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UN RÉSUMÉ DE LA THÈSE DE 

 

Ramzi Halabi           Pour obtenir le grade de      Docteur en Science de l’Ingénieur 

 

Titre de la thèse : Séparation Aveugle de Sources des Signaux Monocanaux: application 

aux signaux de Force de Réaction de Terre.  

 

 Les signaux multicanaux sont réellement des signaux captes à travers plusieurs canal ou 

capteur, portant chacun un mélange de sources, une partie desquelles est connue alors que le 

reste des sources reste inconnu, et parfois complètement inconnues.  Les méthodes à l’aide 

desquelles l’isolement ou la séparation des sources est accomplie sont connues par les méthodes 

de séparation de sources en général, et au cas où le degré d’inconnu est large, ces méthodes sont 

connues par la séparation aveugle des sources (SAS).  

 Cependant, la SAS appliquée aux signaux multicanaux est en fait plus facile de point de 

vue mathématique que l’application de la SAS sur des signaux monocanaux, ou un seul capteur 

existe et tous les signaux arrivent au même point pour enfin produire un mélange de sources 

inconnues. Ce domaine est effectivement celui de la thèse que nous présentons. En effet, nous 

avons développé une nouvelle technique de SAS qui est une combinaison de plusieurs méthodes 

de séparation et d’optimisation, basée sur la factorisation non-négative des matrices (NMF). 

Cette méthode peut être utilisée dans de nombreux domaines comme l’analyse des sons et de la 

parole, les variations de la bourse, et même les séismographes. Néanmoins, dans cette thèse, les 

signaux de force de réaction de terre verticaux (VGRF) monocanaux d’un groupe d’athlètes 

coureurs d’ultra-marathon sont analysés et séparés pour l’extraction du peak passif du peak actif 

d’une nouvelle manière adaptée à la nature de ces signaux.  



 Les signaux VGRF sont des signaux cyclo-stationnaires caractérisés par des double-peaks 

l’un desquels étant très rapide et parcimonieux, indiquant les phases de course de l’athlète, et 

l’analyse de ces peaks est extrêmement importante pour déterminer et prédire la condition du 

coureur : problème physiologique, problème anatomique, fatigue…etc. De plus, un grand 

nombre de chercheurs ont prouvé que  l’impact du pied postérieur avec la terre d’une manière 

brutale, l’analyse de ce phénomène peut nous ramener à une prédiction de blessure interne, et 

meme ils essayent d’adopter une technique de course dont ils ont appelé Non-Heel-strike 

Running (NHS), par laquelle ils obligent les coureurs de courir sur le pied-antérieur seulement. 

Donc pour mieux étudier ce phénomène, la séparation du peak d’impact du VGRF est une 

méthode à travers laquelle on peut isoler la source portant les informations patho-physiologiques 

et le degré de la fatigue. 

D’un premier coup, nous avons introduit de nouvelles méthodes de prétraitement et de  

traitement des signaux VGRF pour remplacer le filtrage de bruit traditionnel utilisé partout, et 

qui peut parfois détruire les peaks d’impact qui sont nos sources à séparer, base sur le concept de 

soustraction spectrale pour le filtrage, utilisée avec les signaux de parole, après l’application d’un 

algorithme d’échantillonnage intelligence et adaptatif qui décompose les signaux en pas isolés.  

En second lieu, une analyse des signaux VGRF en fonction du temps a été faite pour la 

détection et la quantification de la fatigue des coureurs durant les 24 heures de courses. Cette 

analyse a été accomplie au domaine fréquentiel/spectral ou nous avons détecté un décalage clair 

du contenu fréquentiel avec la progression de la course indiquant la progression de la fatigue. 

Troisièmement, nous avons défini les signaux cyclosparse au domaine temporel, puis on 

a traduit cette définition à son équivalent au domaine temps-fréquence utilisant la transformée 



Fourier a court-temps (STFT). Cette représentation a été décomposée a travers une nouvelle 

méthode qu’on a appelé Cyclosparse Non-negative Matrix Factorisation (Cyclosparse-NMF), 

basée sur l’optimisation de la minimisation de la divergence Kullback-Leibler (KL) avec 

pénalisation liée à la périodicité et la parcimonie des sources, ayant comme but final d’extraire 

les sources cyclosparse du mélange monocanal appliquée aux signaux VGRF monocanaux. 

La méthode a été testée de plus sur des signaux analytiques pour pouvoir prouver 

l’efficacité de l’algorithme et les résultats ont été satisfaisants, et le peak impact a été séparé du 

mélange VGRF monocanal.   
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Title of the Thesis : Blind Source Separation of Single-sensor Recordings : Application to 

Ground Reaction Force Signals. 

The purpose of the presented work is to develop a customized Single-channel Blind 

Source Separation technique that aims to separate cyclostationary and transient pulse-like 

patterns/sources from a linear instantaneous mixture of unknown sources. 

For that endeavor, synthetic signals of the mentioned characteristic were created to 

confirm the separation success, in addition to real life signals acquired throughout an experiment 

in which experienced athletes were asked to participate in a 24-hour ultra-marathon in a lab 

environment on an instrumented treadmill through which their VGRF, which carries a 

cyclosparse Impact Peak, is continuously recorded with very short discontinuities during which 

blood is drawn for in-run testing, short enough not to provide rest to the athletes. The synthetic 

and VGRF signals were then pre-processed, processed for Impact Pattern extraction via a 

customized Single-channel Blind Source Separation technique that we termed Cyclo-sparse Non-

negative Matrix Factorization and analyzed for fatigue assessment.   

As a result, the Impact Patterns for all of the participating athletes were extracted at 10 

different time intervals indicating the progression of the ultra-marathon for 24 hours, and further 

analysis and comparison of the resulting signals proved major significance in the field of fatigue 

assessment; the Impact Pattern power monotonically increased for 90% of the subjects by an 

average of 24.4  15% with the progression of the ultra-marathon during the 24-hour period. 



 Upon computation of the Impact Pattern separation algorithm, fatigue progression 

showed to be manifested by an increase in reliance on heel-strike impact to push to the 

bodyweight as a compensation for the decrease in muscle power during propulsion at toe-off. 

This study among other presented work in the field of VGRF processing forms methods 

that could be implemented in wearable devices to assess and track runners’ gait as a part of 

sports performance analysis, rehabilitation phase tracking and classification of healthy vs. 

unhealthy gait. 
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GENERAL INTRODUCTION 

Blind source separation (BSS) is a challenging yet highly required field of research in 

signal and image processing, in Artificial Intelligence and in Big Data Analytics. It studies the 

unmixing and separation of signal or pattern mixtures within a complex multivariate system, 

having minimal to no a priori knowledge of the target source. The target source is usually a 

buried pattern of valuable data into a mixture of different sorts of patterns, generally considered 

independent, that shall be separated and recovered for further analysis. Despite the tremendous 

effort being put into the development of BSS algorithms, the area is still being developed for 

customized techniques that are precisely designed for specific classes of data.  

The work being presented throughout this thesis is a contribution into the field of BSS, 

and more specifically single-channel BSS (SCBSS), where a single observation/data vector is 

available as a muti-component mixture, one of which shall be recovered. Upon reviewing the 

available techniques, we realized the near-absence of methods that are tailored to tackle 

cyclostationary single-channel signals. That fact stimulated the design of the Cyclosparse Non-

negative Matrix Factorization (NMF), which is an adapted version of the well-known NMF set 

of algorithms. The thesis not only presents the theoretical aspect of the method, but also presents 

the results of applying the methods of processing, analysis and SCBSS to the Vertical Ground 

Reaction Force (VGRF) signals.   

With the fact that the frequency of falls increases with age and frailty level, statistical 

studies prepared by the World Health Organization stated the following rates: 6-31% in China, 

21.6% in Barbados, 34% in Chile, while the rate of hospital admissions due to falls at the age of 

60 and older reached 1.6 to 3 per 10,000 in Australia, Canada, and the United Kingdom. This led 



numerous research scientists to dedicate their efforts in predicting falling through Gait analysis. 

Being one of our two main goals, the presented work in this paper aims to model the running 

VGRF in a highly dynamic activity where the loss of balance is more probable and of greater 

significance, leading to a better understanding of the normal running patterns in contrast with 

loss-of-balance patterns, if any. Furthermore, in the field of athletic performance assessment, 

running is a common activity for a wide range of elite sports such as marathons, sprints, soccer, 

football, rugby and many others, whose athletes suffer from a relatively high foot and knee 

injury rate. Considering the cases where the cause of eventual injury is gradual deterioration of 

the anatomical system through which running is performed e.g. foot and knee, an accurate model 

describing the different patterns in a VGRF signal provides a clearer view of the progression of 

the injury, thereby the underlying biomechanical manifestations serving as tools to be analyzed 

by medical experts for injury evolution prevention. 

Chapter 1 in this thesis consists of a well-rounded summary on the two main domains 

that are addressed throughout the thesis which are Gait analysis and Blind Source Separation 

(BSS), since the eventual goal is the BSS of the Vertical Ground Reaction Force (VGRF) 

signal’s patterns. Furthermore, light is shed on a specific class of BSS techniques, which is the 

single-channel BSS (SCBSS) that deals with observations/mixture signals recorded on a single 

channel; although it is still a BSS class, the implemented algorithms require special attention and 

familiarization.   

 Chapter 2 provides the first and most important stage in the process that leads the way to 

subsequent analysis, and that is the signal processing phase applied on the signals of interest in 

this thesis being the VGRF signals. This stage is actually a multi-stage process that goes as 

follows: Pre-processing (sampling and segmentation) and processing (filtering). Furthermore, 



new methods for fatigue detection from those signals are presented. Novel techniques in VGRF 

processing and analysis are presented in this chapter, which were published in 3 international 

conferences. 

 Chapter 3 introduces and goes in-depth into the novel SCBSS technique Cyclosparse 

Non-negative Matrix Factorization (NMF) in a block-based manner: Problem formulation, 

followed by the cost function’s design along with the formulation of the penalty functions 

within, and finally the optimization algorithm.  

 Chapter 4 in this thesis is where all results in terms of pre-processing, processing and 

analysis are presented, analyzed and discussed in a way to justify the answers this thesis tackle. 

Not only were the methods applied on real acquired data (VGRF) but also on synthetic signals to 

prove the effectiveness of the method and unbiased aspect of it. 

 Chapter 5 is the concluding chapter where general conclusions are stated and future 

perspectives and improvement proposals are presented, along with the obstacles that were 

encountered throughout the process and possible solutions to avoid getting into them in future 

applications. 
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1 Gait Analysis 

1. 1. 1 Definition  

Walking and Gait are commonly interchangeably used while there is a major difference between 

these two terms; normal walking and running are defined as methods of locomotion involving 

the use of two legs, alternately, to provide support and propulsion [1]. On the other hand, Gait is 

defined as the manner or style of walking rather than the process itself, which makes Gait 

analysis a field in which comparison between individuals is conducted.  

That being cleared, the Gait Cycle is defined as the time interval between two successive 

occurrences of one of the repetitive events of walking or running, most commonly considering 

the initial contact as the reference point for the cycle [2]. The conventional way is to start with 

the initial contact of the right foot with the ground until it contacts the ground again, which is 

depicted in Fig. 1.1. 
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Figure 1.1: Gait Cycle Illustration (image courtesy Michael W. Whittle’s“AnIntroductiontoGaitAnalysis”) 

The gait cycle phases are stated as follows: 

 Initial Contact 

 Opposite toe-off 

 Heel-rise  

 Opposite initial contact 

 Toe-off 

 Feet adjacent 
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 Vertical Tibia 

 Repeat. 

The stated events sum up to seven total phases constituting the gait cycle, the first four of which 

occur in the stance phase with the foot touching the ground, while the other three belong to the 

swing phase in which the foot is not in contact with the ground. 

Moreover, each of the phases (stance and swing) is likewise subdivided into phases; the contact 

phase or support phase that covers the phases from initial contact till toe-off is subdivided into 

four stages [3]: 

 Loading response 

 Mid-stance  

 Terminal stance  

 Pre-swing 

As for the swing phase, three phases exist: 

 Initial swing 

 Mid-swing 

 Terminal swing 

In fact, the time to complete a whole gait cycle is termed the Cycle Time in the majority of the 

reputable literature, disregarding the minor differences that exist in the field while referring to 

the same concepts and mechanisms in different words and terminology. 

Now concerning the timing aspect of gait and the synchronization of shifts between different phases and 

sub-phases that we discussed earlier, see Fig.1.2. 
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Figure 1.2: Timing Aspect of the Gait Cycle (imagecourtesyMichaelW.Whittle’s“AnIntroductiontoGaitAnalysis”) 

As shown in Fig.1.2, each gait cycle contains two periods of double support and two phases of 

single-support phase. The stance phase occupies around 60% of the gait cycle while the swing 

phase occupies the remaining 40%, out of which each double support phase lasts for about 10%. 

Noteworthy, the stated percentages are variable in function of walking speed (walking, speed-

walking and running), such that the swing phase varies proportionally with speed while the 

stance and double support phases vary inversely proportionally, which was reported in [4] until 

complete absence of double-stance phases when transitioning into running. The periods in 

between successive steps during which the runner’s feet are not in contact with the ground are 

termed flight phases/float/double-float/non-support.  

In order to describe foot placement on the ground, two main terms are used: step and stride [5]. 

The step length is defined as the distance at which one foot moves forward in front of the other 

foot, while the stride length is the distance between two successive placements of the same foot 

i.e. cycle duration [6]. The measurement of such lengths aids in the understanding and 

quantification of the differences between normal and pathological gait, which may show 

manifestations of hopping, or step length variability in the same stride.  
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Moreover, the number of performed steps during a given duration is termed cadence, having the 

unit of steps per minute, which is actually a metric related to the half-cycles rather than full 

cycles that are defined as strides. However, the cycle-time is often used instead of the cadence, 

being the inverse of cadence, also known as the cycle time (1.1). 

 
           ( )  

   

        (
     
   )

 (1.1) 

In addition to the cycle time, gait is quantified and characterized by speed, which is defined as 

the distance covered by the whole body in a given time, most commonly in meters per second. 

This parameter may be calculated as the product of cadence and stride length with proper unit 

usage (1.2). 
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Alternatively, if cycle time is used instead of cadence, the equation becomes (1.3): 
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1.1.2 History 

Actually, history shows that the study of Gait appeared from as early as the Renaissance when it 

got accurately studied by scientists e.g. Leonardo Da Vinci, Galileo and Newton described 

walking. However, the earliest considerable scientific approach was performed by Galileo’s 

student Borelli in 1682 when he published his famous De Motu Animalum. His method consisted 

of tracking the center of gravity (COG) of the body to interpret how balance is maintained during 
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walking via constant forward movement of the feet being the support area. Rorelli’s effort was 

followed by the Weber brothers who first described the gait cycle in 1836 [7] by taking precise 

timing measurements considering a pendulum-like model of the leg of cadaver. Later on during 

the 1870s, Marey and Muybridge were the pioneers in the field; Marey published a study of 

human limb movement via photographic analysis of subjects wearing black and limb-attached 

white markers while standing on a platform at which the exerted pressure as well as the location 

of the COG. As for Muybridge, analysis was performed on horse trotting in 1878 based on a 24-

camera photographic system with fast trigger for successive frames, and his studies progressed 

onto human beings walking and running and performing various activities [8].  

 

Figure 1.3: Photographic Gait Markers on Horse 

At a later stage in 1895, a major breakthrough in gait analysis was published by Braune and 

Fischer who implemented a photographic technique based on limb-attached fluorescent markers, 

which led to the first three-dimensional trajectory, velocity and acceleration analysis of body 
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segments, combined with masses and accelerations of the body segments to eventually estimate 

the walking cycle stages’ forces.  

 

Figure 1.4: Limb-attached Fluorescent Markers 

Valuable and significant work was further developed by Bernstein in the 1930s where he 

performed a multitude of photographic methods to further assess kinematic parameters of a large 

150-subject database mainly focusing on the limb-specific COG and overall body [9].   

One of the greatest breakthroughs in the field of gait analysis was the development of the force 

platform or force plate that was conceptualized in 1924 by Amar and enhanced and implemented 

in 1938 by Elftman [10], both systems being purely mechanical; the first design consisted of 

pointer movement in response to force application to the platform, while the latter consisted of 

high-speed photography of the basic pointer.  
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Figure 010.5: 3-dimensional Force Plate 

Later on in the 1950s, Bresler and Frankel computed free-body calculations of the main 

concerned joints being the hip, knee and ankle which led to the calculation of ground reaction 

forces (GRF) that are the effects of gravitational forces on the limb segments and inertial forces 

[11].  

 

Figure 01.6: 3-dimensional Force Platform 

The body-segments’ actions and the role of the different muscles became clearly modeled and 

documented, which transferred the researchers’ interest into the quantification and modeling of 
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the underlying forces being generated at the joints. One of the pioneers in that field was Paul 

who first calculated hip joint forces as well as knee joint forces in the 1965-66 period, which 

opened the door for extensive mathematical research in the modeling of joint forces.  

 

Figure 01.7: Jont Forces' Graphical Representation 

For that endeavor, more precise hardware and computational tools were required, which led the 

way to precision electronics instead of basic photography e.g. reliable force platforms [12], 

instrumented treadmills [13], Electromyography (EMG) [14], 3D kinematics modeling software 

[15]…etc. The main methods used for gait measurement and analysis will be presented in section 

1.1.2. 

 

 



  10 
 

1.1.3 Methods 

Gait analysis has been studied for decades, as described in the history description above, and this 

implies the use of multiple measurement and analysis hardware and software schemes to cope 

with the technological era in which the study is being performed. However, it is incorrect to say 

that some methods are better or more reliable than others, each of which having advantages and 

disadvantages. Moreover, the availability of high-end technologies in this field among others 

does not imply clinicians and experts are obliged to perform their clinical studies using the top-

notch equipment; efficiency being crucial in all domains, one may not have to deal with the huge 

cost of gait analysis equipment if the applications or experiments do not require such advanced 

tools and low-end accurate tools would suffice.  

In this section, the different techniques implemented in gait analysis will be covered including 

the state-of-the-art technology.  

1.1. 3. a Photographic 

Being the least technologically-complicated gait analysis system of all, photographic methods 

are the most challenging for the clinician or the researcher  requiring vast knowledge and 

observation accuracy and definitely experience in the field to be able to analyze the recorded gait 

sequence and diagnose. However, research has shown that the performance of human observers 

versus gait analysis combined kinetic/kinematic systems is weaker in terms of abnormality 

detection. Ergo, the visual observation or video observation technique with no advanced software 

to accompany the system or advanced sensing tools is superficial and suffers from many 

disadvantages, of which we state: Short duration of recordings limited by the observers 
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observation span, incapability of detecting high-frequency events, limitation of analysis to 

movements rather than forces, and dependence on the observer’s skills. 

In fact, the manner in which this type of gait observation is performed is the distribution of 

different observers/video cameras around a subject performing gait activities e.g. walking, one to 

the right, the other to the left, a third one in front and a fourth on the backside, and observations 

are noted down for further analysis. The subject actually walks on a walkway that is 8 meters 

long on average, and 4 meters wide, as shown in Fig.1.8. 

 

Figure 01.8: Gait Laboratory Layout for Visual Gait Analysis via Video Recording 

 

Following the recording, assessment is definitely required for the analysis part to be fulfilled, 

which requires the data to be stored and remain permanently available. In the previously 

explained video observation, before the invention of the Video Cassette Recorder (VCR) and 

other video storage devices, many disadvantages were stated, whereas with data saving 

capabitlities developed in later stages, the following added advantages were realized: Reduced 

number of walk repetititons requested from the subject, ability of the subject to observe his/her 
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actual walk for more accurate feedback, and ease of transfer of gait analysis techniques to other 

practitioners in terms of teaching.   

1.1.3. b Footswitches 

In order to solely focus on the gait cycle timing, a multitude of systems has been developed, of 

which we state the footswitch, which is actually simple yet accurate in the endeavor that it was 

designed to fulfill. The actual architecture of the hardware is fairly simple: one switch is fixed 

underneath the heel of the subject for heel-strike detection, and a second footswitch is fixed 

underneath the forefoot. Using such technology, one may capture the timing of the following 

parameters: Initial contact, foot flat, heel-rise, toe-off and the duration of the stance phase, as 

shown in Fig. 1.9.  

 

Figure 010.9:Footswitch System Sample Output 
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The high state indicates the occurrence of foot contact while the low state indicates the absence 

of contact, which makes it fairly simple to measure the pulse durations in order to compute the 

duration of steps, strides, phases…etc. Moreover, if the double support parameters are required, 

simultaneous sensor recordings from both feet is implemented. In order to be able to visualize 

the data in real-time, process it and interpret it, wireless communication interfaces are usually 

attached to the measurement hardware so that data gets wirelessly accessed in real-time.  

As any other device, drawbacks exist, which are manifested as weak mechanical integrity. In 

fact, sensors like the footswitch are prone to getting broken at any instant due to the repetitive 

and continuous pressure load applied to it, being the subject walking or running. Despite the 

advancement of such designs by duplicating or adding thickness to the switch metals or so, this 

system is still weak and not completely reliable. However, the main advantage behind the use of 

such hardware is the minimal design complexity and the relatively compact size, making it 

embeddable in shoes and other footwear in a way not to create discomfort to the subject wearing 

it. See Fig.1.10 for a typical device configuration. 

 

Figure 01.10: In-shoe Embedded Pressure Sensors with Acquisition and Transmission Circuitry  
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1.1.3. c Instrumented Walkway 

As an additional feature to the presented footswitches that solely provide timing information, 

instrumented walkways are implemented to measure the timing and the positioning of the feet on 

the ground during gait. Fig. 1.11 shows a typical instrumented walkway along with the output’s 

illustration.  

 

Figure 01.11:Typical Instrumented Walkway 

 

The design concept behind this technology is commonly based on an electrically-conductive e.g. 

copper, aluminum, a metalic mesh or even custom conductive rubber covering a walkway, which 

acts similarly to the footswitch with added positional value to output data. Whenever  the subject 

steps on the walkway, contact is performed leading to a closed electrical loop that joins the foot 

to the conductive layer, detecting thereby the exact timing of the steps. Morevover, in order to 

determine the step and stride length, speed measurement via opto-interrruptor system is 
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measured, combined with time-related data, provides distance-related data through simple 

calculation that relates velocity to distance and time as in (1.4) 

 
  (   )    

 ( )

 ( )
   (1.4) 

Alternatively, a substitute design is commonly implemented, which functions according to the 

same concepts as the previously explained system, but having the footswitches embedded in the 

walkway itself as an array of swiches, which adds the localization feature based on the detected 

signals’ respective sensors. Pne of the other advantages of this system is the fact that data needs 

not to be transferred from the shoe-embedded footswitches to the processing and analysis unit, in 

fact, the walkway itself is the center of data acquisition that transmits the data to the processing 

and analysis unts. Of the most popular designs of that functional concept, we state the GAITRite 

system developed by Bilney et al. in 2003 [16], which is being vastly used in research centers 

and advanced clinics. 
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1.1.3 d. Electrogoniometry 

Electrogoniometry is the continuous measurement of the angle at a specific joint, providing 

thereby an output of angle per time, which aids in the illustration of the joint’s kinematics with 

the help of computer software or even the use of the output data without further manipulation to 

track joint kinematics and assess them. The sensor configuration itself is obviously termed the 

Electrogoniometer. Furthermore, if measurement is performed on more than one joint, the scatter 

plot of unit angle versus angle may sometimes be computed to assess relative joint kinematics 

resulting in an angle-angle diagram or cyclogram. 

Two main categories of Electrogoniometers are most commonly used: Potentiometer-based and 

Flexible Strain-gauge-based. 

The rotary potentiometer-type electrogoniometer as the term indicates is based on a macro-scale 

variable resistor attached to the joint under-study where any movement of the adjacent body 

segments surrounding the joint are connected in a way to have the central spindle or wiper of the 

potentiometer attached to one of the segments and the body of the potentiometer attached to the 

other segments. The sensors are attached to the joints via cuff fixation wrapped around the limb 

segment above and below the joint under test, and each potentiometer may cover a single degree 

of motion. This configuration creates a straightforward measurement system that outputs 

resistance value proportional to the joint angle.    
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Figure 1.12: Worn Triaxial Goiniometer over the Hip, Knee and Angle (Chattecx Corporation) 

 

On the other hand, the flexible strain-gauge electrogoniometer is based on the use of a flat thin 

strip of metal fixed to the adjacent limb segments across the joint under test; any strain applied to 

the metal manifested through its bending during limb movement, which is depicted in Fig. 1.13.  

 

Figure 1.13: Ankle and Knee Flexible Goniometer Illustration (Biometrics Ltd) 
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1.1.3. e. Electromyography 

Electromyograhy (EMG) is the measurement of the electrical activity of a muscle group at the 

macro-scale or specific muscle fibers at the micro-scale in form of voltage variation in function 

of time, which we call the Electromyogram (see Fig. 1.14.). The Electromyogram is in fact a 

non-stationary signal that is relatively challenging to process and analyze due to its nature in 

terms of randomness and low amplitude [17].  

 

Figure 01.14: EMG Activations for the Tibialis Anterior (TA), Soleus (SO), Rectus Femoris (RF) and Semitendinosus (ST) for the 
actuated and non-actuated leg during one full gait cycle. Raw (blue thin line) and processed (red thick) 

 

As for the contribution of EMG analysis to gait analysis, it is used to assess the contribution of 

individual muscle groups as well as synchronization in the performance of gait tasks e.g. walking 

and running [18], which is indicative of normal/pathological gait.   
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1.1.3. f. Kinematic and Kinetic/Kinematic Systems 

Kinematics is defined as the study of the geometrical description of motion in terms of 

displacements, velocities and accelerations, and it is commonly used in gait analysis to record the 

displacements and other mentioned parameters of body segments and joints e.g. linear and 

angular velocities and accelerations at specific contributing joints.  

This class of gait analysis systems provides data in form of 2D or 3D measurements depending 

on the number of used cameras that will take photographs of the subject in motion, wearing 

markers, from different angles and then save the data for further analysis. The images are 

captures at standard frame rates of which we state 50Hz, 60 Hz and 200 Hz and even greater in 

new system, and the markers may be reflective markers, active markers such as sequentially-

flashing LEDs, electromagnetic sensors e.g. coils, ultrasound transmitters and receivers. 

Concerning the assessment of such systems, they are convenient for measuring position but weak 

in determining accelerations and velocities, being computationally costly, which may be 

compensated by added accelerometers to the system to acquire accurate acceleration data e.g. 

accelerometers. In terms of resources to dig deeply into the available technologies for that class 

of systems, refer to [19]. 

In order to enhance this class of gait analysis systems, a hybrid or combined class of analysis was 

devised, which is known as the combined kinetic/kinematic analysis system. Actually, the 

kinematic aspect of it is the introduction of a force platform, being a kinetic system that 

measures forces, which are added to the kinematic data captured by the cameras or any of the 

previously enumerated technologies. This sort of systems is actually self-corrective in a way that 

the lack of details in the kinetic part is enriched by the information provided by the kinematic 

system, creating thereby a full gait analysis system.  
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1.1.3. g. Under-foot Pressure/Force Measurement 

Another method of gait analysis is presented in this section, however mentioned in the 

previously stated hybrid kinetic/kinematic systems, being the measurement of actual pressure 

applied underneath the foot. Just like all other methods, different approaches have been devised 

to provide under-foot pressure, of which we state: Floor-mounted pressure platform and shoe-

insole embedded pressure sensor array. Typical under-foot pressure values differ from activity to 

activity; 80-100 kPa while standing still, 200-500 kPa while walking, and up to 1500 kPa while 

running. The most popular of this class of systems is the force sensor system based on the 

walking of the subject across a pressure platform underneath which an array of resistive or 

capacitive strain gauge sensors is fixated. 

Another commonly used system is the Force Platform or Force Plate which measures the Ground 

Reaction Force (GRF). This class of systems is commercially available in the market (see 

Fig.1.15) but nevertheless, a multitude of laboratories and research centers have these platforms 

custom-designed to meet specific needs such as accuracy and force range.  

In fact, the database that is processed and analyzed in this thesis is based on an instrumented 

treadmill as will be discussed in later sections, which belongs to this class of force sensor 

systems.  

 

Figure 1.15: 3-axis Force Platform Illustration 
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However, the limited surface area of a force platform defies the purpose of gait analysis which is 

the analysis of the walking/running activity for a multitude of strides or gait cycles, triggering the 

innovation in this field by the creation of the Instrumented Treadmill [20]. 

In Fig. 1.16, a typical Instrumented Rreadmill’s sensor architecture is illustrated, which happens 

to be the actual system used by our research group to acquire the VGRF signals that will be 

processed and analyzed thoroughly in this thesis.  

 

Figure 010.16: Instrumented Treadmill VGRF Sensor Localization 

 

This class of measurement schemes actually relies on corner-based force sensors to create a bi- 

or tri-directional force transducer or platform. In fact, the most common force acting on the body 

is the Ground Reaction Force (GRF) which is active on the foot while the subject is standing, 

walking, or running. The resulting force vector is actually three-dimensional: Vertical (VGRF), 

Antero-posterior (APGRF) and Medio-lateral (MLGRF) [21]. A sample recording of a 3-

dimensional instrumented treadmill is shown in Fig. 1.17. 
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Figure 01.17: 3D GRF (Vertical GRF in Blue, Medio-lateral GRF in Red, Antero-posterior GRF in Green) 

 

The actual data output of such systems is distributed among 6 to 8 channels; the 6-channel 

system outputs 3 force vector magnitudes (VGRF, APGRF, and MLGRF) and 3 force moments 

referenced against the center of the platform, while the 8-channel system outputs 4 corner-based 

VGRF signals, 2 side-based MLGRF signals, and 2 front-back based APGRF signal. This output 

data gets transferred to an acquisition system that digitizes the data and gives the possibility to 

manipulate the data as follows: Individual GRF component plot, Butterfly Diagram plot, and 

Center of Pressure (COP).  
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Typically, the VGRF only is taken for further processing and analysis since it is the most 

expressed in terms of power level, and this is the reason why we decided to perform our 

computation over VGRF signals. 

More focus will be given to the VGRF signals throughout the thesis, being the main signal upon 

which the algorithms are implemented, for many reasons that will get clearer with the 

progression of this work. 

 

1.1.4 Vertical Ground Reaction Force (VGRF): 

1.1.4. a. Pattern Overview  

The VGRF, a sample of which is shown in Fig. 1.18, is very characteristic in a sense that it 

shows clear manifestations of every event within the gait cycle as depicted in Fig. 1.19. 

 

Figure 1.18: Sample 4-step VGRF Signal 
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Put into words, the VGRF signal is defined a sequence of double-peaked step-signals, each 

couple of which is termed stride, being the right-foot step and the left-foot step. The double-peak 

pattern is in fact the manifestation of the heel-strike, during which the foot is in contact with the 

ground, followed by the toe-off, during which the toes are pressing on the ground to push the 

body forward. That being stated, it is expected to have a force signal, during running, that has 

serially-defined couples of peaks, the first peak being lower in amplitude and sharper than the 

second body-pushing peak; these two peaks are termed Impact Peak and Propulsive Peak, 

respectively [22]. 

 

 

The transient peak at heel-strike, which is termed the heel-strike peak (HS) or the Impact Peak 

(IP) or even the Passive Peak (PP) is manifested as an sharp increase to a value that exceeds the 

Knee Flexion  

Partial Unloading 
of Pressure Plate 
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VGRF 

Pushoff / Toeoff 
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Longer Rise in 

VGRF 
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Heel Contact 
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Figure 1.19: Sequential VGRF Events 
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bodyweight, followed by partial unloading on the knee that drops the VGRF by a considerable 

amount, then a second and higher rise takes place at toe-off exceeding bodyweight of the subject. 

The VGRF signal has been extensively referred to as a reliable tool for the purpose of analyzing 

the gait cycle, mainly due to the ease of acquisition and the simplicity of the waveform. Actually, 

VGRF has been studied for decades in various domains e.g. walking and running biomechanics 

[23], athletics [24] and rehabilitation [25].  

1.1.4. b. Database Description 

As for this thesis, the VGRF signals were collected during a special case of running termed 

Ultra-marathon. In our research, we acquired the VGRF of fourteen male volunteers (mean _ SD: 

age 41.1 ± 8.9 years; weight 73.6 ± 8.2 kg, height 176.9 ± 5.8 cm, body mass index (BMI) 23.5 ± 

1.9 kg/m2 and body fat: 17.7 ± 4.3%). They were recruited among experienced ultra-endurance 

runners and all of them had run at least a race longer than 24 h or 4100 km. On average, they had 

15.3 ± 7.1 years of training history in running and 7.1 ± 4.4 years of ultra-endurance experience. 

They reported to run an average of 80.5 ± 11.7 km/week. Written informed consent was obtained 

from the subjects. The study was conducted according to the Declaration of Helsinki. The 

protocol has been approved by the local ethics committee (Comité de Protection des Personnes 

Sud-Est 1, France) and registered in http:// clinicaltrial.gov (# NCT 00428779). Among the 14 

subjects, 12 were able to complete the 24TR. One subject was excluded by the physician because 

of a hematoma due to the initial muscle biopsy procedure and the other one was excluded 

because of low blood pressure. Each subject was asked to run for the duration of 20 seconds 

every 2 hours for 24 consecutive hours, and the VGRF of the 20-second runs (12 recordings for 

each of the 12 subjects) were recorded and saved. The acquisition of the desired VGRF signal 

was performed using 4 force sensors located in the corners of an instrumented treadmill 
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described as previously shown in Fig. 1.16. The actual and detailed architecture of the hardware 

system, which is an instrumented treadmill, is thoroughly presented in [13].  

1.2 Blind Source Separation 

1.2.1 Background 

In the past decade or so, source separation (SS) has been the center of attention in the fields of 

Signal Processing and Artificial Intelligence (AI). The field of SS deals with what is known as 

signal mixtures that are to be separated into their independent components or sources.  

This process of SS can be categorized into two man categories: Supervised and Unsupervised. 

Supervised SS is a class of separation techniques where training information is required for the 

separation to be feasible, while unsupervised SS is the other class of separation techniques where 

no training information is required. Training information is actually known as labeled data, i.e. 

isolated sources are available a priori to train the separation system to better recognize the 

sources in the separation phase. The commonly used term denoting the unsupervised class is 

Blind Source Separation (BSS), which is a whole field of study joining a variety of mathematical 

techniques implemented to separate a mixture of sources with no a priori knowledge about the 

source-mixing system nor the sources themselves.  

The field of BSS has been going through an increasingly powerful progress in terms of 

implemented algorithms and even in the area of application. BSS is widely is used in advanced 

statistics, signal processing, neural computation and modeling, econometrics, remote sensing and 

many more areas that require discovery of underlying or hidden patterns [26]. However, the area 

in which BSS is most commonly used is speech and music processing [27], being implemented 

as an algorithm or set of algorithms aiming to separate audio mixtures or even monaural sounds 
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into their independent components e.g. beat detection, musical instrument separation, speech 

enhancement [28]…etc. Rhe technical terminology describing the separation of audio mixtures is 

Auditory Scene Analysis (ASA), which is the extraction of individual audio sources from a 

mixture of sources e.g. separation of speech from interfering background sounds and separation 

of individual musical instruments from a polyphonic ensemble [29]. And since signal and image 

processing tools and algorithms are much similar in terms of the way data is handled, BSS has 

found its way into image processing, medical imaging and machine vision [30].  

To summarize BSS applications, the main applications in which BSS algorithms are being 

implemented mainly revolve around the following fields of research: 

 Reception for single- and multi-user communications [31, 32, 33, 34] 

 Biomedical Signal Analysis e.g. Electroencephalogram (see Fig. 1.20) [35], 

Electrocardiogram [36]…etc; 

 Functional Magnetic Resonance (f-MRI) Image Processing and Analysis (see Fig 1.24) 

[37]; 

 Image Restoration [38];  

 Ultrasonography [39]; 

 Astronomical Imaging [40]; 

 Feature Extraction [41, 42]; 

 Sensor Array Data Processing [43, 44];  

 Geophysical Exploration [45]; 

 Denoising [46]; 

 Voice-controlled Machines (see Fig. 1.23) [47]; 
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 Semiconductor Manufacturing and Circuit Testing [47]; 

 

 

Figure 01.20: BSS in MEG Decomposition and Brain Activity Analysis 

 

 

Figure 01.21: BSS in Hyperspectral Imaging 
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Figure 01.22:BSS in Electroencephalography (EEG) 



  30 
 

 

Figure 01.23: BSS in Speech/Sound Processing 
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Figure 01.24: BSS in f-MRI Image Processing 

 

Figure 1.25: BSS in Facial Imaging for Non-contact Heart Rate Measurement 
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1.2.2 Problem Formulation 

BSS problems are governed by a general mathematical definition described in (1.5) below: 

  ( )     ( )   ( )     
( )  (1.5) 

which is a random mixture of underlying source signals (1.6): 

  ( )     ( )   ( )    
( )   (1.6) 

according to the following linear representation (1.7): 
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   ( )    ( ) + u(t) 

 

(1.7) 

where A is the unknown mixing matrix of dimension No x Ns, t is the time or sample index and u 

is additive noise. 

BSS is actually implemented to estimate the original sources as well as the mixing matrix having 

no prior information, i.e. relying solely on the observations. Noteworthy, the presented 

mathematical model for BSS is nothing but a simplification and idealization of the linear 

approximation of the model, which in real life applications is too ideal; other major factors play a 

role in adding complexity to the mixing process e.g. noise, propagation delay of signals, which is 

why BSS is still an ongoing field of research being in continuous progress.  
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1.2.3 BSS Method Categorization 

 

Upon reviewing available literature in the field of BSS, one may categorize the problems into 

three main classes according to three main criteria: Linearity, Time-delay and Determinism. This 

classification leads to the following categories: Linear versus Non-linear BSS, Instantaneous 

versus Convolutive BSS, and Overcomplete / Overdetermined versus Underdetermined BSS. 

1.2.3. a. Linearity in BSS Problems 

The most commonly and widely researched field of BSS is the linear time-invariant (LTI) model, 

and that is due to the analysis simplicity and explicit separability. The Linear BSS system is 

based on the assumption that the source mixture is represented by a linear combination as shown 

in (1.8). 
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(1.8) 

The assumptions surrounding this method may be summarized as follows: 

a. The signals xi(t) are stationary and zero-mean 

b. The sources si(t) are statistically independent; 

c. The noise components ui(t) are statistically independent of the sources; 

Each of the assumptions will be explained and covered in later sections. Noteworthy, unless 

additional information is supplied as a priori characteristics of the sources, the scaling and order 

of the separated sources will remain imprecise and confusing, which is normal in linear systems 
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where multiplication is no longer commutative and the mixing coefficients according to which 

the mixing process took place are non-evident.   

As for the Non-linear model, a more realistic environment is considered, where the observed 

signals are non-linear distorted signals. Despite the fact that literature holds a large number of 

studies and proposed algorithms on Linear BSS, nonlinear BSS has not been well developed, a 

review of which is presented in [48]. Linear BSS techniques have shown their inability to 

separate the sources which are non-linearly mixed, which led to the emerging of the Non-linear 

techniques, of which we state Post Non-linear (PNL) [49] and Bi-Linear (or Linear Quadratic) 

mixtures [50], Convolutive Post Non-linear Mixtures [51] and Conformal mappings [52]. The 

mathematical representation of such Non-linear models is stated in (1.9) below: 

  ( )   ( ( )) (1.9) 

where f:      
is the unknown non-linear mixing function, N and M are the number of 

source and observation signals, respectively. The BSS problem may also be written in the 

following form (1.10): 

  Find g such that:  ( ( ))     ( ( ( )))     ̂( ) 

 

(1.10) 

where g:       
 is the separating function to be estimated and x(t) the vector of 

reconstructed sources, which is the output of the BSS algorithm. 

1.2.3. b. Mixing Delay in BSS Problems 

Regarding the time-wise mixing aspect of the sources, BSS may be oriented to deal with sources 

that are simultaneously mixed i.e. with the absence of time delays, which defines the 
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Instantaneous Mixture Model, or to deal with mixtures that were formed out of different source 

signals in form of combinations of several time-delayed versions of the sources themselves 

and/or mixed signals themselves which defines the Convolutive Mixture Model (CMM).  

In the simpler mixing models, the mixture is regarded as the sum of differently weighted source 

signals, however in most real-world applications e.g. acoustics, the individual sources are 

weighted and delayed contributing to the sum or mixture with multiple delays indicating for 

instance the manifestation of the multiple paths by which acoustic signals propagate to a 

microphone. Such mixtures are termed convolutive mixtures that vary in the number of delay 

elements, which are application-specific, reaching thousands of delay elements in acoustics. The 

mentioned acoustic signals might be speech or music or underwater sonar signals, radio signals 

captured by antenna arrays as mixtures, astronomical data, and functional brain imaging data and 

bio-potentials. 

The mathematical mixing model of the Instantaneous Mixture Model is shown in (1.11) 

  ( )    ( )   ( ) (1.11) 

This model is also known as the delayless (linear) mixture model, s.t M=M0 is an MxN matrix 

containing the mixing coefficients.  

As for the delayed sources’ case, assuming a reverberation-free environment with propagation 

delays, the mixing model may be represented as follows in (1.12): 

 

  ( )   ∑      (     )    ( )

 

   

 (1.12) 

Where    is the propagation delay between source n and sensor m. 
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 ( )   ∑    (   )   ( )

   

   

 (1.13) 

However, in the derivation of many algorithms, for simplification purposes, the environment is 

considered to be noise-free, which reduces to (1.14): 

 

 ( )   ∑    (   )

   

   

 (1.14) 

 

1.2.3. c. Determinism in BSS Problems 

As for determinism, it is actually a classification criterion for BSS problems related to the 

comparison of the sources’ number N against the observations’ number M. That being said, three 

distinct situations are possible:  

 N > M: The number of sources is greater than the number of observations. 

Such systems are termed over-determined systems and are easily solved using linear BSS 

methods, the mixing matrix being invertible. 

 N = M: The number of sources is equal to the number of observations. 

Such systems are termed determined systems and are also easily solved using linear BSS 

methods, the mixing matrix being an invertible square matrix. 

 N < M: The number of sources is greater than the number of observations. 
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Such systems are termed over-determined systems and may not be solved using linear methods 

even under perfect knowledge of the mixing system, i.e. the sources may never be recovered via 

linear methods. 

The mentioned issue concerning under-determined systems leads us to the field of single-channel 

BSS (SCBSS), being the hardest problem to solve in BSS, having a single observation of the 

mixture data and requiring the separation of the multitude of sources, whether instantaneously or 

in a convolutive manner. This class of BSS problems will be discussed in the next section.  

1.2.4 BSS Process 

 

1.2.4.a. The Mixing Model 

 

As previously stated in terms of classification of BSS problems, convolutive mixtures and 

instantaneous mixtures are the two classes to which all mixtures belong according to the delay 

between source mixing, which implies two different mixing models.  

Firstly, the convolutive mixture is modeled as shown in (1.15): 

 

  ( )  ∑ ∑       (   )    ( )

   

   

 

   

 (1.15) 

 

where s(t) = (s1(t),…,sN(t)) is a mixture of N source signals at time index t assumedly received at 

a sensor array of M sensors, x(t) = (x1(t),…,xM(t)) are the received mixture signal, and amnk are 

the mixing filter coefficients. While being a time-variant system with variable coefficients, 

simplicity of calculations imposes the assumption of stationarity.  

In linear terms i.e. matrix notation, the current model may be represented as in (1.16): 
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 ( )  ∑    (   )   ( )

   

   

 (1.16) 

 

where Ak is an M x N matrix containing the k
th

 filter coefficients and v(t) is the M x 1 noise 

vector. 

The instantaneous mixing model is considered to some extent a special case of the convolutive 

mixture model, assuming all source signals are captured by the sensors simultaneously, 

simplifying the model to (1.17): 

  ( )    ( )   ( ) (1.17) 

 

where A=A0 is an M x N matrix containing the instantaneous mixing coefficients. 

Another simplification of the mixing model is the delayed sources model that assumes a 

reverberation-free environment with propagation delay, represented as follows in (1.18): 

 

  ( )  ∑      (     )    ( )

 

   

 (1.18) 

 

where kmn is the propagation delay between the source and the signal n and observation m. 

Assuming an ideal environment where no noise coexists with the signals of interest, the model 

becomes (1.19): 

 

 ( )  ∑    (   )

   

   

 (1.19) 
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However, it is often assumed that the number of observations is greater or equal to the number of 

mixed sources, which may be solved using the techniques described above with minimal 

complications, and these systems are called overdetermined mixing systems. On the other hand, 

if this assumption is not fulfilled, i.e. the number of observations is less than the number of 

sources, the system is termed underdetermined and the linear methods are no longer sufficient to 

solve the problems and separate the sources.   

As previously stated, a common problem simplification scheme is implemented in the pre-

separation phase, which is the domain transformation e.g. from time domain to frequency 

domain, leading to a system modeled as follows in (1.20): 

  ( )   ( ) ( )   ( ) (1.20) 

 

where ω is the angular frequency s.t. ω =2πF, A( ) is a complex M x N matrix, X( ) and V( ) 

are complex M x 1 vectors, and S( ) is a complex N x 1 vector.  

The domain transformation from the time domain into the frequency domain is implemented 

using the Fast Fourier Transform (FFT), which is a faster implementation of the Discrete Fourier 

Transform (DFT) within a T-point user-set time segment with a sliding window over the entire 

signal of interest (1.21).  

  

 (   )     (  ( )    (     ) ) 

 (   )  ∑  ( ) (   )       

   

   

 

(1.21) 
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where the window function ω(τ) is chosen to minimize band-overlap caused by narrow time gaps 

in between windows.  

For simpler modeling and subsequent computation, the system may be seen in form of blocks 

instead of point-by-point form. The block would consist of T samples as shown in (1.22): 

  

 ( )     ( )         (     ) 

 (   )     (   )         (   ) 

 (   )     (   )         (     ) 

 

(1.22) 

This leads to an M-dimensional output sequence being written as an MT x 1 vector as in (1.23): 

  ̂( )     ( )   (   )     (     )   (1.23) 

where   ( )       ( )     ( )  .  

In a similar fashion, the N-dimensional input sequence may be represented as an N(T+K-1) x 1 

vector as in (1.24): 

  ̂( )     ( )   (   )     (       )   (1.24) 

 

This implies the convolutive model representation shown in (1.25): 

  ̂( )   ̂ ̂( )   ̂( ) (1.25) 

where A has the following form (1.26): 
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] (1.26) 
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From a mathematical perspective, matrix A is termed block-Toeplitz matrix of dimensions MT x 

N(T+K-1). This representation seems from a first superficial look like the equation describing the 

instantaneous mixture model, which is not true knowing the exact block structure of the block 

matrices that carry the convolutive aspect i.e. time lags within. 

 

1.2.4. b. The Separation Model 

The separation of sources is the ultimate purpose behind BSS methods, which is in more detail 

the process of finding an estimate y(t) of the original source signals s(t). One way to go for this 

endeavor is to find the mixing filters Ak in an explicit manner, which is not always necessary. 

Instead, one might sufficiently estimate what is termed separation filters Wl aiming to mixing-

induced cross-talk, i.e. isolating the sources by eliminating the mixing effect. The stated filter 

may take one of two forms as is known in Digital Signal Processing (DSP) basics: Finite Impulse 

Response (FIR) and Infinite Impulse Response (IIR), with or without feedback, respectively.  

One of two structures is the feed-forward structure, where the FIR separation system is 

represented as in (1.27): 

 

  ( )  ∑ ∑      (   )

   

   

 

   

 (1.27) 

Or in a matrix form as in (1.28): 

 

 ( )  ∑    (   )

   

   

 (1.28) 

And in the block Toeplitz form, the separation system is expressed as in (1.29) and explained in 

more detail in [53]: 
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  ̂( )   ̂ ̂( ) (1.29) 

The z-domain representation of the described separation system becomes (1.30): 

  ( )   ( ) ( ) (1.30) 

Noteworthy, the ultimate purpose behind BSS is the recovery of sources that have no 

interference from other sources in the mixtures, and not necessarily an identical version of the 

original source signal before the mixing process. This is where the concept of filters takes role, 

the recovered source signal being a filtered version of the original source as follows in (1.31): 

  ( )   ( ) ( ) ( )   ( ) ( ) (1.31) 

where A(z) is the z-domain representation of the filter matrix, and G(z) is the combined mixing 

and filtering matrix. 

In fact, the separation is considered successful when the interference-free signals are recovered 

even if they turn out to be permuted and scaled versions of the original source signals, leading to 

the following representation (1.32): 

  ( )    ( ) (1.32) 

where P is the permutation matrix, and 𝛬 is a diagonal matrix holding the scaling filters as its 

diagonal. 

Hence, if A(z) is accurately identified, and W(z) is chosen to be the inverse of A(z), then (z) 

would be an identity matrix and the source signals would be exactly recovered. And this is where 

the difference between blind source identification and BSS is manifested; in source separation, it 

is sufficient to recover convolved versions of the original sources, i.e. no restrictions on (z). 

A summarizing table of the described methods is presented, which is shown in Fig 1.26. 
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Figure 01.26: Summarizing Table of Source Separation Processes and Separation Models 

While the system described above is a feed-forward system, the other class of systems is the 

feedback system implemented via Infinite Impulse Response (IIR) filters that are precisely used 

to invert the effect of Finite Impulse Response (FIR) filters. The IIR filter-based structure of 

unmixing is presented in (1.33): 

 

  ( )    ( )  ∑ ∑       (   )

 

   

   

   

 (1.33) 

As presented in (1.33), the number of sources is considered to the number of observations, which 

we already explained as being a determined system, s.t. unml are the IIR filter coefficients. 

In matrix form, (1.33) is represented as follows in (1.34): 

 

 ( )   ( )  ∑ 

   

   

( ) (   ) (1.34) 

 And in z-domain representation, (1.34) is represented as follows in (1.35), provided (I + U(z))
-1

: 

  ( )  (   ( ))
  

 ( ) (1.35) 
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In some cases, the feed-forward and the feedback structures are combined in a hybrid network, in 

which a feedback network follows a feed-forward network. 

1.2.4.c.  The Separation Criteria 

As previously discussed, BSS algorithms are based on certain assumptions that are considered 

the building block that leads the way in terms of sources and mixing system. Considering the 

sources themselves, independence and decorrelation are the main criteria according to which the 

separation takes action. The two main classes of methods implemented in BSS are Higher-order 

statistics (HOS) and Second Order Statistics (SOS).  

In Table 1-1, a summary of the classified separation criteria is presented: 

Table 1-1: Separation Criteria 

Class Criterion Reference 

HOS 

4
th

 Order 

Statistics 

[54] 

Non-linear Cross-

moments 

[55] 

Information 

Theoretic 

[56] 

SOS 

Minimum-phase 

Mixing 

[57] 

Non-stationarity [58] 

Cyclostationarity [59] 

Non-whiteness [60] 
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 Higher Order Statistics: 

The core element and factor upon which this class of BSS is based is statistical independence of 

the sources. Statistical dependence may be computed at the 2
nd

 order and the 4
th

 order between 

model signals, and it is generally expressed as follows in (1.36): 

  [  ( )     (   )   ] 

         {     }    

(1.36) 

where E[.] is the expectation, assuming non-Gaussian sources which have null higher cumulants. 

 4
th

 Order Statistics: 

While the minimization of cross-moments is required for effective separation, 

most algorithms do not aim to minimize all cross-moments, rather, they aim to 

minimize 2
nd

 and 4
th

 order dependence between the source signals by minimizing 

cross-moments and cross-cumulants. This is actually manifested through the off-

diagonal elements of cross-cumulants in case of statistical independence of 

signals. This method has been implemented by a wide number of researchers in 

case of convolutive mixtures, the most widely used method being the Joint 

Approximate Diagonalization of Eigenmatrices (JADE) algorithm for complex 

valued signals in the frequency domain. On the other hand, 2
nd

 and 3
rd

 order 

cumulants were studied less commonly to deal with asymmetrical signals. 

Moreover, a common parameter in the 4
th

 order, which is the kurtosis, is also 

commonly referred to for the separation of convolutive mixtures, as in [61]. 
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 Non-linear Cross Moments: 

Other algorithms make use of HOS indirectly for the separation of convolutive 

mixtures via non-linear functions. The condition assessed by this type of 

algorithms is modeled as follows in (1.37): 

  [ (  ( ))  (   (   ))   ] (1.37) 

where f(.) and g(.) are odd non-linear functions. 

The separation of convolutive mixtures using this type of algorithms is -

accomplished upon computation of the Taylor expansion of the non-linear 

functions, which lead to the capturing of the higher order moments through which 

the statistical independence is assessed. Originally, this method was implemented 

on convolutive mixtures, as in [62], which got enhanced in further stages in [63] 

to cover instantaneous mixtures as well.  

 Information Theoretic: 

Another way to interpret statistical independence is the assessment of the 

probability density function (PDF). In fact, independence of model sources y 

manifests into the following joint PDF (1.38): 

  ( )  ∏ (  )

 

 (1.38) 

The above-stated equality implies the absense of mutual information between 

model sources yn. From another perspective, the information theoretic methods 

are based on entropy maximization in each of the variables, i.e. having the sum of 

each variable’s entropy equal to the total joint-entropy in y. This also means that 
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no mutual information is carried by the variables, which implies their mutual 

independence. If we were to state the most popular algorithm that is based on the 

current principle of entropy maximization, Infomax is robust algorithm designed 

by Bell and Sejnowski [64] characterized by effective separation and fast 

convergence. This algorithm may also be derived and implemented using (1.38) 

based on the principle of Maximum Likelihood as in [65] or even the Kullback-

Leibler divergence between the empirical distribution and the independence 

model as in [66].The concept of divergence measures and optimization shall be 

discussed in more detail in the upcoming chapters. In such methods, the PDF 

ps(sn) of the sources sn should necesarrily be assumed or modeled, which leads to 

the capturing of the HOS. The PDF is thereby classified into parametric or non-

parametric, being based on an assumption or on  estimation from real data, 

respectively. Most methods are actually based on parametric representations of 

the PDF, however, some major work has been implemented based on non-

parametric representations. The resulting analytic non-linear functions are derived 

with (1.39): 

 
 ( )   

    (| |)

 | |
      ( ) (1.39) 

 

where p(Y) is the probability density of the model source Y  C. 

In fact, many algorithms were derived based on (1.39), using the ML approach 

directly  as in [67], or using closely related probabilistic approaches e.g. 

Maximum a Posteriori (MAP) methods where prior information about the model 
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parameters are considered as in [68]. Other closely related methods e.g. Hidden 

Markov Models (HMM) and Bayesian approaches were left unexplained in this 

chapter because of the fact that BSS is our main target and those methods are 

mainly supervised SS methods that required significant training on prior isolated 

source signals. 

 Second Order Statistics: 

Having explained the concept behind HOS-based BSS, it should be stated that not all cases 

require that amount of complexity; in some situations, SOS are sufficient to do the job. Actually, 

the criterion of separability that is considered in SOS is simply the uncorrelatedness of the source 

signals, which is less computationally demanding than mutual independence and entropy 

assessment. The assumptions on which these methods are stationarity-related: non-stationarity or 

cyclostationarity (CS) and minimum-phase mixing. The assumptions are necessary for any SOS 

technique that is not sufficient by itself, but that does not deny the fact that SOS possess some 

considerable advantages such as reduced computational complexity, reduced noise and outlier 

sensitivity, and reduced requirement for data to compute estimations, which is detailed in [69]. 

 Minimum Phase 

Minimum phase mixing states that two source signals are separable by 

decorrelation if the mixing system is minimum phase, meaning the FIR coupling 

filters are to be strictly causal and have stable inverses. This concept is detailed in 

[70]. 
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 Non-stationarity 

Non-stationarity of the signals is used as well as a separability criterion in many 

applications e.g. speech, which is a non-stationary signal on time scales greater 

than 10 ms as stated in [71]. 

In fact, non-stationarity is a statistical state of a signal having varying statistics 

over time, which turned out to be a useful criterion in the separation process, and 

it was first proposed that the minimization of estimated cross-powers within 

locally stationary segments would lead to sufficient separation conditions. Of 

these methods we state Joint-diagonalization algorithms that extend to 

instantaneous mixtures as well as convultive mixtures, in both the time domain  

and the frequency domain. Noteworthy, the terms uncorrelatedness and whiteness 

are used interchangebly. Whiteness is achieved, in a linear algebra point of view, 

by minimization of the off-diagonal cross-powers, which translates into the 

following cost function in the frequency domain (1.40): 

   ∑‖   (   )   (   )‖
 

   

 (1.40) 

where y(w, t) is an estimate of the cross-power spectrum of the model sources, 

assumebly diagonal. This cost function holds two variables, time and frequency, 

and is to be minimized w.r.t. W(ω) and y(ω, t) subject to one or more 

normalization constraint.   
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Multiple variations on this algorithm were implemented,whether by changing the 

domain of analysis into the time domain [72], or by adding more constraints e.g. 

combined non-stationarity, non-gaussianity and non-whiteness as in [73]. 

 Cyclostationarity 

As for cyclostationarity (CS), it is a considerable criterion in BSS, where the 

signals’ cumulative distribution is invariant w.r.t time shifts of period T and its 

multiples. In simpler words, cyclostationarity is a statistical state in which the 

statistical parameters of a signal are cyclically or periodically variable w.r.t. time. 

To be more specific, CS is assessed on two levels: wide-sense CS and strict-sense 

CS.  

When the first order statistical parameters are periodic with period T, the signal is 

said to be cyclostationary of 1
st
 order (1.41): 

    ( )     ( )     (   )    (   ) (1.41) 

 

where   ( )is the 1
st
 order moment, i.e. expected value, which is periodic with 

period T. 

When 2
nd

 order statistical parameters are periodic with period T, the signal is said 

to be cyclostationary of 2
nd

 order (1.42): 

    (   )     ( )   (   )    (       ) (1.42) 

where   (   ) is the 2
nd

 order moment known as the autocorrelation function 

which is periodic with period T. 
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One example of CS signals is a sinusoidal signal with random amplitude e.g. 

communications signals and voiced speech as in [74], and more importantly gait 

signals like the walking VGRF and running VGRF as detailed in [75] and as will 

follow in this work. 

The CS property has been extensively studied in the field of BSS to explicitely 

recover mixed sources. Some researchers even used combined features like 

cyclostationarity and sparseness which forms a cyclosparse system as termed by 

Sabri et.al in [76] and defined as follows: “The signal object of this study is 

assumed to be cyclostationary with random impulses i.e. consists of d periodic 

random impulses where d represents the number of impulses by cycle. On the one 

hand, only few elements are nonzero by cycle, so the signal is considered to be 

sparse. Furthermore, the positions of these nonzero elements (impulses) are 

cyclic/periodic i.e. they keep the same positions whatever the cycle. 
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Figure 1.27: Sample Cyclosparse Signal (courtesy Sabri et al.) 

In Fig. 1.27,   is the number of effective impulses in the period   with   , and    being their 

amplitude and delay factors respectively.   denotes the number of periods per signal and the 

sub-index   stands for the period index, so   , represents the impulse with    as delay factor in the 

i
th

-period. ( ) represents the random noise of the system. 

 Non-whiteness 

Moreover, non-whiteness is also a criterion used in BSS algorithms, implying the 

presence of temporal correlation between source signals e.g. acoustic signals, 

which is a considerable property that has many advantages. Of these advantages, 

we state the possible reduction of a convolutive mixture problem to an 

instantaneous mixture problem, with added constraints of course, as in [77].   
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CHAPTER 2 

VGRF PROCESSING AND ANALYSIS 

2.1 Pre-processing 

Before any processing is performed on any sort of signal, and upon acquisition, a pre-processing 

phase is mandatory for reasons that shall become clearer throughout this chapter.  

To be more specific, VGRF signals that form the core of our database require delicate and 

customized pre-processing before any processing or analysis may be reliably performed. That 

being said, the purpose behind the pre-processing phase is the preparation of the datasets or 

studied signals by precise manipulation to have them custom-ready for particular planned 

analysis techniques to be performed in upcoming phases. 

Going deeper into the building blocks of the pre-processing phase, three main steps are most 

commonly referred to in order to have any dataset ready for processing and analysis, summarized 

as follows: sampling, segmentation and labeling, as shown in Fig. 2.1. 

 

 

Pre-processing 

 

Sampling 

 

Segmentation 

 

Leg-specific  

Segmentation 

 

Step-specific 
Segmentation 

 

Labeling 

Figure 2.1: Pre-processing Phase Chart 
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2.1.1 Sampling 

In Signal Processing, sampling is the process of reduction of a continuous-time signal to a 

discrete-time signal, i.e. the conversion of a continous dataset to a sequence of samples forming 

thereby a dataset of samples separated from each other by a precise period of time termed the 

sampling time Ts, hence a sampling frequency fs = 1 / Ts. Shanon states: 

“If a function x(t) contains no frequencies higher than B hertz, it is completely determined by 

giving its ordinates at a series of points spaced 1/(2R) seconds apart.”. 

When the time interval between two consecutive samples is too high, imperfections known 

as aliasing are exhibited during reconstruction. Modern statements of the theorem are sometimes 

careful to explicitly state that x(t) must contain no sinusoidal component at exactly frequency B, 

or that B must be strictly less than ½ the sample rate. The two thresholds, 2B and fs/2 are 

respectively called the Nyquist rate and Nyquist frequency. And respectively, they are attributes 

of x(t) and of the sampling equipment. The condition described by these inequalities is called 

the Nyquist criterion. The symbol T = 1/fs is customarily used to represent the interval between 

samples and is called the sample period or sampling interval. And the samples of function x(t) 

are commonly denoted by x[n] = x(nT) (alternatively "xn" in older signal processing literature), 

for all integer values of n. 

In particular, VGRF signals possess a frequency content that varies from activity to activity; in 

an increasing order of maximum frequency, VGRF signals are classified as follows: walking, 

speed-walking and running. The relationship between the frequency content of the VGRF signal 

and the activity is clearly the variation in speed, i.e. walking is performed in slower step rate than 

speed-walking which in its turn is slower in step rate than running. Normally, the range of 

https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Aliasing
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Nyquist_rate
https://en.wikipedia.org/wiki/Nyquist_frequency
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relevant data including stride rate and step rate is bounded by a maximum frequency of 5 Hz 

meaning 280 steps per minute,which is the equivalent of 4.7 steps per second. However, the 

pattern of the VGRF signal especially during running activities shows a transient high-frequency 

spike as described earlier by the Impact Peak, which is the manifestation of the heel-strike 

regardless of the running speed. That being said, in order to determine the optimal sampling 

frequency for running VGRF signals, the periodogram of that signal shall be computed, 

describng thereby its detailed frequency content, a sample of which is shown in Fig. 2.2. 

The algorithm used to compute the Fourier spectrum was the Welch Periodogram that makes use 

of the Fast Fourier Transform (FFT) algorithm to generate the Power Spectral Density (PSD) of 

the analyzed signal. A fast Fourier transform (FFT) is an algorithm that samples a signal over a 

period of time (or space) and divides it into its frequency components. These components are 

single sinusoidal oscillations at distinct frequencies each with their own amplitude and phase.  

 

Figure 2.02: Sample DFT Computation 
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An FFT algorithm computes the discrete Fourier transform (DFT) of a sequence, or its inverse 

(IFFT). The Fourier analysis converts a signal from its original domain to a representation in 

the frequency domain and vice versa. Hence, an FFT rapidly computes such transformations 

by factorizing the DFT matrix into a product of sparse (mostly zero) factors. 

 

Figure 2.3: FFT Flow Chart 

 

 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/DFT_matrix
https://en.wikipedia.org/wiki/Sparse_matrix
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In the resulting periodogram (see Fig. 2.4.), a series of neighboring peaks in the low-frequency 

domain, at frequencies less than 30 Hz, are present in a cyclic fashion, which was analyzed as a 

marker for cyclostationarity [75]. The stride rate (1.4 Hz) and the step rate (2.8 Hz) both lie 

along with their harmonics in the form of spectral lines. On the other hand, noticeable spectral 

activity is present in the high frequency domain between 100 and 180 Hz suspected to be system 

noise, and at 250, 300, 350 and 450 Hz which are the manifestations of the mechanical resonance 

of the instrumented treadmill, which is usually disregarded since it does not carry subject-related 

biomechanical information. However, the detailed filtering technique adopted in our work will 

be detailed in the processing section. 

 

Figure 2.04: VGRF Welch Periodogram in the frequency range [0:50] 
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That being described, it is noteworthy to state the reason behind the computation of the 

periodogram of the signal before the segmentation of the signal, which was theoritized by 

Nyquist. The Nyquist theorem in sampling is actually the core of the sampling, aiming to prevent 

any undersampling of the signals, leading thereby to missed data and erroneous patterns, and it is 

governed by (2.1): 

           (2.43) 

2.1.2  Segmentation 

Segmentation is defined as the division of a signal into a sequence of discrete segments of finite 

length that lie in between important events. In case of VGRF, segmentation may take two levels 

based on the eventual analysis techniques and purpose of the study. On a first level, in case the 

VGRF is measured via force platform or an instrumented treadmill, as described in previous 

chapters, the acquired data takes the form of a force vector in function of time such that the 

contribution of both legs is simultaneously recorded. In case a general overview of the subjects’ 

gait is desired, a combined-leg dataset is good enough, however, if leg-specific analysis is to be 

performed e.g. for the assessment of inter-leg symmetry as in [78], leg-specific separation is 

required. On the other hand, if the assessment of gait consistency, balance or fall predicition is 

desired, step-specific segmentation is required generating a set of isolated steps to be 

individually assessed and compared. The main branching of the stated concepts is shown in Fig. 

2.5.  
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Figure 2.5: VGRF Segmentation Diagram  

 

2.1.2.a  Leg-specific Segmentation: 

As previously stated, the segmentation of any signal is to be customized based on the desired and 

intended analysis. In fact, signals of the sort of the instrumented treadmill output carry a 

combined force pattern showing the manifestations of the entire gait cycle, left and right leg 

activity, which is of great advantage in most cases except when an assessment of the inter-leg 

symmetry is aimed for. In cases where the analysis requires a comparative aspect between leg-

specific VGRF signals, the separation of the signals becomes mandatory for reliable analysis. 

For that reason, a simple yet effective and efficient algorithm was designed to adaptively 

separate the leg-specfic VGRF patterns based on the concept of peak detection and accurate 

time-localization of rising and falling edges with maximum care to local maxima avoidance. The 

details of the algorithm are stated below as well as a graphical representation of the process (see 

Fig.  2.6.). 

Segmentation 

Leg-specific Step-specific 
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Figure 2.06: Graphical Representation of the Leg-specific Segmentation Process 
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Algorithm 1: Left-Right Leg VGRF Isolation 

Input: (1 x N)-vector VGRF 

Output: Two (1 x N)-vectors: leg1_VGRF and leg2_VGRF 

Procedure: 

1.    Filter VGRF using a smoothing 4
th

 order Butterworth low pass filter; 

2.    Find the propulsive peaks after setting minimum peak height and minimum peak distance; 

3.    Set a 5% threshold of the smallest peak; 

4.    Compute the difference between filtered_VGRF and threshold; 

5.    Set leading_edge_found flag to 0; 

6.    Set j to 0 and k to 2; 

7.    Initialize leg1_VGRF=VGRF; 

8.    Initialize leg2_VGRF = VGRF; 

9.    for i  1 to (N-1) do 

repeat 

if (leading_edge_found = 0 and difference(i)<0 and difference(i+1)>0) 

  leading_edge_found=1; 

    j=j+1; 

   step_edges(j)=i; 

  end 

if (leading_edge_found  = 1 and difference(i)>0 and difference(i+1)<0) 

  leading_edge_found=0; 

    j=j+1; 

   step_edges(j)=i; 

  end 

10. Locate the midpoints between respective falling and rising step_edges; 

11. Adjust leg1_VGRF by zero-padding it between step_edges in a step-alternating fashion; 

12. Set leg2_VGRF = VGRF – leg1_VGRF; 
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All VGRF signals of our Ultra-marathon database underwent the leg-specific separation 

successfully, which doubled the database and gave it more specificity for more advanced 

analysis. Samples of the original VGRF signals and leg-specfic VGRF signals are shown in Fig. 

2.7. 

 

Figure 2.7: Graphical Representation of a Sample Leg-separated VGRF Signal 
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2.1.2.b  Step-specific Segmentation 

Moreover, in order to have the chance to exploit other major aspects of VGRF analysis, 

regardless of the leg-specficity, the evolution of VGRF parameters from step to step is indicative 

of the progression of biomechanical and physiological manifestations if accurately analyzed, of 

which we state: fatigue, injury, stability…etc. For that reason, we designed an algorithm that 

takes in a raw VGRF signal as a time vector and return a series of concatenated vectors 

representing successive steps performed by the subject/athlete, allowing us to analyze the run on 

a step-basis and track the progression of the above-mentioned parameters. The detailed 

description of the designed algorithm is explicitely presented in Algorithm 2 below, as well as a 

graphical representation of the separated steps in Fig. 2.8.  

Algorithm 2: Step-specific VGRF Segmentation 

Input: (1 x N)-vector VGRF 

Output: K (1 x 
 

 
)-vectors: step1_V   … stepK_VGRF 

Procedure: 

1. Determine initial rising edge and final falling edge; 

2. Locate rising edge above slope threshold indicating index of the beginning of the step; 

3. Set a minimum time delay in between edges; 

4. Locate falling edge followed by near-zero slope indicating index of ending of step; 

5. Segment and save the step in between indeces as Step1; 

6. Repeat until reaching the last point of the VGRF vector; 
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Figure 2.8: Graphical Representation of a Sample Step-separated VGRF Signal 

Once we have separated the steps and stored each step in a time vector, the average step pattern 

may be computed by superposition, zero padding of the left and right tail  and averaging. This 

process is  optional in case an overall perspective of the VGRF signal is required to track inter-

subject parameter variability or the progression of features in function of time. A sample of the 

mean VGRF pattern is shown in Fig. 2.9.  below,  
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Figure 2.9: Mean step-VGRF at the beginning of the Ultra-marathon (blue) and at the end of the Ultra-marathon (black dashed 
line)  
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2.2 Processing 

While signal processing encompasses a multitude of techniques implemented for different 

purposes, we will be focusing on the filtering of VGRF signals. In fact, having discussed the 

nature of the frequency content of the running VGRF signals, we realized the presence of two 

distinguishable peaks or patterns of different frequency levels; the heel-strike transient (HST) or 

impact pattern is of higher frequency that the propulsive pattern and the propulsive pattern being 

a smooth and relatively prolonged pattern. Moreover, the mechanical aspect as well as the 

electronics aspect of the measurement hardware i.e. instrumented treadmill is a noise-susceptible 

environment that should be accurately dealt with. Just like any other processing technique, 

under-filtering the signals would keep high noise levels that corrupt the VGRF-related pattern, 

while on the other hand, over-filtering the signals would remove the transient peak and all sharp 

edges that could possibly carry useful data.  

Upon review of the existing literature in that matter, the vast majority of researchers filtered the 

VGRF signals using simple low-pass filters aiming to remove high-frequency noise e.g. 

electronic noise from circuitry, surrounding electromagnetic waves’ interference, treadmill’s 

motor noise…etc. Iowever, imprecise low-pass filtering affects the impact pattern which is 

crucial for subsequent analysis that shall be revealed in later sections. Other researchers 

implemented more advanced techniques e.g. wavelet de-noising and total variation filtering [79], 

which goes back to the same concept of cancelling out a complete range of frequencies assuming 

it is nothing but noise or undesired data. 
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Figure 2.10: Illustrated Over-filtering of VGRF 

That being cleared out, the need for a customized filtering technique in such sensitive cases is 

obvious, and for that endeavor we decided to implement the spectral subtraction technique. 

Spectral subtraction is a denoising method based on the restoration of the power spectrum or the 

magnitude spectrum of a signal buried in noise via subtraction of an estimate of the average 

noise spectrum from the noisy signal spectrum. Commonly, the magnitude or power spectrum of 

the noise estimated from the segments or periods of time where the signal of interest is definitely 

absent and only the noise is present. It is assumed that noise is stationary or slowly varying, and 

that the noise spectrum is more or less invariant from inactivity period the other. Being the 

ultimate goal, the restoration of the time-domain signals is performed through estimation of the 

instantaneous magnitude spectrum along with the phase of the noisy signal, and then transformed 

via an inverse discrete Fourier transform (IDFT) to the time domain.  
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Figure 2.11: Spectral Subtraction Process Illustration 

In terms of computational complexity, spectral subtraction is relatively inexpensive. However, in 

terms of accuracy, the random variation of noise w.r.t. time causes the spectral subtraction to 

result in negative estimates of the short-time magnitude or power spectrum. The magnitude and 

power spectrum are in fact non-negative variables, implying the mapping of their estimates into 

non-negative values. The nonlinear rectification process leads to the distortion of restored 

signal’s distribution, and this becomes more visible and significant with the decrease of the 

signal-to-noise ratio.  

Just like supervised and unsupervised systems, this class of filtering may be based on a priori 

knowledge of the noise spectrum when noise is separately available, or may be totally 

unsupervised in the sense that the “pause” or inactivity periods’ spectra are computed and 

subtracted from the overall signals’ spectra. 

In fact, in many applications, including ours, the only signal that is available is the noisy signal. 

In these situations, it is not possible to cancel out the random noise, but it may be possible to 

reduce the average effects of the noise on the signal spectrum. The increase in the mean of the 

signal spectrum can be removed by subtraction of an estimate of the mean of the noise spectrum 

from the noisy signal spectrum. The noisy signal model in the time domain is given by (2.2): 

  ( )    ( )    ( ) (2.44) 



  69 
 

where y(m), x(m) and n(m) are the noisy signal, the additive noise and the original signal 

respectively, and m is the discrete time index.  

In the frequency domain, the noisy signal model of (2.2) is expressed as (2.3): 

  (   )    (   )    (   ) (2.45) 

where Y(f), X(f) and N(f) are the Fourier transforms of the noisy signal y(m), the original signal 

x(m) and the noise n(m) respectively, and f is the frequency. In spectral subtraction, the incoming 

signal x(m) is buffered and divided into segments of N samples length. Each segment is 

windowed, using a Hanning or a Hamming window, and then transformed via discrete Fourier 

transform (DFT) to N spectral samples. The windows alleviate the effects of the discontinuities 

at the endpoints of each segment. The windowed signal is given by (2.4): 

   ( )     ( ) ( )     ( )  ( )    ( )      ( )    ( ) (2.46) 

The windowing operation can be expressed in the frequency domain as (2.5): 

   ( )   ( )   ( )    ( )    ( ) (2.47) 

where the operator * denotes convolution.  

Figure X illustrates a block diagram configuration of the spectral subtraction method, and the 

equation describing spectral subtraction may be generally expressed as (2.6):  

 | ̂( )|
 

 | ( )|   | ( )| ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (2.48) 

where | ̂( )|
 
 is an estimate of the original signal spectrum | ( )| and | ( )| is the time-

averaged noise spectra. It is assumed that the noise is a wide-sense stationary random process. 

For magnitude spectral subtraction, the exponent b=1, and for power spectral subtraction, b=2. 

Rhe parameter α in (2.6) controls the level of subtracted from the contaminated signal. For full 



  70 
 

noise subtraction, α=1 and for over-subtraction α>1. Rhe time-averaged noise spectrum is 

obtained from the periods when the signal is absent and only the noise is present as (2.7): 

 
| ( )| ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

 
∑|  ( )| 
   

   

 (2.49) 

where |  ( )|  is the spectrum of the ith noise frame, assuming there are K frames in a noise-

only period, where K is a variable. Alternatively, the averaged noise spectrum can be obtained as 

the output of a first order digital low-pass filter as (2.8): 

 |  ( )|   |    ( )| ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (   )|  ( )|  (2.50) 

where the low-pass filter coefficient ρ is typically set between 0.85 and 0.99. For restoration of a 

time-domain signal, the magnitude spectrum estimate | ̂( )| is combined with the phase of the 

noisy signal, and then transformed into the time domain via the IDFT as (2.9): 

 

 ̂( )  ∑| ̂( )|    ( )   
  
 

  

   

   

 (2.51) 

To avoid negative magnitude estimates caused by random variations of noise, the output of the 

spectral subtraction algorithm is post-processed via mapping function T[·] of the form (2.10): 

 
 [| ̂( )|]  {

| ( )|            | ̂( )|   | ( )|

    | ( )|                               
 (2.52) 

In its simplest form, fn[Y(f)] = noise floor, where the noise floor is a positive constant. An 

alternative is to take    | ( )|      | ( )| . In that case (2.11): 

 
 [| ̂( )|]  {

| ( )|            | ̂( )|   | ( )|

   | ( )|                               
 (2.53) 
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As previously stated, spectral subtraction may be implemented in the power or the magnitude 

spectral domains. The two methods are theoretically analogous however they differ performance-

wise. The detailed sequence of the described algorithm is illustrated in Fig. 2.12 and explicitly 

stated in Algorithm 3 below. 

 

Figure 2.12: Block Diagram Illustration of the Full Spectral Subtraction Process 

In case of VGRF, the silence/inactivity periods of no activity are actually the inter-step leap or 

flight time during which no foot contact with the floor is manifested, termed Leap Periods, and 

this case may be not be found in walking VGRF signals, unlike our database where the subjects 

are running (see Fig. 2.13). In fact, the leaping periods were detected as the inter-step periods, 

having already detected the steps, then concatenated into a single vector, then the spectrum of the 

resulting concatenation is computed. Finally, spectral subtraction is performed between the noisy 

VGRF signal and the noise spectrum. 
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Algorithm 3: Spectral Subtraction Denoising 

Input: (1 x N)-vector VGRF 

Output: (1 x N)-vector: Filtered_VGRF 

Procedure: 

1. Extract the inter-step segments (Leap Periods); 

2. Create a signal as the concatenation of the extracted inter-step segments; 

3. Compute the Discrete Fourier Transform on VGRF followed by a magnitude operator; 

4. Perform Low-pass filtering to reduce noise variance; 

5. Perform post-processing to remove processing distortions; 

6. Perform spectral subtraction PSD_Filtered_VGRF = PSD_VGRF–PSD_noise; 

7. Compute the Inverse Discrete Fourier Transform to the processed signal; 

8. Apply attenuator γ for noise attenuation during silent periods.  
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Figure 2.13: Graphical Representation of the Leap Periods in a Sample VGRF Signal 

 

2.3 FATIGUE ANALYSIS 

In order to transition from the time domain into the frequency domain, the most widely used technique is 

the Fourier transform, described in (2.12): 

 

 {  }      ∑   

   

   

                (2.54) 

where   is the Fourier operator,    is an N-periodic sequence of complex numbers x0, x1, ... , xN-1.  

The algorithm used to compute the Fourier spectrum was the Welch Periodogram illustrated in Fig. 2.3 

that makes use of the Fast Fourier Transform (FFT) algorithm to generate the Power Spectral Density 

(PSD) of the analyzed signal. In the resulting periodogram shown in Fig. 2.14, a series of neighboring 

peaks in the low-frequency domain, at frequencies less than 30 Hz, are present in a cyclic fashion, which 
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was analyzed as a marker for cyclostationarity. The stride rate (1.4 Hz) and the step rate (2.8 Hz) both lie 

along with their harmonics in the form of spectral lines. On the other hand, noticeable spectral activity is 

present in the high frequency domain between 100 and 180 Hz suspected to be system noise, and at 250, 

300, 350 and 450 Hz which are the manifestations of the mechanical resonance of the instrumented 

treadmill, which will be discussed along with the results of the spectral subtraction.  

 

Figure 2.14: Full Range VGRF Welch Periodogram 
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Figure 2.15 Low Frequency Periodogram of a Sample VGRF Signal 

That being presented, the idea behind this work was to compare the spectral content of VGRF 

signals progressively in time and study the effect of fatigue on the spectral characteristics for 

each subject, hoping to eventually quantify the  progression of fatigue and assess the endurance 

capability of the athletes. For that endeavor, two Welch Periodograms were computed for each 

subject, at the beginning of the ultra-marathon and after 24 hours of running i.e. the final 

recording. The purpose behind this analysis was to capture a fatigue indicator with as much 

accuracy as possible, and the proposed metrics are the Spectral Mean Inter-peak Shift (SMIPS) 

and the Mean High-frequency Power Variation (MHFPV) defined in (2.13) and (2.14), 

respectively. The technique using which the frequency-specific power is quantified is the Short-

time Fourier Transform (STFT), which generates a numerical descriptor of the variation of 

frequency-specific power in function of time. Our method compares the high frequency spectral 
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power at the beginning of the 24-hour ultra-marathon and at the end, describing thereby the 

progression of fatigue. 

 
     ( )  

∑  (     )   (   ) 
   

   
 (2.55) 

Where  (   )is the frequency at which peak    is manifested, n is the peak index, and N is the 

number of peaks in the periodogram. 

 
     ( )  

    (     )        (     )

      (     )
 (2.56) 

Where     (     ) is the end-of-run power at a user-selected high-frequency range     being 

the threshold frequency, and       (     ) is the beginning-of-run power for the same 

frequency range. 

  



  77 
 

CHAPTER 3 

SINGLE-CHANNEL BLIND SOURCE SEPARATION (SCBSS) 

3.1 Problem Formulation 

In this thesis, a specific class of BSS is studied, which is the Single-channel BSS (SCBSS). 

Having stated the class of BSS in previous sections, SCBSS is the extreme case of 

underdetermined source separation problems, requiring the unsupervised or blind separation of 

sources from a single observation signal, which combines two obstacles: the absence of prior 

knowledge of the sources and the least amount of available data to interpret. Despite being a rare 

scenario if theoretically interpreted, this sort of problems is very common in a variety of fields, 

and mostly pronounced in the field of audio processing in the analysis of monaural sound waves 

and isolation of individual instruments, in speech processing [80] in presence of random noise, 

and in Neuroscience and more specifically in spike sorting [81]. 

The problem may be formulated in the time domain as in (3.1), and in the time-frequency 

domain as in (3.2): 

 

 ( )  ∑  ( 

  

   

) (3.1) 

where i = 1,…,N represents the number of sources and the aim is to estimate the sources   ( ) 

when only the observation signal  ( ) is available. This representation is that of an undetermined 

system. 
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 (     )  ∑  (    

  

   

) (3.2) 

where  (     ) and   (    ) denote Time-frequency (TF) components obtained any TF analysis 

method.  

Upon reviewing the major signal processing techniques being used for the characterization of 

signals, it may be stated that the three main categories under which they all fall are: Time 

Domain, Frequency Domain and Joint Time-Frequency Domain. Time Domain analysis provides 

insight on the signal’s characteristics in function of time, regardless of the spectral content, while 

Frequency Domain analysis provides insight on the spectral characteristics of the signal 

regardless of the temporal aspect. The two stated domains lack the ability of analyzing the 

variation of the spectral content in function of time, which led to the introduction of joint Time-

Frequency analysis in which both spectral and temporal features are simultaneously computed. 

The methods for joint Time-Frequency Analysis are numerous, of which we state: Cohen Class 

Bilinear TFD [82], Cohen-Posch TFD [83], Spectrogram, Wavelet Scalogram [84], Matching 

Pursuit TFD [85] and Adaptive TFD [86]. 

The purpose behind the characterization of the signals in time-domain and then in the joint time-

frequency domain lies in the fact that the implemented technique is a SCBSS technique based on 

matrix factorization. In other words, in order to separate the sources from a single-channel data 

vector, a matrix representation of this signal is to be computed for the factorization to take place. 

One of the most common techniques used in speech analysis and communication, as stated in the 

above-cited references, is the transformation of the time-domain signal into the joint time-

frequency domain, which is a 3-dimensional representation that characterizes the signal in 

function of time, frequency and power. 
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Firstly, the transform from the time domain into the frequency domain is performed via Fourier 

transform is defined as follows: 

 
 ( )     ( )  ∫  ( )        

 

  

 (3.3) 

 

 

Figure 0.1: Spectral Decomposition of an Arbitrary Signal 

However, despite the identification of the spectral content of the signal x(t), the onset time of 

each frequency component remains unknown, outputting magnitude versus frequency. This calls 

for a more advanced technique to be able to describe the variation of the spectral content in 

function of time, of which we define the STFT as follows: 

 
     (   )  ∫ ( )  (   )         (3.4) 

where STFTx(t,  ) is the magnitude spectrogram of signal x and h(t) is the window function.  

.  
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Now that the magnitude spectrogram of the studied mixture signal is computed, we have a choice 

to either keep it in the magnitude form or transform it into the power spectrogram (3.5) by 

simply squaring up (3.4): 

    (   )  |     (   )|  (3.57) 

The spectrogram however, as all methods, suffers from a drawback that is window-related; the 

shorter the window, the higher the time-resolution and the worse the frequency resolution, and 

vice versa, which implies the existence of a serious trade-off in terms of resolution. That led to 

the development of more accurate methods from that perspective, which is outside the scope of 

this work, since the STFT is the implemented TF representation throughout the thesis. 

That being cleared away, subsequent information that will include manipulation of the TF 

domain version of the signals is in fact nothing but the STFT of that signal. 

3.2 Problem Classification 

SCSS methods are numerous and fall under different categories based on different criteria. The 

signal mixture being the single-channel observation is transformed from the time domain into 

another domain, mainly the TF domain, as a basic transform into multi-dimensional data that can 

be separated into its sources more easily.  

An illustration of the general framework for supervised SCSS is presented in Fig. 3.2., which is 

outside the scope of our work, while an illustration of that of SCBSS is presented in Fig. 3.3. 

In supervised methods, the input to the separation system is the single-channel data mixture in 

addition to the source models’ training data. Rhe mixture is then transformed into another 
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domain and another representation which, when combined with the source and mixing models, 

facilitates the computation of the separated source estimates. 

On the other hand, unsupervised or SCBSS methods deal with the separation of entirely 

unknown sources having no training data at all, which calls for assumptions that are made to 

reduce the complexity of the system. Out of these assumptions, we state decorrelation, statistical 

independence, or the minimum description length principle. 

 

 

Figure 3.2: Unsupervised SCSS Framework 
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Figure 3.3: SCBSS Framework 

The notable difference between unsupervised and supervised SCBSS is the fact that in 

unsupervised SCBSS the only input to the system is the single-channel observation or signal 

mixture. And knowing that a 1-D vector is inseparable as it is in the time domain, a domain 

transformation is necessarily required to create a multi-dimensional data set in form of a matrix 

so that feature extraction, decomposition and separation are applied upon it, which enters a signal 

reconstruction process to eventually have a source estimate of separated sources.  

In order to accomplish the stated process, a multitude of methods were designed and 

implemented by researchers in all fields, but the methods are classified according to the 

separation technique, as shown in Fig. 3.4 leaving us with the following classes: Computational 

Auditory Scene Analysis (CASA)-based SCBSS [87], EMD-based SCBSS [88], Independent 

Subspace-based SCBSS [89], and Non-negative Matrix Factorization (NMF)-based SCBSS [90]. 
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Noteworthy, all the stated methods, supervised and unsupervised SCSS, follow the linear 

instantaneous model which was explained in previous sections. 

 

Figure 3.4: SCBSS Class-tree 
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3.2.1 Computational Auditory Scene Analysis (CASA)-based  

The purpose behind the CASA-based SCBSS methods is the replication of the human auditory 

system’s physiology via selection of appropriate domain transformation mainly to the RF domain 

via STFT or Cochleogram, followed by the segmentation of the observation mixture into TF 

cells which will then be grouped and associated in terms of specific criteria e.g. harmonicity, 

common onset, correlated modulation, and duration of sinusoidal parts. Streams of notes (in 

musical signals) based on pitch proximity are then built, and finally the estimated sources are 

reconstructed via highly-correlated cluster grouping in the TF domain. It is clear that this class of 

methods is mainly implemented in applications related to musical signal and audio processing. 

One of the drawbacks of this technique is the inability to separate musical signals of different 

streams and sharing the same pitch range, in addition to the fact that the replication of the role of 

the nervous system in the interpretation of sounds was never replicated, which makes it a 

partially effective and accurate method.  

 

Figure 3.5: CASA Process Block Diagram Illustration 
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3.2.2 Non-negative Matrix Factorization (NMF)-based 

3.2.2. a. Introduction 

Factorization-based techniques have been an area of interest for researchers in various fields and 

especially in BSS. In case of SCBSS, this class of algorithms begins its role upon domain 

transformation i.e. transition from the time domain into the TF domain, resulting in a TF 

representation decomposed as follows in (3.6) and (3.7): 

 

 (     )  ∑  (    

  

   

) (3.6) 

 

 
| |   ∑| | 

  

  

   

 (3.7) 

where  | |    | (    )|
  and | | 

  
  |  (    )|

  are 2-dimensional matrices with time instants 

as row vectors and frequency bins as column vectors. Note that the superscript “
.
” indicates 

element-wise operations. 

In order to get multidimensional data representation out of a single-channel time series, the 

Power Spectrogram of the signal of interest is computed, and then the NMF algorithm is applied 

upon the Spectrogram to separate the dominant underlying time-frequency patterns in an 

unsupervised manner, having minimal a priori knowledge of the sources to be extracted.  

NMF is actually an unsupervised data decomposition technique that belongs to latent variable 

analysis techniques, and it is most commonly implemented in the following fields: topics 

recovery, feature learning, clustering, temporal segmentation, filtering and source separation, and 
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coding. It has been successfully applied in text mining [91], in image processing and analysis: 

unsupervised object discovery [92], object and face recognition [93], tagging [94], denoising and 

inpainting [95], texture classification [96], spectral data [97], hashing [98], and in EEG 

processing and analysis: feature extraction [99], and artifact rejection [100]…etc.  

But most importantly, NMF is state-of-the-art in BSS, where it has been used in speech 

separation [101], in music separation [102], in signal enhancement/denoising [103], in 

compression [104], in music transcription [105].   

3.2.2. b. NMF Models 

Basically, the Power Spectrogram Y of the signal is factorized into a Basis Vector Matrix W and 

a Weight Matrix H, as follows in (3.8): 

   | |       (58) 

where      
       is the power time-frequency representation of the mixture y(t) which is also 

factorized into two non-negative matrices,       
       and       

      , W being the data 

matrix containing a set of spectral basis vectors and H being an encoding matrix that describes 

the amplitude or activation of each basis vector at each time instant. 

 

Figure 3.6: NMF Matrix Decomposition Illustration 
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If K is chosen to be K=Ts, factorization will take place, leading to pattern or source separation, 

while dimensionality remains intact. In fact, K is normally chosen to be a realistic estimation of 

the number of sources or hidden patterns embedded in the mixture signal.  

The product of the two matrices W and H is randomly initialized and then iteratively optimized 

via linear divergence-based cost function that expresses the distance between the desired ideal 

spectrogram   and the approximated spectrogram    as follows in (3.9): 

    
     

 { |  } (59) 

where D{ |  } is a separable matrix divergence (3.10): 

 

 ( | ̂)  ∑ ∑  (   | ̂  )

 

   

 

   

 (60) 

And d(x|y) defined for all x, y ≥ 0 is a scalar divergence such that: 

 d(x|y) is continuous over x and y; 

 d(x|y) ≥ 0 for all x, y ≥ 0; 

 d(x|y) = 0 iff x = y; 

where x and y are the terms being compared in the divergence metric. 

Various error functions have been developed to assess the reconstruction error between V and 

WH, of which we state: the Euclidean Distance (squared error), the Kullback-Leibler (KL) 

Divergence and the Itakura Saito (IS) [106] as in (3.11), (3.12), and (3.13), respectively: 

 
    (   )   ‖    ‖  
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Most commonly, the STFT is the TF representation referred to whenever NMF-based SCBSS 

algorithms are designed. The NMF-based SCBSS became popular in the music industry, where it 

is used extensively for filtering of audio signals and separation of instrumental sounds from a 

monaural signal.  

 

Figure 3.7: Spectrogram Decomposition via NMF Illustration 

This divergence measure d(x|y) is assessed in terms of convexity properties w.r.t to the variables 

being x and y. Convexity is a property describing the shape of the curve of divergence versus x 

and y, independently, as illustrated in Fig. 3.8. 
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Figure 03.8: Divergence Convexity Graphical Representation 

Convexity is a major property in divergence analysis that indicates the shape of the divergence 

curve in terms of the presence of local and global minima, which aids in the prediction of the 

performance of the subsequent optimization algorithm through which the minimum of the cost 

function is determined. In fact, convexity is studied in terms of x and in terms of y, the best case 

of which is the convexity on both levels as is the case with the Euclidean Distance. 

Another property to be assessed in cost function minimization is scale invariance, which 

describes the effect of scaling one or all variables in the divergence functions on the whole 

divergence measure. 
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     (  |  )         ( | ) (3.14) 

    (  |  )       ( | ) (3.15) 

    (  |  )     ( | ) (3.16) 

The IS divergence is scale invariant, which means it provides higher accuracy in the 

representation of data with large dynamic range e.g. audio spectra. 

Actually, the two main divergence families are the β-divergence and the α-divergence, having 

the following representations: 
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 (3.17) 
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 (   )
(   (   )        ) (3.18) 

Therefore, when β=0, the IS divergence is computed, when β=1 the KI divergence is computed, 

and when β=2 the NUC divergence is computed. 

The NMF divergence is chosen based on the data under analysis as well as the application. It can 

be chosen by intuition, or by prior knowledge of the studied system, or by invariance need. 

Noteworthy, any divergence out of the mentioned divergences has a probabilistic model 

equivalent, where the divergence minimization is equivalent to a maximum likelihood criterion 

[107]: 

  ( | ̂)       ( | ̂)        (3.19) 
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In Table 3.1, examples of equivalency are presented. 

Table 3-1: Divergence Measures and Related Probabilistic Models 

 

3.2.2. c.  Algorithms for solving the NMF problem 

The solution to the NMF optimization problem is modeled as follows: 

    
     

 ( |  ) ⇔    
 

 ( )   ( |  ) (3.20) 

where   {   } denotes the NMF parameters, bounded by the following conditions: 

 W, H ≥ 0; 

 Uniqueness of the solution is not guaranteed; 

 Multiple local and global minima might be encountered. 

This implies that optimization in our case is a double optimization: optimization of W and 

optimization of H. Hence, two options are available: Optimize W and H in parallel, or optimize 

over one matrix e.g. W while keeping the other matrix H known and fixed, which is termed the 

Alternating Optimization Strategy (AOS). In fact, in most divergences, convexity is fulfilled 

separately w.r.t. W and w.r.t. H but not w.r.t {W, H}. 

That led to the state-of-the-art NMF optimization algorithms based on iterative IOS whose 

algorithm translates into the following iteration-wise steps: Update W given H is fixed, then 

update H given W is fixed. In some references, this method is termed Block-coordinate Descent. 
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As for the iterative updates of the variables, which is a core element in optimization problems, a 

wide range of techniques was proposed and implemented, some more commonly than the others, 

most of which we present in Table 3.2.  

On each iteration of the algorithm, a new value for W and H is computed by either additive 

update (AU) rules or multiplicative update (MU) rules. In both cases, the goal is to improve the 

quality of the approximation monotonically by applying updates to the variables, W and H in our 

case. If so, convergence is guaranteed, at least locally, to an optimal matrix factorization. 

Gradient descent update is probably the simplest of all techniques in terms of implementation 

difficulty, being a first order iterative optimization algorithm; however it lacks the speed of 

convergence required by most applications. The concept behind this rule is finding the local 

minimum of a function by taking steps that are proportional to the negative of the gradient of the 

function at the current point as follows in (3.21): 

            (  ) (3.21) 

where F(x) is a multivariable function that is defined and differentiable in the vicinity of a point 

a and   ( ) is the gradient of F at a.  

For a small enough , F(an) ≥ F(an+1), which means the function is in monotonic decrease until 

reaching the desired optimum. 

Starting with a guess x0 as a local minimum of F, a sequence is created as follows in (3.22): 

             (  )     (3.22) 

As for the Newton-like algorithms, Newton’s method is fairly simple to implement as well, 

which is based on the successive finding of better root approximations of the roots of a real-
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valued function. The method actually begins with a function f defined over real numbers x, the 

function’s derivative f’ and an initial value x0 of a function root, approximating thereby x1 as 

follows in (3.23): 

 
        

 (  )

  (  )
 (3.23) 

And the process is repeated until an acceptable value is reached. 

As for the MU rules proposed by Lee and Seung, which is nothing but a diagonally rescaled 

gradient descent rule, they chose it to be a good compromise in terms of convergence speed and 

implementation simplicity, and they proved its convergence to the optimal local minimum of the 

cost function. However, it slightly differs from divergence metric to the other. For instance, the 

update rule for LS is: 

  ←   
| |    

      ;  ←   
  | |  

    
 (64) 

while the update rule for KL is: 

  ←   
(| |      )  

    and  ←   
(| |      )  

    (3.25) 

where ‘.’ and ‘./’ denote the element-wise multiplication and division, respectively, and ‘1’ is an 

all-one F by Ts matrix. 
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Table 3-2: Update Rule Descriptive Table 

Algorithm Advantages Drawbacks 

Multiplicative Update 

(MU) 

 Easy 

implementation; 

 Guaranteed non-

negativity of W and 

H 

 Unguaranteed 

decreasing 

monotonicity 

of cost; 

 Relatively 

slow 

convergence 

rate; 

Gradient-like Faster convergence than MU 

Non-negativity 

constraints must be 

explicitly handled; 

Newton-like 

Faster convergence than 

gradient-like and MU 

algorithms. 

Non-negativity 

constraints must be 

explicitly handled; 

Expectation-

Maximization 

 Non-negativity 

constraints are 

implicitly handled; 

 Possibility of 

introducing other 

constraints via 

 Slower 

convergence 

than MU rules; 

 Limited to 

NMF with 

probabilistic 
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probabilistic priors; formulation; 

Stochastic Gradient-like 

Ability to handle big data 

and continuous data streams. 

N/A 

 

3.2.2. d.  Model Order Choice, Initialization and Stopping Criteria 

Another major factor in the NMF algorithms is the model order k, which determines the number 

of columns of W and the number of rows of H, which is most commonly user-settable and less 

commonly automatically computed or predicted by the algorithm itself. In fact,  k is usually fixed 

throughout the NMF decomposition based on a value chosen by intuition or on prior knowledge 

of the expected number of sources/clusters, and in a few cases, the model order is automatically 

set within the algorithm. 

 

Figure 0.9: Effect of Model Order Choice on Matrix Decomposition 

As for the initialization of W and H, it has high importance in all local optimization problems 

due to the fact that local minima exist. However, common practice dictates the random 

initialization of non-negative matrices several times and keeping the solution with the lowest 
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final cost. Nevertheless, some structural data-driven initializations were devised e.g. initialization 

of W by the clustering of data points V, and the initialization of W by Singular Value 

Decomposition (SVD) of data points V, and many other similar techniques. 

In order for the algorithm to stop, stopping criteria are required for the loop to end at wherever 

the user programs it to end at, for the number of iterations is crucial in iterative optimization; the 

iteration number in fact raises the issue of a tradeoff between computational cost from one side, 

and the approximation error and model quality form the other side. That being said, the 

following are the main stopping criteria in iterative optimization: 

 Fixed number of iterations (user-settable) e.g. 1000; 

 Approximation error (cost) threshold e.g 2.5%; 

 Approximation error relative decrease threshold e.g. 1%; 

3.2.2. e.  Regularization 

The main problem with NMF is the non-uniqueness of the solution; in fact, NMF and other 

matrix factorization techniques rely on divergence minimization as discussed, which optimally 

reaches zero, however, the exactness of the linear product does not imply that each of the two 

matrices in the product are the target matrices. This leads to an unguaranteed extraction of latent 

components as desired within the target application. 

The aforementioned drawback of NMF is possibly solved by imposing some knowledge-based 

constraints on W, on H, or on both W and H, which usually add uniqueness to the 

decomposition and the extraction of more suitable latent components. 

The more the constraints are realistic and customized to the system under study, the higher the 
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probability of successful separation. This is done by adding terms to the objective function that 

mathematically translate the imposed constraint, according to the following model: 

  (   )   ( |  )    ( )    ( ) (3.26) 

where         encode the desired structures termed penalty functions and   and   control the 

strength of the penalty. 

This method of penalization actually acts oppositely to the direction of the minimization by 

adding cost, which forces the optimization algorithm to go through more iterations until 

satisfactory values of the penalty functions are reached, meaning the constraints are met up to an 

acceptable extent. 

Out of the various classes of penalties, we state the sparsity-inducing penalties [108], group 

sparsity-inducing penalties [109], smoothness-inducing penalties [110], graph regularized NMF 

[111], orthogonal NMF [112], tri-NMF [113], and much more. 

Upon matrix decomposition, the recovery of the sources being the ultimate goal is to be 

performed. This process is termed re-synthesis of the time-frequency representation and is 

composed of two main phases: Getting the mixture phase via overlap-add (OLA) method and 

reversing the STFT using the Inverse STFT (ISTFT) for each of the separated source signals.  

In fact, the OLA method is explained as follows: Each successive window is taken back into the 

time domain using the IFFT, then each window is shifted by the step size, and added to the result 

of the previous shift. The OLA is mandatory because of the degree of window overlap performed 

during the forward STFT as previously described. The concept of OLA is depicted in Fig. 3.10. 
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Figure 0.10: OLA Illustration 
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An illustration of the entire NMF SCBSS process is shown in Fig. 3.11. 

 

Figure 0.11: NMF SCBSS Block Diagram Illustration 

 

3.2.3 Empirical Mode Decomposition (EMD)-based 

The EMD or Hilbert-Huang data-driven technique is a non-linear technique pioneered by N. E. 

Huang et al. for the adaptive representation of non-stationary signals as sums of zero-mean AM-

FM components to be effective [114].  

EMD is based on the consideration of local level oscillations in non-stationary non-linear signals, 

decomposing each signal into simple oscillatory functions termed Intrinsic Mode Functions 

(IMFs). The IMFs are classified as local details and local trends, being the high-frequency and 

low-frequency components, respectively. In mathematical terms, the EMD decomposition is 

modeled as follows in (3.27): 
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 ( )  ∑   ( )    
   ( )

 

   

 (3.27) 

where cn(t) is the n
th

 IMF, N is the total number of IMFs, and   
   ( ) is the final residue.  

The EMD basic algorithm is presented as follows: 

Algorithm: EMD 

Input: (1 x N)-vector x(t) 

Output: IMFs 

Procedure: 

1. Identify all extrema of x(t); 

2. Interpolate between minima to get lower envelope emin(t) 

3. Interpolate between maxima to get upper envelope emax(t) 

4. Extract the detail d(t) = x(t) – m(t) 

5. Iterate on the residual m(t)  

 

A more refined version of this process is termed sifting which is the performance of steps 1 to 4 

upon the detail signal d(t) until a zero-mean signal is reached according to a stopping criterion. 

Once this is reached, the detail is then considered an IMF and step 5 is applied and the residual is 

computed. Obviously, the number of extrema decreases gradually from residual to the other and 

completion of the decomposition is guaranteed, outputting a finite number of modes.  
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Figure 3.12: EMD of a 3-component Signal – Non-linear Oscillations 

 

Upon computation of the EMD of a single-channel observation signal, a successive SCBSS step 

is performed upon the resulting IMFs, each of which consisting of a sub-band of frequencies 

with a reduced degree of mixing. Subsequently, IMF spectrograms are computed either via STFT 

or Hilbert Transform, and matrix decomposition of the spectrogram takes place via a multitude 

of techniques of which we state EMD-NMF [115], EMD-2D-Sparse NMF [89], EMD-Hilbert 

Spectrum ISA [116]. However, the EMD 2D-Sparse NMF developed by Gao [89] is of major 

significance to the field due to its high effectiveness in comparison with all other algorithms, and 

its algorithm is illustrated in Fig. 3.13 below. Noteworthy, 2D-sparse NMF is a regularized NMF 

approach having a sparsity-inducing penalty embedded in its cost function, as discussed earlier. 
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Figure 0.13: EMD-2D Sparse-NMF Diagram 

 

3.2.4 Independent Subspace Analysis (ISA)-based 

An additional approach in the field of SCBSS is based on ISA techniques. Briefly, the main idea 

behind the concept of ISA is the decomposition of the TF space of mixture signals as being the 

sum of independent source subspaces. In other words, having computed the mixture TF 

representation |Y|
.2

, each time frame of it is modeled as a weighted sum of NISA independent basis 

vectors   
   

 as follows: 

 

    ∑      
        

   

    

   

 (3.28) 

where each basis vector is weighed by a time-varying scalar      
   . Hence, each source is spanned 

by basis vector subset defining thereby a subspace, being a matrix with basis vectors in 

columns  
         

       
    

    

    .  

EMD 
• Signal decomposition into IMFs 

STFT/Hilbert 
• IMF-specific Spectrogram computation 

2D Sparse 
NMF 

• Derivation of basis vectors via 2D-sparse NMF  

• OLA + ISTFT computation of basis vectors 

Clustering 
• k-means clustering via KL-divergence proximity rule 
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In ISA techniques, projection of the input     onto each basis component in the subspace results 

in the computation of the weight coefficients as follows, assuming orthonormal components: 

   
    

   
    

    (3.29) 

This is now the projection of    
on the subspace spanned by the basis vectors  

   , thereby, 

through successive and iterative projections onto the I sets of basis vectors,     is decomposed 

into independent subspaces as follows: 

 

    ∑  
     

    

 

   

 (3.30) 

Now customizing the model to the required spectrogram decomposition, all time frames are to be 

covered and it is estimated as follows: 

 | |̃ 
    

     
    

 (3.31) 

where    
    

       
           

    .  

As a final step, OLA and ISTFT are applied to reconstruct the time domain source signal from 

| |̃ 
 , as previously described. However, the fact that segment overlapping is a part of the STFT 

algorithms i.e. a considerable amount of cross-spectral terms is encountered, it is arguable that 

STFT is not the best way to go in order to compute the time-frequency  representation in ISA-

based SCBSS techniques because that would lead to weak separation efficiency. Instead, some 

have used the Hilbert Spectrum where the cross-spectral terms are practically absent.  
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CHAPTER 4 

CYCLOSPARSE NON-NEGATIVE MATRIX FACTORIZATION  

4.1 Problem Formulation 

In this thesis, a novel approach is introduced to handle SCBSS tasks adapted to applications 

where single-channel signals are of periodic and cyclically-repeating pattern and most 

importantly occurring as short bursts or transient spikes that occur once or few times per cycle. 

We summarized this concept by describing the target signals as cyclosparse signals, as 

introduced by Sabri et al. [76], combining thereby two features that are cyclic-behavior and 

sparseness. Despite the common name, the presented method in this work is based on other 

concepts and hence different mathematical model than in [76]. As a first thought, one would 

think of signals that have the following features in the time domain, which is incorrect thinking; 

in fact, since the target mixture signals are single-channel signals, as previously detailed, the 

BSS section of the algorithm requires a multidimensional signal representation e.g. TF 

spectrogram matrix as input, and that matrix should be characterized by the user beforehand so 

that prior knowledge of the expected sources creates some quantifiable constraints to be added to 

the cost function for optimal separation to take place.  

First of all, an investigation on how a cyclosparse signal in the time domain is actually 

represented in the TF domain and it is over the TF parameters that the BSS code is required to 

act. Rhat being said, let’s define a cyclosparse signal: A cyclosparse signal is a signal that 

demonstrates cyclically-repeating transient peak-like oscillations of minimum occurrence in a 

single cycle, ideally once, surrounded by mostly null values.  
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An example of such a signal may be a periodic pulse train having a single sharp pulse in each 

cycle or period, as shown in Fig. 4.1    

 

Figure 0.1: Cyclosparse Pulse Train 

Since the TF representation actually preserves the time characteristics of the signal before 

transformation, any time-related characteristic for any frequency component shall be preserved, 

i.e. a cyclic 100 Hz peak appearing every 10 seconds shall lead to an equivalent 100 Hz 

component repeating every 10 seconds on the spectrogram along with any coexisting frequency 

component at that particular time window. An illustration of that concept is shown in Fig. 4.2. 

 

Figure 0.2: Cyclic Spectrum in the TF Domain  
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4.2 Cost Function Design 

As explained in previous chapters, in order to reach the desired matrix factorization in NMF that 

guarantees a high level of solution uniqueness, unconstrained divergence minimization is not 

enough due to the fact that the resulting W and H despite being as close as possible to the power 

spectrogram |Y|
.2

 are not necessarily the desired matrices for the specific application. As a 

solution to the standard divergence measure, constrained optimization via penalty functions is 

implemented such that the added penalty functions target source-specific characteristics known 

about the source signals, which are in our case periodicity and sparseness.  

Optimization is the process of minimizing or maximizing the value of an objective function by 

updating one or more variables in an accurate and customized manner until reaching the desired 

output as generally presented in (4.1). 

    
   

 ( ) (4.65) 

Where the function  ( )      is called the objective function and the set   is the feasible 

set of (O).  

Based on the description of function f and the feasible set M, the problem (O) may be classified 

into one of the following classes: linear, quadratic, semi-infinite, semi-definite, multiple-

objective, discrete optimization…etc. 

In cases as ours, the objective function is the divergence function that measures the error 

between the original spectrogram and the approximated/estimated spectrogram, as presented in 

(4.2): 

    
   

 ( )   ( |  )  (4.66) 
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Where D is the divergence function as previously explained.  

The algorithm, however, shall update both W and H; for that endeavor, sequential update is 

performed by updating W keeping H fixed, and then updating H keeping W fixed, sequentially 

via alternation as described. 

The criterion function C(H) separates into ∑  (  |  ) where vn and hn are the n
th

 column of V 

and H respectively, which leaves us with (4.3): 

     
   

 ( )   ( |  ) (4.67) 

Where     
      

           
 . 

Moreover, supplementary function of W and H (or both) are seldom added to the basic cost 

function C(.) in order to add regularization of the factor matrix estimates, reflecting thereby some 

sort of prior belief or assumption or constraint on the desired matrices. The added terms are 

termed penalty function, and the NMF algorithm becomes a penalized NMF algorithm, as shown 

in (4.4): 

    
   

 ( )   ( |  )   ( )                (4.68) 

Where L(h) is the penalty term. 

4.2.1 Divergence Measure 

As a divergence measure, the KL divergence (3.5) was adopted for its accuracy, scale properties, 

and convexity properties that were discussed in Chapter 1. 

 
   (   )         

 

  
      (4.69) 

 



  108 
 

4.2.2 Periodicity Penalty Function 

 (     ) is the penalty function or regularization term that induces periodicity of the basis 

activation function Hk,1  …  Hk,T; T is the total number of time frames in the TF representation. 

The iterative optimization updates H leading to simultaneous variation in the periodicity 

regularization term which assesses its degree of periodicity: the more periodic the activation is, 

the lower  (     )becomes, the less contribution this term has to the cost, and vice versa.  

In NMF, matrices W and H are non-negative, making it possible to approximate the logarithm of 

Hk,t by the weighted sum of harmonically constrained sinusoids [117]  as follows in (4.6), which 

actually is nothing but the Fourier series: 

  

        ∑(    
 

   

            
        )       

(4.70) 

where     
 ,     

     determine the repetitive pattern’s shape on the 1/Pm interval, Pm being the 

fundamental frequency which is in our case the cyclic frequency of the cyclostationary signal 

computed as in [75], and n denotes the order of the harmonic partial. This guarantees that the 

extracted source is periodic with frequency Pm. Hence,         is the sum of M arbitrary periodic 

functions. 

In order to recover Hk,t and using (3.3), it may be approximated as the exponential of the sum of 

the sinusoids as in (4.7): 

  

              ∑(    
 

   

            
        )       

(4.71) 
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The implemented method automatically computes an appropriate cyclic frequency according to 

the best model fit, and it may be input by the user, as stated, if the cyclic frequency is known a 

priori.  

Most importantly, the cost function  (     )is defined as the Euclidean distance-based 

divergence between the two terms of the equality in (4.3): 

 

 (     )  ∑|        ∑( 
   
 

   

         
   
        ) |

 

   

 (4.72) 

 

4.2.3 Sparseness Constraint 

As for the sparse behavior of the impact waveform, a data vector signal is said to be sparse if the 

majority of its values is zero; the more non-zero elements are expressed, the less sparse the data 

vector becomes. In mathematical terms, sparseness is mostly computed using the lp-norm, which 

is defined as follows: 

 
   ‖  ‖  √∑|  |

 

  

 (4.73) 

where xi  are the elements of the data vector and p is the order of norm l. 

The lp norm is actually the cardinal of non-zero elements in the data vector x which directly 

indicates its degree of sparseness. 

From a visual perspective, the sparse behavior of any signal is manifested in the form of a sharp 

impulse or a few sharp impulses embedded in a mostly all-zero vector. 

Our main objective is to be able to impose degrees of sparseness on one or both of matrices W 

and H, and the concerned matrix is to be known beforehand through intuition and prior vision of 
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the expected system. That being said, we decided to impose sparseness on the activation matrix 

H, since we assume the system to have sparsely activated spectral patterns, but not necessarily 

sparsely-shaped spectral patterns.  

Hence, our problem is formulated as follows: 

Given a non-negative spectrogram matrix V of size NxT, find the non-negative matrices W and 

H of sizes NxK and KxT, respectively, such that the divergence function is minimized under 

user-settable sparseness levels as in (4.10) and (4.11): 

 

          ( )  ‖ ‖    
√  (∑ |  |

 
   ) √∑   

  
   

√   
 

(4.74) 

where ‖ ‖   is a mixture of the l1 and l2 norms of signal x, n is the dimensionality of x This 

function reaches unity i.e. a value equal to 1 if and only if x contains a single non-zero 

component, and on the other extreme reaches a null value if and only if all components are 

different than zero. An illustration of this metric is shown in Fig. 4.3. 

 

Figure 0.3: Illustration of Different Sparseness Leveled Vectors in Histogram Format 

           (  )        (4.75) 

Where hi is the i
th

 row of H, and Sh is the desired level of sparseness to be imposed on H, and 

these two in addition to K are user-settable.  

For simplicity purposes, scale is of no particular interest since      (   )(
  

 
) and L2 is fixed 

to unity. 
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Combining the two observed characteristics of the VGRF signal, cyclostationarity and 

sparseness, this type of signals is termed cyclosparse signal, as introduced by Sabri [76]. as a 

periodic random impulse signal x(t) of period T having the cardinal of nonzero elements of the 

entire signal equal to the cardinal of nonzero elements of the signal over any period multiplied by 

the number of cycles k as follows in (4.12). 

 ‖ ‖    ‖    ‖   
 ‖    ‖   

   ‖    ‖   
 (4.76) 

 

In the present study, each cycle k is known to have a single impulse, the cycle being a single step 

having one impact pattern, represented in Fig. 4.4 for k=3.  

 

Figure 0.4: Single-peaked Cyclosparse Signal Representation of the Impact Pattern 

That being explained, our final cost function should have the following form (4.13): 

  (   )     (   )      (     ) 

Such that sparseness(hi)=Sh,     
(4.77) 
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where      is a regularization parameter,  ( |  ) is the divergence measure between the 

observed spectrogram and the current NMF model,  (     ) is the periodicity-inducing penalty 

function, and 

4.3 Optimization Algorithm 

4.3.1 Sparseness Constraint Optimization 

The cost function being developed, an algorithm is required to update the values inside the 

matrix factor H until the stopping criterion is reached. The adopted algorithm was a modified 

gradient descent algorithm updated and devised by Hoyer [108], which he termed projected 

gradient descent algorithm with sparseness constraints, onto which we have added the periodicity 

penalty function whose optimization will be explained in the next section. The gradient descent 

as previously explained is an algorithm that updates the variables by taking steps in the direction 

of the negative gradient, and the addition of the sparseness constraint required it to be a projected 

method i.e. projects onto the constraint space, which is the sparseness criterion imposed by the 

user. The algorithm is described in Algorithm 3 as follows: 

Algorithm 3: NMF with Activation Sparseness Constraint 

1. Initialize H to a random positive matrix; 

2. If the set sparseness constraint applies on H, project each row of H to be non-negative,  

have unit L2 norm and L1 set to achieve desired sparseness; 

3. Iterate 

(a) If sparseness on H apply: 

i. Set          (    ) 
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ii. Project each row of H to be non-negative, have unit L2 norm and L1 norm set 

to achieve the desired sparseness 

else take standard multiplicative step H := H(W
T
V)(W

T
WH) 

where  and  denote element-wise multiplication and division, respectively, and    is a small 

positive constant step size which is automatically set by the software. 

However, enforcing sparseness and enforcing non-negativity are performed through the 

following scheme in Algorithm 4. 

Algorithm 4: Activity Sparseness and Non-negativity Projection 

1. Set       
   ∑  

      ( )
   ;   

2. Set Z:={}; 

3. Iterate: 

(a) Set    {
   (   ( )      ( )        
                                               

 

(b) Set      (   ) where     is selected s.t. s satisfies the L2 norm constraint 

through solving a quadratic equation; 

(c) If all components of s are non-negative, return s, end; 

(d) Set     {      }; 

(e) Set          ; 

(f) Calculate   
∑     

         ( )
 

(g) Set              

(h) Go to (a) 
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However, the update process is not straightforward if W and H were to be simultaneously 

updated. In fact, an alternating method is most commonly referred to e.g. Alternating Least 

Squares (ALS), Alternating Least Squares with Optimal Brain Surgeon (ALS-OBS), Alternating 

Non-negative Least Squares using Projected Gradients (ALS-PG)…etc. 

The vast majority of the mentioned algorithms take 3 inputs which are: Original Matrix to be 

factorized (spectrogram), Number of Components (anticipated number of sources to be 

separated), the Maximum Number of Iterations or the minimum error. The codes for the stated 

update methods are found in the Appendix. 

Noteworthy, not all cost functions are convex in nature, i.e. convergence of the algorithm is not 

guaranteed. In fact, if the function is not convex, multiple extrema would exist, which raises the 

probability of getting stuck in a local extremum and ending the process at an early stage. When 

such a problem arises, common practice states the necessity to design an auxiliary function. 

The   
       

    mapping  ( | ̃) is said to be an auxiliary function to C(h) if and only if: 

      
   ( )   ( | ̃) 

  (   ̃)     
     

   ( )   ( | ̃) 

Clearly stated, the auxiliary function  ( | ̃) is an upper bound to C(h), which is tight for     ̃ 

(see Fig. X). Hence, the iterative optimization of  ( | ̃) replaces the optimization of C(h) since 

any iterate h
(i+1) 

satisfying  ( (   )| ( ))   ( ( )| ( )) satisfies  ( (   ))   ( ( ). 

Therefore, the typical choice of the iterate is in (4.14): 

  (   )         
   

 ( | ( )) (4.78) 



  115 
 

The mathematical proof of the auxiliary function concept is found in Appendix B. 

4.3.2 Periodicity Term Optimization 

In order to optimize the periodicity function, we aim to find optimal values for H         , and 

since the optimization process is not straight forward, the use of an auxiliary function that is 

optimized instead of the original cost function is performed as described in the previous section. 

The choice of the auxiliary function is clearly explained in [117] as in (4.15) using Jensen’s 

equality: 

 
  (   )  ∑                ∑         

        

      
    

           (4.1579) 

where        is a positive weight satisfying ∑            

An exact upper bound is achieved when (4.16) is satisfied: 

 
       

        

∑          
 (80) 
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Figure 4.5 Auxiliary Function Upper Bound Graphical Illustration 

Whenever the stopping criterion is discussed, convergence should be the first thing to come to 

mind. In fact, logically speaking, the algorithm should not stop until an acceptable error value 

has been reached implying the convergence, i.e. the desired factorization according to the 

imposed penalty-based constraints is met. However, in some applications where computational 

cost is to be minimized, the maximum number of iterations is imposed onto the algorithm so that 

regardless of the error value, the algorithm shall stop and output whatever separation results are 

computed. An illustration of the convergence tracking curve is shown in Fig. 4.6. 
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Figure 04.6: Convergence Curve Illustration  
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

5.1 VGRF Processing and Analysis 

5.1.1 VGRF Processing 

To recall, in order to optimally process the VGRF signals with the highest SNR and lowest 

degradation level of the sharp edges of the Impact Pattern, the traditional filtering techniques that 

require a user-set cutoff frequency or band-pass/reject frequency range were avoided upon 

thorough assessment of the published results in the literature. Instead, we have implemented the 

Spectral Subtraction technique commonly implemented to reduce noise levels in speech or music 

data, and adopted it the VGRF signals. The inputs to this method are the noisy VGRF signal 

vector in addition to the leap periods as shown in Fig. 5.1. 

 

Figure 5.1: Leap Periods in VGRF Signals 
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Once extracted, the leap periods that are the no-activity periods during the run were concatenated 

into a single vector as shown in Fig. 5.2. 

 

Figure 5.2: Sample Concatenated Leap Period Signals 

 

Figure 5.3: Sample Concatenated Leap Period Signals 

As seen in Fig. 5.2 and Fig. 5.3, the leap period noise is random in nature, and its magnitude in 

comparison with the noisy VGRF signal is low, however makes a remarkable difference when 
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performing time-frequency analysis and adds high-frequency noise to the signal in a way that 

causes misinterpretation of the impact pattern. In fact, two alternatives were available for us to 

deal with the noise floor: leap-period concatenation or leap-period averaging; in case of 

concatenation, the different leap periods are extracted and placed adjacent to one another such 

that the spectrum of the concatenated vector is subsequently computed, while in case of 

averaging, the different leap periods are extracted and averaged such that the spectrum of the 

averaged signal is computed. The reason why we chose to go for the concatenation technique lies 

within the random nature of the noise component, which if averaged might lead to significant 

data cancelling out to zero, while concatenation preserves the patterns as well as all noise data 

points for accurate spectral representation.  

As a next step, the Welch periodogram of the concatenated noise signal is performed, a sample 

of which is presented in Fig. 5.4 and Fig. 5.5. 

 

Figure 5.4: Sample Leap Period Welch Periodogram 
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Figure 5.5: Sample Leap Period Welch Periodogram 

At this stage, the noise spectrum is subtracted from the original VGRF spectrum shown in Fig. 

5.6.  

 

Figure 0.6: Sample Running VGRF Welch Periodogram  



  122 
 

The observation of all noise periodograms showed a high noise level at the surrounding of 100 

Iz, which we know for a fact to be the standard treadmill’s motor vibration noise, along with its 

harmonics that clearly show in Fig 5.6, and this phenomenon is actually a drawback in the 

instrumented treadmill measurement environment. In fact, upon review of the quasi-totality of 

the instrumented treadmill systems used in research, avoidance of noise contamination of the 

recorded signals was anticipated and prevented at the very first stage in the treadmill building 

phase where the treadmill is activated with no individual standing on it or running, and the 

sensor outputs are assessed for noise level; if the noise is beyond tolerance limit, additional 

mechanical fixation of the treadmill is performed to reduce vibrations and hence unwanted high 

frequency noise.   

Upon computation of the noise spectrum, spectral subtraction was performed as described in the 

respective section, leading to a filtered VGRF spectrum. However, the effectiveness of the 

filtering process may not be assessed before the re-transformation of this spectrum into the time 

domain and assessing the preservation of the main pattern traits of the VGRF signals e.g. impact 

pattern and propulsive pattern. This fact was stated while explaining the method, where we said 

that the main issue against traditional filtering is the deterioration of the pattern traits and 

especially the sharp-edged impact pattern. 

That being said, and upon computation of the filtered VGRF spectrum, the IDFT was applied to 

the amplitude periodogram with phase taken into the consideration as explained in previous 

sections, and a comparison between the noisy VGRF and Filtered VGRF is shown in Fig. 5.7. 
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Figure 0.7: Fltered vs Raw VGRF Signal 

As seen in Fig. 5.7, the technique we used to filter out the noise did the required task in an 

optimal way, being able to remove the leap period noise almost completely and keeping the 

impact patterns intact for further analysis. However, quantitatively speaking, we do not have 

metric to assess the level of deterioration of the impact pattern, having no isolated impact 

recordings in our database. In fact, this points out to a crucial point in our work that is to be 

investigated further by coming up with a measurement scheme to acquire isolated impact VGRF, 

which shall be used to prove our results, whether in terms of filtering or in terms of subsequent 

BSS.  

5.1.2 VGRF Analysis 

Concerning the analysis of VGRF signals, as explained in Chapter 2, the main purpose to reach 

upon performing the analysis was the quantification of fatigue progression in running activities.  
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Firstly, a descriptor was introduced for that endeavor, shown in (2.13), which we termed Spectral 

Mean Inter-peak Shift (SMIPS), the illustration of which is shown in Fig. 5.8.  

 
     ( )  

∑  (     )   (   ) 
   

   
 (2.81) 

where  (   )is the frequency at which peak    is manifested, n is the peak index, and N is the 

number of peaks in the periodogram. 

 

Figure 0.8: Comparative Graphical Representation of Welch Periodograms of Running VGRF Signals 

Furthermore, another descriptor was introduced in this thesis, as presented in (2.14), which is the 

Mean High-frequency Power Variation (MHFPV): 

 
     ( )  

    (     )        (     )

      (     )
 (2.82) 
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where     (     ) is the end-of-run power at a user-selected high-frequency range     being 

the threshold frequency, and       (     ) is the beginning-of-run power for the same 

frequency range. 

As clearly shown in Fig. 5.8, and along the progression of the ultra-marathon, two main 

observations are made: firstly, the cyclic spectral peaks show an increasing inter-peak shift 

throughout the entire spectrum, pronounced more evidently at higher frequencies, and secondly 

the entire spectrum manifests a considerable shift towards higher frequencies. From an 

interpretational perspective, the shift of the spectrum towards higher frequencies knowing that 

the spectral peaks are manifestations of step and stride repetition rate indicates the fact that with 

the progression of fatigue, the runners shift naturally shift their running technique from adopting 

smooth wide hops into rapid narrow hops; this phenomenon is expected and even personally 

sensed whenever a subject is running on a treadmill or on the ground and fatigue starts 

manifesting, any individual would naturally loose the capability of performing wide hops that 

require high effort to lift the body off the ground for long distances, referring thereby to more 

moderate and quick stepping technique that would decrease the strain on the muscles. The 

SMIPS results are shown in Table 5-1. 

Upon interpretation of the periodogram and realizing the above-stated remarks, it was mandatory 

for us to go further with the spectral content analysis but with the addition of the time factor, 

being thereby able to track the progression of the spectrum in terms of its spectral components; a 

shift towards higher frequency would logically mean a higher high-frequency power. The 

tracking of the frequency-specific power was computed via STFT spectrogram computation and 

comparison of power of the different spectral components, as shown in Fig. 5.9, Fig. 5.10 and 
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5.11 illustrating the spectrogram in color map format, in 3D format, and in contour format, 

respectively. 

 

Figure 0.9: STFT Spectrogram of a Sample Running VGRF Signal (color map) 

 

Figure 0.10: STFT Spectrogram of a Sample Running VGRF Signal (3D view) 
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Figure 0.11: Frequency Components of an STFT Spectrogram of a Sample Running VGRF Signal (Highest Frequency Component 
in Red) 

Upon computation of the high frequency VGRF component, manifested by the impact peak 

during heel-strike, and tracking its mean power throughout the ultra-marathon for the ten 

athletes, a monotonic increase of the mean high frequency power of 24.4413.40 % was detected 

among the studied population, with only one athlete with a nearly constant impact power 

throughout the ultra-marathon. A sample of the high frequency component’s power variation in 

progression with the ultra-marathon is shown in Fig. 5.12, showing a clear increase in the high 

frequency power during the 24 hours of running. 
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Figure 0.12: Comparative Graphical Representation of the High Frequency Component of the STFT Spectrograms of Sample 
Running VGRF Signals 

 

Table 5.1 Spectral Analysis Results 

Spectral Parameter 

SMIPS (mean±std) MHFPV (mean±std) 

0.66±0.38 Hz 24.4413.40 % 

 

The computed results were in conformity with our initial theory stating the fact that the body 

biomechanically compensates for lost muscle power with higher stress on the heel, tibia and knee 

through higher impact during heel-strikes, which was clearly indicated by a considerable 

increase in high frequency power.   
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5.2 VGRF SCBSS 

As previously explained, the NMF algorithm in general requires two main user inputs: the 

magnitude/power spectrogram of the single-channel signal of interest, as well as the model order 

number denoted k, which corresponds to the estimated number of spectral bases. In our 

application, we chose k=3 based on our intuition since the VGRF signal carries three main 

spectral patterns: the impact pattern, the propulsion pattern, and the modulation pattern that 

carries the first two throughout the steps being the step modulation pattern.  

Firstly, we created different synthetic sparse signals and assessed the metric we used in the 

sparseness penalty function in (3.6): 

 

‖ ‖    
√  (∑ |  |

 
   ) √∑   

  
   

√   
 

(3.83) 

The resulting sparseness of the synthetic signal was computed to be 0.8, which is a relatively 

high degree of sparseness, as shown in Fig. 5.13.  

 

Figure 0.13: Sample Synthetic Sparse Signal with sparseness=0.8 
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As far as periodicity is concerned, we tested the fitting algorithm of periodicity onto the high 

frequency components of the VGRF STFT spectrogram, which we supposed to be similar to the 

resulting spectral pattern of the impact pattern, being a high frequency pattern. The results are 

graphically shown in Fig. 5.14 and numerically shown (fit results) below. 

 

Figure 5.14: Graphical Representation of the Fourier Coefficient Fit of the HF Component of a sample Running VGRF Signal 

 

The optimization algorithm stopped when the goodness of fit termed R
2
 reached 0.982, which is 

a very good fit, showing the robustness of the periodicity tracking algorithm.  
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                       General model Fourier: 

                                                        f(x) =  a0 + a1*cos(x*w) + b1*sin(x*w) +  

                             a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  

                                                               a4*cos(4*x*w) + b4*sin(4*x*w) 

                                             where x is normalized by mean 250.5 and std 144.5 

                                                   Coefficients (with 95% confidence bounds): 

                                                                 a0 =        2355  (2336, 2374) 

                                                                 a1 =        1144  (1118, 1171) 

                                                                 b1 =       575.4  (548.9, 601.8) 

                                                                 a2 =        1224  (1197, 1250) 

                                                                 b2 =       200.6  (174.4, 226.9) 

                                                                 a3 =       624.6  (598.3, 650.9) 

                                                                 b3 =       490.9  (464.4, 517.3) 

                                                                 a4 =       29.99  (3.572, 56.4) 

                                                                 b4 =         115  (88.76, 141.3) 

                                                                 w =       15.33  (15.32, 15.34) 

 

                       Goodness of fit: 

                       SSE: 2.2e+07 

                       R-square: 0.982 

                       Adjusted R-square: 0.9816 

                       RMSE: 211.9 
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The above-presented results show the robustness of the penalty functions and constraints 

designed for the endeavor of separating cyclosparse impact patterns from the overall single-

channel VGRF signals. In terms of sparseness assessment, the used metric proved its robustness 

in quantitatively describing the sparseness level of any given signal, and our use of it in order to 

force sparseness onto the separated sources is confirmed. As for the periodicity assessment 

penalty function, we were able to model a TF component using a Fourier-inspired modeling 

technique with linear optimization via EUC divergence minimization, resulting in a 98.16% 

goodness of fit. A question might come to mind is about the reason behind wanting to prove the 

effectiveness of the penalty functions and constraints instead of assessing the overall separation 

at the end of the road, and the answer is as follows: SCBSS deals with signals that are mixtures 

of completely unknown sources, and the only way to prove the effectiveness or separation 

success of such systems is having readily-available isolated sources e.g. wanting to separate the 

singer’s voice from background music while having his voice readily-separate beforehand as a 

reference signal to compare with. Having explained that, the VGRF signals’ nature dictate that 

no impact pattern may solely recorded from a natural run, unless we have the runner forced to 

run on his heels, which makes no sense and causes subject discomfort, forcing us thereby to rely 

on the robustness of the technique itself on synthetic signals rather than real isolated sources. 

Finally, upon implementation of the overall code, the results turned out to be in harmony with 

what literature states about the heel-strike transient, which was never separated in other 

references for us to use as a goodness of separation criterion. The resulting impact and 

propulsion patterns in two of the randomly selected sample signals are shown in Figs. 5.15-5.16, 

showing the separated impact patterns from the overall VGRF patterns. 



  133 
 

 

Figure 0.15: Sample of Separated Running VGRF Patterns 
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Figure 0.16: Sample of Separated Running VGRF Patterns 

 

From the above shown graphical representations of the separated VGRF patterns, the impact 

pattern turned out to be an oscillatory pattern rather than a single peak within the VGRF signal, 

as some researchers modeled it. This impact pattern is initiated at heel-strike and propagated 

throughout the entire step rather than appearing shortly on heel-strike and vanishing away. In 

terms of signal description, we may describe the impact pattern as a sharp transient damped peak 

manifested through broadband high-frequency oscillations. And from a biomechanical 

perspective, a wide range of interpretations is possible upon the separation of the impact pattern; 

for instance, we realize that the sharper the impact is at heel-strike, the stronger and more 

harmful the hit is over the tibia and the associated musculoskeletal system, which led some 
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researchers as stated in the literature to consider training athletes over NHS running, preventing 

thereby the strong hit against the ground and its subsequent damage to the bones and ligaments. 

Furthermore, the separation showed clear inter-leg impact asymmetry, which if accurately 

analyzed and quantified may open the door for the diagnosis of the underlying musculoskeletal 

system of the runner, whether in terms of athletic performance or even pathological run.   

Moreover, we realized that the spectral content of the impact is quite complex and ergo may not 

be considered as being a single-high-frequency component that can be easily extracted via 

standard filters as performed in the literature. 

The real work in terms of biomechanical study actually begins upon separation, being now able 

to model   
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CHAPTER 6 

CONCLUSION AND FUTURE PERSPECTIVE 

 

In this dissertation, we explored the field of Single-channel Blind Source Separation 

(SCBSS) via customized and regularized Non-negative Matrix Factorization (NMF) that we 

adapted to separate sparse pulse-like periodic/cyclic source signals from a single-channel 

mixture; the devised algorithm was termed the Cyclosparse NMF.  

Throughout the dissertation, we went through the state-of-the art techniques and 

algorithms implemented in BSS in general and SCBSS in specific, as well as the state-of-the-art 

measurement systems in the field of Gait analysis, leading the way to our main application in this 

thesis which is the application of SCBSS on Vertical Ground Reaction Force (VGRF) signals for 

the eventual separation of the Impact Pattern that offers valuable insight on the anatomical and 

physiological state of runners. 

The first contribution made in this thesis was the optimization of the pre-processing and 

processing techniques of VGRF signals in order to have the best Signal-to-noise Ratio (SNR) 

and minimal loss of relevant data that is specific to the VGRF pattern e.g. losing sharp edges 

from the impact pattern via the Spectral Subtraction method. The stated contribution was 

published and presented in an international conference. 

The second contribution made in this thesis was the quantification of runners’ fatigue 

progression via comparative spectral and joint time-frequency analysis of the VGRF signals 

between the beginning of the running task and its end; the Welch periodogram was analyzed for 

spectral feature extraction and the Short-time Fourier Transform (STFT) spectrogram was 

analyzed for joint time-frequency feature extraction. The stated contribution was accepted for 
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publication in 2 international conferences, presented in the first and shall be presented in the near 

future in the second conference. 

The third contribution made in this thesis was the design of an SCBSS algorithm to 

separate cyclosparse sources from a single recording and without any a priori information, i.e. 

totally unsupervised. The method was termed the Cyclosparse NMF, and it is based on optimized 

and regularized non-negative matrix factorization. The algorithm was implemented on single-

channel VGRF signals and the Impact patterns were successfully extracted, showing rather major 

characteristics of the pattern that might carry valuable biomechanical interpretations. The stated 

contribution was submitted to an international peer-reviewed journal for publication. 

As future perspectives, and upon performing our in-depth analysis of VGRF signals, we 

suggest taking our work into another level in terms of online / real-time fatigue analysis to 

improve the reliability and efficiency of rehabilitation programs as well as athletic performance 

metrics. Furthermore, with the impact pattern being separated, focus shall be applied onto the 

mathematical modeling of the impact, which would eventually lead to the true effect of the heel-

strike on the anatomical and physiological state of the runners. This would be of great value in 

terms of injury prediction and prevention. 
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