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Résumé

Une machine quantique est un appareil dont les degrés de liberté et leur évolution sont
gouvernés par les lois de la mécanique quantique. Il existe un certain nombre d’indices
et de preuves que de telles machines pourraient offrir des possibilités radicalement dif-
férentes de celles offertes par les machines classiques. Elles pourraient résoudre des prob-
lèmes actuellement hors de portée des machines classiques, tel que fournir des moyens
de faire des transferts sécurisés sur des réseaux [1], permettre de réaliser des mesures
physiques avec une précision inégalée [2], générer de vrais nombres aléatoires certifiés
[3] ou fournir une accélération importante pour résoudre des problèmes spécifiques [4].

Par le passé, les systèmes atomiques, optiques ou à base d’ions piégés ont été étudiés
comme brique de base pour construire ces machines quantiques. Cependant, depuis la
première démonstration il y a un peu plus de vingt ans [5, 6], les circuits quantiques
à base de supraconducteurs sont de plus en plus prometteurs pour réaliser des bits
quantiques. Ces circuits peuvent être utilisés pour créer des oscillateurs qui stockent
des photons micro-ondes individuels et ainsi construire des bits quantiques. Tous les
éléments de ces circuits sont intrinsèquement régis par les lois de la mécanique quan-
tique : leurs niveaux d’énergie sont quantifiés et leur espacement est plus grand que
l’énergie associée à la température (pour des températures cryogéniques accessibles en
laboratoire). Afin de prédire leurs propriétés, le courant et la tension doivent tous
deux être traités comme des opérateurs quantiques non commutatifs. Le temps de co-
hérence de ces circuits a progressé rapidement et continuellement, de plusieurs ordres
de grandeur, et atteint désormais quelques millisecondes pour les meilleurs systèmes
[7, 8, 9, 10, 11]. Contrairement aux systèmes utilisant la physique atomique, les circuits
supraconducteurs fournissent une grande flexibilité dans les paramètres exploitables et
dans la complexité des hamiltoniens les représentant. Cette flexibilité nous permet
d’explorer des régimes d’opération entièrement nouveaux. De plus, les signaux micro-
ondes, au contraire des signaux dans le domaine optique, sont très bien contrôlés et ma-
nipulés avec des équipements électroniques du commerce, développés pour l’ingénierie
radio-fréquence. La nanofabrication nécessaire pour réaliser de tels circuits est de mieux
en mieux contrôlée, de sorte qu’il devient désormais possible de fabriquer de multiples
circuits complexes en parallèle. Ces récentes avancées laissent supposer qu’il sera bientôt
possible de réaliser des processeurs quantiques contenant un nombre de qubits suffisant
pour offrir des applications pratiques intéressantes, comme le montre également les ré-
cents investissements commerciaux dans ce domaine (de la part de Google, IBM, Intel
ou Rigetti Computing).

Toutes ces propriétés ont fait des circuits supraconducteurs un cadre prometteur
pour le traitement de l’information quantique. Des machines quantiques à petite échelle
(seulement quelques degrés de liberté ou qubits) ont déjà été démontrées et ont récem-
ment mené au développement de système à plusieurs qubits (entre cinquante et cent) et
à leur comparaison avec les performances de matériel classique. En effet, de nombreuses
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expériences précédemment réalisées en utilisant d’autres systèmes physiques (ions piégés,
résonance magnétique nucléaire ou électrodynamique quantique avec des atomes de Ryd-
berg) ont été reproduites avec succès avec des circuits supraconducteurs. Dans la plupart
de ces expériences, les propriétés des circuits supraconducteurs, telles que leur facilité
de contrôle et d’ajustement des forces des couplages ou des non-linéarités, ainsi que leur
temps de cohérence raisonnable, leur a permis d’obtenir des performances comparables
voire meilleures que leurs équivalents atomiques ou optiques.

Cependant, et malgré ces nombreux succès jusqu’à présent, le passage à l’échelle de
ces systèmes à un nombre de degrés de liberté intéressant pour des applications pratiques,
reste un problème ouvert. En effet, la prochaine étape critique pour le développement
du traitement de l’information quantique est la correction active d’erreur, qui consiste
à concevoir des encodages logiques de l’information, qui est alors protégée contre les
principales sources de décohérence, à partir de multiples qubits physiques sous-jacents.
De tels qubits logiques devraient atteindre un temps de cohérence bien meilleur que
celui des qubits physiques sous-jacents. Cette approche est coûteuse en infrastructure
physique, demandant jusqu’à plus de mille qubits physiques pour réaliser un seul qubit
logique.

Dans cette thèse, je me concentre sur les circuits quantiques à base de supracon-
ducteurs, non pas comme une source de qubits physiques, mais plutôt comme une
façon d’émuler des hamiltoniens d’interactions particuliers (souvent non-linéaires) entre
plusieurs sous-systèmes (par exemple entre deux cavités micro-ondes). Ceci est équiva-
lent à considérer un atome (artificiel) couplé à des modes photoniques discrets dans une
cavité à haut facteur de qualité, qui est le domaine de l’électrodynamique quantique en
cavité (CQED) [12]. Dans la version optique, on utilise généralement des lasers et on
surveille les changements dans la transmission à travers la cavité, résultant de la chute
d’atomes à travers la cavité. Je considère ici une version à base de circuits, où le cir-
cuit supraconducteur joue le rôle d’atome artificiel. Cette implantation bénéficie de la
grande flexibilité des circuits supraconducteurs, permettant ainsi de facilement modifier
et ajuster l’interaction entre les sous-systèmes [13].

Le comportement de ces circuits supraconducteurs (Fig. 1.1) et leur quantification
est assez bien comprise [14]. Cependant, le régime dans lequel les champs envoyés
sur les circuits sont de forts champs micro-ondes n’est pas encore maîtrisé. En effet,
ces systèmes sont des systèmes quantiques, ouverts par nature, avec des non-linéarités
importantes et en présence de champs dépendant du temps. La combinaison de ces
caractéristiques les rend uniques et difficiles à étudier avec les approches précédentes de
la physique atomique ou de l’optique. Par exemple, de récentes expériences [15] mon-
trent que quand un circuit supraconducteur est soumis à des champs micro-ondes forts,
au-delà du régime de réponse linéaire, les taux de dissipation observés semblent sub-
stantiellement différents de ceux attendus en considérant uniquement l’environnement
électromagnétique du qubit seul.

Cette thèse se concentre sur l’étude de la dynamique des circuits supraconducteurs
en présence de dissipation et de champs micro-ondes forts, ainsi que ses conséquences
sur l’utilisation de tels circuits comme brique de base pour émuler des interactions
hamiltoniennes particulières, telles que celles requises pour réaliser l’encodage logique
de l’information quantique sur des états de chats de Schrödinger [16]. En effet, par
application de champs micro-ondes à des fréquences bien choisies sur un circuit supra-
conducteur, on peut obtenir de nouveaux termes d’interaction hamiltonienne, par in-
teraction paramétrique. Contrairement à une situation d’une interaction directe entre
deux cavités, une interaction paramétrique permet ainsi d’avoir une plus grande variété
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dans la forme des termes d’interaction, tout en réduisant les contraintes d’ajustement
de fréquences des oscillateurs du système physique utilisé. D’autre part, l’amplitude de
l’interaction paramétrique résultante augmente avec l’amplitude des champs appliqués.
Il semblerait donc à première vue qu’une telle approche devrait permettre d’obtenir des
couplages aussi importants que nécessaires, relativement facilement. Il ne faut cepen-
dant pas oublier les effets observés lors de l’application de champs forts sur un circuit
supraconducteur, qui limitent fortement la possibilité d’explorer ces régimes particuliers.

L’étude d’un circuit supraconducteur parmis les plus simples, le transmon, consis-
tant en une jonction Josephson et un condensateur en parallèle, constitue la première
partie de ce travail de thèse. Je montre ainsi, en développant une méthode numérique
de simulations basée sur l’approche de Floquet-Markov et en comparant à des résultats
expérimentaux, que le transmon est dynamiquement instable en présence de champs
forts. Au-delà d’une certaine puissance incidente, son état ne repose plus dans le con-
finement fourni par le potentiel en cosinus de la jonction Josephson et il se comporte
alors comme une sorte de particule libre, ne contribuant plus aucune non-linéarité au
circuit et annulant dès lors son intérêt dans le cadre de pompage paramétrique. D’autre
part, en sortant du confinement en cosinus, il devient rapidement très impur.

Dans une deuxième partie, je propose un circuit alternatif, comportant une induc-
tance supplémentaire en parallèle du transmon. Cette inductance fournit un potentiel
quadratique qui confine alors l’état du transmon pour toutes les puissances de pompe.
J’étudie le comportement de ce système en utilisant la même approche numérique que
précédemment et trouve alors qu’il a un comportement bien plus régulier. Son état
reste pur sur une grande plage de puissances incidentes et son comportement général,
bien plus régulier, est bien approché par des modèles analytiques simples obtenus par
moyennisation. Dès lors, de tels systèmes avec des éléments inductifs semblent de très
bons choix pour exploiter au mieux des pompages paramétriques.

Enfin, dans une dernière partie, j’étudie le comportement d’un tel système avec
des éléments inductifs, afin de réaliser des termes hamiltoniens nécessaires pour un
encodage de l’information quantique sur des états de chats de Schrödinger, par pom-
page paramétrique. Le circuit étudié, le modulateur en anneau de jonctions Joseph-
son (Josephson Ring Modulator), est d’ores et déjà connu et utilisé pour réaliser de
l’amplification ou de la conversion de fréquences. J’étudie ici une variante asymétrique
de ce circuit, nommée modulateur asymétrique en anneau de jonctions Josephson (Asym-
metric Josephson Ring Modulator), qui devrait permettre de réaliser les termes néces-
saires à un encodage sur des états de chats de Schrödinger par pompage paramétrique
tout en assurant l’absence d’une partie des termes néfastes par symétrie.
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Abstract

In this thesis, we investigate the behavior of Josephson circuits under the action of
strong microwave drives. Josephson circuits in the quantum regime are a building block
to emulate a variety of Hamiltonians, useful to process quantum information. We are
here considering a transmon device, made of a Josephson junction and a capacitor in
parallel. Through numerical simulations and comparison with experimental results,
we show that these drives lead to an instability which results in the escape of the
circuit state into states which are no longer confined by the Josephson cosine potential.
When the transmon occupies such states, the circuit behaves as if the junction had
been removed and all non-linearities are lost, which translates into limitations on the
emulated Hamiltonian strengths.

In a second part, we propose and study an alternative circuit consisting of a transmon
device with an extra inductive shunt, providing a harmonic confinement. This circuit
is found to be stable for all pump powers. The dynamics of this circuit is also well
captured by a time-averaged model, providing a useful tool for analytical investigation
and fast numerical simulations.

We developed a novel numerical approach that avoids the built-in limitations of
perturbative analysis to investigate the dynamical behavior of both of these circuits.
This approach, based on the Floquet-Markov theory, resulted in a modular simulation
framework which can be used to study other Josephson-based circuits.

Last, we study the properties of an asymmetric version of the Josephson Ring Modu-
lator, a circuit currently used for amplification and conversion, as a more robust source of
non-linearity to engineer two-photon and four-photon interaction Hamiltonians required
for the cat-state encoding of quantum information.
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2 CHAPTER 1. INTRODUCTION

1.1 Quantum information processing with superconduct-
ing circuits

A quantum machine is a device whose degrees of freedom and evolution are governed
by quantum mechanics. There are insights and some proofs that these machines could
exhibit novel capabilities, impossible to realize with classical hardware. They could solve
problems which are currently far out of range for classical machines, providing more
secure transfer of data over network [1], realize measurements with an unprecedented
level of precision [2], generate true and certified random numbers [3] or provide a large
advantage for some specific computation problems [4].

In the past, atomic systems, optical systems or trapped ions systems have been
investigated as a basis to implement such quantum machines. However, since the first
demonstration of a quantum superconducting bit, more than twenty years ago [5, 6],
the domain of mesoscopic artificial atoms built out of superconducting quantum circuits
became one of the most promising physical system to implement quantum machines.
Such circuits can be used to create resonators which store individual microwave photons
as well as superconducting quantum bits. All of these circuit elements are intrinsically
quantum mechanical, with quantized energy levels with spacing much greater than the
energy associated with the temperature (for cryogenic temperatures which are achievable
in the laboratory) and in order to properly predict their properties, both the current
and voltages should be represented by non-commuting operators. The coherence time
of these circuits have improved rapidly and steadily over a few orders of magnitude,
now reaching a few milliseconds for the best systems [7, 8, 9, 10, 11]. Contrary to the
atomic physics based systems, such superconducting circuits provide greater flexibility
in the range of exploitable parameters and in the complexity of the Hamiltonian they
can implement. This flexibility let us explore a whole new realm of operating regimes.
Moreover, the microwave signals, contrary to the optical ones, are very well controlled
with commercial electronic equipment developed for radio-frequency engineering. The
nanofabrication processes required to fabricate such quantum superconducting circuits
are more and more controlled, so that it becomes possible to fabricate multiple complex
systems in parallel, leading to the hope that it will soon be possible to scale such quantum
processors with large numbers of qubits and leading to the recent development of many
commercial interests (from Google, IBM, Intel or Rigetti Computing).

These properties have made the superconducting quantum circuits domain a very
promising framework for quantum information processing. They have already led to
multiple experimental proof of concept for quantum machines at small scales (only a
handful of physical degrees of freedom or qubits) and recently led to a whole new range
of multi-qubits systems exploring the performances of fifty to one hundred qubits and
the advances such system could provide over classical hardware. Indeed, multiple pre-
vious experiments in the context of quantum information processing with trapped ions,
nuclear magnetic resonance (NMR) or cavity quantum electrodynamic with Rydberg
atoms have been successfully reproduced with superconducting qubits. In many of these
experiments, the properties of the superconducting circuits, such as the controllability
and tunability of the coupling strengths or non-linearities, together with the reasonable
coherence time, allowed to achieve comparable or better performances than their atomic
or optical counterparts. Additionally, the constant progresses on the coherence time of
these systems paves the way for many new applications.

However, and despite these successful realizations so far, scaling these systems to a
number of degrees of freedom of interest for practical applications, remains an open issue.
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Indeed, the next critical step in the development of a quantum information processor is
certainly the active error correction, which consists in conceiving a logical qubit, pro-
tected against the main information loss channels, relying on multiple physical qubits.
Such a logical qubit should reach a regime of coherence time much larger than the un-
derlying physical qubits. However, fault-tolerant quantum computation with protected
logical qubits usually comes at the expense of a high cost in terms of hardware, requiring
up to thousands of physical qubits for a single logical one. Each of the physical qubits
should match with state of the art expectations of its properties (coupling strengths,
tunability, coherence time), while avoiding as much as possible the noisy interactions
between different subsystems on the same chip.

In this manuscript, I am focusing on using superconducting quantum circuits not as
an implementation of a physical qubit, but rather as a way to engineer non-linear in-
teraction Hamiltonians between multiple subsystems (typically two microwave cavities).
This is an equivalent of having an (artificial) atom coupled to discrete photon modes
in a high quality factor cavity, which is the area of Cavity Quantum ElectroDynamics
(CQED) [12]. In the optical version of CQED, one usually drives the cavity with a laser
and monitors changes in the cavity transmission resulting from coupling to atoms falling
through the cavity. I am considering here a circuit version of this system, where the
superconducting circuit plays the role of an artificial atom. As the superconducting cir-
cuits are widely tunable, one can finely engineer the interaction between the subsystems
[13].

The behavior of such superconducting quantum circuits (Fig. 1.1) and their quanti-
zation is rather well understood [14]. However, this is not the case for the regime where
one operates them under a strong microwave drive. Indeed, these systems are quan-
tum systems, open systems by nature, possibly with large non-linearities and usually
time-dependant. The combination of all these characteristics makes them quite unique
and difficult to tackle with the previous approaches from optical or atomic physics. For
instance, recent experiments [15] indicate that when a superconducting circuit is driven
with a microwave signal beyond the linear response regime, the observed relaxation rates
appear to be substantially different from expectations based on the electromagnetic en-
vironment of the qubit alone.

This manuscript will focus on investigating the dissipative dynamics of a quantum
superconducting circuit under strong microwave drives and its consequences for using
such a superconducting circuit as a resource for Hamiltonian engineering in the context
of cat-states logical qubit encoding [16].

1.2 Superconducting circuits quantization

1.2.1 Circuit elements and notations

In this manuscript and following the approach from [17], Φk denotes the node flux at
the node under consideration, defined as

Φk =
∫ t

−∞
Vk(τ)dτ (1.1)

such that Vk(t) = Φ̇k is the voltage at the node. φk (small phi) denotes the reduced
node flux defined as

φk = Φk

φ0
(1.2)
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Figure 1.1: Dilution refrigerator and sample for superconducting circuit ex-
periments. The left and bottom-right panels picture the dilution refrigerator which was
used at ENS by the team of Z. Leghtas for the experiments discussed in this manuscript.
Each plate in the dilution fridge is sitting at a different temperature, from 70 K for the
upper one to 10 mK for the bottom one where the superconducting circuits under study
are sitting. The top-right panel shows a superconducting circuit sample, together with
scale.

with φ0 = ℏ/2e being the reduced flux quantum. Qk denotes the (electric) charge,
related to the intensity as ik = Q̇k.

Throughout this manuscript, bold letters (e.g. Φ) will stand for quantum operators
whereas standard letters (e.g. Φ) will represent the classical variable, their classical
counterpart.

Here is a brief overview of the circuit elements used throughout this manuscript and
their main properties.

Capacitor The associated energy for a capacitor reads

U
(
Φ̇1, Φ̇2

)
= Q12

2

2C
= C

2

(
Φ̇1 − Φ̇2

)2
= 4ECn2 (1.3)

where EC = e2/2C is the charging energy and n is the operator corresponding to the
number of Cooper pair tunneling through the capacitor.

Inductor The phase-intensity relation of an inductor is

Φ1 − Φ2 = Li12 (1.4)

where L is the inductance of the element.
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Figure 1.2: Electrical symbol of a capacitor of capacitance C.

Figure 1.3: Electrical symbol of an inductor of inductance L.

The associated energy for an inductor reads

U (φ1, φ2) = 1
2L

(Φ1 − Φ2)2 = EL
(φ1 − φ2)2

2
(1.5)

where EL = φ2
0/L is the inductive energy.

Josephson junction Josephson junctions are the main source of non-linearity in
quantum electrical circuits. Their phase-intensity relation is

i12 = I0 sin (φ1 − φ2) (1.6)

where I0 is the critical intensity. They behave as a sort of non-linear inductance.

Figure 1.4: Electrical symbols for a Josephson junction. a) Electrical symbol of a
pure Josephson junction. b) Due to the layered structure of a real Josephson junction,
it always comes with an extra capacitance. Such a Josephson junction is pictured as a
boxed Josephson junction, representing a junction with a capacitance in parallel.

Their associated energy reads

U (φ1, φ2) = −EJ cos (φ1 − φ2) (1.7)

where EJ = I0φ0.
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1.2.2 Circuit quantization
I will now briefly recall the main principles and methods for circuit quantization, fol-
lowing the approach from [17, 14]. As an example, let us focus on the simple circuit
pictured on Fig. 1.5, consisting of two LC oscillators capacitively coupled.

Figure 1.5: Lumped element circuit of two microwave oscillators capacitively
coupled. This lumped element circuit consists of two microwave cavities (LC oscillators
with parameters L1, C1 and L2, C2) capacitively coupled through a capacitor C0. The
node fluxes Φ1,2 at each end of the coupling capacitor are shown as well.

First, let us write the Lagrangian of the whole system, written in terms of Φ1 and
Φ2 variables, the node fluxes at each end of the coupling capacitance. The Lagrangian
reads

L
(
Φ1, Φ̇1, Φ2, Φ̇2

)
= C1

2
Φ̇2

1 + C2
2

Φ̇2
2 + C0

2

[
Φ̇1 − Φ̇2

]2
− 1

2L1
Φ2

1 − 1
2L2

Φ2
2 (1.8)

where we have used the fact that the node flux at the ground node is equal to zero.
From Eq. (1.8), one can compute the canonical momenta Q1, Q2 associated with the

Φ1 and Φ2 canonical variables and defined as
Q1 ≜ ∂L

∂Φ̇1
= (C0 + C1) Φ̇1 − C0Φ̇2

Q2 ≜ ∂L
∂Φ̇2

= (C0 + C2) Φ̇2 − C0Φ̇1

(1.9)

or equivalently 
Φ̇1 = 1

C0C1+C0C2+C1C2
[(C0 + C2) Q1 + C0Q2]

Φ̇2 = 1
C0C1+C0C2+C1C2

[C0Q1 + (C0 + C1) Q2]
. (1.10)

At this point, it is worth noting that the canonical momenta Q1 and Q2 mix the Φ̇1 and
Φ̇2 variables.

The Hamiltonian of the system can then be computed as

H = Q1Φ̇1 + Q2Φ̇2 − L (1.11)
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H = C2 + C0
2 (C1C2 + C0C1 + C0C2)

Q2
1 + C1 + C0

2 (C1C2 + C0C1 + C0C2)
Q2

2+

C0
C1C2 + C0C1 + C0C2

Q1Q2 + 1
2L1

Φ2
1 + 1

2L2
Φ2

2

(1.12)

As the canonical variables Q1, Q2, Φ1 and Φ2 satisfy the commutation relations

[Q1, Φ1] = [Q2, Φ2] = −iℏ

[Q1, Φ2] = [Q2, Φ1] = 0

[Q1, Q2] = [Φ1, Φ2] = 0

(1.13)

we can introduce annihilation and creation operators a and a† (respectively b and b†)
to quantize them in the usual promotion to quantum operators, as harmonic oscillator
modes (and satisfying

[
a, a†

]
=
[
b, b†

]
= 1 and the cross-commutator being zero).

Therefore,

Q1 = −iQ1
ZP F

(
a − a†

)
Φ1 = Φ1

ZP F

(
a + a†

)
Q2 = −iQ2

ZP F

(
b − b†

)
Φ2 = Φ2

ZP F

(
b + b†

)
(1.14)

where

Q1
ZP F =

√
ℏ

2Z1

Φ1
ZP F =

√
ℏZ1

2

Q2
ZP F =

√
ℏ

2Z2

Φ2
ZP F =

√
ℏZ2

2

(1.15)

with

Z1 =
√

L1 (C1C2 + C0C1 + C0C2) / (C0 + C2)

Z2 =
√

L2 (C1C2 + C0C1 + C0C2) / (C0 + C1).
(1.16)

The full Hamiltonian of the system then reads

H = ℏω1a†a + ℏω2b†b − C0Q1
ZP F Q2

ZP F

C1C2 + C0C1 + C0C2

(
a − a†

) (
b − b†

)
(1.17)

at the expense of introducing the frequencies of the modes, ω1 and ω2, which can be
expressed as function of the capacitances and inductances of the system. The full Hamil-
tonian H can then be diagonalized using a Bogoliubov transformation. At this point,
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let us note that in this section, we first wrote the Hamiltonian from the Lagrangian
and then considered diagonalizing it through a Bogoliubov transformation. We could
however have chosen the opposite, first diagonalizing the Lagrangian and then writing
the associated Hamiltonian and quantify it.

1.2.3 Useful Hamiltonian transformations
In this section, I will briefly summarize two useful transformations on the Hamiltonian
of a superconducting circuit with an additional electromagnetic drive, which will be
extensively used in the rest of this manuscript. Let us focus on the following Hamiltonian

H = ℏωaa†a + ℏAp(t)
(
a + a†

)
+ H1

(
a, a†

)
(1.18)

where ωa is the frequency of the harmonic mode, Ap(t) = Ap cos(ωpt) is the complex
time-dependent amplitude of a pump applied onto this system and H1 is an extra generic
Hamiltonian term entering the description of the system.

First, let us introduce ξ(t) such that

dξ

dt
= −iωaξ − iAp(t) (1.19)

and define a displaced mode, ã as

ã = a − ξ(t), (1.20)

which is obtained with a displacement Dξ(t) = exp
(
ξ(t)∗a − ξ(t)a†

)
.

Then, the Hamiltonian H̃ of the system, in this displaced frame, reads

H̃ = ℏωaã†ã + H1
(
ã + ξ(t), ã† + ξ∗(t)

)
(1.21)

Finally, the Hamiltonian in the rotating frame of the harmonic oscillator (obtained
by a unitary transform U = eiωaã†ãt) is given by

H̃int = H1
(
ãe−iωat + ξ(t), ã†eiωat + ξ∗(t)

)
. (1.22)

1.3 Hamiltonian engineering with parametric pumping
In this manuscript, I investigate the behavior of circuits mediating parametric interac-
tions between multiple modes in the large pumping regime. Indeed, by considering a
non-linearity coupling multiple microwave modes and adding a periodic modulation on
them (later called the “pump”), one can engineer and tailor specific interactions between
the considered modes [18]. Such parametric interactions can be used for amplification
using single-mode or two-mode squeezing, for frequency conversion or for more elaborate
multi-photon interactions between the considered modes, as I will briefly review in this
section.

1.3.1 Principles of parametric pumping
Parametric interactions are a tool of paramount importance in order to design Hamil-
tonian interactions with a full control on the strength of the terms as well as being
able to turn on and off the interaction easily. As pictured on Fig. 1.6, the core idea
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is not to directly couple the two modes and physically engineer the parameters of the
system to control the interaction term, but rather to use an auxiliary mode (the pump
mode) which will mediate the interaction. Provided that the pump frequency verifies
a specific frequency matching condition, the resulting interaction Hamiltonian can be
obtained from rotating-wave approximation [19]. Moreover, provided that the pump
is non-resonant and that its bandwidth is larger than the one from other modes, the
pump can be considered in the “stiff pump regime”, which is equivalent to consider
that the pump is not affected by the interaction process and can therefore be treated
classically. Such framework has the major advantage compared to in-situ interactions
engineering that the pump drive fully controls both the strength as well as the phase of
the interaction terms, allowing for near real-time control.

Figure 1.6: Interaction engineering through parametric interactions. Instead of
considering a direct interaction between two modes a and b, we are using a third mode,
c, to mediate interactions between a and b. This third mode is coupled to one or more
AC drives (oscillating pumps) whose frequencies and amplitudes control the parametric
interaction terms in the Hamiltonian.

Formally, let us consider the simplest Hamiltonian with two electromagnetic modes
and a direct coupling between them,

H = ℏωaa†a + ℏωbb†b + g
(
ab† + a†b

)
. (1.23)

In an interaction picture with respect to the harmonic oscillator part of this Hamiltonian,
it becomes

H = g
(
ei(ωb−ωa)tab† + e−i(ωb−ωa)ta†b

)
. (1.24)

and the coupling term will remain in a rotating-wave approximation if and only if the
two frequencies of the modes are detuned by a frequency mismatch much smaller than
the coupling strength g. On the contrary, let us now consider a parametric interaction
scheme with an extra mode c. Assuming there exists a physical implementation of it,
the Hamiltonian could then read

H = ℏωaa†a + ℏωbb†b + ℏωcc†c + g
(
ab†c + a†bc†

)
+ ℏAp(t)

(
c + c†

)
(1.25)

where Ap(t) = Ap cos(ωpt) is the amplitude of the parametric pump on the c mode.
Considering a coherent displacement of the c mode to take into account the effect of the
parametric pump (following section 1.2.3), the Hamiltonian reads

H = ℏωaa†a + ℏωbb†b + ℏωcc̃†c̃ + g
(
ab† (c̃ + ξ(t)) + a†b

(
c̃† + ξ(t)∗

))
. (1.26)
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In the interaction picture with respect to the harmonic part, the Hamiltonian reads

H̃ = Apg

2 (ωc − ωp)

(
ei(ωb−ωa−ωp)tab† + e−i(ωb−ωa−ωp)ta†b

)
(1.27)

where a partial trace has been used on the mode c̃ which is very close to the vacuum
state. With such a parametric scheme, we recover an interaction term between a and b
of the form of Eq. (1.24) where

• The resonance condition for this interaction to remain under rotating wave ap-
proximations is now

ωp = ωb − ωa. (1.28)
It is important to note here that this frequency matching condition is a condition
on the parametric pump frequency ωp (which can be tuned easily) and no longer
impose a frequency match for the two electromagnetic modes.

• The coupling amplitude is no longer g but is scaled by a factor Ap/2(ωc − ωp).
Therefore, increasing the pump strength increases the interaction strength.

In the previous calculation, I used an auxiliary c mode for clarity. However, the same
parametric scheme could be achieved by pumping one of the two initial electromagnetic
modes (a for example) and having an initial interaction with an extra power in this
mode (an interaction of the form a2b† + h.c. for instance).

Various superconducting circuits implementing parametric interactions have been
proposed to achieve amplification and conversion [20]. Starting from the Josephson
Parametric Amplifier (JPA) with a single Josephson junction or two Josephson junctions
in a SQUID configuration [21, 22, 23] which achieve amplification through single-mode
squeezing with an interaction Hamiltonian of the form

Hint = ℏg

[
a2 +

(
a†
)2
]

(1.29)

more refined circuits have been proposed. Among such circuits is the Josephson Ring
Modulator (JRM) [24] (whose mode of operation is presented in details in Chapter 5)
which consists in a loop of four Josephson junctions and offers an amplification through
two-mode squeezing, using three-wave mixing terms of the form

Hint = ℏg
(
ab + a†b†

)
(1.30)

As demonstrated in [25, 26], the stability of the Josephson Ring Modulator circuit
can be further improved using inductive shunts and the resulting circuit can be used to
engineer squeezing interaction Hamiltonian as well as conversion processes along with
the quantum limited amplification. Similar methods have been used in [27] to implement
a Q-SWITCH with a conversion Hamiltonian of the form

Hint = ℏg
[
ab† + a†b

]
(1.31)

which can be used to transfer the state of an electromagnetic mode of a cavity to a
propagating electromagnetic mode or another remote cavity.

Parametric methods are also ubiquitous to the cat states encoding proposal from
[16] which requires a two-photon or four-photon exchange Hamiltonian of the form

Hint = ℏg

[
adb† +

(
a†
)d

b
]

(1.32)
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where d = 2 or d = 4. Superconducting circuits relying on parametric methods can
engineer such Hamiltonians for the two-photon exchange process [28] or using higher
order rotating-wave approximations to achieve four-photon exchange process [29].

Finally, these methods are not limited to standing electromagnetic modes but can
also be used for amplification along a transmission line with travelling modes, such as
in the Josephson Traveling-Wave Parametric Amplifier (JTWPA) [30].

At this point, it is worth noting that, usually, the strength of the engineered Hamilto-
nian scales with the amplitude of the pump drive mediating the parametric interaction.
Therefore, one usually wishes to increase the pump power, in order to reach better op-
erating regimes. This, however, does not in general experimentally yield improvements
indefinitely. Indeed, the interaction terms in the Hamiltonian which are selected thanks
to the parametric pumping are only a subset of all the possible terms. For instance, in
the strong pump regime, such terms which were at first either negligible or discarded
through rotating-wave approximations [19] might actually no longer be negligible and
should be taken into account. Additionally, in the strong pump regime, the system can
suffer from phase slips or symmetry breaking (the total flux can no longer be symmet-
rically divided across chains of Josephson junctions)[31], quasi-particle creation due to
the strong electromagnetic fields breaking Cooper pairs[32, 33], or simply degrading the
coherence times of the modes [34] (possibly through heating of the chip or by inducing
other decay mechanisms which are not fully understood).

Figure 1.7: Josephson Parametric Amplifier circuit. The circuits consists of a
RF Superconducting Quantum Interference Device (SQUID) with a parallel capacitor,
capacitively coupled to a transmission line. The external flux threading the loop, Φext
can be used to adjust the frequency of the resonator, ωa. Pumps (with time-dependent
amplitude A1(t) and A2(t) and frequencies ω1 and ω2) are sent through the transmission
line to achieve parametric pumping. A signal, at frequency ωa (matched with the RF-
SQUID mode frequency) is sent through the same transmission line. Such a device can
be used to achieve amplification through single-mode squeezing with the reflected signal,
coming out of the transmission line.
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1.3.2 Example of the Josephson Parametric Amplifier
As a real world example, let us focus on the simple case of the Josephson Paramet-
ric Amplifier (JPA) whose circuit is pictured on Fig. 1.7. First, let us note that the
Josephson junctions loop from the circuit is actually equivalent to a tunable Josephson
junction. Assuming we operate at a fixed value of Φext, the Hamiltonian of this system
reads, considering only up to quartic term in the Josephson cosine potential expansion,

H = ℏωaa†a + K
(
a + a†

)4
+ ℏA1(t)

(
a + a†

)
+ ℏA2(t)

(
a + a†

)
(1.33)

where K is a constant which can be expressed in terms of the capacitive and Josephson
energy of the circuit elements, A1(t) = A1 cos(ω1t) and A2(t) = A2 cos(ω2t) are the
time-dependent pump amplitudes.

Following the approach from equations (1.23)-(1.27), the Hamiltonian expressed in
terms of displaced modes and in the interaction picture with the harmonic oscillator
term reads

H̃ = K ′
(
ae−iωat + ξ1e−iω1t + ξ2e−iω2t + h.c.

)4
(1.34)

with K ′ a renormalized coupling strength, proportional to the pump amplitude, and
ξ1,2 = A1,2/2(ωa − ω1,2).

Assuming a frequency matching condition

ω1 + ω2 = 2ωa, (1.35)

the remaining term of interest after a rotating-wave approximation is

12K ′
(
a2ξ∗

1ξ∗
2 + h.c.

)
(1.36)

which can be used to implement amplification through single-mode squeezing. At this
point, let us note that if we had only considered a single pump, the frequency matching
condition would have been ω1 = ωa therefore requiring to have the pump in resonance
with the oscillator mode and no longer being able to rely on the stiff pump approxima-
tion. On the contrary, using two pumps here allows us to choose two pumps far detuned
from the oscillator frequency (one red-detuned and the other one blue-detuned) while
satisfying the frequency matching condition.

However, the term from Eq. (1.36) is not the only one remaining under rotating-wave
approximation. Indeed, this term is coming from a fourth-order term in the expansion
of the cosine potential, along with terms of the form ξ∗

1,2ξ1,2
(
a†
)2

a2 (Kerr-type terms).
They would be resonant under the frequency matching condition Eq. (1.35) and can be
detrimental depending on the envisioned application for the circuit. Additionally, one
should note that these terms, just as the main term of interest for amplification through
single-mode squeezing, have their amplitude proportional to the pump amplitudes.

These limitations when pushing the pump power lead to the theoretical investigation
of the behavior of such systems in the strong pump regime, with a particular focus
on the loss of the non-linearity when the pump strength becomes too high [35, 36,
37, 38, 39] or the reduction of the coherence time of the non-linear resonator as a
function of the mean photon occupancy (T1 versus n̄) [40]. These previous analysis were
relying on simplified models of the superconducting circuit in use, relying on Jaynes-
Cumming model (only considering the two lowest state of the non-linear resonator),
generalized Jaynes-Cumming (considering a few states of the non-linear resonator) or
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Duffing approximation (considering the non-linearity only to some order of its Taylor
expansion).

Throughout this manuscript, I will investigate the steady state dynamics of such a
non-linear resonator (transmon circuit) coupled to a linear resonator (microwave cavity)
and a parametric pump in the strong pumping regime. I am proposing a Floquet-
Markov framework to carry out numerical investigation of this system in the strong
pumping regime. This scheme and the associated change of basis let me consider a large
transmon Hilbert space truncature, able to capture highly excited transmon states, and
avoid rotating-wave approximations, which are not valid in this setting. The results
presented in this thesis, although presented in the context of cat-states encoding, can
be generalized to a wide variety of the previously mentioned parametric systems with a
pump mediating a non-linear interaction.

1.4 Dissipation engineering

The parametric methods presented in section 1.3 are of paramount interest to engineer
specific dissipation terms, in particular non-linear dissipations or turning on and off
dissipations on the fly in experiments. Indeed, parametric methods can be used to
engineer a specific and controllable non-linear interaction between two electromagnetic
modes. Then, in the limit where one of the two modes is strongly dissipative, adiabatic
elimination procedures [41] can be used in order to get a simplified model without this
extra dissipative mode. The engineered non-linear interaction between the two modes
then turn into a non-linear dissipative terms for the remaining electromagnetic mode.

In the QUANTIC team at INRIA Paris, such methods are used and implemented in
particular in the context of cat-states encoding, which I will more extensively describe in
section 1.5 and which will be used as a recurring example for parametric methods and
dissipation engineering considerations throughout this manuscript. I will now briefly
describe the adiabatic elimination procedure for the specific case of the two-photon
interaction

Hint = iℏg2−ph

[(
a†
)2

b + a2b†
]

(1.37)

which results in a non-linear dissipation of photons in pairs. Such an engineered dis-
sipation is at the core of the two-photon cat-states encoding and the interest of such
dissipation will be clear in section 1.5.

Starting from the two modes Lindblad master equation

dρ

dt
= u

[
b† − b, ρ

]
+ κbD [b] (ρ) − ig2−ph

[(
a†
)2

b + a2b†, ρ

]
+ La (ρ) (1.38)

where D [A] (ρ) = AρA† −
(
A†Aρ + ρA†A

)
/2, u is the amplitude of the drive on the

readout mode, κb is the (large) dissipation rate of the readout mode, g2−ph is the two-
photon interaction rate and a and b are the storage (with a high quality factor) and
readout (very dissipative) modes annihilation operators. Here, La (ρ) models parasitic
Lindblad terms acting on the storage mode (for instance single photon dissipation, self-
Kerr terms or dephasing noise). La (ρ) is supposed to be small compared to the other
terms. Here, I assume that g2−ph/κb is small enough to be in the regime where the
results from [41] are valid.
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Eq. (1.38) can be recasted into

dρ

dt
= −ig2−ph

[(
a2 − α2−ph

2
)†

b −
(
a2 − α2−ph

2
)

b†, ρ

]
︸ ︷︷ ︸

εLint(ρ)

+ κbD [b] (ρ)︸ ︷︷ ︸
Lb(ρ)

+εLa (ρ) (1.39)

at the expense of introducing α2−ph =
√

u/ig2−ph.
The adiabatic elimination theorem from [41] can be applied on Eq. (1.39), as the

dynamics can be split into two time scales:

• A rapid convergence of the fastest subsystem towards a given subspace (given by
the dynamics in absence of coupling, with the time scale κb),

• A slow evolution of the other subsystem while maintaining the fastest subsystem
in the vicinity of its steady state in absence of coupling.

Indeed, with ε = g2−ph/κb,

• Lb (ρ) = κbD [b] (ρ) is the fast dynamics

• εLa is the slow dynamics (which is supposed to be at most of order ε)

• εLint = −ig2−ph
[(

a2 − α2−ph
2)† b −

(
a2 − α2−ph

2)b†, ρ
]

is an interaction Lind-
bladian

which verify the previous condition for the validity of the results from [41]. Let us note
that in absence of coupling between the two modes (g2−ph = 0), the fast dynamics (of
the mode b) rapidly converges to a coherent state |β⟩ given by β = 2u/κb. In presence
of the coupling, however, the steady state lies in Span {|±α2−ph⟩} ⊗ |0⟩.

Following the analysis from [41] and [42] and their notations, the steady state of the
fast dynamics ρ̄b is given by ρ̄b = |0⟩ ⟨0|. Then, the master equation at second order is
given by1

dρs

dt
= 4g2−ph

2

κb
D
[
a2 − α2−ph

2
]

(ρs) + La (ρs) + O(ε3) (1.40)

where ρs is a reduced density matrix. In absence of parasitic La Lindbladian, the reduced
density matrix ρs obeys a master equation of the form

dρ

dt
= κ2−phD

[
a2 − α2−ph

2
]

(ρ) (1.41)

with κ2−ph = 4g2−ph
2/κb. This master equation and its implication for cat states pump-

ing will be detailed in section 1.5.2.
As shown by Eq. (1.41), after an adiabatic elimination of the most dissipative mode,

the non-linear parametric interaction from Eq. (1.38) translates in a non-linear two-
photon dissipation on the remaining storage mode.

Moreover, in absence of La term, the full state of the system can be recovered from
the fast dynamics steady state ρ̄b and the reduced density matrix ρs using the following
Kraus map

K (ρs) = ρs⊗ρ̄b+2ig2−ph
[(

ρs

(
a†2 − α2−ph

∗2
))

⊗ |0⟩ ⟨1| −
((

a2 − α2−ph
2
))

ρs ⊗ |1⟩ ⟨0|
]

.

(1.42)
1In general, the reduced system Hilbert space (in which ρs lies) is not the same as the slow dynamics

Hilbert space (denoted by the index a). One should apply a Kraus map whose expression is given in
Eq. 1.42 and then a partial trace to pass from the reduced system to the slow dynamics space.



1.5. USING A CAVITY AS A LOGICAL QUBIT: CAT QUBITS 15

At this point, it is worth noting that this Kraus map reduces to ρs ⊗ ρ̄b in the steady
state of the system. Therefore, the Kraus map should be taken into account during the
transient evolution but not in the steady state, where the ρs reduced density matrix
coincides with the density matrix of the storage mode.

1.5 Using a cavity as a logical qubit: cat qubits

In [11], M. H. Devoret and R. J. Schoelkopf distinguish seven steps towards quantum
information processing, from the realization of simple operations on individual physical
qubits to the realization of a full fault-tolerant quantum computation on a large-scale
qubits system. Systems based on superconducting qubits have successfully reached the
third step, that is to be able to perform quantum nondemolition measurements (called
QND measurements) for control and error correction purposes, and they are on the edge
of reaching the fourth step, that is to be able to control logical qubits with lifetimes larger
than individual physical qubits.

Classical information processing relies on storing the information on bits (two-states
systems) and error correction is based on redundantly encoding the information and
performing majority votes. In quantum information processing, information is stored
on a qubit, a two-level system, quantum analogous of the classical information bit. The
qubit being a physical system coupled to a noisy environment, it also experiences errors
which should be corrected. These errors can be modelled as bit-flip errors (analogous to
the classical bit inversion error, swapping the |0⟩ and |1⟩ states) and phase-flips errors
(turning the |0⟩+ |1⟩ state into |0⟩−|1⟩). In the quantum world, the no-cloning theorem
and measurement back action prevents any scheme based on copying the information
and exploiting redundancy (through majority votes) as simply as in the classical world.
Therefore, more sophisticated error-correction schemes have to be implemented.

In order to implement quantum error correction, one can encode the (logical) qubit
state on multiple (physical) qubits, which is the approach used by the Steane code[43] for
instance. On the contrary, in this manuscript, I will focus on another approach relying on
storing the information in a single high dimensional Hilbert space, such as an harmonic
oscillator Hilbert space. The cat-code encoding presented in the next subsection uses
this approach and relies on encoding the state of the qubit on superposition of coherent
states. I will present the principle of the cat-state encoding and a cat-pumping scheme to
further confine the state of the logical qubit to a manifold spanned by the useful coherent
states, therefore extending the upper bound on the lifetime of the qubit. Then, I will
present the current state of the art experiment for an experimental realization of this
encoding scheme and an extension to a larger manifold allowing for better error tracking
through carefully chosen projective measurements.

1.5.1 Two-photon cat qubits encoding

Cat qubits encoding encodes quantum information redundantly in the Hilbert space of
a quantum harmonic oscillator. Indeed, given a complex number α, let us consider the
coherent state |α⟩ defined as

|α⟩ = e−|α|2 ∑
n≥0

αn

n!
|n⟩ , (1.43)
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Figure 1.8: Wigner representation of the two cat states used as a basis for
defining a logical qubit, |0L⟩ =

∣∣C+
α

〉
= N + (|α⟩ + |−α⟩) and |1L⟩ = |C−

α ⟩ =
N − (|α⟩ − |−α⟩). The fringes in the center of the figure are a confirmation that these
are coherent superpositions of two states (called cat states). The sign of the center fringe
indicates the parity of the cat state.

where |n⟩ is the n-th Fock state of the harmonic oscillator. One can consider the super-
position of such coherent states, called cat states,

∣∣C±
α

〉
= N ± (|α⟩ ± |−α⟩) , N ± = 1√

2
(
1 ± e−2|α|2

) . (1.44)

At this point, one might note that the state
∣∣C+

α

〉
(respectively |C−

α ⟩) is a superpo-
sition of Fock states with even (odd) photon numbers. Therefore, these two states are
orthogonal and can be used as a basis for encoding quantum information. Moreover,
since |⟨−α |α⟩|2 = e−2|α|2 , when α is large enough (in practice, for α ≥ 2), these states
can be considered orthogonal and the difference between N + and N − can be neglected,
effectively taking a normalization factor N = 1/

√
2. Following [44], let us define a

logical qubit as

|0L⟩ =
∣∣C+

α

〉
= N + (|α⟩ + |−α⟩)

|1L⟩ = |C−
α ⟩ = N − (|α⟩ − |−α⟩)

(1.45)

The Wigner function of these two logical qubit states is shown in Fig. 1.8.
Under the action of an annihilation operator a, these states evolve as

a |0L⟩ = αN +

N − |1L⟩ ≈ α |1L⟩

a |1L⟩ = αN −

N + |0L⟩ ≈ α |0L⟩
(1.46)

which is the action of a bit-flip error. On the contrary, in a heuristic way, a phase-flip
error would involve an operator coupling |0L⟩ + |1L⟩ ∝ |α⟩ and |0L⟩ − |1L⟩ ∝ |−α⟩. As
|⟨−α| α⟩|2 = e−2|α|2 , one might expect (as detailed in the next subsection) that these
errors could be greatly reduced. This would leave the system with a single main channel
of errors: bit-flip type errors.
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1.5.2 Stabilization of the cat-states manifold with dissipation engineer-
ing
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Figure 1.9: Wigner representation of the |0L⟩ cat states at different time steps
when evolving under the collapse operator

√
κa with a the annihilation op-

erator for this photon mode. As a result of the action of this collapse operator, the
coherent superposition first decays to a statistical mixture of the underlying coherent
states |±α⟩. Then, as the coherent states |±α⟩ deterministically decay to the vacuum
state |0⟩ as

∣∣∣α(t) = αe−κt/2
〉

with κ the dissipation rate, the whole mixture collapses to
the vacuum state, therefore losing the encoded information.

The basis defined in section 1.5.1 can be used to store quantum information. How-
ever, this encoding on coherent states is still sensitive to the deterministic relaxation
of energy, as shown on Fig. 1.9. Indeed, in presence of dissipation modelled by a col-
lapse operator

√
κa with κ the dissipation rate and a the annihilation operator of the

harmonic oscillator, any coherent state |α⟩ would decay towards the vacuum state as∣∣∣α(t) = αe−κt/2
〉
. This deterministic energy relaxation could be overcome if one had

a scheme to stabilize the manifold Span {|α⟩ , |−α⟩}. Such a method was proposed in
[16, 28] using a reservoir engineering technique. In this method, an auxiliary (harmonic
oscillator) mode is taken into account and a non-linear interaction between this auxiliary
mode and the storage mode is tailored in order to pump back energy into the storage
mode of the cat qubits.

Let us consider the following master equation modelling a d-photon drive with an
amplitude εd−ph and a d-photon dissipation with a rate κd−ph,

dρ

dt
=
[
εd−ph

(
a†
)d

− εd−phad, ρ

]
+ κd−phD

[
ad
]

(ρ) (1.47)

where ρ is the density matrix of the system and D [X] (ρ) = XρX†−
(
X†Xρ + ρX†X

)
/2.

When d = 1, Eq. (1.47) represents the action of a simple coherent drive with dissipa-
tion and it is a known result that the system converges towards |α1−ph = 2ε1−ph/κ1−ph⟩.

Let us now focus on the d = 2 case, modelling the coupling of a quantum harmonic
oscillator mode to a reservoir while restricting the exchanges of photons to be only in
pairs. In this case, Eq. (1.47) can be written in an equivalent form

dρ

dt
= κ2−phD

[
a2 − α2−ph

2
]

(ρ) (1.48)

where α2−ph =
√

2ε2−ph/κ2−ph. From the form of Eq. (1.48), it is clear that, whatever
the initial state of the system, it converges towards a manifold spanned by two different
coherent states, ρ∞ ∈ Span {|−α2−ph⟩ , |α2−ph⟩}. This is illustrated by the (classical)
trajectories of the system shown on Fig. 1.10. As proven in [45], starting from an initial
coherent state ρ(0) = |α(0)⟩ ⟨α(0)|, the system converges to |α2−ph⟩ (resp. |−α2−ph⟩) if
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Re (α(0)) > 0 (resp. Re (α(0)) < 0). Additionally, although the action of a operator in-
duces bit-flip errors, phase-flip errors are heavily suppressed in presence of this pumping
scheme. Indeed, as proven in [45], the phase-flip rate is exponentially suppressed with
the size of the cat states |α2−ph|2.

Figure 1.10: Vector field associated to the semi-classical dynamics of Eq. (1.48)
represented in the phase space of the harmonic oscillator. The dynamics admit
three equilibrium points: the two equilibrium points ±α are stable and the equilibrium
0 is a saddle point.

An evolution under a master equation such as Eq. (1.48) can be achieved by con-
sidering both the harmonic oscillator mode a (now called storage mode), with a very
good quality factor and which will be the mode effectively storing information using cat
states, and an extra very dissipative mode b (called readout mode). The latter mode
can be viewed as a way to evacuate entropy out of the system. Assuming an interaction
Hamiltonian between these two modes of the form

Hint = ℏ g2−ph

[(
a†
)2

b + a2b†
]

(1.49)

while driving the b mode, resulting in a Hamiltonian Hdrive = iℏu
(
b† − b

)
with u the

amplitude of the drive, this results in a master equation for the whole system reading

dρ

dt
= u

[
b† − b, ρ

]
+ κbD [b] (ρ) − ig2−ph

[(
a†
)2

b + a2b†
]

(1.50)

where κb is the (large) dissipation rate of the readout mode. Then, using an adiabatic
elimination method [41] to eliminate the strongly dissipative readout mode (with fast
dynamics), one recovers a (reduced) master equation of the form of Eq. (1.48). More
details about this adiabatic elimination procedure are given in section 1.4.

1.5.3 Four-photon pumping extension
The cat encoding and two-photon pumping schemes presented in sections 1.5.1 and
1.5.2 can be extended to a four-photon pumping scheme with greater protection against
errors. Indeed, similarly to the cat states defined in section 1.5.1, one can define the cat
states

|C±
α ⟩ = 1√

2 (|α⟩ ± |−α⟩)∣∣∣C±
iα

〉
= 1√

2 (|iα⟩ ± |−iα⟩)
(1.51)
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where we assumed that α is large enough so that |±α⟩ and |±iα⟩ can all be considered
orthogonal. It is important to note at this point that Span (|α⟩ , |−α⟩ , |iα⟩ , |−iα⟩) is
stable under the application of the annihilation operator, which is the main source of
errors in superconducting circuits.

Then, let us introduce two different qubit basis
∣∣∣0+

L

〉
=
∣∣C+

α

〉
∣∣∣1+

L

〉
=
∣∣∣C+

iα

〉 and

∣∣∣0−
L

〉
= |C−

α ⟩∣∣∣1−
L

〉
=
∣∣∣C−

iα

〉 (1.52)

which can be used to encode a qubit value. From the fact that a |C±
α ⟩ ≈ α |C∓

α ⟩ and
that a

∣∣∣C±
iα

〉
≈ iα

∣∣∣C∓
iα

〉
, it immediately comes that the a annihilation operator induces

jumps between these two basis. By tracking the jumps between these sets of encoding
bases, one can therefore correct the induced errors such that no information is lost.
This evolution of the encoding basis under the action of the annihilation operator a is
illustrated in Fig. 1.11.

These change of basis can be tracked by continuously monitoring the parity oper-
ator Π = exp

(
ia†a

)
(with eigenvalues +1 for even Fock states and −1 for odd Fock

states). Indeed,
∣∣∣0+

L

〉
and

∣∣∣1+
L

〉
are eigenstates of the parity operator Π associated to

the eigenvalue 1, while
∣∣∣0−

L

〉
and

∣∣∣1−
L

〉
are eigenstates of the parity operator associated

to the eigenvalue −1. The action of the annihilation operator a translates into a jump
of the mean value of the parity observable.

In order to overcome the deterministic energy relaxation of the underlying coherent
states, a pumping scheme should be devised. [16] makes a proposal to use an interaction
Hamiltonian between a storage mode a and a dissipative readout mode b, similar to the
two-photon pumping scheme from section 1.5.2, which reads

Hint = ℏ g4−ph

[(
a†
)4

b + a4b†
]

(1.53)

where g4−ph is the four-photons interaction strength and should be as large as possible
(typically of the order of a few MHz). An Hamiltonian such as Eq. (1.53) can be
achieved, for instance, using a circuit analogous to the one used in section 1.5.2, based
on a Josephson junction coupling two microwave cavities. Indeed, when taking into
account higher order terms in the expansion of the cosine and under the frequency
matching condition ωp = 4ωa − ωb, an interaction term of the form of Eq. (1.53) would
emerge. This, however, comes at the expense of having many parasitic non-rotating
terms and this circuit is not much of practical use.

The b mode being very dissipative, it can be adiabatically eliminated (following the
approach of section 1.4), and the evolution of the storage mode a only is given by

dρ

dt
= κ4−phD

[
a4 − α4

4−ph
]

(ρ) (1.54)

where κ4ph = 4g2
4−ph
κb

with κb the single photon dissipation rate of the readout mode b
and α4−ph = 4

√
2ε4−ph/κ4−ph with ε4−ph = 2Apg4−ph/κb.

For practical use, one wishes that κ4−ph ≫ κ1−ph where κ1−ph denotes the rate at
which single photon loss happens on the storage mode. In current experiments, κ1−ph
is typically of the order of 10kHz. Noting that κ4−ph < g4−ph, this means that ideally
g4−ph should be of the order of 1MHz.
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1.6 Physical realization of cat-pumping interaction with a
single Josephson junction

As discussed in previous section, by engineering an interaction Hamiltonian between the
storage mode and an extra readout mode, one can force exchanges of photons between
the two modes to be made only in pairs. Such an engineered dissipation stabilize the
cat states manifold, enabling us to store the quantum information on time scales longer
than the initial quantum harmonic oscillator (for instance a microwave cavity mode)
lifetime. I will now focus on the simplest circuit to achieve an interaction Hamiltonian
of the form of Eq. (1.49) and used in [28]. The circuit, shown in Fig. 1.12(a), consists
in a microwave cavity with a high quality factor for the storage mode coupled to a
very dissipative microwave cavity for the readout mode through a Josephson junction
providing a non-linearity. In a first time, let us ignore the drive close to resonance on
the cavity. The Hamiltonian of this system reads

H(t) = ℏωaa†a + ℏωbb†b − EJ

[
cos (φ) + φ2

2

]
+ ℏAp(t)

(
b† − b

)
(1.55)

where φ = φ0
a

(
a + a†

)
+φ0

b

(
b + b†

)
is the flux across the junction, ωa is the frequency

of the storage mode, ωb is the frequency of the readout mode, Ap(t) = 2Ap cos ωpt is the
time-dependent amplitude of the strong far-detuned pump at frequency ωp and EJ is
the Josephson energy.

When EJ = 0, the corresponding quantum Langevin equations read
da
dt = −iωaa

db
dt = −iωbb − iAp(t)

(1.56)

And, as Ap(t) = 2Ap cos ωpt, a solution for the b mode is a coherent state of ampli-
tude β̄(t) such that

β̄(t) = Ap

[
eiωpt

ωb + ωp
+ e−iωpt

ωb − ωp

]
(1.57)

Then, introducing b̃ = b − β̄(t), the Hamiltonian of the system reads

H = ℏωaa†a + ℏωbb̃†b̃ − EJ

[
cos φ̃ + φ̃2

2

]
(1.58)

where φ̃ = φ0
a

(
a + a†

)
+ φ0

b

(
b̃ + b̃†

)
+ 2φ0

bReβ̄(t).
Assuming φ is small, let us expand the cosine term and write the Hamiltonian in

interaction picture with respect to the numbers operators part (ℏωaa†a + ℏωbb†b)

H(t) = −EJ

∑
k≥2

(−1)k

k!

[
φ0

a

(
ae−iωat + a†eiωat

)
+ φ0

b

(
b̃e−iωbt + b̃†eiωbt

)
+ 2φ0

bReβ̄(t)
]2k

(1.59)
Using the time-averaging methods from [19] and only considering the cosine expan-

sion up to quartic terms, the Hamiltonian reduces to

H̄2−ph = ℏg2−ph

[
a2b† +

(
a†
)2

b
]

+ ℏχaa

2

(
a†a

)2
+ ℏχaa

2

(
b̃†b̃

)2
+ ℏχab

(
a†a

) (
b̃†b̃

)
(1.60)
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where we introduced χaa = EJ

∣∣φ0
a

∣∣4 /2ℏ (respectively χbb = EJ

∣∣φ0
b

∣∣4 /2ℏ) the self Kerr
strengths, χab = EJ

∣∣φ0
a

∣∣2 ∣∣φ0
b

∣∣2 /ℏ the cross Kerr strength and g2−ph the two-photon
interaction strength, expressed in terms of the physical parameters of the system and
the pump strength.

Finally, when taking into account the extra drive which is close to resonance with
the readout mode, the full Hamiltonian of the system reads

H̄2−ph = ℏg2−ph

[
a2b̃† +

(
a†
)2

b̃
]

+ ℏχaa

2

(
a†a

)2
+ ℏχaa

2

(
b̃†b̃

)2
+ ℏAd(t)

(
b̃† − b̃

)
(1.61)

where Ad is the complex amplitude of the drive close to resonance with the readout
mode.

Using this physical implementation with a single photon and using the results derived
in section 1.4, the effective two-photon dissipation rate is given by κ2−ph = 4g2

2−ph/κb.
In the cat-states encoding scheme, the protection rate is given by κ2−ph and is increasing
with g2−ph and therefore with the pump amplitude: one usually wishes to increase the
pump power to obtain a significant protection rate.

However, as discussed in section 1.3, such an increase of the pump power is strongly
limited [34]: other detrimental terms in the expansion of the cosine potential of the
Josephson junction will no longer be negligible in presence of a strong pump, the system
can undergo phase slips or heating.

1.7 Plan of the manuscript
In Chapter 2, I study the dynamics of a transmon circuit under strong external mi-
crowave drives. First, I will present the dynamics of a transmon circuit coupled to
a harmonic oscillator and I perform some change of variables to make the simulation
tractable. Then, I present the Floquet-Markov approach and its application to the case
of a transmon coupled to a microwave cavity. Indeed, simulating the dynamics of such
a system under strong drives is challenging, due to the sizes of the Hilbert spaces as
well as due to the many time scales in the system. The Floquet-Markov approach let us
consider the non-linear Hamiltonian while avoiding many approximations. In the last
section of Chapter 2, using the Floquet-Markov approach, I will present the results for
the ac-Stark shift, that is the renormalization of the microwave cavity frequency as a
function of drive power.

In Chapter 3, I study an alternative circuit consisting of a transmon with an addi-
tional inductive shunt, coupled to a microwave cavity. Indeed, the results from Chapter
2 emphasize a decoupling behavior where the transmon non longer contribute any non-
linearity to the microwave cavity mode above a given threshold pump power. As I show
in Chapter 3, the additional inductive shunt makes the whole system more stable and
the non-linearity can then be exploited on a larger span of pump powers. In this Chap-
ter, I present the model as well as the results from simulations in the Floquet-Markov
theory. In the last section, I compare results from the Floquet-Markov theory with
results obtained from a first-order time-averaging on this system. Here, and contrary
to the unshunted case, the time-averaged model can be used, giving good qualitative
predictions.

In Chapter 4, I detail the way I realized the Floquet-Markov simulations and the
numerical methods.

Finally, building on previous results, I investigate in Chapter 5 the properties of a
circuit based on the Josephson Ring Modulator, a circuit currently used for amplification
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and conversion. This slightly modified version, with some asymmetry in the Josephson
ring, is considered as a more robust source of non-linearity to engineer two-photon and
four-photon pumping Hamiltonian for the cat encoding scheme.
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Figure 1.11: Life and death of information encoded in the four-photon cat
states encoding in a microwave cavity. Starting from an initial qubit state |Ψ⟩
encoded in the even parity subspace

{∣∣∣0+
L

〉
,
∣∣∣1+

L

〉}
(top-left Bloch sphere representa-

tion), the action of the storage mode annihilation operator a switches back and forth
the encoding basis between even parity and odd parity states (lower ring). Bloch sphere
representation in each of the encoding basis are shown as well as Wigner representation
of the

∣∣∣0±
L

〉
states. The fringes in the Wigner representation indicate a coherent super-

position while the parity of the states can be distinguished by looking at the sign of
the center fringe. In absence of pumping, the underlying coherent states decay towards
the vacuum state according to the microwave cavity lifetime, therefore losing quantum
information (top line).
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Figure 1.12: Implementation of the two-photon pumping scheme with a
Josephson junction. a) A storage mode, used to store the quantum information with
a cat-state encoding, is coupled to a fast dissipative readout mode through a non-linear
element (Josephson junction). A pump, detuned from the resonant frequencies of the
system, is driving the readout cavity to mediate the two-photon exchange Hamiltonian.
An additional drive, in resonance with the readout cavity, is applied. b) Under the fre-
quency matching condition, two processes are dominant: the conversion of one photon
at the readout frequency and a photon from the pump into two photons at the storage
frequency and the reverse process. c) Wigner tomography results from [28]. Starting
from the vacuum of the storage mode and turning on the pumping, the system evolves
to a cat state at t = 7µs as evidenced by the negativity in the center. For longer time
scales, it decays to a statistical mixture of two coherent states. (Figure courtesy of Z.
Leghtas[28])
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Josephson junctions are ideal non-dissipative elements that realize non-linear Hamil-
tonians for superconducting quantum circuits. Compared to nonlinear crystals in the
optical regime, Josephson circuits have a much larger ratio between multi-wave mixing
and decoherence rates [46, 47, 48]. By applying off-resonant drives (pumps) verify-
ing frequency matching conditions, one can engineer various Hamiltonians that are not
obtainable statically. This so-called parametric method has been used, for instance, to
achieve frequency conversion [49], quantum-limited amplification [50], two-mode squeez-
ing [51], transverse readout of a qubit [52], and multi-photon exchanges between two
modes [28]. In all these applications, the rates of the engineered parametric couplings
scale with the pump power. However, as observed in [28, 34, 32], this scaling can be
strongly limited by effects such as the induced deterioration of the coherence properties.

In this Chapter, I will study such limitations, focusing in particular on the ac-Stark
shift effect [53, 54, 55] as an indicator of systems behavior. Indeed, when driving a
non-linear oscillator,ƒunshunte there is a shift of its resonant frequency as a function
of the drive power. This is the ac-Stark shift effect which is the dominant observable
effect in such quantum circuits. For small enough pump strengths, the frequency shift is
expected to be linear in the pump power [53]. At higher pump strengths, higher order
terms in the ac-Stark shift should be taken into account, giving a small curvature of this
dependence. I am here interested in the high pumping regime, beyond these spans of
pump strengths.

I explain these limitations by analyzing the structural stability of the underlying
dynamical system. I call a dynamical system structurally stable if small modifications
of the parameters, such as the strength of the pumping drives, lead to small changes in
its qualitative behavior, such as the asymptotic steady states of the driven-dissipative
system. I show that the ubiquitous system consisting of a transmon [56, 7] coupled to
a cavity mode displays strong instabilities in this sense. I predict that above a critical
pump power the transmon state escapes the Josephson potential confinement and is
sent to free-particle-like states. The circuit behaves then as if we had removed the
junction, and this explains the jump of the cavity frequency towards its bare (undressed)
value. Previously, such a jump in the resonance frequency has been observed in a setup
with a single strong probe drive, and used to perform single shot measurements of the
transmon qubit [36]. This work however differs from previous theoretical works which
have investigated this phenomenon assuming two-level [37], multi-level [57, 35, 39] and
Duffing approximations [38] of the transmon mode in that the full model is taken into
consideration for numerical simulations. Additionally and contrary to the approach of
looking at the transmission response of the strong pump, the pump drive is only used
as a pump here, while a separate small power probe drive is considered for performing
spectroscopy of the system.

2.1 Strongly driven transmon coupled to a cavity

In this chapter, I am investigating the dynamics of a transmon coupled to a harmonic
oscillator (later simply referred to as “oscillator”), under strong drives. The lumped
elements circuit depicted in Fig. 2.1 can be quantized by following closely the methods
described in [17, 14]. First, let us write its Lagrangian,

L = CJ

2
Φ̇2

b + Cg

2

(
Φ̇a − Φ̇b

)2
+ CB

2
Φ̇2

a − Φ2
a

2LB
+ EJ cos

[
2π

Φb

Φ0

]
(2.1)
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Figure 2.1: Lumped element circuit of a transmon coupled to a harmonic
oscillator (microwave cavity). This lumped element circuit depicts a transmon (here
in red) with a capacitance CJ and a Josephson energy EJ for the junction, capacitively
coupled (through a capacitance Cg) to a microwave cavity (harmonic oscillator, here in
blue) with a capacitance CB and an inductance LB.

where Φa,b are the node flux as indicated on Fig. 2.1, Φ0 = h/2e is the magnetic
quantum flux, CJ is the capacitance associated to the junction, EJ is the Josephson
junction energy, CB and LB are the capacitance and inductance of the microwave cavity
and Cg is the coupling capacitance.

Let us introduce the conjugate variables Qa,b (node charge), defined as
Qa = ∂L

∂Φ̇a
= CBΦ̇a + Cg

(
Φ̇a − Φ̇b

)
Qb = ∂L

∂Φ̇b
= CJ Φ̇b + Cg

(
Φ̇b − Φ̇a

) (2.2)

The Hamiltonian of this circuit is then given by

H = QaΦ̇a + QbΦ̇b − L (2.3)

which can be written as

H = Q2
a

2C̃a

+ Q2
b

2C̃b

+ Eg QaQb + Φ2
a

2L̃a

− EJ cos θ (2.4)

at the expense of introducing θ = 2πΦb/Φ0, renormalized capacitances C̃a and C̃b and
a coupling energy Eg which are expressed in terms of CB, CJ and Cg.

Quantization of the Hamiltonian Eq. (2.4) can now be done using the usual promo-
tion of variables to operators. I will use the charge states description for the transmon
operators cos(θ) and Qb. Then,

Qb = −2e (N − Ng)

cos(θ) = 1
2

+∞∑
N=−∞

|N⟩ ⟨N + 1| + h.c.
(2.5)
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where e is the elementary charge, N =
∑+∞

N=−∞ |N⟩ ⟨N | is the Cooper pair number
operator, Ng is a continuous-valued offset charge (or “gate charge“) and {|N⟩}N∈Z is
the charge states basis. The cos(θ) operator accounts for the transfer of Cooper pairs
across the junction. Let us note that here, the number of Cooper pairs N takes its value
in Z and that the phase θ takes its values in the interval [0, 2π] [14, 17]. Therefore, θ
can only appear in operators defined by a periodic function. N and θ operators satisfy
the commutation relation [θ, N ] = i.

I can quantize the cavity variables Φa and Qa as a harmonic oscillator, introducing
photon annihilation and creation operators of the oscillator mode, a and a†. Then,

Qa = −iQZPF
a

(
a† − a

)
Φa = ΦZPF

a

(
a + a†

) (2.6)

where QZPF
a =

√
ℏ/2Za and ΦZPF

a =
√
ℏZa/2 with Za =

√
L̃a/C̃a the characteristic

impedance of the oscillator. Then,

Qa
2

2C̃a

+ Φ2
a

2L̃a

= ℏωa a†a (2.7)

where 2πωa = 2π/
√

L̃aC̃a is the bare frequency of the oscillator, in absence of coupling
to the transmon. Note that I discarded the vacuum energy here.

The quantized Hamiltonian of the circuit from Fig. 2.1 is then given by

H(t) = 4EC (N − Ng)2 − EJ cos(θ) + ℏωaa†a + iℏg (N − Ng)
(
a† − a

)
. (2.8)

where EC = e2/2C̃b is the charging energy, ωa is the bare frequency of the oscillator
(in absence of coupling to the transmon) and EJ is the Josephson coupling energy.
g = 2eEgQZPF

a /ℏ is the coupling rate between the two modes.
Let us now focus on the circuit depicted in Fig. 2.2 where I also considered the

coupling of the cavity to a transmission line. A (strong) off-resonant microwave drive
at frequency ωp is sent to the system through this transmission line. This pump can be
described by its time-dependent amplitude Ap(t) = Ap cos(ωpt), with an amplitude Ap

and a frequency ωp far detuned from the resonance frequencies of the system. Using the
previous results, the Hamiltonian of the whole circuit from Fig. 2.2 can be written as

H(t) = 4EC (N − Ng)2−EJ cos(θ)+ℏωaa†a+iℏg (N − Ng)
(
a† − a

)
+iℏAp(t)

(
a† − a

)
.

(2.9)
The dissipation is modelled as a capacitive coupling of the oscillator to a transmission

line [58], the Hamiltonian of this coupling between the system and the bath being

HSB =
∑

k

[
ℏωkc†[ωk]c[ωk] − ℏΩ[ωk]

(
a† − a

) (
c†[ωk] − c[ωk]

)]
. (2.10)

Here, c[ωk] and c†[ωk] are the photon annihilation and creation operators of the bath
modes at frequency ωk and Ω[ωk] represents their coupling strengths to the circuit
oscillator mode a.

From now on, I will focus on the Hamiltonian Eq. (2.9) modelling the circuit Fig. 2.2
and consider the new parameters EC , EJ , ωa, g and Ap(t) as the base parameters
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Figure 2.2: Circuit of a regular transmon, coupled to a harmonic oscilla-
tor (microwave cavity) and capacitively coupled to a transmission line. A
(strong) off-resonant microwave drive at frequency ωp, called a pump, is sent to the
system through the transmission line. Experimentally, an additional weak drive, called
a probe, is used to probe the resonant frequencies of the system. This probe drive is
not considered in the model I use as a basis for the numerical simulation. Instead, its
effect is simulated through the study of the structure of the steady-state dynamics, as
detailed in section 2.3.1.

describing the circuit. In this chapter, I am investigating the dynamics of this sys-
tem for large pump amplitudes, where the number of circulating photons, given by
n̄ = |Ap|2/4|∆p|2 (with ∆p the detuning between the pump frequency and the dressed
oscillator frequency) can reach a few hundreds.

2.2 Change of frame for numerical simulations
Non-perturbative numerical simulations of such a strongly driven nonlinear system are
particularly challenging. They require the simulation of a master equation over a Hilbert
space of large dimension and with times scales separated by many orders of magnitude
[59]. The dimensionality issue can be overcame by changing the frame of reference,
displacing the high excitation manifold into a tractable one.

First, let us write quantum Langevin equations for the time evolution under Hamil-
tonian Eq. (2.9). To start and in order to simplify notations, I will ignore the influence
of the charge offset Ng, setting Ng = 0.

For the annihilation operator a, this gives
da
dt

= −iωaa + gN + Ap(t) (2.11)

and for the transmon operators, this gives
dθ
dt = 8EC

ℏ N + ig
(
a† − a

)
dN
dt = −EJ

ℏ sin(θ).
(2.12)
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Let us introduce the displaced modes ã = a − ā1, Ñ = N − N̄1 and θ̃ = θ − θ̄1
where ā, N̄ and θ̄ are solutions of Eq. (2.11) and Eq. (2.12) with EJ set to zero1,

dā
dt = −iωaā + gN̄ + Ap(t)

dθ̄
dt = 8EC

ℏ N̄ + ig (ā∗ − ā)

dN̄
dt = 0

(2.13)

A solution of this system is

ā = Ap

2i

[
eiωpt

ωa+ωp
+ e−iωpt

ωa−ωp

]
θ̄ = − 2Apgωa

ωp(ω2
a−ω2

p) sin (ωpt) mod 2π

N̄ = 0

(2.14)

Then, ã, Ñ and θ̃ are solutions of

dã
dt = −iωaã + gÑ

dθ̃
dt = 8EC

ℏ Ñ + g
(
ã† − ã

)
dÑ
dt = −EJ

ℏ sin(θ̃ + θ̄1)

(2.15)

From this set of equations, a Hamiltonian formulation can be recovered as

H̃(t) = ℏωa ã†ã + 4ECÑ2 − EJ cos
[
θ̃ − ξ sin(ωpt1)

]
+ iℏgÑ

(
ã† − ã

)
(2.16)

where ξ = 2Apgωa

ωp(ω2
a−ω2

p) . This Hamiltonian is written in a displaced frame taking into
account a coherent displacement of the cavity. In this displaced frame, the mean value
of the cavity photon number is expected to be close to zero. Additionally, it takes
the pump drive into account as a drive on the superconducting phase of the transmon.
Therefore, the size of the cavity Hilbert space truncature to consider for high values of
the number of circulating photons (n̄ ≃ 1000) should remain numerically tractable.

At this point, it is probably worth emphasizing that, although the pump term now
appears inside the cosine term in Eq. (2.16), there is still a kinetic energy term 4ECÑ2

outside of the cosine. Then, this differs from the usual approach where one would use
black box quantization techniques [61] and end up with hybridized modes Qk, Φk =
f
(
k, k†

)
and a single cosine term in the Hamiltonian, of the form

H = −EJ cos
(
φ0

a

(
ae−iωat + h.c.

)
+ φ0

b

(
be−iωbt + h.c.

)
+ εp cos ωpt

)
.

Additionally, in the system studied in this chapter, under a strong pump drive, the
counter-rotating terms play a major role and cannot be neglected through rotating
wave approximations.

1Note that this choice of frame (EJ = 0) is different from the choice of [60] (g = 0). By choosing a
frame where EJ = 0, we are anticipating that in the large pump limit, the system behaves as though
EJ is close to 0, and therefore it is in this frame that the cavity will remain close to its ground state.
This is a key point that enabled us to simulate the system at large pump powers.
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2.3 Simulations in the Floquet-Markov framework for weak
dissipation

Non-perturbative numerical simulations of such a strongly driven nonlinear system are
particularly challenging. They require the simulation of a master equation over a Hilbert
space of large dimension and with times scales separated by many orders of magnitude
[59]. The change of frame described in the previous section solves the dimension problem
by displacing the high excitation manifold into a tractable one correctly. However, the
full numerical simulation of the dynamics of this system, in absence of any rotating-wave
approximation, remains difficult.

Indeed, usually, to simplify the dynamics, one starts by removing the fastest times
scales through rotating-wave approximations. However, reliable simulations in the pres-
ence of strong drives require taking into account the counter-rotating terms in the Hamil-
tonian, as it had previously been noted in [40, 57]. In the study I conducted, I purposely
avoided any time-averaging of the driven Hamiltonian. The Floquet-Markov framework
[62] provides a useful and efficient framework to conduct these simulations for a system
evolving under a periodic Hamiltonian and with weak dissipation.

2.3.1 Floquet-Markov framework for weak dissipation

Hamiltonian formulation of Floquet theory

Let us consider here a system evolving under a time-periodic Hamiltonian of period
T = 2π/ωp. Such a system can be efficiently simulated using the tools from the Floquet
theory [62, Section 2]. In this subsection, I recall some of the basic elements of the
Floquet theory that are required to understand the numerical simulations method.

The Schrödinger equation for such a quantum system is

iℏ
∂ |Ψ⟩

∂t
= H(t) |Ψ(t)⟩ (2.17)

where |Ψ(t)⟩ denotes the state of the system at time t.
The Floquet theorem states that there exists solutions to Eq. (2.17), called Floquet

states, of the form
|Ψα̃(t)⟩ = e−iεα̃t/ℏ |Φα̃(t)⟩ (2.18)

where |Φα̃⟩ is called a Floquet mode and is T -periodic in time and εα̃ is a real-valued
energy, called a quasi-energy. For any Floquet mode |Φα̃(t)⟩, the periodic wave function
einωpt |Φα̃(t)⟩ is also a Floquet mode. Therefore, the set of quasi-energies is invariant
under a translation by multiples of ℏωp and the index α̃ corresponds to two indices
(α, n) ∈ [−ℏωp/2, ℏωp/2[ × Z, with εα̃ = εα,n = εα + nωp. Each value of n here
corresponds to a Brillouin zone. From now on, I will focus on the first Brillouin zone,
(α, 0), which I will denote by α only to simplify the notation.

A general approach for solving the Schrödinger equation Eq. (2.17) is to first identify
the Floquet modes and the associated quasi-energies. These are eigenvectors of the
H(t) − iℏ∂/∂t operator, with corresponding eigenvalues {εα}α. Then, as the Floquet
states at a given time t from a given Brillouin zone form a basis, the initial state |Ψ(0)⟩
can be written as a superposition of the Floquet states of the first Brillouin zone at time
t = 0,

|Ψ(0)⟩ =
∑

α

cα |Ψα(0)⟩ =
∑

α

cα |Φα(0)⟩ . (2.19)
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H

ǫα[~ωp]

|ψα〉

1

Figure 2.3: Floquet-Markov theory. The Floquet states {|Ψα(t)⟩}α are periodic
orbits of the driven system in its Hilbert space H. A quasi-energy εα is associated
with each Floquet state |Ψα(t)⟩. The set of quasi-energies is invariant under translation
by multiples of ℏωp (different Brillouin zones). Here, I plot the Floquet states of the
first Brillouin zone (with quasi-energies defined modulo ℏωp and denoted by εα [ℏωp])
and their transitions due to the coupling to the bath, represented by arrow connections
between them. The steady state of the driven dissipative system is given by a statistical
mixture of these Floquet states, with populations inferred from an extension of the Fermi
golden rule. Each Floquet state has a different projection onto the Hilbert space under
consideration, H, represented in dotted lines here.

The solution of Eq. (2.17) at any time t > 0 is then given by

|Ψ(t)⟩ =
∑

α

cα |Ψα(t)⟩ =
∑

α

cαe−iεαt/ℏ |Φα(t)⟩ (2.20)

In order to identify the Floquet modes and the quasi-energies, let us note that by
applying the propagator Ũ(t + T, t) of Eq. (2.17) to a Floquet solution gives

Ũ(t + T, t) |Φα(t)⟩ = e−iεαT/ℏ |Φα(T + t)⟩ (2.21)

and in particular, at t = 0,

Ũ(T, 0) |Φα(0)⟩ = e−iεαT/ℏ |Φα(T )⟩ = e−iεαT/ℏ |Φα(0)⟩ . (2.22)

Equation Eq. (2.22) can be used to efficiently compute numerically the Floquet
modes at t = 0 and their quasi-energies through the eigenstates and eigenvalues of
Ũ(T, 0). Then, the value of the Floquet modes at any later time can be obtained using

|Φα(t)⟩ = eiεαt/ℏŨ(t, 0)Φα(0). (2.23)

Floquet-Markov approach for weak dissipation

The Floquet theory can be extended to take into account weak dissipations. Under the
Floquet-Markov-Born approximation [62, Section 9], one can write a master equation
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in the basis of the Floquet modes of the first Brillouin zone:

ρ̇αα(t) =
∑

ν [Lανρνν(t) − Lναραα(t)]

ρ̇αβ(t) = −1
2
∑

ν (Lνα + Lνβ) ραβ(t), α ̸= β

(2.24)

where (ραβ) = ⟨Φα(t)| ρ |Φβ(t)⟩ are the components of the density matrix ρ and Lα,β is
defined by

Lαβ =
+∞∑

k=−∞

(
γα,β,k + nth(|∆α,β,k|) (γα,β,k + γβ,α,−k)

)
. (2.25)

where
γα,β,k = 2πΘ (∆αβk) J (∆α,β,k) |Pαβk|2 , (2.26)

Θ is the Heaviside distribution, ℏ∆α,β,k = ϵβ −ϵα +kℏωp is a quasi-energy difference and
J(ω) is the noise spectral function of the environmental coupling. The matrix elements,
Pαβk are given by

Pαβk = i

T

∫ T

0
e−ikωpt ⟨Φα(t)| (ã − ã†) |Φβ(t)⟩ dt. (2.27)

Finally, nth(ω) = 1/[exp(ℏω/kBT )−1] is the thermal occupation of the bath at frequency
ω. In my simulations, I assume a zero temperature and therefore nth ≡ 0.

Under some non-degeneracy assumptions (absence of resonance), the steady state of
Eq. (2.24) is diagonal in the Floquet modes basis. Moreover, the diagonal of this steady
state density matrix can be computed numerically in a very efficient way, by solving the
linear system

Rp = 0, (2.28)

where (pα)α = (ραα)α is the diagonal of the steady state density matrix and

(Rαβ)αβ =
(

Lαβ − δαβ

∑
ν

Lαν

)
αβ

(2.29)

with δαβ the Kronecker delta.

Computation of the ac Stark shifts in the Floquet-Markov approach

In this subsection, I will focus on the resonance frequency of the driven system with
Hamiltonian H̃(t), close to the oscillator’s bare frequency. Experimentally, such a res-
onance frequency can be found by sweeping the frequency of a very weak probe drive
around the oscillator’s frequency [32]. Let us model this weak probe as a small pertur-
bative Hamiltonian iℏε(t)

(
ã† − ã

)
.

As shown in previous subsections, the system converges asymptotically to a limit
cycle given by a statistical mixture of Floquet states:

ρss(t) =
∑

α

pα |Φα(t)⟩ ⟨Φα(t)| .

Initializing the system at one of the Floquet modes |Φα⟩ populated in the steady state,
let us focus on the solution of the Schrödinger equation in the presence of the weak
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probe. Let us consider this solution at the lowest order in the amplitude of the probe
field. The Schrödinger equation in this case is

∂

∂t
|Ψ(t)⟩ = − i

ℏ
Hε(t) |Ψ(t)⟩ , |Ψ(0)⟩ = |Φα(0)⟩ (2.30)

where Hε(t) = H̃(t) + iℏε(t)
(
ã† − ã

)
.

First, let us introduce the propagation operator Ũ(t, 0) associated with the H̃(t)
Hamiltonian,

∂Ũ(t, 0)
∂t

= − i

ℏ
H̃(t)Ũ(t, 0), Ũ(0, 0) = I.

The solution of Eq. (2.30) is given by

|Ψ(t)⟩ =Ũ(t, 0) |Φα(0)⟩

+ 1
ℏ

Ũ(t, 0)
∫ t

0
ε(s)Ũ(s, 0)†

(
ã† − ã

)
Ũ(s, 0) |Φα(0)⟩ ds

=e−iϵαt/ℏ |Φα(t)⟩

+ 1
ℏ

Ũ(t, 0)
∫ t

0
ε(s)e−iϵαs/ℏŨ(s, 0)†

(
ã† − ã

)
|Φα(s)⟩ ds.

Let us now focus on the overlap of |Ψ(t)⟩ with other Floquet modes |Φβ(t)⟩. Eq. (2.31)
gives,

⟨Φβ(t)| Ψ(t)⟩ =e−iϵαt/ℏ ⟨Φβ(t)| Φα(t)⟩

+ 1
ℏ

⟨Φβ(t)| Ũ(t, 0)
∫ t

0
ε(s)e−iϵαs/ℏŨ(s, 0)†

(
ã† − ã

)
|Φα(s)⟩ ds

(2.31)

that is

⟨Φβ(t)| Ψ(t)⟩ =e−iϵαt/ℏ ⟨Φβ(t)| Φα(t)⟩

+ 1
ℏ

e−iϵβt/ℏ
∫ t

0
ε(s)ei(ϵβ−ϵα)s/ℏ ⟨Φβ(s)|

(
ã† − ã

)
|Φα(s)⟩ ds

=e−iϵαt/ℏ ⟨Φβ(t)| Φα(t)⟩

− i

ℏ
e−iϵβt/ℏ∑

k

∫ t

0
ε(s)ei∆α,β,ksPβ,α,kds

(2.32)

To induce a transition in the system between the Floquet modes |Φα⟩ and |Φβ⟩, one
needs the frequency of the probe drive ε(t) to match one of the frequencies ∆α,β,k,
and furthermore that the associated matrix element Pβ,α,k is non-zero. Moreover, the
transition rate is proportional to both the population of the initial Floquet mode |Φα⟩
in the steady state ρss given by pα, and the matrix element Pβ,α,k.

2.3.2 Numerical simulations of the ac Stark shifts in absence of offset
charge

In order to investigate the dynamics of the system Eqs. (2.16)-(2.10) for large pump
amplitude, when the circulating photons number can reach a few hundreds, I performed
Floquet-Markov simulations, assuming a white-noise spectrum for the bath (therefore
taking J(ω) = 1 in Eq. (2.26)). In Fig. 2.4, I plot the populations of the true transmon
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eigenstates {|ηk⟩}∞
k=0, in ρss(0) and as a function of the pump power. The transmon

eigenstates are those of the transmon Hamiltonian 4ECN2 − EJ cos(θ).
First, the populations of the mode ã remain close to the ground state over the whole

range of pump values. This confirms that the actual state is well approximated by a
coherent state and therefore, that the change of frame performed in section 2.2 is a
correct approximation.

Figure 2.4: Populations of the transmon eigenstates {|ηk⟩}k in the steady state
ρss(0) of Eqs. (2.16)-(2.10) as a function of the pump power, as computed with
a Floquet-Markov approach. The parameters are taken to be Ec/ℏ = 150 MHz,
EJ/ℏ = 20 GHz, g/2π = 140 MHz, ωa/2π = 5.5 GHz and ωp/2π = 6 GHz. Here,
n̄est = |Ap|2 /4 |ωp − ωa|2 is an estimation of the number of circulating photons n̄, where
I use the bare oscillator frequency instead of the dressed one. The red dots indicate the
average number of excitations in the transmon mode.

With this given set of parameters, the dynamics of the displaced transmon mode
exhibit two regimes, as shown on Fig. 2.4. For n̄ ≲ 100, the state remains well confined
on the lowest transmon eigenstates, lying inside the cosine potential confinement, except
for a few pump values. For n̄ ≳ 100, the transmon mode gets highly populated, beyond
the cosine confinement. Indeed, the number of confined states in a transmon is roughly
given by the ratio between the depth of the cosine potential (2EJ) and the level spacings
(approximately

√
8EJEC) [56]. With the parameters used in Fig.2.4, there are about

eight such confined levels.
Additionally, the whole tensor state remains pure for n̄ ≲ 100, except for a few pump

values, whereas for n̄ ≳ 100, it rapidly turns into a mixed state of a high number of
excitations, as shown on Fig. 2.5 (impurity is plotted as black crosses, right axis).

Then, inspired by the experiments on the ac Stark shifts [53, 54], I simulated an
excitation spectroscopy of such a driven system near the oscillator bare frequency. Each
Floquet state |Ψα(t)⟩ with a nonzero population in the steady state ρss(t) can be excited
to other Floquet states |Ψβ(t)⟩ by a weak probe drive at the frequency given by the
difference of their quasi-energies (εβ − εα)/ℏ [57, 63, 60]. In Fig. 2.5, I plot all these
resonance frequencies as a function of the pump power.

For each pump power, a few resonance frequencies may appear, corresponding to
various transitions and various Floquet states populated in the limit cycle. For weak
drives, that is for n̄ ≪ 100, the shift is linear in the number of photons, which is in
agreement with the usual ac Stark shifts experiments [53, 54] and the associated theo-
retical work [55]. The behavior remains smooth up to n̄ ≃ 100, with a slight curvature
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Figure 2.5: Impurity of the steady state ρss(0) and ac Stark shifted frequencies
of the oscillator as a function of the pump power. The black crosses (right-hand
axis) correspond to the impurity of the whole (tensor) steady state. The steady state
quickly becomes very mixed, even for small pump strengths. The blue dots (left-hand
axis) correspond to the ac Stark shifted frequencies of the oscillator as a function of
the pump power. The areas of the points are proportional to the associated transition
probabilities (see section 2.3.1). The green horizontal line corresponds to the oscillator
bare frequency ωa. At many pump powers, multiple resonance frequencies appear, cor-
responding to different transitions from the limit cycle to Floquet states. The abscissa
is the same as in Fig. 2.4, using an estimation of the number of circulating photons,
n̄est. Parameters are the same as in Fig. 2.4.

representing the effect of higher-order nonlinearities [64]. For n̄ ≳ 300, the dominant
resonance frequency shifts close to the oscillator bare frequency. This can be physically
understood by the fact that high-energy transmon states (with an energy above 2EJ) are
not affected by the cosine potential. Therefore, they are well approximated by charge
states. Upon reaching these levels, the transmon mode acts as a free particle (similar to
the ionization of an atom) and its dynamic follows that of the oscillator. The oscillator
no longer inherits a nonlinearity from the transmon mode, as evidenced by the jump of
its resonance frequency towards the bare frequency ωa.

These two regimes slightly overlap in the middle region (100 ≲ n̄ ≲ 300), which
presents many transition frequencies.

Previously, such a jump in the resonance frequency has been observed in a setup
with a single strong probe drive and used to perform single-shot measurements of the
transmon qubit [36]. Various theoretical works have investigated this phenomenon,
assuming two-level [37], multilevel [57, 35, 39] and Duffing approximations [38] of the
transmon mode. In contrast to these approaches, the above numerical simulations of the
full model given in Eq. (2.16) and Eq. (2.10) and the experimental observations detailed
in section 2.4 illustrate that such a jump in the resonance frequency coincides with the
excitation of the transmon mode to high energy levels, well beyond the confinement
potential.

More details about the numerical methods, the code used and the physical infras-
tructure used to conduct these simulations are provided in chapter 4.
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2.3.3 Influence of the offset charge

In this section, I will focus on the study of the effect of charge offset Ng on the dynamics
of the system. In all the simulations discussed so far in this chapter, Ng was set to zero.

Taking into account the charge offset Ng, the full Hamiltonian Eq. (2.9) of the system
is

H(t) = 4EC (N − Ng)2−EJ cos(θ)+ℏωaa†a+iℏg (N − Ng)
(
a† − a

)
+iℏAp(t)

(
a† − a

)
.

(2.33)
where Ng is real valued. The same analysis as performed in section 2.2 can then be
done, taking into account Ng and leading to the Hamiltonian Eq. (2.34) in the displaced
frame

H̃(t) = ℏωa ã†ã + 4EC

(
Ñ − Ng

)2
− EJ cos

[
θ̃ − ξ sin(ωpt1)

]
+ iℏg

(
Ñ − Ng

) (
ã† − ã

)
(2.34)

where ξ = 2Apgωa

ωp(ω2
a−ω2

p) .

Figure 2.6: Floquet-Markov simulations (in the asymptotic regime) of
Eqs. (2.34)-(2.10), using the same parameters as in Fig. 2.4 and three dif-
ferent values of Ng. In the upper figures, I plot the populations of the transmon
eigenstates in the steady state ρss(0) as a function of the pump power. The red dots
indicate the average number of excitations in the transmon mode. In the lower figures, I
plot the ac Stark shifted frequencies of the oscillator (blue dots, left-hand axis) and the
impurity of the whole steady state (black crosses, right-hand axis) as a function of the
pump power. The abscissa is the same as in Fig. 2.4, using an estimation of the num-
ber of circulating photons, n̄est. No significant qualitative difference can be observed
between the three cases. In all three cases, the steady state rapidly becomes very mixed
and highly excited in the transmon eigenstates basis. Although the frequency is well
defined and smooth up to n̄est ≃ 100, it is no longer well defined for larger values of n̄est.

As can be seen in Fig. 2.6, the value of the charge offset Ng does not yield any
significant effect on the qualitative behavior of the system in the steady state.
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2.4 Comparison with experimental data
In parallel to the theoretical work described in previous section, an experimental in-
vestigation of the behavior of a single transmon embedded in a 3D copper cavity was
conducted at Laboratoire Pierre Aigrain [32]. Such a circuit is well modeled by the
Hamiltonian depicted in Eq. (2.4). The operating regime has comparable parame-
ters of the system, that is EC/ℏ = 2π × 166 MHz (versus 150 MHz in simulations),
EJ/ℏ = 2π × 23.3 GHz (versus 20 GHz in simulations), g/2π = 179 MHz (versus
140 MHz in simulations). The main difference lies in the cavity frequency under con-
sideration, ωa/2π = 7.739 GHz (versus 5.5 GHz in simulations).

Figure 2.7: Effect of the pump on the cavity resonance frequency. (a) Relative
reflected power of a weak probe as a function of probe frequency (x-axis), and pump
power (y-axis) in units of P1ph, the power needed to populate the cavity with one
photon in average. The pump frequency is fixed at 8.1 GHz, about 300 MHz above
the cavity frequency. The reduced reflected power is due to internal losses when the
probe is resonant with the cavity. We indicate the fitted cavity resonance ωr/2π with
white diamonds. As the pump power increases, two regimes are distinguishable. For
small powers, ωr shifts linearly with the pump power. Above a critical power, the
cavity resonance jumps to a new frequency ωa/2π = 7.739 GHz which is independent
of pump power. (b) Fitted cavity resonance as a function of pump power for various
pump frequencies. Pump powers are converted into a mean number of photons n̄r. The
y-axis of (a) and (b) slightly differ because n̄r takes into account the resonator frequency
shift. The general behavior is the same for all pump frequencies. The low power linear
dependence is well reproduced by the AC Stark shift for an independently measured
Kerr αr (solid gray line). These two panels should be compared with theoretical results
from Fig. 2.5.

They perform a spectroscopy measurement of the resonator while the pump is ap-
plied, shown on Fig. 2.7. In the regime of small pump power, they see a linear shift of the
resonator frequency, while for a critical value of about a hundred photons for the most
detuned frequencies, the resonator frequency abruptly jumps towards a new frequency
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very close to ωa/2π and independent of the pump frequency and power. This behav-
ior is very similar to the one noticed in numerical simulations and in good qualitative
agreement with the results shown on Fig. 2.5.

Additionally, in the experimental study, we measured the transmon coherence time
T1 after a time delay large enough to ensure all modes have decayed back to their ground
state. Such a measure let us discriminate the possible generation of quasiparticles by
the pump pulse. We find that the T1 value is unaffected, therefore confirming that no
measurable amount of quasiparticles have been generated. This is a confirmation that
the model used in previous sections, which does not include quasiparticles generation,
is relevant.

Figure 2.8: Probing the transmon decay out of highly excited states populated
by a strong off-resonant pump. (a) Cavity spectroscopy after the transmon is
prepared in various eigenstates. Each transmon state |ek⟩ (k = 1 to 6) is prepared using
a k-photon π-pulse and higher states could not be prepared due to charge noise. (b)
Time resolved measurement: first, a pump is applied for 50 µs at 8.1 GHz populating the
cavity with a sufficiently large photon number to induce a jump in ωr, here n̄r = 560.
After a time-delay t, a weak probe is applied for 2 µs. We plot the relative reflected
power of the probe as a function of probe frequency (x-axis), and time-delay t(y-axis).
For t < 0, as in Fig. 2.7, the cavity is probed while the pump is on, and the resonance
frequency is ωa/2π, confirming that the system has jumped. At t > 0, the photons in
the cavity rapidly decay at a rate κr = 1/(55 ns), and the cavity can now be used, as in
panel (a), to read the transmon state. The transmon is found in a highly excited state,
and after t = 60 µs, it has fully decayed into its ground state which is compatible with
T1 = 14 µs.

Finally, the spectroscopy setup let us discriminate the seven first excitation levels
of the transmon (with the parameters in use, we have about eight confined levels) in
the Josephson cosine potential (results are shown in Fig. 2.8). Measuring the transmon
state immediately after turning off a large pump drive (whose power corresponds to
about 550 photons at the most detuned frequencies), they find the transmon to be in a
highly excited state, rapidly climbing down the ladder and decaying back to the ground
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state. This tends to confirm our explanation for the decoupling between the transmon
and the oscillator mode after a critical pump power by the fact that the transmon state
escapes out of the cosine potential. This escape of the transmon state strongly limits
the exploitable range of pump powers and therefore the achievable interaction strengths
with a parametric pumping scheme built around a transmon device. This escape might
however be prevented by further confining the state of the circuit, imposing a broader
confining potential (such as a harmonic confinement) on top of the non-linear cosine
potential provided by the Josephson junction.
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Figure 3.1: Circuit of a transmon, shunted with an inductance and coupled
to a harmonic oscillator (microwave cavity) and capacitively coupled to a
transmission line. A (strong) pump at frequency ωp is sent to the system through the
transmission line, similarly to the setup presented in Fig. 2.2. The extra inductance in
the transmon mode should provide an extra harmonic confinement and therefore allow
for a larger span of exploitable pump strengths.

The previous analysis from Chapter 2 illustrates that in the parametric construction
of a non-linear Hamiltonian (such as the two-photon exchange between two modes which
is used for the cat pumping scheme), the span of exploitable pump strengths is very
limited. Indeed, above a critical threshold, the transmon ionizes. States of the transmon
mode become excited well above the confinement provided by the cosine potential of the
Josephson junction. The transmon therefore no longer contributes any non-linearity to
the oscillator mode. Such a limitation has been observed through the heating of the
transmon mode in [34] for instance. Further confinement of the non-linear mode should
enhance the span of exploitable pump strengths. In this Chapter, I propose to shunt the
transmon circuit with an inductance, providing an extra harmonic confinement of the
phase across the junction [65, 66, 67], which should prevent the escape of the transmon
state from its cosine confinement potential. I will first describe the model of this shunted
circuit and then perform Floquet-Markov simulations to compute the ac-Stark shift effect
as a function of pump strength, in comparison with the unshunted case. Finally, a first
order time-averaged Hamiltonian can be derived from this system, showing a qualitative
agreement with the full dynamics.

3.1 Model of the driven shunted transmon circuit
Following the approach developed in section 2.1, the Hamiltonian of the shunted trans-
mon system, as presented in Fig. 3.1, reads

Hshunt(t) = ℏωaa†a +4ECN2 + EL

2
φ2 −EJ cos (φ)+ iℏgN

(
a† − a

)
+ iℏAp(t)

(
a† − a

)
,

(3.1)
where a and a† are photon annihilation and creation operators of the cavity mode, ωa

is the bare cavity frequency (in absence of coupling to the transmon mode). EC is the
transmon charging energy and EJ is the Josephson energy of the junction. g is the
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coupling rate between the two modes. Similarly to the case depicted in chapter 2, the
pump is described by Ap(t) = Ap cos(ωpt), with an amplitude Ap and a frequency ωp far
detuned from the resonance frequencies of the system. However, contrary to the pure
transmon case depicted in chapter 2 and due to the presence of the extra inductance
which removes the superconducting island, the φ operator is no longer defined on a
compact interval. Both the charge operator N and the phase operator φ now take real
values in R.

The dissipation is still modelled as a capacitive coupling of the oscillator to a trans-
mission line [58], the Hamiltonian of this coupling between the system and the bath
being

HSB =
∑

k

[
ℏωkc†[ωk]c[ωk] − ℏΩ[ωk]

(
a† − a

) (
c†[ωk] − c[ωk]

)]
(3.2)

where, c[ωk] and c†[ωk] are the photon annihilation and creation operators of the bath
modes at frequency ωk and Ω[ωk] represents their coupling strengths to the circuit
oscillator mode a.

At large numbers of excitations, the harmonic potential of the Hamiltonian Eq. (3.1)
EL/2φ2 is expected to dominate the nonlinear part EJ cos φ, still resulting in a loss of
nonlinearity in the high pumping regime. However, this passage is expected to be
smoother in the shunted transmon case.

Inductively shunted Josephson junctions have previously been considered as super-
conducting qubit designs [68, 69]. Here, I am considering parameters comparable to a
flux qubit, EC ≪ EJ ≲ EL. However, I am only considering such a circuit for using it
as a nonlinear device in the strong pumping regime, in order to realize nonlinear Hamil-
tonians in a parametric way. Therefore, I will focus on its dynamic behavior and not
on its coherence properties.

Similarly to the regular transmon case presented in chapter 2, we can apply a unitary
transformation on Hamiltonian Eq. (3.1) to account for the main displacement of the
modes under a strong pump.

Let us introduce Xa
(0) and Pa

(0) defined as

Xa
(0) = ia†−a√

2

Pa
(0) = a+a†

√
2

N(0) =
√
ℏωa/EL N

φ(0) = φ/
√
ℏωa/EL

(3.3)

Then, the Hamiltonian from Eq. (3.1) reads

Hshunt(t) =ℏωa

2

(
Xa

(0)2 + Pa
(0)2)+ 4ECEL

ℏωa
N(0)2 + ℏωa

2
φ(0)2

− EJ cos
(√

ℏωa

EL
φ(0)

)
+ ℏ

√
2g

√
EL

ℏωa
N(0)Xa

(0) + ℏAp(t)
√

2Xa
(0).

(3.4)
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Let us define X(1)
a , Pa

(1), N(1), φ(1) as

Xa
(0) = cos θXa

(1) + sin θN(1)

N(0) = cos θN(1) − sin θXa
(1)

Pa
(0) = cos θPa

(1) + sin θφ(1)

φ(0) = cos θφ(1) − sin θPa
(1)

(3.5)

then, under the condition

ℏωa

2
sin 2θ − 4ECEL

ℏωa
sin 2θ +ℏg

√
2EL

ℏωa
cos 2θ = 0 ⇔ θ = −1

2
tan−1

(
2ℏg

√
2ELℏωa

(ℏωa)2 − 8ECEL

)
,

(3.6)
the Hamiltonian Eq. (3.4) becomes

Hshunt(t) = ℏω1
2

Xa
(1)2 + ℏω2

2
N(1)2

+ ℏωa

2
Pa

(1)2 + ℏωa

2
φ(1)2 − EJ cos

(√
ℏωa

EL
cos θφ(1) −

√
ℏωa

EL
sin θPa

(1)
)

+ ℏAp(t)
√

2
(
cos θXa

(1) + sin θN(1)
)

(3.7)

where we have defined

ω1 = ωa cos2 θ + 8ECEL
ℏ2ωa

sin2 θ − g
√

2EL
ℏωa

sin 2θ

ω2 = ωa cos2 θ + 8ECEL
ℏ2ωa

sin2 θ + g
√

2EL
ℏωa

sin 2θ

(3.8)

We can diagonalize the quadratic part of Hamiltonian Eq. (3.7), introducing opera-
tors X(2)

a , Pa
(2), N(2), φ(2) and ending up with

Hshunt(t) = ℏω̃a

2

[
Xa

(2)2 + Pa
(2)2]+ ℏω̃b

2

[
N(2)2 + φ(2)2]

− EJ cos
(

ra

√
ℏωa

EL
cos θφ(2) − rb

√
ℏωa

EL
sin θP(2)

a

)
+ ℏAp(t)

√
2
(
ra cos θXa

(2) + rb sin θN(2)
)

(3.9)

where ω̃a = √
ωaω1, ω̃b = √

ωaω2, ra = 4
√

ω1/ωa and rb = 4
√

ω2/ωa.
The pump drive initially applied on the cavity mode only is now being applied on

both modes,
(
Xa

(2), Pa
(2)
)

and
(
N(2), φ(2)

)
. We can now account for the coherent dis-

placement of these modes, due to the pump, by displacing
(
Xa

(2), Pa
(2)
)

by a coherent
state α(t) and

(
N(2), φ(2)

)
by a coherent state β(t). As φ and N take values in R

and verify the commutation relation [φ, N ] = i and the initial Xa
(0) and Pa

(0) are a
quantum harmonic oscillator mode, we can define new photon annihilation and creation
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operators
(
ã, ã†

)
and

(
b̃, b̃†

)
for the displaced modes

(
Xa

(2), Pa
(2)
)

and
(
N(2), φ(2)

)
.

Then, let us write quantum Langevin equations for these operators

dã
dt

= − iω̃aã − EJ

ℏ
rb

√
ℏωa

EL
sin θ sin

(
ra

√
ℏωa

EL
cos θφ(2) − rb

√
ℏωa

EL
sin θP(2)

a

)
+ iAp

√
2ra cos θ cos(ωpt)

db̃
dt

= − iω̃bb̃ − i
EJ

ℏ
ra

√
ℏωa

EL
cos θ sin

(
ra

√
ℏωa

EL
cos θφ(2) − rb

√
ℏωa

EL
sin θP(2)

a

)
+ Ap

√
2rb sin θ cos(ωpt)

(3.10)
We can now look for α(t) and β(t) in the form

α(t) = Rα cos(ωpt) + Sα cos(ωpt)

β(t) = Rβ cos(ωpt) + Sβ cos(ωpt)
(3.11)

Cancelling out the terms oscillating at frequency ωp, we finally get

α(t) = Ap cos θ
√

2ra

ω2
p−ω̃2

a
(−iωp sin(ωpt) + ω̃a cos(ωpt))

β(t) = Ap sin θ
√

2rb

ω2
p−ω̃2

b

(ωp sin(ωpt) + iω̃b cos(ωpt)) .

(3.12)

Finally, under these unitary transformations, the Hamiltonian becomes

H̃shunt(t) = ℏω̃a ã†ã + ℏω̃b b̃†b̃

− EJ cos
[
ϕa

(
ã + ã†

)
+ ϕb

(
b̃ + b̃†

)
+ ξ sin (ωpt)

]
(3.13)

where ω̃a and ω̃b are renormalized frequencies (see Eq. (3.9)),

ϕa = − sin θ
√

ℏωa
2EL

4
√

ω1
ωa

ϕb = cos θ
√

ℏωa
2EL

4
√

ω2
ωa

(3.14)

are zero-point fluctuations of the two modes as seen by the Josephson junction and

ξ = 2ϕaReα + 2ϕbReβ (3.15)

is a renormalized pump amplitude. Here the mode ã is closer to the initial oscillator
mode a and the mode b̃ is closer to the junction mode (ϕa ≪ ϕb). In contrast to the
unshunted case, this change of variables ensures that both modes remain close to their
ground state. This is a direct consequence of the harmonic confinement and will be
confirmed through numerical simulations.

Under this change of variables, the operator i
(
a† − a

)
appearing in the coupling to

the bath Eq. (3.2) is replaced by

i cos θ 4

√
ω1
ωa

(
ã† − ã

)
+ i sin θ 4

√
ω2
ωa

(
b̃† − b̃

)
. (3.16)



46 CHAPTER 3. INDUCTIVELY SHUNTED TRANSMON

The new system-bath coupling is given by

H̃SB =
∑

k

ℏωkc†[ωk]c[ωk]

−
∑

k

ℏΩ[ωk] cos θ 4

√
ω1
ωa

(
ã† − ã

) (
c†[ωk] − c[ωk]

)
−
∑

k

ℏΩ[ωk] sin θ 4

√
ω2
ωa

(
b̃† − b̃

) (
c†[ωk] − c[ωk]

)
(3.17)

The transformations applied on Eqs. (3.1)-(3.2) and leading to Eqs. (3.13)-(3.17)
can be summarized as, in order, a Bogoliubov transformation Us1, a beam-splitter type
unitary Uθ, a displacement of the frame D and another Bogoliubov transformation Us2
given by

Us1 = exp
(

ζ
2(b†2 − b2)

)
Uθ = exp(θ(ab† − a†b))

D = exp(α∗(t)a − α(t)a†) exp(β∗(t)b − β(t)b†)

Us2 = exp
(

ζa

2 (a†2 − a2)
)

exp
(

ζb
2 (b†2 − b2)

)
.

(3.18)

where b = (φ + iN)/
√

2 and

θ = −1
2 arctan

[
2ℏg

√
2ELℏωa

(ℏωa)2−8ECEL

]
,

α(t) = Ap cos θ
ω2

p−ωaω1
(ωp sin(ωpt) + iωa cos(ωpt)) ,

β(t) = Ap sin θ
ω2

p−ωaω2
(ωp sin(ωpt) + iωa cos(ωpt)) ,

ζ = log
(√

EL
ℏωa

)
,

ζa = log
(

4
√

ωa
ω1

)
, ζb = log

(
4
√

ωa
ω2

)
,

(3.19)

with

ω1 = ωa cos2 θ + 8ECEL
ℏ2ωa

sin2 θ − g
√

2EL
ℏωa

sin(2θ),

ω2 = ωa sin2 θ + 8ECEL
ℏ2ωa

cos2 θ + g
√

2EL
ℏωa

sin(2θ).
(3.20)

3.2 Simulations in the Floquet-Markov framework for weak
dissipation

I carried out numerical simulations of the driven dissipative system Eqs. (3.13)-(3.17)
in the Floquet-Markov framework, similarly to the analysis done on the (unshunted)
transmon circuit in section 2.3. Although the simulations are run here in the Fock states
basis of the two modes ã and b̃, I show and plot the results in the shunted transmon
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basis {|νk⟩}k (eigenstates of the Hamiltonian 4ECN2 + ELφ2/2 − EJ cos φ) to ease the
comparison with results from the previous chapter. Here, the parameters are chosen
such that the bare frequencies, impedances and coupling of the harmonic oscillator and
the transmon mode coincide with those of chapter 2. The important change concerns
the dilution of the nonlinearity by the addition of the harmonic shunt with an energy
EL, about a factor 2 larger than EJ .

The populations of the ã mode remain very close to its ground state over the whole
range of pump values, even more than in the regular transmon case. In a similar way,
the populations of the b̃ mode, as shown on Fig. 3.2, remain very close to the ground
state, with a slight increase with the pump power. Both modes remain much closer to
their ground state than their counterpart in chapter 2. The state ρss(0) follows a very
smooth behavior and, as shown on Fig. 3.3, the impurity of ρss (black crosses, right
axis) remains close to zero (below 3% for the whole pump range).

Figure 3.2: Populations of the shunted transmon eigenstates {|ηk⟩}k in the
steady state ρss(0) of Eqs. (3.13)-(3.17) as a function of the pump power, as
computed with a Floquet-Markov approach. The parameters are taken to be
Ec/ℏ = 150 MHz, EJ/ℏ = 6 GHz, EL/ℏ = 14 GHz, g/2π = 140 MHz, ωa/2π = 5.5 GHz
and ωp/2π = 6 GHz. Here, n̄est is an estimation of the number of circulating photons
n̄, where I use the bare oscillator frequency instead of the dressed one. The red dots
indicate the average number of excitations in the transmon mode. The parameters are
chosen to be comparable with the results from chapter 2.

Fig. 3.3 also illustrates the ac Stark shifted frequency of the resonator mode. In
contrast to the (unshunted) transmon case, this frequency is now well-defined for all
values of the pump power. As a result, I could extend the study to much higher pump
powers. As illustrated in Fig. 3.4, the ac Stark shifted frequency is well-defined over a
wide range of pump powers and exhibit a smooth oscillating behavior decaying to ω̃a.

3.3 Rotating wave approximations results and comparison
with numerical simulations

The Hamiltonian Eq. (3.13) can easily be time averaged following methods from [19].
This section focuses on comparing the numerical results from the Floquet-Markov method
with those from time-averaging methods for a shunted transmon circuit coupled to an
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Figure 3.3: Impurity of the steady state ρss(0) and ac Stark shifted frequencies
of the oscillator as a function of the pump power. The black crosses (right-hand
axis) correspond to the impurity of the whole (tensor) steady state. The steady state
quickly becomes very mixed, even for small pump strengths. The blue dots (left-hand
axis) correspond to the ac Stark shifted frequencies of the oscillator as a function of
the pump power. The green horizontal line corresponds to the renormalized oscillator
frequency ω̃a. The frequency is unique and well-defined for all pump powers. This is
also reflected by the impurity of the steady state which remains smaller than 3%. The
abscissa is the same as in Fig. 3.2, using an estimation of the number of circulating
photons, n̄est. Parameters are the same as in Fig. 3.2.

oscillator. Starting from the Hamiltonian from Eq. (3.13)

H̃shunt(t) = ℏω̃a ã†ã + ℏω̃b b̃†b̃

− EJ cos
[
ϕa

(
ã + ã†

)
+ ϕb

(
b̃ + b̃†

)]
cos [ξ sin (ωpt)]

+ EJ sin
[
ϕa

(
ã + ã†

)
+ ϕb

(
b̃ + b̃†

)]
sin [ξ sin (ωpt)] (3.21)

one can perform a first-order time-averaging following the methods from [19]. The first
order time-averaged Hamiltonian is defined as

H̃RWA
shunt = 1

T

∫ T

0
H̃shunt(t)dt

=ℏω̃a ã†ã + ℏω̃b b̃†b̃ − EJJ0(ξ) cos
[
ϕa

(
ã + ã†

)
+ ϕb

(
b̃ + b̃†

)] (3.22)

where T = 2π/ωp and J0(·) represents the Bessel function of the first kind and zero
order.

As shown on Fig. 3.4, the ac Stark shifted frequency curve from Fig. 3.4 is in good
agreement with the first-order predictions by a model resulting from time-averaging the
Hamiltonian Eq. (3.13) to lowest order. Additionally, the observed jump in the ac Stark
shift of the (unshunted) transmon from chapter 2 appears at pump strengths much lower
than the first oscillation of this Bessel function. Therefore, an experimental observation
of such an oscillating behavior would prove a striking difference between the (unshunted)
case and the circuit with an inductance shunt discussed in this chapter.

Moreover, the previous analysis tend to indicate that the strengths of various types
of nonlinear Hamiltonians could be tuned. As an example, I will focus on the strength
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Figure 3.4: ac Stark shifted frequencies of the oscillator with rotating wave
approximations as a function of the pump power. The orange curve represents the
oscillator frequency found by numerically diagonalizing the time-averaged Hamiltonian
Eq. (3.22) of the system. The blue dots correspond to the ac Stark shifted frequencies
of the oscillator, found from the numerical Floquet-Markov approach, as a function of
the pump power. The green horizontal line corresponds to the renormalized oscillator
frequency ω̃a. The abscissa is the same as in Fig. 3.2, using an estimation of the number
of circulating photons, n̄est. Parameters are the same as in Fig. 3.2.

of the induced Kerr of the mode ã, which is the leading order nonlinear effect in circuit
QED experiments.

The induced Kerr strength of the mode ã can be computed from the Floquet-Markov
numerical simulations in a similar fashion as the ac Stark shifted frequency, in a cascad-
ing scheme. Indeed, starting from the steady state ρss(0), I list the possible transitions
between Floquet states in the steady state and any other Floquet state. Their transition
frequencies correspond to the ac Stark shifted frequencies as detailed in section 2.3.1.
Then, starting from this set of Floquet states coupled to those of the steady state, the
same procedure can be repeated to find a second set of transition frequencies, to a second
set of Floquet states. The Kerr strength is then computed as the difference between the
second and the first such transition frequency. The induced Kerr strength can also be
computed from the time-averaged model Eq. (3.22) by diagonalizing this Hamiltonian
and looking at the transition frequencies. The Kerr strength is given by the difference
of the second and first oscillator-like transition frequencies in this Hamiltonian.

Both the numerical estimation of the Kerr strength from the Floquet-Markov theory
and from the time-averaged model are plotted in Fig. 3.5. First, the Kerr term vanishes
for high enough powers. This ability in cancelling the leading order nonlinear effects by
merely tuning a pump power will be an extremely useful tool for circuit QED experiments
[70]. Furthermore, the estimation from the time-averaged model (orange curve) is in
qualitative agreement with the numerical results in the Floquet-Markov framework.
One should note that I only performed a first-order rotating wave approximation here
and a more precise approximation would require to perform higher order time averaging.

3.4 Choice of parameters for the shunted transmon circuit

The simulations of the section 3.2 have been performed with the same parameters as
in the unshunted case, except for the Josephson energy that has been taken to be
EJ/ℏ = 6 GHz and the addition of EL/ℏ = 14 GHz. Noting that the sum of these two
energies correspond to the Josephson energy in the unshunted case, this choice allows to
keep the bare frequency of the transmon mode the same. This, however, comes at the
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Figure 3.5: Strength of the induced Kerr of the most linear mode ã. The
induced Kerr effect is defined as the difference between the transition frequencies for the
second and the first excitations. The orange curve corresponds to the expected induced
Kerr strength computed from the time-averaged model Eq. (3.22) while the blue dots
are results from the Floquet-Markov numerical simulations. The abscissa is the same as
in Fig. 3.2, using an estimation of the number of circulating photons, n̄est. Parameters
are the same as in Fig. 3.2.

expense of diluting the nonlinearity of the transmon mode. Indeed, the anharmonicity
of the shunted transmon mode is given by 37 MHz, to be compared to 143 MHz in the
unshunted case. In the same way, the induced Kerr on the cavity of 306 kHz is weaker
than the value of 655 kHz for the unshunted case. The shallower slope of the ac Stark
shifted frequency in Fig. 3.3 (with respect to Fig. 2.5) can be explained through this
difference.

Using a different set of parameters, one can achieve similar nonlinearities for both
systems under consideration. For instance, by choosing EC/ℏ = 450 MHz, EJ/ℏ =
2.22 GHz, EL/ℏ = 4.44 GHz, g/2π = 245 MHz, ωa = 5.5 GHz, we achieve similar fre-
quencies and nonlinearities to the shunted case. More precisely, in the absence of the
pump, we find a cavity frequency of 5.545 GHz (5.545 GHz for the unshunted case), a
qubit frequency of 4.7 GHz (4.691 GHz for the unshunted case), a qubit anharmonicity of
123 MHz (143 MHz for the unshunted case), an induced cavity Kerr of 600 kHz (655 kHz
for the unshunted case) and a cross Kerr between the qubit and the cavity of 15.5 MHz
(17.3 MHz for the unshunted case).

In Fig. 3.6(a), I plot and compare the shifted cavity frequencies in the shunted
and unshunted case (blue dots, left axis). The slope near n̄est = 0 of the variation of
frequency versus the photon number n̄est is now very close to that of the unshunted
case. I also plot the impurity of the steady state in both cases versus the pump power
(black and gray crosses, right axis). One clearly observes a much purer and smoother
behavior for the shunted case with respect to the unshunted one. In Fig. 3.6(b) and (c),
I plot the shifted cavity frequency and induced Kerr effect over a larger range of pump
powers for the shunted case with this new set of parameters. The behavior is similar
to the one shown in Fig. 3.2 and Fig. 3.3. As a result of the increased nonlinearity, the
range of values taken by the Kerr strength is twice larger than in the simulations from
section 3.3.

In these simulations, similar to the previous set of parameters, I have chosen a ra-
tio between EL and EJ of about 2. Noting that a large ratio between EL and EJ

leads to the dilution of the Josephson junction nonlinearity, one may consider the pos-
sibility of choosing a smaller ratio. This, however, comes at the expense of losing the
purity of the steady state and therefore getting closer to the asymptotic behavior of
the unshunted case. In order to illustrate this, I perform numerical simulations with
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Figure 3.6: Floquet-Markov simulations of the shunted transmon with param-
eters EC/ℏ = 450 MHz, EJ/ℏ = 2.22 GHz, EL/ℏ = 4.44 GHz, g/2π = 245 MHz,
ωa = 5.5 GHz. (a) Blue dots correspond to the ac Stark shifted frequencies of the os-
cillator as a function of the pump power. For comparison, the results for the unshunted
case with the parameters of Fig. 2.5 are reproduced as pale blue dots (left axis). The im-
purity of the steady state is plotted as black crosses (gray crosses for the unshunted case,
right axis). The abscissa is the same as in Fig. 3.2, using an estimation of the number of
circulating photons, n̄est. (b) ac Stark shifted frequency of the shunted transmon over
an extended range of pump powers. The blue dots correspond to the Floquet-Markov
simulations results while the orange curve indicates the expected values from a time-
averaged model from section 3.3. This is to be compared with Fig. 3.4. (c) Induced
Kerr strength over the same extended range, to be compared with Fig. 3.5.

the same parameters as in Fig. 3.3, except for EJ and EL. Indeed, I fix their sum
(EJ + EL) /ℏ = 6.66 GHz and let vary the ratio between them. In Fig. 3.7, I provide
the impurity of the steady state as a function of the pump power for three different
choices of the ratio r = EL/EJ . As it can be seen, a ratio of 2, as chosen in the sim-
ulations in section 3.2, ensures globally a purer steady state and this purity is lost for
smaller ratios.

There is still an open question here in the effect of the ratio r = EL/EJ . From
numerical investigation, it seems that adding a shunt inductance is not enough to ensure
the stability of the circuit over a wide range of pump amplitudes, one has to take a large
enough ratio of the inductive energy and Josephson energy. From previous numerical
simulations, a ratio of about 2 seems to be a minimum to ensure the stability of the
circuit and both the effect of this ratio and the threshold values to ensure stability were
only studied in a numerical way here. This is the subject of ongoing research in the
QUANTIC team at INRIA, mainly from M. Burgelman who is starting his PhD on this
subject, trying to analytically investigate the behavior of the transmon device and the
shunted transmon one, first from a classical dynamics point of view and with the tools
of the classical dynamic stability analysis.
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Figure 3.7: Impurity of the steady state as a function of the pump power. I use
the same parameters as in Fig. 3.6, except for EJ and EL. While the sum (EJ + EL) /ℏ =
6.66 GHz is fixed, I consider here three different choices for their ratio r = EL/EJ . The
black crosses correspond to r = 2 (EL/ℏ = 4.44 GHz and EJ/ℏ = 2.22 GHz), the orange
ones to r = 1.5 (EL/ℏ = 4 GHz and EJ/ℏ = 2.66 GHz) and the magenta ones to r = 1
(EL/ℏ = EJ/ℏ = 3.33 GHz).
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The simulation code in organized in the form of a Python package, designed so that
the simulated circuit could easily be edited and modified, in order to investigate various
types of circuits using the same approach. So far, the same code has been used to
simulate the transmon coupled to a cavity from Chapter 2 and the circuit with an extra
shunt inductance from Chapter 3.

All the numerical simulations detailed and discussed in this manuscript were run on
a (high-end) desktop workstation with an Intel Core i7-6700 CPU and 16 GB of RAM
running Linux. Simulations are running in Python 3.5.2 using a modified version of
QuTiP 4.2.0 [71, 72], along with Numpy 1.14.0 [73], Scipy 1.0.0 [74], Cython 0.27.3 [75].
All the figures are generated using Matplotlib 2.1.1 [76].

The simulations are performed in two steps:

• First, a Floquet simulation framework, written as a Python package, is used to
run simulations for different sets of Hamiltonians and values of physical param-
eters of the system. This code computed the steady state of the system using a
Floquet-Markov approach and outputs a dump of simulated data (populations of
the Floquet modes in the steady state ρss (0)).

• Then, a set of scripts were written to make further analysis of the dynamics of
the system, from its computed steady state. These would compute the transition
frequencies for instance, as shown in figures from Chapters 2 and 3.

As the computation of the steady state of the systems under consideration is quite
long, this two steps approach lets the user do the steady state computation once and then
perform as many different analysis as required on top of it. Indeed, for the unshunted
case presented in Chapter 2 and in the displaced frame described in section 2.2, a
truncation of about 50 transmon states and ten oscillator Fock states was required. For
the shunted case and using the displaced frame described in section 3.1, a truncation of
about 20 Fock states of the non-linear mode and ten Fock states of the linear one should
be used. Such large truncations result in a running time of about one hour to compute
the steady state ρss (0) of the system for a single pump power.

This Chapter is a walkthrough guide to the simulation code used for plotting the fig-
ures from Chapters 2-3, detailing both the numerical methods as well as the architectural
choices for easing the reuse of this code as a framework for Floquet simulations of super-
conducting circuits systems. This code was reused by Jaya Venkatraman from QuLab
at Yale University for her work on physically implementing the theoretical proposal of
adding an extra shunt inductance to the transmon circuit in Chapter 2. The full code is
available at https://gitlab.inria.fr/lverney/floquet-markov-for-josephson-circuits.
QuTiP code presented in this manuscript is licensed under a New BSD license while the
rest of the code is licensed under an MIT license.

4.1 Steady-state computation framework

The steady state computation starts by computing the Floquet modes from the Hamil-
tonian of the system and then builds the stochastic transition matrix R from Eq. (2.28),
from which the steady state can be inferred. This whole procedure is described in the
next subsections where I will focus on specific code extracts.

https://gitlab.inria.fr/lverney/floquet-markov-for-josephson-circuits
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4.1.1 Encoding the circuit Hamiltonian
First, let us focus on the way I am encoding the circuit Hamiltonian. Note that in this
code, the pump amplitude slightly differs from the notations from Chapters 2 and 3.
Here, the pump term reads

ℏεp cos (ωpt) Xa (4.1)

with Xa one of the two quadratures of the harmonic oscillator from the a mode.
In Chapters 2 and 3, I was using the amplitude of the pump as primary input

and deducing an approximate value of the number of circulating photons at the pump
frequency, n̄est from this value. For practical reasons, I am here using the estimated
number of circulating photons n̄est (denoted by the variable n_bar in the code) and
inferring a pump amplitude from it. The pump amplitude for a given n̄est value can be
computed using the function

def compute_epsilon_p(n_bar, p):
"""
Compute the pump amplitude as a function of a rough approximation of
``n_bar ``.
"""
return np.sqrt(n_bar) * np.sqrt(8) * (p['omega_p'] - p['omega_a'])

Transmon coupled to a cavity Hamiltonian

One can then define a function to build the Hamiltonian representation for the system
under consideration. The parameters in the Python code are related to the parameters
from Chapters 2 and 3 by

εc = EC/ℏ

εj = EJ/ℏ

εl = EL/ℏ

εg = g
√

2.

(4.2)

For the transmon case from Chapter 2, this is
def build_unshunted_hamiltonian(N_max_a, N_max_b, N_max_charge , epsilon_p , p):

"""
:param N_max_a: Truncation on the cavity Fock space.
:param N_max_b: Truncation on the transmon eigenstates space.
:param N_max_charge: To compute the transmon eigenvectors , we use the

representation in the charge states basis. This is the truncation in
this space and should be really large (indices range from -N_max_charge
to +N_max_charge).

:param epsilon_p: Pump amplitude.
:param p: Dict of parameters values.
:returns: A tuple of H, args, H_0_cavity and c_ops.
"""
# Preconditions
assert N_max_b < (2 * N_max_charge + 1)

# Operators on the cavity
a = qutip.destroy(N_max_a)
X_a = (a + a.dag()) / np.sqrt(2)
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Id_a = qutip.qeye(N_max_a)

# Operators on the transmon , in charge state representation
N_ch = qutip.Qobj(np.diag(range(-N_max_charge , N_max_charge + 1)))
cos_phi = qutip.Qobj(

np.diag(0.5 * np.ones(2 * N_max_charge), k=1) +
np.diag(0.5 * np.ones(2 * N_max_charge), k=-1)

)
sin_phi = qutip.Qobj(

np.diag(-0.5j * np.ones(2 * N_max_charge), k=1) +
np.diag(0.5j * np.ones(2 * N_max_charge), k=-1)

)
Id_ch = qutip.qeye(2 * N_max_charge + 1)

# Transmon hamiltonian to find transmon eigenstates
H_tr = qutip.Qobj(

4.0 * p['epsilon_c'] * (N_ch - p['N_g'] * Id_ch)**2 +
-1.0 * p['epsilon_j'] * cos_phi

)
_, eigenvec_tr = H_tr.eigenstates()
# Matrix to pass from charge states basis to transmon basis. Each column is
# a transmon eigenstate expressed in the charge states basis.
change_basis_matrix = qutip.Qobj(

np.column_stack(x.full() for x in eigenvec_tr)
)
# Then, rewrite transmon operators in this basis
N_ch_eigv_basis = change_basis(N_ch, change_basis_matrix)
cos_phi_eigv_basis = change_basis(cos_phi, change_basis_matrix)
sin_phi_eigv_basis = change_basis(sin_phi, change_basis_matrix)
# and truncate them to keep only N_max_b components.
N_ch_eigv_basis = qutip.Qobj(N_ch_eigv_basis[:N_max_b, :N_max_b])
cos_phi_eigv_basis = qutip.Qobj(cos_phi_eigv_basis[:N_max_b, :N_max_b])
sin_phi_eigv_basis = qutip.Qobj(sin_phi_eigv_basis[:N_max_b, :N_max_b])
Id_ch_eigv_basis = qutip.qeye(N_max_b)

# Cavity + transmon tensor operators in Fock tensor eigenstates of transmon
# space
N_a_tensor = qutip.tensor(a.dag() * a, Id_ch_eigv_basis)
X_a_tensor = qutip.tensor(X_a, Id_ch_eigv_basis)
N_ch_tensor = qutip.tensor(Id_a, N_ch_eigv_basis)
cos_phi_tensor = qutip.tensor(Id_a, cos_phi_eigv_basis)
sin_phi_tensor = qutip.tensor(Id_a, sin_phi_eigv_basis)
Id_tensor = qutip.tensor(Id_a, Id_ch_eigv_basis)

# Time-independent part of hamiltonian
H_0_cavity = p['omega_a'] * N_a_tensor
H_0_coupling = (

p['epsilon_g'] * (N_ch_tensor - p['N_g'] * Id_tensor) * X_a_tensor
)
H_0_qubit = 4.0 * p['epsilon_c'] * (N_ch_tensor - p['N_g'] * Id_tensor)**2
H_0 = (

H_0_cavity +
H_0_coupling +
H_0_qubit

)

# Time-dependent part
oscillating_prefactor = (

-1.0 * p['epsilon_g'] * epsilon_p *
p['omega_a'] / p['omega_p'] / (p['omega_p']**2 - p['omega_a']**2)

)
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H_1 = -1.0 * p['epsilon_j'] * cos_phi_tensor
H_1_coef = 'cos(oscillating_prefactor * sin(omega_p * t))'
H_2 = p['epsilon_j'] * sin_phi_tensor
H_2_coef = 'sin(oscillating_prefactor * sin(omega_p * t))'
# Complete QuTiP hamiltonian object
args = {

'oscillating_prefactor': oscillating_prefactor ,
'omega_p': p['omega_p']

}
H = [H_0, [H_1, H_1_coef], [H_2, H_2_coef]]

# Dissipation operators
c_ops = [X_a_tensor]

return H, args, H_0_cavity , c_ops

Inductively shunted transmon coupled to a cavity Hamiltonian

Similarly, a function is available to define the Hamiltonian of the system shunted with
an extra inductance in Chapter 3:

def build_shunted_hamiltonian(N_max_a, N_max_b, epsilon_p , p):
"""
:param N_max_a: Truncation on the cavity Fock space.
:param N_max_b: Truncation on the shunted transmon eigenstates space.
:param epsilon_p: Pump amplitude.
:param p: Dict of parameters values.
:returns: A tuple of H, args, H_0_cavity and c_ops.
"""
(

omega_bar_a , omega_bar_q ,
r, s,
oscillating_prefactor ,
c_op_r, c_op_s

) = compute_shunted_parameters(epsilon_p , p)

# Operators on the cavity
a = qutip.destroy(N_max_a)
X_a = (a + a.dag()) / np.sqrt(2)
P_a = (a - a.dag()) / 1.0j / np.sqrt(2)
Id_a = qutip.qeye(N_max_a)
# Operators on the transmon
b = qutip.destroy(N_max_b)
X_b = (b + b.dag()) / np.sqrt(2)
P_b = (b - b.dag()) / 1.0j / np.sqrt(2)
Id_b = qutip.qeye(N_max_b)
# Compute tensor operators
Id_tensor = qutip.tensor(Id_a, Id_b)
X_a_tensor = qutip.tensor(X_a, Id_b)
P_a_tensor = qutip.tensor(P_a, Id_b)
X_b_tensor = qutip.tensor(Id_a, X_b)
P_b_tensor = qutip.tensor(Id_a, P_b)

# Time independent part of hamiltonian in Fock basis
H_0_cavity = 0.5 * omega_bar_a * (

X_a_tensor**2 + P_a_tensor**2
)
H_0_qubit = 0.5 * omega_bar_q * (

X_b_tensor**2 + P_b_tensor**2
)
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H_0 = H_0_cavity + H_0_qubit

# Time dependent part in Fock basis
phi_X_tensor = (r * X_b_tensor - s * X_a_tensor)
exp_j_phi_X_tensor = (1.0j * phi_X_tensor).expm()
H_1 = -0.5 * p['epsilon_j'] * (

exp_j_phi_X_tensor + exp_j_phi_X_tensor.dag()
)
H_1_coef = 'cos(oscillating_prefactor * sin(omega_p * t))'
H_2 = -0.5j * p['epsilon_j'] * (

exp_j_phi_X_tensor - exp_j_phi_X_tensor.dag()
)
H_2_coef = 'sin(oscillating_prefactor * sin(omega_p * t))'

# Rewrite everything in transmon eigenbasis
_, eigenvec = (H_0 + H_1).eigenstates()
H_0_cavity_eigv_basis = (

H_0_cavity.transform(eigenvec) -
0.5 * omega_bar_a * Id_tensor

)
H_0_eigv_basis = H_0.transform(eigenvec)
H_1_eigv_basis = H_1.transform(eigenvec)
H_2_eigv_basis = H_2.transform(eigenvec)

# Complete QuTiP hamiltonian object
args = {

'oscillating_prefactor': oscillating_prefactor ,
'omega_p': p['omega_p']

}
H = [

H_0_eigv_basis ,
[H_1_eigv_basis , H_1_coef],
[H_2_eigv_basis , H_2_coef]

]

# Dissipation operators
c_ops = [

(c_op_r * X_a_tensor + c_op_s * X_b_tensor).transform(eigenvec)
]

return H, args, H_0_cavity_eigv_basis , c_ops

where an auxiliary function, compute_shunted_parameters, is used to compute the
renormalized parameters entering in the Hamiltonian construction. These come from
the change of frame performed in section 3.1.

def compute_shunted_parameters(epsilon_p , p):
theta = -0.5 * np.arctan(

2 * p['epsilon_g'] * np.sqrt(p['epsilon_l'] * p['omega_a']) /
(p['omega_a']**2 - 8 * p['epsilon_c'] * p['epsilon_l'])

)

omega_tilde_a = (
p['omega_a'] * np.cos(theta)**2 +
(

8 * p['epsilon_c'] * p['epsilon_l'] / p['omega_a'] *
np.sin(theta)**2

) +
(

-1.0 * p['epsilon_g'] *
np.sqrt(p['epsilon_l'] / p['omega_a']) * np.sin(2 * theta)
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)
)
omega_tilde_q = (

p['omega_a'] * np.sin(theta)**2 +
(

8 * p['epsilon_c'] * p['epsilon_l'] / p['omega_a'] *
np.cos(theta)**2

) +
(

p['epsilon_g'] * np.sqrt(p['epsilon_l'] / p['omega_a']) *
np.sin(2 * theta)

)
)
omega_bar_a = np.sqrt(omega_tilde_a * p['omega_a'])
omega_bar_q = np.sqrt(omega_tilde_q * p['omega_a'])

# For dissipation
c_op_r = np.cos(theta) * np.power(p['omega_a'] / omega_tilde_a , 0.25)
c_op_s = np.sin(theta) * np.power(p['omega_a'] / omega_tilde_q , 0.25)

r = (
np.cos(theta) * np.sqrt(p['omega_a'] / p['epsilon_l']) *
np.power(omega_tilde_q / p['omega_a'], 0.25)

)
s = (

np.sin(theta) * np.sqrt(p['omega_a'] / p['epsilon_l']) *
np.power(omega_tilde_a / p['omega_a'], 0.25)

)

oscillating_prefactor = (
0.5 * np.sqrt(p['omega_a'] / p['epsilon_l']) *
epsilon_p * p['omega_p'] * np.sin(2 * theta) * (

1.0 / (p['omega_p']**2 - p['omega_a'] * omega_tilde_q) -
1.0 / (p['omega_p']**2 - p['omega_a'] * omega_tilde_a)

)
)

return (
omega_bar_a , omega_bar_q ,
r, s,
oscillating_prefactor ,
c_op_r, c_op_s

)

Generic Hamiltonian construction

Finally, based on the parameters provided to the simulation framework, a generic
build_hamiltonian function is calling the correct procedure to build the system Hamil-
tonian (with or without an extra shunt inductance for instance). This function can easily
be extended to take into account other circuits, such as an array of Josephson junctions.

def build_hamiltonian(N_max_a, N_max_b, n_bar, p,
logger, out_directory , compute_kerr=False,
N_max_charge=100):

"""
:param N_max_a: Truncation on the cavity Fock space.
:param N_max_b: Truncation on the transmon eigenstates space.
:param n_bar: Mean number of photons in the pump, at $\omega_p$.
:param p: Dict of parameters values.
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:param logger: A logger object.
:param out_directory: Where to output images.
:param compute_kerr: Whether Kerr should be computed or not.
:param N_max_charge: To compute the transmon eigenvectors , we use the

representation in the charge states basis. This is the truncation in
this space and should be really large (indices range from -N_max_charge
to +N_max_charge).

:returns: A tuple of H, args, c_ops and computed params.
"""
# Compute corresponding pump amplitude
epsilon_p = compute_epsilon_p(n_bar, p)

# Note: This is the place where we define the hamiltonian and the collapse
# operators. Currently , only shunted transmon and unshunted (regular)
# transmon are supported. You can easily extend this to match your specific
# hamiltonian.
if 'epsilon_l' in p and p['epsilon_l'] > 0:

logger.info('Building shunted hamiltonian...')
H, args, H_0_cavity , c_ops = build_shunted_hamiltonian(

N_max_a, N_max_b, epsilon_p , p
)

else:
logger.info('Building unshunted hamiltonian...')
H, args, H_0_cavity , c_ops = build_unshunted_hamiltonian(

N_max_a, N_max_b, N_max_charge , epsilon_p , p
)

# Compute kerr and plot eigvals
computed_params = []
if compute_kerr:

computed_params = compute_eigvals_kerr_f_0(
H[0] + H[1][0],
H_0_cavity ,
p,
out_directory

)
logger.info('Kerr value is %g MHz.', computed_params[0] * 1e3)
logger.info('Frequency at nbar=0 is %g GHz.', computed_params[1])

return H, args, c_ops, computed_params

4.1.2 Floquet code

The Floquet code I used for these simulations is derived from the code from QuTiP 4.2.0
[71]. This provides functions to compute the Floquet modes (floquet.floquet_modes)
as well as their time evolution (floquet.floquet_modes_table). I will detail here two
functions I edited for the the computation of the steady state of the system through
Floquet method.

First, the floquet_master_equation_rates from QuTiP can be used to compute
the various rates entering the master equation written in the Floquet mode basis in
Eq. (2.24). This function was already available in QuTiP 4.2.0 but was suffering some
performance issues, which was particularly noticeable when working with large trunca-
tions such as in the case under consideration in this manuscript. The version presented
below, improving this performance issue, was submitted for integration back into QuTiP
and is currently pending review.
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def floquet_master_equation_rates(f_modes_0 , f_energies , c_op, H, T,
args, J_cb, w_th, kmax=5,
f_modes_table_t=None, nT=100):

"""
Calculate the rates and matrix elements for the Floquet -Markov master
equation.

Parameters
----------

f_modes_0 : list of :class:`qutip.qobj` (kets)
A list of initial Floquet modes.

f_energies : array
The Floquet energies.

c_op : :class:`qutip.qobj`
The collapse operators describing the dissipation.

H : :class:`qutip.qobj`
System Hamiltonian , time-dependent with period `T`.

T : float
The period of the time-dependence of the hamiltonian.

args : dictionary
Dictionary with variables required to evaluate H.

J_cb : callback functions
A callback function that computes the noise power spectrum , as
a function of frequency , associated with the collapse operator `c_op `.

w_th : float
The temperature in units of frequency.

k_max : int
The truncation of the number of sidebands (default 5).

f_modes_table_t : nested list of :class:`qutip.qobj` (kets)
A lookup -table of Floquet modes at times precalculated by
:func:`qutip.floquet.floquet_modes_table ` (optional).

nT : int
Number of steps to take in the numerical integration.

Returns
-------

output : list

A list (Delta , X, Gamma , A) containing the matrices Delta , X, Gamma
and A used in the construction of the Floquet -Markov master equation.

"""

N = len(f_energies)
M = 2 * kmax + 1

omega = (2 * pi) / T

Delta = np.zeros((N, N, M))
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X = np.zeros((N, N, M), dtype=complex)
Gamma = np.zeros((N, N, M))
A = np.zeros((N, N))

dT = T / nT
tlist = np.arange(dT, T + dT / 2, dT)

if f_modes_table_t is None:
f_modes_table_t = floquet_modes_table(f_modes_0 , f_energies ,

np.linspace(0, T, nT + 1), H, T,
args)

c_op = c_op.full()
for t in tlist:

# Use numpy representation to compute overlaps , which is more
# efficient.
f_modes_t = [

f.full() for f in floquet_modes_t_lookup(f_modes_table_t , t, T)
]
for a in range(N):

bra_a = np.dot(np.conj(f_modes_t[a].T), c_op)
for b in range(N):

scalar_product = np.asscalar(np.dot(
bra_a,
f_modes_t[b]

))
k_idx = 0
for k in range(-kmax, kmax + 1, 1):

X[a, b, k_idx] += (dT / T) * exp(-1j * k * omega * t) * \
scalar_product

k_idx += 1

Heaviside = lambda x: ((np.sign(x) + 1) / 2.0)
for a in range(N):

for b in range(N):
k_idx = 0
for k in range(-kmax, kmax + 1, 1):

Delta[a, b, k_idx] = f_energies[a] - f_energies[b] + k * omega
Gamma[a, b, k_idx] = 2 * pi * Heaviside(Delta[a, b, k_idx]) * \

J_cb(Delta[a, b, k_idx]) * abs(X[a, b, k_idx]) ** 2
k_idx += 1

for a in range(N):
for b in range(N):

for k in range(-kmax, kmax + 1, 1):
k1_idx = k + kmax
k2_idx = -k + kmax
A[a, b] += Gamma[a, b, k1_idx] + \

n_thermal(abs(Delta[a, b, k1_idx]), w_th) * \
(Gamma[a, b, k1_idx] + Gamma[b, a, k2_idx])

return Delta, X, Gamma, A

Then, instead of relying on the floquet.fmmesolve function available from QuTiP
which solves the full Floquet-Markov master equation, I used the fact that, under a
rotating-wave approximation, the steady state of the system is diagonal in the Floquet
mode basis and the populations can be found directly from an eigenvalue problem, as
detailed in Eq. (2.28). Again, this results in a huge performance improvement, making
it possible to effectively compute the steady state of the system under consideration in
a reasonable amount of time for a large number of different parameters.
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def floquet_master_equation_steadystate(A, safety=True):
"""
Returns the steadystate density matrix (in the floquet basis!) for the
Floquet -Markov master equation.

.. note ::

This function uses the fact that this can be simplified to an
eigenvalue problem.

Parameters
----------

A : matrix
A matrix used to build the master equation.

safety : bool
Whether to check that the nullspace is well separated from the other
eigenspaces or not (defaults to True).

"""
# Compute auxiliary R matrix
R = np.zeros_like(A)
N = A.shape[0]
for a in range(N):

for nu in range(N):
if a != nu:

R[nu, a] = A[a, nu]
else:

R[nu, a] = -1.0 * np.sum([
A[a, b] for b in range(N) if b != a]

)

# Look for kernel of R
eigvals, eigvecs = Qobj(R).eigenstates()
kernel_index = np.argmin(np.abs(eigvals))
if safety:

# Ensure that there is a clear separation in the spectrum , which means
# that the nullspace is well delimited and of size 1.
assert len(eigvals[np.isclose(eigvals, eigvals[kernel_index])]) == 1

# Qobj().eigenstates normalizes in L2 norm, we want a L1 normalization
ss_pops = np.real(eigvecs[kernel_index].full())
ss_pops = ss_pops / np.sum(ss_pops)
steadystate = Qobj(np.diag(ss_pops.flatten()))

return steadystate , np.sort(eigvals[np.isclose(eigvals,
eigvals[kernel_index])])

4.1.3 Running simulations
Finally, here is a simplified version of the run_single_simulation function called to
compute the steady state for a given set of parameters, outlining the main steps in the
steady state computation.

def run_single_simulation(n_bar, N_max_a, N_max_b, p,
compute_kerr=False,
out_directory=None, prefix=''):

"""
:param n_bar: Mean number of photons at $\omega_p$ in the pump.
:param N_max_a: Truncation of the cavity Fock space.
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:param N_max_b: Truncation of the transmon eigenstates space.
:param p: Dictionary of parameters to use.
:param compute_kerr: Whether Kerr should be computed from hamiltonian or

not.
:param out_directory: Directory where to output files.
:param prefix: A prefix to prepend to output files.
:return: Dumped data.
"""
# 1. Build the Hamiltonian
T = 2 * np.pi / p['omega_p']
N_max_charge = p.get('N_max_charge', 100)
H, args, c_ops, computed_H_params = operators.build_hamiltonian(

N_max_a, N_max_b, n_bar, p,
LOGGER, out_directory ,
N_max_charge=N_max_charge ,
compute_kerr=compute_kerr

)

# 2. Compute Floquet modes at t=0
# Manually compute the propagator at t=T.
# This is required to ensure convergence.
propagator_steps = np.linspace(

0,
T,
p.get('propagator_steps', 10)

)
U = qutip.propagator(H, propagator_steps , [], args)[-1]
# t=0 Floquet modes
f_modes_0 , f_energies = floquet.floquet_modes(H, T, args, sort=True, U=U)

# 3. Compute the decomposition of initial state on Floquet modes
psi_0 = (H[0] + H[1][0]).groundstate()[1] # Real ground state
# Find its decomposition on Floquet modes at t = 0
f_coeff = floquet.floquet_state_decomposition(f_modes_0 , f_energies , psi_0)

# 4. Compute the rate matrices entering the Floquet -Markov master equation
_, X, _, Amat = floquet.floquet_master_equation_rates(

f_modes_0 , f_energies , c_ops[0], H, T, args,
J_cb=lambda w: 0.5 * p['gamma'] / T,
w_th=0, kmax=5, f_modes_table_t=None, nT=100)

# 5. Compute the steady state of the system
steadystate , steadystate_eigvals = (

# Safety is false as we handle the checks manually below
floquet.floquet_master_equation_steadystate(Amat, safety=False)

)

# 6. Dump all the results into the output directory

In practice, when generating the data required for the figures from Chapters 2 and 3,
this run_single_simulation function is called 8 times in parallel, each with a different
set of parameters, to speed up the computation.
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4.2 Analysis code
4.2.1 Resonant frequencies of the system
From the steady state found through the Floquet-Markov simulations, one can compute
the expected transition frequencies of the system, as detailed in section 2.3.1. This
consists in

• First, finding the Floquet modes with a non-negligible population in the steady
state, done with the loop on f_mode_overlap in the code below,

• Then, finding the Floquet modes which have a non-zero coupling to the previously
found ones through the coupling operator, as computed in X_overlaps below.

• Finally, the frequency can be computed from the difference of their quasi-energies.
The transition probability, as detailed in section 2.3.1 is proportional to their
coupling strength.

Note that while I have considered Floquet modes only from the first Brillouin zone
in this manuscript so far, I should take into account transitions between two different
bands of Floquet modes here. I can however restricts the number of bands to consider
to a limited range of values (from -2 to 2, with the zero index being the first Brillouin
zone) as considering other bands will only result in having extra transition frequencies
much larger than the pump frequency and out of the domain of interest (close to the
initial oscillator frequency, in order to compute the ac Stark shifted frequency). These
correspond to high order transitions requiring many pump photons.

def find_frequencies_from_overlaps(n_bar, data, overlaps_threshold):
"""
:param n_bar: Mean number of photons in the pump, at $\omega_p$.
:param data: Data loaded from the steady state dump.
:param overlap_threshold: Threshold for considering Floquet modes.
"""
frequencies = []
# Number of computed bands
n_k_values = int((len(data['X'][0, 0, :]) - 1) / 2)

for i, f_mode_overlap in enumerate(data['steadystate'].diag()):
# First , look at Floquet modes in the steadystate with enough
# weight
if f_mode_overlap < overlaps_threshold:

continue

# Then look at coupled elements through X tensor , in neighbor bands
# We only consider the k = -2, -1, 0, 1, 2 bands
k_range = list(range(n_k_values - 2, n_k_values + 3))
for k in k_range:

k_value = -n_k_values + k # This is the real value , > 0 or < 0

X_overlaps = abs(data['X'][i, :, k])
for j, X_overlap in enumerate(X_overlaps):

# Look for a coupled enough Floquet mode in this band
if X_overlap < overlaps_threshold:

continue

# Compute frequency
frequencies.append({

"n_bar": n_bar,
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"frequency": -1.0 * (
data['f_energies'][i] - data['f_energies'][j] +
k_value * data['params']['omega_p']

) / (2.0 * np.pi),
"area": np.pi * 7.0**2 * (

np.sqrt(f_mode_overlap) * X_overlap
)**2

})
return frequencies

4.2.2 Induced Kerr strength

A similar analysis can be performed in order to compute the Kerr strength from section
3.2. The induced Kerr strength can be found using a cascading scheme of the method
used to compute the ac Stark shifted frequencies of the system in section 4.2.1.

Indeed, starting from the computed steady state from the Floquet-Markov frame-
work, it is possible to find the transition between Floquet modes resulting having the
largest probability, using the method from section 4.2.1. Then, starting from this pair
of Floquet modes and using the same method, one can find the most likely second tran-
sition. The induced Kerr strength can then be computed as the difference between the
two transition frequencies found.

def find_kerr_from_overlaps(n_bar, data, overlaps_threshold):
"""
:param n_bar: Mean number of photons in the pump, at $\omega_p$.
:param data: Data loaded from the steady state dump.
:param overlap_threshold: Threshold for considering Floquet modes.
"""
kerr = []
# Number of computed bands
n_k_values = int((len(data['X'][0, 0, :]) - 1) / 2)

# First , compute the most likely transition from the steady state to another Floquet mode
max_overlap_idx1 = np.argmax(data['steadystate'].diag())
max_overlap_idx2 , max_overlap_2 = None, None
k_value_1 = None
for i, f_mode_overlap in enumerate(data['steadystate'].diag()):

# First , look at Floquet modes in the steadystate with enough
# weight
if f_mode_overlap < overlaps_threshold: continue
# Then look at coupled elements through X tensor , in neighbor bands
# We only consider the k = -2, -1, 0, 1, 2 bands
k_range = list(range(n_k_values - 2, n_k_values + 3))
for k in k_range:

k_value = -n_k_values + k # This is the real value , > 0 or < 0
X_overlaps = abs(data['X'][i, :, k])
for j, X_overlap in enumerate(X_overlaps):

# Look for a coupled enough Floquet mode in this band
if X_overlap < overlaps_threshold: continue
if max_overlap_idx2 is None or X_overlap > max_overlap_2:

max_overlap_2 = X_overlap
max_overlap_idx2 = j
k_value_1 = k_value

# From this Floquet mode, look for the most likely second transition
max_k, max_k_overlap = None, None
for k in range(len(data['X'][0, 0, :])):

X2_overlaps = abs(data['X'][max_overlap_idx2 , :, k])
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max_overlap_tmp = np.max(X2_overlaps)
if max_k is None or max_overlap_tmp > max_k_overlap:

max_k = k
max_k_overlap = max_overlap_tmp

max_k_value = -n_k_values + max_k
X2_overlaps = abs(data['X'][max_overlap_idx2 , :, max_k])

# The Kerr strength is given by the difference of the two transition frequencies
kerr.append(1e6 * (

(-1.0 * (
data['f_energies'][max_overlap_idx1] -
data['f_energies'][max_overlap_idx2] +
k_value_1 * omega_p

) / (2.0 * np.pi)) -
(-1.0 * (

data['f_energies'][max_overlap_idx2] -
data['f_energies'][np.argmax(X2_overlaps)] +
max_k_value * omega_p

) / (2.0 * np.pi))
)) # In kHz

Finally, the induced Kerr strength computed from the time averaged model and
shown in Fig. 3.5 was computed numerically by diagonalizing the time averaged Hamil-
tonian and looking at the transition frequencies. The induced Kerr strength is given
by the difference of the second and first oscillator-like transition frequencies in this
Hamiltonian, as computed by

def _bessel(n_bar, data):
epsilon_p = operators.compute_epsilon_p(n_bar, data['params'])
H_shunted , args, _, _ = operators.build_shunted_hamiltonian(

data['N_max_a'], data['N_max_b'], epsilon_p , data['params']
)
# Compute the time-averaged hamiltonian
H = (

H_shunted[0] +
scipy.special.jv(0, args['oscillating_prefactor']) * H_shunted[1][0]

)
# Kerr can be computed through the eigenstates
eigval, eigvec = H.eigenstates()

# Compute Kerr from time averaged model
return (

-1.0 * (eigval[5] - 2 * eigval[2] + eigval[0]) / (2 * np.pi) * 1e6
) # In kHz
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The previous analysis from Chapters 2-3 illustrates that one should carefully choose
the building blocks to implement parametric engineering techniques. For instance, as
demonstrated in Chapter 3, the presence of an extra harmonic confinement on a trans-
mon device makes it more stable and the non-linearity is then fully exploitable.

In this Chapter, I will focus on circuits based on the Josephson Ring Modulator
[24, 77, 25, 26], a circuit currently used for amplification and frequency conversion,
which also features shunt inductances. In particular, I will study a slight variant of this
circuit with asymmetric loops and its potential interest for implementing two-photon
and four-photon pumping schemes required for the cat-states encoding scheme. This
circuit should offer an interesting (physical) protection from harmful terms coming from
the expansion of the non-linearity.

I will first recall the main results for the Josephson Ring Modulator, as currently
used for amplification and frequency conversion. I will then present the asymmetric
version of this circuit and how it helps removing potentially harmful terms. Finally,
I will comment on the maximum achievable interaction strengths for two-photon and
four-photon exchange processes using this device.

5.1 Josephson Ring Modulator

First, I will briefly recall previously existing results about the Josephson Ring Modulator
(JRM) and its extension with shunt inductances, as presented in [24, 77, 25, 26].

5.1.1 Unshunted Josephson Ring Modulator

Figure 5.1: Electric circuit for the unshunted Josephson Ring Modulator. The
JRM consists of a single loop of four Josephson junctions with the same Josephson
energy EJ and capacitive energy EC , all in series. An external reduced magnetic flux
φext is threading the loop. We denote by {φµ}µ=a,b,c,d the flux across each of these
junctions and {φk}k=1,2,3,4 the node fluxes at each vertex of the loop.

The unshunted Josephson Ring Modulator circuit is shown in Fig. 5.1. Its Hamilto-
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nian reads

H = EC

2

(
Q2

a + Q2
b + Q2

c + Q2
d

)
− EJ (cos φa + cos φb + cos φc + cos φd) (5.1)

where 

φa = φ1 − φ4 + φext
4 + nπ

2

φb = φ2 − φ1 + φext
4 + nπ

2

φc = φ3 − φ2 + φext
4 + nπ

2

φd = φ4 − φ3 + φext
4 + nπ

2

(5.2)

with φext the external reduced magnetic flux threading the loop and n an integer and
where {Qµ}µ=a,b,c,d are the charge variables for each Josephson junction, defined as the
conjugate variables of the {φµ}µ=a,b,c,d.

Moreover, from the Kirchhoff’s voltage law, one gets

φa + φb + φc + φd = φext [2π] (5.3)

Let us now introduce normal modes of the system, {φν}ν=X,Y,Z,M , such that the
quadratic part of the Hamiltonian Eq. (5.1) reads φT Lφ with L a diagonal inductance
matrix and φT = (φX , φY , φZ , φM ). First, let us expand the Josephson part of Hamil-
tonian Eq. (5.1) to second order in {φµ}µ=a,b,c,d,

EJ

2

(
φ2

a + φ2
b + φ2

c + φ2
d

)
= EJ

2



φ1

φ2

φ3

φ4



T 

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2


︸ ︷︷ ︸

L



φ1

φ2

φ3

φ4


(5.4)

By diagonalizing L, one finds the normal modes of the system, defined as

φX

φY

φZ

φW


=



0 1 0 −1

1 0 −1 0

−1/2 1/2 −1/2 1/2

1/2 1/2 1/2 1/2





φ1

φ2

φ3

φ4


. (5.5)

At this point, one can notice that the eigenvalue in L associated with φW is zero.
Therefore, this mode is uncoupled from the system. The normal modes are represented
in Fig. 5.2



72 CHAPTER 5. ASYMMETRIC JOSEPHSON RING MODULATOR

Figure 5.2: Normal modes of the Josephson Ring Modulator. The Josephson
Ring Modulator is coupled to three orthogonal microwave modes: X and Y are differ-
ential modes in horizontal and vertical direction whereas Z is a common mode. The
last normal mode, W is not represented here as the corresponding eigenvalue in the
inductance matrix is zero.

In the normal modes basis, the Hamiltonian Eq. (5.1) reads

H =EC

2

(
Q2

X + Q2
Y + 4Q2

Z

)
−4EJ

[
cos φX

2
cos φY

2
cos φZ cos

(
φext + 2nπ

4

)
+ sin φX

2
sin φY

2
sin φZ sin

(
φext + 2nπ

4

)] (5.6)

where {Qν}ν=X,Y,Z,M are the conjugate variables of {φν}ν=X,Y,Z,M .
Expanding the Hamiltonian from Eq. (5.6) around the point of equilibrium φX =

φY = φZ = 0 up to the third order in phase variables, one gets

Hlinear =EC

2

(
Q2

X + Q2
Y + 4Q2

Z

)
+ EJ

2
cos

(
φext + 2nπ

4

)(
φ2

X + φ2
Y + 4φ2

Z

)
− EJ sin

(
φext + 2nπ

4

)
φXφY φZ

− 4EJ cos
(

φext + 2nπ

4

)
.

(5.7)

A three wave mixing term, φXφY φZ appears in Eq. (5.7), whose amplitude depends
on the external flux threading the loop of the JRM, φext. This is the term of interest
for performing amplification or conversion with this device, using one mode as a signal,
one mode as an idler and the third mode as a pump to satisfy a frequency matching
condition. The maximum amplitude for the three wave mixing term is reached for an
external reduced magnetic flux φext = 2π. However, this configuration is unstable, as
pictured on Fig. 5.3. This instability, however, is a different sort of instability than the
one presented in Chapter 2.

5.1.2 Josephson Ring Modulator with shunt inductances
In order to overcome the instability of the unshunted Josephson Ring Modulator around
the best point of operation for achieving three wave mixing, extra shunt inductances can
be added to the Josephson ring as depicted in Fig. 5.4.

The same solution also provides a stability in the sense of Chapters 2-3. Such a
system can therefore be investigated using standard time averaging techniques (rotating
wave approximations).



5.1. JOSEPHSON RING MODULATOR 73

Figure 5.3: Illustration of the instability of the unshunted Josephson Ring
Modulator around the optimal point of operation. The Kirchhoff’s voltage law
Eq. (5.3) gives a relation between the phases defined up to a 2π factor. Each configura-
tion (defined by a unique set of values for (φa, φb, φc, φd)) is then 8π-periodic. However,
the lowest energy level from the Hamiltonian Eq. (5.6), Erest, depends on the value of
the 2π multiple, that is, on n. Indeed, if the system starts from a branch where n = 4p
with p an integer and an external magnetic flux φext = 0 and if this external magnetic
flux increases to π, then the n = 4p branch becomes metastable and it is the n = 4p + 1
branch which is the most stable. The system then undergoes a phase flip towards this
configuration, preventing us from reaching the optimal point of operations φext = 2π.
The best compromise is then around φext = π. This figure is borrowed from [26].

In this section, I will briefly recall the main results and computation of the Hamilto-
nian of this system, which serves as a basis for the Asymmetric Josephson Ring modula-
tor presented in section 5.2. This subsection is following the computations and notations
from [26]. I will use the central node as the reference for the potential.

The Hamiltonian of the circuit in Fig. 5.4 reads

H =EC

2

(
Q2

a + Q2
b + Q2

c + Q2
d

)
− EJ (cos φa + cos φb + cos φc + cos φd)

+ EL

2

(
φ2

L1 + φ2
L2 + φ2

L3 + φ2
L4

)
.

(5.8)

There are now four different relations given by Kirchhoff’s voltage law, which are

φa − φL1 + φL4 = φext
4 + 2πna

φb − φL2 + φL1 = φext
4 + 2πnb

φc − φL3 + φL2 = φext
4 + 2πnc

φd − φL4 + φL3 = φext
4 + 2πnd

(5.9)
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Figure 5.4: Electric circuit for the inductively shunted Josephson Ring Mod-
ulator. This JRM consists of a single loop of four Josephson junctions with the same
Josephson energy EJ and capacitive energy EC , all in series. Four inductances with the
same inductive energy EL are splitting the loop into four triangles of same areas. We
denote by {φµ}µ=a,b,c,d the flux across each of these junctions and {φLk

}k=1,2,3,4 the flux
across each of the shunting inductance.

where φext is the total external reduced magnetic flux threading the largest loop and
na, nb, nc and nd are integers.

Additionally, the charge conservation written at the central node gives

(φL1 + φL2 + φL3 + φL4) = 0 (5.10)

Using the normal modes from Eq. (5.5) as well as the relation from Eq. (5.10),



4φL1 = 2 (φY − φZ)

4φL2 = 2 (φX + φZ)

4φL3 = −2 (φY + φZ)

4φL4 = −2 (φX − φZ)

. (5.11)

Contrary to the base case from section 5.1.1, all of the fluxes {φµ}µ=a,b,c,d are now
2π-periodic. Using the same set of modes as in Eq. (5.5) (and shown on Fig. 5.2),
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replacing the φk by φLk
, the Hamiltonian of the system reads

H =EC

2

(
Q2

X + Q2
Y + 4Q2

Z

)
+ EL

2

(
φ2

X

2
+ φ2

Y

2
+ φ2

Z

)

−4EJ

[
cos φX

2
cos φY

2
cos φZ cos

(
φext + 2nπ

4

)
+ sin φX

2
sin φY

2
sin φZ sin

(
φext + 2nπ

4

)]
(5.12)

This Hamiltonian can also provide a three wave mixing term, similarly to the one
from Eq. (5.6). However, contrary to this previous case, all flux configurations are now
stable, allowing to reach the optimal point of operation to maximize this three wave
mixing term.

When expanding Hamiltonian (5.12) to higher order, extra Kerr-type terms coming
from the terms φX

4, φY
4 and φZ

4 should be taken into account. These terms are
resonant in rotating wave approximations [19] and detrimental to the operation of the
system.

5.2 Asymmetric Josephson Ring Modulator
The inner inductive loops of the Josephson Ring Modulator circuit provided extra sta-
bility to the system, while maintaining the main features in the Hamiltonian useful
for parametric amplification or conversion. Building on this circuit which provides a
pure three-wave mixing term, let us introduce an asymmetric version (the Asymmetric
Josephson Ring Modulator), as pictured in Fig. 5.5. This asymmetric version provides
a pure higher-order mixing terms, in which two modes appear with odd powers only
and the third mode appear with both odd and even powers. Such a pure higher-order
mixing term can be used to efficiently implement two-photon and four-photon exchange
Hamiltonians.

Indeed, in order to implement the cat-state pumping scheme presented in section
1.5, the circuit should implement a term of the form bcd + h.c. with d = 2 (for two-
photon scheme) or d = 4 (for four-photon scheme), with b and c the annihilation
operators of two different modes. Josephson junction circuits provide cosine and sine
potential. Therefore, a term of the form sin

(
a + a†

)
sin
(
b + b†

)
cos

(
c + c†

)
where a

is the annihilation operator of a third mode coupled to a pump, would implement the
required Hamiltonian interaction with a carefully chosen frequency matching condition.

5.2.1 Circuit Hamiltonian
Let us focus on the circuit pictured in Fig. 5.5, presenting a shunted Josephson Ring
Modulator with areas in a ratio λ. The base Hamiltonian in the basis of the phases
across each junction still reads

H =EC

2

(
Q2

a + Q2
b + Q2

c + Q2
d

)
− EJ (cos φa + cos φb + cos φc + cos φd)

+ EL

2

(
φ2

L1 + φ2
L2 + φ2

L3 + φ2
L4

)
.

(5.13)
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Figure 5.5: Electric circuit for the Asymmetric Josephson Ring Modulator.
This circuit is the same as the Josephson Ring Modulator with shunt inductances circuit
from Fig. 5.4 except that the inner loops now have different areas, in a ratio λ.

The four different relations given by Kirchhoff’s voltage law are



φa − φL1 + φL4 = λ
2(λ+1)φext + 2πna

φb − φL2 + φL1 = 1
2(λ+1)φext + 2πnb

φc − φL3 + φL2 = λ
2(λ+1)φext + 2πnc

φd − φL4 + φL3 = 1
2(λ+1)φext + 2πnd

(5.14)

where φext is the total external reduced magnetic flux threading the outtermost loop, λ
is the ratio of areas of the inner loops and na, nb, nc and nd are integers.

Additionally, the charge conservation written at the central node gives

(φL1 + φL2 + φL3 + φL4) = 0 (5.15)
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From Eq. (5.14) and Eq. (5.11),



φa = λ
2(λ+1)φext + 2πna + φX+φY −2φZ

2

φb = 1
2(λ+1)φext + 2πnb + φX−φY +2φZ

2

φc = λ
2(λ+1)φext + 2πnc − φX+φY +2φZ

2

φd = 1
2(λ+1)φext + 2πnd − φX−φY −2φZ

2

(5.16)

Finally, when imposing φext = 2π and rewriting this Hamiltonian in the normal
modes basis Eq. (5.5) written built from the φLk

instead of the φk, it is now given by

H =EC

2

(
Q2

X + Q2
Y + 4Q2

Z

)
+ EL

2

(
φ2

X

2
+ φ2

Y

2
+ φ2

Z

)

−4EJ sin
(

φX

2

)
sin
(

φY

2

)[
sin
((λ − 1) π

2 (λ + 1)

)
cos (φZ)

− cos
((λ − 1) π

2 (λ + 1)

)
sin (φZ)

]
(5.17)

The Hamiltonian Eq. (5.17) now only contains terms with odd powers in φX and
φY coming from the Josephson potential and a mix of odd and even powers of φZ

depending on the ratio λ. The fact that no even powers of φX and φY enter this
expression implies that in rotating wave approximations [19], resonant parasitic terms
involving these modes will not exist. The asymmetry here helps preserving terms such
as φXφY φ2

Z which will be useful for implementing the two photons or four photons
pumping scheme (see section 5.2.2) while avoiding Kerr-type terms on both X, Y and
Z modes. This cancellation of extra parasitic terms however comes at the expense of
operating at a fixed external flux value, φext = 2π, whereas the external flux was another
control parameter available to engineer the strength of the interactions in the Josephson
Ring Modulator circuit. One can also note that by changing the layout of the large and
small inner loops, one can rotate which modes appear in a sine term only and which
mode has both a cosine and a sine term.

5.2.2 Quantization of the AJRM circuit embedded in a microwave cav-
ity

In this section, I will focus on using an Asymmetric Josephson Ring Modulator circuit
embedded into half-wavelength resonators to couple it with microwave modes in a cavity.
This circuit is represented in Fig. 5.6. I will assume a specific ratio between the areas
of the larger and smaller loops, λ = 3.
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Figure 5.6: Electric circuit for the Asymmetric Josephson Ring Modulator
embedded into λ/2 resonators. The AJRM circuit from section 5.2 is embedded
here into λ/2 resonators to couple it with microwave modes of a 3D cavity. I am here
considering a particular λ = 3 ratio between the areas of the inner loops, resulting in a
perceived magnetic flux 3φext/8 in the larger loops and φext/8 in the smaller loops.

Let us define new modes for the inner ring, similarly to the ones from Eq. (5.5),


φX = φL2 − φL4

φY = φL1 − φL3

φZ = 1
2 (φL2 + φL4 − φL1 − φL3)

(5.18)

and the same kind of modes based on the {φk}k=1,2,3,4 node fluxes in each antenna,



φ
X̃

= φ2 − φ4

φ
Ỹ

= φ1 − φ3

φ
Z̃

= 1
2 (φ2 + φ4 − φ1 − φ3)

(5.19)

These two sets of modes can easily be related by defining the participation factors
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as the ratios between the external node fluxes and the AJRM vertex fluxes, as

ξX = φX/φ
X̃

= LAJRM
X /Ltot

X ,

ξY = φY /φ
Ỹ

= LAJRM
Y /Ltot

Y ,

ξZ = φZ/φ
Z̃

= LAJRM
Z /Ltot

Z .

(5.20)

where we introduced the inductance and capacitance of each mode, sum of the AJRM
contribution and the antenna contributions, defined as

LAJRM
X = 2 φ2

0
EL

, Ltot
X = La + LAJRM

X , Ctot
X = Ca

LAJRM
Y = 2 φ2

0
EL

, Ltot
Y = Lb + LAJRM

Y , Ctot
Y = Cb

LAJRM
Z = φ2

0
EL

, Ltot
Z = La+Lb

4 + LAJRM
Z , Ctot

Z = 4CaCb
Ca+Cb

(5.21)

with φ0 = (ℏ/2e) the magnetic flux quantum. Note that in order to write Eq. (5.21),
I neglected the contributions of the Josephson junctions capacitive energy compared to
the capacitances of the antennas. These participation ratios represent the fraction of
the mode energy contained in the AJRM.

Imposing φext = 2π as in section 5.2, the full Hamiltonian of the circuit shown in
Fig. 5.6 is then given by

H = φ2
0

2Ltot
X

φ
X̃

2 + 1
2Ctot

X

Q
X̃

2

+ φ2
0

2Ltot
Y

φ
Ỹ

2 + 1
2Ctot

Y

Q
Ỹ

2

+ φ2
0

2Ltot
Z

φ
Z̃

2 + 1
2Ctot

Z

Q
Z̃

2

− 2
√

2EJ sin
(

φX

2

)
sin
(

φY

2

)
[cos (φZ) − sin (φZ)] .

(5.22)

Following the approach from [14, 17], photon annihilation and creation operators
can be introduced for each mode in order to quantize them, leading to

φ
X̃

= φ0
X̃

(
a + a†

)
φ

Ỹ
= φ0

Ỹ

(
b + b†

)
φ

Z̃
= φ0

Z̃

(
c + c†

)
(5.23)

where

φ0
X̃,Ỹ ,Z̃

= 1
φ0

√
ℏZX,Y,Z

2
with ZX,Y,Z =

√√√√Ltot
X,Y,Z

Ctot
X,Y,Z

. (5.24)
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From these φ
X̃

, φ
Ỹ

, φ
Z̃

the other required operators can easily be written as

QX̃ = −i
√

ℏ
2ZX

(
a + a†

)
QỸ = −i

√
ℏ

2ZY

(
b + b†

)
QZ̃ = −i

√
ℏ

2ZZ

(
c + c†

)
and



φX = ξXφ
X̃

φY = ξY φ
Ỹ

φZ = ξZφ
Z̃

(5.25)

At this point, one might note that, a priori, the inductances Ltot
X,Y,Z depends on the

magnetic flux threading the outermost loop, φext. Therefore, the resonance frequencies
should also depends on this external flux, as

ωX,Y,Z = 1√
Ltot

X,Y,Z (φext) Ctot
X,Y,Z

.

Although this is true for a general operation of this circuit, I am interested here in the
behavior and properties of this circuit when imposing φext = 2π.

5.3 AJRM for the two-photon and four-photon pumping
schemes

I will now show how the circuit from Fig. 5.6 with the Hamiltonian from Eq. 5.22 can
be used to achieve parametrically a four photons pumping Hamiltonian. Let us consider
an extra pump term applied on the X mode. The full Hamiltonian reads

H =ℏωXa†a + ℏωY b†b + ℏωZc†c

− 2
√

2EJ sin
(

φ0
X̃

2

(
a† + a

))
sin
(

φ0
Ỹ

2

(
b† + b

))
cos

(
φ0

Z̃

(
c† + c

))

+ 2
√

2EJ sin
(

φ0
X̃

2

(
a† + a

))
sin
(

φ0
Ỹ

2

(
b† + b

))
sin
(
φ0

Z̃

(
c† + c

))
+ iAp(t)

(
a† − a

)
(5.26)

where Ap(t) = Ap cos(ωpt) is the time-dependent amplitude of the pump. In the stiff
pump regime, this results in the a mode being populated by a coherent state αe−iωpt

with α = Ap/2(ωp − ωa). Let us note that, in absence of a pump, the a and b modes
are not normal modes of the system. Indeed, the lowest order term in the expansion of
the first part of the Hamiltonian hybridizes these two modes, therefore changing their
frequencies. In a spectroscopy measurement, the frequency of the normal modes will be
shifted from ωX and ωY due to this hybridization.

Furthermore, let us assume a frequency matching condition

ωp + ωY = dωZ (5.27)

with d = 2 for the two-photon pumping scheme and d = 4 for the four-photon pump-
ing scheme. Assuming no other resonance conditions exist between the frequencies ωp

and ωX,Y,Z , one can apply a rotating wave approximation similar to section 1.3. This
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rotating-wave approximation is allowed as the inductive shunts ensure the stability of
the system in presence of driving pump. Only terms of the form

|α|2k
(
b†
)l

bl
(
c†
)m

cm
[
αb

(
c†
)d

+ α∗b†cd
]

(5.28)

where k, l, m ∈ Z should be taken into account in the expansion of the product of
cosine and sine term. Indeed, similarly to the Kerr term in Chapter 2, the multi-photon
interaction term in this system can be studied under a rotating-wave approximation.

Let us first start by considering the pump mode, represented by its complex am-
plitude α. Following the approach from section 1.3 (displacement of the pump mode
and interaction picture) and the results from chapter 2 (time averaging), the pump
contribution to the Hamiltonian can be captured with a time-averaging technique,

sin
(

φ0
X̃

2
(α∗eiωpt + αe−iωpt)

)
/ |α| ×

(
αe−iωpt + h.c.

)
=φ0

X̃

2
× e

−
(

φ0
X̃

)2
/8

×
J1
(
φ0

X̃
|α|
)

(
φ0

X̃
|α|
)

/2

 (α + h.c.) . (5.29)

For the two remaining modes, b and c, we want to consider terms of the form(
b†
)k

bk b (respectively
(
c†
)k

ck cd) or their hermitian conjugate in the expansion of
the sine and cosine term from Eq. (5.22).

From the relation

(A + B)n =
∑
k=0

n≡k (mod 2)

(
− [A, B]

2

)n−k
2 n!

k!(n−k
2 )!

(
k∑

r=0

(
k

r

)
ArBk−r

)
(5.30)

which gives the Newton binomial expansion of non-commutative terms under the con-
dition that [A, [A, B]] = [B, [A, B]] = 0 and can be demonstrated using the Baker-
Campbell-Hausdorff lemma, one finds for the b mode

sin
(

φ0
Ỹ

be−iωY t + b†eiωY t

2

)
=

φ0
Ỹ

2
∑
i≥0

(−1)i
(

φ0
Ỹ

/2
)2i

(
be−iωY t + b†eiωY t

)2i+1

(2i + 1)!

=
φ0

Ỹ

2
∑
i≥0

−
φ0

Ỹ

2

4

i
2i+1∑
k=0

k=1[2]

(
[b,b†]

2

) 2i+1−k
2

k!
( 2i+1−k

2
)
!

k∑
r=0

(
k

r

)
ei(2r−k)ωY t

(
b†)r bk−r

(5.31)

which yields the following contribution to the total Hamiltonian−
φ0

Ỹ

2
× e

−
(

φ0
Ỹ

)2
/8

×
L

(−1)
b†b+1

((
φ0

Ỹ

)2
/4
)

(
φ0

Ỹ

)2
/4

(be−iωY t + h.c.
)

. (5.32)

Conversely, the c mode yields the contribution−

(
φ0

Z̃

)2

8
× e

−
(

φ0
Z̃

)2
/8

×
L

(−2)
c†c+2

((
φ0

Z̃

)2
/4
)

(
φ0

Z̃

)2
/4

(c2e−2iωZt + h.c.
)

(5.33)
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for the two-photon pumping interaction ande
−
(

φ0
Z̃

)2
/2

×
L

(−4)
c†c

((
φ0

Z̃

)2
)

(
φ0

Z̃

)4

(c4e−4iωZt + h.c.
)

(5.34)

for the four-photon pumping interaction.
Finally, by doing a full expansion of the Hamiltonian Eq. (5.22) and taking into

account all of the possible resonant terms from each mode in the rotating-wave approxi-
mation, while still considering the pump mode semi-classically, I get for the two-photon
pumping scheme (d = 2)

Hfull
2ph = − 2

√
2EJ

φ0
X̃

2
× e

−
(

φ0
X̃

)2
/8

×
J1
(
φ0

X̃
α
)

(
φ0

X̃
α
)

/2

×

−
φ0

Ỹ

2
× e

−
(

φ0
Ỹ

)2
/8

×
L

(−1)
b†b+1

((
φ0

Ỹ

)2
/4
)

(
φ0

Ỹ

)2
/4

×

−

(
φ0

Z̃

)2

8
× e

−
(

φ0
Z̃

)2
/8

×
L

(−2)
c†c+2

((
φ0

Z̃

)2
/4
)

(
φ0

Z̃

)2
/4

×

[
αb

(
c†
)2

+ α∗b†c2
]

(5.35)

where J1 (·) is the first kind Bessel function of order one, L
(ν)
n (·) is the generalized

Laguerre polynomials of degree n and index ν and α is the coherent amplitude of the
semi-classical pump.

Conversely, for the four-photon pumping scheme (d = 4), I get

Hfull
4ph = − 2

√
2EJ

φ0
X̃

2
× e

−
(

φ0
X̃

)2
/8

×
J1
(
φ0

X̃
α
)

(
φ0

X̃
α
)

/2

×

−
φ0

Ỹ

2
× e

−
(

φ0
Ỹ

)2
/8

×
L

(−1)
b†b+1

((
φ0

Ỹ

)2
/4
)

(
φ0

Ỹ

)2
/4

×

e
−
(

φ0
Z̃

)2
/2

×
L

(−4)
c†c

((
φ0

Z̃

)2
)

(
φ0

Z̃

)4

×

[
αb

(
c†
)4

+ α∗b†c4
]

.

(5.36)

In these Hamiltonians, the a mode (coupled to the X normal mode) is then a pump
mode, the b mode (coupled to the Y normal mode) is a readout mode and the c mode
(coupled to the Z normal mode) is the storage mode. This circuit can implement a two-
photon and four-photon interaction Hamiltonian using parametric engineering, whose
strength as a function of the number of circulating photons from the pump, |α|2, is
shown in Fig. 5.7. However, the coupling strength is strongly reduced by the factorial
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prefactors and the (small) zero-point fluctuations appearing with a high power, result-
ing in an achievable two-photon interaction of the order of 1 MHz and a four-photon
interaction of the order of 1 kHz. Further increasing this interaction strength would
be experimentally challenging. As an alternative, a two-stage process such as the one
proposed in [29] seems more promising and experimentally achievable to implement a
four-photon exchange Hamiltonian with a larger interaction strength. The Asymmetric
Josephson Ring Modulator circuit could still be a useful tool to implement two-photon
exchange Hamiltonian terms, with a large coupling amplitude and reduced nefarious
terms.
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Figure 5.7: Multi-photon interaction strength. Strength of the two-photon
and four-photon interaction as a function of the number of photons in the pump,
|α|2, in units of EJ . Here, the size of the cat state is taken to |γ|2 = 6. Using
φ

X̃
≈ φ

Ỹ
≈ 0.1 and φ

Z̃
≈ 0.05, the resulting achievable two-photon strength is of the

order of EJ × 10−5 ≈ 10 MHz and the achievable four-photon strength is of the order
of EJ × 10−8 ≈ 10 kHz. These zero-point fluctuations are larger than the typical ones
in symmetric JRM. The possibility of their implementation remains to be studied in a
future work.
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Chapter 6

Conclusions and perspectives

In this thesis, I investigated the behavior of parametrically pumped quantum Josephson
circuits in the strong pumping regime. This analysis has been based on the transmon
device which is widely used as a source of non-linearity. I considered the cat-states
encoding scheme for quantum error correction as an example for parametric engineering
of Hamiltonian. This chapter gives a brief summary of the manuscript, along with
several comments that intend to put this work into perspective.

In a first part, I focused on the study of the instability of the driven transmon cir-
cuit under strong external microwave drives. Indeed, the transmon circuit is one of the
most common circuits providing a non-linearity and is therefore of major interest for
parametric pumping, that is the engineering of Hamiltonian interactions and tailoring
of dissipative terms. The instability of the driven transmon in this regime had been
previously observed and used experimentally (for high-fidelity qubit readout). It had
already been theoretically investigated assuming two-level, multi-level or Duffing ap-
proximations. Contrary to these previous works, the numerical methods presented in
this manuscript are non-perturbative and take into account the transmon device as well
as its precise coupling with the environment. I also avoid resorting to rotating-wave
approximations or cosine potential expansion (contrary to model based on the Duffing
approximation). Such approximations are not valid in the strong pumping regime under
consideration, as confirmed a posteriori by our numerical simulations. These numeri-
cal methods let me take into account as much states in the Hilbert space as required.
Indeed, thanks to the change of frame described in Chapter 2 (Bogoliubov transforma-
tion and mode hybridization), the (displaced) cavity mode is not much populated and
can therefore be truncated to a low number of excitations. This lets me use a much
higher truncation for the (displaced) transmon mode Hilbert space and take into account
enough excited states to capture the states on which the system has support for high
pump powers, after the AC Stark shifted frequency jump, while keeping the numerical
simulations tractable.

I demonstrated that the transmon circuit is structurally unstable for large enough
drives. Indeed, due to the boundedness of the cosine potential of the Josephson junc-
tion, the transmon state gets excited to high number of excitations, well above the
confinement provided by the cosine potential of the Josephson junction. This translates
into limitations of the achievable ac Stark shift strength and of the exploitable range of
pump powers. Indeed, above a threshold pump power, the transmon states escapes from
the cosine confinement and the system behaves as if there was no nonlinearity, similar
to the ionization of an (artificial) atom. This theoretical investigation was conducted
in parallel with experimental study of the transmon device at the Laboratoire Pierre-

85
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Aigrain. In this collaboration, we managed to develop a cavity spectroscopy to probe
the transmon decay after applying a strong-off resonant pump, resolving the states of
the transmon device up to the cosine barrier and confirming our theoretical analysis that
the transmon device state is no longer within the cosine confinement potential under
the action of such pumps.

These results impose strong limitations when considering the transmon circuit as a
tool for parametric engineering, such as in the context of amplification or conversion
as well as active qubits. Indeed, active qubits, such as the cat-states encoding scheme
presented throughout this manuscript, aim at tailoring interactions and dissipation terms
using pump drives and non-linearities (and allowing for broader kind of interactions
with more tunability than could be realized with physical implementations), in order to
build logical encodings of quantum information protected against (some) decoherence
processes. For instance, enforcing the dominant dissipation term to be a multi-photon
dissipation, the cat states encoding provides a logical encoding with heavily biased noise:
the phase-flip type errors are heavily suppressed and only bit-flip type errors remain.
The strength of the engineered interaction usually scales with the pump power and one
wishes to reach very high pump strengths. The dynamical instability of the transmon
device imposes a hard bound on the maximum achievable pump power, and therefore
on the maximum interaction strength.

Then, I proposed an alternative circuit to fix this dynamical instability of the trans-
mon device. This circuit consists in adding an extra inductive shunt in parallel with the
Josephson junction, therefore providing an extra harmonic confinement for all pump
powers. The same numerical methods used for the analysis of the transmon can be
used with this system. Contrary to the unshunted case, the presence of the extra con-
finement now makes the system stable as illustrated by the smooth ac Stark shifted
frequency behavior, slowly decaying towards the renormalized frequency of the modes.
The dynamical behavior of this system is also found to be well captured by a rotating-
wave approximation of the circuit Hamiltonian, providing a useful tool for analytical
investigation and fast numerical simulations of this circuit.

This inductively shunted transmon circuit is currently being experimentally investi-
gated at Yale University by J. Venkatraman under the supervision of M. Devoret. This
collaboration has led to a US patent which is pending review. There remains some
open theoretical questions on the behavior of these systems, in particular the role of the
EL/EJ ratio in stabilizing the circuit (and the threshold value) as well as on the thresh-
old pump amplitude at which the unshunted transmon circuit becomes highly excited
and no longer contributes any nonlinearity. Such questions are still a main and active
topic of interest in the QUANTIC team at INRIA and the dynamical stability of these
circuits will be studied in the classical approximation, using classical dynamic stability
analysis tools, by M. Burgelman who is starting his PhD.

The numerical methods for running the simulations presented in this manuscript
are based on the Floquet-Markov theory, which enabled me to take into account large
Hilbert space truncations while avoiding both approximating the cosine nonlinearity
and resorting to rotating-wave approximations. The whole framework was written in
a modular way, in order to make it easily reusable for other physical implementations
or circuits. For instance, it has already been used by the M. Devoret group at Yale
University to perform numerical simulations of our shunted transmon proposal when
considering an array of Josephson junctions instead of an inductive shunt.

Building on the analysis of the transmon and inductively shunted transmon circuits,
I finally studied a circuit based on the Josephson Ring Modulator, a circuit already
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widely used to achieve amplification and frequency conversion. Using an asymmetric
version of this circuit, we can cancel out some of the nefarious terms, simply with
symmetry properties. This circuit, in presence of appropriate parametric pumps, should
be a powerful tool for implementing two-photon and four-photon interactions. Due to
the presence of shunt inductances and building on the previous analysis of the transmon
device, one could hope that such a circuit will behave in a stable manner on a wide
range of pump parameters, therefore enabling us to reach multi-photon exchange terms
with a large enough strength. However, due to the high order of the cosine expansion
required to implement a four-photon exchange Hamiltonian term, the coupling strength
is strongly reduced by the factorial prefactors and the (small) zero-point fluctuations
appearing with a high power. As an alternative, a two-stage process such as the one
proposed in [29] seems more promising and experimentally achievable to implement a
four-photon exchange Hamiltonian. The Asymmetric Josephson Ring Modulator circuit
could still be a useful tool to implement two-photon exchange Hamiltonian terms, with
a large coupling amplitude and reduced nefarious terms. The team of Z. Leghtas at ENS
is currently investigating similar circuits to implement a cleaner two-photon exchange
term in a parametric way while reducing the influence of nefarious terms compared to
a single Josephson junction, building on the results and insights we got while studying
the Asymmetric Josephson Ring Modulator.
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RÉSUMÉ

Dans cette thèse, nous étudions le comportement de circuits Josephson sous l'action de champs microondes forts.
Les circuits Josephson dans le régime quantique sont une brique pour émuler une variété d'hamiltoniens, utiles pour
traiter l'information quantique. Nous étudions ici le transmon, constitué d'une jonction Josephson et d'un condensateur en
parallèle. À travers des simulations numériques et en comparant aux résultats expérimentaux, nous montrons que ces
champs conduisent à une instabilité qui envoie le circuit sur des états qui ne sont plus confinés par le potentiel Josephson
en cosinus. Quand le transmon occupe de tels états, le circuit se comporte comme si la jonction avait été remplacée par
un interrupteur ouvert et toute nonlinéarité est perdue, ce qui se traduit par des limitations sur les amplitudes maximales
des hamiltoniens émulés.
Dans une deuxième partie, nous proposons et étudions un circuit alternatif basé sur un transmon avec une inductance en
parallèle, qui fournit un confinement harmonique. La dynamique de ce circuit est stable et bien capturée par un modèle
moyennisé qui fournit alors un outil pratique pour l'analyse analytique ou les simulations rapides.
Nous avons développé un nouvel outil de simulations modulaire et basé sur la théorie de FloquetMarkov pour permettre
de simuler facilement d'autres circuits Josephson en évitant les limitations des analyses perturbatives.
Enfin, nous étudions les propriétés d'une version asymétrique du Josephson Ring Modulator, un circuit actuellement utilisé
pour l'amplification et la conversion, comme source de nonlinéarité pour émuler les hamiltoniens d'interaction à deux et
quatre photons requis pour l'encodage de l'information quantique sur des états de chats de Schrödinger.

MOTS CLÉS

Information quantique, circuits supraconducteurs, pompage paramétrique, hamiltoniens paramétriques, in
génierie de réservoir, code quantique.

ABSTRACT

In this thesis, we investigate the behavior of Josephson circuits under the action of strong microwave drives. Josephson
circuits in the quantum regime are a building block to emulate a variety of Hamiltonians, useful to process quantum
information. We are here considering a transmon device, made of a Josephson junction and a capacitor in parallel.
Through numerical simulations and comparison with experimental results, we show that these drives lead to an instability
which results in the escape of the circuit state into states which are no longer confined by the Josephson cosine potential.
When the transmon occupies such states, the circuit behaves as if the junction had been removed and all nonlinearities
are lost, which translates into limitations on the emulated Hamiltonian strengths.
In a second part, we propose and study an alternative circuit consisting of a transmon device with an extra inductive shunt,
providing a harmonic confinement. This circuit is found to be stable for all pump powers. The dynamics of this circuit is also
well captured by a timeaveraged model, providing a useful tool for analytical investigation and fast numerical simulations.
We developed a novel numerical approach that avoids the builtin limitations of perturbative analysis to investigate the
dynamical behavior of both of these circuits. This approach, based on the FloquetMarkov theory, resulted in a modular
simulation framework which can be used to study other Josephsonbased circuits.
Last, we study the properties of an asymmetric version of the Josephson Ring Modulator, a circuit currently used for
amplification and conversion, as a more robust source of nonlinearity to engineer twophoton and fourphoton interaction
Hamiltonians required for the catstate encoding of quantum information.

KEYWORDS

Quantum information, superconducting circuits, parametric pumping, hamiltonian engineering, reservoir en
gineering, quantum error correction.
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