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Nous étudions les relations entre des propriétés géométriques et des propriétés métriques dans les domaines de C n . Plus précisément, étant donné un domaine pseudoconvexe borné D à bord ∂D lisse, nous nous intéressons au comportement asymptotique des courbures bisectionelles holomorphes de métriques de Kähler invariantes, la métrique de Bergman et la métrique de Kähler-Einstein, en un point p de ∂D. Lorsque p est un point de stricte pseudoconvexité, ∂D ressemble localement au bord d'une boule et les courbures de D sont asymptotiquement proches des courbures de cette boule à mesure que l'on se rapproche de p. Ce phénomène est également vrai lorsque la fonction de squeezing de D tend vers 1 en p. Si p est un point de faible pseudoconvexité de type ni, ∂D ressemble localement à un domaine polynomial "modèle", et l'on s'attend à ce que les courbures de D s'approchent des courbures de ce "modèle". Il est donc naturel d'étudier les courbures des métriques de Bergman et de Kähler-Einstein dans ces domaines. Dans certains de ceux-ci (les domaines de Thullen et les domaines tubes dans C 2 ), les courbures bisectionelles holomorphes des métriques suscitées sont pincées négativement. Ces résultats permettent de prouver que si D ⊂ C 2 est convexe ou Reinhardt complet et si un modèle en p est soit un domaine de Thullen soit un domaine tube, alors les courbures bisectionelles holomorphes de D sont pincées négativement dans un voisinage conique de p.

Introduction

Given a bounded domain D in C n or a complex manifold with boundary it is natural to study the relationships between quantities containing information about the complex geometry of D. For instance one can ask whether the curvature of the boundary of D is related to the curvature of objects dened on D, such as invariant Kähler metrics. A Kähler metric on D associates with every point of D a way to measure angles between two directions, and the metric is called invariant if it respects the symmetries of the domain. If the metric is smooth, we may study its curvatures, which roughly measure the variations of the metric with respect to the point. We expect that the behaviour of the curvatures of the metric is inuenced by the geometry of the boundary ∂D of D, at least when we look at points of D close to ∂D. As an example, we may hope that if ∂D looks like the boundary of a ball B near a given point q of the boundary, then D is metrically curved like B when we look at points in D near q.

The discussion can be formalised as follows. Let n ∈ N \ {0, 1} be an integer, let D ⊂ C n be a bounded domain with boundary of class C ∞ . We also assume that D is pseudoconvex and ∂D is of nite type in the sense of D'Angelo (see Denitions 1.5 and 1.11). Let g i j be either the Kähler-Einstein metric of D with Ricci curvature -(n + 1) or the Bergman metric of D (see Section 1.4). We study the following question:

Question 1. Negative pinching Does there exist a neighbourhood V of ∂D such that the holomorphic bisectional curvatures of the metric g i j are negatively pinched on D ∩ V ?

The rst studies of the boundary behaviour of the curvatures of these metrics goes back to the late 1970. The answer to Question 1 is known for strictly pseudoconvex domains. Indeed, P. Klembeck proved in [START_REF] Klembeck | Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets[END_REF] that the Riemannian sectional curvatures (so in particular the holomorphic bisectional curvatures) of the Bergman metric near the boundary of a bounded strictly pseudoconvex domain with smooth boundary behave like the ones of the Bergman metric on the ball and S.-Y. Cheng and S.-T. Yau proved in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] a similar result for the holomorphic sectional curvatures of the Kähler-Einstein metric.

Let q ∈ ∂D. It is natural to expect that the behaviour of the curvatures of the metric g i j in a neighbourhood of q depends only on the Cauchy-Riemann (CR) geometry of ∂D at q. Some results support this idea. For instance K.T. Kim and J. Yu proved in [START_REF] Kim | Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains[END_REF] that if q ∈ ∂D is a strictly pseudoconvex boundary point of D, then there exists a neighbourhood

V of q such that the holomorphic sectional curvatures of the Bergman metric of D are negatively pinched on D ∩ U . This result can be extended to holomorphic bisectional curvatures, see Section 6 in [START_REF] Kim | Asymptotic behavior of the Bergman kernel and associated invariants in certain innite type pseudoconvex domains[END_REF]. Regarding the Kähler-Einstein metric, J. Bland proved a local version of the result of S.-Y. Cheng and S.-T. Yau if n ≥ 6 (see [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF]).

If ∂D is not strictly pseudoconvex at q, the situation becomes more complicated and curvatures conditions on ∂D are necessary. The notion of nite type is a natural generalisation of strict pseudoconvexity in the pseudoconvex setting (see [START_REF] D'angelo | Several complex variables and the geometry of real hypersurfaces[END_REF]). G. Herbort constructed an example of a bounded pseudoconvex domain with smooth boundary of nite type for which the holomorphic sectional curvatures of the Bergman metric are not bounded from below, see the conclusion for a discussion on the subject. This answers negatively Question 1 for a general pseudoconvex domain of nite type. However a domain D of nite type at q ∈ ∂D can be osculated by a model domain, in local coordinates near q, whose study should be simpler. Thus the natural question is:

Question 2. Local behaviour Does the metric of D behave like the metric of the corresponding model near q?

The answer is armative for the Bergman metric for a large class of domains in C n when dealing with holomorphic sectional curvatures (see [START_REF] Boas | Boundary limits of the Bergman kernel and metric[END_REF]). A pinching of the holomorphic sectional curvatures of the Bergman metric in the associated model near q yields to a pinching of the same quantities for the domain in a neighbourhood of q. As an example, S. Fu proved that the local model at every boundary point of a bounded pseudoconvex complete Reinhardt domain of nite type D ⊂ C 2 is either a Thullen domain or tube domain (see [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]). Using estimates of the holomorphic sectional curvatures of the Bergman metric in Thullen domains obtained by K. Azukawa and M.

Suzuki in [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF] he proved that the holomorphic sectional curvatures of the Bergman metric of D are negatively pinched in a neighbourhood of ∂D.

In the case of the Kähler-Einstein metric the answer is not known, essentially for the following two reasons: lack of localisation results for the Kähler-Einstein metric near weakly pseudoconvex boundary points, and lack of knowledge about the behaviour of the Kähler-Einstein metric in model domains. Indeed, the only model domains for which estimates of the holomorphic bisectional curvatures of the Kähler-Einstein metric are known are the Thullen domains, studied by J.S. Bland in [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF].

Our objective has been to provide with estimates of the holomorphic bisectional curvatures of the Kähler-Einstein metric and the Bergman metric in some model domains, and to deduce estimates in some classes of domains in C n . More precisely, in Chapter 2

we study the Kähler-Einstein metric at boundary points at which the domain looks like a ball, namely strictly pseudoconvex boundary points and points at which the squeezing function of the domain tends to 1 (see [START_REF] Yeung | Geometry of domains with the uniform squeezing property[END_REF]). We prove:

Theorem 1. Let n ≥ 2, let D ⊂ C n be a bounded pseudoconvex domain with boundary of class C ∞ , and let q ∈ ∂D. If q is a strictly pseudoconvex point of ∂D or if the squeezing function of D tends to 1 at q then, sup v,w∈C n \{0}

following holds for every z ∈ T p ∩ Re(z 2 ) 2p -Re(z 1 )

≤ α ∪ 1 -α ≤ Re(z 2 ) 2p -Re(z 1 ) < 1 : ∀v, w ∈ C 2 \ {0}, -C ≤ Bis g T p KE (z; v, w) ≤ -c.
Using Theorem 2 and the study of the Kähler-Einstein metric in Thullen domains we prove the following (see Theorem 3.3):

Theorem 3. Let D ⊂ C 2 be a bounded convex domain with boundary of class C ∞ . Let q ∈ ∂D be of nite type and such that a local model at q is either a Thullen domain or a tube domain. Then there exists a neighbourhood U of q such that for every non tangential cone Λ with vertex at q, Λ ∩ U ⊂ D, there exist positive constants 0 < c ≤ C such that:

∀z ∈ Λ ∩ U, ∀v, w ∈ C 2 \ {0}, -C ≤ Bis g D KE (z; v, w) ≤ -c.

In an attempt to prove a more general version of Theorem 3 we study the Kähler-Einstein metric in domains D H = {z ∈ C 2 /Re (z 1 ) + H (z 2 ) < 0} where H is a real-valued homogeneous convex polynomial. We prove the following partial result (see Theorem 3.4 for a more detailed statement):

Theorem 4. Let p ∈ N * . Let H be a real-valued homogeneous polynomial function of degre 2p which is subharmonic but not harmonic. Assume that there exists a complete Kähler-Einstein metric with Ricci curvature -3 on D H induced by a potential g (see Section 1.4). Set K := 2p + 1 3

. Then:

max v,w∈C n \{0} Bis g D H KE ((-1, 0); v, w) = max        - 1 K , -3 + 1 K + p -1 pK |g 22 | g 2 2 (-1, 0) 2        , min v,w∈C n \{0} Bis g D H KE ((-1, 0); v, w) = min        -3 + 1 K , -3 - 1 K - p -1 pK |g 22 | g 2 2 (-1, 0) 2        .
Consequently, to prove Theorem 3 for all bounded convex domains of nite type in C 2 it would be sucient to prove the inequality (p -1)

|g 22 | g 2 2 (-1, 0) < 2p 2 .
In Chapter 4 we study the Bergman metric. We rst prove that the holomorphic bisectional curvatures in tube domains T p introduced above and in Thullen domains Chapter 1

E p := z ∈ C 2 / |z 1 | 2 + |z 2 | 2p < 1 , p ∈ N * ,

Geometric and metric properties of domains Abstract

In this chapter we introduce the general notions and notations needed in the rest of this thesis, and we provide with examples that highlight the relationships between the geometric and the metric notions of curvatures. Section 1.1 contains mostly basic notations.

In Section 1.2 we recall the basic material needed about the geometry of domains in C n .

In Section 1.3 we describe these notions in what we call "model" domains in C 2 . In Section 1.4 we recall the basic material needed regarding the Kähler metrics and their curvatures in domains of C n and we dene Kähler-Einstein metrics and the Bergman metric. In Section 1.5 we give examples of Kähler metrics in certain classes of domains and in particular we give examples of domains of innite type with vanishing holomorphic bisectional curvature for the Kähler-Einstein metric.

Notions and notations

Throughout this thesis we use Einstein notation when there is no possible confusion.

In this Section, we x two non zero integers n and m.

We denote by M n (C) the set of square matrices of size n, with complex coecients. In this set, we denote by 0 the null matrix and by I the identity matrix. The coecient in position (i, j) ∈ {1, • • • , n} 2 of a matrix M is noted M i j and we also note M = M i j .

Let A = A i j , B = B i j ∈ M n (C), v = [v i ] ∈ C n , w = [w j ] ∈ C n (here and from now on we abusively identify vectors with column matrices).

If A is invertible, we note A i j = A -1 . It is characterised by the relations A i kA k j = A i kA k j = 1 if i = j, 0 otherwise. Especially, T r (A -1 B) = A i j B j ī, where T r denotes the trace function. We denote by Det (A) the determinant of A. To simplify notations we simply write Det A i j instead of Det A i j and proceed likewise with the trace function. We denote by t

A the transpose matrix of A, and by A its conjugate. They are respectively characterised by the relations ( t A) i j = A j ī and A i j = A i j for every integer 1 ≤ i, j ≤ n.

We denote by H n := {A ∈ M n (C) / t A = A} the space of Hermitian matrices of order n.

If A ∈ H n we note v, w A := A i j v i w j . Recall that v, v A ∈ R.

If A, B ∈ H n , we dene the relation B ≥ A, respectively B > A, if and only if the inequality v, v B ≥ v, v A holds for every v ∈ C n \ {0}, respectively v, v B > v, v A for every v ∈ C n \ {0}. We note H + n := {M ∈ H n /M ≥ 0} and H ++ n := {M ∈ H n /M > 0}.

If A ∈ H + n , we note |v| A := v, v A .

We will need the following classical fact that we do not prove:

Proposition 1.1. 1. Let A ∈ H + n .Then there exists R ∈ H + n such that R 2 = A. The matrix R is called a square root of A. The space of non empty compact sets of C n equipped with the distance d H is a complete space. Let (D ν ) ν∈N∪{∞} be a family of non empty domains in C n . We say that the sequence (D ν ) ν∈N converges to D ∞ in the local Hausdor topology if it satises lim ν→∞ d H (∂D ν ∩ K, ∂D ∞ ∩ K) = 0 for every compact set K ⊂ C n . If for every ν ∈ N∪{∞}

D ν is convex, it is equivalent to lim ν→∞ d H D ν ∩ K, D ∞ ∩ K = 0 for every compact set K ⊂ C n .
Let U ⊂ C n be an open set and s ∈ N be an integer. We denote by C s (U, C) the set of complex valued functions that are s times dierentiable on U . We note C ∞ (U, C) := s∈N C s (U, C). Also, for s ∈ N ∪ {∞} we note C s (U ) := {f ∈ C s (U, C) , f is real valued} and C ω (U, C) the subset of C ∞ (U ) of real analytic functions in U . For every α ∈ [0, 1], we denote by C s+α (U ) the subset of functions in C s (U ) such that all the partial derivatives of order s are Hölder with exponent α. For f ∈ C 1 (U, C) and 1 ≤ j ≤ n, we denote by

f j := ∂f ∂z j = 1 2
∂f ∂x j -i ∂f ∂y j and fj := ∂f ∂z j = 1 2 ∂f ∂x j + i ∂f ∂y j

. Note that for every f ∈ C 1 (U ) and every integer 1 ≤ j ≤ n one has fj = f j .

Let U ⊂ C n , V ⊂ C m be two open sets and s ∈ N ∪ {∞, ω}. We denote by C s (U, V )

the set of maps f = (f 1 , • • • , f m ) having values in V and such that for every integer 1 ≤ i ≤ m we have f i ∈ C s (U, C). When m ≥ 2 we use the notation ∂ ∂z j to only denote the complex dierenciation so that there is no confusion between coordinate functions and partial derivatives. Given f ∈ C 1 (U, V ) and z ∈ U we denote by ∂ z f the C-linear map dened by ∂ z f (v) := 1≤j≤n ∂f i ∂z j (z)v j ∈ C m for every vector v ∈ C n .

Recall that a map f ∈ C 1 (U, V ) is holomorphic in U if it satises the Cauchy-Riemann equations

∀1 ≤ j ≤ n, ∀1 ≤ i ≤ m, ∂f i ∂z j = 0 in U ,
and is called a biholomorphic map between U and V if f is holomorphic in U , bijective from U to V and its inverse f -1 is holomorphic in V . We denote by H (U, V ) (respectively B (U, V )) the set of holomorphic maps (respectively biholomorphic maps) between U and V , and simply note Aut (U ) = B (U, U ). Recall that B (U, V ) = ∅ if n = m. We say that U is homogeneous if for every z, z ∈ U there exists a biholomorphic map Φ ∈ Aut (U )

such that Φ(z) = z .

If f ∈ C 1 (U, V ) and z ∈ U , we denote by Jac C (f )(z) := ∂f i ∂z j (z) its complex Jacobian at point z.

Geometric properties of domains in C n

Let U ⊂ C n be an open set, f ∈ C 2 (U ) (that is f is real valued), z ∈ U and v ∈ C n . The following objects are well dened:

• The complex dierential, respectively the real dierential, of f at point z and vector v is ∂ z f (v) := 1≤i≤n f i (z)v i , respectively d z f (v) := 2Re (∂f z (v)) .

• The complex Levi form, respectively the real Levi form, of f at point z and vector v is

L C (f, z, v) := v, v [f i j (z)] = 1≤i,j≤n f i j (z)v i v j , respectively L R (f, z, v) := Re 1≤i,j≤n f ij (z)v i v j + L C (f, z, v).
With these notations the Taylor expansion of f at order 2 at point z ∈ U takes the following form:

f (z + v) = f (z)+Re 2 1≤i≤n f i (z)v i + 1≤i,j≤n f ij (z)v i v j +L C (f, z, v)+ o v→0 |v| 2 . (1.1)
The function f is plurisubharmonic, respectively strictly plurisubharmonic, convex, strictly convex, at z if it satises the inequality L

C (f, z, v) ≥ 0, respectively L C (f, z, v) > 0, L R (f, z, v) ≥ 0, L R (f, z, v) > 0 for every vector v ∈ C n \ {0}.
We say that f is plurisubharmonic (respectively strictly plurisubharmonic, convex, strictly convex) in U if it is plurisubharmonic (respectively strictly plurisubharmonic, convex, strictly convex) at every point of U . Since the equality 2L C (f, z, v) = L R (f, z, v) + L R (f, z, iv) holds for every vector v ∈ C n one easily sees that if f is (strictly) convex at z then f is (strictly) plurisubharmonic at z (this idea is also used in Proposition 1.6).

We will need the following fact that we do not prove: Proposition 1.2. Let U ⊂ C n be an open bounded set and let f ∈ C 2 U be a strictly plurisubharmonic function. Then there exist constants 0 < λ ≤ Λ such that λI ≤ f i j ≤ ΛI on U .

Most of the geometric notions that we are about to introduce translate into conditions on the real dierential and the complex Levi form of a given function, namely a dening function of a given domain with smooth boundary. We recall the denition of the smoothness of the boundary of a domain. Denition 1.3. Let D ⊂ C n be a domain and let s ∈ N * ∪ {∞, ω} be an integer and let U ⊂ C n be an open set such that ∂D ∩ U = ∅. We say that ∂D ∩ U is of class C s if there exists a function ρ ∈ C s (U ) satisfying the following conditions:

• D ∩ U = {ρ < 0}, • ∂D ∩ U = {ρ = 0}, • ∀z ∈ ∂D, d z ρ = 0.
The function ρ is called a dening function for ∂D ∩ U . For such a dening function we dene the complex tangent space, respectively the real tangent space, of

∂D at z ∈ ∂D ∩ U by T C z ∂D := {v ∈ C n /∂ z f (v) = 0} , respectively T R z ∂D := {v ∈ C n /d z f (v) = 0} . If z ∈ ∂D, we say that ∂D is of class C s in a neighbourhood of z if there exists an open set U ⊂ C n containing z such that ∂D ∩ U is of class C s . We say that ∂D if of class C s
if ∂D ⊂ U in the above denition and in this case ρ is called a dening function for ∂D.

We make two remarks about these denitions. We use the notations of Denition 1.3.

First, we stress out that most of the results of this thesis are formulated under the global assumption that ∂D is of class C s , however for some technical results or proofs we need to restrict ourselves to a piece of ∂D and thus work locally.

Second, if ρ, ρ ∈ C s (U ) are two dening functions for ∂D ∩ U , then ρ ρ is well dened on U and ρ ρ ∈ C s-1 U, R * + (see for instance Lemma 8.3. in [44]). In particular, the real, respectively the complex, tangent space of ∂D at a boundary point z ∈ ∂D ∩ U does not depend on the dening function (provided s ≥ 2). This property also tells us that a dening function of a domain with smooth boundary is essentially unique. In fact, the smoothness of the boundary of the domain is equivalent to the smoothness of its signed distance function, more precisely we have the following:

Proposition 1.4. (See Appendix 14.6. of [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF]) Let s ∈ N∪{∞, ω}, s = 0, 1 be an integer and D ⊂ C n be a domain with boundary of class C s . The function

d D : C n -→ R z -→    -d(z, ∂D) if z ∈ D, d(z, ∂D)
otherwise is called the signed distance function of ∂D. It is a dening function of class C s for ∂D.

For the rest of this section, we x a number s ∈ (N \ {0, 1}) ∪ {∞, ω}, a domain D ⊂ C n with boundary of class C s . We also x an open set U such that ∂D ∩ U = ∅ and ρ ∈ C s (U ) a dening function for ∂D ∩ U . We recall the denition of pseudoconvexity: Denition 1.5. 

∀v ∈ T C z ∂D \ {0}, L C (ρ, z, v) > 0.
(1.2)

• In case that ∂D is of class C s (here U ⊃ ∂D), we say that D is a strictly pseudoconvex domain if it is strictly pseudoconvex at every boundary point.

• Let D ⊂ C n be a domain. We say that D is pseudoconvex if there exists a sequence D (ν) ν∈N of subsets of C n such that for every integer ν ∈ N, D (ν) is a bounded strictly pseudoconvex domain with boundary of class C ∞ and satises D (ν) ⊂ D (ν+1) and ν∈N 

D (ν) = D . Such sequence D (ν) ν∈N is called an exhaustion of D . If D is pseudoconvex and z ∈ ∂D ∩ U , one can check that ∀v ∈ T C z ∂D, L C (ρ, z, v) ≥ 0. (1.3) Moreover if ∂D is of class C
v ∈ T C z ∂D \ {0} such that L C (ρ, z, v) = 0.
As for the denitions of real and complex tangent spaces, one can check that the (strict) pseudoconvexity of ∂D at a given point z ∈ ∂D actually does not depend on the dening function.

One can think of the pseudoconvexity as a local analogue of the convexity in the complex sense. Indeed, if the domain D is convex in the usual geometric sense, that is D contains a segment if it contains its endpoints, then one can verify that it satises the following at every point z ∈ ∂D ∩ U :

∀v ∈ T R z ∂D \ {0}, L R (ρ, z, v) ≥ 0.
(1.4)

Thus we see that property (1.3) is just the complex analogue of (1.4).

We can also use Property (1.4) 

v ∈ T C z ∂D. Since T C z ∂D ⊂ T R z ∂D one has L R (ρ, z, v) ≥ 0. Moreover one notices that ∂ z ρ (iv) = i∂ z ρ(v) = 0, hence iv ∈ T C z ∂D ⊂ T R z ∂D so that L R (ρ, z, iv) ≥ 0. Thus L R (ρ, z, v) + L R (ρ, z, iv) 2 ≥ 0, that is L C (ρ, z, v) ≥ 0 by denition of the real Levi form.
Hence ∂D is pseudoconvex at z.

For similar reasons, it can be checked that if ∂D is strictly convex at z, in the sense that the inequality in property (1.4) holds at z and is strict, then ∂D is strictly pseudoconvex at z. 

ρ ∈ C s (V )
which is strictly plurisubharmonic on V .

Remark 1.8. In the case s = ω, the proof of part 2. of Proposition 1.7 still provides with a dening function ρ ∈ C ∞ (V ) for ∂D which is strictly plurisubharmonic on V and of class C ω in a neighbourhood of ∂D.

If one removes the strict pseudoconvexity from the hypothesis of part 2. of Proposition [START_REF] Diederich | Pseudoconvex domains: An example with nontrivial nebenhuelle[END_REF]).

An interesting consequence of Proposition 1.7 is that strictly pseudoconvex domains are locally biholomorphic to convex domains. Namely: Proposition 1.9 (See lemma 3.2.2. in [START_REF] Krantz | Function theory of several complex variables[END_REF]). Let z ∈ ∂D be a strictly pseudoconvex boundary point for ∂D. Then there exists a domain V ⊂ C n containing z, a domain

W ⊂ C n and a biholomorphic map Φ ∈ B (V, W ) such that Φ (V ∩ D) is convex.
The conclusion of Proposition 1.9 fails if one replaces the strict pseudoconvexity of ∂D at z with the weak pseudoconvexity. In [START_REF] Calamai | A bounded Kohn Nirenberg domain[END_REF] S. Calamai proved that the domain

D := Re(z 1 ) + |z 1 | 2 5 + |z 1 z 2 | 2 + |z 2 | 8 + 15 7 |z 2 | 2 Re z 6 2 + 10 |z 2 | 10 < 0
is a bounded pseudoconvex domain with boundary of class C ω . Moreover the only weakly pseudoconvex boundary point is the origin, and there does not exists a neighbourhood of the origin V such that V ∩ D is biholomorphic to a convex domain. This example is inspired from the more famous example of J.J. Kohn and L. Nirenberg

Re(z 1 ) + |z 2 | 8 + 15 7 |z 2 | 2 Re (z 6 
2 ) < 0 (see [START_REF] Kohn | A pseudoconvex domain not admitting a holomorphic support function[END_REF]).

The pseudoconvexity is a local property of the boundary of a domain. For the purpose of this thesis we only need the following weaker statement: 

∂ z ρ = ∂ z ρ • (∂ z Φ) -1 , (1.5) L C (ρ , z , •) = L C ρ, z , (∂ z Φ) -1 (•) , (1.6) (∂ z Φ is invertible because Φ is a dieomorphism). Let v ∈ T C z ∂D . Then relation (1.5) implies that (∂ z Φ) -1 (v ) ∈ T C
z ∂D , so that by pseudoconvexity of ∂D at z we deduce L C ρ, z, (∂ z Φ) -1 (v ) ≥ 0. Using relation (1.6) we deduce that L C (ρ , z , v ) ≥ 0, hence ∂D is pseudoconvex at z . By replacing the signs ≥ into > we obtain the result for the statement in the case of strict pseudoconvexity.

We recall three notions of nite 1-type in the sense of D'Angelo. These notions somehow measure the best order of tangency that a holomorphic curve, respectively a holomorphic regular curve, respectively a complex line, can have with the boundary of a domain at a given point. We refer to [START_REF] D'angelo | Several complex variables and the geometry of real hypersurfaces[END_REF] for more details.

Let V ⊂ C be a domain containing the origin and let f ∈ C ∞ (V, C) and m ∈ N * . We say that f has order of vanishing m at 0 if all the partial derivatives of f -f (0) up to order m -1 vanish at 0 and there exists a partial derivative of f of order m that does not vanish at 0, and we denote by ν (f ) = m the order of vanishing of f at 0. If all the partial derivatives of f -f (0) vanish at 0 we say that f vanishes to innite order at 0,

and set ν (f ) = ∞. If f = (f 1 , . . . , f n ) ∈ C ∞ (V, C n ) we dene ν (f ) := min 1≤i≤n {ν (f i )}.
From now on, we assume that either s

= ∞ or s = ω. Observe that if z ∈ ∂D ∩ U , V ⊂ C is a domain containing the origin and f ∈ C ∞ (V, C n ) satises f (0) = z, then the function ρ • f is well dened in a neighbourhood of 0 so that ν (ρ • f ) is well dened. Denition 1.11. For a point z ∈ ∂D, let G z := {f ∈ H (∆, C n ) , f (0) = z}, G R z := {f ∈ G z , f (0) = 0} and G L z := {w ∈ ∆ → z + wv, v ∈ C n }. We say that ∂D has nite variety type at z if the set V z := ν (ρ • f ) ν (f ) , f ∈ G z is bounded.
In that case, the supremum of V z is called the variety type of ∂D at z. If V z is unbounded, we say that ∂D is has innite variety type at z. Likewise we dene the notions of nite and innite regular type, respectively line type, by replacing G z with G R z , respectively with G L z in the denition of V z . We say that a domain is of nite type if every boundary point has nite variety type.

For the same reasons as for the pseudoconvexity, one can check that these notions do not depend on the dening function. Also, if the variety type (respectively the regular type or the line type) at some given boundary point of D is nite, then it is an integer.

Moreover if the domain is pseudoconvex at a boundary point at which the variety type (respectively the regular type or the line type) is nite, then the variety type (respectively the regular type, the line type) at this point is an even integer and all the types at this point are equal to 2 if and only if the point is a strictly pseudoconvex boundary point.

Because of the inclusions G L z ⊂ G R z ⊂ G z we always have at a given point z ∈ ∂D Line type ≤ Regular type ≤ Variety type.

In "good" cases some of the above inequalities are equalities (for the denition of a Reinhardt domain see the introduction of Chapter 4):

Theorem 1.12. Let D ⊂ C n be a domain with boundary of class C ∞ and let z ∈ ∂D.

• (see Theorem 1.1 in [START_REF] Mcneal | Convex domains of nite type[END_REF]) If D is convex, then the variety type at z is equal to the line type at z.

• (see Theorem 4 in [START_REF] Fu | Finite type conditions on Reinhardt domains[END_REF]) If D is a pseudoconvex Reinhardt domain, then the variety type at z is equal to the regular type at z. Like the pseudoconvexity, the type is invariant under local biholomorphisms. For the purpose of this thesis, we only need the following: Proposition 1.13. Assume that D ⊂ U . Let U ⊂ C n be a domain, let Φ ∈ B (U, U )

and set D := Φ (D). Let z ∈ ∂D, z ∈ ∂D such that Φ(z) = z .
Then ∂D is of nite type at z if and only if ∂D is of nite type at z . In that case, the type of ∂D at z is equal to the type of ∂D at z .

Proof of Proposition 1.13. We sketch the proof for the regular type. Recall that the type does not depend of the choice of a dening function we choose to compute it. By working with ρ := ρ • Φ -1 as a dening function for ∂D (see the proof of Proposition 1.10 for details) we see that V z = V z , hence the result.

Model domains in C 2

Let D ⊂ C 2 be a bounded pseudoconvex domain with boundary of class C ∞ and let q ∈ ∂D be a point of nite (variety) type 2p where p ∈ N * . Then there exists a realvalued homogeneous polynomial of degree 2p H which is subharmonic but not harmonic, an open set U ⊂ C 2 containing q and a biholomorphic map Φ :

U -→ Φ (U ) such that Φ(q) = 0 and Φ (D ∩ U ) = M H ∩ Φ (U )
where

M H := z ∈ C 2 / Re (z 1 ) + H (z 2 ) + O z→0 |z 2 | 2p+1 + |z 1 | |z| < 0 .
The domain

D H := z ∈ C 2 /Re (z 1 ) + H (z 2 ) < 0 is a local model for ∂D at point q.
Remark 1.14. 1. This construction might be generalised in higher dimension using the notion multitype and in this case the polynomial H is homogenenous with weight depending on the multitype (see [START_REF] Catlin | Boundary invariants of pseudoconvex domains[END_REF]).

2. If D ⊂ C 2 is a convex domain of nite type there exists a real-valued homogeneous convex polynomial of degree 2p H which is not harmonic, an open set U ⊂ C 2 containing q and an ane map

Φ ∈ Aut (C 2 ) such that Φ(q) = 0 and Φ (D ∩ U ) = M H ∩ Φ (U )
where M H is as above. In this case we call the associated domain D H a local model for ∂D at q. This is due to the fact for convex domains the multitype is given by the linear multitype (see [START_REF] Yu | Multitypes of convex domains[END_REF] for more details).

A dening function for

D H is ρ(z) := Re (z 1 ) + H (z 2 ), where z = (z 1 , z 2 ) ∈ C 2 .
Clearly ρ ∈ C ω (C 2 ) so that D H is a pseudoconvex domain with real analytic boundary.

When p = 1 the domain D H is strictly pseudoconvex and biholomorphic to the unit ball in C 2 . We work with p ≥ 2 for the rest of this section. We have: 

∀z ∈ C 2 , [ρ i (z)] =   1 2 ∂H ∂z (z 2 )   , ρ i j (z) =   0 0 0 ∂ 2 H ∂z∂z (z 2 )   ,
f = (f 1 , f 2 ) ∈ G 0 . Observe that if f 2 = 0 then clearly ν (ρ • f ) ν (f ) = 1 and if f 1 = 0 then clearly ν (ρ • f ) ν (f ) = 2p. Assume that f 1 , f 2 = 0. Let j, k ∈ N * and b, c ∈ C \ {0} such that f (z) = ia + bz j + o |z|→0 |z| j , cz k + o |z|→0 |z| k . Then ρ • f (z) = Re bz j + o |z|→0 |z| j + H cz k + o |z|→0 |z| k . Since H is homogeneous of degree 2p
, the degree of leading term in the Taylor expansion of

H cz k + o |z|→0 |z| k is 2pk. If j < 2pk then ν (ρ • f ) = j so that ν (ρ • f ) ν (f ) < 2p. If j > 2pk then ν (ρ • f ) = 2pk so that ν (ρ • f ) ν (f ) = 2p. If j = 2pk, the non harmonicity of H ensures that the map z → H cz k + o |z|→0 |z| k + Re bz 2pk is not identically zero, so that ν (ρ • f ) = 2pk hence ν (ρ • f ) ν (f ) = 2p
. Therefore the variety type at (ia, 0) is equal to 2p as the supremum of 1 and 2p.

Let us describe the automorphism group of D H . First observe that the families of ane maps

s : z → (z 1 , -z 2 ), τ t : z → z + it, d λ : z → λz 1 , λ 1 2p z 2 ,
where t ∈ R × {0} and λ ∈ R * + belong to Aut (D H ). To complete the description of Aut (D H ), we use the work of K. Oeljeklaus (see Theorem 1.3 in [START_REF] Oeljeklaus | On the automorphism group of certain hyperbolic domains in C 2 . Colloque d'analyse complexe et géométrie[END_REF]). Our hypotheses (that H is subharmonic and p > 1) leave us with the following three cases, which are exhaustives and exclusives:

1. H is invariant by rotation, that is there exists a positive number a such that H (z) = a |z| 2p for every complex number z. In that case we have:

Aut (D H ) = s, τ t , t ∈ R × {0}, d λ , λ ∈ R * + , r θ : z → z 1 , e iθ z 2 , θ ∈ R .
2. H is invariant by translation, that is there exists a positive number a and a real number α such that H (z) = aRe (e iα z)

2p
for every complex number z. In that case we have:

Aut (D H ) = s, τ (t 1 ,t 2 ) , t 1 , e iα t 2 ∈ R 2 , d λ , λ ∈ R * + , r θ : z → z 1 , e iθ z 2 , θ ∈ R .
3. H is neither invariant by rotation, nor invariant by translation. In that case we have:

Aut (D H ) = s, τ t , t ∈ R × {0}, d λ , λ ∈ R * + .
The rst type of domains are biholomorphic to {Re(z 1 )+|z 

{Re(z 1 ) + C|z 2 | 2p < 0} ⊂ D H ⊂ {Re(z 1 ) + c|z 2 | 2p < 0}.
Otherwise, D H is biholomorphic to a tube domain. More precisely there exist a constant a ∈ C \ {0} such that for every z ∈ C one has H(z) = Re (az) 2p .

In [START_REF] Diederich | Lineally convex domains of nite type: holomorphic support functions[END_REF]Lemma 3.3.] on the angular sector of edge 0 and delimited by vectors u and v. We proceed likewise to deduce that H would be identically equal to 0 on the angular sector of edge 0 and delimited by vectors -u and v. Therefore H would be identically equal to 0 on the half circle centered at the origin delimited by points u and -u and containing v. Since H is an even function, it would be identically equal to 0 on the whole unit circle. Since H is homogeneous, H would be identically equal to 0 on C, hence the contradiction.

Up to a rotation we may assume that u = i so that for every real number y 2 we have H(iy 2 ) = 0. Since D H is clearly invariant under the translations of the form τ (y 1 ,0) where y 1 ∈ R, the conclusion holds if we prove the following:

∀(x 1 , x 2 ) ∈ R 2 ∩ D H , ∀y 2 ∈ R, (x 1 , x 2 + iy 2 ) ∈ D H . Let (x 1 , x 2 ) ∈ R 2 ∩ D H and y 2 ∈ R. If x 2 = 0 then clearly H(x 2 + iy 2 ) = H(iy 2 ) = 0 thus (x 1 , x 2 + iy 2 ) ∈ D H . Assume that x 2 = 0. Since D H is an open set, there exists a positive constant R > 0 such that B((x 1 , x 2 ), R) ⊂ D H . Let α 2 ∈   0, R 1 + x 1 x 2   and let α 1 := x 1 x 2 α 2 . Then we have (x 1 + α 1 , x 2 + α 2 ) ∈ B((x 1 , x 2 ), R) ⊂ D H . Set t := 1 + x 2 α 2 .
Then we have (x

1 + α 1 , x 2 + α 2 ) + t ((x 1 , x 2 + iy 2 ) -(x 1 + α 1 , x 2 + α 2 )) = (0, ity 2 ) ∈ D H .
Consequently we obtain (x 

Kähler metrics of domains in C n

From now on we assume that the reader is familiar with Riemannian geometry. For the rest of this section we x a domain D ⊂ C n .

Kähler metrics and their curvatures

Denition 1.17. A Kähler metric on D is an element of C (D, H ++ n ), that is a matrix g i j with continuous coecients in D and such that for every z ∈ D, g i j (z) ∈ H ++ n .

In particular the quantity v, w g,z := v, w [g i j (z)] is well dened for every v, w ∈ C n .

If we think of D as an open subset of R 2n using the isomorphism

Can : R 2n -→ C n (x 1 , • • • , x n , y 1 , • • • , y n ) -→ z := (x 1 + iy 1 , . . . , x n + iy n ) , then the matrix   Re g i j Im g i j -Im g i j Re g i j   ∈ M 2n (R) denes a Riemannian metric on D.
In particular we say that the Kähler metric is complete on D if the Riemannian metric induced by it is complete on D.

Given a Kähler metric g i j on D and a function f ∈ C 2 (D) we dene the following:

• The gradient of f with respect to g i j :

∇ g f := g i j [f i ].
• The laplacian of f with respect to g i j : ∆ g f := T r g i j f i j = 1≤i,j≤n

g i j f j ī.
A Kähler metric g i j is induced by a function u ∈ C 2 (D), called a Kähler potential for the metric, if it satises the equality u i j = g i j in D.

In the case of the Euclidean metric, that is g i j = I on D, we drop the g subscripts and simply write v, w , ∇f , ∆f etc.

Curvatures of Kähler metrics

Here we assume that g i j ∈ C 2 (D, C) for every integer 1 ≤ i, j ≤ n. Fix a point z ∈ D.

The curvature coecients of g i j at z are given by the following:

∀1 ≤ i, j, k, l ≤ n, R i jk l(g)(z) := -g i jk l + 1≤α,β≤n
g ik ᾱg α β g β jl (z).

(1.7)

They satisfy the relations

∀1 ≤ i, j, k, l ≤ n, R i jk l(g)(z) = R k li j (g)(z) = R j īl k(g)(z) (1.8)
Given two vectors v, w ∈ C n \ {0}, the holomorphic bisectional curvature of g i j at point z between vectors v and w is dened by the following:

Bis(g)(z; v, w) = 1≤i,j,k,l≤n R i jk l(g)(z)v i v j w k w l |v| 2 g,z |w| 2 g,z
.

(1.9)

The holomorphic sectional curvature of the metric at z and at vector v ∈ C n \ {0} is H(g)(z; v) := Bis(g)(z; v, v).

From relation (1.9) it is clear that the holomorphic bisectional curvature between two vectors actually does not depend on the length of the vectors at which it is computed, namely we have:

∀v, w ∈ C n \ {0}, ∀λ, µ > 0, Bis(g) (z; λv, λw) = Bis(g)(z; v, w).

(1.10)

The Ricci form of g i j at z is dened by Ric(g) i j (z) := -Log (Det (g pq )) i j (z) . By denition Ric(g) i j (z) ∈ H n . We say that the metric has Ricci curvature bounded from below (respectively from above) on D if there exists a constant λ ∈ R such that one has λ g i j ≤ Ric(g) i j (respectively Ric(g) i j ≤ λ g i j ) on D. Finally we say that the metric g i j is Einstein if there exists λ ∈ R such that Ric(g) i j = λ g i j on D. The function Ric(g) := -Log (Det (g pq )) is a potential for the Ricci form of g i j on D.

The Ricci form and the curvature coecients are related by the following formulas on D (which follow from the dierenciation of Log (Det (g pq ))):

∀1 ≤ i, j ≤ n, Ric(g) i j (z) = 1≤k,l≤n R i jk l(g)g l k (z). (1.11) 
Remark 1.18. Let (e 1 , . . . , e n ) be the canonical basis of C n , let R be a square root of g i j (z) and set e i := t R -1 e i for every integer 1 ≤ i ≤ n. Then:

∀v ∈ C n \ {0}, 1≤j≤n Bis(g) z; v, e j = v, v [Ric(g) i j (z)] .

Kähler-Einstein metrics and the Bergman metric

Kähler-Einstein metrics Denition 1.19. A Kähler-Einstein metric on D is a Kähler metric g i j on D with coecients of class C 2 that is Einstein, that is there exists λ ∈ R such that Ric(g) i j = λ g i j on D. In this case the number λ is refered as the Ricci curvature of g i j .

Remark 1.20. • It is equivalent to the fact that the Riemannian metric induced by g i j on D (seen as a real open subset of R 2n ) is Einstein.

• Let g i j be a Kähler metric on D with coecients of class C 2 . For every positive number ρ > 0 the Ricci form of the Kähler metric gi j := ρ g i j satises Ric(g) i j = Ric (g) i j so that gi j is Kähler-Einstein with Ricci curvature equal to λ ρ if and only if g i j is

Kähler-Einstein with Ricci curvature equal to λ. Therefore only the sign of the Ricci curvature matters. We emphasis that in this thesis all the Kähler-Einstein metrics have Ricci curvature either equal to -(n + 1) or equal to -1 (the latter case only occurs when D ∈ {B, ∆ n } and the metric is the Bergman metric).

Kähler-Einstein metrics of prescribed negative Ricci curvature are invariant metrics in the following sense. Let D, D ⊂ C n be two domains that are biholomorphic and let Φ ∈ B (D, D ). Assume that there exists a complete Kähler-Einstein metric g i j on D, there exists a complete Kähler-Einstein metric g i j on D , and that theses metric have the same negative Ricci curvature. Then they satisfy

∀z ∈ D, ∀v ∈ C n , |v| g,z = |∂ z Φ(v)| g ,Φ(z)
.

(1.12)

This invariance property of the Kähler-Einstein metric of negative Ricci curvature follows from the Yau-Schwarz lemma (see [START_REF] Mok | Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions[END_REF][START_REF] Yau | A general Schwarz lemma for Kähler manifolds[END_REF]). This invariance property has two important consequences. Let λ > 0. 

such that ∀f ∈ H 2 (D) , f (z) = D f (w)η z (w)dµ(w).
(1.15)

The Bergman kernel of D is dened by K(z, w) := η z (w) for every z, w ∈ D. It follows from relation (1.16) that the Bergman metric is an invariant metric. Consequently it satises the properties described by relations (1.12), (1.13) and (1.14).

K D (z, w) = Det Jac C (Φ) (z) K D (Φ(z), Φ(w)) Det (Jac C (Φ) (w)) (1.16) Property (1.15) applied to K(•, z) gives K(z, z) = ||K(•, z)|| L 2 (D) ≥ 0 for every number z ∈ D. Assume that K(z,
As already mentionned, the Bergman kernel of a given domain D may not be positive.

Even if it is, the potential g it induces may not be strictly plurisubharmonic on D and in this case the Bergman metric of D may still not be complete. Nonetheless it is the case for all the domains we work with in this thesis: Theorem 1.24 (see [START_REF] Ahn | Positivity and completeness of invariant metrics[END_REF][START_REF] Ohsawa | A remark on the completeness of the Bergman metric[END_REF]). If D satises one of the following, its Bergman kernel is positive and induces a complete Kähler metric:

• D ⊂ C n is a bounded pseudoconvex domain with boundary of class C 1 . • D = D H is a polynomial domain introduced in Section 1.3 and H is non negative on C.
For further examples of domains with complete Bergman metric, see [START_REF] Ahn | Positivity and completeness of invariant metrics[END_REF][START_REF] Chen | A survey on Bergman completeness[END_REF]. 

Examples of Kähler metrics in domains

(-ρ ) g i j = ρ i j + ρ i ρ j -ρ , (1.17) g i j = (-ρ ) ρ i j -(-ρ ) [ρ i j ][ρ i ρ j ][ρ i j ] -ρ +|∇ ρ ρ | 2 ρ . (1.18)
Proof of Proposition 1.25. The function g is well dened and of class C s in D by construction, and formula (1.17) directly comes from the chain rule. Let R be a square root of

ρ i j (cf Proposition 1.1). Observe that R is invertible because Det (R) 2 = Det ρ i j = 0. Set B := R -1 ρ i ρ j -ρ R -1 and A := (-ρ ) R -1 g i j R -1 = I + B. Since the rank of B is 1, we have B 2 = T r (B) B. Since T r (B) = |∇ ρ ρ | 2 ρ -ρ ≥ 0 > -1, we can compute the following: A I - B 1 + T r (B) = I + -1 1 + T r(B) + 1 - T r(B) 1 + T r(B) B = I.
Consequently A is invertible and its inverse is

I- B 1 + T r (B) = I-R -1 ρ i ρ j -ρ + |∇ ρ ρ | 2 ρ R -1 .
Therefore we obtain the formula (1.18):

g i j = (-ρ )R -1 A -1 R -1 = (-ρ ) ρ i j -(-ρ ) ρ i j ρ i ρ j ρ i j -ρ + |∇ ρ ρ | 2 ρ .
We admit the completeness of the distance induced by -Log (-ρ ) i j .

The ball B is a special case of strictly pseudoconvex pseudoconvex domain with real analytic boundary. The metric induced by the potential g(z

) := -Log 1 -|z| 2 is
Kähler-Einstein with Ricci curvature equal to -(n + 1), its curvature coecients satisfy R i jk l(g) = -(g i j g k l + g i lg k j ) for every 1 ≤ i, j, k, l ≤ n and consequently its holomorphic bisectional curvature at point z between vectors v and w is given by Bis

(g) (z; v, w) = -1 - | v, w g,z | 2 |v| 2 g,z |w| 2 g,z
. The metric constructed in Proposition 1.25 (here s ≥ 4) has holomorphic bisectional curvatures asymptotically close the holomorphic bisectional curvatures of the ball in the following sense. Computation of curvature coecients yields

R i jk l(g) = -(g i j g k l + g i lg k j ) + 1 -ρ R i jk l(ρ ) - 1 |∇ ρ ρ | 2 ρ -ρ ρ ik -ρ ik pρ pq ρ q ρ jl -ρ pρ pq ρ q jl , for every integer 1 ≤ i, j, k, l ≤ n.
In particular one has ρ R i jk l(g) + (g i j g k l + g i lg k j ) ∈ C D . Using this and relation (1.17) above one easily obtains

lim z→∂D sup v,w∈C n \{0}    Bis (g) (z; v, w) +    1 +   v, w g,z v, v g,z w, w g,z   2       = 0. (1.19)
This phenomenon indicates that the holomorphic bisectional curvatures of g i j are asymptotically the same as the holomorphic bisectional curvatures of the unit ball (hence the idea that D "looks like a ball" for the metric g i j ).

The asymptotic behaviour (1.19) may be seen as a result of the outstanding work of P.F. Klembeck in [START_REF] Klembeck | Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets[END_REF]. In the same paper the author also proved that if ∂D is of class C ∞ then the Riemannian sectional curvatures of the Bergman metric of D tend to the Riemannian sectional curvatures of the Bergman metric of the ball when approaching ∂D. This relies on the following asymptotic expansion of the Bergman kernel obtained by C.L. Feerman (see [START_REF] Fefferman | On the Bergman kernel and biholomorphic mappings of pseudoconvex domains[END_REF]):

∀z ∈ D, K(z, z) = Φ(z) (-ρ (z)) n+1 + Φ(z)Log (-ρ (z)) , (1.20)
where Φ, Φ ∈ C ∞ D and Φ(z) = 0 for every z ∈ ∂D. In the case of the unit ball with ρ (z) = |z| 2 -1, Φ is a positive constant and Φ = 0. In the general case the Ramadanov conjecture states that the vanishing of Φ to innite order on ∂D implies that ∂D is locally biholomorphic to ∂B (see [START_REF] Ramadanov | A characterization of the balls in C n by means of the Bergman kernel[END_REF]). Notice that the terms Φ and Φ in the asymptotic expansion (1.20) contain invariant related to the CR geometry of ∂D (see the results in [START_REF] Curry | Bounded strictly pseudoconvex domains in C 2 with obstruction at boundary[END_REF] by S. Curry and P. Ebenfelt and in [START_REF] Graham | Scalar boundary invariants and the Bergman kernel[END_REF] by R. Graham).

Remark 1.26. Notice that in the case of bounded pseudoconvex domains with boundary of class C ∞ and of nite type or in the case of model domains there is no general construction of a complete Kähler metric induced by a dening function. Moreover the boundary behaviour of the Bergman metric and of the Kähler-Einstein metric and of their curvatures is understood in very few cases. We provide with a study of these metrics in certain classes of pseudoconvex domains of nite type in Chapters 3,4 and 5.

Convex domains of innite type

The polydisc ∆ n is a bounded convex domain. The set z ∈

∆ n , ∃!1 ≤ i ≤ n, |z i | = 1 consists of boundary point of ∆ n of innite type. The Bergman metric g B of ∆ n
is Einstein with Ricci curvature equal to -1. Since ∆ n is a homogeneous domain the computation of the metric and its curvatures at the origin is enough to determine the boundary behaviour of these quantities. Computations give

H (g B ) (0; v) ≤ - n + 1 2 , Bis (g B ) (0; v, w) ≤ 0 for every z ∈ ∆ n and v, w ∈ C 2 \ {0}. Moreover one has Bis (g B ) (0;
(1, 0, . . . , 0), (0, . . . , 0, 1)) = 0 so the holomorphic bisectional curvatures vanish for certain pair of vectors.

The vanishing of the holomorphic bisectional curvatures metric is not specic to the Bergman metric. Actually, P. Yang proved the following stricking result:

Theorem 1.27 (See [START_REF] Yang | On Kähler manifolds with negative holomorphic bisectional curvature[END_REF]). The polydisc ∆ n does not admit any Kähler metric with negatively pinched holomorphic bisectional curvatures.

Theorem 1.27 seems to indicate that the niteness of the type is a necessary condition for the existence of a complete Kähler metric with negatively pinched holomorphic bisectional curvatures. The non smoothness of the boundary of ∆ n is misleading and one might think that the lack of smoothness causes for the vanishing of holomorphic bisectional curvatures. This is not the case. Indeed it follows from [START_REF] Bracci | The geometry of domains with negatively pinched Kähler metrics[END_REF] that a bounded convex domain with smooth boundary in C n and with a point of innite type does not admit a complete Kähler metric with negatively pinched holomorphic bisectional curvatures in a neighbourhood of its boundary. See Remark 3.31 for details.

A remark

The unit ball and the polydisc are bounded pseudoconvex domains for which the Bergman metric is Einstein. For a general bounded pseudoconvex domain these two metrics are dierent, which explains that we study them separatly. In fact, S.-T. Yau conjectured in [START_REF] Yau | Seminar on dierential geometry[END_REF]Problem 44] that if the Bergman metric of a bounded pseudoconvex domain is Einstein, then the domain is homogeneous. For strictly pseudoconvex domains with smooth boundary the conjecture has been veried by X. Huang and M. Xiao:

Theorem 1.28 (see [START_REF] Huang | A remark on Bergman-Einstein metrics[END_REF]). Let D ⊂ C n be a bounded strictly pseudoconvex domain with boundary of class C ∞ . If the Bergman metric of D is Einstein, then D is biholomorphic to the unit ball.

In C 2 , the conclusion of Theorem 1.28 also holds if D is a pseudoconvex Reinhardt domain with boundary of class C ∞ and of nite type (see [START_REF] Fu | On strictly pseudoconvex domains with Kähler-Einstein Bergman metrics[END_REF][START_REF] Nemirovski | Conjectures of Cheng and Ramadanov[END_REF]). The general case of the conjecture is still open.

Introduction

Kähler-Einstein metrics are by denition smooth Kähler metrics of constant Ricci curvature. In the case of bounded pseudoconvex domains, it follows from general results on non-negatively curved complete Riemannian manifolds that the Ricci curvature is necessarily negative (see the discussion below Equation (2.3.) in page 518 of [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF]). The very rst study of the existence of complete Kähler-Einstein metrics in bounded pseudoconvex domains is due to Cheng and Yau (see [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF]). The authors rst constructed complete Kähler-Einstein metrics in a given bounded strictly pseudoconvex domain by perturbing a "reference" complete Kähler metric. More precisely, they started with a bounded strictly pseudoconvex domain D with boundary of class C s (s being either an integer such that s ≥ 4 or s ∈ {∞, ω}), and a complete Kähler potential g ∈ C s (D) on D

(for instance the one constructed in Proposition 1.25). They observed that if there exists a complete Kähler-Einstein potential on D with Ricci curvature equal to -(n + 1) then the dierence between this Kähler-Einstein potential and the potential g, that we denote by u, must satisfy the Monge-Ampère equation

Det g i j + u i j = e (n+1)u+F Det g i j , (2.1) 
where F := Ric(g) + (n + 1)g, and conversly if there exists a function u ∈ C 4 (D) such that g := g + u is a complete Kähler potential on D and u satises Equation (2.1) then g satises the Monge-Ampère equation

Det g i j = e (n+1)g , (2.2) 
hence g is a complete Kähler-Einstein potential. They proved that if s ≥ 7 then there exists a function u such that g + u is a complete Kähler-Einstein potential. Actually they proved the more general following results: Then there exists a unique function u ∈ C s+α D such that u satises condition

∃0 < c ≤ C| c g i j ≤ g i j + u i j ≤ C g i j on D (2.3)
and solves the Monge-Ampère Equation (2.1) on D. Later on Mok and Yau proved that the same result holds without any assumption on the regularity of the boundary, thus obtaining a characterisation of bounded pseudoconvex domains (see the Main Theorem in [START_REF] Mok | Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions[END_REF]). The existence of the complete Kähler-Einstein potential of factor -(n + 1) has been extended to certain classes of unbounded domains, such as tube domains having a convex base that does not contain lines (see Corollary 4.6. in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] and Proposition 3.1. in [START_REF] Isaev | Kähler-Einstein metric on Reinhardt domains[END_REF]).

(Implicit construction)

In [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] the authors also studied the boundary behaviour of the Kähler-Einstein potential.

To do so they start with a Kähler potential of the form -Log (-ϕ) that is "close" to the Kähler-Einstein potential near ∂D in the sense that the function Ric (g) + (n + 1)g vanishes to some order on ∂D and proved that the perturbation u described above vanish to some order on ∂D, which implies that the curvatures of the Kähler-Einstein metric are asymptotically "close" to the curvatures of the metric induced by -Log (-ϕ). They obtain the following:

Theorem 2.3 (Modied version of Corollary 6.6. in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF]). Let D ⊂ C n be a bounded strictly pseudoconvex domain with boundary of class C s , s being an integer such that s ≥ max(2n + 9, 3n + 6). Let g be the Kähler-Einstein potential constructed in point 2. of Theorem 2.1. Then there exists an open set U ⊂ C n containing ∂D such that for every δ ∈ 0, 1 2 , we have e -g ∈ C n+1+δ Ω ∩ U . Moreover the following curvature behaviour holds at every point q ∈ ∂D:

sup v∈C n \{0} (H(g)(z; v) + 2) -→ z→q 0.
(2.5)

Using more algebraic considerations, Lee and Melrose completely describe the singularity of e -g in the case of bounded strictly pseudoconvex domains with boundary of class C ∞ , proving that the optimal regularity is e -g ∈ C n+1+δ D for every number δ ∈ [0, 1[,

except if D is biholomorphic to B (in which case e -g ∈ C ω D ).
See [START_REF] Lee | Boundary behaviour of the complex Monge-Ampère equation[END_REF] for more details.

In this chapter we improve Theorem 2.3 in two ways. First we prove that the regularity result in Theorem 2.3 is local, more precisely:

Theorem 2.4. Let D ⊂ C n , n ≥ 2, and q ∈ ∂D. Assume that there exists a neighbourhood of q on which ∂D is strictly pseudoconvex and of class C s with s ≥ max(2n+9, 3n+6).

Moreover, assume that D carries a complete Kähler-Einstein metric induced by a function g that satises conditions (2.2) and (2.4). Then there exists an open set U ⊂ C n containing q such that for every δ ∈ 0, 1 2

, we have:

e -g ∈ C n+1+δ D ∩ U .
Second we extend the asymptotic behaviour (2.5) to the holomorphic bisectional curvatures. Namely we prove:

Theorem 2.5. Let D ⊂ C n , n ≥ 2, and q ∈ ∂D. Assume that there exists a neighbourhood of q on which ∂D is strictly pseudoconvex and of class C s , s ≥ max (2n + 9, 3n + 6).

Moreover, assume that D carries a complete Kähler-Einstein metric induced by a function g that satises conditions (2.2) and (2.4). Then,

sup v,w∈C n \{0} Bis (g) (z; v, w) + 1 + | v, w g,z | 2 |v| 2 g,z |w| 2 g,z -→ z→q 0. (2.6) 
Theorem 2.5 leaves open the cases of strictly pseudoconvex boundary points at which the regularity of the boundary of the domain is not good enough. The following Theorem partially cover these cases:

Theorem 2.6. Let D ⊂ C n be a pseudoconvex domain, n ≥ 2, and q ∈ ∂D. Assume that the squeezing function of D tends to one at q. Moreover, assume that D carries a complete Kähler-Einstein metric induced by a function g solving equation (2.2) with condition (2.4) on D. Then,

sup v,w∈C n \{0} Bis (g) (z; v, w) + 1 + | v, w g,z | 2 |v| 2 g,z |w| 2 g,z -→ z→q 0.
In comparison with Theorems 2.4 and 2.5, Theorem 2.6 requires neither regularity assumptions on the boundary of the domain nor the strict pseudoconvexity at q, but gives no boundary regularity for the Kähler-Einstein potential.

We can apply Theorem 2.6 at C 2 strictly pseudoconvex boundary points of a domain admitting a Stein neighbourhood basis, at C 2 strictly convex boundary points of bounded domains, but also at every boundary point of the Fornaess-Wold domain, which is convex but not strictly pseudoconvex and has a boundary of class C 2 (see [START_REF] Fornaess | A non-strictly pseudoconvex domain for which the squeezing function tends to one towards the boundary[END_REF][START_REF] Joo | On boundary points at which the squeezing function tends to one[END_REF][START_REF] Kim | On the uniform squeezing property of bounded convex domains in C n[END_REF]).

This Chapter is organised as follows. In Section 2.1 we give more details about the construction of the Kähler-Einstein metric in bounded pseudoconvex domains. This section has an introductory purpose and contains no new result. In Section 2.2 we study the local behaviour of the complete Kähler-Einstein metric at strictly pseudoconvex boundary points and prove Theorem 2.4 and Theorem 2.5. In Section 2.3 we provide material regarding the squeezing function and prove Theorem 2.6.

Construction of Kähler-Einstein metrics in bounded pseudoconvex domains in C n

We recall the construction of the Kähler-Einstein metric on bounded pseudoconvex domains done in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF][START_REF] Mok | Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions[END_REF]. The ideas developped here will help understanding Sections 2.2 and 2.3.

First we describe the construction when D ⊂ C n is a bounded strictly pseudoconvex domain with boundary of class C s with s ∈ N, s ≥ 7. Let ρ ∈ C s D be a strictly plurisubharmonic dening function for ∂D. Then g := -Log (-ρ) is a complete Kähler potential on D (see Proposition 1.25). Moreover from formula (1.17) one derives Det g i j = e (n+1)g e -F where F := -Log -ρ + |∇ ρ ρ| 2 ρ Det ρ i j = Ric(g) -(-(n + 1)g) ∈ C s-2 D . Thus in general g is not a Kähler-Einstein potential. However the function F which measures the defect of g to be a Kähler-Einstein potential has bounded partial derivatives up to the order s -2 ≥ 2. A more detailed analysis of g indicates that D has bounded geometry of order s -2 when equipped with the metric g i j . We refer to Denition 1.1 in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] for a more precise statement.

Since g naturally compares to a Kähler-Einstein potential with Ricci curvature equal to -(n + 1) we seek for a "perturbation" u ∈ C 2 (D) such that g + u is a Kähler-Einstein potential with Ricci curvature equal to -(n + 1). g i j + u i j satises the Kähler-Einstein condition if u veries the relation (2.1). We want g i j + u i j to be a complete Kähler metric on D. Because of the bounded geometry and of Equation (2.1) it is relevant to impose that the background Kähler metric g i j and the perturbed metric g i j + u i j are equivalent, which translate into condition (2.3).

To solve Equation (2.1) with condition (2.3) S.-Y. Cheng and S.-T. Yau used a continuity method. They proved that the set I := t ∈ [0, 1] / ∃u solving Det g i j + u i j = e (n+1)u+tF Det g i j and satisfying (2.3) is open and closed. Since 0 ∈ I one easily deduces I = [0, 1] by connectedness, and in particular 1 ∈ I. To prove the openess and closedness of I one has to impose more regularity on the function u. The bounded geometry of D for the metric g i j and an a priori analysis of Equation (2.1) suggest to introduce a family of Hölder-like spaces that ts to the problem, the so-called Hölder-Cheng-Yau spaces (for a precise denition see the bottom of page 515 in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF]). In theses spaces the continuity method works and S.-Y. (2.4) on D ν . In [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] the authors proved that for every integer ν the sequence g (ν) |D ν ν≥ν is a decreasing sequence of functions, so that there exists a function g dened on D satisfying lim ν→∞ g (ν) (z) = g(z) for every z ∈ D and condition (2.4) on D. Then they proved that for integer s and every compact set K ⊂ D the sequence g

(ν) |K ν≥ν K is bounded in C s (K)
where ν K is an integer such that K ⊂ D ν for every ν ≥ ν K . Hence by Ascoli theorem there exists a subsequence g

(ν k ) |K k∈N and a function g ∈ C s (K) such that g (ν k ) |K k∈N converges to g in C s (K)
. By uniqueness of the pointwise limit, one has g = g . Consequently g ∈ C ∞ (D) and satises the Monge-Ampère equation (2.2) so that g ∈ C ω (D) and is a Kähler-Einstein potential on D. This ends the construction of the Kähler-Einstein metric in bounded weakly pseudoconvex domains with boundary of class

C 2 .
It should be noted that the uniqueness of the complete Kähler-Einstein metric implies that the function g constructed above does not depend on the exhaustion (D ν ) ν∈N . Moreover, for every integer s and every compact set K ⊂ D, the sequence g

(ν) |K ν≥ν K converges to g in C s (K) because every subsequential C s (K)-limit of g (ν)
|K ν≥ν K is equal to g. In particular we retain the following result that we will use in Section 2. 

sup z∈K sup v,w∈C n \{0} v, w g (ν) ,z -v, w g (∞) ,z -→ ν→∞ 0, sup z∈K sup v,w∈C n \{0} Bis g (ν) (z; v, w) -Bis g (∞) (z; v, w) -→ ν→∞ 0.

The Kähler-Einstein metric at strictly pseudoconvex boundary points

This Section may be seen as a localisation of the results obtained in Section 6 in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] completed with a study of the behaviour of the holomorphic bisectional curvature of the Kähler-Einstein metric. 

Local asymptotically Kähler-Einstein metrics

In the construction of local asymptotically Kähler-Einstein metrics, we need the following technical result:

Lemma 2.8. Let D ⊂ C n be a domain, let n ≥ 2 be an integer, and let q ∈ ∂D.

Assume that there exists a neighbourhood of q on which ∂D is of class

C 1 . Let V ⊂ C n be an open set containing q, let ψ ∈ C 1 (V ) be a dening function for ∂D ∩ V . Let U ⊂ U ⊂ V be a bounded open set containing q. Then, there exists a constant > 0 such that inf U ∩{|ψ|≤ } |∇ψ| > 0.
Proof of Lemma 2.8. We argue by contradiction. Assume that there exists a sequence

(z i ) i∈N ∈ U N such that lim i→+∞ ψ(z i ) = lim i→+∞ |∇ψ| z i = 0. Since U is compact, we can
assume, up to extracting a subsequence, that (z i ) i∈N converges in U . Denote by z its limit. By continuity of ψ at z, the condition lim 

i→+∞ ψ (z i ) = 0 implies ψ(z) = 0, which means that z ∈ ∂D ∩ U ⊂ ∂D ∩ V .
M (ψ) :=   ψ ψj t [ψ i ] ψ i j   .
Then J(ψ) ∈ C s-2 (V ). We observe that

J(ψ) = ψ n+1 Det -Log(ψ) i j on {ψ > 0},
and that the function

F := -Log (J(ψ)) = Ric (-Log(ψ)) -(n + 1)Log(ψ)
is well dened on {ψ > 0} ∩ {Det -Log(ψ) i j > 0}. Especially, if -Log(ψ) i j > 0, F is well dened and measures the defect of -Log(ψ) to be the potential of a Kähler-Einstein metric: the metric -Log(ψ) i j is Kähler-Einstein if and only if J (ψ) = 1.

Let D ⊂ C n be a domain and q ∈ ∂D. Assume that there exists a neighbourhood V of q such that ∂D ∩ V is strictly pseudoconvex and of class C s with s ≥ 2n + 4. Without loss of generality, we may assume that V is a bounded domain. We describe Feerman's iterating process in V .

Let ϕ ∈ C s (V ) be a strictly plurisubharmonic dening function for

∂D ∩ V . Let U 0 := {J(-ϕ) > 0}. Since ϕ ∈ C 2 (V ) and J(-ϕ) > 0 on ∂D ∩ V , the set U 0 contains ∂D ∩ V
and is open. Consider the following constructions on U 0 :

ϕ (1) := ϕ J(-ϕ) 1 n+1 and, for 2 ≤ l ≤ n + 1, ϕ (l) := ϕ (l-1) 1 + 1 -J(-ϕ (l-1) ) l(n + 2 -l) .
Then, for every 1 ≤ l ≤ n + 1, ϕ (l) is well dened on U 0 and ϕ (l) ∈ C s-2l (U 0 ). Moreover, according to the computations done by C. Feerman in [START_REF] Fefferman | Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains[END_REF], we have

J -ϕ (l) -1 (-ϕ) l ∈ C s-2l-2 (U 0 ). This ensures that the sets U l := 1 -J(-ϕ (l) ) < 1 2
are open and contain ∂D ∩ V for every integer 1 ≤ l ≤ n + 1. Consequently, there exist two constants 0 < r, R such that the set U := ∩ n+1 l=0 U l ∩ ((B(q, R) ∩ ∂D) + B(0, r)) is open, contains q, satises U ⊂ V , and on which every ϕ (l) is a C s-2l dening function for ∂D ∩ U . Then according to Lemma 2.8, we can assume (by taking smaller r and R if necessary) that min

1≤l≤n+1 inf z∈U |∇ϕ (l) | z > 0 and also inf z∈U |∇ϕ| z > 0.
Since ∂D ∩ V is strictly pseudoconvex, we can (by changing ϕ (l) to ϕ (l) 1 + tϕ (l) with t > 0 small and taking smaller r and R if necessary) assume that each ϕ (l) is strictly plurisubharmonic on U .

Finally, the above construction gives, for every 1 ≤ l ≤ n + 1:

Log J -ϕ (l) (-ϕ) l = Log 1 + J -ϕ (l) -1 (-ϕ) l = J -ϕ (l) -1 (-ϕ) l 1 + +∞ m=1 (-1) m m + 1 J -ϕ (l) -1 m ∈ C s-2l-2 U .
Let us summarize all these facts: Proposition 2.9. Let D ⊂ C n be a domain and let q ∈ ∂D. Assume that there exists a neighbourhood V of q such that ∂D ∩ V is strictly pseudoconvex and of class C s with s ≥ 2n + 4. Then there exists a bounded domain U containing q, and a collection of functions ϕ (l) 1≤l≤n+1 satisfying, for every 1 ≤ l ≤ n + 1:

1. ϕ (l) ∈ C s-2l U , 2. D ∩ U = {ϕ (l) < 0} ∩ U , 3. inf z∈U |∇ϕ (l) | z > 0, 4. ϕ (l) is strictly plurisubharmonic on U , 5. 1 -J -ϕ (l) ≤ 1 2 on U , 6. J(-ϕ (l) )-1 (-ϕ) l ∈ C s-2l-2 U , 7. ϕ (l) ϕ ∈ C s-2l U and is positive on U , 8.
Log(J(-ϕ (l) ))

(-ϕ) l ∈ C s-2l-2 U . Moreover, we have inf z∈U |∇ϕ| z > 0.
Remark 2.10. • Especially, conditions (1) to (4) imply that for every integer 1 ≤ l ≤ n + 1, the function ϕ (l) is a strictly plurisubharmonic dening function of ∂D ∩ U of class C s-2l .

• If s ≥ 3n + 5, then all the functions ϕ (l) , J -ϕ

(l) -1 (-ϕ) l , ϕ (l) ϕ and Log J -ϕ (l) (-ϕ) l belong to C n+1 U . If s ≥ 3n + 6, then all the aforementionned functions belong to C n+2 U ⊂ 0≤δ≤1 C n+1+δ U .
• The metrics -Log -ϕ (l) i j are called asymptotically Kähler-Einstein" on ∂D ∩ U , since they satisfy the condition J -ϕ

(l) (z) -→ z→∂D∩U 1 (recall that -Log -ϕ (l) i j is Kähler-Einstein on D ∩ U if and only if J -ϕ (l) = 1 on D ∩ U ).

Local boundary regularity

In this subsection, we x an integer n ≥ 2, a domain D ⊂ C n and a point q ∈ ∂D. We assume that D satises the hypothesis of Theorem 2.4. Namely, there exists a complete Kähler-Einstein metric induced by a potential w ∈ C ω (D) that satises conditions (2.2) and (2.4), and there exists a neighbourhood V of q such that ∂D ∩ V is strictly pseudoconvex and of class C s with s ≥ max (2n + 9, 3n + 6). Thus, we can apply Proposition 2.9, and use the same notations introduced therein.

One of the main ideas to prove Theorem 2.4 is to compare the complete Kähler-Einstein metric w i j to the aymptotically Kähler-Einstein metrics induced by the functions ϕ (l) 1≤l≤n+1 as follows. Let 1 ≤ l ≤ n + 1, and set η := ϕ (l) ϕ , w := -Log (-ηϕ) , F := -Log (J (-ηϕ)) .

Then, according to points (5) 

-(8) of Proposition 2.9, η ∈ C s-2l U , w ∈ C s-2l (D ∩ U ), F ∈ C s-2l-2 U , F (-ϕ) l ∈ C s-2l-2 U
∈ C s-2l (D ∩ U ), then u ∈ C s-2l (D ∩ U ) .
So, for each integer 1 ≤ l ≤ n + 1, we have an asymptotically Kähler-Einstein metric w i j on ∂D ∩ U , for which the defect of being Kähler-Einstein is encoded in the function F , and we study the dierence between this metric and the Kähler-Einstein metric w i j on D ∩ U . More precisely, we study the boundary regularity of the dierence of their potentials, namely the function u.

Whether global (see [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF]) or local (see [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF]), the study of the boundary behaviour of u relies on its gradient estimate, which relies on the comparison between the metrics w i j and w i j (see condition (2.8)). The gradient estimate enables to deduce the boundary behaviour of u, and then the boundary behaviour of the higher order derivatives of u by use of Schauder theory. All these estimates depend on the regularity of the gradient of F (-ϕ) l , for which we have the following result: Proposition 2.11. Under the hypothesis of Theorem 2.4, and with the notations introduced at the beginning of Subsection 3, we have

|∇ w F | 2 w (-ϕ) 2l-1 ∈ C s-2l-3 D ∩ U .
In particular, there exists a positive constant c ∇ , such that the following holds on D ∩ U :

|∇ w F | 2 w ≤ c ∇ (-ϕ) 2l-1 .
(2.7)

Proof of Proposition 2.11. Let 1 ≤ i, j ≤ n. Then, according to point (8) of Proposition 2.9,

F i (-ϕ) l-1 = l F ϕ i (-ϕ) l + ϕ F (-ϕ) l i ∈ C s-2l-3 U
, and according to equation (1.18) as well as point [START_REF] Boas | Boundary limits of the Bergman kernel and metric[END_REF] of Proposition 2.9,

w i j -ϕ = ψ ϕ w i j -ψ = ψ ϕ ψ i j + ψ i j ψ i ψj ψ i j ij -ψ + |∇ ψ ψ| 2 ψ ∈ C s-2l-2 D ∩ U ,
where ψ := ϕ (l) .

Hence

|∇ w F | 2 w (-ϕ) 2l-1 = w i j -ϕ F j (-ϕ) l-1 Fī (-ϕ) l-1 ∈ C s-2l-3 D ∩ U .
We improve the gradient estimate obtained in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] by using the computations of [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] in a dierent way. Then we proceed exactly as in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] to obtain the estimates of the other derivatives of u. Remark 2.13. • Proposition 2.12 improves the results obtained in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] in the sense that ∂D ∩ U is not required to be nice".

• Proposition 2.12 is a local version of Proposition 6.4 in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF].

• The proof of Proposition 2.12 will use the fact that |∇ w u| 2 w ∈ C 2 (D ∩ U ) and is bounded from above, which is true as long as s ≥ 2n + 5 (see page 297 of [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] for further details).

• It will also use the fact that Lemma II in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] actually works for C 2 functions that are bounded below (see Lemma 2.14 for a version that ts to our situation).

Proof of Proposition 2.12. The strategy of the proof of Proposition 6.4 in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] is rst to show that there exists δ 0 > 0 such that for every 0 < α < n, 0 ≤ β < n+1 and 0 < δ ≤ δ 0 satisfying α + β + δ ≤ 2l -1, there exist positive constants and c such that the following inequality holds on D ∩ {|ϕ| ≤ }:

∆ w |∇ w u| 2 w (-ϕ) β -c(-ϕ) α > n + 1 + nβ -β 2 2 |∇ w u| 2 w (-ϕ) β -c(-ϕ) α ,
and then to apply the generalized maximum principle and choose suitable constants α and β to get the conclusion.

In our case, we wish to follow the same strategy when we restrict our considerations to

D ∩ U .
We focus our attention on explaining the necessary modications in the proof of Proposition 6.4 in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF], keeping in mind that we look for local estimates in a neighbourhood of ∂D ∩U . For that purpose, we rst explain the dependence of the constants c 1 , . . . , c 9 with respect to the local data in order to obtain conditions (2.14) and (2.15). Then we use formulas (2.14) and (2.15) to complete the proof. For each constant, we refer precisely to the condition in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] where it is dened.

In the sequel, 0 < α < n and 0 ≤ β < n + 1.

• We apply the rst Proposition of page 297 in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] to derive the existence of positive constants and δ 0 such that we have the following on D ∩ U ∩ {|ϕ| ≤ }:

w i j = 1 + O (-ϕ) δ 0 w i j , (2.8) 
which means that there exists a positive constant c 1 such that:

1 -c 1 (-ϕ) δ 0 w i j ≤ w i j ≤ 1 + c 1 (-ϕ) δ 0 w i j .
(2.9)

Hence by inverting it we obtain:

1 + c 1 (-ϕ) δ 0 -1 w i j ≤ w i j ≤ 1 -c 1 (-ϕ) δ 0 -1 w i j . Since 1 1 -x = 1 + x 1 -x ≤ 1 + 2x if x ∈ 0, 1 2 , we have 1 1 -c 1 (-ϕ) δ 0 ≤ 1 + 2c 1 (-ϕ) δ 0 on the set D ∩ U ∩ {|ϕ| ≤ } whenever ≤ 1 2c 1 1 δ 0 .
Moreover, since

1 1 + x ≥ 1 -x ≥ 1 -2x for every x ∈ 0, 1 2 
, we also have

1 1 + c 1 (-ϕ) δ 0 ≥ 1 -2c 1 (-ϕ) δ 0 on D ∩ U ∩ {|ϕ| ≤ }.
Thus, there exist positive constants and c 1 such that we have, on D ∩ U ∩ {|ϕ| ≤ }:

1 -c 1 (-ϕ) δ 0 w i j ≤ w i j ≤ 1 + c 1 (-ϕ) δ 0 w i j .
We also take ≤ 1 so that for every δ ≥ 0 we have |ϕ| δ ≤ 1. Consequently, we deduce the existence of constants ∈]0, 1], δ 0 , c 1 > 0 such that for every 0 ≤ δ ≤ δ 0 , we have the following on D ∩ U ∩ {|ϕ| ≤ }:

1 -c 1 |ϕ| δ w i j ≤ w i j ≤ 1 + c 1 |ϕ| δ w i j .
(2.10) This is the same as condition (6.18) in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF], except that it holds in a neighbourhood of ∂D ∩ U in our situation (in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF], due to the global assumption of strict pseudoconvexity of ∂D, the inequalities in (2.10) are valid in a neighbourhood of ∂D).

From now on, we let δ ∈]0, δ 0 ].

• The constant c 2 (see condition (6.19)) depends only on c 1 .

• The constant c 3 (see conditions (6.22) and (6.23)) depends only on c 1 . Especially we have the following on D ∩ U ∩ {|ϕ| ≤ }:

1 -c 3 (-ϕ) δ ≤ |∇ w ϕ| 2 w ϕ 2 ≤ 1 + c 3 (-ϕ) δ .
In our situation we also assume that

≤ 1 2c 3 1 δ
, so that we have the following on D ∩ U ∩ {|ϕ| ≤ }:

1 2 ≤ 1 -c 3 (-ϕ) δ ≤ |∇ w ϕ| 2 w ϕ 2 ≤ 1 + c 3 (-ϕ) δ .
(2.11)

• Set c 4 := 2nc 3 (see condition (6.24)).

• According to inequality (6.25), we have, on D ∩ U ∩ {|ϕ| ≤ }:

-∆ w (-ϕ) α ≥ α(-ϕ) α (n -α) |∇ w ϕ| 2 w ϕ 2 -c 4 (-ϕ) δ .
If we assume that < n-α

5c 4 1 δ
, then we derive the inequality (n-α)

2 |∇ w ϕ| 2 w -c 4 (-ϕ) δ+2 > 0 on D ∩ U ∩ {|ϕ| ≤ }, which leads to the following:

-∆ w (-ϕ) α > α(n -α) 2 |∇ w ϕ| 2 w ϕ 2 (-ϕ) α .
(2.12) This is the same as inequality (6.26) in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF], but with c 5 = 0.

• Set c 6 := βc 4 + c 2 (see condition (6.28)).

• The constant c 7 depends only on c 6 (see condition (6.29)).

• The constant c 8 depends only on c 3 and c 7 (see condition (6.30)).

• If < n+1+nβ-β 2 2c 8 1 δ
, then we have, on D ∩ U ∩ {|ϕ| ≤ }:

n + 1 + nβ -β 2 2 -c 8 (-ϕ) δ > 0,
so that in our case inequality (6.31) becomes the following:

∆ w |∇ w u| 2 w (-ϕ) β > n + 1 + nβ -β 2 2 |∇ w u| 2 w (-ϕ) β -|∇ w F | 2 w (-ϕ) -(δ+β) .
(2.13)

Combining (2.12) and (2.13), we obtain, on D ∩ U ∩ {|ϕ| ≤ } and for every c > 0:

∆ w |∇ w u| 2 w (-ϕ) β -c(-ϕ) α > n + 1 + nβ -β 2 2 |∇ w u| 2 w (-ϕ) β -|∇ w F | 2 w (-ϕ) -(δ+β) + c α(n -α) 2 
|∇ w ϕ| 2 w ϕ 2 (-ϕ) α .
This is exactly the same as inequality (6.31) in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF], but with c 9 = 0.

• Using condition (2.7) (Proposition 2.11), we observe that |∇ w F | 2 w ≤ c ∇ (-ϕ) α+δ+β whenever |ϕ| ≤ 1 and α + δ + β ≤ 2l -1. Therefore, according to (2.11), the following holds on D ∩ U ∩ {|ϕ| ≤ }:

-|∇ w F | 2 w (-ϕ) -(δ+β) + c α(n -α) 2 
|∇ w ϕ| 2 w ϕ 2 (-ϕ) α ≥ (-ϕ) α -c ∇ + c α(n -α)|∇ w ϕ| 2 w 2ϕ 2 ≥ -c ∇ + c α(n -α) 4 (-ϕ) α .
In particular if we take c > 4c ∇ α(n-α) the right-hand side is non-negative. This is exactly what is derived from relation (6.32) in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] (see the explanation below relation (6.33) in [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF]), except that in our case it holds on D ∩ U ∩ {|ϕ| ≤ }.

For short, we have proved that there exists δ 0 > 0 such that for every 0 < α < n, 0 ≤ β < n + 1 and 0 < δ ≤ δ 0 satisfying α + β + δ ≤ 2l -1, there exist ∈]0, 1] and c > 0 such that the following inequalities hold on D ∩ U ∩ {|ϕ| ≤ }: Note that this implies that there exists a positive number R and an integer i 0 ∈ N such that for every i ≥ i 0 we have d w (z i , ∂D ) ≥ R.

∆ w |∇ w u| 2 w (-ϕ) β -c(-ϕ) α > 0, (2.14) 
∆ w |∇ w u| 2 w (-ϕ) β -c(-ϕ) α > n + 1 + nβ -β 2 2 |∇ w u| 2 w (-ϕ) β -c(-ϕ) α . ( 2 
The last step to conclude is to apply the local maximum principle due to J. Bland (see Lemma II in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF]) and use inequation (2.15). For completeness, we recall the local maximum principle in a version that ts our situation: ϕ) α with D = D and choose the suitable constants α, β, δ to conclude. We may argue as follows.

(z i ) i∈N ∈ D N such that lim i→+∞ f (z i ) = sup D f, lim sup i→+∞ ∆ w f (z i ) ≤ 0. We apply Lemma 2.14 to f = |∇ u | 2 w (-ϕ) β -c(-
1. If 2n + 1 ≤ 2l -1, we rst apply Lemma 2.14 with β = 0, α = n -δ 4 and δ ∈ ]0, min (δ 0 , 4n)[ to deduce the existence of constants ∈]0, 1] and c > 0 for which we have

|∇ w u| 2 w -c(-ϕ) n-δ 4 ≤ 0 on D ∩ D . Since (-ϕ) < ≤ 1 on D ∩ D , this directly implies: |∇ w u| 2 w -c(-ϕ) n-δ 2 ≤ 0 on D ∩ D .
2. Hence we may apply Lemma 2.14 with α = β = n-δ 2 and δ ∈ ]0, min (δ 0 , 2n)[ to deduce the existence of constants ∈]0, 1] and c > 0 for which In both cases, we obtain the desired conclusion by letting δ tend to 0. Hence the result.

|∇ w u| 2 w (-ϕ) n-δ 2 -c(-ϕ) n-δ 2 ≤ 0 on D∩D . Again, since (-ϕ) < ≤ 1 on D ∩ D , this directly implies: |∇ w u| 2 w -c(-ϕ) n+1-δ 2 ≤ 0 on D ∩ D .
In the rest of this Section, we use Proposition 2.12 rst to derive the estimates of u of orders 0 (Proposition 2.16), second to derive estimates of higher order (Proposition 2.18), and nally to obtain a regularity result for ϕe -u (Proposition 2.19).

To obtain the estimates of u of order 0 we use the gradient estimate we obtain in Proposition 2.12. To do so we need the following result which gives a comparison of the gradient of u with respect to the Euclidean metric and its gradient with respect to another Kähler metric:

Lemma 2.15. Let D ⊂ C n be a domain, and q ∈ ∂D. Assume that there exists a neighbourhood of q on which ∂D is strictly pseudoconvex and of class C 2 . Let V ⊂ C n be a bounded domain containing q, ψ ∈ C 2 (V ) be a strictly plurisubharmonic dening function for ∂D ∩ V . Let g := -Log (-ψ). Then for every bounded open set U ⊂ U ⊂ V there exist 0 < λ ≤ Λ such that the following inequalities hold on D ∩ U : 

λ ψ 2 -ψ + |∇ ψ ψ| 2 ψ I ≤ g i j ≤ Λ (-ψ) I.
B 1 + T r(B) ∈ H + n , hence 0 ≤ B 1 + T r(B) ≤ T r(B) 1 + T r(B) I. Since A -1 = I - B 1 + T r(B)
, we deduce

1 1 + T r(B) I = 1 - T r(B) 1 + T r(B) I ≤ A -1 ≤ I.
Since -ψ > 0, we deduce the following:

-ψ -ψ + |∇ ψ ψ| 2 ψ I ≤ 1 -ψ R g i j R ≤ I, ψ 2 -ψ + |∇ ψ ψ| 2 ψ ψ i j ≤ g i j ≤ (-ψ) ψ i j .
Moreover, since ψ i j is continuous on the compact set U , there exist 0 < λ ≤ Λ such that λI ≤ ψ i j ≤ ΛI on U (see Proposition 1.2). Hence:

λ ψ 2 -ψ + |∇ ψ ψ| 2 ψ I ≤ g i j ≤ Λ (-ψ) I.
Proposition 2.16. Under the hypothesis and notations of Proposition 2.12, we have:

1. For every γ ∈]0, min (2n + 1, 2l -1) [, there exist positive constants and c such

that |∇u| ≤ c (-ϕ) γ 2 -1 on the set D ∩ U ∩ {|ϕ| < }. In particular, if γ > 2, one has u ∈ C 1 D ∩ U .
2. For every z ∈ ∂D ∩ U , ∇e -w z = 0.

3. For every γ ∈]0, min(2n + 1, 2l -1)[ there exist positive constants c and such that

|u| ≤ c (-ϕ) γ 2 on D ∩ U ∩ {|ϕ| < }.
Remark 2.17. 

e (n+1)u+F Det w i j = 1 + O |ϕ| δ 0 n Det w i j , u = n n + 1 Log 1 + O |ϕ| δ 0 - F n + 1 .
Thus, part (3) of Proposition 2.16 only improves the exponent δ 0 .

• Part (3) of Proposition 2.16 is exactly as in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF], the only dierence being that we have it for every γ ∈ ]0, min (2n + 

|∇u| 2 ≤ 1 λ -ψ + |∇ ψ ψ| 2 ψ ψ 2 |∇ g u| 2 g ≤ c λ (-ψ + |∇ ψ ψ| 2 ψ ) ϕ ψ 2 (-ϕ) γ-2 , = c λ (-ψ + |∇ ψ ψ| 2 ψ ) 1 η 2 (-ϕ) γ-2 , ≤ c λ M 1 M 2 (-ϕ) γ-2 .
Therefore we obtain the conclusion by setting c = c λ M 1 M 2 . Especially, if γ > 2, then all the derivatives of u of order 1 extend continuously to D ∩ U (and equal 0 on ∂D ∩ U ), 3. Fix γ ∈ ]0, min (2n + 1, 2l -1)[.

hence u ∈ C 1 D ∩ U .
Let z ∈ U ∩ {|ϕ| < }. Let z 0 ∈ ∂D ∩ U ∩ {|ϕ| < } such that d(z, ∂D) = |z -z 0 | =: s.
Set -→ v := z -z 0 . Dene the following function:

f : [0, 1] -→ R t -→ u (z 0 + t - → v ) .
According to point (1) of Proposition 2.16 we have f ∈ C 1 ([0, s]). Moreover, by the

Cauchy-Schwarz inequality we have |f (t)| ≤ |∇u| z 0 +t -→ v | - → v | = s |∇u| z 0 +t -→ v . From point
(1) of Remark 2.17 we also have u(z 0 ) = 0. Using the fundamental theorem of calculus we deduce:

|u(z)| = |f (1) -f (0)| = 1 0 f (t) dt , ≤ s 1 0 |∇u| z 0 +t -→ v dt, ≤ cs 1 0 (-ϕ (z 0 + t - → v )) γ 2 -1 dt, ≤ cs inf [0,1] h (t) 1 0 h (t) (h(t)) γ 2 -1 dt, = 2cs γ inf [0,1] h (t) 1 0 h γ 2 (t) dt, = 2cs γ inf [0,1] h (t) (-ϕ(z)) γ 2 , ≤ 2cs γ inf [0,1] h (t)
,

where h := -ϕ (z 0 + • - → v ) ∈ C 1 ([0, 1]). According to point (3) of Proposition 2.9 we have inf [0,1]
h > 0. Hence the result.

Proposition 2.18 is exactly as in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF], the only dierence being that we have the estimates for every γ ∈ ]0, min (2n + 1, 2l -1)[.

Proposition 2.18. Under the hypothesis and notations of Proposition 2.12, we have: for every γ ∈]0; min(2n + 1, 2l -1)[, there exist positive constants and c such that for every integer 0 ≤ p ≤ s -2l, the following holds on D ∩ U ∩ {|ϕ| < }:

|D p u| w ≤ c |ϕ| γ 2 ,
where |D p u| w is the length of the p-th covariant derivative of u with respect to w i j .

Proof of Proposition 2.18. We x γ ∈ ]0, min (2n + 1, 2l -1)[ and follow line by line the proof at the beginning of page 300 in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF], the only thing that changes being the range in which γ can be choosen. Namely, we apply Log • Det to equation (2.2) to obtain the following partial dierential equation of second order:

(n + 1)u + F = h i j u j ī, (2.17) 
where h i j :=

1 0 (w + tu) i j dt ∈ C s-2l-2 D ∩ U ∩ {|ϕ| < }, H ++ n .
We use Equation (2.9) with δ = 0 to obtain (1 -c 1 ) w i j ≤ (w + u) i j ≤ (1 + c 1 ) w i j which implies

(1 -tc 1 ) w i j ≤ (w + tu) i j ≤ (1 + tc 1 ) w i j for every 0 ≤ t ≤ 1. By inverting these inequalities and integrating between t = 0 and t = 1 we deduce the existence of constants , c > 0 such that we have, on D ∩ U ∩ {|ϕ| < }:

1 c w i j ≤ h i j ≤ c w i j .
Moreover we have u ∈ C s-2l (D ∩ U ∩ {|ϕ| < }) and according to Proposition 2.9 we also have F, F

(-ϕ) l ∈ C s-2l-2 D ∩ U ∩ {|ϕ| < } .
We conclude by applying Schauder theory.

In particular, we deduce the following, exactly as was done in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] 

ϕe -u ∈ C γ 2 +1+δ D ∩ U .
Proof of Proposition 2.19. This is exactly as in [START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF] (or [START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF] for a global version). Ob- Moreover, according to Lemma 2.15, there exist positive constants λ ≤ Λ such that the following holds on D ∩ U :

serve that since s -2l ≥ 3n + 6 -2(n + 1) ≥ n + 2 ≥ γ 2 , u ∈ C n+2 (D ∩ U ) and ϕ ∈ C n+2 U (see Proposition 2.
λ -ψ -ϕ -ψ -ψ + |∇ ψ ψ| 2 ψ I ≤ w i j -ϕ ≤ Λ -ψ -ϕ I. Since -ψ -ϕ
∈ C U is a positive function (see Proposition 2.9) and U is a compact set, we deduce that there exist positive constants M and M such that the following holds on D ∩ U :

λM -ψ -ψ + |∇ ψ ψ| 2 ψ I ≤ w i j -ϕ ≤ ΛM I.
Together with the expression of |D p u| w in terms of the derivatives of u and of w, this implies the existence of positive constants and c such that for every integer 0 ≤ p ≤ s-2l

and every multi-index (i 1 , j 1 , • • • , i n , j n ) ∈ N 2n satisfying n k=1 (i k + j k ) ≤ p, the following holds on D ∩ U ∩ {|ϕ| < }:

u i 1 j 1 •••injn , e -u i 1 j 1 •••injn ≤ c |ϕ| γ 2 -p . • Let p = γ 2
. Then the derivatives of u of order p extend continuously to D∩U ∩{|ϕ| < } (and are equal to 0 on ∂D ∩ U ), and these extensions are Hölder of exponent δ for every

0 ≤ δ < γ 2 -γ 2 
. This gives the desired regularity of u and e -u . • According to the chain rule and the regularity of ϕ and e -u , we have the existence of a constant c > 0 such that the following holds on D ∩ U ∩ {|ϕ| < }:

ϕe -u i 1 j 1 •••injn -ϕ i 1 j 1 •••injn e -u ≤ c |ϕ| γ 2 -(p-1) . Since γ 2 > 1 we also have ϕ i 1 j 1 •••injn e -u ∈ C 1 D ∩ U ∩ {|ϕ| < } hence ϕ i 1 j 1 •••injn e -u ∈ C δ D ∩ U ∩ {|ϕ| < } for every 0 ≤ δ < 1. Let p = γ 2 + 1.
Then the derivatives of ϕe -u of order p extend continuously to D ∩ U ∩ {|ϕ| < } and these extensions are Hölder of exponent δ for every 0 ≤ δ < γ 2 -γ

2

. This gives the desired regularity of ϕe -u .

Proof of Theorems 2.4 and 2.5

We deduce Theorem 2.4 by using Proposition 2.19:

Proof of Theorem 2.4. We take l = n + 1. Then, according to Proposition 2.11, the range of γ is ]0, 2n + 1[. Let α ∈ ]0, 1[ and take γ := 2n + α so that γ 2 = n. We apply Proposition 2.19 to obtain ϕe [START_REF] Boas | Boundary limits of the Bergman kernel and metric[END_REF] of Proposition 2.9. We directly

-u ∈ C n+1+δ D ∩ U for every 0 ≤ δ < α 2 . Since s -2(n + 1) ≥ n + 2, then ϕ (n+1) ϕ ∈ C n+2 U by point
deduce that -w = ϕ (n+1) e -u = ϕ (n+1) ϕ ϕe -u ∈ C n+1+δ D ∩ U . This holds for every 0 ≤ δ < α 2 < 1 2
, hence the result.

We can also prove Theorem 2.5:

Proof of Theorem 2.5. In this proof for a Kähler metric h i j of class C 2 and two vectors v, w ∈ C n \ {0} we note Bis(h)(v, w) instead of Bis (h) ( • ; v, w) the holomorphic bisectional curvatures of the metric between v and w.

The curvature coecients of g i j satisfy the following relation which follows from the denition by direct calculations:

R i jk l(g) = -(g i j g k l + g i lg k j ) + 1 -ψ    R i jk l(ψ) - 1 |∇ψ| 2 ψ -ψ (ψ ik -ψ ik pψ pq ψ q ) ψ ,ik := ψjl -ψ pψ pq ψ q jl ψ , jl:=    .
(2.18)

Using the denition of the holomorphic bisectional curvatures (1.9) and relation (2.18) we obtain the following on D ∩ U for every v, w ∈ C n \ {0}:

Bis (g) (v, w) = -1 + | v, w g | 2 |v| 2 g |w| 2 g =:T 1 (v,w) + 1 -ψ |v| 2 ψ |w| 2 ψ |v| 2 g |w| 2 g Bis (ψ) (v, w) =:T 2 (v,w) - 1 -ψ 1 |∇ ψ ψ| 2 ψ -ψ ψ ,ik ψ , jlv i v j w k w l |v| 2 g |w| 2 g =:T 3 (v,w)
.

Using the proof of Proposition 2.19 with γ 2 = n + δ ≥ 2 + δ for some xed 0 < δ < 1 2 we have the existence of positive constants c, > 0 such that the following holds on D ∩ U ∩ {|ϕ| < } for every 1 ≤ i, j, k, l ≤ n: • Using the notations of Proposition 1.25 and of the proof of Proposition 1.25, we have 0 ≤ B, hence I ≤ A, hence ψ i j =: R 2 ≤ RAR = (-ψ) g i j .

ψ i jk l ≤ c |ϕ| -1+δ ,
This means that for every v ∈ C n , the following holds on D ∩ U :

|v| 2 ψ ≤ (-ψ) |v| 2 g .
(2.19)

• Since D ∩ U {|ϕ| < } is compact and ψ ∈ C 2 D ∩ U ∩ {|ϕ| < } , we also have the existence of a positive constant 0 < λ -such that the following inequality holds on D ∩ U ∩ {|ϕ| < }:

λ -I ≤ ψ i j .
(2.20)

We complete the proof as follows. According to inequality (2.19), we have the following on D ∩ U for every vectors v, w ∈ C n \ {0}:

1 -ψ |v| 2 ψ |w| 2 ψ |v| 2 g |w| 2 g ≤ -ψ = -ϕe -u .
Moreover, there exists a constant c > 0 such that for all 1 ≤ i, j, k, l ≤ n we have

R i jk l (ψ) ≤ c |ϕ| δ-1 on D ∩ U ∩ {|ϕ| < }.
Hence there exists a positive constant c > 0

such that sup v,w∈C n \{0} |T 2 (v, w)| ≤ c|ϕ| δ on D ∩ U ∩ {|ϕ| < }.
Likewise, using inequalities (2. [START_REF] Fefferman | On the Bergman kernel and biholomorphic mappings of pseudoconvex domains[END_REF]) and (2.20) we obtain, on D ∩ U and for every v, w ∈ C n \ {0}:

- 1 -ψ 1 |∇ ψ ψ| 2 ψ -ψ 1 |v| 2 g |w| 2 g ≤ -ψ |∇ ψ ψ| 2 ψ -ψ 1 λ 2 - = -ϕ |∇ ψ ψ| 2 ψ -ψ e -u λ 2 - .
Note that (up to taking a smaller positive

) |∇ ψ ψ| 2 ψ -ψ ∈ C D ∩ U ∩ {|ϕ| < } and
is a positive function according to point (2) of Proposition 2.16. Moreover, there exists a constant c > 0 such that for all 1 ≤ i, j, k, l ≤ n we have ψ ,ik ψ , jl ≤ c on D∩U ∩{|ϕ| < }.

Hence there exists a positive constant c > 0 such that sup

v,w∈C n \{0} |T 3 (v, w)| ≤ c|ϕ| on D ∩ U ∩ {|ϕ| < }.
Using the triangle inequality, we deduce the existence of positive constants , c > 0 such that the following inequality holds on D ∩ U ∩ {|ϕ| < }:

sup v,w∈C n \{0} |Bis g (v, w) + T 1 (v, w)| ≤ c|ϕ| δ .
We obtain the result since lim z→∂D∩U ϕ(z) = 0 and δ > 0.

Behaviour of the Kähler-Einstein curvatures when the squeezing function tends to one 2.3.1 The squeezing function

We recall the denition of the squeezing function of a domain. Remark 2.21. Let D ⊂ C n be a domain and let z ∈ D such that s D (z) > 0. It was observed in [START_REF] Deng | Some properties of squeezing functions on bounded domains[END_REF] that the supremum in the denition of s D (z) is achieved.

Let D ⊂ C n . It is clear that if there exists a point z ∈ D such that s D (z) = 1 then D is biholomorphic to B. Assume that there exists q ∈ ∂D such that lim z→q s D (z) = 1. For every sequence z (ν) ν∈N ∈ D N converging to q there exists a sequence of holomorphic injective maps f (ν) ν∈N ∈ H (D, B) N and r (ν) ν∈N ∈ ]0, 1] N such that B 0, r (ν) ν∈N ⊂ f (ν) (D) ⊂ B and lim ν→∞ r (ν) = 1. This implies that the sequence of sets f (ν) (D) ν∈N converges to B in the local Hausdor topology. This is why we think of q as a "ball-like" boundary point.

Domains satisfying a uniform squeezing property enjoy many interesting properties.

For instance, if D satises a uniform squeezing property, then D is pseudoconvex. Moreover there exists a complete Kähler-Einstein metric on D. Also, the Bergman kernel of D induces a complete metric, and the Bergman metric and the Kähler-Einstein metric of D are equivalent on D. We refer to [START_REF] Deng | Some properties of squeezing functions on bounded domains[END_REF][START_REF] Kim | On the uniform squeezing property of bounded convex domains in C n[END_REF][START_REF] Yeung | Geometry of domains with the uniform squeezing property[END_REF] for proofs of these statements and other properties regarding domains satisfying a uniform squeezing property.

Proof of Theorem 2.6

In the rest of this subsection, every domain possesses a unique complete Kähler-Einstein potential which is solution to Equation (2. Proof of Theorem 2.6. Let z (ν) ν∈N ∈ D N such that lim ν→∞ 

z (ν) = q. For ν ∈ N let f (ν) ∈ F D z (ν) such that B 0, s D z (ν) ⊂ f (ν) (D), let g (ν) := 1 -1 2 ν+1 f (ν)
  2 -   v, w Sν 0 |v| Sν 0 |w| Sν 0   2 ≤ 1 2 ν , sup v,w∈C n \{0} Bis Dν (0; v, w) -Bis Sν (0; v, w) ≤ 1 2 ν . For every v, w ∈ C n \ {0} set v (ν) := ∂ z (ν) g (ν) (v) and w (ν) := ∂ z (ν) g (ν) (w). Since each g (ν)
is holomorphic and injective, the linear map ∂ z (ν) g (ν) is invertible, hence v (ν) , w (ν) = 0 and:

sup v,w∈C n \{0}   v (ν) , w (ν) Dν 0 |v (ν) | Dν 0 |w (ν) | Dν 0   2 -   v (ν) , w (ν) Sν 0 |v (ν) | Sν 0 |w (ν) | Sν 0   2 ≤ 1 2 ν , (2.21) sup v,w∈C n \{0}
Bis Dν 0; v (ν) , w (ν) -Bis Sν 0; v (ν) , w (ν) ≤ 1 2 ν . Therefore according to Lemma 2.7 we deduce the following:

sup v,w∈C n \{0}   v, w Sν 0 |v| Sν 0 |w| Sν 0   2 -   v, w B 0 |v| B 0 |w| B 0   2 -→ ν→∞ 0, sup v,w∈C n \{0} Bis Dν (0; v, w) -Bis B (0; v, w) -→ ν→∞ 0.
Moreover, since each g (ν) is holomorphic and injective, the linear map ∂ z (ν) g (ν) is invertible, hence:

sup v,w∈C n \{0}   v (ν) , w (ν) Sν 0 |v (ν) | Sν 0 |w (ν) | Sν 0   2 -   v (ν) , w (ν) B 0 |v (ν) | B 0 |w (ν) | B 0   2 -→ ν→∞ 0, (2.23) sup v,w∈C n \{0}
Bis Sν 0; v (ν) , w (ν) -Bis B 0; v (ν) , w (ν) -→ ν→∞ 0.

(2.24)

Using the transformation formula (1.13) and the triangle inequality we obtain for every integer ν ∈ N:

sup v,w∈C n \{0} Bis D z (ν) ; v, w + 1 +   v, w D z (ν) |v| D z (ν) |w| D z (ν)   2 = sup v,w∈C n \{0} Bis Dν 0; v (ν) , w (ν) + 1 +   v (ν) , w (ν) Dν 0 |v (ν) | Dν 0 |w (ν) | Dν 0   2 ≤ sup v,w∈C n \{0} Bis Dν 0; v (ν) , w (ν) -Bis Sν 0; v (ν) , w (ν) + sup v,w∈C n \{0} Bis Sν 0; v (ν) , w (ν) -Bis B 0; v (ν) , w (ν) + sup v,w∈C n \{0} Bis B 0; v (ν) , w (ν) + 1 +   v (ν) , w (ν) Sν 0 |v (ν) | Sν 0 |w (ν) | Sν 0   2 + sup v,w∈C n \{0}   v (ν) , w (ν) Sν 0 |v (ν) | Sν 0 |w (ν) | Sν 0   2 -   v (ν) , w (ν) Dν 0 |v (ν) | Dν 0 |w (ν) | Dν 0   2 .
From condition (2.22), respectively condition (2.24), condition (2.21), the rst term of the right hand side, respectively the second, the fourth, tends to 0 as ν tends to +∞. Moreover the Kähler-Einstein metric we work with satises Bis B (0

; v, w) = -1 - | v,w B 0 | |v| B 0 |w| B 0 2
for every v, w ∈ C 2 \ {0}. We combine this remark with condition (2.23) to deduce that the third term of the right hand side tends to 0 as ν tends to +∞. Therefore we have proved that there exists a subsequence z

(ν k ) k∈N ∈ D N such that sup v,w∈C n \{0} Bis D z (ν k ) ; v, w + 1 +   v, w D z (ν k ) |v| D z (ν k ) |w| D z (ν k )   2 -→ k→+∞ 0.
We obtain the conclusion of Theorem 2.6 by applying the above reasoning to any subse-

quence of z (ν k ) ν∈N ∈ D N .

Introduction

In Chapter 2 we saw that every bounded pseudoconvex domain D admits a unique complete Kähler-Einstein metric induced by a potential g ∈ C ω (D) which satises Equation Drawing inspiration from the case of Thullen domains in C n , we study the Kähler-Einstein metric and curvatures in tube domains T p = {z ∈ C 2 , Re(z 1 )+Re(z 2 ) 2p < 0} for p ∈ N * . We prove the following regarding the behaviour of the holomorphic bisectional curvatures at weakly pseudoconvex boundary points: Theorem 3.2. There exist positive constants 0 < c ≤ C and 0 < α < 1 such that the following holds for every z q ∈ ∂D be a point of nite type such that a local model at q is either a Thullen domain or a tube domain. There exists positive constants 0 < c ≤ C such that for every non tangential cone Λ with vertex at q and every sequence z (ν) ν∈N ∈ (D ∩ Λ) N we have:

∈ T p ∩ Re(z 2 ) 2p -Re(z 1 ) ≤ α ∪ 1 -α ≤ Re(z 2 ) 2p -Re(z 1 ) < 1 : ∀v, w ∈ C 2 \ {0}, -C ≤ Bis (g) (z; v, w) ≤ -c.
-C ≤ lim inf ν→∞ inf v,w∈C 2 \{0} Bis (g) z (ν) ; v, w , lim sup ν→∞ sup v,w∈C 2 \{0}
Bis (g) z (ν) ; v, w ≤ -c. . Then:

max v∈C n \{0} H (g) ((-1, 0); v) = -3 - 1 K + p -1 pK |g 22 | g 2 2 (-1, 0) 2 , max v,w∈C n \{0} Bis (g) ((-1, 0); v, w) = max        - 1 K , -3 + 1 K + p -1 pK |g 22 | g 2 2 (-1, 0) 2        , min v,w∈C n \{0} Bis (g) ((-1, 0); v, w) = min        -3 + 1 K , -3 - 1 K - p -1 pK |g 22 | g 2 2 (-1, 0) 2        , min v∈C n \{0} H (g) ((-1, 0); v) = min v,w∈C n \{0} Bis (g) ((-1, 0); v, w).
This chapter is organised as follows. In Section 3.1 we recall some results obtained by J.S. Bland regarding the Kähler-Einstein metric in Thullen domains E n p and prove Theorem 3.1. In Section 3.2 we study the Kähler-Einstein metric in tube domains and prove Theorems 3.2 and 3.3. In Section 3.4 we prove Theorem 3.4.

Study of the Kähler-Einstein in Thullen domains

This section is mostly a summary of the results obtained by J.S. Bland about the Kähler-Einstein metric and its curvatures in Thullen domains in C n+1 (see [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]). We recall them and use them to compare the Kähler-Einstein metric with the Bergman metric in Thullen domains. We also give more precise estimates about the holomorphic bisectional curvatures of the metric in certain regions.

Preliminary notations and remarks

For every integer n ∈ N \ {0, 1}, and every real number p ≥ 1, let

E n p := |z 1 | 2 + • • • + |z n-1 | 2 + |z n | 2p < 1 .
The domain E n p is bounded and pseudoconvex, and has boundary of class C 2 . In particular there exists a unique Kähler-Einstein potential g ∈ C ω E n p that solves Equation (2.2) on E n p and satises the boundary condition (2.4).

Dene

π 1 : C n = C n-1 × C -→ C n-1 (z 1 , . . . , z n ) -→ (z 1 , . . . , z n-1 ) , π 2 : C n -→ C (z 1 , . . . , z n ) -→ z n ,
and dene X :=

|π 2 | 2 1 -|π 1 | 2 1 p on B × C ⊂ C n so that E n p is exactly the set {X < 1}. It is important to note that the function X is invariant under the action of Aut E n p .
The results of this Section give an expression of the potential g and its curvature coecients in terms of functions of one real parameter applied to the "orbits parametrization function" X.

Overview of the already known results

In this subsection we recall two results stated in [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF] regarding the expression of the Kähler-Einstein potential g and its curvature coecients.

Theorem 3.5 (Theorem 1 in [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]). There exists a function Y ∈ C ∞ ([0, 1[) such that the metric the following relations hold on E n p :

g i j = Y • X (Log • X) i j + Y (1) • X X i Xj X (3.1) Det g i j = Y • X p n-1 Y (1) • X 1 -|π 1 | 2 n+ 1 p . (3.2) Moreover, Y satises Y (0) = np + 1 n + 1
and the following dierential equation for every number x ∈ [0, 1[:

xY (1) (x)Y (x) n-1 = Y (x) n+1 -pY (x) n + α, (3.3) 
where α = p - • Observe that Log • X is not well dened on {X = 0} (or equivalently on {z 2 = 0}).

1 n + 1 Y (0) n . The functions x -→ Y (x)(1 -x) and x -→ Y (1) (x)(1 -x) 2 are bounded on [0, 1[. Remark 3.6. • Dene F := g |{0}×]-1,1[ . Then F ∈ C ω (]-1, 1 
However by pluriharmonicity of Log • |π 2 | 2 we can naturally extend (Log • X) i j on

{X = 0} by setting (Log • X) i j =   Log   1 1 -|π 1 | 2 1 p   i j   on {X = 0}.
• Likewise, the matrix X i Xj X is not well dened on {X = 0}, but we can naturally extend it on {X = 0} by using the expression of X i Xj X on {X = 0}.

• From relation (3.1) one sees that g 2 2 = Y (1) • X |X 2 | 2 X > 0 on E n p so that Y is an increasing function on [0, 1[. Since Y (0) > 0 one has Y > 0 on [0, 1[. Moreover one has lim x→1 -Y (x) = +∞.
In [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF] the author uses Theorem 3.5 to estimate the length of vectors for the Kähler-Einstein metric induced by g in regions of the form {X ≤ c} ⊂ E n p for c ∈ [0, 1[, and also to estimate the blow-up rate of the volume of the metric in the same regions (see Theorem 3 in [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]).

By dierenciating the metric and using the Kähler-Einstein condition one obtains the following expression of the curvature coecients:

Theorem 3.7 (Theorem 2 in [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]). The coecients of the curvature tensor of the Kähler-

Einstein metric induced by the potential g satisfy the following on E n p for every integer 

1 ≤ i, j, k, l ≤ n: R i jk l = -1 - nα (Y • X) n+1 g i j g k l + g i lg k j -n(n + 1)α Y (1) • X 2 (Y • X) n+1 X i XjX k Xl X 2 - (n + 1)α (Y • X) n-1 (Log • X) i j (Log • X) k l + (Log • X) i l (Log • X) k j .

Asymptotic expansion of the Kähler-Einstein potential

We use Theorem 3.5 to obtain the regularity of e -g . This is very similar to the analogue result in the case of bounded strictly pseudoconvex domains obtained by J. Lee and R.

Melrose in [START_REF] Lee | Boundary behaviour of the complex Monge-Ampère equation[END_REF]: Theorem 3.9. Let g be the Kähler-Einstein potential solution of Equation (2.2) with condition (2.4). There exists a positive function η ∈ C ∞ ([0, 1]) with η(1) = 1 and such that one has the following on E n p e -g = p

n-1 n+1 (1 -X) η • X 1 -|π 1 | 2 np+1 p(n+1) .
Proof of Theorem 3.9. We use the notations introduced in Theorem 3.5. The Monge-Ampère Equation (2.2) combined with Equation (3.3) directly gives the relation e 1) are positive functions on [0, 1[, the conclusion of Theorem 3.9 easily follows if we prove that η ∈ C ∞ ([0, 1]) and is a positive function at x = 1.

(n+1)g = Y •X p n-1 Y (1) • X 1 -|π 1 | 2 n+ 1 p on E n p hence e -g = Y •X p n-1 Y (1) • X -1 n+1 1 -|π 1 | 2 np+1 p(n+1) . Set η (x) =: (1 -x) n+1 Y (x) n-1 Y (1) (x) for x ∈ [0, 1[. Since Y and Y (
We rst prove that

1 Y ∈ C ∞ ([0, 1]), then that x -→ (1 -x)Y (x) ∈ C ∞ ([0, 1]
) and nally obtain the conclusion.

• Set h := 1 Y on [0, 1[ and h(1) := 0. Since Y > 0 on [0, 1[ and lim x→1 -Y (x) = +∞ we have h ∈ C ([0, 1]) ∩ C ∞ ([0, 1[). We divide Equation (3.3) by -Y n+1 (x) to obtain the following for every x ∈ [0, 1[: xh (1) (x) = -1 + ph(x) -αh(x) n+1 . (3.5)
Therefore by classical ODE theory we deduce that h

∈ C ∞ ([0, 1]), hence 1 Y ∈ C ∞ ([0, 1]).
• Let H be the primitive of h that vanishes at 1, and let G be the primitive of h n+1 that vanishes at 1, so that x -→

H(x) 1 -x , x -→ G(x) 1 -x ∈ C ∞ ([0, 1]
). We take the primitives that vanish at 1 on both sides of Equation (3.5) and substract H to obtain the following for every x ∈ [0, 1[:

xh(x) = 1 -x -(p + 1)H(x) + αG(x), hence x h(x) 1 -x = 1 -(p + 1) H(x) 1 -x + α G(x) 1 -x , (3.6) so that x -→ h(x) 1 -x ∈ C ∞ ([0, 1]) or equivalently x -→ (1 -x)Y (x) ∈ C ∞ ([0, 1]) by denition of h. Letting x tend to 1 -on both sides of Equation (3.6) directly gives lim x→1 -(1 -x)Y (x) = 1 > 0.
Moreover by the product rule one has: . Then

∀x ∈ [0, 1] , (1 -x) (x -→ (1 -x)Y (x)) (1) (x) = -(1 -x)Y (x) + (1 -x) 2 Y (1) (x), hence x -→ (1 -x) 2 Y (2) (x) ∈ C ∞ ([0, 1]) and lim x→1 -(1 -x) 2 Y (1) (x) = 1 > 0.
e g -g ∈ C ∞ E 2 p \ {|z| = 1} .
Proof of Corollary 3.10. From relation (4.1) in [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF] we have on E 2 p :

K = p + 1 pπ 2 1 -rX (1 -X) 3 (1 -|π 1 | 2 ) 2+ 1 p , where r = p -1 p + 1
. Therefore we have:

e g -g = p + 1 π 2 1 3 η • X (1 -rX) 1 3
, so that the result directly follows from Theorem 3.9.

Remark 3.11. Let us explain why it is natural to compare the metrics g and g in Theorem 3.10. It is well known (see [START_REF] Kim | Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains[END_REF]) that given a pseudoconvex domain D, the holomorphic sectional curvatures of the Bergman metric tend to -2 3

at any smooth strictly pseudoconvex boundary point (provided that the Bergman kernel induces a Kähler metric).

Hence according to formula (1.11) the Ricci form is asymptotically close to the opposite of the metric tensor. On the other hand, the Kähler-Einstein metric we work with satises Ric (g) = -3g. Thus to compare these metrics it is relevant to rescale one of them.

Study of the Kähler-Einstein metric in pseudoconvex tube domains

In this Section we study the Kähler-Einstein metric in tube domains. In order to simplify the forthcoming computations, we work in the domains

T p := z ∈ C 2 , Re (4pz 1 ) + Re (z 2 ) 2p < 1 where p ∈ N * . The biholomorphic ane map of C 2 C 2 -→ C 2 (z 1 , z 2 ) -→ (4pz 1 -1, z 2 )
maps T p to T p . In particular the automorphism group of T p and the geometric properties ∂T p are well known (see Section 1.2 and Section 1.3). We use the invariance property of the Kähler-Einstein metric and the structure of the automorphism group of T p to reduce the study of the Kähler-Einstein potential on T p to the study of an auxiliary function of one real parameter satisfying an ordinary dierential equation.

Geometry of T p and parametrisation of the orbits of T p

We recall the description of the automorphism group of the tube, denoted by Aut(T p ): Proposition 3.12. The automorphism group Aut(T p ) of T p is generated by the following ane maps:

• Translations: τ u (z 1 , z 2 ) = (z 1 + iu 1 , z 2 + iu 2 ), where u ∈ R 2 , • Dilations: d λ (z 1 , z 2 ) = λ(4pz 1 -1)+1 4p , λ 1 2p z 2 , where λ > 0,
• The symmetry of complex axis {z 2 = 0}:

s(z 1 , z 2 ) = (z 1 , -z 2 ).
The translations have a Jacobian equal to the identity matrix. Also,

Jac C (d λ ) =   λ 0 0 λ 1 2p   and Jac C (s) =   1 0 0 -1   .
Let us denote by π R 1 and π R 2 the following maps:

π R 1 : C 2 -→ R (z 1 , z 2 ) -→ Re(z 1 ), π R 2 : C 2 -→ R (z 1 , z 2 ) -→ Re(z 2 ). Let X := π R 2 (1 -4pπ R 1 ) 1 2p
. This function is well dened on the set {z ∈ C 2 /Re(4pz 1 ) < 1} which contains T p .

Moreover, observe that it satises the following properties:

• X ∈ C ∞ ({z ∈ C 2 /Re(4pz 1 ) < 1}),
• X is a parametrization of the orbits of T p under the action of Aut(T p ), in the sense that

∀F ∈ Aut(T p ), ∀z ∈ T p , X(F (z)) = X(z) and X |{0}×]-1,1[ is injective, • X(T p ) =] -1, 1[,
• q ∈ {|X| = 1} if and only if q is a strictly pseudoconvex boundary point of ∂T p .

Let us relate the regions introduced in Theorem 3.2 to the notions of tangential and non-tangential convergences. Let θ ∈ 0, π 2 . We denote by

Λ(θ) :=    z ∈ T p / Im(z 1 ) 2 + |z 2 | 2 1 4p -Re(z 1 ) ≤ tan(θ)    the half cone of vertex 1 4p , 0 , of axis R × {0} and of angle θ. Let (z (n) ) ν∈N ∈ T N p such that z (ν) -→ ν→+∞ ( 1 4p , 0). Recall that (z (ν) ) ν∈N converges non tangentially to 1 4p , 0 if there exists a constant θ ∈ 0, π 2 
and an integer ν 0 ∈ N such that for every ν ≥ ν 0 we have z ν ∈ Λ(θ), and that (z (ν) ) ν∈N converges tangentially to

1 4p , 0 if for every constant θ ∈ 0, π 2 
and there exists an integer ν 0 ∈ N such that for every ν ≥ ν 0 we have z ν / ∈ Λ(θ).

Now observe that we have:

∀z ∈ T p , 4p |X(z)| (1 -Re(4pz 1 )) 1 2p -1 ≤ Im(z 1 ) 2 + |z 2 | 2 1 4p -Re(z 1 )
, hence we deduce that for every sequence (z (ν) ) n∈N ∈ T N p that converges to ( 1 4p , 0) and for every 0 < α < 1 we have:

∀0 < θ < π 2 , z (ν) ∈ Λ(θ) N ⇒ ∃ν 0 ∈ N, ∀ν ≥ ν 0 , z (ν) ∈ {|X| ≤ α}, z (ν) ∈ {1 -α ≤ |X| < 1 } N ⇒ ∀0 < θ < π 2 , ∃ν 0 ∈ N, ∀ν ≥ ν 0 , z (ν) / ∈ Λ(θ).
In particular, Theorem 1 gives the non-tangential behaviour of the bisectional curvatures at weakly pseudoconvex boundary points of T p , and also gives a "hyper-tangential" behaviour of the bisectional curvatures at weakly pseudoconvex boundary points of T p .

We conclude this subsection with the following Proposition, which directly follows from Proposition 3.12 and the denition of X: Proposition 3.13. Let z ∈ T p and dene ψ (z) := d 1 1-Re(4pz 1 )

• τ -(Im(z 1 ),Im(z 2 )) ∈ Aut(T p ).

Then ψ (z) satises ψ (z) (z) = (0, X(z)), and Det Jac C ψ (z) = 

The invariance property and an expression of the Kähler-Einstein potential in terms of a special auxiliary function

The invariance property of the Kähler-Einstein metric under the action of Aut(T p ) gives a rst reduction of the potential g: Proposition 3.14. Let

F : ] -1, 1[ -→ R x -→ g(0, x),
and set K := 2p + 1 3

. Then the following holds on T p :

g = F • X + K p Log 1 1 -4pπ R 1 . (3.7)
Proof of Proposition 3.14. The Kähler-Einstein metric is invariant under the action of Aut(T p ), which means that: (3.9)

∀ψ ∈ Aut(T p ), g i j = t Jac C (ψ) g i j • ψ Jac C (ψ).
Let z ∈ T p . We use Equation (3.9) with the function ψ = ψ (z) given in Proposition 3.13

and obtain the result.

The function F inherits from the Kähler-Einstein potential g some regularity properties.

Proposition 3.15. The function F is real analytic on ] -1, 1[, strictly convex, and even.

Moreover, e -F ∈ C 3+δ ([-1, 1]) for every number δ ∈ 0, 1 2 .

Proof of Proposition 3.15. The relation F (x) = g(0, x) for every number x ∈] -1, 1[

directly implies that F ∈ C ω (] -1, 1[) and e -F ∈ C 3+δ ([-1, 1]) for every number δ ∈ 0, 1 2 
. In particular, by dierentiating Equation (3.7) twice at the point (0, x) ∈ T p , we obtain F (2) (x) = 4g 2 2(0, x) > 0 because g is strictly plurisubharmonic on T p . Hence F is strictly convex on ] -1, 1[. To prove that F is even on ] -1, 1[, we use the automorphism s introduced in Proposition 3.12 to deduce that for every -1 < x < 1, we have F (x) = g(0, x) = F (X(0, -x)) + K p Log(1) = F (-x), hence the result.

3.2.3

The Kähler-Einstein condition and two dierential equations satised by F

We use relation (3.7) and the Monge-Ampère Equation (2.2) to obtain a rst dierential equation satised by the function F : Proposition 3.16. Denote f := F (1) . Then the metric g i j satises the following on T p :

g i j =       X 2 f (1) •X+(2p+1)Xf •X+4pK (1-4pπ R 1 ) 2 Xf (1) •X+f •X 2(1-4pπ R 1 ) 1+ 1 2p
Xf (1) •X+f •X

2(1-4pπ R 1 ) 1+ 1 2p f (1) •X 4(1-4pπ R 1 ) 1 p       , (3.10) 
Det(g i j ) = Z(X)

(1 -4pπ R 1 ) 3K p , (3.11) 
where the function Z is dened by Z(x)

:= f (1) (x)((2p-1)xf (x)+4pK)-f (x) 2 4
for every number

x ∈] -1, 1[. Moreover, Z satises the following:

Z = e 3F on ] -1, 1[. (3.12) 
Proof of Proposition 3.16. On T p we have:

[X i ] = [Xī] =   X 1-4pπ R 1 1 2(1-4pπ R 1 ) 1 2p   , X i Xj =    X 2 (1-4pπ R 1 ) 2 X 2(1-4pπ R 1 ) 1 2p +1 X 2(1-4pπ R 1 ) 1 2p +1 1 4(1-4pπ R 1 ) 1 p    , X i j =     (2p+1)X (1-4pπ R 1 ) 2 1 2(1-4pπ R 1 ) 1 2p +1 1 2(1-4pπ R 1 ) 1 2p +1 0     .
Dierentiating Equation (3.7), we directly deduce:

g i j = f • X X i j + f (1) • X X i Xj + 4Kp (1 -4pπ R 1 ) 2 E 11 , =       X 2 f (1) •X+(2p+1)f •X+4pK (1-4pπ R 1 ) 2 Xf (1) •X+f •X 2(1-4pπ R 1 ) 1+ 1 2p
Xf (1) •X+f •X

2(1-4pπ R 1 ) 1+ 1 2p f (1) •X 4(1-4pπ R 1 ) 1 p      
.

Then we apply the function Det to Equation (3.10) and directly obtain Equation (3.11).

Finally, recall that according to Equations (2.2) and (3.7) one has on T p :

Det g i j = e 3g , = e 3F •X-3K p Log(1-4pπ R 1 ) , = e 3F •X (1 -4pπ R 1 ) 2+ 1 p ,
hence Equation (3.12).

We use Equation (3.12) to obtain a dierential equation satised by f and f (1) :

Proposition 3.17. The function f satises the following equation for every x ∈] -1, 1[:

((2p -1)xf (x) + 4pK) f (1) (x) = (2p -1)xf (x) 3 + (6pK + 1) f (x) 2 (3.13) 
-2(p + 1)

x 0 f (t) 3 dt + 4e 3F (0) .
Proof of Proposition 3.17. Let x ∈] -1, 1[. We put the denition of the function Z into Equation (3.12), multifply both sides by 12f and integrate from 0 to x to obtain:

4(3f (x)e 3F (x) ) = 3(2p -1)xf (x) 2 f (1) (x) + 12pKf (x)f (1) (x) -3f (x) 3 , 4Z(x) = 4e 3F (x) = 3(2p -1) x 0 tf (t) 2 f (1) (t) dt + 6pKf (x) 2 -3 x 0 f (t) 3 dt + 4e 3F (0) .
We integrate by part the rst term of the right hand side:

x 0 tf (t) 2 f (1) (t) dt = tf (t) 3 3 x 0 - 1 3 x 0 f (t) 3 dt = xf (x) 3 3 - 1 3 x 0 f (t) 3 dt.
Using the denition of Z again, we obtain:

((2p -1)xf (x) + 4pK) f (1) (x) -f (x) 2 = (2p -1)xf (x) 3 + 6pKf (x) 2 -2(p + 1) x 0 f (t) 3 dt + 4e 3F (0) , ((2p -1)xf (x) + 4pK) f (1) (x) = (2p -1)xf (x) 3 + (6pK + 1) f (x) 2 -2(p + 1) x 0 f (t) 3 dt + 4e 3F (0) ,
hence relation (3.13).

Asymptotic analysis of the auxiliary function

In this subsection we use condition (2.4), Proposition 3.15 and Equation (3.13) to study the function F and its derivatives. Since F is an even function, we only study it on the set [0, 1[.

We want to point out that Propositions 3.18, 3.20, Corollary 3.21 and part of Proposition 3.22 can also be deduced from Theorem 2.4 because the function F is the restriction of the Kähler-Einstein potential g to the set {0}×] -1, 1[, and ∂T p is smooth and strictly pseudoconvex at (0, 1). Here, we only use Equation (3.13) and the interior regularity of F to derive these results.

From the strict convexity of F and condition (2.4) we have the following: Proposition 3.18. Every derivative of F is unbounded in a neighbourhood of 1 -. More-

over, f (x) -→ x→1 -+∞.
Proof of Proposition 3.18. If there existed some integer k ∈ N such that F (k) is bounded in a neighbourhood of 1 -, then g(0, •) would be bounded in a neighbourhood of 1 -, which would be in contradiction with the hypothesis (2.4), hence every derivative of F is unbounded in a neighbourhood of 1 -.

Since F is a strictly convex, even function in ] -1, 1[, f = F (1) is increasing on [0, 1[ and positive on ]0, 1[. Since it is unbounded, we directly deduce that f (x) -→ x→1 -+∞. Hence the result.

We use the following lemma to deduce the asymptotic behaviour of f (1) 

at x = 1 -: Lemma 3.19. Let F ∈ C 1 (]0; 1[) be a convex function satisfying lim y→1 -F (1) (y) = +∞. Then: lim y→1 - F (y) F (1) (y) = 0. Proof of Lemma 3.19. Since F satises lim y→1 -F (1) (y) = +∞, there exists a constant a ∈ ]0, 1[ such that F (1) > 0 on ]a, 1[. Let a < x < y < 1. Then F (1) (y) > 0 and F (x) ≤ F (y).
We apply the fundamental theorem of calculus to the function F to deduce the following:

0 ≤ F (y) -F (x) = y x F (1) (t) dt ≤ (y -x)F (1) (y), so that F (x) F (1) (y) ≤ F (y) F (1) (y) ≤ (y -x).
Hence we deduce:

∀x ∈]0; 1[, 0 ≤ lim inf y→1 - F (y) F (1) (y) ≤ lim sup y→1 - F (y) F (1) (y) ≤ 1 -x,
so that we obtain lim y→1 - F (y) F (1) (y) = 0 by letting x tend to 1 -, hence the result.

We use Equation (3.13), Proposition 3.18 and Lemma 3.19 to obtain the asymptotic of f to the rst order at x = 1 -: Proposition 3.20. We have: lim

x→1 - f (1) f 2 (x) = lim x→1 -f (x)(1 -x) = 1.
Proof of Proposition 3.20. Let x > 0. Since f (0) = 0 and f is increasing, we have f (x) > 0. We divide Equation (3.13) both sides by f (x) to obtain the following:

(2p -1)x + 4pK f (x) f (1) (x) f (x) 2 = (2p -1)x + 6pK + 1 f (x) -2(p + 1) x 0 f (t) 3 dt f (x) 3 + 4e 3F (0) f (x) 3 .
Let us prove that lim

x→1 - x 0 f (t) 3 dt f (x) 3 = 0. Dene f (x) := x 0 f (t) 3 dt for x ∈ [0, 1[. Then f ∈ C 1 (]0, 1[), is convex and satises lim x→1 - f (1) (x) = +∞. We apply Lemma 3.19 to f to deduce that lim x→1 -f f (1) (x) = 0. Dene b(x) := 6pK + 1 f (x) -2(p + 1) x 0 f (t) 3 dt f (x) 3 + 4e 3F (0) f (x) 3 for x ∈ [0, 1]. Then b ∈ C ([0, 1]) and lim x→1 -b(x) = 0. Hence B := 1 • b(t) dt is well dened and B ∈ C 1 ([0, 1]). Let x ∈]0, 1[.
We integrate between x and 1 to obtain:

(2p -1) x f (x) + (2p -1) 1 x dt f (t) + 2pK f (x) 2 = 1 x (2p -1)t + 4pK f (t) f (1) f 2 (t) dt, = 2p -1 2 (1 -x 2 ) + B(x), (2p -1) 1 + 2pK f (x) x f (x)(1 -x) + (2p -1) 1 x dt f (t) 1 -x = 2p -1 2 (1 + x) + B(x) 1 -x . (3.14) Note that 1 • dt f (t)
is the primitive of the function 1

f ∈ C (]0, 1]), so that lim x→1 - 1 x dt f (t) 1 -x = 0.
Likewise by construction of B we have lim

x→1 - B(x) 1 -x = 0, therefore we can let x tend to 1 - in Equation (3.14) to deduce lim x→1 - 2p -1 f (x)(1 -x) = lim x→1 -(2p-1) 1 + 2pK f (x) x f (x)(1 -x) = 2p -1, hence lim x→1 -f (x)(1 -x) = 1.
Proposition 3.20 directly gives the asymptotic behaviour of Z, and also an asymptotic expansion of F : Corollary 3.21. We have: lim

x→1 -(1 -x) 3 Z(x) = 2p -1 4 , and F (x) = Log 1 1 -x + Log 2p-1 4 3 + o (1) x→1 - .
Proof of Corollary 3.21. Proposition 3.20 and the denition of the function Z directly gives the rst result. We apply formula (3.11) to deduce that lim

x→1 -(1 -x)e F (x) 3 = 2p -1 4 , hence lim x→1 -F (x) -Log 1 1 -x = Log 2p-1 4 3
, hence the second result.

Corollary 3.21 is enough to deduce the asymptotic behaviour of the potential g, or equivalently its volume form (see Proposition 3.16). In order to estimate the curvatures of the Kähler-Einstein metric, we also need the asymptotic behaviour of higher derivatives of F at x = 1 -. We have the following: Proposition 3.22. For every integer k ∈ N, one has the following:

lim x→1 -(1 -x) k+3 Z (k) (x) = 2p -1 8 (k + 2)! and lim x→1 -f (k) (x)(1 -x) k+1 = k!.
Proof. Proof of Proposition 3.22 We argue by induction. Proposition 3.20 and Corollary 3.21 ensure that the formulas are true for k = 0. Let k ≥ 0 be an integer and assume that the formulas are true for any integer 0 ≤ l ≤ k. We dierenciate Equation (3.12) k + 1 times to obtain Z (k+1) = Z (1) (k) = 3 k l=0 k l f (l) Z (k-l) , hence the following:

(1 -x) k+4 Z (k+1) (x) 3 -→ x→1 - k l=0 k l lim x→1 -(1 -x) l+1 f (l) (x) lim x→1 -(1 -x) k-l+3 Z (k-l) (x) , = 2p -1 8 k l=0 k l l!(k + 2 -l)!, = 2p -1 8 k! k l=0 (k + 2 -l)(k + 1 -l), = 2p -1 8 k! k+1 l=1 l(l + 1) = 2p -1 8 (k + 3)!.
We dierentiate Equation (3.12) k times to obtain:

(k + 2)! 2 = lim x→1 -4(1 -x) k+3 Z (k) 2p -1 (x) = lim x→1 - k l=0 k l (1 -x) l+2 f (l+1) (x) (1 -x) k+1-l f (k-l) (x) = k-1 l=0 k l (l + 1)!(k -l)! + lim x→1 -(1 -x) k+2 f (k+1) (x) = k! k-1 l=0 (l + 1) + lim x→1 -(1 -x) k+2 f (k+1) (x) = k(k + 1)! 2 + lim x→1 -(1 -x) k+2 f (k+1) (x) , hence lim x→1 -(1 -x) k+2 f (k+1) (x) = (k + 2)! 2 - k(k + 1)! 2 = (k + 1)! as stated.
Remark 3.23. • We do not have an aymptotic expansion of F or e -F to higher order.

We conjecture that:

∃(η k ) k∈N ∈ C ∞ ([0, 1]) N , e -F (x) ∼ x→1 -(1 -x) +∞ k=0 η k (1 -x) 3 Log(1 -x) k , (3.15) 
with lim x→1 -η 1 (x) = 0 except for p = 1. Especially, apart from the case of the ball (p = 1), one would have e -F / ∈ C 4 ([0, 1]) so that the regularity given in Proposition 3.15 would be almost optimal.

Conjecture (3.15) is motivated by results of J. Lee and R. Melrose and of R. Graham in the case of smooth strictly pseudoconvex domains, and by J. Kamimoto in the case of the Bergman metric in tube domains (see [START_REF] Graham | Scalar boundary invariants and the Bergman kernel[END_REF][START_REF] Kamimoto | Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in C 2[END_REF][START_REF] Lee | Boundary behaviour of the complex Monge-Ampère equation[END_REF]).

Holomorphic bisectional curvatures when X -→ 0

We estimate the holomorphic bisectional curvatures of the Kähler-Einstein metric g that we denote by Bis(z; v, w) (or by Bis(v, w) if we omit the point at which we compute it) for the rest of this section. The following Proposition simplies the expression of the holomorphic bisectional curvatures in tube domains:

Proposition 3.24. Let v = (v 1 , v 2 ) ∈ C 2 , w = (w 1 , w 2 ) ∈ C 2 such that |v| g = |w| g = 1. Let α ∈ R, respectively β ∈ R satisfying v 1 v 2 = |v 1 v 2 | e iα , respectively w 1 w 2 = |w 1 w 2 | e iβ .
Then the following holds on T p :

Bis(v, w) = R 1 11 1|v 1 | 2 |w 1 | 2 +2R 1 11 2|v 1 ||w 1 |(|v 1 ||w 2 |cos(β) + |v 2 ||w 1 |cos(α)) +R 1 12 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 + 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α -β)) +2R 1 21 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α + β) +2R 1 22 2|v 2 ||w 2 |(|v 1 ||w 2 |cos(α) + |v 2 ||w 1 |cos(β)) +R 2 22 2|v 2 | 2 |w 2 | 2 . (3.16) 
Proof of Proposition 3.24. From the expression of the curvature coecients (1.7) and the fact that g and all its complex derivatives are real numbers we derive that for 1 ≤ i, j, k, l ≤ 2, one has R i jk l = R k ji l = R j īl k. Hence we can simplify formula (1.9) by gathering the terms depending on the number of 2 occuring in the 4-uple (i, j, k, l):

Bis(v, w) = R 1 11 1|v 1 | 2 |w 1 | 2 + R 1 11 2 |v 1 | 2 (w 1 w 2 + w 1 w 2 ) + (v 1 v 2 + v 1 v 2 )|w 1 | 2 + R 1 12 2 |v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 + v 1 v 2 w 1 w 2 + v 1 v 2 w 1 w 2 + R 1 21 2 (v 1 v 2 w 1 w 2 + v 1 v 2 w 1 w 2 ) + R 1 22 2 (v 1 v 2 + v 1 v 2 )|w 2 | 2 + |v 2 | 2 (w 1 w 2 + w 1 w 2 ) + R 2 22 2|v 2 | 2 |w 2 | 2 , = R 1 11 1|v 1 | 2 |w 1 | 2 + 2R 1 11 2|v 1 ||w 1 |(|v 1 ||w 2 |cos(β) + |v 2 ||w 1 |cos(α)) + R 1 12 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 + 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α -β)) + 2R 1 21 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α + β) + 2R 1 22 2|v 2 ||w 2 |(|v 1 ||w 2 |cos(α) + |v 2 ||w 1 |cos(β)) + R 2 22 2|v 2 | 2 |w 2 | 2 .
First we compute the curvature coecients at the origin in the following:

Proposition 3.25. The curvature coecients satisfy the following at the origin:

R 1 11 1 = -32p 3 K, R 1 21 2 = (p -1)f (1) (0), R 1 12 2 = -pf (1) (0), R 2 22 2 = -3 + 1 K f (1) (0) 2 16 ,
all the other coecients being equal to 0.

Proof of Proposition 3.25. Recall that F is an even function, hence f = F (1) = g 2 (0, •)

is an odd function. From this we directly deduce that the following quantities vanish at the origin:

g 12 , g 112 , g 222 , g 1112 , g 1222 , and since g depends only on the real parts of its arguments, the same quantities with conjugate on some of the indices also vanish at the origin. From the relation (1.7) we deduce that the curvature coecients satisfy the following at z = 0:

R 1 11 1 = -g 1 11 1 + g 11 1g 1 1g 1 11, R 1 21 2 = -g 1 21 2 + g 11 1g 1 1g 1 22, R 1 12 2 = -g 1 12 2 + g 12 2g 2 2g 2 12, R 2 22 2 = -g 2 22 2 + g 22 1g 1 1g 1 22, R 1 11 2 = R 1 22 2 = 0.
We use formula (3.10) to compute the derivatives of g at the origin. We have, at z = 0:

g i j =     4pK 0 0 f (1) (0) 4     , g i j =     1 4pK 0 0 4 f (1) (0)     , g 1 11 = 16p 2 K, g 122 = f (1) (0) 2 , g 1 11 1 = 96p 3 K, g 1 12 2 = (p + 1)f (1) (0), g 2 22 2 = f (3) (0) 16 .
Thus we obtain:

R 1 11 1 = -32p 3 K, R 1 21 2 = (p -1)f (1) (0), R 1 12 2 = -pf (1) (0), R 2 22 2 = - f (3) (0) 16 + f (1) (0) 2 16pK .
According to Equation (3.12), we have

Z (2) (0) = 3f (1) (0)Z(0), that is 4pKf (3) (0) + 4(p - 1)f (1) (0) 2 = 12pKf (1) (0) 2 , hence R 2 22 2 = -3 + 1 K f (1) (0) 2 16 .
From the computations of Proposition 3.25 we deduce the precises upper and lower bounds for the holomorphic bisectional curvatures and holomorphic sectional curvatures at the origin. Before proving them, we need the following lemma:

Lemma 3.26. Let -3 < A < -3 2 and B ≥ 0 and dene

C : [-1, 1] 2 -→ R (x, y) -→ A (x 2 y 2 + (1 -x 2 )(1 -y 2 )) -(3 + A) (x 2 (1 -y 2 ) + y 2 (1 -x 2 )) +2 (3 + A + B) x √ 1 -x 2 y 1 -y 2 .
Then:

max 0≤x,y≤1 C(x, y) = max -(3 + A), A + B 2 , min 0≤x,y≤1 C(x, -y) = min 0≤x≤1 C(x, -x) = min A, -3 - A + B 2 , Proof of Lemma 3.26. Observe that C ∈ C ([-1, 1] 2 ) ∩ C ∞ (] -1, 1[ 2 ). Trivial computa- tions give min ∂([-1,1] 2 ) C = C(0, 0) = A and max ∂([-1,1] 2 ) C = C(1, 0) = -(3 + A). We study the critical values of C on ] -1, 1[ 2 . Let (x, y) ∈] -1, 1[ 2 be such that d (x,y) C = 0. This is equivalent to ∂C ∂x (x, y) = ∂C ∂y (x, y) = 0, that is:        (3 + 2A)x(2y 2 -1) + (3 + A + B)y 1 -y 2 1 -2x 2 √ 1 -x 2 = 0 (3 + 2A)y(2x 2 -1) + (3 + A + B)x √ 1 -x 2 1 -2y 2 1 -y 2 = 0. setting λ := 3 + 2A 3 + A + B < 0, this amounts to      λx √ 1 -x 2 (2y 2 -1) = -y 1 -y 2 (1 -2x 2 ) 1 λ x √ 1 -x 2 (2y 2 -1) = -y 1 -y 2 (1 -2x 2 ).
(3.17)

In particular since -1 < x, y < 1 this implies that either λ 2 = 1 or x(2y 2 -1) = 0.

We rst deal with the case λ 2 = 1.

If x = 0 then from (3.17) we deduce that y = 0, and C(0, 0) = min ∂([-1,1] 2 ) C. If 2y 2 = 1, then from (3.17) we deduce that 2x 2 = 1. Computations yields:

C -1 √ 2 , -1 √ 2 = C 1 √ 2 , 1 √ 2 = A + B 2 , C -1 √ 2 , 1 √ 2 = C 1 √ 2 , -1 √ 2 = -3- A + B 2 ,
so that we obtain the conclusion for points 

C(x, y) = A xy - √ 1 -x 2 1 -y 2 2 -(3 + A) x 1 -y 2 + y √ 1 -x 2 2 .
For -1 ≤ x, y ≤ 1, let -π < θ, ϕ ≤ π such that x = cos(θ) and y = cos(ϕ). Then we see that

C(x, y) = Acos(θ -ϕ) 2 -(3 + A)sin(θ -ϕ) 2 = A -(3 + 2A)sin(θ -ϕ) 2 ,
thus we obtain the same conclusion as in the case λ 2 = 1. This concludes the proof.

Proposition 3.27. Let v, w ∈ C 2 \ {0} be two vectors. Then we have:

-3 + 3 2p + 1 ≤ Bis(0; v, w) ≤ - 3 2p + 1 and H(0; v) ≤ - 3 2 - 1 2pK
.

Moreover,

Bis(0; (1, 0), (1, 0)) = -3 + 3 2p + 1 , Bis(0; (1, 0), (0, 1)) = - 3 2p + 1 , H 0; 1 √ 4pK , f (1) (0) 2 = - 3 2 - 1 2pK
.

Proof of Proposition 3.27. In this proof, all the computations are implicitly done at z = 0.

In order to apply Lemma 3. 

Bis(v, w) = R 1 11 1|v 1 | 2 |w 1 | 2 + R 1 12 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 + 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α -β)) + 2|v 1 ||v 2 ||w 1 ||w 2 |R 1 21 2cos(α + β) + R 2 22 2|v 2 | 2 |w 2 | 2 = A g 2 1 1|v 1 | 2 |w 1 | 2 + g 2 2 2|v 2 | 2 |w 2 | 2 -(3 + A)g 1 1g 2 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 ) + 2g 1 1g 2 2|v 1 ||v 2 ||w 1 ||w 2 | (Bcos (α + β) -(3 + A)cos(α -β)) .
Noting that the particular case α = β = π 2 respectively α = π 2 = -β gives the minimium, respectively the maximum, of Bis(v, w) with respect to α, β we deduce

A g 2 1 1|v 1 | 2 |w 1 | 2 + g 2 2 2|v 2 | 2 |w 2 | 2 -(3 + A)g 1 1g 2 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 ) -2 (B + (3 + A)) g 1 1g 2 2|v 1 ||v 2 ||w 1 ||w 2 | ≤Bis(v, w) ≤A g 2 1 1|v 1 | 2 |w 1 | 2 + g 2 2 2|v 2 | 2 |w 2 | 2 -(3 + A)g 1 1g 2 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 ) + 2 (B + (3 + A)) g 1 1g 2 2|v 1 ||v 2 ||w 1 ||w 2 |. We set x := √ g 1 1 |v 1 |, y := √ g 1 1 |w 1 | so that the above inequalities rephrase into C(x, -y) ≤ Bis(v, w) ≤ C(x, y),
where C is the function denied in Lemma 3.26. We apply Lemma 3.26 and obtain the extremas for the bisectional curvatures at the origin and also the minimum for the holomorphic sectional curvatures. For the maximum of the holomorphic sectional curvatures, we set x 2 := t to obtain

H(v) = Bis(v, v) ≤ A t 2 + (1 -t) 2 -2(3 + A)t(1 -t) + 2 (B -(3 + A)) t(1 -t) = 2(B -3(A + 2))t(1 -t) + A.

Holomorphic bisectional curvatures when |X| -→ 1

In this subsection, we use the asymptotic behaviour of F obtained in Proposition 3. Proof of Theorem 3.30. Because of the invariance of T p under the symmetry s introduced in Proposition 3.12, it is enough to prove that there exist positive constants 0 < c ≤ C and 0 < α < 1 such that:

∀v, w ∈ C 2 \ {0}, ∀z ∈ {1 -α ≤ X < 1}, -C ≤ Bis (z; v, w) ≤ -c.
First we prove the following:

lim x→1 - sup v,w∈C 2 \{0}    Bis((0, x); v, w) + 1 + v, w (0,x) 2 |v| 2 (0,x) |w| 2 (0,x)    = 0. (3.19) 
The conclusion then follows from the invariance property 1.13. In the sequel, functions on T p are computed at the point (0, x), and functions on ] -1, 1[ are computed at the point x with 0 < x < 1.

First we prove that

R i jk l f 4 ∼ x→1 --2X i XjX k Xl and g i j g k l + g i lg k j f 4 ∼ x→1 --2X i XjX k Xl.
Let 1 ≤ i, j, k, l, α, β ≤ 2. We dierentiate relation (3.10) to obtain:

g i j = f (1) X i Xj + f X i j + K p Log 1 1 -Re(4pz 1 ) i j , Zg α β = (-1) α+β f (1) X 3-α X 3-β + f X 3-α3-β + K p Log 1 1 -Re(4pz 1 ) 3-α3-β , g i jk = f (2) X i XjX k + f (1) X i j X k + X ik Xj + X k j X i + f X i jk + K p Log 1 1 -Re(4pz 1 ) i jk , g i jk l = f (3) X i XjX k Xl + f (2) X i j X k Xl + X ik XjXl + X i lXj X k + X k j X i Xl + X k lX i Xj + XjlX i X k + f (1) X i jk Xl + X i jlX k + X ik lXj + Xj k lX i + X i j X k l + X ik Xjl + X i lX k j + f X i jk l + K p Log 1 1 -Re(4pz 1 ) i jk l ∼ x→1 -f (3) X i XjX k Xl, ∼ x→1 -6f 4 X i XjX k Xl.
In the expression g ik ᾱg α β g β jl, the contribution from a term of the form (-1) α X ᾱX 3-α or (-1) β X β X 3-β is 0. Thus, the leading term in 1≤α,β≤2 g ik ᾱg α β g β jl as x tends to 1 -is:

f (2) 2 f Z X i XjX k Xl 1≤α,β≤2 (-1) α+β X 3-α3-β X ᾱX β = f (2) 2 f Z X i XjX k Xl 2p -1 4 , ∼ x→1 -4f 4 X i XjX k Xl. Therefore we deduce that R i jk l ∼ x→1 --2f 4 X i XjX k Xl. Moreover we have g i j ∼ x→1 -f 2 X i Xj, which leads to g i j g k l + g i lg k j ∼ x→1 -2f 4 X i XjX k Xl. Hence: sup v,w∈C 2 \{0}    Bis((0, x); v, w) + 1 + v, w (0,x) 2 |v| 2 (0,x) |w| 2 (0,x)    = sup v,w∈C 2 \{0} 1≤i,j,k,l≤2 R i jk l f (x) 4 + g i j g k l + g i lg k j f (x) 4 v i v j w k w l 1≤i,j≤2 g i j (0, x) f (x) 2 v i v j 1≤i,j≤2 g i j (0, x) f (x) 2 w i w j , -→ x→1 -0,
hence formula (3.19). Since for every v, w ∈ C 2 \ {0} and every point z ∈ T p we have

-2 ≤ -1 - | v, w z | 2 |v| 2 z |w| 2 z ≤ -1,
we may conclude as in the end of the proof of Theorem 3.28.

3.3 Behaviour of the Kähler-Einstein metric in some convex domains

In this section we use the estimates of the holomorphic bisectional curvatures of the Kähler-Einstein metric in tube domains and in Thullen domains to prove Theorem 3.3.

In the proof of Theorem 3.3 we use an other invariant metric, namely the Kobayashi metric. We briey recall some results about the Kobayashi metric which are needed in our proof of Theorem 3.3.

For a domain D ⊂ C n , a point z ∈ D and a vector v ∈ C n \ {0} the Kobayashi pseudometric at point z and vector v is dened by :

Kob D (z, v) := inf {|ξ| , ∃f ∈ H (∆, D) satisfying f (0) = z and ∂ 0 f (ξ) = v} .
If D is a convex domain not containing a complex line, then Kob D (z, v) > 0 for every (z, v) ∈ D × (C n \ {0}). We refer to [START_REF] Zimmer | Gromov hyperbolicity and the Kobayashi metric on convex domains of nite type[END_REF] for more precise estimates of the Kobayashi metric.

We will use the following result in the proof of Theorem 3.3 (see [START_REF] Gaussier | Continuity of intrinsic objects on the space of convex domains[END_REF]) We have all the tools to prove Theorem 3.3:

Proof of Theorem 3.3. We use a rescaling method to change the study of the boundary behaviour of the holomorphic bisectional curvatures into the study of the interior convergence for the sequence of the rescaled Kähler-Einstein metrics.

Our hypothesis on the local expression of ∂D at q and the convexity of D imply that there exist an ane map ψ ∈ Aut (C 2 ) and a neighbourhood U of q such that ψ (q) = 0 

z (ν) |z (ν) | ν∈N converges to a point z (∞) with Re z (∞) 1 < 0. Let Λ (ν) : C 2 -→ C 2 z -→    z 1 -z (ν) 1 Re -z (∞) 1 |z (ν) | , z 2 -z (ν) 2 Re -z (∞) 1 |z (ν) | 1 2p    ,
and set D ν := Λ (ν) (D). From results in [START_REF] Gaussier | Characterization of convex domains with noncompact automorphism group[END_REF], (D ν ) ν∈N converges to the C-proper convex domain D ∞ := {Re(z 1 ) + H (z 2 ) < 1} in the local Hausdor topology. From results in [START_REF] Gaussier | Continuity of intrinsic objects on the space of convex domains[END_REF] we deduce that the sequence Kob Dν ν∈N converges uniformly on compact sets of

D ∞ to Kob D∞ .
Also, observe that Λ (ν) z (ν) = 0. Using this and the transformation formula (1.13),

we obtain for every z ∈ D and v, w ∈ C 2 \ {0}:

Bis D z (ν) ; ∂ z (ν) Λ (ν) -1 (v), ∂ z (ν) Λ (ν) -1 (w) = Bis Dν (0; v, w) . (3.20) 
Assume momentarily that for every compact K ⊂ D ∞ the sequence g (ν) ν≥ν K converges

to the Kähler-Einstein potential g D∞ of D ∞ in C 4 (K). Then according to formula (1.7)

and relation (3.20) we deduce:

sup v,w∈C 2 \{0} Bis D z (ν) ; ∂ z (ν) Λ (ν) -1 (v), ∂ z (ν) Λ (ν) -1 (w) -Bis D∞ (0; v, w) -→ ν→∞ 0,
so that we obtain Theorem 3.3 using relation (1.10), Theorem 3.2 and results in [START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]. Thus it remains to prove that for every compact K ⊂ D ∞ the sequence g (ν) ν≥ν K converges

to the Kähler-Einstein potential g D∞ of D ∞ in C 4 (K). In fact we prove that for every integer k ∈ N, the sequence g (ν) ν≥ν K converges to g D∞ in C k (K). Observe that by uniqueness of the Kähler-Einstein potential g E,D∞ and by the theorem of Arzelà-Ascoli it is enough to prove that for every integer k ∈ N the sequence g (ν) Since D is a bounded convex domain with boundary of class C ∞ , it follows from [START_REF] Kim | On the uniform squeezing property of bounded convex domains in C n[END_REF] that there exists a number 0 < a such that D satises the a-squeezing property. Since D ν is biholomorphic to D, D ν also satises the a-squeezing property. From Proposition 3 in [START_REF] Yeung | Geometry of domains with the uniform squeezing property[END_REF] we deduce that there exist constants 0 < c ≤ C such that for every integer ν ∈ N Remark 3.31. If D ⊂ C 2 is a smoothly bounded convex domain with boundary point of innite type q, there exists a sequence of points in D converging to q non tangentially such that the limit domain is biholomorphic to the bidisc. In particular the holomorphic bisectional curvatures of the Kähler-Einstein metric are not uniformly bounded from above by a negative constant along that sequence. The same phenomenon holds for the Bergman metric. 

ν≥ν K is bounded in C k (K) (
π C 2 : C 2 -→ R (z 1 , z 2 ) -→ z 2 . and set X := π C 2 (1 -4pπ R 1 ) 1 2p 
. This function is well dened on the set {z ∈ C 2 /Re(4pz 1 ) < 1} which contains D H . It satises the following properties:

• X ∈ C ∞ ({z ∈ C 2 /Re(4pz 1 ) < 1}),

• ∀F ∈ Aut(D H ), ∀z ∈ D H , X(F (z)) = X(z),

• D H = (H • X) -1 ([0, 1[).
Remark 3.32. In comparison to the cases of Thullen domains and tube domains, we

do not know if (H • X) |{0}×H -1 ([0,1[[) is injective (for instance take H(z) = Re(z) p Im(z) p
with p ∈ 2N * ). Thus we cannot think of H • X as a parametrization of the orbits of D H under the action of its automorphism group. 

g i j =       2 |X| 2 ∂f ∂z •X+Re(X 2 ∂f ∂z •X)+(2p+1)Re(Xf •X)+2pK (1-4pπ R 1 ) 2 X ∂f ∂z •X+X ∂f ∂z •X+f •X (1-4pπ R 1 )
1+ 1 2p

X ∂f ∂z •X+X ∂f ∂z •X+f •X (1-4pπ R 1 ) 1+ 1 2p ∂f ∂z •X (1-4pπ R 1 ) 1 p       , (3.22) 
Det(g i j ) = Z(X)

(1 -4pπ R 1 ) 3K p , (3.23) 
where the function Z is dened by

Z(z) := |z| ∂f ∂z (z) 2 + 4p ∂f ∂z (z) (Re(zf (z)) + K) -z ∂f ∂z (z) + f (z) 2
for every z ∈ H -1 ([0, 1[). Moreover, Z satises the following:

Z = e 3F on H -1 ([0, 1[).

(3.24)

Proof of Proposition 3.33. On D H we have:

[X i ] =   X 1-4pπ R 1 1 (1-4pπ R 1 ) 1 2p   , Xj =   X 1-4pπ R 1 0   , Xīj = (2p + 1)X (1 -4pπ R 1 ) 2 E 11 , X i j =    (2p+1)X (1-4pπ R 1 ) 2 0 1 (1-4pπ R 1 ) 1 2p +1 0    , [X ij ] =     (2p+1)X (1-4pπ R 1 ) 2 1 (1-4pπ R 1 ) 1 2p +1 1 (1-4pπ R 1 ) 1 2p +1 0     .
Dierentiating Equation (3.21), using the chain rule and the fact that F and ∂f ∂z are real valued functions, we successively obtain:

[(F • X) i ] = f • X [X i ] + f • X X i , (f • X) j = ∂f ∂z • X Xj + ∂f ∂z • X Xj , f • X j = ∂f ∂z • X Xj + ∂f ∂z • X Xj , g i j = ∂f ∂z • X X i Xj + ∂f ∂z • X X i Xj + ∂f ∂z • X X i Xj + ∂f ∂z • X X i Xj + f • X X i j + f • X X i j + 4Kp (1 -4pπ R 1 ) 2 E 11 , =       2 |X| 2 ∂f ∂z •X+Re(X 2 ∂f ∂z •X)+(2p+1)Re(Xf •X)+2pK (1-4pπ R 1 ) 2 X ∂f ∂z •X+X ∂f ∂z •X+f •X (1-4pπ R 1 ) 1+ 1 2p X ∂f ∂z •X+X ∂f ∂z •X+f •X (1-4pπ R 1 ) 1+ 1 2p ∂f ∂z •X (1-4pπ R 1 ) 1 p      
.

Then we apply the function Det to Equation (3.22) and directly obtain Equation (3.23).

Finally, recall that according to Equations (2.2) and (3.21) one has on D H :

Det g i j = e 3g = e 3F •X-3K p Log(1-4pπ R 1 ) = e 3F •X (1 -4pπ R 1 ) 2+ 1 p , hence Equation (3.24).
We do not have a generalisation of Proposition 3.17, nor an asymptotic expansion of F as in Thullen domains and tube domains. Putting the Kähler-Einstein condition Ric(g) i j = -3 g i j = -3

  g 1 1 0 0 g 2 2
 into rela- tion (1.11) we also obtain:

-3 = R 1 11 1 g 2 1 1 + R 1 12 2 g 1 1g 2 2 = R 2 21 1 g 1 1g 2 2 + R 2 22 2 g 2 2 2 = R 1 12 2 g 1 1g 2 2 + R 2 22 2 g 2 2 2
.

(3.25)

We use the invariance of the Kähler-Einstein metric under the dilations d Since we want to compute the coecients at z = 0 we may look at g i j (0, z 2 ) for suitable indices i, j, then dierenciate with respect to z 2 and specify at z 2 = 0. For instance we have g 1 2(0, z 2 ) = z 2 g 2 2(0, z 2 ) + z 2 g22(0, z 2 ) + g2(0, z 2 ) for z 2 ∈ C small, hence by applying ∂ ∂z 2 and putting z 2 = 0 we obtain g 1 22 = 2g22. 

λ (λ > 0) to compute R 1 
g = F , g 1 = 2K, g 1 1 = 4pK, g 1 11 = 16p 2 K and g 1 11 1 = 96p 3 K hence R 1 11 1 g 2 1 1 = -3 + 1 K . We set A := R 1 11 1 g 2 1 1 . Observe that -3 < A < - 3 2 . 
γ ∈ R such that R 1 21 2 g 1 1g 2 2 = Be iγ . Let v = (v 1 , v 2 ) ∈ C 2 , w = (w 1 , w 2 ) ∈ C 2 such that |v| g = |w| g = 1. Let α ∈ R be an argument of v 1 v 2 (respectively β ∈ R an argument of w 1 w 2 ).
Adapting the proof of Proposition 3.24 we easily obtain:

Bis(v, w) = R 1 11 1|v 1 | 2 |w 1 | 2 + R 1 12 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 + 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α -β)) + 2|v 1 ||v 2 ||w 1 ||w 2 |Re R 1 21 2e i(α+β) + R 2 22 2|v 2 | 2 |w 2 | 2 = A g 2 1 1|v 1 | 2 |w 1 | 2 + g 2 2 2|v 2 | 2 |w 2 | 2 -(3 + A)g 1 1g 2 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 ) + 2g 1 1g 2 2|v 1 ||v 2 ||w 1 ||w 2 | (Bcos (α + β + γ) -(3 + A)cos(α -β)) .
Noting that the particular case α

= β = π -γ 2 (respectively α = - π + γ 2 = β -π) gives
the minimium (respectively the maximum) of Bis(v, w) with respect to α, β we deduce

A g 2 1 1|v 1 | 2 |w 1 | 2 + g 2 2 2|v 2 | 2 |w 2 | 2 -(3 + A)g 1 1g 2 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 ) -2 (B + (3 + A)) g 1 1g 2 2|v 1 ||v 2 ||w 1 ||w 2 | ≤ Bis(v, w) ≤ A g 2 1 1|v 1 | 2 |w 1 | 2 + g 2 2 2|v 2 | 2 |w 2 | 2 -(3 + A)g 1 1g 2 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 ) + 2 (B + (3 + A)) g 1 1g 2 2|v 1 ||v 2 ||w 1 ||w 2 |. We set x := √ g 1 1 |v 1 |, y := √ g 1 1 |w 1 | so that the above inequalities rephrase into C(x, -y) ≤ Bis(v, w) ≤ C(x, y),
where C is the function dened in Lemma 3.26. We apply Lemma 3.26 and obtain the extrema for the bisectional curvatures at the origin and also the minimum for the holomorphic sectional curvatures. For the maximum of the holomorphic sectional curvatures, we set x 2 := t to obtain

H(v) = Bis(v, v) ≤ A t 2 + (1 -t) 2 -2(3 + A)t(1 -t) + 2 (B -(3 + A)) t(1 -t) = 2(B -3(A + 2))t(1 -t) + A.
Since B -3(A + 2) ≥ -3(A + 2) > 0, the maximum of the polynomial function P :

t → 2(B -3(A + 2))t(1 -t) + A on [0, 1] is achieved at t = 1 2
. Hence we deduce max

v∈C 2 \{0} H(0; v) = -3 - 1 K + p -1 pK |g 22 | g 2 2 2
. The proof is ended.

We notice that

max v,w∈C 2 \{0} Bis(0; v, w) = max - 1 K , max v∈C 2 \{0} H(0; v) + 1 K . Conse- quently we have the following criterion max v,w∈C 2 \{0} Bis(0; v, w) < 0 ⇐⇒ max v∈C 2 \{0} H(0; v) < - 1 K ⇐⇒ (p -1) |g 22 | g 2 2 (0) < 2p 2 .
Moreover we also have max Theorem 4.1 (Theorem 1 in [START_REF] Kim | Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains[END_REF]). Let D ⊂ C n be a bounded pseudoconvex domain, let q ∈ ∂D such that there exists a neighbourhood U of q such that ∂D ∩ U is of class C 2 .

Moreover assume that q is a strictly pseudoconvex boundary point for ∂D. Then It was observed by many authors in the litterature (see for instance [START_REF] Kim | The Bergman metric invariants and their boundary behaviour[END_REF]) that a similar result holds for the holomorphic bisectional curvatures. In particular every strictly pseudoconvex boundary point q of a bounded pseudoconvex domain D with boundary of class C ∞ there exists a neighbourhood U of q such that the holomorphic bisectional [START_REF] Kobayashi | Geometry of bounded domains[END_REF][START_REF] Mcneal | Holomorphic sectional curvature of some pseudoconvex domains[END_REF][START_REF] Yoo | Asymptotic boundary behavior of the Bergman curvatures of a pseudoconvex domain[END_REF]). On the other hand G. Herbort exhibited a bounded pseudoconvex domain of nite type in C 3 for which the holomorphic sectional curvatures are not bounded from below (see [START_REF] Herbort | An example of a pseudoconvex domain whose holomorphic sectional curvature of the Bergman metric is unbounded[END_REF]). However the question of the existence of a negative upper bound for the holomorphic bisectional curvatures of the Bergman metric of bounded pseudoconvex domains of nite type in C n is still relevant and unanswered even in the simpler case of domains in C 2 that we stick to from now on.

K. Azukawa and N. Suzuki studied the Bergman metric in Thullen domains D

p := {z ∈ C 2 , |z 1 | < 1, |z 2 | 2 < 1 -|z 1 | 2 p } (where p ∈ ]0, 1]
) and proved that the maximum of the holomorphic sectional curvatures of the Bergman metric is negative (see [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF]). S. Fu essentially proved in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] that the holomorphic sectional curvatures of the Bergman metric of tube domains T p = {z ∈ C 2 , Re (z 1 ) + Re (z 2 ) 2p < 0} (where p ∈ N * ) are bounded from above by a negative constant along the axis {z 2 = 0}.

Thullen and tube domains (in their unbounded polynomial representation described in Section 1.3) serve as local models for the boundary of complete Reinhardt domains. Re-

call that a domain D ⊂ C n is complete Reinhardt if it satises (a 1 z 1 , • • • , a n z n ) ∈ D
Bis(v, w) of D with respect to g i j at point z and between vectors v and w satises:

Bis(v, w) = R 1 11 1 g 2 1 1 x 2 y 2 + R 1 12 2 g 1 1g 2 2 x 2 1 -y 2 + 1 -x 2 y 2 + 2x √ 1 -x 2 y 1 -y 2 cos (α -β) +2 R 1 21 2 g 1 1g 2 2 x √ 1 -x 2 y 1 -y 2 cos (α + β) + R 2 22 2 g 2 2 2 1 -x 2 1 -y 2 , where x = √ g 1 1 |v 1 |, y = √ g 1 1 |w 1 |, α ∈ R satises v 1 v 2 = |v 1 v 2 | e iα and β ∈ R satises w 1 w 2 = |w 1 w 2 | e iβ .
Proof of Lemma 4.5. From the expression of the curvature coecients (1.7) and the hypothesis, we have for 1 ≤ i, j, k, l ≤ 2: R i jk l = R k ji l = R j īl k. Hence we may simplify formula (1.9) by gathering the terms depending on the number of 2 occuring in the 4-uple (i, j, k, l):

Bis(v, w) = R 1 11 1|v 1 | 2 |w 1 | 2 + R 1 11 2 |v 1 | 2 (w 1 w 2 + w 1 w 2 ) + (v 1 v 2 + v 1 v 2 )|w 1 | 2 + R 1 12 2 |v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 + v 1 v 2 w 1 w 2 + v 1 v 2 w 1 w 2 + R 1 21 2 (v 1 v 2 w 1 w 2 + v 1 v 2 w 1 w 2 ) + R 1 22 2 (v 1 v 2 + v 1 v 2 )|w 2 | 2 + |v 2 | 2 (w 1 w 2 + w 1 w 2 ) + R 2 22 2|v 2 | 2 |w 2 | 2 = R 1 11 1|v 1 | 2 |w 1 | 2 + R 1 12 2(|v 1 | 2 |w 2 | 2 + |v 2 | 2 |w 1 | 2 + 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α -β)) + 2R 1 21 2|v 1 ||v 2 ||w 1 ||w 2 |cos(α + β) + R 2 22 2|v 2 | 2 |w 2 | 2 .
Moreover, from the fact that g i j is diagonal at z and that v and w have unit length we

deduce g 1 1 |v 1 | 2 + g 2 2 |v 2 | 2 = 1, resepectively g 1 1 |w 1 | 2 + g 2 2 |w 2 | 2 = 1, hence √ g 2 2 |v 2 | = 1 -g 1 1 |v 1 | 2 , respectively √ g 2 2 |w 2 | = 1 -g 1 1 |w 1 | 2 . Setting x = √ g 1 1 |v 1 | and y = √ g 1 1 |w 1 | we directly obtain the conclusion.
We now prove Theorem 4.3. To do so we use computations done in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] and [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF] respectively. It relies on the fact that the curvature coecients of the Bergman metric satisfy the relations R i jk l = g i j g k l + g i lg k j -Ri jk l for every integers 1 ≤ i, j, k, l ≤ n, where

Ri jk l = KK i jk l -K ik Kjl K 2 - 1≤α,β≤n g αβ (KK ikα -K ik K α ) KK jlβ -K jl K β K 4 .
We prove the existence of negatives upper and lower bounds for the holomorphic bisectional curvatures of the Bergman metric in the tube domain T p .

Proposition 4.6. Let p ∈ N * . In the tube domain T p , one has

-∞ < min v,w∈C 2 \{0} Bis((-1, 0); v, w), max v,w∈C 2 \{0}
Bis((-1, 0); v, w) < 0.

Proof. Notice that the biholomorphism z → iz maps T p to z ∈ C 2 , Im (z 1 ) + Im (z 2 ) 2p < 0 and sends (-1, 0) to (-i, 0) we may use the computations done in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] by simply replacing the point (-i, 0) with (-1, 0). To simplify notations we write Bis(v, w) instead of Bis((-1, 0); v, w). Because of relation (1.10), it is enough to prove that -∞ < Bis(v, w) < 0 for every v, w ∈ C 2 with unit length with respect to the Bergman metric at point (-1, 0). At point z = (-1, 0) we have:

g i j =   2p+1 4p 0 0 Bp Ap   , R1 11 1 = (2p + 1)(3p + 1) 8p 2 , R1 11 2 = 0, R1 12 2 = B p A p p + 1 2p , R1 21 2 = - B p A p p -1 4p 2 , R1 22 2 = 0, R2 22 2 = B 2 p A 2 p λ p -1 - 1 p(2p + 1)
,

where A p , B p and λ p are positive numbers (see the bottom of pages 412 and 414 in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] for their explicit denition). Hence the following relations: R 1 11 

1 g 2 1 1 = - 2p 2p + 1 , R 1 12 2 g 1 1g 2 2 = - 1 2p + 1 , R 1 21 2 g 1 1g 2 2 = p -1 p(2p + 1) , R 2 
Bis(v, w) = - 2p 2p + 1 x 2 y 2 - 1 2p + 1 x 2 1 -y 2 + 1 -x 2 y 2 + 2x √ 1 -x 2 y 1 -y 2 cos (α -β) +2 p -1 p(2p + 1) x √ 1 -x 2 y 1 -y 2 cos (α + β) -λ p -3 - 1 p(2p + 1) 1 -x 2 1 -y 2 .
Especially we directly obtain -∞ < min v,w∈C 2 \{0}

Bis(v, w). Moreover since R 1 12 2 ≤ 0 ≤ R 1 21 2 we deduce:

Bis(v, w) ≤ - 2p 2p + 1 x 2 y 2 - 1 2p + 1 x 2 1 -y 2 + 1 -x 2 y 2 -2x √ 1 -x 2 y 1 -y 2 + 2 p -1 p(2p + 1) x √ 1 -x 2 y 1 -y 2 -λ p -3 - 1 p(2p + 1) 1 -x 2 1 -y 2 = - 2p 2p + 1 x 2 y 2 - 1 2p + 1 x 1 -y 2 - √ 1 -x 2 y 2 + 2 p -1 p(2p + 1) x √ 1 -x 2 y 1 -y 2 -λ p -3 - 1 p(2p + 1) 1 -x 2 1 -y 2
Using the Hölder inequality 2x

√ 1 -x 2 y 1 -y 2 ≤ x 2 y 2 + (1 -x 2 ) (1 -y 2 ) we obtain Bis(v, w) ≤ - 2p 2p + 1 - p -1 p(2p + 1) x 2 y 2 - 1 2p + 1 x 1 -y 2 - √ 1 -x 2 y 2 -λ p -3 - 1 p(2p + 1) - p -1 p(2p + 1) 1 -x 2 1 -y 2 = - p(2p -1) + 1 p(2p + 1) x 2 y 2 - 1 2p + 1 x 1 -y 2 - √ 1 -x 2 y 2 -λ p -3 - 1 2p + 1 1 -x 2 1 -y 2 .
Consequently we directly obtain -∞ < min v,w∈C 2 \{0}

Bis(v, w). Moreover since p ∈ ]0, 1] we have 3 -r 2 , 1 -r > 0. Doing as in the proof of Proposition 4.6 we obtain Bis(v, w) ≤ -2

1 + r 3 + r x 2 y 2 - 1 -r 3 + r x 1 -y 2 - √ 1 -x 2 y 2 -2 3 -r 2 (3 -r) 2 1 -x 2 1 -y 2
hence Bis(v, w) < 0 as it is less or equal to a sum of three non-positive quantities that does not vanish for the same values of (x, y). This concludes the proof.

Remark 4.9. The proof of Proposition 4.6 does not give the maximum of the bisectional curvature at the origin in the tube domains, whereas we easily derive from the proof of Proposition 4.7 that max v,w∈C\{0}

Bis Dp (0; v, w) = max -2 

1 + r 3 + r , - 1 -r 3 + r , -2 3 -r 2 (3 -r)
I D 0 (z) := inf f 2 L 2 (D) /f ∈ A 2 (D), f (z) = 1 , I D 1 (z, v) := inf f 2 L 2 (D) /f ∈ A 2 (D), f (z) = 0, ∂ z f (v) = 1 , I D 2 (z, v, w) := inf f 2 L 2 (D) /f ∈ A 2 (D), f (z) = 0, ∂ z f = 0, 1≤i,j≤n f ij (z)v i w j = 1 .
The Bergman kernel, the metric it induces and its holomorphic bisectional curvatures may be expressed in terms of the above integrals. The following formulas are attributed to S. Bergman, B.A. Fuks and A. Pagano (see Theorem 2.1. in [START_REF] Yoo | Asymptotic boundary behavior of the Bergman curvatures of a pseudoconvex domain[END_REF]):

K D (z, z) = 1 I D 0 (z) (4.1) |v| D z = I D 0 (z) I D 1 (z, v) (4.2) Bis D (z; v, w) = 2 - I D 1 (z, v)I D 1 (z, w) I D 0 (z)I D 2 (z, v, w) . ( 4.3) 
The above formulas are used to "localise" the Bergman metric and its curvatures at peak boundary points of D. Recall that a point q ∈ ∂D is a local peak point if there exists an open neighbourhood U ⊂ C n of q and a map f ∈ C D ∩ U, C ∩ H (D ∩ U, C) such that f (q) = 1 and |f (z)| < 1 for every z ∈ D ∩ U \ {q} (the function f is called a peaking function for q). Theorem 4.10 (Theorem 4 in [START_REF] Kim | Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains[END_REF]). Let D ⊂ C n be a bounded pseudoconvex domain, let q ∈ ∂D and let U ⊂ C n be an open neighbourhood of q. If q is a local peak point then for every v, w ∈ C n \ {0} the following holds: E. Bedford and J.E. Fornaess proved that every boundary point of a bounded pseudoconvex domain of nite type in C 2 is a peak point, and that the peaking function depends continuously on q (see Theorem 3.1. and Remark 3.4. in [START_REF] Bedford | A construction of peak functions on weakly pseudoconvex domains[END_REF]). It follows that if the neighbourhood U has a uniform size with respect to the point q (for instance if U = B(q, R)

for some xed R > 0) then the limit (4.4) is uniform in q.

The scaling of bounded pseudoconvex Reinhardt domain of nite type in C 2

If ∂D is pseudoconvex and the type at q is nite there exists an integer p ∈ N, an homogeneous polynomial of degree 2p H which is subharmonic but not harmonic, an open set U ⊂ C 2 containing q and a biholomorphic map Φ : U -→ Φ (U ) such that Φ(q) = 0 and Φ (D ∩ U ) = M H ∩ Φ (U ) where If D is a Reinhardt domain, we can assume that M H has a simpler form (see the expressions (6.10) and (6.25) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] and the proof of Theorem 4.11).

Let q ∈ ∂D be a point of nite type 2p. Every complex vector v ∈ C 2 admits a unique decomposition v = v T + v N where v T ∈ T C q ∂D and there exists a complex number λ such that v N = λ (d 1 (q), d 2 (q)). Using that decomposition we dene for every positive number λ > 0 the following anisotropic dilation Π λ :

Π λ : C n -→ C n v = v T + v N -→ λ 1 2p v T + λv N .
The key result to prove Theorem 4.4 is the following result which generalises Theorem Bis D z (ν) ; Π d (ν) (v), Π d (ν) (w) -Bis Mp (q; v , w ) = 0, (4.5) where:

1. the domain M p is the Thullen domain E p if one of the coordinates of z (∞) is 0 and the tube domain T p otherwise, 2. if M p = E p then q = (0, 0), and if M p = T p then q = (-1, 0), 3. for every vector v ∈ C 2 \ {0} (respectively w ∈ C 2 \ {0} the vector v ∈ C 2 \ {0} (respectively w ∈ C 2 \ {0}) depends only on v (respectively w) and the geometry of ∂D at z (∞) .

We refer to relations (6.4) , (6.6) and (6.8) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] for the denition of v and w . (see denitions (6.9), (6.10) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]). For every integer ν ∈ N, we set z (ν) := Φ z (ν) , d (ν) := d z (ν) , Φ (∂D ∩ U ) and consider the rescaling map

F (ν) : C 2 -→ C 2 z -→ z 1 -z (ν) 1 d (ν) , z 2 -z (ν) 2 d (ν) 1 2p
.

Let M be the Mobius map M (z) := According to relations (6.17) to (6.20) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF], the sequence v (ν) ν∈N , respectively w (ν) ν∈N converges to a vector v ∈ C 2 \ {0}, resepectively to a vector w ∈ C 2 \ {0}.

z 1 + 1 z 1 -1 , 2 
1 p z 2 (z 1 -1)
Moreover according to relation (6.14) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] the sequence of domains (D ν ) ν∈N converges to the Thullen domain E p in the local Hausdor topology. This implies that the sequence of Bergman kernels K Dν ν∈N converges uniformly on compact sets of E p to K Ep (see the relation at the top of page 422 in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]). From this convergence we derive the pointwise convergence of the derivatives of K Dν up to the order 4 at point 0 ∈ E p (see Theorems 5.3., 5.4. and Remark 5.7. in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]). Since for every integer 1 ≤ i, j, k, l ≤ 2 the coecients g i j and R i jk l are rational fractions of these quantities (see the denition of the Bergman metric and also relation (1.9)) we obtain the following lim ν→+∞ sup v,w∈C 2 \{0} Bis Dν 0; v (ν) , w (ν) -Bis Ep (0; v , w ) . Bis D z (ν) ; Π d (ν) (v), Π d (ν) (w) -Bis Ep (0; v , w ) = 0.

This proves the result (4.5) in the case that one of the coordinates of z (∞) is equal to 0.

• Case z (see denitions (6.23), (6.24) and (6.25) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]). For every integer η ∈ N, we set z (ν) := Φ z (ν) , d (η) := d z (ν) , Φ (∂D ∩ U ) and consider the rescaling map According to relations (6.41) and (6.42) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF], the sequence v (ν) ν∈N , respectively w (ν) ν∈N converges to a vector v ∈ C 2 \ {0}, resepectively to a vector w ∈ C 2 \ {0}.

F (ν) : C 2 -→ C 2 z -→ z 1 -z (ν) 1 d (ν) -1,
Moreover according to (6.24) and (6.29) in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] the sequence of domains G (ν) T p ν∈N converges to the tube domain T p in the local Hausdor topology. This implies that (up to a possible shrinking of U ) the sequence of Bergman kernels K Dν ν∈N converges uniformly on compact sets of T p to K T p (see claim 6.2. in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]). From this convergence we derive the pointwise convergence of the derivatives of K Dν up to the order 4 at point (-1, 0) ∈ T p (see Theorem 5.4. and Remark 5.7. in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]), hence the following

lim ν→+∞ sup v,w∈C 2 \{0}
Bis Dν ((-1, 0); v, w) -Bis T p ((-1, 0); v , w ) = 0.

(4.9) convex with boundary of class C 2+α , α > 0, and condition (1) holds at every boundary point, then ∂D is strictly pseudoconvex (see [START_REF] Zimmer | Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents[END_REF]). Yet there is no local version of these results. Additionally one notices that the Fornaess-Wold domain is bounded, convex, and has a boundary of class C 2 with weakly pseudoconvex point at which condition (1) holds.

In light of these results one may ask the following: Question 4. Equivalence of "ball-like" conditions Let D ⊂ C n be a bounded pseudoconvex domain. Let α ∈ ]0, 1[ and q ∈ ∂D be such that ∂D is of class C 2+α in a neighbourhood of q. Are conditions (1) and (2) equivalent?

In G. Herbort proved in [START_REF] Herbort | An example of a pseudoconvex domain whose holomorphic sectional curvature of the Bergman metric is unbounded[END_REF] that there exists a vector v ∈ C 3 \ {0} and a sequence of points z (ν) ν∈N ∈ D H N such that H g D H B z (ν) ; v -→ ν→+∞ -∞. However he noted that D H is not h-extendible (see [START_REF] Yu | Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains[END_REF] for a denition, a geometric characterisation and various examples of h-extendible domains), and observed that the holomorphic sectional curvatures of the Bergman metric of any h-extendible domains are bounded from below

The study of the curvatures of invariant metrics in polynomial domains used as model domains seems to be a key point in the study of the curvatures in pseudoconvex domains.

The answer to Question 7 is known only when the local model is a Thullen domain or a tube domain in C 2 . We expect the situation to be simpler for the Kähler-Einstein metric than for the Bergman metric. This is justied by the fact that the Kähler-Einstein metric satises by denition a certain curvature condition (see relation (1.11)). This is also Going back to the case of a smoothly bounded pseudoconvex domain, one may ask whether the holomorphic bisectional curvatures of the Bergman metric or of the Kähler-Einstein metric satisfy a localisation property as obtained in [START_REF] Kim | Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains[END_REF] (see also 4.10). For the Bergman metric the localisation follows from the Bergman-Fuks integral formulae which have no analogue in the case of the Kähler-Einstein metric. In general we may study: Question 8. Localisation of Kähler potentials Let D ⊂ C n be a bounded pseudoconvex domain with boundary of class C ∞ . Let g D (respectively g D∩U ) be the potential either of the Bergman metric or of the Kähler-Einstein metric of D (respectively of D ∩ U ). Let q ∈ ∂D be a point of nite type. What conditions on q imply the existence of a neighbourhood U of q and of an integer k ≥ 5 such that e -g D -e -g D∩U = O the Kähler-Einstein metrics (see [START_REF] Ramadanov | Sur une propriété de la fonction de Bergman[END_REF][START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF][START_REF] Mok | Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions[END_REF]). Moreover if all the domains are convex uniformly on compact sets of D ∞ (see [START_REF] Gaussier | Continuity of intrinsic objects on the space of convex domains[END_REF]).

Using the convergence results obtained in [START_REF] Ramadanov | Sur une propriété de la fonction de Bergman[END_REF], H. Boas, E. Straube and J. Yu studied the convergence of Bergman kernels and curvatures for families of bumpings of local models in C n (see [START_REF] Boas | Boundary limits of the Bergman kernel and metric[END_REF] for a precise statement and associated notions). These families of domains naturally appear when studying the behaviour of invariant metrics at h-extendible points of pseudoconvex domains.

  are negatively pinched: Theorem 5. Let p ∈ N * be an integer. Then ; v, w) < 0. See Theorem 4.3 and also Proposition 4.7 for a pinching of the holomorphic bisectional curvatures of the Bergman metric in Thullen domains E p with p ∈ [1, +∞[. As a consequence of Theorem 5 and of a standard localisation result, we prove (see Theorem 4.4): Theorem 6. Let D ⊂ C 2 be a bounded pseudoconvex complete Reinhardt domain with boundary of class C ∞ and of nite type. Then there exist a neighbourhood U of ∂D and two constants 0 < c < C such that -C ≤ Bis g D B ≤ -c on D ∩ U × (C 2 \ {0}) 2 .

2 .

 2 Let A ∈ H + n . Then 0 ≤ A ≤ T r (A) I. 3. Let A ∈ H ++ n . Then there exist 0 < λ ≤ Λ such that λI ≤ A ≤ ΛI.We work with the topology induced by the Euclidean norm given by |z|2 := |z 1 | 2 + • • • + |z n | 2 for every z = (z 1 , . . . , z n ) ∈ C n . For p ∈ C n and R > 0,we denote by B(p, R) := {z ∈ C n / |z -p| < R} and S(p, R) := {z ∈ C n / |z -p| = R} the open ball and the sphere centered at point p and of radius R. In the special case p = 0 and R = 1 we also denote B(0, 1) by ∆ if n = 1 and by B if n ≥ 2. The boundary of a set U ⊂ C n (with respect to the topology induced by the Euclidean norm) is denoted by ∂U , its closure by U . We recall the notion of Hausdor convergence of sets. The Hausdor distance between two sets A, B ⊂ C n is dened by: d H (A, B) := max sup a∈A inf b∈B |a -b|, sup b∈B inf a∈A |b -a| .

  It is not hard to check that K(z, w) = K(w, z) and thus for every number w ∈ D we have K(•, w) ∈ H 2 (D). The Bergman kernel satises the following transformation formula (which follows from the theorem of change of variables): Proposition 1.22 (Proposition 1.4.12 in [42]). Let D, D ⊂ C n be two domains and let Φ ∈ B (D, D ). Let K D be the Bergman kernel for D and K D be the Bergman kernel for D . Then for every z, w ∈ D we have:

  z) > 0 for every z ∈ D (we say that the Bergman kernel of D is positive). Then the function g dened by g(z) := Log (K (z, z)) is well dened on D and is called the Bergman potential of D. Denition 1.23. If the Bergman kernel of D is positive and the Bergman potential of D is strictly plurisubharmonic in D, it denes a Kähler potential in D. In this case the metric g i j is called the Bergman metric of D.

1. 5 . 1

 51 Strictly pseudoconvex domainsFix s ∈ N \ {0, 1} ∪ {∞} and a bounded strictly pseudoconvex domain D ⊂ C n with boundary of class C s . It is easy to construct complete Kähler metrics on D. Moreover these metrics enjoy a nice curvature behaviour near the boundary of the domain. This construction is the starting point to construct complete Kähler-Einstein metrics in such domains, as we detail in Chapter 2. Proposition 1.25. Let ρ be as in point 2. of Proposition 1.7. Then g := -Log (-ρ ) denes a complete Kähler potential of class C s on D, and the following formulas hold in D:

Theorem 2 . 1 (

 21 Modied versions of Theorem 4.4. and Corollary 4.5. in [12]). Let s ≥ 7 be an integer, let D ⊂ C n be a bounded strictly pseudoconvex domain with boundary of class C s . 1. (Construction as a perturbation) Let ϕ ∈ C s D be a strictly plurisubharmonic dening function for ∂D. Set g := -Log (-ϕ). Let α ∈]0, 1[ and let F ∈ C s-2+α D .

  There exists a unique strictly plurisubharmonic function g ∈ C ω (D) solving the Monge-Ampère equation (2.2) and satisfying the boundary condition g = +∞ on ∂D.

(2. 4 )

 4 They extend the existence of complete Kähler-Einstein potentials to bounded pseudoconvex domains using the fact that every bounded pseudoconvex domain can be exhausted by bounded strictly pseudoconvex domains with smooth boundary. Namely, they proved the following: Theorem 2.2 (Modied version of Theorem 7.5. in[START_REF] Cheng | On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Feerman's equation[END_REF]). Let D ⊂ C n be a bounded pseudoconvex domain with boundary of class C 2 . Then there exists a unique complete Kähler-Einstein potential g ∈ C ω (D) satisfying Equation (2.2) with boundary condition(2.4).

  Cheng and S.-T. Yau proved the existence of a solution u to Equation (2.1) satisfying condition (2.3). They also observed that this implies the existence of a complete Kähler potential g ∈ C ω (D) which satises Equation (2.2) and boundary condition (2.4) on D. They proved that in both cases the Kähler-Einstein potential constructed is unique. We refer to Theorem 4.4, Corollary 4.5 and Proposition 5.5 in [12] for much stronger statements. Now assume that D is a bounded weakly pseudoconvex domain with boundary of class C 2 . Let (D ν ) ν∈N be an exhaustion of D by bounded strictly pseudoconvex domains with boundary of class C ∞ (see Denition 1.5). For every ν ∈ N let g (ν) ∈ C ω (D ν ) be the complete Kähler-Einstein potential solution to Equation (2.2) with boundary condition

3 :

 3 Lemma 2.7. Let D ∞ ⊂ C n be a bounded pseudoconvex domain. Let (D ν ) ν∈N be an exhaustion of D ∞ . For every ν ∈ N ∪ {∞}, let g (ν) ∈ C ω (D ν ) be the solution of Equation (2.2) with boundary condition (2.4) on D ν . Then the following holds for every compact set K ⊂ D:

  and w and F are related on D ∩ U by the equation (2.2) Let u := w -w. Then, on D ∩ U , u solves the Monge-Ampère equation (2.1) (with the function g replaced by the function w). Since w is real analytic in D and w

Proposition 2 . 12 .

 212 Under the hypothesis of Theorem 2.4, and with the notations introduced in Subsection 2.2.1 and in Proposition 2.11, for every γ ∈]0; min(2n + 1, 2l -1)[, there exist positive constants c and such that |∇ w u| 2 w ≤ c (-ϕ) γ on D ∩ U ∩ {|ϕ| < }.

. 15 )|∇ w u| 2 w(

 152 Inequality(2.14) implies that the function f := -ϕ) β -c(-ϕ) α cannot achieve its maximum on D ∩ U ∩ {|ϕ| ≤ }, provided it is bounded from above on the set D := D∩U ∩{|ϕ| < }. Hence we can nd a sequence (zi ) i∈N ∈ D N such that lim i→+∞ f (z i ) = sup D f and d w (z i , ∂D ) -→ z→+∞ +∞.

Lemma 2 .

 2 14. Let D ⊂ C n be a domain. Assume that there exists a Kähler-Einstein metric induced by a potential w on D. Let D ⊂ D be a domain. Let f ∈ C 2 (D) bounded from above. If there exists a sequence (z i ) i∈N ∈ D N such that lim i→+∞ f (z i ) = sup D f and there exists R > 0 such that for every integer i, d w (z i , ∂D) ≥ R, then there exists an other sequence

3 .u| 2 w(-ϕ) n+1-δ 2 - 2 - δ 8 2 , 2 - δ 4 2 , 2 - δ 2 withδ

 32228224222 Hence we may apply once more Lemma 2.14 with β = α + 1 = n + 1 -δ 2 and δ ∈ ]0, min (δ 0 , 2n)[ to deduce the existence of c, > 0 for which |∇ w c(-ϕ) n-δ 2 ≤ 0 on D ∩ D . Finally, we directly deduce that |∇ w u| 2 w ≤ c(-ϕ) 2n+1-δ on D ∩ D . 4. If 2l -1 < 2n + 1, we can proceed likewise: rst taking β = 0, α = min n, l -1 with δ ∈ 0, min δ 0 , 8 min n, l -1 then considering α = β = min n, l -1 with δ ∈ 0, min δ 0 , 4 min n, l -1 and nally taking α = β = l -1 ∈ ]0, min (δ 0 , 2l -1)[.

( 2 . 16 )

 216 Proof of Lemma 2.15. We use formula(1.18) and notations of Proposition 1.25 with U replaced with D ∩ U . We also use the notations introduced in the proof of Proposition 1.25. According to Proposition 1.1, we have

2 .

 2 To prove part (2) of Proposition 2.16, we let l = n + 1. Then by construction e -w = -ϕ (n+1) e -u . Moreover, according to point (1) of Proposition 2.9 and to point (1) of Proposition 2.16, we have ϕ (n+1) , u ∈ C 1 D ∩ U . Thus e -w ∈ C 1 D ∩ U so that we can dierenciate in D ∩ U and let z tend to any point in ∂D ∩ U to deduce lim z→∂D∩U because of points (2), (3) of Proposition 2.9.

-γ 2 , one has u ∈ C γ 2

 22 9), it is enough to prove the existence of a positive constant such that for every 0 ≤ δ < γ 2 +δ D ∩ U ∩ {|ϕ| < } and ϕe -u ∈ C γ 2 +1+δ D ∩ U ∩ {|ϕ| < } . Let γ ∈]0, min (2n + 1, 2l -1) [. According to Proposition 2.18, there exist positive constants and c such that for every integer 0 ≤ p ≤ s -2l, the following holds on D ∩ U ∩ {|ϕ| < }: |D p u| w ≤ c |ϕ| γ 2 .

  and we also haveψ ∈ C 3 D ∩ U ∩ {|ϕ| < } .The rest of the proof consists of estimating |T 2 (v, w)| and |T 3 (v, w)|. This will directly follow from formulas (2.[START_REF] Fefferman | On the Bergman kernel and biholomorphic mappings of pseudoconvex domains[END_REF]) and (2.20).

Denition 2 . 20 .

 220 Let D ⊂ C n be a domain. For z ∈ D, letF D z := {f ∈ H (D, B) / f is injective and f (z) = 0}. The squeezing function of D at point z ∈ D is dened by s D (z) := sup{r > 0/∃f ∈ F D z , B(0, r) ⊂ f (D)} if F D z = ∅, and 0 otherwise. We say that D satises a uniform squeezing property if inf z∈D s D (z) > 0. More precisely for a ∈ ]0, 1] we say that D satises the a-squeezing property if s D (z) ≥ a for every z ∈ D.

  2) with condition (2.4) and we only consider this potential. Moreover, given a domain D with complete Kähler-Einstein potential g solving Equation (2.2) with condition (2.4), we use the notations •, • D , |•| D z , Bis D instead of the previous notations •, • g , |•| g , Bis (g) to avoid confusions.We prove Theorem 2.6:

  and set D ν := g (ν) (D). Since g (ν) is a biholomorphic mapping from the pseudoconvex domain D to D ν , D ν is a bounded pseudoconvex domain. By construction of g (ν) , for every integer ν ∈ N we have D ν ⊂ B. Moreover we have lim ν→∞ s D z (ν) = 1 hence up to taking a subsequence we may assume that D ν ⊂ D ν+1 . Let ν ∈ N. Since D ν is a bounded pseudoconvex domain, there exists an exhaustion of D ν by strictly pseudoconvex domains with smooth boundary, so that according to Lemma 2.7 there exists a strictly pseudoconvex domain S ν with boundary of class C ∞ that satises D ν-1 ⊂ S ν ⊂ D ν and sup

(2. 22 )

 22 Because of the property D ν ⊂ S ν+1 ⊂ D ν+1 for every ν ∈ N, the sequence (S ν ) ν∈N is an increasing sequence of strictly pseudoconvex domains with boundary of class C ∞ . Since lim ν→∞ s D z (ν) = 1 we have ν∈N S ν = B, hence (S ν ) ν∈N is an exhaustion of the ball.

( 2 . 2 )

 22 with boundary condition(2.4) by exhausting the domain D by strictly pseudoconvex domains with smooth boundary, and that the curvature behaviour of the metric induced by g is well known at strictly pseudoconvex boundary points. However our approach leaves open the question of the behaviour of the Kähler-Einstein metric and its curvatures at weakly pseudoconvex boundary points. J.S. Bland studied the Kähler-Einstein metric in Thullen domains in C n+1 for n ∈ N * and proved that the Riemannian sectional curvatures of the Kähler-Einstein metric are negatively pinched (see[START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]). He also obtained estimates for the Kähler-Einstein metric. Using his work we obtain an asymptotic expansion of the Kähler-Einstein potential in Thullen domains: Theorem 3.1. Let n ∈ N * , let p ≥ 1, and set E n p := {(z, w) ∈ C n ×C, |z| 2 +|w| 2p < 1}. Let g ∈ C ω E n p be the Kähler-Einstein potential solution of Equation (2.2) with boundary condition (2.4) on E n p . Then 1 -|z| 2 p-1 (n+1)p e -g ∈ C ∞ E n p \ {|z| = 1} . The set E n p \ {|z| = 1} is exactly the reunion of the Thullen domain and its strictly pseudoconvex boundary points. The asymptotic expansion obtained in Theorem 3.1 is very similar to the asymptotic expansion obtained by J. Lee and R. Melrose in the case of strictly pseudoconvex domains with boundary of class C ∞ . We may use the regularity of e -g to compare the Kähler-Einstein metric and the Bergman metric in the Thullen domains in C 2 , which give another proof that the Bergman metric of Thullen domains in C 2 is not an Einstein metric (see Corollary 3.10).

The region T p ∩ Re(z 2

 2 ) 2p -Re(z 1 ) ≤ α contains the axis {z 2 = 0}. Consequently the holomorphic bisectional curvatures of the Kähler-Einstein metric in tube domains and in Thullen domains in C 2 are negatively pinched in a neighbourhood of {z 2 = 0}, as it is the case for the Bergman metric (see Chapter 4). Using a rescaling we derive: Theorem 3.3. Let D ⊂ C 2 be a bounded convex domain with boundary of class C ∞ . Let

  [) and a careful analysis of the proof of Theorem 3.5 gives Y (x) = Y (0) + xF(1) (x) for all x ∈ [0, 1[. This is why we added that Y ∈ C ∞ ([0, 1[) compared to the original statement of Theorem 1 in[START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF].

(3. 4 )

 4 Using Theorem 3.7 J.S. Bland proved that the Riemannian sectional curvatures of the Kähler-Einstein metric induced by g are pinched between negative constants on E n p (see Theorem 4 in[START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]). Remark 3.8. We can also dene E n p (and the function X) when p ∈ ]0, 1[ in an obvious way. In that case, the boundary of E n p is not of class C 2 at boundary points z ∈ ∂E n p with z n = 0, but E n p is still pseudoconvex in the sense that there exists an exhaustion of E n p by bounded strictly pseudoconvex domains with boundary of class C ∞ . In particular there exists a Kähler-Einstein potential g ∈ C ω E n p that solves Equation (2.2) with boundary condition(2.4). In those cases Theorems 3.5 and 3.7 still hold, but the holomorphic sectional curvatures of the Kähler-Einstein metric of E n p is not pinched beteween negative constants on E n p (see Theorem 4 in[START_REF] Bland | The Einstein-Kähler metric on {|z| 2 + |w| 2p < 1}[END_REF]).

2 p

 2 This gives the desired conclusion.As a corollary of Theorem 3.9 we compare the Bergman metric and the Kähler-Einstein metric on E 2 p . The result roughly indicates that the Bergman metric and the Kähler-Einstein metric blow up at the same rate at any boundary point: Corollary 3.10. Let K be the Bergman kernel of E , and set g := Log (K) 3

1 ( 1 -.Proposition 3 .

 113 Re(4pz 1 )) 2p+1 2p 13 enables to reduce the study of the metric and its curvatures on T p to the study of the same quantities on the set {0}×]-1, 1[+iR 2 (see for instance Propositions 3.14 and 3.16).

(3. 8 ) 3

 83 We apply the function Log • Det to both sides of Equation (3.8) and use the Monge-Ampère Equation (2.2) to deduce the following transformation formula:∀ψ = (ψ 1 , ψ 2 ) ∈ Aut(T p ), g = g • ψ + 2 Log |Det (Jac C (ψ))| .

  26, we set A := -3 + 3 2p + 1 and B := p -Let v, w ∈ C 2 be two vectors satisfying |v| g = |w| g = 1, and let α, β ∈ R be such that v 1 v 2 = |v 1 | |v 2 | e iα and w 1 w 2 = |w 1 | |w 2 | e iβ . Then we have:

22 up to order 4

 4 to prove the other part of Theorem 3.2. It will follow from the computation of lim x→1 -Bis((0, x); v, w): Theorem 3.30. There exist positive constants 0 < c ≤ C and α > 0 such that ∀v, w ∈ C 2 \ {0}, ∀z ∈ {|1 -|X|| ≤ α}, -C ≤ Bis (z; v, w) ≤ -c.

  let (D ν ) ν∈N be a sequence of bounded convex sets with boundary of class C ∞ . Assume that (D ν ) ν∈N converges in the local Hausdor topology to a C-proper convex domain D ∞ , and let K ⊂ D ∞ be a compact set. Then there exists an integer ν K ∈ N such that for every integer ν ≥ ν K one has K ⊂ D ν , and the sequence Kob Dν ν≥ν K converges uniformly to Kob D∞ on K × S (0, 1). In that case we say that Kob Dν ν∈N converges uniformly on compact sets of D ∞ to Kob D∞ . In the following, for a domain D ⊂ C 2 , we use the notation g D to denote the Kähler-Einstein potential of D solution of Equation (2.2) with boundary condition (2.4), and Bis D to denote its holomorphic bisectional curvatures.

  and ψ (D ∩ U ) = Re(z 1 ) + H (z 2 ) + O |z 2 | 2p+1 + |z 1 | |z| < 0 ∩ ψ (U ) , with either H(z) = |z| 2p or H(z) = Re (z) 2p for every z ∈ C (see also point 2. of Remark 1.14). Since ψ maps D to ψ (D) biholomorphically, we have the following by the invariance property of the Kähler-Einstein metric:∀z ∈ D, ∀v, w ∈ C 2 \ {0}, Bis D (z; v, w) = Bis ψ(D) (ψ (z) ; ∂ z ψ (v) , ∂ z ψ (w)) .Moreover the sequence ψ z (ν) ν∈N converges non tangentially to ψ (q) = 0 because ψ is an ane invertible map. Thus up to replacing D with ψ (D) and U with ψ (U ) we may assume that q = 0 and D∩ U = Re(z 1 ) + H (z 2 ) + O |z 2 | 2p+1 + |z 1 | |z| < 0 ∩ U .In this setting the condition of non-tangential convergence of z(ν) ν∈N ∈ D N means that   below by a positive constant, thus up to taking a subsequence we may assume that

we have cKob Dν ≤ g Dν i j ≤≤

 j CKob Dν on D ν in the sense that for every z ∈ D ν and every v ∈ C 2 the inequalities cKob Dν (z, v) ≤ |v| Dν z CKob Dν (z, v) hold. Moreover since the sequence of bounded convex sets (D ν ) ν∈N converges to the convex set D ∞ in the local Hausdor topology, the sequence Kob Dν ν∈N converges uniformly on compact sets of D ∞ to Kob D∞ . Therefore we obtain the uniform estimates by following line by line the proof of Lemma 3 in [57] (by replacing the balls B a 2 (x), B a (x) with bounded domains included in D ∞ ).

3. 4 . 1 3 .

 413 The Kähler-Einstein condition and two dierential equations satised byF Let F : H -1 ([0, 1[) -→ R z -→ g(0, z),and dene K := 2p+1 Then the following holds on D H : g = F • X + (3.21) and the Monge-Ampère Equation (2.2) to obtain a rst differential equation satised by the function F : Proposition 3.33. Denote f := ∂F ∂z . Then the metric g i j satises the following on D H :

3. 4 . 2

 42 Curvatures estimates at the originWe prove Theorem 3.4, which generalises the results obtained in the case of Thullen domains and tube domains and reduces the study of the sign of these curvatures to the study of the quantity|g 22 | g 2 2 (0).Proof of Theorem 3.4. In this proof, all the functions are implicitly computed at z = 0 unless stated. First we simplify the expression of the curvature coecients. We use the invariance of the Kähler-Einstein metric under the symmetry s to obtain g 1 2 = g 1 12 = g 2 22 = g 1 11 2 = g 1 22 2 = 0. Then we use relation (1.7) to deduce that R 1 11 2 = R 1 22 2 = 0.

  v) < 0 ⇐⇒ (p -1) |g 22 | g 2 2 (0) < 2p(p + 1). Introduction Years after the work of P. Klembeck regarding the curvatures of the Bergman metric in strictly pseudoconvex domains with boundary of class C ∞ , K.-T. Kim and J. Yu. proved the following:

22 2 g 2 2 2 =

 22 -λ p -3 -1 p(2p + 1),Applying Lemma 4.5 we obtain:

4. 2 . 1

 21 Localisation of the Bergman metric Let D ⊂ C n be a an open set and let A 2 (D) := H (D, C) ∩ L 2 (D) be the Bergman space of D with weight 2. Given a point z ∈ D and two vectors v, w ∈ C n \ {0} we dene the following:

  Especially, under the assumptions of Theorem 4.10 (and provided that the Bergman kernel on D ∩ U induces a Kähler metric on D ∩ U ), one has:lim z→q sup v,w∈C 2 \{0}Bis D (z; v, w) Bis D∩U (z; v, w) -1 = 0.

M

  H := z ∈ C 2 , Re (z 1 ) + H (z 2 ) + O z→0 |z 2 | 2p+1 + |z 1 | |z| < 0 .

6. 1

 1 in[START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]: Theorem 4.11. Let D ⊂ C 2 be a bounded pseudoconvex complete Reinhardt domain with boundary of class C ∞ . Let z (∞) ∈ ∂D be a point of nite type 2p. Let Λ be a nontangential cone with vertex at z(∞) . Then for every sequence z(ν) ν∈N ∈ (D ∩ Λ) N converging to z (∞) the following holds:lim ν→+∞ sup v,w∈C 2 \{0}

Proof of Theorem 4 . 11 .

 411 The proof is an adaptation of the proof of[START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] Theorem 6.1.].It follows the same steps and uses the same technical results, namely localising, scaling, and proving the interior convergence of a sequence of Bergman kernels. The only change is that we work with the holomorphic bisectional curvatures instead of the holomorphic sectional curvatures. We sketch the main steps of the proof of [22, Theorem 6.1.] and point out the new ideas we use. since D is a pseudoconvex complete Reinhardt domain, the type at z (∞) is equal to 2p, and one of the coordinates of z (∞) is equal to 0, there exists of a neighbourhood U of z (∞) and a biholomorphic map Φ :U -→ Φ (U ) such that Φ z (∞) = 0 and Φ (D ∩ U ) = E p ∩ Φ (U ) with E p := z ∈ C 2 , Re (z 1 ) + |z 2 | 2p + O z→0 |z 2 | 2p+1 + |z 1 | |z| < 0

1 p

 1 dened for every z ∈C 2 such that z 1 = 1, and set G (ν) := M • F (ν) • Φ, D ν := G (ν) (D ∩ U ), v (ν) := ∂ z (ν) G (ν) (Π d (ν) (v)) and w (ν) := ∂ z (ν) G (ν) (Π d (ν) (w)).Applying the invariance formula (1.13) we have the following for every v, w ∈ C 2 \ {0}:Bis D∩U z (ν) ; Π d (ν) (v), Π d (ν) (w) = Bis Dν 0; v (ν) , w (ν) .

(4. 7 )

 7 Combining relations (4.6) and (4.7) we deducelim ν→+∞ sup v,w∈C 2 \{0} Bis D∩U z (ν) ; Π d (ν) (v), Π d (ν) (w) -Bis Ep (0; v , w ) = 0.

Finally, we apply Theorem 4

 4 

2 = 0 :

 20 since D is a pseudoconvex complete Reinhardt domain, the type at z (∞) is equal to 2p, and none of the coordinates of z (∞) are 0, there exists a neighbourhood U of z (∞) and a biholomorphic map Φ :U -→ Φ (U ) such that Φ z (∞) = 0 and Φ (D ∩ U ) = T p ∩ Φ (U ) with T p := Re (z 1 ) + Re (z 2 ) 2p < O z→0 |Re (z 2 )| 2p+1 + |Re (z 1 )| (|Re (z 1 )| + |Re (z 2 )|)

.

  Set G (ν) := F (ν) • Φ, D ν := G (ν) (D ∩ U ), v (ν) := ∂ z (ν) G (ν) (Π d (ν) (v)) and w (ν) := ∂ z (ν) G (ν) (Π d (ν) (w)).Applying the transformation formula (1.13) we obtain the following for every v, w ∈ C 2 \ {0}:Bis D∩U z (ν) ; Π d (ν) (v), Π d (ν) (w) = Bis Dν (-1, 0); v (ν) , w(ν) .

  contrast with the strictly pseudoconvex case, very few results are known regarding the boundary behaviour of the holomorphic bisectional curvatures of the Kähler-Einstein metric and of the Bergman metric at weakly pseudoconvex boundary points of smoothly bounded pseudoconvex domains of nite type. We can ask: Question 5. Negativity of bisectional curvatures for nite type domains Let D ⊂ C n be a bounded pseudoconvex domain with boundary of class C ∞ and let q ∈ ∂D be a point of nite type. Does there exist a neighbourhood U of q such that sup z∈D∩U v,w∈C n \{0} Bis(g)(z; v, w) < 0, where g is either the Bergman metric of D or the Kähler-Einstein metric of D? One expects that a positive answer to Question 5 suces to obtain the existence of a neighbourhood U of ∂D in which the holomorphic bisectional curvatures of the metric are bounded from above by a negative constant. Notice that the hypotheses in Question 5 do not imply inf z∈D∩U v,w∈C n \{0} Bis(g)(z; v, w) > -∞ as the following example shows. Let a, m ∈ N * such that 2a < m and consider the smooth bounded pseudoconvex domain of nite type D H = z ∈ C 3 /Re(z 1 ) + |z 1 | 2 + |z 1 | 2m + |z 2 z 3 | 2a + |z 3 | 2m < 0 .

  supported by the comparison of the curvature bounds obtained for Thullen domains and tube domains (seeTheorems 3.4,[START_REF] Bland | Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains[END_REF]3 and also Remark 4.9). However there is no localisation result as (4.11) for the holomorphic (bi)sectional curvatures of the Kähler-Einstein metric at h-extendible points. Nonetheless if D ⊂ C 2 and is convex, no localisation is needed and we have a partial result, see Theorem 3.3. Its proof may be adapted to every boundary point of a smoothly bounded convex domain of nite type in C n , see[START_REF] Gaussier | Characterization of convex domains with noncompact automorphism group[END_REF]. In fact the sequence of scaled domains converges globally to the model domainD H = {z = (z, z ) ∈ C × C n-1 /Re (z) + H (z ) < 0}where H is a weighted homogeneous convex polynomial function. Moreover the uniform squeezing property of convex domains and the stability of the Kobayashi metric in the class of C-proper convex domains in C n imply the stability of the Kähler-Einstein metric of D H (see [26, 57]). Therefore, the study of the non tangential behaviour of the holomorphic bisectional curvatures of the Kähler-Einstein metric at boundary points of smoothly bounded convex domains of nite type reduces to the study of the same quantities in D H . For a homogeneous non negative polynomial function H of degree 2p (p ∈ N * ) which is subharmonic but not harmonic in C we expressed the pinching of the curvatures of the Kähler-Einstein metric g i j of D H in terms of |g 22 | g 2 2 (-1, 0) (see Theorem 3.4). Proving the inequality |g 22 | g 2 2 (-1, 0) < 2p when H is convex would suce to answer armatively Question 5 (and equivalently Question 1) for the Kähler-Einstein metric in the case of smoothly bounded convex domains of nite type in C 2 . Incidentally, this would give a characterisation of the nite type for bounded convex domains in C 2 with smooth boundary (see [8, Theorem 1.2.]).

•

  z→q d (z, ∂D) k ? Notice that a positive answer with k = 3 is sucient to localise the metrics. If one can localise the holomorphic bisectional curvatures at a boundary point q, then one may use a scaling method, and under suitable conditions prove the sequence of rescaled domains converges in the local Hausdor topology to some model domain. Consequently, the study of the boundary behavior of the curvatures reduces to the study of the curvatures in some interior point of a model domain provided that the sequence of associated metric converges in a certain sense to the metric of the model domain. This brings to the question of the stability of the Bergman metric and of the Kähler-Einstein metric: Question 9. Convergence of metrics under deformation of domains Let (D ν ) ν∈N∪{∞} be a family of bounded complete Kobayashi hyperbolic domains. Let g (ν) i j ν∈N∪{∞} be either the family of complete Bergman metrics or the family of complete Kähler-Einstein metrics associated to the family (D ν ) ν∈N∪{∞} . • Assume that (D ν ) ν∈N converges to D ∞ in the sense of the Caratheodory kernel convergence (see [29, Subsection 9.2.2]). Does g More generally, what notion of convergence on the sequence (D ν ) ν∈N to D ∞ ensures the local uniform convergence of the metrics g metric, if the sequence (D ν ) ν∈N satises the hypothesis of Question 9 and is increasing then the sequence of associated Bergman metrics converges to the Bergman metric of D ∞ , uniformly on compact sets of D ∞ , and the same result holds for

  and the sequence converges to D ∞ in the sense of the local Hausdor topology, then the sequence g (ν) i j ν∈N converge to g (∞) i j

  • We say that ∂D is strictly pseudoconvex at point z ∈ ∂D ∩ U if it satises the following property:

  to give a rst important class of examples of pseudoconvex domains: Proposition 1.6. Let z ∈ ∂D ∩ U . If the property (1.4) holds at z then ∂D is pseudoconvex at z. Especially, if D is a convex domain and ∂D is of class C s then D is a

	pseudoconvex domain.

Proof of Proposition 1.6. Let z ∈ ∂D ∩ U such that the property (1.4) holds at z and let

  In general, the line type and the regular type at a boundary point of a Reinhardt domain may not be equal. For instance, in the Reinhardt domainD := {z ∈ C 2 , Log |z 1 |+ Log |z

2 | + (Log |z 1 | -Log |z 2 |)

4 

< 0}, the regular type at (1, 1) is 4 whereas the line type is 2.

  The variety type of ∂D H at (ia, 0) is equal to 2p.

	so that a boundary point z ∈ ∂D H is a strictly pseudoconvex boundary point if and only if ∂ 2 H ∂z∂z (z 2 ) > 0. Especially the set iR × {0} consists of weakly pseudoconvex
	boundary points for ∂D H . Let us compute the variety type at such points. The following
	proposition is classical. We refer to [6] for a more general study.
	Proposition 1.15. Proof. Proof of Proposition 1.15 Let

Let a ∈ R.

  := {|z 1 | 2 + |z 2 | 2p < 1}. E p is called the Thullen domain of type 2p. By extension we call {Re(z 1 ) + |z 2 | 2p < 0} the "unbounded representation of E p ". The second type of domains are biholomorphic to T p := {Re(z 1 ) + Re(z 2 ) 2p < 0}. T p is called a tube domain. The set of boundary points of D H that are of type 2p is (1, 0)+iR 2 .The tube domain T p id also biholomorphic to a bounded domains (because the subset T p ∩ R 2 contains no real line), but there is no "nice" bounded representation as in the Assume that D H is a convex domain. If the restriction of H to the unit circle ∂∆ is positive then there exists positive constants 0 < c ≤ C such that

	2 | 2p < 0}. The set of boundary points of D H that are of type 2p is (1, 0) + iR × ∂∆. Analoglously to the case of the ball, the map z → 1+z 1 1-z 1 , 2 1 p z 2 (1-z 1 ) 1 p is a biholomorphism between {Re(z 1 ) + |z 2 | 2p < 0} and representations such as T p . Observe that both Thullen domains (even in their unbounded representation) and tube domains are convex. The following Proposition states that convex polynomial models are either "pinched between Thullen domain" or equal to a tube domain: E case of Thullen domains and most of the study on tube domains is done on unbounded Proposition 1.16.

p

  Assume that the restriction of H to ∂∆ vanishes, and let u ∈ ∂∆ such that H(u) = 0.

	the authors give an analytic proof of Proposition 1.16. The
	following proof is more geometric:		
	Proof of Proposition 1.16. Observe that the restriction of H to ∂∆ is a continuous non
	negative function, thus it achieves its minimum and its maximum, that we denote by c
	and C respectively. If H does not vanish on ∂∆, then 0 < c ≤ C. Since H is homogenous
	of degree 2p we have for every z ∈ C * one has c|z| 2p ≤ H(z) = |z| 2p H	z |z|	≤ C|z| 2p . If
	z = 0 the previous inequalities still hold, hence the rst result.		
	Since H is invariant by the symmetry s, we also have H(-u) = 0. We prove that H
	does not vanish on ∂∆ \ {-u, u} by contradiction. If there existed v ∈ ∂∆ \ {-u, u} such
	that H(v) = 0, then for every number 0 ≤ t ≤ 1 we would have 0 ≤ H (tu + (1 -t)v) ≤
	tH(u) + (1 -t)H(v) = 0 by convexity of H. Thus H (tu + (1 -t)v) = 0 and since H
	is homogeneous and tu + (1 -t)v = 0 we would deduce that H is identically equal to 0

  1 , x 2 + iy 2 ) ∈ [(x 1 + α 1 , x 2 + α 2 ), (0, ity 2 )], so in particular (x 1 , x 2 + iy 2 ) ∈ D Hby convexity of D H . Hence the result. To conclude this section, let us mention the following class of examples: let a, b ∈ R and let H a,b (z) := az 3 z + b |z| 4 + azz 3 for z ∈ C. Then for every z ∈ C we have

	∂ 2 H a,b ∂z∂z if and only if b ≥ 2 |a|, H is subharmonic if and only if b ≥ (z) = 3az 2 + 4b |z| 2 + 3az 2 and ∂ 2 H a,b ∂z 2 (z) = 6a |z| 2 + 2bz 2 . Thus H is non negative 3 |a| and H is convex if and 2 only if b ≥ 3 √ 2 |a| (the convexity of H a,b is equivalent to the condition ∂ 2 H a,b ∂z∂z ≥ ∂ 2 H a,b ∂z 2 ,
	see for instance Lemma 4.2. in [17]). In particular we can construct pseudoconvex
	model domains D H such that H is negative in some directions (by taking a, b such that 0 < 3 2 |a| ≤ b < 2 |a|).

  If there exists a complete Kähler-Einstein metric on D of Ricci curvature -λ, then this metric is unique (simply take D = D, Φ = Id and use Kähler metric g i j is induced by a potential g, then it is Kähler-Einstein with Ricci curvature equal to λ if and only if there exists a function F ∈ C 2 (D) satisfying F i j = 0 on D and such that g solves the Monge-Ampère equation Det g i j = e -λg+F on D (this directly comes from the denition of Ric(g)). This observation is one of the keys to prove the existence of Kähler-Einstein metrics in pseudoconvex domains in C n . We implicitly work with the Lebesgue measure on C n that we denote by µ. We use standard notations from the theory of L 2 spaces. Consider the Bergman spaceH 2 (D) := {f ∈ H (D, C) / ||f || L 2 < +∞} .is a subspace of the Hilbert space (L 2 (D) , ||•|| L 2 ). It follows from the Cauchy formula that for every compact subset K ⊂ D there exists a positive constant C such that sup z∈K |f (z)| ≤ C ||f || L 2 for every function f ∈ H 2 (D). This property implies that (H 2 (D) , ||•|| L 2 ) is a Hilbert space and also that for every z ∈ D the evaluation map at z is a continuous linear form on H 2 (D), thus there exists a unique function η z ∈ H 2 (D)

	The Bergman pseudo-metric
	It
	the relation (1.12)). Additionally if D ⊂ C n is another domain possessing a complete
	Kähler-Einstein metric with Ricci curvature -λ and if there exists a biholomorphic map
	Φ ∈ B (D, D ) then the following holds
	∀z ∈ D, ∀v, w ∈ C n \ {0}, Bis (g) (z; v, w) = Bis (g ) (Φ(z); ∂ z Φ(v), ∂ z Φ(w)) . (1.13)
	If a The construction of complete Kähler-Einstein metrics in pseudoconvex domains in C n is
	discussed in more details in Chapter 2.
	Remark 1.21. Let D, D ⊂ C n be two domains that are biholomorphic and let Φ ∈
	B (D, D ). Assume that there exists a complete Kähler-Einstein metric induced by a
	potential g on D and there exists a complete Kähler-Einstein metric induced by a potential
	g on D , and that theses metric have the same negative Ricci curvature. Then they satisfy
	(1.14)

(g • Φ) i j = g i j on D.

  On the one hand, it implies that |∇ψ| z > 0 because ψ is a dening function for ∂D ∩ V . One the other hand, the continuity of the function |∇ψ| at z implies that |∇ψ| z = lim i→+∞ |∇ψ| z i = 0. Hence the contradiction. Let V be an open set. Let s ≥ 2 be an integer. If ψ ∈ C s (V ), its Feerman functional is dened by J(ψ) := (-1) n Det (M (ψ)) where

  1, 2l -1)[. We prove it a slightly dierent way by rst proving part (1) of Proposition 2.16. Proof of Proposition 2.16. 1. We apply Proposition 2.12, and use Lemma 2.15 with ψ = ηϕ, g = w and U replaced with U ∩ {|ϕ| < }. With notations of Proposition 2.12 and

	Lemma 2.15, we have	c λ > 0. Moreover we know that -ψ + |∇ ψ ψ| 2 ψ , 1 η	2	∈ C U and

are positive functions. Hence they are bounded from above, so that there exist positive constants M 1 , M 2 such that -ψ + |∇ ψ ψ| 2 ψ ≤ M 1 and 1 η 2 ≤ M 2 on U . Thus, we have the following on D ∩ U :

:

  Proposition 2.19. Under the notations and hypothesis of Proposition 2.12, for every number γ ∈]0, min (2n + 1, 2l -1) [ and for every 0 ≤ δ < γ 2 -γ

		2 (where	γ 2 denotes
	the integral part of	γ

2 ), we have: u, e -u ∈ C γ 2 +δ D ∩ U . Moreover, if γ > 2, we have:

  To prove Theorem 3.3 we use a scaling method. This technique applies at every boundary point of bounded convex domains in C 2 , but in the general case the local model of ∂D at q is of the form D H = {z ∈ C 2 /Re (z 1 ) + H (z 2 ) < 0} where H is a real-valued homogeneous convex polynomial. We do not know whether the holomorphic bisectional curvatures of the Kähler-Einstein metric of these domains are negatively pinched along the axis {z 2 = 0} (except for H(z) = |z| 2p and H(z) = Re(z) 2p where p ∈ N * ). Nonetheless

	we prove the following partial result:
	Theorem 3.4.

Let p ∈ N * . Let H be a real-valued homogeneous polynomial function of degre 2p which is subharmonic but not harmonic. Assume that there exists a complete Kähler-Einstein potential g ∈ C ω (D H ) solving Equation (2.2) and satisfying condition (2.4) on D H . Set K := 2p + 1 3

  1. and 2. by comparing with the values of C on ∂ ([-1, 1] 2 ). assume that λ 2 = 1, meaning 3+2A = -(3+A+B). Then C takes the following simpler expression

	Now

  see the discussion preceding Lemma 2.7 for details). Thus we are interested in obtaining C k (K) estimates of the family g (ν) ∞ , where ∆ denotes the Laplacian operator for the Euclidean metric on C 2 (see the proof in [57,Lemma 3] for more details).

			ν≥ν K	of solutions to equation (2.2).
	It relies on obtaining estimates of Sobolev norms of the sequences	Log g Dν i j	ν∈N	and
	∆g Dν	ν∈N	on bounded subdomains of D	

  3.4 Partial results for the study of the Kähler-Einstein metric in postive model domains Let p ∈ N * be an integer, and let H be a real valued homogenous polynomial of degree 2p, subharmonic and not harmonic in C. Let D H := {Re(4pz 1 ) + H(z 2 ) < 1}. We assume that D H admits a complete Kähler-Einstein metric induced by a potential g satisfying Equation (2.2) with boundary condition (2.4) on D H . For simplicity we also assume that H is positive on C * . This is the case if D H is convex and not biholomorphic to a tube domain (see Lemma 1.16). Nonetheless the forthcoming study can easily be adapted to any pseudoconvex domain of the form D H without restriction on the sign of H. In this Section we study the behaviour of g on D H . To do so we adapt the ideas developped in Section 3.2 and use some notations introduced therein. We also refer to Section 1.3 for information regarding the geometry of D H .

	Denote by π C 2 the map

  curvatures of the Bergman metric of D are negatively pinched in D ∩ U .In comparison, the behaviour of the Bergman metric and its holomorphic bisectional curvatures at weakly pseudoconvex boundary points is not clearly understood. In 1975 S. Kobayshi proved that the holomorphic sectional curvatures of any bounded pseudo-

convex domain in C n are bounded from above by 2, in 1989 J. McNeal proved that the holomorphic sectional curvatures of any bounded pseudoconvex domain of nite type in C 2 are bounded, and recently S. Yoo proved that the holomorphic bisectional curvatures of bounded pseudoconvex domains of nite type in C 2 and of bounded convex domains of nite type in C n are bounded from below (see

  2 where r is as in the proof of Proposition 4.7.4.2 Estimate of Bergman curvatures in compelte Rein-hardt domains of nite type in C 2
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Chapter 2

The Kähler-Einstein metric in pseudoconvex domain: local behaviour at "ball like" boundary points Remark 2.22. The previous approach also works when g i j is the Bergman metric. In particular Theorem 2.6 also holds for 1 n + 1 times the Bergman metric. Precise estimates of the holomorphic sectional curvatures, Ricci curvatures and scalar curvature can be found in [START_REF] Zhang | Intrinsic derivative, curvature estimates and squeezing function[END_REF] and may be adapted to obtain precise estimates on the holomorphic bisectional curvatures of the Bergman metric. However the approach developped there cannot be applied to obtain estimates on the curvatures of the Kähler-Einstein metric.

Chapter 3

Study of the Kähler-Einstein metric in pseudoconvex domains in C 2

Abstract

In this chapter we study the Kähler-Einstein metric and its holomorphic bisectional curvatures in pseudoconvex domains in C 2 . First we briey review the known results in the case of Thullen domains and study the boundary regularity of the Kähler-Einstein potential at weakly pseudoconvex points. Then we prove analogues results in tube domains.

Using the estimates about the holomorphic bisectional curvatures obtained in these two types of domains we prove that the holomorphic bisectional curvatures of the Kähler-Einstein metric at certain boundary points of bounded convex domains in C 2 are pinched between two negative constants in the case of a non-tangential approach. In Section 3.4

we provide with a partial study of the Kähler-Einstein metric in homogeneous polynomial domains D H where H is non negative.

Convention In this chapter we work only with the Kähler-Einstein metric with Ricci curvature -3, that we denote by g D or by g when there is no confusion.

Since B -3(A + 2) ≥ -3(A + 2) > 0, the maximum of the polynomial function P :

. Hence we deduce max

. We can deduce from Proposition 3.27 part of Theorem 3.2: Theorem 3.28. There exist positive constants 0 < c ≤ C and α > 0 such that

is continuous, it is uniformly continuous on every subset of the form J × S(0, 1) 2 where J ⊂] -1, 1[ is a compact set. Especially, we deduce that for every positive number > 0 there exists a positive constant α > 0 such we have the following: 

,

and likewise we prove that -3 + 1 2p + 1 ≤ Bis (z; v, w). We obtain the conclusion of 

for every z ∈ D and a ∈ ∆ n . Using this observation and the estimates of the Bergman curvatures in the model domains, he proved the following: Theorem 4.2 (Theorem 6.4 in [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF]). Let D ⊂ C 2 be a bounded pseudoconvex complete Reinhardt domain with boundary of class C ∞ and of nite type. Then there exists a neighbourhood U of ∂D and two constants 0

In this chapter we prove a version of the above theorem regarding the holomorphic bisectional curvatures of the Bergman metric. To do so we rst study the behaviour of the holomorphic bisectional curvatures in the model domains and prove:

Bis T p ((-1, 0); v, w) < 0.

We prove Theorem 4. 

Estimates of the Bergman curvatures in model domains

Here we prove Theorem 4.3. We use the following result: Lemma 4.5. Let D ⊂ C 2 be a domain and let g i j be a Kähler metric of class C 2 on D.

Let z ∈ D. Assume that at point z the matrix g i j is diagonal, the curvature coecients R i jk l are real numbers and that R 1 11 2 = R 1 22 2 = 0. Let v, w ∈ C 2 to vector with unit length with respect to the metric at point z. Then the holomorphic bisectional curvature

According to [START_REF] Fu | Geometry of Reinhardt domains of nite type in C 2[END_REF] we have λ p ≥ 7

2

, hence λ p -3 -1 2p+1 ≥ 2p-1 2(2p+1) > 0 so that Bis(v, w) < 0 as it is less or equal to a sum of three non-positive quantities that does not vanish for the same values of (x, y).

Now we turn our attention to the case of Thullen domains. In [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF] 

Bis (0; v, w) < 0.

Remark 4.8. In [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF] the denition of the curvature coecients is the opposite of the one we use in this thesis (compare relation (1.9) with the denition of the curvature coecients given at bottom of page 1 in [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF]). This explains the dierence of sign between the quantities obtained in [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF] and the same quantities appearing in the following proof.

Proof of Proposition 4.7. To simplify notations we write Bis(v, w) instead of Bis(0; v, w).

Because of relation (1.10), it is enough to prove that Bis(v, w) < 0 for every v, w ∈ C 2 with unit length with respect to the Bergman metric at 0. We use the computations done in [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF]. We have r = 1 -p 1 + p , and the following relations:

thus we obtain the following expressions for the curvature coecients: R 1 11

We apply Lemma 4.5 to obtain the following:

Combining relations (4.8) and (4.9) we easily deduce that

Finally, we apply Theorem 4.10 to obtain

This proves the result (4.5) in the case that the coordinates of z (∞) are non zero.

This concludes the proof of Theorem 4.11.

The 

Prospects

If D ⊂ C n is a bounded pseudoconvex domain with boundary of class C ∞ and q is either a strictly pseudoconvex boundary point or a point such that the squeezing function of D

tends to 1 at q, then the curvature behaviour

holds, for either the Kähler-Einstein metric with Ricci curvature -(n + 1) or 1 n + 1 times the Bergman metric of D (see Theorems 2.5, 2.6, Remark 2.22 and [START_REF] Deng | Some properties of squeezing functions on bounded domains[END_REF][START_REF] Kim | Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains[END_REF]). One may ask whether condition (4.10) implies that q is a ball-like boundary point. More precisely: Question 3. Sucient curvature condition for "ball-like" points Let D ⊂ C n be a bounded pseudoconvex domain with boundary of class C ∞ . Let q ∈ ∂D.

Let g i j be a complete Kähler metric of class C 2 on D such that condition (4.10) holds at q. Are the following satised

∂D is strictly pseudoconvex at q?

The answer to Question 3 seems to be known and armative only if we assume that D is convex and that the behaviour (4.10) holds uniformly on ∂D, see [START_REF] Bracci | The geometry of domains with negatively pinched Kähler metrics[END_REF]Theorem 1.4.] and [START_REF] Zimmer | Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents[END_REF]Theorem 1.7.]. Moreover in this case condition (4.10) for the holomorphic sectional curvatures is sucient for [START_REF] Ahn | Positivity and completeness of invariant metrics[END_REF] or [START_REF] Azukawa | The Bergman metric on a Thullen domain[END_REF] to hold. For non convex domains one may study a similar question replacing (4.10) with a condition on the holomorphic sectional curvatures.

In some classes of pseudoconvex domains conditions (1) and (2) are related. For a bounded pseudoconvex domain D with boundary of class C 2 the strict pseudoconvexity of ∂D implies condition [START_REF] Ahn | Positivity and completeness of invariant metrics[END_REF] at every boundary point (see [START_REF] Deng | Properties of squeezing functions and global transformations of bounded domains[END_REF]). Additionally if D is (see also [START_REF] Boas | Boundary limits of the Bergman kernel and metric[END_REF][START_REF] Krantz | On the Bergman invariant and curvatures of the Bergman metric[END_REF][START_REF] Yoo | Asymptotic boundary behavior of the Bergman curvatures of a pseudoconvex domain[END_REF]). This motivates the study of the Bergman metric and its curvatures in such domains to answer armatively the following question, which generalises Question 1, for h-extendible domains: Question 6. Negative pinching of curvatures in h-extendible domains Let D ⊂ C n be a bounded pseudoconvex domain with boundary of class C ∞ and let q ∈ ∂D. Assume that D is h-extendible at q. Does there exist a neighbourhood U of q

where g is either the Bergman metric of D or the Kähler-Einstein metric of D?

Once the answer to Question 5 or 6 is armative, we may focus on the local behaviour of the holomorphic bisectional curvatures and compare them to their analogue in model domains which is the content of Question 2. In h-extendible domains the curvatures of the Bergman metric behave like their analogue in the local model, which answers armatively Question 2 in this case. More precisely, if D ⊂ C n is h-extendible at a boundary point q and if D H is a local model at q (see point 1. of Remark 1.14 and also [START_REF] Yu | Singular Kobayashi metrics and nite type conditions[END_REF]), then for every nontangential cone Λ with vertex at q the following holds: ((-1, 0, . . . , 0); v ) = 0, (4.11) where for every vector v ∈ C n \ {0} the vector v ∈ C n \ {0} depends only on v and the geometry of ∂D at q, and for every λ > 0 the map Π λ is an anisotropic dilation of factor λ with weight depending only on the geometry (more precisely on the Catlin multitype) of ∂D at q. We refer to [START_REF] Boas | Boundary limits of the Bergman kernel and metric[END_REF] for a more precise statement. Consequently, the only remaining question for h-extendible domains concerns the negative pinching of the holomorphic bisectional curvatures of the Bergman metric of D H (see Section 1.3). This is part of the following more general question: