cette thèse est rédigée en anglais. Pour un résumé étendu

and language-integrated query frameworks such as Microsoft's LINQ. However, most of these solutions do not allow for ecient cross-databases queries, and none allow the use of complex application logic from the programming language in queries.

This thesis studies the design of a new language-integrated query framework called BOLDR that allows the evaluation in databases of queries written in general-purpose programming languages containing application logic, and targeting several databases following dierent data models. In this framework, application queries are translated to an intermediate representation. Then, they are typed with a type system extensible by databases in order to detect which database language each subexpression should be translated to. This type system also allows us to detect a class of errors before execution. Next, they are rewritten in order to avoid query avalanches and make the most out of database optimizations. Finally, queries are sent for evaluation to the corresponding databases and the results are converted back to the application. Our experiments show that the techniques we implemented are applicable to real-world database applications, successfully handling a variety of language-integrated queries with good performances.

Résumé

Plusieurs classes de solutions permettent d'exprimer des requêtes dans des langages de programmation: les interfaces spéciques telles que JDBC, les mappings objet-relationnel ou object-relational mapping en anglais (ORMs) comme Hibernate, et les frameworks de requêtes intégrées au langage comme le framework LINQ de Microsoft. Cependant, la plupart de ces solutions ne permettent vii pas d'écrire des requêtes visant plusieurs bases de données en même temps, et aucune ne permet l'utilisation de logique d'application complexe dans des requêtes aux bases de données.

Cette thèse présente un nouveau framework de requêtes intégrées au langage nommé BOLDR qui permet d'écrire des requêtes dans des langages de programmation généralistes et qui contiennent de la logique d'application, et de les évaluer dans des bases de données hétérogènes. Dans ce framework, les requêtes d'une application sont traduites vers une représentation intermédiaire de requêtes. Puis, elles sont typées en utilisant un système de type extensible par les bases de données pour détecter dans quel langage de données chaque sous-expression doit être traduite. Cette phase de typage permet également de détecter certaines erreurs avant l'exécution. Ensuite, les requêtes sont réécrites pour éviter le phénomène "d'avalanche de requêtes" et pour proter au maximum des capacités d'optimisation des bases de données. Enn, les requêtes sont envoyées aux bases de données ciblées pour évaluation et les résultats obtenus sont convertis dans le langage de programmation de l'application. Nos expériences montrent que les techniques implémentées dans ce framework sont applicables pour de véritables applications centrées données, et permettent de gérer ecacement un vaste champ de requêtes intégrées à des langages de programmation généralistes.

Chapter 1 Introduction Note. This thesis is at the intersection between the elds of programming languages and databases. Therefore, this introduction describes some basic notions coming from both elds to help unfamiliar readers.

Context

Storing, accessing, and manipulating data is unavoidable and critical for most applications. Web, statistical and articial intelligence applications, Internet of Things, all require access to large quantities of information stored in heterogeneous data sources.

Applications are written in general-purpose programming languages often chosen depending on their support for common operations in particular elds (e.g., R or Python for statistical analysis and data mining, JavaScript for Web programming). These programming languages are often imperative, meaning users must describe how to access and process information using sequences of statements that modify the state of the program.

The information required by applications is stored in databases, which are managed by DataBase Management Systems (DBMS). These systems handle storage, fast access to data using a query language, fault tolerance, scalability, condentiality, and more. An expression written in a query language, called a query, describes the requested data, rather than describing in imperative fashion how to retrieve the data, letting the DBMS choose the best way to fetch the requested information.

To access data stored in a database, an application sends a query to the database written in its query language. A typical data-oriented application includes components which interface the application with the dierent databases it targets. For example, a recent technique called polyglot persistence [START_REF] Sadalage | NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence[END_REF] consists of accessing dierent types of databases in one application to take advantage of the capabilities of the dierent database models for the dierent parts Relational algebra, rst designed by Edgar F. Codd [START_REF] Codd | A relational model of data for large shared data banks[END_REF], denes operations on data represented as a set of n-tuples where every element of the tuple corresponds to an attribute denoted by a name. Relational databases call these constructions tables, composed of lines and columns. Relational algebra is the basis of most database query languages [START_REF]Foundations of Databases: The Logical Level[END_REF].

The most common operations of relational algebra are the projection, which restricts the tuples to a set of attributes; the selection (or lter), which keeps only the tuples that satisfy a condition; and the join, which returns the set of all combinations of tuples from two tables that are equal on their common attributes. .3a shows the projection of table Employee on attributes name and salary, Figure 1.3b shows the selection in the table Employee of the tuples for which the value of the attribute salary is greater than 5000, and Figure 1.3c shows the result of the join between Employee and Team. In other words, instead of describing step-by-step how the computation must be done to achieve the desired result, programming in SQL involves describing the desired result. To achieve this, SQL adopted a syntax similar to a natural language. For instance, the projection of Figure 1.3a can be written in SQL as such:

SELECT name, salary FROM Employee where SELECT represents the projection, and FROM represents a data operator From that returns the content of a table from its name.

The selection of Figure 1.3b can be written:

SELECT * FROM Employee WHERE salary > 5000

where * means all columns. Finally, the join of Figure 1.3c can be written: SELECT * FROM Employee NATURAL JOIN Team or similarly: SELECT * FROM Employee, Team WHERE Employee.deptno = Team.deptno As shown in this last query, the names of the tables can be used as the names of the current line of the corresponding table to lift the ambiguity on which row is to be accessed for the value of a column. SQL also allows the creation of aliases to give temporary names to tables using the keyword AS. For instance, this last query could be written: SELECT * FROM Employee AS e, Team AS t WHERE e.deptno = t.deptno These aliases are not directly useful in such a query where the table names already discriminate the rows, but it is necessary in some queries such as self joins which apply a Join operator between a table and itself, or to give a name to the result of a subquery: which is then bound to the name t using an alias, and this name is then used in the WHERE clause to refer to the table. The simple syntax of SQL is one of the reasons why it is so popular, and the most commonly used query language. Most databases support SQL, even those that do not have a data model directly suited for relational algebra. Therefore, SQL is an unavoidable database language to study for solutions aiming to allow programmers to send queries to databases.

Application programming languages

The majority of data-driven applications are written in imperative programming languages. Python is used in particular for Web applications and for machine learning. It is a very popular programming language because of its simple syntax and numerous eld-specic libraries, such as for machine learning, general algorithms, and statistics. JavaScript is widely used for Web applications. R is a language natively designed for statistical applications and data analysis. Java is a widely used general-purpose programming language with numerous libraries for Web development, machine learning, text processing, and more.

Contrary to declarative programming in languages like SQL, imperative programming involves describing step-by-step the control ow of a program, which requires programmers in these languages to describe how to get to the desired result. For instance, ltering a table in an imperative language would typically be written as such in Python: filteredTable = [] for employee in employees:

if (employee['salary'] > 5000): filteredTable.append(employee)

However, modern programming languages have made an eort to support some aspects of functional programming, making data-oriented applications less technically detailed. For instance, we can write the example above in Python using list comprehensions [START_REF] Kuhlman | A python book: Beginning python, advanced python, and python exercises[END_REF]:

[employee for employee in employees if employee['salary'] > 5000]

Application programs can use imperative and functional features, and usually contain a mix of both. Even so, most application languages are originally imperative, and in particular are more ecient at evaluating imperative code.

Additionally, most application languages (Python, R, Ruby, JavaScript, . . .) are dynamically typed, meaning that the type-safety of a program is checked during its execution. For instance, a program such as (function (x) { return x; })(2, 3) which applies the identity function to two arguments would be recognized as an error during its execution (or should, but JavaScript just ignores the second argument in this case . . .).

Sending queries from application languages

As stated earlier, most applications are written in general-purpose programming languages. These languages do not have native ways to query databases, and the vast majority of them are imperative languages, so their syntax is very dierent from those of query languages. Various solutions have been designed to enable programmers to send queries to databases from their programming languages. In this section, we take a look at some existing solutions, and discuss their pros and cons.

1.4.1 JDBC Java Database Connectivity (JDBC) [START_REF]Java JDBC API[END_REF] is an application programming interface (API) which provides data access from the Java programming language to data sources, including databases.

Example 1.1 is an example of use of JDBC in a Java program to retrieve data from a database.

Example 1.1.

final Connection conn = ... final Statement stmt = conn.createStatement(); final String query = "SELECT id, name, salary FROM employee WHERE salary > 2500"; ResultSet rs = stmt.executeQuery(query); while (rs.next()) { System.out.println(rs.getInt("ID") + " " + rs.getString("NAME") + " " + rs.getFloat("SALARY")); } In this example, the program queries the identier, name, and salary of employees which salary is greater than 2500 from a table employee stored in a database.

In JDBC, the user must rst create a Connection object using the correct credentials to access the targeted database, then create a Statement object from the connection object to send a query. The query itself is a string in the query language of the database (SQL in the example). The results are represented by a ResultSet object which contains a cursor starting at the beginning of the result set of rows. ResultSet exposes the method next() to move the cursor to the next row of data, and access methods such as getInt() that returns the data in the column given as argument in the current row pointed by the cursor.

For example, rs.getInt("ID") accesses the integer stored in the column named "ID" of the current row in the result set rs.

Although JDBC is popular and easy-to-use for programmers who are experts in the query language of their targeted database, this very common type of solution has numerous aws:

• Programmers must learn the query language of each database they target.

• Integration of application logic is very limited as the conversion from expressions of the application language to the database language is restricted to basic values (strings, integers, . . .), thus forcing programmers to decompose complex queries into simpler ones to send to databases and combine the results in the application, which entails more work for the programmers, code duplication, and potentially disastrous performances.

• Errors in queries, even syntactical, are detected only at runtime since programming language tools such as type systems are unable to detect problems in a query written as a string.

• Special care must be taken when inserting user input into queries to avoid code injection attacks [START_REF] William | A Classication of SQL-Injection Attacks and Countermeasures[END_REF].

• Explicit type coercions must be used to translate values from the database to the application language (in JDBC, by using methods such as getInt).

• Changing a targeted database to one that does not have the same query language implies rewriting all the queries in the application.

• From a software engineering stand point, this solution entails the development of a completely new API for every connection between an application language and a database. This explains the multiplication and diversity of competing solutions for a same application language.

This set of problems has been referred to in the literature as an impedance mismatch between the database and the application language [START_REF] Copeland | Making Smalltalk a Database System[END_REF]. Other solutions have been proposed to solve these diculties.

ORMs

Object-Relational Mappers (ORMs) and equivalents such as Object-Document Mappers (ODMs) are design patterns allowing the conversion and manipulation of data between incompatible type systems in object-oriented programming languages. By representing the data source with an object, these patterns allow abstraction from the data source and manipulation of information directly in the programming language itself.

Examples of ORM libraries are Hibernate [KBA + 09] for Java, ActiveRecord [ct17] for Ruby, Doctrine [START_REF] Wage | Doctrine ORM for PHP[END_REF] for PHP (which is also an ODM library), or Django [START_REF] Kaplan | The Denitive Guide to Django: Web Development Done Right[END_REF] for Python.

Although most of these libraries rely on queries written as strings in SQL, or close cousins such as the OQLs (HQL, DQL, JPQL, . . .) [START_REF] Alashqur | OQL: a query language for manipulating object-oriented databases[END_REF], eorts have been made to improve the integration of queries in the application language. For example, rather than writing queries in plain text, Criteria for Hibernate allows a user to build a CriteriaQuery object on which one can apply operations such as lters using methods. Using Criteria and Hibernate, Example 1.1 would be written as shown in Example 1.2 in the language Java.

Example 1.2.

Session session = HibernateUtil.getHibernateSession(); CriteriaBuilder cb = session.getCriteriaBuilder(); CriteriaQuery<Employee> cr = cb.createQuery(Employee.class); Root<Item> r = cr.from(Employee.class); cr.multiselect(r.get("id"), r.get("name"), r.get("salary"))

.where(cb.gt(r.get("salary"), 2500));

Query<Employee> query = session.createQuery(cr); List<Employee> results = query.getResultList();

The query is described using high-level expressions, therefore it is abstracted from a particular database language, such as SQL, and its syntax is veried using the type system of the language. However, this solution is still verbose; it requires a dierent library for every link between a language and a database; and its expressiveness is heavily restricted to the API. Additionally, this solution requires the programmer to replicate the schemas of database tables in the application using classes.

LINQ

A breakthrough in the domain came with the Microsoft LINQ [Mic] framework, a component of the .NET framework which adds native data querying capabilities to .NET languages. LINQ denes queries as a rst-class concept within the language semantics, thus allowing .NET programmers to dene queries for databases in the syntax of their language. Example 1.3 is the equivalent of Example 1.1 written in LINQ in the language C#.

Example 1.3.

var results = from e in db.Employee where e.salary > 2500 select new { id = e.id, name = e.name, salary = e.salary }; foreach (var e in results) { Console.WriteLine(e.id + " " + e.name + " " + e.salary); } Although LINQ adds new syntactic constructs for queries, such as the keywords from, where, and select, expressions in queries are native C# expressions. For instance, the new {...} expression showcased in Example 1.3 is the native way in C# to create a new anonymous object. Additionally to the query syntax, LINQ also provides an object-oriented way to express a query. For instance, the query of Example 1.3 can also be written: db.Employee .Where(e => e.salary > 2500) .Select(e => new { id = e.id, name = e.name, salary = e.salary }) where x => e denotes the anonymous function with parameter x and body e.

The queries in LINQ are therefore integrated to the programming language and type-safe. In addition, the use of the .NET framework and of an intermediate language makes it possible for any language or database to interface with LINQ independently. Indeed, as shown by Figure 1.4, instead of creating an interface between every application language expressing queries, called host language, and every database, this approach requires host languages and databases to only interface with the intermediate language. Thus, language and database implementors only need to be an expert in their language and the intermediate language to interface with the framework.

However, not all queries are executed successfully in LINQ, as only the code that can be translated into the intermediate language of LINQ is accepted. Therefore, the expressiveness of the queries is limited in this framework. For instance, queries in LINQ cannot include arbitrary user-dened functions (functions dened using the syntax of the programming language, UDFs for short). For instance, Example 1.4 throws an error at runtime since LINQ attempts to translate the function dolToEuro to an equivalent in the database, and fails to do so. This is not limited to user-dened functions: any expression that cannot be translated is rejected. It is the responsibility of the implementer of the LINQ provider, the part of the LINQ architecture that translates C# expressions into a specic query language, to handle as much of the expression language as possible. LINQ oers Func<float, float> dolToEuro = x => x * 0.88f; db.Employee .Where(e => e.salary > dolToEuro(2500));

There are two workarounds for this problem, but both are unsatisfactory. One solution is to manually mirror the denition of dolToEuro on the database side, as a stored procedure. This solution is particularly attractive now that databases are working on supporting application languages: Oracle R Enterprise [Orad],

and PL/R [PL/a] for R; PL/Python [Pos], Amazon Redshift [Ama], Hive [Apab],

and SPARK [Apac] for Python; or MongoDB [Mon] and Cassandra's CQL [Apad] for JavaScript. However, this results in the duplication of code performing application logic on the database side, causing substantial maintenance problems, especially in queries targeting several databases. Worse, such a function might not even be writable on the database side, since it may use features not supported by the database, or require access to values present in the runtime of the application language that the programmer would then have to send explicitly to the function at runtime, cluttering its denition with extra parameters.

Another solution is to fetch the data in the application, and then apply the operations. This solution seems to be preferred by developers, since it is syntactically very light in LINQ: Func<float, float> dolToEuro = x => x * 0.88f; db.Employee .AsEnumerable() .Where(e => e.salary > dolToEuro(2500));

This program is successfully executable by LINQ. But this seemingly innocuous addition of the call to AsEnumerable() hides huge performance problems: all data is transferred into the runtime of the application language by the method Enumerable.AsEnumerable(), which may result in terrible performances because of the network delay, and potentially causing out of memory errors. In addition, data operations are then executed in the application, thus ignoring all optimizations that the database can perform (e.g. using indexes). The same problem occurs with cross-database queries, as the solution in LINQ would also be to perform most of the queries in the application runtime with explicit calls to

AsEnumerable().

A partial solution to this problem is brought by T-LINQ [START_REF] Cheney | A Practical Theory of Language-Integrated Query[END_REF], which gives theoretical foundations to language-integrated queries based on quotations and a normalization of queries. This solution allows the use of user-dened functions in queries as long as it is possible to translate them and inline them in the queries. However, T-LINQ is restricted by design to the data model of SQL, as well as to a few data operations. Implementations of LINQ for languages such as C# make a best eort to normalize queries containing features not handled by T-LINQ.

Apache Calcite

Apache Calcite [BCRH + 18] is a query compiler framework that provides dataagnostic query processing and customizable optimization for queries targeting dierent data models and stores. Calcite provides database implementors with a unifying framework, including support for query languages such as SQL, and query optimizations. Additionally, Calcite allows queries between heterogeneous data sources by providing a unifying relational abstraction, and by selecting the most ecient plans to perform the queries, in particular using data migration to run the queries entirely in database engines if possible. Calcite takes as input SQL and JDBC, and is therefore limited in the expressiveness of queries. A language-integrated query syntax similar to LINQ is being implemented for the Java programming language, but this work is preliminary and only addresses the syntactical aspects.

Other interfaces

In the programming language R, RODBC allows programmers to send queries to databases using SQL in a similar way as JDBC. Dplyr is a library for data manipulation for R. SparkR gives an interface for Apache Spark. In Python, there are various libraries such as pyodbc or PySpark to access databases, and NumPy to manipulate of large collections of data.

All of these interfaces are similar to the other solutions we presented in this section and share their lot of shortcomings. We talk about more existing solutions in the related work, Section 8.1.

A new solution: BOLDR

As we showed in Section 1.4, existing solutions available to data-oriented applications all have their set of issues. Additionally, applications may need several of those solutions to access dierent databases. We need a solution allowing programmers to write queries in their programming languages, able to use as many language functionalities as possible, with a unied interface to access all databases.

In this thesis, we dene a new solution called BOLDR (Breaking boundaries Of Language and Data Representations), a language-integrated query framework allowing application developers to write safe, complex, and ecient databaseagnostic queries in their programming language of choice.

Features

Figure 1.5 gives a summarized comparison of the features of existing solutions. In a modern language-integrated query framework, we want all of the features listed in the gure. Queries should be: expressed in the language of the application; able to contain complex application logic; able to target several databases at once; optimized to be evaluated in the databases as much as possible; and checked for correctness before evaluation.

Just as LINQ does, BOLDR relies on an intermediate representation called

QIR for Query Intermediate Representation. In addition to the benets of having independent interfaces for every host language and database, QIR rewrites the queries to make them easier to translate into database languages.

BOLDR does not apply query plan optimizations. More generally, BOLDR optimizes QIR queries to make the most of the databases optimizations using information unusable by databases, and so does not substitute itself for their optimization engines. The goal is to generate queries that can be as optimally handled by databases as possible.

The QIR allows BOLDR to perform type-checking on queries to detect errors before their evaluation. For instance, consider this query in R using BOLDR: t = tableRef("people", "PostgreSQL") q = query.filter(function (x) x$name > 5000, t)

Note that the name is compared to an integer. This query, that targets a PostgreSQL database, is syntactically correct, but returns an error during the evaluation because of this erroneous comparison. By type-checking the QIR version of the query, BOLDR can detect the problem even before the translation of the query into query languages, thus avoiding the process of sending an invalid query to a database via the network and its lot of performance issues.

Furthermore, BOLDR gives us guarantees on its processing of queries, such as the termination of the optimization phases, and the guarantee that a well-typed query can be translated into query languages.

BOLDR denes the interfaces between a host language and the framework, as well as between a database language and the framework. BOLDR is tied neither to a particular combination of a database language and a programming language, nor to querying only one database at a time. For instance, this query: t1 = tableRef("people", "PostgreSQL") t2 = tableRef("team", "HBase") q = query.join(function (t1, t2) t1.teamid = t2.teamid, t1, t2) is perfectly valid in BOLDR and performs the join operation of relational algebra on two tables coming from dierent databases, without the need for an explicit operation to import data in the runtime of the application. As described earlier, BOLDR automatically translates the subqueries into the dierent query languages of the dierent targeted databases, send them to the correct databases, retrieve the results and translate them back into the application language.

The framework also allows arbitrary expressions from the host language to occur in queries. Therefore, our problematic LINQ Example 1.4:

Func<float, float> dolToEuro = x => x * 0.88f; db.Employee.Where(e => e.salary > dolToEuro(2500)); is also valid in BOLDR. The framework inlines the function in the query if it is possible and ecient. Otherwise it is kept as an application language function to be executed later in the database or in the application runtime itself. Either way, this query is evaluated successfully. This process is entirely automatized, programmers do not need to migrate their application code into databases.

Detailed description

The general ow of query evaluation in BOLDR is described in Figure 1.6. During the evaluation 1 of a host program, queries are translated to QIR terms then sent to the QIR runtime for evaluation 2 . These two steps do not need to be contiguous. Typically, the queries are translated at their creation, but evaluated only when the program needs to access the results. The QIR runtime then takes over and attempts to type QIR terms. If it succeeds, it normalizes 3 the QIR terms to defragment them using a strategy that is guaranteed to succeed. This step is essential to allow our translators into database languages to function optimally. If the typing failed, a strategy based on the syntactical structure of QIR expressions is used for the normalization 4 which may fail. QIR terms are then typed again 5 to provide information for the translation as to where subterms should be executed, but also to check for errors before execution and to give us other interesting formal properties. If it succeeds, BOLDR translates the QIR terms to new QIR terms that contain database language queries (e.g., in SQL) using a translation strategy that is guaranteed to succeed as well. Otherwise, once again, it is a syntactic strategy that is used 6 which might fail. Next, the pieces of these terms are evaluated where they belong, either in main-memory 7 or in a database 8 . Host language expressions occurring in these terms are evaluated either by the runtime of the host language that called the QIR evaluation 9 , or in the runtime embedded in a target database 10 . Results are then translated from the database into QIR 11 , then from QIR into the host language 12 .

Example 1.5 illustrates the key aspects of BOLDR. Our Example 1.5 is a standard R program with two exceptions: the function tableRef that returns a reference to a table from an external source; and the function executeQuery that evaluates a query. We recall that in R, the c function creates a vector, and the subset function lters a table using a predicate and optionally keeps only the specied columns. The rst function getRate takes the code of two currencies and queries a table using subset to get their exchange rate. The second function atLeast takes a minimum salary and a currency code and retrieves the names of the employees earning at least the minimal salary. Since the salary is stored in dollars in the database, the getRate function is used to perform the conversion. In BOLDR, subset is overloaded to build an intermediate query representation if applied on an external source reference. The evaluation of the rst call to the function atLeast (atLeast(2500, "USD") found in Line 16) results in the creation of a query obtained by translation of the R expression into QIR.

Database

When executeQuery is called on the query, then (i) the runtime values linked to the free variables in the query are translated into QIR, then bound to these variables in the query, thus creating a closed QIR query; (ii) the query is normalized, process which in particular inlines bound variables with their values; (iii) the normalized query is translated into the target database language (here SQL); and (iv) the resulting query is evaluated in the database and the results are sent back. After normalization and translation, the query generated for the execution of richUSPeople is:

SELECT name FROM employee WHERE sal >= 2500 * 1 which is optimal, in the sense that a single SQL query is generated. The code generated for richEURPeople is also optimal thanks to the interplay between lazy building of the query and normalization: SELECT name FROM employee WHERE sal >= 2500 * (SELECT rate FROM change WHERE rfrom = "USD" AND rto = "EUR")

In this case, BOLDR merges subqueries together to create fewer and larger queries, thus beneting from database optimizations as much as possible and avoiding the query avalanche phenomenon [START_REF] Grust | Avalanche-Safe LINQ Compilation[END_REF].

User-dened functions that cannot be completely translated are also supported in BOLDR. For instance, consider Example 1.6.

Example 1.6. SELECT name FROM employee WHERE sal >= 2500 * R.eval("@...", array("USD", "EUR"))

where the string "@..." is a reference to a closure for getRate.

Mixing dierent data sources is supported, although less eciently. For instance, we could refer to an HBase [Apaa]

Implementation

Our implementation of BOLDR uses True [WWW + 13, Wim14], a framework developed by Oracle Labs to implement programming languages. True allows language developers to implement abstract syntax tree (AST) interpreters with speculative runtime specialization. Language implementors typically write a parser for the target language that produces an AST composed of True nodes.

These nodes implement the basic operations of the AST interpreter (control-ow, typed operation on primitive types, object model operations such as method dispatch, . . .), and use the True API to implement runtime specialization and inform the JIT compiler of various key optimization aspects, such as runtime proles on values, types, branches, or to implement runtime rewriting of the AST on de-optimization path when a speculative optimization failed.

Several features make True appealing to BOLDR. First, True implementations of languages must compile to an executable abstract syntax tree that BOLDR can directly manipulate, which, in particular, gives a simple way to translate queries into QIR. Second, languages implemented with True can be executed on any Java Virtual Machine (JVM), although greater performance can be achieved when the JVM uses the Graal JIT-compiler [START_REF] Duboscq | Speculation without regret: reducing deoptimization meta-data in the Graal compiler[END_REF], which makes their addition as an external language eortless in databases written in Java (e.g., Cassandra, HBase, . . .), and relatively simple in others such as Post-greSQL. Thus, it gives us the ability to execute any expression from any host language implemented by True in databases. Third, several programming languages are already implemented, with varying degrees of maturity, on top of the framework, such as Zippy for Python [Orae]; JRuby for Ruby [Orac]; FastR for R [Oraa]; or Graal.js for JavaScript [Orab], and work on one True language can easily be reused in these implementations.

Our implementation supports the PostgreSQL, HBase and Hive databases, as well as FastR, the True implementation of the R language, and Oracle's SimpleLanguage, a core experimental dynamic language with syntax and features inspired by JavaScript (dynamically typed, prototype-based with high-order functions and a type system with just three primitive types: number, string and boolean). SimpleLanguage is developed by Oracle Labs to demonstrate the capabilities of True. A detailed description of our implementation can be found in Chapter 7.

Contributions

This thesis studies the design of a framework for language-integrated queries with the formal denition and implementation of BOLDR and its dierent components. Chapter 2 gives some notations and denitions used throughout the document, and Chapter 8 concludes by discussing possible extensions and improvements. The chapters of this thesis each correspond to parts of the framework illustrated in Figure 1.6 and are described in the following subsections.

Query Intermediate Representation

Chapter 3, pages 27-53

The central point of BOLDR is its intermediate representation of queries called QIR. As stated earlier, a query is rst translated into this representation before being translated to a database query. In this chapter, we dene the language and its semantics 7 9 , including the semantics of data operators implemented in databases; a default database implementing important data operators to support queries that cannot be entirely translated into database languages; and the optimization applied on the queries before translation called the QIR normalization 4 which transforms a query to make it easier to translate into a database language. Indeed, our user-dened function application example: Func<float, float> dolToEuro = x => x * 0.88f; db.Employee.Where(e => e.salary > dolToEuro(2500));

is not an expression that can be translated as is into most databases languages because these languages usually do not easily allow the denition and application of user-dened functions. In particular, standard SQL does not support this feature (although it is possible to dene routines which bodies are strictly limited to queries). Some databases support extensions of SQL (Oracle's PL/SQL [PL/b],

Microsoft's T-SQL [T-S], . . .) that allows the denition and application of userdened functions, but this feature is not very optimized. Therefore, translating this query directly would either result in an error forcing the QIR runtime to handle most of its execution, or an inecient query. For these reasons, we want to apply dolToEuro in the QIR before translation to generate an ecient query. Additionally, we dene drivers which role is to interface QIR to a host language or to a database by providing translation functions from and into their language to QIR. To summarize, the contributions of this chapter are:

• A syntax and semantics for the QIR The evaluation of queries involves exchanging information with databases. This process can be very costly, depending on the amount of data involved, because of processing time and network delays. Thus, avoiding to send queries to databases when it is not needed, in particular when the queries are erroneous, is a major performance gain. Type systems are an ecient and classic way to detect in advance errors in programs. However, since BOLDR mostly targets dynamic host languages, expressions translated into QIR are untyped. Therefore, it makes sense to dene a strong type system for the QIR to detect as many errors as possible before evaluation instead of relying entirely on the error detection of databases. Additionally, BOLDR supports queries targeting dierent databases, and dierent semantics for data operators depending on the database that evaluates them. Supporting these features requires being able to establish in which database each subexpression of a query should be evaluated.

In this chapter we dene a compositional type system for QIR 3 5 that we call the generic type system. Our generic type system is extendable with type systems provided by databases. These type systems, that we call specic type systems, allow database implementors to describe what expressions they support. Because of the unknown number of databases interfaced with BOLDR, and because queries might target several of those databases at the same time, this pattern of a generic process making specic components provided by databases work together is common in this thesis. To showcase how a database can provide a specic type system, we also dene a type system for SQL in this chapter, as well as a type system for our default database, and we prove safety of execution properties obtained using our type systems.

QIR type inference

Chapter 5, pages 81-107 Type systems from Chapter 4 are designed for formal developments and presentation. However, these types systems are not algorithmic, and thus not directly suited for implementation.

In this chapter, we create typing algorithms 3 5 using constraint solving of types, and prove that our typing algorithms are equivalent to the type systems of Chapter 4. We also dene a constraint resolution algorithm, and prove it solves the constraints generated by our typing algorithms.

Type-oriented evaluation

Chapter 6, pages 109-128

In this chapter, we make use of our type systems to dene the translation of a QIR expressions into database languages. Just as for the design of our type system, our translation from QIR to database languages is composed of specic translations provided by databases, and a generic translation that makes use of those specic translations. Our translation also makes use of our type system to translate as much of queries as possible into database languages, and leaves the rest to be evaluated by our default database. We dene a syntactic translation 6 that triggers if the type system fails. Additionally, we dene a translation for SQL and show that if our type system could type a QIR expression using our type system for SQL then it is translatable into SQL using our translation. Finally, we dene a typed-oriented normalization 3 .

Implementation and experiments

Chapter 7, pages 129-151

In this chapter, we interface the programming language R to BOLDR by dening a translation from R to QIR 2 . We also describe our prototype implementation of BOLDR and present our results which show that BOLDR is able to inline most queries with user-dened functions, thus obtaining results at least as good as manually dened queries, and evaluates cross-databases queries and queries containing untranslatable expressions with decent performances.

Publications

The syntax and semantics of QIR described in Chapter 3, as well as parts of Chapter 4, 6, and 7 are presented in [BCD + 18].

21

Chapter 2

Denitions

This chapter gives notations and denitions used in the rest of the thesis.

Basic notations

Denition 2.1 (Notations).

• ≡ : syntactical equivalence. We denote its negation by ≡.

• = : equality. Both terms are equal modulo some theory that is clear from the context. We denote its negation by =.

• ∅ : the empty set.

• ⊆ : the subset inclusion.

• ∪, ∩, \ : respectively the union, intersection and dierence of sets.

• dom(f) : the domain of a function f .

• img(f) : the image of a function f .

• i..j : the set of integers {i, i + 1, . . . , j}

• _ : placeholder meaning any possible valid construct

In this thesis, we often substitute variables in a term with other terms. Our next denitions cover this operation.

Denition 2.2 (Substitution). Let V be a set of variables and T a set of terms. A substitution is a partial function from V to T . We use the notation {x 1 → t 1 , . . . , x n → t n } when the domain is nite.

We use the notation {x → t }t to denote the term t into which every occurrence of the variable x has been replaced by the term t . Denition 2.3 (Type substitution). A type substitution is a substitution from type variables to types {α 1 → T 1 , . . . , α n → T n }. We use σ to range over type substitutions. Denition 2.4 (Composition of two type substitutions). The composition of two type substitutions σ 1 and σ 2 noted σ 1 • σ 2 is dened as:

σ 1 • σ 2 = α → σ 1 T for each α → T ∈ σ 2 α → T for each α → T ∈ σ 1 with α ∈ dom(σ 2)
The composition of two type substitutions behaves, as expected, just like the composition of two functions: we rst apply the second type substitution, then the rst one.

Denition 2.5 (Typing environment). A typing environment is a substitution from variables to types. We use Γ to range over type environments.

Denition 2.6 (Evaluation environment). An evaluation environment is a substitution from variables to values. We use γ to range over evaluation environments.

Languages

To talk about interfaces between host languages and database languages with QIR, we rst give a denition of these languages by listing what we expect them to dene.

Denition 2.7 (Host language). A host language H is a 4-tuple

(E H , I H , V H , H →) where:
• E H is a set of syntactic expressions

• I H is a set of variables (I for identiers), I H ⊂ E H • V H is a set of values • H → : 2 I H ×V H × E H → 2 I H ×V H × V H ,

is the evaluation function

We abstract a host language H by reducing it to its bare components: a syntax given by a set of expressions E H , a set of variables I H , and a set of values V H . Lastly we assume that the semantics of H is given by a partial evaluation function H →. This function takes an evaluation environment from variables to values and an expression and returns a new environment and a value resulting from the evaluation of the input expression. Denition 2.8 (Database language). A database language D with support for a host language H is a 3-tuple (E D , V D , D →) where:

• E D is a set of syntactic expressions

• V D is a set of values • D → : 2 I H ×V H × E D → 2 I H ×V H × V D is the

evaluation function

Similarly to host languages, we abstract a database language D as a syntax E D , a set of values V D , and an evaluation function D → which takes an H environment and a database expression and returns a new H environment and a database value. Such an evaluation function allows us to abstract the behavior of modern databases that support queries containing foreign function calls.

Note: We call an L environment an environment from I L to V L .

Inference systems

Inference systems are a common way to describe recursive functions such as type systems or evaluation functions. Inference systems are composed of inference rules, themselves composed of zero or more premisses and a conclusion. An inference rule states that if its premisses are true, then so is the conclusion. A proof of a nal conclusion is then created by chaining application of inference rules together until only axioms were reached, or until all premisses are true under hypotheses. Various works use these inference systems to build proofs [START_REF] Pierce | Types and Programming Languages[END_REF][START_REF] Reynolds | Theories of Programming Languages[END_REF]. The denitions of this section are taken from [START_REF] Leroy | Coinductive big-step operational semantics[END_REF] which follows the presentation in [START_REF] Aczel | An introduction to inductive denitions[END_REF].

Chapter 4 and Chapter 5 dene modular type systems that can be extended with other type systems provided by databases. In order to prove properties on these systems, we manipulate inference systems as syntactic objects. Therefore, we next dene inference systems as syntactic objects. Denition 2.9 (Inference rule). Let U be a set of judgments. An inference rule is an ordered pair (A, c) where c is the conclusion of the inference rule and A ⊆ U is the set of its premises or antecedents. If A is empty, the inference rule is called an axiom. An inference rule is usually noted:

A c

Intuitively, the conclusion c is true if the premises A are true.

Denition 2.10 (Inference system). An inference system ranged over by Φ is a set of inference rules. Denition 2.11 (Derivation). A derivation (or proof tree) of a judgment c within an inference system is a tree of root node c whose nodes are labeled with judgments j n ∈ U and such that for every node n, its label j n and the labels A of its children correspond to an inference rule (A, c). A derivation is usually noted as a combination of inference rules: This also allows the framework to apply generic optimizations and verications on the queries before translation. This chapter formally denes the QIR and its semantics.

We want the QIR to be able to represent:

• Data and data structures from data sources, and operations to retrieve data from the data structures

• Data operations such as the operations of relational algebra

• Basic programming language features such as functions

• Host language expressions

Data operations cannot all be supported by the QIR. An important number of dierent operators are implemented eciently by data sources as a result of decades of expertise. Some operators may be very similar but present variations in their semantics in the dierent implementations given by databases. Similar approaches such as T-LINQ [START_REF] Cheney | A Practical Theory of Language-Integrated Query[END_REF] limit themselves to several important operators, and eort must be made to extend them to more operators. Instead, we design the QIR to allow databases to bring their own operators by interfacing them with the QIR via drivers. Thus, the QIR itself does not dene data operations, and the choice of which operators to support in BOLDR in case the databases do not is a distinct issue that we also cover in this chapter.

Syntax

In this section, we dene the syntax of our Query Intermediate Representation, a λ-calculus with recursive functions, constants, basic operations, data structures, data operators that represent data operations, and foreign language expressions. Denition 3.1 (QIR expressions). Given a countable set of variables I QIR , we dene the set of QIR expressions, denoted by E QIR and ranged over by q, as the set of nite productions of the following grammar:

q ::= x (variable) | fun x (x)→q (recursive function) | q q (application) | c (constant) | op (basic operation)
| if q then q else q (conditional expression)

| { l : q, . . . , l : q } (record)

| q q (record concatenation) | [] (empty list) | q :: q (list constructor) | q @ q (list concatenation) | q • l (record destructor)
| q as x :: x ? q : q (list destructor) | o q, . . . , q | q, . . . , q (data operator) | H (γ, e) (host language expression) where H is a host language as described in Denition 2.7.

Notation 3.1. We use the following syntactic shortcuts:

• fun f (x 1 , . . . , x n)→q stands for fun f (x 1)→(. . . (fun f (x n)→q))

• q (q 1 , . . . , q n) stands for (. . . (q q 1) . . .) q n

• [q 1 , . . . , q n] stands for q 1 :: . . . ::

q n :: [] • { l i : q i } i=1.
.n stands for { l 1 : q 1 , . . . , l n : q n }

• q 1 = q 2 stands for = q 1 , q 2 , and we use the same notation for all inx operators QIR expressions include the terms of the λ-calculus, The important additions to these mundane constructs are data operators and host language expressions. Data operators o q 1 . . . , q n | q 1 , . . . , q m represent data operations to be evaluated by a database. Their arguments are divided in two groups: the q i expressions are called congurations and inuence the behavior of the operator; the q i expressions are the sub-collections that are operated on. For instance, a Filter operator would have the lter function as conguration, the collection to be ltered as data argument. Finally, a host language expression H (γ, e) is an opaque construct that contains an evaluation environment γ and an expression e of the host language H. Their behavior is exactly the same as closures: during the translation from host language terms to QIR terms, a host language expression is closed together with the current host environment to be later executed, possibly by a remote runtime. The syntax of QIR is similar to the one of T-LINQ, but this addition of host language expressions simplies the translation of host programs to QIR since it can default to translating any expression of a host program to a host language expression of QIR. Optimally, the entire query should be translated to a QIR expression so BOLDR can apply optimizations, but even queries containing host language expressions will be successfully evaluated, although with consequences on performances as shown in Section 7.4.

: (R (γ, f)) (r • salary) } | Filter fun(r)→r • salary < 2500 | From D, "employee"
Example 3.5 is the same query as Example 3.4, except that the value associated with the label salary in the conguration of Project is the application of a host language expression that contains a function f written in the programming language R to the value associated with the label salary in the record given as argument of the conguration.

Example 3.6.

op fun(r)→r • id, true | From D, "employee" Example 3.6 shows a QIR query using a specic database operator named op applied to a function and a boolean as conguration, and to a data argument.

Example 3.7.

Filter (fun(x)→(fun(r)→r •salary < x)) (2500) | From D, "employee" Example 3.7 shows a Filter with a conguration that is an application returning a function. Denition 3.2 (Children of a QIR expression). The set of children of a QIR expression q, noted C(q), is dened as:

• C(x) = C(c) = C(op) = C([]) = C(H (γ, e)) = ∅ • C(fun f (x)→q) = {q} • C(q 1 q 2) = C(q 1
q 2) = C(q 1 :: q 2) = C(q 1 @ q 2) = {q 1 , q 2 } • C(if q 1 then q 2 else q 3) = C(q 1 as h :: t ? q 2 : q 3) = {q 1 , q 2 , q 3 } • C({ l i : q i } i=1..n) = C(o q 1 , . . . , q m | q m+1 , . . . , q n) = {q 1 , . . . , q n } Denition 3.3 (Pure QIR expression). A QIR expression q is pure if q ≡ H (γ, e) and ∀q ∈ C(q).q is pure. Thus, a QIR expression is pure if it does not contain any host language expression.

Denition 3.4 (Targeted databases). We say that a database D is targeted by a QIR expression q if there is at least one occurrence of From D, _ in the subexpressions of q. We note T(q) the set of databases targeted by q.

The notion of targeted database is purely syntactic. A database is targeted by an expression if it is the conguration of a From in the expression.

Basic semantics

In this section, we dene the semantics of the core calculus of QIR, which is the QIR without data operators and host language expressions. That is, we dene the semantics that can be dened independently of host languages and databases. Denition 3.5 (Values of QIR). We dene the set of values of QIR, noted V QIR , as the set of nite productions of the following grammar: (app-red1) q 1 → q 1 q 1 q 2 → q 1 q 2 (app-red2)

v ::= fun x (x)→q | c | op | { l : v, . . . , l : v } | [] | v :: v Denition 3.6 (Basic QIR semantics). Let → δ ⊆ E QIR × E QIR
q 2 → q 2 v 1 q 2 → v 1 q 2 (app-β) (fun f (x)→q 1) v 2 → {f → fun f (x)→q 1 , x → v 2 }q 1 (app-op) op v → δ q op v → q (if-red) q 1 → q 1 if q 1 then q 2 else q 3 → if q 1 then q 2 else q 3 (if-true)
if true then q 2 else q 3 → q 2 (if-false) if false then q 2 else q 3 → q 3 (rec-red)

q m → q m { l 1 : v 1 , . . . , l m-1 : v m-1 , l m : q m , . . . , l n : q n } → { l 1 : v 1 , . . . , l m-1 : v m-1 , l m : q m , . . . , l n : q n } (rconcat-red1) q 1 → q 1 q 1 q 2 → q 1 q 2 (rconcat-red2) q 2 → q 2 v 1 q 2 → v 1 q 2 (rconcat-rec) { l i : q i } i=1..m { l i : q i } i=m+1..n → { l i : q i } i=1..n (lcons-red1)
q 1 → q 1 q 1 :: q 2 → q 1 :: q 2 (lcons-red2)

q 2 → q 2 v 1 :: q 2 → v 1 :: q 2 (lconcat-red1) q 1 → q 1 q 1 @ q 2 → q 1 @ q 2 (lconcat-red2) q 2 → q 2 v 1 @ q 2 → v 1 @ q 2 (lconcat-lempty) [] @ v → v (lconcat-rempty) v @ [] → v (lconcat-lcons) (v 1 :: v 2) @ v 3 → v 1 :: (v 2 @ v 3) (rdestr-red) q → q q • l → q • l (rdestr-rec) { . . . , l : v, . . . } • l → v (ldestr-red)
q 1 → q 1 q 1 as h :: t ? q 2 : q 3 → q 1 as h :: t ? q 2 : q 3 (ldestr-empty)

[] as h :: t ? q 2 : q 3 → q 3 (ldestr-nonempty)

v 1 :: v 1 as h :: t ? q 2 : q 3 → q 2 (v 1 , v 1)

(dataop-conf) q k → q k o v 1 , . . . , v k-1 , q k , . . . , q m | q m+1 , . . . , q n → o v 1 , . . . , v k-1 , q k , . . . , q m | q m+1 , . . . , q n (dataop-data) q k → q k o v 1 , . . . , v m | v m+1 , . . . , v k-1 , q k , . . . , q n → o v 1 , . . . , v m | v m+1 , . . . , v k-1 , q k , . . . , q n Figure 3.1 QIR reduction rules
The result of record concatenation is a record containing all the labels of both records. Note that QIR only supports record concatenation between records which labels are strictly distinct.

Note also that the basic semantics of QIR is small-step semantics.

As an example, the expression (fun(x)→if x then 1 else 2) (not false) would be reduced as:

(fun(x)→if x then 1 else 2) (not false) → (fun(x)→if x then 1 else 2) true → if true then 1 else 2 → 1

Crucially, embedded host expressions as well as database operator applications whose arguments are all reduced are → -irreducible. It is the job of databases and application languages to evaluate these expressions. Thus, our examples of Section 3.1 are all irreducible since they are made of data operators and functions except for Example 3.7 which would be reduced as such:

Filter (fun(x)→(fun(r)→r • id < x)) (2500) | From D, "employee" → Filter fun(r)→r • id < 2500 | From D, "employee" using the (dataop-conf) rule with the (app-β) rule as premise. Therefore, the basic semantics does not reduce the data operators themselves, but it does reduce the arguments of data operators, thus allowing complex expressions in the arguments of data operators such as applications or conditional expressions.

We dened the semantics of the core calculus of QIR. Now, we dene its complete semantics including data operators and host language expressions.

Extended semantics

In Section 3.2, we gave the semantics of QIR, but omitting the semantics of data operators and host language expressions. In this section, we complete those semantics, and to do so we rst dene how to interface host languages and databases with QIR.

The external component that wants to interface with BOLDR has to be able to perform translations from QIR into their language, and from their language into QIR. To be precise, host languages must translate • QIR expressions to expressions of their query language

• values of their query language to QIR values Since we target dynamic host languages, expressions from host languages to be translated are associated with a runtime environment. For instance, take the R query of the example in Chapter 1: 13 subset(emp, salary >= minSalary * getRate("USD", cur), c(name))

This query does not make sense outside the proper environment since the variables emp, minSalary, getRate, and cur are all free in this expression. It can only have a meaning within an environment that associates these free variables to values. If the original program is correct, as it is in our example, then the runtime environment would indeed include those free variables in its domain when the translation of the query is triggered. The host language must then translate the expression using the runtime environment to a closed QIR term.

For instance, the result of the call: 16 richUSPeople = atLeast(2500, "USD") could be translated to:

(fun(emp, minSalary, getRate, cur)→ Project fun(x)→{name : x • name} | Filter fun(x)→x • salary ≥ minSalary * (getRate "USD" cur) | emp) (From PostgreSQL, "employee" , 2500, fun(rfrom, rto)→ . . . , "USD")

The translation of our query is wrapped in functions binding the free variables, then applied to the translation of the values associated to these variables, thus creating a closed QIR expression. As we can see in this example, this process creates convoluted queries that can be dicult to translate as is, we will see later in this chapter how BOLDR simplies these queries to make them easier to translate into database languages.

We now introduce the notion of driver, which denes a translation interface between a host language or a database and QIR. Denition 3.7 (Host language driver). Let H be a host language. A host language driver for H is a 3-tuple (H -→

EXP,

-→ VAL H , H -→ VAL) of total functions such that:

• H -→ EXP : 2 I H ×V H × E H → E QIR ∪ {Ω} takes an H environment and an H expression and translates the expression into QIR

• -→ VAL H : V QIR → V H ∪ {Ω} translates a QIR value into H • H -→ VAL : V H → V QIR ∪ {Ω} translates a H value into QIR
where the special value Ω denotes a failure to translate.

Denition 3.8. (Database driver) Let D be a database language. A database driver for D is a 3-tuple (

--→ EXP D , -→ VAL D , D -→ VAL) of total functions such that: • --→ EXP D : E QIR → E D ∪ {Ω} translates a QIR expression into D • -→ VAL D : V QIR → V D ∪ {Ω} translates a QIR value into D • D -→ VAL : V D → V QIR ∪ {Ω} translates a D value into QIR
where the special value Ω denotes a failure to translate.

A host language or database is required to dene a driver to interface with QIR. From this point, we refer to H and D respectively as the set of host languages and databases that are interfaced with QIR, so for which there exists a corresponding host language driver or database driver.

We are now equipped to dene the semantics of QIR terms, extended to host expressions and database operators.

Denition 3.9 (Extended QIR semantics). We dene the extended semantics γ, q γ , q of QIR by the following set of rules:

(ext-eval)

γ, e D →γ , v γ, eval D (e) γ , D -→ VAL(v) v =Ω (ext-host) γ ∪ γ , e H →γ , v γ, H (γ , e) γ , H -→ VAL(v) v =Ω (ext-database) --→ EXP D (q) = e γ, eval D (e) γ , v γ, q γ , v D ∈ D e = Ω v = Ω (ext-basic) q → q γ, q γ, q
where (ext-database) is always prioritized over (ext-basic).

Since QIR is an intermediate language from a host language to a database language, the evaluation of QIR terms is always initiated from the host language runtime. It is therefore natural for the extended semantics to evaluate a QIR term in a given host language environment. To allow the QIR evaluator to send queries to a database and translate the results back to QIR values, we dene a basic data operator eval D for each supported database language D ∈ D. This operator represents the evaluation of an expression from a database language into the corresponding database, and abstracts the low-level processing required to access that database. BOLDR makes use of eval D internally as we will see in

Chapter 6, but it can also be used to express queries directly written in a database language, either for debugging or optimization purposes. The evaluation of an expression by rule (ext-database) consists in (i) nding a database language in which this expression can be translated, (ii) use the database driver for that language to translate the QIR term to a native query, (iii) use the evaluation function of the database to evaluate the expression, and (iv) translate the results back into QIR. Note that the evaluation of an expression in a database could return a dierent host language environment, since host language expressions might appear in its subexpressions. For instance, recall our Example 3.5:

Project fun(r)→{ id : r • id, name : r • name, salary :

(R (γ, f)) (r • salary) } | Filter fun(r)→r • id < 2500 | From D, "employee"
If the database accepts host language expressions, then R (γ, f) is evaluated in the database runtime and returns a new host language environment γ that may be dierent from γ if side eects occur. The rule (ext-eval) bypasses the research of the correct database by evaluating directly the database expression e in eval D (e). We use this construct and this rule in Chapter 6. Host language expressions are evaluated by rule (ext-host) using the evaluation relation of the host language in the environment formed by the union of the current running environment and the captured environment. This allows us to simulate the behavior of most dynamic languages (in particular R, Python, and JavaScript) that allow a function to reference an undened global variable as long as it is dened when the function is called. Finally, if the QIR term is neither a database operator nor a host language expression, then the simple semantics of Denition 3.6 is used to evaluate the term with the rule (ext-basic).

With this extended semantics, we can now fully evaluate our Example 3.3: Filter fun(r)→r • id < 2500 | From D, "employee" Supposing the database D supports Filter and From, we are able to directly apply the data operator rule of .

As stated in Denition 3.9, the rules (ext-database) and (ext-host) are always prioritized over rule (ext-basic). For instance, recall Example 3.7:

Filter (fun(x)→(fun(r)→r • id < x)) (2500) | From D, "employee" From D, "employee" which returns the employees whose salary is greater than 2500. We could either use (ext-database) to translate the entire query to D, assuming the database supports everything in this query, or (ext-basic) to reduce the conditional expression.

Choosing (ext-database) is the correct choice here, since this entire query can be translated to a single D query, it would therefore be suboptimal to evaluate the conditional expression of the conguration of Filter in the runtime of QIR.

Giving priority to the rule (ext-host) is a best-eort addition which allows us to avoid problems in semantics by evaluating host language expressions as soon as possible. For instance:

(fun(x)→x+x) (R (γ, print(2); 2)) would be reduced using rule (app-β) to:

(R (γ, print(2); 2))+(R (γ, print(2); 2))

in which the host language expression has been duplicated which we absolutely do not want, since we changed the semantics by executing the side eects (here printing a value) twice. But if we execute the host language expression rst, then we get the desired results of printing 2 once, then return 4.

A default database language: MEM

Ideally, we will translate all QIR expressions to expressions of database languages. However, parts of QIR expressions might be impossible and/or inecient to translate and evaluate in databases. This can happen for dierent reasons. For instance, consider the query of Example 3.8.

Example 3.8.

Join fun(x, y)→x y, fun(x, y)→true | From HBase, "employee" , From HBase, "team"

This query uses the Join operation of relational algebra described in Section 1.2, and applies it on two tables provided by an HBase database. Since HBase does not support Join, this query is not translatable to a HBase query. Only the two From subexpressions are translatable. Even a query referring only to data operators supported by its targeted database may contain subexpressions impossible to translate, as we can see in Example 3.9.

Example 3.9.

Project fun(r)→r {treated : true} | From HBase, "employee" Although HBase supports Project, it can only apply it to simple predicates, so the Project of Example 3.9 is not translatable into the query language of HBase.

Another reason that would make an expression untranslatable is if several databases are targeted. For instance, consider the query of Example 3.10.

Example 3.10.

Join fun(x, y)→x y, fun(x, y)→true | From D, "employee" , From D , "team" This query uses Join on two tables provided by two dierent databases D and D . Neither D nor D is able to translate this expression since they are unable to access the data stored in the other database.

The solution to this problem is to have a default implementation of data operators. To that end, we dene a default database that supports some important data operators. This database is dubbed MEM for in-memory evaluation. MEM directly uses QIR as its database language. MEM supports the operators Filter, Project, and Join dened as plain QIR recursive functions. This constitutes a rst attempt at dening a core set of operators that are always supported by BOLDR, whether or not there are drivers interfaced with the framework that support these operators.

The denition of the set of supported database operators is an important design choice. It should be broad enough so host languages users do not have to re-implement operators, and generic enough so they can write generic queries and so that translating queries from QIR into a database language stays manageable.

Thus, the choice to support an operator or not can be dicult to make, as an operator may be specic to a particular data model (e.g., computing the transitive closure in a graph database); or generic enough but not natively supported by some back-ends (NoSQL databases usually do not support join operations).

Project, Filter, and Join are very common operations that we use as a starting point in our formal developments. Denition 3.10 (MEM database language). The MEM language MEM = (E MEM , V MEM , MEM →) is dened by:

• E MEM = E QIR • V MEM = V QIR • MEM → is the extended semantics of the QIR (relation in Denition 3.9)
The values of MEM do not include data operators, since they must be evaluated or return an error if unsupported, nor does it include host language expressions that must be evaluated using the evaluation function of the corresponding host language. We now complete the semantics of the MEM database language with the denition of a driver for MEM.

Denition 3.11 (MEM driver). The driver for the MEM database language is the 3-tuple (--→ EXP MEM , -→ VAL MEM , MEM -→ VAL) of total functions such that:

• -→ VAL MEM : V QIR → V MEM ∪ {Ω} is the identity function.

• MEM -→ VAL : V D → V QIR ∪ {Ω} is the identity function.

• --→ EXP MEM (q) : E QIR → E MEM is dened by case as

If q = Filter f | l , then
(fun filter (l)→l as h :: t ? if f h then h ::

(filter t) else (filter t) : []) l Else if q = Project f | l , then
(fun project (l)→l as h :: t ? (f h) ::

(project t) : []) l Else if q = Join f 1 , f 2 | l 1 , l 2 , then (fun join (l)→Project f 1 | l as h 1 :: t 1 ? (Project fun(h 2)→h 1 h 2 | Filter f 2 h 1 | l 2) @ (join t 1) : []) (l 1)
Else if q = o q 1 , . . . , q m | q m+1 , . . . , q n , then Ω Else q

The denition of the operators supported by MEM is a generalization of the relational algebra semantics described in Section 1.2. Filter f | l is implemented as a recursive function that iterates through an input list l and keeps elements for which the input predicate f returns true. Project f | l (also known as map to functional programmers) applies the function f to every element of l and returns the list of the outputs of f . Lastly the Join f 1 , f 2 | l 1 , l 2 operator is dened as a double iteration which tests for each record element h 1 of l 1 and each record element h 2 of l 2 if the pair h 1 , h 2 satises the join condition given by the function f 2 , then the two records are concatenated and added to the result. Finally, the function f 1 is applied to every element to obtain the nal result. For simplicity, we express Join in terms of Project and Filter, but we could have given a direct denition.

3.5 QIR normalization

Motivation

Translation from QIR into database languages might lead to suboptimal query generation. In particular, if some parts of a query cannot be translated, their results have to be transferred into the QIR runtime, and processed there.

The usual answer to this problem is to normalize the query, by applying rewriting rules on the intermediate representation. For instance, consider the term from Example 3.11.

Example 3.11.

(fun(a, b)→Join fun(x, y)→x y, fun(x, y)→x

• id = y • id | a, b) (From PostgreSQL, "people" , From PostgreSQL, "dept")
Using directly a translation into SQL that does not handle anonymous functions, we would obtain the term:

(fun(a, b)→Join fun(x, y)→x y, fun(x, y)→x

• id = y • id | a, b) (eval PostgreSQL (SELECT * FROM PEOPLE), eval PostgreSQL (SELECT * FROM DEPT))
which is suboptimal. Indeed, although they target the same database, the two From subqueries are evaluated separately and worse, the Join is performed in main memory. Therefore, not only do we attempt to transfer the entire data from the tables PEOPLE and DEPT in the application, we use a less ecient version of Join to perform the query even though PostgreSQL could evaluate the entire query eciently by itself. However, if we apply the β-reduction before translating, the query becomes:

Join fun(x, y)→x y, fun(x, y)→x • id = y • id | From PostgreSQL, "people" , From PostgreSQL, "dept" which can then be translated to a single SQL query:

SELECT * FROM PEOPLE AS x INNER JOIN DEPT AS y ON x.id = y.id A naive solution implemented by the semantics of Denition 3.9 is to alternate between translating the expression and applying one step of reduction to the term.

Obviously, this solution is not ideal as it makes several attempts at translating.

Another naive solution is to attempt to reduce the term as much as possible, which leads to two problems. First, a QIR term may diverge, as we cannot guarantee the termination of the reduction, in particular if the expression contains the application of a recursive function. Second, a reduction may duplicate some data operators, thus making the query less ecient. For instance, consider the QIR function:

fun(a)→Join fun(x, y)→x y, fun(x, y)→x

• age < y • age | a, a
Given a collection a, the function performs a self join on a (nding pairs of elements of a such that the second one is older than the rst). Applying the beta-reduction gives us two dierent outcome depending on the targeted database. If we apply this function to a table from a database that supports the Join operator, such as From PostgreSQL, "people" , then reducing is benecial, since it produces a whole Join query that can be sent to the database: (fun(a)→Join fun(x, y)→x y, fun(x, y)→x

• age < y • age | a, a) (eval PostgreSQL (SELECT * FROM PEOPLE))
However, if we apply this function to a table from a database that does not support the Join operator, such as From HBase, "people" , then it is better not to apply the beta-reduction that would duplicate the argument, which would send two queries to HBase, since the join has to be evaluated in-memory anyway:

(fun(a)→Join fun(x, y)→x y, fun(x, y)→x

• age < y • age | a, a) (eval HBase (scan 'people')) instead of:
Join fun(x, y)→x y, fun(x, y)→x • age < y • age | eval HBase (scan 'people'), eval HBase (scan 'people') Therefore, we have to nd a middle ground between trying to fully reduce the term and yield the most translatable term but risk diverging, and translating the term without any preliminary reduction at the risk of introducing query avalanches.

Reduction relation for the normalization

As stated earlier, we want to use the reduction relation → of Denition 3.6 as the reduction relation for the normalization. We cannot use the relation since we do not want to reduce data operators or host language expressions that must be evaluated by the databases.

However, as explained in Section 3.3, using → directly would cause us problems in QIR expressions that contain applications to host language expressions, as it could lead to a duplication of side eects. Therefore, we restrict the βreductions our normalization can perform to applications that does not contain host language expressions in their argument, thus avoiding the problematic cases.

Additionally, we want to add a rule to reduce the body of functions, which allows for more queries to be translatable into database languages. For instance, consider this QIR expression:

Filter fun(r)→(fun(x)→r • salary > x) (2500) | From D, "employee" Again, this is not translatable in most databases languages because of the application of an anonymous function. We cannot reduce this expression using → . Reducing the body of QIR functions allows us to reduce this expression to:

Filter fun(r)→r • salary > 2500 | From D, "employee" Therefore, we dene a new reduction relation for the normalization, and its normal forms.

Denition 3.12 (QIR normal form). A QIR expression q is a normal form of the QIR, ranged over by v, is denoted by the judgment NF q which is inferred by the rules:

NF x NF v NF fun f (x)→v NF v 1 NF v 2 NF v 1 v 2 v 1 ≡ fun f (x)→v v 1 ≡ op NF v 1 NF v 2 NF (fun f (x)→v 1) v 2 v 2 not pure NF c NF op NF H (γ, e) NF v 1 NF if v 1 then v 2 else v 3 v 1 = true v 1 = false NF { l i : v i } i=1..n NF v 1 NF v 2 NF v 1 v 2 v 1 ≡{ l i : v i } i=1..n or v 2 ≡{ l i : v i } i=1..n NF [] NF v 1 NF v 2 NF v 1 :: v 2 NF v 1 NF v 2 NF v 1 @ v 2 v 1 ≡ [v 1 , . . . , v n] v 2 ≡ [] NF v NF v • l v ≡{ l i : v i } i=1..n NF v 1 NF v 1 as h :: t ? v 2 : v 3 v 1 ≡[v 1 ,...,v n] NF v 1 . . . NF v n NF o v 1 , . . . , v m | v m+1 , . . . , v n For instance, 2, fun(x)→2, if x then 1 else 2, x • name, and
Filter fun(x)→x•teamid = 2 | From D, "employee" are in normal form, but fun(x)→if true then x else x, and From D, concat ("mySchema.", "employee")

are not.

We use Denition 3.12 for the denition of a normal form rather than the usual denition from the λ-calculus to handle cases such as: fun(x)→((if Filter . . . | . . . then fun(y)→y else fun(y)→y * 10) (x))

Indeed, since data operators are values for the normalization, normalized expressions can include data operators which could return any type of value.

Denition 3.13 (Normalization reduction relation). The reduction relation

of QIR expressions → ⊆ E QIR × E QIR is dened as: (norm-app-β) NF v 2 (fun f (x)→q 1) v 2 → {f → fun f (x)→q 1 , x → v 2 }q 1 v 2 pure (norm-fun-red) q → q fun f (x)→q → fun f (x)→q (norm-qred) q → q q → q q ≡ (fun f (x)→q 1) v 2 v 2 pure normal form
where the rules are prioritized following their order of denition.

As required for the reasons stated earlier, → only applies a β-reduction if its argument is not a host language expression. This is done by replacing the (app-β)

rule with a (norm-app-β) rule. Additionally, it includes a rule (norm-fun-red) that allow us to apply reductions in function bodies.

Our normalization relation has the property of progress.

Lemma 3.1. Let q ∈ E QIR . Either q is in normal form, or ∃q .q → q .

Proof. By case analysis on q:

• If q = x, then q is in normal form.

• If q = fun x (x)→q 1 , then either q 1 is in normal form, in which case q is in normal form; or q 1 → q 1 , in which case rule (norm-fun-red) applies.

• If q = q 1 q 2 , then either q 1 ≡ fun x (x)→q 3 and q 2 is in normal form and pure, in which case rule (norm-app-β) applies;

q 1 ≡ fun x (x)→v and q 2 are in normal form and q 2 is not pure, in which case q is a normal form;

q 1 ≡ op and q 2 are in normal form, in which case rule (app-op) applies;

or q 1 ≡ fun x (x)→v or op and q 2 are in normal form, in which case q is in normal form;

or either q 1 or q 2 is not in normal form, in which case rules (app-red1) or (app-red2) apply.

The complete proof can be found in Appendix B, page 187.

As usual, since our normalization relation is deterministic, it immediately follows that the normal form of a QIR expression is unique when it exists.

However, a normal form does not necessarily exist, with the classic example of (fun(x)→x x) (fun(x)→x x).

Now that we have a reduction relation for the normalization, we next see how to apply it in a way that guarantees termination.

A measure for good queries

To use our → relation in a way that ensures termination, we dene a measure that indicates how much a query is translatable to database languages. This measure allows us to guide the normalization by verifying our reduction steps are actually useful in making the query more translatable.

To know if a query is better suited for translation than another, we count data operators of an expression that can be translated into a database language.

Denition 3.14 (Compatible data operator application). Let D be a database language. A QIR data operator application o q 1 , . . . , q n | q 1 , . . . , q m is compatible with

D if --→ EXP D (o q 1 , . . . , q n | q 1 , . . . , q m) = Ω.
For instance, recall the query from Example 3.7:

Filter fun(r)→(fun(x)→r

• salary > x) (2500) | From D, "employee"
This query uses an application of the operator Filter that is not compatible with the database D if it cannot translate the application of an anonymous function. In this case, reducing the application in the normalization and therefore making the Filter translatable, would reduce the number of incompatible data operator applications in the query, which is a measurable quantity showing that the reduction is benecial. Denition 3.15 (Measure). Let q ∈ E QIR be a QIR expression, we dene the measure of q by the database D as

M D (q) = |Op(q) \ Comp D (q)|
where Op(q) is the set of data operator applications in q and Comp D (q) is the set of data operator applications in q that are compatible with D.

This measure works as follows. During a step of reduction of a term q into a term q , q is considered a better term if the number of incompatible data operator applications strictly decreases. We now go through a few examples.

Consider the query q from Example 3.7:

Filter fun(r)→(fun(x)→r • salary > x) (2500) | From D, "employee" that can reduce to q : Filter fun(r)→r • salary > 2500 | From D, "employee" Depending on D, we have three possible cases:

1. D does not support Filter, in which case reducing is useless, and indeed we have

M D (q) = 2 -1 = 1 and M D (q) = 2 -1 = 1
2. D supports Filter, but does not support the conguration of Filter (e.g.

it does not support the creation and/or application of an anonymous userdened function), in which case reducing is benecial, and indeed we have

M D (q) = 2 -1 = 1 and M D (q) = 2 -2 = 0
3. D supports both Filter and its conguration, in which case reducing is useless, and indeed we have M D (q) = 2 -2 = 0 and M D (q) = 2 -2 = 0

Recall the query q from the beginning of Section 3.3:

(fun(emp, minSalary, getRate, cur)→

Project fun(x)→{name :

x • name} | Filter fun(x)→x • salary ≥ minSalary * (getRate "USD" cur) | emp) (From PostgreSQL, "employee" , 2500, fun(rfrom, rto)→BODY, "USD") BODY = (fun(change)→if rf rom = rto then 1 else Project fun(x)→{rate : x • rate} | Filter fun(x)→x • cf rom = rf rom && x • cto = rto | change) (From PostgreSQL, "change") richUSPeople = atLeast(2500, "USD")
for which M D (q) = 6 -0 = 6 counting the query in getRate because even the Froms contain free variables.

After reductions we get q :

Project fun(x)→{name : (fun(emp, minSalary, getRate, cur)→

x • name} | Filter fun(x)→x • salary ≥ 2500 | From PostgreSQL, "employee" for which M D (q) = 3 -3 = 0.
Project fun(x)→{name :

x • name} | Filter fun(x)→x • salary ≥ minSalary * (getRate "USD" cur) | emp)
(From PostgreSQL, "employee" , 2500, fun(rfrom, rto)→BODY, "EUR") BODY = (fun(change)→if rf rom = rto then 1 else Project fun(x)→{rate :

x • rate} | Filter fun(x)→x • cf rom = rf rom && x • cto = rto | change) (From PostgreSQL, "change")
for which also M D (q) = 6 -0 = 6. And the reduction q : Project fun(x)→{name :

x • name} | Filter fun(x)→x • salary ≥ 2500 * (Project fun(x)→{rate : x • rate} | Filter fun(x)→x • cf rom = "USD" && x • cto = "EUR" | From PostgreSQL, "change") | From PostgreSQL, "employee"
for which M D (q) = 6 -6 = 0.

Consider now the query q from Example 3.12.

Example 3.12.

Project fun(r)→(fun(x)→{result

: x}) (r • id) | Filter fun(r)→r • id < 2500 | From D, "employee"
Suppose that D supports all three operators but not anonymous functions, then M D (q) = 3 -2 = 1 since only Project is not compatible. However, if D does not support Filter, then M D (q) = 3 -1 = 2. After reduction, we get q : Project fun(r)→{result : r

• id} | Filter fun(r)→r • id < 2500 | From D, "employee"
for which M D (q) = 3 -3 = 0 if Filter is supported, making the reduction useful, and M D (q) = 3 -1 = 2 otherwise, making the reduction useless. Indeed, making the conguration of Project compatible does not help here, since the Filter and thus the Project would still be untranslatable.

We have yet to dene how the normalization knows which database measure to choose for the normalization of a QIR term, especially in the case where multiple databases are referenced in the QIR term.

Generic measure

The measure we dened in Denition 3.15 is relative to a database D. Therefore, using it on a simple query that targets only one database D and is completely translatable into the language of the database is straightforward as the measure to use is then obviously M D (). In other cases however, we can have several dierent databases executing dierent parts of the query, and in that case we want to make the dierent measures cooperate with one another.

Denition 3.16 (Generic measure). Let q ∈ E QIR , we dene the generic measure of q as:

M (q) = M D (q) if T(q) = {D}, D = MEM M (q) = 1 + q i ∈C(q) M (q i) if q ≡ o q 1 , . . . , q m | q m+1 , . . . , q n M (q) = q i ∈C(q) M (q i)
otherwise Thus, the generic measure of an expression q is the number of data operator applications that are not compatible with a database dierent of MEM.

For instance, on our query q from Subsection 3.5.3:

(fun(a)→Join fun(x, y)→x y, fun(x, y)→x • age < y • age | a, a) (From D, "people") we get M (q) = 1 since the Join has no targeted database. As for its reduction q : Join fun(x, y)→x y, fun(x, y)→x • age < y • age | From D, "people" , From D, "people" we would get M (q) = M D (q) = 0 if Join is supported by D, which signies the reduction is useful as expected, or if Join is not supported, then M (q) = M D (q) = 1 which indicates that the reduction is not useful as expected.

Recall the query q of Example 3.12:

Project fun(r)→(fun(x)→{result

: x}) (r • id) | Filter fun(r)→r • id < 2500 | From D, "employee"
Suppose that D supports all three operators but not anonymous functions, then M (q) = M D (q) = 1 since only Project cannot be translated. However, if D does not support Filter, then M (q) = M D (q) = 2. After reduction, we get q :

Project fun(r)→{result : r • id} | Filter fun(r)→r • id < 2500 | From D, "employee"

for which M (q) = M D (q) = 0 if Filter is supported, making the reduction useful, and M (q) = M D (q) = 2 otherwise, making the reduction useless. Indeed, making the conguration of Project compatible does not help here, since the Filter and thus the Project would still not be compatible.

As a last example, consider the following query:

Project fun(x)→{r : A} | From D, "employee" which applies a Project on table employee where A is the following QIR expression:

A = (fun(y)→Filter fun(z)→z • teamid = y | From D, "team") (x • teamid)
If we assume that the database can handle every operator, but cannot translate the application of an anonymous function, then the Project would be executed in MEM since it could not be translated to the language of the database, which involves, in this case, the translation then evaluation in the database D of the Filter for every row of table employee. In other words, if table employee contains a million rows, we would send a million queries to the database. This problem is known in the literature as query avalanche [START_REF] Grust | Avalanche-Safe LINQ Compilation[END_REF].

However, this problem disappears if we are able to merge our subqueries together. After a step of reduction, the query would become:

Project fun(x)→{r : Filter fun(z)→z

• teamid = x • teamid | From D, "team" } | From D, "employee"
which can be completely translated to the language of D since the application disappeared.

The good news is that our measure nds the normalization useful. We get M (q) = M D (q) = 4 -3 = 1 for the query before reduction since only Project is not compatible, and M (q) = M D (q) = 4 -4 = 0 for the query after reduction, thus marking the reduction as indeed useful.

Therefore, in some cases, the normalization allows us to evaluate queries very eciently by avoiding query avalanches altogether. Obviously, the normalization would not be able to save us in every case, in particular if the two From target dierent databases, or if the database does not support Project.

Heuristic-based normalization

A reduction might not have a positive impact right away on the translation, but lead to a better query after more steps of reduction. As mentioned before, we cannot just explore indenitely every path of reduction, as this process might not terminate. Therefore, to generate a more ecient translation while ensuring termination, we create a heuristic-based normalization procedure which uses the generic measure of Denition 3.16 as a guide through the reduction of a QIR term.

To dene our heuristic, we rst dene the set of possible reductions of a QIR expressions:

Denition 3.17 (Set of possible reductions of a QIR expression). The set of possible reductions of a QIR expression q, noted Reds (q), is dened as the set of expressions q such as q → q . For instance, our query from Example 3.7:

Filter fun(r)→(fun(x)→r

• salary > x) (2500) | From D, "employee"
is reduced to a normal form for the normalization in only one step.

function hnorm(q, φ) { if φ = 0 then return error else { for each q' in Reds (q) do { if M (q') < M (q) then return hnorm(q', φ max) else { q'' <-hnorm(q', φ -1) if q'' = error then return q'' } } } return q } Filter fun(r)→(fun f (x)→f x) (2500) | From D, "employee"

The heuristic-based normalization would attempt a nite number of times (the value of its fuel) to reduce the application in the conguration with no improvement on the measure M D (), therefore the normalization terminates and returns the query after no reduction step. Some practical choices impact the eectiveness of the heuristic such as choosing which reduction rule to apply at each step (e.g., choosing those with more arguments), or which maximum number of steps to use. Experiments for both points can be found in [START_REF] Vernoux | Design of an intermediate representation for query languages[END_REF], where a similar measure of good QIR terms as our measure from Denition 3.15 is dened to create a heuristic-based normalization, and where it is showed that the normalization represents a negligible fraction of the execution time of the whole process compared to tasks such as parsing, or exchanges on the network with databases. However, in that work, queries are limited to one targeted database, and the denition of a compatible data operator application is based on syntactic considerations on the name and the shape of the congurations of the data operator application.

There is one case where our measure makes the normalization apply reductions on fully translatable queries: because it is based on data operators, if an expression does not have a data operator at its root, the measure may consider a reduction useful even though it is unnecessary in the viewpoint of the translation to database languages.

For instance, take the last query q from Section 3.5.1:

(fun(a)→Join fun(x, y)→x y, fun(x, y)→x • age < y • age | a, a) (From D, "people") and its reduction q : Join fun(x, y)→x y, fun(x, y)→x • age < y • age | From D, "people" , From D, "people" M (q) = M D (q) = 2 -1 = 1. Indeed, there are two operators Join and From, and only From is compatible. As for M D (q), if Join is compatible, then M (q) = M D (q) = 3 -3 = 0 thus making the reduction useful, but if Join is not compatible, then M (q) = M D (q) = 3 -2 = 1 thus making the reduction useless. This result does not depend on whether or not the database D can translate the application. Indeed, if the database supports the application and Join, then the entire query can be translated into the language of D without the help of the normalization. However, the measure considers the reduction useful if the database supports Join with no consideration for the application. Thankfully, this specic case of false positive is not an issue in practice: even though some databases may allow the creation of user-dened functions in their language, they are much more ecient at handling UDF-free queries as we show in our results in Chapter 7.

Additionally, our denition of compatible data operator application calls the translation of expressions dened in the driver of the database on every operator, and to repeat this after every reduction step could become costly. But in practice, using a cache mechanism makes these translations mostly trivial as our experiments and those of Vernoux [START_REF] Vernoux | Design of an intermediate representation for query languages[END_REF] conrm. We show in Section 6.4 that we can avoid these calls to translations altogether under some conditions.

53

Chapter 4

QIR type system

Creating a type system for the QIR would be straightforward if it was not for data operators and host language expressions since all of our other constructions are well-known and type systems have already been designed for languages that includes them [START_REF] Church | A formulation of the simple theory of types[END_REF][START_REF] Barendregt | Handbook of logic in computer science[END_REF][START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF]. Host language expressions can contain any type of expression, including any kind of side eects, which makes them dicult to classify into types. Although it would be possible to type some class of host language expressions that contain only some types of side eects [Wad95, NN99],

we do not type host language expressions in this thesis. As for data operators, as explained in Chapter 3, we made the choice to let the databases provide their own operators. In other words, the behavior of a data operator depends on the database executing it. Therefore, to create a type system for QIR, we have to give a QIR expression a type that makes sense for a database. To achieve this, we dene specic type systems for databases which give a type to QIR expressions that are compatible with the corresponding database, and a generic type system which uses the specic type systems to type as much as possible of QIR expressions for databases (other than MEM). This design also allows for extensions to new databases by integrating new specic type systems to the generic type system. Which brings us to our most important reason to design a type system for QIR, it tells us which query languages each subexpression should be translated into: if an expression can be typed using a specic type system, then it can be translated into the query language of the corresponding database. This property is very useful to us since it gives BOLDR a way to know which database should take care of which parts of the query. In particular, we put this information to use in Chapter 6 for the translation from QIR into query languages.

Our second reason is to detect errors in QIR expressions before their evaluation which is usually the main motivation for a type system in a programming language. In our case, this early detection is very interesting since the evaluation of a query comes with, in the worst-case scenario, the costs of optimizing, translating, sending the dierent subqueries to the databases, waiting for the dierent subqueries to complete, translating and sending back the results to QIR, and nally realize that there is an error at the execution of the remains of the query in MEM. Detecting errors before the translation of queries into QIR allows us to inform the programmer of the error immediately, even if the query originates from a dynamically typed programming language.

A third reason is that it allows us to prove interesting properties on our evaluation of queries. In particular, we show in this chapter that the normalization of Section 3.5 preserves the type of the QIR expression it is applied to, and that its reduction always terminates on well-typed expressions that do not contain recursive functions. Additionally, we discuss the possibility of detecting where the normalization is guaranteed to be useful in Section 6.4.

In this chapter, we dene a generic type system for QIR which gives a type to any QIR expression. To achieve this, we also dene specic type systems for databases which give a type to QIR expressions that are compatible with the corresponding database. We then dene specic type systems for MEM and SQL, and deduce useful properties for typeable QIR expressions.

QIR types

First, we dene types for all the constructs of our QIR.) is the set of its labels {l 1 , . . . , l n }.

R = {l 1 : T 1 , . . . , l n : T n } noted dom(R
QIR expressions either have a basic type such as bool or int, a → type that represents function types, a list type, or a record type. For instance, the function fun(x)→not x that takes a boolean and returns its negation should be given the type bool → bool, and the type {id : int} list is the type of QIR expressions that represent lists of records containing exactly one eld named id associated to an expression of type int.

Notation 4.1. We use the following syntactic shortcuts:

• {l i : T i } i=1..n stands for {l 1 : T 1 , . . . , l n : T n } • T 1 → T 2 → T 3 stands for T 1 → (T 2 → T 3)
Classically, → is right-associative which allows us, as explained in Section 3.1, to talk about functions with multiple arguments easily. For instance, int → int → int is equivalent to int → (int → int).

A very important feature of databases is exible operations on records. When a data operator is applied, it allows data to contain more information than needed.

For instance, consider this query in SQL:

SELECT e.name FROM employee

This query applies the Project operator on a table employee and for each row returns a row containing only the name. However, a row from the table employee may contain more than just the column name. We want to create a type system that reects this feature.

For instance, a record { id : 1, name : "Maggie" } should be given the type {id : int, name : string}, however we want to be able to apply this record to Project fun(r)→{id : r • id} | . . . which conguration could have the type {id : int, name : string} → int, but its most natural type would be {id : int} → int. Therefore, our type systems have to be able to talk about the relation between these record types. One solution to this problem is to extend our record types to polymorphic record types [START_REF] Wand | Complete type inference for simple objects[END_REF][START_REF] Rémy | Type checking records and variants in a natural extension of ml[END_REF]. This type of solution would give the expression fun(r)→r • id the type {id : int, ρ}, where ρ is a row variable that represents the fact that the record type is extensible to more labels and can be instantiated to the type {id : int}, or {id : int, name : string}, or any other record type that contains at least the label id associated to the type int. However, this solution complexies the type system substantially. Instead, we apply another solution which is to dene a subtyping relation between our types [START_REF] Cardelli | A semantics of multiple inheritance[END_REF][START_REF] Cardelli | Structural subtyping and the notion of power type[END_REF].

Denition 4.4 (Subtyping relation). The subtyping relation for QIR, noted

, is dened as:

• B 1 B 2 i B 1 = B 2 • T 1 → T 2 T 3 → T 4 i T 3 T 1 and T 2 T 4 • T 1 list T 2 list i T 1 T 2 • {l i : T i } i=1..n
{l j : T j } j=1..m i for all j ∈ 1..m there exists i ∈ 1..n such that l i = l j and T i T j

We say that a type T 1 is a subtype of a type T 2 if T 1 T 2 , and that it is a supertype of a type T

3 if T 3 T 1 . Denition 4.5 (Strict subtype). A QIR type T 1 is a strict subtype of a QIR type T 2 , noted T 1 ≺ T 2 , if and only if T 1 T 2 and T 1 = T 2 .
Our denition of the subtyping relation is standard. It is covariant in list types and in the output type of function types, and contravariant in the input type of function types.

A record type R 1 is a subtype of another record type R 2 if every label of R 2 is present in R 1 , and if types associated to those labels in R 1 are themselves subtypes of the ones in R 2 . For example, we have {id : int, name : string} {id : int}, and {id : int, rest : {name : string}} {id : int, rest : {}}. The idea is that we want to be able to give records their natural type, but also all of its supertypes.

For instance, we want to be able to give our example { id : 1, name : "Maggie" } the type {id : int, name : string}, but also {id : int}, and even {}. This idea, that comes from object-oriented programming, reects the intuition that if some expression is expected to be of a certain type, then any subtype should work as well. Going back to our example fun(r)→r • id, we can now give this function the type {id : int} → int, and use the subtyping relation on the argument to make the application correct.

As usual, the subtyping relation is reexive and transitive, properties that will be useful later. Proof. By induction on the structure of T 1 :

• If T 1 ∈ B then T 1 = T 2 and T 2 = T 3 . • If T 1 = T 1 → T 1 then T 2 = T 2 → T 2 and T 3 = T 3 → T 3 , and T 2 T 1 , T 1 T 2 , T 3 T 2 , T 2 T 3 , so by induction hypothesis T 3 T 1 and T 1 T 3 which gives us T 1 → T 1 T 3 → T 3 .
• If T 1 = T 1 list then T 2 = T 2 list and T 3 = T 3 list, and T 1 T 2 and T 2 T 3 , so by induction hypothesis T 1 T 3 which gives us T 1 list T 3 list.

• If T 1 = {l i : T i } i=1..n then T 2 = {l j : T j } j=1..m and T 3 = {l k : T k } k=1..l ,
and for all k ∈ 1..l there exists j ∈ 1..m such that l j = l k and T j T k , and for all j ∈ 1..m there exists i ∈ 1..n such that l i = l j and T i T j . Therefore, by induction hypothesis, for all k ∈ 1..l there exists i ∈ 1..n such that l i = l k and T i T k .

This completes our denition of QIR types. In the next section, we dene our QIR type systems.

QIR type systems

As explained earlier, BOLDR supports queries that target several databases at once, and allows databases to propose their own data operators with their semantics. Additionally, BOLDR has to be seamlessly extendable to new databases.

For these reasons, we require databases to dene a type system that gives a type to QIR expressions they support. This gives BOLDR information on which expressions can be translated into the query language of a database, and in particular which data operators are supported by the database. We call these type systems specic type systems.

Denition 4.6 (Specic type system). A specic type system of a database D denoted by the judgment Γ D q : T is a type system relation between a QIR typing environment Γ, a QIR term q, and a QIR type T . Now that every database interfaced with BOLDR provides its type system for QIR, we dene a global type system that makes use of specic type systems. Its goal is to type as much of the QIR expressions as possible using the specic type systems of databases other than MEM to achieve our goal explained in Chapter 1 to execute as much of the queries in databases. We call this global type system our generic QIR type system.

Denition 4.7 (Generic QIR type system). A QIR term q has a type T for the database D derivable from a QIR type environment Γ in the generic QIR type system, noted Γ q : T, D. The set of inference rules used to derive this judgment is:

∀q i ∈ C(q).Γ q i : T i , D i Γ D q : T Γ q : T, D {D i } = {D, MEM} D = MEM Γ D From D, _ : T Γ From D, _ : T, D D =MEM Γ MEM q : T Γ q : T, MEM
We make two important design choices in our generic type system. First, the only case in which we initiate the process of calling the specic type systems is if we encounter a From operator. The rationale for this is that only this operator designates a database as the only possible target of the query.

Our second design choice can be seen in the rst rule of the generic type system: we call the specic type system of a database D = MEM on an expression only if its children have a type for D or MEM. Indeed, in that case, the only two databases that could be the target database for the expression are D or MEM.

The default case, if the expression could not be entirely typed by the specic type system of D, represented by the last rule, attempts to type the expression using the specic type system for MEM that we describe later in this section.

The reason why we do not require all the children to have a type for D is that, because of our rst design choice explained earlier, a subexpression typed for MEM does not necessarily imply that the whole expression cannot be typed for other databases. In fact, most congurations of data operators are typed for MEM. To illustrate this, recall Example 3.3 from Chapter 3:

Filter fun(r)→r • id < 2500 | From D, "employee"

Using the rst rule of our generic type system, the conguration fun(r)→r • id < 2500 is typed for MEM, and the data argument From D, "employee" is typed for D. Finally, if the database supports Filter, the specic type system of D can give a type to the entire expression, and thus the generic type system can type the expression for D as desired.

Our generic type system can type queries targeting multiple databases. For instance, recall the query of Example 3.10:

Join fun(x, y)→x y, fun(x, y)→true | From D, "employee" , From D , "team"

where D and D are two distinct databases that are not MEM. The generic type system then types the two dierent data arguments for D and D , which means the only applicable rule is then the last one which types the Join for MEM.

to complete the generic type system, we dene a specic type system for MEM.

Denition 4.8 (Specic MEM type system). The specic type system of MEM noted MEM is derived by the rules of Figure 4.1.

The specic type system of MEM is very broad, as all QIR expressions except data operators can be evaluated in MEM. As seen in Section 3.4, the data operators supported by MEM are Project, Filter, and Join.

We assume the existence of a function typeofC which gives the type of a constant c. We also assume the existence of a function typeofOP which returns all the possible types for a basic operator. For instance, typeofOP(=) = {int → int → bool, string → string → bool, . . .}.

The record concatenation is typed successfully only if applied to two records which labels are strictly distinct, following the semantics of QIR. Thus, {x : 2, y : 3} {x : true} is an invalid expression in QIR. This is the only way to dene a usable record concatenation with no loss of information which respects the label names. There are other ways to dene record concatenation, for instance asymmetric record concatenation usually preferred by general-purpose programming languages, which keeps the values of the second record in case of conict: {x : 2, y : 3} {x : true} = {x : true, y : 3}. This type of concatenation has the virtue of being more exible for programming, but the loss of information that ensues makes typing problematic when combined with subtyping: {x : true} can be given the type {x : bool}, in which case {x : 2, y : 3} {x : true} is given the type {x : bool, y : int}, but {x : true} can also be given the type {}, in which case {x : 2, y : 3} {x : true} is given the erroneous type {x : int, y : int}. Another type of record concatenation provided by SQL keeps all the information in a record that may contain multi-value labels: {x : 2, y : 3} {x : true} = {x : 2, y : 3, x : true}, but the information then becomes impossible to access since there is no way to know which value to return on an access to the label x. Databases such as MySQL automatically rename the conicting labels so the information can be accessed:

{x : 2, y : 3} {x : true} = {x 1 : 2, y : 3, x 2 : true}, but the query then has to D including MEM. This allows the specic type system of MEM to type expressions which children are typeable in other databases. For instance, as explained earlier, in the query of Example 3.10, the Join operator has to be typed by the specic type system of MEM since only MEM can perform the operation between the two tables coming from dierent databases. However, MEM cannot type From which is not a supported operator. Therefore, calling the generic type system on the children allows MEM to let the specic type systems of D and D handle the children:

.

Γ D From D, "employee" : T 3 list Γ From D, "employee" : T 3 list, D . . . Γ D From D , "team" : T 4 list Γ From D , "team" : T 4 list, D ∅ MEM
Join fun(x, y)→x y, fun(x, y)→true | From D, "employee" , From D , "team"

: T 1 list ∅ Join fun(x, y)→x y, fun(x, y)→true |
From D, "employee" , From D , "team"

: T 1 list, MEM
As we will see in Section 4.4 where we dene a specic type system for SQL, only the specic type system of MEM calls the generic type system. The specic type systems of the database simply call themselves recursively as they do not receive data from another source via the QIR. Therefore, this process of alternating between the generic type system and the specic type systems occurs only if we have no other choice than to execute part of the query in the runtime of

MEM.

A subsumption rule is added to the specic type system of MEM to solve the issue discussed above about the record types. Indeed, consider Example 4.1.

Example 4.1.

(fun(r)→r • id) { id : 1, name : "Maggie" } This query is typed as:

∅ MEM fun(r)→r • id : {id : int} → int ∅ fun(r)→r • id : {id : int} → int, MEM A ∅ MEM (fun(r)→r • id) { id : 1, name : "Maggie" } : T A = ∅ MEM { id : 1, name : "Maggie" } : {id : int, name : string} {id : int, name : string} {id : int} ∅ MEM { id : 1, name : "Maggie" } : {id : int}
Additionally, the subsumption excludes the case where the supertype is equal to the subtype to avoid innite derivations, as one could apply the subsumption rule on the same type as the premise since the subtyping relation is reexive:

. . . T T Γ MEM q : T T T Γ MEM q : T As usual, the subsumption rule is not syntax-directed. This is one of the reasons why the specic type system of MEM is not algorithmic. As explained in [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF] and as we will see in Chapter 5, it is possible to dene an equivalent type system for MEM that is algorithmic, in particular by removing the subsumption rule. However, the type system presented in Denition 4.8 being easier to understand and work with, we use this denition throughout the paper and prove the equivalence in Chapter 5.

As another example, recall the query from Example 3.2:

Filter fun(r)→r

• id ≤ 2 | [{id : 1}, {id : 2}, {id : 3}]
This query is typed as:

. . .

{r : {id : int}} r • id ≤ 2 : bool, MEM ∅ MEM fun(r)→r • id ≤ 2 : {id : int} → bool ∅ fun(r)→r • id ≤ 2 : {id : int} → bool, MEM . . . ∅ [{id : 1}, . . .] : {id : int} list, MEM ∅ MEM Filter fun(r)→r • id ≤ 2 | [{id : 1}, {id : 2}, {id : 3}] : {id : int} list
For the QIR type system to be consistent, we restrict specic type systems to prevent them from conicting with each other. For example, we can have a database stating that a record cannot have lists as elements, but we cannot have a database expect a list as rst element for the record destructor. The only exceptions being data operators, that can be freely typed by the databases. Denition 4.9 (Specialization of a type inference judgment). A type inference judgment j = Γ D q : T is a specialization of another type inference judgment j = Γ D q : T or j = Γ q : T , D noted j ⊆ j if and only if:

1. Γ = Γ 2. q = q 3. T T
where o D is an operator specic to the database D, cannot be successfully typed by our generic type system as is, but it could be extended to send the data in QIR form to the database D. We do not explore this possibility in this thesis, but this could be done by transferring data from one database to QIR, and then from QIR to the other database, or by adding migration operators to the supported operators of a database that transfer data directly from one database to another if that feature is supported by a database.

Type safety

We now have a fully functional type system for QIR. In this section, we make use of this type system to prove interesting properties on the evaluation and normalization of QIR expressions.

Progress and preservation of types

First, we want to prove that if a QIR expression is typed by the generic type system with a type T , then the application of → to this QIR expression is also typed by the generic type system with a type T . This property is especially interesting to us, since the normalization bases itself on → . Therefore, this property gives us the guarantee that the normalization preserves the type of the QIR expression, thus guaranteeing that our normalization does not change the semantics of a QIR expression. We proceed in a standard way by rst proving the substitution lemma. Denition 4.13 (Substitution lemma for D). If Γ, x : T q : T, D and Γ q : T , D then Γ q{x/q } : T, D.

Classically, we assume that x is not bound by a function in q, using αconversion if need be. Since MEM can call any other type system using the generic type system, our property being true for MEM requires the property being true for the other specic type systems. Lemma 4.1 (Substitution lemma for MEM). Let q ∈ E QIR and Γ a QIR typing environment. Suppose that for all D ∈ D \ MEM, the substitution lemma holds. Then, the substitution lemma holds for MEM.

Proof. If D = MEM, then the property is true by hypothesis. Suppose now that D = MEM. We prove the property by induction on the derivation of Γ, x : T MEM q : T , since it is the only possible step after Γ, x : T q : T, MEM. If the last rule used is the subsumption rule, then it is immediately true by induction hypothesis, otherwise:

• q ≡ x 1 : If x 1 = x, and so T = T , then the property is true since x 1 {x/q } = q . Otherwise, x 1 {x/q } = x 1 , and so the property is obviously true.

• q ≡ fun f (x 1)→q 1 :

Γ, x : T , f : T 1 → T 2 , x 1 : T 1 q 1 : T 2 , _ Γ, x : T MEM fun f (x 1)→q 1 : T 1 → T 2
By induction hypothesis, we have Γ, f : T 1 → T 2 , x 1 : T 1 q 1 {x/q } : T 2 , _. Therefore, we have Γ fun f (x 1)→q 1 {x/q } : T 1 → T 2 , MEM, so by denition of the substitution: Γ (fun f (x 1)→q 1){x/q } : T 1 → T 2 , MEM.

• q ≡ q 1 q 2 : Γ, x : T q 1 : T 1 → T 2 , _ Γ, x : T q 2 : T 1 , _ Γ, x : T MEM q 1 q 2 : T 2
By induction hypothesis, we have Γ q 1 {x/q } : T 1 → T 2 , _ and Γ q 2 {x/q } : T 1 , _. Therefore, we have Γ q 1 {x/q } q 2 {x/q } : T 2 , MEM, so by denition of the substitution: Γ (q 1 q 2){x/q } : T 1 → T 2 , MEM.

• q ≡ c, q ≡ op, q ≡ []: Immediate since q{x/q } = q.

For all other cases, the lemma is true for the same argument as for q 1 q 2 , by applying the induction hypothesis on every child expression.

We can now state our type preservation theorem.

Denition 4.14 (Subject reduction for D). We have subject reduction for a database D on a reduction relation R if Γ q : T, D and q R q implies Γ q : T, D . Theorem 4.1 (Subject reduction for MEM). Suppose that for all D ∈ D \ MEM, we have subject reduction on → . Then, we have subject reduction for MEM on → .

Proof. If D = MEM, then the property is true by hypothesis. Suppose now that D = MEM. We prove the property by induction on the derivation of Γ MEM q : T , since it is the only possible step after Γ q : T, MEM. We use L4.1 to denote Lemma 4.1, and P4.3 to denote Property 4.3.

• For all the (*-red*) and (dataop-*) rules, the property is immediately true by applying the induction hypothesis and the hypothesis that we have subject reduction for D = MEM.

• (fun f (x)→q 1) v 2 → {f → fun f (x)→q 1 , x → v 2 }q 1 : Γ {f → fun f (x)→q 1 , x → v 2 }q 1 : T 2 , _ Γ, f : T 1 → T 2 , x : T 1 MEM q 1 : T 2 L4.1 Γ D fun f (x)→q 1 : T 1 → T 2 P4.3 Γ fun f (x)→q 1 : T 1 → T 2 , D Γ v 2 : T 1 , _ Γ MEM (fun f (x)→q 1) v 2 : T 2
We used the substitution lemma twice here: once for f and once for x.

The complete proof can be found in Appendix B, page 189.

We can also show properties of safety on typeable QIR expressions this time for the reduction relation dened in Denition 3.9. We prove the properties of progress and subject reduction basing ourselves on our proofs for → .

Theorem 4.2 (Progress). Let q ∈ E QIR , and D a database language. If ∅ q : T, D and all data operators in q are translatable into a database language, then either q is a QIR value, or ∃q .q q . Proof. By induction on typing derivations:

• If q = x, then impossible since the rule Γ, x : T MEM x : T is not applicable since our environment is the empty set. And by Property 4.3, any typing rule for variables in other specic type systems cannot be applied either.

• If q = fun x (x)→q , q is a value.

• If q = q 1 q 2 , then either q 1 ≡ fun x (x)→q 1 and q 2 is a value, in which case rule (app-β) applies; q 1 ≡ op and q 2 is a value, in which case rule (app-op) applies; or q 1 ≡ fun x (x)→q 1 or op, in which case q 1 is not a value by typing and can be reduced by induction hypothesis.

• If q = o q 1 , . . . , q m | q m+1 , . . . , q n , then either all q i are values, in which case (ext-database) applies by hypothesis; or at least one q i is not a value, in which case either rule (dataopconf) or (dataop-data) apply.

The complete proof can be found in Appendix B, page 192.

We made an extra hypothesis in our theorem of progress: all data operators present in a query must be translatable into a database language. This is coherent with our rst motivation of the chapter for a type system: if the type system of a database can type an expression, then this expression should be translatable.

We will see in Section 4.4 how to construct such a type system for SQL.

Theorem 4.3 (Subject reduction). Let q ∈ E QIR and Γ a QIR typing environment. Suppose that for all D ∈ D \ MEM, we have subject reduction on . Then, we have subject reduction on for all D ∈ D.

Proof. property gives us the guarantee that an expression typed in the generic type system can be normalized, and that the process terminates.

However, we rst have to restrict E QIR to non-recursive functions. Indeed, if recursive functions were allowed, then the strong normalization would not hold.

For instance, consider the following expression:

(fun f (x)→f x) 2
Using the (norm-app-β) rule of → , we would get:

(f x){f /fun f (x)→f x, x/2}
which is equivalent to:

(fun f (x)→f x) 2
Therefore, we have:

(fun f (x)→f x) 2 → (fun f (x)→f x) 2
So the reduction of this expression does not terminate in this example, it is not strongly normalizing. But the generic translation can type this expression:

∅ MEM fun f (x)→f x : int → int ∅ fun f (x)→f x : int → int, MEM ∅ MEM 2 : int ∅ 2 : int, MEM ∅ MEM (fun f (x)→f x) 2 : int ∅ (fun f (x)→f x) 2 : int, MEM
Thus, we do not have strong normalization with recursive functions. We do not need to remove host language expressions since they are values for → and are therefore not reduced. So even if a host language expression containing an innite loop were to appear in an expression, → would still terminate.

Notation 4.2 (Set of QIR expressions without recursive functions). We note E 1 QIR the set E QIR without recursive functions.

To prove this property of strong normalization on our restricted QIR, we follow the method described in [START_REF] Pierce | Types and Programming Languages[END_REF]. First, we dene a set of closed terms of type T.

Denition 4.15. Let T be a QIR type, R T is the set of closed terms q ∈ E 1

QIR such that:

• There exists a QIR typing environment Γ and a database language D such that Γ q : T, D;

• q ∈ R c , c ∈ B if and only if q is strongly normalizing;

• q ∈ R T 1 →T 2 if and only if q is strongly normalizing and if q ∈ R T 1 =⇒ q q ∈ R T 2 ;

• q ∈ R T list if and only if q is strongly normalizing;

• q ∈ R {l i :T i } i=1.
.n if and only if q is strongly normalizing.

As explained in [START_REF] Pierce | Types and Programming Languages[END_REF], the idea of the proof is to show that every element of every set R T is strongly normalizing, then to prove that every well-typed expression of type T is an element of R T . Note that the only destructor that involves a substitution is still only the application. Therefore, only expressions with an arrow type require an extra condition to ensure the evaluation is terminating.

Lemma 4.2. Let q ∈ E 1 QIR . If q ∈ R T then q is strongly normalizing.

Proof. Immediate by Denition 4.15.

Lemma 4.3. Let q ∈ E 1 QIR . If q → q and there exists a QIR typing environment Γ and a database language D such that Γ q : T, D, then q ∈ R T if and only if q ∈ R T .

Proof. We prove the lemma by induction on the structure of the type T .

First, note that it is immediate that if q halts, then q halts. If T = T 1 → T 2 , it is immediate by denition of R T . Otherwise, for the direction q ∈ R T ⇒ q ∈ R T , suppose that q ∈ R T 1 →T 2 , and q 1 ∈ R T 1 . By denition, we have q q 1 ∈ R T 2 . But q q 1 → q q 1 , from which the induction hypothesis on type T 2 gives us q q 1 ∈ R T 2 . Since q 1 is arbitrary, the denition of R T 1 →T 2 gives us q ∈ R T 1 →T 2 . The argument for the direction q ∈ R T ⇐ q ∈ R T is analogous, since with subject reduction we have Γ q : T, D.

In QIR, functions are not the only expressions that can have a function type. Therefore, we prove an additional lemma.

Lemma 4.4. Let v ∈ E 1 QIR such as v is in normal form, v ≡ fun x (x)→v, and there exists a QIR typing environment Γ and a database language D such that

Γ v : T 1 → . . . → T n → T, D. Then, v ∈ R T 1 →...→Tn→T .
Proof. By induction on n.

If n = 0, then the property is trivially true by Denition 4.15. Assume the property true for n, let us prove it for n + 1: Let q ∈ R T 1 . We have q → * v , and, by Lemma 4.3, v ∈ R T 1 . By Lemma 4.3 again, we have v q ∈ R T if and only if v v ∈ R T , and by induction hypothesis, we have v v ∈ R T 2 →...→Tn→T n+1 . Therefore, by Denition 4.15, v ∈ R T 1 →T 2 →...→Tn→T n+1 .

Lemma 4.5. Let q ∈ E 1 QIR and v 1 , . . . , v m ∈ V QIR be closed QIR values. If there exists QIR typing environments Γ 1 , . . . , Γ m and database languages D, D 1 , . . . , D m such that x 1 : T 1 , . . . , x m : T m q : T, D and ∀j ∈ 1..m.Γ j v j :

T j , D j and v j ∈ R T j , then q{x 1 /v 1 , . . . , x m /v m } ∈ R T .
Proof. We note Γ = {x j : T j } j=1..m . By induction on the derivation of Γ q : T, D:

• If q = x, then q = x j and T = T j , in which case the property is obviously true as if v j ∈ R T j then x j {x j /v j } = v j ∈ R T j .

• If q = fun(x)→q 1 , then:

Γ, x : T MEM q 1 : T

Γ D fun(x)→q 1 : T → T P4.3 Γ fun(x)→q 1 : T → T , D
Let q ∈ R T . By Lemma 4.2, we have q → * v for some v. By

• If q = q 1 q 2 , then:

Γ MEM q 1 : T → T Γ MEM q 2 : T Γ D q 1 q 2 : T → T P4.3 Γ q 1 q 2 : T → T , D
By induction hypothesis, we have q

1 {x 1 /v 1 , . . . , x m /v m } ∈ R T →T and q 2 {x 1 /v 1 , . . . , x m /v m } ∈ R T .
And by denition of R T →T , we have (q 1 q 2){x 1 /v 1 , . . . , x m /v m } ∈ R T .

• If q = c, then T = typeofC(c) ∈ B, in which case the property is obviously true as c is obviously strongly normalizing therefore c ∈ R typeofC(c) .

• If q = op, true by Lemma 4.4.

• If q = if q 1 then q 2 else q 3 , then:

Γ MEM q 1 : bool Γ MEM q 2 : T Γ MEM q 3 : T Γ D if q 1 then q 2 else q 3 : T P4.3 Γ if q 1 then q 2 else q 3 : T, D By induction hypothesis, we have q 1 {x 1 /v 1 , . . . , x m /v m } ∈ R bool , q 2 {x 1 /v 1 , . . . , x m /v m } ∈ R T , and q 3 {x 1 /v 1 , . . . , x m /v m } ∈ R T . There- fore, by Lemma 4.2, we have q i {x 1 /v 1 , . . . , x m /v m } → * v i for i ∈ 1..3,
and so (if

q 1 then q 2 else q 3){x 1 /v 1 , . . . , x m /v m } → * if v 1 then v 2 else v 3 . If v 1 = true or false, we have if v 1 then v 2 else v 3 → * v 2 or v 3 . But, by Lemma 4.3, since q i {x 1 /v 1 , . . . , x m /v m } ∈ R T , we have v i ∈ R T for i ∈ 2.
.3, and so by Lemma 4.3 again if q 1 then q 2 else q 3 {x 1 /v 1 , . . . , x m /v m } ∈ R T . Otherwise, either T ≡ T 1 → T 2 , in which case the property is trivially true by Denition 4.15, or T = T 1 → T 2 , in which case the property is true by Lemma 4.4.

The complete proof can be found in Appendix B, page 194.

Theorem 4.4 (Strong normalization). Let q ∈ E 1 QIR . If there exists a QIR typing environment Γ and a database language D such that Γ q : T, D, then q is strongly normalizing. Proof. By Lemma 4.5, we have q ∈ R T . Therefore, by Lemma 4.2, we have that q is strongly normalizing.

Specic type system for SQL

As stated in Chapter 1, QIR to SQL is an important translation as it allows BOLDR to target relational databases and a non-negligible number of distributed databases such as Hive or Cassandra. In this section, we create a specic type system for SQL and prove the necessary safety properties.

We assume that the set of values for SQL only contains basic constants (strings, numbers, booleans, . . .) and tables. The set of expressions E SQL is the set of syntactically valid SQL queries [START_REF]Information technology-Database languagesSQLPart 2[END_REF]. The supported operators we consider are Filter, Project, Join, From, Group, Sort, Limit, and Exists.

We next describe the semantics of these operators for SQL. The semantics of Filter, Project, and Join are described in Denition 3.11.

Group fun(x)→{l i : q i } i∈1..n , f | l partitions elements of l in groups using the values they associate to the column names l i (q i are not used). The second conguration f of Group shares the same purpose as the conguration of Project, that is it takes a record as argument and returns another record which will be part of the nal result. For instance:

Group fun(x)→{teamid : true}, fun(x)→{teamid : Denition 4.16 (Specic SQL type system). The specic type system of SQL is derived by the rules of Figure 4.3.

x • teamid, n : count (x • id)} | From D, "
The type system of Denition 4.16 is designed to type all expressions that can be reduced by the normalization into expressions translatable to SQL.

The SQL notation in From SQL, n is used to represent any SQL database. SQL relies on a at data model: records can only contain values with base types (at records), and lists can only contain at records (at lists). Therefore, the type system for SQL only types those kinds of data structures, in particular, the data operators all take as data arguments and return at lists.

Basic operators and conditional expressions are only valid for basic types in

SQL.

In SQL, the congurations of Group and Sort are also expected to return at records.

Finally, notice there are two rules for Join. The second one gives a type to the Join operation where the rst conguration returns the record concatenation between the records of the two tables, corresponding to a Join that returns all elds from the two tables which is a common operation in SQL. However, Γ SQL q : R list Lemma 4.6 (Coherence of the specic type system for SQL). The specic type system for SQL is coherent with the specic type system for MEM.

Γ SQL Exists q : bool Γ SQL q : T 1 T 1 ≺ T 2 Γ SQL q : T 2
Proof. By direct case analysis on the rules of the specic type system for SQL.

There is no diculty in the proof of that property, since the only dierences between the two type systems are at record types or basic types instead of any types in some places, some missing rules, and some extra rules for data operators.

Finally, to complete the integration of SQL, we prove the substitution lemma and subject reduction theorem for the specic SQL type system. Lemma 4.7 (Substitution lemma for SQL). Let q ∈ E QIR and Γ a QIR typing environment. If Γ, x : T q : T, SQL, then for all q ∈ E QIR such that Γ q : T , SQL, we have Γ q{x/q } : T, SQL.

Proof. By induction on the derivation of Γ, x : T SQL q : T , since it is the

• if true then v 1 else v 2 → v 1 : Γ SQL true : bool Γ SQL v 1 : B Γ SQL v 2 : B Γ SQL if true then v 1 else v 2 : B • if false then v 1 else v 2 → v 2 : Γ SQL v 1 :: (v 2 @ v 3) : T list • { . . . , l : v, . . . } • l → v:
Γ SQL { . . . , l : v, . . . } : {. . . , l : T, . . .} Γ SQL { . . . , l : v, . . . } • l : T

• [] as h :: t ? q 2 : q 3 → v 3 : No typing rule.

• v 1 :: v 1 as h :: t ? q 2 : q 3 → q 2 (v 1 , v 1): No typing rule.

We now have a functional type system for QIR in which we can also type queries targeting SQL databases. In the next chapter, we create typing algorithms that are equivalent to our type systems but are also suitable for implementation.

Chapter 5

QIR type inference QIR expressions do not include type annotations in their syntax since they originate from dynamically typed programming languages. Therefore, to give a type to a QIR expression, BOLDR has to generate it. A well-known technique in statically typed programming languages is to use a type inference algorithm such as the HindleyMilner type inference algorithm [START_REF] Milner | A theory of type polymorphism in programming[END_REF] which generates a type for an expression of the lambda calculus.

In Chapter 4, we presented specic type systems which give a type to QIR expressions that are compatible with a database, and a generic type system for QIR which makes use of specic type systems to give a type to a QIR expression that targets one or more databases. The generic type system is perfectly useable as-is as an algorithm since it simply applies specic type systems in a deterministic way. However, the specic type systems dened in Chapter 4, useful for presentation and formal developments, are not algorithmic. In particular, we cannot T ∈ typeofOP(op)

Γ MEM op : T Γ MEM [] : T list Γ MEM q : T 1 T 1 ≺ T 2 Γ MEM q : T 2
The reasons why these rules are problematic are standard and explained in [START_REF] Pierce | Types and Programming Languages[END_REF]. First, notice that T 1 and T 2 are mentioned in the premise of the function rule to type the body of the function. However, these types where not generated by the type system. T 1 and T 2 appear out of nowhere, meaning that the rule guesses T 1 and T 2 , then merely checks that its guess was correct. This is obviously not viable for an algorithm since the number of possible types is innite. The same problem appears in the empty list rule, for which the type T is guessed. The basic operator rule picks a type in the set of possibly innite types returned by typeofOP. As for the subsumption rule, the issue is that it can be applied to any QIR term. Therefore, at every step, a typing algorithm would have to choose whether to use this rule or a syntax-directed rule.

The standard solution to creating a typing algorithm based on a type system that can deduce innitely many typing derivations for the same term is to use type schemes. A type scheme uses polymorphic type variables to denote an innite number of similar types, called instances, which can be obtained by substituting variables of the type scheme with types. This solution is used in ML, in which the identity function is given the polymorphic type scheme ∀α.α → α.

To infer a type scheme for a term, we apply the technique of constraint solving [START_REF] Pottier | The essence of ML type inference[END_REF]: we dene typing algorithms that return a unique type for an expression by generating type variables and accumulating type constraints on these variables. Using type variables and constraints allow us to remove the subsumption rule by shifting the use of subtyping to the constraint resolution, and to generate type variables instead of guessing types. However, our QIR also features record concatenation, which is notoriously hard to type when combined with a subtyping relation. ML-style type schemes are not expressive enough to describe the set of acceptable types for a calculus supporting these features. Solutions exist in the literature, such as bounded quantication [START_REF] Pottier | Synthèse de types en présence de sous-typage: de la théorie à la pratique[END_REF] for subtyping, and row variables [START_REF] Rémy | Type checking records and variants in a natural extension of ml[END_REF][START_REF] Rémy | Typing record concatenation for free[END_REF] for record concatenation. Alternatively, we could also use semantic subtyping [START_REF] Castagna | Polymorphic functions with set-theoretic types: Part 2: Local type inference and type reconstruction[END_REF].

These approaches signicantly complexify types and constraints, thus making algorithms manipulating types more complex and less ecient. We choose a more pragmatic solution based on two observations. First, the subtyping relation introduced in Chapter 4 only exists to deal with record types. Second, our goal is to precisely type expressions representing queries. We do not need to give an exact type to all QIR terms. We only want types that give us enough information to perform operations on queries such as normalization and translations. For instance, the expression fun(x, y)→x y is not an expression that we want to send to a database, and thus we do not have much use for an exact type on this kind of QIR expressions. Therefore, in this chapter, we dene typing algorithms for the QIR following the approach of Ohori [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF]. To that end, we rst add type variables to QIR types, then dene constraints on types allowing us to restrict the set of valid type substitutions from Denition 2.3 that can be applied to a type. We separate our constraints in two categories: equality constraints between types, and kind constraints on record types. This allows us to treat subtyping constraints separately which simplies our proofs and our constraint system. We extend the kinds of [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF] to account for record concatenation. This solution is a good compromise that keeps our typing algorithms simple but precise enough for our needs. Note that, contrary to the QIR, the calculus used in [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF] is annotated with types. Because of this, we diverge slightly from this approach in the developments of this chapter, since we start from untyped expressions of dynamic programming languages, and thus we want to be able to manipulate untyped QIR expressions. Our typing algorithms return a type and sets of constraints that restrain the possible types that can replace the type variables present in the type.

Finally, we prove our typing algorithms to be equivalent with the type systems dened in Chapter 4, and dene a constraint solving algorithm that generates a valid substitution given sets of constraints generated by our typing algorithms.

Typing algorithms

First, we extend QIR types to type variables. We will use the notation T to denote algorithmic types.

Denition 5.1 (QIR types for typing algorithm). An algorithmic QIR type is a nite term of the following grammar:

T ::= B | T → T | T list | {l : T, . . . , l : T} | α
We use a classic ML-style annotation for type variables: α → int represents the type of functions that for any type α returns a value of type int. A free type variable is implicitly bound to a universal quantier in a prenex form. For instance, α → α list → α list is actually a syntactic shortcut for ∀α : α → α list → α list. Denition 5.2 (Set of type constraints). A set of type constraints C is a nite set of equations between types noted {T i = T i } i∈1..n . A type substitution σ satises a set of type constraints

C = {T 1 = T 1 , . . . , T n = T n } noted σ |= C if σT i = σT i for i ∈ 1..n.
For instance:

• {α → int} satises {α = int} • {α → int} satises {int = int} • {α → int, α → int} satises {α = int, α = α} • {α → int, α → string} does not satisfy {α = int, α = α}
We now dene a kind. Kinds allow us to give a description of a record type. Denition 5.3 (Kind). A kind k is either:

• a record kind {{l 1 : T 1 , . . . , l n : T n }} • a record union kind (T 1 , T 2)
• or a universal kind U Denition 5.4 (Set of kind constraints). A set of kind constraints K is a nite mapping between types noted {α i k

= k i } i∈1..n . A type substitution σ satises a set of kind constraints K = {α i k = {{l j,i : T j,i }}} i=1..n ∪ {α i k = (T i ,1 , T i ,2)} i =1..n ∪ {α i k = U} i =1..n noted σ k |= K if: • σα i σ{l j,i : T j,i } for i ∈ 1..n • σT i ,1 = {l i : T i } i=1..m • σT i ,2 = {l i : T i } i=m+1..n • σα i = {l i : T i } i=1..n
Thus, a record kind restricts substitutions of a type variable to record types that are subtypes of the record type described by the kind, a record union kind restricts substitutions to the record type that represents the concatenation of two record types, and the universal kind does not add any restriction. For instance:

• {α → int} satises {α k = U} • {α → {l : int}} satises {α k = {{l : int}}} • {α → {l : int}} satises {α k = U} • {α → {}} does not satisfy {α k = {l : int}} • {α → {l 1 : int, l 2 : string}} satises {α k = {{l 1 : int}}} • {α → {l 1 : int, l 2 : bool}} satises {α k = ({l 1 : int, l 2 : int}, {l 2 : bool})} 84
Note that since a type constraint corresponds to an equality relation between types, which is a symmetrical relation, the constraints α = T and T = α are equivalent. In opposite, a kind constraint corresponds to a subtyping relation between types, which is not symmetric. Thus, order matters in a kind constraint.

We can now give a denition of our typing algorithms. Similarly to Chapter 4, specic typing algorithms give types to QIR expressions that are compatible with corresponding databases, and the generic typing algorithm makes specic typing algorithms work together. Denition 5.5 (Specic typing algorithm). A specic typing algorithm for a database D denoted by the judgment Γ A D q : T, (C, K) is a type system relation between a QIR typing environment Γ, a QIR term q, and a QIR type T constrained by C and K.

The generic type system being already suitable for implementation, we can dene the QIR generic typing algorithm in a similar way as in Denition 4.7, but we use the specic typing algorithms instead.

Denition 5.6 (QIR generic typing algorithm). A QIR term q has a type T for the database D derivable from a QIR type environment Γ in the QIR generic typing algorithm, noted Γ A q : T, (C, K), D. The set of inference rules used to derive this judgment is:

∀q i ∈ C(q).Γ A q i : T i , (C i , K i), D i Γ A D q : T, (C, K) Γ A q : T, (C, K), D {D i } = {D, MEM} D = MEM Γ A D From D, _ : T, (C, K) Γ A From D, _ : T, (C, K), D D =MEM Γ A
MEM q : T, (C, K) Γ A q : T, (C, K), MEM Now that we have a denition of generic and specic typing algorithms, we can dene specic typing algorithms for databases, starting with one for MEM.

Specic typing algorithm for MEM

In this section, we dene a specic typing algorithm for MEM, and prove that it is equivalent to the specic type system for MEM of Denition 4.8. Denition 5.7 (Specic typing algorithm for MEM). The specic typing algorithm of MEM noted MEM is derived by the rules of Figure 5.1. There are several points to discuss about this typing algorithm. First, notice that the function rule, instead of guessing the argument and return types, generates two type variables to denote them. As a consequence, restrictions on types in the premises have all disappeared, and have been replaced by type constraints.

Γ, x : T

A MEM x : T, (∅, ∅) α 1 and α 2 fresh Γ, f : α 1 → α 2 , x : α 1 A q : T, (C, K), _ Γ A MEM fun f (x)→q : α 1 → T, (C ∪ {α 2 = T}, K ∪ {α 1 k = U, α 2 k = U}) Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ α fresh Γ A MEM q 1 q 2 : α, (C 1 ∪ C 2 ∪ {T 1 = T 2 → α}, K 1 ∪ K 2 ∪ {α k = U}) Γ A MEM c : typeofC(c), (∅, ∅) {α 1 , . . . , α n } = T V (typeofOP(op)) Γ A MEM op : polytypeofOP(op), (∅, {α 1 k = U, . . . , α n k = U}) Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ Γ A q 3 : T 3 , (C 3 , K 3), _ α 1 and α 2 fresh Γ A MEM if q 1 then q 2 else q 3 : α 2 , (C 1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 }, K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = U}) Γ A q i : T i , (C i , K i), _ i ∈ 1..n Γ A MEM { l i : q i } i=1..n : {l i : T i } i=1..n , (n i=1 C i , n i=1 K i) Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ α fresh Γ A MEM q 1 q 2 : α, (C 1 ∪ C 2 , K 1 ∪ K 2 ∪ {α k = (T 1 , T 2)}) α fresh Γ A MEM [] : α list, (∅, {α k = U}) Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ α fresh Γ A MEM q 1 :: q 2 : α list, (C 1 ∪ C 2 ∪ {α = T 1 , α list = T 2 }, K 1 ∪ K 2 ∪ {α k = U}) Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ α fresh Γ A MEM q 1 @ q 2 : α list, (C 1 ∪ C 2 ∪ {α list = T 1 , α list = T 2 }, K 1 ∪ K 2 ∪ {α k = U})
Γ A q : T, (C, K), _ α 1 , α 2 fresh Γ A MEM q • l : α 2 , (C ∪ {α 1 = T}, K ∪ {α 1 k = {{l : α 2 }}, α 2 k = U}) Γ A q i : T i , (C i , K i), _ i ∈ 1..3 α 1 and α 2 fresh Γ A MEM q 1 as h :: t ? q 2 : q 3 : α 2 , (i C i ∪ {α 1 list = T 1 , α 1 → α 1 list → α 2 = T 2 , α 2 = T 3 }, i K i ∪ {α 1 k = U, α 2 k = U}) Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ α 1 and α 2 fresh Γ A MEM Project q 1 | q 2 : α 2 list, (C 1 ∪ C 2 ∪ {T 1 = α 1 → α 2 , α 1 list = T 2 }, K 1 ∪ K 2 ∪ {α 1 k = U, α 2 k = U}) Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ α fresh Γ A MEM Filter q 1 | q 2 : α list, (C 1 ∪ C 2 ∪ {T 1 = α → bool, α list = T 2 }, K 1 ∪ K 2 ∪ {α k = U}) Γ A q i : T i , (C i , K i), _ i ∈ 1..4 α 1 , α 2 and α 3 fresh Γ A MEM Join q 1 , q 2 | q 3 , q 4 : α 3 list, (i C i ∪ {T 1 = α 1 → α 2 → α 3 , T 2 = α 1 → α 2 → bool, α 1 list = T 3 , α 2 list = T 4 }, i K i ∪ {α 1 k = U, α 2 k = U, α 3 k = U})
This is because at any point in the premises the typing algorithm could (and probably will) return a type variable, which forces us to handle all type restrictions using constraints. For instance, an access to a variable that is bound as a function argument is always typed with a type variable in this type system.

Second, as expected, the only rules that add kind constraints are the record concatenation and the record destructor rules. All other constraints are equality constraints between types.

Third, our problems with the subsumption rule and the rules for the function and for the empty list disappeared as desired. Indeed, the function rule generates the two type variables that are used to type the function, the empty list rule generates the type of the elements of the list, and the subsumption rule disappeared altogether.

Fourth, notice that we use a function called polytypeofOP for basic operators.

This function takes a basic operator and returns a type that can contain type variables which represent all of the types returned by typeofOP called on the same operator. This is represented by the following property:

Property 5.1 (Coherence of polytypeofOP). Let op be a basic operator. Then T ∈ typeofOP(op) i there exists σ such that σ(polytypeofOP(op)) = T with T V (T) = ∅.

In other words, the types returned by typeofOP for a basic operator are exactly the possible types obtained by substituting all of the type variables present in the type returned by polytypeofOP. For instance, polytypeofOP(=) = α → α → bool. This solves our problem with the basic operators rule being nonalgorithmic in the specic type system for MEM.

Fifth, the subtyping relation does not appear anywhere in our typing algorithm. Classically, rules for destructors such as the application or the list destructor would have a subtyping condition. For instance, for the application, we would have a rule such as:

q 1 : T 1 → T 2 q 2 : T 1 T 1 T 1 q 1 q 2 : T 2
In our typing algorithm, we move all subtyping restrictions to type constraints, or to kind constraints in the cases of record concatenation and record destruction.

As an example of how the typing algorithm for MEM works, recall Example 4.1 from Chapter 4:

(fun(r)→r • id) { id : 1, name : "Maggie" } Typing the function with the specic typing algorithm of MEM (omitting the calls to the generic typing algorithm for presentation) gives us:

{r : α 2 } A MEM r : α 2 , (∅, ∅) {r : α 2 } A MEM r • id : α 4 , ({α 3 = α 2 }, {α 3 k = {{id : α 4 }}, α 4 k = U}) ∅ A MEM fun(r)→r • id : α 2 → α 4 , ({α 3 = α 2 }, {α 2 k = U, α 3 k = {{id : α 4 }}, α 4 k = U})
The typing algorithm gives this function the type α 2 → α 4 along with the constraints that α 2 is equal to α 3 , and that α 3 can only be substituted to a record type containing at least the association from the label id to the type α 4 . In other words, the type of this function after applying a type substitution that satises all constraints generated by the typing algorithm can be {id : int} → int, {id : bool} → bool, {id : int, name : string} → int, . . . or any other function type taking a record type containing an association for the label id and returning the type associated to id in its argument type.

The application is then typed as:

. . .

∅ A MEM { id : 1, name : "Maggie" } : {id : int, name : string}, (∅, ∅) ∅ A MEM (fun(r)→r • id) { id : 1, name : "Maggie" } : α 1 , ({α 2 → α 4 = {id : int, name : string} → α 1 , α 3 = α 2 }, {α 1 k = U, α 2 k = U, α 3 k = {{id : α 4 }}, α 4 k = U})
The type system gives this application the type α 1 along with the extra constraint that the function type we obtained earlier is equal to the function type {id : int, name : string} → α 1 . Combining the constraints, we get that the type of the function must be {id : int, name : string} → int, and that the type of the application must be int as expected. We will see later in this chapter how to solve those constraints to generate the substitution that give us the correct result.

As another example, recall the query from Example 3.2:

Filter fun(r)→r

• id ≤ 2 | [{id : 1}, {id : 2}, {id : 3}]
Even though this example is quite simple, generating a type for this query using the typing algorithm involves building a derivation of a respectable size.

Therefore, we proceed in several steps. Let us rst type the conguration (omitting the calls to the generic type system, universal kinds, and reducing the of the data argument for presentation):

C = {r : α 1 } A MEM r : α 1 , (∅, ∅) {r : α 1 } A MEM r • id : α 6 , ({α 5 = α 1 }, {α 5 k = {{id : α 6 }}}) B = {r : α 1 } A MEM ≤: α 4 → α 4 → bool, (∅, ∅) C {r : α 1 } A MEM ≤ r • id : α 3 , ({α 5 = α 1 , α 4 → α 4 → bool = α 6 → α 3 }, {α 5 k = {{id : α 6 }}}) A = B {r : α 1 } A MEM 2 : int, (∅, ∅) {r : α 1 } A MEM r • id ≤ 2 : α 2 , ({α 5 = α 1 , α 4 → α 4 → bool = α 6 → α 3 , α 3 = int → α 2 }, {α 5 k = {{id : α 6 }}}) ∅ A MEM fun(r)→r • id ≤ 2 : α 1 → α 2 , ({α 5 = α 1 , α 4 → α 4 → bool = α 6 → α 3 , α 3 = int → α 2 }, {α 5 k = {{id : α 6 }}})
The constraints tell us that the conguration is a function which argument is a record containing an association for label id by α 5 = α 1 and α 5 k = {{id : α 6 }}. Then by α 4 → α 4 → bool = α 6 → α 3 and α 3 = int → α 2 , we get that α 6 = α 4 = int and α 2 = bool. Therefore, according to the constraints, our conguration should have type {id : int, . . .} → bool, which is what we expected.

The entire query is then be typed as:

A ∅ A MEM 1 : int, (∅, ∅) ∅ A MEM {id : 1} : {id : int}, (∅, ∅) ∅ A MEM [] : α 9 list, (∅, ∅) ∅ A MEM [{id : 1}] : α 8 list, ({α 8 = {id : int}, α 8 list = α 9 list}, ∅) ∅ A MEM Filter fun(r)→r • id ≤ 2 | [{id : 1}] : α 7 list, (C 1 ∪ C 2 ∪ {α 1 → α 2 = α 7 → bool, α 7 list = α 8 list}, {α 5 k = {{id : α 6 }}})
These constraints restrict the argument type of the conguration to {id : int} by α 7 → bool = α 1 → α 2 , α 7 list = α 8 list, and α 8 = {id : int}, and tell us that the query returns a list of type {id : int} list which is what we expected as well.

Note that, just like in the previous example, if the records had more elds then the type in the equality constraint would have changed to α 8 = {id : int, . . .} which would still have solutions along with the kind constraint since it only forces the result type to be substituted to a record type containing the association label id to int.

One last example to illustrate record union kinds:

({ x : 1, y : 2 } { z : true }) • x
Typing it gives us:

∅ A MEM 1 : int, (∅, ∅) ∅ A MEM 2 : int, (∅, ∅) ∅ A MEM { x : 1, y : 2 } : {x : int, y : int}, (∅, ∅) ∅ A MEM true : bool, (∅, ∅) ∅ A MEM { z : true } : {z : bool}, (∅, ∅) ∅ A MEM { x : 1, y : 2 } { z : true } : α 1 , (∅, {α 1 k = ({x : int, y : int}, {z : bool})}) ∅ A MEM ({ x : 1, y : 2 } { z : true }) • x : α 3 , ({α 2 = α 1 }, {α 1 k = ({x : int, y : int}, {z : bool}), α 2 k = {{x : α 3 }}, α 3 k = U})
These constraints restrict the result type to the type associated to the label x in the record restricted by the record union kind of the types of the two records.

We now want to prove that the typing algorithm for MEM is equivalent to the specic type system for MEM. This equivalence allows us to transfer the properties of Chapter 4 for the specic type system for MEM to the typing algorithm for MEM.

We rst prove that if the typing algorithm for MEM applied on a QIR expression gives a type T and sets of constraints, then applying a type substitution that satises the constraints to T should give us a type that is derivable in the specic type system for MEM. In other words, there should be no way for the typing algorithm to give to an expression a type that cannot be deduced by the specic type system. This property of soundness is crucial since it guarantees us that for any σ the specic type system can deduce the corresponding type. Therefore, all the properties deduced in Chapter 4 are carried over to QIR expressions typed by the typing algorithm.

Denition 5.8 (Soundness of a specic typing algorithm). A specic typing algorithm

A D is sound if ∀Γ, q, σ : (Γ A D q : T, (C, K) ∧ T V (σT) = ∅ ∧ σ |= C ∧ σ k |= K) =⇒ σΓ D q : σT .
Theorem 5.1 (Soundness of the typing algorithm for MEM). Let q ∈ E QIR and Γ a QIR typing environment. Suppose that for all D ∈ D \ MEM, A D is sound. Then, A MEM is sound.

Proof. By induction on the typing derivation of Γ A MEM q : T, (C, K):

• Γ, x : T A MEM x : T, (∅, ∅) The property is immediately true since we have σΓ, x : σT MEM x : σT which is true for any σ.

• Γ A MEM fun f (x)→q : α 1 → T, (C ∪ {α 2 = T}, K ∪ {α 1 k = U, α 2 k = U})
Let σ be a solution for C ∪ {α 2 = T} and for K ∪ {α 1 k = U, α 2 k = U}, then σ is a solution for C and K and σα 2 = σT. Since we have Γ, f : α 1 → α 2 , x : α 1 A q : T, (C, K), _, by induction hypothesis we get σΓ, f : σα 1 → σα 2 , x : σα 1 q : σT, _, so σΓ, f : σα 1 → σT, x : σα 1 MEM q : σT . Therefore, we have σΓ MEM fun f (x)→q : σα 1 → σT .

• Γ A MEM q 1 q 2 : α, (C 1 ∪ C 2 ∪ {T 1 = T 2 → α}, K 1 ∪ K 2 ∪ {α k = U}) Let σ be a solution for C 1 ∪C 2 ∪{T 1 = T 2 → α} and K 1 ∪K 2 ∪{α k = U}, then σ is a solution for C 1 , C 2 , K 1 ,
and K 2 and σT 1 = σT 2 → σα. Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _, by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : σT 2 → σα, _. Therefore, we have σΓ MEM q 1 q 2 : σα.

• Γ A MEM c : typeofC(c), (∅, ∅)
The property is immediately true since we have σΓ MEM c : typeofC(c) = σtypeofC(c) for any σ.

• Γ A MEM if q 1 then q 2 else q 3 : α 2 , (C 1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 }, K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = U}) Let σ be a solution for C 1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 } and K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = U}, then σ is a solution for C 1 , C 2 , C 3 , K 1 , K 2 ,
and K 3 and σα 1 = σT 1 = bool, σα 2 = σT 2 , σα 2 = σT 3 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _, Γ A q 2 : T 2 , (C 2 , K 2), _, and Γ A q 3 : T 3 , (C 3 , K 3), _, by induction hypothesis we get σΓ q 1 : σT 1 , _, σΓ q 2 : σT 2 , _, and σΓ q 3 : σT 3 , _, so σΓ q 1 : bool, _, σΓ q 2 : σα 2 , _, and σΓ q 3 : σα 2 , _.

Therefore, we have σΓ MEM if q 1 then q 2 else q 3 : σα 2 .

• Γ A MEM q 1 q 2 : α, (C 1 ∪ C 2 , K 1 ∪ K 2 ∪ {α k = (T 1 , T 2)}) Let σ be a solution for C 1 ∪ C 2 and K 1 ∪ K 2 ∪ {α k = (T 1 , T 2)}, then σ is a solution for C 1 , C 2 , K 1 , and K 2 , and σT 1 = {l i : T i } i=1..m , σT 2 = {l i : T i } i=m+1..n , σα = {l i : T i } i=1..n . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _,
by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : {l i :

T i } i=1..m , _, σΓ q 2 : {l i : T i } i=m+1..n , _. Therefore, we have σΓ MEM q 1 q 2 : {l i : T i } i=1..n = σα. • Γ A MEM q • l : α 2 , (C ∪ {α 1 = T}, K ∪ {α 1 k = {{l : α 2 }}, α 2 k = U}) 92
Let σ be a solution for C ∪ {α 1 = T} and K ∪ {α 1 k = {{l : α 2 }}, α 2 k = U}, then σ is a solution for C and K and σα 1 = σT, σα 1 {l : σα 2 }, so σα 1 = {. . . , l : σα 2 , . . .}. Since we have Γ A q : T, (C, K), _, by induction hypothesis we get σΓ q : σT, _, so σΓ q : {. . . , l : σα 2 , . . .}, _. Therefore, we have σΓ MEM q • l : σα 2 .

The complete proof can be found in Appendix B, page 197.

We now want to prove that our typing algorithm is complete. Namely, if the specic type system for MEM applied to a QIR expression returns a type T , then the corresponding typing algorithm returns a type T and constraints such that there exists a type substitution satisfying the constraints that applied to T gives T.

The completeness property gives us a measure of precision of our typing algorithm, since the typing algorithm that does not type anything is sound, but not very useful. The property of completeness shows that the typing algorithm gives us the same properties than the type system on the same set of QIR expressions.

As explained at the beginning of this chapter, our types cannot express polymorphic record concatenation precisely. This loss in precision is not reected in our specic typing algorithm since our constraints are powerful enough to express those types, it is instead exposed in our algorithm of constraints resolution, presented in Section 5.3.

Note that the order of the composition of type substitutions matters. For instance, we have:

• {α → int} • {α → string} = {α → int, α → string} • {α → int} • {α → string} = {α → string} • {α → int} • {α → α } = {α → int, α → int}
This last example gives us a substitution that successfully replaces two type variables with an actual type, but we have to be careful with the order of the composition. Indeed, doing the composition the other way gives us:

{α → α } • {α → int} = {α → α , α → int} which does not replace α : • {α → int, α → int}(α → α) = int → int • {α → α , α → int}(α → α) = α → int
The completeness proof of the typing algorithm of MEM including the following lemma involves the composition of type substitutions, but the problem shown above appears only when a type variable in the domain of the second substitution appears in the image of the rst substitution. However, our typing algorithm always adds constraints that have fresh variables in their domains, which allows the proofs to avoid the problem by composing substitutions in the correct order which is that the substitution with fresh variables in its domain must be the second substitution in the composition.

First, since we do not have any type annotation to guide us for the QIR function, we need a preliminary property of coherence on all specic typing algorithms.

Denition 5.9 (Coherence of a specic typing algorithm). If Γ, f :

T 1 → T 2 , x : T 1 A D q : T, (C, K) then Γ, f : α 1 → α 2 , x : α 1 A D q : T , (C , K)
with α 1 and α 2 fresh variables, and for all σ that satises C and K, σ = σ • {α 1 → T 1 , α 2 → T 2 } satises C and K and σT = σ T . Property 5.2 (Coherence of the specic typing algorithms). We assume that all the specic typing algorithms linked to QIR are coherent.

Of course, we next prove the coherence of our specic typing algorithm for MEM.

Lemma 5.1 (Coherence of the specic typing algorithm for MEM). The specic typing algorithm for MEM is coherent.

Proof. By case analysis on Γ, f : T 1 → T 2 , x : T 1 A MEM q : T, (C, K). Since all the premises accept any type, using type variables in Γ would simply result in replacing T 1 and T 2 everywhere by α 1 and α 2 . So {α 1 → T 1 , α 2 → T 2 }T = T, {α 1 → T 1 , α 2 → T 2 }C = C, and {α 1 → T 1 , α 2 → T 2 }K = K.

We can now dene the completeness of a specic typing algorithm, and prove it for the typing algorithm of MEM.

Denition 5.10 (Completeness of a specic typing algorithm). A specic typing algorithm

A D is complete if Γ D q : T =⇒ (Γ A D q : T , (C, K)∧(∃σ | σ |= C ∧ σ k |= K ∧ σT = T)).
Theorem 5.2 (Completeness of the typing algorithm of MEM). Let q ∈ E QIR and Γ a QIR typing environment. Suppose that for all D ∈ D \ MEM, A D is complete. Then, A MEM is complete.

Proof. By induction on the typing derivation of Γ MEM q : T :

• Γ, x : T MEM x : T Immediate since Γ, x : T A MEM x : T, (∅, ∅) by taking σ = ∅.

• Γ MEM fun f (x)→q : T 1 → T 2

We have Γ, f : T 1 → T 2 , x : T 1 q : T 2 , _. By induction hypothesis, we get Γ, f : T 1 → T 2 , x : T 1 A q : T , (C, K), _, and there exists σ that satises C and K such that σ T = T 2 . So by Property 5.2 Γ, f :

α 1 → α 2 , x : α 1 A q : T , (C , K), _, and σ = σ • {α 1 → T 1 , α 2 → T 2 } satises C and K and σT = σ T = T 2 . But then we have Γ A MEM fun f (x)→q : α 1 → T , (C ∪ {α 2 = T }, K ∪ {α 1 k = U, α 2 k = U}), and σ satises C ∪ {α 2 = T } and K ∪ {α 1 k = U, α 2 k = U}. And we have σ(α 1 → T) = T 1 → T 2 .
• Γ MEM q 1 q 2 : T 2

We have Γ q 1 : T 1 → T 2 , _ and Γ q 2 : T 1 , _. By induction hypothesis, we get, for i ∈ 1..2, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and • Γ MEM if q 1 then q 2 else q 3 : T

K i such that σ 1 T 1 = T 1 → T 2 , σ 2 T 2 = T 1 . But then we have Γ A MEM q 1 q 2 : α, (C = C 1 ∪ C 2 ∪ {T 1 = T 2 → α}, K = K 1 ∪ K 2 ∪ {α k = U}). σ = σ 1 • σ 2 • {α → T 2 } satises C 1 , C 2 , K 1 , K 2 , so σ satises K and since α is fresh σT 2 = σ 2 T 2 = T 1 and σT 1 = σ 1 T 1 = T 1 → T 2 = σT 2 → σα, so σ satises C.
We have Γ q 1 : bool, _, Γ q 2 : T, _, and Γ q 3 : T, _. By induction hypothesis, we get, for i ∈ 1..3, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = bool, σ 2 T 2 = T, σ 3 T 3 = T. But then we have Γ A MEM if q 1 then q 2 else q 3 :

α 2 , (C = C 1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 }, K = K 1 ∪K 2 ∪K 3 ∪{α 1 k = U, α 2 k = U}). σ = σ 1 •σ 2 •σ 3 •{α 1 → bool, α 2 → T} satises C 1 , C 2 , C 3 , K 1 , K 2 ,
and K 3 , so σ satises K and since α 1 and α 2 are fresh σT

1 = σ 1 T 1 = bool = σα 1 , σT 2 = σ 2 T 2 = T = σα 2 , σT 3 = σ 3 T 3 = T = σα 2 , so σ satises C. And we have σα 2 = T. • Γ MEM q 1 q 2 : {l i : T i } i=1..n 95
We have Γ q 1 : {l i : T i } i=1..m , _ and Γ q 2 : {l i : T i } i=m+1..n , _. By induction hypothesis, we get, for i ∈ 1..2, Γ A MEM q i : T i , (C i , K i), and there exists σ i that satises C i and K i such that σ 1 T 1 = {l i :

T i } i=1..m , σ 2 T 2 = {l i : T i } i=m+1..n . But then we have Γ A MEM q 1 q 2 : α, (C 1 ∪ C 2 , K 1 ∪ K 2 ∪ {α k = (T 1 , T 2)}). σ = σ 1 • σ 2 • {α → {l i : T i } i=1.
.n } satises C and K and since α is fresh σT 1 = σ 1 T 1 = {l i : T i } i=1..m and σT 2 = σ 2 T 2 = {l i : T i } i=m+1..n . And we have σα = {l i : T i } i=1..n .

• Γ MEM q • l : T

We have Γ q : {. . . , l : T, . . .}, _. By induction hypothesis, we get Γ A q : T , (C, K), _, and there exists σ that satises C and K such that σ T = {. . . , l : T, . . .}. But then we have

Γ A MEM q • l : α 2 , (C = C ∪ {α 1 = T }, K = K ∪ {α 1 k = {{l : α 2 }}, α 2 k = U}). σ = σ • {α 1 → {.
. . , l : T, . . .}, α 2 → T} satises C and K , and since α is fresh σT = σ T = {. . . , l : T, . . .} = {. . . , l : σα 2 , . . .} = σα 1 , so since {. . . , l : σα 2 , . . .} {l : σα 2 }, σ satises C and K. And we have σα 2 = T.

The complete proof can be found in Appendix B, page 201.

Crucially, our completeness theorem does not directly give us a substitution to apply to the type returned by the generic typing algorithm applied to a QIR expression. Indeed, our proof generates a substitution if it is already provided a type, a type for the QIR expression is provided and the completeness builds the corresponding substitution. For instance, consider the example:

{x : α 3 } A MEM x : α 3 , (∅, ∅) {x : α 3 } A MEM x • l : α 2 , ({α 1 = α 3 }, {α 1 k = {{l : α 2 }}, α 2 k = U}) {x : α 3 } A MEM x : α 3 , (∅, ∅) {x : α 3 } A MEM { l : x • l, orig : x } : {l : α 2 , orig : α 3 }, ({α 1 = α 3 }, {α 1 k = {{l : α 2 }}, α 2 k = U}) ∅ A MEM fun(x)→{ l : x • l, orig : x } : α 3 → {l : α 2 , orig : α 3 }, ({α 1 = α 3 }, {α 1 k = {{l : α 2 }}, α 2 k = U, α 3 k = U})
If we follow the proof of completeness taking {l : int} → {l : int, orig : {l : int}} as the type given by the specic type system, we get as expected the nal substitution {α 1 → {l : int}, α 2 → int, α 3 → {l : int}} which gives us indeed the same type. An equivalent result is obtained if we replace {l : int} by {l : bool} or {id : int, name : string}.

In the next section, we present an algorithm to generate a substitution directly from the result of the generic typing algorithm to infer a type for a QIR expression with no help from the specic type system.

Constraint resolution

The last missing piece of our type inference algorithm is the generation of a solution for our sets of constraints. We adapt the unication algorithm of [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF].

We have additional rules: one to handle the record union kinds fully applied, three to handle polymorphic record union kinds, and one to handle equality constraints between list types. Denition 5.11 (Unication algorithm). The unication of constraints C, K, noted unify(C, K), applies the following rules on (C, K, ∅, ∅) respecting the order until none of them apply:

1. (C ∪ {T = T}, K, σ, SK) ⇒ (C, K, σ, SK) 2. (C ∪ {α = T}, K ∪ {α k = U}, σ, SK) ⇒ (σ C, σ K, σ σ • σ , σ SK ∪ {α k = U}) if α ∈ T V (T) where σ = {α → T} 3. (C ∪ {α 1 = α 2 }, K ∪ {α 1 k = {{l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }}, α 2 k = {{l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o }}}, σ, SK) ⇒ (σ (C ∪ {T 1 = T 1 , . . . , T o = T o }), σ (K ∪ {α 2 k = {{l 1 : T 1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o }}}), σ σ • σ , σ SK ∪ {α 1 k = {{l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }}}) where σ = {α 1 → α 2 } 4. (C ∪ {α = {l i : T i } i=1..m..n }, K ∪ {α k = {{l j : T j }} j=1..m }, σ, SK) ⇒ (σ (C ∪ {T j = T j | j ∈ 1..m}), σ K, σ σ • σ , σ SK ∪ {α k = {{l j : T j }} j=1..m }) if α ∈ T V ({l i : T i } i=1..m..n) where σ = {α → {l i : T i } i=1..m..n } 97 5. (C ∪ {{l i : T i } i=1..n = {l i : T i } i=1..n }, K, σ, SK) ⇒ (C ∪ {T i = T i | i ∈ 1..n}, K, σ, SK) 6. (C ∪ {T 1 → T 2 = T 1 → T 2 }, K, σ, SK) ⇒ (C ∪ {T 1 = T 1 , T 2 = T 2 }, K, σ, SK) 7. (C ∪ {T 1 list = T 2 list}, K, σ, SK) ⇒ (C ∪ {T 1 = T 2 }, K, σ, SK) 8a. (C, K ∪ {α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o })}, σ, SK) ⇒ (σ C, σ K, σ σ • σ , σ SK ∪ {α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o })}) if ∀i ∈ 1..n.α ∈ T V (T i) and ∀j ∈ 1..o.α ∈ T V (T j) where σ = {α → {l 1 : T 1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o }} 8b. (C, K ∪ {α k = (α 1 , α 2)}, σ, SK) ⇒ (σ C, σ K, σ σ • σ , σ SK ∪ {α k = (α 1 , α 2)}) where σ = {α → {}, α 1 → {}, α 2 → {}} 8c. (C, K ∪ {α k = (α , {l i : T i } i=1..n)}, σ, SK) ⇒ (σ C, σ K, σ σ • σ , σ SK ∪ {α k = (α , {l i : T i } i=1..n)}) where σ = {α → {l i : T i } i=1..n , α → {}} 8d. (C, K ∪ {α k = ({l i : T i } i=1..n , α)}, σ, SK) ⇒ (σ C, σ K, σ σ • σ , σ SK ∪ {α k = ({l i : T i } i=1..n , α)}) where σ = {α → {l i : T i } i=1..n , α → {}}
where SK is a set of solved kind constraints, and T V (T) is the set of type variables in T. This gives a result (C , K , σ, SK). If C = ∅, then the algorithm returns σ, otherwise it returns an error.

Recall that T = α is equivalent to α = T, so rule 2 also applies on C∪{T = α}.

Rule 1 states that if we have a type constraint that is trivially true such as int = int then we eliminate it. Rule 2 states that if a type variable α is linked to a type T by a type constraint and to a universal kind by a kind constraint, then we apply the substitution of α to T . Rule 3 states that if two type variables are linked together by a type constraint and both are linked to a record kind by kind constraints, then substitute one type variable by the other and create type constraints between the types linked to the common labels. Rule 4 states that if a type variable is linked to a record type by a type constraint and to a record kind by a kind constraint, then substitute the type variable with the record type and create type constraints between the types linked to the common labels. Rule 5 states that if we have a type constraint between two record types with the same labels then create type constraints between the types linked to the labels.

Rule 6 states that if we have a type constraint between two function types, then create type constraints between the argument types and the return types. Rule 7 states that if we have a type constraint between two list types, then create a type constraint between the element types. Rule 8a states that if a type variable is linked to a record union kind of record types, then we substitute the type variable with the record type corresponding to the concatenation of two records that have the corresponding types. Rules 8b, 8c, and 8d handle polymorphic record union kinds, and state that if a type variable α is linked to a record union kind of type variables and record types, then we substitute those type variables to the empty record type rst, and then we substitute α to the record type corresponding to the union. As explained at the beginning of this section, this is sucient for us since we do not need precise types for polymorphic record concatenation. These rules are last in the priority list since we only want to lose precision as a last resort, after we make sure no information on that record concatenation is available. For instance, the expression fun(x, y)→x y is typed α 1 → α 2 → α with a kind constraint α k = (α 1 , α 2) where α 1 and α 2 are the types given to the variables x and y respectively. Then, our unication algorithm uses rule 8b to substitute α 1 and α 2 to the type {}, and then rule 8a to substitute α to the type {}. Thus, this expression is given the type {} → {} → {} which is not the most general type, but is good enough for us since this QIR function that is not applied to anything is not of much interest to a framework that aims to send queries to databases.

Our rules 1 to 5 of our algorithm are exactly the same as the rules (I) to (V) in [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF]. Our rule 6 is the same as their rule (IX). Our rule 7 is similar to rule 6. and does not bring any new diculty for proving properties on our algorithm. (fun(r)→r • id) { id : 1, name : "Maggie" } For which the typing algorithm for MEM gave us:

∅ A MEM (fun(r)→r • id) { id : 1, name : "Maggie" } : α 1 , ({α 2 → α 4 = {id : int, name : string} → α 1 , α 3 = α 2 }, {α 1 k = U, α 2 k = U, α 3 k = {{id : α 4 }}, α 4 k = U})
We can apply our unication algorithm to those constraints in order to generate a substitution to apply to the type α 1 returned by our typing algorithm. unify({α 2 → α 4 = {id : int, name :

string} → α 1 , α 3 = α 2 }, {α 1 k = U, α 2 k = 99 U, α 3 k = {{id : α 4 }}, α 4 k = U}) gives us: ({α 2 → α 4 = {id : int, name : string} → α 1 , α 3 = α 2 }, {α 1 k = U, α 2 k = U, α 3 k = {{id : α 4 }}, α 4 k = U}, ∅) ⇒ ({α 2 = {id : int, name : string}, α 4 = α 1 , α 3 = α 2 }, {α 1 k = U, α 2 k = U, α 3 k = {{id : α 4 }}, α 4 k = U}, ∅) ⇒ ({α 4 = α 1 , α 3 = {id : int, name : string}}, {α 1 k = U, α 3 k = {{id : α 4 }}, α 4 k = U}, {α 2 → {id : int, name : string}}) ⇒ ({α 3 = {id : int, name : string}}, {α 1 k = U, α 3 k = {{id : α 1 }}}, {α 2 → {id : int, name : string}, α 4 → α 1 }) ⇒ ({α 1 = int}, {α 1 k = U}, {α 2 → {id : int, name : string}, α 4 → α 1 , α 3 → {id : int, name : string}}) ⇒ (∅, ∅, {α 2 → {id : int, name : string}, α 4 → α 1 , α 3 → {id : int, name : string}, α 1 → int})
which gives us the type {. . . , α 1 → int}α 1 = int as expected.

Our second example:

Filter fun(r)→r

• id ≤ 2 | [{id : 1}, {id : 2}, {id : 3}]
gave us the type and constraints:

∅ A MEM Filter fun(r)→r • id ≤ 2 | [{id : 1}] : α 7 list, ({α 5 = α 1 , α 4 → α 4 → bool = α 6 → α 3 , α 3 = int → α 2 , α 8 = {id : int}, α 8 list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = α 8 list}, {α 1 k = U, α 2 k = U, α 3 k = U, α 4 k = U, α 5 k = {{id : α 6 }}, α 6 k = U, α 7 k = U, α 8 k = U, α 9 k = U})
for which unify(C, K) gives us:

({α 5 = α 1 , α 4 → α 4 → bool = α 6 → α 3 , α 3 = int → α 2 , α = {id : int}, α 8 list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = α list}, {α 1 k = U, α 2 k = U, α 3 k = U, α 4 k = U, α 5 k = {{id : α 6 }}, α 6 k = U, α k = U, α 8 k = U, α 9 k = U}, ∅) ⇒ 2 ({α 5 = α 1 , α 4 → α 4 → bool = α 6 → int → α 2 , α 8 = {id : int}, α 8 list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = α list}, {α 1 k = U, α 2 k = U, α 4 k = U, α 5 k = {{id : α 6 }}, α 6 k = U, α 7 k = U, α 8 k = U, α 9 k = U}, {α 3 → int → α 2 }) ⇒ 2 ({α 5 = α 1 , α 4 → α 4 → bool = α 6 → int → α 2 , {id : int} list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = {id : int} list}, {α 1 k = U, α 2 k = U, α 4 k = U, α 5 k = {{id : α 6 }}, α 6 k = U, α 7 k = U, α k = U}, {α 3 → int → α 2 , α 8 → {id : int}}) ⇒ 6 ({α 5 = α 1 , α 4 = α 6 , α 4 → bool = int → α 2 , {id : int} list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = {id : int} list}, {α 1 k = U, α 2 k = U, α 4 k = U, α 5 k = {{id : α 6 }}, α 6 k = U, α 7 k = U, α k = U}, {α 3 → int → α 2 , α 8 → {id : int}}) ⇒ 2 ({α 5 = α 1 , α 6 → bool = int → α 2 , {id : int} list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = {id : int} list}, {α 1 k = U, α 2 k = U, α 5 k = {{id : α 6 }}, α 6 k = U, α 7 k = U, α 9 k = U}, {α 3 → int → α 2 , α 8 → {id : int}, α 4 → α 6 }) ⇒ 6 ({α 5 = α 1 , α 6 = int, bool = α 2 , {id : int} list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = {id : int} list}, {α 1 k = U, α 2 k = U, α 5 k = {{id : α 6 }}, α 6 k = U, α 7 k = U, α 9 k = U}, {α 3 → int → α 2 , α 8 → {id : int}, α 4 → α 6 }) ⇒ 2 ({α 5 = α 1 , bool = α 2 , {id : int} list = α 9 list, α 1 → α 2 = α 7 → bool, α 7 list = {id : int} list}, {α 1 k = U, α 2 k = U, α 5 k = {{id : int}}, α 7 k = U, α 9 k = U}, {α 3 → int → α 2 , α 8 → {id : int}, α 4 → int, α 6 → int}) ⇒ 2 ({α 5 = α 1 , {id : int} list = α 9 list, α 1 → bool = α 7 → bool, α 7 list = {id : int} list}, {α 1 k = U, α 5 k = {{id : int}}, α 7 k = U, α 9 k = U}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool}) ⇒ 6
({α 5 = α 1 , {id : int} list = α 9 list, α 1 = α 7 , bool = bool, α 7 list = {id : int} list},

{α 1 k = U, α 5 k = {{id : int}}, α 7 k = U, α 9 k = U}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool}) ⇒ 1 ({α 5 = α 1 , {id : int} list = α 9 list, α 1 = α 7 , α 7 list = {id : int} list}, {α 1 k = U, α 5 k = {{id : int}}, α 7 k = U, α 9 k = U}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool}) ⇒ 2
({α 5 = α 7 , {id : int} list = α 9 list, α 7 list = {id : int} list},

{α 5 k = {{id : int}}, α 7 k = U, α 9 k = U}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool, α 1 → α 7 }) ⇒ 7
({α 5 = α 7 , {id : int} = α 9 , α 7 list = {id : int} list},

{α 5 k = {{id : int}}, α 7 k = U, α 9 k = U}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool, α 1 → α 7 }) ⇒ 2
({α 5 = α 7 , α 7 list = {id : int} list},

{α 5 k = {{id : int}}, α 7 k = U}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool, α 1 → α 7 , α 9 → {id : int}}) ⇒ 7 ({α 5 = α 7 , α 7 = {id : int}}, {α 5 k = {{id : int}}, α 7 k = U}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool, α 1 → α 7 , α 9 → {id : int}}) ⇒ 2 ({α 5 = {id : int}}, {α 5 k = {{id : int}}}, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α → bool, α 1 → {id : int}, α 9 → {id : int}, α 7 → {id : int}}) ⇒ 2 ({int = int}, ∅, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α 2 → bool, α 1 → {id : int}, α 9 → {id : int}, α 7 → {id : int}, α 5 → {id : int}}) ⇒ 1 (∅, ∅, {α 3 → int → bool, α 8 → {id : int}, α 4 → int, α 6 → int, α 2 → bool, α 1 → {id : int}, α 9 → {id : int}, α 7 → {id : int}, α 5 → {id : int}})
which gives us the type {. . . , α 7 → {id : int}, . . .}α 7 = {id : int} as expected. Finally, our last example:

({ x : 1, y : 2 } { z : true }) • x
was typed as:

∅ A MEM ({ x : 1, y : 2 } { z : true }) • x : α 3 , ({α 2 = α 1 }, {α 1 k = ({x : int, y : int}, {z : bool}), α 2 k = {{x : α 3 }}, α 3 k = U})
for which unify(C, K) gives us:

({α 2 = α 1 }, {α 1 k = ({x : int, y : int}, {z : bool}), α 2 k = {{x : α 3 }}, α 3 k = U}, ∅) ⇒ 8a ({α 2 = {x : int, y : int, z : bool}}, {α 2 k = {{x : α 3 }}, α 3 k = U}, {α 1 → {x : int, y : int, z : bool}}) ⇒ 4 ({α 3 = int}, {α 3 k = U}, {α 1 → {x : int, y : int, z : bool}, α 2 → {x : int, y : int, z : bool}}) ⇒ 2 (∅, ∅, {α 1 → {x : int, y : int, z : bool}, α 2 → {x : int, y : int, z : bool}, α 3 → int})
which gives us the type {. . . , α 3 → int}α 3 = int as expected.

Note that the type inference problem has been proven to be NP-complete for the relational algebra [START_REF] Vansummeren | On the complexity of deciding typability in the relational algebra[END_REF][START_REF] Van Den Bussche | Polymorphic type inference for the relational algebra[END_REF] and for the Nested Relational Calculus [START_REF] Van Den Bussche | Polymorphic type inference for the named nested relational calculus[END_REF]. Thus, we know that our algorithm is NP.

We next give some denitions adapted from [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF] before proving the validity of our unication algorithm.

Denition 5.12 (Well-formed kind constraint). A kind constraint K is wellformed if and only if T V (img(K)) ⊆ dom(K).

For instance, {α

1 k = U, α 2 k = {{l : α 1 }}} is well-formed, but {α 2 k = {{l : α 1 }}} is not.
Denition 5.13 (Kinded substitution). A kinded substitution is a pair (K, σ) of a kind constraint K and a substitution σ such that T V (σ) ⊆ dom(K).

Denition 5.14 (Kind of a QIR type). A QIR type T has a kind k under K if the judgment K k T : k is derivable from the following rules:

• K k T : U if T V (T) ⊆ dom(K) • K ∪ {α k = k} k α : k • K ∪ {α k = {{l 1 : T 1 , . . . , l n : T n , . . .}}} k α : {{l 1 : T 1 , . . . , l n : T n }} • K k {l 1 : T 1 , . . . , l n : T n , . . .} : {{l 1 : T 1 , . . . , l n : T n }} if T V ({l 1 : T 1 , . . . , l n : T n , . . .}) ⊆ dom(K) • K k {l 1 : T 1 , . . . , l n : T n } : ({l i : T i }, {l j : T j })
where {l i } ∪ {l j } = {l 1 , . . . , l n } and {l i } ∩ {l j } = ∅, and if T V ({l 1 : T 1 , . . . , l n : T n }) ⊆ dom(K) Denition 5.15 (Respect of a kind constraint). A kinded substitution (K, σ)

respects a kind constraint K if ∀α ∈ dom(K).K k σα : σ(K (α)).
Denition 5.16 (Unier). A kinded substitution (K , σ) is a unier of a pair of sets of constraints (C, K) if it respects K and if σ satises C. Denition 5.17 (Most general unier). A kinded substitution (K , σ) is a most general unier of a pair of sets of constraints (C, K) if it is a unier of (C, K) and if for any unier (K , σ) of (C, K) there exists some substitution σ such that (K , σ) respects K and σ = σ • σ.

where σ = {α → {l 1 : T 1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o }} Property (2). Let (K 0 , σ 0) be a kinded substitution such that (K 0 , σ 0) respects σ K and σ 0 satises σ C ∪ (σ σ • σ). Then σ 0 = σ 0 • σ , and σ 0 satises C ∪ σ. Since T V (T = {l 1 : T 1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o }) ⊆ K, then T V (σ 0 α) ⊆ K 0 and K 0 k σ 0 α : ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o }). Therefore, (K 0 , σ 0) respects K ∪ {α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o })}. Then by property (2) of the premise of the rule, (K 0 , σ 0) respects SK, and thus (K 0 , σ 0) respects σ SK∪{α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o :

T o })}.
Property (3). Let σ 0 be any substitution.

If σ 0 satises σ C ∪ (σ σ • σ) then it satises C ∪ σ. Let K 0 be any kind assignment such that (K 0 , σ 0) is a kinded substitution. Suppose σ 0 satises σ C ∪ (σ σ • σ). Then since σ 0 = σ 0 • σ , if (K 0 , σ 0) respects σ K ∪ σ SK ∪ {α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o })}, then it respects K ∪ {α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o })} ∪ SK. Thus, if (K 0 , σ 0) is a unier for (σ K ∪ σ SK ∪ {α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o })}, σ C ∪ (σ σ • σ)) it is a unier for (K ∪ {α k = ({l 1 : T 1 , . . . , l m : T m , l 1 : T 1 , . . . , l o : T o }, {l m+1 : T m+1 , . . . , l n : T n , l 1 : T 1 , . . . , l o : T o })} ∪ SK, C ∪ σ).
Rule 8b, 8c, 8d: By the same arguments as for rule 8a.

We can then conclude the proof following [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF].

Without our rules for record concatenation however, our unication algorithm returns a most general unier.

Theorem 5.5. The algorithm unify(C, K) without rules 8a, 8b, 8c, and 8d computes a most general unier for the set of constraints C and K if one exists, and fails otherwise.

Proof. Directly using the proof in [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF].

Specic typing algorithm for SQL

the rules of the specic type system for SQL also restrict the types of the premises to relational types. For instance:

Γ SQL q 1 : R → bool Γ SQL q 2 : R list Γ SQL Filter q 1 | q 2 : R list This Filter rule for SQL requires the argument of the conguration to be of at record type, and the data argument to be of at record list type.

to represent those constraints, we add two new types of kinds: a basic type kind B which indicates that a type is a basic type, and a at record kind R which indicates that a type is a record type that contains only basic types. For instance, the conditional rule is then written the exact same way as for MEM, but the kind constraint on α 2 is written as α 2 k = B since α 2 represents the type of both branches of the conditional expression and, in the type system of SQL, these expressions must have a basic type:

Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ Γ A q 3 : T 3 , (C 3 , K 3), _ α 1 and α 2 fresh Γ A MEM if q 1 then q 2 else q 3 : α 2 , (C 1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 }, K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = B})
Similarly, we can use the kind constraint α k = R to write the Filter rule, since α represents both the type of the argument type of the conguration and the type of the elements of the data argument:

Γ A q 1 : T 1 , (C 1 , K 1), _ Γ A q 2 : T 2 , (C 2 , K 2), _ α fresh Γ A MEM Filter q 1 | q 2 : α list, (C 1 ∪ C 2 ∪ {T 1 = α → bool, α list = T 2 }, K 1 ∪ K 2 ∪ {α k = R})
We can then add the following rules to our algorithm of unication of constraints: 2a.

(C ∪ {α = B}, K ∪ {α k = B}, σ, SK) ⇒ (σ C, σ K, σ σ • σ , σ SK ∪ {α k = B}) if α ∈ T V (T) where σ = {α → B} 2b. (C ∪ {α = R}, K ∪ {α k = R}, σ, SK) ⇒ (σ C, σ K, σ σ • σ , σ SK ∪ {α k = R}) if α ∈ T V (T)
where σ = {α → R} This completes our design of typing algorithms for QIR. In the next chapter, we show how to use our type systems to translate QIR expressions to query languages, to obtain formal guarantees on these translations, and to safely normalize QIR queries.

107

Chapter 6

Type-oriented evaluation

In this chapter, we make use of the type systems dened in Chapter 4 and 5 for the translation and evaluation of queries. We use the information on queries provided by those type systems to guide the normalization and the translation of queries, as well as prove some useful properties in particular a safety guarantee for the translation of QIR expressions into SQL.

Translation into database languages

As we saw in Section 3.3, every database must dene a driver that allows it to interface with QIR, and this driver includes a translation from QIR into the database language. When the QIR expression to be translated is a query targeting a single database, then the translation process is straightforward, as we simply have to call the translation dened by the corresponding database driver. For instance, Filter fun(r)→r • salary > 2500 | From PostgreSQL, "employee" can be directly translated to SELECT * FROM employee AS r WHERE r.salary > 2500 However, as explained in Section 3.4, a QIR expression might not be translatable directly to one database expression. This can happen for a number of reasons such as targeting several databases or using a feature unsupported by the targeted database such as an unsupported operator. In this case, we have to translate as much as we can into the languages of the targeted databases, and leave the untranslatable parts to the MEM database. For instance, consider this QIR query:

Join fun(e, t)→e t, fun(e, t)→e • teamid = t • teamid | From PostgreSQL, "employee" , From HBase, "team" which applies the Join operator between the table "employee" stored in a Post-greSQL database with the table "team" stored in a HBase database. The simplest translation for this query is: Join fun(o, p)→{oid : oid, pname : p.name}, fun(o, p)→o • pid = p • pid | eval PostgreSQL (SELECT * FROM EMPLOYEE), eval HBase (scan 'team') in which the two From subqueries are correctly translated to the respective languages of the targeted databases, then leaves the Join operation itself in QIR form to be evaluated in MEM.

Similarly to this example, our translation must translate as much of the QIR expressions as possible using the dierent database language translations available, and default to MEM if none of these translations succeed. Additionally, our translation must be seamlessly extendable with new translations from database drivers.

In this section, we dene a generic translation from QIR to database expressions by making use of the database drivers translations --→ EXP that we call specic translations. We also dene a specic translation for SQL.

Specic and generic translations

Let us rst dene specic translations. Denition 6.1 (Specic translation). The specic translation --→ EXP D from QIR into a database language D is dened by the judgment q D e where q ∈ E QIR , e ∈ E D ∪ {Ω}, and Ω is an error. This denition is similar to the denition of the translation from Denition 3.8, adding the judgment q D e that we use to dene specic translations with inference rules. Next, we dene the generic translation of QIR. Denition 6.2 (Generic translation). The generic translation of QIR is dened by the judgment q e where q, e ∈ E QIR . The set of inference rules used to derive this judgment are:

(direct)

Γ q : T, D q D e q eval D (e)

D =MEM (propagate)
Γ q : T, MEM q i eval D i (e i) q j eval MEM (e j) q eval MEM (q{q i /eval D i (e i), q j /e j })

∀i.D i = MEM {q i } ∪ {q j } = C(q) {q i } ∩ {q j } = ∅ (best-eort-direct) ∀q i ∈ C(q).q i eval D i (e i) q D e q eval D (e) {D i } = {D, MEM} D = MEM e = Ω
(best-eort-propagate) q i eval D i (e i) q j eval MEM (e j) q eval MEM (q{q i /eval D i (e i), q j /e j })

∀i.D i = MEM {q i } ∪ {q j } = C(q) {q i } ∩ {q j } = ∅
where the order of priority of application of the rules is from top to bottom.

The goal of the generic translation is to produce a QIR expression where as many subterms as possible have been translated to native database queries. It makes use of the eval D special operators, mentioned in the extended semantics of QIR in Section 3.3, to mark a translated query for evaluation in a database D. Rule (direct) states that given a QIR expression, if there exists a database D distinct from MEM such that the expression can be typed for D by the generic type system, then the generic translation returns the translation of the expression by --→ EXP D from the driver of D. In Section 6.2, we will show that our type system for SQL gives us the guarantee that under some hypotheses the translation SQL will always succeed, in which case we can omit to check that e = Ω in this rule. Rule (propagate) states that if the QIR expression could only be typed for MEM by the generic type system, then the generic translation applies itself recursively to all children of the QIR expression, thus marking their translations for evaluation to the targeted databases and translation of the results back into QIR, then it integrates them back in place of the children in the original expression. Finally, the generic translation returns the translation of the new expression by --→ EXP MEM . These two rules can only be applied on typeable expressions. For non-typeable expressions, the generic translation has to fallback on calling the translations --→ EXP without being entirely guided by types. Rule (best-eort-direct) calls the generic translation on the children, then if they were all translated to be evaluated by the same database D = MEM or by MEM, it attempts to translate the entire expression using --→ EXP D . The downside of this rule is that it calls the translation for every child, and uses the results only to check there was no error, as it then calls the translation on the entire expression without using the results.

Thankfully, if the translation --→ EXP D is compositional, which as we will see in Section 6.1.2 is possible even for SQL, it can implement a cache of its translations to avoid translating the same expression more than once. If even this fails, then rule (best-eort-propagate) applies the same treatment as (propagate) but without the call to the type system. The dierence between those two very similar rules is that (propagate) can proceed with recursive calls with guaranteed success thanks to the type system, while (best-eort-propagate) might fail on one of its subexpressions.

We now go through a few examples. In our rst query from the beginning of the chapter:

Filter fun(r)→r • salary > 2500 | From PostgreSQL, "employee" the From is typed by our SQL type system as: A = ∅ SQL "employee" : string ∅ SQL From PostgreSQL, "employee" : {salary : int, . . .} list and the whole query as:

. . . {r : {salary : int, . . .}} SQL r • salary > 2500 : bool A From PostgreSQL, "employee"

))

As for our second query:

Join fun(e, t)→e t, fun(e, t)→ = (e • teamid, t • teamid) | From PostgreSQL, "employee" , From HBase, "team"

(best-eort-propagate) is used for the same kind of queries as (propagate), but that cannot be typed. For instance, we can add a host language expression to our (propagate) example:

Join fun(e, t)→e t, fun(e, t)→ Python (γ, e) | From PostgreSQL, "employee" , From HBase, "team" which makes the Join impossible to type, but executed in MEM using (besteort-propagate).

A specic translation for SQL

As an example of a specic translation, we document how to dene a specic translation for SQL.

Denition 6.3 (Specic translation for SQL). The specic translation --→ EXP SQL is dened by the judgment q SQL e stating that a QIR expression q can be translated to a SQL expression e. The derivation of this judgment is

given by the rules in Figure 6.1.

Data operators are translated to their SQL equivalent, for example Sort is translated to an ORDER BY clause. Project returns e 1 FROM (e 2) AS X since e 1 is expected to be a record that translates to a SELECT clause, and basic SQL does not support queries such as SELECT (SELECT name)FROM (...).

Constants are translated using the translation function -→ VAL SQL provided by the driver of the SQL database. Conditional expressions are translated to the corresponding CASE construct. Host language expressions are evaluated using a function provided by BOLDR that calls the evaluator of the host language in the database.

Although most of these rules look rather straightforward, they contain interesting particularities that come from the fact that SQL is an interesting and particular query language.

Applications are restricted to basic operators supported by SQL applied to their exact expected number of arguments since SQL does not support currying. Notice how most rules with children q i translate them recursively to e i and return constructions of the form (e i) AS X. There are two reasons for this. First, we need the alias when we translate an operator. For instance, using the rule for Filter, the query Filter fun(r)→r

q i SQL e i e i = Ω i ∈ 1..2 + (q 1 , q 2) SQL SELECT (e 1) + (e 2) (SQL-sum)
q SQL e e = Ω sum q SQL SELECT sum(e)

(SQL-cst) c SQL SELECT -→ VAL SQL (c) (SQL-if) q i SQL e i e i = Ω i ∈ 1..3
if q 1 then q 2 else q 3 SQL SELECT CASE WHEN (e 1) THEN (e 2) ELSE (e 3) END (SQL-record)

q i SQL e i e i = Ω i ∈ 1..n { l i : q i } i=1..n SQL SELECT (e 1) AS L 1 , ..., (e n) AS L n (SQL-lcons)
q 1 SQL e 1 q 2 SQL e 2 e i = Ω i ∈ 1..2 TMP fresh q 1 :: q 2 SQL e 1 UNION ALL (e 2) AS TMP (SQL-lconcat) q i SQL e i e i = Ω i ∈ 1..2 TMP, TMP2 fresh q 1 @ q 2 SQL SELECT * FROM (e 1) AS TMP UNION ALL (e 2) AS TMP2

(SQL-rdestr-simpl)

x • l SQL SELECT X.L (SQL-rdestr-cplx)

q SQL e q ≡ x e = Ω R fresh q • l SQL SELECT R.L FROM (e) AS R (SQL-project)

q i SQL e i e i = Ω i ∈ 1..2 Project fun(x)→q 1 | q 2 SQL e 1 FROM (e 2) AS X (SQL-from) From D, "table" SQL SELECT * FROM table (SQL-lter) q i SQL e i e i = Ω i ∈ 1..2
Filter fun(x)→q 1 | q 2 SQL SELECT * FROM (e 2) AS X WHERE (e 1) (SQL-join)

q i SQL e i e i = Ω i ∈ 1..4
Join fun(x, y)→q 1 , fun(x, y)→q 2 | q 3 , q 4 SQL e 1 FROM (e 3) AS X, (e 4) AS Y WHERE (e 2)

(SQL-join-noproject)

q i SQL e i e i = Ω i ∈ 2..4
Join fun(x, y)→x y, fun(x, y)→q 2 | q 3 , q 4 SQL SELECT * FROM (e 3) AS X, (e 4) AS Y WHERE (e 2) (SQL-group) q i SQL e i q SQL e q SQL e e i = Ω e = Ω e = Ω i ∈ 1..n

Group fun(x)→{ l i : q i } i=1..n , fun(x)→q | q SQL e FROM (e) AS X GROUP BY L 1 , ..., L n (SQL-sort) q i SQL e i e i = true or false i ∈ 1..n e i = DESC if e i = false q SQL e e = Ω Sort fun(x)→{ l i : q i } i=1..n | q SQL SELECT * FROM (e) AS X ORDER BY L 1 e 1 , ..., L n e n (SQL-limit)

q i SQL e i e i = Ω i ∈ 1..2 Limit q 1 | q 2 SQL SELECT * FROM (e 2) AS X LIMIT (e 1) (SQL-exists)
q SQL e e = Ω Exists q SQL SELECT EXISTS(e) This operation is obviously also used for the translation of the list concatenation in (SQL-lconcat).

Type-safe SQL translation

In this section, we prove that a QIR expression typeable for SQL by the generic type system can always be translated into SQL after normalization. First, we isolate a subset of normal forms which are translatable into SQL.

If v = if b 1 then b 2 else b 3 then: (SQL-if) (IH) b i SQL e i e i = Ω i ∈ 1..3 if b 1 then b 2 else b 3 SQL SELECT CASE WHEN (e 1) THEN (e 2) ELSE (e 3) END If v = x • l then:
(SQL-tdestr-simpl) (SQL-var)

x SQL X x • l SQL SELECT X.L If v = op (b 1 , . . . , b n) then: (SQL-plus) (IH) b i SQL e i e i = Ω i ∈ 1..2 + (q 1 , q 2) SQL SELECT (e 1) + (e 2) (SQL-sum) (IH) b SQL e e = Ω
sum q SQL SELECT sum(e)

. . .

If v = Exists s then:
(SQL-exists) (IH)

s SQL e e = Ω
Exists s SQL SELECT EXISTS(e)

• If v ≡ r then If v = x then:
(SQL-var) Proof. By Lemma 6.1: v ≡ b or v ≡ r or v ≡ s. Thus, by Lemma 6.2, we obtain: v SQL s. The property is then true by the rule (direct) of the generic translation.

x SQL SELECT x. * If v = { l i : b i } i=1..n then: (SQL-record) (IH) b i SQL e i e i = Ω i ∈ 1..n { l i : b i } i=1..n SQL SELECT (e 1) AS X 1 , ..., (e n) AS X n • If v ≡ s then: If v = r :: s then: (SQL-lcons) (IH) r SQL e 1 (IH) s SQL e 2 e i = Ω i ∈ 1..2 TMP fresh r :: s SQL e 1 UNION ALL (e 2) AS TMP If v = s 1 @ s 2 then: (SQL-lconcat) (IH) s i SQL e i e i = Ω i ∈ 1..2 TMP,
As desired, this theorem tells us that if the specic type system of SQL gave a type that is compatible with SQL to a QIR normal form, then this normal form is translatable to SQL. Combined with our theorems from Chapter 4, we get the property that any QIR expression typed with the specic type system for SQL can be fully normalized and then translated to SQL. Corollary 6.1. Let q ∈ E QIR such that ∅ q : T, SQL where T ≡ B or T ≡ R or T ≡ R list, then ∃v | q → * v, v is in normal form, and v eval SQL (s).

Proof. By Theorem 4.4, we have q → * v and v is in normal form. By Theorem 4.1 and Theorem 4.5, we have ∅ v : T, SQL. Therefore, by Theorem 6.1, we have v eval SQL (s).

Extension to scalar subqueries for SQL

SQL supports a particular feature called scalar subqueries. SQL allows the use of tables (results of queries in particular) in expressions that expect a basic type.

Syntactically, this is a correct SQL query:

SELECT salary + (SELECT bonus FROM team AS t WHERE t.teamid = e.teamid) FROM employee AS e If the subquery returns more than one row (or zero rows) or more than one column then a runtime error is returned, otherwise SQL automatically extracts the unique value returned by the subquery and uses it as the second argument of the addition. This is not just limited to operations in an operator. For instance, these two queries give the same result in SQL:

SELECT 1 AS id SELECT (SELECT 1) AS id since SQL automatically extracts the only value in the table created by SELECT 1. In order to represent this feature, we could add a type conversion rule stating that if an expression could be typed as a at list which records contain only one association from a label to a basic type, then it can also be typed as that basic type:

Γ SQL q : {l : B} list Γ SQL q : B Adding this rule requires to modify Property 4.3 of coherence of a specic type system to include type conversion rules as possible rules to add in a database type system. The major problem with this rule is the integration to the typing algorithm for SQL since it is not algorithmic and not obvious to integrate to our constraint system. However, in SQL, the context always makes it clear whether or not a query should be considered a scalar subquery or not, in particular because SQL only allows at records and tables composed of at records, thus leaving the latter as the only type of scalar subqueries possible. Thus, handling this type conversion rule entails considering type constraints such as int = {l : int} list to be trivially true. To do this, we need to modify the equality relation = between types, so that a type {l : B} list representing scalar subqueries are equal to the basic type B in the case of SQL.

The property of safety of translation of Corollary 6.1 still holds with the type conversion rule with a small modication in Lemma 6.1: an expression which is given a basic type can be an expression with a list type for which the type conversion rule has been applied.

Type-oriented normalization

As explained at the end of Section 3.5, our normalization procedure is based on a syntactic criterion on data operator applications which can lead to non-optimal reductions, and relies on calling database translations to gure out if reductions are useful or not which can be expensive with no guarantee of improving the query.

We solve both of these issues using our typing relation of Denition 4.7: Γ q : T, D. This typing relation gives us the database that should evaluate the root of a QIR expression without having to call translations, as well as a guarantee in the case of SQL that the normalization terminates and yields a translatable query. Therefore, we can dene a new type-oriented normalization that only uses the normalization of Section 3.5 as a default case. Denition 6.5 (Type-oriented normalization). The type-oriented normalization rst applies the relation → to an input QIR expression q to obtain a result q . The relation → is derived by the following rules:

(tnorm-SQL)

Γ q : T, SQL T ≡ B or R or R list q → * v q → v (tnorm-MEM)
Γ q : T, MEM q i → q i q → {q i → q i }q {q i }=C(q) (tnorm-default) q → q where (tnorm-SQL) and (tnorm-MEM) always have priority over (tnormdefault). Then, the type-oriented normalization returns q where q H → q .

The relation → of Denition 6.5 states with rule (tnorm-SQL) that if the QIR expression is typed for SQL by the generic type system with a type compatible with SQL, then it applies the relation → of Denition 3.13 until reaching a normal form. This is guaranteed by Corollary 6.1 to terminate and return a normal form translatable into SQL. Rule (tnorm-MEM) states that if the QIR expression is typed with MEM, then → calls itself recursively on all the children of the QIR expression. This rule aims to nd potential subexpressions that are typed for SQL. Finally, rule (tnorm-default) returns the input expression itself meaning that the typing relation did not give any relevant information for the normalization of this expression. The type-oriented normalization rst applies → to the input expression in order to make use of our Corollary 6.1 as much as possible, then it applies the heuristic normalization H → for the rest of the expression. This type-oriented normalization can easily be extended to other database languages. For instance, if a database D were to prove a similar property to our Corollary 6.1 for SQL, then we could add a rule to Denition 6.5 such as:

Γ q : T, D q → * v q → v
In this chapter, we showed how to safely manipulate QIR expressions using our type system for QIR. In the next chapter, we discuss our existing implementation of BOLDR, as well as the results of our benchmarks and what these results imply.

Chapter 7

Implementation and experiments

In this chapter, we talk about the implementation of BOLDR, and the results of our experiments. First, we illustrate how to translate a host language into QIR using the programming language R as an example.

Translation from a host language to QIR

In this section, we describe how to interface a general-purpose programming language with BOLDR by creating a driver for the programming language R as an example of a host language. Proving any type of formal properties on the host language is (unsurprisingly) out of scope. As explained in Chapter 1, our goal is to allow programmers to write queries using the constructs of the language they already master. Therefore, instead of extending the syntax of R, we extend existing functionalities, in particular by overloading existing functions.

We abstract R as the following language: where x ∈ I R , and γ ∈ 2 I R ×V R is the environment of the closure. Denition 7.1 only denes expressions that can be translated into QIR. Expressions of R not listed in the denition are translated to host language expressions. R programs include rst-class functions; side eects (= being the assignment operator as well as the variable denition operator); sequences of expressions separated by ; or a newline; and structured data types such as vectors and tables with named columns called data frames. We recall that, in R, c is the basic operator to create vectors, and data.frame is the basic operator to create data frames. R variables are statically scoped in the way it is usually implemented in dynamic languages (e.g., as in Python or JavaScript), in which identiers that are not in the current static scope are assumed to be global identiers even if they are undened when the scope is created. For instance, the R program: f = function (x) { x + y }; y = 3; z = f(2); is well-dened and stores 5 in z (but calling f before dening y yields an error).

We now highlight how data frames are manipulated in standard R. As mentioned in Chapter 1, the subset function lters a data frame: 13 subset(emp, sal >= minSalary * getRate("USD", cur), c(name))

This function returns the data frame given as rst argument, ltered by the predicate given as second argument, and restricted to the columns listed in the third argument. Before resolving its second and third arguments, and for every row of the rst argument, subset binds the values of each column of the row to a variable of the corresponding name. This is why in our example the variables sal and name occur free: they represent columns of the data frame emp. For instance: employee = data.frame(name=c("Lily Pond", "Daniel Rogers", "Olivia Sinclair"), sal=c(5200, 4700, 6000)) subset(employee, sal > 5000, c(name)) applies a projection and a lter to the data frame employee and returns a data frame containing name as its only column and two rows which values are "Lily Pond" and "Olivia Sinclair".

The join between two data frames is implemented with the function merge.

For instance, the following example: employee = data.frame(name=c("Lily Pond", "Daniel Rogers", "Olivia Sinclair"), sal=c(5200, 4700, 6000), teamid=c(2, 1, 1)) team = data.frame(teamid=c(1, 2), teamname=c("R&D", "Sales"), bonus=c(500, 600)) merge(employee, team) performs the Join operation described in Figure 1.3c.

To integrate R with BOLDR, we dene two builtin functions:

• tableRef takes the name of a table and the name of the database the table belongs to, and returns a reference to the table

• executeQuery takes a QIR expression, closes it by binding its free variables to the translation into QIR of their value from the current R environment, sends it to the QIR runtime for evaluation, and translates the results to R values We also extend the set of values V R :

v ::= . . . | tableRef(v, ..., v) | q γ
where q γ are QIR closure values representing queries associated with the R environment γ used at their denition.

The functions subset and merge are overloaded to call the translation R -→ EXP on themselves if their rst argument is a reference to a database table created by tableRef, yielding a QIR term q to which the current scope is axed, creating a QIR closure q γ . Free variables in q γ that are not in dom(γ) are global identiers whose bindings are to be resolved when q γ is executed using executeQuery.

Even though we do not modify the parsing of R programs, we still want to translate R closures to QIR functions. For instance, we want to translate the following R program: less2500 = function (x) { x <= 2500 } t = tableRef("employee", "PostgreSQL") subset(t, less2500(sal))

into this QIR term:

(fun(less2500, t)→

Filter fun(r)→(less2500

) (r • sal) | t) (fun(x)→x ≤ 2500, From D, employee)
which becomes, after normalization:

Filter fun(r)→r • sal ≤ 2500 | From D, employee While it seems obvious from this example that the function less2500 should be translated to fun(x)→x ≤ 2500, it is not always sound to do so. Indeed, a variable x can be soundly translated to a QIR variable x if it is not the subject of side eects, otherwise accesses to x must be nested inside host language expressions R (γ, x) so that the correct value for x can be retrieved.

The set of modied variables can be approximated by the Mod function dened as such:

Denition 7.2 (Approximation of modied variables). Let e ∈ E R be an expression and γ an evaluation environment for R. The set Mod(γ, e) of modied variables in e ranged over by M is inductively dened as:

Mod(γ, x) . . .

= {} if x / ∈ dom(γ) Mod(γ, x = e) = {x} ∪ Mod(γ, e) Mod(γ, x) = {} if γ(x) = function γ (. . .). . . Mod(γ, x) = Mod(γ ∪ γ, e) if γ(x) = function γ (. . .)
The rst ve cases of the Mod function are the most interesting ones (the others being only bureaucratic children calls). First, if a variable is used, but is not in the current scope, it is not marked as modied. If the variable is being assigned to, then it is added to the set of modied variables. If the variable is bound in the current scope, to a value that is not closure, then it is also marked as unmodied. However, if a variable is bound to a closure, then the body of the latter is traversed, in an environment augmented with the closure environment. Lastly, the body of anonymous functions are recursively explored to collect modied variables. We can now tackle the translation from R expressions to QIR terms.

Denition 7.3 (Translation from R to QIR). We dene the judgment M, γ e R q, which means that given a set of modied variables M and an R environment γ, the R expression e can be translated to a QIR expression q.

The derivation of this judgment is given by the rules in Figure 7.1. We dene the translation R -→ EXP(γ, e) = q as Mod(γ, e), γ e R q.

Constants and identiers are translated to QIR equivalents. Anonymous functions are translated to anonymous QIR functions. More interesting is the translation of the builtin function subset. Its rst two arguments are recursively translated, but the second one requires some post-processing. Recall that in the names. We simulate this behavior by introducing a function whose argument is a fresh name t and replace all occurrences of a free variable x in the translation by t • x. The last argument is expected to be a list of column names we use to build a function to project over these names. The merge function is similarly translated to a Join operator. The last interesting case is when a local variable is dened in a sequence of expressions. If the variable is not modied in the subsequent expression, then we translate this denition into a function application.

M, γ c R R -→ VAL(c) x / ∈ M M, γ x R x M, γ e R q M, γ function(x 1 , . . . , x n) {e} R fun(x 1 , . . . , x n)→q M, γ e 1 R q 1 M, γ e 2 R q 2 t fresh {y 1 , . . . , y m } = FreeVariables(e 2) \ dom(γ) q 2 = q 2 {y 1 /t • y 1 , . . . , y m /t • y m } M, γ subset(e 1 , e 2 , c(x 1 , . . . , x n)) R Project fun(t)→{ x i : t • x i } | Filter fun(t)→q 2 | q 1 M, γ e 1 R q 1 M, γ e 2 R q 2 M, γ merge(e 1 , e 2) R Join fun(x, y)→x y, fun(a, b)→true | q 1 , q 2 M, γ e 1 R q 1 . . . M, γ e n R q n M, γ c(e 1 , . . . , e n) R [q 1 , . . . , q n] M, γ e 1 R q 1 . . . M, γ e n R q n M, γ ∪ {x 1 → e 1 , . . . , x n → e n } e R q M, γ (function(x 1 , . . . , x n) {e})(e 1 , . . . , e n) R (fun(x 1 , . . . , x n)→q) (q 1 , . . . , q n) M, γ e 1 R q 1 . . . M, γ e n R q n M, γ op e 1 . . . e n R op (q 1 , . . . , q n) M, γ e 1 R q 1 M \ {x}, γ ∪ {x → e 1 } e 2 R q 2 M, γ (x = e 1); e 2 R (fun(x)→q 2) q 1 x / ∈ Mod(γ, e 2) M, γ e 1,1 R q 1,1 . . . M, γ e 1,m R q 1,m M, γ e n,1 R q n,1 . . . M, γ e n,m R q n,m M, γ data.frame   x 1 = c(e 1,1 , . . . , e 1,m), . . . , x n = c(e n,1 , . . . , e n,m)   R [{ x 1 : q 1,1 , . . . , x n : q n,1 }, . . . , { x 1 : q 1,m , . . . , x n : q n,m }] M, γ e 1 R q 1 M, γ e 2 R q 2 M, γ e 3 R q 3 M, γ if (e 1) e 2 else e 3 R if q 1 then q 2 else q 3 M, γ e R R (γ, e) otherwise
Expressions that are not handled are kept in host expression nodes to be evaluated either locally, in a QIR term that is not shipped to a database, or remotely, using the R runtime embedded in a database.

EXP(γ, e).

We now have everything we need to interface R and QIR. When executeQuery is called on a QIR closure value q, we translate the values associated to its free variables in the runtime environment to QIR values, and bind each of them to corresponding QIR variables with applications of functions, yielding a new closed QIR term that can be sent to QIR.

Let us illustrate the whole process on the introductory example of Chapter 1.

Evaluation of the query expression

When an expression recognized as a query is evaluated, it is translated into QIR (using Denition 7.3). In the introductory example, the function call richUSPeople = atLeast(2500, "USD") triggers the evaluation of the function atLeast: atLeast = function(minSalary, cur) { # table employee has two columns: name, salary emp = tableRef("employee", "PostgreSQL") subset(emp, salary >= minSalary * getRate("USD", cur), c(name)) } in which the function subset (Line 13) is evaluated with a table reference as rst argument, and is therefore translated to a QIR expression. richUSPeople is then bound to the QIR closure value: Project fun(t)→{ name : The code of our open-source prototype for BOLDR can be found at:

• https://gitlri.lri.fr/jlopez/qir for the QIR

• https://gitlri.lri.fr/jlopez/QueryR for the interfaced FastR

• https://gitlri.lri.fr/jlopez/qsl for the interfaced SimpleLanguage and True

• https://www.lri.fr/~lopez/phd/index_en.html for the main page of the project As expected, the bulk of our development lies in the QIR (its denition and normalization) which is completely shared between all languages and database back-ends. Compared to its 7500 l.o.c., the development cost of languages or database drivers, including translations to and from QIR is modest (between 700 and 1000 l.o.c.).

From bottom to top, one can see that adding a non-trivial database backend to the framework is little work (500 l.o.c. for translating QIR into SQL and another 150 to add some glue code in PostgreSQL using PL/Java [START_REF] Tada | PL/Java add-on module[END_REF]). Note that to support any other Relational DBMS, only the glue code part has to be changed. Indeed, our translation from QIR to SQL can be reused heavily, even for languages of NoSQL databases such as Cassandra's CQL, since CQL is very similar to SQL. But, of course, supporting vendor specic extensions of SQL would require to write an extended specic database translation. For HBase, we translate QIR expressions to Java objects representing HBase queries using the Java interface provided by HBase. The QIR part contains the denition of QIR operators; the normalization procedure; the generic part of the translation to databases; the type systems; and the in-memory evaluator. This amounts to a fair 7000 l.o.c. but is shared by all host languages and back-ends. Furthermore, any improvement made on that component (e.g., in the normalization module or in the runtime) benets to all back-ends and host languages. As for the integration with the host language, given a non-trivial language (FastR amounts to 173000 l.o.c. without counting the l.o.c. of the True framework), extending its parser and implementing the translation of Denition 7.3 takes about 1350 l.o.c. This last number is roughly the same for SimpleLanguage in which we dened a syntax for queries, and we expect it would be similar for other languages.

Even though our main focus is on True-based languages, on which we have full control over their interpreters, all our requirements are also met by the introspection capabilities of modern dynamic languages. For instance, in R, the environment function returns the environment axed to a closure as a modiable R value, the body function returns the body of a closure as a manipulable abstract syntax tree, and the formals function returns the modiable names of the arguments of a function. Our implementation includes an experimental interface to Python as a host language using the introspection capabilities of this language.

Our implementation additionally includes an experimental driver for Spark databases, with a translation from QIR to Scala.

QIR

QIR is implemented in Java using True under GPL v2 licence. The QIR implementation is described by Figure 7

QIR nodes

QIR nodes are dened using the True framework. Every QIR node inherits from QIRNode.java. This includes QIR data operators, for instance Figure 7.3 shows the implementation of Filter in QIR. A VirtualFrame is the True version of a host language evaluation environment. The executeGeneric method is a method dened in all QIR nodes to evaluate them. Every denition of this method in a QIR node is the implementation of a rule used to infer the relation → from Denition 3.6, except for QIR nodes representing data operators in which executeGeneric is the implementation of the data operator by MEM.

Technically, these implementations of data operators for MEM should not exist since these operators should be translated into QIR expressions as shown in Denition 3.11, but it is obviously more ecient in practice to directly implement the operator in Java and in executeGeneric. Finally, the accept method dened in every QIR node is part of an implementation of the Visitor design pattern which we will use for various algorithms on QIR nodes including translations.

Such algorithms have to implement the IQIRVisitor interface, with T being the return type of the algorithm.

Types and type systems

The package types contains objects dening QIR types. All QIR types inherit from QIRType.java. The package typing contains the generic type system as a class, as well as an abstract class as interface for specic type systems which implements IQIRVisitor.

Our type systems use a subtyping relation instead of constraints for ease of implementation. For instance, Figure 7.4 shows how the type system for SQL returns a type for a conditional expression. The methods checkSubtype and expectCommonType dened by the abstract class QIRSpecificTypeSystem.java respectively throw an expression if the rst argument is not a subtype of the second argument, and if the two arguments do not share a common subtype. So this method called on a QIR conditional expression if q 1 then q 2 else q 3 checks that the condition q 1 has a boolean type (Line 2), then checks that the "then" expression q 2 has a basic type represented by the abstract class QIRConstantType using the special value QIRConstantType.ANY which is a special type that is considered a supertype to any basic type (Line 4), and nally returns the common subtype of the two expressions q 2 and q 3 if it exists (Line 5).

1 public final QIRType visit(final QIRIf qirIf) { 2 checkSubtype(qirIf.getCondition().accept(toAccept), QIRBooleanType.getInstance()); 3 final QIRType thenType = qirIf.getThenNode().accept(toAccept); 4 checkSubtype(thenType, QIRConstantType.ANY); 5 return expectCommonType(qirIf.getThenNode().accept(toAccept), qirIf.getElseNode().accept(toAccept)); 6 } Figure 7.4 The type system for SQL on a conditional expression Additionally, our type systems implement the possibility to give more powerful constraints to our types. For instance, Figure 7.5 shows the method that infers a type for the Project data operator of relational algebra. This method rst uses expectIfSubtype to check that the data argument of Project has a list type given by the attribute anyListType (Line 2), then checks that the conguration of Project has a function type that takes the type of an element of the data argument and returns the type expectedFormatterReturnType (Line 3), and nally it returns a list type which elements have the return type of the conguration (Line 4). expectedFormatterReturnType restricts accepted QIR types for data operators. In the type system for MEM, expectedFormatterReturnType is set to QIRAnyType, which is, similarly to QIRConstantType.ANY, a special type considered as a supertype of any other type: public QIRType visit(final QIRProject qirProject) { return visit(qirProject, QIRAnyType.getInstance());

}

But in the type system for SQL, the expected return type is a at record, a record that can only contain basic types. To achieve this, our implementation of a QIR record type gives the possibility to add a global restriction to the types of elements of a QIR record type. So for the type inference for SQL, expectedFormatterReturnType is the empty record type with a global restriction set to the special value QIRConstantType.ANY: @Override public final QIRType visit(final QIRProject qirProject) { return visit(qirProject, QIRRecordType.anyRestrictedTo(QIRConstantType.ANY)); } We also see here how the Visitor pattern and the dynamic dispatch of Java allow us to factorize common code between algorithms.

As for anyListType, it would be set in the case of MEM to a list which argument type is QIRAnyType, meaning that MEM accepts any type of list. SQL would set the attribute to a list for which the type of elements is a record type that can only contain basic types.

Drivers

Our implementation of BOLDR does not have a xed denition of a host language driver. It only has an interface QIRInterface.java that contains a run function taking a QIR term as a query and returning a QIR term as results of the evaluation of the query or throwing a QIRException in case of error. Less naive ways to transmit information from database tables such as cursors [START_REF] Elmasri | Fundamentals of Database Systems[END_REF] are not yet supported.

However, database drivers have a xed denition in our implementation in the form of the following abstract functions present in a Java abstract class DBDriver.java: public abstract void openConnection(final String newConfigFile); public abstract void closeConnection(); public abstract boolean isConnOpen(); public abstract QIRType type(final QIRNode query); public abstract DBRepr translate(final QIRNode query); public abstract QIRNode run(final DBRepr query); openConnection, closeConnection, and isConnOpen are handling the connection to the database. For instance, our implementation of a PostgreSQL driver uses a JDBC driver to establish a connection to the database using the method getConnection() from the class java.sql.DriverManager.

The function type gives a QIRType to a QIR expression. This function corresponds to the specic type system dened in Denition 4.6 for the database. The function translate takes a QIRNode and returns its translation into a representation that can be evaluated by the database. This function corresponds to the specic translation dened in Denition 6.1 for the database. The return type of translate is the parametric type DBRepr specied by the driver as the query representation for the corresponding database. For instance, in the case of a SQL database, DBRepr can simply be the type String since we can translate the query to a SQL string as in Denition 6.3. Both of the functions type and translate are algorithms that can implement IQIRVisitor as mentioned before.

Finally, the function run takes a query in the representation of DBRepr, sends it to the database for evaluation, then retrieves the results and translates them into QIR.

Interface to FastR

Our implementation of BOLDR interfaces with FastR, the implementation in True of the language R.

As already mentioned in Section 7.1, our implementation overrides the already existing builtin functions $ and subset to work on queries. The integration is not yet completely implemented, so a syntax for queries has also been added for temporary use for other operators such as Group or for complex congurations.

So the query: subset(emp, sal >= min_salary, c(emp_id, emp_name))

can also be written:

query.select(function (x) { res = new.env() res$empno = x$emp_id res$ename = x$emp_name res }, query.where(function (x) x$sal >= min_salary, query.from(emp)))

The interface between FastR and QIR also retrieves values of free variables using True frames, then binds them using QIR applications of QIR functions to the translation of values into QIR as intended.

Finally, the interface denes functions using True in order to evaluate True closures. These functions are used inside databases to evaluate host language expressions.

Host language expressions in databases

In order to evaluate a host language expression in True inside databases, we call the Java Virtual Machine present in the database, or if none exist natively we nd a way to interface one to the database.

PostgreSQL

PostgreSQL is a database written in C, that does not natively have access to a JVM. To evaluate host language expressions in PostgreSQL, our implementation of BOLDR uses PL/Java [START_REF] Tada | PL/Java add-on module[END_REF] which interfaces PostgreSQL, allowing us to import a jar le of our True languages in PostgreSQL.

Hive

Hive is a software built on top of Hadoop which provides a SQL-like query language compiled to MapReduce operations. Hive is written in Java, thus we can directly use the intended way to call foreign Java functions from jar les [Hiv].

Syntax of host language expression application in practice

We get to a bit of a technical problem when a host language expression depends on data stored in the database. Indeed, a function stored in a host language expression can be dicult to represent as an object that a query language can manipulate. Let us take the example of PostgreSQL in which we want to execute R code.

We use the extension called PL/Java to execute FastR code in a PostgreSQL database. This allows us to create a function that calls the runtime of R to evaluate an R expression. For instance: SELECT r.executeR('2') However, if we use this function to evaluate an R function: SELECT r.executeR('function(x) x + 2') we get a result that cannot be easily recovered as a SQL value. Because of this, r.execute returns an opaque object that represents the return value of the evaluation of the program in the R runtime. Unfortunately, we cannot directly apply this opaque object to data present in tables. Thus, we create another function in R that evaluates an R function with arguments, and interface it with PostgreSQL using PL/Java by creating another SQL function named r.executeApply: SELECT r.executeApply(r.executeR('function (dol){ a = dol * 89.0 / 100.0 while (a > 1000.0) a = a * 89.0 / 100.0 a }'), array[r.translateToR(x.sal)]) AS salary, x.name AS name, x.id AS id FROM public.employee AS x WHERE NOT ((x.sal) < (2500.0))) AS x;

The function r.translateToR is another function created using PL/Java allowing us to translate the arguments for r.executeApply. This translation makes use of the automatic translation of PL/Java between SQL values and Java objects as a temporary solution, but in the future, it should rely on the translations dened in BOLDR: from SQL to QIR, then from QIR to R.

Experiments

The test machine for our experiments is a PC with Ubuntu 16.04.2 LTS, kernel 4.4.0-83, with the latest master from the True/Graal framework and Post-greSQL 9.5, Hive 2.1.1, HBase 1.2.6, and Java 1.8, all with default parameters.

The results of our evaluation are reported in Figures 7.6, 7.7, 7.8, 7.9, and 7.10.

Queries labeled TPCH-n are SQL queries taken from the TPC-H performance benchmark [START_REF] Tpc | The TPC-H benchmark[END_REF]. These queries feature joins, nested queries, grouping, ordering, and various arithmetic subexpressions. Figures 7.6, 7.7, and 7.8 illustrate how our approach fare against hand-written SQL queries. Figure 7.6 reports the expected cost in disk page fetches as reported by the EXPLAIN ANALYZE commands scaled on the cost of the queries in pure SQL, and Figure 7.7 reports the execution time on a 1GB data set. In the legends of the gures, Pure SQL represents the hand-written SQL queries, Pure SQL+UDFs represents the same SQL queries where some subexpressions are expressed as function calls of stored functions written in PL/SQL. BOLDR R represents the SQL queries generated by BOLDR from equivalent R expressions, and BOLDR R+UDFs represents the same SQL queries as in SQL+UDFs generated by BOLDR from equivalent R expressions with R UDFs. Lastly, for BOLDR R+ , we added untranslatable subexpressions kept as host language nodes to impose a call to the database embedded R runtime. The results show that we can successfully match the performances of Pure SQL with BOLDR R, and that BOLDR outperforms PostgreSQL in BOLDR R+UDFs against Pure SQL+UDFs. This last result comes from the fact that PostgreSQL is not always able to inline function calls, even for simple functions written in PL/SQL. In stark contrast, no overhead is introduced for a SQL query generated from an R program, since the normalization is able to inline function calls properly, yielding a query as ecient as a hand-written one.

As an example, the TPCH-15 query was written in BOLDR R+UDFs as: supplier = tableRef("supplier", "PostgreSQL", "pg.conf", "tpch") revenue = tableRef("revenue", "PostgreSQL", "pg.conf", "tpch") max_rev = function() max(subset(revenue, TRUE, c(total_revenue))) q = subset(merge(supplier, revenue, function(x, y) x$s_suppkey == y$supplier_no), total_revenue == max_rev(), c(s_suppkey, s_name, s_address, s_phone, total_revenue))[order(s_suppkey),] print(executeQuery(q)) BOLDR was able to inline this query, whereas the equivalent in Pure SQL+UDFs could not be inlined by the optimizer of PostgreSQL. While it incurs a high overhead, it remains reasonable even for expensive queries (such as TPCH-1) compared to the cost of network delays that would happen otherwise since host expressions represent expressions that are impossible to inline or to translate into the database language. The results are that the overhead of calling the R runtime is small compared to the execution of the query in Map/Reduce for an input data inferior to 80000 rows. The cost of 315000 calls to the runtime of the R runtime is shown as roughlt twice slower than the same query with no such calls. The cost of 633000 calls to the runtime of the R runtime is shown as two and a half times slower than the same query with no such calls. These results show that, even using a naive interface between the R runtime and Hive and a regular JVM, BOLDR generates queries containing application code that are executable with decent performances, especially compared to transferring data to the application side.

Figure 7.10 gives the performances of queries mixing two data sources between a PostgreSQL, a HBase, and a Hive database. We executed Example 1.5 and varied the data sources for the functions getRate and atLeast. In the current implementation, a join between tables from dierent databases is performed on the client side (see our future work in Section 8.3), therefore the queries in which the two functions target the same database perform better, since they are evaluated in a unique database implying less network delays and less work on the client side.

Chapter 8

Conclusion

In this chapter, we rst talk about work in the literature relevant to our work on BOLDR. Next, we give a global conclusion to this document by summarizing its contributions. Finally, we explore possible future developments for BOLDR.

Related work

The work in the literature closest to BOLDR is T-LINQ [START_REF] Cheney | A Practical Theory of Language-Integrated Query[END_REF] which subsumes previous work on LINQ and Links and gives a comprehensive practical theory of language integrated queries. In particular, it gives the strongest results

to date for a language-integrated queries framework. Among their contributions stand out: (i) a quotation language (a λ-calculus with list comprehensions) used to express queries in a host language, (ii) a normalization procedure ensuring that the translation of a query cannot cause a query avalanche, (iii) a type system which guarantees that well-typed queries can be normalized, (iv) a general recipe to implement language-integrated queries and (v) a practical implementation that outperforms Microsoft's LINQ. Some parts of our work are strikingly similar: our intermediate representation is a λ-calculus using reduction as a normalization procedure. However, our work diverges radically from their approach because we target a dierent kind of host languages. T-LINQ works on the pure aspects of the host language, with quotation and anti-quotation support and a type-system, although the implementations of LINQ, including P-LINQ presented in [START_REF] Cheney | A Practical Theory of Language-Integrated Query[END_REF], make a best eort to handle a larger set of host language expressions in queries. Also, T-LINQ only supports one (type of) database per query and a limited set of operators (essentially, selection, projection, and join, expressed as comprehensions). While denitely possible, extending T-LINQ with other operators (e.g., group by) or other data models (e.g., graph databases) seems challenging since their normalization procedure hard-codes in several places the semantics of SQL. The host languages we target do not lend themselves as easily to formal treatment, as they are highly dynamic, untyped, and impure programming languages. We designed BOLDR to be target databases agnostic, and to be easily extendable to support new languages and databases. We also endeavored to lessen the work of driver implementors (adding support for a new language or database) through the use of embedded host language expressions, which take advantage of the capability of modern databases to execute foreign code. This contrasts with LINQ where adding new back-ends is known to be a dicult task [START_REF] Eini | The Pain of Implementing LINQ Providers[END_REF]. Lastly, we obtained formal results corresponding to those of T/P-LINQ by interfacing a specic SQL type system to our framework.

In order to detect queries in regular code, T-LINQ uses a system of quotations that syntactically delimits queries, and anti-quotations used as an escape environment in queries in order to refer to F# constructs. This syntactic technique has the advantage of making the detection of queries trivial, and therefore it is very commonly used [START_REF] Kiselyov | The Design and Implementation of BER MetaO-Caml[END_REF][START_REF] Sheard | Template meta-programming for haskell[END_REF], but it does not oer a seamless integration into the programming language.

In the footsteps of T-LINQ, Suzuki et al. [START_REF] Kiselyov | Finally, safely-extensible and ecient language-integrated query[END_REF] dene a language-integrated query framework for which both the query language and the translation rules to SQL are safely user-extensible. In [START_REF] Kiselyov | Sound and ecient language-integrated query[END_REF], a denotational approach is taken to create a language-integrated query framework that supports sound ORDER BY and LIMIT operations.

Links [START_REF] Cooper | Links: web programming without tiers[END_REF] is a programming language that generates type-safe SQL queries in the context of creating Web applications in one single language. The type system of Links ensures that well-typed queries can be translated to SQL queries [START_REF] Lindley | Row-based eect types for database integration[END_REF].

Ur/Web [START_REF] Chlipala | Ur: Statically-typed metaprogramming with typelevel record computation[END_REF] is a domain-specic language for the creation of Web applications. It relies on the programming language Ur and its type inference engine to type-check metaprograms that generate programs to build HTML documents and SQL queries. SML# [START_REF] Ohori | Making standard ml a practical database programming language[END_REF] is a version of Standard ML that seamlessly integrate SQL. In this language, a legal SQL expression is a polymorphically typed rst-class citizen that can be freely combined with any features of Standard ML, including highorder functions, data type denition, and its module system. SQL expressions are then sent to a database server to be evaluated.

Eorts have been made to extend the Scala programming language [START_REF] Garcia | Extending Scala with Database Query Capability[END_REF] to the expression of queries using the syntax of LINQ and the native Scala syntax for comprehensions [START_REF] Jones | Comprehensive comprehensions[END_REF] and taking advantage of the strong static type system to analyse the type safety of queries at compile-time. Libraries such as Quill [Qui] and Slick [Sli] provide access to databases and language-integrated queries.

QIR is not the rst intermediate language of its kind. While LINQ proposes the most used intermediate query representation, recent work by [OPV14] introduced SQL++, an intermediary query representation whose goal is to subsume SQL and NoSQL. In this work, a carefully chosen set of operators is shown to be sucient to express relational queries as well as NoSQL queries (e.g., queries over JSON databases). Each operator supports conguration options to account for the subtle dierences in semantics for distinct query languages and data models (treatment of the special value NULL, semantics of basic operators such as equality, . . .). In opposite, we chose to let the database expose the operators it supports in a driver.

While the sets of operators of QIR and of SQL++ are roughly the same, their design and use is quite dierent. In particular, QIR is designed as a calculus, allowing us to supplement the semantics of our operators with arbitrary functions and to perform high-level optimizations through guided partial evaluation while SQL++ lacks such exibility.

[GRS10] present an alternative compilation scheme for LINQ, where SQL and XML queries are compiled into an intermediate Our current implementation of BOLDR is at an early stage and, as such, it suers several shortcomings. Some are already addressed in existing literature.

First, our treatment of eects is rather crude. Local side eects, such as updating mutable references scoped inside a query, work as expected while observable eects, such as reading from a le on host machine memory, is unspecied behavior. The work of [START_REF] Cook | Remote Batch Invocation for SQL Databases[END_REF] shows how client-side eects can be re-ordered and split apart from queries. Third, at the moment, when two subqueries target different databases, their aggregation is done in the QIR runtime. [START_REF] Costa | A Common Data Manipulation Language for Nested Data in Heterogeneous Environments[END_REF] present a language which allows manipulation of data coming from dierent sources, abstracting their nature and localization. A drawback of their work is the limitation in the set of expressions that can be handled. Our use of arbitrary host expressions would allow us to circumvent this problem. Fourth, we do not use the table schemas provided by databases. These would allow us to detect more errors in queries before their translation.

An alternative to modifying the semantics of operators in the language and adding explicit query evaluation functions such as executeQuery of Chapter 7

to express and evaluate queries in already existing programming languages is to identify parts of code that should be considered as queries using imperative code extraction [START_REF] Emani | Extracting Equivalent SQL from Imperative Code in Database Applications[END_REF], transparent persistence [START_REF] Wiedermann | Extracting queries by static analysis of transparent persistence[END_REF] or synthesis [START_REF] Cheung | Optimizing databasebacked applications with query synthesis[END_REF]. Additionally, it is possible to reduce the latency of applications by sending queries to databases before the results are needed, this is called query result prefetching.

Recent techniques [START_REF] Ramachandra | Holistic optimization by prefetching query results[END_REF] allows applications to apply query result prefetching eciently and in a way that is transparent to programmers.

Conclusion

In this thesis, we studied how to create, translate and evaluate queries safely and eciently, through a language-integrated framework.

QIR. We dened an intermediate representation of queries as a language called QIR, which allowed us to apply a database-agnostic optimization called normalization in order to merge subqueries together by reducing application code that glues them together.

Type systems. We dened a type system for QIR allowing data operators to be typed according to the semantics of the particular targeted database. This was achieved by creating a modular generic type system that can be extended with specic type systems created by databases typing QIR expressions that are compatible with the query language of the database. We used those type systems to prove safety properties on the evaluation of QIR expressions and on the normalization. We also dened a specic type system for SQL.

Typing algorithms. We dened typing algorithms suitable for implementation that we prove to be equivalent to our type systems. These typing algorithms generate a type that contains type variables along with constraints on types.

These constraints are resolved by our unication algorithm which generates a substitution of type variables to be applied to the type generated by the typing algorithm. We also proved that this typing algorithm terminates and returns substitutions that indeed solve the constraints given as input.

Typed evaluation. We dened how to translate a QIR expression into a database language expression, and showcased this by dening a translation from QIR to SQL. We also showed that a term typed by our specic type system for SQL is guaranteed to be translatable to SQL by our translation. Additionally, we dene a normalization based that makes use of our type systems to detect if reducing a QIR expression is guaranteed to terminate.

Implementation. We implemented BOLDR, with support for several host languages and databases. We experimented on our framework and showed that, for most queries, BOLDR generates queries as ecient as hand-written queries in SQL, and it can handle queries between dierent databases and containing application logic with decent performances.

We have shown with BOLDR that it is possible to create a language-integrated framework allowing application programmers to write queries in the language they are experts in, without having to be expert in the query language or data model of the targeted databases. We additionally showed it is possible to guarantee some safety of execution of these queries, and all of this without sacricing performances.

Future work

First, we want to create more host language and database drivers to link more components to BOLDR. Our experiments on Python call for interfacing more languages that are not implemented using True. On the other side of the framework, there are many eld-specic database languages the framework could interface with. For instance, the query language Cypher [FGG + 18] created for the database Neo4j is designed for graph databases. Integrating these languages is crucial in order to allow BOLDR to query specialized databases eciently.

Additionally, it would be interesting to explore how to interface a statically typed programming language to BOLDR, in particular to study how to make our generic type system work with the type system of the language. Intuitively, our type system being standard, it should be possible to transfer information from the type system of the language to the type system of QIR.

Currently, queries targeting more than one data source are partially executed in the host language runtime. We plan to determine when such queries could be executed eciently in one of the targeted data sources instead. For instance, as explained in Chapter 4, in a join between two distinct data sources, it could be more ecient to transfer data from one data source to the other data source which could then complete the join. This requires a study on how to guarantee such an optimization would really be ecient, likely based on the quantity of information to be transferred.

Similarly, a whole new range of optimization possibilities could be exploited if databases could evaluate QIR code. Indeed, if that were possible, then more queries that are not translatable in the query language of the database could be evaluated in the database. For instance, consider the following query:

Join fun(x, y)→x y, fun(x, y)→x.teamid=y.teamid |

From "Employee", Cassandra , From "Team", Cassandra

Since Join is not supported by the database Cassandra, BOLDR performs the Join in-memory after sending queries to Cassandra to fetch the data from the two tables. However, if Cassandra could evaluate QIR code, then we would be able to send the entire query to the database, and evaluate the Join there, in the embedded QIR runtime. The key dierence here is that instead of fetching the data from the two tables, it is the result of the operation that is sent to the application side. Thus, just like for data transfer between databases, the usefulness of this optimization depends on the query: performing it would be useful if the result of the operation in QIR yields signicantly less data to be transferred, since network delays would then be greatly reduced. Our implementation of QIR being written in Java (using True), evaluating QIR code in a database is absolutely feasible, and we will explore this possibility in the near future.

Our type system tells us where every subexpression of a query should be evaluated. By adding security constraints, it would be possible to ask the generic type system to ensure that there is no transfer of sensitive data from the database to a client by making sure operators manipulating this sensitive data are never typed for MEM.

Our typing algorithms currently deduce the type of the data present in a table using type constraints. Some databases such as relational databases give types to their tables. BOLDR could use this information to have an additional verication of the validity of queries.

ORMs and LINQ can always type queries since they target statically typed programming languages. BOLDR cannot do the same since its queries might contain code from dynamically typed languages, and we do not plan to statically type Python. In order to extend the type system of QIR to some host language expressions, we could use a recent technique called gradual typing [START_REF] Siek | Gradual Typing for Functional Languages[END_REF] which mixes static and dynamic typing in the same language. For instance, mypy [MyP] allows to freely mix between static and dynamic typing in Python. This would allow us to extend our type system to host language expressions containing statically typed code, and therefore give guarantees even on QIR expressions that contain host language code.

Our developments on BOLDR use data operators from relational algebra.

Unfortunately, these operators are not directly adaptable for operations in graph or map-reduce databases. Of course, those databases can interface their specic operators to the framework. However, having to use the specic operators for each database makes queries written in host languages dependant to the targeted databases, which goes against our goal of allowing programmers to write queries without being experts in the data models and languages of their targeted databases. Therefore, a future line of improvement for BOLDR is the denition of more generic data operators that would allow programmers to write queries in the same way no matter which databases they target.

The translations from QIR to databases are directly written in Java in our implementation. A possible improvement would be the creation of a domainspecic language to dene translations from QIR into database languages, leaving the implementation details to the language itself, with the associated gains of speed, clarity, and concision. A starting point for this extension named DCDL

for Database Capabilities Description Language can be found in [START_REF] Lopez | Master's thesis -Breaking the wall between generalpurpose languages and databases[END_REF]. DCDL bases itself on macro tree transducers [CDG + 07, BD13] to dene sequences of translation rules.

Our implementation of the default database MEM that evaluates QIR expressions is rather naive. We could achieve better performances, for instance, by Les données, elles, sont stockées dans des bases de données gérées par des systèmes de gestion de bases de données (SGBD). Ces systèmes gèrent le stockage, l'accès optimisé aux données en utilisant un langage de requêtes, la tolérance aux pannes, la modularité et la condentialité des données, et plus encore. Une expression d'un langage de requêtes, appelée requête, décrit les données demandées au lieu de détailler comment y accéder, laissant au SGBD le soin de choisir la meilleure façon de procéder. A.2.1 Algèbre relationnelle L'algèbre relationnelle créée par Edgar F. Codd [START_REF] Codd | A relational model of data for large shared data banks[END_REF], dénit des opérations sur des données représentées comme des ensembles de n-uplets dans lesquels chaque élément correspond à un attribut dénoté par un nom. Les bases de données relationnelles appellent ces constructions des tables, composées de lignes et de colonnes. SELECT * FROM Employee NATURAL JOIN Team ou encore :

SELECT * FROM Employee, Team WHERE Employee.deptno = Team.deptno Statement depuis l'objet de connexion pour envoyer une requête. Cette requête est écrite sous forme de chaîne de caractères dans le langage de requêtes de la base (SQL dans l'exemple). Les résultats sont représentés par un objet ResultSet contenant un curseur qui commence au début de l'ensemble résultat. ResultSet fournit une méthode next() qui déplace le curseur sur la ligne suivante, et des méthodes d'accès telles que getInt() qui renvoie la valeur d'un attribut dont le nom est donné en argument dans la ligne courante pointée par le curseur. Par exemple, rs.getInt("ID") accède à l'entier stocké dans la colonne nommée "ID" dans la ligne courante de l'ensemble des résultats rs.

Bien que JDBC soit populaire et simple d'utilisation pour des programmeurs experts dans le langage de requêtes de leur base cible, ce type de solution très courant a de nombreux défauts :

• Les programmeurs doivent maîtriser les langages de requêtes de toutes les bases de données ciblées.

• L'intégration de logique d'application est très limitée car la traduction d'expressions du langage d'application vers le langage d'une base de données est restreint aux valeurs de bases (chaînes de caractères, entiers, . . .), ce qui force les programmeurs à décomposer des requêtes complexes en requêtes plus simples à envoyer aux bases de données, et à combiner les résultats dans l'application, ce qui entraîne plus de travail pour les programmeurs, de la duplication de code, et des performances potentiellement désastreuses.

• Les erreurs dans les requêtes, mêmes syntaxiques, sont seulement détectées à l'exécution car les outils des langages de programmation comme les systèmes de types ne peuvent pas détecter d'erreurs dans des requêtes écrites dans des chaînes de caractères.

• Une attention toute particulière doit être apportée aux entrées utilisateur intégrées aux requêtes pour éviter les attaques par injection de code [START_REF] William | A Classication of SQL-Injection Attacks and Countermeasures[END_REF].

• Des conversions de type doivent être utilisées pour traduire des valeurs de la base de données vers le langage d'application (avec JDBC, cela se fait en utilisant des méthodes comme getInt).

• Changer une base de données cible pour une autre base avec un langage de requête diérent implique la réécriture de toutes les requêtes de l'application. SELECT name FROM employee WHERE sal >= 2500 * R.eval("@...", array("USD", "EUR")) où la chaîne de caractères "@..." est une référence à une clôture pour getRate.

Mélanger diérentes sources de données est supporté, mais moins ecacement.

Par exemple, nous pourrions faire référence à une table d'une base HBase [Apaa] dans la fonction getRate. • If q = if q 1 then q 2 else q 3 , then either q 1 = true, in which case rule (app-true) applies; or q 1 = false, in which case rule (app-false) applies; or q 1 = true or false is in normal form, in which case q is in normal form; or q 1 is not in normal form, in which case (if-red) applies.

• If q = { l i : q i } i=1..n , then either all q i are in normal form, in which case q is in normal form; or at least one q i is not in normal form, in which case rule (rec-red) applies.

• If q = q 1 q 2 , then either q 1 ≡ { l : v, . . . , l : v } and q 2 ≡ { l : v, . . . , l : v } are in normal form, in which case rule (rconcat-rec) applies;

or q 1 and q 2 are in normal form and either q 1 ≡ { l : v, . . . , l : v } or q 2 ≡ { l : v, . . . , l : v }, in which case q is in normal form; or either q 1 or q 2 are not in normal form in which case either rule (rconcat-red1) or (rconcat-red2) apply.

• If q = [], then q is in normal form.

• If q = q 1 :: q 2 , then either q 1 and q 2 are in normal form, in which case q is in normal form; or either q 1 or q 2 are not in normal form in which case either rule (lcons-red1) or (lcons-red2) apply.

• If q = q 1 @ q 2 , then either q 1 ≡ [] and q 2 are in normal form, in which case rule (lconcatlempty) applies;

or q 1 and q 2 ≡ [] are in normal form, in which case rule (lconcatrempty) applies;

q 1 ≡ v :: v and q 2 are in normal form, in which case rule (lconcatlcons) applies;

or q 1 and q 2 are in normal form and q 1 ≡ [] or v :: v and q 2 ≡ [],

in which case q is in normal form;

or either q 1 or q 2 are not in normal form in which case either rule (lconcat-red1) or (lconcat-red2) apply.

• If q = q • l, then either q ≡ { . . . , l : v, . . . } is in normal form, in which case rule (rdestrrec) applies;

or q ≡ { . . . , l : v, . . . } is in normal form, in which case q is in normal form; or q is not in normal form, in which case rule (rdestr-red) applies.

• If q = q 1 as h :: t ? q 2 : q 3 , then either q 1 = [], in which case rule (ldestr-empty) applies; or q 1 ≡ v 1 :: v 1 , in which case rule (ldestr-nonempty) applies; or q 1 ≡ [] or v 1 :: v 1 is in normal form, in which case q is in normal form;

or q 1 is not in normal form, in which case rule (ldestr-red) applies.

• If q = o q 1 , . . . , q m | q m+1 , . . . , q n , then either all q i are in normal form, in which case q is in normal form; or at least one q i is not in normal form, in which case either rule (dataop-conf) or (dataop-data) apply.

Theorem 4.1 (Subject reduction for MEM). Suppose that for all D ∈ D \ MEM, we have subject reduction on → . Then, we have subject reduction for MEM on → .

Proof. If D = MEM, then the property is true by hypothesis. Suppose now that D = MEM. We prove the property by induction on the derivation of Γ MEM q : T , since it is the only possible step after Γ q : T, MEM. We use L4.1 to denote Lemma 4.1, and P4.3 to denote Property 4.3.

• For all the (*-red*) and (dataop-*) rules, the property is immediately true by applying the induction hypothesis and the hypothesis that we have subject reduction for D = MEM.

• (fun f (x)→q 1) v 2 → {f → fun f (x)→q 1 , x → v 2 }q 1 :

or q 1 = true or false, in which case q 1 is not a value by typing and can be reduced by induction hypothesis.

• If q = { l i : q i } i=1..n , then either all q i are values, in which case q is a value; or at least one q i is not a value, in which case rule (rec-red) applies.

• If q = q 1 q 2 , then either q 1 ≡ { l : v, . . . , l : v } and q 2 ≡ { l : v, . . . , l : v } are values, in which case rule (rconcat-rec) applies;

or either q 1 ≡ { l : v, . . . , l : v } or q 2 ≡ { l : v, . . . , l : v }, in which case either q 1 or q 2 are not values by typing and can be reduced by induction hypothesis.

• If q = [], then q is a value.

• If q = q 1 :: q 2 , then either q 1 and q 2 are values, in which case q is a value; or either q 1 or q 2 are not a value by typing and can be reduced by induction hypothesis.

• If q = q 1 @ q 2 , then either q 1 ≡ [] and q 2 is a value, in which case rule (lconcat-lempty) applies;

or q 1 is a value and q 2 ≡ [], in which case rule (lconcat-rempty) applies;

q 1 ≡ v :: v and q 2 is a value, in which case rule (lconcat-lcons) applies;

or either q 1 or q 2 are not a value by typing and can be reduced by induction hypothesis.

• If q = q • l, then either q ≡ { . . . , l : v, . . . }, in which case rule (rdestr-rec) applies; or q ≡ { . . . , l : v, . . . } is not a value by typing and can be reduced by induction hypothesis.

• If q = q 1 as h :: t ? q 2 : q 3 , then either q 1 = [], in which case rule (ldestr-empty) applies; or q 1 ≡ v 1 :: v 1 , in which case rule (ldestr-nonempty) applies; or q 1 ≡ [] or v 1 :: v 1 , in which case q 1 is not a value by typing and can be reduced by induction hypothesis.

• If q = o q 1 , . . . , q m | q m+1 , . . . , q n , then either all q i are values, in which case (ext-database) applies by hypothesis;

or at least one q i is not a value, in which case either rule (dataopconf) or (dataop-data) apply.

Lemma 4.5. Let q ∈ E QIR and v 1 , . . . , v m ∈ V QIR be closed QIR values. If there exists QIR typing environments Γ 1 , . . . , Γ m and database languages D, D 1 , . . . , D m such that x 1 : T 1 , . . . , x m : T m q : T, D and ∀j ∈ 1..m.Γ j v j : T j , D j and v j ∈ R T j , then q{x 1 /v 1 , . . . , x m /v m } ∈ R T .

Proof. We note Γ = {x j : T j } j=1..m . By induction on the derivation of Γ q : T, D:

• If q = x, then q = x j and T = T j , in which case the property is obviously true as if v j ∈ R T j then x j {x j /v j } = v j ∈ R T j .

• If q = fun(x)→q 1 , then:

Γ, x : T MEM q 1 : T Γ D fun(x)→q 1 : T → T P4.3

Γ fun(x)→q 1 : T → T , D

Let q ∈ R T . By Lemma 4.2, we have q → * v for some v. By sound. Then, A MEM is sound.

Proof. By induction on the typing derivation of Γ A MEM q : T, (C, K):

• Γ, x : T A MEM x : T, (∅, ∅) The property is immediately true since we have σΓ, x : σT MEM x : σT which is true for any σ. A q : T, (C, K), _, by induction hypothesis we get σΓ, f : σα 1 → σα 2 , x : σα 1 q : σT, _, so σΓ, f : σα 1 → σT, x :

σα 1 MEM q : σT . Therefore we have σΓ MEM fun f (x)→q : σα 1 → σT .

• Γ A MEM q 1 q 2 : α,

(C 1 ∪ C 2 ∪ {T 1 = T 2 → α}, K 1 ∪ K 2 ∪ {α k = U})
Let σ be a solution for C 1 ∪C 2 ∪{T 1 = T 2 → α} and K 1 ∪K 2 ∪{α k = U}, then σ is a solution for C 1 , C 2 , K 1 , and K 2 and σT 1 = σT 2 → σα. Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _, by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : σT 2 → σα, _. Therefore we have σΓ MEM q 1 q 2 : σα.

• Γ A

MEM c : typeofC(c), (∅, ∅)

The property is immediately true since we have σΓ MEM c : typeofC(c) = σtypeofC(c) for any σ. The property is immediately true since we have σΓ MEM op : T = σ(polytypeofOP(op)) using Property 5.1 since T V (σ(polytypeofOP(op))) = ∅.

• Γ A MEM if q 1 then q 2 else q 3 : α 2 , (C

1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 }, K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = U})
Let σ be a solution for

C 1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 } and K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k
= U}, then σ is a solution for C 1 , C 2 , C 3 , K 1 , K 2 , and K 3 and σα 1 = σT 1 = bool, σα 2 = σT 2 , σα 2 = σT 3 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _, Γ A q 2 : T 2 , (C 2 , K 2), _, and Γ A q 3 : T 3 , (C 3 , K 3), _, by induction hypothesis we get σΓ q 1 : σT 1 , _, σΓ q 2 : σT 2 , _, and σΓ q 3 : σT 3 , _, so σΓ q 1 : bool, _, σΓ q 2 : σα 2 , _, and σΓ q 3 : σα 2 , _.

Therefore we have σΓ MEM if q 1 then q 2 else q 3 : σα 2 .

• Γ A MEM { l i : q i } i=1..n : {l i : T i } i=1..n , (n i=1 C i , n i=1 K i) Let σ be a solution for n i=1 C i and for n i=1 K i , then σ is a solution for C i and K i for i ∈ 1..n. For i ∈ 1..n, since we have Γ A q i : T i , (C i , K i), _, by induction hypothesis we get σΓ q i : σT i , _. Therefore we have σΓ MEM { l i : q i } i=1..n : {l i : σT i } i=1..n .

• Γ A

MEM q 1 q 2 : α,

(C 1 ∪ C 2 , K 1 ∪ K 2 ∪ {α k = (T 1 , T 2)})
Let σ be a solution for C 1 ∪ C 2 and K 1 ∪ K 2 ∪ {α k = (T 1 , T 2)}, then σ is a solution for C 1 , C 2 , K 1 , and K 2 , and σT 1 = {l i : T i } i=1..m , σT 2 = {l i : T i } i=m+1..n , σα = {l i : T i } i=1..n . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _, by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : {l i : T i } i=1..m , _, σΓ q 2 : {l i : T i } i=m+1..n , _. Therefore, we have σΓ MEM q 1 q 2 : {l i : T i } i=1..n = σα.

• Γ A MEM [] : α list, (∅, {α k = U})
The property is immediately true since we have σΓ MEM [] : T list = σT list which is true for any σ.

• Γ A MEM q 1 ::

q 2 : α list, (C 1 ∪C 2 ∪{α = T 1 , α list = T 2 }, K 1 ∪K 2 ∪{α k = U})
Let σ be a solution for C 1 ∪ C 2 ∪ {α = T 1 , α list = T 2 } and K 1 ∪ K 2 ∪ {α k = U}, then σ is a solution for C 1 , C 2 , K 1 , K 2 , and σα = σT 1 , σα list = σT 2 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _, by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : σα, _, and σΓ q 2 : σα list, _. Therefore we have σΓ MEM q 1 :: q 2 : σα list.

• Γ A MEM q 1 @ q 2 : α list, (C 1 ∪ C 2 ∪ {α list = T 1 , α list = T 2 }, K 1 ∪ K 2 ∪ {α k = U})
Let σ be a solution for C 1 ∪ C 2 ∪ {α list = T 1 , α list = T 2 } and K 1 ∪ K 2 ∪ {α k = U}, then σ is a solution for C 1 , C 2 , K 1 , and K 2 , and σα list = σT 1 σα list = σT 2 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _, by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : σα list, _, and σΓ q 2 : σα list, _. Therefore we have σΓ MEM q 1 @ q 2 : σα list. = U}, then σ is a solution for C and K and σα 1 = σT, σα 1 {l : σα 2 }, so σα 1 = {. . . , l : σα 2 , . . .}. Since we have Γ A q : T, (C, K), _, by induction hypothesis we get σΓ q : σT, _, so σΓ q : {. . . , l : σα 2 , . . .}, _. Therefore we have σΓ MEM q • l : σα 2 .

• Γ A MEM q 1 as h :: t ? q 2 : q 3 : α

2 , (C 1 ∪ C 2 ∪ C 3 ∪ {α 1 list = T 1 , α 1 → α 1 list → α 2 = T 2 , α 2 = T 3 }, K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = U})
Let σ be a solution for C 1 ∪C 2 ∪C 3 ∪{α

1 list = T 1 , α 1 → α 1 list → α 2 = T 2 , α 2 = T 3 } and K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = U}, then σ is a solution
for C 1 , C 2 , C 3 , K 1 , K 2 , and K 3 and σα 1 list = σT 1 , σα 1 → σα 1 list → σα 2 = σT 2 , σα 2 = σT 3 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _, Γ A q 2 : T 2 , (C 2 , K 2), _, and Γ A q 3 : T 3 , (C 3 , K 3), _, by induction hypothesis we get σΓ q 1 : σT 1 , _, σΓ q 2 : σT 2 , _, and σΓ q 3 : σT 3 , _, so σΓ q 1 : σα 1 list, _, σΓ q 2 : σα 1 → σα 1 list → σα 2 , _, and σΓ q 3 : σα 2 , _. Therefore we have σΓ MEM q 1 as h :: t ? q 2 : q 3 :

σα 2 . • Γ A MEM Project q 1 | q 2 : α 2 list, (C 1 ∪ C 2 ∪ {α 1 → α 2 = T 1 , α 1 list = T 2 }, K 1 ∪ K 2 ∪ {α 1 k = U, α 2 k = U}) Let σ be a solution for C 1 ∪ C 2 ∪ {α 1 → α 2 = T 1 , α 1 list = T 2 } and K 1 ∪ K 2 ∪ {α 1 k = U, α 2 k = U}, then σ is a solution for C 1 , C 2 ,
K 1 , and K 2 , and σα 1 → σα 2 = σT 1 σα 1 list = σT 2 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _, by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : σα 1 → σα 2 , _, and σΓ q 2 : σα 1 list, _. Therefore we have σΓ MEM Project q 1 | q 2 : σα 2 list.

• Γ A MEM Filter q 1 | q 2 : α list, (C 1 ∪ C 2 ∪ {α → bool = T 1 , α list = T 2 }, K 1 ∪ K 2 ∪ {α k = U})
Let σ be a solution for C 1 ∪ C 2 ∪ {α → bool = T 1 , α list = T 2 } and K 1 ∪K 2 ∪{α k = U}, then σ is a solution for C 1 , C 2 , K 1 , and K 2 , and σα → bool = σT 1 , σα list = σT 2 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _ and Γ A q 2 : T 2 , (C 2 , K 2), _, by induction hypothesis we get σΓ q 1 : σT 1 , _ and σΓ q 2 : σT 2 , _, so σΓ q 1 : σα → bool, _, and σΓ q 2 : σα list, _. Therefore we have σΓ MEM Filter q 1 | q 2 : σα list.

• Γ A MEM Join q 1 , q 2 | q 3 , q 4 : α 3 list,

(C 1 ∪ C 2 ∪ C 3 ∪ C 4 ∪ {α 1 → α 2 → α 3 = T 1 , α 1 → α 2 → bool = T 2 , α 1 list = T 3 , α 2 list = T 4 }, K 1 ∪ K 2 ∪ K 3 ∪ K 4 ∪ {α 1 k = U, α 2 k = U, α 3 k = U}) Let σ be a solution for C 1 ∪ C 2 ∪ C 3 ∪ C 4 ∪ {α 1 → α 2 → α 3 = T 1 , α 1 → α 2 → bool = T 2 , α 1 list = T 3 , α 2 list = T 4 } and K 1 ∪ K 2 ∪ K 3 ∪ K 4 ∪ {α 1 k = U, α 2 k = U, α 3 k = U},
then σ is a solution for C 1 , C 2 , C 3 , C 4 , K 1 , K 2 , K 3 , and K 4 , and σα 1 → σα 2 → σα 3 = σT 1 , σα 1 → σα 2 → bool = σT 2 , σα 1 list = σT 3 , σα 2 list = σT 4 . Since we have Γ A q 1 : T 1 , (C 1 , K 1), _, Γ A q 2 : T 2 , (C 2 , K 2), _, Γ A q 3 : T 3 , (C 3 , K 3), _, Γ A q 4 : T 4 , (C 4 , K 4), _, by induction hypothesis we get σΓ q 1 : σT 1 , _, σΓ q 2 : σT 2 , _, σΓ q 3 : σT 3 , _, σΓ q 4 : σT 4 , _, so σΓ q 1 : σα 1 → σα 2 → σα 3 , _, σΓ q 2 : σα 1 → σα 2 → bool, _, σΓ q 3 : σα 1 list, _, and σΓ q 4 : σα 2 list, _. Therefore we have σΓ MEM Join q 1 , q 2 | q 3 , q 4 : σα 3 list. Theorem 5.2 (Completeness of the typing algorithm of MEM). Let q ∈ E QIR and Γ a QIR typing environment. Suppose that for all D ∈ D \ MEM, A D is complete. Then, A MEM is complete.

Proof. By induction on the typing derivation of Γ MEM q : T :

• Γ, x : T MEM x : T Immediate since Γ, x : T A MEM x : T, (∅, ∅) by taking σ = ∅.

• Γ MEM fun f (x)→q : T 1 → T 2

We have Γ, f : T 1 → T 2 , x : T 1 q : T 2 , _. By induction hypothesis, we get Γ, f : T 1 → T 2 , x : T 1 A q : T , (C, K), _, and there exists σ that satises C and K such that σ T = T 2 . So by Property 5.2 Γ, f : α 1 → α 2 , x : α 1 A q : T , (C , K), _, and σ = σ • {α 1 → T 1 , α 2 → T 2 } • Γ MEM q 1 q 2 : T 2

We have Γ q 1 : T 1 → T 2 , _ and Γ q 2 : T 1 , _. By induction hypothesis, we get, for i ∈ 1..2, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = T 1 → T 2 , σ 2 T 2 = T 1 .

201

But then we have Γ A MEM q 1 q 2 : α,

(C = C 1 ∪ C 2 ∪ {T 1 = T 2 → α}, K = K 1 ∪ K 2 ∪ {α k = U}). σ = σ 1 • σ 2 • {α → T 2 } satises C 1 , C 2 , K 1 , K 2 ,
so σ satises K and since α is fresh σT 2 = σ 2 T 2 = T 1 and σT 1 = σ 1 T 1 = T 1 → T 2 = σT 2 → σα, so σ satises C. And we have σα = T 2 . • Γ MEM if q 1 then q 2 else q 3 : T

We have Γ q 1 : bool, _, Γ q 2 : T, _, and Γ q 3 : T, _. By induction hypothesis, we get, for i ∈ 1..3, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = bool, σ 2 T 2 = T, σ 3 T 3 = T. But then we have Γ A MEM if q 1 then q 2 else q 3 :

α 2 , (C = C 1 ∪ C 2 ∪ C 3 ∪ {α 1 = T 1 , α 1 = bool, α 2 = T 2 , α 2 = T 3 }, K = K 1 ∪K 2 ∪K 3 ∪{α 1 k = U, α 2 k = U}). σ = σ 1 •σ 2 •σ 3 •{α 1 → bool, α 2 → T} satises C 1 , C 2 , C 3 , K 1 , K 2 ,
and K 3 , so σ satises K and since α 1 and α 2 are fresh σT 1 = σ 1 T 1 = bool = σα 1 , σT 2 = σ 2 T 2 = T = σα 2 , σT 3 = σ 3 T 3 = T = σα 2 , so σ satises C. And we have σα 2 = T.

• Γ MEM { l i : q i } i=1..n : {l i : T i } i=1..n For i ∈ 1..n, we have Γ q i : T i , _. By induction hypothesis, we get, for i ∈ 1..n, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i such that σ i T i = T i . But then we have Γ A MEM { l i : q i } i=1..n : {l i : T i } i=1..n , (n i=1 C i , n i=1 K i), and σ 1 • . . . • σ n {l i : T i } i=1..n = {l i : T i } i=1..n .

• Γ MEM q 1 q 2 : {l i : T i } i=1..n

We have Γ q 1 : {l i : T i } i=1..m , _ and Γ q 2 : {l i : T i } i=m+1..n , _. By induction hypothesis, we get, for i ∈ 1..2, Γ A MEM q i : T i , (C i , K i), and there exists σ i that satises C i and K i such that σ 1 T 1 = {l i : T i } i=1..m , σ 2 T 2 = {l i : T i } i=m+1..n . But then we have Γ A MEM q 1 q 2 : α, (C 1 ∪

C 2 , K 1 ∪ K 2 ∪ {α k = (T 1 , T 2)}). σ = σ 1 • σ 2 • {α → {l i : T i } i=1.
.n } satises C and K and since α is fresh σT 1 = σ 1 T 1 = {l i : T i } i=1..m and σT 2 = σ 2 T 2 = {l i : T i } i=m+1..n . And we have σα = {l i : T i } i=1..n . • Γ MEM q 1 :: q 2 : T list We have Γ q 1 : T, _ and Γ q 2 : T list, _. By induction hypothesis, we get, for i ∈ 1..2, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = T, σ 2 T 2 = T list. But then we have Γ A MEM q 1 :: q 2 : α list,

(C = C 1 ∪ C 2 ∪ {α = T 1 , α list = T 2 }, K = K 1 ∪ K 2 ∪ {α k = U}). σ = σ 1 • σ 2 • {α → T} satises C 1 , C 2 , K 1 ,
and K 2 , so σ satises K and since α is fresh σT 1 = σ 1 T 1 = T = σα and σT 2 = σ 2 T 2 = T list = σα list, so σ satises C. And we have σα list = T list.

• Γ MEM q 1 @ q 2 : T list We have Γ q 1 : T list, _ and Γ q 2 : T list, _. By induction hypothesis, we get, for i ∈ 1..2, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = T list, σ 2 T 2 = T list.

But then we have Γ A MEM q 1 @ q 2 : α list,

(C = C 1 ∪ C 2 ∪ {α list = T 1 , α list = T 2 }, K = K 1 ∪ K 2 ∪ {α k = U}). σ = σ 1 • σ 2 • {α → T} satises C 1 , C 2 , K 1 ,
and K 2 , so σ satises K and since α is fresh σT 1 = σ 1 T 1 = T list = σα list and σT 2 = σ 2 T 2 = T list = σα list, so σ satises C. And we have σα list = T list.

• Γ MEM q • l : T

We have Γ q : {. . . , l : T, . . .}, _. By induction hypothesis, we get Γ A q : T , (C, K), _, and there exists σ that satises C and K such that σ T = {. . . , l : T, . . .}. But then we have Γ A MEM q • l : α 2 , (C = C ∪ {α 1 = T }, K = K ∪ {α 1 k = {{l : α 2 }}, α 2 k = U}). σ = σ • {α 1 → {. . . , l : T, . . .}, α 2 → T} satises C and K , and since α is fresh σT = σ T = {. . . , l : T, . . .} = {. . . , l : σα 2 , . . .} = σα 1 , so since {. . . , l : σα 2 , . . .} {l : σα 2 }, σ satises C and K. And we have σα 2 = T.

• Γ MEM q 1 as h :: t ? q 2 : q 3 : T 1

We have Γ q 1 : T 2 list, _, Γ q 2 : T 2 → T 2 list → T 1 , _, and Γ q 3 : T 1 , _. By induction hypothesis, we get, for i ∈ 1..3, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = T 2 list, σ 2 T 2 = T 2 → T 2 list → T 1 , and σ 3 T 3 = T 1 . But then we have Γ A MEM q 1 as h :: t ? q 2 : q 3 : α 2 , (C = C 1 ∪C 2 ∪C 3 ∪{α

1 list = T 1 , α 1 → α 1 list → α 2 = T 2 , α 2 = T 3 }, K = K 1 ∪ K 2 ∪ K 3 ∪ {α 1 k = U, α 2 k = U}). σ = σ 1 • σ 2 • σ 3 • {α 1 → T 2 , α 2 → T 1 } satises C 1 , C 2 , C 3 , K 1 , K 2 ,
and K 3 , so σ satises K and since α 1 and α 2 are fresh σT 1 = σ 1 T 1 = T 2 list = σα 1 list, σT 2 = σ 2 T 2 = T 2 → T 2 list → T 1 = σα 1 → σα 1 list → σα 2 , σT 3 = σ 3 T 3 = T 1 = σα 2 , so σ satises C. And we have σα 2 = T 1 .

• Γ MEM Project q 1 | q 2 : T 1 list

We have Γ q 1 : T 2 → T 1 , _ and Γ q 2 : T 2 list, _. By induction hypothesis, we get, for i ∈ 1..2, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = T 2 → T 1 , σ 2 T 2 = T 2 list.

But then we have Γ A MEM Project q 1 | q 2 : α 2 list,

(C = C 1 ∪ C 2 ∪ {α 1 → α 2 = T 1 , α 1 list = T 2 }, K = K 1 ∪ K 2 ∪ {α 1 k = U, α 2 k = U}). σ = σ 1 • σ 2 • {α 1 → T 2 , α 2 → T 1 } satises C 1 , C 2 , K 1 ,
and K 2 , so σ satises K and since α 1 and α 2 are fresh σT 1 = σ 1 T 1 = T 2 → T 1 = σα 1 → σα 2 and σT 2 = σ 2 T 2 = T 2 list = σα 1 list, so σ satises C. And we have σα 2 list = T 1 list.

• Γ MEM Filter q 1 | q 2 : T list

We have Γ q 1 : T → bool, _ and Γ q 2 : T list, _. By induction hypothesis, we get, for i ∈ 1..2, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = T → bool, σ 2 T 2 = T list.

But then we have Γ A MEM Filter q 1 | q 2 : α list, (C = C 1 ∪ C 2 ∪ {α → bool = T 1 , α list = T 2 }, K = K 1 ∪K 2 ∪{α k = U}). σ = σ 1 •σ 2 •{α → T} satises C 1 , C 2 , K 1 , and K 2 , so σ satises K and since α is fresh σT 1 = σ 1 T 1 = T → bool = σα → bool and σT 2 = σ 2 T 2 = T list = σα list, so σ satises C. And we have σα list = T list.

• Γ MEM Join q 1 , q 2 | q 3 , q 4 : T 1 list

We have Γ q 1 : T 3 → T 4 → T 1 , _, Γ q 2 : T 3 → T 4 → bool, _, Γ q 3 : T 3 list, _, and Γ q 4 : T 4 list, _. By induction hypothesis, we get, for i ∈ 1..4, Γ A q i : T i , (C i , K i), _, and there exists σ i that satises C i and K i such that σ 1 T 1 = T 3 → T 4 → T 1 , σ 2 T 2 = T 3 → T 4 → bool, σ 3 T 3 = T 3 list, σ 4 T 4 = T 4 list. But then we have Γ A MEM Join q 1 , q 2 | q 3 , q 4 : α 3 list,

(C = C 1 ∪ C 2 ∪ C 3 ∪ C 4 ∪ {α 1 → α 2 → α 3 = T 1 , α 1 → α 2 → bool = T 2 , α 1 list = T 3 , α 2 list = T 4 }, K = K 1 ∪K 2 ∪K 3 ∪K 4 ∪{α 1 k = U, α 2 k = U, α 3 k = U}). σ = σ 1 •σ 2 •σ 3 •σ 4 •{α 1 → T 3 , α 2 → T 4 , α 3 → T 1 } satises C 1 , C 2 , C 3 , C 4 K 1 , K 2 ,

 Tout d'abord, je souhaite remercier mes encadrants de thèse Véronique Benzaken et Kim Nguyen. Véronique pour avoir toujours accepté de me recevoir lorsque j'en avais besoin, pour son énergie, son enthousiasme contagieux pour l'informatique, et pour m'avoir initié aux plus grandes abérrations syntaxiques d'SQL. Kim pour avoir partagé avec moi ses connaissances scientiques du lambda calcul aux magies les plus noires de JavaScript, pour les expériences d'enseignement enrichissantes qui ont élargi mes connaissances générales, pour sa patience à m'expliquer un concept de manières diérentes jusqu'à ce que mon esprit têtu nisse par comprendre, son aide précieuse dans tous les aspects de la thèse en particulier pour sa rédaction, et sa disponibilité sans faille malgré sa moyenne d'environ cent cours par jour. Merci beaucoup à tous les deux pour votre encadrement de qualité, pour m'avoir donné ma chance, et enn pour m'avoir traité avec humanité dans les moments diciles. Ce doctorat a été pour moi une expérience très enrichissante, et je n'oublierai jamais ce que vous avez fait pour moi. Un grand merci également à James Cheney et Émmanuel Chailloux pour avoir accepté d'être les rapporteurs de ma thèse. Je suis honoré que vous ayez pris le temps d'examiner mon travail avec autant d'attention, et vous remercie pour vos corrections et remarques pertinentes. Merci à Alan Schmitt, Jérôme Siméon, et Sarah Cohen Boulakia d'avoir accepté de faire partie de mon jury de thèse. Je suis très reconnaissant à Giuseppe Castagna pour avoir non seulement encadré mon stage de n d'études en école d'ingénieur, et m'avoir ainsi apporté ma première expérience dans la recherche, mais aussi pour m'avoir proposé cette thèse, pour m'avoir soutenu durant mon année au MPRI, et pour son aide précieuse au cours de la thèse. Un grand merci à Beppe sans qui ce travail n'aurait pas été possible. J'aimerais également remercier Laurent Daynes, mon encadrant de stage MPRI à Oracle Labs, qui m'a permis de travailler dans son équipe et ainsi de commencer à travailler sur mon sujet de thèse en collaborant avec les ingénieurs d'Oracle. Merci à Romain Vernoux dont les travaux de stage ont servi de bases solides pour mes recherches, ainsi qu'à Alban Petit et Romain Liautaud qui ont travaillé en stage sur ma solution. Merci ensuite à mes collègues du LRI, et à l'équipe VALS pour m'avoir permis de travailler dans une ambiance chaleureuse. Merci à Sylvain Conchon avec qui iii j'ai renforcé mon OCaml en enseignant notamment comment réaliser un jeu vidéo avec des match, et qui m'a appris le model checking. Merci à Guillaume Melquiond de m'avoir appris à faire du C++ correctement (sans *), et à Thibaut Balabonski grâce à qui j'ai dépoussiéré mes connaissances en compilation, tout cela me sera utile très prochainement. Merci à Jean-Christophe Filliâtre pour m'avoir partagé ses connaissances sur OCaml, et pour m'avoir prêté son exemplaire de Sixty Million Frenchmen Can't Be Wrong. Merci à Frédéric Voisin pour avoir trouvé le code d'accès à la salle de reprographie pour un thésard en panique et pour les blagues du vendredi (du lundi au vendredi) au coin café. Merci à Sylvie Boldo pour m'avoir fait conance pour la review d'un article au JFLA, pour son aide précieuse avec Véronique sur le recrutement académique, et sur le fonctionnement de la machine magique à faire des posters. Merci à Hai et Stefania pour m'avoir montré à l'avance dans quel état je serai en dernière année, à Robin pour avoir écouté mes tirades inintéressantes sur le speedrun de Mario 64, à Albin pour le vin à l'orange, à Bruno pour la promenade en vélo, à Alexandrina pour m'avoir fait rire quand j'en avais bien besoin et pour son amitié. Ah, et merci à Mattias pour les pauses, m'avoir presque donné envie de jouer à un MOBA, et pour m'avoir appris la quantité de crème pour des pâtes à la carbonara. Merci à mes vieux amis, Pierre-Alain, Pierre-Alain, Frédéric, Romain qui m'ont soutenu malgré la distance, et Bertrand, Solenne, Thibaut et Pierre-Jean pour nos beuveries et parties de Borderlands. Un grand merci à ma famille, tout particulièrement mes parents, ma grandmère, mon frérot, et ma petite s÷ur. Sans votre amour et votre soutien, je ne serais jamais allé aussi loin. Enn, merci à toi Jenny. Merci pour ton soutien, tes corrections sur mon anglais beaucoup trop français, et pour ces merveilleuses années que nous avons passées ensemble. iv v vi Abstract Several classes of solutions allow programming languages to express queries: specic APIs such as JDBC, Object-Relational Mappings (ORMs) such as Hibernate,

Figure 1 . 2

 12 Figure 1.2 An example of data organized as tables

 Figure 1.2 gives an example of tables.

Figure 1 .

 1 Figure 1.3 shows examples of applications of those operations on tables. Figure 1.3a shows the projection of table Employee on attributes name and salary, Figure1.3b shows the selection in the table Employee of the tuples for which the value of the attribute salary is greater than 5000, and Figure1.3c shows the result of the join between Employee and Team.

Figure 1

 1 Figure 1.4 High-level benets of an intermediate representation

Figure 1 . 6

 16 Figure 1.6 Evaluation of a BOLDR host language program

 As explained in Chapter 1, the Query Intermediate Representation (QIR) is a representation of queries that BOLDR uses as an intermediate between queries written in application languages and their translations into database languages. Using an intermediate representation of queries simplies interfacing with BOLDR signicantly, since the many dierent programming languages and databases simply need to interface with QIR, instead of creating numerous one-to-one interfaces.

 Figure 3.1.

•

 their values to QIR values • their expressions along with their associated runtime environment to closed QIR expressions • QIR values to their values and databases must translate • QIR values to values of their query language

Figure 3 .

 3 Figure 3.2 describes our heuristic-based normalization in pseudo-code. It applies all possible combinations of reduction steps to the term as long as its measure decreases after a number of steps, called fuel (φ), xed by heuristic. This normalization always terminates, either because it has applied a sequence of reductions to the QIR term and reached a normal form, or because it has run out of fuel in every possible reduction path.

Figure 3 . 2

 32 Figure 3.2 Heuristic-based normalization

 Denition 4.1 (Basic QIR types). A basic QIR type is a type B that represents basic data constructs: bool, int, string, . . . We will note B the set of basic QIR types. Denition 4.2 (QIR types). A QIR type is a nite term of the following grammar: T ::= B | T → T | T list | {l : T, . . . , l : T } Denition 4.3 (Domain of a record type). The domain of a record type

 Property 4.1 (Reexivity of the subtyping relation). T T . Proof. By induction on the structure of T . Property 4.2 (Transitivity of the subtyping relation). If T 1 T 2 and T 2 T 3 then T 1 T 3 .

Figure 4 . 3

 43 Figure 4.3 The specic type system of SQL

Figure 5 . 1

 51 Figure 5.1 The specic typing algorithm for MEM (part 1 of 2)

Figure 5 . 1

 51 Figure 5.1 The specic typing algorithm for MEM (part 2 of 2)

 And we have σα = T 2 . • Γ MEM c : typeofC(c) Immediate since Γ A MEM c : typeofC(c), (∅, ∅) by taking σ = ∅.

 Their rules (VI) to (VIII) are absent as they do not apply to us. Only our rules 8a, 8b, 8c, and 8d dealing with record union kinds require extra work to prove our unication algorithm correct.We now go through a few examples (skipping SK for presentation). Recall Example 4.1 from Chapter 4:

∅

 SQL Filter fun(r)→r • salary > 2500 | From PostgreSQL, "employee" : {salary : int, . . .} list ∅ Filter fun(r)→r • salary > 2500 | From PostgreSQL, "employee" : {salary : int, . . .} list, SQL Therefore, we can apply our (direct) rule: (direct) ∅ Filter fun(r)→r • salary > 2500 | From PostgreSQL, "employee" : {salary : int, . . .} list, SQL q eval PostgreSQL (--→ EXP PostgreSQL (Filter fun(r)→r • salary > 2500 |

Figure 6 .

 6 Figure 6.1 shows examples for + and sum. Additionally, basic operators can only appear in applications since they are not rst-class expressions. For instance, it is invalid to write SELECT + in SQL.Notice how most rules with children q i translate them recursively to e i and return constructions of the form (e i) AS X. There are two reasons for this. First,

Figure 6 . 1

 61 Figure 6.1 Translation from QIR to SQL (part 1 of 2)

 Denition 7.1 (R expressions). The set E R of expressions denoted by e and values denoted by v of R are generated by the following grammars: e ::= c | x | function(x, . . . , x){e} | e(e, . . . , e) | op | x = e | e; e | if (e) e else e v ::= c | function γ (x, . . . , x){e} | c(v, . . . , v)

Figure 7 . 1

 71 Figure 7.1 Translation from R to QIR terms

 Now that we have dened the translation of expressions in a given scope, we can easily dene the translation of values from R into QIR. The translation of constants, sequences and data frames is straightforward. The translation of a closure function(x 1 , . . . , x n) γ {e} is simply the translation of the body wrapped in a function: fun(x 1 , . . . , x n)→ R -→

 This query is sent to PostgreSQL, and the results are translated back into QIR using PostgreSQL -→ VAL, then to R using -→ VAL R .As explained in the introduction, the reasons why we use True for the implementation of BOLDR are:1. True languages compile expressions to abstract syntax trees which makes the manipulation of expressions easier 2. True expressions can be evaluated on any JVM, giving us a simple way to evaluate host language expressions in databases 3. Several open-source True languages are already implemented and ready to be experimented on 7.3 Implementation BOLDR consists of QIR, host languages, and databases. To evaluate our approach, we implemented the full stack, with R and SimpleLanguage as host languages and PostgreSQL, HBase and Hive as databases.

1

 Figure 7.5 The type system for SQL on the Project data operator

∞

 : evaluation took more than 5 minutes.

Figure 7 . 7 Figure 7 . 8

 7778 Figure 7.7 Time elapsed on TPC-H queries (in seconds)

Figure 7 .Figure 7 .

 77 Figure 7.8 illustrates the overhead of calling the host language evaluator from

Figure 7 .

 7 Figure7.9 illustrates the overhead of calling the host language evaluator from Hive against a pure inlined Hive query. For instance:

Figure A. 1

 1 Figure A.1 Exemple d'application utilisant diérents types de bases de données

 Bien que LINQ ajoute de nouvelles constructions syntaxiques pour la création de requêtes comme les mots-clés from, where, et select, les expressions se En eet, comme le montre la Figure A.4, au lieu de créer une interface entre chaque langage d'application, ou langage hôte, et chaque base de données, cette approche ne demande aux langages de programmation et aux bases de données que de s'interfacer avec le langage intermédiaire. Par conséquent, les implémenteurs de langages de programmation et de bases de données ont seulement besoin de maîtriser leur langage et le langage intermédiaire pour s'interfacer avec le framework.Cependant, toutes les requêtes ne peuvent pas être exécutées in LINQ, car seulement le code qui peut être traduit dans le langage intermédiaire de LINQ est accepté. Par conséquent, l'expressivité des requêtes est limitée dans ce framework.Par exemple, les requêtes en LINQ ne peuvent pas inclure des fonctions dénies par l'utilisateur arbitraires (fonctions dénies en utilisant la syntaxe du langage de programmation, en anglais user-dened functions ou UDFs). Par exemple, l'Exemple A.4 renvoie une erreur à l'exécution car LINQ échoue à traduire la fonction dolToEuro dans un équivalent dans le langage de la base de données. Cela n'est pas limité aux fonctions dénies par l'utilisateur : toute expression qui ne peut pas être traduite est rejetée. C'est la responsabilité de l'implémenteur du LINQ provider, la partie de l'architecture de LINQ qui traduit les expressions C# vers des expressions d'un langage de requêtes, de gérer autant d'expressions du langage hôte que possible. LINQ ore peu d'aide à ce sujet et cette traduction est un point problématique majeur pour s'interfacer avec LINQ [Ein11]. Example A.4. Func<float, float> dolToEuro = x => x * 0.88f; db.Employee .Where(e => e.salary > dolToEuro(2500)); Il existe deux moyens de contourner ce problème, et aucun n'est satisfaisant.Une solution est de répliquer manuellement la dénition de dolToEuro dans la base de données, en tant que procédure stockée. Cette solution est particulièrement attrayante maintenant que les bases de données s'eorcent d'intégrer les langages d'application : Oracle R Enterprise[Orad], et PL/R [PL/a] pour R ; PL/Python[Pos], Amazon Redshift[Ama], Hive[Apab], et SPARK[Apac] pour Python ; ou MongoDB[Mon] et CQL de Cassandra [Apad] pour JavaScript. Cependant, cela implique la duplication de code exécutant de la logique d'application du côté de la base de donnée, ce qui cause d'important problèmes de maintenance, surtout pour les requêtes ciblant plus d'une base de données. Pire, une telle fonction pourrait même ne pas être traduisible du côté de la base de données, car elle pourrait utiliser des fonctionnalités non-supportées par la base, ou avoir besoin d'accéder à des valeurs présentes dans l'environnement d'exécution du langage d'application que le programmeur aurait alors à envoyer explicitement à la fonction à l'exécution, alourdissant sa dénition avec des paramètres supplémentaires. Une autre solution est de récupérer les données dans l'application, puis d'appliquer les opérations. Cette solution semble être préférée des développeurs, car elle est syntaxiquement très simple avec LINQ : Func<float, float> dolToEuro = x => x * 0.88f; db.Employee .AsEnumerable() .Where(e => e.salary > dolToEuro(2500)); Ce programme est exécutable avec LINQ. Mais cette addition de l'appel à la méthode AsEnumerable() qui parait innocente cache de gros problèmes de performance : les données sont transférées dans l'environnement d'exécution du langage d'application par la méthode Enumerable.AsEnumerable(), ce qui pourrait résulter dans de très mauvaises performances à cause des retards causés par le transfert des données sur le réseau, et dans des erreurs de mémoire insusante. De plus, les opérations sur les données sont alors exécutées dans l'application, et donc n'utilisent pas les capacités d'optimisation fournies par les bases de données (par exemple en utilisant les index). Le même problème apparaît avec les requêtes entre diérentes bases de données, puisque la solution en LINQ serait également d'exécuter ces requêtes côté application à l'aide d'appels explicites à AsEnumerable(). Une solution pratique à ce problème est apporté par T-LINQ [CLW13], qui donnent des bases théoriques aux requêtes intégrées au langage en se basant sur des quotations de code et une normalisation des requêtes. Cette solution permet l'utilisation de fonctions dénies par l'utilisateur dans des requêtes tant qu'il est possible de les traduire et de les intégrer directement dans les requêtes. Cependant, T-LINQ est restreint au modèle de données de SQL, ainsi qu'à une poignée d'opérations sur les données. Des implémentations existent dans de vrais langages comme C# qui font de leur mieux pour normaliser des requêtes contenant des fonctionnalités qui ne sont pas gérées par T-LINQ. A.4.4 Apache Calcite Apache Calcite [BCRH + 18] est un framework de compilation de requêtes qui permet la manipulation de requêtes de manière indépendante des sources de données et des optimisations personnalisées sur des requêtes qui peuvent cibler diérents types de bases de données. Calcite fournit aux implémenteurs de bases de données un framework unié, incluant le support de langages de requêtes comme SQL, et des optimisations de requêtes. De plus, Calcite accepte des requêtes ciblant des sources de données hétérogènes en utilisant une abstraction relationnelle uniée, et en choisissant les plans les plus ecaces pour l'évaluation des requêtes, en particulier en utilisant la migration de données pour exécuter des requêtes en-tièrement dans les bases de données si possible. Calcite prend en entrée du SQL et du JDBC, et est donc limité dans l'expressivité des requêtes. Une syntaxe de requêtes intégrées au langage similaire à LINQ existe pour le langage de programmation Java, mais ce travail est préliminaire et ne gère pour l'instant que les aspects syntaxiques. A.4.5 Autres interfaces Dans le langage R, RODBC permet aux programmeurs d'envoyer des requêtes SQL aux bases de données d'une manière similaire à JDBC. Dplyr est une bibliothèque de manipulation de données pour R. SparkR fournit une interface pour Apache Spark. En Python, de nombreuses bibliothèques comme pyodbc ou PySpark donne accès à des bases de données, et NumPy permet la manipulation de grandes quantités de données. Toutes ces interfaces sont similaires aux autres solutions présentées dans cette section, et partagent les mêmes problèmes. Plus de solutions encore sont décrites en Section 8.1. A.5 Une nouvelle solution : BOLDR Comme montré dans la Section A.4, les solutions existantes pour les applications orientées données ont toutes leur lot de problèmes. De plus, une application peut avoir besoin d'utiliser plusieurs de ces solutions pour accéder à diérentes bases de données. Il faut une solution qui permet aux programmeurs d'écrire des requêtes dans leur langage de programmation, pouvant utiliser un maximum de fonctionnalités du langage, avec une interface uniée permettant d'accéder à toutes les bases de données. Dans cette thèse, nous créons une nouvelle solution appelée BOLDR (Breaking boundaries Of Language and Data Representations), un framework de requêtes intégrées aux langages permettant aux développeurs d'application d'écrire des requêtes sûres, complexes, ecaces, et indépendantes des sources de données, dans le langage de programmation de leur choix. A.5.1 Fonctionnalités La Figure 1.5 donne une comparaison des fonctionnalités des diérentes solutions. Dans un framework moderne de requêtes intégrées au langage, il nous faut toutes les fonctionnalités listées dans cette gure. Les requêtes doivent pouvoir : être exprimées dans le langage de l'application ; contenir de la logique d'application complexe ; cibler plusieurs bases de données en même temps ; et être vériées comme sûres avant exécution.

 BOLDR serait toujours capable d'évaluer la requête en envoyant une sous-requête aux deux bases HBase et PostgreSQL, et en exécutant dans l'application ce qui ne peut pas être traduit. A.5.3 Implémentation Notre implémentation de BOLDR utilise True [WWW + 13, Wim14], un framework développé par Oracle Labs pour implémenter des langages de programmation. True permet aux développeurs de langages d'implémenter des interpréteurs d'arbres de syntaxe abstraite (AST) avec de l'évaluation spéculative. Les implémenteurs de langages écrivent généralement un parseur pour le langage ciblé qui produit un AST composé de n÷uds True. Ces n÷uds implémentent les opérations basiques de l'interpréteur (ot de contrôle, opérations typées sur les types primitifs, opérations du modèle objet comme le dispatch multiple, . . .), et utilisent l'API True pour implémenter de la spécialisation à l'exécution et informer le compilateur JIT des diérents aspects d'optimisation, comme les prols d'exécution sur les valeurs, types, branches, ou pour implémenter de la réécriture à l'exécution de l'AST sur les chemins de dé-optimisation quand une optimisation spéculative a échoué. Plusieurs fonctionnalités rendent True attirant pour BOLDR. D'abord, les implémentations de langages en True doivent compiler dans un arbre de syntaxe abstraite exécutable que BOLDR peut manipuler directement, ce qui, en particulier, fournit un moyen simple de traduire des requêtes en QIR. Ensuite, les langages implémentés avec True peuvent être exécutés dans n'importe quelle machine virtuelle Java (en anglais, Java Virtual Machine ou JVM), bien que de meilleures performances peuvent être obtenues quand la machine virtuelle utilise le compilateur JIT Graal [DWM14], ce qui rend leur intégration comme langage externe très simple dans les bases de données écrites en Java (comme Cassandra, HBase, . . .), et relativement simple dans les autres comme PostgreSQL. Par conséquent, cela nous donne la possibilité d'évaluer dans les bases de données n'importe quelle expression provenant de tout langage hôte implémenté par True. Enn, plusieurs langages de programmation sont déjà implémentés, avec des degrés variables de maturité, en utilisant le framework, comme Zippy pour Python [Orae] ; JRuby pour Ruby [Orac] ; FastR pour R [Oraa] ; ou Graal.js pour JavaScript [Orab], et le travail réalisé pour un langage True peut facilement être réutilisé dans ces implémentations. Notre implémentation supporte les bases de données PostgreSQL, HBase et Hive, ainsi que FastR, l'implémentation du langage R utilisant True, et Sim-pleLanguage d'Oracle, un langage dynamique expérimental dont la syntaxe et les fonctionnalités sont inspirées par JavaScript (typé dynamiquement, orienté prototype avec des fonctions de haut niveau et un système de types avec seulement trois types primitifs : nombre, chaîne de caractères et booléen). SimpleLanguage est développé par Oracle Labs pour montrer les fonctionnalités de True. Une description détaillée de notre implémentation se trouve au Chapitre 7. A.6 Contributions Cette thèse étudie la conception d'un framework de requêtes intégrées au langage avec une dénition formelle ainsi qu'une implémentation de BOLDR et de ses diérents composants. Le Chapitre 2 dénit des notations et dénitions utilisées dans tout le document, et le Chapitre 8 conclut en discutant les possibles extensions et améliorations. Les chapitres de cette thèse correspondent aux diérentes parties du framework illustrées en Figure A.6 et sont décrits dans les sous-sections suivantes. A.6.1 Représentation intermédiaire de requêtes (QIR) Chapitre 3, pages 27-53 Le point central de BOLDR est sa représentation intermédiaire de requêtes appelée QIR. Comme expliqué plus tôt, une requête est d'abord traduite dans cette représentation avant d'être traduite en requête pour bases de données. Dans ce chapitre, nous dénissons le langage et sa sémantique 7 9 , dont la sémantique des opérateurs de données implémentés dans les bases de données ; une base de données par défaut qui implémente d'important opérateurs de données pour supporter des requêtes qui ne peuvent pas être entièrement traduite dans les langages des bases ; et l'optimisation appliquée sur les requêtes avant traduction appelée la normalisation de QIR 4 qui transforme une requête pour la rendre plus simple à traduire vers un langage de base de données. En eet, notre exemple d'application d'une fonction dénie par l'utilisateur : Func<float, float> dolToEuro = x => x * 0.88f; db.Employee.Where(e => e.salary > dolToEuro(2500)); n'est pas une expression qui peut être traduite telle quelle vers la plupart des langages de bases de données. En eet, ces langages ne sont généralement pas faits pour la dénition et l'application de fonctions dénies par l'utilisateur. En particulier, le langage SQL standard ne supporte pas cette fonctionnalité (bien qu'il soit possible de dénir des procédures dont les corps sont strictement limités à des requêtes). Certaines bases de données supportent des extensions d'SQL (PL/SQL d'Oracle [PL/b], T-SQL de Microsoft [T-S], . . .) qui permettent la dénition et l'application de fonctions dénies par l'utilisateur, mais cette fonctionnalité n'est pas très optimisée. Par conséquent, traduire cette requête directement résulterait soit en une erreur, forçant QIR à gérer la plupart de l'évaluation, ou en une requête inecace. Pour ces raisons, nous voulons appliquer dolToEuro dans le QIR avant la traduction pour générer une requête ecace. De plus, nous dénissons des drivers dont le rôle est d'interfacer QIR à un langage hôte ou à une base de données en fournissant des fonctions de traduction depuis et vers le QIR. Pour résumer, les contributions de ce chapitre sont : • Une syntaxe et une sémantique pour QIR • Une relation de réduction pour les expressions de base de QIR • Une relation de réduction pour le QIR complet utilisant les interfaces vers les langages hôtes et les bases de données • Une base de données par défaut incluant des implémentations par défaut de certains opérateurs de données • Une procédure de normalisation garantie de terminer mais sans autres propriétés formelles A.6.2 Système de types pour QIR Chapitre 4, pages 55-79 L'évaluation de requêtes implique un échange d'informations avec les bases de données. Ce procédé peut être très coûteux, en fonction de la quantité de données, à cause du temps de calcul et de transfert par le réseau. Par conséquent, éviter d'envoyer des requêtes aux bases de données quand ce n'est pas nécessaire, en particulier quand les requêtes présentent des erreurs, est un gain de performance majeur. Les systèmes de types sont un moyen ecace et classique de détecter à l'avance les erreurs dans les programmes. Cependant, puisque BOLDR cible principalement des langages hôtes dynamiques, les expressions traduites vers QIR ne sont pas typées. Il est donc logique de dénir un système de types fort pour le QIR pour détecter autant d'erreurs que possible avant l'exécution plutôt que de compter sur la détection d'erreurs des bases de données. De plus, BOLDR supporte les requêtes ciblant plusieurs bases de données, et des sémantiques différentes pour les opérateurs de données selon la base de données qui les évaluent. Supporter ces fonctionnalités demande d'être capable d'établir dans quelle base chaque sous-expression d'une requête doit être évaluée.Dans ce chapitre, nous dénissons un système de types pour QIR 3 5 appelé le système de types générique. Notre système de types générique est extensible avec des systèmes de types fournis par les bases de données. Ceux-ci, appelés systèmes de types spécique, permettent aux implémenteurs de bases de données de décrire quelles expressions elles supportent. À cause du nombre inconnu de bases de données interfacées avec BOLDR, et parce que les requêtes pourraient cibler plusieurs bases en même temps, ce modèle de processus générique faisant travailler ensemble des composants spéciques fournis par les bases est fréquent dans cette thèse. Pour montrer comment la base de données peut fournir un système de types spécique, ce chapitre dénit également un système de types pour SQL, ainsi qu'un système de types pour notre base de données par défaut, et nous prouvons des propriétés de sûreté d'exécution obtenues à l'aide de nos systèmes de types. A.6.3 Inférence de types pour QIR Chapitre 5, pages 81-107 Les systèmes de types du Chapitre 4 sont faits pour faciliter les développements formels et pour la présentation. Cependant, ces systèmes ne sont pas algorithmiques, et ne sont donc pas directement utilisables pour une implémentation. Dans ce chapitre, nous créons des algorithmes de typages 3 5 en utilisant la résolution de contraintes de types, et prouvons que nos algorithmes de typage sont équivalents aux systèmes de types du Chapitre 4. Nous dénissons également un algorithme de résolution de contraintes, et nous prouvons qu'il résout les contraintes générées par nos algorithmes de typage. A.6.4 Évaluation orientée par les types Chapitre 6, pages 109-128 Dans ce chapitre, nous utilisons nos systèmes de types pour dénir une traduction d'expressions QIR vers des langages de bases de données. Tout comme pour notre système de types, notre traduction de QIR vers les langages de bases de données est composée de traductions spéciques fournies par les bases de données, et d'une traduction générique qui utilise ces traductions spéciques. Notre traduction utilise également notre système de types pour traduire autant de requêtes que possible dans les langages de bases de données, et laisser le reste pour évaluation dans notre base par défaut. Nous dénissons une traduction syntaxique 6 qui se déclenche si le système de types échoue. De plus, nous dénissons une traduction pour SQL et montrons que si notre système de types parvient à typer une expression QIR en utilisant notre système de types pour SQL alors cette expression est traduisible en SQL avec notre traduction. Enn, nous dénissons une normalisation orientée par les types 3 . A.6.5 Implémentation et expériences Chapitre 7, pages 129-151 Dans ce chapitre, nous créons une interface entre le langage de programmation R et BOLDR en dénissant une traduction de R vers QIR 2 . Nous décrivons également notre prototype d'implémentation de BOLDR et présentons nos résultats qui montrent que BOLDR est capable de gérer ecacement la plupart des requêtes contenant des fonctions dénies par l'utilisateur, obtenant donc des résultats au moins aussi bons que des requêtes écrites manuellement, et évalue des requêtes entre diérentes bases de données ainsi que des requêtes contenant des expressions intraduisibles avec des performances convenables.

 • Γ A MEM fun f (x)→q : α 1 → T, (C ∪ {α 2 = T}, K ∪ {α 1 k = U, α 2 k = U})Let σ be a solution for C ∪ {α 2 = T} and for K ∪ {α1 k = U, α 2 k =U}, then σ is a solution for C and K and σα 2 = σT. Since we have Γ, f : α 1 → α 2 , x : α 1

 MEM op : polytypeofOP(op), (∅, {α 1 k = U, . . . , α n k = U})

 • Γ A MEM q • l : α 2 , (C ∪ {α 1 = T}, K ∪ {α 1 k = {{l : α 2 }}, α 2 k = U})Let σ be a solution for C ∪ {α 1 = T} and K ∪ {α1 k = {{l : α 2 }}, α 2 k

= U, α 2 k=

 2 satises C and K and σT = σ T = T 2 . But then we haveΓ A MEM fun f (x)→q : α 1 → T , (C ∪ {α 2 = T }, K ∪ {α 1 k U}), and σ satises C ∪ {α 2 = T } and K ∪ {α 1 k = U, α 2 k = U}. And we have σ(α 1 → T) = T 1 → T 2 .

•

 Γ MEM c : typeofC(c) Immediate since Γ A MEM c : typeofC(c), (∅, ∅) by taking σ = ∅. • Γ MEM op : T Immediate since Γ A MEM op : polytypeofOP(op), (∅, {α 1 k = U, . . . , α n k = U}) by Property 5.1.

•

 Γ MEM [] : T list Immediate since Γ A MEM [] : α list, (∅, {α k = U}) by taking σ = {α → T}.

 K 3 and K 4 , so σ satises K and since α 1 , α 2 and α 3 are fresh σT1 = σ 1 T 1 = T 3 → T 4 → T 1 = σα 1 → σα 2 → σα 3 , σT 2 = σ 2 T 2 = T 3 → T 4 → bool = σα 1 → σα 2 → bool,σT 3 = σ 3 T 3 = T 3 list = σα 1 list, and Titre : Au-delà des frontières entre langages de programmation et bases de données Mots clés : Requêtes intégrées au langage, bases de données, langages centrés données Résumé : Plusieurs classes de solutions permettent d'exprimer des requêtes dans des langages de programmation: les interfaces spéciques telles que JDBC, les mappings objetrelationnel ou object-relational mapping en anglais (ORMs) comme Hibernate, et les frameworks de requêtes intégrées au langage comme le framework LINQ de Microsoft. Cependant, la plupart de ces solutions ne permettent pas d'écrire des requêtes visant plusieurs bases de données en même temps, et aucune ne permet l'utilisation de logique d'application complexe dans des requêtes aux bases de données. Cette thèse présente un nouveau framework de requêtes intégrées au langage nommé BOLDR qui permet d'écrire des requêtes dans des langages de programmation généralistes et qui contiennent de la logique d'application, et de les évaluer dans des bases de données hétérogènes. Dans ce framework, les requêtes d'une application sont traduites vers une représentation intermédiaire de requêtes. Puis, elles sont typées en utilisant un système de type extensible par les bases de données pour détecter dans quel langage de données chaque sous-expression doit être traduite. Cette phase de typage permet également de détecter certaines erreurs avant l'exécution. Ensuite, les requêtes sont réécrites pour éviter le phénomène "d'avalanche de requêtes" et pour proter au maximum des capacités d'optimisation des bases de données. Enn, les requêtes sont envoyées aux bases de données ciblées pour évaluation et les résultats obtenus sont convertis dans le langage de programmation de l'application. Nos expériences montrent que les techniques implémentées dans ce framework sont applicables pour de véritables applications centrées données, et permettent de gérer ecacement un vaste champ de requêtes intégrées à des langages de programmation généralistes. Title: Breaking boundaries between programming languages and databases Keywords: Language-integrated queries, databases, data-centric languages Abstract: Several classes of solutions allow programming languages to express queries: specic APIs such as JDBC, Object-Relational Mappings (ORMs) such as Hibernate, and language-integrated query frameworks such as Microsoft's LINQ. However, most of these solutions do not allow for ecient cross-databases queries, and none allow the use of complex application logic from the programming language in queries. This thesis studies the design of a new language-integrated query framework called BOLDR that allows the evaluation in databases of queries written in generalpurpose programming languages containing application logic, and targeting several databases following dierent data models. In this framework, application queries are translated to an intermediate representation. Then, they are typed with a type system extensible by databases in order to detect which database language each subexpression should be translated to. This type system also allows us to detect a class of errors before execution. Next, they are rewritten in order to avoid query avalanches and make the most out of database optimizations. Finally, queries are sent for evaluation to the corresponding databases and the results are converted back to the application. Our experiments show that the techniques we implemented are applicable to real-world database applications, successfully handling a variety of languageintegrated queries with good performances. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

 Expressing queries in SQLSQL gives access to operations of relational algebra as a declarative programming language.

	1.2.2				
	name Lily Pond Daniel Rogers Olivia Sinclair	salary 5200 4700 6000	id 1 3	name Lily Pond Olivia Sinclair	salary teamid 5200 2 6000 1
	(a) Projection on Employee		(b) Selection on Employee
	id	name	salary teamname bonus
	1	Lily Pond	5200	Sales	600
	2	Daniel Rogers	4700	Sales	600
	3	Olivia Sinclair	6000	R&D	500
		(c) Join between Employee and T eam	
	Figure 1.3 Example of applications of relational algebra

 This version of the function getRate calls the print function which cannot be translated into QIR, so instead BOLDR generates the following query:

	getRate = function(rfrom, rto) {
	print(rto)
	change = tableRef("change", "PostgreSQL")
	if (rfrom == rto) 1
	else subset(change, cfrom == rfrom && cto == rto, c(rate))
	}

 table in the function getRate. BOLDR would still be able to evaluate the query by sending a subquery to both the HBase and PostgreSQL databases, and by executing in main memory what could not be translated.

 • A reduction relation for the core calculus of QIR

 • A reduction relation for the complete QIR making use of interfaces to host languages and databases

 • A default database including default implementations of some data opera-

	tors
	• A best-eort normalization procedure that is guaranteed to terminate but
	with no formal properties
	1.6.2 QIR type system
	Chapter 4, pages 55-79

 For instance, the records {x : 1, y : 2} and {y : 2, x : 1} are equivalent, but the lists [1, 2] and [2, 1] are not. Records are deconstructed through eld projections. For instance, { id : 1 } • id = 1. Lists are deconstructed by the list matching

	fun getRandomN umber (x)→4 represents a function named getRandomNumber that al-
	ways returns 4. Obviously, recursive functions have to be named, for instance
	fun f (x)→f x represents a function named f that applies itself on its argument
	recursively. QIR functions are unary to simplify proofs, but functions with several
	arguments in an application program can classically be translated to functions
	returning functions, process known as currycation. For instance, the anonymous
	function function(f,x) f(x) written in R that takes two arguments f and x and
	returns the application could be represented in QIR as fun(f)→fun(x)→f x
	which represents an anonymous function that takes a function f and returns
	a function that takes an argument x and applies f to x. Similarly, most pro-
	gramming languages support functions with no arguments. These functions can
	easily be represented as functions taking one useless argument. For instance,
	function() 2, which is an anonymous R function with no argument and return-
	ing 2, could be represented in QIR as fun(x)→2 where x could be any variable
	that is free in the body of the function, and the function call (function() 2)()
	could be represented in QIR as (fun(x)→2) 0, where 0 could be any pure value.
	In practice, our implementation simply denes functions that can take zero, one,
	or several arguments.
	QIR also has constants (integers, strings, . . .), and builtin operations (arith-
	metic operations, . . .). The data model consists of unordered records and ordered
	lists. destructor whose four arguments are: the list to destruct, a pattern that binds
	the head and the tail of the list to variables, the term to evaluate (with the bound
	variables in scope) when the list is not empty, and the term to return when the
	list is empty. For instance, [1, 2, 3] as h :: t ? h : 0 represents the expression
	extracting the head of the list [1, 2, 3], and fun(l)→l as h :: t ? h : 0 represents
	the function that returns the head of the list given as argument if it is not empty,
	and 0 otherwise.
	with functions option-
	ally named. For instance fun(x)→x represents the anonymous identity function,

 fun(r)→r • id ≤ 2 | [{id : 1}, {id : 2}, {id : 3}] fun(r)→r • salary < 2500 | From D, "employee" | Example 3.3 is similar to Example 3.2,but the data argument of Filter is an application of a From operator instead of a QIR list. In this example, From is applied to a database D and a table name "employee". fun(r)→{ id : r • id, name : r • name, salary : r • salary } | Filter fun(r)→r • salary < 2500 | From D, "employee"

	Example 3.4.
	Now we go through a few examples to understand the syntax of QIR for
	Example 3.4 shows the equivalent of the query in Example 1.3 written in QIR. queries. We use data operators such as Filter in the following examples as simple An operator Project has for conguration an anonymous function that returns symbols with no associated semantics. They simply represent data operations. a record containing the elds id, name and salary associated to their respected
	values in the record given as argument, and its data argument is the query of Example 3.1. Filter fun(x)→x ≤ 2 | [1, 2, 3] Example 3.3.
	Example 3.5.
	Example 3.1 is a simple application of a Filter data operator. The con-
	guration of this Filter is an anonymous function that returns true only if its
	argument is a number lower than or equal to 2. Its data argument is a QIR list
	of integers.
	Example 3.2.
	Example 3.2 is another application of a Filter data operator. This time, the
	conguration of this Filter is an anonymous function that returns true only if
	the record eld id of its argument is a number lower than or equal to 2, and its
	data argument is a QIR list of records with a eld id associated to numbers.
	Example 3.3.
	Notation 3.2. For readability reasons, we will write From D, n instead of
	From D, n | from now on, omitting the vertical bar, since From has two
	congurations and no sub-collections.

Filter

Filter Project Project fun(r)→{ id : r • id, name : r • name, salary

 SELECT * FROM PEOPLE AS x INNER JOIN PEOPLE AS y ON x.age < y.age

	instead of:

 The operators of the main query are now compatible with PostgreSQL and the reduction of the conditional expression in the function getRate has removed the subquery.

		Similarly, our other R query from Example 1.5:
	17	richEURPeople = atLeast(2500, "EUR")

is translated to:

 : q i } i∈1..n | l sorts the rows of collection l by the values they associate to the column names l i and using a natural comparison dened in SQL. The q i expressions are expected to be booleans. They describe, for each column name to use for sorting, whether or not the natural comparison should be used in ascending order (e.g., increasing order for numbers, alphabetical order for strings) or in descending order (e.g., decreasing order for numbers, reverse alphabetical order for strings). For instance: Sort fun(x)→{teamid : false, name : true} | From D, "employee" is the equivalent of the SQL query: SELECT * FROM employee ORDER BY teamid DESC, name which returns all rows from table employee sorted by its values in column teamid in decreasing order (note the use of the SQL keyword DESC), then by its values in column name in alphabetic order.Finally, Limit n | l returns the n rst rows of collection l, and Exists l returns false if the collection l is empty, and true otherwise.Technically, Sort and Limit are not part of the SQL standard, but they are supported by most SQL databases and commonly used. Additionally, Limit gives us the opportunity to show how to handle a case of an operator which conguration is not a function, and Exists is an operator that returns a basic type instead of a new collection. Notation 4.3. We use R to denote types of the form {l : B, . . . , l : B} with

		employee"	
	is the equivalent of the SQL query:	
	SELECT x.teamid AS teamid, count(x.id) AS n	
	FROM employee AS x		
	GROUP BY x.teamid		
	and groups employees by their teamid, and returns a table describing how many
	employees there is in each group as shown in Figure 4.2.
	id 1 2 3	name Lily Pond Daniel Rogers Olivia Sinclair	salary teamid 5200 2 4700 1 6000 1	teamid n 1 2 2 1
			(b) Result of Group on teamid
		(a) Table Employee	
			Figure 4.2 An example of Group
	Sort fun(x)→{l		

i B ∈ B.

 • age < 30 | . . . would be translated to

	(SQL-var)	(SQL-plus)
	x	SQL SELECT X.*
		SELECT * FROM (...) AS R WHERE (R.age < 30)

 Figure 6.1 Translation from QIR to SQL (part 2 of 2)which is the correct translation in SQL. But without the alias we get an error since the variable R in the WHERE clause would then be undened. The second reason is that SQL imposes this syntax for compositional queries even if the alias is not useful. For example: SELECT * FROM (SELECT 1 AS id) which could be a valid translation of { id : 1 } :: [], is not a valid SQL query because subqueries must have an alias, so a syntactically correct version of this

	query would be
	SELECT * FROM (SELECT 1 AS id) AS X

(SQL-host-expr) H (γ, e) SQL SELECT BOLDR.EVAL(H (γ, e))

where X is here useless. This is not just true for this example, all of the TMP variables in our rules are only there to respect the syntax of SQL. Another syntactic issue of SQL is that only queries can be put in parentheses. Variables and table names put in parentheses are syntactically incorrect. Therefore, we duplicate some rules to account for the possibility that children could be variables or table names. Thus, the (SQL-rdestr-simpl) rule deals with variables, and the (SQL-rdestr-cplx) rule deals with all other cases. Additionally, it is not possible to directly represent an empty list, record construction in SQL, or generic list construction in SQL. However, for convenience, we create a (SQL-record) rule that translates to the creation of a table with one row containing the record, as well as a (SQL-lcons) rules that allows adding a record to a list. (SQL-lconsrecord) works using the same trick as (SQL-record) to create a list containing one row, then applies the UNION ALL operation of SQL that concatenates two tables.

 If q = Sort fun(x)→{ l i : b i } i=1..n | s then: = true or falsee i = DESC if e i = false e i = Ω e = Ω i ∈ 1..n Sort fun(x)→{ l i : b i } i=1..n | s SQL SELECT * FROM (e) AS XORDER BY l 1 e 1 , ..., l n e n

	If q = Filter fun(x)→b | s then:
	(SQL-project) (IH) r SQL e 1 e (SQL-from) (IH) s SQL e 2 (IH) b SQL e 1 (IH) s SQL e 2 e i = Ω i ∈ 1..2 Filter fun(x)→b | s (SQL-lter) SQL SELECT * FROM (e 2) AS X WHERE (e 1) If q = Join fun(x, y)→r, fun(x, y)→b | s 1 , s 2 then: (SQL-join) (IH) r SQL e 1 (IH) b SQL e 2 (IH) s 1 SQL e 3 (IH) s 2 SQL e 4 e i = Ω i ∈ 1..4 (SQL-join-noproject) (IH) b SQL e 2 (IH) s 1 SQL e 3 (IH) s 2 SQL e 4 e (SQL-group) (IH) b i SQL e i (IH) r SQL e (IH) s SQL e (IH) b i SQL e i (IH) s SQL e e i If q = Limit b | s then: (SQL-limit) (IH) b SQL e 1 (IH) s SQL e 2 e i = Ω i ∈ 1..2 e (SQL-sort) Limit b | s
	From D, "table"	SQL SELECT * FROM table
	123	

TMP2 fresh s 1 @ s 2 SQL SELECT * FROM (e 1) AS TMP UNION ALL (e 2) AS TMP2

If v = Project fun(x)→r | s then: i = Ω i ∈ 1..2 Project fun(x)→r | s SQL e 1 FROM (e 2) AS X If q = From D, n then: Join fun(x, y)→r, fun(x, y)→b | s 1 , s 2 SQL e 1 FROM (e 3) AS X, (e 4) AS Y WHERE (e 2) If q = Join fun(x, y)→x y, fun(x, y)→b | s 1 , s 2 then: i = Ω i ∈ 2.

.4 Join fun(x, y)→x y, fun(x, y)→b | s 1 , s 2 SQL SELECT * FROM (e 3) AS X, (e 4) AS Y WHERE (e 2) If q = Group fun(x)→{ l i : b i } i=1..n , fun(x)→r | s then: i = Ω e = Ω e = Ω i ∈ 1..n Group fun(x)→{ l i : b i } i=1..n , fun(x)→r | s SQL e FROM (e) AS X GROUP BY l 1 , ..., l n SQL SELECT * FROM (e 2) AS X LIMIT (e 1)

Finally, we can state our soundness of translation theorem and prove it as a direct corollary of Lemmas 6.1 and 6.2. Theorem 6.1 (Soundness of translation). Let v ∈ E QIR such that v is in normal form, and ∅ v : T, SQL where T ≡ B or T ≡ R or T ≡ R list, then v eval SQL (s).

 Mod(γ, e 2) Mod(γ, e(e 1 , . . . , e n)) = Mod(γ, e) ∪ n i=1 Mod(γ, e i)

e Mod(γ, function(...)e) = Mod(γ, e) Mod(γ, c) = {} Mod(γ, e 1 ;e 2) = Mod(γ, e 1) ∪

 t • name } | Filter fun(e)→e • sal ≥ minSalary * (getRate ("USD", cur))) | From PostgreSQL, employee {minSalary → 2500, getRate → function γ (rfrom, rto){. . .}, cur → "USD"}

	Query execution	
	A QIR closure is executed using the function executeQuery. In our example,
	this happens at Lines 18 and 19:	
	18 print(executeQuery(richUSPeople))
	19 print(executeQuery(richEURPeople))
	executeQuery then resolves each free variable by applying them to the trans-
	lation into QIR of their value in the R environment:
	(fun(getRate)→	
	(fun(minSalary, cur)→	
	From PostgreSQL, employee
	then translated to SQL using	--→ EXP SQL as:
	SELECT T.name AS name FROM (
	SELECT * FROM (SELECT * FROM employee) AS E
	WHERE E.sal >= 2500	
) AS T	

Project fun(t)→{ name : t • name } | Filter fun(e)→ ≥ (e • sal, * (minSalary, getRate ("USD", cur))) | From PostgreSQL, employee)(2500, "USD"))(fun(rfrom, rto)→ . . .) which will be normalized to: Project fun(t)→{ name : t • name } | Filter fun(e)→ ≥ (e • sal, 2500) |

Table 7 .

 7 1 gives the numbers of lines of Java code for each component to gauge the relative development eort needed to interface a host language or a database to BOLDR. All developments are done in Java using the True framework.

	Component	l.o.c.	Remark		
	FastR / SimpleLanguage	173000 / 12000	not part of the framework
	Detection of queries (in R and SL)	600	modication of built-ins/operators
	R to QIR / SL to QIR	750 / 1000	the translation of Section 7.1
	QIR	7000	nodes, types, normalization, translation, . . .
	QIR to SQL / HBase language	500 / 400	the translation	SQL	/	HBase
	PostgreSQL / HBase / Hive binding 150 / 100 / 100	low-level interface	
	Table 7.1 BOLDR components and their sizes in lines of code.		

 Overview of QIR implementation rectly from a representation as a string in package parser; types and type systems in package types and typing. The les QIRLanguage.java, QIRTypes.java, and runtime/QIRContext.java are mandatory les for the denition of QIR as a True language, util/QIRAny.java is used as a placeholder for any possible QIR expression, and util/QIRException.java is an exception thrown by the components of QIR in case of error.

	qir	
	ast	
	QIRNode.java	
	operator	
	...	
	driver	
	DBDriver.java	
	QIRDriver.java	
	...	
	parser	
	QIRLanguage.java	
	QIRTypes.java	
	runtime	
	QIRContext.java	
	types	
	QIRType.java	
	...	
	typing	
	QIRGenericTypeSystem.java	
	QIRSpecificTypeSystem.java
	...	
	util	
	QIRAny.java	
	QIRException.java	
	Figure 7.2	.2. It is composed of the nodes representing
	QIR expressions in package ast; drivers for databases as well as an interface for
	host languages in package driver; a parser allowing to build QIR expressions di-

 table algebra expression that can be eciently executed in any modern relational database. While this algebra supports diverse querying primitives, it is designed to specically target SQL databases, making it unt for other back-ends. dotConnect [dot] uses ADO.NET, an object-relational mapping framework for the .NET framework, to give access to data sources for .NET languages. It also provides an interface with the LINQ framework. UnityJDBC [Uni] is a solution that can evaluate queries written in SQL targeting several databases at the same time. UnityJDBC supports any data source accessible with a JDBC interface, as well as other databases such as Cassandra and MongoDB.

 True code eciently. Second, our implementation currently stores the code of the program in a host language expression as a string. Work is underway to allow the serialization of arbitrary True ASTs, which would make BOLDR able to store those ASTs in host language expressions instead, thus avoiding to parse the program in the database.

	compiling our QIR expressions into LLVM code. The runtime Weld [PTS PTN + 18] has shown that it is possible to increase the performances of data-+ 17, oriented programs considerably by compiling into multi-threaded LLVM code. Finally, our integration of host languages in databases in our experiments is not optimized. First, our databases use standard JVMs to evaluate code. As explained in Chapter 7, we could improve our performances using Graal, a JVM Annexe A Résumé étendu A.1 Contexte Le stockage, l'accès, et la manipulation de données sont des opérations vitales et critiques dans la plupart des applications. Les applications Web, statistiques, l'intelligence articielle, l'Internet des objets, tous doivent accéder à une grande quantité d'information stockée dans des sources de données hétérogènes. Les applications sont écrites dans des langages de programmation généralistes souvent choisis en fonction de leur compatibilité avec un domaine spécique (par exemple, R ou Python pour l'analyse statistique ou la fouille de données, JavaS-cript pour la programmation Web). Ces langages de programmation sont sou-vent impératifs, ce qui signie que les utilisateurs de ces langages doivent décrire comment accéder à la mémoire de l'ordinateur et la manipuler. Pour cela, les utilisateurs écrivent des séquences d'expressions, et chacune de ces expressions designed to execute 159 modient l'état du programme.

 La Figure A.2 montre des exemples de tables. Un exemple de données organisées en tables La plupart des langages de requêtes des bases de données sont basés sur l'algèbre relationnelle[START_REF]Foundations of Databases: The Logical Level[END_REF]. Les opérations les plus basiques de l'algèbre relationnelle sont la projection, qui restreint les n-uplets à un ensemble d'attributs ; la sélection (ou restriction), qui ne conserve que les n-uplets satisfaisant une condition ; et la jointure, qui renvoie l'ensemble des combinaisons de n-uplets provenant de deux tables dont les valeurs sont égales sur leurs attributs communs. La Figure A.3 montre des exemples d'applications de ces opérations sur des tables. La Figure A.3a montre la projection de la table People sur les attributs rstname et lastname, la Figure A.3b montre la sélection des n-uplets de la table People pour lesquels la valeur de l'attribut zipcode est 13000, et la Figure A.3c montre le résultat de la jointure entre les tables People et Team. Exprimer des requêtes en SQL SQL permet d'utiliser les opérations de l'algèbre relationnelle dans un langage de programmation déclaratif. Au lieu de décrire étape par étape comment le calcul doit être fait pour obtenir le résultat désiré, la programmation en SQL consiste à décrire le résultat voulu. Pour cela, la syntaxe de SQL est faite pour se rapprocher d'un langage naturel. Par exemple, la projection de la Figure A.3a peut être écrite en SQL ainsi : SELECT name, salary FROM Employee où SELECT représente la projection, et FROM représente l'opération sur les données From qui renvoie le contenu d'une table à partir de son nom.

	id 1 2 3 A.2.2 La sélection de la Figure A.3b peut être écrite : name salary teamid Lily Pond 5200 2 Daniel Rogers 4700 1 Olivia Sinclair 6000 1 (a) Table Employee teamid teamname bonus 1 R&D 500 2 Sales 600 (b) Table Team
	salary (a) Projection sur Employee Lily Pond Daniel Rogers Olivia Sinclair 6000 4700 5200 SELECT * FROM Employee WHERE salary > 5000 (b) Sélection sur Employee 3 Olivia Sinclair 6000 1 Lily Pond 5200 id name salary teamid 1 2 où * signie toutes les colonnes. Enn, la jointure de la Figure A.3c peut être Figure A.2 name écrite :
	id	name	salary teamname bonus
	1	Lily Pond	5200	Sales	600
	2	Daniel Rogers	4700	Sales	600
	3	Olivia Sinclair	6000	R&D	500
		(c) Jointure entre Employee et Team	
	Figure A.3 Exemple d'applications de l'algèbre relationnelle

 Dans cette dernière requête, la sous-requête UNION ALL crée la table anonyme lié au nom t en utilisant un alias, et ce nom est alors utilisé dans la clause WHERE pour faire référence à la table. La syntaxe simple de SQL est l'une des raisons de sa popularité, et de sa place comme le plus utilisé des langages de requêtes. La plupart des bases de données sont compatibles avec SQL, même celles qui n'ont pas un modèle de données directement adapté pour l'algèbre relationnelle. Par conséquent, SQL Dans cet exemple, le programme récupère l'identiant, le nom, et le salaire des employés dont le salaire est plus grand que 2500 provenant d'une table employee stockée dans une base de données. Avec JDBC, l'utilisateur doit d'abord créer un objet Connection en utilisant des identiants valides pour obtenir l'accès à une base cible, puis créer un objet

	suivante : Example A.1.
	final Connection conn = ... teamid teamname bonus 1 R&D final Statement stmt = conn.createStatement(); 500 2 Sales final String query = 600 "SELECT id, name, salary FROM employee WHERE salary > 2500";
	ResultSet rs = stmt.executeQuery(); while (rs.next()) { System.out.println(rs.getInt("ID") + " " + rs.getString("NAME") + " " + rs.getFloat("SALARY")); qui est ensuite est un langage de base de données indispensable pour l'étude de solutions dont }
	le but est de permettre aux programmeurs d'envoyer des requêtes aux bases de
	données.
	A.3 Langages de programmation applicatifs
	La majorité des applications orientées données sont écrites dans des langages
	de programmation impératifs. Python est utilisé en particulier pour les applica-
	tions Web et l'apprentissage automatique. C'est un langage de programmation
	très populaire de part sa syntaxe simple et ses très nombreuses bibliothèques
	spéciques à diérents domaines, notamment pour l'apprentissage automatique,
	les algorithmes généraux, et les statistiques. JavaScript est très largement utilisé
	dans les applications Web. R est un langage créé pour les applications statistiques
	et d'analyse de données. Java est un langage de programmation généraliste très
	utilisé proposant de nombreuses bibliothèques pour le développement Web, l'ap-
	prentissage automatique, le traitement de textes, et plus encore.
	Contrairement à la programmation déclarative des langages comme SQL,
	la programmation impérative demande aux programmeurs de décrire étape par
	étape la manière dont la machine doit générer le résultat voulu. Par exemple,
	l'opération de sélection dans un langage impératif serait écrite de cette manière
	en Python :
	filteredTable = []
	for employee in employees:
	if (employee['salary'] > 5000):
	filteredTable.append(employee)
	Cependant, les langages de programmation modernes ont fait un eort pour im-
	plémenter certains aspects de la programmation fonctionnelle, permettant de
	rendre les applications orientées données moins techniquement détaillées, et écrites

 • D'un point de vue d'ingénierie, cette solution demande le développement d'une nouvelle interface pour chaque connexion entre un langage d'application et une base de données. Cela explique la multiplication et la diversité des solutions, même dans un seul langage d'application. Cet ensemble de problèmes est connu dans la litérature sous le nom d'impedance mismatch entre la base de données et le langage d'applications [CM84]. D'autres solutions ont été proposées pour résoudre ces dicultés.A.4.2 ORMsLes mappings objet-relationel (en anglais Object-Relational Mappers ou ORMs) et les équivalents comme les mappings objet-document (en anglais Object-Document Mappers ou ODMs) sont des patrons de conception permettant de traduire et manipuler des données entre des systèmes de types incompatible dans des langages de programmation orientés objet. En représentant la source de données par un objet, ces patrons de conception permettent de s'abstraire de la source de données et de manipuler l'information directement dans le langage de program-La requête est créée en utilisant des expressions de haut niveau, et elle n'est donc pas liée à un langage de requêtes particulier comme SQL, et sa syntaxe est vériée en utilisant le système de types du langage. Cependant, cette solution est toujours verbeuse ; elle implique la création d'une nouvelle bibliothèque pour chaque lien entre un langage et une base de données ; et son expressivité est fortement restreinte. De plus, cette solution demande au programmeur de dupliquer les schémas des tables de la base de données dans l'application sous forme de

	Example A.2.
	Session session = HibernateUtil.getHibernateSession();
	CriteriaBuilder cb = session.getCriteriaBuilder();
	CriteriaQuery<Employee> cr = cb.createQuery(Employee.class);
	Root<Item> r = cr.from(Employee.class);
	cr.multiselect(r.get("id"), r.get("name"), r.get("salary"))
	.where(cb.gt(r.get("salary"), 2500));
	Query<Employee> query = session.createQuery(cr);
	List<Employee> results = query.getResultList();
	classes.
	A.4.3 LINQ
	Une considérable avancée dans le domaine est le framework LINQ [Mic] de Mi-
	crosoft, un composant du framework .NET qui donne à ses langages la possibilité
	d'envoyer des requêtes. LINQ dénit des requêtes comme un concept de première
	classe dans les langages .NET, ce qui permet aux programmeurs de dénir des
	requêtes destinées à des bases de données écrites dans la syntaxe de leur langage.
	L'Exemple A.3 est l'équivalent de l'Exemple A.1 écrit dans le langage C# en
	utilisant LINQ.
	mation. Parmi ces ORMs, on trouve par exemple Hibernate [KBA + 09] pour Java, ActiveRecord [ct17] pour Ruby, Doctrine [WV10] pour PHP (qui est également Example A.3.
	un ODM), ou encore Django [KMH07] pour Python. var results =
	Bien que la plupart de ces bibliothèques se basent sur des requêtes écritent from e in db.Employee
	dans des chaînes de caractères en SQL ou dans des langages cousins tels que les where e.salary > 2500
	OQLs (HQL, DQL, JPQL, . . .) [ASL89], des eorts ont été fait pour améliorer select new { id = e.id, name = e.name, salary = e.salary };
	l'intégration des requêtes dans le langage d'application. Par exemple, au lieu foreach (var e in results) {
	d'écrire des requêtes dans des chaînes de caractères, Criteria pour Hibernate Console.WriteLine(e.id + " " + e.name + " " + e.salary);
	permet à l'utilisateur de créer un objet CriteriaQuery sur lequel des opérations }
	telles que des sélections peuvent être appliquées en utilisant des méthodes de
	l'objet. En utilisant Criteria et Hibernate, l'Exemple A.1 peut être écrit dans le
	langage Java comme montré par l'Exemple A.2.

 BOLDR donne des garanties sur ses processus de manipulation de requêtes, comme la terminaison de ses phases d'optimisation, et qu'une requête bien typée peut être traduite dans des langagesde requêtes. BOLDR dénit les interfaces entre un langage hôte et le framework, ainsi qu'entre un langage de base de données et le framework. BOLDR n'est pas lié à une combinaison particulière de bases de données et de langages de programma-Notre Exemple A.5 est un programme R standard avec deux exceptions : la fonction tableRef qui renvoie une référence vers une table d'une source externe ; et la fonction executeQuery qui évalue une requête. Pour rappel, en R, la fonction c crée un vecteur, la fonction subset ltre une table en utilisant un prédicat, et optionnellement ne conserve que les colonnes spéciées. La première fonction getRate prend le code de deux monnaies et envoie une requête en utilisant subset pour obtenir leur taux de change. La seconde fonction atLeast prend un salaire minimum et un code de monnaie et récupère les noms des employés gagnant au moins le salaire minimum. Puisque le salaire est stocké en dollars dans la base de données, la fonction getRate est utilisée pour faire la conversion. Avec BOLDR, subset est surchargée pour fabriquer une requête QIR si elle est appliquée sur une référence de source externe. L'évaluation du premier appel à la fonction atLeast (atLeast(2500, "USD") à la Ligne 16) a pour résultat la création d'une requête obtenue par traduction de l'expression R vers QIR. Quand executeQuery est appelée sur la requête, alors (i) les valeurs de l'environnement d'exécution liées aux variables libres de la requête sont traduites en QIR, puis liées à ces variables dans la requête, créant ainsi une requête QIR close ; (ii) la requête est normalisée, procédé qui, en particulier, remplace les variables liées par leurs valeurs ; (iii) la requête normalisée est traduite vers le langage de base de données cible (ici SQL) ; et (iv) la requête résultante est évaluée dans la base de données et les résultats sont récupérés. Après normalisation et traduction, la requête générée pour l'exécution de richUSPeople est : SELECT name FROM employee WHERE sal >= 2500 * 1 ce qui est optimal, dans le sens où une seule requête SQL est générée. Le code généré pour richEURPeople est également optimal grâce à la combinaison entre Cette version de la fonction getRate appelle la fonction print qui ne peut pas être traduite en QIR, donc BOLDR génère la requête suivante :

	Fonctionnalités	BOLDR	T-LINQ	LINQ	Calcite	ORMs	JDBC
	Création, envoi, et résultats de requêtes Example A.5.						
	Requêtes intégrées au langage 1 # Taux de change entre rfrom et rto				
	UDFs dans les requêtes Export de l'environnement d'exécution 2 getRate = function(rfrom, rto) { Diérentes sources du même modèle 3 # La table change a trois colonnes: cfrom, cto, rate / (1) / (1) / (2) Diérents modèles de données Plusieurs interfaces disponibles Exécution d'UDF dans la base / (3) / (3) Fusion et normalisation de requêtes Requêtes ciblant plus d'une base Détection d'erreurs avant l'exécution Bases théoriques (1). Pour les types de base (2). Pas dans la même requête (3). Pour les UDFs inlinées Figure A.5 Fonctionnalités des diérentes solutions Tout comme LINQ, BOLDR utilise une représentation intermédiaire de re-Le but recherché est de générer des requêtes pouvant être les plus optimisées possible par les bases de données. QIR permet à BOLDR de réaliser de la vérication de types sur les requêtes permettant de détecter des erreurs avant l'exécution. Par exemple, examinons cette requête écrite en R et utilisant BOLDR : t = tableRef("people", "PostgreSQL") q = query.filter(function (x) x$name > 5000, t) Notez que le nom est comparé à un entier. Cette requête qui cible une base PostgreSQL est correcte syntaxiquement, mais renvoie une erreur à l'exécution à cause de cette comparaison incorrecte. En appliquant une vérication de types sur les requêtes QIR, BOLDR peut détecter l'erreur avant même que la requête soit traduite dans des langages de requêtes, et donc évite d'envoyer une requête invalide à la base de données par le réseau avec son lot de problèmes de perfor-mances. t1 = tableRef("people", "PostgreSQL") t2 = tableRef("team", "HBase") q = query.join(function (t1, t2) t1.teamid = t2.teamid, t1, t2) est parfaitement valide avec BOLDR et réalise l'opération de jointure de l'al-gèbre relationnelle sur deux tables provenant de diérentes bases de données, sans avoir à importer explicitement les données dans l'environnement d'exécu-tion de l'application. Comme décrit plus tôt, BOLDR traduit automatiquement les sous-requêtes dans les diérents langages de requêtes des diérentes bases cibles, les envoie dans les bases en question, récupère les résultats et les traduits en retour vers le langage d'application. A.5.2 Description détaillée Le déroulement général de l'évaluation de requêtes avec BOLDR est décrit dans la Figure A.6. Durant l'exécution 1 d'un programme hôte, les requêtes sont traduites en QIR puis évaluées par QIR 2 . Ces deux étapes n'ont pas à être contiguës. Souvent, les requêtes sont traduites à leur création, mais évaluées seule-ment quand le programme a besoin des résultats. Le système d'évaluation de QIR prend alors le relais et essaie de typer les requêtes QIR. S'il réussit, il normalise 3 les termes QIR pour les défragmenter en utilisant une stratégie qui est garantie de réussir. Cette étape est essentielle pour permettre aux traductions vers les langages de bases de données de fonctionner de manière optimale. Si le typage 4 change = tableRef("change", "PostgreSQL") 5 if (rfrom == rto) 1 6 else subset(change, cfrom == rfrom && cto == rto, c(rate)) 7 } 8 9 # Employees gagnant au moins min dans la monnaie cur 10 atLeast = function(min, cur) { 11 # La table employee a deux colonnes: name, salary 12 emp = tableRef("employee", "PostgreSQL") 13 subset(emp, salary >= min * getRate("USD", cur), c(name)) 14 } 15 16 richUSPeople = atLeast(2500, "USD") 17 richEURPeople = atLeast(2500, "EUR") 18 print(executeQuery(richUSPeople)) 19 print(executeQuery(richEURPeople)) la construction paresseuse de la requête et la normalisation : SELECT name FROM employee WHERE sal >= 2500 * (SELECT rate FROM change WHERE rfrom = "USD" AND rto = "EUR") Dans ce cas, BOLDR combine les sous-requêtes ensemble pour créer des requêtes moins nombreuses et plus larges, bénéciant ainsi des optimisations des bases de données autant que possible et évitant le phénomène d'avalanche de requê-tes [GRS10]. Les fonctions dénies par l'utilisateur qui ne peuvent pas être traduites sont également supportées par BOLDR. Par exemple, regardons l'Exemple A.6. Example A.6. getRate = function(rfrom, rto) { print(rto) change = tableRef("change", "PostgreSQL") if (rfrom == rto) 1 else subset(change, cfrom == rfrom && cto == rto, c(rate)) De plus, tion, et permet de cibler plusieurs bases à la fois. Par exemple, cette requête : }

quêtes appelée QIR pour Query Intermediate Representation. En plus des atouts apportés par le fait d'avoir des interfaces indépendantes pour chaque langage hôte et chaque base de données, QIR réécrit les requêtes pour les rendre plus simple à traduire vers les langages de bases de données. BOLDR n'applique pas d'optimisations de plans de requêtes. De manière générale, BOLDR optimise les requêtes QIR pour bénécier autant que possible des optimisations fournies par les bases de données en utilisant l'information inutilisable par ces bases, et donc ne se substitue pas à leurs moteurs d'optimisation. Le framework permet également l'utilisation d'expressions arbitraires du langage hôte dans les requêtes. Par conséquent, notre Exemple A.4 en LINQ qui posait problème : Func<float, float> dolToEuro = x => x * 0.88f; db.Employee.Where(e => e.salary > dolToEuro(2500)); est également valide avec BOLDR. Le framework traduit la fonction à l'intérieur même de la requête si cela est possible et ecace, ou la conserve comme une fonction de langage d'application qui devra être évaluée plus tard dans la base de données ou dans l'application elle-même. Dans tous les cas, cette requête est évaluée avec succès. Ce procédé est entièrement automatisé, les programmeurs n'ont pas à migrer leur code d'application vers les bases de données.

be aware of that specic renaming process.Crucially, the specic type system of MEM always calls the generic type system on the children in the premises of its rules, where _ denotes any database in 61 Γ, x :T MEM x : T Γ, f : T 1 → T 2 , x : T 1 q : T 2 , _ Γ MEM fun f (x)→q : T 1 → T 2 Γ q 1 : T 1 → T 2 , _ Γ q 2 : T 1 , _ Γ MEM q 1 q 2 : T 2 Γ MEM c : typeofC(c) T ∈ typeofOP(op) Γ MEM op : T Γ q 1 : bool, _ Γ q 2 : T, _ Γ q 3 : T, _ Γ MEM if q 1 then q 2 else q 3 : T Γ q i : T i , _ i ∈ 1..n Γ MEM { l i : q i } i=1..n : {l i : T i } i=1..n Γ q 1 : {l i : T i } i=1..m , _ Γ q 2 : {l i : T i } i=m+1..n , _ Γ MEM q 1 q 2 : {l i : T i } i=1..n Γ MEM [] : T list Γ q 1 : T, _ Γ q 2 : T list, _ Γ MEM q 1 :: q 2 : T list Γ q 1 : T list, _ Γ q 2 : T list, _ Γ MEM q 1 @ q 2 : T list Γ q : {. . . , l : T, . . .}, _ Γ MEM q • l : T Γ q 1 : T 2 list, _ Γ q 2 : T 2 → T 2 list → T 1 , _ Γ q 3 : T 1 , _ Γ MEM q 1 as h :: t ? q 2 : q 3 : T 1 Γ q 1 : T 2 → T 1 , _ Γ q 2 : T 2 list, _ Γ MEM Project q 1 | q 2 : T 1 list Γ q 1 : T → bool, _ Γ q 2 : T list, _ Γ MEM Filter q 1 | q 2 : T list Γ q 1 : T 3 → T 4 → T 1 , _ Γ q 2 : T 3 → T 4 → bool, _ Γ q 3 : T 3 list, _ Γ q 4 : T 4 list, _Γ MEM Join q 1 , q 2 | q 3 , q 4 : T 1 list Γ q : T 1 , D T 1 ≺ T 2 Γ MEM q : T 2 Figure 4.1 The specic type system of MEM

Lemma 4.3, v ∈ R T . By induction hypothesis, we haveq 1 {x 1 /v 1 , . . . , x m /v m , x/v} ∈ R T . But, (fun(x)→q 1 {x 1 /v 1 , . . . , x m /v m }) (q) → * q 1 {x 1 /v 1 , . . . , x m /v m , x/v}, which by Lemma 4.3 gives us (fun(x)→q 1 {x 1 /v 1 , . . . , x m /v m }) (q) ∈ R T .Then, by denition of R T →T , since q was chosen arbitrarily, we have: (fun(x)→q 1){x 1 /v 1 , . . . , x m /v m } ∈ R T →T .

since SQL does not support record concatenation, we add a custom rule for this particular case.75Γ, x :T SQL x : T Γ, f : T 1 → T 2 , x : T 1 SQL q : T 2 Γ SQL fun f (x)→q : T 1 → T 2 Γ SQL q 1 : T 1 → T 2 Γ SQL q 2 : T 1 Γ SQL q 1 q 2 : T 2 Γ SQL c : typeofC(c) B 1 → . . . → B n ∈ typeofOP(op) Γ MEM op : B 1 → . . . → B n Γ SQL b 1 : bool Γ SQL b 2 : B Γ SQL b 3 : B Γ SQL if b 1 then b 2 else b 3 : B Γ SQL q i : T i i ∈ 1..n Γ SQL { l i : q i } i=1..n : {l i : T i } i=1..n Γ SQL q 1 : T Γ SQL q 2 : T list Γ SQL q 1 :: q 2 : T list Γ SQL q 1 : T list Γ SQL q 2 : T list Γ SQL q 1 @ q 2 : T list Γ SQL q : {. . . , l : T, . . .} Γ SQL q • l : T Γ SQL q 1 : R 2 → R 1 Γ SQL q 2 : R 2 list Γ SQL Project q 1 | q 2 : R 1 list Γ SQL n : stringΓ SQL From SQL, n : R list Γ SQL q 1 : R → bool Γ SQL q 2 : R list Γ SQL Filter q 1 | q 2 : R listΓ SQL q 1 : R 3 → R 4 → R 1 Γ SQL q 2 : R 3 → R 4 → boolΓ SQL q 3 : R 3 list Γ SQL q 4 : R 4 list Γ SQL Join q 1 , q 2 | q 3 , q 4 : R 1 listΓ SQL q 2 : {l i : T i } i∈1..m → {l i : T i } i∈m+1..n → boolΓ SQL q 3 : {l i : T i } i∈1..m list Γ SQL q 4 : {l i : T i } i∈m+1..n list Γ SQL Join fun(x, y)→x y, q 2 | q 3 , q 4 : {l i : T i } i∈1..n list Γ SQL q 1 : R 3 → R 1 Γ SQL q 2 : R 3 → R 2 Γ SQL q 3 : R 3 list Γ SQL Group q 1 , q 2 | q 3 : R 2 list Γ SQL q 1 : R 2 → R 1 Γ SQL q 2 : R 2 list Γ SQL Sort q 1 | q 2 : R 2 list Γ SQL q 1 : int Γ SQL q 2 : R list Γ SQL Limit q 1 | q 2 : R list

only possible step after Γ, x : T q : T, SQL. The arguments are the same as for the proof of Lemma 4.1.Theorem 4.5 (Subject reduction for SQL). Let q ∈ E QIR and Γ a QIR typing environment. If Γ q : T, SQL, and q → q , then Γ q : T, SQL.Proof. By induction on the derivation of Γ SQL q : T , since it is the only possible step after Γ q : T, SQL. We use L4.1 to denote Lemma 4.1.• For all the (*-red*) and (dataop-*) rules, either no typing rule applies, or the property is immediately true by induction hypothesis.• (fun f (x)→q 1) v 2 → {f → fun f (x)→q 1 , x → v 2 }q 1 : Γ SQL {f → fun f (x)→q 1 , x → v 2 }q 1 : T 2 Γ, f : T 1 → T 2 , x : T 1 SQL q 1 : T 2 L4.1 Γ SQL fun f (x)→q 1 : T 1 → T 2 Γ SQL v 2 : T 1 Γ SQL (fun f (x)→q 1) v 2 : T 2• op v → q: true supposing → δ preserves types.

Γ SQL false : bool Γ SQL v 1 : B Γ SQL v 2 : B Γ SQL if false then v 1 else v 2 : B • { l i : v i } i=1..m { l i : v i } i=m+1..n → { l i : v i } i=1..n : No typing rule.• [] @ v → v: No typing rule.• v @ [] → v: No typing rule.• (v 1 ::v 2) @ v 3 → v 1 :: (v 2 @ v 3): Γ SQL v 1 : T Γ SQL v 2 : T list Γ SQL v 1 :: v 2 : T list Γ SQL v 3 : T list Γ SQL (v 1 :: v 2) @ v 3 : T list so: Γ SQL v 1 : T Γ SQL v 2 : T list Γ SQL v 3 : T list Γ SQL v 2 @ v 3 : T list

directly use them to create a type inference algorithm for QIR expressions.Indeed, if we recall the MEM type system of Denition 4.8, there are four problematic rules which are the function rule; the basic operator rule; the empty list rule; and the subsumption rule.Γ, f : T 1 → T 2 , x : T 1 q : T 2 , _ Γ MEM fun f (x)→q : T 1 → T 2

The specic type system for SQL is very similar to the specic type system for MEM. The only non-algorithmic rules are the function rule; the basic operators rule; and the subsumption rule. We can apply the same logic as for the specic typing algorithm for MEM to solve the issues brought by these rules. However,

Comme le montre cette dernière requête, les noms des tables peuvent être utilisés comme les noms de la ligne courante de la table correspondante. Cela permet de lever l'ambigüité sur quelle n-uplet doit être accédé pour la valeur de la colonne. De plus, SQL permet la création d'alias pour donner un nom temporaire aux tables avec le mot-clé AS. Par exemple, notre dernière requête peut s'écrire : SELECT * FROM Employee AS e, Team AS t WHERE e.deptno = t.deptno Dans ce cas, les alias ne sont pas nécessaires puisque les noms de tables permettent déjà de distinguer les lignes, mais ils sont requis dans certaines requêtes comme les jointures entre une table et elle-même, ou pour donner un nom au résultat d'une sous-requête : SELECT * FROM Employee e, (SELECT 1 AS teamid, 'R&D' AS teamname, 500 AS bonus UNION ALL SELECT 2 AS teamid, 'Sales' AS teamname, 600 AS bonus) AS t WHERE e.deptno = t.deptno

Γ {f → fun f (x)→q 1 , x → v 2 }q 1 : T 2 , _ Γ, f : T 1 → T 2 , x : T 1 MEM q 1 : T 2 L4.1Γ D fun f (x)→q 1 : T 1 → T 2 P4.3 Γ fun f (x)→q 1 : T 1 → T 2 , D Γ v 2 : T 1 , _ Γ MEM (fun f (x)→q 1) v 2 : T 2We used the substitution lemma twice here: once for f and once for x.• op v → q: true ensuring → δ preserves types.• if true then q 1 else q 2 → q 1 : Γ true : bool, _ Γ q 1 : T, _ Γ q 2 : T, _ Γ MEM if true then q 1 else q 2 : T• if false then q 1 else q 2 → q 2 : Γ false : bool, _ Γ q 1 : T, _ Γ q 2 : T, _ Γ MEM if false then q 1 else q 2 : T • q 1 q 2 → {l i : v i } i∈1..n where q 1 = {l i : v i } i∈1..m and q 2 = {l i : v i } i∈m+1..n : Γ q 1 : {l i : T i } i∈1..m , _ Γ q 2 : {l i : T i } i∈m+1..n , _ Γ MEM q 1 q 2 : {l i : T i } i∈1..n • [] @ v → v: Γ [] : T, _ Γ v : T, _ Γ MEM [] @ v : T • v @ [] → v: Γ v : T, _ Γ [] : T, _ Γ MEM v @ [] : T 190 • (v 1 :: v 2) @ v 3 → v 1 :: (v 2 @ v 3): Γ MEM v 1 : T Γ MEM v 2 : T list Γ D v 1 :: v 2 : T list P4.3 Γ v 1 :: v 2 : T list, D Γ v 3 : T list, _ Γ MEM (v 1 :: v 2) @ v 3 : T list so: Γ v 1 : T, _ Γ MEM v 2 : T list Γ MEM v 3 : T list Γ D v 2 @ v 3 : T list P4.3 Γ v 2 @ v 3 : T list, D Γ MEM v 1 :: (v 2 @ v 3) : T list • { . . . , l : v, . . . } • l → v: Γ { . . . , l : v, . . . } : {. . . , l : T, . . .}, _ Γ MEM { . . . , l : v, . . . } • l : T • [] as h :: t ? q 2 : q 3 → q 3 : Γ [] : T 2 list, _ Γ q 2 : T 2 → T 2 list → T 1 , _ Γ q 3 : T 1 , _ Γ MEM []as h :: t ? q 2 : q 3 : T 1• v 1 :: v 1 as h :: t ? q 2 : q 3 → q 2 (v 1 , v 1):Γ MEM v 1 : T 2 Γ MEM v 1 : T 2 list Γ _ v 1 :: v 1 : T 2 list P4.3 Γ v 1 :: v 1 : T 2 list, _gives us:. . . Γ v 1 :: v 1 : T 2 list, _ Γ q 2 : T 2 → T 2 list → T 1 , _ Γ q 3 : T 1 , _ Γ MEM v 1 :: v 1 as h :: t ? q 2 : q 3 : T 1

If v = if v 1 then v 2 else v 3 then by the typing rule of the conditional expression:∀i ∈ 1..3, Γ SQL v i : B i , so by induction hypothesis ∀i ∈ 1..3, v i ≡ b, so v = if v 1 then v 2 else v 3 ≡ if b then b else b ≡ b If v = { l i : v i } i=1..n then impossible since Γ SQL { l i : v i } i=1..n : {l i : T i } i=1..n If v = [] then impossible since Γ SQL [] : T list If v = v 1 :: v 2 then impossible since Γ SQL v 1 :: v 2 : T list If v = v 1 @ v 2 then impossible since Γ SQL v 1 @ v 2 : T list If v = v • l thenby the typing rule of the record destructor:Γ SQL v : {l i : T i } i=1..n , so by induction hypothesis either v ≡ { l : v, . . . , l : v }, which is impossible by Hypothesis H1, or v ≡ x,then v = v • l ≡ x • l ≡ b If v = Project v 1 | v 2 then impossible since Γ SQL Project v 1 | v 2 : R list If v = From D, v then impossible since Γ SQL From D, v : R list If v = Filter v 1 | v 2 then impossible since Γ SQL Filter v 1 | v 2 : R list If v = Join v 1 , v 2 | v 3 , v 4 then impossible since Γ SQL Join v 1 , v 2 | v 3 , v 4 : R list If v = Group v 1 , v 2 | v 3 then impossible since Γ SQL Group v 1 , v 2 | v 3 : R list If v = Sort v 1 | v 2 then impossible since Γ SQL Sort v 1 | v 2 : R list If v = Limit v 1 | v 2 then impossible since Γ SQL Limit v 1 | v 2 : R list

structor ∀i ∈ 1..n, Γ SQL v i : B i , so by induction hypothesis ∀i ∈ 1..n,v i ≡ b, so v = { l i : v i } i=1..n ≡ { l : b, . . . , l : b } ≡ r If v = [] then impossible since [] cannot be typed If v = v 1 :: v 2 then impossible since Γ SQL v 1 :: v 2 : R list If v = v 1 @ v 2 then impossible since Γ SQL v 1 @ v 2 : R list If v = v • l thenby the typing rule of the record destructor: Γ SQL v : {l 1 : T 1 , . . . , l n : T n }, so by induction hypothesis either v ≡ { l : v, . . . , l : v }, which is impossible by Hypothesis H1, or v ≡ x, but then by Hypothesis H2 Γ, x : T SQL v ≡ x : T ≡ R , so impossible since by the typing rule of the record destructorΓ SQL v = v • l : B If v = Project v 1 | v 2 then impossible since Γ SQL Project v 1 | v 2 : R list If v = From D, v then impossible since Γ SQL From D, v : R list If v = Filter v 1 | v 2 then impossible since Γ SQL Filter v 1 | v 2 : R list If v = Join v 1 , v 2 | v 3 , v 4 then impossible since Γ SQL Join v 1 , v 2 | v 3 , v 4 : R list

If v = { l i : v i } i=1..n then the property is true If v = [] then impossible since [] cannot be typed If v = v 1 :: v 2 then impossible since Γ SQL v 1 :: v 2 : R list If v = v 1 @ v 2 then impossible since Γ SQL v 1 @ v 2 : R list If v = v • l then impossible for the same argument as for T ≡ R If v = Project v 1 | v 2 then impossible since Γ SQL Project v 1 | v 2 : R list If v = From D, v then impossible since Γ SQL From D, v : R list If v = Filter v 1 | v 2 then impossible since Γ SQL Filter v 1 | v 2 : R list If v = Join v 1 , v 2 | v 3 , v 4 then impossible since Γ SQL Join v 1 , v 2 | v 3 , v 4 : R list If v = Group v 1 , v 2 | v 3 then impossible since Γ SQL Group v 1 , v 2 | v 3 : R list

Remerciements

Denition 4.10 (Specialization of a type inference rule). A type inference rule (A, c) is a specialization of another type inference rule (A , c) noted (A, c) ⊆ (A , c) if and only if, for any instance of the inference rules:

Intuitively, an inference rule is a specialization if it does not contradict the premises and conclusion of the other inference rule. For instance:

Γ D [] : B list B∈B is a specialization of the empty list rule of the specic type system of MEM, but Γ D q 1 q 2 : bool is not a specialization of the application rule of the specic type system of MEM.

Denition 4.11 (Target of a type inference rule). The target of a type inference rule Γ D q : T or Γ q : T, D is q. Denition 4.12 (Coherence of a specic type system). A specic type system D is coherent if for every type inference rule (A, c) of D , either c targets a data operator, or there exists a type inference rule (A , c) of MEM such that (A, c) ⊆ (A , c).

Property 4.3 (Coherence of the specic type systems). We assume that all the specic type systems linked to QIR are coherent with the specic type system for MEM.

In some cases, it could be possible and more ecient to migrate data from one database to another. For instance, in our Example 3.10, if D has Join as a compatible data operator and if the data in table "team" is transferable to D, then we could transfer this information to D to have this database perform the Join instead of MEM.

Another possibility of data transfer would be to use specic type systems on QIR expressions that do not refer to data stored in databases. For instance, this query:

We next prove that our unication algorithm terminates, and doing so it returns a unier or fails. Rule 8a, 8b, 8c, and 8d prevents our algorithm to return a most general unier as a direct consequence of our design choice to not have precise types to express polymorphic record concatenation, but our property of soundness is still valid on any substitution.

Theorem 5.3. The algorithm unify(C, K) terminates.

Proof. Let N (C) be the number of type constructors in C. The measure of the lexicographical pair (|dom(K)|, N (C)) decreases with each rule. Indeed, the domain of K strictly decreases in rules 2, 3, 4, 8a, 8b, 8c, and 8d, and it stays the same while the number of type constructors in C strictly decreases in rules 1, 5, 6, and 7.

Theorem 5.4. The algorithm unify(C, K) computes a unier for the set of constraints C and K if one exists, and fails otherwise.

Proof. We follow the proof of Theorem 3.4.1 in [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF].

The main part of this proof is to show that if unify(C, K) returns a substitution then it is a most general unier for C and K.

It is easily veried that each transformation rule preserves the following property on the result of its application to (C, K, σ, SK):

(1) K and K ∪ SK are well-formed kind constraints; T V (C) ⊆ dom(K); dom(K) ∩ dom(SK) = ∅; and dom(SK) = dom(σ).

We establish that if property (1) holds for (C, K, σ, SK), then each transformation rule also preserves the following properties on its result:

(2) For any kinded substitution (K 0 , σ 0), if (K 0 , σ 0) respects K and σ 0 satises C ∪ σ, then (K 0 , σ 0) respects SK.

(3) The set of uniers of (K ∪SK , C ∪σ) is included in the set of uniers of (K ∪ SK, C ∪ σ).

In [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF], property (3) states that the sets of unier are equal, but this property is false in our case because of the rules 6., 8a., 8b., 8c., and 8d.

As stated before, only our rules on record union kinds add a signicant dierence to the algorithm presented in [START_REF] Ohori | A polymorphic record calculus and its compilation[END_REF]. Therefore, we refer the reader to the cited paper for most of the proof, and we only discuss this particular rule which is proven in a roughly similar way as for rule 2.))

which, as required, translates the Froms into the database languages that correspond to their targeted database, and leaves the evaluation of Join to MEM.

Let us now see examples where the (best-eort) rules are used. For the (besteort) rules to be necessary, the query must be impossible to type even by MEM, but it must also be translatable. Typically, queries that contain host language expressions have to be translated using the (best-eort) rules. For instance:

Filter fun(r)→ Python (γ, e) | From PostgreSQL, "employee" This query is therefore executed entirely by PostgreSQL as desired.

Denition 6.4 (SQL-compatible normal forms). We dene SQL-compatible normal forms v SQL as the restriction of normal forms of Denition 3.12 produced by the following grammar:

| Exists s

Note that the second Join form requires the rst conguration to have a precise form, although the variables f, x, and y can have any name, the conguration has to be a function returning the record concatenation of the rst variable to the second one. Also, the Exists operator is included as a b form since it returns a boolean and not a collection like the other data operators. Now, we prove that if the generic type system returns a type for SQL given a QIR normal form, then this normal form must have a specic syntactic form. Lemma 6.1 (Relation between SQL types and syntactic forms). Let v be a normal form of QIR and Γ a QIR typing environment such that ∀x ∈ dom(Γ).Γ(x) ≡ R, and Γ v : T, SQL, then:

Proof. The only valid rule for Γ v : T, SQL being the rst one where D = SQL, we have to prove the property for Γ SQL v : T . We prove the property by structural induction on the typing derivation of Γ SQL v : T . If the last rule used is the subsumption rule, then it is immediately true by induction hypothesis, otherwise we proceed by case analysis on T : Hypothesis 1 (H1). v is in normal form Hypothesis 2 (H2). ∀x ∈ dom(Γ).Γ(x) ≡ R Note: We only show the interesting cases here. The rest of the proof can be found in Appendix B, page 205.

by the typing rule of the application: Γ SQL v 1 : T 1 → T 2 , so by induction hypothesis v 1 ≡ fun x (x)→v 3 which is impossible by Hypothesis H1, or v 1 ≡ op, then by the typing rule of operators:

by the typing rule of the record destructor:

.n , so by induction hypothesis either v ≡ { l : v, . . . , l : v }, which is impossible by Hypothesis H1, or v ≡ x,

since by the typing rule of the application: Γ SQL v 1 : T 1 → T 2 , so by induction hypothesis v 1 ≡ fun x (x)→v 3 which is impossible by Hypothesis H1, or

.n then by the typing rule of the record con-

by the typing rule of the record destructor: Γ SQL v : {l 1 : T 1 , . . . , l n : T n }, so by induction hypothesis either v ≡ { l : v, . . . , l : v }, which is impossible by Hypothesis H1, or v ≡ x, but then by Hypothesis H2 Γ, x : T SQL v ≡ x : T ≡ R , so impossible since by the typing rule of the record destructor

by the typing rule of the list constructor: Γ SQL v 1 : R and Γ SQL v 2 : R list, so by induction hypothesis

by the typing rule of the list concatenation: Γ SQL v 1 : R list and Γ SQL v 2 : R list, so by induction hypoth-

by the typing rule of Project: Γ SQL v 1 : R → R and Γ SQL v 2 : R list, so by induction hypothesis v 1 ≡ fun x (x)→r and v 2 ≡ s,

by the typing rule of Filter: Γ SQL v 1 : R → bool and Γ SQL v 2 : R list, so by induction hypothesis v 1 ≡ fun x (x)→b and v 2 ≡ s,

by the typing rule of Group: Γ SQL v 1 : R → R, Γ SQL v 2 : R → R and Γ SQL v 3 : R list, so by induction hypothesis v 1 ≡ fun x (x)→r, v 2 ≡ fun x (x)→r and

We have shown that well-typedness of a QIR normal form restricts its syntactic form. We can then show that SQL-compatible normal forms can be translated into SQL by our specic translation. Lemma 6.2. Let v be a SQL-compatible normal form, then there exists a unique e ∈ E SQL such that v SQL e.

Proof. By induction on the structure of v. Note that the rules of Figure 6.1 used to derive the judgment q SQL e are syntax-directed (at most one rule applies), and terminate since the premises are always applied on a strict syntactic subexpression of the conclusion. Thus, since v is nite by denition of a QIR term, the translation derivation is nite and unique. We use (IH) to denote the induction hypothesis.

True

True is an open-source framework allowing language developers to implement abstract syntax tree (AST) interpreters with speculative runtime-specialization.

Language implementors typically write a parser for the target language that produces an AST composed of True nodes. Full proofs Lemma 3.1. Let q ∈ E QIR . Either q is in normal form, or ∃q .q → q .

Proof. By case analysis on q:

• If q = x, then q is in normal form.

• If q = fun x (x)→q 1 , then either q 1 is in normal form, in which case q is in normal form; or q 1 → q 1 , in which case rule (norm-fun-red) applies.

• If q = q 1 q 2 , then either q 1 ≡ fun x (x)→q 3 and q 2 is in normal form and pure, in which case rule (norm-app-β) applies;

q 1 ≡ fun x (x)→v and q 2 are in normal form and q 2 is not pure, in which case q is a normal form;

q 1 ≡ op and q 2 are in normal form, in which case rule (app-op) applies;

or q 1 ≡ fun x (x)→v or op and q 2 are in normal form, in which case q is in normal form;

or either q 1 or q 2 is not in normal form, in which case rules (app-red1) or (app-red2) apply.

• If q = c, then q is in normal form.

• If q = op, then q is in normal form. so:

Theorem 4.2 (Progress). Let q ∈ E QIR , and D a database language. If ∅ q : T, D and all data operators in q are translatable into a database language, then either q is a QIR value, or ∃q .q q .

Proof. By induction on typing derivations:

• If q = x, then impossible since the rule Γ, x : T MEM x : T is not applicable since our environment is the empty set. And by Property 4.3, any typing rule for variables in other specic type systems cannot be applied either.

• If q = fun x (x)→q , q is a value.

• If q = q 1 q 2 , then either q 1 ≡ fun x (x)→q 1 and q 2 is a value, in which case rule (app-β) applies;

q 1 ≡ op and q 2 is a value, in which case rule (app-op) applies; or q 1 ≡ fun x (x)→q 1 or op, in which case q 1 is not a value by typing and can be reduced by induction hypothesis.

• If q = c, then q is a value.

• If q = op, then q is a value.

• If q = if q 1 then q 2 else q 3 , then either q 1 = true, in which case rule (app-true) applies; or q 1 = false, in which case rule (app-false) applies;

Γ q 1 q 2 : T → T , D

By induction hypothesis, we have q 1 {x 1 /v 1 , . . . , x m /v m } ∈ R T →T and q 2 {x 1 /v 1 , . . . , x m /v m } ∈ R T . And by denition of R T →T , we have (q 1 q 2){x 1 /v 1 , . . . , x m /v m } ∈ R T .

• If q = c, then T = typeofC(c) ∈ B, in which case the property is obviously true as c is obviously strongly normalizing therefore c ∈ R typeofC(c) .

• If q = op, true by Lemma 4.4.

• If q = if q 1 then q 2 else q 3 , then:

Γ if q 1 then q 2 else q 3 : T, D

By induction hypothesis, we have q

Therefore, by Lemma 4.2, we have

and so (if

.3, and so by Lemma 4.3 again if q 1 then q 2 else q 3 {x 1 /v 1 , . . . , x m /v m } ∈ R T . Otherwise, either T ≡ T 1 → T 2 , in which case the property is trivially true by Denition 4.15, or T = T 1 → T 2 , in which case the property is true by Lemma 4.4.

• If q = { l i : q i } i=1..n , then:

By induction hypothesis, we have

.n , we have

195

• If q = q 1 q 2 , then:

By induction hypothesis, we have q

• If q = [], then T = T list, in which case the property is obviously true as [] is obviously strongly normalizing therefore [] ∈ R T list .

• If q = q 1 :: q 2 , then:

Γ q 1 :: q 2 : T list, D

By induction hypothesis, we have q

• If q = q 1 @ q 2 , then:

Γ MEM q 1 : T list Γ MEM q 2 : T list Γ D q 1 @ q 2 : T list P4.3

Γ q 1 @ q 2 : T list, D

By induction hypothesis, we have q 1 {x 1 /v 1 , . . . , x m /v m } ∈ R T list and q 2 {x 1 /v 1 , . . . , x m /v m } ∈ R T list . So, by denition of R T list , we have (q 1 @ q 2){x 1 /v 1 , . . . , x m /v m } ∈ R T list .

• If q = q 1 • l, then:

If v 1 = { . . . , l : v, . . . }, by induction hypothesis on the typing derivation of the record, we have

Otherwise, either T ≡ T 1 → T 2 , in which case the property is trivially true by Denition 4.15, or T = T 1 → T 2 , in which case the property is true by Lemma 4.4.

• If q = q 1 as h :: t ? q 2 : q 3 , then:

Γ q 1 as h :: t ? q 2 : q 3 : T 1 , D

By induction hypothesis, we have q

.3, and so (q 1 as h ::

Lemma 4.3 again, q 1 as h ::

), and by induc- tion hypothesis on the typing derivation of the list, we have v ∈ R T 2 and v ∈ R T 2 list . Then, by denition of

Therefore, by Lemma 4.3, q 1 as h :: t ? q 2 : q 3 {x 1 /v 1 , . . . , x m /v m } ∈ R T 1 .

Otherwise, either T 1 ≡ T 3 → T 4 , in which case the property is trivially true by Denition 4.15, or T 1 = T 3 → T 4 , in which case the property is true by Lemma 4.4.

• If q = o q 1 , . . . , q m | q m+1 , . . . , q n , then q{x 1 /v 1 , .

Proof. The only valid rule for Γ v : T, SQL being the rst one where D = SQL, we have to prove the property for Γ SQL v : T .

We prove the property by structural induction on the typing derivation of Γ SQL v : T . If the last rule used is the subsumption rule, then it is immediately true by induction hypothesis, otherwise we proceed by case analysis on T :

Hypothesis 1 (H1). v is in normal form

Hypothesis 2 (H2). ∀x ∈ dom(Γ).Γ(x) ≡ R

Hypothesis H2

If v = fun f (x)→v then impossible since Γ SQL fun f (x)→v :

by the typing rule of the application: Γ SQL v 1 : T 1 → T 2 , so by induction hypothesis v 1 ≡ fun x (x)→v 3 which is impossible by Hypothesis H1, or v 1 ≡ op, then by the typing rule of operators: Γ SQL v 2 : B, so by induction hypothesis v 2 ≡ b so

impossible since by the typing rule of the application: Γ SQL v 1 : T 1 → T 2 , so by induction hypothesis v 1 ≡ fun x (x)→v 3 which is impossible by Hypothesis H1, or

.n then by the typing rule of the record con-

by the typing rule of the list constructor: Γ SQL v 1 : R and Γ SQL v 2 : R list, so by induction hypothesis v 1 ≡ r and v 2 ≡ s, so v = v 1 :: v 2 ≡ r :: s ≡ s If v = v 1 @ v 2 then by the typing rule of the list concatenation: Γ SQL v 1 : R list and Γ SQL v 2 : R list, so by induction hypoth-

by the typing rule of Project: Γ SQL v 1 : R → R and Γ SQL v 2 : R list, so by induction hypothesis v 1 ≡ fun x (x)→r and v 2 ≡ s,

by the typing rule of Filter: Γ SQL v 1 : R → bool and Γ SQL v 2 : R list, so by induction hypothesis v 1 ≡ fun x (x)→b and v 2 ≡ s, so

then by the typing rules of Join:

R list and Γ SQL v 4 : R list, so v 1 ≡ fun x (x, x)→x

x or by induction hypothesis

then by the typing rule of Group: Γ SQL v 1 : R → R, Γ SQL v 2 : R → R and Γ SQL v 3 : R list, so by induction hypothesis v 1 ≡ fun x (x)→r, v 2 ≡ fun x (x)→r and

by the typing rule of Sort: Γ SQL v 1 : R → R and Γ SQL v 2 : R list, so by induction hypothesis v 1 ≡ fun x (x)→r and v 2 ≡ s,