the bin capacity as much as possible.

At each stage a list L of the items not assigned to bins are sorted in a decreasing order of sizes is saved. Each time a packing is determined, the items involved are placed in a bin and removed from L, preserving the sort order. The process ends when the list L becomes empty.

Each packing is determined using a search procedure that tests all possible subsets of items on the list which fits the bin capacity. The subset that allows for the smallest slack is selected. Whoever, if the algorithm finds a subset that fills the bin up completely, the search is stopped. The algorithm restarts to look for a new packing (subset) of the list L.

The complexity of MBS is estimated to O(2 n).

Comparison between 1-PMWCT and BPP

Since preemption is not allowed, any interrupted job should be renewed after the relating maintenance activity. This feature makes the problem similar to the bin-packing problem where the objective is to minimize the number of bins. Indeed, herein the bins represent the batches. Among other things, instead of filling bins with items, we fill batches of limited capacity T -δ by jobs with time duration p i . However, the considered criterion in the problem 1-PMWCT is to minimize the weighted sum of completion times. Otherwise, if the considered criterion was the minimization of the makespan, then solving the problem 1-PMWCT goes back to solve the bin-packing problem. In other words, minimizing the number of bins is exactly similar to minimizing the number of batches. With empirical tests, we find counterexamples showing that minimizing the number of batches does not necessarily means minimizing the weighted sum of completion times.

Related works with PM policy and WCT criterion

Referring to the notation of [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF], the 1-PMWCT problem is denoted by 1/pm/ n j=1 w j c j . Few works dealing with periodic preventive maintenance on a single machine have been made but to the best of our knowledge, no one considered such a problem with the objective of minimizing the weighted sum of completion times. We provide hereafter a brief overview of previous related works.

Comprehensive reviews about works dealing with total (weighted) completion times problems with only PM activity have been provided by [START_REF] Yang | Minimizing total completion time on a single machine with a flexible maintenance activity[END_REF]. [START_REF] Lee | Single machine flowtime scheduling with scheduled maintenance[END_REF] proved that the 1, h 1 // n j=1 c j is NP-hard and showed that the shortest processing time (SPT) sequence has a worst-case error bound of 2 7 . Regarding the work of [START_REF] Lee | Machine scheduling with an availability constraint[END_REF], they studied the weighted version and proved the NP-hardness of the problem. [START_REF] Sadfi | An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints[END_REF] solved the same problem with a Modified SPT (MSPT) rule (see Section 2.5.2) with a performance guarantee of 20/17. [START_REF] Sadfi | A dynamic programming algorithm for the single machine total completion time scheduling problem with availability constraints[END_REF] proposed a dynamic programming algorithm to solve this problem. The same problem with a resumable scenario is considered by [START_REF] Lee | Machine scheduling with an availability constraint[END_REF]. They proved the NP-hardness of the problem. [START_REF] Kacem | Worst-case analysis of the wspt and mwspt rules for single machine scheduling with one planned setup period[END_REF] studied the WSPT and the Modified WSPT (see Section 2.5.2) rules and showed that the worst-case performance ratio is 3 for the two heuristics in some cases and it is unbounded otherwise. When the preemption is allowed 1, h 1 /pmtn/ n i=1 w j c j problem was proved to be NP-hard by [START_REF] Lee | Machine scheduling with an availability constraint[END_REF]. Kacem and Chu (2008a) proposed new properties of the worst-case performance of the WSPT heuristic. They gave a tighter approximation of the worst-case error and showed that the worst-case bound is equal to 2 under certain conditions. [START_REF] Kacem | Weighted completion time minimization on a single machine with a fixed non-availability interval: Differential approximability[END_REF] investigated the differential approximation concept to analyze the WSPT rule, proving that a slight modification of this rule provides a 3- √ 5 2 differential approximation. [START_REF] Chen | Single machine scheduling with semi-resumable machine availability constraints[END_REF] considered the semiresumable model of a single machine scheduling problem with a non-availability period. They proposed a tight worst-case ratio of LPT rule for the problem with the objective of minimizing makespan, and an approximation algorithm with a worst-case ratio less than 2 for the objective of minimizing the total weighted completion time.

There are also a lot of works dealing with multiple availability constraints such as the number of unavailability periods of the machine is known in advance. [START_REF] Wang | Preemptive scheduling with availability constraints to minimize total weighted completion times[END_REF] considered the preemptive single machine scheduling problem with multiple unavailability constraints denoted by 1, h k /pmtn n j=1 w j c j so as to minimize the total weighted completion time and showed that the problem is NP-hard in the strong sense. [START_REF] Sadfi | Lower bounds for total weighted completion scheduling problem with availability constraints[END_REF] considered the same problem for the nonresumable case. They showed that the problem is NP-hard and proposed some lower bounds.

Properties and some special cases

The aim of this section is to give a brief overview of some special cases and some important properties of an optimal solution of the 1-PMWCT problem. The properties investigated in this section are used to design effective heuristics dedicated to solve 1-PMWCT.

Properties

Property 1 In any optimal solution, jobs belonging to each batch are scheduled by Smith's rule [START_REF] Smith | Various optimizers for single stage production[END_REF].

Proof The jobs have to be sorted in increasing order of the ratios p i /w i in each batch B j . This rule is called WSPT (weighted SPT) rule or Smith's rule due to W.E. Smith who introduced it in 1956.

The following property generalizes the result obtained by Qi tt al. in Qi et al. (1999). They considered to minimize the sum of job completion times on a critical machine subject to availability constraints. They proved that in an optimal solution, the batches are sorted from the one which has the largest number of jobs to the one with the least number. More precisely we have:

Property 2 In any optimal solution we have

W B j ≥ W B j+1 1 ≤ j ≤ m * -1
Proof Let S 1 and S 2 be two feasible schedules for the problem 1-PMWCT, such that S 1 is obtained from S 2 by swapping two consecutive batches, and let σ be a permutation of the set J. We suppose that in S 1 , the batch B j , contains the jobs J σ(1) , J σ(2) , ..., J σ(n 1) . The batch B j+1 contains the jobs J σ(n 1 +1) , J σ(n 1 +2) , ..., J σ(n 1 +n 2) . In the sequence S 2 , only these two batches are interchanged. In order for S 1 to be a better schedule than S 2 , we must have the following inequality

Φ = f (S 1) -f (S 2) ≤ 0 (3.2)
It is obvious that jobs outside B j and B j+1 contribute in the same way to the objective functions f (S 1) and f (S 2). Hence in order to calculate Φ we calculate only the contribution of the jobs inside these two batches. Formally :

Φ = n 1 i=1 w σ(i) c σ(i) + n 2 i=1 w σ(n 1 +i) c σ(n 1 +i) - n 2 i=1 w σ(n 1 +i) c σ(n 1 +i) + n 1 i=1 w σ(i) c σ(i) Φ = f (b 1) + f (b 2) -(f (b 1) + f (b 2)).
In f (S 1) we have : andc n 1 +i = (j + 1)T + n 1 +i j=n 1 +1 p j , i = 1...n 2 In f (S 2) we have:

c i = jT + i j=1 p j , i = 1...n 1 ,
c i = (j + 1)T + i j=1 p j , i = 1...n 1 , and c n 1 +i = jT + n 1 +i j=n 1 +1 p j , i = 1...n 2 . f (b 1) = n 1 i=1 w i (jT + i j=1 p j) = jT n 1 i=1 w i + n 1 i=1 w i i j=1 p j f (b 2) = n 2 i=1 w n 1 +i ((j + 1)T + n 1 +i j=n 1 +1 p j) f (b 1) = n 1 i=1 w i ((j + 1)T + i j=1 p j) f (b 2) = n 2 i=1 w n 1 +i (jT + n 1 +i j=n 1 +1 p j) Φ = T (n 2 i=1 w n 1 +i -n 1 i=1 w i)
Hence in order to have f (S 1) ≤ f (S 2) the following inequalities must hold.

n 2 1 w σ(n 1 +i) ≤ n 1 i=1 w σ(i) (3.3) J σ(i) ∈B j w i - J σ(i) ∈B j+1 w i ≤ 0 (3.4)
Let us suppose that the Equation 3.4 is true.

Then, the calculation of both f (S 1) and f (S 2) could be done as follows:

f (S 1) = f (b 1) + f (b 2) f (S 1) = jT n 1 i=1 w i + (j + 1)T n 2 i=1 w n 1 +i + n 1 +i j=n 1 +1 p j + n 1 i=1 w i i j=1 p j f (S 1) = T (j n 1 i=1 w i + (j + 1) n 2 i=1 w n 1 +i) + n 1 i=1 w i i j=1 p j + n 2 i=1 w n 1 +i i j=1 p n 1 +j f (S 2) = f (b 1) + f (b 2) f (S 2) = jT n 2 i=1 w n 1 +i + (j + 1)T n 1 i=1 w i + n 2 i=1 w n 1 +i i j=1 p n 1 +j + n 1 i=1 w i i j=1 p j f (S 2) = T (j n 2 i=1 w n 1 +i + (j + 1) n 1 i=1 w i) + n 2 i=1 w n 1 +i i j=1 p n 1 +j + n 1 i=1 w i i j=1 p j .
If f (S 1) is an optimal value, then the Equation 3.2 should be true.

Let's proceed to the calculation of Equation 3.2:

f (S 1) -f (S 2) = T [j n 1 i=1 w i + (j + 1) n 2 i=1 w n 1 +i] -T [j n 2 i=1 w n 1 +i + (j + 1) n 1 i=1 w i] f (S 1) -f (S 2) = T [j n 1 i=1 w i + j n 2 i=1 w n 1 +i + n 2 i=1 w n 1 +i -j n 2 i=1 w n 1 +i -j n 1 i=1 w i -n 1 i=1 w i] f (S 1) -f (S 2) = T (n 2 i=1 w n 1 +i -n 1 i=1 w i) f (S 1) -f (S 2) = Φ
At the beginning, we supposed the inequality designed by Equation 3.4

But we succeed to prove the contrary (Equation 3.5) Φ > 0 (3.5) This means that in any optimal solution of 1-PMWCT the inequality designed by (3.4) is guaranteed.

J σ(i) ∈B j w i < J σ(i) ∈B j+1 w i . (3.6)
Property 3 Let us consider I j as the idle time in the batch B j and J µ the job with the smallest processing time in the batch B k , with k ∈ {j + 1, j + 2, ..., m} given that m is the total number of batches.

In an optimal solution, we have I j < p µ ∀B j , with j ∈ {1, ..., m}.

Proof The proof is trivial because we can always improve the current solution by moving the job J µ in the batch B j .

Special cases

Jobs with equal processing times When p j = p for all j in J, the problem 1-PMWCT becomes 1/pm, p j = p/ n j=1 w j c j .

It is easy to notice that it exists a polynomial algorithm to solve that scheduling problem. As the processing times are equal, we schedule the job with the largest weight first.

Jobs with equal weights

When w j = w, for all j in J, the objective function becomes w n j=1 c j . This problem is NP hard since 1/pm/ n j=1 c j was proved to be NP-hard by [START_REF] Qi | Scheduling the maintenance on a single machine[END_REF].

Jobs with weights equal to processing times When p j w j = 1, the 1/pm, p j = w j / n i=j w j c j problem was studied and proved to be NP-hard in the two cases of resumable and nonresumable jobs by [START_REF] Lee | Machine scheduling with an availability constraint[END_REF] and [START_REF] Wang | Preemptive scheduling with availability constraints to minimize total weighted completion times[END_REF].

Proposed approach to solve 1-PMWCT

The remainder of this Section is to present the method used to solve 1-PMWCT problem. Thereby, we fist investigated in Sub-section 3.6.1 a MILP formulation of the considered problem, greedy heuristics in Subsection 3.6.2 and finally a GVNS metaheuristic in Sub-section 3.6.3.

MILP formulation for the 1-PMWCT problem

Since [START_REF] Qi | Scheduling the maintenance on a single machine[END_REF] proved that the special case of minimizing the sum of completion times (1/pm/ n j=1 c j) is NP-hard, the problem studied in this paper is also stated to be NP-hard.

We propose in this section a MILP formulation for the problem 1-PMWCT based on the completion time variables. This formulation can be used to solve optimally and efficiently small instances of the problem.

Let x ik and y ij be two binary variables defined as:

x ik =    1 if job J i is scheduled before job J k , 0 otherwise. y ij =    1 if job J i belongs to batch B j , 0 otherwise.
As previously mentioned, the set of jobs scheduled between two consecutive periods of maintenance defines a batch B j . It is obvious that we can have at most n batches. Let us define by B = {1, 2, . . . , n} the set of n batches and by R a big positive integer. On this basis, the MILP model is defined as follows:

min Z = n i=1 w i c i (3.7) s.t. n i=1 p i y ij ≤ T -δ ∀j ∈ B, (3.8
)

n j=1 y ij = 1 ∀i ∈ J, (3.9)
c i ≥ p i + (j -1)T y ij ∀i ∈ J, ∀j ≥ 1, (3.10) c i ≤ c k -p k + R(1 -x ik) i = 1, 2, ...n -1, k = i + 1, ...n, (3.11)
c k ≤ c i -p i + Rx ik i = 1, 2, ...n -1, k = i + 1, ...n, (3.12
)

x ik ∈ {0, 1} ∀(i, k) ∈ J 2 , (3.13)
y ij ∈ {0, 1} ∀(i, j) ∈ J 2 . (3.14)
Equation (4.1) represents the objective function to be minimized. Constraints (3.8) require that the sum of the processing times of jobs between two consecutive maintenance activities is less or equal to T -δ. Constraints (4.2) allow each job to be performed once in one of the batches. Additionally, in each batch, B j , from j = 2, the execution of any job J i in this batch is done after the end of the preventive maintenance (4.3). Next sets of constraints, (4.7) and (4.5) indicate that no two scheduled jobs, J i and J k , can overlap in time. Finally constraints (4.8) and (4.9) are integrity requirements.

Greedy heuristics

Three rules are considered to form a dispatching rule, based on the sequence of sorted jobs:

• In decreasing order of their corresponding processing times;

• In increasing order of their corresponding processing times;

• In decreasing order of WSPT rule.

Next, for the assignment step, we apply the First-Fit (FF), Best-Fit(BF) and Next-Fit(NF) heuristics dedicated to solve the Bin-Packing problem.

We present here two pseudo-codes of the 9 heuristics we developed.

Let, J [i] denotes the job in the i th position and p [i] and c [i] its corresponding processing time and completion time.

Algorithm 4: Heuristic H W SP T BF .

Input: J.

Output: f = n j=1 w j c j
Step 1: Sort the jobs according to the WSPT rule. Denote by S = (J σ(1) , J σ(2) , ..., J σ(n)) the resulting sequence. Schedule all jobs in S according to BF strategy. Denote by S = (J σ (1) , J σ (2) , ..., J σ (n)) the resulting sequence.

An Initial feasible solution S is provided.

Step 2: Denote by m the number of batches in the initial solution.

Compute W B i , ∀(i = 1, 2, ...m)

Step 3: Sort the batches in decreasing order of W B i // Property 2

Step 4: Sort the jobs according to the WSPT rule in each batch B i // Property 1 Denote by S " the resulting sequence.

Step 5: Calculate c [j] the completion time of each job J [j] of S " .

Algorithm 5:

Heuristic H W SP T F F . Input: J. Output: f = n j=1 w j c j
Step 1: Sort the jobs according to the WSPT rule. Denote by S = (J σ(1) , J σ(2) , ..., J σ(n)) the resulting sequence.

Step 2: Schedule all jobs of S with First Fit (FF) strategy. Denote by S = (J σ (1) , J σ (2) , ..., J σ (n)) the resulting sequence. An initial feasible solution S is provided.

Step 3: Apply steps 3-5 of H W SP T BF

Remark 1 All the implemented heuristics are deterministic.

A numerical example

To illustrate the proposed heuristic algorithms, we present a simple example to show clearly the functioning of the H W SP T BF heuristic.

Let n = 12 jobs, T = 50, δ = 1, the processing times and the weights of the jobs are given in Table 3.1.

J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8 J 9 J 10 J 11 J 12 p i 6 15 11 17 7 13 18 11 4 10 18 5 w i 10 14 10 14 19 11 14 18 12 19 15 15 Table 3

.1: Numerical example

Steps 1 and 2: Sort the jobs according to the WSPT rule and use the Best Fit strategy to schedule the jobs. The resulting sequence of the initial solution is S = (J 9 , J 12 , J 5 , J 10 , J 1 , J 8 , J 2 , J 3 , J 6 , J 11 , J 4 , J 7) Step 3: The initial solution is composed of three batches: The calculation of W B i of each batch i gives:

• B 1 : {J 9 , J 12 , J 5 , J 10 , J 1 , J 8 },

• B 2 : {J 2 , J 6 , J 3 }, • B 3 : {J 11 , J 4 , J 7 },
With: Step 4: Sort the batches in decreasing order of W B i .

j∈B 1 w j = 93,
Step 5: Sort the jobs in each batch with the WSPT rule.

In this example, the jobs in each batch, are already sorted according to the WSPT rule. Thus, the objective value of the solution returned by the H W SP T BF heuristic is Algorithm 6 provides the main steps of the implemented GVNS for 1-PMWCT problem. It begins by an initial feasible solution returned by a greedy heuristic named WLS procedure. Then, while the counter L max is not reached, a new solution named Sshake using the shaking procedure is generated. That solution is enrolled within the VND procedure which returns at its end a new optimum for the local search. At each iteration the best solution S * is recorded.

f (S) = 12 j=1 w j c j =
In the following sub-sections we explain how we managed to develop our initial solution generator WLS and we give respectively details about both the perturbation and intensification phases. Before this, let us introduce the investigated neighborhood structure used within the different steps in the implemented GVNS.

Neighborhood structures:

The GVNS for the 1-PMWCT is based on moves using one or more operators. A move is defined as the action of changing the position of a job from its current place in the sequence to another one. We define here five operators ∆ i (i ∈ {1, ..., 5}) which are used to generate respectively five neighborhood structures N i (S)) of a solution S. These neighborhood structures have been widely used in literature to solve different combinatorial optimization problems specially for those which are represented by permutations [START_REF] Guo | A general variable neighborhood search for single-machine total tardiness scheduling problem with step-deteriorating jobs[END_REF].

∆ 1 : This operator consists to swap (interchange) only two consecutive jobs of S.

The complexity for going through the entire neighborhood structure N 1 (S) is O(n).

∆ 2 : This operator consists to swap (interchange) all pairs of jobs in S.

The complexity for going through the entire neighborhood structure N 2 (S) is O(n 2). The complexity for going through the entire neighborhood structure N 3 (S) is O(n).

∆ 4 : The 2-opt operator is the most classical one when it comes to solve the traveling salesman problem [START_REF] Helsgaun | An effective implementation of K-opt moves for the Lin-Kernighan TSP heuristic[END_REF]. It removes two edges from the circuit and reconnects the two paths created. In our implementation, the 2-opt operator selects two jobs J i and J j from the current sequence, then constructs a new sequence which deletes the connection between J i and its successor J i+1 and the connection between J j with its successor J j+1 , and then connects J i with J j and J i+1 with J j+1 . Furthermore, the sub-sequence between J i+1 and J j+1 is reversed.

The complexity for going through the entire neighborhood structure N 4 (S) is O(n 2).

∆ 5 : It consists to construct a new sequence S from S by starting S from each job J i and finish with the job J i-1 (i ≥ 2).

The complexity for going through the entire neighborhood structure N 5 (S) is O(n).

Initial solution generator: WLS procedure

Since GVNS is a single-solution based metaheuristic, we need to start from a given solution. In this purpose we proposed the WLS procedure described in algorithm 7 to generate feasible solution to 1-PMWCT problem.

Due to the impact of the WSPT on the quality solution, our WLS procedure starts by sorting jobs of S with the WSPT rule. Then, a Descent Search Heuristic DSH 2 (see Chapter 2 Section 2.5.2) is used until a local optimum S * is reached. The index 2 in DSH 2 refers to the used operator ∆ 2 within the local search used in DSH.

Note that to generate a neighborhood structures in DSH, the five operators presented in Sub-section 3.6.3 are tested before choosing ∆ 2 . This choice is motivated by preliminary tests that are presented in what follows.

Algorithm 7: WLS.

Input: S.

Output: S * Ranks the jobs in S according to the WSPT rule S * ←-DSH 2 (S)

Testing local searches

We propose to compare local searches based on the predefined five neighborhood structures (i.e. N 1 , N 2 , N 3 , N 4 , N 5) in order to determine the best one to use within the WLS heuristic (Algorithm 7) proposed to generate initial solutions. For each operator, we start each time from the same feasible solution returned by the WSPT rule. The summarized results are reported in Table 3.2. M inV gives the minimum value among the five results (V alue N i , i ∈ { 1, ..., 5}) returned by each tested local search for each instance of size n.

M inV = min{V alue N 1 , V alue N 2 , V alue N 3 , V alue N 4 , V alue N 5 }.
(3.15)

The gap reported in columns 2, 3, 4 and 5 is calculated as follows:

100 * ((V alue N i -M inV)/V alue N i). (3

Perturbation phase: Shaking procedure

As some random jumps in the search space could be efficient to escape from local optima and contribute to diversify the search, our shaking procedure consists of randomly generating a neighboring solution S from the current solution S using the 2-opt operator. Due to its path reversion, the 2-opt operator is very efficient when applied to explore the search space.

Preliminary tests show us that, for our problem, the shaking procedure with more operators reduces the quality of the results. In order to tune the strength of the diversification induced by the 2-opt operator, the shaking procedure is repeated L max times in the proposed GVNS presented in Algorithm 6. This parameter is fixed on the basis of primarily tests presented in the followings.

L max calibration

Here, we examined the influence of the parameters L max in the GVNS. To do this, we tested different values of L max . The testing is performed by varying L max from 5 to 80.

L max can be understood as the amount of time that the shaking procedure is used within the proposed GVNS. The obtained results are presented in Table 3.3 for fifteen instances of size n = 100. The large size of these instances could reveal the performance of the initial solution for a given value L max . For each value of L max the average solution value found and also the average time spent upon reaching these solutions are presented. As GVNS is a stochastic heuristic, we run this latter 10 times for each instance. Since the coefficient of variation (i.e. the relative standard deviation) is smaller than 0.1% we report only the best of these 10 replicates.

L max Aver.V alue Aver.T ime(s) From the summarized results in Table 3.3, it follows that the proposed GVNS is very sensitive to the value of L max parameter. Indeed, it turns out that the proposed algorithm returns the best solution values when the parameter L max is upper to 40. Same conclusion can be drawn for L max parameter, as the results returned after L max = 40 seem to be very close. Consequently, for the rest of the testing, L max is set to 40 when consuming the least amount of time (1.55 seconds).

Intensification phase: VND procedure

A complete local search is designed as a Variable Neighborhood Descent (VND) for each solution returned by the shaking procedure. In this work, we fixed the number of neighborhoods to three (k max = 3), as it is advised in the relating literature [START_REF] Glover | Handbook of metaheuristics[END_REF].

Neighborhood change strategy

The proposed VND operates a changing neighborhood strategy, which consists to explore a complete neighborhood using the same operator ∆ i as long as there is an improvement (Best improvement), otherwise another operator is used. The pseudo code of VND proposed in this work is illustrated by Algorithm 8.

Algorithm 8: VND.

Input: S shake , k max . Output: S S ← S shake while number of iterations ≤ k max do S shake ← argmin S ∈N i(S) f (S)

if S shake is better than S then S ← S shake end else add an iteration end end To efficiently explore possible solutions it is important to establish the "best" order of the three neighborhood structures defined above. Due to this, we performed preliminary tests. Six different orderings (a i,j) of the three neighborhood structures are listed in Table 3.5.

Neighborhoods order within VND

It is important to establish the "best" order of the neighborhood structures since it affects the efficiency of the GVNS algorithm. To do this, we performed a set of preliminary experiments. The different orderings are listed in Table 3.5 presented in Section 3.9. Focusing on results observed in the last paragraph we decided to implement the N 5 , N 3 , N 2 complete neighborhood structures based respectively on the following operators: 2-Opt, Insertion and Swap. The summarized results are reported in Table 3.4. To test the performances of each case order a ij presented in Table 3.5, we compared its results with minV (Equation 3.17) for each instance size, namely n = 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100. minV = min{V alue a 1,1 , V alue a 1,2 , V alue a 1,3 , V alue a 2,1 , V alue a 2,2 , V alue a 2,3 }.

(3.17)

The formulation below is used for the comparison:

gap a i,j = 100 * ((V alue a i,j -minV)/V alue a i,j). (3.18)
The entries V alue a i,j represent the value returned by the proposed VND.

As seen in Table 3.4, the returned results of the six tests are almost similar. It follows that, for our problem, VND is not very sensitive to the exploration order of the neighborhood structures. In spite of this, the results show that the order a 1,1 (swap, insertion, 2-Opt) is better than the other orders, since it returns the minimum value or a very tight value from the minimum for the large instances. In our proposed GVNS we suggest to use this order of neighborhoods in the VND heuristic.

Lower bounds derived from relaxed problems of 1-PMWCT

This Sub-section presents lower bounds through polynomial relaxed problems. This can be useful in order to evaluate the quality of the heuristics presented in the previous section.

For the first proposed bound, the relaxation of maintenance constraints is considered. In that case, we consider the 1// n i=j w j c j problem which is proved to be polynomially solvable via the WSPT rule [START_REF] Smith | Various optimizers for single stage production[END_REF].

Proposition 1

LB 1 = n i=1 w i i j=1 p j (3.19)
The equation 3.19 is a valid lower bound for the 1-PMWCT problem.

Proof Solving the problem 1-PMWCT without taking into account the maintenance constraints gives rise to the following problem 1// n i=1 w i c i . The optimal value f * of the latter problem is obtained via the WSPT rule and constitutes a lower bound for 1-PMWCT.

In order to compute the value of f * we order the jobs by the WSPT rule i.e. (p 1 w 1 ≤ p 2 w 2 ≤ . . . , ≤ pn wn } and schedules the jobs such that c i = i j=1 p j . Hence, the optimal value is:

f * = n i=1 w i c i f * = w 1 c 1 + w 2 c 2 + ... + w n c n f * = w 1 p 1 + w 2 (p 1 + p 2) + w 3 (p 1 + p 2 + p 3) + ... + w n (p 1 + p 2 + p 3 + ...p n). f * = w 1 p 1 + w 2 2 j=1 p j + w 3 3 j=1 p j + ... + w n n j=1 p j f * = n i=1 w i i j=1 p j .
Proposition 2

LB 2 = p n i=1 iw i + T m-1 k=1 k n k+1 i=1 w n 1 +n 2 +...+n k +i (3.20)
The Equation 3.20 is a valid lower bound of the 1-PMWCT problem.

Proof Let us consider the scheduling problem (P) denoted by 1/pm,

p i = p/ n i=1 w i c i . It is obvious that (P)
is a special case of 1-PMWCT. (P) is shown to be polynomial in Sub-section 3.5.2.

We consider the special case where p is set to the minimum value of all the processing times of the jobs in 1-PMWCT i.e. p = min 1≤i≤n {p i }. Then an optimal solution of P is obtained by sorting the jobs in decreasing order of their weights w i , and the corresponding value of this solution can be calculated as follows:

f * = i∈B 1 w i c i + i∈B 2 w i c i + ... + i∈Bm w i c i and c i = n j p + (j -1)T ∀i ∈ B j .
Hence,

f * = i∈B 1 w i n 1 p + i∈B 2 w i (n 2 p + T) + ... + i∈Bm w i (n m p + (m -1)T) f * = p n 1 i=1 iw i + n 2 i=1 iw n 1 +i + ... + nm i=1 iw n 1 +n 2 +...+n m-1 +i + T n 2 i=1 w n 1 +i + 2 n 3 i=1 w n 1 +n 2 +i + ... + (m -1) nm i=1 w n 1 +n 2 +...+n m-1 +i f * = p n i=1 iw i + T m-1 k=1 k n k+1 i=1
w n 1 +n 2 +...+n k +i .

As P is a relaxed problem of 1-PMWCT, LB 2 is a valid lower bound of 1-PMWCT problem.

In order to derive the third lower bound LB 3 , let consider the problem (P) denoted as following:

1, h 1 // n i=1 w i c i .
The first field means that there exists only one machine and specifies that only one preventive maintenance (h 1) is applied during the whole scheduling horizon.

Let us denote by J g the job scheduled just after the maintenance period, J m 1 and J m 2 are respectively the last job scheduled in batches B 1 and B 2 .

LB 3 is formulated in the following proposition:

Proposition 3 The lower bound

LB 3 = m 1 i=1 w i i j=1 p j + m 2 i=g w i (T + i j=g p j) (3.21)
The Equation 3.21 is a valid lower bound for 1-PMWCT.

Proof LB 3 is based on an optimal solution returned by a dynamic programming algorithm which is proposed by Kacem et al. (2008) to solve P . This algorithm sorts the jobs according to the WSPT and schedules them in increasing order according to their index. The dynamic formulation of P is based on the following recursive equation:

f (i, t) = min f (i -1, t) + w i • (T + i k=1 p k -t), f (i -1, t -p i) + w i • t (3.22)
Where f (i, t) is the smallest total weighted completion time of jobs {1, , i}, with the total processing time of jobs in the first batch B 1 starts at t ≤ T -δ. If such a solution does not exist, set

f (i, t) = + ∝, f (0, 0) = 0, f (0, t) = + ∝, ∀t ≤ (T -δ) and f * = min 0≤t≤(T -δ) f (n, t).
We point out that the time complexity of this algorithm is in O(n • (T -δ)).

P can be defined as a relaxed problem of 1-PMWCT due to the fact of moving from multiple periods of maintenance to only one period.

Let be f * S an optimal value of a solution S for the problem P . The value f * S can be computed as follows:

f * S = i∈B 1 w i c i + i∈B 2 w i c i f * S = w 1 c 1 + w 2 c 2 + ... + w m 1 c m 1 + w g c g + w g+1 c g+1 + ... + w m 2 c m 2 f * S = w 1 p 1 + w 2 (p 1 + p 2) + ... + w m 1 (p 1 + p 2 + ... + p m 1) + w g (T + p g) + w g+1 (T + p g + p g+1) + ... + w m 2 (T + p g + p g+1 + ... + p m 2) f * S = m 1 i=1 w i i j=1 p j + T m 2 i=g w i + m 2 i=g w i i j=g p j f * S = m 1 i=1 w i i j=1 p j + m 2 i=g w i (T + i j=g p j) As (S) is a relaxed problem of 1-PMWCT, LB 3 is equal to f * S .
In a special case where all the jobs are scheduled in the first batch (

n i=1 p i ≤ T -δ), LB 3 is equal to
the optimal value of the problem 1-PMWCT. This is due to the WSPT rule which is applied in the dynamic programming algorithm.

Proposition 4

LB 4 = n i=1 p i w i + T • (m(m -1) 2) (3.23)
The Equation 3.23 is a valid lower bound for 1-PMWCT problem.

Proof Let f * be the objective function value of an optimal solution of 1-PMWCT and w the smallest weights among all the weights related to an instance of 1-PMWCT. w is computed as follows:

w = min 1≤i≤n {w i } (3.24)
f * is computed as follows:

f * = i∈B 1 w i c i + i∈B 2 w i c i + ... + i∈B m * w i c i (3.25)
When developing the Equation 3.25, we have:

f * = w 1 p 1 +w 2 (p 1 +p 2)+...+w n 1 (p 1 +p 2 +...+p n 1)+w n 1 +1 (T +p n 1 +1)+w n 1 +2 (T +p n 1 +1 +p n 1 +2)+...+w n 1 +n 2 (T + p n 1 +1 + p n 1 +2 + ... + p n 1 +n 2) + ... + w n 1 +n 2 +...+n m * -1 +1 ((m * -1)T + p n 1 +n 2 +...+n m * -1 +1) + w n 1 +n 2 +...+n m * -1 +2 ((m * - 1)T + p n 1 +n 2 +...+n m * -1 +1 + p n 1 +n 2 +...+n m * -1 +2) + ... + w n ((m * -1)T + p n 1 +n 2 +...+n m * -1 +1 + ... + p n) f * = n i=1 p i w i + n i=2 w i i-1 j=1 p j + T (n 2 i=1 w n 1 +i + 2 n 3 i=1 w n 1 +n 2 +i + ... + (m * -1) n m * i=1 w n 1 +n 2 +...+n m * -1 +i).
Since m ≤ m * , it is clear that:

T (n 2 i=1 w n 1 +i + 2 n 3 i=1 w n 1 +n 2 +i + ... + (m * -1) n m * i=1 w n 1 +n 2 +...+n m * -1 +i) ≥ T (w + 2w + 3w + ... + (m -1)w)
This is equivalent to:

T m * -1 k=1 k n k+1 i=1 w n 1 +n 2 +...+n k +i ≥ T w m-1 i=1 i. Since m-1 i=1 i = m(m -1) 2
, we consequently have:

n i=1 p i w i + T • (m(m -1) 2) ≤ n i=1 p i w i + n i=2 w i i-1 j=1 p j + T m * -1 k=1 k n k+1 i=1
w n 1 +n 2 +...+n k +i .

LB 4 is a valid lower bound for 1-PMWCT.

Remark 2

The code of the three lower bounds LB 1 , LB 2 , LB 4 is composed of elementary operations and sorting functions which can be implemented with a complexity of O(n log(n)).

3.8 Lower bounds derived from job splitting procedure

Job splitting

Job splitting is proposed as a general technique to obtain lower bounds. This concept was introduced by [START_REF] Posner | Minimizing weighted completion times with deadlines[END_REF] and used later by [START_REF] Belouadah | Scheduling with release dates on a single machine to minimize total weighted completion time[END_REF]. They proved that if a job J j is split into two jobs J i and J k with processing times p j = p i + p k and weights w j = w i + w k , it decreases the total weighted completion time by p k w i . This method was used by (Kacem et al., 2008) to propose lower bounds for a single machine scheduling problem with only one unavailability period of the machine during the scheduling horizon.

Let P denote the original problem with no split jobs and let P 1 be the corresponding problem in which each job J j is split into n j pieces. Each piece o k,j has a processing time p k,j and a weight w k,j (j ∈ J, k ∈ {1, . . . , n j }) such that p j = n j k=1 p k,j and w j = n j k=1 w k,j , the pieces o k,j are constrained to be scheduled contiguously. Let σ * be an optimal schedule for P and σ * 1 the corresponding optimal schedule for P 1 . [START_REF] Belouadah | Scheduling with release dates on a single machine to minimize total weighted completion time[END_REF] proved the following relation:

j∈J w j c j (σ *) - j∈J w j c j (σ * 1) = CBRK (3.26) CBRK = j∈J n j -1 k=1 w k,j n j h=k+1 p h,j (3.27)
As suggested by [START_REF] Belouadah | Scheduling with release dates on a single machine to minimize total weighted completion time[END_REF], CBRK may be thought as the cost of breaking all the jobs J j into n j pieces.

By relaxing the contiguity constraint in problem P 1 , we obtain a relaxed problem denoted as P 2 . Let σ * 2 be an optimal schedule for problem P 2 . [START_REF] Belouadah | Scheduling with release dates on a single machine to minimize total weighted completion time[END_REF] proposed the following relation:

j∈J w j c j (σ *) ≥ j∈J w j c j (σ * 2) + CBRK (3.28)
To get the lower bounds, the jobs should be split in such a way that the resulting problem P 2 corresponds to a special case for which an optimal schedule σ * 2 is known. This is particularly the case when processing times are constant. In this context, let us consider three special splits:

Suggested lower bounds

First split: Each job J j (j ∈ J) is split into two pieces such that p 1,j = p 2,j = p/2 and w 1,j = w j , w 2,j = 0 with p = min 1≤j≤n p j . Let σ * 2 denote the optimal solution of this problem. Hence, we have:

LB 5 = j∈J w j c j (σ * 2) + CBRK (3.29)
Second split: The second lower bound (LB2) is obtained by considering the following split: Each job J j (j ∈ J) is split into two pieces such that p 1,j = p 2,j = p/2 and w 1,j = w 2,j = w/2 with: p = min 1≤j≤n p j and w = min 1≤j≤n w j . Let denote σ * 2 the optimal solution of this problem. Hence, we have:

LB 6 = j∈J w j c j (σ * 2) + CBRK (3.30)
Third split: P 2 can be effectively solved when all processing times are set to one unit of time (p k,j = 1), which means that each job J j (j ∈ J) is split into p j pieces. The weights are set as follows:

If w j ≥ p j , w k,j = 1, for k ∈ {1, . . . , p j }, If w j ≤ p j , for w k,j = 1, k ∈ {1, . . . , w j } and w k,j = 0, for k ∈ {w j + 1, . . . , p j } Let σ * 2 denote the optimal solution of this problem. Hence, we have:

LB 7 = j∈J w j c j (σ * 2) + CBRK (3.31)

Computational results

In order to assess the extent of the MILP formulation, to evaluate the performance of the proposed heuristics and the proposed GVNS, some computational experiments are conducted. Since we do not find test instances for the problem under study in the related literature, we decided to carry out experiments with randomly generated instances. Theses instances are available via the following URL: http://sakai.uphf.fr/wiki/site/1b6900a5-38f1-4003-94e9-317898cbf168/instancesmaintenancewct.html

Instance generator

The instances used in the experiments are divided in four benchmark classes named CLxDy. When x = 1, p i is uniformly distributed over [20,100]. When x = 2, then p i is uniformly distributed over [25,50] and T = 100. When y = 0, then δ = 0 and if it is equal to 1, δ = 2%T . Each weight w i , it is uniformly distributed over [1, n]. The period of maintenance is generated as follows:

T = max max 1≤j≤n (p j) , 4 * n j=1 p j /n . (3.32)
To ensure feasibility of instances from CL1D0 and CL1D1 classes, T is generated in a way that makes it greater than the largest processing time p i . Also, to avoid solutions with only one job per batch, we choose T greater than 4 times the average of the processing times. To get instances with different levels of tightness regarding the duration of maintenance δ, this latter is set to 2•T 100 + 0.5 which is denoted by δ = 2%T . For example, if T is equal to 150, δ is equal to 3. In order to make it easier to write, we denote the calculated value of T for instances belonging to CL1D0 and CL1D1 by T g .

Both the greedy heuristics and GVNS but also the whole proposed lower bounds are coded with JAVA. The MILP is solved with CPLEX 12.4. All computational work is performed on an i7 Intel Core at 2.50 GHz and Linux with 8 GB of memory.

MILP performance

The MILP is launched on size instances from n=2 to 20 belonging to each benchmark class. This gives results observed over 1140 test problems.

The time limit of CPLEX is set to 20 minutes. The computational results of the MILP are summarized in Figure 3.4. Each point on the graph corresponds to 60 instances. The time limit of 20 minutes occurs as soon as the size of instances is greater than 12. Figure 3.4 shows that more instances require more than MILP min total time as their size increases, this is also confirmed by the average time denoted by MILP average total time. When n = 20, almost all instances reach the 20 minutes time limit (59 instances out of 60 instances) which is confirmed by the average value close to 1200 seconds (1186.84). Due to the NP-hardness of the considered problem, it takes at least 20 minutes to obtain an optimal solution for each instance with size greater than 14. The gaps reported by CPLEX is still about 70% after one hour.

Greedy heuristics tests performance

Computational experiments on the proposed greedy heuristics and lowers bounds derived from spacial cases of 1-PMWCT are conducted using 52 different problem sizes, namely n =2,3,4,...,50,100,500 and 1000. Fifteen replications are performed for each instance of size n from each benchmark's class mentioned above. All the results are observed over 3120 test problems.

Lower bounds evaluation

The lower bounds are tested on instances where the number of jobs ranges from 2 to 20 in order to compare them with the results returned by the MILP. The different results of the lower bounds are summarized in Tables 3.6 to 3.9. Each Table refers to the results relating to each class of instances mentioned above. Thus, Gap LB 1 (%), Gap LB 2 (%), Gap LB 3 (%), Gap LB 4 (%) represent the improvement of the relating lower bound compared to the MILP. Gap • (%) is calculated in the following manner: From Tables 3.6 to 3.9 we state that LB 1 and LB 3 are quite tight contrary to LB 2 and LB 4 where the gap is rather high. However, in most cases LB 3 is better than LB 1 . In Table 2 (when δ = 0 and T = T g) LB 1 is better than LB 3 about 10%, whereas in the other tables (instances from the three other classes) LB 3 remains the best lower bound. To that end we took LB best = max(LB 1 , LB 3), which is used to compute the performances of the heuristics developed in this work. Tables 3.10,3.11,3.12 and 3.13 summarize the average computational time in seconds of each lower bound (LB 1 to LB 4), and for each instance of size n, namely, n = 10, 15,20,25,30,35,40,45,50,100,500,1000 Table 3.9: Average results for lower bounds compared to the MILP: case CL2D1 close to zero or almost equal to zero for some instance sizes as shown in Table 3.12. As already mentioned in Section in Section 3.7, the complexity of these lower bounds is O(n log(n)). This explains the obtained results, whereas the lower bound LB 3 is a special case of the 1-PMWCT problem that can be solved by dynamic programming. The complexity of the associated algorithm to LB 3 is O(n • (T -δ)). The average execution time of LB 3 is much greater than the remainder of the lower bounds. For example, when n = 1000, LB 1 , LB 2 and LB 4 do not exceed 1 second regardless of the CLxDy instance classes. In the other hand, the average computational time of LB 3 takes 2 hours and 8 minutes for instances belonging to CL1D1, about 10 minutes for those belonging to CL1D0 and at most 29 minutes 3 seconds for those belonging to CL2D0 and CL2D1. Moreover, the average computational time of LB 3 is still very small for instances of size 100 and 500. To summarize, when n = 500, it takes at most 2 minutes and 12 seconds for instances belonging to CL2D1 to find a lower bound.

Gap • (%) = 100 * V M ILP -V • V M ILP . (3
For n = 100 the computational time goes down to 0.89 seconds. Finally, for n ≤ 50 a computational time less than 0. 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0030 0.0050 0.0150 LB 2 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0030 0.0050 0.0080 0.0250 LB 3 0.0050 0.0070 0.0250 0.0480 0.0450 0.0580 0.0680 0.1200 0.1300 0.5770 60.7330 6079.7900 LB 4 0.0010 0.0010 0.0020 0.0020 0.0020 0.0030 0.0040 0.0040 0.0040 0.0080 0.0100 0.0450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0150 LB 2 0.0010 0.0010 0.0010 0.0020 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0100 LB 3 0.0150 0.0160 0.0310 0.0460 0.0630 0.0780 0.1400 0.1720 0.2840 0.8950 99.9080 1727.9900 LB 4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 0.0003 0.0040 0.0060 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0150 LB 2 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0300 0.1600 LB 3 0.0000 0.0150 0.0320 0.0470 0.0780 0.1400 0.1090 0.2080 0.1610 0.8180 126.6260 1741.9420 LB 4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0050 0.0090 0.0220 Table 3.13: Average computational time of lower bounds: case CL2D1

Greedy heuristics computational time comparison

It is important to mention that all the developed heuristics require less than 5 seconds for all the generated instances related to 1-PMWCT problem, even for instances with size n = 1000. Thus, tables 13 to 16 summarize the average completion times duration of each heuristic for each instance of size n, namely, 10,15,20,25,30,35,40,45,50,100,500,1000

Greedy heuristics evaluation

In this Sub-section, experiments focus on revealing the computational effectiveness of the heuristics. Comparison of the individual heuristics is done at first as shown in Table 3.18. Columns 2 to 10 show how many times each heuristic reaches an optimal solution over the 60 instances.

As can be stated from Table 3.18, the two heuristics H W SP T F F and H W SP T BF perform slightly better than the other heuristics. Indeed, these two heuristics seem to give the same results as they gave the same number of optimal solutions. In addition, as stated in Sub-section 3.9.3, all the developed heuristics presented in this article, reach good solutions in less than 5 seconds for all the generated instances. For this purpose, the heuristic used for the second step of experiments is expressed as follows:

n H W SP T F F H W SP T BF H DF F H DBF H IF F H IBF H DN F H IN F H W SP T N F 0.

Greedy heuristics versus MILP

In order to evaluate the performance of H best , we compare its performance with that of an optimal solution returned by the MILP for sizes ranging from 2 to 20. The computational results are summarized in Table 3

P ED (%) = [(H best -V M ILP)/V M ILP] × 100 (3.36)
It is observed from Table 3.19 that instances belonging to benchmarks with x = 1 produce smaller PED than those with x = 2. This can be explained by the fact that more jobs could be scheduled per batch in the first case than in the second case. Indeed, when x = 1, processing times ranged from 20 to 100. This induces an average processing time of 60 which allows to generate T between 100 and 4 * (60 + 60)/2 = 240. This gives an average of 4 jobs scheduled per batch. Unlike to this, when x = 2, processing times ranged from 25 to 50, so on the average processing time is 37.5. Hence when T = 100, no more than 2 jobs in average can be scheduled per batch. Consequently, it can be observed that in the second case, there is a higher probability that the machine has to undergo more preventive maintenances than in the first case. This factor induces a greater number of potential solutions which makes the heuristic less efficient for the instances belonging to x = 2. The comparison of Table 3.20 with Table 3.19 shows that PER is higher than PED. This is clearly related to the comparison done with a lower bound which obviously generates smaller values than those returned by the MILP. PER increases also slightly as the number of jobs increases. As for the cases in Table 3.20, instances belonging to CL2D0 and CL2D1 produce greater PER for the same reasons. Here the average PER is about 6.10 with a minimum of 3.01 and a maximum of 9.26. We can conclude that the heuristics are more efficient for instances belonging to CL1D0 and CL1D1.

Overhead performances

Besides the study of the heuristics performances, we investigate also the increased values of the objective function for the same instances when the duration of maintenance varies from δ = 0 to δ > 0.

For this purpose, Table 3.21 and Table 3.22 report the overhead added to the objective function value of the instances with δ = 2%T (classes CL1D1 and CL2D1) compared to those relating to instances with δ = 0 (classes CL1D0 and CL2D0). It represents the extra-cost (in %) induced by the duration of the maintenance actions while increasing δ from 0 to 2%T . That overhead is computed in Table 3.21 as follows:

OV H CLXDY = 100 × (V M ILP (δ=2%T) -V M ILP (δ=0))/V M ILP (δ=2%T) . (3.38)
As there is no computational result of the MILP for instances with n=21, 22. . . 50, 100, 500, 1000 the overhead is computed with the objective function value of the best heuristic H best . The results are summarized in Table 3 3.21: Average computational results of the overhead for n = 2 to n = 20 jobs instances On the basis of the obtained results, we can state that most of the instances are sensitive to the increase of the objective function value from δ = 0 to δ = 2%T . We conclude that the duration of the maintenance δ has a significant impact on the solutions and on the values of the objective function. As a consequence, the duration of the maintenance activities must not be neglected in real-life/industrial studies. Keeping in mind that the developed heuristics perform much better while adding Property 2, the focus of this part of experiments is to illustrate the improvement in objective function value induced by that Property. For testing purpose, we computed the Gap between the value of the objective function before and after ranking the batches according to W B j . The computational results are summarized in Table 3.23. As expected, the experiments confirm the influence of Property 2. This impact is quite stable and uniformly close to 0 for small size instances but it is more significant for large sized instances, especially for instances belonging to CL2D0. The average impact is about 10.38 % in CL2D0 and less significant in CL1D0 where the impact is about 0.07%.

Impact of Property 2

n Gap CL1D0 Gap CL1D1 Gap CL2D0 Gap CL2D1 2 0 0 0 0 3 0 0 0.

GVNS tests performance

In this Sub-section, we present the experiments results conduced on the GVNS metaheuristic and the lower bounds derived from the job splitting technique applied only for CL1D1 benchmark class.

These experiments are conduced using 54 different problem sizes, namely n =2, 3, 4,..., 50, 60, 70, 80, 90 and 100. Fifteen replications are generated for each instance-size n.

Note that, in all the tables presented in this section and for each instance size, we report the average value of fifteen instances. All the tests (except for the MILP) presented in this chapter are done for instances of all sizes n =2, 3, 4,..., 50, 60, 70, 80, 90 and 100. However, to save space, we don't present each time the results of all instance sizes.

Lower bounds based job splitting evaluation

In this section, we propose to compare the computational results between the three proposed lower bounds based on job splitting and the linear bound, LB RP , obtained by relaxing the integrity constraints for x i,j in the mixed integer programming model. Note that relaxing the integrity constraints for y ij is not reported here because it appears to be useless (i.e. no significant decrease in terms of computational time consuming) similarly relaxing x i,j and y i,j at the same time does not provide a good lower bound quality. Table 3.24 shows the performances of each lower bound obtained by calculating the Ratio between the lower bound LB i and the optimal value of the MILP as follows: The calculated ratio clearly shows that LB 7 is much tighter than LB 5 and LB 6 . Actually the larger the size of the instances, the greater the gap between the lower bounds (LB 5 , LB 6 , LB 7) and the optimum value. The lower bound LB RP seems to be better than the others when the size of instances is greater than twelve (n > 12)

Ratio LB i = 100 * (V alue LB i /V alue M ILP). (3

GVNS performances

In this Sub-section, experiments are carried out to evaluate the performance of the proposed GVNS. Due to the stochastic aspect, we run the GVNS algorithm 10 times. As we already stated, the coefficient of variation is smaller than 0.1%. Consequently only report the best of the 10 replicates. The results of comparisons between the MILP and GVNS, and also between GVNS and LB best are presented in Table 3.25. The entries in columns three and five represent the ratio between the optimal value returned by the MILP (V alue M ILP) and the objective function value returned by the GVNS (V alue GV N S) respectively, between the lower bound (V alue LB best) and (V alue GV N S). It is calculated as follows:

Ratio M H = 100 * (V alue M ILP /V alue GV N S).
(3.41) respectively, Ratio LH = 100 * (V alue LB best /V alue GV N S).

(3.42)

The three last columns report the time consumed upon reaching the reported values returned respectively by the MILP, the GVNS and the lower bounds. It follows that GVNS is very fast (an average of 4.22 seconds for instances with size 100). For instances of size n ≤ 20, the GVNS is very efficient in comparison with the MILP. The ratio Ratio LH becomes smaller for instance sizes ranging from n = 11 to n = 21. This is certainly due to the lower bounds performances. Indeed, the gap is practically rather large for these instance sizes (see Table 3.24). This shows that GVNS is able to reach high quality solutions in a very small amount of time.

The relaxed problem is easier to solve in the case of small sized instances than in the case of large instances. On top of this, the computational time in both cases is limited to 20 minutes, so it is more likely that, for large instances, the relaxed MILP is struggling to improve the solution. Hence the returned value of the relaxed MILP is still quite large and relatively close to the solution returned by GVNS. More precisely, when n > 14, the best lower bound LB best is equal to the lower bound LB RP based on the relaxation of the integrity constraints of the MILP model. Indeed, via the relaxed MILP, CPLEX solves optimally the problem within the calculation time limit of 20 minutes for instances with n < 50. When n ≥ 50, returned solutions are not necessarily optimal and require more than 20 minutes to get the optimal solutions. Therefore, the value returned by relaxed MILP is closer to the GVNS value than to the optimal solution of the relaxed MILP (LB RP). Empirical experiments for those instances show that the gap returned by CPLEX solver remains 90% (in average for the 15 instances) after 20 minutes. This explains why the calculated gap (line 3, 9 and 15 of Table 3.25) is so high for the large instances.

Conclusions and perspectives

In this chapter we studied the single machine scheduling problem with periodic maintenance. The objective of our study is to minimize the weighted sum of completion times criterion. First, we have provided a Mixed Integer Linear Programming formulation to solve this problem optimally. Then, we proved the NP-hardness of Table 3.25: GVNS performances this latter. We have also provided some properties that have been used to build several efficient heuristics. Several lower bounds defined as a relaxation problem of 1-PMWCT are proposed and used to test the efficiency of the developed heuristics. We also developed a GVNS algorithm to solve this NP-hard problem. It was tested and compared with the MILP model for small sized instances and with four lower bounds for instance sizes greater than 20. Three of them are based on job splitting approach and one based on the relaxation of one integrity constraint.

Av.T ime GV N S (s) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0.
All The proposed methods are tested on large randomly generated data. The result showed that the MILP formulation is efficient on instances with sizes less than or equal to 20 and the proposed heuristics are efficient algorithms to solve large instances. Computational experiments show that the average percentage error of the best heuristic is less than 10. The presented properties have been of great use in designing efficient heuristics capable of solving instances with 1000 jobs. The proposed GVNS is very efficient both in terms of quality of the objective function values and computational time.

In future work, it would be interesting to compare the performance of GVNS with other metaheuristics for solving the considered problem after generalizing it by adding more realistic constraints such as release times, failures, etc. Another extension of this research would be to consider the interval between two consecutive maintenance activities as a decision variable of the problem.

Chapter 4

Single machine scheduling with sequence-dependent setup times and periodic maintenance (1-PMStWCT)

Introduction

This chapter gathers the same work hypothesis than already considered in chapter 4 with, in addition, sequencedependent setup time constraints. Hence, the objective of this chapter is to compute a schedule that minimizes the WCT criterion, subject to sequence-dependent setup time between the jobs and periodic maintenance. It is assumed that preemption of jobs is not allowed and the maintenance activity generates setup times that depend on the last job scheduled just before doing the maintenance but also on the first job processed just after the end of this latter. Referring to the notation of [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF], we denote this scheduling problem by 1/pm, ST sd / n i=1 w j c j . The work of [START_REF] Chen | Scheduling with dependent setups and maintenance in a textile company[END_REF] is the first attempt to incorporate sequence-dependent setup times in machine scheduling problems with availability constraints. They studied a scheduling problem for a single machine with sequence-dependent setup times and periodic maintenance for real problems arising in textile and manufacturing industries. The authors assumed that a job could be interrupted due to a PM activity and could be resumed without setup if these jobs are already in process. However, they doesn't consider setup time for doing a maintenance activity. Indeed, these assumptions simplified the problem in the sense that inclusion of maintenance activities do not influence the order in which jobs are processed as there is no setup time to perform a PM. However, as the authors pointed out, in practice, even if the job could be resumed, it is necessary to carry out activities in order to prepare the machine for maintenance. Later, after maintenance, the machine should be arranged to continue with the job. These activities, in general, depend on the job in process.

To the best of our knowledge, only the work of [START_REF] Liao | Single machine scheduling with periodic maintenance and nonresumable jobs[END_REF] reports studies on scheduling problems considering both sequence-dependent setup times and a preventive maintenance constraints where the maintenance activity is considered as a job with setup cost that depends on the job processed just before. They considered such a scheduling problem with the objective of minimizing the makespan. They also used a metaheuristic called Greedy Randomized Adaptive Search Procedure to solve the same problem.

Due to the comprehensive survey on scheduling problem with setup time done by Allahverdi in [START_REF] Allahverdi | The third comprehensive survey on scheduling problems with setup times/costs[END_REF] and to the best of our knowledge, no one considered such as a problem in the related literature with the objective of minimizing the weighted sum of completion times.

The remainder of this chapter is organized as follows: The problem is described in Section 4.2 while a literature review related to studied problem is resumed in section 4.4. Then, Section 4.3 presents two mathematical formulations dedicated to solve small sized instances of the problem while Section 4.5 exhibits the two developed approximate methods, namely, a basic heuristic and a sophisticated metaheuristic based GVNS. Computational experiments are then discussed in Section 4.5. Finally, Section 4.6 ends the chapter with conclusions and some perspectives.

Formal description of 1-PMStWCT

Based on the three field notation α|β|γ known as the Graham triplet [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF], 1-PMStWCT can be denoted by 1/pm, ST sd / n i=1 w j c j . It is stated to be NP-hard since [START_REF] Kirlik | A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine[END_REF] proved that the special case of minimizing the sum of completion times without considering PM activities is NP-hard.

During PM and setup times activities, the machine cannot process any job. Also, the preemption is not allowed, that is, jobs are not resumable. Each job J j , with a deterministic processing time p j and a positive weight w j , (j ∈ J = {1, 2, ..., n}) has to be processed without preemption on a single machine that can handle only one job at a time. Furthermore, the machine has to undergo a PM in each period of time T . δ represents the duration of the PM. Let us consider the following research assumptions:

• All the processing times, setup times, weights are known and deterministic,

• c j and st i,j represent, respectively, the completion time of the job J j , and the setup time between the two jobs J i and J j ,

• The setup times st ij are sequence-dependent,

• There is a time interval of length T , between each two consecutive maintenance activities,

• Once maintenance is performed, no breakdown can occur in the production system for the next T units of time.

Literature review

In the following paragraph, we provide a short description of some works related to the scheduling problem considering both sequence dependent setup times and periodic maintenance activity. To our knowledge Chen et al. [START_REF] Chen | Scheduling with dependent setups and maintenance in a textile company[END_REF] are the first to consider such a scheduling problem with the objective of minimizing the makespan. In 2011, Ángel-Bello et al. (2011) used a metaheuristic called Greedy Randomized Adaptive Search Procedure also to minimize the makespan. For the same criterion, [START_REF] Naderi | Scheduling sequence-dependent setup time job shops with preventive maintenance[END_REF] investigated in a job shop scheduling problem and proposed four metaheuristics based on simulated annealing and genetic algorithms to solve the problem. Recently [START_REF] Nesello | Exact solution of the single-machine scheduling problem with periodic maintenances and sequence-dependent setup times[END_REF] proposed new index formulations to solve the problem.

For more details, we direct the reader to consult the review proposed by Allahverdi et al. [START_REF] Allahverdi | The third comprehensive survey on scheduling problems with setup times/costs[END_REF]. It's a comprehensive survey which provides an extensive review of about 500 papers that have appeared since the mid-2006 to the end of 2014.

Mathematical models 4.4.1 First mathematical formulation

The 1/pm, ST sd / n j=1 w j c j problem can be formulated as a mixed integer linear programming model (MILP). The set of jobs scheduled between two periodic maintenance defines a batch. We can have at most n batches. Since maintenance occurs during each period of time T and blocks the machine for a limited time δ and since preemption is not allowed, we can formulate our scheduling problem as the classical BPP (section 3.3) as proposed in the literature (e.g. [START_REF] Ji | Single machine scheduling with periodic maintenance to minimize makespan[END_REF], [START_REF] Hsu | A single-machine scheduling problem with maintenance activities to minimize makespan[END_REF], [START_REF] Benmansour | Minimizing the weighted sum of maximum earliness and maximum tardiness costs on a single machine with periodic preventive maintenance[END_REF]), where the bins represent batches. Among other things as already explained in Chapter 3, instead of filling bins with items, we fill batches of limited capacity T -δ by jobs with processing times p j .

We define the following decision variables by considering the notations given earlier.

x jk =    1 if job J j is scheduled before job J k , 0 otherwise. y jb =    1 if job J j is in batch B b , 0 otherwise.
We define R as a big positive integer. st i,j , st (n+1),j and st j,j are respectively the setup time between the two jobs J i and J j , the setup time between the maintenance and the job J j and the setup time before the maintenance related to the job J j . The matrix of setup times is formulated as follows:

ST =           J 1 J 2 . . Jn J 1 st 1,1 st 1,2 st 1,n J 2 st 2,1 st 2,2 st 2,n Jn st n,n J n+1 st (n+1),1 st (n+1),2 . . st (n+1),n           min n j=1 w j c j (4.1) n j=1 y jb = 1 ∀b ∈ J, (4.2)
c j ≥ (b -1)T y jb + δ + st (n+1),j + p j ∀(j, b) ∈ J * J, (4.3)
c j ≤ jT y jb -δ -st j,j + R(1 -y jb), ∀(j, b) ∈ J * J, (4.4)
c k ≥ c j + 2st j,k + p j -R(1 -x jk) -st j,k (n t=1 x tk - n t=1 x tj) ∀(j, k) j =k ∈ J * J, (4.5)
x jk + x kj = 1, ∀j ∈ 1..n -1, k ∈ j + 1..n, (4.6)
c j ≥ δ + st (n+1),j + p j ∀j ∈ J, (4.7)
x jk ∈ {0, 1} ∀(j, k) ∈ J * J, (4.8)

y jb ∈ {0, 1} ∀(j, b) ∈ J * J. (4.9)
The Equation (4.1) represents the objective function to be minimized. Constraints (4.2) allow each job to be performed once in one of the batches. Constraints (4.3) and (4.7) define in each batch B b , the execution of any job J j in this batch. Indeed, each job should be finished before the starting of maintenance activity and its related setup time. This latter should be executed after the end of the preventive maintenance and the setup time spent after the maintenance related to that job J j (st n+1,j). The next sets of constraints, (4.5) and (4.6) indicate that no two jobs, J j and J k , scheduled can overlap in time. Finally constraints (4.8) and (4.9) are integrity requirements.

Second mathematical formulation

The main underlying idea of this second formulation is to consider each maintenance as a dummy job, consequently there is no need to another binary decision variable (for batches assignation) as it is considered in the first model.

We assume that there is at most n PMs. Therefore, for a better formulation of the problem, we define the following sets:

N 1 = {1, 2, . . . , n}, N 2 = {1, 2, . . . , 2n}, N 3 = {n + 1, n + 2, . . . , 2n},
with n + 1, ...2n are dummy jobs referring to the maintenance. In the same context, st j,k , st m,j and st j,m are respectively the setup time between the two jobs J j and J k , the setup time between the maintenance and the job J j and the setup time before the maintenance related to the job J j .

The matrix of setup times is designed as follows:

ST =                     J 1 J 2 . . Jn J n+1 J n+2 J 2n J 1 st 1,1 st 1,2 st 1,n st 1,m st 1,m st 1,m J 2 st 2,
0 0                     0
The decision variables are defined as follows:

x jk =    1 if job J j is scheduled before job J i , 0 otherwise. min n j=1
w j c j (4.10)

c j = (j -n)T ∀j ∈ N 3 , (4.11)
c j ≤ st n+1,j + p j + δ ∀j ∈ N 1 (4.12) c k ≥ c j + st j,k + p k -R(1 -x jk), ∀(i, j) i<j (4.13) x jk + x kj = 1 ∀(j, k) ∈ N 2 * N 2 , j = k (4.14) x jk = 1 ∀(j, k) ∈ N 3 * N 3 , j < k (4.15) x jk ∈ {0, 1} ∀(j, k) ∈ N 2 * N 2 , (4.16)
The Equation (4.10) represents again the objective function to be minimized. Constraints (4.11) allow to compute the completion time of dummy jobs. Constraints (4.12) allow each job from the set N 2 to finish after the setup-time. The next sets of constraints, (4.13) and (4.14) indicate that no two jobs, J i and J j , scheduled can overlap in time. In the same context, Constraints (4.15) avoid each two scheduled dummy jobs from overlapping in time. Finally constraints (4.16) are integrity requirements.

Comparison of the two formulations

The first and the second MILP formulations (respectively MILP1 and MILP2) presented above differ in the number of variables and constraints as it is shown in table 4.6. On one side in MILP1 there are 2n 2 -n variables. Furthermore, there are 3n 2 + n + (n -1)n/2 constraints. On the other side, MILP2 has 2n 2 variables and 8n 2 -2n + (n -1)n/2 constraints. Due to the slightly greater number of constraints in MILP2 one may assume that it is favourable to use the first formulation (MILP1), which will be demonstrated by the numerical results in section 5.

Formulation # constraints

integer variables # binary variables

MILP1 3n 2 + n + (n -1)n/2 n 2n 2 -2n MILP2 8n 2 -2n + (n -1)n/2 2n 2n 2 -2n
Table 4.1: Number of constraints and number of variables for each model.

Two approximate methods for 1-PMStWCT problem: MS-DSH & MS-GVNS

Since the two proposed MILPs doesn't succeed in solving PMStWCT problem for large-sized instances, we propose to tackle the addressed problem using two heuristics named MultiStart Descent Search Heuristic, denoted by "MS-DSH" that combines greedy and improving phases, and Multistart GVNS where the improving phase of MS-DSH is replaced by GVNS. These two methods are described in Sub-sections 4.5.2 and 4.5.3 respectively.

To solve 1-PMSTWCT, the same move strategy used in Chapter 3 in the context of 1-PMWCT is followed. To do this, we use the same first operators to generate six neighborhood structures. Two others operators are added to the fourth operator ∆ 1 to ∆ 4 already defined in Chapter 3. Note that the operator ∆ 5 is not used to solve 1-PMSTWCT as it does not give satisfying results for 1-PMWCT problem studied in the previous chapter. The two added operators for investigation in this chapter are defined as follows:

∆ 5 : The 3-opt operator [START_REF] Lin | Computer solutions of the traveling salesman problem[END_REF] removes three job connections. The three resulting paths (i.e. subsequences of jobs) are put together in a new way, possibly reversing one or more of them. The 3-opt is larger than the 2-opt and hence more time-consuming to search.

The complexity for going through the entire neighborhood structure N 6 (S) is O(n 3). ∆ 6 the Reverse two not consecutive operator consists of all solutions obtained from a solution S by interchanging two not consecutive jobs.

The complexity for going through the entire neighborhood structure N 7 (S) is O(n).

In order to respect the principle of the multistarts algorithms, the two developed methods presented in this section are based on an instance generator that we called "Lehmer code" denoted by LCG. This algorithm allows MS-DSH and MS-GVNS to restart the algorithm at each iteration from a new initial solution. The LCG concept is introduced in next sub-section.

Lehmer Code Generator: LCG

The Lehmer code is attributed to Derrick Lehmer [START_REF] Laisant | Sur la numération factorielle, application aux permutations[END_REF], [START_REF] Prouff | Cryptographic Hardware and Embedded Systems[END_REF], [START_REF] Lehmer | Teaching combinatorial tricks to a computer[END_REF]. It associates a unique code L(σ) to each permutation σ = {σ 1 , σ 2 , ..., σ k , ..., σ n }. L(σ) = {l 1 , l 2 , ..., l n } is a sequence where l i is the number of elements that are smaller than σ i and appear to the right of σ i in the permutation. The elements l i in the Lehmer code always satisfy Equation 4.17:

0 ≤ l 1 ≤ n -1, 0 ≤ l 2 ≤ n -2, ..., 0 ≤ l n-1 ≤ 1, l n = 0 (4.17)
To go back from the Lehmer code to the permutation that generates it, the method used consists in looking for the σ i elements as explained in the Equation 4.18:

σ i = A i [l i + 1] with A i = J -{σ 1 , σ 2 , ..., σ i-1 } (4.18)
We point out that a feasible solution S for 1-PMStWCT is defined as any permutation in the set J of predefined job ready to be scheduled at time t = 0

In this perspective, we can use LCG to build a new initial solution whenever needed. We note that LCG is implemented in such a way that the probability to construct same solutions when calling LCG several times within a loop, is minimal. This "guarantees" the diversification of the solutions reached in the research space.

Multistart Descent Search Heuristic for 1-PMStWCT

MS-DSH is a Multiple Descent Search heuristic (see Chapter 2 Sub-section 2.5.2) hybridized with greedy heuristics.

Algorithm 9 summarizes the main steps of MS-DSH. It starts by building a solution S using the famous BF heuristic, then improve it by sorting the jobs of S using the WSPT rule. An initial feasible solution is then provided. After that, MS-DSH launches of a descent search heuristic (DSH) until the counter I M S-DSH is reached. At each iteration within the while loop, a new initial solution is generated using the Lehmer-Code Generator denoted by LCG and the best solution S * is recorded accordingly. The neighborhood structure used within DSH is based on the swap operator denoted by ∆ 2 . Consequently, the index "2" in DSH 2 refers to ∆ 2 operator used within the neighborhood exploration to find a good solution for 1-PMStWCT. The choice of this operator is already explained in the previous Chapter, Section 3.6.3.

Algorithm 9: MS-DSH.

Input: J.

Output: S * S ←-Ranks jobs of J using Best-Fit heuristic Apply WSPT in each

B k of S S * ←-S repeat S ←-DSH i (S) if (f (S) < f (S *) then S * ←-S end S ←-LCG(S) if (f (S) < f (S *) then S * ←-S end until (number of iterations ≥ I M S-DSH);

Multistart GVNS based metaheuristic for the 1-PMStWCT

Our algorithm, called MultiStart General Variable neighborhood Search denoted by MS-GVNS, is an iterative algorithm that in each iteration constructs a new feasible solution using Lehmer code generator explained above and then, improves it using a GVNS procedure. The MS-GVNS is illustrated by Algorithm 10 where S stands for the current solution and S * for the best solution. This search framework stops when I M S-GV N S is achieved.

Algorithm 10: MS-GVNS.

Input: J. Output: S * . while (number of iterations ≤ I M S-GV N S) do S ←-LCG(J)

S * ←-GVNS(S)
end Proposed implementation of GVNS Algorithm 11 describes the main steps of the GVNS heuristic developed in this Chapter. It starts by initializing the best solution S * via the same initial solution procedure WLS used in Chapter 3. Indeed, the developed GVNS alternates phases of intensification and diversification to reach after L max iterations the best ever visited solution. The WLS procedure is an intensification step where the current solution S is get trapped in a local optimum. The shaking procedure allows to escape from this latter. It allows Three neighborhood structures according to their performance are used: N 7 (S), N 2 (S) and N 4 (S). Hence, k max is set to three. The choice of these latter is justified in Section 4.6. The best solution is provided at the end of each neighborhood search.

The VND procedure takes as inputs the parameter k max and S shake and returns S . If S is better than the current solution S then it is updated and used in the next iteration to generate a new solution in the search space using the shaking procedure. Otherwise, S will be used once more to generate S shake using the next neighborhood structure throughout the set L. the best solution S * is updated if necessary.

Neighborhood change strategy

Contrary to the strategy proposed when implementing GVNS in Chapter 3 (Section 3.6.3), the neighborhood change strategy used withing VND in this Chapter illustrated by Algorithm 15 consists to use the next neighborhood structure at the first improvement. If there is no improvement, the search restarts from the first neighborhood structure.

We remind that the strategy used in Chapter 3 consists to use the next neighborhood structure if only there is no improvement. VND stops when the last neighborhood structure is used.

Algorithm 13: VND.

Input: S, k max . Output:

S. k ←-1 while k ≤ k max do S ←-argmin S ∈N ∆ k (S) f (S) S ←-N eighborhoodChange(S , S, k) end Algorithm 15: NeighborhoodChange. Input: S, S , k. Output: S. if S is better than S then S ←-S k ←-k + 1 end else k ←-1 end 4.6 Computational experiments 4.6.

Data generation

The processing times p j and the setup times st ij are picked up from the work of [START_REF] Chen | Scheduling with dependent setups and maintenance in a textile company[END_REF] which discussed and solved a scheduling problem with dependent setups and maintenance in a textile company. Chen et al stated that the data was generated from the studied company. The percentage distributions of processing times and setup times (in hours) are listed in the Tables 4.2 and4 In addition, we consider the following special triangular inequality: st jk ≤ st jl + st lk ∀k, j, l ∈ J. In other words, the setup time between jobs j and k is either equal or lower than the setup between job j and any other job l, the processing time of job l and the setup between jobs l and k. Furthermore, setup-times are asymmetric, that is, setup-time between jobs j and k might be different from setup-time between jobs k and j.

The developed algorithms are tested over twenty different job sizes for small sized instances, namely n = 8, 10, 11, 15, 20 and 25 and large-sized instances, namely n = 50, 60, 70, 80, 90. Both the MS-GVNS and MS-DSH are coded in JAVA language. All the experiments described in this section have been carried out on a i7 Intel Core at 2.50 GHz and Linux with 16 GB of memory.

MILPs performances

To save space, the two MILPs are launched over twenty instances with the same size for each instance of size, namely n = 8, 10, 15, 20 and 25. When no optimal solution has been found within the time limit, the gap is reported as a measure of closeness to the optimal cost. The time limit of CPLEX is set to 30 minutes.

The numerical results comparing the two MILPs are summarized in Tables 4.4 and 4.5. Table 4.4 presents for each instance size, the number of solved instances and Table 4.5 summarizes the average time duration in seconds. For instances that are not solved within the time limit of 30 minutes, the average gap between the lower bound and upper bound computed with CPLEX, is reported.

As it can be seen from Tables 4.4 and 4.5 the results show that the two formulations give almost the same results with a slight superiority of MILP1 for all instances. The two MILPs are able to solve only the instances of smallest size with 8, 10 jobs and some instances with 15 jobs within the calculation time limit of 30 minutes. MILP1 was able to solve optimally 6 instances out of 20 instances of size 15 before the 30 minutes time limit, while MILP2 was able to solve only 4 instances. Still, MILP1 provided much closer gaps and therefore closer approximations of an optimal solution for the larger size instances with 15, 20 and 25 jobs. This is certainly due to the fact that the MILP1 has less constraints and decisions variables than MILP2.

Testing local search heuristics

We propose in this Sub-section to compare operators used with six different neighborhood structures that are introduced in Section 4.5. Algorithm 16 describes the main steps of the procedure used to evaluate these six operators. It consists to start the evaluation of each neighborhood structure with an initial solution built by the WSPT rule. This solution is improved using a basic local search heuristic (LS i), each time with a new operator ∆ i . The main purpose of this approach is to evaluate the speed of each LS towards a local optimum in a minimum amount of time but also which one minimizes the number of calls to the evaluation function.

The local searches are tested on instances with size n = 90. Tables 4.6,4.7 and 4.8 summarize average values of twenty instances, respectively for l EV AL = 8,000 and 200,000 and 10,000,000 objective function evaluations Furthermore, Figure 4.1 shows the comparison of the six neighborhood structures. It describes the behavior of each local search. We point out that running the local searches LS i on the four benchmark families described above allow us to make same observations. In order to save space, only the results related to the test class B 1 (T = 720 and δ =24) are reported.

From Figure 4.1 we observe that LS using the swap, the 2-opt and reverse two not consecutive operators respectively ∆ 2 , ∆ 4 , ∆ 6 gives solutions of very similar quality with a slight improvement of the swap operators starting from 20,000 evaluations. The LS using the ∆ 1 seems to give best solutions when the number of evaluations is less than 50,000 but turns to be the worst when this number exceeds 200,000 evaluations. The local searches using the 3-opt (∆ 5) operator gives the worst solutions starting from 8,000 evaluations until 200,000 evaluations but turns to return best solutions when l EV AL is upper to 4,000,000. The time consuming of the tested LS when using ∆ 1 , ∆ 2 , ∆ 3 , ∆ 4 and ∆ 6 is rather negligent as it is approximately equal to zero. On the other hand, it is slightly higher when using ∆ 5 .

The results summarized in Tables 4.6, 4.7 and4.8 consolidates our expectations. Indeed, Table 4.6 shows us that the local search using the ∆ 1 operator outperforms the others when the number of evaluations is set to 8000. In the opposite case, when l EV AL is set to 20,000 the ∆ 2 operator outperforms the others. The ∆ 5 operator becomes the best one when the number of evaluations is set to 10,000,000.

Due to this observations, we decided to implement a local search based on the ∆ 6 operator from the initial solution phase (WLS procedure). The ∆ 2 , ∆ 6 , and ∆ 6 operators are exploited under a first improvement strategy on the VND procedure. As it is usual to explore neighborhoods in the increasing order with respect to their performances [START_REF] Todosijević | Nested general variable neighborhood search for the periodic maintenance problem[END_REF], we investigated the three neighborhood structures in this order: N 2 (S), N 6 (S) and N 4 (S).

Parameters calibrations

In this sub-section, we examined the influence of the parameters I M S-DSH and L max within GVNS (how many time we call the shaking procedure). To do this, different values of I M S-DSH and L max are tested, from 1 to 30 for I M S-DSH and from 5 to 25 for L max .

The obtained results are presented in Tables 4.9 and 4.10 for twenty instances of size n = 90 for each benchmark class. These instances are of large sizes and could reveal the performance of MS-DSH for a given values of I M S-DSH and L max .

For each value of I M S-DSH and L max the average solution value found and also the average time in seconds spent upon reaching these solutions are presented. As GVNS is a stochastic heuristic, consequently we run this latter 10 times for each instance. The coefficient of variation is less than 0.1%, for that reason, the standard deviation is not reported. From the results presented in Table 4.9, it follows that GVNS is not really sensitive to the value of L max . Indeed, the average solution value found as well as the average time consumed for different values of L max are very close. Due to this, L max is set to 5. From the results presented in Table 4.10, it follows that the proposed MS-DSH is sensitive to the value of I M S-DSH parameter. Indeed, MS-DSH returns best solution values when I M S-DSH is greater than 25. Unsurprisingly, when I M S-DSH is set to 25, MS-DSH consumes the least amount of time compared with I M S-DSH > 25: namely, 15.80, 15.30, 17.28 and 18.87 seconds in respectively B 1 , B 2 , B 3 and B 4 . Obviously, we conclude that using LCG generator in MS-LSH significantly improves the results. This can be explained by the fact that DSH is a local search which is quickly trapped in local optima. On the contrary, when using LCG, it allows to escape from local optima by exploring other regions of the search space.

Empirical experiments show as that it is not interesting to set I GV N S-DSH to more than 3 iterations. In this perspectives we fixed I GV N S-DSH to 3. Consequently we conclude that unsurprisingly it is not necessary to use an initial solution generator such as proceeding in MS-GVNS. This can be explained by the fact that the search space is widely explored by GVNS especially due to its shaking procedure. Otherwise, it is observed that using Lehmer Code generator in MS-LSH significantly improves the results. This can be explained by the fact that DSH is a local search which is quickly trapped in a local optimum and when calling LCG it allows to escape from that local optimum by exploring other regions of the search space.

MS-DSH and MS-GVNS performances

In this section we compared the obtained results of the MS-GVNS with the MILP for the small sized instances and with a lower bound LB RP , obtained by relaxing the integrity constraints x i,j in the first mixed integer programming model, for the large sized instances. To measure the performance of both MS-DSH and MS-GVNS, the two notions of PED and PER are used. Thereby, P ED M S-DSH and P ED M S-GV N S , represent the improvement of MS-DSH, respectively MS-GVNS, compared with the MILP while P ER M S-DSH and P ER M S-GV N S represent the improvement of MS-DSH and MS-GVNS compared with the lower bound LB RP . PED and PER are computed as shown by the two equations 4. 19, 4.20.

P ED (%) = [(V heuristic -V M ILP)/V M ILP] × 100. (4

Conclusion

In this chapter we presented the results obtained when addressing a scheduling problem that combines periodic maintenance and sequence dependent setup-times. The complexity of the problem leads us to design heuristic algorithms to solve it. The two proposed algorithms are composed from two phases, greedy phase and an improvement phase. In this regard, MS-GVNS combines a greedy heuristic and a local search heuristic while, MS-GVNS uses a GVNS metaheuristic instead of a local search. The computational results showed that the performance of the heuristics was satisfactory in obtaining reasonably good solutions in very short times. However, MS-GVNS gives better solutions than MS-DSH. Therefore, this heuristic can be applied to large-sized instances, where standard commercial solvers fail to find an optimal solution within reasonable computational times.

Introduction

Scheduling problems have been extensively studied in the literature under the assumption that all jobs have to be processed. However, in many practical cases, one may wish or may be forced to postpone the processing of some jobs, although at some cost. Accordingly, a decision has to be made about jobs that will be accepted and those that will be rejected, so as to produce a good schedule. Nowadays, this situation is observed in several companies with a weekly planning (e.g., pharmaceutical industries, luxury watches, fast moving consumer goods, ship loading). Typically, the rejected jobs will get a higher weight (priority) the next week. The parallel machine scheduling problem has been extensively studied due to its practical applications in various manufacturing systems such as printed circuit board manufacturing, group technology cells, injection molding processes, etc. However, few studies have been done in the context of parallel machine scheduling with jobs rejection.

Preventive maintenance is performed when the machines are idle and, consequently, represents a source of machine unavailability.

In this regard, we address a scheduling problem with two parallel and non-identical machines, denoted as 2-PMJRWCT (2 Parallel Machines problem with Periodic Maintenance, Jobs Rejection and Weighted sum of Completion Times). In this problem, the two machines must undergo periodic preventive maintenance over the scheduling horizon. Solution quality is measured with two criteria. The first one is jobs rejection cost and the second is weighted sum of job completion times. In the latter case, the weights can stand for the holding or inventory cost per time unit of the corresponding jobs as well as their priority level (importance, urgency). A strategy based on Lexicographic Optimization (LO) is proposed to deal with this multi-objective problem. In LO, the decision maker establishes beforehand a priority order among the optimization objectives, where each higher level objective is infinitely more important than any lower level objective. LO is common practice, as reported in [START_REF] Zykina | A lexicographic optimization algorithm[END_REF]; [START_REF] Ehrgott | Multicriteria optimization[END_REF], [START_REF] Thevenin | Makespan minimisation for a parallel machine scheduling problem with preemption and job incompatibility[END_REF]; [START_REF] Prats | Lexicographic optimisation for optimal departure aircraft trajectories[END_REF] and [START_REF] Solnon | The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the roadef?2005 challenge problem[END_REF], since it is a convenient approach to address multiobjective problems.

To solve the 2-PMJRWCT, we propose a greedy constructive algorithm and two metaheuristics based on tabu search. We also propose a Mixed Integer Linear Program (MILP) to find the optimum on small-sized instances. It is used here to compare the solutions produced by our algorithms with optimal solutions on instances defined over a scheduling horizon of one day.

The remainder of this chapter is organized as follows. A literature review dealing with order acceptance and scheduling, jobs rejection, periodic maintenance and multi-availability constraints is proposed in Section 5.2. Then, a MILP for the 2-PMJRWCT is presented in Section 5.3. The greedy constructive heuristic and the two metaheuristics based on tabu search are described in Sections 5.4 and 5.5, respectively, while Section 5.6 reports computational results. Finally, Section 5.7 ends the chapter with a conclusion and some perspectives for the future.

Literature review

Based on the three-field notation α | β | γ known as the Graham triplet [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF], 2-PMJRWCT can be denoted as P 2 | pm | n j=1 u j , n j=1 w j C j . The first field (α) means that there are two parallel machines. The second field (β) indicates that a periodic preventive maintenance (pm) must be performed on each machine. Finally, the last field (γ) represents the objective functions. To the best of our knowledge, 2-PMJRWCT has never been studied in the literature. Nonetheless, Subsections 5.2.1 to 5.2.4 will review works that are related to this problem. Subsections 5.2.1 and 5.2.2 are dedicated to the order-acceptance-and-scheduling literature and to the scheduling-problem-with-job-rejection literature, respectively. Both literatures cover actually the same problem, namely job scheduling when the production capacity is not able to schedule all the jobs. This situation leads to the rejection (resp. acceptance) of some of them, which is penalized (resp. rewarded) in the objective function. Subsections 5.2.3 and 5.2.4 focus on the maintenance and on the lexicographic optimization aspects in the context of job scheduling.

Order acceptance and scheduling

A taxonomy and a general review on order acceptance and scheduling (OAS) can be found in [START_REF] Slotnick | Order acceptance and scheduling: A taxonomy and review[END_REF]. This problem is to jointly decide about job acceptance and the scheduling of accepted jobs. Different problem characteristics and problem-solving methodologies, starting from this basic scheme, have been proposed in the literature. In the following, papers dealing with a single machine and different objective functions are reviewed, followed by a discussion on problems with two or more machines. et al. (2010) consider the single machine scheduling problem where job acceptance depends on the release date, due date, deadline, processing time, sequence-dependent setup time and revenue. The main objective is the maximization of the total revenue. The authors propose a MILP and also develop three heuristic algorithms to solve their problem. Based on the same objective function, [START_REF] Bahriye | A tabu search algorithm for order acceptance and scheduling[END_REF] propose a tabu search to solve a problem that considers sequence-dependent setup times and tardiness penalties. [START_REF] Nobibon | Exact algorithms for a generalization of the order acceptance and scheduling problem in a single-machine environment[END_REF] generalize two existing problems defined in a single machine environment. The first one is the order acceptance and scheduling problem with weighted-tardiness penalties, already reported in [START_REF] Slotnick | Order acceptance with weighted tardiness[END_REF]. The generalized problem reduces to the latter when the pool of firm planned orders is empty and all jobs can potentially be rejected. The second problem is the total-weighted-tardiness scheduling problem reported in [START_REF] Potts | A branch and bound algorithm for the total weighted tardiness problem[END_REF]. To solve their generalized problem, the authors propose a MILP and two exact branch-and-bound algorithms. They report solving instances with up to 50 jobs in less than two hours. In [START_REF] Thevenin | Order acceptance and scheduling with earliness and tardiness penalties[END_REF], the authors address a production scheduling problem in a single-machine environment with earliness and tardiness penalties, sequence-dependent setup times and costs. The objective function includes setup costs, jobs rejection penalties and weighted tardiness penalties. The authors propose various methods to solve this problem, ranging from a basic greedy algorithm to sophisticated metaheuristics (e.g., tabu search, adaptive memory algorithm). In another work by the same authors [START_REF] Thevenin | Metaheuristics for a scheduling problem with rejection and tardiness penalties[END_REF], sequence-dependent setup times and setup costs between jobs of different families, release dates, deadlines and jobs rejection are taken into account. They propose and compare a constructive heuristic, local search methods, and population-based algorithms. Recent papers dealing with OAS in a single machine environment take into account machine availability constraints, as in [START_REF] Zhong | Order acceptance and scheduling with machine availability constraints[END_REF]. Here, the authors propose a pseudo-polynomial algorithm for fixed time intervals between two consecutive PMs.

Single machine

Ceyda

Multiple machines

In [START_REF] Ou | Order acceptance and scheduling with consideration of service level[END_REF], the authors study the OAS problem for n jobs on m parallel machines where the number of rejected jobs should not exceed a given limit L. The objective is to minimize the completion time of the last scheduled job plus the total cost of rejected jobs. For the special case of a single machine, they present an exact algorithm of complexity O(n • log(n)). For m machines, they first propose a heuristic of complexity O(n • log(n)) with a worst-case bound of 2 -1 m . They also develop a heuristic based on LP-relaxation and bin-packing techniques. The OAS with two machines in a flow shop is considered in [START_REF] Xiuli | Order acceptance and scheduling in a two-machine flowshop[END_REF]. The authors present a heuristic and a branch-and-bound algorithm based on dominance rules and relaxation techniques. Their objective is to maximize the total net profit of accepted jobs, where the latter is the revenue minus the weighted tardiness. In [START_REF] Wang | Order acceptance and scheduling on two identical parallel machines[END_REF], the authors solve a scheduling problem with two parallel machines with two heuristics and an exact algorithm, using some properties of optimal solutions to maximize the total profit. In another environment with parallel machines, [START_REF] Jiang | Order acceptance and scheduling with batch delivery[END_REF] study the OAS problem with batch delivery in a supply chain consisting of a manufacturer and a customer. The objective is to minimize the weighted sum of the maximum lead times of accepted jobs and the total cost of deliveries. To solve the problem, two approximation algorithms are proposed. Finally, [START_REF] Emami | A lagrangian relaxation algorithm for order acceptance and scheduling problem: a globalised robust optimisation approach[END_REF] report a MILP model and a Lagrangian relaxation algorithm to solve an OAS problem with the objective of maximizing the total profit.

Scheduling problem with jobs rejection

The scheduling problem with jobs rejection is also reported in the literature, although it can be related to the OAS problem (since rejecting a job means not accepting it and vice-versa). The scheduling problem with jobs rejection was studied in different machine environments, as indicated in a recent survey [START_REF] Shabtay | A survey on offline scheduling with rejection[END_REF], although mostly for single machine problems.

In [START_REF] Li | Scheduling with rejection and a deteriorating maintenance activity on a single machine[END_REF], the authors consider the scheduling problem with jobs rejection and a maintenance activity that becomes less effective over time. The main objective is to determine the timing of the maintenance activity and the sequence of accepted jobs to minimize the scheduling cost of accepted jobs plus the total cost of rejected jobs. The authors provide polynomial time algorithms for this problem. [START_REF] Shabtay | A bicriteria approach to scheduling a single machine with job rejection and positional penalties[END_REF] propose a bicriteria analysis of a large class of single machine scheduling problems with a common property, namely, the consideration of rejection costs plus other additional criteria (makespan, sum and variations of completion times, earliness and tardiness costs).

Since scheduling with rejection is essentially studied in bicriteria contexts [START_REF] Shabtay | A survey on offline scheduling with rejection[END_REF], concepts from the theory of bicriteria scheduling are commonly used when dealing with such problems. Below, we review papers addressing the weighted sum of completion times and the total cost of rejected jobs. [START_REF] Cao | On several scheduling problems with rejection or discretely compressible processing times[END_REF] first prove that the problem for a single machine is NP-hard. A few years later, [START_REF] Zhang | Scheduling with rejection to minimize the total weighted completion time[END_REF] develop a pseudo-polynomial algorithm and a Fully Polynomial Time Approximation Scheme (FPTAS) for multiple parallel machines. Also, [START_REF] Engels | Techniques for scheduling with rejection[END_REF] propose general techniques such as linear-programming relaxations. In [START_REF] Moghaddam | Single machine scheduling with rejection: Minimizing total weighted completion time and rejection cost[END_REF], the authors study a single machine scheduling problem with jobs rejection, while considering again minimization of the weighted sum of completion times plus the total cost of rejected jobs. They propose a mathematical formulation and three different bi-objective simulated annealing algorithms to estimate the Pareto-optimal front for large sized instances. The authors in (Zhong et al., 2017) study a scheduling problem on two parallel machines with release times and jobs rejection. The objective is to minimize the makespan of accepted jobs plus the total cost of rejected jobs. They develop a (1.5 + ε)approximation algorithm to solve the problem. [START_REF] Ou | An improved heuristic for parallel machine scheduling with rejection[END_REF] consider m parallel machines in a context where jobs rejection is allowed. The objective is to minimize the makespan plus the total cost of rejected jobs. They develop a heuristic of complexity O(n • log(n) + n/ε) to solve the problem with a worst-case bound of 1.5 + ε. With the same goal, [START_REF] Zhong | Parallel machine scheduling with restricted job rejection[END_REF] present a 2-approximation algorithm with a complexity of O(n • log(n)) by making use of specific data structures. The authors also propose a PTAS to solve the problem. In [START_REF] Ma | Online scheduling with rejection to minimize the total weighted completion time plus the total rejection cost on parallel machines[END_REF], the authors consider that the information about each job, including processing time, release date, weight and rejection cost, is not known in advance. They develop a technique named Greedy-Interval-Rejection to produce good solutions. Finally, the authors in [START_REF] Agnetis | Scheduling with job-rejection and position-dependent processing times on proportionate flowshops[END_REF] consider the minimization of the makespan in a flow shop with position-dependent job processing times and jobs rejection. A polynomial time procedure is proposed to solve this problem.

Periodic maintenance and multi-availability constraints

The authors in [START_REF] Kaabi | A survey of parallel machine scheduling under availability constraints[END_REF] have written a comprehensive survey about scheduling in parallel machine environments in the presence of availability constraints (which can be induced, in particular, by maintenance activities). [START_REF] Sun | Scheduling problems with multiple maintenance activities and non-preemptive jobs on two identical parallel machines[END_REF] consider two problems. In the first problem, they minimize the makespan on two parallel machines when maintenance activities are performed periodically. In the second problem, maintenance activities are determined jointly with job scheduling, while minimizing the sum of the job completion times. They introduce an algorithm of complexity O(n 2) and show that the classical Shortest Processing Time algorithm (SPT) is efficient for the second problem with a worst-case bound less than or equal to 1 + 2 • σ, where σ = t/T , T is the maximum continuous working time for each machine and t is the time required to perform each maintenance activity. Li et al. (2017) investigate a parallel-machine scheduling problem where each machine must undergo periodic maintenance. The authors propose two mathematical programming models and two heuristic approaches to address instances of large-sized. In [START_REF] Qi | Scheduling jobs with maintenance subject to load-dependent duration on a single machine[END_REF], the authors investigate a scheduling problem on a single machine with maintenance, in which the starting time of the maintenance is given in advance but its duration depends on the previous machine load.

Multiobjective scheduling problem using lexicographic optimization

LO was widely used in control engineering and scheduling applications [START_REF] Aggelogiannaki | Multiobjective constrained mpc with simultaneous closed-loop identification[END_REF][START_REF] Kerrigan | Designing model predictive controllers with prioritised constraints and objectives[END_REF][START_REF] Ocampo-Martinez | Objective prioritization using lexicographic minimizers for mpc of sewer networks[END_REF][START_REF] Respen | Metaheuristics for a job scheduling problem with smoothing costs relevant for the car industry[END_REF][START_REF] Billaut | Multicriteria scheduling: theory, models and algorithms[END_REF]. In a work closely related to ours, the authors in [START_REF] Thevenin | Makespan minimisation for a parallel machine scheduling problem with preemption and job incompatibility[END_REF] model a parallel machine scheduling problem with job incompatibility through an extension of the graph coloring problem. Different objectives like makespan, number of job preemptions and total time spent by the jobs in the production shop are considered and addressed through LO. A mathematical model, two greedy constructive algorithms, two tabu search methods and an adaptive memory algorithm are proposed to solve the problem.

Mathematical model

In the following, we first introduce some notation and a brief description of our problem. This is followed by the MILP.

Formal description of 2-PMJRWCT

Let J be a set of n independent jobs to be scheduled on two parallel, non identical machines M i (where i ∈ I = {1, 2}) over a planning horizon of five days (i.e., 7200 minutes). Accordingly, we define d = 7200 minutes as the common deadline for all jobs in set J. If a job cannot be feasibly scheduled during the current week, it is then postponed to the next week and a rejection cost is incurred. A feasible solution of 2-PMJRWCT is illustrated in Figure 5.1, where S (defined as the set of accepted jobs) is made of two sequences: S 1 associated with machine M 1 and S 2 associated with machine M 2 . S is the set of rejected jobs that are postponed to the next week. Each machine M i must undergo a PM at intervals that cannot exceed T i minutes. In other words, the interval between the end time of a given PM and the start time of the next PM cannot exceed T i minutes. The jobs scheduled between the two PMs define a block, with B i k the k th block on machine M i scheduled between the (k -1) th and k th PMs. The scheduling of a PM activity on each machine M i is flexible and can actually occur before T i minutes have elapsed, if it is not possible to avoid it or if it is beneficial to do so. Accordingly, the time length of a block is also variable, although it can never exceed T i . The duration of a PM activity on machine M i is denoted by δ i . As illustrated in Figure 5.1, there is no idle time in the schedule between two consecutive jobs or between a job and a PM.

Each job j ∈ J is characterized by a known processing time p j , a rejection cost u j and a weight w j = h j + b j which is the sum of its inventory cost h j and its priority level b j . Preemption is not allowed and any interrupted job due to maintenance is redone or postponed to the next week. The two machines are considered non identical in the sense that machine M 2 is assumed to be older than M 1 . Accordingly, PMs must be done more frequently on M 2 and the maximum time interval T 2 between two consecutive PMs is smaller than T 1 . A feasible solution to 2-PMJRWCT is represented by the pair (S, S). It is evaluated first through objective f 1 , which is the total rejection cost of the jobs in S, and second through objective f 2 , which is the weighted sum of the completion times of the jobs in S. With regard to f 2 , the WSPT (Weighted Shortest Processing Time) rule is particularly w j C j scheduling problem, which minimizes the weighted sum of completion times on a single machine without side constraints. The WSPT rule states that the jobs should be scheduled in increasing order of their ratio p j /w j . This rule will be exploited in our algorithms, although in a heuristic way since we have two machines with some operational constraints.

Mathematical model

The mathematical programming formulation of 2-PMJRWCT is presented below. It involves five different types of decision variables.

c j : completion time of job j ∈ J m k i : starting time of the k th PM on machine M i x i lj =    1 if job l is scheduled before job j on machine M i 0 otherwise z i j =    1 if job j is scheduled on machine M i 0 if job j is rejected y i jk =    1 if job j is scheduled in block k on machine M i 0 otherwise
For the sake of the MILP formulation, two dummy jobs 0 and n + 1 are added to the model with completion state that two jobs scheduled consecutively should be assigned to the same machine. Constraints (5.9) and (5.10) define bounds on the completion time of each scheduled job (if a job is rejected, its completion time is set to 0). Constraints (5.11) indicate that two jobs scheduled on the same machine cannot overlap. Constraints (5.12) state that the sum of processing times of all jobs between two consecutive maintenance activities must be less than or equal to T i . Since the number of blocks on each machine M i is at most the number of jobs assigned to M i , constraints (5.13) computes the number of accepted jobs in each block B i k . Constraints (5.14) enforce each accepted job j to be scheduled either on M 1 or M 2 but not both. Similarly, constraints (5.15) allow accepted jobs to be scheduled in a block B i k of either machine M 1 or M 2 but not both. Constraints (5.16) state that if two jobs l and j are scheduled on the same machine, then l is scheduled either before or after j. Constraints (5.17) set the completion times of dummy jobs 0 and n + 1, and the starting time of the first PM on each machine to 0. Finally, constraints (5.18) define the binary variables.

Through the lexicographic approach, 2-PMJRWCT can be solved optimally in two steps with an exact solver. First, objective f 1 is minimized while ignoring f 2 (i.e., the above-presented model is solved). Let f 1 value of f 1 . In the second step, constraint f 1 ≤ f 1 is added to the model and the latter is solved with objective f 2 only. In other words, the model below is solved.

min (f 2) = n j=1 w j c j (5.19) s.t. Constraints (5.2 -5.18) (5.20) n j=1 u j (1 -(z 1 j + z 2 j)) ≤ f 1 ∀ i ∈ {1, 2} (5.21)
The solution obtained at the end of the second step is one optimal solution of 2-PMJRWCT. We observed that CPLEX solver could only solve small instances, thus supporting the use of heuristics and metaheuristics to address instances of larger sizes. In the following, our problem-solving methods are presented, starting with a greedy heuristic to generate a first feasible schedule, which is then improved with tabu search-based metaheuristics.

Greedy heuristic (GrH) for the 2-PMJRWCT

The greedy heuristic GrH calls a construction procedure which is aimed at producing a feasible schedule of good quality from a given set of jobs. In particular, GrH calls the construction procedure within a loop where the set of jobs is gradually reduced until all jobs can be scheduled, as it is explained below. In each proposed procedure of this work, ties are broken randomly if no other information is provided.

Main procedure

We can see from the description in Algorithm 17 that GrH starts by using the greedy construction procedure (presented in Algorithm 18) with the whole set of jobs J. The latter then returns a feasible solution (i.e., a set S with |S| scheduled jobs and a set S of rejected jobs). Forgetting about the schedule previously obtained, we just select the |S| jobs in J with the largest u j to obtain a subset J s (step 3a). The construction procedure is then called again, but with J s (step 3b). If the feasible schedule obtained does not contain all jobs in J s , we reset the value of |S| to the (smaller) number of scheduled jobs in the new solution, we select the |S| jobs in J with the largest u j to obtain a new subset J s (step 3a again), and the construction procedure is called with the latter (step 3b again). This is repeated until all jobs in J s can be feasibly scheduled. The aim of this step 3 is to schedule as many jobs as possible with the largest rejection costs, since f 1 is the main objective.

Next (step 4), we try to insert the jobs that are not in the solution, by inserting them at the end of the schedule of machine M 1 or M 2 . We consider these jobs one by one in decreasing order of rejection costs. First, we check if the current job j can be inserted without exceeding the deadline d. If this is not possible for the two machines, job j is skipped. Otherwise, we check if the completion time C j of j occurs after the due time for the next PM on the single machine or on the two machines that still qualify. If it does, the job is skipped. Otherwise, we schedule job j on the machine that leads to the smallest C j .

Algorithm 17: GrH.

Input: J. Output: (S, S).

Tabu Search-based metaheuristics

Two metaheuristics based on tabu search (TS) called Multi-Tabu Search (MultTS) and Consistent Tabu Search (ConsTS), are proposed in this section. MultTS explores only feasible solutions by exploiting different types of neighborhoods, while ConsTS admits moves leading to infeasible solutions, although an infeasible solution is immediately repaired to restore feasibility (consistency). These two metaheuristics will now be described in the following sub-sections.

Multi-Tabu Search

A feasible solution is represented by a pair (S, S), where S is the sequence of scheduled jobs made of the two subsequences S 1 and S 2 on machines M 1 and M 2 , respectively, whereas S is the unordered set of rejected jobs.

MultTS improves the initial starting solution produced by the greedy heuristic GrH, while always maintaining feasibility. As shown in Figure 5.2 and Algorithm 19, MultTS has four different phases. Phases 1, 2 and 3 exploit the intensification capabilities of tabu search by using different types of neighborhood structures, while Phase 4 is aimed at diversification. In Algorithm 19, (S, S) stands for the current solution, while (S * , S *) is the best known solution. The while loop stops the algorithm after IterM ax M ultT S global iterations and returns the best solution found (S * , S *). Each iteration involves three consecutive TS phases, each with a given neighborhood structure. Phase 1 optimizes objective f 1 and the set S of rejected jobs obtained at the end of this phase is directly fed to Phase 4. Meanwhile, the sequence S of scheduled jobs obtained at the end of Phase 1 is modified in Phases 2 and 3 with the aim of optimizing f 2 . In these two phases, no job from S can be rejected, thus only the sequence of jobs on the two machines is modified. Phase 4 is aimed at diversifying the search by rescheduling the jobs to obtain a new partition between scheduled and rejected jobs. The main components of MultTS will now be described in the following paragraphs. MultTS exploits a variety of neighorhood structures in Phases 1, 2 and 3 to improve the current solution, as it is explained below. Phase 1. The tabu search in Phase 1 optimizes only f 1 (rejection cost) using a neighborhood structure based on SWAP 1 and INSERT. In SWAP 1 , every pair of jobs j and j with j ∈ S and j ∈ S are considered for exchange. That is, a scheduled job is rejected and replaced by a previously rejected job. After each such potential exchange, the jobs j ∈ S, sorted in decreasing order of rejection cost u j , are considered one by one for insertion in the schedule, with the goal of inserting as many jobs as possible while keeping solution feasibility. Indeed, when a swap is applied between a job j in S and a job j in S, the processing time p j can well be greater than p j , which may lead to exceeding the deadline d. Conversely, when p j is smaller than p j , some free space is created in the schedule and this flexibility can then be exploited by INSERT. Phase 2. The tabu searches in Phase 2 and 3 are aimed at improving the scheduling of accepted jobs, as identified in Phase 1, with regard to objective f 2 . The neighborhood structure called SWAP 2 exchanges every pair of blocks scheduled on the same machine. After some preliminary tests, we discovered that swapping blocks between the two machines was not beneficial because the blocks are not of the same size (i.e., T 2 < T 1). Accordingly, the schedule of machine M 2 often exceeded the deadline after such a move, as illustrated in Figure 5.3 for the exchange of blocks B The neighborhood structure in Phase 3 is based on SWAP 3 moves where every pair of jobs, scheduled on the same machine or not, exchange their positions. The goal here is to obtain a better scheduling of the jobs within the blocks with regard to objective f 2 .

It should be noted that a fraction of each neighborhood structure can be explored in Phases 1, 2 and 3 depending on the value of parameter P r. Values 1/4, 1/2, 3/4 and 1 are considered, where P r = 1 means that the whole neighborhood is explored and P r = 1/4, 1/2, 3/4 mean that only the corresponding fraction of the whole neighborhood is explored. In the latter cases, the neighborhood solutions considered are randomly chosen.

Phase 4. Diversification

The purpose of Phase 4 is to provide a form of diversification in the search process. First, we consider the number of blocks N B i scheduled on each machine M i , where a block is the sequence of jobs between the start of the schedule and the first PM, between two consecutive PMs, or between the last PM and the end of the schedule. This number is compared with N B * i , which is the smallest possible number of blocks on machine M i . We recall that preventive maintenance should ideally be done after the maximum allowed time T i . Thus, N B * i is computed with the formula d

T i + δ i . When N B 1 > N B * 1 and N B 2 > N B * 2 ,
Algorithm 20 is used to rebuild a new solution. To this end, the set of jobs J is partitioned into scheduled (S) and rejected (S) jobs with the aim of producing N B * i blocks over the scheduling horizon on each machine M i . This is done by iteratively solving the following MILP to create each block first on machine M 2 and then on machine M 1 (note that S is equal to J at the start, and is then appropriately updated from one iteration to the next): Once done, the jobs in S are scheduled to minimize objective f 2 . This is done by first sequencing the blocks on each machine M i in decreasing order of their weight, which is the summation over the weights of all jobs in the block. Then, the jobs within each block are sequenced according to the WSPT rule.

z j =    1 if job j is scheduled 0 if job j is rejected maximize j∈S z j (5

Solution update

Each modification to the current solution in Phases 1, 2 and 3 needs to be correctly evaluated. It implies that jobs may have to be shifted to the right or to the left (in the latter case, to fill idle time between two consecutive

Consistent tabu search

This tabu search is inspired from the work in [START_REF] Zufferey | A generalized consistent neighborhood search for satellite range scheduling problems[END_REF] where a satellite range scheduling problem is addressed. As opposed to MultTS, infeasible neighborhood solutions are considered but are immediately repaired to restore feasibility. There are two main phases in ConsTS, each based on a tabu search which is aimed at optimizing one of the two objectives. Figure 5.5.2 illustrates the main steps of this algorithm. An initial solution (S, S) is first generated using the greedy heuristic GrH. Then, objective function f 1 is optimized in Phase 1 through insertion moves. This phase is repeated as long as an improvement is observed within IterM ax ConsT S 1 iterations. Otherwise, objective function f 2 is optimized in Phase 2 using a swap neighborhood structure similar to the one used in Phase 3 of MultTS. This phase is stopped after a maximum number of iterations IterM ax ConsT S

2

. As opposed to Phase 1, this phase is not repeated as long as an improvement is observed, because f 2 is only a secondary objective. The two phases are then repeated until IterM ax ConsT S global iterations have been performed. Since the aspiration criterion is the same as in MultTS, we will focus on the neighborhood structures and tabu status in the following.

Neighborhood structures Phase 1

Here, the first objective f 1 (rejection cost) is optimized using the neighborhood structure INSERT 2 , where every rejected job is considered for insertion at every position in the schedule of machines M 1 and M 2 . It is important to note that the insertion is enforced even if the deadline d is exceeded. In such a case, the tentative solution is immediately repaired by removing jobs. Assuming that the (infeasible) insertion of job j takes place in block k, we first define the subset of candidate jobs for removal, L, as all jobs other than j that are scheduled between the end time of P M k-1 (or t = 0 if k = 1) and the end of the schedule on machine M i , see Figure 5.5. Subset L is chosen with the aim of limiting the impact of a removal on the solution structure, while facilitating the evaluation.

Then, we follow the steps:

While d is exceeded 1. select job s from L with smallest u s .

2. break ties by considering job s with smallest w s /p s 3. break ties by randomly choosing job s 4. reject job s and update (S, S).

Phase 2

Phase 2 is aimed at minimizing the second objective f 2 , using the neighborhood structure SW AP 4 . The latter is similar to SWAP 3 in MultTS, excepted that a swap between two jobs j and j in positions k and k , k < k , is considered only when w j /p j is larger than w j /p j (c.f., WSPT rule).

Tabu status

Like MultTS, a tabu tenure is associated with each move. In Phase 1, only the rejected job is tabu for a certain number of iterations, while it is the reverse swap in Phase 2. In both cases, the number of iterations is randomly chosen in the interval [5,10].

Computational results

This section reports computational results obtained with the proposed algorithms. The generation of test instances is first discussed in Sub-section 5.6.1. Then, experiments conducted to determine the best value for different parameters are described in Sub-section 5.6.2. Finally, comparisons between MultTS, ConsTS and CPLEX solver are reported and discussed in Sub-section 5.6.4.

All algorithms are coded in Java. The MIP solver is CPLEX 12.7 with Concert Technology for the Java interface. All computational tasks were performed on an i7 Intel Core at 2.50 GHz with 16 GB of RAM.

Since objective f 1 (minimizing the sum of rejection costs) is the main objective and subsumes f 2 (minimizing the weighted sum of job completion times), we will sometimes report only the values of f 1 in the following results for brevity purposes. It should also be noted that M ultT S and ConsT S are stochastic algorithms and, consequently, they are run 10 times on each instance with only the best run being recorded (note, however, that the relative standard deviation is smaller than 0.2%).

Test instances

Since there are no available benchmark instances in the literature for our problem, we carried out experiments based on randomly generated data.

The job processing time p j in minutes is uniformly distributed in the interval [30,120] with an average of 75 minutes. Thus, it is possible to schedule at most 96 jobs per machine over a scheduling horizon of 5 days (7200 minutes), if we do not consider the maintenance activities. For example, when n = 200, a minimum of 8 jobs will be rejected. Accordingly, we generated instances of size, n = 200, 210, 220. For each size, 10 instance were generated, for a total of 30 instances. Periodic preventive maintenance is performed on the two machines after a maximum of T i minutes of use with T 1 = 480 and T 2 = 360. The time required to perform a maintenance is set to 4 % of T i , which translates into δ 1 = 20 minutes and δ 2 = 15 minutes.

The weight w j = b j + h j is uniformly distributed in the interval [20,60]. That is, the priority b j is randomly selected in the set {10, 20, 30}, while h j is uniformly distributed over the interval [10,30]. Finally, u j is uniformly distributed over the interval [b j p j /2, 2b j p j], since the rejection cost of a job depends on its priority and processing time.

Parameters calibration

In this Sub-section, we examine the impact of different parameters on the proposed algorithms. To this end, different values were tested for each parameter, as it is explained below.

Parameters q 1 and q 2 GrH was run with q 1 = .05n, .1n, .2n, .3n, .4n, .5n, n while q 2 was set to q 1 2 . Table 5.1 summarizes the average value of f 1 over the ten instances for each size n and each q 1 value. It shows that GrH produces better solutions with smaller values of q 1 . For a better view of the results, the entries in Table 5.2 provide the number of instances for which a given value of q 1 produces the best solution. At the end, the value .2n was selected. q 1 =.05n q 1 =.1n q 1 =.2n q 1 =.3n q 1 =.4n q 1 =.5n q 1 =n n=200 11270. 5 11159.7 11462.8 11593 15200.2 16530.1 21020.6 n=210 20970.5 21127.5 16530.1 18013.2 19292.3 20534.8 33035 n=220 31037.5 31063.1 31365.5 33502 35590.3 38437.1 47697.5 Table 5.1: Average objective values of GrH based on f 1 for different values of q 1 q 1 = .05n q 1 = .1n q 1 = .2n q 1 = .3n q 1 = .4n q 1 = .5n q 1 = n n=200 5/10 4/10 2/10 2/10 0/10 0/10 0/10 n=210 4/10 1/10 6/10 2/10 0/10 0/10 0/10 n=220 4/10 3/10 5/10 3/10 0/10 0/10 0/10 From now on, the results will be reported as improvements (gaps) in percent from solutions produced by GrH, that is: We ran Phases 1 and 3 of M ultT S with P r N = 1, 3/4, 1/2, 1/4, where P r N is the fraction of the neighborhood explored. For these experiments, the number of iterations of M ultT S in Phases 1, 2 and 3 was set to 2n, n/5 and 3n, respectively. Tables 5.5 and 5.6 summarize the results, while considering that Phase 1 optimizes f 1 and Phase 3 optimizes f 2 . From these results, we can easily see that high values of P r N are associated with better objective values, although at a computational cost. For n = 220 in Table 5.5, for example, the average computation time with P r N = 1 is 27.60 seconds, while it is only 7.18 seconds with P r N = 1/4. On the other hand, the average solution value obtained with P r N = 1 is substantially better than P r N = 1/4. P r N = 1 P r N = 3/4 P r N = 1/2 P r N = 1/4 Based on these results, and given the benefits obtained from a complete exploration of each neighborhood, P r N was set to 1 in Phases 1 and 3. Furthermore, the whole neighborhood is also explored in Phase 2 of M ultT S, due to its smaller size. Based on the results obtained with M ultT S, P r N was also set to 1 in Phases 1 and 2 of ConsT S.

Results on large test instances

This Sub-section analyzes the results obtained with M ultT S and ConsT S. First, we analyze the impact of using the diversification step in MultTS. Second, we compare the two implementations of MultTS with a tabu search versus a descent in Phase 2. Finally, we report and discuss the final solutions produced by MultTS and ConsTS.

Impact of diversification (Phase 4 of MultTS)

Table 5.7 reports the improvement in objectives f 1 and f 2 obtained from the different phases of MultTS for each instance size n. As we can see, there is more improvement in objective f 1 when MultTS starts from the initial solution constructed by GrH in Phase 1. Since Phases 2 and 3 are not concerned with f 1 , the results of Phase 4 (diversification) are then reported. The last line shows the best solution obtained after one hour of computational time. 5.8 compares the final results obtained when using the DA algorithm once and TS algorithm another time in Phase 2 of MultTS for instance size n = 200, 210 and 220. We remind that the neighborhood structure used in Phase 2 consists on swapping blocks. From the computed GAPs reported in the Table 5.8, we conclude that the results obtained remain the same when DA or TS are used. GAP DA and GAP T S used here for the comparison are computed on the basis of the Equation 5.24. Thus, v 1 refers to f 2 returned by GrH in both in GAP DA and GAP T S , when v 2 refers, in the case of GAP T S , to the best value of the target criterion f 2 when

Comparison between MultTS and ConsTS

Table 5.9 presents a comparison between objectives f 1 and f 2 of MultTS and ConsTS for instances with n = 200, 210 and 220 jobs. The GAP metric is used to calculate the improvement achieved on the objective functions f 1 and f 2 . We remind that GAP is computed as explained in Equation 5.24. Table| 5.9 mentioned above is composed of two parts. Hence, columns two, three and four are devoted to the first criterion f 1 while the remaining columns five, six and seven to f 2 . The third line shows the GAP between v 1 which represents here f 1 respectively f 2 values returned by GrH and v 2 which is the better objective function value f 1 respectively f 2 found by MultTS, while the last line, v 2 represent f 1 or f 2 value returned, this time, by ConsTS. We can easily notice that MultTS produces better solutions with regard to objective f 1 , while ConsTS does a better job at optimizing objective f 2 . Both MultTS and ConsTS obviously outperforms GrH which is used to provide initial solutions for the TS. Table 5.11 show the number of times each method found the best solution on the 10 test instances with the same size, namely n=200, 210 and 220. Clearly, MultTS improves over ConsTS on the first objective f 1 . For example, with n=210, MultTS finds the best solution on 7 instances out of 10. On the other hand, ConsTS is always better with regard to f 2 . As columns 5, 7 and 9 of Table5.11 shows so well, for each instance size n, ConsTS records 10 best solutions out of 10 and multTS does not find any. summarizes the average number of rejected jobs recorded for each instance size, namely, n =200, 210 and 220 and for each method MultTS and ConsTS. Entries of the second line named by S GrH display the average number of rejected jobs returned by the greedy heuristic GrH that is used to compare with, while S M ulT S and S ConsT S refer respectively to the average number of rejected jobs when applying MultTS, respectively ConsTS. We note that, when using MultTS, the rejected jobs are reduced in average about 4.4 jobs when n=200, 3.3 when n=210 and about 10.2 when n=220. On the other hand, the average number of rejected jobs is less important when ConsT S is applied. Indeed, this number is equal to 2.3 when n=200, 1.9 when n=210 and 4.9 when n =220. Consequently, even if minimizing f 1 does not quite correspond to minimize the number of rejected jobs but to minimize the cost of rejecting jobs, we can state that these results confirm the fact that M ulT S is much better than ConsT S with regard to f 1 . n=200 n=210 n=220 Tables 5.12 and 5.13 summarize the average run times that is consumed by each phase that constitutes MultTS and ConsTS when the stopping criteria IterM ax M ultT S and IterM ax ConsT S are set to one hour and for each instance size n =200, 210, and 220.

We first notice that the more the size of the instances increases the more the run times of each phase also increases in both MultTS and ConsTS.

From Table 5.12 we note that during one hour, Phase 3 of MultTS is the phase that takes the most run times (almost 57 minutes) and phase 2 the one that takes the least run times. This remains obvious because the neighborhood structure used in Phase 3 is based on the interchange (swap) of all jobs belonging to the set S. The evaluation function being generally the one that consumes the most time has certainly been much more solicitous during this phase. Contrary to this, in phase 2, where we proceed to only interchange blocks of jobs instead of jobs and therefore moving inside the solution space does not take much time.

From Table 5.13, we note that phase 1 takes longer than phase 2 in ConsTS. This can be explained by the fact that in Phase 2 the number of calls to the evaluation function is reduced. Indeed, jobs are interchanged only if the WSPT rule is respected (see Section 5.5.2) whereas in Phase 1, the neighborhood structure consists to insert each job of S in all the possible positions in S. 5.6 and 5.7 show respectively the evolution of the best objective function value f 1 with respect to the execution times parameterized by the stopping criterion IterM ax M ulT S respectively IterM ax ConsT S . When t = 0, it is the value returned by the greedy GrH which is recorded. We conclude that, best value found considering f 1 is slightly increasing with the progress of t and became constant when t = 30 minutes for MultTS and when t = 45 minutes for ConsTS. From the results above we can conclude that it is better to set IterM ax M ulT S to 30 minutes and IterM ax ConsT S to 45 minutes instead of one hour.

Conclusion

In this work, we considered a parallel machine scheduling problem with two non identical machines over a weekly planning horizon, while considering periodic preventive maintenance. Two objectives were considered: jobs rejection cost and weighted sum of job completion times. Lexicographic Optimization was used to address this multiobjective problem. We first introduced a MILP formulation for the problem. Then, we developed a greedy heuristic and two tabu search-based metaheuristics, denoted GrH, MultTS and ConsTS, respectively. Computational experiments were conducted on randomly generated data. They showed that MultTS outperform ConsT S when jobs rejection cost is minimized, which is the main objective, while ConsTS performed better than M ulT S when the weighted sum of job completion times is minimized, which is the secondary objective.

Chapter 6

Conclusion and prospects

This chapter summarizes the thesis by presenting the research contributions and proposing some future works and extensions of this research.

As a guideline, this thesis addresses scheduling problems with unavailability constraints due to preventive maintenance on the basis of academic problems resulting from simplified industrial problems. This leads to some variations around the common theme of maintenance-production scheduling problems.

Firstly, the type and number of machines differ from one problem to another. To this aim, we studied two cases: single-machine scheduling and multiple-machines scheduling. Secondly, in addition to the number of machines in the workshop, we focused on the production environment. Indeed, two other cases are taken into account: scheduling considering preventive maintenance and sequence-dependent setup times impacting each consecutive pair of tasks that should be performed on a same machine. Finally, amongst the bunch of existing performance criteria to measure the quality of a schedule, we studied two criteria: the weighted sum of completion times and the jobs rejection cost.

On the basis of the four abovementioned cases, we studied and solved three scheduling problems detailed in chapters 3, 4 and 5. To this aim, this manuscript gathers our investigations on several heuristics and metaheuristics, as well as mathematical models based on integer linear programming which however systematically failed to solve the large-sized instances. As three pillars of our research, the three scheduling problems lead us to propose several contributions and future works which are summarized below.

In chapter 3, we considered the case of a multitask machine where only minor negligible breakdowns appear and where the cost of repairing big failures is very high. The machine must undergo, with much lower cost, preventive maintenance (PM) to minimize the risk of failures. PM is carried out to meet, for example, a regulatory requirement and is applied at regular intervals. Without this maintenance, repair costs can be very high. In this regard, the goal of this chapter is to minimize the weighted sum of completion times on a single machine subject to periodic preventive maintenance. First, we provided a Mixed Integer Linear Programming formulation to solve this problem optimally. Then we proved the NP-hardness of the studied problem. We have also provided some properties that have been used to build several efficient heuristics. Finally, several lower bounds were also proposed and special cases of the problem were discussed. All the abovementionned methods were tested on large randomly generated data. The lower bounds helped us to discuss the performance of the heuristics when the size of instances is greater than 20. The result showed that the MILP formulation is efficient on instances with size ≤ 20 and the proposed heuristics are efficient algorithms to solve large-sized instances.

In a second part of chapter 3, we proposed a GVNS algorithm to solve this NP-hard problem. The presented algorithm was tested and compared with a MILP model for small instance sizes, and with four lower bounds for instance sizes greater than 20, three of them based on job splitting and one based on the relaxation of one integrity constraint. The computational results showed that the proposed GVNS is very efficient both in terms of quality of the objective function values and computational time.

In future work, it would be interesting to propose more lower bounds and generate more test instances. It would also be interesting to compare the performance of GVNS with other metaheuristics for solving the considered problem after generalizing it by adding more realistic constraints such as release times, failures, etc. Another extension of this research would be to consider the interval between two consecutive maintenance activities as a decision variable of the problem.

In chapter 4, we presented the results obtained when addressing a scheduling problem that combined periodic maintenance and sequence-dependent setup times. The complexity of the problem forced to design heuristic algorithms to solve it. In this regard, we compared two alternative integer programming formulations of the studied problem, considering both setup times and periodic maintenance with the aim of minimizing the weighted sum of completion times. The first formulation is inspired from the bin packing problem formulation as the periodic maintenance defines batches. In the second formulation, the maintenance activity is considered as a dummy job. As the first MILP formulation uses a significantly smaller number of constraints, it slightly outperforms the second MILP formulation for the given test sets. But in the two cases, only the smallest instances with 8, 10 jobs and some instances with 15 jobs were solved within the time limit of 30 minutes.

Due to the complexity of the problem, we proposed two heuristics named MS-DSH and MS-GVNS, composed of a greedy phase and an improvement phase. In this regard, MS-GVNS combines a greedy heuristic and a local search heuristic while MS-GVNS uses a GVNS metaheuristic instead of a local search. The computational results showed that the performance of the heuristics was satisfactory obtaining reasonably good solutions in very short times. Unsurprisingly, MS-GVNS gives better solutions than MS-DSH. Therefore, this heuristic can be applied to large-sized instances of similar problems, where the standard commercial solvers fail to find an optimal solution within reasonable times.

As an extension of this work, we believe that the study of other variants of the problem with several machines and/or several criteria seems to us closer to the industrial reality. A last important point to explore also lies in taking into account random breakdowns that may occur over time.

In Chapter 5, we considered a two non identical parallel machine scheduling problem with a weekly planning horizon and a flexible preventive maintenance. Two criteria are studied: The jobs rejection cost and the weighted sum of completion times. Lexicographic Optimization (LO) technique is used to solve this problem. We first introduced an integer linear formulation for the problem, but this latter is not efficient to solve the large-sized instances.

Consequently, a greedy algorithm and two methods based on a Tabu Search heuristic denoted respectively by GrA, MultTS and ConsTS are proposed to solve the problem. Computational experiments are conduced on the basis of randomly generated data and showed that MultTS and ConsTS efficiently outperform GrA, MultTS outperform ConsT S when minimizing the jobs rejection cost while ConsTS is better than M ulT S when minimizing the weighted sum of completion times.

Future works will investigate different extensions of the considered problems (e.g., several machines, other objectives, failures, ...).

As common prospects, in case of considering stochastic aspects, an integration pattern of optimization and simulation should be used to solve the studied problems. It would be also interesting to study the online version of the studied problems since in practice, decisions should be made without knowing the complete instance (i.e. jobs become known only at their release date).

Figure 1 . 1

 11 Figure 1.1 First illustration of a critical machine in a workshop . Figure 1.2 Second illustration of a critical machine in a workshop Figure 1.3 Loading and unloading crane . Figure 1.4 Rotating hub in railways systems . Figure 1.5 Maintenance policy .

Figure 2 . 1

 21 Figure 2.1 Gantt chart .Figure 2.2 A simple optimization problem (minimization) illustrating local and global optima. . . .Figure 2.3 A possible hierarchy of a subset of combinatorial optimization methodsFigure 2.4 Illustration of Local search methods behavior .

Figure 2 . 2 A

 22 Figure 2.1 Gantt chart .Figure 2.2 A simple optimization problem (minimization) illustrating local and global optima. . . .Figure 2.3 A possible hierarchy of a subset of combinatorial optimization methodsFigure 2.4 Illustration of Local search methods behavior .

Figure 2 . 3 A

 23 Figure 2.1 Gantt chart .Figure 2.2 A simple optimization problem (minimization) illustrating local and global optima. . . .Figure 2.3 A possible hierarchy of a subset of combinatorial optimization methodsFigure 2.4 Illustration of Local search methods behavior .

Figure 3 . 1

 31 Figure 3.1 Illustration of a feasible solution of the 1-PMWCT problemFigure 3.2 Gantt chart of the initial solution returned by steps 1 and 2 Figure 3.3 Step 4 of the H W SP T BF .Figure 3.4 MILP performance .

Figure 3 . 2

 32 Figure 3.1 Illustration of a feasible solution of the 1-PMWCT problemFigure 3.2 Gantt chart of the initial solution returned by steps 1 and 2 Figure 3.3 Step 4 of the H W SP T BF .Figure 3.4 MILP performance .

Figure 3 . 4

 34 Figure 3.1 Illustration of a feasible solution of the 1-PMWCT problemFigure 3.2 Gantt chart of the initial solution returned by steps 1 and 2 Figure 3.3 Step 4 of the H W SP T BF .Figure 3.4 MILP performance .

Figure 4 . 1

 41 Figure 4.1 Illustration of a feasible solution of the 1-PMStWCT problemFigure 4.2 Local searches behavior comparison case: B 1 .

Figure 4 . 2

 42 Figure 4.1 Illustration of a feasible solution of the 1-PMStWCT problemFigure 4.2 Local searches behavior comparison case: B 1 .

Figure 5 . 1

 51 Figure 5.1 Feasible solution of 2-PMJRWCT . Figure 5.2 Algorithmic flow of MultTS . Figure 5.3 Infeasible solution after swapping two blocks between M 1 and M 2 Figure 5.4 Algorithmic flow of ConsTS . Figure 5.5 INSERT 2 . Figure 5.6 f 1 values variation regarding to IterM ax M ultT S and instance size set to n jobs Figure 5.7 f 1 values variation regarding to IterM ax ConsT S and instance size set to n jobs

4 1. 3 . 2

 432 Contents 1.1 General context: ELSAT2020 project . 2 1.2 Problem statement and objectives of the thesis . 2 1.3 Work hypothesis . 3 1.3.1 Critical machine based scheduling . Parallel machines based scheduling . 6 1.3.3 Maintenance policy in an industrial workshop . 6 1.3.4 Sequence dependent setup-times constraint . 9 1.3.5 Weighted sum of completion times (WCT) criterion 10 1.3.6 Jobs rejection cost (JR) criterion . 11 1.4 Main contributions and thesis outline . 11

Figure 1 . 2 :

 12 Figure 1.1: First illustration of a critical machine in a workshop

 Figure 1.5: Maintenance policy

Figure 2

 2 Figure 2.1: Gantt chart

Figure 2 .

 2 Figure 2.2 inspired from the work of[START_REF] Veerapen | Contrôle autonome d'opérateurs pour la recherche locale[END_REF] illustrates an optimization problem to make the difference between local and global optima.Note that when faced with a COP, we must:

Figure 2 . 2 :

 22 Figure 2.2: A simple optimization problem (minimization) illustrating local and global optima.

Figure 2 .

 2 Figure 2.4 illustrates the iterative search procedure of LS from a neighborhood structure to another within a search space E.

Figure 2 . 4 :

 24 Figure 2.4: Illustration of Local search methods behavior

Figure 3 . 1 :

 31 Figure 3.1: Illustration of a feasible solution of the 1-PMWCT problem

Figure 3 . 2 :

 32 Figure 3.2: Gantt chart of the initial solution returned by steps 1 and 2

∆ 3 :

 3 It consists to insert each job of the sequence S at the position k (1 ≤ k ≤ n).

 Figure 3.4: MILP performance

 n

Figure 4 .

 4 Figure 4.1 illustrates a graphical representation of a feasible solution of the 1-PMStWCT problem. We denote by P M k the k th preventive maintenance operation undergone on the machine. Since this latter occurs at each time point kT -δ (k ∈ N *) during the time schedule horizon, an idle time can observed. B k in Figure 1 refers to the set of jobs scheduled between two consecutive PM activities.

Figure 4 .

 4 Figure 4.1: Illustration of a feasible solution of the 1-PMStWCT problem

 .3 below: The experiments are based on two levels of T =(720, 1200) hours and two levels of δ=(24, 48) hours. This defines four tests classes, namely, B 1 with (T =720, δ = 24), B 2 with (T = 720, δ = 48), B 3 with (T = 1200, δ = 24) and finally B 4 with (T = 1200, δ = 48). The weights w j are randomly generated from a discrete uniform distribution in the interval (20, 50) for the four test classes. Processing ≤ 50 51-100 101-150 151-200 201-250 251-300 301-350 ≥351

Figure 5 . 1 :

 51 Figure 5.1: Feasible solution of 2-PMJRWCT

 : set J s ←-J 3. Repeat until all jobs in J s are scheduled: (a) Set J s as the set of |S| jobs j ∈ J s with the largest u j (b) Set S ←-Construction(J s) 4. For each job j ∈ S (taken in decreasing order of u j) (a) Try to schedule job j on M 1 or M 2 (favoring the minimization of C j) (b) If j has been scheduled in the previous step, update S and S

Algorithm 19 :Figure 5 . 2 :

 1952 Figure 5.2: Algorithmic flow of MultTS

 Figure 5.4: Algorithmic flow of ConsTS

 n = 210 n = 220 n = 200 n = 210 n = 220 n/10 38

 P r N = 1 P r N = 3/4 P r N = 1/2 P r N = 1/4 n=200

f 1 f 2

 2 MultTS components n = 200 n = 210 n = 220 n = 200 n = 210 n =

Figure 5 Figure 5

 55 Figure 5.6: f 1 values variation regarding to IterM ax M ultT S and instance size set to n jobs

Figures

 Figures 5.6 and 5.7 show respectively the evolution of the best objective function value f 1 with respect to the execution times parameterized by the stopping criterion IterM ax M ulT S respectively IterM ax ConsT S . When t = 0, it is the value returned by the greedy GrH which is recorded. We conclude that, best value found considering f 1 is slightly increasing with the progress of t and became constant when t = 30 minutes for MultTS and when t = 45 minutes for ConsTS. From the results above we can conclude that it is better to set IterM ax M ulT S to 30 minutes and IterM ax ConsT S to 45 minutes instead of one hour.

Table 2 .

 2 1 Jobs processing times .

Table 3 .

 3 1 Numerical example . Table 3.2 Gap comparison between the five LS procedures for n = 10 to n = 50 Table 3.3 W LS with different values of L max . Table 3.4 Neighborhood structures test cases . Table 3.5 Neighborhood structure test cases .

Table 3 . 6

 36

Table 4 .

 4 1 Number of constraints and number of variables for each model. Table 4.2 Processing time distribution (in hours) . Table 4.3 Setup time distribution .

Table 4 . 4

 44

Table 2

 2

	.1: Jobs processing times

 Greedy heuristics .

	.	48
	3.6 Proposed approach to solve 1-PMWCT . 48
	3.6.1 MILP formulation for the 1-PMWCT problem .	49
	3.6.2	

Contents 3.1 Introduction . 41 3.2 Formal description of 1-PMWCT . 42 3.3 Bin-packing versus 1-PMWCT . 43 3.3.1 Definition of the Bin-packing problem . 43 3.3.2 Greedy heuristics used to solve the bin-packing problem 43 3.3.3 Comparison between 1-PMWCT and BPP . 44 3.4 Related works with PM policy and WCT criterion . 45 3.5 Properties and some special cases . 45 3.5.1 Properties . 46 3.5.2 Special cases . 50 3.6.3 General Variable Neighborhood Search to solve 1-PMWCT 52 3.7 Lower bounds derived from relaxed problems of 1-PMWCT 58

 Figure 3.3: Step 4 of the H W SP T BF3.6.3 General Variable Neighborhood Search to solve 1-PMWCTA GVNS metaheuristic is investigated in this section to solve the large sized instances of 1-PMWCT. As already mentioned in Chapter 2, GVNS is a variant of VNS where the intensification phase designed by a simple local search procedure is replaced by a VND procedure. The perturbation phase, well know in the literature as the shaking procedure, remains the same.

											T							2T	3T
	𝐽 9 𝐽 12 𝐽 5		𝐽 10	𝐽 1		𝐽 8						𝐽 11		𝐽 4			𝐽 7	𝐽 2	𝐽 3	𝐽 6
	5	10	15	20	25	30	35	40	45	50	55	60	65 70	75	80	85	90	95 100 105 110 115 125 130 135 140 145 150 155 160 165
	Algorithm 6: GVNS.												
						10266.										
															51			

Input: L max , k max , S. Output: S * S * ← W LS(S) while number of iterations ≤ L max do S shake ← shaking(S *) if S shake is better than S * then S * ← S shake end while f (S) < f (S *) do S ← VND(S shake , k max) if f (S) < f (S *) then S shake ← S S * ← S end end end

Table 3 .

 3 .16) While comparing the results in Table3.2, we observe that local search based on N 2 (∆ 2 operator), significantly n gap N 1 gap N 2 gap N 3 gap N 4 gap N 5 2: Gap comparison between the five LS procedures for n = 10 to n = 50 outperforms all the other local searches as it obtains the minimum value at almost every instance. Otherwise, local search based on N 4 (Restart operator) provides the worst values. To summarize, the Neighborhoods are ranked as follows in increasing order with respect to their efficiency: N 4 , N 1 , N 3 , N 5 and N 2 . This result justifies our choice to use the Swap operator in the local search proposed within the initial solution generator.

	10 1.01	0.00	0.10	0.06	3.04
	15 2.37	0.01	0.00	0.02	6.69
	20 3.92	0.00	0.71	0.26	6.58
	25 4.89	0.00	1.29	0.28	8.81
	30 4.78	0.00	1.11	0.45	9.12
	35 2.99	0.00	0.57	0.10	9.19
	40 5.70	0.00	1.02	0.40	9.83
	45 6.04	0.00	0.80	0.18	10.03
	50 4.79	0.00	0.62	0.05	9.48

Table 3 . 3

 33

	5	9,204,698	0.99
	10	9,204,119.26 1.07
	20	9,201,641.53 1.23
	30	9,200,712.33 1.37
	40	9,196,670.20 1.55
	60	9,196,668.10 1.81
	80	9,196,666.50 2.06

: W LS with different values of L max

 n gap a 1,1 gap a 1,2 gap a 1,3 gap a 2,1 gap a 2,2 gap a 2,3

	0.16	0.16	0.20	0.00	0.23	0.23
	0.23	0.19	0.00	0.00	0.06	0.23
	0.26	0.12	0.08	0.02	0.00	0.06
	0.00	0.27	0.49	0.34	0.44	0.34
	0.27	0.37	0.25	0.14	0.00	0.13
	0.18	0.07	0.00	0.15	0.17	0.04
	0.02	0.00	0.24	0.02	0.39	0.05
	0.03	0.00	0.05	0.09	0.08	0.13
	0.00	0.17	0.17	0.34	0.14	0.25
	0.04	0.12	0.11	0.10	0.42	0.12
	0.20	0.20	0.12	0.12	0.38	0.14
	0.18	0.10	0.23	0.13	0.47	0.09
	0.04	0.17	0.19	0.13	0.11	0.00
	0.04	0.17	0.19	0.13	0.11	0.00
	Average 0.11	0.15	0.16	0.13	0.21	0.14
	Table 3.4: Neighborhood structures test cases	
	Table 3.5: Neighborhood structure test cases	
	a 1,1		a 1,2	a 1,3		
	Swap	Swap	Insertion	
	Insertion	2-Opt	Swap		
	2-Opt	Insertion	2-Opt		
	a 2,1		a 2,2	a 2,3		
	Insertion	2-Opt	2-Opt		
	2-Opt	Insertion	Swap		
	Swap	Swap	Insertion	

Table 3 .

 3 .33) Where V • is the value of LB • , and V M ILP is the best solution found by CPLEX so far. Let us consider the following inequality:LB Best = max(LB 1 , LB 2 , LB 3 , LB 4)

	(3.34)

7: Average results for lower bounds compared to the MILP: case CL1D1

 belonging to each benchmark class CLxDy. As can be seen, the average execution time of LB 1 , LB 2 and LB 4 is very

	n	Gap LB1(%)	Gap LB2(%)	Gap LB3(%)	Gap LB4(%)	Gap Best (%)
		0.00	10.02	0.00	0.00	0.00
		5.44	16.88	0.00	0.00	0.00
		6.66	17.42	0.00	10.56	0.00
		10.24	18.98	0.00	19.62	0.00
		6.03	21.68	0.45	30.33	0.45
		7.95	25.22	2.27	31.83	2.27
		5.00	22.87	1.82	37.08	1.82
		6.79	22.73	0.20	44.41	0.20
		6.61	23.43	1.38	43.19	1.38
		4.30	27.01	0.91	47.18	0.91
		5.97	22.60	2.11	50.03	2.11
		7.15	25.51	2.01	53.53	2.01
		5.31	29.22	2.57	54.48	2.57
		5.55	22.40	3.07	52.92	3.07
		5.06	24.26	3.14	53.45	3.14
		5.21	23.51	3.03	57.15	3.03
		4.70	25.71	2.59	57.54	2.59
		5.07	31.38	3.86	56.37	3.86
		5.51	28.04	1.36	58.35	1.36
	Table 3.8: Average results for lower bounds compared to the MILP: case CL2D0
	n	Gap LB1(%)	Gap LB2(%)	Gap LB3(%)	Gap LB4(%)	Gap Best (%)
		0.00	10.02	0.00	0.66	0.00
		6.12	17.36	0.00	1.22	0.00
		6.97	17.17	0.00	7.89	0.00
		10.75	19.01	0.00	20.30	0.00
		7.69	21.67	0.61	28.48	0.61
		8.85	23.38	0.17	27.83	0.17
		6.37	22.60	0.24	35.63	0.24
		7.69	19.56	2.20	45.00	2.20
		8.71	23.31	2.56	42.02	2.56
		6.92	22.80	2.82	46.63	2.82
		7.07	21.77	3.22	49.00	3.22
		8.24	23.38	2.38	50.27	2.38
		7.07	21.51	3.18	54.39	3.18
		7.24	19.67	4.19	52.50	4.19
		7.17	18.53	4.36	53.29	4.36
		7.03	18.47	3.96	57.09	3.96
		6.28	20.33	3.00	55.41	3.00
		6.98	20.96	5.41	54.56	5.41
		6.74	22.36	3.53	57.08	3.53

 3 seconds is required.

	n	10	15	20	25	30	35	40	45	50	100	500	1000
	LB 1 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0150 0.0450
	LB 2 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0150 0.0200 0.0960
	LB 3 0.0000 0.0160 0.0310 0.0470 0.0160 0.0470 0.0550 0.1090 0.1160 0.5123 38.8710 605.3520
	LB 4 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0160
			Table 3.10: Average computational time of lower bounds: case CL1D0	
	n	10	15	20	25	30	35	40	45	50	100	500	1000
	LB 1												

Table 3 .

 3

				11: Average computational time of lower bounds: case CL1D1	
	n	10	15	20	25	30	35	40	45	50	100	500	1000
	LB 1												

Table 3 .

 3 12: Average computational time of lower bounds: case CL2D0

	n	10	15	20	25	30	35	40	45	50	100	500	1000
	LB 1												

Table 3 .

 3 and for each benchmark class CLxDy.

	n	H W SP T F F H W SP T BF H W SP T N F H DF F H DBF H IF F	H IBF	H DN F H IN F
	10	0.0011	0.0006	0.0002	0.0001 0.0003 0.0005 0.0003 0.0003 0.0005
	15	0.0015	0.0006	0.0005	0.0005 0.0006 0.0007 0.0006 0.0005 0.0005
	20	0.0013	0.0010	0.0008	0.0009 0.0011 0.0009 0.0011 0.0008 0,0011
	25	0.0021	0.0015	0.0007	0.0014 0.0015 0.0016 0.0013 0.0005 0.0009
	30	0.0025	0.0020	0.0007	0.0015 0.0024 0.0013 0.0008 0.0006 0.0011
	35	0.0030	0.0025	0.0009	0.0021 0.0018 0.0011 0.0010 0.0007 0.0013
	40	0.0035	0.0037	0.0009	0.0015 0.0018 0.0011 0.0011 0.0009 0.0016
	45	0.0043	0.0036	0.0011	0.0011 0.0020 0.0013 0.0014 0.0011 0.0016
	50	0.0051	0.0026	0.0021	0.0015 0.0020 0.0015 0.0013 0.0010 0.0024
	100 0.0063	0.0053	0.0022	0.0039 0.0078 0.0030 0.0027 0.0018 0.0023
	500 0.0502	0.0915	0.0171	0.0167 0.0329 0.0221 0.0396 0.0101 0.0515
	1000 0.1019	0.1479	0.0781	0.0417 0.0771 0.0743 0.0513 0.0350 0.3108
						H IBF	H DN F H IN F
	10	0.0010	0.0003	0.0005	0.0005 0.0003 0.0003 0.0005 0.0002 0.0003
	15	0.0015	0.0005	0.0005	0.0005 0.0007 0.0007 0.0006 0.0005 0.0006
	20	0.0015	0.0009	0.0008	0.0009 0.0011 0.0010 0.0011 0.0006 0.0011
	25	0.0021	0.0013	0.0005	0.0012 0.0017 0.0015 0.0015 0.0005 0.0008
	30	0.0025	0.0021	0.0005	0.0017 0.0021 0.0010 0.0010 0.0004 0.0012
	35	0.0029	0.0027	0.0009	0.0022 0.0015 0.0011 0.0011 0.0007 0.0011
	40	0.0037	0.0035	0.0010	0.0011 0.0017 0.0011 0.0011 0.0009 0.0015
	45	0.0043	0.0035	0.0010	0.0014 0.0020 0.0011 0.0013 0.0011 0.0017
	50	0.0052	0.0029	0.0017	0.0015 0.0021 0.0015 0.0014 0.0008 0.0025
	100 0.0061	0.0050	0.0022	0.0045 0.0075 0.0033 0.0031 0.0023 0.0023
	500 0.0502	0.0917	0.0179	0.0174 0.0332 0.0229 0.0381 0.0105 0.0508
	1000 0.1037	0.1523	0.0780	0.0412 0.0815 0.0740 0.0517 0.0355 0.3004

14: Average computational time of heuristics: case CL1D0

n H W SP T F F H W SP T BF H W SP T N F H DF F H DBF H IF F

Table 3 .

 3

15: Average computational time of heuristics: case CL1D1

Table 3 .

 3 16: Average computational time of heuristics: case CL2D0n H W SP T F F H W SP T BF H W SP T N F H DF F H DBF H IF F

	0011	0.0005	0.0002 0.0003 0.0002 0.0004 0.0003 0.0002 0.0005
	0.0011	0.0009	0.0001 0.0009 0.0001 0.0009 0.0001 0.0009 0.0003
	0.0017	0.0009	0.0005 0.0008 0.0007 0.0009 0.0008 0.0007 0.0007
	0.0019	0.0010	0.0010 0.0009 0.0011 0.0010 0.0013 0.0009 0.0005
	0.0023	0.0012	0.0014 0.0015 0.0011 0.0011 0.0008 0.0008 0.0004
	0.0026	0.0019	0.0017 0.0017 0.0013 0.0008 0.0011 0.0009 0.0004
	0.0030	0.0024	0.0022 0.0013 0.0009 0.0010 0.0013 0.0011 0.0006
	0.0037	0.0031	0.0016 0.0011 0.0011 0.0011 0.0017 0.0012 0.0003
	0.0043	0.0026	0.0015 0.0013 0.0011 0.0012 0.0016 0.0011 0.0007
	0.0032	0.0026	0.0028 0.0029 0.0029 0.0011 0.0012 0.0014 0.0017
	0.0423	0.0258	0.0121 0.0374 0.0127 0.0124 0.0067 0.0099 0.0035
	0.0860	0.0925	0.0302 0.0219 0.0417 0.0407 0.0234 0.0181 0.0114
				H IBF	H DN F H IN F
	0.0011	0.0005	0.0005	0.0002 0.0002 0.0003 0.0003 0.0002 0.0002
	0.0014	0.0005	0.0004	0.0005 0.0005 0.0004 0.0006 0.0005 0.0005
	0.0017	0.0007	0.0006	0.0007 0.0007 0.0007 0.0008 0.0009 0.0009
	0.0017	0.0011	0.0005	0.0009 0.0010 0.0013 0.0012 0.0012 0.0010
	0.0022	0.0013	0.0005	0.0016 0.0013 0.0014 0.0012 0.0008 0.0009
	0.0026	0.0019	0.0008	0.0017 0.0018 0.0011 0.0009 0.0009 0.0009
	0.0030	0.0023	0.0008	0.0022 0.0011 0.0010 0.0011 0.0010 0.0012
	0.0034	0.0029	0.0007	0.0015 0.0011 0.0011 0.0013 0.0011 0.0013
	0.0042	0.0030	0.0008	0.0011 0.0013 0.0011 0.0013 0.0016 0.0013
	0.0052	0.0033	0.0015	0.0024 0.0031 0.0033 0.0028 0.0011 0.0013
	0.0422	0.0256	0.0037	0.0123 0.0375 0.0135 0.0135 0.0063 0.0207
	0.0863	0.0915	0.0125	0.0299 0.0227 0.0436 0.0432 0.0221 0.1319

Table 3 .

 3

	2 60	60	60	60	60	60	60	60	60
	3 60	60	46	46	44	44	60	59	60
	4 47	47	13	13	25	25	45	45	45
	5 47	47	9	9	17	17	38	38	40
	6 20	20	4	4	6	6	16	16	16
	7 25	24	8	8	6	6	19	19	19
	8 22	22	7	7	5	5	18	18	18
	9 23	23	3	3	3	3	10	10	10
	10 9	9	3	3	3	3	6	6	6
	11 11	11	3	3	3	3	7	7	7
	12 10	10	3	3	3	3	4	4	4
	13 9	8	2	3	3	4	3	5	4
	14 4	4	2	2	2	2	3	3	3
	15 4	4	3	3	3	3	4	4	4
	16 7	7	3	3	3	3	4	4	4
	17 5	5	3	3	3	3	3	3	3
	18 3	3	3	3	3	3	3	3	3
	19 2	2	0	0	0	0	0	0	0
	20 0	0	0	0	0	0	0	0	0

17: Average computational time of heuristics: case CL2D1

n H W SP T F F H W SP T BF H W SP T N F H DF F H DBF H IF F H IBF H DN F H IN F

Table 3 .

 3

18: Performance of the heuristics with regard to the number of optimal solutions found for n = 2 to n = 20 jobs instances H best = min (H W SP T BF , H W SP T F F)

(3.35)

Table 3 .

 3 .19. For n= 21, 22,.., 50, 100, 500 and 1000, the comparison is done with LB Best . The results are summarized in Table3.20. 19: Computational results of H best for n = 2 to n = 20 jobs instances

	n	P ED CL1D0 (%)	P ED CL1D1 (%)	P ED CL2D0 (%)	P ED CL2D1 (%)
	2	0	0	0	0
	3	0	0	0	0
	4	0.70	0.70	0.23	1.23
	5	0	0	0.11	0.28
	6	1.81	1.81	1.40	1.04
	7	1.12	1.79	0.88	1.32
	8	0.69	1.27	2.63	2.58
	9	2.84	1.94	2.58	2.71
	10	1.16	1.17	1.89	1.53
	11	1.21	1.44	4.93	3.83
	12	3.60	3.84	3.03	3.04
	13	3.16	2.68	3.42	4.58
	14	3.14	2.99	6.79	5.27
	15	2.31	2.43	4.45	3.28
	16	2.79	3.06	5.36	3.88
	17	2.70	2.71	5.56	3.96
	18	3.83	2.81	4.72	3.52
	19	5.46	4.61	5.84	5.04
	20	3.15	2.43	6.85	4.25

Table 3 .

 3 [START_REF] Arts | Some aspects of measuring maintenance performance in the process industry[END_REF] provides the average percentage error deviation (PED) for instances belonging to each class CL1D0, CL1D1, CL2D0, CL2D1. PED represents the improvement of H best compared with the MILP. It is computed as follows:

Table 3 .

 3 20: Computational results of H best for n = 21 to n = 50 jobs instances,n = 100, n = 500 and n = 1000 jobs instances Greedy heuristics performances versus lower bounds

	P ER CL1D0 (%)	P ER CL1D1 (%)	P ER CL2D0 (%)	P ER CL2D1 (%)
	2.57	3.79	8.25	9.29
	2.30	2.97	8.74	9.55
	2.79	4.14	9.50	9.53
	3.81	4.68	8.67	10.28
	2.80	3.97	8.26	8.42
	3.45	4.75	9.11	10.55
	3.74	4.34	9.19	10.14
	3.72	5.07	9.34	11.18
	4.42	5.35	9.65	10.98
	4.25	5.79	9.20	9.97
	4.07	4.60	9.86	10.73
	3.78	4.97	9.38	10.70
	4.45	5.52	9.79	10.71
	4.08	5.46	10.12	10.61
	3.77	4.79	9.77	10.37
	3.33	5.43	10.37	10.45
	4.46	5.29	9.28	10.44
	4.28	5.42	9.80	11.20
	4.12	4.42	10.23	11.37
	4.07	5.21	9.76	10.87
	3.78	5.54	9.28	11.18
	3.87	5.39	10.34	11.83
	3.85	5.16	10.25	11.29
	4.55	5.41	9.36	11.10
	4.04	5.80	11.04	11.78
	5.01	6.15	10.29	11.67
	4.32	5.27	9.86	11.05
	3.61	5.00	10.78	11.83
	4.16	5.33	9.73	11.03
	3.84	5.12	10.51	11.45
	3.74	5.73	10.80	12.45
	3.14	5.31	10.37	12.29
	2.99	5.11	10.28	12.06

Table 3 .

 3 20 gathers the average percentage error ratio (PER). PER represents the improvement of H best compared with the best lower bound LB best . PER is computed as follows:

	P ER(%) = [(H best -LB best)/LB best] × 100.	(3.37)

 .22.

	n	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	OV H CL1DY 0.00 0.00 0.00 0.98 0.00 0.66 1.40 1.29 0.48 0.69 1.70 1.70 1.88 1.36 1.58 1.64 1.38 1.43 1.37 OV H CL2DY 0.00 1.23 0.69 0.85 1.95 1.14 1.58 1.07 2.35 2.80 1.24 1.23 1.91 1.83 2.26 1.96 1.68 2.04 4.24
		Table																		

Table 3 .

 3 CL1DY 2.60 1.55 2.62 1.35 1.62 2.40 1.30 1.84 1.92 2.64 1.16 1.76 1.96 1.95 1.48 2.82 1.58 OHV CL2DY 1.57 1.42 0.73 1.94 0.95 2.03 1.28 2.25 1.75 1.30 1.20 1.76 1.28 1.19 1.08 0.58 1.50 22: Average computational results of overhead for n = 21 to n = 50 jobs instances, n = 100, n = 500 and n = 1000 jobs instances

	n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
	OV H n	38	39	40	41	42	43	44	45	46	47	48	49	50	100 500 1000	-
	OV H CL1DY 1.55 0.86 1.72 2.40 2.20 1.77 1.43 2.13 1.69 1.32 1.84 1.57 1.80 2.36 2.29 2.21 OHV CL2DY 1.89 1.38 1.47 2.36 1.91 1.34 2.17 1.20 1.88 1.73 1.38 1.74 1.28 2.01 2.19 2.01	--

Table 3 .

 3 .39) Entries in the last column represent the results of the tightest value returned among the four lower bounds. LB best = max{LB 5 , LB 6 , LB 7 , LB RP }. (3.40) n Ratio LB5 Ratio LB6 Ratio LB7 Ratio LB RP Ratio LB * 24: Comparison of lower bounds: LB 5 to LB 7 and LB RP

	2 92.06	81.84	99.33	72.53	99.33
	3 73.67	75.28	91.04	59.45	91.04
	4 54.65	62.14	91.81	72.77	91.81
	5 50.50	62.64	80.12	66.33	80.12
	6 39.93	54.03	62.45	69.38	69.38
	7 36.71	52.84	96.34	69.57	96.34
	8 34.96	50.26	88.16	74.03	88.16
	9 32.11	48.19	92.76	74.56	92.76
	10 29.18	43.97	98.25	74.33	98.25
	11 29.50	46.85	86.69	75.27	86.69
	12 27.71	44.34	79.16	77.76	79.16
	13 27.42	45.63	76.47	77.85	77.85
	14 28.41	47.63	69.41	79.36	79.36
	15 27.17	45.64	69.32	80.25	80.25
	16 24.93	42.80	66.67	81.20	81.20
	17 24.30	42.08	60.05	81.52	81.52
	18 24.81	43.50	62.94	82.72	82.72
	19 22.60	40.13	54.61	83.30	83.30
	20 23.38	41.26	48.01	84.27	84.27

 Av.T ime M ILP (s) ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ Av.T ime M ILP (s) ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥

											02 ≈ 0.02 ≈ 0.01	≈0.02	≈0.02	≈0.02	≈0.02	≈0.02	0.03
	Av.T ime LBbest (s) ≈ 0	≈ 0	≈ 0	≈ 0	≈ 0.01 ≈ 0.01 ≈ 0.03 0.05	0.08	0.13	0.23	0.41	0.55	0.63	0.85	1.02	1.16	1.33
	n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
	Ratio M H (%)	99.81	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Ratio LH (%)	84.10	83.62	84.91	85.19	85.60	86.06	86.22	86.45	86.85	87.50	87.41	87.60	88.12	88.50	88.66	89.03	89.01	88.90
	Av.T ime GV N S (s) 0.03	0.04	0.04	0.05	0.05	0.06	0.07	0.08	0.08	0.09	0.1	0.12	0.13	0.15	0.18	0.2	0.22	0.24
	Av.T ime LBbest (s) 1.65	1.83	2.12	2.52	3.09	3.56	4.21	5.34	5.88	6.78	7.78	8.73	9.95	12.68	12.60	14.71	19.78	23.16
	n	38	39	40	41	42	43	44	45	46	47	48	49	50	60	70	80	90	100
	Ratio M H (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Ratio LH (%)	89.64	89.46	89.78	90.14	89.82	90.29	90.67	90.47	90.87	90.94	90.92	91.65	93.21	93.21	95.38	99.76	99.86	95.95
	Av.T ime GV N S (s) 0.26	0.27	0.29	0.3	0.32	0.35	0.37	0.39	0.42	0.44	0.48	0.5	0.52	0.65	0.74	1.07	0.94	0.87
	Av.T ime LBbest (s) 30.22	27.38	36.65	39.21	52.35	113.43 93.85	176.18 372.50 387.30 456.32 1,138.48 ≥1200 ≥1200 ≥1200 ≥1200 ≥1200 ≥1200

 1 st 2,2 st 2,n st 2,m st 2,m st 2,m

	
	J n+1	st m,1 st m,2 . . st m,n	0	0	0
	J n+2	st m,1 st m,2 . . st m,n	0	0	0
	0
	0

. Jnst n,n st n,m st n,m st n,m J 2n st m,1 st m,2 . . st m,n

Table 4 .

 4

		2: Processing time distribution (in hours)	
	Setup time ≤ 5 6-10 11-15 16-20 21-25 26-30 31-35 ≥36
	Percentage 26	23	20	12	10	6	2	1

Table 4 . 3

 43

: Setup time distribution

Table 4 . 5 :

 45 Comparison of the computational time results between the two MILPs

	instances	solution status	
	size n	MILP1	MILP2
	8		optimal 20/20 optimal 20/20
	10		optimal 20/20 optimal 20/20
	15		06 opt /20	04 opt/20
	20		feasible	feasible
	25		feasible	feasible
	Table 4.4: Comparison of the quality results between the two MILPs
	instances average gap [%] average solution time [s]
	size n	MILP1 MILP2 MILP1 MILP2
	8	0	0	0.25	0.30
	10	0	0	2.69	4.29
	15	16.81	21.39	1443.26 1531.72
	20	52.72	62.79	>=1800 >=1800
	25	69.28	76.13	>=1800 >=1800

Table 4 .

 4 and the average computational time in seconds spent by the local searches to reach a local minimum. 7: Local searches comparison for for l EV AL = 200,000 evaluations and n = 90

	Algorithm 16: Evaluation Algorithm	
	Input: l EV AL	
	Output: S	
	S ←-Ranks jobs using WSPT rule	
	S * ←-S	
	while (number of iterations ≤ l EV AL) do	
	S ←-argmin S ∈N ∆ i (S) f (S)	
	number of iterations←-number of iterations + | N (S) |
	if S is better than S * then	
	S * ←-S	
	end	
	S ←-S	
	end	
	LS i Aver val	Aver time
	LS 1 31788672.65 0.01
	LS 2 33903094.7 0.01
	LS 3 34536227.25 0.01
	LS 4 33336786.1 0.02
	LS 5 34369160.85 0.17
	LS 6 33349753.15 0.01
	Table 4.6: Local searches comparison for l EV AL = 8000 evaluations and n = 90
	LS Aver Eval	Aver time
	LS 1 31788672.65 0.18
	LS 2 29596498.1 0.16
	LS 3 29954994.75 0.18
	LS 4 29833772.35 0.31
	LS 5 30620641.8 0.34
	LS 6 29727712.2 0.19

Table 4 .

 4 LS i Aver Eval 8: Local searches comparison for l EV AL = 10,000,000 and n = 90

	Aver time
	LS 1 31788672.65 7.86
	LS 2 29596498.1 7.40
	LS 3 29954994.75 8.98
	LS 4 29833772.35 13.90
	LS 5 29458185.15 15.35
	LS 6 29727712.2 8.69

𝟔

Figure 4.2: Local searches behavior comparison case: B 1

 L max Av value (B 1) Aver value (B 2) Av value (B 3) Aver value (B 4) Aver time (B 1) Aver time (B 2) Aver time (B 3) Aver time (B 4)

	5	30981188.14 31984517.90	29443131.15 30277027.30	0.63	0.67	0.65	0.63
	10	30902881.12 32046247.23	29440960.87 30221723.01	0.99	0.90	0.65	0.63
	15	30857030.55 32003400.57	29420660.16 30186067.47	1.07	1.05	0.81	0.97
	20	30869505.50 31971156.68	29411506.64 30151778.10	1.12	1.10	0.81	0.86
	25	30902494.60 32123555.44	29345290.66 30185935.12	0.94	0.90	0.89	0.90
			Table 4.9: Impact of L max on MS-GVNS			

Table 4 .

 4 I M S-DSH Av value (B 1) Av value (B 2) Av value (B 3) Av value (B 4)Av time (B 1) Av time (B 2) Av time (B 3) Av time (B 4) 10: Impact of I M S-DSH on MS-DSH

	1	31013266.14 32188493.55 29460833.21 30218614.095 0.87	0.84	0.84	0.84
	5	30992887.40 32146010.39 29446035.35 30281780.94 3.28	3.22	3.20	3.22
	15	30720185.05 29156800.75 29349112.44 30208196.29 9.69	9.53	13.38	14.26
	25	30720132.30 29156200.33 29345640.73 30208050.35 15.80	15.30	17.28	18.87
	30	30720132.30 29156200.33 29344640.73 30208050.35 21.42	21.98	24.01	26.16

Table 4 .

 4 11 provides computational comparisons between MS-GVNS and MS-DSH using the average percentage error deviation (PED) metric for instances belonging to each class B 1 , B 2 , B 3 and B 4 . The average for practicly all instance sizes n.

	.19)

Table 4 .

 4 12: MS-DSH and MS-GVNS performances for large sized instances

 Equation(5.22) is the objective function, which maximizes the number of jobs in a block. Constraint(5.23) prevents exceeding the maximum time length T i of a block. It should be noted that a solution is reached in less then 30 seconds on instances with 200 jobs.

	.22)
	s.t.

j∈S p j z j ≤ T i

(5.23)

Table 5 .

 5 2: Number of best solutions found by GrH based on f 1 for different values of q 1

Table 5 .

 5 4: Average value of f 2 with regard to IterM ax 3 and instance size n Neighborhood exploration parameter P r N

		.57	37.68	40.53	9.54	12.3	10.9
	n/5 38.63	37.75	40.57	14.96	12.64	9.75
	n	38.65	37.84	40.57	18.36	21.22	17.38
	2n	38.70	37.87	40.64	30.21	32.46	22.91
	3n	38.71	37.90	40.67	28.05	30.28	38.45
	4n	38.73	37.90	40.67	45.17	26.67	28.18
	5n	38.75	37.90	40.67	58.16	45.53	47.88

Table 5 .

 5 5: Comparison of f 1 values for different problem sizes n and P r N values

	n=200	f 1 comp. time 9.77 25.68	25.50 3.87	25.29 1.46	24.77 0.97
	n=210	f 1 comp. time 23.66 19.71	19.54 10.80	19.55 6.68	18.98 2.70
	n=220	f 1 comp. time 27.60 18.56	18.23 16.37	18.21 8.30	18.12 7.18

Table 5 .

 5 6: Comparison of f 2 values for different problem sizes n and P r N values

		f 2	38.73	38.79	38.65	38.64
		comp. time 28.05	28.97	22.71	11.74
	n=210	f 2 comp. time 30.28 37,87	38,08 31.16	38,01 19.95	38,00 11.17
	n=220	f 2 comp. time 38.46 40.64	40.73 30.76	40.62 17.45	40.56 13.18

Table 5 .

 5 7: Impact of different phases of MultTS Results comparison between TS and DA in Phase 2 of MultTS

	17.04	18.21	-	-	-

Table 5 .

 5 T S is applied, and to the best value of the objective function f 2 returned when this time it is DA which is implemented in Phase 2 of MultTS. 8: Results comparison between the application of T S or DA in phase 2 of MultTS

	n = 200 n = 210 n = 220
	GAP DA 38.438	38.756	37.655
	GAP T S 38.439	38.655	37.659

Table 5

 5

	.10

Table 5 .

 5 9: Comparison between MultTS and ConsTS

Table 5 .

 5 11: Performance of MulTS and ConsTS with regard to the number of best solutions found for n=200, 210 and 220 jobs

	GrH	24.9	39.5	51.5
	M ultT S 20.5	36.2	41.3
	ConsT S 22.6	37.6	46.6
	Table 5.10: Average number of rejected jobs
			MulTS ConsTS
	n=200	f 1 10/10	1/10
		f 2 1/10	9/10
	n=210	f 1 8/10	2/10
		f 2 0/10	10/10
	n=220	f 1 9/10	1/10
		f 2 0/10	10/10

Table 5 .

 5 12: Average time duration (seconds) for each phase of MultTS

	n=200 n=210 n=220
	Phase 1 116.37 112.48 118.55
	Phase 2 7.032	6.97	7.27
	Phase 3 3445.11 3433.04 3395.6
	Phase 4 26.33	77.41	85.22
	n=200 n=210 n=220
	Phase 1 2586.09 2400.14 2013.84
	Phase 2 1031.75 1203.11 1588.30

Table 5 .

 5 13: Average time duration (seconds) for each phase of ConsTS

http://www.elsat2020.org/en

https://www.cirrelt.ca/

2.8 Conclusion . 37

Remerciements

to visit other solutions in the search space without going too far from the current solution. In the rest of the while loop iterations, the intensification phase is taken over by the VND procedure.

Algorithm 11: GVNS.

Input: L max , k max , J.

Output: S * . Initialization: S ←-W LS(J) S * ←-S l ←-1 while (l ≤ L max) do S shake ←-shaking(S,l) if S shake is better than S * then S * ← S shake end S ← S shake S ← VND(S, k max) if S is better than S * then S * ← S end l ←-l + 1 if l ≥ 7 then l ← 1 end end

Shaking procedure

Contrarily to what is proposed in Chapter 3, here the shaking procedure described by Algorithm 12 builds at each iteration within the while loop of Algorithm 11 a new solution named S shake using one of the predefined operator introduced in this chapter. Namely, L={∆ 1 , ∆ 2 , ∆ 3 , ∆ 4 , ∆ 5 , ∆ 6 }. Hence, the set L is browsed using the index k. Such as when k = 2, the swap operator is used and when v = 5 the 3 -opt operator is used. When k is incremented until 7 and L m ax is not reached yet, k will restart from the first operator and set to 1.

Algorithm 12: Shaking.

Input: S, k.

Output: S shake . Input: (S, k) Output: S shake Use the k th neighborhood structure in L to build S shake

VND procedure

The VND proposed within this work, uses the best "improvement strategy". computational time spent while reaching best solutions when using MS-DSH, MS-GVNS and CPLEX solver is reported in the three last columns of We conclude that MS-DSH succeeds to reach optimal solutions when n = 8, n = 10 for all the tested instances belonging to B 1 , B 2 , B 3 and B 4 and only for B 3 and B 4 when n = 11. On other hand, MS-GVNS reaches optimal solutions for instance size n = 8, n = 10 and n = 11. It is easy to notice that MS-GVNS produces better results than MS-DSH .

The MS-DSH and MS-GVNS failed to solve 1-PMStWCT when instance sizes are greater than 11, even if CPLEX solver does reach optimal solution for these instances and was stopped after 1800 seconds. Table 4.12 gathers the average percentage error ratio (PER) metric of both MS-GVNS and MS-DSH. We can observe that the PER is slightly higher when the size of instances n increases. This is obvious since, as n increases, 1-PMStWCT becomes more difficult to solve due the to combinatorial explosion of the search space. We observe that MS-DSH reaches reasonably good solutions in a minimum amount of time. Hence it does not exceed 18 seconds for instances with size n = 90. Otherwise, MS-GVNS returns better solutions than MS-DSH Chapter 5

A bicriteria two parallel machine scheduling problem with maintenance and jobs rejection

We consider in this chapter a bicriteria scheduling problem on two parallel, non identical machines with a periodic preventive maintenance policy. The two objectives considered involve minimization of jobs rejection cost and weighted sum of completion times. They are handled through a lexicographic approach, due to a natural hierarchy among the two objectives in the type of applications that we consider. The contributions of this chapter are first to develop a mixed integer linear program model for the problem and, secondly, to introduce two metaheuristics based on tabu search. Computational results on randomly generated instances are reported to show the potential savings.

times C 0 = C n+1 = 0. Accordingly, we define the set J + = J ∪ {0, n + 1}. We also introduce a block 0 on each machine with m 0 1 = m 0 2 = 0. Note finally that M is an arbitrary large number.

)

Equations (5.1) and (5.19) are the first and second objective functions considered in this work. Constraints (5.2) allow to compute the starting time of the k th PM on each machine M i . When d is reached, constraints (5.3) set to zero the starting time of the k th PM on each machine M i . Constraints (5.4) and (5.5) forbid a scheduled job and a PM activity to overlap. Constraints (5.6) indicate that every job assigned to machine M i , including the dummy job 0, should have a successor. Constraints (5.7) state that if a job j is assigned to machine M i , at least one job should immediately follow, which includes the dummy job n + 1. Constraints (5.8)

Construction procedure

The construction procedure produces a sequence of scheduled jobs on both machines M 1 and M 2 in a greedy way. Starting with empty sequences on both machines and a set Q of jobs provided in input, a new job is selected and inserted, at each iteration, at the end of the schedule of M 1 or M 2 , according to some heuristic rules, until there are no more jobs or until the schedules of both machines are full. The construction procedure is described in Algorithm 18.

The selection of the next job is done in two steps. First (steps 2a to 2c), we consider the set Q 1 of the q 1 (parameter < n) jobs with the highest w j /p j ratio, which is a good heuristic rule with regard to objective f 2 . Next, we compute the completion time C i j of each j ∈ Q 1 if it is scheduled on each machine M i (while programming a PM before job j if necessary). If the deadline d is exceeded, we simply set C i j = ∞. Each feasible job (i.e., satisfying the deadline) is then tentatively assigned (but not scheduled) to the machine leading to the smallest completion time. In a second step (steps 2d to 2f), we select the subset Q 2 ⊂ Q 1 containing the q 2 (parameter < q 1) feasible jobs with the smallest completion times. For each job j ∈ Q 2 , we compute the slack time with the due time of the next PM, and we finally select the job j with the smallest slack time. The latter is then inserted (as well as its possible preliminary PM) at the end of the schedule of its assigned machine. It should be noted that all jobs are considered in the first and second steps when the number of remaining jobs is smaller than q 1 and q 2 , respectively.

Algorithm 18: Construction.

Input: Q. Output: S.

a) Select the subset Q 1 ⊂ Q (of size q 1) of jobs with the highest ratio w j /p j (b) For each job j ∈ Q 1 , do i. For each i ∈ {1, 2}, do: compute the completion time C i j of job j if it is scheduled on machine M i , while programming a PM before j if necessary (set C i j = ∞ if d is exceeded) ii. Assign j to machine M i j such that i j = arg min i (C i j) iii. Define j as unfeasible if C i j = ∞ on its assigned machine (c) STOP the algorithm if all the jobs are unfeasible (d) Select the subset Q 2 ⊂ Q 1 (of size q 2) of feasible jobs with the smallest completion times (select all the feasible jobs of Q 1 if there are less than q 2 feasible jobs remaining in Q 1) (e) Select the job j ∈ Q 2 with the smallest slack time (with respect to the beginning of the next PM on its assigned machine), and insert it (along with its possible above-programmed PM) at the end of the schedule of machine

Algorithm 20: Diversification.

Input: J. Output: (S, S).

1. Solve the MILP to construct the largest possible blocks (ideally, perfect blocks of length T i) on the machine with smallest T i .

2. Solve the MILP on the other machine.

3. Put all rejected jobs in S.

4. Sequence the blocks scheduled on each machine M i in decreasing order of weight.

5. Sequence the jobs in each block according to the WSPT rule.

6. Return (S, S).

jobs). However, this is done only from the point of insertion of a new job to the end of the schedule, since nothing changes before the insertion point.

Tabu status

There is no tabu list as such in our implementation, but rather a tabu tenure which is associated with each move m leading from the current solution to the next one. A tabu tenure means that it is forbidden, for a certain number of iterations, to perform an inverse move m -1 that would cancel out the modifications of m.

For example, if a move that exchanges jobs j and l is performed at iteration ITER, then the reverse exchange will be declared tabu until iteration ITER + tabu tenure. Note also that a tabu tenure is associated with an exchange of blocks in Phase 2, rather than an exchange of jobs. The tabu tenure is a randomly chosen number in the interval [α, β]. After some preliminary experiments, this interval was fixed at [5,10] in Phases 1 and 3 and [3,7] in Phase 2.

Aspiration criterion

The tabu status of a move is revoked it leads to a solution which is better than the best known solution. There is no risk of cycling in this case, since this new best known solution has clearly not been previously visited.

Stopping criterion

The stopping criterion for each Phase l, with l = 1, 2, 3, corresponds to a maximum number of iterations Itermax M ultT S l . The value for each parameter was determined through parameter sensitivity analysis, as explained in Section 5.6. GAP = 100 × ((GrH -T S)/GrH) (5.24) where T S is either M ultT S or ConsT S and the improvement is calculated either with regard to objective f 1 or f 2 , depending on the context.

Stopping criterion

In M ultT S, Phase l is stopped after IterM ax M ultT S l iterations with l ∈ {1, 2, 3}. First, we tested IterM ax M ultT S 1 = n 10 , n 5 , n, 2n, 3n, 4n, 5n. The average values of objective f 1 for these values are summarized in Table 5.3 with the corresponding computation times in seconds. Since Phases 2 and 3 are aimed at optimizing f 2 , Table 5.4 shows the average values of f 2 at the end of Phase 3, after fixing IterM ax M ultT S 1 to 2n, while entries of columns 5, 6 and 7 report the average computation time in seconds.

We observe that the value of f 1 is rather stable after IterM ax M ultT S 1 = 2n iterations. It should also be noted that the computation time is around one minute for the largest number of iterations 5n. With regard to IterM ax M ultT S 3 , the entries in the second column of Table 5.4 for instances of size n = 200 shows that improvements to f 2 are obtained with increasing values of IterM ax M ultT S

3

, although the gap between IterM ax M ultT S 3 = 3n, 4n and 5n is quite small. On the other hand, entries of column 3 and 4 show that f 2 remains practically constant for IterM ax M ultT S 3 = 3n, 4n and 5n. In all cases, the computation time is less than one minute, even for 5n iterations. Based on these results, IterM ax M ultT S 3 was set to 3n. Note also that IterM ax M ultT S 2 was set to n/5 given the relatively small-sized of the corresponding neighborhood, where blocks are moved rather than individual jobs. The global iteration counter of M ultT S and ConsT S was lunched to IterM ax M ultT S such that the computational time is set to 60 minutes.

Publications resulting from This Research Journal Paper

• Krim H., Benmansour R., Duvivier D., Artiba A. (2018). A variable neighborhood search algorithm for solving the single machine scheduling problem with periodic maintenance. RAIRO-Operations Research journal

Submitted journal paper

• Krim H., Benmansour R., Duvivier D., Ait-Kadi D., Hanafi S., (2018).Minimizing the weighted sum completion times on a single machine with periodic maintenance. Computational Optimization and Applications.

Working papers

• Krim H., Zufferey N.,Potvin J-Y., Benmansour R., Duvivier D. (2019). Two parallel machine scheduling problem with periodic maintenance, jobs rejection and weighted sum completion times.

• Krim H., Benmansour R., Duvivier D. (2019). Variable neighborhood search for a single machine scheduling problem with sequence-dependent setup times and periodic maintenance.

International conference with reviewing committees and published proceedings

• Krim H., Benmansour R., Duvivier D., Artiba A. (2019). Heuristic for single machine scheduling problem with sequence dependent setup-times and periodic maintenance. International Conference on Industrial Engineering and Systems Management (IEEE IESM 2019), Shanghai, China, pp.(accepted), september.

• Krim H., Benmansour R., Duvivier D. (2018). On the single machine scheduling problem with sequencedependent setup times and periodic maintenance. Proceedings of the fifth edition of the IEEE International Conference on Control, Decision and Information Technologies (CODIT'18), Thessaloniki, Greece, april.

National conferences with reviewing committees and published proceedings

• Krim H., Benmansour R., Duvivier D. (2017). Scheduling with sequence-dependent setup times and periodic maintenance on a single machine to minimize the total weighted completion time. Proceedings de la conférence ROADEF 2017, Metz, february.

• Krim H., Benmansour R., Duvivier D. (2016). Minimizing the weighted completion time on a single machine with periodic maintenance. ROADEF 2016, Conf Ãl'rence ROADEF 2016, Compiégne, february.

Posters and other communications

• Krim H., Benmansour R., Duvivier D. (2017). Résumé des travaux de recherche menés dans le cadre d'ELSAT 2020. Groupe de travail du projet OLOGMAESTRO (ELSAT/OS2/P2), LGI2A, Béthune, France, october.

• Krim H., Benmansour R., Duvivier D. (2016).Optimisation et simulation pour l'ordonnancement et la maintenance dans un environnement incertain. Poster présenté à la Matinée des Chercheurs 2016 (MDC'16), UVHC, LAMIH, Valenciennes, may .