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Abstract

The topics addressed in this thesis lie in the field of harmonic analysis and more pre-
cisely, weighted inequalities. Our main interests are the weighted LP-bounds of the Riesz
transforms on complete Riemannian manifolds and the sharpness of the bounds in terms
of the power of the characteristic of the weights. We first obtain a linear and dimension-
less result on non necessarily homogeneous spaces, when p = 2 and the Bakry-Emery
curvature is non-negative. We use here an analytical approach by exhibiting a concrete
Bellman function. Next, using stochastic techniques and sparse domination, we prove
that the Riesz transforms are LP-bounded for p € (1, +00) and obtain the previous result
for free. Finally, we use an elegant change in the precedent proof to weaken the condition
on the curvature and assume it is bounded from below.

Keywords: Riesz transforms, weighted inequalities, Bellman functions, Bakry-
Emery curvature, sparse operators, stochastic representation of the Riesz transform.

Résumé

Cette these s’inscrit dans le domaine de I'analyse harmonique et plus exactement, des
estimations & poids. Un intérét particulier est porté aux estimations LP a poids des
transformées de Riesz sur des variétés Riemanniennes complétes ainsi qu’a 'optimalité
des résultats en terme de la puissance de la caractéristique des poids. On obtient un
premier résultat (en terme de la linéarité et de la non dépendance de la dimension)
sur des espaces pas nécessairement de type homogene, lorsque p = 2 et la courbure de
Bakry-Emery est positive. On utilise pour cela une approche analytique en exhibant
une fonction de Bellman concrete. Puis, en utilisant des techniques stochastiques et
une domination éparse, on démontre que les transformées de Riesz sont bornées sur LP,
pour p € (1,400) et on déduit également le résultat précedent. Enfin, on utilise un
changement élégant dans la preuve précedente pour affaiblir I’hypothese sur la courbure
et la supposer minorée.

Mots-clés: Transformées de Riesz, inegalités a poids, fonctions de Bellman, cour-
bure de Bakry-Emery, opérateurs épars, représentation stochastique des transformées de
Riesz.
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Chapter 1

Introduction

1.1 Motivation (version frangaise)

1.1.1 Contexte historique

On s’intéresse dans cette these a la continuité dans des espaces LP pondérés des trans-
formées de Riesz dans des variétés Riemanniennes.

L’étude de l'estimation LP de la norme de la transformée de Hilbert sur la droite
réelle a commencé a partir des travaux de Riesz [74] et Pichorides [71]. En effet, en
1972 Pichorides a montré que la constante optimale pour la norme de la transformée de
Hilbert H est donnée par

7r
2tan — sil <p <2
C, = 2p
P — ™ .
cot — si2 < p<oo.
2p

Dans le cadre Euclidien, la i-éme transformée de Riesz sur R™ est définie par

0
_6:@

Ri (—A)_1/2,

ot A =Y",0%/ 8;_ est la Laplacien usuel sur R". Le vecteur de la transformée de Riesz
R est défini comme étant la collection R = (R1, Ry, ..., R,). Notons que dans le cas ou
la dimension vaut 1, la transformée de Riesz est la transformée de Hilbert.

Concernant les estimations LP de la norme du vecteur de Riesz sur R, T. Iwaniec et
G. Martin ont prouvé dans [46] que pour tout 1 < p < oo, il existe une constante Cj, > 0
indépendante de n telle que

IR; fllp < Collfllps ¥i=1,--- ,m.

Cette constante est égale a la constante de Pichorides mentionnée plus haut. Quant
au vecteur de Riesz, le meilleur résultat connu a ce jour a été présenté par Banuelos et
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Wang dans [9]

* N * p
1RSIl < 207 = DI flp, ¥ p € (1,00), ot p7 = max(p, =),

On réfere également le lecteur aux travaux apparus dans [77, 60, 72, 25].

En 1960, utilisant des outils d’analyse complexe, Helson et Szego ont démontré dans

[38] que la transformée de Hilbert est bornée sur L?(w) si, et seulement si le poids w
pouvait s’écrire sous la forme w = exp(¢ + Hv), ou ¢, € L™ et ||[¢| pe < 7/2.
C’est en 1973 que Hunt, Muckenhoupt et Wheeden ont démontré dans [41] que la condi-
tion A, caractérise également la continuité de la transformée de Hilbert sur LP(w). Plus
précisément, ils ont démontré que H est bornée sur LP(w),p € (1,00) si, et seulement si
w appartient a la classe A, des poids. C’est-a-dire que la caractéristique du poids, notée
Qp(w), est finie, ou

Q) =sw (i [ woras) (g5 [ @) <o

et ou le sup est pris sur toutes les boules @@ C R.

Les inégalités pondérées (ou a poids) sont intervenues naturellement en analyse avec
I’apparition de la théorie des intégrales singuliéres. Dans la théorie des EDP par exemple,
les poids apparaissent dans ’étude des EDP a coefficients dégénérés, celles a domaines de
géométrie non lisse ou encore dans les équations avec données initiales rugueuses (rough
initial data). Sur R", le prototype des poids A, sont les fonctions puissances. En effet,
en utilisant les intégrales de Riemann impropres, il est aisé de voir que pour tout a € R
et pour p > 1, |z|* € A, si, et seulement si —n < a < (p— 1)n.

Durant les 15 dernieres années, un grand intérét a été apporté aux estimations opti-
males des normes des opérateurs d’intégrale singuliére 7', et ce en fonction de la carac-
téristique A, du poids, @,(w). Le but est de démontrer des inégalités de la forme

ITfllzrw) < CQp(w)" (I f]lLr(w)

pour un certain r, et ot la constante C' est indépendante de f et de w. Puisque Qp(w) > 1,
Iobjectif est de trouver des estimations ou r est le plus petit possible. Ce type de
questions concernant 'optimalité de la puissance de la caractéristique sont aujourd’hui
connues sous le nom de la conjecture A,.

Durant plusieurs années, de nombreux résultats ont été présentés. On peut notam-
ment citer un probléeme de longue date (voir Fefferman-Kenig-Pipher [31] et Astala-
Iwaniec-Saksman [3]) qui a été résolu grace a la norme optimale en terme de la car-
actéristique du poids de Popérateur de Beurling-Ahlfors [69]. En 2000, J. Wittwer a
démontré dans [82] une estimation optimale pour les transformées de martingales, en
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utilisant les résultats bi pondérés de [61]. Pour ce qui est de la transformée de Hilbert,
I’estimation de sa norme a été améliorée au fil du temps : S. Buckley a démontré dans
[15] que la transformée de Hilbert est bornée par le carré de la caractéristique Ay du
poids. Dans [68], S. Petermichl et S. Pott ont amélioré ce résultat passant de la puis-
sance 2 a la puissance 3/2. Ce probléme a finalement été résolu par Stefanie Petermichl
dans [66] montrant ainsi un résultat optimal en terme de la caractéristique du poids
dans LP(w). Un an plus tard, elle a également résolu ce probléme pour la transformée
de Riesz dans [67]. Plus généralement, la conjecture Ay a été complétement résolue en
2012 par T. Hytonen, pour tout opérateur de Calderén-Zygmund.

Résolution de la conjecture A,, [42]

Theorem 1.1. Soit T € L(L*(RY)) un opérateur de Calderén-Zygmund. Alors pour
tout w € Ay,

1T fll oy < Co(T)Qp(w)™ YV £l oy, p € (1,00)
et le résultat est optimal en terme de la puissance de la caractéristique Qp(w).
Pour prouver ce théoreme, T. Hytonen s’est d’abord placé dans le cas ou p = 2.
Ensuite, il a représenté l'opérateur de Calderén-Zygmund comme étant une moyenne de
"dyadic shifts". Enfin, il a conclu en utilisant le résultat d’extrapolation de Rubio de

Francia suivant (cf. [75],[17],[24])

Theorem 1.2. Soit T un opérateur sous linéaire. Supposons que pour un certain r €
[1,00) et tout w € A, Uopérateur T' satisfait pour tout B > 1 ce qui suit

1T\ r ) < Ni(B), Yu € Ay, Qp(u) < B.
Alors pour tout 1 < p < oo et tout B > 1, il existe une constante N,(B) > 0 telle que
||T||Lp(w) < NP(B)7 Vw € Ap7 Qp(w) < B.

De plus,

21T N, (2C(p') T B), si
NP(B S . ( C(p )p )7 St ?71> r
27 N, (2" Y(C(p)P~"B)r1), sip<r

ot la constante C(p) dépend uniquement de p et apparait dans l’inégalité
IMfllzoy < COIQp)™ > E=D| 1o, p € (1,00)
ot M est la fonction maximale de Hardy-Littlewood.
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1.1.2 Cadre du travail

On se place dans le cadre de cette these sur une variété Riemannienne (X, g, 11,) munie
d’une mesure de type du, = e Pdu, ¢ € C*(X). On munit de plus I'espace de la
courbure de Bakry-Emery Ric, = Ric +V?2p. Dans ce cas, le vecteur de Riesz est défini
par
—-1/2
Ry =Vo(=A,) 12

ol A, =A—Vp-V.

La question de la continuité des transformées de Riesz sur des variétés Riemanniennes
a fait I’'objet de nombreux travaux. Nous pouvons notammenter citer [78, 60, 10, 36, 12,
72, 2]. Dans [29], Bakry stipule que, sous des hypothéses de courbure de Ricci minorée,
les transformées de Riesz sont bornées sur des variétés Riemanniennes completes. De
plus, en utilisant des techniques d’analyse stochastique, des résultats indépendants de
la dimension ont été obtenus dans [54] et [58]. Les mémes résultats ont été obtenus
également dans [16] en utilisant cette fois des techniques déterministes.

Concernant les poids, les classes de poids considérées durant les dernieres décen-
nies étaient uniquement définies en fonction des volumes des boules. Ceci a fortement
contribué a 1’étude des espaces de type homogene. On rappelle qu'une mesure sur un
espace métrique X est dite doublante si la mesure de toute boule est approximativement
la mesure de son double. Plus précisément, s’il existe une constante C' > 0 telle que
pour tout z € X et r > 0, on a

w(B(z,2r)) < Cu(B(z,r)),

ou u(B(xz,r)) est le volume de la boule B(z,r). Dans ce cas, on dit que la mesure p est
C-doublante et que (X, 1) est un espace de type homogene.

L’un des principaux obstacles de cette these est que les mesures considérées ne sont
pas nécessairement doublantes. C’est pour cette raison que nous nous intéressons a
une nouvelle classe de poids qui serait plus adéquate pour 1’étude des transformées de
Riesz sur X. Ainsi, nous utilisons des poids qui appartiennent a la classe Poisson-A,, de
caractéristique @p (w), ot on considére des moyennes de Poisson plutot que des moyennes
sur des boules comme c’est le cas pour la classe A, de Muckenhoupt. Ceci nous permet
non seulement de nous intéresser a des mesures qui ne sont pas forcément doublante mais
aussi d’obtenir des résultats optimaux et indépendants de la dimension pour le vecteur
de Riesz:

IRl 20y 12(w) S Q2(w).

Nous soulignons que dans ce contexte, le résultat est optimale en terme de la puissance
de la caractéristique @Q(u)) puisque la puissance vaut 1. Ce type d’estimation linéaire
est trés récent dans le cas d’'un espace X de mesure finie et pour ¢ = 0 [14]. Cette these
a donc les nouveautés suivantes :

1. Une estimation pondérée méme dans le cas ou ¢ % 0.
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2. L’estimation est optimale en terme de la puissance de la caractéristique @g(w).
3. L’estimation est indépendante de la dimension.

Meéme dans le cas ¢ = 0, ces opérateurs ne sont pas nécessairement de type Calderén-
Zygmund. En effet, ces transformées de Riesz appartiennent a une classe générale
d’opérateurs sans noyau et les premieres estimations pondérées furent établies par Auscher
et Martell dans [4]. L’estimation optimale a été récemment étendue par Bernicot, Frey
et Petermichl dans [14]. Toutefois, leur approche ne concerne que le cas ou ¢ = 0.
Le caractére doublant de la mesure g = e %u est utilisé et la constante dépend de la
dimension de la variété.

On montre tout d’abord dans cette these que sur une variété Riemannienne complete
(X, g, ) munie d’une mesure e~ ¥du et d’'une courbure de Bakry-Emery positive, on ob-
tient une estimation pondérée et linéaire de la norme des transformées de Riesz. De
plus, 'estimation ne dépend pas de la dimension de la variété. La preuve de ce résultat
repose notamment sur une représentation du vecteur de Riesz au moyen du semi groupe
de Poisson sur les fonctions (noté P;) et sur les 1-formes différentielles (noté P;). Ceci
ramene le probléme & une estimation bilinéaire faisant intervenir VP, f et ?]%g’ ou f est
une fonction, § est une 1-forme différentielle et V le gradient en temps et en espace. La
démonstration de cette estimation bilinéaire fait appel a une construction d’une fonction
de Bellman explicite. Cette stratégie ressemble a celle de Carbonaro-Dragicevi¢ dans [16]
dans le cas non pondéré (w = 1). Une différence notable dans ce travail est la complexité
de la fonction de Bellman de six variables. Cette derniére est issue d’une analyse de [61]
ainsi que [70].

La procédure grace a laquelle on transfere 1’étude de certains opérateurs d’analyse
harmonique vers celle de ’analyse stochastique est standard. Pour une fonction f dans
LP(X), on considere f son extension harmonique sur X x R™. On compose cette fonction
avec le processus Z; = (B}, B;) nommé bruit de fond ou "background radiation process'
défini par Gundy et Varopoulos dans [35] sur X x RT. Ce processus représente des
trajectoires du mouvement Brownien sur le demi espace supérieur qui débutent leurs
trajets a 'infini et qui s’arrétent au moment ou elles touchent un bord. On produit ainsi
une nouvelle transformée de martingale grace a une matrice A de taille (n+1) x (n+1).
On note (A x M7); la transformée de martingale, ot (Mtf )¢ est la martingale associée
a f (en utilisant la formule d’It6). Enfin, on projette cette martingale par I'espérance
conditionnelle et on obtient ainsi 'opérateur recherché. On déduit ensuite des propriétés
de 'opérateur en question a 'aide de propriétés basiques d’analyse stochastique. Parmi
les exemples classiques on a

o Les transformées de Riesz sur R™ [35],
o L’opérateur de Beurling-Ahlfors sur C [7],

o La transformée de Hilbert sur R [23],
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e Les transformées de Riesz et 'opérateur de Beurling-Ahlfors sur des variétés Rie-
manniennes [55].

Dans le second résultat de cette these, on présente une estimation LP de la norme du
vecteur de Riesz sur une variété Riemannienne a géométrie bornée, indépendante de la
dimension et pour p € (1,00). Il découlera par la suite le résultat énoncé précédemment
sur L?(w), avec une meilleure constante numérique. On se placera encore une fois dans
le cas ou la variété est munie d’une courbure positive. On se fondera sur une représenta-
tion stochastique de X.-D. Li des transformées de Riesz sur une variété [54, 58, 55]. Afin
de construire des mouvements Browniens sur une variété, on étudiera en détail la con-
struction de Eells-Elworthy-Malliavin définie comme étant la projection sur une variété
d’une solution d’une équation stochastique différentielle étant elle méme définie sur le
fibré principal des cadres (orthonormal frame bundle) O(X). Cette construction permet
de décrire les processus de diffusion sur une variété et donne naissance a la notion de
transport paralléle le long de courbes [39, 28].

Notre preuve est différente de celle du premier résultat car elle ne repose pas sur une
fonction de Bellman. En effet, on utilise une domination éparse du processus stochas-
tique de Li. L’idée de domination éparse est particulierement bien adaptée aux bornes
pondérées. Elle joue d’ailleurs un roéle central (dans une version discréte ou 'opérateur
épars est défini sur des cubes dyadiques) dans une preuve de la conjecture Ay (voir
[52] et [49].) Une originalité de 'approche proposée dans ce travail est de construite
un opérateur épars associé a un temps d’arrét continu ([21]) Cela permet d’obtenir des
bornes indépendantes de la dimension de la variété.

Le processus stochastique introduit par Li est une certaine semi-martingale, constru-
ite & partir de By, B;¥, deux mouvements Browniens respectivement définis sur R et X
et de deux martingales auxiliaires (X;) et (Y;), subordonnée a (X;) de telle sorte qu’il
(le processus stochastique de Li) vérifie une certaine équation différentielle stochastique.
De fait, ’argument que I'on utilise requiert plusieurs outils, notamment une estimation
de type faible de la fonction maximale du processus en question. Cette estimation de
type faible est apparue dans [8]. Elle nous permet par la suite de dominer le processus
en utilisant la méthode éparse introduite dans [21].

Enfin, on présente une troisieme preuve de ’estimation de la norme LP du vecteur
de Riesz sur une variété a géométrie bornée. L’avantage de cette preuve est qu’elle
permet d’étendre le résultat aux courbures de Bakry-Emery négative. Notons que cette
estimation ne dépend pas de la borne inférieure de la courbure. La preuve de ce troisieme
résultat differe légerement de celle du second dans le sens ou on considére la courbure
minorée. Le semi groupe de Poisson et les transformées de Riesz doivent donc étre définis
en conséquence. On introduit également une sous martingale qui est la somme d’une
martingale apparue précédemment et d’'un processus de variation fini croissant. Cela
nous permet de controler des termes dépendant de la borne inférieure de la courbure qui
apparaissent dans ce nouveau cas. Le reste de la preuve ressemble fortement & ce qui
précede.
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1.1.3 La transformée de Riesz sur R"

Sur la droite réelle, on définit la transformée de Hilbert par

1 t
Hf(z) = —v.p. &dt.
m Rx—1
De méme, on a un analogue n-dimensionnel de cet opérateur. En effet, il existe n
opérateurs sur R™ que l'on appelle les transformées de Riesz. Ces opérateurs sont définis

pour tout 1 < j <n par

. — el (t; — ;) f(1)
R;f(x) = Cnlg% R\B.(z) [T — £ d

= ¢ v.p./n(t‘j_xj)f@dt,

t

|z — [+
I[(n+1)/2]
avec ¢, = W
De plus, ces opérateurs peuvent étre vus comme une convolution avec le noyau
T
Kj(x)=cp U‘p'mTjH’

faisant d’eux des opérateurs de type Calderén-Zygmund.
On peut également définir ces opérateurs grace a une relation faisant intervenir le Lapla-
cien et les premieres dérivées partielles de la fagon suivante

RjoV—A=09;
ou plus formellement, on peut écrire
R=Vo(-A)"2
(Dans cette derniére formule, R est un vecteur de n composantes.)
Les transformées de Riesz apparaissent dans la théorie du potentiel ainsi que I’analyse
harmonique. En particulier, elles permettent de déduire des informations sur la totalité

du hessien d’une fonction en ne connaissant que son Laplacien. Nous citons parmi les
propriétés les plus remarquables des transformées de Riesz les suivantes

o F(Rif)(©E) = —z‘fg’ff(g) Vi=1,---n.

o Une conséquence immédiate est que les transformées de Riesz sont bornées sur L2.

e Pour tout 1 < p < oo, T. Iwaniec et G. Martin ont montré qu’il existe une constante
C)p > 0 indépendante de n telle que

IR fllp < Collfllp, Vi =1,---,n.
Cette constante s’appelle la constante de Pichorides et vaut C), = COt(QZ*
p* = max(p, 1%)'

), ou
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o En définissant | Rf]|, := [[(X", |Rif|?)"/?||, 1a norme dans LP du vecteur de Riesz,
Baniuelos et Wang ont démontré que

[1Bflly <2(p" = DlIfllp, ¥ p € (1,00).

Cette constante est la meilleure connue a ce jour. Il est conjecturé dans [5] que la
constante optimale devrait étre C), = cot(#). Notons que la borne de Bafuelos
et Wang n’est pas optimale méme dans le cas ot p = 2, qui par la transformée de
Fourier vaut 1.

La connaissance de la valeur exacte (ou du moins une bonne estimation) de la
norme p-ieme des transformées de Riesz sur R” est un sujet récent dont I'importance
apparait notamment dans la théorie des opérateurs quasi conformes et les EDP
qui y sont associées, ainsi que dans la théorie LP Hodge.

1.1.4 Représentation analytique de la transformée de Riesz sur R"

Dans cette partie, nous mettrons en évidence le lien fort entre les transformées de
Riesz et les fonctions harmoniques sur R™. FEn effet, on présentera une formule de
type Littlewood-Paley appliquée aux transformées de Riesz en utilisant les semi groupes
de Poisson.

Ainsi, soit R = (Ry,--- , Ry) le vecteur de Riesz sur R™ et P; le semi groupe de Poisson
agissant sur des fonctions. Alors on a

o0 d
(Rf,9)L2@mn) = *4/0 (VP f, aPtg)Lz(Rn)tdt.

Pour démontrer ce résultat, on utilise le fait que pour des fonctions F' suffisamment
décroissantes on a la formule suivante

F(0) = /0 - F"(t)tdt,

grace a une double intégration par parties.
En particulier, si on prend F(t) = (P;Rf, Pig)2(rn), on obtient

F(0) = (Rf,9)r2@mn)
00 d2

e dQ d2
= /0 (<@PtRf7 Pog)rz@ny + (PRS- 5 Peg) 12 (@n)
d

d
+ 2(£PtRf, £Pt9>L2(Rn))tdt

= 4/ <\/ —APtRf, Vv —APtg>L2(Rn)tdt,
0

ou les deux derniéres égalités sont une conséquence du fait que O, P,f = —v—APF,f,
O} Pif = —AP;f et que A est symétrique. Sachant que R = Vo(—A)"Y/2 et que (—A)'/2
commute avec P; et V, on conclut en utilisant une fois de plus que 0;P,g = —v —AP.g.
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1.1.5 Représentation probabiliste des transformées de Riesz sur R"

On a vu précédemment une représentation déterministe des transformées de Riesz en
utilisant des semi groupes. On se propose de présenter maintenant une approche proba-
biliste. L’idée d’une telle représentation de la transformée de Riesz provient des travaux
de Gundy et Varopoulos dans [35] puis de ceux de Gundy et Silverstein dans [37] via une
espérance conditionnelle d’une transformée de martingale. Le cceur de cette représen-
tation se trouve dans la définition du processus appelé bruit de fond ou "background
radiation" et le fait qu'une fonction f € LP(R™) peut étre exprimée comme une es-
pérance conditionnelle d’une transformation simple d’une intégrale stochastique asso-
ciée a f, faisant apparaitre son extension harmonique sur le plan R™ x R, ainsi qu'un
(n+1) x (n+ 1)-dimensionnel mouvement Brownien.

En effet, suivant la démarche de Gundy et Varopoulos, on définit le processus Z; =
(X, Bt), ou X; est un mouvement Brownien sur R et B; un mouvement Brownien sur
R commencant a un certain niveau y > 0. Soit 7 = inf{¢t > 0 : By = 0} un temps d’arrét.
Le processus (Z)o<t<r est un processus de diffusion sur R™ x Ry et s’arréte au temps 7
touchant ainsi le bord R™ x {0}.

Soit g une fonction et Qg(z,y) = e"¥V~2g(z) son semi groupe de Poisson i.e. 1’extension
harmonique de g sur R” x R;. On a par la formule d’It6

9(X0) = Qo(Z7) = QolZ0) + | ' YQy(2.)dZ,.

On affirme que pour une matrice A de taille (n+ 1) x (n+ 1) on a

(i B ( ["AVQf(Z0az X, =a) g =2 [ [ (AVQs(z.2), VQy(a,2)) 2.
o0 0 0 Rn

(1.1)
En effet, soit Taf(x) =E (fy AVQf(Zs)dZs|X; = ). En dualisant on obtient alors

marg) = E(E( [ Aveszazix =) o(x.)
— EB(E(([ AVQf(Z)dZ.g(X)IX, =1 )
= ([ averz)iz.gx.)

- s ([ avarziz. asz)
+E(([ AvQsziaz., [ vou(z)az))
= ([ Avesz), vagz))is)
= 2/000 /RR<AVQf(:c,z),VQg(u”Caz))zda;dz.
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Alors, pour une matrice A qui permute y et xj, (et des zéros ailleurs), on obtient en
utilisant la représentation analytique des transformées de Riesz 'identité suivante

Lo e ([ S anpx o) goxne = 2 [T [ G aé%g(m,y»ydmy

e ML

On obtient dans ce cas le résultat suivant [35]

Theorem 1.3. Soit Aj = (a;) la matrice de taille (n+1) x (n+1) ot a;, = 0 sauf pour
i=n+1,k=jelapsp); =1 Onalareprésentation de Gundy Varopoulos suivante

1 . T
~3tis =t B ( [" 4,901 (242X, =)

1.1.6 Exemple : ’espace Gaussien

Maintenant que 'on a une bonne compréhension de ce qui se passe sur R muni de la
mesure de Lebesgue, une question naturelle est de se demander ce qu’il se passe lorsque
I’on change la mesure. En effet, le but est de remplacer la mesure de Lebesgue dx par
la mesure Gaussienne y sur R” définie par

L’espace (R™,dy) s’appelle dans ce cas 'espace Gaussien. On définit également un
nouveau Laplacien

Dovf(z) = Af(x) —x-Vf(x), feCF

appelé U'opérateur d’Ornstein-Uhlenbeck.

L'opérateur Aoy défini sur C2°(R™) admet une extension auto adjointe sur L?(R", d)
que l'on notera encore Apy. Cet opérateur est négatif et symétrique par rapport a la
mesure vy puisque l'on a pour tous f,g € CZ°

| V1.59dv@) = - [ F(Bovg)dr@) =~ [ g(Bound(a)
Il génere donc un semi groupe de diffusion P; défini par la formule de Mehler
Pif(@):= [ fle "o+ /1 —ey)dr(y).
Ce semi groupe peut étre exprimé a l'aide du noyau de Mehler M;
Pif(x / My(x, y) f(y)dy(y),

ou
1

le=* — yl?
T/2(1 — e—2t)n/2 S W
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Notons que ce semi groupe est solution du probleme de Cauchy suivant

Owu(t,z) = Au(t,z) —z-Vu(t,x),
Uuo == f S LZ(Rn)a

et on note formellement le semi groupe d’Ornstein Uhlenbeck e!20U f. Pour en savoir
plus sur ce semigroupe, on réfere le lecteur a [76].

Meyer a introduit dans [60] le vecteur de Riesz associé a l'opérateur d’Ornstein
Uhlenbeck Apy comme étant 'opérateur

R(Aov) = V(-Aou) /2.

Représentation analytique : On obtient une représentation analytique du vecteur
de Riesz associé a 'opérateur d’Ornstein Uhlenbeck en ajustant la preuve déja énoncée
précédemment, pour R = V(—=Apy) 2, Tif(z) = e *V~20U f(z) le semi groupe de
Poisson et ou (R", dz) est remplacé par (R"”,dv(z)). On obtient alors ce qui suit

_ > d
(V(=200) 2. 9) 2 (e ay(a)) = —4/0 (VIef, - Tt9) 12 dn (o) tdt.

Représentation probabiliste : On peut associer a 'opérateur d’Ornstein Uhlen-
beck Aoy un processus de diffusion (X;) sur R™ qui satisfait

dX, = dW, — X,dt,

ou (W) est le mouvement Brownien sur R”. Cette équation différentielle stochastique
est résolue par une variation de paramétres. En effet, soit f(X;,t) = Xzet. On obtient
par la formule d’It6

df(Xt, t) = Xt et dt + et ClXt
= Xtet dt + €t (th - Xtdt)
= et th

En intégrant entre 0 et ¢ on obtient
t
X, = Xpe P + e_t/ e’ dWs.
0

On affirme que l'on a la représentation probabiliste suivante des transformées de Riesz
associées a 'opérateur d’Ornstein Uhlenbeck

_EV(—AOU)_l/Qf(x) = lim E, {6_7 /T e*Ve Bsv _AOUf(Xs)dBS\XT =z .

2 Y—00 0
On voit que cette représentation differe 1égerement de la formule donnée par Gundy et
Varopoulos de par la présence de deux nouveaux termes. Pour expliquer ce phénomene,
nous avons besoin de nouveaux arguments, principalement tirés de la géométrie différen-
tielle. C’est d’ailleurs I'une des raisons qui a motivé les travaux de cette thése sur des
variétés Riemanniennes.
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1.1.7 Meéthodes et résultats
Premier résultat

La méthode de la fonction de Bellman a été utilisée a l’origine dans la théorie du con-
tréle par Richard E. Bellman. Burkholder ’a par la suite introduite en analyse har-
monique en 1984 pour obtenir certaines inégalités sur les transformées de martingale,
avec une variante de la méthode. Cette méthode est réapparue dans les années 90 grace
a Nazarov, Treil et Volberg pour montrer /redémontrer de nombreux résultats en analyse
harmonique. Cette méthode s’avere étre un outil extrémement puissant et un moyen tres
naturel de traiter les inégalités pondérées et de trouver une dépendance de la norme de
certains opérateurs classiques en analyse harmonique sur des espaces LP pondérés avec
la caractéristique A, du poids.

Le principal défi de cette méthode consiste a trouver une fonction appropriée satisfaisant
toutes les propriétés souhaitées, puis a utiliser des arguments de convexité. Bien que
I'unicité ne soit pas requise, la connaissance de ces fonctions nécessite beaucoup de pra-
tique. Les auteurs eux-mémes décrivent cette méthode comme un savoir-faire artisanal.
Chaque probléme a sa propre fonction de Bellman dépendant d’un certain nombre de
variables qui changent d’un probléme a l'autre.

Le premier résultat de cette these concerne le vecteur de Riesz R, sur une variété
Riemannienne (X, g, #) munie d’une mesure de type e~ ?du ou un poids supplémentaire
est présent : nous étudions donc la norme du vecteur de Riesz sur l'espace pondéré
L?(w) = L*(we™%dp).

En exhibant une fonction de Bellman appropriée dont ’origine provient d’une analyse
profonde du papier [61], nous prouvons que sur une variété Riemannienne compléte
(X, g, ) munie de la mesure du, = e~ “du tel que la courbure de Bakry-Emery soit
positive et que p,(X) < oo, nous disposons d’une estimation linéaire et indépendante
de la dimension de la norme pondérée du vecteur de Riesz en terme de la caractéristique
du poids dans la classe Poisson As:

IR L2 () L2 () S Q2(w).

Plus précisément, on définit pour tout @ > 1, la fonction Bg = By + Bs + B3 + By
sur le domaine

Do ={X = (X,Y,x,y,7,8) : x> < X7, {y,y) <Vs,1 <rs < Q}

par

2
OBI(Z7H,X,y,T’S):X_X7+Y_<y7y>7
r s

2

X __ by
¢ By(X,Y,xy, 1) =X = — 4 M(r,s)’

S + 02
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°B3(X7KX7.Y’7’75):X—W+Y— ,

ou
4 2
M(r,s) = —Q —rs? + (4Q2 +1)s
r

et
4 2
N(r,s) = —% — sr% 4+ (4Q% + 1)r.

e By = By + Bys + Bys avec

2
o B41(X,Y,X,y,r,s):Xf£7+Yi (y,y)
+M(r,s) s
r
Q
2
¢ B42(X7Y>X>Y7T>S):X—X7+Y—<y:,7y>
r N(r,s)
Q
X (v,y)
¢ B43(X’Y7X)Yar)8)_supa>0 X_W‘FY_ + —1K(7'73)
r—+a s+a
N Q Q
o rs
K(Tas):\/@\/r—zj
M(T75):—SQ—ZC§+(4Q+1)T
et o )
v 4 s°r
(r;s) , 4Q+( Q+1)s

Cette fonction satisfait les propriétés suivantes
1. 0< Bg <84(X +Y);
2. —d’Bg > §dx||dy], ot Bq est C?;
3. &,BQ <0.

A Tl'aide de cette fonction et de ses propriétés, nous sommes en mesure de démontrer

I’inégalité bilinéaire suivante
| [ R P @)IT Pt dispf@yit < 221 Qo) 12t T2,

ou P;f est le semi groupe de poisson associé a la fonction f, ]5;.5 est le semi groupe de
Poisson associé a la 1-forme différentielle § et V est le gradient en temps et en espace.
On définit le vecteur de Riesz sur L? par

Ry R(—A,) — L*(T*X).
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En utilisant la formule

[ Rt @G @) @) =4 [~ [ (P @) 5P (@), (@)1t

il découle que
IR f L2 xwny) < 884Qa (W) fll L2(x wpuy)-

Ces estimations sont connues comme étant optimales en terme de la caractéristique du
poids méme lorsque X =T et ¢ = 0 [70].
Pour plus d’informations sur ce travail, nous référons le lecteur a [18].

Second résultat

Notre approche pour le deuxiéme résultat est un peu plus probabiliste et utilise la
représentation martingale suivante de la transformation de Riesz sur des variétés Rie-
manniennes complétes, présentée pour la premiére fois dans [54] :

R f@) = lim E, [MT /T MIYQUF)(BY, BOdBBY =2|.  (1.2)
2 Yy—00 0

Il a été tres profitable d’utiliser des notions d’analyse stochastique, car elle est étroite-
ment liée a analyse harmonique et permet d’obtenir des résultats optimaux pour les
normes LP de divers opérateurs importants.

Notre résultat est puissant car il estime Z*, la fonction maximale d’un certain proces-
sus Z que nous définirons ultérieurement. La technique utilisée dans la preuve s’appelle
la domination éparse. Cette technique récente est diie a Nazarov et Lerner dans [52] et
a Lacey dans [49] en 2015.

Pour un opérateur T et une fonction f convenable, le but est d’établir un controle
ponctuel de T'f par un opérateur épars S ie |Tf| < S|f| puis d’utiliser le fait que
la propriété éparse permet d’insérer des poids et d’en déduire la puissance optimale
pour la constante A,. Bien que la domination éparse de Lacey implique immédiatement
des inégalités pondérées avec dépendance optimale vis-a-vis de la caractéristique A, du
poids, elle est définie sur des cubes et ne peut pas fournir d’estimations indépendantes
de la dimension, ni de résultats satisfaisants sur des espaces non homogeénes. Nous con-
tournerons ce probleme en utilisant un opérateur épars avec des temps d’arrét continus,
comme dans [21].

Soit (€2, F,P) un espace de probabilité et X = (X};); un processus stochastique. L’opérateur
X +— S(X) est dit épars s’il existe une suite croissante de temps d’arrét adaptés
0=T7"1<T%< ... etdes ensembles emboités F; = {T? < oo}, E; C Ej_ tels
que
o
S(X)= > Xpixe, on Xp; = E(X|Fp);

j=—1

VAj C Ej, Aj € }—Tj tel que ]P(Aj N Ej+1) < P(Aj).

DO |
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De plus, I’équation (1.2) peut étre ainsi réécrite
1 . x
—5(Re/)(w) = lim By | Zr| B =],

ou Z; est une semi-martingale définie a 'aide des martingales auxiliaires X; et Y; définies
comme suit

t
X, = Qf(BY, B) — Qf(BY.y) = /0 (V,0,)Qf (BX, B,)(U,dW,, dBy),

t
vi= [ Vs (BY, BB,
0

t
Z :Mt/ M;lays,
0
et Y; est différentiellement subordonnée & Xj;.

On peut alors montrer que pour tout p € (1, 00):

2

p
||Rso||LP—>LP < 16

et
HRQOHL2(W)—>L2(¢U) S Q2(w).

Pour plus d’informations sur ce travail, nous renvoyons le lecteur & [19].

Troisiéme résultat

En utilisant la méme approche probabiliste que dans le deuxieéme résultat, nous nous con-
centrons cette fois sur la courbure de Bakry-Emery, suivant [16]. Les marches aléatoires
et les semi groupes de Poisson sur les variétés sont un sujet délicat et nous renvoyons le
lecteur au texte de Emery [29].

Supposons que Ric, > —a, a > 0. On définit le semi groupe de Poisson et le vecteur
de Riesz en conséquence

Q(f)(w,y) = e ¥V M2 f(a)

et
RY = d(ald — A,) Y2

La pierre angulaire de ce résultat est un remplacement élégant de la martingale (X;) par
une sous-martingale (X/), somme de (X¢) et d’un processus de variation finie croissant.
Par la formule d’It6, (X)) n’est rien d’autre que Q°f, 'extension de Poisson de f. Cette
astuce nous permet de controler les termes issus de la courbure négative.
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L’introduction de la sous-martingale implique un autre changement, a savoir la déf-
inition de l'opérateur épars S. En effet, nous définissons

S(X*) = Z E(X*|Fpri)xe; auliende S(X%)= Z X7 XE;
j=—1 Jj=-1

car contrairement au cas des martingales, ici on a une simple inégalité

E(X"|Frs) > Xg,.

1.1.8 Applications et perspectives

Nous explorons briévement dans cette partie quelques pistes qui s’inscrivent dans le
méme cadre que cette these. Nous suggérons au lecteur intéressé ce qui suit

1. L’opérateur de Beurling-Ahlfors;
2. Les intégrales fractionnaires;

3. Les bornes LP(w) des transformées de Riesz sur une variété Riemannienne.

L’opérateur de Beurling-Ahlfors

On peut obtenir une estimation pondérée de la norme de I'opérateur de Beurling- Ahlfors
agissant sur des variétés. L’intérét de cet opérateur provient d’un célebre probleme de
régularité dans [3]. L’idée est d’utiliser & nouveau une formule de représentation de
transformation de martingale pour 'opérateur de Beurling- Ahlfors étendue aux 1-formes
sur des variétés riemanniennes completes. Cette idée est tirée de [56, 57].

Soit (X, g, p) et BtX définis comme précédemment. L’opérateur de Beurling Ahlfors est
défini sur les variétés comme suit

B = (d}d—dd3)(A,) Y,
ou d désigne la dérivée extérieure, dg, son opérateur adjoint et 5¢ = ddj, + dyd est le

Laplacien (pondéré) de Hodge-de Rham agissant sur les 1—formes différentielles.
On définit les matrices Ay = (a;a}) et A2 = (aja;) comme dans [56, Section 3] et

B=A,—A;.

Contrairement au vecteur de Riesz, on définit le semi groupe de chaleur rétrograde généré
par le Laplacien de Hodge de Rham Laplacien par

Pz, T — s) = e~ T3¢ 5(z), Yz € X, s € [0,T], § € CCAT*X),

pour tout T" > 0.
La représentation probabiliste de I'opérateur de Beurling-Ahlfors sur des variétés Rie-
manniennes completes ot Ric, > 0 est la suivante

T
Sh.9() =E <MT/ M ANV PG(BY, T — t)dX,| By = x) ,i=1,2
0
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t
¢ T
SEg(x) =2 lim E (MT / M;'BVPG(BX,T —t)dX| By = :c) .
T—00 0

Soit .
Z, = M, / M-'BVPG(BX,T — s)dBX
0
et .
X, = Mt/ M;'VPGBX,T — s)dBy.
0
Soit Y = WZ,:, ou || - ||op désigne la norme d’opérateur. Y; satisfait
op

B
dYy = ViVe + - —d Xy
[1Bllop

et est différentiellement subordonnée a X;. On obtient alors
p2 2 A max(1,—)
127 Lo (7 x0) < 16E||B\|opr(w) P X | 1 (xw) -

Intégrales fractionnaires

Une autre famille d’opérateurs intéressante est celle des intégrales fractionnaires associées
a un semi groupe de Feller (T}); dont la dimension Varopoulos est d. Nous définissons
les intégrales fractionnaires d’ordre av € (0, d) comme suit

1

(%)

I f(z) = /O 40271 () d

Encore une fois, nous pouvons considérer la représentation probabiliste des intégrales
fractionnaires étudiées sur R? (voir [1]) et sur des espaces localement compacts (voir
[47]) puis étendre cette représentation aux variétés Riemanniennes complétes en utilisant
lapproche de Li dans [58]. On obtient ainsi

Sef(zx) =E" [MT /OT M;lBgagéf)(Bf,Bs)st|B§ =z|.

Il existe alors une constante Cy, 4 > 0 telle que
ngf — Ca,dIocf7
a——+00
au sens des distributions.
Si 'on peut trouver une fonction similaire a celle utilisée par Wang pour prouver la
continuité des intégrales fractionnaires, on peut espérer obtenir des résultats intéressants

concernant les inégalités de Hardy-Littlewood-Sobolev.
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Bornes LP(w) des transformées de Riesz sur une variété Riemannienne

On aimerait étendre les résultats de nos travaux précédents aux espaces LP(w) pour
tout p € (1,400). Malheureusement, la preuve ne marche plus dans le cas p # 2 si
on introduit des poids u et w tels que vPw = wu. Cependant, nous pouvons espérer
obtenir des résultats positifs en utilisant le théoreme d’extrapolation dans sa version
probabiliste, utilisé par exemple dans [23].

1.2 Motivation

1.2.1 Historical context

In this thesis, we are interested in LP and weighted LP bounds of the Hilbert and the
Riesz transforms.

The LP estimate of the Hilbert transform on the real line dates back to the work of Riesz
[74] and Pichorides [71]. Indeed, in 1972 Pichorides proved that the best constant for
the norm of the Hilbert transform H is given by

T
2tan — for 1 < p < 2;
_ 2p
Cp = T
cot — for 2 < p < 0.
2p

In the Euclidean setting, the i—th Riesz transform in R" is defined as

0

_ _A —-1/2

R;

where A = 377" | 9%/92 is the usual Laplacian in R™. The vector Riesz transform R is
defined as the collection R = (Ry, Ra, ..., Ry,). Note that in the one-dimensional setting,
the Riesz transform is nothing but the Hilbert transform. Regarding the L? estimate of
the Riesz vector in R™, T. Iwaniec and G. Martin proved in [46] that for all 1 < p < oo,
there exists a constant C}, > 0 independent of n such that

1R; £ llp < Collfllps ¥ =1, 1.

This constant is equal to Pichorides constant. For the Riesz vector, the best result known
so far is given by Bafiuelos and Wang in [9]

* * p
151y < 20" = Dllfllp, ¥ p € (1, 00), where p” = max(p, ).

We also refer to [77, 60, 72, 25]. The knowledge of the exact value (or at least a good
estimate) of the p-norm of the Riesz transforms on R" is a recent matter whose impor-
tance appears in the theory of quasiconformal mappings and related PDEs.

In 1960 and using complex analysis tools, Helson and Szego proved in [38] that the
Hilbert transform is bounded on L?(w) if and only if the weight w can be represented as
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w = exp(p + H1), where ¢, 19 € L™, ||¢||f~ < 7/2. Later in 1973, Hunt, Muckenhoupt
and Wheeden proved in [41] that the A, condition also characterizes the boundedness of
the Hilbert transform on LP(w). In fact, they proved that H is bounded on LP(w),p €
(1,00) if, and only if w belongs to the Ay-class of weights, that is

Qp(w) = Sgp (@/Qw(x) dx) (@/prll(x) dx)p_l < 00,

where the supremum is taken over all cubes @) C R.

Weighted inequalities arose naturally in analysis with the birth of singular integral
theory. In the theory of PDEs for example, weights appear to treat PDEs with degen-
erate coefficients, domains with non smooth geometry or equations with rough initial
data. On R", the prototypical A, weights are the power weights: by using for exam-
ple improper Riemannian integrals, it is easy to see that for all a € R and for p > 1,
|z|* € Ay if and only if —n < a < (p— 1)n.

In the last 15 years, it has been of interest to find sharp bounds for the norm of a
singular integral operator 7' in terms of the A, characteristic Q,(w) of the weight. The
aim is to prove an estimate of the form

1T fllzrw) < CQp(w)" (I fllLr(w)

for a suitable r where the constant C' is independent of f or w. Since Q,(w) > 1, the
focus is on finding estimates with r as small as possible. Questions of such optimal norm
estimates have become known as A, conjectures.

Over the years, many results were presented. For instance, a long standing regularity
problem (see for example Fefferman-Kenig-Pipher [31] and Astala-Iwaniec-Saksman [3])
has been solved through the optimal weighted norm estimate of the Beurling- Ahlfors
operator, a classical Calderon-Zygmund operator, using the heat flow characteristic of
the weight. See Petermichl-Volberg [69]. In 2000, J. Wittwer proved in [82] a sharp
estimate for the martingale transform, using important developments on a corresponding
two weight question in [61]. As for the Hilbert transform, its bound has been improved
several times: S. Buckley proved in [15] that the Hilbert transform is bounded by the
square of the classical As characteristic of the weight. In [68] S. Petermichl and S. Pott
improved the power in this estimate from 2 to 3/2. This problem has finally been solved
by Stefanie Petermichl in [66] who proved a sharp bound for the operator norm of the
Hilbert transform in LP(w). A year later, she also solved it for the Riesz transforms in
[67]. It was finally in 2012 that the so-called Aj-conjecture has been completely solved
by T. Hytonen, for any Calderén-Zygmund operator.

Theorem 1.4 (Resolution of the A, conjecture, [42]). Let T € L(L*(RY)) be a fized
Calderon-Zygmund operator. Then for all w € Ap,

1T f o) < Co(T)Qp(w)™ =D £ 1oy, p € (1,00)
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and the result is sharp in the power of Qp(w).

The proof was reduced to the case when p = 2, then the Calderén-Zygmund operator
was represented as an average of "dyadic shifts" and finally, the following extrapolation
theorem due to Rubio de Francia was used.

Theorem 1.5 ([75],[17],[24]). Let T be a sub-linear operator. Suppose that for some r
in [1,00) and every w in A,, the operator T satisfies for each B > 1 the following

1T\ oy < Nie(B), Yu € A, Qp(u) < B.
Then for any 1 < p < oo and all B > 1, there exists a constant Np(B) > 0 such that
HTHLP(w) < NP(B)> Vw € AP: Qp(w) <B

Moreover,

1/r N = .
T NT(QTfl(C(p)p’TB) 1) dfp<r

where the constant C(p) depends only on p and that appears in

IM o) < C@)Qp(w) ™™ Y ED | £l o), p € (1, 00)
where M is the Hardy-Littlewood mazximal function.

Several other proofs of the As-conjecture were presented, each of them simplifying
Hytonen’s proof and contributing to a better understanding of the field. See for example
[53] whose proof exploited a local mean oscillation inequality and [49] who used sparse
operators to obtain a pointwise control of the operator T'.

1.2.2 Context of the work in this thesis

The focus in this thesis is on the Riesz vector on Riemannian manifolds (X, g, p1,,) en-
dowed with measures of the type du, = e ?du, ¢ € C?(X). If in addition we endow
the space with the Bakry-Emery curvature Ric, = Ric +V2p, then the Riesz vector is
defined as Ry, = Vo (—A,)"Y2 with A, = A —Vp - V.

For early considerations of LP boundedness of Riesz transforms on manifolds, we
refer to [78]. We mention also the works [60, 10, 36, 12, 72, 2] among which the papers
of Bakry provide estimates of Riesz transforms for complete Riemannian manifolds un-
der the general condition that the Bakry—Emery curvature is bounded below (see [29]).
Using stochastic techniques, linear dimensionless estimates of the Bakry—Riesz vector on
manifolds were announced in [54] and [58]. Using deterministic techniques, such esti-
mates were proved in [16]. See also [6] for second order Riesz transforms on manifolds and
[8] for Riesz transforms on manifolds, correcting a previous gap in the probabilistic proof.
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Regarding the weighted theory, the classes of weights considered in the last decades
were merely defined in terms of volume of balls, so the entire weighted theory has been
extended to the doubling framework. We recall that a measure on a metric space X is
said to be doubling if the measure of any ball is approximately the measure of its double,
or more precisely, if there is a constant C' > 0 such that for all x € X and r > 0, we
have

p(B(z,2r)) < Cu(B(z,r)),

where p(B(z,r)) is the volume of the ball B(x,r). In this case, we say that p is C-
doubling and that (X, ) is a homogeneous space.

One challenge in this thesis is that the measures considered are not necessarily
doubling. For this reason, we are interested in a version of the A, class with character-
istic @Qp(w) which is particularly well-suited for working with the Riesz transforms on X.
Namely, we use the Poisson-A,, class with characteristic Qp(w), which considers Poisson
averages instead of box averages in the definition of A,. This allows us to tackle some
measures that may have mild non-homogeneity as well as obtain a sharp bound free of
dimension for the Riesz vector:

IRl 22 () 22 () S Q2(w).

We stress both the continuity of the operator in this setting, its rate of continuity, i.e. the
first power of the characteristic @g(w) as well as the fact that implied constants do not
depend upon the dimension. The linear estimate (in terms of the classical characteristic
that induces a dimensional growth) is very recent in the case of general X with bounded
geometry and ¢ = 0 [14]. This thesis has therefore the following novelties:

1. A weighted estimate holds even in the case ¢ # 0.
2. The estimate is sharp in terms of dependence on the power of @Q(w).
3. The estimate is free of dimension.

Even in the case ¢ = 0, these operators are not necessarily of Calderén-Zygmund type.
These Riesz transforms on manifolds fit into the class of non-kernel operators, whose
weighted theory was established in Auscher-Martell [4]. The optimal weighted norm
estimates for these types of operators, even without the extra e™%, have only recently
been found in [14] (in terms of the classical characteristic). In all these proofs, the
doubling feature of the measure o = e %y is heavily used and dimensional growth
occurs.

We first show in this thesis (see Chapter 4) that on a complete Riemannian man-
ifold (X, g, ) endowed with measure e”?du and non-negative Bakry-Emery curvature,
we have a dimension-free linear weighted norm estimates for the arising Riesz vector
in terms of the Poisson flow Ay characteristic of the weight. The proof is by a simple

31



but beautiful fact that follows from a Littlewood-Paley type formula for the Riesz vec-
tor using the Poisson flow !, followed by a Bellman function, resembling the strategy
used by Carbonaro-Dragicevié¢ [16] for the unweighted case in LP. Their proof relies on
Bakry’s idea of adapted Poisson flow on one-forms [12] in combination with the concise
but powerful Bellman function of Nazarov-Treil [63] that is adapted to LP estimates. A
key difference here is the complication of the weighted Bellman function, that has to be
known in an explicit manner. This Bellman function of six variables is derived through
an analysis of [61] as well as [70]. A similar function was constructed in [22]. Properties
that go beyond those needed for martingale multipliers are required to obtain the desired
Riesz transform estimates on manifolds, which is in a sharp contrast to the Euclidean
case [23], where existence of this Bellman function suffices.

The search for optimal estimates in weighted spaces has greatly improved our un-
derstanding of central operators in harmonic analysis and has developed numerous tools
with a probabilistic flavor. Notably, the first solution of an As problem [69] uses an
underlying estimate for predictable martingale multipliers of dyadic martingales under
a change of law by Wittwer [82]. Regarding the Riesz transforms, it has been known at
least since Gundy-Varopoulos [35] that the Riesz transforms of a function can be written
as conditional expectation of a simple transformation of a martingale associated to the
function.

The procedure by which one transfers the study of certain operators in harmonic
analysis to stochastic analysis is standard. For a function f in LP(X), we let f be
its harmonic extension on X x RT. We compose this function with the background
radiation process Z; = (B;X, B;) defined by Gundy and Varopoulos in [35] on X x R¥
which is Brownian trajectories in the upper half space started at infinity and stopped
when hitting the boundary. We produce a new martingale, the so called martingale
transform by using a (n+1) X (n+ 1) matrix A. We denote the martingale transform by
(A x M7);, where (Mtf )¢ is the martingale associated to f (using Itd formula). Finally,
we project it by conditional expectation to obtain the desired operator. We deduce
properties of this operator from basic properties of stochastic analysis. The classical
examples are

o The Riesz transforms on R"™ [35],
o The Beurling-Ahlfors operator on C [7],
o The Hilbert transform on R [23],

e The Riesz transform and the Beurling-Ahlfors operator on Riemannian manifolds
[55].

!This transference approach has also been used for the Hilbert transform on the disk [70] in the early
days of the sharp weighted theory and for the Riesz vector in Euclidean space [23] to obtain a sharp
dimensionless estimate with respect to the well adapted Poisson A2 characteristic.
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In the second result of this thesis (see Chapter 6), we present the dimensionless
LP boundedness of the Riesz vector on manifolds with bounded geometry, for all p €
(1,00). As a corollary, we obtain for free the result obtained in [18] with a better
numerical constant. We will only consider manifolds with non-negative curvature and use
stochastic tools relying on the stochastic representation of Riesz transforms on manifolds
by X.-D. Li [54, 58, 55]. To this end, we use Eells-Elworthy-Malliavin construction of a
Brownian motion on manifolds (see Chapter 5). It is defined as the projection on the
manifold of the solution of a stochastic differential equation, or SDE, (called horizontal
Brownian motion), defined on the orthonormal frame bundle O(M). This construction
allows to describe diffusion processes on manifolds and gives rise to the notion of parallel
transport along the paths of the diffusion [39, 28].

Our proof is very different from previous ones in that it does not rely on a Bellman
function for the problem. Rather, it develops a sparse domination of the stochastic
process of Li. See [52] for a first domination pointwise, the elegant and short argument
in [49] for the first probabilistic object, namely a discrete time martingale transform
and also [21] for the continuous time case. One can deduce, from such domination a
dimensionless bound. The sparse operators are particularly well suited for working with
weights, which is why this so obtained dimensionless estimate also holds in the weighted
setting.

The stochastic process by Li is a specific semi-martingale, built using a pair of mar-
tingales that have differential subordination and solving a certain stochastic differential
equation. As such, our argument required several tools. One of them is a weak type
estimate of the maximal operator of this process, which first appeared in [8]. This is the
only part of our proof that uses a (simple) Bellman function. The explicit form of the
function is essential and not just its convexity and size properties. The first derivative
of said Bellman function is used to control a drift term that arises because the process
we consider is not a martingale. Further, we then show that this process has a sparse
domination, according to the definition of sparse operator in [21]. The specific form of
the defining stochastic equation is used.

Finally, we present a third proof of the dimensionless LP boundedness of the Riesz
vector on manifolds with bounded geometry (See Chapter 6, Section 6.4). Our proof
has the significant advantage that it allows negative Bakry-Emery curvatures, yielding
to a strong conclusion, namely that of a new dimensionless weighted LP estimate with
optimal exponent and independent of the lower bound of the curvature. Other than
previous arguments, only a small part of our proof differs from that of the second result
in that we consider the lower bound of the curvature. The Poisson flow and the Riesz
transforms are thus defined accordingly. We also introduce a sub-martingale which is the
sum of a previously defined martingale and an increasing finite variation process. This
allows us to to control terms depending on the lower bound of the curvature, appearing
in this case. The rest of the proof resembles that of the second result.
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1.3 Notations

We give here a few notations that will be used throughout this thesis. Notations that are
used later but not mentioned here are either standard or will be defined when needed.

e D={z¢€C:|z| <1} will denote the unit disk of the complex plane.
o T={z€C:|z| =1} = ID will denote the unit circle of the complex plane.
o L(E;F) is the space of bounded linear operators from E into F'. L(E) := L(E, E).

e Let A be a subset of X. The characteristic function x4 is the function y4: X —
{0,1} defined as

1 ifxeA,

Xa(@) = {0 ited A

o Let 1 <p < ooand (X,u) be a measure space. Define

LP(X) = {f real or complex-valued measurable function on X such that / | fIP dp < oo}
X

7= ( [ 117 du>1/p

For a function w that is positive almost everywhere, let

v = ([ 170 )™

o L} (X) is the space of locally integrable functions

and

L}, .(X) = {f measurable s.t. fxx € L'(K), VK C X, K compact}.

o C(X) stands for the set of smooth (in the sense of having continuous derivatives
of all orders) functions that take values in X and are compactly supported. It is
also called the set of bump functions.

e On (X, pu) and for A C X, we define |A| = u(A).

o p.U. (%) : CP(R) — C is defined via the Cauchy principal value as

[p.v. (i)} (u) = lim @dx = /0+Oo de ;

e—=0F JR\[—g¢] T x
for u e C°(R).
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o Let f € L} .(R"). The Hardy-Littlewood maximal function associated to f is the
function M f : R™ — [0, +oc] defined by

1
Mf(z) = ili%LB(xaT”/B(a:,r) |f(y)| dy.

o T75(R™) is the tensor product

r s

e Ay =min(z,y) and x Vy = max(z,y).
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Chapter 2

Preliminaries

2.1 The Hilbert and Riesz transforms

The topic of the Hilbert transform is motivated by its close connection with some of
the most important problems in analysis. We can cite for instance the Riemann Hilbert
problem for holomorphic functions, BMO spaces, convergence on LP(T) of partial Fourier
sums... etc. But also in more applied mathematics like signal processing [34, 26].
Historically, the Hilbert transform was named after David Hilbert. Its first use dates
back to 1905 in Hilbert’s work concerning periodic functions, or equivalently for func-
tions on the circle and the theory of the Hilbert transform depended on techniques of
complex analysis. With the development of the Calderén-Zygmund school and the ex-
tension of one-dimensional theory to higher dimensions, real-variable methods replaced
complex analysis. These new methods led to the application of singular integrals (on
the real line) in other domains.

2.1.1 The Hilbert transform on T

It is well-known that there is an intimate connection between the Hilbert transform and
conjugate harmonic functions in the context of complex analysis.

More specifically, given a real-valued function f € L?(T) where T is the boundary of
the disk D, we can produce a function u by the mean of the Poisson integral formula
on D such that u = f (almost everywhere) on T. We may find a harmonic conjugate
of u, say u!, such that u'(0) = 0 and u + iu! is holomorphic on . What we hope to
do is to produce a boundary function f' for uf. It turns out that the Hilbert transform
H: f— f1is such that Py x f+iPy * fT is holomorphic on I and it is defined on the
disk by

Hf(e?) = ip.v ” f(e)cot <02_t) dt.
0
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More explicitly, we have the following scheme

Boundary Value of u

feL*T) »u= P, x f € Harm(D)
H ul € Harm(D)
fh< u+iul € Hol(D)

Boundary Value of uf

2.1.2 The Hilbert transform on R

Next, we can define its analogue' on the real line R, where you can think of R as the
boundary of the upper-half space C;. This means that for a function f € L?(R) there
exists a unique harmonic function F(z,y) = Py* f(z) in C4, called the Poisson transform
of f, such that, in L?-sense,

lim F(x,y) = f(x).

y—0+

The function P, is the Poisson kernel and it is defined by

Ly
P)(z)=——"—.
(z) ma?+y?
Moreover, this function F' admits a unique harmonic function G in C, vanishing at
infinity and such that F' + ¢G is holomorphic in the upper half plane. This function
G is known as the conjugate harmonic function to F' in C, and it is often denoted as

Qy * f(x), where

1 T
71-562_’_3/2

Qy(z) =

is the conjugate Poisson kernel. The Hilbert transform H may then be defined as the
boundary value lim, o+ G(z,y), taken in L? -sense. In other words:

Qy * f(x) = Py x (Hf)(x).

In this context, H is given by

2.1.3 Properties

In what follows, we focus on the Hilbert transform defined on the real line. The following
properties are very classical and their proofs as well as more details can be found in any
book on harmonic analysis. See for example [33].

!The Hilbert transform on the real line and on the disk are denoted the same. But there is no danger
of confusion since the class of functions under consideration specifies the context.
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One of the most important property of the Hilbert transform is its Fourier transform,
given by the following formula

F(Hf) (&) = —isgn(§) Ff(8)

where sgn is the usual sign function. This formula can be seen as an equivalent definition
of the Hilbert transform, since we know that multiplication on Fourier side corresponds
to convolution on space:

Hf(zx) = Kg* f(x),

1
where Ky (z) := p.v.—. In other words, the Hilbert transform H can be considered as
T

1
a singular integral operator of convolution type whose kernel is —.
T
Among the numerous properties of the Hilbert transform, due to its great importance
in several domains, we are going to list those that will be useful later in this work.

o It is easy to see that H is an isometry on L% i.e. ||Hf|l2 = ||f||2 by Plancherel’s
theorem.

o Although the kernel of H is not integrable (and hence we cannot use Young’s
inequality to prove boundedness on LP), Marcel Riesz generalized in 1927 the
previous result to LP(R) for all 1 < p < oo. In 1972, Pichorides proved that the
best constant for the norm of the operator is given by
c, — tan% for 1 < p <2

cot% for 2 < p < oo.
The same best constants hold for the periodic Hilbert transform.

One may wonder what happens at the endpoints 1 and infinity. By computing the
Hilbert transform of the interval [0,1], which is a function in L' N L, one sees that

1 T
H(X[O,l]) = ;ZOQ <|x||1|>

which is not bounded on L', nor on L>®. As a matter of fact, we have the following
properties at the endpoints

o H is of weak-type (1,1). This result is due to Kolmogorov, in 1927 and it means
that
If

1
C >1.
A ) -

preR:[Hf(z)]>A}) <C

o Fefferman proved” in 1971 that H maps bounded functions into a larger space
called bounded mean oscillations and denoted by BMO.

2The definition of H on L slightly differs from the original one on LP.
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e The Hilbert transform relates the square root of the Laplacian to the derivative in

this way
Hov—-A=20,.

This formula is often used when the studied spaces are groups or manifolds.

2.1.4 The Riesz transform on R"

We can now study in the same way an n-dimensional analogue of the Hilbert transform.
It turns out that there exist n operators in R”, called the Riesz transforms, which have
analogous properties to those of the Hilbert transform on R. These operators are defined
forall 1 < j <n by

Rjf(x) = cplim = z)f () dt

e—0 R™\ B (z) |l’ —L‘|n+1

_ (tj — ) f(1)
= Cp Pp.V. /n W dt,
I(n+1)/2]
7((”+1)/2
by a convolution with the kernel

with ¢, = , a dimensional normalization. Again, these operators are given

T

Equivalently, we can define these operators by the means of the Laplacian and first order

derivatives as follows
Rj oV —A = 8]-

or more formally
R=Vo(-A)"12

(In this formula, R is understood to be the vector of n components.)

The Riesz transforms arises in the study of differentiability properties of harmonic po-
tentials in potential theory and harmonic analysis. In particular, the Riesz transforms
allows to recover information about the entire hessian of a function from knowledge of
only its Laplacian.

It is natural to believe that the Riesz transforms’ properties are similar to the Hilbert
transform ones. We may cite for instance

. F(Rif)(E) = —z’fg‘ff(ﬁ) V=1 n.

e An immediate consequence is that the Riesz transforms are bounded on L?.

e Forall 1 < p < oo, T. Iwaniec and G. Martin proved that there exists a constant
Cp > 0 independent of n such that

IR fllp < Cpll fllp, Vi=1,--+,n.

This constant is equal to Pichorides constant C), = cot(%%), where p* = max(p, -£5).
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o By defining | Rf|, := (X", |R:f|?)"/?||, the LP norm of the vectorial Riesz trans-
form, Banuelos and Wang proved that

1B fllp < 2(p" = DIIfllps ¥ p € (1, 00).

This is so far the best known result and the sharp bound remains open. It is
conjectured in Problem 6 in [5] that the sharp bound should be C), = cot(5=). We
note that Banuelos and Wang’s bound does not give the sharp bound even when
p = 2, which by the Fourier transform is 1.

The knowledge of the exact value (or even a better estimate) of the LP norm of
the Riesz vector leads to important applications in the study of quasi-conformal
mappings and related non-linear geometric PDEs as well as in the LP Hodge de-
composition theory.

2.2 Semigroups

This section is devoted to semigroups and their properties. They mostly appear in the
theory of linear evolution equations, but they also have a rich interplay with other sub-
jects in functional analysis, stochastic analysis and mathematical physics.

Strongly continuous semigroups (which will be defined below) arise when we want to
find a solution for a Cauchy problem given by

Au(t), te€[0,T]

ug, U € X, (2.1>

—N
S =
—~

=
N~— ~—
[l

where A is a linear (non necessarily bounded) operator defined on a domain D(A) of a
Banach space X. The most common problem is the heat equation, where (A, D(A)) is
(A, D), for some open domain D C R"™.

A naive approach would be to suggest a solution given by u(t) = e*®ug. The problem is
that if we work on a very general space, this exponential cannot be defined via matrices
anymore. This is why we turn ourselves to semigroups.

t

Definition 2.1. Let X be a Banach space over R or C.
o A semigroup on X is a map T : Ry — L(X) such that

- T(0)=1Id
—Vt,s>0: T(t+s)=Tt)T(s).

e We say that (T(t))¢>0 is strongly continuous on X if

Vag € X & || T(t)xo — xol| = 0, ast [0

The first two axioms are algebraic while the last one is topological, and states that the
map T is continuous in the strong operator topology. We denote by Cy-semigroups all
strongly continuous semigroups.
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Remark 2.1. In what follows, we are only considering Cy-semigroups.

As mentioned earlier, the theory of strongly continuous semigroups was developed
in order to study existence and uniqueness of solutions to the evolution equations. To
that purpose, we need to define the generator of a semigroup.

Definition 2.2. Let (T'(t))t>0 be a strongly continuous semigroup on X. The generator
of (T'(t))t>0 ts the operator A defined by

1
D(A) = {z € X such that ltiﬁ)l n (T(t) —I)x exists in X'}

o1
Ax:lgﬁ)lg(T(t) — Iz, VoeD(A).

The strongly continuous semigroup 1 with generator A is often denoted by the

symbol e*. This notation is compatible with the notation for matrix exponentials, and
for functions of an operator defined via functional calculus (for example, via the spectral
theorem). Another common notation for semigroups is F;.
The next proposition will suggest that strongly continuous semigroups generated by an
operator A are indeed the objects to use in order to construct a solution of the Problem
(2.1). For more details and proofs of the classical results given below see, e.g., [64], [30]
and references therein.

Proposition 2.1. Let (T'(t))i>0 be a strongly continuous semigroup on X whose gener-
ator is A.

e If f€ D(A), thenT(t)f € D(A), Vt > 0.

e If f € D(A), thent— T(t)f is differentiable on Ry and

9T)f = AT()] = T()AS

Among C,-semigroups, there are particular semigroups that enjoy specific properties.
We list now those that shall frequently appear in this thesis.

Definition 2.3. Let (T'(t))i>0 be a strongly continuous semigroup on X. We say that
e (T'(t))t>0 ts positive if (T(t))f >0, Vf >0, Vt >0, for almost every x € X.
e (T'(t))i>0 is contractive if || T(t)||zg) < 1, VE > 0.

o (T(t))t>0 is L>®-contractive if for everyt >0 and f € L*(X) N L®(X) we have

IT(t) fllzee < [ fllzee
e If the semigroup is both contractive and positive, we say that it is sub-Markovian.
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e A Markov semigroup is a sub-Markov semigroup which is conservative, i.e. T(t)1 =
1. This property is referred to as mass conservation.

Example 2.1. As mentioned earlier, the following example is one of the main purposes
to develop the semigroup theory. It is often called the heat semigroup, Gaussian semi-
group or n-diffusion semigroup. We consider it in this ezample on L*(R™), where it is
defined explicitly by

1

Pif(z) = (At 2

a2
| e gy,
fort >0, x € R" and f € L*(R"). It is the unique solution of the heat equation

ou(t,x) = Au(t,z),
Ug = fELQ(Rn>7

and we usually denote the heat semigroup by e'® f.
This semigroup Py forms a Markov (and hence strongly continuous) semigroup on L?(R™)
fort > 0 with Py = Id and its generator coincides with the closure of the Laplace operator

n 82

for every function in the Schwartz space S(R™) [30].
By putting

1 —|x|? /4t
pt({L‘):WG ‘l/ s

we rewrite the semigroup as

and py is called the kernel of the semigroup. The kernel of the semigroup is C™ in
Ry x R™, positive, and satisfies

Oipe = Ap;  and / pe(x)dz = 1.

We will see further that we can associate to the semigroup Py (and more generally to
any Markov semigroup) a Markov process.

Example 2.2. Another important example on R™ is the Poisson semigroup, that we
denote in this example by P;. In fact, if we denote by H; the heat semigroup, then these
semigroups are related by Bochner’s subordination formula as follows

1 o0 =S
— | —H
Vil Vs g
- / H, f(w)dAs,

0

PBif(z) = f(x)ds
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t

where d\s = 5 et /4sg=3/24.
The Poisson semigroup P; satisfies
OZu(t,z) = —Au(t,z),
U = feL*R).

Another common notation of the Poisson semigroup is e "V =2 f.

2.3 Analytical representation of the Riesz transform

We highlight in this section the intimate connection of Riesz transforms and harmonic
functions on R™. Indeed, we present a Littlewood-Paley type formula for the Riesz
transforms using the Poisson flow.

Lemma 2.1. Let R = (Ry, -+, Ry) be the Riesz vector on R™ and P; be the Poisson
semigroup. Then we have

o0 d
(Rf,9)L2@mn) = —4/0 (VP f, aPtg)Lz(Rn)tdt.

Proof. To prove this lemma, we use the fact that for sufficiently decaying function F,

we have ~
= / F"(t)tdt,
0
by integrating by parts twice.
Hence if we take F'(t) = (P,Rf, Pig) 12(rn), We obtain

F) = (Rf,9)r2®n)

oo d2
= /0 dt2<PtRf Prg) L2 rytdt

2

&2 d
_ /0 (5 PiRS, Ptg)LQ(Rn) (PR, 25 Pig) 12 can)

d
<dtPtRf’ Ptg>L2(R”))tdt

= 4/0 <\/ —APtRf, Vv —APtg>L2(]Rn)tdt,
where the two last equalities come from the fact that O,P.f = —/—APf, 03P, f =

—AP;f and A is symmetric. Next, recall that R = Vo(—A)~"/2 and (—=A)'/2 commutes
with P; and V. Using one more time the fact that 0;P,g = —v —AP;g we obtain

(Rf,9)L2rr) 2—4/ (VB S, — Ptg>L2(Rn)tdt

as claimed. O
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2.4 Stochastic calculus

Recent years have witnessed a considerable effort of using probability theory of stochastic
processes as a powerful tool in the study of problems from harmonic analysis. The close
connection of stochastic differential theory and harmonic analysis allows to obtain sharp
results. We recall here some well-known notions and facts in probability theory. Most
of definitions are taken from the book [73].

2.4.1 Bases of stochastic calculus

In what follows, let (€2, F,P) be a probability space and (F;)i>0 € F be a filtration of
the underlying probability space such that Fs C F; for all s <t.
We always assume that the filtered probability space satisfies the usual hypothesis i.e.

1. Fp contains all the P-null sets of F;

2. Fi = s>t Fs, meaning that the filtration is right continuous.

Conditional expectation. The conditional expectation of a random variable is its
expected value given that a certain set of condition is known to occur.

Definition 2.4. Let (2, F,P) be a probability space and (Fi)i>0 be a filtration of the
underlying probability space, X : Q@ — R™ be a random variable on that probability
space with finite expectation and H C F a sub-sigma-algebra of F. Then there exists a
random variable Z that is H-measurable and integrable such that for every bounded and
‘H-measurable random variable U we have

E[XU] = E[ZU].

We write then
Z = E[X|H]

and call Z the conditional expectation of X given H. This random variable is well defined
because if Y is another random variable satisfying the same property, then Y = Z almost
surely.

The following properties are considered standard and their proofs can be found in
the literature.

Proposition 2.2. Let X, Y be random variables and F a filtration. Then
1. The conditional expectation is linear;
2. If X is F-measurable then E(XY|F) = XE(Y|F);
3. E(E(X|F)) =E(X);
4. If f : R — R is a convex function, then f(E(X|F)) < E(f(X)|F);
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5. The conditional expectation is LP(Q, F,P) contractive for p > 1;
6. If Hy C Ho C F then E(E(X|Hs)|H1) = E(X|H1).

More generally for a fixed a random variable W such that W > 0 a.s, we define a

. . WdP
weighted probability space (2, F,P) -where P =

is the weighted measure- as

E(W)
) = Zp,

where A is a subset of Q. We denote as well by Ey(-) the expectation with respect to
P.
By definition of the conditional expectation, we also have

E(xaW|F)
E Ft) = — e
wal?) = =garz)
E(X
Indeed, let X be a F-measurable random variable and W a weight. Let Y = W

We want to prove that for every G € F we have Ey (X x¢) = Ew (Y x¢). By uniqueness
of the conditional expectation we would have Y = Ey (X |F) a.s. By using the properties
of the conditional expectation listed above we have

. <E(waf)
E(YxeW) _ E(W|F)
E(W) E(W)
E(XW|F)
= (2 (S @)
E(W)
E (Eléf% g ) \GE wir))
E(W)
E (E(XxcgW|F))
E(W)
E(XxaW)
E(W)
= Ew(Xxa),

XGW>

Ew (Yxg) =

as claimed.

Definition 2.5. Let (2, F,P) be a probability space. A stochastic process is a collection
(Xt)t>0 of random variables that are measurable with respect to F.

A process X such that for each t it is Fy-measurable is called adapted.

A process X is called cadlag if it has right continuous sample paths, with left limits.

46



A stopping time is a random variable whose value is interpreted as the time at which
a given stochastic process (or sequence of random variables) exhibits a certain behaviour
of interest. More precisely

Definition 2.6. A random variable 7 : Q@ — Ry U {+o0o} is called a stopping time with
respect to (Fi)i>0 if
Vi>0, {we: 7(w) <t} e F.
A martingale is a sequence of random variables for which, at a particular time in
the realized sequence, the expectation of the next value in the sequence is equal to the

present observed value even given knowledge of all prior observed values.

Definition 2.7. Let M = (M;)t>0 be a stochastic process. We say that (Mi)i>o is a
martingale with respect to (Fi)e>o if

1) (My)e>0 is adapted to the filtration (Fi)i>0.
2) (My)i>0 is integrable for every t.
3) E(M|F,) = M,, Vt > s.

If we replace in 3) the equality sign with < or > then M is called super-martingale or
sub-martingale, respectively.

Proposition 2.3. Let (M)i>0 be a martingale. We have for allt > s >0
E(M;) = E(E(M|Fs)) = E(Ms) = ... = E(M))
In other words, the sequence (E(M))i>0 s constant.
Brownian motions are named after the botanist Robert Brown and are originated as a
model of the phenomenon that pollen grains suspended in water have a continual swarm
behaviour. They are nowadays a fundamental example in the theory of continuous in

time stochastic processes.

Definition 2.8. A stochastic process B = (By)i>0 adapted to a filtration F is called a
Brownian motion if

1. By = 0 almost surely;

2. By s almost surely continuous;

3. B; has independent increments;

4. By — Bs ~ N(0,t —s) for 0 < s <t.
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Definition 2.9. Let X;, t > 0 be a real-valued stochastic process defined on (2, F,P).
We denote by (X); or (X, X); its quadratic variation and define it by

n

X. X)) = 1 X, — X; )2
< ) >t ||P1||Igokz::1( tr tkﬂ)v

where P ranges over partitions of the interval [0,t] and the norm of the partition P is
the mesh. This limit, if it exists, is defined using convergence in probability.
More generally, the covariation of two processes X and Y is defined as
n
<X7Y>t = lim Z (th - th—1) (Ytk - Ytk—l)
1Pl—=0,=

= (X +Y) — (X =Y,
where the second equality is given by the polarization identity.
Example 2.3. If B = (B¢)i>0 is a Brownian motion then (B, B); = t.

Definition 2.10. Let X and Y be two martingales. We say that the martingale Y 1is
said differentially subordinate to the martingale X if the process ({(X, X))t — (Y, Y )t)t>0
is non-negative and non-decreasing in t.

It6 calculus. The Itd formula serves as the stochastic calculus counterpart of the
chain rule. It can be heuristically derived by forming the Taylor series expansion of the
function up to its second derivatives.

Theorem 2.1. Let (Mi)i>0 be a continuous martingale and F : R — R a twice differ-
entiable function. Then (F(M))e>0 is a semi-martingale and

t 1 t
F(M,) :F(M0)+/ F’(Ms)dMs+§/ F"(M)d(M, M), ¥t >0, P — a.s.
0 0

martingale part finite variation part

FEquivalently for allt > 0 and P — a.s,
1
dF (M) = F'(My)dM; + iF”(Mt)d<M, M)y.
Note that semi-martingales are real valued process defined on the filtered probability
space that can be decomposed as sum of a martingale and a cadlag adapted process of

locally bounded variation.

We also present another form of It6 formula to find the differential of a time-
dependent function of a stochastic process.

48



Theorem 2.2 (second form of Itd formula). Let (M;)i>0 be a continuous martingale
and F : [0,T] x R = R a function that is differentiable in the first variable (time) and
twice differentiable in the second one. Then

t t
Ft, M;) = F(O,Mo)+/ aF(s,Ms)ds—i—/ OF o My)dM,
0 0s 0 ox

1 [tO*F
2Jo Ox2
Equivalently for allt > 0 and P — a.s,

(s, Mg)d(M,M)s, ¥Vt >0, P—a.s.

OF oOF 10°F
dF(t, My) = —(t, My)dt + —(t, My)dMy + — —=(t, My)d{M, M ).
(t, M) 8t(’ t) +8ac(’ t) t+26x2(7 ) d(M, M),
Remark 2.2. 1) Another version of the previous theorem exists for R%-valued mar-

tingales where we sum the integrals in d variables.

2) There is another alternative to the Ité formula which is the Stratonovich formula.
Unlike the It6 calculus, Stratonovich integrals are defined such that the chain rule of
ordinary calculus holds, which makes them easier to be manipulated. It is possible
to convert between the two formulas whenever one definition is more convenient
by the formula

t t 1
/0 Hy(w) 0 dZ,(w) = /0 H,()dZ4(w) + 5 (H, Z).

The symbol o is called Ité’s circle.
We end our review of martingales with Doob’s inequality.

Theorem 2.3. Let Xy = E(X|F;) be the martingale generated by the P-integrable ran-
dom variable X (more generally we can assume that Xy is a non-negative sub-martingale)
and X* := supgsq|Xs| is the maximal function of (Xs)o<s. Then for every p > 1 we

have »
X, < | X, < —||X
Xl < [[ X" lp < - 1 X M|,

where || X ||} := sup;s [ Xel[f = Jo [ Xe(w)[PdP(w).
Moreover, these constants are the best possible.

We present a more general weighted version of Doob’s inequality. Let us first recall
the general setting of A, martingales. Fix a random variable W such that W > 0 a.s.
For p > 1 we say that W is an A, weight if

1 p-l
Qu(W) = sup [ W; (BOVFD)IF)) " = < .
where Wy = E(W|F).
The following was proved in [21]
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Theorem 2.4. Let X; = Eyw (X|F;) be the martingale generated by the W dP-integrable
random variable X. We denote by X* = sup;>o X¢ the mazimal function of X. Then
for every p > 1 we have

/

1 pP
X5 zewy < Qp(W)”*lpi_ DIl zr gy,

where p’ is the conjugate of p. Moreover, this result is sharp in terms of the dependence

on the characteristic.

2.4.2 Feynman-Kac formula

Diffusion processes and more specifically Brownian motions originated in physics as
mathematical models of motion of molecules which are subject to collisions with other
molecules in a gas or fluid.

In the 40’s, Richard Feynman discovered that the Schrodinger equation can be solved
by averaging over paths. Based on this discovery, Mark Kac observed that a similar
representation works for solutions of the heat equation with an external term. This
representation is now called the Feynman-Kac formula.

It comes today as no surprise that the formula has been generalized for other diffusion
processes. Indeed, let P* be a family of probability measures on some probability space,
one for each possible initial point z under which the stochastic process X : [0,00)xQ — R
is a diffusion process that starts at . That is, under each P* the process X; obeys the
following differential equation

dX; = ,u(t, Xt)dt + J(t, Xt)th
XQ =T
where W is a Brownian motion, u and o are respectively the drift and the diffusion

fields.

Definition 2.11. Define the infinitesimal generator of the process X, to be the (generally
unbounded) differential operator acting on suitable functions f by
E[f(t, Xo)] = f(t,2)

Af(t,z) = ltlfg , .

For a process X defined as above and any function f compactly supported and C?, we
have

1
Lf(t,z) = u(x)f'(t,z) + 502(@ x)f" (t, ).
Then we have the following Feynman-Kac formula

Theorem 2.5. Assume that p and o are globally Lipschitz and of at most a polynomial
growth in the variable x. Let f and K be continuous functions such that K > 0 and
f(z) = O(|z|) as |x| = co. Then the function u defined by

u(t,z) = E* <exp <— /Ot K(S,Xs)ds) f(Xt))
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satisfies the diffusion equation

0
%zLu—Ku,

with the initial condition u(0,z) = f(z).

Remark 2.3. The Feynman-Kac theorem for 1-dimensional diffusion processes extends
naturally to multidimensional diffusion processes.

Remark 2.4. 1. We can also to a Markov semigroup T'(t) a Markov process (X¢)i>0-
Indeed, let (2, F) be a measurable space. For x € Q, let P* be the law of X[,
the process starting at x a.s and E* be the expectation under P*. Then for any
f € L*(du) we have

T(t)f(x) = E*(f(X1)) = E(f(X¢)| Xo = 2).

2. Back to Example 2.1, we can associate a Markov process (Xt)i>o to Py, for any
f € L*(R") we have
Py f(z) = E*(f(Xy)).

2.5 Probabilistic representation of the Riesz transform

We previously saw in Section 2.3 a deterministic representation of the Riesz transforms
involving semigroups. There is also a probabilistic approach due to Gundy and Varopou-
los in [35] and later to Gundy and Silverstein in [37] which expresses the Riesz transform
as the conditional expectation of a martingale transform. The core of this representa-
tion is the definition of the background radiation process and the fact that a function
f € LP(R™) can be expressed as a stochastic integral involving its harmonic extension
to the upper half space R" x R4 and a (n+ 1) x (n + 1)-dimensional Brownian motion.

Indeed, following Gundy and Varopoulos, let Z; = (X¢, By), where X is the Brownian
motion on R™ and B; a Brownian motion on R starting at y > 0. Let 7 = inf{t > 0 :
B; = 0}. The process (Z;)o<t<- is a diffusion process on R" x R, and terminates at
time 7 upon hitting the boundary R™ x {0}.

Define Qg(z,y) = e_ymg(aﬂ) to be the Poisson integral of g i.e. the harmonic extension
of g on R” x R,. By It formula we have

9(X7) = Qo(Z,) = Qu(Z0) + [ " YQy(Z.)dz..

First, we claim that for any (n+ 1) x (n + 1) matrix A, we have

<yh~>nc}oE (/OT AVQf(Zs)dZs| X, = :I;> ,g) = 2/0C>O /Rn (AVQf(z,2),VQg(x, z))zdzdz.
(2.2)
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Indeed, let Taf(z) =E (J; AVQ[(Zs)dZs|X; = ). By dualizing we have

@atg) = E(E([ avQrz)izix, =) .g(x)
— E(E(([ AVQH(Z)dzZ.g(X )X, =2 ) )
= & avar@iz.gx))

- 5(([ Avesz)az. Qo))
+vE(([ averzyiz., [ vay(z)az,)
- u( [ avarz). vouz)ds)
2 /0 - /R (AVQf(x.2). VQg(x, ) adad.

In the last equality, we used Lemma 5.2. More rigorous calculations will be detailed in
Chapter 5 in a more general context.

Next, for a matrix A that permutes y and x (with zeros everywhere else), we obtain
the following

Lo e ([ S = o) e = / LG ), S oy

n \Y—00
= _§R< k’f7>

where in the last equality we used the analytical representation of the Riesz transform.
We can now state the following result [35]

Theorem 2.6. Let Aj = (a;;) be the (n + 1) x (n + 1) matriz with a;, = 0 unless
i=n+1,k=jand apyr; =1. Then we have the Gundy Varopoulos formula

1 . T
it = Jim B ( [T AVQs(Z)az)X = 1)

2.6 Example: the Gaussian space

Now that we have a pretty good understanding at what is happening on R endowed with
the Lebesgue measure, we want to investigate further. Instead of working on (R",dz),
we replace the Lebesgue measure by the Gaussian measure v on R" such that




The pair (R", dv) is called the Gaussian space. We define a new Laplacian
Aov f(z) =Af(z) —x-Vf(z), feCZ

called the Ornstein-Uhlenbeck operator. This definition allows to obtain the same results
known in the classical Calderén-Zygmund theory with the Laplacian on the classical
Lebesgue space (R", dx).

The operator Apy defined on C2°(R™) admits a self-adjoint extension to L?(R", dv), also
denoted Apy. This operator is negative and symmetric with respect to the measure
since for all f,g € C2° we have

| 5Voa@) == [ fBovgdre) == [ g(@oufira)
R™ R™ R™

Hence, it generates a diffusion semigroup P; defined by the Mehler formula

Pif(@)i= [ Fle o+ \1-ey)dr)

It can also be expressed using the so-called Mehler kernel M,

Pif(@)= [ Mie.) i),

where
1 lle

i y?
Mt(a?,y) = 77”/2(1 _ 872t)n/2 €xp 1 — e—2t .

This semigroup is solution of

owu(t,z) = Au(t,z)— - Vu(t,x),
UuQ - f S LQ(Rn)v

and we usually denote the Ornstein Uhlenbeck semigroup by e!20U f. We refer the reader
to [76] for more details and list below some properties of this semigroup

Proposition 2.4. For all p € [1,00) we have
1. {P;,t > 0} is a contraction semigroup on LP(R™, dv);
2. {P;,t > 0} is strongly continuous on LP(R", dv);
3. 7y is an invariant measure for {P;,t > 0}.

Finally, in [60], Meyer introduced the Riesz vector associated with the Ornstein
Uhlenbeck operator Apy by

R(Aoy) = V(=Aoy) V2.

Analytical representation We obtain the analytical representation of the Riesz
vector associated with the Ornstein Uhlenbeck operator by repeating the same proof
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as in Section 2.3, where R = V(=Aoy) /2, Tif(z) = e *V~20U f(z) is the Poisson
semigroup and (R", dx) is replaced by (R™, dy(x)). Since the properties on the semigroup
remain the same with respect to the Gaussian space, we obtain the following weak type
representation

_ R d
(V(=Dou) 2 F.9) L2 (rn ay(a)) = —4/0 (VIef, - Tt9) 12(rn dn () tdt.

Probabilistic representation We may associate to the Ornstein Uhlenbeck oper-
ator Aoy a diffusion process (X;) on R™ that satisfies

dX; = dWy — Xydt,

where (W;) is the Brownian motion on R™. This stochastic differential equation is solved
by variation of parameters. Indeed, let f(X;,t) = X;e!. Using It6 formula we get

df(Xt, t) = Xt et dt + et dXt
= Xtet dt + et (th - Xtdt)
= et th

Integrating from 0 to ¢ we obtain
¢
X, = Xoe '+ e_t/ e’ dWs.
0

We claim that we have the following probabilistic representation (which we will prove in
Chapter 5)

~
19— Aon) V2 f(2) = lim E, {e—T / "V e BVTBOU £(X)dB| X,y = 1| .

2 Y—00 0
We see that the probabilistic representation of the Riesz vector associated with the
Ornstein Uhlenbeck operator slightly differs from the Gundy Varopoulos representation
in that new terms appeared. To explain this phenomenon, we do need some new ideas
and arguments, mainly from differential geometry. For this reason, the next section
will be devoted to define more general notions and as a consequence, define the Riesz
transforms on Riemannian manifolds.

2.7 Riemannian geometry

In this section we will introduce some aspects of differential geometry. We aim to be as
intuitive as possible in the understanding of the defined objects.

The class of spaces studied in what follows will be that of Riemannian manifolds.
Intuitively speaking, a manifold is nothing more than a metric space (X, d) which locally

looks like R™ with its usual Euclidean metric, for some integer n. Riemannian manifolds
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are differentiable manifolds (manifolds that allow differentiation and integration) with
an extra bit of structure, a Riemannian metric, that allows to measure lengths and an-
gles of tangent vectors.

Since Riemannian manifolds are differentiable manifolds, one can attach to every
point x € X a tangent space denoted by T,X, which is the set of all tangent vectors.
Intuitively, tangent vectors are those vectors that are tangent to the surface of the
manifold. The most common definition used for computations is to think of tangent
vectors as directions in which we want to differentiate functions. For each z € X, the
derivation D : C*°(X) — R is a linear operator that satisfies the Leibniz identity

D(fg) = f(x)D(g) + g(z)D(f). (2.3)

Hence, T, X is the set of all linear derivations at the point x.

We can assemble all these tangent spaces together and this will form the tangent
bundle TX = |J,cx T X. It is a smooth manifold. Smooth functions on T'X are called
vector fields on X. This means that we can get a vector field by attaching to each point
of the manifold a tangent vector from the corresponding tangent space.

This construction of the tangent bundle can be done in a different manner. Instead of
using tangent spaces, we consider their duals 7 X. Putting together all these spaces
will form a bundle T*X.

For a smooth function f: X — R, we define the smooth section df of T* X by

df (z)(Y) ==Y (f) € R,

for all Y € T, X thought of as a derivation in the sense (2.3). We refer the interested
reader to [32, Theorem 1.51] for the definition of Y'(f). We call df the differential of f.

The reasons why we focus on Riemannian manifolds is that they are interesting for

e Metric geometry.

Riemannian manifolds are metric spaces. This means that there exists a Rieman-
nian metric which is a 2-tensor field g that is symmetric and positive semi-definite.
On each tangent space T, X, it determines an inner product (Y, Z) := ¢(Y, Z), for
Y, ZeTl, X.

Metric geometry has another important feature which is geodesics. Intuitively
geodesics are a generalization of the notion of straight lines realizing the shortest
distance between two points on "non flat" manifolds. We refer to [50] for a more
rigorous definition of geodesics. In this thesis, we use the fact that the geodesic
distance from a point x € X is smooth, expect on the cut locus of the point x
and the point x itself. In particular, we will use the Laplacian local comparison
theorem away from x and cut(z) [81].

o Calculus.
Riemannian manifolds are by definition differentiable manifolds. It means that the
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usual notions of multivariable calculus on differentiable manifolds apply (deriva-
tives, vector and tensor fields, integration of differential forms).

Following [51] and [50], let (X, g) be a complete Riemannian manifold. For each
x € X we denote by T, X and T, X the tangent and the cotangent spaces at z,
respectively. There is a canonical way of converting tangent vectors into cotangent
vectors and vice versa. For instance, we define a map

"X — T,X
w — fw
by requiring that (fw,Y) = w(Y) where Y is an arbitrary vector and (-,-) is the

inner product defined by g.
For every j,k € N, we set

THX =T,X®  @LXOTX Q- TiX

7 times k times

and we denote by T79*X the fibre bundle over X whose fibre at z is T#*X i.e.
TIHX = Upex TI*X.

A tensor of type (j, k) is just a section of T9*X i.e. a continuous map o : X —
TPk X such that w(o(z)) = z,Va € X, where 7 : T%*X — X is the projection map.
We denote the space of smooth tensors of type (j, k) by C°°(T7*X). Functions on
X are identified with tensors of type (0,0).

The Riemannian scalar product on 7;X induces a scalar product (,-)

TI*X. We set |- %Z’kX = (., '>T£,kX.

Finally, A*T*X denotes the bundle of k-forms.

T{”“X on

We call
d: C®°(AFT*X) — C®°(AFIT*X)

the exterior derivative. It satisfies the following properties

1. For k=0,d: C>®(X) — AT*X is the differential on functions defined above.
2. For f € C>*(X), d(df) = 0.

3. For a a p-form and 8 a g-form, we have
dlaAp)=daAp+(-1)PaAdp,
where A is the exterior product.

To sum up, the exterior derivative extends the notion of differential of a function
to differential forms of higher degree.
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We also define V to be the covariant derivative, i.e. a family of linear connections

V @ C®(TX)x C®(TX) — C®(TX)
(Y, Z) - VyZ

that satisfy

1. V is linear over C* in Y i.e., for all f,g € C*°, we have
Vivitgvad = Vv Z + gVy, Z.
2. V is linear over R in Z i.e., for all a,a € R, we have
Vy(aZy +bZy) = aVyZy + bVy Zs.
3. For all f € C°, V satisfies the Leibniz rule
Vy(fZ)=fVyZ+(Y[)Z.

Vy Z is then called the covariant derivative of Z in the direction Y. To sum up,
the covariant derivative generalizes the directional derivative from vector calculus
to tensor fields.

Remark 2.5. — Connections are not uniquely defined on a manifold, since
comparing tangent vectors attached to different points is a priori impossi-
ble. However, in the case of a Riemannian manifold, we can choose a unique
connection with certain properties that we will call the Levi-Civita connection.

— We recall that on functions, d and V coincide with the differential.

¢ Measure theory.
Any oriented Riemannian manifold has a canonical measure given by the volume
form p defined such that du(x) = /det g(x)dz. It allows to integrate functions
and to define LP spaces on Riemannian manifolds.
For each p € [1,00] and j,k € N, let LP(T7*X, 1) be the Banach space of all
measurable tensors u of type (j, k) with

1/p
<fX |u|?£’kxdp(w)) , ifpe[l, o0);

€SS SUP,e x |U|T£,kX, if p = oo.

HUHLP(TW"X,;L) =

We drop the subscripts when there is no ambiguity.

e Curvature.
Riemannian manifolds are the most natural setting for studying the notion of cur-
vature.
Let us first give an intuitive idea of how to visualize the curvature. Take X = S2,
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the 2-dimensional sphere in R?. It is obviously a manifold, and as discussed ear-
lier, we can consider tangent vectors in TX as vectors in R? which are attached to
points in S? along some tangent lines. One way to see that the sphere is curved is
to consider a tangent vector to the sphere at a point A and then transport it to
another point B along a circle so that it keeps pointing in the same direction on
the sphere. This is done by keeping constant the angle between the tangent vector
and the direction in which it moves. We call this a parallel transport. In the same
way, we can transport this tangent vector from the point B to another point C.
Carrying it back to the point A, we end up with a different tangent vector. This
phenomenon reflects the curvature of the sphere.

The figure below illustrates the curvature of the sphere.

initial vector

Figure 2.1: The parallel transport of a vector on a 2D sphere.

Somehow, the curvature provides one way of measuring the degree to which the
geometry determined by a given Riemannian metric might differ from that of or-
dinary Euclidean n-space.

One of the most frequent object that appears when studying estimates of operators
acting on manifolds is the Ricci curvature.

The Ricci curvature, denoted by Ric, plays an important role in the analysis of
Markov semigroups through the Bochner-Lichnerowicz-Weitzenbock formula by
connecting the Laplace operator to the Ricci curvature. See Section 2.7.1. It also
appears very frequently when studying estimates of operators acting on manifolds.

For reasons coming from the study of hyper contractive diffusions processes, Bakry
and Emery defined in [13] a generalization of the Ricci curvature by studying
carré du champ and carré du champ itéré. The model example is the weighted
Riemannian manifold (X, g,e %du(x)), where ¢ : X — R is a smooth potential.
In this case,

Ric, = Ric +V2p,

where Ric denotes the Ricci curvature tensor on X and VZ2¢ is the Hessian of ¢.
Moreover, the self-adjoint (¢—)Laplacian with respect to the weighted measure is

Af=Af—Vf V.
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When ¢ is a constant function, we recover of course the Ricci curvature, making
the Bakry Emery curvature an extension of the Ricci curvature.

[ES

Example 2.4. Taking X = R" and p(z) = 5

Gaussian measure. In this case, we have

, we have du(x) = dvy(z), the

RiCOU =1.

One can of course consider even more variants of heat semigroup (by considering
Riemannian manifolds for example) in which case we need to adapt some struc-
tures. This will be the aim of Chapters / and 6.

In what follows, we are going to focus on manifolds with (Bakry-Emery) Ricci cur-
vature bounded from below. This assumption on the curvature allows for example
to obtain results on the behaviour of balls, by the Bishop-Gromov comparison
inequality [81].

2.7.1 Laplacians

We conclude this section by defining different Laplace operators acting on manifolds.
We define the Laplace-Beltrami operator acting on functions as follows

Af = —d*df,

where d* is the adjoint of d on L?(X).

Remark 2.6. We use a sign convention that differs from the one in the literature on
differential geometry. The main reason is to coincide with the Laplacian on R™.

Alternatively, the operator can be generalized to operate on 1-forms, using the exte-
rior derivatives and their adjoints d* on L?. The Hodge-de Rham Laplacian acting on
1-forms ¢ is then defined by

AG = dd*G + d*dg.
Note that the Laplace Beltrami operator is non positive while the Hodge-de Rham
operator is positive. Moreover, these two operators are related as follows

—

Ad = (dd*+d*d)d
= d(d*d)+0
= d(=A).

More generally, if we consider a weighted manifold (X,g,e %du(z)), it is natural to
change the exterior derivative to make sure it is still adjoint. To this end we define

d:; =d" + chpy
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where iy, denotes the inner multiplication by V¢ on A'. Indeed, we calculate

| (g du(a)
X

then by identification,

d:;g =

(df e ?g)du(x)
(f,d*(e7?g))du(x)
(f,e?d"(e”%g))e *du(x)

(f,dzg)e du(z),

I

e?d*(e”?g))
e?(e”¥d g — (g,de” %))
d*g + (g, V),

yielding to the result. In (1), we have used the following equality for a function k£ and a

1-form df

d* (kdf) = kd*df —

Indeed,

(kd"df,h) =

We also have the following relation

Ad

(df, dk).

(d*df, kh)
(df, d(kh))
(df, kdh + hdk)
(

(df k), h) + (" (kdf), h).

(dd* +d;; »d)d
d(dyd)
d(d +ive)d
= d(d*d+ (Vep,d))
(=
(=A

= d(—A+(Vep,d))
= d(-A).

Finally, let V be the Levi-Civita connection on X. Define

A= TraceV?

to be the rough Laplacian acting on 1-forms as well where

V%YT —

VxVyT — Vy,yT.
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When there is no confusion, we will denote by A either the Laplace-Beltrami (acting on
functions), or the rough Laplacian (acting on 1-forms). By the Bochner-Weitzenbock
formula we have B

Ag = —Ag + Ric(- 1),
where Ric is the curvature of the manifold.
More generally, the Hodge-de Rham operator is a second order differential operator
acting on k-forms defined by

5 — dk‘—ld*,k—l _I_d*,kdk

When there is no ambiguity about the order of the forms we are working with, we simply

write A = dd* 4+ d*d. The Bochner-Weitzenbéck formula remains valid as well for higher
degree forms by replacing the Ricci curvature by the Weitzenbdck curvature.

2.8 Methods and results

2.8.1 First result

The Bellman function method was originally used in control theory by Richard E. Bell-
man. It was later introduced to harmonic analysis by Burkholder in 1984 to obtain sharp
inequalities for martingale transforms, with a variation of the method. It reappeared in
the nineties with the help of Nazarov, Treil and Volberg to prove/reprove many results
in harmonic analysis. This method turns out to be an extremely powerful tool and a
very natural way to deal with weighted inequalities and to find sharp dependence of the
norm of some classical operators in harmonic analysis on weighted L spaces on the A,
characteristic of the weight.

The biggest challenge of this method is to find a suitable function satisfying all desired
properties and then use some convexity arguments. Although uniqueness is not required,
finding these functions demands a lot of practice. The authors themselves describe this
method as a craftsmanship. Each problem has its own Bellman function, depending on
a number of variables that changes from one case to another.

The first result of this thesis concerns the Riesz vector R, on Riemannian manifolds
(X, g, 1) defined respecting the measures of the type e”#du where an additional weight
is present: in weighted spaces L?(w) = L?(we~%du) we study the operator norm of the
Riesz vector.

By exhibiting a suitable Bellman function whose origin come from an analysis of
the paper [61], we prove that on a complete Riemannian manifold (X, g, x) endowed
with measure du, = e~ %dpu such that the Bakry-Emery curvature is non-negative and
pp(X) < oo, we have a dimension-free linear weighted norm estimates for the arising
Riesz vector in terms of the Poisson flow Ay characteristic of the weight:

HRme(w)—w?(w) N @2(W)~
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Such estimates are known to be in sharp dependence on the power of the Poisson char-
acteristic even when X = T and ¢ = 0 [70].
For more on this work, we refer to [18].

2.8.2 Second result

Our approach for the second result is a bit more probabilistic and uses a martingale rep-
resentation of the Riesz transform on complete Riemannian manifolds, first presented in
[54].

It has been very profitable to deal with the stochastic differential theory, since it is in
close connection with harmonic analysis and allows to obtain sharp results of LP bounds
for various important operators.

Our result is of strong nature because it estimates Z*, the maximal function of Z.
The technique used in the proof is called the sparse domination. It is quite recent and it
was first due to Nazarov and Lerner in [52] and Lacey in [49]. It is a very powerful proof
of the Aa conjecture [49]. The topic has been very active lately. See for example [14]
where sparse domination is extended beyond Calderén-Zygmund theory, for non integral
operators® and [21] for a more probabilistic approach.

The sparse domination is a recent technique developed by Nazarov and Lerner in [52]

and Lacey in 2015 [49]. For an operator T' and suitable f, the purpose is to establish
pointwise control of T'f by a sparse operator S i.e |T'f| < S|f| then use the fact that
sparseness property allows to insert weights and recover the best power for the A,
constant. Although Lacey’s sparse domination immediately implies weighted inequalities
with sharp dependence upon the A, characteristic of the weight, it is defined on cubes
and cannot provide dimensionless estimates, nore satisfactory results on non-doubling
spaces. We bypass this problem by using a sparse operator with continuous stopping
times, as in [21].
Let (2, F,P) be a probability space and X = (X;); a stochastic process. We say that
the operator X — S(X) is called sparse if there exists an increasing sequence of adapted
stopping times 0 = 77! < 70 < ... with nested sets E; = {T7 < oo}, E; C Ej_1 so
that

o0
S(X) = Z Xpixg; where Xp; = E(X|Fp;);
j=—1

1
VA]‘ - Ej, Aj € .FT]. there holds ]P’(A] N Ej+1) < §P(AJ)

The great advantages of the recursive proof is that it only relies on some weak-L! esti-
mate and that homogeneity is not needed.

3For more on this theory, we recommend Auscher and Martell’s paper [4].
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By writing the Riesz transform as the conditional expectation of a stochastic process
and using Wang’s function [80], we show that for any p € (1, 00):

2

p
||R@||LP%LP <16

and N
IRl 22 (@)= L2 (w) S Q2(w).

For more on this work, we refer to [19].

2.8.3 Third result

Using the same probabilistic approach as in the second result, we focus this time on
Bakry-Emery curvature, following [16] and considering a probabilistic approach. Ran-
dom walks and Poisson flows on manifolds are a delicate matter and we refer the reader
to the excellent text by Emery [29].

Assuming that Ric, > —a, a > 0, we define the Poisson flow and Riesz transforms
accordingly. The corner stone proof of this result is an elegant replacement of the
martingale (X;) by a sub-martingale (X/), which is the sum of (X;) and an increasing
finite variation process. By It6 formula, (X) is nothing but Q®f, the Poisson extension
of f. This trick allows us to tackle the less forgiving negative curvature part.

Another change that comes with the introduction of the sub-martingale is the defi-
nition of the sparse operator S. Indeed, we define

o0 o0
S(X?) = Z E(X®|Fri)xE, instead of S(X%)= Z XTiXE;
j==1 =1
because unlike martingales, we only have the following inequality

E(X[Fps) = X4
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Chapter 3

Bellman functions and their
applications on martingale
transform

In this chapter, we will construct Bellman functions following Wittwer’s work in [82] to
prove that the weighted L? bound of the dyadic martingale transforms is linear in terms
of the characteristic of the weight. To this end, we first introduce the Haar basis in
L? and its equivalent in L?(w), then we will present some intermediate results which in
turn will allow us to prove Wittwer’s result. Finally, an analogy will be made with the
Bakry-Riesz vector which will be studied in the next chapter.

3.1 Haar basis

Let D denote the collection of all dyadic intervals in R, that is the collection
D = {[n2*, (n +1)2%) : n, k € Z}.

Each dyadic grid gives rise to an orthonormal system in L? called the Haar system

{hr,I € D} defined by

_ X1, — XI,
1]

where I; denotes the left half of I and I, the right one.

Note that a function f € L? can be expanded as follows

f=>Y (f h)hr,

1€eD

hr

)

where (-, - ) is the standard inner product in L? and we have

1115 =" [(f, h)l?.

1eD
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It is often more convenient to work with a basis in L?(w) that is orthonormal. For
this reason, instead of working with the classical Haar basis, we define the disbalanced
Haar basis.

Lemma 3.1 (Disbalanced Haar functions). There exist constants x; and Ay such that
xrhr = hY + Arxr
and (hY) satisfies
1) hY wanishes outside I is constant on I; and I,
2) [hYwdz =0,
3) |hYllL2(w) = 1.

This means that (h¥)ep is orthonormal in L?(w) and we may calculate explicitly
the constants. Indeed from 2) we obtain

/(:L‘[hI—AIXI)wdac:() & l‘[/h[’(Udl':A[/w
I
VI

& ar—o (W), — (w)1,) = ArlI|{w)r.

Hence,

From 3) we obtain

/(h}”)zwd:ﬁ =1 & / ((:):Ihj)2 + A2xr — QxIAIhIXI) wdx =1

& <<w>n -, <<w>fil<—w§§u>m2> 1
& a3 <4<w>% - <m{— ()n)?) _
5 ((20w)r = ((w)r, = (w)r,)) (2w} + (), = (w)s,))
= :L‘I( L)y )-1

Using the fact that 2(w); = (w) 1, + (w)r,, we obtain
"N (o)
Hence,
(w)r1
(w)n (w)r,”

where (f); denotes the average value of f on I € D.

ry =
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3.2 Useful results

In this section, we present several results that will be later used to prove Wittwer’s result
[82] regarding dyadic martingale transforms. All of the proofs will rely on the Bellman
functions technique. We first start by presenting Theorem 3.1, which is the weighted
version of the Carleson embedding theorem. Theorems 3.2 and 3.3 are respectively the
first version and the "easier to apply" version of the weighted bilinear Carleson embedding
theorem. Finally, Lemmata 3.2, 3.3 and 3.4 are different estimates concerning weights.
We recall that the main goal of this section is to reduce the study of weighted L? norm
of the dyadic martingale transforms to the study of four sums, using the results below.
We hope that the use of the Bellman functions technique in every proof will convince
the readers of its importance and elegance.

Theorem 3.1 (The weighted Carleson embedding theorem). Let {as}rep be a sequence
of non-negative numbers. If for all J € D

Oq<C
u% ror < Clwlr,

then for every f € L?
>_(fw'?)jar <AC| £

IeD

Moreover, the constant 4 is sharp.

Proof. We may assume that f is non-negative, since otherwise we can split it into the
positive and the negative part. We also assume without loss of generality that C = 1.
Observe that it is enough to prove that for every J fixed in D,

S (fwAiar < 4(f2), (3.1)

’J| IcJ

because the original inequality can be obtained in the limit by using the monotone
convergence theorem.
The left hand side of the inequality can be rewritten as

Z <fw1/2>%041 +

ICJ,

<fw1/2>J oy + o577

> (fu'iar, (3-2)

1
2|J, | o

[J] 2\J|

where J; and J, denote the left half and the right half of the interval J.
We see from (3.2) and the Carleson condition that we need to define the following

variables
Iaf
I

<fw1/2>J:x7 <f2>J:X7 <’U) = w,

which naturally restricts us to the following domain

D={(X,z,w,M):2*> < Xw;0 <M < w; X,z,w >0}
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We also consider the abstract Bellman function

B(X,.’IZ’,’U},M) = sup Z f’ll)l/2 Ial
fvwa“]’ ICJ

where the supremum is taken over all f, w and « satisfying

<fw1/2>J =Z, <f2>J =X, < = w, |J| Z Ial

ICJ

Note that the function B does not depend on the choice of the interval .J.
The function B is such that 0 < B < 4X, which comes from the fact that we assumed
(3.1) to be true. Moreover, by (3.2) we have

1
(B(Xy, x,wy, My) + B(X,, zp, wy, M) > —22ay, (3.3)

B(X,IE,’LU,M)— ’J’

1
2

whenever (X, z,w, M), (Xi, z;, w;, M;) and (X, x,, wy, M, ) belong to the domain D and
satisfy X = XH_XT,:U: acl—i_rvr,w:M andM—M:h— L wJaJ

2 2 2 2 ||
The inequality (rather than equality) comes from the fact that fixing averages separately
on J; and J, leads to a smaller set of functions than if fixing the average on J.
Condition (3.3) means in particular that B is concave. Moreover, if we take X = X; =

X, x=x=2, w=w =w. and M — h = M; = M,, then we obtain

B(X,z,w,M)—- B(X,z,w,M —h) > |J|x20g
2
— h 7
J
22
meaning that 9= > —. It turns out that these two infinitesimal conditions also imply
w?

(3.3). Indeed,

2
hi

U’J

IN

B(X,z,w,M) — B(X,z,w,M — h)

1
B(X,z,w, M) — 3

IN

(B(thl;wh Ml) + B(XT7 Ly, Wy, Mr)) )

2
x
where the first inequality comes from i > — and the second from the concavity of

w2
B.
Therefore, we conclude that B satisfies on D

1. 0 < B <4X,;
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3. —d?’B > 0.

Conversely, and this is the most important part of the proof, assuming we have a
function B satisfying the previous properties, we may prove (3.1) by applying (3.3) n
times. We obtain

4 /J 2= Al

/B (<f2>J, (fw'?). 1, (w)., |;| Z(wﬁaz)

ICJ

Y

> X (P s X e

IcJ|I|=2—"|J| KcI

+ S (fw) i

ICJ|I[>2-7|J]

> (fw'Piar

ICJ|I[>2-7|J]

Y

We obtain the final result by applying the above estimates on intervals [—2",0] and
[0,2"] and passing to the limit when n — +o0.

Let us now try to find a function B that satisfies the estimates above.
We may suppose that B has the form

B(X,z,w, M) =4(X — a(z,w, M)),
where

1. |a(z,w, M)| < 2?w™!;

2. « is convex;

Oo x?
<

S a0 S T qwr

2

The first property comes from the fact that x* < Xw, the second one because B is

2

T
concave and the last one because EIvi > — and we have a factor 4 in the construction

of B. The first and third properties suggégt to try a of the form
oz, w, M) = ~v(w, M)z?,
where
L. |y(w, M)| < w™

0 1
R .
OM — 4w?
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We also recall that M < w. Observe that v(w, M) = — j 77 satisfies the hypotheses. In
conclusion, one possible choice of B is

1‘2
B(X M)=4(X - :
( 71"7w7 ) ( w—|—M

O]

Remark 3.1. e It is reasonable to think of M as a concave function of w in the
sense

> —(w)Fay.
Then we can consider v as a function of w and M(w). This observation will be of
great help in our future investigations on the origin of the function used to prove

the weighted boundedness of the Riesz transform on manifolds.

M(wy) —

e In the unweighted Carleson embedding theorem, the function B is

2

X
B(X,z,M)=4| X —
(71" ) ( 1—|—M>’

where M refers to the unweighted Carleson condition

M= erst

1CJ

o The sharpness of the constant 4 was proved in [62, Theorem 3.3]

Theorem 3.2 (The bilinear weighted Carleson embedding theorem, [82, 61]). Let {as}rep
be a sequence of non-negative numbers. If for all J € D

2
|$|/J(ZO‘I w)rxr(z ) vdr < (w)

1CJ

2
o/ (m Dl >) wdr < (v),

and

then for all f,g € L?

S (fw'?) 1{gu?) ran| 1] < 24| fl2]lg]l2- (3.4)
1eD

Proof. We prove the bilinear weighted Carleson embedding in the same spirit as we did
it for Theorem 3.1.
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First step: we define the abstract Bellman function. Indeed, for a fixed interval J € D,
let us consider the variables

X = <f2>J7 Y = <92>J7 T = <fw1/2>J7 Yy = <gvl/2>J7 r= <w>J7 s = <U>J7
2

2
|J‘/ (ICJ winate )) v, N = \J/ (ICJ <U>IXI(36)) wdzx.

We also define the abstract Bellman function

B(X,Y,z,y,r,s, M, N) = sup — Z (fw'?) [ (gv'/?) rag|1),

i

where the supremum is taken over all f, g, w,v, @ non negative with averages fixed as
above and such that the Carleson conditions are satisfied.
Observe that we have

My + M,
My — = = ({w) jag)* (v) g = (w) s K
and N, 4N
Ny = % = ((v)yag)? (wyy = (v)jas Ky,
where

= Sl

icJ

This naturally leads us to consider a new variable K which satisfies

Ky + Kj,
2

Considering the nine variables, this restricts us to the domain

KJ— = <’u}>J<U>JOéJ.

D={(X,Y,z,y,r,s, M,N,K): 2> < Xr,9> <Ys,1<7rs<Q,
0<M<r0<N<s,0<K < \/rs}
The only non-trivial inequality to prove is K < /rs. In fact, by Cauchy Schwarz
inequality, K? < Ms (and likewise K2 < Nr). Use the fact that M < r by assumption

on M (or N < s) to conclude.
Rather than proving the inequality (3.4) as it is stated, we will prove that

> (fw' ) (g ?) e | 1) < 24(|£113 + llglI3)-

1eD

We get back to the original inequality by replacing f by Af and g by { and then minimize
in A
If we denote the 9-tuple (X, Y, z,y,r, s, M, N, K) by a, the function B satisfies

0<B(a) <C(X+Y),

71



Bla) — % (B(a)) + B(a,)) > zya. (3.5)

Conversely, if we have a function B that satisfies the previous properties, then

1 (2 + (%)) = 1IB << Y J|Z mzlﬂ)

I1CJ

v

> B ( 3w KaKm)

ICJ|I|=2-"]J] KCI

+ > <fw1/2>1(gvl/2>1041|f\

I |I[>2-"J|

> Yoo (fwlgo'?)ra)

ICT|I|>2="|]|

and the result is proved by using the size property of B and letting n — oc.

Second step: we construct a concrete Bellman function B that satisfies our problem.
To have (3.5), it is sufficient to have

1

K; + K
B(a) — = (B(ay) + Blay)) > Y (KJ - M) , (3.6)
2 rSs 2
forKSgandK,SE,
z )
1 x? My + M
Bla) — 5 (Bla) + Bla) 2 T (My = S50, (37)
for K > ﬂ, and
xr
1 2 Nj + Ny,
Bla) ~ 5 (Bla) + Blar)) 2 % (Ny - T4 50, (38)

foerg.
Y

) Kj+K o .
Indeed, by using the fact that K; — % > rsay, the result is immediate. We do

the same work with the remaining inequalities, and use the size restrictions on K.
We have now reduced our problem to finding a function B that satisfies (3.6)-(3.8). We
will be looking for a function B of the form

B(a) = B1(b) + Bz(c) + Bs(d),

where b = (X, Y, z,y,r,s,M), ¢c = (X,Y,z,y,r,s,N) and d = (X,Y,x,y,r, s, K). We
previously saw that we need to divide the domain D into 3 sub-domains R; = {yr >
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zK}N{zs > yK}, Ry = {xs < yK} and Rz = {yr < zK}. We define on the whole
domain D the following function

22 o2
B3(d)=X+4+Y — .
3(d) * 3313 (r—l—tK(r, s) * s+t=1K(r,s)

Let us show that this function satisfies (3.6). Indeed, B3 is concave as the supremum of
concave functions. Moreover, by differentiating B with respect to ¢, we obtain

0Bs 22K . v K
o (r+tK)?2  (ts+ K)?’
which yields to
0Bs ry— Kz
—=0&st=—"——.
ot sz — Ky
. . yr — K )
Thus the supremum is attained at t,, := P When both the denominator and
xs—y

numerator of t,, are positive, K is small and we are in R;. Now because we would like
to prove (3.6), one can apply chain rule and show that % > % on a smaller region,
namely {yr > 4daK}{zs > 4yK}, at the expense of enlarging Ry and R3. Another
method was presented in [22] where the region was R} = {yr > 2aK}N{xs > 2yK},
allowing a better numerical constant. We add it here for the sake of completeness.

By omitting the variables X and Y and when t = ¢,,,

B 22 (sx — Ky)
By(d) = (s — Ky) + (ry — Ko)K
y*(ry — Ka)

s(ry — Ka) + (sz — Ky)K
sx? — 2Ky + ry?
sr— K2 ‘

Recall that we are only interested in K’s that are in R}. We have

0B3 2(:Us — Ky)(yr — Kx)
oK (sr — K?)?
We claim that on R}
0Bs _ xy
oK — 2rs
o . 0B3
Indeed, by multiplying both numerator and denominator of 9K by xy and then expand
we obtain
0Bs 5 (xs — Ky)(yr — Kz)zy
0K  “lr(zs— Ky) + K(yr — Kz)] [s(yr — Kz) + K(zs — Ky)|
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We need to verify that

[r(zs — Ky) + K(yr — Kz)| [s(yr — Kz) + K(zs — Ky)]
(xs — Ky)(yr — Kx)

4rs >

yr — Kz xs — Ky
= K? Ks=¥— + Kr——=.

e Sacs—Ky+ ry’r—Kac

We know from previous calculations that K? < rs (by fixing the constant ¢; = 1 in
the hypothesis of the bilinear embedding theorem). Moreover on R}, xs — yK > yK
and yr — xK > x K, which leads to the result. In fact, the constant 2 appearing in the
definition of R} can be replaced by any 1+ ¢, € > 0. In this case we would have had

0Bs Ty
> .
OK = (1+Lyrs
Therefore,
1 Ty KJ+KJ)
Bs(d) — = (Bs(d Bs(d,)) > — ( Kj — — z
o(d) ~ 5 (Bald) + Ba(d) = 5% (K = 2

Now for the functions By and By. Note that they are defined to deal with the "super
concavity" for K’s that are not in R}. We use the same idea as in the proof of Theorem
3.1. We define ) )

z )
y — 2
r+ M + s

and claim that it satisfies (3.7). Indeed, we have

Bi(b) = X -

—d’B; >0

everywhere on D and
0B, =
OM — 472
Therefore

B~ S B+ B0y = 92y, Mt M)

oM 2
> 1?( __AIH4—A£U>
42 2 '

Recall that M, — 2t 2o

TYyay

=rayK;jand for K > %, the right hand side is bigger than

8
Analogously, let
22 y?
B =X-—+Y - .
2(c) r + s+ N

We prove likewise that it satisfies (3.8) and hence for K > ? we have again
Y

TYo
_d’By > 98 J
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This means that whether K is in R} or not and thanks to the global concavity of By,
By and B3, we always have

1
—d’B > gazya J-
Consequently, the Bilinear weighted Carleson embedding theorem is proved. O

Remark 3.2. The concrete function B is actually C* and piecewise C? [22]. Hence the
last inequality in the proof actually means that that on each domain where B is C? we
have

1
—d’B > gxyou.

This theorem is historically the first version of the Bilinear Carleson embedding
theorem. None of the conditions above are necessary and the theorem is valid for two-
weighted problems. We present now a version with simpler assumptions.

Theorem 3.3 ([65]). Let {as}ep be a sequence of non-negative numbers, w and w~*

weights such that 1 < (w)(w=; < Q. If for all J € D

7] >o1cy s Q(w™h) s,
1
2. mZzg <w01]1>1 < Q(w)y,

1
3. — <
7] ZIQJ ar < Q,
then for all f,g € L?

S (w2 lgw™ ) < 24Q) fla gl (3.9)

= (wirtw=);

Proof. The proof of this theorem is similar to that of Theorem 3.2 so we only present a
sketch of it.
Instead of proving (3.9), we prove

Llf 2 mwmgww < 24Q((f2)s +(g%)1)
1cJ

and get back to the original inequality by using homogeneity.
We define a Bellman function B on

D={a=(X,Y,z,y,r,s, M,N,K): 2> < Xr,5? <Ys5,1<7rs<Q,
0<M<Q@r,0<N<Q@*,0<K<Q}.

by
B(a) = Bl(b) + BQ(C) + Bg(d),
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where b = (X,Y,z,y,r,s,M), c = (X,Y,z,y,7,5,N),d = (X,Y,z,y,7, s, K) and

2

2

x y
Bi(b) = X — +y-2L,
1(6) r—i—% S
(L’2 2
Bye)=X-Z 4y - L
r S+@

m2 3/2
B3(d) =X +Y —su + .
3(@) >0 rty sHtlE

The function B is such that
1.0<B<3(X+Y);
2. —d?B > C=Y|drds|.
Qrs

Indeed, the size property is immediate. For the Hessian, note that we have by the same
computations as in the proof of Theorem 3.2 the following first derivatives on D

6B1 1’2
1. — > ——;
OM — 4Q3r?
2
2. LBQ > v ;
ON — 4(Q?s?
xy K yr K xs
f—<Z—and = < —
3. 985 S )ogrs TS ™o =gy
0K 0 elsewhere on D.

Using these estimates and the same reasoning as in Theorem 3.1 we obtain

OB
> Bi(X,Y,z,y,r,s, M — AM) + AMZ-2 + By(X,Y,z,y,7,5, N — AN)

B(a) oM
8B, B3
+AN87N+B3(X,Y’m7y’T7S’K_AK)+AK87
> B(X,Y,z,y,r,s,M — AM,N — AN, K — AK)
K&B, KBy, OBs
Saamr v 7 on T ar Ak
> B(X,Y,x,y,r,s,M—AM,N—AN,K—AK)+AK8gy
rs
> L (Ba) + Bla) + AR (3.10)
- 2 ! " 8Qrs’ '

M; + M, K
The second inequality is true if we assume that M = At M + AM, AM = —AK,
S
Nl + N, Kl + K

r K r s ,
N = 5 +AN, AN = —AK and K = + AK. In the third inequality we
r
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used the previous derivatives and the different size restrictions on K. The last inequality
is given by the concavity of B.
To finish the proof, fix

X = Y={(%s, x={fw, y=(gu %), r=(w)y, s=(w),,

arg 1 e}
M] — K[, NJ 7K[ and K] ag.
PNy 1 25 T Py

Moreover, the assumption made previously on M, N and K are true since M =

M, + M, K N, + N, K+ K
1+ M, aJlJ N = 1+ Ny W ond K= SRR Qe e
2 e N RN
put AK = L AM = 2 - RIDR g AN = BT 2
| (w=hlJ| s (w) || r

All of the variables are in D hence by applying the size property and (3.10) n times we
obtain

I+ (D) = S e (fu ) {gu V)

ICT|I|>2-7|J] 8Q(w)r{w=)1
It suffices then to let n — oo to get the result. B

Lemma 3.2 ([40]). Let w be a weight in Ay and Q its characteristic. Then for all
J €D,

73w ~ (), PIT < @),

Vg

Proof. We prove this lemma by the Bellman method. We define a Bellman function B
by
B(r,s) = (4Q* + 1)r — 4222 — 12,
The function B is such that
1. 0<B<5Q% on D={(r,s) € (Ry)}1<rs <Q};
2. —d’B > 3s(dr)?> on D ={(r,s) € (R4)%,1 <rs < Q};
3. —=d?B >0o0n Dy = {(r,s) € (Ry)%,1 <rs <2Q}.

Indeed, the majorization is immediate. Moreover,

(4Q* + 1)r —ﬁ—r% = 4Q2(7“s—1)—r(7“s—1)
2
= (rs- (% )

v

0.



Hence the size property is proved. We also have

8Q)?

—_d2p — § 2 _ 1 2 _ O 2
d“B 25(d7‘) = 2s(d7‘) 4r(dsdr) + 3 (ds)=.

This form is positive semidefinite on D because all the principal minors of its corre-
sponding matrix (the diagonal elements and the determinant) are non negative. The
same calculations can be made to prove the third point.

The properties of B being stated and checked, we pass to the proof of the lemma. First,
we prove that the infinitesimal inequality —d?B > %s(dr)2 is equivalent to

B B 3
B(’I“,S) . (TT‘;ST);_ (’I"l,Sl) > ES’TT_TZ|27 (311)
for any three points (r,s), (ry,s,) and (r;,s;) in D such that r = 25 s = 245 and

1—t 1+1)ar
( )az+2-< 00 ¢ b where t € [0,1],a = (r, 5).

First, define Ar = 5™ and As = 5%, By writing Taylor’s formula at (r,s) for
B(r + Ar,s + As) we obtain

B(r+ Ar,s+ As) = B(r,s) = VB(r, s) < 2{: ) +%(dzB(r,s) ( 22 ) ,< 278“ >>

Then,

B(Y’, 8) — %(B(T’NST) +B(Tlvsl)) = —%(dZB(T’, S) < 22 ) 7( 22 >>

3
> 1—63]7"7« —

Since |r, —r|? = 4(Ar)?

—d*B > gs(dr)2.

In the other direction, define a function v : [-1,1] — R, of class C2?. By a double
integration by parts we have the following

;/_11(1 — Ity e = THE 7(_21) —29(0).

We apply this formula to v(¢) = B(a + tAa), where a = (r,s). Notice that when the
parameter ¢ runs over [—1,1], a + tA € Dy. Hence t — v(t) is concave. Moreover, when
t € [0,1] or t € [-1,0], a 4+ tAa is in D and we have a better estimate on —”. We
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obtain then

Bl@) — 2 (Bla+ 8a)+ Bla=Ad) = (0) - 29(1) = 22(-1)

= L a—mywa

1
_ _% 11(1_\t\)<d23<a+ma)m,m>dt
> ;/11(1— |t|)%(s+tAs)(Ar)2dt
1
_ §3(Ar)2%/_(1—]t1)dt
3
> 168|TT7TZ‘

To finish the proof of the lemma, fix r = (), s = (w1, 7 = (W), 1 = (W),
sy = (w1l and s; = (w™1) . Next, apply (3.11) to get

1

Bllwhs, wlhs) 2 3B, () + Bl (wl),)
b llw), — ) Pl ™))

By applying this inequality on sub-intervals of J; and J, then use size property of the
function B, we obtain

80
7l Z —(w)r,PI] < gQQ(wb.
ICJ
Hence the lemma is proved. ]

Lemma 3.3 ([82]). Let w be a weight in Az and Q its characteristic. Then for all
JeD,

>1 (W™, — (w )
- — “(w)r|I] < 40Q(w) ;.
1] I;, (w=h)r

Proof. We prove this lemma by the Bellman method again. Let

_ 2
B(r,s);@—zg—i—(llQ—}— r

defined on the domain
D ={(r,s) € (Ry)?1<rs<Q}.
Then B is such that

1. 0 < B <5Qr;
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2. —d’B > M.
S

Indeed the majorization is immediate and
—4Q s r2s

S —E+(4Q+l)r > r——

> 0,

because 4Qr > r2s, which proves the size property. Moreover the matrices
p property.

s T 1

drds 2Q 2Q s

2 _ s
P T T se
2Q s 53

and

s T n 1

drds 2Q 2Q ' s

2 _ s
Sl U B
2QQ s 53

are positive and semi definite on D because the diagonal elements are non negative and

drds 4 r 1\?
det(—d’B — = - —|==--

et( s ) 52 <2Q s)

_ 12Q% — r%s% + 4rs >0,
400252 -

drds 2 r 1\?

det(—d’B = = —|= )
et + s ) 52 (2@ + s
2 _ 2.2

_ 12Q% — r®s® — 4drs >0
40Q)%s2 -

As in the proof of Lemma 3.2, one can show that this is equivalent to

B(ry, 1) + B(ry, sr) < 1ls; — spllr — 1y

B —
(r,5) g > Sz,

Sr+51

5 and

for any three points (r, s), (r;,s;) and (ry,s,) in D such that r = =1 s =
(I —=t)a;+ (1 +t)a,

€ D, where t € [0,1],a = (r,s). Hence, by choosing r = (w),

s = (w Yy, r=(w)y, rn = (wy, s = (w1, and s, = (w™l);, we prove by
iterating the inequality above and using the non negativity of B that

1 3 g e e ] < 3B ),

The proof of the lemma is finished by using the majorization on B. O
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Lemma 3.4 ([61]). Let w be a weight in Az and Q its characteristic. Then for all
JeD,

o3 o Q00— 0 00 )ty < 520/ st

1CJ

Proof. We prove this lemma by the Bellman method again. Let

B(r.s) = VQrs - -,
defined on the domain
D ={(r,s) € (Ry)*1<rs<Q}.
Then B is such that

1. 0 < B <+/Qrs;
2. —d*B > 1|dsdr|.

Indeed, size property is immediate. Moreover,

VQs 1 Q 1

—dQB:i:drdS_ 4/ 3 1_4 7’3:&1
4 |1 Q L1 Qr
Ry e S

is positive semi definite on D because its diagonal elements are non negative and

1
det(—d’B — stdr) =0,

1
det(—d’B + Jdsdr) =

Y

1 0.

el M

Thus, one can show as in proof of Lemma 3.2 that the infinitesimal inequality —d?B >

1|dsdr| is equivalent to

B(ry, 1) + B(ry, 87«)

B(r,s) — 5 z 32‘51 = spllri =l
for any three points (r,s), (ry,s,) and (r;,s;) in D such that r = 28 s = SE5r and
1-1¢ 1+1¢
( Jau + (1+5ar € D, where t € [0,1],a = (r,s). The end of the proof is similar to
those of Lemmata 3.2 and 3.3 and the details are left to the reader. O
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3.3 The martingale transform on L*(w)

Define the dyadic martingale transform 7, as

T,f =Y o1(f hr)hi,

1eD

where o7 takes the values +1 and -1 only. The martingale transform is the dyadic
analogue of singular integral operators in the continuous setting. For a weight w € A,
we want to estimate |75 f| 72(.) and minimize the power of the characteristic Q2(w)

i hem e
w):=sup— [ wr— [ w

where the supremum runs over intervals I. By dualizing we obtain

[Toflizey = sw | [(Tof)-gdo

||9HL2(W—1):1

= sup / Z or(f,hr)(g, ho)hr(z)h(z)dz

gl 2-1y=1|" 1.JeD

= sup ng(fv hr)(g,hr)

l9llL2@-1y=1l1eD

Replacing f by fw!'/? and g by gw™'/? we obtain

Y or(fw 2 hy) (gw'? b)) (3.12)

1eD

|To fllL2@) = sup
llgll2=1

Instead of using the classical Haar system, we need to switch to a more appropriate
system of disbalanced Haar functions (h%) that is orthonormal in L?(w). We use Lemma
3.1 to substitute the first and second h; in (3.12) by h‘}fl and hY respectively and pass
the absolute value inside to obtain a sum of four summands Y1 + Yo + Y3 + >4 which

are
1

= > I(fw™ 205 ) (w2 hg) =,
IeD R
Avh g
Z‘ fwt ’XI gwl/Z hf) e 1
IeD Ty Iy
AY 1
E3 — Z ‘ gw 7XI fw 1/2 hw> w1 {7
IeD rF x§
and
A —1
Sa= Y [(foV2) gut/?) AL AT m .

IeD :c,
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We are going to bound each of these sums by cQz|| f||2]|g||2 using the Bellman function
method. This method is particularly adapted to bound the dyadic martingale trans-
form. Our approach will consist of reducing the boundedness of each sum to that of
bounding a quantity independent of the choice of the dyadic interval. Next, we write an
inequality for the above quantity by splitting the dyadic interval into its left and right
parts. Assuming we have a solution to the inequality, we bound the quantity and then
conversely, we find a solution to the inequality.

This result is originally due to Janine Wittwer in [82]. In what follows, we detail these
steps on each sum and explicitly present all the calculations. A parallel analysis will be
conducted in order to understand the origin of the function used to prove the weighted
boundedness of the Bakry-Riesz transform on manifolds.

More specifically, we have

Estimate of X
_ w1 w 1
= Z |(fow 1/2ahI )(gwl/Z»hI) w-1’

w
IeD LT L7

First method: We first use the fact that by polarization identity we have wjw;, =
< Q;ﬂ (by definition
of 24) then use Cauchy-Schwarz and Bessel inequalities to conclude.

Second method: We proceed as in the proof of the weighted Carleson embedding
theorem (Theorem 3.1. Instead of proving that

— (Aw)? < w? (and the same goes for w™!) to bound —L—
Ty X

_ -1 1/2
> ICfw 2 mg ) (g b ) ——=1 < Q5% l2llg e
I€ED TF Ty
we prove the following larger inequality
_ -1
> —l(fw Y20y ) (9w B ) ———=| < (I£13 + llgl3)- (3.13)
1eD @ Trey

We define a function B of six variables on the domain
D ={(X,Y,z,y,r,s) ER*xR2 : 22 < Xr,y> <Vs,1 <rs < Qo}.

as follows

1
20T (g ) ———=|

IcJ e

Bi(X,Y,z,y,7r,8) = —
|J|

for a fixed J € D such that I C J, where the supremum is taken over all f, g and w
that satisfy

o2y, =2, (=X, why=r (g2, =y, (=Y, W), =s
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The function B; satisfies the size property 0 < By < (X +Y) because we want (3.13)
to be true and for a = (X, Y, x,y,r,s), the main inequality

1

Tl
J7J

Bi(a) 2 5 (Bu(an) + Bi(e)) (For 2.5 (g2, )

1
_i_i
Q3]

The second part of the right hand side of the inequality becomes (after using that
hs =xshy—Asx)

4éﬂ«mﬂm_”;“@(m—m—“;&@-

Using Taylor’s formula, it is easy to see (cf. Lemma 3.2) that the main inequality is
equivalent to its infinitesimal version

2
1/2
2

ds

—d’B; > |dz — @l?de - —yl.
r S

Conversely, if we have a function satisfying the previous properties, then by applying
n times the main inequality to the right half and the left half of J; and J, we obtain

1
JIBil@) > 5 > (Bilar) + Bfar)
IeD, |I|=2-"|J]|
-1 1
+ Z 1/2 ‘(fw_l/zv hcf )(gwl/Qv h‘})) w1 ’
IeD,|I|>2-7|J| Qz/ TTTT

Hence by size property the estimate is obtained after letting n — 4-oc0.

Finally, the function

.CCZ y2
Bl(X’YV’:E,y,T‘,S):X—f—i—Y—f
T S

satisfies the desired properties. Indeed, one can easily check that it satisfies on D the
size property. Moreover,

2 da 222 2 1y 2y
2 _ 2 2 2 2
—d°By = ;(dm) - T—z(dxdr) + 3 (dr)” + ;(dy) — S—Q(dyds) + 3 (ds)
2 2
= f|dx71:ﬁ2+f|dyfy@2
r r s s
4 dr ds
> ——\de —x—||dy — y—
= \/@| , || Y |

Consequently, |32, | < 4@z fll2[lll2
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Next, Yo and Y3 are symmetric so we only focus on .
Estimate of X5

e o= Y [(fw 2 x) (w2 Rg) ——!
IeD xl
=Y ) (g ) AL iuu
IeD Ty

First method: We use the fact that

wl w B, — (w?
S i < e el
1

and split the sum by using Cauchy Schwarz inequality to obtain

o] < | D Hgw! /2 B9 " 2y gy L@ = @ 2N
2| < gw =, h7)| > fw )] (w) s =y .

1eD IeD

Again, for the first part, we can use Bessel inequalities and bound the term by ||g||2. For

—1y 1 2
the second part, we apply the weighted Carleson theorem for oy = (w) [ )I<’w,<llu>2 | ||
I

since it satisfies the Carleson condition

3w ~ (o Pl < Q3w

Vg

by Lemma 3.2. Hence the second part is bounded by 11Qz|| f||2.
Second method: Another method consists of exhibiting a Bellman function. Let

(fu Py =a, (=X, (wh)y=r (qgu'P;=y (@)=Y, (w)=s

Since h% = xsh; — AyxJ, we have

5 rep | (o2 gt/ gy AT el
xy
I —(w™? w)r, — (w
I (<<y>n—<y>m—< !

Let

10— o) (), — (w)s,
|J\ Z w1y, T1 <(<y>h — W) - ) |.

IGD

By(X,Y,z,y,1,8) =

Then we have on
D ={(X,Y,z,y,rs) € R* x Ri c2? < Xry? <Ys, 1<rs<Q},
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1.0< By S X+Y;
2. Fora = (X,Y,z,y,1,59),

Bs(a)—=(By(a))+Ba(ay))

1
2 S

which is equivalent to its infinitesimal version
2 x ds
—d?’By > —|=dr||dy — —yl.
Q'r s

The function

\/» 1.2 y2
B2(X7Y7xay7’r’8):2 3| X - M(T,S) +Y_?
T+ 02

is suitable with )

M(r,s) = (4Q2 +1)r— % —7r2s,

L 00 (1) -

(w)y, — (wm) I

(w) s

taken from Lemma 3.2. Indeed, size property is immediate. Moreover, the function

2

F(X,z,r,z) =X — z
r+z
is concave for y, z > 0 because
0 0 0 0
2 —2z —2z
y+z  (y+2)? (y+2)?
—d’F = 0 -2z 212 222
w+z2)? W+z)? W+2)°
—2z 222 222

(y+2)?2 (y+2)?3 (y+2)3

is positive semi definite. Hence Bs is a sum of 2 concave functions. Then if we write

By (X, x,r,s) = 23 (X — %) and consider H = By 0 M, we have by chain rule
T

Q2
—d2H 8322 1 2 ds 2
= —d’Bog+ ——e —(—d’M) + Z|dy — y—
23 2T un@ M
8322 1 2 2 ds 2
> —————(—d°M —\|dy — y—
x? 3 9 2 ds 2
> 2 7 -z ==
— 3602 QQQS(dT) + s‘dy ¥ |
x ds
> ——dr|dy —y—|.
> o rldy —y=]|
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Consequently, |35 [ < 14Q2|| fl2[lgll2

Estimate of Y3 By symmetry,

72 o2
Bs(X,Y,z,y,r,s) = 2/3 | X — 7+Y— W
s
Q3
where
Q2
N(r,s) = (4Q* + 1)s — —— — rs°.

Again, [E3] < 14Q2| fll2lg]l2-

Estimate of ¥4, We turn now to the last sum 4.
-1

Sa= Y [(fo ) (g =L I!II k
X CU[

1€D I

AY

We estunate this sum by using the weighted bilinear Carleson embedding theorem for
-1
Aw

71
¥ Z

ar = \I |. We claim that for such a; the conditions of the weighted bilinear

Carleson embeddlng are satisfied. Indeed, we only prove the first inequality since the
second one is proved analogously.

|J|/ (ICJ w)rxr(z )) wlde = \J’/<

(w) rxr(z)og (w >KXK(:E)) wlde

ICJ,KCJ
= J Z ar(w)rag(w /XI T)XK (@ w™dr
‘ ’IQJ,KQJ
1 _
= m( > aj(w)i{w ]
I=KCJ
+2 Y ar(w)rag(w)k(w ) k|K]).
ILKCJKGI
A —1
The first sum is (for ay = ~I=r -4 |I|)
{L‘I I
Z | |2 ’<w71>fl — <w71>1r‘2<w—1>]|l|.
16|J‘ ICJ <w_1>%

1\ =1 2
However, a simple calculation shows that 1C >Iiu ,<w )1z < 4 and we estimate the

above by

20
177 22 b = G w1 < 203,

1CJ
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by Lemma 3.2. The second sum is

1 Z <w>[l — <w>jr <w71>11 - <w71>lr (w)r Z <w>Kz - <w>Kv- <w71>Kl — <w71>K’" <w>K<w_1>K|K’~

2l {5 (wr (w=hr i (wik (w K

By Lemma 3.4, the inner sum is bounded by 32Q2|I|. Hence the above estimate is
bounded by

16Q2 = ()1, — (wr, () — (W ),
72 g ) 1,

which is in turn bounded by 640Q?(w) s, by Lemma 3.3. Consequently,

m ; (Z ou(w)IXI(:U)) wldz < 193£Q2<W>Ja

and the conditions of Theorem 3.2 are satisfied so we can use the weighted bilinear
-1

Carleson embedding where v = @QT Therefore,
3
_ 1940
> (fw' ) lgw P rar 1] < 24+ —5 @2l f 2w gl 22 1)

1eD

and
24| < 624Q2]| fl2[l9ll2-

In conclusion, we obtain the following weighted estimate on martingale transforms

1T fll 2wy < 656Qa | f] L2 (w)-

Remark 3.3. In the case of the Bakry-Riesz vector (see Chapter 4), we will prove that

(Rof (@), G (@) dug () =4 [ [ {dPif (@), LBg(x)) dug () tat.
A [ arr @ g

and

IRoflizw <2 s [ [ [FR(@)[TAg@)du, ()t

||!7HL2(“,71)§1

which we want to be less than CQZ(w)||f||L2(w)|’§|’L2(w—1)'
This means that B = Z?Zl B; has to satisfy

1
~d’B % 0, 4lldyl
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However we know that
1
—d*B >, @de - %aszy - %y|
T
+|;dr| X |dy — %y|
+|dx — %x| X |gd5]
S
+A)

1
> —|dzl||dy].
2 gldldy

A careful reader may notice that by triangle inequality it suffices for A to be equal to
x

|—yd7'ds|.

rs
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Chapter 4

Sharp dimension-free weighted
bounds for the Bakry-Riesz
vector.

There are no LP spaces, only weighted
2.

Antonio Cordoba

We prove in this chapter a sharp dimensionless weighted L? estimate of the Riesz
vector on a Riemannian manifold with non-negative Bakry-Emery curvature. The proof
is by the method of Bellman functions, where the explicit expression of a Bellman func-
tion of six variables is essential.

An important fact is that our estimate in terms of the Poisson characteristic of the weight
includes the case of the Gauss space as well as other spaces that are not necessarily of
homogeneous type.

4.1 Development

Before stating the main result of this chapter and its proof, we define the context of this
work, as well as some notations. We refer the reader to Chapter 2 for more detailed
definitions and properties of the analytical and geometrical objects used throughout this
chapter.

4.1.1 Setting and notations

Let (X,g,p) be a complete Riemannian manifold of dimension N without boundary.
Let A be the negative Laplace-Beltrami operator on X. Given ¢ € C?(X), consider the
weighted measure on X defined by

dug(2) = e *@dp(a),
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and assume that constants are integrable with respect to this weighted measure. The
importance of this assumption will appear in Section 4.5. Next, denote by A, the
associated weighted Laplacian defined on C2°(X) by

Af =Af—Vf Vo

Notice that for all f,g € C2°(X), we have

| (V1.990duol@) == [ 1Augduoe) = = [ 9B fdna). (4.1)

It was proved in [12] and [79] that on complete Riemannian manifolds, the operator
A, is essentially self-adjoint on L?(X, u1,,). We will still note A, its unique self-adjoint
extension.

The Bakry-Emery curvature tensor associated with A, is defined by

Ric, = Ric +V3,

where Ric denotes the Ricci curvature tensor on X and V2y is the Hessian of ¢ (i.e. a
2—tensor). All over this paper, we will consider that Ric, > 0.

For each x in X, we denote the tangent space and its dual, the cotangent space at x
respectively by 7, X and T X so that

TX = |J T X and T"°X = |J T; X.
zeX rxeX

We denote by < -,- > either the inner product in TX and T*X, or in the Lebesgue
space L?(X, j1,) with a subscript to avoid ambiguities.
By [ - [lz2(xwuy) and || - |2(7+ x.w-14,), We denote respectively the norm in LA X, why)
and L*(T*X,w ™ pu,), where w and w™! are weights that belong to L}, (X, ).

We denote by d and V respectively the exterior and the covariant derivative and dg,
and V7, their L?(p1y)-adjoint operators. An easy computation shows that

d; =—d"+ ng&a

where iy, denotes the inner multiplication by V¢ on Al
We also define V as the total covariant derivative on X x Ry that satisfies |Vn| =
VIVnZ 4+ 10m|?, for all n in C°(T*X (X x Ry)).

We consider 590 = ddg, + dgd to be the weighted Hodge-De Rham Laplacian acting
on 1—forms. As for the Laplace Beltrami operator, &so initially defined on smooth
1—forms with compact support is essentially self-adjoint on L?(T*X, ty) and again, we
will denote &w its unique self-adjoint extension.

Finally, self-adjointness of the considered weighted Laplacians allows to define by
spectral theory the following semigroups that respectively act on functions and 1-forms

Py = exp(—t(—A,)"?) and P, = exp(—t(4A,)'/?).
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Note that the semigroup P, acting on functions is an integral operator with positive
kernel that we will note p; [79].

We are concerned in this chapter with a special class of weights, called Poisson—As
and noted As. We say that w € Ay if and only if

Q(w):=  sup Py(w)(z)Pw ) (x) < .
(z,t)eX xRy

The weights involved in this definition are a priori in L?(X, ).
Remark 4.1. Forw € L}, (X, ), we define its two-sided truncation

Wn = n_1Xw§n*1 + WXn—1<w<n + NXw>n,
where x is the characteristic function and n € N*. The truncated weight w, is clearly in
L(X, ly) and satisfies some interesting properties that we are going to see later. For
the moment, we are going to work with wy, and then extend our results to w, including a
definition for Qa(w) when w is only locally integrable. We are also going to suppose that
Piw,, and thgl are finite almost everywhere so that Qa(wy,) makes sense.
Remark 4.2. Throughout this chapter, C' will denote constants whose values may

change even in a chain of inequalities. These constants are independent of the dimension
of the manifold and other important quantities.

4.1.2 Preliminaries

The following lemma slightly differs from the one appearing in [12] since it involves
weights. The stated results will be of great utility in the next sections.

Lemma 4.1. For every f € C®(X), §€ C® (T*X) and w € L? (X, 1),

o) |Pf (@) < P (|fPw) (&) P~} (2).
b) dP, = P,d and consequently &g,d =d(-A,).

¢) &P = P;d; and consequently &@d; =dy,(—Ay).
If we also have Ricy, > 0 then

< e g ()

d) |52 (a)

TrX X

¢) |Pg(x)

2
px < P (107 x 07 (@) Prs().
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Proof. Ttems (b), (c¢) and (d) in the lemma have been proved in [12].
For item (a), we use the integral expression of P; and Holder’s inequality.

Pif(z) = /X pt 2, y) F ()W 2 ()t (2 )™ V2 () dpg (y)
1/2

< (/. pt<x,y>|f<y>|2w<y>du¢<y>)l/2 < ([ plev @)

To conclude, simply raise to the power 2 the above inequality.
To prove item (e), note that by [12, Inequality (1.4)], one can write

Bg @), < Pldlrx(@).

T:X

The proof is then analogous to the one of item (a). O

4.2 Bilinear embedding and its corollary

In this section, we state the main result of this paper and its corollary for the boundedness
of the Riesz transform. There have been considerable efforts in bounding the Riesz
transform as well as finding its exact norm. The reasons behind these interests come from
[46] where it was pointed out that sharp estimates of the norm of the Riesz transform
imply important results for non linear geometric PDEs and in the Hodge decomposition
theory. The proof of Theorem 4.1 will be given in Section 4.4.

Theorem 4.1. Suppose that (X, j1,) is a complete Riemannian manifold without bound-
ary and of finite measure. Suppose also that Ric, > 0 and that w, and w 'l are a.e
positive weights defined as in Remark 4.1. Then for all f € C°(X) and § € C°(T*X),
we have the following dimension-free estimate

| [ FPI@IF Pl duo(a)dt <221 Qaeon) 12t 101
(4.2)

Let R, denote the Riesz transform initially defined on the range space of —A,,
R(_Acp) by
Ry =do(—A,) /2

and that extends to a contraction
R, : R(—A,) — L*(T*X).
We have then the following corollary :

Corollary 4.1. Under the above conditions,

IR 1l 220 gy < 884Q2(@n) 1 N2 (o)

2
for all f € L?(X,wppy) N R(—A¢)L
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Proof. The idea of the proof is to represent the Riesz transform by using Poisson semi-
groups on functions and differential forms. Indeed, for every f € L?(X, wypy) NR(—Ay)
and § € C® (T*X,wy,  ju,) we have the well known fact (see below for the proof)

/( o (@), (@) duy (x _4/ /<dPtf ()>du¢( Vidt.  (4.3)

We assume for the moment that claim (4.3) is true. Corollary 4.1 follows from the
well-known formula

HRS@fHL2(wnM<p) - sup ‘(Rwﬂg)ﬂ(w)‘
191l 2 =1,y S1

= 4 sup ]/ <dPtf, Ptg> tdt|
190 2 1) <1 L2(pe)

SR I <dPtf Pd(o) ) dig ()t

Hg”LQ(wgl <P

<4 sup / [ VRS @IIVPig(e) dps ()t

19112 =1
< 884@2((*%)”f”LQ(X,wnuq;)’

(wn u)gl

To prove the claim (4.3), consider the function

by Theorem 4.1 and because |g|| 2
h(t) = (PR, !, Pt§>L2(M .
©

Since (R, f, g_]’)LQ(W) = h(0), it suffices to show that
h(0) = / B (t)tdt = —4 / <dPt £o Ptg> tdt (4.4)
0 LQ(HLP)

In order to prove the first equality in (4.4), it is enough to show that both h (t) and th' (t)
tend to zero as t — oo. First, note that by Lemma 4.1, PR, f = R,P; f. Therefore, by
the L? contractivity of both R, and P,

B O] < NP ) 19012 ) (45)

Since f € R(—A,), the spectral theorem gives that P,f — 0 in L? (wyu,) as t — oc.
Similarly, Lemma 4.1 gives

W) = 2(—(A)Pd(—A,) "2 f, B 12,

= ~2(RfRdg), .
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therefore lim;—, 1 t|h' (t)| = 0 as before.
The second equality in (4.4) can be verified by a straightforward calculation, again with
the help of Lemma 4.1. Indeed,

d
h//(t) =-2 <<dtptf’ Pd gog>L2(,u<p <Ptf, Pt ¢9>L2(,u<p)) .

By Lemma 4.1,
d . -
<£Ptf7 Ptdgpg>L2(,u, ) — <dptf7 Rf.g>L2(,u¢)
and
* d D =
(Pef, B%@ww>=<ﬂﬁ%gﬂwww>
= (dP.f, - Pt9>L2(u¢)

Thus, we get the desired result. O

4.3 The Bellman function

As mentioned before, the main tool used to prove Theorem 4.1 is a particular Bellman
function that is constructed explicitly. A substantial part of its origin lies in the seminal
paper by Nazarov, Treil and Volberg [61]. It has been developed in [82], [70] and [22],
with the first explicit expression in [22]. Our construction differs from the one in [22] in
that this construction is slightly shorter and and gives an explicit numerical constants.
Another difference is that we restrict ourselves to infinitesimal convexity estimates.

In fact, for any @) > 1, we show that we can exhibit a function Bg in domain

Do ={X:=(X,Y,x,y,ns) : x> < Xr,(y,y) < YVs,1 <rs < Q},

which is a subset of Ry x Ry x R x RY x Ry x Ry. The function Bg is globally in C*
and piecewise in C? such that

0 < Bg < 884(X +Y); (4.6)

4
—d’Bg > é|dx|\dy|; where B is in C2. (4.7)
Furthermore, B is radial in x and y in the sense that
BQ(Xv Y7X7Y7 r, 5) = EQ(Xa Y7 ’X|7 |Y|a T, 3')

Consequently, the domain of By is defined accordingly in RS, Writing v = |y| € Ry we
have in addition
9,Bg < 0. (4.8)

96



Remark 4.3. We use a Bellman function involving real variables. As a consequence,
Theorem /.1 and Corollary 4.1 hold for real-valued functions and forms. One may find
the corresponding estimates for complex-valued functions and forms by separating the
real and imaginary parts.

Remark 4.4. The property (4.7) means that for all 6-tuple X = (X,Y,x,y,r,s) in Dq,
we have A
(~d*BodX,dx) > glaxlidyl

The strategy used to build this Bellman function relies on a careful analysis of the
previous subsection. Hence, we consider the following Bellman functions Bg = Bi +
By + B3 + By and Bg = By + By + B3 + By of six variables such that

2
° Bl(Z,H,X,y,r,s):X_£+Y_ <y>Y>7
r s
x* (v,y)
. BQ(X,Y,><:,y,r,s)_)(_7_1_}/_W7
+ 0?
2
e B3(X,Y,x,y,r,s) =X — ;\{](T 3 Ly - <y;y>’
T+ =
where 2
4
M(T,S) — —i _7"524-(4@2—}-1)5
7
and 2
4
N(r$) = =24 — 2 4 (4Q% + 1)
s

e By = By + By + By3 with

2
. B41(X,Y,X,y,r,s):X_,Xvi+Y_ (v, ¥)
+M(T,S) s
r
Q
2
e Bp(X,YVx,y,r,s)=X——+Y — <y~aY>
r +N(r,s)
s
Q
x? (v,y)
* Bl Y%y ) = supeso | X = ——p o Y - —
T"‘a ’ S+a_1 )
@ Q

where

K(r,s) = VQVFs - 7.
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~ 4Q r3s

M(r,s) = - @4—(4@—1-1)7”
and A )
N(r,s) = fTQ - % +(4Q + 1)s.

Explaining the construction of K, M and N: We know from Remark 3.3 that
—d?By; 2| 1Y drds|, fori=1,---,3.

Qors

We start by Bys. The appropriate function K should satisfy by Theorem 3.3 the following
size property 0 < K < Q9 and —d?K 2 |dsdr|. The second restriction comes from

AK = %, where ay = ((w), — (w) s, ) (w1, — <w_1)JT)|%i|. By Lemma 3.4, we know

that the function s
K(r,s) =v/Qrs — T

is appropriate.
Concerning By1, we know it should be of the form

2 2
xo Ly

M(r,s) s
r+ 0,

It is now clear that it is concave. We have by chain rule

a8 ~
—d?’By > —(—d*M),
4> 6M( )

where S is a function of X,Y,z,y,r,s and M(r, s).

However,
oS x? x?
v — 5 2 27
oM 0, [+ M(r, s) CQar
’ Qs
— K yr
for 0 < M < CQor. We use the fact that 1 > Q— > o as follows
2 X
2 ? 277
—d"Bu 2 ﬁ(_d M)
2
T 9~ Yr
> —d*M)=—
> (-
xy —~
pe @(—dQM).
Hence, —d?M pe M The function
s
~ —4Q r’s
M(T73>: s _@—"_(462_‘_1)747
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defined in Lemma 3.3 satisfies the hypothesis.
By symmetry,

22 y2
B42(X,Y2$,3/,T,S)ZX—7+Y— ~ ’
r LN
s
Q2
where 0 )
~ —4 s°r
N = — — 4 1)s.
(rs) = =% — g + (4Q+ D)s

Remark 4.5. 1. In [22], instead of defining functions M and N, the authors only
need to define function K. By is then of the form

2 2
X - ° vy - 2L,
S

1
(a7

Byo is defined analogously and Bys remains the same. The calculation of the Hes-
sian of B4y is done in two steps. Define

r+|r—

M(r,s) L Fayns M= = L
"S) =T — —F z,y,T,s, = -
K(r,s) M
S (T + 1) T+ S
4 G(r, s, K) !
an r, s, =r— ——.
s(é +1)
Notice that F' and G are concave. Indeed,
0 0 0
2 1
0 53(K+1> 0 2<K+1)2
2 - §% | —
—d°G = QZ 2 %2
1
0 K 2 K 3
2 (—i—l) 25(—}—1)
@ Q2 @ Q2
and
2 —2x —2x 0 0
r+M (r+M)% (r+M)?
—2x 222 222 0 0
(r+M)?2 (r+M)3 (r+M)3
_ 2 2
_d’F = 2z 2z 2z 0 0
(r+M)?2 (r+M)3 (r+M)>3 -
0 0 0 =y
3 2822
y Yy
0 0 0 - —=
s2 83
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have non-negative principal minors. Hence they are positive semi-definite.
We have then by chain rules

~d*By; = —d*F 4 0y F(—d*M)
> Oy F(—d*M)
and
—d*M = —d*G+ 0xG(—d*K)
> 8KG(—d2K).
Thus
—d2B41 > 8MF8KG(— d’K K)
22 1
> dsd
= 4240, 54‘ sdrl
1 zy
> ———~Z|dsd
= 1280, rs 50
K yr
where in the last inequality we used the fact that 1 > Q— > o The advantage of
9 2z
this method is that the assumptions are now easier to verify, compared to Theorem
3.3.

We refer the reader to the previous chapter for the proofs of properties on size and
derivative estimates of the functions M, N, K, M and N. We recall the main results for

the sake of completeness.
Functions M and N:

0< M <5Q% and — d>M > r(ds)?,

0 < N <5Q% and — d>N > s(dr)%

Function K: 1
0<K<Qand —d°K > Jldsdrl.

Functions M and N:

. dsd
0< M <5Qr and — d2M>‘”’
S
0< N <5@s and — d2N > ’deT’
"

Now, define IT = {Q = M} U {g = %} The function B satisfies the following :
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Lemma 4.2. For every (X,Y,x,y,r,s) in Dg,
1) 0< Bg <6(X+Y);
2) &,PQ, <0y

3) Function Bg is globally Ct. Moreover, if (X,Y,x,y,r,s) € Dg \ I, then it is C?
everywhere except on the set I and we have —d*>Bg > %|dx||dy|.

The proof of this lemma was more or less already proved in the case of martin-
gale transforms but we recall for the sake of completeness, by calculation explicitly the
numerical constants.

Proof. 1. The result follows directly due to the construction of By as well as the
hypothesis on Dg,.

2. For more convenience, we will deal with each function B;,i = 1,...,4 separately.
It is clear that the derivatives in the variable v of By, Ba, B3, By and By are
negative by straightforward computations. It remains to study B43. Let us rewrite
it in the form

E43()(7 Y, |X|7 ‘Y‘vra S) =X+Y - Su%ﬁ(a7X>Ya |X’7 |Y|7Ta 5)7
a>

with
x2 V2

raK(n5)/Q st a K(re)/Q

The function £ is continuously differentiable in a > 0 and

oB x’K/Q n V2 K/Q

5(Q7X7Y7 |X‘7 ‘Y‘7r7 8) =

da  (r+aK/Q)?  (as+K/Q)?’

which yields to

%:0@(1: QTV*KX7
da QRsx — Kv

provided this fraction is finite and non-null.

Let a,, := g;z:?; If both numerator and denominator are positive, 93/0a

changes sign from positive to negative. Which means that the extremum is a

maximum and it is attained at a,,. In this case,

— X2 V2
By =X — K(r,s)er—XK(r,s)+Y_ K(r,s) Qsx —vK(r,s)
r Q Qsx—vK(rs) o Q Qrv—xK(rs)

2 2
If a,, is null or infinite, then Byz is X +Y — x and X +Y — V—, respectively.
r s

To compute 9, B3, consider a one-parameter family of functions

§Z3(X7 Y7 ‘X’7 ‘Y‘7T7 S) =X + Y — /B(CL?X7 Y7 ‘X’7 ‘Y‘ﬂ"a S)‘
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When a,, is strictly positive and finite, it is clear that By3 = EZ?.
By chain rule

OBys 0B da N OBy,
o  Oa v v
a=am a=am
0B . . .
But Ba = 0, since § attains its maximum at a,,. Consequently
a a=am
o  Ov
a=am

_ 2v
T s+ an'K/Q
< 0.

When a,, is null or infinite, then

2
3 is null or equal to = < 0, respectively
v s
(see [22] for more details on the behavior of Bysz), which finishes the proof of (4.8).

. To prove this assertion, we refer the reader to the paper of Petermichl and Domelevo
[22, Lemma 3], where the authors have checked that the first partial derivatives

K
of Bys are continuous throughout three regions, namely R; where |y|r — x— > 0

Q
K K K
and xs — |y|a > 0, Ry where |y|r — Xa > 0 and xs — \y\a < 0 and R3 where

K K
xs — |y|—= > 0 and |y|r —xa <0.

Now, to prove the concavity property, we will study as before the Hessian of each
of By, By, By and By separately and then sum the results to obtain the desired
estimate.

Case of Bj: A direct computation of the Hessian yields

2x2 2 9
2 = |2 - Yas dy — Yds)
T X T S S S
s A | drl Y g
Vrs | x r s
4
> = ldx — Zar| |dy — Yds
Q r s

Case of By and Bjs: We can deduce from the Hessian of Bs that of B3 simply
by replacing the variables x by y and r by s. As in the previous case, the Hessian

dx  drl|?
;X - - As for the second

of the first part of By is bounded from below by %

part, we use the following lemma:
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Lemma 4.3. If a function B has the form

f2

B(F, f,w,M) = F —
( 7f7w7 ) w_"_M

and M is a function depending on the variables w and v, then if we write H =

Bo M, we have
0B

——d’M.
OM

—d’H > —

Proof. By the chain rule, we compute the Hessian of H and get

df df
<—d2H(df,dw,dv), dw > = <—d2B(df7de+de)7(d M+ d M >>

dv
0B 9 dw
8M< dM(dw,dv),( do >>,

where dy, M +d,M = a%dw + %—Afdv. But as seen previously, B is concave, that is
—d?B > 0. Thus, we can drop the first term on the right side of the equality and
the lemma is proved. ]

Consequently, the Hessian of the second part of By is bounded from below by

v,y r(ds)2.

36@2 2
Finally,
dx dr|? {y,y)
—d*By > = _= ’ ds)*
S r 36Q2SQT( )
Analogously,
2
—ﬁ&>‘gXSWWd—yw

Case of Bj: Once again, we will study separately By1, Bio and Bys.

It can be easily shown by using Lemma 4.3 that functions By; and Bys are concave

0By 0B ~ -
everywhere on the domain since = 42 > 0 and M, N are both concave.

oM’
Function Bys is concave as well as the infimum of a family of concave functions,

since [ is convex for all a > 0. By is hence concave as the sum of these functions.
Moreover, these functions have an additional "super concavity" property on more
restricted domains. These domains, which we already defined in the proof of
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Lemma 4.2, appear naturally by looking at different values of a,, = $r¢=Ex

Qsx—Kv*
We first study Bjs. Recall that
X (v,y)
Pl oy s) = | X Rrs) T LK) |
r+a s+al——+
Q Q

and that the supremum is attained at a = a,, > 0, when both its numerator and
denominator are positive. In this case, K is relatively small and we have (omitting
variables X and Y)

x? {v,¥)
B43(X7Y7X7Y7T7S) = - R K - N _1K
r+am— S+am —
"Q "Q
_ x*(@sx — Kly|)
- K
r(Qsx — Kly|) + (Qrly| — KX)@
(y, ) (@rly| — Kx)
K
s(Qrly| — Kx) + (Qsx — K\Y\)a
_ SQ2X2 - QQKXIYI + TQ2<Y7 y> (4 9)
Q%sr — K2 ' '
When a,, is null or infinite, then K is big, meaning that K > QTT‘y' or K > CIQ;IX’
and the supremum is attained at the boundary. Note that we can’t have these two

inequalities at once, unless x, |y| = 0. When K is big, Bys is respectively —XT—Q or

(y,y)

S

Now if we restrict ourselves to the set R} where K < Q;—)'(y‘ and K < 9 which is

2ly[”
contained in the set Ry where K < QTT‘y' and K < Cf;‘x, then it was shown by [22]
OBy3 _ xly|
h > —1 4.
that DK~ s ndeed by (4.9),
OBuz 2Q(QXS — KlyD(@Qly|r — Kx)
0K (Q%sr — K?2)?

We multiply by x|y| both the numerator and denominator and then expand the
denominator to obtain

OB _ o (Qxs — Kly|)(Qly|r — Kx)x|y|
oK [Qr(Qxs — Kly|) + K(Qlylr — Kx)] [Qs(Qlylr — Kx) + K(Qxs — Kly|)]
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0Bsz _ cx|y|

We need to find a constant c such that > ——— on R). Meaning that
oK Q rs
2Q%rs _ Qr(@xs = Kly|) + K(Qlylr — Kx)  Qs(Qly|r — Kx) + K(Qxs — Kly])
c - Qlylr — Kx Qxs — Kly|
Qxs — Kly| Qlylr — Kx
= QYrs+ K> +QKr* -1 L QKs 2“0~
Qlylr — Kx Qxs — Kly|

We know that K2 < Q? < Q?rs and on R}, Q|y|r —xK > xK and Qxs — |y|K >
ly| K. Thus

Qxs — K|y Qxs — Kly|
QKr—— < Qr—,
Qlylr — Kx X
QKsQNIr = Kx 5 Qlylr — Kx
Qxs — Kly| — ly|

and the sum of the two terms on the left is then less than 2Q?rs. By combining
all the results we get

2
4Q%rs < ZQ%rs,
c
. 2 1 . . /
so ¢ = 1/2 works. Since —d*K > Z|dsdr\, this means that in R] we have

B > e,
43_8Qrs| S 7"|

Functions By, and By are introduced to deal with the concavity for other K’s. In
fact, we only need to study one of them, say By, as the result is the same for the
other function by symmetry of the variables. The idea is to apply chain rule and
Lemma 4.3, knowing that K > Qg—}'f"

More precisely, let

—~ 2
H(x.y,r,5) = S(x,y,7m,5,M(r,s)) = JT;@ s) <y;y>.

Q

r—+

Notice that again, we omit the variables Z and H because they do not play a role
for the Hessian.

One checks by calculating the Hessian of .S that —S is convex, which means that
oM oM

—d?S > 0. By introducing drM = dr, dsM =
or Js

ds and applying chain rule
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we obtain

(—d*H (dx, dy, dr,ds), (dx, dy, dr, ds)) =
(—=d®S(dx, dy, dr,ds,d.M + d;M), (dx, dy, dr,ds, d, M + dsM))
a8
d?M (dr,ds), (dr, ds
M( M( ), ( )

M (dr,ds), (dr,ds))

v
|
e\
=
[N}

—72Q rs

2 2
because 8,6: = * > * and —d2M > |d8d |

v\2 T 36Qr2 s
o)
S i
— 2x
Finally, we obtain the following estimates

. Moreover, we use the

fact that 1 >

—d*By > — |y| ]dsdr! when K > QTM

72

Qsx

—d?*Byy > — x| |dsdr|, when K > T
y

_72Q

Thanks to the global concavity of B; and to the more refined estimates of each
part of it on three complementary sub-domains we have

_d’B ]y!
d°B _72Q |dsdr|,

on the regions where Bys is C2.

Conclusion: In order to finish the proof, it suffices to choose constants C7 = 1,
Cy = C3 = 64/2 and Cy = 288. The constant 884 appearing in Theorem 4.1 is due
to the fact that we want

—d’B = chd2B > —\dxdy|
=1

Recall that we have

4 2
— By > —|da — Zdr||dy — Lds|, —d®B, > L]da: — Tar|Yds|,
Q2 T s 3Q2 ros

@By > 3\g|d ~ Lds|%|dr| and
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1
@ﬁ\drds\, when K € R)
_d2B4 > 2TSs

Iy
72Q9 Ts

It means that whether K is in R} or not, we have

|drds|, otherwise.

—d2B4 > Lﬁ

7205 s |drds|.

Hence if we take C; = 1, Cy = C5 = 61/2 and C, = 288, we obtain

. 4
=Y Cid*B; > —|dxdy],
i=1 Q2

which yields to the following size property

4
0<B=) CiB; <84(X +Y),
=1

as claimed.
O

As mentioned earlier, By fails to be C? everywhere. We can add smoothness by
taking convolutions with mollifiers: for a fixed compact K in the interior of D¢, choose
e > 0 such that ¢ < dist(K,0Dg). Consider B g(X) = Bg * E%q/;(%), where 9 is a
bell-shaped infinitely differentiable function with compact support in the unit ball of
IRS.

The resulting functions B. g and B, ¢ are clearly smooth in a small neighborhoord of
K and satisfy the following properties

1) 0 < Beg < 884(X +Y + 2¢);
2,) 8V§57Q < 07
3) —~@B.q > Hldxlldyl.

Proof. 1’) Recall that the original function satisfies 0 < Bg < 6(X 4+ Y). Thus, it
is easy to see that size property of the new weighted and mollified function B; g
changes only by a factor depending on the distance between the compact K and
0Dg, as well as the sum of weights C;, i € {1,--- ,4}.

2”) The non-positivity of 8, B ¢ is preserved because the function By is globally C1
and satisfies o B
81,357(9(.)(') = 8VBQ * ¢5(X>,
for X = (X,Y,|x|,v,7,s).

Since GVEQ is negative and 1. is positive, we obtain the result.
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3’) The statement is true because Bg is C! and we integrate over a compact set.
Moreover, the second order derivatives exist almost everywhere (because II is of
measure zero) and are locally integrable, which means they coincide with the second
order distributional derivatives. One can find more about this procedure in several
previous texts on Bellman functions.

O

Remark 4.6. Concerning the domain of B q, its construction is standard (see for ex-
ample [22]) and requires some technicalities which we summarize as follows: we truncate
our variables from below at level ¢ > 0 and from above at level 1. cf. for instance
Lemma 4.4. Next we define the mollified function B. g as above. All the inequalities
coming from size property are still verified, even if that means expanding the domain by
a constant depending on .

4.4 Proof of the main result

This section is devoted to the proof of Theorem 4.1.
First of all, let’s fix (z,t) € X xR, and define B; g : Ry xRy xRxT*X xRy xRy — Ry
such that

BE,Q(Xa KXaY)ra S) = BE,Q(X) Yv |X‘7 |y

T:X,T, 5)-

Let @ be in what follows the Poisson characteristic i. e.

Q=Qxw):= sup Pyw)(@)P(w ) (z) < 0.
(z,t)eX xRy

Let us also define for a certain tg > 0 small enough the vector

v(z,t+ o)
= (Prtaol FPwn(@), Pyt gl xwn (@), Prvto (), Prito (@), Prstowry (2), Proson () )

and in parallel

5($,t+to)
= (Perto (I Pwn) (@), Pevto (117 xw0n ") (@), Praeo f (2), | Prvto§(@) 2 X, Prvtgton, (@), Prevtgeon (@)
t+to W ) \Z); Litto \ |Gl xWn | \T)s Litto J L), [ Fi4t0 9\T) | T X5 LittoWn )5 LitoWn T

where we recall that P; and ]5; stand for the weighted Poisson extensions. It is important
to mention that v(z,t + tg) € Dg and (z,t) — v(z,t) maps compacts in X x Ry to
compacts in Dg. Indeed, the following inequalities

|Petto /1> < Pritg (!lewn) Prtowy, " and |Pritodls x < Pt (|§|2T;XWEI) Prytown

are true by Lemma 4.1. Tt is also clear that Py ¢,wn(7)Prygow;, t(z) < Q by the very
definition of Q. It remains to show that it is greater than 1.
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Since the semigroup P; is Markovian, P;1 =1 by [11]. Thus

1/2 1/2 —
U= [l el 2nli e P w)du )

_ 1/2
(Prgageon(@)"? x (Piysgwi (@)

Besides, the mapping property holds because v is a continuous function.
Next, define

IN

be(x,t +to) = B- g(v(z, t 4+ tp))
and consider the operators
Api =02+ Ay and A,y = 02 + A,

The fact that B&Q is radial allows us to define the Bellman function on manifolds. Our
goal is to find a link between A, ;b. and d2B8,Q and then estimate the integral

—//Awbg(m,t—i—to)d,u@(x)tdt

from below and above.

4.4.1 Estimate from below

Proposition 4.1. Suppose that Ric, > 0. Then for all (x,t) € X x Ry,
4 o5 -
—Apibe(w,t +to) > §|th+tof(x)\|VPt+tog(ﬂf)’-

Proof. Following [16, Lemma 12] and [16, Proposition 13] we use the function B ¢ and
the corresponding function B. ¢ to define the quantity
Fz,t+t) = —ApiBeq(u(e,t+to))

OyBeo(v(x,t+1 . 5o 8
_OBQUL LT ) o (e, (s, 1F),
| PeglTrx

where § : T X — T, X is the sharp musical isomorphism.

Note that we have a different sign convention for A,; and use concavity instead of
convexity. The calculations used to compute F' are omitted since they follow exactly the
same steps as in [16], that is, computing A%tés,Q and writing F in terms of its variables
and their different derivatives by using the Bochner formula in [12, eq. (0.3)]. We obtain
at the end

4 — =3 -
F(z,t+1t9) > @\prtof(x)’\VPtthog(x)\-

To verify this inequality, one can use exponential local coordinates and inequality (4.7),
since the expression of F' holds pointwise.

Furthermore, since 8,,§57Q < 0 and Ric, > 0 we have
—Ag 1B g(v(@,t +t0)) > F(x,t + to),
thus yielding the result. O
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4.4.2 Estimate from above

In order to prove Theorem 4.1, it suffices to show that

~ [ [ Boibetat+ to)dgl@)tdt < Ul 19 2o x

In fact, for a fixed point 0 € X, I > 1 and s > 0 such that ty € (0,1/s), we have the
following result:

Proposition 4.2. Suppose that Ric, > 0. Then for every (x,t) in the compact set
K, := B(o,l) x [1/s,s] we have

5—00 [—00 X#U;l#«p)).

i Jon [ oo trtoldiag )t < 888C4) L U150

Proof. Let p(x,0) be the geodesic distance on X between o and z. Define A € CZ°([0, o0))
be a decreasing function such that 0 < A <1, A=11in [0,1] and A =0 in [2,00). We
are interested in the following composite function :

pl(x,0)?
A( B ),l>1.

Observe that this composite function is always positive and equals to 1 when p(z,0) < .
Recall also that by Proposition 4.1, —A, ;b > 0 and so

s S x,0 2
/1 / — A sbe(x, tto) dp (2)tdt < / / — A sbe(, t0) A (p( ; ) ) dpup ().
/S B(Ovl) 1/8 X

To prove the lemma, we shall show that

s 2
im Iim / —02b.(z,t + o)A (p(“’) >du¢(az)tdt
1/s /X

$—+00 [ 500 12
< 8841+ &) (I 72 wnpe) T 191 2070 x ) (4.10)
and )
ll_i)m/ / ~Aube(a, t + to)A <p(g;l,20) )du@(aﬁ)tdt—o. (4.11)
©J1/sJX

We first prove (4.10). An integration by parts in the variable ¢ gives

s 1 1 1
/ —0%b. (z,t + to) tdt = gatbg (:U, 5 + t0> —80ibe (z, 8 + to)+be (z, s + to)—be (:L’7 S + to> .
1/s

The size property (4.6) implies

IN

be (1'7 s+ tO)

< 884(1+2) (Porao (| f1° wn) (@) + Post (117 x wr (@)

1
be (z, s+ to) — be (az, 5 +t0)
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It follows by contractivity of the semigroup P, on L"(ju,) for every r € [1,400] (read
[79] as a reference) that

p ~
//'@tmtﬂ»A(ﬂﬁ)@wmwtssmwmmwﬁwmw+wﬁww%wg

Y

1 1
+ s@tbs (', s+ t()) — gatbg (', g + to) Ll( )
Mo

Therefore, in order to prove (4.10) it is enough to show that

lim [|s9:be (-, 5+ to)l 11,y = O, (4.12)

S—r+00

and
=0, (4.13)

1 1
lim Hé?tbs ( 1 +t0)
s—>+o0 || S S

By applying chain rule we obtain

Ll(ﬂ«p)

0B, 0B, -
oub: (a5 +t) = =L )APayry (fPwn) (@) + ZL @0 Pessy (19 xe0n ") (@)
0B, 0B
om0t f (@) + (522 (0), O Par ()1 x
dB. ¢
+ or

_l’_

dB. -
T2 ()0 Peytgy ! (2).

(v)0¢ Pottown () +

Thus, using Hoélder’s inequality with some « and its conjugate exponent o/ we obtain

OB OB
s0hbe (-5 + to)l 1, W L@+ [ (0)] (4.14)
S
Le (#w)
PN
2 —1
% |5 (19:Psrso (1 Pn) O+ 10 Poraoton O | o, -
3o

Let’s study X;. First of all, by triangle inequality, one sees that 1 can be majorized
by the sum of norms of each partial derivative of §57Q' These partial derivatives show
terms in P; and ]3;,. We will then need to estimate the obtained norms uniformly in ¢ > 0
so that we can send s to 400 in (4.12). This can be done by using Hoélder’s inequality
and contractivity of both P, and ]5;

For instance, we already know from Section 3 (proof of Lemma 4.2, 2)) that when a,, is
strictly finite and positive,

0B 6(y,d 2({y,d 2(y,d 2(y,d
( Q’K,dy> _ (v, dy) _ (v, J\Z> _ (v, Z> (v, fi{’ for all dy,
8y S S+ (a23 s+ % s+ am Q
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which implies that

0Bg x 6y 2y 2y
2 < Il g | e o e
Yy B + QQ s + o} s+ am Q
Recall that 1 < 7s and that M, N and a 1% are positive. Thus, we have | QK\ <
dy
0B
12]y|r. Since Bg x is C', we can also dominate | 3 £Q |, but with a constant depending
y
on €. Meaning that there exists a constant C; > 0 such that
0B
=522 ()] < Celylr.
y

Finally, by replacing the variable X by v(x,t 4 tg) we obtain

OB - |
H‘{Q < Ot | Pevtown Prwol e L,
Yo llze(uy) "
and by symmetry,
OB
HaiQ < G [1Prrtown Prrto fll o)
L (pgp)

The result is the same up to a constant when a,, is null or infinite. Using the same
arguments as above, we can dominate the first partial derivatives in the other variables.
Indeed,

o)., .. <
Lo () Lo ()
Moreover, if a,, is finite and positive, we have
OM (r, s N(r,s
oBox  m QTR grgey 2N
o T @ M) (@ Nrs))?
OM r, S ON(r, s
(@ + ) gy, P
+ =
(Qr+ M(r s)) (Qs+ N(r,s))?
21 4 Om OK(r,5) ay, OK(r,s)
x*(1+ = Q0 or — ) Y 0 or
* (7“—{—@ K(T‘,S))2 * (S—I—ailK(r’s))Q ’
"Q "Q

where the last derivative between brackets represents 0, B3 and has been calculated as
Oy B,3 in Section 3.
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The partial derivatives in r of M, N, K, M and N are

OM(r,s) 40Q? 9 ON(r,s) 9
5 o T —2sr + (4Q° + 1),
oKlrs) _ VO [E_»
or 2 Vr 4
OM (r,s) rs ON(r,s) 4Q &
GRS T 4 1 AL e S
or og (1@ +1) and —5 210

Thus, using that rs > 1, we obtain

0B
52| < 327 Ay, y) + 8% + TSt 4 5(y.y)
K(r,s)., 1 K(r,8)\,
(r+am 0 ) (s + am Q )
M B

0K
The next step is to bound A and B from above. In fact, since ST’ g - \/QQ\/E B Z’
r r

K
c{)((gr,s) < K(r, s). Using this observation, we bound A as follows
,

one can observe that r

A < Q r 5
a K(r,s
(o
< x*
= ta K(r,s))
2
)



By the same strategy we bound B

2 (i + a;llKg;S)>2

< 5
2 (24K
Qr
{v,y)
<
B r2 $+a—1K(T78)>
r mQr
<YaY> 2
< o s
and finally we obtain
9Bq.x 2.2 2
=5, <O+ v+ vy))-
Therefore,
OB
HaiQ < Ce (||Pt+t0fpt+town“%ﬂ(,u¢)+
Lo (pe)

i)
L~ (/‘90)

2 -
HPt+to|9’T;XPt+towﬁl’ Lo () + HPtthog
©

and again by symmetry,

dB.g
0s

2

. —1

< C; <HPt+to|g|T;XPt+town ‘
o La(#«p)
L (Nsﬂ)

1 Petto f Prttownl T,y + ||Pt+tofH%a(u¢)) :

. . e 0Bs3 . . x|? )
Now, if a,, is null or infinite, then 3 is either ——5 or 0. We repeat the previous
r r
calculations and obtain the same results up to a constant.
As said before, we now need to estimate from above these norms for each i = 1,...,6

uniformly in ¢ > 0. To do so, we use Holder’s inequality and contractivity of both P,
and P, in L"(p,) for all r € [1,+00]. In other terms, we have shown that ¥ appearing
in (4.14) can be majorized in the following way

%1 < C (e, f, G wn,wi)

uniformly in ¢ > 0.
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As for part Yo, all we have to do is to show that the quantity

Hs ('@PSHO (|f|2wn)‘ + ’&PSHO (@%’;XW;I)’ bt latps+tgw,:1')‘

Lo (k)

tends to 0 as s tends to infinity. In fact, simply observe that by the Hilbert space spectral

2 -1
TrX%n )v

80t Py yywy, and sy Psyy,w;, 1 converge to 0 in Lz(,uw) as s tends to infinity, because func-

representation theory, each of $0; Ps14, f, s@tf’HtOg’, 30t Psyto (| f1?wn) s 80 Pstt, (\g

tions Psitof, PsitoG, Psitown and Psygw, ' are square integrable.

To conclude, notice that [[t0;P| Xop) T HtatﬁtHLr_gx,W) is uniformly bounded in ¢ for
all rin (1, 00) [30, Theorem 4.6 (c)], because P; and P, are symmetric Markov semigroups
respectively on L? (X, u,) and L? (T*X, u,) and thus extend to bounded holomorphic
semigroups respectively on L" (X, ui,) and L" (T* X, p1,), for all 7 in (1, 00) [20, Theorem
1.4.2].

We follow the same procedure to prove (4.13).

We now prove (4.11). By integrating by parts twice, we have

_/18/XA“"68 (z,t+to) A <p(xl’20)2> dp,, (x) tdt

= —/IS/sz (z,t+t9) AyA (P(f’fl;())Q) dpy, (z) tdt.

A simple computation based on [12, p 140] gives

z,0)? 200 o
—AwA(p( -0 ) = 2 (ot 0)* + p(z,0) Ayl 0)) A (P @, >>

4p%(z, 0 p%(z,0
A (e, o) A" ((12 ).

for all x € X\(cut(o) U {o}), where cut(o) denotes the cut locus of the point o. In
addition, since Ric, > 0, by [81, Theorem 1.1] we have the local comparison result

1
App(x,0) < C , 4.15
® ( ) p(J,‘,O) ( )
for all x € X\ (cut(o) U{o}).
Since ||dp||, <1, and supp A is in [0, 2], by (4.15) there exists C' > 0 such that
plz, 0)2 ’ "
el G > O (A + 1A XBo21\ BN (4.16)
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for all z € X\(cut(o) U {o}) and provided I > 1. Moreover, (4.16) holds weakly on X
and in particular, we have

p(z,0)?
/X—Asoba(x,ttho)A z2 duso(x)Z—C’/B be (2t + to) dpuy () -
(020\B(oJ)

Hence, the size property (4.6) implies that

r,0)?
/X —Agbe (z,t+1t9) A <p( l; ) )d,uq, (x)

20 [ o (P (17700) @)+ Py (17 05™) () o)

Denote the integrand on the right-hand side by W; (¢). Since lim;_, , ¥; = 0 pointwise

on Ry and 0 < ¥, (¢) < ”f”%?(X,wnmp) + H‘JH%Q(T*X,W#W)’ the Lebesgue dominated
convergence theorem implies
mint [ [ A (ot +t0) A [ 250 ) 4 >0 417
lan—&}go/i/X_ pbe (2, +to) 2 fp (x) = 0. (4.17)

It remains to prove that

s 2
lim sup/1 / —Agbe (x,t+ 1) A <,0(acl,2o) > dpg (x) tdt < 0.
1 Jx

l—+o00

E]

Consider the function
Rzt + to) = 884 (1 + &) (Pray (177 wn) () + Prvy (1917 x ") (=)

We have b — R < 0 on K,; and by an argument similar to the one we used to prove
(4.17) one shows that

. : plz,0)
hmsup/1 /X—Aw (be (x,t+to) — R(z,t + 1)) A B dp () tdt < 0.

=400

It suffices then to prove that

=400

s 2
lim sup/ / A R (z,t+to) A (p(xléo) ) dpg (x) tdt =0, (4.18)
1/s J X

using an integration by parts. To this purpose, notice first that the composite function

2

A (p) is equal to zero for p > 2] and hence we have

12
2 /
p 4 A ]| oo
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Then,

/j/XA@R(x,ttho)A (p(“””l’f)Q) du, (z) tdt
Now, notice that by Lemma 4.1 and semigroup contractivity we have
[ dR Gt + t)ldigla) <€) ([ 15 (dPg(1200) (2)

+ 1B (4P (1917 x 0 ) [(@)dpie ()] )

Cle) /X (14 (| £ wn)|(x) + 1Py (19172 x wn I(@)] dpg (@)

o) [( [ iar st Pane@) ([ anao)

([ \dPtoﬂﬁ%;Xw;l)quw(x))1/2 <(/, dw(w))l/j

Now observe that by using (4.1) and because X is without a boundary we have

IN

IN

1/2
J PP @) < ([ 1P (7P @) o))
1/2
([ 18P Pn) (@) o)
= 1P P00y % 18P (1P 25
< I lnEax

The last inequality holds since A, is self-adjoint on L? and hence admits bounded
functional calculus. We obtain similar results fo the operator A, and so

[ ARG Olds@) < CE) (1 lwnlFacx o + 100 I )

As a consequence, the right-hand side integral of (4.19) is finite. Letting [ tend to infinity
implies (4.18) and concludes the proof of the proposition. O

4.4.3 Conclusion

Proof of Theorem /.1. To finish the proof of the theorem, we use a standard trick. In-
deed, by combining the reverse Fatou lemma as well as Propositions 4.1 and 4.2 and
passing to the limit as € tends to 0 we get

| | FPI@IF P duo(a)dt < 221Qa(w) (1 12y + 1520w 1)

We now apply the above inequality to Af and A~'§ instead of f and § and then minimize
the result in A > 0. ]
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4.5 Enlarging the set of weights

Now that we have boundedness results for a certain type of weights in L?(X, Hy), We
will enlarge the set of weights w satisfying Theorem 4.1 to all L}OC(X s b)), provided
that QQ(w) is well defined and finite. We heavily use in the following proof the fact
that constants are in L?(X, ,uw)l. The main problem would be defining Piw when w €
L} (X, py). We will proceed as follows:

As stated in Remark 4.1, take w € Llloc(X , 1bp) and define its two-sided truncation

—1
Wn =N "Xw<n-1 + WXn—1<w<n + NXw>n,

where x is the characteristic function. Then we have the following properties

wn € L*(X, py); (4.20)
Q2(wn) < Q2(w); (4.21)
Qa2 (wn) e Q2(w). (4.22)

This means that we can approximate a function in the class A, by bounded functions
from the same class, with control of their As constants.
Property (4.20) is immediate because constant functions are integrable with respect

to our measure. Besides, wy, T w and consequently, the definition of P,w arises
n—-—+0oo

naturally by posing P,w = li_)rn P,w,. This limit exists and makes sense because Pw <
n—oo

lim,_, . Piwy by Fatou’s lemma. Furthermore,

1
Puwy, < ” + Pt(an—lgwgn + nXw>n)-

The first term tends to zero as n tends to infinity and the term between brackets is
increasing in n, which means that we can use the monotone convergence theorem to
obtain

Pw < lim Puw,
n—oo
S lim thn
n—oo
<

— (1
lim (n + Pt(Wanlngn + anEn))

n—o0

= th.

We need the following preliminary lemma, where the weight is only cut from above, to
prove properties (4.21) and (4.22):

Lemma 4.4. Let w" = wXw<n+nXwsn. Then we have Qa(w™) < Q2(w) and Qa(w™) =
- - n (0.0}
QQ (w)

!This condition implies that u,(X) is finite and therefore the kernel of —A, is the set of constant
functions on X.
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Proof. If w™ = wXu<n + NXw>n, then (W)™ =w ™y, —15,-1 + 07ty ,—10,-1.
Thus, we need to prove that

PwPuw™ ! — th"Pt(w")_l > 0.
Write Pw = P; (WXw<n) + P; (WXw>n) and denote
A = P(wXusn); A7 =P (07 Xusn)
B = Pi(wxesn); B =P (0 Xusn) ;
By = nPi(Xw>n); By' =17 P (Xwsn);

o = /pt(x,y)xwgn(y)duw(y);

ay = / Pe(T, Y) Xwsn (Y)dpp (y)-
so that

PwPw ' — Pw"P(w™) ™! = (A+B)A'+B Y- (A+B)A '+ B
AB ' - B Y+ A™Y(B-B,)
+(BB™!' - B,B;Y).

Remark 4.7. We stress that in the previous notations, A~' and B~ are not the inverses

of A and B. Rather, it means that the weights we are considering are w™!.

The last term between brackets is positive because B, B, ! = a2 and
a% <lxag< BBfl,
by Jensen’s inequality. For the other terms, notice that
A(B'-B;Y) = /A (pel, )™ (W)X (v) ) ditg(y) - /A (7 pe(@, y) X (v)) dig (v)
= [ A(pla e et - ol O xesa®)) i)

= [ A(plw ) - wly)n T X)) ditgly)

and analogously,

AT B = B) = [ A7 (il ) (0(y) = 0)Xeon(®) diie(0)

Hence,
Paope = P ) 2 o) (S ()47 = 4) ) X ()t 0)

The kernel p; being positive, the integral on the right side is positive too, since w > n,
A<na; and A~ > nlay.
Taking supremum over (z,t) € X x Ry on the left-hand side finishes the proof. O
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The same results hold for the cutting from below w,) = n_lxwgnﬂ + WXp-1<, and
(4.21) and (4.22) follow immediately by writing wy, = (wW")(1/n)-

As a consequence, if we let n tend to infinity in (4.2), it only remains to prove that

||f||L2(X,wnW) n_>—+>oo Hf||L2(X,wW),

and

“g“L2(T;X,w;1u¢) njoo Hg’HLQ(T;X,w—l;@,)'

To do that, we are going to use the dominated convergence theorem. Indeed, by con-
struction of w, and w, !, we know that

wngw—klandw;lgw*l—i-l.

We can pass to the limit in n since f € L?(X, pup)NL?(X,wpy,) and § € LA(TF X, w ™ uy)N
L2(T: X, ).

We can also recover Corollary 4.1 by using Formula (4.3) and pass to the limit in 7 in
(4.5), again by the dominated convergence theorem.

4.6 Case of the Gauss space

We now present a concrete example for the previous weighted estimates, namely the

2
HS;H We then have the

Gauss space, which is obtained when X = R" and ¢(x) =

Gaussian measure H ”2
T

dvy(z) = exp(—?)dm

on R™ and the Ornstein-Uhlenbeck operator °

Lf(z) = Af(x) —z-Vf(z)

on L?(R™,dy). This operator generates a diffusion semigroup P;, which has been the
object of many investigations during the last decades.
Note also that Ricy, > 0.

If we define by Ry = d o (—L)~/? the Riesz transform associated to the Ornstein-
Uhlenbeck semigroup, then

2

Corollary 4.2. For all f € L?>(R*,wy) N R(—L)L and w,w™t € L} (R",7) such that
w > 0 v-a.e we have

HRLf”LQ(]R",w'y) < 884©2(W)Hf”L2(R”,ww)'

2The Ornstein-Uhlenbeck operator is an integral operator that admits a kernel called the Mehler
kernel, which can be given by an explicit representation.
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4.7 Remark on the sharpness of the result

The Hilbert transform on the unit disk T with ¢ = 0 is a particular case of our main
theorem, where 1 is integrable. Sharpness (in terms of the power of the characteristic)
in this context, using the Poisson characteristic, was already stated in [70]. However,
the argument was based on a reference citing the linear comparability of the classical
and Poisson A, characteristics for power weights on the real line, which does not hold.
Sharpness using Poisson characteristic was proved only recently in [23] on the real line,
using probabilistic methods. The passage to the unit disk that is explained in [70] gives
the sharpness of our result.
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Chapter 5

Stochastic calculus on manifolds

The construction of Eells-Elworthy-Malliavin [27] of a Brownian motion on a manifold
is perhaps the most elegant and satisfactory construction. Roughly speaking, it realizes
the Brownian motion as a projection of the solution of the SDE on the orthonormal
frame bundle O(X) over X. The advantage of this construction of Brownian motion is
that it is intrinsic and it provides a path-wise construction obtained by solving a globally
defined stochastic differential equation.

In this chapter, we are going to define the necessary background in differential geometry
and then present the construction of the Brownian motion on manifolds [39]. Next, we
move on to the heat equation on differential forms [43]. Finally, we introduce the It
formula on 1-forms and as an application, we deduce a probabilistic representation of
the Riesz transform [54] and as an application, the probabilistic representation of the
Riesz transform associated to the Ornstein Uhlenbeck operator.

5.1 Orthonormal frame bundle and parallel transport

5.1.1 Parallel transport

Comparing different vectors at different positions on a manifold is quite challenging
since tangent vectors point in different directions. Parallel transport provides a way
to compare a vector in one tangent plane to a vector in another, by moving the vector
along a curve without changing it. We refer to Section 2.7 for the definitions of geometric
objects.

Definition 5.1. Let X be equipped with the Levi-Civita connection. A wvector field V'
along a curve xy on X is said to be parallel along x4y : I CR — X if V3,V (x¢) =0 for
every t in I. The vector Vg, is then called the parallel transport of Vi, along the curve
and it is locally uniquely determined by V.

One can show that [48, Proposition 3.3, page 71]

Tt is possible to generalize this definition to a section V of E where E — X is a vector bundle.
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Proposition 5.1. Let x; be a smooth curve on X. Then

e The parallel transport is independent of any specific parametrization of the curve
Tt.

e The parallel transport along the reversed curve yz = x1_4 is the inverse of the
parallel transport along xy.

e The parallel transport along the composition of two curves x; and y; such that
r1 = Yo s the composition of the corresponding parallel transports along x: and .

5.1.2 Orthonormal frame bundle

The manifold X being Riemannian, the tangent space T, X is endowed with a Euclidean
structure given by the Riemannian metric g,. Therefore, it is an inner product space.
This means that there exist orthonormal frames on 7, X which are nothing more than
orthonormal ordered basis for 7, X. Let O,(X) be the set of orthonormal frames of the
tangent space T, X i.e. an ordered basis u = (u1,- - ,uy) of T, X consisting of vectors
which are orthonormal with respect to the bi-linear form g,. We define the orthonormal
frame bundle by

0(X) = |J 0.(x).

zeX
O(X) is a principal fibre bundle over X with the orthogonal group O(n) and it is called
the bundle of orthonormal frames on X. The group O(n) acts on O(X) by the following
right-action
9 :0(n)xO0(X) — O(X)

(9:p) — p<g=p-g

We can think of this action as pushing frames along fibres. The bundle O(X) has a natu-

ral structure of a smooth manifold of dimension "(TZTH) since it is isomorphic to R"xO(n).

Let 7 : O(X) — X be the canonical projection. Each u € O(X) is an ordered
orthonormal basis for T, X, or, equivalently, a linear isometry

u:R" — Tr, X,

such that u(e;) = u;, where (e;)1<i<pn denotes the standard basis on R™.

A tangent vector V € T,,0(X) is called vertical if it is tangent to the fibre O, (X). The
space of vertical vectors at u is denoted by V,,O(X) := T,,O0ry(X). It is a sub-manifold
of dimension @ because it is of same dimension as the fibre O, (X), which is iso-
morphic to {mu} x O(n).

A curve u; in O(X) is said to be horizontal if for each e € R", the vector field use is
parallel along the projection curve mwuy.

A tangent vector H € T,,0(X) is called horizontal if it is the tangent vector of a hori-
zontal curve from u. The space of horizontal vectors at u is denoted by H,O(X)?. By

2 Another equivalent definition of a curve u; in O(X) to be horizontal is that 4, € HO(X).
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the next decomposition (5.1), it is clear that H,O(X) is a sub-manifold of dimension
n(n+1) _ n(n—1) n
2 2

We have the following direct sum decomposition
T7,0(X) = H,O(X) ® V,O(X). (5.1)

We see from this decomposition that the vertical bundle VO(X) = U,eco(x) VuO(X)
is uniquely defined while a horizontal bundle HO(X) = U,co(x) HuO(X) is a choice
of a subspace of TO(X) such that we have (5.1). We emphasize that the use of the
words "the" and "a" is crucial: while the vertical subspace is exclusively determined by
fibration, there is an infinite number of horizontal subspaces to form the direct sum.
The assignment of such horizontal spaces is called a connection on O(X):

Definition 5.2. A connection in O(X) is a smoothly varying assignment to each point
u in O(X) of a subspace H,O(X) of T,,0(X) such that

1. T,0(X) = H,O(X) ® V,O(X), Vue O(X).

2. (Q9)«H,0(X) = HyqyO(X), Yu € O(X),Vg € O(n), where (<g)s is the push-
forward of «g.

Remark 5.1. 1. By "smoothly varying" we mean that if a vector field T is smooth,
then so are its horizontal and vertical parts.

2. The second point of the definition implies that the decomposition (5.1) is compatible
with the right action of O(n) on O(X).

3. A connection can be associated with a certain one-form w on O(X). This one-form
allows to define alternatively a connection. We refer the reader to [/8, Chapter2).

The projection 7 induces an isomorphism 7, : H,O0(X) — T, X 3. Since 7, is an
isomorphism, for each 7' € T; X and a frame u at x, there is a unique horizontal vector
T* such that m, 7% = T. It is called the horizontal lift of T" from u. In particular for each
e € R", we define a horizontal vector field H, such that for every u € O(X), He(u) is
the horizontal lift of u(e) from u. More specifically, we define the fundamental horizontal
vector fields by H; = H.,, where (ej,--- ,e,) is the canonical basis of R”. We have

moHi(u) = u(e;), Hi(u) € H,O(X)

and
H, : 0X) — TO(X)
u +— Hju)eT,0X)
which means that for each i = 1, -+ ,n, H; is a vector field on O(X). We will sometimes

use the equivalent definition of a vector field which is a linear map H; : C*°(O(X)) —
C*(0O(X)) such that:

Hi(fg) = [Hi(g) + Hi(f)g,

3 Another definition of the space of vertical vectors is that it is the kernel of ..
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Figure 5.1: The projection, vertical and horizontal spaces on a manifold.
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for all f,g € C*°(O(X)).
The following diagram enlightens the relation between the manifold, the frame bundle,
its tangent space and its subspaces.

X>H+V»—>V fJ+V|—>H O(X) —— O(X)

™| |~

T7X ———™ X

The idea of a parallel transport of fibres depends on that of a horizontal lift of a curve
which lies on the base manifold. Intuitively, the projection of a horizontal lift of a curve
to the base manifold gives the same curve we started with. We would like to add other
conditions on this lifting in order to "connect" neighbouring fibres. More precisely, we
have the following definition:

Definition 5.3. Let = : [0,1] — X be a curve on X. The horizontal lift of xy through
ug € O(X) is the unique curve

u:[0,1] - O(X)
that starts at u(0) = up € Oy (X) such that for all t € [0,1]
1. mous = my;
2. ver(H,(u)) = 0;
3. mo(Hy(ur)) = Hy(y),

where Hy(uy) is the tangent vector to the lifted curve ug, at each point along the curve.
The same is true for Hy(x¢).

Remark 5.2. 1. The second condition means that the tangent vectors to the curve
ug lie entirely in the horizontal space at each point.

2. A curve on X has several horizontal lifts on O(X). The uniqueness in the definition
above comes from the choice of ug € Ogy(X).

The method for writing down an explicit expression of a horizontal lift of a curve x;
through ug € O, (X) will be done in three steps:
First step: we produce an arbitrary curve 0 : [0,1] — O(X) such that 7 o 6 = z. This
curve is produced by the means of a local section o : [0,1] — O(X) such that moo = Idx,
where (m,U) is a local chart on the base manifold X. We let §; = 0 o ;.
Second step: next, we generate the horizontal lift curve u; through ug € O, (X) by
action of a curve g : [0,1] — O(n) so that

up = 0 < gi-
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One can think of g, as an adjustment variable which shifts §; around fibres and hence
enables to describe how much §; deviates from being horizontal.
This curve g, will be the unique solution of a first order ODE with initial condition
9(0) = go € O(n) such that

do <1go = up € O(X)
Detailed derivations and calculations to obtain the ODE can be found in [48, page 69]
and [44, page 265].
Third step: we obtain the following ODE that governs the necessary shifts in the fibre:

9(t) = —(ws, (Hs(0:)))g(t),

where ws, is the one-form introduced in Remark 5.1. This ODE can explicitly be solved
in local charts* on the base manifold X. The solution can be found in [44, pages 265-266].

We summarize in Figure 5.2 the construction of a horizontal lift of a curve.

Now that the horizontal lift of a curve through uy has been constructed, we can define
the parallel transport (or displacement) of fibres along a curve. This map is obtained
by varying ug in the fibre 7=1(2(0)) into the fibre 7=1(x(1)) by mapping ug into u;:

Definition 5.4. Let u : [0,1] — O(X) be the horizontal lift through uy € Oy, (X) of a
curve x : [0,1] — X. The parallel transport map along z; is the map

T @ Og(X) — 0 (X)
up — Uuq

Note that this map is actually an isomorphism of fibres.

We can recover the definition of a parallel vector field V on T'X along a curve z;
introduced in Definition 5.1 by using the horizontal lift of z; through ug € 7=(2(0)) as
follows:

For a piecewise C! curve z : [0,1] — X and a vector Vy € T,, X, we define the parallel
translate of Vy along x;

//:(Vo) = ulug* (Vo)),
where u; is the horizontal lift of x; from wug. Note that this definition is independent of
the choice of wug.
The mapping //; : Ty X — Ty, X is a linear isomorphism. The parallel translation
preserves inner products

Vol 1V ) x = (V. V) x

This is due to the fact that orthonormal frames preserve inner products as well.
Now if we have a a vector field V along x; i.e. V : X — T'X such that V(z;) € T,;, X for
each t, we define its covariant derivative along z; by

DV d
= = e 7.

4The Picard-Lindelsf theorem guarantees the existence and uniqueness of the solution.
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Figure 5.2: Horizontal lift of a curve.

129



Thus, V is parallel along x; if, and only if % = 0. One can show that the two definitions

are equivalent by using local charts [39, Equation (2.1.1)] and [28, Page 300].

5.2 Construction of Brownian motion
We define the operator
2
= H;
=1

as the Bochner’s horizontal Laplacian on O(X). The Eells-Elworthy-Malliavin construc-
tion is based on the following relation

Af(z) = Aox)(f om)(u), (5.2)

for any smooth function f: X — R and any u € O(X) such that mu = z.

Consider the following SDE on O(X) in Stratonovich form
n
dU; =Y H;(Uy) 0 dW}. (5.3)
i=1
It is driven by an n-dimensional Brownian motion W. Once an initial frame Uj is given,

the unique solution of this SDE is called a horizontal Brownian motion on O(X). We
recall the result on the generator of this type of SDE’s:

Proposition 5.2. An SDE in the following Stratonovich form
dBX =V, (B{) o dW& + Vo (B )dt,

where Finstein summation convention is used, generates a diffusion process with gener-
ator 1
2
= 5 Z Va + Vo.

Therefore, the solution of (5.3) is a Ap(x)/2-diffusion process. For a smooth function
F:O(X) — R we can write It6 formula

F{U) = F(U) +Z/HF )AW?E 4 = Z/HHF VAW WY,
1,j=1

= F(U()) + Z/o HIF(US)dW; + 5/0 Ao(X)F(US)dS.
=1

Now if we apply this formula to particular function F' = f o, which is the lift of f on
X, the by Formula (5.2) we obtain

F(BX) = £(BY) —i—Z/H fom)(Us)dWi + /Af (BX)d
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where BX = U is the projection of the horizontal Brownian motion U = (U;); on X.
Hence, (B;¥); is a Brownian motion on the manifold X starting from B§ = nUj.
Running the machinery backwards, if we want to construct a Brownian motion starting
from z, we fix a frame u € O(X) over = (i.e. mu = z). There exists then a unique hori-
zontal Brownian motion (U;); starting from the frame u and its projection BX = U is
a Brownian motion starting from z.

Once we have constructed a Brownian motion BX = (B;*); on a manifold, it is not
hard to write down the anti-development of BX on R":

t
W, :/ Ut odBX.
0
This equation drives (5.3). We notice that the correspondences

W+ BX U

are very useful since one can convert a manifold-valued process BX into Euclidean space
valued process W, which is easier to handle. It is important to keep in mind that these
correspondences depend on the connection used in order to defined horizontal lift for
vectors. In our case we use the Riemannian connection (or Levi Civita connection) but
the whole construction can be made with another affine connection. The only difference
is that the orthonormal frame bundle should be replaced by the general linear frame
bundle and the orthogonal group O(n) by GL(n,R).

It is also worth to mention that the parallel transport associated with the Levi Civita
connection preserves the orthogonality of frames. This is due to the fact that the Levi
Civita connection is compatible with the Riemannian metric.

5.3 Heat equation and 1-forms
We previously saw that the solution of the heat equation

Ov(t, x) v(t,r) on Rf x X
volz) = f(z), Vee X

wo|>

can be uniquely solved as
o(t,z) = E(f(BY)|BY = =),

where BX = (BjX); is a Brownian motion starting at = and f is a function. In order to
generalize this fact to the case of the heat equation for 1-forms, It6 considered in [45] the
previous problem, where v and f are now 1-forms on X. The problem is that f(B;) is
attached to B;¥ which varies with ¢, while v(t, x) should be attached to x = Bg. There-
fore we should shift f(B;¥) back to Bg along the path B;¥ by parallel displacement.
This is how the notion of stochastic parallel displacement appeared. Malliavin presented
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in [59] a new approach: instead of translating a 1-form at B;X to a I1-form at B{, we
translate an orthonormal frame Uy at B(f{ to an orthonormal frame U; at B,;X along the
Brownian curve. We follow [39], where this approach is explained.

First, we need to lift the handled objects in (5.4) to their scalarization on the orthonor-
mal frame bundle O(X).

0
Let (z!,---,2") be a local coordinate system. It induces a basis (8’) of T, X
x

7

. 0
and a dual basis (dz"); of T)X. The system (691 ® de) is a basis of T?9X, where
x

I= (i1, - ,ip),J = (J1, - ,Jq) are multi indices of degrees respectively p and ¢, =— =

) ozt
_ . ® —— and dz’ = d2' @ - -+ ® dada.
Oz ox'r

A tensor field 0 of type (p,q) is a mapping

0:xe€X—0(x)ecThrX,
whose components are 0% (x) with respect to the previous basis.

Following [39], we assume that a frame wu is canonically extended to an isometry
w: TPIR™ — TP9X. The scalarization® of § at u is the map

f:O(X) — TPIR"

defined by

Equivalently, we define it by

0~(u) = 0§(7ru)61 ® ei,

assuming that u(e; ® ef) = ail ® dx”.
The scalarization gives the coordinates of 6 in the frame w at xz. This map is O(n)-
equivariant in the sense that 8(u - ¢g) = g~' - 6(u), where g on the right side means the
usual extension of the action of O(n) from R™ to TP9R".
Likewise,

Ao(x)o(u) = u™ (Av(ru))

where v is a I-form and A = TraceV? is the rough Laplacian acting on tensors (see
(2.5)). This comes from the fact that H;o(u) = Vo(u) and Apy) = iy HE [39,
Proposition 3.1.2]. Moreover, we define

Ric, = u Ricyy u,

5 Malliavin stated in [59, Proposition 2.3.1] that there is an isomorphic correspondence between 1-
forms and the space of C functions defined on O(X), R™-valued and O(n)-equivariant. This isomorphism
can actually be generalized to any type of tensor fields on X.
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where mu = x and Ricyy : T, X — T, X is the Ricci transform defined by
Ricy (V) = #(Ric(V, ).

Note that these 3 lifts are R™-valued.
Finally, (5.4) is equivalent to

(5.5)

v = %f} on R} x O(X)
g = f, on O(X)

Although the rough Laplacian is the natural operator to choose for the heat equation,
it is preferable to use Hodge-de Rham operator, which is geometrically more significant.
We have seen that the difference A — A is a fibre-wise linear operator by the generalized
Bochner-Weitzenbock formula and more specifically it is equal to Ric(-,§-). The new
problem that we consider then is

- Ao(x) ~
8ﬂ] = 02(X) Qi, on Rj X O(X) (56)
U9 = f, on O(X)
where
&@(X)f)(u) = Apx)0(u) - Ric,9(u) by Bochner-Weitzenbdck formula

= u_l(&v(wu)) by scalarization.

The solution of (5.6) can be obtained by using a matrix version of the weighted Feynmac
Kac formula discussed in Subsection 2.4.2. For this purpose, let M; be a End(R")-valued
multiplicative functional determined by
dM;  Ricp,
At 2
The solution of (5.6) is then

M,, My =1I,.

’D(t, ’LL) = Eu(Mt’DO(Ut))
Correspondingly, the solution of the manifold version of (5.6) is
o(t,z) = By (Ug MU ! (UD(BtX ))),
where U = (Uy); is the horizontal lift of the Brownian motion BX.

Proof. Suppose that ¢ is a solution. By differentiating Msv(t — s,Us) and using It6
formula we obtain
i

R;Ut M,o(t — s,U,)ds

d(Mo(t —5,Uy)) = Mydo(t —s,Us) —
= > MHi(t — s,Us)dW,
=1

A ——
+M, (—as + - RI;“) o(t - s,Us)ds
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The last term vanishes because  is a solution of (5.6), meaning that (M0(t—s,Us)), s €
[0,¢] is a martingale. The proof is completed by equating the expected valued at s = 0
and s =t.

The second formula is just a rewriting of the first one. O

Remark 5.3. We often use a fized frame Uy to identify the tangent space T, X with
R™. Under this identification Uy becomes the identity map and it is often omitted in the
solution. The corresponding writing of the second formula becomes then

v(t, z) = Eo (MU} 'uo(B]Y)).

Remark 5.4. The solution v(t,z) is commonly denoted by Po(z) or e Auy(z), the
heat semigroup. As in the FEuclidean case (cf. Example 2.2), we also have a probabilistic
representation for the Poisson semigroup acting on 1-forms by using the Bochner sub-
ordination formula [5/]. Indeed, let B, be the standard Brownian motion on R starting
from By =y > 0 and define

Ty = inf{t > 0: B; = 0}.
It is known by subordination formula that

E,(e ™) = e vV,
Then by spectral decomposition and the previous result, we have for every g € C°(X, AY(T* X)),

V) = By(em5()) = By(Ba(My, U 1G(BX)))
= E(oy) (M, U, G(BY)).

T

Similarly, we have a probabilistic representation for the Poisson semigroup acting on
functions. Indeed,
eV (z) = Ey(e*f(x)) = Ey(Eo(f(Br,)))
= E(:{:,y)(f(BTy))'

5.4 Probabilistic representation of the Riesz transform on
manifolds

In this section, we define a function ¢ € C2°(X) as in Section 2.7.1. The reason is,
as stated before, that in next chapters we will consider weighted Laplacians with some
extra terms involving ¢. The following results can be found in [54].

Let (B;*); be the A -diffusion process such that By’ = x. By Itd’s theory of diffusion
process on Riemannian manifolds, there exists a Brownian motion (W;) on R” such that

dB;X = Uy o dW; — V(B;¥)dt
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where Up : T X — T%, X is the stochastic parallel transport along {BX, 0<s <t}

Let (B;); be a 1-dimensional Brownian motion starting at y > 0 whose generator is j—;

instead of 22;2. Assume that By is independent of B;¥. We introduce the background

radiation process on X x Rt by Z; = (B, B;) following [35] and whose generator is
Ay + 2

Before presenting a probabilistic representation of the Riesz transform, we present a
lemma which aim is to write a version of It6 formula that holds for 1-forms.

Lemma 5.1. Let § € C(X,AN(T*X)) and Qﬁ(w,y) = e YV 2¢g(x). Define T =
inf{t > 0: B, =0}. We have

§(BY) = My~'Qg(By, Bo) + My~ / M;(V,0,)Q3(BY, By)(UsdWs,dBy).  (5.7)
0

Proof. By using the covariant It6 formula on Riemannian manifolds, the product rule
as well as the fact that M;" is the solution of the SDE

dM; = — Ricy, (B )M dt,
we have
d(M;QF(Bi*,By)) = —Rice(B)M;Qg(B*, By)dt
+M}(V,0,)Q4 (B, B)(dB;, dBy)
+M;V2QG(B*, By)d(BX, BX), + Mt*ajzéﬁ(Bff , By)dt

—~
N

= M;(A - Ricy(B{))Qd(B;*, By)dt
+M;(V,0,)Q3(B;", By)(UpdWy, dBy)
=M (V) QGBY, Bi)dt + M;0LQG(BY, By)dt

—~
~

= M;(V,8,)QF(B}X, By)(UidWy, dBy).
In (1), we have used the fact that
dBiX = U o dW; — V(B )dt.

Hence, after integration and computing the square brackets we obtain

d(BX,BY), = Y (U}, U})6; ;dt
ij=1

which in turn implies that
VQ§(B, B)d(BX, BX), = Y V’QG(BY, B)(Uf, Uf)dt
i=1
= TraceV2Qg(BX, B,)dt
= AQg(B, By)dt.
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In (2), we have used the generalized Bochner Weitzenbéck formula
~ A, =A - Vy, - Ric, (5.8)

and the harmonicity of (j Recall that 599 is the Hodge Laplacian and that A is the
Bochner Laplacian.
The proof is completed by integrating from £t =0 to t = 7. O

Remark 5.5. Recall that although A initially acts on functions (in which case it is called
the Laplace Beltrami operator), its definition can be extended to tensor fields. Indeed,
for any tensor T we have

AT = TraceV>?T,

where
ViyT =VxVyT = Vy,yT.

The next lemma is a probabilistic result due to P-A. Meyer [60]. Recall that Z; =
(X%, X;) and it starts at (z,y) € X x Ry. We denote by E, and P, the expectation
and probability of Z;, respectively. This means that

E:/Ex d
y X(,y)‘r
IP’:/]P’:C d
Y X(,y)x

Lemma 5.2. Suppose that there exists a non-negative constant such that

and

Ric, = Ric+Vp > —a.
Then, for all non-negative measurable functions f on X, we have
E,(/(BY) = [ f(a)du(a).

Moreover, for Il non-negative measurable functions F or for all measurable F such that
F(z,n)n € L*(\(dz) ® dn), we have the Green function formula

s, | [ Fa) =2 [ [ P anduin

Proof. Let P, be the heat semigroup. By Remark 5.4 and using the fact that P, is
Markovian and symmetric, one can write

E,(/(BY) = [ Bl ((BD)dutx)

:/Pf Yz

(Pyf, 1)
= (/,P1)

~ [ st

The second part of the Lemma is detailed in [54, Proposition 3.1]. O
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The following formula gives a natural extension of the probabilistic representation
of 1-forms, which will be used to deduce the representation of the Riesz transform a la
Gundy-Varopoulos.

Theorem 5.1. Let § € C°(X, AY(T*X)) and QF(x,y) = e YV _&@g(x). Then

| . 3
“§(z) = lim E, { T/o M;lang(Bf,Bs)st\szx}. (5.9)

2 y——+oo

Proof. Take h € C(X, A (T*X)). We want to show that

(G.h) 2,y =2 lim i <Ey {MT/O M;'9,04(BX, B,)dB,|BX = x} ,ﬁ(@)px dpip ().

Yy——+00
(5.10)
From now on, we will drop the subscripts of of the inner products to facilitate the
notations. By (5.7) and Lemma 5.2 we have

/X (Ey {MT/TMS1@@’5(35,35)(135\35: } h(x )) dprp(x)

=B, (M, [§ M;'0,G5(BY, B,)dB,, h(BY))]
= I (y) + L(y),

where

Li(y) = EyKMT/O M;layég(Bf,Bs)st,M:’—lﬁ(Bgf,Bo))}

b)) = B, | (M / M;10,GF(BY BB My [ MI(V,0,)GR(BY. B)(U.dW..dB.) )|
0

Since [y M, 18ng( B;)dB; is a martingale, one can write
L(y) = E TM—la QF(BX, B,)dBs, h(By, By)
1y Yy 0 s y g s »Ps S 0 » L0

— &, |(B| [ 210,058, BdB.\BF o) KBS B)) |
= 0

As for I», we use the Itd6 L%-isometry identity to obtain

Ly) = E, ( /(]TMglay@;i(Bs 5)dB, / M;(V,8,)Qh(BY s)<Udes,st))]
= &, | [[(M:0,Ga(B, ). 200,078, B)) d

{
- &, |[ (0,008, B.).0,GR(BY. B.) ds]

= 2/ / (y A z) (626,5@(3:, 2),0.Qh(x, z)) dzdp,(z) by Lemma 5.2, 2™ part.
x Jo
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Since we are interested in letting y tend to infinity, the term y A z becomes simply z and
we can use Littlewood-Paley identity to finish the proof. Indeed, define {Ey, A > 0} be
the spectral resolution associated to the infinitesimal generator of the heat semigroup.
Then the Poisson semigroup is defined by

S~ U ~
Qitt.) = [ e taBxG(@)
Then by Fubini theorem we have

[ (0-Gata. ). 0G0, 2)) dedpo(a) = [ 200G, 2). 0.GH )2, d

By using the spectral resolution the RHS is equal to

/0 Z<A )\1/267)\1/2sz/\§($)’/0 )\1/267)‘1/2ZdE,\H(.%')>dZ,

which in turn can be computed as follows

/ p / AU EG (), ExB(2) = [ A / 2N B gi(e), Bxli(x)
0 0 0 0
I'(2) [ .
= T2 [T umgto), i)
1 -
=/ (8@), @) dp ()
Here, I' is the Gamma function. Hence
2y£riloo / y/\z 8 Qg(:c 2), 0, Qh(m z)) dzdpy(z) = 2/ x))dpy(x).

Equation (5.10) is obtained by multiplying by 2 both sides of the previous equality. [J

We deduce from this formula the particular probabilistic representation of the Riesz
transform associated to A, by applying (5.9) to § = d o (—=A,)"/2f and using the
commutation formula do (—Ay) = Ay od in (2.4) as follows

eV 8o AS12f) = —\JReVEe(do (—a,) 712
- —e—yﬁ\rdo A, —1/2f
= VB A (A
= —e*y\/jdf
= —de*ymf
= —dQf(-,y).
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Finally, we obtain that
1 . T
— 5Ref(2) = lim E, [MT/O M;1dQ(f)(BYX, Bs)dBs|BX = x| . (5.11)

We are now ready to present the probabilistic representation of the Riesz transform
associated with the Ornstein Uhlenbeck operator.

2
Example 5.1. Taking X = R" and p(z) = H:;H , we have du(x) = dy(z), the Gaussian

measure. In this case, we have M; = e tId, Yt > 0 and we recover the probabilistic
representation of the Riesz transform associated with Aoy obtained in Section 2.6

1 T
—§V(—AOU)_1/2f(:n) = lim E, [e—f/ e*Ve BsV=Rou f(X)dB,| X, = z| .
0

Y—00
Note that the above formula does not depend on the dimension of R™.

Remark 5.6. The martingale representation of the Riesz transform acting on k-forms
for k > 1 remains the same [55]. The only change occurs in the Bakry-Emery curvature
which becomes the (weighted) Weitzenbock curvature.
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Chapter 6

Sharp LP estimate of the Bakry
Riesz transform

In this work the assumption of
quadratic integrability will be
replaced by the integrability of

| f(2)|P. The analysis of these function
classes will shed a particular light on
the real and apparent advantages of
the exponent 2; one can also expect
that it will provide essential material
for an axiomatic study of function
spaces.

F. Riesz, 1910

We present in this chapter a new proof of the dimensionless LP boundedness of the
Riesz vector on manifolds with bounded geometry. Our proof has the significant advan-
tage that it allows for a much stronger conclusion, namely that of a new dimensionless
LP estimate and weighted L? estimate with optimal exponent. Other than previous ar-
guments, only a small part of our proof is based on special auxiliary functions, the core
of the argument is a weak type estimate and a sparse decomposition of the stochastic
process by X.D. Li, whose projection is the Riesz vector.

Probabilistic representation of the Bakry-Riesz vector on manifolds. Using
a martingale approach, we previously saw that one can represent the Riesz vector R,
(associated to the Laplacian A,) via a probabilistic representation. In the literature,
it first appeared in [35], where the Riesz transform was defined on R™. In [2] Arcozzi
extended this formula to compact Lie groups and spheres. In [54] and [58], Li presented
a new formula adapted to complete Riemannian manifolds. In reference to Chapter 5,
the representation formula of the Riesz vector in this setting for a complete manifold
with Ric, > 0 is as follows
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1 T
— S(Ref)(w) = lim E, [MT/O MI'dQ(f)(BX, B)dBy|BX = 2|,  (6.1)
where
o Q(f)(z,y) = e YV 2% f(x) is the Poisson semigroup;

o 7 =inf{t > 0: B, = 0} is the stopping time upon hitting the boundary of the
upper half space;

e M, is the solution to the matrix-valued stochastic differential equation
dMy; = V,Mdt, My = Id,

for some adapted and continuous process (V;)i>0 taking values in the set of sym-
metric and non-positive n x n matrices.

Equivalently, one can rewrite this formula as
1 .
— 3(Rof)(@) = lim E, |Z,|BY =z, (6.2)

where Z; is a semi-martingale defined thanks to the auxiliary martingales X; and Y;
(adapted to the filtration F; = o(BX, Bs, s < t)) as follows

t
X, = QF(BX.B) — QF(BX.y) = / (V.,0,)Qf (BX, B,)(UydW,, dB,),

t
Y, = / VQf(BX,B.)dB.,
0

t
7, = Mt/ MY,
0

where Y; is by construction differentially subordinate to X; since
t.n t
XX = [ S IVQIBY BPds+ | 10,Qf (B, B)ds
0= 0

and
n

t
Y¥h= [ IVQA(BY, B)Pds.

=1
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6.1 Main results

We prove in Theorem 6.1 a dimensionless estimate in LP spaces for the Riesz vector on
manifold with non-negative curvature. The first proofs of this result are recent [16], [58],
[8] and all based on a form of a Bellman function. Our proof is via a sparse domination
with continuous index. All these cited Bellman proofs give a better numeric estimate
than our proof, but as mentioned earlier, our proof extends (for free) to the weighted
L? case, which the previous ones do not. Our estimate is linear in p, which means
proportional to (p — 1)~! when p < 2 and to p — 1 when p > 2. We note that Baifiuelos
and Osekowski have in [8] the best numeric constant in this case. We note also that
the proof in [16] gives the linear estimate with p also in the case where the curvature
is merely bounded below (and possibly negative) with an appropriately defined Riesz
vector involving a Laplacian with a modified spectrum.

Theorem 6.1 (LP estimate). Suppose that X is a complete Riemannian manifold with-
out boundary and Ric, > 0. Then for all f € C°(X) and p € (1,00), we have the
following dimension-free estimate

2
p
— 1Hf||LP(X)- (6.3)

IR fllLe(rex) < 16

p

We prove also a dimensionless weighted estimate in L? spaces for the Riesz vector on

manifold with non-negative curvature. In the Euclidean setting, see [23]. For the case

of manifolds, such an estimate was already known in the case p = 2 see [18]. A priori
the weight has to be globally in L? so as to be able to define the flow characteristic.

Q2(w) = sup(Q(w))(z, y)Q(w™" (z,y)).

x7y

The collection of weights for which this characteristic is finite is denoted As. There is
also a natural way to extend the class of the weights to resemble more the classical case
allowing local L! weights. In this case we require that constants are integrable in X with
the measure dj, so as to prove the theorem for cut weights, such as in [18], that are in
L' N L>* N L? and then define the characteristic by a limiting procedure and deduce the
theorem. See Chapter 4 for detailed exposition in the case p = 2.

Theorem 6.2 (weighted L? estimate). Suppose that X is a complete Riemannian man-
ifold without boundary and Ric, > 0. Then for all f € CX(X) and w € Aa, we have
the following dimension-free estimate

IR fll L2(re xw) < 64@2(w)||f||L2(X,w)- (6.4)

The technique used in this paper resembles the sparse domination principle for dis-
crete time martingale transforms which originally appeared in [49]. This technique
has witnessed considerable efforts in the last several years and has been used to prove
numerous new results in harmonic analysis, using sparse operators defined on cubes.
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These cannot give dimensionless estimates, nor are satisfactory results known in the
non-doubling case. As in [21] we use a sparse operator with continuous stopping times,
dominating Li’s process Z; whose projection is the Riesz vector. This is what enables us
to use the flow itself without cutting it into cubes, thus resulting in clean dimensionless
estimates.

Following [21], we say that the operator X — S(X) is called sparse if there exists
an increasing sequence of adapted stopping times 0 = 77! < T9 < ... with nested sets
Ej = {17 < 0o}, E; C Ej_1 so that

S(X) = Z XTjXEj where XTj = E(X|fTJ); (65)
=1

1
\V/Aj C Ej, Aj € ij there holds ]P’(A] N Ej+1) < §P(AJ) (66)

The estimate we aim to show will be a consequence of a sparse domination of the
stochastic process Z; (see [52], [49] and [21]). Other than in [21] the object is not a
martingale, so the sparse domination is different and the key of the proof relies on the
weak-L! estimate for the maximal function of the studied stochastic operator. We do
not aim at the fullest generality here, keeping our goal in mind, an estimate of the Riesz
vector. Certain assumptions can certainly be weakened, as the attentive reader will
observe.

Lemma 6.1 (Weak-type estimate). Let X = (X); be a real valued continuous path
martingale and Y = (Y'); a vector valued continuous path martingale so that'Y is differ-
entially subordinate with respect to X. Let further Z = (Z); be a continuous path semi-
martingale whose increments satisfy dZy = ViZidt + dY; with (Vi) continuous adapted
process with values in non-positive, symmetric n X n matrices. Let A > 0. We have
P((1Ze] + |1Xe)" = 2) < 227X
Theorem 6.3 (Sparse domination). Let X = (X); be a real valued non-negative contin-
uous path martingale and Y = (Y); a vector valued continuous path martingale so that
Y is differentially subordinate with respect to X. Let further Z = (Z); be a continuous
path semi-martingale whose increments satisfy dZ; = Vi Zydt + dY; with (V) continuous
adapted process with values in non-positive, symmetric n X n matrices. Then there exists
a sparse domination such that
7" <45(X).

We recall that we denote by Z* = sup;>(|Z;| the maximal function associated with

Z.

Theorem 6.4. Let X = (X;); be a real valued non-negative continuous path martingale
andY = (Y3)¢ a vector valued continuous path martingale so that'Y is differentially sub-
ordinate with respect to X. Let further Z = (Z;); be a continuous path semi-martingale
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whose increments satisfy dZ; = ViZydt + dYy with (Vi) continuous adapted process with
values in non-positive, symmetric d X d matrices. Then there holds the weighted estimate

12| 2wy < 32Q3 (w)| X || 12 u)
and

p2
1Z%) e < 8EHXHLP-

In general for filtered spaces, the A, characteristic of w (identified with its closure)

is
1

F - Wr o p—1 — = p—1
Qp(w)—sgpllE((;)P | F7) IIM—SngE(w\E)E(wP | F)P ™ oo

In the case of interest to us, the characteristic that appears is the one that corresponds to
the filtration used by Li at height 3, denoted F®). It can be seen, similarly as is known
to the Euclidean case, that this characteristic, is equal to the Poisson flow characteristic
when y — +o0.

6.2 The stochastic process Z

In this section, we prove Lemma 6.1 and Theorem 6.3.

Proof. (of Lemma 6.1).
This proof is modelled after the exposition in Wang [80]. We aim to show

P((1Ze] + 1Xe))* > ) < 22471 X |1 (6.7)

Indeed, it suffices to show the inequality for A = 1. To do this, define functions V,U :
R x R™ —» R by

] —2z|  when |z| + |y| <1,
Viz,y) = { 1—2Jz| when |z|+|y| > 1.

Ulz,y) = 4 U@ 9) =1yl —al* when |z 4]y <1,
’ Us(e,y) =1—2la]  when [z] + [y| > 1.

Let us first observe that everywhere V < U and that Uy < Us.
Define the stopping time

T =inf{t > 0:|X,| +|Z| > 1}.

Then | X7| + |Zr| > 1 and | X¢| +|Z:] < 1 for t < T.
We aim to prove that EU(Xp, Z7) < 0, since V' < U the result will follow (see the end
of the argument, where we detail the step). We split

EU(X7, Z1) = E(U(X71, Z7)X{T>0y) + E(U (X7, Z7) X {T=0})

and we show that these contributions are both non-positive.
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Part 1: {T' =0}.
For such w where T' = 0 then by definition of 7" we have | Xo|+|Zp| > 1 and U(Xo, Zoy) =
1 — 2| Xp|. Assuming that |Zp| < |Xp|, then

1 < [Xo| +[Zo] < 2|Xol,
ie. 1 —2|Xp| <0 and hence

E(U(Xt, Zr)x{r=0y) = E(U (X0, Zo)X{r=0}) < 0.

Part 2: {T > 0}.
By simple calculations on the derivatives of U we check that

8yiU(xay) = 2y (6.8)
97, U(x,y) = 0, (6.10)
Bi_ij(m,y) = 20, (6.11)

for |z| + |y| < 1 and where ¢;; is the Kronecker delta.

On {T > 0}, the process evolves in the set {(z,y) : |z| + |y| < 1}, in the interior of
which the function U is twice differentiable, which means that we have the following 1t
formula

1
U(Xp,Zr) =U(Xo,Z0) + 11 + 5]2,

with

T T ,
I o= / azU(XS,ZS)dXSJrZ/ 0,,U(Xs, Z,)dZ:
0 i 0

T T .
I = / 8§xU(XS,ZS)d<X,X)S+2Z/ 02, U (X, Zs)d(X, Z1),
0 i 0

T o
+ZZ/O 0., U(Xs, Zs)d(Z', Z7) 5.
g
Let’s first study I;:
Recall that Z; satisfies the following stochastic differential equation
dZy = ViZydt + dYs. (6.12)

Now if we replace this formula in the expression of I;, we will obtain a local martingale
part which is

T T
/ aTU(XS,ZS)dXSqL/ (0,U(Xs, Zs), dYy)
0 0
and a process

T
Ap = / (O,U(Xs, Zs), VaZy)ds.
0
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We may assume that the local martingale is a true martingale without loss of generality
and hence its expectation is null. As for the process Ar, by (6.8) we have

T
Ay — 2/ (7, Vi Z)ds < 0.
0

The non-positivity holds because the integrand is non-positive as well, since V' takes
values in the class of non-positive matrices. Notice that just like in [18], the form of the
partial derivative of U in the variable y is crucial.

Now we deal with Is:
By the formulas (6.9)-(6.11), we obtain that

1
5= (2, 2)r = Zo) = (X, X)r + | Xo")x(r>0}.
and hence it suffices to prove
(Z, Z)r — | Zo — (X, X)1 + | Xo|*)x (>0 <O, (6.13)
for any stopping time 7T'. Recall that for all ¢ we have dZ; = V;Z;dt + dY;. Thus by
integrating we have,
t
Zi— 7y :/ ViZuds +Y; — Y.
0
Taking the quadratic covariance on both sides we obtain
<Z7Z>t_‘Z0’2 = <Y7Y>t_ ’5/0‘27 vt >0
< (X,X); —|Xo|* by differential subordination
which in turn implies that E(l2) < 0.
Finally, U(Xo, Zo) = |Zo|* — [Xo|* < 0.
It remains to show the weak estimate (6.7):

We have V' < U everywhere and EU (X7, Zr) < 0. Applying this result to the stopped
processes X(ypy) and Z(ppy we obtain E(U(X 7, Zrar)) < 0. Observing that the

function Us(z,y) = 1 — 2|x| is concave and larger than Uj(x,y) = y? — 2% on the set
{lz| + [y| < 1}, one obtains that E(U(Xy, Zy)) < E(U(X(7at), Z(ra) <= 0.
Therefore,
0 > EU(Xy Zy)
> EV(Xy, Zy)
= E(V(Xt, Z)x{x+12.021)) + EV (Xt Z)xqx,412:0<1})
= E(1 = 2[Xexqx,+1ze>13) + B2 X ) xq x4 20 <1})
= P(Xi + 12| = 1) - 2E[Xi],
from which we deduce
P(1 X[ +12:)* = 1) < 2] X[y
and so the lemma is proved.
O
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Proof. (of Theorem 6.3). Now that we have a weak type result by Lemma 6.1, we are
able to use a sparse argument as in [21]. Recall for convenience we assumed X non-
negative.

To prove that Z*(w) < 4S5(X)(w), we will prove that for all £ > 0, we have

1Zy(w)] < 4S(X)(w). (6.14)

To do so we will successively construct filtrations and an increasing sequence of stopping
times (T%)22_, then use the decomposition

[0.9]
Zt = Z ZtXte[Tk717Tk). (6.15)
k=0
A Y X
First let 7 = F; and consider the processes Z° = — and Y° = — and X0 = ——.
X X Xo

These fractions are well defined because we have assumed the process X non-negative.
Moreover, Xg > 0 because otherwise we would have Z = X = 0 everywhere.
Further, we define the set

Ey={weQ:Z2%w)vX™w) > 4}.

Obviously, X%, Y and Z° satisfy the assumptions of Lemma 6.1 so we can apply it with
A = 4 to estimate P(Ep). Indeed,

2
P(Ey) < {IX°:

1 X
— _E(Z=
2 (Xo)

— S (B 1)
()
1

pu— 2 3
where we used some properties of the conditional expectation.
We can associate 7! = 0 and a stopping time

T%(w) = inf{t > 0: |Z2(w)| vV X2(w)} > 4}

as the hitting time of the set L = (4, 00), which is finite in Ey, almost surely, by definition.
The key of the proof, besides the weak type estimate, relies on recursivity in order to
construct a sparse operator. The construction of the sparse decomposition differs from
the one in [21] because the operator we want to estimate is a perturbation of Y~ (which
is differentially subordinate to X).

If t € [0,T°) then |Z| < 4 by definition of T? and so

| Zy| < AE(X|Fo) < 45(X).
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If TV = oo then we are done. Otherwise, we work on Ey. Now let the filtration (F} )0 =
(Fpy0)i=0 and define the following processes

(1) 1 v,
Y; = Y;ﬁ\/TO — YTO and Y; - WXE()?
(1
1 X
Xt( ) — X,yo and th = mXEO,

Moreover, we define the process Zt(l) to satisfy Zt(l) =0 for t < T and for t > TV the
stochastic differential equation

azM = v,zWat + ay,.
Notice that for all ¢ > 0 this process satisfies
dzV = v,zWat + ay,V.

We can also define an auxiliary process Wt(l) =Z; — Zt(l) and notice that for t > 79 it
solves the homogeneous equation

aw) = vwMat,
Moreover, we have
d<Wt(1)7 t(1)> = 2<th(1)7Wt(1)> = 2<%Wt(1)dtht(l)> <0,

because V; takes values in the class of non-positive matrices. So we have shown that
Wt(l) is decreasing and for ¢t > T° we have

1 1 1
12 — 20 = (W) < (W] = | Zgol.

Finally, define
1)
A
Zl — t
b7 E(X | Fpo)

and as before
Ey={w€Ey: Z"(w) Vv X (w) > 4}

with its corresponding stopping time
T'(w) = inf{t > 0:|Z} ()| v X} (w) > 4}.

The newly defined processes X', Y1 and Z! again satisfy the assumptions of Lemma 6.1
(with respect to the new filtration (F});>0). So we can apply the weak type estimate to
obtain

P(Ey) <

1
~P(E
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and moreover for every A? C Ey, A € Fro

P(A° N Ey) < %IP(AO).

Now if t € [T, T') we can write
7 =7 + (7, — 7).
By definition of T* we have Z} < 4 and hence
Zt(l) < AE(X|Fro) X Eo-
On the other hand, we know that |Z; — Zt(l)] < |Zzo|. Since (Z;); is continuous, we have
|Zpol = 1Z30_| < 4,
which implies

| Zepo—| < 4E(X[Fo).

Finally,
12| < |20 + (2 — ZV)| < AB(X|Fo) + 4E(X|Fro)xm, < 4S(X).

If T' = oo then we are done. Otherwise, we work on E;. We keep repeating the
procedure by defining successive processes

(k) max{T*1t}
For k>0: X, = Xpr-1 + X dXs.
Tk—1

and

max{T*1t}
y® — / dv..
Tk—1

Observe that these are martingales in F for all k and that V(%) is differentially subordi-
nate to X*). Notice that the processes

X(k) Y(k)
Xf =t and Ytk =_t
Thk—1 Xpk—1

are also adapted in F = (F;);>0 since at times ¢ < Tk=1 these processes are constant
and hence adapted and at later times the denominator is measurable. Notice that the
event {T"~1 <t} € F; since T*~! is a stopping time.

Now set Zt(k) be the process satisfying Zt(k) =0 if t < T*! and evolving for t > T*1
according to

daz® = v,z®™at + ay,
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with initial condition at time T%~! be set 0. Notice that the so defined process Zt(k) is

adapted to (Ft):>0 and solves dZt(k) = VtZt(k)dt + dY;(k) for all times with zero incre-
ments for ¢ < TF~1. For times ¢ > T*~! we know that Wt(k) = (X — Z®), solves the

homogeneous equation
awv® = v, at

with initial condition W(k) =

i1 = Zpr—1. Now observe that

dw ™ Wiy = 2aw® Wiy = 2viwPae, W) < 0
again because V; takes values in the non-positive matrices. So we have for ¢t > Tk=1 that

k k k
12 — 20 = (W < (W | = | Zgaea .

(k)
Using similar arguments as above, we can consider Zf = XL“ and retain these prop-
ke
erties, now with respect to martingales X* and Y*.
We also define the sets

Ep={we Ej_, : ZM(w) v X*(w) > 4}
and their associated stopping times
TF =inf{t > 0:|ZF(w)| v XF(w) > 4}.

By the above, we know that processes X*, Y* and Z* satisfy the assumptions of the
weak type estimate and we thus control |Ej| < %||X"3XE,€71 Ih < %|Ek_1|.
Consequently for t € [T*~1 T*) we get

k—1
1Ze| < |29+ 12 — 21 < S 4R(X|Fpa)xm, < 45(X),

by considering E_; = Q. Now the decomposition (6.15) gives us the desired estimate
(6.14). O

Proof. (of Theorem 6.4). This follows from the sparse domination and the corresponding
estimate for the sparse operator, see [21]. One of the reasons why sparse domination
is convenient for weighted estimates, is that it allows the characteristic to appear one
time, making the estimate optimal in terms of the characteristic of the weight for p > 2.
Another important fact comes from the maximal function that is bounded on LP(w),
independently of the characteristic.

Let U be random variable in L?(u), where u = w1
that

By dualizing, we want to prove
E(S(X)|U]) < caQa(w) [ X || L2y U] L2 (w)- (6.16)
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The left hand side of (6.16) is, by definition of S(X), equal to

(Z E(X|Fps)(w)xe, (@ |Ur) (Z E [E(X| Fp) () Ej<w>\UHij})

j=—1 j=—1

=E ( i E(X|Frs)(@)xe, (W)E(!UHTTJ')(w)) :

j=—1

We can expand the above sum by inserting the weights and so we get

o0

E( Z wTj(wTj)ilqu (UTJ')%E(XLFTJ)(W)XEJ- (W)EUUH]:TJ‘)(W))
j=—1
< Qo(w)E( Y (wrs) ™ ugs) T E(X|Frs) (@) x iz, (@)E(|U||[Fr) (w)),
j=—1

where the last inequality follows from definition of Q2(w). Now let

E(XIF) g goew o EQUIF)

new ,__
Xpev .=
(7 Wt

Then (X[°V); is a E,, martingale and (U°V); is a E,, martingale where E, (X)) := E&(J;)

and the same goes for E,,. This means that the left hand side of (6.16) is less that

o0

Qa(w)E( > XU i, ().

j=—1

For every fixed j, X75"Up5" x g, is Fr; measurable. Hence we can approximate it from
below by step functions

7 new yrnew
DXy /XU Xk,
k

where (ai) % are constants, Ai € Frj are disjoint and [ J, Ai = Ej. The reason why we
define these step functions is because we want to create plateauxr on which we will use
sparse arguments. ‘
We obviously have on A,

J < (XneW)*(UneW)*
Moreover, if we denote by S7 = Ai\(A{C N Ej11), we know by sparsity that
P(4]) < 2P(S))
and that the sets S,‘z are disjoint in both parameters. Hence, one can write for finite
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< 9 (E ((XneW)*Zu))
= (E(u)) " (Eu(X™")")
< 8(E(u)) /2By (X"™)?)
= 81Xl 2wy 10| 2u)-

Letting J — oo allows to conclude that

E(S(X)|U]) < 8Q2(w)[[ X || L2(u)IU || L2(w)-

We explain the changes in the unweighted LP case, p € (1,+00). Let U be a random
variable in LY where ¢ is the conjugate of p. As before we set up by duality

MﬂXWW=E(§iWXWMWM@WEWUEﬂWO~

j=1

For a fixed j, we approximate as before the non negative and measurable function
E(X|Fpi)(w)xE; (w)E(|U||Fp;)(w) from below by step functions, use the sparse condi-
tion, then Holder’s inequality and Doob’s inequality in LP and L9 to obtain the desired
estimate. The final norm is a product of the constant 4 appearing in Lemma 6.3, the
constant 2 arising in the sparse condition and the product of the constants in Doob’s

¢ _ 7 .
p—1lg—-1 p-1

inequality
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6.3 The Riesz vector

The proof of the main result now follows from standard arguments.
Following Li [54], recall that

X, = Qf(BYX,B) — Qf(Bf ).

By taking the probabilistic representation of the Riesz transform (6.1) and using the
fact that the conditional expectation is LP-contractive, one can write

1R flle < lim 2701277,
. D *||P
S

2

: P2 i
i (16— )71 X s

2
< lim (162 (1QF(BY, B L, + 1QF (B, w1 )

y—oo' p—1

P
< (IGE)pr(Bf)Hﬁ,,

IN

p2
< (16— Iy

1

Notice that sparse domination itself depends upon the used filtration (and hence y).
Here the norm || X||zr is at ¢ = oo, which is 7 in our stopped processes. We use that
1QF(BX,y)loo — 0 as y — co. On L?(w), we also obtain the announced result since

QF @ (w) is the Ag characteristic that corresponds to the filtration when By = y and
(Q2(w) is the Poisson flow characteristic.

6.4 Negative curvature case

A natural question is to know whether we can extend these results to a manifold whose
Ricci curvature is bounded from below by a negative constant, as opposed to the previous
section where it was non negative. It would be interesting to obtain a result independent
of the curvature as in [16].

In this section, we assume that the Bakry-Emery curvature is bounded from below i.e

Ricy, > —a, a > 0.
The probabilistic representation formula of the Riesz vector in this setting for a
complete manifold with Ric, > —a is as follows
1 T
= 5(Bef)(@) = lim E, [e‘”MT/O e M 1dQ(f)(BM, Bs)dBs|BM = z|, (6.17)
where
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o QUf) (2, y) = e YVI=2¢ (1) is the Poisson semigroup associated to the operator
ald — Ay;

o 7 =inf{t > 0 : B, = 0} is the stopping time upon hitting the boundary of the
upper half space X x Ry;

e M is the solution to the matrix-valued stochastic differential equation
dMy = ViMdt, My =1d,

for some adapted and continuous process (V;)i>0 taking values in the set of sym-
metric and non-positive n x n matrices.

Equivalently, one can rewrite this formula as
2 (Rof)(x) = lim E, [22|BY = <]
27 Cyooee YLTTITT T

where (Z7)i>0 is a semi-martingale defined thanks to the auxiliary martingales (X§*)¢>0
and (Y;")¢>0 as follows

t
Xp= /O (V,0,)Q°F(BM, B,)(UsdWs, dBy),

t
Vi = [ VQUI(BY, BB,
0

t
Zta — efatMt/ easMgldYSa,
0

A first approach would be to apply the method in the previous sections to the pro-
cesses (Zf'); and (X{); and notice that by replacing V; by al, — V; the sparse decom-
position remains the same. The problem appears in the final steps when applying Ito
formula on X since X{ = Q%f(Bj,B;) — Q*f(B§,y) — afot Qf(BX, Bs)ds. When
t =7, we need to control the term a [ Q*f(BX, By)ds.

In the unweighted case, we bypass this problem by using Lenglart-Lépingle-Pratelli in-
equality and obtain a result that does not depend on a (with a slightly different constant
in p). In the weighted case, we define the process

~ t
Xi=Xp+a [ QBN B)ds+ Q' f(BY', Bo)
0
= Q"f(BY, By),
by It6 formula. If we denote
t
Av=a [ QIBY Bds + Q" 1(BY. Bo).
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we can see that A; is an increasing finite version process. Now we can write
X=X+ A

and conclude that ()?t)tzo is a submartingale. Indeed,

E(X.|Fs) = B(X2 + A Fs) > E(X2 + Ag|Fy)
= E(X?‘Fs) +E(AS“FS) =X{+As = )zs-

Instead of proving a weak-type estimate for the martingale X = (X/) as we sug-

gested earlier, we will prove a weak-type estimate for the submartingale (X;)¢>o0.

Lemma 6.2 (Weak-type estimate). Let X and Y be continuous path martingales so
that Y s differentially subordinate with respect to X. Let further X, = X, + A be a
non-negative uniformly integrable submartingale where A, is a FV increasing process.
Finally, let Z be a continuous path semi-martingale such that |Zo| < |Xo| and whose
increments satisfy dZy = (Vi — al,) Zydt + dYi, where Vi is a continuous adapted process
with values in non-positive, symmetric n X n matrices and a > 0. Then for all X > 0 we
have

P ((1Ze] +1X))* > A) <227 X1 (6.18)

Remark 6.1. In the statement of the above lemma, by X we actually mean )N(Oo, i.e.
the limit of the submartingale (Xy).

Sketch of proof for the weak type estimate. This proof is following the same outline as
the proof of the weak-type estimate in the previous section (which is modelled after the
exposition in Wang).

Indeed, it suffices to show the inequality (6.18) for A = 1. To do this, we define
functions U,V : R x R™ — R by

=2/l when |z| + |y| < 1,
Vi(z,y) = { 1—2]z| when |z|+[y| > 1,

and
U(l’ y) — ‘y|2 - ’x‘Q when |w’ + ’y‘ < 17
' 1—2Jz]  when |z|+ |y| > 1.
First we can observe that everywhere V < U. We define the stopping time

T =inf{t > 0:|X,| +|Z/| > 1}

and notice that | Xp| + |Z7| > 1 and |X,| + |Z| < 1 for t < T.
We want to prove
EU(Xr, Z1) < 0.
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Since V' < U, the above inequality will give us exactly what we need. We split
EU(Xr, Zr) = E(U(X1, Zr)x(7=0}) + E(U(X1, Z1)X{T>0})
and we show that these contributions both satisfy some desired inequalities.

Part 1: T'=0. N N
For such w where T' = 0 by definition of T' we have |Xo| + |Zo| > 1 and U(Xo, Zo) =
1 —2|Xy| <0. Since |Zy| < | Xp|, we have

1 < [ Xo| + | Zo| < 2| Xol,
i.e. 1 —2|Xo| <0 and hence
E(U(Xr, Zr)x{r=0y) = E(U (X0, Zo)X{r—0}) < 0.
Part 2: T > 0.

We use the same calculations on the derivatives of U on |z| 4+ |y| < 1 and apply Itd
formula to obtain

_ _ 1
U(Xt, Zr) = U(Xo, Zo) + 11 + 512,

with
T - . T - .
I :/ 8$U(XS,Zs)dXS+/ S 0,,U (X, Z,)dZ!
0 0 i
T _ - T - ~ .
12:/ 8§IU(XS,Zs)d<X,X>5+QZ/ 02, U(X, Z,)d(X, Z7),
0 i 0
T - . .
+ZZ/ 0., U(Xs, Z5)d(Z', Z7) 5.
— — Jo
i

Let’s first study I;:
Recall that Z; satisfies the following stochastic differential equation

dZy = (V, — al) Zydt + dY;

and that _ N
Xi=Xe + A which implies dXy = dX; + dAy,

where (X;) is a martingale, and (A;) is an increasing FV process.

Now if we replace dX, and dZ in the expression of I; by the above formulas, we will
obtain a local martingale part which is

T _ T .
/ 0,U(X,, Z,)dX, + / O,U(Xs, Z,), dYs)
0 0
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and a process
T - T ~
Nr = / 0,U(X,, Z,)dA, + / (O,U(Xs, Zs), (Vs — aln) Zy)ds.
0 0

We may assume that the local martingale is a true martingale without loss of generality
and hence its expectation is null. As for the process Np, we have

T _ T
Np = —2/ XodA, + 2/ (Zs, (Vs — al) Zs)ds < 0.
0 0

Since (A;) in an increasing FV proces we have dAs > 0 which together with the non-
negativity of (X;) gives us

T _
—2/ XsdAs <0.
0

The non-positivity of the second integral also holds since V — al,, takes values in the
class of non-positive matrices, so we have (Zs, (Vs — al,)Zs) < 0.
In conclusion, taking the expectation of I gives us

E(I) < 0.

Now we deal with Iy:
Using the calculations on the derivatives of U we obtain that

1 ~ ~ ~
312 = (2, 2)r = | %" = (X, X)1 + | Xo[)x(r>0}-
Recall that for all ¢t we have dZ; = (V; — al,,)Zidt + dY;. Thus by integrating we have,
t
Z,— Zy = / (V, — al,) Zods + Y — Yo.
0

Taking the quadratic covariance on both sides we obtain

(2,21 = Zo|* = (V,Y ) = [Vo|?, Wt >0
< (X,X); — | Xo|* by differential subordination.

Since X; = X; + Ay, where (A¢) is a F'V process we have for all ¢t > 0
<)?7X>t = ’XOP + <X5X>§
= | Xol* + (X, X)§
= | Xol* + (X, X) — | Xo/?

and so o N
(Z,Z)e — | Zo> < (X, X)¢ — | Xo> = (X, X): — | Xo|*,
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which gives us
(2, Z)r — 120> = (X, X)7 + [ Xo[*) X750y < 0.

Taking the expectation of the above inequality implies that

I
2y <o.

IE(2 <

Finally, since T > 0 we have U (X, Zo) = | Zo|>—|Xo|?> < 0 and taking the expectation
in the previous It6 formula implies

E(U (X1, Zr)Xx{r=0y) < E(|X0[?) — E(| X0/?).

It remains to show the weak estimate. We have V' < U everywhere and EU ()?T, Zr) <
0. Therefore we may show as in the previous section that

0> P(|X| +[Z] > 1) - 2E| Xy,

from which we deduce
P Xe +1Ze)" = 1) < 2[|X]]x

Finally, we can replace (X;) and (Z;) in the above inequality with (A™1X;) and (A\~1Z;)
to get (6.18)
P((|Xe +12e)" 2 A) < 227 Y| Xy

and so the lemma is proved. ]

The sparse domination also follows the outline of the previous section, but we have
to change the definition of the sparse operator, because (X;) is not a martingale.

Theorem 6.5 (Sparse domination). Let X and Y be continuous path martingales so
that Y 1is differentially subordinate with respect to X. Let further X, = X, + A be a
non-negative uniformly integrable submartingale where Ay is a F'V increasing process.
Finally, let Z be a continuous path semi-martingale such that |Zp| < ]Xol and whose
increments satisfy dZ, = (Vi — aly,) Zydt + dYy, where Vi is a continuous adapted process
with values in non-positive, symmetric n X n matrices and a > 0. Then there exists a
sparse domination such that

Z*(w) < 48(X)(w), (6.19)
where

SN = 3 BEIF) @), @

Jj=-1

and E; and T are defined as in the previous section.
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Remark 6.2. We needed to replace Xp; by E(X|Frp;) because we are dealing with sub-
martingales and unlike in the martingale case, we don’t have an equality but

E(X|Fri) > Xrs. (6.20)

We also need the sets Ej; to satisfy the sparse condition

VA; C Ej, Aj € Fry there holds P(A; N Ej11) < SP(Ay).

To prove the above sparse condition we have to use WTE, but unlike in the martingale
case we cannot control the L' norm of

X X
Xo Xoi
because of (6.20). On the other hand, we can control the L* norm of

X X
e and - —
E(X|Fo) E(X|Fr)
Now that we changed the definition of the sparse operator, the proof of this lemma is

exactly the same as in the case a = 0. The proof of the L? estimate is also the same and

to save the length of this chapter, we refer the interested reader to the previous section
(a=0).
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Chapter 7

Applications and Perspectives

We briefly explore in this chapter a few tracks that fit into the same framework as this
thesis. We suggest the following leads to the interested reader

1. The Beurling- Ahlfors operator;
2. Fractional integrals;

3. LP(w) boundedness of the Riesz transforms on Riemannian manifolds.

7.1 The Beurling-Ahlfors operator

We present a weighted estimate for the Beurling-Ahlfors operator acting on manifolds.
The interest of this operator comes from a famous borderline regularity problem in [3].
The idea is to use again a martingale transform representation formula for the Beurling-
Ahlfors transform extended to 1-forms over complete Riemannian manifolds by [56, 57].
Throughout this section, let (X, g, p,) and B;X be defined as in the previous chapter.
On manifolds, the Beurling-Ahlfors operator is given by

B = (d}d — dd)(A,) 7",

where d denotes the exterior derivative, d, its adjoint operator and &w = ddy, +dgd is
the (weighted) Hodge-de Rham Laplacian acting on 1—forms.

Recall that by the Weitzenbock formula, the Hodge de Rham Laplacian is related to the
rough Laplacian by

—

A, = —TrV? + Ric,, .
Define the matrices A1 = (a;a}) and Az = (aja;) as in [56, Section 3] and
B = A2 — Aj.

Unlike the Riesz transform, we define the background heat semigroup generated by the
Hodge de Rham Laplacian by

Pg(z, T —s) = e*(T*S)A‘Pﬁ(m), Vee X, se€0,T], ge C°(AT*X),
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for any fixed T' > 0.
The probabilistic representation of the Beurling-Ahlfors operator for complete Rieman-
nian manifolds with Ric, > 0 is as follows

T
Sh.gx)=E <MT/ MY AVPG(BX, T —t)dX;| By = x) L i=1,2
0

and
T
Shi(z) =2 lim E (MT / M;'BVPG(BX,T — t)dX,|By = x> .
T—o0 0
Let .
Zy = M, / M 'BVPG(BX T — s)dBX
0
and .
X; = Mt/ M;'VPGBX,T — s)dB.
0
1
Let Y; = WZ,:, where || - ||op denotes the operator norm. Y; satisfies
op
aY, = Vi, + = dX.
t = Vi¥y + o d Xy
1Bllop

and it is differentially subordinate to X;. We repeat the previous proof in Chapter 6
verbatim and obtain

2
* b A max I,L
1Z7 ] o (1 X ) < 16— B3, @p (w) ™ SN X 1o () (7.1)

7.2 Fractional integrals

Another interesting family of operators is the fractional integrals associated to a Feller
semigroup (7}); whose Varopoulos dimension is d. We define the fractional integrals of
order a € (0,d) as follows

L f(x) = /0 20 () d.

I'(3)

Again, we may consider the probabilistic representation of the fractional integrals studied
on R? in [1] and on locally compact spaces in [47] and extend it to complete Riemannian
manifolds using Li’s approach in [58]. Using the same notations as in Chapter 6, we

obtain i 5
Sef(z) =E* [MT/ M;lBg%(Bf,Bs)st|B§ =zx|.
0

Then there exists a constant C 4 > 0 such that

ngf a?oo Ca,dlaf7
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in the distributional sense.

If one can think of a function similar to Wang’s one [80] to prove the boundedness of
the fractional integrals, we may hope to obtain some interesting results concerning the
Hardy Littlewood Sobolev inequalities.

7.3 LP(w) boundedness of the Riesz transforms on Rieman-
nian manifolds

We refer the reader to Theorem 6.4. We would like to extend this result to LP(w) for
any p € (1,+00). Unfortunately, the proof in the case p # 2 fails if we rewrite the proof
of Theorem 6.4 and introduce weights v and w such that u?w = uw. However, we may
hope to obtain some positive results using the probabilistic extrapolation theorem, used
for instance in [23].
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