
THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Braham Lotfi Mediouni

Thèse dirigée par Saddek Bensalem

préparée au sein du Laboratoire Verimag
dans l'École Doctorale Mathématique, Sciences et
Technologies de l’information (MSTII)

Modeling and Analysis of
Stochastic Real-Time Systems

Thèse soutenue publiquement le 28/06/2019,
devant le jury composé de :

Erika Abraham
Professeur, Université RWTH Aachen, Rapporteur
Enrico Vicario
Professeur, Université de Florence, Rapporteur
Eugene Asarin
Professeur, Université Paris-Diderot, Président
Kim G. Larsen
Professeur, Université d’Aalborg, Membre
Marius-Dorel Bozga
Ingénieur de recherche, CNRS, Membre
Saddek Bensalem
Professeur, Université Grenoble Alpes, Directeur de thèse

Modeling and Analysis of Stochastic
Real-Time Systems

Braham Lotfi Mediouni

Laboratoire Verimag
Université Grenoble Alpes

This dissertation is submitted for the degree of
Doctor of Philosophy

Ecole Doctorale Mathématique,
Sciences et Technologies de
l’Information, Informatique (MSTII)

June 2019

Abstract

In this thesis, we address the problem of modeling and verification of complex systems exhibiting
both probabilistic and timed behaviors. Designing such systems has become increasingly
complex due to the heterogeneity of the involved components, the uncertainty resulting from
open environment and the real-time constraints inherent to their application domains. Handling
both software and (abstraction of) hardware in a unified view while also including performance
information (e.g. computation and communication times, energy consumption, etc.) becomes
a must. Building and analyzing performance models is of paramount importance in order
to give guarantees on the functional and extra-functional system requirements and to make
well-founded design decisions based on quantitative measures at early design stages.

This thesis brings several new contributions. First, we introduce a new modeling formalism
called Stochastic Real-Time BIP (SRT-BIP) for the modeling, the simulation and the code
generation of component-based systems. This formalism inherits from the BIP framework its
component-based and real-time modeling capabilities and, extends it by providing comprehensive
primitives to express complex stochastic behaviors.

Second, we investigate machine learning techniques to ease the construction of performance
models. We propose to enhance and adapt a state-of-the-art learning procedure to infer
stochastic real-time models from concrete system execution and to represent them in the
SRT-BIP formalism.

Third, given performance models in SRT-BIP, we explore the use of statistical Model
Checking (SMC) for the anaysis of system’s functional and performance requirements. To do so,
we provide a full framework, called SBIP, as a support tool for the modeling, simulation and
analysis of SRT-BIP systems. SBIP is an Integrated Development Environment (IDE) that
implements SMC algorithms for quantitative, qualitative and rare events analyses together with
an automated exploring procedure for parameterized requirements. We validate our proposals
on real-life case studies ranging from communication protocols and concurrent systems to
embedded systems.

Finally, we further investigate the interest of SMC when included in elaborated system
analysis workflows. We illustrate this by proposing two risk assessment approaches. In the first
approach, we introduce a spiral methodology to build resilient systems with FDIR components
that we validate on the safety assessment of a planetary rover locomotion system. The second
approach is concerned with the security assessment of organization’s defenses following an

2

offensive security approach. The goal is to synthesize impactful defense configurations against
optimized attack strategies (that minimize attack cost and maximize success probability). These
attack strategies are obtained by combining model learning with meta-heuristics, and where
SMC is used to score and prioritize potential candidate strategies.

Résumé

Dans cette thèse, nous abordons le problème de la modélisation et de la vérification de systèmes
complexes présentant des comportements à la fois probabilistes et temporisés. La conception de
tels systèmes est devenue de plus en plus complexe en raison de l’hétérogénéité des composants
impliqués, l’incertitude découlant d’un environnement ouvert et les contraintes temps réel
inhérentes à leurs domaines d’application. La gestion à la fois du logiciel et du matériel dans
une vue unifiée tout en incluant des informations sur les performances (par exemple, temps de
calcul et de communication, consommation d’énergie, etc.) devient indispensable. Construire
et analyser des modèles de performance est d’une importance primordiale pour donner des
garanties sur les exigences fonctionnelles et extra-fonctionnelles des systèmes, et permettre une
prise de décision fondée sur des mesures quantitatives dès les premières étapes de la conception.

Cette thèse apporte plusieurs nouvelles contributions. Tout d’abord, nous introduisons un
nouveau formalisme de modélisation appelé BIP stochastique et temps réel (SRT-BIP) pour
la modélisation, la simulation et la génération de code de systèmes à base de composants. Ce
formalisme hérite du framework BIP ses capacités de modélisation basées sur les composants et le
temps réel et, en outre, il fournit des primitives pour exprimer des comportements stochastiques
complexes.

Deuxièmement, nous étudions des techniques d’apprentissage automatique pour faciliter
la construction de modèles de performance. Nous proposons d’améliorer et d’adapter une
procédure d’apprentissage présentée dans la littérature pour déduire des modèles stochastiques
et temporisés à partir d’exécutions concrètes du système, et de les exprimer dans le formalisme
SRT-BIP.

Troisièmement, étant donné les modèles de performance dans SRT-BIP, nous explorons
l’utilisation du model checking statistique (SMC) pour l’analyse d’exigences concernant la
fonctionnalité et les performances du système. Pour ce faire, nous fournissons un framework
complet, appelé SBIP, en tant qu’outil de support pour la modélisation, la simulation et
l’analyse des systèmes SRT-BIP. SBIP est un environnement de développement intégré (IDE) qui
implémente des algorithmes SMC pour des analyses quantitatives, qualitatives et d’événements
rares, en plus d’une procédure d’automatisation pour l’exploration des paramètres d’une
propriété. Nous validons nos propositions sur des études de cas réelles touchant à des domaines
variés tels que les protocoles de communication, les systèmes concurrents et les systèmes
embarqués.

4

Enfin, nous étudions plus en détail l’intérêt du SMC lorsqu’il est inclus dans des méthodes
d’analyse de système élaborées. Nous illustrons cela en proposant deux approches d’évaluation
des risques. Dans la première approche, nous introduisons une méthodologie en spirale pour
modéliser des systèmes résilients avec des composants FDIR que nous validons à travers
l’évaluation de la sécurité du système de locomotion d’un rover d’exploration planétaire. La
deuxième approche concerne l’évaluation des politiques de sécurité des organisations selon une
approche de sécurité offensive. L’objectif est de synthétiser des configurations de défense efficaces
contre des stratégies d’attaque optimisées (qui minimisent le coût d’attaque et maximisent la
probabilité de succès). Ces stratégies d’attaque sont obtenues en combinant l’apprentissage de
modèles et les méthodes méta-heuristiques, dans lesquels le SMC a le rôle principal d’évaluer et
de prioriser les potentielles stratégies candidates.

Contents

1 Introduction 9
1.1 Designing Complex Systems . 10

1.1.1 Model-Based Design Concepts and Methodology 11
1.1.2 System Requirements . 13
1.1.3 System Model Characteristics . 13
1.1.4 Challenges . 15

1.2 Analysis of System Models . 16
1.2.1 Model Checking . 16
1.2.2 Probabilistic Model Checking . 17
1.2.3 Statistical Model Checking . 18

1.3 Contributions . 19
1.3.1 Stochastic Real-Time Modeling Formalism 19
1.3.2 Learning Performance Models . 19
1.3.3 Modeling and Analysis Framework . 19
1.3.4 Safety and Security Risk Assessment Approaches 20

1.4 Outline . 20
1.5 Publications . 21
1.6 Tools . 21

2 State of the Art on Stochastic Modeling and Analysis 23
2.1 Modeling Formalisms . 24

2.1.1 Discrete Time Markov Chain . 26
2.1.2 Continuous Time Markov Chain . 27
2.1.3 Generalized Semi-Markov Process . 28
2.1.4 Markov Decision Process . 29

2.2 Specification Languages . 30
2.2.1 Linear-time Temporal Logic . 31
2.2.2 Metric Temporal Logic . 32

2.3 Statistical Model Checking Techniques . 33
2.3.1 Qualitative Analysis . 35

6 Contents

2.3.2 Probability Estimation . 36
2.3.3 Rare Events Analysis . 36

2.4 Statistical Model Checking Tools . 39
2.5 Statistical Model Checking in Practice . 40
2.6 Conclusion . 43

3 Modeling Component-Based Stochastic Real-Time Systems 45
3.1 Stochastic Real-Time BIP . 46

3.1.1 Stochastic Real-Time Components . 46
3.1.2 Composition of Stochastic Real-Time Components 48
3.1.3 Stochastic Simulation Semantics . 50
3.1.4 An Example of Stochastic Simulation 56
3.1.5 Additional Modeling Features . 57

3.2 Implementation of SRT-BIP . 60
3.2.1 Overview of the RT-BIP Framework . 60
3.2.2 The SRT-BIP Extension . 63

3.3 Conclusion . 67

4 Learning Timed Models with Probabilities 69
4.1 Grammatical Inference . 70

4.1.1 Principles . 70
4.1.2 Learnability . 71
4.1.3 Learning Algorithms: an Overview . 72
4.1.4 Classification . 74

4.2 The RTI+ Learning Procedure . 76
4.2.1 The Learned Model . 77
4.2.2 Building the APTA . 78
4.2.3 The Learning Process . 79
4.2.4 Compatibility Evaluation . 82
4.2.5 Shortcomings . 83

4.3 Learning More Accurate Models . 84
4.3.1 Unfolded APTA . 84
4.3.2 Constructive-bound APTA . 85
4.3.3 Tightened-bound APTA . 85
4.3.4 Discussion . 86

4.4 Experiments . 88
4.4.1 Evaluation Procedure . 88
4.4.2 Benchmarks . 90
4.4.3 Results . 91

Contents 7

4.5 DRTA+ to SRT-BIP Model Transformation . 93
4.6 Conclusion . 96

5 The SBIP Framework 99
5.1 SBIP Design . 100

5.1.1 Stochastic Simulation Engine . 100
5.1.2 Monitoring Properties . 102
5.1.3 Statistical Analyses Core . 104
5.1.4 Graphical User Interface . 109

5.2 Integrated Workflows and Activities . 110
5.2.1 Design Activities . 111
5.2.2 Analysis Workflows . 114

5.3 Implementation Details . 119
5.3.1 Overview of the Code Structure . 119
5.3.2 Availability and Documentation . 123

5.4 Related Tools . 123
5.5 Conclusion . 124

6 Analysis of System Performance with SBIP 127
6.1 Communication Protocols Case Studies . 128

6.1.1 FireWire – IEEE 1394 . 128
6.1.2 Bluetooth – Device Discovery . 131
6.1.3 Precision Time Protocol – IEEE 1588 133

6.2 Embedded Systems Case Studies . 135
6.2.1 A Vehicle Gear Controller . 135
6.2.2 Pacemaker Model . 136

6.3 Concurrency with a Shared Resource . 137
6.4 Tool Performance Analysis . 138
6.5 Conclusion . 140

7 Quantitative Risk Assessment in the Design of Resilient Systems 141
7.1 A Model-based Approach Integrating Quantitative Risk Assessment 142
7.2 Planetary Robotics Case Study . 144

7.2.1 System and Requirements Overview . 144
7.2.2 Nominal Software Design . 145

7.3 Risk Assessment of the Planetary Robotics System 149
7.3.1 On Robustness to Faults . 149
7.3.2 On Deployment Impact . 155

7.4 Related Work . 162
7.5 Discussion . 164

8 Contents

8 Assessing Systems Security with SMC 167
8.1 Modeling Systems with Vulnerabilities and Defenses 169

8.1.1 Attacker, Defender and Attack-Defense Tree 169
8.1.2 Risk Assessment Model . 171

8.2 Proposed Workflow . 173
8.3 Identifying Impactful Defenses . 174
8.4 Learning Attacker Models . 176

8.4.1 IOFPTA . 177
8.4.2 Elementary Operations of IOALERGIA 177
8.4.3 Compatibility Criterion . 178

8.5 Synthesizing Attack Strategies . 178
8.5.1 Overview . 179
8.5.2 IEGA Operations Description . 180

8.6 Experiments . 183
8.6.1 Experiments on Abstracted Systems . 183
8.6.2 Experiments on Detailed Systems . 188

8.7 Related Works . 194
8.8 Discussion. 195

9 Conclusion and Future Work 199
9.1 Conclusions . 199
9.2 Future Work . 201

9.2.1 The SRT-BIP Formalism . 201
9.2.2 Learning Performance Models . 202
9.2.3 The SBIP Framework . 202

List of Figures 205

List of Tables 209

Bibliography 211

Appendix A A Vehicle Gear Controller: Extended Case Study 223
A.1 The Complete Set of Considered Requirements 223

Appendix B Assessing Systems Security with SMC: Case Studies Description227
B.1 An Organization System Attack (ORGA) . 227
B.2 Resetting a BGP Session (BGP) . 229
B.3 A Malicious Insider Attack (MI) . 230
B.4 Supervisory Control And Data Acquisition System (SCADA) 231

Chapter 1

Introduction

Computing systems are ubiquitous in modern society thanks to the advances in the hardware,
information and communication technologies. These evolutions have contributed to the emer-
gence of new applications and concepts such as Internet of Things (IoT), big data and Artificial
Intelligence (AI), and autonomous driving. These new trends tend to drastically transform
the society by breaking down the barriers between the physical and digital worlds, and bring
changes to every sector, spanning from transportation to social interactions and even working
habits.

As an answer to the newly appearing elaborate needs, systems are in a constant development
to cover advanced services, resulting in products with increasing complexity. For example,
recent cars provide a wide panel of advanced driver assistance systems (ADAS). Some systems,
such as advanced cruise control and automatic parking, are meant to enhance the driver’s
experience, while other systems such as automatic braking and blind spot detection, directly
address safety issues and aim at reducing the risk of car accidents.

Pushing to the limits the notions of speed, communication and utility, these systems
have evolved, seeking for efficiency, interconnectivity and user customization. This quest of
interconnectivity has even affected everyday objects. Nowadays, smart devices are everywhere.
Put together, these devices provide capabilities such as information collection and environment
control. In smart homes for example, domotic systems give a total and remote control over
smart objects constituting the lighting and temperature systems and home appliance. The
interaction with such connected structures is often operated through dedicated interfaces or
simply smartphones.

With the boom of mobile applications, smartphones no longer only respond to the basic
communication needs but serve to entertainment and navigation, and more recently, domotics
and electronic payment. In 2017, studies estimated the number of smartphone users in the

10 Introduction

world to 5 billions with an average number of installed applications reaching 80 1. Smartphones
utilization observes a constant increase, reaching an average of 3.1 hours per day (in 2017) 2.

The increasing interest towards computing systems has made this market even more
attractive to providers of information and communications technologies and smart devices.
In this competitive and innovative context, reducing a product time-to-market plays a major
positive role in the increase of market shares, implying drastic changes to the conventional
design processes. Short design time is not the only requirement: design processes have to grasp
the growing complexity of the systems and their uncertain environment, and to guarantee their
functional correctness. Beyond functionality, the race for efficiency has become the central
selling point. Systems are meant to be interactive, with a quick response time, albeit, limited
in terms of autonomy and processing capacity, and communication is expected to be quasi
instantaneous, even when dealing with a dynamic environment.

Additional design challenges arise from the involvement of these systems in daily life. When
ensuring critical tasks involving human lives, users safety is a major concern. Security aspects
are also to consider since these systems have access to (sensitive) user information and can be
aimed for malicious purposes, such as, identity theft or ransomware.

This thesis intends to help in the design of complex systems. The focus is on the proposition
of a design framework to shorten product time-to-market, while improving the quality of
the designed systems in terms of performance. To overcome the complexity of systems, the
heterogeneity of their components and their environment, we adopt a rigorous model-based
and component-based approach relying on formal methods. In this approach, a centralized and
unified view of the system is provided as a basis to reason about functional and extra-functional
aspects at different abstraction levels.

1.1 Designing Complex Systems

The design of complex systems is at the intersection of several disciplines where control, software
and hardware designers closely interact to produce the final product. The success of the design
is dependent on their ability to account for all the components of the system when elaborating
the solution. Indeed, it is crucial to clearly define and understand the interactions between
system components, especially when the development of these components involves various
expertise domains.

Model-based design has emerged as a promising solution to close the gap between cross-
disciplinary design teams by providing them a unified view of the final result. The system
model is the central element and serves as a high-level representation of the system under
design. It encapsulates the expected behavior of the system together with an abstraction of its

1 https://expandedramblings.com/index.php/smartphone-statistics, last access: 14-03-2019
2 https://www.servicesmobiles.fr/20-chiffres-sur-le-marche-mobile-a-connaitre-en-2018-38749,

last access: 14-03-2019

https://expandedramblings.com/index.php/smartphone-statistics
https://www.servicesmobiles.fr/20-chiffres-sur-le-marche-mobile-a-connaitre-en-2018-38749

1.1 Designing Complex Systems 11

environment. Accounting for performance can be easily done by augmenting functional models
with performance information.

Models turn out to be handy artifacts for the validation of design choices and the verification
of the designed system. The reliance on high-level models allows for early fault detection and for
high flexibility to requirement changes during the design process. Quantitative measurements
can be easily extracted from performance models and used to guide further design steps. If
correctly mastered, model-based design shortens the product time-to-market by minimizing
communication delays between design teams, and the errors induced by the lack of information.

1.1.1 Model-Based Design Concepts and Methodology

Model-based design encompasses the activities of modeling the system at different abstraction
levels, simulation, automatic code generation, and verification. Model-based design is a collection
of eight concepts [5]:

1. Executable specification: the model is a representation of the system specification in an
unambiguous manner. It can include a high-level representation of the targeted system
behavior, and alternative use cases that the system has to manage and that are represented
textually in the specification.

2. System-level simulation: simulating the system model is useful to gain a better under-
standing of the system and to increase its faithfulness. It provides a way to investigate
system performance and identify design problems and potential errors.

3. What-if analysis: a model can serve to run simulation tests on individual components
seeking to acquire knowledge about each component and its interactions with the system.
It also enables for rapid exploration and assessment of different design alternatives.

4. Model elaboration: it consists in the refinement process that iterates over the system model
by incrementally introducing more details. Each refinement is followed by the verification
of system requirements. Corrections may be necessary when some requirements are not
fulfilled.

5. Virtual prototyping: this concept consists in simulating the system under real-world
operating conditions on a virtual prototype of the target architecture, before committing
to a physical implementation of this latter. For example, abstracting at register-transfer
level (RTL) provides a cycle-accurate simulation of a hardware component and enables
designers to extract precise estimation of power consumption.

6. Continuous testing: it concerns the use of testing procedures at each stage of the system
development. It consists in simulating the system with increasing levels of details,
namely, (1) on predefined input and output (unit testing), (2) with an abstraction of

12 Introduction

the environment and the target platform (closed-loop testing), (3) software-in-the-loop
simulation, and (4) hardware-in-the-loop simulation. It increases the quality of the
product by identifying errors at early stages of the design.

7. Automation: it consists in the development of dedicated tools or scripts to replace manual,
repetitive and error-prone tasks. This includes model transformations, code generation,
test case generation and formal verification.

8. Knowledge capture and management: this concept identifies the model as the central
source of information. It represents all the knowledge about the system, including
functional and extra-functional information.

These concepts are orthogonal to the development methodology, and can be applied to
improve any development process, such as, the V-model, spiral, Scrum or extreme programming
(XP). The most common development methodology in the design of embedded systems is the
V-model. This latter relies on the association of a testing phase to each development step (see
Figure 1.1).

System
Design

Requirements
Analysis

Architecture
Design

Component
Design

Implementation

Component
Test

Integration
Test

System
Test

Acceptance
Test

Figure 1.1: The V-model methodology

The main disadvantage of the V-model is the necessity to develop the entire system at
the beginning which is not a simple task to do when some information about components
or their interactions is not known initially. Model-based design contributes to the V-model
methodology by allowing an early incomplete design of the system at a high-level of abstraction,
and then specifying the missing details as part of a later refinement. It enables, hence, flexibility
regarding changes.

1.1 Designing Complex Systems 13

1.1.2 System Requirements

In a system design project, system specification is the main source of information about
the expectations on the system under design. This system is described by a collection of
requirements that represent desired properties of the final product. Requirements are extracted
from system specification and can be classified in two categories:

1. Functional requirements concern the functionality of the system and indicate what the
system should do. These requirements include the expected calculations, data processing
and technical details about the system components.

2. Extra-functional requirements concern how the system behaves when fulfilling its function.
They are described with respect to a (quantitative) metric that permits to judge the
operation of the system. These requirements include performance aspects such as com-
putation time, communication latency, energy consumption, temperature and memory
usage. They also embody sensitive aspects such as security and safety.

Requirements are often expressed in natural language as part of the system specification
document. This latter often uses terminologies that are specific to the client’s business domain,
which sometimes introduce some incomprehension and ambiguity to non-experts in that domain.
In model-based design, requirements are also modeled to facilitate their comprehension and
avoid ambiguity. When formally described using property specification languages, they enable
advanced capabilities such as monitor synthesis and automated verification.

1.1.3 System Model Characteristics

With the growing complexity of systems, building faithful system models becomes a challenge.
Several factors impact the system complexity, such as the desired functionality and performance,
environmental aspects and the nature of the involved components. As a matter of fact, recent
systems tend to make hardware and software components of different nature coexist together.
The designer has to cautiously study the different interactions, communications and data flow
to ensure some compatibility in such heterogeneous systems.

The appeal for recent industrial and research activities, such as exploration of outer space,
has created a new era of systems that carry out extremely advanced and elaborate tasks where
time plays a major role. These complex systems have to independently operate in very hostile
and unpredictable environment. To enable an accurate description of such systems, several
key features are required from the modeling languages to manage complexity, describe time
evolution and account for uncertainty.

Decomposition to handle complexity. A simple yet efficient way to comprehend system
complexity is to model systems as the composition of less complex elements. Following this
divide-and-conquer vision, the design of a system boils down to the design of its components and

14 Introduction

their interactions. Component-based decomposition brings several advantages. The design of
loosely coupled components enables re-usability which significantly reduces the design time. It
also opens the doors for the design teams to work in parallel towards common agreed objectives.

Real-time is key. In complex applications, time has a serious impact on the system state
and influences its behavior. Timed systems are often defined as systems where not only the
outcome of the operated computation has to be correct, but the time needed to produce it also
matters. In addition to functional constraints, timed systems have to meet temporal constraints.

Considering timing aspects at design time is an obligation as they may impact the correctness
of the system or degrade its performance. The discrete and continuous time frameworks propose
two different dynamics in modeling time progression. The former sees time as a succession of
steps whereas the latter defines it as a continuum. Discrete time has long been considered as a
viable abstraction of the system behavior. However, its modeling capabilities are very limited
when designing time-sensitive systems such as in avionics or in cyber-physical security. In [92],
the authors emphasize the necessity for modeling time over dense domains by investigating
in-between-ticks attacks on cyber-physical security protocols. This work shows that some
attacks can only be mitigated by models using dense time, as opposed to discrete time.

Probabilities for uncertainty and more. Probabilistic design puts forward the study of
variability in the system. This variability often comes from the interaction of the system with
external elements in its environment. This environment is, by its nature and size, very hard to
represent and sometimes unpredictable. Abstractions are often required as a means to carry
out very complex processes or interactions. Probabilities allow designers to intuitively represent
uncertainty that may arise from the environment.

Probabilities also enable designers to account for potential imperfections in the software
or hardware that constitute the system. For example, failure rates are the most common
representation of the life cycle of hardware components.

Furthermore, probabilistic behaviors are sometimes artificially introduced in order to solve
problems due to system symmetry or determinism. For example, the FireWire network protocol
embeds a probabilistic waiting time sampling during the topology leader election in order to
avoid node contention. Another example, in concurrent systems, is the adoption of a randomized
access to shared resources as a mechanism to prevent starvation.

An important aspect of a modeling language is its ability to express complex (real-time and
stochastic) models with a clearly defined semantics. Several modeling formalisms are used
in formal methods and have the advantage to be extensively studied. These formalisms are
endowed with efficient simulation methods and rigorous verification techniques. Relying on
such formalisms provides a valuable automation in the design process. This design process
can be even more simplified and enhanced with automatic code generation, which positively

1.1 Designing Complex Systems 15

impacts the quality of the final product since it eliminates potential errors due to traditional
manual coding and repetitive tasks.

1.1.4 Challenges

Model-based design requires a specific training for the design team in order to acquire modeling
skills and to master the different modeling tools. In addition, it may imply training and tools
license costs, and time delays in the design process due to an initial learning curve. Regarding
modeling tools, they often provide a partial coverage of the different design steps, as they lack
accurate automatic code generation and/or formal verification algorithms.

The main difficulty of this approach is the construction of the system model, as it requires
design skills and expertise. This step can be time consuming, especially for complex systems.
Moreover, it consists in chasing contradictory objectives as the construction of a faithful yet
high-level model requires to find a good balance between details and abstraction.

The construction of performance models is even more challenging since performance in-
formation are not always available at early design stages. A conventional way to obtain such
information would be to extract it from system specification, or to compute it using static
analysis. For example, the performance of a software program can be estimated by its worst
case execution time (WCET). However, considering the impact of the hardware platform and
environment uncertainty adds another dimension to the complexity of characterizing perfor-
mance. As a solution, approaches [9, 123] based on the characterization of performance from
concrete system executions have been proposed.

Functional Model
(BIP)

Code Generation
Target

Architecture-
Specific Code

Simulation Execution Traces

Distribution Fitting

Performance
Characteristics

Model EnrichmentPerformance
Model

Performance
Analysis

Quantitative
Performance

Feedback

Figure 1.2: Overview of the ASTROLABE approach

In ASTROLABE [123], illustrated in Figure 1.2, the BIP framework [24] is used for the
construction of system functional models and for the generation of platform-specific executables.
The collected system executions are analyzed using statistical inference techniques to infer
probability distribution functions describing system performance. Finally, the performance
model is obtained by augmenting the functional model with the inferred performance information.
This workflow is meant for general purpose systems and was tested on image processing
algorithms and communication protocols. However, this method embodies several manual
tasks that are tedious and error-prone. More recently, the authors of [9] proposed to use

16 Introduction

property-based testing as a means to generate execution traces, and linear regression for the
extraction of execution time distributions. This method is tailored for the study of web services
response time.

1.2 Analysis of System Models

The quality of a system is dependent of its ability to offer a good performance and its absence
of malfunctions and errors. To mitigate errors, industrials often adopt intensive testing policies,
starting from unit testing, followed by integration testing and finally system testing. However,
these tests, as intensive and costly as they can be, are unable to cover all the possible usage
scenarios. Besides, the cost of a bug fix grows exponentially with the design stage [21]. The
detection of a bug after the product release is a nightmare for companies since it may imply
prohibitive costs, without mentioning the negative impact on their corporate identity.

Model-based design is supported by a plethora of analysis techniques that allow designers
to identify errors at early design stages, and to extract performance measures that help making
design decisions and avoiding architecture re-engineering costs. Analyzing system models
consists in verifying whether the system satisfies formally expressed properties, representing
functional or extra-functional requirements. A system is correct if it satisfies all described
requirements. So, the correctness of a system is not absolute, but it is specific to the considered
specification. It is worth mentioning that the accuracy of the analysis results strongly depends
on the ability of the model to faithfully represent the target system.

Formal models are supported by systematic techniques to construct the set of all system
states. This state space serves as a basis for exhaustive exploration through model checking, or
for partial exploration using scenario-based testing or simulation.

1.2.1 Model Checking

Model checking is a verification technique that relies on a systematic exploration of the whole
system state space. This technique, illustrated in Figure 1.3, was proposed as the result of two
independent works [44] and [132]. Given a system model, a model checker enumerates all the
states of the system and verifies whether the property under verification is satisfied at each
system state. The exploration can prematurely abort in case the property is violated. The path
leading to the violating state is presented as a diagnostic information, and showcases an error
in the model.

This algorithmic approach for verification is faster than deductive methods such as theorem
proving [76]. The challenge with such an approach is to handle large-scale models. With
an explicit state space enumeration, a model checker can handle up to 109 states. More
sophisticated explorations have been proposed in the literature. Symbolic model checking [114]
relies on a symbolic representation for state transition systems using Binary Decision Diagrams

1.2 Analysis of System Models 17

System Spec. Requirements

Model Properties

Model Checking

Verified
Violated
Counter-example

Property spec.
Language

Modeling
Language

Figure 1.3: Illustration of the model checking technique

(BDD) [4] and is able to handle up to 1020 states. In [74], the authors propose to accelerate
the model checking procedure by applying a partial state reduction. The idea here is to avoid
checking the interleaving of independent actions. Bounded model checking was proposed in [29]
as an exhaustive exploration up to a bounded horizon. This falsification method is useful to
identify failures but do not guarantee system correctness. Other tracks have been explored for
the sake of scalability of model checking such as compositional reasoning [47], abstraction [50],
symmetry reduction [45], and parametrized verification [64].

Several model checking tools exist in the literature. For example, SLAM [19] is a proprietary
tool developed by Microsoft Research for the checking of C programs against safety properties.
BLAST [78] addresses the same problem of checking C programs but using the concept of lazy
abstraction that relies on the principles of on-the-fly abstraction and on-demand refinement of
the state space. SPIN [80] is a model checker for Linear-time Temporal Logic. It implements
a finite automata-based model checking that computes the intersection of the system model,
and an automaton that represents the complement of the desired property. KRONOS [35]
is a model checker for Timed Computational Tree Logic(TCTL) over real-time systems. It
considers components expressed as timed automata. Except for the integer clocks to express
time, KRONOS does not support data variables.

Model checking suffers from scalability issues due to state-space explosion especially when
applied on models with a large number of variables and/or control locations. Moreover, in case
of property violation, this verification method does not tell how close the system is to satisfying
the property and is limited to qualitative properties about the system functioning. In other
words, it does not support quantitative analysis such as performance evaluation.

1.2.2 Probabilistic Model Checking

Probabilistic model checking [16] is an automated verification technique targeting systems
exhibiting stochastic behaviors. It enables to compute the probability of a given stochastic

18 Introduction

system to satisfy some property of interest in a numerical manner. This technique is based on
the probability space induced on system runs to compute quantitative statements about the
behavior and performance of the system expressed as probabilities.

Checking a probabilistic model against a property consists first to identify the states of the
model where the property is satisfied (respectively violated). Secondly, a collection of linear
equations are extracted from the model, encoding the different constraints represented by the
model transitions, and accounting for the previously computed state labeling. Finally, the
probability of the model satisfying the property is obtained by the numerical resolution of the
constituted system of linear equations.

Several tools implement probabilistic model checking techniques. For example, Prism [101]
implements probabilistic model checking techniques for Markov Decision Processes (MDPs)
and Probabilistic Timed Automata (PTAs), and includes support for cost and reward struc-
tures. This tool optimizes the memory required to run these techniques by using a symbolic
representation of data. The Markov Reward Model Checker (MCMR) [93] supports Discrete
and Continuous-Time Markov Chains (DTMCs and CTMCs) and was recently extended to
Continuous-Time Markov Decision Processes (CTMDPs).

Despite their wide acceptance in academia and research, probabilistic model checking
techniques are known to be memory-intensive, which makes them not scalable to large-size
models.

1.2.3 Statistical Model Checking

Statistical Model Checking (SMC) is a special case of probabilistic model checking techniques
following a simulation-based approach to estimate satisfaction probabilities. SMC was initially
introduced by Younes in his thesis [151]. It relies on statistical tests (parametrized by precision
and confidence attributes) to guard errors when generalizing a finite set of observations on the
(probabilistic) system to global claims over the whole system.

SMC techniques have been developed for qualitative analysis (similarly to model checking)
based on hypothesis testing, and for quantitative analysis (as for probabilistic model checking).
The interest of SMC is also its support for the analysis of rare events, that is, events having a
very low probability of occurrence, and hence, that are very unlikely to be observed with pure
simulation. Such events can represent system errors that need to be fixed.

Several dedicated SMC tools have been recently developed to address different purposes,
such as Ymer [153], Plasma-Lab [88] and SBIP [122]. SMC facilities are also present in some of
the probabilistic model checking tools such as Prism and Uppaal-smc [53]. SMC tools mainly
differ in the supported modeling formalisms, specification languages and the implemented SMC
techniques.

Eventhough numerical methods such as probabilistic model checking often provide a higher
accuracy than statistical methods [152], SMC has emerged as the best solution to handle

1.3 Contributions 19

system complexity. This approach provides a parametrized trade-off between analysis speed and
precision, controlled by the value of the statistical parameters. In addition, SMC is applicable
to both system models and black-boxes, provided these latter behave entirely probabilistically.

1.3 Contributions

In this thesis, we address the problem of modeling and verification of complex systems exhibiting
both probabilistic and timed behaviors. We focus more particularly on the analysis of extra-
functional requirements including performance, security and safety, using statistical model
checking. To do so, we define a rigorous model-based and component-based approach relying on
formal methods and for which we propose a framework that supports the modeling, simulation,
code generation and analysis of these stochastic real-time systems. This thesis brings several
new contributions, as listed below.

1.3.1 Stochastic Real-Time Modeling Formalism

We introduce a new modeling formalism called Stochastic Real-Time BIP (SRT-BIP) for the
modeling, the simulation and the code generation of component-based systems. This formalism
inherits from the BIP framework its component-based and real-time modeling capabilities and,
in addition, it provides comprehensive primitives to express complex stochastic behaviors. The
resulting models have an underlying semantics of a Generalized Semi-Markov Process (GSMP),
that is known to be the most expressive stochastic mathematical framework for the study of
discrete-event systems.

1.3.2 Learning Performance Models

We investigate machine learning techniques to facilitate the construction of performance models
from functional ones. We propose to enhance and adapt a state-of-the-art learning procedure
to infer performance models expressed in the SRT-BIP formalism.

1.3.3 Modeling and Analysis Framework

Given performance models in SRT-BIP, we analyze requirements concerning system functionality
and performance using Statistical Model Checking (SMC) techniques. To do so, we provide a
full framework, called SBIP, as a support tool for the modeling, code generation, simulation
and analysis of SRT-BIP systems. SBIP is an Integrated Development Environment (IDE) that
implements SMC algorithms for quantitative, qualitative and rare events analyses together with
an automated procedure for parameter exploration. We validate our proposals on real-life case
studies ranging from communication protocols and concurrent systems to embedded systems.

20 Introduction

1.3.4 Safety and Security Risk Assessment Approaches

We further investigate the interest of SMC when included in elaborate system analysis workflows
where SMC is the heart of the overall process. We illustrate this by proposing two risk
assessment approaches. In the first approach, we introduce a spiral methodology to model
resilient systems with FDIR components that we validate on the safety assessment of a planetary
rover locomotion system. The second approach addresses the security assessment of organization
defenses following an offensive security approach. The goal is to synthesize impactful defense
configurations against optimized attack strategies (minimizing attack cost and maximizing
success probability). These attack strategies are obtained by combining model learning and
meta heuristics, in which SMC plays the major role of scoring potential candidates.

1.4 Outline

This thesis is organized as follows:

• In Chapter 2, we present the state-of-the-art on modeling and analysis of stochastic
systems. We recall general stochastic modeling formalisms and specification languages.
Then we describe the statistical model checking algorithms and we give a short survey of
SMC tools, before discussing the recent trends in the utilization of SMC.

• Chapter 3 presents the theoretical foundation of the SRT-BIP modeling formalism. We
also discuss its implementation details.

• In Chapter 4, we propose the automatic construction of performance models expressed in
SRT-BIP using machine learning techniques.

• Chapter 5 details the design of the SBIP tool including its features and architecture.

• In Chapter 6, we address the performance analysis of real-life case studies in a variety of
application domains using SBIP.

• We introduce an iterative and incremental methodology, developed around the SBIP
framework, for the design of resilient systems equipped with FDIR capabilities, in
Chapter 7.

• Chapter 8 addresses the risk assessment of organization security policy by confronting
their defenses to sophisticated attacks. The proposed approach relies on the SBIP
framework for the quantitative evaluation of defense configurations when seeking for the
most impactful defense mechanisms.

• Finally, conclusions and future work are presented in Chapter 9.

1.5 Publications 21

1.5 Publications

• [116] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, and Saddek Bensalem. Im-
proved learning for stochastic timed models by state-merging algorithms. In NASA
Formal Methods Symposium, pages 178–193. Springer, 2017.

• [117] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani, Axel
Legay, and Saddek Bensalem. SBIP 2.0: Statistical Model Checking Stochastic Real-Time
Systems. In Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, pages
536–542, 2018.

• [124] Ayoub Nouri, Braham Lotfi Mediouni, Marius Bozga, Jacques Combaz, Saddek
Bensalem, and Axel Legay. Performance evaluation of stochastic real-time systems
with the SBIP framework. International Journal of Critical Computer-Based Systems,
8(3-4):340–370, 2018.

• [118] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Axel Legay, and Saddek
Bensalem. Mitigating security risks through attack strategies exploration. Inter- national
Symposium On Leveraging Applications of Formal Methods, Verification and Validation,
2018

1.6 Tools

During this thesis, we developed several tools including:

• Improved learning algorithm for timed and stochastic models.
Available on-line: http://www-verimag.imag.fr/~nouri/drta-learning

• SRT-BIP: a framework for the modeling, code generation and simulation of stochastic
real-time systems.
Available on-line: https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/compiler/
tree/stochastic-real-time

• SBIP: an integrated tool for modeling and analyzing SRT-BIP models.
Available on-line: http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.
html

• A tool for the synthesis of impactful defense configurations and attack strategy exploration,
in the context of security risk assessment.
Not available on-line.

http://www-verimag.imag.fr/~nouri/drta-learning
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/compiler/tree/stochastic-real-time
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/compiler/tree/stochastic-real-time
http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html
http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html

Chapter 2

State of the Art on Stochastic
Modeling and Analysis

Due to the difficulty to match all the systems requirements, early analysis has become very
popular in the design of complex systems. System-level design methodology has been introduced
to provide a high-level reasoning over a representation of the system. This cost-effective manner
to design systems aims at optimizing the design process while minimizing architecture re-
engineering costs. High-level representations of the system are usually based on formal models,
which have a solid theoretical background.

Besides correct functional behavior, systems are required to be competitive in terms of
their response time and resource utilization. These performance aspects are strongly related to
the computational power of the system, but are also influenced by stochastic fluctuations in
the system behavior or in its environment. Considering performance at a model-level involves
expressive formalisms that simultaneously handle complex timed and stochastic behaviors in
order to faithfully represent performance information.

The correctness of systems is often conditioned by their ability to satisfy a set of requirements,
describing the desired functionality or performance. Several specification languages exist to
formally represent these requirements. Verifying such requirements on a system model is
an important step towards guaranteeing them at the system deploy-time. Statistical Model
Checking (SMC) has emerged as a promising approach for the quantitative analysis of systems.
This lightweight verification technique provides scalable algorithms, compared to exhaustive
methods such as Model Checking, and is supported by a wide panel of tools.

In this chapter, we present the state of the art on stochastic modeling and analysis in the
context of SMC. We start by recalling general stochastic modeling formalisms in Section 2.1.
Section 2.2 introduces two temporal logics, namely, Linear-time Temporal Logics (LTL) and
Metric Temporal Logics (MTL). In Section 2.3, we present the statistical model checking
algorithms and we give a short survey of SMC tools in Section 2.4. We finally discuss the recent
trends in the utilization of SMC in Section 2.5, before concluding in Section 2.6.

24 State of the Art on Stochastic Modeling and Analysis

2.1 Modeling Formalisms

Modeling formalisms are useful to represent phenomena at higher levels of abstraction as a
solution to cope with the difficulty and the cost to understand and analyze such complex
systems. This difficulty grows even faster when addressing both functional and extra-functional
aspects. Several modeling formalisms exist in the literature and provide different expressiveness
capabilities that are often classified based on five concepts: action and delay non-determinism,
probabilistic branching, clocks and random variables. Action non-determinism refers to the
ability of a system to behave differently even when facing similar conditions whereas delay
non-determinism is a means to under-specify the timing of events by only attaching them with
an interval of viable time valuations.

Probabilistic branching and random variables are key aspects is the description of probabilistic
behavior. The former enables to attach probabilities to alternative events, whereas the latter
allows one to describe the timing of an event through a probability distribution function. These
distributions arise the question of memorylessness, that is, the probability of an event to
occur only depends on the current state of the model, and not on the event history. This
memorylessness implies the irrelevance of past information to determine what happens next,
but also that the time spent in the current state does not affect the selection of the next
event. Models that fulfill these state and age memories constraints are called Markov models,
and usually rely on exponential distributions to express time stochasticity. These exponential
distributions are known to be the only continuous ones that are memoryless. However, in
practice, exponential distribution is not always sufficient to model real-life phenomena and
more complex distributions are often needed such as Normal and Weibull distributions. This is
the case, for example, when describing a computer process lifetime that is known to have a
large number of short jobs and only few long jobs but with a large variance [77]. It is sometimes
possible to simulate complex distributions by decomposing them to exponential distributions
depending on their properties. For example, summing n exponential random variables with
parameter λ would result in a random variable following a gamma distribution with parameters
(n, λ). But it is not always that straightforward to achieve. In addition, manipulating
such composite models would introduce additional complexity in terms of readability and
comprehension. Hence, the need for an inherent support for general distributions has arisen as
a key feature of stochastic formalisms.

The time dynamics indicates how time elapses in the model, and can be either continuous or
discrete. Clocks are well-known structures in Timed Automata (TA) theory [11] that are used
to represent real-time. They are a key concept in building continuous time models where time
takes values in a dense time domain. In these models, the time elapsing between two events
can be measured and can be subject to constraints. In contrast, discrete time models evolve
step-wise, that is, the inter-event time is abstracted to the notion of steps. This time dynamics
does not use clocks, and is applied when the amount of time that elapses between events is not

2.1 Modeling Formalisms 25

DTMC MDP CTMC GSMP PTA STA
Action non-determinism - + - - + +
Delay non-determinism - - - - + +
Probabilistic branching + + + + + +

Random variables - - EXP + - +
Clocks - - + + + +

Table 2.1: Modeling formalisms with probabilistic branching [32]

relevant. For example, when studying the number of heads or tails in n coin tosses, the time
spent between two tosses does not actually affect the outcome of the experiment.

Table 2.1 non-exhaustively lists some probabilistic modeling formalisms and their expres-
siveness capabilities. The focus is put on formalisms that allow for probabilistic branching,
and hence, formalisms such as Timed Automata (TA) [11] and Labeled Transitions Systems
(LTS) [94] are out of this scope. Discrete Time Markov Chains (DTMC) [99] and Markov Deci-
sion Processes (MDP) [65] adopt a discrete time dynamics and differ in terms of non-determinism.
DTMCs are fully stochastic, that is, non-determinism in not allowed whereas MDPs support
action non-determinism. Except for DTMCs and MDPs, the remaining formalisms in Table 2.1
rely on clocks to express continuous time and also differ in terms of non-determinism in addition
to the probability distributions allowed for the modeling of time stochasticity. Continuous
Time Markov Chains (CTMC) [99] and Generalized Semi-Markov Processes (GSMP) [73] do
not permit neither delay nor action non-determinism. CTMC respects the Markov property
since time progression is exponentially distributed. However, GSMP relaxes the age memory
restriction and supports generally distributed inter-event times. Regarding non-determinism,
Probabilistic Timed Automata (PTA) [102] and Stochastic Timed Automata (STA) [28] include
capabilities to model both action and delay non-determinisms. In these probabilistic extensions
of TA, a system can either perform an action by making discrete transitions, or remain in the
same control state and let time pass. The choice of the action to perform is non-deterministic
and and the target state is determined probabilistically. The main difference between these
two formalisms is in their time evolution. PTA determines event delays non-deterministically,
whereas these delays follow a general distribution function in an STA.

In this section, we give an overview of stochastic models that we will be referring to
throughout this dissertation. More specifically, we present the discrete and continuous time
Markov chains, and the generalized semi-Markov processes. Since we are in a context of a
verification using SMC, it is important to focus on models that can be simulated. Hence, we
will not consider modeling formalisms that contain action or delay non-determinism, such as
PTA and STA. However, we briefly recall MDPs, that we will be using in the application of
SMC to Security Risk Assessment, in Chapter 8.

26 State of the Art on Stochastic Modeling and Analysis

2.1.1 Discrete Time Markov Chain

Discrete time Markov chains are probabilistic models built from a finite set of control states
connected with edges. These transition systems determine the successors of each state based
on probability distributions. Formally, a DTMC is described as follows:

Definition 2.1.1 (Discrete Time Markov Chain). A discrete time Markov chain is a tuple
⟨S, ι, π,Σ, L⟩ where:

• S is a finite and non-empty set of control states,

• ι : S −→ [0, 1] is the initial states distribution such that Σs∈Sι(s) = 1,

• π : S×S −→ [0, 1] is the transition probability function such that ∀s ∈ S,Σs′∈Sπ(s, s′) = 1,

• Σ is the set of atomic propositions,

• L : S −→ 2Σ is the state labeling function. It assigns to each state a set of atomic
propositions that are true at that state.

0 e 25 e 50 e 75 e

start
1

0.5
0.5

0.5
0.5

1

Figure 2.1: A DTMC of a gambler at a roulette game

Example 2.1.1. Figure 2.1 is an example of DTMC that models a roulette gambling game. In
this game, the gambler sits at the table with 50 e. A dealer spins a roulette that outputs "red"
or "black" colored numbers. At each spin, the gambler bets 25 e on "red". If "red" occurs, he
wins 25 e in addition to recouping the amount gambled. However, if "black" occurs, he looses
his 25 e. The player leaves the table under two conditions : either he has no more money to
gamble, or he reaches 75 e. In this example, the control states are labeled by the possible
amounts of money that the gambler can have at any time. The transitions between states
represent the occurrence of "red" or "black" and have equal chances to occur. We can see that
the states 0 e and 75 e are absorbing states, i.e., no other state is reachable from them.

Let D = ⟨S, ι, π,Σ, L⟩ be an DTMC. D is said to be deterministic if and only if two
conditions are verified: The first one is the uniqueness for the initial state, i.e., ∃s0 ∈ S such
that ι(s0) = 1. The second condition ensures that for every state s, two different transitions
cannot lead to states having the same label, i.e., ∀s ∈ S, ∀σ ∈ Σ, it exists at most one s′ such
that π(s, s′) > 0 ∧ L(s′) = σ.

In a deterministic DTMC, no ambiguity is met when choosing a destination state, knowing
the current state and the observed label. A path p of D is a sequence of states s0s1... such that

2.1 Modeling Formalisms 27

ι(s0) > 0 and π(si, si+1) > 0, for all i ≥ 0. A trace ω associated with a path is the word σ0σ1...

such that L(si) = σi, for all i ≥ 0.

2.1.2 Continuous Time Markov Chain

Continuous time Markov chains extend DTMCs with the notion of continuous time-steps. This
formalism is suited to represent stochastic models where the inter-event time is relevant. In
such models, time progresses according to exponential distributions which parameters λ are
specified for each transition. Recall that an exponential distribution is a continuous distribution
with support [0,+∞) and mean µ, parametrized by λ = 1/µ. Its probability density function is
given as follows:

f(t) =
{
λ.e−λt, if t > 0

0, otherwise

Formally, a CTMC is defined as follows:

Definition 2.1.2 (Continuous Time Markov Chain). A continuous time Markov chain is a
tuple ⟨S, s0, R,Σ, L⟩ where:

• S is a finite and non-empty set of control states,

• s0 is the initial state,

• R : S × S −→ R≥0 is the transition rate matrix,

• Σ is the set of atomic propositions,

• L : S −→ 2Σ is the state labeling function. It assigns to each state a set of atomic
propositions that are true at that state.

The transition rate matrix R encodes the presence of a transition between a pair of states
⟨si, sj⟩ with strictly positive rate values, i.e., Rsi,sj > 0. This latter represents the parameter
of the exponential distribution quantifying the delay of the considered transition.

The system starts at the initial state s0. At a given state si, the set of enabled transitions
Ti is composed of all the transitions available at si and decorated with a strictly positive rate,
i.e., Ti = {tij | Rsi,sj > 0}. For each enabled transition tij between the states ⟨si, sj⟩, a waiting
delay ωij is sampled according to an exponential(Rsi,sj). The selection of the transition to
execute among the enabled ones follows a race policy, namely, the one that was assigned the
shortest waiting delay.

We recall that the minimum over a set of n independent exponentially distributed random
variables with different rate parameters λk is exponentially distributed with a parameter
representing the sum of these λk. Consequently, the race policy boils down to the sampling
from an underlying exponential distribution with a rate parameter r(si) = Σtij∈TiRsi,sj .

28 State of the Art on Stochastic Modeling and Analysis

Given a CTMC C = ⟨S, s0, R,Σ, L⟩, the probability to select a transition can be determined
independently of its waiting time, in a straightforward manner:

πC(si, sj) =

R(si, sj)/r(si), if r(si) > 0

1, if r(si) = 0 ∧ si = sj

0, otherwise
(2.1)

The resulting stochastic model is called embedded DTMC and is formally defined as follows:

Definition 2.1.3 (Embedded DTMC in a CTMC). Given a CTMC C = ⟨S, s0, R,Σ, L⟩, the
embedded DTMC D in C is a tuple ⟨S′, ι′, π′,Σ′, L′⟩ where:

• S′ = S, Σ′ = Σ, and L′ = L,

• ι′(s0) = 1, and ∀s ̸= s0 ι
′(s) = 0,

• π′ = πC as defined in Equation 2.1.

At a given state s, the transition probability function of the embedded DTMC assigns to
each transition a probability that is proportional to its rate parameter if the sum of the rates
r(s) at this state s is positive. Note that a rate sum equal to zero characterizes absorbing
states, that are obviously represented in the embedded DTMC as a self-loop with probability 1.

As a result, a second way to interpret a CTMC would be to sample waiting delays from
exponential distributions with parameters r(s), then to randomly select the target state
according to the transition probability function πC .

A path p of C is an alternation of states and waiting delays s0t0s1t1... such that the rates
R(si, si+1) and the waiting delays ti are strictly positive.

2.1.3 Generalized Semi-Markov Process

Generalized semi-Markov processes have been proposed as a comprehensive framework for
the description and the analysis of discrete-event systems. In such systems, time does not
always progress exponentially. In GSMPs, each event is attached with a cumulative distribution
function (cdf) ruling its timing behavior.

GSMPs are semi-Markov processes, in the sense that the determination of the next state is
not only dependent on the current state, but also on the amount of time spent in that state.
More formally, a GSMP is defined as follows:

Definition 2.1.4 (Generalized Semi-Markov Process). A generalized semi-Markov process is a
tuple ⟨S, ι,Σ, active, T,G⟩ where:

• S is a finite and non-empty set of control states,

• ι : S −→ [0, 1] is the initial states distribution such that Σs∈Sι(s) = 1,

• Σ is the set of events (actions),

2.1 Modeling Formalisms 29

• active: S −→ 2Σ is the set of active events at each state,

• T : S × Σ −→ S is the (deterministic) transition function,

• G is the stochastic clock structure, that assigns a cdf to each event σ ∈ Σ.

The set of active events contains the events that can be executed at a given state. This
set is updated when entering a new state (after the execution of an event), that is, the newly
active events are added to the set while the events that became inactive at the new state are
removed from that set.

The system starts at an initial state s0 selected by sampling ι. When entering a state s, the
set of active events is updated accordingly. For each newly active event σi, a waiting delay is
sampled according to the cdf Gi associated with this event, and a clock is initiated to count
down its remaining lifetime. The choice of the event to be executed follows a race policy, that
is, by selecting the event having the shortest remaining lifetime. The execution itself occurs
when the remaining lifetime reaches 0 and triggers a state change.

2.1.4 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework for modeling decision making.
In addition to a probabilistic behavior, actions are chosen in a non-deterministic manner.

A formal definition of a Markov decision process is given below:

Definition 2.1.5 (Markov Decision Process). A Markov decision process is a tuple ⟨S,Act, ι, π,Σ, L⟩
where:

• S is a finite and non-empty set of states,

• Act is a finite set of action labels,

• ι : S −→ [0, 1] is the initial states distribution, such that Σs∈Sι(s) = 1

• π : S × Act × S −→ [0, 1] is the transition probability function, such that ∀s ∈ S and
∀a ∈ Act,Σs′∈Sπ(s, a, s′) ∈ {0, 1},

• Σ = 2AP is the state-label alphabet representing a set of atomic propositions,

• L : S −→ Σ is the state labeling function. It assigns to each state a set of atomic
propositions that are true at that state.

At each state of the MDP, several actions can be available. Choosing which action to perform
is done non-deterministically. Then, the target state is selected according to a probability
distribution function corresponding to the source state and the chosen action.

A path p of an MDP is a sequence p = s0a1s1...aisi..., where s0 is an initial state, i.e.,
ι(s0) > 0, and π(si, ai+1, si+1) > 0. For a given path p, the corresponding trace is an alternation

30 State of the Art on Stochastic Modeling and Analysis

of action and state labels ω = σ0a1σ1...aiσi... such that the transition between si and si+1 is
labeled ai+1, i.e., and L(si) = σi. A trace corresponding to a possible path of an MDP is a
word that belongs to the language recognized by this MDP.

2.2 Specification Languages

System requirements are a set of desired properties that characterize a system under study/design.
In system design, these requirements are often expressed in natural language and are subject
to misleading interpretation. To cope with this ambiguity, specification languages have been
proposed as a rigorous framework for clear requirement formulation and consistent interpreta-
tion. Temporal logic is a formalism for the specification of correctness properties in an intuitive
syntactic manner and with a well-defined semantics. It enriches propositional or predicate logic
with temporal operators to allow for reasoning about infinite behavior of systems.

Time in temporal logics can be of two different natures, namely, linear or branching. At
each moment, the linear view identifies a single successor moment, whereas in the branching
view time may split into alternative courses, in a tree-like structure. The progression of time is
done step-wise when defined over a discrete time domain, or continuous when defined over a
dense time domain.

In the literature, several specification languages exist and are suited for different purposes.
Table 2.2 presents a subset of temporal logics frequently used in practice, together with their
features. For a more exhaustive description and comparison of temporal logics, we refer the
interested reader to [17].

Time logic Time domain

LTL [131] linear discrete

MTL [96] linear continuous

CTL [46] tree discrete

TCTL [10] tree continuous

Table 2.2: Example of temporal logics and their distinguishing features

In this thesis, we focus on linear-time logics for their qualitative notion of time that is
path-based. This makes them suitable candidates in the context of SMC algorithms that reason
about one trace at a time. More specifically, in this section, we will give an overview of the
Linear-time Temporal Logic (LTL) and its real-time extension, denoted Metric Temporal Logic
(MTL).

2.2 Specification Languages 31

2.2.1 Linear-time Temporal Logic

Linear-time temporal logic is a formalism for expressing properties with a linear notion of time.
It provides temporal operators as a means to reason over infinite behaviors. This formalism
is useful to specify notions such as order in the occurrence of state labels, but also safety
or liveness properties. In this logic, time progresses discretely, that is, it does not support
real-time.

LTL syntax. For a given set of atomic propositions, denoted AP , the syntax of an LTL
formula ϕ is inductively defined by the following grammar:

ϕ ::= t | f | ap | ¬ap | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ⃝ ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2, where ap ∈ AP

The operator ⃝ ϕ is the next operator, while ϕ1 U ϕ2 is the Until operator, which stands for
ϕ1 holds until ϕ2. The Release operator R is the dual of U , i.e., ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2).
The Eventually and the Globally operators are expressed respectively as ♢ϕ ≡ t U ϕ, and
□ϕ ≡ f R ϕ. Their meaning is respectively ϕ eventually holds, and ϕ always holds. Note that
we restrict to LTL formulas written in Negative Normal Form (NNF), that is, the negation is
pushed down to the atomic propositions.

In terms of precedence order on the operators, the unitary operators (¬ and ⃝) are stronger
than binary ones, and temporal binary operators (U and R) stronger than boolean binary ones
(∧ and ∨).

LTL Semantics. An LTL property ϕ induces a language Lϕ over the alphabet 2AP . This
language includes all the words σ over 2AP that satisfy ϕ, i.e., Lϕ = {σ ∈ (2AP)ω | σ |= ϕ}.
Let a word σ = σ0σ1... be a sequence of symbols σi ∈ 2AP and σ[i..] = σiσi+1... a suffix of σ
starting from the ith position. Similarly, σ[..i] = σ0...σi is the prefix of σ that ends at the ith

position. The satisfaction relation (|=) is given as follows:

- σ |= t

- σ |= ap iff ap ∈ σ0

- σ |= ¬ap iff ap ̸∈ σ0

- σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

- σ |= ⃝ϕ iff σ[1..] |= ϕ

- σ |= ϕ1 U ϕ2 iff ∃j ≥ 0. σ[j..] |= ϕ2 and σ[i..] |= ϕ1, for all 0 ≤ i < j

The satisfaction relation for the boolean Or (∨) is deductible from the rules for the And
(∧) and negation (¬) operators. Similarly, the interpretation of the temporal operators Release
(R), Eventually (♢) and Globally (□) can be obtained by first rewriting them using the Until
(U) and negation operators.

32 State of the Art on Stochastic Modeling and Analysis

Bounded LTL. The LTL semantics is defined over words of infinite length. Since we are
interested in checking such properties in a context of SMC, we only consider a bounded fragment
of LTL, denoted Bounded LTL or BLTL [66]. In [155], E.M. Clarke et al. proved that any
BLTL property can be checked only using a finite prefix of a word σ. This theorem guarantees
that only finite words (simulations) are required to perform SMC on BLTL properties, and
hence, that the SMC procedure always terminates.

BLTL restricts the scope of temporal operators to a bounded number of steps. In other
words, these modalities are decorated with an integer value k indicating the maximum number
of tolerated steps before concluding, and we write: bounded Next (⃝k), bounded Until (Uk),
bounded Release (Rk), bounded Eventually (♢k) and bounded Globally (□k). Semantically,
the interpretation of ⃝k and Uk is given as follows:

- σ |= ⃝kϕ iff σ[1..] |= ϕ ∧ σ[..k] |= ϕ

- σ |= ϕ1 Uk ϕ2 iff ∃j ∈ [0, k]. σ[j..] |= ϕ2 and σ[i..] |= ϕ1, for all 0 ≤ i < j

Likewise, the rest of the bounded temporal operators are interpreted accordingly.

2.2.2 Metric Temporal Logic

Metric Temporal Logic (MTL) [96] is an expressive temporal logic that extends LTL by
introducing an explicit representation of time. It provides a linear view of time with a real-time
progression. MTL temporal operators are similar to LTL ones with the difference of having a
time interval I ⊆ N+ constraining them.

MTL syntax. For a given a set of atomic propositions (AP), the syntax of an MTL formula
ϕ is inductively defined by the following grammar:

ϕ ::= t | f | ap | ¬ap | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ⃝ ϕ | ϕ1 UI ϕ2 | ϕ1 RI ϕ2, where ap ∈ AP

The Until operator ϕ1 UI ϕ2 stands for ϕ1 holds until ϕ2 does at some time in I. The Release
operator is written as ϕ1 RI ϕ2 ≡ ¬(¬ϕ1 UI ¬ϕ2). The Eventually and the Globally operators
are expressed respectively as ♢Iϕ ≡ t UI ϕ, and □Iϕ ≡ f RI ϕ. Their meaning is respectively
ϕ eventually holds at some time in I, and ϕ always holds at any time in I.

MTL semantics. An MTL formula is interpreted over timed words. Formally, a timed
word σ is a sequence of pairs ⟨σi, vi⟩, such that timestamps vi constitute an increasing time
sequence, i.e., vi ≤ vi+1. The notation of prefix and suffix of timed words applies similarly
to the previously defined one for (untimed) words, that is, respectively σ[..i] and σ[j..]. The
inductive definition of the satisfaction relation is given as follows:

- σ |= t

2.3 Statistical Model Checking Techniques 33

- σ |= ap iff ap ∈ σ0

- σ |= ¬ap iff ap ̸∈ σ0

- σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

- σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

- σ |= ⃝ϕ iff σ[1..] |= ϕ

- σ |= ϕ1 U[a,b] ϕ2 iff ∃j. a ≤ vj − v0 ≤ b, σ[j..] |= ϕ2 and for all 0 ≤ j < i. σ[j..] |= ϕ1

MTL variants. The problems of satisfiability and model checking for MTL is known to be
highly undecidable [34]. To cope with the undecidability, several variants have been proposed.
Table 2.3 summarizes decidable fragments of MTL together with their restriction on the
constraining intervals I of temporal modalities. For a complete survey on the decidability of
fragments of MTL and their expressiveness, see [129].

Sublogic Restriction

MTL0,∞ [12] The bounds on the time constraints are limited to: 0 for the lower
bound or ∞ for the upper bound

MITL [12] No punctual formulas : time intervals cannot be a singleton value

BMTL [34] All time constraints have finite length : No right-open interval is
accepted. However, it does not handle invariance (unrestricted □)

Safety MTL [128] Time-bounded UI and ♢I but allows unbounded □ (invariance)

Co-Flat MTL [34] Restrict Until operators ϕ1 UI ϕ2 to the cases where, if I is un-
bounded then ϕ2 is an LTL formula

Table 2.3: Decidable fragments of MTL

Since we are interested in monitoring finite simulations in the context of SMC procedures,
we restrict ourselves to the BMTL sublogic. In this logic, all the temporal operators must be
attached with a right-closed time interval.

2.3 Statistical Model Checking Techniques

Probabilistic Model Checking (PMC) [17] is a means to evaluate quantitative properties of
stochastic systems. This numerical approach relies on the computation of probability measures
of paths that exhibit a desired behavior, usually expressed in some kind of temporal logic.
This approach is context-specific, that is, algorithms are designed for specific modeling and
specification formalisms. Furthermore, PMC leads to intractable state spaces in most real-life
applications, in addition to being a time and memory consuming process.

34 State of the Art on Stochastic Modeling and Analysis

Statistical Model Checking (SMC) has been proposed as a simulation-based alternative
to cope with these limitations. Compared to other formal verification techniques, including
probabilistic model checking, SMC is scalable. This feature is inherent to the method: only
a subset of the system’s executions is explored, while the underlying statistical algorithms
can be easily parallelized. Its reliance on system traces makes it applicable to any executable
system, independently on its size or structure. Even though the obtained results are only
estimations, their accuracy is controlled with confidence parameters that bound the estimation
error, and which distinguish it from pure simulation techniques. Also, corner cases and rare
events which might be missed by simulations can be handled with SMC. Specific techniques
such as importance sampling and importance splitting [87, 89] have been recently adapted to
SMC in order to efficiently deal with this class of events. Another important feature of SMC is
its usability on both models and implementations, including black-box systems, provided that
implementations are obtained from formally defined models with a purely stochastic semantics
and that code generation preserves this semantics.

SMC answers two types of questions; Qualitative: is the probability for S to satisfy ϕ

greater or equal to a certain threshold θ? and Quantitative: what is the probability for S to
satisfy ϕ?

The essence of SMC is to randomly draw a finite number of independent traces that
are monitored against the properties under study. Then, the approach uses the collected
verdicts over system traces to conclude a global verdict over the whole system, as depicted
in Figure 2.2. Each trace is obtained by a discrete event simulation and the output of its
monitoring can be seen as an observation of a Bernoulli distribution Y , which is y = 1 if the
trace satisfies the property and y = 0 otherwise. This Bernoulli distribution is parametrized
by p (Y ∼ Bernoulli(p)), where p is the unknown probability of the system S to satisfy the
property ϕ, i.e., Pr[S |= ϕ] = p.

SMC
Params

System
Simulator

Requirement

Commands

Traces

Local verdict

Global verdict

SMC

Monitor

Figure 2.2: The statistical model checking process

Among statistical testing algorithms for stochastic systems verification we can cite Single
Sampling Plan (SSP), Simple Probability Ratio Test (SPRT) [143, 151], and Probability

2.3 Statistical Model Checking Techniques 35

Estimation (PE) [79]. In the following, we briefly recall these three procedures, in addition to
rare events analysis algorithms, namely, importance sampling and importance splitting.

2.3.1 Qualitative Analysis

The main approach to answer the qualitative question is based on hypothesis testing [151]. To
determine whether p ≥ θ, one can test the null hypothesis H : p ≥ θ against its alternative
K : p < θ. A test-based solution does not guarantee a correct result but it is possible to
bound the probability of making an error. The strength (α, β) of a test is determined by two
parameters, α and β, such that the probability of accepting K (resp., H) when H (resp., K)
holds is less or equal to α (resp., β). Since it is impossible to ensure a low probability for both
types of errors simultaneously [8], a solution is to relax the test by using an indifference region
[p1, p0] centered around θ and to test H0 : p≥ p0 against H1 : p≤ p1. This indifference region is
defined as a function of θ and a user-specified parameter δ representing the half-width of that
indifference region, that is, p1 = θ− δ and p0 = θ+ δ. It is worth mentioning that both H0 and
H1 are considered false when p ∈ [p1, p0].

Depending on the sampling policy, hypothesis testing can be performed either on a precom-
puted set of observations, or by generating observations on-demand. In the former, the test is
run on a sample of predetermined size that is computed from the statistical parameters [144],
whereas, the latter implements a sequential test that does not require to know the sample size
beforehand.

Single Sampling Plan (SSP). It is a strategy that permits to test hypotheses on fixed-size
samples. Given yi a Bernoulli observation, SSP consists in identifying a pair ⟨c, n⟩ such that
Σn
i yi > c. A procedure for finding the optimal single sampling for different values of p0 and

p1 is presented in [151]. The application of SSP to SMC aims at identifying the number n of
required traces that guarantees a desired precision.

Sequential Ratio Testing Procedure (SPRT). It is used for sequential testing of stochas-
tic systems. The idea is to collect m observations on-the-fly and to compute a measure fm
defined as:

fm =
m∏
i=1

Pr[Yi = yi | p = p1]
Pr[Yi = yi | p = p0] = pdm

1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

where dm = Σm
i=1yi. The procedure iterates on the triggering of new simulation traces and the

update of fm until SPRT can conclude, in one of these two cases:

1. if fm ≤ β/(1 − α), then accept H0,

2. if fm ≥ (1 − β)/α, then accept H1.

36 State of the Art on Stochastic Modeling and Analysis

In [151], Younes proposes a logarithmic-based algorithm for SPRT, given p0, p1, α and β

parameters (see [143] for details). When one has to test θ≤1 or θ≥0, it is however better to use
SSP (see [27, 151] for details). In general, the precomputed number of traces for SSP is higher
than the one needed by SPRT, but is known to be optimal for the above-mentioned values. We
refer the interested reader to [27] for more details about hypothesis testing algorithms and a
comparison between SSP and SPRT.

2.3.2 Probability Estimation

The probability estimation procedure (PE) was proposed in [79] to answer the quantitative
question. It enables to estimate the probability p for S to satisfy ϕ. Given a precision δ, this
procedure computes an estimate value p′ = Σm

i
yi/m, such that |p′ − p|≤δ with confidence 1 −α.

To find the required number m of traces, the procedure is based on the Okamoto lower
bound 1 [126] that is defined as follows:

Pr[|p′ − p| > δ] ≤ 2e−2mδ2

where m is the number of simulation traces guaranteeing the precision δ with confidence 1 − α.
Consequently, by taking m ≥ log(2/α)

2δ2 one is guaranteed to have Pr[|p′ − p| ≤ δ] > 1 − α.

2.3.3 Rare Events Analysis

In stochastic models, rare events are the ones that have a very low probability to occur during
a discrete event simulation. These events are often of crucial importance since they represent
potential system failures, errors or any special behavior that are important to consider during
system verification. These events are intrinsically covered by the exhaustive scope of techniques
such as model checking, but remain often out of the reach of testing and simulation approaches.
The classical SMC algorithms also fail to scale since the number of simulations can increase
drastically when observing properties with a very low probability p [105]. Indeed, accurately
estimating p using Monte Carlo requires to see it at least N times, which would result in
collecting simulations (1/p) ∗N . As an illustration, observing 3 times an event that has a 10−6

probability to occur would require around 3 million simulations.
Rare events simulation methods such as importance sampling (IS) and importance splitting

(IP) are applied in SMC to reduce the number of simulations and to increase the accuracy of
the probability estimates, i.e., with tighter confidence intervals and closer estimated values. In
the following, we briefly present IS and IP techniques to analyze rare properties.

1Sometimes called the Chernoff bound in the literature.

2.3 Statistical Model Checking Techniques 37

2.3.3.1 Importance Sampling

Importance sampling is a technique based on altering the model in a way that it makes a rare
property more likely to be observed. The model alteration consists in changing the probabilities
of the transitions leading to satisfy this property. This can be done by specifying a new
transition matrix for the model.

In SMC, the Monte Carlo techniques that are used provide a bound for the absolute error.
However, this absolute error becomes less useful for rare events since their probability is very
low (at a close order of this absolute error sometimes). Instead the interest is put on the
relative error that is computed as the ratio of the standard deviation and the expectation of
the estimate. Important sampling techniques provide a bounded relative error whereas this
measure may be unbounded in the case of Monte Carlo techniques.

In the general case, the probability of satisfying a property is estimated as the number of
the generated traces that satisfy that property divided by the size of the traces sample. Since
the property is rare, the proportion of traces satisfying it is quasi null. By biasing the model,
this proportion increases. However, the introduced bias has to be taken into account when
computing the estimate. Hence, the obtained estimation on the biased model is corrected by
multiplying it by L(ω) = f(ω)/f ′(ω), where f and f ′ are the probabilities to generate the trace
ω in the original and the biased models, respectively. Hence, given m simulation traces, the
estimate is computed as :

γ̄ = 1
m

m∑
i=1

L(ωi) × yi

The effectiveness of IS is conditioned by the quality of the importance sampling distribu-
tion [85] for biasing the original model. This quality is evaluated in terms of:

(i) the ability of the biased model to frequently simulate the rare property, and

(ii) the closeness of the distribution of the traces satisfying the property in the biased model
to their distribution in the original model, up to a normalizing factor.

In fact, finding a good biasing distribution meeting both requirements (i) and (ii) can be a real
challenge. As a solution, the authors in [87] propose an iterative procedure to find an optimal
biasing scheme optimizing requirement (ii) based on the Kullback-Leibler divergence measure.
However, this method does not always apply in practice, especially for systems modeled as
the hierarchical composition of components, or for closed black-box systems. The biasing
distribution becomes even more problematic to identify when dealing with properties that
require long simulation traces, This comes from the fact that the probability measure over long
traces tend to be very small, and hence it makes it more difficult to precisely assess the quality
of the proposed bias.

38 State of the Art on Stochastic Modeling and Analysis

2.3.3.2 Importance Splitting

Importance splitting [89] overcomes the problem of estimating the probability Pr[S |= ϕ] of a
system S to satisfy a property ϕ representing a rare event. This is done by considering a set
of intermediate levels li corresponding to less rare properties ϕi, s.t., ϕn ⇒ ϕn−1 ⇒ . . . ⇒ ϕ0,
where ϕn ≡ ϕ and ϕ0 ≡ t. Pr[S |= ϕ] is therefore computed as the product of the conditional
probabilities to reach li from li−1, i.e.,

γ̄ =
n∏
i=1

Pr[S |= ϕi | S |= ϕi−1]

In practice, the intermediate levels li and associated ϕi are defined via a score function given
as input. Its role is to evaluate the level reached by a given trace, i.e., the highest index of
intermediate property satisfied by that trace.

The algorithm iterates over levels, and for each one, it simulates m trace prefixes among
which ms reach the next level and mf do not. The conditional probability to reach the next
level is thus estimated as the ratio ms/m. In the next iteration, the simulation of successful
prefixes is resumed, while the rest (mf) are replaced by successful ones selected uniformly.

Importance splitting estimates the probability of a rare property on a user-defined number
of traces m. In addition to the computed estimate γ̄, the (fixed-level 2) IP algorithm provides
a (1 − α) confidence interval (CI) defined as follows:

CI ∈
[
γ̄

(1
1 + zα×σ√

m

)
, γ̄

(1
1 − zα×σ√

m

)]
, with σ2 ≥

n∑
i=1

1 − γi
γi

(2.2)

where zα is the (1− α
2) quantile of a normal distribution and γi is the conditional probability

Pr[S |= ϕi | S |= ϕi−1]. Note that γi cannot be obtained in practice. Hence, σ is estimated by
substituting γi by its estimate γ̄i, in Equation 2.2.

Importance splitting does not require to alter the system model and, hence is applicable to
complex models and to black-box systems. It relies on the decomposition of the rare property,
that is highly dependent on this latter. The decomposition is easily achievable when the
property is a conjunction of boolean formulas3. Usually, a natural decomposition can be
found for most physical systems, and the levels are identified by nested propositions, that
is, ϕi ≡ ϕi−1 ∧ φi. Decomposition rules for temporal operators are provided in [89] and a
temporal decomposition is also presented. It states that, for example, a bounded globally is
equivalent to verify the property at every step provided the bound is not passed. The main
difficulty is to provide a decomposition with the sufficient number of levels and that evenly
distributes the conditional probabilities. If not, heuristic decompositions are to favor [42]. Also,
the decomposition can sometimes be unachievable, for example, when the property concerns a

2The number of levels is defined a priori. See [85] for more information.
3Applying DeMorgan laws can help to obtain such a property shape.

2.4 Statistical Model Checking Tools 39

rare state (e.g. ϕ ≡ ♢failure_state), that is, a state that is very unlikely to be reached in the
model.

2.4 Statistical Model Checking Tools

Several frameworks exist for modeling and analyzing stochastic systems. In this section, we
restrict ourselves to discuss frameworks following a model checking-like procedure. Other
methods related to the Queuing Theory and Network Calculus are beyond the scope of this
discussion. The considered frameworks generally differ in three points, namely, the expressiveness
of their modeling formalism, the proposed analysis techniques, and the properties specification
language they offer.

For instance, Uppaal-smc [53, 86] supports Stochastic Timed Automata (STAs), which are
general models including Discrete and Continuous Time Markov Chains (DTMCs and CTMCs)
for system modeling and Weighted Metric Temporal Logic (WMTL) for properties specification.
In addition to DTMCs and CTMCs, Prism [101] allows for modeling Markov Decision Processes
(MDPs) and Probabilistic Timed Automata (PTAs). For properties specification, it uses
Probabilistic Computation Tree Logic (PCTL/PCTL*), Continuous Stochastic Logic (CSL),
Linear-time Temporal Logic (LTL).

Other tools like Vesta [138] support, in addition to DTMCs and CTMCs, algebraic specifi-
cation languages, i.e., PMaude [100]. Plasma-Lab [88] is a modular statistical model checker
that may be extended with external simulators and checkers. Its default configuration accepts
discrete-time models specified in the Prism modeling language and properties expressed in
Probabilistic Bounded LTL (PBLTL). Ymer [153] is one of the first frameworks to implement
hypothesis testing algorithms. It considers GSMPs and CTMCs specified using a dialect of the
Prism modeling language, and accepts both PCTL and CSL for requirements specification.
Cosmos [20] considers Hybrid Automata Stochastic Logic (HASL) as properties specification
language and Generalized Stochastic Petri Net (GSPN) as a modeling language. Nouri et al.
[122] proposed the first version of the SBIP framework, that supports the modeling of DTMCs
and the specification of bounded LTL (BLTL) properties.

In this thesis, we introduce the SBIP 2.0 framework (see Chapter 5 for more details)
to support GSMPs and D/CTMCs using our newly introduced Stochastic Real-Time BIP
(SRT-BIP) formalism (see Chapter 3 for more details). As opposed to the aforementioned
tools, it allows for using general probability density functions. Except Ymer [153], that is
no longer maintained, we are not aware of other tools offering such a general model. From
a modeling perspective, it differs from Prism as the latter considers PTAs as the underlying
probabilistic and timed model. These PTAs incorporate non-determinism and are generally
analyzable using numerical probabilistic model checking. In Prism, only DTMCs and CTMCs
are supported for SMC. Our framework is closer to Uppaal-smc and Ymer. The latter relies on
GSMPs, whereas we consider GSMPs with fixed-delays events as in [36]. Uppaal-smc provides

40 State of the Art on Stochastic Modeling and Analysis

a general stochastic timed semantics, however it is only limited to exponential and uniform
density functions. These functions can also be combined to express phase-type distribution
functions. Furthermore, the stochastic real-time BIP formalism allows for specifying urgency
types on systems events. For properties specification, we rely on bounded variants of LTL and
MTL.

In terms of statistical analysis capabilities, all the tools mentioned above implement al-
gorithms for hypothesis testing (HT) and for probability estimation (PE), except for Ymer
and Vesta that only support hypothesis testing. Regarding rare events analysis, only few tools
[20, 88, 117] provide support for importance sampling (IS) and/or importance splitting (IP). For
example, Plasma-Lab implements both IS and IP whereas Cosmos only considers IS. In SBIP
2.0, we provide an implementation of IP that we applied on a model of concurrent systems to
study fairness in the access to a shared resource.

Table 2.4 summarizes the state-of-the-art SMC tools, along with their distinguishing features,
namely, the supported modeling formalism, specification language and analysis capabilities.
Please note that tools, such as Prism and Uppaal-smc, are not dedicated SMC tools and,
consequently, provide reacher features but they are not enabled when performing an SMC
analysis. One can see that SBIP 2.0 contributes to the state-of-the-art by handling the most
general (stochastic and timed) modeling formalism, i.e., GSMPs, and by providing the majority
of SMC algorithms including support for rare events analysis.

Modeling formalisms Specification languages Statistical analyses
HT PE IS IP

Uppaal-smc STA WMTL ✓ ✓ ✗ ✗

Prism DTMC/CTMC PCTL/CSL/pLTL/PCTL* ✓ ✓ ✗ ✗

Vesta DTMC/CTMC/PMaude PCTL/CSL/QuaTEx ✓ ✗ ✗ ✗

Ymer DTMC/CTMC/GSMP PCTL/CSL ✓ ✗ ✗ ✗

Cosmos GSPN HASL ✓ ✓ ✓ ✗

Plasma-Lab DTMC BLTL ✓ ✓ ✓ ✓

SBIP 1.0 DTMC BLTL ✓ ✓ ✗ ✗

SBIP 2.0 DTMC/CTMC/GSMP BLTL/BMTL ✓ ✓ ✗ ✓

Table 2.4: Distinguishing features of the state-of-the-art SMC tools

In Chapter 5.4, we present a more detailed comparison of SBIP 2.0, Uppaal-smc and
Prism where we consider additional features related to the tools usability. For a more exhaustive
survey of the SMC tools, we refer the interested reader to [8].

2.5 Statistical Model Checking in Practice

Recently, statistical model checking has drawn lots of interest in the research community. It is
often used as an alternative to time and memory intensive methods such as model checking. In

2.5 Statistical Model Checking in Practice 41

this section, we give an overview of the recent work on SMC regrouped in different research
axes, namely, the usage of SMC for the analysis of various case studies, the extension of SMC
to new models and properties, the improvement of SMC algorithms and the complex workflows
developed around SMC.

Application domains. SMC has recently been used for the analysis of various case studies
in different application domains. In particular, numerous cyber-physical and embedded systems
have been analyzed with SMC, such as, a flood monitoring system [41], autonomous driving
controllers and Advanced Driver Assistance Systems (ADAS) [60, 72, 133], a moving block
railway signaling scenario [22], a train compressor system [136], and an MPEG2 image processing
system [122]. This lightweight verification method has also shown its benefits and applicability
in the context of software analysis [106], performance evaluation of communication and clock
synchronization protocols, such as, FireWire [117], Bluetooth [117] and PTP [122], but also in
the study of biological systems [54, 85].

Extension to new models. In addition to the existing implementations for stochastic
models such as DTMC, CTMC and GSMP, several works proposed the consideration of complex
models that are not trivial to simulate: hybrid systems, models with non-determinism and
incomplete stochastic systems.

Applying SMC to hybrid systems is often done by combining simulation tools with support
for continuous dynamic behavior, and classical SMC tools that provide formalisms to simulate
discrete events. For example, [60] combines Simulink and Cosmos for the study of autonomous
driving controllers. Similarly, the authors in [54] use Matlab SimBiology for the modeling of
dynamic systems specialized on pharmacodynamics and systems biology that they paired with
Uppaal-smc in order to study the differentiation of PC-12 cells.

Stochastic models that support non-determinism are powerful formalisms that allow for
modeling uncertainty together with unpredictability. To simulate such models, it is required to
define a policy for the non-determinism resolution, called scheduler. In [61], the authors describe
the advances in applying SMC to non-deterministic continuous-time formalisms. The described
methods usually consist in the computation of upper and lower bounds for the probability
of a system to satisfy a property, instead of a single estimate. For example, [51] presents
a methodology that serves this purpose in the context of MDPs. This approach relies on
exploring the scheduler space through a lightweight sampling of schedulers encoded as uniform
pseudo-random number generators (PRNG).

Incomplete stochastic systems are the ones exhibiting an incomplete design or containing
components with unspecified behavior. In [14], such systems are modeled as discrete time
Markov chains with unknown values (qDTMC) and analyzed using model checking techniques
for three-valued temporal logics.

42 State of the Art on Stochastic Modeling and Analysis

SMC has also been applied in the analysis of fault maintenance trees (FMT). In [136], the
authors present a methodology that first consists of a model transformation of FMT models to a
network of timed automata from which quantitative metrics are computed using Uppaal-smc.

Extension to new logics. SMC tools cover a wide range of temporal logics with both
branching-time and linear-time views. However, with the emergence of new systems and needs,
these logics become insufficient to handle aspects such as system dynamism and the reasoning
over multiple paths. The authors of [134] introduce a new temporal logic, called DynBLTL, to
express structural and behavioral properties in dynamic software architectures, that is, systems
in which the set of deployed components at a given time cannot be foreseen. HyperPCTL∗ [148]
is a hyper temporal logics to reason about multiple executions at a time. It is an extension of
PCTL∗ with quantifiers over paths.

Improvement of SMC algorithms. To improve the performance of SMC algorithms,
several tools provide parallel implementations that rely on distributing the simulation (trace
generation) in a client-server architecture. For example, Plasma-Lab provides distributed
algorithms that can be run on a dedicated cluster and follows the SMC distribution algorithm
described in [151] to avoid the statistical bias due to load balancing.

Another important avenue of investigation involves the consideration of different mathemati-
cal bounds relating the statistical (confidence and precision) parameters to the required number
of simulations. For example in [90], the authors propose sequential algorithms based on Massart
bounds as a means to reduce the required sample size with guaranteed error bounds. They
showed that their proposals outperform the standard algorithms implemented in statistical
model checkers such as Uppaal-smc and Prism.

SMC in complex workflows. SMC has been recently integrated into complex workflows
as a means to obtain quantitative measurements, that are later on used for decision making.
For example, [37] addresses the synthesis of correct-by-design concurrent code from a temporal
specification. The proposed workflow relies on genetic programming in which SMC defines the
fitness function, namely, it scores the candidate generated solutions (concurrent code).

In Chapter 7, we introduce a spiral methodology to model resilient systems with FDIR
behavior. In this approach, the system is built through iterative and incremental model
transformations that may introduce risks, such as faults in the system or its environment. These
risks are assessed through SMC analyses and are mitigated by adding FDIR behavior. The
latter behavior is then validated using also SMC. We illustrate this methodology on the safety
assessment of a Bridget Rover demonstrator control system.

In Chapter 8, we propose a risk assessment approach for the analysis of the defenses deployed
in a corporation’s system, and to synthesize defense configurations making sophisticated attacks
harder to achieve. The methodology relies on the IO-Def heuristic for the defense synthesis, and

2.6 Conclusion 43

on a combination of machine learning and genetic algorithms for the exploration of sophisticated
attack strategies. SMC is used to evaluate these strategies in terms of their attack cost and
success probability.

2.6 Conclusion

In this chapter, we presented the commonly used formalisms, in the literature, for the modeling
of stochastic and timed systems, and we recalled two specification languages for the formal
description of system requirements, namely, LTL and MTL. We also gave an overview of the
statistical model checking technique, a state-of-the-art technique for the quantitative analysis
of stochastic systems. We described the main SMC algorithms and discussed the existing
SMC tools. Finally, we investigated the current trends regarding the utilization of SMC in the
literature.

We identified the need for formalisms that allow one to express general probability distribu-
tions and to reason about time in a continuous manner, such as GSMPs. A more important
observation is the lack of SMC tools that provide at the same time expressive modeling languages,
and a wide range of SMC algorithms, specially for the analysis of rare properties.

In this thesis, we introduce a component-based modeling framework with an underlying
GSMP formalism, called Stochastic Real-Time BIP (SRT-BIP) and detailed in the next chapter 3.
We also implement an SMC tool, called SBIP 2.0 (see Chapter 5), for the analysis of SRT-BIP
models. This tool provides the classical SMC analyses (HT and PE) and an implementation of
the importance splitting (IP) algorithm for rare events analysis.

Chapter 3

Modeling Component-Based
Stochastic Real-Time Systems

In the previous chapter, we reviewed the state of the art in building and analyzing stochastic
models. We established the lack of modeling formalisms that meet both the accuracy of a
continuous time representation and the flexibility of general probability distributions.

In model-based design, the power of a modeling formalism resides in its expressiveness,
namely, its ability to represent complex behaviors and interactions in terms of provided concepts
but also regarding its conciseness. This expressiveness is highly desirable when designing real-
time cyber-physical systems in which uncertainties in their behaviors and variability in their
environments are not negligible. In such systems, functionality and performance are of equal
importance. Hence, modeling formalisms that enable to capture both stochastic behavior and
timing constraints are essential for building faithful system models at a high-level of abstraction,
and to allow for their trustworthy assessment. In this context, we present a new formalism for
modeling component-based stochastic real-time systems. This proposed formalism enables for
associating system events with timing constraints. Furthermore, in order to express uncertainty
regarding events occurrences, it is possible to associate them with general probability density
functions.

This chapter is organized in two sections: the first formally presents the proposed modeling
formalism, and the second details its implementation. In the first section, we introduce the
proposed stochastic real-time BIP (SRT-BIP) formalism for which we present the construction
of stochastic real-time components in Section 3.1.1. The composition of these components is
introduced in Section 3.1.2 and the simulation of the resulting models is given in Section 3.1.3.
We illustrate this formalism and its simulation semantics (Section 3.1.4) on a sender-receiver
model before concluding this section with additional modeling features in Section 3.1.5. In the
second part of the chapter, we first give an overview of the RT-BIP framework (Section 3.2.1),
before providing details of steps taken to implement SRT-BIP in Section 3.2.2.

46 Modeling Component-Based Stochastic Real-Time Systems

3.1 Stochastic Real-Time BIP

The stochastic real-time BIP framework reconciles the real-time and stochastic extensions of the
BIP [24] framework. We recall that BIP has been introduced as a component-based framework
where systems are obtained by composition of untimed atomic components with multi-party
interactions, and coordinated using dynamic priorities. RT-BIP [7] extended BIP with real-time
features and has (dense) real-time semantics based on timed automata concepts [11]. S-BIP
[122] extended BIP with stochastic features and has (discrete) stochastic semantics based on
Markov chains.

In the newly proposed stochastic real-time BIP formalism, atomic components are defined
as timed automata extended with stochastic timing constraints. Composition is performed as
in BIP using multi-party interactions, that is, n-ary synchronization among component actions.
Priorities are not supported. The underlying semantics is defined as a Generalized Semi-Markov
Process (GSMP) [98] where the interpretation of time is dense.

We start by defining the syntax of our model at the level of components and their composition.
Then, we present the underlying stochastic simulation semantics.

3.1.1 Stochastic Real-Time Components

Stochastic real-time BIP components are essentially timed automata with urgencies, augmented
with a new form of stochastic guards on clocks.

Let ∆ be a set of density functions, that is, functions ρ : R≥0 → R≥0 such that
∫ ∞

0 ρ(t)dt = 1.
We denote by dom(ρ) = {t | ρ(t) ̸= 0} the definition domain of ρ, that is, the set of values with
a non-zero probability to occur. Let X be a set of clocks. We consider timed constraints (or
guards) ct and stochastic constraints (or guards) cs on X, defined by:

ct ::= true | x ∼ k | x− y ∼ k | ct ∧ ct cs ::= x ▷◁ ρ

where x, y ∈ X, k ∈ R≥0, ∼ ∈ {<,≤,=,≥, >} and ρ ∈ ∆. The meaning of timed constraints
is as usual in timed automata [11]. A stochastic constraint x ▷◁ ρ holds iff x ∈ dom(ρ).
Nonetheless, in contrast to a timed constraint, it will enforce the specific stochastic distribution
ρ on the values of x used to effectively satisfy the constraint, when used as a transition guard.

Definition 3.1.1. A stochastic real-time BIP component B is an extended timed automaton
(L,X,P, T, ℓ0), where L is a finite set of locations, ℓ0 ∈ L is the initial location, X is a finite
set of real-valued clocks, P is a finite set of ports, and T is a finite set of transitions. Every
transition is of the form (ℓ, p, gu, r, ℓ′), denoted for more convenience as ℓ p gu r−−−−→ ℓ′, where
ℓ, ℓ′ ∈ L are the source and target locations, p ∈ P is the triggering port, gu is a constraint g
on X with an urgency u ∈ {lazy, delayable}, and r ⊆ X is the set of clocks to be reset on that
transition.

3.1 Stochastic Real-Time BIP 47

The only noticeable difference between our definition of components and the timed automata
concerns the meaning to control the progress of time. Usually, timed automata rely on location
invariants and/or specific types of locations (e.g., committed) to explicitly constrain the time
progress. In our case, we rely on urgency types of transitions with the following intuitive
meaning. A delayable transition (abbreviated to d) prevents time progress at the upper time
bound in g, i.e., time is enabled to progress in the source location at most to that bound. In
contrast, a lazy transition (abbreviated to l) does not have any impact on the time progress.
Such a transition might not be fired at all in spite of the upper bound in g, i.e., time is enabled
to progress indefinitely in the source location.

We call a port timed (resp. stochastic) if it appears on transitions with timed (resp.
stochastic) constraints. We tacitly restrict to components where every port is either timed or
stochastic, but not both. Moreover, we restrict to components that are time-port deterministic,
i.e., for a given source location ℓ, time t and port p, only one target location ℓ′ can be reached.

send

send

x := 0
y := 0

[0 ≤ x ≤ 3]d
x := 0

[y ▷◁ W(λ, k)]d
fail

recover

x := 0

y := 0
[3 ≤ x ≤ 4]ds0

s1

fail recover

x := 0

(a) Sender

z := 0
[1 ≤ z ≤ 3]l
alarm

back
recv
z := 0

recv

r0

r1

alarm

z := 0

z := 0
[1 ≤ z ≤ 2]d

back

(b) Receiver

Figure 3.1: Examples of stochastic real-time BIP components

Example 3.1.1. The Sender component shown in Figure 3.1a has control locations s0, s1,
ports send, fail, recover and clocks x, y. This component starts in s0, where it may send
data periodically in a specific time slot, defined through the timed constraint [0 ≤ x ≤ 3]d.
The Sender component may fail, which is modeled by the stochastic port fail. The latter is
associated with the guard [y ▷◁ W(λ, k)]d, where W(λ, k) is the Weibull probability density
function with parameters λ, k, and dom(W) ⊆ R≥0. This guard indicates that the component
fails after some time scheduled according to W(λ, k). After a failure, the component recovers
(on transition recover after some delay in [3 ≤ x ≤ 4]d, where it goes back to s0 where it can
send or fail, as described earlier.

Example 3.1.2. Figure 3.1b shows a second component, namely the Receiver, which has
control locations r0, r1, ports recv, alarm, back and a clock z. The Receiver starts in location
r0, where z is set to 0. From this initial location, the component either receives some data
through the self loop on r0 labeled by the timed port recv (recv is a timed port with a guard
implicitly set to true, i.e. it might be taken whenever the component is in r0), in which case
z is reset to 0. Or, it may fire the timed transition labeled by the port alarm and moves to

48 Modeling Component-Based Stochastic Real-Time Systems

location r1, where the recv port is not enabled. One may think of this behavior as a degraded
mode, e.g., energy saving with an alarm. Note that the alarm port is associated with the timed
constraint [1 ≤ z ≤ 3]l. Since the latter is lazy, the upper bound 3 could be ignored and the
alarm transition might not be fired. From location r1, the component takes transition back
after a delay specified through [1 ≤ z ≤ 2]d, to r0 and starts receiving again. This transition is
delayable so it must be taken at most at z = 2.

3.1.2 Composition of Stochastic Real-Time Components

Stochastic real-time components are composed using multi-party interactions. An interaction
represents a strong synchronization (i.e, rendez-vous) between transitions located in different
components.

Definition 3.1.2. Given n stochastic real-time components (Bi)i=1,...,n, with disjoint sets of
ports Pi, we define interactions a as subsets of ports from ∪ni=1Pi, where:

• |a ∩ Pi| ≤ 1, for every i = 1, . . . , n, i.e., each component Bi participates in a by at most
one port Pi,

• a contains either one stochastic port and any number of timed ports with true guards, or
any number of timed ports with arbitrary timed guards.

Consequently, an interaction is associated with a guard obtained by the conjunction of
the guards of the participating ports. An interaction is called stochastic if it contains a
stochastic port, and timed otherwise. The timed ports participating in stochastic interactions
are restricted to have precisely true guards. Intuitively, this ensures that the execution time
for such interactions is solely determined by the stochastic port. While this restriction could
be avoided at the price of slightly increasing the complexity of the forthcoming stochastic
semantics, it has limited impact on the modeling capabilities – we did not encounter the need
for other types of interaction beyond the two categories above, in any of the real-life examples
we considered.

Definition 3.1.3. A stochastic real-time BIP system is defined as the composition γ(B1, ..., Bn)
of n components B1, ..., Bn with a set of interactions γ.

Example 3.1.3. Consider the composition of the Sender and Receive components described
in Examples 3.1.1 and 3.1.2. The composition is operated through the interaction {send, recv},
which relates the send port of the Sender with the port recv of the Receiver. Figure 3.2 shows
the two components and how they interact through the interaction {send, recv}. The nominal
behavior is when the Sender sends data to the Receiver through interaction {send,recv}.
However, the former may fail when interaction {fail} takes place, which is potentially detected
by the Receiver. The latter emits an alarm and switches into a non-receiving mode by

3.1 Stochastic Real-Time BIP 49

executing interaction {alarm}. The two components resume their normal activity after some
delay, through interactions {recover} and {back} respectively.

send

send

x := 0
y := 0

[0 ≤ x ≤ 3]d
x := 0

fail

recover

x := 0

y := 0
[3 ≤ x ≤ 4]d

z := 0
[1 ≤ z ≤ 3]l
alarm

back
recv
z := 0

recv

Sender Receiver

s0

s1

r0

r1

fail recover alarm

z := 0

z := 0
[1 ≤ z ≤ 2]d

back

x := 0

[y ▷◁ W(λ, k)]d

Figure 3.2: Composition of two stochastic real-time BIP components

We further introduce some additional notations for defining the underlying operational
semantics of a stochastic real-time BIP system. Let γ(B1, ..., Bn) be a stochastic real-time BIP
system, where Bi=1,...,n = (Li, Xi, Pi, Ti, ℓ

0
i).

Definition 3.1.4. We define system states as couples s = (ℓ⃗, v⃗), where ℓ⃗ = (ℓ1, ..., ℓn) ∈
L1 × ...× Ln is a global location, and v⃗ : ∪ni=1Xi → R≥0 is a vector of clocks valuations.

We further define d-succ((ℓ⃗, v⃗), a) as the discrete successor (partial) function that com-
putes the successor of a state (ℓ⃗, v⃗) when taking an interaction a. Let a = {pi}i∈I such that I
denotes the set of indices of the components participating in a, and pi their participating port.
We define d-succ((ℓ⃗, v⃗), a) = (ℓ⃗′, v⃗′) whenever:

• for every i ∈ I, there exists an enabled transition ℓi
pi g

ui
i ri−−−−−→ ℓ′i of Bi, that is:

– either gi is a timed constraint which is satisfied by the valuations of the concerned
clocks, i.e. v⃗|Xi

|= gi, where v⃗|Xi
is the projection of the set of clocks on the subset

of clocks that are used in gi,

– or gi is a stochastic constraint x ▷◁ ρ and v⃗(x) ∈ dom(ρ).

• all these transitions are simultaneously executed, that is, clocks are reset v⃗′(x) = 0 for all
x ∈ ∪i∈Iri and stay unchanged, v⃗′(x) = v⃗(x) otherwise.

• all the components that do not participate in a remain unchanged, that is, for every j ̸∈ I
it holds ℓj = ℓ′j .

If no successor by interaction a exists at state (ℓ⃗, v⃗), we define d-succ((ℓ⃗, v⃗), a) = ⊥.
We define t-succ((ℓ⃗, v⃗), t) as the time successor function that computes the successor of a

state (ℓ⃗, v⃗) for a time progress of t. It is a total function and is defined as t-succ((ℓ⃗, v⃗), t) =
(ℓ⃗, v⃗ + t). That is, it increases all the clocks in v⃗ by the amount of time t.

50 Modeling Component-Based Stochastic Real-Time Systems

Finally, we define the function succ((ℓ⃗, v⃗), t, a) that computes the successor of a state (ℓ⃗, v⃗)
when taking an interaction a after the time progress of t, which is a partial function defined as
the composition succ((ℓ⃗, v⃗), t, a) = d-succ(t-succ((ℓ⃗, v⃗), t), a).

Definition 3.1.5. The operational semantics of a stochastic real-time BIP system is defined
as the timed transition system T = (S, s0,−→S) where

• S is the set of states, and s0 is the initial state,

• −→S⊆ S × (γ ∪ R≥0) × S are transitions defined by the two rules

Discrete
d-succ((ℓ⃗, v⃗), a) = (ℓ⃗′, v⃗′)

(ℓ⃗, v⃗) a−→S (ℓ⃗′, v⃗′)

Time
t > 0, ∀a delayable. (∃t′. succ((ℓ⃗, v⃗), t′, a) ̸= ⊥) ⇒ (∃t′′ ≥ t. succ((ℓ⃗, v⃗), t′′, a) ̸= ⊥)

(ℓ⃗, v⃗) t−→S (ℓ⃗, v⃗ + t)

That is, according to the first rule, an enabled transition can be fired at the current instant
and the state updated. According to the second rule, time can progress as long as all enabled
delayable transitions remain enabled. Note that a run of T is an infinite sequence σ = s0s1s2 · · · ,
such that si

ti,ai−−→S si+1, for some ti ∈ R≥0 and ai ∈ γ, for all i ≥ 0.

3.1.3 Stochastic Simulation Semantics

So far, we introduced the concepts of stochastic real-time BIP components and presented their
composition from an operational viewpoint. In this section, we show how this model embraces
a stochastic semantics in terms of a Generalized Semi-Markov Process.

GSMPs are stochastic process descriptions for a large class of discrete-event systems. A
configuration of the GSMP is usually determined by a state and a set of active events, every
one associated with a remaining lifetime, i.e. the amount of time during which it remains active.
The choice of the event to be executed follows a race policy, which consists of selecting the event
having the smallest remaining lifetime. The execution itself occurs when the remaining lifetime
reaches 0 and triggers a state change and moreover, an update of the set of active events. That
is, several events could become inactive and therefore removed from the set, or could become
active, and therefore added to the set. In the latter case, the remaining lifetime is randomly
chosen according to a (usually dense support) probability density function associated to the
event.

The stochastic real-time BIP semantics follow the same intuition by considering interactions
defined at composition as the GSMP events. Moreover, the associated probability density
functions are obtained from the explicit density functions used in stochastic guards of stochastic
interactions or by some default densities (uniform or exponential) in the case of timed interactions.

3.1 Stochastic Real-Time BIP 51

In the remainder of this section we introduce the stochastic simulation algorithm and define
precisely the different densities and sampling procedures.

3.1.3.1 Stochastic Simulation Algorithm

As for a GSMP, our simulation keeps track of the remaining lifetime of each interaction in order
to implement the race policy. To this end, we define configurations as follows.

Definition 3.1.6. We define a configuration z as a couple ⟨(ℓ⃗, v⃗), w⃗⟩, where (ℓ⃗, v⃗) is a state
(as in Definition 3.1.4) and w⃗ : γ → R≥0 ∪ {∞} is a vector of remaining lifetime of interactions.

For an interaction a, the value w⃗(a) represents the remaining lifetime at the current global
location ℓ⃗ and a is said to be active if w⃗(a) < ∞. Moreover, we need to identify dependencies
between interactions. As explained for the GSMPs, the execution of an interaction might
activate and/or deactivate other interactions. In the case of stochastic real-time BIP we consider
that an interaction a has an impact on another interaction b, denoted by a ▷ b, iff the guard of b
changes due to the execution of a, that is, either because b has different timing constraints at the
location(s) reached after executing a, or because a resets some clocks explicitly involved in one
of the constraints of b (before or after executing a). It is worth mentioning that, according to
this definition, any interaction b activated or deactivated due to the execution of a is considered
to be impacted by a.

Algorithm 1 below presents the stochastic execution dynamics of a stochastic real-time
BIP system. The algorithm shows how to move from one configuration zk = ⟨(ℓ⃗k, v⃗k), w⃗k⟩ to
another zk+1 = ⟨(ℓ⃗k+1, v⃗k+1), w⃗k+1⟩, starting from an initial configuration z0 = ⟨(ℓ⃗0, v⃗0), w⃗0⟩.
The first part of the algorithm computes this initial configuration as a vector ℓ⃗0 of the initial
locations of components Bi of the system, a vector of initial valuations of the clocks v⃗0, and a
vector of initial remaining lifetimes of interactions w⃗0. In the latter, each interaction b which is
not enabled at the initial state, i.e., ∀t.succ((ℓ⃗0, 0⃗), t, b) = ⊥, is assigned an infinite remaining
lifetime, each enabled interaction b, is assigned a remaining lifetime through the sampling
function Rb((ℓ⃗0, v⃗0)), which will be formally defined in the next sub-section.

The main loop of the algorithm is executed while there are still active interactions in w⃗k.
Each iteration determines the next configuration zk+1 from the current one zk. Given the
current configuration, active interactions race to determine which one will be executed, i.e.,
the one with the minimum remaining lifetime in w⃗k. Given the winning interaction ak and its
remaining lifetime tk, we compute the successor state (ℓ⃗k+1, v⃗k+1) by using the succ function
defined earlier. Finally, the remaining lifetimes of interactions are updated in this new state.
Three cases can be distinguished for updating the vector of remaining lifetimes w⃗k+1.

1. if interaction ak has no impact on b, then the remaining lifetime of b at (ℓ⃗k+1, v⃗k+1) is its
remaining lifetime at (ℓ⃗k, v⃗k) decreased by tk, i.e., the amount of time progress,

52 Modeling Component-Based Stochastic Real-Time Systems

input : γ(B1, . . . , Bn), where Bi=1,...,n = (Li, Xi, Pi, Ti, ℓ
0
i)

output : An execution trace
/* Compute the initial state (ℓ⃗0, v⃗0) */
ℓ⃗0 := (ℓ01, . . . , ℓ0n) /* ℓ0i is the initial location of Bi */
v⃗0 := 0⃗ /* 0⃗ is the vector of initial clocks valuations */

/* Compute the initial remaining lifetime */

foreach interaction b ∈ γ do w⃗0(b) :=
{

∞ if ∀t. succ((ℓ⃗0, 0⃗), t, b) = ⊥
Rb((ℓ⃗0, v⃗0)) if ∃t. succ((ℓ⃗0, 0⃗), t, b) ̸= ⊥

/* Compute the initial configuration z0 */

z0 := ⟨(⃗ℓ0, v⃗0), w⃗0⟩
k := 0
/* Main loop: computes zk+1 from zk */
while ∃b ∈ γ. w⃗k(b) ̸= ∞ do

/* Race: determines the interaction ak to execute */
Let tk = mina∈γw⃗k(a), and let ak be the associated min event
/* Update successor state */
(ℓ⃗k+1, v⃗k+1) := succ((ℓ⃗k, v⃗k), tk, ak)
/* Update remaining lifetime for interactions */

foreach interaction b ∈ γ do

w⃗k+1(b) :=

w⃗k(b) − tk if ¬(ak ▷ b)
∞ if ak ▷ b and ∀t. succ((ℓ⃗k+1, v⃗k+1), t, b) = ⊥
Rb((ℓ⃗k+1, v⃗k+1)) if ak ▷ b and ∃t. succ((ℓ⃗k+1, v⃗k+1), t, b) ̸= ⊥

/* Compute the next configuration zk+1 */

zk+1 := ⟨(⃗ℓk+1, v⃗k+1), w⃗k+1⟩
k := k + 1

end
Algorithm 1: Stochastic Simulation Algorithm

3.1 Stochastic Real-Time BIP 53

2. if interaction ak has an impact on b, and b is not active at (ℓ⃗k+1, v⃗k+1), then w⃗k+1(b) is
set to ∞, that is, will not race in this new configuration,

3. if interaction ak has an impact on b, and b is active at (ℓ⃗k+1, v⃗k+1), then its remaining
lifetime is sampled according to the function Rb((ℓ⃗k+1, v⃗k+1)).

Note that the enumerated settings include the case where new interactions are becoming active
at (ℓ⃗k+1, v⃗k+1). The reason is that any such interaction b is seen to be impacted by ak as
explained earlier.

The rational of distinguishing the interactions impacted by the executed interaction ak and
the non impacted ones, regarding the sampling operation can be explained as follows. The
former interactions involve ports of a shared component (i.e. a component involved in two
or more interactions with other components), thus by executing ak the system state changes
(potentially, the location of the shared component changes, some clocks are reset, etc.). These
are really seen as new interactions, hence, they need to be re-sampled. From the non-impacted
interactions point of view, nothing has changed but time has evolved, so we do not need to
re-schedule them (by re-sampling) but just to update their remaining lifetime accordingly. This
distinction can be seen as an optimization that avoids systematic re-sampling.

3.1.3.2 The Time Sampling Procedure

The sampling function Rb((ℓ⃗k+1, v⃗k+1)) used in Algorithm 1 computes the remaining lifetime
for each interaction b when entering the state (ℓ⃗k+1, v⃗k+1) by taking interaction ak from the
state (ℓ⃗k, v⃗k). It depends on the type of interaction b, that is timed or stochastic, and delayable
or lazy. For the sake of simplicity, we define the sampling procedure in two phases: (1) in
this subsection, we define the sampling procedure without detailing the underlying probability
density function, (2) in the next subsection, we will define how the density function is actually
computed.

First let us consider the partitioning of interactions in a configuration ⟨(ℓ⃗, v⃗), w⃗⟩ as either
fixed-delay interactions, denoted F or variable-delay interactions, denoted V. Fixed-delay
interactions are induced by timed interactions having equality on their associated timed
constraints (also potentially by stochastic interactions following them), whereas variable-delay
interactions are timed or stochastic interactions with an interval of possible remaining lifetime
values.

F = {a ∈ γ | w⃗(a) ̸= ∞, ∃!t. succ((ℓ⃗, v⃗), t, a) ̸= ⊥}

V = {a ∈ γ | w⃗(a) ̸= ∞} \ F

54 Modeling Component-Based Stochastic Real-Time Systems

Based on this partitioning, the time sampling function for an interaction b when entering a new
state (ℓ⃗, v⃗) is defined as follows.

Rb((ℓ⃗, v⃗)) =

t if b ∈ F is delayable & enabled at t

if X then t else ∞ if b ∈ F is lazy & enabled at t
F−1
ρ̃b

(Y) if b ∈ V is delayable
if X then F−1

ρ̃b
(Y) else ∞ if b ∈ V is lazy

(3.1)

where X ∼ B(1
2) is a random Bernoulli variable over {true, false}, i.e., true and false have

a probability 1
2 , Y ∼ U(0, 1) is a random variable with standard uniform distribution, and F−1

ρ̃b

is the inverse cumulative distribution function (CDF) of the probability density function ρ̃b

associated to b at (ℓ⃗, v⃗).
For fixed-delay interactions (b ∈ F), if b is delayable, the sampling function Rb((ℓ⃗, v⃗))

returns the single time value t that satisfies the guard gb. Whereas, if b is lazy, a discrete choice
according to X is first performed to determine whether b will be considered and scheduled to t,
or not considered and scheduled to ∞.

The sampling function in the case of variable-delay interactions (b ∈ V) is slightly more
involved since it requires choosing from an interval of time values. The same treatment with
respect to the urgency types of interactions is performed i.e., a discrete choice on X is used to
consider a lazy interaction or not. The time value is obtained by sampling according to the
probability distribution ρ̃b. Technically, this corresponds to computing the inverse CDF (F−1

ρ̃b
)

on a random value Y uniformly distributed in the interval [0, 1]. The detailed definition of the
probability density function ρ̃b, in the case of timed and stochastic interactions, is given below.

3.1.3.3 Density Functions for Variable-delay Interactions

In this subsection, we define the density function ρ̃b associated with a variable-delay interaction
b at a state (ℓ⃗, v⃗). We recall that such an interaction may be either timed or stochastic. For
the former case, since no density function is explicitly specified on the associated guard, the
function ρ̃b is implicitly obtained from a uniform or exponential density function. For the latter
case, the function ρ̃b is obtained from the density function associated with the guard of b.

ρ̃b(t) =

1
u− l · 1[l ≤ t ≤ u] if b is timed with guard gb true on [l, u]

that is, v⃗b + t |= gb iff t ∈ [l, u]
λe−λ(t−l) · 1[l ≤ t] if b is timed with guard gb true on [l,∞)

that is, v⃗b + t |= gb iff t ∈ [l,∞)
ρ(v⃗b(x) + t)∫ ∞

v⃗b(x)
ρ(s)ds

if b is stochastic with guard [x ▷◁ ρ]

where 1[t ∈ D] is the identity function, which gives 1 if t ∈ D, and 0 otherwise.

3.1 Stochastic Real-Time BIP 55

The first two cases correspond to timed interactions. We distinguish two situations in this
setting, (i) when interaction b is timed and has a right-bounded guard, i.e., u is finite, the
sampling in the interval [l, u] is done uniformly, (ii) when the timed constraint is of the form
[l,∞), the sampling is done according to the exponential density function. In both scenarios,
the time t to sample must be within the interval specified by the time constraint. Stated
differently, the current valuations of clocks in v⃗b increased by the sampled time t must satisfy
the guard gb.

Remark that for (i) and (ii), i.e., for timed interactions, the time constraint gb may involve
several clocks (potentially because of the composition, recall that an interaction involves several
ports). Moreover, when entering a new state (ℓ⃗, v⃗), the concerned clocks v⃗b may have valuations
different from 0. Hence, the computation of the final time bounds u, l in which the time t will
be sampled, for b, either uniformly or exponentially is more involved. Generally, given a guard
gb of the form ∧

i(li ≤ xi ≤ ui) and the valuations v⃗b(xi), the bounds of the sampling interval
of b are actually computed as l = max(li − v⃗(xi)) and u = min(ui − v⃗b(xi)) as illustrated in
the example below (3.1.4).

Example 3.1.4. The situation depicted in Figure 3.3 shows a global state of the system (ℓ⃗, v⃗),
where the valuations of clocks x and y are respectively v⃗(x) = 1 and v⃗(y) = 2, and the time
constraint is [(2 ≤ x ≤ 6) ∧ (2 ≤ y ≤ 5)]d. For the clock x, the remaining lifetime interval tx is
computed as (2 − 1) = 1 ≤ tx ≤ (6 − 1) = 5. Similarly, for y, (2 − 2) = 0 ≤ ty ≤ (5 − 2) = 3.
Hence, the obtained sampling interval [l, u] is max(1, 0) ≤ t ≤ min(5, 3). Note that guards of
the form x− y ∼ k have the same interpretation since the difference x− y is constant over time
as both clocks evolve identically.

[(2 ≤ x ≤ 6) ∧ (2 ≤ y ≤ 5)]d

(ℓ⃗, (v⃗(x) = 1, v⃗(y) = 2))

1 2 3 4 5 6

1

5

1 ≤ tx ≤ 5v⃗(x) = 1

3
0 ≤ ty ≤ 3

time

v⃗(y) = 2

1 ≤ t ≤ 3

Figure 3.3: Computation of upper and lower bounds in the case of timed interactions; l =
max(1, 0) = 1 and u = min(5, 3) = 3, hence the sampling will be uniform in [1, 3].

The third case in the definition of ρ̃b(t) concerns variable-delay interactions obtained from a
stochastic interaction b with a guard [x ▷◁ ρ]d. In this scenario, the sampling is done in dom(ρ)
according to a potentially shifted and normalized density function. This transformed function
takes into account the case where the clock valuation of x, i.e., v⃗(x) is not 0 when entering the
state (ℓ⃗, v⃗). Below is a concrete illustration of the transformation.

56 Modeling Component-Based Stochastic Real-Time Systems

Example 3.1.5. The transformation is illustrated in Figure 3.4, where ρ(t) is a Normal density
function and v⃗(x) = 1. The function is first shifted to the current valuation of x, i.e., ρ(1 + t).
Since this shifted function is no longer a proper probability density function, i.e., its area is
lower than 1, it is normalized, i.e., divided by

∫ ∞
1 ρ(s)ds.

ρ(t)

P
ro
ba
bi
li
ty

t

v⃗′(x)

P
ro
ba
bi
li
ty

t

ρ̃(t) = ρ(1+t)∫ ∞
1 ρ(s) ds

Shift and

Normalise

0 1 0

[x ▷◁ ρ]d

(ℓ′, v⃗′(x) = 1)

Figure 3.4: Shifting and normalizing a Normal density function in the case of stochastic
interactions

3.1.4 An Example of Stochastic Simulation

In Figure 3.5, we illustrate the stochastic semantics on Example 3.1.3 of the Sender-Receiver. We
actually show a specific execution trace by sampling particular time values in each configuration.
In this figure, configurations are of the form ⟨(si, rj), (v⃗(x), v⃗(y), v⃗(z)), (w⃗({send, recv}), w⃗({fail}),
w⃗{recover}, w⃗({alarm}), w⃗({back}))⟩. In each configuration, newly sampled remaining life-
times are denoted by a box t , and updated remaining lifetimes are either ∞ or underlined t

according to the definition of the sampling function Rb . To make the example readable, we
only show the discrete transition, i.e. induced by the uniform choice over lazy interactions.

In this example, there are two possible initial configurations corresponding to the choice
of considering the lazy interaction alarm ⟨(s0, r0), (0, 0, 0), (1.3 , 7.4 ,∞, 2.8 ,∞)⟩ or not
⟨(s0, r0), (0, 0, 0), (1.5 , 6 ,∞,∞,∞⟩ at the beginning. Both configurations have the same global
location and clocks valuation (s0, r0), (0, 0, 0), but differ in their sampling of the remaining
lifetime of the initially racing interactions, namely {send, recv}, {fail} and {alarm}. In
one case (left branch), we have (1.5, 6,∞,∞,∞), i.e., alarm is scheduled at ∞, while in
the second case (right branch), (1.3, 7.4,∞, 2.8,∞), i.e., alarm is scheduled at 2.8. Note
that the probability to start in one of these configurations corresponds to the probability
to get the sampled remaining lifetime values weighted by a half. For the sake of simplicity,
we preferred to detail only one branch of the execution trace, i.e., the one on the left in
Figure 3.5. The complete execution trace shown in the example consists of the sequence
of transitions 1.5,{send,recv}−−−−−−−−−→ 3,{send,recv}−−−−−−−−→ 1.5,{fail}−−−−−−→ 1.5,{alarm}−−−−−−−→ 1.3,{back}−−−−−−→ 0.7,{recover}−−−−−−−−→ 0.5,{send,recv}−−−−−−−−−→,
which corresponds to two send-receive operations, followed by a fail of the Sender, which is
detected by the Receiver that emits an alarm and moves to a degraded mode then gets back to

3.1 Stochastic Real-Time BIP 57

⟨(s0, r0), (0, 0, 0), (1.3 , 7.4 , ∞, 2.8 , ∞)⟩⟨(s0, r0), (0, 0, 0), (1.5 , 6 , ∞, ∞, ∞)⟩

⟨(s0, r0), (0, 1.5, 0), (3 , 4.5, ∞, ∞, ∞)⟩

1.3, {send, recv}

⟨(s0, r0), (0, 4.5, 0), (2.3 , 1.5, ∞, ∞, ∞)⟩

1
2

1.5, {fail}

⟨(s1, r0), (0, 6, 1.5), (∞, ∞, 3.5 , ∞, ∞)⟩

⟨(s0, r0), (0, 1.3, 0), (2.6 , 6.1, ∞, 1.5, ∞)⟩

⟨(s1, r0), (0, 6, 1.5), (∞, ∞, 3.5 , 1.5 , ∞)⟩

⟨(s1, r1), (1.5, 7.5, 0), (∞, ∞, 2, ∞, 1.3)⟩

1.5, {alarm}

⟨(s1, r0), (2.8, 8.8, 0), (∞, ∞, 0.7, 3 , ∞)⟩

1.3, {back}

1.5, {send, recv}

3, {send, recv}

⟨(s1, r0), (2.8, 8.8, 0), (∞, ∞, 0.7, ∞, ∞)⟩

0.7, {recover}

1
2

.5, {send, recv}

3.5, {recover}

0.7, {recover}

⟨(s0, r0), (0, 0, 0.7), (.5 , 10 , ∞, 2.3, ∞)⟩

Figure 3.5: Illustration of the stochastic simulation semantics on Example 3.1.3

its normal working mode, followed by a recover of the Sender, and finally another send-receive
operation.

3.1.5 Additional Modeling Features

The proposed formalism can be enriched with the usual cost/reward structures and data
variables. These structures allow for assigning a score to execution traces, such as to model
energy consumption or failure time. In addition, we show how we can model eager interactions.
Indeed, delayable and lazy urgencies are not always enough to specify real-time systems with
complex timing behavior, especially when an urgent transition must be taken as soon as possible.

3.1.5.1 Handling Cost/Reward Structures

A cost/reward structure in this model can be obtained in a straightforward manner by adding a
data-structure in our simulation algorithm and associate it with states and interactions. Since
in our model we know how long the system remains in each state (as we keep track of the
remaining lifetimes of interactions), and which interactions are executed; we can, by specifying
unit cost/reward for states and interactions, compute the global cost for each execution trace of
the system. For instance, in the previous example, assume that we have this modeling feature

58 Modeling Component-Based Stochastic Real-Time Systems

and that we specified a cost of a fail to be 2, and the cost of remaining in a failure mode as 1
per time unit. The total cost of the fragment of the execution trace shown in Figure 3.5 will
be 5.5. That is, 2 (the fail interaction cost) plus [(1.5 + 1.3 + 0.7) × 1] (the total time spent
by the Sender component in a failure mode, i.e., from executing interaction fail to executing
interaction recover.

3.1.5.2 Considering Eager Interactions

An eager interaction is an urgent action that must be taken whenever it becomes enabled. The
consideration of the eager urgency requires to define the outcome of the sampling procedure
and to adapt the stochastic simulation algorithm.

Extending the time sampling function. Sampling a remaining lifetime for eager inter-
actions (abbreviated ε) is straightforward. Being at the state (ℓ⃗k, v⃗k), the sampling function
Ra((ℓ⃗k, v⃗k)) determines the remaining lifetime for the eager interaction a as the earliest time
value, depending on its associated time constraint. Equation 3.2 below extends the time
sampling procedure introduced in Equation 3.1 with sampling rules for eager interactions.

Ra((ℓ⃗, v⃗)) =

c, if a ∈ F is eager & enabled at c
l, if a ∈ V is eager & enabled for t ≥ l

⊥, if a ∈ V is eager & enabled for t > l

(3.2)

For fixed-delays interactions, the sampled value is obviously the fixed delay c, while for
variable-delays interactions, the smallest possible value corresponds to the lower bound of the
time constraint. Please note that this eager interaction must not be assigned a clock constraint
of the form t > l. Indeed this class of constraints is ambiguous on dense time domains and
the sampling algorithm fails to precisely determine the earliest date for the interaction. We
consider this problem as a modeling error that can be corrected by introducing a step variable ϵ
to identify the closest time value t′ that satisfies t > l. Hence, this clock constraint is equivalent
to t ≥ l + ϵ and the selected remaining lifetime is Ra((ℓ⃗, v⃗)) = l + ϵ. Furthermore, we allow
eager interactions to be only timed, not stochastic.

Updating the Stochastic Simulation Algorithm. From the simulation point of view,
eager interactions compete with delayable and lazy interactions following the same race policy,
namely, the one with the minimal remaining lifetime tmin is selected for execution. Nonetheless,
considering eager interactions increases the likelihood of ending with interactions assigned
the same value tmin, i.e., the set of candidate interactions for execution would be A = {a ∈
γ | w⃗(a) = mina∈γw⃗(a) = tmin}, where |A| > 1. For instance, two eager interactions enabled
from the same state with the same lower bound would lead to this situation. A straightforward
solution for such situations would be to uniformly select one interaction among them. A more

3.1 Stochastic Real-Time BIP 59

realistic choice though, is to allow for explicitly weighting these interactions. That is, at a given
state, the probability to execute one of the candidate interactions is specified by a probability
mass function over A.

To model this function, each interaction is attached with a numerical value representing its
weight. Let W : γ −→ N be the weight function that maps each interaction a ∈ γ to its weight
W (a). Hence, the probability to select interaction a among the set of candidates A is given by
the following equation:

ϑA(a) =

0, if a ̸∈ A

W (a)∑
b∈A

W (b) , if a ∈ A

Please note that the candidate interactions are equally likely to be observed when assigned
the same weight. In that case, ϑA becomes a discrete uniform distribution with probability
1⁄|A|.

In Algorithm 1, we described the stochastic evolution of an SRT-BIP model. As a reminder,
the first step is the initialization phase, in which the initial configuration is computed. Then,
the main loop identifies the interaction to execute based on a race policy and computes the next
configuration accordingly. More specifically, the race identifies the interaction ak corresponding
to the smallest remaining lifetime tk. Algorithm 2 shows how to update Algorithm 1 in order
to cope with the situation discussed above.

/* The initialization remains unchanged */
...
/* Main loop: computes zk+1 from zk */
while ∃b ∈ γ. w⃗k(b) ̸= ∞ do

/* Race: determines the interaction ak to execute */
/* Replace this line :

Let tk = mina∈γw⃗k(a), and let ak be the associated min event */

/* By these three lines */
Ak = {a ∈ γ | w⃗k(a) = mina∈γw⃗k(a)}
ak = F−1

ϑAk
(Y)

tk = w⃗(ak)
/* The rest of the computation remains unchanged */
...

end
Algorithm 2: Updated Stochastic Simulation Algorithm

60 Modeling Component-Based Stochastic Real-Time Systems

In Algorithm 2, Y ∼ U(0, 1) is a random variable with standard uniform distribution,
and F−1

ϑAk
is the inverse CDF of the probability mass function ϑAk

associated with the set of
candidate interactions Ak.

s2

act2

s0

s3s1

act1

act3

act1 (3)
[true]ε

act2 (1)
[true]ε

act3 (2)
[true]ε

(a) SRT-BIP component

2

act2

0

31

act1 act3
1⁄2 1⁄6 1⁄3

(b) Underlying DTMC

Figure 3.6: Example of an SRT-BIP component with discrete probabilities

It is worth mentioning that the updated simulation algorithm allows for modeling both
stochastic time behavior and transition with discrete probabilities. The latter can be represented
as weighted eager transitions without time constraints, where the weights are proportional
to the probability of the corresponding transition. Figure 3.6 shows a model with a discrete
choice at the initial state s0 between three transitions labeled by act1, act2 and act3. These
eager transitions are assigned with respective weights of 3, 1 and 2, that correspond to discrete
probabilities of 1⁄2, 1⁄6 and 1⁄3, respectively. These probabilities are computed by the function
ϑA, with a set of candidate interactions A = {act1, act2, act3}.

3.2 Implementation of SRT-BIP

In this section, we present an implementation of the proposed SRT-BIP formalism for modeling
component-based systems with time and probabilities. This implementation plays a major role
in, on the one hand, validating the semantics described in the previous section, and on the
other hand, providing a mean to build and simulate such SRT-BIP models which is essential in
the context of verification.

We consider the RT-BIP framework [7] as a starting point of our implementation. In the
current implementation, we fully support the semantics introduced in the previous section,
except for the weighting mechanism to explicitly model discrete probabilities. In the following,
we start by giving an overview of the RT-BIP framework, then we detail the steps taken to
implement it.

3.2.1 Overview of the RT-BIP Framework

RT-BIP is a framework for the modeling of real-time systems. It extends the BIP framework [24]
by enriching the language with real-time modeling features and by providing a real-time execution
engine. Figure 3.7 illustrates the tool-chain and workflow for the RT-BIP framework. This

3.2 Implementation of SRT-BIP 61

process exhibits the main elements of the framework, namely, the modeling language, the
compiler and the engine.

External Code

.cpp .hpp

.bip

(RT-)BIP Model
+

Front-End

Middle-End

Back-End

Input
Files

(RT-)BIP
Engine

Generated
Code

(RT-)BIP
Compiler

Executable
Software

Figure 3.7: Code generation process for RT-BIP models

3.2.1.1 The Modeling Language

An RT-BIP model is the combination of several components interacting through connectors.
These components can be either atomic, describing the behavior of a single element of the
system, or compound component combining a subset of components with their interactions
and priorities. The behavior of atomic components is modeled based on the timed automata
framework [11], extended with data variables. The framework provides a textual language
that allows one to describe such components using specific keywords and patterns. An atom is
defined as a set of locations declared with the keyword place, a set of communication ports
identified by the lexeme port, an a set of transitions. An atom starts at the initial location,
declared with "initial to location_name do {actions;}", and transits from locations to
others using transitions of the shape:

on port_name

from source_location to target_location

provided (guard)

urgency_level

do {actions;}.

In this component, data variables are defined by their type and name preceded by the
keyword data, and clocks follow a specific structure "clock clock_name clock clock_unit".
The update on value of variables is defining through a set of actions.

The language enables one to include external code written in C++. This feature increases
the modeling capabilities with complex computations and user-defined data structures. This
external code can be either external functions used to update the values of data variables at
the execution of an interaction, or external data types.

62 Modeling Component-Based Stochastic Real-Time Systems

Syntactically, each element of a BIP model can be annotated. These annotations are specific
instructions that give the possibility to extend the BIP language without modifying the BIP
parser. For example, the annotation @cpp{src="...", include="..."} is used to include
external C++ libraries.

3.2.1.2 The Compiler

The compiler takes as input a RT-BIP model and produces, if the model conforms with the
syntax, a platform-dependent executable. This module is decomposed in 3 layers:

1. the front-end is responsible for parsing the ‘.bip’ text file, checking its syntactic correctness,
and building an internal representation of it in the form of a BIP-EMF1 model.

2. the middle-end is useful to implement model to model transformation, which may be
of interest in order to remove dead code, or to perform architectural modifications (eg.
flattening).

3. the back-end’s role is to produce a source code compliant with C++11 standards, given the
BIP-EMF model. Currently, this layer is developed using Eclipse Acceleo that provides
tools for model-to-text transformation. This code generation is platform-dependent, that
is, the back-end is designed for a specific target architecture and produces a source code
that conforms to that platform.

The generated code is organized in terms of classes that represent the BIP entities declared
in the textual input model, namely, a class for each component, port, connectors, etc. In
addition, a deploy file that serves to assemble the generated classes is generated. It also links
the assembled components to the simulation engine. This file represents the entry-point of the
system simulation.

3.2.1.3 The Execution Engine

The engine implements the coordination semantics of BIP models, i.e., the scheduling of
interactions, while the semantics of the individual components is part of the generated code.
The engine drives the execution of the BIP model with respect to the defined semantics.

The simulation of an RT-BIP model is handled by the engine’s scheduler that chooses an
interaction amongst all the enabled one, at each iteration. The scheduling policy consists to
first compute a race interval by intersecting the valid time values for all the enabled interactions.
Then the scheduler plans a date for each interaction in the resulting race interval. Finally, the
interaction with the smallest waiting time wins the race.

In BIP, the code for the engines is written in C++ and is decomposed into a generic and
a specific parts. The former is composed of 33 header and 30 source files that define the

1EMF stands for Eclipse Modeling Framework used to produce Java classes from a model specification.

3.2 Implementation of SRT-BIP 63

interfaces between the generated code of the model and the execution engine. The specific
part implements all the methods of the generic interface, plus additional classes, to express
the semantics, optimizations and the deployment supported by the engine. For example,
BIP provides engines for untimed or timed models, with or without (called reference-engine)
optimized computation, in a monolithic, multi-threaded or distributed deployments.

The entry-point of the engine is the class Launcher, that is responsible of consuming the
simulation parameters and setting the parameters of the system scheduler accordingly. The
latter is defined in the RandomScheduler that implements the simulation algorithm.

3.2.2 The SRT-BIP Extension

SRT-BIP combines the real-time modeling capabilities of the RT-BIP framework with the
ability to model probabilistic information, similarly to stochastic BIP [122]. We build SRT-BIP
as an extension of the RT-BIP framework to implement the semantics defined in Section 3.1. In
the RT-BIP framework, all the needed mechanisms relative to timed interactions already exist.
Hence, efforts are concentrated on the newly introduced stochastic behavior. This is achieved
by modifications applied at different levels: the modeling language, the code generation and
the simulation engine.

Furthermore, to increase the usability of the new engine and its debugging capabil-
ities, we extend the set of simulation parameters with two optional attributes, namely,
--log-stoch-choice to display the intermediate scheduling decisions, i.e., sampled dates
and content of planning memory, and --log-variables to systematically log all the data
variables of the BIP model.

3.2.2.1 Expressing Probabilities

From the language point of view, we define stochastic interactions using specific annotations
@stochastic(dist="...", clk=..., param="...") to tag components ports. Such anno-
tations specify a probability density function and its parameters through, respectively, the
dist and param attributes, and associate a clock through the clk attribute. For example, a
stochastic port following a normal distribution N (10, 2) associated with the clock y is defined
by @stochastic(dist="normal", clk=y, param="10,2"). Currently, the language supports
a number of built-in density functions, namely, normal, gamma and χ2. Additionally, empirical
density functions can be used through the same mechanism: by setting dist="custom", and
param pointing to a file that characterizes the underlying cumulative distribution.

The stochastic annotation is parsed by the BIP parser in the front-end and propagated to
the back-end of the compiler, where we treat it, as explained next.

64 Modeling Component-Based Stochastic Real-Time Systems

3.2.2.2 Enriching the Generated Code

This modification concerns the back-end responsible for producing C++ source code from the
SRT-BIP model. Generating code for stochastic behaviors requires to extract the information
contained in stochastic annotations and use it for code generation. To do so, we extend the
classes representing the Port declarations with additional attributes:

• String distribution : this attribute records the content of the annotation by concatenating
the annotation keys dist and param, separated by a comma.

• Clock clock : this attribute represents the stochastic clock pointed out by the annotation
key clk.

These attributes are added during the generation of the port classes, but their initial-
ization is performed at deploy time, i.e., in the deploy file. In addition to the getters and
setters of these attributes, we extend the component classes with a utility function, denoted
print_data_vars(), which allows one to log their data variables.

The obtained code is partially validated at compile time: the syntactic correctness of
the annotation and the declaration of the clock associated with the stochastic annotation
are checked. For practical reasons, the validation relative to the stochastic semantics and
the associated assumptions, such as the participation of at most one stochastic port in an
interaction, is performed at runtime and delegated to the stochastic real-time engine.

The implement related to the update of the modeling language and the compiler(s back-end
(code generation) required to modify 5 Acceleo files for a total of 161 added lines of code.

3.2.2.3 The Stochastic Real-Time Engine

The Stochastic Real-Time engine implements the operational semantics of stochastic real-
time BIP systems. We first describe this engine from the functional view then we detail its
implementation.

Enabled

dates

Chosen

Planning Memory

Update Read

Plan Schedule
Planned

Chosen interaction
C2

C1

CN
Evaluate

interaction

System State

Log
ports Inter-

actions

Trace/
Symbol

Figure 3.8: Functional view of the stochastic simulation engine

The functional description. The functioning of the stochastic simulation engine is depicted
in Fig. 3.8. The engine iteratively selects one interaction to execute among the enabled ones.

3.2 Implementation of SRT-BIP 65

At every iteration, the engine computes the firing time interval for every interaction, based
on current clock valuations and interaction guards (Evaluate). Next, an execution date is
chosen for every future enabled interaction (Plan). For timed interactions, the date is chosen
by sampling a value in the associated firing interval, using either a uniform or exponential
law, depending if the firing interval is bounded or not (see Section 3.1.3.3 for more details).
For stochastic interactions, the date is chosen according to their associated probability density
function (encoded by the distribution attribute of the Port class, see Section 3.2.2.2) and the
clock value. Two cases are distinguished: when the current value of the clock is zero, the date is
chosen by a direct sampling of the corresponding density. However, when the clock has a strict
positive value, the execution date is planned using the truncated density function at that value.

Once all the future enabled interactions are planned, the scheduler applies a race policy to
select for execution the one having the earliest planned date (Schedule). The simulation time
is advanced to that date and the interaction is executed on the system and logged (Log).

For efficiency reasons, planned execution dates are stored in the planning memory, to
avoid re-planning interactions that remain enabled when moving to the next system state. A
new execution date is chosen only for newly enabled interactions and/or in conflict with the
executed interaction. That is, when the associated clock (for stochastic interactions) has been
reset, or the firing interval has changed due to execution of the previous interaction.

The implementation details. We extend the RT-BIP engine to support the new simulation
options, the planning memory, the stochastic simulation algorithm, and the time sampling
method. The simulation options are parsed at the entry-point of the engine, namely in the
class Launcher. We enrich the set of simulation options with two optional parameters to
automatically log data variables and to display the scheduler choices. This boils down to
adding a flag for each option which indicates whether it has been enabled by the designer.
The flag of the --log-stoch-choice is used by the class RandomScheduler to know whether
to display the firing interval, the sampling technique and the planned value for each enabled
interaction, together with the content of the planning memory. The option --log-variables
enables the call of the function print_data_vars() implemented by the generated code of the
root component.

The planning memory is deployed in the RandomScheduler. For each type of transitions,
namely, interaction, internal and external ports, we implement a map structure of the form:

std::map <const Transition_Type_Class* , std::pair<TimeValue, Context> >
Transition_Type_Memory;

This structure is used to memorize the planned date (of type TimeValue) and the context in
which this date has been sampled (Context). This context represents either the firing interval
if the transition is timed, or a pair of global and stochastic clock valuations if the transitions is
stochastic. In addition, we implement the necessary functions to update, search and to log the

66 Modeling Component-Based Stochastic Real-Time Systems

map structures. The function cleanMemory() is an example of update functions which role is
to apply the re-sampling rules by removing the conflicting transitions from the memories.

Scheduler.run()

Scheduler Engine Component

Loop getEnabledTr() getEnabledTr()

execute() execute()

choose()

Loop sample()

cleanMemory()

Root

Figure 3.9: Sequence diagram of the simulation algorithm

For the simulation algorithm and the sampling method, the main changes are concentrated
in the RandomScheduler. Figure 3.9 depicts the implementation of the simulation algorithm in
the class RandomScheduler. In this class, the main simulation loop is achieved by the function
run(). This latter starts by collecting the set of enabled transitions by communicating with
the root component through an instance of the class Engine. Then, a date is planned for each
one of them by calling the function sample(). The scheduler uses these planned dates to select
one transition for execution (using function choose()), and it notifies the Engine to execute
that transition. Finally, the planned memory is cleaned with respect to the selected transition
before starting the next iteration.

The function sample() is overloaded for timed and stochastic transitions. Timed transitions
are sampled using uniform or exponential distributions. For stochastic ones, they are either
sampled from the original distributions or from truncated ones. For the former, we implement a
function based on the GNU Scientific Library (GSL) that works as follows: we first compute an
offset according to the corresponding distribution before computing the planned date by adding
that offset to the current value of the global time. To sample from truncated distributions, we
use rejection sampling [97]. The principle of this Monte Carlo technique is to generate random
points in the 2D plan and to accept the ones that are under the graph of the target density
function, as represented by the green area in Figure 3.10. In this case, the offset to the planned
date is computed as the difference between the sampled date and the value of the clock.

3.3 Conclusion 67

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

time

p
ro
ba
bi
li
ty

Figure 3.10: Rejection sampling from a normal distribution N (3, 1) truncated at time t = 2.
Random points are generated in the non-dashed area. The green area represents the accepted
points and the light gray one identifies the rejected ones.

The stochastic engine ensures that the simulation conforms to the defined SRT-BIP semantics
under the assumption that the syntactic restrictions are respected. This is done by systematically
checking the following at runtime:

• at most one stochastic port is part of an interaction.

• an interaction does not combine stochastic and timed ports with time guards.

• the distributions specified in the stochastic annotations are supported by the sampling
algorithm.

• for stochastic interactions, the sampled value is always greater or equal to the valuation
of the associated clock.

• the content of the planning memory is always consistent with the global time.

The implementation related to the support of the new simulation options, the planning
memory, the stochastic simulation algorithm, and the time sampling method required to
modify 15 header and source files, for a total number of 1055 updated lines of code. It is
worth mentioning that the major changes are concentrated in the class RandomScheduler that
represents about 80% of the updates.

3.3 Conclusion

In this chapter, we presented a new component-based formalism that allows for the modeling
of stochastic real-time systems. We detailed its semantics and showed that is corresponds to a
GSMP. We also presented an implementation based on previous efforts of simulating real-time
systems (RT-BIP). Our goal was to cope with the lack of modeling formalisms that handle
arbitrary stochastic behaviors with timing aspects, and to close the gap between high-level
models and low-level system implementations.

68 Modeling Component-Based Stochastic Real-Time Systems

The stochastic real-time BIP formalism enables to build stochastic timed models and to
compose them through multi-party interactions. It offers a mean to express stochastic timing
constraints over systems interactions by attaching probability density functions to the guards
of ports composing them, and to specify different urgency levels for them. In contrast to the
previous stochastic semantics of BIP [122], which is discrete, this new formalism supports
reasoning over dense time.

Thanks to its expressiveness, the SRT-BIP formalism allows one to model real-life systems
with complex behavior. However, faithfully designing such systems is challenging. In the
next chapter, we present a machine learning technique that aims to cope with this difficulty
by automatically inferring timed models with probabilities from a set of observations on the
system.

Chapter 4

Learning Timed Models with
Probabilities

Analyzing system performance in a model-based approach requires first to build a faithful
performance model. This can be done by augmenting a functional model with performance
information that are obtained in different manners, namely, extracted from documentation,
computed by static analysis or collected at system runtime. Recently, Nouri et al. have proposed
a rigorous way of building such models [123]. The proposed methodology, called ASTROLABE,
consists of building a performance model from functional representations using statistical
inference and a manual model calibration, in a meet-in-the-middle fashion. ASTROLABE
relies on BIP for the modeling of the system and the generation of an executable version of it
(code generation), before using statistical inference in order to extract performance information
from actual system runs. The performance model is finally obtained by manually augmenting
the functional model with the inferred performance information. Although rigorous, this
methodology suffers from different weaknesses, mostly due to its reliance on statistical inference.
First, this latter requires data independence which is not always the case in practice. Moreover,
the distribution characterization is inaccurate since it depends on the designer interpretation
of plots and charts. The inference is tedious and manual. But also, the fact that the model
calibration operation is manual introduces a serious overhead in the design time and can be
error-prone. To cope with these limitations, we propose to automatically learn the entire
performance model from executions of the system using Machine Learning (ML) techniques in
general, and Grammatical Inference (GI) algorithms in particular.

Machine learning is an active field of research where new algorithms are constantly developed
and improved in order to address new challenges and new classes of problems. Grammatical
inference is a sub-category of ML that studies the automatic construction of a model out
of system observations, i.e., given a learning sample S, a GI algorithm infers an automaton
that, in the limit1, would represent the language L of the actual system. Despite the wide

1By considering a sufficient number of observations [55].

70 Learning Timed Models with Probabilities

development of ML techniques, only few works were interested in learning stochastic timed
models [56, 110, 137, 142]. These system models are of paramount importance for performance
evaluation, extending existing systems with new functionalities, or for documenting legacy code.

RTI+ algorithm [142] is one of the algorithms that learn a sub-class of timed automata
augmented with probabilities, called Deterministic Real-Time Automata (DRTA). This method
relies on a tree representation of S, that we identified to introduce uncontrolled generalization,
which impacts the quality of the learned models. In this context, we propose a more accurate
learning procedure by investigating different representations of the learning sample.

The remainder of this chapter is organized as follows. Section 4.1 introduces the principles of
Grammatical Inference and existing algorithms. In Section 4.2, we present the RTI+ algorithm
for learning timed models with probabilities and we introduce our formalization of it. We
present our improvements on the representation of the learning sample in Section 4.3. The
obtained experimental results are given in Section 4.4. Finally, Section 4.5 presents a systematic
method to transform the learned DRTA models to SRT-BIP.

4.1 Grammatical Inference

Grammatical Inference [55] has been initially developed in the context of natural language
recognition. The purpose was to identify production rules that govern natural languages. GI
techniques are further applied to extract some properties given samples from the language or to
find a more compact representation of the language in the form of grammars or automata. In
this section, we introduce principles of grammatical inference. Additional existing techniques
to learn models from traces are also discussed and classified.

4.1.1 Principles

Grammatical Inference consists on learning language representations given information about
the language. This learning setting depends on the class of languages L we are interested to
learn. Learning timed languages, which is the subject of this chapter, is different from learning
untimed ones in terms of complexity, the input information that are given about the language
and how to deal with the given information.

When designing a learning algorithm, the first question is to know what sort of languages
one intends to learn, according to the Chomsky hierarchy for instance. These languages may be
infinite and need to be formally represented in a finite manner. Usually, several representations
can be used to encode the same language. For example, a regular language can be represented
either as a regular expression, a deterministic finite state automation or a non-deterministic one.
The choice of the representation impacts the size and the shape of the manipulated structure in
the learning process. Finally, one has to determine the shape of the information available about

4.1 Grammatical Inference 71

the language, such as, labeled words or simply words from the language, and how information
are presented to the learner, such as, one information at a time or all at once.

The learning setting identifies the interaction between the main notions in learning, namely,
the targeted languages, representations and presentations. Given the target language L, the
learning algorithm is presented a set of information about L in order to learn a representation ,
denoted grammar G, of that language. These information are given by a presentation function
Φ. To allow learning L, the presentation must be complete, that is, it eventually outputs all
the information about L. Presentations determine the shape of the information given about
the language. Standard presentations for L are text and informant. Learning from a text
presentation consists of learning given only examples of the language, namely, words that belong
to the target language, Informant presentation mode returns examples and counter-examples of
the target language. Words are attached with labels that indicate whether they belong to L or
not.

4.1.2 Learnability

Learning a language relies on several parameters such as the language complexity and the
shape of the presentations. A class of languages is considered learnable with respect to a
presentation if there exists an algorithm that can be used by the learner to build the correct
representation. With time, the algorithm is given more information to refine its guess about the
target language. This algorithm must have the property that, after some finite time, the learning
process converges to the correct grammar (or an equivalent one). This learning framework is
called identification in the limit.

Since learning is based on a given amount of information, called learning sample, the learning
algorithms can be characterized according to the required quantity of information to reach the
convergence point. A learner A learns from polynomial data if it requires a polynomial number
of presentations of polynomial lengths to converge to a correct grammar. Conversely, if the
required amount or length is exponential then the learner is said to learn from exponential
data. This latter kind of learners is not very useful in a context where the available amount of
data may be restricted by some environmental constraints, which may be the case in practice.

In addition to the amount of data, the update time is also a characterization criterion for
learning algorithms. It represents the required execution time to build the ith grammar from
the i first presentations. A learner A learns in polynomial update time if constructing the ith

hypothesis (grammar) requires an execution time that is polynomial in the number of symbols
of the i first presentations.

We talk about efficiently learning in the limit when an algorithm is guaranteed to learn the
correct grammar G from polynomial data and in polynomial update time.

72 Learning Timed Models with Probabilities

4.1.3 Learning Algorithms: an Overview

Inferring grammars is a complex problem. Indeed, Gold [75] showed that positive and negative
samples are both required to correctly identify even the simplest class of languages, that is, the
class of regular languages, and equivalently identifying Deterministic Finite-state Automata
(DFA).

RPNI. This algorithm [127] has been proposed to learn DFAs from informant. This state-
merging algorithm starts by building an initial representation of the learning sample called
Prefix Tree Acceptor (PTA). States in this tree are explored in a lexicographic order, seeking
for possible merges. The role of the merge operation is to generalize the learned language since
it initially contains only the words that are in the positive sample. The negative sample is used
to reject a merge by checking the consistency of the model after merge, that is, this model must
not accept words belonging to the negative sample.

EDSM. This algorithm [104] improves RPNI’s exploration policy: Instead of performing the
first possible merge, all the possible merges are scored and the best merge is selected. The idea
is to do the best choices at each step in order to minimize the snow ball effect caused by early
bad decisions. As with RPNI, EDSM cannot be used in the absence of negative examples.

Learning k-testable languages. A constructive approach [71] has been proposed to learn
DFAs from a text presentation. This method is applicable for the inference of a subset of regular
languages denoted k-testable, that is, identifiable with a window of size k In this approach, a
DFA is built by observing the positive examples with a sliding window of k symbols. Given the
learning sample S, a 5-tuple Zk = {Σ, I, F, T, C} is constructed such that:

• Σ is the alphabet,

• I is the set of prefixes of length k − 1,

• F is the set of suffixes of length k − 1,

• T is the set of sub-strings of length k,

• C is the set of words ω ∈ S, such that |ω| < k.

The recognized language is the set of words which prefixes of length k − 1 are in I, suffixes
of length k− 1 are in F , all sub-strings of length k− 1 are in T , union the set of words in C. It
can be written as L(Zk) = IΣ∗ ∩ Σ∗F − Σ∗(Σk −T)Σ∗ ∪C. The main drawback of this method
is that it cannot be applied to arbitrary regular languages since they are not all k-testable.

Alergia. This algorithm was proposed in [40] for the inference of probabilistic DFAs from
text presentations. This RPNI-like algorithm extends the Prefix Tree Acceptor with frequencies
on the states and the transitions. These frequencies are used to evaluate the compatibility of

4.1 Grammatical Inference 73

two candidate states for a merge. The compatibility criterion, based on the Hoeffding bound,
quantifies the similarity of these two states: they are compared in terms of probability to transit
with symbols of the alphabet and their ending probability.

MDI. In the MDI [140] algorithm, the authors proposed to substitute this local-range criterion
by the Kullback-Leibler (KL) divergence. Given the Frequency Prefix Tree Acceptor (FPTA),
the model before merge and the model after merge, the KL divergence value is computed
between the FPTA and each model. A merge is considered compatible with the learning sample
if the difference between the two divergences relative to the reduction of the number of states
provided by the merge, is small enough.

AAlergia. A variant of Alergia called Angluin-based criterion Alergia (AAlergia) is proposed
in [110] in the context of deterministic LMC inference. Checking compatibility of two states is
based on local information about probability distribution over transition symbols. For these
states, the highest difference in probability to transit with the same symbol is compared to a
data-dependent threshold in order to evaluate whether to perform the merge. Since it is based
on Alergia, that learns DFA, an additional operation is performed to transform the DFA into
a deterministic LMC by removing the final states of the DFA, and updating the transition
probabilities.

RTI+. Verwer et al. proposed a state-merging algorithms to learn timed models. RTI+ [142]
is an EDSM-like variation to learn a sub-class of timed automata with probabilities, called
Deterministic Real-Time Automata (DRTA). In this algorithm, transitions are labeled with time
intervals that represent clock constraints. Beside the merge operation, a time-split operation is
introduced to discriminate between distinct time behaviors. The Likelihood Ratio (LR) test is
implemented for both scoring operations and identifying their feasibility.

BUTLA. Another variation of state-merging algorithms for timed automata learning called
BUTLA is presented in [108]. Unlike RTI+, clock constraints on the transitions are expressed
as probability density functions over time values. In this algorithm, merges are explored in
a bottom-up order to minimize the determinization cost. After all the merging steps, an
additional loop is added to detect multi-modality in the probability density function and
candidate transitions are split into unimodal Gaussian distributions.

The L* algorithm. Active learning relies on the interaction between a learner that wants
to learn the target language L and an oracle that knows L. The learner can send several kinds
of queries, namely, membership, equivalence, subset and sampling queries. Membership queries
allow the learner to ask the oracle whether a word belongs to L, while equivalence queries
aim at comparing the learner’s hypotheses to L. In the latter, the oracle answers positively if

74 Learning Timed Models with Probabilities

the two languages are equivalent. Otherwise, a negative answer is returned together with a
counter-example, but only for strong equivalent queries. Angluin showed that membership and
strong equivalence queries are enough to correctly identify a regular language, and proposed
the L* algorithm [13]. In this algorithm, the learner maintains a table that is filled using
membership queries. At each iteration, the learner submits a closed and consistent table for
equivalence checking and the oracle evaluates the corresponding DFA. If this DFA is not exactly
correct, the oracle returns a counter-example. Tis counter-example is taken into account by the
learner to refine his table, through consistency and closure operations. More recently, a variant
of this algorithm called TTT[83] was proposed as a means to support long counter-examples.

4.1.4 Classification

Learning models has become a challenging task due to its multiple applications, such as in
model-based design, verification, testing and diagnosis. Several algorithms have been proposed
for automata learning [13, 40, 71, 104, 108, 110, 127, 140, 142]. These approaches differ in the
class of models they learn and in their learning algorithm.

4.1.4.1 Target Model

GI approaches vary in terms of learned models. Indeed, each algorithm is fashioned to learn a
specific class of models. This specificity impacts the shape of the input data and the required
operations during the learning process in order to infer the chosen model class. Algorithms for
inferring DFAs [13, 71, 104, 127] and Probabilistic DFAs (PDFA) [40, 140] have been proposed.

These methods often serve as a basis for methods that learn more complex modeling
formalisms. For example, Alergia was extended for Discrete-Time Markov Chains (DTMC)
[110], timed automata with probabilities [108, 142] CTMCs [137], GSMPs [56] but also MDPs
[111]. The authors in [70] proposed to learn Directed Acyclic Graphs (DAG) based on the k-
testable learning algorithm. The approach in [145] proposes to learn DFAs augmented with data
variables and constraints by following an EDSM-like process. The L* algorithm was extended
to learn NFAs [33], Mealy machines [139], MDPs [43] and more recently non-deterministic
automata on infinite alphabets [120]. The interested reader can find more information about
the extensions of L* in [81].

4.1.4.2 Active Vs. Passive Learning

Learning approaches can be split into two types: active learning and passive learning tech-
niques. Active learning algorithms [13, 33, 43, 139] are interactive and iteratively build their
hypothesis by refinement, given an example or a counter-example at each iteration. Active
learning represents a powerful manner to correctly learn a DFA. However, it requires to have
a perfect oracle that provides useful examples and counter-examples, and that can answer
strong equivalence queries in an automated way. When the target system is a white-box, this

4.1 Grammatical Inference 75

equivalence can be checked. But in practice, the system to learn is often a black-box and the
only possible interaction is restricted to membership queries through the system interfaces.
In literature, solutions are proposed as an alternative to the strong equivalence queries, such
as conformance testing using the partial W-method [68] or Model-Checking (MC) [130], and
Probably Approximately Correct (PAC) learning [113]. The partial W-method is a conformance
testing technique that constructs a set of test queries to distinguish between the learned model
and the target language. This method is guaranteed to find a counterexample if the number of
states in this target model is known. The idea of using MC relies on the ability to formally
specify the expected behavior of the target system using a set of properties that are then
verified against the learned hypothesis. Using PAC-learning for approximating equivalence
queries identifies the minimal number of membership queries to perform in order to claim that
the learned model is equivalent to the target language.

Passive learning algorithms [40, 71, 104, 108, 110, 127, 140, 142] are off-line techniques
that run on a fixed set of observations given as input. Several algorithms have been proposed
to learn models from informant presentations [104, 127]. These algorithms are not always
applicable in some contexts where negative examples are not available. Techniques that learn
from text presentations cope with the aforementioned limitation [40, 71, 108, 110, 140, 142].
In both cases, the idea is to generalize a set of observations when trying to infer the target
language. The difficulty is to find the right level of generalization. Informed learners use the
negative sample to reject an operation since the inferred language must be consistent with the
learning sample. This consistency cannot be verified in the case of text learners and it has to
be approximated by statistical tests in order to find the correct degree of generalization.

More recently, a combination of active learning (the TTT algorithm) and passive learning
(RPNI for learning DFA) was proposed in [150], to accelerate the testing phase of active learning
algorithms. In this approach, the equivalence is answered by a sequence of three oracles of
increasing complexity:

(1) a log oracle verifying that the observed system traces are accepted by the proposed
hypothesis,

(2) a passive-learning oracle produced by generalizing these traces, and

(3) a conformance testing oracle implementing the partial W-method.

4.1.4.3 Iterative Vs. Constructive Approach

There are few GI algorithms that work in a constructive manner [70, 71]. These approaches
aim to build the learned model state by state, given information about the language. Most
of the algorithms that are proposed for inferring languages are iterative. We distinguish two
types of iterative approaches: top-down and bottom-up techniques. In the top-down, the
process starts with a sub-language described in the learning sample. The goal of the iterations

76 Learning Timed Models with Probabilities

is to generalize that sub-language using model transformation on the sample representation
in order to induce the target language. This is the case for state-merging (SM) algorithms
[40, 104, 108, 110, 127, 140, 142]. In these iterative approaches, the initial sample is represented
as a tree with annotated transitions then the size of the model is reduced by merging equivalent
states of the model. The condition on a merge varies from an algorithm to another, and depends
on the targeted model type and the presentation mode (informant or text). In contrast, bottom-
up approaches [13, 33, 43, 139] start from a single-state model thats accepts the universal
language and refine it based on information that are incrementally collected through iterations.
In such approaches, a learner aims at deducing the target language by interacting with an
entity that knows the target language, namely, the oracle.

4.1.4.4 Summary

Table 4.1 summarizes the above-mentioned algorithms. As one can see, there are only few
algorithms that are interested in learning probabilistic timed models. Our work is based on the
work of Verwer et al. [142] that we improve and apply in the context of real-time embedded
systems. This choice is justified by the good quality of the results presented in [142], its reliance
on EDSM2, and the availability of the tool in open-source.

Algorithm Learning Algorithm Presentation Representation Compatibility
type type criterion

RPNI Passive SM Informant DFA Consistency with
negative sample

EDSM Passive SM Informant DFA Consistency with
negative sample

K-testable Passive Constructive Text DFA -
Alergia Passive SM Text PDFA Hoeffding bound
MDI Passive SM Text PDFA KL Divergence

AAlergia Passive SM Text LMC Angluin-based
RTI+ Passive SM Text TA Likelihood ratio

test
BUTLA Passive SM Text TA Hoeffding bound

L* Active Constructive Interactive DFA -

Table 4.1: Classification of GI algorithms

4.2 The RTI+ Learning Procedure

RTI+ [142] is a state-merging algorithm for learning DRTA models from a sample of timed
words. The algorithm first builds a PTA then reduces it by merging locations having similar

2EDSM won the Abbadingo DFA learning competition in 1997

4.2 The RTI+ Learning Procedure 77

behaviors, according to a given compatibility criterion. Compared to other state-merging
algorithms, RTI+ relies on a time-split operation to identify the different time behaviors and
to split them into disjoint transitions. The algorithm is able to learn a stochastic DRTA, i.e, a
DRTA+ where the strategy is obtained from the associated annotation function N . In this
section, we introduce a formal definition of the RTI+ learning algorithm, its operations and
the targeted sub-class of models.

4.2.1 The Learned Model

Let Σ be a finite alphabet, Σ∗ the set of words over Σ and ϵ the empty word. Let T be a
time domain and T∗ the set of time sequences over T. We consider integer time values, i.e.,
T ⊆ N. For a set of clocks C, let CC(C) denote the set of clock constraints over C. Let I be the
intervals domain, where I ∈ I is an interval of the form [a; b], a, b ∈ T such that a ≤ b, and
represents the set of integer values between a and b. Let ω be an untimed word over Σ and τ a
time sequence over T. We write ω ≤ ω′ (resp. τ ≤ τ ′) whenever ω (resp. τ) is a prefix of ω′

(resp. τ ′). We also write ωu (resp. τv) for the concatenation of ω (resp. τ) and u ∈ Σ∗ (resp.
v ∈ T∗). |ω| (resp. |τ |) is the size of ω (resp. τ).

4.2.1.1 Deterministic Real-Time Automata (DRTA)

A Real-Time Automaton (RTA) is a timed automaton with a single clock that is systematically
reset on every transition.

Definition 4.2.1 (Real-Time Automaton (RTA)). An RTA is a tuple A = ⟨Σ, L, l0, C, T, inv⟩
where:

• Σ is the alphabet,

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• C = {c} contains a single clock,

• T ⊆ L× Σ × CC(C) × C × L is a set of edges with a systematic reset of the clock c,

• inv : L −→ CC(C) associates invariants to locations.

For more convenience, transitions are denoted as l σ,I−−→ l′, where σ ∈ Σ and I ∈ I is a time
interval including both transition guards and location invariants. For simplicity, we also omit
the systematic reset.

78 Learning Timed Models with Probabilities

An RTA is deterministic (DRTA) if, for each location l and a symbol σ, the timing
constraints of any two transitions starting from l and labeled with σ are disjoint, i.e., ∀l ∈
L,∀σ ∈ Σ,∀t1, t2 ∈ T, t1 = ⟨l, σ, I1, l1⟩ and t2 = ⟨l, σ, I2, l2⟩, (I1 ∩ I2 ≠ ∅) ⇔ (t1 = t2). A
DRTA generates timed words over Σ × T. Each timed word is a sequence of timed symbols
(ω, τ)=(σ1, τ1)(σ2, τ2)...(σm, τm), representing an untimed word ω together with a time sequence
τ . A set of n timed words constitute a learning sample S = {(ω, τ)i, i ∈ [1;n], ω ∈ Σ∗, τ ∈ T∗}.
We denote by TS the set of time values appearing in S.

A Prefix Tree Acceptor (PTA) is a tree representation of the learning sample S where
locations represent prefixes of untimed words in S. Timing information is captured in a PTA in
the form of intervals I ∈ I over transitions. This structure is called Augmented PTA (APTA).
In the latter, each transition l σ,I−−→ l′ is annotated with a frequency that represents the number
of words in S having l′ as a prefix. An APTA can be seen as an acyclic DRTA annotated with
frequencies. Let N : T −→ N be this annotation function. Given a DRTA A, a pair (A,N) is
an annotated DRTA, denoted DRTA+.

4.2.1.2 Stochastic Interpretation of a DRTA

A DRTA starts at the initial location l0 with probability 1. It moves from a location to another
using transitions in T . At each location l, a transition is chosen among the set of available
transitions Tl. Selecting a transition consists of choosing a timed symbol (σi, τi). A probabilistic
strategy φ that associates a probability function to each location l over the set of transitions
Tl is used to make this choice: φ : L × T −→ [0, 1], such that Σt∈Tl

φ(l, t) = 1,∀l ∈ L. For
the chosen transition l

σ,I−−→ l′, the choice of the time value is done uniformly over the time
interval I. Figure 4.1 shows an example where two transitions labeled A and B are possible
from location 1. The strategy φ associates probability 0.6 to A and 0.4 to B. Then, uniform
choices on the associated time intervals are performed.

Transition

Distribution

Uniform

Choice

1

2

3

A [0;1]

B [0;1]

1

2

3

A [0;1]
(0.6)

B [0;1]
(0.4)

1

3

B [0;0]
(0.2)

A [1;1]
(0.3)

2
A [0;0]
(0.3)

B [1;1]
(0.2)

Figure 4.1: Probabilistic strategy with uniform choice

4.2.2 Building the APTA

The timed learning sample S is represented as an APTA where all the time intervals span
over T. Initially, the built APTA only contains a root node consisting of the empty word ϵ.

4.2 The RTI+ Learning Procedure 79

RTI+ proceeds by adding a location in the tree for each prefix of untimed words in S. Then, a
transition labeled with σ is created from location l to location l′ if the prefix of l′ is obtained by
concatenating the prefix of l and symbol σ. Finally, transitions are augmented with the largest
time constraint [0;max(TS)], where max(TS) = Max{a ∈ TS}. The annotation function N
is built at the same time and represents transitions frequencies. In this work, we denote this
construction as generalized-bound APTA.

Definition 4.2.2 (Generalized-bound APTA). A generalized-bound APTA is a DRTA+

(⟨Σ, L, l0, C, T, inv⟩,N) where:

• L = {ω ∈ Σ∗ | ∃(ω′, τ ′) ∈ S, ω ≤ ω′}, l0 = ϵ ,

• T contains transitions of the form t = ⟨ω, σ, [0;max(TS)], ω′⟩ s.t. ωσ = ω′, and N (t) =
|{(ω′u, τ) ∈ S, u ∈ Σ∗}|.

4.2.3 The Learning Process

The learning process aims to identify the DRTA+ that represents the target language while
reducing the size of the initial APTA. At each iteration, the algorithm first tries to identify
the timing behavior of the system, by using time-split operations. The second step consists
of merging compatible locations that show similar stochastic and timed behaviors. Locations
that are not involved in merge or split operations are marked as belonging to the final model
(promote operation). The algorithm proceeds by initially marking the root of the APTA as
part of the final model and its successors as candidate locations. The latter will be considered
for time-split, merge or promote operations.

4.2.3.1 Time-split Operation.

The time-split operation aims to identify different timing behaviors by splitting transitions. This
produces models after time-split that are significantly different from models before time-split.
This is done by splitting candidate transitions t = ⟨q, σ, [a; b], q′⟩ ∈ T into two transitions
t1 = ⟨q, σ, [a; c], q1⟩, t2 = ⟨q, σ, [c+ 1; b], q2⟩. This operation requires to reassign the timed words
attached to the candidate location q′ by splitting them on the locations q1 and q2. The subtrees
whose root are q1 and q2 must be rebuilt using the same APTA policy we used to represent the
learning sample S.

Definition 4.2.3 and Algorithm 3 present the time-split operation relative to a generalized-
bound APTA. We define primitives that are used in Definition 4.2.3. Let A = ⟨Σ, L, l0, C, T ⟩
be a DRTA and N an annotation function. A+ = (A,N) is a DRTA+. We define SubtreeL
of a location q as a set of all locations that are in the subtree whose root is q, i.e.

SubtreeL(q) : {q′ | ∃t1t2...tm ∈ T ∗, ti = ⟨qi−1, σ, [a; b], qi⟩, q0 = q, qm = q′} ∪ {q}

80 Learning Timed Models with Probabilities

SubtreeT denotes the set of transitions that are in the subtree whose root is q:

SubtreeT (q) : {t ∈ T | t = ⟨q′, σ, [a; b], q′′⟩, q′, q′′ ∈ SubtreeL(q)}

Reach(q, (ω, τ)) is a boolean function that returns true if the DRTA+ is at the location q

having the timed word (ω, τ) as input:

Reach(q, (ω, τ)) =
{
True, if ∃t1t2...ti..tm ∈ T ∗, ti = ⟨qi−1, σi, [a; b], qi⟩, τi ∈ [a; b], qm = q.

False, otherwise.

S[q] denotes the set of all the timed words (ω, τ) in the learning sample S that lead A+ to
pass by location q. In other words, it is the set of timed words that have a prefix reaching
location q:

S[q] = {(ω, τ) ∈ S | ∃(ω′, τ ′) ∈ Σ∗ × T∗, Reach(q, (ω′, τ ′)) = true, ω′ ≤ ω, τ ′ ≤ τ}

Definition 4.2.3 (Time-split Operation). A time-split of a transition t = ⟨q, σ, [a; b], q′⟩ ∈ T

at time c ∈ [a; b] is an operation that updates L and T such that:

• L := L ∪ L1 ∪ L2 \ SubtreeL(q′) , where:

- L1 = {ωu1 ∈ Σ∗ | Reach(q′, (ω, τ)) = true, a ≤ τ|ω| ≤ c, ∃u2, v, (ωu1u2, τv) ∈ S[q′]}

- L2 = {ωu1 ∈ Σ∗ | Reach(q′, (ω, τ)) = true, c < τ|ω| ≤ b, ∃u2, v, (ωu1u2, τv) ∈ S[q′]}

• T := T ∪ T1 ∪ T2 ∪ { t1 = ⟨q, σ, [a; c], q1⟩, t2 = ⟨q, σ, [c + 1; b], q2⟩ } \ SubtreeT (q′),
where:

- T1, T2 are transitions in subtrees L1, L2, respectively.

- q1, q2 are roots of subtrees L1, L2, respectively.

- N (ti) = |S[qi]|, and ∑
N (ti) = N (t), i ∈ {1, 2}.

4.2.3.2 Merge Operation

Given a marked location l (belongs to the final model) and a candidate location l′, this operation
is performed by first redirecting the transitions targeting l′, to l and then by folding the subtree
of l′ on l. The merge operation is also dependent on the APTA model we are using. This
operation is detailed is Definition 4.2.4 and algorithm 4 in the case of generalized-bound APTA.

Pref_S(q) is a set of timed prefixes (ω, τ) of timed words (ω′′, τ ′′) in S[q] that have a
prefix (ω′, τ ′) reaching location q, that is, Reach(q, (ω′, τ ′)) = true. This can be written as :

4.2 The RTI+ Learning Procedure 81

Data: A DRTA+

Result: At location l∗, split σ-transition at time c.
Find the transition t = ⟨l∗, σ, [a; b], l̄⟩ ∈ T , where c ∈ [a, b];
if c ̸= b then

Delete the subtree whose root is l̄ and the transition t;
Create two new transitions t1 = ⟨l∗, σ, [a; c], l1⟩ and t2 = ⟨l∗, σ, [c+ 1; b], l2⟩;
T = T ∪ {t1, t2};
N (t1) = N (t2) = 0;
for each timed word (ω, τ) in S do

Boolean split = false;
Set the current location l to l0;
for each timed symbol (σi, τi) in (ω, τ) do

Find the transition t = ⟨l, σi, [a; b], l′⟩, where τi ∈ [a, b];
if ∃t ∈ T then

if l′ == l1 ∨ l′ == l2 ∨ split == true then
split = true;
N (t) = N (t) + 1;

end
else

Create a new location l′;
L = L ∪ {l′};
Create a new transition t = ⟨l, σi, [0,max(T)], l′⟩;
T = T ∪ {t};
N (t) = 1;

end
end
l = l′;

end
end

Algorithm 3: Time-split algorithm using the generalized-bound policy

Pref_S(q) = {(ω, τ) ∈ Σ∗ × T∗ | ∃(ω′, τ ′) ∈ Σ∗ × T∗, Reach(q, (ω′, τ ′)) = true, ∃(ω′′, τ ′′) ∈ S,

ω′ ≤ ω ≤ ω′′, τ ′ ≤ τ ≤ τ ′′}.

Definition 4.2.4 (Merge Operation). Merging two locations q, q′ ∈ L is an operation that
updates L and T such that:

• L := L ∪ L1 \ SubtreeL(q′), where:

- L1 = {ω ∈ Σ∗ | (ω, τ) ∈ Pref_S(q′) ∧ (ω, τ) ̸∈ Pref_S(q)}

• For each t = ⟨q′′, σ, [a; b], q′⟩ ∈ T :

- If ∃t′ = ⟨q′′, σ, [a; b], q⟩ ∈ T, T = T \ {t} and N (t′) = N (t) + N (t′).
- Else, T = T ∪ {t = ⟨q′′, σ, [a; b], q⟩} .

82 Learning Timed Models with Probabilities

• T := T ∪ T1 \ SubtreeT (q′), where:

- T1 are transitions in subtree L1.

The algorithm of the merge operation, in this case, is as follows:

Data: A DRTA+

Result: Merge locations l1 and l2.
Find all the transitions of the form t = ⟨l, σ, [a; b], l2⟩ ∈ T ;
Update the found transitions to ⟨l, σ, [a; b], l1⟩;
Delete the subtree whose root is l2;
for each transition t = ⟨l, σi, [a; b], l′⟩ ∈ T do

N (t) = 0;
end
for each timed word (ω, τ) in S do

Set the current location l to l0;
for each pair (σi, τi) in (ω, τ) do

Find the transition t = ⟨l, σi, [a; b], l′⟩, where τi ∈ [a; b];
if ∄t ∈ T then

Create a new location l′; L = L ∪ {l′};
Create a new transition t = ⟨l, σi, [0;max(T)], l′⟩;
T = T ∪ {t}; N (t) = 0;

end
N (t) = N (t) + 1; l = l′;

end
end

Algorithm 4: Merge algorithm using the generalized-bound policy

4.2.4 Compatibility Evaluation

The compatibility criterion used in RTI+ is the Likelihood Ratio (LR) test. Intuitively, this
criterion measures a distance between two hypotheses with respect to specific observations. In
our case, the considered hypotheses are two DRTA+ models: H with m transitions and H ′

with m′ transitions (m < m′), where H is the model after a merge operation (resp. before a
split) and H ′ is the model before a merge (resp. after a split). The observations are the traces
of S.

We define the likelihood function that estimates how S is likely to be generated by each
model (H or H ′). It represents the product of the probability to generate each timed word in
S 3. Note that the ith timed word (ω, τ)i in S corresponds to a unique path pi in the DRTA+.
The probability to generate (ω, τ)i is the product of the probabilities of each transition in

3Since the timed words in S are generated independently.

4.2 The RTI+ Learning Procedure 83

pi = s1s2...s|ω|:

f((ω, τ)i, H) =
|ω|−1∏
j=1

π((ωj , τj)i, sj)

Where π((ωj , τj)i, sj) corresponds to the probability to transit from the location sj to sj+1

in H with the jth timed symbol (ωj , τj)i. Given a learning sample S of size n, the likelihood
function of H is Likelihood(S,H) = ∏n

i=1 f((ω, τ)i, H). The likelihood ratio is then computed
as follows

LR = Likelihood(S,H)
Likelihood(S,H ′)

Let Y be a random variable following a χ2 distribution with m′ −m degrees of freedom, i.e.,
Y ⇝ χ2(m′ −m). Then, y = −2ln(LR) is asymptotically χ2 distributed. In order to evaluate
the probability to obtain y or more extreme values, we compute the p-value pv = P (Y ≥ y). If
pv < 0.05, then we conclude that H and H ′ are significantly different, with 95% confidence.

The compatibility criterion concludes that a time-split operation is accepted whenever it
identifies a new timing behavior, that is, the model after split is significantly different from the
model before split (pv < 0.05). In contrast, a merge is rejected whenever the model after merge
is significantly different from the model before merge since the merged locations are supposed
to have similar stochastic and timed behaviors. Consequently, merge (respectively time-split)
operations with a p-value closer to 1 (respectively 0) are favored.

4.2.5 Shortcomings

The RTI+ algorithm relies on the generalized-bound APTA as initial representation of the
learning sample S. As pointed out before, this kind of APTA augments an untimed PTA with
the largest possible time intervals, without considering the values that concretely appear in
S. This introduces an initial generalization that leads the APTA to accept words that do not
actually belong to S and might not belong to the target language L. In Example 4.2.1, we show
that this initial generalization cannot be refined later in the learning process. More concretely,
we observe that the time intervals that do not appear in S are not isolated and removed from
the DRTA+.

Example 4.2.1. Let us consider the following learning sample S = {(A,5)(B,5); (A,4)(A,3);
(A,3)(B,5); (B,1)(A,5); (B,3)(B,5); (B,5)(A,1)}. The left-hand model in Figure 4.2 presents the
initial DRTA+ (H) of S on which we evaluate a time-split operation. The latter is expected
to identify the empty interval [0; 2] on transition t = ⟨1, A, [0; 5], 2⟩, since no timed word in
S takes this transition with time values in [0; 2]. The right-hand figure represents the model
assuming a split of transition t at time value 2 (H ′). The LR test returns pv = 1 which leads
to reject the time-split operation, and hence, the empty interval [0; 2] is not identified during
the learning process.

84 Learning Timed Models with Probabilities

1

2

3

4

5

6

7

𝐷𝑅𝑇𝐴+ H
6 transitions

Likelihood(S, H) = (
3

6
×

1

3
) (

3

6
×

2

3
) (

3

6
×

2

3
) (

3

6
×

2

3
)

(
3

6
×

2

3
) (

3

6
×

1

3
) =

1

2916
 = 0.000342936

• LR =
Likelihood(S, H)
Likelihood(S, H’)

=
0.000342936
0.000342936

= 1 • y = -2 ln(LR) = -2 ln(1) = 0

Y ~𝜒2(7 - 6 = 1) : P(Y ≥ 0) = p-value = 1 > 0.05 → split rejected

1

2

3

4

5

6

7

8
A [0;2]

(0)

Likelihood(S, H’) = (
3

6
×

1

3
) (

3

6
×

2

3
) (

3

6
×

2

3
) (

3

6
×

2

3
)

(
3

6
×

2

3
) (

3

6
×

1

3
) =

1

2916
 = 0.000342936

𝐷𝑅𝑇𝐴+ H’
7 transitions

Figure 4.2: Identifying empty intervals with time-split operation

The generalized-bound APTA introduces empty time intervals that cannot be removed
during the learning process. To overcome this issue, we propose, in the next section, new
representations of the learning sample S.

4.3 Learning More Accurate Models

A faithful representation of the learning sample consists of building an APTA that accepts
only words in S by taking into account the time values during this process. This can be
done at different granularities, which results in different trade-offs between the introduced
initial generalization and the APTA size. We propose three APTA models denoted unfolded,
constructive-bound and tightened-bound APTAs.

4.3.1 Unfolded APTA

This APTA model fits perfectly the traces in S, that is, accepts exactly the timed words in
S. Hence, it does not introduce any initial generalization. To build such a model, we need
to consider both symbols and time values. The APTA initially contains the empty word.
Locations are added for every timed prefix and corresponding transitions are created such that
each transition only accepts a single time value, i.e., time intervals are equalities of the form
[a; a] ∈ I, as shown in Definition 4.3.1.

Definition 4.3.1 (Unfolded APTA). An unfolded APTA is a DRTA+ where:

• L = {(ω, τ) ∈ Σ∗ × T∗| ∃(ω′, τ ′) ∈ S, ω ≤ ω′, τ ≤ τ ′},

4.3 Learning More Accurate Models 85

• T contains transitions of the form t = ⟨(ω, τ), σ, [a; a], (ω′, τ ′)⟩ such that: (1) ωσ = ω′, (2)
τa = τ ′, and N (t) = |{(ω′u, τ ′v) ∈ S, u ∈ Σ∗, v ∈ T∗}|.

4.3.2 Constructive-bound APTA

A more compact representation of S compared to the unfolded APTA can be obtained by
reducing the size of the initial APTA. At each location, a reduction of the number of transitions
is performed by grouping all the contiguous time values for the same symbol into a single
transition where the time interval I is the union of the different time intervals.

Definition 4.3.2 (Constructive-bound APTA). A constructive-bound APTA is a DRTA+

where:

• L = {(ω, {Ii}|ω|
i=1), ω ∈ Σ∗, Ii ∈ I | ∀i ∈ [1; |ω|], ∀c ∈ Ii, ∃(ω′, τ ′) ∈ S, ∀j < i, τ ′

j ∈ Ij , c =
τ ′
i , ω ≤ ω′} ∪ {l0 = (ϵ, ∅)},

• T contains transitions of the form t = ⟨(ω, {Ii}|ω|
i=1), σ, I, (ω′, {I ′

i}
|ω′|
i=1)⟩ such that: (1)

ωσ = ω′, (2) ∀i ∈ [1; |ω|], Ii = I ′
i and I ′

|ω′| = I ′
|ω|+1 = I, and N (t) = |{(ω′u, τ ′v) ∈ S,∀i ∈

[1; |ω′|], τ ′
i ∈ I ′

i, u ∈ Σ∗, v ∈ T∗}|.

In Definition 4.3.2, each location corresponds to a subset of timed words that have a
common untimed prefix where each symbol (of the prefix) appears with contiguous time values.
A location is labeled by the given untimed prefix ω and the sequence of intervals {Ii}|ω|

i=1
corresponding to each symbol of ω. Ii is the interval grouping the contiguous time values for
the symbol σi of ω. All time values of these intervals are present in at least one timed word
in S. A transition is added between locations l and l′ such that: (1) the concatenation of the
untimed prefix relative to l and symbol σ produces the untimed prefix relative to l′, and (2)
adding I to the interval sequence of l gives the interval sequence of l′.

4.3.3 Tightened-bound APTA

The minimal size of APTA is obtained by allowing the minimal number of transitions from
each location. This minimal number is obtained by assigning at most one transition for each
symbol of Σ. The initial generalization is reduced (compared to the generalized-bound APTA)
by identifying the minimum (resp. the maximum) time value tmin (resp. tmax) among all the
time values for each location l and symbol σ. Then, a single transition is created from l with
symbol σ and a time interval [tmin; tmax]. We call this APTA model a tightened-bound APTA
and we formally define it in Definition 4.3.3. It has the same structure as the generalized-bound
APTA but with tighter bounds. The time interval [tmin; tmax] of each transition is computed
locally depending on the corresponding timed words in S.

Definition 4.3.3 (Tightened-bound APTA). A tightened-bound APTA is a DRTA+ where:

• L = {ω ∈ Σ∗ | ∃(ω′, τ ′) ∈ S, ω ≤ ω′}, l0 = ϵ,

86 Learning Timed Models with Probabilities

• T contains transitions of the form t = ⟨ω, σ, [tmin; tmax], ω′⟩ such that: (1) ωσ = ω′, (2)
tmin = Min{τ|ω′| | (ω′u, τ) ∈ S}, (3) tmax = Max{τ|ω′| | (ω′u, τ) ∈ S}, and N (t) =
|{(ω′u, τ) ∈ S}|, where u ∈ Σ∗.

4.3.4 Discussion

In this section, we discuss the proposed APTA models with respect to their ability to faithfully
represent S and to their size. We consider the following learning sample S = {(A,3)(B,5);
(A,4)(A,3); (A,5)(B,5); (B,1)(A,1); (B,3)(A,5); (B,3)(B,5)}. Figure 4.3 illustrates the construc-
tion of the three types of APTAs for S.

1

2 3
B [5;5]
(1)

4 5

6 7

8 9

11

10 12
B [5;5]
(1)

A [5;5]
(1)

A [3;3]
(1)

B [5;5]
(1)

A [1;1]
(1)

(a) Unfolded

1

3

2

4

5 6

8

7

9

B [1;1]
(1)

A [1;1]
(1)

(b) Constructive-bound

1

2

3

4

5

6

7

(c) Tightened-bound

Figure 4.3: The three APTA models for the sample S

Σ∗ × 𝕋∗ Domain

Unfolded
APTA

Constructive
bound APTA

Tightened
bound APTA

Generalized
bound APTA

Figure 4.4: Generalization introduced by the different APTAs

4.3 Learning More Accurate Models 87

4.3.4.1 Initial Generalization Perspective

The unfolded APTA does not introduce any initial generalization (Figure 4.3a). The constructive-
bound APTA is a more compact representation of S compared to the unfolded APTA with
less generalization than the generalized-bound APTA. Some generalization is introduced due
to the possible combination of grouped time values. In other words, the time values of each
time interval appear in S, but the language generated by the APTA over-approximates S since
it accepts more time sequences. For instance, in Figure 4.3b, the timed word (A,3)(A,3) is
accepted although not in S. This is due to the combination of time values coming from the
timed words (A,3)(B,5) and (A,4)(A,3).

The tightened-bound APTA introduces two kinds of generalization. The first is due to
the combination of grouped time values, as for the constructive-bound APTA. The second
one is caused by the presence of empty intervals. An example is given in Figure 4.3c where
transiting from the root is possible using the timed symbol (B,2) which is not in S. This latter
generalization is similar to the one we pointed out for the generalized-bound APTA albeit with
more restrictive time intervals, since the empty intervals [0; tmin−1] and [tmax+1;max(TS)] are
initially removed. The relationship between these models and the generalization they introduce
is summarized in Figure 4.4.

4.3.4.2 APTA Size Perspective

In terms of the size of initial representation, the unfolded APTA is the largest. Its size depends
on the size of Σ and TS . The worst case is encountered when all the traces in S are of the same
length N and when S contains all the combinations of symbols and time values. The resulting
complete tree, in this case, represents the upper bound on the number of locations. This upper
bound is computed as the sum of a geometric series with a common ratio r = |Σ| × |TS | and
U0 = 1 (the tree root). It can be expressed as :

MaxSize(unfolded) = 1 − (|Σ| × |TS |)N+1

1 − (|Σ| × |TS |)

This maximum number of locations is reduced in the constructive-bound APTA by grouping
contiguous time values. However, this improvement is minimal in the case where all the time
values are disjoint, that is, when there are no contiguous time values to regroup. For a given
interval [0;max(TS)], the maximum number of disjoint intervals is equal to (max(TS)+1) div 2.
The upper bound on the number of locations of a complete tree of depth N + 1 is:

MaxSize(constructive) = 1 − (|Σ| × ((max(TS) + 1) div 2))N+1

1 − (|Σ| × ((max(TS) + 1) div 2))

The number of locations, in the case of tightened-bound APTA, is highly dependent on the
size of Σ and not on the size of TS , since it allows at most one interval per symbol at each

88 Learning Timed Models with Probabilities

location. This is also the case of the generalized-bound APTA which returns the smallest upper
bound on the number of locations, expressed as follows:

MaxSize(tighetened−generalized) = 1 − (|Σ|)N+1

1 − (|Σ|)

4.4 Experiments

In this section, we evaluate the learned model according to its ability to accept the words
belonging to L and to reject the others. This gives insight into how accurate the learned model
is. A C++ implementation of the proposed algorithms and the considered examples can be
found in http://www-verimag.imag.fr/~nouri/drta-learning.

4.4.1 Evaluation Procedure

The accuracy of the learned model can be quantified using two metrics: the precision and the
recall. The precision is calculated as the proportion of words that are correctly recognized (true
positives) in the learned model H ′ over all the words recognized by H ′, while the recall represents
the proportion of words that are correctly recognized in H ′ over all the words recognized by
the initial model H. The precision and the recall can be combined in a single metric called F1
score. A high F1 score corresponds to a high precision and recall, and conversely.

Precision(H ′, H) = |{(ω, τ) ∈ Σ∗ × T∗ | (ω, τ) ∈ L(H) ∧ (ω, τ) ∈ L(H ′)}|
|L(H ′)|

Recall(H ′, H) = |{(ω, τ) ∈ Σ∗ × T∗ | (ω, τ) ∈ L(H) ∧ (ω, τ) ∈ L(H ′)}|
|L(H)|

F1_score(H ′, H) = 2 × prec(H ′, H) × recall(H ′, H)
prec(H ′, H) + recall(H ′, H)

Based on these metrics, we distinguish four degrees of generalization for the learned models
(see Figure 4.5):

1. The maximum F1 score is obtained when the exact target language L(H) is learned.

2. A precision of 1 and a recall strictly lower than 1 characterize an over-approximation, i.e.,
the learned model H ′ recognizes a subset of words of L(H).

3. A recall of 1 and a precision strictly lower than 1 characterize an under-approximation,
i.e., the learned model H ′ accepts all the words of L(H) in addition to extra words not in
L(H).

4. A precision and a recall strictly lower than 1 characterize a cross-approximation, i.e.,
L(H ′) contains only a subset of words in L(H) plus additional words not in L(H).

http://www-verimag.imag.fr/~nouri/drta-learning

4.4 Experiments 89

Σ∗×$∗ Domain

L(H) = L(H’)

Σ∗×$∗ Domain

L(H)

L(H’)

Σ∗×$∗ Domain

L(H)

L(H’)

Σ∗×$∗ Domain

L(H)

L(H’)

Exact model Over-approximation

Under-approximation Cross-approximation

Figure 4.5: Degrees of generalization of the learned language L(H ′) with respect to the target
language L(H)

Our experimental setup shown in Figure 4.6, consists of three modules responsible for trace
generation, model learning and model evaluation. Since we are trying to evaluate how accurate
the learning algorithm is, the initial model H, designed as a DRTA+, is only known by the
trace generator and the model evaluator, while the model learner has to guess it. The trace
generator produces a timed learning sample S and a test sample. The latter contains timed
traces that do not appear in S. This sample is used to evaluate the learned model with respect
to new traces that were not used during the learning phase.

Trace
generator

Model
learner

Model
tester

Initial model H

Learning
sample’s size n

testing
sample’s size n’

Learning sample

APTA
Type

Learned model H’

Testing sample

Precision Recall

F1_score

Figure 4.6: Experimental setup to validate the improved learning procedure

90 Learning Timed Models with Probabilities

Freestart

Busy1

Busy2

CD

Send1
[0; tmax]

Send2
[0; tmax]

Collide
[0;λ− 1]

End1
[λ; tmax]

Collide
[0;λ− 1]

End2
[λ; tmax]

Notify

[0; 0]

Figure 4.7: CSMA/CD communication medium model for a 2-station network

4.4.2 Benchmarks

We run our experimental setup on three examples, namely, Periodic A, Periodic A-B and
CSMA/CD communication medium model.

Periodic A is a synthetic periodic task A that executes for 1 to 3 time units in a period
of 5 time units. The goal of this benchmark is to check if the algorithm is able to learn the
periodicity and the duration of a single task. Two less constrained variants of this model are
also considered. In both of them, we remove the periodicity of the task by setting a predefined
waiting time of 5 time units after the task A finishes. In the first variant, called aperiodic
contiguous-time (ap_cont A), the execution time of the task A can take contiguous time
values in [1; 3]. In the second one, called aperiodic disjoint (ap_dis A), the execution time
takes the disjoint time values 0, 2 and 4. Our goal is to check if the algorithm is able to detect
the unused time values 1 and 3.

Periodic A-B consists of two sequential tasks A and B, taking execution time values,
respectively, in intervals [1;3] and [1;2] with a periodicity of 5 time units. In this example, the
learning algorithm is faced with dependencies between clock constraints for the task A, the
task B and their periodicities, which is a more complex setting.

CSMA/CD communication medium model is a media access control protocol for single-
channel networks that solves data collision problems. We focus on the CSMA/CD commu-
nication medium model for a 2-station network presented in [103]. Figure 4.7 represents the
underlying CSMA/CD communication medium model where λ represents the propagation
time. We assume that tmax is the maximum time elapsing between two consecutive events.

4.4 Experiments 91

4.4.3 Results

Experiments have been done on the described examples using a learning sample of size 200 and
a test sample of size 1000.

4.4.3.1 The Synthetic Examples.

Table 4.2 summarizes the results for periodic A (and variants) and periodic A-B. Since
all the learned models have a 100% recall, only the precision is discussed in the sequel. The
obtained results show that the original RTI+ learns an under-approximating model with a poor
precision for all the considered examples. In contrast, as shown by the F1 score, the exact model
is learned using the unfolded APTA for periodic A and its variants. Both the constructive
and the tightened-bound APTAs do not learn the exact periodic A model (although more
accurate than RTI+). By analyzing the learned models, we see that they actually fail to identify
the periodicity of task A. For ap_cont A, the constructive and the tightened-bound APTAs
learn the exact model. However, for ap_dis A, the constructive-bound approach learns the
exact model, while the tightened-bound one returns a model with a low precision since it does
not detect the unused time values 1 and 3.

For the periodic A-B example, none of the variants was able to learn an accurate model:
the obtained precision is at most 2.27% (using the constructive-bound APTA). They all fail to
capture dependencies over clock constraints. Nevertheless, the precision is still better than the
original RTI+ (0.18%).

Table 4.2: Accuracy results for the synthetic benchmarks with the four APTAs

Benchmark Periodic A Ap_dis A Ap_cont A Periodic AB
Generalized Precision 11% 0.8% 0.6% 0.18%

-bound Recall 100% 100% 100% 100%
(RTI+) F1 score 0.1982 0.0159 0.0119 0.0036

Unfolded Precision 100% 100% 100% 1.97%
Recall 100% 100% 100% 100%

F1 score 1.0000 1.0000 1.0000 0.0386
Constructive Precision 16.4% 100% 100% 2.27%

-bound Recall 100% 100% 100% 100%
F1 score 0.2818 1.0000 1.0000 0.0444

Tightened Precision 16.9% 3.01% 100% 2.18%
-bound Recall 100% 100% 100% 100%

F1 score 0.2891 0.0584 1.0000 0.0427

Figure 4.8 shows the impact of bigger time periods in the periodic A example on the
quality of the learned model (Figure 4.8a) and the learning time (Figure 4.8b). We observe that
increasing the period makes it more difficult to learn accurate models; Increasing the period

92 Learning Timed Models with Probabilities

decreases the precision as shown in Figure 4.8a and increases the learning time as shown in
Figure 4.8b. For instance, the original RTI+ with generalized-bound APTA is quite fast but its
precision tends to zero. Using constructive and tightened-bound APTAs improves the precision
with a similar learning time. Finally, relying on the unfolded APTA produces very precise
models but induces an important learning time when the period exceeds 15 time units.

5 10 15 20 25 30

0%

20%

40%

60%

80%

100%

Period range (time units)

Pr
ec

isi
on

(%
)

Unfolded
Constructive
Generalized
Tightened

(a) Precision of the learned model

5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

Period range (time units)

Ex
ec

ut
io

n
tim

e
(s

)

Unfolded
Constructive
Generalized
Tightened

(b) Learning time

Figure 4.8: Impact of varying the task A period on the precision/the learning time

4.4.3.2 The CSMA/CD Example

Table 4.3 summarizes the experiments performed on CSMA/CD. On the one hand, one can
notice that RTI+, like in the previous cases, learns an under-approximating model with a poor
precision (6.20%) but in a short time (∼ 6 s). Moreover, the generalized-bound APTA, initially
having 2373 locations, is reduced to a final model with only 4 locations which represents a high
reduction. On the other hand, the proposed APTAs produce significantly different models that
cross-approximate the original CSMA/CD. For instance, the tightened-bound APTA learns a
very precise model (93.70%). However, the model is obtained in more than 8 hours and has
370 locations. Using the constructive-bound APTA gives a model with less precision (85.80%)
in a lower execution time (∼ 3 h). Finally, the unfolded APTA gives a model with a 49.40%
precision and a 96.70% recall, which corresponds to the best F1 score (0.6539). Furthermore,
compared to constructive and tightened-bound APTAs, the learning time for the unfolded
APTA is lower (∼ 9 min). Hence, we conclude that, for this example, the unfolded APTA
provides a good trade-off between accuracy and learning time.

4.5 DRTA+ to SRT-BIP Model Transformation 93

Table 4.3: Experimental results for CSMA/CD using the four APTA models

APTA type Precision Recall F1 score Time APTA size DRTA size Reduction
Generalized 6.20% 100.00% 0.1168 ∼ 6 sec 2373 4 99.83%

Unfolded 49.40% 96.70% 0.6539 ∼ 9 min 3586 19 99.47%
Constructive 85.80% 52.00% 0.6475 ∼ 3 hrs 2652 207 92.19%

Tightened 93.70% 49.90% 0.6512 ∼ 8 hrs 2373 370 84.41%

4.5 DRTA+ to SRT-BIP Model Transformation

This section presents the relationship between the modeling formalism described in Chapter 3
and DRTA+ models. More precisely, we focus on the procedure to follow in order to transform
annotated DRTA models, learned by our improved learning algorithm proposed in Section 4.3,
to SRT-BIP.

As defined earlier in this chapter, a DRTA+ exhibits both probabilistic and timed behaviors.
Let A = ⟨Σ, L, l0, C, T, inv⟩ be a DRTA and N its annotation function. The simulation of
such models consists first in identifying the transition to perform, and its associated action.
Let the primitive T (l) denote the subset of transitions in T available at location l ∈ L, i.e.,
T (l) = {t ∈ T | t = ⟨l, σ, I, l′⟩, σ ∈ Σ, I ∈ I, l′ ∈ L}. The strategy φ defines the probability
to select a transition t at location l, and is obtained by normalizing the annotation function
over the set of available transitions, as follows:

φ(l, t) =

0, if t ̸∈ T (l)

N (t)∑
t′∈T (l)

N (t′) , if t ∈ T (l)

Once a transition is identified, its firing date is computed by uniformly selecting a time value
among the valid ones described by the time interval I of the selected transition. Besides the
two-step interpretation of this model, time is modeled by a single discrete clock that is reset on
every transition. Finally, DRTAs allow one to have several transitions labeled with the same
symbol at the same location (i.e., non-determinism on input symbols) as long as their time
constraints are disjoint.

Except for the non-determinism on input symbols, DRTAs and SRT-BIP models are quite
similar at the syntax level. However, they drastically differ in their interpretation. Unlike
DRTA, the simulation algorithm of SRT-BIP first samples remaining lifetimes to identify the
next interaction to execute. A discrete choice is only made if this identification assigns the
minimal remaining lifetime to more than one interaction (see Section 3.1.5).

The model transformation described in Definition 4.5.1 takes into account the characteristics
of (A,N) when building the corresponding SRT-BIP model B. It is worth mentioning that

94 Learning Timed Models with Probabilities

learned DRTA models are always one automaton. Hence, this transformation produces a
monolithic SRT-BIP model with only one component. In the following, states (resp. transitions)
of B are marked with the superscript l̃ (resp. t̃).

Definition 4.5.1 (DRTA+ to SRT-BIP Transformation). Given a DRTA and its annotation
function (A = ⟨Σ, L, l0, C, T, inv⟩,N), a DRTA+ to SRT-BIP transformation is a function that
produces an SRT-BIP model B = (L̃,X, P, T̃ , l̃0) and a weight function W such that:

• L̃ = ⋃
⟨l,σ,I,l′⟩∈T

{l̃(l,σ,l′)} ∪ L, is the set of locations, and l̃0 = l0, is the initial location,

• X = {x}, a singleton set containing the clock x,

• P = ⋃
⟨l,σ,I,l′⟩∈T

{s(l,σ,l′)} ∪ Σ is the set of ports,

• T̃ = T̃1 ∪ T̃2, such that for each t = ⟨l, σ, I = [a; b], l′⟩ ∈ T :

– T̃1 = T̃1 ∪ { t̃1 = (l, s(l,σ,l′), [true]ε, {x}, l̃(l,σ,l′) }, and W (t̃1) = N (t).
– T̃2 = T̃2 ∪ { t̃2 = (l̃(l,σ,l′), σ, [a ≤ x ≤ b]d, ∅, l′ }, and W (t̃2) = 1.

To enforce the two-step interpretation of A, each of its transitions (t = ⟨l, σ, I = [a; b], l′⟩ ∈ T)
corresponds to two SRT-BIP transitions t̃1 and t̃2. Transition t̃1 encodes the discrete choice
of the transition. This is done in SRT-BIP by assigning it an eager urgency with no time
constraints. Transition t̃2 simulates the selection of the time value and represents the actual
execution of t. It is worth mentioning that t̃2 is delayable, that is, it can be delayed but not be
ignored. Its time constraint is deduced from I as [a ≤ x ≤ b], where x is the unique clock of B.
Conforming to the DRTA definition, this clock is reset to zero before the selection of the time
values, namely on transition t̃1.

Model B includes all the locations L and ports (symbols) Σ from A. In addition, for each
transition t of A, an intermediate location l̃(l,σ,l′) (respectively a sampling port s(l,σ,l′)) is added
to the set of locations L̃ (respectively the set of ports P). These additional locations and
ports are labeled with the information of their corresponding transition t, namely, the source
and target locations and the symbol. This labeling allows: (1) to keep track of the matching
between DRTA transitions and the added entities, and (2) to conserve information about the
non-determinism on input symbols.

Example 4.5.1. Figure 4.9 illustrates the model transformation on a DRTA+ A depicted in
Figure 4.9a. The resulting SRT-BIP model B is shown in Figure 4.9b. Each DRTA transition is
transformed into a sampling and an execution SRT-BIP transitions, together with its correspond-
ing intermediate state and sampling port. For example, transition t = ⟨l0, σ1, [0; tmax], l1⟩, anno-
tated N (t) = 2, corresponds to the sampling transition t̃1 = ⟨l0, s(l0,σ1,l1), [true]ε, {x}, l̃(l0,σ1,l1)⟩,
weighted W (t̃1) = 2, and the execution transition t̃2 = ⟨l̃(l0,σ1,l1), σ1, ∅, l1⟩, weighted W (t̃2) = 1.
The processing of t introduces the intermediate location l̃(l0,σ1,l1) and the sampling port s(l0,σ1,l1),
both labeled with information about t.

4.5 DRTA+ to SRT-BIP Model Transformation 95

l0start

l1

l2

l3

σ1(2)
[0; tmax]

σ2(1)
[0; tmax]

σ3(1)
[0;λ− 1]

σ3(3)
[λ; tmax]

σ3(1)
[0;λ− 1]

σ3(3)
[λ; tmax]

σ4(1)
[0; 0]

(a) DRTA+ model A

l̃(l3,σ4,l0)

l1

l2

l3

l̃(l0,σ1,l1)

l̃(l0,σ2,l2)

l̃(l1,σ3,l3)

l̃(l2,σ3,l3)

l̃(l1,σ3,l0)

l̃(l2,σ3,l0)

l0start

s(l0,σ1,l1)(2)
[true]ε

{x := 0}

s(l0,σ2,l2)(1)
[true]ε

{x := 0}

s(l1,σ3,l3)(1)
[true]ε

{x := 0}

s(l1,σ3,l0)(3)
[true]ε

{x := 0}

s(l2,σ3,l0)(1)
[true]ε

{x := 0}

s(l2,σ3,l3)(3)
[true]ε

{x := 0}

s(l3,σ4,l0)(1)
[true]ε

{x := 0}

σ1(1)
[0 ≤ x ≤ tmax]d

σ2(1)
[0 ≤ x ≤ tmax]d

σ3(1)
[0 ≤ x ≤ λ− 1]dσ3(1)

[λ ≤ x ≤ tmax]d

σ3(1)
[0 ≤ x ≤ λ− 1]d

σ3(1)
[λ ≤ x ≤ tmax]d

σ4(1)
[x == 0]d

(b) Converted SRT-BIP model B

Figure 4.9: Example of a model transformation

96 Learning Timed Models with Probabilities

Structurally, A contains four locations connected through seven transitions which are
defined over an alphabet of four symbols. Model B contains a total of eleven locations with
four locations coming from A and seven intermediate locations (colored in gray), that is, one
per transition in A. Also, B has twice as many transitions as A.

It is worth mentioning that A exhibits non-determinism on the symbol σ3 at location
l1. Transforming such transitions results in the generation of two transitions labeled by the
sampling ports s(l1,σ3,l0) and s(l1,σ3,l3). Therefore, the non-determinism is removed, as required
by the SRT-BIP language, even though all the information are still conserved thanks to the
labeling of intermediate states and sampling ports.

Comparison of the accepted languages. In Definition 4.5.1, every location l of A corre-
sponds to itself in B, noted l̃. Also, being at the location l̃ corresponding to l, if l′ is reachable
in A by timed symbol (σ, τ) from l then its equivalent location l̃′ is reachable in B by port
σ and time τ . More precisely, l′ being reachable by timed symbol (σ, τ) from l implies the
existence of a transition t = ⟨l, σ, I, l′⟩ ∈ T , with τ ∈ I. By construction, there exist in B

two transitions t̃1 = ⟨l̃, s(l,σ,l′), [true]ε, {x}, l̃(l,σ,l′)⟩ and t̃2 = ⟨l̃(l,σ,l′), σ, [x ∈ I]d, ∅, l̃′⟩, and
therefore l̃′ is reachable by (σ, τ).

The main difference between the DRTA+ model and its corresponding SRT-BIP model lies
in the framework describing time progression. The former has a discretized time progression
while the latter expresses time through clock variables defined over dense time domains. Hence,
a given path π = l0

σ1,I1−−−→ l1
σ2,I2−−−→ l2 ...

σn,In−−−→ ln in A would generate ∏
i |Ii| different time

sequences for the same untimed word ω = σ1σ2 ...σn. The cardinality |Ii| represents the number
of discrete time values included in the time interval Ii = [a; b], namely, |Ii| = b− a+ 1. On a
similar path π̃, B would generate an infinite number of time sequences since Ĩi is dense. Such
an interval obviously includes the discrete time values generated by A.

Simulating an SRT-BIP model obtained from a DRTA alternates sampling and execution
ports (representing DRTA symbols). These sampling ports correspond to an implicit step in the
DRTA+. Therefore, we consider sampling ports to be non-observable in the produced SRT-BIP
traces.

Consequently, the language accepted by A is included in the language generated by B, that
is, every trace of A is a trace of B. Furthermore, interpreting SRT-BIP model over discrete
time would result in both models A and B to accept exactly the same language.

4.6 Conclusion

In this chapter, we proposed different variants of the RTI+ algorithm for learning models
with both stochastic and timed behaviors. We formally defined three APTA models with
different levels of generalization and representation sizes. We validated our proposals with a
variety of experiments that showed that using the new APTA variants produces more accurate

4.6 Conclusion 97

models regarding time. However, we observed that a higher learning time is generally required,
depending on the desired accuracy. We also presented a systematic transformation that builds
SRT-BIP models, introduced in Chapter 3, from the learned DRTA+. We identified that work
still has to be done on learning timed models in an efficient and convergent manner.

In the next chapter, we present our formal framework, denoted SBIP, for the modeling and
analysis of real-time systems exhibiting stochastic behaviors.

Chapter 5

The SBIP Framework

In the previous chapters, we presented the SRT-BIP modeling formalism and how to learn this
kind of models from execution traces. The usefulness of a modeling language is tightly related
to its support tools and the variety of the analyses that can be done on the built models. The
SBIP framework [122] was initially proposed for the modeling of stochastic systems and their
analysis with Statistical Model Checking (SMC) techniques. This framework was restricted to
discrete time models and limited to specifications expressed in a subset of Bounded LTL where
operator nesting was not allowed.

In this chapter, we present our SBIP2 framework [117], that extends the previous version
with a more expressive modeling language SRT-BIP, richer specification languages and a larger
set of analyses. First, this new modeling language puts forward the modeling of uncertainty
in a context where time progresses continuously. Secondly, SBIP2 now supports the operator
nesting in bounded LTL but also a timed version of it, namely the Metric Temporal Logic
(MTL). In addition to hypothesis testing and probability estimation, the tool’s capabilities are
enriched with rare events analysis and an automated and compact way to explore a family of
properties, namely, parametric exploration.

SBIP2 is the subject of a completely new development and is implemented as an Integrated
Development Environment for (SRT-)BIP models. Our framework is supported by a tool
that centralizes the model edition, compilation, simulation, code generation and analysis, and
enhances the user experience with a Graphical User Interface. For simplicity, in the rest of the
chapter, we refer to this new implementation as SBIP, while references to the previous version
of the framework are explicitly pointed out.

The remainder of the chapter is organized as follows. In Section 5.1, we present the tool’s
modular design. Section 5.2 introduces the workflows and activities integrated in SBIP. We
give its implementation details together with its availability and documentation in Section 5.3.
Finally, we discuss the tool’s capabilities and usability compared to state-of-the-art tools in
Section 5.4.

100 The SBIP Framework

5.1 SBIP Design

The new version of SBIP was completely re-designed as an IDE including all the activities from
the modeling, to the simulation and the SMC analysis. It offers a set of functionalities organized
in a clear and fluid workflow as illustrated in Figure 5.1. All interactions with SBIP go through
a graphical user interface (GUI), which allows for setting the inputs, running analysis and
getting the outputs.

Traces
Φ MonitorStochastic

Verdict

Analyses

Global verdict
Commands

α, β, δI

Specification
System

Stochastic
BIP Φ(x)

G
U

Engine

Output

Input

HT PE

PX

IP

Figure 5.1: SBIP architecture

The tool architecture was designed modularly for more flexibility and to enable extensibility.
The tool relies on five main generic functional modules, namely, a Stochastic Simulation Engine,
a Monitoring module, an SMC Engine, a Rare-Event Engine, a Parametric Exploration module
plus additional data structures, i.e., to represent execution traces and logical formulas. The
stochastic engine encapsulates an executable model simulator and is used to produce (random)
execution traces on-demand. The monitor is used to evaluate properties on traces. The
SMC engine implements the main statistical model checking loop depending on the statistical
method used, namely, hypothesis testing or probability estimation. Finally, the parametric
exploration module coordinates the evaluation of a parametric property. All these modules are
fully independent and interact through well-defined Java interfaces.

The tool has been instantiated for the BIP formalism as input model, where different
stochastic simulation engines can be used (discrete/real-time). Regarding monitoring, the tool
currently supports parametric bounded LTL and MTL.

5.1.1 Stochastic Simulation Engine

Currently, SBIP supports the use of two different stochastic simulators, namely, for classical
stochastic BIP [122] that enables to model discrete-time systems (DTMCs) and for the Stochastic
Real-Time BIP (presented in Section 3) for continuous-time systems with general distributions

5.1 SBIP Design 101

(GSMPs and CTMCs)1. The former produces untimed traces needed to verify bounded LTL
properties (and to guarantee backward compatibility), whereas the latter generates timed
traces necessary to verify MTL properties. We implemented simulators to produce traces in
different modes, i.e., symbol-wise, piece-wise and trace-wise. We use the first mode for on-line
monitoring and to be able to interrupt simulations as soon as a verdict is obtained. The second
is primordial for rare events analysis and allows one to generate traces as a concatenation of
trace-fragments. Finally, we use the third mode for off-line monitoring, and to generate traces
of a given length.

In terms of analyses, the simulation mode impacts both the analysis time and its result. The
trace-wise simulator controls the SMC analysis time by bounding the trace length. However,
this length must be determined carefully: it can be insufficient to conclude a verdict for some
properties. For example, the verification of a BIP system with traces of length 5 against an
LTL property □{10}ϕ may result in non-informative verdicts. It is worth mentioning that we
adopt a pessimistic policy when dealing with non-informative verdicts, by considering them to
eventually evaluate to false. The symbol-wise simulator ensures informative verdicts (true or
false) but does not provide any mechanism to control the analysis time. The simulation only
ends when a local verdict is reached by the monitor. It is guaranteed to end by the fact that
we only allow for bounded (resp. time-bounded) LTL (resp. MTL) properties.

This module being designed as a standalone (as described in Section 3.2), it can be used
independently from the tool. We illustrated it by interfacing our piece-wise simulator with the
Plasma-Lab [88] tool in order to perform rare events analyses. This required the development
of a Java wrapper to that BIP simulator for the implementation of the methods required by
the Simulator interface of Plasma-Lab, as shown in Figure 5.2.

Piece-wise

Simulation Engine saveState(ID)

step(nb_step)

setState(ID)

getState(ID)

init()

Plasma-Lab

Figure 5.2: BIP engine wrapper

The wrapper allows Plasma-Lab to perform the elementary operations on a BIP model for
an importance splitting analysis, namely, saving, restoring and getting a representation of a
BIP global state, in addition to advancing the simulation by a given number of steps. Please
note that SBIP also possesses its own implementation of the IP analysis (see Section 5.1.3 for
more details).

1SRT-BIP sources are available at https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/
compiler/tree/stochastic-real-time

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/compiler/tree/stochastic-real-time
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/compiler/tree/stochastic-real-time

102 The SBIP Framework

5.1.2 Monitoring Properties

This module implements the generic infrastructure for on-line/off-line monitoring of properties.
At abstract level, the module takes as inputs a formula and either an entire trace or an on-line
stream of trace symbols, and computes a verdict stating whether the trace satisfies the formula.
Traces, formulas and symbols are designed as Java interfaces that can be extended with specific
implementations.

In the current version of SBIP, we integrate the monitoring of Bounded LTL and MTL
formulas on untimed and timed BIP traces. Bounded LTL was already included in the first
version of the tool. However, it was restricted to formulas without nested temporal operators.
At contrary, the monitoring of MTL formulas represents a completely new development. Both
LTL and MTL monitors implement online monitoring algorithms based on rewriting rules, that
we detail hereafter for the monitoring of MTL properties.

Atomic Prop. EvaluationProperty Φ

Trace ω
Simplify

MTL
Parser

Rewrite

Trace
Parser

Verdict

Figure 5.3: Functional view of the MTL Monitor

Given an MTL formula ϕ and a timed trace (ω, τ), the MTL monitor, illustrated in
Figure 5.3, alternates rewriting and simplification phases. Rewriting consumes a timed symbol
λi = (σi, τi) of the timed trace and partially evaluates the current formula ϕ into ϕ′. Partial
evaluation includes the unfolding of temporal operators and evaluation of atomic state formulas
to their truth value. In practice, a timed symbol represents an actual system state at global
time τi, and is described by the valuation of variables and clocks when entering this state. We
write σi |= p to indicate that the ith system state satisfies the proposition p. Definition 5.1.1
describes the rewriting rules from [38].

Definition 5.1.1. Given a formula ϕ defined over the set of propositions P, a system state
σ and the delay v before the arrival of the next state change, rewrite is a recursive function
producing a formula ϕ′, as follows:

- rewrite(p, σ, v) =
{

t, if σ |= p

f, if σ ̸|= p

- rewrite(¬p, σ, v) =
{

f, if σ |= p

t, if σ ̸|= p

5.1 SBIP Design 103

- rewrite(ϕ1 ∧ ϕ2, σ, v) = rewrite(ϕ1, σ, v) ∧ rewrite(ϕ2, σ, v)

- rewrite(ϕ1 ∨ ϕ2, σ, v) = rewrite(ϕ1, σ, v) ∨ rewrite(ϕ2, σ, v)

- rewrite(⃝ϕ, σ, v) = ϕ

- rewrite(ϕ1 U[a,b] ϕ2, σ, v) =
rewrite(ϕ1, σ, v) ∧ ϕ1 U[max(a−v, 0), b−v] ϕ2, if a > 0 ∧ v ≤ b

rewrite(ϕ2, σ, v) ∨ (rewrite(ϕ1, σ, v) ∧ ϕ1 U[0, b−v] ϕ2), if a = 0 ∧ v ≤ b

rewrite(ϕ2, σ, v), if a = 0 ∧ v > b

f, if a > 0 ∧ v > b

- rewrite(ϕ1 R[a,b] ϕ2, σ, v) =
rewrite(ϕ2, σ, v) ∧ ϕ1 R[max(a−v, 0), b−v] ϕ2, if a > 0 ∧ v ≤ b

rewrite(ϕ2, σ, v) ∧ (rewrite(ϕ1, σ, v) ∨ ϕ1 R[0, b−v] ϕ2), if a = 0 ∧ v ≤ b

rewrite(ϕ2, σ, v), if v > b

In this definition, the ith delay vi is computed as the difference between the global time of
system states σi+1 and σi, i.e., vi = τi+1 − τi. The resulting property identifies what remains
to be observed in the trace before being able to conclude a verdict. For example, for a property
ϕ = (x > 0) U[0,5] (y < 0) and a trace ({x = 5; y = 2}, 0)({x = −1; y = −1}, 3), consuming
the first timed symbol would result in :

rewrite(ϕ, {x = 5; y = 2}, v = 3) = rewrite((y < 0), {x = 5; y = 2}, 3) ∨

(rewrite((x > 0), {x = 5; y = 2}, 3) ∧ (x > 0) U[0,2] (y < 0))
= f ∨ (t ∧ (x > 0) U[0, 2] (y < 0)) = ϕ′

This can be read as: at the current observation, we either have that y > 0, or x > 0 still holds
and we still have to observe the Until on a window of 2 time units.

It is worth mentioning that we corrected the rewriting rules from [38], by fixing the
computation of the time bounds for the rewriting of Until and Release operators in the case
of a > 0 and τ ≤ b for which we substitute the min function by a max.

Simplification applies reduction rules on the formula ϕ′ based on Boolean logic (e.g.,
(t ∧ ϕ′) ≡ ϕ′) so as to conclude or to simplify it as much as possible before the next cycle. The
simplification rules [38] are given in Definition 5.1.2 below.

Definition 5.1.2. Given a formula ϕ defined over the set of propositions P, simplify is a
recursive function producing a formula ϕ′, as follows:

- simplify(ϕ1 ∧ ϕ2) =

104 The SBIP Framework

f, if simplify(ϕ1) = f ∨ simplify(ϕ2) = f

simplify(ϕ1), if simplify(ϕ2) = t
simplify(ϕ2), if simplify(ϕ1) = t

simplify(ϕ1) ∧ simplify(ϕ2), otherwise

- simplify(ϕ1 ∨ ϕ2) =
t, if simplify(ϕ1) = t ∨ simplify(ϕ2) = t

simplify(ϕ1), if simplify(ϕ2) = f
simplify(ϕ2), if simplify(ϕ1) = f

simplify(ϕ1) ∨ simplify(ϕ2), otherwise

- simplify(ϕ) = ϕ, otherwise

Simplification works in a straightforward manner. For example, simplifying ϕ′ = f ∨ (t ∧(x >
0) U[0, 2] (y < 0)) would result in ϕ′ = (x > 0) U[0, 2] (y < 0).

For the sake of usability, we allow expressing parametric LTL/MTL formula ϕ(x), where x
is an integer parameter taking values in some bounded domain Π. The parameter can appear
either in a state formula or as a bound (of time intervals I) and is statically assigned a value
from its domain before starting an analysis (see Section 5.1.3.1 for more details). For instance,
ϕ(t) = ♢[0,t][(node3.status = leader)] states that node3 eventually becomes the leader before t
time units, where t is the parameter of the property.

5.1.3 Statistical Analyses Core

In addition to classical SMC algorithms, i.e., HT [151] and PE [79], our framework proposes
two additional analyses for (1) the exploration of properties parameters, namely, Parametric
eXploration (PX), and for (2) rare events analysis, namely, Importance Splitting (IP) [89]. HT
answers qualitative queries, i.e., given a stochastic system S and a property ϕ, it enables one to
assess whether the probability for S to satisfy ϕ is greater or equal to a given threshold θ. PE
addresses quantitative queries, that is, to compute a probability estimate p for S to satisfy ϕ.

Hereafter, we detail the parametric exploration PX and IP for rare events analysis. In
addition, we propose an algorithm for analyzing rare properties based on a simulation guided
by the property under study. Similarly to Importance Sampling (IS), this algorithm alters the
probability to select transitions of the model in order to increase the likelihood to observe rare
events. But unlike IS, the tilting strategy is built on the fly throughout the guided simulation.
The property under study is monitored at runtime by a rewrite-based monitor. This monitor
builds a set of symbols that remain to be observed at the next step, and that have to be
prioritized during simulation. Note that this algorithm is part of an ongoing work and has not
yet been the subject of experiments.

5.1 SBIP Design 105

5.1.3.1 Parametric Exploration

Data: system S, parametric property ϕ(x),
instantiation domain Π

Result: A set of SMC verdicts V
Monitor m; Engine e; V = ∅;
foreach v ∈ Π do

smc.init();
while !smc.conclude() do

tr = e.generate(S);
verdict = m.check(ϕ(v), tr);
smc.add(tr, verdict);

end
V = V ∪ smc.getVerdict() ;

end
Algorithm 5: Parametric exploration

Parametric exploration is an automatic way
to perform statistical model checking on a
family of properties that differ by the value
of a constant. The family of properties is
specified in a compact way as a parametric
property ϕ(x), where x is an integer parameter
ranging over a finite instantiation domain Π.
Algorithm 5 illustrates the different phases
of a parametric exploration. The algorithm
returns a set of SMC verdicts corresponding
to the verification of the instances of ϕ(x)
with respect to x ∈ Π. It is very useful for
exploring unknown system parameters such
as, buffers sizes guaranteeing no overflow, or
the amount of consumed energy. It automates
the exploration for large parameters domains as opposed to tedious and time consuming manual
procedures.

5.1.3.2 Importance Splitting

SBIP provides an implementation of the IP algorithm that relies on the piece-wise simulator to
analyze rare properties. These properties specify requirements where some rare event eventually
happens but with very low probability, and are often of the shape ♢[0,t]φ.

Importance splitting [89] overcomes the problem of estimating the probability P (S |= ϕ)
of a system S to satisfy these properties. This is done by considering a set of intermediate
levels li that correspond to less rare properties ϕi, s.t., ϕn ⇒ ϕn−1 ⇒ . . . ⇒ ϕ1, where ϕn = ϕ.
P (S |= ϕ) is therefore computed as the product of the conditional probabilities to reach li from
li−1, i.e., Πn

i=1P (S |= ϕi | S |= ϕi−1). In our implementation, the intermediate levels li and
associated ϕi are defined via a score function given as input. More precisely, each level li is
identified by a state formula ϕi and f returns the highest index of state formula that a system
state s satisfies, i.e., f(s) = Max li{i ∈ N | s |= ϕi}.

Our algorithm is similar to the analysis procedure proposed in Plasma-Lab. It iterates over
levels, and for each one, it simulates m trace prefixes among which ms reach the next level
and mf do not. The conditional probability to reach the next level is thus estimated as the
ratio ms/m. In the next iteration, the simulation of successful prefixes is resumed, while the rest
(mf) are replaced by successful ones sampled uniformly. Note that our implementation of IP is
currently limited to the analysis of DTMCs.

106 The SBIP Framework

5.1.3.3 Objective-Guided Simulation for Rare Events Analysis

We present a guided simulation algorithm with a state-dependent tilting scheme using an
implicit representation of the tilting transition matrix. This algorithm takes advantage of
the knowledge of the monitored property to guide the simulation towards useful traces. The
introduced bias is computed on the fly and returned as the algorithm output.

The algorithm. Let M be a DTMC and S the set of its states. s0 ∈ S is the (unique)
initial state of M. The transition matrix π is a function π : S × S → [0, 1] such that
∀s ∈ S,Σs′∈Sπ(s, s′) = 1. L : S → Σ is the state labeling function, and Σ is the alphabet.
Execution paths in this model are sequences of the form p = s0s1s2...sn. The trace ω can
be deduced from the path p and is of the form ω = L(s0)L(s1)L(s2)...L(sn). In a more
general way, a trace is a sequence of symbols σi = L(si). In the following, we restrict M
to the deterministic case such that ∀s ∈ S,∀σ ∈ Σ, it exists at most one state s′ with
π(s, s′) > 0 ∧ L(s′) = σ. We can then write the probability to observe symbol σ being at state
s as P (s, σ) = Σs′∈Sπ(s, s′) × 1[L(s′) = σ] , where 1[.] is an indicator function returning 1 if
its attribute is true, 0 otherwise.

Let ϕ be a bounded LTL property. A rewrite-based monitor for the property ϕ is an
iterative process that, for each symbol σi ∈ ω of a given trace ω, rewrites ϕi to ϕi+1 =
simplify(rewrite(ϕi, σi)), starting with ϕ0 = ϕ. The iterative process finishes after n steps
(guaranteed by the fact that the property is bounded) when ϕn = t or ϕn = f. One has to notice
that intermediate formula ϕi represents the part of the formula ϕ that still has to be observed
before being able to conclude the verdict for the evaluated trace. The function Next : Φ → 2Σ

takes as parameter a property ϕ and returns the set of expected symbols. It is defined as
follows:

• Next(σ) = {σ} and Next(t) = Next(f) = ∅

• Next(ϕ1 ∨ ϕ2) = Next(ϕ1) ∪Next(ϕ2)

• Next(ϕ1 ∧ ϕ2) = Next(ϕ1) ∩Next(ϕ2)

• Next(¬ϕ) = Σ \Next(ϕ1)

• Next(⃝ϕ) = ∅

• Next(ϕ1Uϕ2) = Next(ϕ1) ∪Next(ϕ2)

• Next(□ϕ) = Next(ϕ)

• Next(♢ϕ) = Next(ϕ)

Note that Next(⃝ϕ) returns an empty set instead of the whole alphabet Σ. This is because
no specific symbol is expected in particular since any symbol is accepted. Hence, a ⃝ (next)
operator will have no impact on the guided simulation.

5.1 SBIP Design 107

We want to use the information provided by this Next function to guide the simulation and
increase the likelihood to observe the rare property. Let Enabled(s) = {σ ∈ Σ : P (s, σ) > 0}
be the set of symbols enabled at the state s of M, s ∈ S. Algorithm 6 details the process.

Data: A model M, a property ϕ, and a parameter α
Result: A real value B in [0,1]
Initialize the current state s to s0;
Initialize B = 1;
while ϕ ̸= t ∧ ϕ ̸= f do

Set of enabled transitions E = Enabled(s);
Set of expected events N = Next(ϕ);
if E ∩N = ∅ then

Select a symbol σ ∈ E based on the function P ;
else

// Take the rarest event;
Float min_proba = 1;
foreach σ′ ∈ E ∩N do

if P (s, σ′) < min_proba then
min_proba = P (s, σ′);
σ = σ′;

end
end
Simulate X with a Bernoulli(α);
if X = 1 then

Select the rarest event σ;
B = B × min_proba

α ;
else

Select a random symbol σ ∈ E based on the function P ;
end

end
s = s′, such that π(s, s′) > 0 ∧ L(s′) = σ;
ϕ = simplify(rewrite(ϕ, σ));

end
if ϕ = f then

B = 0;
end
return B;

Algorithm 6: Monitor-based guided simulation algorithm

The algorithm is parametrized by α that determines the probability to select the rarest
event when entering the guidance phase of the simulation. Values of α closer to 1 lead to more
determinism in the simulation but increase the likelihood to generate the rare events, whereas
smaller values of α reduce the introduced bias by guiding the simulation in a probabilistic way.
Selecting a symbol σ ∈ E based on the function P is done in the conventional way: build the

108 The SBIP Framework

cumulative of P , sample a random value in [0,1] and select the symbol corresponding to it in
the cumulative of P .

The algorithm distinguishes two cases. The first case is encountered when none of the
enabled symbols are expected by the monitor. The selection of the σ is done based on the
probabilities of the original model. The fact that the monitor is not expecting any of the
enabled symbols does not necessarily mean that the property will evaluate to false. For example,
with a property ♢(a), the set of expected symbols is Next(ϕ) = {a} but observing b does not
falsify it. On the contrary, the second case is characterized by an intersection between the set
of enabled symbols and expected ones that is not empty. The algorithm selects the symbol
σ corresponding to the lowest probability in this intersection, then probabilistically decides
whether to tilt its probability to α, or to ignore it and simulate based on function P . This
choice is made according to a Bernoulli distribution with parameter α.

During a run, the algorithm cumulates the bias introduced by the performed tilting, in a
variable B that is returned at the end of the exploration. This real value lies in the interval [0, 1]
where the value 0 means that the generated trace does not satisfy the rare property, whereas
any other value means that this trace does satisfy it.

Discussion. This algorithm bases its distribution tilting on an implicit transition matrix.
Let si be the ith state of a path p, and Xi ∼ Bernoulli(α) be a random variable following a
Bernoulli distribution. This biased transition matrix π′ is then defined as :

π′(si, s′) =

π(si, s′), if Enabled(si) ∩Next(ϕi) = ∅ ∨Xi = 0
α, if Enabled(si) ∩Next(ϕi) ̸= ∅ ∧ π(si, s′) = min_proba(si) ∧Xi = 1
π(si,s

′)×(1−α)
1−min_proba(si) , if Enabled(si) ∩Next(ϕi) ̸= ∅ ∧ π(si, s′) ̸= min_proba(si) ∧Xi = 1
0, otherwise.

where min_proba(si) = mins∈S{π(si, s)}. The transition matrix is kept the same if the enabled
symbols are not expected by the monitor but also if the simulation of the Bernoulli distribution
rejects the probability change. Otherwise, the probabilities of transition enabled at state si
are updated as follows: the probability of the rarest symbol σ is set to α while the probability
of the remaining symbols is updated proportionally. In other words, when excluding σ, the
proportion of the probability attached to an enabled symbol in the original model is preserved
in the biased model.

Given this transition matrix, one can see that the probability ψ to take a path p in the
original model M can be easily written as a function of its probability to be taken in the biased
model M′, as follows:

5.1 SBIP Design 109

ψ(p,M) = Πn−1
i=0 π(si, si+1)

= Πj∈J π(sj , sj+1) × Πi/∈J π(si, si+1) × α|J |

α|J |

= Πj∈J min_proba(sj)
α|J | × Πi/∈J π(si, si+1) × α|J |

= B × Πi/∈Jπ(si, si+1) × α|J | = B × ψ(p,M′)

where J is the set of indexes of the steps that were biased during the guided simulation. The
likelihood ratio is then LR(p,M) = ψ(p,M)

ψ(p,M′) = B.
Hence, an SMC algorithm could use the output of this simulation to estimate the probability

for M to satisfy ϕ by simulating m traces with Algorithm 6 and compute the empirical
estimator:

γ̂ = 1
m

Σm
i=1Bi

Instead of choosing the rarest event, several alternatives can be proposed as a condition to
the guiding phase of the algorithm:

1. One option is to only alter the next symbol choice if min_proba < ϵ, that is, only if the
event has a low probability to occur (smaller than a given threshold ϵ). Hence, only rare
events are tilted.

2. Another option would be to bound the relative error introduced by choosing the rarest σ.
For example we say that we only alter the simulation if rel_error = α−min_proba

min_proba < δ,
with δ a bound depending on the SMC parameters. However, you can expect δ to be big
in the case of events that are unlikely to be simulated. For instance, if min_proba = 10−3

and α = 10−1 then δ has to be greater than 99.

5.1.4 Graphical User Interface

We implemented a user-friendly graphical interface (GUI) that centralizes all the interactions
with the tool. The GUI is organized in three main regions: (1) a project explorer, (2) a toolbar
and (3) a central panel, as illustrated in Figure 5.4.

The project explorer gives a centralized and organized view of the different items of a project
during the modeling and the analysis. Such items usually include different files organized in
a tree hierarchy. The Models folder contains (.bip) models, external (.cpp/hpp) source code,
custom probability distributions, and executables. The Properties folder stores (.mtl) and (.ltl)
properties, and also scoring functions (.sf) for Importance Splitting. Finally, the Outputs folder
contains the execution traces generated during analyses.

The toolbar is organized in six functional groups: (i) project management, allowing the
designers to create/remove projects, (ii) file management for model files creation, deletion,

110 The SBIP Framework

Figure 5.4: Screen-shot of SBIP graphical user interface

edition and visualization, (iii) tab navigation, (iv) workflow management for model compilation,
simulation and analysis, (v) configuration setup, and (vi) help buttons.

The central panel is the main region where the designer can load/visualize/edit inputs,
configure parameters, run analyses, and visualize results. Each of these operations is provided
through a specific view displayed in a separate tab:

• edition view: used to edit models and properties. This also allows for loading and saving
various files. Specific capabilities, such as code auto-completion and keyword highlighting,
are provided for BIP models.

• configuration view: used to select the simulation engine, the SMC algorithm and parame-
ters, and the instantiation domain for parametric properties.

• analysis view: used to initiate and track the progress of analysis.

• results view: used to provide a summary of the performed analysis, the verdict and/or
the set of verdicts on different traces, specific curves and/or plots, overall and partial
running times, etc.

5.2 Integrated Workflows and Activities

The tool takes as inputs a stochastic system model to be analyzed/simulated, a property of
interest, and a set of parameters mainly required by the SMC algorithms. Three analysis
workflows are provided by SBIP , namely, the classical SMC, parametric exploration and

5.2 Integrated Workflows and Activities 111

the rare events analysis. These workflows are dependent on activities of model edition and
debugging, and requirement expression.

In this section, we detail the activities and workflows that are integrated in SBIP.

5.2.1 Design Activities

5.2.1.1 Model Construction

Building a system model is an iterative process that requires the alternation between several
activities such as model edition, simulation and debugging. For SBIP, this process is described
in Figure 5.5.

[Failed]

[OK]

[Deadlock/Timelock]

[OK]

[OK]

[Error]

Model
Edition Compilation Simulation

Behavior
ValidationDebugging

Figure 5.5: Model construction diagram

Model edition. The tool provides several functionalities regarding model edition.
Indeed, the designer can create, edit, save and remove model files including BIP models
and external C++ code but also distribution files describing customized probability
distributions. In addition, the model edition is helped by the editing features provided
by the tool, such as, code auto-completion, keyword coloring and highlighting, and
find/replace and undo/redo capabilities.

Compilation. The compilation checks that the input model complies with the BIP
syntax. The outcome of this activity is an executable if the model is syntacticly correct,
or it triggers errors otherwise. The compilation process is described in a bash script that
can be also edited through the GUI.

Simulation and functional validation. The simulation consists in running the sys-
tem executable in order to validate that this system behaves as expected by observing
concrete execution traces. During a simulation, the designer can read the sequence of

112 The SBIP Framework

decisions taken by the (SRT-)BIP engine and assess the system behavior. This activity
may identify two types of errors: either deadlocks/timelocks interrupt the system simula-
tion, or the designer detects a non-expected sequence of actions. Both errors redirect the
designer back to the model edition but a debugging is sometimes required to identify the
source of the error.

Simulation traces can be displayed in different forms depending on the chosen simula-
tion arguments. For the SRT-BIP engine, the option "–log-stoch-choice" shows in details
the decisions taken by the stochastic simulation algorithm. Also, "–log-variable" allows
one to display the value of all the data variables. For an exhaustive list of arguments,
one can use the option "–help".

Figure 5.6: Screenshot of a property-based debugging

Debugging. This activity consists in identifying the source of the error occurring at
simulation time. The designer looks at the faulty execution trace and tries to locate
the needed structural/computational changes in the BIP model. In SBIP, we provide a
property-based debugging interface relying on a property monitor to give insight on the
source of the malfunctioning. Given a property describing a nominal system behavior,
the interface displays a step-by-step consumption of the faulty trace by the property

5.2 Integrated Workflows and Activities 113

monitor which allows identifying the exact sequence of events that lead to that unwanted
behavior. Figure 5.6 is a screenshot of a property-based debugging interface, where, one
can visualize the BIP trace, its parsing and its detailed monitoring. This activity can be
undertaken to debug both the system against unwanted behaviors, and properties with
an unexpected monitoring verdict.

5.2.1.2 Requirements Formalization

Once a first model is obtained, the system requirements are formalized using specification logic.
This formalization consists in describing the exigencies of the system, usually expressed in
natural language, using a set of properties. Figure 5.7 illustrates the requirements formalization
process.

[Error]

Instrumentation

Validation

Debugging

[Syntax Error]

[OK]Property
Edition

[OK]

Figure 5.7: Requirements formalization diagram

Property edition. SBIP supports LTL and MTL as specification formalisms in their
bounded variants. Syntactically, the temporal operators are represented by a single
glyph, namely, [G] for the always (□), [F] for the eventually (♢), [N] for the next (⃝),
[U] for the until (U) and [R] for the release (R). Boolean operators are written in the
conventional manner: [&&] for the AND (∧), [||] for the OR (∨) and [!] for the NOT
(¬). Note that the logical true (t) and false (f) are represented by dedicated lexemes,
namely, [#True] and [#False] respectively.

The property parser validates the syntactic correctness of the property, such as the
operators syntax and nesting in addition to the parentheses. SBIP allows the designers
to save parsed properties using the Java serialization mechanism. The saved properties
are organized in the Properties folder of the project, and listed in an alphabetical order.
The reverse mechanism, namely deserialization, is used to load saved properties into the
property edition tab.

114 The SBIP Framework

Instrumentation. Model instrumentation consists in displaying raw and aggregated
information about the system behavior and performance in the execution traces. In SBIP,
this information is carried by the valuation of data variables constituting a system state.
Instrumenting BIP models requires the addition of aggregation and flag variables in order
to compute indicators and identify the occurrence of tracked events, respectively. These
variables are then exhibited in the system traces using the conventional "printf" function
with a predefined parameter format "var data_type data_name data_value", where var is
a keyword and the remaining attributes are information about the logged variable. For
example, the integer variable x is logged with the instruction printf("var int x %d\n", x).
The trace parser only considers a subset of native BIP data-types, namely, integers (int),
floating-point numbers (float) and boolean values (bool), and does not support sequences
of characters (string) and external C++ types. These latter can still be used in the BIP
model but must not be visible in the execution traces.

Instrumentation is highly dependent on the property to monitor and the designer
experience. It is important to optimize the set of instrumentation variables in order to
minimize their impact on the system performance, that can be at two levels: (1) due to
the added computation on the interactions/transitions, and (2) due to the introduction of
more outputs in the traces. Note that the latter also impacts the performance of analyses,
and especially the parsing of these traces that is achieved by the property monitor.

Validation and debugging. The validation and debugging of a property relies on the
property-based trace debugging. A trace is generated and then monitored against the
target property. The property-based debugging then gives evidence of possible errors in
the property formalization, or with the instrumentation variables, such as missing flag
resets or miscalculation of the aggregation.

5.2.2 Analysis Workflows

The tool enables three analysis workflows, namely, the classical SMC including HT and PE, the
parametric exploration (PX) and the rare events analysis. Depending on the used workflow,
one can visualize the analysis results as a single probability, a yes/no answer, or a chart/bar
plot. The tool also allows for visualizing the generated execution traces. Storing execution
traces can be enabled/disabled by the user as it may be memory consuming.

Figure 5.8: Screenshot of the SBIP toolbar

5.2 Integrated Workflows and Activities 115

These analysis workflows are initiated by pressing on their corresponding button in the
SBIP toolbar (as depicted in Figure 5.8). They take as inputs models and properties resulting
from the design activities. Consequently, the model under study has been previously validated
and instrumented in such a way that it can be monitored against a syntactically correct
property. It is worth mentioning that these workflows can be used to tackle the functional
validation of designed models and properties. Furthermore, they represent a lightweight means
to quantitative analyses in the context of performance, security and safety assessments.

The analysis workflows share the same phases, that consist first in selecting the inputs, then
setting the analysis parameters, running that analysis and finally interpreting its results. In
the following, we explicit the steps for performing analyses using the SBIP tool.

5.2.2.1 Classical SMC Workflow

The tool proposes two classical SMC procedures, namely, Hypothesis Testing (HT) and Proba-
bility Estimation (PE), that rely on the following four steps.

Input selection phase. This step identifies the model and property under study in
the current project, from the project explorer. The classical SMC procedure starts by
first selecting the executable of a model usually referred to a system. This executable
results from the compilation phase and is located in the Models folder of the project.
The selection of the property is done in a straightforward manner, by double-clicking on
it in the Properties folder of the project.

SMC setting phase. This step determines the analysis settings that fall into two
categories: simulation and algorithm settings. The first category represents the simulation
settings where the designer can specify the simulation mode (symbol-wise or trace-wise)
but also decide whether the evaluated traces must be saved. The second parameters
category determines the SMC procedure and its statistical parameters.

Analysis phase. Once the parameters are set, the designer launches the analysis by
pressing the button Start simulation. A secondary window appears and displays details
about the analysis progression in real-time. This interface gives feedback on the number of
traces generated so far, together with their local verdicts. A progress bar is also displayed
in the case of Probability Estimation to visualize the progression of the analysis. Note
that this progress bar is not available for Hypothesis Testing procedures, since the total
number of required runs is not known before-hand.

Results interpretation phase. At the end of the analysis phase, a tab is added to
the central panel of the GUI, summarizing the analysis and detailing the obtained results.
The summary of the analysis recalls the chosen analysis and parameters, in addition to the

116 The SBIP Framework

model and property under study. The results are represented by the global SMC verdict,
the required number of traces and the global analysis time. Further details about the
evaluated traces are displayed in a table. For each trace, this table informs the designer
of the number of symbols consumed by the monitor before concluding, its process time
and monitoring verdict. Note that the evaluated traces can be viewed and an individual
monitoring of these traces can be rerun using the property-based debugging interface.

5.2.2.2 Parametric Exploration (PX) Workflow

The second workflow consists in analyzing different instances of a parametric property by
performing several iterations of SMC analyses. It encompasses four phases of input selection,
exploration setting, analysis and result interpretation, detailed as follows.

Input selection phase. The user first selects the model and the property to explore,
similarly to the classical SMC workflow. It is important to make sure that the selected
property is parametric. Using a non-parametrized property for PX would result in
performing the SMC analysis on exactly the same property several times, namely, repeating
it |Π| times where Π is the instantiation domain (see Section 5.1.3.1 for more details).

PX setting phase. This step is a special case of the SMC parameter settings. In
addition to the simulation and algorithm settings, the designer determines the exploration
parameters. These parameters encompass the parameter name and type (integer or
boolean), and the instantiation domain Π. For a parameter of type integer, this domain
is represented by three values: a lower l and upper u bounds, identifying an interval
[l, u], plus a discretization step. For example, defining an integer parameter x with l = 5,
v = 13 and step = 5 would result in an instantiation domain Π = {5, 10, 13}, and x ∈ Π.
Note that boolean parameters are implicitly assigned an instantiation domain Π = {t, f}.

The size of the instantiation domain, together with the SMC parameters (determining
the level of confidence), allow the designer to control the overall exploration time, while
searching for an optimal parameter value x∗. An efficient way to perform this latter would
be to start the exploration with a wide interval, a big step and a low level of confidence,
then iteratively refine the interval, reduce the step and increase the confidence level,
until the optimal parameter is identified. Finally, the optimal value can be validated by
running a classical SMC workflow, to guarantee the desired level of confidence.

Analysis phase. The parametric simulation starts when the designer presses the button
Start simulation in the exploration setting tab. As a result, a secondary window pops on
top of the main window and shows the exploration progression details. The displayed
information indicates the current state of the exploration, namely, the current valuation of
the explored parameter, in addition to the generated traces and local verdicts. Similarly

5.2 Integrated Workflows and Activities 117

to the classical SMC workflow, the secondary window is equipped with a progress bar
that displays the progression of the exploration in terms of proportion of the instantiation
domain that has been explored. It contrasts with its usage in the classical SMC workflow
that represents the progression of the SMC analysis (in number of traces).

Results interpretation phase. Once the exploration is achieved, a tab is added to
the central panel of the tool, displaying a summary of the parametric exploration. This
tab is organized in two panels. The first recalls the parameters of the exploration and
presents its results in a comprehensive manner. The second panel is dedicated to the
visualization of the SMC verdicts and the processing time as functions of the parameter
value. This visualization as charts allows the designer to quickly identify trends, and
hence interpret his/her results. Figure 5.9 is a screenshot of a PX results tab.

Figure 5.9: Screenshot of the parametric exploration results

5.2.2.3 Rare Events Analysis Workflow

The third workflow aims at to estimate the probability of a rare property on stochastic systems.
This property is subdivided into n intermediate properties of lower rarity that are represented
as a scoring function.

Input selection phase. The inputs for a rare event analysis are a BIP model and
a score function. The designer can select the executable of the model under study
in the project explorer. Currently, the rare events workflow only supports untimed

118 The SBIP Framework

systems, namely, system with a DTMC underlying semantics. It is important that the
BIP model is compiled using the untimed BIP compiler (not SRT-BIP) with the option
--gencpp-enable-marshalling that enables to manipulate the system states, namely, to
save, load and remove these states. In contrast to other workflows, the score function is
not selected similarly to MTL/LTL properties, but is specified as part of the PX setting
phase detailed next.

IP setting phase. The initialization of the IP analysis instantiates a setting panel,
depicted in Figure 5.10a, where one can specify: (1) the score function, and (2) the
algorithm parameters. For the former, SBIP provides the operations necessary to
manipulate score functions, namely, initialize a new function, add a rarity level, save and
load a score function. Note that saved functions are identified by the file extension (.sf)
and are stored in the Properties folder of the project.

(a) Importance splitting setting (b) Importance splitting results

Figure 5.10: Screenshots of the rare events workflow

The algorithm parameters specify the number of execution traces, the statistical
parameter α and the stop condition. The parameter α serves in the computation of the
confidence interval for the resulting estimated probability. the stop condition indicates
the upper limit on the number of steps for a trace to successfully reach a higher level of
rarity.

The difficulty with IP is to express a rare property since it often requires to find a good
representation of the rarity levels and to properly define the stop condition. for example,
one can be interested to express the rare property that three components access a shared
resource exactly the same number of time, over a total of 30 steps. This property can be
expressed in LTL as ϕ = G{30} (F{3} ((c1.cpt==c2.cpt) && (c3.cpt==c2.cpt))).
The equivalent score function f is defined by the intermediate state formulas ϕi given
as follows: ϕi = c1.cpt>i-1 && c2.cpt>i-1 && c3.cpt>i-1. Each level of rarity i

5.3 Implementation Details 119

indicates whether all the components accessed the resource at least i times. To make the
score function conform to ϕ, we set the stop condition to 3 (similarly to the bound of the
F operator in ϕ).

Analysis and results interpretation phases. Once the analysis is initiated, the
tool displays a secondary window, depicted in Figure 5.10b, composed of a text area and
a progress bar. The former provides analysis logs allowing the designer to identify the
current state of the analysis, namely, the conditional probability (of the level) that is
being estimated. The progress bar represents the advance of the analysis in terms of the
proportion of estimated levels among all the levels represented by the score function.

At the end of the exploration (when the progress bar reaches 100%), the text area
contains a summary of all the information computed during the analysis, namely, the
conditional probabilities to go from a level to the next, the overall probability to satisfy
the rare property, the confidence interval and the analysis time.

5.3 Implementation Details

SBIP is fully developed in the Java programming language, and requires at least the Java
Runtime Environment (JRE) 7. It uses ANTLR 4.7 [1] for LTL/MTL properties parsing.

5.3.1 Overview of the Code Structure

The SBIP architecture follows the Model-View-Controller pattern. The model encompasses the
classes describing the data entities manipulated by the tool, such as formulas and traces. The
view is a presentation of data and the functionalities that are proposed by the tool in the GUI
module. The controller validates the commands coming from the GUI and manipulates the
data entities accordingly. It includes computations such as the statistical analyses. Figure 5.11
shows a simplified package diagram of the SBIP tool, where model packages are represented in
orange, view packages are colored in beige, and controller packages are depicted in green.

5.3.1.1 The Model

The model is decomposed in four packages representing the simulation traces, the formulas, in
addition to data required by the analyses and the graphical components.

The trace package. It provides a high-level representation of the BIP simulation traces. In
this representation, a trace (of type Trace) is a sequence of timestamped states. These states
are characterized by a real value (representing the global clock valuation) and a set of state
variables, where each state variable has a name, type and value.

120 The SBIP Framework

gui

dialog
trigger

use

use
window

tabsmodel

trace

formula

display

algos

model

analysis

produce

monitor

mMTL mLTL mtlParser ltlParser

boolExprParser

useuse

formulaManager

traceGen

utils

bipInterface

use

use

display

use use
use

use

use

use

trigger

Figure 5.11: Simplified package diagram of the SBIP tool

This high-level representation results from the parsing of the raw BIP traces produced by
simulation engines. In practice, we use this same structure to represent timed but also untimed
traces, by simply assigning a zero value to the timestamps, in the latter case.

The formula package. This package includes the necessary classes to define MTL/LTL
properties and score functions. An MTL (resp. LTL) path formula is obtained by composing
state formulas with time-bounded (step-bounded) temporal operators. To enable the nesting
of operators, path and state formulas both extend an abstract class Formula. The latter also
makes it very easy to extend the tool to support more specification formalisms.

The gui.model package. This package includes classes to present data in shapes that are
recognized by graphical components such as tables and charts. For example, some of these
classes implement the AbstractTableModel interface to facilitate the graphical display of
tables.

The analysis.model package. In this package are regrouped all the data structures that
are created during an analysis, either as intermediate information or as a final output. HT and
PE analyses generate intermediate trace verdicts that are stored in a class as a pair of trace
and verdict which can be either a real number or a boolean value. Similarly, PX produces
intermediate SMC verdicts for which the value of the parameter, the execution time and the
actual verdict are stored to be later on displayed in the GUI, after being structured accordingly.

5.3.1.2 The View

The GUI is developed using the Java Swing graphical library, a platform-independent framework
for graphical interfaces development in Java. It provides sophisticated, powerful and flexible

5.3 Implementation Details 121

components for defining a wide range of designs. Also, it supports pluggable look and feel to
define colors, shapes and layout etc. For our implementation, we use the cross-platform Nimbus
look and feel.

The GUI is composed of a main window and a group of secondary windows. The main
window is implemented in the class UserInterface of type JFrame. It instantiates a menubar
(not functional yet), a toolbar and a split panel that allows for the dynamic vertical separation
between the two panels: project explorer and central panel. The former is developed around a
JTree component that displays the content of the Workspace folder on the file system. This
folder is created at the first execution of the tool and is managed through the different project
creation/deletion functions in the toolbar. The central panel is of type JTabbedPane, used for
the navigation between several containers through tabs (developed in the package gui.tabs).
This panel is the most important component of the tool since it hosts the different activities
of edition, analysis setting and results visualization. Each activity is accessible through a
dedicated tab. Except for the starter, the model selection and the formula specification tabs
that are open on program startup, all the others are added upon request of the user and can be
closed as well.

Besides the main window, secondary windows are also developed (in the package gui.dialog)
and meant for different purposes:

1. the progression viewer to follow the status of an analysis,

2. the trace viewer for the visualization, the parsing and the monitoring of raw BIP traces,

3. the compilation viewer to display the output of the compilation scripts including eventual
warnings and errors from the BIP compiler,

4. the help box to provide useful information about the installation, configuration and
utilization of the tool,

5. the about us box to inform of the purpose of the tool and its version, in addition to a
contact e-mail address,

6. the dialog boxes to display messages, such as errors, and to request input or confirmation
from the user.

These secondary windows result from an action of the user, either on the toolbar or in the tabs
of the central panel.

5.3.1.3 The Controller

It is structured in three groups of packages: the formulaManager and the bipInterface
packages, for properties and traces manipulation respectively, and the analysis package. The
manipulation of properties is two-fold: the parsing and the monitoring. The property parsing
is based on ANTLR and is provided for both LTL and MTL properties. The parsing of such

122 The SBIP Framework

properties takes a textual representation and builds a high-level representation by instantiating
a Formula object. Monitoring these properties is done using the rewrite-simplify approach
that consumes the property given an observed system state. For extensibility, we define an
abstract class Monitor that we extend for both MTL and LTL monitors by implementing
their specific rewriting procedures. It is worth mentioning that the interpretation of the state
formulas of MTL/LTL properties, at analysis time, is ensured by a specific parser, denoted
boolExprParser, that first instantiates the variables in the formula with their valuation in the
observed state, then evaluates the resulting boolean formula.

The simulation of BIP models is covered by the trace generation controllers. These
controllers interface with the BIP engines to produce raw BIP traces in three different modes.
The TraceGenerator is responsible for the trace-wise simulation mode, that is, produce a trace
of a predefined length. At contrary, the ThreadedTraceGenerator generates a trace symbol
by symbol, and saves the generated symbols in a buffering structure. The piece-wise generator
implements the BIP binding defined for the interfacing with Plasma-Lab. In any of these three
cases, the generated BIP traces are obtained by redirecting the standard output stream of
the BIP simulation process to a StringBuilder. The resulting sequence of characters is then
parsed using the Utilities class to build a high-level representation of type Trace.

The analysis package regroups the analysis cores, namely, HT, PE, PX and IP. These
cores are implemented as an extension of the abstract class Algorithm to provide flexibility
with respect to extending the tool with additional analyses. In addition, this package also
contains the class Simulator that is responsible for the execution of these algorithms in an
offline (with traces of fixed length) or in an online mode. In this latter mode, the Simulator
implements a producer-consumer design pattern where the trace generation and its monitoring
are done in parallel: the generation of the trace is done symbol-wise in a first thread, that feeds
a buffering structure, then a threaded monitor consumes the generated symbols on-the-fly. The
simulation ends whenever the monitor is able to conclude a global verdict. It is worth recalling
that the rare event analysis using an objective-guided simulation, that we proposed in Section
5.1.3.3, is not implemented yet.

5.3.1.4 Programming Efforts

The SBIP has been the subject of a completely new development that took us approximatively
four months. Our source code is organized in 86 Java classes structured in packages for a total
number of 15454 lines of code. The main effort is concentrated on the development of the GUI
that represents more than 53% of the source code.

5.4 Related Tools 123

5.3.2 Availability and Documentation

At this stage, SBIP only runs on the Linux operating systems as it relies on BIP simulation
engines. The tool is freely available for download from the BIP-SMC web page http://
www-verimag.imag.fr/Statistical-Model-Checking.html.

It is distributed with a CeCILL-B free software license in three different forms: standalone,
source code and a preconfigured virtual machine. The standalone is compiled on an Ubuntu
16.04-64 bits operating system running Java Runtime Environment (JRE) 7 and GNU Scientific
Library (GSL) 2.3. It is portable to different Linux OS but the BIP engines must be recompiled
on the target architecture. To reduce the installation overhead, we also provide a fully configured
virtual machine as a turn key solution. This latter also guarantees that the tool works in
its development conditions, isolated from any interaction with wrong dependencies or library
versions. For more advanced users, we make the source code available online2 to allow for
adaptation to custom needs (models and requirements).

The archive of the tool contains an installation script for the validation of the JRE version
and the creation of a desktop launcher icon. In addition, a folder with all the necessary files is
included. This folder provides the compiled untimed and SRT-BIP engines, the help files in
HTML format, the compilation scripts, the tool icon images and finally the Workspace folder.
We provide in this latter a bunch of case studies that may be used as a basis for further designs,
or as a starting point to learn how to use the tool.

SBIP is simple to master and easy to use thanks to the intuitive activities and workflows,
described in Section 5.2. Its rich documentation makes it even simpler for a beginner user. This
documentation span from YouTube video tutorials to textual reports. In the latter category, in
addition to the help window accessible from the GUI, we distribute a user manual, a technical
report describing the tool and some experiments performed on case studies, and links to the
BIP framework explaining its syntax and semantics. All these documents and links are available
on the BIP-SMC web page.

5.4 Related Tools

In this section, we focus on comparing our statistical model checking tool with the existing
ones and more specifically Uppaal-smc [53], Prism [101]. Table 5.1 summarizes the features
and characteristics of the state-of-the art SMC tools. We restrict this table to the comparison
with the most used tools, namely, Uppaal-smc and Prism, but we also discuss some of the
capabilities of Cosmos [20] and Plasma-Lab [88].

The SMC tools mainly differ in several aspects spanning from the modeling framework,
specification languages and the statistical analyses, defining the tool’s capabilities, to the user

2Link to the GitLab repository of SBIP: https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/
sbip2

http://www-verimag.imag.fr/Statistical-Model-Checking.html
http://www-verimag.imag.fr/Statistical-Model-Checking.html
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/sbip2
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/sbip2

124 The SBIP Framework

experience, the design and performance, describing the tool’s usability. In terms of modeling
and specification capabilities, we focus on the expressiveness of the provided modeling language
to build complex and hierarchical systems. We also discuss the tool’s usability from the end-user
point of view but also for advanced usage in terms of tool customization and performance.

Most SMC tools [20, 53, 88, 101, 151] use dedicated abstract models as input for verification.
In contrast, SBIP uses BIP, a full-fledged expressive component-based framework developed
to support system design from specification to analysis and implementation. It allows for
incremental building of complex systems from elementary components and offers real-time
capabilities, in addition to high-level coordination and synchronization primitives e.g. multi-
party interactions and priorities. Furthermore, it enables including external C++ code, e.g. for
modeling complex data structures and integrating legacy code.

We briefly discuss SBIP analysis capabilities with respect to major SMC tools. Regarding
the analyses, SBIP implements the HT and PE algorithms similarly to Uppaal-smc , Prism and
Plasma-Lab. Besides, only Prism offers a parametric functionality similar to PX. Furthermore,
to the best of our knowledge only Plasma-Lab and Cosmos implement rare events analyses.
The former is the only one implementing IP as in our tool, while the latter rather relies on
importance sampling. Our underlying modeling formalism supports generally distributed time
delays. It offers built-in standard distributions, e.g. Normal, and a simple mechanism for
specifying custom distributions. In contrast, Prism is restricted to uniform and exponential
distributions, whereas in Uppaal-smc one needs to define such distributions manually by using
a subset of the C language.

The integration of graphical user interfaces in these SMC tools creates a pleasant experience
for the user. Uppaal-smc facilitates the modeling by proposing a graphical modeling tool,
unlike Prism and SBIP. However, SBIP is built around distinct workflows to allow for a
simplified analysis setting, and an easy results interpretation. Also, the detailed analysis
feedback, including the ability to visualize the generated concrete traces and their local verdicts,
gives the user a better understanding of his system and a higher confidence in the obtained
results. Besides, the trace inspection comes out very useful in the context of system debugging.

The expressiveness of BIP together with the reliance on concrete executions result in lower
runtime performance compared to Uppaal-smc and Prism. Comparatively, the authors of
Plasma-Lab chose to focus on modularity at the expense of performance.

5.5 Conclusion

SBIP is a framework for modeling and analyzing BIP models. It supports both the standard BIP
and the Stochastic Real-Time BIP modeling formalisms that have DTMC and CTMC/GSMP
underlying semantics, respectively. Requirements in this framework are formally expressed
using the bounded versions of LTL and MTL that can also be parametrized to specify families
of properties. The analysis capabilities of the tool rely on Statistical Model Checking techniques

5.5 Conclusion 125
Tool

SBIP
U

ppaal-sm
c

Prism
(SM

C
)

M
odeling

Sem
antics

G
SM

P
,C

T
M

C
,D

T
M

C
STA

C
T

M
C

,D
T

M
C

and
Language

Built-in
density

functions
U

niform
and

exponentialdistribs
U

niform
and

exponentialdistribs
specification

C
ustom

distribution
through

files
-

-
ExternalC

+
+

code:
Functions

in
C

dialect:
-

→
com

plex
data

structs,functions
→

no
externalor

native
C

libraries
C

oncrete
execution

traces
Sim

ulation
traces

Sim
ulation

traces
Extensible

language
using

annotations
-

-
D

esign
C

om
ponent-based

w
ith

connectors
com

p-based
w

ith
sync

on
ports

m
odule

based
M

ulti-party
interactions

(M
ulti-party

disabled
for

SM
C

)
-

N
o

globalvars
G

lobalvars
G

lobalvars
Specs

LT
L,M

T
L

W
eighted

M
T

L
PC

T
L,C

SL,LT
L

Param
etric

properties
on

tim
e

and
vars

M
anualexploration

Param
properties

on
vars

M
anualencoding

ofcost/rewards
O

perators
on

cost/reward
O

perators
on

cost/reward
A

nalysis
H

T
/PE

Yes
Yes

Yes
Exploration

Y
es

N
o

Yes
R

are
events

Y
es

N
o

N
o

U
ser

C
lear

and
distinct

workflow
s

M
onolithic

analysis
workflow

single
param

etrable
workflow

experience
V

isualization
of

sim
traces

N
ot

visible
N

ot
visible

N
o

graphicalm
odeling

tool
G

raphicalm
odeling

tool
N

o
graphicalm

odeling
tool

C
om

pact
representation

ofparam
etric

Tedious
and

m
anual

C
om

pact
representation

properties
Select

different
sim

ulation
engines

N
o

N
o

Tooldesign
O

pen
source

C
losed

source
O

pen
source

E
xtensible

and
m

odular
N

o
N

o
Perform

ance
C

om
parison

Slow
er

-
-

R
easons

90%
tim

e
in

trace
sim

ulation
-

-
Runtim

e
analysis

progression
feedback

-
-

Traces
save

for
user

inspection
-

-

Table
5.1:

C
om

parison
table

ofthe
state-of-the-art

SM
C

tools

126 The SBIP Framework

that have the advantage of scalability compared to exhaustive methods, while giving statistical
guarantees on the errors, as opposed to pure simulation.

SBIP is designed as an IDE and is released with a GUI that facilitates the different design
activities. Also, the tool proposes classical SMC algorithms and rare events analysis, in addition
to a means to explore a family of properties in an automated manner. These analyses are
accessible in clear and distinct workflows. The modularity and extensibility of the tool makes
it a good candidate for advanced users as it allows for customization. However, this flexibility
comes at a cost of lower performance compared to state-of-the-art SMC tools. As future work,
we intend to enhance this performance. We also believe that providing a graphical modeling
interface would have a positive impact on the tool usability, and would make it easier to handle
for beginner users and also for more advanced ones.

In the next chapters, we illustrate the usefulness of the tool in different domains and for
several purposes. In Chapter 6, we present six case studies that we model with SBIP and for
which we focus on analyzing the performance. We also take a closer look at the tool’s overall
performance for which we provide insight into practical causes and solutions. In Chapters 7 and
8, we show how SMC in general and SBIP in particular can be applied in the proposition of
more complex methodologies in the context of safety and security risk assessment, respectively.

Chapter 6

Analysis of System Performance
with SBIP

Designing correct and efficient systems is a complex task that requires both functional verification
and performance analysis. While the former ensures that the system behavior conforms to its
description and requirements, the latter addresses serious questions about energy consumption,
response time, etc. It provides quantitative measurements that guide the designer at every
stages of the design towards well-founded decision making. This analysis is not straightforward
to achieve, particularly on systems for which the interoperative effect of software and hardware
is crucial. In this chapter, we show how the SBIP framework, presented in the previous chapter,
can be used to achieve this purpose on various case studies.

The SBIP framework relies on an expressive modeling formalism, and scalable and fast
verification techniques. This framework is supported by a tool that provides modeling, simulation
and analysis capabilities. This tool must undergo testing in order to validate its development
and to evaluate its performance. To do so, besides unitary testing, we confront SBIP with
several case studies in concrete utilization conditions, enabling us to see how it behaves in
complex configurations, and to assess its usefulness and scalability for large size problems.
These experiments helped to identify and fix numerous bugs, and guided the development of
the tool by raising needs related to the design process and analysis workflows, such as traces
visualization and debugging.

In this chapter, we address the performance analysis of real-life case studies in a variety
of application domains using SBIP. More specifically, we study communication and clock
synchronization protocols in Section 6.1, in addition to complex embedded systems in Section 6.2.
In Section 6.3, we show the importance of rare events analysis on a concurrency model with
a shared resource. Finally, Section 6.4 presents an analysis of the tool performance. For
reproducibility, we provide the model and requirement files for all the case studies in the tool
distribution.

128 Analysis of System Performance with SBIP

6.1 Communication Protocols Case Studies

6.1.1 FireWire – IEEE 1394

FireWire is a high-performance serial communication bus dedicated for hot plug-and-play
multimedia devices. These devices can be organized in arbitrary, yet acyclic, topologies, where
each pair of nodes is connected by two unidirectional channels. The internal representation of
topologies is a tree where the root (leader) arbitrates the access to the bus. The designation
of the leader is performed through a leader election protocol, namely, the tree identification
protocol. Whenever the topology changes, i.e., a device joins/leaves, a reset occurs, and a new
election is triggered.

n5

n3n2

n4

n1

Firewire(2)
Firewire(3)

Firewire(5)

Figure 6.1: Considered FireWire topologies

The tree identification protocol is initi-
ated by the leaf nodes of the topology. They
send requests asking their neighbors to be-
come their parents. A parent request sending
mode is probabilistically determined to be
fast or slow. It indicates the amount of time
to wait before sending. Internal nodes of the
topology keep on listening to parent requests
until they receive exactly n− 1 requests, n being their number of neighbors. Then, they send a
parent request to their remaining neighbor. When receiving a parent request, a node either
sends an acknowledgment, or detects a contention in the case it has also sent a parent request
and it is still waiting for an acknowledgment. Intuitively, a contention means that two neighbors
are mutually asking to be leader. This situation is resolved by forcing both nodes to send new
requests after a random waiting time.

We implemented a FireWire model inspired from the case study in [52], where the considered
topology is made of two devices. Our model is parametric, with m possible devices. We
considered three particular topologies with 2, 3 and 5 devices (Figure 6.1). The models for a
device and a channel are shown in Figure 6.2. On the left, the Device component is essentially
a timed automaton. On the right, the Channel component contains in addition a stochastic
port rcv_ack defined by a normal density function, i.e., its scheduling time is sampled with
respect to a normal distribution with a mean of 10 and a standard deviation of 2.

We studied the expected convergence time for the three topologies with (ϕ1(t)) and without
(ϕ2(t)) contentions. We also investigated the topology impact on the probability of contentions
(ϕ3) and on the probability for each device (regarding its position) to be elected (ϕ4(i)). We
provide the detailed MTL specifications of the properties verified on the FireWire model:

• the leader election procedure converges within t time units. It states that one of the
nodes eventually becomes a leader and all the other nodes become slaves. The parametric
exploration is used to find the expected time t∗ when the process is guaranteed to converge

6.1 Communication Protocols Case Studies 129

rcv_req

s0

s1

snd_req

rcv_ack

snd_ack

c = 0

rcv_req
[n− c > 1]
c+ +

snd_ack

s2 s3

slowfast

s4

wait

x = 0x = 0

[159 ≤ x ≤ 167]
wait

[76 ≤ x ≤ 85]

clock x

s6
rcv_req

rcv_req

rcv_req
s7

lead

s5

snd_req

snd_ack

s8

rcv_ack

rcv_req

Device(n)

rcv_req
c0

c1

snd_req

rcv_ack

snd_ack

rcv_ack

snd_ack

clock x, y

c2

snd_reqrcv_req

snd_req

[5 ≤ x ≤ 30]

[y ▷◁ N (10, 2)]

snd_ack

Channel

y = 0

y = 0

x = 0

x = 0

Figure 6.2: Stochastic real-time BIP: Components of the FireWire Protocol.

Node1

snd_req

snd_ack

rcv_req

rcv_ack

Node2

rcv_req

rcv_ack

snd_req

snd_ack

snd_req

snd_ack

rcv_req

rcv_ack

Channel1−2

rcv_req

rcv_ack

snd_req

snd_ack
Channel2−1

Figure 6.3: Firewire component composition

(with probability 1).

ϕ1(t) ≡ ♢[0,t]

m∨
i=1

[(nodei.s = 7)
m∧

j=1,j ̸=i
(nodej .s = 8)]

• the leader election procedure converges within t time units if no contention occurs. The
property is basically an implication written as a disjunction of two parts. The first part of
the disjunction is a conjunction between ϕ1 and a second property stating that always no
contention occurs during the election phase ([0, t]). The second handles the cases where a
contention eventually occurs in [0, t∗], where t∗ is computed in ϕ1. Note that the election
and the contentions are detected at the level of the nodes.

ϕ2(t) ≡ (♢[0,t]

m∨
i=1

[(nodei.s = 7)
m∧

j=1,j ̸=i
(nodej .s = 8)] ∧ □[0,t]

m∧
i=1

[¬nodei.contention])

130 Analysis of System Performance with SBIP

∨ (♢[0,t∗]

m∨
j=1

[nodei.contention])

• a contention eventually occurs during the election phase (t∗ computed in ϕ1):

ϕ3 ≡ ♢[0,t∗]

m∨
i=1

(nodei.contention)

• the ith device eventually becomes the leader (t∗ computed in ϕ1):

ϕ4(i) ≡ ♢[0,t∗](nodei.s = 7)

We used probability estimation with (α = 5 × 10−11, δ = 5 × 10−2) for all the analyses and
relied on the parametric exploration to analyze properties ϕ1(t) and ϕ2(t).

0 2 4 6 8 10 12 14 16 18
0

0.5

1

t1 t2 t3

Convergence time (×102)

Pr
ob

ab
ili

ty

2 nodes
3 nodes
5 nodes

0 0.5 1 1.5 2 2.5 3 3.5 4

0.2
0.4
0.6
0.8

1

t1 t2 t3

Convergence time (×102)

Pr
ob

ab
ili

ty

2 nodes
3 nodes
5 nodes

Figure 6.4: Probability of ϕ1 (top) and ϕ2 (bottom) for different FireWire topologies

We observed that the expected convergence time increases with larger topologies, as shown
in Figure 6.4 for ϕ1(t) (top) and ϕ2(t) (bottom). For ϕ1(t), the expected time (in time units)
was respectively 1000, 1500 and 1600 for the three considered topologies. When no contention
occurs (ϕ2(t)), the expected time drops to 200, 230 and 390. The protocol spends more than
80% of the time resolving contentions. The analysis results for ϕ3 and ϕ4(i) are summarized in
Table 6.1. We noticed that in a two-device topology, both nodes send parent requests almost

6.1 Communication Protocols Case Studies 131

simultaneously and thus have equal chances to become leader, but leads to ∼ 50% chance of
contention. In larger topologies, leaf nodes initiate the election protocol, hence they have less
chance to become leaders (nodes n1,3 in FireWire(3) and n1,4,5 in FireWire(5)). In contrast,
inner nodes are more likely to become leader and this increases proportionally to the number
of their neighbors. Moreover, we observed that the probability of contention in FireWire(3) is
lower than the other topologies. Actually, contentions do not only depend on the number of
nodes in the network but also on the way they are interconnected.

FireWire ϕ3 ϕ4(1) ϕ4(2) ϕ4(3) ϕ4(4) ϕ4(5)
(2) 0.493 0.507 0.493 - - -
(3) 0.137 0.042 0.92 0.038 - -
(5) 0.289 0 0.4 0.6 0 0

Table 6.1: Results for properties ϕ3 and ϕ4

6.1.2 Bluetooth – Device Discovery

Bluetooth is a short-range wireless communication protocol for data exchange that promises
low-energy consumption. A serious challenge in this protocol is interference. The Bluetooth
standard relies on frequency hopping to tackle this issue. It allows devices to rapidly alternate
among predefined frequency bands in a (pseudo-)random fashion. In order to perform data
transfer, nodes in the network initially organize themselves into piconets, that is, small groups of
one master and up to 7 slaves, where frequency hopping are synchronized. The device discovery
phase lets one of the devices (called inquiring) become the master of the piconet by broadcasting
messages to discover scanning devices, i.e., potential slaves. During the discovery phase, each
node of the network can be in one of two modes: (1) active, where it permanently looks to send
or receive messages, and (2) sniff, where it alternates between sleeping and listening phases.

We built a model of the Bluetooth protocol (see Figure 6.6), precisely the device discovery
mechanism, based on the implementation in [15] that considers one receiver (slave) and one
sender (master), where the receiver is set to the sniff mode. We improved [15] by considering
a parametric model where the receiver can be in addition in the active mode. Figure 6.5
represents the model of the Bluetooth components. The top figures show the receiver in active
(left) and sniff (right) modes. The figures on the bottom show the frequency and the sender
components from left to right respectively.

In active mode, the receiver sends a start signal to wake the sender component up and starts
scanning the different frequencies through the frequency component. The receiver switches to a
state where it is ready to receive inquiries whenever it hears a transmission attempt on its
frequency. Finally, the receiver commands the sender (and the frequency) component to stop
by sending a stop signal and goes back to its initial state where other transmissions can be
initiated by taking the dashed Stop transition.

132 Analysis of System Performance with SBIP

Receiver(active)

Start

Hear

Stop

Done

Start

Reply

Stop

r0

r1

r2

r4

Reply

Stop Hear

r2

x = 0

Receiver(sniff)

Start

Hear

StopDone

Start

Reply

Stop

r0

r1

r2

r4

Reply

r3

Sleep

r′
0

Sleep

Hear

Sleep
[x == t_sleep]
x = 0

[x < t_scan][x == t_scan]

x = 0

[x == t_resp]

energy′ = 0

energy′ = 2

energy′ = 3energy′ = 0

energy′ = 1energy′ = 0

x = 0

phase+ 1 : 1)

Frequency

Start
Startf0

f1f2

Hop
[x == 1]

x = 0

x = 0
phase = (phase+ 1 ≤ 32?

Stop

Hear

f3

Reply

Stop

Stop

Reply

Hear

Sender

Start
Start

s0

x = 0Stop

s3

Frequency

Stop

Hear

Reply

Stop

Hear

Reply hopping loop

Figure 6.5: Components of the Bluetooth model

In the sniff mode, the receiver alternates between sleeping and scanning states. The sleeping
phases of t_sleep (2012) time slots are followed by a scanning phase of t_scan (36) time
slots, where the time slot is 0.3125 ms. During this scanning phase, the receiver can detect a
transmission then replies to the inquiry that requires t_resp (2) time slots to terminate. The
receiver is also enriched with a cost clock that computes the amount of consumed energy (in
energy units). In the sniff mode, no energy is consumed in sleep states (r0, r

′
0), whereas the

receiver consumes 2 energy units per time slot in scan state r1, and 3 units/time slot during
the reply (at state r2).

Receiver Frequency Sender

stop
start

hear
reply

Figure 6.6: Bluetooth model with two devices

We measure the impact of the differ-
ent modes on the delays of discovery and
on the receiver’s energy consumption. In
our model, the discovery process success-
fully terminates when the sender receives
one reply (sender.rec = 1). We further

6.1 Communication Protocols Case Studies 133

model energy consumption of the receiver through the cost clock denoted energy. The first
requirement is expressed in MTL as ϕ5(t) ≡ ♢[0,t](sender.rec = 1) and states that the discovery
must eventually occur within t time units. Our goal is to identify t∗ that satisfies this requirement
with probability 1. The second requirement is expressed as ϕ6(e) ≡ □[0,t∗](receiver.energy ≤ e).
It states that the energy consumed by the receiver, during the discovery phase, is always
under some threshold e. Again, the goal is to determine e∗ that satisfies the requirement with
probability 1. Both properties are expressed as parametric MTL and are assessed by using the
parametric exploration.

Figure 6.7 summarizes the results obtained by applying the probability estimation algorithm
with parameters (α = 5 × 10−7, δ = 5 × 10−2) for both modes. As expected, the active mode
leads to a shorter discovery phase. On the left, we see that t∗ = 350 ensures a convergence with
probability 1. In the sniff mode (middle), the required time jumps to t∗ = 17000. Regarding
energy (right), in the active mode, the expected energy consumption of the receiver is e∗ = 700
units, whereas it drops to e∗ = 600 units when the receiver works in the sniff mode. That is, an
energy saving of more than 14% compared to the active mode.

0 2 4
0

0.5

1

t∗

time (×102)

Pr
ob

ab
ili

ty

Active mode

0 0.5 1 1.5
0

0.5

1

t∗

time (×104)

Sniff mode

0 2 4 6 8
0

0.5

1

e∗
1e∗

2

energy (×102)

Figure 6.7: Probability of properties ϕ5 (left and middle) and ϕ6 (right)

6.1.3 Precision Time Protocol – IEEE 1588

In this study, the Precision Time Protocol (PTP) is deployed as part of a distributed hetero-
geneous communication system in an aircraft [23] to synchronize the clocks of the different
devices of the system. The reference clock is given by a specific device in the network called
Master. This synchronization is essential to guarantee a correct behavior of the whole system.

We consider an abstract stochastic model of the PTP protocol shown in Figure 6.8. It is
composed of a master and a slave in addition to two communication channels. The considered
model is parametric as it represents the communication of the master with different slaves of
the actual system. This is expressed through different stochastic communication delays of the

134 Analysis of System Performance with SBIP

channels (see Figure 6.9a). Concretely, we use different probability density functions, depending
on the position of the slave in the network. Additional details on the models can be found
in [23].

An important property to verify on the system is that the drift between the clock of the
master denoted tm and the clock of any slave denoted ts is always bounded by a threshold ∆.
This property is expressed as ϕ7(∆) ≡ □[0,t] (abs(master.tm− slave.ts) ≤ ∆), where t is the
simulation time that we fixed to 25 times the period of the PTP protocol, and abs() is the
absolute value function. Figure 6.9b shows that the smallest bound ∆ guaranteeing the property
ϕ7 is ∆∗ = 70. We used the probability estimation algorithm with α = 5 × 10−11, δ = 5 × 10−2

combined with the parametric exploration for the analysis of this property.

sync
Channel 1Master

followup

reply

request

rcv_followup

rcv_sync

rcv_reply

snd_followup

snd_sync

snd_reply

sync
Slave

followup

reply

request
Channel 2

snd_request rcv_request

Figure 6.8: The abstract PTP model.

rcv_sync
xs = 0

rcv_followup
xf = 0 [xs ▷◁ ρs]d

snd_sync

rcv_followup
xf = 0

[xf ▷◁ ρf]d
snd_followup

rcv_reply
xr = 0

snd_reply

[xs ▷◁ ρs]d
snd_sync

[xr ▷◁ ρr]d

l4

l0

l1

l2 l3

l5

snd_sync

snd_followup

snd_replyrcv_reply

rcv_followup

rcv_sync

Channel 1

(a) Stochastic model of Channel 1

0 20 40 60 80
0

0.5

1

∆∗

Threshold ∆

Pr
ob

ab
ili

ty

(b) Probability of ϕ7

Figure 6.9: Stochastic model and analysis results

6.2 Embedded Systems Case Studies 135

6.2 Embedded Systems Case Studies

6.2.1 A Vehicle Gear Controller

Interface

GearControl

GearBox Clutch Engine

Figure 6.10: Gear controller model

The gear controller system is a real-time com-
ponent embedded in modern cars. It is re-
sponsible for implementing the actual gear
change requests issued by the driver (or by an
algorithm) and transmitted through a com-
munication network. The correctness and per-
formance of the gear controller are important
to guarantee a safe behavior of the vehicle. For instance, an excessive time for performing a
gear change makes driving unpleasant but may also lead to serious safety problems.

We consider a stochastic real-time BIP model of this system based on the work in [107]. The
model is composed of the gear controller component and its environment: a gear change request
interface, a gear box, a clutch, and an engine (Figure 6.10). Each of these components obeys
to specific timing requirements. For instance, the Clutch can open or close within 100 − 150
ms, the Gear box, which is electrically controlled, can set (resp. release) a gear in 100 − 300
ms (resp. in 100 − 200 ms). The engine operates in 3 modes with different constraints, i.e.,
normal, zero torque and synchronous speed. In the first mode, the engine gives the requested

0 5
0

0.5

1 tmin

tmax

time (×102 ms)

Pr
ob

ab
ili

ty

Figure 6.11: Probability of ϕ8(t)

torque, whereas in the second (resp. third) it tries to find
a zero torque (resp. speed) difference with the transmis-
sion (resp. the wheels). The maximum allowed time for
searching a zero torque (resp. synchronous speed control)
is 400 ms (resp. 500 ms). Missing any of these constraints
raises errors in the model.

In the original work, the authors used reachability
analysis to prove several requirements concerning func-
tional and performance aspects. We consider a subset of
the original requirements (29 MTL properties, see Ap-
pendix A for the complete set of considered requirements).
Here, we focus on those concerning the system performance. We provide results for one para-
metric property ϕ8(t), which states that a complete gear change is always performed within t

time units in the case of no errors. It is expressed in MTL as follows:

ϕ8(t) ≡ ♢[0,t][(¬(gb.ErrStat = 0) ∨ ¬(c.ErrStat = 0)

∨¬(e.UseCase = 0) ∨ (gc.GearChanged) ∨ (gc.Gear)) ∧ ¬(gc.SysT imer = 0)]

136 Analysis of System Performance with SBIP

We used the probability estimation algorithm with parameters (α = 5 × 10−7, δ = 5 × 10−2).
The obtained results using the parametric exploration are summarized in Figure 6.11. We
observe that the largest time value required to implement a gear change with probability 1 is
800 ms. In the same figure, we can also see that the shortest time with a non-zero probability
for a gear change is 210 ms.

6.2.2 Pacemaker Model

A pacemaker is a device implanted on a human heart to cope with malfunctions due to aging
or diseases. Its function is to guarantee the temporal relations between atrial and ventricular
contractions. This device (see Figure 6.12) acts as a monitor for these atrial and ventricular
events and generates electrical pulses to compensate missing/late events and hence, prevents
the heart’s malfunctions.

Heart Pacemaker
Atrial Pace

Atrial Event

Ventricular Event

Ventricular Pace

Figure 6.12: Heart and Pacemaker interactions

Our model is a BIP translation of the case study in [91]. In this model, the heart is
represented by a component that periodically sends atrial and ventricular contraction events,
respectively denoted AS and VS. These events are handled by the pacemaker that may deliver

Parameter Value
TLRI 1000

TAVI/TVPR 150
TURI/Amin 400

TPVAB 50
TPVARP/Vmin 100

Vmax 200
Amax 1100

Table 6.2: Parameters for the pace-
maker and the heart models

atrial pacing (AP) or ventricular pacing (VP) to reg-
ulate the heart timed behavior. The pacemaker is a
compound component composed of four components: (i)
Lower Rate Interval (LRI) ensures that the heart rate
is above a minimum value by monitoring the elapsed
time between ventricular events (VS, VP), generating
AP if a time limit of TLRI-TAVI is reached. (ii) Atrio-
Ventricular Interval and Upper Rate Interval (AVIURI)
guarantees the delay between an atrial event and a
ventricular one by delivering a ventricular pacing in
the case where no ventricular contraction is detected
within TAVI. This module also tracks delays between
ventricular events to avoid pacing the ventricle too fast.
(iii) Post Ventricular Atrial Refractory Period (PVARP) and Post Ventricular Atrial Blanking

6.3 Concurrency with a Shared Resource 137

(PVAB) filters noise by ignoring atrial events occurring in TPVARP. (iv) Ventricular Refractory
Period (VRP) ensures a minimum delay TVRP between ventricular events. The parameters for
the pacemaker and the heart models are summarized in Table 6.2.

On the one hand, the pacemaker has to monitor the heart rate and verify that the interval
between ventricular events, denoted delta_Vx, is bounded by TLRI (property ϕ9). On the other
hand, it must not deliver a VP too fast. This amounts to verify that the interval between a
ventricular event and a VP, denoted delta_Vp, is above TURI (property ϕ10). These properties
are formalized as follows:

ϕ9 ≡ □[0,500000][delta_V x ≤ TLRI]

ϕ10 ≡ □[0,500000][delta_V p ≥ TURI]

We checked both properties on SBIP using the probability estimation algorithm with
parameters (α = 5 × 10−11, δ = 5 × 10−2). The analysis required 4883 execution traces, each
one representing a simulation time of approximatively 8 minutes. Both properties have been
proven true (P (ϕ9) = P (ϕ10) = 1) in less than 1h30 per property.

6.3 Concurrency with a Shared Resource

Concurrency is a key concept in systems in general, and programs in particular. Concurrent
systems are the ones that can execute independently which can lead to improve the overall
execution-time of the systems tasks. One of the most common way to synchronize/communicate
this kind of systems is through shared resources. However, one wants to study the fairness in
the access to these shared resources.

Component c1

s1
0

req
cpt++

cpt=0

req

Component c2

s2
0

req
cpt++

cpt=0

req

Component c3

s3
0

req
cpt++

cpt=0

req

access

Shared resource

Figure 6.13: A concurrency model with three components sharing a single resource

In this case study, we consider three concurrent components that share a common resource, as
depicted in Figure 6.13. Each component ci memorizes the number of times it accessed the critical

138 Analysis of System Performance with SBIP

Probability P (l1 | l0) P (l2 | l1) P (l3 | l2) P (l4 | l3) P (l5 | l4)
Estimate 0.215 0.234 0.217 0.222 0.227

Probability P (l6 | l5) P (l7 | l6) P (l8 | l7) P (l9 | l8) P (l10 | l9) P (ϕ11)
Estimate 0.218 0.194 0.209 0.199 0.243 2.35 × 10−7

Table 6.3: Results of IP on the concurrency model

resource in an integer variable cpt. The considered LTL property ϕ11 ≡ ♢{30}(∧3
i=1(ci.cpt > 9))

states that, after 30 system steps, each component accesses the shared resource more than 9
times. For ϕ11 to be evaluated to true, each component must have exactly 10 accesses out of
the overall 30 accesses, corresponding to the 30 system steps, which makes the property rare.
The decomposition of this rare property into n = 10 levels can be done in a straightforward
manner, that is, lk ≡

∧3
i=1(ci.cpt > k − 1), k ∈ [1, 10]. This comes from the fact that we want

the component to access the resource exactly the same number of times. The stop condition is
hence set to 3 steps (one for each component).

We first tried to estimate the probability of property ϕ11 using PE with the parameters
(δ = 1.5 × 10−2, α = 5 × 10−7). This lead us to simulate 33782 traces in which the rare event
has never been met (P (ϕ11) = 0), in an overall execution time of 3m 37s. However, by using IP
with M = 1000 traces we were able to estimate the probability of each level to occur and hence
P (ϕ11), in less than 13s. Table 6.3, summarizes the results of IP on the concurrency model.
We can see that the probability that concurrent components access exactly the same number of
times the shared resource is very low P (ϕ11) = 2.35 × 10−7 but not null. It is interesting to see
that the conditional probabilities are very close which indicates that the actual decomposition
in levels is suitable, and hence reduces the relative variance of the final estimate.

6.4 Tool Performance Analysis

We now provide performance measures of SBIP, mainly regarding time (Table 6.4). The first
three columns show respectively the considered case study, the number of components in the
associated model, and the properties under test. The two remaining columns illustrate the
number of SMC loops in case of parametric exploration and the average SMC time. We observe
that depending on the model size and the property complexity, the SMC time can reach a
dozen of minutes, which is relatively large compared to other SMC tools.

To get more insights on the reasons of the observed times, we investigated the individ-
ual tasks within an SMC loop, i.e., property parsing, trace simulation, trace parsing, and
monitoring. We considered the processing time of a single execution trace (with lengths
ranging between 105 and 2. 105) of the PTP model and one MTL property (see Section 6.1.3).

6.4 Tool Performance Analysis 139

0 10 20 30 40 50 60

100

125

150

175

200

time (s)

tr
ac

e
siz

e
(×

10
3

)

MTL parser Simulation Trace parser Monitor

Figure 6.14: Detailed processing times for different trace sizes

Case study #C ϕ
#smc
loops

avg
smc

time

Firewire(2) 4

ϕ1 11 1m 21s
ϕ2 9 1m 59s
ϕ3 - 2m 28s
ϕ4 2 3m 27s

Firewire(3) 7

ϕ1 17 1m 53s
ϕ2 11 3m 34s
ϕ3 - 3m 38s
ϕ4 3 4m 43s

Firewire(5) 13

ϕ1 18 3m 54s
ϕ2 17 12m 36s
ϕ3 - 7m 23s
ϕ4 5 10m 16s

Bluetooth
v1

3
ϕ5 9 2m 27s
ϕ6 16 3m 11s

Bluetooth
v2

3
ϕ5 11 3m 0s
ϕ6 14 13m 05s

PTP 4 ϕ7 15 8m 42s
Gear Control 5 ϕ8 11 54s

Pacemaker 5
ϕ9 - 1h 28m
ϕ10 - 1h 30m

Table 6.4: Summary of performance

Figure 6.14 summarizes the obtained results,
which show that the overall processing time
grows linearly with the trace size. A no-
ticeable observation is that the simulation
time takes almost 90% of the whole analysis.
This is mainly due to current prototype imple-
mentation of the stochastic real-time engine.
Moreover, in this experiment, we systemati-
cally logged model variables, which consider-
ably increased the simulation time. Related
to this matter, we observe that the trace pars-
ing (including instantiation) is also substan-
tial. The reason for that is mainly strings
manipulation. It grows proportionally with
the size of the trace. Finally, we notice that
the MTL parsing and monitoring require rel-
atively short time and are almost constant
in this case, since we considered the same
property.

The tool performance can be enhanced at
different levels but mainly at the level of the
interfacing with the engine. Currently, this
latter is done through the standard output
stream. Indeed, the engine first writes infor-

140 Analysis of System Performance with SBIP

mation on this latter stream. Then at the level of SBIP, this stream is redirected to a string
variable that is later parsed to extract a high-level trace. This interfacing significantly slows
the tool at two levels: (1) the simulation takes more time due to the stream writes, and (2) the
trace consumption is preceded by stream reads and string parsing. As a solution, the engine
could be extended to generate serialized trace objects that can be directly retrieved during
analysis through the deserialization mechanism.

6.5 Conclusion

In this chapter, we considered several case studies to showcase the tool’s analysis capabilities
and to assess its performance. In these case studies, we were able to extract useful quantitative
information and to verify a variety of properties with high precision and confidence levels.
Moreover, we analyzed the tool performance and identified through these investigations a
bottleneck due to the current version of the simulation engine. We are currently working on an
optimized version which can significantly improve the whole performance of the tool.

In the next chapter, we present a methodology for the design of real-time safety-critical
systems. This methodology is developed around SBIP and relies on quantitative risk assessment
using SMC, to guarantee system resilience through the introduction of fault detection, isolation
and recovery capabilities.

Chapter 7

Quantitative Risk Assessment in the
Design of Resilient Systems

The correct system design is in general a hard problem that depends on many factors such
as system complexity, requirements satisfaction, tool-chain constraints, etc. In the case of
real-time safety-critical systems, uncertainties at runtime also need to be taken into account at
design time. Indeed, these situations may have serious implications on the system’s execution
and mission. Corrective measures to handle them after the system deployment can prove to be
very costly, and in some cases impossible to implement.

The type of uncertainties considered in this chapter are faults and failures that occur
at system execution. To address these cases and allow for resilience, systems are equipped
with fault detection, isolation and recovery (FDIR) capabilities. FDIR is usually designed as
software components that detect whether a fault has happened and apply a predefined sequence
of actions that bring the system in a safe mode. The current practice for designing FDIR
components follows an ad-hoc process based on the engineers expertise. This process takes
into account requirements expressed in natural language and produces implementations that
are integrated in the system. We identify several difficulties within this process mainly related
to its completeness and automation: (i) faults are identified from informal specification and
requirements, (ii) the impact of faults is evaluated manually, and (iii) FDIR implementations
are validated by unitary and integration testing with no formal guarantees.

Formal methods have been recently leveraged for correct-by-construction FDIR components
[146] in the frame of untimed [31] and real-time [59] systems. In this context, synthesis
algorithms are used for building the two parts of the FDIR components: the diagnoser for the
fault detection and the controller for the recovery. Two limitations are identified in [59] with
respect to the proposed approach: (iv) a diagnoser is devised for each detectable fault, and
(v) the controller is manually modeled being left for verification by model-checking techniques.
Firstly, synthesizing a diagnoser for each detectable fault has inconveniences since not all faults
have an impact on the requirements to satisfy, and the system analysis and performance can

142 Quantitative Risk Assessment in the Design of Resilient Systems

be greatly degraded due to the large number of unnecessary components. Therefore, it is
important to synthesize diagnosers only for those faults that are relevant with respect to the
system requirements and objectives. This limitation is emphasized by the manual activity of
evaluating faults, as described by item (ii) above. Secondly, the controller validation problem is
hard and often unfeasible since model-checking techniques suffer from scalability issues.

In this chapter, we tackle the limitations described above by proposing a model-based
development approach that relies on quantitative risk assessment and formal methods. The
aim of this approach is to design systems resilient to faults in an incremental manner based on
model transformation. We consider risk to be any system-related changes that may alter the
system nominal behavior or its performance. In our approach, risk is introduced through model
transformation, explicitly by modeling faults and implicitly by integrating new FDIR capabilities.
Quantitative risk assessment is used to study the impact of such changes and to improve the
FDIR design. To tackle limitations (ii) and (iv), we use probabilities to automatically measure
risk and to evaluate whether it is tolerable or not. When risk is deemed unacceptable, mitigation
would be either to synthesize a new FDIR component or to enhance the existing ones, e.g.,
with a more appropriate recovery strategy.

In this work, we automate probabilistic risk measurement by using SMC and we leverage its
scalability to validate manually designed controller components as described by limitation (v).
More precisely, we define an iterative and incremental process for the design of resilient systems
equipped with FDIR capabilities. This process is model-based and integrates quantitative risk
assessment and system validation which are partially automated using SMC as described in
Section 7.1. Moreover, we apply the proposed design process on a real-life robotics case study
presented in Section 7.2. We devise three system designs at different levels of granularity on
which we perform quantitative risk assessment. For each design, we propose FDIR behavior
that we validate against the system’s requirements. We use the SBIP framework, presented
in Chapter 5, for modeling and quantitative analysis. The obtained results are presented in
Section 7.3. Finally, we discuss the advantages and limitations of this process on industrial
applications in Section 7.5.

7.1 A Model-based Approach Integrating Quantitative Risk
Assessment

The proposed approach, illustrated in Figure 7.1, is based on the idea of iterative and incremental
transformation of models Γ. Each model transformation can introduce new risks, for example
due to relaxing environment assumptions. The idea depicted in this approach is to perform
at each step of the development two assessments. First, quantitative risk assessment allows
one to measure the impact different risks have with regard to the system requirements, and
perform a model upgrade if deemed necessary. Secondly, validation ensures that the upgrade is

7.1 A Model-based Approach Integrating Quantitative Risk Assessment 143

consistent with respect to the system requirements. Please note that the proposed approach is
general enough to be applied to different types of systems, e.g., untimed, real-time. Moreover,
the notion of risk can have different interpretations, e.g., safety, security. Our setting consists
of stochastic real-time systems designed and analyzed with the SBIP framework, where risks
are understood and modeled as faults.

Γji
(k)

ni

(
Model M

Requirements R

)j
i

(k) Risk
AssessmentValidation

k=0

ok: j < ni ? j++ ; k=0 :
i++ ; j=1 ; k=0

nok: k++

k > 0

ok: j < ni ? j++ ; k=0 :
i++ ; j=1 ; k=0

nok: k++

Figure 7.1: Design approach based on formal methods integrating quantitative risk assessment
where: Γ denotes model transformation, i is the index of the number of performed steps, j is
the index for the number of explored models within a step bounded by ni, and k is the number
of iterative transformations performed on a model. Initially i is set to 0, and j and k to 1.

Initially, system specifications and informal general requirements are analyzed (Γ1
0

1) to
build a nominal application model (M1

0
(1)) and a set of formal requirements (R1

0
(1)). The only

assessment performed at this step is the validation (i.e., k = 1): the model should satisfy the
formal requirements. While this condition is not satisfied, the model is iteratively transformed,
as denoted by the nok label and index k in Figure 7.1. When the model is judged valid, one
can proceed with the next model transformation step.

The model is incrementally transformed towards the concrete implementation as represented
by the i index. Transformation concerns different aspects of the system and may introduce
new risks. Transformation examples include integrating new behavior, correction of bugs
in the model or legacy code, instantiation of the model’s parameters. For the latter, one
obtains a family of models indexed with j ∈ {1, . . . , ni} in Figure 7.1. Similarly, the system
requirements are modified based on the purpose of the performed model transformations. By
system requirements we mean those expected to be fulfilled by the system model in the current
stage of the design, that is, during the step i the exploration j and the iteration k.

The first analysis to perform on the system model M j
i

(0) is the risk assessment. It implies
computing the probability for requirements Rji

(0) to hold on the model. Based on this measure-
ment, the risk can be appreciated. If they are acceptable, represented with the ok label, one

144 Quantitative Risk Assessment in the Design of Resilient Systems

can continue with inspecting a new model either from the same family if j < ni or by moving
to the next step i + 1. If the risks are high, represented with the nok label, a decision on
how to mitigate is taken, which usually involves the transformation of the model architecture
and/or behavior. Once all the risks have been dealt with, the obtained model M j

i

(1) and its
requirements are subject to the iterative validation described above.

In the following sections, we show how to apply this approach on a robotics control system
case study. We distinguish four levels of granularity for this case study. At level 0, we design a
nominal application model that we validate with respect to initial requirements. At level 1,
we introduce risks in the form of faults and perform risk assessment. The decision consists of
introducing FDIR functionality in one of the components of the model, which we then validate.
At level 2, a performance-related model transformation is applied that impacts only the set of
requirements. We show that the FDIR behavior introduced is necessary but not sufficient with
respect to performance and we propose an improvement that is again validated. Finally, at
level 3, we introduce in the design the deployment model. We instantiate the deployed model
that considers 3 aspects and we explore several deployments using risk assessment with respect
to performance-specific requirements. All models are described in the stochastic real-time BIP
formalism where time evolves probabilistically following uniform density functions. The risk
assessment and validation activities are automated using the SBIP tool.

7.2 Planetary Robotics Case Study

Figure 7.2: The Bridget Rover
(courtesy of Airbus Defense and
Space UK).

The case study considered in this work is an excerpt of a
Bridget Rover demonstrator control system developed for
the validation of the ESROCOS environment [3]. The Brid-
get Rover (see Figure 7.2) is a representative of Martian
rovers aiming for planetary exploration while providing a
modular and configurable payload bay. The payload con-
sists at least of a panoramic camera for image acquisition
aiming for biological signatures detection and autonomous
driving via map construction. The rover uses 6 wheels to
drive and steer, where the motors communicate with the
locomotion system via a CAN-bus.

7.2.1 System and Requirements Overview

The control system developed with ESROCOS [2] aims to remotely drive the rover using a
joystick and acquire images. In consequence, the developed system interfaces with the low level
control of the locomotion system and the CAN-bus node. We consider in the following the
drive with a joystick functionality of the developed control system as case study [58].

7.2 Planetary Robotics Case Study 145

More precisely, the case study consists of the software chain between the joystick and
the locomotion software. The main prerequisite for the system is that the rover is moving
according to the requested motions. This feature is formalized by many requirements based on
the granularity of the system design and assumptions made over the environment, as listed
in Table 7.1. For example, ϕ0 describes that the requests sent by joystick are received by the
locomotion software, while ϕ1 describes that the locomotion software receives requests regularly
(with a given period of 100ms).

ID Formal specification
Requirements on the nominal system

ϕ0 □[0,10000] (is_sent ⇒ ♢[0,100] is_received_c)
ϕ1 □[0,10000] (is_received_c ⇒ ♢[1,100] is_received_c)

Requirements on the FDIR system
ϕ2 □[0,10000] (is_sent ⇒ ♢[0,110] is_received)
ϕ3 □[0,10000] (is_received ⇒ (♢[1,110] is_received) ∨ (♢[110,200] is_timeout))
ϕ4 □[0,10000] (♢[0,200] nb_received = nb_sent + nb_timeout)
ϕ5 □[0,10000] (cnbt ≥ MNBT ⇒ ♢[0,200] is_reset)
ϕ6 □[0,10000] (is_reset ⇒ ♢[0,100] is_received)

Requirements on the system performance
ϕ7(n) □[0,10000] (♢[0,200] nb_timeout− (nb_received− nb_sent) ≤ n)
ϕ8(n) □[0,10000] (nb_timeout ≤ n)
ϕ9(n) □[0,10000] (cnbt ≤ n)
ϕ10(n) □[0,10000] (nb_overflow ≤ n)
ϕ11(x) □[0,10000] (nb_chosen_timeout ≤ x)
ϕ12(y) □[0,10000] (nb_chosen_read ≤ y)
ϕ13(n) □[0,10000] (♢[0,100] period_id− cmd_id ≤ n)

Table 7.1: Requirements of the planetary robotics case study at the different levels of granularity
of system design.

7.2.2 Nominal Software Design

7.2.2.1 Model

As mentioned above, the case study tackles the communication of the joystick with the
locomotion control system. The software architecture is given is Figure 7.3.

The software design relies on a library containing two types of components: triggers and
queues. The trigger, illustrated in Figure 7.4a, is a component that with a customizable period
P activates the component to which it is attached (action sig_out). Once activated, the trigger
waits for the completion of the component’s associated behavior (action sig_return) before a
deadline D. In case the associated behavior does not finish before D, an issue is raised during

146 Quantitative Risk Assessment in the Design of Resilient Systems

Joystick

step

Dispatcher

Logger

Watchdog Client
cmd test_cmd

log_cmd

mot

Partition 1

Partition 2

Figure 7.3: Overview of the case study software architecture.

the analysis. This corresponds to a timelock in the system behavior, that is a modeling error
and has to be corrected.

The queue, illustrated in Figure 7.4b, is a component that models the asynchronous
communication between two components: a sender and a receiver. It is associated with the
receiver component and it contains a buffering structure of fixed size to store received requests
(on action sig_out). If the limit has been reached, the incoming requests are discarded. When
available, the receiver consumes the requests stored in its queue, using action sig_in, with a
fixed minimal time between two reads, called MIAT (minimal inter-arrival time). Similarly to
the trigger, the queue waits for the completion of the receiver’s associated behavior (action
sig_return), that must happen before a deadline D.

The Joystick component regularly sends a motion command denoted cmd to the rover
locomotion software to be executed. This behavior is depicted in Figure 7.5a by the states l0 to
l4, represented in black. The command sending is activated by the step trigger. For this case
study, the step period and deadline are set to 100ms and 15ms respectively. The cmd request
has multiple fields to describe the motion to be executed: an id of type integer records the
package number, and motion records the actual data package sent to the locomotion software
consisting of translation, rotation and heading of type float.

The cmd action is first sent to a Dispatcher, provided in Figure 7.5b. The Dispatcher
transfers this request to two software components: first the Logger via the log_cmd request and
then to the Watchdog via the test_cmd request (states l0, l3, l4 and l6 in black). Both log_cmd
and test_cmd contain the data package received from the Joystick. The Logger records the
received requests such that they can be reused later for the validation of the system through
replaying.

The Watchdog interfaces the Dispatcher (and subsequently the Joystick) with a wrapper of
the locomotion control software called Client, as illustrated in Figure 7.5c by the states l0 to l3
in black. Whenever a test_cmd request is received, the Watchdog transfers the data package
in the mot request to the Client. For simplicity, we do not consider the behavior of the Client,
which is abstracted to discarding all received mot requests.

All these components communicate asynchronously via queues. All queues have the MIAT
and D set to 50ms and 15ms respectively, while they can record only one element, i.e., size = 1.

7.2 Planetary Robotics Case Study 147

l0 l1
t ≤ D

l2
t ≤ P

sig_outϵ/
t = 0

sig_returnϵ
[t == P]/
sig_outϵ/

t = 0

(a) Generic behavior of triggers with pa-
rameters P and D

l0

l1

t ≤ D

l2

t ≤ MIAT

sig_out(val)ϵ/
push_back(q, val, size)

[length(q) > 0]/
sig_in(pop_front(q))ϵ/
t = 0

sig_returnϵ

sig_out(val)ϵ/
push_back(q, val, size)

[t == MIAT]/
τ ϵ/

t = 0

sig_out(val)ϵ/
push_back(q, val, size)

(b) Generic behavior of queues with parameters MIAT,
D and size

Figure 7.4: Library of components and their behavior: triggers represented with triangle ()
and queues represented with square () in Fig. 7.3.

7.2.2.2 Validation Requirements

For this case study, we are interested first in validating the nominal behavior of the system
when the environment assumptions are satisfied:

1. the Joystick issues periodically a cmd request,

2. no requests (data packages) are lost, and

3. all executions including queue writing and reading take 0ms.

The system’s prerequisite – the locomotion system executes the received motion commands
– is expressed on the nominal application by the requirements ϕ0 and ϕ1. ϕ0 describes that
all cmd requests sent by the Joystick, modeled with the Boolean variable is_sent, are re-
ceived within 100ms by the locomotion system (Client component), modeled with the Boolean
variable is_received_c. ϕ1 describes that the Client regularly receives a request mot, within
100ms. Please note that these requirements and their formalization are relaxed with respect to
assumption 3 as they describe cyclic behavior within periods.

7.2.2.3 Validation Results

We use the SBIP tool with the confidence parameters α = 0.005 and δ = 0.05 for all our
experiments (at this step and after). These confidence parameters require the evaluation of
1199 system executions to come up with a global verdict, using the probability estimation
technique. The computed satisfaction probability is 1 for both ϕ0 and ϕ1. The computations
took for each requirement independently roughly 4 minutes.

148 Quantitative Risk Assessment in the Design of Resilient Systems

l0

l1

l4

l3

t = 0
init()

step_inϵ

τ ϵ/
set_cmd(v)

cmd_out(v)ϵ

step_returnϵ

l9 l10

[f2_enabled ∧ t < 100]/
fault2λ

[t ≥ 150]/
τλ/
t = 0

step_inϵ

step_returnϵ

l6 l7

[f1_enabled ∧
bp ≤ t ∧ t ≤ bp+10]/

fault1d/t = 0

[t == bd]/
τ ϵ / t = 0
bp = bp/2

step_inϵ

step_returnϵ

l8

resetϵ / t = 0
resetϵ/
t = 0τ ϵ/bp =

MBP

(a) Behavior of Joystick

l0

l3l6

l4

cmd_in(v)ϵ

log_cmd_out(v)ϵtest_cmd_out(v)ϵ

cmd_returnϵ

l7

l8 l9

fault3ϵ/
t = 0

cmd_returnϵ

cmd_inϵ

cmd_returnϵ

[t > 100]/
τλ

l10

begin_test_cmdϵ

test_cmd_out(tv)ϵ

(b) Behavior of Dispatcher

l0l2

l3

l5

l6

t = 0
timeout = get_val()

cnbt = 0

test_cmd_in(v)ϵ
cnbt = 0mot_out(v)ϵ/

t = 0

test_cmd_returnϵ

[t ≥ timeout]/
τ ϵ /set_cmd_stop(v)

cnbt = cnbt+ 1

[¬reset_enabled ∨
cnbt < MNBT]/
mot_out(v)ϵ/

t = 0

[reset_enabled ∧ cnbt ≥ MNBT] /
resetϵ

mot_out(v)ϵ/
t = 0

(c) Behavior of Watchdog

Figure 7.5: Behavior of the main components from Fig. 7.3 represented as timed automata in
SBIP, where faults, fault detection and standard recovery action are represented in red, more
complex recovery strategy in blue, and deployment-specific actions in dark green.

7.3 Risk Assessment of the Planetary Robotics System 149

7.2.2.4 Conclusion

As the requirements on the nominal application are satisfied, we can proceed with the next
step of the approach.

7.3 Risk Assessment of the Planetary Robotics System

In the following, we describe two models at different levels of granularity and the results of
the risk assessment and validation phases on them: one system level design including faults
modeling relaxed assumptions and one deployment level design additionally modeling the
hardware platform.

7.3.1 On Robustness to Faults

7.3.1.1 Model with Faults

The first transformation of the nominal model (i = 1) tackles the assumptions 1 and 2 described
in Section 7.2.2. We relax these assumptions in the new model by incorporating faults. In
order to have a systematic way of evaluating the impact of faults and their combinations on
the system and its requirements, we define Boolean constants for each fault to control their
injection.

Assumption 1 describes that the Joystick sends periodically a request. We break this
hypothesis by modeling the stop of request sending for a certain amount of time with two faults
as follows. The fault1 action is related to the external code that can be embedded in the model.
More specifically in this case, the software of the Joystick component does not send cmd for a
certain duration. This behavior is represented in Figure 7.5a by the red states l6 and l7, as
follows. The fault is injected at state l0 with the Boolean constant f1_enabled and can be
executed any time between bp and bp+ 10. (bp is an integer variable that describes the break
period of not sending cmd requests.) Once the transition is picked for execution, in a uniform
way, the clock t that measures the break duration bd is initialized to 0. During the [0, bd[time
interval, any step triggers are discarded by the Joystick as modeled with the l6 – l7 cycle. Once
the break duration bd has passed, the Joystick recovers, the clock is reset and the break period
is updated. For this example, bd is equal to 20ms and bp is set to 190ms. Please note that we
model here a persistent fault since the break period is decreasingly converging to 0ms, and
therefore the Joystick will eventually be continuously failing.

The fault2 action is motivated by the risks in the hardware connections, where the Joystick
can be unplugged non-deterministically for a certain moment. This behavior is modeled in
Figure 7.5a by the red states l9 and l10. As before, this fault is injected at state l0 by the
Boolean variable f2_enabled and can be executed as long as 100ms have not passed since the
last clock reset. If the fault occurs, the Joystick could recover after 150ms since last time reset

150 Quantitative Risk Assessment in the Design of Resilient Systems

(the transition from l9 to l0). However, the recover action is defined as lazy, which implies that
the Joystick could fail for large time periods. During the fail, any step triggers are discarded as
above.

Assumption 2 describes that no motion command is lost. We relax this hypothesis in the
Dispatcher, where we model the message loss with the fault3 action. This behavior is represented
in Figure 7.5b by the red states l7, l8, and l9. As above, we inject the fault with the Boolean
constant f3_enabled and we consider that this fault can happen after a cmd is received. Then
the Dispatcher has the choice of forwarding the data package (transition between l3 and l4) or
losing the data package (transition l3 to l7). If a cmd is lost, the Dispatcher will continue to
loose packages (cycle l8 – l9) unless it recovers. The recovery cannot happen before 100ms since
fault3. Again, the recovery is lazy (transition from l8 to l0), which means that the Dispatcher
can loose commands for large time periods.

7.3.1.2 Risk Assessment Requirements

For the risk assessment, we use the requirements ϕ0 and ϕ1 defined above, and we do not
introduce other ones. These requirements are sufficient to quantify and assess the impact of all
faults – fault1, fault2, and fault3 – have on the nominal behavior of the system.

7.3.1.3 Risk Assessment Results

With the SBIP tool, we obtain the following results. Regarding fault1 and fault2, ϕ0 is satisfied
with probability 1. Indeed, if a command is not sent the implication evaluates to true. However,
this probability drops to 0 when injecting fault3. In this case, some sent commands are lost
by the Dispatcher. Therefore, they are not received by the Client. Property ϕ1 is not satisfied
regardless of the faults occurring, independently or combined, since commands are either not
sent or lost within the [1, 100]ms time interval. The computed probability is equal to 0. The
complete results, including the time needed for the experiments, are given in Table 7.2.

Given these results, we conclude that these faults (i.e., risks) have a great impact on the
system and an FDIR behavior needs to be added such that the rover operates safely. Indeed,
without a recovery strategy, the rover’s locomotion system would keep executing the last
received command and this can have important consequences. For example, the rover could be
stuck into a harmful environment and therefore not achieve its mission. More specifically, we
are interested in stopping the rover whenever such faults are detected.

7.3.1.4 Model with FDIR Behavior

In order to stop the rover consistently when risks are present, we equip the Watchdog with
a data package validity checking before transferring the request to the Client. By validity
we do not mean the checking of the command content (even though this could be achieved
if necessary), but ensuring that the package must be received before a timeout event. This

7.3 Risk Assessment of the Planetary Robotics System 151

fault1
(w

ithout
reset)

fault1
(w

ith
reset)

fault2
fault3

fault4
(M

T
D

=
0/M

T
D

=
5)

Probability
/

Param
eter

T
im

e
(sec)

Probability
/

Param
eter

T
im

e
(sec)

Probability
/

Param
eter

T
im

e
(sec)

Probability
/

Param
eter

T
im

e
(sec)

Probability
/

Param
eter

T
im

e
(sec)

N
om

inalsystem
ϕ

0
1

240
1

196
1

229
0

14
-

-
ϕ

1
0

14
0

13
0

14
0

14
-

-
System

w
ith

F
D

IR
functionality

ϕ
2

1
240

1
196

1
229

0
14

0.05
/

0
14

/
96

ϕ
3

1
202

1
242

1
211

1
180

1
300

ϕ
4

1
192

1
246

1
215

0
14

0.05
/

0
14

/
105

ϕ
5

-
-

1
194

-
-

-
-

-
-

ϕ
6

-
-

1
217

-
-

-
-

-
-

ϕ
7 (n)

n
∗ϕ

7 (n) =
0

140
n

∗ϕ
7 (n) =

0
140

n
∗ϕ

7 (n) =
0

140
n

∗ϕ
7 (n) =

88
900

n
∗ϕ

7 (n) =
4

2160
ϕ

8 (n)
n

∗ϕ
8 (n) =

88
720

n
∗ϕ

8 (n) =
61

197
n

∗ϕ
8 (n) =

88
720

n
∗ϕ

8 (n) =
88

900
n

∗ϕ
8 (n) =

49
2160

ϕ
9 (n)

n
∗ϕ

9 (n) =
88

720
n

∗ϕ
9 (n) =

5
180

n
∗ϕ

9 (n) =
35

1800
n

∗ϕ
9 (n) =

30
1080

n
∗ϕ

9 (n) =
1

480

Table
7.2:R

esultsobtained
with

the
SBIP

fram
ework

on
the

system
design

with
faultsand

with
respectto

requirem
entsfrom

Table
7.1.

n
∗ϕ

refers
to

the
param

eter
value

for
w

hich
ϕ(n)

is
satisfied

w
ith

probability
1.

152 Quantitative Risk Assessment in the Design of Resilient Systems

corresponds to the diagnoser part of FDIR components, and it is based on the property that
the Client awaits periodically for motion requests.

If this does not happen due to faults in the system, the Watchdog will ensure that the rover
still operates safely with respect to the locomotion system: the motion is stopped. To achieve
this, the Watchdog sets the data package to stop – translation, rotation and heading are set
to 0 – and sends mot with stop as value. This corresponds to the controller part of FDIR
components.

For simplicity1, we model this FDIR behavior directly in the Watchdog as illustrated in
Figure 7.5c. While waiting for a test_cmd, the Watchdog checks the time elapse with the clock
t. If the timeout duration has been observed (transition from l0 to l5 in red), the stop data
package is set, the corresponding mot command is sent and the clock is reset (transition from
l5 to l0 in red). We configure the value of the timeout to 110ms in order to account for possible
delays in the system execution. As a consequence, the requirements listed in Table 7.1 for the
FDIR component and described below use this new time bound in their formalization.

We can now proceed with validating the FDIR behavior of the Watchdog component.

7.3.1.5 Validation Requirements

We define a new set of requirements ϕ2−4 specific to the FDIR behavior of the Watchdog.
ϕ2 describes that whenever a motion command is sent, it is received by the Watchdog. This
requirement is the transformation of ϕ0 from the Client to the Watchdog as receiver. Indeed,
there is no need to check ϕ1 from now on, as the new FDIR behavior should guarantee it. With
ϕ3 we are interested to check that the Client should receive mot requests periodically. The
mot could contain either the data package sent by the Joystick (modeled with the is_received
variable) or the stop data package sent by the Watchdog (modeled with the is_timeout variable).
Note that ϕ3 is also a transformation of ϕ1 from the Client to the Watchdog by including the
FDIR part. Requirement ϕ4 models the consistency of the data package reception: all the
data packages received by the Client are either commands generated by the Joystick or by the
Watchdog.

7.3.1.6 Validation Results

The Watchdog is robust with respect to faults fault1, fault2, and fault3: the probabilities
computed for ϕ3 are 1, as showed in Table 7.2. In addition, ϕ2 and ϕ4 are also satisfied when
considering the faults of the Joystick, namely fault1 and fault2. However, in the presence of
fault3 of the Dispatcher, the probability of satisfaction for ϕ2 and ϕ4 is 0. This result is expected
since fault3 models message loss. Whichever combination of faults between the two components
is considered, the results are similar: ϕ3 is satisfied, while ϕ2 and ϕ4 are not.

1The system architecture and specification, Watchdog included, have been provided in the frame of this case
study such that the used resources (e.g., number of components and threads) are minimal.

7.3 Risk Assessment of the Planetary Robotics System 153

7.3.1.7 Conclusion

This step of the approach consisted of the following actions. The system model was enriched
with faults and the need of FDIR behavior was highlighted by the risk analysis and evaluation
results. The decision was to include the detection and recovery capabilities into the Watchdog
component which now also checks the validity of the received commands. We showed that the
Watchdog is robust with respect to the modeled faults. As the obtained results are satisfying,
we go to the next step i = 2 in our approach.

7.3.1.8 On System Performance

7.3.1.9 Model for Performance Measurement

At this step we are interested in the performance of the FDIR behavior of the Watchdog in the
system. Therefore we do not perform any model transformation – Γ1

2
(0) is the identity function.

However, we enrich the set of requirements with ones evaluating the system performance ϕ7−9,
as described below.

7.3.1.10 Risk Assessment Requirements

ϕ7 explores the different bounds for inconsistency in the number of packages. This requirement
makes sense to be checked when the system looses commands, i.e., when fault3 is present or
P (ϕ4) ̸= 1. ϕ8 explores the maximal number of stop commands the Watchdog issues for the
given time period, while ϕ9 considers the number of consecutive stop commands. We are
interested in this case to have a low number of stop commands such that the rover operates
smoothly.

7.3.1.11 Risk Assessment Results

The results obtained from the risk assessment are given in Table 7.2. We remark that fault1
leads the Watchdog to issue a large number of (consecutive) stop commands (ϕ8,9) due to its
persistence. As we will see in the next refinement, we tackle this aspect by introducing a
reset mechanism. fault2 and fault3 imply the same large number of stop commands from the
Watchdog as fault1. However, we remark that in these cases, the system recovers for longer
periods and acts consistently since the consecutive number of stop commands is bounded to
35 and 30, respectively, as illustrated in Figure 7.6 and 7.7. The maximal failure period is
approximately equal to 35 × 100ms and 30 × 100ms, respectively. Therefore, the Watchdog is
able to keep the system safe, even with long failure periods.

7.3.1.12 Model with reset Mechanism for the Joystick

Since fault1 is persistent and the rover will be mostly not moving due to the stop commands
issued by the Watchdog, we add a reset mechanism in the Joystick that will allow this component

154 Quantitative Risk Assessment in the Design of Resilient Systems

0 10 20 30 40

0.5

1

t∗

Parameter value (t)

Pr
ob

ab
ili

ty

0 10 20 30 40

1

2

3

4

Parameter value (t)

Ru
nt

im
e

(m
in

ut
e)

Figure 7.6: Probability and runtime of ϕ9 for the model including fault2.

0 10 20 30
0

0.5

1

t∗

Parameter value (t)

Pr
ob

ab
ili

ty

0 10 20 30
0

1

2

3

Parameter value (t)

Ru
nt

im
e

(m
in

ut
e)

Figure 7.7: Probability and runtime of ϕ9 for the model including fault3.

to go back to its nominal behavior. This mechanism, illustrated in Figure 7.5a in blue, consists
of an action reset (leading to state l8) which sets the break period bp back to the maximal
allowed duration MBP (transition from l8 to l0). Then the Joystick will again issue motion
commands, with fault1 enabled.

The reset mechanism is controlled by the Watchdog since it implements FDIR behavior and
it is enabled with a Boolean constant reset_enabled (as for fault injection). As illustrated in
Figure 7.5c (in blue), the Watchdog defines a variable cnbt that stores the consecutive number
of stop commands issued. If cnbt is below the MNBT threshold, the Watchdog will issue a
stop command (transition from l5 to l0). Otherwise, the Watchdog will first trigger the reset
mechanism (transition from l5 to l6) and then will issue the stop command (transition from l6

to l0). Please note that the behavior of the Watchdog described in Section 7.3.1 is identical to
the one described in this figure, when reset_enabled is set to false.

7.3.1.13 Validation Requirements

The efficiency of the reset mechanism is additionally validated by requirements ϕ5 and ϕ6.
ϕ5 describes that whenever the Joystick starts repeatedly failing, the Watchdog triggers the

7.3 Risk Assessment of the Planetary Robotics System 155

reset action. ϕ6 validates the efficiency of the reset mechanism modeled by the receiving
of a command by the Watchdog after a reset is triggered. We also check and compare the
performance of the reset mechanism with requirements ϕ7−9 described above.

7.3.1.14 Validation Results

For this model, we configure the Watchdog to tolerate a maximum number of 5 consecutive
timeouts before triggering a Joystick reset (MNBT = 5).

In the second column of Table 7.2, we see that both ϕ5 and ϕ6 are satisfied with probability
1. From the performance point of view, we observe an improvement of order of magnitude for
the number of stop commands issued by the Watchdog. More specifically, the total number of
issued stop commands is reduced by 31%, whereas the number of consecutive stop commands
is bounded to 5. The latter corresponds in general to the bound MNBT for which the reset
mechanism is implemented, instead of the computed bound of 88 without the reset mechanism.

An interesting result is obtained when combining fault1 implementing the reset mechanism
and fault3. In this case, requirement ϕ6 does not hold. The reason is that the reset mechanism
does not guarantee the receiving of commands by the Watchdog at the next cycle. This is
mainly due to the fact that the consecutive timeouts could be caused by the Dispatcher and in
that case, resetting the Joystick will not change anything. Another refinement is necessary in
order to develop a more resilient system by implementing more complex recovery strategies.

7.3.1.15 Conclusion

At this step, we checked the performance measurements of Watchdog in the system. We observe
that in some cases the Watchdog is efficient. In others, as for example fault1, a more complex
recovery mechanism based on the reset of the Joystick is implemented and validated. It is
showed that the robustness property (ϕ3) is preserved by the model with the reset mechanism,
and moreover this mechanism reduces the overhead of the Watchdog on the system performance.
Therefore, we proceed by transforming and studying a deployment model of our system.

7.3.2 On Deployment Impact

7.3.2.1 Deployed Model

The software is deployed on two partitions due to the rover architecture. The locomotion control
software, and therefore its Client wrapper, are deployed on a partition which communicates
with the other software components via a CAN-bus. Since the Watchdog component aims to
check the validity of the requests sent to the Client, it will be deployed on the same partition
with the Client – Partition2 in Figure 7.3. The remaining components – Joystick, Dispatcher,
and Logger – are deployed on another partition – Partition1 in Figure 7.3. Between the two
partitions a Channel component is considered.

156 Quantitative Risk Assessment in the Design of Resilient Systems

l0

l1l2

begin_sig_outϵ/
x = 0 [0 ≤ x ∧ x ≤ MWD] /

sig_out(val)d /
push_back(q, val, size)
t = 0[f4_enabled ∧

get_size(q) == 1]/
fault4λ/pop_front(q)

[0 ≤ x ∧ x ≤ MWD] /
sig_out(val)d /
push_back(q, val, size)

begin_sig_outϵ/
x = 0

[f4_enabled ∧
get_size(q) > 1]/
fault4λ/pop_front(q)[0 ≤ t ∧ t ≤ MTD ∧ get_size(q) > 0]/τd

[get_size(q) > 1]/
sig_in(pop_front(q))ϵ/

t = 0

[0 ≤ x ∧ x ≤ MWD] /
sig_out(val)d /

push_back(q, val, size)

begin_sig_outϵ/
x = 0

[get_size(q) == 1]/
sig_in(pop_front(q))ϵ/

x = 0

Figure 7.8: Behavior of the communication channel between the two partitions of Fig. 7.3.

The Channel is a component added to the system model and connected to the Dispatcher in
writing mode and to the Watchdog in reading mode. This component, illustrated in Figure 7.8,
has a similar behavior to the queues. Once a data package is received, it is written in a buffer of
a predefined size. If the Channel buffer is full, the received data package is discarded. Finally,
the recorded data package is removed from the buffer and transferred to its target when possible.

We relax here assumption 3 and we model maximal transmission and writing delays for
the Channel with variables MTD and MWD, respectively. The maximal transmission delay
describes how much time a data package transfer can take at most. For example, such a
variation in the transmission time can depend on the network load. This behavior is modeled
by the transition from l1 to l2 in Figure 7.8: a transfer can finish at any moment between 0
and MTD (the delayable d urgency). Similarly, the maximal writing delay describes the time
the Dispatcher can take to write a motion command in the Channel buffer before continuing its
behavior (here, informing the Dispatcher queue that another request can be handled). Usually
writing on a channel is not instantaneous. We consider that the writing can take between 0
and MWD as described by the guard on transition from l0 to l1 and loop transitions in states
l1 and l2. The writing process is initialized by the Dispatcher with the begin_sig_out action.
This action can always be performed on the Channel, as modeled by the self-loop transitions
labeled with begin_sig_out in all states (Figure 7.8).

Moreover, we enable the loss of command requests with fault4. More precisely, a package
stored in the buffer (state l1) can be lost at any moment (the lazy λ urgency). Similarly
to the other faults, we use the Boolean constant f4_enabled to inject it. This fault implies
the removal of the oldest data package from the buffer. This can result in an empty buffer
(transition from l1 to l0) or a buffer with at least one data package (loop transition in l1).

In this setting, fault1 to fault3 are disabled. These faults can be considered in a further step
together with the current deployment model.

7.3 Risk Assessment of the Planetary Robotics System 157

7.3.2.2 Risk Assessment Requirements

We consider for evaluation requirements ϕ2−13 from Table 7.1. Please note that ϕ5 and ϕ6 are
not checked since they make sense only when fault1 is present. ϕ10 explores the number of mot
requests lost by the Client queue: incoming requests are lost if the queue is full. ϕ11−13 tackle
the freshness of the data package received by the Client. We want to determine with ϕ11 how
many times the Watchdog triggers a stop command when a motion command is present in its
queue. ϕ12 is the dual of ϕ11: how many times the Watchdog handles a command received at
timeout. Finally, ϕ13 explores the discrete time difference (in terms of periods) between when a
command is received and when it is issued.

7.3.2.3 Risk Assessment Results

For this analysis, we consider 3 aspects of the Channel in the deployed model: (1) M1
3

(0) with
transmission delays, (2) M2

3
(0) with writing delays, and (3) M3

3
(0) with command losses.

Transmission delays. This exploration concerns the MTD parameter of the model, with
MWD = 0. The results obtained with SBIP for this model on requirements ϕ2−4,7−10 are
represented in Figure 7.9. The evolution of the probability estimation for ϕ2−4 and ϕ10(0) is
plotted on the left, while the evolution of the optimal parameter value for ϕ7−10 is displayed on
the right. Notice that both the probabilities and the optimal parameter values are functions of
the maximal transmission delay (MTD) represented on the x-axis, and which is a parameter of
the model as described above. The optimal parameter value for a property ϕ is the smallest
parameter value for which the property is satisfied with probability 1. We write the optimal
parameter as n∗

ϕ = minn∈N{P(ϕ(n)) = 1}.

0 20 40 60 80 100 120
0

0.5

1

MTD

Pr
ob

ab
ili

ty

P(ϕ2)
P(ϕ3)
P(ϕ4)

P(ϕ10(0))
P(ϕ10(0))

0 20 40 60 80 100 120
0

20

40

MTD

Pa
ra

m
et

er
va

lu
e

n∗
ϕ7
n∗
ϕ8
n∗
ϕ9

n∗
ϕ10

Figure 7.9: SBIP results for the deployed model including transmission delays.

We start by presenting the parametric exploration results on requirements ϕ7−10. The total
number of stop commands as described by ϕ8 is in general bounded to 49. The number of

158 Quantitative Risk Assessment in the Design of Resilient Systems

consecutive stop commands, as expressed by ϕ9, is bounded to 1 for MTD values below 100ms.
Similarly, the number of lost commands due to the Client queue overflow modeled in ϕ10 is
bounded to 4 motion commands. We remark that n∗

ϕ7
= n∗

ϕ10
, which shows that the Client

queue overflow is the only source of command losses in the system.

The Client queue can discard a message due to being full if all of the following three conditions
are satisfied in the given order: (i) a test_cmd arrives at exactly timeout for the Watchdog, (ii)
the Watchdog chooses to first issue a stop command, (iii) the Watchdog immediately transfers
the test_cmd as mot, without the Client handling the previous stop data package. Then, the
queue of the Client which size is 1 will not be able to store the mot and this data package
is dropped. This situation evolves with respect to MTD as follows. When MTD increases,
the number of stop commands issued also increases as showed for ϕ11 up to a certain limit.
However, the probability for the test_cmd sent by the Dispatcher to take exactly timeout − P

to be delivered to the Watchdog is decreasing (i.e., it boils down to generating a single value in
the growing interval I = [0,MTD] of transmission delays).

Therefore, we observe that the probability to loose commands, represented by the negation
of ϕ10(0) on the left hand side of Figure 7.9, first increases until MTD < 20ms and then
decreases. The increase is justified by the higher impact the choice of sending stop commands
instead of transferring the motion requests (see the results for ϕ11 in Figure 7.10) has on the
property. After 20ms, the aforementioned choice stabilizes and the probability to generate a
single time value in I decreases, leading P(ϕ10(0)) to also decrease.

Finally, on the left hand side plot of Figure 7.9, we observe that ϕ2 is satisfied when MTD
is lower than 100ms. However, in the cases where the transmission delay is greater than the
100ms period of the Joystick, the delivery of commands is no longer guaranteed in the same
period. It is worth mentioning that the Watchdog is able to detect that phenomenon and act
accordingly, as reflected by requirement ϕ3 that is satisfied with probability 1. With respect to
requirement ϕ4, we remark that the interleaving of command generation and reception also can
have an effect on the probability of satisfaction, besides the command loss. The interleaving
can happen when the MTD is greater than 40ms (as expected from the timeout value) and
therefore the satisfaction probability of ϕ4 decreases. Up to 40ms, ϕ4 and ϕ10(0) are identical,
while after 40ms they diverge.

Next, we are interested in quantifying the number of times the Watchdog has the non-
deterministic choice between issuing a stop command (ϕ11) or reading a command from its
queue (ϕ12). These results are showed in Figure 7.10. We observe that the number of non-
deterministic choices, represented by the sum of x∗ and y∗ values, varies with the MTD then
stabilizes at the value of 6 when the transmission delay is above 20ms. Also, the Watchdog
chooses fairly between the two options. An interesting observation is that the number of chosen
stop commands is relatively low in comparison with the total number of issued stop commands,
as reflected in Table 7.3.

7.3 Risk Assessment of the Planetary Robotics System 159

0 20 40 60 80
0

1

2

3

MTD

#
ch

oo
se

_
tim

eo
ut

(x
∗)

0 20 40 60 80
0

1

2

3

MTD

#
ch

oo
se

_
cm

d
(y

∗)

Figure 7.10: Parametric exploration of ϕ11 (left) and ϕ12 (right) on the deployed model with
transmission delays

MTD Max_timeouts (n∗
ϕ8

) #choose_timeout (x∗) Proportion x∗/n∗
ϕ8

10 4 2 0.5
20 25 3 0.12
30 33 3 0.09
80 45 3 0.07

Table 7.3: Proportion of non-deterministic stop commands when increasing MTD.

Lastly, we focus on analyzing motion command and period identifiers to evaluate data
freshness. Due to transmission delays, a command can be received in a different period than
the one it was issued in. We express this behavior with ϕ13 and the results are shown in
Figure 7.11. The left plot represents the variation of the probability estimation of ϕ13(n) for
different instances of n when varying the MTD. The right plot represents the optimal value of
n for different values of MTD. We can see that the difference between the period of issued and
received command identifiers is bounded and increases with the growth of MTD. Hence the
transmission delays have an important impact on data freshness.

0 50 100 1500
2

4
0

0.5

1

MTD
nϕ13

Pr
ob

ab
ili

ty

50 100 150
0

2

4

MTD

n
∗ ϕ 1

3

Figure 7.11: Parametric exploration of ϕ13 on the deployed model with transmission delays.

160 Quantitative Risk Assessment in the Design of Resilient Systems

In order to deal with lost commands in the Client queue, a refinement could be performed
by increasing the size of this queue. A binary search can be used to determine the minimal
size. In our case, a queue of size 2 is sufficient to avoid overflows, as shown in Figure 7.12
for acceptable (30ms) and high (100ms) values of MTD. The probability to not loose any
commands in the Client’s queue (ϕ10(0)) is equal to 1. In the case where MTD = 100ms, the
difference in the number of commands received by the Client and those sent by the Joystick and
Watchdog expressed by ϕ4 is only due to the interleaving of actions.

30 100

0

0.5

1

MTD

Pr
ob

ab
ili

ty

P(ϕ2)
P(ϕ3)
P(ϕ4)

P(ϕ10(0))

Figure 7.12: Results on the corrected deployed model.

Writing delays. This exploration concerns the MWD parameter of the model, with MTD =
0. Recall that the D (deadline) of the Dispatcher queue is set to 15ms. Indeed, the Dispatcher
has to transfer the cmd request as log_cmd (which takes 0ms) and as test_cmd via the Channel
(which takes at most MWDms). All these actions must happen before the D implemented
by the queue, otherwise the Dispatcher timelocks. Timelocks are modeling errors that can
be detected during model analysis and can be subject to model transformation: for example,
either set a new worst case execution time for the component and in consequence the system
scheduling is recomputed, or a recovery mechanism (similar to the reset mechanism proposed)
is implemented in the Dispatcher.

The results are provided in Figure 7.13. In the left hand side plot, we illustrate the
probabilities estimated for ϕ2−4. When MWD < 15ms, we observe that the Watchdog is robust
(ϕ3). Additionally, analysis results for ϕ2,4 in this setting are similar to the results in the
transmission delay setting. When MWD ≥ 15ms, most requirements do not hold anymore due
to the timelock of the Dispatcher. However, the Watchdog keeps on guaranteeing the system’s
safety, as shown by the probability of ϕ3 evaluated to 1. Note that ϕ10(0) is equivalent to ϕ4

because there is no interleaving possible between the command generation and reception when
the MWD < 40ms.

On the right hand side of Figure 7.13, we illustrate the optimal parameter values obtained
on properties ϕ7−9. These results are similar to those obtained in the transmission delay setting

7.3 Risk Assessment of the Planetary Robotics System 161

10 15 20 30
0

0.5

1

MWD

Pr
ob

ab
ili

ty

P(ϕ2)
P(ϕ3)
P(ϕ4)

10 15 20 30
0

50

100

MWD

Pa
ra

m
et

er
va

lu
e

n∗
ϕ7
n∗
ϕ8
n∗
ϕ9

Figure 7.13: SMC results for the deployed model with writing delays

for MWD < 15ms. Note that in this case ϕ10(n) is identical to ϕ7(n), and therefore it is not
explored.

Command losses. Finally, we consider the command loss aspect of the Channel. For our
exploration we set MTD ∈ {0ms, 5ms} and MWD = 0ms. The results with respect to ϕ2−4,8−10

are given in Figure 7.14. The results for requirements ϕ11−13 are not relevant in this case since
MTD should be greater than 10ms and 40ms for a relevant exploration of ϕ11−12 and ϕ13,
respectively.

0 5

0

0.5

1

MTD

Pr
ob

ab
ili

ty

P(ϕ2)
P(ϕ3)
P(ϕ4)

P(ϕ10(0))

0 5
0

0.5

1
n∗
ϕ8

n∗
ϕ9

Parameter n
(MTD = 0)

P(ϕ8(n)
P(ϕ9(n))

0 5 15 25
0

0.5

1

n∗
ϕ8

n∗
ϕ9

Parameter n
(MTD = 5)

Pr
ob

ab
ili

ty

Figure 7.14: SMC results for the deployed model with command losses

We remark that ϕ3 is always satisfied. Requirements ϕ2,4 reflect the occurrence of commands
losses: the satisfaction probability is 0.05 when MTD = 0ms, and 0 when MTD = 5ms. Property
ϕ10(0) is satisfied with both values of the transmission delay. This shows that commands are
not lost in the client’s queue due to an overflow; the only source of command losses in this

162 Quantitative Risk Assessment in the Design of Resilient Systems

model is fault4. Consequently, the number of timeouts encodes the number of times the fault
occurred. When there is no transmission delay, the number of lost commands is bounded to
a value of 8 (n∗

ϕ8
) with a maximum of 3 consecutive losses (n∗

ϕ9
), as shown in Figure 7.14

for MTD = 0ms. These numbers drastically increase when MTD > 0ms. For instance when
MTD = 5ms illustrated in Figure 7.14, the Channel can loose up to 25 commands (n∗

ϕ8
) with a

maximum of 5 consecutive losses (n∗
ϕ9

).

7.3.2.4 Conclusion

We have modeled a deployment for our case study taking into account three risk cases:
transmission delays, writing delays and command losses. For each of these aspects we have
explored ϕ2−13 to evaluate the impact of these risks on the behavior of the rover. Based on the
shown results, 2 scenarios are further possible depending on other high level requirements. If
the hardware constraints obtained through exploration are implementable, the designer can
continue with the deployment. Otherwise, a model transformation and a new exploration are
required to correct the undesired behaviors and identify the needed hardware for the deployment,
as briefly described for the transmission delay risk above.

In this design, we note that whatever the risk is, the Watchdog is robust and the system’s
safety with respect to the motion functionality is guaranteed. This is also true for the timelock
modeling error present in the Dispatcher that occurs for writing delays starting from 15ms.
Before 15ms, the transmission and writing delays have a similar impact on the system behavior.
For higher values, however, these risks have an impact on different aspects of the system.
Transmission delays can imply the non-satisfaction of data freshness, meaning that commands
are no longer received in the 100ms period since their generation. Writing delays can lead to
command losses and the generation of numerous stop data packages. In the latter case, the
system enters a degraded mode where generated data packages are no longer delivered.

A shared effect of these risks on the locomotion system is the overflow in the Client queue.
To address this, a refinement can be necessary, such as the one proposed above where the Client
queue size is increased to 2. Therefore, we can safely state that the model does not loose any
command and the timelock in the Dispatcher is avoided as long as MWD < 15ms. Additionally,
if MTD < 100ms, the data freshness property is satisfied. Given the deployed system model
and the explorations we performed, the values obtained here are optimal in the sense that they
guarantee all requirements desired for the system.

7.4 Related Work

The risk assessment activity defined in [84] can be applied to different application domains,
including computer-based systems. A survey about the challenges and current practices for
risk assessment in computer-based systems is presented in [154]. In the literature, safety risk

7.4 Related Work 163

assessment is studied from two points of view: qualitative or quantitative. Qualitative safety
assessment determines what scenarios lead the system from a nominal mode to a degraded
mode where safety requirements do not hold. The practice consists of building safety artifacts
such as fault trees or timed failure propagation graphs and analyzing them in order to certify
the system safety. For example, automated safety analysis for fault trees is described in [25] for
the AltaRica dataflow language. In [30] the xSAP tool is presented for the analysis of fault
trees and timed failure propagation graphs in the context of symbolic transition systems à la
nuXmv.

Quantitative safety assessment provides probabilistic measures of the risks in the systems,
such as the likelihood of failure. Probabilistic computations are usually done manually on the
safety artifacts build a priori, on which the probability distributions for faults are added. Some
safety assessment tools automate this analysis, such as xSAP for probabilistic fault trees. The
work presented in this chapter contributes to this class of risk assessment methods. In our
case we use SMC in order to compute the probability for the system to fail as described by its
requirements.

Safety risk assessment can be seen as an optimization in the design of FDIR components in
general and diagnosers in particular. The correct design of FDIR components from complete
system specifications has been studied from methodological point of view in [31, 59, 146].
Implementations are provided in [59] for timed systems with partial observability and in
[31] for untimed systems à la nuXmv. While [31] includes the safety assessment mechanism
implemented in [30] for user-modeled timed failure propagation graphs, this question is left
open in [59]. Our contribution completes the work from [59] by defining and automating a
quantitative safety assessment method for (stochastic) timed systems allowing for the efficient
design of FDIR components.

Finally, our case study tackles the rigorous design of a robotics control system. In [6,
26], (RT)BIP and (RT)DFinder tool are used to model and verify safety and performance
requirements such as causality in service executions, mutual exclusion and data freshness. The
TINA model checker is used in [67] to verify schedulability properties of a robotics application
tasks on a given hardware platform. In [141] safety properties for modular robots such as
conflicting commands, self-collision, etc., are checked and simulated for different configurations.
Diagnosers are implemented using formal models for robotics control software in [57] with
respect to safety properties and using the P language. In [119], differential dynamic logic is
used to model and verify the behavior of ground robots, while a diagnoser to ensure the nominal
behavior is synthesized with ModelPlex and added to the system. The contribution presented
in this chapter has been used for the development of the FDIR components in the robotics
systems scenarios presented in [121, 125].

To the best of our knowledge, this work is the first to use statistical model-checking for
quantitative risk assessment in the design of resilient systems in general, and for FDIR behavior
in particular.

164 Quantitative Risk Assessment in the Design of Resilient Systems

7.5 Discussion

In this chapter, we propose a model-based design approach that relies on formal methods to
develop real-time resilient systems. The method is incremental: it starts from the nominal
model, then transformations are applied to take into account different sources of risks. The
impact of the considered risks is evaluated using a quantitative risk assessment method and
FDIR components are introduced accordingly. These are then validated against safety and
performance properties. The approach was successfully used for the design and validation of
the control software of a planetary rover. The proposed approach is centered around the SBIP
tool in order to perform quantitative risk assessment and validation activities automatically.

Approach. Following a model-based approach for the design of FDIR components and their
validation provides a lot of flexibility and allows one to explore various situations rapidly.
Combined with formal methods, it provides more confidence in the obtained results given that
the built models are faithful, which is not trivial and requires some expertise. Finally, the
use of statistical model checking automates quantitative risk analysis, and helps to deal with
real-life system models. However, both the identification and the evaluation of risks remain
manual and subject to the designer’s interpretation.

Case study. The results presented in this chapter are part of the work realized for the
validation of the ESROCOS environment [121] with a real-life robotics case study. Although
the approach was successfully applied and the designed system is currently being tested in
field trials, we wish to share some of the challenges we faced. Building faithful models is
by far the most challenging. The choice of the appropriate abstractions to perform and the
probability distributions to use requires a deep knowledge of the system under analysis. Using
risk assessment helped to take well founded decisions in order to build robust FDIR components.
However, the notion of risk is large and several times we found ourselves analyzing risks at
different levels, such as risks due to faults then risks due to adding new FDIR behavior, etc.
Moreover, managing the transformed models and the associated requirements can quickly
become cumbersome if not methodically performed.

Tools. Risk analysis automation is primordial for the design of complex systems as the design
space is substantial and proceeding manually is not feasible. In our case, once we built a model
it becomes almost straightforward to analyze it using SBIP. Nevertheless, some difficulties
remain to use the tool properly, like the correct formalization of requirements in MTL or the
instrumentation of the model in order to perform SMC.

Future work. In this work, we only considered quantitative risk assessment. Using qualitative
assessment before may help a lot in filtering irrelevant risks with respect to the requirements

7.5 Discussion 165

of interest. Moreover, risk identification could be done in a knowledge-based manner by
using machine-learning techniques for instance. Finally, we are also interested to evaluate the
applicability of the approach to security risk assessment. Indeed, we believe that our approach
is general enough to also handle security requirements.

In the next chapter, we present a security risk assessment approach for the analysis of systems
defenses, that we built around the SBIP tool. This approach aims at identifying defense
configurations making sophisticated attacks harder to achieve in terms of required resources and
their success probability. Defense configurations are rated based on the increase they introduce
in the cost of an optimal attack strategy. This latter is explored using a variant of Genetic
Algorithms (GA), denoted Intensified Elitist GA (IEGA), that relies on SMC to compute its
fitness function.

Chapter 8

Assessing Systems Security with
SMC

Modern organizations strongly rely on information and communication technologies in their
daily activities. This reliance raises serious questions about the security threats that may
be occasioned because of their inherent vulnerabilities and the way to mitigate the risks
accompanying them. The damages that a cyberattack exploiting such vulnerabilities might
cause, e.g. [82], highlight the urgent need for organizations to integrate risk assessment activities
as part of their main processes. Security risk assessment consists of analyzing and evaluating
systems vulnerabilities in order to design reliable security policies.

Cyberattacks usually combine various techniques that exploit different vulnerabilities to
circumvent deployed defense configurations. Such combinations are generally referred to as
Attack Strategies. Reasoning at this level turns out to be more suitable than trying to fix
individual vulnerabilities, especially that these are difficult to detect. Offensive security aims
at identifying reliable defense configurations for a system by exploring attacks exploiting its
vulnerabilities.

All is about resources. Both attack and defense actions require resources in order to be
achieved. For instance attack actions require equipment and take time to be set up. Accordingly,
they have some probability of success, i.e., actions that require a limited amount of resources
generally have lower probability of success and conversely. Similarly, defense actions are
subject to budgetary considerations (equipment, tools, training, etc.) and do generally provide
overlapping protection mechanisms, hence they are not required to be deployed simultaneously.
Therefore, it is primordial for organizations to be able to quantitatively analyze and evaluate
potential defense actions in order to design configurations that prevent cyberattacks while
involving a sufficient set of defense mechanisms.

Diverse attackers profiles can be observed in practice with regard to resources utilization.
Some would settle for attack actions requiring limited resources, accepting a low probability

168 Assessing Systems Security with SMC

of success, while others would privilege actions with high probability of success and allocate
resources for that. These profiles are generally the product of various human factors such as
experience, budget and motivations. A sophisticated attack strategy would try to optimize
these criteria, namely, to find trade-offs requiring an affordable (within a given budget) amount
of resources with an acceptable probability of success.

In this work, we propose a risk assessment approach to synthesize defense configurations
making sophisticated attacks harder to achieve. Concretely, we consider resources (e.g., the cost)
required by an attack to be the hardness criterion. The rationale is that since a sophisticated
attack tries to optimize the cost with respect to the probability of success, defense actions that
increase this cost are expected to prevent those attack strategies from being achieved with
high probability. Relevant defense configurations are hence those involving a sufficient set of
defenses with the highest impact on the attack cost.

As opposed to [69] that relies on reinforcement learning, our approach combines Statistical
Model Checking (SMC) [79, 151] with Genetic Algorithms (GA) [115], paired with a model
learning algorithm (IOALERGIA) to synthesize advanced attack strategies, which serve as a
basis for exploring relevant defense configurations. The proposed approach uses Attack-Defense
Trees [95] as a representation of the organization’s security breaches, the potential attacks that
could exploit them and the deployed defense configuration.

The methodology introduced in this chapter analyzes the defenses deployed in a corporation’s
information/organizational system exhibiting an a priori known set of vulnerabilities at different
stages of its design. At early design stages, the system is only described by its requirements
from which security experts can extract (1) potential vulnerabilities and (2) their probabilities
to succeed (based on their experience and security statistics, e.g. [48]), and can suggest (3)
generic defense mechanisms for each vulnerability. These information constitute an abstracted
representation of the system. Later on in the design process, when the system nominal behavior
and vulnerabilities are modeled in more details, a more precise risk assessment can be performed
by substituting the abstracted system model with the detailed one.

Depending on the level of abstraction of the system, we consider different types of attackers,
namely, unstructured and structured. Indeed, for abstracted systems, the approach [118] takes
into account a model of an attacker that arbitrarily simulates attack actions targeting the systems.
When dealing with such unstructured attackers, the goal is to find probabilistic attack strategies
that solve the non-determinism in the arbitrary selection of attack actions while optimizing
the attack cost and success probability. For detailed system models, we consider a structured
attacker that takes advantage of the system structure to discover existing dependencies between
the system’s vulnerabilities. Consequently, we focus on exploring deterministic strategies that
indicate which attack action to perform at each step of an attack.

The remainder of the chapter is organized as follows. In Section 8.1, we formally introduce
the considered models for risk assessment. The proposed framework is presented in Section 8.2.
The technique for the synthesis of an impactful defense configuration and for attack strategies

8.1 Modeling Systems with Vulnerabilities and Defenses 169

exploration are respectively presented in Sections 8.3 and 8.5, together with a recall of the
IOALERGIA algorithm in Section 8.4. In Section 8.6, we evaluate the proposed methods on
several case studies. We discuss related work in Section 8.7. Finally, Section 8.8 concludes the
chapter and presents a discussion.

8.1 Modeling Systems with Vulnerabilities and Defenses

In this section, we formally introduce definitions and notations used in the remainder of the
report. We first introduce the models for an attacker and a defender. Then, we recall the
definition of an attack-defense tree, and finally, we describe the model used for risk assessment.

For the following definitions, we consider ΣA to be a set of attack actions, ΣD is a set of
defense actions, and Σ = ΣA ∪ ΣD the set of all actions. Furthermore, we consider that each
attack action a ∈ ΣA is associated with 1) a time interval [la, ua] that represents lower and
upper time bounds allowed to perform a, 2) a cost ca ∈ R which models needed resources to
perform a and 3) a probability of success pa that represents the likelihood for a to succeed
when performed. We call environment, denoted env, the success probabilities of attack actions
in ΣA.

8.1.1 Attacker, Defender and Attack-Defense Tree

8.1.1.1 Attacker

The attacker model represents all possible attack combinations, given the alphabet of attack
actions ΣA. It is syntactically defined as follows:

Definition 8.1.1 (Attacker). An attacker A is a tuple ⟨L, l0, T ⟩ where :

• L = {l0, . . .} is a set of locations, where l0 is the initial location,

• T ⊆ L× Σa × L is a set of labeled transitions of the form (li, a, lj).

Intuitively, an attacker A performs a sequence of attack actions by choosing each time
among the enabled ones. At a given state, an attack action a may succeed, leading to a new
state where a is no more enabled 1 and where all other actions remain unchanged. In case a
fails, the state of the attacker does not change. The success or failure of a selected attack action
is not controlled by the attacker, but is determined by the environment env. We formally define
the behavior of an attacker as follows.

Definition 8.1.2 (Attacker semantics). The semantics of an attacker A = ⟨L, l0, T ⟩ is the
labeled transition system ⟨S, s0, R⟩, where:

1This reflects a realistic behavior expressing the monotony of an attack.

170 Assessing Systems Security with SMC

• S = L× VΣA
, where v ∈ VΣA

is a state vector that contains the status of all the attack
actions in ΣA (succeeded or not), i.e., VΣA

= {v : ΣA −→ {0, 1}},

• s0 = (l0, v0) is the initial state, where v0 = [0, . . . , 0] is the initial status of all the attack
actions in ΣA,

• R ⊆ S × ΣA × S is a set of transitions of the form (si, a, s′
i) respecting the following rules:

1. Success: (li, a, l′i) ∈ T, vi(a) = 0, v′
i(a) = 1, ∀a′ ̸= a v′

i(a
′) = vi(a′)

((li, vi), a, (l′i, v
′
i))

2. Failure: (li, a, l′i) ∈ T, vi(a) = 0
((li, vi), a, (li, vi))

We use the notation status(a, s) to denote the status of the attack action a at state s = (l, v),
i.e., status(a, s) = status(a, (l, v)) = v(a).

Note that the attacker semantics above is non-deterministic, that is the choice of an attack
action at each state is performed non-deterministically. When performing an attack, an attacker
has to cope with two kinds of non-determinism: (i) the non-determinism on the attack action
choice, and (ii) the non-determinism on the success/failure of the chosen attack action. We
introduce the notion of attack strategy to cope with the former non-determinism, while the
latter is enforced by the system, and more precisely, it is resolved by the environment env. In
this work, we manipulate two kinds of strategies, namely, deterministic and probabilistic ones.

Deterministic attack strategy. An attack strategy Sd : S −→ ΣA is said deterministic if it
associates each attacker state with an attack action to be selected by the attacker. The strategy
solves the non-determinism by a priori determining which action to select in the case where
several alternatives are possible.

Probabilistic attack strategy. A probabilistic attack strategy Sp : ΣA −→ [0, 1] is defined
as a mass probability function that associates each attack action with a probability of being
selected by the attacker. In this work, we restrict to static strategies, i.e., the same in any state.
Considering dynamic strategies is a future work. Thus, the probability P : S × ΣA −→ [0, 1] to
select an attack action a at any state si is defined as

P (si, a) =

0 if status(a, si) = 1

Sp(a)∑
a′∈ΣA

Sp(a′)×(1−status(a′,si))
otherwise

Given a deterministic/probabilistic attack strategy S, we denote by A|S the attacker A
that applies the strategy S.

8.1 Modeling Systems with Vulnerabilities and Defenses 171

8.1.1.2 Defender

A defender models the deployed set of defense actions. In this work, it represents a static
defense configuration, where a defense action d ∈ ΣD is either enabled or not in all the states
of the system. It is defined as follows:

Definition 8.1.3 (Defender). A defender D ⊆ ΣD is the subset of enabled defense actions in
ΣD.

We define a predicate enabled : ΣD → {0, 1} that tells if a defense action is currently
enabled. Formally, enabled(d) = 1 when d ∈ D, and 0 otherwise.

8.1.1.3 Attack-Defense Tree

It represents some knowledge about the system under analysis. For instance, it includes the
attack combinations (with respect to the analyzed system vulnerabilities) that may lead to the
success of an attack, along defense mechanisms available in the system. In this work, we define
it as a Boolean combination of attack and defense actions as follows:

Definition 8.1.4 (Attack-Defense Tree). An attack-defense tree T is defined by the following
inductive grammar:

ϕ, ϕ1, ϕ2 ::= true | ap | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | (ϕ), where ap ∈ Σ

The evaluation of the attack-defense tree considers the attacker and the defender models.
This evaluation is performed as part of the risk analysis procedure based on a Risk Assessment
Model introduced below.

8.1.2 Risk Assessment Model

We now explain how the previous models, namely Attacker, Defender and Attack-Defense Tree
are used together to build a complete view for analysis, called Risk Assessment Model (RAM).

Definition 8.1.5 (Risk Assessment Model). A risk assessment model M is a composition of:

• A|S is an attacker following a strategy S,

• B is the system under study characterized by its environment env : ΣA −→ [0, 1],

• D is a defender,

• T is an attack-defense tree,

• cmax, tmax ∈ R are the maximal attacker cost and time resources.

A RAM simulates attacks represented by an attacker A|S – under the constraints cmax and
tmax – on the system B against a fixed defense configuration (modeled by D). The system

172 Assessing Systems Security with SMC

under study is a BIP model that describes the nominal behavior of the system together with
its vulnerabilities weighted with their success probabilities (the environment env). The system
B can be abstracted by env when the nominal behavior is not designed yet. Recall that
BIP models, and consequently the system B, are probabilistic while an attacker model A is
non-deterministic. The composition of A and B has an underlying MDP semantics where A
non-deterministically generates attack actions (representing the input symbols of the MDP) that
probabilistically drag B to specific locations depending on the action success/failure verdicts
(representing the output symbols of the MDP) encoded as probabilities in the environment env.

The status of an attack is given by the current status of the attack-defense tree T . The
evaluation of the status of an attack using the attack-defense tree T is twofold:

1. the defense configuration D is used to evaluate the defense part of the tree, (i.e., ap of T
such that ap ∈ ΣD). This phase is done statically since the defense is fixed in our case.
For each ap ∈ T , where ap is a defense action, ap is evaluated to true (respectively false)
whenever enabled(ap) = 1 (respectively enabled(ap) = 0).

2. second, the attacker A|S is used dynamically to sequentially generate attack actions ai
that may succeed or fail according to the states of B and the environment vector env.
Whenever an attack ai succeeds, the corresponding atomic proposition in T is evaluated
to true. Attack actions in T are either evaluated to true or not yet.

An execution trace ω of the risk assessment model M (denoted attack trace) is a sequence of
timed attack actions (ai, τi), where τi ∈ [lai , uai] is the duration of action ai. We call ΩM the set
of all attack traces generated by M. It is worth mentioning that actions relative to the nominal
behavior of the system are considered unobservable and hence do not appear in ω. Remark that
the attacker model is constrained by cmax and tmax which define a budget of available resources
and time to perform a sequence of attack actions. Hence, an attack trace is finite and ends in
one of the following scenarios. Let us first introduce the attack cost and the attack duration
as follows. Given a trace ω ∈ ΩM of length n, the attack cost is cost(ω) = Σn

i=1cai , where cai

is the cost associated with action ai. Similarly, the attack duration is duration(ω) = Σn
i=1τi.

Thus, an attack trace ends when:

• the attack-defense tree T is evaluated to true or false,

• the attacker has exhausted his resources or time budget, i.e., when cost(ω) > cmax or
duration(ω) > tmax,

• the attacker cannot select more attack actions based on the strategy S.

It is worth mentioning that the attack-defense tree T is evaluated to false only when the
defense configuration D prevents all the tree branches from simplifying to true. In contrast, the
tree evaluates to true when the attacker’s goal is fulfilled. The third situation happens when

8.2 Proposed Workflow 173

the attacker cannot choose an action according to the strategy S that could have simplified the
attack-defense tree.

Given a trace ω, we interpret it as a successful attack whenever the attack-defense tree
is simplified to true in addition to having cost(ω) and duration(ω) below the cmax and tmax

respectively, and as a failed attack otherwise.

8.2 Proposed Workflow

The purpose of this approach is to synthesize the most effective defense configuration against
optimized attackers. The proposed workflow relies on the iterative process of IO-Def presented
in Section 8.3, together with a combination of IOALERGIA and IEGA to identify the best
attackers, respectively presented in Sections 8.4 and 8.5.

IO-Def IEGA

D

(P(S) , C(S))

S

Risk Assessment Model (D?, S?, cmax, tmax)

(trace, verdict)

IOALERGIASimulation

Attacker(trace, verdict)Triggers

Learning

sample

model

Figure 8.1: Proposed workflow for risk assessment based on model learning and strategies
exploration.

Figure 8.1 illustrates the proposed workflow for risk assessment based on model learning
and strategies exploration. Given a RAM as input, IO-Def evaluates defense configurations
against optimized attackers obtained by the strategy synthesis process in order to determine
the most impactful defense configuration. This strategy synthesis process is composed of a
simulation module responsible for the construction of learning samples, IOALERGIA module
to learn attacker models, and IEGA for the exploration of attack strategies.

For each considered defense, a uniform naive attacker is used to generate attack traces.
Successful traces are projected on the set of attack actions and kept to constitute the learning
sample. Then, IOALERGIA is applied on this latter to infer an attacker model that encodes the
vulnerabilities dependencies, together with additional knowlegde on the success probabilities
of individual attack actions (env). This augmented attacker model, represented as an MDP,
captures the successful attack scenarios observed in the sample generation phase (handled by
the simulation module). The role of IEGA is then to identify a strategy for the attacker to
optimize his attack cost and success probability.

In this workflow, the role of the simulation and IOALERGIA modules (represented in green
in Figure 8.1) is to construct the attacker model. This model represents viable combinations

174 Assessing Systems Security with SMC

of vulnerabilities that are later on explored by IEGA to identify the best attack strategies.
However, this viability strongly depends on the amount of information available to the system
analyst. When performing a security risk assessment at early stages of the system design, only
few information is available which makes the viability of attack strategies challenging to state.
In that case, an exhaustive combination of all the vulnerabilities is considered. Consequently,
the strategy synthesis process varies depending on the abstraction level of the system B in
the input RAM. When dealing with detailed system models (including the nominal behavior),
this process starts by inferring the attacker model before exploring it with IEGA. At contrary,
for RAM with abstracted systems, the attacker model is defined a priori to allow all possible
combinations of attack vulnerabilities, ignoring any potential dependencies. In this latter case,
the simulation and IOALERGIA modules are bypassed and the combinatorial attacker model
is the subject of the IEGA exploration.

In the complex system setting, we intend to study a type of attackers that can extract
viable attack strategies from random attack attempts on the system. These attackers exhibit a
structured behavior that encapsulate attack action dependencies. We use IOALERGIA as a
means to learn such structured behaviors given a set of generated attack traces. In addition,
IOALERGIA allows the attacker to learn the probability for each attack action to succeed,
i.e., the environment env. These two information are encoded in the resulting MDP and are
referred to as learned (augmented) attacker model.

IEGA aims at exploring a large range of attack strategies, seeking for a near-optimal solution
to this reachability problem, namely, strategies that minimize the attack cost and maximize
its probability of success. Recall that the type of explored strategy depends on the level of
abstraction of B, that is, IEGA returns a deterministic strategy when the system’s nominal
behavior is explicitly modeled, and a probabilistic one if this behavior is abstracted.

8.3 Identifying Impactful Defenses

In this section, we explore defense configurations that make the system harder to attack, in the
sense that the best attacker – obtained with IOALERGIA and IEGA – needs more resources
to achieve his attack. More precisely, we aim at identifying the defense actions that have the
largest impact on the attack cost.

We propose a heuristic, denoted Impact-Optimal Defense (IO-Def), that evaluates the
impact of the defenses on the attack cost. A naive approach to security would be to enable all
available defense actions. However, some of them may not significantly increase the attack cost.
A more pragmatic approach is to look for a good balance between defenses and their impact on
the attack cost. This is particularly important if the organization’s defense budget is limited.

The heuristic implicitly builds an exploration tree where the root is the defense configuration
with all the actions enabled, i.e., D1

1 = ΣD. The defense Di
j at the ith level of the tree is obtained

by disabling the defense action j that was enabled in its parent node. For example, the third

8.3 Identifying Impactful Defenses 175

Data: a set of defense actions ΣD, a threshold ϵ
Result: the optimal subset D of enabled

defenses
D = ΣD;
Boolean improved = true;
Integer i = 1;
while improved do

i++;
improved = false;
Compute the minimal attack cost Ci−1

∗
against D using IOALERGIA+ IEGA;

foreach dj ∈ D do
Compute the minimal attack cost Cij
against D \ {dj} using
IOALERGIA+ IEGA;

Compute the impact gij = Ci−1
∗ −Ci

j

Ci−1
∗

;

end
Find the defense dmin ∈ D having the lowest
impact gimin;

if gimin < ϵ then
D = D \ {dmin};
improved = true;

else
return D;

end
end

Algorithm 7: Impact-Optimal Defense heuristic
for defense exploration

child of D1
1 is D2

3 = D1
1 \ {d3}. Each defense

configuration Di
j is characterized by the cost

Cij and the success probability P ij of the attack
strategy obtained with IEGA. The tree is ex-
plored in a breadth-first order. For each level
i > 1, we identify the defense configuration
with the minimal impact on the attack cost,
and select it for further exploration in the case
its impact is lower than a given threshold ϵ.

The impact gij is a measure that scores
a defense Di

j by computing the relative de-
crease in the attack cost due to the deacti-
vation of the jth defense. It is defined as
(Ci−1

∗ − Cij) / Ci−1
∗ , where Ci−1

∗ is the attack
cost of the selected parent node. The explo-
ration ends whenever all the impacts of level
i+ 1 are greater than or equal ϵ, or no more
defenses are available, i.e., Di+1

1 = ∅. Finally,
the most impactful defense configuration D is
the one in which no defense can be disabled.
Algorithm 7 presents the IO-Def heuristic,
that identifies the subset D of defense actions
ΣD such that the individual impact of each
enabled defense is above ϵ.

Figure 8.2 illustrates the exploration of
the best defense configuration given three de-
fense actions ΣD = {a, b, c}, using IO-Def. In
this example, the three defense actions are
initially enabled, represented in the root node
(i = 1). Then we disable one defense action
at a time, resulting in three new defense configurations {a, b}, {a, c} and {b, c}, that constitute
level i = 2. Their impacts are then computed and compared to identify the smallest value,
in this case g2

2. Since g2
2 < ϵ, {a, c} is selected as the new best defense and the exploration is

resumed from it. Again, we disable defenses one by one to generate defense configurations of
level i = 3, and g3

1 is identified as the smallest impact value. However, in this case, g3
1 ≥ ϵ,

which leads to the end of the exploration. Therefore, D = {a, c} is considered to be the most
impactful defense configuration.

In the worst case, Algorithm 7 executes the while loop n+ 1 times where n = |ΣD|. Each
iteration computes m + 1 attack strategies using IEGA, where m = |D| (initially m = n),

176 Assessing Systems Security with SMC

{a, b, c}
(P 1

1 , C
1
1= C1

∗)

{b, c}
(P 2

1 , C
2
1)

{a, c}
(P 2

2 , C
2
2= C2

∗)
{a, b}

(P 2
3 , C

2
3)

g2
1 g2

2 g2
3

{c}
(P 3

1 , C
3
1)

{a}
(P 3

2 , C
3
2)

g3
1 g3

2

D :

gij = Ci−1
∗ −Ci

j

Ci−1
∗

, i > 1

g2
2 = min{g2

1, g
2
2, g

2
3}

g2
2 < ϵ

g3
1 = min{g3

1, g
3
2}

g3
1 ≥ ϵ

i = 1

i = 2

i = 3

Figure 8.2: Illustration of the IO-Def heuristic

and evaluates the impact of defenses. Remark that each iteration decreases m by one (the
deactivated defense action). Hence, IEGA is executed, at worst, (n+1)(n+2)

2 times. This happens
when all the available defenses fail to prevent the identified strategy. Therefore, they are all
disabled.

8.4 Learning Attacker Models

In this section, we recall the IOALERGIA [111] algorithm for learning MDPs. IOALERGIA is
a state-merging algorithms that proposes to infer MDPs from a Learning Sample (LS). In this
algorithm, this learning sample is first represented in a compact manner as a Input and Output
Frequency Prefix Tree Acceptor (IOFPTA). This IOFPTA is a trivial representation of the
language since it accepts all the words in LS. Nevertheless, this is not a suitable representation
for several reasons. Among those reasons, one can point out the huge size of the model that is
proportional to the number of symbols in LS, and the lack of generality since the IOFPTA
accepts only words in LS.

To cope with these drawbacks, the IOFPTA building phase is followed by a reduction
process. During this computation, compatible states are detected in that IOFPTA and merged
in order to obtain a more compact representation of the target language. This operation
introduces generalization which leads the model after merge to accept more words.

The exploration is done following a lexicographical order and state compatibility is computed
over transition frequencies. The algorithm manipulates three types of states:

1. Red states : Identified to be part of the final MDP.

2. Blue states : States to evaluate at the current iteration. They are the non-red successors
of red states.

8.4 Learning Attacker Models 177

3. Uncolored states : States to evaluate later on in the process. They belong to the subtree
whose root is a blue state.

Initially, the IOFPTA root is marked as red and all its successors are marked as blue, the rest
remaining uncolored. At each iteration, the algorithm tries to merge all the pair composed of
one red state and one blue state. The compatibility criterion is calculated to evaluate each
merge. If a pair of red-blue states is compatible, the merge operation is performed. Otherwise,
if no possible merge is found, one blue state is marked as red and its successors are marked as
blue.

8.4.1 IOFPTA

The IOFPTA is the trivial representation of the learning sample LS. Words in LS are sequences
of symbols ω = (Act • Σ ∪ {err})∗. Act are input actions performed by the system environment
and are selected non-deterministically, whereas Σ is a set of available actions that the system
can output as a probabilistic response to the input actions. Note that the system can trigger
an err if no suitable response to a specific input action exists at a given system state.

From a model perspective, the nodes L in the IOFPTA are labeled by output actions, i.e.,
L(l) ∈ Σ, l ∈ L. And each edge e ∈ L ×Act× N × L is labeled by input actions defined over
Act. Hence, each branch of the tree represents one (or more) word in LS and common prefixes
are merged into a single path. Given the definition of err, error edges are added as self-loops
on the nodes where the error has been detected. Finally, each edge e = ⟨l, a, n, l′⟩ is annotated
by its frequency f(e) = n, namely, the number of words in LS that share that edge.

An IOFPTA is the first hypothesis of MDP, albeit a simplified one where no cycles are
allowed, except error self-loops. Both models share the same structure in terms of states,
transitions, alphabets and labeling functions, but they differ in the transition probabilities
(respectively edge frequencies) in the MDP (respectively the IOFPTA). The MDP relative to
an IOFPTA can be extracted by simply converting edge frequencies to transition probabilities
through a normalization process.

8.4.2 Elementary Operations of IOALERGIA

The main goal of merging states is to generalize the learned languages and build a more compact
representation of them. At each iteration, the merges are evaluated in a lexicographical order
and compatible ones are performed. A blue state is promoted if no compatible states are
identified.

The promote operation is a coloring operation that does not affect the structure of the
MDP. When no merge is feasible, a blue state is colored in red and its uncolored successors are
colored in blue. Since no other operation is possible, this means that the promoted blue state
behaves significantly differently from the red states identified so far. This newly identified red
state will be considered, in next iterations, when searching for new merges to perform. Hence,

178 Assessing Systems Security with SMC

the promote operation is the one responsible for identifying states that belong to the final MDP,
colored in red.

8.4.3 Compatibility Criterion

Compatibility criteria are used to evaluate the relevance of a merge operation. They are
statistical tests that estimate how equivalent the sub-languages generated by two states are.
IOALERGIA implements a compatibility criterion based on the Hoeffding bound. The test –
parametrized by ϵ ∈ (0, 1] – is composed of three different steps and returns true if all the steps
are evaluated to true. Two states, namely, a red state lr and a blue state lb, are compatible if:

1. Both states have the same label, i.e., L(lr) = L(lb)

2. For each input symbol a ∈ Act and output symbol σ ∈ Σ, the Hoeffding function
H(fr, nr, fb, nb, ϵ), returns true. The parameter fr = f(⟨lr, a, n′, l′⟩) (respectively fb =
⟨lb, a, n′′, l′′⟩) represents the frequency of the outgoing transition from lr (respectively lb)
labeled by a and leading to a state l′ (respectively l′′) labeled by σ, i.e., L(l′) = L(l′′) = σ.
The parameter nr (respectively nb) is the sum of the frequencies of the outgoing transitions
from lr (respectively lb) labeled by a, for all the output symbols. It can be written as
nr = ∑

σ1∈Σ
f(⟨lr, a, nσ1 , lσ1⟩), with L(lσ1) = σ1, and similarly for nb.

3. For each input symbol a ∈ Act and output symbol σ ∈ Σ, succ(lr, a, σ) and succ(lb, a, σ)
are compatible, where succ(l, a, σ) ∈ L is a successor function such that l′ = succ(l, a, σ)
iff: (1) L(l′) = σ, and (2) there exists an edge e = ⟨l, a, n′, l′⟩.

The Hoeffding function H returns true if the probability to exit lr and lb with symbol a
and reach a state labeled by σ is sufficiently close. It is computed as follows:

• If nr or nb equals zero then return true

• Else, return
∣∣∣ fr

nr
− fb

nb

∣∣∣ < (
√

1
nr

+
√

1
nb

) ×
√

1
2 ln

2
ϵ

8.5 Synthesizing Attack Strategies

In this section, we present our approach to explore attack strategies. As explained earlier,
our goal is to identify the most cost-effective strategy under which an attack is most likely
to succeed. Our proposal is based on a hybrid variant of GA and Local Search (LS), called
Intensified Elitist Genetic Algorithm (IEGA), for the identification of a near-optimal attack
strategy.

A Genetic Algorithm (GA) is an evolutionary algorithm inspired from natural selection
and genetics. It provides an efficient way to explore large solution spaces to select high-quality
solutions for optimization and search problems. An important requirement to achieve an

8.5 Synthesizing Attack Strategies 179

exploration is to be able to quantify solutions in order to establish an order over them. In this
work, we rely on SMC to fulfill this goal as explained hereafter.

8.5.1 Overview

We consider as input a risk assessment model M composed of an attacker model A, with a
system model B including the environment env, a defender model D, an attack-defense tree T
and the constraints tmax and cmax.

In our approach (IEGA), an individual denoted I = ⟨S, c, p⟩ is an attack strategy S
annotated with an expected cost c and a probability p of success of an attack when applying it.
The cost c and the probability p of success for an individual are computed using SMC. More
precisely, the probability estimation algorithm (PE) [79] is used to check the risk assessment
model against the property ϕ = ♢c<cmax

t<tmax
T . Recall that the precision of PE and its confidence

are respectively controlled by the parameters α and δ.
IEGA starts by randomly generating N initial strategies (individuals) to constitute the initial

population P0, evolving over M generations, as depicted in Figure 8.3. For each generation,
N/2 new children strategies are generated as follows:

1. Selection for breeding: we randomly choose two parent individuals in the current
population as candidates for the cross-over operation,

2. Cross-over operation: a child individual is built by performing a single-point cross-over,

3. Intensification with LS: the resulting individual is intensified using LS, i.e., a heuristic
aiming at improving it by exploring its neighbor solutions,

4. Mutation: an individual has a pm probability to be mutated, i.e., altering a randomly
selected information i of the strategy S, namely, changing the value of S[i].

Generate initial
population

Select for
breeding

Compute
cross-over

Intensify
using LS

Perform
mutation

Apply ERE
policy

Loop N/2 times

Loop M times

Evaluate solution using SMC

Figure 8.3: Workflow of IEGA with a population of N individuals over M generations

The Local Search (LS) operation aims at improving a solution by repeatedly moving to better
solutions residing in its neighborhood, until no improvement is possible. A neighbor solution Ii
is said to improve the current one I if it has a better fitness value. The latter is computed using
the fitness function Score which is a weighted sum of the solution cost c and its probability of

180 Assessing Systems Security with SMC

success p. Formally, the fitness function is defined as Score(c, p) = a× p− (1 − a) × c, where
a ∈ [0, 1] represents a linearization factor, used for weighting and scaling the two parameters.

The last phase of the outer loop (ERE) in Figure 8.3 identifies among parent individuals in
population Pi and their N/2 children, the ones to keep in the next generation i+ 1. We use
Extreme Ranking Elitism (ERE) [115] as a replacement policy, which aims at selecting the best
individuals while keeping some diversity in the population. Concretely, in addition to the best
solutions, bad ones are kept to prevent early convergence.

We use IEGA to explore both probabilistic and deterministic strategies. Obviously, the
strategy encoding and its manipulation is strongly dependent on the strategy type. In the next
section, we further detail the cross-over, the neighborhood construction, the mutation and ERE
operations, for the two types of strategies. Note that selection for breeding is performed by
random sampling and will therefore not be further detailed.

8.5.2 IEGA Operations Description

8.5.2.1 Cross-over Operation

It consists of building a child I = ⟨S, c, p⟩ by combining two randomly selected parents
I1 = ⟨S1, c1, p1⟩ and I2 = ⟨S2, c2, p2⟩. I is obtained by performing a single-point cross-over,
i.e., inherits the first half of its genes from I1 and the second half from I2. Formally, the
description of this operation varies in function of the strategy type since they have different
sizes. A deterministic strategy identifies an action to perform at each state of the attacker
model A and therefore, is of size |A|. A cross-over between two deterministic strategies S1 and
S2 is described as:

S[i] =

S1[i], i ≤ |A|/2

S2[i], otherwise

A stochastic strategy assigns a probability of occurrence to each attack action in ΣA, which
determines its size to |ΣA|. Given two probabilistic strategies S1 and S2, a cross-over constructs
a child solution described by its strategy S as follows:

S[i] =

S1[i], i ≤ |ΣA|/2

S2[i], otherwise

It is worth mentioning that, with probabilistic strategies, cross-over is followed by a normalization
operation to ensure that the obtained probabilistic strategy S is a valid mass function, i.e.,
Σi(S[i]) = 1.

8.5 Synthesizing Attack Strategies 181

8.5.2.2 Neighborhood Construction

The individuals resulting from the cross-over are intensified, i.e. improved, using a local search
(LS) over a set of neighbor solutions. In the following, we define the notion of individual’s
neighborhood for deterministic and probabilistic strategies.

Deterministic strategy’s neighbors. Individuals are said to be neighbors when their
respective deterministic strategies differ by the decision at only one state of the attacker model.

More formally, given an individual I = ⟨S, c, p⟩, the set of neighbor solutions V (I) =
|A|⋃
i=1

V (I, si)
to individual I is identified by changing the attack action at state si of the attacker by another
enabled input action, as follows:

• V (I, si) = {⟨S ′, c′, p′⟩ : ∀j ̸= i, S ′(sj) = S(sj) ∧ S ′(si) ∈ enabled_input(si) \ S(si)}

where enabled_input(si) is the set of all input actions that are enabled at state si. It is worth
mentioning that an individual has at most (|ΣA| − 1) × |A| neighbors.

Probabilistic strategy’s neighbors. Individuals are said to be neighbors when their respec-
tive probabilistic strategies are slightly different. More formally, given an individual I = ⟨S, c, p⟩,
the set of neighbor solutions V (I) = {Ii = ⟨Si, ci, pi⟩} to individual I is identified by disabling
a single attack action ai, as follows:

• if S[i] = 1 or S[i] = 0 then the ith neighbor individual Ii does not exist. In the first
case, it is because ai is the only enabled action and disabling it makes S an invalid mass
function. In the second case, ai is already disabled.

• otherwise, individual Ii is identified by a strategy Si such that:

Si[j] =

0, j = i

S[j]
Σk(S[k])−S[i] , otherwise

(8.1)

The normalization in the second case of Equation 8.1 is again to ensure well-formedness of
the synthesized strategy (probability mass function). Remark that an individual has at most
|ΣA| neighbors. Figure 8.4 illustrates the computation of the neighbors of an individual with a
probabilistic strategy S = [0.3, 0.5, 0.2], over 3 attack actions. For example, the first neighbor
is obtained by disabling the first attack action in S1 and then normalizing it.

8.5.2.3 Mutation Operation

Mutation consists in randomly altering the ith information of a strategy S. This operation
concerns intensified individuals obtained after the local search and has a pm probability to be
performed. In other words, individuals are not systematically mutated. Mutating a deterministic

182 Assessing Systems Security with SMC

0.3 0.5 0.2

0 0.5
0.7 0 00.2

0.7
0.3
0.5

0.2
0.5

Initial solution

Neighbor 1 Neighbor 2 Neighbor 3

0.5
0.8

0.3
0.8

Figure 8.4: Illustration of a neighborhood construction for a probabilistic strategy

strategy Sd substitutes the chosen attack action a of a randomly selected state si by another
enabled input action, where a ∈ enabled_input(si) \ Sd[i]. This operation takes a different
meaning for a probabilistic strategy Sp since it consists in the modification of the selection
probability of a randomly chosen attack action, and requires a normalization.

8.5.2.4 ERE Replacement Policy

A genetic algorithm maintains a population of size N over M generations. The replacement
operation rules the survival of individuals through generations. Extreme Ranking Elitist
replacement is a balanced solution to provide elitism while avoiding early convergence.

Given a population Pi of N parents and their N/2 children, an Extreme Ranking Elitist
replacement policy identifies the N candidate individuals for the next generation’s population
Pi+1. This policy is parametrized by pere, that represents the proportion of the population to
be selected by elitism. More precisely, the replacement is performed as follows:

1. We consider an intermediate population P ′
i of size 3N

2 composed of the N parents and their
N/2 children. Individuals in this population are ranked based on the Pareto dominance
principle, and sorted in an ascending order. In the Pareto dominance principle, a solution
Ij is known as dominated by another solution Ik if the latter is better for every criterion,
in our case, cj ≥ ck ∧ pj ≤ pk excluding the case where they are all equal. Considering
this definition, the ranking consists of assigning rank 1 to non-dominated solutions of the
population. Iteratively, we temporarily remove the non-dominated ones and identify the
new non-dominated solutions that we assign the next rank, until all the solutions are
ranked. Figure 8.5 is an example of Pareto ranking on a population of 10 individuals.

2. To select the N individuals to be part of generation (i+1), we compute the number of best
(elite) individuals Nb = N×pere, and the number of worst individuals Nw = N× (1−pere)
kept for diversification. Population Pi+1 is computed as:

Pi+1 =
Nb⋃
j=1

{P ′
i (j)} ∪

3N
2⋃

k= 3N
2 −Nw+1

{P ′
i (k)}

8.6 Experiments 183

100 120 140 160 180 200 220

0.4

0.6

0.8

1

Attack cost

Pr
ob

ab
ili

ty
of

su
cc

es
s Rank 1

Rank 2
Rank 3

Figure 8.5: Illustration of Pareto dominance ranking on a population of 10 individuals

where P ′
i (j) is the jth individual in population P ′

i . Therefore, we select the Nb first (best)
individuals and the Nw last (worst) solutions in P ′

i .

8.6 Experiments

In this section, we present the experiments for the validation of the proposed security risk
assessment approach. We validate this proposal in the two configurations, namely, on abstracted
and on detailed concrete systems.

8.6.1 Experiments on Abstracted Systems

Here, we present the experiments performed using IEGA and IO-Def heuristics. We consider
case studies addressing security issues at the level of organizations (ORGA, MI), gateway
protocols (BGP), and sensor network infrastructures (SCADA). The comparison with the
state-of-the-art technique using Uppaal stratego [69] shows that our approach performs
better in most of the cases.

8.6.1.1 Overview and Experimental Setting

In the following, we give an overview of the considered case tudy and we explain our experimental
setting.

Overview. In our experiments, we considered four case studies briefly discussed below2:

1. ORGA. In this study, eight cyber and social attack actions can be combined to infiltrate
an organization. To prevent such actions, the organization considers different defense

2Further details are provided in Appendix B

184 Assessing Systems Security with SMC

actions, namely, train employees for thwart (t1) and for tricks (t2), threaten to fire them
(tf) and authenticate tags (at).

2. Resetting a BGP session. In this case study, an attacker can execute six attack actions to
reset a BGP session. The system is protected by three defense actions, i.e. check TCP
sequence number by MD5 authentication (au), check trace-route by using randomized
sequence numbers (rn), and secure routers with firewall alert (sr).

3. Supervisory Control And Data Acquisition system (SCADA). On these systems, the
attacker tries to access some of the thirteen system components and provoke hardware
failures in order to disturb the system. The system considers four defense mechanisms:
switch the Human-Machine Interface (sw) or restart one of the three system agents (rst1,
rst2, rst3).

4. A Malicious Insider attack (MI). In this case study, an insider tries to attack an organization
system from inside by exploiting seventeen identified vulnerabilities. The system sets up
protections by deploying an anti-virus (dva) and a mechanism to track the number of
tries on passwords (tpt).

Experimental approach. For each of the case studies, we performed two kind of experiments.
In the first, we manually tried all the possible combinations of available defense actions,
synthesized sophisticated attack strategies for them and evaluated their induced costs and
probabilities of success. We proceeded as follows: each time, we fixed a defense configuration
and applied IEGA in order to synthesize a near-optimal attack strategy. Since IEGA relies
on SMC, which is an estimation technique, to synthesize strategies, we performed 25 runs of
IEGA each time and measured the expected values and standard deviations of the cost and
the probability of success (reported in Table 8.1). Furthermore, for this first experiment, we
compared the results obtained by IEGA with the ones of stratego on the ORGA case study.
As stated earlier, our technique synthesizes better attack strategies in terms of cost as reported
in Table 8.2.

The second kind of experiments aims at identifying the most impactful defense configurations
against a near-optimal attack strategy obtained in the first experiments. To do so, we rely
on the IO-Def heuristic that automatically explores the defense configurations as explained in
Section 8.3. The results of this set of experiments are reported in Figure 8.7.

For all the experiments, we considered the same budgetary constraints cmax = 50000 and
tmax = 300 and we set the threshold ϵ = 0.05 for the experiments with IO-Def. We also
investigated the performance (exploration time) of the proposed heuristics (IEGA and IO-Def).
We observed that IEGA shows a linear growth with respect to the size of ΣA while IO-Def
grows polynomially in the size of ΣD.

8.6 Experiments 185

8.6.1.2 Results and Discussion

Defense x̄cost σcost Runtime (s)
BGP

au rn sr 50000 0.00 2.65
au sr 50000 0.00 2.54
rn sr 50000 0.00 2.71
au rn 284.31 2.83 3.95
au 285.00 2.38 4.02
sr 428.95 3.60 4.99
rn 284.45 1.97 3.93

none 283.96 1.94 4.09
SCADA

sw rst1 rst2 rst3 327.71 3.85 40.74
sw rst1 rst2 328.68 3.61 39.49
sw rst1 rst3 328.69 3.00 41.63
sw rst2 rst3 329.20 3.20 42.63
rst1 rst2 rst3 328.57 2.87 42.67

sw rst1 328.09 3.63 39.46
sw rst2 328.48 3.07 38.32
sw rst3 328.29 3.29 39.90
rst1 rst2 327.87 2.91 41.68
rst1 rst3 328.52 4.47 39.43
rst2 rst3 327.78 3.68 39.20

sw 329.03 4.16 38.64
rst1 327.96 3.43 39.29
rst2 326.60 4.38 40.26
rst3 326.95 3.32 42.30
none 330.21 3.11 41.35

MI
dva tpt 328.83 3.53 49.62
dva 163.04 3.66 48.60
tpt 331.08 3.42 47.84

none 159.85 2.69 49.26

Table 8.1: IEGA results with various defense con-
figurations on BGP, SCADA and MI.

Manual exploration of defenses.
We first report in Table 8.1 the results of
IEGA on the BGP, SCADA and MI case
studies. In this table, the first column
corresponds to the deployed defense con-
figuration, the second and third columns
report respectively the average cost x̄cost
over 25 runs of IEGA and standard devia-
tion σcost, the last column shows the aver-
age execution time of IEGA. We omit re-
porting the average probability of success
(resp. standard deviation) as it is always
1 (resp. 0) 3. Note that for each study,
we also investigated the setting where no
defense action is deployed which allows
us to see the impact of different defense
actions on the attack cost when enabled.

For BGP, we observed that the
first three defense configurations lead in-
evitably to exceed the maximum allowed
cost cmax. That is, no attack strategy can
be synthesized within this budget, whereas
in the case of the remaining defense con-
figurations, strategies requiring lower cost
can be synthesized. Moreover, one can see
that the cost growth is minor when using
rn or au compared to the case when no
defense is used. For SCADA, we notice
that the computation of the near-optimal
strategy results almost in the same cost
for all defense configuration. This can be
explained by the existence of a low cost
strategy that can always be applied, re-
gardless of the implemented defenses. Fur-
thermore, we observed that the cost in-
duced by using any combination of defense actions does not significantly improve compared to the

3Except for the first three cases in BGP where the probability of success is 0.

186 Assessing Systems Security with SMC

IEGA stratego Improvement
x̄cost σcost Runtime (s) x̄′

cost (%)

Defenses

t1 t2 tf at 968.08 5.30 9.6 1038.33 7
t2 tf at 237.97 1.39 10.2 410.52 42
t1 t2 at 238.37 1.55 10.6 309.35 23
at t2 237.92 1.27 10.1 359.48 34
t1 tf t2 967.05 7.90 9.8 1000.90 3
tf t2 238.18 1.58 10.2 288.53 17
t1 t2 238.20 1.29 10.2 295.70 19
t2 238.21 1.59 10.6 298.67 20

t1 tf at 96.19 1.14 9.4 112.17 14
tf at 96.04 1.08 9.7 103.37 7
t1 at 96.35 0.98 9.5 133.60 28
at 96.15 0.98 9.4 110.00 13
t1 tf 96.08 1.29 9.8 121.07 21
tf 96.27 1.14 9.8 105.97 9
t1 95.99 0.67 9.4 109.33 12

none 96.48 0.91 10.2 110.57 13

Table 8.2: IEGA results with various defense configurations on ORGA benchmark.

defenseless case. For MI, we obtained different costs depending on the defenses used. We noticed
that defense action dva insignificantly increases the attack cost as opposed to tpt. The results
for the ORGA case study are reported in Table 8.2 for the sake of comparison with stratego.
Except the last two columns, the table presents the same information as Table 8.1. For this
study, we observed that varying the enabled defenses significantly affects the minimal attack
cost and that the defense action at does not have a great impact on the cost. We actually
observed that the attack strategies blocked by this defense action can be also blocked by t2.

5 10 15
0

20

40

#attack_actions

Ru
nt

im
e

(s
)

Figure 8.6: IEGA runtime variation

Detailed results regarding the runtime performance
of IEGA are reported in the Table 8.1 and summarized
in Figure 8.6. The latter shows a linear evolution of the
runtime when increasing the size of ΣA, i.e., the number
of available attack actions. The measures in Figure 8.6
correspond respectively to the average runtime on BGP
(6 actions, 3.6s), ORGA (8 actions, 9.9s), SCADA (13 ac-
tions, 40.8s) and MI (17 actions, 48.8s). We also observed
that IEGA shows a certain stability of the synthesized
attack strategy over different runs as testified by the small standard deviation observed in the
different experiments.

Finally, we compared the results obtained by IEGA with stratego [69] on the ORGA case
study. Comparison results are shown in the last two columns of Table 8.2 which respectively

8.6 Experiments 187

Defense Actions t1 t2 tf at

Status On On On Off
Impact on cost +75% +90% +75% -

Exploration time 1min 25s
(a) Results on ORGA

Defense Actions au rn sr

Status Off On On
Impact on cost - +99% +99%

Exploration time 23s
(b) Results on BGP

Defense Actions sw rst1 rst2 rst3
Status Off Off Off Off

Impact on cost - - - -
Exploration time 9min 11s

(c) Results on SCADA

Defense Actions dva tpt

Status Off On
Impact on cost - +50%

Exploration time 4min 7s
(d) Results on MI

Figure 8.7: Results obtained with IO-Def on different case studies

present the average cost obtained using stratego and the percentage of improvement provided
by our approach. This improvement is measured as x̄′

cost−x̄cost

x̄′
cost

where x̄′
cost (respectively x̄cost) is

the minimal cost returned by stratego (respectively IEGA). The obtained results show that
our method is able to find attack strategies with lower attack costs than stratego within the
specified cost budget. In this case study, the improvement induced by our approach –in term of
cost reduction– compared to stratego ranged from 3% to 42% depending on the deployed
defense configuration.

Automatic exploration of defenses. We report in Figure 8.7 exploration results using
IO-Def for the different case studies. For each of them, we present the identified most impactful
defense configuration D in a separate table showing respectively, the defense actions, their
status (on/off), their impact on the attack cost (in percentage) in the context of D and the
IO-Def exploration time.

We recall that identifying a defense action to be impactful or not, is done by comparing its
impact to the threshold ϵ = 0.05. We observed that the best defense configuration for ORGA
(Table 8.7a) is D = {t1, t2, tf}. In this setting, the role played by at was found to be negligible,
while the highest impact (+90%) is brought by t2. The exploration results for BGP (Table
8.7b) show that the deployment of both rn and sr defenses is mandatory. Both of them have
an impact of +99%, i.e., disabling any of them leads to a heavy decrease of the attack cost.
In contrast, in the case of SCADA (Table 8.7c), none of the defenses has a significant impact
on the attack cost. Basically, this means that the available defenses are useless against the
synthesized cost-effective attack strategy. Table 8.7d shows the best defense obtained in the
MI case study. In this defense configuration, only tpt plays a significant role in increasing the
attack cost, with a +50% impact.

Regarding the exploration time of IO-Def, the main observation is that it does not only
depend on the size of ΣD but also on the nature of the system to explore and the IEGA runtime

188 Assessing Systems Security with SMC

(i.e., the size of ΣA). In spite of the fact that ORGA and SCADA have the same number of
defense actions, they are explored in significantly different amounts of time (respectively 1min
25s and 9min 11s). This is due to the inefficient available defense actions in the case of SCADA,
leading to the worst case exploration time of IO-Def where all the defenses have to be disabled.
Moreover, even though MI has the smallest number of defense actions to explore, it is not the
fastest. This is explained by the time required for a single run of the IEGA algorithm (48.8s in
average) in comparison to the cases of ORGA and BGP (respectively 3.6s and 9.9s in average).

8.6.2 Experiments on Detailed Systems

We ran our approach on a case study inspired from [149]. In this case study, an intruder wants
to access an organization’s network to corrupt its database. The target network is composed of
an IIS web server, a Windows machine and a Linux server running three services: “I Seek You”
chat software, a Squid web proxy, and a database (see Figure 8.8). This network is protected by
two firewalls ruling the distant access to the internal network, together with the internal traffic
itself. In addition, the organization deploys an intrusion detection system (IDS) to monitor the
traffic between the internal network and the public network.

Figure 8.8: Topology of the organization’s network

The intruder can perform 5 different attack actions in order to obtain a root privilege on
the Linux machine, which allows him to fulfill his malicious goal. The attack actions can be
performed by the intruder from any machine of the network as long as he has the appropriate
privilege on it, and they are of the following kind:

• IIS buffer overflow attack to remotely gain root privilege on the IIS web server,

• Squid port scan on the Linux machine exploiting a misconfiguration of the SQUID web
proxy to perform a port scan of the machines in the neighborhood,

• User privilege gaining on the Linux machine using the LICQ remote-to-user action, only
visible after scanning ports,

8.6 Experiments 189

• HTML scripting exploit on the Windows machine to obtain user privileges on the Windows
machine,

• Local buffer overflow on the Linux machine to acquire root privileges on the server.

However, these actions are restricted by the firewalls and are monitored by the IDS. Hence, the
difficulty is to complete an attack without being noticed by the IDS. In this case study, we aim
at identifying the optimal attack strategy for the intruder to perform a successful attack with a
minimal cost and a high probability of success.

We implemented a BIP model for the network security case study. We simulated this
model several times to collect execution traces for the learning phase. To do so we used a
Java implementation that triggers and collects several runs (in parameter) of the system then
projects the traces on the set of attack actions. Note that we consider only execution traces
where the malicious goal has been fulfilled, namely, successful attack traces. The result of this
process is a set of traces encoding possible successful combinations of attack actions.

In this case study, we first construct a baseline attacker model by reducing the complexity
of the learning problem to the case where all the attack actions succeed with probability 1.
Secondly, we use IOALERGIA to infer the attacker model under the environment uncertainty.
This model is assessed in comparison with the baseline attacker in order to evaluate the ability
to identify complex attack action combinations in a probabilistic context, and to find an
adequate output alphabet to encode the attack status. Then, given the learned attacker model
we compute the optimal deterministic attack strategies with IEGA on manually explorated the
defense configurations. The quality of these strategies is evaluated with respect to solutions
obtained using Prism. Finally, we synthesize the most impactful defense configuration, that is,
identify the impact of the deployed IDS mechanism and its ability to effectively protect the
organization network.

8.6.2.1 Learning an Attacker Model Without Uncertainty

In this experiment, the success probability of an attack action is set to 1. The goal of this
experiment is to obtain a scenario graph representing all the possible attack combinations.
Attack actions are selected by the attacker in a uniform manner. Hence, we know that the
probabilities to generate attack scenarios are to the same order, that is, we do not encounter
the problem of rare scenarios. The obtained scenario graph can be considered as a comparison
basis since it includes all the ways an intruder can use to attack the organization, for that given
topology/configuration.

Figure 8.9 represents the scenario graph obtained with ALERGIA. In this graph, we can
see different paths to perform successful attacks, identified by the execution of a local buffer
overflow on the Linux machine (local_lin) that grants the intruder the root privileges. However,
most of the paths contain a transition labeled with licq_iis_lin_ids indicating that the attack
has been detected. The only undetected attack is the once where the intruder first gains access

190 Assessing Systems Security with SMC

to the Windows machine and performs the rest of his attack from it, since the internal traffic
is not monitored by the IDS. It is worth mentioning that ALERGIA failed to merge states
s12,13,15 that are all final states with similar incoming transition (labeled local_lin).

7

2

3

4

8

9

10

11

12

13

14

15

5

6
con_int_iis

local_lin

local_lin

squid_iis_win

local_lin

squid_iis_win

scan_iis_lin

licq_iis_lin_ids

scan_win_lin

licq_win_lin

squid_lin_win

squid_iis_win

local_lin

licq_iis_lin_ids

squid_iis_win

scan_iis_lin
1

Figure 8.9: Scenario graph of the network intrusion obtained with ALERGIA

To be able to apply IOALERGIA, we define the output alphabet to represent the current
status of an attack, encoded with a single digit number. An attack is in one of the three
following statuses: running (0), succeeded (1), detected (2). Using this encoding, we update our
sample generator to produce a learning sample for IOALERGIA. Note that the input alphabet
represents the set of available attack actions. Figure 8.10 shows the scenario graph of the
network intrusion obtained with IOALERGIA. One can see a more compact model with a small
number of states. However, the resulting MDP introduces a lot of generalization. For example,
according to the learned model, the attacker could scan the Linux machine from the IIS web
server without first connecting to that server, which is obviously incorrect. This generalization
is mostly due to the fact that the single-digit status encoding does not carry enough information
about the status of single attacks. Hence, no distinction is made between the cases where no
attack action has been performed and when several actions already succeeded.

8.6.2.2 Learning an Attacker Model With Probabilities

As a result of the previous experiment, one can see the inefficiency of the firstly proposed
encoding of the output actions. To cope with this, we propose a more explicit encoding that
reflects the status of the intruder’s attacks on the network’s machines and services labeled
by “0” for “not succeeded yet” and “1” for “succeeded”. The format of the output symbol is
composed of 5 boolean values where:

• the first represents the status of the IIS buffer overflow attack,

8.6 Experiments 191

con_int_iis[1.0]

local_lin[1.0]

squid_iis_win[1.0]

scan_win_lin[1.0]

licq_win_lin[1.0]

squid_lin_win[1.0]

licq_iis_lin_ids[1.0]

scan_iis_lin[1.0]

local_lin[1.0]

local_lin[1.0]

squid_iis_win[1.0]

squid_iis_win[1.0] licq_iis_lin_ids[1.0]

1[0]

2[0]

3[0] 5[1]

6[2]4[2]

Figure 8.10: Scenario graph of the network intrusion obtained with IOALERGIA

• the second is for Squid port scan on the Linux machine,

• the third concerns the LICQ user privilege gaining on the Linux machine,

• the fourth encodes the HTML scripting exploit on the Windows machine,

• and the last is for the local buffer overflow on the Linux machine.

In addition to the new output encoding, we added some uncertainty on the success of each
attack action (environment env). By setting the probability of the success of each attack to 0.5,
we increase the length of traces (due to unsuccessful attempts) leading to successful attacks,
which makes the scenario graph harder to identify.

Figure 8.11 shows the intruder’s model, obtained with IOALERGIA, in the case of uncertainty
and with the explicit encoding. In this model, states where the acquisition of root privileges on
the Linux machine succeeded are identified by the success of the local buffer overflow on the
Linux machine, i.e., the last digit of the encoding takes the value 1. In the learned attacker
model, one can distinguish a clear pattern in the transitions. That is, given a state, an input
symbol probabilistically leads back to the same state through a self-loop or takes to a new state,
and the probability for each transition is approximately 50%. The model handles perfectly
the uncertainty such that, the self-loop models the unsuccessful attempts while the second
transition of the pattern encodes the success of the attack action. It is worth mentioning that
the input symbol ’H’ at location s7 does not follow this pattern due to the absence of traces
where ’H’ failed in the small learning sample given to IOALERGIA.

Besides, the learned model includes all the scenarios discovered in the baseline experiment
in Figure 8.9, without introducing undesired generalization, compared to figure 8.10. This
shows that the explicit encoding is more adequate to represent attack progression than just the
attack status.

192 Assessing Systems Security with SMC

G[.5]

1[0_0_0_0_0]

2[1_0_0_0_0]

3[1_1_0_0_0] 5[1_1_1_0_0]

6[1_1_0_1_0]4[1_0_0_1_0]

7[1_1_1_0_1]

8[1_1_1_1_0]

9[1_1_1_1_1]

A[.48]

A[.52]

F[.49]
B[.54]

B[.46]

F[.51]

C[.46]

C[.54]
F[.5]

F[.5]

D[.52]

D[.48]
G[.51]

G[.49]

E[.48]

E[.52]

B[.6]
B[.4]

H[.5]

H[1.0]E[.54]

B[.5]B[.55]

B[.5]
E[.46]B[.45]

G[.5]

H[.5]

A: con_int_iis E: local_lin
B: script_iis_win F: scan_iis_lin
C: scan_win_lin G: licq_iis_lin_ids
D: licq_win_lin H: script_lin_win

Figure 8.11: Scenario graph of the network intrusion with uncertainty using explicit output
encoding

8.6.2.3 Deterministic Strategy Exploration with IEGA

The input of this experiment is the intruder’s model previously learned using IOALERGIA and
represented in Figure 8.11, with the objective of identifying optimal strategies using IEGA. We
set the SMC parameters to (δ = 0.01, α = 0.1), which results in the evaluation of more than
14000 traces.

We define a cost structure that takes into account the depth the intruder has to reach to
initiate an attack action. Hence, an attack action performed from the IIS web server consumes
1 cost unit while an attack from the Linux or Windows machine has a cost of 2 units, since the
intruder has to also pass by the IIS web server. Similarly we assign a cost of 1 unit to the IIS
buffer overflow attack on the IIS web server. This cost structure is also extended to carry the
impact of the IDS by assigning a cost penalty of 100 units to the attacker when the intrusion is
detected. We also set the cost budget to cmax = 20, that is, any attack that is detected by the
IDS would exhaust the attacker resources. Regarding time, attack actions duration is uniformly
selected in the interval [0, 20] and the attacker time budget is set to tmax = 300.

To evaluate the quality of the synthesized strategies, we encoded the attacker model in the
Prism dialect that we enriched with the attack cost structure presented above. We then ran
Prism to construct optimal strategies minimizing the attack cost, that we finally compared to
our strategies. Note that Prism only supports single-objective optimization.

Table 8.3 shows the strategies (and their cost and success probabilities) obtained with both
IEGA and Prism with and without the activation of the IDS defense mechanism. We can see

8.6 Experiments 193

Method IDS Penalty Deterministic Strategy (Cost - Probability)

Prism No A → F → G → E (9.75 - ?)
Yes A → F → B → D → E (13.55 - ?)

IEGA No A → F → G → E (9.60 - 97%)
Yes A → F → B → D → E (13.17 - 90%)

Table 8.3: Strategy synthesis using Prism and IEGA with/without IDS penalty

that IEGA identifies the same strategies as Prism, obtained by an exhaustive search. The slight
difference in the score is due to the statistical estimation error of SMC. It is worth mentioning
that Prism strategies only optimize a single objective that is minimizing the cost structure. At
contrary, IEGA allows for a multi-criteria exploration of both the cost and the probability to
succeed an attack together with additional maximal time and cost bounds.

In terms of execution times, both techniques require few seconds to compute the result.
However, this runtime grows exponentially when increasing the size of the model in the case
of Prism, since it relies on an exhaustive exploration. IEGA is more scalable given its small
solution encoding and the simplicity of its basic operations.

8.6.2.4 Impactful Defense Synthesis

We use IO-Def to synthesize the most impactful defense configuration by evaluating the role
that the IDS mechanism plays in the protection of the network. In this heuristic, the impact of
a defense action d in a defense configuration D is computed as:

g(D, d) = C(D) − C(D \ {d})
C(D)

where C(X) is the attack cost of the best attacker identified by IOALERGIA+ IEGA against
the defense configuration X. In this case study, the network is guarded by a single defense,
namely, IDS. We can compute the impact of the IDS based on IO-Def as follows:

g({IDS}, IDS) = C({IDS}) − C(∅)
C({IDS}) = 13.17 − 9.60

13.17 = 31.13%

The activation of IDS increases the attack cost of the best strategy by a significant ratio
of 31.13%. This defense plays an important role in the organization security policy. However,
this policy is not sufficient to guarantee a full protection of the network. This weakness is
reflected by the very high success probability of 90% for the obtained strategy when IDS is
activated. In conclusion, the organization should further prospect to deploy more complex
defense mechanisms in order to protect the integrity of its database.

194 Assessing Systems Security with SMC

8.7 Related Works

Attack Trees (AT) [112] are widely used in security to model system vulnerabilities and the
different combinations of threats to address a malicious goal. Attack-Defense Trees (ADT) [95]
extend ATs with defense measures, also known as countermeasures, to include the organizations
defenses and bring into consideration the impact of attacks on these organizations. These
defense actions try to prevent an attacker from reaching its final goal. More recently, Attack-
Countermeasure Trees (ACT) [135] were introduced to model defense mechanisms that are
dynamically triggered upon attack detection.

Different types of analysis are proposed on these variants of trees. In [62] authors focus on
the probabilistic analysis of ATs, through the computation of the probability, cost, risk and
impact of an attack. A similar analysis is performed on ADTs in [147], called Threat Risk
Analysis (TRA), and applied to the security assessment of cloud systems. In addition to the
aforementioned probabilistic analysis, Roy et al. [135] make use of the structural and Birnbaum
importance measure to prioritize attack events and countermeasures in ACTs.

Authors of [69] propose a reinforcement learning method on ADTs to find a near-optimal
attack strategy. In this work, an attacker with a complex probabilistic and timed behavior is
considered which makes it more difficult to perform a static analysis. The authors propose
to address the security analysis problem from the attacker’s viewpoint by synthesizing the
stochastic and timed strategy that minimizes the attack cost using Uppaal stratego tool.
The strategy indicates the attack action to perform in each state in order to realize a successful
attack with a minimal cost.

In the previous approach, attack actions are also characterized by time duration as intervals.
It identifies the sequence of attack actions and associated duration towards satisfying a specified
time budget. However, it is not always the case that an attacker can control the duration of an
attack action, eg. the time necessary for a brute-force attack. In [118], we consider time as a
characteristic of an attack action, i.e., not controlled as it depends on the system, environment,
etc. We consider the maximum time bound as a global success condition of an attack, and
we propose IEGA, a hybrid Genetic Algorithm to find the stochastic strategy minimizing the
attack cost while maximizing the probability of success. This strategy schedules attack actions
and tells the attacker which action to perform when a choice is required.

The proposed approach is an extension of [118] in two points. First, the previous approach
studied naive attackers that randomly select any attack action that did not succeed yet. The
behavior of the considered attacker has been enhanced to be able to identify possible action
dependencies and existing patterns. Second, the previous approach focuses on exploring pure
stochastic strategies that define the probability for a naive attacker the select an attack action
at each state of that attack, whereas these strategies were extended to deterministic ones,
in which the attacker knows which action to perform at every step of the attack in order to
optimize its resources and success probability.

8.8 Discussion. 195

8.8 Discussion.

In this chapter, we were interested in addressing the security risk assessment of organizations
defenses following an offensive security framework. For this purpose we introduced a workflow
combining machine learning techniques and SMC to explore optimal strategies in terms of
cost and success probability. The proposed workflow is applicable on systems with different
granularities. The worthiness of deployed defense mechanisms is evaluated against abstracted
or detailed systems depending on the availability and the complexity of their nominal behavior
model.

This workflow relies on the IO-Def heuristic to synthesize defense configurations and IEGA
to explore optimal attack strategies. IO-Def varies the defense configurations of the system
and quantifies them according to the score of the best attacker strategy, returned by IEGA,
in order to find the most impactful defense configuration. IEGA allows for the resolution
of a bi-objective optimization problem, that is, the identification of attack strategies with a
minimal cost and a maximal success probability. These strategies are either probabilistic or
deterministic, in function of the adopted system abstraction level.

We experimented our workflow on several case studies addressing security issues in a
variation of domains. We were able to effectively identify the best attack scenarios according to
different defense configurations. This proposal also allowed us to give quantitative information
about the current systems security and point out weaknesses in the deployed security policies.

In the following, we discuss the proposed workflow and its possible extensions. First, we
address questions about the need of a refinement loop and a strategy validation in the workflow.
Then, we give insight into the impact of system observability on the risk assessment approach
and how structured probabilistic strategies could help in this context. Finally, we conclude
with future work.

Should we check the validity of the synthesized strategies? The validity of a strategy
refers to its ability to effectively lead the attacker to reach his win condition. A strategy is
invalid in two cases: either some of the recommended choice are wrong, e.g., the attacker ends
up entering in a cycle where the win condition is never satisfied, or the strategy fails to be
played against the black-box system. This latter case is encountered when a strategy is learned
on an over-approximated model of an attacker. Consequently, some attack actions that are
necessary to perform an attack can be missing. We recall that all the considered strategies by
IEGA are quantified using SMC, that requires to collect execution traces obtained by playing
these strategies against the actual system. Consequently, invalid strategies would result in a
probability of success of 0 and hence would be filtered out by the genetic operators through
generations.

196 Assessing Systems Security with SMC

Is there a need for an iterative process to refine the learned MDP? In most cases,
iterative processes intend to refine the learned model / synthesized strategy. The refinement of
the learned model intervenes in two cases: (1) some valid execution traces are not recognized
by the learned model, or (2) the process ends with a very generalizing model. The first case
can be fixed by increasing the size of the initial learning sample. The probably approximately
correct (PAC) learning framework is a possible alternative to provide a sufficient bound on
the number of required traces. A bigger and more varied learning sample also has an impact
on reducing the generalization in the model by increasing the accuracy of the compatibility
criteria. However, the worst case of generalization is when the number of states in the learned
model has less states than the original unknown model. This impacts the synthesized strategy.
Recall that a deterministic strategy assigns a single action per state of the system. Having less
states than the original model means that one learned state is playing several roles which is
inconsistent with any deterministic strategy. Note that in practice, the system is a black-box
and we cannot know the number of states in the target model.

In our approach there is no need for the process to be iterative as long as the learning sample
is big enough. The only remaining reason to iterate would be the generalization. But even this
is not a concern because (i) the traces accepted by the learned model and not belonging to the
target model represent invalid strategies that are filtered later on (as stated above), and (ii)
with an adequate output encoding, where each output symbol encodes the status of individual
attacks, we cannot then encounter the situation where an attacker state plays several roles.
This comes from the fact that IOALERGIA does not merge two states with different output
labels. The same restriction is made on states with error loops on input symbols with respect
to states where those input symbols are enabled.

What about probabilistic strategies? Probability distributions are another way to solve
non-determinism in MDPs. Applied to a structured attacker model, this would give room for
the attacker to probabilistically select an action to perform and not to be restricted to a single
action per state, while guaranteeing a mean cost. Probabilistic strategies give more flexibility
to the attacker w.r.t the chosen actions. We believe that synthesizing a probabilistic strategy
would result in a similar deterministic strategy when it come to minimizing cost since the
attacker has no interest in trying different actions at the same location knowing that it implies
additional cost.

How does the system’s observability affect the whole process? Observability refers
here to the ability for an attacker to know whether his attack action succeeded or failed.
In our work we assumed that the attacker either receives an answer from the system (e.g.
success/failure of a brute force attack on an authentication system) , or sees the effect of his
action of on the system (DDoS on a server then it does not respond anymore). But in practice,
attack actions can sometimes be non-observable. We can give an example of sending an e-mail

8.8 Discussion. 197

with a hidden malware in a picture. In that example, the success of the action happens when
the target opens the picture and the malware is secretly installed. However, the attacker is not
notified of it and hence cannot observe the success of his attack action.

In the case of fully observable actions, the proposed output encoding allows us to effectively
identify the current status on the attack, resulting into accurate learned models and efficient
deterministic strategies. With unobservable actions, the attacker has to manipulate longer
substrings in order to keep track of his current status. Indeed an attacker can try to remotely
control the target’s computer through the sent malware. This action would only work if the
unobservable action succeeded. In this context of uncertainty, it may be useful to explore
probabilistic strategies where the probabilities can cope with the missing knowledge of the
unobservable actions. For example, after sending his e-mail, the attacker reaches an uncertain
state where he can either re-send another e-mail (with a nicer picture) or try to exploit the
malware. It is obvious that the winning action (e.g. accessing a database) must be observable
to guarantee the termination of the attack process.

Future work. The IO-Def heuristic can be adapted for risk assessment from the defense
perspective. This can be easily done by extending it to consider a maximal defense budget,
which would enable a more realistic analysis. Other criteria, such as the return on investment
(ROI) [135], can be also used to evaluate defense actions.

Regarding IEGA, one can study the impact of the different parameters such as the population
size, the number of generations, the probability of mutation, the linearization factor and the
proportion of best individuals to keep. These parameters together with the intensification using
LS could be tweaked in order to reduce the exploration time while synthesizing near-optimal
strategies. We also want to experiment different cross-over policies instead of just a fixed
single-point cross-over.

In future work, we intend to apply our method to larger models with a higher number of
defense mechanisms and vulnerabilities. Also, studying partial observability is an interesting
purpose to consider more realistic systems.

Chapter 9

Conclusion and Future Work

9.1 Conclusions

This thesis addresses the problem of designing complex systems. This complexity arises from
the heterogeneity of their components, the uncertainty in their environment and the real-time
constraints. To overcome this complexity, we adopted a rigorous model-based and component-
based approach relying on formal methods. We analyzed the existing challenges, in model-based
approaches in general, and identified the need for: (i) a modeling formalism that handles real-
time and stochasticity in a compositional manner, (ii) a faithful construction of performance
models to enable performance analysis, (iii) automation techniques to ease the design especially
for code generation and bug finding, and (iv) the formal verification of system correctness with
respect to functional and extra-functional requirements.

We introduced a modeling formalism that conciliates the accuracy of a continuous time
representation with the flexibility of general probability distributions and probabilistic branching.
SRT-BIP is built on the basis of the BIP framework from which it inherits its component-based
and real-time capabilities. For probabilistic behaviors, SRT-BIP is formally defined to enable
the modeling of probabilistic branching and time stochasticity. To allow for more flexibility
when describing this latter, SRT-BIP supports general probability distributions, resulting in an
underlying semantics of GSMP. In addition, our implementation provides simulation and C++
code generation capabilities from SRT-BIP models.

For the construction of performance models, we proposed the use of model learning techniques
to infer probabilistic timed models from execution traces. Applying such an approach copes
with limitations of the ASTROLABE state-of-the-art technique regarding data independence,
plot and charts interpretation, and manual model calibration. We adapted and improved a
state-of-the-art algorithm to the inference of SRT-BIP models. Results have shown significant
improvement in the accuracy of the learned models in terms of precision and recall. However,
work still has to be done in this domain to enhance the learning of timed models.

200 Conclusion and Future Work

We introduced the SBIP framework for the modeling and the analysis of complex systems
exhibiting probabilistic and timed behaviors. This framework is the composition of the SRT-BIP
formalism for the modeling, simulation and code generation, and statistical model checking
techniques for verification and performance analysis. It enables us to build system models with
underlying semantics of DTMC, CTMC, or GSMP. Requirements in this framework are formally
expressed using the bounded versions of LTL and MTL. Regarding analysis techniques, SBIP
provides support for qualitative and quantitative analyses using classical SMC algorithms, in
addition to importance splitting for the analysis of rare properties and an automated technique
to explore property parameters. This framework is equipped with a user-friendly graphical
interface that centralizes and simplifies the tool’s usage. We applied SBIP to the performance
evaluation of real-life case studies ranging from communication protocols and concurrent systems
to embedded systems. We also built two risk assessment approaches around SBIP to illustrate
the interest of SMC in complex workflows.

We proposed a model-based design approach that relies on formal methods to develop
real-time resilient systems equipped with FDIR behavior. The proposed approach is centered
around SBIP and consists to incrementally refine a nominal model, expressed in SRT-BIP,
through model transformations. The impact of safety risks is evaluated through a quantitative
risk assessment method using SMC. The approach was successfully used for the design and
validation of the control software of a planetary rover.

We addressed the security assessment of organization defenses by proposing an approach for
the synthesis of the most impactful defense configurations. This approach explores the efficiency
of the defense configurations with respect to sophisticated attackers that aim at fulfilling a
malicious goal with the least resources (attack cost) and the highest success probability. We
defined the impact of defense configurations as the relative decrease in the attack cost due
to the deactivation of a single defense mechanism. Optimized strategies are constructed by
combining model learning and genetic algorithms in which strategies cost and probabilities are
computed using SMC.

Throughout our experiments, we highlighted the interest of relying on statistical model
checking for the verification and performance evaluation of stochastic and real-time systems.
This method has the advantage to easily scale to large-scale models while providing an adjustable
trade-off between analysis speed and result accuracy. However, in this method, the number of
required runs drastically increases when aiming for very high precision and confidence.

Our analyses being based on concrete executions of automatically generated C++ code, a
code instrumentation phase is necessary before any analysis. This task is left to the appreciation
of the designer and is highly error-prone. Further investigation into the automation of this
operation would substantially simplify the analysis process.

9.2 Future Work 201

9.2 Future Work

In the above contributions, we proposed an answer to the identified challenges and we improved
the state-of-the-art in modeling and analyzing complex systems. This work opens the way to
several directions for future work, as summarized hereafter.

9.2.1 The SRT-BIP Formalism

Modeling Features. Currently, the SRT-BIP formalism has a purely stochastic semantics
that handles both continuous time dynamics and probabilities. This formalism can be extended
to handle the modeling of non-deterministic, dynamic and continuous systems.

In practice, some aspects of the system may be under-specified due a lack in the specification
or as a result of environment unpredictability. In these cases, non-determinism is a necessary
feature of the modeling formalism. Resolving the non-determinism with probabilities would
lead to consider only one possible (probabilistic) behavior, and may alter the representativeness
of the performance analysis. It would be interesting to extend our semantics by allowing for
non-determinism, aiming for an underlying semantics of Stochastic Timed Automata (STA).
This would enable us to take benefits from the advances in the SMC techniques on MDPs [51]
and extend them to STAs.

Regarding system dynamism, an extension of BIP to model self-reconfiguration in a model-
based and architecture-based manner has been proposed in [63]. This formalism, denoted
DR-BIP, defines a system as a composition of motifs to describe the architecture, and expresses
dynamism in terms of interaction and reconfiguration rules. Analyzing such models using
SMC with respect to dynamic properties described in the DynBLTL logic would be interesting
to investigate, but one has first to define the stochastic semantics of these systems at three
different levels, namely, the atomic behavior, the composition and the reconfiguration.

In contrast with discrete-event simulation, continuous simulation allows one to study
phenomena in which the system state changes continuously, usually described with differential
equations. Few works have addressed the verification of systems with continuous behaviors
[54, 60] using SMC. An interesting extension of our work would be to make use of the SRT-BIP
encapsulation and flexibility regarding the execution of external code to combine traditional
SRT-BIP components with others having continuous behavior. Simulating such a system can
be obtained by relying on Simulink for the continuous part and the SRT-BIP engine for the
discrete part, and the global orchestration. Implementing such a simulation procedure in SBIP
would enable the use of SMC techniques against properties expressed in a continuous logic,
such as, Signal Temporal Logic (STL) [109]. However, the main difficulty is to define the
semantics behind the resulting model, and whether it is fully stochastic to permit us to use
SMC algorithms.

202 Conclusion and Future Work

Engine implementation. The current implementation of SRT-BIP does not actually support
the assignment of weights to port/interactions, and hence does not natively support the notion
of probabilistic branching. To date, this notion has to be explicitly described in the model by
the use of external libraries providing sampling capabilities. We intend to provide a native
support for probabilistic branching in a short term perspective. We also plan to extend the
collection of available distributions for expressing time stochasticity, such as, normal and gamma
distributions, by adding support for the Weibull distribution that is often used to describe
software execution times.

9.2.2 Learning Performance Models

Machine learning has promising applications in system design in general, and model-based
approaches in particular. As a first step in this direction, we illustrated the usage of these
techniques to learn performance models. The main drawbacks of the method we adapted
are the inference of a monolithic model, namely the loss of the system decomposition into
components, and the reasoning over discretized time intervals. Considering recent work on
learning GSMPs [56] should help improve this latter point.

9.2.3 The SBIP Framework

GUI features. The GUI of SBIP represents a significant improvement in the user experience,
compared to the previous version of the tool. Adding a graphical modeling interface to the
GUI would have a positive impact on the tool usability, and would make it easier to handle for
beginner users and also for more advanced ones. This would make the system modeling more
convenient and would enable graphical visualization of models.

Specification languages. The modularity and extensibility of SBIP make it easier to extend
its specification capabilities with additional classes of properties, such as, quantified (DynBLTL)
and continuous (STL) logics. In terms of specification languages for SMC, work still has to
be done on the consideration of temporal operators with unbounded horizon. This is crucial
for the expression of safety properties and system invariance, using unbounded globally, which
cannot be expressed in the bounded LTL and MTL.

Analysis techniques. The tool presents a collection of analysis techniques that can be
enriched by further investigating new SMC analyses, and useful automation techniques.

In the literature, rare properties are analyzed using either importance sampling or slitting.
However, importance sampling distributions fail to be accurately determined for properties
requiring long execution traces, while, in importance splitting, a proper decomposition of a
rare property into intermediate levels can be challenging to find, whenever this decomposition
exists. We identified the need for new algorithms to analyze rare properties, and we presented

9.2 Future Work 203

a possible direction to estimate rare properties using monitoring-based guided simulation. We
believe that this method could provide interesting results and we intend to further investigate
in this direction.

Similarly to the work that we did on security risk assessment, one can make use of genetic
algorithms to explore the scheduler space for the statistical model checking of MDPs. The
optimization problem consists, like in [51], to identify the highest, respectively the lowest,
probability for a non-deterministic system to satisfy a given property.

Regarding automation techniques, we implemented a method to explore parametrized
properties. This automated exploration facilitates the identification of optimal parameter values
for which a property is satisfied. Performing such a parameter exploration becomes less trivial
when dealing with multiple parameters since one has to define a strategy to efficiently explore
the set of valuation combinations. An idea would be to adopt an approach similar to the
gradient descent in order to iteratively converge to the optimal vector of parameter valuations.

Tool performance. As stated in Chapter 6, the overall performance of the tool would strongly
benefit from the enhancement of the SRT-BIP simulation engine. This amelioration can either
be addressed by optimizing the required computations by the engine for the identification of
the enabled interactions, the sampling of their remaining lifetime and the management of the
planning memory, or by refining the interfacing between the engine and SBIP.

The analysis time can also be reduced by considering SMC algorithms that guarantee
high confidence with fewer simulations. For example, such an algorithm has been proposed
in [90], based on the Massart bounds. Providing a distributed implementation of the SMC
algorithms remains the obvious manner to reduce analysis time and we plan to provide such
implementations in future releases of SBIP.

In design project, it is often the case that there are more than just one property to evaluate.
Hence, a useful automation technique would be to enable the parallel analysis of a set of
properties, either from the same family, using a parametrized property, or distinct ones. For
each generated trace, one would instantiate a monitor and an SMC core per property, resulting
in a 1-producer-n-consumers architecture. The execution of such a technique would terminate
when all the SMC cores finish their computation. This technique would significantly reduce the
overall analysis time by making use of the parallelism of the analysis platform. This method is
particularly interesting when the trace simulation is the most time consuming operation since
the same trace is reused for the analysis of the n properties, and hence avoid the simulation
of (n − 1) × M traces, with M representing the number of required simulations by SMC to
guarantee the desired precision and confidence level.

Congratulations, you have just finished reading this thesis.

List of Figures

1.1 The V-model methodology . 12
1.2 Overview of the ASTROLABE approach . 15
1.3 Illustration of the model checking technique 17

2.1 A DTMC of a gambler at a roulette game . 26
2.2 The statistical model checking process . 34

3.1 Examples of stochastic real-time BIP components 47
3.2 Composition of two stochastic real-time BIP components 49
3.3 Computation of upper and lower bounds in the case of timed interactions;

l = max(1, 0) = 1 and u = min(5, 3) = 3, hence the sampling will be uniform in
[1, 3]. 55

3.4 Shifting and normalizing a Normal density function in the case of stochastic
interactions . 56

3.5 Illustration of the stochastic simulation semantics on Example 3.1.3 57
3.6 Example of an SRT-BIP component with discrete probabilities 60
3.7 Code generation process for RT-BIP models . 61
3.8 Functional view of the stochastic simulation engine 64
3.9 Sequence diagram of the simulation algorithm 66
3.10 Rejection sampling from a normal distribution N (3, 1) truncated at time t = 2.

Random points are generated in the non-dashed area. The green area represents
the accepted points and the light gray one identifies the rejected ones. 67

4.1 Probabilistic strategy with uniform choice . 78
4.2 Identifying empty intervals with time-split operation 84
4.3 The three APTA models for the sample S . 86
4.4 Generalization introduced by the different APTAs 86
4.5 Degrees of generalization of the learned language L(H ′) with respect to the

target language L(H) . 89
4.6 Experimental setup to validate the improved learning procedure 89

206 List of Figures

4.7 CSMA/CD communication medium model for a 2-station network 90
4.8 Impact of varying the task A period on the precision/the learning time 92
4.9 Example of a model transformation . 95

5.1 SBIP architecture . 100
5.2 BIP engine wrapper . 101
5.3 Functional view of the MTL Monitor . 102
5.4 Screen-shot of SBIP graphical user interface . 110
5.5 Model construction diagram . 111
5.6 Screenshot of a property-based debugging . 112
5.7 Requirements formalization diagram . 113
5.8 Screenshot of the SBIP toolbar . 114
5.9 Screenshot of the parametric exploration results 117
5.10 Screenshots of the rare events workflow . 118
5.11 Simplified package diagram of the SBIP tool 120

6.1 Considered FireWire topologies . 128
6.2 Stochastic real-time BIP: Components of the FireWire Protocol. 129
6.3 Firewire component composition . 129
6.4 Probability of ϕ1 (top) and ϕ2 (bottom) for different FireWire topologies . . . 130
6.5 Components of the Bluetooth model . 132
6.6 Bluetooth model with two devices . 132
6.7 Probability of properties ϕ5 (left and middle) and ϕ6 (right) 133
6.8 The abstract PTP model. 134
6.9 Stochastic model and analysis results . 134
6.10 Gear controller model . 135
6.11 Probability of ϕ8(t) . 135
6.12 Heart and Pacemaker interactions . 136
6.13 A concurrency model with three components sharing a single resource 137
6.14 Detailed processing times for different trace sizes 139

7.1 Design approach based on formal methods integrating quantitative risk assessment
where: Γ denotes model transformation, i is the index of the number of performed
steps, j is the index for the number of explored models within a step bounded
by ni, and k is the number of iterative transformations performed on a model.
Initially i is set to 0, and j and k to 1. 143

7.2 The Bridget Rover (courtesy of Airbus Defense and Space UK). 144
7.3 Overview of the case study software architecture. 146
7.4 Library of components and their behavior: triggers represented with triangle ()

and queues represented with square () in Fig. 7.3. 147

List of Figures 207

7.5 Behavior of the main components from Fig. 7.3 represented as timed automata in
SBIP, where faults, fault detection and standard recovery action are represented
in red, more complex recovery strategy in blue, and deployment-specific actions
in dark green. 148

7.6 Probability and runtime of ϕ9 for the model including fault2. 154
7.7 Probability and runtime of ϕ9 for the model including fault3. 154
7.8 Behavior of the communication channel between the two partitions of Fig. 7.3. 156
7.9 SBIP results for the deployed model including transmission delays. 157
7.10 Parametric exploration of ϕ11 (left) and ϕ12 (right) on the deployed model with

transmission delays . 159
7.11 Parametric exploration of ϕ13 on the deployed model with transmission delays. 159
7.12 Results on the corrected deployed model. 160
7.13 SMC results for the deployed model with writing delays 161
7.14 SMC results for the deployed model with command losses 161

8.1 Proposed workflow for risk assessment based on model learning and strategies
exploration. 173

8.2 Illustration of the IO-Def heuristic . 176
8.3 Workflow of IEGA with a population of N individuals over M generations . . . 179
8.4 Illustration of a neighborhood construction for a probabilistic strategy 182
8.5 Illustration of Pareto dominance ranking on a population of 10 individuals . . . 183
8.6 IEGA runtime variation . 186
8.7 Results obtained with IO-Def on different case studies 187
8.8 Topology of the organization’s network . 188
8.9 Scenario graph of the network intrusion obtained with ALERGIA 190
8.10 Scenario graph of the network intrusion obtained with IOALERGIA 191
8.11 Scenario graph of the network intrusion with uncertainty using explicit output

encoding . 192

B.1 ORGA case study description . 228
B.2 Resetting a BGP session description [49] . 229
B.3 A Malicious Insider attack (MI) description . 230
B.4 SCADA system description [18] . 231

List of Tables

2.1 Modeling formalisms with probabilistic branching [32] 25
2.2 Example of temporal logics and their distinguishing features 30
2.3 Decidable fragments of MTL . 33
2.4 Distinguishing features of the state-of-the-art SMC tools 40

4.1 Classification of GI algorithms . 76
4.2 Accuracy results for the synthetic benchmarks with the four APTAs 91
4.3 Experimental results for CSMA/CD using the four APTA models 93

5.1 Comparison table of the state-of-the-art SMC tools 125

6.1 Results for properties ϕ3 and ϕ4 . 131
6.2 Parameters for the pacemaker and the heart models 136
6.3 Results of IP on the concurrency model . 138
6.4 Summary of performance . 139

7.1 Requirements of the planetary robotics case study at the different levels of
granularity of system design. 145

7.2 Results obtained with the SBIP framework on the system design with faults and
with respect to requirements from Table 7.1. n∗

ϕ refers to the parameter value
for which ϕ(n) is satisfied with probability 1. 151

7.3 Proportion of non-deterministic stop commands when increasing MTD. 159

8.1 IEGA results with various defense configurations on BGP, SCADA and MI. . . 185
8.2 IEGA results with various defense configurations on ORGA benchmark. . . . 186
8.3 Strategy synthesis using Prism and IEGA with/without IDS penalty 193

Bibliography

[1] ANTLR Web page. http://www.antlr.org/. Accessed: 2019-02-05.

[2] ESROCOS Planetary Exploration Demonstrator. https://github.com/ESROCOS/
plex-demonstrator-record.

[3] ESROCOS Project Github Repository. https://github.com/ESROCOS.

[4] Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, C-35(8):677–691, Aug 1986.

[5] Roger Aarenstrup. Managing model-based design. The MathWorks, Inc., 2015.

[6] Tesnim Abdellatif, Saddek Bensalem, Jacques Combaz, Lavindra de Silva, and Félix
Ingrand. Rigorous design of robot software: A formal component-based approach. Robotics
and Autonomous Systems, 60(12):1563–1578, 2012.

[7] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Rigorous implementation of
real-time systems - from theory to application. Mathematical Structures in Computer
Science, 23(4):882–914, 2013.

[8] Gul Agha and Karl Palmskog. A survey of statistical model checking. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 28(1):6, 2018.

[9] Bernhard K. Aichernig, Priska Bauerstätter, Elisabeth Jöbstl, Severin Kann, Robert
Korošec, Willibald Krenn, Cristinel Mateis, Rupert Schlick, and Richard Schumi. Learning
and statistical model checking of system response times. Software Quality Journal, Jan
2019.

[10] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-time.
Information and computation, 104(1):2–34, 1993.

[11] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, April 1994.

[12] Rajeev Alur, Tomas Feder, and Thomas A Henzinger. The benefits of relaxing punctuality.
Technical report, Cornell University, 1994.

[13] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87–106, 1987.

[14] Shiraj Arora, Axel Legay, Tania Richmond, and Louis-Marie Traonouez. Statistical model
checking of incomplete stochastic systems. In International Symposium on Leveraging
Applications of Formal Methods, pages 354–371. Springer, 2018.

http://www.antlr.org/
https://github.com/ESROCOS/plex-demonstrator-record
https://github.com/ESROCOS/plex-demonstrator-record
https://github.com/ESROCOS

212 Bibliography

[15] Shivangi Arry and Amardeep Kaur. Article: Formal verification of device discovery
mechanism using uppaal. International Journal of Computer Applications, 58(19):32–37,
November 2012.

[16] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Model
checking continuous-time markov chains by transient analysis. In International Conference
on Computer Aided Verification, pages 358–372. Springer, 2000.

[17] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[18] George H Baker and Allan Berg. Supervisory control and data acquisition (scada) systems.
The Critical Infrastructure Protection Report, 1(6):5–6, 2002.

[19] Thomas Ball and Sriram K Rajamani. The slam toolkit. In International Conference on
Computer Aided Verification, pages 260–264. Springer, 2001.

[20] Paolo Ballarini, Benoît Barbot, Marie Duflot, Serge Haddad, and Nihal Pekergin. Hasl:
A new approach for performance evaluation and model checking from concepts to experi-
mentation. Performance Evaluation, 90:53–77, 2015.

[21] Boehm Barry et al. Software engineering economics. New York, 197, 1981.

[22] Davide Basile, Maurice H. ter Beek, and Vincenzo Ciancia. Statistical model checking of
a moving block railway signalling scenario with uppaal smc. In Tiziana Margaria and
Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation. Verification, pages 372–391, Cham, 2018. Springer International Publishing.

[23] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Caillaud, Benoît Delahaye, and
Axel Legay. Statistical abstraction and model-checking of large heterogeneous systems.
In Formal Techniques for Distributed Systems, pages 32–46. Springer, 2010.

[24] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in bip. In Proceedings of the Fourth IEEE International Conference on
Software Engineering and Formal Methods, SEFM’06, pages 3–12, Washington, DC, USA,
2006. IEEE Computer Society.

[25] Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy, and Leïla Kloul. The AltaRica 3.0
project for model-based safety assessment. In 11th IEEE International Conference on
Industrial Informatics, INDIN 2013, Bochum, Germany, July 29-31, 2013, pages 741–746,
2013.

[26] Saddek Bensalem, Lavindra de Silva, Andreas Griesmayer, Félix Ingrand, Axel Legay, and
Rongjie Yan. A Formal Approach for Incremental Construction with an Application to
Autonomous Robotic Systems. In Software Composition - 10th International Conference,
SC 2011, Zurich, Switzerland, June 30 - July 1, 2011. Proceedings, pages 116–132, 2011.

[27] Saddek Bensalem, Benoît Delahaye, and Axel Legay. Statistical model checking: Present
and future. 2010.

[28] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier,
Marcus Größer, and Marcin Jurdzinski. Stochastic timed automata. arXiv preprint
arXiv:1410.2128, 2014.

[29] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu,
et al. Bounded model checking. Advances in computers, 58(11):117–148, 2003.

Bibliography 213

[30] Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Marco Gario,
Alberto Griggio, Cristian Mattarei, Andrea Micheli, and Gianni Zampedri. The xSAP
Safety Analysis Platform. In TACAS 2016, pages 533–539, 2016.

[31] Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Regis De Ferluc, Marco Gario,
Andrea Guiotto, and Yuri Yushtein. An Integrated Process for FDIR Design in Aerospace.
In IMBSA 2014, pages 82–95, 2014.

[32] Henrik Bohnenkamp, Pedro R d’Argenio, Holger Hermanns, and J-P Katoen. Modest: A
compositional modeling formalism for hard and softly timed systems. IEEE Transactions
on Software Engineering, 32(10):812–830, 2006.

[33] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-style
learning of nfa. In IJCAI, volume 9, pages 1004–1009, 2009.

[34] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. On expressiveness
and complexity in real-time model checking. In Luca Aceto, Ivan Damgård, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,
Automata, Languages and Programming, pages 124–135, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[35] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. Kronos: A model-checking tool for real-time systems. In International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 298–302. Springer,
1998.

[36] Tomáš Brázdil, Jan Krčál, Jan Křetínský, and Vojtěch Řehák. Fixed-Delay Events in
Generalized Semi-Markov Processes Revisited, pages 140–155. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[37] Lei Bu, Doron Peled, Dachuan Shen, and Yuan Zhuang. Genetic synthesis of concurrent
code using model checking and statistical model checking. In International Symposium
on Model Checking Software, pages 275–291. Springer, 2018.

[38] Peter E Bulychev, Alexandre David, Kim G Larsen, Axel Legay, Guangyuan Li, and
Danny Bøgsted Poulsen. Rewrite-based statistical model checking of wmtl. RV, 7687:260–
275, 2012.

[39] Jonathan W Butts, Robert F Mills, and Rusty O Baldwin. Developing an insider threat
model using functional decomposition. In International Workshop on Mathematical
Methods, Models, and Architectures for Computer Network Security, pages 412–417.
Springer, 2005.

[40] Rafael C Carrasco and José Oncina. Learning stochastic regular grammars by means of
a state merging method. In International Colloquium on Grammatical Inference, pages
139–152. Springer, 1994.

[41] Everton Cavalcante, Jean Quilbeuf, Louis-Marie Traonouez, Flavio Oquendo, Thais
Batista, and Axel Legay. Statistical model checking of dynamic software architectures. In
European Conference on Software Architecture, pages 185–200. Springer, 2016.

[42] Frédéric Cérou and Arnaud Guyader. Adaptive multilevel splitting for rare event analysis.
Stochastic Analysis and Applications, 25(2):417–443, 2007.

214 Bibliography

[43] Yingke Chen and Thomas Dyhre Nielsen. Active learning of markov decision processes
for system verification. In Machine Learning and Applications (ICMLA), 2012 11th
International Conference on, volume 2, pages 289–294. IEEE, 2012.

[44] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of Programs, pages
52–71. Springer, 1981.

[45] Edmund M Clarke, E Allen Emerson, Somesh Jha, and A Prasad Sistla. Symmetry
reductions in model checking. In International Conference on Computer Aided Verification,
pages 147–158. Springer, 1998.

[46] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. volume 8, pages
244–263. ACM, 1986.

[47] Jamieson M Cobleigh, Dimitra Giannakopoulou, and Corina S Păsăreanu. Learning
assumptions for compositional verification. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 331–346. Springer, 2003.

[48] WASC: The Web Application Security Consortium. Web application security statistics,
2008. Accessed on 20 February 2019.

[49] S. Convery, D. Cook, and M. Franz. An attack tree for the border gateway protocol.
Cisco Internet Draft, 2002.

[50] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
4th ACM Symp. Principles Prog. Lang, pages 238–252, 1977.

[51] Pedro D’argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Smart Sampling
for Lightweight Verification of Markov Decision Processes. International Journal on
Software Tools for Technology Transfer, 17(4):469–484, August 2015.

[52] Alexandre David, Kim Larsen, Axel Legay, Marius Mikučionis, and Zheng Wang. Time
for statistical model checking of real-time systems. In Computer Aided Verification, pages
349–355. Springer, 2011.

[53] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and Danny Bøgsted
Poulsen. Uppaal smc tutorial. International Journal on Software Tools for Technology
Transfer, 17(4):397–415, 2015.

[54] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted Poulsen,
and Sean Sedwards. Statistical model checking for biological systems. International
Journal on Software Tools for Technology Transfer, 17(3):351–367, 2015.

[55] Colin De la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010.

[56] André de Matos Pedro, Paul Andrew Crocker, and Simão Melo de Sousa. Learning
Stochastic Timed Automata from Sample Executions, pages 508–523. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[57] Ankush Desai, Shaz Qadeer, and Sanjit A Seshia. Programming Safe Robotics Systems:
Challenges and Advances. In International Symposium on Leveraging Applications of
Formal Methods, pages 103–119. Springer, 2018.

Bibliography 215

[58] Iulia Dragomir. ESROCOS Planetary Exploration Demonstrator: the Watchdog compo-
nent in TASTE and BIP. https://github.com/ESROCOS/control-mc_watchdog.

[59] Iulia Dragomir, Simon Iosti, Marius Bozga, and Saddek Bensalem. Designing Systems with
Detection and Reconfiguration Capabilities: A Formal Approach. In Bernhard Steffen
and Tiziana Margaria, editors, Leveraging Applications of Formal Methods, Verification
and Validation - 8th International Symposium, ISoLA 2018, Lymassol, Cyprus, November
5-9, 2018, Lecture Notes in Computer Science. Springer, november 2018.

[60] Yann Duplouy. Applying Formal Methods to Autonomous Vehicle Control. Theses,
Université Paris-Saclay, November 2018.

[61] Pedro R D’Argenio, Arnd Hartmanns, and Sean Sedwards. Lightweight statistical model
checking in nondeterministic continuous time. In International Symposium on Leveraging
Applications of Formal Methods, pages 336–353. Springer, 2018.

[62] Kenneth S Edge, George C Dalton, Richard A Raines, and Robert F Mills. Using attack
and protection trees to analyze threats and defenses to homeland security. In Military
Communications Conference, 2006. MILCOM 2006. IEEE, pages 1–7. IEEE, 2006.

[63] Rim El Ballouli, Saddek Bensalem, Marius Bozga, and Joseph Sifakis. Four exercises in
programming dynamic reconfigurable systems: methodology and solution in dr-bip. In
International Symposium on Leveraging Applications of Formal Methods, pages 304–320.
Springer, 2018.

[64] E Allen Emerson and Kedar S Namjoshi. Verification of a parameterized bus arbitration
protocol. In International Conference on Computer Aided Verification, pages 452–463.
Springer, 1998.

[65] Eugene A Feinberg and Adam Shwartz. Handbook of Markov decision processes: methods
and applications, volume 40. Springer Science & Business Media, 2012.

[66] Bernd Finkbeiner and Henny Sipma. Checking finite traces using alternating automata.
Formal Methods in System Design, 24(2):101–127, 2004.

[67] Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio, Pierre-Emmanuel Hladik,
Félix Ingrand, and Anthony Mallet. Formal Verification of Complex Robotic Systems on
Resource-Constrained Platforms. In FormaliSE: 6th International Conference on Formal
Methods in Software Engineering, 2018.

[68] Susumu Fujiwara, G v Bochmann, Ferhat Khendek, Mokhtar Amalou, and Abderrazak
Ghedamsi. Test selection based on finite state models. IEEE Transactions on software
engineering, 17(6):591–603, 1991.

[69] Olga Gadyatskaya, René Rydhof Hansen, Kim Guldstrand Larsen, Axel Legay, Mads Chr
Olesen, and Danny Bøgsted Poulsen. Modelling attack-defense trees using timed automata.
In International Conference on Formal Modeling and Analysis of Timed Systems, pages
35–50. Springer, 2016.

[70] Antonio-Javier Gallego, Damián López, and Jorge Calera-Rubio. Grammatical inference
of directed acyclic graph languages with polynomial time complexity. Journal of Computer
and System Sciences, 95:19–34, 2018.

[71] Pedro Garcia, Enrique Vidal, and José Oncina. Learning locally testable languages in the
strict sense. In ALT, pages 325–338, 1990.

https://github.com/ESROCOS/control-mc_watchdog

216 Bibliography

[72] Sebastian Gerwinn, Eike Möhlmann, and Anja Sieper. Statistical Model Checking for
Scenario-Based Verification of ADAS, pages 67–87. Springer International Publishing,
Cham, 2019.

[73] Peter W Glynn. A gsmp formalism for discrete event systems. Proceedings of the IEEE,
77(1):14–23, 1989.

[74] Patrice Godefroid. Using partial orders to improve automatic verification methods. In
International Conference on Computer Aided Verification, pages 176–185. Springer, 1990.

[75] E Mark Gold. Complexity of automaton identification from given data. Information and
control, 37(3):302–320, 1978.

[76] Joseph Y Halpern and Moshe Y Vardi. Model checking vs. theorem proving: a manifesto.
Artificial intelligence and mathematical theory of computation, 212:151–176, 1991.

[77] Mor Harchol-Balter and Allen B Downey. Exploiting process lifetime distributions for
dynamic load balancing. ACM Transactions on Computer Systems (TOCS), 15(3):253–285,
1997.

[78] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Software
verification with blast. In International SPIN Workshop on Model Checking of Software,
pages 235–239. Springer, 2003.

[79] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Probabilistic
Model Checking. In International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI’04, pages 73–84, January 2004.

[80] Gerard J. Holzmann. The model checker spin. IEEE Transactions on software engineering,
23(5):279–295, 1997.

[81] Falk Howar and Bernhard Steffen. Active automata learning in practice. In Machine
Learning for Dynamic Software Analysis: Potentials and Limits, pages 123–148. Springer,
2018.

[82] SANS ICS. Analysis of the cyber attack on the ukrainian power grid, march 2016.
Accessed on 25 April 2018.

[83] Malte Isberner, Falk Howar, and Bernhard Steffen. The ttt algorithm: a redundancy-
free approach to active automata learning. In International Conference on Runtime
Verification, pages 307–322. Springer, 2014.

[84] Risk management - guidelines. Standard, International Organization for Standardization,
Geneva, CH, February 2018.

[85] Cyrille Jegourel. Rare event simulation for statistical model checking. PhD thesis,
Université Rennes 1, 2014.

[86] Cyrille Jegourel, Kim G. Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted Poulsen,
and Sean Sedwards. Importance Sampling for Stochastic Timed Automata, pages 163–178.
Springer International Publishing, Cham, 2016.

[87] Cyrille Jegourel, Axel Legay, and Sean Sedwards. Cross-entropy optimisation of impor-
tance sampling parameters for statistical model checking. In International Conference on
Computer Aided Verification, pages 327–342. Springer, 2012.

Bibliography 217

[88] Cyrille Jegourel, Axel Legay, and Sean Sedwards. A platform for high performance
statistical model checking — plasma. In Proceedings of the 18th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’12, pages
498–503, Berlin, Heidelberg, 2012. Springer-Verlag.

[89] Cyrille Jegourel, Axel Legay, and Sean Sedwards. Importance splitting for statistical
model checking rare properties. In CAV, volume 13, pages 576–591. Springer, 2013.

[90] Cyrille Jegourel, Jun Sun, and Jin Song Dong. Sequential schemes for frequentist
estimation of properties in statistical model checking. In International Conference on
Quantitative Evaluation of Systems, pages 333–350. Springer, 2017.

[91] Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam.
Modeling and verification of a dual chamber implantable pacemaker. Tools and Algorithms
for the Construction and Analysis of Systems, pages 188–203, 2012.

[92] Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, and Carolyn Talcott.
Discrete vs. dense times in the analysis of cyber-physical security protocols. In Riccardo
Focardi and Andrew Myers, editors, Principles of Security and Trust, pages 259–279,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[93] Joost-Pieter Katoen, Ivan S Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N
Jansen. The ins and outs of the probabilistic model checker mrmc. Performance evaluation,
68(2):90–104, 2011.

[94] Robert M Keller. Formal verification of parallel programs. Communications of the ACM,
19(7):371–384, 1976.

[95] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. Foundations
of attack–defense trees. In International Workshop on Formal Aspects in Security and
Trust, pages 80–95. Springer, 2010.

[96] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, Nov 1990.

[97] Dirk P Kroese and Reuven Y Rubinstein. Monte carlo methods. Wiley Interdisciplinary
Reviews: Computational Statistics, 4(1):48–58, 2012.

[98] Vidyadhar G Kulkarni. Introduction to Modeling and Analysis of Stochastic Systems.
Springer New York, 2011.

[99] Vidyadhar G Kulkarni. Modeling and analysis of stochastic systems. Chapman and
Hall/CRC, 2016.

[100] Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. A rewriting based model
for probabilistic distributed object systems. In Elie Najm, Uwe Nestmann, and Perdita
Stevens, editors, FMOODS, pages 32–46, 2003.

[101] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: verification of
probabilistic real-time systems. In Proceedings of the 23rd international conference on
Computer aided verification, CAV’11, pages 585–591, Berlin, Heidelberg, 2011. Springer-
Verlag.

[102] Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Automatic
verification of real-time systems with discrete probability distributions. Theoretical
Computer Science, 282(1):101–150, 2002.

218 Bibliography

[103] Marta Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi Wang. Symbolic model
checking for probabilistic timed automata. Information and Computation, 205(7):1027–
1077, 2007.

[104] Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging algorithm. In
International Colloquium on Grammatical Inference, pages 1–12. Springer, 1998.

[105] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model checking: An
overview. In International conference on runtime verification, pages 122–135. Springer,
2010.

[106] Axel Legay, Dirk Nowotka, Danny Bøgsted Poulsen, and Louis-Marie Tranouez. Statistical
model checking of llvm code. In Klaus Havelund, Jan Peleska, Bill Roscoe, and Erik
de Vink, editors, Formal Methods, pages 542–549, Cham, 2018. Springer International
Publishing.

[107] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a gear
controller. International Journal on Software Tools for Technology Transfer (STTT),
3(3):353–368, 2001.

[108] Alexander Maier, Asmir Vodencarevic, Oliver Niggemann, Roman Just, and Michael
Jaeger. Anomaly detection in production plants using timed automata. In 8th International
Conference on Informatics in Control, Automation and Robotics (ICINCO), pages 363–369,
2011.

[109] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages
152–166. Springer, 2004.

[110] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D Nielsen, Kim G Larsen, and Brian
Nielsen. Learning probabilistic automata for model checking. In Quantitative Evaluation
of Systems (QEST), 2011 Eighth International Conference on, pages 111–120. IEEE,
2011.

[111] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D Nielsen, Kim G Larsen, and
Brian Nielsen. Learning markov decision processes for model checking. arXiv preprint
arXiv:1212.3873, 2012.

[112] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In International
Conference on Information Security and Cryptology, pages 186–198. Springer, 2005.

[113] Franz Mayr and Sergio Yovine. Regular inference on artificial neural networks. In Andreas
Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar Weippl, editors, Machine Learning
and Knowledge Extraction, pages 350–369, Cham, 2018. Springer International Publishing.

[114] Kenneth L McMillan. Symbolic model checking. In Symbolic Model Checking, pages
25–60. Springer, 1993.

[115] Braham Lotfi Mediouni, Smail Niar, Rachid Benmansour, Karima Benatchba, and
Mouloud Koudil. A bi-objective heuristic for heterogeneous mpsoc design space exploration.
In Design & Test Symposium (IDT), 2015 10th International, pages 90–95. IEEE, 2015.

[116] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, and Saddek Bensalem. Improved
learning for stochastic timed models by state-merging algorithms. In NASA Formal
Methods Symposium, pages 178–193. Springer, 2017.

Bibliography 219

[117] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani, Axel Legay,
and Saddek Bensalem. SBIP 2.0: Statistical Model Checking Stochastic Real-Time
Systems. In Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, pages
536–542, 2018.

[118] Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Axel Legay, and Saddek Bensalem.
Mitigating security risks through attack strategies exploration. International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation, 2018.

[119] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André Platzer. Formal verification
of obstacle avoidance and navigation of ground robots. The International Journal of
Robotics Research, 36(12):1312–1340, 2017.

[120] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michał Szyn-
welski. Learning nominal automata. arXiv preprint arXiv:1607.06268, 2016.

[121] Miguel Munoz, Giuseppe Montano, Malte Wirkus, Kilian Hoeflinger, Daniel Silveira,
Nikolaos Tsiogkas, Jerome Hugues, Herman Bruyninckx, Iulia Dragomir, and Ali Muham-
mad. ESROCOS: a Robotic Operating System for Space and Terrestrial Applications. In
Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA) 2017,
Leiden, Netherlands, June 20-22, 2017, june 2017.

[122] Ayoub Nouri, Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel, and
Axel Legay. Statistical model checking QoS properties of systems with SBIP. Int. J.
Softw. Tools Technol. Transf. (STTT), 17(2):171–185, April 2015.

[123] Ayoub Nouri, Marius Bozga, Anca Molnos, Axel Legay, and Saddek Bensalem. Astro-
labe: A rigorous approach for system-level performance modeling and analysis. ACM
Transactions on Embedded Computing Systems (TECS), 15(2):31, 2016.

[124] Ayoub Nouri, Braham Lotfi Mediouni, Marius Bozga, Jacques Combaz, Saddek Bensalem,
and Axel Legay. Performance evaluation of stochastic real-time systems with the SBIP
framework. International Journal of Critical Computer-Based Systems, 8(3-4):340–370,
2018.

[125] Jorge Ocon, Francisco Colemenero, Joaquin Estremera, Karl Buckley, Mercedes Alonso,
Enrique Heredia, Javier Garcia, Amanda Coles, Andrew Coles, Moises Martinez, Emre
Savas, Florian Pommerening, Thomas Keller, Spyros Karachalios, Mark Woods, Iulia
Dragomir, Saddek Bensalem, Pierre Dissaux, Arnaud Schach, Robert Marc, and Piotr
Weclewski. The ERGO framework and its use in planetary/orbital scenarios. In Interna-
tional Astronautical Congress (IAC) 2018, Bremen, Germany, October 1-5, 2018, october
2018.

[126] Masashi Okamoto. Some inequalities relating to the partial sum of binomial probabilities.
Annals of the institute of Statistical Mathematics, 10(1):29–35, 1959.

[127] José Oncina and Pedro Garcia. Identifying regular languages in polynomial time. In
Advances in Structural and Syntactic Pattern Recognition, pages 99–108. World Scientific,
1992.

[128] Joël Ouaknine and James Worrell. Safety metric temporal logic is fully decidable. In Holger
Hermanns and Jens Palsberg, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 411–425, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

220 Bibliography

[129] Joël Ouaknine and James Worrell. Some recent results in metric temporal logic. In Franck
Cassez and Claude Jard, editors, Formal Modeling and Analysis of Timed Systems, pages
1–13, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[130] Doron Peled, Moshe Y Vardi, and Mihalis Yannakakis. Black box checking. In Formal
Methods for Protocol Engineering and Distributed Systems, pages 225–240. Springer, 1999.

[131] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

[132] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems
in cesar. In International Symposium on programming, pages 337–351. Springer, 1982.

[133] Jean Quilbeuf, Mathieu Barbier, Lukas Rummelhard, Christian Laugier, Axel Legay,
Blanche Baudouin, Thomas Genevois, Javier Ibañez-Guzmán, and Olivier Simonin. Statis-
tical model checking applied on perception and decision-making systems for autonomous
driving. In 10th Workshop on Planning, Perception and Navigation for Intelligent Vehicles
at the IEEE International Conference on Intelligent Robots and Systems, october 2018,
2018.

[134] Jean Quilbeuf, Everton Cavalcante, Louis-Marie Traonouez, Flavio Oquendo, Thais
Batista, and Axel Legay. A Logic for the Statistical Model Checking of Dynamic Software
Architectures. In ISoLA, volume 9952 of Leveraging Applications of Formal Methods,
Verification and Validation: Foundational Techniques, pages 806 – 820, Corfou, Greece,
October 2016. Springer.

[135] Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Attack countermeasure trees (ACT):
towards unifying the constructs of attack and defense trees. Security and Communication
Networks, 5(8):929–943, 2012.

[136] Enno Ruijters, Dennis Guck, Peter Drolenga, and Mariëlle Stoelinga. Fault maintenance
trees: reliability centered maintenance via statistical model checking. In 2016 Annual
Reliability and Maintainability Symposium (RAMS), pages 1–6. IEEE, 2016.

[137] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Learning continuous time markov
chains from sample executions. In Proceedings of the The Quantitative Evaluation of
Systems, First International Conference, QEST ’04, pages 146–155, Washington, DC,
USA, 2004. IEEE Computer Society.

[138] Koushik Sen, Mahesh Viswanathan, and Gul A. Agha. Vesta: A statistical model-checker
and analyzer for probabilistic systems. In International Conference on the Quantitative
Evaluation of Systems, QEST’05, pages 251–252, 2005.

[139] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active automata learning
from a practical perspective. In International School on Formal Methods for the Design
of Computer, Communication and Software Systems, pages 256–296. Springer, 2011.

[140] Franck Thollard, Pierre Dupont, Colin de la Higuera, et al. Probabilistic dfa inference
using kullback-leibler divergence and minimality. In ICML, pages 975–982, 2000.

[141] Tarik Tosun, Gangyuan Jing, Hadas Kress-Gazit, and Mark Yim. Computer-aided
compositional design and verification for modular robots. In Robotics Research, pages
237–252. Springer, 2018.

[142] Sicco Ewout Verwer. Efficient identification of timed automata: Theory and practice.
PhD thesis, TU Delft, Delft University of Technology, 2010.

Bibliography 221

[143] Abraham Wald. Sequential tests of statistical hypotheses. Annals of Mathematical
Statistics, 16(2):117–186, 1945.

[144] Abraham Wald. Statistical decision functions. 1950.

[145] Neil Walkinshaw, Ramsay Taylor, and John Derrick. Inferring extended finite state
machine models from software executions. Empirical Software Engineering, 21(3):811–853,
2016.

[146] Alexandra Wander and Roger Förstner. Innovative Fault Detection, Isolation and Recovery
Strategies On-board Spacecraft: State of the Art and Research Challenges. Deutscher
Luft- und Raumfahrtkongress, 2012.

[147] Ping Wang, Wen-Hui Lin, Pu-Tsun Kuo, Hui-Tang Lin, and Tzu Chia Wang. Threat
risk analysis for cloud security based on attack-defense trees. In Computing Technology
and Information Management (ICCM), 2012 8th International Conference on, volume 1,
pages 106–111. IEEE, 2012.

[148] Yu Wang, Siddhartha Nalluri, Borzoo Bonakdarpour, and Miroslav Pajic. Statistical
model checking for probabilistic hyperproperties. arXiv preprint arXiv:1902.04111, 2019.

[149] Jeannette M Wing et al. Scenario graphs applied to network security. Information
assurance: survivability and security in networked systems, pages 247–277, 2008.

[150] Nan Yang, Kousar Aslam, Ramon Schiffelers, Leonard Lensink, Dennis Hendriks, LGWA
Cleophas, and Alexander Serebrenik. Improving model inference in industry by combining
active and passive learning. In IEEE International Conference on Software Analysis,
Evolution, and Reengineering, 2018.

[151] Håkan LS Younes. Verification and Planning for Stochastic Processes with Asynchronous
Events. PhD thesis, Carnegie Mellon, 2005.

[152] Håkan LS Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. Numerical
vs. statistical probabilistic model checking. International Journal on Software Tools for
Technology Transfer, 8(3):216–228, 2006.

[153] Håkan L. S. Younes. Ymer: A statistical model checker. In Computer Aided Verification,
CAV’05, pages 429–433. Springer, 2005.

[154] E. Zio. The future of risk assessment. Reliability Engineering & System Safety, 177:176 –
190, 2018.

[155] Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian statistical model checking
with application to stateflow/simulink verification. Formal Methods in System Design,
43(2):338–367, 2013.

Appendix A

A Vehicle Gear Controller:
Extended Case Study

A.1 The Complete Set of Considered Requirements

The complete set of verified requirements is listed below (the required verification time is given
between brackets). Note that some requirements are expressed as several MTL properties.
For instance, requirement P13 induces 6 MTL properties. We also point out the fact that
requirements P9,10 were not considered since they address events that are very unlikely to occur.
Note that Importance Splitting also fails to analyze them due to the impossibility to identify
suitable levels (that are less rare).

• P1. The gear can be changed. [41s] ♢[0,1500] (gc.GearChanged)

• P2. The gear can be set to gear 5 and the reverse gear. [16m 11s]

a. ♢[0,1000000] (inf.gear = 5)

b. ♢[0,1000000] (inf.gear = −1)

• P3. The switch gear can be performed in 1000 ms. [42s] ♢[0,1500] (gc.GearChanged ∧
gc.SysT imer ≤ 1000)

• P4. When the gearbox is in position N, the gear is zero. [5m 16s] □[0,10000] ((gb.Neutral ∧
inf.gear = 0) ∨ ¬gb.Neutral ∨ ¬inf.stableGear)

• P5. If the gearbox is idle then the gear is never N. [10m 47s]

a. □[0,10000] (¬gb.Idle ∨ ¬inf.N)

b. □[0,10000] (¬inf.N ∨ gb.Neutral)

224 A Vehicle Gear Controller: Extended Case Study

• P6. If there are no errors in gear and clutch and the engine is in normal mode, a gear
switch is guaranteed in 900 ms, a switch gear can never be performed in less than 150 ms,
and if the switch is not from/to gear N, a switch gear cannot be done in less than 400 ms.
[1m 26s]

a. a gear switch is guaranteed in 900 ms
♢[0,900] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 0 ∨ gc.GearChanged)

b. A switch gear can never be performed in less than 150 ms
♢[0,150] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬ e.UseCase = 0 ∨ ¬ gc.GearChanged)

c. If the switch is not from/to gear N, a switch gear cannot be done in less than 400 ms
□[0,400] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 0 ∨ ¬(inf.FromGear >
0 ∨ ¬inf.ToGear > 0 ∨ ¬gc.GearChanged)

• P7. If there are no errors in gear and clutch but engine in zero torque mode, a gear switch
is guaranteed in 1055 ms, a switch gear can never be performed in less than 550 ms, and
if the switch is not from/to gear N, a switch gear cannot be done in less than 700 ms.
[1m 30s]

a. a gear switch is guaranteed in 1055 ms
♢[0,1055] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 1 ∨gc.GearChanged)

b. switch gear can never be performed in less than 550 ms
♢[0,550] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 1 ∨ (¬gc.GearChanged ∧
¬gc.Gear))

c. If the switch is not from/to gear N, a switch gear cannot be done in less than 700 ms
□[0,700] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 1 ∨ ¬inf.FromGear >
0 ∨ ¬inf.ToGear > 0 ∨ ¬gc.GearChanged ∨ ¬gc.Gear)

• P8. If there are no errors in gear and clutch but engine in synchronous speed mode, a
gear switch is guaranteed in 1205 ms, a switch gear can never be performed in less than
450 ms, and if the switch is not from/to gear N, a switch gear cannot be done in less than
750 ms. [1m 31s]

a. a gear switch is guaranteed in 1205 ms
♢[0,1205] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 2 ∨gc.GearChanged)

b. switch gear can never be performed in less than 450 ms
♢[0,450] (¬ e.UseCase = 2 ∨ (¬gc.GearChanged ∧ ¬gc.Gear))

c. If the switch is not from/to gear N, a switch gear cannot be done in less than 750 ms
□[0,750] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.UseCase = 2 ∨ ¬inf.FromGear >
0 ∨ ¬inf.ToGear > 0 ∨ ¬gc.GearChanged ∨ ¬gc.Gear)

A.1 The Complete Set of Considered Requirements 225

• P11. The engine is guaranteed to find synchronous speed in the case where no error occurs
in it. [5m 52s]

□[0,10000] (¬gb.ErrStat = 0 ∨ ¬c.ErrStat = 0 ∨ ¬e.isError)

• P12. If the gear is N, the engine is either in initial or going to initial (i.e. ToGear = 0 and
engine in zero). [5m 22s]

□[0,10000] (¬inf.N ∨ (inf.ToGear = 0 ∧ e.Zero) ∨ e.Initial)

• P13. Torque is always indicated in the engine when the gear controller has a gear set.
[31m 17s]

a. □[0,10000] (¬gc.Gear ∨ ¬ inf.gear = −1 ∨ ¬inf.stableGear ∨ e.Torque)

b. □[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 1 ∨ ¬inf.stableGear ∨ e.Torque)

c. □[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 2 ∨ ¬inf.stableGear ∨ e.Torque)

d. □[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 3 ∨ ¬inf.stableGear ∨ e.Torque)

e. □[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 4 ∨ ¬inf.stableGear ∨ e.Torque)

f. □[0,10000] (¬gc.Gear ∨ ¬ inf.gear = 5 ∨ ¬inf.stableGear ∨ e.Torque)

• P14. The controller is in predefined locations depending on the clutch state. [10m 31s]

a. If clutch is open
□[0,10000] (¬c.Open ∨ gc.ClutchOpen ∨ gc.ClutchOpenTwo ∨ gc.CheckGearSetTwo ∨
gc.ReqSetGearTwo ∨ gc.ClutchClose ∨ gc.CheckClutchClosed ∨ gc.CheckClutchClosedTwo ∨
gc.CheckGearNeuTwo)

b. If clutch is closed
□[0,10000] (¬c.Closed ∨ gc.ReqTorqueC ∨ gc.GearChanged ∨ gc.Gear ∨ gc.Initiate ∨
gc.CheckTorque ∨ gc.ReqNeuGear ∨ gc.CheckGearNeu ∨ gc.ReqSyncSpeed ∨
gc.CheckSyncSpeed ∨ gc.ReqSetGear ∨ gc.CheckGearSet)

• P15. The controller is in predefined locations depending on the gearbox status. [10m 32s]

a. If gear is idle
□[0,10000] (¬c.Open ∨ gc.ClutchOpen ∨ gc.ClutchOpenTwo ∨ gc.CheckGearSetTwo ∨
gc.ReqSetGearTwo ∨ gc.ClutchClose ∨ gc.CheckClutchClosed ∨ gc.CheckClutchClosedTwo ∨
gc.CheckGearNeuTwo)

b. If gear is neutral
□[0,10000] (¬gb.Neutral ∨ gc.ReqSetGear ∨ gc.CheckClutchClosedTwo ∨ gc.ReqTorqueC ∨
gc.GearChanged ∨ gc.Gear ∨ gc.Initiate ∨ gc.ReqSyncSpeed ∨ gc.CheckSyncSpeed ∨
gc.ReqSetGear ∨ gc.CheckClutch ∨ gc.ClutchOpen ∨ gc.ReqSetGearTwo)

226 A Vehicle Gear Controller: Extended Case Study

• P16. If engine regulates on torque, then the clutch must be closed. [6m 08s]

□[0,10000] (¬e.Torque ∨ c.Closed)

Appendix B

Assessing Systems Security with
SMC: Case Studies Description

In the following case study descriptions, attack actions are characterized by their lower (LB)
and upper (UB) time bounds, the required resources (Cost) and their probability to succeed
(Env). In the ADTs, attack actions are represented by ellipses and defense actions by rectangles.
Please note that the system models are abstracted.

B.1 An Organization System Attack (ORGA)

Figure B.1 describes an Organization System Attack (ORGA) taken from [69]. In this case
study, an attacker aims at removing an RFID-tag from a warehouse. To achieve this task, he
can proceed in different ways among which he can, for instance, infiltrate management and
order a new tag, then in the second phase send a false tag.

The purpose of this case study is mainly to use it as a comparison basis between our proposed
approach based on genetic algorithms and the reinforcement learning approach proposed in
stratego. The application of this latter method on this case study is reported in [69]. However,
due to technical problems related to the released Uppaal-stratego, the authors of this paper
kindly accepted to rerun the experiments for us to be able to give a faithful comparison. In fact,
the reported results in the stratego column of Table 8.2 are provided by the development
team of that tool.

228 Assessing Systems Security with SMC: Case Studies Description

∨

∧

is bs ¬

∧

t1 tf

t b ∧

¬

t2

∨

st ∧

im ot

¬

∧

at ¬

ba
(a) Attack-Defense Tree

Action LB UB Cost Env
Identify Subject (is) 0 20 80 0.8
Bribe Subject (bs) 0 20 100 0.7

Threaten (t) 0 20 700 0.7
Blackmail (b) 0 20 700 0.7

Send false Tag (st) 0 20 50 0.5
Break Authentication (ba) 0 20 85 0.6
Infiltrate Management (im) 0 20 70 0.5
Order Tag replacement (ot) 0 20 0 0.6

(b) Attack actions characteristics

Defense action Label
t1 Training for thwart
tf Threaten to Fire employees
t2 Training for trick
at Authenticate Tag

(c) Defense actions labels

Figure B.1: ORGA case study description

B.2 Resetting a BGP Session (BGP) 229

B.2 Resetting a BGP Session (BGP)

We constructed this case study based on [135], in which detection and mitigation events are
attached with success probabilities (resp. PD and PM). We transpose these probabilities to
the attack actions in a straightforward manner: the probability of an attack action to succeed
is computed as the probability that all the implemented countermeasures set to block it, fail.
For example, the attack action sa can be blocked by both defense actions au and rn. So, the
probability of sa to succeed equals Env(sa) = (1 −PD1 ×PM1) × (1 −PD2 ×PM2), where PD1,
PD2, PM1 and PM2 are given in [135]. Note that, in our case, a pair of detection-mitigation
events is combined is a single defense action. For example, PD1 and PM1 are merged into a
defense au, and, PD2 and PM2 into the defense action rn. Also, the defense mechanisms are
fixed before starting an analysis and have a probability 1.

∨

∧

∧

∨

∨

no op ka

sm

∧

sa ¬

au

¬

rn

∧

ar ¬

sr

(a) Attack-Defense Tree

Action LB UB Cost Env
Send RST message to TCP stack (sm) 0 20 50 0.7

Send BGP message: notify (no) 0 20 60 0.7
Send BGP message: open (op) 0 20 70 0.7

Send BGP message: keep alive (ka) 0 20 100 0.7
TCP sequence number attack (sa) 0 20 150 0.42

Alter config. via router (ar) 0 20 190 0.65
(b) Attack actions characteristics

Defense action Label
au Check TCP sequence number by MD5 authentication
rn Check Trace-route by using randomized sequence numbers
sr Secure routers with firewall alert

(c) Defense actions labels

Figure B.2: Resetting a BGP session description [49]

230 Assessing Systems Security with SMC: Case Studies Description

B.3 A Malicious Insider Attack (MI)

In what follows, we describe a Malicious Insider attack (MI) [39] . It is presented in [135] and
is adapted to our context in a similar way to BGP.

∨

∨

∧

¬

dva

lv

uar

∨

∨

ela ewa

∨

dbf ∨

dbg dbw

oc ∨

cmf cmc cmu

∧

mu vop

∨

pc ∧

∨

rt sn

¬

tpt

sme

(a) Attack-Defense Tree

Action LB UB Cost Env
Unauthorized alternation of registry (uar) 0 20 50 0.08

Launch virus (lv) 0 20 60 0.07
Email local account (ela) 0 20 70 0.15

Email web-based account (ewa) 0 20 100 0.2
Drop-box: FTP to file server (dbf) 0 20 150 0.1
Drop-box: post to new group (dbg) 0 20 190 0.4

Drop-box: post to website (dbw) 0 20 100 0.1
Online chat (oc) 0 20 110 0.1

Copy to media: Floppy disk (cmf) 0 20 90 0.1
Copy to media: CD-ROM (cmc) 0 20 250 0.25
Copy to media: USB drive (cmu) 0 20 275 0.3

Misuse (mu) 0 20 100 0.2
Violation of organization policy (vop) 0 20 120 0.15

Poor configuration (pc) 0 20 100 0.15
Sniff Network (sn) 0 20 30 0.18
Root Telnet (rt) 0 20 40 0.12

Sendmail exploit (sme) 0 20 170 0.5
(b) Attack actions characteristics

Defense action Label
dva Detect viruses with anti-virus
tpt Track number of tries at password

(c) Defense actions labels

Figure B.3: A Malicious Insider attack (MI) description

B.4 Supervisory Control And Data Acquisition System (SCADA) 231

B.4 Supervisory Control And Data Acquisition System (SCADA)

∨

∨

∨

2/3

s1 s2 s3

wse

ulan ∨

∧

∧

hmi ¬

sw

scopf

∧ ∧

∧

g3 ¬

rst3

∧

g2 ¬

rst2

∧

g1 ¬

rst1

∨

db uwanws

(a) Attack-Defense Tree

Action LB UB Cost Env
Sensor one (s1) 0 20 100 0.1
Sensor two (s2) 0 20 110 0.1

Sensor three (s3) 0 20 90 0.1
Wrong estimation (wse) 0 20 250 0.25

Unavailable network LAN (ulan) 0 20 275 0.3
Control server one (hmi) 0 20 100 0.15

Control server two (scopf) 0 20 120 0.15
Controlling agent one (g1) 0 20 100 0.09
Controlling agent two (g2) 0 20 30 0.15

Controlling agent three (g3) 0 20 40 0.08
Database (db) 0 20 170 0.5

Unavailable network (uwan) 0 20 160 0.35
Workstation (ws) 0 20 150 0.4

(b) Attack actions characteristics

Defense action Label
sw Switch
rst1 Restart agent one if an attack is detected on it
rst2 Restart agent two if an attack is detected on it
rst3 Restart agent three if an attack is detected on it

(c) Defense actions labels

Figure B.4: SCADA system description [18]

232 Assessing Systems Security with SMC: Case Studies Description

Similarly to BGP, SCADA is inspired from [135]. This case study represents an example of how
attack trees are used to answer the failure assessment problem where attack actions represent
the possible hardware/software failures. Since we are interested to identify what an attacker
can do to reach a malicious goal on a system, we then interpret these attack actions as an
attacker trying to trigger a hardware/software failure.

In addition to the transposition from probabilities of successful defenses to probabilities
of successful attack actions, Env also scales with the probability of failures. For example,
the probability of g1 to succeed, provided it is guarded by a defense rst1, is computed as:
Env(g1) = Pg1 × (1 − PD × PM), where the probabilities of a failure of the controlling agent
one Pg1, the detection of its failure PD and its restarting PM are given in [135].

In Figure B.4a, the operator “2/3” is a shortcut designating the case where at least
two events si and sj occur, with i ̸= j. It is equivalent to the boolean expression ϕ =
(s1 ∧ s2) ∨ (s1 ∧ s3) ∨ (s2 ∧ s3).

	Contents
	1 Introduction
	1.1 Designing Complex Systems
	1.1.1 Model-Based Design Concepts and Methodology
	1.1.2 System Requirements
	1.1.3 System Model Characteristics
	Decomposition to handle complexity.
	Real-time is key.
	Probabilities for uncertainty and more.
	

	1.1.4 Challenges

	1.2 Analysis of System Models
	1.2.1 Model Checking
	1.2.2 Probabilistic Model Checking
	1.2.3 Statistical Model Checking

	1.3 Contributions
	1.3.1 Stochastic Real-Time Modeling Formalism
	1.3.2 Learning Performance Models
	1.3.3 Modeling and Analysis Framework
	1.3.4 Safety and Security Risk Assessment Approaches

	1.4 Outline
	1.5 Publications
	1.6 Tools

	2 State of the Art on Stochastic Modeling and Analysis
	2.1 Modeling Formalisms
	2.1.1 Discrete Time Markov Chain
	2.1.2 Continuous Time Markov Chain
	2.1.3 Generalized Semi-Markov Process
	2.1.4 Markov Decision Process

	2.2 Specification Languages
	2.2.1 Linear-time Temporal Logic
	LTL syntax.
	LTL Semantics.
	Bounded LTL.

	2.2.2 Metric Temporal Logic
	MTL syntax.
	MTL semantics.
	MTL variants.

	2.3 Statistical Model Checking Techniques
	2.3.1 Qualitative Analysis
	Single Sampling Plan (SSP).
	Sequential Ratio Testing Procedure (SPRT).
	

	2.3.2 Probability Estimation
	2.3.3 Rare Events Analysis
	2.3.3.1 Importance Sampling
	2.3.3.2 Importance Splitting

	2.4 Statistical Model Checking Tools
	2.5 Statistical Model Checking in Practice
	Application domains.
	Extension to new models.
	Extension to new logics.
	Improvement of SMC algorithms.
	SMC in complex workflows.

	2.6 Conclusion

	3 Modeling Component-Based Stochastic Real-Time Systems
	3.1 Stochastic Real-Time BIP
	3.1.1 Stochastic Real-Time Components
	3.1.2 Composition of Stochastic Real-Time Components
	3.1.3 Stochastic Simulation Semantics
	3.1.3.1 Stochastic Simulation Algorithm
	3.1.3.2 The Time Sampling Procedure
	3.1.3.3 Density Functions for Variable-delay Interactions

	3.1.4 An Example of Stochastic Simulation
	3.1.5 Additional Modeling Features
	3.1.5.1 Handling Cost/Reward Structures
	3.1.5.2 Considering Eager Interactions
	Extending the time sampling function.
	Updating the Stochastic Simulation Algorithm.

	3.2 Implementation of SRT-BIP
	3.2.1 Overview of the RT-BIP Framework
	3.2.1.1 The Modeling Language
	3.2.1.2 The Compiler
	3.2.1.3 The Execution Engine

	3.2.2 The SRT-BIP Extension
	3.2.2.1 Expressing Probabilities
	3.2.2.2 Enriching the Generated Code
	3.2.2.3 The Stochastic Real-Time Engine
	The functional description.
	The implementation details.

	3.3 Conclusion

	4 Learning Timed Models with Probabilities
	4.1 Grammatical Inference
	4.1.1 Principles
	4.1.2 Learnability
	4.1.3 Learning Algorithms: an Overview
	RPNI.
	EDSM.
	Learning k-testable languages.
	Alergia.
	MDI.
	AAlergia.
	RTI+.
	BUTLA.
	The L* algorithm.

	4.1.4 Classification
	4.1.4.1 Target Model
	4.1.4.2 Active Vs. Passive Learning
	4.1.4.3 Iterative Vs. Constructive Approach
	4.1.4.4 Summary

	4.2 The RTI+ Learning Procedure
	4.2.1 The Learned Model
	4.2.1.1 Deterministic Real-Time Automata (DRTA)
	4.2.1.2 Stochastic Interpretation of a DRTA

	4.2.2 Building the APTA
	4.2.3 The Learning Process
	4.2.3.1 Time-split Operation.
	4.2.3.2 Merge Operation

	4.2.4 Compatibility Evaluation
	4.2.5 Shortcomings

	4.3 Learning More Accurate Models
	4.3.1 Unfolded APTA
	4.3.2 Constructive-bound APTA
	4.3.3 Tightened-bound APTA
	4.3.4 Discussion
	4.3.4.1 Initial Generalization Perspective
	4.3.4.2 APTA Size Perspective

	4.4 Experiments
	4.4.1 Evaluation Procedure
	4.4.2 Benchmarks
	Periodic A
	Periodic A-B
	CSMA/CD communication medium model

	4.4.3 Results
	4.4.3.1 The Synthetic Examples.
	4.4.3.2 The CSMA/CD Example

	4.5 DRTA+ to SRT-BIP Model Transformation
	Comparison of the accepted languages.

	4.6 Conclusion

	5 The SBIP Framework
	5.1 SBIP Design
	5.1.1 Stochastic Simulation Engine
	5.1.2 Monitoring Properties
	5.1.3 Statistical Analyses Core
	5.1.3.1 Parametric Exploration
	5.1.3.2 Importance Splitting
	5.1.3.3 Objective-Guided Simulation for Rare Events Analysis
	The algorithm.
	Discussion.

	5.1.4 Graphical User Interface

	5.2 Integrated Workflows and Activities
	5.2.1 Design Activities
	5.2.1.1 Model Construction
	Model edition.
	Compilation.
	Simulation and functional validation.
	Debugging.

	5.2.1.2 Requirements Formalization
	Property edition.
	Instrumentation.
	Validation and debugging.

	5.2.2 Analysis Workflows
	5.2.2.1 Classical SMC Workflow
	Input selection phase.
	SMC setting phase.
	Analysis phase.
	Results interpretation phase.

	5.2.2.2 Parametric Exploration (PX) Workflow
	Input selection phase.
	PX setting phase.
	Analysis phase.
	Results interpretation phase.

	5.2.2.3 Rare Events Analysis Workflow
	Input selection phase.
	IP setting phase.
	Analysis and results interpretation phases.

	5.3 Implementation Details
	5.3.1 Overview of the Code Structure
	5.3.1.1 The Model
	The trace package.
	The formula package.
	The gui.model package.
	The analysis.model package.

	5.3.1.2 The View
	5.3.1.3 The Controller
	5.3.1.4 Programming Efforts

	5.3.2 Availability and Documentation

	5.4 Related Tools
	5.5 Conclusion

	6 Analysis of System Performance with SBIP
	6.1 Communication Protocols Case Studies
	6.1.1 FireWire – IEEE 1394
	6.1.2 Bluetooth – Device Discovery
	6.1.3 Precision Time Protocol – IEEE 1588

	6.2 Embedded Systems Case Studies
	6.2.1 A Vehicle Gear Controller
	6.2.2 Pacemaker Model

	6.3 Concurrency with a Shared Resource
	6.4 Tool Performance Analysis
	6.5 Conclusion

	7 Quantitative Risk Assessment in the Design of Resilient Systems
	7.1 A Model-based Approach Integrating Quantitative Risk Assessment
	7.2 Planetary Robotics Case Study
	7.2.1 System and Requirements Overview
	7.2.2 Nominal Software Design
	7.2.2.1 Model
	7.2.2.2 Validation Requirements
	7.2.2.3 Validation Results
	7.2.2.4 Conclusion

	7.3 Risk Assessment of the Planetary Robotics System
	7.3.1 On Robustness to Faults
	7.3.1.1 Model with Faults
	7.3.1.2 Risk Assessment Requirements
	7.3.1.3 Risk Assessment Results
	7.3.1.4 Model with FDIR Behavior
	7.3.1.5 Validation Requirements
	7.3.1.6 Validation Results
	7.3.1.7 Conclusion
	7.3.1.8 On System Performance
	7.3.1.9 Model for Performance Measurement
	7.3.1.10 Risk Assessment Requirements
	7.3.1.11 Risk Assessment Results
	7.3.1.12 Model with reset Mechanism for the Joystick
	7.3.1.13 Validation Requirements
	7.3.1.14 Validation Results
	7.3.1.15 Conclusion

	7.3.2 On Deployment Impact
	7.3.2.1 Deployed Model
	7.3.2.2 Risk Assessment Requirements
	7.3.2.3 Risk Assessment Results
	 Transmission delays.
	 Writing delays.
	Command losses.

	7.3.2.4 Conclusion

	7.4 Related Work
	7.5 Discussion
	Approach.
	Case study.
	Tools.
	Future work.
	

	8 Assessing Systems Security with SMC
	All is about resources.
	8.1 Modeling Systems with Vulnerabilities and Defenses
	8.1.1 Attacker, Defender and Attack-Defense Tree
	8.1.1.1 Attacker
	Deterministic attack strategy.
	Probabilistic attack strategy.

	8.1.1.2 Defender
	8.1.1.3 Attack-Defense Tree

	8.1.2 Risk Assessment Model

	8.2 Proposed Workflow
	8.3 Identifying Impactful Defenses
	8.4 Learning Attacker Models
	8.4.1 IOFPTA
	8.4.2 Elementary Operations of IOALERGIA
	8.4.3 Compatibility Criterion

	8.5 Synthesizing Attack Strategies
	8.5.1 Overview
	8.5.2 IEGA Operations Description
	8.5.2.1 Cross-over Operation
	8.5.2.2 Neighborhood Construction
	Deterministic strategy's neighbors.
	Probabilistic strategy's neighbors.

	8.5.2.3 Mutation Operation
	8.5.2.4 ERE Replacement Policy

	8.6 Experiments
	8.6.1 Experiments on Abstracted Systems
	8.6.1.1 Overview and Experimental Setting
	Overview.
	Experimental approach.

	8.6.1.2 Results and Discussion
	Manual exploration of defenses.
	Automatic exploration of defenses.

	8.6.2 Experiments on Detailed Systems
	8.6.2.1 Learning an Attacker Model Without Uncertainty
	8.6.2.2 Learning an Attacker Model With Probabilities
	8.6.2.3 Deterministic Strategy Exploration with IEGA
	8.6.2.4 Impactful Defense Synthesis

	8.7 Related Works
	8.8 Discussion.
	 Should we check the validity of the synthesized strategies?
	 Is there a need for an iterative process to refine the learned MDP?
	 What about probabilistic strategies?
	 How does the system's observability affect the whole process?
	 Future work.

	9 Conclusion and Future Work
	9.1 Conclusions
	9.2 Future Work
	9.2.1 The SRT-BIP Formalism
	Modeling Features.
	Engine implementation.

	9.2.2 Learning Performance Models
	9.2.3 The SBIP Framework
	GUI features.
	Specification languages.
	Analysis techniques.
	Tool performance.
	

	List of Figures
	List of Tables
	Bibliography
	Appendix A A Vehicle Gear Controller: Extended Case Study
	A.1 The Complete Set of Considered Requirements

	Appendix B Assessing Systems Security with SMC: Case Studies Description
	B.1 An Organization System Attack (ORGA)
	B.2 Resetting a BGP Session (BGP)
	B.3 A Malicious Insider Attack (MI)
	B.4 Supervisory Control And Data Acquisition System (SCADA)

