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“ If we knew what it was we were doing, it would not be called research, would it?
— Albert Einstein.”
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Attributed Network Clustering : Application to recommender systems

by Issam FALIH

In complex networks analysis field, much effort has been focused on identify-
ing graphs communities of related nodes with dense internal connections and few
external connections. In addition to node connectivity information that are mostly
composed by different types of links, most real-world networks contains also node
and/or edge associated attributes which can be very relevant during the learning
process to find out the groups of nodes i.e. communities. In this case, two types of
information are available: graph data to represent the relationship between objects
and attributes information to characterize the objects i.e nodes.

Classic community detection and data clustering techniques handle either one
of the two types but not both. Consequently, the resultant clustering may not only
miss important information but also lead to inaccurate findings. Therefore, various
methods have been developed to uncover communities in networks by combining
structural and attribute information such that nodes in a community are not only
densely connected, but also share similar attribute values. Such graph-shape data is
often referred to as attributed graph.

This thesis focuses on developing algorithms and models for attributed graphs.
Specifically, I focus in the first part on the different types of edges which represent
different types of relations between vertices. I proposed a new clustering algorithms
and I also present a redefinition of principal metrics that deals with this type of net-
works. Then, I tackle the problem of clustering using the node attribute information
by describing a new original community detection algorithm that uncover commu-
nities in node attributed networks which use structural and attribute information
simultaneously.

At last, I proposed a collaborative filtering model in which I applied the pro-
posed clustering algorithms.

Keywords : Community Detection, Attributed Network, Multiplex, Clustering,
Recommendation system, Collaborative filtering
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by Issam FALIH

Au cours de la derniere décennie, les réseaux (les graphes) se sont révélés étre un
outil efficace pour modéliser des systemes complexes. La problématique de détec-
tion de communautés est une tache centrale dans I’analyse des réseaux complexes.
La majeur partie des travaux dans ce domaine s’intéresse a la structure topologique
des réseaux. Cependant, dans plusieurs cas réels, les réseaux complexes ont un
ensemble d’attributs associés aux nceuds et/ou aux liens. Ces réseaux sont dites :
réseaux attribués. Mes activités de recherche sont basées principalement sur la détec-
tion des communautés dans les réseaux attribués.

Pour aborder ce probléme, on s’est intéressé dans un premier temps aux attributs
relatifs aux liens, qui sont un cas particulier des réseaux multiplexes. Un multiplex
est un modele de graphe multi-relationnel. Il est souvent représenté par un graphe
multi-couches. Chaque couche contient le méme ensemble de noeuds mais encode
une relation différente.

Dans mes travaux de recherche, nous proposons une étude comparative des
différentes approches de détection de communautés dans les réseaux multiplexes.
Cette étude est faite sur des réseaux réels.Nous proposons une nouvelle approche
centrée "graine" pour la détection de communautés dans les graphes multiplexes
qui a nécessité la redéfinition des métriques de bases des réseaux complexes au cas
multiplex.

Puis, nous proposons une approche de clustering dans les réseaux attribués qui
prends en considération a la fois les attributs sur les nceuds et sur les liens.

La validation de mes approches a été faite avec des indices internes et externes,
mais aussi par une validation guidée par un systeme de recommandation que nous
avons proposé et dont la détection de communautés est sa tache principale. Les ré-
sultats obtenus sur ces approches permet d’améliorer la qualité des communautés
détectés en prenant en compte les informations sur les attributs du réseaux. De plus,
nous offrons des outils d’analyse des réseaux attribués sous le langage de program-
mation R.

Mot clés : Détection de communautés, Réseaux Attribués, Réseaux multiplexes,
Systeme de recommandation, Apprentissage non-supervisé.
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0.1 Context

A great amount of data is now available in science, business, industry, and many
other areas, due to the rapid advances in computerization and digitalization tech-
niques. Such data may provide a rich resource for knowledge discovery and deci-
sion support. In order to understand, analyse, and make use of the huge amount of
data, a multidisciplinary approach, data mining, is proposed to meet the challenge.
Data mining is the process of identifying interesting patterns from large databases
[139].

Data mining is the core part of the Knowledge Discovery in Database (KDD)

process as shown in figure 1. The KDD process may consist of the following steps:
data selection, data cleaning, data transformation, pattern searching (data mining),
finding presentation, finding interpretation, and evaluation. Data mining and KDD
are often used interchangeably because data mining is the key part of the KDD pro-
cess [53]. There exist several data mining tasks leading to different kinds of result
patterns, e.g. clustering, classification or frequent pattern mining. In the last step,
these patterns can then be evaluated and visualized in order to be more easily inter-
pretable.
The aim of data mining is to extract knowledge from large data sets by combining
methods from statistics and machine learning with database management. The data
size can be measured in two dimensions, the number of features and the number of
observations. Both dimensions can take very high values, which can cause problems
during the exploration and analysis of the data set. Models and tools are therefore
required to process data for an improved understanding.

Topological learning is a recent direction in Machine Learning which aims to de-
velop methods grounded on statistics to recover the topological invariants from the
observed data points. Most of the existed topological learning approaches are based
on graph theory or graph-based clustering methods. The topological learning is one
of the most known technique which allows clustering and visualization simultane-
ously. These clusters can be represented by more concise information than the brutal
listing of their patterns, such as their gravity center or different statistical moments.
As expected, this information is easier to manipulate than the original data points.

Many real-world systems are modeled as networks of interacting actors (e.g.
users, authors, documents, scientific papers, items, proteins, etc.). Frequently cited
examples include the cell described as a complex network of chemicals connected
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by chemical reactions; the Internet is a complex network of routers and computers
linked by various physical or wireless links; fads and ideas spread on social network,
whose nodes are human beings and whose edges represent various social relation-
ships as Friendship; the World Wide Web is an enormous virtual network of Web
pages connected by hyperlinks [6]. However, real-world systems are often associ-
ated with additional information describing nodes i.e. actors and/or the relation be-
tween them. This gives rise to the attributed networks, i.e. networks where the nodes
are associated with an number of attribute and nodes in the network are linked with
different types of relations. For example, in social networks, edge attributes repre-
sent the different types of relationship (friendship, collaboration, family, etc) among
people while vertex attribute describe the role or the personality of a person (age,
gender, profession, etc.). Another example is, in a bibliography network, a vertex
may represents an author, vertex attributes describe the author (such as the area of
interest, number of publications, etc), while edge attribute represents relationships
among authors (such as co-authorship, citation, etc.).

Interpretation/
Evaluation
-

== [l
A
el
=

PN

Knowledge

Patterns

|
|
I
|
Transformed,
Data 1
I
|
I
|
|

Preprocessed
Data

FIGURE 1: The knowledge discovery process [41]

This thesis focuses on the data mining task of clustering in the attributed net-
work, i.e. grouping objects into clusters such that objects located in the same group
are similar to each other, while objects located in different groups are dissimilar.

Most existing clustering methods were developed for vector data. In traditional
vector clustering methods, the similarity between two objects is defined based on
the similarity of the vertices in all the attributes/dimensions.

Besides the algorithms for vector data, clustering algorithms for graph data also
exist. The basic aim of these approaches is to detect clusters of vertices in a graph
such that the vertices in a cluster are densely connected in the graph. This task is
often denoted as graph clustering or community detection. While various clustering
approaches can handle either vector data or graph data, in many applications data of
both types is available simultaneously. Graph clustering and community detection
have traditionally focused on graphs without attributes, with the notable exception
of edge weights. However, these models only provide a partial representation of real
social systems, that are thus often described using node attributes, representing fea-
tures of the actors, and edge attributes, representing different kinds of relationships
among them. We refer to these models as attributed graphs. Consequently, existing
graph clustering methods have been recently extended to deal with node and edge
attributes.
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Lazega Law Firm Network

[
-
Lawyer
Go-work—— -

Advice

Friendship

FIGURE 2: Example of attributed network

An increasing number of applications on the World Wide Web rely on combin-
ing link and content analysis (in different ways) for subsequent analysis and infer-
ence. For example, search engines, like Google, Bing and Yahoo! typically use con-
tent and link information to index, retrieve and rank web pages. Social networking
sites like Twitter, Flickr and Facebook, as well as the aforementioned search engines,
are increasingly relying on fusing content (pictures, tags, text) and link information
(friends, followers, and users) for deriving actionable knowledge (e.g. marketing
and advertising).

In this thesis, we introduce clustering approaches for graphs with vertex at-
tributes and graphs with edges attributes. In the following, we give an overview
over the contributions in section 1.1, we present the list of publications in section 1.2
and the structure of this thesis is given in the Section 1.3.

0.2 Contribution

The goal of this thesis is to propose new methods to improve cluster analysis of
attributed network, by introducing new approaches for clustering of graphs with
additional attribute data information. This section provides a short overview of the
contributions and the structure of this thesis as well as information about prelimi-
nary publications of parts of the thesis content.

e Clustering graphs with edges attributes In first part of this thesis, we consider
edge attributed network i.e network with different type of relations over the
set of vertices. We have proposed muxLicod approach, a clustering algorithm
that deal with this type of networks.

e Clustering graphs with vertex attributes The second part address the prob-
lem of node attributed network clustering. We proposed a new algorithm that
learns the node attribute information and the topological structure of the net-
work simultaneously.
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0.3

Recommender system The third proposition is a recommender system based
on clustering and in which we validate the results of the proposed algorithms.
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Reading guide

This report is organized as follows.

Chapter : Data Clustering presents the context of this research work. It pro-
vides a description about complex networks clustering and vectorial data clus-
tering. It also presents the different quality measures to validate the clustering
results.

Chapter : multi-relational network clustering (or multiplex) provides basic
definition of the edge attributed network clustering problem and we provide
a quick survey on existing approaches. Additionally, in this chapter is intro-
duced and formalized the concept of multiplex network. It also includes our
tirst contribution that uses edge attribute network in the clustering process.

Chapter : Attributed Network Clustering presents a new community detec-
tion approach which uses the topological structural of the network and node
attribute information to produce a partition with clusters of nodes using the
topological structure and of their attribute information.

Chapter : Application: Recommender system provides an new recommender
system based on clustering attributed networks.

Chapter : Conclusion and outlook. This chapter concludes the thesis and also
provides future directions in this research area. The main contribution of the
thesis is also highlighted in this chapter.

Some additional information is provided in the appendices.
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In this chapter a relevant literature review of the various topics that fall under
data clustering and community detection are discussed. The first section discusses
classical clustering notations and formulations, different similarity criteria and fi-
nally some of the well known clustering algorithms. The following section discusses
existed approaches for community detection and the section 1.4 focus on different
methods to validate the performance of the clustering result.

1.1 Introduction

One of the most used techniques among many others in the data mining field is the
clustering. The aim of thesis methods is to synthesize and summarize huge amounts
of data by splitting it into small and homogeneous clusters such that the data (ob-
servations) inside the same cluster are more similar to each other compared to the
observations which belongs to other clusters. This definition assumes that there
exists a well defined clustering quality measure that quantifies how much homoge-
neous are the obtained clusters. Although there is no a consensus about what is a
good quality measure, but instead it may vary from application to another and from
a data set to another one.
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The input data of the clustering methods is non-labeled, therefore the groups are
formed using only the properties of each element of the data set.

In general, the data sets used for clustering contains points (i.e. observations)
in R", but, despite they may be composed of other types of information such as
categorical data or nonnumeric values, the typical representation of each element, or
pattern, is a vector. In [33], the following types of data for clustering are considered:

e Qualitative variables.
e Quantitative variables (continuous).

e Nominal and ordinal variables.

Along to each data type it is required to define a set of similarity or dissimilarity
measures to test the quality of a partition. Those similarity measures must satisfy
some properties in order to be used also as a distance measure. These properties,
presented by [61], are:

Given z and y two observations from a data set, a proximity measure, denoted
by d(z,y) must satisfy:

1. (a) For dissimilarity: d(z, z) = 0, V.

(b) For similarity: d(z,z) > maz,d(z,y), Vx

The proximity measures between data observations should be defined in func-
tion of the type of data, i.e., binary, quantitative, nominal and ordinal variables ac-
cording to [33, 36].

& Quantitative variables : It is possible to define a distance matrix such that «
and y are two data vectors and the attributes are numerical (continuous). z,,
and y,, are the value of variable (feature) a; for = and y respectively.

e Minkowski distance: is the most common proximity index [61], is de-
fined by:

-
d(l‘,y) =\ Z ‘xat - yat‘)\ (11)
t=1

where A > 1, T is the number of features and A is a parameter for chang-
ing the way in which the measure is taken. This measure, and it’s deriva-
tions, satisfy the properties 4 and 5 stated above.

e Manhattan distance: Is obtained when A = 1 and is defined by:

T

d(l‘, y) = Z |'I0«t - yaz| (1.2)

t=1
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e Euclidean distance: this measure is obtained when A = 2 and is defined

by:

T

d(xa y) = Z(xat - yat)Q (13)

t=1

e Maximum: measure is obtained when A — oo and is defined by:

d(z,y) = max |za, — ya| (1.4)

e Canberra measure: this metric is similar to the Manhattan distance, but
each term is divided by the sum of the absolute values of each compo-
nent. Consequently, this metric is sensible to values close to zero [33]. It
is defined by:

|Ta; — Yaul
d(z,y) (1.5)
; (o] + [Yar])

e Squared Euclidean distance: Is defined by

T

d(SC, y) = Z(wat - yat)2 (16)

t=1

e Average Euclidean distance: Is defined by

p=
d(w,y) = Z (Ta, — yat (1.7)

& Nominal and ordinal variables: these are variables for which there are more
than two states or categories [33]. If those categories are ordered, the vari-
ables are called ordinal, otherwise are nominal. One measure would consist
in summing the contributions of each category over all the variables. This is
done by defining disagreements indices [33] between each pair of categories
as Opim > 0, where [ and m are categories of the k& — th variable. In the case of
nominal variables, §x;,, = 1 if [ # m and 6, = 1 otherwise.

& Binary variables: these are variables can have only two states, e.g., (1, 0) or
(TRUE, FALSE). Using the matrix representation proposed by [61, 36], the p
possible values for two observations z; and x; are:

i1 o0
x;
1 S11 | So
So1 | Soo

Thus p = Sgp + So1 + S10 + S11. Note that S7; and Sy are the number of
agreements between the two observations z; and z;.

Using the values of p it is possible to define the following measures:

e Simple Matching Coefficient: weights the number of agreements which
is expressed as:
S11 + S0

1.8
S11 + So1 + S10 + Soo (1.8)

s(@,y) =
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Jaccard Coefficient: weights only the value equals to 1 of the patterns.
This means that, it only takes into account the values of the patterns which
match 1 to 1, but discarding the 0 to 0 matches. This coefficient can be
generalized as the size of intersection divided by the size of the union of
the compared patterns:

s(z,) S11 4+ So1 + S1o (1.9)

e Dice-Sorensen Coefficient: this coefficient was first used to compare the
ecological association between species by [36]. But it can be generalized
to different types of data. The coefficient is given by:

S11
= 1.10
s(@,) 2511 + So1 + S1o (1.10)

e Yule Coefficient:
~ 511500 — So1510

s(x,y) = 1.11
(@9) S11500 + S01510 (1D
e Pearson Coefficient:
s(z,y) = S11-S00 — So1-S10 (1.12)
V/(S11 + S01)(S11 + S10) (So1 + Soo) (S1o + Soo)
o Kulzinsky Coefficient:
S11
s(x,y) = ——— 1.13
(2,9) S0t S (1.13)
¢ Rogers-Tanimoto Coefficient:
s(z,y) = S11 500 (1.14)

~ S11 + 2(So1 + S10) + Soo

In general, similarities can be translated into dissimilarities, or even be treated
as distances, by doing (1 — s(z,y)), where s(z,y) € [0,1] is a similarity mea-
sure.

Clustering techniques are very diverse and they have been continuously devel-
oped for over a half century depending upon the optimization techniques, main
methodology (statistical methods, system modeling, signal processing), and appli-
cation areas. These algorithms are generally classified as partitional clustering and
hierarchical clustering, based on the properties of the generated clusters ([39]; [54];
[63]; [62]). Partitional clustering divides data samples into a single partition, whereas
a hierarchical clustering algorithm groups data with a sequence of nested partitions
(figure 1.1). Some clustering methods are summarized below.

1.1.1 Partitional Clustering

These algorithms partition the data set into £ groups and then assign each point to
one group according to the distance to the group’s center of the cluster. Techniques
in this category are known for using computational resources efficiently [160]. How-
ever, one of their drawbacks is the selection of the initial & value and the initial cen-
troids. In the following, we will describe the most known partitional clustering.
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e k-means: This technique presented in [4], [94] assign each point from the data
set to one of the k groups according to some similarity criterion. Nowadays,
this algorithm is widely used due to its computational and space-use efficiency
and to its simplicity of implementation. However, it has some drawbacks: the
stability of the results and the initial selection of the number k of groups. The
tirst disadvantage is related with the fact that every run of the algorithm may
return different results, even when the number of groups is the same. The
second one is related with the first selection of k. Assigning a priori the number
of clusters, requires some knowledge about the data set, or, at least, make some
assumptions about it. The algorithm begins randomly assigning a centroid to
each of the k groups, then, assign each point to the nearest centroid. Once each
point has been assigned, the centroids are recalculated according to the points
which belong to each one and then, the algorithm is restarted. This is made
until the cluster configuration remains stable (convergence of the algorithm).

¢ Entropy based categorical clustering This technique presented by [24, 91], be-
gins by assigning each point in the data set to one of the £ defined clusters.
Then, using a Monte-Carlo approach, a node is randomly selected and put
into some random cluster. If that change reduces the entropy of the set, then
the node is assigned to the new group, if not, the node is returned to its origi-
nal group. To calculate the entropy of the partition P the following expression
is used:

H(P) =) H(C)) (1.15)

where H(C;) is the entropy of the group C; of the partition P, and its given by:

n—1 n

H(CZ) = Z Z sijlnsij + (1 - sij)ln(l — Sij) Sij S [0, 1] (116)
i=1 j=1

Where 0 < s;; < 1is a similarity measure between the elements i and j. This
approach can easily be applied to cluster various type of data by selecting the
appropriate similarity measure.

1.1.2 Agglomerative clustering

Agglomerative clustering starts with n clusters, each of which includes exactly one
data point. A series of merge operations is then followed that eventually forces all
objects into the same group.

e Hierarchical clustering : Hierarchical clustering methods impose a hierarchi-
cal structure on the data objects and their step-wise clusters, i.e. one extreme
of the clustering structure is only one cluster containing all objects, the other
extreme is a number of clusters which equals the number of objects. To obtain
a certain number of clusters, the hierarchy is cut at the relevant depth. Hier-
archical clustering is a rigid procedure, since it is not possible to re-organize
clusters established in a previous step.

As it is shown on figure 1.1 there is two types of the hierarchical clustering
methods: agglomerative approach and divide approach. Divisive hierarchical
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FIGURE 1.1: The principle of the Hierarchical Clustering Algorithm

clustering method starts from a cluster which contains all the data and divide
this cluster until obtaining the desired clusters. Contrarily, agglomerative hier-
archical clustering method starts from n clusters (n data) and will merge these
clusters until obtaining a cluster containing the whole data.

The general agglomerative clustering method can be summarized by the algo-
rithm 1.

Algorithm 1 Hierarchical Clustering Algorithm.

Input: Data set X, n - number of samples, £ - number of clusters

fori =1tondo
Compute the proximity matrix (usually based on the distance function) for the k
clusters;

end for

forj=1tok do
Compute/Search the minimal distance d(C;,C;) = mini<p, i<km=z d(Cm, Cp)
where d(., .) is the distance function

end for

forp=1tokdo
Update the proximity matrix by computing the distances between the cluster C;;
and the other clusters;

end for
REPEAT steps 2 and 3 until only one cluster remains.

e Self-Organizing Maps

The basic model proposed by Kohonen [80] consists of a discrete set C of cells
called “map”. This map has a discrete topology defined by an undirected
graph, which usually is a regular grid in two dimensions.
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For each pair of cells (j,k) on the map, the distance 6(j, k) is defined as the
length of the shortest chain linking cells j and k& on the grid. For each cell j
this distance defines a neighbour cell; in order to control the neighbourhood

area, we introduce a kernel positive function IC (K > 0 and | 1|im K(y) = 0).
y|l—o0

We define the mutual influence of two cells j and k by K; ;.. In practice, as for

traditional topological maps we use a smooth function to control the size of the

neighbourhood as K; ;, = exp(#). Using this kernel function, 7' becomes a

parameter of the model. As in the Kohonen algorithm, we decrease 7" from an

initial value T}, to a final value T},,;,.

Let R¢ be the Euclidean data space and £ = {x;;i = 1,...,N} a set of ob-

servations, where each observation x; = (z},22,...,2%) is a vector in ®¢. For

each cell j of the grid (map), we associate a referent vector (prototype) w; =

(w},w?, ...,wd) which characterizes one cluster associated to cell i. We denote

by W = {w;,w; € §Rd}|;i/‘1 the set of the referent vectors. The set of parame-
ter W has to be estimated iteratively by minimizing the classical cost function
defined as follows:

N W

ROOW) =D D Kjyin Ixi = wi)? (1.17)

i=1 j=1

where x assigns each observation x; to a single cell in the map C. This cost
function can be minimized using both stochastic and batch techniques [141].

The minimization of R(x,W) is done by iteratively repeating the following
three steps until stabilization. After the initialization step of prototype set W,
at each training step (¢t + 1), an observation x; is randomly chosen from the
input data set and the following operations are repeated:

— Each observation (x;) is assigned to the closest prototype w; using the
assignment function defined as follows:

x(x;) = arg min (||x; — w;|?)
i<j<|uw|

— The prototype vectors are updated using the gradient stochastic expres-
sion :

Wit +1) = w;(t) + €ty x) (i — W;(t))

At the end of the learning process the algorithm provides a prototypes matrix
(topological map), a neighbourhood matrix and the affectations of data to each
cell (best matching unit). This information will be used in our approach in
order to improve the computational time of the spectral clustering and to give
more information to the obtained clusters.

e GTM: Generative Topographic Mapping GTM was proposed by Bishop et al.
[11] as a probabilistic counterpart to the Self-organizing maps (SOM) [79].
GTM is defined as a mapping from a low dimensional latent space onto the
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observed data space. The mapping is carried through by a set of basis func-
tions generating a constrained mixture density distribution. It is defined as a
generalized linear regression model:

y=y(z,W)=Wa(z) (1.18)

where y is a prototype vector in the D-dimensional data space, ® is a ma-
trix consisting of M basis functions (¢1(z), ..., ¢ (2)), introducing the non-
linearity, W is a D x M matrix of adaptive weights wg,,, that defines the map-
ping, and z is a point in latent space.

The standard definition of GTM considers spherically symmetric Gaussians as
basis functions, defined as:

. 2
dm(x) = exp {_qumH} (1.19)

202

where 11, represents the centers of the basis functions and ¢ - their common
width. Let D = (z1,...,zn) be the data set of N data points. A probability
distribution of a data point z,, € RP is then defined as an isotropic Gaussian
noise distribution with a single common inverse variance /:

P(%\Z?Wﬁ) = N(y(z,W),ﬂ)

B 5 D/2 5
- (2)" e Shea )

The distribution in z-space, for a given value of W, is then obtained by inte-
gration over t