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Activation de la voie du monoxyde d’azote dans les cellules endothéliales par les 

anthocyanes du cassis : Caractérisation des molécules actives et rôle des co-

transporteurs sodium-glucose 1 et 2 

 

 

Les anthocyanes sont des polyphénols appartenant au groupe des flavonoïdes et 

constituent des pigments naturels apparaissant dans le bleu, le violet et le rouge. Ils sont 

présents en grande quantité dans le vin rouge, les légumes et dans de nombreuses 

variétés de baies. 

Le cassis (Ribes nigrum. L), issu d’un arbuste ligneux, est une baie largement répandue 

et cultivée de l’Europe de l’Ouest à l’Asie Centrale. De plus, il a été montré que la cassis 

est riche en polyphénols notamment issus des anthocyanes tels que la cyanidin-3-O-

glucoside (C3G), le rutinoside (C3R) et la delphinidin-3-O-glucoside (D3G), -rutinoside 

(D3R). Les anthocyanes extraits du cassis possèdent des propriétés antioxydantes et 

ont montré des effets protecteurs sur le système cardiovasculaire en promouvant la 

formation de monoxyde d’azote endothélial (NO, facteur vasoprotecteur), en régulant le 

tonus vasculaire, en inhibant la formation des plaques d’athérosclérose et en protégeant 

les cellules endothéliales de l’oxydation des lipoprotéines de faible densité (Ox-LDL). De 

plus, plusieurs études cliniques ont suggéré que les anthocyanes améliorent la santé 

générale malgré le fait que leur concentration plasmatique est inférieure au µM et que 

ces composés sont rapidement éliminés par l’organisme. Cependant, peu de données 

décrivent le mécanisme de transport des anthocyanes ainsi que les mécanismes de 

signalisation intracellulaire responsables des effets biologiques. Une publication récente 

a montré que la D3G, l’anthocyane la plus abondante dans le cassis, a prévenu la 

dysfonction mitochondriale induite par l’oxydation des LDL dans les cellules 

endothéliales par transport de la D3G par le cotransporteur sodium glucose de type 1 
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(SGLT1). Récemment, l’expression des cotransporteurs sodium glucose de type 1 et 2 

a été mise en évidence au sein de cellules endothéliales en culture. De ce fait, nous 

émettons l’hypothèse que les anthocyanes entrent dans les cellules endothéliales via 

les transporteurs SGLT1 et SGLT2 afin d’induire les réponses biologiques.  

 

Le but de l’étude est de caractériser les anthocyanes actives issues du cassis, d’identifier 

les voies de signalisation intracellulaire promouvant la formation de monoxyde d’azote 

endothélial ainsi que de clarifier le rôle des transporteurs SGLT1 et 2 dans le transport 

des anthocyanes.   

 

Un extrait de cassis riche en anthocyanes (BCE) a été préparé par chromatographie en 

utilisant une colonne Sephadex LH-20. La fraction riche en anthocyanes a été analysée 

par chromatographie liquide à ultra-haute performance (UPLC) afin d’identifier les 

anthocyanes présent dans l’extrait de cassis. L’effet du BCE sur la relaxation dépendante 

de l’endothélium due au NO a été mesuré par des expériences de réactivité vasculaire 

et les voies de signalisation ont été étudiées par la technique de Western Blot à partir 

de cellules endothéliales en culture. Le transport des anthocyanes dans les cellules 

endothéliales en culture a été étudié de manière indirecte par mesure de la fluorescence 

du réactif A de Naturstoff par microscopie confocale et cytométrie en flux.  

Les cellules endothéliales ont été isolées à partir d’artères coronaires de porc et 

incubées 15 min avec de la collagénase. Des cellules endothéliales, jeunes, de passage 

P1 ont été utilisées afin d’évaluer la voie de signalisation Akt-eNOS après traitement 

avec le BCE. Des cellules P3, sénescentes, pathologiques, ont été obtenues à partir des 

cellules P1 par repiquages successifs après 4 à 5 jours de culture jusqu’à atteindre le 

troisième passage.  
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Le BCE entraine de puissantes relaxations due au NO d’anneaux d’artères coronaires 

pourvus d’endothélium, significativement réduites par le LX4211 (inhibiteur mixte des 

SGLT 1 et 2), par la canagliflozine (inhibiteur faiblement sélectif de SGLT2) mais pas par 

la dapagliflozine (inhibiteur hautement sélectif de SGLT2). En revanche, les relaxations 

induites par l’épigallocatéchine gallate (EGCG), un flavonoïde glucoconjugué, ne sont 

pas affectées par les inhibiteurs de SGLT1 et 2. Ces résultats indiquent que le BCE induit 

la relaxation due au NO dans les anneaux d’artères coronaires de porc, 

vraisemblablement grâce au transporteur SGLT1 et dans une moindre mesure, via le 

transporteur SGLT2. Nous émettons l’hypothèse que la structure glucosidique dans la 

structure des anthocyanes joue un rôle important dans la stimulation de la formation de 

NO endothélial via SGLT1 et 2.  

L’activation de l’eNOS et d’Akt induite par le BCE est fortement augmentée après 2, 5 et 

15 min comme le montre les analyses par la technique de Western Blot. La 

phosphorylation de la eNOS est significativement prévenue par le LX-4211, la 

dapagliflozine et la canagliflozine. Afin d’identifier les anthocyanes actives contenues 

dans le BCE, l’induction de la phosphorylation de la eNOS a été réalisée à partir des 4 

types majeurs d’anthocyanes purifiés. La C3G, l’anthocyane majoritairement présente 

dans le BCE, augmente significativement la phosphorylation de la eNOS comparée au 

contrôle qui est inhibée par le LX-4211. Le rutinoside phosphoryle faiblement la eNOS. 

De plus, la D3G, une anthocyane de type glucosidique, affecte dans une faible mesure 

la phosphorylation de la eNOS mais sans effets significatifs. Ces résultats indiquent que 

les anthocyanes extraites du BCE que l’activation de la voie du NO est fortement 

dépendante de la structure chimique, et plus précisément de la présence d’une structure 

glucosidique au sein des anthocyanes.  

Le réactif A de Natustoff génère de la fluorescence par chélation des anthocyanes. On 

observe une augmentation du niveau de fluorescence par cytométrie en flux d’un facteur 
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2 dans les cellules endothéliales exposées à la C3G, d’un facteur 1,5 pour les cellules 

endothéliales exposées à la D3G. Le traitement des cellules au LX-4211 inhibe 

significativement l’augmentation du signal de fluorescence. De la même façon, les 

expériences de microscopie confocale montrent une forte intensité de fluorescence, 

visualisée par un signal lumineux rouge, dans les cellules endothéliales exposées soit à 

la D3G soit à la C3G, alors qu’aucun effet n’a été observé pour les anthocyanes de 

nature non glucosidique. Cet effet a également été inhibé par le LX-4211. Ces 

observations indiquent que seuls les anthocyanes conjuguées au glucose (C3G et D3G) 

entrent dans les cellules endothéliales via SGLT1 et 2. En outre, le transport des 

anthocyanes a été inhibé de manière compétitive par le D-glucose de manière 

dépendante de la dose, mais le transport n’a pas été affecté par le mannitol (contrôle 

osmotique) ce qui suggère que l’influx d’anthocyanes se fait via les transporteurs SGLT1 

et 2. L’ensemble de ces observations suggère le potentiel de protection du système 

cardiovasculaire des anthocyanes issues du cassis par une inhibition compétitive de 

l’influx de glucose.  

Des données récentes du laboratoire d’accueil, ont montré une augmentation de 

l’expression des transporteurs SGLT1 et 2 dans des cellules endothéliales en culture 

soumises à des conditions pathologiques telles que une haute concentration de glucose 

ou un stress oxydant mais aussi dans des cellules en sénescence réplicative. C’est 

pourquoi, il est possible que la surexpression des transporteurs SGLT1 et 2 conduise à 

un transport accru des anthocyanes aboutissant à un meilleur effet vasoprotecteur. Par 

la suite, l’expression des transporteurs SGLT1 et 2 a été comparée entre les cellules 

endothéliales jeunes (P1) et les cellules endothéliales sénescentes (P3) par expérience 

de Western Blot. Les transporteurs SGLT1 et 2 ont été significativement surexprimés 

dans les cellules endothéliales sénescentes de passage P3 comparé aux cellules 

endothéliales jeunes de passage P1. De plus, la phosphorylation de la eNOS induite par 
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le BCE, a été comparée entre les cellules endothéliales P1 et P3. Un plus haut niveau 

de phosphorylation de la eNOS a été observé dans les cellules P3 comparativement aux 

cellules P1. Le LX-4211 a inhibé de manière plus importante la phosphorylation de la 

eNOS dans les cellules P3 que dans les cellules P1. De même, le transport des 

anthocyanes a été significativement augmenté dans les cellules P3 comparées aux 

cellules contrôles P1 ce qui valide une expression différentielle des transporteurs SGLTs 

et explique l’effet inhibiteur du LX-4211. Il est donc possible d’émettre l’hypothèse que 

l’effet protecteur des anthocyanes est plus prononcé dans les artères pathologiques 

plutôt que dans les vaisseaux sains. 

 

Ainsi, on peut conclure que les anthocyanes conjugués au glucose (C3G et D3G) 

induisent la relaxation dépendante de l’endothélium par leur transport via SGLT1 et dans 

une moindre mesure, par SGLT2 dans les artères saines mais également et de manière 

plus marquée dans les artères pathologiques. La contribution des transporteurs SGLT1 

et 2 dans le transport des anthocyanes promeut la protection du système 

cardiovasculaire et permettra de mieux comprendre la biodisponibilité des anthocyanes 

au sein de l’organisme.       
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1. Prevalence of cardiovascular diseases 

 

Cardiovascular diseases (CVDs) have been reported as the most pivotal causes of 

global deaths among non-communicable diseases during the last 16 years (Hausenloy 

and Yellon, 2013). In 2016, World Health Organization (WHO) announced that ischemic 

heart disease (IHD) and stroke are world’s biggest killers accounting for a combined 15.2 

millions of deaths (WHO, 2018). IHD is the leading cause of myocardial infarction and 

ischemic heart failure characterized by reduction of blood flow due to the occlusive 

coronary artery subsequent to atherothrombosis (Kerrigan and Stotland, 1993). For the 

last few decades, incidence and mortality of IHD have dropped in high-income countries 

more likely due to an increased level of medical healthcare (Ng et al., 2014).  

However, the prevalence of IHD is still increasing in low-income counties such as 

Eastern Europe and Central Asia due to the insufficient medical coverage (Moran et al., 

2014). Accumulated data indicated that the onset of CVDs appears to be dependent on 

many factors such as gender, geographical localization, economic scale of country, 

acquired factors, and life style. For example: i) The number of women dying and/or 

surviving with CVDs and stroke are exceeding the number of men in the United States. 

whereas more men are dying with IHD (Mosca et al., 2011), ii) Age related prevalence 

of IHD is estimated as 10.88 million people in the world at the age between 50 to 54, 3-

fold higher than those at the age of 40 to 44.  
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Figure 1. Top 10 global causes of death. Of the 56. 9 million deaths worldwide in 2016, more 

than half were includ in the top 10 causes. WHO announced that in 2018 17.9 million people die 

each year by CVDs (WHO, 2018).  

 

2. Main causes of death in cardiovascular diseases 

 

CVD is a term including diseases related to heart and blood vessels including IHD, 

which may lead to the development of myocardial ischemia, stroke, congenital heart 

defects and peripheral artery diseases (Kannel et al., 1976). Atherosclerosis is the 

pathological process predominantly in coronary arteries, cerebral arteries, iliac and 

femoral arteries, and carotid artery that is responsible for CHD, stroke, and peripheral 

arterial diseases. It is initiated in the intima of the arteries with deposits of lipids, 

principally cholesterol and its esters, in macrophages and smooth muscle cells, which 

contribute to the formation of an atherosclerotic plaque development (Council, 1989). 

Therefore, understanding the cellular and molecular mechanisms and the genetic 

contribution in the development of atherosclerosis are key to better understand the 

pathology. At atherosclerotic susceptible sites, the complex of cells, connective-tissue 
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elements, lipid crystals and blood born inflammatory immune cells may lead to intimal 

thickening and narrowing of the lumen in the coronary artery (Hansson, 2005). IHD, also 

known to CHD (coronary heart disease), is occurring due to the presence of 

atherosclerotic plaques leading ultimately to plaque erosion on major branches of 

coronary arteries (Crossman and Morton, 2007). Thus, the progression of atherosclerotic 

plaques leads to progressive narrowing of the lumen of the affected arteries, flow through 

the vessel will diminish, blood pressure distal to the stenosis will decrease (Crossman 

and Morton, 2007). As discussed in the previous section, stroke is the second most 

common cause of death in the world population (WHO, 2018). Stroke is characterized 

by ischemia due to the interruption or reduction of blood supply to part of brain tissue. It 

is an acute medical condition due to the damage of distal tissues by deficiency or poor 

supply of oxygen in distal tissues causing an extension of brain cell death. Stroke has 

been classified into two different types: ischemic stroke due to the low blood flow, and 

hemorrhagic stroke with bleeding subsequent to the rupture of brain capillaries (NIH, 

2014).  

 

3. Risk factors of CVDs 

 

Several lines of evidences are pointing out that many risk factors are contributing to 

the development of CVDs. As a key hallmark of CVDs, it has been well-established that 

reactive oxygen species (ROS) play a critical role in the initiation and development of 

CVDs.  

ROS are known as highly reactive molecules containing oxygen with uncoupled 

electrons, which may lead to alterations of biological molecules through oxidation of 

carbohydrates, lipids, enzymes, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). 

Although oxygen by itself is not a strong oxidant, reduced oxygen with unpaired electrons 
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requires additional three electrons until it is transformed to H2O (Turrens, 2003).  

In the cardiovascular system, a variety of enzymes such as cytochrome P450, 

cyclooxygenase-2 (COX-2), xanthine oxidase, lipoxygenase, NADPH oxidase and 

uncoupled eNOS contribute to the cytosolic formation of ROS (Ghosh et al., 2015). 

Previous studies have shown that smoking represents the most preventable risk factor 

of CVDs which is contributing to the development of atherosclerosis. In part, due to the 

fact that cigarette smoke contains approximately 4000 different chemicals. These 

chemicals often contribute to the generation of ROS in the body after involving the 

endoplasmic reticulum (ER) stress induced protein miss-folding (Lin et al., 2012). 

C57/BL6 mice have shown that chronic cigarette smoking can cause oxidative stress 

and impair endothelium-dependent relaxations by reducing nitric oxide (NO) 

bioavailability (Guo et al., 2006).  

Another modifiable risk factor of CVDs is physical activity or exercise. Moderate 

frequency and intensity of physical exercise contributes to maintain cardiovascular 

health and protects the cardiovascular system through various of mechanisms: i) 

Physical activity influence-fibrinolysis activity by increasing the tissue-type plasminogen 

activator (t-PA) function (DeSouza et al., 1998), ii) Physical training significantly reduced 

neointima formation and has been shown to increases NO bioavailability in spleen-

derived endothelial progenitor cells (Laufs et al., 2004), iii) A clinical study with obese 

children showed decreased systolic blood pressure (exercise: 6.9±13.5 mmHg vs. 

control: 3.8±7.9 mmHg) by the daily anaerobic exercise for 30 min (Farpour-Lambert et 

al., 2009). In addition, numerous studies suggest that well-balanced diets reduce the risk 

of type 2 diabetes and may lower the risk of obesity (Davis et al., 2004).  

Especially, consumption of fruit, vegetables and fish, containing high quantity of 

antioxidants, was associated with an inversed relationship relative to risk factors 

(Joshipura et al., 1999).  
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1. Vascular physiology 

 
1.1. Role and structure of blood vessels 

 
The circulatory system in our body consists of two essential parts: i) the 

cardiovascular system including the heart and blood vessels, and ii) the lymphatic 

system (Rizzo, 2015). The major function of blood vessels is transportation of blood to 

peripheral organs for supplying oxygen and nutrients to every tissue in the body, and 

immunological properties such as recruitment of immune cells by the release of 

chemoattractants. In order to fulfill these functions, blood vessels have specific 

structures (Murray, 1926).  

The histological structure of blood vessels is divided into three main layers such as 

tunica intima, tunica media and tunica adventitia (Fig. 2). Tunica intima, known as 

endothelium, is the innermost part of blood vessels composed of a single layer of 

endothelial cells, which directly faces blood flow due to their exposure to the lumen 

(Alberts et al., 2002). 

Endothelium is supported by elastic lamina, that bears much of the wall tension in 

blood vessels (Wong and Langille, 1996). Elastic lamina represents a flexible barrier 

between tunica intima and tunica media and known to have an important role in 

atherogenesis via its modulation of diffusion processes across the artery wall (Sandow 

et al., 2009). 

Tunica media is the central part of blood vessels made up of numerous layers of 

smooth muscle cells, fibrous and non-fibrous matrix proteins such as laminin, collagen, 

elastin (Spina et al., 1983).  

The outermost part of blood vessels is called tunica adventitia or tunica externa, 

which consists of connective tissue collagen fibre bundles, elastic fibre nets and also 
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vasa vasorum and nervi vasorum. Its most obvious function is the integration of the artery 

into surrounding tissues and innervation of the vessel wall. Nervi vasorum, one 

component in adventitia, plays a key role to regulate vascular tone by neurotransmission. 

Blood is circulating through large blood vessels relatively quickly, therefore, there is 

insufficient opportunity for blood in the lumen of the vessel to provide nutrition to or 

remove waste from the surrounding cells. Furthermore, the large blood vessel walls are 

too thick for nutrients to diffuse towards the outermost part of blood vessels. Therefore, 

the structure of larger arteries contains small blood vessels within their walls known as 

the vasa vasorum (Witter et al., 2017). 

 

 

Fig. 2 General structure of blood vessels. Arteries and veins are composed of three tissue 

layers including tunica intima, tunica media and tunica adventitia (Adopted from Wayne W. La 

Morte, MD, PhD, MPH, Boston University School of Public Health). 
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1.2 The endothelium 

 

1.2.1 Role of the endothelium in blood vessels 

 

The endothelium is a permeable thin layer consisting of an endothelial cell 

monolayer covering the luminal surface of all blood vessels (Alberts et al., 2002). The 

endothelium plays a key role (Fig. 3) in the maintenance of vascular health through the 

regulation of blood fluidity and blood flow, the control of vessel wall permeability and the 

communication with circulating blood and immune cells (Pober and Sessa, 2007). Due 

to its barrier function, the endothelium controls to selective transfer of various molecules 

and acts as a semi-permeable layer.  

Endothelial cells have many paracrine and endocrine functions regulating the 

response of the vascular smooth muscle and also circulating immune cells such as 

lymphocytes and platelets (Sumpio et al., 2002). They release a variety of vasoactive 

mediators such as prostacyclin and NO in response to shear stress and chemical 

stimulators, such as thrombin, bradykinin or adenosine diphosphate (ADP) to inhibit 

platelet aggregation and regulate vascular tone (Woulfe et al., 2001).  

They have two distinct transport mechanisms defined as paracellular and 

transcellular pathways (Mann et al., 2003). The paracellular pathway, comprising tight 

junctions between neighboring endothelial cells, is restrictive the macromolecular 

transport and increasing in response to inflammatory mediators such as thrombin, 

bradykinin, vascular endothelial growth factor (VEGF), platelet activating factor (PAF) 

and histamine to promote the dilation of the intercellular space. The transcellular 

pathway is the primary mechanism of the transport of macromolecules including albumin, 

steroid hormones, lipids, vitamins and other substances that bind to albumin across the 

restrictive endothelium barrier by the caveolae-mediated endocytosis (Minshall and 
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Malik, 2006). Previous research has indicated that GLUT1 and GLUT4 are expressed in 

endothelial cells and that they contribute to glucose transportation into various tissues 

like umbilical veins, adrenal capillaries, aorta, retina, heart, placenta and testis (Kahn et 

al., 1991).  

In addition, the endothelium plays a most important role to maintain vascular tone 

through the release of vasodilatory factors such as, nitric oxide (NO), prostacyclin (PGI2) 

and endothelium-derived hyperpolarization (EDH) and/or vasocontractile factors such as 

thromboxane (TXA2) and endothelin-1 (ET-1) (Sandoo et al., 2010). Often, inflammatory 

processes can be observed in blood vessels where endothelial cells are activated by 

release of proinflammatory cytokines and growth factors (Danese et al., 2007).  

In addition, endothelial cells control several lineage of immune cells trafficking and 

also act directly as an immune cell by the release of endothelium-derived growth factors 

(i.e. VEGF, FGF, fibroblast growth factor; GM-CSF, granulocyte-macrophage colony 

stimulating factor) and recruiting factors such as monocyte chemoattractant protein-1 

(MCP-1), expression of toll-like receptor 4 (TLR4) to recognize antigens like 

lipopolysaccharide (LPS), and to release tumor necrosis factor (TNF) and interleukin-1β 

(IL-1β). Endothelial cells not only recruit immune cells but also directly and/or indirectly 

participate in immunological processes in the body (Bell, 2009). 
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Fig 3. Physiological functions of endothelium. Endothelium have critical role in physiology 

 (Sena et al., 2013). 

 

1.2.2. Regulation of vascular tone 

 

1.2.2.1. Nitric oxide 

 

Several vasoactive substances are released from the endothelium that regulate 

basal arterial tone by controlling the relaxation/contraction status of the vascular smooth 

muscle. In our body, three different enzymes have been reported to produce NO. The 

neuronal ‘nNOS’ (nNOS, NOS I or bNOS) and endothelial ‘eNOS’ (eNOS, NOS III) 

isoforms are generally regulated by Ca2+/calmodulin (CAM) and by phosphorylation. The 
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third one is the inducible nitric oxide synthase, which expression is initiated by 

proinflammatory cytokines and lipopolysaccharide (Fleming, 2010). 

NO is one of best known endothelium-dependent vascular relaxing factor. It is a 

soluble gas continuously synthesized by the conversion of L-arginine to L-citrulline by 

the enzyme called eNOS (Maron and Michel, 2012). A reduced bioavailability of NO is a 

one of the major markers of CVDs (Naseem, 2005).  

The signaling cascade leading to the activation of eNOS is targeted by several kinds 

of upstream pathways. Early studies demonstrated that VEGF-induced formation of NO 

in endothelial cells is inhibited by a phosphoinositide-3-kinase (PI3K) inhibitor, which 

suggested that VEGF stimulates the PI3K/Akt-mediated activation of eNOS by the 

phosphorylation of Ser1177, an activator site on eNOS (Bian et al., 2008). Numerous 

publications suggested that NO is not only a vasodilatory mediator but it can also protect 

the cardiovascular system from oxidative stress and prevent the onset of CVDs.  

NO at vascular sites plays an important role to control both pro- and anti-

atherosclerotic responses. A reduced formation and/or bioavailability of NO is a key 

mechanism for the development of atherosclerosis prolong as LDL oxidation, leukocyte 

adhesion, smooth muscle cell (SMC) migration and proliferation and platelet aggregation 

(Naseem, 2005).  

In CVD patients, it has been frequently observed as increased leukocyte invasion 

to the intima and an increased LDL (low density lipoprotein) oxidation due to the changes 

of endothelium permeability and antioxidant properties, respectively. Furthermore, a 

reduced formation of NO will also promote SMC migration and proliferation and 

excessive extracellular thrombus formation common features of atherosclerotic plaques, 

associated with neointimal thickening (Jeremy et al., 1999). Hence, an optimal NO 

bioavailability is key importance to prevent and protect the arterial wall. 
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1.2.2.2. Endothelium-derived hyperpolarization (EDH) 

 

Since the discovery of NO and PGI2, it has been observed that those two mediators 

cannot fully account for relaxation induced by agonists in several types of blood vessels 

such as in the coronary circulation, which suggested the involvement of an additional 

mechanism defined as endothelium-dependent non-NO and non-PGI2 mediated 

relaxation (Komori et al., 1988). 

This non-NO, non-PGI2 endothelium-dependent relaxation involves SMC 

hyperpolarization and is abolished by potassium channel (K+-channel) blockers, and has 

been termed endothelium-dependent hyperpolarization (EDH) (Félétou and Vanhoutte, 

2007).  

The endothelium-dependent relaxation involving EDH gets more important 

compared to NO as the size of the artery decreases. Moreover, there is a great variability 

of EDH resource between species and tissues. Also, EDH mediated endothelium-

dependent relaxation is more prominent after eNOS inhibition, suggesting that EDH-

mediated endothelium-dependent relaxation is limited in the presence of sufficient levels 

of NO (Shimokawa et al., 1996).  

The mechanism of EDH-mediated relaxation involves two stages depending on the 

place where the event takes place i) Once endothelial cells are activated by the agonist 

such as bradykinin, an increase in the intracellular calcium level ([Ca2+] i) and the entry 

of extracellular Ca2+ are observed. The calcium activator signal activates Ca2+-

dependent K+-channels (KCa) of intermediate (IKCa) and small conductance (SKCa) and 

induces K+ efflux. ii) EDH is transmitted to SMC, activates KCa
2+ channels and induces 

SMC hyperpolarization accompanied by a reduced opening of voltage-sensitive Ca2+ 

(vCa2+) channels that leads to SMC relaxation (Luksha et al., 2009). The 

hyperpolarization is transmitted from endothelial cells to the vascular smooth muscle cell 
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via myoendothelial gap junction. An alternatively in some type of blood vessels, EDH has 

been suggested to involve cytochrome P450 (CYP 450) products (Fleming, 2014), high 

level of extracellular K+ released from endothelial cells, H2O2 and C-type natriuretic 

peptide (Luksha et al., 2009). 

 

1.2.2.3. Prostacyclin (PGI2) 

 

Prostacyclin is also called prostaglandin l2 or PGI2, which is a member of the 

eicosanoid family. It is a lipid molecule synthesized from arachidonic acid by the 

activation of the cyclooxygenase pathway (COX) (Marcus et al., 1980). The expression 

of COX-2, an inducible type of COX, is controlled by numerous signal transductions such 

as mitogen-activated protein kinases (MAPKs) and inflammatory mediators activating 

NF-КB (nuclear factor kappa B) signaling pathway, while COX-1 gene expression is 

predominantly constitutive. In endothelial cells, COX-1 may also be inducible in response 

to shear stress, VEGF and thrombin (Morita, 2002). Like NO, prostacyclin is a cardio-

protective mediator in healthy endothelial cells.  

Also, it is known to prevent and/or inhibit platelet aggregation and to induce 

vasodilatory responses (Mitchell et al., 2008). The action of prostacyclin to induce 

vascular relaxation is determined by specific PGI2 receptors (IP) of the G-protein coupled 

receptor family on vascular smooth muscle cells. PGI2/IP interaction in the cell 

membrane stimulates G-protein complex such as Gs, which stimulates cyclic adenosine-

3’,5’-monophosphate (cAMP)/protein kinase A (PKA) leading to Ca2+ extrusion from 

cytosol and sarcoplasmic reticulum Ca2+ pump (Dusting et al., 1977). In addition, PKA 

activates different K+ channels including ATP-sensitive K+ channels and MaxIK channels 

promoting the smooth muscle cell hyperpolarization and relaxation (Majed and Khalil, 

2012). 
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Fig 4. Mechanism of endothelium-dependent relaxation (Ozkor and Quyyumi, 2011). NO 

synthase: eNOS; cyclooxygenase: COX; prostacyclin: PGI2; phospholipase C: PLC; CYP450 2c: 

cytochrome P4502C; eicosatrienoic acids: EETs; calcium-dependent potassium: KCa
+; gap 

junctions: Gap; transient receptor potential: TRP; adenylyl cyclase: AC; cyclic adenosine 

monophosphate: cAMP; cyclic guanosine monophosphate: cGMP; soluble guanylyl cyclase: sGC; 

prostacyclin receptor. 

 

2. Endothelial dysfunction and cardiovascular diseases 

 

2.1. Pathophysiology of cardiovascular diseases 

 

2.1.1. Atherosclerosis 

 

The common causes of CVDs are related to numerous disorders such as 

hypercholesterolemia, hypertension, hyperglycemia and atherosclerosis. 

Atherosclerosis plaque erosion and/or rupture is a major event underlying IHD, stroke 
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and myocardial infarction. These pathologies are often severe acute ischemic conditions 

requiring hospital care, and can induce severe chronic disabilities.  

The pathogenesis of atherosclerosis involves an inflammatory response and major 

structure changes of the arterial wall (Scott, 2004). LDL gets oxidized to become oxidized 

low density lipoprotein (LDL) by the oxidative stress in the arterial wall, leading to the 

recruitment of circulatory leukocytes and the release of pro-inflammatory cytokines like 

MCP-1, TNF-α, IL-1β and granulocyte-macrophage colony stimulating factor (GM-CSF) 

(Chen and Khismatullin, 2015).  

Cytokines and growth factors released under stress conditions, in turn, leading to 

activate SMC migration to the intimal layer and circulatory monocyte adhesion through 

the expression of cell adhesion molecules such as VCAM-1, ICAM-1 in the early phase 

of atherosclerosis (Xing et al., 2012). Once resident in the arterial intima, monocytes will 

become macrophages that engulf oxidized LDL through the increased expression of the 

scavenger receptor A (SRA) or CD36 and, then they are undergoing a series of changes 

that lead to foam cell formation (Libby et al., 2002).  

A number of clinical studies have observed that atherosclerotic plaques from 

patients contain lipid deposition including cholesterol crystals. After the early formation 

of fatty streaks, the progression of atheroma involves the participation of SMCs and the 

disruption of internal elastic lamina located between the intimal and the medial layer of 

blood vessels. The secretion of active matrix metalloproteinases (MMP)-2 and MMP-9 

from both endothelial cells and SMCs contribute to remodeling of the lipid-rich 

atherosclerotic plaque via digestion of collagen and elastin, promoting of SMC migration 

and proliferation (Johnson and Galis, 2004). Integrins are heterodimeric transmembrane 

proteins, composed of an α and a β subunit, that link the extracellular matrix to the 

cytoskeleton of SMCs. Integrin ligation promotes for SMC adhesion to matrix, and it 

triggers pro-migratory intracellular signaling cascades involving the phosphorylation 
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focal adhesion kinase (FAK) and cytoskeletal remodeling through the expression of 

lamellipodia and filopodia (Gerthoffer, 2007).  

 

2.1.2 Diabetes mellitus  

 

Numerous lines of evidences indicate that diabetes mellitus is not only an endocrine 

disorder but also that promotes CVDs. A key feature in diabetes mellitus is chronic 

hyperglycemia. Different molecular mechanisms involving in hyperglycemia have been 

observed such as increased glucose influx leading to activation of the polyol pathway, 

formation of advanced glycation end-products (AGEs) and activation of the 12/15 

lipoxygenase pathway. All these mechanisms finally increase the level of oxidative stress 

in blood vessels. The polyol pathway is a two-step pathway converting glucose to the 

sorbitol and to the fructose. It is activated when large amount of glucose is present such 

as in hyperglycemic conditions. Sorbitol cannot cross the cell membrane and it promotes 

osmotic stress and oxidative stress to blood vessels due to the consumption of NADPH 

in the polyol pathway (Brownlee, 2001). High levels of blood glucose in hyperglycemia 

leads to over-production of reactive dicarbonyls, which may react with amino acids of the 

proteins and to form AGE. Glycated proteins and lipids, AGEs, may alter the specific 

function of the proteins and they directly bind to AGE receptors (RAGE), which promote 

endothelial dysfunction through the increase expression of adhesion molecules such as 

ICAM-1 and VCAM-1 and also the expression of pro-inflammatory cytokines such as 

TNF-α, VEGF and tissue factor (TF) (Goldin et al., 2006). 12/15 lipoxygenases are 

enzymes promote the insert of oxygen molecules to the 12 or 15 carbon position in 

arachidonic acids. The expression of 12/15 lipoxygenases have been observed in 

endothelial cells, smooth muscle cells and macrophages at a different metabolic 

pathophysiologies including hyperglycemia. In a previous study, 12-
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hydroxyeicosetetetraenoic acid (12-HETE) and 15-hydroxyeicosetetetraenoic acid (15-

HETE), final metabolites of arachidonic acid, by activation of 12/15 lipoxygenases have 

been shown to accelerate atherogenesis in LDL receptor deficiency mice through the 

modification of endothelial cell permeability and induction of LDL oxidation 

(Parthasarathy et al., 1989).  

 Type 1 diabetes results from deficiency of insulin secretion subsequent to loss of 

beta cells in pancreas, and is also termed insulin-dependent diabetes mellitus. In 

contrast, type 2 diabetes is non-insulin dependent and associated with insulin resistance 

when cells fail to respond properly to insulin. But both type 1 and type 2 are characterized 

by chronic hyperglycemia promoting CVDs (Kitabchi et al., 2009).  

Hyperglycemia is well-known to activate NF-КB, which induces the expression of a 

great number of pro-atherothrombotic genes in endothelial cells, monocyte-derived 

macrophages and SMCs. In addition, AGE-RAGE engagement leads to the formation of 

ROS subsequent an increased NADPH oxidase (Fukami et al., 2014) that promote LDL 

oxidation and autoxidation of glucose in the blood thereby promoting tissue damage in 

the artery wall (Pennathur and Heinecke, 2007). Previous studies have indicated that 

hyperglycemia enhances monocyte adhesion to cultured endothelial cells via the 

activation of NF-КB, and also stimulates the expression of several pro-inflammatory 

genes related to atherogenesis (Piga et al., 2007).  

The reduction of NO generation is induced by high glucose and AGEs and is 

associated with impaired endothelium-dependent relaxations to acetylcholine in the 

streptozotocin-induced diabetic mice model. Furthermore, it is associated with an 

increased levels of peroxynitrite, nitro-tyrosine expression and lipid peroxidation 

involving eNOS uncoupling (Camici et al., 2007). 
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2.1.3. Hypertension 

 

Hypertension is designed as a high level of blood pressure that can lead to coronary 

artery disease, stroke, heart failure, atrial fibrillation and peripheral vascular diseases 

(Lackland and Weber, 2015). For adults, hypertensive patients show blood pressure 

greater than 140/90 mmHg as systolic/resting blood pressure (Whelton et al., 2018). The 

hypertension is classified with two different states defined as primary (essential) and 

secondary high blood pressure. More than 95% of patients are categorized in primary 

hypertension, and the onset of 5% secondary hypertensive patients generally has no 

family history but it is caused by renal and endocrine disorders or an iatrogenic trigger, 

such as use of oral contraceptives (Poulter et al., 2015).  

 

2.2 Endothelial dysfunction 

 

Endothelium is semi-permeable monolayer in inner surface of blood vessel, which 

is particularly maintaining vascular tone and regulating oxidative stress by the formation 

of NO and controlling the local angiotensin II activity (Sitia et al., 2010). Endothelial 

dysfunction is termed as a pathophysiological state characterized by loss of endothelium 

dependent relaxation activity, impaired fibrinolytic ability, hemodynamic dysregulation, 

increase of growth factors and inflammatory cytokines, increase expression of adhesion 

molecules, excessive generation of ROS, enhanced endothelial permeability (Abraham 

and Distler, 2007). The mechanism involving development of endothelial dysfunction has 

been linked to several causes, such as hypertension, inflammation, dyslipidemia and 

hyperglycemia resulting oxidative stress (Sitia et al., 2010). 

Healthy endothelium maintains the homeostasis of vascular tone by NO production, 

decrease of oxidative stress, inhibition of platelet aggregation and inflammation (Table 
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1).  

Common feature of endothelial dysfunction is characterized by decrease NO 

bioavailability due to the NO trapping by free radicals and also decrease of eNOS activity 

by the uncouple eNOS. NO reacts with superoxide anion (O2
-) to form peroxynitrite anion 

(ONOO-). In 24 months old C57 BL/6J mice, the level of eNOS was non significantly 

different compared to 2 month old mice. However, the aged mice (24 months old mice) 

had significantly increase ratio of eNOS monomer to dimers and also the formation of 

peroxynitrite. It is suggesting that peroxynitrite is an extremely potent oxidant that can 

initiate lipid peroxidation of LDL. In addition, peroxynitrite promotes the recruitment of 

immune cells by the increase level of adhesion molecules such as VCAM-1 and ICAM-

1 and also release of MCP-1 in endothelial cells (Hansson and Hermansson, 2011).  

 

 

Table 1. Differences of healthy and dysfunctional endothelium (Sena et al., 2013). 
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1. Introduction of anthocyanins 

 
1.1 Anthocyanin rich foods and intake 

 

Anthocyanins are water-soluble natural pigments that belong to the flavonoid group 

of polyphenolic compounds. Due to their frequent presence in fruit, vegetables and red 

wine, they are one of the major nutrient of the human diet. Anthocyanins occur naturally 

in plants with the form of glucoside conjugation in which intact anthocyanidins coupled 

to a sugar moiety (Tsuda, 2012). There are about 17 different anthocyanins found in 

nature, only 6 major anthocyanins are widely distributed such as, delphinidin, cyanidin, 

petunidin, peonidin, pelargonidin and malvidin (Prior and Wu, 2006). These compounds 

are well contained in the human diet, especially, in berry species (Table 2). 

 

 

 

Table 2. Dietary source of anthocyanins (Pojer et al., 2013). 

 

Since the past few decades, there are a lot of studies suggesting that anthocyanins 

consumption induced a wide range of biological activities such as an antioxidant effect, 

anti-inflammatory effects, anticarcinogenic effects, and protection against CVDs (Zafra-
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Stone et al., 2007). A 8-week randomized clinical trial of blackberry juice ingestion by 72 

dyslipidemia patients showed significantly increased HDL and apo A-I, apo B, whereas 

high sensitive C-reactive protein (hs-CRP) was significantly decreased (Aghababaee et 

al., 2015). It is suggesting that anthocyanin-rich food have a beneficial effect on the level 

of serum apolipoproteins, a marker of dyslipidemia. Furthermore, the findings of Lobro 

et al., indicated that cyanidin-3-O-glucoside induced protective effects on global 

ischemia reperfusion injury in isolated heart, and antioxidant properties in endothelial 

cells (Ziberna et al., 2012). A high intake of anthocyanins for long period was associated 

with a reduction of CVDs risk factors with a significantly lower blood pressure and arterial 

stiffness in 1898 individual women aged 18-75 in cross-sectional study (Jennings et al., 

2012).  

Thus, anthocyanin-rich food, based on accumulated evidences, appear to have a 

preventive effect on various diseases with different mechanisms. 

 

 

Figure 5. Anthocyanin rich foods 
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1.2 Classification and characteristic of anthocyanins 

 

Anthocyanins are a class of flavonoid synthesized by the phenylpropanoid pathway. 

Phenypropanoid pathway is initiated from the conversion of amino acid phenylalanine to 

the cinnamate by the action of enzyme phenylalanine ammonialyase. Cinnamate is 

transformed to 4-coumarate by the cinnamate 4-hydroxylase (CH4) and from 4-

coumarate to the 4-coumaroyl-CoA by the 4-coumaroyl CoA ligase (4CL) (Whelton et 

al.). Then, 4-coumaroyl-CoA is combined with three malonyl-CoA to make up for the 

flavonoid backbone called chalcones. The metabolic pathway continues by serial 

modification with enzymes to yield flavone, dihydroflavonol and anthocyanins, 

respectively (Fig. 6), (Winkel-Shirley, 2001).  
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Figure 6. Schematic pathway of anthocyanin biosynthesis. CHS, chalcone synthase; CHI, 

chalcone isomerase; F3H/F3’H/F3’5’H, flavonoid hydroxylases; DFR, dihydroflavonol-4-

reductase; ANS/LDOX, anthocyanidin synthase/leucoanthocyanidin dioxygenase; UFGT, UDP 

glucose:flavonoid-3-O-glucosyltransferase; FLS, flavonol synthase (Matus et al., 2009). 
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Anthocyanins are derived from anthocyanidins by the addition of different types of 

sugars and hydroxyl group. In detail, anthocyanidins are sugar free chemical structure 

of anthocyanins based on flavylium ion. The distribution of six major anthocyanidins in 

the plants is cyanidin (50%), peonidin (12%), pelargonidin (12%), petunidin (7%), 

delphinidin (12%) and malvidin (7%). There are four main classes of anthocyanins: 3-

monosides, 3-biosides, 3, 5-diglycosides and 3,7-diglycosides (Kong et al., 2003).  

 

Figure 7. Structure of six common anthocyanidin with glycosides. 

 

Generally, anthocyanins are stable in low pH condition and they are affected by 

various of environmental conditions, such as light, temperature, oxygen, metal ion and 

intramolecular association with other compounds (Shipp and Abdel-Aal, 2010). 

Anthocyanins can be found in different structures depending of the pH of the solution 

containing anthocyanins. At pH 1, the fravylium cation is stable and characterized by a 

puple or blue color (Fig 7. A). Between pH 2 and 4 fravylium cation is transformed to blue 

quinoidal species (Fig 7. B-D). Colorless species are detected at the pH 5 and 6 (Fig 7 
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(E-F)), carbinol pseudobase and chalcone, respectively. Then, anthocyanins start to 

degrade when pH is increased more than 7 (Castaneda-Ovando et al., 2009). 

 

 

Figure 8. Changes of anthocyanin structure in different pH condition (Castaneda-Ovando 

et al., 2009). 

 

2. Effect of anthocyanins in cardiovascular health 

 

2.1. Bioavailability of anthocyanins 

 

Based on previous studies, it is known that anthocyanins can be found as an 

aglycone, intact and acylated structures in urine (Kurilich et al., 2005). It is suggesting 
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that various structures of anthocyanins can be absorbed after metabolism and also, their 

original structure without structural modification. A previous study has shown that the 

rate and quantity of absorption of anthocyanins is dependent on their chemical structures 

such as the aglycone and the glucose moiety (Tian et al., 2006). The maximum 

concentration of anthocyanins in plasma is detected 30 min to 2 h after consumption of 

anthocyanins rich-fruit. The systemic bioavailability of anthocyanins is estimated less 

than 2% in in vivo studies (Borges et al., 2013). The relatively low plasma level of 

anthocyanins suggested that they undergo rapid and extensive metabolism after 

absorption and/or that they rapidly enter into target cells. 

In a human study, anthocyanins are detected in blood within minutes after 

consumption, suggesting that anthocyanins are very quickly absorbed from stomach 

(Mallery et al., 2011). Previously, Passamonti et al., have shown that the stomach is a 

major site for anthocyanins absorption via bilitranslocase. Bilitranslocase is a plasma 

membrane organic anion carrier expressed in the liver and gastric epithelium including 

stomach (Tsuda et al., 1999). Several investigators reported that anthocyanins are 

transported to intestinal epithelium in the body exclusively as an intact glycoside 

(Miyazawa et al., 1999). Therefore, a recent publication has shown that delphinidin-3-O-

glucoside, the most abundant anthocyanin in blackcurrant, prevents oxidized LDL-

induced mitochondrial dysfunction in endothelial cells following delphinidin-3-O-

glucoside uptake via sodium-glucose cotransporter 1 (SGLT 1), (Jin et al., 2013).  

A great number of anthocyanin metabolites are detected with different structures in 

the urine and blood. The consumption of an anthocyanin with four different glucosides 

(cyanidin-3-glactoside, cyanidin-3-arabinoside, cyanidin-3-glucoside, cyanidin-3-

xyloside) resulted in the appearance of at least ten different metabolites subsequent to 

the involvement of different metabolism  pathway such as methylation, sulfonation, 

glucuronidation and hydrolysis (Kay et al., 2004).  
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Figure 9. The metabolism of anthocyanin in the body. 

 

2.2 Role of anthocyanin in cardiovascular health 

 

2.2.1 In vitro study 

 

Anthocyanins are the most abundant flavonoid constituents in fruits and vegetables. 

So, daily intake of anthocyanins in people of United States is estimated between 180 to 

215 mg/day, which is 9-fold higher than the other dietary flavonoids. Many in vitro data 

are suggesting a beneficial effect of anthocyanins in human health through a variety of 

mechanisms. The phenolic structure of anthocyanins is responsible for antioxidant 

activities, which has the ability to trap ROS molecules such as superoxide (O2
˙-), singlet 

oxide anion (O2), peroxide (ROO-), hydrogen peroxide (H2O2) and the hydroxyl radical 

(OH.) (Wang and Jiao, 2000). The antioxidant properties of anthocyanins have been 

observed in different in vitro systems such as endothelial cell (Bagchi et al., 2004), liver 
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(Meyers et al., 2003), colon cancer (Renis et al., 2008), breast cancer (Singletary et al., 

2007), and leukemia cell lines (Feng et al., 2007). Previous results have shown that 

antioxidant property of anthocyanins are based on their structural characteristics of 

hydroxyl residues in anthocyanin molecules, and also observed directly by interaction 

with amino acids of proteins C=O, and C=N groups (Jaldappagari et al., 2008, Kong et 

al., 2003). 

Minnie et al., suggested that anthocyanin-rich extract from Aronia meloncapa E. 

induces cell cycle arrest in G1 phase targeting colon cancer cell line but not normal 

colonic epithelial cell. This effect was determined within 24 h by the increase expression 

of cyclin-dependent kinase p21 and p27 (Malik et al., 2003). In addition, anthocyanin-

rich berry extract inhibited total and facilitated glucose transportation to Caco-2 cells by 

a decreased expression of GLUT1 transporter, interestingly, the expression of SGLT 1 

was not affected. It is suggesting that the mechanism induced inhibition of glucose 

uptake differ depending on the type of glucose transporters (Alzaid et al., 2013).  

Due to the instability of anthocyanins in physiological pH, often experiments have 

also investigated precursors and metabolites, such as cyanidin and protocatechuic acid. 

In contrast to cyanidin-3-O-glucopyranoside, cyanidin (aglycone of cyanidin-3-O-

glucopyranoside) and protocatechuic acid protect neuronal cells against H2O2 -induced 

apoptosis through an increased antioxidant activity at the cytosol level. 

 

2.2.2. In vivo study 

 

Although previous results indicated low bioavailability of anthocyanins, there are a 

lot of in vivo studies showing that anthocyanins are associated with numerous biological 

mechanisms.  

Anthocyanin-rich blackcurrant extract exhibits anti-carcinogenetic properties in 
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diethylnitrosamine (DENA)-induced hepatocellular tumorigenesis on Sprague-dawley 

rats. The oral administration of anthocyanins-rich blackcurrant extract dose-dependently 

inhibited the early hepatic preneoplastic events, in a two-stage model of 

hepatocarcinogenesis initiated with DENA and promoted by phenobarbital (PB). This 

result demonstrats that dietary anthocyanins contained in blackcurrant extract clearly 

possessed beneficial effects on chemically-induced rat liver tumorigenesis (Bishayee et 

al., 2011). Moreover, several studies indicated that dietary anthocyanins inhibit metabolic 

disorders through the regulation of leptin, insulin and blood glucose resistance. For 

example, cyanidin-3-O-glucoside suppress hypertrophy of adipocytes in a high fat diet 

fed C57BL/6J mice developing obesity. In this research, mRNA levels of enzymes 

involved in fatty acid, triglycerol synthesis and sterol regulatory elements binding protein-

1 were suppressed by oral administration of cyanidin-3-O-glucoside (Tsuda et al., 2003). 

Previous results showed that anthocyanins have phytoestrogenic activities, such as 

genistein, kamperol and quercetin (Zava and Duwe, 1997). It also has been reported 

that anthocyanin-rich blackcurrant extract and its four major anthocyanins possessed 

phytoestrogenic activities in ovariectomized rats and normal human female skin 

fibroblast cell line by the up regulation of estrogen-related genes (Nanashima et al., 

2018). The data suggested that anthocyanins might be contribute to hormonal control by 

the maintenance of estrogen-related genes. 

 

2.2.3. Anthocyanins in clinical trials 

 

As discussed in the previous section, a number of clinical aspects have estimated 

that anthocyanins have the beneficial effects in human health, despite the great range of 

variation on the daily consumption of anthocyanins as such 5 mg to 225 mg. In 

dyslipidemia patients, anthocyanin supplementation improved serum LDL and HDL 
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cholesterol concentration associated with inhibition of cholesterol ester transfer protein 

in dyslipidemia patients (Qin et al., 2009). Moreover, previous epidemiological study 

implicated that anthocyanin consumption may reduce oxidative stress induced DNA 

damage by increase of glutathione levels in healthy subjects (Weisel et al., 2006). Iris et 

al., in their previous case study, suggested daily intake of berries (blackcurrant, 

lingonberry, bilberry, chokeberry mixed with raspberry) reduced blood pressure, increase 

HDL cholesterol level and CVDs risk factors, such as vWF (Von Willebrand factor), 

fibrinogen, ICAM-1 (intracellular adhesion molecule-1) (Erlund et al., 2008). 

 

3. Blackcurrant anthocyanin and cardiovascular health 

 

3.1. Blackcurrant anthocyanins and stability 

 

Blackcurrant (Ribes nigrum), a fruit of woody shrub in the family of Grossulariaceae, 

is one of the most popular berries and is widely cultivated from Eastern Europe to middle 

Asia. In previous report, blackcurrant juices were subjected to high performance liquid 

chromatography with UV and mass spectroscopy detectors. As shown in Fig. 9, there 

are four major anthocyanins that are most abundant in the blackcurrant juice such as, 

delphinidin-3-O-rutinoside, cyanidin-3-O-rutinoside, delphinidin-3-O-glucoside and 

cyanidin-3-O-glucoside, respectively. Then, evaluation of stability to compare between 
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Figure. 10. Anthocyanin composition in blackcurrant (Kapasakalidis et al., 2006). 

 

four major anthocyanins under the irradiation of UV and high temperature condition was 

analyzed. The total content of anthocyanins after 4 h of irradiation of UV decreased on 

average by 44-55%. Furthermore, cyanidin-3-O-rutinoside was the most thermally stable 

anthocyanin in the blackcurrant (Kapasakalidis et al., 2006). 
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Figure 11. Four major anthocyanins in blackcurrant. 

 

3.2. Blackcurrant and cardiovascular diseases  

 

Anthocyanins are major flavonoid contained in diverse dietary sources such as, 

vegetables, berries, red wine and colored crops. In past decades, numerous studies 

suggested anthocyanins decrease the risk of CVDs mortality through the regulation of 

various risk factors (Hertog et al., 1995).  

Clinical trials in which 250 ml of blackcurrant juice was given to 48 peripheral arterial 

disease patients, it was observed that the patients group treated by blackcurrant juice 

had a 11% decrease of peripheral arterial disease level and C-reactive protein (Dalgård 

et al., 2008). Keiko et al., proposed that the mechanism of blackcurrant on decreasing 

hind-limb perfusion pressure through involved an increase NO formation in endothelium 

(Iwasaki-Kurashige et al., 2006). In addition, blackcurrant anthocyanins activate Akt-

eNOS signaling pathways in human umbilical endothelial cell (HUVEC) and it is 

abolished in the presence of wortmannin a PI3K inhibitor (Edirisinghe et al., 2011). Taken 
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together, blackcurrant anthocyanins stimulate the activation of PI3K-Akt-eNOS signaling 

pathway triggering NO formation in the blood vessel. Cyanidin-3-O-glucoside, typical 

anthocyanin in blackcurrant, shows free radical scavenging activity, suppresses 

inflammation, prevents endothelial dysfunction, vascular failure, and myocardium 

damage and seems to help prevent cardiovascular disease (Amorini et al., 2003, 

Serraino et al., 2003). Moreover, delphnidin-3-O-glucoside neutralized oxidized LDL 

induced oxidative stress and apoptosis in cultured endothelial cells by the reduction of 

mitochondria respiratory chain complex and intracellular superoxide anion formation (Xie 

et al., 2012). 

In addition, Oak et al., observed that delphinidin and cyanidin inhibit platelet-derived 

growth factor (PDGF) induced VEGF release in conditioned medium of SMC by a 

preventing the activation of MAPK signaling pathway (Oak et al., 2006). The evaluation 

of lipid lowering capacity of blackcurrant anthocyanins has indicated that a polyphenol-

rich blackcurrant pomace extract down-regulates intestinal and serum lipid formation in 

the high fat diet fed rabbit. In this study, the blackcurrant pomace extract ameliorated 

hyperlipidemia by decreasing triglyceride, total cholesterol, non-HDL cholesterol and free 

fatty acid levels in blood and increased the antioxidant activities (Jurgoński et al., 2014). 
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Figure 12. The effect of blackcurrant on CVDs risk factors. 
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Chapter Four 

Sodium-glucose cotransporters 
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1. Physiology of sodium-glucose cotransporters 

 

1.1 Structure and types 

 
Sodium-glucose cotransporters (SGLTs) are a family of glucose transporters 

expressed in the intestinal mucosa of small intestine and the proximal tubule of the 

kidney. There are two most well-known SGLT family members, SGLT1 and SGLT2. SGLT 

1 and 2 are responsible for the reabsorption of glucose to the blood in the kidney. SGLT 

1, encoded by the gene SLC5A1, is mainly expressed in the intestinal lumen that 

contributes to transport glucose and galactose, which is about a 74-kDa glycoprotein of 

14 postulated membrane spans localized in the brush border of the intestinal epithelium 

(Turk et al., 1994). As shown in Fig. 12, all transmembrane spans are an alpha helix, the 

N-terminal is located extracellular and C-terminal is inside the cytoplasm. The functional 

core is located on MS6 to 11 containing a galactose binding site and sodium binding site 

is placed on MS11 to 12 (Turk and Wright, 1997). 

 

 
 

Figure 13. Structure of SGLT1 
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Figure 13 shows the human homologue model of SGLT2 based on the inward facing. 

In the sugar occluded state, glucose is coordinated by glucose binding site, and is 

excluded from contact with the external solution by hydrophobic residues (Ghezzi et al., 

2018).  

 

Figure 14. The structure of human SGLT2 homologue (Ghezzi et al., 2018). 

 

1.2. Role of Sodium-glucose cotransporters 

 

Glucose is an essential energy source of cells in the human body. Thus, glucose 

transporter plays key role for the energy production in the different organs. Glucose 

transporters are classified into two families: facilitative glucose transporters (GLUTs) and 

sodium-dependent glucose cotransporters (SGLTs). Facilitative glucose transporters 
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have been identified six different isoforms, Glut1 to Glut6. The primary function of the 

facilitative glucose carrier is to mediate glucose exchange between the blood and 

cytoplasm. Facilitative transportation systems are often termed passive diffusion, and 

that is energy independent system, which only can transport their substrate on a 

concentration gradient-manner. The Gluts are widely expressed in the human body, and 

distinct distribution of whole body glucose might be regulated by the tissue specific 

expression with several isoforms (Mueckler, 1994). 

SGLTs have a different way of glucose transportation, which accept glucose and Na+ 

by and electrochemical gradient across the membrane. SGLT1 is mainly expressed in 

the intestine and kidney responsible for galactose/glucose transportation. In contrast, 

SGLT2 is highly observed in the proximal tubule of kidney contributing ~90% of renal 

glucose reabsorption.  

In the kidney, SLGT1 is expressed in S2 and S3 segments of renal tubules, and it 

reabsorbs one glucose molecule coupled with two sodium ions. SGLT2 has 60% of 

genetic similarity with SGLT1 and located on the S1 segment of proximal tubules. SGLT2 

has low glucose affinity and transport one glucose molecule with one sodium ion, but 

high capacity. It is considering that SGLT1 and SGLT2 are contributing 10% and 90% of 

filtered glucose reabsorption, respectively (Harada and Inagaki, 2012). 
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Figure 15. The role of SGLT1 and SGLT2 in the proximal tubule of kidney. 

 

1. 3. Classification of SGLT inhibitors and application 

 

SGLT inhibitors, approved by U.S food & drug administration (FDA), are a class of 

prescription medicine used with diet and exercise for treatment of type 2 diabetes. Most 

of SGLT inhibitors are targeting SGLT2 classified as canagliflozin, dapagliflozin and 

empagliflozin. Selectivity of SGLT inhibitors for SGLT2 over SLGT1 is important, due to  

 

 

 

Table 3. Potency of selectivity of SGLT 2 inhibitors. 
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inhibition of SGLT1 in the intestine can lead to glucose-galactose malabsorption, a 

disease characterised by severe dehydration and diarrhoea observed in individuals with 

mutations in the SGLT-1 gene (Meeuwisse, 1970). Grempler et al., in their previous 

publication, studied that empagliflozin has a high degree of selectivity over SGLT1, 4, 5 

and 6 compared with other SGLT inhibitors (Table. 3), (Grempler et al., 2012).  

SGLT1 and SGLT2 inhibition by LX4211 (sotagliflozin), targeting type 1 diabetes 

mellitus, delays postprandial glucose absorption through the renal glucose reabsorption 

and local SGLT1 inhibition in the intestine. Furthermore, unique benefit of SLGT 

inhibitors is able to lower the requirement of bolus insulin interaction associated with 

glycemic variability and hypoglycemia.  
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Aim of the study 

Anthocyanins are secondary metabolites of plants, known to protect the part from 

natural enemies in the nature. Anthocyanin molecules are responsible for red, blue and 

purple colors used as food, pharmaceutical ingredients, and having potential health 

benefits. Most anthocyanins are being conjugated with one or two sugar molecules. In 

the last few decades, it has been suggested that anthocyanins have a potential health-

promoting effect, although their structure is instable and is affected by pH, light, 

temperature, enzyme and oxygen. The potential effect of anthocyanins in cardiovascular 

health has been related to various mechanisms including an antioxidant effect, 

modulation of vascular tone and blood pressure, serum lipid lowering. 

The bioavailability of anthocyanins is supposed to be very low. Clinical studies of 

anthocyanins bioavailability showed total anthocyanin metabolites including intact 

anthocyanins excreted in urine are about 1.8% from the ingested amount. The peak of 

anthocyanin metabolites in urine is detected 2 h after the ingestion, and among the 

metabolites, glucuronide anthocyanins were the most represented (Felgines et al., 2003). 

However, appearance of blackberry-derived C3G in serum in a 15-day blackberry fed rat 

was about 41.7% from the total ingested amount, suggesting that stomach is an essential 

organ in anthocyanin absorption (Talavéra et al., 2005). 

Regarding endothelial cells, dietary anthocyanins (cyanidin-3-O-glucoside, 

delphinidin-3-O-glucoside and pelargonidin-3-O-glucoside) protect against peroxynitrite-

induced mitochondrial dysfunction by inhibiting the activation of caspase-9 and -3 in 

cultured bovine aortic endothelial cells (Paixão et al., 2011). Auger et al., observed that 

high amounts of anthocyanins containing fruit juices and purees induce endothelium-

dependent relaxation of porcine coronary artery rings. The most active ones were 

predominantly berries including aronia, blackcurrant, lingoberry, blueberry and cranberry, 

berries containing high levels of anthocyanins (Auger et al., 2011). Furthermore, C3G 
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and its 11 different metabolites altered the expression of inflammatory mediators IL-6 

and VCAM-1 expression induced by oxidized LDL and CD40L (Amin et al., 2015).  

Sodium-glucose cotransporters are a family of glucose transporters, contributing the 

renal glucose reabsorption. SGLT2 is located S1 and S2 segment of proximal tubule and 

has a high capacity but a low affinity for glucose. On the contrary, SGLT1 is expressed 

in S3 segment of proximal tubule with a low capacity but with a high affinity. By lowering 

the renal threshold for glucose excretion, SGLT inhibitors suppress renal glucose 

reabsorption leading to an improve hyperglycemia. In addition, the selective 

empagliflozin normalized glucose levels, and also improved endothelium-dependent 

relaxation, decreased expression of RAGE, COX 2, iNOS in Zucker diabetic fatty rats 

(Steven et al., 2017). 

 

The aim of this study was to determine the contribution of SGLT1 and 2 in 

blackcurrant anthocyanins entry into endothelial cells and activation of vasoprotective 

endothelial NO pathway.  

In detail, the aims were 

- To identify the mechanisms underlying blackcurrant anthocyanin-induced 

endothelium-dependent NO-mediated relaxation in porcine coronary artery 

rings, 

- Determination of active anthocyanins in the blackcurrant extract using cultured 

ECs, 

- Study the contribution of SGLT1/2 in anthocyanins uptake into ECs, 

- Evaluate the potential of blackcurrant anthocyanins to restore the protective 

endothelial function in senescent ECs, and entry via role of SGLT1 and SGLT2. 

-  
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Abstract 

Introduction: Blackcurrant (BC) anthocyanins, including predominantly glucoside- and 

rutinoside-conjugated cyanidin and delphinidin, have been shown to protect the vascular 

system, in part, by stimulating the endothelial formation of nitric oxide (NO). This study 

evaluated the possibility that sodium-glucose cotransporters (SGLT) 1 and 2 contribute 

to BC sugar-conjugated anthocyanins entry into endothelial cells (ECs) and the 

subsequent activation of endothelial NO synthase (eNOS) using isolated blood vessels 

and cultured ECs.  

Methods: BC extract (BCE) was prepared from a BC juice using Sephadex LH-20 

column. Vascular reactivity was assessed using organ chambers. Cultured ECs were 

used at P1 and P3 (senescent). The expression level of proteins was assessed by 

Western blot analysis, and the uptake of anthocyanins by Naturstoff’s reagent A and 

confocal microscopy and flow cytometry. 

Results: BCE caused concentration-dependent NO-mediated relaxations of coronary 

artery rings with endothelium, and phosphorylation of the eNOS activator site Ser1177 

in ECs at P1, which were significantly inhibited by the dual SGLT1/2 inhibitor LX4211 

and the SGLT2 inhibitors dapagliflozin and canagliflozin but not by the highly selective 

SGLT2 inhibitor empagliflozin. Cyanidin-3-O-glucoside (C3G) also increased eNOS 

phosphorylation, an effect prevented by LX4211. Uptake of BCE, C3G and delphinidin-

3-O-glucoside (D3G) but not their rutinoside-conjugated forms was observed in ECs at 

P1, which was prevented by LX4211 but not empagliflozin. Both SGLT1 and 2 protein 

expression levels were observed in ECs at P1 and these signals were significantly higher 

in P3. An increased uptake of BCE and BCE-induced phosphorylation of eNOS was 

observed in ECs at P3 compared to P1, both of these effects were markedly inhibited by 

LX4211 and also, to some extent, by empagliflozin.  

Conclusion: The present findings indicate that uptake of BC glucoside-conjugated 
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anthocyanins involves SGLT1 in young ECs, and both SGLT1 and SGLT2 in senescent 

ECs leading to stimulation of the endothelial NO pathway. The enhanced uptake of BC 

anthocyanins into senescent ECs might be an interesting strategy to protect 

senescence-prone atherosusceptible arterial sites. 
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Introduction 

Cardiovascular diseases (CVDs) are the critical cause of death worldwide in 2016 

[1]. Several epidemiological studies have indicated that regular consumption of 

polyphenol-rich fruits (i.e., red and dark berries), vegetables (i.e., purple potato and red 

onion) and beverages (i.e., red wine, berry juices) is associated with a reduced risk of 

CV mortality [2-5]. The beneficial effect has been attributable, at least in part, to their 

high content of flavonoids and, in particular, anthocyanins. Amongst anthocyanin-rich 

products, the fruit of blackcurrant (BC, Ribes nigrum L.) is an interesting source with up 

to 250 mg of anthocyanins/100 g of fresh fruit [6]. Analysis of BC extracts by high-

performance liquid chromatography has indicated the presence of several types of 

anthocyanins including cyanidin, delphinidin, pelargonidin, peonidin, petunidin and 

malvidin conjugated with either 3-O-rutinoside or 3-O-glucoside. Moreover, 3-O-

rutinoside and 3-O-glucoside of delphinidin and cyanidin appear to be the major BC 

anthocyanins accounting for more than 97% of the total anthocyanin content [7].  

The protective effect of BC anthocyanins on the CV system is likely to involve their 

ability to enhance the endothelial formation of the most important vasoprotective factor, 

nitric oxide (NO). Indeed, the comparison of 13 different fruit juices and purees has 

indicated that BC juice and puree are amongst the most active products to induce 

endothelium-dependent NO-mediated relaxations in porcine coronary artery rings [8, 9]. 

Moreover, cyanidin-3-O-glucoside (C3G) induced the phosphorylation of Akt in a time-

dependent manner leading to the subsequent phosphorylation of endothelial nitric oxide 

synthase (eNOS) at the activator site Ser1179 to stimulate the NO/cyclic GMP pathway 

in cultured bovine aortic endothelial cells [10]. Alternatively, it may also involve their 

ability to decrease the level of oxidative stress promoting endothelial dysfunction and 

inflammatory responses [11]. Indeed, C3G prevented peroxynitrite-induced arterial 

dysfunction in rat aortic rings, and DNA damage in human umbilical vein ECs [12].  
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Anthocyanins are highly instable and very susceptible to degradation depending on 

several factors such as pH, temperature, light and their chemical structures [13]. The 

peak concentration of C3G in blood is detected 15 min after oral administration of a red 

fruit anthocyanin extract in rats, and 30 min in humans, which indicates that anthocyanins 

are absorbed by the gastro-intestinal track [14]. Moreover, bilitranslocase expressed in 

the gastric epithelium and also in the liver, has been suggested to contribute to the gastric 

absorption of anthocyanins in rats [15]. Interestingly, cyanidin-3-O-galactoside and -

glucoside but not the aglycone competitively inhibited uptake of sulfobromophthalein, a 

bilitranslocase substrate, in rat liver plasma membranes suggesting that the sugar 

moiety of anthocyanins is important [16]. Recently, D3G has been shown to protect ECs 

against oxidized LDL-induced mitochondrial dysfunction subsequent to its entry via 

sodium-glucose cotransporter1 (SGLT1) [17]. Indeed, the protective effect of D3G was 

abolished by the non-selective SGLT inhibitor phlorizin, D-glucose and it was also not 

observed following SGLT1 knock out using SGLT1 siRNA [17]. A role for SGLTs is also 

supported by the fact that D3G significantly inhibited the uptake of radioactive 3-O-

methyl-glucose (3-OMG) in the mouse intestine, an effect that was inhibited by phlorizin 

[18]. 

Therefore, the major aim of the present study was to evaluate the possibility that 

SGLT1 and 2, the two major SGLTs, contribute to BC extract and its major glucoside- 

and rutinoside-conjugated anthocyanins uptake into endothelial cells (ECs) promoting 

the subsequent activation of eNOS using isolated blood vessels and cultured ECs. 

 

Materials and methods 

Preparation and phytochemical analysis of BCE  

To prepare BCE, concentrate blackcurrant juice was loaded into sephadex LH-20 

column (Sigma) eluted with 1L of acetified methanol (v/v%, 0.01% acetic acid) at 12 



 71 

ml/min. The anthocyanin rich fraction was concentrated by rotary evaporator at 

temperature not exceeding 40 °C. The anthocyanin-rich BCE compounds are yielded 

total 160 mg. 

High Performance Liquid Chromatography coupled with Diode Array Detector 

(HPLC-DAD) analysis was performed in a liquid Elite Lachrom chromatograph (Merck 

Hitachi) equipped with an L2450 photodiode array detector. Separation of anthocyanins 

was carried out according to Tabart et al., [19]. Absorbance was recorded at 518nm. 

Standards of cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, delphinidin-3-O-

glucoside, and delphinidin-3-O-rutinoside were purchased from Extrasynthese (Genay 

Cedex, France).  

 

Cell culture  

Porcine hearts were purchased from the local slaughterhouse (SOCOPA, Holtzheim, 

France). The left anterior coronary arteries were carefully collected, cleaned and flushed 

with warm PBS. To carry out primary cultures of porcine coronary artery ECs, the arteries 

were incubated with collagenase (type I, Worthington, 1 mg/ml) for 15 min at 37 °C. ECs 

were cultured in T75 flasks containing MCDB131 (Invitrogen) culture medium 

supplemented with 15% fetal bovine serum, fungizone (250 µg/ml), penicillin (100 UI/ml), 

streptomycin (100 UI/ml), L-glutamine (2 mM, all from Lonza, Levallois-Perret, France), 

and grown for 48–72 h until they reach 80-90 % of confluence (passage 0, P0). 

Thereafter, ECs were detached with trypsin (trypsin-EDTA; Life Technologies SAS) and 

further passaged at a ratio of 1:3 at regular intervals to induce replicative senescence 

(passage 3; P3). 

 

Vascular reactivity 

Left anterior coronary arteries were isolated, carefully cleaned to remove connective 
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tissue and fat, and cut into rings of 3-4 mm length. Thereafter, rings were suspended 

organ chambers containing Kreb’s bicarbonate solution (mM: NaCl 119, KCl 4.7, KH2PO4 

1.18, MgSO4 1.18, CaCl2 1.25, NaHCO3 25, and D-glucose 11, pH 7.4, 37 °C) and 

oxygenated with a mixture of 95% O2 and 5% CO2. The resting tension was set at 5 g 

before the determination of changes of isometric tension. Coronary artery rings were 

contracted with U46619 before a concentration-relaxation curve to BCE was constructed. 

In some experiments, rings were incubated with an inhibitor: N!-nitro-L-arginine (L-NA, 

30 µM, inhibitor of endothelial NO synthase), indomethacin (10 µM, COX inhibitor), 

inhibitors of endothelium-dependent hyperpolarization Tram-34, (1 µM, small 

conductance Ca2+-activated K+ channel blocker) plus UCL1684 (1 µM, intermediate 

conductance Ca2+-activated K+ channel blocker) or the combination of L-NA, 

indomethacin, Tram-34 and UCL-1684 for 30 min before the addition of U46619 and the 

subsequent relaxation to BCE. To determine the role of SGLT1 and/or 2 in BCE-induced 

NO-mediated relaxation, rings were incubated with either LX4211 (10-7 M), empagliflozin 

(10-7 M), dapagliflozin (10-7 M) or canagliflozin (10-7 M) for 5 min before addition of BCE. 

In some rings, the endothelium was removed mechanically by gently rubbing the lumen 

of the rings with a pair of forceps. 

 

Western blot analysis 

Following treatment ECs were washed twice with cold-PBS then lysed in protein 

extraction buffer (composition in mM: NaCl 150; Na3VO4 1; sodium pyrophosphate 10; 

NaF 20; okadaic acid 0.01, Sigma; Tris/HCl 20, pH 7.5, QBiogene; a tablet of protease 

inhibitor, Roche and 1% Triton X-100, QBiogen). Equal amounts of proteins were loaded 

to 10-12% of denaturing SDS (10-12%) polyacrylamide gel and separated by gel-

electrophoresis. Separated proteins were transferred to nitrocellulose membrane (GE 

Healthcare Life Sciences) at 4 °C and blocked with 5% BSA containing TBST (Tris-
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buffered saline with 1% tween 20, Sigma) buffer. To detect proteins, membranes were 

incubated with a primary anti-body for overnight: rabbit polyclonal anti-SGLT1 (diluted 

1:1.000; Alomone labs; cat. nº AGT-031), a rabbit polyclonal anti SGLT2 (diluted 1:1.000; 

Alomone labs; cat. nº AGT-032), a rabbit polyclonal anti-peNOS (diluted 1:1000; Cell 

signaling; cat. nº #9571), a rabbit monoclonal anti-pAkt (diluted 1:3000; Cell signaling; 

cat. nº #4060S) or mouse monoclonal anti-eNOS (diluted 1:1500; BD transduction; cat. 

nº 610297), a mouse monoclonal anti-β-tubulin (diluted 1:10.000; Sigma-Aldrich; cat. nº 

T7816) overnight at 4 °C. Membranes were washed with TBST three times at ten min 

intervals. After washing, membranes were incubated with the secondary antibody 

(peroxidase-labeled anti-rabbit or anti-mouse IgG, dilution of 1:5000; Cell Signaling 

Technology; cat. nº #7074, #7076, respectively) at room temperature for 60 min. The 

expression level of proteins was detected by chemiluminescence reaction (ECL; 

Amersham, Les Ulis, France) followed by densitometric analysis using Image J software. 

 

Determination of anthocyanin uptake by flow cytometry 

ECs were seeded in a 6-well plate for 24 h. After 12 h of starvation, BCE (100 µg/ml) 

or an anthocyanin (100 µM; cyanidin-3-O-glucoside, C3G; cyanidin-3-O-rutinoside, C3R; 

delphinidin-3-O-glucoside, D3G; delphinidin-3-O-rutinoside, D3R) was added to ECs for 

15 min in the absence or presence of the dual SGLT1/2 inhibitor LX4211 or the highly 

selective SGLT2 inhibitor empagliflozin. Following the incubation time, ECs were washed 

twice with PBS and incubated with 0.2% Naturstoff’s reagent A (2-Aminoethyl diphenyl 

borate; Sigma) in PBS for 5 min. Subsequently, cells were washed with PBS and scraped 

in 500 µl of freshly added PBS. Fluorescence intensity was detected in the FL4-channel 

using a FACS Calibur (Becton-Dickinson, San Jose, CA, USA). 

 

Determination of anthocyanin uptake by confocal microscopy 
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ECs were seeded into Lab-Tek® chamber slide for 24 h. Following treatment of ECs, 

they were washed and mounted in DAKO medium (fluorescence editing medium, DAKO) 

and examined under confocal microscope (Leica TCS SPE) at an emission wavelength 

of 620–705nm (excitation=488nm). Images were analyzed using Image J software. 

 

Statistical analysis 

Data are presented as mean±SEM or as otherwise stated of n different experiments. 

Mean values were compared using two-way or one-way ANOVA followed by Dunnett's 

multiple comparisons test to identify significant differences between treatments using 

GraphPad Prism (Version 7). 

 

Results 

BCE composition 

A shown in Table 1, the HPLC-DAD analysis of the BCE indicated the presence of 

four major sugar-conjugated anthocyanins, namely delphinidin-3-O-rutinoside (76.25 ± 

1.82 µg/ml), cyanidin-3-O-rutinoside (38.81 ± 0.20 µg/ml), delphinidin-3-O-glucoside 

(17.49 ± 0.69 µg/ml), cyanidin-3-O-glucoside (6.11 ± 0.04 µg/ml), peonidin (7.22 ± 0.11 

µg/ml) and several other minor compounds, including malvidin, delphinidin, peonidin-3-

O-glucoside and peonidin-3-O-rutinoside (Table 1).  

 

BCE-induced NO-mediated relaxation in coronary artery rings involves SGLTs 

BCE caused concentration-dependent relaxations starting at 3 µg/ml reaching near 

maximal relaxation at 30 µg/ml in rings with endothelium whereas no such effect was 

observed in rings without endothelium (Fig.1A). BCE-induced endothelium-dependent 

relaxation was abolished by the eNOS inhibitor, NG-nitro-L-arginine (L-NA), and not 

affected by inhibitors of endothelium-dependent hyperpolarization, Tram-34 plus UCL-
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1684, and also by the non-selective inhibitor of cyclooxygenase, indomethacin indicating 

the exclusive involvement of NO (Fig. 1B). To evaluate the role of SGLT1 and 2 in the 

BCE-induced NO-mediated relaxation, rings with endothelium were incubated with the 

dual SGLT1/2 inhibitor LX4211 or a selective SGLT2 inhibitor (canagliflozin, dapagliflozin, 

empagliflozin) before the addition of BCE (Fig. 1C-F). Both LX4211 and canagliflozin 

significantly inhibited BCE-induced relaxation whereas the more selective SGLT2 

inhibitors dapagliflozin and, in particular, empagliflozin were without effect (Fig. 1C-F), 

suggesting the involvement, at least to some extent, of SGLT1. 

In addition, none of the SGLT inhibitors affected the endothelium-dependent relaxation 

to bradykinin and the natural non-sugar conjugated epigallocatechin gallate, and to the 

NO donor sodium nitroprusside (supplementary Fig. 1). 

 

Expression level of SGLT1 and 2 proteins in young ECs 

Previous studies have indicated that SGLT1 is expressed predominantly in the 

kidney and intestine, and SGLT2 mainly in the kidney [20] [21] [22]. Although native and 

cultured ECs have been shown to express SGLT1 mRNA, SGLT2 mRNA levels were 

undetectable [23]. The present findings using immunofluorescence staining of ECs at P1 

revealed both SGLT1 and for SGLT2 fluorescence signals as assessed by confocal 

microscopy (Fig. 2A). To obtain further evidence, the protein expression level of SGLT1 

and 2 was assessed in ECs lysates using Western blot analysis. A protein of about 65 

kDa was detected by SGLT1 labeling in lysates of ECs and also in the positive control 

protein lysates of porcine kidney and intestine (Fig. 2B). Similarly, a protein of about 70 

kDa was detected by SGLT2 labeling in lysates of ECs and kidney and, to a lower level, 

in intestine (Fig. 2B). 

 

Role of SGLTs in the BCE- and C3G-induced activation of the eNOS signaling 
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pathway in young ECs 

Next, the role of SGLTs in the BCE-induced activation of the eNOS pathway was 

characterized in cultured ECs at P1. BCE (100 µg/ml) caused a time-dependent 

phosphorylation of the Akt activator site Ser473 and the eNOS activator site Ser1177 

starting within 2 min and reaching a plateau level at 5 min and, thereafter, the signal 

remained elevated for at least up to 30 min (Fig. 3A,B). To determine the role of SGLTs, 

ECs were incubated with an SGLT inhibitor prior to the addition of BCE for 15 min and 

the subsequent assessment of the phosphorylation level of eNOS at Ser1177. The dual 

SGLT1/2 inhibitor LX4211 and the selective SGLT2 inhibitors canagliflozin and 

dapagliflozin abolished the stimulatory effect of BCE whereas the highly selective SGLT2 

inhibitor empagliflozin was without effect, suggesting a major role of SGLT1 (Fig. 4). 

Thereafter, experiments have been performed to determine BC anthocyanins capable of 

stimulating the endothelial eNOS. Exposure of ECs at P1 to the four major BC 

anthocyanins has indicated that the glucose-conjugated anthocyanin C3G increased the 

eNOS phosphorylation level at Ser1177 whereas C3R, D3G and D3R were inactive (Fig. 

5). The stimulatory effect of C3G tested at 100 µM was significantly lower than that 

induced by the BCE (100 µg/ml) on eNOS phosphorylation (Fig. 5A). In addition, LX4211 

markedly reduced the stimulatory effect of C3G and that of the BCE on the eNOS 

activator site Ser1177 (Fig. 5). Thus, these findings indicate that glucose-conjugated 

cyanidin is a major active anthocyanin contributing to the BCE-induced activation of 

eNOS most likely subsequent to its uptake via SGLT1. 

 

LX4211 but not empagliflozin prevents uptake of BCE and glucose-conjugated BC 

anthocyanins into young ECs 

Next, experiments were performed to evaluate the role of SGLT1 and 2 in the uptake 

of BC anthocyanins into ECs using Naturstoff reagent A, a common fluorescent dye used 
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to detect flavonoids [24]. Exposure of ECs at P1 to BCE was associated with a 

pronounced increase in the Naturstoff reagent A fluorescence signal that was inhibited 

in a concentration-dependent manner by D-glucose and not by mannitol (an osmotic 

control) demonstrating the involvement of a glucose-dependent mechanism (Fig. 6A). 

LX4211 significantly inhibited the BCE uptake by about 20% whereas empagliflozin was 

without effect (Fig. 6B). The study evaluating the uptake of the four major BC 

anthocyanins has indicated that a significant increased fluorescence signal in ECs in 

response to C3G and also, to some extent, D3G, but not to the rutinoside-conjugated 

anthocyanins C3R and D3R (Fig. 6C-D). Moreover, the uptake of both C3G and D3G 

was abolished by LX4211 (Fig. 6D). Altogether, these findings suggest the involvement 

predominantly of SGLT1 in the uptake of BC glucose-conjugated anthocyanin into young 

healthy ECs.  

 

LX4211 and empagliflozin inhibit BCE anthocyanin uptake and activation of eNOS 

in senescent ECs  

Previous studies have shown that high glucose-induced oxidative stress up-

regulates the expression level of SGLT1 and 2 in proximal tubule cells [25]. Since 

oxidative stress is a key inducer of endothelial senescence promoting endothelial 

dysfunction, experiments have determined the expression level and the role of SGLT1 

and SGLT2 in the uptake of anthocyanins into senescent ECs and the subsequent 

activation of eNOS. Immunofluorescence labeling indicated an increased SGLT1 and 

SGLT2 fluorescence signal in senescent ECs at P3 compared to that in ECs at P1 (Fig. 

7A). Similarly, Western blot analysis indicated an increased protein expression level of 

both SGLT1 and SGLT2 in ECs at P3 compared to ECs at P1 (Fig. 7B,C). Exposure of 

ECs at P3 was associated with a significantly enhanced uptake of BCE anthocyanins 

compared to that observed in ECs at P1 (Fig. 8A,B). The BCE uptake was prevented by 
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LX4211 to a greater in ECs at P3 than P1 (inhibitory effect was 20% in ECs at P1 and 

86% in ECs at P3, Fig. 8A). Although the highly selective SGLT2 inhibitor empagliflozin 

did not affect BC anthocyanins uptake in ECs at P1, is significantly inhibited that in ECs 

at P3 by 30% (Fig. 8B). Consistent with an increased uptake, BCE induced an increased 

phosphorylation level of eNOS at Ser1177 in ECs at P3 than in those at P1, and this 

effect was inhibited by LX4211 (Fig. 8C).  

  

Discussion 

The major findings of the present study indicate that BC anthocyanins are potent 

activators of the endothelial NO pathway in both native and cultured ECs. Moreover, they 

show that the BC stimulatory effect involves predominantly C3G, and that it is induced 

following BC anthocyanin uptake via SGLT1 in young healthy ECs, and both SGLT1 and 

SGLT2 in senescent ECs. Thus, the enhanced entry of BC anthocyanins in senescent 

ECs characterized by an endothelial dysfunction with a reduced formation of NO and an 

up-regulation of pro-atherothrombotic responses, suggests that BC anthocyanins might 

be of interest to target senescence-prone atherosusceptible sites to restore vascular 

protection. 

Vascular reactivity studies using porcine coronary artery rings have indicated that 

BC anthocyanins are natural products with strong vasorelaxing properties. The 

characterization of the BCE-induced relaxation indicated that it is entirely dependent on 

the presence of a functional endothelium and exclusively mediated by the endothelial 

formation of NO since the eNOS inhibitor NG-nitro-L-arginine abolished the relaxation 

whereas inhibitors of the endothelium-dependent hyperpolarization pathway and of the 

cyclooxygenase pathway were inactive. Besides BC anthocyanins, endothelium-

dependent NO-mediated relaxations have also been observed in artery rings in response 

to several other rich sources of anthocyanins including blueberry, aronia and grape 
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products [26-28]. The stimulatory effect of anthocyanins on ECs is mediated via 

activation of the PI3-kinase/Akt pathway triggering the phosphorylation of the eNOS 

activator sites at Ser1177 to enhance the endothelial formation of NO [26].  These 

natural products are well-known to contain high levels of anthocyanins conjugated to 

different sugars such as glycoside, rutinoside and arabinoside [7]. Indeed, the 

phytochemical analysis of the BC extract has indicated the presence of 4 major 

anthocyanins including glycosides and rutinosides of cyanidin and delphinidin with C3G 

and D3G accounting for more than 15%. Despite the fact that anthocyanins are potent 

activators of the endothelial formation of NO, the underlying mechanisms remain largely 

unknown such as the role of the anthocyanin structure, the type of sugar, as well as the 

mechanisms contributing to cellular uptake and the intracellular targets. 

Recent findings by Jin et al,. have indicated that D3G is able to protect human 

umbilical vein ECs against oxidized LDL-induced mitochondrial dysfunction and that this 

effect is associated with an intracellular accumulation of the anthocyanin [17]. Moreover, 

the characterization of the D3G uptake has shown that it is dependent on the presence 

of extracellular Na+, inhibited by increasing concentrations of glucose and the non-

selective SGLT inhibitor phlorizin, and also following knocked-down of SGLT1, 

suggesting that SGLT1 mediates D3G entry [17]. Therefore, we have performed 

investigations to determine the role of SGLT1 and 2, the two major SGLTs, in the BC 

anthocyanins-induced activation of the endothelial NO pathway using isolated coronary 

artery rings with endothelium and cultured ECs.  

The findings indicate that the dual SGLT1/2 inhibitor LX4211 and the selective 

SGLT2 inhibitor canagliflozin but not dapagliflozin and empagliflozin, inhibited, to some 

extent, BCE-induced NO-mediated relaxation. The fact that none of the SGLTs inhibitors 

affected endothelium-dependent NO-mediated relaxations to bradykinin and to the non-

sugar conjugated natural product epigallocatechin gallate [29, 30], and to the NO donor 
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sodium nitroprusside, rules out an action of the SGLT inhibitors on the signal transduction 

pathway leading to eNOS activation and also on the soluble guanylyl cyclase/cyclic GMP 

relaxing pathway in the vascular smooth muscle. The ability of canagliflozin to inhibit 

BCE-induced relaxation is most likely explained by its reduced selectivity for SGLT2 

compared to SGLT1. Indeed, amongst the three SGLT2 inhibitors, empagliflozin is known 

to have the highest selectivity for SGLT2 compared to SGLT1 (>2500 fold), followed by 

dapagliflozin (>1200 fold) and canagliflozin (>250 fold) [31]. Altogether, these findings 

suggest a role for SGLT1 in the stimulatory effect of BCE on the endothelial NO pathway 

in native ECs.  

In order to better determine the mechanisms involved in the anthocyanin-induced 

activation of the eNOS pathway, investigations were performed with cultured young 

coronary artery ECs at P1. These studies have indicated that the BCE-induced 

phosphorylation of eNOS at Ser1177 is abolished by LX4211, canagliflozin and 

dapagliflozin but not by the highly selective SGLT2 inhibitor empagliflozin suggesting a 

preferential role of SGLT1. Moreover, the evaluation of the four major BC anthocyanins 

(C3G, C3R, D3G, D3R) has revealed that only C3G was able to cause eNOS 

phosphorylation at Ser1177 showing the importance of the anthocyanin structure and 

also of the type of sugar moiety (glucoside vs rutinoside). Since LX4211 abolished the 

stimulatory effect of C3G on eNOS phosphorylation at Ser1177, SGLT1 most likely 

contributes to its entry into ECs. Moreover, Western blot analysis and 

immunofluorescence staining revealed the presence of SGLT1 and SGLT2 in ECs at P1. 

The fact that a high concentration of C3G (100 µM) was required to detect the activation 

of the eNOS pathway in ECs is best explained by the poor stability of anthocyanins in 

cell culture medium. Indeed, only 0.4% of cyanidin was recovered after a 2-h incubation 

period of human Caco-2 cell enterocytes [32].  

Next, the uptake of BC anthocyanins into ECs was followed using Naturstoff reagent 
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A, a common fluorescent dye used to detect flavonoids. Indeed, depending on the 

substitution with hydroxyl groups on the B and C ring, flavonoids and Naturstoff reagent 

A form a chelate with characteristical fluorescence [33-35]. The uptake of BCE 

anthocyanins, and of glucosides of cyanidin and delphindin was observed but not that of 

their rutinosides derivatives in ECs at P1. The BCE uptake was concentration-

dependently inhibited by D-glucose, (a SGLTs substrate), and also, to some extent, by 

LX4211 but not empagliflozin. Moreover, LX4211 abolished the uptake of C3G and D3G. 

Altogether, these findings provide evidence that SGLT1 predominantly mediates the 

entry of glucoside-conjugated cyanidin and delphinidin whereas additional mechanisms 

contribute to that of the mixture of BC anthocyanins in young healthy EC at P1.  

Both experimental and clinical studies have established that endothelial dysfunction 

associated with oxidative stress is a hallmark of major cardiovascular diseases including 

hypertension, hypercholesterolemia and diabetes [36]. Oxidative stress is thought to 

trigger premature endothelial aging characterized major changes in cell phenotype 

including the expression of regulators of the cell cycle such as the p53/p21 and p16 

pathways, the down-regulation of the NO pathway, and the up-regulation of pro-

atherothrombotic responses including the expression of adhesion molecules and tissue 

factor [37-39]. Moreover, signs of endothelial senescence appear initially at arterial 

branches and curvatures that are exposed to disturbed or turbulent flow and prone to 

atherogenesis [40, 41]. Since oxidative stress has been shown to upregulate the 

expression of SGLT1 and SGLT2 in proximal tubule cells [25], experiments have 

compared the protective effect of BC anthocyanins in young healthy ECs at P1 and 

replicative senescent ECs at P3 as shown previously [37-39]. These investigations have 

indicated that the uptake of BC anthocyanins is increased in senescent compared to 

healthy ECs, and that this effect leads to an increased activation of the endothelial NO 

pathway. Since LX4211 inhibited BC anthocyanins uptake to a greater extent in 
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senescent compared to young ECs, and that despite not affecting BC anthocyanins 

uptake in young ECs, empagliflozin significantly reduced the uptake in senescent ECs, 

SGLT1 appears to mediate predominantly anthocyanins uptake in healthy ECs whereas 

both SGLT1 and 2 contribute in senescent ECs. Moreover, an increased expression level 

of SGLT1 and 2 has been observed in senescent ECs by immunofluorescence staining 

and Western blot analysis, most likely accounting for the increased uptake of BC 

anthocyanins in senescent ECs.   

Altogether, the present findings indicate that BC anthocyanins are potent activator 

of the endothelial NO pathway in native and cultured endothelial cells. Amongst BC 

anthocyanins, the glucoside derivatives of cyanidin and delphinidin appear to be the 

most active natural compounds. They further indicate that EC senescence is associated 

with an increased uptake of BC anthocyanins involving both SGLT1 and SGLT2 most 

likely subsequent to the up-regulation of their expression level, leading to an improved 

endothelial NO pathway. Thus, anthocyanins appear as interesting natural compounds 

to target an early event in the development of atherogenesis at atherosusceptible sites 

by preferentially accumulating in senescent ECs to restore the protective endothelial 

function. 
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Figure legends  

Figure 1. Effect of SGLT1 and 2 inhibitors on BCE-induced NO-mediated relaxation in 

porcine coronary artery rings. Porcine coronary artery rings with or without endothelium 

were contracted with U46619 before the addition of increasing concentrations of BCE (A 

to F). B) Rings with endothelium were incubated with either NG-nitro-L-arginine (L-NA, 30 

µM, inhibitor of endothelial NO synthase), indomethacin (10 µM, COX inhibitor), Tram-

34 (1 µM, small conductance Ca2+-activated K+ channel blocker) plus UCL-1684 (1 µM, 

intermediate conductance Ca2+-activated K+ channel blocker) or the combination of L-

NA, indomethacin, Tram-34 and UCL-1684 for 30 min before contraction with U46619 

and subsequent relaxation with BCE. (C to F) Rings with endothelium were incubated 

with an SGLT inhibitor after contraction with U46619 and the subsequent relaxation to 

BCE was induced. Results are expressed as mean±SEM of 7 to 9 different experiments. 

*P<0.05 vs respect control. 

 

Figure 2. Expression of SGLT1 and SGLT2 in porcine coronary artery endothelial cells 

at passage 1. SGLT1 and 2 immunofluorescence staining in ECs was observed by 

confocal microscopy (A), and Western blot analysis (B). A) Representative photo 

showing immunofluorescence staining using either a SGLT1 or a 2 antibody in ECs at 

passage 1. DAPI staining (Blue) was used for the detection of nuclei in ECs. B) 

Representative Western blot showing SGLT1 and 2 in ECs. Proteins from porcine kidney 

and intestine were used as positive controls for SGLT1 and 2, respectively. Similar 

findings were observed in 2 additional experiments. 

 

Figure 3. BCE induces activation of the Akt-eNOS signaling pathway in a time-

dependent manner.  Porcine coronary artery ECs were incubated with BCE (100 µg/ml) 

for increasing times before analysis of the level of pAkt (Ser473) and peNOS (Ser1177) 
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by Western blot analysis. Results are expressed as mean±SEM values of 3-4 different 

experiments. P*<0.05 vs BCE.  

 

Figure 4. Effect of SGLT1/2 inhibitors on the BCE-induced phophorylation of eNOS at 

Ser1177 in ECs. ECs were incubated with either a dual SGLT1/2 inhibitor LX4211 (10-7 

M) or a selective SGLT2 inhibitor (EMPA; empagliflozin, DAPA; dapagliflozin, CANA; 

canagliflozin, 10-7 M) for 5 min before addition of BCE (100 µg/ml) for 15 min. The 

phosphorylation level of the eNOS activation site at Ser1177 (peNOS) was assessed by 

Western blot analysis. Results are expressed as mean±SEM of 3-4 different experiments. 

*P<0.05 vs BCE.  

 

Figure 5. LX4211 prevents activation of eNOS induced by the glucose-conjugated 

anthocyanins, cyanidin-3-O-glucoside. ECs were incubated with the dual SGLT1/2 

inhibitor, for 5 min, before the addition of a BCE anthocyanin A) cyanidin-3-O-glucoside, 

B) cyanidin-3-O-rutinoside, C) delphinidin-3-O-glucoside, and D) delphinidin-3-O-

rutinoside for 100 µM, or BCE (100 µg/ml) for 15 min. Thereafter, the phosphorylation 

level of eNOS at Ser1177 was determined by Western blot analysis. Results are 

expressed as mean±SEM by 3 to 4 different experiments. *P<0.05 vs BCE-treated cells, 

#P<0.05 vs BCE or C3G, $P<0.05 vs non-treated cells. 

 

Figure 6. LX4211 prevents BCE, C3G and D3G uptake in coronary artery ECs at 

passage 1. Anthocyanin uptake into ECs was determined using Naturstoff’s reagent A 

and assessed by flow cytometry (A, B and D) and confocal microscopy (C). ECs were 

incubated either with D-glucose, mannitol or a SGLT inhibitor for 5 min before the addition 

of BCE (100 µg/ml) or a BC anthocyanin (100 µM) for 15 min. Original FACS flow chart 

of BCE uptake in ECs in the absence (Blue arrow) or presence (Red arrow) of LX4211 
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as assessed by flow cytometry (right panel). Results are expressed as mean±SEM by 3 

to 4 different experiments. *P<0.05 vs control, #P<0.05 vs C3G or D3G. 

 

Figure 7. Up-regulation of SGLT1 and 2 expressions in senescent coronary artery ECs. 

A) Representative photo showing immunofluorescence staining using either a SGLT1 or 

2 antibody in ECs at passage 1 and 3. Similar observations were made in 2 additional 

experiments. B, C) Expression level of SGLT1 and 2 in ECs at P1 and P3 as assessed 

by Western blot analysis. Results are expressed as mean±SEM by 3-4 different 

experiments. *P<0.05 vs ECs at P1. 

 

Figure 8. Up-regulation of BCE anthocyanins uptake and activation of eNOS in 

senescent ECs is inhibited by LX4211 and also by empagliflozin. ECs at P1 and at P3 

were exposed to LX4211 (A, C) and empagliflozin (B, C) for 5 min before the addition of 

BCE for 15 min. Thereafter, the uptake of anthocyanins was assessed using Naturstoff’s 

reagent A and protein expression by Western blot analysis. Results were expressed as 

mean±SEM of 3 different experiments. *P<0.05 vs BCE at P1, #P<0.05 vs respective 

BCE-treated cells. 

 

Supplementary file 

Figure 1. Relaxations induced by either sodium nitroprusside, bradykinin or a non-

glucose conjugated flavonoid epigallocatechin gallate are not affected by LX4211 and 

selective SGLT2 inhibitors in coronary artery rings with endothelium. Porcine coronary 

artery rings were contracted with U46619 before the addition of increasing 

concentrations of a relaxing agent. (A) sodium nitroprusside (a NO donnor), (B) 

bradykinin (an endothelium-dependent vasodilator), and (C) epigallocatechin gallate (a 

non-glucose conjugated flavonoid inducing NO-mediated relaxation). Results are 
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expressed as mean±SEM of 7-9 different experiments. 

 

 

Table 1. Analysis of the anthocyanins content of the blackcurrant extract. 
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Figure 2. 
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Anthocyanin (μg/ml) with S.D

1 Delphinidin-3-O-glucoside 17.49 ± 0.69 

2 Delphinidin-3-O-rutinoside 76.25 ± 1.82 

3 Cyanidin-3-O-glucoside 6.11 ± 0.04

4 Cyanidin-3-O-rutinoside 38.81 ± 0.20

5 Delphinidin 0.10 ± 0.01

6 Peonidin-3-O-glucoside 0.05 ± 0.00

7 Peonidin-3-O-rutinoside 0.34 ± 0.01

8 Peonidin 7.22 ± 0.11

9 Malvidin 0.90 ± 0.01

Table 1.
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Supplementary
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A B S T R A C T

Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are
associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has
been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from
tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of
potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of
such polyphenol-rich products has been associated with the prevention and/or the improvement of an estab-
lished endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with
cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that
polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.

1. Introduction

Polyphenols are an abundant and diverse group of secondary plant
metabolites, which are present in a wide variety of dietary foods and
traditional plant medicines [1]. Numerous epidemiological studies have
indicated that diets rich in fruit and vegetables, and beverages such as
red wine and tea, are associated with a reduced risk of cardiovascular
diseases [2–8]. The study of the association between dietary factors and
mortality from cardiovascular diseases has indicated that the diet-re-
lated cardiometabolic deaths are predominantly observed in a popula-
tion characterized by a low intake of vegetables and fruits [9]. Fur-
thermore in the US, a 26.5% reduction of cardiometabolic deaths per
year has been observed between 2002 and 2012 and this effect has been
related to an improvement of the intake of polyphenol-rich products
such as nuts/seeds, whole grains, and fruits regardless of sex, age and
race [9]. The cardiovascular protective effect of polyphenols has been
attributable to their antioxidant activities and also to several additional
effects such as an anti-inflammatory effect, prevention of the oxidation
of low-density lipoproteins, inhibition of platelet aggregation and

adhesion, and of smooth muscle cell migration and proliferation
[10–13]. Alternatively, vascular protection may also be due to the di-
rect action of polyphenols on the endothelial function. The aim of the
present review is to summarize the current experimental and clinical
evidence of the vascular protective effects of polyphenols on both
healthy and pathological blood vessels, and to discuss the underlying
molecular mechanisms.

2. Dietary polyphenols

Polyphenols naturally exist in plants and plant products, including
fruits, vegetables, nuts, herbs, cocoa, and tea. There are currently over
8000 phenolic structures known, of which more than 4000 belong to
the flavonoid class, and several hundred are present in edible vege-
tables. However, it is believed that the total content of polyphenols in
plants is underestimated because many compounds present in fruit,
vegetables and derived products have not yet been identified, and the
polyphenol composition of most fruits and some grain varieties is not
yet known. The structure of polyphenols is characterized by at least a

https://doi.org/10.1016/j.freeradbiomed.2018.03.018
Received 13 November 2017; Received in revised form 19 February 2018; Accepted 12 March 2018

⁎ Correspondence to: INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculté de Pharmacie, Université de Strasbourg, 74,
route du Rhin, BP 60024, 67401 Illkirch, France.

1 Equal contributors.
E-mail address: valerie.schini-kerth@unistra.fr (V.B. Schini-Kerth).

Abbreviations: Ang II, angiotensin II; AT1R, angiotensin II type 1 receptor; CDK, cyclin-dependent kinases; COX, cyclooxygenase; EDH, endothelium-derived hyperpolarization; EGCg,
epigallocatechin gallate; eNOS, endothelial NO synthase; ET-1, endothelin-1; FMD, flow-mediated dilatation; ICAM-1, intercellular adhesion molecule-1; NO, nitric oxide; PGI2, pros-
tacyclin; ROS, reactive oxygen species; SOD, superoxide dismutase; TXA2, thromboxane A2; VCAM-1, vascular cell adhesion molecule-1

)UHH�5DGLFDO�%LRORJ\�DQG�0HGLFLQH���������������²���

$YDLODEOH�RQOLQH����0DUFK�����
������������������(OVHYLHU�,QF��$OO�ULJKWV�UHVHUYHG�

7



simple phenol core bearing at least one hydroxyl group. More than
8000 polyphenolic structures are described and they are classified ac-
cording to the arrangement of the carbon atoms and their substituents
in two main classes: flavonoids and non-flavonoids.

The largest and best-studied polyphenols are flavonoids, which in-
clude several thousand compounds. Flavonoids are composed of a 15-
carbon skeleton (C6-C3-C6) with two aromatic rings linked by a 3-
carbon bridge forming an oxygenated heterocycle. They are subdivided
into several subclasses including flavonols, flavanones, flavan-3-ols,
flavones, anthocyanins, and isoflavones that can be further substituted
by hydroxyl groups, sugars, organic acids, methyl groups or isopentyl
units [7]. Flavonols such as quercetin and kaempferol and theirs deri-
vatives are found in most kind of plants, except in algae and fungi. They
are mainly present in form of O-glycosides in commonly consumed
fruits and vegetables [14]. Flavanones are found as O-glycosides mainly
in citrus fruits along with polymethoxylated flavones. Flavan-3-ols, also
sometimes referred to as catechins, are the most structurally complex
subclasses of flavonoids. Indeed, the simple (+)-catechin and its isomer
(-)-epicatechin can undergo hydroxylation into gallocatechin, ester-
ification with gallic acid, and/or polymerization into complex proan-
thocyanidins (condensed tannins). Moreover, they can undergo further
transformation during food processing such as fermentation and drying
of tea leaves during the production of black tea, leading to formation of
theaflavins and thearubigins. They are abundant in tea, wine and
grapes, cocoa and chocolates, beer and cider. Flavones occur pre-
dominantly in some herbs such as parsley or celery, whereas isoflavones
are found in vegetables such as soybean and derived products including
soy milk, miso and tofu [15]. Anthocyanidins are the pigments re-
sponsible for the pink/red to purple/blue colors of fruits, vegetables
and flowers and are prominent in foods such as berries and red wine
[16]. In plants they are always found conjugated to sugars and named
anthocyanins, and they can be further conjugated to hydroxycinnamic
acid and/or organic acids.

The major non-flavonoids include mainly phenolic acids, hydro-
xycinnamates, hydrolysable tannins, and stilbenes. The most abundant
phenolic acid, gallic acid, can form large complexes such as non-sugar
galloyl esters and ellagitannins that can be found in strawberries,
raspberries, blackberries, mango, persimmon, grapes and wine, tea as
well as walnuts and hazelnuts [7]. Hydroxycinnamates are C6-C3
structures including caffeic acid, ferulic acid, p-coumaric acid and si-
napic acid. They are found mainly as ester of tartric acid or quinic acid
under the term of chlorogenic acids in coffee. The stilbenes are pri-
marily defined by trans-resveratrol, a 1,2-diarylethene structure found
in red wine [17]. In addition, additional polyphenolic structures are
present in certain types of foods and are combined into a separate class,
termed “Other Polyphenols” [18]. These additional polyphenols include
such compounds as tyrosol and curcuminoids. Polyphenols of the tyr-
osol subclass are present in olive oil and are thought to contribute to the
health benefits seen with olive oil consumption.

While high amounts of specific polyphenols are observed in certain
kinds of food, no food contains only a single class of polyphenols, and it
is likely that the complementary and/or synergistic nature of these
natural compounds in food contribute to their biological activity.

Dietary intake of polyphenols is highly variable. Due to the poor
standardization of assays used for polyphenols separation and quanti-
fication and the great variability of polyphenols content within food
[19], an accurate information regarding the polyphenol composition
and their amount in food still remains challenging. Moreover, poly-
phenols are absorbed to various extent in the digestive tracts and can be
highly metabolized depending on the chemical nature of the molecules
[20]. Thus, the molecular mechanism reported with isolated com-
pounds using in vitro or ex vivo models need to be evaluated very cau-
tiously since metabolites/catabolites of the parent compound most
likely reach the target tissue at a low micromolar concentration. In
addition, the circulating concentration may not reflect the actual con-
centration in target tissues since an accumulation of polyphenols has

been observed in specific cells [21,22].
Nevertheless, there is nowadays more and more evidence provided

by in vitro/ex vivo studies, in vivo studies, and clinical trials that poly-
phenols can have a positive impact on health [20]. In particular during
the last decade, there has been much interest in the potential health
benefit of dietary plant polyphenols on the cardiovascular system, in
part mediated by targeting blood vessels and, more specifically, the
endothelium [2,12,23–25].

3. Role of endothelium on vascular function

Blood vessels are made of three layers including the intima con-
sisting of a single cobblestone-like layer of endothelial cells, the media
containing predominantly smooth muscle cells and elastic fibers, and
the adventitia composed of fibroblasts, collagen fibers, and perivascular
nerves. The endothelium is nowadays well-defined as a metabolically
active organ that has a key role in the control of vascular structure and
function mostly via the generation of several vasoactive factors that will
determine a balance between vasodilator and vasoconstrictor responses
depending on the local environment and needs [26]. Endothelium-de-
pendent vasodilator responses involve predominantly factors such as
NO, endothelium-derived hyperpolarization (EDH) and prostacyclin
(PGI2), while endothelium-dependent vasocontractile responses involve
mostly endothelin-1 (ET-1), angiotensin II (Ang II), reactive oxygen
species (ROS) and thromboxane A2 (TXA2) [26]. Amongst endothelium-
derived factors, NO generated by endothelial NO synthase (eNOS) from
L-arginine is considered as the most important vasoprotective factor in
the body due to its ability to regulate a great variety of responses
contributing to vascular homeostasis [26]. In particular, NO is able to
prevent the adhesion of monocytes to the endothelial surface and in-
hibit the expression of adhesion molecules such as vascular cell adhe-
sion molecule-1 (VCAM-1) and intercellular adhesion molecule-1
(ICAM-1) [27]. NO is also a potent inhibitor of platelet adhesion and
aggregation. Moreover, NO prevents the proliferation of vascular
smooth muscle cells and the expression of extracellular matrix mole-
cules thereby contributing to limit vascular remodeling and the for-
mation of vascular lesions. Altogether, endothelium-derived NO is an
important vasodilator and anti-atherothrombotic factor that helps to
prevent and/or to delay the initiation and development of cardiovas-
cular diseases [28,29]. Despite a minor role in large arteries, EDH
contributes to inhibit vascular tone in the coronary artery and coronary
microcirculation and also in arterioles following the transmission of the
hyperpolarization from the endothelium to the underlying vascular
smooth muscle and, as a consequence, a reduced opening of voltage-
operated calcium channels and, hence, calcium entry. In addition to NO
and EDH, other endothelium-derived factors contribute to regulate
vascular responses such as the potent vasoconstrictor and mitogen ET-1,
the vasodilator PGI2 generated by the arachidonic acid cascade via
cyclooxygenase (COX) that inhibits vascular tone in some arteries and
acts in synergy with NO to prevent platelet activation, fibrinolytic
factors (tissue plasminogen activator and plasminogen activator in-
hibitor-1), factors that affect coagulation (tissue factor, heparin, and
von Willebrand factor), and pro-inflammatory factors (e.g. adhesion
molecules and pro-inflammatory cytokines) [30]. Thus, the en-
dothelium has a key central role in the regulation of the balance be-
tween a vasodilating and anti-proliferative state and a vasoconstrictor
pro-atherothrombotic state to maintain vascular homeostasis. Any dis-
turbance to this subtle and precious balance will lead to the appearance
of an endothelial dysfunction characterized by blunted endothelium-
dependent vasodilatation often associated with oxidative stress, which
will promote the development of cardiovascular diseases. Since en-
dothelial dysfunction is observed before changes in the structure of the
arterial wall it is thought to contribute to the initiation and develop-
ment of cardiovascular diseases. Endothelial dysfunction is observed
with increasing age, and also prematurely in the presence of smoking
and major cardiovascular risk factors including hypertension,
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hypercholesterolemia, diabetes, metabolic syndrome, obesity and heart
failure.

Recent findings suggest that endothelial senescence characterized
by cell cycle arrest and morphological and biochemical changes, con-
tributes to promote endothelial dysfunction [31]. Endothelial senes-
cence is a state characterized by the appearance of senescence-asso-
ciated beta-galactosidase activity, a reduced expression of cyclin and
cyclin-dependent kinases (CDK), and an increased expression of CDK
inhibitors including the p53/p21 and the p16 pathways [32]. Since
adenovirus-mediated transfection of p53 in the endothelium of aortic
rings from healthy young rats leads to endothelial dysfunction and re-
duced bioavailability of NO, endothelial senescence appears to be an
early event promoting endothelial dysfunction [33]. Premature en-
dothelial senescence can be induced by several noxious athero-
thrombotic stimuli such as oxidative stress, Ang II, high glucose, and
also by low levels of shear stress [34]. The induction of senescence can
severely affect the ability of endothelial cells to contribute to the reg-
ulation of vascular homeostasis as indicated by the fact that senescent
endothelial cells have a reduced eNOS-derived NO formation, oxidative
stress and the induction of pro-atherothrombotic factors including
VCAM-1, tissue factor and pro-inflammatory factors [35–37]. More-
over, endothelial senescence is observed prematurely in vivo at ather-
oprone arterial sites such as bifurcations and curvatures characterized
by disturbed blood flow, reduced eNOS-derived NO formation and
oxidative stress in young healthy rats, and also in the aorta of old and
diabetic rats, and in the endothelium overlying atherosclerotic human
plaques [38–40]. Thus, an attractive novel target to protect the vascular
system is to prevent and/or delay the induction of endothelial senes-
cence, thereby favoring a sustained endothelial eNOS-derived NO for-
mation to protect the arterial wall and to promote healthy vascular
ageing.

4. Protective effect of polyphenols on the endothelium

There is now increasing evidence that certain polyphenolic-rich
products and authentic polyphenols are able to increase the protective
effect of endothelial cells on the vascular function (Fig. 1).

Indeed, several polyphenol-rich plants and fruit extracts derived
from grape, tea, berries and traditional medicinal plants have been
shown to cause pronounced relaxations of pre-contracted arterial rings
with an intact endothelium, whereas only small relaxations are ob-
served in those without endothelium [41]. Since an inhibitor of either
eNOS or soluble guanylyl cyclase markedly blunted the polyphenol-
induced endothelium-dependent relaxation, the involvement of eNOS-
derived NO has been suggested. Thereafter, investigations using elec-
tron paramagnetic resonance spectroscopy have provided direct proof
that red wine polyphenols increased the formation of NO in the rat
aorta and also in cultured endothelial cells [42,43]. Since the vasor-
elaxant effect of grape-derived polyphenols such as purple grape juice
and red wine in porcine coronary artery rings is only partially inhibited
by an eNOS inhibitor and that a further inhibition is obtained by the
addition of inhibitors of the EDH pathway, it implies that, besides NO,
EDH contributes also to the vasorelaxant effect of polyphenols. Al-
though it is widely recognized that polyphenols have anti-oxidant ef-
fects, several lines of evidence indicate that the polyphenols-induced
endothelium-dependent relaxations and formation of NO is rather de-
pendent on their intracellular pro-oxidant response in healthy en-
dothelial cells. Indeed, membrane permeant analogues of superoxide
dismutase (SOD) and catalase markedly reduced the vasorelaxant effect
of polyphenols whereas non-permeant anti-oxidants such as native SOD
and catalase were inactive [44,45]. Moreover, grape-derived poly-
phenols increased in a time- and concentration-dependent manner the
intracellular formation of ROS in cultured coronary artery endothelial
cells and also in the endothelium but not in the underlying vascular
smooth muscle of healthy coronary arteries [46,47]. The pro-oxidant
response to polyphenols has been shown to cause the Src-mediated

phosphatidylinositol-3-kinase (PI-3-kinase)-dependent phosphorylation
of Akt, which, in turn, induces the activation of eNOS by phosphor-
ylation of the activator site Ser1177 to increase the formation of NO in
endothelial cells (Fig. 1) [43–45,48,49]. The polyphenol-induced in-
tracellular oxidative stress in endothelial cells does not involve major
enzymatic sources of ROS such as NADPH oxidase and cyclooxygenases,
and the mitochondrial respiratory chain, and is dependent on hydroxyl
moieties at key positions at the polyphenol structure, suggesting that
auto-oxidation of the polyphenol structure might be of importance
[43,50,51].

When compared to the short-lasting (within minutes) endothelial
formation of NO by physiological stimulators such as bradykinin, that
induced by polyphenols is characterized by a relatively sustained eNOS
activation since the phosphorylation of eNOS at Ser1177 persists for
several hours, resulting in a long-lasting formation of NO, and, hence,
appears to be optimal for a sustained vascular protection [52].

Because polyphenols represent an extraordinary diversity of che-
mical structures, the identification of the active compounds of poly-
phenols-rich products acting on endothelial cells and the characteriza-
tion of their underlying mechanism remain challenging. Nevertheless,
several representative active polyphenols such as trans-resveratrol of
the stilbene subclass, quercetin of the flavonol subclass, and delphinidin
of the anthocyanin subclass have been shown to cause endothelium-
dependent relaxations via the Src-PI-3-kinase-Akt-eNOS pathway in
endothelial cells. The study of the structure-activity relationship of
anthocyanins revealed that the activation of eNOS is dependent on the
molecular structure of the compound, with a key role of both the B ring
hydroxylation and the substitution at C3 [43,50,51]. Indeed petunidin-
3-O-coumaroylglucoside induced eNOS phosphorylation at Ser1177
whereas closely related compounds such as malvidin-3-O-coumar-
oylglucoside, petunidin-3-O-glucoside, and petunidin were poorly ac-
tive [43]. Besides the Src/PI-3-kinase/Akt pathway, certain poly-
phenols have also been shown to stimulate the endothelial formation of
NO through a transient increase in the calcium signal [53], activation of
estrogen receptors [54–56], AMPK [57,58], and of Sirt1/KLF2 [58]
pathways in certain vascular beds and/or species.

Recent studies have reported that premature endothelial senescence
is involved in various pathological conditions, such as endothelial
dysfunction and atherosclerosis [31,59]. Premature endothelial senes-
cence is triggered by the progressive induction of a pro-oxidant state
and can be initiated by different stimuli such as Ang II, the inhibition of
eNOS-derived NO formation, the upregulation of pro-oxidant enzymes
such as NADPH oxidase and COXs, and the activation of the local an-
giotensin system that all promote the induction of the cell cycle in-
hibitory pathways including the p53/p21 and the p16 pathways
[10,36,60–64]. It is suggested that the endothelial formation of NO
contributes to protect endothelial cells against excessive oxidative
stress, and, thus, that compounds stimulating the eNOS-derived for-
mation of NO may help to delay endothelial senescence [62,65,66].
Recent investigations have indicated that polyphenols are able to pre-
vent and/or retard endothelial senescence induced by different stimuli
(Fig. 2). Indeed, a polyphenol-rich Crataegus extract was able to effec-
tively delay replicative endothelial senescence by preventing the down-
regulation of eNOS-derived formation of NO associated with a reduced
expression level of the cell cycle regulatory proteins (p53, p21, and
p16), the pro-oxidant enzymes NADPH oxidase, COX-1 and COX-2, and
the local angiotensin system [36]. Several isolated polyphenols have
also been reported to have anti-endothelial ageing properties. Curcumin
attenuated the H2O2-induced premature senescence on endothelial cells
via activation of the Sirt1/eNOS pathway [67]. Paeonol protected en-
dothelial cells against oxidative stress-induced premature senescence
and selaginellin against homocysteine-induced senescence, in part, via
their antioxidant properties and an increased expression level of Sirt1
[68,69]. Resveratrol prevented high glucose-induced endothelial se-
nescence by reducing the intracellular generation of ROS and via the
AMPK/Sirt1 and p300/p53/p21 signaling pathway [70]. Besides
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endothelial cells, polyphenol-rich blackberry, raspberry, and black
raspberry extracts attenuated also Ang II-induced senescence in vas-
cular smooth muscle cells through NADPH oxidase-dependent and
-independent mechanisms [71].

Taken together, these data indicate that polyphenols can exert a
beneficial effect on the vascular and endothelial functions through
several mechanisms including an increased and sustained formation of
NO, a normalization of the local angiotensin system, and an inhibition
of oxidative stress, in part, by preventing the expression of pro-oxidant
enzymes such as NADPH oxidase and COXs, all of them contributing to
improve the endothelial function and to prevent vascular ageing.

To clarify the intracellular molecular mechanism of polyphenols, it
is important to elucidate how polyphenols interact with target cells.
Because diffusion of flavonoids across lipid membranes is very slow or
does not occur, specific membrane receptors and/or transport systems
facilitating the entry of polyphenols into endothelial cells most likely
contribute to trigger intracellular responses. Previous studies have
suggested the existence of specific receptors of the green tea polyphenol
EGCg [72] and of a polyphenol transport system in endothelial cells
[73]. In addition, a recent study suggested that the uptake of delphi-
nidin-3-O-glucoside by endothelial cells depends on the sodium-glucose
cotransporter 1 [74]. Further studies are required to better understand

Fig. 1. Schematic representation summarizing potential mechanisms contributing to induce endothelium-dependent vasorelaxation subsequent to an increased formation of nitric oxide
(NO) and endothelium-dependent hyperpolarization (EDH) in response to several polyphenols and polyphenol-rich products. Endothelial NO synthase-derived NO is a potent vasodilator
via the activation of soluble guanylyl cyclase and the subsequent activation of the cyclic GMP relaxing pathway in the underlying vascular smooth muscle, and EDH by hyperpolarizing
the vascular smooth muscle leading to a reduced opening of voltage-operated calcium channels, and, hence, a reduced intracellular activator calcium signal. The different pathways
mediating the NO formation in response to certain polyphenols include the redox-sensitive activation of the Src/PI-3-kinase/Akt pathway, the Ca2+/CaM signaling pathway, the
activation of estrogen receptors, and the AMPK and Sirt1/KLF2 pathways. Abbreviations: GTP, guanosine-5'-triphosphate; cGMP, cyclic 3’,5’-guanosine monophosphate; sGC, soluble
guanylyl cyclase; SMCs, smooth muscle cells; Ca2+/CaM, calcium/calmodulin complex; [Ca2+]i, intracellular free calcium concentration; ROS, reactive oxygen species; PI3K, phos-
phatidylinositol-4,5-bisphosphate 3-kinase, Src, proto-oncogene tyrosine-protein kinase; Akt, protein kinase B; ER, estrogen receptor; ERK 1/2, extracellular signal-regulated kinases 1/2;
MAPKs, mitogen-activated protein kinases; Sirt1, sirtuin 1; AMPK, 5' adenosine monophosphate-activated protein kinase; KLF2, Krüppel-like Factor 2.

Fig. 2. Schematic representation summarizing po-
tential mechanisms contributing to the beneficial
effect of several polyphenols and polyphenol-rich
products by protecting endothelial cells against oxi-
dative-stress-induced premature senescence.
Polyphenols can prevent endothelial senescence due
to their antioxidant properties, by decreasing the
formation of ROS by targeting NADPH oxidases, by
preventing the down-regulation of the eNOS-derived
formation of NO leading to a reduced expression
level of the cell cycle regulatory proteins (p53, p21,
and p16), by activating the Sirt1/eNOS and the
AMPK/Sirt1 and p300/p53 signaling pathways. Blue
lines indicate endothelial protective effects, red lines
indicate pro-senescent pathways. Arrows indicate
stimulatory effects and T-bar lines inhibitory effects.
Abbreviations: ROS, reactive oxygen species; ACE,
angiotensin-converting enzyme; Ang II, angiotensin
II; AT1R, angiotensin II type 1 receptor; AMPK, 5'
adenosine monophosphate-activated protein kinase;
NO, nitric oxide; eNOS, endothelial nitric oxide
synthases; Sirt1, sirtuin 1; COXs, cyclooxygenases.
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how polyphenols interact with both extracellular and intracellular
targets to trigger signal transduction pathways leading to biological
responses.

5. Effect of polyphenols on the endothelial and vascular function
in experimental models of cardiovascular diseases

Although in vitro and ex vivo studies are helpful to determine the
direct vasoprotective effect of natural products on the endothelial and
vascular function, and to characterize the underlying mechanism, they
need to be associated with in vivo investigations to evaluate the po-
tential of natural products to protect the cardiovascular system. In
particular, the in vivo experimentation will take into account the bioa-
vailability of natural products following oral absorption, and, hence,
the fact that they are often highly metabolized to generate a great
variety of secondary circulating metabolites or catabolites that con-
tribute to mediate the biological response. In addition, in vivo experi-
mentation will also evaluate the biological activity of natural products
in an integrated system taking into account the influence of mechanical
forces exerted by blood flow, the interaction of blood and blood cells
with the arterial wall and also of neurovascular regulatory mechanisms
[75].

Hypertension, a major cardiovascular risk factor, is characterized by
an endothelial dysfunction associated with vascular oxidative stress in
several experimental models of hypertension [76]. Studies evaluating
the antihypertensive potential of natural products have indicated that
the intake of red wine or red wine polyphenols reduced systolic blood
pressure in the spontaneously hypertensive rats [77–79]. Similarly, an
antihypertensive effect has also been observed in response to the con-
sumption of a grape seed extract [80], green and black tea extracts
[81], blueberry [82], and an azuki bean extract [83] in the sponta-
neously hypertensive rat. Of interest, intake of a polyphenol-rich cocoa
powder up to 300mg/kg body weight was able to reduce blood pres-
sure to a similar level as 50mg/kg of Captopril, an angiotensin-con-
verting enzyme inhibitor, in the spontaneously hypertensive rat [84].
While the doses used in this study seem high, they are equivalent to
3.40 g of cocoa polyphenols and 568mg of Captopril for a 70 kg
Human, respectively, when using metabolic conversion factors [85].
Although the dose of Captopril exceeds the recommended maximal
prescription dose of 450mg/day, the dose of 3.40 g of cocoa poly-
phenols are within the range of Human consumption. Similar reduc-
tions in blood pressure after intake of grape-derived products have also
been reported in other experimental models of hypertension including
the NG-nitro L-arginine-induced hypertension [86–88], the DOCA-salt-
induced hypertension [89,90], and the Ang II-induced hypertension in
rats [61]. Moreover, the antihypertensive effect of red wine and red
wine extracts is associated with an improved endothelial function in the
DOCA-salt rat [89,90], the spontaneously hypertensive rat [77,79,91],
and the Ang II-induced hypertensive rat [61]. Intake of a maritime pine
bark extract also improved blood pressure and endothelial function in
the DOCA-salt rat [92].

Interestingly in a model of ageing-related endothelial dysfunction,
the chronic intake of a red wine polyphenolic extract was able not only
to delay the onset of the endothelial dysfunction [93], but also to im-
prove an established ageing-related endothelial dysfunction in middle-
aged rats [94,95]. Intake of a hawthorn extract prevented also ageing-
related endothelial dysfunction in rats [96], and pomegranate juice and
extract in female obese Zucker rats [97].

Besides polyphenol-rich products and extracts, an antihypertensive
effect has also been observed following the chronic intake of isolated
polyphenols such as chlorogenic acid [98], EGCg [99], genistein [100],
quercetin [101–105], and trans-resveratrol [106] in several models of
hypertension. Moreover, the antihypertensive effect was associated
with an improved endothelial dysfunction in response to (-)-epicatechin
[107,108], EGCg [99], genistein [100], flavone, and quercetin [109].
The chronic intake of catechin by normotensive rats [110], and

baicalein by hypertensive rats [109] were also associated with an im-
proved endothelial function without reduction of blood pressure. Both
an improved NO component and indomethacin-sensitive relaxation
explained the ability of EGCg to restore the endothelial function in the
streptozotocin-induced diabetic rats [111].

In experimental models of cardiovascular diseases and ageing, the
endothelial dysfunction is associated with an increased vascular level of
oxidative stress predominantly superoxide anion, known to chemically
inactivate NO, throughout the arterial wall, and is due, at least in part,
to an increased expression and activity of NADPH oxidase [61,95,112].
Other pro-oxidant sources that have been involved include COXs,
xanthine oxidase, cytochrome P450, the mitochondrial respiratory
chain and uncoupled eNOS [94,95]. Red wine and hawthorn extracts
have been shown to reduce the level of oxidative stress in the arterial
wall by reducing the expression level of NADPH oxidase sub-units in old
rats and Ang II-induced hypertensive rats [61,93–96]. Alternatively,
polyphenols have also been suggested to decrease the level of vascular
oxidative stress by inducing the expression of antioxidant enzymes such
as catalase [113,114].

The local angiotensin system has been identified to play a de-
terminant role in the induction of endothelial dysfunction and oxidative
stress in several models of cardiovascular diseases [60]. Indeed, an
increased expression of angiotensin-converting enzyme and angiotensin
type 1 receptors (AT1R) is observed in the arterial wall of experimental
models of hypertension, diabetes, atherosclerosis and ageing
[115–119]. The fact that both angiotensin-converting inhibitors and
AT1R antagonists are able to improve the endothelial dysfunction in
old, in hypertensive, and also in diabetic rats, implies a determinant
role of the local angiotensin system [120–124]. The fact that chronic
intake of a red wine extract improved ageing- and hypertension-related
endothelial dysfunction associated with the normalization of the ex-
pression of both angiotensin-converting enzyme and AT1R in the ar-
terial wall, indicates that the local angiotensin system is an important
target of polyphenols [94,95].

Altogether, these data indicate that polyphenols can exert a bene-
ficial effect on the endothelial and vascular function through several
mechanisms including an increased formation of both NO and EDH, a
normalization of the local angiotensin system and of NADPH oxidase-
derived oxidative stress to sustain the protective effect of endothelial
cells on the vascular system.

6. Effect of polyphenols on the endothelial and vascular function
in Humans

In agreement with epidemiological studies and experimental in-
vestigations, several clinical studies support the concept that poly-
phenol-rich products are able to improve the vascular function in
Humans. The endothelial function can be assessed in Humans by flow-
mediated dilatation (FMD), which uses non-invasive ultrasound to
measure the percentage of dilatation of the brachial artery in response
to blood flow and is due to an increased endothelial formation of NO in
response to shear stress. A blunted FMD has been observed in Humans
presenting major cardiovascular risk factors, and is known to be an
independent predictor of the cardiovascular risk [125].

In healthy subjects, polyphenol-rich products have been shown to
increase FMD by relatively low doses such as the consumption of two
glasses of red wine with or without alcohol, or of a flavonoid-rich dark
chocolate (46 g) for 2 weeks [126–130]. The beneficial effect of dark
chocolate appears to be related to its content in (-)-epicatechin and to
activation of the endothelial NO formation [131]. Indeed, the increased
FMD after intake of the flavanol-rich cocoa drink was associated with a
peak in plasma concentration of flavanols and (-)-epicatechin metabo-
lites, as well as of plasma nitroso species indicating an increased for-
mation of NO. Moreover, the inhibition of NO synthase abolished the
cocoa-induced increase in FMD [131]. Polyphenol-rich blueberries,
particularly rich in anthocyanins, improved also FMD in a time- and
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dose-dependent manner (up to a concentration of 766mg total poly-
phenol) in healthy volunteers and this effect was associated with an
increased level of circulating metabolites [132]. Similar effects were
also observed after consumption of a pine bark extract (180mg/day for
2 weeks) [133], a grape seed extract (2 g/day) [129], purified (-)-epi-
catechin (1 or 2mg/kg body weight) [131], coffee (two cups of 200ml
extracted from 18 g of coffee) [134], and a flavonoid-rich açai meal
(694mg polyphenols) [135].

Several clinical studies indicate also that polyphenol-rich products
might contribute to improve hypertension and the related endothelial
dysfunction. Indeed, daily ingestion of 100 g of dark chocolate for two
weeks reduced blood pressure in mildly hypertensive patients [136], in
diabetes and hypertensive patients [137] and in elderly subjects [138].
Consumption of pomegranate juice for two weeks by hypertensive pa-
tients reduced systolic blood pressure by 5% following intake of 50ml
[139], and by about 6mmHg by 150ml [140]. Intake of purple grape
juice, equivalent to about two glasses, for 8 weeks improved blood
pressure in hypertensive patients in one study [141] but not in another
[142]. In addition, chronic consumption of red wine or dealcoholized
red wine for 4 weeks (272ml/day) reduced blood pressure by about
22.3 and 25.8mmHg, respectively in subjects with a high normal blood
pressure or grade 1 hypertension [143]. However, the daily consump-
tion of a glass of red wine (200ml/day) for up to 20 weeks did not
affect blood pressure in normotensive patients with carotid athero-
sclerosis [144]. Chronic intake of a beverage containing 300mg of
grape seed extract for six weeks significantly reduced systolic blood
pressure by about 5.6% and diastolic blood pressure by 4.7% in subjects
with mild hypertension, and a much greater effect was observed in
subjects with the highest initial blood pressure level [145]. In addition,
the consumption of a low-fat meal with 80mg of soybean isoflavones
for 2 weeks or dark chocolate for 1 week increased FMD in post-
menopausal women, a population with an increased risk of cardiovas-
cular diseases [146,147]. Acute and/or chronic ingestion of poly-
phenol-rich products including grapes, cocoa, onions, red wine
[148–151] and also the polyphenolic compound resveratrol [152] im-
proved metabolic disease-related endothelial dysfunction. Moreover in

patients with coronary artery disease, an improved FMD was observed
in response to the acute ingestion of red wine (250ml or 4ml/kg)
[153,154], EGCg (300mg) [155], and red grape polyphenols (600mg)
[156], and also to the chronic intake of black tea for 4 weeks (900ml/
day) [157] and cranberry juice for 4 weeks (480ml/day) [158].

7. Concluding remarks

There is now increasing evidence that several polyphenol-rich nat-
ural products are able to improve the endothelial function in ageing and
in both experimental models of cardiovascular diseases and in patients
with major cardiovascular risk factors mostly by re-adjusting the bal-
ance between the endothelial formation of NO and the vascular level of
oxidative stress (Fig. 3). These findings further suggest that despite the
relatively limited information regarding the active ingredients of the
food products and their bioavailability, their structure-activity re-
lationship, and their interaction with cell membranes and activation of
intracellular signal transduction pathways, regular intake of poly-
phenol-rich natural products appears to be an attractive approach for
promoting healthy ageing.
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General discussion 

 

NO, a major endothelium-dependent vasodilator, is a soluble gas continuously 

synthesized by vascular endothelial cells (Tousoulis et al., 2012). A released NO from 

endothelial cells stimulates soluble guanylyl cyclase (sGC) in vascular smooth muscle 

cells to produce cGMP, subsequent cGMP activates the protein kinase G (PKG) 

promoting the uptake of intracellular calcium into the sarcoplasmic reticulum and opening 

the calcium-dependent potassium channel. The decrease level of intracellular calcium 

induces vascular smooth muscle cell relaxation (Zhao et al., 2015). Another mechanism 

is endothelium-dependent relaxation mediated by EDH. The opening of SKca and IKca 

channel expressed in endothelial cells will generate a hyperpolarization, which will be 

transmitted to the underlying vascular smooth muscle to induce relaxation. SKca and IKca 

can be activated by increase concentration of intracellular calcium, which leads to K+ 

efflux. A moderate increase of K+ can promote smooth muscle cell hyperpolarization by 

activating the intracellular regulation of K+ conductance and Na+/K+ pump (Félétou and 

Vanhoutte, 2003). The endothelium-derived hyperpolarizing factors such as K+, CYP450, 

PGI2 and H2O2 will act at the vascular smooth muscle to induce relaxation by the myo-

endothelial gap junction. The PGI2 is synthesized from membrane lipids by the action of 

PLA2 and COX. PGI2 release form endothelial cells induces smooth muscle cell 

hyperpolarization by the binding of PGI2 to the receptor of PGI2/IP. PGI2/IP interaction in 

the cell membrane G-protein, which stimulates cAMP/PKA leading to Ca2+ efflux from 

cytosol and endoplasmic reticulum via Ca2+ pumps (Mitchell et al., 2008). 

Endothelial dysfunction is characterized by reduced bioavailability of vasodilators, 

represents an early step of atherosclerosis promoting the evolution of atherosclerosis 

plaque accompanied with pro-inflammatory and pro-thrombotic responses. The 

imbalance between the release of endothelium-dependent relaxing and contracting 
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factor in blood vessels is a major feature of endothelial dysfunction (Hadi et al., 2005). 

All traditional risk factor of CVDs such as smoking, aging, hyperglycemia, hypertension, 

premature atherosclerosis are associate with endothelial dysfunction (Widlansky et al., 

2003). 

Recent study has shown that daily consumption of fresh fruit decreased systolic 

blood pressure by 4.0 mmHg and blood glucose by 9.0 mg/dl as compare to non-

consumption of fresh fruit. Moreover, the decrease CVD event, such as cardiovascular 

death, major coronary events, ischemia, is inversely related to daily consumption of fresh 

fruit (Du et al., 2016).  

Anthocyanins are plant derived natural pigments abundant in fruit, red wine and 

vegetables. An average of anthocyanin intake in the United States is estimated from 180 

to 215 mg/day. Anthocyanins are not essential nutrients, and there is no disorder 

associated with lack of anthocyanin intake. However, several clinical studies showed 

high level of anthocyanins consumption is related to decrease of CVD prevalence. For 

instance, habitual intake of anthocyanin- and flavone-rich food in men showed that high 

intake of anthocyanins is lowering a 14% non-fatal myocardial infarction and high intake 

of flavanone is associated with a 22% lowering of ischemic stroke (Cassidy et al., 2016). 

One-month anthocyanin-rich strawberry supplements is associated with reduction of 

total cholesterol, triglyceride and LDL by about 8.78%, 13.72% and 20.80%, respectively 

(Alvarez-Suarez et al., 2014). Intake of C3G in normal diet in type 2 diabetic db/db mice 

for 8 weeks showed that and improvement of endothelium-dependent relaxation in the 

aorta associated with an increase eNOS phosphorylation at Ser 1177 and of the level of 

cGMP, and an increased expression of adiponectin (Liu et al., 2014). In addition, several 

studies are showing an upregulation of basal eNOS expression by C3G (Xu et al., 2004), 

an anthocyanin-rich purple potatoes extract inhibited D-galactose-induced endothelial 

senescence by the inhibition of intracellular AGE formation (Sun et al., 2015).  
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Regarding anthocyanins, they are characterized by a poor stability, which is affected 

by many environmental factors such as light, pH, temperature and also by their structure. 

Despite the low absorption and instability of anthocyanins, many studies showed 

beneficial effect of anthocyanins on cardiovascular health. However, the mechanism of 

anthocyanin regarding the absorption and subsequent mechanism in endothelial cells 

are still unclear.  

 SGLT include two isoforms SGLT1 and SGLT2 which facilitate the renal glucose 

reabsorption. SGLT2 has a low affinity and a high capacity glucose transporter located 

in S1 segment of proximal tubule of kidney responsible for ~90% of renal glucose 

reabsorption, SGLT1 is contributing ~10% of renal glucose reabsorption. SGLT inhibitors 

prevent glucose reabsorption in the kidney and subsequently lower blood glucose and 

promotes the elimination of glucose by the urine. Recently, D3G has been shown to 

protect ECs against oxidized LDL-induced mitochondrial dysfunction subsequent to its 

entry via SGLT1, suggesting that SGLT1 is, at least in part, an active transporter of D3G 

(Jin et al., 2013). 

Thus, the aim of our study is to identify the effect of blackcurrant anthocyanins and 

their underlying mechanism in endothelial cells, and in particular, the vascular reactivity 

studies have indicated that contribution of SGLTs to blackcurrant anthocyanin absorption. 

BCE is a potent activator of NO-mediated relaxation in porcine coronary artery rings 

with endothelium. LX4211 and canagliflozin significantly prevented the NO-mediated 

relaxation induced by BCE. These finding suggested that blackcurrant anthocyanins 

induce NO-mediated coronary artery relaxation is mediated by most likely by SGLT1. 

However, SGLT inhibitors did not affect endothelium dependent and independent 

relaxation induced by bradykinin and sodium nitroprusside (SNP), respectively. In 

addition, typical non-glucose conjugated flavonoid epigallocatechin gallate induced NO-

mediated relaxation was not affected by SGLT inhibitors. These findings indicated that 
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the glucose moiety in the anthocyanin structure might be of importance to stimulate the 

eNOS possibly via SGLT1. In a previous study, blackberry anthocyanins absorption in 

rat stomach indicated that high levels of C3G and galactoside-conjugated cyanidin was 

identified, whereas cyanidin-rutinoside was lower than monoglycoside conjugated 

cyanidin (Talavera et al., 2003). Total anthocyanins contents of BCE showed four major 

anthocyanins including cyanidin and delphinidin conjugated with glucoside or rutinoside 

moiety. Indica et al., showed blackcurrant anthocyanins induced eNOS phosphorylation 

through the redox-sensitive activation of PI3K/Akt signaling pathway in human umbilical 

vein endothelial cell. In addition, each major anthocyanin, C3G: 2.3 µg, C3R: 20 µg, D3G: 

5.8 µg and D3R: 29.6 µg, are able to induce eNOS phosphorylation. However, an efficacy 

of anthocyanins in activation of eNOS are not comparable due to different doses were 

treated (Edirisinghe et al., 2011). The kinetic study of the activation of Akt and eNOS by 

BCE indicated a peak level of pAkt and peNOS at 15 min. The stimulatory effect of BCE 

on eNOS significantly prevented by SGLT inhibitors except empagliflozin. These finding 

suggest a reduced in BCE uptake into endothelial cells by inhibition of most likely to 

SGLT1 resulting in the prevention of the subsequent activation of eNOS.  

According to the previous research, mRNA expression of SGLT2 is high in the 

kidney and also to some extent in other tissues such as ileum, brain, trachea, thyroid 

gland, testis, prostate, skeletal muscle and lung. The SGLT1 mRNA is distinct from 

SGLT2 mRNA and is highly observed in the ileum, skeletal muscle, coronary artery and 

kidney (Chen et al., 2010). However, we successfully identified the expression of SGLT1 

and 2 proteins in porcine coronary artery endothelial cells using confocal microscopy and 

Western blot analysis. Moreover, an increased level of expression of both SGLT1 and 2 

is observed during sequential subculture of ECs. Present findings suggest, at least in 

part, the possibility that BCE anthocyanins target the pathological increased expression 

of SGLT1 and 2 resulting in an increased influx into endothelial cells. The glucoside 
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conjugated anthocyanin, C3G, showed significant activation of eNOS, that was 

prevented by inhibition of SGLT1/2, and D3G showed increased extent to eNOS 

activation but not significantly. It is showing that anthocyanins with sugar moiety is more 

selectively transported by SGLT1 into endothelial cells. Similarly, anthocyanin uptake is 

of BCE, C3G and D3G is observed in P1 endothelial cells using flow cytometry and 

confocal microscopy, and the anthocyanins uptake was prevented by LX4211. However, 

SGLT2 inhibition by high selective empagliflozin did not prevent BCE anthocyanin uptake. 

SGLT2 is responsible for about the ~90% of renal glucose reabsorption by the low affinity 

and high capacity transportation in the kidney, whereas SGLT1 has high affinity and low 

capacity, may suggest that SGLT2 is more specialized for the transport of high amounts 

of substrate. In addition, an increase expression of SGLT1 and 2 in P3 endothelial cells 

showed the prevention of BCE anthocyanin uptake in the presence of LX4211 and 

empagliflozin, and subsequent preventive effect on the activation of eNOS, including the 

SGLT1 and SGLT2 contribute the anthocyanin uptake in senescent ECs. 

Many lines of evidences are supporting that anthocyanins possess various 

biological activities including prevention of CVDs. However, various arguments are 

raised regarding the low bioavailability of anthocyanins. Anthocyanins have strong 

antioxidant propeties able to protect blood vessels by chelating ROS and also inhibiting 

ROS formation (Dai et al., 2012, Singletary et al., 2007). In addition, anthocyanins inhibit 

the expression of adhesion molecules preventing monocyte infiltration to the intimal layer 

observed in early stages of atherosclerosis (Amin et al., 2015). Moreover, the present 

findings indicate that BCE anthocyanins promote the activation of eNOS resulting in NO-

mediated relaxation in coronary artery rings. Additionally, it can also be suggested that 

anthocyanins competitively reduce the glucose uptake into the endothelial cells by the 

sharing the SGLT1/2 leading to a behind effect. 

In conclusion, the present finding suggest SGLT1 is contributing to anthocyanin 
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uptake in healthy endothelial cells, and both SGLT1 and 2 in pathologic endothelial cells, 

which is promoting the activation of eNOS resulting NO-mediated protective effect.  
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Hyunho LEE 
 

Activation de la voie du monoxyde d’azote dans les cellules 
endothéliales par les anthocyanes du cassis :  

Caractérisation des molécules actives et  
rôle des co-transporteurs sodium-glucose 1 et 2 

Résumé 
Depuis quelques décennies, de nombreuses données suggèrent que l’effet protecteur cardiovasculaire des anthocyanes 
implique vraisemblablement une amélioration de la fonction endothéliale par une augmentation de la formation de 
monoxyde d’azote (NO). Cependant, les mécanismes protecteurs du transport intracellulaire des anthocyanes dans la 
cellule endothéliale demeurent mal compris. L’objectif de cette thèse est d’évaluer la contribution de SGLT1 et SGLT2, les 
co-transporteurs majeurs du sodium et du glucose, dans l’entrée des anthocyanes issues du cassis et de ses dérivés 
glucoside et rutinoside dans les cellules endothéliales. Cette entrée promeut l’activation de la voie de la monoxyde d’azote 
synthase endothéliale (eNOS) qui est ici étudiée par l’utilisation de vaisseaux isolés et de cellules endothéliales en culture. 
Un extrait de cassis riche en anthocyanes (BCE) induit la relaxation dépendante de l’endothélium par la voie du NO sur 
des anneaux d’artère coronaire de porc et active la voie de signalisation Akt-eNOS au sein des cellules endothéliales en 
culture. De plus, des expériences additionnelles suggèrent que l’effet protecteur des anthocyanes dépend à la fois du type 
de glucoside présent dans la structure des anthocyanes mais aussi de la contribution des transporteurs SGLTs dans l’influx 
cellulaire des anthocyanes. La capacité des anthocyanes à lutter contre la dysfonction endothéliale est hautement 
potentialisée dans un modèle cellulaire de sénescence réplicative par l’augmentation de l’influx des anthocyanes due à une 
forte expression des SGLTs. L’ensemble de ces données indique que les anthocyanes extraits du cassis sont de puissants 
activateurs de la voie du NO endothélial dans les cellules natives et en culture. Parmi les anthocyanes contenus dans le 
cassis, les dérivés glycosidiques comme la cyanidine et la delphinidine-3-O-glucoside, sont les anthocyanes les plus 
puissantes afin d’activer la voie du NO. En conclusion, les anthocyanes peuvent être particulièrement intéressantes afin de 
cibler précocement les sites à risque d’athérosclérose par leur effet de stimulation de l’expression des transporteurs SGLT1 
et 2.    

Mots-clés : Cassis, sénescence endothéliale, co-transporteur sodium glucose, monoxyde d’azote. 

 

Abstract 

Since last few decades, considerable data have been suggested that the protective effect of anthocyanin on cardiovascular 
system is likely to involve an improvement of endothelial function by increase nitric oxide (NO) formation. However, 
comprehensive studies on the subsequent mechanisms of protective effect by anthocyanin intracellular transportation in 
vascular endothelial cell is poorly understood. The aim of this thesis is to evaluate the possibility that SGLT1 and 2, the two 
major sodium-glucose cotransporters (SGLT), contribute to blackcurrant anthocyanins and its major glucoside- and 
rutinoside-conjugated anthocyanins uptake into endothelial cells that promoting the subsequent activation of endothelial 
nitric oxide synthase (eNOS) pathway using isolated blood vessels and cultured endothelial cells. An anthocyanin rich 
blackcurrant extract (BCE) induced NO-mediated endothelium dependent relaxation in porcine coronary artery rings and 
activated Akt-eNOS signaling pathway in cultured endothelial cell. Furthermore, additional experiments suggested that such 
a protective effect of anthocyanin is based on the type of glucoside in anthocyanin structure and contribution of SGLTs for 
the intracellular transportation of anthocyanins. An ability of anthocyanin against endothelial dysfunction is highly 
potentiated in the endothelial cell replicative senescence model by the increase anthocyanin efflux according to the high 
expression of SGLTs. Altogether, the present findings indicate that blackcurrant anthocyanins are potent activator of the 
endothelial NO pathway in native and cultured endothelial cells. Among blackcurrant anthocyanins, glucose derivatives 
such as cyanidin and delphinidin -3-O-glucoside are the most potent anthocyanins for activation of NO pathway. In 
conclusion, anthocyanin can be more prominent by preferentially targeting an early stage of atherosclerotic site by their 
increase expression of SGLT1 and 2. 

Key word: Blackcurrant, endothelial senescence, sodium-glucose cotransporter, nitric oxide
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