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Abstract

Production scheduling is considered as one of the most important tasks carried out in manufacturing systems.
It allows available resources to perform a number of tasks, over a given period of time, while optimizing one or
more objectives such as reducing production delays or costs associated with storage.

In France, these industries contribute significantly to the regional and national economy, making the Hauts-
de-France region the fourth French economic region. In order to remain competitive, these companies must
be based, on one side, on a reliable production system that is available at any time, and on the other side,
on powerful Decision Support Systems to react quickly to any unpredictable situation such as failures, late
deliveries of raw material or orders cancellation, etc.

Furthermore, maintenance is another aspect closely connected to production scheduling in real manufactur-
ing settings. One of the most common assumptions in the scheduling literature is that the machines or resources
are always available but, in practice, they may have to be stopped due to failures or to preventive maintenance.
Taking into account that machines are an essential part of the production process and maintenance costs repre-
sent a large percentage of the total budget of operations, it is desirable to coordinate efficiently the maintenance
planning and production scheduling.

This thesis addresses exactly this problem, while considering other constraints such as sequence-dependent
setup times between tasks. The main objective of this work is to design and develop optimization methods
for decision support systems applied to scheduling problems with unavailability constraints due to preventive
maintenance. The proposed models and tools have been validated through academic problems and on the basis
of simplified industrial problems. Therefore, the output of the thesis is to develop new algorithms and models
based on integer linear programming, heuristics and metaheuristics to solve production scheduling problems.

Keywords: Scheduling - Maintenance - Setup-time - Job rejection - Optimization



Résumé

L’ordonnancement est considéré comme l’une des tâches les plus importantes en industrie, notamment dans les
ateliers de production. Son but principal est d’allouer les ressources disponibles aux tâches sur une période
donnée, tout en optimisant un ou plusieurs objectifs tels que la minimisation des délais de production et les
coûts de stockage.

En France, ces industries contribuent de manière significative à l’économie régionale et nationale, faisant
de la région Hauts-de-France la quatrième région économique française. Pour rester compétitives, ces sociétés
doivent reposer, d’une part, sur un système de production fiable et disponible à tout moment, et d’autre part,
sur de puissants outils d’aide à la décision permettant de réagir rapidement à toute situation imprévue telle
qu’une panne ou un retard de livraison de matières premières, des annulation de commande, etc.

Par ailleurs, la maintenance est un autre aspect étroitement lié à l’ordonnancement de la production. L’une
des hypothèses les plus courantes dans la littérature est que les machines ou les ressources sont toujours
disponibles à tout moment, or, en pratique, il peut être nécessaire de les arrêter en raison de pannes ou de
maintenance préventive. Compte tenu du fait que les machines sont un élément essentiel du processus de pro-
duction et que les coûts de maintenance représentent un grand pourcentage du budget total des opérations, il
est souhaitable de bien coordonner la planification de la maintenance et l’ordonnancement de la production.

Cette thèse aborde exactement ce problème, tout en considérant d’autres contraintes comme les temps de
préparation dépendant de la sequence. L’objectif principal de ce travail est de concevoir et de développer des
méthodes d’optimisation pour l’aide à la décision appliquées aux problèmes d’ordonnancement avec contrainte
d’indisponibilité dûe à la maintenance préventive. Ces outils sont validés à travers des problèmes académiques
et industriels simplifiés. Par conséquent, cette thèse a conduit au développement de nouveaux algorithmes et
modèles basés sur la programmation linéaire en nombres entiers, des heuristiques et des métaheuristiques pour
résoudre des problèmes d’ordonnancement de la production.

Mots-clefs : Ordonnancement - Maintenance - Temps de préparation - Rejet de tâches - Optimisation
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Chapter 1

Introduction

In this chapter, we give the context of this thesis is defined, by presenting at first the research project in which

this thesis is included. In the second part of this chapter, we present the working hypotheses on which our work

is carried out given that the considered problem areas are theoretical and based mainly on simplified industrial

problems. The chapter ends with the main contributions and the output of this thesis.
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1.1 General context: ELSAT2020 project

This dissertation has been carried out in the context of the ELSAT1 (Ecomobility, Logistics, Security and

Adaptability in Transport) Horizon 2020 project. This project is co-financed by the European Union with the

European Regional Development Fund, the French State, and the Hauts-de-France Region Council.

The ELSAT2020 project aims to address significant societal challenges for Transport and Ecomobility,

which are safer, more intelligent, more environmentally respectful, more integrated, customized, acceptable and

economically efficient. It is built around major strategic objectives and is divided into 22 sub-projects. The

research carried out in the ELSAT2020 project is mainly aimed at the economic sectors of the automobile, rail

and logistics transportation and new mobility.

This thesis is considered as one of the contributions in the Project 2 (P2) defined in the Strategical Objective

number 2 (named OS2) of the ELSAT 2020 project.

More specifically, OS2 deals with the optimization of mobility systems and logistics and the second project

(P2) in which this thesis is included concerns the Optimization of Operations in Logistics and Maintenance of

Transportation Systems (OLOGMAESTRO).

As mentioned in the objective of the OS2/PS project, current logistics chains are based on different modes

of transportation interacting with each other. Thus their good functioning and optimization depends on the

reliability of the means of transportation systems used. As a result, the maintenance policy plays an important

role to ensure both the fluidity of trade of goods and the reduction of operating costs due to breakdowns for

example. In addition, manufacturers are constantly developing their transportation systems to meet a variable

and personalized demand while offering a good quality of service in terms of cost, quality and time. These

manufacturers are also concerned by the environmental, social and social impact of these transportation systems.

Therefore, they must ensure that the availability of their transportation systems and the infrastructure used

for transport are improved. The objective of this project is to achieve these goals. To do this, our approach

is to provide generic decision support systems for the management of logistics operations and maintenance.

These tools must take into account the different types of constraints existing in logistics in general and in

transportation systems in particular.

In addition, part of the present research work has been carried out in the context of the LIA (International

Associate Laboratory) ROI-TML (Operational Research and Computer Science in Transportation, Mobility

and Logistics) between the LAMIH UMR CNRS 8201 (France) and the CIRRELT2 (Canada).

1.2 Problem statement and objectives of the thesis

Nowadays, the majority of production is transported by national or international supply chains. The sites of

production, processing, assembly, storage, repackaging, distribution, etc. can be scattered all over the world.

The routing of goods between these sites is carried out through different modes of transport in interaction. This

is especially true as the current transport systems are more and more complex and therefore require technically

1http://www.elsat2020.org/en
2https://www.cirrelt.ca/
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more maintenance. Consequently, the encountered problems in practical and industrial cases related to the

transport systems mentioned above can be modeled using scheduling theory.

On the other hand, an effective maintenance policy plays an important role in ensuring both the fluidity of

trade (goods, people) and the reduction of operating costs. For example, rail transport, considered for a long

time as important by the European Union and also by the Hauts-de-France region, is particularly characterized

by its ability to reduce congestion and its low impact on traffic for the environment in relation with roads or

air transport.

In the above-mentioned context, this thesis focuses on solving scheduling and maintenance problems. Indeed,

scheduling is a decision making problem that is used on a regular basis in many manufacturing and service

industries as well as in most information processing environments. It plays an important role on allowing

available resources to perform a number of tasks over a given period of time. More generally we say that

scheduling problems involve jobs and machines, with the aim to find the optimal ordering of the jobs over the

machines in such a way to optimize one or more objective functions. Obviously there can be some constraints

on the possible orderings, so the objective is to find a schedule specifying when and on which machine every

job must be processed. Thereby, one of the most important constraints considered throughout this dissertation

is the unavailability of one or more machines of the workshop due to a preventive maintenance policy.

Indeed, the main objective of this thesis is to design and develop optimization decision support systems for

scheduling problems with enrolled maintenance policy due to failures and machine breakdowns. The proposed

models and tools have been validated on through academic problems, on the basis of simplified industrial

problems.

Furthermore, the output of the thesis is, ultimately, to develop new algorithms and models based on mathe-

matical models, heuristics and metaheuristics to solve that kind of scheduling problems. Testing and validation

infrastructure are based on predefined designs of experiments, consistent with the above-mentioned aspects.

1.3 Work hypothesis

In this section we are mainly interested in the different hypotheses considered in this thesis.

Firstly, in scheduling theory, the type and number of considered machines differs from one problem to

another. Here, we consider two cases. Scheduling with single machine and scheduling on multiple machines.

Sections 1.3.1 and 1.3.2 explain in general the industrial interest of dealing with this two kind of problems.

Secondly, when the number of machines in the workshop is fixed, we are usually interested in the production

environment. Indeed, two other hypotheses are then introduced, scheduling with considering maintenance

policy in section 1.3.3 and sequence dependent setup times between each two tasks that should be performed

in section 1.3.4. Finally, There are several performance criteria to measure the quality of a schedule. In this

thesis we are interested mainly by two criteria: The weighted sum of completion times and jobs rejection cost

criteria. The interest of considering these two criteria are discussed respectively in sections 1.3.5 and 1.3.6.
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1.3.1 Critical machine based scheduling

In scheduling theory, a single-machine scheduling or single-resource scheduling is defined as the process which

assigns a group of tasks (jobs) to a single machine or resource in the shop. Generally, this machine (resource) is

defined as the critical machine (resource) in the shop floor in which the workload is accentuated. Is is also the

most crucial or vital machine in a shop floor where jobs are ranked so that one or many performance measures

(objective functions) should be optimized.

Figures 1.1 and 1.2 describe two critical machine cases in a workshop. Indeed, when a machine is in the

middle of the production chain or at the very beginning of this one (other layouts are also possible), it is

considered as critical because if it breaks down the whole workshop production will be delayed or blocked.

M4

M3

M2

M1

M6

M5

M4

M1

: Stream of semi finished products

M1

Figure 1.1: First illustration of a critical machine in a workshop

M1

M1

M3

M2

M6

M5

M4

: Stream of semi finished products

M1

Figure 1.2: Second illustration of a critical machine in a workshop

Some examples for critical machines in transport systems

Critical machines based scheduling has raised a special interest for several years. The transportation system

machine scheduling in one of the examples of critical machine based scheduling. Figure 1.3 shows a container

loading and unloading crane and Figure 1.4 a rotating hub in railways systems. These two resources are most
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Figure 1.3: Loading and unloading crane

Figure 1.4: Rotating hub in railways systems
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of the time considered as critical machines because of their vital and crucial role in the whole system process.

In this perspective, many researchers investigated this area. (Luo et al., 2016) investigated the integration of

the two problems focusing on the unloading process in an automated container terminal, where all or part of

the equipment are automated. Further details concerning the critical machine in the shop floor are available

in (Vivek et al., 2017). Furthermore, as mentioned by Pinedo in his book (Pinedo, 2016), in theory, single

machine models are important for various reasons. The single machine environment is very simple and a special

case of all other environments. Single machine models often have properties that neither machines in parallel

nor machines in series have. Furthermore the results that can be obtained for single machine models not

only provide insights into the single machine environment, they also provide a basis for heuristics that are

applicable to more complicated machine environments. In practice, scheduling problems in more complicated

machine environments are often decomposed into subproblems that deal with single machines. For example, a

complicated machine environment with a single bottleneck may give rise to a single machine model.

1.3.2 Parallel machines based scheduling

The parallel machine scheduling is a natural extension of the single-machine structure and also the basic unit

of the flexible job shop structure. It has been extensively studied due to its practical applications in various

manufacturing systems (Cheng and Sin, 1990); (Baykasoğlu and Ozsoydan, 2018), such as printed circuit board

manufacturing (Pearn et al., 2007), group technology cells, semiconductor manufacturing, painting and plastic

industries, injection molding processes, tracking and data relay Satellite System (Rojanasoonthon et al., 2003),

and recently on synchronizing loads in hub terminals (Guo et al., 2018), etc. Furthermore, it appears as a

relaxation of more complex problems like the hybrid flow shop scheduling problem or the RCPSP (Resource-

Constrained Project Scheduling Problem) (Chen and Powell, 1999); several methods are used to solve this

problem as column generation strategies (for more details about this methods see the references (Desrosiers and

Lübbecke, 2005); (Barnhart et al., 1998); (Desaulniers et al., 2005)), heuristics, linear programs, etc.

1.3.3 Maintenance policy in an industrial workshop

Definition

Maintenance is a set of operations or techniques that allow to maintain or restore an equipment to a specific

state and guarantee a given service. According to the British Standard Institute (BSI) (Standard, 1984), the

latter is defined as a combination of actions to restore an item to an acceptable condition. Applications and

examples which reflect the growing importance of maintenance are provided by (Ben Daya et al., 2009).

Maintenance actions can usually be classified into two major categories: Planned maintenance (proactive)

and unplanned maintenance (reactive) as illustrated in Figure 1.5. In this dissertation, we focused on the first

category of maintenance. Indeed, Proactive maintenance policy is organized and carried out with forethought,

control and the use of records to a predetermined plan while reactive maintenance refers to repairs that are

done when equipment has already broken down, in order to restore the equipment to its operating condition.
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However, the goal of this subsection is not to present a state of the art of maintenance policies, but only to give

sufficient information for an application in the context of this thesis.

Predictive Maintenance: PrM

It is a set of activities that detect changes in the physical condition of equipment (signs of failure) in order to

carry out the appropriate maintenance work for maximizing the service life of equipment without increasing

the risk of failure.

Maintenance 

Policy

Improvement

maintenance

Preventive

maintenance

Deterministic

maintenance

Flexible 

maintenance

Planned

maintenance 

(Proactive)

Unplanned

maintenance 

(Reactive)

Predictive

maintenance

Corrective 

maintenance

Emergency Breakdown

Figure 1.5: Maintenance policy

Corrective maintenance: CM

Corrective maintenance is those actions carried out when the failure has already happened. It consists of

detecting, isolating and correcting a fault in order to allow the equipment, the machine or the system to return

to its normal operating state. Further details of CM are available in (Banks, 1998) and (Adams, 2008).

Preventive maintenance: PM

Preventive maintenance actions are defined as systematic inspection, detection, correction, and prevention of

incipient failures, before they become actual or major failures. In other words, PM is commonly conducted in

order to keep a system at the desired level of operation and is performed when the system is idle at fixed time

intervals.

Variety of models have been developed to determine optimal PM period, such as in (McCall, 1965) and (Pier-

skalla and Voelker, 1976). Therefore, several PM policies should be defined, with the aim of determining when
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it is necessary to carry out PM operations on the machines according to different criteria. According to Ruiz

et al. (2007), three possible policies are commonly defined:

• Policy I: preventive maintenance at fixed predefined time intervals,

• Policy II: optimum period model for the preventive maintenance maximizing the machines availability,

• Policy III: maintaining a minimum reliability threshold for a given production period t.

According to Ruiz et al. (2007), the widely used policy in industry is Policy I. In this latter, PM operations

are planned to be performed at predefined time intervals without considering probabilistic models for the time

to failure and making the best use of scheduled stops after weekly, monthly, or even annual cyclical production

periods. Policies II and III utilize probabilistic models to find an optimal preventive maintenance interval. For

example, Singh and Arvinderjit (2013) demonstrate that maintenance planning using probabilistic models helps

to reduce downtime and increase the profits of companies.

More details about each policy II and III could be found in (Ruiz et al., 2007).

Hence, the first mentioned maintenance policies certainly influence the machine availability and the machine

utilization ratio. Thereby, we can find in the literature two types of preventive maintenance as reported

by Yang et al. (2011):

Deterministic maintenance: It means that maintenance periods are determined before jobs are

scheduled, i.e., the starting times of the maintenance activities are fixed in advance. Scheduling dealing with

this type of maintenance is often referred in literature as scheduling with availability constraints, scheduling

with limited machine availability or scheduling with fixed non-availability intervals because during maintenance

periods the machine is unavailable for processing any job.

Flexible maintenance: It means that the schedule of maintenance periods are determined jointly with

the schedule of jobs, i.e., the starting times of the maintenance activities are allowed to be flexible and are

determined in the scheduling process. This problem is known as scheduling with flexible maintenance, scheduling

with unfixed availability constraints, integrating preventive maintenance planning and production scheduling, or

(simultaneously/jointly) scheduling jobs and maintenance activities.

However, in both cases of flexible maintenance and deterministic maintenance policy, in many production

systems, periodic inspection, periodic repair and preventive maintenance are usually conducted in the shops.

These maintenance works are usually scheduled periodically in the production systems, we then speak about

“periodic maintenance”. With proper planning of periodic maintenance, the shop can concentrate on production

efficiency and safety, resulting in increasing productivity and achieving high safety awareness as stated in (Arts

et al., 1998) and (Liao and Chen, 2003).

To the best of our knowledge, Liao and Chen (2003) are the first group of researchers that take periodic

maintenance into consideration in the scheduling community.

Furthermore, we point out that the objective in this thesis is not to find the best time (period to perform

a preventive maintenance as defined by policy II and III) but to find the best schedule of jobs taking into
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consideration the preventive maintenance policy. In other words, PM is considered as an unavailability constraint

for the machines or equipment during the scheduling horizon that we should take into consideration. This

matches with Policy I. Indeed, throughout this dissertation, we consider both the deterministic maintenance

and flexible maintenance with periodic aspect in Chapters 3 and 4 respectively Chapter 5.

1.3.4 Sequence dependent setup-times constraint

Setup-times definition:

A setup is a set of operations that should be performed before or after processing a job on a machine to prepare

it for processing the next job. It is also defined as a non-productive periods needed at machines in order to make

cleanings, configurations or operations for the production between jobs. The interest in scheduling problems

where setup times are explicitly considered began in the mid-1960s. The importance of considering the setup

times in production scheduling can not be underestimated as pointed out by Allahverdi (2015). Hence, ignoring

setup times may be valid for some applications, but it adversely affects the solution quality of some other

applications of scheduling. This is because setup process is not a value added factor, and hence, setup times

need to be explicitly considered while scheduling decisions are made in order to increase productivity, eliminate

waste, and improve resource utilization.

There exists three major variants of setup-times in the related literature:

• Independent setup-times which means that the setup time doesn’t depend on any sequence and appears

the same between all the scheduled jobs.

• Sequence dependent setup-times which means that the setup time depends on the job that is pro-

cessed immediately before. This is frequently observed in real industry settings as in the textile industry,

manufacturing printed circuit boards and chemical industry (Chen, 2009; Gravel et al., 2000).

• Job families setup times: According to Pinedo (2016), the jobs belong in this case to F different job

families. Jobs from the same family may have different processing times, but they can be processed on

a machine one after another without requiring any setup in between. However, if the machine switches

over from one family to another then a setup is required.

However, in this dissertation we consider the case of scheduling with sequence dependent setup-times. Due

to the great savings obtained, last decades have shown an increasingly interest in studying sequencing prob-

lems where the setup-times are explicitly incorporated in scheduling decisions. A recent review is provided

in (Allahverdi, 2015).

Many works have assumed that there are no setup-times or they are independent of job sequence, however,

this situation may not always be true in practice. In various real world industrial/service environments such

as chemical, printing, pharmaceutical, and automobile manufacturing, the setup operations, such as cleaning

up or changing tools, are not only often required between jobs but they are also strongly dependent on the

immediately preceding process on the same machine (Lee and Pinedo, 1997). The motivation behind this

assumption is to obtain good savings when setup times are explicitly included in scheduling decisions.
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Case study

• Baykasoğlu and Ozsoydan (2018) reported a case study in Heat Treatment Stage (HTS). Indeed, consecu-

tive jobs, processed in HTS, might require different temperature levels. For this reason, a heat treatment

furnace needs to be heated up or cooled down between these consecutive jobs. However, heating up and

cooling down operations of the furnaces differ considerably. Heating the furnaces up from 400°C to 600°C
is not identical to cooling them down from 600°C to 400°C. Thus, assuming that i 6= j, elapsed time

while preparing a furnace from job i to job j is not equal to the elapsed time between jobs j and i. In

the present problem, those elapsed times correspond to sequence-dependent setup times and setup only

occurs while heating up or cooling down period of a heat treatment furnace, which means that a setup

can be initialized whether the forthcoming job is released or not. This reveals an interesting practical

situation.

• Chen (2009) reported a real-life scheduling problem in a textile company. The company specializes in the

manufacturing textiles such as polypropylene, synthetic silk, and chemical chip. As the machine overload

in 24 hours production, periodic maintenance is usually arranged in a planned schedule to avoid any

sudden machine breakdowns which occur frequently in the shop. The production system of this company

consists of an expensive main machine and some peripheral equipment, such as extractor, distribution

pipe, spinning pump, quenching pipe, oil disk, idle roller, capstan roller, gear reel. The processing time

of a job can be determined completely by the main machine. Thereby the problem can be treated as

a single-machine scheduling problem. The considered workshop is running three shifts a day, 8 hours a

shift, and 7 days a week for a fully utilization of the main machine and equipment already mentioned

above. Each maintenance period is scheduled after a 20-day which is equivalent to 480 hours interval. The

amount of time to perform one maintenance requires 24 h. Once maintenance is performed, the job being

processed must be stopped. After the maintenance is completed, the unfinished job is resumed according

to the original schedule. When switching between two radically different products, occurs more cleaning

is required. Thus, a sequence-dependent setup times is considered. While only minor cleaning is involved

when the switch is between two similar products, such as pure white and mixture white textile.

1.3.5 Weighted sum of completion times (WCT) criterion

Makespan of a schedule measures the time by which all the jobs in the schedule finish. However, when jobs are

independent and competing for the same resource, a more natural measure of performance is the weighted sum

of completion times of jobs (WCT). According to Pinedo (2016), the sum of completion times is in the literature

often referred to as the flow time. The total weighted completion time is then referred to as the weighted flow

time.

The pioneering work that considers this objective function was Smith (1956).

The weighted sum of completion times or average weighted completion time criterion is certainly less studied

than the makespan. Nonetheless, many works dealing with this criterion are considered in the related literature.

In (Leung, 2004), the authors made a survey about the approximation algorithms (see Section 2.5.2) used to
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solve scheduling problems with aims of minimizing average (weighted) completion times.

WCT criterion remains interesting on the theoretical and practical level. Indeed, the weights can quantify

the holding cost per unit of time of the products to transform. Thus, this criterion can represent the global

holding cost. It also could represent the amount of value already added to a task or an order.

Moreover, in 1996 (Chekuri et al., 1996) studied an application to instruction scheduling in VLIW processors.

In this application the weight of a job (or instruction) is derived from profile information and indicates the

likelihood of the program block terminating at that job. This is a compelling application for scheduling jobs

with precedence constraints on a complex machine environment to minimize weighted sum of completion times.

In addition to applications, minimizing the weighted sum of completion times presents interesting theoretical

problems and has spurred work on polyhedral formulations (Schulz, 1996) as well as combinatorial methods.

1.3.6 Jobs rejection cost (JR) criterion

Machine scheduling problems have been extensively studied in the literature under the assumption that all jobs

have to be processed. However, in many practical cases, the manufacturer may wish to reject the processing of

some jobs in the shop. The decision to reject jobs may be due to a low machine capacity or high scheduling

costs. In such a case, a rejected job may be either outsourced or not get served at all, resulting in a rejection

penalty either due to outsourcing cost or loss of income and reputation. In such a framework, the scheduler

must first decide which jobs will be rejected and which will be accepted. Then the set of accepted jobs has to be

efficiently scheduled among the machines as to minimize a given predefined scheduling criterion. An instance

for a single machine scheduling problem with jobs rejection is defined by the number of jobs to be processed,

the jobs processing times and rejection penalties. A solution is defined by a partition of the jobs into a set of

accepted, and a set of rejected jobs, by an allocation of the jobs to the machines of the shop, and by a job

sequence of the set of allocated jobs on each machine. Hence, the quality of a solution is measured by two

criteria: The First is the total rejection cost and the second is generally a scheduling criterion depending on

the jobs completion times. Since scheduling with rejection is essentially a problem with two criteria, in this

dissertation, the WCT criterion is also optimized as a second criterion.

1.4 Main contributions and thesis outline

This thesis is organized as follows:

Chapter 2 is a literature review based on the scientific state of the art in the related field of research, mainly

all that has been applied to define the addressed issues and the resolution methods used to process them.

Chapters 3, 4 and 5 detail the main contributions relating to this thesis. More precisely, Chapter 3 proposes

solutions methods based on greedy constructive heuristics, mathematical models, and a metaheuristic to solve

the single machine scheduling problem with periodic maintenance in order to minimize the weighted sum of

completion times criterion. Also, three properties for this problem which generalize already existing works are

presented and applied to construct the proposed heuristics.

To evaluate the performances of the proposed methods, several lower bounds are provided.
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In Chapter 4, we propose two mathematical models, two heuristics based on a multistart strategy to solve

the single machine scheduling problem with sequence dependent setup time. As already done in Chapter 3, the

considered criterion to minimize is the weighted sum of completion times.

In Chapter 5 we solved a two parallel machine scheduling problem with periodic maintenance, jobs rejection

and weighted sum of completion times using a greedy heuristic and two different methods based on a Tabu

Search algorithm. A mathematical model is also proposed for solving small-sized instances.

Finally Chapter 6 is a discussion over the study and it also presents some of our prospects.
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Chapter 2

State of the art

In the presented work, we favored the use of an exact method whenever the time required to find an optimal

solution was considered as “acceptable” by the decision-maker. However, to deal with large-sized instances of

the target problems, our works led us to use heuristics and/or metaheuristics methods to get one or more high

quality solution(s) in reasonable time. The objective of this chapter is to introduce definitions and notations of

scheduling theory and maintenance, to define combinatorial optimization tool and to present literature review

about works dealing with joint optimization of scheduling and maintenance problems.
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2.1 Shop scheduling

First researches on scheduling appeared in the 50’s. From then on, problems became more and more complex

because of the numerous practical constraints to take into account. . .

Indeed, there are many variants of scheduling problems amongst the huge literature of this field. As men-

tioned in (Graham et al., 1979); (Carlier and Chrétienne, 1988); (GOThA, 1993); (Shmoys et al., 1994); (Chré-

tienne et al., 1995); (Pinedo, 1995); (Esquirol and Lopez, 1999); (Pinedo and Chao, 1999); (Allahverdi et al.,

1999), (Billaut and T´Kindt, 2002); (Billaut et al., 2005); (Baptiste et al., 2005); (Artiba et al., 2011); (Jarboui

et al., 2013), scheduling problems are present in all sectors of the economy: industry, hospitals, administrations,

computer science. . . Scheduling is a crucial issue because the quality of generated schedules directly affects the

production (in terms of efficiency, competitiveness, flexibility, deadlines fulfillment, customer satisfaction. . . ).

2.1.1 Definitions

By definition, scheduling is “to forecast the processing of a work by assigning resources to tasks and fixing

their start times” (Billaut and T´Kindt, 2002; Carlier and Chrétienne, 1988). A schedule is a solution to

a scheduling problems. It consists of a set of start dates, and assigned resources (i.e. machines, operators,

etc.) to each operation. Among the family of scheduling problems, our works focused on shop scheduling. A

simplified definition of shop scheduling problems, largely inspired by (Billaut et al., 2005), is the following: a

shop scheduling problem corresponds to a model consisting of a set I of m different machines on which to run

a set J of n jobs. Each job Jj is described by nj tasks (named operations). The jth operation of job Jj that

has to be performed on machine Mi is denoted by Oij. The operation of a same job cannot be performed

simultaneously. We distinguish two types of task:

• Resumable job: a job is resumable if it cannot be finished before the unavailable period of a machine

and can continue after the machine is available again.

• Non-resumable job: a job is nonresumable if it has to restart, rather than continue after the machine

becomes available.

The following notations are associated with each job j:

Processing time (pij): pij is the processing time of job j on machine i. The index i is omitted if the

processing time of job j does not depend on the machine or if job j is only to be processed on one given

machine. Thus, the processing time will be denoted by pj instead of pij.

Release date (rj): The release date rj of job j is the time the job arrives at the system, i.e., the earliest

time at which job j can start its processing.

Due date (dj): The due date dj of job j represents the committed shipping or completion date (i.e., the

date the job is promised to the customer). Completion of a job after its due date is allowed, but then a penalty
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is incurred.

Deadline (d̃j): When completion of a job j after its due date is forbidden, it is referred to as a deadline

and denoted by d̃j.

Weight (wj): The weight wj of job j is basically a priority factor, denoting the importance of job j

relatively to the other jobs in the system.

Rejection cost (uj): The cost uj is associated to each job j and represents the expense related to the

decision of rejecting(i.e not scheduling) that job and not schedule it.

Here we give some standard notations used throughout this thesis:

• PM: Refers to a preventive maintenance action,

• T : Period between two consecutive PM,

• Ti: Each machine Mi must undergo a PM at intervals that cannot exceed Ti time units,

• δi: Maintenance duration in machine i. When only one machine is considered, δi becomes δ,

• Batch: Refers to the set of jobs that can be scheduled in each period of time T ,

• Block: Refers to the set of jobs actually scheduled between two consecutive preventive maintenances.

In this thesis, the difference between the blocks and the batches is that a batch has always the same capacity

T while a block does not necessarily have the same size.

• S: current solution of a predefined problem (P),

• S∗: Best solution found by an algorithm for (P),

• S
′
: Neighbor solution of S.

2.1.2 Shop scheduling description

Scheduling problems are described by a triplet α|β|γ. The field α describes the machine environment and

contains just one entry. The field β provides details of processing characteristics and constraints and may

contain no entry at all, a single entry, or multiple entries. The γ field describes the objective to be minimized

and often contains a single entry. This notation is proposed in (Graham et al., 1979) and extended by Billaut

and T´Kindt (2002).
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Machine environment

Single machine(1): The case of a single machine is the simplest of all possible machine environments and is

a special case of all other more complicated machine environments.

Parallel machines(Pm): There are m identical machines in parallel. Job j requires a single operation and

may be processed on any one of the m machines or on any one that belongs to a given subset. If job j cannot

be processed on just any machine, but only on any one belonging to a specific subset Mj, then the entry Mj

appears in the β field. There are three field kinds of parallel machines:

• Identical parallel machines (P): the operating times of the tasks do not depend on machines, i.e. the speed

of execution of a task is the same on all machines.

• Uniform parallel machines (Q) : each machine has a clean and constant execution speed.

• Non-uniform parallel machines (R): the execution speed is different for each machine and for each task.

Dedicated machines: In this class, each job consists of several operations oij and the machines are specialized

in carrying out certain operations. Three types of workshops are considered :

• Flow shop (F): in this workshop the sequencing tasks path is unique, the tasks to be realized go through

all the machines in the same order. In the literature, particular case is often studied, for which the

sequence of tasks going throw every machine is the same for all machines.

• Job shop (J): this workshop is considered as a generalization of the flow shop. Indeed, the operating

range is different from one operation to another. In other words, the order of operations on machines can

be different from one task to another.

• Open shop (O): this workshop is the least studied shop in the literature and the least used in the

enterprises. The order of execution of the operations is not fixed.

Constraint characteristics

The set of constraints and characteristics can be various, so we will introduce just the ones used in this thesis:

pmtn: This means that the job can be preempted, so it can be started on one machine, stopped, and

resumed in a later time, also on a different machine. When preemptions are allowed pmtn is included in the β

field, when pmtn is not included, preemptions are not allowed.

rj: This indicates the presence of some release dates which means that for rj = x ≥ 0 the job j can be

started only after x units of time from the origin of time.
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Stsd: According to (Pinedo, 2016), the stjk represents the sequence dependent setup time that is incurred

between the processing of jobs j and k. s0k denotes the setup time for job k if job k is first in the sequence and

stj0 the clean-up time after job j if job j is last in the sequence (of course, st0k and stj0 may be zero). If the

setup time between jobs j and k depends on the machine, then the subscript i is included, i.e., sijk. If no stjk

appears in the β field, all setup times are assumed to be 0 or sequence independent, in which case they are

simply included in the processing times.

PM: This notation refers to the preventive maintenance policy.

In problems with unavailability periods (due to preventive maintenance or not), that latter are considered

as constraints related to the environment of execution. This notation has been presented in detail in the

surveys on the problems with known unavailability by (Schmidt, 2000) and (Ma et al., 2010). The followed

notations are then introduced.

hl,k: indicates that the processed scheduling problem has unknown number of unavailability periods on

each machine k

h1: Indicates that in one single machine environment, only one unavailability period is considered.

hk: Indicates that k unavailability periods are considered.

Any other entry that may appear in the β field is self explanatory. For example, pj = p implies that all

processing times are equal.

Optimization criterion

Examples of possible objective functions to be minimized are:

Makespan (Cmax): The completion time of job j is denoted by cj. The, the makespan is defined as

max(c1, ..., cn) which is equivalent to the completion time of the last job in the schedule. A minimum makespan

usually implies a good utilization of the machine(s).

Maximum Lateness (Lmax): The maximum lateness, Lmax, is defined as max(L1, ..., Ln), with Lj is the

lateness of a job j computed as follows:

Lj = cj − dj (2.1)

The maximum lateness measures the worst violation of the due dates.
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Total weighted completion time (wjcj): This criterion is already introduced in Chapter 1.

Total weighted tardiness (
∑n

j=1wjTj): This criterion is a more general cost function than the total

weighted completion time. We define by Tj the tardiness of a job which is computed as follows:

Tj = max(cj − dj, 0) = max(Lj, 0) (2.2)

Total rejection cost (
∑n

j=1 uj): This criterion is already defined in Chapter 1.

Other criteria are defined in Pinedo (2016).

In this thesis, we focus on two types of shop scheduling problems: the single machine and the parallel

machine environments.

Hence, the addressed scheduling problems in Chapters 3, 4 and 5 are denoted respectively as follows:

1/PM/
∑n

i=1 wjcj, 1/PM,Stsd/
∑n

i=1 wjcj and P2/PM, d̃j = d̃/
∑n

i=1 uj,
∑n

i=1 wjcj.

2.1.3 Scheduling representation

Each schedule can be represented by a Gantt chart, which has been developed by H.-L. Gantt in 1910. The

Gantt chart is also used in companies for project planning. In the case of production management, this diagram

consists of several horizontal lines (or floors) that represent the machines. Tasks performed on a given machine

are represented by rectangles of length proportional to their duration. Therefore, the Gantt chart gives an

overview of the tasks performed on all machines over time.

Figure 2.1 shows a Gantt chart for a three parallel machine shop. The processing times of each job are

summarized in Table 2.1.

jobs J1 J2 J3 J4 J5 J6 J7 J8 J9

pj 4 2.5 1.5 3 3 3 1 1 2

Table 2.1: Jobs processing times

2.2 Scheduling problems under unavailability constraint due to a

preventive maintenance policy

Production scheduling and preventive maintenance planning are the most common and significant problems

faced by the manufacturing industry. Scheduling the maintenance in manufacturing systems has gradually

become a common practice in many companies. Indeed, according to practical experience, it sometimes can

be found that some of the machines are awaiting maintenance while there are jobs waiting to be processed

by these machines. This is due to the lack of coordination between maintenance planning and production

scheduling. Therefore, there is a need to develop efficient scheduling methods to improve the situation by

deriving a satisfactory schedule that considers both jobs and maintenance activities simultaneously.
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Figure 2.1: Gantt chart

With proper planning of the maintenance activities, the shop can improve production efficiency and safety,

resulting in increased productivity and heightened safety awareness (Arts et al., 1998). The scheduling of

maintenance activities can be determined either before the scheduling of jobs, or jointly with the scheduling of

jobs. In the first case, the maintenance periods are known and fixed in advance. Thus the problem of scheduling

jobs with this kind of maintenance reduces to the problem often referred in the literature as scheduling with

machine availability constraints.

Whereas scheduling tends to efficiently assign resources to jobs and generally suppose that all resources are

always available when no jobs are processed.

The two activities are in conflict because, as we know, maintenance operations consume production time

while delaying maintenance operations can increase the probability of machine failure.

Maintenance operations need to access to resource so as to maximize their efficiency while trying to reduce

failure risks. Indeed, maintenance problems are crucial aspect of nowadays industrial problems. However,

the quest of the efficient periodicity of maintenance for all components of a system is far from an easy task

to accomplish when considering all the antagonistic criteria of the maintenance and production views of a

production system. It is expected that production will be more efficient and revenues will increase if preventive

maintenance is well managed.

In this thesis, we study the coupling between production and maintenance (Roux et al., 2009); (Roux et al.,

2013); (Benmansour et al., 2011); (Benmansour et al., 2012); (Benmansour et al., 2014); (Rivera Gómez et al.,

2013); (Pozzetti et al., 2014). Thus, the objective is to simultaneously ensure a low frequency of failures by

an efficient periodic preventive maintenance and minimize the unavailability of the system due to preventive

maintenance. This implies a minimum impact on the production through an adequate maintenance strategy

that takes production tasks into account.

A maintenance strategy is defined as a decision rule which establishes the sequel of maintenance actions. Each

maintenance action allows one to maintain or restore the system in a specified state by using the appropriate

resources. Cost and duration are incurred to execute each maintenance action. Many papers and books dealing
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with preventive maintenance and replacement strategies have been published previously (Ben Daya et al.,

2009); (Boschian et al., 2009); (Wang, 2002). In this thesis, we consider one basic replacement policy (Bloc

Replacement Policy BRP) and assume that the maintenance costs are negligible.

As in (Barlow and Proshan, 1976), we consider in Chapters 3 and 4 the BRP where the replacements are

undertaken at exactly KT with K = 1, 2, . . . , T a fixed time, or at failures. while in Chapter 5, we consider

a flexible preventive maintenance where the replacement takes place before each Ti time of use of the machine

Mi. In both cases, items used in each replacement are supposed to be as good as new ones.

However, scheduling problems are often classified among the most difficult combinatorial problems. Thereby,

using the exact methods to solve them is practically unusable and are to be banished in aim of finding optimal

solutions in a reasonable time for large sized instances, especially in a just in time environment. Consequently,

it becomes necessary to use approximate methods to solve them.

2.3 Scheduling problems complexity

The theory of complexity classifies problems according to their difficulties. In general, the computational time

of an algorithm obviously depends on the machine on which it is running. However, if we count the number

of steps in this algorithm, it is possible to ignore such environmental constraints. Thus, the time complexity

function T (n) of an algorithm expresses the maximum time, in the sense of the number of steps, necessary to

solve an instance of size n of a predefined problem.

However, the complexity of an algorithm can refer to the memory space that is needed when running the

algorithm. Hence, in this dissertation we will only refers to the time complexity and then use the term of

complexity instead of time complexity.

Two types of problems are often studied. Decision problems and search problems.

Decision problems are those for which we try to answer a question by yes or no, and when we treat a research

problems then, the goal is to find a solution to a given problem.

Optimization problems form a subclass of search problems. In this case, the solution must optimize an

objective function.

In scheduling, we encounter both problems of decisions and optimization. Decision problems are mostly used

to solve the optimization problems associated with it, or to help determining its complexity class. In general,

scheduling problems are classified as difficult combinatorial problems which means that there are no universal

optimal algorithms to solve all cases.

Depending on its complexity, a problem can belong to one of the following four classes (Garey and Johnson,

1979):

• P problems class: Called polynomials, P is the complexity class containing decision problems which

can be solved by a deterministic Turing machine using a polynomial amount of computation time, or

polynomial time. P is often taken to be the class of computational problems which are efficiently solvable

or tractable. Problems that are solvable in theory, but cannot be solved in practice, are called intractable.
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• NP problems class: NP (Non deterministic Polynomial time) is the set of decision problems solvable

in polynomial time on a non deterministic Turing machine (for more details please refers to (Bovet et al.,

1994); (Vitanyi and Li, 1997)). Called NP-hard problems. The solutions obtained in a reasonable time

can never be qualified as optimal. All the problems in this class have the property that their solutions

can be checked effectively.

• NP−Complete problems class: NP − complete problems class is a sub-class of the NP problems. In

complexity theory, the NP − complete problems are the most difficult problems in NP in the sense that

they are the ones most likely not to be in P.

Moreover, NP-Complete class represents the set of all problems X in NP for which it is possible to reduce

(for more details see (Vitanyi and Li, 1997)) any other NP problem Y to X in polynomial time.

• NP− hard problems class: These are the problems that are at least as hard as the NP-complete

problems but are not necessarily in NP and do not have to be decision problems.

More precisely, a problem X is NP − hard, if there is an NP − complete problem Y, such that Y is

reducible to X in polynomial time. But since any NP − complete problem can be reduced to any other

NP−complete problem in polynomial time, all NP−complete problems can be reduced to any NP−hard
problem in polynomial time. Then, if there is a solution to one NP − hard problem in polynomial time,

there is a solution to all NP problems in polynomial time.

2.4 Combinatorial optimization

Nowadays, many real-world problems are complex and difficult to solve. We can enumerate problems in pro-

duction systems, constraints management and routing problems in transport systems, image processing and air

quality management in the environmental sector. When it becomes possible to model all these problems using

mathematics, we give them the denomination of optimization problems. The goal is usually to optimize one or

more criteria taking into account several constraints.

When enumerating all feasible solutions of research space of a given problem grows rapidly and becomes

exponential, we speak then about combinatorial explosion of the search space. It becomes impossible to find

optimal solutions to the considered problem in a reasonable time. More precisely, when the decision variables

of the problem are discrete, these kind of problems are called combinatorial optimization (Papadimitriou and

Steiglitz, 1998) problems. These latter are therefore divided into two categories: those solved by efficient

algorithms (with polynomial complexity) which allow to find optimal solutions in a reasonable time, and those

whose resolution can take an exponential time for the large size instances.

Hence, the main objectives of many researchers is to formulate a combinatorial optimization problem and

try to solve it. For that, the procedure consists by first defining the parameters, the variables, the research

space and the objectives to be optimized. Then, model them and at the end choose a method of resolution.

at this level, a parameter comes into account: The complexity of the problem. This latter allows to decide
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between using exact methods or an approximate method. Before presenting this range of methods, let us briefly

introduce combinatorial optimization.

2.4.1 Mathematical definition of a combinatorial optimization problem (COP)

The mathematical definition of a COP is generally formulated as follows: minS∈Ef(s) with f defines a mathe-

matical function with real values. It is the objective function that evaluates the solutions of E pointed out by

S. Without loss of generality, we consider here a problem of minimization. That is, a maximization problem

amounts to minimizing −f .

The deal is the minimize f of all the feasible solutions belonging to the search space E also called set of

feasible solutions. Then, solving a COP amounts to find an optimal solution S∗ ∈ E for which the objective

function f will return a minimal value, that is to say f(S∗) ≤ f(S), ∀S ∈ E. Then, S∗ is called a global

optimum of COP.

Before going farther in the explanation, let us introduce three fundamental notions:

Neighborhood operator: Let E be the feasible solution set. An operator or a move ∆ is defined as

transformation in a solution S. Mathematically, ∆ is a function of E in itself (∆ ∈ E2) which allows to go from

a solution S to a neighbor solution S
′
.

Neighborhood structure: The set of transformations that can be applied to the current solution S

define a set of neighboring solutions in the search space that we denote by N (S). Formally, N (S) is a subset

of the search space E defined by: N (S) = { solutions obtained by applying an operator (move) to S}. The

size of a neighborhood corresponds to the number of solutions it contains, |N (S)|.

Local optimum: It is a solution for which a neighborhood does not contain any candidate solution for

which the objective function value is better. In a context of minimization, a solution S∗ ∈ E is a local optimum

if ∀S ∈ N (S∗), f(S∗) ≤ f(S).

The solutions S can be a mathematical object of diverse nature, often S represents a vector with n

dimensions when f designates a function in Rn. The set of feasible solutions E is generally determined by

constraints often expressed as inequalities.

Figure 2.2 inspired from the work of (Veerapen, 2012) illustrates an optimization problem to make the

difference between local and global optima.

Note that when faced with a COP, we must:

• Develop a mathematical model: Expression of constraints to respect and objectives to optimize,

• Develop a resolution algorithm,

• Evaluate the quality of the solutions found, with benchmarks and / or performance indicators like lower

bounds.
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Figure 2.2: A simple optimization problem (minimization) illustrating local and global optima.

A COP is characterized as cited above by the number of objectives to be optimized. We will therefore talk

about mono-objective optimization problems and multi-objective optimization problems.

2.4.2 Multiobjective Optimization (MO)

Multiobjective optimization is a very important research area because of the multiobjective nature of the most

real problems. First works on multiobjective problems area were carried out in the 19th century in economics

studies by Edgeworth and generalized later by Pareto. A survey for multicriteria scheduling problems is done

by T’kindt and Billaut (2001).

Contrary to mono-objective optimization, which are treated in two problems described in Chapters 3 and 4,

the goal of solving a multiobjective problem is to simultaneously optimize several objective functions, composed

of several decision variables, to satisfy a specific problem. In most cases, these objectives are in conflict: The

improvement of one objective causes the deterioration of another. Consequently, the optimization final result is

no longer given by a single solution but rather by a set of solutions. We speak then of a multiplicity of solutions

that represents a compromise between the different objectives. In chapter 5, we have studied a two-criteria

scheduling problem (bi-objectives). Lexicographic optimization is used for the resolution.

2.4.3 Lexicographic Optimization (LO)

Lexicographic optimization approach establishes a hierarchical order among all the optimization objectives

instead of giving them a specific weight. With this approach, the decision maker have to formulate preferences

in order to establish a predefined ranking between the competing objectives (formally, f1 > f2 > ...fk)

Consequently, two methods are considered. The first one consists in using a multi-stage sorting algorithm,

comparing the solutions on the basis of f1, then on the basis of f2 in case of identical values of f1 then on the
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basis of f3 in case of identical values of f1 and f2, and so on. . .

The second one is based on a specific weighted sum (see Duvivier (2015) for additional details) which

computes f = w1 ∗ f1 +w2 ∗ f2 + · · ·+wk ∗ fk, so that sorting solutions on the basis of f will result in the same

result provided by a multi-stage sorting algorithm.

However, the goal of this subsubsection is not to present a state of the art of lexicographic methods, but

only to give sufficient information for an application in the context of this thesis. Additional answers concerning

“lexicographic optimization” are available in the book of Collette and Siarry (2002).

This strategy is adapted to solve the tackled problem in Chapter 5.

2.5 Combinatorial optimization methods

It exists a large number of methods to solve optimization problems. Figure 2.3 inspired from the work of (Talbi,

2009) and (Reeves, 1993) suggests a possible hierarchy of these methods.

Following Figure 2.3, optimization methods could be separated into two main families : exact methods and

approximate methods. The methods of the first family ensure to find an optimal solution for the considered

instance whereas the methods of the second family do not give any guarantee on the optimality of the solution

found.

Combinatorial

optimization methods

Approximate

methods
Exact methods

Approximation 

algorithmsHeuristics

Multistart heuristicsDedicated heuristicsMetaheuristics

Population-based

metaheuristics

Single-solution based

metaheuristics

VNSTSSABasic LS GAACO PSO

Linear

programming
Dynamic 

programming

Constraint

programming

Branch and 

Bound

Figure 2.3: A possible hierarchy of a subset of combinatorial optimization methods
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2.5.1 Exact methods

There are several families of exact methods: In this thesis, we briefly introduce dynamic programming, branch

and bound and the linear programming. These methods take an exponential computational time to reach

optimal solutions, this explains why they are used only for small sized instances of target problems.

Mathematical Programming: Linear programming (LP)

It is the most basic mathematical program denoted by LP and refers to an optimization problem in which the

objective and the constraints are linear in the decision variables. An LP can be formulated as follows:

min f =
n∑
j=1

cjxj (2.3)

subject to a11x1 + a12x2 + ...+ a1nxn ≤ b1 (2.4)

a11x1 + a12x2 + ...+ a1nxn ≤ b2 (2.5)

a21x1 + a22x2 + ...+ a2nxn ≤ b3 (2.6)

.... (2.7)

am1x1 + am2x2 + ...+ amnxn ≤ bm (2.8)

xj ≥ 0 ∀j = 1, ..., n (2.9)

The objective is the minimization of costs. The c1,...,cn vector usually refers to the cost vector. The

notations x1,...,xn refers to decision variables that should be determined in such a way that the objective

function is minimized. The column vector a1j,...,amj is referred to as an activity vector j. The value of the

variable xj refers to the level at which this activity j is utilized. The b1, ..., bm is usually referred to as the

resources vector. Hence, n refers to the number of decision variables and m to the number of constraints, then

n×m denotes the size of the defined problem LP.

However, in scheduling theory n usually refers to the number of jobs; and m denotes the number of resources

(machines). Obviously, in linear programming this has nothing to do with them refers to the number of machines

in scheduling theory.

There are several algorithms or classes of algorithms for dealing with an LP. The most important ones is

the simplex methods (Sierksma and Zwols, 2015). Although simplex methods work very well in practice, until

today, there is no known version that solves the LP problem in polynomial time.

A special case of the linear program is the so-called Integer Program (IP). IP is basically a linear program

with the additional requirement that the variables x1,...,xn are integers.

When only a subset of the variables are required to be integer and the remaining ones are allowed to be

real, the problem is referred to as a Mixed Integer Linear Program denoted by MILP. Contrast to the LP, an

efficient (polynomial time) algorithm for the IP or MILP does not exist.
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Dynamic programming method (DP)

Dynamic programming method was introduced by Bellman et al. (1954), (Bellman, 1966). It is a method for

efficiently solving a broad range of optimization problems which exhibits the characteristics of overlapping sub-

problems and optimal sub-structures. In one hand, overlapping sub-problems means that the problem can be

broken down into sub-problems which are reused multiple times. More precisely, when solving the incumbent

treated sub-problem, dynamic programming will try to use the results of more than one already treated sub-

problems. In the other hand, optimal sub-structures means that, if the problem was broken up into a series

of sub-problems and the optimal solution for each sub-problem was found, then the resulting solution would

be realized through the solution to these sub-problems. A problem that does not have this kind of structure

cannot be solved with DP. More detailed informations are available in Cormen et al. (2009).

Branch and Bound methods: (B & B)

This method is based on an implicit and intelligent enumeration of all feasible solutions of the domain of

research. The “Separation” step consists of breaking down the set of solutions into several sub-solutions which

are then decomposed according to an iterative process. This process can be visualized as an enumeration tree,

the nodes of the tree correspond to the subsets and the leaves correspond to feasible solutions. To accelerate the

search for optimal solutions by avoiding the unnecessary exploration of certain nodes, we use an “evaluation”

procedure which allows to compute at each level of the tree, the value of each node and thus makes it possible

to decide on the node to develop. For more details about this method please refer to Lee et al. (1970); Brusco

and Stahl (2006); Scholz (2011)

2.5.2 Approximate methods

When it becomes necessary to obtain solutions, not necessarily optimal, for large sized problems, in limited

time, it becomes necessary to use the so-called approximated methods:

As illustrated in Figure 2.3, approximate methods could be divided in two sub-families: Heuristics and

approximation algorithms. Approximation algorithms allow to provide a guarantee using a “ratio” which states

how close to optimality is the obtained solution. On the other hand, heuristics does not guaranty any information

in this regard.

Approximation algorithms

In operations research field, approximation algorithms are efficient algorithms that find approximate solutions to

NP-hard optimization problems with provable guarantees on the distance of the returned solution to the optimal

one. Approximation algorithms mainly arise in the field of theoretical computer science as a consequence of the

widely believed P 6= NP conjecture. Under this conjecture, a wide class of optimization problems cannot be

solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how

closely it is possible to approximate optimal solutions to such problems in polynomial time. In the majority

of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or
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approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative

factor of the returned solution.

However, there are also many approximation algorithms that provide an additive guarantee on the quality

of the returned solution. A notable example of an approximation algorithm that provides both is the classic

approximation algorithm done by Lenstra et al. (1990) for unrelated parallel machines scheduling problems.

The design and analysis of approximation algorithms crucially involves a mathematical proof certifying the

quality of the returned solutions in the worst case (Williamson and Shmoys, 2011). This distinguishes them

from heuristics and metaheuristic algorithms, which find reasonably good solutions on some inputs, but provide

no clear indication on when they may succeed or fail.

Single machine scheduling problem with availability constraints that are solved using approximation algo-

rithm are investigated in (Kacem, 2008); (Kacem and Mahjoub, 2009); (Kacem, 2009); (Breit, 2007); (Sadfi

et al., 2005).

Heuristics

Regarding to Reeves (1993), a heuristic is a method which seeks good (i.e. near-optimal) solutions at a reason-

able computational cost without being able to guarantee optimality, and possibly not feasibility. Unfortunately,

it may not even be possible to state how close to optimality a particular heuristic solution is.

Heuristics have been used since the beginnings of operations research to tackle difficult combinatorial prob-

lems. With the development of complexity theory in the early 1970s, it became clear that, since most of these

problems were proved to be NP-hard, there was a little hope to find efficient exact solution procedures for these

problems. This emphasized the role of heuristics for solving the combinatorial problems that were encountered

in real life applications and that needed to be tackled, whether or not they were NP-hard.

These methods have the advantage of only covering a fraction of the search space to reach an acceptable

solution. Consequently, the computational time of these methods are most of the time polynomial. This explains

why they are generally used for large-sized problems.

Heuristics could be divided into metaheuristics, which are generic methods not dedicated to a particular

problem and, dedicated heuristics, which concern specific methods to a given problem, as their name indicates

it.

Metaheuristics

Based on Talbi (2009) definition, metaheuristic search methods are upper level heuristic which can be defined

as a general methodologies (templates) that can be used as guiding strategies in designing underlying heuristics

to solve specific optimization problems.

Metaheuristics are not dedicated to a given problem, they are flexible and can be adapted to any problem.

These methods are in most cases derived from mechanisms found in nature. Until today there is no exact

definition of these methods. Jonson defines them as a set of generic strategies that form a set of procedures

that can find good solutions quickly. Glover (1986) was the first to name these methods by metaheuristics.
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According to Gendreau and Potvin (2010), combinatorial optimization was shattered by the appearance

of the work of Kirkpatrick et al. (1983) where it was shown that a new heuristic approach called Simulated

Annealing (SA) could converge to an optimal solution of a combinatorial problem, but in infinite computing

time. Based on an analogy with physical mechanics, SA can be interpreted as a form of controlled random walk

in the space of feasible solutions. The emergence of SA indicated that it is possible to look for other ways to

tackle combinatorial optimization problems and arouse the interest of the research community. In the following

years, many other new approaches were proposed, mostly based on analogies with natural phenomena (like Tabu

Search, Ant Colony Optimization, Particle Swarm Optimization) which with Genetic Algorithm (Holland, 1992)

gained an increasing popularity. Nowadays, these methods have become over the last 20 years the leading edge

of heuristic approaches for solving combinatorial optimization problems. These methods include: Simulated

Annealing (SA), Tabu Search (TS), Variable Neighborhood Search (VNS), Genetic Algorithm (GA), Memetic

algorithms which combine genetic algorithms with local search methods, Ant Colony (AC) (Dorigo and Di Caro,

1999), etc.

There are several classifications of metaheuristics, such as nature-inspired versus non-nature inspired,

dynamic versus static objective function, One versus various neighborhood structures or memory usage versus

memory-less methods. In this thesis, we investigated the single-solution versus population-based metaheuristic

classification.

Single-solution based metaheuristics: They are based on a single solution, starting by constructing an

initial solution either in a random way or by using a heuristic, which is iteratively improved by choosing a new

solution in its neighborhood. The most popular of them are basic local searches heuristics.

Basic Local search heuristics (LS): Local search heuristics (LS) are the basis of most metaheuristic

search methods. LS is defined as an iterative search procedure that, starting from an initial feasible solution

S, progressively improves it by moving to a neighbor solution that differs only slightly from the current one

(in fact, the difference between the previous and the new solutions consists on applying local modifications

mentioned above (definition of an operator). LS stops when all neighbors are inferior to the current solution.

LS can find good solutions very quickly. However, it can be trapped in local optima in the search space that are

better than all their neighbors, but not necessarily representing the best possible solution (a global optimum).

Figure 2.4 illustrates the iterative search procedure of LS from a neighborhood structure to another within

a search space E.

In LS, the quality of the obtained solution and computing times are usually dependent on the effectiveness

of the chosen transformations (operators) considered at each iteration of the heuristic. In the reminder of

this thesis, let us denote by argminS′∈N∆(S)f(S
′
) the local search which returns the best solution found in

the generated neighborhood of the solution S when using an operator ∆ and which depends on the objective

function value of each generated neighboring solution S
′
.

The most common search strategies used in a local search heuristic are the first improvement strategy

and the best improvement strategy. The first strategy is to stops the search as soon as an improved solution
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Figure 2.4: Illustration of Local search methods behavior

in a neighborhood structure N (S) is detected, it is defined to be the new existing solution, while for the second

strategy, the best among all improving solutions is N (S) is set to be the new incumbent solution.

To improve the effectiveness of LS and escape from local optima, various techniques have been introduced

over the years. These methods are presented in the next Section 2.5.2.

Descent search heuristic (DSH): One of the most popular local search algorithms is the descent search

heuristic. Algorithm 1 describes the main steps of this heuristic. DSH stops once a local optima is reached.

The name descent comes from the fact that implicitly a minimization problem is considered, therefore we are

looking for the smallest value of the objective function. Moreover, the english term hill-climbing refers to the

same method DSH but in a context of maximization. Furthermore, when repeating the call to DSH until a

counter is reached by changing each time the initial solution and recording the best solution obtained, we then

speak about a multiple DSH.

Variable Neighborhood Descent heuristic (VND): A VND is a local search heuristic which tends

to explore several neighborhood structures with the aim to improve a given solution. This heuristic has been

successfully applied for solving different combinatorial optimization problems (Hansen et al., 2010b); (Hansen

et al., 2001); (Mjirda et al., 2017).

The search strategy within VND may be either the first improvement strategy or the best improvement

search strategy. A neighborhood change strategy is most of the time performed within VND in a

deterministic way as described in the following paragraphs:

Sequential neighborhood change strategy: Several neighborhood structures are firstly ordered in a list

N = {N1,N2, ...,Nkmax} and after that examined one after another respecting the established order. As soon
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Algorithm 1: A basic Descent Search Heuristic

Input: N a neighborhood structure, f an objective function, S initial solution
Output: S∗ best solution found.

S∗ ←− S
repeat

S ←− argminS′∈N∆(S)f(S
′
)

if f(S) < f(S∗) then
S∗ ←− S

end

until (f(S) ≥ f(S∗);

as an improvement of the current solution in some neighborhood structures occurs, the best solution found is

updated, then VND proceeds to the next (in the defined order) neighborhood structure of the new current

solution. The whole process is stopped if the current solution can not be improved in any of the neighborhood

structures kmax or either if a stopping criterion is not reached.

Nested neighborhood change strategy: This strategy explores a large neighborhood structure obtained

as a composition of several neighborhoods. This latter is defined by N ∗ = N1 ◦N2◦, ..., ◦Nkmax .

Mixed neighborhood change strategy: This strategy combines ideas of sequential and nested

strategies. Namely, it uses a set of Neighborhood structure: N = {N1,N2, ...,Nkmax} to define a nested

neighborhood and, after that, on each element in this nested neighborhood applies sequential strategy. The

defined neighborhood structure is defined as follows: N
′
= {N ′

1 ,N
′

2 , ...,Nk′max
}.

More detailed study of the different methods and strategies used within VND is available in (Todosijević,

2015).

It should be emphasized that TS, SA and VNS metaheurisics are also defined as local searches (Reeves, 1993).

Population-based metaheuristics: Biological phenomena have been the source of these algorithms.

Population-based approaches maintain and improve multiple candidate solutions, often using population char-

acteristics to guide the search. These methods make it possible to better understand the large areas of research

because of their power when using diversification mechanism defined in the following paragraphs.

Genetic algorithms, particle swarm optimization (PSO) and Ant Colony Optimization (ACO) are the most

famous population-based metaheuristics.

Some mechanisms used within metaheuristics: As an approximate method, a good metaheuristic has

to cleverly conjugate two generally divergent objectives during the exploration of the search space:

Intensification mechanism: It is an algorithmic mechanism which consists on the ability to obtain
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increasing quality solutions by exploring deeply the portions of the search space that seem promising in order

to make sure that the best solutions in these areas are indeed found.

Diversification mechanism: It is an algorithmic mechanism which allow to explore efficiently the research

space by forcing the search into previously unexplored areas.

One of the main problems of all methods based on local search approaches, is that they tend to spend most

of their time in a restricted area of the search space. In fact, the consequence is that these methods may fail to

explore the most interesting parts of the search space and thus end up with solutions that are still pretty far

from the optimal ones. Hence, diversification mechanism tries exactly to alleviate this problem.

Dedicated heuristics

Dedicated heuristics, constructive heuristics also called greedy algorithms are specific methods that are closely

related to a given problem but stay irrelevant for other problems, this because there are usually built from

information collected from the properties relative to optimal solutions of the studied problem. They are empirical

methods that usually give good solutions without knowing if they are optimal solutions. They are based on

simplified rules to optimize one or more criteria. The general principle of this category of methods lies in

the framework of the scheduling problems and integrates decision strategies to try to build a solution close to

optimal while seeking to have a reasonable computing time. Some of these rules are optimal for some scheduling

problem. Among these strategies, we distinguish:

• The SPT rule: In the Shortest processing time rule (SPT), jobs are sequenced in order of the processing

time required in the workshop. The job requiring the least processing time is scheduled first. The SPT

rule is optimal for the 1//
∑
j

cj and 1/h1, pmtn/
∑
j

cj.

• MSPT rule: This rule tries to optimize the solution returned by SPT by exchanging one job scheduled

before the maintenance with another job scheduled after the period of maintenance in order to minimize

the objective function.

• WSPT rule: This heuristic schedules jobs in increasing order according to the ratio pj/wj. It was intro-

duced by Smith (1956). Smith also proved that the WSPT rule solves optimally the scheduling problem

1//
∑
j

wjcj.

• MWSPT rule: This rule tries to optimize the solution returned by WSPT by the same way used in MSPT.

• LPT rule: Longest Processing Time (LPT): LPT is a well-known dispatching rule which allows to schedule

jobs according to an order of their decreasing processing times.

• EDD rule: Earliest Due Date is a well-known rule sometimes called as Jackson’s rule due to R. Jackson

who studied it in 1954. It processes jobs in non-decreasing order of their due dates dj. EDD is optimal

for 1//Lmax, 1//Tmax and 1/rj, pmtn/Tmax.
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Multistart methods

Multistarts methods are another aspect of heuristic approach that can be defined as strategies designed to

provide diversity to the search and overcome local optima. A multistart method is one that executes multiple

times from different initial points in the solution space. Once a new solution has been generated, a variety of

options can be used to improve it, ranging from a simple greedy algorithm to a complex metaheuristic.

The earliest works in multistart methods were developed for non linear unconstrained optimization problems

and consisted of a simply evaluation of the objective function at randomly generated points. In metaheuristic

optimization, the multistart algorithms are composed generally of two phases:

• Diversification generator: Different strategies can be used to generate an initial solution.

• Improvement method: The aim of this phase is to improve the quality of the generated solution from

the first phase. Then, each global iteration produces a solution (usually a local optimum) and the best

overall is the multistart algorithm’s output. For more details please refer to (Mart́ı et al., 2010).

In this dissertation, we propose to solve the studied scheduling problem in Chapter 4 by using a multistart

method based on a Lehmer code (Lehmer, 1960) to generate solutions in the first phase, while a Variable

Neighborhood Search metaheuristic is investigated in the improvements phase. Further details about these

methods are discussed in Chapter 4.

2.6 Investigated metaheuristics within this dissertation

In this thesis, we mainly used two very well known metaheuristics to solve the considered scheduling problems

in the following chapters. We will present here the principle of functioning of the basic versions of these

methods. More sophisticated versions of these metaheuristic have been studied and proposed in this thesis.

The implementation of these methods are detailed in each concerned chapter.

2.6.1 Variable Neighborhood Search (VNS)

Variable neighborhood search (VNS) is a flexible framework for building heuristics proposed by (Mladenović

and Hansen, 1997). It uses the idea of changing the neighborhood systematically in order to avoid being trapped

in a local optimum during the search. According to (Hansen et al., 2010a) VNS is based on three simple facts:

• Fact 1: A local minimum with respect to one neighborhood structure is not necessarily so for another;

• Fact 2: A global minimum is a local minimum with respect to all possible neighborhood structures;

• Fact 3: For many problems, local minima with respect to one or several neighborhood structure Nk are

relatively close to each other.
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VNS is originally designed for approximate solution of combinatorial optimization problems. It was extended

to address mixed integer programs, nonlinear programs, and recently mixed integer nonlinear programs. VNS is

applied to various fields problem as scheduling, vehicle routing, network design, lot-sizing, artificial intelligence,

engineering, pooling problems, biology, phylogeny, reliability, geometry, telecommunication design, etc. (Hansen

et al., 2000); (Mladenovic, 1995); (Moreno-Vega and Melián, 2008); (Zhang et al., 2018).

The basic VNS combines two search approaches: a deterministic approach in which a local search methods

is applied to find a local optimum and a stochastic approach that is defined as a perturbation of the incumbent

solution by jumping to the kth neighborhood in order to escape from local optima.

The perturbation phase: Known as “shaking procedure”, the aim of this procedure used within a VNS

heuristic is to hopefully escape from local minima traps by selecting a random solution from the kth neighborhood

structure.

The pseudo-code of the basic VNS is illustrated in the Algorithm 2

Algorithm 2: A basic Variable Neighborhood Search Metaheuristic

Input: Nk a neighborhood structure(k ∈ {1, 2, ..., kmax}), f an objective function, S initial solution
Output: S∗ best solution found.

S∗ ←− S
while (k ≤ kmax) do

k ←− 1
while stopping criterion is not reached do

S
′ ←− perturbation phase(Nk)

S ←− argminS′′∈Nk(S
′ )f(S

′′
)

if f(S) < f(S∗) then
S∗ ←− S
k ←− 1

end
else

k ←− k + 1
end

end

end

When we replace the local search in the deterministic phase by the Variable Neighborhood Descent (VND),

it can be seen as a generalization of a local search since it explores several neighborhood structures at once

instead of one. The resulting algorithm is called a General VNS(GVNS). This latter has received much attention

and showed good performances compared to other VNS variants. It has been applied to many optimization

problems (Ilić et al., 2010; Lei et al., 2012; Todosijević et al., 2016).

Several other VNS approaches have been derived from the basic VNS namely, Reduced VNS, Skewed VNS,

nested VNS, two-level VNS, variable neighborhood decomposition search (VNDS), The primal-dual VNS. All

details about these variants can be found in (Hansen et al., 2010a); (Todosijević, 2015).
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2.6.2 Tabu Search (TS)

TS is an extension of classical LS methods. In fact, basic TS is based on neighborhood search with local optima

avoidance, but in a deterministic way which try to model human memory processes.

Tabu Search Algorithm (TS) is a well known generic metaheuristic for solving hard combinatorial optimiza-

tion problem, like vehicle routing (Gendreau et al., 1999, 1994), job shop scheduling (Kawaguchi and Fukuyama,

2016), quadratic assignments (James et al., 2009), technician routing and scheduling (Mathlouti et al., 2018),

and many others. This method was introduced by Fred Glover (Glover, 1989).

The general idea of TS is to keep track of the regions of the solution space that have already been searched

in order to avoid repeating the search near these areas. It starts from a random initial solution and successively

moves to one of the neighbors of the current solution. The difference of TS from other metaheuristic approaches

is based on the notion of tabu list, which is a special short term memory, that is composed of previously

visited solutions that includes prohibited moves. In fact, short term memory stores only some of the attributes

of solutions instead of whole solution. We call this characteristic a tabu status. So it gives no permission to

revisited solutions and then avoids cycling and being stuck in local optima. During the local search only those

moves that are not tabu will be examined if the tabu move does not satisfy the predefined aspiration criteria.

These aspiration criteria are used because the attributes in the tabu list may also be shared by unvisited good

quality solutions.

Tabu list concept: Tabu list is composed of previously visited solutions that includes prohibited moves.

In fact, short term memory stores only some of the attributes of solutions instead of whole solution. This

characteristic is called a “tabu status”. So it gives no permission to revisited solutions in order to avoid cycling

and being stuck in local optima.

During the local search only those moves that are not tabu will be examined. This is achieved by declaring

tabu moves that reverse the effect of recent moves for some number of iterations. This number is called the

“tabu tenure” of the move.

Aspiration criterion: It is described as algorithmic devices that allows revoking tabus. Indeed, tabus are

sometimes too powerful. Consequently, they may prohibit attractive moves even when there is no danger of

cycling and then they may lead to an overall stagnation of the search in process which certainly prohibits to

reach best ever visited solutions.

Stopping criterion: As explained in (Gendreau and Potvin, 2010), the most commonly used stopping

criteria in TS are:

• After a fixed number of iterations (or a fixed amount of CPU time),

• After some number of iterations without an improvement in the objective function value (the criterion

used in most implementations),

• When the objective reaches a pre-specified threshold value.
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Algorithm 3 describes the main steps of the basic version of a Tabu Search metaheuristic.

Algorithm 3: A basic Tabu Search Metaheuristic

Input: N a neighborhood structure, f an objective function, S initial solution, Tl a tabu list.
Output: S∗ best solution found.

Tl ←− ∅
S∗ ←− S
while stopping criterion in not reached do

S ←− argminS′∈N∆(S)f(S
′
)

if f(S) < f(S∗) then
S∗ ←− S

end
record tabu for the current move in Tl and delete oldest entry if necessary

end

2.7 Literature review about integrating production scheduling and

preventive maintenance

Due to appropriate tradeoffs to be found between maintenance and production activities, many researchers

have investigated ways to jointly schedule both activities. Integration of production scheduling and preventive

maintenance have been studied by many researchers.

2.7.1 Single machine scheduling problem

The deterministic PM on a single machine research area, where the period and duration of maintenance is known

in advance, has been addressed by a significant number of works. A survey of scheduling with deterministic

maintenance has been provided by Ma et al. (2010). Benmansour et al. (2012) considered the minimization of

the sum of maximum weighted earliness and tardiness costs on a single machine under reliability constraints.

They proposed two mathematical models, and a simulation model to solve that problem in the case of stochastic

failures. More efficient methods were proposed later in (Benmansour et al., 2014). They also proposed a MILP

formulation and heuristics to solve the scheduling problem with PM in order to minimize the weighted sum of

maximum earliness and maximum tardiness costs. Ángel-Bello et al. (2011) studied a single machine scheduling

problem with availability constraints and sequence-dependent setup costs, with the aim of minimizing the

makespan. They derived a mixed integer programming model and valid inequalities that strengthen the linear

relaxation and proposed an efficient heuristic procedure that provides a starting feasible solution to the solver.

Recently Nesello et al. (2017) proposed new index formulations to solve the problem with aim of minimizing

the makespan.

However, there are some works in the literature which attempt to find the better periods of maintenance

using simulation. Roux et al. (2013) proposed a hybridization of Nelder-Mead method and multimodel simulation
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which is able to integrate production aspects and maintenance strategies. Benmansour et al. (2011) proposed a

model of integrated production-maintenance strategy for a failure-prone machine in a just in time environment.

Their works focuses on finding simultaneously the period at which preventive maintenance actions have to be

performed and the sequence of jobs, in order to minimize the maintenance costs and the expected total earliness

and tardiness costs.

2.7.2 Parallel machine scheduling problem

Xu and Yang (2013) addressed the problem of two parallel machines with a periodic availability constraint

in order to minimize the makespan. In this purpose, they established a mathematical model by transforming

the two parallel machine setting into a single machine setting. They also presented an average-case analysis

of the Longest Processing Time first (LPT) algorithm and the List Scheduling (LS) to present the problem.

Recently, He et al. (2016) studied the two parallel machine scheduling problem. The objective is to optimize

the makespan. They proposed several heuristics with lower bounds to solve and evaluate the performance of

their proposed algorithms. In (Li et al., 2017), the authors proposed two mathematical programming models

and two improved heuristics to solve the m parallel machine scheduling problem.

2.7.3 Periodic preventive maintenance based scheduling problem

Let us turn to problems dealing with periodic PM. For the single machine problem, many criteria were considered

in the literature. Lee and Liman (1992) treated the sum of job flow times. They proved the NP-hardness of the

problem and stated a
2

7
worst-case error bound of the SPT rule. Maximum tardiness criteria was investigated

by Liao and Chen (2003) who developed a heuristic and a branch-and-bound algorithm to solve the problem.

The makespan criterion is also considered by Ji et al. (2007). They showed that the worst case ratio of the

LPT rule is 2, and proved that there is no polynomial time approximation algorithm with a worst-case ratio

less than 2 unless P = NP . Chen (2007) proposed an efficient heuristic to minimize the total flow time and the

maximum tardiness simultaneously. Many other researchers like Chen (2006); Lee and Kim (2012); Low et al.

(2010); Ebrahimy Zade and Fakhrzad (2013) contributed among others in this topic.

2.8 Conclusion

This chapter gave a quick outline of scheduling theory and combinatorial optimization tools. Scheduling prob-

lems complexity were mentioned and methods for solving these problems were presented. Furthermore, we

presented the literature review of scheduling problems under preventive maintenance consideration.

37



38



Chapter 3

Single machine scheduling with periodic

maintenance policy and weighted sum of

completion times (1-PMWCT)

This chapter tackles the single machine scheduling problem with periodic preventive maintenance in order to

minimize the weighted sum of completion times. We denote it by 1-PMWCT. This latter is proved to be NP-

hard. In this purpose, a MILP formulation is proposed to solve small-sized instances. To solve large-sized

instances, we present three properties which generalize already existing works. These properties have been of

great use in designing efficient greedy heuristics capable of solving instances with up to 1000 jobs. A GVNS

algorithm is also used to solve this problem in order to obtain near optimal solutions for the large-sized instances

in a small amount of computational time. To evaluate the performances of the investigated methods, we used

the job splitting approach and some special cases of 1-PMWCT to design lower bounds.
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3.1 Introduction

In this chapter, we consider the case of a multitask machine where only minor negligible breakdowns ap-

pear (e.x: fuses or butt joint to replace, etc.) and where the cost of repairing big failures is very high.

Consequently, the machine must undergo, with much lower cost, preventive maintenance policy to mini-

mize the risk of failures. PM is carried out to meet a regulatory requirement or is applied at regular in-

tervals, and for practical reasons, as a cleaning, cooling or a tool change. If we do not practice a preven-

tive maintenance, a significant risk of failures can be detected on the machine (e.x: electric motor failure)

what is going to engender higher cost to repair it. The risk of failures is negligible as the time duration of

these latters is insignificant compared to the processing time of the jobs to schedule. Furthermore, PM re-

mains necessary because if it is not carried out then the specified duration to repair the failures increases.

In this regard, we address in this chapter a scheduling problem with a single critical machine on the shop

denoted as 1-PMWCT (Single machine with Preventive Maintenance and Weighted sum of Completion Times).

The considered machine on which a workload is accentuated is subject to unavailability constraints caused

by periodic preventive maintenance activities. The aim is to minimize the weighted sum of completion times

criterion. Indeed, the weights can represent the holding or inventory cost per time unit for the corresponding

products and their priority level (importance, urgency). Firstly, we also proposed a mixed integer linear pro-

gram (MILP) which can be applied to find an optimum solution on instances of small sizes. Secondly, To solve

large-sized instances of the 1-PMWCT problem, we proposed heuristic approaches based on three properties

which generalize already existing works. To evaluate the performances of the proposed heuristics, lower bounds

based on special cases of the problem are provided. Computational experiments show that the average percent-

age error of the best heuristic is less than 10. Thirdly, we proposed a GVNS algorithm to solve this NP-hard

problem. The proposed algorithm was tested and compared with a MILP model for small-sized instance, and

with four lower bounds for instance sizes greater than 20, three of them based on job splitting procedure and

one based on the relaxation of one integrity constraint. The computational results show that the proposed

GVNS is very efficient both in terms of quality of the objective function values and computational time.

The remainder of this chapter is organized as follows: A formal description of 1-PMWCT is given in

Section 3.2. In Section 3.3, we present a small comparison between the 1-PMWCT and the bin-packing prob-

lem. Then, a literature review of previous work dealing with PM activity and WCT criterion is proposed in

Section 3.4. Basic properties of the optimal schedule and some special cases of the 1-PMWCT problem are

presented in Section 3.5. In Section 3.6, we give a description of the whole developed methods to solve the

1-PMWCT namely, a MILP formulation to solve optimally small-sized instances of the problem, nine effective

heuristics and a GVNS metaheuristic designed to solve large-sized instances of the problem. Lower bounds

derived from special cases of 1-PMWCT and on job splitting approach are then proposed respectively in Sec-

tions 3.7 and 3.8. Computational experiments are given in section 3.9 to demonstrate the performance of all

the developed methods. Section 3.10 concludes the chapter with a discussion and future extensions.
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3.2 Formal description of 1-PMWCT

Formally, the addressed problem can be described as follows: We consider a set J = {1, 2, . . . , n} of n jobs to be

processed non-preemptively on a single machine. This latter has to undergo a periodic preventive maintenance

(PM) each fixed interval T at each time point jT − δ (j ∈ N∗) during the time horizon of schedule where δ

refers to the duration of each maintenance activity. Furthermore, we consider the following assumptions:

• The n independent jobs are simultaneously available for processing at the beginning of the planning

horizon,

• Each job Ji, with a deterministic processing time pi, has to be processed without preemption on a single

machine that can handle only one job at a time,

• The machine is new at the beginning of the schedule (t = 0) and each preventive maintenance action PM

renews the machine,

• The set of scheduled jobs between two consecutive maintenance activities is called a batch, denoted by Bj

with j ∈ {1, 2, . . . , n}. Generally, T is not enough to process all the jobs and more than one batch have

to be programmed,

• Jobs can not be interrupted for a PM action,

• Let max1≤i≤n{pi} ≤ T − δ, otherwise some jobs can not be scheduled,

• Since the time interval T cannot be reduced, idle times can occur before the maintenance activity.

𝑇 − 𝛿 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑇 − 𝛿 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒PM 𝑇 − 𝛿 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 PM PM… …
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Time

Figure 3.1: Illustration of a feasible solution of the 1-PMWCT problem

Figure 3.1 illustrates a feasible solution of the 1-PMWCT problem.

Before going further in the explanation, let us introduce some notations used in this chapter.

Notations:

• f(S): Objective function value of a feasible solution S of 1-PMWCT problem,
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• m: The minimum number of batches that we can have in an optimal solution, m is computed as follows:

m = d
∑n

i=1 pi
T − δ

e (3.1)

• m∗ : The number of batches in an optimal solution, with m∗ ≥ m,

• nj: The number of jobs in the batch Bj with n = n1 + n2 + ...+ nm,

• WBj is the sum over the weights of all jobs belonging to a same batch. It is computed as follows:

WBj =
∑

i∈Bj wi.

3.3 Bin-packing versus 1-PMWCT

3.3.1 Definition of the Bin-packing problem

Given n items of different weights and bins with each one of capacity c, assign each item to a bin such that

number of total used bins is minimized. It is assumed that all items have weights smaller than bin capacity.

More details about the bin-packing problem could be found in (Garey and Johnson, 1979).

The Bin-Packing Problem, denoted by BPP, is stated to be NP-hard by Johnson (1985).

3.3.2 Greedy heuristics used to solve the bin-packing problem

There are many heuristics in the related literature dedicated to solve the bin-packing problem. We give here a

small definition of the most famous greedy heuristics investigated in the related literature to solve BPP.

Best-Fit heuristic (BF)

Because of its simplicity and good performance, the best-fit heuristic is considered as one of the most effective

heuristics to solve the bin-packing problem (Garey and Johnson, 1979). The heuristic BF assigns items to bins

according to the order they appear in the list. It places item j in the bin whose current content is the largest

but does not exceed the bin. The idea is to place the next item in the bin where a smallest empty space is left.

BF can be implemented in O(n log(n)) time by using Self-Balancing Binary Search Trees.

First-Fit heuristic (FF)

When processing the next item, assign it to the first bin whose current content is the largest but does not

exceed the bin. Start a new bin only if it does not. In other words, when FF is called next time, the idea is to

start the search of an empty space from the beginning and stop the search at the first bin found with a tightest
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spot.

The implementation of First Fit requires O(n2) time, but First Fit can be implemented in O(n log(n)) time

using Self-Balancing Binary Search Trees.

Next-Fit heuristic (NF)

When processing next item, check if it fits in the same bin as the last item (where it left off and not from the

beginning). We place that item in a new bin only if it does not exceed the size of the bin. Next Fit is a simple

algorithm. It requires only O(n) time to process n items.

Next-Fit is 2-approximate algorithm, which means that the number of bins used by this algorithm is bounded

by twice of optimal.

Minimum Bin Slack heuristic (MBS)

MBS is a greedy heuristic which was developed by Gupta and Ho (1999). It is defined as a bin-focused heuristic.

At each step, MBS makes an attempt to find a set of items that fit the bin capacity as much as possible.

At each stage a list L of the items not assigned to bins are sorted in a decreasing order of sizes is saved.

Each time a packing is determined, the items involved are placed in a bin and removed from L, preserving the

sort order. The process ends when the list L becomes empty.

Each packing is determined using a search procedure that tests all possible subsets of items on the list which

fits the bin capacity. The subset that allows for the smallest slack is selected. Whoever, if the algorithm finds a

subset that fills the bin up completely, the search is stopped. The algorithm restarts to look for a new packing

(subset) of the list L.

The complexity of MBS is estimated to O(2n).

3.3.3 Comparison between 1-PMWCT and BPP

Since preemption is not allowed, any interrupted job should be renewed after the relating maintenance activity.

This feature makes the problem similar to the bin-packing problem where the objective is to minimize the

number of bins. Indeed, herein the bins represent the batches. Among other things, instead of filling bins

with items, we fill batches of limited capacity T − δ by jobs with time duration pi. However, the considered

criterion in the problem 1-PMWCT is to minimize the weighted sum of completion times. Otherwise, if the

considered criterion was the minimization of the makespan, then solving the problem 1-PMWCT goes back to

solve the bin-packing problem. In other words, minimizing the number of bins is exactly similar to minimizing

the number of batches. With empirical tests, we find counterexamples showing that minimizing the number of

batches does not necessarily means minimizing the weighted sum of completion times.
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3.4 Related works with PM policy and WCT criterion

Referring to the notation of (Graham et al., 1979), the 1-PMWCT problem is denoted by 1/pm/
∑n

j=1wjcj.

Few works dealing with periodic preventive maintenance on a single machine have been made but to the

best of our knowledge, no one considered such a problem with the objective of minimizing the weighted sum of

completion times. We provide hereafter a brief overview of previous related works.

Comprehensive reviews about works dealing with total (weighted) completion times problems with only PM

activity have been provided by (Yang et al., 2011).

Lee and Liman (1992) proved that the 1, h1//
n∑
j=1

cj is NP-hard and showed that the shortest processing

time (SPT) sequence has a worst-case error bound of 2
7
. Regarding the work of Lee (1996), they studied the

weighted version and proved the NP-hardness of the problem. Sadfi et al. (2005) solved the same problem with

a Modified SPT (MSPT) rule (see Section 2.5.2) with a performance guarantee of 20/17. Sadfi et al. (2002)

proposed a dynamic programming algorithm to solve this problem. The same problem with a resumable scenario

is considered by Lee (1996). They proved the NP-hardness of the problem. Kacem and Chu (2008b) studied

the WSPT and the Modified WSPT (see Section 2.5.2) rules and showed that the worst-case performance

ratio is 3 for the two heuristics in some cases and it is unbounded otherwise. When the preemption is allowed

1, h1/pmtn/
n∑
i=1

wjcj problem was proved to be NP-hard by Lee (1996). Kacem and Chu (2008a) proposed new

properties of the worst-case performance of the WSPT heuristic. They gave a tighter approximation of the

worst-case error and showed that the worst-case bound is equal to 2 under certain conditions. (Kacem and

Paschos, 2013) investigated the differential approximation concept to analyze the WSPT rule, proving that a

slight modification of this rule provides a 3−
√
5

2
differential approximation. Chen et al. (2011) considered the semi-

resumable model of a single machine scheduling problem with a non-availability period. They proposed a tight

worst-case ratio of LPT rule for the problem with the objective of minimizing makespan, and an approximation

algorithm with a worst-case ratio less than 2 for the objective of minimizing the total weighted completion time.

There are also a lot of works dealing with multiple availability constraints such as the number of unavailability

periods of the machine is known in advance. (Wang et al., 2005) considered the preemptive single machine

scheduling problem with multiple unavailability constraints denoted by 1, hk/pmtn
n∑
j=1

wjcj so as to minimize

the total weighted completion time and showed that the problem is NP-hard in the strong sense. Sadfi et al.

(2009) considered the same problem for the nonresumable case. They showed that the problem is NP-hard and

proposed some lower bounds.

3.5 Properties and some special cases

The aim of this section is to give a brief overview of some special cases and some important properties of an

optimal solution of the 1-PMWCT problem. The properties investigated in this section are used to design
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effective heuristics dedicated to solve 1-PMWCT.

3.5.1 Properties

Property 1 In any optimal solution, jobs belonging to each batch are scheduled by Smith’s rule Smith (1956).

Proof The jobs have to be sorted in increasing order of the ratios pi/wi in each batch Bj. This rule is called

WSPT (weighted SPT) rule or Smith’s rule due to W.E. Smith who introduced it in 1956.

The following property generalizes the result obtained by Qi tt al. in Qi et al. (1999). They considered to

minimize the sum of job completion times on a critical machine subject to availability constraints. They proved

that in an optimal solution, the batches are sorted from the one which has the largest number of jobs to the one

with the least number. More precisely we have:

Property 2 In any optimal solution we have WBj ≥ WBj+1
1 ≤ j ≤ m∗ − 1

Proof Let S1 and S2 be two feasible schedules for the problem 1-PMWCT, such that S1 is obtained from S2

by swapping two consecutive batches, and let σ be a permutation of the set J .

We suppose that in S1, the batch Bj, contains the jobs Jσ(1), Jσ(2), ..., Jσ(n1). The batch Bj+1 contains the jobs

Jσ(n1+1), Jσ(n1+2), ..., Jσ(n1+n2). In the sequence S2, only these two batches are interchanged. In order for S1 to

be a better schedule than S2, we must have the following inequality

Φ = f(S1)− f(S2) ≤ 0 (3.2)

It is obvious that jobs outside Bj and Bj+1 contribute in the same way to the objective functions f(S1) and

f(S2). Hence in order to calculate Φ we calculate only the contribution of the jobs inside these two batches.

Formally :

Φ =
(∑n1

i=1wσ(i)cσ(i) +
∑n2

i=1wσ(n1+i)cσ(n1+i)

)
−
(∑n2

i=1wσ(n1+i)cσ(n1+i) +
∑n1

i=1wσ(i)cσ(i)

)
Φ = f(b1) + f(b2)− (f(b′1) + f(b′2)).

In f(S1) we have :

ci = jT +
∑i

j=1 pj, i = 1...n1, and cn1+i = (j + 1)T +
∑n1+i

j=n1+1 pj, i = 1...n2

In f(S2) we have:

ci = (j + 1)T +
∑i

j=1 pj, i = 1...n1, and cn1+i = jT +
∑n1+i

j=n1+1 pj, i = 1...n2.

f(b1) =
∑n1

i=1wi(jT +
∑i

j=1 pj) = jT
∑n1

i=1wi +
∑n1

i=1wi
∑i

j=1 pj

f(b2) =
∑n2

i=1wn1+i((j + 1)T +
∑n1+i

j=n1+1 pj)

f(b′1) =
∑n1

i=1wi((j + 1)T +
∑i

j=1 pj)

f(b′2) =
∑n2

i=1wn1+i(jT +
∑n1+i

j=n1+1 pj)

Φ = T (
∑n2

i=1wn1+i −
∑n1

i=1wi)

46



Hence in order to have f(S1) ≤ f(S2) the following inequalities must hold.

n2∑
1

wσ(n1+i) ≤
n1∑
i=1

wσ(i) (3.3)

∑
Jσ(i)∈Bj

wi −
∑

Jσ(i)∈Bj+1

wi ≤ 0 (3.4)

Let us suppose that the Equation 3.4 is true.

Then, the calculation of both f(S1) and f(S2) could be done as follows:

f(S1) = f(b1) + f(b2)

f(S1) = jT
∑n1

i=1wi + (j + 1)T
∑n2

i=1wn1+i +
∑n1+i

j=n1+1 pj +
∑n1

i=1wi
∑i

j=1 pj

f(S1) = T (j
∑n1

i=1wi + (j + 1)
∑n2

i=1wn1+i) +
∑n1

i=1wi
∑i

j=1 pj +
∑n2

i=1wn1+i

∑i
j=1 pn1+j

f(S2) = f(b′1) + f(b′2)

f(S2) = jT
∑n2

i=1wn1+i + (j + 1)T
∑n1

i=1wi +
∑n2

i=1wn1+i

∑i
j=1 pn1+j +

∑n1

i=1wi
∑i

j=1 pj

f(S2) = T (j
∑n2

i=1wn1+i + (j + 1)
∑n1

i=1wi) +
∑n2

i=1wn1+i

∑i
j=1 pn1+j +

∑n1

i=1wi
∑i

j=1 pj.

If f(S1) is an optimal value, then the Equation 3.2 should be true.

Let’s proceed to the calculation of Equation 3.2:

f(S1)− f(S2) = T [j
∑n1

i=1wi + (j + 1)
∑n2

i=1wn1+i]− T [j
∑n2

i=1wn1+i + (j + 1)
∑n1

i=1wi]

f(S1)− f(S2) = T [j
∑n1

i=1wi + j
∑n2

i=1wn1+i +
∑n2

i=1wn1+i − j
∑n2

i=1wn1+i − j
∑n1

i=1wi −
∑n1

i=1wi]

f(S1)− f(S2) = T (
∑n2

i=1wn1+i −
∑n1

i=1wi)

f(S1)− f(S2) = Φ

At the beginning, we supposed the inequality designed by Equation 3.4

But we succeed to prove the contrary (Equation 3.5)

Φ > 0 (3.5)

This means that in any optimal solution of 1-PMWCT the inequality designed by (3.4) is guaranteed.
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∑
Jσ(i)∈Bj

wi <
∑

Jσ(i)∈Bj+1

wi. (3.6)

Property 3 Let us consider Ij as the idle time in the batch Bj and Jµ the job with the smallest processing time

in the batch Bk, with k ∈ {j + 1, j + 2, ...,m} given that m is the total number of batches.

In an optimal solution, we have Ij < pµ ∀Bj, with j ∈ {1, ...,m}.

Proof The proof is trivial because we can always improve the current solution by moving the job Jµ in the

batch Bj.

3.5.2 Special cases

Jobs with equal processing times

When pj = p for all j in J , the problem 1-PMWCT becomes 1/pm, pj = p/
n∑
j=1

wjcj.

It is easy to notice that it exists a polynomial algorithm to solve that scheduling problem. As the processing

times are equal, we schedule the job with the largest weight first.

Jobs with equal weights

When wj = w, for all j in J , the objective function becomes w
n∑
j=1

cj. This problem is NP hard since

1/pm/
n∑
j=1

cj was proved to be NP-hard by Qi et al. (1999).

Jobs with weights equal to processing times

When
pj
wj

= 1, the 1/pm, pj = wj/

n∑
i=j

wjcj problem was studied and proved to be NP-hard in the two cases of

resumable and nonresumable jobs by Lee (1996) and Wang et al. (2005).

3.6 Proposed approach to solve 1-PMWCT

The remainder of this Section is to present the method used to solve 1-PMWCT problem. Thereby, we fist

investigated in Sub-section 3.6.1 a MILP formulation of the considered problem, greedy heuristics in Sub-

section 3.6.2 and finally a GVNS metaheuristic in Sub-section 3.6.3.
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3.6.1 MILP formulation for the 1-PMWCT problem

Since Qi et al. (1999) proved that the special case of minimizing the sum of completion times (1/pm/
∑n

j=1 cj)

is NP-hard, the problem studied in this paper is also stated to be NP-hard.

We propose in this section a MILP formulation for the problem 1-PMWCT based on the completion time

variables. This formulation can be used to solve optimally and efficiently small instances of the problem.

Let xik and yij be two binary variables defined as:

xik =

1 if job Ji is scheduled before job Jk,

0 otherwise.

yij =

1 if job Ji belongs to batch Bj,

0 otherwise.

As previously mentioned, the set of jobs scheduled between two consecutive periods of maintenance defines

a batch Bj. It is obvious that we can have at most n batches. Let us define by B = {1, 2, . . . , n} the set of n

batches and by R a big positive integer. On this basis, the MILP model is defined as follows:

min Z =
n∑
i=1

wici (3.7)

s.t.
n∑
i=1

pi yij ≤ T − δ ∀j ∈ B, (3.8)

n∑
j=1

yij = 1 ∀i ∈ J, (3.9)

ci ≥ pi + (j − 1)Tyij ∀i ∈ J, ∀j ≥ 1, (3.10)

ci ≤ ck − pk +R(1− xik) i = 1, 2, ...n− 1, k = i+ 1, ...n, (3.11)

ck ≤ ci − pi +Rxik i = 1, 2, ...n− 1, k = i+ 1, ...n, (3.12)

xik ∈ {0, 1} ∀(i, k) ∈ J2, (3.13)

yij ∈ {0, 1} ∀(i, j) ∈ J2. (3.14)

Equation (4.1) represents the objective function to be minimized. Constraints (3.8) require that the sum of the

processing times of jobs between two consecutive maintenance activities is less or equal to T−δ. Constraints (4.2)

allow each job to be performed once in one of the batches. Additionally, in each batch, Bj, from j = 2, the

execution of any job Ji in this batch is done after the end of the preventive maintenance (4.3). Next sets

of constraints, (4.7) and (4.5) indicate that no two scheduled jobs, Ji and Jk, can overlap in time. Finally

constraints (4.8) and (4.9) are integrity requirements.
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3.6.2 Greedy heuristics

Three rules are considered to form a dispatching rule, based on the sequence of sorted jobs:

• In decreasing order of their corresponding processing times;

• In increasing order of their corresponding processing times;

• In decreasing order of WSPT rule.

Next, for the assignment step, we apply the First-Fit (FF), Best-Fit(BF) and Next-Fit(NF) heuristics dedicated

to solve the Bin-Packing problem.

We present here two pseudo-codes of the 9 heuristics we developed.

Let, J[i] denotes the job in the ith position and p[i] and c[i] its corresponding processing time and completion

time.

Algorithm 4: Heuristic HWSPTBF . Input: J . Output: f =
n∑
j=1

wjcj

Step 1: Sort the jobs according to the WSPT rule. Denote by S = (Jσ(1), Jσ(2), ..., Jσ(n)) the resulting
sequence.
Schedule all jobs in S according to BF strategy. Denote by S ′ = (Jσ′(1), Jσ′(2), ..., Jσ′(n)) the resulting
sequence.
An Initial feasible solution S ′ is provided.
Step 2: Denote by m

′
the number of batches in the initial solution.

Compute WBi , ∀(i = 1, 2, ...m
′
)

Step 3: Sort the batches in decreasing order of WBi // Property 2

Step 4: Sort the jobs according to the WSPT rule in each batch Bi // Property 1

Denote by S” the resulting sequence.
Step 5: Calculate c[j] the completion time of each job J[j] of S”.

Algorithm 5: Heuristic HWSPTFF . Input: J . Output: f =
n∑
j=1

wjcj

Step 1: Sort the jobs according to the WSPT rule. Denote by S = (Jσ(1), Jσ(2), ..., Jσ(n)) the resulting
sequence.
Step 2: Schedule all jobs of S with First Fit (FF) strategy. Denote by S

′
= (Jσ′(1), Jσ′(2), ..., Jσ′(n)) the

resulting sequence. An initial feasible solution S
′

is provided.
Step 3: Apply steps 3-5 of HWSPTBF

Remark 1 All the implemented heuristics are deterministic.
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A numerical example

To illustrate the proposed heuristic algorithms, we present a simple example to show clearly the functioning of

the HWSPTBF heuristic.

Let n = 12 jobs, T = 50, δ = 1, the processing times and the weights of the jobs are given in Table 3.1.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12
pi 6 15 11 17 7 13 18 11 4 10 18 5
wi 10 14 10 14 19 11 14 18 12 19 15 15

Table 3.1: Numerical example

Steps 1 and 2: Sort the jobs according to the WSPT rule and use the Best Fit strategy to schedule the

jobs. The resulting sequence of the initial solution is

S = (J9, J12, J5, J10, J1, J8, J2, J3, J6, J11, J4, J7)

5        10        15        20        25        30        35        40       45        50        55       60        65     70        75        80        85       90       95     100     105      110      115     125     130    135     140      145 150     155      160     165

𝐽9 𝐽12 𝐽5 𝐽10 𝐽1 𝐽8 𝐽2 𝐽3 𝐽6 𝐽11 𝐽4 𝐽7

T 2T 3T

Figure 3.2: Gantt chart of the initial solution returned by steps 1 and 2

with the objective value f(S) =
12∑
j=1

wjcj = 10526.

Step 3: The initial solution is composed of three batches: The calculation of WBi of each batch i gives:

• B1 : {J9, J12, J5, J10, J1, J8},

• B2 : {J2, J6, J3},

• B3 : {J11, J4, J7},

With:
∑
j∈B1

wj = 93,
∑
j∈B2

wj = 35 and
∑
j∈B3

wj = 43.

Step 4: Sort the batches in decreasing order of WBi .

Step 5: Sort the jobs in each batch with the WSPT rule.

In this example, the jobs in each batch, are already sorted according to the WSPT rule.

Thus, the objective value of the solution returned by the HWSPTBF heuristic is

f(S) =
12∑
j=1

wjcj = 10266.
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5        10        15        20        25        30        35        40       45        50        55       60        65     70        75        80        85       90       95     100     105      110      115     125     130    135     140      145 150     155      160     165

𝐽9 𝐽12 𝐽5 𝐽10 𝐽1 𝐽8

T 2T 3T

𝐽2 𝐽3 𝐽6𝐽11 𝐽4 𝐽7

Figure 3.3: Step 4 of the HWSPTBF

3.6.3 General Variable Neighborhood Search to solve 1-PMWCT

A GVNS metaheuristic is investigated in this section to solve the large sized instances of 1-PMWCT. As already

mentioned in Chapter 2, GVNS is a variant of VNS where the intensification phase designed by a simple local

search procedure is replaced by a VND procedure. The perturbation phase, well know in the literature as the

shaking procedure, remains the same.

Algorithm 6: GVNS. Input: Lmax, kmax, S. Output: S∗

S∗ ← WLS(S)
while number of iterations ≤ Lmax do

Sshake ← shaking(S∗)
if Sshake is better than S∗ then

S∗ ← Sshake

end

while f(S
′
) < f(S∗) do

S
′ ← VND(Sshake, kmax)

if f(S
′
) < f(S∗) then

Sshake ← S
′

S∗ ← S
′

end

end

end

Algorithm 6 provides the main steps of the implemented GVNS for 1-PMWCT problem. It begins by an

initial feasible solution returned by a greedy heuristic named WLS procedure. Then, while the counter Lmax is

not reached, a new solution named Sshake using the shaking procedure is generated. That solution is enrolled

within the VND procedure which returns at its end a new optimum for the local search. At each iteration the

best solution S∗ is recorded.

In the following sub-sections we explain how we managed to develop our initial solution generator WLS and

we give respectively details about both the perturbation and intensification phases. Before this, let us introduce

the investigated neighborhood structure used within the different steps in the implemented GVNS.
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Neighborhood structures:

The GVNS for the 1-PMWCT is based on moves using one or more operators. A move is defined as the action

of changing the position of a job from its current place in the sequence to another one. We define here five

operators ∆i (i ∈ {1, ..., 5}) which are used to generate respectively five neighborhood structures Ni(S)) of a

solution S. These neighborhood structures have been widely used in literature to solve different combinatorial

optimization problems specially for those which are represented by permutations(Guo et al., 2013).

∆1: This operator consists to swap (interchange) only two consecutive jobs of S.

The complexity for going through the entire neighborhood structure N1(S) is O(n).

∆2: This operator consists to swap (interchange) all pairs of jobs in S.

The complexity for going through the entire neighborhood structure N2(S) is O(n2).

∆3: It consists to insert each job of the sequence S at the position k (1 ≤ k ≤ n).

The complexity for going through the entire neighborhood structure N3(S) is O(n).

∆4: The 2-opt operator is the most classical one when it comes to solve the traveling salesman prob-

lem (Helsgaun, 2006). It removes two edges from the circuit and reconnects the two paths created. In our

implementation, the 2-opt operator selects two jobs Ji and Jj from the current sequence, then constructs a new

sequence which deletes the connection between Ji and its successor Ji+1 and the connection between Jj with its

successor Jj+1, and then connects Ji with Jj and Ji+1 with Jj+1. Furthermore, the sub-sequence between Ji+1

and Jj+1 is reversed.

The complexity for going through the entire neighborhood structure N4(S) is O(n2).

∆5: It consists to construct a new sequence S ′ from S by starting S ′ from each job Ji and finish with the

job Ji−1 (i ≥ 2).

The complexity for going through the entire neighborhood structure N5(S) is O(n).

Initial solution generator: WLS procedure

Since GVNS is a single-solution based metaheuristic, we need to start from a given solution. In this purpose

we proposed the WLS procedure described in algorithm 7 to generate feasible solution to 1-PMWCT problem.

Due to the impact of the WSPT on the quality solution, our WLS procedure starts by sorting jobs of S

with the WSPT rule. Then, a Descent Search Heuristic DSH2 (see Chapter 2 Section 2.5.2) is used until a

local optimum S∗ is reached. The index 2 in DSH2 refers to the used operator ∆2 within the local search used

in DSH.

Note that to generate a neighborhood structures in DSH, the five operators presented in Sub-section 3.6.3

are tested before choosing ∆2. This choice is motivated by preliminary tests that are presented in what follows.

Algorithm 7: WLS. Input: S. Output: S∗

Ranks the jobs in S according to the WSPT rule
S∗ ←− DSH2(S)
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Testing local searches

We propose to compare local searches based on the predefined five neighborhood structures (i.e. N1, N2, N3,

N4, N5) in order to determine the best one to use within the WLS heuristic (Algorithm 7) proposed to generate

initial solutions. For each operator, we start each time from the same feasible solution returned by the WSPT

rule. The summarized results are reported in Table 3.2. MinV gives the minimum value among the five results

(V alueNi
, i ∈ { 1, ..., 5}) returned by each tested local search for each instance of size n.

MinV = min{V alueN1 , V alueN2 , V alueN3 , V alueN4 , V alueN5}. (3.15)

The gap reported in columns 2, 3, 4 and 5 is calculated as follows:

100 ∗ ((V alueNi
−MinV )/V alueNi

). (3.16)

While comparing the results in Table 3.2, we observe that local search based on N2 (∆2 operator), significantly

n gapN1 gapN2 gapN3 gapN4 gapN5

10 1.01 0.00 0.10 0.06 3.04
15 2.37 0.01 0.00 0.02 6.69
20 3.92 0.00 0.71 0.26 6.58
25 4.89 0.00 1.29 0.28 8.81
30 4.78 0.00 1.11 0.45 9.12
35 2.99 0.00 0.57 0.10 9.19
40 5.70 0.00 1.02 0.40 9.83
45 6.04 0.00 0.80 0.18 10.03
50 4.79 0.00 0.62 0.05 9.48

Table 3.2: Gap comparison between the five LS procedures for n = 10 to n = 50

outperforms all the other local searches as it obtains the minimum value at almost every instance. Otherwise,

local search based on N4 (Restart operator) provides the worst values. To summarize, the Neighborhoods are

ranked as follows in increasing order with respect to their efficiency: N4, N1, N3, N5 and N2. This result

justifies our choice to use the Swap operator in the local search proposed within the initial solution generator.

Perturbation phase: Shaking procedure

As some random jumps in the search space could be efficient to escape from local optima and contribute to

diversify the search, our shaking procedure consists of randomly generating a neighboring solution S
′

from the

current solution S using the 2-opt operator. Due to its path reversion, the 2-opt operator is very efficient when

applied to explore the search space.

Preliminary tests show us that, for our problem, the shaking procedure with more operators reduces the

quality of the results. In order to tune the strength of the diversification induced by the 2-opt operator, the

shaking procedure is repeated Lmax times in the proposed GVNS presented in Algorithm 6. This parameter is
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fixed on the basis of primarily tests presented in the followings.

Lmax calibration

Here, we examined the influence of the parameters Lmax in the GVNS. To do this, we tested different values of

Lmax. The testing is performed by varying Lmax from 5 to 80.

Lmax can be understood as the amount of time that the shaking procedure is used within the proposed

GVNS. The obtained results are presented in Table 3.3 for fifteen instances of size n = 100. The large size

of these instances could reveal the performance of the initial solution for a given value Lmax. For each value

of Lmax the average solution value found and also the average time spent upon reaching these solutions are

presented. As GVNS is a stochastic heuristic, we run this latter 10 times for each instance. Since the coefficient

of variation (i.e. the relative standard deviation) is smaller than 0.1% we report only the best of these 10

replicates.

Lmax Aver.V alue Aver.T ime(s)

5 9,204,698 0.99
10 9,204,119.26 1.07
20 9,201,641.53 1.23
30 9,200,712.33 1.37
40 9,196,670.20 1.55
60 9,196,668.10 1.81
80 9,196,666.50 2.06

Table 3.3: WLS with different values of Lmax

From the summarized results in Table 3.3, it follows that the proposed GVNS is very sensitive to the value

of Lmax parameter. Indeed, it turns out that the proposed algorithm returns the best solution values when the

parameter Lmax is upper to 40. Same conclusion can be drawn for Lmax parameter, as the results returned after

Lmax = 40 seem to be very close. Consequently, for the rest of the testing, Lmax is set to 40 when consuming

the least amount of time (1.55 seconds).

Intensification phase: VND procedure

A complete local search is designed as a Variable Neighborhood Descent (VND) for each solution returned by

the shaking procedure. In this work, we fixed the number of neighborhoods to three (kmax = 3), as it is advised

in the relating literature (Glover and Kochenberger, 2006).

Neighborhood change strategy

The proposed VND operates a changing neighborhood strategy, which consists to explore a complete neighbor-

hood using the same operator ∆i as long as there is an improvement (Best improvement), otherwise another
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operator is used. The pseudo code of VND proposed in this work is illustrated by Algorithm 8.

Algorithm 8: VND. Input: Sshake, kmax. Output: S
′

S
′ ← Sshake

while number of iterations ≤ kmax do
Sshake ← argminS′′∈N

i(S
′
)
f(S ′′)

if Sshake is better than S
′
then

S
′ ← Sshake

end
else

add an iteration
end

end

To efficiently explore possible solutions it is important to establish the“best”order of the three neighborhood

structures defined above. Due to this, we performed preliminary tests. Six different orderings (ai,j) of the three

neighborhood structures are listed in Table 3.5.

Neighborhoods order within VND

It is important to establish the “best” order of the neighborhood structures since it affects the efficiency of

the GVNS algorithm. To do this, we performed a set of preliminary experiments. The different orderings are

listed in Table 3.5 presented in Section 3.9. Focusing on results observed in the last paragraph we decided to

implement the N5, N3, N2 complete neighborhood structures based respectively on the following operators:

2-Opt, Insertion and Swap. The summarized results are reported in Table 3.4. To test the performances of

each case order aij presented in Table 3.5, we compared its results with minV (Equation 3.17) for each instance

size, namely n = 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100.

minV = min{V aluea1,1 , V aluea1,2 , V aluea1,3 , V aluea2,1 , V aluea2,2 , V aluea2,3}. (3.17)

The formulation below is used for the comparison:

gapai,j = 100 ∗ ((V alueai,j −minV )/V alueai,j). (3.18)

The entries V alueai,j represent the value returned by the proposed VND.

As seen in Table 3.4, the returned results of the six tests are almost similar. It follows that, for our problem,

VND is not very sensitive to the exploration order of the neighborhood structures. In spite of this, the results

show that the order a1,1 (swap, insertion, 2-Opt) is better than the other orders, since it returns the minimum

value or a very tight value from the minimum for the large instances. In our proposed GVNS we suggest to use

this order of neighborhoods in the VND heuristic.
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n gapa1,1 gapa1,2 gapa1,3 gapa2,1 gapa2,2 gapa2,3

10 0.16 0.16 0.20 0.00 0.23 0.23
15 0.23 0.19 0.00 0.00 0.06 0.23
20 0.26 0.12 0.08 0.02 0.00 0.06
25 0.00 0.27 0.49 0.34 0.44 0.34
30 0.27 0.37 0.25 0.14 0.00 0.13
35 0.18 0.07 0.00 0.15 0.17 0.04
40 0.02 0.00 0.24 0.02 0.39 0.05
45 0.03 0.00 0.05 0.09 0.08 0.13
50 0.00 0.17 0.17 0.34 0.14 0.25
60 0.04 0.12 0.11 0.10 0.42 0.12
70 0.20 0.20 0.12 0.12 0.38 0.14
80 0.18 0.10 0.23 0.13 0.47 0.09
90 0.04 0.17 0.19 0.13 0.11 0.00
100 0.04 0.17 0.19 0.13 0.11 0.00
Average 0.11 0.15 0.16 0.13 0.21 0.14

Table 3.4: Neighborhood structures test cases

Table 3.5: Neighborhood structure test cases

a1,1 a1,2 a1,3

Swap
Insertion
2-Opt

Swap
2-Opt
Insertion

Insertion
Swap
2-Opt

a2,1 a2,2 a2,3

Insertion
2-Opt
Swap

2-Opt
Insertion
Swap

2-Opt
Swap
Insertion
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3.7 Lower bounds derived from relaxed problems of 1-PMWCT

This Sub-section presents lower bounds through polynomial relaxed problems. This can be useful in order to

evaluate the quality of the heuristics presented in the previous section.

For the first proposed bound, the relaxation of maintenance constraints is considered. In that case, we

consider the 1//
n∑
i=j

wjcj problem which is proved to be polynomially solvable via the WSPT rule Smith (1956).

Proposition 1

LB1 =
n∑
i=1

wi

i∑
j=1

pj (3.19)

The equation 3.19 is a valid lower bound for the 1-PMWCT problem.

Proof Solving the problem 1-PMWCT without taking into account the maintenance constraints gives rise to

the following problem 1//
n∑
i=1

wici. The optimal value f ∗ of the latter problem is obtained via the WSPT rule

and constitutes a lower bound for 1-PMWCT.

In order to compute the value of f ∗ we order the jobs by the WSPT rule i.e. ( p1

w1
≤ p2

w2
≤ . . . ,≤ pn

wn
} and

schedules the jobs such that ci =
i∑

j=1

pj. Hence, the optimal value is:

f ∗ =
n∑
i=1

wici

f ∗ = w1c1 + w2c2 + ...+ wncn

f ∗ = w1p1 + w2(p1 + p2) + w3(p1 + p2 + p3) + ...+ wn(p1 + p2 + p3 + ...pn).

f ∗ = w1p1 + w2

2∑
j=1

pj + w3

3∑
j=1

pj + ...+ wn

n∑
j=1

pj

f ∗ =
n∑
i=1

wi

i∑
j=1

pj.

Proposition 2

LB2 = p

n∑
i=1

iwi + T
m−1∑
k=1

(
k

nk+1∑
i=1

wn1+n2+...+nk+i

)
(3.20)

The Equation 3.20 is a valid lower bound of the 1-PMWCT problem.

Proof Let us consider the scheduling problem (P ′) denoted by 1/pm, p′i = p/

n∑
i=1

wici. It is obvious that (P ′)

is a special case of 1-PMWCT. (P ′) is shown to be polynomial in Sub-section 3.5.2.
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We consider the special case where p is set to the minimum value of all the processing times of the jobs in

1-PMWCT i.e. p = min
1≤i≤n

{pi}. Then an optimal solution of P ′ is obtained by sorting the jobs in decreasing

order of their weights wi, and the corresponding value of this solution can be calculated as follows:

f ∗ =
∑
i∈B1

wici +
∑
i∈B2

wici + ...+
∑
i∈Bm

wici and ci = njp+ (j − 1)T ∀i ∈ Bj.

Hence,

f ∗ =
∑
i∈B1

win1p+
∑
i∈B2

wi(n2p+ T ) + ...+
∑
i∈Bm

wi(nmp+ (m− 1)T )

f ∗ = p

(
n1∑
i=1

iwi +

n2∑
i=1

iwn1+i + ...+
nm∑
i=1

iwn1+n2+...+nm−1+i

)
+

T

(
n2∑
i=1

wn1+i + 2

n3∑
i=1

wn1+n2+i + ...+ (m− 1)
nm∑
i=1

wn1+n2+...+nm−1+i

)

f ∗ = p

n∑
i=1

iwi + T

m−1∑
k=1

(
k

nk+1∑
i=1

wn1+n2+...+nk+i

)
.

As P ′ is a relaxed problem of 1-PMWCT, LB2 is a valid lower bound of 1-PMWCT problem.

In order to derive the third lower bound LB3, let consider the problem (P ′′) denoted as following:

1, h1//
n∑
i=1

wici. The first field means that there exists only one machine and specifies that only one preventive

maintenance (h1) is applied during the whole scheduling horizon.

Let us denote by Jg the job scheduled just after the maintenance period, Jm1 and Jm2 are respectively the

last job scheduled in batches B1 and B2.

LB3 is formulated in the following proposition:

Proposition 3 The lower bound

LB3 =

m1∑
i=1

wi

i∑
j=1

pj +

m2∑
i=g

wi(T +
i∑

j=g

pj) (3.21)

The Equation 3.21 is a valid lower bound for 1-PMWCT.

Proof LB3 is based on an optimal solution returned by a dynamic programming algorithm which is proposed

by Kacem et al. (2008) to solve P ′′. This algorithm sorts the jobs according to the WSPT and schedules them

in increasing order according to their index.

The dynamic formulation of P ′′ is based on the following recursive equation:

f(i, t) = min

{
f(i− 1, t) + wi · (T +

i∑
k=1

pk − t), f(i− 1, t− pi) + wi · t (3.22)
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Where f(i, t) is the smallest total weighted completion time of jobs {1, , i}, with the total processing time of

jobs in the first batch B1 starts at t ≤ T − δ. If such a solution does not exist, set f(i, t) = + ∝, f(0, 0) = 0,

f(0, t) = + ∝,∀t ≤ (T − δ) and f ∗ = min
0≤t≤(T−δ)

f(n, t).

We point out that the time complexity of this algorithm is in O(n · (T − δ)).

P ′′ can be defined as a relaxed problem of 1-PMWCT due to the fact of moving from multiple periods of

maintenance to only one period.

Let be f ∗S′′ an optimal value of a solution S ′′ for the problem P ′′. The value f ∗S′′ can be computed as follows:

f ∗S′′ =
∑
i∈B1

wici +
∑
i∈B2

wici

f ∗S′′ = w1c1 + w2c2 + ...+ wm1cm1 + wgcg + wg+1cg+1 + ...+ wm2cm2

f ∗S′′ = w1p1 + w2(p1 + p2) + ... + wm1(p1 + p2 + ... + pm1) + wg(T + pg) + wg+1(T + pg + pg+1) + ... + wm2(T +

pg + pg+1 + ...+ pm2)

f ∗S′′ =

m1∑
i=1

wi

i∑
j=1

pj + T

m2∑
i=g

wi +

m2∑
i=g

wi

i∑
j=g

pj

f ∗S′′ =

m1∑
i=1

wi

i∑
j=1

pj +

m2∑
i=g

wi(T +
i∑

j=g

pj)

As (S ′′) is a relaxed problem of 1-PMWCT, LB3 is equal to f ∗S′′ .

In a special case where all the jobs are scheduled in the first batch (
n∑
i=1

pi ≤ T − δ), LB3 is equal to

the optimal value of the problem 1-PMWCT. This is due to the WSPT rule which is applied in the dynamic

programming algorithm.

Proposition 4

LB4 =
n∑
i=1

piwi + T · (m(m− 1)

2
) (3.23)

The Equation 3.23 is a valid lower bound for 1-PMWCT problem.

Proof Let f ∗ be the objective function value of an optimal solution of 1-PMWCT and w the smallest weights

among all the weights related to an instance of 1-PMWCT. w is computed as follows:

w = min
1≤i≤n

{wi} (3.24)

f ∗ is computed as follows:

f ∗ =
∑
i∈B1

wici +
∑
i∈B2

wici + ...+
∑
i∈Bm∗

wici (3.25)
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When developing the Equation 3.25, we have:

f ∗ = w1p1+w2(p1+p2)+...+wn1(p1+p2+...+pn1)+wn1+1(T+pn1+1)+wn1+2(T+pn1+1+pn1+2)+...+wn1+n2(T+

pn1+1 + pn1+2 + ...+ pn1+n2) + ...+wn1+n2+...+nm∗−1+1((m
∗− 1)T + pn1+n2+...+nm∗−1+1) +wn1+n2+...+nm∗−1+2((m

∗−
1)T + pn1+n2+...+nm∗−1+1 + pn1+n2+...+nm∗−1+2) + ...+ wn((m∗ − 1)T + pn1+n2+...+nm∗−1+1 + ...+ pn)

f ∗ =
n∑
i=1

piwi +
n∑
i=2

wi

i−1∑
j=1

pj + T (

n2∑
i=1

wn1+i + 2

n3∑
i=1

wn1+n2+i + ...+ (m∗ − 1)

nm∗∑
i=1

wn1+n2+...+nm∗−1+i).

Since m ≤ m∗, it is clear that:

T (

n2∑
i=1

wn1+i + 2

n3∑
i=1

wn1+n2+i + ...+ (m∗ − 1)

nm∗∑
i=1

wn1+n2+...+nm∗−1+i) ≥ T (w + 2w + 3w + ...+ (m− 1)w)

This is equivalent to:

T

m∗−1∑
k=1

(
k

nk+1∑
i=1

wn1+n2+...+nk+i

)
≥ Tw

m−1∑
i=1

i.

Since
m−1∑
i=1

i =
m(m− 1)

2
, we consequently have:

n∑
i=1

piwi + T · (m(m− 1)

2
) ≤

n∑
i=1

piwi +
n∑
i=2

wi

i−1∑
j=1

pj + T
m∗−1∑
k=1

(
k

nk+1∑
i=1

wn1+n2+...+nk+i

)
.

LB4 is a valid lower bound for 1-PMWCT.

Remark 2 The code of the three lower bounds LB1, LB2, LB4 is composed of elementary operations and

sorting functions which can be implemented with a complexity of O(n log(n)).

3.8 Lower bounds derived from job splitting procedure

3.8.1 Job splitting

Job splitting is proposed as a general technique to obtain lower bounds. This concept was introduced by (Posner,

1985) and used later by (Belouadah et al., 1992). They proved that if a job Jj is split into two jobs Ji and Jk

with processing times pj = pi+pk and weights wj = wi+wk, it decreases the total weighted completion time by

pkwi. This method was used by (Kacem et al., 2008) to propose lower bounds for a single machine scheduling

problem with only one unavailability period of the machine during the scheduling horizon.

Let P denote the original problem with no split jobs and let P1 be the corresponding problem in which each

job Jj is split into nj pieces. Each piece ok,j has a processing time pk,j and a weight wk,j (j ∈ J, k ∈ {1, . . . , nj})
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such that pj =

nj∑
k=1

pk,j and wj =

nj∑
k=1

wk,j, the pieces ok,j are constrained to be scheduled contiguously. Let σ∗

be an optimal schedule for P and σ∗1 the corresponding optimal schedule for P1. (Belouadah et al., 1992) proved

the following relation:

∑
j∈J

wjcj(σ
∗)−

∑
j∈J

wjcj(σ
∗
1) = CBRK (3.26)

CBRK =
∑
j∈J

( nj−1∑
k=1

wk,j

nj∑
h=k+1

ph,j
)

(3.27)

As suggested by (Belouadah et al., 1992), CBRK may be thought as the cost of breaking all the jobs Jj into

nj pieces.

By relaxing the contiguity constraint in problem P1, we obtain a relaxed problem denoted as P2. Let σ∗2 be

an optimal schedule for problem P2. (Belouadah et al., 1992) proposed the following relation:

∑
j∈J

wjcj(σ
∗) ≥

∑
j∈J

wjcj(σ
∗
2) + CBRK (3.28)

To get the lower bounds, the jobs should be split in such a way that the resulting problem P2 corresponds

to a special case for which an optimal schedule σ∗2 is known. This is particularly the case when processing times

are constant. In this context, let us consider three special splits:

3.8.2 Suggested lower bounds

First split: Each job Jj (j ∈ J) is split into two pieces such that p1,j = p2,j = p/2 and w1,j = wj, w2,j = 0

with p = min
1≤j≤n

pj. Let σ
′∗
2 denote the optimal solution of this problem. Hence, we have:

LB5 =
∑
j∈J

wjcj(σ
′∗
2 ) + CBRK (3.29)

Second split: The second lower bound (LB2) is obtained by considering the following split: Each job Jj

(j ∈ J) is split into two pieces such that p1,j = p2,j = p/2 and w1,j = w2,j = w/2 with: p = min
1≤j≤n

pj and

w = min
1≤j≤n

wj. Let denote σ
′′∗
2 the optimal solution of this problem. Hence, we have:

LB6 =
∑
j∈J

wjcj(σ
′′∗
2 ) + CBRK (3.30)

Third split: P2 can be effectively solved when all processing times are set to one unit of time (pk,j = 1),

which means that each job Jj (j ∈ J) is split into pj pieces. The weights are set as follows:

If wj ≥ pj, wk,j = 1, for k ∈ {1, . . . , pj},
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If wj ≤ pj, for wk,j = 1, k ∈ {1, . . . , wj} and wk,j = 0, for k ∈ {wj + 1, . . . , pj}
Let σ

′′′∗
2 denote the optimal solution of this problem. Hence, we have:

LB7 =
∑
j∈J

wjcj(σ
′′′∗
2 ) + CBRK (3.31)

3.9 Computational results

In order to assess the extent of the MILP formulation, to evaluate the performance of the proposed heuristics

and the proposed GVNS, some computational experiments are conducted.

Since we do not find test instances for the problem under study in the related literature, we decided to carry

out experiments with randomly generated instances. Theses instances are available via the following URL:

http://sakai.uphf.fr/wiki/site/1b6900a5-38f1-4003-94e9-317898cbf168/instancesmaintenancewct.html

3.9.1 Instance generator

The instances used in the experiments are divided in four benchmark classes named CLxDy. When x = 1, pi

is uniformly distributed over [20, 100]. When x = 2, then pi is uniformly distributed over [25, 50] and T = 100.

When y = 0, then δ = 0 and if it is equal to 1, δ = 2%T . Each weight wi, it is uniformly distributed over [1, n].

The period of maintenance is generated as follows:

T = max

(
max
1≤j≤n

(pj) , 4 ∗
( n∑
j=1

pj/n
))

. (3.32)

To ensure feasibility of instances from CL1D0 and CL1D1 classes, T is generated in a way that makes it

greater than the largest processing time pi. Also, to avoid solutions with only one job per batch, we choose

T greater than 4 times the average of the processing times. To get instances with different levels of tightness

regarding the duration of maintenance δ, this latter is set to b2·T
100

+ 0.5c which is denoted by δ = 2%T . For

example, if T is equal to 150, δ is equal to 3. In order to make it easier to write, we denote the calculated value

of T for instances belonging to CL1D0 and CL1D1 by Tg.

Both the greedy heuristics and GVNS but also the whole proposed lower bounds are coded with JAVA. The

MILP is solved with CPLEX 12.4. All computational work is performed on an i7 Intel Core at 2.50 GHz and

Linux with 8 GB of memory.

3.9.2 MILP performance

The MILP is launched on size instances from n=2 to 20 belonging to each benchmark class. This gives results

observed over 1140 test problems.

The time limit of CPLEX is set to 20 minutes. The computational results of the MILP are summarized in

Figure 3.4. Each point on the graph corresponds to 60 instances. The time limit of 20 minutes occurs as soon
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as the size of instances is greater than 12. Figure 3.4 shows that more instances require more than MILP min

total time as their size increases, this is also confirmed by the average time denoted by MILP average total

time. When n = 20, almost all instances reach the 20 minutes time limit (59 instances out of 60 instances) which

is confirmed by the average value close to 1200 seconds (1186.84). Due to the NP-hardness of the considered

problem, it takes at least 20 minutes to obtain an optimal solution for each instance with size greater than 14.

The gaps reported by CPLEX is still about 70% after one hour.
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Figure 3.4: MILP performance

3.9.3 Greedy heuristics tests performance

Computational experiments on the proposed greedy heuristics and lowers bounds derived from spacial cases of

1-PMWCT are conducted using 52 different problem sizes, namely n =2,3,4,...,50,100,500 and 1000. Fifteen

replications are performed for each instance of size n from each benchmark’s class mentioned above. All the

results are observed over 3120 test problems.

Lower bounds evaluation

The lower bounds are tested on instances where the number of jobs ranges from 2 to 20 in order to compare them

with the results returned by the MILP. The different results of the lower bounds are summarized in Tables 3.6

to 3.9. Each Table refers to the results relating to each class of instances mentioned above. Thus, GapLB1(%),

GapLB2(%), GapLB3(%), GapLB4(%) represent the improvement of the relating lower bound compared to the

MILP. Gap•(%) is calculated in the following manner:
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Gap•(%) = 100 ∗ VMILP − V•
VMILP

. (3.33)

Where V• is the value of LB•, and VMILP is the best solution found by CPLEX so far. Let us consider the

following inequality:

LBBest = max(LB1, LB2, LB3, LB4) (3.34)

n GapLB1(%) GapLB2(%) GapLB3(%) GapLB4(%) GapLBBest(%)

2 0.00 18.16 0.00 0.00 0.00
3 0.00 24.72 0.00 2.15 0.00
4 7.89 37.86 0.00 11.24 0.00
5 2.42 36.67 0.00 31.79 0.00
6 3.75 45.97 0.92 46.79 0.92
7 3.27 46.70 0.87 37.70 0.87
8 4.47 48.88 0.72 46.80 0.72
9 3.24 51.43 8.20 53.64 3.24
10 3.79 55.75 0.29 59.38 0.29
11 3.12 52.57 0.03 56.66 0.03
12 2.86 54.50 3.33 58.41 2.86
13 2.70 53.26 0.26 62.70 0.26
14 2.20 51.08 0.54 68.49 0.54
15 2.66 53.53 0.31 62.21 0.31
16 2.54 56.28 1.46 64.19 1.46
17 2.13 57.35 0.01 67.67 0.01
18 2.86 55.92 0.84 71.25 0.84
19 2.34 59.48 0.08 65.39 0.08
20 2.70 58.15 0.14 70.74 0.14

Table 3.6: Average results for lower bounds compared to the MILP: case CL1D0

n GapLB1(%) GapLB2(%) GapLB3(%) GapLB4(%) GapBest(%)

2 0.00 18.16 0.00 0.00 0.00
3 0.00 24.72 0.00 0.00 0.00
4 7.51 37.86 0.20 11.24 0.20
5 3.15 37.29 0.00 32.46 0.00
6 3.61 45.97 3.61 46.79 3.61
7 3.74 46.97 1.83 37.53 1.83
8 5.67 49.21 0.65 47.54 0.65
9 4.38 51.37 2.18 54.24 2.18
10 4.17 55.96 0.13 59.58 0.13
11 3.72 52.75 0.33 54.88 0.33
12 4.45 55.23 0.06 59.12 0.06
13 4.30 53.95 0.28 63.34 0.28
14 4.00 51.81 2.90 68.58 2.90
15 3.94 53.71 0.53 60.26 0.53
16 4.04 56.83 0.16 64.76 0.16
17 3.70 57.49 0.07 68.20 0.07
18 4.16 55.90 0.67 69.83 0.67
19 3.71 59.45 0.88 65.53 0.88
20 4.00 58.02 0.71 71.14 0.71

Table 3.7: Average results for lower bounds compared to the MILP: case CL1D1

From Tables 3.6 to 3.9 we state that LB1 and LB3 are quite tight contrary to LB2 and LB4 where the gap is

rather high. However, in most cases LB3 is better than LB1. In Table 2 (when δ = 0 and T = Tg) LB1 is better

than LB3 about 10%, whereas in the other tables (instances from the three other classes) LB3 remains the best

lower bound. To that end we took LBbest = max(LB1, LB3), which is used to compute the performances of the

heuristics developed in this work.

Tables 3.10, 3.11, 3.12 and 3.13 summarize the average computational time in seconds of each lower bound

(LB1 to LB4), and for each instance of size n, namely, n = 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 500, 1000 belong-

ing to each benchmark class CLxDy. As can be seen, the average execution time of LB1, LB2 and LB4 is very
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n GapLB1(%) GapLB2(%) GapLB3(%) GapLB4(%) GapBest(%)

2 0.00 10.02 0.00 0.00 0.00
3 5.44 16.88 0.00 0.00 0.00
4 6.66 17.42 0.00 10.56 0.00
5 10.24 18.98 0.00 19.62 0.00
6 6.03 21.68 0.45 30.33 0.45
7 7.95 25.22 2.27 31.83 2.27
8 5.00 22.87 1.82 37.08 1.82
9 6.79 22.73 0.20 44.41 0.20
10 6.61 23.43 1.38 43.19 1.38
11 4.30 27.01 0.91 47.18 0.91
12 5.97 22.60 2.11 50.03 2.11
13 7.15 25.51 2.01 53.53 2.01
14 5.31 29.22 2.57 54.48 2.57
15 5.55 22.40 3.07 52.92 3.07
16 5.06 24.26 3.14 53.45 3.14
17 5.21 23.51 3.03 57.15 3.03
18 4.70 25.71 2.59 57.54 2.59
19 5.07 31.38 3.86 56.37 3.86
20 5.51 28.04 1.36 58.35 1.36

Table 3.8: Average results for lower bounds compared to the MILP: case CL2D0

n GapLB1(%) GapLB2(%) GapLB3(%) GapLB4(%) GapBest(%)

2 0.00 10.02 0.00 0.66 0.00
3 6.12 17.36 0.00 1.22 0.00
4 6.97 17.17 0.00 7.89 0.00
5 10.75 19.01 0.00 20.30 0.00
6 7.69 21.67 0.61 28.48 0.61
7 8.85 23.38 0.17 27.83 0.17
8 6.37 22.60 0.24 35.63 0.24
9 7.69 19.56 2.20 45.00 2.20
10 8.71 23.31 2.56 42.02 2.56
11 6.92 22.80 2.82 46.63 2.82
12 7.07 21.77 3.22 49.00 3.22
13 8.24 23.38 2.38 50.27 2.38
14 7.07 21.51 3.18 54.39 3.18
15 7.24 19.67 4.19 52.50 4.19
16 7.17 18.53 4.36 53.29 4.36
17 7.03 18.47 3.96 57.09 3.96
18 6.28 20.33 3.00 55.41 3.00
19 6.98 20.96 5.41 54.56 5.41
20 6.74 22.36 3.53 57.08 3.53

Table 3.9: Average results for lower bounds compared to the MILP: case CL2D1
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close to zero or almost equal to zero for some instance sizes as shown in Table 3.12. As already mentioned in

Section in Section 3.7, the complexity of these lower bounds is O(n log(n)). This explains the obtained results,

whereas the lower bound LB3 is a special case of the 1-PMWCT problem that can be solved by dynamic pro-

gramming. The complexity of the associated algorithm to LB3 is O(n · (T − δ)). The average execution time

of LB3 is much greater than the remainder of the lower bounds. For example, when n = 1000, LB1, LB2 and

LB4 do not exceed 1 second regardless of the CLxDy instance classes. In the other hand, the average computa-

tional time of LB3 takes 2 hours and 8 minutes for instances belonging to CL1D1, about 10 minutes for those

belonging to CL1D0 and at most 29 minutes 3 seconds for those belonging to CL2D0 and CL2D1. Moreover,

the average computational time of LB3 is still very small for instances of size 100 and 500. To summarize, when

n = 500, it takes at most 2 minutes and 12 seconds for instances belonging to CL2D1 to find a lower bound.

For n = 100 the computational time goes down to 0.89 seconds. Finally, for n ≤ 50 a computational time less

than 0.3 seconds is required.

n 10 15 20 25 30 35 40 45 50 100 500 1000

LB1 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0150 0.0450
LB2 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0150 0.0200 0.0960
LB3 0.0000 0.0160 0.0310 0.0470 0.0160 0.0470 0.0550 0.1090 0.1160 0.5123 38.8710 605.3520
LB4 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0160

Table 3.10: Average computational time of lower bounds: case CL1D0

n 10 15 20 25 30 35 40 45 50 100 500 1000

LB1 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0030 0.0050 0.0150
LB2 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0030 0.0050 0.0080 0.0250
LB3 0.0050 0.0070 0.0250 0.0480 0.0450 0.0580 0.0680 0.1200 0.1300 0.5770 60.7330 6079.7900
LB4 0.0010 0.0010 0.0020 0.0020 0.0020 0.0030 0.0040 0.0040 0.0040 0.0080 0.0100 0.0450

Table 3.11: Average computational time of lower bounds: case CL1D1

n 10 15 20 25 30 35 40 45 50 100 500 1000

LB1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0150
LB2 0.0010 0.0010 0.0010 0.0020 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0100
LB3 0.0150 0.0160 0.0310 0.0460 0.0630 0.0780 0.1400 0.1720 0.2840 0.8950 99.9080 1727.9900
LB4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 0.0003 0.0040 0.0060 0.0120

Table 3.12: Average computational time of lower bounds: case CL2D0

n 10 15 20 25 30 35 40 45 50 100 500 1000

LB1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0150
LB2 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0300 0.1600
LB3 0.0000 0.0150 0.0320 0.0470 0.0780 0.1400 0.1090 0.2080 0.1610 0.8180 126.6260 1741.9420
LB4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0050 0.0090 0.0220

Table 3.13: Average computational time of lower bounds: case CL2D1
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Greedy heuristics computational time comparison

It is important to mention that all the developed heuristics require less than 5 seconds for all the generated

instances related to 1-PMWCT problem, even for instances with size n = 1000. Thus, tables 13 to 16 summarize

the average completion times duration of each heuristic for each instance of size n, namely, 10, 15, 20, 25, 30,

35, 40, 45, 50, 100, 500, 1000 and for each benchmark class CLxDy.

n HWSPTFF HWSPTBF HWSPTNF HDFF HDBF HIFF HIBF HDNF HINF

10 0.0011 0.0006 0.0002 0.0001 0.0003 0.0005 0.0003 0.0003 0.0005
15 0.0015 0.0006 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0005
20 0.0013 0.0010 0.0008 0.0009 0.0011 0.0009 0.0011 0.0008 0,0011
25 0.0021 0.0015 0.0007 0.0014 0.0015 0.0016 0.0013 0.0005 0.0009
30 0.0025 0.0020 0.0007 0.0015 0.0024 0.0013 0.0008 0.0006 0.0011
35 0.0030 0.0025 0.0009 0.0021 0.0018 0.0011 0.0010 0.0007 0.0013
40 0.0035 0.0037 0.0009 0.0015 0.0018 0.0011 0.0011 0.0009 0.0016
45 0.0043 0.0036 0.0011 0.0011 0.0020 0.0013 0.0014 0.0011 0.0016
50 0.0051 0.0026 0.0021 0.0015 0.0020 0.0015 0.0013 0.0010 0.0024
100 0.0063 0.0053 0.0022 0.0039 0.0078 0.0030 0.0027 0.0018 0.0023
500 0.0502 0.0915 0.0171 0.0167 0.0329 0.0221 0.0396 0.0101 0.0515
1000 0.1019 0.1479 0.0781 0.0417 0.0771 0.0743 0.0513 0.0350 0.3108

Table 3.14: Average computational time of heuristics: case CL1D0

n HWSPTFF HWSPTBF HWSPTNF HDFF HDBF HIFF HIBF HDNF HINF

10 0.0010 0.0003 0.0005 0.0005 0.0003 0.0003 0.0005 0.0002 0.0003
15 0.0015 0.0005 0.0005 0.0005 0.0007 0.0007 0.0006 0.0005 0.0006
20 0.0015 0.0009 0.0008 0.0009 0.0011 0.0010 0.0011 0.0006 0.0011
25 0.0021 0.0013 0.0005 0.0012 0.0017 0.0015 0.0015 0.0005 0.0008
30 0.0025 0.0021 0.0005 0.0017 0.0021 0.0010 0.0010 0.0004 0.0012
35 0.0029 0.0027 0.0009 0.0022 0.0015 0.0011 0.0011 0.0007 0.0011
40 0.0037 0.0035 0.0010 0.0011 0.0017 0.0011 0.0011 0.0009 0.0015
45 0.0043 0.0035 0.0010 0.0014 0.0020 0.0011 0.0013 0.0011 0.0017
50 0.0052 0.0029 0.0017 0.0015 0.0021 0.0015 0.0014 0.0008 0.0025
100 0.0061 0.0050 0.0022 0.0045 0.0075 0.0033 0.0031 0.0023 0.0023
500 0.0502 0.0917 0.0179 0.0174 0.0332 0.0229 0.0381 0.0105 0.0508
1000 0.1037 0.1523 0.0780 0.0412 0.0815 0.0740 0.0517 0.0355 0.3004

Table 3.15: Average computational time of heuristics: case CL1D1

Greedy heuristics evaluation

In this Sub-section, experiments focus on revealing the computational effectiveness of the heuristics. Comparison

of the individual heuristics is done at first as shown in Table 3.18. Columns 2 to 10 show how many times each

heuristic reaches an optimal solution over the 60 instances.

As can be stated from Table 3.18, the two heuristics HWSPTFF and HWSPTBF perform slightly better than

the other heuristics. Indeed, these two heuristics seem to give the same results as they gave the same number

of optimal solutions. In addition, as stated in Sub-section 3.9.3, all the developed heuristics presented in this

article, reach good solutions in less than 5 seconds for all the generated instances. For this purpose, the heuristic

used for the second step of experiments is expressed as follows:
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n HWSPTFF HWSPTBF HDFF HDBF HIFF HIBF HDNF HINF HWSPTNF

10 0.0011 0.0005 0.0002 0.0003 0.0002 0.0004 0.0003 0.0002 0.0005
15 0.0011 0.0009 0.0001 0.0009 0.0001 0.0009 0.0001 0.0009 0.0003
20 0.0017 0.0009 0.0005 0.0008 0.0007 0.0009 0.0008 0.0007 0.0007
25 0.0019 0.0010 0.0010 0.0009 0.0011 0.0010 0.0013 0.0009 0.0005
30 0.0023 0.0012 0.0014 0.0015 0.0011 0.0011 0.0008 0.0008 0.0004
35 0.0026 0.0019 0.0017 0.0017 0.0013 0.0008 0.0011 0.0009 0.0004
40 0.0030 0.0024 0.0022 0.0013 0.0009 0.0010 0.0013 0.0011 0.0006
45 0.0037 0.0031 0.0016 0.0011 0.0011 0.0011 0.0017 0.0012 0.0003
50 0.0043 0.0026 0.0015 0.0013 0.0011 0.0012 0.0016 0.0011 0.0007
100 0.0032 0.0026 0.0028 0.0029 0.0029 0.0011 0.0012 0.0014 0.0017
500 0.0423 0.0258 0.0121 0.0374 0.0127 0.0124 0.0067 0.0099 0.0035
1000 0.0860 0.0925 0.0302 0.0219 0.0417 0.0407 0.0234 0.0181 0.0114

Table 3.16: Average computational time of heuristics: case CL2D0

n HWSPTFF HWSPTBF HWSPTNF HDFF HDBF HIFF HIBF HDNF HINF

10 0.0011 0.0005 0.0005 0.0002 0.0002 0.0003 0.0003 0.0002 0.0002
15 0.0014 0.0005 0.0004 0.0005 0.0005 0.0004 0.0006 0.0005 0.0005
20 0.0017 0.0007 0.0006 0.0007 0.0007 0.0007 0.0008 0.0009 0.0009
25 0.0017 0.0011 0.0005 0.0009 0.0010 0.0013 0.0012 0.0012 0.0010
30 0.0022 0.0013 0.0005 0.0016 0.0013 0.0014 0.0012 0.0008 0.0009
35 0.0026 0.0019 0.0008 0.0017 0.0018 0.0011 0.0009 0.0009 0.0009
40 0.0030 0.0023 0.0008 0.0022 0.0011 0.0010 0.0011 0.0010 0.0012
45 0.0034 0.0029 0.0007 0.0015 0.0011 0.0011 0.0013 0.0011 0.0013
50 0.0042 0.0030 0.0008 0.0011 0.0013 0.0011 0.0013 0.0016 0.0013
100 0.0052 0.0033 0.0015 0.0024 0.0031 0.0033 0.0028 0.0011 0.0013
500 0.0422 0.0256 0.0037 0.0123 0.0375 0.0135 0.0135 0.0063 0.0207
1000 0.0863 0.0915 0.0125 0.0299 0.0227 0.0436 0.0432 0.0221 0.1319

Table 3.17: Average computational time of heuristics: case CL2D1

n HWSPTFF HWSPTBF HWSPTNF HDFF HDBF HIFF HIBF HDNF HINF

2 60 60 60 60 60 60 60 60 60
3 60 60 46 46 44 44 60 59 60
4 47 47 13 13 25 25 45 45 45
5 47 47 9 9 17 17 38 38 40
6 20 20 4 4 6 6 16 16 16
7 25 24 8 8 6 6 19 19 19
8 22 22 7 7 5 5 18 18 18
9 23 23 3 3 3 3 10 10 10
10 9 9 3 3 3 3 6 6 6
11 11 11 3 3 3 3 7 7 7
12 10 10 3 3 3 3 4 4 4
13 9 8 2 3 3 4 3 5 4
14 4 4 2 2 2 2 3 3 3
15 4 4 3 3 3 3 4 4 4
16 7 7 3 3 3 3 4 4 4
17 5 5 3 3 3 3 3 3 3
18 3 3 3 3 3 3 3 3 3
19 2 2 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0

Table 3.18: Performance of the heuristics with regard to the number of optimal solutions found for n = 2 to
n = 20 jobs instances
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Hbest = min (HWSPTBF , HWSPTFF ) (3.35)

Greedy heuristics versus MILP

In order to evaluate the performance of Hbest, we compare its performance with that of an optimal solution

returned by the MILP for sizes ranging from 2 to 20. The computational results are summarized in Table 3.19.

For n= 21, 22,.., 50, 100, 500 and 1000, the comparison is done with LBBest. The results are summarized in

Table 3.20.

n PEDCL1D0(%) PEDCL1D1(%) PEDCL2D0(%) PEDCL2D1(%)

2 0 0 0 0
3 0 0 0 0
4 0.70 0.70 0.23 1.23
5 0 0 0.11 0.28
6 1.81 1.81 1.40 1.04
7 1.12 1.79 0.88 1.32
8 0.69 1.27 2.63 2.58
9 2.84 1.94 2.58 2.71
10 1.16 1.17 1.89 1.53
11 1.21 1.44 4.93 3.83
12 3.60 3.84 3.03 3.04
13 3.16 2.68 3.42 4.58
14 3.14 2.99 6.79 5.27
15 2.31 2.43 4.45 3.28
16 2.79 3.06 5.36 3.88
17 2.70 2.71 5.56 3.96
18 3.83 2.81 4.72 3.52
19 5.46 4.61 5.84 5.04
20 3.15 2.43 6.85 4.25

Table 3.19: Computational results of Hbest for n = 2 to n = 20 jobs instances

Table 3.19 provides the average percentage error deviation (PED) for instances belonging to each class

CL1D0, CL1D1, CL2D0, CL2D1. PED represents the improvement of Hbest compared with the MILP. It is

computed as follows:

PED (%) = [(Hbest − VMILP )/VMILP ]× 100 (3.36)

It is observed from Table 3.19 that instances belonging to benchmarks with x = 1 produce smaller PED

than those with x = 2. This can be explained by the fact that more jobs could be scheduled per batch in the

first case than in the second case. Indeed, when x = 1, processing times ranged from 20 to 100. This induces an

average processing time of 60 which allows to generate T between 100 and 4 ∗ (60 + 60)/2 = 240. This gives an

average of 4 jobs scheduled per batch. Unlike to this, when x = 2, processing times ranged from 25 to 50, so on

the average processing time is 37.5. Hence when T = 100, no more than 2 jobs in average can be scheduled per

batch. Consequently, it can be observed that in the second case, there is a higher probability that the machine

has to undergo more preventive maintenances than in the first case. This factor induces a greater number of

potential solutions which makes the heuristic less efficient for the instances belonging to x = 2.
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n PERCL1D0(%) PERCL1D1(%) PERCL2D0(%) PERCL2D1(%)

21 2.57 3.79 8.25 9.29
22 2.30 2.97 8.74 9.55
23 2.79 4.14 9.50 9.53
24 3.81 4.68 8.67 10.28
25 2.80 3.97 8.26 8.42
26 3.45 4.75 9.11 10.55
27 3.74 4.34 9.19 10.14
28 3.72 5.07 9.34 11.18
29 4.42 5.35 9.65 10.98
30 4.25 5.79 9.20 9.97
31 4.07 4.60 9.86 10.73
32 3.78 4.97 9.38 10.70
33 4.45 5.52 9.79 10.71
34 4.08 5.46 10.12 10.61
35 3.77 4.79 9.77 10.37
36 3.33 5.43 10.37 10.45
37 4.46 5.29 9.28 10.44
38 4.28 5.42 9.80 11.20
39 4.12 4.42 10.23 11.37
40 4.07 5.21 9.76 10.87
41 3.78 5.54 9.28 11.18
42 3.87 5.39 10.34 11.83
43 3.85 5.16 10.25 11.29
44 4.55 5.41 9.36 11.10
45 4.04 5.80 11.04 11.78
46 5.01 6.15 10.29 11.67
47 4.32 5.27 9.86 11.05
48 3.61 5.00 10.78 11.83
49 4.16 5.33 9.73 11.03
50 3.84 5.12 10.51 11.45
100 3.74 5.73 10.80 12.45
500 3.14 5.31 10.37 12.29
1000 2.99 5.11 10.28 12.06

Table 3.20: Computational results of Hbest for n = 21 to n = 50 jobs instances,n = 100, n = 500 and n = 1000
jobs instances
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Greedy heuristics performances versus lower bounds

Table 3.20 gathers the average percentage error ratio (PER). PER represents the improvement of Hbest compared

with the best lower bound LBbest. PER is computed as follows:

PER(%) = [(Hbest − LBbest)/LBbest]× 100. (3.37)

The comparison of Table 3.20 with Table 3.19 shows that PER is higher than PED. This is clearly related

to the comparison done with a lower bound which obviously generates smaller values than those returned by

the MILP. PER increases also slightly as the number of jobs increases. As for the cases in Table 3.20, instances

belonging to CL2D0 and CL2D1 produce greater PER for the same reasons. Here the average PER is about

6.10 with a minimum of 3.01 and a maximum of 9.26. We can conclude that the heuristics are more efficient

for instances belonging to CL1D0 and CL1D1.

Overhead performances

Besides the study of the heuristics performances, we investigate also the increased values of the objective

function for the same instances when the duration of maintenance varies from δ = 0 to δ > 0.

For this purpose, Table 3.21 and Table 3.22 report the overhead added to the objective function value of

the instances with δ = 2%T (classes CL1D1 and CL2D1) compared to those relating to instances with δ = 0

(classes CL1D0 and CL2D0). It represents the extra-cost (in %) induced by the duration of the maintenance

actions while increasing δ from 0 to 2%T . That overhead is computed in Table 3.21 as follows:

OVHCLXDY = 100× (VMILP (δ=2%T ) − VMILP (δ=0))/VMILP (δ=2%T ). (3.38)

As there is no computational result of the MILP for instances with n=21, 22. . . 50, 100, 500, 1000 the

overhead is computed with the objective function value of the best heuristic Hbest. The results are summarized

in Table 3.22.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

OVHCL1DY 0.00 0.00 0.00 0.98 0.00 0.66 1.40 1.29 0.48 0.69 1.70 1.70 1.88 1.36 1.58 1.64 1.38 1.43 1.37
OVHCL2DY 0.00 1.23 0.69 0.85 1.95 1.14 1.58 1.07 2.35 2.80 1.24 1.23 1.91 1.83 2.26 1.96 1.68 2.04 4.24

Table 3.21: Average computational results of the overhead for n = 2 to n = 20 jobs instances

On the basis of the obtained results, we can state that most of the instances are sensitive to the increase of

the objective function value from δ = 0 to δ = 2%T . We conclude that the duration of the maintenance δ has a

significant impact on the solutions and on the values of the objective function. As a consequence, the duration

of the maintenance activities must not be neglected in real-life/industrial studies.

Impact of Property 2
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n 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

OVHCL1DY 2.60 1.55 2.62 1.35 1.62 2.40 1.30 1.84 1.92 2.64 1.16 1.76 1.96 1.95 1.48 2.82 1.58
OHVCL2DY 1.57 1.42 0.73 1.94 0.95 2.03 1.28 2.25 1.75 1.30 1.20 1.76 1.28 1.19 1.08 0.58 1.50

n 38 39 40 41 42 43 44 45 46 47 48 49 50 100 500 1000 -

OVHCL1DY 1.55 0.86 1.72 2.40 2.20 1.77 1.43 2.13 1.69 1.32 1.84 1.57 1.80 2.36 2.29 2.21 -
OHVCL2DY 1.89 1.38 1.47 2.36 1.91 1.34 2.17 1.20 1.88 1.73 1.38 1.74 1.28 2.01 2.19 2.01 -

Table 3.22: Average computational results of overhead for n = 21 to n = 50 jobs instances, n = 100, n = 500
and n = 1000 jobs instances

Keeping in mind that the developed heuristics perform much better while adding Property 2, the focus of

this part of experiments is to illustrate the improvement in objective function value induced by that Property.

For testing purpose, we computed the Gap between the value of the objective function before and after ranking

the batches according to WBj . The computational results are summarized in Table 3.23. As expected, the

experiments confirm the influence of Property 2. This impact is quite stable and uniformly close to 0 for small

size instances but it is more significant for large sized instances, especially for instances belonging to CL2D0.

The average impact is about 10.38 % in CL2D0 and less significant in CL1D0 where the impact is about 0.07%.

n GapCL1D0 GapCL1D1 GapCL2D0 GapCL2D1

2 0 0 0 0
3 0 0 0.36 0
4 0 0 4.30 0
5 0 0 3.29 0
10 0 0 9.25 0
15 0 0 8.8 0.15
20 0 0 13.96 0.2
25 0.02 0 12.75 0.14
30 0.02 0 12.28 0.23
35 0 0.01 13.16 0.19
40 0.06 0.04 14.18 0.22
45 0.04 0.01 13.7 0.22
50 0.03 0.03 13.11 0.43
100 0.03 0.02 15.61 0.34
500 0.03 0.03 15.84 0.47
1000 0.03 0.04 15.56 0.50

Table 3.23: Impact of Property 2

3.9.4 GVNS tests performance

In this Sub-section, we present the experiments results conduced on the GVNS metaheuristic and the lower

bounds derived from the job splitting technique applied only for CL1D1 benchmark class.

These experiments are conduced using 54 different problem sizes, namely n =2, 3, 4,..., 50, 60, 70, 80, 90

and 100. Fifteen replications are generated for each instance-size n.

Note that, in all the tables presented in this section and for each instance size, we report the average value

of fifteen instances. All the tests (except for the MILP) presented in this chapter are done for instances of all
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sizes n =2, 3, 4,..., 50, 60, 70, 80, 90 and 100. However, to save space, we don’t present each time the results

of all instance sizes.

Lower bounds based job splitting evaluation

In this section, we propose to compare the computational results between the three proposed lower bounds based

on job splitting and the linear bound, LBRP , obtained by relaxing the integrity constraints for xi,j in the mixed

integer programming model. Note that relaxing the integrity constraints for yij is not reported here because it

appears to be useless (i.e. no significant decrease in terms of computational time consuming) similarly relaxing

xi,j and yi,j at the same time does not provide a good lower bound quality. Table 3.24 shows the performances

of each lower bound obtained by calculating the Ratio between the lower bound LBi and the optimal value of

the MILP as follows:

RatioLBi = 100 ∗ (V alueLBi/V alueMILP ). (3.39)

Entries in the last column represent the results of the tightest value returned among the four lower bounds.

LBbest = max{LB5, LB6, LB7, LBRP}. (3.40)

n RatioLB5 RatioLB6 RatioLB7 RatioLBRP RatioLB∗

2 92.06 81.84 99.33 72.53 99.33
3 73.67 75.28 91.04 59.45 91.04
4 54.65 62.14 91.81 72.77 91.81
5 50.50 62.64 80.12 66.33 80.12
6 39.93 54.03 62.45 69.38 69.38
7 36.71 52.84 96.34 69.57 96.34
8 34.96 50.26 88.16 74.03 88.16
9 32.11 48.19 92.76 74.56 92.76
10 29.18 43.97 98.25 74.33 98.25
11 29.50 46.85 86.69 75.27 86.69
12 27.71 44.34 79.16 77.76 79.16
13 27.42 45.63 76.47 77.85 77.85
14 28.41 47.63 69.41 79.36 79.36
15 27.17 45.64 69.32 80.25 80.25
16 24.93 42.80 66.67 81.20 81.20
17 24.30 42.08 60.05 81.52 81.52
18 24.81 43.50 62.94 82.72 82.72
19 22.60 40.13 54.61 83.30 83.30
20 23.38 41.26 48.01 84.27 84.27

Table 3.24: Comparison of lower bounds: LB5 to LB7 and LBRP

The calculated ratio clearly shows that LB7 is much tighter than LB5 and LB6. Actually the larger the size

of the instances, the greater the gap between the lower bounds (LB5, LB6, LB7) and the optimum value. The

lower bound LBRP seems to be better than the others when the size of instances is greater than twelve (n > 12)
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GVNS performances

In this Sub-section, experiments are carried out to evaluate the performance of the proposed GVNS. Due to

the stochastic aspect, we run the GVNS algorithm 10 times. As we already stated, the coefficient of variation

is smaller than 0.1%. Consequently only report the best of the 10 replicates. The results of comparisons

between the MILP and GVNS, and also between GVNS and LBbest are presented in Table 3.25. The entries

in columns three and five represent the ratio between the optimal value returned by the MILP (V alueMILP )

and the objective function value returned by the GVNS (V alueGV NS) respectively, between the lower bound

(V alueLBbest) and (V alueGV NS). It is calculated as follows:

RatioMH = 100 ∗ (V alueMILP/V alueGV NS). (3.41)

respectively,

RatioLH = 100 ∗ (V alueLBbest/V alueGV NS). (3.42)

The three last columns report the time consumed upon reaching the reported values returned respectively by

the MILP, the GVNS and the lower bounds. It follows that GVNS is very fast (an average of 4.22 seconds

for instances with size 100). For instances of size n ≤ 20, the GVNS is very efficient in comparison with the

MILP. The ratio RatioLH becomes smaller for instance sizes ranging from n = 11 to n = 21. This is certainly

due to the lower bounds performances. Indeed, the gap is practically rather large for these instance sizes (see

Table 3.24). This shows that GVNS is able to reach high quality solutions in a very small amount of time.

The relaxed problem is easier to solve in the case of small sized instances than in the case of large instances.

On top of this, the computational time in both cases is limited to 20 minutes, so it is more likely that, for large

instances, the relaxed MILP is struggling to improve the solution. Hence the returned value of the relaxed MILP

is still quite large and relatively close to the solution returned by GVNS. More precisely, when n > 14, the best

lower bound LBbest is equal to the lower bound LBRP based on the relaxation of the integrity constraints of the

MILP model. Indeed, via the relaxed MILP, CPLEX solves optimally the problem within the calculation time

limit of 20 minutes for instances with n < 50. When n ≥ 50, returned solutions are not necessarily optimal

and require more than 20 minutes to get the optimal solutions. Therefore, the value returned by relaxed MILP

is closer to the GVNS value than to the optimal solution of the relaxed MILP (LBRP ). Empirical experiments

for those instances show that the gap returned by CPLEX solver remains 90% (in average for the 15 instances)

after 20 minutes. This explains why the calculated gap (line 3, 9 and 15 of Table 3.25) is so high for the large

instances.

3.10 Conclusions and perspectives

In this chapter we studied the single machine scheduling problem with periodic maintenance. The objective

of our study is to minimize the weighted sum of completion times criterion. First, we have provided a Mixed

Integer Linear Programming formulation to solve this problem optimally. Then, we proved the NP-hardness of
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n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RatioMH(%) 100 100 100 100 100 100 100 99.88 100 100 99.83 99.93 99.95 99.88 99.89 99.86 99.88 99.88
RatioLH(%) 99,33 91.04 91.81 80.12 69.38 96.34 88.16 92.64 98.81 86.69 79.03 77.80 79.32 80.15 81.11 81.40 82.62 83.20
Av.T imeMILP (s) 0.01 0.01 0.02 0.03 0.04 0.07 0.12 0.55 1.21 7.80 57.97 120.79 322.86 754.32 886.72 1067.49 ≥ 1200 ≥ 1200
Av.T imeGV NS(s) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0.02 ≈ 0.02 ≈ 0.01 ≈0.02 ≈0.02 ≈0.02 ≈0.02 ≈0.02 0.03
Av.T imeLBbest(s) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0.01 ≈ 0.01 ≈ 0.03 0.05 0.08 0.13 0.23 0.41 0.55 0.63 0.85 1.02 1.16 1.33

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

RatioMH(%) 99.81 - - - - - - - - - - - - - - - - -
RatioLH(%) 84.10 83.62 84.91 85.19 85.60 86.06 86.22 86.45 86.85 87.50 87.41 87.60 88.12 88.50 88.66 89.03 89.01 88.90
Av.T imeMILP (s) ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200
Av.T imeGV NS(s) 0.03 0.04 0.04 0.05 0.05 0.06 0.07 0.08 0.08 0.09 0.1 0.12 0.13 0.15 0.18 0.2 0.22 0.24
Av.T imeLBbest(s) 1.65 1.83 2.12 2.52 3.09 3.56 4.21 5.34 5.88 6.78 7.78 8.73 9.95 12.68 12.60 14.71 19.78 23.16

n 38 39 40 41 42 43 44 45 46 47 48 49 50 60 70 80 90 100

RatioMH(%) - - - - - - - - - - - - - - - - - -
RatioLH(%) 89.64 89.46 89.78 90.14 89.82 90.29 90.67 90.47 90.87 90.94 90.92 91.65 93.21 93.21 95.38 99.76 99.86 95.95
Av.T imeMILP (s) ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200 ≥ 1200
Av.T imeGV NS(s) 0.26 0.27 0.29 0.3 0.32 0.35 0.37 0.39 0.42 0.44 0.48 0.5 0.52 0.65 0.74 1.07 0.94 0.87
Av.T imeLBbest(s) 30.22 27.38 36.65 39.21 52.35 113.43 93.85 176.18 372.50 387.30 456.32 1,138.48 ≥1200 ≥1200 ≥1200 ≥1200 ≥1200 ≥1200

Table 3.25: GVNS performances

this latter. We have also provided some properties that have been used to build several efficient heuristics.

Several lower bounds defined as a relaxation problem of 1-PMWCT are proposed and used to test the

efficiency of the developed heuristics. We also developed a GVNS algorithm to solve this NP-hard problem. It

was tested and compared with the MILP model for small sized instances and with four lower bounds for instance

sizes greater than 20. Three of them are based on job splitting approach and one based on the relaxation of

one integrity constraint.

All The proposed methods are tested on large randomly generated data. The result showed that the MILP

formulation is efficient on instances with sizes less than or equal to 20 and the proposed heuristics are efficient

algorithms to solve large instances. Computational experiments show that the average percentage error of the

best heuristic is less than 10. The presented properties have been of great use in designing efficient heuristics

capable of solving instances with 1000 jobs. The proposed GVNS is very efficient both in terms of quality of

the objective function values and computational time.

In future work, it would be interesting to compare the performance of GVNS with other metaheuristics for

solving the considered problem after generalizing it by adding more realistic constraints such as release times,

failures, etc. Another extension of this research would be to consider the interval between two consecutive

maintenance activities as a decision variable of the problem.

76



Chapter 4

Single machine scheduling with

sequence-dependent setup times and periodic

maintenance (1-PMStWCT)

We studied in this chapter two mixed-integer linear programming (MILP) formulations of the 1-PMStWCT prob-

lem. These MILPs reach optimal solutions only for small-sized instances in a reasonable amount of time. Hence,

to solve large-sized instances a Multistart based GVNS metaheuristic is used to this aim. All the investigated

methods are tested on randomly generated data inspired from the work of Chen (2009). Thus, computational

experiments comparing the two MILPS, and the proposed GVNS end this chapter.
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4.1 Introduction

This chapter gathers the same work hypothesis than already considered in chapter 4 with, in addition, sequence-

dependent setup time constraints. Hence, the objective of this chapter is to compute a schedule that minimizes

the WCT criterion, subject to sequence-dependent setup time between the jobs and periodic maintenance. It is

assumed that preemption of jobs is not allowed and the maintenance activity generates setup times that depend

on the last job scheduled just before doing the maintenance but also on the first job processed just after the

end of this latter. Referring to the notation of Graham et al. (1979), we denote this scheduling problem by

1/pm, STsd/
∑n

i=1wjcj.

The work of Chen (2009) is the first attempt to incorporate sequence-dependent setup times in machine

scheduling problems with availability constraints. They studied a scheduling problem for a single machine with

sequence-dependent setup times and periodic maintenance for real problems arising in textile and manufactur-

ing industries. The authors assumed that a job could be interrupted due to a PM activity and could be resumed

without setup if these jobs are already in process. However, they doesn’t consider setup time for doing a main-

tenance activity. Indeed, these assumptions simplified the problem in the sense that inclusion of maintenance

activities do not influence the order in which jobs are processed as there is no setup time to perform a PM.

However, as the authors pointed out, in practice, even if the job could be resumed, it is necessary to carry out

activities in order to prepare the machine for maintenance. Later, after maintenance, the machine should be

arranged to continue with the job. These activities, in general, depend on the job in process.

To the best of our knowledge, only the work of Liao and Chen (2003) reports studies on scheduling prob-

lems considering both sequence-dependent setup times and a preventive maintenance constraints where the

maintenance activity is considered as a job with setup cost that depends on the job processed just before.

They considered such a scheduling problem with the objective of minimizing the makespan. They also used a

metaheuristic called Greedy Randomized Adaptive Search Procedure to solve the same problem.

Due to the comprehensive survey on scheduling problem with setup time done by Allahverdi in (Allahverdi,

2015) and to the best of our knowledge, no one considered such as a problem in the related literature with the

objective of minimizing the weighted sum of completion times.

The remainder of this chapter is organized as follows: The problem is described in Section 4.2 while a liter-

ature review related to studied problem is resumed in section 4.4. Then, Section 4.3 presents two mathematical

formulations dedicated to solve small sized instances of the problem while Section 4.5 exhibits the two developed

approximate methods, namely, a basic heuristic and a sophisticated metaheuristic based GVNS. Computational

experiments are then discussed in Section 4.5. Finally, Section 4.6 ends the chapter with conclusions and some

perspectives.

4.2 Formal description of 1-PMStWCT

Based on the three field notation α|β|γ known as the Graham triplet Graham et al. (1979), 1-PMStWCT can

be denoted by 1/pm, STsd/
∑n

i=1wjcj. It is stated to be NP-hard since Kirlik and Oguz (2012) proved that the
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special case of minimizing the sum of completion times without considering PM activities is NP-hard.

During PM and setup times activities, the machine cannot process any job. Also, the preemption is not

allowed, that is, jobs are not resumable. Each job Jj, with a deterministic processing time pj and a positive

weight wj, (j ∈ J = {1, 2, ..., n}) has to be processed without preemption on a single machine that can handle

only one job at a time. Furthermore, the machine has to undergo a PM in each period of time T . δ represents

the duration of the PM. Let us consider the following research assumptions:

• All the processing times, setup times, weights are known and deterministic,

• cj and sti,j represent, respectively, the completion time of the job Jj, and the setup time between the two

jobs Ji and Jj,

• The setup times stij are sequence-dependent,

• There is a time interval of length T , between each two consecutive maintenance activities,

• Once maintenance is performed, no breakdown can occur in the production system for the next T units

of time.

Figure 4.1 illustrates a graphical representation of a feasible solution of the 1-PMStWCT problem. We

denote by PMk the kth preventive maintenance operation undergone on the machine. Since this latter occurs

at each time point kT − δ (k ∈ N∗) during the time schedule horizon, an idle time can observed. Bk in Figure

1 refers to the set of jobs scheduled between two consecutive PM activities.
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𝛿 𝛿 𝛿
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Setup time before each maintenance activity related to the last job  scheduled in the batch

time
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Idle time

𝐽𝑗𝐽𝑖
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𝑠𝑡𝑗𝑖

PM PM PM𝐽12

𝐵2 𝐵3

𝑠𝑡𝑃𝑀𝑖
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Figure 4.1: Illustration of a feasible solution of the 1-PMStWCT problem
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4.3 Literature review

In the following paragraph, we provide a short description of some works related to the scheduling problem

considering both sequence dependent setup times and periodic maintenance activity. To our knowledge Chen

et al. (Chen, 2009) are the first to consider such a scheduling problem with the objective of minimizing the

makespan. In 2011, Ángel-Bello et al. (2011) used a metaheuristic called Greedy Randomized Adaptive Search

Procedure also to minimize the makespan. For the same criterion, Naderi et al. (2009) investigated in a job shop

scheduling problem and proposed four metaheuristics based on simulated annealing and genetic algorithms to

solve the problem. Recently Nesello et al. (2017) proposed new index formulations to solve the problem.

For more details, we direct the reader to consult the review proposed by Allahverdi et al. (Allahverdi, 2015).

It’s a comprehensive survey which provides an extensive review of about 500 papers that have appeared since

the mid-2006 to the end of 2014.

4.4 Mathematical models

4.4.1 First mathematical formulation

The 1/pm, STsd/
∑n

j=1wjcj problem can be formulated as a mixed integer linear programming model (MILP).

The set of jobs scheduled between two periodic maintenance defines a batch. We can have at most n batches.

Since maintenance occurs during each period of time T and blocks the machine for a limited time δ and since

preemption is not allowed, we can formulate our scheduling problem as the classical BPP (section 3.3) as

proposed in the literature (e.g. (Ji et al., 2007), (Hsu et al., 2010), (Benmansour et al., 2014)), where the bins

represent batches. Among other things as already explained in Chapter 3, instead of filling bins with items, we

fill batches of limited capacity T − δ by jobs with processing times pj.

We define the following decision variables by considering the notations given earlier.

xjk =

1 if job Jj is scheduled before job Jk,

0 otherwise.

yjb =

1 if job Jj is in batch Bb,

0 otherwise.

We define R as a big positive integer. sti,j, st(n+1),j and stj,j are respectively the setup time between the

two jobs Ji and Jj, the setup time between the maintenance and the job Jj and the setup time before the

maintenance related to the job Jj. The matrix of setup times is formulated as follows:
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ST =



J1 J2 . . Jn

J1 st1,1 st1,2 st1,n

J2 st2,1 st2,2 st2,n

. . . . . .

. . . . . .

Jn . . . . stn,n

Jn+1 st(n+1),1 st(n+1),2 . . st(n+1),n



min

n∑
j=1

wjcj (4.1)

n∑
j=1

yjb = 1 ∀b ∈ J, (4.2)

cj ≥ (b− 1)Tyjb + δ + st(n+1),j + pj ∀(j, b) ∈ J ∗ J, (4.3)

cj ≤ jTyjb − δ − stj,j +R(1− yjb), ∀(j, b) ∈ J ∗ J, (4.4)

ck ≥ cj + 2stj,k + pj −R(1− xjk)− stj,k(
n∑
t=1

xtk −
n∑
t=1

xtj) ∀(j, k)j 6=k ∈ J ∗ J, (4.5)

xjk + xkj = 1, ∀j ∈ 1..n− 1, k ∈ j + 1..n, (4.6)

cj ≥ δ + st(n+1),j + pj ∀j ∈ J, (4.7)

xjk ∈ {0, 1} ∀(j, k) ∈ J ∗ J, (4.8)

yjb ∈ {0, 1} ∀(j, b) ∈ J ∗ J. (4.9)

The Equation (4.1) represents the objective function to be minimized. Constraints (4.2) allow each job to

be performed once in one of the batches. Constraints (4.3) and (4.7) define in each batch Bb, the execution of

any job Jj in this batch. Indeed, each job should be finished before the starting of maintenance activity and its

related setup time. This latter should be executed after the end of the preventive maintenance and the setup

time spent after the maintenance related to that job Jj (stn+1,j). The next sets of constraints, (4.5) and (4.6)

indicate that no two jobs, Jj and Jk, scheduled can overlap in time. Finally constraints (4.8) and (4.9) are

integrity requirements.

4.4.2 Second mathematical formulation

The main underlying idea of this second formulation is to consider each maintenance as a dummy job, conse-

quently there is no need to another binary decision variable (for batches assignation) as it is considered in the

first model.
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We assume that there is at most n PMs. Therefore, for a better formulation of the problem, we define the

following sets:

N1 = {1, 2, . . . , n},
N2 = {1, 2, . . . , 2n},
N3 = {n+ 1, n+ 2, . . . , 2n},
with n + 1, ...2n are dummy jobs referring to the maintenance. In the same context, stj,k, stm,j and stj,m

are respectively the setup time between the two jobs Jj and Jk, the setup time between the maintenance and

the job Jj and the setup time before the maintenance related to the job Jj.

The matrix of setup times is designed as follows:

ST =



J1 J2 . . Jn Jn+1 Jn+2 . . . . J2n

J1 st1,1 st1,2 st1,n st1,m st1,m . . . . st1,m

J2 st2,1 st2,2 st2,n st2,m st2,m . . . . st2,m

. . . . . . . . . . . . .

. . . . . . . . . . . . .

Jn . . . . .stn,n stn,m stn,m . . . . stn,m

Jn+1 stm,1 stm,2 . . stm,n 0 0 . . . . 0

Jn+2 stm,1 stm,2 . . stm,n 0 0 . . . . 0

. . . . . . . . . . . . 0

. . . . . . . . . . . . 0

J2n stm,1 stm,2 . . stm,n 0 0 . . . . 0


The decision variables are defined as follows:

xjk =

1 if job Jj is scheduled before job Ji,

0 otherwise.

min

n∑
j=1

wjcj (4.10)

cj = (j − n)T ∀j ∈ N3, (4.11)

cj ≤ stn+1,j + pj + δ ∀j ∈ N1 (4.12)

ck ≥ cj + stj,k + pk −R(1− xjk),∀(i, j)i<j (4.13)

xjk + xkj = 1 ∀(j, k) ∈ N2 ∗N2, j 6= k (4.14)

xjk = 1 ∀(j, k) ∈ N3 ∗N3, j < k (4.15)

xjk ∈ {0, 1} ∀(j, k) ∈ N2 ∗N2, (4.16)
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The Equation (4.10) represents again the objective function to be minimized. Constraints (4.11) allow to

compute the completion time of dummy jobs. Constraints (4.12) allow each job from the set N2 to finish after

the setup-time. The next sets of constraints, (4.13) and (4.14) indicate that no two jobs, Ji and Jj, scheduled can

overlap in time. In the same context, Constraints (4.15) avoid each two scheduled dummy jobs from overlapping

in time. Finally constraints (4.16) are integrity requirements.

4.4.3 Comparison of the two formulations

The first and the second MILP formulations (respectively MILP1 and MILP2) presented above differ in the

number of variables and constraints as it is shown in table 4.6. On one side in MILP1 there are 2n2 − n

variables. Furthermore, there are 3n2 +n+ (n− 1)n/2 constraints. On the other side, MILP2 has 2n2 variables

and 8n2 − 2n + (n − 1)n/2 constraints. Due to the slightly greater number of constraints in MILP2 one may

assume that it is favourable to use the first formulation (MILP1), which will be demonstrated by the numerical

results in section 5.

Formulation # constraints # integer variables # binary variables

MILP1 3n2 + n+ (n− 1)n/2 n 2n2 − 2n
MILP2 8n2 − 2n+ (n− 1)n/2 2n 2n2 − 2n

Table 4.1: Number of constraints and number of variables for each model.

4.5 Two approximate methods for 1-PMStWCT problem: MS-

DSH & MS-GVNS

Since the two proposed MILPs doesn’t succeed in solving PMStWCT problem for large-sized instances, we

propose to tackle the addressed problem using two heuristics named MultiStart Descent Search Heuristic,

denoted by “MS-DSH” that combines greedy and improving phases, and Multistart GVNS where the improving

phase of MS-DSH is replaced by GVNS. These two methods are described in Sub-sections 4.5.2 and 4.5.3

respectively.

To solve 1-PMSTWCT, the same move strategy used in Chapter 3 in the context of 1-PMWCT is

followed. To do this, we use the same first operators to generate six neighborhood structures. Two others

operators are added to the fourth operator ∆1 to ∆4 already defined in Chapter 3. Note that the op-

erator ∆5 is not used to solve 1-PMSTWCT as it does not give satisfying results for 1-PMWCT problem

studied in the previous chapter. The two added operators for investigation in this chapter are defined as follows:

∆5: The 3-opt operator (Lin, 1965) removes three job connections. The three resulting paths (i.e. sub-

sequences of jobs) are put together in a new way, possibly reversing one or more of them. The 3-opt is larger
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than the 2-opt and hence more time-consuming to search.

The complexity for going through the entire neighborhood structure N6(S) is O(n3).

∆6 the Reverse two not consecutive operator consists of all solutions obtained from a solution S by inter-

changing two not consecutive jobs.

The complexity for going through the entire neighborhood structure N7(S) is O(n).

In order to respect the principle of the multistarts algorithms, the two developed methods presented in

this section are based on an instance generator that we called “Lehmer code” denoted by LCG. This algorithm

allows MS-DSH and MS-GVNS to restart the algorithm at each iteration from a new initial solution. The LCG

concept is introduced in next sub-section.

4.5.1 Lehmer Code Generator: LCG

The Lehmer code is attributed to Derrick Lehmer (Laisant, 1888), (Prouff and Schaumont, 2012), (Lehmer,

1960). It associates a unique code L(σ) to each permutation σ = {σ1, σ2, ..., σk, ..., σn}. L(σ) = {l1, l2, ..., ln}
is a sequence where li is the number of elements that are smaller than σi and appear to the right of σi in the

permutation. The elements li in the Lehmer code always satisfy Equation 4.17:

0 ≤ l1 ≤ n− 1, 0 ≤ l2 ≤ n− 2, ..., 0 ≤ ln−1 ≤ 1, ln = 0 (4.17)

To go back from the Lehmer code to the permutation that generates it, the method used consists in looking

for the σi elements as explained in the Equation 4.18:

σi = Ai [li + 1] with Ai = J − {σ1, σ2, ..., σi−1} (4.18)

We point out that a feasible solution S for 1-PMStWCT is defined as any permutation in the set J of

predefined job ready to be scheduled at time t = 0

In this perspective, we can use LCG to build a new initial solution whenever needed. We note that LCG

is implemented in such a way that the probability to construct same solutions when calling LCG several times

within a loop, is minimal. This “guarantees” the diversification of the solutions reached in the research space.

4.5.2 Multistart Descent Search Heuristic for 1-PMStWCT

MS-DSH is a Multiple Descent Search heuristic (see Chapter 2 Sub-section 2.5.2) hybridized with greedy heuris-

tics.

Algorithm 9 summarizes the main steps of MS-DSH. It starts by building a solution S using the famous

BF heuristic, then improve it by sorting the jobs of S using the WSPT rule. An initial feasible solution is

then provided. After that, MS-DSH launches of a descent search heuristic (DSH) until the counter IMS−DSH

is reached. At each iteration within the while loop, a new initial solution is generated using the Lehmer-Code

Generator denoted by LCG and the best solution S∗ is recorded accordingly. The neighborhood structure used
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within DSH is based on the swap operator denoted by ∆2. Consequently, the index “2” in DSH2 refers to ∆2

operator used within the neighborhood exploration to find a good solution for 1-PMStWCT. The choice of this

operator is already explained in the previous Chapter, Section 3.6.3.

Algorithm 9: MS-DSH. Input: J . Output: S∗

S ←− Ranks jobs of J using Best-Fit heuristic
Apply WSPT in each Bk of S
S∗ ←− S
repeat

S ←− DSH i(S)
if (f(S) < f(S∗) then

S∗ ←− S
end
S ←− LCG(S)
if (f(S) < f(S∗) then

S∗ ←− S
end

until (number of iterations ≥ IMS−DSH);

4.5.3 Multistart GVNS based metaheuristic for the 1-PMStWCT

Our algorithm, called MultiStart General Variable neighborhood Search denoted by MS-GVNS, is an iterative

algorithm that in each iteration constructs a new feasible solution using Lehmer code generator explained above

and then, improves it using a GVNS procedure. The MS-GVNS is illustrated by Algorithm 10 where S

stands for the current solution and S∗ for the best solution. This search framework stops when IMS−GV NS is

achieved.

Algorithm 10: MS-GVNS. Input: J . Output: S∗.

while (number of iterations ≤ IMS−GV NS) do
S ←− LCG(J)
S∗ ←− GVNS(S)

end

Proposed implementation of GVNS

Algorithm 11 describes the main steps of the GVNS heuristic developed in this Chapter. It starts by initializing

the best solution S∗ via the same initial solution procedure WLS used in Chapter 3.

Indeed, the developed GVNS alternates phases of intensification and diversification to reach after Lmax

iterations the best ever visited solution. The WLS procedure is an intensification step where the current

solution S is get trapped in a local optimum. The shaking procedure allows to escape from this latter. It allows
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to visit other solutions in the search space without going too far from the current solution. In the rest of the

while loop iterations, the intensification phase is taken over by the VND procedure.

Algorithm 11: GVNS. Input: Lmax, kmax, J . Output: S∗.

Initialization:
S ←− WLS(J)
S∗ ←− S
l←− 1
while (l ≤ Lmax) do

Sshake ←− shaking(S,l)
if Sshake is better than S∗ then

S∗ ← Sshake

end
S ← Sshake

S ← VND(S, kmax)
if S is better than S∗ then

S∗ ← S
end
l←− l + 1
if l ≥ 7 then

l← 1
end

end

Shaking procedure

Contrarily to what is proposed in Chapter 3, here the shaking procedure described by Algorithm 12 builds at

each iteration within the while loop of Algorithm 11 a new solution named Sshake using one of the predefined

operator introduced in this chapter. Namely, L={∆1, ∆2, ∆3, ∆4, ∆5, ∆6}. Hence, the set L is browsed using

the index k. Such as when k = 2, the swap operator is used and when v = 5 the 3−opt operator is used. When

k is incremented until 7 and Lmax is not reached yet, k will restart from the first operator and set to 1.

Algorithm 12: Shaking. Input: S, k. Output: Sshake.

Input: (S, k)
Output: Sshake

Use the kth neighborhood structure in L to build Sshake

VND procedure

The VND proposed within this work, uses the best “improvement strategy”.
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Three neighborhood structures according to their performance are used: N7(S), N2(S) and N4(S). Hence,

kmax is set to three. The choice of these latter is justified in Section 4.6. The best solution is provided at the

end of each neighborhood search.

The VND procedure takes as inputs the parameter kmax and Sshake and returns S
′
. If S

′
is better than the

current solution S then it is updated and used in the next iteration to generate a new solution in the search

space using the shaking procedure. Otherwise, S will be used once more to generate Sshake using the next

neighborhood structure throughout the set L. the best solution S∗ is updated if necessary.

Neighborhood change strategy

Contrary to the strategy proposed when implementing GVNS in Chapter 3 (Section 3.6.3), the neighborhood

change strategy used withing VND in this Chapter illustrated by Algorithm 15 consists to use the next neigh-

borhood structure at the first improvement. If there is no improvement, the search restarts from the first

neighborhood structure.

We remind that the strategy used in Chapter 3 consists to use the next neighborhood structure if only there

is no improvement. VND stops when the last neighborhood structure is used.

Algorithm 13: VND. Input: S, kmax. Output:
S.
k ←− 1
while k ≤ kmax do

S
′ ←− argminS′′∈N∆k

(S)f(S ′′)

S ←− NeighborhoodChange(S
′
, S, k)

end

Algorithm 15: NeighborhoodChange. Input: S, S
′
, k. Output: S.

if S
′

is better than S then
S ←− S

′

k ←− k + 1

end
else

k ←− 1
end
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4.6 Computational experiments

4.6.1 Data generation

The processing times pj and the setup times stij are picked up from the work of Chen (2009) which discussed

and solved a scheduling problem with dependent setups and maintenance in a textile company. Chen et al

stated that the data was generated from the studied company. The percentage distributions of processing times

and setup times (in hours) are listed in the Tables 4.2 and 4.3 below: The experiments are based on two levels

of T=(720, 1200) hours and two levels of δ=(24, 48) hours. This defines four tests classes, namely, B1 with

(T =720, δ = 24), B2 with (T = 720, δ = 48), B3 with (T = 1200, δ = 24) and finally B4 with (T = 1200,

δ = 48). The weights wj are randomly generated from a discrete uniform distribution in the interval (20, 50)

for the four test classes.

Processing ≤ 50 51-100 101-150 151-200 201-250 251-300 301-350 ≥351

Percentage 10 14 25 19 18 7 5 2

Table 4.2: Processing time distribution (in hours)

Setup time ≤ 5 6-10 11-15 16-20 21-25 26-30 31-35 ≥36

Percentage 26 23 20 12 10 6 2 1

Table 4.3: Setup time distribution

In addition, we consider the following special triangular inequality: stjk ≤ stjl + stlk ∀k, j, l ∈ J . In other

words, the setup time between jobs j and k is either equal or lower than the setup between job j and any

other job l, the processing time of job l and the setup between jobs l and k. Furthermore, setup-times are

asymmetric, that is, setup-time between jobs j and k might be different from setup-time between jobs k and j.

The developed algorithms are tested over twenty different job sizes for small sized instances, namely n =

8, 10, 11, 15, 20 and 25 and large-sized instances, namely n = 50, 60, 70, 80, 90. Both the MS-GVNS and MS-

DSH are coded in JAVA language. All the experiments described in this section have been carried out on a i7

Intel Core at 2.50 GHz and Linux with 16 GB of memory.

4.6.2 MILPs performances

To save space, the two MILPs are launched over twenty instances with the same size for each instance of size,

namely n = 8, 10, 15, 20 and 25. When no optimal solution has been found within the time limit, the gap is

reported as a measure of closeness to the optimal cost. The time limit of CPLEX is set to 30 minutes.

The numerical results comparing the two MILPs are summarized in Tables 4.4 and 4.5. Table 4.4 presents

for each instance size, the number of solved instances and Table 4.5 summarizes the average time duration in
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seconds. For instances that are not solved within the time limit of 30 minutes, the average gap between the

lower bound and upper bound computed with CPLEX, is reported.

As it can be seen from Tables 4.4 and 4.5 the results show that the two formulations give almost the same

results with a slight superiority of MILP1 for all instances. The two MILPs are able to solve only the instances

of smallest size with 8, 10 jobs and some instances with 15 jobs within the calculation time limit of 30 minutes.

MILP1 was able to solve optimally 6 instances out of 20 instances of size 15 before the 30 minutes time limit,

while MILP2 was able to solve only 4 instances. Still, MILP1 provided much closer gaps and therefore closer

approximations of an optimal solution for the larger size instances with 15, 20 and 25 jobs. This is certainly

due to the fact that the MILP1 has less constraints and decisions variables than MILP2.

instances solution status

size n MILP1 MILP2
8 optimal 20/20 optimal 20/20
10 optimal 20/20 optimal 20/20
15 06 opt /20 04 opt/20
20 feasible feasible
25 feasible feasible

Table 4.4: Comparison of the quality results between the two MILPs

instances average gap [%] average solution time [s]

size n MILP1 MILP2 MILP1 MILP2
8 0 0 0.25 0.30
10 0 0 2.69 4.29
15 16.81 21.39 1443.26 1531.72
20 52.72 62.79 >=1800 >=1800
25 69.28 76.13 >=1800 >=1800

Table 4.5: Comparison of the computational time results between the two MILPs

4.6.3 Testing local search heuristics

We propose in this Sub-section to compare operators used with six different neighborhood structures that are

introduced in Section 4.5. Algorithm 16 describes the main steps of the procedure used to evaluate these six

operators. It consists to start the evaluation of each neighborhood structure with an initial solution built by

the WSPT rule. This solution is improved using a basic local search heuristic (LSi), each time with a new

operator ∆i. The main purpose of this approach is to evaluate the speed of each LS towards a local optimum

in a minimum amount of time but also which one minimizes the number of calls to the evaluation function.

The local searches are tested on instances with size n = 90. Tables 4.6, 4.7 and 4.8 summarize average values

of twenty instances, respectively for lEV AL = 8,000 and 200,000 and 10,000,000 objective function evaluations
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Algorithm 16: Evaluation Algorithm

Input: lEV AL

Output: S
S ←− Ranks jobs using WSPT rule
S∗ ←− S
while (number of iterations ≤ lEV AL) do

S
′ ←− argminS′′∈N∆i

(S)f(S
′′
)

number of iterations←− number of iterations + | N (S) |
if S

′
is better than S∗ then

S∗ ←− S
′

end

S ←− S
′

end

and the average computational time in seconds spent by the local searches to reach a local minimum.

LSi Averval Avertime

LS1 31788672.65 0.01
LS2 33903094.7 0.01
LS3 34536227.25 0.01
LS4 33336786.1 0.02
LS5 34369160.85 0.17
LS6 33349753.15 0.01

Table 4.6: Local searches comparison for lEV AL = 8000 evaluations and n = 90

LS AverEval Avertime

LS1 31788672.65 0.18
LS2 29596498.1 0.16
LS3 29954994.75 0.18
LS4 29833772.35 0.31
LS5 30620641.8 0.34
LS6 29727712.2 0.19

Table 4.7: Local searches comparison for for lEV AL = 200,000 evaluations and n = 90

Furthermore, Figure 4.1 shows the comparison of the six neighborhood structures. It describes the behavior

of each local search. We point out that running the local searches LSi on the four benchmark families described

above allow us to make same observations. In order to save space, only the results related to the test class B1

(T = 720 and δ =24) are reported.

From Figure 4.1 we observe that LS using the swap, the 2-opt and reverse two not consecutive operators

respectively ∆2, ∆4, ∆6 gives solutions of very similar quality with a slight improvement of the swap operators
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LSi AverEval Avertime

LS1 31788672.65 7.86
LS2 29596498.1 7.40
LS3 29954994.75 8.98
LS4 29833772.35 13.90
LS5 29458185.15 15.35
LS6 29727712.2 8.69

Table 4.8: Local searches comparison for lEV AL = 10,000,000 and n = 90
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Figure 4.2: Local searches behavior comparison case: B1
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starting from 20,000 evaluations. The LS using the ∆1 seems to give best solutions when the number of

evaluations is less than 50,000 but turns to be the worst when this number exceeds 200,000 evaluations. The

local searches using the 3-opt (∆5) operator gives the worst solutions starting from 8,000 evaluations until

200,000 evaluations but turns to return best solutions when lEV AL is upper to 4,000,000. The time consuming

of the tested LS when using ∆1, ∆2, ∆3, ∆4 and ∆6 is rather negligent as it is approximately equal to zero. On

the other hand, it is slightly higher when using ∆5.

The results summarized in Tables 4.6, 4.7 and 4.8 consolidates our expectations. Indeed, Table 4.6 shows

us that the local search using the ∆1 operator outperforms the others when the number of evaluations is set

to 8000. In the opposite case, when lEV AL is set to 20,000 the ∆2 operator outperforms the others. The ∆5

operator becomes the best one when the number of evaluations is set to 10,000,000.

Due to this observations, we decided to implement a local search based on the ∆6 operator from the initial

solution phase (WLS procedure). The ∆2, ∆6, and ∆6 operators are exploited under a first improvement

strategy on the VND procedure. As it is usual to explore neighborhoods in the increasing order with respect to

their performances (Todosijević et al., 2016), we investigated the three neighborhood structures in this order:

N2(S), N6(S) and N4(S).

4.6.4 Parameters calibrations

In this sub-section, we examined the influence of the parameters IMS−DSH and Lmax within GVNS (how many

time we call the shaking procedure). To do this, different values of IMS−DSH and Lmax are tested, from 1 to 30

for IMS−DSH and from 5 to 25 for Lmax.

The obtained results are presented in Tables 4.9 and 4.10 for twenty instances of size n = 90 for each

benchmark class. These instances are of large sizes and could reveal the performance of MS-DSH for a given

values of IMS−DSH and Lmax.

For each value of IMS−DSH and Lmax the average solution value found and also the average time in seconds

spent upon reaching these solutions are presented. As GVNS is a stochastic heuristic, consequently we run this

latter 10 times for each instance. The coefficient of variation is less than 0.1%, for that reason, the standard

deviation is not reported.

Lmax Avvalue(B1) Avervalue(B2) Avvalue(B3) Avervalue(B4) Avertime(B1) Avertime(B2) Avertime(B3) Avertime(B4)

5 30981188.14 31984517.90 29443131.15 30277027.30 0.63 0.67 0.65 0.63
10 30902881.12 32046247.23 29440960.87 30221723.01 0.99 0.90 0.65 0.63
15 30857030.55 32003400.57 29420660.16 30186067.47 1.07 1.05 0.81 0.97
20 30869505.50 31971156.68 29411506.64 30151778.10 1.12 1.10 0.81 0.86
25 30902494.60 32123555.44 29345290.66 30185935.12 0.94 0.90 0.89 0.90

Table 4.9: Impact of Lmax on MS-GVNS

From the results presented in Table 4.9, it follows that GVNS is not really sensitive to the value of Lmax.

Indeed, the average solution value found as well as the average time consumed for different values of Lmax are

very close. Due to this, Lmax is set to 5.
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IMS−DSH Avvalue(B1) Avvalue(B2) Avvalue(B3) Avvalue(B4) Avtime(B1) Avtime(B2) Avtime(B3) Avtime(B4)

1 31013266.14 32188493.55 29460833.21 30218614.095 0.87 0.84 0.84 0.84
5 30992887.40 32146010.39 29446035.35 30281780.94 3.28 3.22 3.20 3.22
15 30720185.05 29156800.75 29349112.44 30208196.29 9.69 9.53 13.38 14.26
25 30720132.30 29156200.33 29345640.73 30208050.35 15.80 15.30 17.28 18.87
30 30720132.30 29156200.33 29344640.73 30208050.35 21.42 21.98 24.01 26.16

Table 4.10: Impact of IMS−DSH on MS-DSH

From the results presented in Table 4.10, it follows that the proposed MS-DSH is sensitive to the value

of IMS−DSH parameter. Indeed, MS-DSH returns best solution values when IMS−DSH is greater than 25.

Unsurprisingly, when IMS−DSH is set to 25, MS-DSH consumes the least amount of time compared with

IMS−DSH > 25: namely, 15.80, 15.30, 17.28 and 18.87 seconds in respectively B1, B2, B3 and B4. Obviously,

we conclude that using LCG generator in MS-LSH significantly improves the results. This can be explained by

the fact that DSH is a local search which is quickly trapped in local optima. On the contrary, when using LCG,

it allows to escape from local optima by exploring other regions of the search space.

Empirical experiments show as that it is not interesting to set IGV NS−DSH to more than 3 iterations. In

this perspectives we fixed IGV NS−DSH to 3. Consequently we conclude that unsurprisingly it is not necessary

to use an initial solution generator such as proceeding in MS-GVNS. This can be explained by the fact that

the search space is widely explored by GVNS especially due to its shaking procedure. Otherwise, it is observed

that using Lehmer Code generator in MS-LSH significantly improves the results. This can be explained by the

fact that DSH is a local search which is quickly trapped in a local optimum and when calling LCG it allows to

escape from that local optimum by exploring other regions of the search space.

4.6.5 MS-DSH and MS-GVNS performances

In this section we compared the obtained results of the MS-GVNS with the MILP for the small sized instances

and with a lower bound LBRP , obtained by relaxing the integrity constraints xi,j in the first mixed integer pro-

gramming model, for the large sized instances. To measure the performance of both MS-DSH and MS-GVNS,

the two notions of PED and PER are used. Thereby, PEDMS−DSH and PEDMS−GV NS, represent the improve-

ment of MS-DSH, respectively MS-GVNS, compared with the MILP while PERMS−DSH and PERMS−GV NS

represent the improvement of MS-DSH and MS-GVNS compared with the lower bound LBRP . PED and PER

are computed as shown by the two equations 4.19, 4.20.

PED (%) = [(Vheuristic − VMILP )/VMILP ]× 100. (4.19)

PER(%) = [(Vheuristic − LBRP )/LBRP ]× 100. (4.20)

Table 4.11 provides computational comparisons between MS-GVNS and MS-DSH using the average per-

centage error deviation (PED) metric for instances belonging to each class B1, B2, B3 and B4. The average
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computational time spent while reaching best solutions when using MS-DSH, MS-GVNS and CPLEX solver is

reported in the three last columns of Table 4.11.

size PEDMS−DSH PEDMS−GV NS Aver-time(MS-DSH) Aver-time(MS-GVNS) Aver-time(MILP)

n=8

0.00 0.00 0.03 0.00 0.25
0.00 0.00 0.02 0.00 0.31
0.00 0.00 0.01 0.00 0.28
0.00 0.00 0.01 0.00 0.35

n=10

0.00 0.00 0.04 0.00 4.29
0.00 0.00 0.04 0.00 14.09
0.00 0.00 0.06 0.00 17.70
0.00 0.00 0.05 0.00 21.67

n=11

5.29 0.00 0.07 0.00 38.50
0.00 0.00 0.05 0.00 114.41
0.00 0.00 0.07 0.00 84.54
2.26 0.00 0.06 0.00 159.03

n=15

6.09 5.05 0.10 0.00 1800.00
8.17 7.56 0.09 0.01 1800.00
9.72 9.13 0.06 0.00 1800.00
5.22 3.51 0.08 0.00 1800.00

n=20

7.35 6.53 0.15 0.00 1800.00
8.77 8.34 0.11 0.00 1800.00
6.97 7.18 0.11 0.00 1800.00
9.26 9.06 0.06 0.00 1800.00

n=25

1.72 1.43 0.18 0.01 1800.00
3.33 2.27 0.12 0.01 1800.00
2.71 3.34 0.08 0.03 1800.00
1.97 1.76 0.06 0.05 1800.00

Table 4.11: MS-DSH and MS-GVNS performances for small sized instances

We conclude that MS-DSH succeeds to reach optimal solutions when n = 8, n = 10 for all the tested

instances belonging to B1, B2, B3 and B4 and only for B3 and B4 when n = 11. On other hand, MS-GVNS

reaches optimal solutions for instance size n = 8, n = 10 and n = 11. It is easy to notice that MS-GVNS

produces better results than MS-DSH .

The MS-DSH and MS-GVNS failed to solve 1-PMStWCT when instance sizes are greater than 11, even if

CPLEX solver does reach optimal solution for these instances and was stopped after 1800 seconds.

Table 4.12 gathers the average percentage error ratio (PER) metric of both MS-GVNS and MS-DSH. We

can observe that the PER is slightly higher when the size of instances n increases. This is obvious since, as n

increases, 1-PMStWCT becomes more difficult to solve due the to combinatorial explosion of the search space.

We observe that MS-DSH reaches reasonably good solutions in a minimum amount of time. Hence it does not

exceed 18 seconds for instances with size n = 90. Otherwise, MS-GVNS returns better solutions than MS-DSH
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for practicly all instance sizes n.

size PERMS−DSH PERMS−GV NS Aver-time(MS-DSH) Aver-time(MS-GVNS)

n=50

7.73 6.71 0.07 0.21
13.52 12.28 0.06 0.29
0.63 0.41 0.05 0.4
3.38 3.37 0.05 0.35

n=60

8.45 6.88 0.11 3.72
12.03 13.34 0.15 3.64
0.96 0.97 0.10 1.02
2.97 2.84 0.13 1.27

n=70

6.55 6.28 0.31 4.49
12.97 11.96 0.28 6.08
1.39 1.37 0.24 6.44
2.89 3.39 0.34 4.58

n=80

8.43 8.30 0.38 8.59
13.03 13.34 0.32 11.63
4.57 4.80 0.33 10.03
3.00 2.79 0.40 8.57

n=90

8.80 8.50 0.75 16.53
12.47 13.08 0.62 17.62
1.59 1.18 0.65 15.65
3.51 3.57 0.68 15.56

Table 4.12: MS-DSH and MS-GVNS performances for large sized instances

4.7 Conclusion

In this chapter we presented the results obtained when addressing a scheduling problem that combines periodic

maintenance and sequence dependent setup-times. The complexity of the problem leads us to design heuristic

algorithms to solve it. The two proposed algorithms are composed from two phases, greedy phase and an

improvement phase. In this regard, MS-GVNS combines a greedy heuristic and a local search heuristic while,

MS-GVNS uses a GVNS metaheuristic instead of a local search.

The computational results showed that the performance of the heuristics was satisfactory in obtaining

reasonably good solutions in very short times. However, MS-GVNS gives better solutions than MS-DSH.

Therefore, this heuristic can be applied to large-sized instances, where standard commercial solvers fail to find

an optimal solution within reasonable computational times.
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Chapter 5

A bicriteria two parallel machine scheduling

problem with maintenance and jobs rejection

We consider in this chapter a bicriteria scheduling problem on two parallel, non identical machines with a

periodic preventive maintenance policy. The two objectives considered involve minimization of jobs rejection

cost and weighted sum of completion times. They are handled through a lexicographic approach, due to a

natural hierarchy among the two objectives in the type of applications that we consider. The contributions of

this chapter are first to develop a mixed integer linear program model for the problem and, secondly, to introduce

two metaheuristics based on tabu search. Computational results on randomly generated instances are reported

to show the potential savings.
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5.1 Introduction

Scheduling problems have been extensively studied in the literature under the assumption that all jobs have to

be processed. However, in many practical cases, one may wish or may be forced to postpone the processing of

some jobs, although at some cost. Accordingly, a decision has to be made about jobs that will be accepted and

those that will be rejected, so as to produce a good schedule. Nowadays, this situation is observed in several

companies with a weekly planning (e.g., pharmaceutical industries, luxury watches, fast moving consumer

goods, ship loading). Typically, the rejected jobs will get a higher weight (priority) the next week. The

parallel machine scheduling problem has been extensively studied due to its practical applications in various

manufacturing systems such as printed circuit board manufacturing, group technology cells, injection molding

processes, etc. However, few studies have been done in the context of parallel machine scheduling with jobs

rejection.

Preventive maintenance is performed when the machines are idle and, consequently, represents a source of

machine unavailability.

In this regard, we address a scheduling problem with two parallel and non-identical machines, denoted as

2-PMJRWCT (2 Parallel Machines problem with Periodic Maintenance, Jobs Rejection and Weighted sum of

Completion Times). In this problem, the two machines must undergo periodic preventive maintenance over the

scheduling horizon. Solution quality is measured with two criteria. The first one is jobs rejection cost and the

second is weighted sum of job completion times. In the latter case, the weights can stand for the holding or

inventory cost per time unit of the corresponding jobs as well as their priority level (importance, urgency). A

strategy based on Lexicographic Optimization (LO) is proposed to deal with this multi-objective problem. In

LO, the decision maker establishes beforehand a priority order among the optimization objectives, where each

higher level objective is infinitely more important than any lower level objective. LO is common practice, as

reported in (Zykina, 2004); (Ehrgott, 2005), (Thevenin et al., 2017); (Prats et al., 2010) and (Solnon et al.,

2008), since it is a convenient approach to address multiobjective problems.

To solve the 2-PMJRWCT, we propose a greedy constructive algorithm and two metaheuristics based on

tabu search. We also propose a Mixed Integer Linear Program (MILP) to find the optimum on small-sized

instances. It is used here to compare the solutions produced by our algorithms with optimal solutions on

instances defined over a scheduling horizon of one day.

The remainder of this chapter is organized as follows. A literature review dealing with order acceptance and

scheduling, jobs rejection, periodic maintenance and multi-availability constraints is proposed in Section 5.2.

Then, a MILP for the 2-PMJRWCT is presented in Section 5.3. The greedy constructive heuristic and the two

metaheuristics based on tabu search are described in Sections 5.4 and 5.5, respectively, while Section 5.6 reports

computational results. Finally, Section 5.7 ends the chapter with a conclusion and some perspectives for the

future.
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5.2 Literature review

Based on the three-field notation α | β | γ known as the Graham triplet (Graham et al., 1979), 2-PMJRWCT

can be denoted as P2 | pm |
∑n

j=1 uj,
∑n

j=1wjCj. The first field (α) means that there are two parallel machines.

The second field (β) indicates that a periodic preventive maintenance (pm) must be performed on each machine.

Finally, the last field (γ) represents the objective functions. To the best of our knowledge, 2-PMJRWCT has

never been studied in the literature. Nonetheless, Subsections 5.2.1 to 5.2.4 will review works that are related

to this problem. Subsections 5.2.1 and 5.2.2 are dedicated to the order-acceptance-and-scheduling literature

and to the scheduling-problem-with-job-rejection literature, respectively. Both literatures cover actually the

same problem, namely job scheduling when the production capacity is not able to schedule all the jobs. This

situation leads to the rejection (resp. acceptance) of some of them, which is penalized (resp. rewarded) in the

objective function. Subsections 5.2.3 and 5.2.4 focus on the maintenance and on the lexicographic optimization

aspects in the context of job scheduling.

5.2.1 Order acceptance and scheduling

A taxonomy and a general review on order acceptance and scheduling (OAS) can be found in (Slotnick, 2011).

This problem is to jointly decide about job acceptance and the scheduling of accepted jobs. Different problem

characteristics and problem-solving methodologies, starting from this basic scheme, have been proposed in the

literature. In the following, papers dealing with a single machine and different objective functions are reviewed,

followed by a discussion on problems with two or more machines.

Single machine

Ceyda et al. (2010) consider the single machine scheduling problem where job acceptance depends on the release

date, due date, deadline, processing time, sequence-dependent setup time and revenue. The main objective is

the maximization of the total revenue. The authors propose a MILP and also develop three heuristic algorithms

to solve their problem. Based on the same objective function, Bahriye et al. (2012) propose a tabu search to

solve a problem that considers sequence-dependent setup times and tardiness penalties. Nobibon and Leus

(2011) generalize two existing problems defined in a single machine environment. The first one is the order

acceptance and scheduling problem with weighted-tardiness penalties, already reported in (Slotnick and Morton,

2007). The generalized problem reduces to the latter when the pool of firm planned orders is empty and all jobs

can potentially be rejected. The second problem is the total-weighted-tardiness scheduling problem reported

in (Potts and Van Wassenhove, 1985). To solve their generalized problem, the authors propose a MILP and

two exact branch-and-bound algorithms. They report solving instances with up to 50 jobs in less than two

hours. In (Thevenin et al., 2016), the authors address a production scheduling problem in a single-machine

environment with earliness and tardiness penalties, sequence-dependent setup times and costs. The objective

function includes setup costs, jobs rejection penalties and weighted tardiness penalties. The authors propose

various methods to solve this problem, ranging from a basic greedy algorithm to sophisticated metaheuristics

(e.g., tabu search, adaptive memory algorithm). In another work by the same authors (Thevenin et al., 2015),
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sequence-dependent setup times and setup costs between jobs of different families, release dates, deadlines

and jobs rejection are taken into account. They propose and compare a constructive heuristic, local search

methods, and population-based algorithms. Recent papers dealing with OAS in a single machine environment

take into account machine availability constraints, as in (Zhong et al., 2014). Here, the authors propose a

pseudo-polynomial algorithm for fixed time intervals between two consecutive PMs.

Multiple machines

In (Ou and Zhong, 2017), the authors study the OAS problem for n jobs on m parallel machines where the

number of rejected jobs should not exceed a given limit L. The objective is to minimize the completion time of

the last scheduled job plus the total cost of rejected jobs. For the special case of a single machine, they present

an exact algorithm of complexity O(n · log(n)). For m machines, they first propose a heuristic of complexity

O(n · log(n)) with a worst-case bound of 2 − 1
m

. They also develop a heuristic based on LP-relaxation and

bin-packing techniques. The OAS with two machines in a flow shop is considered in (Xiuli and TCE, 2013).

The authors present a heuristic and a branch-and-bound algorithm based on dominance rules and relaxation

techniques. Their objective is to maximize the total net profit of accepted jobs, where the latter is the revenue

minus the weighted tardiness. In (Wang et al., 2015), the authors solve a scheduling problem with two parallel

machines with two heuristics and an exact algorithm, using some properties of optimal solutions to maximize

the total profit. In another environment with parallel machines, Jiang et al. (2017) study the OAS problem

with batch delivery in a supply chain consisting of a manufacturer and a customer. The objective is to minimize

the weighted sum of the maximum lead times of accepted jobs and the total cost of deliveries. To solve the

problem, two approximation algorithms are proposed. Finally, Emami et al. (2016) report a MILP model and

a Lagrangian relaxation algorithm to solve an OAS problem with the objective of maximizing the total profit.

5.2.2 Scheduling problem with jobs rejection

The scheduling problem with jobs rejection is also reported in the literature, although it can be related to the

OAS problem (since rejecting a job means not accepting it and vice-versa). The scheduling problem with jobs

rejection was studied in different machine environments, as indicated in a recent survey (Shabtay et al., 2013),

although mostly for single machine problems.

In (Li and Chen, 2017), the authors consider the scheduling problem with jobs rejection and a maintenance

activity that becomes less effective over time. The main objective is to determine the timing of the maintenance

activity and the sequence of accepted jobs to minimize the scheduling cost of accepted jobs plus the total cost of

rejected jobs. The authors provide polynomial time algorithms for this problem. Shabtay et al. (2012) propose

a bicriteria analysis of a large class of single machine scheduling problems with a common property, namely,

the consideration of rejection costs plus other additional criteria (makespan, sum and variations of completion

times, earliness and tardiness costs).

Since scheduling with rejection is essentially studied in bicriteria contexts (Shabtay et al., 2013), concepts

from the theory of bicriteria scheduling are commonly used when dealing with such problems. Below, we
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review papers addressing the weighted sum of completion times and the total cost of rejected jobs. Cao et al.

(2006) first prove that the problem for a single machine is NP-hard. A few years later, Zhang et al. (2009)

develop a pseudo-polynomial algorithm and a Fully Polynomial Time Approximation Scheme (FPTAS) for

multiple parallel machines. Also, Engels et al. (2003) propose general techniques such as linear-programming

relaxations. In (Moghaddam et al., 2012), the authors study a single machine scheduling problem with jobs

rejection, while considering again minimization of the weighted sum of completion times plus the total cost of

rejected jobs. They propose a mathematical formulation and three different bi-objective simulated annealing

algorithms to estimate the Pareto-optimal front for large sized instances. The authors in (Zhong et al., 2017)

study a scheduling problem on two parallel machines with release times and jobs rejection. The objective is

to minimize the makespan of accepted jobs plus the total cost of rejected jobs. They develop a (1.5 + ε)-

approximation algorithm to solve the problem. Ou et al. (2015) consider m parallel machines in a context

where jobs rejection is allowed. The objective is to minimize the makespan plus the total cost of rejected jobs.

They develop a heuristic of complexity O(n · log(n) + n/ε) to solve the problem with a worst-case bound of

1.5 + ε. With the same goal, Zhong and Ou (2017) present a 2-approximation algorithm with a complexity of

O(n · log(n)) by making use of specific data structures. The authors also propose a PTAS to solve the problem.

In (Ma and Yuan, 2016), the authors consider that the information about each job, including processing time,

release date, weight and rejection cost, is not known in advance. They develop a technique named Greedy-

Interval-Rejection to produce good solutions. Finally, the authors in (Agnetis and Mosheiov, 2017) consider the

minimization of the makespan in a flow shop with position-dependent job processing times and jobs rejection.

A polynomial time procedure is proposed to solve this problem.

5.2.3 Periodic maintenance and multi-availability constraints

The authors in (Kaabi and Harrath, 2014) have written a comprehensive survey about scheduling in parallel

machine environments in the presence of availability constraints (which can be induced, in particular, by main-

tenance activities). Sun and Li (2010) consider two problems. In the first problem, they minimize the makespan

on two parallel machines when maintenance activities are performed periodically. In the second problem, main-

tenance activities are determined jointly with job scheduling, while minimizing the sum of the job completion

times. They introduce an algorithm of complexity O(n2) and show that the classical Shortest Processing Time

algorithm (SPT) is efficient for the second problem with a worst-case bound less than or equal to 1 + 2 · σ,

where σ = t/T , T is the maximum continuous working time for each machine and t is the time required to

perform each maintenance activity. Li et al. (2017) investigate a parallel-machine scheduling problem where

each machine must undergo periodic maintenance. The authors propose two mathematical programming mod-

els and two heuristic approaches to address instances of large-sized. In (Qi et al., 2015), the authors investigate

a scheduling problem on a single machine with maintenance, in which the starting time of the maintenance is

given in advance but its duration depends on the previous machine load.
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5.2.4 Multiobjective scheduling problem using lexicographic optimization

LO was widely used in control engineering and scheduling applications (Aggelogiannaki and Sarimveis, 2006;

Kerrigan and Maciejowski, 2002; Ocampo-Martinez et al., 2008; Respen et al., 2016; T’kindt and Billaut, 2006).

In a work closely related to ours, the authors in (Thevenin et al., 2017) model a parallel machine scheduling

problem with job incompatibility through an extension of the graph coloring problem. Different objectives like

makespan, number of job preemptions and total time spent by the jobs in the production shop are considered and

addressed through LO. A mathematical model, two greedy constructive algorithms, two tabu search methods

and an adaptive memory algorithm are proposed to solve the problem.

5.3 Mathematical model

In the following, we first introduce some notation and a brief description of our problem. This is followed by

the MILP.

5.3.1 Formal description of 2-PMJRWCT

Let J be a set of n independent jobs to be scheduled on two parallel, non identical machines Mi (where

i ∈ I = {1, 2}) over a planning horizon of five days (i.e., 7200 minutes). Accordingly, we define d̃ = 7200

minutes as the common deadline for all jobs in set J . If a job cannot be feasibly scheduled during the current

week, it is then postponed to the next week and a rejection cost is incurred. A feasible solution of 2-PMJRWCT

is illustrated in Figure 5.1, where S (defined as the set of accepted jobs) is made of two sequences: S1 associated

with machine M1 and S2 associated with machine M2. S is the set of rejected jobs that are postponed to the

next week. Each machine Mi must undergo a PM at intervals that cannot exceed Ti minutes. In other words,

the interval between the end time of a given PM and the start time of the next PM cannot exceed Ti minutes.

The jobs scheduled between the two PMs define a block, with Bi
k the kth block on machine Mi scheduled between

the (k − 1)th and kth PMs. The scheduling of a PM activity on each machine Mi is flexible and can actually

occur before Ti minutes have elapsed, if it is not possible to avoid it or if it is beneficial to do so. Accordingly,

the time length of a block is also variable, although it can never exceed Ti. The duration of a PM activity on

machine Mi is denoted by δi. As illustrated in Figure 5.1, there is no idle time in the schedule between two

consecutive jobs or between a job and a PM.

Each job j ∈ J is characterized by a known processing time pj, a rejection cost uj and a weight wj = hj + bj

which is the sum of its inventory cost hj and its priority level bj. Preemption is not allowed and any interrupted

job due to maintenance is redone or postponed to the next week. The two machines are considered non identical

in the sense that machine M2 is assumed to be older than M1. Accordingly, PMs must be done more frequently

on M2 and the maximum time interval T2 between two consecutive PMs is smaller than T1. A feasible solution

to 2-PMJRWCT is represented by the pair (S, S). It is evaluated first through objective f1, which is the total

rejection cost of the jobs in S, and second through objective f2, which is the weighted sum of the completion

times of the jobs in S. With regard to f2, the WSPT (Weighted Shortest Processing Time) rule is particularly
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Figure 5.1: Feasible solution of 2-PMJRWCT

important, because it optimally solves the 1 ||
n∑
j=1

wjCj scheduling problem, which minimizes the weighted sum

of completion times on a single machine without side constraints. The WSPT rule states that the jobs should

be scheduled in increasing order of their ratio pj/wj. This rule will be exploited in our algorithms, although in

a heuristic way since we have two machines with some operational constraints.

5.3.2 Mathematical model

The mathematical programming formulation of 2-PMJRWCT is presented below. It involves five different types

of decision variables.

cj : completion time of job j ∈ J
mk
i : starting time of the kth PM on machine Mi

xilj =

1 if job l is scheduled before job j on machine Mi

0 otherwise

zij =

1 if job j is scheduled on machine Mi

0 if job j is rejected

yijk =

1 if job j is scheduled in block k on machine Mi

0 otherwise

For the sake of the MILP formulation, two dummy jobs 0 and n+ 1 are added to the model with completion
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times C0 = Cn+1 = 0. Accordingly, we define the set J+ = J ∪ {0, n+ 1}. We also introduce a block 0 on each

machine with m0
1 = m0

2 = 0. Note finally that M is an arbitrary large number.

min (f1) =
n∑
j=1

uj(1− (z1j + z2j )) (5.1)

s.t. mi
k−1 ≤ mi

k ≤ mi
k−1 + Ti ∀k = 1, . . . , n, ∀i ∈ I (5.2)

mi
k ≥ (d̃− δi)⇒ (mi

k = 0) ∀k ∈ J, ∀i ∈ I (5.3)

cj ≤ mi
b +M(1− yijb) ∀i ∈ I,∀j ∈ J, b = 2, . . . , n (5.4)

cj − pjyijb ≥ mi
b−1 + δi −M(1− yijb) ∀i ∈ I,∀j ∈ J, b = 2, . . . , n (5.5)

n+1∑
j=1,k 6=j

xikj = zik ∀i ∈ I, k = 0, . . . , n (5.6)

n∑
k=0,k 6=j

xikj = zij ∀i ∈ I, j = 1, . . . , n+ 1 (5.7)

x1kj + x2kj ≤ 1 k = 0, . . . , n j = 1, . . . n+ 1 (5.8)

cj ≥ pj(z
1
j + z2j ) ∀j ∈ J, ∀i ∈ I (5.9)

cj ≤ d̃(z1j + z2j ) ∀j ∈ J, ∀i ∈ I (5.10)

ck ≤ cj − pjxikj + d̃(1− xikj) ∀i ∈ I, k = 0, . . . , n j = 1, . . . , n+ 1 (5.11)

n∑
j=1

pjy
i
jb ≤ Ti ∀b ∈ J, ∀i ∈ I (5.12)

n∑
b=1

yijb = zij ∀j ∈ J, ∀i ∈ I (5.13)

y1jb + y2jb ≤ 1 ∀(j, b) ∈ J × J (5.14)

z1j + z2j ≤ 1 ∀j ∈ J (5.15)

zik + zij ≥ 2(xikj + xijk) ∀(k, j) ∈ J × J, ∀i ∈ I (5.16)

C0 = Cn+1 = m1
0 = m2

0 = 0 (5.17)

xikj, y
i
jb, z

i
j ∈ {0, 1} (5.18)

Equations (5.1) and (5.19) are the first and second objective functions considered in this work. Constraints

(5.2) allow to compute the starting time of the kth PM on each machine Mi. When d̃ is reached, constraints

(5.3) set to zero the starting time of the kth PM on each machine Mi. Constraints (5.4) and (5.5) forbid a

scheduled job and a PM activity to overlap. Constraints (5.6) indicate that every job assigned to machine

Mi, including the dummy job 0, should have a successor. Constraints (5.7) state that if a job j is assigned to

machine Mi, at least one job should immediately follow, which includes the dummy job n+ 1. Constraints (5.8)
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state that two jobs scheduled consecutively should be assigned to the same machine. Constraints (5.9) and

(5.10) define bounds on the completion time of each scheduled job (if a job is rejected, its completion time is

set to 0). Constraints (5.11) indicate that two jobs scheduled on the same machine cannot overlap. Constraints

(5.12) state that the sum of processing times of all jobs between two consecutive maintenance activities must

be less than or equal to Ti. Since the number of blocks on each machine Mi is at most the number of jobs

assigned to Mi, constraints (5.13) computes the number of accepted jobs in each block Bi
k. Constraints (5.14)

enforce each accepted job j to be scheduled either on M1 or M2 but not both. Similarly, constraints (5.15)

allow accepted jobs to be scheduled in a block Bi
k of either machine M1 or M2 but not both. Constraints (5.16)

state that if two jobs l and j are scheduled on the same machine, then l is scheduled either before or after j.

Constraints (5.17) set the completion times of dummy jobs 0 and n + 1, and the starting time of the first PM

on each machine to 0. Finally, constraints (5.18) define the binary variables.

Through the lexicographic approach, 2-PMJRWCT can be solved optimally in two steps with an exact

solver. First, objective f1 is minimized while ignoring f2 (i.e., the above-presented model is solved). Let f ?1
value of f1. In the second step, constraint f1 ≤ f ?1 is added to the model and the latter is solved with objective

f2 only. In other words, the model below is solved.

min (f2) =
n∑
j=1

wjcj (5.19)

s.t. Constraints (5.2− 5.18) (5.20)

n∑
j=1

uj(1− (z1j + z2j )) ≤ f ?1 ∀ i ∈ {1, 2} (5.21)

The solution obtained at the end of the second step is one optimal solution of 2-PMJRWCT. We observed

that CPLEX solver could only solve small instances, thus supporting the use of heuristics and metaheuristics

to address instances of larger sizes. In the following, our problem-solving methods are presented, starting

with a greedy heuristic to generate a first feasible schedule, which is then improved with tabu search-based

metaheuristics.

5.4 Greedy heuristic (GrH) for the 2-PMJRWCT

The greedy heuristic GrH calls a construction procedure which is aimed at producing a feasible schedule of

good quality from a given set of jobs. In particular, GrH calls the construction procedure within a loop where

the set of jobs is gradually reduced until all jobs can be scheduled, as it is explained below. In each proposed

procedure of this work, ties are broken randomly if no other information is provided.
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5.4.1 Main procedure

We can see from the description in Algorithm 17 that GrH starts by using the greedy construction procedure

(presented in Algorithm 18) with the whole set of jobs J . The latter then returns a feasible solution (i.e., a set

S with |S| scheduled jobs and a set S of rejected jobs). Forgetting about the schedule previously obtained, we

just select the |S| jobs in J with the largest uj to obtain a subset Js (step 3a). The construction procedure is

then called again, but with Js (step 3b). If the feasible schedule obtained does not contain all jobs in Js, we

reset the value of |S| to the (smaller) number of scheduled jobs in the new solution, we select the |S| jobs in J

with the largest uj to obtain a new subset Js (step 3a again), and the construction procedure is called with the

latter (step 3b again). This is repeated until all jobs in Js can be feasibly scheduled. The aim of this step 3 is

to schedule as many jobs as possible with the largest rejection costs, since f1 is the main objective.

Next (step 4), we try to insert the jobs that are not in the solution, by inserting them at the end of the

schedule of machine M1 or M2. We consider these jobs one by one in decreasing order of rejection costs. First,

we check if the current job j can be inserted without exceeding the deadline d̃. If this is not possible for the

two machines, job j is skipped. Otherwise, we check if the completion time Cj of j occurs after the due time

for the next PM on the single machine or on the two machines that still qualify. If it does, the job is skipped.

Otherwise, we schedule job j on the machine that leads to the smallest Cj.

Algorithm 17: GrH. Input: J . Output: (S, S).

1. Set S ←− Construction(J)

2. Initialization: set Js ←− J

3. Repeat until all jobs in Js are scheduled:

(a) Set Js as the set of |S| jobs j ∈ Js with the largest uj

(b) Set S ←− Construction(Js)

4. For each job j ∈ S (taken in decreasing order of uj)

(a) Try to schedule job j on M1 or M2 (favoring the minimization of Cj)

(b) If j has been scheduled in the previous step, update S and S
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5.4.2 Construction procedure

The construction procedure produces a sequence of scheduled jobs on both machines M1 and M2 in a greedy

way. Starting with empty sequences on both machines and a set Q of jobs provided in input, a new job is

selected and inserted, at each iteration, at the end of the schedule of M1 or M2, according to some heuristic

rules, until there are no more jobs or until the schedules of both machines are full. The construction procedure

is described in Algorithm 18.

The selection of the next job is done in two steps. First (steps 2a to 2c), we consider the set Q1 of the

q1 (parameter < n) jobs with the highest wj/pj ratio, which is a good heuristic rule with regard to objective

f2. Next, we compute the completion time Ci
j of each j ∈ Q1 if it is scheduled on each machine Mi (while

programming a PM before job j if necessary). If the deadline d̃ is exceeded, we simply set Ci
j = ∞. Each

feasible job (i.e., satisfying the deadline) is then tentatively assigned (but not scheduled) to the machine leading

to the smallest completion time. In a second step (steps 2d to 2f), we select the subset Q2 ⊂ Q1 containing the

q2 (parameter < q1) feasible jobs with the smallest completion times. For each job j ∈ Q2, we compute the slack

time with the due time of the next PM, and we finally select the job j? with the smallest slack time. The latter

is then inserted (as well as its possible preliminary PM) at the end of the schedule of its assigned machine. It

should be noted that all jobs are considered in the first and second steps when the number of remaining jobs is

smaller than q1 and q2, respectively.

Algorithm 18: Construction. Input: Q. Output: S.

1. Initialization: set S ←− ∅

2. While Q 6= ∅, do

(a) Select the subset Q1 ⊂ Q (of size q1) of jobs with the highest ratio wj/pj

(b) For each job j ∈ Q1, do

i. For each i ∈ {1, 2}, do: compute the completion time Ci
j of job j if it is scheduled on machine

Mi, while programming a PM before j if necessary (set Ci
j =∞ if d̃ is exceeded)

ii. Assign j to machine Mij such that ij = argmini(C
i
j)

iii. Define j as unfeasible if Ci
j =∞ on its assigned machine

(c) STOP the algorithm if all the jobs are unfeasible

(d) Select the subset Q2 ⊂ Q1 (of size q2) of feasible jobs with the smallest completion times (select all
the feasible jobs of Q1 if there are less than q2 feasible jobs remaining in Q1)

(e) Select the job j? ∈ Q2 with the smallest slack time (with respect to the beginning of the next PM
on its assigned machine), and insert it (along with its possible above-programmed PM) at the end
of the schedule of machine Mij?

(f) Set Q←− Q\{j?}, S ←− S ∪ {j?}
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5.5 Tabu Search-based metaheuristics

Two metaheuristics based on tabu search (TS) called Multi-Tabu Search (MultTS ) and Consistent Tabu Search

(ConsTS ), are proposed in this section. MultTS explores only feasible solutions by exploiting different types

of neighborhoods, while ConsTS admits moves leading to infeasible solutions, although an infeasible solution

is immediately repaired to restore feasibility (consistency). These two metaheuristics will now be described in

the following sub-sections.

5.5.1 Multi-Tabu Search

A feasible solution is represented by a pair (S, S), where S is the sequence of scheduled jobs made of the two

subsequences S1 and S2 on machines M1 and M2, respectively, whereas S is the unordered set of rejected jobs.

MultTS improves the initial starting solution produced by the greedy heuristic GrH, while always maintain-

ing feasibility. As shown in Figure 5.2 and Algorithm 19, MultTS has four different phases. Phases 1, 2 and 3

exploit the intensification capabilities of tabu search by using different types of neighborhood structures, while

Phase 4 is aimed at diversification.

In Algorithm 19, (S, S) stands for the current solution, while (S∗, S∗) is the best known solution. The

while loop stops the algorithm after IterMaxMultTS global iterations and returns the best solution found (S∗,

S
∗
). Each iteration involves three consecutive TS phases, each with a given neighborhood structure. Phase 1

optimizes objective f1 and the set S of rejected jobs obtained at the end of this phase is directly fed to Phase 4.

Meanwhile, the sequence S of scheduled jobs obtained at the end of Phase 1 is modified in Phases 2 and 3 with

the aim of optimizing f2. In these two phases, no job from S can be rejected, thus only the sequence of jobs on

the two machines is modified. Phase 4 is aimed at diversifying the search by rescheduling the jobs to obtain a

new partition between scheduled and rejected jobs. The main components of MultTS will now be described in

the following paragraphs.

Algorithm 19: MultTS. Input: J . Output: (S?, S
?
).

1. Initialization: set (S, S)←− GrH(J)

2. For (t = 1 to IterMaxMultTS), do:

(a) Phase 1: set (S, S)←− Tabu((S, S); SWAP1; INSERT 1)

(b) Phase 2: set (S, S)←− Tabu((S, S); SWAP2)

(c) Phase 3: set (S, S)←− Tabu((S, S); SWAP3)

(d) Phase 4: if
(
(NB1(S) > NB?

1) and (NB2(S) > NB?
2)
)
, set (S, S)←− Diversification(J)
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SWAP1 Jk : Exchange jobs between S and തS
INSERT Jk, i : Insert a job Jk at postition i in S

Initial solution returned by GrH

SWAP2: Exchange blocks on each machine

SWAP3 Jk : Exchange jobs in S

Diversification

𝑁𝐵1 > 
෨𝑑

𝑇1

𝑎𝑛𝑑
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Phase 1:
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1

𝑊ℎ𝑖𝑙𝑒 𝑡 ≤ 𝐼𝑡𝑒𝑟𝑀𝑎𝑥𝑀𝑢𝑙𝑡𝑇𝑆

𝑡 + +

Figure 5.2: Algorithmic flow of MultTS
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Neighborhood structures

MultTS exploits a variety of neighorhood structures in Phases 1, 2 and 3 to improve the current solution, as it

is explained below.

Phase 1. The tabu search in Phase 1 optimizes only f1 (rejection cost) using a neighborhood structure based

on SWAP1 and INSERT. In SWAP1, every pair of jobs j and j′ with j ∈ S and j′ ∈ S are considered for

exchange. That is, a scheduled job is rejected and replaced by a previously rejected job. After each such

potential exchange, the jobs j ∈ S, sorted in decreasing order of rejection cost uj, are considered one by one for

insertion in the schedule, with the goal of inserting as many jobs as possible while keeping solution feasibility.

Indeed, when a swap is applied between a job j in S and a job j′ in S, the processing time pj′ can well be

greater than pj, which may lead to exceeding the deadline d̃. Conversely, when pj′ is smaller than pj, some free

space is created in the schedule and this flexibility can then be exploited by INSERT.

Phase 2. The tabu searches in Phase 2 and 3 are aimed at improving the scheduling of accepted jobs, as

identified in Phase 1, with regard to objective f2. The neighborhood structure called SWAP2 exchanges every

pair of blocks scheduled on the same machine. After some preliminary tests, we discovered that swapping

blocks between the two machines was not beneficial because the blocks are not of the same size (i.e., T2 < T1).

Accordingly, the schedule of machine M2 often exceeded the deadline after such a move, as illustrated in Figure

5.3 for the exchange of blocks B2
1 and B1
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Figure 5.3: Infeasible solution after swapping two blocks between M1 and M2

Phase 3.

The neighborhood structure in Phase 3 is based on SWAP3 moves where every pair of jobs, scheduled on

the same machine or not, exchange their positions. The goal here is to obtain a better scheduling of the jobs

within the blocks with regard to objective f2.
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It should be noted that a fraction of each neighborhood structure can be explored in Phases 1, 2 and 3

depending on the value of parameter Pr. Values 1/4, 1/2, 3/4 and 1 are considered, where Pr = 1 means

that the whole neighborhood is explored and Pr = 1/4, 1/2, 3/4 mean that only the corresponding fraction of

the whole neighborhood is explored. In the latter cases, the neighborhood solutions considered are randomly

chosen.

Phase 4. Diversification

The purpose of Phase 4 is to provide a form of diversification in the search process. First, we consider the

number of blocks NBi scheduled on each machine Mi, where a block is the sequence of jobs between the start

of the schedule and the first PM, between two consecutive PMs, or between the last PM and the end of the

schedule. This number is compared with NB∗i , which is the smallest possible number of blocks on machine Mi.

We recall that preventive maintenance should ideally be done after the maximum allowed time Ti. Thus, NB∗i

is computed with the formula d d̃

Ti + δi
e. When NB1 > NB∗1 and NB2 > NB∗2 , Algorithm 20 is used to rebuild

a new solution. To this end, the set of jobs J is partitioned into scheduled (S) and rejected (S) jobs with the

aim of producing NB∗i blocks over the scheduling horizon on each machine Mi. This is done by iteratively

solving the following MILP to create each block first on machine M2 and then on machine M1 (note that S is

equal to J at the start, and is then appropriately updated from one iteration to the next):

zj =

1 if job j is scheduled

0 if job j is rejected

maximize
∑
j∈S

zj (5.22)

s.t.
∑
j∈S

pjzj ≤ Ti (5.23)

Equation (5.22) is the objective function, which maximizes the number of jobs in a block. Constraint (5.23)

prevents exceeding the maximum time length Ti of a block. It should be noted that a solution is reached in less

then 30 seconds on instances with 200 jobs.

Once done, the jobs in S are scheduled to minimize objective f2. This is done by first sequencing the blocks

on each machine Mi in decreasing order of their weight, which is the summation over the weights of all jobs in

the block. Then, the jobs within each block are sequenced according to the WSPT rule.

Solution update

Each modification to the current solution in Phases 1, 2 and 3 needs to be correctly evaluated. It implies that

jobs may have to be shifted to the right or to the left (in the latter case, to fill idle time between two consecutive
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Algorithm 20: Diversification. Input: J . Output: (S, S).

1. Solve the MILP to construct the largest possible blocks (ideally, perfect blocks of length Ti) on the
machine with smallest Ti.

2. Solve the MILP on the other machine.

3. Put all rejected jobs in S.

4. Sequence the blocks scheduled on each machine Mi in decreasing order of weight.

5. Sequence the jobs in each block according to the WSPT rule.

6. Return (S, S).

jobs). However, this is done only from the point of insertion of a new job to the end of the schedule, since

nothing changes before the insertion point.

Tabu status

There is no tabu list as such in our implementation, but rather a tabu tenure which is associated with each

move m leading from the current solution to the next one. A tabu tenure means that it is forbidden, for a

certain number of iterations, to perform an inverse move m−1 that would cancel out the modifications of m.

For example, if a move that exchanges jobs j and l is performed at iteration ITER, then the reverse exchange

will be declared tabu until iteration ITER + tabu tenure. Note also that a tabu tenure is associated with an

exchange of blocks in Phase 2, rather than an exchange of jobs. The tabu tenure is a randomly chosen number

in the interval [α, β]. After some preliminary experiments, this interval was fixed at [5, 10] in Phases 1 and 3

and [3, 7] in Phase 2.

Aspiration criterion

The tabu status of a move is revoked it leads to a solution which is better than the best known solution. There

is no risk of cycling in this case, since this new best known solution has clearly not been previously visited.

Stopping criterion

The stopping criterion for each Phase l, with l = 1, 2, 3, corresponds to a maximum number of iterations

ItermaxMultTS
l . The value for each parameter was determined through parameter sensitivity analysis, as ex-

plained in Section 5.6.
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5.5.2 Consistent tabu search

This tabu search is inspired from the work in (Zufferey and Vasquez, 2015) where a satellite range scheduling

problem is addressed. As opposed to MultTS, infeasible neighborhood solutions are considered but are immedi-

ately repaired to restore feasibility. There are two main phases in ConsTS, each based on a tabu search which

is aimed at optimizing one of the two objectives. Figure 5.5.2 illustrates the main steps of this algorithm. An

initial solution (S, S) is first generated using the greedy heuristic GrH. Then, objective function f1 is opti-

mized in Phase 1 through insertion moves. This phase is repeated as long as an improvement is observed within

IterMaxConsTS1 iterations. Otherwise, objective function f2 is optimized in Phase 2 using a swap neighborhood

structure similar to the one used in Phase 3 of MultTS. This phase is stopped after a maximum number of

iterations IterMaxConsTS2 . As opposed to Phase 1, this phase is not repeated as long as an improvement is

observed, because f2 is only a secondary objective. The two phases are then repeated until IterMaxConsTS

global iterations have been performed. Since the aspiration criterion is the same as in MultTS, we will focus on

the neighborhood structures and tabu status in the following.

Neighborhood structures

Phase 1

Here, the first objective f1 (rejection cost) is optimized using the neighborhood structure INSERT2, where

every rejected job is considered for insertion at every position in the schedule of machines M1 and M2. It is

important to note that the insertion is enforced even if the deadline d̃ is exceeded. In such a case, the tentative

solution is immediately repaired by removing jobs. Assuming that the (infeasible) insertion of job j takes place

in block k, we first define the subset of candidate jobs for removal, L, as all jobs other than j that are scheduled

between the end time of PMk−1 (or t = 0 if k = 1) and the end of the schedule on machine Mi, see Figure 5.5.

Subset L is chosen with the aim of limiting the impact of a removal on the solution structure, while facilitating

the evaluation.

Then, we follow the steps:

While d̃ is exceeded

1. select job s from L with smallest us.

2. break ties by considering job s with smallest ws/ps

3. break ties by randomly choosing job s

4. reject job s and update (S, S).

Phase 2

Phase 2 is aimed at minimizing the second objective f2, using the neighborhood structure SWAP 4. The

latter is similar to SWAP3 in MultTS, excepted that a swap between two jobs j and j′ in positions k and k′,

k < k′, is considered only when wj′/pj′ is larger than wj/pj (c.f., WSPT rule).
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Application of TS

Initial solution 
retuned by GrH
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Figure 5.4: Algorithmic flow of ConsTS
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Figure 5.5: INSERT2

Tabu status

Like MultTS, a tabu tenure is associated with each move. In Phase 1, only the rejected job is tabu for a certain

number of iterations, while it is the reverse swap in Phase 2. In both cases, the number of iterations is randomly

chosen in the interval [5, 10].

5.6 Computational results

This section reports computational results obtained with the proposed algorithms. The generation of test

instances is first discussed in Sub-section 5.6.1. Then, experiments conducted to determine the best value for

different parameters are described in Sub-section 5.6.2. Finally, comparisons between MultTS, ConsTS and

CPLEX solver are reported and discussed in Sub-section 5.6.4.

All algorithms are coded in Java. The MIP solver is CPLEX 12.7 with Concert Technology for the Java

interface. All computational tasks were performed on an i7 Intel Core at 2.50 GHz with 16 GB of RAM.

Since objective f1 (minimizing the sum of rejection costs) is the main objective and subsumes f2 (minimizing

the weighted sum of job completion times), we will sometimes report only the values of f1 in the following

results for brevity purposes. It should also be noted that MultTS and ConsTS are stochastic algorithms and,

consequently, they are run 10 times on each instance with only the best run being recorded (note, however, that

the relative standard deviation is smaller than 0.2%).

5.6.1 Test instances

Since there are no available benchmark instances in the literature for our problem, we carried out experiments

based on randomly generated data.
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The job processing time pj in minutes is uniformly distributed in the interval [30, 120] with an average of 75

minutes. Thus, it is possible to schedule at most 96 jobs per machine over a scheduling horizon of 5 days (7200

minutes), if we do not consider the maintenance activities. For example, when n = 200, a minimum of 8 jobs

will be rejected. Accordingly, we generated instances of size, n = 200, 210, 220. For each size, 10 instance were

generated, for a total of 30 instances. Periodic preventive maintenance is performed on the two machines after

a maximum of Ti minutes of use with T1 = 480 and T2 = 360. The time required to perform a maintenance is

set to 4 % of Ti, which translates into δ1 = 20 minutes and δ2 = 15 minutes.

The weight wj = bj +hj is uniformly distributed in the interval [20, 60]. That is, the priority bj is randomly

selected in the set {10, 20, 30}, while hj is uniformly distributed over the interval [10, 30]. Finally, uj is uniformly

distributed over the interval [bjpj/2, 2bjpj], since the rejection cost of a job depends on its priority and processing

time.

5.6.2 Parameters calibration

In this Sub-section, we examine the impact of different parameters on the proposed algorithms. To this end,

different values were tested for each parameter, as it is explained below.

Parameters q1 and q2

GrH was run with q1 = .05n, .1n, .2n, .3n, .4n, .5n, n while q2 was set to q1
2

. Table 5.1 summarizes the average

value of f1 over the ten instances for each size n and each q1 value. It shows that GrH produces better solutions

with smaller values of q1. For a better view of the results, the entries in Table 5.2 provide the number of

instances for which a given value of q1 produces the best solution. At the end, the value .2n was selected.

q1=.05n q1=.1n q1=.2n q1=.3n q1=.4n q1=.5n q1=n

n=200 11270.5 11159.7 11462.8 11593 15200.2 16530.1 21020.6

n=210 20970.5 21127.5 16530.1 18013.2 19292.3 20534.8 33035

n=220 31037.5 31063.1 31365.5 33502 35590.3 38437.1 47697.5

Table 5.1: Average objective values of GrH based on f1 for different values of q1

q1 = .05n q1 = .1n q1 = .2n q1 = .3n q1 = .4n q1 = .5n q1 = n

n=200 5/10 4/10 2/10 2/10 0/10 0/10 0/10
n=210 4/10 1/10 6/10 2/10 0/10 0/10 0/10
n=220 4/10 3/10 5/10 3/10 0/10 0/10 0/10

Table 5.2: Number of best solutions found by GrH based on f1 for different values of q1

From now on, the results will be reported as improvements (gaps) in percent from solutions produced by

GrH, that is:
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GAP = 100× ((GrH − TS)/GrH) (5.24)

where TS is either MultTS or ConsTS and the improvement is calculated either with regard to objective f1

or f2, depending on the context.

Stopping criterion

In MultTS, Phase l is stopped after IterMaxMultTS
l iterations with l ∈ {1, 2, 3}. First, we tested

IterMaxMultTS
1 = n

10
, n
5
, n, 2n, 3n, 4n, 5n. The average values of objective f1 for these values are summarized in

Table 5.3 with the corresponding computation times in seconds. Since Phases 2 and 3 are aimed at optimizing

f2, Table 5.4 shows the average values of f2 at the end of Phase 3, after fixing IterMaxMultTS
1 to 2n, while

entries of columns 5, 6 and 7 report the average computation time in seconds.

We observe that the value of f1 is rather stable after IterMaxMultTS
1 = 2n iterations. It should also be

noted that the computation time is around one minute for the largest number of iterations 5n. With re-

gard to IterMaxMultTS
3 , the entries in the second column of Table 5.4 for instances of size n = 200 shows

that improvements to f2 are obtained with increasing values of IterMaxMultTS
3 , although the gap between

IterMaxMultTS
3 = 3n, 4n and 5n is quite small. On the other hand, entries of column 3 and 4 show that f2

remains practically constant for IterMaxMultTS
3 = 3n, 4n and 5n. In all cases, the computation time is less

than one minute, even for 5n iterations. Based on these results, IterMaxMultTS
3 was set to 3n. Note also that

IterMaxMultTS
2 was set to n/5 given the relatively small-sized of the corresponding neighborhood, where blocks

are moved rather than individual jobs.

f1 value Computation time

n = 200 n = 210 n = 220 n = 200 n = 210 n = 220

n/10 25.66 19.62 18.41 0.81 1.26 3.79
n/5 25.78 19.66 18.48 0.67 2.10 22.47
n 25.71 19.77 18.50 2.96 13.50 28.27
2n 25.71 19.77 18.62 9.77 23.65 41.59
3n 25.71 19.76 18.62 13.29 35.78 41.90
4n 25.71 19.77 18.57 37.74 36.96 49.46
5n 25.71 19.77 18.57 65.84 51.02 64.66

Table 5.3: Average value of f1 with regard to IterMax1 and instance size n

Since the two neighborhoods explored in ConsTS are similar to the ones in Phases 1 and 3 of MultTS,

IterMaxConsTS1 and IterMaxConsTS2 were set to 2n and 3n, respectively.

The global iteration counter of MultTS and ConsTS was lunched to IterMaxMultTS such that the compu-

tational time is set to 60 minutes.
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f2 value Computation time

n = 200 n = 210 n = 220 n = 200 n = 210 n = 220

n/10 38.57 37.68 40.53 9.54 12.3 10.9
n/5 38.63 37.75 40.57 14.96 12.64 9.75
n 38.65 37.84 40.57 18.36 21.22 17.38
2n 38.70 37.87 40.64 30.21 32.46 22.91
3n 38.71 37.90 40.67 28.05 30.28 38.45
4n 38.73 37.90 40.67 45.17 26.67 28.18
5n 38.75 37.90 40.67 58.16 45.53 47.88

Table 5.4: Average value of f2 with regard to IterMax3 and instance size n

Neighborhood exploration parameter PrN

We ran Phases 1 and 3 of MultTS with PrN = 1, 3/4, 1/2, 1/4, where PrN is the fraction of the neighborhood

explored. For these experiments, the number of iterations of MultTS in Phases 1, 2 and 3 was set to 2n, n/5

and 3n, respectively. Tables 5.5 and 5.6 summarize the results, while considering that Phase 1 optimizes f1

and Phase 3 optimizes f2. From these results, we can easily see that high values of PrN are associated with

better objective values, although at a computational cost. For n = 220 in Table 5.5, for example, the average

computation time with PrN = 1 is 27.60 seconds, while it is only 7.18 seconds with PrN = 1/4. On the other

hand, the average solution value obtained with PrN = 1 is substantially better than PrN = 1/4.

PrN = 1 PrN = 3/4 PrN = 1/2 PrN = 1/4

n=200
f1 25.68 25.50 25.29 24.77
comp. time 9.77 3.87 1.46 0.97

n=210
f1 19.71 19.54 19.55 18.98
comp. time 23.66 10.80 6.68 2.70

n=220
f1 18.56 18.23 18.21 18.12
comp. time 27.60 16.37 8.30 7.18

Table 5.5: Comparison of f1 values for different problem sizes n and PrN values

Based on these results, and given the benefits obtained from a complete exploration of each neighborhood,

PrN was set to 1 in Phases 1 and 3. Furthermore, the whole neighborhood is also explored in Phase 2 of

MultTS, due to its smaller size. Based on the results obtained with MultTS, PrN was also set to 1 in Phases

1 and 2 of ConsTS.

5.6.3 Results on large test instances

This Sub-section analyzes the results obtained with MultTS and ConsTS.
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PrN = 1 PrN = 3/4 PrN = 1/2 PrN = 1/4

n=200
f2 38.73 38.79 38.65 38.64
comp. time 28.05 28.97 22.71 11.74

n=210
f2 37,87 38,08 38,01 38,00
comp. time 30.28 31.16 19.95 11.17

n=220
f2 40.64 40.73 40.62 40.56
comp. time 38.46 30.76 17.45 13.18

Table 5.6: Comparison of f2 values for different problem sizes n and PrN values

First, we analyze the impact of using the diversification step in MultTS. Second, we compare the two

implementations of MultTS with a tabu search versus a descent in Phase 2. Finally, we report and discuss the

final solutions produced by MultTS and ConsTS.

Impact of diversification (Phase 4 of MultTS)

Table 5.7 reports the improvement in objectives f1 and f2 obtained from the different phases of MultTS for

each instance size n. As we can see, there is more improvement in objective f1 when MultTS starts from the

initial solution constructed by GrH in Phase 1. Since Phases 2 and 3 are not concerned with f1, the results

of Phase 4 (diversification) are then reported. The last line shows the best solution obtained after one hour of

computational time.

f1 f2

MultTS components n = 200 n = 210 n = 220 n = 200 n = 210 n = 220
Phase 1 25.25 17.04 18.21 - - -
Phase 2 - - - 15.52 13.43 17.97
Phase 3 - - - 38.52 37.50 40.65
Phase 4 -174.42 -150.54 -120.63 29.05 27.48 30.62

Table 5.7: Impact of different phases of MultTS

Results comparison between TS and DA in Phase 2 of MultTS

Table 5.8 compares the final results obtained when using the DA algorithm once and TS algorithm another

time in Phase 2 of MultTS for instance size n = 200, 210 and 220. We remind that the neighborhood structure

used in Phase 2 consists on swapping blocks. From the computed GAPs reported in the Table 5.8, we conclude

that the results obtained remain the same when DA or TS are used. GAPDA and GAPTS used here for the

comparison are computed on the basis of the Equation 5.24. Thus, v1 refers to f2 returned by GrH in both in

GAPDA and GAPTS, when v2 refers, in the case of GAPTS, to the best value of the target criterion f2 when
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TS is applied, and to the best value of the objective function f2 returned when this time it is DA which is

implemented in Phase 2 of MultTS.

n = 200 n = 210 n = 220

GAPDA 38.438 38.756 37.655
GAPTS 38.439 38.655 37.659

Table 5.8: Results comparison between the application of TS or DA in phase 2 of MultTS

5.6.4 Comparison between MultTS and ConsTS

Table 5.9 presents a comparison between objectives f1 and f2 of MultTS and ConsTS for instances with n =

200, 210 and 220 jobs. The GAP metric is used to calculate the improvement achieved on the objective functions

f1 and f2. We remind that GAP is computed as explained in Equation 5.24. Table| 5.9 mentioned above is

composed of two parts. Hence, columns two, three and four are devoted to the first criterion f1 while the

remaining columns five, six and seven to f2. The third line shows the GAP between v1 which represents here

f1 respectively f2 values returned by GrH and v2 which is the better objective function value f1 respectively

f2 found by MultTS, while the last line, v2 represent f1 or f2 value returned, this time, by ConsTS. We can

easily notice that MultTS produces better solutions with regard to objective f1, while ConsTS does a better

job at optimizing objective f2. Both MultTS and ConsTS obviously outperforms GrH which is used to provide

initial solutions for the TS. Table 5.11 show the number of times each method found the best solution on the

10 test instances with the same size, namely n=200, 210 and 220. Clearly, MultTS improves over ConsTS on

the first objective f1. For example, with n=210, MultTS finds the best solution on 7 instances out of 10. On

the other hand, ConsTS is always better with regard to f2. As columns 5, 7 and 9 of Table5.11 shows so well,

for each instance size n, ConsTS records 10 best solutions out of 10 and multTS does not find any. Table 5.10

f1 f2

n = 200 n = 210 n = 220 n = 200 n = 210 n = 220

GAPMultTS 25.7 20.2 18.9 38.4 37.3 36.3
GAPConTS 22.9 16.5 11.0 40.9 38.7 37.7

Table 5.9: Comparison between MultTS and ConsTS

summarizes the average number of rejected jobs recorded for each instance size, namely, n =200, 210 and 220

and for each method MultTS and ConsTS. Entries of the second line named by SGrH display the average number

of rejected jobs returned by the greedy heuristic GrH that is used to compare with, while SMulTS and SConsTS

refer respectively to the average number of rejected jobs when applying MultTS, respectively ConsTS. We note

that, when using MultTS, the rejected jobs are reduced in average about 4.4 jobs when n=200, 3.3 when n=210

and about 10.2 when n=220. On the other hand, the average number of rejected jobs is less important when
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ConsTS is applied. Indeed, this number is equal to 2.3 when n=200, 1.9 when n=210 and 4.9 when n =220.

Consequently, even if minimizing f1 does not quite correspond to minimize the number of rejected jobs but to

minimize the cost of rejecting jobs, we can state that these results confirm the fact that MulTS is much better

than ConsTS with regard to f1.

n=200 n=210 n=220

GrH 24.9 39.5 51.5
MultTS 20.5 36.2 41.3
ConsTS 22.6 37.6 46.6

Table 5.10: Average number of rejected jobs

MulTS ConsTS

n=200
f1 10/10 1/10

f2 1/10 9/10

n=210
f1 8/10 2/10

f2 0/10 10/10

n=220
f1 9/10 1/10

f2 0/10 10/10

Table 5.11: Performance of MulTS and ConsTS with regard to the number of best solutions found for n=200,
210 and 220 jobs

Tables 5.12 and 5.13 summarize the average run times that is consumed by each phase that constitutes

MultTS and ConsTS when the stopping criteria IterMaxMultTS and IterMaxConsTS are set to one hour and

for each instance size n =200, 210, and 220.

We first notice that the more the size of the instances increases the more the run times of each phase also

increases in both MultTS and ConsTS.

From Table 5.12 we note that during one hour, Phase 3 of MultTS is the phase that takes the most run

times (almost 57 minutes) and phase 2 the one that takes the least run times. This remains obvious because

the neighborhood structure used in Phase 3 is based on the interchange (swap) of all jobs belonging to the set

S. The evaluation function being generally the one that consumes the most time has certainly been much more

solicitous during this phase. Contrary to this, in phase 2, where we proceed to only interchange blocks of jobs

instead of jobs and therefore moving inside the solution space does not take much time.

From Table 5.13, we note that phase 1 takes longer than phase 2 in ConsTS. This can be explained by the

fact that in Phase 2 the number of calls to the evaluation function is reduced. Indeed, jobs are interchanged

only if the WSPT rule is respected (see Section 5.5.2) whereas in Phase 1, the neighborhood structure consists

to insert each job of S in all the possible positions in S.
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n=200 n=210 n=220

Phase 1 116.37 112.48 118.55
Phase 2 7.032 6.97 7.27
Phase 3 3445.11 3433.04 3395.6
Phase 4 26.33 77.41 85.22

Table 5.12: Average time duration (seconds) for each phase of MultTS

n=200 n=210 n=220

Phase 1 2586.09 2400.14 2013.84
Phase 2 1031.75 1203.11 1588.30

Table 5.13: Average time duration (seconds) for each phase of ConsTS
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Figure 5.6: f1 values variation regarding to IterMaxMultTS and instance size set to n jobs
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Figure 5.7: f1 values variation regarding to IterMaxConsTS and instance size set to n jobs

Figures 5.6 and 5.7 show respectively the evolution of the best objective function value f1 with respect

to the execution times parameterized by the stopping criterion IterMaxMulTS respectively IterMaxConsTS.

When t = 0, it is the value returned by the greedy GrH which is recorded. We conclude that, best value

found considering f1 is slightly increasing with the progress of t and became constant when t = 30 minutes for

MultTS and when t = 45 minutes for ConsTS. From the results above we can conclude that it is better to set

IterMaxMulTS to 30 minutes and IterMaxConsTS to 45 minutes instead of one hour.

5.7 Conclusion

In this work, we considered a parallel machine scheduling problem with two non identical machines over a

weekly planning horizon, while considering periodic preventive maintenance. Two objectives were considered:

jobs rejection cost and weighted sum of job completion times. Lexicographic Optimization was used to address

this multiobjective problem. We first introduced a MILP formulation for the problem. Then, we developed a

greedy heuristic and two tabu search-based metaheuristics, denoted GrH, MultTS and ConsTS, respectively.

Computational experiments were conducted on randomly generated data. They showed that MultTS outperform

ConsTS when jobs rejection cost is minimized, which is the main objective, while ConsTS performed better

than MulTS when the weighted sum of job completion times is minimized, which is the secondary objective.
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Chapter 6

Conclusion and prospects

This chapter summarizes the thesis by presenting the research contributions and proposing some future works

and extensions of this research.

As a guideline, this thesis addresses scheduling problems with unavailability constraints due to preventive

maintenance on the basis of academic problems resulting from simplified industrial problems. This leads to

some variations around the common theme of maintenance-production scheduling problems.

Firstly, the type and number of machines differ from one problem to another. To this aim, we studied

two cases: single-machine scheduling and multiple-machines scheduling. Secondly, in addition to the number

of machines in the workshop, we focused on the production environment. Indeed, two other cases are taken

into account: scheduling considering preventive maintenance and sequence-dependent setup times impacting

each consecutive pair of tasks that should be performed on a same machine. Finally, amongst the bunch of

existing performance criteria to measure the quality of a schedule, we studied two criteria: the weighted sum

of completion times and the jobs rejection cost.

On the basis of the four abovementioned cases, we studied and solved three scheduling problems detailed

in chapters 3, 4 and 5. To this aim, this manuscript gathers our investigations on several heuristics and meta-

heuristics, as well as mathematical models based on integer linear programming which however systematically

failed to solve the large-sized instances. As three pillars of our research, the three scheduling problems lead us

to propose several contributions and future works which are summarized below.

In chapter 3, we considered the case of a multitask machine where only minor negligible breakdowns appear

and where the cost of repairing big failures is very high. The machine must undergo, with much lower cost,

preventive maintenance (PM) to minimize the risk of failures. PM is carried out to meet, for example, a

regulatory requirement and is applied at regular intervals. Without this maintenance, repair costs can be very

high. In this regard, the goal of this chapter is to minimize the weighted sum of completion times on a single

machine subject to periodic preventive maintenance. First, we provided a Mixed Integer Linear Programming

formulation to solve this problem optimally. Then we proved the NP-hardness of the studied problem. We have

also provided some properties that have been used to build several efficient heuristics. Finally, several lower

bounds were also proposed and special cases of the problem were discussed. All the abovementionned methods

were tested on large randomly generated data. The lower bounds helped us to discuss the performance of the

heuristics when the size of instances is greater than 20. The result showed that the MILP formulation is efficient
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on instances with size ≤ 20 and the proposed heuristics are efficient algorithms to solve large-sized instances.

In a second part of chapter 3, we proposed a GVNS algorithm to solve this NP-hard problem. The presented

algorithm was tested and compared with a MILP model for small instance sizes, and with four lower bounds

for instance sizes greater than 20, three of them based on job splitting and one based on the relaxation of one

integrity constraint. The computational results showed that the proposed GVNS is very efficient both in terms

of quality of the objective function values and computational time.

In future work, it would be interesting to propose more lower bounds and generate more test instances.

It would also be interesting to compare the performance of GVNS with other metaheuristics for solving the

considered problem after generalizing it by adding more realistic constraints such as release times, failures,

etc. Another extension of this research would be to consider the interval between two consecutive maintenance

activities as a decision variable of the problem.

In chapter 4, we presented the results obtained when addressing a scheduling problem that combined pe-

riodic maintenance and sequence-dependent setup times. The complexity of the problem forced to design

heuristic algorithms to solve it. In this regard, we compared two alternative integer programming formulations

of the studied problem, considering both setup times and periodic maintenance with the aim of minimizing the

weighted sum of completion times. The first formulation is inspired from the bin packing problem formulation

as the periodic maintenance defines batches. In the second formulation, the maintenance activity is considered

as a dummy job. As the first MILP formulation uses a significantly smaller number of constraints, it slightly

outperforms the second MILP formulation for the given test sets. But in the two cases, only the smallest

instances with 8, 10 jobs and some instances with 15 jobs were solved within the time limit of 30 minutes.

Due to the complexity of the problem, we proposed two heuristics named MS-DSH and MS-GVNS, composed

of a greedy phase and an improvement phase. In this regard, MS-GVNS combines a greedy heuristic and a

local search heuristic while MS-GVNS uses a GVNS metaheuristic instead of a local search. The computational

results showed that the performance of the heuristics was satisfactory obtaining reasonably good solutions in

very short times. Unsurprisingly, MS-GVNS gives better solutions than MS-DSH. Therefore, this heuristic can

be applied to large-sized instances of similar problems, where the standard commercial solvers fail to find an

optimal solution within reasonable times.

As an extension of this work, we believe that the study of other variants of the problem with several machines

and/or several criteria seems to us closer to the industrial reality. A last important point to explore also lies in

taking into account random breakdowns that may occur over time.

In Chapter 5, we considered a two non identical parallel machine scheduling problem with a weekly planning

horizon and a flexible preventive maintenance. Two criteria are studied: The jobs rejection cost and the

weighted sum of completion times. Lexicographic Optimization (LO) technique is used to solve this problem.

We first introduced an integer linear formulation for the problem, but this latter is not efficient to solve the

large-sized instances.

Consequently, a greedy algorithm and two methods based on a Tabu Search heuristic denoted respectively

by GrA, MultTS and ConsTS are proposed to solve the problem. Computational experiments are conduced
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on the basis of randomly generated data and showed that MultTS and ConsTS efficiently outperform GrA,

MultTS outperform ConsTS when minimizing the jobs rejection cost while ConsTS is better than MulTS

when minimizing the weighted sum of completion times.

Future works will investigate different extensions of the considered problems (e.g., several machines, other

objectives, failures, ...).

As common prospects, in case of considering stochastic aspects, an integration pattern of optimization and

simulation should be used to solve the studied problems. It would be also interesting to study the online version

of the studied problems since in practice, decisions should be made without knowing the complete instance (i.e.

jobs become known only at their release date).
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Hansen, P., Mladenović, N., Brimberg, J., and Pérez, J. A. M. (2010a). Variable neighborhood search. In
Handbook of metaheuristics, pages 61–86. Springer.
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