
HAL Id: tel-02308571
https://theses.hal.science/tel-02308571

Submitted on 8 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to an efficient and resilient embedding of
virtual networks under various constraints

Shuopeng Li

To cite this version:
Shuopeng Li. Contribution to an efficient and resilient embedding of virtual networks under various
constraints. Networking and Internet Architecture [cs.NI]. Université Sorbonne Paris Cité, 2017.
English. �NNT : 2017USPCD066�. �tel-02308571�

https://theses.hal.science/tel-02308571
https://hal.archives-ouvertes.fr

Abstract

Title: Contribution to an efficient and resilient embedding of virtual networks under

various constraints

Network virtualization allows to create logical or virtual networks on top of a shared

physical or substrate network. The resource allocation problem is an important issue in

network virtualization. It corresponds to a well known problem called virtual network

embedding (VNE). VNE consists in mapping each virtual node to one substrate node and

each virtual link to one or several substrate paths in a way that the objective is optimized

and the constraints verified. The objective often corresponds to the optimization of the

node computational resources and link bandwidth whereas the constraints generally include

geographic location of nodes, CPU, bandwidth, etc. In the multi-domain context where the

knowledge of routing information is incomplete, the optimization of node and link resources

are difficult and often impossible to achieve. Moreover, to ensure service continuity even

upon failure, VNE should cope with failures by selecting the best and resilient mappings.

In this thesis, we study the VNE resource allocation problem under different requirements.

To embed a virtual network on multi-domain substrate network, we propose a joint peering

and intra domain link mapping method. With reduced and limited information disclosed

by the domains, our downsizing algorithm maps the intra domain and peering links in the

same stage so that the resource utilization is optimized. To enhance the reliability of virtual

networks, we propose a failure avoidance approach that minimizes the failure probability

of virtual networks. Exact and heuristic solutions are proposed and detailed for the infinite

and limited bandwidth link models. Moreover, we combine the failure avoidance with the

failure protection in our novel protection-level-aware survivable VNE in order to improve

the reliability. With this last approach, the protectable then the less vulnerable links are first

selected for link mapping. To determine the protectable links, we propose a maxflow based

heuristic that checks for the existence of backup paths during the primary mapping stage. In

case of insufficient backup resources, the failure probability is reduced.

iv

Key words: Network virtualization, Virtual network embedding, Multi-domain network,

Network protection, Survivability, Network reliability.

Résumé

Titre: Contribution à une instanciation efficace et robuste des réseaux virtuels sous

divers contraintes

La virtualisation de réseau permet de créer des réseaux logiques, dits virtuels sur un réseau

physique partagé dit substrat. Pour ce faire, le problème d’allocation des ressources aux réseaux

virtuels doit être résolu efficacement. Appelé VNE (Virtual Network Embedding), ce problème

consiste à faire correspondre à chaque nœud virtuel un nœud substrat d’un côté, et de l’autre, à tout

lien virtuel un ou plusieurs chemins substrat, de manière à optimiser un objectif tout en satisfaisant

un ensemble de contraintes. Les ressources de calcul des nœuds et les ressources de bande passante

des liens sont souvent optimisées dans un seul réseau substrat. Dans le contexte multi-domaine où

la connaissance de l’information de routage est incomplète, l’optimisation des ressources de nœuds

et de liens est difficile et souvent impossible à atteindre. Par ailleurs, pour assurer la continuité de

service même après une panne, le VNE doit être réalisé de manière à faire face aux pannes.

Dans cette thèse, nous étudions le problème d’allocation de ressources (VNE) sous diverses

exigences. Pour offrir la virtualisation dans le contexte de réseau substrat multi-domaines, nous

proposons une méthode de mappage conjoint des liens inter-domaines et intra-domaines. Avec une

information réduite et limitées annoncées par les domaines, notre méthode est capable de mapper

simultanément les liens intra-domaines et les liens inter-domaines afin d’optimiser les ressources. De

plus, pour améliorer la robustesse des réseaux virtuels, nous proposons un algorithme d’évitement

des pannes qui minimise la probabilité de panne des réseaux virtuels. Des solutions exactes et

heuristiques sont proposées et détaillées pour des liens à bande passante infinie ou limitée. En outre,

nous combinons l’algorithme d’évitement des pannes avec la protection pour proposer un VNE

robuste et résistant aux pannes. Avec cette nouvelle approche, les liens protégeables puis les liens les

moins vulnérables sont prioritairement sélectionnés pour le mappage des liens. Pour déterminer les

liens protégeables, nous proposons une heuristique qui utilise l’algorithme du maxflow afin de vérifier

et de déterminer les liens protégeables à l’étape du mappage des liens primaires. En cas d’insuffisance

de ressources pour protéger tous les liens primaires, notre approche sélectionne les liens réduisant la

probabilité de panne.

vi

Mots-clés: Virtualisation des réseaux, Mappage des réseaux virtuels, Réseaux multi-

domaines, Protection des réseaux, Capacité de survie, Fiabilité des réseaux.

Table of contents

1 Introduction 1

1.1 Background . 1

1.2 Challenge . 2

1.3 Contribution . 4

1.4 Plan . 6

1.5 List of Publications . 7

2 Background and State of Art 9

2.1 Introduction . 9

2.2 Network Virtualization . 9

2.2.1 Benefits . 9

2.2.2 Design goals . 10

2.2.3 Architecture . 10

2.2.4 Virtual Network Embedding (VNE) 12

2.3 VNE optimization . 12

2.3.1 Substrate network . 13

2.3.2 Virtual network . 13

2.3.3 VNE Formulation . 13

2.3.4 Examples of objective functions 15

2.3.4.1 CPU and bandwidth . 15

2.3.4.2 Delay . 15

2.3.4.3 Penalty . 16

2.3.5 Optimization problem and methods 16

2.3.5.1 Linear programming (LP and ILP) 16

2.3.5.2 Optimization methods 17

2.3.5.3 CPLEX . 17

2.4 Single domain VNE . 18

2.4.1 Two stage solutions . 18

viii Table of contents

2.4.1.1 Node mapping . 18

2.4.1.2 Link mapping . 19

2.4.2 One stage solutions . 20

2.4.3 VN reconfiguration . 21

2.5 Multi domain VNE . 22

2.5.1 Existing works . 22

2.5.2 Comparison of embedding methods 24

2.5.2.1 Multi-domain information disclosure model 25

2.5.2.2 VN partitioning . 26

2.5.2.3 Inter-domain connection (VN segmentation) 26

2.5.2.4 Sub VN mapping . 27

2.5.3 Shortcoming of existing work . 27

2.6 Survivable VNE . 27

2.6.1 Architecture of survivable VNE 28

2.6.2 Node protection . 29

2.6.3 Link protection . 30

2.6.3.1 Shared link protection 30

2.6.3.2 Shared path protection 31

2.6.3.3 Dedicated path protection 31

2.6.4 Multiple failure protection . 32

2.6.5 Failure avoidance . 33

2.6.6 Post failure recovery . 34

2.6.7 Analysis . 34

2.7 Conclusion . 36

3 Multi-domain VN Resource Allocation 39

3.1 Introduction . 39

3.2 Our method and existing solutions . 41

3.2.1 Position of problem . 41

3.2.2 Examples . 41

3.3 Multi Domain Model . 45

3.3.1 Substrate network . 45

3.3.2 VNP layer model . 46

3.4 Our proposition . 48

3.4.1 Decomposition . 48

3.4.2 An iterative downsizing VNE approach 48

3.4.2.1 Rationale . 48

Table of contents ix

3.4.2.2 Building of the augmented graph 49

3.4.2.3 VN sub-request . 50

3.4.2.4 An MCF-based link mapping 50

3.4.3 Update and iteration . 51

3.4.4 The MCF-based sub VNE problem 53

3.4.5 Reject of virtual request . 54

3.5 Reinforcement of our method . 54

3.5.1 Two domain basic method . 55

3.5.2 Towards K domain solution . 55

3.6 Performance Evaluation . 56

3.6.1 Evaluation Environment . 56

3.6.2 Random peering link model . 57

3.6.3 Compared methods . 58

3.6.4 Metrics . 58

3.6.5 Scenario 1: real substrate networks 59

3.6.6 Scenario 2: peering links . 61

3.6.7 Scenario 3: random substrate networks 61

3.6.8 Scenario 4: virtual link demands 61

3.6.9 Scenario 5: reinforced method . 65

3.6.10 Conclusion of simulation . 65

3.7 Conclusion . 67

4 VN Reliability Enhancement 69

4.1 Introduction . 69

4.2 Avoiding the failures . 70

4.2.1 Position of problem . 70

4.2.2 Our direction . 72

4.3 Solution for infinite bandwidth links . 72

4.3.1 Objective function . 73

4.3.2 Steiner minimal tree solution . 74

4.3.2.1 Steiner minimal tree . 74

4.3.2.2 Example . 75

4.4 Solution for limited bandwidth links . 75

4.4.1 Exact ILP formulation . 76

4.4.2 Failure avoidance based heuristics for limited bandwidth links . . . 77

4.4.2.1 Baseline heuristic . 78

4.4.2.2 Reinforced heuristic . 79

x Table of contents

4.5 Performance Evaluation . 81

4.5.1 Lifetime model . 82

4.5.2 Compared methods . 84

4.5.3 Metrics . 84

4.5.4 Scenario 1: arrival rate . 85

4.5.4.1 Configuration . 85

4.5.4.2 Numeric result . 86

4.5.5 Scenario 2: variation of the number of substrate nodes 87

4.5.5.1 Configuration . 87

4.5.5.2 Numeric result . 87

4.5.6 Evaluation conclusion . 88

4.6 Conclusion . 89

5 Design of Survivable VN 91

5.1 Introduction . 91

5.2 Protection method and network model . 92

5.2.1 Type of failure and protection method 92

5.2.2 Primary and backup resource separation 93

5.2.3 VNE with protection . 95

5.2.3.1 Primary mapping . 95

5.2.3.2 Backup path computation 95

5.2.4 Position of problem . 97

5.3 Protection-level-aware VNE Formulation 98

5.3.1 Objective . 98

5.3.2 Formulation . 99

5.4 Heuristic . 101

5.4.1 Principle . 101

5.4.2 Simple on-line backup verification 102

5.4.3 Backup path pre-verification . 103

5.4.3.1 Backup path computation 104

5.4.3.2 Backup path verification 105

5.5 Performance evaluation . 106

5.5.1 Environment . 106

5.5.2 Compared methods . 107

5.5.3 Metrics . 108

5.5.4 Scenario 1: small network . 109

5.5.5 Scenario 2: medium size network 110

Table of contents xi

5.5.6 Scenario 3: primary capacity ratio τ 112

5.5.7 Conclusion of simulation . 113

5.6 Conclusion . 113

6 Conclusion and perspective 115

6.1 Conclusion . 115

6.2 Perspective . 117

References 119

Appendix A Substrate network generation 125

A.1 SNDlib . 125

A.2 GT-ITM . 126

Appendix B Cplex optimization file 129

Chapter 1

Introduction

1.1 Background

With the rapid development of Internet, more and more Internet services ask for a robust

and flexible network. Network Virtualization (NV) [APST05] is one of the key technolo-

gies to accommodate the novel network requirements. Network Virtualization allows to

create various specific-purpose independent logical networks on top of a shared physical

network. Infrastructure resources of a network are abstracted and sliced into multiple virtual

networks (VN). Each virtual network works as an isolated network with its own resources

and performs its own network function in an independent way. In other words, virtualizing a

network consists in realizing the process of combining hardware and software resources and

network functionality into a single software based virtual network.

Network Virtualization has shown a lot of benefits [BHK12]. Since the resources are

shared, Network Virtualization cuts down the cost of maintaining and replacing of infrastruc-

ture. The network can be treated as a flexible pool with capacity that can be consumed and

changed on demand. As a result, it speeds up the development, testing and deployment of

new protocols.

Generally speaking, virtual network is a kind of overlay network. Overlay network is not

a new concept [LCP+05]. Since the birth of computer network, we have seen various overlay

networks. Among these overlay technologies, we can cite (1) VLAN which partitions and

isolates a network at Layer 2 through VLAN tagging and (2) VPN (Virtual Private Network)

which establishes a virtual point-to-point connection through the use of virtual tunneling

protocols (IPSec and MPLS).

Although overlay network can be considered as an important past of network virtual-

ization, it is different from network virtualization. Indeed, overlay network is only adapted

for address space isolation (for example, isolating duplicate MAC addresses, duplicate IP

2 Introduction

addresses, or duplicate VLAN IDs). Whereas network virtualization involves some new

features, such as flexible and dynamic management of VNs, easy configuration of VNs

and virtualization of network services. To provide a platform for on-line setup networks

that supports multiple types of applications, network virtualization seems to be investible,

specially it allows rapid configuration.

With the arrival of SDN (Software Defined Networking) [KRV+15] and NFV (Network

Function Virtualization) [MSG+16], the requirements of Network Virtualization can be

implemented in an easy, efficient and realistic way. The separation of control plane and

data plane allows the controller to have a general view of the network. The controller can

establish VNs in an on-demand and dynamic way. OpenFlow [MAB+08], which is a standard

communication protocol between the control and forwarding layers of an SDN architecture,

makes it possible to easily isolate networks and to configure special requirements (e.g. backup

port).

1.2 Challenge

On the road to network virtualization (NV), many research challenges remain to be ad-

dressed [CB10]. Some of the key issues are isolation, resource allocation and security.

Isolation enable the configuration and customization of shared virtual networks. Resource

allocation solves the problem of efficient physical network resource utilization. Security

issues, like authentication, are also need to be considered in Network Virtualization.

In this thesis, we focus on the problem of resource allocation for Network Virtualization.

Since multiple virtual networks work on the same physical network, the basic problem

consists in determining an efficient (optimal) method to allocate physical resources to the vir-

tual networks. This problem is referred as Virtual Network Embedding (VNE) [FBTB+13].

Basically, the objective consists in increasing the revenue by allocating a maximum number

of virtual networks on the physical network. Apart from the revenue, other virtual network

demands may appear and should be satisfied, like VNE in multi-domain physical network,

reliable VNs, survivable VNs, etc.. Accordingly, the goal of this thesis is to design efficient

algorithms/frameworks for VNE such that the constraints/objectives related to VNs are satis-

fied/optimized. In other words, the designed algorithms/frameworks should provide efficient,

flexible and dynamic resource allocation methods to improve the physical resource utilization

while satisfying/optimizing various constraints/objectives (like revenue, the reliability, etc.)

in different contexts (intra or inter domain physical networks).

The VNE problem can be solved in two stages (node mapping and link mapping) or in

one stage. In the two stage solutions, virtual nodes are first mapped to the substrate nodes

1.2 Challenge 3

by satisfying the geographic location constraints. Substrate link resources are also taken

into consideration in node mapping stage so that the virtual nodes are mapped to substrate

nodes which have sufficient adjacent link resources. After node mapping stage, the link

mapping stage determines the substrate paths for virtual links. In this step, link resources are

optimized, load balancing is performed and various link constraints are verified. The single

substrate path or multiple substrate paths for one virtual link are two possible solutions. The

unsplitable (single) paths are often computed by shortest path algorithm, while the splittable

(multi) paths are determined by Multi-Commodity Flow (MCF) problem.

The virtual network demands are multifarious. In real world, substrate network is often

composed of multi-operator’s network (each network is referred as domain). Some of the

services need to be established over a substrate network which is constituted by networks

of several operators (multi-domain). Resource allocation in multi-domain is different from

that in single domain. Node mapping in multi-domain need to take into account not only the

constraint/optimization (geographic location, CPU) in every domain, but also the domain

characteristics and policy to select a substrate domain for each virtual node. The link

mapping is also a challenge because infrastructure providers do not expose all the topology

information to other providers. The optimal solution can not be found because of lack of

exact information. The existing solutions often build a virtual network provider level model

and map peering links with simple algorithm (e.g. shortest path algorithm) before mapping

sub VN in each domain. The mapping of inter-domain connection and sub VN mapping are

generally separated, leading to a bad resource utilization in substrate network.

Some of the VN services have QoS requirements. This kind of requests ask for a VN

resource allocation scheme with survivability/reliability 1 consideration. The network failures

concerns often single components (node or link). Several components can fail at the same

time (region/multiple failure). Many methods are proposed to enhance the VN reliability

before and after the failure. Before failure occurrences, failure avoidance methods aim to

avoid as much as possible the vulnerable components on the network, while failure protection

pre-reserves backup paths and resources for primary links/paths. Although failure avoidance

is a simple method that enhances the reliability of a network without extra configuration,

there is few works studying it in the context of VNs.

Protection needs backup resource reservation and configurations, but it has a high reli-

ability level. The protection can be implemented on the substrate paths or substrate links.

With the path protection, a pair of primary and backup paths can be jointly determined by

the disjoint shortest path algorithm. This protection scheme suffers from the high recovery

latency problem. With the link protection, the backup path is determined for each primary

1In this thesis, the terms survivability, reliability and resilience are interchangeable

4 Introduction

link. The recovery is preformed immediately on the upper component of the failure. The

backup paths are often pre-selected and computed independently with primary path so that

the research space is reduced. As a result, the backup path could be non optimal and even

not available because of bad choice of the primary path.

At the same time, since the protection method consumes a great amount of backup

resources, the failure avoidance can be a good complement method to protection framework

in case of lack of resource.

1.3 Contribution

After the systematic analysis of existing works [LSC15], we found that there are still some

important challenges in resource allocation of Network Virtualization. We decided to work

on the following directions:

1. In multi-domain network virtualization, there is no efficient link mapping method

with partial network information. We aim to propose a link mapping method which

increases the efficiency of network resource allocation.

2. Reliability is an important issue for network design, idem for the virtual networks.

However, there is few methods which enhance the VN reliability without any extra

configuration. Our goal is to take into account the link failure probability and to

minimize the VN failure probability during VN mapping.

3. Protection is often used to protect against a network failure. Since it consumes lots

of backup resource, the availability of backup resources need to be verified before

the primary mapping and remedial methods need to be preformed in case of lack of

resource.

The contributions of this thesis are summarized and described hereafter:

1. In order to embed virtual networks on multi-physical (multi-domain) network, we

develop a framework for node and link mappings. In our proposition, link mapping

is improved by combining and jointly mapping the intra domain and peering (inter

domain) links. The information discrimination policy in our method is easy to get.

The intermediate layer is adopted to coordinate the link mapping and to facilitate the

information exchange. Our framework [LSC16b] simplifies the mapping into two

stages: VN partitioning and link mapping. The virtual nodes are first partitioned and

mapped to the domains by applying existing multi-domain node mapping algorithm.

1.3 Contribution 5

Subsequently, a series of iterative downsizing link mappings are performed. In each

domain, an augmented graph and local sub VN are created with partial and incomplete

information about other domains. The downsizing algorithm maps the intra domain

and peering links in the same MCF (multi-commodity flow) problem. In this way, the

chose of substrate peering link is no longer an independent step, but it is co-optimized

with intra domain links. Our reinforced method [LSC16a] explores the problem of the

sequence of mapping the domains and proposes a recursive method to find the best

mapping solution.

2. In order to provide the reliability of Network Virtualization, we design a reliable virtual

network embedding framework [LSC17a]. In our framework, we assume an indepen-

dent failure probability for each physical link and we adopt a failure avoidance method

to enhance the reliability of VN. Embedding a reliable virtual network corresponds

to the problem of minimizing the failure probability of the VN. With the unlimited

bandwidth case, we show that the reliability optimization corresponds to the problem

of Steiner tree, which is NP-hard. The problem becomes more complex when the

bandwidth constraints need to be satisfied. For this case, we propose an exact ILP

formulation and two efficient heuristics (baseline and reinforced) to solve the problem.

Baseline heuristic reduces only the failure probability by mapping virtual links to

shortest path with reliable links. It reuses the mapped substrate links to minimize

the overall failure probability of VN. Furthermore, reinforced heuristic includes the

bandwidth factor in the cost function so that it reduces also the bandwidth resource

utilization.

3. We apply the share link protection technique to Network Virtualization and proposed

a survivable virtual network embedding framework. This framework [LSC17b] com-

bines the failure avoidance and the failure protection. With the separation of primary

and backup resources, we can predict the existence of the backup path upon primary

mapping. The virtual links are mapped to the primary paths that have available backup

paths on each link of the primary path. In case of insufficient backup resource, failure

avoidance method is adopted to reduce the overall failure probability. Our formulation

protects substrate links and optimizes the probability of surviving upon a simple link

failure. Furthermore, we find that the maximum bandwidth capacity for link protection

corresponds the maxflow value of the backup capacity on the graph. In this way, all

the potential backup paths are explored and managed as independent resources without

complex computations and configurations. These backup paths determined by maxflow

6 Introduction

algorithm, are allocated and consumable linearly (like primary resources) and thus are

easier to manage than the existing shared link protection scheme.

1.4 Plan

This manuscript is organized as follows. In Chapter 2, we introduce the network virtualization

concept, architecture and virtual network embedding problem. We give an in-deep analysis

of the existing work of VNE, including basic node/link mapping, one stage VNE, and multi-

domain VNE. We also classified the existing work of survivable VNE into node protection,

link protection, failure avoidance and post failure recovery.

Chapter 3 presents the VNE problem in multi-domain and our contribution that consists

in coordinating intra and peering link mapping. We compare the existing multi-domain VNE

framework with our work in terms of VN partitioning, inter-domain connection, sub VN

mapping and information disclosure model. Comprehensive examples are provided to show

the differences. We characterize and show the information transmitted in the network to

achieve the mapping. With the partial information, we show how the augmented graph is

created and how the downsizing mapping is performed. We also introduce a reinforcement of

our method which uses recursive ideal. The methods are validated by 5 different scenarios.

Chapter 4 describes the virtual network reliability model and details our methods to

enhance the reliability. We first introduce the generic model which associates probability

failures for substrate network components. With links of infinite bandwidth, we transform the

probability metric to an additive metric and deduce the exact solution which corresponds to

the Steiner tree. Based on this result, we formulate the problem by including the bandwidth

constraints. Since the problem is NP-hard, we propose a baseline heuristic, which only

reduces the failure probability with verifying the bandwidth constraint, and a reinforced

heuristic which also decreases the bandwidth utilization.

In chapter 5, we focus on the design of survivable virtual network by combining the

failure avoidance and failure protection technique. We formulate the protection-level-aware

VNE problem. A simple on-line backup verification method is proposed to predict the

existence of backup path. Furthermore, we propose the pre-computed backup verification

method that is based on maxflow algorithm.

Finally, we conclude this thesis and give some perspectives for the future working

directions in Chapter 6.

1.5 List of Publications 7

1.5 List of Publications

Publication:

• [LSC15] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. Survivable virtual network

embedding with resource sharing and optimization. In Protocol Engineering (ICPE)

and International Conference on New Technologies of Distributed Systems (NTDS),

2015 International Conference on, pages 1–6. IEEE, Paris, July 2015.

• [LSC16b] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. Multi-domain virtual

network embedding with coordinated link mapping. Advances in Science, Technology

and Engineering Systems Journal, 2(3):545–552, 2016.

• [LSC16a] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. A cloud-oriented algo-

rithm for virtual network embedding over multi-domain. In Local Computer Networks

Workshops (LCN Workshops), 2016 IEEE 41st Conference on, pages 50–57. IEEE,

Dubai, November 2016.

• [LSC17a] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. A failure avoidance

oriented approach for virtual network reliability enhancement. In Proc. IEEE Int. Conf.

Communications (ICC), Paris, May 2017.

Preparation:

• [LSC17b] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. Survivable services

oriented protection-level-aware virtual network embedding. Target: International

Journal of Network Management.

Chapter 2

Background and State of Art

2.1 Introduction

In this chapter, we first introduce the basic definition and benefits of network virtualization.

To achieve the network virtualization, we describe the problem of virtual network embedding

(VNE), the general VNE network model, formulation and tools to solve the problem. The

single domain problem can be solved in two stage or one stage. Subsequently, we present

the VNE problem in multi-domain, the existing works and remaining shortcoming. Taking

into account the reliability of the VN, we present the survivable VNE problem, its principle

method and remaining challenges.

2.2 Network Virtualization

2.2.1 Benefits

The concept of network virtualization [APST05] has evolved from Virtual Local Area

Networks (VLANs), Virtual Private Networks (VPN), active programmable networks and

overlay networks into a pluralist philosophy where many heterogeneous architectures co-

exist to offer flexible and scalable services. From an architectural perspective, network

virtualization allows [CB09] [BHK12]:

• Coexistence: many virtual networks (eventually from different service providers)

coexist on the same physical infrastructure;

• Recursion: also known as nesting, refers to the possibility that a virtual network can be

set up on the top of another virtual network which creates a hierarchy in the network

virtualization environment;

10 Background and State of Art

• Inheritance: virtual networks in the higher levels of the recursion hierarchy could

inherit properties from virtual networks in lower levels. Such properties could be some

restrictions that come directly from the infrastructure provider for example;

• Revisitation: a single physical node (physical link) can be used to host more than one

virtual node (virtual link) from the same virtual network.

2.2.2 Design goals

The overall goal of enabling multiple heterogeneous virtual networks to coexist together on a

shared physical infrastructure can be subdivided into several smaller objectives. These goals

provide a guideline to design a protocol or an algorithm for virtual networks. They consist in

the following points:

• Flexibility: every virtual network is independent from the underlying physical infras-

tructure and the coexisting virtual networks in terms of topology, routing, forwarding

functionalities and control protocols;

• Manageability: each virtual network can be managed independently with the capability

of service providers to provide end-to-end control over many virtual networks;

• Scalability: infrastructure providers should be capable of scaling to support an increas-

ing number of coexisting virtual networks;

• Isolation: since many virtual networks should co-exist, they should be isolated from

each other in order to ensure security and privacy and to improve fault tolerance;

• Stability and convergence: any errors in the underlying physical infrastructure should

be limited in order to affect the minimum number of virtual networks on top of the

physical infrastructure;

• Heterogeneity: not only the underlying physical infrastructure could be composed of

heterogeneous technologies (e.g., optical and wireless technologies) but also virtual

networks on top of it could be heterogeneous (e.g., by using different protocols).

2.2.3 Architecture

The main idea of network virtualization is to decouple infrastructure from services in the

traditional ISPs. This leads to an architecture composed of two new entities: Service Provider

(SP) and Infrastructure Provider (InP). In this business model, InPs become responsible for

12 Background and State of Art

2.2.4 Virtual Network Embedding (VNE)

The challenging problem of virtual network embedding (VNE) which consists to determine

the best mapping of virtual networks to a substrate network, concerns the resource allocation

[FBTB+13]. Through a dynamic mapping of virtual resources onto physical hardware, the

benefit of existing hardware can be maximized. The optimal dynamic resource allocation,

leading to the self-configuration and organization of future networks, will be more and more

desired to provide customized end-to-end guaranteed services to end users. This optimality

can be computed with regard to different objectives, ranging from QoS, economical profit, or

survivability over energy-efficiency to security of the networks.

The hardware abstraction provided by the virtualization solution provides a common

denominator, allowing any substrate resource to host virtual resources of the same type.

Typically, a substrate resource is partitioned to host several virtual resources. For example, a

virtual node can, in principle, be hosted by any available substrate node. Moreover, a single

substrate node can host several virtual nodes. Thus, the mapping of virtual nodes to substrate

nodes describes a (n : 1) relationship (a strict partition of substrate resources).

In some cases, substrate resources can also be combined to create new virtual resources.

This is the case for a virtual link which spans several links (i.e. a path) in the substrate

network. In this case, a virtual link between two virtual nodes v and w is mapped to a path in

the substrate network that connects the substrate hosts of v and w. Each substrate link may

then be part of several virtual links. As such, the mapping of virtual links to substrate paths

describes a (n : m) relationship.

A virtual network embedding example is shown in the right side of Figure 2.1. A virtual

network request is generated by service provider. This network is composed of three virtual

nodes {a,b,c} and 3 virtual links {a−b,a− c,b− c}. The substrate network managed by

infrastructure provider contains 9 substrate nodes and 11 substrate links. The VNE solution

is shown by the red dotted lines. Virtual nodes a, b, and c are mapped to A, H and F

respectively. Virtual links a−c, a−b and b−c are mapped to A−C−E−F , A−B−G−H

and H− I−F , respectively.

2.3 VNE optimization

The VNE problem is basically a resource allocation problem. To solve this resource allocation

problem, many framework/methods/algorithms are proposed. Most of the existing works are

based on the graph models on which the objectives and constraints are formulated to build an

optimization problem. This kind of optimization problem is often NP-hard. Optimization

methods (exact and heuristics) are adopted to give the solutions.

2.3 VNE optimization 13

In this section, we present a general network model and VNE formulation. The network

model is adopted by most of the authors in existing works [CRB09], while the objectives and

constraint may be different or more complex according to the requirement. We give some

examples of optimization metric listed in Table 2.2. To solve the formulated problem, we

briefly introduce some optimization tools.

2.3.1 Substrate network

The substrate network is modeled as a connected directed graph GS(NS,LS), where NS is

the set of substrate nodes and LS is the set of substrate links. Each substrate node ns ∈ NS

is associated with various metric weights and constraints like CPU capacity cpu(ns) and

geographic location loc(ns). Similarly, a substrate link ls is associated with bandwidth

capacity C(ls), failure probability Pls , etc..

2.3.2 Virtual network

The virtual network is also modeled as a connected directed graph GV (NV ,LV), where NV

is the set of virtual nodes and LV is the set of virtual links. Each virtual node nv ∈ NV is

associated with CPU capacity demand cpu(nv), geographic location loc(nv) and the distance

dis(nv) specifying how far a virtual node nv can be placed from its loc(nv). Each lv ∈ LV is

associated with metrics and constraints like bandwidth demand bw(lv). In addition, each

virtual network GV has a lifetime t(GV).

2.3.3 VNE Formulation

We describe the generic formulation of VNE that aims to embed a virtual network GV (NV ,LV)

on a substrate network GS(NS,LS). In this formulation, the objective function aims to

optimize a function that combines both node and link metrics (node CPU and link bandwidth).

Depending on applications, this objective function may take various forms.

Variables:

• Unv

ns : cpu on substrate node ns for virtual node nv.

• F lv

ls : flow on substrate link ls for virtual link lv.

Objective:

Minimize:

Ob j(Unv

ns ,F lv

ls) (2.1)

Subject to:

14 Background and State of Art

Node location constraints:

distance(loc(ns), loc(nv))≤ dis(nv) (2.2)

CPU capacity constraints:

∑
nv∈NV

cpu(nv)Unv

ns ≤ Res(ns), ∀ns ∈ NS (2.3)

Flow conservation constraints:

∑
n∈NS|∃ls=(m,n)

F lv

ls − ∑
n∈NS|∃ls=(n,m)

F lv

ls =



















1, m = M(src(lv))

−1, m = M(dst(lv))

0, otherwise

,∀m ∈ Ns, lv ∈ LV

(2.4)

Bandwidth capacity constraints:

∑
lv∈LV

bw(lv)F lv

ls ≤ Res(ls), ∀ls ∈ LS (2.5)

In our generic formulation, the constraints are flow conservation and resource capacities.

More constraints are included according to the objective and context of problem.

The variables Unv

ns represent the CPU resources allocated to a virtual nodes nv on a

substrate node ns. These variables are binary, since the virtual node need to be embedded

entirely to a substrate node to perform its function. However, the variable F lv

ls , which refers to

the flow of a virtual link lv on a substrate link ls, can be either binary or continuous in (0,1).

When path splitting is allowed, the variables F lv

ls are continuous whereas they are binary for

unplittable traffics. We note that path splitting allows to route the traffic of a virtual link on

multiple paths whereas only one path should be used for the case of unsplittable traffic. The

amount of flow routed on a substrate link ls for the virtual link lv is equal to bw(lv)×F ls

lv .

Objective (2.1) is a function of variables Unv

ns and F lv

ls . The objective function of VNE

problem depends on the need of service provider. For example, we can combine node and

link resource utilizations in the objective function so that the consummation of a VN is

minimized. Other objectives (QoS, delay, failure) could be optimized in a similar manner.

Constraints (2.2) and (2.3) are node constraints. The node location constraint 2.2 aims

to guarantee that the distance between the request location (loc(nv)) and the location of ns

(loc(ns)), on which nv is mapped, does not exceed a given tolerant distance (dis(nv)). The

2.3 VNE optimization 15

capacity constraints 2.3 ensure that ns has enough CPU resources to support virtual nodes

that are mapped to ns. The node constraints are used by mapping algorithms to determine a

candidate set of substrate nodes before the node mapping step so that the research space is

reduced.

Constraints (2.4) and (2.5) are link constraints. In constraints 2.4, src(lv) and dst(lv)

retrieve respectively the source and destination of lv. M(nv) retrieves the substrate node that

nv is mapped to. The flow conservation constraints 2.4 show us the establishment of substrate

path on which a virtual link is mapped. The source nodes of the paths have egress flow (sum

of the flow is equal to 1), while the destination nodes of the paths have ingress flow (sum of

the flow is equal to -1). The ingress flows and egress flows on the intermediate nodes are

equal. The bandwidth capacity constraints 2.5 ensure that each ls has enough bandwidth

resource to support virtual links that pass through ls.

2.3.4 Examples of objective functions

2.3.4.1 CPU and bandwidth

In [YYRC08], the objective of VNE is modeled by the sum of node CPUs and link band-

widths,

R(GV) = ∑
lv∈LV

bw(lv)+ ∑
nv∈NV

cpu(nv) (2.6)

where R(GV) is the revenue of Gv. The nodes are mapped with a greedy algorithm. In

their solution, the available resource for a substrate node is given by its cpu resource and

bandwidth resources of adjacent links,

H(ns) = cpu(ns) ∑
ls∈AL(ns)

bw(ls) (2.7)

where AL(ns) is the set of all adjacent substrate links of ns. Virtual nodes are mapped to

substrate nodes with high available resources.

2.3.4.2 Delay

The delay of a virtual link is the sum of the delays of the links along the related path in

the substrate network. In [ZCP12], the sum of the delay of all the virtual links in a VN is

minimized,

Min ∑
lv∈LV

∑
ls∈LS

DlsF lv

ls

where Dls is the delay of a substrate link.

16 Background and State of Art

2.3.4.3 Penalty

If a service is violated due to a substrate resource failure, the service will be affected and

subsequently result in penalties for the InP based on the level of frustration of the SP. Fast

recovery methods can reduce this penalty. By applying the virtual network protection

method, the penalty is calculated by the part of flow without protection (violated by the

failure) [RB13],

∑
lv∈LV

S(lv)[1− ∑
p∈P(v)

B(p, lv)

bw(lv)
]

Where S(lv) is the monetary penalty function of lv, P(v) is the pre-selected protection path

of lv, B(p, lv) is the backup flow on the path p to protect lv.

2.3.5 Optimization problem and methods

The VNE formulation that we presented in the previous section is often a linear programming

(LP) problem. We briefly introduce the definition of LP problem, its methods and the software

to solve the problem.

2.3.5.1 Linear programming (LP and ILP)

In a linear programming optimization problem, both the objective function and the con-

straints are linear functions. When the decision variables are both continuous (allowed to be

fractional), we call it linear programming (LP), whereas integer linear programming (ILP)

means that the variables are discrete. When the decision variables are both discrete and

continuous, we are dealing with mixed integer programming problems (MIP). Hence, MIP

models generalize LP and IP models.

Linear programming (LP) is one of the most satisfactory models of solving optimization

problems because efficient exact algorithms such as simplex method can be adopted. The

efficiency of the algorithms is due to the fact that the feasible region of the problem is a

convex set and the objective function is a convex function. Then, the global optimum solution

is necessarily a node of the polytope representing the feasible region. Moreover, any local

optima solution is a global optimum.

However, ILP and MIP can not be solved in polynomial time. Solving these problems

has improved dramatically the use of advanced optimization techniques such as relaxations

and decomposition approaches, and cutting plane algorithms. Enumerative algorithms such

as branch and bound may be used for small instances to give the exact solution. The size is

not the only indicator of the complexity of the problem, but also its structure. Metaheuristics

2.3 VNE optimization 17

are one of the competing algorithms for this class of problems to obtain good solutions for

instances considered too complex to be solved in an exact manner.

2.3.5.2 Optimization methods

Simplex The simplex method is a method for solving problems in linear programming.

The LP problem is first converted into a standard form. The linear inequalities of standard

form defines a polytope as feasible solution region. The Simplex algorithm starts with a basic

feasible solution.

Then, the algorithm walks along edges of the polytope to extreme points with greater and

greater objective values. This continues until the maximum value is reached or an unbounded

edge is visited, concluding that the problem has no solution. The algorithm always terminates

because the number of vertices in the polytope is finite. Moreover, since we jump between

vertices always in the same direction (that of the objective function), we hope that the number

of vertices visited will be small.

Branch and bound Branch and bound is a method to solve the ILP and MIP problem. The

solution area is usually a decision tree where each decision is represented by an edge. The

leaves of this tree is the set of all possible solutions. Instead of checking each combination,

the algorithm prune the tree, i.e. ignore completely sections of it which we know cannot have

better results than the best one we have already found, without needing to fully calculate

what results they achieve.

The feasible solution tree is partitioned into convex branch. Lower/upper bounds are

found for each branch by relaxing the integer constraints which are making the problem hard

to solve. The algorithm keeps searching the main tree for solutions better than what you have

and prunes the sub-trees which is worse than the existing solution.

Branch and bound cannot guarantee short computation time as that depends on the degree

of successful pruning which itself depends on the problem definition (values, costs etc). At

worst, the entire tree need to be computed.

2.3.5.3 CPLEX

The IBM ILOG CPLEX Optimizer solves integer programming problems, very large linear

programming problems using either primal or dual variants of the simplex method or the

barrier interior point method, convex and non-convex quadratic programming problems, and

convex quadratically constrained problems.

18 Background and State of Art

The CPLEX Optimizer provides interfaces to the C++, C#, python and Java languages.

Additionally, connectors to Microsoft Excel and MATLAB are provided. Finally, a stand-

alone Interactive Optimizer executable is provided for debugging and other purposes.

The CPLEX Optimizer is accessible through independent modeling systems such as

AIMMS, AMPL, GAMS, OptimJ and TOMLAB. In addition to that, AMPL provides an

interface to the CPLEX Optimizer.

An example of CPLEX optimization file can be found in Appendix B. In this thesis, we

use CPLEX to to solve the optimization problem.

2.4 Single domain VNE

The basic VNE problem that we described above (in a single domain) is NP-hard. Different

approaches are proposed. We present two stage solutions (node mapping and link mapping),

one stage solution and the VN reconfiguration problem.

2.4.1 Two stage solutions

The VNE problem solution depends on the objectives. An intuitive objective of VNE

consists to optimize the overall consumed resources of a VN, so that a maximum number

of VNs can be accommodate on the SN. This single objective problem corresponds to the

coordinated optimization of node resources (cpu) and link resources (bandwidth). Instead of

joint optimization of the node and link resources, the 2 stage solutions are proposed.

2.4.1.1 Node mapping

In [ZA06], the network resources corresponds to the node/link stress. A greedy node mapping

method is proposed to measure the potential of a substrate node by weighting the node stress.

The later on a given node is determined by combining its residual resources and the distances

to other substrate nodes. Virtual nodes with high degree 1 are mapped to substrate nodes

with high resource availability.

For substrate node ranking, the Markov Random Walk algorithm is applied [CSZ+11].

The rank is determined by combining Formula (2.7) and the ranks of nodes that can be

reached from a node u. The later is deduced by dividing the reachable nodes into two groups:

(1) the nodes that are incident to the outgoing links from u and (2) the nodes that can be

reached from u via multiple hops. In this way, virtual nodes with high ranks are mapped to

substrate nodes with the same high ranks.

1the degree means the notion of degree of node in graph theory

2.4 Single domain VNE 19

In [CRB09], node mapping is preformed in a way that the mapping of virtual links to

physical paths in the subsequent phase is facilitated. For this purpose, the physical network

graph is extended by adding one meta-node for each virtual node. A meta-node is connected

to a subset of substrate nodes with the use of links of infinite bandwidth. Then each virtual

link with its bandwidth constraints is treated as a commodity consisting of a pair of meta-

nodes. In this way, the problem is first formulated as mixed integer programming (MIP)

before the relaxation of integer constraints to obtain a linear programming formulation that

can be solved in polynomial time. Deterministic and randomized rounding techniques are

used on the solution of the linear program to approximate the values of the binary variables

in the original MIP.

The problem of hidden hop is pointed out in [BHFDM12]. The intermediate nodes in a

SN path, acting as hidden hop, have a CPU expenditure because they have to be configured

and they have to correctly forward the packets passing through the virtual link. The CPU

resource that must be assigned to an intermediate node is a function of the virtual link demand.

They formulate the problem with the objective of the sum of the spare bandwidth and spare

CPU in the substrate network. Heuristic is proposed, where hidden hops are optimized in

link mapping stage by minimizing the number of hops and accomplishing the bandwidth and

CPU constraints.

[BHFDM12] also considers the case where some nodes and links do not have a con-

strained demand of resources. Each virtual node is mapped to a substrate node which has

remaining CPU capacity. Each virtual link is mapped to a shortest path which has non-zero

remaining resources on links and nodes.

Most of VNE described in the literature do not explicitly support the collocation of virtual

nodes belonging to the same VN, but only collocate nodes of different VN. In [FSF13],

the problem of virtual node collocation is addressed. Pre-cluster VN, which consists in

transforming the original VN request to a VN where a single virtual node describes multiple

virtual nodes, can be preformed in advance. Concretely, the proposed algorithm computes

an optimal VN pre-clustering so that, given an estimation of the available resources in

the physical network, the amount of network resources required for the VN embedding is

minimized.

2.4.1.2 Link mapping

A single link mapping problem is basically a standard routing problem. Shortest path

algorithm can be adopted to select the path with minimum distance [ZA06]. The difficulty

of VN link mapping is that the VN request is a whole large unit. To utilize the flexibility

of the small topology, the authors in [ZA06] propose to break up the VN into a number of

20 Background and State of Art

connected sub-virtual networks (subVN). Each subVN corresponds to a simple star topology.

The connections between subVNs define the constraints relating substrate node selection.

In [YYRC08], the authors show that without path splitting, the VN link mapping problem

corresponds to the Unsplittable Flow problem (UFP) that can be approximated by the k-

shortest path algorithm. With path splitting, the link mapping problem can be reduced to the

Multi-Commodity Flow Problem (MCF) which can be solved in polynomial time. Having

multiple paths enables better resource utilization by harnessing the small pieces of available

bandwidth, allowing the substrate to accept more VN requests. Furthermore, [YYRC08]

enhances the path splitting in link mapping by adding a backtracking procedure which remaps

one extremity node of the "bottleneck" substrate link. Since the multi-commodity flow is a

widely used model for link mapping, we detail it below.

Multi-commodity flow A commodity is a flow demand from a source node to a sink node.

Multi-commodity flow (MCF) problem is a network flow problem with multiple commodities

between source and sink nodes. The goal of MCF is to find an optimal routine of all the

flows which satisfies constraints including: link capacity, flow conservation on source, transit

and destination nodes. These constraints correspond to the link constraints 2.4 and 2.5 shown

in Section 2.3.3. As the virtual links are treated as commodities, we deduce that the VNE

link mapping problem corresponds to MCF problem.

The optimal solution of MCF problem can be determined by linear programming (LP) in

polynomial time. However, finding a feasible integer solution is NP-complete. Indeed, the

integer solution to MCF corresponds to the solution of UFP that is NP-hard.

2.4.2 One stage solutions

Since 2-stage VNE solutions are lack of cooperation, some solutions mapping nodes and

links in the same stage have been proposed.

In [LK09], a backtracking algorithm based on a subgraph isomorphism search method is

proposed. After determining the candidate set of all the substrate nodes that can support each

virtual nodes, a virtual node is first mapped to a candidate substrate node in its corresponding

set. Next, an adjacent virtual node is mapped by searching for a substrate node that satisfies

the path length and link capacity constraints. The path between the two nodes is determined

and validated. The algorithm continues to map the next adjacent virtual nodes till all the

virtual nodes are mapped. If any node or link constraint is violated and there exists no

candidates, the algorithm does a backtracking step to the last valid mapping and tries to

continue by selecting another candidate. The advantage of this single stage approach is

that link mapping constraints are taken into account at each step of the mapping. When a

2.4 Single domain VNE 21

bad mapping decision is detected, it can be revised by simply backtracking to the last valid

mapping decision, whereas the two stage approach has to remap all links which is very

expensive in terms of runtime.

A similar approach is proposed in [CSZ+11]. After proposing a node rank algorithm,

[CSZ+11] constructs a breadth-first search tree of VN request, where the root node is the

virtual node with the largest node rank value. At each level of the search tree, nodes are

sorted by their node rank values in non-increasing order. For each virtual node, candidate

substrate node list is also ordered by node rank value. The same embedding procedure as

[LK09] with backtracking is applied.

In [JK12], a Column Generation VNE reformulating the embedding problem in terms of

Independent Embedding Configurations (IECs) is proposed. An IEC defines an embedding

solution of one VN request. By allowing a small delay of VN setup, their embedding

framework are done by small-batch at each planning period (each embedding procedure

maps several VNs). Using Column Generation technique means that the VNE problem is

decomposed into a master problem and a pricing problem. The master problem corresponds

to the choice of a maximum of N IECs among the generated IECs, in order to maximize the

overall revenue. the pricing problem corresponds to the problem of generating an additional

column (IEC) for the constraint matrix of the current master problem. The master and pricing

problem are solved by CPLEX.

In [WSW12], an alternate formulation of the virtual network mapping problem is pro-

vided. The VN is introduced by traffic matrices, implying fully connected VNs. The argument

is that the internal topology of a virtual network should not matter as long as the mapped

structure can provide connectivity at a sufficient level of service (e.g., bandwidth). [WSW12]

formulates the traffic-matrix-based mapping problem as a p-Hub location problem, which

seeks to obtain the optimized placement of hubs which minimizes the demand-weighted flow

cost between the demand nodes in hub and spoke networks.

2.4.3 VN reconfiguration

The cost of reconfiguration includes both the computational cost and the service disruption

cost. Computational cost refers to the expenses involved in recomputing the VN assignment

and therefore is proportional to the frequency of VN reconfigurations. Service disruption

cost is incurred because the normal operation of a VN is affected when it is switched from

one assignment to another. Unlike flow rerouting where at most one path change happens per

rerouting event, the reconfiguration of a single VN may result in more substantial changes

involving both node switching and multiple path switching. Node switching happens when

the assignment of a virtual node is changed from one substrate node to another. Path switching

22 Background and State of Art

happens when the assignment of a virtual link is changed from one substrate path to another.

The disruption of the reconfiguration is therefore significant if all VNs are reconfigured

periodically.

A selective reconfiguration scheme to perform efficient reconfiguration by giving higher

priority to critical VNs is developed in [ZA06]. The key idea is to reconfigure only the

critical VNs that allow the decrease of maximum stress.

In [YYRC08], path migration is proposed to reconfigure embedded VNs. At a given

instant, a set of long duration VNs are selected. They are remapped by performing a MCF

with the same paths. Path migration allows us to (periodically) treat the online embedding

problem as an offline problem, to capitalize on the efficiency gains that are possible when

handling a large collection of requests together.

In [SYAL13], the problem of dynamic VNs is addressed. Four possible changes are

presented: (1) component deletion, (2)resource requirement decrease (3) components adding,

and (4) resource requirement increase. (1) and (2) correspond to releasing the resources on

substrate network, while (3) and (4) involve allocating new resources. If there are enough

available resources on the substrate components that provide resources for these VN nodes or

edges, resources are reallocated to them on demand to satisfy the new requirements. However,

if there are not enough available resources on these substrate nodes or links, the proposed

algorithm remaps these VN nodes or edges onto other substrate nodes or paths. New node or

edge resources constraints should be satisfied and the remapping cost minimized.

2.5 Multi domain VNE

As some of the services are built over several infrastructures run by different operators, we

expect that the VN requests concerns several domains. We present below the works treating

the VNE in multi-domain networks.

2.5.1 Existing works

In [CSB10], a distributed multi-domain VNE architecture is proposed. Upon receiving a VN,

an InP decides whether to reject or to accept the request according to its internal policies

(e.g. intra-domain mapping). If the InP can only partially embed a VN, it forwards the

rest of the request to other InPs. Instead of blindly disseminating the rest of the request, it

uses geographic constraint as beacons to route the request to other possible InPs. In case of

successful embedding of a VN request, the InP back-propagates the mapping and the price.

2.5 Multi domain VNE 23

In [HLAZ11], the authors investigate the VN graph splitting problem in multi-domain.

Each virtual node can have several candidates substrate nodes in multiple InPs. The problem

of VN splitting is to determine the embedding InPs for all the virtual nodes so that the

VN provisioning cost is minimized. The provisioning cost consists generally of the sum

of node allocations to InPs and link allocations to intra-domain or inter-domain (e.g. if

virtual node a and b are embedded to different domains, the virtual link between a and b is

inter-domain). Note that the objective is to select embedding InPs for nodes without exactly

embedding a virtual node to a substrate node. VN splitting across two InPs can be reduced to

maxflow/mincut problem, while VN splitting across multiple InPs is formulated as an ILP

and it can be solved by the branch and bound algorithm. After partitioning virtual nodes

and links to the domains, [HLAZ11] proposes an exact embedding formulation that enables

optimal and simultaneous node and link mappings.

In [DRP13b], the authors discuss the information disclosure in multi-domain. After

examining the policies of InPs, they conclude that it is undesirable and inefficient to advertise

the detailed intra domain information (e.g. substrate network topology and resource avail-

ability) out the InP. Only the costs of links interconnecting peering nodes are collected and

transmitted to VNP. Meanwhile, the authors of [DRP13b] use traffic matrices to model the

VN request and propose a VN segment framework, where each virtual node is mapped onto a

particular peering node. The sub VN request (VN segment) for each InP is simplified, since

traffic matrices aggregate the virtual links from a virtual node to the same InP. The problem

is formulated as ILP.

An automated framework for VN embedding across multiple substrate networks is

proposed in [DRP13a]. It comprises a realistic evaluation environment for VN request

partitioning and intra-domain mapping algorithms. Furthermore, the proposed method

can be used for the investigation of various VN embedding aspects, such as the impact of

information disclosure on VN embedding efficiency and the suitability of different VN request

descriptions (e.g., topology-based vs. traffic-matrix based VN requests). VN embedding

insights gained by their framework can assist InPs and potential VNPs in configuring their

information disclosure policies and adjusting their cost models.

To solve the VN segment problem mentioned in [DRP13b], a Particle Swarm Optimiza-

tion (PSO) based heuristic is proposed in [GWQ+15]. Each particle has its position and

velocity. The position of a particle is a possible solution. The velocity leads the particle

to fly to a new position. The particles fly in the problem space by updating their positions

and velocities. An appropriate-optimal solution of VN partitioning is generated through the

evolution process of the particles.

24 Background and State of Art

VN partitioning inter-domain

connection

sub VN mapping information model

Houidi

[HLAZ11]

maxflow/Exact VPN connection Exact VNE functional

attributes

Dietrich

[DRP13b]

Exact
single domain VNE peering link graph

Guo

[GWQ+15]

Particle Swarm Heuristic

Shen

[SXYC14]
node mapping

single

shortest-path

single domain

link mapping

full mesh graph

Table 2.1 Multi-domain mapping method comparison

In [SXYC14], another information sharing scheme is proposed. The intra-domain link

information is given by a length-based price for connecting any two nodes in the domain.

This model allows VNP to have a general abstraction of overall substrate networks with

estimated link costs. Subsequently, a single minimum-cost path on the abstraction graph is

determined by VNP in order to select a single inter-domain substrate link for each virtual

link. The intra-domain mapping is then performed by single-domain VNE.

2.5.2 Comparison of embedding methods

After presenting the existing works, we want to give a systematic analyse of the mapping

method in terms of information exchange model and mapping procedure. This analysis

will help us to identify the shortcoming of the existing works and guide us to our working

direction. Table 2.1 shows the difference between the methods. Note that we focus only on

the algorithms and computations ([HLAZ11][DRP13b][SXYC14][GWQ+15]), but not the

architecture ([ARN16][CSB10][DRP13a]).

Multi-domain VNE is based on different information model shown in the last line of

Table 2.1. With the partial information, multi-domain VNE consists in three major steps:

(i) Partitioning the VN request into each InP.

(ii) Establishing inter-domain connection (peering links) between InPs. In some methods,

this step corresponds to VN segmentation.

(iii) Embedding each sub VN request in each InP using intra-domain algorithm.

2.5 Multi domain VNE 25

2.5.2.1 Multi-domain information disclosure model

Because of policy and efficiency reasons, InPs cannot advertise their complete information

to others, so it is critical to make clear the information disclosure policy.

The substrate resource information consists of functional and non-functional attributes

[HLAZ11]:

• Functional attributes: define characteristics and properties of the substrate resources

and including static parameters like node type (e.g. router, switch), node processor

type and capacity (e.g. CPU, network processor), link/path type (e.g. VLAN, L3/L2

VPN), network interface type and number, geographic location, cost,etc..

• Non-functional attributes: specify criteria and constraints related to the substrate

resources including dynamic (real-time) parameters like available node capacity (CPU),

available link capacity (bandwidth), actual QoS parameters, geographic coordinates,

etc..

InPs usually accept to publish functional attributes, but the non-functional attributes are

not advertised since such dynamic attribute advertisements require real-time monitoring and

increase the network load with the exchange of a large amount of information.

However, VNP can enhance their limited substrate network view with certain aspects

of the substrate topology which are assumed as non confidential. InPs may disclose the

information about their peerings. Such information enables a VNP to construct a more

comprehensive view of the underlay network, including the location and connectivity of

peering nodes [DRP13b].

In [SXYC14], three types of domain resource information are assumed to be provided to

VNP:

• node: its location, available capacity and unit price;

• peering link: its vertices, available capacity and unit price;

• intra-domain link: a length-based price for connecting any two nodes in its domain.

With this information about intra-domain and peering links, an extended and approxi-

mated view of the intra-domain topology is determined. [SXYC14] assumes a full mesh

topology for each domain, and thus each pair of substrate nodes within the same domain

are connected via augmented links. With the given length-based unit prices of intra-domain

links, VNP is able to compute the price of each augmented link.

26 Background and State of Art

2.5.2.2 VN partitioning

Various solutions are proposed in the literature for VN partitioning. We describe here the two

main approaches. In the first approach [HLAZ11], a substrate domain is selected to support

each virtual node such that the embedding cost is minimized. This approach assumes that the

embedding costs of virtual nodes to domains are known and defined. This problem can be

solved by maxflow for the case of 2 domains and by an exact ILP formulation for the other

cases.

Another approach proposed in [DRP13b] and [GWQ+15] consists to combine the VN

partitioning and inter-domain connections. On the peering link graph, the virtual nodes

are first mapped to corresponding peering nodes, which correspond to the egress nodes of

domains. Note that this node mapping is not final node mapping since the final node mapping

will be performed next in sub VN mapping stage with consideration of other constraints (e.g.

geographic constraint). In this way, the virtual nodes are first assigned to the domains so that

virtual links can be segmented in the same stage.

2.5.2.3 Inter-domain connection (VN segmentation)

The objective of this step is to segment the virtual links so that the intra-domain and inter-

domain parts of virtual links are separated. Two approaches are defined for VN segmentation,

(1) determining the peering nodes from where the virtual links egress the domains, and (2)

determining the inter-domain link used by the virtual links. As mentioned above, Dietrich

[DRP13b] and Guo [GWQ+15] follows the first approach.Houidi [HLAZ11] and Shen

[SXYC14] apply the second approach.

In [HLAZ11], each peering link is assumed as a single VPN (Virtual Private Network)

connection. In [SXYC14], the peering link path is determined by shortest-path algorithm

on the full mesh graph of VNP layer. The full mesh graph is an estimation of intra domain

topology. Therefore, only the peering link availability is changed over time, since the intra

domain model is the same all the time. As a result, shortest path based peering links have

always the same path if the peering links are not overloaded. This phenomenon will result in

difficulty of later sub VN mapping in all the domains. The sub VN mapping have to either

choose a costly intra domain mapping, or reject the VN request if no mapping solution is

found.

2.6 Survivable VNE 27

2.5.2.4 Sub VN mapping

In Dietrich [DRP13b] and Guo [GWQ+15], this stage is truly a single domain VNE problem

(node and link mapping). The advantage is that one-stage VNE method (e.g. subgraph

isomorphism) can be applied.

Houidi [HLAZ11] also proposes a one-stage exact VNE method. However, their difficulty

is that, after intra-domain mapping, they need to map peering links (VPN connection), and

then execute the proposed algorithm again to assign the inter-domain virtual links. Therefore,

the mapping is coupled into 2 sub VN, which can result in under optimization.

In Shen [SXYC14], this step is a VN link mapping problem. Any VNE link mapping

stage algorithm can be adopted. The part of intra-domain mapping on full mesh network are

replaced by this link mapping with real topology and attributes.

2.5.3 Shortcoming of existing work

Existing solutions mainly focus on the partitioning of a multi-domain VN to each domain.

One of the shortcomings in these frameworks is the lack of efficient link mapping method

especially for the inter-domain connection. Substrate peering nodes and links on the path of

inter domain virtual links need to be optimized, while inter-domain connection and sub VN

mapping are independent step in the existing works.

The shortest path based inter-domain link selection does not well leverage the partial

information of the domains, so peering links can always have the same path if the peering

links are not overloaded. Since establishing peering links is a part of link mapping, the bad

choice of peering nodes will probably influence the intra-domain paths. It will result in

difficulty of later sub VN mapping in all the domains. The sub VN mapping have to either

choose a costly intra domain mapping, or reject the VN request if no mapping solution is

found.

2.6 Survivable VNE

A failure represents the condition in which the system deviates from fulfilling its intended

functionality or the expected behavior. A network fails for various reasons, like bottlenecks,

software attacks, natural disasters, etc.

The task of survivable VNE is to embed a virtual network that can deal with virtual and

substrate network failures in a way, that after the failure, the virtual network is still operating.

The failure and the fixing/recovery procedure should be transparent to the users of the virtual

network.

28 Background and State of Art

Survivable VNE [HKA13] deals with failures of different types. The categories of failure

can be summarized as follows,

• Failure layer: the failures occur on substrate and virtual layer. A failure on virtual layer

is the dysfunction of a whole VN network. It often comes from the service provider. A

failure on substrate layer results in the failure of several VNs since the resources are

shared.

• Network component: the component of failure to be considered are link and node.

Node failures are often due to maintenance, whereas link failures happen about ten

times more than node failures.

• Failure size: both single and multiple failures can occur. The single failure case

happens more often than multiple simultaneous failures.

To enhance the resilience of VN, pre-failure and post failure methods are proposed. Post

failure methods react after the failure occurrence and start the backup restoring mechanism.

When a failure occurs, the backup resources are allocated 2 and the affected network compo-

nent is repaired progressively. However, some data loss is possible in the reactive case and

the resource availability can not be guaranteed.

Pre-failure methods take into account the resilience before the failure and reserve re-

sources for backup mechanism. In pre-failure methods, failure avoidance searches for a

mapping of primary traffic with high reliability, while failure protection pre-computes backup

path and reserves backup resource. The backup resources can be shared between failures or

dedicated to a failure.

2.6.1 Architecture of survivable VNE

In [BHH+13], the authors introduce an architecture for resilient VN setup as well as the

required enhancements to this architecture allowing sharing of the redundant resources

among existing VNets. The VR requests are managed by an augmented RSVP-TE (Resource

reSerVation Protocol Traffic Engineering) protocol. They introduce a new atomic activity

to achieve the share protection. This activity takes as an input parameter the resources of

different VNs. It is a sharing request to be sent from the VNO to the VNP, which can

translate it to the InP. The InP evaluates the request, the results are returned to the VNP,

which processes them and reports to the VNO. In case of shared protection, there is an

additional information exchange required to determine which virtual protection paths are

2This method is also referred as Restoration.

2.6 Survivable VNE 29

allowed to share resources. Only protection paths belonging to disjoint working paths can

share resources.

2.6.2 Node protection

In [YWK11], backup virtual servers are created dynamically and are pooled together to be

shared between VNs to assure the requested reliability level. The higher the reliability level

is, the higher number of needed backup nodes is. It is possible to share the backup nodes

so that the total number of backup nodes is lower than the case where each VN separately

has their own backup nodes. Every backup node can be a standby node for all other critical

nodes.

With the Opportunistic Redundancy Pooling (ORP) mechanism, backup nodes can be

shared between VNs as long as the reliability of every network is satisfied. The ORP shares

these redundancies for both independent and cascading types of failures.

In [YAQS11], a two-step paradigm is adopted to fully restore a virtual network from any

single facility node failure. It enhances a virtual network with backup virtual nodes and

links requiring spare substrate resources, and then maps the enhanced virtual network to the

substrate network. More specifically, [YAQS11] proposes two new approaches whereby an

N-node virtual network is first enhanced to a 1-redundant and K-redundant virtual network

with N+1 and N+K nodes, respectively, in addition to an appropriate number of redundant

virtual links. The resource of redundant nodes are shared by protection. This method is

referred as Failure Independent Protection (FIP), where the host nodes (1 or K) are assigned

and dedicated to backup all working host (facility) nodes. That is, no matter which working

host node fails, the affected task node will be migrated to backup host nodes, whereas other

working hosts remain the same mapping.

In [QGH+11][GQW+14], an other approach called Failure Dependent Protection (FDP)

is proposed. The differences between FIP and FDP are as follows. With FDP, each working

host node can have a different backup host node under different failure scenarios. Upon a

failure, the unaffected task node may be migrated from a working host node to its correspond-

ing backup host node, as a result of re-embedding the entire task graph. In other words, FDP

could provide more flexibility in survivable VN designing by allowing task nodes migrating

freely after failure. Thus, FIP could be considered as a special case of FDP which is expected

to use fewer resources at the cost of more task nodes migrations after a failure.

The ideal is that, when a node fails, its role may be replaced by any other nodes after

a rearrangement of all the nodes (including the backup nodes) using graph transforma-

tion/decomposition and bipartite graph matching. A unique feature/requirement of FDP is

that each virtual node may need to emulate multiple virtual nodes in the original VN, and

30 Background and State of Art

the virtual node for it to emulate depends on the failure. The disadvantage of this approach

is that the large amount of possible migrations of working nodes after a failure makes the

approach less applicable in large networks.

In [XWM+14], a recoverability-based VNE is used to allocate the VN with primary

resources. When a substrate node fails, both the virtual nodes embedded on it and the virtual

links whose hosting paths use it as an end or intermediate need to be remapped. The candidate

backup node should have direct or indirect connections with the failure node within a certain

geographical area. The recoverability is defined by the node and link resource in this area.

In VN primary mapping stage, the virtual nodes are embedded onto the substrate nodes

with better recoverability to improve its node failure survivability. In the event of a substrate

node failure, if the backup resources are not enough to remap all the affected virtual entities,

the limited backup resources will be used to recover the VNs with higher penalties first, thus

to reduce the total incurred penalty.

2.6.3 Link protection

2.6.3.1 Shared link protection

In [YSzXY11], the authors propose an algorithm, named RMap, for mapping of VNs with

considering failures of substrate links. The substrate network is formulated as weighted graph

by defining for each link its stress. Note that the latter quantifies the number of virtual links

transiting through the substrate link. Afterwards, if a link stress is higher than a predefined

threshold then RMap will compute its backup detour. When a link failure occurs, virtual

links transiting over this substrate link will migrate to the backup links. Hence, the offered

service will not be interrupted.

In [GWMT11], a shared link protection method is proposed. Each substrate link with

primary flows is protected by a set of pre-configured bypass paths. After the node mapping,

the primary link mapping and the protection of links are jointly computed by an ILP problem.

The primary flows can be mapped to all the possible substrate links, whereas the backup

paths are selected among the pre-configured paths.

Note that the primary and backup paths are both splittable. This means that upon a link

failure, the upstream node needs to split the flow. This operation suffers from the out of order

problem and is difficult to implement for an intermediate node on a path.

With the splittable and pre-configured backup path assumption, [GWMT11] also proposes

an approach to compute statically the best primary and backup bandwidth separation before

the arrivals of all the VNs.

2.6 Survivable VNE 31

2.6.3.2 Shared path protection

In [RB13], Rahman and al. propose a shared path protection method. A certain percentage

of bandwidth resources on each substrate link is dedicated for backup purposes. Each

virtual link is associated with a penalty. Before any VN request arrives, the InP pro-actively

computes a set of possible backup detours for each substrate link. When a VN request arrives,

[RB13] first compute the node mapping and primary link mapping by optimizing the primary

resource utilization. After that, backup paths are selected through the optimization of virtual

link penalty.

In [YAQ12], a shared path protection by node migration is proposed. If the link-disjoint

backup path for a virtual link cannot be found, one end-node of this virtual link is relocated

or migrated to another (backup) substrate node. In addition, all the virtual links connected

with the migrated virtual node have to be remapped onto the substrate network. This method

is effective to avoid bottlenecks, but difficult to implement.

In [WWW+14], backup topology simplification on substrate network is taken into con-

sideration to reduce the total bandwidth constraints and actual resource consumption. A

mininal backup topology for virtual network to protect against single link failure is found.

The splittable formulation can be solved in polynomial time. For the unplittable case, a

minimal tree based heuristic is proposed to solve the problem.

In [HZ14], a hybrid policy of survivable VNE is proposed. The profit is maximized

and the service quality is improved. The authors define the meta-VN and propose a multi-

embedding algorithm which embeds several meta-VNs instead of the original VN to improve

the acceptance ratio and resource usage. Virtual links are reconfigured when they are damaged

severely.

In [JK15], the p-cycle concept is applied to to protect against single node and link failure.

Two approaches are proposed: (1) p-cycle-based path protection consists of protecting each

embedding path by a disjoint path defined by a set of candidates p-cycles; (2) p-cycle-based

virtual segment protection consists of transferring the protection of an embedding path into

the protection of a set of virtual segments, where each virtual segment covers an intermediate

node and two of its adjacent links used by this embedding path. To select the best set of

p-cycle, a large-scale optimization approach based on the column generation optimization

technique is proposed.

2.6.3.3 Dedicated path protection

In [ZPC11] [ZCP12], a dedicated path protection method is proposed. For each virtual

link, two substrate disjoint paths are computed, one for primary mapping and the other for

32 Background and State of Art

backup mapping. Three objectives are taken in considerations: (1) The delay requirement

is minimized; (2) The number of substrate nodes, which is used only by backup path, is

minimized: in this way, the backup path are more likely to reuse the intermediate nodes used

by primary links; (3) The authors avoid that a substrate link is used by two virtual links of

the same virtual network so that a link failure affects less virtual links of a VN.

In [WWC14], a network coding based link mapping, which provides instantaneous

recovery with the least redundant resources, is proposed. The network coding mechanism

aims to find the maximum link-disjoint paths satisfying the bandwidth constraints. Assume

that the endpoints of a virtual link have been mapped to u and v via multi-path (splitting).

Another link disjoint path is reserved for backup. At the sender node, the coded data is

transmitted additionally over the backup path. At the receiver node, if a link failure happens

on one primary path, the missing data can be given directly by coding the information on the

other primary paths, and taking the difference with the protection path information.

In elastic optical networks [LDZ+14] [YCL+15], the link disjoint paths are used to

protect virtual links. The authors optimize the joint failure probability of the pair of primary

and backup paths. A full-connected substrate graph is first constructed with the weight of

joint path failure probability. For a virtual network request, virtual links are mapped one by

one to the most reliable joint link path. All the possible mapping orders are computed, so it

is difficult to apply it in large networks.

In [GDTV14], the virtual request is characterized by a reliability constraint. The ob-

jective is to optimize the CPU and bandwidth utilization and at the same time satisfy the

reliability constraint of the nodes and links. Each substrate node and link is associated with a

reliability value. In order to achieve the required reliability, the virtual graph is expanded by

shared/dedicated backup method. The compound reliability of a substrate path for different

methods is computed. The reliability constraints are added to the new VNE problem with the

mapping of expanded VN graph.

2.6.4 Multiple failure protection

In [LML10], a probabilistic model is proposed to deal with Shared Risk Link Group (SRLG)

failure. An SRLG is a set of links sharing a common physical resource (cable, conduit, etc.)

whose failure affects all the links on the SRLG. The authors propose a probabilistic SRLG

(PSRLG) that enables to effectively model correlated link failures. The authors develop

mathematical formulations for the problem of finding a pair of paths with minimum joint

failure probability. This approach enables the generalization of disjoint path protection

schemes to the case of multiple probabilistic failures. The algorithms are based on linear

approximations and Lagrangian relaxations, and are close to the optimums.

2.6 Survivable VNE 33

In [YQA+10], a single region failure recovery method is proposed. The failure of

multiple adjacent substrate nodes/links is considered. If a substrate node initially allocated

for a virtual node is within the failed region, another substrate node outside the region is

pre-allocated to restore the affected node. By assuming that there are N region failures on

the substrate network, their framework generates N+1 mapping solutions, one involving the

initial primary mapping, and the others involving backup mappings (one backup solution for

each region failure). The resources allocated to the solutions are shared since they consider

the single region failure.

In [HMT16], two ILP formulations are proposed to provide content connectivity (CC).

The first one guarantees the content connectivity in case of double-link failures (CC2) and

the second one provides network connectivity against single-link failures and maintains

content connectivity after double-link failures (NC1+CC2). The authors show that in case of

single-link and double failures, content connectivity can be maintained with less network

resources than network connectivity.

2.6.5 Failure avoidance

In [SFAM13], SN and VN are assumed to be composed of access nodes and backbone

nodes. The virtual access routers and virtual links connecting them are first embedded.

The remaining VN topology is subdivided into several star topologies that are embeded by

Bee colony heuristic. The employed bees use the Dijkstra algorithm based on the metric

which takes into consideration i) the residual resources and ii) the reliability of physical

resources. The reliability metric is based on the age of physical nodes and links. Besides,

for load balancing within the SN , the employed bees run a combinatorial multi commodity

flow algorithm. The advantage of failure avoidance is that it does not allocate any backup

resources for clients.

In [WLQL16], the historical failures statistics are taken into consideration to map the

VN requests onto the part of substrate network which has fewer latent regional failures. A

disaster-prediction scheme is proposed to evade large amounts of redundant backup resources

against the multiple regional failures. Two mapping algorithms based on the regional failure

model are provided.

In [GBM+16], relative disjoint paths are generated to consider the reliability of VN, as

well as the bandwidth used by it. The algorithm focuses on varying the percentage (p) of

disjoint path established between the source node and the set of destination nodes to find

the best solution. p = 0 is the no redundancy case, which means that the topology will

have a single path to each destination node. On the other hand, if p = 1 , which is the full

redundancy case, the topology will have two fully disjoint paths to each destination node.

34 Background and State of Art

Similarly, p = 0.5 is the case where half of links in primary path will be the basis for the

secondary path.

To determine the relative disjoint path, The path definition algorithm allocates the shortest

path with higher available bandwidth and lower failure risk. In this way, bandwidth resources

are saved and the allocation of high risk components is avoided.

2.6.6 Post failure recovery

In [PLG+16], a progressive post-fault recovery schemes to judiciously schedule repair

resources is proposed. The goal is to intelligently place node and link repair resources to

rapidly recover failed VN loads and hence reduce service downtime/penalties. An initial

multi-failure event occurs and is followed by a series of recovery stages. During these

recovery stages, all failed nodes and links will either transition directly from an initial failed

state to a fully-recovery state or through a partially-recovered state.

Based upon the above, all failed and partially-recovered nodes and links are deemed

eligible to receive repair resources. The progressive recovery schemes first distribute available

repair resources among failed nodes/links and then use any standard VNE algorithm to re-

map failed demands. The scheme places node repair resource to eligible nodes which have at

least one non-failed neighbour node. Similarly, link repair resources are only placed at failed

or partially-recovered physical links with non-failed endpoints. In this way, the number of

restored VN requests in each stage are maximized.

2.6.7 Analysis

The protection methods are classified in Table 2.2. This table summarize the survivable VNE

frameworks in terms of concerned network components, the category of method to enhance

the survivability, the type of failure to deal with and the optimization metrics.

A network is composed of physical nodes and physical links. Node migration principle

is often used to protect nodes from failure. If a substrate node fails, the primary resources

used on this node are migrated to another pre-selected substrate node. In other words,

the pre-selected backup node replace the function of the failure node. Specifically, in VN

environment, the virtual network topology is enhanced to include the backup virtual for each

primary virtual node. The initial VN mapping problem is then transformed to the mapping of

a new enhanced VN topology. This topology consists of not only the backup nodes, but also

the backup links so that the connection between nodes will not be cut off.

2.6 Survivable VNE 35

Another component of the network is the links. A single substrate link failure results

in the failure of several virtual links (networks). The characteristics of VNE lead to the

following consideration of survivability:

• Since a virtual link is mapped to one or multiple substrate paths, the choice of the

substrate links on each path is critical for the survivability. This is the original of the

failure avoidance method.

• After the determination of primary path, it is easy to consider a backup path to protect

the primary path against the link failure. Since each substrate link on the path can fail

independently, the backup path can not pass through any substrate link of the primary

path. This observation result in the disjoint path protection (the primary and backup

path are disjoint).

• The shortcoming of the path protection is that if a substrate link on the path fails, the

failure notification need to go back to the source node and the source node retransmits

the flow. It result in a long recovery time, which is not a good phenomenon for some

delay sensitive service. The link protection is proposed to deal with this problem. In

link protection, each protection has a backup path. If the link fails, the flow on this link

is immediately rerouted to its backup path from the source node of this link (instead

of source node of the path in path protection). This method is also referred as local

protection or fast recovery.

The mentioned survivability method are adapted to different kinds of failures. The single

failure is the most common failure. Since there is only one failure on the network, the backup

resources do not need to be active simultaneously. The share backup principle can be applied

in this case. An amount of backup resource can be allocated to protect against the failure of

multiple component since they do not fail simultaneously. If any one of these components

fails, the backup resource is activated. After the repair of the failure component, the resource

are switched back to primary component.

Multi failure is more complex and difficult than single failure. Failure avoidance method

can be adopted to multiple failure, whereas protection methods are difficult to be applied. To

protect against multiple failure, the failures need to be first identified. The multiple failure

frameworks search for the backup solution for each multiple failure.

The optimization metric is also an important issue for survivable VNE. Node CPU

resource and link bandwidth resource are most common objectives. The CPU and bandwidth

are often associated with the long term profit of SP, so it is important to improve the profit

of VN mapping. However, the failure of of VN will lead to the degradation or disruption of

36 Background and State of Art

service, which will result in some penalty to the profit. In survivable VNE environment, other

metrics such as delay, probability of failure and penalty need to be taken into consideration.

By examining the existing work of survivable VNE, we find that there are few works

concerning the optimization of failure probability, which is, on one hand, a good measurement

of survivability level, and on the other hand, can be combined with the failure avoidance

technique to easily configure a survivable virtual network. Moreover the combination of

protection and avoidance is rare. In fact, protection is a high level survivability method with

high resource consumption and complex configuration, whereas avoidance does not need

extra configuration and can be a good supplementary method.

2.7 Conclusion

In this chapter, we introduce the background of this thesis: network virtualization, virtual

network embedding, multi domain VNE and survivable VNE. The single domain VNE

problem can be solved in two stage or one stage. Since the multi-domain VNE is more

complex than single domain VNE, it is preformed in 3 steps. In survivable VNE frameworks,

the backup resource is determined independently after the primary mapping (which is a

single domain VNE).

We find that there are some shortcomings in existing works. We particularly notice, the

efficient inter domain link mapping, the failure avoidance method with failure probability

consideration, the verification of the existence of backup path and the combination of failure

avoidance and protection. In the following chapters, we will try to propose some methods to

solve these problems.

2.7 Conclusion 37

component category type of failure objective, con-

straints

Yeow

[YWK11]

node protection single cpu, bandwidth

Yu

[YAQS11]

node protection single cpu

Qiao[QGH+11]

Guo[GQW+14]

node protection single cpu

Xiao

[XWM+14]

node protection,

avoidance

multiple cpu, bandwidth

Yu

[YSzXY11]

link protection single cpu, bandwidth

Guo

[GWMT11]

link protection single bandwidth

Rahman

[RB13]

link protection single penalty

Yu

[YAQ12]

link protection single bandwidth

Zhang[ZPC11]

[ZCP12]

link protection single delay

Wang

[WWC14]

link network coding single bandwidth

Luo[LDZ+14]

Yang[YCL+15]

link protection single probability

Jarray

[JK15]

node, link protection single bandwidth

Lee

[LML10]

link protection multiple probability

Yu

[YQA+10]

node, link protection multiple bandwidth

Wang

[WLQL16]

node, link avoidance multiple

Soualah

[SFAM13]

node, link avoidance single age of equip-

ment

Hmaity

[HMT16]

link protection double network connec-

tivity

Wang

[WWW+14]

link protection single bandwidth

Hu

[HZ14]

link protection single bandwidth

Guerzoni

[GDTV14]

link protection single bandwidth

with reliability

constraints

Gomes

[GBM+16]

node,link protection,

avoidance

multiple bandwidth, relia-

bility

Pourvali

[PLG+16]

node, link post-failure multiple cpu, bandwidth

Table 2.2 Protection method comparison

Chapter 3

Multi-domain VN Resource Allocation

3.1 Introduction

With the rapid development of cloud computing, services across multiple domain turn into an

intuitive evolution. The network infrastructure is organized by many different administrative

domains. Different domains managed by infrastructure provider (InP) on the same level are

connected to each other’s network via peering links.

Network virtualization is well explored in single domain, but few attentions have been

paid to the creation of VN over multi-domain. Since the Internet is a multi-domain network,

the implementation of VN on the Internet needs to consider the case of multi-domain. In

addition, VN over multi-domain allows service provider (SP) to deliver enhanced VN-based

services crossing multiple InPs. Consequently, efficient algorithm should be developed to

provide and improve the overall VN mapping over multi-domain.

Establishment of multi-domain VN is more difficult than the one on single domain for at

least two reasons:

• First, a single domain VNE problem is mainly solved by linear programming (LP). If

we have a complete vision of all the domains, a multi-domain VNE could be considered

as a single domain VNE with a very large domain, so computationally harder to solve.

• More importantly, for various reasons (technical, commercial, etc.), the acquisition of

full information in multi-domain is costly and often not possible. Only limited infor-

mation is exchanged between InPs via protocols like BGP. This kind of information

is usually static over a long period since frequent exchange of real-time information

would significantly increase the network load. As a result, single domain approach

cannot be re-used and InPs should cooperate to meet the virtual request.

3.2 Our method and existing solutions 41

peering links are mapped simultaneously along with the intra domain links. It is easy to be

deployed in current Internet architecture, since it only uses the information that is usually

disseminated by classical routing protocols like BGP. In addition, as shown by the simulation,

our method improves the utilization of substrate resources.

The rest of this chapter is organized as follows. Section 3.2 provides a general view of our

method by comparing it with the existing methods. Section 3.3 describes the network model

we adopt. Section 3.4 and section 3.5 present and detail our multi-domain VNE solution.

The evaluation results are shown in section 3.6. Section 3.7 concludes this chapter.

3.2 Our method and existing solutions

In this section, we describe the basic operation principle of our method [LSC16b] and show

the differences with the existing methods. We give a table (Table 3.1) and a comprehensive

example (Figure 3.2-3.9) that shows the difference between the methods.

3.2.1 Position of problem

In Chapter 2, we affirmed that the classical mapping procedure is composed of 3 steps: VN

partitioning, inter-domain connection and sub VN mapping. After analyzing the existing

solutions, we found that in inter-domain connection stage, peering links always use the same

path until some peering links are overloaded. This phenomenon will result in difficulty of

later sub VN mappings in all the domains. The sub VN mappings have to either choose a

costly intra domain mapping, or reject the VN request if no mapping solution is found.

In contrast, our approach [LSC16b] maps simultaneously the peering links along with

intra domain links so that the phenomenon described above can be largely weakened. The

inter-domain connection step and sub VN mapping step are jointly performed by our down-

sizing algorithm.

Table 3.1 shows that our method [LSC16b] uses the same VN partitioning strategy as

Shen’s proposition [SXYC14]. However, inter-domain connection and sub VN mapping

are merged together in our method. The information model we adopted to allow the link

mapping computation consists in length based path costs.

3.2.2 Examples

Let us illustrate the operation of our proposition by examples. In Figure 3.2, three InPs are

shown with their substrate nodes from A to P. Substrate node set {B,C,D,E,F,G,H, I,L,M,O,P}

are peering nodes. They are connected via 2 or 3 peering links. Intra substrate links are not

42 Multi-domain VN Resource Allocation

VN partitioning inter-domain

connection

sub VN mapping information model

Houidi

[HLAZ11]

maxflow/Exact VPN connection Exact VNE functional

attributes

Dietrich

[DRP13b]

Exact
single domain VNE peering link graph

Guo

[GWQ+15]

Particle Swarm Heuristic

Shen

[SXYC14]
node mapping

single

shortest-path

single domain

link mapping

full mesh graph

Li

[LSC16b]

downsizing mapping length based

path cost

Table 3.1 Method comparison

depicted. We assume that a VN request of 4 nodes {a,b,c,d} and 4 links {a−b,b− c,c−

d,d−a} arrives.

The virtual nodes are assigned to the domains in VN partitioning step as shown in

Figure 3.3. Virtual nodes a and c are assigned to InP1 and InP3 respectively, whereas b and

d are assigned to InP2. Virtual links a− b, a− c and c− d are inter domain virtual links,

whereas b−d corresponds to an intra domain link.

The information model used in Dietrich [DRP13b] and Guo [GWQ+15] corresponds to

the peering link graph that is shown in Figure 3.4. This peering graph is composed of peering

nodes, peering links (B−F , D−L, etc.) and augmented links between peering nodes (D−E,

G−H, etc.).

The peering graph allows to compute the VN segment, which is shown in Figure 3.5. The

virtual nodes a, b, c and d are first mapped to the peering nodes C, F , P and I respectively.

The virtual peering links a−b,d− c and c−a are then deduced and mapped in our example

to C−F , I−H−P and P−L−D−C respectively. In this way, all the egress nodes that are

used to embed the inter domain virtual links are determined. For example, a− c selects the

egress node L whereas c−d uses the egress node P.

After VN segment computation step, a single domain VNE problem is solved in each

domain. The final mapping is shown in Figure 3.6, where InP1 maps a to A and establishes a

substrate path between A and C, InP2 maps b and d to K and J respectively. Substrate paths

F−K, K− J, I− J are established. InP3 maps c to N and establishes the path N−P.

The information sharing scheme proposed in Shen [SXYC14] is shown in Figure 3.7. All

the nodes belonging to the same domain are interconnected with the length-based shortest

paths. For the mapping of virtual links interconnecting different domains, only one peering

link is selected according to the shortest path algorithm. In this way, the multi-domain VNE

46 Multi-domain VN Resource Allocation

• the set of all of the peering links PS:

PS =
K
⋃

i=1

PS
i =

⋃

(i, j)∈(1...K)2

LS
i j

The complete substrate network GS(NS,LS) is thus obtained as follows:

NS =
K
⋃

i=1

NS
i

LS = (
K
⋃

i=1

LS
i)

⋃

PS with PS =
K
⋃

i=1

PS
i , PS

i =
K
⋃

j=1

LS
i j

3.3.2 VNP layer model

VNP collects information provided by InPs. We assume that InPs provide exact information

about their nodes, as well as the peering links. On the contrary, there is no exact information

about the internal organisation of a domain. Similar to the solution in [SXYC14], we

assume that this information is given by InP for each couple of <node, peering node>, as

if there was a pseudo direct link between these two nodes. Denote the set of these links by

LP
i = {lmn / m ∈ NS

i ,n ∈ NSP
i }, InPi provides to VNP the set of link cost CP

i defined by

CP
i = {C(lmn) / m ∈ NS

i ,n ∈ NSP
i }

where C(lmn) represents a cost (distance, bandwidth, etc.) characterizing the link lmn. This

kind of information is actually what a routing protocol like BGP reports to other Autonomous

System (AS).

Thus, the SN of an InPi is perceived by VNP as a graph GP
i = (NS

i ,L
P
i). In this way, the

whole substrate network that VNP perceives, referred as GP, is defined as follows:

GP = (
⋃

i

GP
i)

⋃

PS

i.e. the perceived vision of each domain and the exact vision of the inter-domain connections.

With GP, VNP can establish a kind of complete topology covering all the domains for

achieving VN decomposition and link mapping.

48 Multi-domain VN Resource Allocation

3.4 Our proposition

To solve VNE in the context of multi-domain, we propose a novel algorithm that maps jointly

intra and peering links.

In our solution, we handle each VN request with a 2-step process:

• At the first step, VNP performs the node decomposition optimizing the node embed-

ding.

• Subsequently, VNP performs a series of iterative downsizing VNE sub-solution, each

of them optimizes both the intra and peering link mapping related to a domain.

The link mapping is determined, at each iteration, by the acting InP (called mapper). VNP is

in charge of providing necessary information to the mapper. The generic work-flow of our

algorithm is given by Figure 3.10. The details are explained as below.

3.4.1 Decomposition

Firstly, VNP decomposes the VN request with objective of minimizing the node mapping

cost. In this stage, VNP associates each virtual node with a candidate set of substrate nodes

that meet its location constraint loc(nv). VNP is free to use any multi-domain VN partitioning

method (e.g. the methods presented in [HLAZ11][SXYC14]). At the end of this stage, virtual

nodes are embedded to substrate nodes located in different domains.

An example of VN decomposition is shown in Figure 3.11. Three InPs are shown with

their substrate nodes from A to P. They are connected via 2 or 3 peering links. Intra substrate

links are not drawn. We suppose that a VN {a,b,c,d} arrives. The VN decomposition

step tells us that a, b, c and d are mapped to substrate nodes A, K, N and J, respectively.

{a−b,a−c,c−d} are virtual links which interconnect two different domains, while {b−d}

locates in only one domain.

3.4.2 An iterative downsizing VNE approach

Here we give a detailed presentation of the kernel of our proposal, which is formally given

by Algorithm 1.

3.4.2.1 Rationale

After VN decompostition step, since there is no domain who knows the complete information

of any other one, embedding the virtual links which interconnect two different domains

becomes an issue.

3.4 Our proposition 49

We notice that, VNP can build, for each InPi, a reduced vision (denoted by GR
i) from GP

i .

This vision contains all the peering links/nodes, as well as the substrate nodes on which a

virtual node is embedded. Formally, GR
i = (NR

i ,L
R
i) where

NR
i = NSP

i

⋃

{nS
i ∈ NS

i / ∃nv ∈ NV ,M(nv) = nS
i }

i.e., NR
i is the union of all the substrate nodes supporting virtual nodes on domain i and all of

its peering nodes. In a similar way, we define LR
i as follows;

LR
i = {lmn ∈ LP

i /n ∈ NR
i ,m ∈ NSP

i }

i.e., LR
i is the subset of LP

i between NR
i and NSP

i containing only the links interconnecting a

peering node and a node supporting a virtual node.

In order to achieve an efficient and pragmatic operation mode, we prefer that VNP plays

its role of coordinator: It is VNP who decides which of the InP should have the privilege to

map its peering links with others. It is also VNP who provides to the chosen InP (that we

refer as mapper) the topology of the rest of the network according to its perception. In other

words, the chosen InP (the mapper) extends its view to the rest of the network, by using the

vision provided by VNP, the only one who has a kind of comprehensive view on all domains.

In this way, the mapper obtains an augmented graph on which it will perform link mapping,

including both its intra and peering links.

This process continues, domain after domain, until all of the virtual links are set. The

selection criterion is the link utilization, the InP has most stringent link utilization will be

the first to map its peering links. The reason lies in that high link utilization denotes more

constraints in the path choice.

3.4.2.2 Building of the augmented graph

Let InPi be the chosen mapper. Formally speaking, the vision of the other domains provided

by VNP is GC
i =

⋃

j ̸=i GR
j , i.e. the reduced perceived vision of all the other domains. We only

need to consider the case where all the domains are adjacent to the mapper. The case of a

domain not adjacent to the mapper but to which the mapper has virtual links can be reduced

to the adjacent case. Actually, assume that the mapper has to establish a virtual link with a

node c ∈ InPs and InPs is not adjacent to the mapper. We have necessarily one of the two

situations:

50 Multi-domain VN Resource Allocation

• The node c is known by none of the adjacent domain to the mapper, then we know that

it is technically impossible to establish the virtual link, since there is no way to route

traffic between the mapper and c. This leads to the failure of VNE embedding;

• There is at least one adjacent InP, say InPj who knows c, it means that InPj can include

c among its pseudo direct link announcement, thus, c can be considered by VNP as

being attached to InPj and announced to InPi through GC
i .

VNP communicates GC
i to the mapper (InPi) so that the latter can create an augmented

graph GA
i defined as follows:

GA
i = GS

i ∪PS
i ∪GC

i

In other words, the mapper has a complete knowledge of its own domain (GS
i) as well as

its peering links (PS
i). The augmented topology of the whole network is obtained by using

information (GC
i) communicated by VNP. This topology covers all of the accessible domains

and can be used as a substrate graph on which the mapper performs VNE.

3.4.2.3 VN sub-request

VNP asks the mapper to perform a partial VNE, which concerns only the virtual links related

to the mapper. We refer this partial VNE as a sub-request (Lsubv
i). It is obtained from the

current VN request by reducing it to virtual links related to the mapper.

InPi deduces and transforms the inter domain VN request to a local VN request as follows:

• Any intra domain virtual link x− y, where x and y are mapped to substrate nodes

belonging to InPi are added to the local VN request. For instance, virtual link b−d is

added to the local VN request of InP2 in Figure 3.13.

• Any inter domain virtual link x−y, where x and y are mapped to substrate nodes X and

Y (X ∈ InPi and Y ̸∈ InPi), is replaced by one or several intra domain link x− y′ where

y′ is mapped to the extremity node of the peering link that is used to interconnect nodes

X and Y .

3.4.2.4 An MCF-based link mapping

At this stage, the mapper gets an augmented vision of the whole substrate network, and a

VNE sub request (Lsubv
i), both from VNP. We have thus a classical VNE problem that we

solve with the multi commodity flow (MCF) based mapping algorithm (line 6 of Algorithm

1).

3.4 Our proposition 53

Algorithm 1: Link mapping of InPi as mapper

Input :sub request virtual links Lsubv
i

Input :reduced perceived graph GC
i

Output :virtual link update notification

1 begin

2 if Lsubv
i = NULL then

3 return

4 end

5 create augmented substrate network GA
i (N

A
i ,L

A
i) ;

6 solve single domain VNE MCF problem;

7 foreach flow on substrate link lmn do

8 if lmn ∈ LS
i ∪LS

i j then pre-allocate resource on link lmn ;

9 end

10 send virtual link update notification;

11 end

3.4.4 The MCF-based sub VNE problem

As aforementioned, the mapper (say InPi) has to solve a reduced VNE problem, with the

augmented graph GA
i (N

A
i ,L

A
i) as substrate network, and the sub-request Lsubv

i as a VN to

embed. Recall that only the links need to be mapped.

We formulate it as a multi-commodity flow (MCF) linear programming optimization

problem, referred as LA_MCF , to determine the flows of intra and peering domain links. The

LA_MCF problem is formulated as follows.

Variables:

• F lv

ls : A flow variable denoting the total amount of flow on ls for the virtual link

lv ∈ Lsubv
i .

Objective:

Minimize:

∑
lv∈Lsubv

i

bw(lv)(∑
ls∈LS

i ∪PS
i

F lv

ls

Res(ls)+δ
+ ∑

ls∈LC
i

C(ls)F
lv

ls) (3.1)

Subject to:

∑
n∈NS|∃ls=(m,n)

F lv

ls − ∑
n∈NS|∃ls=(n,m)

F lv

ls =



















1, m = M(src(lv))

−1, m = M(dst(lv))

0, otherwise

,∀m ∈ Ns, lv ∈ LV

(3.2)

54 Multi-domain VN Resource Allocation

∑
lv∈Lsubv

i

bw(lv)F lv

ls ≤ Res(ls), ∀ls ∈ LS
i ∪PS

i (3.3)

0≤ F lv

ls ≤ 1 (3.4)

• The objective function (3.1) minimizes the total embedding cost with balance between

the loads of substrate links. Res(ls) is the residual bandwidth of substrate link ls. By

dividing the residual bandwidth Res(ls), we prefer to use the intra and peering links

which have more residual bandwidth. δ is a small positive value to avoid dividing by

zero. For pseudo direct links ls in LC
i of GC

i , we adopt the cost C(ls) which corresponds

to the information provided by VNP.

• Equations (3.2) are the flow conservation constraint. M(p) gives the substrate node on

which the virtual node p is mapped.

• Constraints (3.3) are the capacity constraint. The capacity constraint concerns only

intra and peering links LS
i ∪PS

i . The pseudo direct links are assumed to have infinite

capacities. This simply means that each domain should be able to realize the physical

link for every announced pseudo direct link.

• Constraints (3.4) allow the path splitting for virtual link mapping.

3.4.5 Reject of virtual request

The resources are definitively allocated only if all the computation on different domains

succeed. A COMMIT message is then sent by VNP to InPs so as to validate the resource

reservation. Should a mapper report a failure, a DEALLOC message would be sent by VNP,

which stops the process (VNE failure) and allows each domain to deallocate pre-allocated

resources.

3.5 Reinforcement of our method

As mentioned at the end of Section 3.4.2.1, we choose the link utilization criterion to

determine mapping sequence. This choice simplifies the algorithm, but may fail to get the

optimal solution. In this section, we propose a reinforcement of our algorithm, which waives

the constraint of sequence selection.

Fundamentally, domains are peers. From a domain’s point of view, there are actually 2

“domains” : a single domain (itself) and an outside domain (others). Using our downsizing

algorithm, a domain tries its best to map its intra and peering virtual links, but how does

3.5 Reinforcement of our method 55

the outside domain (others) map the remaining virtual links? We notice that after the

first downsizing mapping, the problem is reduced to a multi-domain VNE on the outside

domain (others) because the first mapper has mapped its own intra and peering virtual links.

Following the downsizing logic, the problem will finally be reduced to a 2 domain VNE,

on which a better solution can be easily found. Therefore, we first study the case of only 2

domains, and then we move to VNE in K domains.

3.5.1 Two domain basic method

First, we consider the case of 2 domains. Assuming that the multi-domain VNE problem

consists of 2 domains (denoted by InP1 and InP2). There are obviously 2 possible mapping

sequences.

• First Solution S1−>2 : InP1 starts up the mapping processus as mapper and then InP2

solves a single domain VNE.

• Second solution: S2−>1 : InP2 starts up the mapping processus as mapper and then

InP1 solves a single domain VNE.

These two solutions are sent to VNP, which compares the embedding cost of these solutions.

The final solution of the 2 domain basic multi-domain VNE (denoted by MDV NE(2)) is the

better one among the 2 solutions above:

SMDV NE(2) = min{S1−>2,S2−>1}

3.5.2 Towards K domain solution

From the 2 domain basic method, K domain multi-domain VNE (denoted by MDV NE(K))

can be determined by a recursive algorithm. The detail of MDV NE(K) is shown in Algorithm

2.

The multi-domain is fundamentally divided into 2 elements, a mapper and the others.

The former is mapped using our downsizing method (line 3 in Algorithm 2), and the later is

reduced to a K-1 domain problem (line 6 in Algorithm 2), until the basic 2 domain problem.

The cost of the candidate is the sum of cost of the 2 elements (line 13 in Algorithm 2). The

minimum cost candidate will be adopted as the mapping solution.

56 Multi-domain VN Resource Allocation

Algorithm 2: MDV NE(K)

Input :VN request

Output :embedding cost

Output :mapping solution

1 begin

2 foreach InPi do

3 link mapping of InPi as mapper;

4 get embedding cost C(mapper);
5 if K > 2 then

6 solve MDV NE(K−1) ;

7 get embedding cost C(others);

8 end

9 else

10 solve MDV NE(2);
11 get embedding cost C(others);

12 end

13 InPi solution cost C(i) =C(mapper)+C(others) ;

14 end

15 return minimum C(i) and correspond solution;

16 end

3.6 Performance Evaluation

We implemented a discrete event simulator to evaluate the performance of our method. The

optimization problem is solved by IBM CPLEX library. Since we are basically interested

by the link mapping, all the evaluated methods work with the same node decomposition by

using the greedy algorithm in [YYRC08].

3.6.1 Evaluation Environment

The simulation framework is shown in Figure 3.15. We use GT-ITM (see Appendix A) to

generate substrate networks and virtual networks. The arrival and departure of each VN are

added to the events queue. The arrival events call the embedding algorithms, whereas the

departure events trigger the resource liberation. After each event, we compute the values of

the metrics. In our simulation, we use 4 domains with different configurations. Scenario 1

evaluates the performances in real networks retrieved from SNDlib [OPTW07] (see Appendix

A), while scenario 3 generates substrate networks with GT-ITM. Scenario 2 changes the

peering link configuration (β) with the same substrate networks. In all the scenarios, the

substrate resources are generated in the same manner. The CPU capacity of each node is

58 Multi-domain VN Resource Allocation

edges in the graph, while an augmentation of β l increases the ratio of long edges relative to

short edges. To simulate the real network situation, we set a big α and a quite small β , so

that the boundary nodes are more likely to be connected by peering links.

3.6.3 Compared methods

Our method, called ciplm (Coordinated intra and peering link mapping), is compared with

the following methods:

(i) ideal: The MCF link mapping is done with full information. This means that the

multi-domain network is treated as a single domain. This is not feasible in practice.

(ii) ciplm_up: It uses the real time attributes (residual bandwidth in particular) to compute

the pseudo direct link cost. This method needs to update the residual bandwidth of

each link in VNP every time a VN is accommodated. This method is not practical since

it requires the exchange of a large amount of information and it claims a less strict

information disclosure policy.

(iii) ciplm_r: The reinforced method proposed in Section 3.5, which uses the recursive

method to select the best mapping sequence. The performance of this method are only

measured in Scenario 5.

(iv) shen [SXYC14]: This approach computes separately intra and peering links. The latter

is determined according to Dijkstra’s algorithm.

3.6.4 Metrics

We used the following metrics for comparison:

• VN request acceptance ratio (AR): the ratio of the accepted VN request over the total

arrived VN requests. It is formally computed as follows:

AR =
acc_num

tot_num

where acc_num is the accepted VN number and tot_num is the total VN number.

3.6 Performance Evaluation 59

• Average link utilization: the link utilization corresponds to the total allocated link

resources over the total substrate resource,

LU =

∑
ls∈LS

Ocp(ls)

∑
ls∈LS

Cap(ls)

where Ocp(ls) is the occupied bandwidth on ls and Cap(ls) is the bandwidth capacity

of ls.

• Total revenue: The revenue of a VN as the weighted sum of bandwidth and CPU:

R = θ ∑
nv∈NV

cpu(nv)+η ∑
lv∈LV

bw(lv)

where θ (resp. η) is the unit revenue for CPU (resp. bandwidth).

• Cost/revenue: The cost is the total mapped substrate resources. The revenue is the total

mapped virtual demand. Therefore, this ratio denotes the average mapped substrate

resources per unit of virtual demand.

3.6.5 Scenario 1: real substrate networks

In the first scenario, 4 real networks are retrieved from SNDlib: india35 (35 nodes, 80 links),

pioro40 (40 nodes, 89 links), germany50 (50 nodes, 88 links), zib54 (54 nodes, 81 links). For

each pair of networks, peering links are generated by Waxman with α = 0.8 and β = 0.1.

We compare the methods with different arrival rates. The arrival rates determines the load of

the network.

Before presenting our results, we would like to make the following qualitative analysis.

It is obvious that the ideal method provides the best results, thanks to the knowledge of

the complete set of information. As its name suggested, it fixes the upper bound. As the

ciplm_up has richer and updated information, it should provide a better performance than

the basic ciplm method. It is of course our expectation that the latter yields better results

than shen, due to the expected impact of joint consideration of both intra and peering links.

The simulation results are shown in figure 3.16. The VN request acceptance ratio, the

mapped revenue, the link utilization and the cost revenue are shown in figure 3.16a, 3.16b

and figure 3.16c and 3.16d, respectively. We got the following observations:

60 Multi-domain VN Resource Allocation

2 3 4 5 6 7 8

65

70

75

80

85

90

95

100

arrival rate λ

A
cc

ep
ta

n
ce

ra
ti

o
%

ideal

shen

ciplm

ciplm_up

(a) Acceptance ratio

2 3 4 5 6 7 8
0.6

0.9

1.2

1.5

1.8

2
·105

arrival rate λ

M
ap

p
ed

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(b) Mapped revenue

2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

arrival rate λ

L
in

k
u
ti

li
za

ti
o
n

ideal

shen

ciplm

ciplm_up

(c) Link utilization

2 3 4 5 6 7 8
3.6

3.8

4

4.2

4.4

4.5

arrival rate λ

C
o
st

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(d) Cost revenue

Fig. 3.16 Real substrate networks - arrival rates

• The performance ordering is actually what we expected, i.e. ideal is the best, followed

by ciplm_up, and our basic method ciplm outperforms clearly shen over all the three

metrics.

• The difference between ciplm and shen is always significant.

• The difference between ciplm_up and ciplm is not always significant, this is true in

particular for the case of link utilisation (figure 3.16c).

3.6 Performance Evaluation 61

3.6.6 Scenario 2: peering links

In this scenario, we study the impact of peering link number on the performances of the

compared method. The peering links between each pair of substrate network are determined

according to Formula 3.5. Here, α = 0.9 and β varies from 0.06 to 0.12. As β increases, the

number of peering links increases. For instance, when β = 0.04, each pair of domains has

only one peering link. When β = 0.12, each domain has 30 to 40 peering links connecting

with all the other domains. We use the same real substrate networks as scenario 1. the arrival

rate λ is 3.

The simulation results are shown in Figure 3.17. The VN request acceptance ratio, the

mapped revenue, the link utilization and the cost revenue are shown in figure 3.17a, 3.17b

and figure 3.17c and 3.17d, respectively.

For small β (few peering links), the methods have few choice of peering links, so the

advantage of our methods is not obvious. As β increases, the acceptance ratio and mapped

revenue shows us that our methods have better performances than shen. Our methods take

advantage of different peering links to perform an efficient peering link selection and load

balancing, whereas shen always uses the same peering links which are determined by the

shortest path algorithm.

3.6.7 Scenario 3: random substrate networks

To evaluate the performance of the compared methods on different substrate networks, we

generated 4 substrate networks with GT-ITM. Each substrate network is composed of 30

nodes and about 50 links. The curves are the average of 10 runs.

The simulation results are shown in figure 3.18. The VN request acceptance ratio, the

mapped revenue, the link utilization and the cost revenue are shown in figure 3.18a, 3.18b

and figure 3.18c and 3.18d, respectively.

On random substrate networks, we have the same observation as scenario 1. ciplm has a

better performance than shen. The difference between cil pm and cil pm_up is small.

3.6.8 Scenario 4: virtual link demands

In order to illustrate the effect of requested bandwidth, we measure the performance of

the compared methods with different virtual link bandwidth demands. The virtual network

topology are generated in the same manner as the previous scenarios, but the link bandwidth

demand interval varies with [0,20], [10,30], [20,40], [30,50] and [40,60]. α , β and λ are 0.8,

0.12 and 3 respectively.

62 Multi-domain VN Resource Allocation

4 ·10−2 6 ·10−2 8 ·10−2 0.1 0.12

70

75

80

85

90

95

100

peering links β

A
cc

ep
ta

n
ce

ra
ti

o
%

ideal

shen

ciplm

ciplm_up

(a) Acceptance ratio

4 ·10−2 6 ·10−2 8 ·10−2 0.1 0.12
0.6

0.7

0.8

0.9

1

1.1
·105

peering links β

M
ap

p
ed

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(b) Mapped revenue

4 ·10−2 6 ·10−2 8 ·10−2 0.1 0.12

0.1

0.15

0.2

0.25

0.3

peering links β

L
in

k
u
ti

li
za

ti
o
n

ideal

shen

ciplm

ciplm_up

(c) Link utilization

4 ·10−2 6 ·10−2 8 ·10−2 0.1 0.12
3.3

3.6

3.9

4.2

4.5

4.8
4.9

peering links β

C
o
st

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(d) Cost revenue

Fig. 3.17 Real substrate networks - peering links

3.6 Performance Evaluation 63

2 3 4 5 6 7 8

65

70

75

80

85

90

95

100

arrival rate λ

A
cc

ep
ta

n
ce

ra
ti

o
%

ideal

shen

ciplm

ciplm_up

(a) Acceptance ratio

2 3 4 5 6 7 8
0.6

0.9

1.2

1.5

1.8

2

·105

arrival rate λ

M
ap

p
ed

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(b) Mapped revenue

2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

arrival rate λ

L
in

k
u
ti

li
za

ti
o
n

ideal

shen

ciplm

ciplm_up

(c) Link utilization

2 3 4 5 6 7 8
2.5

2.6

2.7

2.8

2.9

3

arrival rate λ

C
o
st

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(d) Cost revenue

Fig. 3.18 Random substrate networks - arrival rates

64 Multi-domain VN Resource Allocation

20 30 40 50 60

40

50

60

70

80

90

100

max virtual link demand

A
cc

ep
ta

n
ce

ra
ti

o
%

ideal

shen

ciplm

ciplm_up

(a) Acceptance ratio

20 30 40 50 60

0.6

0.8

1

1.2

1.3
·105

max virtual link demand

M
ap

p
ed

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(b) Mapped revenue

20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

max virtual link demand

L
in

k
u
ti

li
za

ti
o
n

ideal

shen

ciplm

ciplm_up

(c) Link utilization

20 30 40 50 60
2.7

3

3.3

3.6

3.9

4.2

4.5

max virtual link demand

C
o
st

re
v
en

u
e

ideal

shen

ciplm

ciplm_up

(d) Cost revenue

Fig. 3.19 Random substrate networks - bandwidth demand

The simulation results are shown in figure 3.19. The VN request acceptance ratio, the

mapped revenue, the link utilization and the cost revenue are shown in figure 3.19a, 3.19b

and figure 3.19c and 3.19d, respectively.

The acceptance ratio in Figure 3.19a decreases with the increase of maximum virtual link

bandwidth demands, but the difference between the methods remains nearly the same. For

different size of bandwidth demands, our methods always have a better resource utilization

than shen.

3.6 Performance Evaluation 65

3.6.9 Scenario 5: reinforced method

In this scenario, we evaluate the performance of the reinforced method (see Section 3.5).

Three domains are generated by GT-ITM. Each of them is composed of 50 nodes and 120

links. The virtual nodes of each VN follow a uniform distribution between 5 and 10. α is 0.9

and β is 0.09.

The simulation results are shown in figure 3.20. The VN request acceptance ratio, the

mapped revenue, the link utilization and the cost revenue are shown in figure 3.20a, 3.20b

and figure 3.20c and 3.20d, respectively. We got the following observations:

• cil pm_r is the best, followed by ciplm, and then shen over all the three metrics.

• The difference between ciplm and shen is always significant.

• The difference between ciplm and ciplm_r is often small.

3.6.10 Conclusion of simulation

To summarize our 5 scenarios:

• Our approaches are better than that of shen. Indeed, mapping jointly intra and peering

links enhances the resource utilization by selecting the best intra and peering links.

Our proposition improves the performance in particular under heavy loads. In these

cases, traffic is splitted and sent to less loaded links, achieving in this way a better

utilization of the overall residual bandwidth.

• The comparison between ciplm and ciplm_up shows that the out-performance of the

latter maybe be small. Considering the over-cost of deploying ciplm_up, in terms of

information exchange and requirement on the information disclosure, we think that the

ciplm_up does not offer a good trade-off between cost and performance.

• The out-performance of ciplm_r is small compared to ciplm. ciplm ensures a cost-

efficient mapping solution for every VN. The peering links are mapped jointly with

the right domain, which leads to a better resource allocation. However, the peering

links in cimplm_r are sometimes not perfectly mapped because link utilization does

not always give the best mapping sequence. In this case, exploring all the possible

sequences by ciplm_r gets better performances.

66 Multi-domain VN Resource Allocation

5 6 7 8 9 10
80

85

90

95

100

arrival rate λ

A
cc

ep
ta

n
ce

ra
ti

o
%

shen

ciplm

ciplm_r

(a) Acceptance ratio

5 6 7 8 9 10
1

1.3

1.6

1.9

2.2
·105

arrival rate λ

M
ap

p
ed

re
v
en

u
e

shen

ciplm

ciplm_r

(b) Mapped revenue

5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

arrival rate λ

L
in

k
u
ti

li
za

ti
o
n

shen

ciplm

ciplm_r

(c) Link utilization

5 6 7 8 9 10
2.4

2.5

2.6

2.7

arrival rate λ

C
o
st

re
v
en

u
e

shen

ciplm

ciplm_r

(d) Cost revenue

Fig. 3.20 3 Random substrate networks - arrival rates

3.7 Conclusion 67

3.7 Conclusion

Network Virtualization is regarded as an important technique of future network, since it

allows the (dynamic) building of a network suited to end-users need, without modifying

the underlay infrastructures. Part of them will be built over several infrastructures run by

different operators.

The virtual network embedding, which aims at establishing the optimal virtual networks

on substrate networks, is a key issue in network virtualization. In multi-domain context, the

partial knowledge of routing information makes the multi-domain VNE quite different from

the single-domain VNE and this problem remains a challenge. Some multi-domain VNE

solutions have been proposed in literature. Most of them focus more on VN decomposition

into sub VN requests for each domain, so that the single-domain VNE can be applied

subsequently. Few attention has been paid on the mapping of peering (inter-domain) links.

In this chapter, we proposed a novel multi-domain VNE algorithm which aims to jointly

optimize the intra and peering link mapping. The VNP layer has the privilege to get a

comprehensive vision of all of the domains as well as the peering links. It performs VN

decomposition, then coordinates the optimized mapping of both intra and peering links,

domain after domain, in an iterative and converging manner. The optimization is achieved

by applying the MCF algorithm on an augmented graph related to each domain. Simulation

shows that our approach improves the substrate resource utilization compared to existing

methods.

Chapter 4

VN Reliability Enhancement

4.1 Introduction

A network fails for various reasons, like bottlenecks, software attacks, natural disasters, etc.

A failure of a single physical element (node, link) may result in major disruption involving

several VN services. To avoid such scenarios which induce severe penalties (monetary and

reputational) for the service provider (SP), this latter should provide reliable VNs capable to

deal with failures [CMDTM16].

Various techniques are developed for reliability. These techniques can be grouped in two

categories: (1) failure-recovery and (2) failure-avoidance.

Failure-recovery techniques [JK15][HKA13] consist in repairing the affected VNs after

the failure occurrence by determining a backup routing. Protection mechanisms pre-compute

backup paths before the failure occurs, whereas restoration performs backup path compu-

tation upon failure occurrence. Generally, protection pre-reserves resources for the backup

paths to guarantee enough resources upon failure and to ensure service continuity.

Failure-avoidance techniques [SFAM13] try to provide a primary routing which is deter-

mined in a way that failures affect as little as possible the network. Such techniques generally

determine routes which bypass the network components which are the most vulnerable to

failures.

In this chapter, we aim at proposing a novel failure-avoidance oriented approach for VN

embedding. Considering that several VNs can share a single SN component, the objective is

to set up VNs which are natively more reliable, and thus minimize the activation frequency

of failure recovery mechanisms. Our solution improves the network reliability without extra

configurations and with slight extra resources. It is complementary to, and compatible with,

failure recovery mechanisms (restoration/protection).

70 VN Reliability Enhancement

In this chapter, we propose and describe two failure-avoidance based approaches to

improve the virtual network resilience. Both the two approaches are based on a primary

VNE. The first one happens when the physical resources are much larger than the logical

requests. We model this VNE problem as a classical SMT (Steiner Minimal Tree) problem.

This starting point allows us to design a second approach that considers the more realistic

scenario of VNE with limited bandwidth links. With the second approach, we improve the

resilience by formulating the VNE problem as an Integer Linear Program (ILP) problem for

which we propose SMT-based heuristics.

The rest of this chapter is organized as follows. Section 4.2 presents the problem and our

direction. Section 4.3 and 4.4 present in more details our solutions. The evaluation results

are shown in Section 4.5. Section 4.6 concludes this chapter.

4.2 Avoiding the failures

4.2.1 Position of problem

With the following example depicted in Figure 4.1, we show that different VNE strategies

lead to different uses of SN resources and, consequently, different levels of reliability. The

virtual network consists of 3 nodes {A,B,C} and 2 virtual links {A−B,B−C} (Figure

4.1(a)). The virtual links A−B and B−C ask for 5 and 10 units of bandwidth, respectively.

The substrate network (Figure 4.1(b)) is composed of 8 nodes and 10 links. Each link in

Figure 4.1(b) is labeled with a pair of values corresponding respectively to the residual

bandwidth and the link failure probability.

We assume that the node mapping is: b→ A, f → B and c→C. If the main criterion is

bandwidth optimization, a likely mapping is given by the dotted line. A non optimal mapping

that reduces the failure probability is given in Figure 4.2. The two virtual links in Figure 4.2

cannot cross the substrate link {b− e} at the same time because of bandwidth constraint

(10+5 > 12). B−C is embedded to {c−d− f}, whereas A−B is mapped to {b− e− f}.

The VN failure probability of the former mapping in Figure 4.1(b) is equal to 1−(1−10−4)6,

which is higher than the failure probability of the latter mapping 1− (1−10−4)3(1−10−5)

in Figure 4.2.

This example suggests that the failure of SN components should be specifically taken into

account in VNE problem for reliability. This is the focus of this section. Actually, the second

mapping is not the optimal one. We show and propose efficient heuristics determining better

solutions.

72 VN Reliability Enhancement

4.2.2 Our direction

As described in Chapter 2, existing VNEs mainly focus on the optimization of bandwidth.

Only few works deal with the failure probability though its importance especially for real

time network applications.

Note that failure probability of a network component gives us a good measurement

of reliability. In Table 2.2, an existing work which optimizes bandwidth with reliability

considerations [GDTV14] is described. In this work, the reliability is treated as a QoS

constraint.

The failure probability of network is more critical than bandwidth for various types of

network applications. It is computed and approximated by combining various real parameters

of network equipment (e.g. age and type of equipment [SFAM13]). In litterature, the

optimization of failure probability has been considered to treat some specific types of failures,

e.g. SRLG [LML10] and elastic optical network [YCL+15], but there is no work on the

optimization of a virtual network failure probability.

Since a VN is composed of several virtual links, the optimization of VN failure probability

consists in minimizing the overall failure probability of all the virtual links (i.e. minimizing

the probability that at least one virtual link fails). Since failure probability of a virtual link

depends on its substrate path, we conclude that the failure probability is minimized for VNs

using reliable substrate links (i.e. avoiding the vulnerable substrate links). This is the main

idea of the failure avoidance oriented approaches.

In the following sections, we first consider the failure probability optimization without

bandwidth constraint. The goal is to find a basic probability-based and failure-avoidance-

oriented solution. It it typically useful for the substrate resources much larger than the VN

requests. After examining the bandwidth constraint, we extend the basic solution and propose

a generic solution for failure probability optimization.

4.3 Solution for infinite bandwidth links

As we are solely interested in VN failure frequency (i.e. recovery process activation fre-

quency), we assume that a VN survives if none of its substrate links is affected by a failure.

As our method is compatible with restoration/protection, we assume that failures are eventu-

ally recovered, so that the affected VNs are not withdrawn. Besides, we focus on the failure

of links. Actually, the joint consideration of both node and link mappings would create an

additional difficulty degree that we do not treat here.

4.3 Solution for infinite bandwidth links 73

Below, we introduce our objective function for VN failure probability minimization.

We show how to linearize the objective before solving the problem for the case of infinite

bandwidth links.

4.3.1 Objective function

Given a VN request GV , we define a set of binary variables Xls denoting whether ls is used to

embed GV :

Xls =







1, ls ∈ LS
M

0, ls ̸∈ LS
M

, ∀ls ∈ LS (4.1)

The surviving probability PS(X) of a VN is given by:

PS(X) = ∏
ls∈LS

(1−PlsXls) (4.2)

Where Pls is the failure probability of substrate link ls.

To optimize the reliability, (4.2) should be maximized. Instead of maximizing the non

linear function (4.2), it is more easy to look for a new linear function that is optimal for the

same solution X∗ as (4.2).

To determine such linear function, we apply logarithm function to (4.2):

log PS(X) = ∏
ls∈LS

(1−PlsXls)

= ∑
ls∈LS

log(1−PlsXls)

= ∑
ls∈LS

log(1−Pls)Xls

(4.3)

as log(1− PlsXls) is equal to log(1− Pls)Xls for any ls. Recall that (4.2) and (4.3) are

maximized for the same solution X∗. Instead of maximizing (4.3), we chose to minimize

−log PS(X). The final objective function is described below:

min ∑
ls∈LS

[−log(1−Pls)]Xls (4.4)

By associating a cost Cls = −log(1−Pls) to each link ls, we deduce that the optimal

solution of (4.4) corresponds to the least cost sub-network (in terms of Cls) which spans all

the substrate nodes supporting virtual nodes.

4.4 Solution for limited bandwidth links 75

KMB Tree The problem of finding a Steiner minimal tree is NP-complete. Some efficient

heuristics have been proposed. Among them we cite KMB [KMB81]. Given a Graph G and

a Steiner node set S, KMB’s algorithm determines an approximated Steiner tree as follows,

1. construct a complete graph S′of Steiner nodes where the links correspond to the shortest

paths in G;

2. find the minimal spanning tree on S′;

3. replace the links on S′ by the corresponding shortest path in G, this graph is called Gs;

4. find the minimal spanning tree Ts of Gs;

5. construct a Steiner tree Th from Ts by deleting edges in Ts, if necessary, so that all the

leaves in Th are Steiner nodes.

The KMB tree is at worst twice more costly than the Steiner tree.

4.3.2.2 Example

In any tree (Steiner tree, KMB tree, etc.), each couple of nodes are inter-connected by one

and only one substrate path. To minimize the failure probability of a VN, we should thus

determine a Steiner tree that optimizes the cost Cls = −log(1−Pls). In our example in

Figure 4.1, Steiner tree solution is shown by the dashed lines in Figure 4.4. Concretely, the

VN is mapped to {c−b,b− e,e− f}. The failure probability is 1− (1−10−4)2(1−10−5).

Note that this mapping is not applicable for the example of Figure 4.1 since the bandwidth

constraints are not respected on link b− e.

4.4 Solution for limited bandwidth links

In this section, we consider links with limited bandwidth capacities and apply the admission

control before link selection. Since failure probability and bandwidth are often orthogonal

criteria, we try to optimize the failure probability of VNs without breaking the bandwidth

constraint.

The problem of finding a VNE that optimizes the failure probability is also NP-hard

for the case of limited bandwidth links. Indeed, for a VN request with a small bandwidth

demand (i.e., ∀, ls ∑
lv∈LV

bw(lv)≤C(ls)), the optimal solution corresponds to a Steiner tree.

Note that generally the solution to the limited bandwidth link version is not a tree because of

admission control on links. Below, we formulate the problem as an ILP and then give some

efficient heuristics to solve it.

4.4 Solution for limited bandwidth links 77

Minimize:

∑
ls∈LS

[−log(1−Pls)]Xls + ε ∑
ls∈LS

∑
lv∈LV

F lv

ls (4.5)

Subject to:

∑
n∈NS|∃ls=(m,n)

F lv

ls − ∑
n∈NS|∃ls=(n,m)

F lv

ls =



















1, m = M(src(lv))

−1, m = M(dst(lv))

0, otherwise

,∀m ∈ Ns, lv ∈ LV

(4.6)

∑
lv∈LV

bw(lv)F lv

ls ≤ Res(ls), ∀ls ∈ LS (4.7)

∑
lv∈LV

F lv

ls ≤ βXls (4.8)

• The objective function (4.5) minimizes the failure probability of virtual network

(Formula 4.4). The second term avoids the path repetition. It has an effect of choosing

the optimal solution with minimal number of embedding links. ε is a small constant.

• Equations (4.6) correspond to the flow conservation constraint.

• Inequalities (4.7) correspond to the capacity constraint.

• Inequalities (4.8) guarantee that if there exists an amount of flow on ls, Xls would be 1.

β is a constant greater than the maximum number of VN links.

For the mapping problem described in Figure 4.1, our ILP determines the optimal

solution. This solution minimizes the VN failure probability while ensuring the respect of

the bandwidth constraints.

4.4.2 Failure avoidance based heuristics for limited bandwidth links

As the VNE minimizing the failure probability is NP-hard, the ILP formulation presented in

previous section is not scalable. To accelerate the computations, we propose here efficient

heuristics inspired by KMB tree. In our heuristics, each virtual link is mapped to a shortest

path minimizing the failure probability. The resulting paths are then combined to form an

approached KMB tree and reduce the overall VN failure probability. Because of admission

control, the sequence of virtual link mappings impact the final solution. Indeed, the selection

of a path traversing a given link can lead to exclusion of such link in the next path computation,

78 VN Reliability Enhancement

Algorithm 3: baseline heuristic

Input :virtual network request GV (NV ,LV)
Output : link mapping solution

1 begin

2 foreach lv in LV do

3 compute the cost of the probability-based shortest path for lv without verifying

the bandwidth constraint;
4 end

5 foreach lv in ascending order of cost do

6 determine a probability-based shortest path π for lv. All the substrate links in π

must verify the constraints of bandwidth

7 if π = NULL then

8 free pre-allocated resources;

9 return no solution;

10 end

11 else

12 foreach ls in π do

13 pre-allocate bandwidth resource;

14 set probability cost Cls of link ls to 0;

15 add π to the solution;

16 end

17 end

18 end

19 return solution;

20 end

particularly when its residual bandwidth decreases to zero. Below we propose 2 heuristics

improving the reliability of VNs.

4.4.2.1 Baseline heuristic

With our baseline heuristic (see Algorithm 3), we sort the virtual links according to their

failure probability costs, without taking into account the bandwidth constraint (line 2-4).

Recall that the failure probability based link cost is Cls =−log(1−Pls). After that, virtual

links are mapped one by one in their ascending order of costs (line 5) to shortest substrate

paths. These substrate paths are computed so that they minimize the failure probability-based

cost while verifying the bandwidth constraint (line 6). If no substrate path is determined to

accommodate the traffic of a virtual link, the heuristic returns no solution (line 7-9).

To decrease the failure probability, we avoid as much as possible the creation of loops by

reusing the embedding substrate links. Once a virtual link is mapped to a substrate path, the

80 VN Reliability Enhancement

Algorithm 4: reinforced heuristic

Input :virtual network request GV (NV ,LV)
Output : link mapping solution

1 begin

2 ULV ← LV ;

3 while ULV ̸= /0 do

4 cost← ∞;

5 foreach lv in LV do

6 determine a failure probability-based shortest path π for lv. All the

substrate links in π must verify the constraints of bandwidth

7 if π = NULL then

8 free pre-allocated resources;

9 return no solution;

10 end

11 if C(π, lv)< cost then

12 cost =C(π, lv);
13 π∗ = π .

14 l∗ = lv;

15 end

16 end

17 foreach ls in π∗ do

18 pre-allocate bandwidth resource;

19 set probability cost Cls of link ls to ε;

20 end

21 delete l∗ from ULV ;

22 add (l∗,π∗) to solution;

23 end

24 return solution;

25 end

can thus result in some substrate paths which consume more additional bandwidth resources

compared with the bandwidth optimization oriented VNEs.

To cope with the precedent issue, we slightly modified the baseline heuristic and devel-

oped a novel reinforced heuristic (see Algorithm 4). With the reinforced heuristic, we change

the cost function to include bandwidth optimization parameters. Besides, the link mapping

order is determined step by step. Hereafter, the cost function C(π, lv) of mapping a virtual

link lv on a substrate path π is:

C(π, lv) =C(π)−µ
bw(lv)−LV

LV

4.5 Performance Evaluation 81

LV is the average of virtual link bandwidth demands and µ is a positive constant control-

ling the bandwidth optimization level at the cost of VN reliability.

Note that the novel cost is inversely proportional to the bandwidth demand. The fist part

of the cost function allows to select the substrate links minimizing the failure probability

whereas the second part of the function participates to the determination of the order of virtual

link mappings. Larger µ is, higher is the probability of saving the bandwidth resources. For

instance, with a high value of µ , the reinforced heuristic first maps the virtual links with the

highest bandwidth demands on shortest paths. Then, virtual link mapping requests with small

bandwidth demands are satisfied by mapping them on paths that are statistically more longer

than the shortest ones. Indeed, the reuse of links with nil costs increases the number of links

in paths. As the resource-intensive paths are statically short, the overall VN consumption is

expected to decrease compared to the baseline heuristic.

The operation of our reinforce heuristic is detailed in Algorithm 4. |LV | steps are required

to determine the final solution. At each step, a failure probability based shortest path which

verifies the constraints of bandwidth is determined for each virtual link that is not mapped

yet. The best couple (ls,π) which minimizes the cost function is then selected and added

to the final solution. To decrease the failure probability while balancing the load on links,

we modify and set the link costs of the selected path π to a very small value ε (instead of 0)

before the starting of the next step.

In the example of Figure 4.1, the solution that is determined by the reinforced heuristic

is shown by the dashed lines in Figure 4.6. In the first step, link B−C is mapped to the

failure probability based shortest path f −d− c. After assigning the cost ε to the substrate

links f − d and d− c, the second virtual link A−B is mapped to the failure probability

based shortest path b− e−d− f . This gives us the final solution with a failure probability

1− (1−10−4)2(1−10−5)2 and the total consumed bandwidth is 10×2+5×3 = 35.

The reinforced heuristic decrease the bandwidth allocation by 5 units without failure

probability increase. Generally, the reinforced heuristic allows a trade-off between the

failure probability decrease and the bandwidth allocation reduction. The complexity of our

reinforced heuristic is O(|LV |
2
|NS|log|NS|).

4.5 Performance Evaluation

We extend our simulator described in Chapter 2 to evaluate the performance of the methods.

In addition of embedding modules, we add new modules to deal with the failure (see Figure

4.7) in our simulator:

• the link failures are generated by a simplified Weibull distribution;

84 VN Reliability Enhancement

The parameters should be decided by the manufacturer a priori from past experience or

tests. In our simulation, we set γ = 0, β = 1 and η = 1
Pls

for each substrate link ls. In this

case, the failure rate is constant over time and the failure of ls is determined by Pls .

4.5.2 Compared methods

Through the numerical studies, we mainly want to assess the advantage as well as shortcoming

of our methods compared to the traditional bandwidth-oriented VNE methods. In our

simulation study, we compared the following methods:

(i) baseline: our baseline heuristic (Section 4.4.2.1),

(ii) rein f orced: our reinforced heuristic (Section 4.4.2.2),

(iii) exact: the ILP solution provided by CPLEX which acts as the bottom line reference,

(iv) bw: a basic shortest path method for virtual network embedding which optimizes the

bandwidth. It is our comparison reference.

4.5.3 Metrics

All the metrics presented in Chapter 3 remain available for the comparison. In addition, since

we are interested in the survivability of VNs, we introduce some new metrics related to the

survivability.

• VN failure probability: a VN survives if none of its virtual link fails. We deduce the

failure probability PGv of a VN (GV) :

PGv = 1− ∏
ls∈LS

GV

(1−Pls), (4.9)

where LS
GV is the set of substrate links on which Gv is mapped.

• Average number of affected VNs: a single substrate link failure affects all of the virtual

networks using the failed link. This metric counts the number of affected VNs for each

failure event.

• Average affected revenue: for each VN affected by a failure event, we compute its

revenue R(Gv) by Formula 3.6.4. The affected revenue (AFR) is the revenue sum of

all the affected VNs.

AFR = ∑
Gv∈GV

f

R(Gv) (4.10)

4.5 Performance Evaluation 85

1 2 3 4 5 6 7 8
65

70

75

80

85

90

95

100

arrival rate λ

A
cc

ep
ta

n
ce

ra
ti

o
%

rein f orced

baseline
exact

bw

Fig. 4.8 Acceptance ratio

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
·105

arrival rate λ

M
ap

p
ed

R
ev

en
u
e

rein f orced

baseline
exact

bw

Fig. 4.9 Mapped Revenue

where GV
f is the set of VNs affected by a failure event f . The average affected revenue

is the mean value of AFR for all the failure events.

• Average ratio of affected VNs: since the compared methods do not have the same

acceptance ratio, it is useful to compute the ratio of affected VNs instead of their

numbers. This metric computes the ratio as the number of affected VNs over the

numbers of accepted VNs.

In our scenarios, we keep the VN acceptance ratio metric (in Section 3.6.4) to show the

primary mapping performances. Apart from acceptance ratio, we mainly focus on the metrics

related to the survivability.

4.5.4 Scenario 1: arrival rate

4.5.4.1 Configuration

The substrate network (50 nodes, 120 links) is generated by GT-ITM tool (see Appendix A).

The CPU capacity of each node is randomly chosen in [100, 150]. The bandwidth capacity is

randomly selected in [100, 150]. The failure probability of substrate links follows a uniform

distribution over the interval [0, 2×10−5].

The virtual networks are also generated by GT-ITM tool. The number of virtual nodes of

each VN follows a uniform distribution between 3 and 8. The virtual nodes are interconnected

with probability 0.4. The CPU and bandwidth demands are uniformly chosen in [0, 20].

The VN request arrival process is Poisson with arrival rate λ ∈ (1 . . .8) per 100 time

units. The life time of each VN follows an exponential distribution with an average of 1000

time units. Each simulation lasts for 100000 time units.

86 VN Reliability Enhancement

1 2 3 4 5 6 7 8

0.5

0.7

0.9

1.1

1.3

1.5
·10−4

arrival rate λ

V
N

fa
il

u
re

p
ro

b
ab

il
it

y

rein f orced

baseline
exact

bw

Fig. 4.10 VN failure probability

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

arrival rate λ

A
v
er

ag
e

n
u
m

b
er

o
f

af
fe

ct
ed

V
N

rein f orced

baseline
exact

bw

Fig. 4.11 Average number of affected VN

4.5.4.2 Numeric result

In terms of acceptance ratio, our heuristics are surely less efficient than the bandwidth-

oriented method. The good news is that the difference is quite small unless in case of heavy

load. Figures 4.8 and 4.9 show that, at low network loads (λ < 4), our methods achieve more

than 95% of mapping task compared to bw. This ratio falls to 80% for heavy load (λ > 4).

Our failure-avoidance oriented approaches do work. Actually, Figure 4.10 shows that

there is a significant reliability enhancement carried by our method versus the bandwidth-

oriented VNE, from about 60% for low network load till 20% for heavy load.

Our heuristics also decrease the failure impact. Actually, as given by Figure 4.11, the

number of impacted VNs produced by the bandwidth method in case of failure is always

higher than those obtained with our method.

Now, let us take a closer look at the difference between our two methods. As shown

by Figures 4.10 and 4.11, rein f orced outperforms baseline. The rein f orced method takes

advantage of the dynamic metric model and it is closer to exact (the reference optimal

value) than baseline. Besides, the bandwidth saved with the reinforced method allows more

flexibility for the next path selection. We also want to point out that for the acceptance ratio

and revenue metrics (see Figures 4.8 and 4.9), our two heuristics get the performances close

to those provided by exact.

4.5 Performance Evaluation 87

40 45 50 55 60
65

70

75

80

85

90

95

100

node number

A
cc

ep
ta

n
ce

ra
ti

o
%

rein f orced

baseline
exact

bw

Fig. 4.12 Acceptance ratio

40 45 50 55 60
2

3

4

5

6

7
·10−4

node number

A
v
er

ag
e

V
N

fa
il

u
re

p
ro

b
ab

il
it

y

rein f orced

baseline

exact

bw

Fig. 4.13 VN failure probability

4.5.5 Scenario 2: variation of the number of substrate nodes

4.5.5.1 Configuration

In this scenario, the method performances are compared with the use of different sizes of

substrate networks. The number of substrate nodes varies from 40 to 60. Recall that the

difference of substrate nodes number results in different sizes of substrate networks. The

CPU capacity of each node is randomly chosen in [100, 150]. The bandwidth capacity is

randomly selected in [100, 150]. The failure probability of substrate links follows a uniform

distribution over the interval [0,10−4].

The virtual networks are also generated by GT-ITM tool. The number of virtual nodes of

each VN follows a uniform distribution between 3 and 10. The virtual nodes are intercon-

nected with probability 0.5. The CPU and bandwidth demands are uniformly chosen in [0,

20].

The VN request arrival rate λ is 4 per 100 time units. The life time of each VN follows

an exponential distribution with an average of 1000 time units. Each simulation lasts for

50000 time units.

4.5.5.2 Numeric result

The numeric results are shown in Figures 4.12, 4.13, 4.14 and 4.15.

In Figure 4.12, we get a similar observation as scenario 1. Our failure avoidance oriented

methods consume few additional resources, leading to the acceptance ratio lower than that

obtained without failure consideration.

88 VN Reliability Enhancement

40 45 50 55 60
3

6

9

11

14

17

node number

A
v
er

ag
e

ra
ti

o
o
f

af
fe

ct
ed

V
N

s
% rein f orced

baseline
exact

bw

Fig. 4.14 Ratio of affected VNs

40 45 50 55 60
100

200

300

400

500

600

700

800

node number

A
v
er

ag
e

af
fe

ct
ed

re
v
en

u
e

rein f orced

baseline
exact

bw

Fig. 4.15 Affected revenue

The VN failure probability in Figure 4.13 is significantly reduced with the use of our

methods. This is true for different sizes of substrate network. Since the size of VNs are

constant, the big substrate node number cases (55 and 60) simulate light loads. The results

show that the difference between the compared methods is almost stable.

For small substrate networks, the average number of VNs crossing each link is smaller

than that obtained with large substrate networks. As a result, a link failure affects much more

VNs in small substrate networks compared to large substrate networks. This explains the

diminution of the failure probability (Figure 4.13), the ratio of affected VNs (Figure 4.14)

and the affected revenue (Figure 4.15) with the increase of the number of substrate nodes.

For the same reasons as those mentioned in scenario 1, the reinforced method is slightly

better than the baseline heuristic.

4.5.6 Evaluation conclusion

The following conclusions summarize our simulation results:

• Optimization of failure probability can significantly improve the reliability. At the

same time, it does not consume too much resources.

• exact method determines the lower bound of failure probability optimization. Consid-

ering its computation time, exact method is not applicable in practice.

• Inspired by Steiner tree problem, baseline achieves high level of optimization and can

be considered as simple and efficient.

4.6 Conclusion 89

• rein f orced method saves bandwidth resources and takes advantage of the dynamic

metric model. It improves slightly the performances of baseline method with little

extra time complexity cost.

4.6 Conclusion

Virtual networks are being more and more used as a major component for network archi-

tecture. A single component of SN may be used to support a large number of VNs and

consequently, its failure may have a large impact on the reliability of these VNs. Failure re-

covery strategies can be applied to repair the VNs. However, the activation of these strategies

induces cost and delay, leading to communication disruptions before the recovery procedure

finishes.

In this chapter, we propose and present a novel approach for VNE reliability enhancement.

Our approach uses a probabilistic model avoiding as much as possible the vulnerable links

at the step of link mapping. In other words, our approach tries to provide natively a more

reliable virtual network by minimizing its failure probability. Simulation results show that our

method does achieve our design goal and improves the reliability compared to the traditional

VNEs with bandwidth optimization as a single objective. With our approach, at the price

of a slightly lower acceptance ratio, a VN provider can exhibit a better reliability for each

single VN instantiation. In case of substrate link failure, the number of affected VNs is also

reduced.

Chapter 5

Design of Survivable VN

5.1 Introduction

Network reliability involves a range of issues concerning the design of networks [CMDTM16].

A reliable network should be available as long as possible without service disruption, espe-

cially for real-time applications (VOIP, video conference) which are sensitive to network

disruption. Reliability also means that network should survive after a link (or node) failure.

We recall that networks fail for various reasons, such as software attacks, natural disasters,

misconfiguration, link cut, etc. If the survivability against a failure is not guaranteed, a single

network element’s failure may result in severe penalties for service providers.

In Chapter 4, we have presented failure avoidance oriented approaches, which aim to

improve the network reliability by avoiding the vulnerable links. Although the failure

avoidance enhances the network reliability without extra configurations, it cannot guarantee

service continuity upon any failure. To provide a high level reliability and ensure service

continuity, failure recovery is often adopted. It consists in determining backup paths that

receive the affected flows when a failure occurs. Restoration and protection are the two

main failure recovery techniques. Restoration is a re-active (post-failure) approach, where

the backup computation is preformed after the failure occurrence. This technique does

not allocate any resource before failure occurrence. On the contrary, protection is a pro-

active (pre-failure) approach, which pre-computes backup paths before failures. Generally,

protection reserves resources for the backup paths to guarantee enough resources upon failure

and ensure service continuity.

The resilience of virtualized networks is provided in 2 stages by protection or restora-

tion [HKA13]. generally, when a VN request arrives, service provider first determines a

Virtual Network Embedding (VNE) solution that often optimizes the bandwidth and CPU

[FBTB+13]. Then, any restoration or protection method [Kui12] is applied.

92 Design of Survivable VN

Since the existing VNE solutions are designed to optimize primary metrics (bandwidth,

latency, etc.), such solutions can lead to the difficulty to find backup paths.

Some survivable VNE solutions optimize jointly the primary and backup resources

leading to non optimal routing of the flows most of the time since these latter follow primary

paths.

To deal with the previous drawbacks, we propose a survivable service oriented protection-

level-aware virtual network embedding. In our solution, the virtual links are mapped on

primary substrate paths that are composed of links which are more likely to be protected.

Protection capabilities are taken into consideration at the stage of primary mapping. This

means that the primary paths are selected in a way that maximizes the protection. In some

cases (heavy network loads, disconnected network topology, etc.), VNs could not be entirely

protected. In such cases, we reduce the number of unprotected links that we select from the

set of less vulnerable links. In this way, probability of VN disruption is minimized.

With the assumption of simple failures, we formulate the VNE problem that maximizes

the reliability by selecting the protectable then less vulnerable links. As optimizing jointly

primary and backup paths is time-consuming and often not possible, we separate the primary

path computation from the backup path determination. In our proposition, primary flows are

mapped by privileging substrate links which have feasible backup paths. Then, based on

primary mapping, local backup paths are computed by applying the resource sharing between

the backup paths.

The rest of this chapter is organized as follows. Section 5.2 describes the network model

and the protection method that we adopted. Section 5.3 and 5.4 present respectively our

formulation and heuristic propositions to solve the VNE problem which maximizes the

reliability. The evaluation results are shown in section 5.5. Section 5.6 concludes this chapter.

5.2 Protection method and network model

5.2.1 Type of failure and protection method

As discussed in Chapter 2, there are various types of failures: nodes, links and SRLG. The

link failure is more common than node failure and a single failure occurs ten times than

multiple failures. In this chapter, we decided to focus on the most common type of failure,

i.e. single link failure.

The link failure can be recovered either by path (global) protection or link (local) protec-

tion. The study and analysis of the protection methods (c.f. Chapter 2 show that the path

protection methods suffer from long recovery time due to the need to notify the failure to

5.2 Protection method and network model 95

5.2.3 VNE with protection

Since a VN is composed of several virtual links, VN protection is more difficult to achieve

than the protection of a single path. VNE with link protection often includes the following

steps:

1. determining the primary mapping (nodes and links),

2. computing the backup paths for all the substrate links on the primary paths with

bandwidth respect,

3. reserving and updating the resources on backup links.

We briefly present the first and second steps. The third step is quite simple and thus not

presented here. We also show some issues relating to VNE with link protection.

5.2.3.1 Primary mapping

VNE for primary flows can be performed in one or two stages. Recall that we are focusing

on the link mapping and protection issue. We denoted M() as the node mapping function,

so M(A) implies the substrate node on which the virtual node A is embedded. All of the

embedded substrate nodes form the set NS
M. Link mapping stage embeds the virtual links to a

subset of substrate links denoted by LS
M.

A primary mapping example is shown in Figure 5.2. The virtual network consists of

3 nodes {A,B,C} and 2 virtual links {A−B,B−C} (Figure 5.2(a)). Both the virtual links

demand 10 units of bandwidth. The substrate network (Figure 5.2(b)) is composed of 5

nodes and 6 links. Each substrate link ls is labelled with the corresponding primary residual

bandwidth FRls (e.g. FRa−b = 50). We assume that the node mapping is: M(A) = b,

M(B) = c and M(C) = d. If the main criterion is primary bandwidth optimization, a primary

mapping is given by the solid lines, i.e. {A−B} and {B−C} are mapped to {b− c} and

{c−d} respectively.

5.2.3.2 Backup path computation

For each substrate link ls used by the primary mapping, a backup path is computed to deal

with its failure. The resources of backup paths which protect against different failures on the

same substrate links bls are shared. Constrained shortest path algorithm is run on the network

that includes only the link verifying the capacity constraints to determine the backup paths.

In the example of Figure 5.2, we assume that the residual backup bandwidth associated

to the failure of c− d is 10 on all the substrate links (e.g. BRe−c(c− d) = 10) except for

5.2 Protection method and network model 97

e− d where it is equal to 5 (i.e. BRe−d(c− d) = 5). In Figure 5.3, the primary link b− c

is protected by the backup path b−a− e− c and the primary link c−d is protected by the

backup path c−e−d. The backup resources on e−c are shared between the previous backup

paths which protect against failures of different links b− c and c−d.

Although the solution shown in Figure 5.2 optimizes the primary resources, it is insuffi-

cient to allow the VN protection. Indeed, this solution includes the primary substrate link

c−d that is unprotectable because of the lack of backup resource on the link e−d. As a

result, link c−d should not be used for the primary mapping. To improve the reliability, the

primary path c− e−d should be selected (see Figure 5.4) for the mapping of virtual link

B−C to ensure its full protection. In Figure 5.4, the overall primary mapping and its local

share protection solution are depicted. Note that the labels on substrate links are primary

residual bandwidth (as in Figure 5.2, FRc−d = 30). links b− c, c− e and e−d are protected

by backup paths b−a− e− c, c−b−a− e and e− c−d, respectively.

5.2.4 Position of problem

The resource sharing is useful but not sufficient to optimize the resource allocation. Moreover,

the protection can fail to determine a backup path though the backup resources are reduced.

As shown in Figures 5.3 and 5.4, the primary path selection has incidence on the protection

capabilities: the primary path c−d cannot be protected whereas the path c− e−d is fully

protected. Instead of rejecting a VN because of insufficient backup resources, an approach

could decide to accept the VN with some unprotected links. In this case, the number of

unprotected links should be minimized. In addition, the unprotected links should be as much

as possible less vulnerable.

Below, we give the issues that we should solve to improve the reliability:

• the independent computation of primary and backup mappings can lead to the difficulty

of backup path establishment;

• the lack of backup resource can result in the rejection of the whole VN though the

number of unprotected links is low;

• the unprotected links need to be well selected to reduce the failure risks.

In the following sections, we try to solve these issues by minimizing the VN failure

probability. The idea consists in combining the protection with the failure avoidance oriented

approach.

98 Design of Survivable VN

5.3 Protection-level-aware VNE Formulation

In this section, we formulate the problem of VNE that maximizes the reliability by combining

the protection with the failure avoidance technique. In our formulation, the primary band-

width resources are optimized under the constraint of maximizing the reliability. Thus, in

addition of primary flow and capacity constraints, we add backup path constraints. Recall that

with the separation of the bandwidth capacity in primary and backup pools, it is sufficient to

ensure that the residual backup bandwidth is lower than the backup capacity of each protected

link.

5.3.1 Objective

Classical VNE formulation optimizes primary bandwidth resources. Given a VN request

G(NV ,LV), a typical objective function corresponds to:

min ∑
ls∈LS

1

FRls
∑

lv∈LV

F lv

ls (5.1)

where F lv

ls is a binary variable denoting that virtual link lv is routed on a path including ls.

We define a set of binary variables Yls indicating if VN is protected against the failure of

link ls. Note that a VN is always protected against the failure of links which are not used for

the primary mapping.

Yls =







1, VN is protected against the failure of ls

0, VN is not protected against the failure of ls
(5.2)

The survivability probability PS(Y) of a VN against single failure is given by:

PS(Y) = ∏
ls∈LS

(1−Pls(1−Yls)) (5.3)

Formula (5.3) computes the survivability of a VN as the survivability probability product

of its primary links. This probability is equal to (1−Pls) if ls is not protected, otherwise it is

equal to 1. Thus, to optimize the reliability, Formula (5.3) should be maximized. Instead of

maximizing the non linear function (5.3), we look for a linear function that is optimal for the

same solution as (5.3).

5.3 Protection-level-aware VNE Formulation 99

To determine such linear function, we apply logarithm function to (5.3):

log PS(Y) = log ∏
ls∈LS

(1−Pls(1−Yls))

= ∑
ls∈LS

log(1−Pls(1−Yls))

= ∑
ls∈LS

log(1−Pls)(1−Yls)

(5.4)

(5.3) and (5.4) are maximized for the same solution. Instead of maximizing (5.4), we chose

to minimize −log PS(Y). The final objective function that maximizes the VN survivability

is described below:

min ∑
ls∈LS

[−log(1−Pls)](1−Yls) (5.5)

To optimize the primary resources under the constraints of maximizing the reliability,

Formula (5.1) and (5.5) should be combined (see the next Section).

5.3.2 Formulation

By combining the survivability probability and primary bandwidth resources, we formulate

the survivable VNE problem that minimizes the primary resources under condition of

maximizing the reliability without path splitting as follows:

Variables:

• F lv

ls : Primary flow (see above).

• Blv

bls(ls) : A binary variable denoting whether backup link bls protects the substrate

link failure risk ls for the flow of lv. In other words, Blv

bls(ls) is set to 1 if the failure of ls

results in the rerouting of the primary flow of lv on a backup path crossing link bls.

• Yls : Protection indicator (see Formula (5.2)).

Objective:

Minimize:

∑
ls∈LS

[−log(1−Pls)](1−Yls)+ ε ∑
ls∈LS

1

FRls
∑

lv∈LV

F lv

ls (5.6)

Subject to:

100 Design of Survivable VN

Primary flow constraints:

∑
n∈NS|∃ls=(m,n)

F lv

ls − ∑
n∈NS|∃ls=(n,m)

F lv

ls =



















1, m = M(src(lv))

−1, m = M(dst(lv))

0, otherwise

,∀m ∈ Ns, lv ∈ LV

(5.7)

Primary bandwidth capacity constraints:

∑
lv∈LV

bw(lv)F lv

ls ≤ FRls , ∀ls ∈ LS (5.8)

Backup flow constraints:

∑
n∈NS|∃bls=(m,n),bls ̸=ls

Blv

bls(ls)− ∑
n∈NS|∃bls=(n,m),bls ̸=ls

Blv

bls(ls) =



















F lv

ls Yls , m = src(ls)

−F lv

ls Yls , m = dst(ls)

0, otherwise

,∀m ∈ Ns, lv ∈ LV , ls ∈ LS

(5.9)

Backup bandwidth capacity constraints:

∑
lv∈LV

bw(lv)Blv

bls(ls)≤ BRbls(ls), ∀bls ∈ LS, ls ∈ LS (5.10)

Objective (5.6) combines and favors the survivability failure probability optimization

(Equation (5.5)) to the primary resource allocation (Equation (5.1)). The rationale of this

combined optimization is the following. By multiplying the amount of primary resources

with a small constant ε , we favor the minimization of the first part in objective (5.6) which

corresponds to the survivability probability. In other words, objective (5.6) privileges the

selection of the best primary links which are protectable: if all the links are protected

(Yls = 1,∀ls ∈ LS), bandwidth resource is optimized for primary links; When some primary

links cannot be protected due to the lack of resources (Yls ̸= 1,∀ls ∈ LS), the survivability

probability is maximized.

Constraints (5.7) and (5.8) are primary flow and capacity constraints. src(lv) and dst(lv)

retrieve respectively the source and destination nodes of lv. Recall that M() is the node

mapping function.

5.4 Heuristic 101

Constraints (5.9) are backup flow constraints. These constraints can be easily linearized.

Constraints (5.10) ensure that the cumulated bandwidth of the backup paths traversing bls

and protecting against the failure risk ls should not exceed the backup capacity of link bls.

Note that the ILP problem presented here does not optimize the resources of backup paths.

Slight modifications to the objective function will permit such optimization. In addition, it

may involve a very large number of binary variables. For instance, assume that the substrate

network consists of 100 links and a VN request consists of 10 virtual links. The number of

variables Blv

bls(ls) is about 105. Computing the primary paths while pre-determining backup

paths at the same time results in explosion of the number of variables.

In the next section, we propose a heuristic to solve the precedent problem in polynomial

time.

5.4 Heuristic

Here, we propose an efficient heuristic for survivable VNE problem without path splitting.

In our proposition, the primary paths are selected as the shortest ones according to the

survivability probability. When several paths optimizing the survivability probability exist,

we choose the path that minimizes the primary resources.

Next, we describe our propositions which favor the use of protectable links for primary

mapping. For this purpose, a backup feasibility algorithm is performed for each substrate

link to select the protectable links.

5.4.1 Principle

Our objective (5.6) consists in determining the best mapping that maximizes the survivability

probability. The best mapping is the one that minimizes the primary resource allocations

among the mappings which optimize the survivability probability.

To achieve our objective, we define a new link cost allowing the maximization of the sur-

vivability probability which reducing the primary resource allocations with the use of shortest

path algorithm. Our link cost is determined after separating the potential primary links in

two subsets: protectable links which can be protected by backup paths, and unprotectable

links which cannot be protected due to topology characteristics or to the lack of resources.

Recall that a protected link is 100% reliable since we assume single failures. Below, the

formal definition of the link cost is:

102 Design of Survivable VN

cost(lv, ls) =
ε

FRls
+







0, if a backup path protecting ls exists

−log(1−Pls),otherwise
(5.11)

For the protectable links, the primary costs depend only on resource allocations (ε
FRls

). For

the unprotectable links, the primary costs depend only on failure probability (−log(1−Pls)).

In this way, the mapping of primary virtual links on shortest paths will result in the selection

of the paths which maximize the survivability probability and reduce the primary resource

allocation.

5.4.2 Simple on-line backup verification

In our first proposition, we compute on-line the link costs described in the previous section.

For each potential substrate link of a virtual link, we check for the existence of a backup

path that protects it. Accordingly, we determine the primary costs (see Equation 5.11) and

deduce the shortest primary paths. Then, backup paths protecting the links of the determined

primary paths are established and configured.

The details of our proposition are shown in Algorithm 5. The link costs are computed in

lines 4-9. The cost part related to the failure probability is added when backup feasibility fails

to determine a backup path (unprotectable links). Primary link mapping is then determined

with the use of the shortest path algorithm that optimizes the link cost (line 10). For each

primary link, a local backup path is determined in line 18. We note that the shortest path

algorithm can be used for backup path feasibility verification and determination.

The resources are allocated for backup links in line 20. The backup residual bandwidth

(BRbls(ls)) is updated for link ls so that the backup feasibility verification will take it into

account in next mappings.

In Algorithm 5, we deliberately omit to specify the backup path search procedure (line

5 and 18). By assuming a complexity of O(T) for the backup path search procedure, we

deduce the complexity of Algorithm 5 which correspondO(|LV | |LS| T). This means that the

minimal complexity corresponds to O(|LV | |LS|2) since the quickest backup search procedure

has complexity O(|LS|+ |NS|= O(|LS|). When the backup paths correspond to the shortest

ones, the complexity is O(|LV | |LS|2 log|NS|).

5.4 Heuristic 103

Algorithm 5: On-line backup verification based link mapping

Input :virtual network request GV (NV ,LV)
Output : link mapping and backup solution

1 begin

2 foreach lv ∈ LV do

3 foreach ls ∈ LS do

4 Set cost(lv, ls) = ε
FRls

;

5 Determine backup path π ′ for ls, such that: ∀bls ∈ π ′ : bw(lv)≤ BRbls(ls);
6 if π ′ = NULL then

7 cost(lv, ls) = cost(lv, ls)+ [−log(1−Pls)]
8 end

9 end

10 Determine shortest cost(lv, ls) based primary path π;

11 if π = null then

12 Free pre-allocated resource;

13 return no solution;

14 end

15 else

16 Pre-allocate primary resource;

17 foreach ls ∈ π do

18 Determine backup path π ′ for ls, such that:

∀bls ∈ π ′ : bw(lv)≤ BRbls(ls);
19 if π ′ exists then

20 Pre-allocate backup resource on π ′;

21 end

22 end

23 end

24 end

25 return primary link mapping and backup solution;

26 end

5.4.3 Backup path pre-verification

The shortcoming of the on-line backup feasibility verification is that it requires for each

VN to compute the backup paths protecting all the potential primary links. This on-line

computation is time consuming.

Below, we propose a second approach that pre-determines the backup paths, in advance

at network initialization (i.e. before VN arrivals). It is based on maximum flow algorithm.

5.4 Heuristic 105

Algorithm 6: max-flow backup path pre-computation

Input :GS(NS,LS)
1 begin

2 foreach ls ∈ LS do

3 Compute max-flow graph MFGr(ls) on GS(NS,LS/ls);
4 Determine set of path Π(ls) in MFGr(ls) such that the cumulated bandwidth

of path in Π(ls) corresponds to the max-flow value;

5 end

6 end

the sum of the values associated to the links leaving the source corresponds to the maxflow

in the network.

In Figure 5.5, the maximum flow solution is shown from source X to sink Y. The amount

of flow/capacity correspond to the labels in the figure. The maxflow for this example is 3.

From this result, we can deduce the paths to achieve the maxflow: {X −A−C−Y} and

{X−B−D−E−Y}.

The maxflow problem is solvable with polynomial time algorithms like the Ford-Fulkerson’s

method [FJF09]. The idea behind the algorithm is as follows: as long as there is a path from

the source to the sink, with available capacity on all edges in the path, we send flow along

one of the paths. Then we find another path, and so on. The procedure is repeated until no

path available capacity can be determined.

The max-flow value for ls corresponds to the maximum amount of flow that can be

protected (or that are protectable) on the primary link ls. In Algorithm 6, we pre-compute for

each substrate link ls of capacity BCls the set of backup paths Π(ls) allowing to maximize

the flows between the extremity nodes of ls, by applying Ford-Fulkerson’s algorithm [FJF09]

after pruning ls. Each path π in Π(ls) is stored and associated with a capacity BCπ and a

backup residual bandwidth BRπ .

5.4.3.2 Backup path verification

When a VN request arrives, Algorithm 7 is run to determine the mapping. The pre-computed

set of backup paths are used to determine the costs of substrate links (line 4-7) according to

Equation 5.11. A substrate link ls is protectable on a virtual link lv if there is a path π ∈Π(ls)

such that BRπ ≥ bw(lv).

After cost determination, a shortest primary path is determined (line 9). This path is then

protected with the selection and configuration of pre-computed backup paths (lines 15-20).

106 Design of Survivable VN

Algorithm 7: Backup pre-verification based link mapping

Input :virtual network request GV (NV ,LV)
Output : link mapping and backup solution

1 begin

2 foreach lv ∈ LV do

3 foreach ls ∈ LS do

4 Set cost(lv, ls) = ε
FRls

;

5 if ∀π ∈Π(ls) : BRπ ≤ bw(lv) then

6 cost(lv, ls) = cost(lv, ls)+ [−log(1−Pls)]
7 end

8 end

9 Determine shortest cost(lv, ls) based primary path π;

10 if π = null then

11 Free pre-allocated resource;

12 return no solution;

13 end

14 else

15 Pre-allocate primary resource;

16 foreach ls ∈ π do

17 Select one backup path such that π ′ ∈Π : bw(lv)≤ BRπ ′

18 if π ′ exists then

19 Pre-allocate backup resource on links of π ′;

20 BRπ ′ ← BRπ ′−bw(lv);

21 end

22 end

23 end

24 end

25 return link mapping and backup solution;

26 end

As the maximum number of paths in any set of backup path Π(ls) is lower than |LS|, the the

worst-case complexity of Algorithm 7 corresponds to O(|LV | |LS|2).

5.5 Performance evaluation

5.5.1 Environment

To include the protection, we extend the simulation described in the previous chapter. The

simulation architecture is depicted in Figure 5.6. VN requests are generated by GT-ITM (see

Appendix A), and are added to the queue with their arrival and depart events. Link failures

5.5 Performance evaluation 107

follow the Weibull distribution with the same parameters as in Chapter 4. To protect against

the link failures, backup mapping is implemented and added to the embedding module.

By preforming the embedding algorithm, primary and backup resources are allocated on

substrate network. When a VN request leaves, the primary and backup resources are freed.

When a link failure occurs, the protected flows are rerouted to the backup paths, whereas the

unprotected flows are affected by the failure.

For the performances study, we use different instances of networks, including a small

well connected network, a medium network (less connected network compared to the first

one) and a random network. We also set different substrate link failure probability models

for the scenarios. The details of the differences between the scenarios are described later in

the next sub-sections. Here we show the common configurations.

On the substrate network, the CPU capacity of each node is randomly chosen within

[1000, 1500]. The bandwidth capacity is randomly selected within [1000, 1500]. The

primary and backup capacities are determined by a primary capacity ratio τ (0≤ τ ≤ 1) that

is configurable for each substrate network.

The number of virtual nodes of each VN follows a uniform distribution between 3 and 8.

The virtual nodes are interconnected with probability 0.4. The CPU and bandwidth demands

are uniformly chosen in [0, 20].

The VN request arrival process is Poisson with arrival rate λ per 100 time units. In our

experiments, we compare the methods with different arrival rates λ . This latter varies from 8

(low load) to 12 (high load). The life time of each VN follows an exponential distribution

with an average of 2000 time units. Each simulation lasts for 1×105 time units.

5.5.2 Compared methods

For the comparison study, we use two categories of protected VNEs: (1) full protection (FP)

based VNE and (2) best effort protection (BEP) based VNE. With the first category, a VN

request is satisfied only when all the corresponding primary links are protected whereas we

accept and accommodate the VN requests of the second category even when some primary

links are not protected.

We select two methods in the first category, referred as Basic_FP and SOL_FP. Basic_FP

uses classical shortest path algorithm to compute primary mapping without backup feasibil-

ity verification, while SOL_FP adopts simple on-line backup verification method (Section

5.4.2).

In the second category of protected VNEs, we select 3 methods: Basic_BEP, SOL_BEP

and MFP_BEP. With these last methods, the acceptation of a VN request is determined

only by the available primary resources. Basic_BEP and SOL_BEP have the same mapping

5.5 Performance evaluation 109

8 9 10 11 12
85

90

95

100

arrival rate λ

A
cc

ep
ta

n
ce

ra
ti

o
%

Basic_BEP

SOL_BEP

MFP_BEP

(a) Acceptance ratio

8 9 10 11 12

0.3

0.6

0.9

1.2

1.5
·10−5

arrival rate λ

F
ai

lu
re

P
ro

b
ab

il
it

y

Basic_FP

SOL_FP

Basic_BEP

(b) VN failure probability

8 9 10 11 12
0

1

2

3

4
·104

arrival rate λ

T
o
ta

l
af

fe
ct

ed
re

v
en

u
e

Basic_BEP

SOL_BEP

MFP_BEP

(c) Affected VN revenue

8 9 10 11 12
50

70

90

110

130

150

arrival rate λ

R
u
n
n
in

g
ti

m
e

Basic_BEP

SOL_BEP

MFP_BEP

(d) Running time

Fig. 5.7 Scenario 1: small size network

5.5.4 Scenario 1: small network

We first compare the methods (Basic_BEP, SOL_BEP and MFP_BEP) on the European

optical network (cost239) which contains 11 vertices and 26 edges. Cost239 is a well

connected network (minimum degree is 3). In this scenario, we assume an identical link

failure model. Each substrate link has the same link failure probability (1× 10−4). This

model is useful for networks with similar link characteristics. The ratio of the primary

bandwidth corresponds to 0.75 of the total capacity.

The comparison results are shown in Figures 5.7a, 5.7b, 5.7c and 5.7d. For different

arrival rates λ , Figures 5.7a, 5.7b, 5.7c and 5.7d depict respectively the evolution of the

110 Design of Survivable VN

acceptance ratios of VNs, the VN failure probability, the total affected revenue and the

computation time of algorithms.

In Figure 5.7a, we see that Basic_BEP has VN acceptance ratio slightly better than our

proposals (SOL_BEP and MFP_BEP). Basic_BEP focuses only on the primary mapping so

it is normal that this method can embed more VNs than our methods. We deduce that the

backup feasibility verification has a slight side effect on the primary mappings.

Figures 5.7b and 5.7c are obtained by a random generation of link failure (according to

the probability law). Figure 5.7c shows clearly that SOL_BEP and MFP_BEP have lower

affected revenue than Basic_BEP. More specifically, VN failure probability in Figure 5.7b

has been cut down by our proposals SOL_BEP and MFP_BEP. Note that the difference

between our 2 proposals is tiny.

In Figure 5.7d, we see that the running times of Basic_BEP and MFP_BEP are close

and much smaller than those of SOL_BEP. MFP_BEP uses pre-computed backup paths to

select the protectable links, SOL_BEP spends much time on the on-line computation of all

the backup paths.

5.5.5 Scenario 2: medium size network

We retrieved a real medium size network (germany50) from SNDlib (see Appendix A). This

network interconnects German cities and is composed of 50 vertices and 88 edges. The

minimum degree of this network topology is 2. It is less connected than cost239. There is

nearly no direct link between extremity nodes. Therefore, the path between extremity nodes

are quite long. Different from scenario 1, the link failure probability is not the same. The link

failure probability follows a uniform distribution on [0, 1×10−4]. This random probability

model is suitable for a network with various physical link characteristics.

Figures 5.8a, 5.8b, 5.8c and 5.8d show respectively the evolution of the VN acceptance

ratios, the VN failure probability, the total affected revenue and the full protection ratio.

In Figure 5.8a, Basic_BEP, SOL_BEP and MFP_BEP accept more VNs than Basic_FP

and SOL_FP. In case of insufficient backup resource, accepting VNs with some unprotected

links can largely increase the VN acceptance ratio. Basic_BEP improves and has the highest

acceptance ratio at the cost of a very high failure probability (Figure 5.8b) and a low full

protection ratio (Figure 5.8d). The methods (SOL_BEP and MFP_BEP) adopting our

proposals remedy this problem by the pre-verification of backup resources at the step of

primary mapping. Besides, our proposals decrease the affected revenue (Figure 5.8c) and

thus increase the SP profit.

By comparing Basic_FP and SOL_FP, we deduce that with the same level of reliability

(full protection), our proposed method SOL_FP accept more VNs in Figure 5.8a and has a

5.5 Performance evaluation 111

8 9 10 11 12
65

70

80

90

100

arrival rate λ

A
cc

ep
ta

n
ce

ra
ti

o
%

Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(a) Acceptance ratio

8 9 10 11 12

1

2

3

4

5

6
·10−5

arrival rate λ

F
ai

lu
re

P
ro

b
ab

il
it

y
Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(b) VN failure probability

8 9 10 11 12
0

0.3

0.6

0.9

1.2

1.4
·105

arrival rate λ

T
o
ta

l
af

fe
ct

ed
re

v
en

u
e

Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(c) Affected VN revenue

8 9 10 11 12
40

50

60

70

80

90

100

arrival rate λ

F
u
ll

p
ro

te
ct

io
n

ra
ti

o
%

Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(d) Full protection ratio

Fig. 5.8 Scenario 2: medium network

112 Design of Survivable VN

0.5 0.55 0.6 0.65 0.7
60

70

80

90

100

primary capacity ratio τ

A
cc

ep
ta

n
ce

ra
ti

o
%

Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(a) Acceptance ratio

0.5 0.55 0.6 0.65 0.7
0

1

2

3

4

5
·10−5

primary capacity ratio τ

F
ai

lu
re

P
ro

b
ab

il
it

y

Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(b) VN failure probability

0.5 0.55 0.6 0.65 0.7
0

0.3

0.6

0.9

1.2
1.3
·105

primary capacity ratio τ

T
o
ta

l
af

fe
ct

ed
re

v
en

u
e

Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(c) Affected VN revenue

0.5 0.55 0.6 0.65 0.7
40

50

60

70

80

90

100

primary capacity ratio τ

F
u
ll

p
ro

te
ct

io
n

ra
ti

o
%

Basic_FP

SOL_FP

Basic_BEP

SOL_BEP

MFP_BEP

(d) Full protection ratio

Fig. 5.9 Scenario 3: primary capacity ratio τ

better utilization of resource. Since the primary and backup mappings are independent with

Basic_FP, more VNs are rejected due to the lack of backup resources.

5.5.6 Scenario 3: primary capacity ratio τ

In this scenario, we study the impact of primary capacity ratio τ on the performances of the

compared methods. The substrate network, which is generated by GT-ITM, is composed of

30 nodes and 55 links. τ varies from 0.5 to 0.7. The VN arrival rate is 10 for each τ . The

link failure probability follows a uniform distribution in [0, 1×10−4].

5.6 Conclusion 113

In Figure 5.9a, with the increase of τ , the difficulty to full protect a VN increases (recall

that the increase of τ decreases the backup resources). In Figures 5.9b and 5.9c, the difference

between our methods (SOL_BEP and MFP_BEP) and Basic_FP increases as τ augments

from 0.5 to 0.65. However, the difference stabilizes and does not increase for τ ≥ 0.7. In

Figure 5.9d, SOL_BEP and MFP_BEP show higher full protection ratios than Basic_BEP.

To summarize, this last scenario shows that less the backup resources are, better our

proposals are. When the backup resources are large and sufficient, there is almost no

difference between our proposals and the basic ones.

5.5.7 Conclusion of simulation

The simulations allows us to conclude that:

• with a slight decrease of VN acceptance, the backup feasibility verification improves

significantly the reliability for different networks;

• pre-computing backup paths according to max-flow algorithm makes the backup

feasibility verification method time-saving;

• with the same level of reliability, our backup feasibility verification methods are

efficient in terms of resource utilization;

• in case of insufficient backup resources, it is better to accept the non protected VNs

and to use the failure avoidance method to minimize the VN failure probability.

5.6 Conclusion

In a virtualized network environment, virtual networks share the physical resources. A single

link failure can lead to fatal dysfunction of several virtual networks. As a result, network

reliability is a desirable and, in our opinion, indispensable for virtual networks.

To enhance the survivability of VNs, survivable network design methods are used.

Restoration computes a backup path after failure occurrence whereas protection pre-computes

backup paths before failures so that the disruption time is reduced.

In order to protect against single link failures, enough resources should be preserved for

backup paths. Classical protection methods consider separately primary mapping and backup

paths, leading to non optimal resilience against failures.

In this chapter, we proposed a novel virtual network protection framework, which maps

the primary links in such a way that backup path feasibility is taken into consideration. In

114 Design of Survivable VN

our proposals, we first select the protectable links which reduce the resource allocations for

primary mappings. When full protection of VNs is not guaranteed, we proposed to include

the less vulnerable links. After describing an exact solution that maximizes reliability while

reducing resource allocations, we proposed 2 scalable and efficient heuristics.

Our proposals are validated by simulations. The numeric results show that our proposi-

tions reduce the VN failure probability with slight decrease of VN acceptance.

Chapter 6

Conclusion and perspective

6.1 Conclusion

Network Virtualization (NV) is one of the key technologies for the future network. It allows

the creation of various specific-purpose independent logical networks (virtual networks) on

top of a shared physical network (substrate network). The VNE (Virtual Network Embedding)

problem, which consists in finding an efficient mapping between substrate network and virtual

network in terms of resource allocation, is a main challenge for network virtualization.

A user-specific virtual network may spread over substrate networks of several operators.

We thus have a VNE problem over multi-domain, each domain being the substrate network

of a single operator. In order to achieve the multi-domain VNE, domains need to cooperate

whereas it is probable that each domain does not expose its complete information to others.

With limited information disclosed by protocols like BGP, existing solutions mainly focus

on the partitioning of a multi-domain VN to each domain. The inter-domain connections

are determined independently by shortest path algorithms. This leads to the selection of the

same peering links for the mapping and results in an inefficient resource utilization of intra

domain mapping.

To address this issue, we propose a mapping approach which improves VNE by including

both the intra domain links with the peering links in the mapping computation. Our proposal

simplifies the mapping that is done in two stages: VN partitioning and link mapping. A

series of iterative downsizing link mapping is performed by leveraging the VNP layer partial

information. The downsizing algorithm maps the intra domain and peering links in the same

multi-commodity flow problem so that the peering links are co-optimized with the intra

domain links. Furthermore, we explore the problem of determining the domain sequence

which improves the mapping and proposes a recursive approach that determines efficient

mapping solutions.

116 Conclusion and perspective

The survivability of VN is also an important issue of network virtualization. It aims to

ensure service continuity by avoiding as much as possible the failures and/or to repair the

affected flows upon failures. The recovery of the network should be transparent for end-users.

For efficient and reliable VNs, the survivability should be taken into consideration at the

step of primary mapping. In this way, the survivable VNE selects a reliable primary mapping

and often a backup mapping which can deal with the network failures.

Network failure may occur both on substrate layer or virtual layer. Both the links and

nodes can fails. In addition, failures may be multiple. To provide the survivability for VNE,

pre-failure and post failure methods can be adopted. Post failure methods react after the

failure occurrence by activating the backup restoration procedures. Pre-failure methods

pre-compute survivable mappings before the failures and often reserve resources for the

backup mechanism (to ensure enough resources after the recovery). Failure avoidance and

failure protection are two main categories in pre-failure methods.

Failure-avoidance provides a primary routing which is determined in a way that failures

affect as little as possible the VNs. Such technique generally determines routes which bypass

the network components which are statistically the most vulnerable to failures. Without extra

configurations, this technique enhances the network reliability.

After studying and proving that the VNE problem which minimizes the failure probability

is NP-hard, we proposed new efficient heuristics implementing the failure avoidance. Two

main cases of networks are treated: (1) network with infinite resources on links and (2)

network with limited resources on links. The first one corresponds to the case where the

resources are much higher than the demands, whereas the second one correspond to the case

where the substrate link resources are comparable to the demands.

For the case of infinite resources on links, we prove that the VNE problem optimizing

the failure probability is equivalent to the Steiner tree problem.

For the case of limited resources on links, we first propose an exact ILP formulation

that includes the resource constraints. Then, we give two efficient heuristics to solve the

problem: baseline heuristic and reinforced heuristic. The baseline heuristic optimizes only

the failure probability by running the shortest path algorithm which maps the virtual links on

the most reliable substrate links. The reinforced heuristic improves the precedent heuristic by

including the resource (i.e. the bandwidth) factor to the cost function so that it also reduces

the bandwidth utilization.

Failure avoidance technique improves the reliability but cannot guarantee the service

continuity upon any failure. As a result, failure protection, which provides a high reliability

level, should be implemented and eventually combined with the failure avoidance technique.

6.2 Perspective 117

Protection pre-computes backup paths and reserves the backup resources. Three types of

protection can be used: node protection, path protection and shared link protection. Virtual

node protection replaces the affected nodes by migration. Path protection, which searches for

a disjoint backup path for the primary path, suffers from the high recovery latency problem.

Shared link protection determines one backup path for each link on the primary path.

For rapid recovery, the shared link protection is preferred to the path protection. Besides,

to save the bandwidth, the backup paths protecting against different risks should share their

resources. Due to the difficulty of conjoint optimization of the primary and backup resources,

the backup path computations are often performed independently from the primary mapping.

This can lead to the rejection of some backup paths because of inefficient choice of the

primary paths.

To address the problem, we propose a protection-level-aware survivable VNE. In our

proposal, the existence of the backup paths is checked and used for primary mapping. The

virtual links are mapped to the primary paths which offer the best possibility of protection

and failure avoidance. In other words, we combine the failure avoidance with the protection

such that the survivability is optimized.

For the checking of backup path existence, we propose two methods: on-line method and

max-flow based method. The first one computes on-line for each virtual link and substrate

link a backup path, whereas the backup path computations are done off-line (at network

initialization) and quickly with the max-flow based method.

6.2 Perspective

Network virtualization is a key technique for the future network and it has been implemented

in laboratory and industry environments. In this thesis, we study and focus on the resource

allocation problem in network virtualization. Our objective is to provide new efficient and

survivable virtual network embeddings under various substrate and virtual requirements. We

gives some perspectives in this area:

• The protection method itself is very costly. It is not necessary for service providers to

have a full protection of every service. Some services, which are sensitive to disruption,

need full protection, whereas others not. According to the Service-level agreement

(SLA), the survivable VNE should be able to adapt different reliability levels with

minimal resource consumption. This leads to some new parameters and objective

functions related to the different reliability levels. Sometimes, multiple criterion

(bandwidth, probability, delay, etc.) need to be taken into account. Multi-objective

optimization could be a working direction of this kind of problem.

118 Conclusion and perspective

• We only studied the link failure case. Node protection is also an important issue that

should be solved. The failure of intermediate substrate node can be seen as the failure

of all its adjacent substrate links. In this way, the failure of a substrate node can be

treated as a failure of multiple links. Multi-failure protection methods can be adopted.

• We have studied the multi-domain VNE problem. The problem of scalability still

exists. If the virtual network request concerns many domains all over the world, the

organization of the network need to be evaluated. The current information exchange

model is not suitable for the case of large number of domains. New information

exchange model need to be developed.

• The network virtualization is not an independent technique. To implement and com-

mercialize the network virtualization, various techniques (SDN, NFV) need to be

integrated. SDN provides a good centralized architecture and facilitate the information

exchange and management. NFV provides virtualization of function and the separation

of function with physical equipment. By combining NV, SDN and NFV, we are looking

forward to a full virtualization of network. Some new issues can arise during this

process.

References

[APST05] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Over-
coming the internet impasse through virtualization. Computer, (4):34–41,
2005.

[ARN16] Max Alaluna, Fernando MV Ramos, and Nuno Neves. (literally) above the
clouds: Virtualizing the network over multiple clouds. In NetSoft Conference
and Workshops (NetSoft), 2016 IEEE, pages 112–115. IEEE, 2016.

[BHFDM12] Juan Felipe Botero, Xavier Hesselbach, Andreas Fischer, and Hermann
De Meer. Optimal mapping of virtual networks with hidden hops. Telecom-
munication Systems, 51(4):273–282, 2012.

[BHH+13] I. B. Barla, K. Hoffmann, M. Hoffmann, D. A. Schupke, and G. Carle. Shared
protection in virtual networks. In Proc. IEEE Int. Conf. Communications
Workshops (ICC), pages 240–245, June 2013.

[BHK12] Abdeltouab Belbekkouche, Md Hasan, and Ahmed Karmouch. Resource
discovery and allocation in network virtualization. Communications Surveys
& Tutorials, IEEE, 14(4):1114–1128, 2012.

[CB09] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. Network virtualization:
state of the art and research challenges. IEEE Communications magazine,
47(7), 2009.

[CB10] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network
virtualization. Computer Networks, 54(5):862–876, 2010.

[CMDTM16] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee. A survey
on resiliency techniques in cloud computing infrastructures and applications.
Communications Surveys & Tutorials, IEEE, PP(99):1, 2016.

[CRB09] NM Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf
Boutaba. Virtual network embedding with coordinated node and link mapping.
In INFOCOM, pages 783–791. IEEE, 2009.

[CSB10] Mosharaf Chowdhury, Fady Samuel, and Raouf Boutaba. Polyvine: policy-
based virtual network embedding across multiple domains. In Proceedings of
the second ACM SIGCOMM workshop on Virtualized infrastructure systems
and architectures, pages 49–56. ACM, 2010.

120 References

[CSZ+11] Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan
Luo, and Jie Wang. Virtual network embedding through topology-aware node
ranking. ACM SIGCOMM Computer Communication Review, 41(2):38–47,
2011.

[DRP13a] David Dietrich, Amr Rizk, and Panagiotis Papadimitriou. Autoembed: au-
tomated multi-provider virtual network embedding. In ACM SIGCOMM
Computer Communication Review, volume 43, pages 465–466. ACM, 2013.

[DRP13b] David Dietrich, Amr Rizk, and Panagiotis Papadimitriou. Multi-domain
virtual network embedding with limited information disclosure. In IFIP
Networking Conference, 2013, pages 1–9. IEEE, 2013.

[FBTB+13] Andreas Fischer, Juan Felipe Botero, M Till Beck, Hermann De Meer, and
Xavier Hesselbach. Virtual network embedding: A survey. Communications
Surveys & Tutorials, IEEE, 15(4):1888–1906, 2013.

[FJF09] LR Ford Jr and DR Fulkerson. Maximal flow through a network. In Classic
papers in combinatorics, pages 243–248. Springer, 2009.

[FSF13] C. Fuerst, S. Schmid, and A. Feldmann. Virtual network embedding with
collocation: Benefits and limitations of pre-clustering. In Proc. IEEE 2nd Int
Cloud Networking (CloudNet) Conf, pages 91–98, November 2013.

[GBM+16] Rafael L Gomes, Luiz F Bittencourt, Edmundo RM Madeira, Eduardo
Cerqueira, and Mario Gerla. Bandwidth-aware allocation of resilient vir-
tual software defined networks. Computer Networks, 100:179–194, 2016.

[GDTV14] R. Guerzoni, Z. Despotovic, R. Trivisonno, and I. Vaishnavi. Modeling
reliability requirements in coordinated node and link mapping. In Proc. IEEE
33rd Int. Symp. Reliable Distributed Systems, pages 321–330, October 2014.

[GQW+14] Bingli Guo, Chunming Qiao, Jianping Wang, Hongfang Yu, Yongxia Zuo,
Juhao Li, Zhangyuan Chen, and Yongqi He. Survivable virtual network design
and embedding to survive a facility node failure. Lightwave Technology,
Journal of, 32(3):483–493, 2014.

[GWMT11] T. Guo, N. Wang, K. Moessner, and R. Tafazolli. Shared backup network
provision for virtual network embedding. In Proc. IEEE Int. Conf. Communi-
cations (ICC), pages 1–5, June 2011.

[GWQ+15] Kailing Guo, Ying Wang, Xuesong Qiu, Wenjing Li, and Ailing Xiao. Particle
swarm optimization based multi-domain virtual network embedding. In Inte-
grated Network Management (IM), 2015 IFIP/IEEE International Symposium
on, pages 798–801. IEEE, 2015.

[HKA13] Sandra Herker, Ashiq Khan, and Xueli An. Survey on survivable virtual
network embedding problem and solutions. In ICNS 2013, The Ninth Interna-
tional Conference on Networking and Services, pages 99–104, 2013.

References 121

[HLAZ11] Ines Houidi, Wajdi Louati, Walid Ben Ameur, and Djamal Zeghlache. Virtual
network provisioning across multiple substrate networks. Computer Networks,
55(4):1011–1023, 2011.

[HMT16] A. Hmaity, F. Musumeci, and M. Tornatore. Survivable virtual network
mapping to provide content connectivity against double-link failures. In Proc.
12th Int. Conf. the Design of Reliable Communication Networks (DRCN),
pages 160–166, March 2016.

[HZ14] Benfei Hu and Dong Zhang. Survivable virtual network solution based
on multi-embedding algorithm. In Proc. th Int Wireless Communications,
Networking and Mobile Computing (WiCOM 2014) Conf, pages 425–430,
September 2014.

[JK12] Abdallah Jarray and Ahmed Karmouch. Column generation approach for
one-shot virtual network embedding. In Globecom Workshops (GC Wkshps),
2012 IEEE, pages 863–868. IEEE, 2012.

[JK15] A. Jarray and A. Karmouch. Cost-efficient mapping for fault-tolerant virtual
networks. IEEE Transactions on Computers, 64(3):668–681, March 2015.

[KMB81] L Kou, George Markowsky, and Leonard Berman. A fast algorithm for steiner
trees. Acta informatica, 15(2):141–145, 1981.

[KRV+15] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined
networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76,
2015.

[Kui12] Fernando A Kuipers. An overview of algorithms for network survivability.
ISRN Communications and Networking, 2012, 2012.

[LCP+05] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim.
A survey and comparison of peer-to-peer overlay network schemes. IEEE
Communications Surveys & Tutorials, 7(2):72–93, 2005.

[LDZ+14] G. Luo, H. Ding, J. Zhou, J. Zhang, Y. Zhao, B. Chen, and C. Ma. Survivable
virtual optical network embedding with probabilistic network-element failures
in elastic optical networks. In Proc. 13th Int Optical Communications and
Networks (ICOCN) Conf, pages 1–4, November 2014.

[LK09] Jens Lischka and Holger Karl. A virtual network mapping algorithm based on
subgraph isomorphism detection. In Proceedings of the 1st ACM workshop
on Virtualized infrastructure systems and architectures, pages 81–88. ACM,
2009.

[LML10] H. W. Lee, E. Modiano, and K. Lee. Diverse routing in networks with
probabilistic failures. IEEE/ACM Transactions on Networking, 18(6):1895–
1907, December 2010.

122 References

[LSC15] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. Survivable virtual network
embedding with resource sharing and optimization. In Protocol Engineering
(ICPE) and International Conference on New Technologies of Distributed
Systems (NTDS), 2015 International Conference on, pages 1–6. IEEE, 2015.

[LSC16a] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. A cloud-oriented algo-
rithm for virtual network embedding over multi-domain. In Local Computer
Networks Workshops (LCN Workshops), 2016 IEEE 41st Conference on, pages
50–57. IEEE, 2016.

[LSC16b] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. Multi-domain virtual
network embedding with coordinated link mapping. Advances in Science,
Technology and Engineering Systems Journal, 2(3):545–552, 2016.

[LSC17a] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. A failure avoidance
oriented approach for virtual network reliability enhancement. In Proc. IEEE
Int. Conf. Communications (ICC), 2017.

[LSC17b] Shuopeng Li, Mohand Yazid Saidi, and Ken Chen. Survivable services
oriented protection-level-aware virtual network embedding (under submission
process). International Journal of Network Management, 2017.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2):69–74, 2008.

[MSG+16] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip
De Turck, and Raouf Boutaba. Network function virtualization: State-of-
the-art and research challenges. IEEE Communications Surveys & Tutorials,
18(1):236–262, 2016.

[OPTW07] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–
Survivable Network Design Library. In Proceedings of the 3rd International
Network Optimization Conference (INOC 2007), Spa, Belgium, April 2007.
http://sndlib.zib.de, extended version accepted in Networks, 2009.

[PLG+16] Mahsa Pourvali, Kaile Liang, Feng Gu, Hao Bai, Khaled Shaban, Samee
Khan, and Nasir Ghani. Progressive recovery for network virtualization after
large-scale disasters. In Computing, Networking and Communications (ICNC),
2016 International Conference on, pages 1–5. IEEE, 2016.

[QGH+11] Chunming Qiao, Bingli Guo, Shanguo Huang, Jianping Wang, Ting Wang,
and Wanyi Gu. A novel two-step approach to surviving facility failures. In
Optical Fiber Communication Conference and Exposition (OFC/NFOEC),
2011 and the National Fiber Optic Engineers Conference, pages 1–3. IEEE,
2011.

[RB13] Muntasir Raihan Rahman and Raouf Boutaba. Svne: Survivable virtual
network embedding algorithms for network virtualization. IEEE Transactions
on Network and Service Management, 10(2):105–118, 2013.

References 123

[SFAM13] Oussama Soualah, Ilhem Fajjari, Nadjib Aitsaadi, and Abdelhamid Mellouk.
Pr-vne: Preventive reliable virtual network embedding algorithm in cloud’s
network. In Global Communications Conference (GLOBECOM), 2013 IEEE,
pages 1303–1309. IEEE, 2013.

[SWP+09] Gregor Schaffrath, Christoph Werle, Panagiotis Papadimitriou, Anja Feld-
mann, Roland Bless, Adam Greenhalgh, Andreas Wundsam, Mario Kind, Olaf
Maennel, and Laurent Mathy. Network virtualization architecture: proposal
and initial prototype. In Proceedings of the 1st ACM workshop on Virtualized
infrastructure systems and architectures, pages 63–72. ACM, 2009.

[SXYC14] Meng Shen, Ke Xu, Kun Yang, and Hsiao-Hwa Chen. Towards efficient
virtual network embedding across multiple network domains. In Quality of
Service (IWQoS), 2014 IEEE 22nd International Symposium of, pages 61–70.
IEEE, 2014.

[SYAL13] Gang Sun, Hongfang Yu, Vishal Anand, and Lemin Li. A cost efficient
framework and algorithm for embedding dynamic virtual network requests.
Future Generation Computer Systems, 29(5):1265–1277, 2013.

[Wax88] Bernard M Waxman. Routing of multipoint connections. IEEE journal on
selected areas in communications, 6(9):1617–1622, 1988.

[WLQL16] Ying Wang, Xiao Liu, Xuesong Qiu, and Wenjing Li. Prediction-based
survivable virtual network mapping against disaster failures. International
Journal of Network Management, 26(5):336–354, 2016.

[WSW12] Cong Wang, Shashank Shanbhag, and Tilman Wolf. Virtual network mapping
with traffic matrices. In Communications (ICC), 2012 IEEE International
Conference on, pages 2717–2722. IEEE, 2012.

[WWC14] Z. Wang, J. Wu, and D. Cheng. Coding-aware virtual network mapping for
surviving single link failure. In Proc. IEEE Int. Conf. Communications (ICC),
pages 3025–3030, June 2014.

[WWW+14] Z. Wang, J. Wu, Y. Wang, N. Qi, and J. Lan. Survivable virtual network
mapping using optimal backup topology in virtualized sdn. China Communi-
cations, 11(2):26–37, February 2014.

[XWM+14] A. Xiao, Y. Wang, L. Meng, X. Qiu, and W. Li. Topology-aware virtual
network embedding to survive multiple node failures. In Proc. IEEE Global
Communications Conf, pages 1823–1828, December 2014.

[YAQ12] Hongfang Yu, Vishal Anand, and Chunming Qiao. Virtual infrastructure
design for surviving physical link failures. The Computer Journal, 2012.

[YAQS11] Hongfang Yu, Vishal Anand, Chunming Qiao, and Gang Sun. Cost efficient
design of survivable virtual infrastructure to recover from facility node failures.
In Communications (ICC), 2011 IEEE International Conference on, pages
1–6. IEEE, 2011.

124 References

[YCL+15] Hui Yang, Lei Cheng, Guangjun Luo, Jie Zhang, Yongli Zhao, Huixia Ding,
Jing Zhou, and Yang Wang. Survivable virtual optical network embedding
with probabilistic network-element failures in elastic optical networks. Optical
Fiber Technology, 23:90–94, 2015.

[YQA+10] Hongfang Yu, Chunming Qiao, Vishal Anand, Xin Liu, Hao Di, and Gang Sun.
Survivable virtual infrastructure mapping in a federated computing and net-
working system under single regional failures. In Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE, pages 1–6. IEEE, 2010.

[YSzXY11] Yang Yu, Chen Shan-zhi, Li Xin, and Wang Yan. Rmap: An algorithm of
virtual network resilience mapping. In Wireless Communications, Networking
and Mobile Computing (WiCOM), 2011 7th International Conference on,
pages 1–4. IEEE, 2011.

[YWK11] Wai-Leong Yeow, Cédric Westphal, and Ulas C Kozat. Designing and embed-
ding reliable virtual infrastructures. ACM SIGCOMM Computer Communica-
tion Review, 41(2):57–64, 2011.

[YYRC08] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual
network embedding: substrate support for path splitting and migration. ACM
SIGCOMM Computer Communication Review, 38(2):17–29, 2008.

[ZA06] Yong Zhu and Mostafa H Ammar. Algorithms for assigning substrate network
resources to virtual network components. In INFOCOM, volume 1200, pages
1–12, 2006.

[ZCP12] Xian Zhang, Xiuzhong Chen, and Chris Phillips. Achieving effective re-
silience for qos-aware application mapping. Computer Networks, 56(14):3179–
3191, 2012.

[ZPC11] Xian Zhang, Chris Phillips, and Xiuzhong Chen. An overlay mapping model
for achieving enhanced qos and resilience performance. In Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), 2011 3rd
International Congress on, pages 1–7. IEEE, 2011.

Appendix A

Substrate network generation

A.1 SNDlib

SNDlib 1 is a library of test instances for Survivable fixed telecommunication Network

Design. Its purpose is:

• to make realistic network design test instances available to the research community,

• to serve as a standardized benchmark for testing, evaluating, and comparing network

design models and algorithms,

• to be a source of information and resources related to fixed network design, and to

provide a contact platform for researchers and practitioners working in this field.

To this end, the library includes 26 network design instances. The file of an instance is

composed of nodes and link description. For example, the instance germany50 has 50 nodes

with location and 88 edges. The file is described as follows,

network germany50

NODE SECTION

#

<node_id> [(<longitude>, <latitude>)]

NODES (

Aachen (6.04 50.76)

Augsburg (10.90 48.33)

Bayreuth (11.59 49.93)

1Web site: http://sndlib.zib.de

126 Substrate network generation

.

.

.

Wesel (6.37 51.39)

Wuerzburg (9.97 49.78)

)

LINK SECTION

#

<link_id> (<source> <target>) <pre_installed_capacity> <pre_installed_capacity_cost>

LINKS (

L1 (Duesseldorf Essen) 0.00 0.00 0.00 0.00 (40.00 3290.00)

L2 (Dortmund Essen) 0.00 0.00 0.00 0.00 (40.00 3290.00)

.

.

.

L87 (Wuerzburg Nuernberg) 0.00 0.00 0.00 0.00 (40.00 3720.00)

L88 (Regensburg Nuernberg) 0.00 0.00 0.00 0.00 (40.00 3720.00)

)

A.2 GT-ITM

The Georgia Tech Internetwork Topology Models (GT-ITM) 2 are built on top of the Stan-

ford GraphBase (SGB), a platform of data structures and routines for representing and

manipulating graphs.

Here is an example of usage of ITM. The following is a valid specification file called r10:

<method keyword> <number of graphs> [<initial seed>]

<n> <scale> <edgemethod> <alpha> [<beta>] [<gamma>]

geo 3

30 10 3 .2

If we run ’itm r10’ then three pure random graphs of 30 nodes each will be created. The

nodes of each graph will be generated in a 10 by 10 (logical) grid. The probability of an edge

2Web site: www.cc.gatech.edu/projects/gtitm/

A.2 GT-ITM 127

is 0.2, as given by the < al pha > parameter; < beta > and < gamma > are not needed for

this method. The output files will be named: r10-0.gb, r10-1.gb, r10-2.gb.

Appendix B

Cplex optimization file

The optimization problem is solved by Cplex1. For a optimization problem,

Min x1 +2 x2 +3 x3 + x4

−x1 + x2 + x3 +10 x4 ≤ 20

x1−3 x2 + x3 ≤ 30

x2−3.5x4 = 0

0≤ x1 ≤ 40

2≤ x4 ≤ 3

The input to Cplex is a .l p file shown as follows,

Maximize

obj: x1 + 2 x2 + 3 x3 + x4

Subject To

c1: - x1 + x2 + x3 + 10 x4 <= 20

c2: x1 - 3 x2 + x3 <= 30

c3: x2 - 3.5 x4 = 0

Bounds

0 <= x1 <= 40

2 <= x4 <= 3

General

x4

End

1Web site: https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

130 Cplex optimization file

The output of Cplex for this problem is,

Found incumbent of value 46.000000 after 0.01 sec. (0.00 ticks)

Tried aggregator 2 times.

Aggregator did 1 substitutions.

Reduced MIP has 2 rows, 3 columns, and 6 nonzeros.

Reduced MIP has 0 binaries, 1 generals, 0 SOSs, and 0 indicators.

Presolve time = 0.00 sec. (0.01 ticks)

Tried aggregator 1 time.

Reduced MIP has 2 rows, 3 columns, and 6 nonzeros.

Reduced MIP has 0 binaries, 1 generals, 0 SOSs, and 0 indicators.

Presolve time = 0.00 sec. (0.00 ticks)

MIP emphasis: balance optimality and feasibility.

MIP search method: dynamic search.

Parallel mode: deterministic, using up to 4 threads.

Root relaxation solution time = 0.00 sec. (0.00 ticks)

Nodes Cuts/

Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 46.0000 163.0000 254.35%

0 0 125.2083 1 46.0000 125.2083 3 172.19%

* 0+ 0 122.5000 125.2083 2.21%

0 0 cutoff 122.5000 3 0.00%

Elapsed time = 0.02 sec. (0.04 ticks, tree = 0.00 MB, solutions = 2)

Root node processing (before b&c):

Real time = 0.02 sec. (0.04 ticks)

Parallel b&c, 4 threads:

Real time = 0.00 sec. (0.00 ticks)

Sync time (average) = 0.00 sec.

Wait time (average) = 0.00 sec.

Total (root+branch&cut) = 0.02 sec. (0.04 ticks)

The solutions begin here :

x1 40.0

x2 10.5

131

x3 19.5

x4 3.0

	Table of contents
	1 Introduction
	1.1 Background
	1.2 Challenge
	1.3 Contribution
	1.4 Plan
	1.5 List of Publications

	2 Background and State of Art
	2.1 Introduction
	2.2 Network Virtualization
	2.2.1 Benefits
	2.2.2 Design goals
	2.2.3 Architecture
	2.2.4 Virtual Network Embedding (VNE)

	2.3 VNE optimization
	2.3.1 Substrate network
	2.3.2 Virtual network
	2.3.3 VNE Formulation
	2.3.4 Examples of objective functions
	2.3.4.1 CPU and bandwidth
	2.3.4.2 Delay
	2.3.4.3 Penalty

	2.3.5 Optimization problem and methods
	2.3.5.1 Linear programming (LP and ILP)
	2.3.5.2 Optimization methods
	2.3.5.3 CPLEX

	2.4 Single domain VNE
	2.4.1 Two stage solutions
	2.4.1.1 Node mapping
	2.4.1.2 Link mapping

	2.4.2 One stage solutions
	2.4.3 VN reconfiguration

	2.5 Multi domain VNE
	2.5.1 Existing works
	2.5.2 Comparison of embedding methods
	2.5.2.1 Multi-domain information disclosure model
	2.5.2.2 VN partitioning
	2.5.2.3 Inter-domain connection (VN segmentation)
	2.5.2.4 Sub VN mapping

	2.5.3 Shortcoming of existing work

	2.6 Survivable VNE
	2.6.1 Architecture of survivable VNE
	2.6.2 Node protection
	2.6.3 Link protection
	2.6.3.1 Shared link protection
	2.6.3.2 Shared path protection
	2.6.3.3 Dedicated path protection

	2.6.4 Multiple failure protection
	2.6.5 Failure avoidance
	2.6.6 Post failure recovery
	2.6.7 Analysis

	2.7 Conclusion

	3 Multi-domain VN Resource Allocation
	3.1 Introduction
	3.2 Our method and existing solutions
	3.2.1 Position of problem
	3.2.2 Examples

	3.3 Multi Domain Model
	3.3.1 Substrate network
	3.3.2 VNP layer model

	3.4 Our proposition
	3.4.1 Decomposition
	3.4.2 An iterative downsizing VNE approach
	3.4.2.1 Rationale
	3.4.2.2 Building of the augmented graph
	3.4.2.3 VN sub-request
	3.4.2.4 An MCF-based link mapping

	3.4.3 Update and iteration
	3.4.4 The MCF-based sub VNE problem
	3.4.5 Reject of virtual request

	3.5 Reinforcement of our method
	3.5.1 Two domain basic method
	3.5.2 Towards K domain solution

	3.6 Performance Evaluation
	3.6.1 Evaluation Environment
	3.6.2 Random peering link model
	3.6.3 Compared methods
	3.6.4 Metrics
	3.6.5 Scenario 1: real substrate networks
	3.6.6 Scenario 2: peering links
	3.6.7 Scenario 3: random substrate networks
	3.6.8 Scenario 4: virtual link demands
	3.6.9 Scenario 5: reinforced method
	3.6.10 Conclusion of simulation

	3.7 Conclusion

	4 VN Reliability Enhancement
	4.1 Introduction
	4.2 Avoiding the failures
	4.2.1 Position of problem
	4.2.2 Our direction

	4.3 Solution for infinite bandwidth links
	4.3.1 Objective function
	4.3.2 Steiner minimal tree solution
	4.3.2.1 Steiner minimal tree
	4.3.2.2 Example

	4.4 Solution for limited bandwidth links
	4.4.1 Exact ILP formulation
	4.4.2 Failure avoidance based heuristics for limited bandwidth links
	4.4.2.1 Baseline heuristic
	4.4.2.2 Reinforced heuristic

	4.5 Performance Evaluation
	4.5.1 Lifetime model
	4.5.2 Compared methods
	4.5.3 Metrics
	4.5.4 Scenario 1: arrival rate
	4.5.4.1 Configuration
	4.5.4.2 Numeric result

	4.5.5 Scenario 2: variation of the number of substrate nodes
	4.5.5.1 Configuration
	4.5.5.2 Numeric result

	4.5.6 Evaluation conclusion

	4.6 Conclusion

	5 Design of Survivable VN
	5.1 Introduction
	5.2 Protection method and network model
	5.2.1 Type of failure and protection method
	5.2.2 Primary and backup resource separation
	5.2.3 VNE with protection
	5.2.3.1 Primary mapping
	5.2.3.2 Backup path computation

	5.2.4 Position of problem

	5.3 Protection-level-aware VNE Formulation
	5.3.1 Objective
	5.3.2 Formulation

	5.4 Heuristic
	5.4.1 Principle
	5.4.2 Simple on-line backup verification
	5.4.3 Backup path pre-verification
	5.4.3.1 Backup path computation
	5.4.3.2 Backup path verification

	5.5 Performance evaluation
	5.5.1 Environment
	5.5.2 Compared methods
	5.5.3 Metrics
	5.5.4 Scenario 1: small network
	5.5.5 Scenario 2: medium size network
	5.5.6 Scenario 3: primary capacity ratio
	5.5.7 Conclusion of simulation

	5.6 Conclusion

	6 Conclusion and perspective
	6.1 Conclusion
	6.2 Perspective

	References
	Appendix A Substrate network generation
	A.1 SNDlib
	A.2 GT-ITM

	Appendix B Cplex optimization file

