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Summaries

Abstract

The semi-arid regions of West Africa are known for their dry conditions which
have predominated since the 1970s. In recent years, however, West Africa
has witnessed a series of severe flooding events which caused widespread
fatalities and socioeconomic damages. The emergence of this new problem
demonstrates the sensitivity of the region to changes in the hydroclimatic
system and calls for an improved characterization of flood hazard and the
mechanisms that generate it. It also signals the need to develop projections
for how flood hazard may evolve in the future in order to inform appropriate
adaptation measures.

In this context, the following PhD thesis seeks to answer three main
questions:

1. Is there a significant trend in extreme streamflow in West Africa, or
are the documented flooding events isolated incidences?

2. How can one model mesoscale convective systems, the primary driver of
runoff in the region, in order to explore the properties of precipitation
that drive streamflow?

3. Based on potential climate change in the region, what trends might be
observed in streamflow in the future?

First, changes in extreme hydrological events West Africa over the past
60 years are evaluated by applying non-stationary methods based on extreme
value theory. Results show a strong increasing trend in extreme hydrological
events since the 1970s in the Sahelian Niger River basin and since the 1980s
in the Sudano-Guinean catchments in the Senegal River basin. Return levels



calculated from non-stationary models are determined to exceed those cal-
culated from a stationary model with over 95% certainty for shorter return
periods (<10 years).

Next, recent developments are presented for a stochastic precipitation
simulator (Stochastorm) designed for modeling mesoscale convective storms,
the main rainfall source in the Sahel. Developments include a model for storm
occurrence, the explicit representation of extreme rainfall values, and an im-
provement in the modeling of sub-event intensities. Using high-resolution
data from the AMMA-CATCH observatory, simulation outputs were con-
firmed to realistically represent key characteristics of MCSs, showing the
simulator’s potential for use in impact studies.

Finally, a modeling chain for producing future hydrological projections
is developed and implemented in a Sahelian river basin (Dargol, 7000km?).
The chain is original as it is the first attempt in West Africa to encompass the
continuum of scales from global climate to convective storms, whose proper-
ties have major impacts on hydrological response and as a result local flood
risk. The modeling chain components include the convection-permitting re-
gional climate model (RCM) CP4-Africa, the only RCM (to date) explicitly
resolving convection and providing long-term simulations in Africa; a bias
correction approach; the stochastic precipitation generator Stochastorm; and
a rainfall-runoff model specifically developed for Sahelian hydrological pro-
cesses. The modeling chain is evaluated for a control period (1997-2006) then
for future projections (ten years at the end of the 21st century). Hydrologi-
cal projections show that peak annual flow may become 1.5-2 times greater
and streamflow volumes may double or triple on average near the end of
the 21st century compared to 1997-2006 in response to projected changes in
precipitation.

The results raise critical issues notably for hydrological engineering. Cur-
rent methods used to evaluate flood risk in the region do not take non-
stationarity into account, leading to a major risk of underestimating potential
floods and undersizing the hydraulic infrastructure designed for protecting
against them. It is also suggested to not only consider rainfall changes but
also societal and environmental changes, interactions, and feedbacks in order
to better attribute past hydrological hazards and their future trajectories to
related causes.



Résumé

Malgré des conditions seches qui prédominent depuis les années 1970,
I’Afrique de 1'Ouest a subi au cours des deux dernieres décennies des
épisodes d’inondations séveres qui ont provoqué de nombreux déces et dom-
mages socio-économiques. L’émergence de ce nouveau probleme montre une
nouvelle facette de la sensibilité de cette région aux changements hydro-
climatiques, appelant a une meilleure caractérisation de l’aléa inondation,
des processus qui le génerent, ainsi que la mise en place de méthodes perme-
ttant de projeter les évolutions futures de cet aléa pour mieux s’en prémunir.

Dans ce contexte, la these cherche a répondre a trois questions principales

1. L’augmentation des dommages liés aux inondations s’est-elle accom-
pagnée d’une intensification des crues extrémes en Afrique de I’Ouest?

2. Comment modéliser les orages de mousson, premier facteur de
génération du ruissellement, afin d’explorer l'impact de leurs car-
actéristiques sur les crues?

3. Compte tenu des changements climatiques a ’ccuvre dans la région, a
quelles tendances hydro-climatiques peut-on s’attendre dans le futur ?

Dans un premier temps, on évalue I’évolution des crues en Afrique de
I’Ouest au cours des soixante dernieres années en utilisant de méthodes basées
sur la théorie de valeurs extrémes. Les résultats montrent une augmentation
forte des événements hydrologiques extrémes depuis les années 1970s dans
les sous-bassins Sahéliens du fleuve Niger et depuis les années 1980s dans
les sous-bassins soudano-guinéens du fleuve Sénégal. Les niveaux de retour
calculés a partir des modeles non-stationnaires dépassent ceux qui ont été
calculés avec un modele stationnaire avec plus de 95% de certitude pour les
périodes de retour les plus courtes (<10 ans).

On présente ensuite des développements récents apportés a un simulateur
stochastique d’orages de mousson a meso-échelle (StochaStorm). Ils inclu-
ent: une modélisation de l'occurrence de ces orages, la représentation ex-
plicite des valeurs de pluie extrémes et une amélioration du schéma temporel
d’intensité infra-événementielle. Implémenté et évalué a partir des données
haute-résolution de I'observatoire AMMA-CATCH, le générateur montre de
tres bonnes capacités a reproduire les propriétés des orages, confirmant son
potentiel pour des études d’impact hydrologique.
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Enfin, une chaine de modélisation est élaborée afin de proposer des pro-
jections hydrologiques pour le futur sur un bassin sahélien de meso-échelle
(Dargol, 7000 km?). L’originalité de cette chaine provient de la prise en
compte du continuum d’échelles entre climat global et impact local a travers
la représentation du régime des pluies a 1’échelle des orages de mousson,
dont les propriétés d’occurrence et d’intensité ont des impacts majeurs sur la
réponse hydrologique. La chaine de modélisation inclut le modele climatique
CP4-Africa, unique modele a convection explicite fournissant des simulations
de long terme en Afrique ; une méthode de débiaisage statistique; le simu-
lateur Stochastorm ; et un modele pluie-débit spécifiquement adapté aux
processus hydrologiques sahéliens. La chaine est évaluée sur une période de
controle 1997-2006 puis utilisée pour des projections futures montrant une
hausse par un facteur 1,5-2 des débits maximum annuels et un doublement
(voire triplement) des volumes moyens annuels a I’horizon 2100.

Les résultats ont des implications majeures notamment pour l'ingénierie
hydrologique. Les méthodes actuellement utilisées pour appréhender les
risques hydrologiques dans la région ne prennent pas en compte la non-
stationnarité hydro-climatique risquant de sous-évaluer 1’aléa hydrologique
et sous-dimensionner les ouvrages hydrauliques utilisés pour s’en protéger.
La these suggere aussi quelques pistes afin mieux définir les trajectoires
hydrologiques passées et futures en incluant, au-dela des précipitations,
les changements sociétaux et environnementaux, leurs interactions et
rétroactions dans les approches de modélisation.
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Chapter 1

Introduction

1.1 Rivers in a changing world

The amount of water flowing on the surface of the earth is an issue of concern
for multiple reasons. The right amount sustains human life. Too little limits
the capacity of agricultural production and drinking water. At other times,
an excess of water produces floods that endanger human life and infrastruc-
ture.

The quantity and distribution of water in rivers is constantly evolving. It
is changed by influences ranging from large-scale global planetary change to
small-scale local changes.

1.1.1 Changes in the global water cycle

The water flowing in rivers or otherwise on the surface of the earth is just
a small component of the interconnected water cycle. Precipitation is the
primary generator of surface runoff. The processes of infiltration, evapotran-
spiration, and subsurface flow also determine the amount of water that flows
on the surface and in rivers. On a larger scale, flood-generating processes are
linked to global components of the water cycle such as atmospheric moisture
and climate dynamics. The status of the water within this cycle is not static,
but constantly transforming from one component of the cycle to another.
The components of the water cycle are linked to each other, and when one
is modified, others are modified too.

The processes governing the interconnected global water system are sus-
ceptible to change as well. One of the driving forces that can modify the water
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cycle is global temperature. Natural and anthropic factors have had docu-
mented influence on global planetary temperatures, leading to an increase of
approximately 1°C since the beginning of the industrial period (Intergovern-
mental Panel on Climate Change, 2018; Millar et al., 2017). This in turn
modifies atmospheric water content and evapotranspiration, and changes
the dynamics of the climate and the resulting precipitation. The result is
a modification of the quantity in space and time of water distributed via
surface hydrological processes (Hirabayashi et al., 2013; Trenberth, 1999).
Global temperature increase and the resulting climatic non-stationarity are
projected to continue over the course of the 21st century (Millar et al., 2017;
Rogelj et al., 2016; Steffen et al., 2018). However, the amplitude of the in-
crease and its impacts on eco-hydrological systems are uncertain, as well as
the reversibility of the impacts (Steffen et al., 2018; Bloschl and Montanari,
2010).

1.1.2 Changes due to local societies

Anthropogenic climate change is not the only process that can alter surface
hydrology. Human activities also have an impact at a more local scale. Land
use changes, notably urbanization and agricultural expansion, change the
surface cover by altering the presence of vegetation and the infiltration ca-
pacity of the soil. These modifications change the resulting amount and flow
rate of water over the surface after a precipitation event.

Human societies also build infrastructures such as dams which alter river
flow, whether for water storage for supply and demand management, irri-
gation, flood risk reduction, or hydroelectricity. Population is projected to
continue to increase!, which could mean increased development and increased
modifications to surface hydrology. Increases in population lead to not only
increased modifications to land surfaces, but also may lead to increased flood
damage risk. The more people living in a flood zone, the more people at risk
of being harmed.

1.1.3 Floods of the present and future

Floods are one of the most damaging natural disasters on the planet. They
lead to large losses in life, as well as economic losses and material damage

thttps:/ /population.un.org/wpp/Graphs/Probabilistic/POP/TOT/
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(Miao, 2018). Approximately 6.8 million flood-related fatalities occurred
during the 20th century, with over 500,000 between 1980-2009 (Doocy et al.,
2013). Floods also cause billions of US dollars in economic and material
losses annually worldwide (Hallegatte et al., 2013). These figures show the
need for preventative measures in order to minimize flood-related damages.

Floods are generated by a variety of factors depending on local conditions.
Changes in those factors could either increase or decrease river discharge (Ar-
nell and Gosling, 2016). The resulting combined influence of these factors
is little understood and little quantified, especially at smaller local scales.
Understanding the mechanisms driving floods and having hydrological pro-
jections of how they might change improves the ability to adopt appropriate
adaptation measures.

The focus of this work is on understanding past and future evolution of
hydrological processes within West African, with a focus on the Sahelian
region. West Africa is chosen as it features a nexus of strong climate signals,
an increase in recent flood damages, and a rapidly changing societal context.
All of these changes occur in a sensitive environment that reacts quickly to
change, both environmental and socio-economical. The following sections
present the hydroclimatic context of the PhD work (Section 1.2), followed by
the key questions identified (Section 1.3), the methodology used to answer
these questions (Section 1.4) and the specific study region used (Section 1.5).

1.2 Changing hydrology in West Africa

1.2.1 Climatological context

West Africa has two primary seasons per year: the wet season (Boreal sum-
mer) and the dry season (Boreal winter). These seasons are driven by the
dynamics of the West African monsoon and the annual movements of the in-
tertropical convergence zone (ITCZ) (Nicholson, 2013a), an area at latitudes
near the equator where trade winds coming from the northeast and southeast
converge. The I'TCZ moves northward or southward seasonally, influencing
regional climate. West African climate is also linked to large-scale climate
oscillations (such as ENSO) and sea surface temperatures (SST) (Giannini
et al., 2013; Sheen et al., 2017; Camberlin et al., 2001; Janicot et al., 2001),
although the relationship is complex and appears to vary over time.

During the early months of the rainy season, moisture from the Atlantic
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Figure 1.1: Hydrological and climatological boundaries between Sahelian and
Sudano-Guinean phenomena. From Descroix et al. (2009).

Ocean/Gulf of Guinea is brought increasingly inland over the continent. The
moisture meets with the heat of the continent, where convection occurs.
The combination of heat and moisture leads to the formation of large storm
complexes known as mesoscale convective systems (MCSs). The winds from
the African Easterly Jet push the MCSs in a general westward direction
after their formation. The magnitude and frequency of MCSs are greatest
during the core of the rainy season in July through September. MCSs are
the primary source of precipitation in the region (Mathon et al., 2002).
Subsaharan West Africa can be divided into two subregions that feature
different hydroclimatic processes: the Sahelian zone and the Sudano-Guinean
zone (Figure 1.1). The Sahel is located just south of the Sahara desert. It is
often defined as being between the isohyetal lines of 250mm and 750mm of
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precipitation per year, with a north-south precipitation gradient decreasing
in higher latitudes (Descroix et al., 2009). It is considered to be a semiarid
region as the potential evaporation due to high temperatures exceeds the
quantity of annual precipitation. Precipitation increases further south into
the Sudano-Guinean zone.

1.2.2 Hydrological context

The two subregions of West Africa have differing land surface properties that
govern what happens to the precipitation once it hits the ground. The Sahel
features sparse vegetation and crusted soils. Hydrological processes in the
Sahel are characterized by Hortonian runoff, in which water infiltrates until
the infiltration capacity is reached (Horton, 1933). The remainder of the
precipitation runs off the land surface (Peugeot et al., 1997, 2003). Subsurface
flow plays a minor or non-existent role in river discharge generation. Due to
the characteristics of runoff generation in the Sahel, the factors of infiltration
rate and precipitation intensity play a particularly large role in influencing
runoff and river discharge.

In the Sudano-Guinean zone, however, there is more vegetation, notably
with a relative abundance of trees and dense forests. Subsurface flow plays
a dominant role in generating and sustaining river discharge.

West African hydrology also has marked seasonality, driven by the sea-
sonal patterns of precipitation. Smaller river basins feature a high level of
intermittency, and become dry for much of the year due to the long dry
season. Large river basins are sustained year-round by the variety of hydro-
logical processes found within their contributing watersheds; for example, the
Niger River receives both direct and rapid inputs from runoff in the Sahe-
lian zone during the rainy season, and delayed inputs from its sources in the
Fouta Djallon ("water tower of Africa”) area which receives 1000-1500mm
of precipitation annually (Panthou et al., 2018). It also is fed by delayed
underground flow from the wetter Guinean zone.

1.2.3 Climate evolution

West Africa has exhibited one of the most marked climate signals in recorded
memory (Figure 1.2). The 1950s and 1960s witnessed annual precipitation
levels that exceeded the documented norms. This trend was not to last: the
wetter period was followed by an exceptionally severe and lasting drought

17



Standardized Annual Totals

WET MIXED

Std index

DRY

_3 I i I | I | I
1950 1960 1970 1980 1990 2000 2010
Years

Figure 1.2: Standardized annual precipitation index calculated from 71 stations in
the Sahel during the period 1950-2015. Updated from Panthou et al. (2018).

during the 1970s and 1980s that led to extensive fatalities and population
displacements (Lamb, 1983; Le Barbé and Lebel, 1997; Nicholson, 2000; Cam-
berlin et al., 2002; Le Barbé et al., 2002; L’Hote et al., 2002; Dai et al., 2004;
Panthou et al., 2014; Bodian et al., 2011, 2016b).

In recent years, the signal has become more mixed. On average, the
cumulative annual precipitation is greater than during the severe drought
period, but still less than pre-drought levels (Lebel and Ali, 2009; Mahé and
Paturel, 2009; Panthou et al., 2014; Tarhule et al., 2015; Diop et al., 2017).
Notably, the contribution of extreme rainfall to annual totals is increasing
(Panthou et al., 2014; Taylor et al., 2017). There is also evidence of persisting
drought conditions (L'Hote et al., 2002; Ozer et al., 2009). Panthou et al.
(2018) found that during the last three decades, there were not more rainfall
events than during the great drought. However, the rainfall events were more
intense when they occurred. This led Panthou et al. (2018) to define the last
three decades as a period of hydroclimatic intensification as defined by Giorgi
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et al. (2011), Trenberth et al. (2003), and Trenberth (2011).

1.2.4 Observed changes in West African hydrology

West African rivers have shown drastically different phases over the past
century, linked to the decadal variability of rainfall regimes. However, the
hydrological regime evolution differs within subregions of West Africa because
of contrasts in hydrological processes and their relative sensitivity to rainfall
variabilities.

In the decades prior to the 1970s, discharge levels in West African rivers
were high. Droughts of the 1970s and 1980s featured decreased river levels
throughout West Africa, but, paradoxically, an increase in some Sahelian
rivers. Many studies have attributed the increase in streamflow to the crust-
ing of soils at the surface and reduction in vegetation in response to the
drought (Albergel, 1987; Descroix et al., 2009; Aich et al., 2015; Cassé et al.,
2016; Gal et al., 2017; Boulain et al., 2009). This decreased infiltration ca-
pacity and increased the amount of runoff, in spite of the overall reduction
in precipitation.

Over the past few decades, peak streamflow volumes appears to have in-
creased. For instance, the Niger River has witnessed the new phenomenon of
extremely large annual flood peaks. Although cumulative annual streamflow
has not exceeded levels recorded during the 1950s and 1960s, the region has
been struck by floods of unprecedented magnitude and frequency (Tarhule,
2005; Tschakert et al., 2010; Samimi et al., 2012; Sighomnou et al., 2013).
Several flooding events have been particularly devastating, notably those of
2007, 2009, 2012, and 2013.

1.2.5 DPotential causes of recent hydrological changes
in the Sahel

As hydrology in the Sahel is highly sensitive to precipitation characteris-
tics, the recent evolution of streamflow in the Sahel could be explained by
changes in locally-generated precipitation. Notably, extreme rainfall events
have increased in recent years, as have their overall contribution to annual
cumulative precipitation (Panthou et al., 2014, 2018). Some recent studies
have concluded that hydrological changes largely follow recent changes in
precipitation (Cassé et al., 2016).
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Changes in local climate are, however, not the only factor. Studies on
Sahelian hydrology during the drought period have already shown the poten-
tial impact of changes in land surface properties, whether induced by local
human impacts or by climate change itself (e.g. reduction in vegetation due
to reduction in precipitation) (Seguis et al., 2004; Li et al., 2007; Leblanc
et al., 2008; Gal et al., 2017).

1.2.6 Changing societal context

The aforementioned floods are occurring in a rapidly changing socioeconomic
context. West Africa is currently undergoing rapid demographic change and
development. Population is increasing by 3% per year (global average is
1.2%); by 2025, half of the projected population is expected to live in cities
(UNEP, 2011). With greater population and demographic pressure comes
greater risk of flood damages (Di Baldassarre et al., 2010). The recent events
have already led to an increase in documented flood-related fatalities in West
Africa, as shown in Figure 1.3.

Pertinent human-induced factors that may increase flood hazard include
increased urbanization with proximity to flood dangers (Barrios et al.,
2006), agricultural expansion and intensification, changing cultural land
use practices, and vegetation depletion from migrating herds. Determining
the causes of the floods would allow for the development of improved flood
management and prevention strategies.

1.3 Increased extreme streamflow in West
Africa: critical questions

The above context leaves us with numerous scientific questions. Although
there is evidence of more floods recently in West Africa, there is little litera-
ture that specifically analyses changes in hydrological extremes in the region.
The processes driving these extreme events have also not been extensively
evaluated in the context of the water cycle in West Africa. It is even more
uncertain how flood drivers and (as a result) hydrological extremes may con-
tinue to evolve in the future.

The issue of hydrological extremes is particularly important for the Sahel
and similarly arid lands because water resources are sufficiently sparse that
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Figure 1.3: Flood-related fatalities in West Africa (Guha-Sapir et al., 2016).
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changes in their frequency or distribution has higher importance. There is
little long-term water storage in the region, and much local agriculture de-
pends directly on local precipitation. With rapid development and changing
demographics, the risk of damages from both floods and drought is increas-
ing. Of particular note is the sharp increase in documented flood fatalities
in West Africa (Figure 1.3).

The recent flooding events, coupled with a socioeconomic context that
necessitates an understanding of the events, lead us to the following key
questions that form the basis of this thesis:

Q1: Is there a significant trend in extreme streamflow in West Africa, or
are the documented flooding events isolated incidences?

Q2: How can one model mesoscale convective systems in order to explore
the properties of precipitation that drive streamflow?

Q3: Based on potential precipitation changes, what trends might we see
in streamflow in the future?

The following sections examine the components and influencing factors
related to the above three questions. They first present the methodology
tools identified for answering the three questions in a robust manner,
followed by the specific study areas on which this thesis is focusing. First,
non-stationary extreme value theory is presented in the context of hydro-
logical applications. Second, stochastic precipitation modeling methods are
described. Third, we overview the components relevant for modeling future
changes in streamflow. For each part of the study, the level of uncertainty
of results is explored.
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1.4 Methodological framework

1.4.1 Methodology for hydrological extremes trend de-
tection: Extreme Value Theory in a nonstation-
ary context

Using statistical representations of natural phenomena allows for accurately
describing pertinent characteristics, including the frequency and distribution
of values. They can be used to take into account a variety of processes across
different scales and extract the resulting signals that emerge.

In the standard version of a statistical distribution, parameters have one
fixed value (stationary distribution). However, a time-dependent component
can be added to the parameter to make it non-stationary over time. The
coefficient(s) of the time-dependent component(s) can give insight into the
trends over time.

The advantage of using a statistical distribution to represent data is that
one can then make an estimation of the probability of an event of a given
magnitude occurring (Francois et al., 2019 and references therein). In the
context of hydrology, this principle is represented by the notion of a return
period. An event that has a return period of 10 years means that during
any given year, the event has a probability of 1/10 or 10% of occurring. The
magnitude of the event that has a 10-year return period is referred to as the
10-year return level. It is possible for the said event to occur more than once
within 10 years, as there is a 10% chance of it occuring during any given
year. Return levels are commonly used for the design of structures for flood
protection and hydroelectricity.

Many statistical distributions exist that have differing properties. How-
ever, many are designed to be fit primarily based on the average or central
tendency values of a given data set. Although central values may be well-
represented by such distributions, very small or very large values - often sim-
ply considered outliers - are not. The ”tail behavior” of a given distribution
(how it treats very small and/or very large values) may not be representative
of the actual extremes in the data set. This can be problematic when one
wants to specifically evaluate the behavior of extremes.

Extreme Value Theory proposes statistical distributions designed specifi-
cally to handle rare values. They include parameters for the general behavior
(e.g. central tendency and spread) of extreme values, as well as a parame-
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ter that governs specifically the tail behavior, or how the rarest of the rare
values relate to the rest of the distribution. As with other distributions, a
time-dependent component can be added to a given parameter in order to
evaluate potential non-stationarity.

The two main distributions used in the present thesis are the General-
ized Extreme Value (GEV) distribution and Peaks Over Threshold (POT)
distribution (see e.g. Coles et al., 2001). The GEV represents the distri-
bution of a subset of the original data formed by extracting the maximum
value of each interval of a set length. In the context of hydrology, this is
commonly the annual flood peak. The POT distribution is used to represent
a subset of values above a defined threshold. This can be used for represent-
ing extreme precipitation. The distributions within the context of Extreme
Value Theory are used in the present PhD thesis in order to evaluate extreme
hydroclimatological events and their evolution.

Chapter 2 presents the methodology and results for how GEV distribu-
tions with non-stationary parameters are used to model changes in hydro-
logical extremes in the West African Sahel.

1.4.2 Methodology for flood drivers modeling: Precip-
itation as a main driver of Sahelian hydrological
extremes

When modeling natural systems, one would ideally be able to explicitly rep-
resent all relevant processes and their interactions. However, due a com-
bination of the complexity of the processes, the feasibility to model them
(and their interactions) mathematically, the lack of current understanding
of said processes, and limitations in computing power, it is not possible to
precisely and accurately model all processes at all scales in a fully determin-
istic/mechanistic way.

The limitations of deterministic modeling are especially true when study-
ing complex phenomena such as precipitation and the processes it generates.
Modeling becomes increasingly more uncertain over time as slight differences
in initial states can lead to greatly different outputs Lorenz (1963). The
uncertainty of deterministic models is regularly confirmed by new and more
complex atmospheric models and simulations (see e.g. McWilliams, 2019;
Judt, 2018).

Stochastic models provide a solution for producing realistic replications
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of natural processes. The stochastic modeling approach is particularly useful
for precipitation and the resulting processes it generates as there is a strong
random element.

In the previous section, approaches were described for stochastically mod-
eling the value of a variable at one point. However, there are instances where
modeling both the distribution of values at a single point and the distribu-
tion of those values in space is important. This is the case with precipitation,
where values at one point are related to values at another point. As precipi-
tation is considered one of the main drivers of hydrological processes in the
Sahel, the second part of the PhD thesis focuses on how to accurately repre-
sent precipitation for use in impact studies.

The field of geostatistics has developed methods for stochastically model
a variable such as precipitation in space. Two main elements are required:
the marginal distribution of the variable (e.g. the statistical distribution that
represents the magnitudes of all values), and the spatial covariance structure.
The spatial covariance structure (commonly the variogram) represents the re-
lationship between values at two different points - if they are likely to be both
large or both small - and how much the correlation decreases with distance.
This type of structure is relevant to precipitation modeling as precipitation
at one point is generally correlated with precipitation at a nearby point.

Methods have been developed to generate fields in two-dimensional space
based on Gaussian marginal distributions and a known covariance structure.
These are known as Gaussian random fields. Precipitation, however, is gen-
erally not well-represented by a Gaussian (normal) distribution. For one,
rain fields commonly have areas of no rainfall interspersed with areas where
it is actively raining. Gaussian fields do not account for this accumulation
of zero values. For another, the positive values of precipitation generally do
not follow a symmetric normal distribution, but rather have an abundance
of small values with some extremes.

In order to transform the Gaussian random field into a random field with
a non-Gaussian distribution, a process called anamorphosis is applied. The
magnitudes of the values in the Gaussian field are transformed from the nor-
mal distribution to the selected marginal distribution for the precipitation.

The above elements can be integrated into a stochastic precipitation
model or stochastic precipitation generator. A stochastic precipitation model
aims to simulate precipitation in a way where the statistical properties of the
original precipitation data used to calibrate the model are maintained. This
allows for several advantageous possibilities: the generation of precipitation
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scenarios that are much longer than the original data series; the produc-
tion of realistic rain scenarios at points where no measurements have been
recorded; the exploration of variability; and the testing of parameters to see
which variable is most significant for impact studies.

The parameters of the marginal distribution can also be given temporal
covariates so that they can vary over the course of the season, or over different
years.

Chapter 3 presents the study on how an existing stochastic precipitation
generator has been improved, implemented, and evaluated to model storm
precipitation in the West African Sahel.

1.4.3 Methodology for hydrological projection: Mod-
eling chain from global climate model to river
basin outlet

Understanding how hydrological extremes have changed in the past brings
additional questions. How might hydrological extremes change in the future?
More specifically, how might hydrological extremes change in response to
changes in drivers such as precipitation?

Climate change has been studied extensively over the past several decades.
Some elements, such as global temperature, are well-researched. There is
general consensus that global temperature is currently increasing (Intergov-
ernmental Panel on Climate Change, 2018; Rogelj et al., 2016) and will con-
tinue to increase over the next century, but with a magnitude that varies
depending to the trajectory of GHG emissions This has a ripple effect on
other earth processes. One notable potential impact for the water cycle is
the Clausius-Clapeyron relation, which states that the water holding capac-
ity of the atmosphere increases with increasing temperature. This would
allow for an increase in atmospheric moisture over time. Theoretically, the
increase in atmospheric water holding capacity means that there could be
less frequent precipitation events, but when they happen they are greater in
magnitude (Trenberth et al., 2003; Trenberth, 2011). This is known as an in-
tensification of the water cycle. Other changes in precipitation properties are
possible, including changes in the spatial structure of storms, the frequency
of precipitation events, and the distribution of precipitation over the Earth.

Climate change is studied using global climate models (GCMs). GCMs
are a set of multidimensional equations representing Earth system processes.
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The GCM is divided up into horizontal grids across the earth surface, and
vertical layers as well. Each grid has associated parameters and ways in
which they interact with the grids around them, based on known dynamic
and thermodynamic properties of the atmosphere. In this way, the effects on
climate (temperature, precipitation, etc) of changing certain factors such as
atmospheric composition (i.e. from greenhouse gas emissions) are studied.

Due to computational limitations, the grid sizes of climate models are
much larger than the scale needed to study hydrological impacts. Many
processes are not explicitly represented in a dynamic, deterministic way, but
are parameterized in the GCM. To resolve this problem, regional climate
models (RCMs) are developed. They model only one part of the Earth’s
surface, and are commonly initiated and forced by a GCM simulation. Grid
sizes for RCMs is generally much smaller than those of GCMs, and can
approach scales that can be used for hydrological impact studies.

Up until recent times, however, most all climate models (even smaller-
scale regional ones) do not model convective processes. As nearly all rainfall
in the West African Sahel is generated by convective storms, inaccurate rep-
resentation of convection leads to inaccurate representation of rainfall prop-
erties, even if the scale is appropriately small (Jenkins et al., 2002). One no-
table advance for Africa is the RCM CP4-Africa (Stratton et al., 2018), which
resolves convection at a small enough grid scale for representing mesoscale
convective systems.

An additional problem due to the heavy calculation costs of GCMs/RCMs
is the fact that limited scenarios are produced. A stochastic rainfall generator
such as that described in the previous section may be used to generate addi-
tional scenarios with lower calculation demands. After the above issues are
all sufficiently addressed, the question remains of how precipitation changes
may impact local hydrology. To answer the question of hydrological impacts,
one may use a hydrological model. Hydrological modeling, as with climate
modeling, aims to represent the most important processes depending on the
problem being addressed. For this present thesis, the main question is how
the discharge at the outlet of a river basin is changing. The type of model
selected for the study is a distributed physically-based model of a Sahelian
river basin (Quantin et al., 2017). This type of model has subbasins that each
have specific parameters governing infiltration and runoff amounts according
to the Hortonian flow commonly found in the Sahel. Precipitation fields are
input into the model at the subbasins, and the model transforms it into the
amount of discharge at the outlet.
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Chapter 4 presents a modeling chain combining convection-permitting
precipitation projections from the RCM CP4; a stochastic rainfall simulator
to generate additional precipitation scenarios; and a hydrological model de-
signed specifically for the Sahelian region. It shows how the modeling chain
can be used to better understand the potential impacts of future climate
change on local hydrology.

1.5 Study areas

1.5.1 Study area for trends in extreme streamflow in
West Africa

To understand the trends in extreme streamflow over the contrasting sub-
regions of West Africa, river discharge time series are evaluated for several
stations in the Sahelian part of the Niger River basin and several stations in
the Sudano-Guinean part of the Senegal River basin.

The Niger River has its headwaters in the Fouta Djallon area located in
the Sudano-Guinean zone south of the Sahel, which features higher amounts
of precipitation. The river passes through the inner Niger Delta before reach-
ing the Sahelian zone of Southwest Niger.

Within the Sahelian area of the Niger River are three tributaries located
on the right bank: the Sirba, the Dargol, and the Gorouol. Although the
Niger River is perennial due to its sources located in a greener part of Africa,
the Sahelian tributaries are ephemeral and only flow under the presence of
precipitation during the rainy season. Their discharge quantities are highly
susceptible to changes in precipitation.

The resulting flow of the Niger River after the confluence with its Sahelian
tributaries is greatly impacted by local precipitation, notably at the Nigerien
capital of Niamey. The Niger River at Niamey therefore has two flood peaks:
an initial flood peak during the core of the rainy season in August/September
(termed the "Red Flood” due to the presence of reddish sediments from
local Sahelian runoff), and a second flood peak a few months later once the
rainy season contributions from the upstream Guinean zone arrive at Niamey
(" Guinean flood”). Although historically the Guinean flood peak levels at
Niamey were greater than the levels produced by the local Sahelian floods,
in recent years the Sahelian flood peaks exceed the Guinean flood peaks
(Descroix et al., 2012).
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Trends are also evaluated for the largely Sudano-Guinean subbasins of the
Senegal River. The Senegal River also has its headwaters in Fouta Djallon.
Unlike the Niger River, most of the contributing parts of the Senegal River
are located south of the Sahel with higher rates of precipitation. The Senegal
River outlets into the Atlantic Ocean.

For the first part of the thesis, four Sahelian data sets for the Niger River
and seven Sudano-Guinean data sets for the Senegal River are evaluated.

1.5.2 Study area for high-resolution precipitation
modeling

The second part of the thesis focuses more specifically on the Sahelian area
of the Niger River. The data set used to develop the stochastic rainfall
simulator is the set of 30 five-minute rain gauges from the AMMA-CATCH
data collection site near Niamey, Niger. The rain gauges cover an appropriate
area for studying the spatial structure of MCSs. At five minutes, the data set
allows for the evaluation of MCSs at sub-event time scales. Data is available
since 1990.

1.5.3 Study area for modeling chain for hydrological
projections

The third part of the thesis uses the Dargol River basin as a test area for
implementing a modeling chain for generating hydrological projections. Like
the other Sahelian tributaries of the Niger River, the Dargol is ephemeral
and only flows during the rainy season due to local precipitation inputs. The
Dargol River has a drainage area of approximately 7600 km?, which makes it
a suitable size for use of Stochastorm outputs based on the mesoscale AMMA-
CATCH Niger data. It is located sufficiently near to the AMMA-CATCH
rain gauges to have a comparable (although not identical) climate.

1.6 Summary of thesis objectives

The present thesis seeks to explore the interface between surface hydrology
and its influencing factors. It aims to better understand how hydrological
changes - in particular floods - are related to changes in the larger global water
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cycle, and also better understand how floods can affect and are affected by
human societies.

The following three chapters answer the three main questions of this PhD
thesis. First, extreme value theory is used to evaluate trends in hydrologi-
cal extremes in the West African Sahel. Second, precipitation characteris-
tics in the Sahel are analyzed and modeled with a stochastic precipitation
generator. Finally, the potential future changes in Sahelian hydrology are
evaluated for a mesoscale test river basin using a modeling chain that incor-
porates a convection-permitting RCM, the stochastic precipitation generator
previously evaluated, and a hydrological model.

Although West Africa (and particularly the right bank Sahelian tribu-
taries of the Niger river upstream of Niamey) is used as a test region, the
following analysis has the broader goal of developing a methodology that can
be applied more widely in the field of hydrology.

1.7 Thesis outline

The main results of the thesis are presented in the following three chapters.
Chapter 2 presents the regional study of trends in extreme streamflow in
West Africa. Primary results have already been published in Journal of
Hydrology. Chapter 3 contains the study on the stochastic precipitation
simulator Stochastorm. Chapter 4 presents the modeling chain developed
for hydrological projections in the Sahel. The results in chapters 3 and 4 will
be submitted for publication shortly, one article for each chapter.

The three articles were developed in collaboration with other researchers,
both within my research group and as a part of international collaborations.
My specific contributions are detailed at the beginning of each chapter.

Chapter 5 presents conclusions based on the findings in chapters 2-4. It
also presents future work identified for the continuation of the research found
in this thesis, notably the implementation of attribution methods in order to
identify and quantify the causes of changes in extreme streamflow in West

Africa.
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Chapter 2

Trend detection of hydrological
extremes in West Africa

2.1 Introduction to article 1

Before projecting hydrological changes into the future or evaluating the
causes of their evolution, it is pertinent to first characterize hydrological
changes in recorded history. A trend must be proven to exist at a given
level of significance. The following article presents the results evaluating
the evolution of extremes in portions of the Niger and Senegal river basins.
Primary objectives were determining whether extremes were stationary or
non-stationary; developing extreme value theory-based models to represent
non-stationarity when found; comparing results in two distinct hydroclimatic
zones; and evaluating the impact of the results on return levels. The return
levels are of particular significance, as they can inform the design of hydraulic
structures in the study regions. Return levels can also indicate the probabil-
ity of an event of a given magnitude that may impact local populations and
infrastructure.

The following chapter presents the results related to the evolution of
trends in hydrological extremes, represented by the annual streamflow max-
ima, in West Africa. The chapter primarily consists of an article published
on the subject in the Journal of Hydrology in 2018 (Wilcox et al., 2018).
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2.1.1 Personal contributions
General methodological approach

For this study, I have carried out the data preprocessing, numerical develop-
ments, and computations needed to obtain the results. I also generated the
associated figures for the paper.

Among these points, one of my primary contributions was to develop and
implement the methodology for the non-stationary extreme value models. I
tested several model types before selecting multiple linear segments as appro-
priate models (using non-linear segments did not significantly improve the
representation of the data). I contributed to the development of the model
selecting process by noting that the likelihood ratio test would not be theo-
retically valid for comparing the non-stationary models as it only tests the
addition of specific parameter(s). We instead proposed the two-step model
selection process described in the article, first selecting using AIC then using
the likelihood ratio test to validate the selection of parameters.

Besides developing the main methods used for the article, I invested much
time in data preparation and sensitivity testing of results. Appendix A con-
tains some of this work as supplementary material for the article. The analy-
ses include a presentation and evaluation of the hydrological data series from
which the final data selection was made. Controlling errors and inconsisten-
cies in the data is essential as the quality of an analysis is limited by the
quality of the data used. Study sites and available data are presented, and
the hydrological data is evaluated and filtered based on data quality criteria.
The data evaluation and selection is followed by a sample of sensitivity test-
ing results. Much of the sensitivity testing was also linked to data quality
issues.

Numerical implementation

I used R software to program the following elements:

e Data processing and quality control

Stationary GEVs

Development of twelve model covariate options

Optimization of non-stationary GEVs
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e Model selection procedure
e (alculation of confidence intervals

The R packages evd, ismev, and extRemes were heavily used during the
evaluation of trends in extremes. I explored the following modifications to
the functionalities proposed:

e Combining the capacities of functions from different packages (e.g.,
one package allows you to fix the value of a parameter but not to use
covariates, another allows for covariates but not declaring the value of
a parameter, I combined the two features).

o After I investigated the source code, we determined that the confidence
interval functions found in the extRemes package was not suitable for
the purpose of our study.

Article writing, conferences, and collaborations

I wrote the first draft of the paper, and integrated all the feedback from
the coauthors. I conducted the modification and submission of the article to
the Journal of Hydrology. I was actively involved in the editing and review
processes along with my coauthors.

I participated actively in the collaboration with Senegalese researcher
Ansoumana Bodian, including a visit to Senegal in 2016.

Appendix A also includes a follow-up to the Journal of Hydrology article
as part of a collaboration with researchers in the ANADIA 2.0 Niger project.
The project had updated the rating curves for the Sirba River, which showed
that the outdated rating curves produced significant inaccuracies in the time
series. I updated the NSGEV analysis for the Sirba River and contributed
my results and interpretation to an article on flood hazard evaluation.

Results were also presented at the 2016 FRIENDS conference in Dakar,
Senegal; at the "Niger River Days” meeting in Toulouse, France in 2017; and
at the AGU 2017 General Assembly in New Orleans.
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2.2 Article: Trends in hydrological extremes
in the Senegal and Niger Rivers

Abstract In recent years, West Africa has witnessed an increasing num-
ber of damaging floods that raise the question of a possible intensification
of the hydrological hazards in the region. In this study, the evolution of ex-
treme floods, represented by the annual maxima of daily discharge (AMAX),
is analyzed over the period 1950-2015 for seven tributaries in the Sudano-
Guinean part of the Senegal River basin and four data sets in the Sahelian
part of the Niger River basin. Non-stationary Generalized Extreme Value
(NS-GEV) distributions including twelve models with time-dependent pa-
rameters plus a stationary GEV are applied to AMAX series. An original
methodology is proposed for comparing GEV models and selecting the best
for use. The stationary GEV is rejected for all stations, demonstrating the
significant non-stationarity of extreme discharge values in West Africa over
the past six decades. The model of best fit most commonly selected is a
double-linear model for the central tendency parameter (u), with the disper-
sion parameter (0) modeled as either stationary, linear, or a double-linear.
Change points in double-linear models are relatively consistent for the Sene-
gal basin, with stations switching from a decreasing streamflow trend to an
increasing streamflow trend in the early 1980s. In the Niger basin the trend
in p is generally positive since the 1970s with an increase in slope after the
change point, but the change point location is less consistent. The recent
increasing trends in extreme discharges are reflected in an especially marked
increase in return level magnitudes since the 1980s in the studied Sahelian
rivers. The rate of the increase indicated by the study results raises urgent
considerations for stakeholders and engineers who are in charge of river basin
management and hydraulic works sizing.

Authors Catherine Wilcox, Théo Vischel, Gérémy Panthou, Ansoumana
Bodian, Juliette Blanchet, Luc Descroix, Guillaume Quantin, Claire Cassé,
Bachir Tanimoun, Soungalo Kone

2.3 Introduction

River floods are one of the deadliest natural hazards in the world. They
produce major damages on infrastructure, lead to economic losses, and favor
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water-borne diseases. In order to better understand such floods, hydrologists
have long focused on assessing the rare (large in magnitude) river discharge
values, represented by the tails of underlying statistical distributions (Gum-
bel, 1957). The primary aim, besides theoretical understanding, is to provide
practical tools for flood risk management and civil engineering structure de-
sign. The main challenge for practical applications is estimating return levels
for high return periods (typically 10, 50, or 100 years). The more the return
period is larger than the length of the series, the greater the challenge of
estimating the tail of the distribution.

Extreme Value Distributions (EVDs) are statistical tools designed for
the study of such rare values (see e.g. Coles et al., 2001; Katz et al., 2002).
For several decades, the main challenge when applying EVDs was to have a
proper estimation of the tail (heavy, light, or bounded). The focus was then
on developing robust estimation procedures (Regional Frequency Analysis —
Hosking and Wallis, 1997; GRADEX and adaptation — Guillot, 1993; Paquet
et al., 2013; Bayesian inference — Coles and Tawn, 1996 among many other
developments) and then applying them to the longest hydrological series
available (Koutsoyiannis, 2004). The stationarity assumption reigned during
this “old hydrological world” (Milly et al., 2008).

However, both increases and decreases of extreme discharges have been
reported via the evaluation of historical series around the world (e.g.
Kundzewicz et al., 2005a; Bower, 2010; Condon et al., 2015). A main chal-
lenge of hydrological extremes thus concerns the validity of the stationarity
assumption and the implications of its rejection. Ongoing global changes are
expected to increase flood hazard mainly through the intensification of the
hydrological cycle due to global warming (Hirabayashi et al., 2013; Arnell and
Gosling, 2016) and the degradation of land surfaces due to anthropic pressure
(Brath et al., 2006; Elmer et al., 2012). Other factors also tend to reduce
flood hazards, including negative precipitation trends found in drying regions
and flood protection structures such as dams. While some regions witness
resulting changes in flood frequency, in other regions, no changes have been
detected (Villarini et al., 2009). This could be a result of either the absence
of substantial changes in drivers that could trigger/influence flood trends or
competing phenomena that act in opposite ways. It could also be due to
the use of non-robust methodology to detect concrete changes in the EVD of
discharge. The last case necessitates improved methods able to detect trends
in series characterized by low signal to noise ratio.

While numerous studies on flood hazard evolution have been undertaken
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for developed countries, less has been done in the developing world. This
is the case in particular over the tropics (Kundzewicz et al., 2005b) which
contain two thirds of the developing countries, including the poorest. Pop-
ulations living in the tropics are notoriously vulnerable to climate hazards,
including droughts and floods that can occur within the same year at a
given place. Global changes are expected to strongly impact flood risks in
the tropics with studies already reporting significant increases in the fre-
quency of rainfall extremes (Allan et al., 2010; O’Gorman, 2012; Asadieh
and Krakauer, 2015), land use/cover changes (Lambin et al., 2003; Erb et al.,
2016), rapid rates of urbanization (Di Baldassarre et al., 2010), and increas-
ing vulnerability of populations due to very high demographic growth; the
population of the least developed countries is expected to double from now
to 2050 (Population-Reference-Bureau, 2016). The strong internal variability
of tropical climates, the lack of long-term hydrological observations, and the
large uncertainty of climate projections in the tropics challenge the scientific
community to provide reliable and relevant information to stakeholders so
they can define suitable flood risk management strategies.

West Africa is one of the most critical tropical regions for examining
hydrological non-stationarities as it is a region in which the issues described
above are exacerbated. West Africa is known for having strong precipitation
variability, especially at the decadal level (Nicholson, 2013b). It underwent a
devastating and long-lasting drought that abruptly started in the late 1960s
and persisted through the 1970s and 1980s (Lamb, 1983; Le Barbé and Lebel,
1997; Nicholson, 2000; Camberlin et al., 2002; Le Barbé et al., 2002; L’Hote
et al., 2002; Dai et al., 2004; Panthou et al., 2014; Bodian et al., 2011, 2016b).
At the regional scale, this led to a decline in the flow of large rivers that
was proportionally greater than the decrease in rainfall (Lebel et al., 2003;
Andersen and Golitzen, 2005; Mahé and Paturel, 2009).

At the subregional scale however, two diametrically opposed hydrologi-
cal behaviors were observed (Descroix et al., 2018). In the Sudano-Guinean
subregion of West Africa (south of 12°N), a decrease in river flow was ob-
served for small to regional scale catchments (Mahé et al., 2005; Descroix
et al., 2009) until the 1970s and 1980s (Diop et al., 2017). The decrease
in flow was attributed to a gradual drying up of the groundwater and thus
a gradual decrease in the base flow of the rivers (Mahé et al., 2000; Mahé
and Paturel, 2009). In the Sahelian region (belt between roughly 12°N and
16°N), runoff coefficients and runoff volumes increased despite the drought.
This phenomenon — the so-called “Sahelian paradox” — was understood to
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have been caused by a change in surface conditions (Albergel, 1987; Descroix
et al., 2009; Aich et al., 2015; Cassé et al., 2016). Droughts played a role in
increasing surface crust and decreasing vegetation (Gal et al., 2017), which
consequently increased runoff coefficients and counterbalanced the effects of
drought (Boulain et al., 2009). Anthropogenic changes (including land use
change) appear to be a major factor in some basins (Seguis et al., 2004; Li
et al., 2007; Leblanc et al., 2008; Gal et al., 2017). Other factors such as an
increase in the density of the drainage network may have played a role in the
increase of flow (e.g. Favreau et al., 2009; Gal et al., 2017).

Since the early 1990s, both total rainfall and streamflow amounts have
increased compared to the drought decades of the 1970s and 1980s, though
they remain lower than in previous pre-drought decades (Lebel and Ali, 2009;
Mahé and Paturel, 2009; Panthou et al., 2014; Tarhule et al., 2015; Diop et al.,
2017). In the Sahel, the increase was accompanied by higher interannual
variability (Ali and Lebel, 2009; Panthou et al., 2014) and overall persistence
of drought conditions under certain indices (L’Hote et al., 2002; Ozer et al.,
2009). Of note is the increase in the intensity of rainfall during recent years
(Ly et al., 2013; Panthou et al., 2014; Sanogo et al., 2015; Taylor et al.,
2017). During the same period, an increase in the number and magnitude
of extensive floods has been reported (Tarhule, 2005; Tschakert et al.; 2010;
Samimi et al., 2012; Sighomnou et al., 2013; Cassé and Gosset, 2015), causing
extensive fatalities, damages, and population displacement. From the mean
hydrographs of the Niger River at Niamey plotted for six decades from 1951
to 2010, Descroix et al., 2012 and Sighomnou et al., 2013 illustrated a strong
increase in the intensity of the summer flood peak of the Sahelian tributaries
during the 2000s, while the flood peaks coming from the remote Guinean
tributaries and arriving at Niamey later in the year at Niamey were as low
as in the 1970s. They also noted successive discharge records produced by
Sahelian floods in 2010 and 2012, exceeding the Guinean flood.

The strong current and projected demographic growth in West Africa
(Population-Reference-Bureau, 2016) is likely to increase the exposure of pop-
ulations to floods, both from intensive and unplanned human settlements in
flood-prone areas (Di Baldassarre et al., 2010), and from human-induced
changes in land cover which affect runoff. Changes in hydrological extremes
consequentially are particularly pressing for decision makers in West Africa,
as the statistical tools used for infrastructure design have not been updated
since the 1970s (Amani and Paturel, 2017). An improved quantitative un-
derstanding of how extreme flows are changing over time in the region has
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generated an urgent demand to design and manage structures such as dams
and dikes and, as a result, aid in risk mitigation, as well as the development
of hydroelectric energy and irrigation systems.

However there is still very little literature on quantifying extreme flow
changes in West Africa. For Sudano-Guinean regions, Nka et al., 2015 found
a breakpoint (decrease) in the series of annual maxima during the drought
period for the Falémé branch of the Senegal River at Fadougou. When only a
more recent time period is considered (since 1970), no significant trends were
found in the Sudano-Guinean catchments, including the Falémé. Bodian
et al., 2013 explored trends in annual maximum daily discharge (AMAX)
values on the Bafing tributary of the Senegal River (Bafing Makana and
Daka Saidou stations). They found that high points in the series occurred
during the pre-drought period (1967 and 1955), whereas the minima of the
AMAX occurred in 1984. Diop et al., 2017 found that extreme highs in
the Bafing Makana series decreased by 18% over the series and especially
since 1971, while extreme lows stayed stable. Aich et al., 2016a analyzed
time series of AMAX values at several stations along the Niger River. They
found that changes in AMAX series followed the decadal variability of mean
annual precipitation over Guinean and Benue-area catchments (a wet period
during 1950s and 1960s, followed by a dry period during 1970s and 1980s,
and values close to the long-term mean after), while the floods produced by
Sahelian tributaries have recorded a monotonic increase since the beginning
of the 1970s. Nka et al., 2015 found positive trends in the extreme values
of three Sahelian catchments studied (Dargol River at Kakassi, the Gorouol
River at Koriziena, and the Goudebo River at Falagontou). They also found
significant (Mann-Kendall test) increases in extreme values in both AMAX
series and peak-over-threshold (POT) series for the Dargol River at Kakassi.
Breaks in AMAX were detected in 1987, and for POT in 1993. Mean extreme
values were found to be greater (twice as high) during the later subperiods.

The aim of this paper is to detect and quantify trends in extreme hy-
drological values in West Africa. AMAX is used to represent extreme flow
in the study. Discharge series are analyzed in tributaries of the Niger and
the Senegal rivers, two catchments that reflect two differing hydrological
and climatic processes of the Sahelian and the Sudano-Guinean West Africa.
The temporal evolution of the AMAX series is assessed by exploring differ-
ent Generalized Extreme Value (GEV) models that range from a stationary
GEV (S-GEV) to more complex non-stationary GEV (NS-GEV) models.
The following study proposes an original methodology for identifying the
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most significant model to represent the evolution of extremes for a particu-
lar data series. Notably, the retained model is accompanied by significance
levels and estimates of uncertainty. The retained model is used to compute
time-varying frequencies of extreme flows. These changes are represented
by the evolution of flow return levels over the last fifty to sixty years. Our
results thus have implications for operational applications, as the design and
operation of hydraulic structures depend on the magnitude of a flood event
at a given return period.

2.4 Region of study and data

2.4.1 West African hydro-climatic features

The climate of West Africa is controlled by the West African Monsoon. The
rainfall belt roughly follows the seasonal migration of the position of the In-
tertropical Convergence Zone (ITCZ). During the boreal winter (December-
February), the rainfall belt is located over the Gulf of Guinea at around 4°N.
It moves northward during the spring and reaches its northernmost position
during boreal summer (June-September). At the regional scale, it implies
that the hydro-eco-climatic features vary along a roughly north/south gradi-
ent. The mean annual rainfall amount decreases from south to north, ranging
from over 1500 mm near the southern Guinean coast (= 5°N) to less than
250 mm over the lower Saharan desert limit (> 18°N).

The Sudano-Guinean and Sahelian regions are distinguished by their
mean annual rainfall: the Sudano-Guinean region extends between the 1300
mm and 750 mm isohyetal lines and the Sahel between 750 mm and 250 mm.
The regions have different seasonal rainfall cycles during the monsoon period
(bimodal for the Sudano-Guinean region and unimodal signal for the Sahel),
but are both characterized by a main rainfall peak in boreal summer and a
dry season in boreal winter. The two regions are also differentiated by their
respective vegetation: dense vegetation featuring tree savannah, woodland,
and tropical forest for the Sudano-Guinean region (Bodian et al., 2016a); dry
savannah and sparse bush in the Sahel.

These contrasts influence the dominant hydrological processes character-
izing the two regions. The Sahelian hydrology is distinguished by the preva-
lence of Hortonian overland flow (Horton, 1933). In the event of precipitation,
runoff is produced once the infiltration capacity of the soil is reached. As a
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consequence, runoff production is driven by the hydro-dynamic properties of
soils at the surface. The excess rainfall then runs off into the drainage net-
work. Groundwater flow plays a minor role in the contribution to streamflow,
if any. Due to this, river basins located in the Sahelian region are more sen-
sitive to changes in fine-scale rainfall intensity (Vischel and Lebel, 2007). To
the south, on the other hand, the Sudano-Guinean catchments have primar-
ily Hewlettian hydrological processes (Cappus, 1960; Hewlett, 1961; Hewlett
and Hibbert, 1967). Both surface and subsurface flow contribute to stream-
flow due to the elevated hydraulic conductivity of soils (Descroix et al., 2009).
Under the same climatic evolution, river basins in the Sudano-Guinean zone
may be less responsive to changes in rainfall intensity than in Sahelian river
basins (Gascon et al., 2015).

2.4.2 Study catchments and datasets

Our analysis of changes in extreme flows is based on data available on two
contrasted hydro-systems in West Africa: the upper reaches of the Senegal
River located within the Sudano-Guinean region, and the middle reaches of
the Niger River located within the Sahelian region. Table 2.1 overviews the
data selection for the study, and Figure 2.1 displays a map of their locations.
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Table 2.1: Annual maxima (AMAX) data used in the study.

Subbasin Station Area (km?) Years Gaps Missing
years
Senegal River
Bafing Bafing Makana 21290 1961-2015 | 0.00% None
Bafing Daka Saidou 15700 1954-2015 | 4.84% 1953601358’
Bakoye Oualia 84700 1955-2015 | 1.64% 1982
Falémé Gourbassi 17100 1954-2015 | 1.61% 2013
1960, 1963,
1965-68, 1970,
Falémé Kidira 28900 1951-2015 | 23.10% | 1972-73, 1978,
1980-82, 1986,
2010
Senegal Kayes 157400 1951-2015 | 3.08% 2011, 2013
Senegal Bakel 218000 1950-2015 | 1.52% 2009
Niger River
Niger Sahelian Niger River 125000 1953-2012 | 0.00% None
1961, 1989,
. 1994, 1996-97,
Dargol Kakassi 6940 1957-2015 | 16.90% 1999, 2000,
2002, 2004-05
. 1959, 1960-61,
Sirba Garbe Kourou 38750 1956-2015 | 10.00% 2000, 2004-05
1960, 1990,
Gorouol Alcongui 44850 1957-2015 | 16.90% | 1993, 1996-99,

2001, 2004-05
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Figure 2.1: Map of stations used in the study with their respective drainage basins
(Boyer et al., 2006; Kahle and Wickham, 2013).

Sudanian tributaries of the Senegal River

The second largest river in West Africa is the Senegal River. The Sene-
gal River drains a basin of approximately 300,000 km? (Rochette et al.,
1974), found within the borders of four countries which are (from upstream
to downstream): Guinea, Mali, Senegal, and Mauritania. It is formed by
the confluence of three affluents that take their sources from the Fouta Djal-
lon highlands in Guinea: the Bafing, the Bakoye, and the Falémé. Due to
the delayed contribution of groundwater, the annual flood peak occurs a few
weeks later than in Sahelian Niger (Figure 2.2), whose seasonal hydrological
signal follows that of precipitation more closely.
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Figure 2.2: Average seasonal signal for the Bafing Makana station in the Senegal
River basin (blue) and the Sahelian Niger River (red). Period of record: 1961-
2012. The flood peak has a smoother descent and occurs a few weeks later in the
Senegal River basin due to the contribution of groundwater.

Seven stations whose major contributions come from within the Sudano-
Guinean region are analyzed for the Senegal River (including the Bafing,
Falémé, and Bakoye affluents), covering a total drainage area of 218,000
km?. Globally from upstream to downstream, the stations are as follows:
The Bafing at Daka Saidou (1954-2015, 15,700 km?) and Bafing Makana
(1961-2015, 21,290 km?); the Falémé at Gourbassi (1954-2015, 17,100 km?)
and Kidira (1951-2015, 28,900 km?); the Bakoye at Oualia (1955-2015, 84,700
km?), and the Senegal at Kayes (1951-2015, 157,400 km?) and Bakel (1950-
2015, 218,000 km?). The last two (Kayes and Bakel) are located downstream
of the Manantali dam whose construction was completed in 1988. The Bakel
station’s catchment area includes those of all other stations studied, and
represents the quantity of water that flows into the downstream valley.
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Sahelian tributaries of the Niger River

With a drainage area of 2,170,500 km?, the Niger is the largest river in West
Africa, although only around 1,400,000 km? of its surface is estimated to
effectively contribute runoff to the Niger River (Tarhule et al., 2015). It
originates in the Fouta Djallon highlands in Guinea (Andersen and Golitzen,
2005). After spreading to form an inland delta in Mali, it reconverges and
continues its course through the Sahelian region in Niger, crossing Benin
and Nigeria before arriving at its outlet in the Gulf of Guinea. For the
present study, analysis within the Niger basin focuses on the drainage area
responsible for the Sahelian floods of the Niger River (Descroix et al., 2012;
Cassé et al., 2016) that discharges its flows downstream of Ansongo and
upstream of Niamey (Figure 2.1), an effective drainage area of 125,000 km?.
An aggregated data set extracted from the difference between the Niger River
streamflow series at Niamey and Ansongo during the local Sahelian rainy
season (1953-2012 — see Cassé et al., 2016, for more details) represents this
area for the subsequent analysis. This data series is hereafter referred to as
the Sahelian Niger River (SNR) series. Figure 2.2 shows the average seasonal
signal of the SNR series.

The left bank of the Niger River within this catchment is largely en-
dorheic. It only contributes to the Niger River during heavy rain events
which generate small rivers that sporadically reach the main Niger River
bed, although some evidence suggests that endorheic rupture is increasing in
recent years (Mamadou et al., 2015).

The right bank of the Niamey-Ansongo reach consists of three major
catchments: the Gorouol, the Sirba, and the Dargol, which together cover a
total area of 90,540 km?. Three data series are studied for these catchments:
the Gorouol at Alcongui (1957-2015, 44,850 km?), the Sirba at Garbe Kourou
(1956-2015, 38,750 km?), and the Dargol at Kakassi (1957-2015, 6,940 km?).
All three rivers are intermittent and only flow during the rainy season, fol-
lowing the general pattern seen in Figure 2.2.

2.5 Theoretical framework and methodology

Extreme value distributions (EVDs) applied in a non-stationary context com-
prise some of the recent robust methods proposed for the detection of non-
stationarity (Olsen et al., 1998; Cunderlik and Burn, 2003; Re and Barros,

44



2009; Marty and Blanchet, 2012; Park et al., 2011; Begueria et al., 2011; Pan-
thou et al., 2013; Blanchet et al., 2016). Besides performing detection, EVDs
also permit the quantification of trends and the evaluation of uncertainty.
The principle of these methods is based on fitting EVDs both in stationary
mode (stationary parameters) and in non-stationary mode (time-dependent
parameters). The performance of the fitted models is then compared based
on the capacity to accurately describe the data sample (goodness of fit) and
the complexity of the model (parsimony). By searching for the most suit-
able temporal functions of parameter evolution, one can obtain an indication
of the shape of the non-stationarity. The retained non-stationary model fea-
tures vectors of parameters that best describe the data series in a statistically
significant manner.

2.5.1 Selection of extreme discharge values

Extreme values can be defined as probabilistically rare occurrences, or values
that are exceptionally large (or small) in magnitude. Extreme values can
be extracted from a time series by two main approaches: by taking the
maximum value within a given period, or by considering all values above a
determined threshold. In this study — as in many climate and hydrological
studies (see previous paragraph for examples) — extremes are defined as the
maximum value of each year. A year is considered a long enough period for
the extraction of maximum values for use in the subsequent analysis (Coles
et al., 2001). At each station, the analyzed data series is formed by the
annual maxima of daily discharge (AMAX).

The selected AMAX values were controlled for data quality. All eleven
series span at least fifty years, which provides sufficient data points for the
calibration of a statistical distribution. Data quality evaluation was focused
on peak flow months. As demonstrated by West Africa’s consistent seasonal
signal (Figure 2.2), the local rainfall-generated flood peak occurs on aver-
age within the months of August and September in both the Sahelian and
Sudano-Guinean zones. Missing values before and after these months are
unlikely to have an effect on the quality of the extreme flow data. On the
other hand, a missing value during the peak streamflow months may have
been the AMAX for that year. Identifying an incorrect data point as an
extreme value would have an impact on the analysis.

With the potential impact of data quality in mind, the data series were
evaluated. For the stations in the Senegal River basin, the year was removed
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from the series if any daily streamflow value was missing during the months
of August and September. For stations in the Niger River basin, the hydro-
graphs were viewed year by year. If values were missing near the flood peak,
the year was removed. Years were also removed where recording errors that
could affect flood peaks were perceived (for example, for one year it seemed
that 100 m?/s were added to all values).

Figure 2.3 displays a sample of the AMAX data used, from the Bafing
Makana station for the Senegal River (Figure 2.3a) and SNR series for the
Niger River (Figure 2.3b). One can note that although there appears to be
some trend, there is also a high degree of variability. The AMAX values
at the Bafing Makana station started decreasing in magnitude in the 1960s
and started increasing in approximately the 1980s. This visual trend was
also found for the other Senegal stations. In Sahelian Niger, however, the
increase appears to have begun earlier, during the drought years of the 1970s.

Bafing Makana Sahelian Niger River
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Figure 2.3: Sample AMAX data from the Bafing Makana station in the Senegal
River basin (a) and the Sahelian Niger River series (b).

2.5.2 Formulation of statistical models
GEYV distribution

A suitable statistical function used to represent the distribution of a random
variable (Y') defined by block maxima is the GEV distribution (Coles et al.,

2001), written as:
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Feopv(y;p,0,€) :exp{— {1+§ (%)]_s} for 1 +¢ (%) >0

(2.1)
where p is the location parameter (a measure of central tendency), o the
scale parameter (a measure of dispersion), ¢ the shape parameter (a measure
of tail behavior), and y the value at which the GEV is to be evaluated.
The GEV distribution is fitted on AMAX series (y;) with constant param-
eters (S-GEV, Equation 2.2) and various forms of time (¢ in years)-varying
parameters (NS-GEV, Equation 2.3):

Y ~ GEV(u,0,¢) (2.2)

Y~ GEV {pu(t),o(t),£(1)} (2.3)

Identifying appropriate temporal functions for GEV parameters

The implementation of one NS-GEV model requires choosing the general
form of the appropriate temporal function for each GEV parameters. As
there is no theoretical model for the time-dependent function, it must be
assigned a priori. In order to determine a range of suitable functions, an
initial exploration of trends is done by fitting S-GEV distributions in moving
windows over the study periods. A window size of 15-years has been selected
as a compromise between having sufficient data to fit the GEV and high-
lighting potential parameter evolution. Due to the difficulty in estimation,
the parameter ¢ was first calibrated using the entire data sample, then kept
stationary while p and ¢ change with each window.

Figure 2.4 displays an example of the moving window for p (2.4a) and
o (2.4b) for the Bafing Makana station. For this station, both parameters
are characterized by a v-shaped pattern which is more distinct for p than
o. Based on the moving window analysis for the 11 different stations, it
was identified that p and o can be qualitatively described by one single or
several connected linear segments. For all stations it was visually observed
that changes in  were more clearly defined than changes in ¢. One can note
here that the moving window method allows for qualitatively assessing the
overall trends in GEV parameters. However, unlike NS-GEVs, the moving
window does not allow for the quantification of the trend, nor its significance.
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Figure 2.4: Moving window estimates for the GEV distribution parameters p (a)
and o (b) for the Bafing Makana station. The points represent the center of the
fifteen-year window over which the parameters were estimated.

Formulation of GEV parameter temporal functions

According to the qualitative analysis derived from the moving window GEV,
several temporal patterns with varying complexity were identified to describe
the GEV parameters. Linear, double-linear (with one breakpoint), and triple-
linear (with two breakpoints) temporal functions were considered for pu, o,
or both. In the case of both parameters varying, u and o were permitted to
vary independently. As with the moving window, ¢ was kept constant; the
difficulty in estimating the £ parameter supports the choice in keeping it con-
stant, as additional complexity would increase the uncertainty. A non-linear
(polynomial) model was also considered initially, but showed no improvement
over the multilinear models.

To represent this non-stationarity mathematically, we introduce the func-
tion n(t), where 1 represents either p or o and ¢ is a time-dependent covariate.
n(t) takes on different forms depending on the trend model:

Stationary parameter model:

n(t) = o (2.4)

This parameter model has only one degree of freedom, 7.
Single-linear trend:

n(t) =mno+m xt (2.5)

In this case n(t) has two degrees of freedom : 7y and 7, and thus one
additional degrees of freedom in comparison with a stationary parameter.
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Double-linear trend:

n(t) = 1N +tmX (t — tl) for ¢ <t (26)
ﬁ(t) = 1o+t n X (t — tl) for L <t (27)

t1 represents the breakpoint in time (year index) where the two linear
segments join (i.e. where the slope of the linear model changes). In this case
n(t) has four degrees of freedom: 7, 11, 72 and t;, meaning three additional
degrees of freedom in comparison with a stationary parameter model.
Triple-linear trend:

n(t) = no+mx (t—ty) fort <t (2.8)
T](t) = 1Nop+n X (t — t1> for t1 <t <ty (29)
U(t) = No+Mn2 X (tg—t1)+773 X (t—tg) for to <t (21 )

In this case, n(t) has six degrees of freedom : 19, n1, 72, N3, t1, to.

A total of 13 different GEV models are considered: one with all param-
eters stationary (S-GEV) and 12 NS-GEV models that combine the above
parameter trend models in Equation 2.4-2.10 for ; and . They are reported
in Figure 2.5, classified according to their degrees of freedom.

Degrees of 3 4 5 6 7 8 9
freedom

— | SN\

€
5

N\

Models
u — — | | — |~
e

Figure 2.5: Covariate models tested for GEV distributions.
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2.5.3 Model fitting

For S-GEV, the parameters are directly fitted using maximum likelihood es-
timation (MLE). In the NS-GEV scenario, for each temporal function (linear,
multi-linear), the following procedure is performed:

1. If the formulation includes one or two breakpoints, the year of each
breakpoint t; is defined before estimating the other parameters 7;:

e In order to limit border effects, the breakpoint(s) must be posi-
tioned not earlier than 10 years after the beginning of the series
and no later than ten year before the end. Likewise, two successive
breakpoints must be separated by at least 10 years.

e The breakpoints are defined independently for u(¢) and o(¢), and
can be at a different point in time (though not necessarily).

2. At each defined breakpoint, the parameters 7); are estimated according
to the formulations of 7(¢) in Equations 2.4-2.10 using MLE.

3. Repeat steps 1 and 2 until all possible breakpoint dates have been
tested.

4. Retain the model that gives the maximum likelihood among the differ-
ent breakpoint dates tested in steps 1 to 3.

2.5.4 Selection of the best GEV model

A more complex model may provide better fit, but not to a degree that mer-
its additional parameterization. The selection of the best model is done by
comparing the maximum likelihood obtained by the 13 different GEV models
per station and evaluating their significance. The selection process consists
of two steps: First, an initial best model is selected via the Akaike Infor-
mation Criterion (AIC — Akaike, 1974). Then, the model choice is validated
via a Likelihood Ratio Test (LRT — Coles et al., 2001). According to Kim
et al., 2017, AIC and LRT are both suitable for evaluating non-stationary
representations of hydrological data. AIC in particular is robust with small
data sets.

The AIC balances model fit against model complexity in the following
equation:
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AIC = 2k — 2log(L) (2.11)

where k is the number of parameters in the model and L is the maximum
likelihood value associated with the model. The model with the lowest AIC
value is selected.

The LRT is a test between two models that must be “nested”; the simpler
model is contained within the more complex models. While AIC compares
all models globally, LRT wvalidates the addition or subtraction of specific
parameters. The likelihood ratio test (LRT) is performed by comparing the
following statistic to the y? distribution:

D =2 x {log [L(M))] — log [L(M,)]} (2.12)

where log[L] is the maximum value of the log likelihood of model M and
My is nested in M. If D exceeds the a-quantile of the x? distribution with n
degrees of freedom, with n the difference in the number of parameters between
the two models (additional degrees of freedom), then the more complex model
is accepted at level a.

For this study, AIC is first used to find an initial model of best fit for
each station. The model selection via AIC is then validated using LRTs.
All models that are nested within the model selected via AIC are tested in
pairs with the selected model using the LRT with a = 0.10. This confirms
that the added complexity is significant. More complex models that have the
AIC selection as a nested model are likewise tested in pairs against the AIC
selection using the LRT to validate the exclusion of additional parameters.

Note that the inclusion of the stationary GEV model in the comparison
allows for the evaluation of the presence of a non-zero trend, accompanied by
a significance level. If the selected model is an NS-GEV, then the stationary
hypothesis is rejected.

2.5.5 Return level evaluation

The use of a parametric distribution for representing the data allows for the
estimation of return levels rr corresponding to return period 7. The return
level rr is exceeded with a probability p in a given year where p = 1/T. The
return levels can be calculated as follows:

rTzu—%{l— [—log(l—p)]*g} (2.13)
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For non-stationary models, the corresponding value of p and o for the
NS-GEV are inserted in Equation 2.13 at each time step in order to obtain
the non-stationary return levels for a given p.

A comparison of the relative evolution of return levels was conducted
using normalized return level values for each station. The normalization was
conducted by dividing the values of the non-stationary return levels by the
value 7 calculated under the stationary assumption (S-GEV).

 rp(NS-GEV)
I'T normalized = T’T<S— GEV) (214)

2.5.6 Uncertainty assessment

Confidence intervals for model parameters were determined via nonparamet-
ric bootstrapping (Efron, 1979; Efron and Tibshirani, 1994; Davison and
Hinkley, 1997). While approximate confidence intervals can be calculated
via approximation to the normal distribution, the approximation becomes
less valid for the parameter £ and for values at the tail of the distribution
(high return periods). Thus, bootstrapping was selected as providing a more
accurate representation of the uncertainty.

For each station, a data sample of equal length to the original series was
extracted via resampling. An NS-GEV of the same model type and with
the same breakpoint as the selected NS-GEV for the station was calibrated
on the sample. This was repeated 500 times for each station. Samples were
discarded if their NS-GEVs had a £ value greater than 1 or less than -1, or if
there were errors while estimating the NS-GEV and associated uncertainties,
likely due to particularly skewed samples (same values selected many times,
extreme values overselected, etc). Confidence intervals for the percentiles of
interest were then calculated at each time step of the data series.

In the methodology used for this study, the breakpoints were fixed be-
fore performing MLE to estimate the NS-GEV parameters. The uncertainty
evaluation methods detailed above assume that the uncertainty in break-
point estimation is negligible compared to the uncertainty in the estimation
of the other NS-GEV parameters (uncertainty of the ;). This assumption is
explored further in section 2.7.3.
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2.6 Results

2.6.1

Selected GEV model

Table 2.2 shows the model of best fit that was selected for each station with
a p-value (a) of 0.10 used in the LRT. One can note that for all stations,
an NS-GEV model always fit the series of AMAX better than the stationary

GEV model.
Table 2.2: Model selection, GEV analysis results, and associated confidence inter-
vals (CI).
Subbasin ‘ Station ‘ GEV model ‘ Breakpoints ‘ 3 \ &, 95% CI
Senegal River
Bafing Bafing Makana N 1983 1 -0.33 | (-0.88, -0.12)
Bafing Daka Saidou ~ ;ggg # 0.15 | (-0.72, 0.51)
Bakoye Oualia ~ 1983 4 -0.15 | (-0.37, 0.48)
1994
Falémé Gourbassi N 1983 1 -0.06 | (-0.41, 0.14)
Falémé Kidira ~ 1984 4 -0.03 | (-0.69, 0.49)
1995
Senegal Kayes N 1984 1 -0.03 | (-0.40, 0.18)
Senegal Bakel N 1984 11 0.13 | (-0.71, 0.05)
Niger River
Niger Sahelian Niger River 1968 1 0.37 | (-0.17, 0.87)
Dargol Kakassi N 1990 1 0.14 | (-0.17, 0.48)
Gorouol Alcongui e -0.08 | (-0.50, 0.28)
Sirba Garbe Kourou ~ 132; ! 0.18 | (-0.20, 0.70)

Figure 2.6 visualizes an example of these models, with moving window
parameter values (circles) and selected NS-GEV model 1 values (line). Con-
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fidence intervals for p are shown with dashed lines. One can see that the
selected models follow the general trends seen in the moving window param-
eter estimation of u.

Bafing Makana Sahelian Niger River
o a
o |
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o- o a - ©
E 81 E
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A Annual Maxima
e Moving window of p
—— Fitted model of u
- —- 95% confidence interval of u

Figure 2.6: NS-GEV model for the Bafing Makana station (a) and SNR data
series (b) with raw AMAX values (triangles), moving window estimates (circles),
w evolution for the NS-GEV model (solid line), and 95% confidence intervals for
w for the NS-GEV model (dashed lines).

A double linear model was selected for p for all stations, with the excep-
tion of the Alcongui station in the Gorouol basin which was best represented
by a linear model for p (although a double linear model would have been
accepted at o = 0.15). The selection of a double linear model indicates that
the slope of the trend for p differed significantly between two subperiods of
the time series.

In the Senegal River basin, significant breakpoints were consistently found
for pu between 1980 and 1984 for all stations. The slope of the central tendency
was negative (decreasing trend) during the period up until the early-mid
1980s, then became positive through the modern period. The changes in p
were less rapid in all stations during the latter period. Kayes and Bakel (the
two stations downstream of the Manantali Dam) showed the least relative
increase of all stations. Of the stations in the Senegal River basin, the Daka
Saidou, Kidira, and Oualia stations demonstrated significant non-stationarity
in the scale parameter (). All non-stationarity o models were double linear.
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Daka Saidou’s breakpoint for ¢ was in 2000, while Kidira and Oualia both
occurred in the 1990s (1995 and 1994 respectively). This reflects the general
decrease throughout the majority of the time period under study then rapid
increase in variability seen in the moving window for ¢ during the 1990s at
these stations.

For the Sahelian stations in the Niger River, all stations showed an in-
creasing trend starting as early as the 1970s. However, the specific model
characteristics were less homogeneous between the different stations than for
the Senegal River stations. Although all models were double linear for pu,
breakpoints for p were found in the 1990 for the Dargol (at Kakassi) and
1997 for the Sirba (at Garbe Kourou). The slope of the trend was positive
for both subperiods for these two stations, with a greater (more rapidly in-
creasing) slope during the more recent period. For the SNR data series, the
slope was gradually decreasing during the earlier period of record up until
1968, then increasing at a higher absolute magnitude during the more recent
period. The Gorouol series (at Alcongui) was linearly increasing throughout
the period for p. The SNR and Sirba, series showed significant trends in
the o parameter. For the SNR series, the change in ¢ was determined to be
linearly increasing. For the Sirba, the model for ¢ was double linear with a
breakpoint in 1977. The models closely follow the moving window estimates.

2.6.2 Extreme discharge tails behavior

Table 2.2 also shows the most likely £ values for each distribution. A heavy-
tailed GEV distribution (¢ > 0) indicates that larger values are possible (and
more probable than if £ = 0). £ < 0 means that the distribution is bounded;
rare values will approach but not exceed a maximum threshold.

For the Senegal River, all ¢ values were either close to zero (Gumbel
distribution, unbounded but not heavy-tailed) or negative (Weibull distribu-
tion). Almost all £ values for the Sahelian Niger basin stations were pos-
itive (Frechet distribution), which means the distribution of the values is
heavy-tailed without an upper bound. The exception was the Gorouol sta-
tion at Alcongui, which had a slightly negative & value (Weibull distribution,
bounded). However, the 95% confidence intervals for ¢ for all stations in
both river basins included both positive values and negative values, with the
exception of the Bafing Makana station where the interval was entirely in the
negative range (Weibull distribution).
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2.6.3 Return level estimates of selected models

The main practical advantage provided by the NS-GEV models is the ability
to estimate return levels from the fitted distribution. This is illustrated in
Figure 2.7 where 2, 10, and 100-year return levels are plotted with their
90% confidence intervals for the Bafing Makana and Dargol stations. Return
levels in the Senegal basin followed the general pattern of Bafing Makana,
first decreasing below the stationary level then increasing again. Return
levels for the stations studied in the Niger River started increasing earlier
than for the Senegal River.

Dargol: 2-year Dargol: 10-year Dargol: 100-year
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Figure 2.7: 2-year, 10-year, and 100-year return level values for the Dargol (a-
c) and Bafing Makana (d-f) stations, with the NS-GEV values compared to the
stationary model. Note that the 95% confidence interval for the NS-GEV return
level completely exceeds the confidence interval for the stationary model for the

2-year return level, but for the 100-year return level the confidence intervals of the
stationary model and the NS-GEV largely overlap.

Note the increase in the size of the confidence level with the longer return
periods. For shorter (2 and 5-year) return periods, the confidence intervals for
the non-stationary model were more likely to be distinctly higher than those
of the stationary model. Especially at 10-year and longer return levels, the
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confidence intervals of the stationary and non-stationary models increasingly
overlap. Figure 2.8 demonstrates this separation and overlap between the
confidence intervals of the stationary model and the chosen NS-GEV model
for each station over time. The shades on the graph indicate up to which
degree of confidence (80%-99%) the NS-GEV model and S-GEV model return
level confidence intervals are disjoint, with the color indicating whether the
NS-GEV confidence interval was centered higher (red) or lower (blue) than
the confidence interval of the S-GEV model.
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Figure 2.8: Significance of the separation between NS-GEV and S-GEV models
over time by station for 2-year (a), 10-year (b), and 100-year (c) return levels.
The separation is measured by the overlap between the confidence intervals of
the model. Red indicates that the NS-GEV was significantly higher than the S-
GEV (lower bound of the NS-GEV confidence interval greater than the upper
bound of the S-GEV confidence interval at a given level of confidence), whereas
blue indicates that the NS-GEV was significantly lower than the S-GEV (upper
bound of the NS-GEV confidence intet¥val less than the lower bound of the S-
GEV confidence interval at a given level of confidence). The shade indicates the
confidence level at which the intervals are disjoint at that point in time, ranging
from 80%-99%.



One can note from Figure 2.8 that all of the Senegal stations were sig-
nificantly above the S-GEV at the beginning of the record. For the 2-year
return levels (2.8a), only Bafing Makana in Senegal was higher than its cor-
responding S-GEV at the end of the data record. The uncertainty increases
with longer return periods, with none of the NS-GEVs significantly higher
than the S-GEV at the end of the record for 25-year return levels or greater.
NS-GEV return levels for the Oualia, Kidira, Gourbassi, and Daka Saidou
stations were at approximately the stationary return level at the end of the
study period or below the stationary level for longer return periods. Overall,
the return levels of stations in the Senegal basin spend much of the period
of record significantly below the S-GEV. One can note that the difference
persists into the modern period for the Bakel data series, one of the stations
affected by the Manantali Dam.

For the stations in the Niger River, at the most modern data points, the
90% confidence intervals surrounding the 2 and 5-year return levels globally
surpassed the confidence intervals of the stationary return values. For the
Sirba and Dargol, this separation existed also at the 99% confidence level,
and at the 95% confidence level for the Gorouol. The exception was the SNR
series whose lower non-stationary 90% confidence bound was slightly within
the upper confidence bound of the stationary value for 5-year return levels.

Figure 2.9 compares the 2 and 5-year return level changes between all
stations, with values normalized by each station’s stationary return level (i.e.
the return level estimated using the stationary GEV model, Equation 2.14).
The separation in terms of return level evolution between the stations in
the Senegal and Niger river basins is especially clear for the two-year return
levels. The two-year return levels of the Senegal River stations (blue) start
at around 1.5 times the stationary return level (y-axis = 1), reduce to as low
as 0.5 during the 1980s, then increase throughout the modern period. Bakel
and Kayes, the two Senegal stations affected by the Manantali Dam, have
notably lower relative increases in return level values. These two stations
reached to near the stationary return level value at the end of the study
period, whereas the other stations all exceeded it and reaches values between
1 and 1.5 times the stationary return level. This shows the influence of the
dam on trends in maximum values; one can hypothesize that without the
influence of the dam, the stations Bakel and Kayes would have more closely
followed the trend of the other stations that are located either upstream of
the dam or on other tributaries of the Senegal River.
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Figure 2.9: Normalized two-year (a) and 5-year (b) return levels for all stations.
The red lines represent Sahelian stations, and the blue lines represent Sudano-
Guinean stations.

For the Niger River stations (red), all stations started below the station-
ary 2-year return level and ended well above it. For most of stations the
2-year non-stationary return levels move from less than 0.7 to more than 1.5
times the stationary return level, meaning a doubling discharge for a two-
year return period in roughly 50 years. The SNR series in particular tripled
its relative value over the study period.

As for the five-year return levels, the regional separation becomes less
clear due to the greater influence of the scale parameter at higher return
levels. However, the relative decreases and increases by region remained
similar. Bakel and Kayes remain relatively lower than the other Senegal
stations.

2.6.4 Scale effects of drainage area

The absolute magnitude of the increase in p was directly correlated with the
size of the drainage area of a given station. However, no correlation was
found in the relation between the relative increase in p and the drainage
area. For the Sahelian Niger, a moderate correlation (Pearson’s p = 0.6)
was found between drainage area and return level for return periods of 25
years or longer. The trend was more evident in the Senegal basin; when the
stations Bakel and Kayes were removed, the correlation was greater than 0.6
for return periods of 5 years and longer. A similar correlation (p &~ 0.6) was
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found between drainage area and the £ parameter in both regions. The two-
year return levels demonstrated little to no correlation with drainage area
(p = 0.25). Given the limited number of data points, it is difficult to draw
conclusions based on these results.

2.7 Discussion

2.7.1 Comparison of results with literature

The above results confirm the rising trend in extreme streamflow values since
the 1970s and 1980s, previously found in other studies (Cassé and Gosset,
2015; Nka et al., 2015; Aich et al., 2016a).

The trends found in the Guinean stations in the Senegal River basin in
this study followed the trends found in Aich et al., 2016a for the Guinean
stations in the Niger River basin. In both studies a decreasing trend was
found until approximately the mid-1980s, followed by an increasing trend.
Results are overall consistent with Nka et al., 2015’s findings that extreme
discharge is reduced in recent years compared to what it was several decades
ago. The models in the present study also detected a moderate increase in
recent years, whereas in Nka et al., 2015 there was no significant trend since
the 1970s.

The relatively lower trends at the Kayes and Bakel stations can be ex-
plained by the construction of the Manantali Dam upstream in 1988, which
would have controlled many of the larger flows. This is in agreement with the
results in Faye, 2015, which showed that monthly flow coefficients at Bakel
were lower for peak season months in the period after dam construction than
they were before dam construction. At the stations of Bafing Makana, Oualia,
and Kidira, flow coefficients were higher for peak months when comparing
the same time periods.

The breakpoint found at 1990 in the NS-GEV for the Dargol at Kakassi
falls in between the breakpoints found by Nka et al., 2015 at 1987 (for AMAX)
and 1993 (for peak over threshold values). For Sahelian stations, Aich et al.,
2016a found a decreasing trend until the 1970s followed by an increasing
trend. The initial decrease was found only in the SNR and Gorouol series, but
all Sahelian stations tested show an increase since the 1970s. A breakpoint
was found in the mid 1970s for the Sirba and early 1970s for the Gorouol,
which is roughly consistent with the results in the present study.
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The shifts in trends found in the SNR series (1968) and Gorouol series
(1972) falls at the same point in time as the general climate shift in the late
1960s, as well as the mean discharge breakpoint identified in Tarhule et al.,
2015. However, whereas the climate and mean streamflow shifts decreased
after the break, the SNR series (and likewise all series for the Sahelian Niger)
went from a low or negative slope to a positive slope. This is reflective of
the well-documented Sahelian paradox (Albergel, 1987; Descroix et al., 2018)
where locally-generated streamflow in the Sahel began increasing during the
drought period, in spite of an overall reduction in rainfall.

2.7.2 Evaluation of the parameter ¢

In addition to the difference in timing and magnitude of trends between the
Sudano-Guinean and Sahelian regions, differences in the shape parameter
¢ were also found. The fact that the NS-GEVs for Sudano-Guinean sta-
tions were generally Weibull or Gumbel (£ < 0) and Sahelian stations were
generally Frechet (¢ > 0) could be due to the differences in hydrological
functioning.

In the Sudano-Guinean region, the flow type is Hewlettian and groundwa-
ter plays a greater role. A larger portion of the precipitation first infiltrates
and contributes to river discharge at a later time, smoothing out the high
spatio-temporal variability of fine-scale rainfall intensities. Flood generation
is thus sensitive to both the initial conditions of the basin (groundwater
storage, subsurface water, etc) and the amount of rainfall accumulated over
the basin. In the Sahel, streamflow is driven by Hortonian processes (local
precipitation-generated runoff) and therefore is sensitive to the intensity of
rainfall at small scales. The role of initial conditions seems to be smaller in
comparison to factors such as the area affected by high intensities over a short
time period. These differences in the spatio-temporal scale of the processes
primarily responsible for flood generation in the two regions could explain in
part the differences in the tail behavior of extreme discharges between the
two regions. Indeed, it is observed that rainfall at fine spatio-temporal scales
(Sahelian flood generation) has heavy tail behavior (Koutsoyiannis, 2004;
Panthou et al., 2012), while rainfall averaged over larger spatio-temporal
scales (Sudano-Guinean flood generation) is expected to have bounded tail
behavior.

This said, great care must be taken in drawing conclusions from results
for ¢ as the confidence intervals are large (Table 2.2) and include both pos-
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itive (Frechet) and negative (Weibull) values for almost all stations. The
confidence intervals themselves seem to indicate a difference in tail behavior
between the two regions; the lower bounds of the 95% confidence intervals for
¢ in the Senegal catchments are much lower than the lower bounds in the Sa-
helian Niger catchments (with the exception of the Gorouol), and the upper
bounds are generally lower in the Senegal basin as well (though less univer-
sally). However, due to the great overlap between the confidence intervals,
it is difficult to draw conclusions with a high level of certitude.

2.7.3 Sensitivity analyses: robustness of the results

Sensitivity of the model selection process to the different tests and
the p-value threshold chosen for the LRT

For three out of the eleven data series, the additional application of the
LRT test modified the model selection. In all three cases, the model became
simpler: the scale parameter (o) for Bakel became stationary, the location
parameter of Kayes became double linear instead of triple linear, and the
Gorouol model became simple linear for p instead of double linear.

For ten out of the eleven data series, the model selection did not change
with an increase in LRT test stringency, with the p-value equaling 0.05. The
only change with the stricter requirement were that ¢ became stationary for
the SNR series

With less strict criteria (o« = 0.15), the results more closely approximated
the initial AIC selection results. o was modeled as linear non-stationary
for the Bakel station, instead of the stationary model for o selected at the
a = 0.10 significance level. The Gorouol station became double linear for p
and stationary for ¢. The Kayes station NS-GEV at the p-value of 0.15 was
a double linear model for p and a simple linear model for o. The general
trends (strongly positive over the past few decades for p and return levels)
did not change with the choice of the model.

Of note at the a = 0.15 significance level is the triple-linear model selected
for pu for Kayes. The Kayes station’s flow has clearly been regulated by the
installation of the Manantali dam in 1988, which may have resulted in three
distinct phases over the study period rather than two.
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Sensitivity of the model parameters to optimization methodology

The choice of MLE parameter optimization method did not have a significant
impact on model parameter results, nor on model selection results. Opti-
mization methods tested were Nelder-Mead (Nelder and Mead, 1965), BFGS
(Shanno, 1970), conjugate gradients (Fletcher and Reeves, 1964), L-BFGS-B
(Byrd et al., 1995), and simulated annealing (Bélisle, 1992). However, the
boundary limit between breakpoints and the edge of the data series did have
an impact on the selection of the breakpoint. This could be of interest as the
main breakpoint in the early-mid 1980s in Senegal was less than ten years
before the construction of the Manantali dam. As a triple-linear model with
a distance between breakpoints of one decade was almost selected (initial
AIC model selection) for the Kayes station which is downstream of the dam,
the limitation could have had an impact on model selection.

Additional sources of uncertainty

One source of uncertainty lies in the accuracy of the rating curves for each of
the stations in this study (Jalbert et al., 2011; Morlot et al., 2014). Rating
curves in regions subject to sedimentation such as the Sahelian Niger River
basin risk being nonstationary in time. Rating curves may also be less ac-
curate for extreme values if measurements of flow of comparible magnitude
were not used in the rating curve calibration. Although some stations (no-
tably Kidira, Bakel, Daka Saidou, and Niamey) included such large values,
this was not the case for all stations.

However, rating curve uncertainties, while possibly influencing the specific
magnitudes of results, are highly unlikely to be the cause of the consistent
trends detected and thus do not alter the conclusions of the present study.
Trend detection was conducted using a regional approach with two large
river basins within the region and several stations within each river basin.
The regional approach makes the methods robust and smooths the effect of
uncertainty related to rating curves.

One can also question the influence of the choice of breakpoint on the
uncertainty of the results. Sensitivity testing was performed with the Baf-
ing Makana and SNR series over a breakpoint range of five years before and
after the breakpoint of the selected model. The spread of the 95% confi-
dence interval of the selected model (one fixed breakpoint) was compared
with the spread of the global confidence interval obtained from the range of
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breakpoints. The area within the global confidence interval but outside the
selected model’s confidence interval is due to breakpoint uncertainty. Based
on this, the contribution of breakpoint estimation uncertainty to the overall
uncertainty is on average 13% for Bafing Makana and 15% for SNR for a
breakpoint range of plus and minus five years from the selected breakpoint.
It was thus verified that the primary source of uncertainty comes from the
GEV calibration process performed in step 2 of subsection 2.5.3 (uncertainty
of the 7;) and not from uncertainty about the position of the breakpoint.

2.8 Conclusions and implications

The preceding analysis proposed a selection of NS-GEV models for hydro-
logical annual maxima in West Africa. In all cases, the NS-GEV model was
significantly more representative of the data series than the stationary GEV
model. The trend is positive since the 1970s for the Sahelian stations and the
mid-1980s in the Sudano-Guinean stations, with both regions demonstrating
an intensification of the hydrological signal. Certain parameters and return
levels, notably the p parameter and the 2 and 5-year return levels, surpass
the values expected with a stationary model with a high level of confidence
at certain stations.

The results improve over other studies by providing the underlying sta-
tistical distributions for the non- stationary data series, confidence intervals
on parameter values, return level estimates, and a model selection process
with robust criteria. It also compares two subregions, and notably includes
an extracted data series for the cumulative Sahelian red flood inputs to the
Niger River. Although West Africa is used as a test region, these analyses
can be applied to hydrological time series elsewhere in the world.

The methods used in this paper have some limitations. First, only para-
metric models that were preselected as potential best models are evaluated,
thus eliminating a large range of other potential models. Second, the study
only consider breakpoints that are transitions from one linear slope magni-
tude to another, not abrupt shifts. Furthermore, uncertainty is high (which
reflects the current reality). The uncertainty is especially high for the £ pa-
rameter, which represents the rarest of the AMAX values and is also the most
difficult parameter to estimate precisely. The methods also require a certain
level of expertise for use and interpretation. Additionally, the estimated
uncertainties do not take into account the uncertainty in the estimation of

65



streamflow via rating curves, which could have a significant impact on the
accuracy of extreme values (Jalbert et al., 2011; Morlot et al., 2014).

However, the methods proposed in the present study are advantageous
for several reasons. It is possible to use other trend and breakpoint detec-
tion methods, but many of these tests assume that the data is normally
distributed (which is not the case with extremes) and thus will not be robust
with data sets consisting of extreme values. Classic breakpoint detection
tests (such as the Pettitt test) may work but do not provide an estimate of
the magnitude of the trend. They also do not permit the estimation of return
levels, which is a significant advantage of the methods based on fitting prob-
ability distributions proposed in this paper. The power of classical trend and
breakpoint tests to reject the null hypothesis when applied to extreme value
series is also known to be lower than when applying tests specific to GEVs.
Moreover, even if some expertise is required to use them, the R packages
used in this study are freely available (Heffernan et al., 2016).

The results for the return level estimates indicate that if the stationary
model were to be used, it would underestimate the current return levels in
the Sahelian reaches of the Niger River. For example, the non-stationary
ten-year return level for the SNR series in 2012 is 600 m3 s~! larger than
the value estimated from a stationary model. For all four data series in the
Sahelian Niger, at the end of the data record (2012-2015), the non-stationary
2-year return level exceeds the 5-year stationary return level, indicating an
increase in frequency of events of greater magnitude.

The nonstationarity of the return levels has direct implications for hy-
draulic works construction and river basin management. In both Sahelian
and Sudanian areas, the identified increase of 2 to 10-year return levels is
important for small structures and might have contributed to the increas-
ing number of damaged and destroyed bridges and roads reported over the
last decades (Amani and Paturel, 2017). In the Senegal basin, an accurate
estimation of higher return level values (for return periods greater than 25
years) is needed not only for the management of existing dams such as the
ones at Manantali, Diama and Félou, but also for the construction of addi-
tional structures such as spillways and the hydroelectric dams planned by the
Organization for the Valorization of the Senegal River (in French, OMVS,; see
Bonneau, 2001). As the region surrounding Niamey in the Niger Basin con-
tinues to be threatened by severe flooding, accurate return level estimates are
required in order to ensure that flood protection systems can protect against
a given flood. In all of the above cases, if a stationary model is used, it risks
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overestimating or underestimating the magnitude of river discharge.

Uncertainty remains high for longer return periods. This is largely tied
to the size and variability of the data set; estimating a 100-year return level
based on only 60 years of data forcibly has a high level of uncertainty. The
uncertainty of longer return levels is closely tied to the £ parameter, which
governs tail behavior and is notoriously challenging to estimate, especially
with limited data. As more data is collected, uncertainty will decrease and
the ability to more precisely estimate return levels for longer return periods
will likely improve, provided that the data is represented by a model that
best suits its trends.

One way to improve the estimation of £ and as a result the estimation of
return levels for longer periods would be to apply a regionalized approach in-
corporating data sets within the same region that are believed to have similar
tail behavior. With the use of additional data, the estimation becomes more
robust and the level of certainty increases. An example of how a regionalized
approach may be used to calculate the £ parameter may be found in Sun
et al. (2015).

Uncertainty may also be reduced with a greater understanding of flood
drivers. Much speculation and study has occurred in attempt to determine
the causes of the changes in flood peaks in the West Africa (Seguis et al.,
2004; Leblanc et al., 2008; d’Orgeval et al., 2008; Descroix et al., 2009, 2012,
2018; Aich et al., 2015; Cassé and Gosset, 2015; Cassé et al., 2016). In
addition to climate changes, West Africa has undergone extensive land cover
changes (Loireau, 1998; Anyamba and Tucker, 2005; Descroix et al., 2009)
including a considerable increase in the percentage of cultivated area from
the 1950s-2000s (Cappelaere et al., 2009).

Whereas much of the “Sahelian Paradox” during the drought can be at-
tributed to land use/land cover changes, in recent years changes in river dis-
charge seems to correlate more with changes in precipitation. Case in point,
the regional trends found in this study follow those found for mean non-zero
rainfall in Senegal and the central Sahel in Blanchet et al., 2018. The issue is
complex; for example, in the present study the Sirba basin streamflow did not
increase as much as that of the Dargol and Gorouol, yet it both receives more
rainfall (500 mm as opposed to 400 mm annually) and had increased runoff
coefficients, most likely due to the impacts of agriculture (Descroix et al.,
2012). Land use and climate also have impacts at different scales (Bloschl
et al., 2007). On a larger scale, teleconnections between climate processes
and local hydrology may provide insight into the evolution of AMAX behav-
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ior. One may, for example, use a climate indice linked to ENSO in place of
a temporal covariate (Sun et al., 2015).

An improved understanding of the attributed causes of trends in extremes
would give guidelines for the projection of pertinent results into the future.
Such an approach would require coupling NS-GEV models with projected
climate and land use changes. Factors to be taken take into account are
both climate projections at the scale of hydrological processes and socio-
economic scenarios that allow for the estimation of the anthropic pressure on
the soil and the resulting changes in hydrodynamic parameters. Projection
of model results into the future, however, must be done with caution due to
the potential of future shifts in trends and decadal variability not accounted
for in the climate and land use trends.

We recommend that those dimensioning hydraulic works seriously con-
sider the possibility that hydrological extremes are increasing, as this is the
current evidence available. This is especially pertinent for the coming decade
over which evidence supports an increasing frequency of extreme rainfall
and ongoing hydrological intensification (Taylor et al., 2017; Panthou et al.,
2018). With this in mind, we recommend that stakeholders design structures
with a shorter design life span (10-20 years) with the assumption that ex-
tremes will most probably increase. Such structures include flumes, small
urban hydraulic structures, pumps, levees, and smaller dams. For longer-life
structures such as large dams and spillways, they should continue to con-
sider all factors, including the possibility that the trend may change and
decrease again. Despite the potential impacts of projected land use changes
and the ongoing warming of the Sahara that triggers intense rainfall events,
the decadal variability of climate in the region is also likely to continue.

In spite of the uncertainties, the present study concludes within a strict
level of confidence that hydrological extremes are currently increasing, and
although uncertainty about the magnitude of this increase is high, it is more
concrete and certain than speculation about an unknown future. The trends
are consistent for all stations within each watershed despite flow uncer-
tainties. We advise that stakeholders place importance on the possibility
of greater and more frequent flood magnitudes, especially while designing
smaller structures but also for larger structures. We further recommend that
they take causal factors into account, although more studies are needed in
order to understand the mechanisms of flood drivers.
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Chapter 3

Precipitation modeling and
scenario generation

3.1 Introduction to article 2

Several drivers could have provoked a change in the statistical characteristics
of extreme streamflow. One potential key driver of hydrological extremes is
an increase in precipitation, especially in the Sahel region where hydrological
processes are dominated by Hortonian overland flow. The impact of precip-
itation is particularly high for the rainfed ephemeral tributaries of the Niger
River in the Sahelian zone: the Sirba, Dargol, and Gorouol. A change in
precipitation could impact local streamflow.

Long-term hydrological changes in the region are expected to be driven
by changes in soil surface properties and precipitation regimes, both with
impacts at fine scales. To understand the impacts, one must accordingly
make use of fine-scale physically-based models.

Daily rainfall series are available within the subbasins of the Sahelian
tributary, but the network density, length of the time series, and resolution
of the time step are not appropriate for forcing physically-based hydrological
models. This is due to the time scale of processes that govern the partitioning
of the water. The same considerations are also true for other impact studies
and models (e.g. in agronomy and ecology).

A rainfall simulator can generate scenarios at sufficiently high spatiotem-
poral resolutions for hydrological impact studies. It can be used to provide
realistic simulated data series at points where there are no in-situ measure-
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ments, and to produce scenarios for testing hypotheses about how changes
in precipitation affect hydrology.

In the following article, a stochastic precipitation simulator was improved
and tested using the 30 rain gauges of the AMMA-CATCH Niger data set,
located near to Niamey, Niger, within the Sahelian climate zone. The article
is currently in the process of exchanging between coauthors, and the results
being refined before submission.

3.1.1 Personal contributions

Acquiring proficiency in the use of a precipitation model and its
recent developments

In this part of my thesis, I inherited a rainfall simulator that has been de-
veloped over the course of over 20 years. I received it in its most recent
state after the work of Claire Aly, which was primarily a) modeling both
large convective systems and smaller events in order to account for the 10%
of annual cumulative values that the previous simulator versions were miss-
ing, b) explicitly modeling extreme values above a certain threshold for large
storms, ¢) incorporating the use of censored likelihood for model parameter
estimation, and d) modifying the spatial storm structure used in the model.
She also developed a method of temporal disaggregation that simulated max-
imum event intensities at five minutes from a gamma distribution by class
of cumulative event rainfall. The changes and the simulator as a whole were
consolidated into an R package at this stage.

Model and data evaluation

As the first besides C. Aly to use the R package and the associated new
changes, my role was to master the use of the simulator and test its im-
plementation. I used the tools contained within the package and my own
personal additions to validate C. Aly’s findings. I compared simulator pa-
rameters and outputs between different data sets. I developed my own scripts
and functions that combined the different calibration and simulation steps
into a smooth workflow.

Minor improvements that I made mostly consisted of ensuring that the
code would be applicable to a wide range of precipitation data sets other than
the initial data used for development. I also divided simulation functions
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into smaller steps in order to test and evaluate results at each step of the
simulation process.

A preliminary analysis of AMMA-CATCH rainfall data was also con-
ducted and can be found in Appendix B.

New developments: Temporal disaggregation approach

The most major modification to the simulator in which I participated was the
development of the temporal disaggregation methodology. The initial ver-
sion of the simulator linked the maximum event intensity to the cumulative
event rainfall via a linear relationship. This, however, does not represent the
natural variability in intensities, and commonly produces simulated events
that are unrealistically strong.

As previously mentioned, C. Aly proposed a method that instead linked
maximum intensities to cumulative precipitation via a gamma distribution
divided into different classes. We decided to instead explore a continuous
beta distribution with upper and lower bounds in order to constrain maxi-
mum intensities into a somewhat realistic range while still representing the
variability in intensities. The four parameters of the beta distribution all
depended on the value of cumulative event precipitation as a covariate. My
role was to identify suitable upper and lower bounds and develop the code
for implementing the beta distribution method into the simulator, including
the choice of parameter covariates.

Article writing and conferences

The following article presents the changes developed by both C. Aly and my-
self, with guidance from other members of the research team. My primary
role for the article was to create the first complete draft by proposing the
initial introduction and framework for the paper, assembling and developing
the text for the methodology, producing the figures and tables, and incorpo-
rating coauthor remarks. Results were presented at the EGU 2019 General
Assembly.
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3.2 Stochastorm: A stochastic rainfall simu-
lator for the intertropical zone

Abstract Stochastic rainfall generators aim to reproduce the main statis-
tical features of rainfall occurrence and intensity at small spatial and tem-
poral scales. Used to simulate long-term synthetic rainfall series, they are
recognized as suitable for use with impact analysis in the fields of water,
agricultural, and ecological management.

While many stochastic rainfall generators have been developed in the
last decades and applied in regions with contrasted climates, only a few of
them have been developed and used in intertropical regions. The largely
convection-driven rainfall in the intertropical belt presents properties that
need to be specifically considered and included in stochastic rainfall genera-
tors. These include (i) a strong rainfall intermittency, (ii) high variability of
intensities within storms, (iii) strong spatiotemporal correlation of intensities,
and (iv) a marked seasonality that affects the statistical properties of storms
(i.e. occurrence, intensity). In addition, intertropical storms are among the
most powerful on Earth, and an intensification of the most extreme ones is
already observed in some regions, tied to global warming.

In this paper, improvements for an existing statistico-dynamic rainfall
generator that models convective storm systems in the intertropical zone
are presented. Notable improvements include (i) the ability to model the
occurrence of precipitation events via a model based on the distribution of
the inter-event time parameter, (ii) an improved temporal disaggregation
scheme that better represents the rainfall distribution at all sub-event scales,
and (iii) the use of covariates that reflect seasonal changes in precipitation
occurrence and marginal distribution parameters. Extreme values are explic-
itly considered in the distribution of storm event intensities. In this study,
the simulator is implemented in the Sahelian region, specifically in south-
west Niger. The simulator is calibrated and the simulations validated using
28 years of 5-minute precipitation data from the 30 rain gauge AMMA-
CATCH network. The simulation is used to generate both large propagative
systems and smaller local convective precipitation. Results show that the
improvements in the simulator coherently represent the local climatology.
The simulator can be used to generate scenarios for hydrological and agri-
cultural impact studies with a more accurate representation of convective
precipitation characteristics.
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3.3 Introduction

Stochastic rainfall generators aim to simulate realistic rainfall series by re-
producing key statistical features that characterize rainfall variability. Com-
monly modeled elements include rainfall occurrence, intensity, and depen-
dence structures in time and/or space. As stochastic rainfall generators are
suitable for generating long-term rainfall sequences at fine resolutions, they
are useful in many applications: conducting risk assessment studies to esti-
mate the return periods of very rare events (Evin et al., 2018; Arnaud et al.,
2016); and assessment of rainfall estimation uncertainties and their propaga-
tion into impact models (Renard et al., 2011; Borgomeo et al., 2014), to name
a few. These statistical models are complementary to physical atmospheric
or climate models as they can be used in climate change impact studies as a
means to downscale and disaggregate coarse-resolution climate model rain-
fall outputs (Wilks, 2010; Segrup et al., 2016; Peres and Cancelliere, 2018).
For these reasons, stochastic rainfall models are recognized as useful tools
in numerous areas of environmental sciences for which rainfall is of major
influence, for instance hydrology, agronomy, and ecology.

While many stochastic rainfall generators have been developed over the
last decades (see Wilks and Wilby (1999); Ailliot et al. (2015); Vu et al.
(2018); Loveridge and Rahman (2018) for a review) and applied in regions
with contrasted climates, only a few of them have been used in intertropical
regions. A first reason is that the tropics are sparsely-monitored regions,
a factor which limits the possibility to infer the statistical parameters of
stochastic rainfall generators, especially for rainfall properties at sub-daily
scales. A second reason is that the intertropical belt presents specific rainfall
characteristics that are rarely considered and included in stochastic rainfall
generators. Precipitation events in the tropics are mainly, if not exclusively,
due to convective storms. These storms can be very localized due to local
convection processes, but mostly are long life cycle propagative convective
systems sometimes referred to as mesoscale convective systems (MCS). They
are largely driven by synoptic atmospheric processes that take place in re-
gional climate systems such as seasonal monsoons.

One of the distinct properties of intertropical precipitation regimes and
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storms is a markedly strong seasonality. The movement of the intertropical
convergence zone (ITCZ) provokes strong trends on convective storm devel-
opment and propagation. These dynamics generate strong seasonal signals
that are generally consistent from one year to another, but that are also
susceptible to evolve or cycle over time.

In addition, intertropical storms are some of the most powerful on the
Earth (Zipser et al., 2006), and an intensification of the most extreme ones is
already observed in some regions in the Tropics, tied to global warming (Tay-
lor et al., 2017; Tan et al., 2015). MCSs have been shown to be associated
with extreme rainfall events (Schumacher and Johnson, 2005). This under-
lines the need to specifically treat extreme intensities in rainfall generators
in this region.

Given the nature of convective systems, tropical storms are character-
ized by a strong intermittency of rainfall, a high variability of intensities
within storms, and a strong correlation of intensities in time and space. An
appropriate rainfall generator for tropical storms would thus need to simu-
late spatio-temporal rain fields and not independent single site precipitation
series.

Among the variety of stochastic rainfall generators, those aiming at simu-
lating spatiotemporal rainfall fields are often divided in two classes: multi-site
and random fields models. The first are an extension of single-site stochas-
tic models over several distant locations (often corresponding to rain-gages).
They are mainly based on non-parametric resampling methods, on paramet-
ric point processes based on the successive use of statistical rainfall occur-
rence and a statistical rainfall amount model, or on cluster point processes
(Cowpertwait et al., 1996; Wilks, 1998). The second category focuses on con-
tinuously simulating (on regular grids) the spatial variability of rainfall. This
family includes rain cell models (Féral et al., 2003), scale invariance models
(Serinaldi, 2010; Lombardo et al., 2017; Raut et al., 2018) and meta-Gaussian
random fields (Benoit and Mariethoz, 2017). The latter group of models -
meta-Gaussian fields - is considered in this paper as a suitable method for
modeling the spatiotemporal properties of convective storm systems in the
intertropical zone.

Some promising developments in rain field modeling have been made in
other regions. Peleg and Morin (2014)’s model produced both convective
storm cells and areas of low-intensity rainfall. Oriani et al. (2017) and Singer
and Michaelides (2017) conditioned their models’ parameters on factors such
as elevation and weather state. Lee (2018) improved methods of spatial cor-
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relation for the copula method of modeling marginal distributions. Baxevani
and Lennartsson (2015) and Bardossy and Pegram (2016) developed Gaus-
sian field precipitation models that are dependent on both space and time.

Regarding extreme events, Baxevani and Lennartsson (2015) and Evin
et al. (2018) proposed modeling precipitation magnitudes with a gamma dis-
tribution for smaller values and a generalized pareto distribution (GPD) for
larger values (for Baxevani and Lennartsson (2015), above a given thresh-
old; for Evin et al. (2018), with a transition function as developed in Naveau
et al. (2016)). Wilks (1999) evaluated various marginal distributions for their
ability to reproduce extreme event characteristics.

A selection of stochastic rainfall generators have been developed and/or
applied to modeling rain fields in the intertropical zone. Some, as in Cowden
et al. (2008), provided stochastically generated series of rainfall amounts,
but without a spatial structure, a potentially significant criteria for impact
studies in the intertropical zone (Carney et al., 2008). Others provided only
the occurrence of wet and dry days without rainfall amounts (Jimoh and
Webster, 1999; Robertson et al., 2004). Several rain field simulations were
developed for the intertropical zone based on the the Global Atmospheric
Research Program Atlantic Tropical Experiment (GATE) dataset, including
Valdes et al. (1990), Bell (1987), Ferraris et al 2003, and Over and Gupta
(1994). The spatial structure of seasonal storms in Mexico City was evaluated
in Bouvier et al. (2003).

A stochastic simulator developed for the Sahelian region of West Africa
was initially presented in Lebel et al. (1998). Guillot and Lebel (1999a), Guil-
lot and Lebel (1999b), and Balme et al. (2006) provided further developments
for the spatial and temporal disaggregation respectively, and Onibon et al.
(2004) proposed the Gibbs sampling method for the simulation of marginal
distribution values. Vischel et al. (2009) explored point conditioning meth-
ods for the model. The above articles demonstrated that the precipitation
model accurately reproduce both the spatial distribution and marginal dis-
tribution of precipitation events, an important characteristic for evaluating
hydrological impacts (Troutman, 1983; Wilson et al., 1979). It also treated
the problems of spatial and temporal disaggregation separately.

The rainfall simulator in its state for Vischel et al. (2009) did not take into
account a few key variables, notably extreme values, the frequency of precipi-
tation events, and the seasonal precipitation signal. The model also produced
sub-event intensities that were stronger than those found in the record, an
effect linked to the temporal disaggregation method. The choice of temporal
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disaggregation method and the resulting synthetic hyetograph has direct im-
pacts on simulated hydrological outputs (Lambourne and Stephenson, 1987).

Building on the rainfall simulator described in Vischel et al. (2009), this
paper demonstrates recent advances in stochastically generating convective
storm events. We propose an improved version named ”Stochastorm” that
models additional phenomena pertinent to the intertropical zone and relevant
for driving impact models. Notable improvements in this paper include (i)
the ability to model the occurrence of precipitation events via modeling the
distribution of the inter-event time, (ii) the explicit consideration of extreme
values in the distribution of storm event intensities, and (iii) an improved
temporal-disaggregation scheme that better represents the rainfall distribu-
tion at all sub-event scales. The seasonality of the rainfall properties is taken
into account by adding covariates that reflect seasonal changes in precipi-
tation occurrence and marginal distribution parameters. In this study, the
simulator is implemented in the Sahelian region, specifically over the AMMA-
CATCH Observatory that covers an area of 10,000 km? in southwest Niger
and provides 28 years of 5-minute precipitation data from the 30 recording
rain gauges.

3.4 Stochastorm presentation

The principle of Stochastorm is to simulate a series of mesoscale convective
rainfall events that have the same statistical characteristics as the general
climatology of the study region. Factors considered include inter-event fre-
quency, temporal intermittency, the magnitude and spatial coherence of cu-
mulative event rainfall amounts, and the intensities at intra-event time steps.

3.4.1 Description of the previous version of the
stochastic rainfall model

The following section describes the rainfall simulator (Lebel et al., 1998;
Guillot and Lebel, 1999a; Vischel et al., 2009) in the state it was in before
the most recent developments presented in Section 3.5.
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Occurrence

The previous rainfall simulator did not explicitly model the moment in time
that events occurred. It operated under the assumption that an event sim-
ulation meant that an MCS passed over the study/simulation window, but
without assigning a specific time or date to the event. As rainfall occurrence
is a major characteristic of a given rainfall regime, there is a need to simulate
it in the rainfall generator.

Event-based rain fields

The stochastic simulation of event-based rain fields is achieved within the
framework of meta-Gaussian random functions. It consists of deriving non-
Gaussian random fields (in this study, rainfall fields at the event time scale)
from Gaussian random fields by using an anamorphosis function (Guillot and
Lebel, 1999a). Gaussian fields have well-known properties and can be gener-
ated more easily than spatial fields with other distributions (Emery, 2002).
In the first version of the generator, Lebel et al. (1998) used the turning band
method. Guillot and Lebel (1999b) implemented it with a nested anisotropic
covariance function that was shown to be more appropriate to simulate the
diversity of storms structures than in Lebel et al. (1998). Onibon et al.
(2004) proposed to generate Gaussian fields by using the sequential method
which, coupled with an acceptation-rejection algorithm, allows conditioning
the simulations by surface average values.

The transformation/anamorphosis of Gaussian to non-Gaussian fields is
the main difficulty of the meta-Gaussian framework. In particular, the appro-
priate spatial structure of the random Gaussian fields must be prescribed in
order to reproduce the expected spatial structure and marginal distribution
of the non-Gaussian fields after anamorphosis (see Section 2.2.3 for a more
formal presentation). In case of discontinuous processes, like intermittent
event-based rain fields which contain a mass of zero values in their marginal
distribution, there is no analytical solution to assess the spatial structure
function of Gaussian random fields (Guillot and Lebel, 1999a; Emery, 2002).
While an empirical trial and error approach was used in the first version, Vis-
chel et al. 2009 proposed to use a Gibbs sampling algorithm to assess the spa-
tial structure function of Gaussian fields represented by a nested anisotropic
variogram. The simulator as it was in Vischel et al. (2009) did not explic-
itly consider extreme values in the marginal distribution of cumulative event
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rainfall.

Via the above methods, the marginal distribution and spatial structure
of cumulative event rainfall amounts are obtained. The simulation outputs
are punctual, with simulations recorded on locations determined by the user
on a regular or irregular grid.

Temporal disaggregation

Temporal disaggregation, or simulating intensities at small time intervals
within an event, is conducted with the aim of representing the physical prop-
erties of MCSs. This disaggregation is on a deterministic synthetic hyeto-
graph of a convective storm which is here considered to consist of a symmet-
rical triangular peak representing the convective front of the storm, followed
by a long stratiform trail of lower intensity (Figure 3.1). The hyetograph
parameters (maximal intensity and duration) depend entirely on the total
event rainfall via a relationship that evolved over the different model ver-
sions, the most recent being the relationship published in Balme et al. 2006.
The temporal disaggregation also includes a model of MCS kinematics that
consists of defining a field of hyetograph time of arrival based on prescribed
MCS propagation speed and direction.

3.5 New developments and technical defini-
tions

3.5.1 Season limits and intra-seasonal variability of pa-
rameters

Much of the intertropical zone characteristically has a wet season and a dry
season. Start and end dates of the rainy season are modeled in Stochastorm
with a separate normal distribution for each.

Several parameters in Stochastorm are permitted to evolve over time
throughout the season according to the following equation:

para’m(t) - fpamm(ta epa'/‘am) (31)

where ¢ is the time covariate, fperam the selected function for represent-
ing seasonality, and 0pq,qm the vector of coefficients to be optimized for the
function.
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Figure 3.1: Standard hyetogram shape from Balme et al. (2006) implemented in
Stochastorm, consisting of convective and stratiform parts.

The parameters obtained from calibrating the statistical distribution for
a given variable in a moving window over the data are plotted. From these
plots, the types of possible functions for seasonal covariates are estimated
visually. Then, statistical distributions using the different possible seasonal
covariates are calibrated over the entire data set. The covariate models are
then compared using AIC and likelihood ratio tests. The choice of seasonal
covariates may also be informed by knowledge about local climatology in the
study region.

Hereafter, the symbol * is used to designate parameters that are permitted
to vary in magnitude throughout the season.

Parameters are obtained by maximum likelihood estimation unless oth-
erwise noted.

3.5.2 Event occurrence

The event occurrence in the new version Stochastorm is represented by the
Inter-Event Time (IET), which here is defined as the time between the start
times of two events.

The density of the gamma distribution is denoted f, (z,b, k) with a scale
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parameter b > 0 and a shape parameter k > 0 (equation 3.2).

[ S
S 2
e ¢ (32)

The gamma distribution could alternatively be formulated using mean
(1) and shape (k) parameters given the relationship u = kb.

The IET parameter is determined to follow a gamma distribution with x
as the IET value, modeled using the time-varying scale (*b;gr) and shape
(*krpr) parameters.

Sy (@, b k)

3.5.3 Marginal distribution of cumulative event rain-
fall

The marginal distribution F,,,,,; of cumulative event rainfall at each station
is defined by the probability of zero values, denoted by * f;, and a combined
distribution referred to as Gamma+GPD (F,, Fgpp).

* fo represents the proportion of zero values in a spatial rain field. *f,
is assumed to be constant throughout the study region. It is fitted by least
squares estimation.

Distribution of precipitation value magnitudes (F,, Fgpp) The
magnitude of cumulative event precipitation is characterized with a two-part
distribution similar to the approach used in Furrer and Katz (2008). Events
with cumulative rainfall below a given threshold u are modeled by a gamma
distribution for positive values as in equation 3.2 with a scale parameter
*bewmu and a shape parameter *k. .. In order to explicitly represent the
distribution of extreme rainfall values, over a certain threshold u the gamma
distribution is replaced by a GPD distribution with a scale parameter ogpp
and a shape parameter {gpp. See Baxevani and Lennartsson (2015) for a
similar approach.

Let Y be the random variable of rain at a given site, and F), and Fgpp
be respectively the gamma and the GPD distributions. Then the marginal
distribution F.,,. of cumulative rainfall can be written as

*fO + (1 —* fO)F’y(y7* bcumula>k kcumul) if Y < u,

3.3
fu+ (1= f)Fapp(y,0aprp,$app)  ify >w, (3:3)

Fcumul (y) = {
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where

fu="fo+ (1 =" fo)F,(u) (3.4)

Since the gamma distribution only includes values below the threshold wu,
the gamma distribution is fitted by maximizing a censored likelihood (L) on
positive data. Let y be the matrix (v;;)i=1,. n.j=1,. x of the data, where i is
the station index, IV the total number of stations, j the event index, and K
the total number of events. The censored likelihood is then expressed as

Ly, beumuts” Keumut) =
H fv(yija* bcumula* kcumul) H [1 - Fv(u,* bcumul;* kcumul)] (35)

0<y¢j <u Yij >=u

where F is the CDF of the gamma distribution and f, is the density.
In this study, the GPD is fitted by maximum likelihood estimation on
values larger than u. The GPD does not have seasonal covariates.

3.5.4 Spatial dependency: Gaussian fields with cen-
sored likelihood

Transformation of data into censored Gaussian data As a prerequi-
site to determining the spatial covariance structure (see Section 3.4.1), the
non-Gaussian measured rain fields are first transformed into the process H.
H is a version of the Gaussian process G' but censored below a certain limit
due to the zero values within the rain field.

Let ® denotes the AV(0,1) distribution. The following transformation is
applied to the data for each event j (j € {1, ..., K'}:

hij = (I)_l[Fcumulj (yzj)] (36)

where h is the Gaussian version of y. In this way, K (total number of

events) realizations of a spatial process H are obtained. Note that for each

event j, the Gaussian field realization h; is censored below the Gaussian value
cp, corresponding to Omm in the observed rainfall field:

co, = " [Foumu, (0)] (3.7)

J
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Note that the value co, is different for each realization due to the temporal
dependence of F . on t.

Estimating the covariance function In order to simulate the process
H | the covariance function p of the process G must first be estimated. The
Gibbs sampling algorithm proposed in the last model version (Vischel et al.,
2009) presented numerical convergence problems; especially for marginal dis-
tributions where the frequency of zero values is high. Here, we propose an
alternative approach based on censored likelihood that is better suited to
strong fo values.

Let g;; denote the values of the realizations of the process G. Values of
gij which exceed cp, are known. For the values that do not exceed ¢, it is
known only that g;; < ¢o;. For this reason, a classical likelihood calculation
can not be used to fit the model on data. Instead, a censored version of the
likelihood is required.

Let D, be the set of stations where it does rain during the j-th event.

Dj = {Z S {1, N} such that Gij > Coj} (38)

Let 0, be the parameters of the covariance function p that is to be esti-
mated. Assuming that events are independent from one another, the censored
likelihood of 6, is:

Le(6,) = H L;wp) (3.9)

If every g;; is observed for the j-th event (i.e. if it rains at all stations for
the event j), then

L;(‘gp) = far(g15---9nj3 0p) (3.10)

where fgp is the density of the Gaussian process with covariance p.
If at least one station is censored (within ¢g), the likelihood becomes:

L35(0,) = far({9ijtiep;; 0,) Pr{Gij < co(t)) }ign,[{Gij = gijtien;;0,] (3.11)

The probabilities are the CDF of a Gaussian process because
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{Gistign,I{Gij = gijtien;, (3.12)

is Gaussian with mean and variance given by
1= 125535 9p, (3.13)

var = 2171 — 217222_7%2/172 (314)

where gp; is the vector formed by the elements of D; and X is the covari-
ance matrix of the vector (gp,, gp;) with

Yag Y
Y= ’ ' 3.15
(21,2 22,2> (3.15)
The covariance p can be modeled with a variety of possible functions.
Two have been tested in this study (see Section 3.6.2).

3.5.5 Temporal disaggregation

The temporal disaggregation step takes the cumulative rainfall amounts and
divides them into sub-event intensities. The arrival time of the storm at a
given point is conducted as in previous versions of the model, with a prede-
termined propagation speed and direction based on empirical data.

In the methods used in this article, given the cumulative station rainfall
P for the event, the only parameter to estimate stochastically is I,,,4,. The
other intensities are then calculated according to the synthetic hyetograph
in Figure 3.1.

Two methods for determining the shape of the hyetograph via the re-
lationship between the maximum (peak) intensity and the cumulative total
rainfall at a station are compared and evaluated in this study:

e The height of the peak (maximum intensity, /,,q,) and the cumulative
event rainfall are considered to have a linear relationship according to

Equation (3.16), as in the previous version of the simulator (Balme
et al., 2006).

Loz = 2.01P 4+ 0.53 (3.16)
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e A four-parameter beta distribution with covariates relating I,,,, to P
at a given station. This theoretically makes the relationship between
the variables more flexible and more representative of the variability
present within the natural system.

The four-parameter beta density function is defined as follows:

(Inaz — min)® (max — Lyae)?

Beta(a, 8)(max — min)*—5-1

(3.17)

fBeta(Imazu mm, max, &, ﬁ) =

where [,,,, is the maximum event rainfall intensity, min is the lower
bound of the distribution, max is the upper bound of the distribution, and
a and [ the two shape parameters. All four parameters can potentially have
the cumulative event rainfall as a covariate. See Section 3.6.2 for details on
how the four-parameter beta distribution was implemented in the present
study.

The effects of the choice of maximum intensity generation is discussed in
Section 3.7.3.

3.5.6 Overview of calibration

Table 3.1 recapitulates the parameters required by the model.

Table 3.1: Overview of model parameters

Category Object Parameters
Season definition Start date Normal distribution N (p, o)
End date Normal distribution N (p, o)
Occurrence IET Gamma distribution F, (brgr, krgr)
Event rainfield Marginal distribution Fcumul (an bcumuh kcumuh U, 0OGPD, gGPD)
Spatial structure Covariance function (p) and parameters (6,)
Temporal disaggregation Propagation Speed and direction
Relationship 1,4, / P | Linear or Beta distribution (min, maz, a, 3)

3.5.7 Simulation procedure

Once the parameters are obtained, the following simulation steps are con-
ducted:
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Simulation of event start times

1. Wet season start and season end dates are generated using the normal
distributions calibrated in the occurrence model (Section 3.5.1).

2. Starting from the season start date simulated in the above step, dates
of event starts are sequentially generated using the occurrence model of
IET values (Section 3.5.2) until the end date of the season is exceeded.
The last event is kept or discarded according to a Bernoulli distribution
with p=0.5.

Simulation of cumulative event rainfall

3. One Gaussian field (marginal distribution ~ A(0, 1)) is simulated per
simulated event start.

4. The marginal distribution A(0,1) of the Gaussian fields is trans-
formed (anamorphosis) to the established event marginal distribution
(gamma+GPD), using the values of the gamma distribution at the co-
variate ¢t of the start date.

Temporal disaggregation

5. A speed and direction is determined for the event (see Sections 3.5.5
and 3.6.2 for details).

6. Cumulative event rainfall per station is disaggregated into the deter-
mined time step using the selected method for determining the I,
value of the hyetograph (see Section 3.5.5).

3.6 Application to Sahelian storms

3.6.1 Sahelian hydroclimatology

The Sahel is a band located roughly between the 250mm and 750mm isohyetal
lines of the subsaharan precipitation gradient. Sahelian climate is driven by
the West African Monsoon, which determines the magnitude and frequency
of MCSs and dictates a pronounced seasonal signal for the region (Lebel et al.,
2003; D’amato and Lebel, 1998). The rainy season extends approximately
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from April to October, with peak rainfall months in July and August and
little to no rainfall outside of the rainy season. The average cumulative
amounts and variance of precipitation events are higher in the middle of the
season, with a lower percentage of null values (i.e. more large storms in
July-August) (Ali et al., 2003; Balme et al., 2006).

An important factor in the capability of precipitation simulations to repli-
cate the interannual and seasonal variability in the intertropical zone is the
number of events per year, and by deduction the time between events (event
frequency). Numerous studies found that the number of events has a sig-
nificant impact on cumulative annual rainfall in the Sahel (Ali et al., 2003;
Le Barbé et al., 2002; Lebel and Ali, 2009). By placing generated rainfall
events at the dates of recorded historical rainfall Vischel et al. (2009) found
that much of the seasonal signal of rainfall amounts was driven by event
frequency. The cumulative annual precipitation was also replicated to some
extent.

The consideration of extreme storms is of particular importance in the
Sahel. A recent increase in extreme precipitation values has been documented
(Taylor et al., 2017; Panthou et al., 2014, 2018). Given the recent series of
catastrophic floods in the region (Descroix et al., 2012; Sighomnou et al.,
2013; Wilcox et al., 2018), it is important to understand if changes in extreme
precipitation events are tied to changes in extreme hydrological events.

As large MCSs generate the majority of local streamflow, the considera-
tion of certain precipitation variables is of particular importance for impact
studies. Intensities at short durations have a particularly significant impact
on runoff (Malam Abdou, 2014; Peugeot et al., 1997), as does the spatial vari-
ability of precipitation (Koren et al., 1999). However, a non-negligible por-
tion (up to 10%) of cumulative annual precipitation originates from smaller,
locally-generated rainfall events.

Data used: AMMA-CATCH network

The calibration and validation of the simulator is performed with a subset
of the AMMA-CATCH network of recording rain gauges. AMMA-CATCH
consists of eco-hydrological data collection at three mesoscale sites in West
Africa. It is unique for the region in both its spatial density and the length
of continuous data recording: since 1990 in Niger, 1999 in Benin, and 2002
in Mali. The data is freely available from the AMMA-CATCH data base.
Stochastorm was calibrated on the AMMA-CATCH study site located
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in the Sahel near Niamey, Niger. The site features a set of 30 rain gauges
located within a one square degree area, spread over a domain of 120 x 160
km?. 28 years of data (1990-2017) at the five-minute time step formed the
primary data set used in the development of Stochastorm. A map of data
locations is found in Figure 3.2.

3.6.2 Model implementation
Event definitions

A rainfall event is considered to be distinct when it is separated in time from
other series of precipitation; here, we define an event as being separated by
at least 30 minutes of no precipitation at the station level, with at least one
time step of no rain in the entire window of study.

The last version of the simulator in Vischel et al. (2009) only considered
the most consistent rainfall events associated with the organized and prop-
agative mesoscale convective systems. As a consequence the simulations were
missing a portion of the annual cumulative rainfall associated with smaller
and less propagative local convection events.

These small events are characterized by a strong intermittency (and thus
a high frequency of zero value in the event rainfall marginal distribution)
that, in practice, limits the possibility of convergence of the Gibbs sampling
method to transform rainfall into Gaussian values in the anamorphosis pro-
cess.

Here we benefit from the use of the censored likelihood approach that is
much more efficient in handling large zero atomic values. While Vischel et al.
(2009) only selected rainfall events covering at least 10/30 of the AMMA-
CATCH Niger rain gage network, here we define events as having at least
2/30 (or an equivalent percentage) of the rain gauge network receive more
than 1mm of cumulative rainfall.

Smaller events that did not meet the criterion were considered incon-
sequential; they may be due to erroneous data (for example a false tipping
bucket), or precipitation that is too sparse to be organized into a storm. Mea-
surements from events that were not considered in the study contributed less
than 0.01% of the annual rainfall amount.

Categorization of large and small events Once the initial event subset
was created, the events were then classed into ”large” and "small” categories.
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Figure 3.2: Location of rain gauge stations for the AMMA-CATCH network (red)

near Niamey, Niger.
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A large event has 30% or more of stations/data points registering rainfall.
All other events were labeled as small.

The classification of events as large or small reflects the distinct physical
properties of Sahelian storms. As shown by Mathon et al. (2002), large events
are more likely to be associated with organized and propagative precipitation
systems (MCS) while small events are more likely to be linked to local con-
vective rainfall. Because of these physical distinctions, we decided to assign
to each category (large/small) its own set of parameters (see Sections 3.6.2
and 3.6.2 for details).

The distribution of large and small events and the contribution of each
to the total cumulative annual rainfall is shown in Figure 3.3.

a) b)

60 -

Type of event

[ Large
M small

Type of event

W Large
M small

40 -

Average number of events per year

20-

Average cumulative annual rainfall (mm/yr)

AMMA-CATCH data AMMA—CA.TCH data

Figure 3.3: The relative contributions of large and small events to a) total events
per year and b) total cumulative annual rainfall.

Season definition and occurrence

Only events occurring from April to October are considered, as this is the
period of time during which localized precipitation-generated runoff is pro-
duced in the Sahel (precipitation events outside of this time frame are few
and do not have a large impact on local hydrology, although they could have
agricultural impacts).

The seasonal covariate t is defined as follows: For the central Sahel, the
season is considered to go from the 1st of April (t = 1) to the 31st of October
(t = 215). The seasonal covariate t is defined by a decimal number between
1 and 215. The integer digit of this decimal indicates the day in the season
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of the event start and the decimal part corresponds to the hour and minutes
of the event start.

For the Sahel, we would expect smaller IET values (i.e. more frequent
storms) in the middle of the season (July-August).

Modeling the seasonal repartition of large and small events The
distribution of large and small events (Section 3.6.2) throughout the season
is modeled empirically with a Bernoulli distribution based on the input data.
A spline is used to represent the proportion of small events throughout the
season (Figure 3.4). The value of the spline at a given date provides the
parameter of the Bernoulli distribution for events at that point in the season.
For simulation, this Bernoulli distribution is used to randomly generate large
and small event labels at each simulated event start day.
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0.3

Proportion of small events

Figure 3.4: The proportion of small events throughout the season for the AMMA-
CATCH 1990-2017 data set.

Marginal distributions of cumulative event rainfall

Each category (large/small) has its own set of associated parameters for the
marginal distribution of cumulative event rainfall. Extremes are modeled
only for large storms; the large storms are modeled with a gamma+GPD
distribution as described in Section 3.5.3, whereas small events are modeled
only by a gamma distribution.

In this study, the threshold u for the GPD distribution is fixed at 40 mm,
approximately the quantile 0.97 as defined in Blanchet et al. (2018).
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The GPD parameters are considered constant during the season, either
because there is no detectable seasonality, or because the sampling effect due
to the rarity of extreme events prevents the detection of a signal.

For the Sahel, we would expect marginal distribution parameters that
produce larger cumulative event rainfall amounts with smaller f, values in
the middle of the season.

Covariance functions used to model spatial dependency

The methods described in Section 3.5.4 are used to fit covariance functions
on series of small and large events. There is one spatial dependency structure
for small events and one spatial dependency structure for large events.

On small events, an isotropic exponential covariance function is fitted,
given by:

p(d) = exp (—%) (3.18)

where d = s,,, — s,, is the difference between two sites s, and s, and ||.||euc
denotes specifically the Euclidean distance. ¢ is the range parameter, which
controls the rate of decay as distance increases.

For large events, an anisotropic covariance defined by a sum of exponential
functions is fitted, given by:

h ants h ants
U * exp <—%) + (1 —v) *xexp (—%) (3.19)

where v is the proportion of the field variance associated with the first
exponential, and ¢; and ¢, are the range parameters of the two structures.
||.||anis denotes an anisotropic distance defined as:

Hh||2 = Hsm - SnH2 = (Sm — Sn)/M/M(Sm - Sn) (3.20)

anis anis

[ cosy sin ¢
- \—asinvy acost

where

=

with @ > 1 and ¢ € [-F; 7]
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1 is the angle between the x-axis and the major axis of the ellipse. a
is the ratio of the major axis length on the minor axis length. With this
distance, the level lines of the covariance function are elliptic.

Temporal disaggregation

The synthetic hyetograph (Figure 3.1) produced via the equations in Balme
et al. (2006) was previously implemented in the Sahel. The present study fo-
cuses specifically on improving the estimation of the maximum intensity I,,q.
of the synthetic hyetogram via the use of a four-parameter beta distribution.

An initial exploratory moving window analysis was conducted by calibrat-
ing beta distribution parameters on I,,,, by range of precipitation values from
the recorded AMMA-CATCH data. The analysis revealed strong evidence of
nonstationarity within the parameters, with parameters increasing at varying
rates as precipitation increased. The four parameters of the beta distribu-
tion in Equation 3.17 were thus determined to depend on cumulative event
precipitation. A function of best fit was determined for each parameter.

The beta distribution upper bound (maz) was modeled using a two-part
function (Figure 3.5). For a lower range of cumulative rainfall values, the
total event rainfall was used as the value of max. For larger values, max
was defined as a log function that must exceed two times the observed [,
values. The switch between the two types of bounds was identified as the
intersection between the cumulative rainfall value and the log function. We
consider this to be a reasonable limit as the highest max values are near the
world record for five-minute precipitation intensities (Burt, 2007).

For the lower bound (min), linear segments that pass beneath the lowest
observed values were used for smaller rainfall values, then extrapolated with
a log function at the same point the log function starts for the max (Figure
3.5).

For the a and S parameters, a log function and an exponential function
were chosen respectively to link their values with the covariate of cumulative
event rainfall.

93



Imax (mm/Smin)

Speed and direction are determined using an input database of mea-
sured data with speed, direction, and cumulative rainfall associated with
each event. The recorded cumulative event rainfall (Ptot) closest to a given
simulated cumulative rainfall amount is identified, and the associated speed
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Figure 3.5: Upper and lower bounds of the underlying beta distribution used to
model maximum intensity (I,q;) with cumulative event rainfall as covariates for
the beta distribution parameters.
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and direction are used for the simulated event as well. This approach re-
sembles the selection of an analog event within the recorded data used in
Chardon et al. (2014), for an example.

3.7 Evaluation of the model using AMMA-
CATCH data (Sahel)

The parameters of the Stochastorm model was calibrated using the AMMA-
CATCH 1990-2017 dataset. 30 simulations of 28 years were generated. The
model allows for simulation at a choice of points; we chose to simulate only
at the locations of the 30 AMMA-CATCH measurement stations in order to
compare simulation results with the data.

The following sections describe the ability of the model simulations to
reproduce both model parameters (i.e. whether simulated outputs reflect
calibrated parameters) and observed characteristics of MCSs not directly
prescribed in the model (whether simulated outputs are coherent with ob-
servations).

3.7.1 Event occurrence

Figure 3.6 displays the results for the simulation of the first and last day
of the season. One can observe in Figure 3.6 that the both the model and
simulations closely match the data, and that the first and last days of the
season are well-represented by a normal distribution.
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Figure 3.6: Distributions of beginning and end of season dates, with data, simula-
tions, and model (a). Season length (b).

Results for the IET (Figure 3.7) also shows good coherence between the
simulation outputs and the original calibration data. This means that storms
were reproduced at a frequency which matched that of the recorded record,
with more frequent storms (lower IET) in July-September and less frequent
storms at the beginning and end of the season. The model parameters are
well-reproduced in the simulations. The main difference is towards the end
of the season, where the seasonal evolution in the simulations is less smooth
and lower than the prescribed model parameters (although more similar to
the data). This could be explained by the use of the Bernoulli law to decide
whether or not to keep the final event of the season.

Of note is the coherence between the data, the length of the season,
and the number of events per season (Figures 3.6 and 3.7). The simula-
tions reflect the original data for the beginning and end date (Figure 3.6a).
Note that although the season length was not explicitly parameterized in
the Stochastorm model, simulations accurately represent the original data’s
season length (Figure 3.6b). Although the number of events per season was
also not explicitly modeled, the number of simulated events generated from
the IET parameter are representative of the data (Figure 3.7).
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Figure 3.7: Results for the inter-event time (IET) (a,b) and number of precipitation
events per season (c).

Confidence intervals for IET simulation results can be found in the annex,
as well as Stochastorm parameters.

3.7.2 Event-based rain fields

The results for the spatial rain fields were also coherent. Figures 3.8a and
3.8b show the mean and variance of the cumulative event rainfall amounts
and fy. The seasonal signal of mean values is well-represented, although the
variance is underestimated during the core of the season.

Of particular note are the results for fy (Figure 3.8¢). For the AMMA-
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CATCH network, the simulations were conducted separately for large and
small events. When the simulations are combined, the seasonal signal of
fo in the data is accurately reproduced. The variability of the extension of
the events is also well-simulated. This is a notable result coming from the
ability to simulate both large and small events. The arbitrary simulation of
only large events (imposed in the previous version of the model) hindered
the capacity of the simulator to reproduce the distribution of fy found in
the data. Inversely, figure 3.9 confirms that the overall frequency of event
extension values (proportion of non-zero values) is also reproduced.

a) Mean, cumulative event rainfall b) Variance, cumulative event rainfall
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Figure 3.8: Results for cumulative event rainfall over the study area (30 sta-
tions/simulation points aggregated).

98



Event extension

o
0
=t
o
S
&

=

(5]

=

@

=3

o 8

2 o

[
o
g
9
o -

I ! ! | I |
0.0 0.2 0.4 0.6 0.8 1.0

Proporiion of stations measuring rainfall
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Figure 3.10: Results for the distribution of cumulative event rainfall over the study
area (30 stations/simulation points aggregated).

Figure 3.10 shows the CDF of the cumulative event rainfall values. Figure
3.11 shows the results for the modeled spatial structure of precipitation.

Confidence intervals and Stochastorm parameters for the rain fields can
be found in the appendices.
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Figure 3.11: Results for the modeled covariance structure spatial structure for
large events (left) and small events (right)

3.7.3 Temporal disaggregation

Figure 3.12 compares the maximum intensities generated from the two meth-
ods of temporal disaggregation with the data. One can note that the newly
proposed method using a beta distribution to link the maximum intensity
with the cumulative event rainfall more closely follows the data. There is a
slight underestimation on average for larger cumulative precipitation values
(Figure 3.12a), but this is much smaller in magnitude than the overestima-
tion when using the previous method. The beta distribution method more
realistically models the natural variability in maximum intensities (Figure
3.12b).
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with the original data (heat map).
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Figure 3.13: Measured and simulated hyetographs corresponding to storms of
different cumulative precipitation magnitudes (15mm, 25mm, 50mm).

Figure 3.13 shows the hyetographs of events having a given cumulative
precipitation value. Although only the peak event intensity was specifically
generated, the magnitudes of other sub-event intensities were well-reproduced
by the temporal disaggregation method using the synthetic hyetograph. Both
the average hyetograph and the variability (confidence interval) associated
with a given cumulative value were reproduced.

3.8 Conclusion

The above study presents the recent developments for the stochastic precip-
itation generator Stochastorm, a modeling and simulation tool that aims to
replicate the properties of MCSs in the West African Sahel. The simulator
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can generate long series of annual precipitation scenarios that have the same
climatic variability as the input data.

Improvements include modeling of event occurence dates via the inter-
event time (IET) parameter and simulation of rainy season start and end
dates. In addition, the model now features: added parameters for seasonality
(seasonal covariates for occurrence and the marginal distribution); explicitly
modeled extremes; and the use of censored likelihood to coherently transform
Gaussian fields into the marginal distribution of the precipitation. Finally,
the model uses a new method of temporal disaggregation using the four-
parameter beta distribution to relate maximum event intensity to cumulative
event precipitation. The new method is conceptually more coherent with the
characteristics of convective rainfall than the linear model previously used.

Stochastorm was applied to the Sahel region of West Africa. Specific
adaptations included the categorization of small and large events, with the
ratio evolving throughout the season (more large events during the peak
precipitation months).

Results had good coherence with data, closely following the seasonal sig-
nal and annual properties for both occurrence and magnitude of events. The
spatial intermittency was also well-replicated, in spite of the division into
small and large events for the Sahel.

Although the model was implemented in the Sahel, it is based on precip-
itation characteristics that are common to many intertropical regions, espe-
cially semi-arid ones. Stochastorm may be implementable in other regions
provided that parameters can be tuned on locally observed data.

The simulation results have implications for the applications of hydrologi-
cal modeling and agricultural modeling. The fact that simulation outputs are
at fine scales with a coherent and representative spatial structure is promis-
ing for implementation in hydrological models (Li et al., 2017). A priority for
future work is implementing the outputs of Stochastorm as the inputs which
drive a hydrological model. In particular, Stochastorm can be calibrated on
GCM outputs. The use of GCM as calibration data would allow Stochastorm
to function as a statistical downscaling tool (Ferraris et al., 2003) that can
translate the GCM into relevant information at hydrological scales.

The model is limited in its ability to handle long-term nonstationary,
such as decadal trends. An example of ways to treat non-stationarity with
stochastic weather generators can be found in Verdin et al. (2018). By in-
corporating nonstationary climate projections into the stochastic weather
generator and coupling it with a hydrological model, one gains the capacity
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to perform water resource projections (Borgomeo et al., 2014).

Appendix: Model parameters
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Figure 3.14: Model parameters for the gamma and GPD distributions of cumula-
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tive rainfall amounts for the AMMA-CATCH network.
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Figure 3.15: Summary plots with 50% confidence intervals. Note the good coher-
ence between confidence intervals of data (gray) and simulations (blue).
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Figure 3.16: Plots with 95% confidence intervals. Note the good coherence between
confidence intervals of data (gray) and simulations (blue).
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Chapter 4

Modeling chain for using a
convection-permitting regional
climate model to drive
hydrological projections

4.1 Introduction to article 3

A precipitation model is an essential part of modeling a hydroclimatic system.
The next step is to pair the precipitation model with a hydrological model
to create rainfall-runoff scenarios. A scenario of great interest is evaluating
how river discharge might evolve in the future in response to climate change.

The following article presents a modeling chain for producing and evalu-
ating climate change-driven hydrological projections. The precipitation pro-
jections come from the newly-released simulations from the RCM CP4-Africa
(Stratton et al., 2018). CP4-Africa simulations are a promising advancement
in climate modeling as they are the first large-scale RCM simulations (per-
formed over ten years and a large region) that explicitly represent fine-scale
3D convective processes. This permits the representation of mesoscale con-
vective systems (MCSs). The advancement is significant because MCSs are
the primary source of precipitation in West Africa.

This is significant as precipitation in West Africa is primarily driven by
convective processes.

CP4 is first compared with in-situ data then corrected for biases accord-
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ingly. CP4 is then linked with the stochastic rainfall generator described in
Chapter 3 to produce precipitation scenarios. Finally, the scenarios are used
as inputs to a process-based hydrological model designed for the Sahelian
region.

After establishing the methodology for the modeling chain, the primary
goal of the paper was to use the modeling chain to create hydrological pro-
jections. Potential changes in river discharge in the future are simulated and
evaluated.

4.1.1 Personal contributions
Data processing and evaluation

At the time I started work on this subject, only 3.5 years of CP4 data for
the present had been previously analyzed by my team. I received a total of
ten years of simulations from the present and ten years for a future period.
I extracted events from the data, handling differences in formats and time
stamps between CP4 and in-situ data sets.

Using the extended data set, I verified the analysis that had previously
been conducted for the present. I then analyzed differences between present
and future CP4 simulations. I tested a wide range of seasonal covariate mod-
els for Stochastorm parameters to determine which were the most suitable
fit for CP4. 1 performed extensive comparisons of CP4 data with AMMA-
CATCH in-situ data. I also extended the analysis to CP4 data over Oua-
gadougou, and compared the two sites.

Methodological contributions

Using Stochastorm, I produced all of the rain field scenarios for use in hy-
drological modeling. 1 developed my own scripts and functions that allowed
me to modify and reproduce my work in a short amount of time.

At one point, we were unsure what the greatest source of bias in CP4 was.
We noticed that hydrological modeling outputs driven by CP4 significantly
underestimated observed values even after applying CDFt bias correction.
I proposed an approach of replacing CP4-based parameters in Stochastorm
with AMMA-CATCH-based parameters one by one. In this way we were
able to identify that the proportion of zero values was a great source of error
that needed to be corrected.
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I coded and tested at least five different approaches for correcting the
bias in the proportion of zero values and the magnitude of positive values for
CP4. T also explored correcting the bias in the number of events.

Article writing, collaborations, and conferences

I wrote the article, conducted a review of relevant literature, and produced
figures. I decided which of the extensive analysis I had conducted would be
most relevant for the paper. I also incorporated feedback on key points in
the article. The article will be submitted for publication after review from
coauthors.

The work with CP4 was conducted as part of the international
AMMAZ2050 project which aims to better understand the regional climate
of West Africa, its evolution, and the impacts of its evolution. In the context
of this project, my work on comparing CP4-Africa simulations with AMMA-
CATCH data contributed to the recent paper Berthou et al. 2019. My work
was also presented in several conferences: SWGEN (Berlin, 2018); GEWEX
(Canmore, 2019) and at the EGU General Assembly in 2019.

4.2 Article: An original statistico-dynamical
modeling chain for hydrological projec-
tions under future changes in convective
rainfall

Abstract There is now evidence that global warming has contributed to
the recent intensification of precipitation in some regions in Africa. The
modification of the storm-scale dynamics can have major impacts on the
hydrological cycle and related hydrological risks. However, storm features
are not captured at the coarse resolutions of global climate models (GCMs).
GCMs also parametrize convection; as convective processes generate nearly
all precipitation in the tropics, this greatly limits their direct use for hy-
drological risk assessment and related decision making. While regional cli-
mate models (RCMs) offer the possibility to dynamically downscale GCMs
at higher resolution, recent RCM implementations in Africa did not inte-
grate explicit representations of convective processes. RCMs also tend to be
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biased, and outputs are not at a small enough scale for use in hydrologi-
cal applications. The newly-developed RCM CP4-Africa is unique in that it
is the first convection-permitting model in the region to provide long-term
precipitation outputs over a large domain. It is at a small enough spatial
resolution (4.5km) for use in impact studies. Simulations currently exist for
two 10-year periods: one in approximately the present period (1997-2006)
and one in a future world under climate change (RCP8.5 forcing at the
end of the 21st century). This study aims at providing a first evaluation
of CP4-Africa for hydrological impact studies. An original modeling chain
that integrates CP4-Africa precipitation simulations, bias correction meth-
ods, stochastic spatiotemporal disaggregation, and hydrological modeling is
presented and applied to the intertropical zone in West Africa. CP4 outputs
are bias corrected using an adaptation of the CDFt method, with 10 years
of data from the AMMA-CATCH network in southwest Niger as the con-
trol set. CP4 present and future outputs are used to calibrate a stochastic
rainfall simulator ”Stochastorm,” which is used both as an evaluation tool
to compare present and future precipitation characteristics and to generate
precipitation scenarios. Finally, the simulation outputs are used as inputs to
a process-based hydrological model for the Sahelian region of West Africa.
The future CP4 simulations display a moderate decrease in the number of
events at the core of the season but a significant increase in the magnitude
and variability of event rainfall, and in particular an increase in extreme
events. Annual cumulative rainfall increases by 64%. Implementation of the
modeling chain in a Sahelian test catchment showed that streamflow is pro-
jected to increase significantly under climate change for both annual volumes
and peak discharge. Results show how RCMs can be combined with stochas-
tic rainfall generators in order to evaluate the impact of climate change on
hydrological processes.

Authors Catherine Wilcox, Théo Vischel, Gérémy Panthou, Guillaume
Quantin, Phil Harris, Juliette Blanchet, Claire Aly, Chris Taylor, Ségoléne
Berthou, Jean-Pierre Vandervaere, Rachel Stratton

4.3 Introduction

The modern period has witnessed numerous global climate changes, notably
an observed increase in surface temperatures produced by anthropogenic
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green house gases emissions (Stocker et al., 2013). The warming trend is
expected to continue; a total warming of 1.5 degrees C in average surface
temperature since the beginning of the industrial era is already projected to
occur over the coming decades, even if anthropogenic greenhouse gases are
strictly limited (Millar et al., 2017). From a mid-term perspective, the in-
tensity of the global temperature increase will likely be greater in magnitude
(Rogelj et al., 2016; Steffen et al., 2018).

The global warming trends have provoked numerous local effects (Inter-
governmental Panel on Climate Change, 2018). Not the least of these effects
is the intensification of the hydroclimatic cycle, consisting of an increase in
extreme events such as storms and floods (Hirabayashi et al., 2013; Giorgi
et al., 2011; Trenberth, 1999). As global warming continues, the risk of local
impacts from extreme hydrological events also increases (Mora et al., 2018;
Arnell and Gosling, 2016). Besides extremes, other modifications of local
climate regimes such as seasonality and rainfall frequency can affect agricul-
tural production (Guan et al., 2015; Butt et al., 2005). Such hazards pose a
serious threat to societies, economies, and the environment.

The threat of climate-related hazards is especially large in the intertropi-
cal zone (Allan et al., 2010; Zhang et al., 2007; Asadieh and Krakauer, 2015).
The region has a particularly high regional sensitivity to global warming
(Bathiany et al., 2018; Nyong and Niang-Diop, 2006) coupled with high vul-
nerability to climate change (Vincent, 2004) and limited adaptation capacity
on average compared to countries in other regions (Shi et al., 2016). Studying
how local impacts will change as a result of global climate modifications is
pertinent in order to better characterize the hazards that societies may face.
In such a context, increasing the resilience of populations to future potential
hazards is an urgent question of equity. Impact studies are a necessary step
for proposing adequate adaptation measures and strategies. In such complex
systems, future evolutions and associated threats are not straightforward to
project. Impact studies using numerical models can provide a promising
study framework.

Projections based on global climate models (GCMs) are, thus far, the
only way to understand of how the earth’s climate may change in the future.
They can indicate how large-scale phenomena such as average sea surface
temperatures may change. However, it is more challenging to use them to
estimate the evolution of smaller-scale climate-related hazards in the future.
Hydrological hazards (storms, floods, drought) are produced by processes
occurring at scales that are smaller than the grid sizes of GCMs. Often,
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GCMs will output one value for a grid that covers a region containing a
wide variety of hydroclimatic processes. The processes that govern floods
are not dynamically modeled within the GCM parameters either, leading to
misrepresentations in the projections.

A common solution to the scale issues of GCMs are regional climate
models (RCMs). RCMs model smaller areas of the globe and thus can operate
at a much smaller grid scale than GCMs, some at a scale that is directly useful
for hydrological impact studies. However, up until now, few RCMs have
included convective processes in their dynamic parameterization. This is a
critical issue in the tropics, where the majority of precipitation is produced
by convective rainfall. The rainfall is mainly generated by organized meso-
scale convective systems (MCSs), for which resolving 3d convective processes
is crucial to model their specific dynamics. The lack of inclusion of convective
processes leads to an inaccurate representation of precipitation.

Studies specifically evaluating hydrological projections are also few, and
largely not conducted specifically over the tropics. Several studies coupled
climate model projections with global or large-scale regional hydrological
models (Arnell and Gosling, 2016; Dairaku et al., 2008; Douville et al., 2002;
Hagemann et al., 2011). They found that hydrological impacts varied widely
by region and time of year. Salathé Jr et al. (2014), Wang and Wang (2019),
Dibike and Coulibaly (2005), Wang et al. (2019), and Leong and Donner
(2015) present evaluations of climate change impacts using a hydrological
model calibrated for a specific local river basin. Wang and Wang 2019 specifi-
cally used a convection-permitting climate model to generate the hydrological
projections (uncommon in the literature). Koutsoyiannis et al. (2007) and
Cameron et al. (2000) found that projected future hydrological changes were
within the boundaries of uncertainty for their study areas.

Krysanova et al. (2017) and Pechlivanidis et al. (2017) conducted robust
analyses of multiple river basins (twelve and five respectively) by using five
GCMs, four emissions scenarios, and multiple hydrological models per river
(five and nine respectively). Pechlivanidis et al. (2017) found that climate
change impacts were more severe near the end of the century, and greater in
dry regions. Climate model uncertainty was greater than hydrological model
uncertainty in dry regions.

A few studies specifically looked at extreme events and floods, including
Pechlivanidis et al. (2017), Wang and Wang (2019), Salathé Jr et al. (2014),
Arnell and Gosling (2016), Condon et al. (2015). Most showed that extreme
events would increase in their respective study region(s).
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Some studies did not make use of hydrological models, but instead directly
used the water balance in climate models of precipitation-evaporation (Sun
et al., 2011; Held and Soden, 2006) or used inference and statistical models
to connect hydrological variables to climate variables (Li et al., 2016; Condon
et al., 2015).

New RCMs that include convection offer promising possibilities for more
accurately modeling and projecting future precipitation in tropical regions.
The present study seeks to evaluate the capacity of simulations from the
convection-permitting RCM CP4-Africa (Stratton et al., 2018) to correct
many of the limitations associated with climate models and be used to eval-
uate projected hydrological impacts. CP4-Africa is one of the few climate
models that generates climate simulations realized at a large regional scale
and over a significantly long time period that also explicitly resolve convec-
tive processes. As convection is an important precipitation-driving process
for the tropics, it means that storm generation and propagation can be more
realistic than models which use a parametrized convection. CP4-Africa has
a grid size of only 4.5 km, a suitable scale for hydrological impact stud-
ies. Currently, 10 years of CP4-generated precipitation for a present control
period (1997-2006) and 10 years of projected precipitation on a future hori-
zon ( 2090-2100) are available. The future projections give an idea of how
precipitation over Africa may change over the coming century.

The study region selected for this site is the West African Sahel, in par-
ticular the Sahelian reaches of the Niger River. The region has experienced a
significant increase in flood hazard (Wilcox et al., 2018) and associated flood
damages (Fiorillo et al., 2018). Previous studies found that the ability of
GCMs to accurately simulate precipitation over West Africa was highly vari-
able depending on the model used, with an overall poor ability to simulate
accurate rainfall volumes in the Sahel (Biasutti, 2013). The accurate simu-
lation of precipitation is important given that studies showed runoff changes
in the Sahel are highly sensitive to climatic changes (Aich et al., 2016b, 2014;
Gerbaux et al., 2009).

Notably, changes in properties of monsoon storms are major drivers of
hydrological regime changes (Lebel et al., 2003). Storms produce the great
majority of rainfall in West Africa (Mathon et al., 2002); their occurrence,
intensity and size within the monsoon season modulate the response of hy-
drosystems (Vischel et al., 2009, 2019). The relevance of impact studies thus
primarily depends on the quality of input precipitation not only in term of
accuracy but also in term of the space-time resolutions that they encompass
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(Vischel and Lebel, 2007; Gascon et al., 2015).

Results of hydrological projections due to climate change in the region
showed high uncertainty, including uncertainty on how surface temperature
increases will impact the West African Monsoon (d’Orgeval et al., 2006).
Models and associated impact studies disagree on whether climate conditions
will become wetter or drier, in part due to model deficiencies, in part due to
multiple competing mechanisms in the region (Druyan, 2011; Roudier et al.,
2014; Gerbaux et al., 2009; Aich et al., 2016b, 2014). Great uncertainty
exists also because of the limited consideration of scale issues in hydrological
climate impact studies (Gerbaux et al., 2009; Roudier et al., 2014).

In this paper we present a modelling chain that aims to study the hy-
drological impact of climate change on West African catchments. The chain
is an original attempt in West Africa to explicitly encompass the continuum
of scales from global climate to local hydrological processes. It includes (i)
dynamical downscaling of a GCM using CP4-Africa, (ii) a statistical bias cor-
rection method, (iii) a stochastic storm generator to reproduce CP4-based
storm feature changes in an ensemble of rainfall stochastic scenarios at the
suitable resolution for hydrological models, and (iv) a process-based hydro-
logical model representing the dominant processes at play in the rainfall-
runoff relationship in the Sahelian environment.

We first assess the potential of CP4-Africa to replicate the rainfall regime
at the storm scale based on a high-resolution precipitation dataset unique in
West Africa. Then, we use the modeling chain to explore potential hydro-
logical impacts of future climate over a meso-scale Sahelian catchment.

Section 4.4 outlines the study region and the data used used. Section
4.5 provides an initial evaluation of CP4-Africa simulations. Section 4.6
presents bias removal methods and the different modeling elements. Sec-
tion 4.7 presents study results. Section 4.8 presents study conclusions and
perspectives.

4.4 Region and data

4.4.1 Study site: AMMA-CATCH network

In-situ precipitation data

The present study focuses on the Sahelian region of West Africa. The specific
study region located in southwest Niger was selected due to the availability of
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high-resolution in-situ data from the AMMA-CATCH network (Cappelaere
et al., 2009; Lebel et al., 2009; Galle et al., 2016, 2018). AMMA-CATCH
is an eco-hydrological data collection for West Africa with sites in Niger,
Benin, and Mali/Senegal. It is the only observatory in West Africa that has
sufficiently dense and lengthy in-situ observations to document the rainfall
regime in the Sahel at the meso-scale.

The AMMA-CATCH precipitation gauge network in Niger is a set of
thirty 5-minute tipping bucket rain gauges located within a one square degree
area, spread over a domain of 120x160 km?. Continuous five-minute data is
available from 1990-2017.

For consistency in the comparison between CP4 and AMMA-CATCH,
the rainfall simulator was calibrated using 10 years of data over the period
1997-2006. A map of AMMA-CATCH station locations is found in Figure
4.1.

Data preprocessing

The precipitation data for CP4 and AMMA-CATCH were both grouped into
events according to the same criteria used in Wilcox et al. (in preparation):
at least two out of thirty (or an equivalent percentage) of stations/grid points
measuring 1mm of precipitation or more. Between events there is 30 minutes
of no precipitation at a station plus an interval of no rain in the study window.
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Figure 4.1: Location of rain gauge stations for the AMMA-CATCH network (or-
ange box) and the Dargol River (west of the Niger River). CP4-Africa grid points
were extracted over the AMMA-CATCH study site.

4.4.2 Convection-permitting regional climate model:
CP4-Africa

Description

The primary data evaluated consists of precipitation outputs from the re-
gional CP4 model over Africa (Stratton et al., 2018). The spatial scale of the
gridded data is 4.5km. Intensities are generated at the 15-minute time step.

The CP4 data set used in the present study is comprised of 10 years of
simulations from 1997-2006 and 10 years on a future horizon towards the end
of the 21st century. Future projections were forced by the RCP8.5 climate
scenario.

Data preprocessing

Grid points were extracted over the AMMA-CATCH study area. Precipi-
tation events from CP4 were extracted according to the same criteria used

with AMMA-CATCH data.

117



4.4.3 Hydrological study site and data

The river basin selected for hydrological model implementation is the Dargol
River. The Dargol is a catchment with typical Sahelian features regarding
watershed processes. It is a tributary of the Niger River and contributes to
the increasing trend in recurrent floods in the Niamey region (Wilcox et al.,
2018). Its size is compatible with that of mesoscale precipitation systems.
The catchment area has a similar climatology to the nearby AMMA-CATCH
Niger study site.

Streamflow data exists for the Dargol near the confluence with the Niger
River (Kakassi station) (Table 2.1). Although there are some gaps in the
data, there is sufficient information to estimate the average hydrological
regime and its dispersion. This allows for the testing of a hydrological model’s
ability to replicate the regime.

As high-resolution subdaily precipitation data is not available within
the catchment, the nearby AMMA-CATCH data will be used to study the
rainfall-runoff relationship. The goal is not to precisely replicate or predict
the data for a specific year, but to use the model to replicate the general
hydrological regime and perform sensitivity tests.

4.5 CP4 rainfall: preliminary evaluation

An evaluation of CP4-Africa was already realized for West Africa by Strat-
ton et al. (2018) and Berthou et al. (2019). Here we focus on the specific
study zone used in this article and on the key characteristics for hydrological
impacts, notably event occurrence, intensity, and size of the events. For all
of these characteristics, we also consider their seasonality.
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4.5.1 CP4 versus AMMA-CATCH
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Figure 4.2: Initial comparison of AMMA-CATCH and CP4 data, including CP4
simulations for the recent past (1997-2006) and for a future horizon ( 2100). a)
Distribution of the number of events throughout the season. b) Moving window
of time between two precipitation events. ¢) Average cumulative event rainfall. d)
Proportion of zero values.

The number of storms produced by CP4 is more than the number of events
registered by AMMA-CATCH according to the event definition used in this
study. In particular, CP4 produces too many small events. However, these
events contribute a very small percentage of the annual cumulative precipita-
tion. They are unlikely to have a large impact on local hydrology due to their
small size and timing during the less rainy parts of the season. The frequency
of larger events during the middle of the season when flooding is most likely
to occur is well-replicated (Figure 4.2a). Likewise, the time between storm
events throughout the season is generally well-replicated by CP4, with less
time between storms during the middle of the season (Figure 4.2b).

The seasonal dynamics of the magnitude of precipitation per event also
reflects that measured by AMMA-CATCH, and more generally the regional
West African Monsoon developments. The season starts with generally sparse
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and low-intensity rainfall, then the magnitude of event intensity increases
around June (Figure 4.2c¢). Rainfall levels remain higher during the peak
rainfall months around August. This is promising, as it shows CP4’s capacity
to replicate natural climate phenomena in the region.

However, the average event rainfall produced by CP4 during the middle
of the rainy season is significantly lower than that measured by AMMA-
CATCH, especially in the middle of the rainy season (Figure 4.2c). The
underestimation is amplified by the fact that there are more events during
the middle of the rainy season, so the deficit is accumulated. The under-
estimation of precipitation magnitude is reflected in an underestimation of
annual cumulative values.

At the same time, the proportion of zero values in CP4 is too low (Figure
4.2d). CP4 underestimates the proportion of zero values, a criteria considered
representative of storm extension (e.g. storms in CP4 are too large in size).
This is in part due to the excess of small values produced by CP4. These
values are below the threshold of recordability by the AMMA-CATCH rain
gauges (the lowest recorded precipitation at a station is 0.12mm).

CP4 underestimates moderate values (Figure 4.3a). On the other end
of the spectrum, CP4 produces a few extreme values that exceed any event
recorded within the AMMA-CATCH network. It was also observed that
events produced by CP4 had a longer duration on average than those of

AMMA-CATCH.
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Figure 4.3: Comparison of quantiles between AMMA-CATCH data and CP4 sim-
ulations (present (a) and future (b)). CP4 underestimates moderate values but
overestimates extremes. Future simulations project an increase in the magnitude
of precipitation values.

4.5.2 CP4 present versus CP4 future projections

CP4 simulations project that the study region will have less events during the
core of the rainy season (Figure 4.2a). Time between events are projected to
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become shorter on average at the beginning of the season and longer during
the middle of the season (Figure 4.2b). Average cumulative event rainfall are
projected to increase significantly (Figure 4.2¢, Figure 4.3b). The proportion
of zero values is projected increase slightly (Figure 4.2d).

4.6 Methodology

CP4 Bias
rainfall correction ‘ P4 llke
rainfall

Figure 4.4: Elements of the modeling chain proposed for future hydrological pro-
jections: The RCM CP4 as input data; bias-correcting methods applied to correct
CP4; The stochastic precipitation generator Stochastorm used to create multiple
scenarios of CP4-like rain fields; the scenarios used as an input to a hydrological
model; discharge outputs produced and evaluated.

The following section outlines the steps taken for using CP4 to evaluate hy-
drological impacts. Selected based on the preliminary rainfall comparison
results (Section 4.5), bias correction methods are applied in order to correct
inaccuracies in CP4. Next, CP4 is used to calibrate a stochastic precipitation
generator. The generator is used to produce a set of CP4-like precipitation
scenarios. The precipitation scenarios are then used as inputs to a hydro-

logical model. An overview of the modeling chain is presented in Figure
44.

4.6.1 Bias correction methods

The goal of bias correction is to correct the characteristics of a data set
so that they more accurately represent ground truth data. Based on the
factors described in Section 4.5, we consider the most important biases to
correct to be 1) the inaccuracies in the proportion of zero values and 2) the
underestimation of precipitation magnitude. As the error is larger in the
middle of the season, seasonality will be considered for the correction.

The main approach selected for bias correction in this study is the cumu-
lative distribution function transform (CDFt) method (Michelangeli et al.,
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2009). CDFt operates by mapping the quantiles in the CDF's of the biased
simulations (CP4) with quantiles in the CDF in the reference data (AMMA-
CATCH). CDFt was selected as it theoretically will correct both the excess
of small values and the extremely high extremes produced by CP4. The cal-
ibrated transform function can be then applied to a new dataset, either at a
new location or (as in this study) to future projections. CDFt has already
been shown to be effective for precipitation in West Africa (Famien et al.,
2018).

In addition, once a transform function has been calculated based on the
reference data set, the same transform can be applied where there is no refer-
ence data. This includes different simulated areas of the model, or simulations
of a different time period. In the current study, the transform function de-
veloped for correcting CP4 simulations for the present can then be applied to
CP4 simulations for the future. See (Vrac et al., 2016; Vrac and Friederichs,
2015) for some examples on how CDFt has been adapted and implemented.

The four CDFt-based methods presented in Vrac et al. (2016) were tested
as they specifically address the issues of correcting both the occurrence of
null values and the magnitudes of positive values. The first method (positive
correction) only corrects non-zero values. The second method (threshold
adaptation) identifies a threshold for which the proportion of zero values
in the data to be corrected matches the proportion of zero values in the
reference data. The third method (direct approach) directly applies CDF't
to all values, including zeros. The final method (”Singularity Stochastic
Removal”) replaces values below the observed reference data threshold with
small randomly-generated values, corrects all values using CDF't, then resets
values below the threshold to zero. In addition, the methods were combined
with a moving window as suggested in Famien et al. (2018). The data for all
stations/grid points within an event were mixed for the analysis.

Based on the above initial bias correction methods exploration, the
threshold adaptation method with a rolling window over positive values pro-
vided the best results. We therefore propose a two-step bias correction pro-
cess. First, a threshold is found so that the percentage of values below this
threshold for the entire CP4 simulation is equal to the percentage of zero val-
ues in AMMA-CATCH data. All values below the threshold are set to zero.
Second, CDF4 is applied in a moving window of 20 days over the season in
order to correct the magnitude of values. After CDFt is applied within each
overlapping window, bias-corrected values are averaged at each data point to
obtain the final values.
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The effectiveness of the two-step bias correction method will be evaluated
in several ways: first, graphically and numerically via the Stochastorm pa-
rameters calibrated on CP4, bias-corrected CP4, and AMMA-CATCH; and
second, via the outputs of the hydrological model from the biased and unbi-
ased data sets. The modified seasonal CDF-t method will be evaluated both
for its capacity to correct the absolute distribution of values and its ability
to correct seasonal characteristics.

The bias correction function applied to correct the 1997-2006 CP4 simu-
lations will be transfered to CP4 future simulations. First, a threshold below
which all values are set to zero will be identified for the future simulations
so that the ratio between the proportion of zero values in the future versus
the present remains the same in the original data set and the bias-corrected
data set:

PTOpOCP4pTesent . PTOpOCP4present,bias—cor'rected (4 1)
PTOpOC’P4future PTOpOCP4future,bias—corrected

where Prop0 is the proportion of zero values in each corresponding data
set. The correction is applied to the pooled data points of each data set. It is
possible for the zero-value threshold used for CP4 1997-2006 to be different
from the zero-value threshold for future CP4 projections.

Then, the CDFt function calculated between CP4 present and AMMA-
CATCH for each moving window will be applied to the same moving window
for future projections.

4.6.2 Stochastic precipitation model

Although CP4 provides many advantages, due to large computational de-
mands, only 10 years of simulations for the present and 10 for a projected
future period exist at this time. It is useful to have a larger amount of sce-
narios for use in hydrological modeling in order to explore the impact of the
stochastic variability within the physical and deterministic CP4 simulations.

In order to generate additional scenarios, CP4 is used to calibrate the
stochastic precipitation model Stochastorm (Wilcox et al., in preparation).
Stochastorm was designed specifically for modeling precipitation events that
retain the spatiotemporal properties of convective storms in the tropics.
Stochastorm first simulates storm occurrence from poisson like process based
on the exponential distribution of the time between two events. For each sim-
ulated event, a rain field of the cumulative event precipitation values for the
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storm system is generated (kilometric resolution) using a meta- Gaussian
function whose marginal distribution combines a set of zero values which
represents the spatial intermittency of the field, then for positive values a
mixture of a Gamma distribution plus a GPD distribution for the greatest
values (above a given threshold). Finally, temporal disaggregation is per-
formed on the cumulative rain fields to transform the values into sub-event
intensities (typically five minutes). The transformation takes into account a
storm propagation model and the disaggregation via a synthetic hyetogram.

The ability of Stochastorm to replicate the original data characteristics
has already been validated using AMMA-CATCH data (1990-2017). The
same methodology proposed for the application in Wilcox et al. (in prepara-
tion) is used, notably the classification of events as large or small and having
separate parameter sets associated with each category. Large events are de-
fined as having 30% or more of stations/grid points with more than 0.12mm
of registered precipitation during an event (0.12mm being the minimum de-
tected amount for the AMMA-CATCH rain gauges).

Stochastorm is calibrated using each of the following data/simulations:

e AMMA-CATCH 1997-2006 (control)

e CP4, 1997-2006

e Bias-corrected CP4 1997-2006 (according to Section 4.6.1)
e CP4, future horizon ( 2090-2100)

e Bias-corrected CP4 future

The parameters of Stochastorm (marginal distributions, spatial structure,
etc.) are used as an analytical tool to provide a comparison of the properties
of the precipitation sources.

Ten simulated scenarios of ten years from Stochastorm calibrated on each
of the five precipitation sources are produced.

4.6.3 Hydrological model description: Phorm

Each of the ten Stochastorm-generated scenarios of ten years, plus the orig-
inal CP4 simulations, are then used as inputs to a hydrological model.

The process-oriented rainfall-runoff model Phorm (Purely Hortonian
Runoff Model) developed specifically for the semi-arid West African Sahel
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(Quantin et al., 2017) was used to test the sensitivity of hydrological re-
sponse to changes in precipitation. The model is implemented on the Dargol
River basin (7600 km?), one of the right-bank Sahelian tributaries of the
Niger River located near to the AMMA-CATCH Niger rain gauges. Its size
is compatible with that of Stochastorm outputs.

Phorm represents the dominant processes responsible for flood genera-
tion in the Sahel. Runoff in the Sahel is primarily generated by Hortonian
processes (Peugeot et al., 1997), where runoff is generated once the infiltra-
tion capacity of the soil is reached. Subsurface flow plays a negligent role
and is ignored in the model (Peugeot et al., 2003). As antecedent soil mois-
ture conditions are of negligible influence on runoff production in the area
(Malam Abdou, 2014), the model simply represents the infiltration capac-
ity by a constant infiltration rate equal to the hydraulic conductivity (Ks).
A hydraulic conductivity value is associated with each subbasin and deter-
mines the volume of precipitated water that arrives to the river channel after
a precipitation event. Once in the channel, model dynamics are governed
by river geometry parameters (channel and floodplain), the roughness coeffi-
cient (Manning coefficient), and riverbed infiltration loss. Previous tests have
already shown that Phorm produces realistic outlet discharge values when
using AMMA-CATCH rainfall records as inputs (Quantin et al., 2017).

4.7 Results and discussion

4.7.1 Bias correction results
Bias-corrected CP4: present

Although the original unbiased CP4 simulations had an excess of (mostly
small) events (Figure 4.5a), it underestimated the average annual cumulative
rainfall (Figure 4.5b). Bias correction methods increased the annual cumula-
tive rainfall. Cumulative rainfall is now overestimated, but less severely than
the previous underestimation.

Of note is the correction in the seasonal signal of storm extent (propor-
tion of zero values) and cumulative event rainfall (Figure 4.6). The correction
method for the proportion of zero values within a rainfield brought values
much closer to those of AMMA-CATCH (Figure 4.6a). Although seasonal-
ity was not explicitly included in the bias-correction method, the corrected
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dataset has an improved seasonal signal, more comparable to that of AMMA-
CATCH.

The underestimation of average event rainfall was also mostly corrected
(Figure 4.6b), especially during the middle of the rainy season. There is still
a small underestimation, but this may be in part due to the lack of seasonal
correction of the proportion of zero values. As the combination of timing,
extent, and magnitude may have an important impact on local hydrology,
the correction in the seasonal signal and storm extent may compensate for
some inaccuracy in cumulative annual rainfall values.
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Figure 4.5: The relative contributions of large and small events to a) total events
per year and b) total cumulative annual rainfall. CP4 projects that annual rainfall
will increase in the future in the study region.
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Figure 4.6: Results after applying bias correction methods. a) The proportion of
zero values in CP4 before and after correction, compared to AMMA-CATCH data.
b) The average cumulative event rainfall before and after correction.
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Figure 4.7: Results of bias correction on quantiles. Moderate values are corrected
for CP4 1997-2006, and extreme values are overall reduced (a,b). For future pro-
jections, the increase in mid-range values becomes more pronounced while only
the most extreme are reduced (c,d).

Bias-corrected CP4: future

CP4 projected that precipitation would increase in the future. The number
of events would stay approximately the same (even decrease slightly - see
Figure 4.5a), but the average precipitation per event would increase signifi-
cantly (Figure 4.6b), leading to an increase in the annual cumulative rainfall
(Figure 4.5b). After bias correction, the annual projected cumulative rainfall
increased greatly.

4.7.2 Hydrological modeling results
CP4 present: before and after bias correction

Figure 4.8 shows the average hydrological regime of the Dargol over ten years
(observed or simulated). The confidence intervals were established from the
10 stochastic scenarios of 10 years for each case tested.

130



When used as inputs to the hydrological model, Stochastorm scenarios
calibrated on AMMA-CATCH data produce comparable results to the ob-
servations (Figure 4.8). This indicates the ability of Stochastorm to capture
the main storm features that drive hydrological processes in the region, as
demonstrated in Chapter 3

Using CP4 directly as inputs, however, produced significantly underesti-
mated flow results (Figure 4.8a). Both annual flow volumes and peak annual
discharge were approximately half of observed values. The timing of the
seasonal signal remained well-represented, aside from the underestimation.

Precipitation scenarios from Stochastorm calibrated on CP4 improved
results over the basic CP4 precipitation simulations (Figure 4.8b). Using
CP4-based Stochastorm scenarios improves flow volumes, but underestimates
peak season values and overestimates the variability.

The improvements when using Stochastorm outputs may be due to the
fact that CP4 simulations have a 15-minute time step and Stochastorm out-
puts based on CP4 have a 5-minute time step. The higher-resolution inten-
sities would be less smoothed and have a higher impact on Hortonian runoff
generation. Since the temporal disaggregation method in Stochastorm is em-
pirically based on observed AMMA-CATCH intensities, sub-event intensities
of CP4-based Stochastorm scenarios may be more realistic than the original
CP4 run. Using CP4-based Stochastorm scenarios instead of directly using
the CP4 simulations may also have corrected intensities at the event scale
(CP4 tends to produce events that are longer in time than those measured
by the AMMA-CATCH rain gauges).

Figure 4.8¢ shows hydrological model outputs from CP4-based precipi-
tation scenarios after bias correction. The bias-corrected scenarios generate
hydrological model outputs that correct the underestimation and match more

closely to those of AMMA-CATCH.
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Figure 4.8: Hydrological modeling results (discharge at outlet), with 10% and 90%
quantiles for results based on Stochastorm scenarios. Comparisons between ob-
servations (black), hydrological model outputs using AMMA-CATCH stochastorm
scenarios as inputs, and: outputs driven by CP4 in its original form (a); outputs
driven by Stochastorm outputs calibrated by CP4 (b); and Stochastorm outputs
calibrated by bias-corrected CP4 (c). Average annual volumes are shown in the
legend.
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Figure 4.9: Hydrological modeling results (discharge at outlet) for future projec-
tions, with 10% and 90% quantiles for results based on Stochastorm scenarios.
Results using the original CP4 simulations (a), CP4-based Stochastorm scenarios
(b), and bias-corrected CP4-based Stochastorm scenarios (c) are shown. Average
annual volumes are shown in the legend.

Figure 4.9 shows the results for using future CP4 and CP4+4Stochastorm
scenarios to drive the hydrological model. Even before bias correction, annual
volumes and peak flow values are projected to be greater than the values in
the observed record (Figure 4.9a). Future CP4-based Stochastorm scenarios
generated streamflow values that were approximately 1.5 times more than
the present for peak streamflow and nearly twice as much for annual volume
(Figure 4.9b). After bias correction of the precipitation inputs, average peak
discharge is projected to be approximately double and average annual flow
volumes approximately triple currently observed values.
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4.8 Conclusions and perspectives

4.8.1 Methodological advances

In this study, a modeling chain for future hydrological projections was devel-
oped and presented. The first high-resolution convection-permitting RCM
for Africa, CP4, was evaluated for its promising ability to replicate precip-
itation in the region. A stochastic precipitation simulator was calibrated
using CP4 and used to generate multiple CP4-like precipitation schemes.
CP4 plus the rainfall scenarios were used as inputs in a hydrological model
that replicates processes in the Sahelian study region. Finally, outputs of
the hydrological model were evaluated. Results showed that streamflow will
potentially double over the next century in the Sahelian Niger River basin.

The study demonstrates that convection-permitting RCMs provide
promising information for impact studies. Stochastic precipitation gener-
ators and bias correction methods can link RCMs to hydrological models for
producing additional realistic scenarios and exploring variability.

4.8.2 Limitations and future work

CP4 has many strong points in its ability to correctly replicate Sahelian
precipitation. However, it also presents certain limitations. Only a limited
number of years of simulations are currently available. It is also biased, as
shown; while we were able to eliminate much of the bias thanks to AMMA-
CATCH control data, that is not the case for all of Africa. We can use the
transfer function for the AMMA-CATCH Niger study area to apply the same
bias correction approach to CP4 in a different part of Africa, but this uses
the assumption that the bias is consistent throughout CP4. One could per-
haps make the assumption that the bias is consistent within regions having
relatively homogenous climate features - such as within the Sahel - but the as-
sumption becomes less valid in other regions. The tools and methods should
be verified in other regions by using for instance the other AMMA-CATCH
sites in Sudanian climate (Benin) and possibly satellite remote sensing rain-
fall products (even if their skills are still limited over the region and their
scale are coarser than the expected kilometic resolutions).

Future projections from CP4 are based only on one GCM initialization
with one RCP scenario. Other GCMs under different hypotheses could poten-
tially lead to vastly different conclusions about how the climate will change
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in the future, as the conditions of the initializing GCM have a significant
impact on RCM’s accuracy (Jenkins et al., 2002). There is currently a joint
project between the IGE, CEH, Met office, and University of Reeding to
investigate the impacts of GCM initialization choices on CP4 projections.

One limitation of the study is that the only factor considered for future
hydrological projections was changes in precipitation. Land use changes,
already shown to have significant impacts in the Sahel historically, were not
taken into account. As the population in West Africa is undergoing rapid
growth and demographic change which is projected to continue, anthropic
changes are potentially an important factor in changing land surface and as
a result changing infiltration capacity and runoff. Changes in land surface
from climate changes itself are also probable.

These questions lead towards the question of attribution: Which factor
has a more significant impact for future changes in hydrology, precipita-
tion/climate changes or land surface changes? Additional methodology is
required in order to evaluate the relative impacts in a robust manner. The
capacity for non-stationary land surface properties is already implemented
in hydrological model.

Despite the aforementioned limitations, our results suggest concerning
projections that would bring societal implications. If peak streamflow may
double and annual discharge volumes triple, what are the impacts on local
populations? What adaptations measures are required for flood protection
given the potential increase in flow? On the other hand, how might the
increase in flow benefit local populations due to the increased available wa-
ter resources, especially if structures for irrigation are put in place? More
evaluation is necessary in order to understand the potential implications of
hydrological change (Bléschl and Montanari, 2010). However, these ques-
tions highlight the importance of pursuing the development of hydrological
projections in order to provide sound and relevant indicators for decision
makers in charge of water resources and hydrological risk management in the
region.
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Chapter 5

Conclusions and future
research directions

5.1 Summary and implications of thesis work

This thesis focuses on detecting changes in extreme hydrological events and
modeling the systems that produce those events. It adopts an original ap-
proach based on taking into account the most important processes in the
genesis of hydrological extremes within a continuum from the past to the
future, from global climate to river discharge.

The thesis work is conducted in West Africa with a particular focus on
the Sahel, the semi-arid band crossing the region from east to west between
latitudes 12°N and 18°N.

In the intertropical zone, West Africa is recognized as one of the most
critical regions with regard to the global changes underway. The livelihood
of local populations is essentially based on rainfed agriculture which is highly
dependent on the limited available water resources. The marked seasonality
of rainfall tied to the West African monsoon that produces it is thus an
intrinsic factor of vulnerability. The variability is also strong at the decennial
scale, as illustrated during the last century by the abrupt transition between
two periods: relatively wet in the 1950s and 1960s followed nearly 30 years of
drought whose intensity and scale remain unmatched in the modern world.

There is great variability of precipitation at the inter-annual scale, par-
ticularly in recent years where dry and wet years can be mixed together in
a seemingly haphazard way. The last three decades, although on average
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slightly wetter than during the great drought period, have continued to be
subject to dry sequences with detrimental impacts on crops. At the same
time they have witnessed an increasing number of severe floods that caused
widespread fatalities and damages.

The magnitude of the flood risk problem in West Africa has led the sci-
entific community to look into the possible mechanisms behind the apparent
increase in risk. The main hypotheses for the increase in risk were mainly
based on the undeniable increase in population ”exposure” to floods, partic-
ularly because of the high population growth in this region of the world in
cities prone to expansion of habitants in floodplains.

The ”"hazard” component of flood risk was less documented. A few pre-
vious studies discussed the potential causes of floods, mentioning two mul-
tiplicative effects related to (i) soil degradation resulting from the combined
impact of agricultural intensification and the great drought, and (ii) intensi-
fication of rainfall which has proven to be a major marker of climate change
over the last three decades in the Sahel with a tripling of the frequency of
extreme monsoon storms.

On the other hand, there was very little information on how these two
factors actually affect the magnitude of the floods, or how their future devel-
opment might continue to influence flooding in the coming decades.

This led to several lines of research that guided my thesis work. The first
concerned the quantification of the flood trend, an evaluation that is central
to understanding the past trajectory of flood risk and attributing the causes.
The second concerned the possibility of analyzing the impact of rain in the
genesis of floods. The focus was on the characteristics of monsoon storms, as
they are at the interface between changes in the properties of the atmosphere
and hydrological impacts.

I therefore conducted my work on both flood trend detection problems
(Chapter 2) and stochastic modeling of monsoon storm systems (Chapter
3) with the aim of contributing to set up a chain of model from climate to
hydrology to project the impact of future precipitation changes on floods in
the Sahel (Chapter 4). In the first part of this chapter, I summarize below
the approach adopted and the main results obtained for each major question
posed by the thesis.

In the second part of the chapter, the next steps identified for the con-
tinuation of research given the current limitations are presented. The third
part focuses on prospectives for creating a robust attribution framework for
trends in hydrological extremes.
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Q1: Is there a significant trend in extreme streamflow in West
Africa, or are the documented flooding events isolated incidences

Methodological advances: The study on trends in extremes in West
Africa provided non-stationary GEV distributions for hydrological annual
maxima with flexible representations of non-stationarity. The use of an un-
derlying non-stationary distribution allows for estimation of uncertainty, cal-
culation of return levels, and confidence intervals on both parameter values
and return levels, all of which were conducted in the study. An estimation of
the magnitude of the trend was also provided. The trend detection methodol-
ogy was specifically designed for extreme values, unlike other statistical tests
which assume the data is normally distributed. A robust model selection
procedure was applied. Two regions with distinct hydrological characteris-
tics were compared in the study: the Sahelian area of the Niger River basin
and the Sudano-Guinean area of the Senegal River basin. The methods were
implemented using R software which is freely available.

Findings: For all data series studied, the non-stationary GEV was sig-
nificantly more representative of the data than the stationary GEV. The
study confirmed significant trends in extreme streamflow in West Africa with
greater than 99% confidence.

Trends in the Sudano-Guinean region of the Senegal River are in contrast
with trends in the Sahelian Niger River. All trends are positive for the
modern period, but started increasing in the 1980s in the Senegal River
basin, whereas the increase started earlier (1970s) and at a greater rate in
the Sahel.

For the right-bank tributaries of the Niger river, return levels have greatly
increased. The 2-year return levels have more than doubled since the end of
the 1960s and the 10-year return levels are currently over 1.5 times higher
than they were before. Shorter-period return levels (2- and 5-year) esti-
mated with a non-stationary GEV are 95% certain to be above return levels
estimated with a stationary distribution. Uncertainty increases with longer
return periods.

Implications: The results have direct impacts for the design of hydraulic
structures and for river basin management. Hydraulic structures are com-
monly designed according to the magnitude of a given return level. The use
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of a stationary distribution to calculate return levels in the right bank of the
Niger River and for a few stations in the Senegal River basin would underes-
timate return level values. If the structure was designed for flood protection,
this would lead to populations and infrastructure being at greater risk of
flood damage. The increasing trends in extreme values indicate an increase
in frequency of events of greater magnitudes.

For the Senegal River basin in particular, accurate estimation of return
levels is essential for management of existing dams and construction of addi-
tional planned hydroelectric structures.

Limitations : The study made use of a limited selection of parametric
models in the range of model choices for representing temporal evolution
of GEV parameters, although a few additional parametric functions were
evaluated during sensitivity testing. Only breakpoints that were a switch
between two linear increasing or decreasing trends were considered, rather
than other types of regime changes (e.g. abrupt shifts).

Uncertainty is high for all return levels other than for very short return
periods (2-year, 5-year). Given the length of the data sets of about 60 years,
naturally the 100-year return level would be accompanied by high uncer-
tainty. Uncertainty would decrease with additional data and suitable model
choice.

The uncertainties do not incorporate rating curve uncertainty, as this is
challenging to estimate without additional measurements. Rating curve error
could have a particularly significant impact on extreme event documentation.

Although an increase in precipitation intensity during the last two decades
seems to be one of the main drivers of hydrological changes at present, it was
not the case in the past (Sahelian Paradox during the 1970s-1980s drought)
and it may not be the case in the future.

Q2: How can one model mesoscale convective systems in order to
explore the properties of precipitation that drive streamflow?

Methodological advances: This study presented the stochastic rainfall
simulator Stochastorm that provides an accurate statistical representation of
mesoscale convective systems (MCSs) in the intertropical zone. It is capa-
ble of replicating the spatial covariance structure, spatial intermittency, and
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magnitudes of precipitation within a storm event. It features a model for
the occurrence of events throughout the season, defined season start and end
points, and parameter seasonality. Extreme precipitation values were explic-
itly modeled via a peak-over-threshhold (POT) distribution in the marginal
distribution for values above a given threshold. It realistically represents the
marginal distribution of cumulative event precipitation, as well as sub-event
intensities.

The application to the test region in the Sahelian zone of West Africa
added the feature of having different model parameters for small and large
events.

A notable improvement was the use of a four-parameter Beta distribution
to better model the sub-event variability of precipitation intensities. The
four-parameter Beta distribution allows for the definition of upper and lower
bounds and thus allows simulations to be more coherent with the physics of
precipitation generation.

Findings: Precipitation scenarios produced by the simulator have the same
main statistical properties as the input data used to calibrate the simula-

tor. The advancements proposed in this thesis improve the representation of
MCSs in the Sahel.

Implications: Stochastorm can generate long series of precipitation data
for use in sensitivity testing and for application in areas where no measure-
ments exist. The fact that Stochastorm realistically represents key charac-
teristics of MCSs in the Sahel at an appropriately high resolution means it
can be used to drive impact models, e.g. for hydrological and agricultural
studies.

Limitations One of the major limitations of Stochastorm in the context
of climate change is its lack of ability to directly incorporate nonstationary
interannual trends in simulations. It can model interannual non-stationarity
if the user directly changes parameters after simulating one year at a time
(or by simulating two different time periods as done in Chapter 4), but this
must be done "by hand” year by year. It has also only been calibrated and
applied on one specific study zone in one specific climate region. Adapting
it for different tropical climate regions may not be straightforward.
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Q3: Based on potential precipitation changes, what trends might
we see in streamflow in the future?

Methodological advances: The main methodological contribution of this
study was the production of a modeling chain for hydrological projections.
The RCM CP4-Africa, one of the first convection-permitting RCMs available
in the region at scales that can be used for impact studies, was shown to re-
produce several key characteristics of precipitation in the Sahel. CP4 was
corrected for bias according to the limitations identified in the original CP4
simulations after comparison with high-resolution in-situ AMMA-CATCH
data. The bias-corrected CP4 was then used to calibrate the stochastic pre-
cipitation simulator Stochastorm and produce CP4-like precipitation scenar-
ios. Finally, scenarios for the present and for future projections were used
as inputs to a hydrological model implemented in the Sahel region of the
Niger River. The modeling chain is one of the few (if not the only one) that
can show the hydrological impact of future evolution of convective rainfall in
West Africa due to climate change.

Findings: Although the number of precipitation events was not projected
to increase (number of events approximately stable), the average magnitude
of each event is. The projected increase generates larger annual precipitation
volumes and greater average cumulative event rainfall. Hydrological mod-
eling results for the model implemented for the Dargol River showed that
the increase in precipitation led to streamflow volumes that were three times
larger on average in the future than in the present. Discharge for simulations
driven by the the bias-corrected CP4 scenarios was on average nearly twice
as large in the future than for the present.

Implications: The increase in river discharge calls for adaptation measures
in order to reduce flood risk. At the same time, the increased precipitation
and river volumes might be promising for agricultural purposes, notably ir-
rigation (provided that suitable hydraulic structures are available to capture
surface water for this purpose). More studies are needed to investigate these
points as the increase in intensity and stable number of events may have
varying effects. It also encourages more hydrological projections to be made
so that actions and policy initiatives can be identified that are appropriate
for the expected changes over specific timelines in the future. Adaptation
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strategies are especially important given the projected demographic growth
and change in the region.

Limitations: At the time of the research conducted for this thesis, CP4
simulations were available for ten years from 1997-2006 and ten years during
a period 100 years in the future. In addition, CP4 was initialized only on
one GCM with one RCP scenario. Although CP4 gives insight into potential
future changes, it does not indicate what may happen in 2050, for example,
nor what would happen under different future emissions scenarios and under
the forcing of a different GCM. The internal model variability may also have
had an impact on projection results (Hawkins and Sutton, 2011; Monerie
et al., 2017), although internal variability is most able to impact climate
signal projection on a short-term horizon (10-30 years) and not on the longer
horizon seen in the present study.

CP4 also has some limitations regarding its coupling (or lack thereof)
with various components of the global environmental system. CP4 is forced
unidirectionally by the global climate model, without bilateral interactions.
It is not coupled with surface processes, including vegetation which may pro-
vide feedbacks that influence regional climate. In spite of these limitations,
CP4 is still the most advanced RCM available for the region at the present
time.

CP4 had some remaining biases after correction with AMMA-CATCH
data. It is unknown whether the bias in CP4 is constant spatially, i.e., it
is unknown whether the transform applied over the AMMA-CATCH site is
applicable elsewhere in Africa. This limits the ability to apply the bias cor-
rection methods to other regions of CP4 data with confidence in the results.

Arguably the major limitation of the modeling chain is that the only
factor considered to impact future hydrological projections was changes in
precipitation. Certainly other causal factors are possible. Land surface prop-
erties already has been shown to have an important role in runoff generation
in the Sahel. The population in the region is projected to grow rapidly,
which may lead to changes in land use patterns and practices in the future
due to demographic pressure. In addition, the drainage basins would nat-
urally evolve according to future changes in precipitation. In the present
thesis the parameters of the hydrological model were considered stationary.
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5.2 Future research directions

5.2.1 NSGEV models for trends in hydrological ex-
tremes

Updating and extending NSGEV models

Ongoing next steps in the continuation of Wilcox et al 2018 (Chapter 2)
include updating NSGEV models for AMAX time series. The additional
information could be in the form of longer time series as new data becomes
available. It can be also in the form of updated rating curves. Rating curves
play a large role in the accuracy of flow measurements. The right bank
of the Niger River in the Sahel features high rates of sediment transport,
meaning that rating curves might quickly become inaccurate and need to
be updated more frequently (as opposed to rivers flowing on bedrock, which
stays relatively stable).

One project (ANADIA project led by the Polytechnic and the University
of Turin, Italy) was already completed to update rating curves for the Sirba
River. I had the opportunity to update the NSGEV for the Garbe Kourou
station based on the updated data set, and to collaborate to the writing of
a paper recently accepted for publication in the journal Water (Massazza
et al., 2019). Results showed that the trend in AMAX in the updated series
was much greater than that previously found. 2-. 5-; and 10-year return
levels estimated with the updated series were approximately double those
estimated with the original series. The increase was greater for longer return
levels, however uncertainty was also high. Performing the same update to
other rivers as more accurate rating curves become available would improve
the representation of extremes.

The same NSGEV analysis can also be extended to other stations in the
region in order to further evaluate the regional contrasts or consistencies in
flood changes over the last century. This would allow more insight into how
return levels vary temporally and spatially if a non-stationary model is used.

Identifying other spatiotemporal factors that influence NSGEVs

One idea is to see if there is a spatial pattern in the trends of extreme
values. Panthou et al 2013 already determined that there is a latitudinal
gradient in extreme precipitation. The same analysis could be performed
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with streamflow using spatial covariates such as latitude, longitude, elevation,
etc.

Another idea is to directly use covariates that change over time to perform
attribution and explain drivers of extreme hydrological values. Consider for
instance the subject of whether precipitation changes or land surface changes
better explained changes in extreme streamflow. This is similar to the analy-
sis done in Risser and Wehner (2017), which attributed Hurricane Harvey to
human influences using proxies for human and climate factors as covariates.
In the case of extreme streamflow in the Sahel, proxies for climate could
be a precipitation index: annual rainfall, average event intensity, number of
events per year, etc. It could also be a factor such as potential evapora-
tion. Potential land cover covariates could be hydraulic conductivity values
(Ks), percent cover of a certain land cover/vegetation type, etc. The analy-
sis of land cover, however, would require additional data about land surface
properties, or interpolating in time between available data sets and making
assumptions about the evolution.

5.2.2 Stochastic precipitation generator
Model improvements and feature additions

Immediate next steps for the stochastic precipitation simulator Stochastorm
(Chapter 3) focus on using the simulator in a wider variety of contexts. A
top priority would be adding the improvements developed during this thesis
to an R package for Stochastorm that would facilitate additional work.

Another priority continuing to improve and validate the temporal disag-
gregation methods. The relationship between the maximum intensity and
the cumulative event precipitation can be improved, especially for represent-
ing the most extreme intensities. Only one standard hyetograph was used,
limiting the diversity of storm types and the flexibility of the storm duration
associated with a given max intensity. One can imagine having multi-peak
storms and relaxing the links between maximum storm intensity and other
characteristics of the hyetograph.

One can envision making the season definition and seasonality parameters
of Stochastorm more flexible, and their selection more automated. The end
goal would be to make Stochastorm implementable in regions that do not
have the stark wet season/dry season contrast that the Sahel has, and that
have other forms of seasonal signal (although several covariate types are
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already available in Stochastorm).

At the present moment, Stochastorm is assumed to be accurate over the
entire data period. Although initial tests did not find a great difference
in model parameters between the 1990s and 2000s, the model parameters
may not be applicable during other time periods where the precipitation
characteristics varied more drastically. In order to have continuity in the
model over time, one important advancement for Stochastorm would be to
implement non-stationarity into the model.

The issue of non-stationarity has particular methodological significance
when considering non-stationarity in extreme values for the continued inves-
tigation of the flooding issue. If the underlying distribution of extreme values
changes, how would small and mid-range values change? How to realistically
represent the observed non-stationarity in precipitation characteristics in the
format of stochastic model parameters?

Using Stochastorm in other regions

A major endeavor for Stochastorm would be to validate the model in other
areas. One could start within the Sahel to verify the hypothesis that Stochas-
torm is applicable to other areas within this relatively homogenous climate
zone. Then, one could test Stochastorm in other areas of West Africa where
precipitation properties start to differ. The other AMMA-CATCH sites in
Benin and Mali/Senegal could be useful in achieving this first goal as they
provide sub-daily rainfall data suitable for documenting rainfall variability
at the meso-scale (Vischel et al., 2011). This is an important step before
applying Stochastorm in areas where no data is available. Eventually, one
can envision validating the model for studies in regions with more greatly
differing climate.

Another prerequisite for applying Stochastorm elsewhere would be to add
numerical evaluation criteria that would both validate the accuracy of the
model and more easily allow for comparison with other models. For example,
the jackknife method could be applied to first verify model sensitivity, and
the total rainfall over the modeled area could be utilized as a means of
comparison with other models.

In particular, there is a need to verify that the relationship between the
maximum subevent intensity and cumulative event rainfall is applicable in
other areas. Many regions of the world (especially in the tropics) do not
have in-situ precipitation measurements at five minutes, and the empirical
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relationship between intensities and event rainfall developed using AMMA-
CATCH Niger data is unlikely to be universally applicable.

5.2.3 Limits of applicability of bias-corrected CP4

Similar to the need to validate Stochastorm in other regions, validating that
the bias correction method applied in Chapter 4 is applicable to all (or a given
area) of CP4 in West Africa (or even Africa) is an essential next step. If the
transform used to correct CP4 at the AMMA-CATCH Niger site is found
to be valid over a given region, it can be used to correct biases in CP4 for
areas that do not have in-situ measurements. This would be advantageous as
CP4 could provide realistic precipitation simulations for regions where data
is lacking.

The validation of the bias correction transform can be achieved by com-
paring the CDFts developed for correcting the bias of CP4 at two sites that
each have in-situ data. Once again, the AMMA-CATCH data sets in other
parts of West Africa can prove to be useful. Alternatively, when no sub-daily
data are available, daily data from national weather services can also be of
much value to assess CP4 and the related bias correction method perfor-
mances.

Another important step is to evaluate the stationarity of the calibrated
bias-correction transform over time. The present thesis assumed that the
bias correction used for CP4 in the present period was also valid for future
projections. This is a significant assumption. One way to validate it would be
to confirm, once additional CP4 simulations are available for different years,
that the difference between the transform function in one subperiod does not
significantly differ from the transform function in another subperiod.

5.3 Attribution of trends in hydrological ex-
tremes

The modeling chain presented in Chapter 4 features qualities that advance
the current research on localized hydrological projections. It uses an RCM
that resolves convection, quality in-situ data to correct biases in the RCM,
and a hydrological model that represents processes in the study area accord-
ing to decades of previous research. The above qualities give legitimacy to
the hydrological projections produced by the modeling chain.
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However, in spite of the advances, it has limitations which raise numerous
additional questions. One of the major limitations of the study in Chapter
4 is that it treated precipitation as the only driver of future changes in local
hydrology in West Africa. Although climate is a driving factor in hydrolog-
ical processes, it is not the only one. It has already been shown that land
surface changes have a significant impact on runoff in the Sahel, notably
the soil crusting that occurred during the drought in the 1970s and 1980s
and produced the Sahelian Paradox effect of more runoff in spite of reduced
precipitation (Albergel, 1987; Descroix et al., 2009; Aich et al., 2015; Cassé
et al., 2016; Gal et al., 2017; Boulain et al., 2009).

The main research direction envisioned is to better identify and under-
stand the causes of changes of extreme streamflow in West Africa. Simply
considering driving factors as explanatory covariates in a non-stationary dis-
tribution as described in Section 5.2.1 can be done as a first step. However,
to more fully evaluate the relative contributions of different causal factors,
it is recommended to adopt the attribution framework proposed in climate
change studies.

5.3.1 Background for attribution in climatology

The main next objective identified for after this thesis is to take detection
and attribution (henceforth D&A) methods and apply them to the problem
of flooding in the Sahel region. The goal is to develop robust methods for
attributing changes in flood magnitude to either climate changes or land use
changes.

The task of attribution requires several preliminary steps. First, a statisti-
cally significant trend or change in the variable of choice must be identified,
one that was not caused by internal variability at a certain level of confi-
dence. Second, the system under study must be evaluated. The given drivers
(here climate and hydrological/land surface characteristics) must be well-
understood, especially as an accurate representation of the internal system
variability is essential for D&A methods. Next, the system must be modeled
in a way that allows the user to change parameters related to hypothesized
causes. Simulations are run with the model using parameters/scenarios that
reflect the attribution hypotheses. Finally, model outputs are used to con-
duct the attribution analysis. Note that these steps are rarely followed in
the studies claiming hydrological attribution (Merz et al., 2012), and even
less so in West Africa.
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In the field of climatology, methodologies have been developed for ad-
dressing the issue of global climate change, in particular global temperature
change. In order to attribute temperature change to a particular cause, two
global climate models (GCMs) simulations are compared: 1) A GCM simula-
tions that includes only natural influences on the atmospheric greenhouse gas
and energy balance, such as volcanoes and fluctuations in solar irradiance,
and 2) a GCM that includes both natural and anthropogenic greenhouse
gas influences. The models are run over the observation period. Multiple
scenarios are produced for each model in order to have an estimate of inter-
nal variability. Then, observations are regressed against the GCM outputs
typically using a form of Generalized Least Squares (GLS) regression (often
called “fingerprinting” in climate change literature).

The Intergovernmental Panel on Climate Change has provided specific
definitions for what is meant by both “detection” and “attribution.” Detec-
tion is the process of proving, within a certain level of confidence, that a
given trend could not have been produced by “internal” (unforced) variabil-
ity alone. It does not assign a cause to the change (Hegerl et al., 2010).
The detection step was already completed for the case of non-stationarity of
extreme hydrological events in West Africa in Chapter 2.

Attribution goes a step further by assessing if the trend is associated with

one or more external drivers on the system, and not with other, physically
plausible causes (bin, 2013)).

5.3.2 Methods for attribution

Researchers in the domain of climate studies have developed robust methods
for detection and attribution over past decades, including the well-known
attribution of increased surface temperatures to anthropogenic greenhouse
gas emissions. The methods provide ways to both arrive at a given conclusion
and quantify the certainty of the attribution. Although well-developed in
climatology, these methods have not often been applied to hydrological issues.

Within this framework there are two main approaches to attribution:
trend attribution and event attribution.

Trend attribution

Trend D&A seeks to evaluate long-term evolutions in a variable under study.
Early D&A studies in climate sciences focused on this approach (see Hassel-
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mann, 1993; Hegerl et al., 1997; Hasselmann, 1997 and Allen and Tett, 1999
for examples and methodology). The goal was typically to attribute a trend
in a climate variable, such as mean surface temperatures, to a given cause,
commonly anthropogenic greenhouse gas emissions.

Termed “optimal fingerprinting” in the climate change D&A literature,
the primary method for attribution method is in essence a form of generalized
least squares regression. It follows the for