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Résumé

Nous étudions les relations entre des propriétés géométriques et des propriétés métriques

dans les domaines de Cn. Plus précisément, étant donné un domaine pseudoconvexe borné

D à bord ∂D lisse, nous nous intéressons au comportement asymptotique des courbures

bisectionelles holomorphes de métriques de Kähler invariantes, la métrique de Bergman

et la métrique de Kähler-Einstein, en un point p de ∂D.

Lorsque p est un point de stricte pseudoconvexité, ∂D ressemble localement au bord

d'une boule et les courbures de D sont asymptotiquement proches des courbures de cette

boule à mesure que l'on se rapproche de p. Ce phénomène est également vrai lorsque la

fonction de squeezing de D tend vers 1 en p.

Si p est un point de faible pseudoconvexité de type �ni, ∂D ressemble localement à un

domaine polynomial "modèle", et l'on s'attend à ce que les courbures de D s'approchent

des courbures de ce "modèle". Il est donc naturel d'étudier les courbures des métriques de

Bergman et de Kähler-Einstein dans ces domaines. Dans certains de ceux-ci (les domaines

de Thullen et les domaines tubes dans C2), les courbures bisectionelles holomorphes des

métriques suscitées sont pincées négativement. Ces résultats permettent de prouver que

si D ⊂ C2 est convexe ou Reinhardt complet et si un modèle en p est soit un domaine de

Thullen soit un domaine tube, alors les courbures bisectionelles holomorphes de D sont

pincées négativement dans un voisinage conique de p.

Abstract

We study the relationships between geometric and metric properties in domains of Cn.

Speci�cally, given a bounded pseudoconvex domain D with smooth boundary ∂D, we

study the asymptotic behaviour of the holomorphic bisectional curvatures of invariant

Kähler metrics, namely the Bergman metric and the Kähler-Einstein metric, at a point

p of ∂D.

If p is a strict pseudoconvex point, ∂D locally looks like the boundary of a ball and

the curvatures of D are asymptotically close to the curvatures of the ball as we approach

p. This phenomenon also holds when the squeezing function of D tends to 1 at p.

If p is a weakly pseudoconvex boundary point of �nite type in the sense of D'Angelo,

∂D locally looks like a polynomial model domain, and we expect that the curvatures of

D approach curvatures of this model. It is therefore natural to study the curvatures of

the Bergman and the Kähler-Einstein metrics in such domains. In some of these (namely



Thullen domains and tube domains in C2), the holomorphic bisectional curvatures of the

metrics mentionned above are negatively pinched. These results enable to prove that if

D ⊂ C2 is convex or complete Reinhardt and if a model at p is either a Thullen domain or

a tube domain, then the holomorphic bisectional curvatures of D are negatively pinched

in a conical neighbourhood of p.
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Introduction

Given a bounded domain D in Cn or a complex manifold with boundary it is natural

to study the relationships between quantities containing information about the complex

geometry of D. For instance one can ask whether the curvature of the boundary of D

is related to the curvature of objects de�ned on D, such as invariant Kähler metrics. A

Kähler metric on D associates with every point of D a way to measure angles between

two directions, and the metric is called invariant if it respects the symmetries of the

domain. If the metric is smooth, we may study its curvatures, which roughly measure

the variations of the metric with respect to the point. We expect that the behaviour of

the curvatures of the metric is in�uenced by the geometry of the boundary ∂D of D, at

least when we look at points of D close to ∂D. As an example, we may hope that if ∂D

�looks like the boundary of a ball B� near a given point q of the boundary, then D is

metrically �curved like B� when we look at points in D near q.

The discussion can be formalised as follows. Let n ∈ N \ {0, 1} be an integer, let D ⊂ Cn

be a bounded domain with boundary of class C∞. We also assume that D is pseudoconvex

and ∂D is of �nite type in the sense of D'Angelo (see De�nitions 1.5 and 1.11). Let
[
gij̄
]

be either the Kähler-Einstein metric of D with Ricci curvature −(n+ 1) or the Bergman

metric of D (see Section 1.4). We study the following question:

Question 1. Negative pinching

Does there exist a neighbourhood V of ∂D such that the holomorphic bisectional curva-

tures of the metric
[
gij̄
]
are negatively pinched on D ∩ V ?

The �rst studies of the boundary behaviour of the curvatures of these metrics goes

back to the late 1970. The answer to Question 1 is known for strictly pseudoconvex

domains. Indeed, P. Klembeck proved in [39] that the Riemannian sectional curvatures

(so in particular the holomorphic bisectional curvatures) of the Bergman metric near the

boundary of a bounded strictly pseudoconvex domain with smooth boundary behave like
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the ones of the Bergman metric on the ball and S.-Y. Cheng and S.-T. Yau proved in [12]

a similar result for the holomorphic sectional curvatures of the Kähler-Einstein metric.

Let q ∈ ∂D. It is natural to expect that the behaviour of the curvatures of the metric
[
gij̄
]

in a neighbourhood of q depends only on the Cauchy-Riemann (CR) geometry of ∂D at

q. Some results support this idea. For instance K.T. Kim and J. Yu proved in [37] that if

q ∈ ∂D is a strictly pseudoconvex boundary point ofD, then there exists a neighbourhood

V of q such that the holomorphic sectional curvatures of the Bergman metric of D are

negatively pinched on D ∩ U . This result can be extended to holomorphic bisectional

curvatures, see Section 6 in [36]. Regarding the Kähler-Einstein metric, J. Bland proved

a local version of the result of S.-Y. Cheng and S.-T. Yau if n ≥ 6 (see [4]).

If ∂D is not strictly pseudoconvex at q, the situation becomes more complicated

and curvatures conditions on ∂D are necessary. The notion of �nite type is a natural

generalisation of strict pseudoconvexity in the pseudoconvex setting (see [14]). G. Herbort

constructed an example of a bounded pseudoconvex domain with smooth boundary of

�nite type for which the holomorphic sectional curvatures of the Bergman metric are not

bounded from below, see the conclusion for a discussion on the subject. This answers

negatively Question 1 for a general pseudoconvex domain of �nite type. However a domain

D of �nite type at q ∈ ∂D can be osculated by a model domain, in local coordinates near

q, whose study should be simpler. Thus the natural question is:

Question 2. Local behaviour

Does the metric of D behave like the metric of the corresponding model near q?

The answer is a�rmative for the Bergman metric for a large class of domains in

Cn when dealing with holomorphic sectional curvatures (see [7]). A pinching of the

holomorphic sectional curvatures of the Bergman metric in the associated model near

q yields to a pinching of the same quantities for the domain in a neighbourhood of

q. As an example, S. Fu proved that the local model at every boundary point of a

bounded pseudoconvex complete Reinhardt domain of �nite type D ⊂ C2 is either a

Thullen domain or tube domain (see [22]). Using estimates of the holomorphic sectional

curvatures of the Bergman metric in Thullen domains obtained by K. Azukawa and M.

Suzuki in [2] he proved that the holomorphic sectional curvatures of the Bergman metric

of D are negatively pinched in a neighbourhood of ∂D.

In the case of the Kähler-Einstein metric the answer is not known, essentially for the

4



following two reasons: lack of localisation results for the Kähler-Einstein metric near

weakly pseudoconvex boundary points, and lack of knowledge about the behaviour of

the Kähler-Einstein metric in model domains. Indeed, the only model domains for which

estimates of the holomorphic bisectional curvatures of the Kähler-Einstein metric are

known are the Thullen domains, studied by J.S. Bland in [5].

Our objective has been to provide with estimates of the holomorphic bisectional cur-

vatures of the Kähler-Einstein metric and the Bergman metric in some model domains,

and to deduce estimates in some classes of domains in Cn. More precisely, in Chapter 2

we study the Kähler-Einstein metric at boundary points at which the domain looks like

a ball, namely strictly pseudoconvex boundary points and points at which the squeezing

function of the domain tends to 1 (see [57]). We prove:

Theorem 1. Let n ≥ 2, let D ⊂ Cn be a bounded pseudoconvex domain with boundary of

class C∞, and let q ∈ ∂D. If q is a strictly pseudoconvex point of ∂D or if the squeezing

function of D tends to 1 at q then,

sup
v,w∈Cn\{0}

Bis (gDKE) (z; v, w) +

1 +


∣∣∣〈v, w〉gDKE ,z∣∣∣

〈v, v〉gDKE ,z 〈w,w〉gDKE ,z

2

 −→

z→q
0.

Here, Bis
(
gDKE

)
(z; v, w) (respectively 〈v, w〉gDKE ,z) denotes the holomorphic bisec-

tional curvature (respectively the Hermitian scalar product) of the Kähler-Einstein metric

of Ricci curvature −(n + 1), computed at point z and between vectors v and w. Notice

that under the assumptions of Theorem 1, a model domain might be the unit ball B in Cn

whose bisectional curvatures for the Kähler-Einstein metric of Ricci curvature −(n + 1)

are precisely −

1 +


∣∣∣〈v, w〉gBKE ,z∣∣∣

〈v, v〉gBKE ,z 〈w,w〉gBKE ,z

2
 for every z ∈ B and v, w ∈ Cn \ {0}

(hence the idea of "looking like a ball"). See Theorems 2.4, 2.5 and 2.6 for more detailed

results.

In Chapter 3 we study the Kähler-Einstein metric in pseudoconvex domains in C2. We

�rst focus on tube domains T ′p = {z ∈ C2, Re(z1) + Re(z2)2p < 0} with p ∈ N and

prove that the holomorphic bisectional curvatures of T ′p are negatively pinched in certain

�approach regions� of the weakly pseudoconvex point (0, 0). More precisely:

Theorem 2. There exist positive constants 0 < c ≤ C and 0 < α < 1 such that the

5



following holds for every z ∈ T ′p ∩
({

Re(z2)2p

−Re(z1)
≤ α

}
∪
{

1− α ≤ Re(z2)2p

−Re(z1)
< 1

})
:

∀v, w ∈ C2 \ {0}, −C ≤ Bis
(
g
T ′p
KE

)
(z; v, w) ≤ −c.

Using Theorem 2 and the study of the Kähler-Einstein metric in Thullen domains we

prove the following (see Theorem 3.3):

Theorem 3. Let D ⊂ C2 be a bounded convex domain with boundary of class C∞. Let

q ∈ ∂D be of �nite type and such that a local model at q is either a Thullen domain or a

tube domain. Then there exists a neighbourhood U of q such that for every non tangential

cone Λ with vertex at q, Λ ∩ U ⊂ D, there exist positive constants 0 < c ≤ C such that:

∀z ∈ Λ ∩ U, ∀v, w ∈ C2 \ {0}, −C ≤ Bis
(
gDKE

)
(z; v, w) ≤ −c.

In an attempt to prove a more general version of Theorem 3 we study the Kähler-

Einstein metric in domainsD′H = {z ∈ C2/Re (z1) +H (z2) < 0} whereH is a real-valued

homogeneous convex polynomial. We prove the following partial result (see Theorem 3.4

for a more detailed statement):

Theorem 4. Let p ∈ N∗. Let H be a real-valued homogeneous polynomial function of

degre 2p which is subharmonic but not harmonic. Assume that there exists a complete

Kähler-Einstein metric with Ricci curvature −3 on D′H induced by a potential g (see

Section 1.4). Set K :=
2p+ 1

3
. Then:

max
v,w∈Cn\{0}

Bis
(
g
D′H
KE

)
((−1, 0); v, w) = max

−
1

K
,

−3 +
1

K
+
p− 1

pK

|g22|
g22̄

(−1, 0)

2

 ,

min
v,w∈Cn\{0}

Bis
(
g
D′H
KE

)
((−1, 0); v, w) = min

−3 +
1

K
,

−3− 1

K
− p− 1

pK

|g22|
g22̄

(−1, 0)

2

 .

Consequently, to prove Theorem 3 for all bounded convex domains of �nite type in

C2 it would be su�cient to prove the inequality (p− 1)
|g22|
g22̄

(−1, 0) < 2p2.

In Chapter 4 we study the Bergman metric. We �rst prove that the holomorphic

bisectional curvatures in tube domains T ′p introduced above and in Thullen domains

Ep :=
{
z ∈ C2/ |z1|2 + |z2|2p < 1

}
, p ∈ N∗, are negatively pinched:

6



Theorem 5. Let p ∈ N∗ be an integer. Then

−∞ < min
v,w∈C2\{0}

Bis
(
g
Ep
B

)
(0; v, w), max

v,w∈C2\{0}
Bis

(
g
Ep
B

)
(0; v, w) < 0,

−∞ < min
v,w∈C2\{0}

Bis
(
g
T ′p
B

)
((−1, 0); v, w), max

v,w∈C2\{0}
Bis

(
g
T ′p
B

)
((−1, 0); v, w) < 0.

See Theorem 4.3 and also Proposition 4.7 for a pinching of the holomorphic bisec-

tional curvatures of the Bergman metric in Thullen domains Ep with p ∈ [1,+∞[. As a

consequence of Theorem 5 and of a standard localisation result, we prove (see Theorem

4.4):

Theorem 6. Let D ⊂ C2 be a bounded pseudoconvex complete Reinhardt domain with

boundary of class C∞ and of �nite type. Then there exist a neighbourhood U of ∂D and

two constants 0 < c < C such that −C ≤ Bis
(
gDB
)
≤ −c on D ∩ U × (C2 \ {0})2

.

7



Chapter 1

Geometric and metric properties of

domains

Abstract

In this chapter we introduce the general notions and notations needed in the rest of this

thesis, and we provide with examples that highlight the relationships between the geo-

metric and the metric notions of curvatures. Section 1.1 contains mostly basic notations.

In Section 1.2 we recall the basic material needed about the geometry of domains in Cn.

In Section 1.3 we describe these notions in what we call "model" domains in C2. In

Section 1.4 we recall the basic material needed regarding the Kähler metrics and their

curvatures in domains of Cn and we de�ne Kähler-Einstein metrics and the Bergman

metric. In Section 1.5 we give examples of Kähler metrics in certain classes of domains

and in particular we give examples of domains of in�nite type with vanishing holomorphic

bisectional curvature for the Kähler-Einstein metric.

1.1 Notions and notations

Throughout this thesis we use Einstein notation when there is no possible confusion.

In this Section, we �x two non zero integers n and m.

We denote byMn (C) the set of square matrices of size n, with complex coe�cients. In

this set, we denote by 0 the null matrix and by I the identity matrix. The coe�cient in

position (i, j) ∈ {1, · · · , n}2 of a matrix M is noted Mij̄ and we also note M =
[
Mij̄

]
.

Let A =
[
Aij̄
]
, B =

[
Bij̄

]
∈ Mn (C), v = [vi] ∈ Cn, w = [wj] ∈ Cn (here and from now

8



on we abusively identify vectors with column matrices).

If A is invertible, we note
[
Aij̄
]

= A−1. It is characterised by the relations Aik̄Akj̄ =

Aik̄A
kj̄ = 1 if i = j, 0 otherwise. Especially, Tr (A−1B) = Aij̄Bjī, where Tr denotes

the trace function. We denote by Det (A) the determinant of A. To simplify notations

we simply write Det
(
Aij̄
)
instead of Det

([
Aij̄
])

and proceed likewise with the trace

function. We denote by tA the transpose matrix of A, and by A its conjugate. They are

respectively characterised by the relations (tA)ij̄ = Ajī and
(
A
)
ij̄

= Aij̄ for every integer

1 ≤ i, j ≤ n.

We denote by Hn := {A ∈Mn (C) /tA = A} the space of Hermitian matrices of order n.

If A ∈ Hn we note 〈v, w〉A := Aij̄viwj. Recall that 〈v, v〉A ∈ R.

If A,B ∈ Hn, we de�ne the relation B ≥ A, respectively B > A, if and only if the

inequality 〈v, v〉B ≥ 〈v, v〉A holds for every v ∈ Cn \{0}, respectively 〈v, v〉B > 〈v, v〉A for

every v ∈ Cn \ {0}. We note H+
n := {M ∈ Hn/M ≥ 0} and H++

n := {M ∈ Hn/M > 0}.
If A ∈ H+

n , we note |v|A :=
√
〈v, v〉A.

We will need the following classical fact that we do not prove:

Proposition 1.1. 1. Let A ∈ H+
n .Then there exists R ∈ H+

n such that R2 = A. The

matrix R is called a square root of A.

2. Let A ∈ H+
n . Then 0 ≤ A ≤ Tr (A) I.

3. Let A ∈ H++
n . Then there exist 0 < λ ≤ Λ such that λI ≤ A ≤ ΛI.

We work with the topology induced by the Euclidean norm given by |z|2 := |z1|2 +

· · · + |zn|2 for every z = (z1, . . . , zn) ∈ Cn. For p ∈ Cn and R > 0, we denote by

B(p,R) := {z ∈ Cn/ |z − p| < R} and S(p,R) := {z ∈ Cn/ |z − p| = R} the open ball

and the sphere centered at point p and of radius R. In the special case p = 0 and R = 1

we also denote B(0, 1) by ∆ if n = 1 and by B if n ≥ 2. The boundary of a set U ⊂ Cn

(with respect to the topology induced by the Euclidean norm) is denoted by ∂U , its

closure by U .

We recall the notion of Hausdor� convergence of sets. The Hausdor� distance between

two sets A,B ⊂ Cn is de�ned by:

dH (A,B) := max

{
sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|b− a|

}
.

The space of non empty compact sets of Cn equipped with the distance dH is a com-

plete space. Let (Dν)ν∈N∪{∞} be a family of non empty domains in Cn. We say that
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the sequence (Dν)ν∈N converges to D∞ in the local Hausdor� topology if it satis�es

lim
ν→∞

dH (∂Dν ∩K, ∂D∞ ∩K) = 0 for every compact setK ⊂ Cn. If for every ν ∈ N∪{∞}
Dν is convex, it is equivalent to lim

ν→∞
dH
(
Dν ∩K,D∞ ∩K

)
= 0 for every compact set

K ⊂ Cn.

Let U ⊂ Cn be an open set and s ∈ N be an integer. We denote by Cs (U,C) the set

of complex valued functions that are s times di�erentiable on U . We note C∞ (U,C) :=⋂
s∈N

Cs (U,C). Also, for s ∈ N ∪ {∞} we note Cs (U) := {f ∈ Cs (U,C) , f is real valued}

and Cω (U,C) the subset of C∞ (U) of real analytic functions in U . For every α ∈ [0, 1], we

denote by Cs+α (U) the subset of functions in Cs (U) such that all the partial derivatives

of order s are Hölder with exponent α. For f ∈ C1 (U,C) and 1 ≤ j ≤ n, we denote by

fj :=
∂f

∂zj
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
and fj̄ :=

∂f

∂zj
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
. Note that for every

f ∈ C1 (U) and every integer 1 ≤ j ≤ n one has fj̄ = fj.

Let U ⊂ Cn, V ⊂ Cm be two open sets and s ∈ N ∪ {∞, ω}. We denote by Cs (U, V )

the set of maps f = (f1, · · · , fm) having values in V and such that for every integer

1 ≤ i ≤ m we have fi ∈ Cs (U,C). When m ≥ 2 we use the notation ∂
∂zj

to only denote

the complex di�erenciation so that there is no confusion between coordinate functions

and partial derivatives. Given f ∈ C1 (U, V ) and z ∈ U we denote by ∂zf the C-linear

map de�ned by ∂zf(v) :=

[ ∑
1≤j≤n

∂fi
∂zj

(z)vj

]
∈ Cm for every vector v ∈ Cn.

Recall that a map f ∈ C1 (U, V ) is holomorphic in U if it satis�es the Cauchy-Riemann

equations

∀1 ≤ j ≤ n, ∀1 ≤ i ≤ m,
∂fi
∂zj

= 0 in U,

and is called a biholomorphic map between U and V if f is holomorphic in U , bijective

from U to V and its inverse f−1 is holomorphic in V . We denote byH (U, V ) (respectively

B (U, V )) the set of holomorphic maps (respectively biholomorphic maps) between U and

V , and simply note Aut (U) = B (U,U). Recall that B (U, V ) = ∅ if n 6= m. We say that

U is homogeneous if for every z, z′ ∈ U there exists a biholomorphic map Φ ∈ Aut (U)

such that Φ(z) = z′.

If f ∈ C1 (U, V ) and z ∈ U , we denote by JacC(f)(z) :=
[
∂fi
∂zj

(z)
]
its complex Jacobian

at point z.
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1.2 Geometric properties of domains in Cn

Let U ⊂ Cn be an open set, f ∈ C2 (U) (that is f is real valued), z ∈ U and v ∈ Cn. The

following objects are well de�ned:

• The complex di�erential, respectively the real di�erential, of f at point z and vector v

is

∂zf(v) :=
∑

1≤i≤n

fi(z)vi, respectively dzf(v) := 2Re (∂fz(v)) .

• The complex Levi form, respectively the real Levi form, of f at point z and vector v is

LC(f, z, v) := 〈v, v〉[fij̄(z)] =
∑

1≤i,j≤n

fij̄(z)vivj,

respectively

LR (f, z, v) := Re

( ∑
1≤i,j≤n

fij(z)vivj

)
+ LC(f, z, v).

With these notations the Taylor expansion of f at order 2 at point z ∈ U takes the

following form:

f (z + v) = f(z)+Re

(
2
∑

1≤i≤n

fi(z)vi +
∑

1≤i,j≤n

fij(z)vivj

)
+LC(f, z, v)+ o

v→0

(
|v|2
)
. (1.1)

The function f is plurisubharmonic, respectively strictly plurisubharmonic, convex,

strictly convex, at z if it satis�es the inequality LC(f, z, v) ≥ 0, respectively LC(f, z, v) >

0, LR(f, z, v) ≥ 0, LR(f, z, v) > 0 for every vector v ∈ Cn \ {0}. We say that f is

plurisubharmonic (respectively strictly plurisubharmonic, convex, strictly convex) in U

if it is plurisubharmonic (respectively strictly plurisubharmonic, convex, strictly convex)

at every point of U . Since the equality 2LC(f, z, v) = LR(f, z, v) + LR(f, z, iv) holds for

every vector v ∈ Cn one easily sees that if f is (strictly) convex at z then f is (strictly)

plurisubharmonic at z (this idea is also used in Proposition 1.6).

We will need the following fact that we do not prove:

Proposition 1.2. Let U ⊂ Cn be an open bounded set and let f ∈ C2
(
U
)
be a strictly

plurisubharmonic function. Then there exist constants 0 < λ ≤ Λ such that λI ≤
[
fij̄
]
≤

ΛI on U .

Most of the geometric notions that we are about to introduce translate into condi-

tions on the real di�erential and the complex Levi form of a given function, namely a
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de�ning function of a given domain with smooth boundary. We recall the de�nition of

the smoothness of the boundary of a domain.

De�nition 1.3. Let D ⊂ Cn be a domain and let s ∈ N∗ ∪ {∞, ω} be an integer and let

U ⊂ Cn be an open set such that ∂D ∩U 6= ∅. We say that ∂D ∩U is of class Cs if there
exists a function ρ ∈ Cs (U) satisfying the following conditions:

• D ∩ U = {ρ < 0},

• ∂D ∩ U = {ρ = 0},

• ∀z ∈ ∂D, dzρ 6= 0.

The function ρ is called a de�ning function for ∂D ∩U . For such a de�ning function we

de�ne the complex tangent space, respectively the real tangent space, of ∂D at z ∈ ∂D∩U
by

TC
z ∂D := {v ∈ Cn/∂zf(v) = 0} , respectively TR

z ∂D := {v ∈ Cn/dzf(v) = 0} .

If z ∈ ∂D, we say that ∂D is of class Cs in a neighbourhood of z if there exists an open

set U ⊂ Cn containing z such that ∂D ∩ U is of class Cs. We say that ∂D if of class Cs

if ∂D ⊂ U in the above de�nition and in this case ρ is called a de�ning function for ∂D.

We make two remarks about these de�nitions. We use the notations of De�nition 1.3.

First, we stress out that most of the results of this thesis are formulated under the global

assumption that ∂D is of class Cs, however for some technical results or proofs we need

to restrict ourselves to a piece of ∂D and thus work locally.

Second, if ρ, ρ′ ∈ Cs (U) are two de�ning functions for ∂D ∩ U , then ρ′

ρ
is well de�ned on

U and ρ′

ρ
∈ Cs−1

(
U,R∗+

)
(see for instance Lemma 8.3. in [44]). In particular, the real,

respectively the complex, tangent space of ∂D at a boundary point z ∈ ∂D ∩ U does

not depend on the de�ning function (provided s ≥ 2). This property also tells us that a

de�ning function of a domain with smooth boundary is essentially unique. In fact, the

smoothness of the boundary of the domain is equivalent to the smoothness of its signed

distance function, more precisely we have the following:

Proposition 1.4. (See Appendix 14.6. of [27]) Let s ∈ N∪{∞, ω}, s 6= 0, 1 be an integer

12



and D ⊂ Cn be a domain with boundary of class Cs. The function

dD : Cn −→ R

z 7−→

 −d(z, ∂D) if z ∈ D,

d(z, ∂D) otherwise

is called the signed distance function of ∂D. It is a de�ning function of class Cs for ∂D.

For the rest of this section, we �x a number s ∈ (N \ {0, 1}) ∪ {∞, ω}, a domain

D ⊂ Cn with boundary of class Cs. We also �x an open set U such that ∂D ∩U 6= ∅ and
ρ ∈ Cs (U) a de�ning function for ∂D ∩ U . We recall the de�nition of pseudoconvexity:

De�nition 1.5. • We say that ∂D is strictly pseudoconvex at point z ∈ ∂D ∩ U if it

satis�es the following property:

∀v ∈ TC
z ∂D \ {0}, LC (ρ, z, v) > 0. (1.2)

• In case that ∂D is of class Cs (here U ⊃ ∂D), we say that D is a strictly pseudoconvex

domain if it is strictly pseudoconvex at every boundary point.

• Let D′ ⊂ Cn be a domain. We say that D′ is pseudoconvex if there exists a se-

quence
(
D(ν)

)
ν∈N of subsets of Cn such that for every integer ν ∈ N, D(ν) is a bounded

strictly pseudoconvex domain with boundary of class C∞ and satis�es D(ν) ⊂ D(ν+1)

and
⋃
ν∈N

D(ν) = D′. Such sequence
(
D(ν)

)
ν∈N is called an exhaustion of D′.

If D is pseudoconvex and z ∈ ∂D ∩ U , one can check that

∀v ∈ TC
z ∂D, LC (ρ, z, v) ≥ 0. (1.3)

Moreover if ∂D is of class C2 and the inequality (1.3) holds for every z ∈ ∂D then D is

a pseudoconvex domain. We say that D is weakly pseudoconvex at z, or ∂D is weakly

pseudoconvex at z, if it satis�es (1.3) and there exists a vector v ∈ TC
z ∂D \ {0} such that

LC (ρ, z, v) = 0.

As for the de�nitions of real and complex tangent spaces, one can check that the (strict)

pseudoconvexity of ∂D at a given point z ∈ ∂D actually does not depend on the de�ning

function.

One can think of the pseudoconvexity as a local analogue of the convexity in the complex

sense. Indeed, if the domain D is convex in the usual geometric sense, that is D contains
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a segment if it contains its endpoints, then one can verify that it satis�es the following

at every point z ∈ ∂D ∩ U :

∀v ∈ TR
z ∂D \ {0}, LR (ρ, z, v) ≥ 0. (1.4)

Thus we see that property (1.3) is just the complex analogue of (1.4).

We can also use Property (1.4) to give a �rst important class of examples of pseudo-

convex domains:

Proposition 1.6. Let z ∈ ∂D ∩ U . If the property (1.4) holds at z then ∂D is pseu-

doconvex at z. Especially, if D is a convex domain and ∂D is of class Cs then D is a

pseudoconvex domain.

Proof of Proposition 1.6. Let z ∈ ∂D ∩ U such that the property (1.4) holds at z and

let v ∈ TC
z ∂D. Since TC

z ∂D ⊂ TR
z ∂D one has LR(ρ, z, v) ≥ 0. Moreover one notices

that ∂zρ (iv) = i∂zρ(v) = 0, hence iv ∈ TC
z ∂D ⊂ TR

z ∂D so that LR(ρ, z, iv) ≥ 0. Thus
LR(ρ, z, v) + LR(ρ, z, iv)

2
≥ 0, that is LC(ρ, z, v) ≥ 0 by de�nition of the real Levi form.

Hence ∂D is pseudoconvex at z.

For similar reasons, it can be checked that if ∂D is strictly convex at z, in the sense that

the inequality in property (1.4) holds at z and is strict, then ∂D is strictly pseudoconvex

at z.

Strictly pseudoconvex boundary points satisfy nice properties. Namely:

Proposition 1.7 ([42]). 1. Let z ∈ ∂D ∩ U . If ∂D is strictly pseudoconvex at z, then

there exists an open set V ⊂ Cn such that z ∈ V ⊂ U and a de�ning function

ρ′ ∈ Cs (U) for ∂D such that
[
ρ′ij̄

]
> 0 on V .

2. If s 6= ω and D is a bounded strictly pseudoconvex domain (here we assume U ⊃ ∂D),

then there exists an open set V ⊂ Cn containing D and a de�ning function ρ′ ∈ Cs (V )

which is strictly plurisubharmonic on V .

Remark 1.8. In the case s = ω, the proof of part 2. of Proposition 1.7 still provides with

a de�ning function ρ′ ∈ C∞ (V ) for ∂D which is strictly plurisubharmonic on V and of

class Cω in a neighbourhood of ∂D.

If one removes the strict pseudoconvexity from the hypothesis of part 2. of Proposition

1.7 the conclusion fails in the general case. For instance, K.Diederich and J.E.Fornaess
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constructed a bounded pseudoconvex domain in C2 with boundary of class C∞ which

does not admit a plurisubarmonic de�ning function of class C3 (see Proposition 1 and

Theorem 5 of [18]).

An interesting consequence of Proposition 1.7 is that strictly pseudoconvex domains

are locally biholomorphic to convex domains. Namely:

Proposition 1.9 (See lemma 3.2.2. in [42]). Let z ∈ ∂D be a strictly pseudoconvex

boundary point for ∂D. Then there exists a domain V ⊂ Cn containing z, a domain

W ⊂ Cn and a biholomorphic map Φ ∈ B (V,W ) such that Φ (V ∩D) is convex.

The conclusion of Proposition 1.9 fails if one replaces the strict pseudoconvexity of

∂D at z with the weak pseudoconvexity. In [9] S. Calamai proved that the domain

D :=

{
Re(z1) +

|z1|2

5
+ |z1z2|2 + |z2|8 +

15

7
|z2|2Re

(
z6

2

)
+ 10 |z2|10 < 0

}
is a bounded pseudoconvex domain with boundary of class Cω. Moreover the only

weakly pseudoconvex boundary point is the origin, and there does not exists a neigh-

bourhood of the origin V such that V ∩ D is biholomorphic to a convex domain. This

example is inspired from the more famous example of J.J. Kohn and L. Nirenberg{
Re(z1) + |z2|8 + 15

7
|z2|2Re (z6

2) < 0
}
(see [41]).

The pseudoconvexity is a local property of the boundary of a domain. For the purpose

of this thesis we only need the following weaker statement:

Proposition 1.10. Assume that D ⊂ U . Let U ′ ⊂ Cn be a domain, let Φ ∈ B (U,U ′) and

set D′ := Φ (D). Let z ∈ ∂D, z′ ∈ ∂D′ such that Φ(z) = z′. Then ∂D is pseudoconvex

(respectively strictly pseudoconvex) at z if and only if ∂D′ is pseudoconvex (respectively

strictly pseudoconvex) at z′.

Proof of Proposition 1.10. Set ρ′ := ρ ◦Φ−1. Then the hypothesis on ρ and Φ imply that

ρ′ is a de�ning function for ∂D′ of class Cs, and the chain rule yields:

∂z′ρ
′ = ∂z′ρ ◦ (∂zΦ)−1 , (1.5)

LC (ρ′, z′, ·) = LC
(
ρ, z′, (∂zΦ)−1 (·)

)
, (1.6)

(∂zΦ is invertible because Φ is a di�eomorphism).

Let v′ ∈ TC
z′∂D

′. Then relation (1.5) implies that (∂zΦ)−1 (v′) ∈ TC
z′∂D

′, so that by

pseudoconvexity of ∂D at z we deduce LC
(
ρ, z, (∂zΦ)−1 (v′)

)
≥ 0. Using relation (1.6)

15



we deduce that LC (ρ′, z′, v′) ≥ 0, hence ∂D′ is pseudoconvex at z′. By replacing the signs

≥ into > we obtain the result for the statement in the case of strict pseudoconvexity.

We recall three notions of �nite 1-type in the sense of D'Angelo. These notions

somehow measure the best order of tangency that a holomorphic curve, respectively a

holomorphic regular curve, respectively a complex line, can have with the boundary of a

domain at a given point. We refer to [14] for more details.

Let V ⊂ C be a domain containing the origin and let f ∈ C∞ (V,C) and m ∈ N∗. We

say that f has order of vanishing m at 0 if all the partial derivatives of f − f(0) up to

order m − 1 vanish at 0 and there exists a partial derivative of f of order m that does

not vanish at 0, and we denote by ν (f) = m the order of vanishing of f at 0. If all the

partial derivatives of f − f(0) vanish at 0 we say that f vanishes to in�nite order at 0,

and set ν (f) =∞. If f = (f1, . . . , fn) ∈ C∞ (V,Cn) we de�ne ν (f) := min
1≤i≤n

{ν (fi)}.
From now on, we assume that either s = ∞ or s = ω. Observe that if z ∈ ∂D ∩ U ,
V ⊂ C is a domain containing the origin and f ∈ C∞ (V,Cn) satis�es f(0) = z, then the

function ρ ◦ f is well de�ned in a neighbourhood of 0 so that ν (ρ ◦ f) is well de�ned.

De�nition 1.11. For a point z ∈ ∂D, let Gz := {f ∈ H (∆,Cn) , f(0) = z}, GRz :=

{f ∈ Gz, f ′(0) 6= 0} and GLz := {w ∈ ∆ 7→ z + wv, v ∈ Cn}. We say that ∂D has �nite

variety type at z if the set Vz :=

{
ν (ρ ◦ f)

ν (f)
, f ∈ Gz

}
is bounded. In that case, the

supremum of Vz is called the variety type of ∂D at z. If Vz is unbounded, we say that

∂D is has in�nite variety type at z. Likewise we de�ne the notions of �nite and in�nite

regular type, respectively line type, by replacing Gz with GRz , respectively with GLz in the

de�nition of Vz. We say that a domain is of �nite type if every boundary point has �nite

variety type.

For the same reasons as for the pseudoconvexity, one can check that these notions do

not depend on the de�ning function. Also, if the variety type (respectively the regular

type or the line type) at some given boundary point of D is �nite, then it is an integer.

Moreover if the domain is pseudoconvex at a boundary point at which the variety type

(respectively the regular type or the line type) is �nite, then the variety type (respectively

the regular type, the line type) at this point is an even integer and all the types at this

point are equal to 2 if and only if the point is a strictly pseudoconvex boundary point.

Because of the inclusions GLz ⊂ GRz ⊂ Gz we always have at a given point z ∈ ∂D

Line type ≤ Regular type ≤ Variety type.
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In "good" cases some of the above inequalities are equalities (for the de�nition of a

Reinhardt domain see the introduction of Chapter 4):

Theorem 1.12. Let D ⊂ Cn be a domain with boundary of class C∞ and let z ∈ ∂D.

• (see Theorem 1.1 in [47]) If D is convex, then the variety type at z is equal to the

line type at z.

• (see Theorem 4 in [23]) If D is a pseudoconvex Reinhardt domain, then the variety

type at z is equal to the regular type at z.

In general, the line type and the regular type at a boundary point of a Reinhardt

domain may not be equal. For instance, in the Reinhardt domainD := {z ∈ C2, Log |z1|+
Log |z2|+ (Log |z1| − Log |z2|)4 < 0}, the regular type at (1, 1) is 4 whereas the line type

is 2.

Like the pseudoconvexity, the type is invariant under local biholomorphisms. For the

purpose of this thesis, we only need the following:

Proposition 1.13. Assume that D ⊂ U . Let U ′ ⊂ Cn be a domain, let Φ ∈ B (U,U ′)

and set D′ := Φ (D). Let z ∈ ∂D, z′ ∈ ∂D′ such that Φ(z) = z′. Then ∂D is of �nite

type at z if and only if ∂D′ is of �nite type at z′. In that case, the type of ∂D at z is

equal to the type of ∂D′ at z′.

Proof of Proposition 1.13. We sketch the proof for the regular type. Recall that the type

does not depend of the choice of a de�ning function we choose to compute it. By working

with ρ′ := ρ ◦ Φ−1 as a de�ning function for ∂D′ (see the proof of Proposition 1.10 for

details) we see that Vz = Vz′ , hence the result.

1.3 Model domains in C2

Let D ⊂ C2 be a bounded pseudoconvex domain with boundary of class C∞ and let

q ∈ ∂D be a point of �nite (variety) type 2p where p ∈ N∗. Then there exists a real-

valued homogeneous polynomial of degree 2p H which is subharmonic but not harmonic,

an open set U ⊂ C2 containing q and a biholomorphic map Φ : U −→ Φ (U) such that

Φ(q) = 0 and Φ (D ∩ U) = M ′
H ∩ Φ (U) where

M ′
H :=

{
z ∈ C2/ Re (z1) +H (z2) + O

z→0

(
|z2|2p+1 + |z1| |z|

)
< 0
}
.
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The domain

D′H :=
{
z ∈ C2/Re (z1) +H (z2) < 0

}
is a local model for ∂D at point q.

Remark 1.14. 1. This construction might be generalised in higher dimension using the

notion multitype and in this case the polynomial H is homogenenous with weight de-

pending on the multitype (see [10]).

2. If D ⊂ C2 is a convex domain of �nite type there exists a real-valued homogeneous con-

vex polynomial of degree 2p H which is not harmonic, an open set U ⊂ C2 containing

q and an a�ne map Φ ∈ Aut (C2) such that Φ(q) = 0 and Φ (D ∩ U) = M ′
H ∩ Φ (U)

where M ′
H is as above. In this case we call the associated domain D′H a local model

for ∂D at q. This is due to the fact for convex domains the multitype is given by the

linear multitype (see [59] for more details).

A de�ning function for D′H is ρ(z) := Re (z1) + H (z2), where z = (z1, z2) ∈ C2.

Clearly ρ ∈ Cω (C2) so that D′H is a pseudoconvex domain with real analytic boundary.

When p = 1 the domain D′H is strictly pseudoconvex and biholomorphic to the unit ball

in C2. We work with p ≥ 2 for the rest of this section. We have:

∀z ∈ C2, [ρi(z)] =

 1
2

∂H
∂z

(z2)

 , [
ρij̄(z)

]
=

 0 0

0 ∂2H
∂z∂z

(z2)

 ,
so that a boundary point z ∈ ∂D′H is a strictly pseudoconvex boundary point if and

only if
∂2H

∂z∂z
(z2) > 0. Especially the set iR × {0} consists of weakly pseudoconvex

boundary points for ∂D′H . Let us compute the variety type at such points. The following

proposition is classical. We refer to [6] for a more general study.

Proposition 1.15. Let a ∈ R. The variety type of ∂D′H at (ia, 0) is equal to 2p.

Proof. Proof of Proposition 1.15 Let f = (f1, f2) ∈ G0. Observe that if f2 = 0 then clearly
ν (ρ ◦ f)

ν (f)
= 1 and if f1 = 0 then clearly

ν (ρ ◦ f)

ν (f)
= 2p. Assume that f1, f2 6= 0. Let j, k ∈

N∗ and b, c ∈ C\{0} such that f(z) =

(
ia+ bzj + o

|z|→0

(
|z|j
)
, czk + o

|z|→0

(
|z|k
))

. Then

ρ ◦ f(z) = Re

(
bzj + o

|z|→0

(
|z|j
))

+H

(
czk + o

|z|→0

(
|z|k
))

. Since H is homogeneous of

degree 2p, the degree of leading term in the Taylor expansion of H

(
czk + o

|z|→0

(
|z|k
))

is
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2pk. If j < 2pk then ν (ρ ◦ f) = j so that
ν (ρ ◦ f)

ν (f)
< 2p. If j > 2pk then ν (ρ ◦ f) = 2pk

so that
ν (ρ ◦ f)

ν (f)
= 2p. If j = 2pk, the non harmonicity of H ensures that the map

z 7→ H

(
czk + o

|z|→0

(
|z|k
))

+ Re
(
bz2pk

)
is not identically zero, so that ν (ρ ◦ f) = 2pk

hence
ν (ρ ◦ f)

ν (f)
= 2p. Therefore the variety type at (ia, 0) is equal to 2p as the supremum

of 1 and 2p.

Let us describe the automorphism group of D′H . First observe that the families of

a�ne maps

s : z 7→ (z1,−z2), τt : z 7→ z + it, dλ : z 7→
(
λz1, λ

1
2p z2

)
,

where t ∈ R × {0} and λ ∈ R∗+ belong to Aut (D′H). To complete the description of

Aut (D′H), we use the work of K. Oeljeklaus (see Theorem 1.3 in [50]). Our hypotheses

(that H is subharmonic and p > 1) leave us with the following three cases, which are

exhaustives and exclusives:

1. H is invariant by rotation, that is there exists a positive number a such that H (z) =

a |z|2p for every complex number z. In that case we have:

Aut (D′H) =
{
s, τt, t ∈ R× {0}, dλ, λ ∈ R∗+, rθ : z 7→

(
z1, e

iθz2

)
, θ ∈ R

}
.

2. H is invariant by translation, that is there exists a positive number a and a real number

α such that H (z) = aRe (eiαz)
2p

for every complex number z. In that case we have:

Aut (D′H) =
{
s, τ(t1,t2),

(
t1, e

iαt2
)
∈ R2, dλ, λ ∈ R∗+, rθ : z 7→

(
z1, e

iθz2

)
, θ ∈ R

}
.

3. H is neither invariant by rotation, nor invariant by translation. In that case we have:

Aut (D′H) =
{
s, τt, t ∈ R× {0}, dλ, λ ∈ R∗+

}
.

The �rst type of domains are biholomorphic to {Re(z1)+|z2|2p < 0}. The set of boundary
points of D′H that are of type 2p is (1, 0) + iR× ∂∆. Analoglously to the case of the ball,

the map z 7→
(

1+z1
1−z1 ,

2
1
p z2

(1−z1)
1
p

)
is a biholomorphism between {Re(z1) + |z2|2p < 0} and

Ep := {|z1|2 + |z2|2p < 1}. Ep is called the Thullen domain of type 2p. By extension we

call {Re(z1) + |z2|2p < 0} the "unbounded representation of Ep".
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The second type of domains are biholomorphic to T ′p := {Re(z1) + Re(z2)2p < 0}. T ′p is
called a tube domain. The set of boundary points of D′H that are of type 2p is (1, 0)+iR2.

The tube domain T ′p id also biholomorphic to a bounded domains (because the subset

T ′p ∩ R2 contains no real line), but there is no "nice" bounded representation as in the

case of Thullen domains and most of the study on tube domains is done on unbounded

representations such as T ′p.

Observe that both Thullen domains (even in their unbounded representation) and tube

domains are convex. The following Proposition states that convex polynomial models are

either "pinched between Thullen domain" or equal to a tube domain:

Proposition 1.16. Assume that D′H is a convex domain. If the restriction of H to the

unit circle ∂∆ is positive then there exists positive constants 0 < c ≤ C such that

{Re(z1) + C|z2|2p < 0} ⊂ DH ⊂ {Re(z1) + c|z2|2p < 0}.

Otherwise, D′H is biholomorphic to a tube domain. More precisely there exist a constant

a ∈ C \ {0} such that for every z ∈ C one has H(z) = Re (az)2p.

In [17, Lemma 3.3.] the authors give an analytic proof of Proposition 1.16. The

following proof is more geometric:

Proof of Proposition 1.16. Observe that the restriction of H to ∂∆ is a continuous non

negative function, thus it achieves its minimum and its maximum, that we denote by c

and C respectively. If H does not vanish on ∂∆, then 0 < c ≤ C. Since H is homogenous

of degree 2p we have for every z ∈ C∗ one has c|z|2p ≤ H(z) = |z|2pH
(
z

|z|

)
≤ C|z|2p. If

z = 0 the previous inequalities still hold, hence the �rst result.

Assume that the restriction of H to ∂∆ vanishes, and let u ∈ ∂∆ such that H(u) = 0.

Since H is invariant by the symmetry s, we also have H(−u) = 0. We prove that H

does not vanish on ∂∆ \ {−u, u} by contradiction. If there existed v ∈ ∂∆ \ {−u, u} such
that H(v) = 0, then for every number 0 ≤ t ≤ 1 we would have 0 ≤ H (tu+ (1− t)v) ≤
tH(u) + (1 − t)H(v) = 0 by convexity of H. Thus H (tu+ (1− t)v) = 0 and since H

is homogeneous and tu + (1 − t)v 6= 0 we would deduce that H is identically equal to 0

on the angular sector of edge 0 and delimited by vectors u and v. We proceed likewise

to deduce that H would be identically equal to 0 on the angular sector of edge 0 and

delimited by vectors −u and v. Therefore H would be identically equal to 0 on the half

circle centered at the origin delimited by points u and −u and containing v. Since H is
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an even function, it would be identically equal to 0 on the whole unit circle. Since H is

homogeneous, H would be identically equal to 0 on C, hence the contradiction.

Up to a rotation we may assume that u = i so that for every real number y2 we have

H(iy2) = 0. Since D′H is clearly invariant under the translations of the form τ(y1,0) where

y1 ∈ R, the conclusion holds if we prove the following:

∀(x1, x2) ∈ R2 ∩D′H ,∀y2 ∈ R, (x1, x2 + iy2) ∈ D′H .

Let (x1, x2) ∈ R2 ∩ D′H and y2 ∈ R. If x2 = 0 then clearly H(x2 + iy2) = H(iy2) = 0

thus (x1, x2 + iy2) ∈ D′H . Assume that x2 6= 0. Since DH is an open set, there exists a

positive constant R > 0 such that B((x1, x2), R) ⊂ D′H . Let α2 ∈

0,
R

1 +
∣∣∣x1

x2

∣∣∣
 and let

α1 :=
x1

x2

α2. Then we have (x1 + α1, x2 + α2) ∈ B((x1, x2), R) ⊂ D′H . Set t := 1 +
x2

α2

.

Then we have (x1 +α1, x2 +α2) + t ((x1, x2 + iy2)− (x1 + α1, x2 + α2)) = (0, ity2) ∈ D′H .
Consequently we obtain (x1, x2 + iy2) ∈ [(x1 + α1, x2 + α2), (0, ity2)], so in particular

(x1, x2 + iy2) ∈ D′H by convexity of D′H . Hence the result.

To conclude this section, let us mention the following class of examples: let a, b ∈ R

and let Ha,b(z) := az3z + b |z|4 + azz3 for z ∈ C. Then for every z ∈ C we have
∂2Ha,b

∂z∂z
(z) = 3az2 + 4b |z|2 + 3az2 and

∂2Ha,b

∂z2
(z) = 6a |z|2 + 2bz2. Thus H is non negative

if and only if b ≥ 2 |a|, H is subharmonic if and only if b ≥ 3

2
|a| and H is convex if and

only if b ≥ 3√
2
|a| (the convexity of Ha,b is equivalent to the condition

∂2Ha,b

∂z∂z
≥
∣∣∣∣∂2Ha,b

∂z2

∣∣∣∣,
see for instance Lemma 4.2. in [17]). In particular we can construct pseudoconvex

model domains D′H such that H is negative in some directions (by taking a, b such that

0 <
3

2
|a| ≤ b < 2 |a|).

1.4 Kähler metrics of domains in Cn

From now on we assume that the reader is familiar with Riemannian geometry. For the

rest of this section we �x a domain D ⊂ Cn.

Kähler metrics and their curvatures

De�nition 1.17. A Kähler metric on D is an element of C (D,H++
n ), that is a matrix[

gij̄
]
with continuous coe�cients in D and such that for every z ∈ D,

[
gij̄(z)

]
∈ H++

n .
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In particular the quantity 〈v, w〉g,z := 〈v, w〉[gij̄(z)] is well de�ned for every v, w ∈ Cn.

If we think of D as an open subset of R2n using the isomorphism

Can : R2n −→ Cn

(x1, · · · , xn, y1, · · · , yn) 7−→ z := (x1 + iy1, . . . , xn + iyn) ,

then the matrix

 [
Re
(
gij̄
)] [

Im
(
gij̄
)][

−Im
(
gij̄
)] [

Re
(
gij̄
)]
 ∈ M2n (R) de�nes a Riemannian metric

on D. In particular we say that the Kähler metric is complete on D if the Riemannian

metric induced by it is complete on D.

Given a Kähler metric
[
gij̄
]
on D and a function f ∈ C2 (D) we de�ne the following:

• The gradient of f with respect to
[
gij̄
]
: ∇gf :=

[
gij̄
]

[fi].

• The laplacian of f with respect to
[
gij̄
]
: ∆gf := Tr

([
gij̄
] [
fij̄
])

=
∑

1≤i,j≤n

gij̄fjī.

A Kähler metric
[
gij̄
]
is induced by a function u ∈ C2 (D), called a Kähler potential for

the metric, if it satis�es the equality
[
uij̄
]

=
[
gij̄
]
in D.

In the case of the Euclidean metric, that is
[
gij̄
]

= I on D, we drop the g subscripts and

simply write 〈v, w〉, ∇f , ∆f etc.

Curvatures of Kähler metrics

Here we assume that gij̄ ∈ C2 (D,C) for every integer 1 ≤ i, j ≤ n. Fix a point z ∈ D.

The curvature coe�cients of
[
gij̄
]
at z are given by the following:

∀1 ≤ i, j, k, l ≤ n, Rij̄kl̄(g)(z) :=

(
−gij̄kl̄ +

∑
1≤α,β≤n

gikᾱg
αβ̄gβj̄l̄

)
(z). (1.7)

They satisfy the relations

∀1 ≤ i, j, k, l ≤ n, Rij̄kl̄(g)(z) = Rkl̄ij̄(g)(z) = Rjīlk̄(g)(z) (1.8)

Given two vectors v, w ∈ Cn \{0}, the holomorphic bisectional curvature of
[
gij̄
]
at point

z between vectors v and w is de�ned by the following:

Bis(g)(z; v, w) =

∑
1≤i,j,k,l≤n

Rij̄kl̄(g)(z)vivjwkwl

|v|2g,z |w|
2
g,z

. (1.9)

The holomorphic sectional curvature of the metric at z and at vector v ∈ Cn \ {0} is

H(g)(z; v) := Bis(g)(z; v, v).
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From relation (1.9) it is clear that the holomorphic bisectional curvature between two

vectors actually does not depend on the length of the vectors at which it is computed,

namely we have:

∀v, w ∈ Cn \ {0}, ∀λ, µ > 0, Bis(g) (z;λv, λw) = Bis(g)(z; v, w). (1.10)

The Ricci form of
[
gij̄
]
at z is de�ned by

[
Ric(g)ij̄(z)

]
:=
[
−Log (Det (gpq̄))ij̄ (z)

]
. By

de�nition
[
Ric(g)ij̄(z)

]
∈ Hn. We say that the metric has Ricci curvature bounded from

below (respectively from above) on D if there exists a constant λ ∈ R such that one has

λ
[
gij̄
]
≤
[
Ric(g)ij̄

]
(respectively

[
Ric(g)ij̄

]
≤ λ

[
gij̄
]
) on D. Finally we say that the

metric
[
gij̄
]
is Einstein if there exists λ ∈ R such that

[
Ric(g)ij̄

]
= λ

[
gij̄
]
on D. The

function Ric(g) := −Log (Det (gpq̄)) is a potential for the Ricci form of
[
gij̄
]
on D.

The Ricci form and the curvature coe�cients are related by the following formulas on D

(which follow from the di�erenciation of Log (Det (gpq̄))):

∀1 ≤ i, j ≤ n, Ric(g)ij̄(z) =

( ∑
1≤k,l≤n

Rij̄kl̄(g)glk̄

)
(z). (1.11)

Remark 1.18. Let (e1, . . . , en) be the canonical basis of Cn, let R be a square root of[
gij̄(z)

]
and set e′i := tR−1ei for every integer 1 ≤ i ≤ n. Then:

∀v ∈ Cn \ {0},
∑

1≤j≤n

Bis(g)
(
z; v, e′j

)
= 〈v, v〉[Ric(g)ij̄(z)] .

Kähler-Einstein metrics and the Bergman metric

Kähler-Einstein metrics

De�nition 1.19. A Kähler-Einstein metric on D is a Kähler metric
[
gij̄
]
on D with

coe�cients of class C2 that is Einstein, that is there exists λ ∈ R such that
[
Ric(g)ij̄

]
=

λ
[
gij̄
]
on D. In this case the number λ is refered as the Ricci curvature of

[
gij̄
]
.

Remark 1.20. • It is equivalent to the fact that the Riemannian metric induced by
[
gij̄
]

on D (seen as a real open subset of R2n) is Einstein.

• Let
[
gij̄
]
be a Kähler metric on D with coe�cients of class C2. For every positive number

ρ > 0 the Ricci form of the Kähler metric
[
g̃ij̄
]

:= ρ
[
gij̄
]
satis�es

[
Ric(g̃)ij̄

]
=
[
Ric (g)ij̄

]
so that

[
g̃ij̄
]
is Kähler-Einstein with Ricci curvature equal to

λ

ρ
if and only if

[
gij̄
]
is

Kähler-Einstein with Ricci curvature equal to λ. Therefore only the sign of the Ricci
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curvature matters. We emphasis that in this thesis all the Kähler-Einstein metrics have

Ricci curvature either equal to −(n+ 1) or equal to −1 (the latter case only occurs when

D ∈ {B,∆n} and the metric is the Bergman metric).

Kähler-Einstein metrics of prescribed negative Ricci curvature are invariant metrics

in the following sense. Let D,D′ ⊂ Cn be two domains that are biholomorphic and let

Φ ∈ B (D,D′). Assume that there exists a complete Kähler-Einstein metric
[
gij̄
]
on D,

there exists a complete Kähler-Einstein metric
[
g′ij̄

]
on D′, and that theses metric have

the same negative Ricci curvature. Then they satisfy

∀z ∈ D, ∀v ∈ Cn, |v|g,z = |∂zΦ(v)|g′,Φ(z) . (1.12)

This invariance property of the Kähler-Einstein metric of negative Ricci curvature follows

from the Yau-Schwarz lemma (see [48, 55]). This invariance property has two important

consequences. Let λ > 0. If there exists a complete Kähler-Einstein metric on D of

Ricci curvature −λ, then this metric is unique (simply take D′ = D, Φ = Id and use

the relation (1.12)). Additionally if D′ ⊂ Cn is another domain possessing a complete

Kähler-Einstein metric with Ricci curvature −λ and if there exists a biholomorphic map

Φ ∈ B (D,D′) then the following holds

∀z ∈ D, ∀v, w ∈ Cn \ {0}, Bis (g) (z; v, w) = Bis (g′) (Φ(z); ∂zΦ(v), ∂zΦ(w)) . (1.13)

If a Kähler metric
[
gij̄
]
is induced by a potential g, then it is Kähler-Einstein with

Ricci curvature equal to λ if and only if there exists a function F ∈ C2 (D) satisfying[
Fij̄
]

= 0 on D and such that g solves the Monge-Ampère equation Det
(
gij̄
)

= e−λg+F

on D (this directly comes from the de�nition of Ric(g)). This observation is one of the

keys to prove the existence of Kähler-Einstein metrics in pseudoconvex domains in Cn.

The construction of complete Kähler-Einstein metrics in pseudoconvex domains in Cn is

discussed in more details in Chapter 2.

Remark 1.21. Let D,D′ ⊂ Cn be two domains that are biholomorphic and let Φ ∈
B (D,D′). Assume that there exists a complete Kähler-Einstein metric induced by a

potential g on D and there exists a complete Kähler-Einstein metric induced by a potential

g′ on D′, and that theses metric have the same negative Ricci curvature. Then they satisfy[
(g′ ◦ Φ)ij̄

]
=
[
gij̄
]
on D. (1.14)
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The Bergman pseudo-metric

We implicitly work with the Lebesgue measure on Cn that we denote by µ. We use

standard notations from the theory of L2 spaces. Consider the Bergman space

H2 (D) := {f ∈ H (D,C) / ||f ||L2 < +∞} .

It is a subspace of the Hilbert space (L2 (D) , ||·||L2). It follows from the Cauchy formula

that for every compact subset K ⊂ D there exists a positive constant C such that

supz∈K |f(z)| ≤ C ||f ||L2 for every function f ∈ H2 (D). This property implies that

(H2 (D) , ||·||L2) is a Hilbert space and also that for every z ∈ D the evaluation map at

z is a continuous linear form on H2 (D), thus there exists a unique function ηz ∈ H2 (D)

such that

∀f ∈ H2 (D) , f(z) =

∫
D

f(w)ηz(w)dµ(w). (1.15)

The Bergman kernel of D is de�ned by K(z, w) := ηz(w) for every z, w ∈ D. It is

not hard to check that K(z, w) = K(w, z) and thus for every number w ∈ D we have

K(·, w) ∈ H2 (D). The Bergman kernel satis�es the following transformation formula

(which follows from the theorem of change of variables):

Proposition 1.22 (Proposition 1.4.12 in [42]). Let D,D′ ⊂ Cn be two domains and let

Φ ∈ B (D,D′). Let KD be the Bergman kernel for D and KD′ be the Bergman kernel for

D′. Then for every z, w ∈ D we have:

KD(z, w) = Det
(
JacC (Φ) (z)

)
KD′ (Φ(z),Φ(w))Det (JacC (Φ) (w)) (1.16)

Property (1.15) applied toK(·, z) givesK(z, z) = ||K(·, z)||L2(D) ≥ 0 for every number

z ∈ D. Assume that K(z, z) > 0 for every z ∈ D (we say that the Bergman kernel of D

is positive). Then the function g de�ned by g(z) := Log (K (z, z)) is well de�ned on D

and is called the Bergman potential of D.

De�nition 1.23. If the Bergman kernel of D is positive and the Bergman potential of

D is strictly plurisubharmonic in D, it de�nes a Kähler potential in D. In this case the

metric
[
gij̄
]
is called the Bergman metric of D.

It follows from relation (1.16) that the Bergman metric is an invariant metric. Con-

sequently it satis�es the properties described by relations (1.12), (1.13) and (1.14).

As already mentionned, the Bergman kernel of a given domain D may not be positive.
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Even if it is, the potential g it induces may not be strictly plurisubharmonic on D and in

this case the Bergman metric of D may still not be complete. Nonetheless it is the case

for all the domains we work with in this thesis:

Theorem 1.24 (see [1, 51]). If D satis�es one of the following, its Bergman kernel is

positive and induces a complete Kähler metric:

• D ⊂ Cn is a bounded pseudoconvex domain with boundary of class C1.

• D = D′H is a polynomial domain introduced in Section 1.3 and H is non negative on

C.

For further examples of domains with complete Bergman metric, see [1, 11].

1.5 Examples of Kähler metrics in domains

1.5.1 Strictly pseudoconvex domains

Fix s ∈ N \ {0, 1} ∪ {∞} and a bounded strictly pseudoconvex domain D ⊂ Cn with

boundary of class Cs. It is easy to construct complete Kähler metrics on D. Moreover

these metrics enjoy a nice curvature behaviour near the boundary of the domain. This

construction is the starting point to construct complete Kähler-Einstein metrics in such

domains, as we detail in Chapter 2.

Proposition 1.25. Let ρ′ be as in point 2. of Proposition 1.7. Then g := −Log (−ρ′)
de�nes a complete Kähler potential of class Cs on D, and the following formulas hold in

D:

(−ρ′)
[
gij̄
]

=
[
ρ′ij̄

]
+
[
ρ′iρ
′
j̄

−ρ′

]
, (1.17)[

gij̄
]

= (−ρ′)
[
ρ′ij̄
]
− (−ρ′) [ρ′ij̄][ρ′iρ′j̄][ρ

′ij̄]
−ρ′+|∇ρ′ρ′|2ρ′

. (1.18)

Proof of Proposition 1.25. The function g is well de�ned and of class Cs in D by construc-

tion, and formula (1.17) directly comes from the chain rule. Let R be a square root of[
ρ′ij̄

]
(cf Proposition 1.1). Observe that R is invertible becauseDet (R)2 = Det

(
ρ′ij̄

)
6= 0.

Set B := R−1

[
ρ′iρ
′
j̄

−ρ′

]
R−1 and A := (−ρ′)R−1

[
gij̄
]
R−1 = I + B. Since the rank of B

is 1, we have B2 = Tr (B)B. Since Tr (B) =
|∇ρ′ρ

′|2ρ′
−ρ′

≥ 0 > −1, we can compute the
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following:

A

(
I − B

1 + Tr (B)

)
= I +

(
−1

1 + Tr(B)
+ 1− Tr(B)

1 + Tr(B)

)
B = I.

ConsequentlyA is invertible and its inverse is I− B

1 + Tr (B)
= I−R−1

[
ρ′iρ
′
j̄

]
−ρ′ + |∇ρ′ρ′|2ρ′

R−1.

Therefore we obtain the formula (1.18):

[
gij̄
]

= (−ρ′)R−1A−1R−1 = (−ρ′)
[
ρ′ij̄
]
− (−ρ′)

[
ρ′ij̄
] [
ρ′iρ
′
j̄

] [
ρ′ij̄
]

−ρ′ + |∇ρ′ρ′|2ρ′
.

We admit the completeness of the distance induced by
[
−Log (−ρ′)ij̄

]
.

The ball B is a special case of strictly pseudoconvex pseudoconvex domain with real

analytic boundary. The metric induced by the potential g(z) := −Log
(
1− |z|2

)
is

Kähler-Einstein with Ricci curvature equal to −(n+ 1), its curvature coe�cients satisfy

Rij̄kl̄(g) = −(gij̄gkl̄ + gil̄gkj̄) for every 1 ≤ i, j, k, l ≤ n and consequently its holomorphic

bisectional curvature at point z between vectors v and w is given by Bis (g) (z; v, w) =

−1− |〈v, w〉g,z|
2

|v|2g,z|w|2g,z
. The metric constructed in Proposition 1.25 (here s ≥ 4) has holomor-

phic bisectional curvatures asymptotically close the holomorphic bisectional curvatures

of the ball in the following sense. Computation of curvature coe�cients yields

Rij̄kl̄(g) =− (gij̄gkl̄ + gil̄gkj̄)

+
1

−ρ′

(
Rij̄kl̄(ρ

′)− 1

|∇ρ′ρ′|2ρ′ − ρ′
(
ρ′ik − ρ′ikp̄ρ′pq̄ρ′q

) (
ρ′j̄ l̄ − ρ

′
p̄ρ
′pq̄ρ′qj̄l̄

))
,

for every integer 1 ≤ i, j, k, l ≤ n. In particular one has ρ′
(
Rij̄kl̄(g) + (gij̄gkl̄ + gil̄gkj̄)

)
∈

C
(
D
)
. Using this and relation (1.17) above one easily obtains

lim
z→∂D

sup
v,w∈Cn\{0}

Bis (g) (z; v, w) +

1 +


∣∣∣〈v, w〉g,z∣∣∣

〈v, v〉g,z 〈w,w〉g,z

2

 = 0. (1.19)

This phenomenon indicates that the holomorphic bisectional curvatures of
[
gij̄
]
are

asymptotically the same as the holomorphic bisectional curvatures of the unit ball (hence

the idea that D "looks like a ball" for the metric
[
gij̄
]
).

The asymptotic behaviour (1.19) may be seen as a result of the outstanding work of

P.F. Klembeck in [39]. In the same paper the author also proved that if ∂D is of class
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C∞ then the Riemannian sectional curvatures of the Bergman metric of D tend to the

Riemannian sectional curvatures of the Bergman metric of the ball when approaching

∂D. This relies on the following asymptotic expansion of the Bergman kernel obtained

by C.L. Fe�erman (see [19]):

∀z ∈ D, K(z, z) =
Φ(z)

(−ρ′(z))n+1
+ Φ̃(z)Log (−ρ′(z)) , (1.20)

where Φ, Φ̃ ∈ C∞
(
D
)
and Φ(z) 6= 0 for every z ∈ ∂D. In the case of the unit ball with

ρ′(z) = |z|2 − 1, Φ is a positive constant and Φ̃ = 0. In the general case the Ramadanov

conjecture states that the vanishing of Φ̃ to in�nite order on ∂D implies that ∂D is

locally biholomorphic to ∂B (see [53]). Notice that the terms Φ and Φ̃ in the asymptotic

expansion (1.20) contain invariant related to the CR geometry of ∂D (see the results in

[13] by S. Curry and P. Ebenfelt and in [28] by R. Graham).

Remark 1.26. Notice that in the case of bounded pseudoconvex domains with boundary of

class C∞ and of �nite type or in the case of model domains there is no general construction

of a complete Kähler metric induced by a de�ning function. Moreover the boundary

behaviour of the Bergman metric and of the Kähler-Einstein metric and of their curvatures

is understood in very few cases. We provide with a study of these metrics in certain classes

of pseudoconvex domains of �nite type in Chapters 3,4 and 5.

1.5.2 Convex domains of in�nite type

The polydisc ∆n is a bounded convex domain. The set
{
z ∈ ∆n, ∃!1 ≤ i ≤ n, |zi| = 1

}
consists of boundary point of ∆n of in�nite type. The Bergman metric gB of ∆n

is Einstein with Ricci curvature equal to −1. Since ∆n is a homogeneous domain

the computation of the metric and its curvatures at the origin is enough to deter-

mine the boundary behaviour of these quantities. Computations give H (gB) (0; v) ≤
−n+ 1

2
, Bis (gB) (0; v, w) ≤ 0 for every z ∈ ∆n and v, w ∈ C2 \ {0}. Moreover one

has Bis (gB) (0; (1, 0, . . . , 0), (0, . . . , 0, 1)) = 0 so the holomorphic bisectional curvatures

vanish for certain pair of vectors.

The vanishing of the holomorphic bisectional curvatures metric is not speci�c to the

Bergman metric. Actually, P. Yang proved the following stricking result:

Theorem 1.27 (See [54]). The polydisc ∆n does not admit any Kähler metric with

negatively pinched holomorphic bisectional curvatures.
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Theorem 1.27 seems to indicate that the �niteness of the type is a necessary condi-

tion for the existence of a complete Kähler metric with negatively pinched holomorphic

bisectional curvatures. The non smoothness of the boundary of ∆n is misleading and one

might think that the lack of smoothness causes for the vanishing of holomorphic bisec-

tional curvatures. This is not the case. Indeed it follows from [8] that a bounded convex

domain with smooth boundary in Cn and with a point of in�nite type does not admit a

complete Kähler metric with negatively pinched holomorphic bisectional curvatures in a

neighbourhood of its boundary. See Remark 3.31 for details.

1.5.3 A remark

The unit ball and the polydisc are bounded pseudoconvex domains for which the Bergman

metric is Einstein. For a general bounded pseudoconvex domain these two metrics are

di�erent, which explains that we study them separatly. In fact, S.-T. Yau conjectured

in [56, Problem 44] that if the Bergman metric of a bounded pseudoconvex domain is

Einstein, then the domain is homogeneous. For strictly pseudoconvex domains with

smooth boundary the conjecture has been veri�ed by X. Huang and M. Xiao:

Theorem 1.28 (see [31]). Let D ⊂ Cn be a bounded strictly pseudoconvex domain with

boundary of class C∞. If the Bergman metric of D is Einstein, then D is biholomorphic

to the unit ball.

In C2, the conclusion of Theorem 1.28 also holds if D is a pseudoconvex Reinhardt

domain with boundary of class C∞ and of �nite type (see [24, 49]). The general case of

the conjecture is still open.
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Chapter 2

The Kähler-Einstein metric in

pseudoconvex domain: local behaviour

at "ball like" boundary points

Abstract

We brie�y overview of the construction of the Kähler-Einstein metric in pseudoconvex

domains. Then we establish a local regularity result for the Kähler-Einstein potential

at strictly pseudoconvex boundary points and deduce that the holomorphic bisectional

curvatures are negatively pinched in a neighbourhood of such point. Finally we prove that

the same curvature behaviour holds at boundary points at which the squeezing function

tends to one.

Introduction

Kähler-Einstein metrics are by de�nition smooth Kähler metrics of constant Ricci cur-

vature. In the case of bounded pseudoconvex domains, it follows from general results on

non-negatively curved complete Riemannian manifolds that the Ricci curvature is nec-

essarily negative (see the discussion below Equation (2.3.) in page 518 of [12]). The

very �rst study of the existence of complete Kähler-Einstein metrics in bounded pseu-

doconvex domains is due to Cheng and Yau (see [12]). The authors �rst constructed

complete Kähler-Einstein metrics in a given bounded strictly pseudoconvex domain by

perturbing a "reference" complete Kähler metric. More precisely, they started with a

bounded strictly pseudoconvex domain D with boundary of class Cs (s being either an
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integer such that s ≥ 4 or s ∈ {∞, ω}), and a complete Kähler potential g ∈ Cs (D) on D

(for instance the one constructed in Proposition 1.25). They observed that if there exists

a complete Kähler-Einstein potential on D with Ricci curvature equal to −(n + 1) then

the di�erence between this Kähler-Einstein potential and the potential g, that we denote

by u, must satisfy the Monge-Ampère equation

Det
(
gij̄ + uij̄

)
= e(n+1)u+FDet

(
gij̄
)
, (2.1)

where F := Ric(g) + (n + 1)g, and conversly if there exists a function u ∈ C4 (D) such

that g′ := g + u is a complete Kähler potential on D and u satis�es Equation (2.1) then

g′ satis�es the Monge-Ampère equation

Det
(
g′ij̄
)

= e(n+1)g′ , (2.2)

hence g′ is a complete Kähler-Einstein potential. They proved that if s ≥ 7 then there

exists a function u such that g+u is a complete Kähler-Einstein potential. Actually they

proved the more general following results:

Theorem 2.1 (Modi�ed versions of Theorem 4.4. and Corollary 4.5. in [12]). Let s ≥ 7

be an integer, let D ⊂ Cn be a bounded strictly pseudoconvex domain with boundary of

class Cs.

1. (Construction as a perturbation) Let ϕ ∈ Cs
(
D
)
be a strictly plurisubharmonic de�n-

ing function for ∂D. Set g := −Log (−ϕ). Let α ∈]0, 1[ and let F ∈ Cs−2+α
(
D
)
.

Then there exists a unique function u ∈ Cs+α
(
D
)
such that u satis�es condition

∃0 < c ≤ C| c
[
gij̄
]
≤
[
gij̄ + uij̄

]
≤ C

[
gij̄
]
on D (2.3)

and solves the Monge-Ampère Equation (2.1) on D.

2. (Implicit construction) There exists a unique strictly plurisubharmonic function g ∈
Cω (D) solving the Monge-Ampère equation (2.2) and satisfying the boundary condition

g = +∞ on ∂D. (2.4)

They extend the existence of complete Kähler-Einstein potentials to bounded pseudo-

convex domains using the fact that every bounded pseudoconvex domain can be exhausted

by bounded strictly pseudoconvex domains with smooth boundary. Namely, they proved

the following:
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Theorem 2.2 (Modi�ed version of Theorem 7.5. in [12]). Let D ⊂ Cn be a bounded

pseudoconvex domain with boundary of class C2. Then there exists a unique complete

Kähler-Einstein potential g ∈ Cω (D) satisfying Equation (2.2) with boundary condition

(2.4).

Later on Mok and Yau proved that the same result holds without any assumption

on the regularity of the boundary, thus obtaining a characterisation of bounded pseudo-

convex domains (see the Main Theorem in [48]). The existence of the complete Kähler-

Einstein potential of factor −(n+ 1) has been extended to certain classes of unbounded

domains, such as tube domains having a convex base that does not contain lines (see

Corollary 4.6. in [12] and Proposition 3.1. in [32]).

In [12] the authors also studied the boundary behaviour of the Kähler-Einstein potential.

To do so they start with a Kähler potential of the form −Log (−ϕ) that is "close" to

the Kähler-Einstein potential near ∂D in the sense that the function Ric (g) + (n + 1)g

vanishes to some order on ∂D and proved that the perturbation u described above vanish

to some order on ∂D, which implies that the curvatures of the Kähler-Einstein metric

are asymptotically "close" to the curvatures of the metric induced by −Log (−ϕ). They

obtain the following:

Theorem 2.3 (Modi�ed version of Corollary 6.6. in [12]). Let D ⊂ Cn be a bounded

strictly pseudoconvex domain with boundary of class Cs, s being an integer such that

s ≥ max(2n+ 9, 3n+ 6). Let g be the Kähler-Einstein potential constructed in point 2. of

Theorem 2.1. Then there exists an open set U ⊂ Cn containing ∂D such that for every

δ ∈
[
0,

1

2

[
, we have e−g ∈ Cn+1+δ

(
Ω ∩ U

)
. Moreover the following curvature behaviour

holds at every point q ∈ ∂D:

sup
v∈Cn\{0}

(H(g)(z; v) + 2) −→
z→q

0. (2.5)

Using more algebraic considerations, Lee and Melrose completely describe the singu-

larity of e−g in the case of bounded strictly pseudoconvex domains with boundary of class

C∞, proving that the optimal regularity is e−g ∈ Cn+1+δ
(
D
)
for every number δ ∈ [0, 1[,

except if D is biholomorphic to B (in which case e−g ∈ Cω
(
D
)
). See [45] for more details.

In this chapter we improve Theorem 2.3 in two ways. First we prove that the regularity

result in Theorem 2.3 is local, more precisely:
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Theorem 2.4. Let D ⊂ Cn, n ≥ 2, and q ∈ ∂D. Assume that there exists a neighbour-

hood of q on which ∂D is strictly pseudoconvex and of class Cs with s ≥ max(2n+9, 3n+6).

Moreover, assume that D carries a complete Kähler-Einstein metric induced by a func-

tion g that satis�es conditions (2.2) and (2.4). Then there exists an open set U ⊂ Cn

containing q such that for every δ ∈
[
0,

1

2

[
, we have:

e−g ∈ Cn+1+δ
(
D ∩ U

)
.

Second we extend the asymptotic behaviour (2.5) to the holomorphic bisectional cur-

vatures. Namely we prove:

Theorem 2.5. Let D ⊂ Cn, n ≥ 2, and q ∈ ∂D. Assume that there exists a neighbour-

hood of q on which ∂D is strictly pseudoconvex and of class Cs, s ≥ max (2n+ 9, 3n+ 6).

Moreover, assume that D carries a complete Kähler-Einstein metric induced by a function

g that satis�es conditions (2.2) and (2.4). Then,

sup
v,w∈Cn\{0}

(
Bis (g) (z; v, w) +

(
1 +
|〈v, w〉g,z|2

|v|2g,z |w|
2
g,z

))
−→
z→q

0. (2.6)

Theorem 2.5 leaves open the cases of strictly pseudoconvex boundary points at which

the regularity of the boundary of the domain is not good enough. The following Theorem

partially cover these cases:

Theorem 2.6. Let D ⊂ Cn be a pseudoconvex domain, n ≥ 2, and q ∈ ∂D. Assume

that the squeezing function of D tends to one at q. Moreover, assume that D carries

a complete Kähler-Einstein metric induced by a function g solving equation (2.2) with

condition (2.4) on D. Then,

sup
v,w∈Cn\{0}

(
Bis (g) (z; v, w) +

(
1 +
|〈v, w〉g,z|2

|v|2g,z |w|
2
g,z

))
−→
z→q

0.

In comparison with Theorems 2.4 and 2.5, Theorem 2.6 requires neither regularity

assumptions on the boundary of the domain nor the strict pseudoconvexity at q, but

gives no boundary regularity for the Kähler-Einstein potential.

We can apply Theorem 2.6 at C2 strictly pseudoconvex boundary points of a domain

admitting a Stein neighbourhood basis, at C2 strictly convex boundary points of bounded

domains, but also at every boundary point of the Fornaess-Wold domain, which is convex

but not strictly pseudoconvex and has a boundary of class C2 (see [21, 33, 38]).
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This Chapter is organised as follows. In Section 2.1 we give more details about the

construction of the Kähler-Einstein metric in bounded pseudoconvex domains. This

section has an introductory purpose and contains no new result. In Section 2.2 we

study the local behaviour of the complete Kähler-Einstein metric at strictly pseudoconvex

boundary points and prove Theorem 2.4 and Theorem 2.5. In Section 2.3 we provide

material regarding the squeezing function and prove Theorem 2.6.

2.1 Construction of Kähler-Einstein metrics in bounded

pseudoconvex domains in Cn

We recall the construction of the Kähler-Einstein metric on bounded pseudoconvex do-

mains done in [12, 48]. The ideas developped here will help understanding Sections 2.2

and 2.3.

First we describe the construction when D ⊂ Cn is a bounded strictly pseudoconvex

domain with boundary of class Cs with s ∈ N, s ≥ 7. Let ρ ∈ Cs
(
D
)
be a strictly

plurisubharmonic de�ning function for ∂D. Then g := −Log (−ρ) is a complete Käh-

ler potential on D (see Proposition 1.25). Moreover from formula (1.17) one derives

Det
(
gij̄
)

= e(n+1)ge−F where F := −Log
((
−ρ+ |∇ρρ|2ρ

)
Det

(
ρij̄
))

= Ric(g)− (−(n +

1)g) ∈ Cs−2
(
D
)
. Thus in general g is not a Kähler-Einstein potential. However the

function F which measures the defect of g to be a Kähler-Einstein potential has bounded

partial derivatives up to the order s− 2 ≥ 2. A more detailed analysis of g indicates that

D has bounded geometry of order s− 2 when equipped with the metric
[
gij̄
]
. We refer to

De�nition 1.1 in [12] for a more precise statement.

Since g naturally compares to a Kähler-Einstein potential with Ricci curvature equal to

−(n + 1) we seek for a "perturbation" u ∈ C2 (D) such that g + u is a Kähler-Einstein

potential with Ricci curvature equal to −(n+ 1).
[
gij̄ + uij̄

]
satis�es the Kähler-Einstein

condition if u veri�es the relation (2.1). We want
[
gij̄ + uij̄

]
to be a complete Kähler

metric on D. Because of the bounded geometry and of Equation (2.1) it is relevant to

impose that the background Kähler metric
[
gij̄
]
and the perturbed metric

[
gij̄ + uij̄

]
are

equivalent, which translate into condition (2.3).

To solve Equation (2.1) with condition (2.3) S.-Y. Cheng and S.-T. Yau used a continuity

34



method. They proved that the set

I :=
{
t ∈ [0, 1] / ∃u solving Det

(
gij̄ + uij̄

)
= e(n+1)u+tFDet

(
gij̄
)
and satisfying (2.3)

}
is open and closed. Since 0 ∈ I one easily deduces I = [0, 1] by connectedness, and

in particular 1 ∈ I. To prove the openess and closedness of I one has to impose more

regularity on the function u. The bounded geometry of D for the metric
[
gij̄
]
and an a

priori analysis of Equation (2.1) suggest to introduce a family of Hölder-like spaces that

�ts to the problem, the so-called Hölder-Cheng-Yau spaces (for a precise de�nition see

the bottom of page 515 in [12]). In theses spaces the continuity method works and S.-Y.

Cheng and S.-T. Yau proved the existence of a solution u to Equation (2.1) satisfying

condition (2.3). They also observed that this implies the existence of a complete Kähler

potential g′ ∈ Cω (D) which satis�es Equation (2.2) and boundary condition (2.4) on

D. They proved that in both cases the Kähler-Einstein potential constructed is unique.

We refer to Theorem 4.4, Corollary 4.5 and Proposition 5.5 in [12] for much stronger

statements.

Now assume that D is a bounded weakly pseudoconvex domain with boundary of

class C2. Let (Dν)ν∈N be an exhaustion of D by bounded strictly pseudoconvex domains

with boundary of class C∞ (see De�nition 1.5). For every ν ∈ N let g(ν) ∈ Cω (Dν) be the

complete Kähler-Einstein potential solution to Equation (2.2) with boundary condition

(2.4) on Dν . In [12] the authors proved that for every integer ν ′ the sequence
(
g

(ν)
|Dν′

)
ν≥ν′

is a decreasing sequence of functions, so that there exists a function g de�ned on D

satisfying lim
ν→∞

g(ν)(z) = g(z) for every z ∈ D and condition (2.4) on D. Then they

proved that for integer s and every compact set K ⊂ D the sequence
(
g

(ν)
|K

)
ν≥νK

is

bounded in Cs (K) where νK is an integer such that K ⊂ Dν for every ν ≥ νK . Hence

by Ascoli theorem there exists a subsequence
(
g

(νk)
|K

)
k∈N

and a function g′ ∈ Cs (K) such

that
(
g

(νk)
|K

)
k∈N

converges to g′ in Cs (K). By uniqueness of the pointwise limit, one has

g = g′. Consequently g ∈ C∞ (D) and satis�es the Monge-Ampère equation (2.2) so that

g ∈ Cω (D) and is a Kähler-Einstein potential on D. This ends the construction of the

Kähler-Einstein metric in bounded weakly pseudoconvex domains with boundary of class

C2.

It should be noted that the uniqueness of the complete Kähler-Einstein metric implies that

the function g constructed above does not depend on the exhaustion (Dν)ν∈N. Moreover,

for every integer s and every compact set K ⊂ D, the sequence
(
g

(ν)
|K

)
ν≥νK

converges
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to g in Cs (K) because every subsequential Cs (K)-limit of
(
g

(ν)
|K

)
ν≥νK

is equal to g. In

particular we retain the following result that we will use in Section 2.3:

Lemma 2.7. Let D∞ ⊂ Cn be a bounded pseudoconvex domain. Let (Dν)ν∈N be an

exhaustion of D∞. For every ν ∈ N∪{∞}, let g(ν) ∈ Cω (Dν) be the solution of Equation

(2.2) with boundary condition (2.4) on Dν. Then the following holds for every compact

set K ⊂ D:

sup
z∈K

sup
v,w∈Cn\{0}

∣∣∣〈v, w〉g(ν),z − 〈v, w〉g(∞),z

∣∣∣ −→
ν→∞

0,

sup
z∈K

sup
v,w∈Cn\{0}

∣∣Bis (g(ν)
)

(z; v, w)−Bis
(
g(∞)

)
(z; v, w)

∣∣ −→
ν→∞

0.

2.2 The Kähler-Einstein metric at strictly pseudocon-

vex boundary points

This Section may be seen as a localisation of the results obtained in Section 6 in [12]

completed with a study of the behaviour of the holomorphic bisectional curvature of the

Kähler-Einstein metric. To obtain the local boundary regularity of the Kähler-Einstein

potential we compare it with a "nice" family of local asymptotical Kähler-Einstein po-

tentials. The construction of this family is inspired by the construction of asymptotically

Kähler-Einstein potential originally explained by C. Fe�erman in [20]. We explain it in

more details in Subsection 2.2.1. In Subsection 2.2.2 we the Kähler-Einstein potential

with the asymptotically Kähler-Einstein potential constructed in Subsection 2.2.1. In

Subsection 2.2.3 we prove Theorems 2.4 and 2.5.

2.2.1 Local asymptotically Kähler-Einstein metrics

In the construction of local asymptotically Kähler-Einstein metrics, we need the following

technical result:

Lemma 2.8. Let D ⊂ Cn be a domain, let n ≥ 2 be an integer, and let q ∈ ∂D.

Assume that there exists a neighbourhood of q on which ∂D is of class C1. Let V ⊂ Cn

be an open set containing q, let ψ ∈ C1 (V ) be a de�ning function for ∂D ∩ V . Let

U ⊂ U ⊂ V be a bounded open set containing q. Then, there exists a constant ε > 0 such

that inf
U∩{|ψ|≤ε}

|∇ψ| > 0.
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Proof of Lemma 2.8. We argue by contradiction. Assume that there exists a sequence

(zi)i∈N ∈ U
N
such that lim

i→+∞
ψ(zi) = lim

i→+∞
|∇ψ|zi = 0. Since U is compact, we can

assume, up to extracting a subsequence, that (zi)i∈N converges in U . Denote by z its

limit. By continuity of ψ at z, the condition lim
i→+∞

ψ (zi) = 0 implies ψ(z) = 0, which

means that z ∈ ∂D ∩ U ⊂ ∂D ∩ V . On the one hand, it implies that |∇ψ|z > 0 because

ψ is a de�ning function for ∂D ∩ V . One the other hand, the continuity of the function

|∇ψ| at z implies that |∇ψ|z = lim
i→+∞

|∇ψ|zi = 0. Hence the contradiction.

Let V be an open set. Let s ≥ 2 be an integer. If ψ ∈ Cs(V ), its Fe�erman functional

is de�ned by J(ψ) := (−1)nDet (M (ψ)) where

M (ψ) :=

 ψ
[
ψj̄
]

t [ψi]
[
ψij̄
]
 .

Then J(ψ) ∈ Cs−2(V ). We observe that

J(ψ) = ψn+1Det
[
−Log(ψ)ij̄

]
on {ψ > 0},

and that the function

F := −Log (J(ψ)) = Ric (−Log(ψ))− (n+ 1)Log(ψ)

is well de�ned on {ψ > 0}∩{Det
(
−Log(ψ)ij̄

)
> 0}. Especially, if

[
−Log(ψ)ij̄

]
> 0, F is

well de�ned and measures the defect of −Log(ψ) to be the potential of a Kähler-Einstein

metric: the metric
[
−Log(ψ)ij̄

]
is Kähler-Einstein if and only if J (ψ) = 1.

Let D ⊂ Cn be a domain and q ∈ ∂D. Assume that there exists a neighbourhood V of

q such that ∂D ∩ V is strictly pseudoconvex and of class Cs with s ≥ 2n + 4. Without

loss of generality, we may assume that V is a bounded domain. We describe Fe�erman's

iterating process in V .

Let ϕ ∈ Cs(V ) be a strictly plurisubharmonic de�ning function for ∂D ∩ V . Let U0 :=

{J(−ϕ) > 0}. Since ϕ ∈ C2 (V ) and J(−ϕ) > 0 on ∂D ∩ V , the set U0 contains ∂D ∩ V
and is open. Consider the following constructions on U0:

ϕ(1) :=
ϕ

J(−ϕ)
1

n+1

and, for 2 ≤ l ≤ n+ 1, ϕ(l) := ϕ(l−1)

(
1 +

1− J(−ϕ(l−1))

l(n+ 2− l)

)
.

Then, for every 1 ≤ l ≤ n + 1, ϕ(l) is well de�ned on U0 and ϕ(l) ∈ Cs−2l(U0). Moreover,

according to the computations done by C. Fe�erman in [20], we have
J
(
−ϕ(l)

)
− 1

(−ϕ)l
∈
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Cs−2l−2 (U0). This ensures that the sets Ul :=

{∣∣1− J(−ϕ(l))
∣∣ < 1

2

}
are open and contain

∂D ∩ V for every integer 1 ≤ l ≤ n + 1. Consequently, there exist two constants 0 <

r,R such that the set U :=
(
∩n+1
l=0 Ul

)
∩ ((B(q, R) ∩ ∂D) +B(0, r)) is open, contains q,

satis�es U ⊂ V , and on which every ϕ(l) is a Cs−2l de�ning function for ∂D ∩ U . Then

according to Lemma 2.8, we can assume (by taking smaller r and R if necessary) that

min
1≤l≤n+1

inf
z∈U
|∇ϕ(l)|z > 0 and also inf

z∈U
|∇ϕ|z > 0.

Since ∂D ∩ V is strictly pseudoconvex, we can (by changing ϕ(l) to ϕ(l)
(
1 + tϕ(l)

)
with

t > 0 small and taking smaller r and R if necessary) assume that each ϕ(l) is strictly

plurisubharmonic on U .

Finally, the above construction gives, for every 1 ≤ l ≤ n+ 1:

Log
(
J
(
−ϕ(l)

))
(−ϕ)l

=
Log

(
1 +

(
J
(
−ϕ(l)

)
− 1
))

(−ϕ)l

=
J
(
−ϕ(l)

)
− 1

(−ϕ)l

(
1 +

+∞∑
m=1

(−1)m

m+ 1

(
J
(
−ϕ(l)

)
− 1
)m) ∈ Cs−2l−2

(
U
)
.

Let us summarize all these facts:

Proposition 2.9. Let D ⊂ Cn be a domain and let q ∈ ∂D. Assume that there exists

a neighbourhood V of q such that ∂D ∩ V is strictly pseudoconvex and of class Cs with

s ≥ 2n + 4. Then there exists a bounded domain U containing q, and a collection of

functions
(
ϕ(l)
)

1≤l≤n+1
satisfying, for every 1 ≤ l ≤ n+ 1:

1. ϕ(l) ∈ Cs−2l
(
U
)
,

2. D ∩ U = {ϕ(l) < 0} ∩ U ,

3. inf
z∈U
|∇ϕ(l)|z > 0,

4. ϕ(l) is strictly plurisubharmonic on U ,

5.
∣∣1− J (−ϕ(l)

)∣∣ ≤ 1
2
on U ,

6.
J(−ϕ(l))−1

(−ϕ)l
∈ Cs−2l−2

(
U
)
,

7. ϕ(l)

ϕ
∈ Cs−2l

(
U
)
and is positive on U ,

8.
Log(J(−ϕ(l)))

(−ϕ)l
∈ Cs−2l−2

(
U
)
.
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Moreover, we have inf
z∈U
|∇ϕ|z > 0.

Remark 2.10. • Especially, conditions (1) to (4) imply that for every integer 1 ≤ l ≤
n+1, the function ϕ(l) is a strictly plurisubharmonic de�ning function of ∂D∩U of class

Cs−2l.

• If s ≥ 3n+5, then all the functions ϕ(l),
J
(
−ϕ(l)

)
− 1

(−ϕ)l
,
ϕ(l)

ϕ
and

Log
(
J
(
−ϕ(l)

))
(−ϕ)l

belong

to Cn+1
(
U
)
. If s ≥ 3n+ 6, then all the aforementionned functions belong to Cn+2

(
U
)
⊂⋂

0≤δ≤1

Cn+1+δ
(
U
)
.

• The metrics
[
−Log

(
−ϕ(l)

)
ij̄

]
are called �asymptotically Kähler-Einstein" on ∂D ∩ U ,

since they satisfy the condition J
(
−ϕ(l)

)
(z) −→

z→∂D∩U
1 (recall that

[
−Log

(
−ϕ(l)

)
ij̄

]
is

Kähler-Einstein on D ∩ U if and only if J
(
−ϕ(l)

)
= 1 on D ∩ U).

2.2.2 Local boundary regularity

In this subsection, we �x an integer n ≥ 2, a domain D ⊂ Cn and a point q ∈ ∂D. We

assume that D satis�es the hypothesis of Theorem 2.4. Namely, there exists a complete

Kähler-Einstein metric induced by a potential w′ ∈ Cω (D) that satis�es conditions (2.2)

and (2.4), and there exists a neighbourhood V of q such that ∂D ∩ V is strictly pseudo-

convex and of class Cs with s ≥ max (2n+ 9, 3n+ 6). Thus, we can apply Proposition

2.9, and use the same notations introduced therein.

One of the main ideas to prove Theorem 2.4 is to compare the complete Kähler-Einstein

metric
[
w′ij̄

]
to the aymptotically Kähler-Einstein metrics induced by the functions(

ϕ(l)
)

1≤l≤n+1
as follows. Let 1 ≤ l ≤ n+ 1, and set

η :=
ϕ(l)

ϕ
, w := −Log (−ηϕ) , F := −Log (J (−ηϕ)) .

Then, according to points (5)− (8) of Proposition 2.9, η ∈ Cs−2l
(
U
)
, w ∈ Cs−2l (D ∩ U),

F ∈ Cs−2l−2
(
U
)
, F

(−ϕ)l
∈ Cs−2l−2

(
U
)
and w and F are related on D ∩ U by the equation

(2.2) Let u := w′ − w. Then, on D ∩ U , u solves the Monge-Ampère equation (2.1)

(with the function g replaced by the function w). Since w′ is real analytic in D and

w ∈ Cs−2l (D ∩ U), then u ∈ Cs−2l (D ∩ U) .

So, for each integer 1 ≤ l ≤ n+ 1, we have an asymptotically Kähler-Einstein metric[
wij̄
]
on ∂D∩U , for which the defect of being Kähler-Einstein is encoded in the function

F , and we study the di�erence between this metric and the Kähler-Einstein metric
[
w′ij̄

]
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on D ∩ U . More precisely, we study the boundary regularity of the di�erence of their

potentials, namely the function u.

Whether global (see [12]) or local (see [4]), the study of the boundary behaviour of u

relies on its gradient estimate, which relies on the comparison between the metrics
[
w′ij̄

]
and

[
wij̄
]
(see condition (2.8)). The gradient estimate enables to deduce the boundary

behaviour of u, and then the boundary behaviour of the higher order derivatives of u by

use of Schauder theory. All these estimates depend on the regularity of the gradient of
F

(−ϕ)l
, for which we have the following result:

Proposition 2.11. Under the hypothesis of Theorem 2.4, and with the notations intro-

duced at the beginning of Subsection 3, we have
|∇wF |2w
(−ϕ)2l−1

∈ Cs−2l−3
(
D ∩ U

)
. In particu-

lar, there exists a positive constant c∇, such that the following holds on D ∩ U :

|∇wF |2w ≤ c∇(−ϕ)2l−1. (2.7)

Proof of Proposition 2.11. Let 1 ≤ i, j ≤ n. Then, according to point (8) of Proposition

2.9,
Fi

(−ϕ)l−1
= l

Fϕi
(−ϕ)l

+ϕ

(
F

(−ϕ)l

)
i

∈ Cs−2l−3
(
U
)
, and according to equation (1.18) as

well as point (7) of Proposition 2.9,

wij̄

−ϕ
=
ψ

ϕ

wij̄

−ψ
=
ψ

ϕ

(
ψij̄ +

([
ψij̄
] [
ψiψj̄

] [
ψij̄
])
ij

−ψ + |∇ψψ|2ψ

)
∈ Cs−2l−2

(
D ∩ U

)
,

where ψ := ϕ(l).

Hence
|∇wF |2w
(−ϕ)2l−1

=
wij̄

−ϕ
Fj

(−ϕ)l−1

Fī
(−ϕ)l−1

∈ Cs−2l−3
(
D ∩ U

)
.

We improve the gradient estimate obtained in [4] by using the computations of [12]

in a di�erent way. Then we proceed exactly as in [4] to obtain the estimates of the other

derivatives of u.

Proposition 2.12. Under the hypothesis of Theorem 2.4, and with the notations intro-

duced in Subsection 2.2.1 and in Proposition 2.11, for every γ ∈]0; min(2n + 1, 2l − 1)[,

there exist positive constants c and ε such that |∇wu|2w ≤ c (−ϕ)γ on D ∩ U ∩ {|ϕ| < ε}.

Remark 2.13. • Proposition 2.12 improves the results obtained in [4] in the sense that

∂D ∩ U is not required to be �nice".

• Proposition 2.12 is a local version of Proposition 6.4 in [12].

• The proof of Proposition 2.12 will use the fact that |∇wu|2w ∈ C2 (D ∩ U) and is bounded
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from above, which is true as long as s ≥ 2n+ 5 (see page 297 of [4] for further details).

• It will also use the fact that Lemma II in [4] actually works for C2 functions that are

bounded below (see Lemma 2.14 for a version that �ts to our situation).

Proof of Proposition 2.12. The strategy of the proof of Proposition 6.4 in [12] is �rst to

show that there exists δ0 > 0 such that for every 0 < α < n, 0 ≤ β < n+1 and 0 < δ ≤ δ0

satisfying α+β+δ ≤ 2l−1, there exist positive constants ε and c such that the following

inequality holds on D ∩ {|ϕ| ≤ ε}:

∆w′

(
|∇wu|2w
(−ϕ)β

− c(−ϕ)α
)
>
n+ 1 + nβ − β2

2

(
|∇wu|2w
(−ϕ)β

− c(−ϕ)α
)
,

and then to apply the generalized maximum principle and choose suitable constants α

and β to get the conclusion.

In our case, we wish to follow the same strategy when we restrict our considerations to

D ∩ U .
We focus our attention on explaining the necessary modi�cations in the proof of Propo-

sition 6.4 in [12], keeping in mind that we look for local estimates in a neighbourhood of

∂D∩U . For that purpose, we �rst explain the dependence of the constants c1, . . . , c9 with

respect to the local data in order to obtain conditions (2.14) and (2.15). Then we use

formulas (2.14) and (2.15) to complete the proof. For each constant, we refer precisely

to the condition in [12] where it is de�ned.

In the sequel, 0 < α < n and 0 ≤ β < n+ 1.

• We apply the �rst Proposition of page 297 in [4] to derive the existence of positive

constants ε and δ0 such that we have the following on D ∩ U ∩ {|ϕ| ≤ ε}:[
w′ij̄
]

=
(

1 +O
(

(−ϕ)δ0
)) [

wij̄
]
, (2.8)

which means that there exists a positive constant c′1 such that:(
1− c′1 (−ϕ)δ0

) [
wij̄
]
≤
[
w′ij̄
]
≤
(

1 + c′1 (−ϕ)δ0
) [
wij̄
]
. (2.9)

Hence by inverting it we obtain:(
1 + c′1 (−ϕ)δ0

)−1 [
wij̄
]
≤
[
w′ij̄
]
≤
(

1− c′1 (−ϕ)δ0
)−1 [

wij̄
]
.

Since
1

1− x
= 1 +

x

1− x
≤ 1 + 2x if x ∈

[
0, 1

2

]
, we have

1

1− c′1 (−ϕ)δ0
≤ 1 + 2c′1 (−ϕ)δ0

on the set D ∩ U ∩ {|ϕ| ≤ ε} whenever ε ≤
(

1
2c′1

) 1
δ0 .

41



Moreover, since
1

1 + x
≥ 1−x ≥ 1−2x for every x ∈

[
0, 1

2

]
, we also have

1

1 + c′1 (−ϕ)δ0
≥

1 − 2c′1 (−ϕ)δ0 on D ∩ U ∩ {|ϕ| ≤ ε}. Thus, there exist positive constants ε and c1 such

that we have, on D ∩ U ∩ {|ϕ| ≤ ε}:(
1− c1 (−ϕ)δ0

) [
wij̄
]
≤
[
w′ij̄
]
≤
(

1 + c1 (−ϕ)δ0
) [
wij̄
]
.

We also take ε ≤ 1 so that for every δ ≥ 0 we have |ϕ|δ ≤ 1. Consequently, we deduce

the existence of constants ε ∈]0, 1], δ0, c1 > 0 such that for every 0 ≤ δ ≤ δ0, we have the

following on D ∩ U ∩ {|ϕ| ≤ ε}:(
1− c1 |ϕ|δ

) [
wij̄
]
≤
[
w′ij̄
]
≤
(

1 + c1 |ϕ|δ
) [
wij̄
]
. (2.10)

This is the same as condition (6.18) in [12], except that it holds in a neighbourhood of

∂D ∩ U in our situation (in [12], due to the global assumption of strict pseudoconvexity

of ∂D, the inequalities in (2.10) are valid in a neighbourhood of ∂D).

From now on, we let δ ∈]0, δ0].

• The constant c2 (see condition (6.19)) depends only on c1.

• The constant c3 (see conditions (6.22) and (6.23)) depends only on c1. Especially we

have the following on D ∩ U ∩ {|ϕ| ≤ ε}:

1− c3 (−ϕ)δ ≤ |∇w′ϕ|2w′
ϕ2

≤ 1 + c3 (−ϕ)δ .

In our situation we also assume that ε ≤
(

1
2c3

) 1
δ
, so that we have the following on

D ∩ U ∩ {|ϕ| ≤ ε}:

1

2
≤ 1− c3 (−ϕ)δ ≤ |∇w′ϕ|2w′

ϕ2
≤ 1 + c3 (−ϕ)δ . (2.11)

• Set c4 := 2nc3 (see condition (6.24)).

• According to inequality (6.25), we have, on D ∩ U ∩ {|ϕ| ≤ ε}:

−∆w′(−ϕ)α ≥ α(−ϕ)α
[
(n− α)

|∇w′ϕ|2w′
ϕ2

− c4(−ϕ)δ
]
.

If we assume that ε <
(
n−α
5c4

) 1
δ
, then we derive the inequality (n−α)

2
|∇w′ϕ|2w′−c4(−ϕ)δ+2 >

0 on D ∩ U ∩ {|ϕ| ≤ ε}, which leads to the following:

−∆w′(−ϕ)α >
α(n− α)

2

|∇w′ϕ|2w′
ϕ2

(−ϕ)α. (2.12)
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This is the same as inequality (6.26) in [12], but with c5 = 0.

• Set c6 := βc4 + c2 (see condition (6.28)).

• The constant c7 depends only on c6 (see condition (6.29)).

• The constant c8 depends only on c3 and c7 (see condition (6.30)).

• If ε <
(
n+1+nβ−β2

2c8

) 1
δ
, then we have, on D ∩ U ∩ {|ϕ| ≤ ε}:

n+ 1 + nβ − β2

2
− c8(−ϕ)δ > 0,

so that in our case inequality (6.31) becomes the following:

∆w′

(
|∇wu|2w
(−ϕ)β

)
>
n+ 1 + nβ − β2

2

|∇wu|2w
(−ϕ)β

− |∇wF |2w(−ϕ)−(δ+β). (2.13)

Combining (2.12) and (2.13), we obtain, on D ∩ U ∩ {|ϕ| ≤ ε} and for every c > 0:

∆w′

(
|∇wu|2w
(−ϕ)β

− c(−ϕ)α
)
>
n+ 1 + nβ − β2

2

|∇wu|2w
(−ϕ)β

− |∇wF |2w(−ϕ)−(δ+β)

+ c
α(n− α)

2

|∇w′ϕ|2w′
ϕ2

(−ϕ)α.

This is exactly the same as inequality (6.31) in [12], but with c9 = 0.

• Using condition (2.7) (Proposition 2.11), we observe that |∇wF |2w ≤ c∇(−ϕ)α+δ+β

whenever |ϕ| ≤ 1 and α + δ + β ≤ 2l − 1. Therefore, according to (2.11), the following

holds on D ∩ U ∩ {|ϕ| ≤ ε}:

−|∇wF |2w(−ϕ)−(δ+β) + c
α(n− α)

2

|∇w′ϕ|2w′
ϕ2

(−ϕ)α ≥ (−ϕ)α
(
−c∇ + c

α(n− α)|∇w′ϕ|2w′
2ϕ2

)
≥
(
−c∇ + c

α(n− α)

4

)
(−ϕ)α.

In particular if we take c > 4c∇
α(n−α)

the right-hand side is non-negative. This is exactly

what is derived from relation (6.32) in [12] (see the explanation below relation (6.33) in

[12]), except that in our case it holds on D ∩ U ∩ {|ϕ| ≤ ε}.
For short, we have proved that there exists δ0 > 0 such that for every 0 < α < n,

0 ≤ β < n+ 1 and 0 < δ ≤ δ0 satisfying α+β+ δ ≤ 2l− 1, there exist ε ∈]0, 1] and c > 0

such that the following inequalities hold on D ∩ U ∩ {|ϕ| ≤ ε}:

∆w′

(
|∇wu|2w
(−ϕ)β

− c(−ϕ)α
)
> 0, (2.14)

∆w′

(
|∇wu|2w
(−ϕ)β

− c(−ϕ)α
)
>
n+ 1 + nβ − β2

2

(
|∇wu|2w
(−ϕ)β

− c(−ϕ)α
)
. (2.15)
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Inequality (2.14) implies that the function f :=
|∇wu|2w
(−ϕ)β

− c(−ϕ)α cannot achieve its

maximum on D ∩ U ∩ {|ϕ| ≤ ε}, provided it is bounded from above on the set Dε :=

D∩U∩{|ϕ| < ε}. Hence we can �nd a sequence (zi)i∈N ∈ DN
ε such that lim

i→+∞
f (z′i) = sup

Dε

f

and dw′ (zi, ∂Dε) −→
z→+∞

+∞. Note that this implies that there exists a positive number

R and an integer i0 ∈ N such that for every i ≥ i0 we have dw′ (zi, ∂Dε) ≥ R.

The last step to conclude is to apply the local maximum principle due to J. Bland

(see Lemma II in [4]) and use inequation (2.15). For completeness, we recall the local

maximum principle in a version that �ts our situation:

Lemma 2.14. Let D ⊂ Cn be a domain. Assume that there exists a Kähler-Einstein

metric induced by a potential w′ on D. Let D ⊂ D be a domain. Let f ∈ C2 (D) bounded

from above. If there exists a sequence (zi)i∈N ∈ DN such that lim
i→+∞

f (z′i) = sup
D
f and

there exists R > 0 such that for every integer i, dw′ (zi, ∂D) ≥ R, then there exists an

other sequence (z′i)i∈N ∈ DN such that

lim
i→+∞

f (z′i) = sup
D
f, lim sup

i→+∞
∆w′f(z′i) ≤ 0.

We apply Lemma 2.14 to f =
|∇u|2w
(−ϕ)β

− c(−ϕ)α with D = Dε and choose the suitable

constants α, β, δ to conclude. We may argue as follows.

1. If 2n + 1 ≤ 2l − 1, we �rst apply Lemma 2.14 with β = 0, α = n − δ
4
and δ ∈

]0,min (δ0, 4n)[ to deduce the existence of constants ε ∈]0, 1] and c > 0 for which we have

|∇wu|2w − c(−ϕ)n−
δ
4 ≤ 0 on D ∩Dε. Since (−ϕ) < ε ≤ 1 on D ∩Dε, this directly implies:

|∇wu|2w − c(−ϕ)n−
δ
2 ≤ 0 on D ∩Dε.

2. Hence we may apply Lemma 2.14 with α = β = n− δ
2
and δ ∈ ]0,min (δ0, 2n)[ to deduce

the existence of constants ε ∈]0, 1] and c > 0 for which
|∇wu|2w

(−ϕ)n−
δ
2

−c(−ϕ)n−
δ
2 ≤ 0 onD∩Dε.

Again, since (−ϕ) < ε ≤ 1 on D ∩ Dε, this directly implies: |∇wu|2w − c(−ϕ)n+1− δ
2 ≤ 0

on D ∩Dε.

3. Hence we may apply once more Lemma 2.14 with β = α + 1 = n + 1 − δ
2
and δ ∈

]0,min (δ0, 2n)[ to deduce the existence of c, ε > 0 for which
|∇wu|2w

(−ϕ)n+1− δ
2

− c(−ϕ)n−
δ
2 ≤ 0

on D ∩Dε. Finally, we directly deduce that |∇wu|2w ≤ c(−ϕ)2n+1−δ on D ∩Dε.
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4. If 2l−1 < 2n+ 1, we can proceed likewise: �rst taking β = 0, α = min

(
n, l − 1

2

)
− δ

8

with δ ∈
]
0,min

(
δ0, 8 min

(
n, l − 1

2

))[
, then considering α = β = min

(
n, l − 1

2

)
− δ

4

with δ ∈
]
0,min

(
δ0, 4 min

(
n, l − 1

2

))[
, and �nally taking α = β = l − 1

2
− δ

2
with

δ ∈ ]0,min (δ0, 2l − 1)[.

In both cases, we obtain the desired conclusion by letting δ tend to 0. Hence the result.

In the rest of this Section, we use Proposition 2.12 �rst to derive the estimates of u

of orders 0 (Proposition 2.16), second to derive estimates of higher order (Proposition

2.18), and �nally to obtain a regularity result for ϕe−u (Proposition 2.19).

To obtain the estimates of u of order 0 we use the gradient estimate we obtain in

Proposition 2.12. To do so we need the following result which gives a comparison of

the gradient of u with respect to the Euclidean metric and its gradient with respect to

another Kähler metric:

Lemma 2.15. Let D ⊂ Cn be a domain, and q ∈ ∂D. Assume that there exists a

neighbourhood of q on which ∂D is strictly pseudoconvex and of class C2. Let V ⊂ Cn

be a bounded domain containing q, ψ ∈ C2 (V ) be a strictly plurisubharmonic de�ning

function for ∂D ∩ V . Let g := −Log (−ψ). Then for every bounded open set U ⊂ U ⊂ V

there exist 0 < λ ≤ Λ such that the following inequalities hold on D ∩ U :

λ
ψ2

−ψ + |∇ψψ|2ψ
I ≤

[
gij̄
]
≤ Λ (−ψ) I. (2.16)

Proof of Lemma 2.15. We use formula (1.18) and notations of Proposition 1.25 with U

replaced with D ∩ U . We also use the notations introduced in the proof of Proposition

1.25. According to Proposition 1.1, we have
B

1 + Tr(B)
∈ H+

n , hence

0 ≤ B

1 + Tr(B)
≤ Tr(B)

1 + Tr(B)
I.

Since A−1 = I − B

1 + Tr(B)
, we deduce

1

1 + Tr(B)
I =

(
1− Tr(B)

1 + Tr(B)

)
I ≤ A−1 ≤ I.

Since −ψ > 0, we deduce the following:

−ψ
−ψ + |∇ψψ|2ψ

I ≤ 1

−ψ
R
[
gij̄
]
R ≤ I,
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ψ2

−ψ + |∇ψψ|2ψ

[
ψij̄
]
≤
[
gij̄
]
≤ (−ψ)

[
ψij̄
]
.

Moreover, since
[
ψij̄
]
is continuous on the compact set U , there exist 0 < λ ≤ Λ such

that λI ≤
[
ψij̄
]
≤ ΛI on U (see Proposition 1.2). Hence:

λ
ψ2

−ψ + |∇ψψ|2ψ
I ≤

[
gij̄
]
≤ Λ (−ψ) I.

Proposition 2.16. Under the hypothesis and notations of Proposition 2.12, we have:

1. For every γ ∈]0,min (2n+ 1, 2l − 1) [, there exist positive constants ε and c such

that |∇u| ≤ c (−ϕ)
γ
2
−1 on the set D ∩ U ∩ {|ϕ| < ε}. In particular, if γ > 2, one

has u ∈ C1
(
D ∩ U

)
.

2. For every z ∈ ∂D ∩ U ,
∣∣∇e−w′∣∣

z
6= 0.

3. For every γ ∈]0,min(2n+ 1, 2l− 1)[ there exist positive constants c and ε such that

|u| ≤ c (−ϕ)
γ
2 on D ∩ U ∩ {|ϕ| < ε}.

Remark 2.17. • Observe that relation (2.8) already gives an estimate of u. Indeed, by

applying Log ◦ Det on both sides, using equation (2.1), and simplifying both sides, we

may successively obtain, on D ∩ U ∩ {|ϕ| ≤ ε}:

e(n+1)u+FDet
[
wij̄
]

=
(

1 +O
(
|ϕ|δ0

))n
Det

[
wij̄
]
,

u =
n

n+ 1
Log

(
1 +O

(
|ϕ|δ0

))
− F

n+ 1
.

Thus, part (3) of Proposition 2.16 only improves the exponent δ0.

• Part (3) of Proposition 2.16 is exactly as in [4], the only di�erence being that we have it

for every γ ∈ ]0,min (2n+ 1, 2l − 1)[. We prove it a slightly di�erent way by �rst proving

part (1) of Proposition 2.16.

Proof of Proposition 2.16. 1. We apply Proposition 2.12, and use Lemma 2.15 with ψ =

ηϕ, g = w and U replaced with U ∩ {|ϕ| < ε}. With notations of Proposition 2.12 and

Lemma 2.15, we have c
λ
> 0. Moreover we know that −ψ + |∇ψψ|2ψ,

(
1
η

)2

∈ C
(
U
)
and

are positive functions. Hence they are bounded from above, so that there exist positive
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constants M1,M2 such that −ψ + |∇ψψ|2ψ ≤ M1 and
(

1
η

)2

≤ M2 on U . Thus, we have

the following on D ∩ U :

|∇u|2 ≤ 1

λ

−ψ + |∇ψψ|2ψ
ψ2

|∇gu|2g ≤
c

λ
(−ψ + |∇ψψ|2ψ)

(
ϕ

ψ

)2

(−ϕ)γ−2 ,

=
c

λ
(−ψ + |∇ψψ|2ψ)

(
1

η

)2

(−ϕ)γ−2 ,

≤ c

λ
M1M2 (−ϕ)γ−2 .

Therefore we obtain the conclusion by setting c′ =
√

c
λ
M1M2. Especially, if γ > 2, then

all the derivatives of u of order 1 extend continuously to D ∩ U (and equal 0 on ∂D∩U),
hence u ∈ C1

(
D ∩ U

)
.

2. To prove part (2) of Proposition 2.16, we let l = n + 1. Then by construction e−w
′

=

−ϕ(n+1)e−u. Moreover, according to point (1) of Proposition 2.9 and to point (1) of

Proposition 2.16, we have ϕ(n+1), u ∈ C1
(
D ∩ U

)
. Thus e−w

′ ∈ C1
(
D ∩ U

)
so that we

can di�erenciate in D ∩ U and let z tend to any point in ∂D ∩ U to deduce

lim
z→∂D∩U

∣∣∣∇e−w′∣∣∣
z

= lim
z→∂D∩U

∣∣∇ϕ(n+1)
∣∣
z
6= 0,

because of points (2), (3) of Proposition 2.9.

3. Fix γ ∈ ]0,min (2n+ 1, 2l − 1)[.

Let z ∈ U ∩ {|ϕ| < ε}. Let z0 ∈ ∂D ∩ U ∩ {|ϕ| < ε} such that d(z, ∂D) = |z − z0| =: s.

Set −→v := z − z0. De�ne the following function:

f : [0, 1] −→ R

t 7−→ u (z0 + t−→v ) .

According to point (1) of Proposition 2.16 we have f ∈ C1 ([0, s]). Moreover, by the

Cauchy-Schwarz inequality we have |f ′(t)| ≤ |∇u|z0+t−→v |
−→v | = s |∇u|z0+t−→v . From point

(1) of Remark 2.17 we also have u(z0) = 0. Using the fundamental theorem of calculus
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we deduce:

|u(z)| = |f(1)− f(0)| =
∣∣∣∣∫ 1

0

f ′(t) dt

∣∣∣∣ ,
≤ s

∫ 1

0

|∇u|z0+t−→v dt,

≤ cs

∫ 1

0

(−ϕ (z0 + t−→v ))
γ
2
−1

dt,

≤ cs

inf [0,1] h′(t)

∫ 1

0

h′(t) (h(t))
γ
2
−1 dt,

=
2cs

γ inf [0,1] h′(t)

∫ 1

0

(
h
γ
2

)′
(t) dt,

=
2cs

γ inf [0,1] h′(t)
(−ϕ(z))

γ
2 ,

≤ 2cs

γ inf [0,1] h′(t)
,

where h := −ϕ (z0 + ·−→v ) ∈ C1 ([0, 1]). According to point (3) of Proposition 2.9 we have

inf
[0,1]

h′ > 0. Hence the result.

Proposition 2.18 is exactly as in [4], the only di�erence being that we have the esti-

mates for every γ ∈ ]0,min (2n+ 1, 2l − 1)[.

Proposition 2.18. Under the hypothesis and notations of Proposition 2.12, we have: for

every γ ∈]0; min(2n+ 1, 2l− 1)[, there exist positive constants ε and c such that for every

integer 0 ≤ p ≤ s− 2l, the following holds on D ∩ U ∩ {|ϕ| < ε}:

|Dpu|w ≤ c |ϕ|
γ
2 ,

where |Dpu|w is the length of the p-th covariant derivative of u with respect to
[
wij̄
]
.

Proof of Proposition 2.18. We �x γ ∈ ]0,min (2n+ 1, 2l − 1)[ and follow line by line the

proof at the beginning of page 300 in [4], the only thing that changes being the range

in which γ can be choosen. Namely, we apply Log ◦Det to equation (2.2) to obtain the

following partial di�erential equation of second order:

(n+ 1)u+ F = hij̄ujī, (2.17)

where
[
hij̄
]

:=

[∫ 1

0

(w + tu)ij̄ dt

]
∈ Cs−2l−2

(
D ∩ U ∩ {|ϕ| < ε},H++

n

)
.We use Equation

(2.9) with δ = 0 to obtain (1 − c′1)
[
wij̄
]
≤
[
(w + u)ij̄

]
≤ (1 + c′1)

[
wij̄
]
which implies
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(1 − tc′1)
[
wij̄
]
≤
[
(w + tu)ij̄

]
≤ (1 + tc′1)

[
wij̄
]
for every 0 ≤ t ≤ 1. By inverting these

inequalities and integrating between t = 0 and t = 1 we deduce the existence of constants

ε, c > 0 such that we have, on D ∩ U ∩ {|ϕ| < ε}:

1

c

[
wij̄
]
≤
[
hij̄
]
≤ c

[
wij̄
]
.

Moreover we have u ∈ Cs−2l (D ∩ U ∩ {|ϕ| < ε}) and according to Proposition 2.9 we

also have F,
F

(−ϕ)l
∈ Cs−2l−2

(
D ∩ U ∩ {|ϕ| < ε}

)
. We conclude by applying Schauder

theory.

In particular, we deduce the following, exactly as was done in [4]:

Proposition 2.19. Under the notations and hypothesis of Proposition 2.12, for every

number γ ∈]0,min (2n+ 1, 2l − 1) [ and for every 0 ≤ δ < γ
2
−
⌊
γ
2

⌋
(where

⌊
γ
2

⌋
denotes

the integral part of γ
2
), we have: u, e−u ∈ Cb

γ
2c+δ (D ∩ U). Moreover, if γ > 2, we have:

ϕe−u ∈ Cb
γ
2c+1+δ

(
D ∩ U

)
.

Proof of Proposition 2.19. This is exactly as in [4] (or [12] for a global version). Ob-

serve that since s − 2l ≥ 3n + 6 − 2(n + 1) ≥ n + 2 ≥ γ
2
, u ∈ Cn+2 (D ∩ U) and

ϕ ∈ Cn+2
(
U
)
(see Proposition 2.9), it is enough to prove the existence of a positive con-

stant ε such that for every 0 ≤ δ < γ
2
−
⌊
γ
2

⌋
, one has u ∈ Cb

γ
2c+δ

(
D ∩ U ∩ {|ϕ| < ε}

)
and ϕe−u ∈ Cb

γ
2c+1+δ

(
D ∩ U ∩ {|ϕ| < ε}

)
.

Let γ ∈]0,min (2n+ 1, 2l − 1) [. According to Proposition 2.18, there exist positive con-

stants ε and c such that for every integer 0 ≤ p ≤ s − 2l, the following holds on

D ∩ U ∩ {|ϕ| < ε}:
|Dpu|w ≤ c |ϕ|

γ
2 .

Moreover, according to Lemma 2.15, there exist positive constants λ ≤ Λ such that the

following holds on D ∩ U :

λ

(
−ψ
−ϕ

)
−ψ

−ψ + |∇ψψ|2ψ
I ≤

[
wij̄

−ϕ

]
≤ Λ

(
−ψ
−ϕ

)
I.

Since
(
−ψ
−ϕ

)
∈ C

(
U
)
is a positive function (see Proposition 2.9) and U is a compact set,

we deduce that there exist positive constants M and M ′ such that the following holds on

D ∩ U :
λM

−ψ
−ψ + |∇ψψ|2ψ

I ≤
[
wij̄

−ϕ

]
≤ ΛM ′I.
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Together with the expression of |Dpu|w in terms of the derivatives of u and of w, this

implies the existence of positive constants ε and c such that for every integer 0 ≤ p ≤ s−2l

and every multi-index (i1, j1, · · · , in, jn) ∈ N2n satisfying
∑n

k=1(ik + jk) ≤ p, the following

holds on D ∩ U ∩ {|ϕ| < ε}:∣∣ui1j1···injn∣∣ , ∣∣∣(e−u)i1j1···injn∣∣∣ ≤ c |ϕ|
γ
2
−p .

• Let p =
⌊
γ
2

⌋
. Then the derivatives of u of order p extend continuously toD∩U∩{|ϕ| < ε}

(and are equal to 0 on ∂D ∩ U), and these extensions are Hölder of exponent δ for every

0 ≤ δ < γ
2
−
⌊
γ
2

⌋
. This gives the desired regularity of u and e−u.

• According to the chain rule and the regularity of ϕ and e−u, we have the existence of

a constant c > 0 such that the following holds on D ∩ U ∩ {|ϕ| < ε}:∣∣∣(ϕe−u)
i1j1···injn

− ϕi1j1···injne
−u
∣∣∣ ≤ c |ϕ|

γ
2
−(p−1) .

Since γ
2
> 1 we also have ϕi1j1···injne

−u ∈ C1
(
D ∩ U ∩ {|ϕ| < ε}

)
hence ϕi1j1···injne

−u ∈

Cδ
(
D ∩ U ∩ {|ϕ| < ε}

)
for every 0 ≤ δ < 1. Let p =

⌊
γ
2

⌋
+ 1. Then the derivatives of

ϕe−u of order p extend continuously to D∩U ∩{|ϕ| < ε} and these extensions are Hölder

of exponent δ for every 0 ≤ δ < γ
2
−
⌊
γ
2

⌋
. This gives the desired regularity of ϕe−u.

2.2.3 Proof of Theorems 2.4 and 2.5

We deduce Theorem 2.4 by using Proposition 2.19:

Proof of Theorem 2.4. We take l = n + 1. Then, according to Proposition 2.11, the

range of γ is ]0, 2n + 1[. Let α ∈ ]0, 1[ and take γ := 2n + α so that
⌊γ

2

⌋
= n. We

apply Proposition 2.19 to obtain ϕe−u ∈ Cn+1+δ
(
D ∩ U

)
for every 0 ≤ δ < α

2
. Since

s−2(n+ 1) ≥ n+ 2, then
ϕ(n+1)

ϕ
∈ Cn+2

(
U
)
by point (7) of Proposition 2.9. We directly

deduce that −w′ = ϕ(n+1)e−u =

(
ϕ(n+1)

ϕ

)
ϕe−u ∈ Cn+1+δ

(
D ∩ U

)
. This holds for every

0 ≤ δ < α
2
< 1

2
, hence the result.

We can also prove Theorem 2.5:

Proof of Theorem 2.5. In this proof for a Kähler metric
[
hij̄
]
of class C2 and two vectors

v, w ∈ Cn \ {0} we note Bis(h)(v, w) instead of Bis (h) ( · ; v, w) the holomorphic bisec-

tional curvatures of the metric between v and w.
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The curvature coe�cients of
[
gij̄
]
satisfy the following relation which follows from the

de�nition by direct calculations:

Rij̄kl̄(g) = −(gij̄gkl̄ + gil̄gkj̄)

+
1

−ψ

Rij̄kl̄(ψ)− 1

|∇ψ|2ψ − ψ
(ψik − ψikp̄ψp̄qψq)︸ ︷︷ ︸

ψ,ik:=

(
ψj̄ l̄ − ψp̄ψp̄qψqj̄l̄

)︸ ︷︷ ︸
ψ,j̄l̄:=

 .

(2.18)

Using the de�nition of the holomorphic bisectional curvatures (1.9) and relation (2.18)

we obtain the following on D ∩ U for every v, w ∈ Cn \ {0}:

Bis (g) (v, w) =−

(
1 +
|〈v, w〉g|2

|v|2g|w|2g

)
︸ ︷︷ ︸

=:T1(v,w)

+
1

−ψ
|v|2ψ |w|

2
ψ

|v|2g |w|
2
g

Bis (ψ) (v, w)︸ ︷︷ ︸
=:T2(v,w)

− 1

−ψ
1

|∇ψψ|2ψ − ψ
ψ,ikψ,j̄l̄vivjwkwl

|v|2g |w|
2
g︸ ︷︷ ︸

=:T3(v,w)

.

Using the proof of Proposition 2.19 with
γ

2
= n + δ ≥ 2 + δ for some �xed 0 < δ <

1

2
we have the existence of positive constants c, ε > 0 such that the following holds on

D ∩ U ∩ {|ϕ| < ε} for every 1 ≤ i, j, k, l ≤ n:∣∣ψij̄kl̄∣∣ ≤ c |ϕ|−1+δ ,

and we also have ψ ∈ C3
(
D ∩ U ∩ {|ϕ| < ε}

)
.

The rest of the proof consists of estimating |T2(v, w)| and |T3(v, w)|. This will directly

follow from formulas (2.19) and (2.20).

• Using the notations of Proposition 1.25 and of the proof of Proposition 1.25, we have

0 ≤ B, hence I ≤ A, hence
[
ψij̄
]

=: R2 ≤ RAR = (−ψ)
[
gij̄
]
.

This means that for every v ∈ Cn, the following holds on D ∩ U :

|v|2ψ ≤ (−ψ) |v|2g . (2.19)

• Since D ∩ U{|ϕ| < ε} is compact and ψ ∈ C2
(
D ∩ U ∩ {|ϕ| < ε}

)
, we also have the
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existence of a positive constant 0 < λ− such that the following inequality holds on

D ∩ U ∩ {|ϕ| < ε}:
λ−I ≤

[
ψij̄
]
. (2.20)

We complete the proof as follows. According to inequality (2.19), we have the following

on D ∩ U for every vectors v, w ∈ Cn \ {0}:

1

−ψ
|v|2ψ |w|

2
ψ

|v|2g |w|
2
g

≤ −ψ = −ϕe−u.

Moreover, there exists a constant c > 0 such that for all 1 ≤ i, j, k, l ≤ n we have∣∣Rij̄kl̄ (ψ)
∣∣ ≤ c |ϕ|δ−1 on D ∩ U ∩ {|ϕ| < ε}. Hence there exists a positive constant c > 0

such that sup
v,w∈Cn\{0}

|T2(v, w)| ≤ c|ϕ|δ on D ∩ U ∩ {|ϕ| < ε}.

Likewise, using inequalities (2.19) and (2.20) we obtain, on D ∩ U and for every

v, w ∈ Cn \ {0}:

− 1

−ψ
1

|∇ψψ|2ψ − ψ
1

|v|2g |w|
2
g

≤ −ψ
|∇ψψ|2ψ − ψ

1

λ2
−

=
−ϕ

|∇ψψ|2ψ − ψ
e−u

λ2
−
.

Note that (up to taking a smaller positive ε) |∇ψψ|2ψ − ψ ∈ C
(
D ∩ U ∩ {|ϕ| < ε}

)
and

is a positive function according to point (2) of Proposition 2.16. Moreover, there exists a

constant c > 0 such that for all 1 ≤ i, j, k, l ≤ n we have
∣∣ψ,ikψ,j̄l̄∣∣ ≤ c onD∩U∩{|ϕ| < ε}.

Hence there exists a positive constant c > 0 such that sup
v,w∈Cn\{0}

|T3(v, w)| ≤ c|ϕ| on

D ∩ U ∩ {|ϕ| < ε}.
Using the triangle inequality, we deduce the existence of positive constants ε, c > 0 such

that the following inequality holds on D ∩ U ∩ {|ϕ| < ε}:

sup
v,w∈Cn\{0}

|Bisg (v, w) + T1(v, w)| ≤ c|ϕ|δ.

We obtain the result since lim
z→∂D∩U

ϕ(z) = 0 and δ > 0.

2.3 Behaviour of the Kähler-Einstein curvatures when

the squeezing function tends to one

2.3.1 The squeezing function

We recall the de�nition of the squeezing function of a domain.
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De�nition 2.20. Let D ⊂ Cn be a domain. For z ∈ D, let

FDz := {f ∈ H (D,B) / f is injective and f(z) = 0}.

The squeezing function of D at point z ∈ D is de�ned by sD(z) := sup{r > 0/∃f ∈
FDz , B(0, r) ⊂ f(D)} if FDz 6= ∅, and 0 otherwise.

We say that D satis�es a uniform squeezing property if inf
z∈D

sD(z) > 0. More precisely for

a ∈ ]0, 1] we say that D satis�es the a-squeezing property if sD(z) ≥ a for every z ∈ D.

Remark 2.21. Let D ⊂ Cn be a domain and let z ∈ D such that sD(z) > 0. It was

observed in [15] that the supremum in the de�nition of sD(z) is achieved.

Let D ⊂ Cn. It is clear that if there exists a point z ∈ D such that sD (z) = 1 then

D is biholomorphic to B. Assume that there exists q ∈ ∂D such that lim
z→q

sD (z) = 1. For

every sequence
(
z(ν)
)
ν∈N ∈ DN converging to q there exists a sequence of holomorphic

injective maps
(
f (ν)
)
ν∈N ∈ H (D,B)N and

(
r(ν)
)
ν∈N ∈ ]0, 1]N such that B

(
0, r(ν)

)
ν∈N ⊂

f (ν) (D) ⊂ B and lim
ν→∞

r(ν) = 1. This implies that the sequence of sets
(
f (ν) (D)

)
ν∈N

converges to B in the local Hausdor� topology. This is why we think of q as a "ball-like"

boundary point.

Domains satisfying a uniform squeezing property enjoy many interesting properties.

For instance, if D satis�es a uniform squeezing property, then D is pseudoconvex. More-

over there exists a complete Kähler-Einstein metric on D. Also, the Bergman kernel of

D induces a complete metric, and the Bergman metric and the Kähler-Einstein metric of

D are equivalent on D. We refer to [15, 38, 57] for proofs of these statements and other

properties regarding domains satisfying a uniform squeezing property.

2.3.2 Proof of Theorem 2.6

In the rest of this subsection, every domain possesses a unique complete Kähler-Einstein

potential which is solution to Equation (2.2) with condition (2.4) and we only consider

this potential. Moreover, given a domain D with complete Kähler-Einstein potential g

solving Equation (2.2) with condition (2.4), we use the notations 〈·, ·〉D, |·|Dz , BisD instead

of the previous notations 〈·, ·〉g, |·|g , Bis (g) to avoid confusions.

We prove Theorem 2.6:

Proof of Theorem 2.6. Let
(
z(ν)
)
ν∈N ∈ D

N such that lim
ν→∞

z(ν) = q. For ν ∈ N let f (ν) ∈
FD
z(ν) such that B

(
0, sD

(
z(ν)
))
⊂ f (ν)(D), let g(ν) :=

(
1− 1

2ν+1

)
f (ν) and set Dν :=
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g(ν) (D). Since g(ν) is a biholomorphic mapping from the pseudoconvex domain D to Dν ,

Dν is a bounded pseudoconvex domain. By construction of g(ν), for every integer ν ∈ N

we have Dν ⊂ B. Moreover we have lim
ν→∞

sD
(
z(ν)
)

= 1 hence up to taking a subsequence

we may assume that Dν ⊂ Dν+1.

Let ν ∈ N. Since Dν is a bounded pseudoconvex domain, there exists an exhaustion

of Dν by strictly pseudoconvex domains with smooth boundary, so that according to

Lemma 2.7 there exists a strictly pseudoconvex domain Sν with boundary of class C∞

that satis�es Dν−1 ⊂ Sν ⊂ Dν and

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣

∣∣∣〈v, w〉Dν0

∣∣∣
|v|Dν0 |w|

Dν
0

2

−


∣∣∣〈v, w〉Sν0

∣∣∣
|v|Sν0 |w|

Sν
0

2
∣∣∣∣∣∣∣ ≤

1

2ν
,

sup
v,w∈Cn\{0}

∣∣BisDν (0; v, w)−BisSν (0; v, w)
∣∣ ≤ 1

2ν
.

For every v, w ∈ Cn \ {0} set v(ν) := ∂z(ν)g(ν)(v) and w(ν) := ∂z(ν)g(ν)(w). Since each g(ν)

is holomorphic and injective, the linear map ∂z(ν)g(ν) is invertible, hence v(ν), w(ν) 6= 0

and:

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣

∣∣∣〈v(ν), w(ν)

〉Dν
0

∣∣∣
|v(ν)|Dν0 |w(ν)|Dν0

2

−


∣∣∣〈v(ν), w(ν)

〉Sν
0

∣∣∣
|v(ν)|Sν0 |w(ν)|Sν0

2
∣∣∣∣∣∣∣ ≤

1

2ν
, (2.21)

sup
v,w∈Cn\{0}

∣∣BisDν (0; v(ν), w(ν)
)
−BisSν

(
0; v(ν), w(ν)

)∣∣ ≤ 1

2ν
. (2.22)

Because of the property Dν ⊂ Sν+1 ⊂ Dν+1 for every ν ∈ N, the sequence (Sν)ν∈N

is an increasing sequence of strictly pseudoconvex domains with boundary of class C∞.
Since lim

ν→∞
sD
(
z(ν)
)

= 1 we have
⋃
ν∈N

Sν = B, hence (Sν)ν∈N is an exhaustion of the ball.

Therefore according to Lemma 2.7 we deduce the following:

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣

∣∣∣〈v, w〉Sν0

∣∣∣
|v|Sν0 |w|

Sν
0

2

−


∣∣∣〈v, w〉B0 ∣∣∣
|v|B0 |w|

B
0

2
∣∣∣∣∣∣∣ −→ν→∞ 0,

sup
v,w∈Cn\{0}

∣∣BisDν (0; v, w)−BisB(0; v, w)
∣∣ −→
ν→∞

0.

Moreover, since each g(ν) is holomorphic and injective, the linear map ∂z(ν)g(ν) is invertible,
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hence:

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣

∣∣∣〈v(ν), w(ν)

〉Sν
0

∣∣∣
|v(ν)|Sν0 |w(ν)|Sν0

2

−


∣∣∣〈v(ν), w(ν)

〉B
0

∣∣∣
|v(ν)|B0 |w(ν)|B0

2
∣∣∣∣∣∣∣ −→ν→∞ 0, (2.23)

sup
v,w∈Cn\{0}

∣∣BisSν (0; v(ν), w(ν)
)
−BisB

(
0; v(ν), w(ν)

)∣∣ −→
ν→∞

0. (2.24)

Using the transformation formula (1.13) and the triangle inequality we obtain for every

integer ν ∈ N:

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣BisD
(
z(ν); v, w

)
+ 1 +


∣∣∣〈v, w〉Dz(ν)

∣∣∣
|v|Dz(ν)|w|Dz(ν)

2
∣∣∣∣∣∣∣

= sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣BisDν
(
0; v(ν), w(ν)

)
+ 1 +


∣∣∣〈v(ν), w(ν)

〉Dν
0

∣∣∣
|v(ν)|Dν0 |w(ν)|Dν0

2
∣∣∣∣∣∣∣

≤ sup
v,w∈Cn\{0}

∣∣BisDν (0; v(ν), w(ν)
)
−BisSν

(
0; v(ν), w(ν)

)∣∣
+ sup

v,w∈Cn\{0}

∣∣BisSν (0; v(ν), w(ν)
)
−BisB

(
0; v(ν), w(ν)

)∣∣
+ sup

v,w∈Cn\{0}

∣∣∣∣∣∣∣BisB
(
0; v(ν), w(ν)

)
+ 1 +


∣∣∣〈v(ν), w(ν)

〉Sν
0

∣∣∣
|v(ν)|Sν0 |w(ν)|Sν0

2
∣∣∣∣∣∣∣

+ sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣

∣∣∣〈v(ν), w(ν)

〉Sν
0

∣∣∣
|v(ν)|Sν0 |w(ν)|Sν0

2

−


∣∣∣〈v(ν), w(ν)

〉Dν
0

∣∣∣
|v(ν)|Dν0 |w(ν)|Dν0

2
∣∣∣∣∣∣∣ .

From condition (2.22), respectively condition (2.24), condition (2.21), the �rst term of the

right hand side, respectively the second, the fourth, tends to 0 as ν tends to +∞. More-

over the Kähler-Einstein metric we work with satis�es BisB(0; v, w) = −1 −
(
|〈v,w〉B0|
|v|B0 |w|

B
0

)2

for every v, w ∈ C2 \ {0}. We combine this remark with condition (2.23) to deduce that

the third term of the right hand side tends to 0 as ν tends to +∞. Therefore we have

proved that there exists a subsequence
(
z(νk)

)
k∈N ∈ D

N such that

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣BisD
(
z(νk); v, w

)
+ 1 +


∣∣∣〈v, w〉Dz(νk)

∣∣∣
|v|Dz(νk) |w|Dz(νk)

2
∣∣∣∣∣∣∣ −→k→+∞

0.

We obtain the conclusion of Theorem 2.6 by applying the above reasoning to any subse-

quence of
(
z(ν′k)

)
ν∈N ∈ D

N.
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Remark 2.22. The previous approach also works when
[
gij̄
]
is the Bergman metric. In

particular Theorem 2.6 also holds for
1

n+ 1
times the Bergman metric. Precise estimates

of the holomorphic sectional curvatures, Ricci curvatures and scalar curvature can be

found in [62] and may be adapted to obtain precise estimates on the holomorphic bisec-

tional curvatures of the Bergman metric. However the approach developped there cannot

be applied to obtain estimates on the curvatures of the Kähler-Einstein metric.
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Chapter 3

Study of the Kähler-Einstein metric in

pseudoconvex domains in C2

Abstract

In this chapter we study the Kähler-Einstein metric and its holomorphic bisectional cur-

vatures in pseudoconvex domains in C2. First we brie�y review the known results in the

case of Thullen domains and study the boundary regularity of the Kähler-Einstein poten-

tial at weakly pseudoconvex points. Then we prove analogues results in tube domains.

Using the estimates about the holomorphic bisectional curvatures obtained in these two

types of domains we prove that the holomorphic bisectional curvatures of the Kähler-

Einstein metric at certain boundary points of bounded convex domains in C2 are pinched

between two negative constants in the case of a non-tangential approach. In Section 3.4

we provide with a partial study of the Kähler-Einstein metric in homogeneous polynomial

domains D′H where H is non negative.

Convention In this chapter we work only with the Kähler-Einstein metric with Ricci

curvature −3, that we denote by gD or by g when there is no confusion.

Introduction

In Chapter 2 we saw that every bounded pseudoconvex domain D admits a unique com-

plete Kähler-Einstein metric induced by a potential g ∈ Cω (D) which satis�es Equation

(2.2) with boundary condition (2.4) by exhausting the domainD by strictly pseudoconvex

domains with smooth boundary, and that the curvature behaviour of the metric induced

by g is well known at strictly pseudoconvex boundary points. However our approach
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leaves open the question of the behaviour of the Kähler-Einstein metric and its curva-

tures at weakly pseudoconvex boundary points. J.S. Bland studied the Kähler-Einstein

metric in Thullen domains in Cn+1 for n ∈ N∗ and proved that the Riemannian sectional

curvatures of the Kähler-Einstein metric are negatively pinched (see [5]). He also ob-

tained estimates for the Kähler-Einstein metric. Using his work we obtain an asymptotic

expansion of the Kähler-Einstein potential in Thullen domains:

Theorem 3.1. Let n ∈ N∗, let p ≥ 1, and set En
p := {(z, w) ∈ Cn×C, |z|2 +|w|2p < 1}.

Let g ∈ Cω
(
En
p

)
be the Kähler-Einstein potential solution of Equation (2.2) with boundary

condition (2.4) on En
p . Then

(
1− |z|2

) p−1
(n+1)p e−g ∈ C∞

(
En
p \ {|z| = 1}

)
.

The set En
p \ {|z| = 1} is exactly the reunion of the Thullen domain and its strictly

pseudoconvex boundary points. The asymptotic expansion obtained in Theorem 3.1 is

very similar to the asymptotic expansion obtained by J. Lee and R. Melrose in the case

of strictly pseudoconvex domains with boundary of class C∞. We may use the regularity

of e−g to compare the Kähler-Einstein metric and the Bergman metric in the Thullen

domains in C2, which give another proof that the Bergman metric of Thullen domains in

C2 is not an Einstein metric (see Corollary 3.10).

Drawing inspiration from the case of Thullen domains in Cn, we study the Kähler-

Einstein metric and curvatures in tube domains T ′p = {z ∈ C2, Re(z1)+Re(z2)2p < 0} for
p ∈ N∗. We prove the following regarding the behaviour of the holomorphic bisectional

curvatures at weakly pseudoconvex boundary points:

Theorem 3.2. There exist positive constants 0 < c ≤ C and 0 < α < 1 such that the

following holds for every z ∈ T ′p ∩
({

Re(z2)2p

−Re(z1)
≤ α

}
∪
{

1− α ≤ Re(z2)2p

−Re(z1)
< 1

})
:

∀v, w ∈ C2 \ {0}, −C ≤ Bis (g) (z; v, w) ≤ −c.

The region T ′p ∩
{
Re(z2)2p

−Re(z1)
≤ α

}
contains the axis {z2 = 0}. Consequently the

holomorphic bisectional curvatures of the Kähler-Einstein metric in tube domains and in

Thullen domains in C2 are negatively pinched in a neighbourhood of {z2 = 0}, as it is
the case for the Bergman metric (see Chapter 4). Using a rescaling we derive:

Theorem 3.3. Let D ⊂ C2 be a bounded convex domain with boundary of class C∞. Let
q ∈ ∂D be a point of �nite type such that a local model at q is either a Thullen domain

or a tube domain. There exists positive constants 0 < c ≤ C such that for every non
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tangential cone Λ with vertex at q and every sequence
(
z(ν)
)
ν∈N ∈ (D ∩ Λ)N we have:

−C ≤ lim inf
ν→∞

inf
v,w∈C2\{0}

Bis (g)
(
z(ν); v, w

)
, lim sup

ν→∞
sup

v,w∈C2\{0}
Bis (g)

(
z(ν); v, w

)
≤ −c.

To prove Theorem 3.3 we use a scaling method. This technique applies at every

boundary point of bounded convex domains in C2, but in the general case the local model

of ∂D at q is of the form D′H = {z ∈ C2/Re (z1) +H (z2) < 0} where H is a real-valued

homogeneous convex polynomial. We do not know whether the holomorphic bisectional

curvatures of the Kähler-Einstein metric of these domains are negatively pinched along the

axis {z2 = 0} (except for H(z) = |z|2p and H(z) = Re(z)2p where p ∈ N∗). Nonetheless

we prove the following partial result:

Theorem 3.4. Let p ∈ N∗. Let H be a real-valued homogeneous polynomial function of

degre 2p which is subharmonic but not harmonic. Assume that there exists a complete

Kähler-Einstein potential g ∈ Cω (D′H) solving Equation (2.2) and satisfying condition

(2.4) on D′H . Set K :=
2p+ 1

3
. Then:

max
v∈Cn\{0}

H (g) ((−1, 0); v) =

−3− 1

K
+
p− 1

pK

|g22|
g22̄

(−1, 0)

2
,

max
v,w∈Cn\{0}

Bis (g) ((−1, 0); v, w) = max

−
1

K
,

−3 +
1

K
+
p− 1

pK

|g22|
g22̄

(−1, 0)

2

 ,

min
v,w∈Cn\{0}

Bis (g) ((−1, 0); v, w) = min

−3 +
1

K
,

−3− 1

K
− p− 1

pK

|g22|
g22̄

(−1, 0)

2

 ,

min
v∈Cn\{0}

H (g) ((−1, 0); v) = min
v,w∈Cn\{0}

Bis (g) ((−1, 0); v, w).

This chapter is organised as follows. In Section 3.1 we recall some results obtained

by J.S. Bland regarding the Kähler-Einstein metric in Thullen domains En
p and prove

Theorem 3.1. In Section 3.2 we study the Kähler-Einstein metric in tube domains and

prove Theorems 3.2 and 3.3. In Section 3.4 we prove Theorem 3.4.
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3.1 Study of the Kähler-Einstein in Thullen domains

This section is mostly a summary of the results obtained by J.S. Bland about the Kähler-

Einstein metric and its curvatures in Thullen domains in Cn+1 (see [5]). We recall them

and use them to compare the Kähler-Einstein metric with the Bergman metric in Thullen

domains. We also give more precise estimates about the holomorphic bisectional curva-

tures of the metric in certain regions.

3.1.1 Preliminary notations and remarks

For every integer n ∈ N \ {0, 1}, and every real number p ≥ 1, let

En
p :=

{
|z1|2 + · · ·+ |zn−1|2 + |zn|2p < 1

}
.

The domain En
p is bounded and pseudoconvex, and has boundary of class C2. In particular

there exists a unique Kähler-Einstein potential g ∈ Cω
(
En
p

)
that solves Equation (2.2)

on En
p and satis�es the boundary condition (2.4).

De�ne

π1 : Cn = Cn−1 × C −→ Cn−1

(z1, . . . , zn) 7−→ (z1, . . . , zn−1) ,

π2 : Cn −→ C

(z1, . . . , zn) 7−→ zn,

and de�ne X :=
|π2|2(

1− |π1|2
) 1
p

on B × C ⊂ Cn so that En
p is exactly the set {X < 1}. It

is important to note that the function X is invariant under the action of Aut
(
En
p

)
.

The results of this Section give an expression of the potential g and its curvature coe�-

cients in terms of functions of one real parameter applied to the "orbits parametrization

function" X.

3.1.2 Overview of the already known results

In this subsection we recall two results stated in [5] regarding the expression of the

Kähler-Einstein potential g and its curvature coe�cients.
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Theorem 3.5 (Theorem 1 in [5]). There exists a function Y ∈ C∞ ([0, 1[) such that the

metric the following relations hold on En
p :[

gij̄
]

= Y ◦X
[
(Log ◦X)ij̄

]
+ Y (1) ◦X

[
XiXj̄

X

]
(3.1)

Det
(
gij̄
)

=

(
Y ◦X
p

)n−1

Y (1) ◦X(
1− |π1|2

)n+ 1
p

. (3.2)

Moreover, Y satis�es Y (0) =
np+ 1

n+ 1
and the following di�erential equation for every

number x ∈ [0, 1[:

xY (1)(x)Y (x)n−1 = Y (x)n+1 − pY (x)n + α, (3.3)

where α =
p− 1

n+ 1
Y (0)n. The functions x 7−→ Y (x)(1− x) and x 7−→ Y (1)(x)(1− x)2 are

bounded on [0, 1[.

Remark 3.6. • De�ne F := g|{0}×]−1,1[. Then F ∈ Cω (]−1, 1[) and a careful analysis of

the proof of Theorem 3.5 gives Y (x) = Y (0) + xF (1)(x) for all x ∈ [0, 1[. This is why

we added that Y ∈ C∞ ([0, 1[) compared to the original statement of Theorem 1 in [5].

• Observe that Log ◦ X is not well de�ned on {X = 0} (or equivalently on {z2 = 0}).
However by pluriharmonicity of Log ◦ |π2|2 we can naturally extend

[
(Log ◦X)ij̄

]
on

{X = 0} by setting
[
(Log ◦X)ij̄

]
=

Log
 1(

1− |π1|2
) 1
p


ij̄

 on {X = 0}.

• Likewise, the matrix

[
XiXj̄

X

]
is not well de�ned on {X = 0}, but we can naturally

extend it on {X = 0} by using the expression of

[
XiXj̄

X

]
on {X 6= 0}.

• From relation (3.1) one sees that g22̄ = Y (1) ◦ X |X2|2

X
> 0 on En

p so that Y is an

increasing function on [0, 1[. Since Y (0) > 0 one has Y > 0 on [0, 1[. Moreover one

has lim
x→1−

Y (x) = +∞.

In [5] the author uses Theorem 3.5 to estimate the length of vectors for the Kähler-

Einstein metric induced by g in regions of the form {X ≤ c} ⊂ En
p for c ∈ [0, 1[, and

also to estimate the blow-up rate of the volume of the metric in the same regions (see

Theorem 3 in [5]).
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By di�erenciating the metric and using the Kähler-Einstein condition one obtains the

following expression of the curvature coe�cients:

Theorem 3.7 (Theorem 2 in [5]). The coe�cients of the curvature tensor of the Kähler-

Einstein metric induced by the potential g satisfy the following on En
p for every integer

1 ≤ i, j, k, l ≤ n:

Rij̄kl̄ = −
(

1− nα

(Y ◦X)n+1

)(
gij̄gkl̄ + gil̄gkj̄

)
− n(n+ 1)α

(
Y (1) ◦X

)2

(Y ◦X)n+1

XiXj̄XkXl̄

X2

− (n+ 1)α

(Y ◦X)n−1

(
(Log ◦X)ij̄ (Log ◦X)kl̄ + (Log ◦X)il̄ (Log ◦X)kj̄

)
. (3.4)

Using Theorem 3.7 J.S. Bland proved that the Riemannian sectional curvatures of the

Kähler-Einstein metric induced by g are pinched between negative constants on En
p (see

Theorem 4 in [5]).

Remark 3.8. We can also de�ne En
p (and the function X) when p ∈ ]0, 1[ in an obvious

way. In that case, the boundary of En
p is not of class C2 at boundary points z ∈ ∂En

p with

zn = 0, but En
p is still pseudoconvex in the sense that there exists an exhaustion of En

p

by bounded strictly pseudoconvex domains with boundary of class C∞. In particular there

exists a Kähler-Einstein potential g ∈ Cω
(
En
p

)
that solves Equation (2.2) with boundary

condition (2.4). In those cases Theorems 3.5 and 3.7 still hold, but the holomorphic

sectional curvatures of the Kähler-Einstein metric of En
p is not pinched beteween negative

constants on En
p (see Theorem 4 in [5]).

3.1.3 Asymptotic expansion of the Kähler-Einstein potential

We use Theorem 3.5 to obtain the regularity of e−g. This is very similar to the analogue

result in the case of bounded strictly pseudoconvex domains obtained by J. Lee and R.

Melrose in [45]:

Theorem 3.9. Let g be the Kähler-Einstein potential solution of Equation (2.2) with

condition (2.4). There exists a positive function η ∈ C∞ ([0, 1]) with η(1) = 1 and such

that one has the following on En
p

e−g = p
n−1
n+1 (1−X) η ◦X

(
1− |π1|2

) np+1
p(n+1) .
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Proof of Theorem 3.9. We use the notations introduced in Theorem 3.5. The Monge-

Ampère Equation (2.2) combined with Equation (3.3) directly gives the relation e(n+1)g =(
Y ◦X
p

)n−1

Y (1) ◦X(
1− |π1|2

)n+ 1
p

on En
p hence e−g =

((
Y ◦X
p

)n−1

Y (1) ◦X
)− 1

n+1 (
1− |π1|2

) np+1
p(n+1) . Set

η (x) =: (1− x)n+1Y (x)n−1Y (1)(x) for x ∈ [0, 1[. Since Y and Y (1) are positive functions

on [0, 1[, the conclusion of Theorem 3.9 easily follows if we prove that η ∈ C∞ ([0, 1]) and

is a positive function at x = 1.

We �rst prove that
1

Y
∈ C∞ ([0, 1]), then that x 7−→ (1− x)Y (x) ∈ C∞ ([0, 1]) and �nally

obtain the conclusion.

• Set h :=
1

Y
on [0, 1[ and h(1) := 0. Since Y > 0 on [0, 1[ and lim

x→1−
Y (x) = +∞ we have

h ∈ C ([0, 1])∩C∞ ([0, 1[). We divide Equation (3.3) by −Y n+1(x) to obtain the following

for every x ∈ [0, 1[:

xh(1)(x) = −1 + ph(x)− αh(x)n+1. (3.5)

Therefore by classical ODE theory we deduce that h ∈ C∞ ([0, 1]), hence
1

Y
∈ C∞ ([0, 1]).

• Let H be the primitive of h that vanishes at 1, and let G be the primitive of hn+1 that

vanishes at 1, so that x 7−→ H(x)

1− x
, x 7−→ G(x)

1− x
∈ C∞ ([0, 1]). We take the primitives

that vanish at 1 on both sides of Equation (3.5) and substract H to obtain the following

for every x ∈ [0, 1[:

xh(x) = 1− x− (p+ 1)H(x) + αG(x),

hence

x
h(x)

1− x
= 1− (p+ 1)

H(x)

1− x
+ α

G(x)

1− x
, (3.6)

so that x 7−→ h(x)

1− x
∈ C∞ ([0, 1]) or equivalently x 7−→ (1 − x)Y (x) ∈ C∞ ([0, 1]) by

de�nition of h. Letting x tend to 1− on both sides of Equation (3.6) directly gives

lim
x→1−

(1− x)Y (x) = 1 > 0. Moreover by the product rule one has:

∀x ∈ [0, 1] , (1− x) (x 7−→ (1− x)Y (x))(1) (x) = −(1− x)Y (x) + (1− x)2Y (1)(x),

hence
(
x 7−→ (1− x)2Y (2)(x)

)
∈ C∞ ([0, 1]) and lim

x→1−
(1− x)2Y (1)(x) = 1 > 0. This gives

the desired conclusion.

As a corollary of Theorem 3.9 we compare the Bergman metric and the Kähler-

Einstein metric on E2
p . The result roughly indicates that the Bergman metric and the

Kähler-Einstein metric blow up at the same rate at any boundary point:
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Corollary 3.10. Let K be the Bergman kernel of E2
p , and set g′ :=

Log (K)

3
. Then

eg
′−g ∈ C∞

(
E2
p \ {|z| = 1}

)
.

Proof of Corollary 3.10. From relation (4.1) in [2] we have on E2
p :

K =
p+ 1

pπ2

1− rX
(1−X)3(1− |π1|2)2+ 1

p

,

where r =
p− 1

p+ 1
. Therefore we have:

eg
′−g =

(
p+ 1

π2

) 1
3

η ◦X (1− rX)
1
3 ,

so that the result directly follows from Theorem 3.9.

Remark 3.11. Let us explain why it is natural to compare the metrics g and g′ in

Theorem 3.10. It is well known (see [37]) that given a pseudoconvex domain D, the

holomorphic sectional curvatures of the Bergman metric tend to −2

3
at any smooth strictly

pseudoconvex boundary point (provided that the Bergman kernel induces a Kähler metric).

Hence according to formula (1.11) the Ricci form is asymptotically close to the opposite of

the metric tensor. On the other hand, the Kähler-Einstein metric we work with satis�es

Ric (g) = −3g. Thus to compare these metrics it is relevant to rescale one of them.

3.2 Study of the Kähler-Einstein metric in pseudocon-

vex tube domains

In this Section we study the Kähler-Einstein metric in tube domains. In order to simplify

the forthcoming computations, we work in the domains

Tp :=
{
z ∈ C2, Re (4pz1) +Re (z2)2p < 1

}
where p ∈ N∗. The biholomorphic a�ne map of C2

C2 −→ C2

(z1, z2) 7−→ (4pz1 − 1, z2)

maps Tp to T
′
p. In particular the automorphism group of Tp and the geometric properties

∂Tp are well known (see Section 1.2 and Section 1.3). We use the invariance property of

the Kähler-Einstein metric and the structure of the automorphism group of Tp to reduce

the study of the Kähler-Einstein potential on Tp to the study of an auxiliary function of

one real parameter satisfying an ordinary di�erential equation.
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3.2.1 Geometry of Tp and parametrisation of the orbits of Tp

We recall the description of the automorphism group of the tube, denoted by Aut(Tp):

Proposition 3.12. The automorphism group Aut(Tp) of Tp is generated by the following

a�ne maps:

• Translations: τu(z1, z2) = (z1 + iu1, z2 + iu2), where u ∈ R2,

• Dilations: dλ(z1, z2) =
(
λ(4pz1−1)+1

4p
, λ

1
2p z2

)
, where λ > 0,

• The symmetry of complex axis {z2 = 0}: s(z1, z2) = (z1,−z2).

The translations have a Jacobian equal to the identity matrix. Also, JacC(dλ) = λ 0

0 λ
1
2p

 and JacC(s) =

 1 0

0 −1

.
Let us denote by πR

1 and πR
2 the following maps:

πR
1 : C2 −→ R

(z1, z2) 7−→ Re(z1),

πR
2 : C2 −→ R

(z1, z2) 7−→ Re(z2).

Let X :=
πR

2

(1− 4pπR
1 )

1
2p

. This function is well de�ned on the set {z ∈ C2/Re(4pz1) < 1}

which contains Tp.

Moreover, observe that it satis�es the following properties:

• X ∈ C∞ ({z ∈ C2/Re(4pz1) < 1}),

• X is a parametrization of the orbits of Tp under the action of Aut(Tp), in the sense

that

∀F ∈ Aut(Tp), ∀z ∈ Tp, X(F (z)) = X(z) and X|{0}×]−1,1[ is injective,

• X(Tp) =]− 1, 1[,

• q ∈ {|X| = 1} if and only if q is a strictly pseudoconvex boundary point of ∂Tp.
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Let us relate the regions introduced in Theorem 3.2 to the notions of tangential and

non-tangential convergences. Let θ ∈
]
0, π

2

[
. We denote by

Λ(θ) :=

z ∈ Tp/
√
Im(z1)2 + |z2|2(

1
4p
−Re(z1)

) ≤ tan(θ)


the half cone of vertex

(
1
4p
, 0
)
, of axis R× {0} and of angle θ.

Let (z(n))ν∈N ∈ TN
p such that z(ν) −→

ν→+∞
( 1

4p
, 0). Recall that (z(ν))ν∈N converges non

tangentially to
(

1
4p
, 0
)
if there exists a constant θ ∈

]
0, π

2

[
and an integer ν0 ∈ N such

that for every ν ≥ ν0 we have zν ∈ Λ(θ), and that (z(ν))ν∈N converges tangentially to(
1
4p
, 0
)
if for every constant θ ∈

]
0, π

2

[
and there exists an integer ν0 ∈ N such that for

every ν ≥ ν0 we have zν /∈ Λ(θ).

Now observe that we have:

∀z ∈ Tp, 4p |X(z)| (1−Re(4pz1))
1
2p
−1 ≤

√
Im(z1)2 + |z2|2(

1
4p
−Re(z1)

) ,

hence we deduce that for every sequence (z(ν))n∈N ∈ TN
p that converges to ( 1

4p
, 0) and for

every 0 < α < 1 we have:

∀0 < θ <
π

2
,
(
z(ν)
)
∈ Λ(θ)N ⇒ ∃ν0 ∈ N, ∀ν ≥ ν0, z(ν) ∈ {|X| ≤ α},(

z(ν)
)
∈ {1− α ≤ |X| < 1〉}N ⇒ ∀0 < θ <

π

2
, ∃ν0 ∈ N, ∀ν ≥ ν0, z(ν) /∈ Λ(θ).

In particular, Theorem 1 gives the non-tangential behaviour of the bisectional curva-

tures at weakly pseudoconvex boundary points of Tp, and also gives a "hyper-tangential"

behaviour of the bisectional curvatures at weakly pseudoconvex boundary points of Tp.

We conclude this subsection with the following Proposition, which directly follows

from Proposition 3.12 and the de�nition of X:

Proposition 3.13. Let z ∈ Tp and de�ne ψ(z) := d 1
1−Re(4pz1)

◦ τ−(Im(z1),Im(z2)) ∈ Aut(Tp).
Then ψ(z) satis�es ψ(z)(z) = (0, X(z)), and Det

(
JacC

(
ψ(z)

))
= 1

(1−Re(4pz1))
2p+1

2p
.

Proposition 3.13 enables to reduce the study of the metric and its curvatures on Tp to

the study of the same quantities on the set {0}×]−1, 1[+iR2 (see for instance Propositions

3.14 and 3.16).
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3.2.2 The invariance property and an expression of the Kähler-

Einstein potential in terms of a special auxiliary function

The invariance property of the Kähler-Einstein metric under the action of Aut(Tp) gives

a �rst reduction of the potential g:

Proposition 3.14. Let

F : ]− 1, 1[ −→ R

x 7−→ g(0, x),

and set K :=
2p+ 1

3
. Then the following holds on Tp:

g = F ◦X +
K

p
Log

(
1

1− 4pπR
1

)
. (3.7)

Proof of Proposition 3.14. The Kähler-Einstein metric is invariant under the action of

Aut(Tp), which means that:

∀ψ ∈ Aut(Tp),
[
gij̄
]

=t JacC (ψ)
[
gij̄ ◦ ψ

]
JacC (ψ). (3.8)

We apply the function Log ◦ Det to both sides of Equation (3.8) and use the Monge-

Ampère Equation (2.2) to deduce the following transformation formula:

∀ψ = (ψ1, ψ2) ∈ Aut(Tp), g = g ◦ ψ +
2

3
Log |Det (JacC (ψ))| . (3.9)

Let z ∈ Tp. We use Equation (3.9) with the function ψ = ψ(z) given in Proposition 3.13

and obtain the result.

The function F inherits from the Kähler-Einstein potential g some regularity proper-

ties.

Proposition 3.15. The function F is real analytic on ]−1, 1[, strictly convex, and even.

Moreover, e−F ∈ C3+δ ([−1, 1]) for every number δ ∈
[
0, 1

2

[
.

Proof of Proposition 3.15. The relation F (x) = g(0, x) for every number x ∈] − 1, 1[

directly implies that F ∈ Cω (]− 1, 1[) and e−F ∈ C3+δ ([−1, 1]) for every number δ ∈[
0, 1

2

[
. In particular, by di�erentiating Equation (3.7) twice at the point (0, x) ∈ Tp, we

obtain F (2)(x) = 4g22̄(0, x) > 0 because g is strictly plurisubharmonic on Tp. Hence F is

strictly convex on ]− 1, 1[. To prove that F is even on ]− 1, 1[, we use the automorphism

s introduced in Proposition 3.12 to deduce that for every −1 < x < 1, we have F (x) =

g(0, x) = F (X(0,−x)) + K
p
Log(1) = F (−x), hence the result.
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3.2.3 The Kähler-Einstein condition and two di�erential equa-

tions satis�ed by F

We use relation (3.7) and the Monge-Ampère Equation (2.2) to obtain a �rst di�erential

equation satis�ed by the function F :

Proposition 3.16. Denote f := F (1). Then the metric
[
gij̄
]
satis�es the following on

Tp:

[
gij̄
]

=


X2f (1)◦X+(2p+1)Xf◦X+4pK

(1−4pπR
1 )2

Xf (1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

Xf (1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

f (1)◦X

4(1−4pπR
1 )

1
p

 , (3.10)

Det(gij̄) =
Z(X)

(1− 4pπR
1 )

3K
p

, (3.11)

where the function Z is de�ned by Z(x) := f (1)(x)((2p−1)xf(x)+4pK)−f(x)2

4
for every number

x ∈]− 1, 1[. Moreover, Z satis�es the following:

Z = e3F on ]− 1, 1[. (3.12)

Proof of Proposition 3.16. On Tp we have:

[Xi] = [Xī] =

 X
1−4pπR

1

1

2(1−4pπR
1 )

1
2p

 ,
[
XiXj̄

]
=

 X2

(1−4pπR
1 )2

X

2(1−4pπR
1 )

1
2p+1

X

2(1−4pπR
1 )

1
2p+1

1

4(1−4pπR
1 )

1
p

 ,
[
Xij̄

]
=


(2p+1)X

(1−4pπR
1 )2

1

2(1−4pπR
1 )

1
2p+1

1

2(1−4pπR
1 )

1
2p+1

0

 .
Di�erentiating Equation (3.7), we directly deduce:[

gij̄
]

= f ◦X
[
Xij̄

]
+ f (1) ◦X

[
XiXj̄

]
+

4Kp

(1− 4pπR
1 )2

E11,

=


X2f (1)◦X+(2p+1)f◦X+4pK

(1−4pπR
1 )2

Xf (1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

Xf (1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

f (1)◦X

4(1−4pπR
1 )

1
p

 .
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Then we apply the function Det to Equation (3.10) and directly obtain Equation (3.11).

Finally, recall that according to Equations (2.2) and (3.7) one has on Tp:

Det
(
gij̄
)

= e3g,

= e3F◦X− 3K
p
Log(1−4pπR

1 ),

=
e3F◦X

(1− 4pπR
1 )

2+ 1
p

,

hence Equation (3.12).

We use Equation (3.12) to obtain a di�erential equation satis�ed by f and f (1):

Proposition 3.17. The function f satis�es the following equation for every x ∈]− 1, 1[:

((2p− 1)xf(x) + 4pK) f (1)(x) = (2p− 1)xf(x)3 + (6pK + 1) f(x)2 (3.13)

− 2(p+ 1)

∫ x

0

f(t)3 dt+ 4e3F (0).

Proof of Proposition 3.17. Let x ∈]− 1, 1[. We put the de�nition of the function Z into

Equation (3.12), multifply both sides by 12f and integrate from 0 to x to obtain:

4(3f(x)e3F (x)) = 3(2p− 1)xf(x)2f (1)(x) + 12pKf(x)f (1)(x)− 3f(x)3,

4Z(x) = 4e3F (x) = 3(2p− 1)

∫ x

0

tf(t)2f (1)(t) dt+ 6pKf(x)2 − 3

∫ x

0

f(t)3 dt+ 4e3F (0).

We integrate by part the �rst term of the right hand side:∫ x

0

tf(t)2f (1)(t) dt =

[
tf(t)3

3

]x
0

− 1

3

∫ x

0

f(t)3 dt =
xf(x)3

3
− 1

3

∫ x

0

f(t)3 dt.

Using the de�nition of Z again, we obtain:

((2p− 1)xf(x) + 4pK) f (1)(x)− f(x)2 = (2p− 1)xf(x)3 + 6pKf(x)2

− 2(p+ 1)

∫ x

0

f(t)3 dt+ 4e3F (0),

((2p− 1)xf(x) + 4pK) f (1)(x) = (2p− 1)xf(x)3 + (6pK + 1) f(x)2

− 2(p+ 1)

∫ x

0

f(t)3 dt+ 4e3F (0),

hence relation (3.13).
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3.2.4 Asymptotic analysis of the auxiliary function

In this subsection we use condition (2.4), Proposition 3.15 and Equation (3.13) to study

the function F and its derivatives. Since F is an even function, we only study it on the

set [0, 1[.

We want to point out that Propositions 3.18, 3.20, Corollary 3.21 and part of Proposition

3.22 can also be deduced from Theorem 2.4 because the function F is the restriction of

the Kähler-Einstein potential g to the set {0}×] − 1, 1[, and ∂Tp is smooth and strictly

pseudoconvex at (0, 1). Here, we only use Equation (3.13) and the interior regularity of

F to derive these results.

From the strict convexity of F and condition (2.4) we have the following:

Proposition 3.18. Every derivative of F is unbounded in a neighbourhood of 1−. More-

over, f(x) −→
x→1−

+∞.

Proof of Proposition 3.18. If there existed some integer k ∈ N such that F (k) is bounded

in a neighbourhood of 1−, then g(0, ·) would be bounded in a neighbourhood of 1−,

which would be in contradiction with the hypothesis (2.4), hence every derivative of F is

unbounded in a neighbourhood of 1−.

Since F is a strictly convex, even function in ]− 1, 1[, f = F (1) is increasing on [0, 1[ and

positive on ]0, 1[. Since it is unbounded, we directly deduce that f(x) −→
x→1−

+∞. Hence

the result.

We use the following lemma to deduce the asymptotic behaviour of f (1) at x = 1−:

Lemma 3.19. Let F ∈ C1(]0; 1[) be a convex function satisfying lim
y→1−

F (1)(y) = +∞.

Then: lim
y→1−

F (y)

F (1)(y)
= 0.

Proof of Lemma 3.19. Since F satis�es lim
y→1−

F (1)(y) = +∞, there exists a constant a ∈

]0, 1[ such that F (1) > 0 on ]a, 1[. Let a < x < y < 1. Then F (1)(y) > 0 and F (x) ≤ F (y).

We apply the fundamental theorem of calculus to the function F to deduce the following:

0 ≤ F (y)− F (x) =

∫ y

x

F (1)(t) dt ≤ (y − x)F (1)(y),

so that F (x)

F (1)(y)
≤ F (y)

F (1)(y)
≤ (y − x). Hence we deduce:

∀x ∈]0; 1[, 0 ≤ lim inf
y→1−

F (y)

F (1)(y)
≤ lim sup

y→1−

F (y)

F (1)(y)
≤ 1− x,
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so that we obtain lim
y→1−

F (y)

F (1)(y)
= 0 by letting x tend to 1−, hence the result.

We use Equation (3.13), Proposition 3.18 and Lemma 3.19 to obtain the asymptotic

of f to the �rst order at x = 1−:

Proposition 3.20. We have: lim
x→1−

f (1)

f 2
(x) = lim

x→1−
f(x)(1− x) = 1.

Proof of Proposition 3.20. Let x > 0. Since f(0) = 0 and f is increasing, we have

f(x) > 0. We divide Equation (3.13) both sides by f(x) to obtain the following:(
(2p− 1)x+

4pK

f(x)

)
f (1)(x)

f(x)2
= (2p− 1)x

+
6pK + 1

f(x)
− 2(p+ 1)

∫ x

0

f(t)3 dt

f(x)3
+

4e3F (0)

f(x)3
.

Let us prove that lim
x→1−

∫ x

0

f(t)3 dt

f(x)3
= 0. De�ne f̃(x) :=

∫ x

0

f(t)3 dt for x ∈ [0, 1[. Then

f̃ ∈ C1 (]0, 1[), is convex and satis�es lim
x→1−

f̃ (1)(x) = +∞. We apply Lemma 3.19 to f̃ to

deduce that lim
x→1−

f̃

f̃ (1)
(x) = 0.

De�ne b(x) :=
6pK + 1

f(x)
− 2(p+ 1)

∫ x

0

f(t)3 dt

f(x)3
+

4e3F (0)

f(x)3
for x ∈ [0, 1]. Then b ∈ C ([0, 1])

and lim
x→1−

b(x) = 0. Hence B :=

∫ 1

·
b(t) dt is well de�ned and B ∈ C1 ([0, 1]). Let x ∈]0, 1[.

We integrate between x and 1 to obtain:

(2p− 1)
x

f(x)
+ (2p− 1)

∫ 1

x

dt

f(t)
+

2pK

f(x)2
=

∫ 1

x

(
(2p− 1)t+

4pK

f(t)

)
f (1)

f 2
(t) dt,

=
2p− 1

2
(1− x2) +B(x),

(2p− 1)

(
1 +

2pK

f(x)

)
x

f(x)(1− x)
+ (2p− 1)

∫ 1

x

dt

f(t)

1− x
=

2p− 1

2
(1 + x) +

B(x)

1− x
. (3.14)

Note that

∫ 1

·

dt

f(t)
is the primitive of the function 1

f
∈ C (]0, 1]), so that lim

x→1−

∫ 1

x

dt

f(t)

1− x
= 0.

Likewise by construction of B we have lim
x→1−

B(x)

1− x
= 0, therefore we can let x tend to 1−

in Equation (3.14) to deduce lim
x→1−

2p− 1

f(x)(1− x)
= lim

x→1−
(2p−1)

(
1 +

2pK

f(x)

)
x

f(x)(1− x)
=

2p− 1, hence lim
x→1−

f(x)(1− x) = 1.
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Proposition 3.20 directly gives the asymptotic behaviour of Z, and also an asymptotic

expansion of F :

Corollary 3.21. We have: lim
x→1−

(1 − x)3Z(x) =
2p− 1

4
, and F (x) = Log

(
1

1− x

)
+

Log
(

2p−1
4

)
3

+ o (1)
x→1−

.

Proof of Corollary 3.21. Proposition 3.20 and the de�nition of the function Z directly

gives the �rst result. We apply formula (3.11) to deduce that lim
x→1−

(
(1− x)eF (x)

)3
=

2p− 1

4
, hence lim

x→1−
F (x)− Log

(
1

1− x

)
=
Log

(
2p−1

4

)
3

, hence the second result.

Corollary 3.21 is enough to deduce the asymptotic behaviour of the potential g, or

equivalently its volume form (see Proposition 3.16). In order to estimate the curvatures of

the Kähler-Einstein metric, we also need the asymptotic behaviour of higher derivatives

of F at x = 1−. We have the following:

Proposition 3.22. For every integer k ∈ N, one has the following:

lim
x→1−

(1− x)k+3Z(k)(x) =
2p− 1

8
(k + 2)! and lim

x→1−
f (k)(x)(1− x)k+1 = k!.

Proof. Proof of Proposition 3.22 We argue by induction. Proposition 3.20 and Corollary

3.21 ensure that the formulas are true for k = 0. Let k ≥ 0 be an integer and assume

that the formulas are true for any integer 0 ≤ l ≤ k. We di�erenciate Equation (3.12)

k + 1 times to obtain Z(k+1) =
(
Z(1)

)(k)
= 3

∑k
l=0

(
k
l

)
f (l)Z(k−l), hence the following:

(1− x)k+4Z(k+1)(x)

3
−→
x→1−

k∑
l=0

(
k

l

)
lim
x→1−

(
(1− x)l+1f (l)(x)

)
lim
x→1−

(
(1− x)k−l+3Z(k−l)(x)

)
,

=
2p− 1

8

k∑
l=0

(
k

l

)
l!(k + 2− l)!,

=
2p− 1

8
k!

k∑
l=0

(k + 2− l)(k + 1− l),

=
2p− 1

8
k!

k+1∑
l=1

l(l + 1) =
2p− 1

8
(k + 3)!.
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We di�erentiate Equation (3.12) k times to obtain:

(k + 2)!

2
= lim

x→1−
4(1− x)k+3 Z(k)

2p− 1
(x)

= lim
x→1−

k∑
l=0

(
k

l

)(
(1− x)l+2f (l+1)(x)

) (
(1− x)k+1−lf (k−l)(x)

)
=

k−1∑
l=0

(
k

l

)
(l + 1)!(k − l)! + lim

x→1−

(
(1− x)k+2f (k+1)(x)

)
= k!

k−1∑
l=0

(l + 1) + lim
x→1−

(
(1− x)k+2f (k+1)(x)

)
=
k(k + 1)!

2
+ lim

x→1−

(
(1− x)k+2f (k+1)(x)

)
,

hence lim
x→1−

(
(1− x)k+2f (k+1)(x)

)
=

(k + 2)!

2
− k(k + 1)!

2
= (k + 1)! as stated.

Remark 3.23. • We do not have an aymptotic expansion of F or e−F to higher order.

We conjecture that:

∃(ηk)k∈N ∈ C∞ ([0, 1])N , e−F (x) ∼
x→1−

(1− x)
+∞∑
k=0

ηk
(
(1− x)3Log(1− x)

)k
, (3.15)

with lim
x→1−

η1(x) 6= 0 except for p = 1. Especially, apart from the case of the ball (p = 1),

one would have e−F /∈ C4 ([0, 1]) so that the regularity given in Proposition 3.15 would

be almost optimal.

Conjecture (3.15) is motivated by results of J. Lee and R. Melrose and of R. Graham

in the case of smooth strictly pseudoconvex domains, and by J. Kamimoto in the case

of the Bergman metric in tube domains (see [28, 34, 45]).

3.2.5 Holomorphic bisectional curvatures when X −→ 0

We estimate the holomorphic bisectional curvatures of the Kähler-Einstein metric g that

we denote by Bis(z; v, w) (or by Bis(v, w) if we omit the point at which we compute

it) for the rest of this section. The following Proposition simpli�es the expression of the

holomorphic bisectional curvatures in tube domains:

Proposition 3.24. Let v = (v1, v2) ∈ C2, w = (w1, w2) ∈ C2 such that |v|g = |w|g = 1.

Let α ∈ R, respectively β ∈ R satisfying v1v2 = |v1v2| eiα, respectively w1w2 = |w1w2| eiβ.
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Then the following holds on Tp:

Bis(v, w) = R11̄11̄|v1|2|w1|2

+2R11̄12̄|v1||w1|(|v1||w2|cos(β) + |v2||w1|cos(α))

+R11̄22̄(|v1|2|w2|2 + |v2|2|w1|2 + 2|v1||v2||w1||w2|cos(α− β))

+2R12̄12̄|v1||v2||w1||w2|cos(α + β)

+2R12̄22̄|v2||w2|(|v1||w2|cos(α) + |v2||w1|cos(β))

+R22̄22̄|v2|2|w2|2.

(3.16)

Proof of Proposition 3.24. From the expression of the curvature coe�cients (1.7) and

the fact that g and all its complex derivatives are real numbers we derive that for 1 ≤
i, j, k, l ≤ 2, one has Rij̄kl̄ = Rkj̄il̄ = Rjīlk̄. Hence we can simplify formula (1.9) by

gathering the terms depending on the number of 2 occuring in the 4-uple (i, j, k, l):

Bis(v, w) = R11̄11̄|v1|2|w1|2

+R11̄12̄

(
|v1|2(w1w2 + w1w2) + (v1v2 + v1v2)|w1|2

)
+R11̄22̄

(
|v1|2|w2|2 + |v2|2|w1|2 + v1v2w1w2 + v1v2w1w2

)
+R12̄12̄ (v1v2w1w2 + v1v2w1w2)

+R12̄22̄

(
(v1v2 + v1v2)|w2|2 + |v2|2(w1w2 + w1w2)

)
+R22̄22̄|v2|2|w2|2,

= R11̄11̄|v1|2|w1|2

+ 2R11̄12̄|v1||w1|(|v1||w2|cos(β) + |v2||w1|cos(α))

+R11̄22̄(|v1|2|w2|2 + |v2|2|w1|2 + 2|v1||v2||w1||w2|cos(α− β))

+ 2R12̄12̄|v1||v2||w1||w2|cos(α + β)

+ 2R12̄22̄|v2||w2|(|v1||w2|cos(α) + |v2||w1|cos(β))

+R22̄22̄|v2|2|w2|2.

First we compute the curvature coe�cients at the origin in the following:
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Proposition 3.25. The curvature coe�cients satisfy the following at the origin:

R11̄11̄ = −32p3K,

R12̄12̄ = (p− 1)f (1)(0),

R11̄22̄ = −pf (1)(0),

R22̄22̄ =

(
−3 +

1

K

)
f (1)(0)2

16
,

all the other coe�cients being equal to 0.

Proof of Proposition 3.25. Recall that F is an even function, hence f = F (1) = g2(0, ·)
is an odd function. From this we directly deduce that the following quantities vanish at

the origin:

g12, g112, g222, g1112, g1222,

and since g depends only on the real parts of its arguments, the same quantities with

conjugate on some of the indices also vanish at the origin. From the relation (1.7) we

deduce that the curvature coe�cients satisfy the following at z = 0:

R11̄11̄ = −g11̄11̄ + g111̄g
11̄g11̄1̄,

R12̄12̄ = −g12̄12̄ + g111̄g
11̄g12̄2̄,

R11̄22̄ = −g11̄22̄ + g122̄g
22̄g21̄2̄,

R22̄22̄ = −g22̄22̄ + g221̄g
11̄g12̄2̄,

R11̄12̄ = R12̄22̄ = 0.

We use formula (3.10) to compute the derivatives of g at the origin. We have, at z = 0:

[
gij̄
]

=


4pK 0

0 f (1)(0)
4

 , [gij̄] =


1

4pK
0

0 4
f (1)(0)

 ,

g11̄1 = 16p2K, g122 =
f (1)(0)

2
, g11̄11̄ = 96p3K, g11̄22̄ = (p+ 1)f (1)(0), g22̄22̄ =

f (3)(0)

16
.
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Thus we obtain:

R11̄11̄ = −32p3K,

R12̄12̄ = (p− 1)f (1)(0),

R11̄22̄ = −pf (1)(0),

R22̄22̄ = −f
(3)(0)

16
+
f (1)(0)2

16pK
.

According to Equation (3.12), we have Z(2)(0) = 3f (1)(0)Z(0), that is 4pKf (3)(0) + 4(p−
1)f (1)(0)2 = 12pKf (1)(0)2, hence R22̄22̄ =

(
−3 + 1

K

)
f (1)(0)2

16
.

From the computations of Proposition 3.25 we deduce the precises upper and lower

bounds for the holomorphic bisectional curvatures and holomorphic sectional curvatures

at the origin. Before proving them, we need the following lemma:

Lemma 3.26. Let −3 < A < −3
2
and B ≥ 0 and de�ne

C : [−1, 1]2 −→ R

(x, y) 7−→
A (x2y2 + (1− x2)(1− y2))

− (3 + A) (x2(1− y2) + y2(1− x2))

+2 (3 + A+B)x
√

1− x2y
√

1− y2.

Then:

max
0≤x,y≤1

C(x, y) = max

{
−(3 + A),

A+B

2

}
,

min
0≤x,y≤1

C(x,−y) = min
0≤x≤1

C(x,−x) = min

{
A,−3− A+B

2

}
,

Proof of Lemma 3.26. Observe that C ∈ C ([−1, 1]2) ∩ C∞ (]− 1, 1[2). Trivial computa-

tions give min
∂([−1,1]2)

C = C(0, 0) = A and max
∂([−1,1]2)

C = C(1, 0) = −(3 + A). We study the

critical values of C on ] − 1, 1[2. Let (x, y) ∈] − 1, 1[2 be such that d(x,y)C = 0. This is

equivalent to
∂C

∂x
(x, y) =

∂C

∂y
(x, y) = 0, that is:


(3 + 2A)x(2y2 − 1) + (3 + A+B)y

√
1− y2

1− 2x2

√
1− x2

= 0

(3 + 2A)y(2x2 − 1) + (3 + A+B)x
√

1− x2
1− 2y2√

1− y2
= 0.

setting λ :=
3 + 2A

3 + A+B
< 0, this amounts to
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λx
√

1− x2(2y2 − 1) = −y
√

1− y2(1− 2x2)

1

λ
x
√

1− x2(2y2 − 1) = −y
√

1− y2(1− 2x2).
(3.17)

In particular since −1 < x, y < 1 this implies that either λ2 = 1 or x(2y2 − 1) = 0.

We �rst deal with the case λ2 6= 1.

If x = 0 then from (3.17) we deduce that y = 0, and C(0, 0) = min∂([−1,1]2) C. If

2y2 = 1, then from (3.17) we deduce that 2x2 = 1. Computations yields:

C

(
−1√

2
,
−1√

2

)
= C

(
1√
2
,

1√
2

)
=
A+B

2
, C

(
−1√

2
,

1√
2

)
= C

(
1√
2
,
−1√

2

)
= −3−A+B

2
,

so that we obtain the conclusion for points 1. and 2. by comparing with the values of C

on ∂ ([−1, 1]2).

Now assume that λ2 = 1, meaning 3+2A = −(3+A+B). Then C takes the following

simpler expression

C(x, y) = A
(
xy −

√
1− x2

√
1− y2

)2

− (3 + A)
(
x
√

1− y2 + y
√

1− x2
)2

.

For −1 ≤ x, y ≤ 1, let −π < θ, ϕ ≤ π such that x = cos(θ) and y = cos(ϕ). Then we see

that

C(x, y) = Acos(θ − ϕ)2 − (3 + A)sin(θ − ϕ)2 = A− (3 + 2A)sin(θ − ϕ)2,

thus we obtain the same conclusion as in the case λ2 6= 1. This concludes the proof.

Proposition 3.27. Let v, w ∈ C2 \ {0} be two vectors. Then we have:

−3 +
3

2p+ 1
≤ Bis(0; v, w) ≤ − 3

2p+ 1
and H(0; v) ≤ −3

2
− 1

2pK
.

Moreover,

Bis(0; (1, 0), (1, 0)) = −3 +
3

2p+ 1
, Bis(0; (1, 0), (0, 1)) = − 3

2p+ 1
,

H

(
0;

(
1√

4pK
,

√
f (1)(0)

2

))
= −3

2
− 1

2pK
.

Proof of Proposition 3.27. In this proof, all the computations are implicitly done at z = 0.

In order to apply Lemma 3.26, we set A := −3 +
3

2p+ 1
and B :=

p− 1

pK
. Using
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Proposition 3.25 we have:

R11̄11̄

g2
11̄

= −2p

K
= A,

R22̄22̄

g2
22̄

= −2p

K
= A,

R11̄22̄

g11̄g22̄

= −(3 + A),

R12̄12̄

g11̄g22̄

=
p− 1

pK
= B.

Let v, w ∈ C2 be two vectors satisfying |v|g = |w|g = 1, and let α, β ∈ R be such that

v1v2 = |v1| |v2| eiα and w1w2 = |w1| |w2| eiβ. Then we have:

Bis(v, w) = R11̄11̄|v1|2|w1|2 +R11̄22̄(|v1|2|w2|2 + |v2|2|w1|2 + 2|v1||v2||w1||w2|cos(α− β))

+ 2|v1||v2||w1||w2|R12̄12̄cos(α + β) +R22̄22̄|v2|2|w2|2

= A
(
g2

11̄|v1|2|w1|2 + g2
22̄|v2|2|w2|2

)
− (3 + A)g11̄g22̄(|v1|2|w2|2 + |v2|2|w1|2)

+ 2g11̄g22̄|v1||v2||w1||w2| (Bcos (α + β)− (3 + A)cos(α− β)) .

Noting that the particular case α = β =
π

2
respectively α =

π

2
= −β gives the minimium,

respectively the maximum, of Bis(v, w) with respect to α, β we deduce

A
(
g2

11̄|v1|2|w1|2 + g2
22̄|v2|2|w2|2

)
− (3 + A)g11̄g22̄(|v1|2|w2|2 + |v2|2|w1|2)

− 2 (B + (3 + A)) g11̄g22̄|v1||v2||w1||w2|

≤Bis(v, w)

≤A
(
g2

11̄|v1|2|w1|2 + g2
22̄|v2|2|w2|2

)
− (3 + A)g11̄g22̄(|v1|2|w2|2 + |v2|2|w1|2)

+ 2 (B + (3 + A)) g11̄g22̄|v1||v2||w1||w2|.

We set x :=
√
g11̄ |v1|, y :=

√
g11̄ |w1| so that the above inequalities rephrase into

C(x,−y) ≤ Bis(v, w) ≤ C(x, y),

where C is the function de�nied in Lemma 3.26. We apply Lemma 3.26 and obtain the

extremas for the bisectional curvatures at the origin and also the minimum for the holo-

morphic sectional curvatures. For the maximum of the holomorphic sectional curvatures,

we set x2 := t to obtain

H(v) = Bis(v, v) ≤ A
(
t2 + (1− t)2

)
− 2(3 + A)t(1− t) + 2 (B − (3 + A)) t(1− t)

= 2(B − 3(A+ 2))t(1− t) + A.
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Since B − 3(A + 2) ≥ −3(A + 2) > 0, the maximum of the polynomial function P :

t 7→ 2(B − 3(A + 2))t(1 − t) + A on [0, 1] is achieved at t = 1
2
. Hence we deduce

max
|v|g=1

H(v) =
−3− 1

K
+ p−1

pK

2
= −3

2
− 1

2pK
.

We can deduce from Proposition 3.27 part of Theorem 3.2:

Theorem 3.28. There exist positive constants 0 < c ≤ C and α > 0 such that

∀v, w ∈ C2 \ {0}, ∀z ∈ {|X| ≤ α}, −C ≤ Bis (z; v, w) ≤ −c.

Proof of Theorem 3.28. Since the map

]−1, 1[× S(0, 1)2 −→ R

(x, v, w) 7−→ Bis((0, x); v, w)

is continuous, it is uniformly continuous on every subset of the form J × S(0, 1)2 where

J ⊂]− 1, 1[ is a compact set. Especially, we deduce that for every positive number ε > 0

there exists a positive constant α > 0 such we have the following:

∀(x, v, w) ∈ [−α, α]× S(0, 1)2, |Bis((0, x); v, w)−Bis(0; v, w)| ≤ ε,

and consequently, according to (1.10)

∀x ∈ [−α, α], sup
v,w∈Cn\{0}

|Bis((0, x); v, w)−Bis(0; v, w)| ≤ ε. (3.18)

Take ε :=
3

2(2p+ 1)
and let α > 0 be such that (3.18) holds and let z ∈ {|X| ≤ α}. Let

v, w ∈ Cn \ {0} and set v(z) := ∂zψ
(z)(v), w(z) := ∂zψ

(z)(w). Using the transformation

formula (1.13) and Proposition 3.27 we have:

Bis (z; v, w) = Bis
(
(0, X(z)) ; v(z), w(z)

)
= Bis

(
(0, X(z)) ; v(z), w(z)

)
−Bis

(
0; v(z), w(z)

)
+Bis

(
0; v(z), w(z)

)
≤ sup

v,w∈Cn\{0}
|Bis ((0, X(z)) ; v, w)−Bis (0; v, w)| − 3

2p+ 1

≤ − 3

2(2p+ 1)
,

and likewise we prove that −3 +
1

2p+ 1
≤ Bis (z; v, w). We obtain the conclusion of

Theorem 3.28 by taking c =
3

2(2p+ 1)
and C = 3 +

1

2p+ 1
.

Remark 3.29. A careful examination of the proof of Theorem 3.28 shows that

∀v, w ∈ Cn \ {0}, −3 +
1

K
≤ lim inf

X(z)→0
Bis(z; v, w) ≤ lim sup

X(z)→0

Bis(z; v, w) ≤ − 1

K
.
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3.2.6 Holomorphic bisectional curvatures when |X| −→ 1

In this subsection, we use the asymptotic behaviour of F obtained in Proposition 3.22 up

to order 4 to prove the other part of Theorem 3.2. It will follow from the computation

of limx→1− Bis((0, x); v, w):

Theorem 3.30. There exist positive constants 0 < c ≤ C and α > 0 such that

∀v, w ∈ C2 \ {0}, ∀z ∈ {|1− |X|| ≤ α}, −C ≤ Bis (z; v, w) ≤ −c.

Proof of Theorem 3.30. Because of the invariance of Tp under the symmetry s introduced

in Proposition 3.12, it is enough to prove that there exist positive constants 0 < c ≤ C

and 0 < α < 1 such that:

∀v, w ∈ C2 \ {0}, ∀z ∈ {1− α ≤ X < 1}, −C ≤ Bis (z; v, w) ≤ −c.

First we prove the following:

lim
x→1−

sup
v,w∈C2\{0}

Bis((0, x); v, w) + 1 +

∣∣∣〈v, w〉(0,x)

∣∣∣2
|v|2(0,x) |w|

2
(0,x)

 = 0. (3.19)

The conclusion then follows from the invariance property 1.13. In the sequel, functions

on Tp are computed at the point (0, x), and functions on ] − 1, 1[ are computed at the

point x with 0 < x < 1.

First we prove that
Rij̄kl̄

f 4
∼

x→1−
−2XiXj̄XkXl̄ and

gij̄gkl̄ + gil̄gkj̄
f 4

∼
x→1−

−2XiXj̄XkXl̄.
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Let 1 ≤ i, j, k, l, α, β ≤ 2. We di�erentiate relation (3.10) to obtain:

gij̄ = f (1)XiXj̄ + fXij̄ +
K

p
Log

(
1

1−Re(4pz1)

)
ij̄

,

Zgαβ̄ = (−1)α+β

(
f (1)X3−αX3−β + fX3−α3−β +

K

p
Log

(
1

1−Re(4pz1)

)
3−α3−β

)
,

gij̄k = f (2)XiXj̄Xk + f (1)
(
Xij̄Xk +XikXj̄ +Xkj̄Xi

)
+ fXij̄k +

K

p
Log

(
1

1−Re(4pz1)

)
ij̄k

,

gij̄kl̄ = f (3)XiXj̄XkXl̄

+ f (2)
(
Xij̄XkXl̄ +XikXj̄Xl̄ +Xil̄Xj̄Xk +Xkj̄XiXl̄ +Xkl̄XiXj̄ +Xj̄ l̄XiXk

)
+ f (1)

(
Xij̄kXl̄ +Xij̄l̄Xk +Xikl̄Xj̄ +Xj̄kl̄Xi +Xij̄Xkl̄ +XikXj̄ l̄ +Xil̄Xkj̄

)
+ fXij̄kl̄ +

K

p
Log

(
1

1−Re(4pz1)

)
ij̄kl̄

∼
x→1−

f (3)XiXj̄XkXl̄,

∼
x→1−

6f 4XiXj̄XkXl̄.

In the expression gikᾱg
αβ̄gβj̄l̄, the contribution from a term of the form (−1)αXᾱX3−α or

(−1)βXβX3−β is 0. Thus, the leading term in
∑

1≤α,β≤2

gikᾱg
αβ̄gβj̄l̄ as x tends to 1− is:

(
f (2)
)2
f

Z
XiXj̄XkXl̄

∑
1≤α,β≤2

(−1)α+βX3−α3−βXᾱXβ =

(
f (2)
)2
f

Z
XiXj̄XkXl̄

2p− 1

4
,

∼
x→1−

4f 4XiXj̄XkXl̄.

Therefore we deduce that Rij̄kl̄ ∼
x→1−

−2f 4XiXj̄XkXl̄. Moreover we have gij̄ ∼
x→1−

f 2XiXj̄,

which leads to gij̄gkl̄ + gil̄gkj̄ ∼
x→1−

2f 4XiXj̄XkXl̄. Hence:

sup
v,w∈C2\{0}

Bis((0, x); v, w) + 1 +

∣∣∣〈v, w〉(0,x)

∣∣∣2
|v|2(0,x) |w|

2
(0,x)



= sup
v,w∈C2\{0}

∑
1≤i,j,k,l≤2

(
Rij̄kl̄

f(x)4
+
gij̄gkl̄ + gil̄gkj̄

f(x)4

)
vivjwkwl( ∑

1≤i,j≤2

gij̄(0, x)

f(x)2
vivj

)( ∑
1≤i,j≤2

gij̄(0, x)

f(x)2
wiwj

) ,
−→
x→1−

0,
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hence formula (3.19). Since for every v, w ∈ C2 \ {0} and every point z ∈ Tp we have

−2 ≤ −1− |〈v, w〉z|
2

|v|2z |w|
2
z

≤ −1,

we may conclude as in the end of the proof of Theorem 3.28.

3.3 Behaviour of the Kähler-Einstein metric in some

convex domains

In this section we use the estimates of the holomorphic bisectional curvatures of the

Kähler-Einstein metric in tube domains and in Thullen domains to prove Theorem 3.3.

In the proof of Theorem 3.3 we use an other invariant metric, namely the Kobayashi

metric. We brie�y recall some results about the Kobayashi metric which are needed in

our proof of Theorem 3.3.

For a domain D ⊂ Cn, a point z ∈ D and a vector v ∈ Cn \ {0} the Kobayashi pseudo-
metric at point z and vector v is de�ned by :

KobD (z, v) := inf {|ξ| , ∃f ∈ H (∆, D) satisfying f(0) = z and ∂0f (ξ) = v} .

If D is a convex domain not containing a complex line, then KobD(z, v) > 0 for every

(z, v) ∈ D × (Cn \ {0}). We refer to [64] for more precise estimates of the Kobayashi

metric.

We will use the following result in the proof of Theorem 3.3 (see [26]) let (Dν)ν∈N be

a sequence of bounded convex sets with boundary of class C∞. Assume that (Dν)ν∈N

converges in the local Hausdor� topology to a C-proper convex domain D∞, and let

K ⊂ D∞ be a compact set. Then there exists an integer νK ∈ N such that for every

integer ν ≥ νK one has K ⊂ Dν , and the sequence
(
KobDν

)
ν≥νK

converges uniformly to

KobD∞ on K × S (0, 1). In that case we say that
(
KobDν

)
ν∈N converges uniformly on

compact sets of D∞ to KobD∞ .

In the following, for a domain D ⊂ C2, we use the notation gD to denote the Kähler-

Einstein potential of D solution of Equation (2.2) with boundary condition (2.4), and

BisD to denote its holomorphic bisectional curvatures.

We have all the tools to prove Theorem 3.3:
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Proof of Theorem 3.3. We use a rescaling method to change the study of the bound-

ary behaviour of the holomorphic bisectional curvatures into the study of the interior

convergence for the sequence of the rescaled Kähler-Einstein metrics.

Our hypothesis on the local expression of ∂D at q and the convexity of D imply that

there exist an a�ne map ψ ∈ Aut (C2) and a neighbourhood U of q such that ψ (q) = 0

and

ψ (D ∩ U) =
{
Re(z1) +H (z2) +O

(
|z2|2p+1 + |z1| |z|

)
< 0
}
∩ ψ (U) ,

with either H(z) = |z|2p or H(z) = Re (z)2p for every z ∈ C (see also point 2. of

Remark 1.14). Since ψ maps D to ψ (D) biholomorphically, we have the following by the

invariance property of the Kähler-Einstein metric:

∀z ∈ D, ∀v, w ∈ C2 \ {0}, BisD (z; v, w) = Bisψ(D) (ψ (z) ; ∂zψ (v) , ∂zψ (w)) .

Moreover the sequence
(
ψ
(
z(ν)
))
ν∈N converges non tangentially to ψ (q) = 0 because ψ

is an a�ne invertible map. Thus up to replacing D with ψ (D) and U with ψ (U) we may

assume that q = 0 and D ∩ U =
{
Re(z1) +H (z2) +O

(
|z2|2p+1 + |z1| |z|

)
< 0
}
∩ U .

In this setting the condition of non-tangential convergence of
(
z(ν)
)
ν∈N ∈ D

N means that−Re
(
z

(ν)
1

)
|zν |


ν∈N

is bounded from below by a positive constant, thus up to taking a

subsequence we may assume that

(
z(ν)

|z(ν)|

)
ν∈N

converges to a point z(∞) with Re
(
z

(∞)
1

)
<

0. Let

Λ(ν) : C2 −→ C2

z 7−→

 z1 − z(ν)
1

Re
(
−z(∞)

1

)
|z(ν)|

,
z2 − z(ν)

2(
Re
(
−z(∞)

1

)
|z(ν)|

) 1
2p

 ,

and set Dν := Λ(ν) (D). From results in [25], (Dν)ν∈N converges to the C-proper convex

domain D∞ := {Re(z1) +H (z2) < 1} in the local Hausdor� topology. From results in

[26] we deduce that the sequence
(
KobDν

)
ν∈N converges uniformly on compact sets of

D∞ to KobD∞ .

Also, observe that Λ(ν)
(
z(ν)
)

= 0. Using this and the transformation formula (1.13),

we obtain for every z ∈ D and v, w ∈ C2 \ {0}:

BisD
(
z(ν);

(
∂z(ν)Λ(ν)

)−1
(v),

(
∂z(ν)Λ(ν)

)−1
(w)
)

= BisDν (0; v, w) . (3.20)
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Assume momentarily that for every compact K ⊂ D∞ the sequence
(
g(ν)
)
ν≥νK

converges

to the Kähler-Einstein potential gD∞ of D∞ in C4 (K). Then according to formula (1.7)

and relation (3.20) we deduce:

sup
v,w∈C2\{0}

∣∣∣BisD (z(ν);
(
∂z(ν)Λ(ν)

)−1
(v),

(
∂z(ν)Λ(ν)

)−1
(w)
)
−BisD∞ (0; v, w)

∣∣∣ −→
ν→∞

0,

so that we obtain Theorem 3.3 using relation (1.10), Theorem 3.2 and results in [5]. Thus

it remains to prove that for every compact K ⊂ D∞ the sequence
(
g(ν)
)
ν≥νK

converges

to the Kähler-Einstein potential gD∞ of D∞ in C4 (K). In fact we prove that for every

integer k ∈ N, the sequence
(
g(ν)
)
ν≥νK

converges to gD∞ in Ck (K). Observe that by

uniqueness of the Kähler-Einstein potential gE,D∞ and by the theorem of Arzelà-Ascoli

it is enough to prove that for every integer k ∈ N the sequence
(
g(ν)
)
ν≥νK

is bounded

in Ck (K) (see the discussion preceding Lemma 2.7 for details). Thus we are interested

in obtaining Ck (K) estimates of the family
(
g(ν)
)
ν≥νK

of solutions to equation (2.2).

It relies on obtaining estimates of Sobolev norms of the sequences
(
Log

∣∣∣gDνij̄ ∣∣∣)
ν∈N

and(
∆gDν

)
ν∈N on bounded subdomains of D∞, where ∆ denotes the Laplacian operator for

the Euclidean metric on C2 (see the proof in [57, Lemma 3] for more details).

Since D is a bounded convex domain with boundary of class C∞, it follows from [38] that

there exists a number 0 < a such that D satis�es the a-squeezing property. Since Dν is

biholomorphic to D, Dν also satis�es the a-squeezing property. From Proposition 3 in

[57] we deduce that there exist constants 0 < c ≤ C such that for every integer ν ∈ N

we have cKobDν ≤
[
gDν
ij̄

]
≤ CKobDν on Dν in the sense that for every z ∈ Dν and every

v ∈ C2 the inequalities cKobDν (z, v) ≤ |v|Dνz ≤ CKobDν (z, v) hold. Moreover since the

sequence of bounded convex sets (Dν)ν∈N converges to the convex set D∞ in the local

Hausdor� topology, the sequence
(
KobDν

)
ν∈N converges uniformly on compact sets of D∞

to KobD∞ . Therefore we obtain the uniform estimates by following line by line the proof

of Lemma 3 in [57] (by replacing the balls Ba
2
(x), Ba(x) with bounded domains included

in D∞).

Remark 3.31. If D ⊂ C2 is a smoothly bounded convex domain with boundary point of

in�nite type q, there exists a sequence of points in D converging to q non tangentially

such that the limit domain is biholomorphic to the bidisc. In particular the holomorphic

bisectional curvatures of the Kähler-Einstein metric are not uniformly bounded from above

by a negative constant along that sequence. The same phenomenon holds for the Bergman

metric.
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3.4 Partial results for the study of the Kähler-Einstein

metric in postive model domains

Let p ∈ N∗ be an integer, and let H be a real valued homogenous polynomial of degree

2p, subharmonic and not harmonic in C. Let DH := {Re(4pz1)+H(z2) < 1}. We assume

that DH admits a complete Kähler-Einstein metric induced by a potential g satisfying

Equation (2.2) with boundary condition (2.4) on DH . For simplicity we also assume that

H is positive on C∗. This is the case if DH is convex and not biholomorphic to a tube

domain (see Lemma 1.16). Nonetheless the forthcoming study can easily be adapted to

any pseudoconvex domain of the form DH without restriction on the sign of H. In this

Section we study the behaviour of g on DH . To do so we adapt the ideas developped in

Section 3.2 and use some notations introduced therein. We also refer to Section 1.3 for

information regarding the geometry of DH .

Denote by πC
2 the map

πC
2 : C2 −→ R

(z1, z2) 7−→ z2.

and set X :=
πC

2

(1− 4pπR
1 )

1
2p

. This function is well de�ned on the set {z ∈ C2/Re(4pz1) <

1} which contains DH . It satis�es the following properties:

• X ∈ C∞ ({z ∈ C2/Re(4pz1) < 1}),

• ∀F ∈ Aut(DH), ∀z ∈ DH , X(F (z)) = X(z),

• DH = (H ◦X)−1 ([0, 1[).

Remark 3.32. In comparison to the cases of Thullen domains and tube domains, we

do not know if (H ◦X)|{0}×H−1([0,1[[) is injective (for instance take H(z) = Re(z)pIm(z)p

with p ∈ 2N∗). Thus we cannot think of H ◦X as a parametrization of the orbits of DH

under the action of its automorphism group.

3.4.1 The Kähler-Einstein condition and two di�erential equa-

tions satis�ed by F

Let

F : H−1 ([0, 1[) −→ R

z 7−→ g(0, z),
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and de�ne K := 2p+1
3

. Then the following holds on DH :

g = F ◦X +
K

p
Log

(
1

1− 4pπR
1

)
. (3.21)

We use Equation (3.21) and the Monge-Ampère Equation (2.2) to obtain a �rst dif-

ferential equation satis�ed by the function F :

Proposition 3.33. Denote f := ∂F
∂z
. Then the metric

[
gij̄
]
satis�es the following on DH :

[
gij̄
]

=


2
|X|2 ∂f

∂z
◦X+Re(X2 ∂f

∂z
◦X)+(2p+1)Re(Xf◦X)+2pK

(1−4pπR
1 )2

X ∂f
∂z
◦X+X ∂f

∂z
◦X+f◦X

(1−4pπR
1 )

1+ 1
2p

X ∂f
∂z
◦X+X ∂f

∂z
◦X+f◦X

(1−4pπR
1 )

1+ 1
2p

∂f
∂z
◦X

(1−4pπR
1 )

1
p

 , (3.22)

Det(gij̄) =
Z(X)

(1− 4pπR
1 )

3K
p

, (3.23)

where the function Z is de�ned by

Z(z) :=

(
|z| ∂f

∂z
(z)

)2

+ 4p
∂f

∂z
(z) (Re(zf(z)) +K)−

∣∣∣∣z∂f∂z (z) + f(z)

∣∣∣∣2
for every z ∈ H−1 ([0, 1[). Moreover, Z satis�es the following:

Z = e3F on H−1 ([0, 1[). (3.24)

Proof of Proposition 3.33. On DH we have:

[Xi] =

 X
1−4pπR

1

1

(1−4pπR
1 )

1
2p

 , [
Xj̄

]
=

 X
1−4pπR

1

0

 , [
Xīj̄

]
=

(2p+ 1)X

(1− 4pπR
1 )2

E11,

[
Xij̄

]
=

 (2p+1)X

(1−4pπR
1 )2 0

1

(1−4pπR
1 )

1
2p+1

0

 , [Xij] =


(2p+1)X

(1−4pπR
1 )2

1

(1−4pπR
1 )

1
2p+1

1

(1−4pπR
1 )

1
2p+1

0

 .
Di�erentiating Equation (3.21), using the chain rule and the fact that F and ∂f

∂z
are real
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valued functions, we successively obtain:

[(F ◦X)i] = f ◦X [Xi] + f ◦X
[
X i

]
,

[
(f ◦X)j̄

]
=
∂f

∂z
◦X

[
X j̄

]
+
∂f

∂z
◦X

[
Xj̄

]
,
[(
f ◦X

)
j̄

]
=
∂f

∂z
◦X

[
X j̄

]
+
∂f

∂z
◦X

[
Xj̄

]
,

[
gij̄
]

=
∂f

∂z
◦X

[
XiX j̄

]
+
∂f

∂z
◦X

[
XiXj̄

]
+
∂f

∂z
◦X

[
X iX j̄

]
+
∂f

∂z
◦X

[
X iXj̄

]

+ f ◦X
[
Xij̄

]
+ f ◦X

[
X ij̄

]
+

4Kp

(1− 4pπR
1 )2

E11,

=


2
|X|2 ∂f

∂z
◦X+Re(X2 ∂f

∂z
◦X)+(2p+1)Re(Xf◦X)+2pK

(1−4pπR
1 )2

X ∂f
∂z
◦X+X ∂f

∂z
◦X+f◦X

(1−4pπR
1 )

1+ 1
2p

X ∂f
∂z
◦X+X ∂f

∂z
◦X+f◦X

(1−4pπR
1 )

1+ 1
2p

∂f
∂z
◦X

(1−4pπR
1 )

1
p

 .

Then we apply the function Det to Equation (3.22) and directly obtain Equation (3.23).

Finally, recall that according to Equations (2.2) and (3.21) one has on DH :

Det
(
gij̄
)

= e3g

= e3F◦X− 3K
p
Log(1−4pπR

1 )

=
e3F◦X

(1− 4pπR
1 )

2+ 1
p

,

hence Equation (3.24).

We do not have a generalisation of Proposition 3.17, nor an asymptotic expansion of

F as in Thullen domains and tube domains.

3.4.2 Curvatures estimates at the origin

We prove Theorem 3.4, which generalises the results obtained in the case of Thullen

domains and tube domains and reduces the study of the sign of these curvatures to the

study of the quantity
|g22|
g22̄

(0).
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Proof of Theorem 3.4. In this proof, all the functions are implicitly computed at z = 0

unless stated. First we simplify the expression of the curvature coe�cients. We use the

invariance of the Kähler-Einstein metric under the symmetry s to obtain g12̄ = g11̄2 =

g22̄2 = g11̄12̄ = g12̄22̄ = 0. Then we use relation (1.7) to deduce that R11̄12̄ = R12̄22̄ = 0.

Putting the Kähler-Einstein condition
[
Ric(g)ij̄

]
= −3

[
gij̄
]

= −3

 g11̄ 0

0 g22̄

 into rela-

tion (1.11) we also obtain:

− 3 =
R11̄11̄

g2
11̄

+
R11̄22̄

g11̄g22̄

=
R22̄11̄

g11̄g22̄

+
R22̄22̄

g2
22̄

=
R11̄22̄

g11̄g22̄

+
R22̄22̄

g2
22̄

. (3.25)

We use the invariance of the Kähler-Einstein metric under the dilations dλ (λ > 0) to

compute
R11̄11̄

g2
11̄

. From the expression of the curvature coe�cients (1.7) we have R11̄11̄ =

−g11̄11̄ +
|g111̄|2

g11̄

. Moreover from relation (3.21) we obtain at the origin g = F , g1 = 2K,

g11̄ = 4pK, g11̄1 = 16p2K and g11̄11̄ = 96p3K hence
R11̄11̄

g2
11̄

= −3 +
1

K
. We set A :=

R11̄11̄

g2
11̄

.

Observe that −3 < A < −3

2
.

Now we deal with R12̄12̄. Observe that at the origin relation (1.7) gives R12̄12̄ =

−g12̄12̄ +
g111̄g12̄2̄

g11̄

. We use relation (3.22) to compute g12̄12̄ and g12̄2̄. Since we want to

compute the coe�cients at z = 0 we may look at gij̄(0, z2) for suitable indices i, j, then

di�erenciate with respect to z2 and specify at z2 = 0. For instance we have g12̄(0, z2) =

z2g22̄(0, z2) + z2g2̄2̄(0, z2) + g2̄(0, z2) for z2 ∈ C small, hence by applying
∂

∂z2

and putting

z2 = 0 we obtain g12̄2̄ = 2g2̄2̄. Using the "trick" g11(z) = g11̄(z) for all z ∈ DH we

obtain g12̄12̄ = 4(p + 1)g2̄2̄ in a similar fashion. Thus
R12̄12̄

g11̄g22̄

=
4(p− 1)

g11̄g22̄

=
(p− 1)

pK

g2̄2̄

g22̄

=

(p− 1)

pK

g22

g22̄

. We set B :=
(p− 1)

pK

∣∣∣∣g22

g22̄

∣∣∣∣ ≥ 0, and let γ ∈ R such that
R12̄12̄

g11̄g22̄

= Beiγ.

Let v = (v1, v2) ∈ C2, w = (w1, w2) ∈ C2 such that |v|g = |w|g = 1. Let α ∈ R be

an argument of v1v2 (respectively β ∈ R an argument of w1w2). Adapting the proof of

Proposition 3.24 we easily obtain:

Bis(v, w) = R11̄11̄|v1|2|w1|2 +R11̄22̄(|v1|2|w2|2 + |v2|2|w1|2 + 2|v1||v2||w1||w2|cos(α− β))

+ 2|v1||v2||w1||w2|Re
(
R12̄12̄e

i(α+β)
)

+R22̄22̄|v2|2|w2|2

= A
(
g2

11̄|v1|2|w1|2 + g2
22̄|v2|2|w2|2

)
− (3 + A)g11̄g22̄(|v1|2|w2|2 + |v2|2|w1|2)

+ 2g11̄g22̄|v1||v2||w1||w2| (Bcos (α + β + γ)− (3 + A)cos(α− β)) .

Noting that the particular case α = β =
π − γ

2
(respectively α = −π + γ

2
= β − π) gives
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the minimium (respectively the maximum) of Bis(v, w) with respect to α, β we deduce

A
(
g2

11̄|v1|2|w1|2 + g2
22̄|v2|2|w2|2

)
− (3 + A)g11̄g22̄(|v1|2|w2|2 + |v2|2|w1|2)

− 2 (B + (3 + A)) g11̄g22̄|v1||v2||w1||w2|

≤ Bis(v, w)

≤ A
(
g2

11̄|v1|2|w1|2 + g2
22̄|v2|2|w2|2

)
− (3 + A)g11̄g22̄(|v1|2|w2|2 + |v2|2|w1|2)

+ 2 (B + (3 + A)) g11̄g22̄|v1||v2||w1||w2|.

We set x :=
√
g11̄ |v1|, y :=

√
g11̄ |w1| so that the above inequalities rephrase into

C(x,−y) ≤ Bis(v, w) ≤ C(x, y),

where C is the function de�ned in Lemma 3.26. We apply Lemma 3.26 and obtain the

extrema for the bisectional curvatures at the origin and also the minimum for the holo-

morphic sectional curvatures. For the maximum of the holomorphic sectional curvatures,

we set x2 := t to obtain

H(v) = Bis(v, v) ≤ A
(
t2 + (1− t)2

)
− 2(3 + A)t(1− t) + 2 (B − (3 + A)) t(1− t)

= 2(B − 3(A+ 2))t(1− t) + A.

Since B − 3(A + 2) ≥ −3(A + 2) > 0, the maximum of the polynomial function P :

t 7→ 2(B − 3(A + 2))t(1 − t) + A on [0, 1] is achieved at t =
1

2
. Hence we deduce

max
v∈C2\{0}

H(0; v) =

−3− 1

K
+
p− 1

pK

|g22|
g22̄

2
. The proof is ended.

We notice that max
v,w∈C2\{0}

Bis(0; v, w) = max

(
− 1

K
, max
v∈C2\{0}

H(0; v) +
1

K

)
. Conse-

quently we have the following criterion

max
v,w∈C2\{0}

Bis(0; v, w) < 0⇐⇒ max
v∈C2\{0}

H(0; v) < − 1

K
⇐⇒ (p− 1)

|g22|
g22̄

(0) < 2p2.

Moreover we also have max
v∈C2\{0}

H(0; v) < 0⇐⇒ (p− 1)
|g22|
g22̄

(0) < 2p(p+ 1).
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Chapter 4

Study of the Bergman metric in

pseudoconvex complete Reinhardt

domains in C2

Abstract

We prove that the holomorphic bisectional curvatures of the Bergman metric of Thullen

domains and tube domains in C2 are negatively pinched on the axis {z2 = 0}. We use

these results to prove that for every bounded pseudoconvex complete Reinhardt domain

of �nite type in C2 there exists a neighbourhood of the boundary on which the holomor-

phic bisectional curvatures of the Bergman metric of the domain are negatively pinched.

Change of notations In this chapter we work only with the Bergman metric. Given an

open set U ⊂ Cn, we denote by K the Bergman kernel of U , and (whenever they are well

de�ned) by g, respectively 〈·, ·〉, H, Bis the potential, resepectively the hermitian scalar

product, the holomorphic sectional curvature, the holomorphic bisectional curvature of

the Bergman metric of U . When multiple open sets are considered at the same time, we

use the notations KU , respectively gU , 〈·, ·〉U , HU , BisU to avoid confusions.

Introduction

Years after the work of P. Klembeck regarding the curvatures of the Bergman metric in

strictly pseudoconvex domains with boundary of class C∞, K.-T. Kim and J. Yu. proved
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the following:

Theorem 4.1 (Theorem 1 in [37]). Let D ⊂ Cn be a bounded pseudoconvex domain, let

q ∈ ∂D such that there exists a neighbourhood U of q such that ∂D ∩ U is of class C2.

Moreover assume that q is a strictly pseudoconvex boundary point for ∂D. Then

lim
z→q

sup
v∈Cn\{0}

∣∣∣∣H(z; v) +
2

n+ 1

∣∣∣∣ = 0.

It was observed by many authors in the litterature (see for instance [35]) that a sim-

ilar result holds for the holomorphic bisectional curvatures. In particular every strictly

pseudoconvex boundary point q of a bounded pseudoconvex domain D with boundary

of class C∞ there exists a neighbourhood U of q such that the holomorphic bisectional

curvatures of the Bergman metric of D are negatively pinched in D ∩ U .
In comparison, the behaviour of the Bergman metric and its holomorphic bisectional

curvatures at weakly pseudoconvex boundary points is not clearly understood. In 1975

S. Kobayshi proved that the holomorphic sectional curvatures of any bounded pseudo-

convex domain in Cn are bounded from above by 2, in 1989 J. McNeal proved that the

holomorphic sectional curvatures of any bounded pseudoconvex domain of �nite type in

C2 are bounded, and recently S. Yoo proved that the holomorphic bisectional curvatures

of bounded pseudoconvex domains of �nite type in C2 and of bounded convex domains of

�nite type in Cn are bounded from below (see [40, 46, 58]). On the other hand G. Herbort

exhibited a bounded pseudoconvex domain of �nite type in C3 for which the holomorphic

sectional curvatures are not bounded from below (see [30]). However the question of the

existence of a negative upper bound for the holomorphic bisectional curvatures of the

Bergman metric of bounded pseudoconvex domains of �nite type in Cn is still relevant

and unanswered even in the simpler case of domains in C2 that we stick to from now on.

K. Azukawa and N. Suzuki studied the Bergman metric in Thullen domains Dp := {z ∈
C2, |z1| < 1, |z2|2 <

(
1− |z1|2

)p} (where p ∈ ]0, 1]) and proved that the maximum of

the holomorphic sectional curvatures of the Bergman metric is negative (see [2]). S. Fu

essentially proved in [22] that the holomorphic sectional curvatures of the Bergman met-

ric of tube domains T ′p = {z ∈ C2, Re (z1) + Re (z2)2p < 0} (where p ∈ N∗) are bounded

from above by a negative constant along the axis {z2 = 0}.
Thullen and tube domains (in their unbounded polynomial representation described in

Section 1.3) serve as local models for the boundary of complete Reinhardt domains. Re-

call that a domain D ⊂ Cn is complete Reinhardt if it satis�es (a1z1, · · · , anzn) ∈ D
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for every z ∈ D and a ∈ ∆n. Using this observation and the estimates of the Bergman

curvatures in the model domains, he proved the following:

Theorem 4.2 (Theorem 6.4 in [22]). Let D ⊂ C2 be a bounded pseudoconvex complete

Reinhardt domain with boundary of class C∞ and of �nite type. Then there exists a

neighbourhood U of ∂D and two constants 0 < c < C such that −C ≤ H ≤ −c on

D ∩ U × C2 \ {0}.

In this chapter we prove a version of the above theorem regarding the holomorphic

bisectional curvatures of the Bergman metric. To do so we �rst study the behaviour of

the holomorphic bisectional curvatures in the model domains and prove:

Theorem 4.3. Let p ∈ N∗. Then

−∞ < min
v,w∈C2\{0}

BisEp(0; v, w), max
v,w∈C2\{0}

BisEp(0; v, w) < 0,

−∞ < min
v,w∈C2\{0}

BisT
′
p((−1, 0); v, w), max

v,w∈C2\{0}
BisT

′
p((−1, 0); v, w) < 0.

We prove Theorem 4.3 in Section 4.1. In Section 4.2 we extend the result obtained

by S. Fu to the holomorphic bisectional curvatures, namely we prove:

Theorem 4.4. Let D ⊂ C2 be a bounded pseudoconvex complete Reinhardt domain with

boundary of class C∞ and of �nite type. Then there exists a neighbourhood U of ∂D and

two constants 0 < c < C such that −C ≤ Bis ≤ −c on D ∩ U × (C2 \ {0})2
.

4.1 Estimates of the Bergman curvatures in model do-

mains

Here we prove Theorem 4.3. We use the following result:

Lemma 4.5. Let D ⊂ C2 be a domain and let
[
gij̄
]
be a Kähler metric of class C2 on D.

Let z ∈ D. Assume that at point z the matrix
[
gij̄
]
is diagonal, the curvature coe�cients

Rij̄kl̄ are real numbers and that R11̄12̄ = R12̄22̄ = 0. Let v, w ∈ C2 to vector with unit

length with respect to the metric at point z. Then the holomorphic bisectional curvature
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Bis(v, w) of D with respect to
[
gij̄
]
at point z and between vectors v and w satis�es:

Bis(v, w) =
R11̄11̄

g2
11̄

x2y2

+
R11̄22̄

g11̄g22̄

(
x2
(
1− y2

)
+
(
1− x2

)
y2 + 2x

√
1− x2y

√
1− y2cos (α− β)

)
+2

R12̄12̄

g11̄g22̄

x
√

1− x2y
√

1− y2cos (α + β)

+
R22̄22̄

g2
22̄

(
1− x2

) (
1− y2

)
,

where x =
√
g11̄ |v1|, y =

√
g11̄ |w1|, α ∈ R satis�es v1v2 = |v1v2| eiα and β ∈ R satis�es

w1w2 = |w1w2| eiβ .

Proof of Lemma 4.5. From the expression of the curvature coe�cients (1.7) and the hy-

pothesis, we have for 1 ≤ i, j, k, l ≤ 2: Rij̄kl̄ = Rkj̄il̄ = Rjīlk̄. Hence we may simplify

formula (1.9) by gathering the terms depending on the number of 2 occuring in the

4-uple (i, j, k, l):

Bis(v, w) = R11̄11̄|v1|2|w1|2

+R11̄12̄

(
|v1|2(w1w2 + w1w2) + (v1v2 + v1v2)|w1|2

)
+R11̄22̄

(
|v1|2|w2|2 + |v2|2|w1|2 + v1v2w1w2 + v1v2w1w2

)
+R12̄12̄ (v1v2w1w2 + v1v2w1w2)

+R12̄22̄

(
(v1v2 + v1v2)|w2|2 + |v2|2(w1w2 + w1w2)

)
+R22̄22̄|v2|2|w2|2

= R11̄11̄|v1|2|w1|2

+R11̄22̄(|v1|2|w2|2 + |v2|2|w1|2 + 2|v1||v2||w1||w2|cos(α− β))

+ 2R12̄12̄|v1||v2||w1||w2|cos(α + β)

+R22̄22̄|v2|2|w2|2.

Moreover, from the fact that
[
gij̄
]
is diagonal at z and that v and w have unit length we

deduce g11̄ |v1|2 + g22̄ |v2|2 = 1, resepectively g11̄ |w1|2 + g22̄ |w2|2 = 1, hence
√
g22̄ |v2| =√

1− g11̄ |v1|2, respectively
√
g22̄ |w2| =

√
1− g11̄ |w1|2. Setting x =

√
g11̄ |v1| and y =

√
g11̄ |w1| we directly obtain the conclusion.
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We now prove Theorem 4.3. To do so we use computations done in [22] and [2]

respectively. It relies on the fact that the curvature coe�cients of the Bergman metric

satisfy the relations Rij̄kl̄ =
(
gij̄gkl̄ + gil̄gkj̄

)
− R̂ij̄kl̄ for every integers 1 ≤ i, j, k, l ≤ n,

where

R̂ij̄kl̄ =
KKij̄kl̄ −KikKj̄ l̄

K2
−

∑
1≤α,β≤n

gαβ (KKikα −KikKα)
(
KKjlβ −KjlKβ

)
K4

.

We prove the existence of negatives upper and lower bounds for the holomorphic

bisectional curvatures of the Bergman metric in the tube domain T ′p.

Proposition 4.6. Let p ∈ N∗. In the tube domain T ′p, one has

−∞ < min
v,w∈C2\{0}

Bis((−1, 0); v, w), max
v,w∈C2\{0}

Bis((−1, 0); v, w) < 0.

Proof. Notice that the biholomorphism z 7→ iz maps T ′p to{
z ∈ C2, Im (z1) + Im (z2)2p < 0

}
and sends (−1, 0) to (−i, 0) we may use the computations done in [22] by simply re-

placing the point (−i, 0) with (−1, 0). To simplify notations we write Bis(v, w) in-

stead of Bis((−1, 0); v, w). Because of relation (1.10), it is enough to prove that −∞ <

Bis(v, w) < 0 for every v, w ∈ C2 with unit length with respect to the Bergman metric

at point (−1, 0). At point z = (−1, 0) we have:

[
gij̄
]

=

 2p+1
4p

0

0 Bp
Ap

 ,
R̂11̄11̄ =

(2p+ 1)(3p+ 1)

8p2
, R̂11̄12̄ = 0, R̂11̄22̄ =

Bp

Ap

p+ 1

2p
,

R̂12̄12̄ = −Bp

Ap

p− 1

4p2
, R̂12̄22̄ = 0, R̂22̄22̄ =

B2
p

A2
p

(
λp − 1− 1

p(2p+ 1)

)
,

where Ap, Bp and λp are positive numbers (see the bottom of pages 412 and 414 in [22]

for their explicit de�nition). Hence the following relations:

R11̄11̄

g2
11̄

= − 2p

2p+ 1
,
R11̄22̄

g11̄g22̄

= − 1

2p+ 1
,

R12̄12̄

g11̄g22̄

=
p− 1

p(2p+ 1)
,
R22̄22̄

g2
22̄

= −
(
λp − 3− 1

p(2p+ 1)

)
,
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Applying Lemma 4.5 we obtain:

Bis(v, w) = − 2p

2p+ 1
x2y2

− 1

2p+ 1

(
x2
(
1− y2

)
+
(
1− x2

)
y2 + 2x

√
1− x2y

√
1− y2cos (α− β)

)
+2

p− 1

p(2p+ 1)
x
√

1− x2y
√

1− y2cos (α + β)

−
(
λp − 3− 1

p(2p+ 1)

)(
1− x2

) (
1− y2

)
.

Especially we directly obtain −∞ < min
v,w∈C2\{0}

Bis(v, w). Moreover since R11̄22̄ ≤ 0 ≤
R12̄12̄ we deduce:

Bis(v, w) ≤ − 2p

2p+ 1
x2y2

− 1

2p+ 1

(
x2
(
1− y2

)
+
(
1− x2

)
y2 − 2x

√
1− x2y

√
1− y2

)
+ 2

p− 1

p(2p+ 1)
x
√

1− x2y
√

1− y2

−
(
λp − 3− 1

p(2p+ 1)

)(
1− x2

) (
1− y2

)
= − 2p

2p+ 1
x2y2

− 1

2p+ 1

(
x
√

1− y2 −
√

1− x2y
)2

+ 2
p− 1

p(2p+ 1)
x
√

1− x2y
√

1− y2

−
(
λp − 3− 1

p(2p+ 1)

)(
1− x2

) (
1− y2

)
Using the Hölder inequality 2x

√
1− x2y

√
1− y2 ≤ x2y2 + (1− x2) (1− y2) we obtain

Bis(v, w) ≤ −
(

2p

2p+ 1
− p− 1

p(2p+ 1)

)
x2y2

− 1

2p+ 1

(
x
√

1− y2 −
√

1− x2y
)2

−
(
λp − 3− 1

p(2p+ 1)
− p− 1

p(2p+ 1)

)(
1− x2

) (
1− y2

)
= −p(2p− 1) + 1

p(2p+ 1)
x2y2

− 1

2p+ 1

(
x
√

1− y2 −
√

1− x2y
)2

−
(
λp − 3− 1

2p+ 1

)(
1− x2

) (
1− y2

)
.
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According to [22] we have λp ≥ 7
2
, hence λp−3− 1

2p+1
≥ 2p−1

2(2p+1)
> 0 so that Bis(v, w) < 0

as it is less or equal to a sum of three non-positive quantities that does not vanish for the

same values of (x, y).

Now we turn our attention to the case of Thullen domains. In [2] the authors work

in the domain Dp (de�ned in the introduction of the current chapter) with p ∈ ]0, 1]. If

1
p
∈ N then Dp = E 1

p
so that Proposition 4.7 gives a more general result that we need.

Proposition 4.7. Let p ∈ ]0, 1]. In the domain Dp, one has:

−∞ < min
v,w∈C2\{0}

Bis(0; v, w), max
v,w∈C2\{0}

Bis (0; v, w) < 0.

Remark 4.8. In [2] the de�nition of the curvature coe�cients is the opposite of the

one we use in this thesis (compare relation (1.9) with the de�nition of the curvature

coe�cients given at bottom of page 1 in [2]). This explains the di�erence of sign between

the quantities obtained in [2] and the same quantities appearing in the following proof.

Proof of Proposition 4.7. To simplify notations we write Bis(v, w) instead of Bis(0; v, w).

Because of relation (1.10), it is enough to prove that Bis(v, w) < 0 for every v, w ∈ C2

with unit length with respect to the Bergman metric at 0. We use the computations done

in [2]. We have r =
1− p
1 + p

, and the following relations:

[
gij̄
]

=

 3+r
1+r

0

0 3− r

 ,
R̂11̄11̄ = −4

(3 + r)(2 + r)

(1 + r)2
, R̂11̄12̄ = 0, R̂11̄22̄ = −4

3− r
1 + r

,

R̂12̄12̄ = 0, R̂12̄22̄ = 0, R̂22̄22̄ = −12(2− r),

thus we obtain the following expressions for the curvature coe�cients:

R11̄11̄

g2
11̄

= −2
1 + r

3 + r
,
R11̄22̄

g11̄g22̄

= −1− r
3 + r

,
R22̄22̄

g2
22̄

= −2
3− r2

(3− r)2
.

We apply Lemma 4.5 to obtain the following:

Bis(v, w) = −2
1 + r

3 + r
x2y2

−1− r
3 + r

(
x2
(
1− y2

)
+
(
1− x2

)
y2 + 2x

√
1− x2y

√
1− y2cos (α− β)

)
−2

3− r2

(3− r)2

(
1− x2

) (
1− y2

)
.
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Consequently we directly obtain −∞ < min
v,w∈C2\{0}

Bis(v, w). Moreover since p ∈ ]0, 1] we

have 3− r2, 1− r > 0. Doing as in the proof of Proposition 4.6 we obtain

Bis(v, w) ≤ −2
1 + r

3 + r
x2y2− 1− r

3 + r

(
x
√

1− y2 −
√

1− x2y
)2

−2
3− r2

(3− r)2

(
1− x2

) (
1− y2

)
hence Bis(v, w) < 0 as it is less or equal to a sum of three non-positive quantities that

does not vanish for the same values of (x, y). This concludes the proof.

Remark 4.9. The proof of Proposition 4.6 does not give the maximum of the bisectional

curvature at the origin in the tube domains, whereas we easily derive from the proof

of Proposition 4.7 that max
v,w∈C\{0}

BisDp(0; v, w) = max

{
−2

1 + r

3 + r
,−1− r

3 + r
,−2

3− r2

(3− r)2

}
where r is as in the proof of Proposition 4.7.

4.2 Estimate of Bergman curvatures in compelte Rein-

hardt domains of �nite type in C2

4.2.1 Localisation of the Bergman metric

Let D ⊂ Cn be a an open set and let A2(D) := H (D,C)∩L2 (D) be the Bergman space

of D with weight 2. Given a point z ∈ D and two vectors v, w ∈ Cn \ {0} we de�ne the
following:

ID0 (z) := inf
{
‖f‖2

L2(D) /f ∈ A
2(D), f(z) = 1

}
,

ID1 (z, v) := inf
{
‖f‖2

L2(D) /f ∈ A
2(D), f(z) = 0, ∂zf(v) = 1

}
,

ID2 (z, v, w) := inf

{
‖f‖2

L2(D) /f ∈ A
2(D), f(z) = 0, ∂zf = 0,

∑
1≤i,j≤n

fij(z)viwj = 1

}
.

The Bergman kernel, the metric it induces and its holomorphic bisectional curvatures

may be expressed in terms of the above integrals. The following formulas are attributed

to S. Bergman, B.A. Fuks and A. Pagano (see Theorem 2.1. in [58]):

KD(z, z) =
1

ID0 (z)
(4.1)

|v|Dz =
ID0 (z)

ID1 (z, v)
(4.2)

BisD(z; v, w) = 2− ID1 (z, v)ID1 (z, w)

ID0 (z)ID2 (z, v, w)
. (4.3)
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The above formulas are used to "localise" the Bergman metric and its curvatures at peak

boundary points of D. Recall that a point q ∈ ∂D is a local peak point if there exists an

open neighbourhood U ⊂ Cn of q and a map f ∈ C
(
D ∩ U,C

)
∩H (D ∩ U,C) such that

f(q) = 1 and |f(z)| < 1 for every z ∈ D ∩ U \ {q} (the function f is called a peaking

function for q).

Theorem 4.10 (Theorem 4 in [37]). Let D ⊂ Cn be a bounded pseudoconvex domain, let

q ∈ ∂D and let U ⊂ Cn be an open neighbourhood of q. If q is a local peak point then for

every v, w ∈ Cn \ {0} the following holds:

lim
z→q

ID0 (z)

ID∩U0 (z)
− 1 = lim

z→q
sup

v∈C2\{0}

∣∣∣∣ ID1 (z, v)

ID∩U1 (z, v)
− 1

∣∣∣∣ = lim
z→q

sup
v,w∈C2\{0}

∣∣∣∣ ID2 (z, v, w)

ID∩U2 (z, v, w)
− 1

∣∣∣∣ = 0.

Especially, under the assumptions of Theorem 4.10 (and provided that the Bergman

kernel on D ∩ U induces a Kähler metric on D ∩ U), one has:

lim
z→q

sup
v,w∈C2\{0}

∣∣∣∣ BisD(z; v, w)

BisD∩U(z; v, w)
− 1

∣∣∣∣ = 0. (4.4)

E. Bedford and J.E. Fornaess proved that every boundary point of a bounded pseudocon-

vex domain of �nite type in C2 is a peak point, and that the peaking function depends

continuously on q (see Theorem 3.1. and Remark 3.4. in [3]). It follows that if the neigh-

bourhood U has a uniform size with respect to the point q (for instance if U = B(q, R)

for some �xed R > 0) then the limit (4.4) is uniform in q.

4.2.2 The scaling of bounded pseudoconvex Reinhardt domain of

�nite type in C2

If ∂D is pseudoconvex and the type at q is �nite there exists an integer p ∈ N, an

homogeneous polynomial of degree 2p H which is subharmonic but not harmonic, an

open set U ⊂ C2 containing q and a biholomorphic map Φ : U −→ Φ (U) such that

Φ(q) = 0 and Φ (D ∩ U) = M ′
H ∩ Φ (U) where

M ′
H :=

{
z ∈ C2, Re (z1) +H (z2) + O

z→0

(
|z2|2p+1 + |z1| |z|

)
< 0
}
.

If D is a Reinhardt domain, we can assume that M ′
H has a simpler form (see the expres-

sions (6.10) and (6.25) in [22] and the proof of Theorem 4.11).

Let q ∈ ∂D be a point of �nite type 2p. Every complex vector v ∈ C2 admits a unique

decomposition v = vT + vN where vT ∈ TC
q ∂D and there exists a complex number λ such
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that vN = λ (d1(q), d2(q)). Using that decomposition we de�ne for every positive number

λ > 0 the following anisotropic dilation Πλ:

Πλ : Cn −→ Cn

v = vT + vN 7−→ λ
1
2pvT + λvN .

The key result to prove Theorem 4.4 is the following result which generalises Theorem

6.1 in [22]:

Theorem 4.11. Let D ⊂ C2 be a bounded pseudoconvex complete Reinhardt domain with

boundary of class C∞. Let z(∞) ∈ ∂D be a point of �nite type 2p. Let Λ be a nontangential

cone with vertex at z(∞). Then for every sequence
(
z(ν)
)
ν∈N ∈ (D ∩ Λ)N converging to

z(∞) the following holds:

lim
ν→+∞

sup
v,w∈C2\{0}

∣∣BisD (z(ν); Πd(ν)(v),Πd(ν)(w)
)
−BisMp (q; v′, w′)

∣∣ = 0, (4.5)

where:

1. the domain Mp is the Thullen domain Ep if one of the coordinates of z
(∞) is 0 and the

tube domain T ′p otherwise,

2. if Mp = Ep then q = (0, 0), and if Mp = T ′p then q = (−1, 0),

3. for every vector v ∈ C2 \ {0} (respectively w ∈ C2 \ {0} the vector v′ ∈ C2 \ {0}
(respectively w′ ∈ C2 \ {0}) depends only on v (respectively w) and the geometry of

∂D at z(∞).

We refer to relations (6.4) , (6.6) and (6.8) in [22] for the de�nition of v′ and w′.

Proof of Theorem 4.11. The proof is an adaptation of the proof of [22, Theorem 6.1.].

It follows the same steps and uses the same technical results, namely localising, scaling,

and proving the interior convergence of a sequence of Bergman kernels. The only change

is that we work with the holomorphic bisectional curvatures instead of the holomorphic

sectional curvatures. We sketch the main steps of the proof of [22, Theorem 6.1.] and

point out the new ideas we use.

• Case z
(∞)
1 = 0 or z

(∞)
2 = 0: since D is a pseudoconvex complete Reinhardt domain, the

type at z(∞) is equal to 2p, and one of the coordinates of z(∞) is equal to 0, there exists
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of a neighbourhood U of z(∞) and a biholomorphic map Φ : U −→ Φ (U) such that

Φ
(
z(∞)

)
= 0 and Φ (D ∩ U) = E ′p ∩ Φ (U) with

E ′p :=
{
z ∈ C2, Re (z1) + |z2|2p + O

z→0

(
|z2|2p+1 + |z1| |z|

)
< 0
}

(see de�nitions (6.9), (6.10) in [22]). For every integer ν ∈ N, we set z′(ν) := Φ
(
z(ν)
)
,

d′(ν) := d
(
z′(ν),Φ (∂D ∩ U)

)
and consider the rescaling map

F (ν) : C2 −→ C2

z 7−→

(
z1 − z′(ν)

1

d′(ν)
,
z2 − z′(ν)

2

d′(ν)
1
2p

)
.

Let M be the Mobius map M(z) :=

(
z1 + 1

z1 − 1
, 2

1
p

z2

(z1 − 1)
1
p

)
de�ned for every z ∈

C2 such that z1 6= 1, and set G(ν) := M ◦ F (ν) ◦ Φ, Dν := G(ν) (D ∩ U), v(ν) :=

∂z(ν)G(ν) (Πd(ν)(v)) and w(ν) := ∂z(ν)G(ν) (Πd(ν)(w)). Applying the invariance formula

(1.13) we have the following for every v, w ∈ C2 \ {0}:

BisD∩U
(
z(ν); Πd(ν)(v),Πd(ν)(w)

)
= BisDν

(
0; v(ν), w(ν)

)
. (4.6)

According to relations (6.17) to (6.20) in [22], the sequence
(
v(ν)
)
ν∈N, respectively(

w(ν)
)
ν∈N converges to a vector v′ ∈ C2 \ {0}, resepectively to a vector w′ ∈ C2 \ {0}.

Moreover according to relation (6.14) in [22] the sequence of domains (Dν)ν∈N converges

to the Thullen domain Ep in the local Hausdor� topology. This implies that the

sequence of Bergman kernels
(
KDν

)
ν∈N converges uniformly on compact sets of Ep

to KEp (see the relation at the top of page 422 in [22]). From this convergence we

derive the pointwise convergence of the derivatives of KDν up to the order 4 at point

0 ∈ Ep (see Theorems 5.3., 5.4. and Remark 5.7. in [22]). Since for every integer

1 ≤ i, j, k, l ≤ 2 the coe�cients gij̄ and Rij̄kl̄ are rational fractions of these quantities

(see the de�nition of the Bergman metric and also relation (1.9)) we obtain the following

lim
ν→+∞

sup
v,w∈C2\{0}

∣∣BisDν (0; v(ν), w(ν)
)
−BisEp (0; v′, w′)

∣∣ . (4.7)

Combining relations (4.6) and (4.7) we deduce

lim
ν→+∞

sup
v,w∈C2\{0}

∣∣BisD∩U (z(ν); Πd(ν)(v),Πd(ν)(w)
)
−BisEp (0; v′, w′)

∣∣ = 0.
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Finally, we apply Theorem 4.10 to obtain

lim
ν→+∞

sup
v,w∈C2\{0}

∣∣BisD (z(ν); Πd(ν)(v),Πd(ν)(w)
)
−BisEp (0; v′, w′)

∣∣ = 0.

This proves the result (4.5) in the case that one of the coordinates of z(∞) is equal to

0.

• Case z
(∞)
1 z

(∞)
2 6= 0: since D is a pseudoconvex complete Reinhardt domain, the type

at z(∞) is equal to 2p, and none of the coordinates of z(∞) are 0, there exists a neigh-

bourhood U of z(∞) and a biholomorphic map Φ : U −→ Φ (U) such that Φ
(
z(∞)

)
= 0

and Φ (D ∩ U) = T ′′p ∩ Φ (U) with

T ′′p :=
{
Re (z1) +Re (z2)2p < O

z→0

(
|Re (z2)|2p+1 + |Re (z1)| (|Re (z1)|+ |Re (z2)|)

)}
(see de�nitions (6.23), (6.24) and (6.25) in [22]). For every integer η ∈ N, we set

z′(ν) := Φ
(
z(ν)
)
, d′(η) := d

(
z′(ν),Φ (∂D ∩ U)

)
and consider the rescaling map

F (ν) : C2 −→ C2

z 7−→
(
z1−z′(ν)

1

d′(ν) − 1,
z2−z′(ν)

2

d′(ν)
1
2p

)
.

Set G(ν) := F (ν) ◦ Φ, Dν := G(ν) (D ∩ U), v(ν) := ∂z(ν)G(ν) (Πd(ν)(v)) and w(ν) :=

∂z(ν)G(ν) (Πd(ν)(w)). Applying the transformation formula (1.13) we obtain the follow-

ing for every v, w ∈ C2 \ {0}:

BisD∩U
(
z(ν); Πd(ν)(v),Πd(ν)(w)

)
= BisDν

(
(−1, 0); v(ν), w(ν)

)
. (4.8)

According to relations (6.41) and (6.42) in [22], the sequence
(
v(ν)
)
ν∈N, respectively(

w(ν)
)
ν∈N converges to a vector v′ ∈ C2 \ {0}, resepectively to a vector w′ ∈ C2 \ {0}.

Moreover according to (6.24) and (6.29) in [22] the sequence of domains
(
G(ν)

(
T ′′p
))
ν∈N

converges to the tube domain T ′p in the local Hausdor� topology. This implies that

(up to a possible shrinking of U) the sequence of Bergman kernels
(
KDν

)
ν∈N converges

uniformly on compact sets of T ′p to K
T ′p (see claim 6.2. in [22]). From this convergence

we derive the pointwise convergence of the derivatives of KDν up to the order 4 at

point (−1, 0) ∈ T ′p (see Theorem 5.4. and Remark 5.7. in [22]), hence the following

lim
ν→+∞

sup
v,w∈C2\{0}

∣∣∣BisDν ((−1, 0); v, w)−BisT ′p ((−1, 0); v′, w′)
∣∣∣ = 0. (4.9)
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Combining relations (4.8) and (4.9) we easily deduce that

lim
ν→+∞

sup
v,w∈C2\{0}

∣∣∣BisD∩U (z(ν); Πd(ν)(v),Πd(ν)(w)
)
−BisT ′p ((−1, 0); v′, w′)

∣∣∣ = 0.

Finally, we apply Theorem 4.10 to obtain

lim
ν→+∞

sup
v,w∈C2\{0}

∣∣∣BisD (z(ν); Πd(ν)(v),Πd(ν)(w)
)
−BisT ′p ((−1, 0); v′, w′)

∣∣∣ = 0.

This proves the result (4.5) in the case that the coordinates of z(∞) are non zero.

This concludes the proof of Theorem 4.11.

The proof of Theorem 4.4 follows from Theorem 4.11 and Theorem 4.3:

Proof of Theorem 4.4. The proof works exactly as in [22, Theorem 6.4.], we just replace

the estimates on the holomorphic sectional curvatures of the Bergman metric in Thullen

and tube domains obtained in [22, Theorem 4.6.] and [2, Corollary 2] with the estimates

on the holomorphic bisectional curvatures obtained in Theorem 4.7 and Theorem 4.6.
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Prospects

If D ⊂ Cn is a bounded pseudoconvex domain with boundary of class C∞ and q is either

a strictly pseudoconvex boundary point or a point such that the squeezing function of D

tends to 1 at q, then the curvature behaviour

sup
v,w∈Cn\{0}

Bis (gD) (z; v, w) +

1 +


∣∣∣〈v, w〉gD,z∣∣∣

〈v, v〉gD,z 〈w,w〉gD,z

2

 −→

z→q
0 (4.10)

holds, for either the Kähler-Einstein metric with Ricci curvature −(n+ 1) or
1

n+ 1
times

the Bergman metric of D (see Theorems 2.5, 2.6, Remark 2.22 and [15, 37]). One may

ask whether condition (4.10) implies that q is a ball-like boundary point. More precisely:

Question 3. Su�cient curvature condition for "ball-like" points

Let D ⊂ Cn be a bounded pseudoconvex domain with boundary of class C∞. Let q ∈ ∂D.

Let
[
gij̄
]
be a complete Kähler metric of class C2 on D such that condition (4.10) holds

at q. Are the following satis�ed

(1) sD (z) −→
z→q

1, or

(2) ∂D is strictly pseudoconvex at q?

The answer to Question 3 seems to be known and a�rmative only if we assume that

D is convex and that the behaviour (4.10) holds uniformly on ∂D, see [8, Theorem 1.4.]

and [63, Theorem 1.7.]. Moreover in this case condition (4.10) for the holomorphic sec-

tional curvatures is su�cient for (1) or (2) to hold. For non convex domains one may

study a similar question replacing (4.10) with a condition on the holomorphic sectional

curvatures.

In some classes of pseudoconvex domains conditions (1) and (2) are related. For a

bounded pseudoconvex domain D with boundary of class C2 the strict pseudoconvex-

ity of ∂D implies condition (1) at every boundary point (see [16]). Additionally if D is
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convex with boundary of class C2+α, α > 0, and condition (1) holds at every boundary

point, then ∂D is strictly pseudoconvex (see [63]). Yet there is no local version of these

results. Additionally one notices that the Fornaess-Wold domain is bounded, convex, and

has a boundary of class C2 with weakly pseudoconvex point at which condition (1) holds.

In light of these results one may ask the following:

Question 4. Equivalence of "ball-like" conditions

Let D ⊂ Cn be a bounded pseudoconvex domain. Let α ∈ ]0, 1[ and q ∈ ∂D be such that

∂D is of class C2+α in a neighbourhood of q. Are conditions (1) and (2) equivalent?

In contrast with the strictly pseudoconvex case, very few results are known regarding

the boundary behaviour of the holomorphic bisectional curvatures of the Kähler-Einstein

metric and of the Bergman metric at weakly pseudoconvex boundary points of smoothly

bounded pseudoconvex domains of �nite type. We can ask:

Question 5. Negativity of bisectional curvatures for �nite type domains

Let D ⊂ Cn be a bounded pseudoconvex domain with boundary of class C∞ and let q ∈ ∂D
be a point of �nite type. Does there exist a neighbourhood U of q such that

sup
z∈D∩U

v,w∈Cn\{0}

Bis(g)(z; v, w) < 0,

where g is either the Bergman metric of D or the Kähler-Einstein metric of D?

One expects that a positive answer to Question 5 su�ces to obtain the existence of a

neighbourhood U of ∂D in which the holomorphic bisectional curvatures of the metric are

bounded from above by a negative constant. Notice that the hypotheses in Question 5 do

not imply inf
z∈D∩U

v,w∈Cn\{0}

Bis(g)(z; v, w) > −∞ as the following example shows. Let a,m ∈ N∗

such that 2a < m and consider the smooth bounded pseudoconvex domain of �nite type

DH =
{
z ∈ C3/Re(z1) + |z1|2 + |z1|2m + |z2z3|2a + |z3|2m < 0

}
.

G. Herbort proved in [30] that there exists a vector v ∈ C3 \ {0} and a sequence of

points
(
z(ν)
)
ν∈N ∈

(
DH
)N

such that H
(
gD
H

B

) (
z(ν); v

)
−→
ν→+∞

−∞. However he noted

that DH is not h-extendible (see [61] for a de�nition, a geometric characterisation and

various examples of h-extendible domains), and observed that the holomorphic sectional

curvatures of the Bergman metric of any h-extendible domains are bounded from below
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(see also [7, 43, 58]). This motivates the study of the Bergman metric and its curvatures in

such domains to answer a�rmatively the following question, which generalises Question

1, for h-extendible domains:

Question 6. Negative pinching of curvatures in h-extendible domains

Let D ⊂ Cn be a bounded pseudoconvex domain with boundary of class C∞ and let

q ∈ ∂D. Assume that D is h−extendible at q. Does there exist a neighbourhood U of q

such that

−∞ < inf
z∈D∩U

v,w∈Cn\{0}

Bis(g)(z; v, w) ≤ sup
z∈D∩U

v,w∈Cn\{0}

Bis(g)(z; v, w) < 0,

where g is either the Bergman metric of D or the Kähler-Einstein metric of D?

Once the answer to Question 5 or 6 is a�rmative, we may focus on the local behaviour

of the holomorphic bisectional curvatures and compare them to their analogue in model

domains which is the content of Question 2. In h-extendible domains the curvatures of the

Bergman metric behave like their analogue in the local model, which answers a�rmatively

Question 2 in this case. More precisely, if D ⊂ Cn is h-extendible at a boundary point

q and if D′H is a local model at q (see point 1. of Remark 1.14 and also [60]), then for

every nontangential cone Λ with vertex at q the following holds:

lim
Λ3z→q

sup
v∈Cn\{0}

∣∣∣Bis (gDB ) (z; Πd(z,∂D)(v)
)
−Bis

(
g
D′H
B

)
((−1, 0, . . . , 0); v′)

∣∣∣ = 0, (4.11)

where for every vector v ∈ Cn \ {0} the vector v′ ∈ Cn \ {0} depends only on v and

the geometry of ∂D at q, and for every λ > 0 the map Πλ is an anisotropic dilation

of factor λ with weight depending only on the geometry (more precisely on the Catlin

multitype) of ∂D at q. We refer to [7] for a more precise statement. Consequently, the

only remaining question for h-extendible domains concerns the negative pinching of the

holomorphic bisectional curvatures of the Bergman metric of D′H (see Section 1.3). This

is part of the following more general question:

Question 7. Bisectional curvature estimates in model domains

Let H be a weighted homogeneous polynomial function, plurisubharmonic in Cn−1. As-

sume that the Bergman metric (respectively the Kähler-Einstein metric) of D′H is well-

de�ned and complete. What conditions ensure that its holomorphic bisectional curvature

are negatively pinched on D′H ∩ (C× {0})n−1?
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The study of the curvatures of invariant metrics in polynomial domains used as model

domains seems to be a key point in the study of the curvatures in pseudoconvex domains.

The answer to Question 7 is known only when the local model is a Thullen domain or a

tube domain in C2. We expect the situation to be simpler for the Kähler-Einstein metric

than for the Bergman metric. This is justi�ed by the fact that the Kähler-Einstein met-

ric satis�es by de�nition a certain curvature condition (see relation (1.11)). This is also

supported by the comparison of the curvature bounds obtained for Thullen domains and

tube domains (see Theorems 3.4, 4.3 and also Remark 4.9). However there is no localisa-

tion result as (4.11) for the holomorphic (bi)sectional curvatures of the Kähler-Einstein

metric at h-extendible points. Nonetheless if D ⊂ C2 and is convex, no localisation is

needed and we have a partial result, see Theorem 3.3. Its proof may be adapted to

every boundary point of a smoothly bounded convex domain of �nite type in Cn, see

[25]. In fact the sequence of scaled domains converges globally to the model domain

D′H = {z = (z, z′) ∈ C× Cn−1/Re (z) +H (z′) < 0} where H is a weighted homogeneous

convex polynomial function. Moreover the uniform squeezing property of convex domains

and the stability of the Kobayashi metric in the class of C-proper convex domains in Cn

imply the stability of the Kähler-Einstein metric of D′H (see [26, 57]). Therefore, the

study of the non tangential behaviour of the holomorphic bisectional curvatures of the

Kähler-Einstein metric at boundary points of smoothly bounded convex domains of �nite

type reduces to the study of the same quantities in D′H . For a homogeneous non negative

polynomial function H of degree 2p (p ∈ N∗) which is subharmonic but not harmonic in

C we expressed the pinching of the curvatures of the Kähler-Einstein metric
[
gij̄
]
of D′H

in terms of
|g22|
g22̄

(−1, 0) (see Theorem 3.4). Proving the inequality
|g22|
g22̄

(−1, 0) < 2p when

H is convex would su�ce to answer a�rmatively Question 5 (and equivalently Question

1) for the Kähler-Einstein metric in the case of smoothly bounded convex domains of

�nite type in C2. Incidentally, this would give a characterisation of the �nite type for

bounded convex domains in C2 with smooth boundary (see [8, Theorem 1.2.]).

Going back to the case of a smoothly bounded pseudoconvex domain, one may ask

whether the holomorphic bisectional curvatures of the Bergman metric or of the Kähler-

Einstein metric satisfy a localisation property as obtained in [37] (see also 4.10). For the

Bergman metric the localisation follows from the Bergman-Fuks integral formulae which
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have no analogue in the case of the Kähler-Einstein metric. In general we may study:

Question 8. Localisation of Kähler potentials

Let D ⊂ Cn be a bounded pseudoconvex domain with boundary of class C∞. Let gD

(respectively gD∩U) be the potential either of the Bergman metric or of the Kähler-Einstein

metric of D (respectively of D∩U). Let q ∈ ∂D be a point of �nite type. What conditions

on q imply the existence of a neighbourhood U of q and of an integer k ≥ 5 such that

e−g
D − e−gD∩U = O

z→q

(
d (z, ∂D)k

)
?

Notice that a positive answer with k = 3 is su�cient to localise the metrics. If one can

localise the holomorphic bisectional curvatures at a boundary point q, then one may use

a scaling method, and under suitable conditions prove the sequence of rescaled domains

converges in the local Hausdor� topology to some model domain. Consequently, the

study of the boundary behavior of the curvatures reduces to the study of the curvatures

in some interior point of a model domain provided that the sequence of associated metric

converges in a certain sense to the metric of the model domain. This brings to the

question of the stability of the Bergman metric and of the Kähler-Einstein metric:

Question 9. Convergence of metrics under deformation of domains

Let (Dν)ν∈N∪{∞} be a family of bounded complete Kobayashi hyperbolic domains. Let([
g

(ν)

ij̄

])
ν∈N∪{∞}

be either the family of complete Bergman metrics or the family of com-

plete Kähler-Einstein metrics associated to the family (Dν)ν∈N∪{∞}.

• Assume that (Dν)ν∈N converges to D∞ in the sense of the Caratheodory kernel con-

vergence (see [29, Subsection 9.2.2]). Does
([
g

(ν)

ij̄

])
ν∈N

converge to
[
g

(∞)

ij̄

]
uniformly on

compact sets of D∞?

• More generally, what notion of convergence on the sequence (Dν)ν∈N to D∞ ensures the

local uniform convergence of the metrics
([
g

(ν)

ij̄

])
ν∈N

?

For the Bergman metric, if the sequence (Dν)ν∈N satis�es the hypothesis of Question

9 and is increasing then the sequence of associated Bergman metrics converges to the

Bergman metric of D∞, uniformly on compact sets of D∞, and the same result holds for

the Kähler-Einstein metrics (see [52, 12, 48]). Moreover if all the domains are convex

and the sequence converges to D∞ in the sense of the local Hausdor� topology, then the

sequence
([
g

(ν)

ij̄

])
ν∈N

converge to
[
g

(∞)

ij̄

]
uniformly on compact sets of D∞ (see [26]).

Using the convergence results obtained in [52], H. Boas, E. Straube and J. Yu studied the
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convergence of Bergman kernels and curvatures for families of bumpings of local models

in Cn (see [7] for a precise statement and associated notions). These families of domains

naturally appear when studying the behaviour of invariant metrics at h-extendible points

of pseudoconvex domains.
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