N
N

N

HAL

open science

Breaking boundaries between programming languages
and databases

Julien Lopez

» To cite this version:

Julien Lopez. Breaking boundaries between programming languages and databases. Databases
[cs.DB]. Université Paris Saclay (COmUE), 2019. English. NNT: 2019SACLS235 . tel-02309327

HAL Id: tel-02309327
https://theses.hal.science/tel-02309327
Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02309327
https://hal.archives-ouvertes.fr

[
universite

PARIS-SACLAY

: 2019SACLS235

NNT

These de doctorat

UNIVERSITE

PARIS
SW

Au-dela des frontiéres entre langages
de programmation et bases de données

Thése de doctorat de I’Université Paris-Saclay
préparée a Université Paris-Sud

Ecole doctorale n°580 Sciences et Technologies de I'Information et de la
Communication (STIC)
Spécialité de doctorat: Informatique

Theése présentée et soutenue a Orsay, le 13/09/2019, par

JULIEN LOPEZ

Composition du Jury :

James Cheney
Reader, Université d’Edimbourg Rapporteur

Emmanuel Chailloux
Professeur, Sorbonne Université (UMR 7606) Rapporteur

Alan Schmitt

Directeur de recherche, INRIA Rennes (UMR 6074) Examinateur
Jérome Siméon

Chief Scientist, Clause Inc. Examinateur

Sarah Cohen Boulakia
Professeur, Université Paris-Sud (UMR 8623) Présidente du jury

[Véronique Benzaken
Professeur, Université Paris-Sud (UMR 8623) Directeur de these

Kim Nguyen

Maitre de Conférences, Université Paris-Sud (UMR Co-encadrant de these

Directeur de Recherche, CNRS et Université de Paris
(UMR 8243)

Invité

il

Remerciements

Tout d’abord, je souhaite remercier mes encadrants de thése Véronique Benzaken
et Kim Nguyen. Véronique pour avoir toujours accepté de me recevoir lorsque
j’en avais besoin, pour son énergie, son enthousiasme contagieux pour l'informa-
tique, et pour m’avoir initié aux plus grandes abérrations syntaxiques d’SQL.
Kim pour avoir partagé avec moi ses connaissances scientifiques du lambda cal-
cul aux magies les plus noires de JavaScript, pour les expériences d’enseignement
enrichissantes qui ont élargi mes connaissances générales, pour sa patience a m’ex-
pliquer un concept de maniéres différentes jusqu’a ce que mon esprit tétu finisse
par comprendre, son aide précieuse dans tous les aspects de la thése en particu-
lier pour sa rédaction, et sa disponibilité sans faille malgré sa moyenne d’environ
cent cours par jour. Merci beaucoup a tous les deux pour votre encadrement de
qualité, pour m’avoir donné ma chance, et enfin pour m’avoir traité avec huma-
nité dans les moments difficiles. Ce doctorat a été pour moi une expérience trés
enrichissante, et je n’oublierai jamais ce que vous avez fait pour moi.

Un grand merci également a James Cheney et Emmanuel Chailloux pour avoir
accepté d’étre les rapporteurs de ma thése. Je suis honoré que vous ayez pris le
temps d’examiner mon travail avec autant d’attention, et vous remercie pour vos
corrections et remarques pertinentes. Merci & Alan Schmitt, Jérome Siméon, et
Sarah Cohen Boulakia d’avoir accepté de faire partie de mon jury de thése.

Je suis trés reconnaissant a Giuseppe Castagna pour avoir non seulement en-
cadré mon stage de fin d’études en école d’ingénieur, et m’avoir ainsi apporté
ma premiére expérience dans la recherche, mais aussi pour m’avoir proposé cette
thése, pour m’avoir soutenu durant mon année au MPRI, et pour son aide pré-
cieuse au cours de la thése. Un grand merci & Beppe sans qui ce travail n’aurait
pas été possible.

J’aimerais également remercier Laurent Daynes, mon encadrant de stage MPRI
a Oracle Labs, qui m’a permis de travailler dans son équipe et ainsi de commencer
a travailler sur mon sujet de thése en collaborant avec les ingénieurs d’Oracle.
Merci & Romain Vernoux dont les travaux de stage ont servi de bases solides pour
mes recherches, ainsi qu’a Alban Petit et Romain Liautaud qui ont travaillé en
stage sur ma solution.

Merci ensuite & mes collégues du LRI, et & ’équipe VALS pour m’avoir permis
de travailler dans une ambiance chaleureuse. Merci & Sylvain Conchon avec qui

il

j’ai renforcé mon OCaml en enseignant notamment comment réaliser un jeu vidéo
avec des match, et qui m’a appris le model checking. Merci a Guillaume Melquiond
de m’avoir appris a faire du C++ correctement (sans *), et & Thibaut Balabonski
grace a qui j'ai dépoussiéré mes connaissances en compilation, tout cela me sera
utile trés prochainement. Merci a Jean-Christophe Fillidtre pour m’avoir partagé
ses connaissances sur OCaml, et pour m’avoir prété son exemplaire de “Sixty
Million Frenchmen Can’t Be Wrong”. Merci & Frédéric Voisin pour avoir trouvé
le code d’acces a la salle de reprographie pour un thésard en panique et pour les
blagues du vendredi (du lundi au vendredi) au coin café. Merci a Sylvie Boldo
pour m’avoir fait confiance pour la review d’un article au JFLA, pour son aide
précieuse avec Véronique sur le recrutement académique, et sur le fonctionnement
de la machine magique a faire des posters. Merci a Hai et Stefania pour m’avoir
montré & 'avance dans quel état je serai en derniére année, a Robin pour avoir
écouté mes tirades inintéressantes sur le speedrun de Mario 64, & Albin pour le vin
a lorange, & Bruno pour la promenade en vélo, & Alexandrina pour m’avoir fait
rire quand j’en avais bien besoin et pour son amitié. Ah, et merci & Mattias pour
les pauses, m’avoir presque donné envie de jouer 4 un MOBA, et pour m’avoir
appris la quantité de créme pour des pates a la carbonara.

Merci & mes vieux amis, Pierre-Alain, Pierre-Alain, Frédéric, Romain qui
m’ont soutenu malgré la distance, et Bertrand, Solenne, Thibaut et Pierre-Jean
pour nos beuveries et parties de Borderlands.

Un grand merci a ma famille, tout particuliérement mes parents, ma grand-
mére, mon frérot, et ma petite sceur. Sans votre amour et votre soutien, je ne
serais jamais allé aussi loin. Enfin, merci a toi Jenny. Merci pour ton soutien,
tes corrections sur mon anglais beaucoup trop francais, et pour ces merveilleuses
années que nous avons passées ensemble.

iv

vi

Abstract

Several classes of solutions allow programming languages to express queries: spe-
cific APIs such as JDBC, Object-Relational Mappings (ORMs) such as Hibernate,
and language-integrated query frameworks such as Microsoft’s LINQ. However,
most of these solutions do not allow for efficient cross-databases queries, and
none allow the use of complex application logic from the programming language
in queries.

This thesis studies the design of a new language-integrated query framework
called BOLDR that allows the evaluation in databases of queries written in
general-purpose programming languages containing application logic, and tar-
geting several databases following different data models. In this framework, ap-
plication queries are translated to an intermediate representation. Then, they
are typed with a type system extensible by databases in order to detect which
database language each subexpression should be translated to. This type system
also allows us to detect a class of errors before execution. Next, they are rewritten
in order to avoid query avalanches and make the most out of database optimiza-
tions. Finally, queries are sent for evaluation to the corresponding databases and
the results are converted back to the application. Our experiments show that
the techniques we implemented are applicable to real-world database applica-
tions, successfully handling a variety of language-integrated queries with good
performances.

Résumé

Plusieurs classes de solutions permettent d’exprimer des requétes dans des
langages de programmation: les interfaces spécifiques telles que JDBC, les map-
pings objet-relationnel ou object-relational mapping en anglais (ORMs) comme
Hibernate, et les frameworks de requétes intégrées au langage comme le frame-
work LINQ de Microsoft. Cependant, la plupart de ces solutions ne permettent

vii

pas d’écrire des requétes visant plusieurs bases de données en méme temps, et au-
cune ne permet l'utilisation de logique d’application complexe dans des requétes
aux bases de données.

Cette thése présente un nouveau framework de requétes intégrées au langage
nommé BOLDR qui permet d’écrire des requétes dans des langages de program-
mation généralistes et qui contiennent de la logique d’application, et de les évaluer
dans des bases de données hétérogénes. Dans ce framework, les requétes d’une
application sont traduites vers une représentation intermédiaire de requétes. Puis,
elles sont typées en utilisant un systéme de type extensible par les bases de don-
nées pour détecter dans quel langage de données chaque sous-expression doit étre
traduite. Cette phase de typage permet également de détecter certaines erreurs
avant 'exécution. Ensuite, les requétes sont réécrites pour éviter le phénomeéne
"d’avalanche de requétes" et pour profiter au maximum des capacités d’optimisa-
tion des bases de données. Enfin, les requétes sont envoyées aux bases de données
ciblées pour évaluation et les résultats obtenus sont convertis dans le langage
de programmation de 'application. Nos expériences montrent que les techniques
implémentées dans ce framework sont applicables pour de véritables applications
centrées données, et permettent de gérer efficacement un vaste champ de requétes
intégrées a des langages de programmation généralistes.

Note : Afin d’en assurer une plus large diffusion, et en accord avec ’école docto-
rale STIC Paris-Saclay, cette these est rédigée en anglais. Pour un résumé étendu
des travaux rédigé en francais, voir ’Annexe A page 163.

viil

Contents

1 Introduction

1.1 Context o
1.2 SQL . . .
1.2.1 Relational algebra
1.2.2 Expressing queries in SQL
1.3 Application programming languages
1.4 Sending queries from application languages
1.41 JDBC
1.42 ORMs o
1.4.3 LINQ o
1.4.4 Apache Calcite L
1.4.5 Other interfaces L.
1.5 A new solution: BOLDR,
1.5.1 Features
1.5.2 Detailed description.o
1.5.3 Implementation
1.6 Contributions L
1.6.1 Query Intermediate Representation
1.6.2 QIR typesystem,
1.6.3 QIR typeinference
1.6.4 Type-oriented evaluation
1.6.5 Implementation and experiments

2 Definitions

2.1 Basic notations L e
2.2 Languages
2.3 Inference systems

3 Query Intermediate Representation

3.1 8yntax
3.2 Basic semantics
3.3 Extended semantics e
3.4 A default database language: MEM

X

I OO U W

23
23
24
25

3.5 QIR normalization, 42

3.5.1 Motivation 42

3.5.2 Reduction relation for the normalization 43

3.5.3 A measure for good queries 46

3.5.4 Generic measure e 49

3.5.5 Heuristic-based normalization 51

4 QIR type system 55
4.1 QIR types o e 56
4.2 QIR typesystems 59
4.3 Typesafety o 66
4.3.1 Progress and preservation of types. 66

4.3.2 Strong normalization 69

4.4 Specific type system for SQL oL 74

5 QIR type inference 81
5.1 Typing algorithms 83
5.2 Specific typing algorithm for MEM 85
5.3 Constraint resolution 97
5.4 Specific typing algorithm for SQL 106

6 Type-oriented evaluation 109
6.1 Translation into database languages 109
6.1.1 Specific and generic translations 110

6.1.2 A specific translation for SQL 114

6.2 Type-safe SQL translation 117
6.3 Extension to scalar subqueries for SQL 126
6.4 Type-oriented normalization, 127

7 Implementation and experiments 129
7.1 Translation from a host language to QIR 129
72 Truffle o 136
7.3 Implementation Lo o 137
731 QIR . .. 138

7.3.2 Interfaceto FastR 144

7.3.3 Host language expressions in databases 145

7.4 Experiments Lo 146

8 Conclusion 153
81 Related work 153
82 Conclusion e 156
83 Futurework 157
Appendices 161

A Résumé étendu
A1l Contexte
A2 SQL . .

A2.1

A.2.2 Exprimer des requétes en SQL

Algébre relationnelle

A.3 Langages de programmation applicatifs
A.4 Requétes depuis des langages d’application

A4l
A42
A43
A4.4
A.45

JDBC 0o

LINQ
Apache Calcite
Autres interfaces

A.5 Une nouvelle solution : BOLDR . . .

A5l
A5.2
Ab5.3

Fonctionnalités
Description détaillée
Implémentation

A.6 Contributions
Représentation intermédiaire de requétes (QIR)

A6.1
A6.2
A6.3
A6.4
A6.5

B Full proofs

Bibliography

Systéme de types pour QIR .
Inférence de types pour QIR .

Evaluation orientée par les types

Implémentation et expériences

xi

163
163
164
165
166
167
168
168
170
171
174
175
175
175
177
181
182
182
183
184
184
184

187

213

xii

List of symbols

Q Q2

1002
EH? IH? V'H7 i)
Eva'DaE))

e N
b
&

A e
S

(q)

—
(HEﬁ’ VALH M m)
(EXPP, VALP P VAL)

Var

—»

MEM

C_)
Mnp(q)
M(q)
Reds (¢)
B

T
dom(R)

Syntactical equivalence
BEquality o
Empty set ...
Subset inclusion ool
Union, intersection and difference of sets ...
Domain of a function f
Image of a function f,
Set of integers {i, i+ 1,...,75} .coooviiiiaL.
Placeholder L.
Typing environment
Evaluation environment
Type substitution
Composition of type substitutions
Host language
Database language
Inference rule il
QIR expression
Children of a QIR expression
Databases targeted by a QIR expression ...
Basic QIR semantics

Host language driver

Database driver
QIR valuesco i
Extended QIR semantics
MEM database language
Normalization relation
Measure of a QIR expression by a database

Generic measure of a QIR expression
Possible reductions of a QIR expression
Basic QIR type ...

QIR type ..o
Domain of a QIR record type

xiii

23
23
23
23
23
23
23
23
23
24
24
24
24
24
25
26
28
32
32
32
36

36
32
37
40
45
47
49
ol
o6
o6
26

=

=<
Thpq:T
T'kq:T,D
J<y

C,T=T
k
K,a=T

Subtyping relation L 58

Strict subtypel 58
Specific type system 59
Generic type system 60
Specialization of a type inference judgement 64
Specialization of a type inference rule 65
Algorithmic QIR type 83
Set of type constraints, type constraint 83
Kind ... 84
Set of kind constraints, kind constraint 84
Specific typing algorithm 85
Generic typing algorithm 85
Kinded substitution 104
Specific translation 110
Generic translation 111
Type-oriented normalization 127
Translation from R to QIR 132

xiv

Chapter 1

Introduction

Note. This thesis is at the intersection between the fields of programming lan-
guages and databases. Therefore, this introduction describes some basic notions
coming from both fields to help unfamiliar readers.

1.1 Context

Storing, accessing, and manipulating data is unavoidable and critical for most
applications. Web, statistical and artificial intelligence applications, Internet of
Things, all require access to large quantities of information stored in heteroge-
neous data sources.

Applications are written in general-purpose programming languages often cho-
sen depending on their support for common operations in particular fields (e.g., R
or Python for statistical analysis and data mining, JavaScript for Web program-
ming). These programming languages are often imperative, meaning users must
describe how to access and process information using sequences of statements
that modify the state of the program.

The information required by applications is stored in databases, which are
managed by DataBase Management Systems (DBMS). These systems handle
storage, fast access to data using a query language, fault tolerance, scalability,
confidentiality, and more. An expression written in a query language, called a
query, describes the requested data, rather than describing in imperative fashion
how to retrieve the data, letting the DBMS choose the best way to fetch the
requested information.

To access data stored in a database, an application sends a query to the
database written in its query language. A typical data-oriented application in-
cludes components which interface the application with the different databases
it targets. For example, a recent technique called polyglot persistence [JSF12]
consists of accessing different types of databases in one application to take ad-
vantage of the capabilities of the different database models for the different parts

e-commerce

application
A
User session User accounts Inventory
Shopping cart Logs Financial data

| |
S

Key-value database Document database RDBMS

R

Figure 1.1 — Example of an application using different types of databases

of the application. Figure 1.1 shows an example of such application.

This thesis is a study aiming to create a solution that allows application
developers to write safe and efficient queries targeting databases without forcing
them to become experts in the data models and query languages of their target
databases.

In this introduction, we first give an overview of database query languages,
programming languages used in the development of applications, and the existing
solutions to interface these two worlds and the problems encountered in the pro-

cess. Then we describe a new solution in the form of a new language-integrated
query framework called BOLDR.

1.2 SQL

SQL (Structured Query Language) is the most popular query language. It is a
domain-specific language based on relational algebra.

id name salary | teamid .

- teamid | teamname | bonus
1 Lily Pond 5200 2

- 1 R&D 500
2 | Daniel Rogers 4700 1 5 Salos 600
3 | Olivia Sinclair | 6000 1

(a) Table Employee (b) Table Team

Figure 1.2 — An example of data organized as tables

1.2.1 Relational algebra

Relational algebra, first designed by Edgar F. Codd [Cod70], defines operations on
data represented as a set of n-tuples where every element of the tuple corresponds
to an attribute denoted by a name. Relational databases call these constructions
tables, composed of lines and columns. Figure 1.2 gives an example of tables.

Relational algebra is the basis of most database query languages [AHV95].
The most common operations of relational algebra are the projection, which re-
stricts the tuples to a set of attributes; the selection (or filter), which keeps only
the tuples that satisfy a condition; and the join, which returns the set of all com-
binations of tuples from two tables that are equal on their common attributes.
Figure 1.3 shows examples of applications of those operations on tables. Fig-
ure 1.3a shows the projection of table Employee on attributes name and salary,
Figure 1.3b shows the selection in the table Employee of the tuples for which
the value of the attribute salary is greater than 5000, and Figure 1.3c shows the
result of the join between Employee and Team.

name salary - ;
Lily Pond 5900 id name salary | teamid
. 1 Lily Pond 5200 2
Daniel Rogers | 4700 3 T Olivia Sinclai 6000 1
Olivia Sinclair | 6000 g et

b) Selecti Empl
(a) Projection on Employee (b) Selection on Employee

id name salary | teamname | bonus
1 Lily Pond 5200 Sales 600
2 | Daniel Rogers | 4700 Sales 600
3 | Olivia Sinclair | 6000 R&D 500

(c) Join between Employee and Team

Figure 1.3 — Example of applications of relational algebra

1.2.2 Expressing queries in SQL

SQL gives access to operations of relational algebra as a declarative programming
language. In other words, instead of describing step-by-step how the computa-
tion must be done to achieve the desired result, programming in SQL involves
describing the desired result. To achieve this, SQL adopted a syntax similar to

a natural language. For instance, the projection of Figure 1.3a can be written in
SQL as such:

SELECT name, salary FROM Employee

where SELECT represents the projection, and FROM represents a data operator
From that returns the content of a table from its name.
The selection of Figure 1.3b can be written:

SELECT * FROM Employee WHERE salary > 5000
where * means all columns. Finally, the join of Figure 1.3c can be written:
SELECT * FROM Employee NATURAL JOIN Team
or similarly:
SELECT * FROM Employee, Team WHERE Employee.deptno = Team.deptno

As shown in this last query, the names of the tables can be used as the names
of the current line of the corresponding table to lift the ambiguity on which row is
to be accessed for the value of a column. SQL also allows the creation of aliases
to give temporary names to tables using the keyword AS. For instance, this last
query could be written:

SELECT * FROM Employee AS e, Team AS t WHERE e.deptno = t.deptno

These aliases are not directly useful in such a query where the table names
already discriminate the rows, but it is necessary in some queries such as self
joins which apply a Join operator between a table and itself, or to give a name
to the result of a subquery:

SELECT * FROM Employee e,
(SELECT 1 AS teamid, ’R&D’ AS teamname, 500 AS bonus UNION ALL
SELECT 2 AS teamid, ’Sales’ AS teamname, 600 AS bonus) AS t
WHERE e.deptno = t.deptno

In this last query, the UNION ALL subquery creates the following anonymous
table:

teamid | teamname | bonus
1 R&D 500
2 Sales 600

which is then bound to the name t using an alias, and this name is then used in
the WHERE clause to refer to the table.

The simple syntax of SQL is one of the reasons why it is so popular, and the
most commonly used query language. Most databases support SQL, even those
that do not have a data model directly suited for relational algebra. Therefore,
SQL is an unavoidable database language to study for solutions aiming to allow
programmers to send queries to databases.

1.3 Application programming languages

The majority of data-driven applications are written in imperative programming
languages. Python is used in particular for Web applications and for machine
learning. It is a very popular programming language because of its simple syn-
tax and numerous field-specific libraries, such as for machine learning, general
algorithms, and statistics. JavaScript is widely used for Web applications. R is
a language natively designed for statistical applications and data analysis. Java
is a widely used general-purpose programming language with numerous libraries
for Web development, machine learning, text processing, and more.

Contrary to declarative programming in languages like SQL, imperative pro-
gramming involves describing step-by-step the control flow of a program, which
requires programmers in these languages to describe how to get to the desired
result. For instance, filtering a table in an imperative language would typically
be written as such in Python:

filteredTable = []
for employee in employees:
if (employeel[’salary’] > 5000):
filteredTable.append(employee)

However, modern programming languages have made an effort to support some
aspects of functional programming, making data-oriented applications less tech-
nically detailed. For instance, we can write the example above in Python using
list comprehensions [Kuhl1l]:

[employee for employee in employees if employee[’salary’] > 5000]

Application programs can use imperative and functional features, and usu-
ally contain a mix of both. Even so, most application languages are originally
imperative, and in particular are more efficient at evaluating imperative code.

Additionally, most application languages (Python, R, Ruby, JavaScript, ...)
are dynamically typed, meaning that the type-safety of a program is checked
during its execution. For instance, a program such as

(function (x) { return x; })(2, 3)

which applies the identity function to two arguments would be recognized as
an error during its execution (or should, but JavaScript just ignores the second
argument in this case ...).

1.4 Sending queries from application languages

As stated earlier, most applications are written in general-purpose programming
languages. These languages do not have native ways to query databases, and the
vast majority of them are imperative languages, so their syntax is very different
from those of query languages. Various solutions have been designed to enable
programmers to send queries to databases from their programming languages. In
this section, we take a look at some existing solutions, and discuss their pros and
cons.

1.4.1 JDBC

Java Database Connectivity (JDBC) [Corl6] is an application programming in-
terface (API) which provides data access from the Java programming language
to data sources, including databases.

Example 1.1 is an example of use of JDBC in a Java program to retrieve data
from a database.

Example 1.1.

final Connection conn = ...
final Statement stmt = conn.createStatement();
final String query =
"SELECT id, name, salary FROM employee WHERE salary > 2500";
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {
System.out.println(rs.getInt("ID") + " "
+ rs.getString ("NAME") + " " + rs.getFloat("SALARY"));
}

In this example, the program queries the identifier, name, and salary of em-
ployees which salary is greater than 2500 from a table employee stored in a
database.

In JDBC, the user must first create a Connection object using the correct
credentials to access the targeted database, then create a Statement object from
the connection object to send a query. The query itself is a string in the query
language of the database (SQL in the example). The results are represented

6

by a ResultSet object which contains a cursor starting at the beginning of the
result set of rows. ResultSet exposes the method next() to move the cursor
to the next row of data, and access methods such as getInt() that returns the
data in the column given as argument in the current row pointed by the cursor.
For example, rs.getInt ("ID") accesses the integer stored in the column named
"ID" of the current row in the result set rs.

Although JDBC is popular and easy-to-use for programmers who are experts
in the query language of their targeted database, this very common type of solu-
tion has numerous flaws:

e Programmers must learn the query language of each database they target.

e Integration of application logic is very limited as the conversion from ex-
pressions of the application language to the database language is restricted
to basic values (strings, integers, ...), thus forcing programmers to decom-
pose complex queries into simpler ones to send to databases and combine
the results in the application, which entails more work for the programmers,
code duplication, and potentially disastrous performances.

e Errors in queries, even syntactical, are detected only at runtime since pro-
gramming language tools such as type systems are unable to detect prob-
lems in a query written as a string.

e Special care must be taken when inserting user input into queries to avoid
code injection attacks [HVOO6].

e Explicit type coercions must be used to translate values from the database
to the application language (in JDBC, by using methods such as getInt).

e Changing a targeted database to one that does not have the same query
language implies rewriting all the queries in the application.

e From a software engineering stand point, this solution entails the develop-
ment of a completely new API for every connection between an application
language and a database. This explains the multiplication and diversity of
competing solutions for a same application language.

This set of problems has been referred to in the literature as an impedance
mismatch between the database and the application language [CM84]. Other
solutions have been proposed to solve these difficulties.

1.4.2 ORMs

Object-Relational Mappers (ORMs) and equivalents such as Object-Document
Mappers (ODMs) are design patterns allowing the conversion and manipula-
tion of data between incompatible type systems in object-oriented programming

7

languages. By representing the data source with an object, these patterns al-
low abstraction from the data source and manipulation of information directly
in the programming language itself. Examples of ORM libraries are Hiber-
nate [KBAT09] for Java, ActiveRecord [ct17] for Ruby, Doctrine [WV10] for PHP
(which is also an ODM library), or Django [KMHO07] for Python.

Although most of these libraries rely on queries written as strings in SQL, or
close cousins such as the OQLs (HQL, DQL, JPQL, ...) [ASL89|, efforts have
been made to improve the integration of queries in the application language. For
example, rather than writing queries in plain text, Criteria for Hibernate allows
a user to build a CriteriaQuery object on which one can apply operations such
as filters using methods. Using Criteria and Hibernate, Example 1.1 would be
written as shown in Example 1.2 in the language Java.

Example 1.2.

Session session = HibernateUtil.getHibernateSession();
CriteriaBuilder cb = session.getCriteriaBuilder();
CriteriaQuery<Employee> cr = cb.createQuery(Employee.class);
Root<Item> r = cr.from(Employee.class);
cr.multiselect(r.get("id"), r.get("name"), r.get("salary"))
.where(cb.gt(r.get("salary"), 2500));

Query<Employee> query = session.createQuery(cr);
List<Employee> results = query.getResultList();

The query is described using high-level expressions, therefore it is abstracted
from a particular database language, such as SQL, and its syntax is verified using
the type system of the language. However, this solution is still verbose; it requires
a different library for every link between a language and a database; and its
expressiveness is heavily restricted to the API. Additionally, this solution requires
the programmer to replicate the schemas of database tables in the application
using classes.

1.4.3 LINQ

A breakthrough in the domain came with the Microsoft LINQ [Mic| framework, a
component of the .NET framework which adds native data querying capabilities
to .NET languages. LINQ defines queries as a first-class concept within the lan-
guage semantics, thus allowing .NET programmers to define queries for databases
in the syntax of their language. Example 1.3 is the equivalent of Example 1.1
written in LINQ in the language C#.

Example 1.3.

var results =

from e in db.Employee

where e.salary > 2500

select new { id = e.id, name = e.name, salary = e.salary };
foreach (var e in results) {

Console.WriteLine(e.id + " " + e.name + " " + e.salary);

}

Although LINQ adds new syntactic constructs for queries, such as the key-
words from, where, and select, expressions in queries are native C# expressions.
For instance, the new {...2} expression showcased in Example 1.3 is the native
way in C# to create a new anonymous object. Additionally to the query syntax,
LINQ also provides an object-oriented way to express a query. For instance, the
query of Example 1.3 can also be written:

db.Employee
.Where(e => e.salary > 2500)
.Select(e => new { id = e.id, name = e.name, salary = e.salary })

where x => e denotes the anonymous function with parameter z and body e.

The queries in LINQ are therefore integrated to the programming language
and type-safe. In addition, the use of the .NET framework and of an interme-
diate language makes it possible for any language or database to interface with
LINQ independently. Indeed, as shown by Figure 1.4, instead of creating an
interface between every application language expressing queries, called host lan-
guage, and every database, this approach requires host languages and databases
to only interface with the intermediate language. Thus, language and database
implementors only need to be an expert in their language and the intermediate
language to interface with the framework.

However, not all queries are executed successfully in LINQ, as only the code
that can be translated into the intermediate language of LINQ is accepted. There-
fore, the expressiveness of the queries is limited in this framework. For instance,
queries in LINQ cannot include arbitrary user-defined functions (functions de-
fined using the syntax of the programming language, UDFs for short). For in-
stance, Example 1.4 throws an error at runtime since LINQ attempts to translate
the function dolToEuro to an equivalent in the database, and fails to do so. This
is not limited to user-defined functions: any expression that cannot be translated
is rejected. It is the responsibility of the implementer of the LINQ provider, the
part of the LINQ architecture that translates C# expressions into a specific query
language, to handle as much of the expression language as possible. LINQ offers

N
Y

Oracle

Cassandra

Y

MongoDB

Y

Oracle

Intermediate

Language Cassandra

MongoDB

Figure 1.4 — High-level benefits of an intermediate representation

10

little support in that respect and this translation is considered a major pain point
of writing providers [Ein11].

Example 1.4.

Func<float, float> dolToEuro = x => x * 0.88f;
db.Employee
.Where(e => e.salary > dolToEuro(2500));

There are two workarounds for this problem, but both are unsatisfactory. One
solution is to manually mirror the definition of do1ToEuro on the database side,
as a stored procedure. This solution is particularly attractive now that databases
are working on supporting application languages: Oracle R Enterprise [Orad|,
and PL/R [PL/a| for R; PL/Python [Pos|, Amazon Redshift [Ama|, Hive [Apab],
and SPARK [Apac| for Python; or MongoDB [Mon| and Cassandra’s CQL [Apad]
for JavaScript. However, this results in the duplication of code performing ap-
plication logic on the database side, causing substantial maintenance problems,
especially in queries targeting several databases. Worse, such a function might
not even be writable on the database side, since it may use features not sup-
ported by the database, or require access to values present in the runtime of the
application language that the programmer would then have to send explicitly to
the function at runtime, cluttering its definition with extra parameters.

Another solution is to fetch the data in the application, and then apply the
operations. This solution seems to be preferred by developers, since it is syntac-
tically very light in LINQ:

Func<float, float> dolToEuro = x => x *x 0.88f;
db.Employee

.AsEnumerable()

.Where(e => e.salary > dolToEuro(2500));

This program is successfully executable by LINQ. But this seemingly innocu-
ous addition of the call to AsEnumerable () hides huge performance problems: all
data is transferred into the runtime of the application language by the method
Enumerable.AsEnumerable (), which may result in terrible performances because
of the network delay, and potentially causing out of memory errors. In addition,
data operations are then executed in the application, thus ignoring all optimiza-
tions that the database can perform (e.g. using indexes). The same problem
occurs with cross-database queries, as the solution in LINQ would also be to
perform most of the queries in the application runtime with explicit calls to
AsEnumerable ().

A partial solution to this problem is brought by T-LINQ [CLW13|, which gives
theoretical foundations to language-integrated queries based on quotations and a

11

normalization of queries. This solution allows the use of user-defined functions in
queries as long as it is possible to translate them and inline them in the queries.
However, T-LINQ is restricted by design to the data model of SQL, as well as to
a few data operations. Implementations of LINQ for languages such as C# make
a best effort to normalize queries containing features not handled by T-LINQ.

1.4.4 Apache Calcite

Apache Calcite [BCRHT18] is a query compiler framework that provides data-
agnostic query processing and customizable optimization for queries targeting
different data models and stores. Calcite provides database implementors with
a unifying framework, including support for query languages such as SQL, and
query optimizations. Additionally, Calcite allows queries between heterogeneous
data sources by providing a unifying relational abstraction, and by selecting the
most efficient plans to perform the queries, in particular using data migration to
run the queries entirely in database engines if possible. Calcite takes as input
SQL and JDBC, and is therefore limited in the expressiveness of queries. A
language-integrated query syntax similar to LINQ is being implemented for the
Java programming language, but this work is preliminary and only addresses the
syntactical aspects.

1.4.5 Other interfaces

In the programming language R, RODBC allows programmers to send queries
to databases using SQL in a similar way as JDBC. Dplyr is a library for data
manipulation for R. SparkR gives an interface for Apache Spark. In Python, there
are various libraries such as pyodbc or PySpark to access databases, and NumPy
to manipulate of large collections of data.

All of these interfaces are similar to the other solutions we presented in this
section and share their lot of shortcomings. We talk about more existing solutions
in the related work, Section 8.1.

1.5 A new solution: BOLDR

As we showed in Section 1.4, existing solutions available to data-oriented appli-
cations all have their set of issues. Additionally, applications may need several
of those solutions to access different databases. We need a solution allowing
programmers to write queries in their programming languages, able to use as
many language functionalities as possible, with a unified interface to access all
databases.

In this thesis, we define a new solution called BOLDR (Breaking boundaries
Of Language and Data Representations), a language-integrated query framework

12

Features | BOLDR [T-LINQ | LINQ | Calcite | ORMs | JDBC

Specify queries, dispatch, get results v v v v v v
Language-integrated queries v v v v 4 X
Translate some UDF into queries v v X X X X
Export host language environment v /X0 |/ x) X X X
Different sources of same data model v v /X X v X X
Different data models 4 X v v X v
Multiple data source drivers available v X v v v v
Execute UDF in the database v VXS XE) X X X
Query merge and normalization v v X X X X
Single queries on different data sources 4 X X v X X
Early detection of errors in queries v v v v v X
Theoretical foundations v v X X X X

(1). Only for basic type identifiers (2). Not in the same query (3). Only for inlined UDFs

Figure 1.5 — Features of the different solutions

allowing application developers to write safe, complex, and efficient database-
agnostic queries in their programming language of choice.

1.5.1 Features

Figure 1.5 gives a summarized comparison of the features of existing solutions. In
a modern language-integrated query framework, we want all of the features listed
in the figure. Queries should be: expressed in the language of the application;
able to contain complex application logic; able to target several databases at once;
optimized to be evaluated in the databases as much as possible; and checked for
correctness before evaluation.

Just as LINQ does, BOLDR relies on an intermediate representation called
QIR for Query Intermediate Representation. In addition to the benefits of having
independent interfaces for every host language and database, QIR rewrites the
queries to make them easier to translate into database languages.

BOLDR does not apply query plan optimizations. More generally, BOLDR
optimizes QIR queries to make the most of the databases optimizations using
information unusable by databases, and so does not substitute itself for their
optimization engines. The goal is to generate queries that can be as optimally
handled by databases as possible.

The QIR allows BOLDR to perform type-checking on queries to detect errors
before their evaluation. For instance, consider this query in R using BOLDR:

tableRef ("people", "PostgreSQL")
query.filter(function (x) x$name > 5000, t)

Q ot
Il

13

Note that the name is compared to an integer. This query, that targets a
PostgreSQL database, is syntactically correct, but returns an error during the
evaluation because of this erroneous comparison. By type-checking the QIR ver-
sion of the query, BOLDR can detect the problem even before the translation of
the query into query languages, thus avoiding the process of sending an invalid
query to a database via the network and its lot of performance issues.

Furthermore, BOLDR gives us guarantees on its processing of queries, such as
the termination of the optimization phases, and the guarantee that a well-typed
query can be translated into query languages.

BOLDR defines the interfaces between a host language and the framework, as
well as between a database language and the framework. BOLDR is tied neither
to a particular combination of a database language and a programming language,
nor to querying only one database at a time. For instance, this query:

tl = tableRef ("people", "PostgreSQL")
t2 = tableRef("team", "HBase'")
q = query.join(function (t1, t2) tl.teamid = t2.teamid, t1, t2)

is perfectly valid in BOLDR and performs the join operation of relational al-
gebra on two tables coming from different databases, without the need for an
explicit operation to import data in the runtime of the application. As described
earlier, BOLDR automatically translates the subqueries into the different query
languages of the different targeted databases, send them to the correct databases,
retrieve the results and translate them back into the application language.

The framework also allows arbitrary expressions from the host language to
occur in queries. Therefore, our problematic LINQ Example 1.4:

Func<float, float> dolToEuro = x => x * 0.88f;
db.Employee.Where(e => e.salary > dolToEuro(2500));

is also valid in BOLDR. The framework inlines the function in the query if it is
possible and efficient. Otherwise it is kept as an application language function
to be executed later in the database or in the application runtime itself. Either
way, this query is evaluated successfully. This process is entirely automatized,
programmers do not need to migrate their application code into databases.

1.5.2 Detailed description

The general flow of query evaluation in BOLDR is described in Figure 1.6. Dur-
ing the evaluation (D) of a host program, queries are translated to QIR terms then
sent to the QIR runtime for evaluation (2). These two steps do not need to be
contiguous. Typically, the queries are translated at their creation, but evaluated
only when the program needs to access the results. The QIR runtime then takes

14

over and attempts to type QIR terms. If it succeeds, it normalizes 3) the QIR
terms to defragment them using a strategy that is guaranteed to succeed. This
step is essential to allow our translators into database languages to function op-
timally. If the typing failed, a strategy based on the syntactical structure of QIR
expressions is used for the normalization () which may fail. QIR terms are then
typed again (B to provide information for the translation as to where subterms
should be executed, but also to check for errors before execution and to give us
other interesting formal properties. If it succeeds, BOLDR translates the QIR
terms to new QIR terms that contain database language queries (e.g., in SQL)
using a translation strategy that is guaranteed to succeed as well. Otherwise, once
again, it is a syntactic strategy that is used (6) which might fail. Next, the pieces
of these terms are evaluated where they belong, either in main-memory (7) or in
a database (8). Host language expressions occurring in these terms are evaluated
either by the runtime of the host language that called the QIR evaluation (9), or
in the runtime embedded in a target database . Results are then translated

from the database into QIR @, then from QIR into the host language @

Example 1.5 illustrates the key aspects of BOLDR. Our Example 1.5 is a
standard R program with two exceptions: the function tableRef that returns a
reference to a table from an external source; and the function executeQuery that
evaluates a query. We recall that in R, the ¢ function creates a vector, and the
subset function filters a table using a predicate and optionally keeps only the
specified columns. The first function getRate takes the code of two currencies
and queries a table using subset to get their exchange rate. The second function
atLeast takes a minimum salary and a currency code and retrieves the names of
the employees earning at least the minimal salary. Since the salary is stored in
dollars in the database, the getRate function is used to perform the conversion.

15

Host Language (L)

/

Host Language (L)
program

g @ L evaluation

-
AN

Database
QIR + L Term \/ \
(Embedded L T
L
Translation Type system v
to QIR + typed ’%@ Syntactic

normallzatlon

@ Type system
+ translation

@Translation tolL

typed QIR+L+database
L value A\ o
--------------------- @ smommsee(oooooo--» QIR evaluation <
K / \ QIR value % \
----- » Application code evaluation 2 typed Typed path (safe)

QIR (normalized) +

normalization x

Database query
+ L Term

e syntactic @ Syntactic

translation

v

. Database
evaluation
Translation Database
to QIR value

J

/

® syntactic . Syntactic path (may fail)

Figure 1.6 — Evaluation of a BOLDR host language program

Example 1.5.

1 # Exchange rate between rfrom and rto

> getRate

= function(rfrom, rto) {
table change has three columns: cfrom, cto, rate
change = tableRef('"change", "PostgreSQL")
if (rfrom == rto) 1
else subset(change, cfrom == rfrom && cto == rto, c(rate))

o # Employees earning at least min in the cur currency

VI

17

atLeast

richUSPeople =
richEURPeople =
print (executeQuery(richUSPeople))
print (executeQuery(richEURPeople))

= function(min, cur) {
table employee has two columns:
emp = tableRef ("employee",

atLeast (2500,
atLeast (2500,

nUSDll)

16

name,

"PostgreSQL")
subset (emp, salary >= min * getRate("USD",

IIEURII)

salary

cur), c(name))

In BOLDR, subset is overloaded to build an intermediate query representa-
tion if applied on an external source reference. The evaluation of the first call
to the function atLeast (atLeast(2500, "USD") found in Line 16) results in
the creation of a query obtained by translation of the R expression into QIR.
When executeQuery is called on the query, then (i) the runtime values linked
to the free variables in the query are translated into QIR, then bound to these
variables in the query, thus creating a closed QIR query; (ii) the query is normal-
ized, process which in particular inlines bound variables with their values; (i)
the normalized query is translated into the target database language (here SQL);
and (iv) the resulting query is evaluated in the database and the results are sent
back. After normalization and translation, the query generated for the execution
of richUSPeople is:

SELECT name FROM employee WHERE sal >= 2500 * 1

which is optimal, in the sense that a single SQL query is generated. The code
generated for richEURPeople is also optimal thanks to the interplay between lazy
building of the query and normalization:

SELECT name FROM employee WHERE sal >= 2500 *
(SELECT rate FROM change WHERE rfrom = "USD" AND rto = "EUR")

In this case, BOLDR merges subqueries together to create fewer and larger
queries, thus benefiting from database optimizations as much as possible and
avoiding the “query avalanche” phenomenon |GRS10].

User-defined functions that cannot be completely translated are also sup-
ported in BOLDR. For instance, consider Example 1.6.

Example 1.6.

getRate = function(rfrom, rto) {
print (rto)
change = tableRef('"change", "PostgreSQL")
if (rfrom == rto) 1
else subset(change, cfrom == rfrom && cto == rto, c(rate))

by

This version of the function getRate calls the print function which cannot
be translated into QIR, so instead BOLDR generates the following query:

SELECT name FROM employee
WHERE sal >= 2500 * R.eval("@...", array("USD", "EUR"))

17

where the string "@..." is a reference to a closure for getRate.

Mixing different data sources is supported, although less efficiently. For in-
stance, we could refer to an HBase [Apaa] table in the function getRate. BOLDR
would still be able to evaluate the query by sending a subquery to both the HBase
and PostgreSQL databases, and by executing in main memory what could not
be translated.

1.5.3 Implementation

Our implementation of BOLDR uses Truffle [WWW*13, Wim14], a framework
developed by Oracle Labs to implement programming languages. Truffle al-
lows language developers to implement abstract syntax tree (AST) interpreters
with speculative runtime specialization. Language implementors typically write a
parser for the target language that produces an AST composed of Truffle nodes.
These nodes implement the basic operations of the AST interpreter (control-flow,
typed operation on primitive types, object model operations such as method dis-
patch, ...), and use the Truffle API to implement runtime specialization and
inform the JIT compiler of various key optimization aspects, such as runtime
profiles on values, types, branches, or to implement runtime rewriting of the
AST on de-optimization path when a speculative optimization failed.

Several features make Truffle appealing to BOLDR. First, Truffle implemen-
tations of languages must compile to an executable abstract syntax tree that
BOLDR can directly manipulate, which, in particular, gives a simple way to
translate queries into QIR. Second, languages implemented with Truffle can be
executed on any Java Virtual Machine (JVM), although greater performance
can be achieved when the JVM uses the Graal JIT-compiler [DWM14|, which
makes their addition as an external language effortless in databases written in
Java (e.g., Cassandra, HBase, ...), and relatively simple in others such as Post-
greSQL. Thus, it gives us the ability to execute any expression from any host
language implemented by Truffle in databases. Third, several programming lan-
guages are already implemented, with varying degrees of maturity, on top of the
framework, such as Zippy for Python [Orae|; JRuby for Ruby [Orac|; FastR for
R [Oraal; or Graal.js for JavaScript [Orabl, and work on one Truffle language can
easily be reused in these implementations.

Our implementation supports the PostgreSQL, HBase and Hive databases,
as well as FastR, the Truffle implementation of the R language, and Oracle’s
SimpleLanguage, a core experimental dynamic language with syntax and features
inspired by JavaScript (dynamically typed, prototype-based with high-order func-
tions and a type system with just three primitive types: number, string and
boolean). SimpleLanguage is developed by Oracle Labs to demonstrate the ca-
pabilities of Truffle. A detailed description of our implementation can be found
in Chapter 7.

18

1.6 Contributions

This thesis studies the design of a framework for language-integrated queries
with the formal definition and implementation of BOLDR and its different com-
ponents. Chapter 2 gives some notations and definitions used throughout the
document, and Chapter 8 concludes by discussing possible extensions and im-
provements. The chapters of this thesis each correspond to parts of the framework
illustrated in Figure 1.6 and are described in the following subsections.

1.6.1 Query Intermediate Representation
Chapter 3, pages 27-53

The central point of BOLDR is its intermediate representation of queries called
QIR. As stated earlier, a query is first translated into this representation before
being translated to a database query. In this chapter, we define the language
and its semantics (7)9), including the semantics of data operators implemented
in databases; a default database implementing important data operators to sup-
port queries that cannot be entirely translated into database languages; and the
optimization applied on the queries before translation called the QIR normaliza-
tion (4) which transforms a query to make it easier to translate into a database
language. Indeed, our user-defined function application example:

Func<float, float> dolToEuro = x => x *x 0.88f;
db.Employee.Where(e => e.salary > dolToEuro(2500));

is not an expression that can be translated as is into most databases languages
because these languages usually do not easily allow the definition and application
of user-defined functions. In particular, standard SQL does not support this fea-
ture (although it is possible to define routines which bodies are strictly limited to
queries). Some databases support extensions of SQL (Oracle’s PL/SQL [PL/b],
Microsoft’s T-SQL [T-S], ...) that allows the definition and application of user-
defined functions, but this feature is not very optimized. Therefore, translating
this query directly would either result in an error forcing the QIR runtime to
handle most of its execution, or an inefficient query. For these reasons, we want
to apply dolToEuro in the QIR before translation to generate an efficient query.
Additionally, we define drivers which role is to interface QIR to a host language
or to a database by providing translation functions from and into their language
to QIR. To summarize, the contributions of this chapter are:

e A syntax and semantics for the QIR
e A reduction relation for the core calculus of QIR

19

e A reduction relation for the complete QIR making use of interfaces to host
languages and databases

e A default database including default implementations of some data opera-
tors

o A best-effort normalization procedure that is guaranteed to terminate but
with no formal properties

1.6.2 QIR type system
Chapter 4, pages 55-79

The evaluation of queries involves exchanging information with databases. This
process can be very costly, depending on the amount of data involved, because of
processing time and network delays. Thus, avoiding to send queries to databases
when it is not needed, in particular when the queries are erroneous, is a major
performance gain. Type systems are an efficient and classic way to detect in ad-
vance errors in programs. However, since BOLDR mostly targets dynamic host
languages, expressions translated into QIR are untyped. Therefore, it makes
sense to define a strong type system for the QIR to detect as many errors as
possible before evaluation instead of relying entirely on the error detection of
databases. Additionally, BOLDR supports queries targeting different databases,
and different semantics for data operators depending on the database that eval-
uates them. Supporting these features requires being able to establish in which
database each subexpression of a query should be evaluated.

In this chapter we define a compositional type system for QIR @Y%) that
we call the generic type system. Our generic type system is extendable with
type systems provided by databases. These type systems, that we call specific
type systems, allow database implementors to describe what expressions they
support. Because of the unknown number of databases interfaced with BOLDR,
and because queries might target several of those databases at the same time, this
pattern of a generic process making specific components provided by databases
work together is common in this thesis. To showcase how a database can provide
a specific type system, we also define a type system for SQL in this chapter, as
well as a type system for our default database, and we prove safety of execution
properties obtained using our type systems.

1.6.3 QIR type inference
Chapter 5, pages 81-107

Type systems from Chapter 4 are designed for formal developments and presen-
tation. However, these types systems are not algorithmic, and thus not directly
suited for implementation.

20

In this chapter, we create typing algorithms (3)X%) using constraint solving of
types, and prove that our typing algorithms are equivalent to the type systems of
Chapter 4. We also define a constraint resolution algorithm, and prove it solves
the constraints generated by our typing algorithms.

1.6.4 Type-oriented evaluation
Chapter 6, pages 109-128

In this chapter, we make use of our type systems to define the translation of
a QIR expressions into database languages. Just as for the design of our type
system, our translation from QIR to database languages is composed of specific
translations provided by databases, and a generic translation that makes use of
those specific translations. Our translation also makes use of our type system to
translate as much of queries as possible into database languages, and leaves the
rest to be evaluated by our default database. We define a syntactic translation (6)
that triggers if the type system fails. Additionally, we define a translation for SQL
and show that if our type system could type a QIR expression using our type
system for SQL then it is translatable into SQL using our translation. Finally,
we define a typed-oriented normalization (3.

1.6.5 Implementation and experiments
Chapter 7, pages 129-151

In this chapter, we interface the programming language R to BOLDR by defining
a translation from R to QIR (2). We also describe our prototype implementation
of BOLDR and present our results which show that BOLDR is able to inline
most queries with user-defined functions, thus obtaining results at least as good
as manually defined queries, and evaluates cross-databases queries and queries
containing untranslatable expressions with decent performances.

Publications

The syntax and semantics of QIR described in Chapter 3, as well as parts of
Chapter 4, 6, and 7 are presented in [BCDT18|.

21

22

Chapter 2

Definitions

This chapter gives notations and definitions used in the rest of the thesis.

2.1 Basic notations

Definition 2.1 (Notations).
e = : syntactical equivalence. We denote its negation by #.

e = : equality. Both terms are equal modulo some theory that is clear
from the context. We denote its negation by #.

e () : the empty set.

e C : the subset inclusion.

e U, N, \ : respectively the union, intersection and difference of sets.
e dom(f) : the domain of a function f.

e img(f) : the image of a function f.

i..j : the set of integers {7, +1,...,7}

e : placeholder meaning any possible valid construct

In this thesis, we often substitute variables in a term with other terms. Our
next definitions cover this operation.

Definition 2.2 (Substitution). Let V be a set of variables and T a set of
terms. A substitution is a partial function from V to T'. We use the notation
{z1 — t1,..., 2, — t,} when the domain is finite.

23

We use the notation {x — '}t to denote the term ¢ into which every occur-
rence of the variable x has been replaced by the term ¢'.

Definition 2.3 (Type substitution). A type substitution is a substitution
from type variables to types {ay — Ti,...,a, — T,}. We use o to range
over type substitutions.

Definition 2.4 (Composition of two type substitutions). The composition of
two type substitutions o1 and o9 noted o1 o0 0y is defined as:

o100 — a— o1l for each a— T € 09y
1"727) a— T foreach a— T € oy with o & dom (o)

The composition of two type substitutions behaves, as expected, just like the
composition of two functions: we first apply the second type substitution, then
the first one.

Definition 2.5 (Typing environment). A typing environment is a substitu-
tion from variables to types. We use I' to range over type environments.

Definition 2.6 (Evaluation environment). An evaluation environment is a
substitution from variables to values. We use v to range over evaluation
environments.

2.2 Languages

To talk about interfaces between host languages and database languages with
QIR, we first give a definition of these languages by listing what we expect them
to define.

Definition 2.7 (Host language). A host language H is a 4-tuple
(EH7 IH, VH, i) where:

e E4 is a set of syntactic expressions

e |y is a set of variables (I for identifiers), I, C Ey

e Vy is a set of values

o b ohXVu By s 2V w Vy, is the evaluation function

24

We abstract a host language H by reducing it to its bare components: a
syntax given by a set of expressions Ey;, a set of variables |y, and a set of values
V4. Lastly we assume that the semantics of H is given by a partial evaluation
function 2%. This function takes an evaluation environment from variables to
values and an expression and returns a new environment and a value resulting
from the evaluation of the input expression.

Definition 2.8 (Database language). A database language D with support
for a host language H is a 3-tuple (Ep, Vp, 3) where:

e Ep is a set of syntactic expressions
e Vp is a set of values

o 22XV 5 Epy — 2mXVr x Vi is the evaluation function

Similarly to host languages, we abstract a database language D as a syntax Ep,
a set of values Vp, and an evaluation function 2 which takes an H environment
and a database expression and returns a new H environment and a database
value. Such an evaluation function allows us to abstract the behavior of modern
databases that support queries containing foreign function calls.

Note: We call an £ environment an environment from I, to V.

2.3 Inference systems

Inference systems are a common way to describe recursive functions such as type
systems or evaluation functions. Inference systems are composed of inference
rules, themselves composed of zero or more premisses and a conclusion. An
inference rule states that if its premisses are true, then so is the conclusion. A
proof of a final conclusion is then created by chaining application of inference rules
together until only axioms were reached, or until all premisses are true under
hypotheses. Various works use these inference systems to build proofs [Pie02,
Rey99|. The definitions of this section are taken from [LGO09| which follows the
presentation in [Acz77|.

Chapter 4 and Chapter 5 define modular type systems that can be extended
with other type systems provided by databases. In order to prove properties on
these systems, we manipulate inference systems as syntactic objects. Therefore,
we next define inference systems as syntactic objects.

25

Definition 2.9 (Inference rule). Let U be a set of judgments. An inference
rule is an ordered pair (A, c¢) where ¢ is the conclusion of the inference rule
and A C U is the set of its premises or antecedents. If A is empty, the
inference rule is called an aziom. An inference rule is usually noted:

A

C

Intuitively, the conclusion c is true if the premises A are true.

Definition 2.10 (Inference system). An inference system ranged over by @
is a set of inference rules.

Definition 2.11 (Derivation). A derivation (or proof tree) of a judgment c
within an inference system is a tree of root node ¢ whose nodes are labeled
with judgments 7, € U and such that for every node n, its label j,, and the
labels A of its children correspond to an inference rule (A, c). A derivation
is usually noted as a combination of inference rules:

g h
d /
e

b

26

Chapter 3

Query Intermediate Representation

As explained in Chapter 1, the Query Intermediate Representation (QIR) is a rep-
resentation of queries that BOLDR uses as an intermediate between queries writ-
ten in application languages and their translations into database languages. Using
an intermediate representation of queries simplifies interfacing with BOLDR sig-
nificantly, since the many different programming languages and databases simply
need to interface with QIR, instead of creating numerous one-to-one interfaces.
This also allows the framework to apply generic optimizations and verifications
on the queries before translation. This chapter formally defines the QIR and its
semantics.
We want the QIR to be able to represent:

e Data and data structures from data sources, and operations to retrieve data
from the data structures

e Data operations such as the operations of relational algebra
e Basic programming language features such as functions
e Host language expressions

Data operations cannot all be supported by the QIR. An important number
of different operators are implemented efficiently by data sources as a result of
decades of expertise. Some operators may be very similar but present variations
in their semantics in the different implementations given by databases. Similar
approaches such as T-LINQ [CLW13| limit themselves to several important op-
erators, and effort must be made to extend them to more operators. Instead,
we design the QIR to allow databases to bring their own operators by interfac-
ing them with the QIR via drivers. Thus, the QIR itself does not define data
operations, and the choice of which operators to support in BOLDR in case the
databases do not is a distinct issue that we also cover in this chapter.

27

3.1 Syntax

In this section, we define the syntax of our Query Intermediate Representation, a
A-calculus with recursive functions, constants, basic operations, data structures,
data operators that represent data operations, and foreign language expressions.

Definition 3.1 (QIR expressions). Given a countable set of variables I,
we define the set of QIR expressions, denoted by E;;; and ranged over by g,
as the set of finite productions of the following grammar:

q = x (variable)
| fun®(z)—q (recursive function)
| qgq (application)
| ¢ (constant)
| op (basic operation)
| ifgthengelseq (conditional expression)
| {l:q,...,1l:q} (record)
| qXq (record Concatenation)
| [(empty list)
| q:q (list constructor)
| qQgq (list concatenation)
| q-l (record destructor)
| qaszuxz?q:q (list destructor)
| o{q,...,q]| ¢, ...,q) (data operator)
| By(v,e) (host language expression)

where H is a host language as described in Definition 2.7.

Notation 3.1. We use the following syntactic shortcuts:
o fun’(z,,...,2,)—¢ stands for fun’(z,)— (... (fun’(z,)—q))

® q(q,.--,qn) stands for (... (¢ q1)...) Gn

[q1,...,qn] stands for ¢y :2 ... siqpn e[]

{lizqi},_, , stands for {l;:q1,...,0,:q, }

e ¢1 = @9 stands for = ¢, g2, and we use the same notation for all infix
operators

QIR expressions include the terms of the A-calculus, with functions option-
ally named. For instance fun(x)—x represents the anonymous identity function,

28

funyetfandomNumber (1) s 4 yepresents a function named getRandomNumber that al-

ways returns 4. Obviously, recursive functions have to be named, for instance
fun’(z)— f x represents a function named f that applies itself on its argument
recursively. QIR functions are unary to simplify proofs, but functions with several
arguments in an application program can classically be translated to functions
returning functions, process known as curryfication. For instance, the anonymous
function function(f,x) f(x) written in R that takes two arguments f and x and
returns the application could be represented in QIR as fun(f)—fun(z)—f x
which represents an anonymous function that takes a function f and returns
a function that takes an argument x and applies f to x. Similarly, most pro-
gramming languages support functions with no arguments. These functions can
easily be represented as functions taking one useless argument. For instance,
function() 2, which is an anonymous R function with no argument and return-
ing 2, could be represented in QIR as fun(z)—2 where x could be any variable
that is free in the body of the function, and the function call (function() 2) ()
could be represented in QIR as (fun(z)—2) 0, where 0 could be any pure value.
In practice, our implementation simply defines functions that can take zero, one,
or several arguments.

QIR also has constants (integers, strings, ...), and builtin operations (arith-
metic operations, ...). The data model consists of unordered records and ordered
lists. For instance, the records {z:1,y:2} and {y:2,z:1} are equivalent, but
the lists [1,2] and [2, 1] are not. Records are deconstructed through field projec-
tions. For instance, {id:1}-id = 1. Lists are deconstructed by the list matching
destructor whose four arguments are: the list to destruct, a pattern that binds
the head and the tail of the list to variables, the term to evaluate (with the bound
variables in scope) when the list is not empty, and the term to return when the
list is empty. For instance, [1,2,3] as h::t ? h : O represents the expression
extracting the head of the list [1,2,3], and fun(l)—[as h::t ? h : 0 represents
the function that returns the head of the list given as argument if it is not empty,
and 0 otherwise.

The important additions to these mundane constructs are data operators and
host language expressions. Data operators o{qi ..., qn | ¢}, -- ., q.,,) represent data
operations to be evaluated by a database. Their arguments are divided in two
groups: the ¢; expressions are called configurations and influence the behavior
of the operator; the ¢, expressions are the sub-collections that are operated on.
For instance, a Filter operator would have the filter function as configuration,
the collection to be filtered as data argument. Finally, a host language expres-
sion Wy (7, e) is an opaque construct that contains an evaluation environment ~y
and an expression e of the host language H. Their behavior is exactly the same
as closures: during the translation from host language terms to QIR terms, a
host language expression is closed together with the current host environment to
be later executed, possibly by a remote runtime. The syntax of QIR is similar
to the one of T-LINQ), but this addition of host language expressions simplifies

29

the translation of host programs to QIR since it can default to translating any
expression of a host program to a host language expression of QIR. Optimally,
the entire query should be translated to a QIR expression so BOLDR can ap-
ply optimizations, but even queries containing host language expressions will be
successfully evaluated, although with consequences on performances as shown in
Section 7.4.

Now we go through a few examples to understand the syntax of QIR for
queries. We use data operators such as Filter in the following examples as simple
symbols with no associated semantics. They simply represent data operations.

Example 3.1.
Filter(fun(z)—2x < 2| [1,2,3])

Example 3.1 is a simple application of a Filter data operator. The con-
figuration of this Filter is an anonymous function that returns true only if its
argument is a number lower than or equal to 2. Its data argument is a QIR list
of integers.

Example 3.2.

Filter{fun(r)—r-id < 2| [{id: 1}, {id:2},{id:3}])

Example 3.2 is another application of a Filter data operator. This time, the
configuration of this Filter is an anonymous function that returns true only if
the record field id of its argument is a number lower than or equal to 2, and its
data argument is a QIR list of records with a field id associated to numbers.

Example 3.3.

Filter(fun(r)—r - salary < 2500 | From(D, "employee" |))

Example 3.3 is similar to Example 3.2, but the data argument of Filter is
an application of a From operator instead of a QIR list. In this example, From is
applied to a database D and a table name "employee".

Notation 3.2. For readability reasons, we will write From(D, n) instead of
From(D,n |) from now on, omitting the vertical bar, since From has two
configurations and no sub-collections.

30

Example 3.4.

Project(fun(r)—{id:r-id,name:r - name, salary :r - salary } |
Filter(fun(r)—r - salary < 2500 | From(D, "employee")))

Example 3.4 shows the equivalent of the query in Example 1.3 written in QIR.
An operator Project has for configuration an anonymous function that returns
a record containing the fields id, name and salary associated to their respected
values in the record given as argument, and its data argument is the query of
Example 3.3.

Example 3.5.
Project(fun(r)—{id:r - id,name:r - name,

salary : (Mg(7, f)) (r - salary) } |
Filter(fun(r)—r - salary < 2500 | From(D, "employee")))

Example 3.5 is the same query as Example 3.4, except that the value associ-
ated with the label salary in the configuration of Project is the application of a
host language expression that contains a function f written in the programming
language R to the value associated with the label salary in the record given as
argument of the configuration.

Example 3.6.

op{fun(r)—r - id, true | From(D, "employee"))

Example 3.6 shows a QIR query using a specific database operator named op
applied to a function and a boolean as configuration, and to a data argument.

Example 3.7.

Filter((fun(z)—(fun(r)—r-salary < x)) (2500) | From(D, "employee"))

Example 3.7 shows a Filter with a configuration that is an application re-
turning a function.

31

Definition 3.2 (Children of a QIR expression). The set of children of a QIR
expression ¢, noted &(q), is defined as:

r) = &(c) = €op) = ([]) = C(My(v,e)) =0
¢(fun’/ (v)—q) = {q}

¢

&(
(

g1 ¢2) = €q1 X q2) = E(q1 22 q2) = €1 Q) = {q1, @2}
(if g1 thengy else g3) = €(q1 as h:t ? g2 2 q3) = {q1, %2, ¢3}
(

¢

{l l}z 1. n):€(0<q17"'7qm | qm+17"‘7q’n>) :{QM-'an}

Definition 3.3 (Pure QIR expression). A QIR expression q is pure if ¢ #
By (v, e) and Vg € €(q).¢ is pure.

Thus, a QIR expression is pure if it does not contain any host language ex-
pression.

Definition 3.4 (Targeted databases). We say that a database D is targeted
by a QIR expression ¢ if there is at least one occurrence of From(D,) in the
subexpressions of ¢q. We note T(q) the set of databases targeted by q.

The notion of targeted database is purely syntactic. A database is targeted
by an expression if it is the configuration of a From in the expression.

3.2 Basic semantics

In this section, we define the semantics of the core calculus of QIR, which is the
QIR without data operators and host language expressions. That is, we define
the semantics that can be defined independently of host languages and databases.

Definition 3.5 (Values of QIR). We define the set of values of QIR, noted
Vair, as the set of finite productions of the following grammar:

vo=fun®(x)—=q | c|lop | {l:v,...;l:0}|[] | v

Definition 3.6 (Basic QIR semantics). Let —°C Eqr X Eqr be a reduction
relation for basic operators. We define the reduction relation of QIR expres-
sions - C Eqpr X Eqr. The set of rules used to derive — are given in
Figure 3.1.

32

(app-redl) (app-red2) (app-B) (app-op)
G — ¢ G2 = 3 il
(fun’ (2)=q1) vy = {f = fun’ (2) =g,z = vo}g opu—q

(if-true)

G Q= q @ VGG

(if-red) .
iftrue then ¢; else g3 — ¢

Q=G
(if-false)

if ¢; then g, else g3 — if ¢] then ¢, else g3

iffalse then ¢, else g3 — ¢3

(rec-red)
Gm = G,
{ll:Ula'-->lm—1:Um—blm:qma"'aln:Qn} — {ll:Ula--->lm—1:Um—hlm:Q;na"'aln:Qn}
(rconcat-red1) (rconcat-red2)
Q= q G2 —

G D q— @ D<Iqge v D] g — v1 X G

(rconcat-rec)

{h2gi Yicy o >}t i > {lit @i bimy

(Iconcat-lempty)

(Icons-redl) (Icons-red2) (lconcat-redl) (Iconcat-red2)

@ = q G — ¢ @ — q g — b [J@v—=w

(Iconcat-rempty)

G13iGe = qrqe ving —vigy, Qg —¢ Qg vyQg —vQq, —
vQ[] —w

(rdestr-red)
q—q
(v1 2 09) Qug — vy 22 (v Qug) g-l—q-l {....l:v,... }:Il—>v

(lconcat-lcons) (rdestr-rec)

Idestr-red
(ldestr-red) , (Idestr-empty)
@ —q

qrashut?q:qs—q ashut?q:q
(1destr-nonempty)

[Jas hut?q:q3— g3

viizv) as hut? gt g3 — g (v1,v])

(dataop-conf)

!
qr — g
!
(UL, o U1y Gl « o s G | Gty -+ o5 Q) —> O(UL, oo U1y Qs+ -+ s G | Qimt1s -+ 5 Q)
(dataop-data)
!
qr — g
/
O{UL, oy U | Uity o e oy Vb1, Qs - -+ 5 Gn) = UL, ooy U | Uity ey Vb1, Qs « -+ 5 Q)

Figure 3.1 — QIR reduction rules

33

The result of record concatenation is a record containing all the labels of both
records. Note that QIR only supports record concatenation between records
which labels are strictly distinct.

Note also that the basic semantics of QIR is small-step semantics.

As an example, the expression (fun(z)—if x then 1 else 2) (not false) would
be reduced as:

(fun(z)—ifxr then 1 else 2) (not false)
— (fun(z)—ifzthenlelse2) true
— iftruethenlelse?2
— 1

Crucially, embedded host expressions as well as database operator applications
whose arguments are all reduced are — -irreducible. It is the job of databases
and application languages to evaluate these expressions.

Thus, our examples of Section 3.1 are all irreducible since they are made of
data operators and functions except for Example 3.7 which would be reduced as
such:

Filter((fun(z)—(fun(r)—r-id < z)) (2500) | From(D, "employee"))
— Filter(fun(r)—r - id < 2500 | From(D, "employee"))

using the (dataop-conf) rule with the (app-f) rule as premise. Therefore, the
basic semantics does not reduce the data operators themselves, but it does re-
duce the arguments of data operators, thus allowing complex expressions in the
arguments of data operators such as applications or conditional expressions.

We defined the semantics of the core calculus of QIR. Now, we define its
complete semantics including data operators and host language expressions.

3.3 Extended semantics

In Section 3.2, we gave the semantics of QIR, but omitting the semantics of data
operators and host language expressions. In this section, we complete those se-
mantics, and to do so we first define how to interface host languages and databases
with QIR.

The external component that wants to interface with BOLDR has to be able
to perform translations from QIR into their language, and from their language
into QIR. To be precise, host languages must translate

e their values to QIR values

e their expressions along with their associated runtime environment to closed
QIR expressions

e QIR values to their values

34

and databases must translate
e QIR values to values of their query language
e QIR expressions to expressions of their query language
e values of their query language to QIR values

Since we target dynamic host languages, expressions from host languages to
be translated are associated with a runtime environment. For instance, take the
R query of the example in Chapter 1:

13 subset(emp, salary >= minSalary * getRate("USD", cur), c(name))

This query does not make sense outside the proper environment since the
variables emp, minSalary, getRate, and cur are all free in this expression. It can
only have a meaning within an environment that associates these free variables
to values. If the original program is correct, as it is in our example, then the
runtime environment would indeed include those free variables in its domain
when the translation of the query is triggered. The host language must then
translate the expression using the runtime environment to a closed QIR term.
For instance, the result of the call:

16 richUSPeople = atLeast (2500, "USD")

could be translated to:

(fun(emp, minSalary, get Rate, cur)—
Project(fun(xz)—{name:x - name} |
Filter(fun(z)—x - salary > minSalary = (get Rate "USD" cur) |

emp)))
(From(PostgreSQL, "employee"), 2500, fun (r from,rto)— ..., "USD")

The translation of our query is wrapped in functions binding the free variables,
then applied to the translation of the values associated to these variables, thus
creating a closed QIR expression. As we can see in this example, this process
creates convoluted queries that can be difficult to translate as is, we will see
later in this chapter how BOLDR simplifies these queries to make them easier to
translate into database languages.

We now introduce the notion of driver, which defines a translation interface
between a host language or a database and QIR.

35

Definition 3.7 (Host language driver). Let H be a host language. A host
language driver for H is a 3-tuple (HEﬁD, mH,H vﬁ) of total functions such
that:

o MEXP : 2"*VH x Ey — Eqm U {Q} takes an H environment and an H
expression and translates the expression into QIR

° mH : Var — Vg U {Q} translates a QIR value into H
o MVAL : Vi — Vair U {Q} translates a H value into QIR

where the special value €) denotes a failure to translate.

Definition 3.8. (Database driver) Let D be a database language. A database
driver for D is a 3-tuple (EXBD, vﬁD,D Vﬂ) of total functions such that:

° XI?’D : Eqr — Ep U {Q} translates a QIR expression into D
o VALD - Var — Vp U {Q} translates a QIR value into D

o DVAL : Vp — Vqr U {Q} translates a D value into QIR

where the special value €2 denotes a failure to translate.

A host language or database is required to define a driver to interface with
QIR. From this point, we refer to H and D respectively as the set of host lan-
guages and databases that are interfaced with QIR, so for which there exists a
corresponding host language driver or database driver.

We are now equipped to define the semantics of QIR terms, extended to host
expressions and database operators.

36

Definition 3.9 (Extended QIR semantics). We define the extended seman-
tics v, q¢ — 7/, ¢ of QIR by the following set of rules:

(ext-eval) (ext-host)
v, e, v YUY, eBy",v
v,evalP(e) — v ,Dﬁ v, By (Y, e) -+, Hﬁ
(ext-database) (ext-basic)
EXBD(q) =e v,evalP(e) »+,v DebD q—dq
etQ ——————
Y, 9 >, vE Q4 >4

where (ext-database) is always prioritized over (ext-basic).

Since QIR is an intermediate language from a host language to a database
language, the evaluation of QIR terms is always initiated from the host language
runtime. It is therefore natural for the extended semantics to evaluate a QIR
term in a given host language environment. To allow the QIR evaluator to send
queries to a database and translate the results back to QIR values, we define a
basic data operator eval®? for each supported database language D € . This
operator represents the evaluation of an expression from a database language
into the corresponding database, and abstracts the low-level processing required
to access that database. BOLDR makes use of eval® internally as we will see in
Chapter 6, but it can also be used to express queries directly written in a database
language, either for debugging or optimization purposes. The evaluation of an
expression by rule (ext-database) consists in (i) finding a database language in
which this expression can be translated, (i) use the database driver for that
language to translate the QIR term to a native query, (i) use the evaluation
function of the database to evaluate the expression, and (v) translate the results
back into QIR. Note that the evaluation of an expression in a database could
return a different host language environment, since host language expressions
might appear in its subexpressions. For instance, recall our Example 3.5:

Project(fun(r)—{id:r - id,name:r - name, salary : (Bg(~, f)) (r - salary) } |
Filter(fun(r)—r - id < 2500 | From(D, "employee")))

If the database accepts host language expressions, then Bg(7, f) is evaluated
in the database runtime and returns a new host language environment ~' that
may be different from ~ if side effects occur. The rule (ext-eval) bypasses the
research of the correct database by evaluating directly the database expression e
in evalP(e). We use this construct and this rule in Chapter 6. Host language
expressions are evaluated by rule (ext-host) using the evaluation relation of the
host language in the environment formed by the union of the current running

37

environment and the captured environment. This allows us to simulate the be-
havior of most dynamic languages (in particular R, Python, and JavaScript) that
allow a function to reference an undefined global variable as long as it is defined
when the function is called. Finally, if the QIR term is neither a database oper-
ator nor a host language expression, then the simple semantics of Definition 3.6
is used to evaluate the term with the rule (ext-basic).

With this extended semantics, we can now fully evaluate our Example 3.3:

Filter(fun(r)—r - id < 2500 | From(D, "employee"))

Supposing the database D supports Filter and From, we are able to directly
apply the data operator rule of — .

As stated in Definition 3.9, the rules (ext-database) and (ext-host) are always
prioritized over rule (ext-basic). For instance, recall Example 3.7:

Filter((fun(z)—(fun(r)—r-id < z)) (2500) | From(D, "employee"))

Two rules can be applied here: we can attempt to use (ext-database) to
directly translate the entire expression into a database language and execute it in
the corresponding database, or we can use (ext-basic) to reduce the configuration
of Filter. The goal being to execute as much as possible in databases, we
attempt (ext-database) first, then if it fails we do one step of reduction using
(ext-basic), then attempt (ext-database) again. This semantics is the most naive
way to try to execute as much as possible in databases. For instance, in our
Example 3.7, if we assume we cannot translate the Filter because we cannot
translate the configuration, the rule (ext-database) would fail, and we would
apply (ext-basic) to get

Filter(fun(r)—r - id < 2500 | From(D, "employee"))

and then apply (ext-database) again, this time successfully. We can also reach a
point where both (ext-basic) and (ext-database) could be applied. For instance,
consider the following query:

Filter(fun(r)—r - salary > (iftrue then 2500 else 2000) |
From(D, "employee"))

which returns the employees whose salary is greater than 2500. We could either
use (ext-database) to translate the entire query to D, assuming the database sup-
ports everything in this query, or (ext-basic) to reduce the conditional expression.
Choosing (ext-database) is the correct choice here, since this entire query can be
translated to a single D query, it would therefore be suboptimal to evaluate the
conditional expression of the configuration of Filter in the runtime of QIR.

38

Giving priority to the rule (ext-host) is a best-effort addition which allows us
to avoid problems in semantics by evaluating host language expressions as soon
as possible. For instance:

(fun(x)—z+x) (Bg(y, print(2);2))
would be reduced using rule (app-f3) to:
(Mg (v, print(2);2))+ (Mg (v, print(2); 2))

in which the host language expression has been duplicated which we absolutely
do not want, since we changed the semantics by executing the side effects (here
printing a value) twice. But if we execute the host language expression first, then
we get the desired results of printing 2 once, then return 4.

3.4 A default database language: MEM

Ideally, we will translate all QIR expressions to expressions of database lan-
guages. However, parts of QIR expressions might be impossible and /or inefficient
to translate and evaluate in databases. This can happen for different reasons. For
instance, consider the query of Example 3.8.

Example 3.8.

Join(fun(z,y)—z <y, fun(z, y)—true |
From(HBase, "employee"), From(HBase, "team"))

This query uses the Join operation of relational algebra described in Sec-
tion 1.2, and applies it on two tables provided by an HBase database. Since
HBase does not support Join, this query is not translatable to a HBase query.
Only the two From subexpressions are translatable. Even a query referring only
to data operators supported by its targeted database may contain subexpressions
impossible to translate, as we can see in Example 3.9.

Example 3.9.

Project(fun(r)—r < {treated: true} | From(HBase, "employee"))

Although HBase supports Project, it can only apply it to simple predicates,
so the Project of Example 3.9 is not translatable into the query language of
HBase.

Another reason that would make an expression untranslatable is if several
databases are targeted. For instance, consider the query of Example 3.10.

39

Example 3.10.

Join(fun(z,y)—z <y, fun(z, y)—true |
From(D, "employee"), From(D’, "team"))

This query uses Join on two tables provided by two different databases D and
D’. Neither D nor D’ is able to translate this expression since they are unable to
access the data stored in the other database.

The solution to this problem is to have a default implementation of data op-
erators. To that end, we define a default database that supports some important
data operators. This database is dubbed MEM for in-memory evaluation. MEM
directly uses QIR as its database language. MEM supports the operators Filter,
Project, and Join defined as plain QIR recursive functions. This constitutes a
first attempt at defining a core set of operators that are always supported by
BOLDR, whether or not there are drivers interfaced with the framework that
support these operators.

The definition of the set of supported database operators is an important de-
sign choice. It should be broad enough so host languages users do not have to
re-implement operators, and generic enough so they can write generic queries and
so that translating queries from QIR into a database language stays manageable.
Thus, the choice to support an operator or not can be difficult to make, as an
operator may be specific to a particular data model (e.g., computing the transi-
tive closure in a graph database); or generic enough but not natively supported
by some back-ends (NoSQL databases usually do not support join operations).
Project, Filter, and Join are very common operations that we use as a starting
point in our formal developments.

Definition 3.10 (MEM database language). The MEM language MEM =
(EMEM7 VMEM; @) is defined by:

e Evem = Eqr

e Vvem = VaRr

o "ig the extended semantics of the QIR (relation — in Definition 3.9)

The values of MEM do not include data operators, since they must be evalu-
ated or return an error if unsupported, nor does it include host language expres-
sions that must be evaluated using the evaluation function of the corresponding
host language. We now complete the semantics of the MEM database language
with the definition of a driver for MEM.

40

Definition 3.11 (MEM driver). The driver for the MEM database language
is the 3-tuple (EXBMEM, vﬂMEM,MEM Vﬂ) of total functions such that:

o VALMEM . Vair — Vmem U {Q} is the identity function.
o MEM{AY . Vp — Var U {0} is the identity function.
° wMEM(q) : EQr — Emewm is defined by case as

— If g =Filter(f |), then

(fun"™"(1)—1 as h::t ?if f hthen h:: (filter t) else (filter t) : [])
— Else if ¢ = Project(f | [), then
(funP®®Y (1)1 as h::t ? (f h):: (projectt) : []) 1
— Else if ¢ = Join(fi, fo | l1,12), then

(fun®"(I)—Project(f, |l as hy::ty ?
(Project(fun(hg)—>h1 > ho | Filter(f2 hy | l2>>) @ (jOin t1> 3

[1)) (1)

— Else if g =o{q1,-- -, qm | Gma1,---,qn), then Q
— Else ¢

The definition of the operators supported by MEM is a generalization of the
relational algebra semantics described in Section 1.2. Filter(f | [) is imple-
mented as a recursive function that iterates through an input list [and keeps
elements for which the input predicate f returns true. Project(f |) (also
known as map to functional programmers) applies the function f to every ele-
ment of [and returns the list of the outputs of f. Lastly the Join{f1, fo | l1,12)
operator is defined as a double iteration which tests for each record element h;
of [; and each record element hy of [, if the pair hy, ho satisfies the join condition
given by the function f5, then the two records are concatenated and added to
the result. Finally, the function f; is applied to every element to obtain the final
result. For simplicity, we express Join in terms of Project and Filter, but we
could have given a direct definition.

41

3.5 QIR normalization

3.5.1 Motivation

Translation from QIR into database languages might lead to suboptimal query
generation. In particular, if some parts of a query cannot be translated, their
results have to be transferred into the QIR runtime, and processed there.

The usual answer to this problem is to normalize the query, by applying
rewriting rules on the intermediate representation. For instance, consider the
term from Example 3.11.

Example 3.11.

(fun(a,b)—Join{fun(z,y)—z Xy, fun(z,y)—z - id =y - id | a,b))
(From(PostgreSQL, "people"), From(PostgreSQL, "dept"))

Using directly a translation into SQL that does not handle anonymous func-
tions, we would obtain the term:

(fun(a,b)—Join(fun(z,y)—z <y, fun(z,y) =z -id=y-id| a,b))
(evalPostoreSAL(SELECT * FROM PEOPLE), evalPosi9®SQOL(SELECT * FROM DEPT))

which is suboptimal. Indeed, although they target the same database, the two
From subqueries are evaluated separately and worse, the Join is performed in
main memory. Therefore, not only do we attempt to transfer the entire data
from the tables PEOPLE and DEPT in the application, we use a less efficient version
of Join to perform the query even though PostgreSQL could evaluate the entire
query efficiently by itself. However, if we apply the S-reduction before translating,
the query becomes:

Join(fun(z,y)—z <y, fun(z,y)—z - id=y - id |
From(PostgreSQL, "people"), From(PostgreSQL, "dept"))

which can then be translated to a single SQL query:
SELECT * FROM PEOPLE AS x INNER JOIN DEPT AS y ON x.id = y.id

A naive solution implemented by the semantics of Definition 3.9 is to alternate
between translating the expression and applying one step of reduction to the term.
Obviously, this solution is not ideal as it makes several attempts at translating.
Another naive solution is to attempt to reduce the term as much as possible, which
leads to two problems. First, a QIR term may diverge, as we cannot guarantee
the termination of the reduction, in particular if the expression contains the
application of a recursive function. Second, a reduction may duplicate some data

42

operators, thus making the query less efficient. For instance, consider the QIR
function:

fun(a)—Join(fun(z,y)—z Xy, fun(z,y)—x - age < y - age | a, a)

Given a collection a, the function performs a self join on a (finding pairs
of elements of a such that the second one is older than the first). Applying
the beta-reduction gives us two different outcome depending on the targeted
database. If we apply this function to a table from a database that supports the
Join operator, such as From(PostgreSQL, "people"), then reducing is beneficial,
since it produces a whole Join query that can be sent to the database:

SELECT * FROM PEOPLE AS x INNER JOIN PEOPLE AS y ON x.age < y.age

instead of:

(fun(a)—Join(fun(z,y)—x Xy, fun(z,y)—x - age < y - age | a, a))
(evalPostoreSAL(SETECT % FROM PEQOPLE))

However, if we apply this function to a table from a database that does not
support the Join operator, such as From(HBase, "people"), then it is better
not to apply the beta-reduction that would duplicate the argument, which would
send two queries to HBase, since the join has to be evaluated in-memory anyway:

(fun(a)—Join(fun(z,y)—x >y, fun(z,y)—z - age < y - age | a,a))
(eval"B3e(scan ’people’))

instead of:

Join(fun(z,y)—x <y, fun(z,y)—x - age < y - age |
evallBae(scan ’people’), eval™®(scan ’people’))

Therefore, we have to find a middle ground between trying to fully reduce
the term and yield the most translatable term but risk diverging, and translating
the term without any preliminary reduction at the risk of introducing query
avalanches.

3.5.2 Reduction relation for the normalization

As stated earlier, we want to use the reduction relation — of Definition 3.6 as
the reduction relation for the normalization. We cannot use the relation — since
we do not want to reduce data operators or host language expressions that must
be evaluated by the databases.

However, as explained in Section 3.3, using — directly would cause us prob-
lems in QIR expressions that contain applications to host language expressions,

43

as it could lead to a duplication of side effects. Therefore, we restrict the -
reductions our normalization can perform to applications that does not contain
host language expressions in their argument, thus avoiding the problematic cases.

Additionally, we want to add a rule to reduce the body of functions, which
allows for more queries to be translatable into database languages. For instance,
consider this QIR expression:

Filter(fun(r)—(fun(z)—r - salary > x) (2500) | From(D, "employee"))

Again, this is not translatable in most databases languages because of the
application of an anonymous function. We cannot reduce this expression using
— . Reducing the body of QIR functions allows us to reduce this expression to:

Filter(fun(r)—r - salary > 2500 | From(D, "employee"))
Therefore, we define a new reduction relation for the normalization, and its

normal forms.

Definition 3.12 (QIR normal form). A QIR expression ¢ is a normal form
of the QIR, ranged over by v, is denoted by the judgment Fy ¢ which is
inferred by the rules:

I_NF (% |_NF U1 l_NF ()

v1 # funf (z) v
v1 Z op

e 7 b funf (z)—=v Far o1 vo

Fyr 1 Far V2

v2 not pure

Fee (fun? (2)—v1) v, Fue ¢ e op Fye Byy(y, €)

Fur U1

v1 # true

v1 # false }_NF { lz L }i:l..n

l_m:' ifUl then Vo else Vs

Fwp 01 Far U2 ., .,
I 'Uli{lizvi }i=1_,n or vg‘f{li:vi }i=1..n l_NF []

Fur v1 Fur 2

Fur U1 DX} U9 Fur 01 22 0y
l_NF U1 l_NF (%) / / l_NF v
———— I LIS T
Far v1 Qg Fyr v
l_NF (1 , , '_NF (1 Ce }_NF Un,
? vl?_é[v17"'7vn]
Furvp @s hast 2 vy 5 03 Fup 0{U1, - o, U | Uty e o Un)

For instance, 2, fun(z)—2, ifr then 1 else 2, x - name, and
Filter(fun(z)—x-teamid = 2 | From(D, "employee")) are in normal form, but

fun(z)—iftrue then z else z, and From(D, concat (" mySchema.”,” employee”))
are not.

44

We use Definition 3.12 for the definition of a normal form rather than the
usual definition from the A-calculus to handle cases such as:

fun(z)—((ifFilter(... | ...) then fun(y)—yelsefun(y)—y *10) (z))

Indeed, since data operators are values for the normalization, normalized ex-
pressions can include data operators which could return any type of value.

Definition 3.13 (Normalization reduction relation). The reduction relation
of QIR expressions <— C EqRr X Eqr is defined as:

(norm-app-f)
Fur V2

Vg pure
(fun’ (2)—=q1) v = {f — fun’ (2)—=q, 2 — v}q
(norm-fun-red) (norm-gred)
/ /
(A 479 g2 (fun! (@)—aqr) v
vg pure normal form

fun’(z)—q < fun’/(2)—=¢ ¢—¢
where the rules are prioritized following their order of definition.

As required for the reasons stated earlier, < only applies a [-reduction if its
argument is not a host language expression. This is done by replacing the (app-g3)
rule with a (norm-app-3) rule. Additionally, it includes a rule (norm-fun-red) that
allow us to apply reductions in function bodies.

Our normalization relation has the property of progress.

Lemma 3.1. Let q € Eypp. Fither q is in normal form, or 3¢'.q — ¢'.

Proof. By case analysis on g:
e If ¢ = x, then ¢ is in normal form.
o If ¢ = fun”(z)— ¢, then either

— ¢ is in normal form, in which case ¢ is in normal form;

— or q1 <= ¢}, in which case rule (norm-fun-red) applies.
e If ¢ = q1 g2, then either

— ¢ = fun®(x)—¢; and ¢ is in normal form and pure, in which
case rule (norm-app-f3) applies;

— ¢1 = fun®(z)—v and ¢y are in normal form and g, is not pure, in
which case ¢ is a normal form;

45

— ¢1 = op and ¢y are in normal form, in which case rule (app-op)
applies;

— or q; # fun®(x)—wv or op and ¢ are in normal form, in which
case ¢ is in normal form;

— or either ¢; or ¢ is not in normal form, in which case rules (app-
red1) or (app-red2) apply.

The complete proof can be found in Appendix B, page 187. O]

As usual, since our normalization relation is deterministic, it immediately
follows that the normal form of a QIR expression is unique when it exists.
However, a normal form does not necessarily exist, with the classic example of
(fun(z)—z z) (fun(z)—zx z).

Now that we have a reduction relation for the normalization, we next see how
to apply it in a way that guarantees termination.

3.5.3 A measure for good queries

To use our — relation in a way that ensures termination, we define a measure
that indicates how much a query is translatable to database languages. This
measure allows us to guide the normalization by verifying our reduction steps are
actually useful in making the query more translatable.

To know if a query is better suited for translation than another, we count
data operators of an expression that can be translated into a database language.

Definition 3.14 (Compatible data operator application). Let D be a
database language. A QIR data operator application o{q1,...,qs | ¢1,- .-, q,)

is compatible with D if EXPP(o{q1,...,qn | ¢},---,q.,)) # Q.

For instance, recall the query from Example 3.7:
Filter(fun(r)—(fun(z)—r - salary > x) (2500) | From(D, "employee"))

This query uses an application of the operator Filter that is not compatible
with the database D if it cannot translate the application of an anonymous func-
tion. In this case, reducing the application in the normalization and therefore
making the Filter translatable, would reduce the number of incompatible data
operator applications in the query, which is a measurable quantity showing that
the reduction is beneficial.

46

Definition 3.15 (Measure). Let ¢ € Eqr be a QIR expression, we define the
measure of q¢ by the database D as

Mp(q) = |Op(q) \ Compy(q)|

where Op(q) is the set of data operator applications in ¢ and Compy(q) is
the set of data operator applications in ¢ that are compatible with D.

This measure works as follows. During a step of reduction of a term ¢ into a
term ¢, ¢ is considered a better term if the number of incompatible data operator
applications strictly decreases. We now go through a few examples.

Consider the query ¢ from Example 3.7:

Filter (fun(r)—(fun(z)—r - salary > x) (2500) | From(D, "employee"))
that can reduce to ¢
Filter(fun(r)—r - salary > 2500 | From(D, "employee"))
Depending on D, we have three possible cases:

1. D does not support Filter, in which case reducing is useless, and indeed
we have Mp(qg) =2—1=1and Mp(¢)=2-1=1

2. D supports Filter, but does not support the configuration of Filter (e.g.
it does not support the creation and/or application of an anonymous user-
defined function), in which case reducing is beneficial, and indeed we have
Mp(g)=2—-1=1and Mp(¢)=2-2=0

3. D supports both Filter and its configuration, in which case reducing is
useless, and indeed we have Mp(qg) =2—2=0and Mp(¢)=2—-2=0

Recall the query ¢ from the beginning of Section 3.3:

(fun(emp, minSalary, get Rate, cur)—
Project(fun(z)—{name: x - name} |
Filter(fun(z)—x - salary > minSalary x (get Rate "USD" cur) |

emp)))
(From({PostgreSQL, "employee"), 2500, fun (r from, rto)—BODY, "USD")

BODY =

(fun(change)—ifr from = rtothen 1 else
Project(fun(z)—{rate: x - rate} |
Filter(fun(z)—x - cfrom = rfrom && x - cto = rto |
change)))

(From(PostgreSQL, "change"))

47

that is the translation of our R query from Example 1.5:

16 richUSPeople = atLeast (2500, "USD")

for which Mp(q) = 6 — 0 = 6 counting the query in getRate because even the
Froms contain free variables.

After reductions we get ¢

Project(fun(z)—{name:x - name} |
Filter(fun(z)—x - salary > 2500 | From(PostgreSQL, "employee")))

for which Mp(¢') = 3 —3 = 0. The operators of the main query are now
compatible with PostgreSQL and the reduction of the conditional expression in
the function getRate has removed the subquery.

Similarly, our other R query from Example 1.5:

17 richEURPeople = atLeast (2500, "EUR")

is translated to:

(fun(emp, minSalary, get Rate, cur)—
Project(fun(x)—{name: x - name} |
Filter(fun(z)—x - salary > minSalary = (get Rate "USD" cur) |
emp)))

(From(PostgreSQL, "employee"), 2500, fun (r from,rto)—BODY, "EUR")

BODY =

(fun(change)—ifr from = rtothen 1 else
Project(fun(z)—{rate: x - rate} |
Filter(fun(z)—x - cfrom = rfrom && z - cto = rto |
change)))

(From(PostgreSQL, "change"))

for which also Mp(q) =6 — 0 =6. And the reduction ¢

Project(fun(x)—{name:x - name} |
Filter(fun(z)—x - salary > 2500 *
(Project(fun(x)—{rate: x - rate} |
Filter(fun(z)—x - ¢cfrom = "USD" && x - cto = "EUR" |
From(PostgreSQL, "change")))) |
From(PostgreSQL, "employee")))

for which Mp(¢') =6 —6 = 0.
Consider now the query ¢ from Example 3.12.

48

Example 3.12.

Project(fun(r)—(fun(z)—{result : x}) (r -id) |
Filter(fun(r)—r - id < 2500 | From(D, "employee")))

Suppose that D supports all three operators but not anonymous functions,
then Mp(q) = 3 —2 = 1 since only Project is not compatible. However, if D
does not support Filter, then Mp(q) =3 — 1 = 2. After reduction, we get ¢’

Project(fun(r)—{result : r - id} |
Filter(fun(r)—r - id < 2500 | From(D, "employee")))

for which Mp(¢') = 3 —3 = 0 if Filter is supported, making the reduction
useful, and Mp(q') =3 — 1 = 2 otherwise, making the reduction useless. Indeed,
making the configuration of Project compatible does not help here, since the
Filter and thus the Project would still be untranslatable.

We have yet to define how the normalization knows which database measure to
choose for the normalization of a QIR term, especially in the case where multiple
databases are referenced in the QIR term.

3.5.4 Generic measure

The measure we defined in Definition 3.15 is relative to a database D. Therefore,
using it on a simple query that targets only one database D and is completely
translatable into the language of the database is straightforward as the measure
to use is then obviously Mp(). In other cases however, we can have several
different databases executing different parts of the query, and in that case we
want to make the different measures cooperate with one another.

Definition 3.16 (Generic measure). Let ¢ € Eqpr, we define the generic
measure of q as:

M(g) = Mnp(q) if T(q) = {D},D # MEM
M(q) = 1 Zqieg(q) M(%) if q= 0<Q1> <o dm | m+1, - - - 7qn>

M(q) = Zqiee‘(q) M (q;) otherwise

Thus, the generic measure of an expression ¢ is the number of data operator
applications that are not compatible with a database different of MEM.

49

For instance, on our query ¢ from Subsection 3.5.3:

(fun(a)—Join(fun(z,y)—x Xy, fun(z,y)—x - age < y - age | a, a))
(From(D, "people"))

we get M(q) = 1 since the Join has no targeted database. As for its reduction
q"
Join({fun(z,y)—z >y, fun(z,y)—x - age < y - age |

From(D, "people"), From(D, "people"))

we would get M(q') = Mp(q¢') = 0 if Join is supported by D, which signifies
the reduction is useful as expected, or if Join is not supported, then M(q') =
Mp(q') = 1 which indicates that the reduction is not useful as expected.

Recall the query ¢ of Example 3.12:

Project(fun(r)— (fun(z)—{result : x}) (r - id) |
Filter(fun(r)—r - id < 2500 | From(D, "employee")))

Suppose that D supports all three operators but not anonymous functions,
then M(q) = Mp(q) = 1 since only Project cannot be translated. However, if
D does not support Filter, then M(q) = Mp(q) = 2. After reduction, we get

q"
Project(fun(r)—{result : r - id} |
Filter(fun(r)—r - id < 2500 | From(D, "employee")))

for which M(¢") = Mp(q¢') = 0 if Filter is supported, making the reduction
useful, and M(q¢') = Mp(q') = 2 otherwise, making the reduction useless. Indeed,
making the configuration of Project compatible does not help here, since the
Filter and thus the Project would still not be compatible.

As a last example, consider the following query:

Project(fun(xz)—{r: A} | From(D, "employee"))

which applies a Project on table employee where A is the following QIR expres-
sion:

A = (fun(y)—Filter(fun(z)—z-teamid = y | From(D, "team"))) (x-teamid)

If we assume that the database can handle every operator, but cannot trans-
late the application of an anonymous function, then the Project would be exe-
cuted in MEM since it could not be translated to the language of the database,
which involves, in this case, the translation then evaluation in the database D of
the Filter for every row of table employee. In other words, if table employee
contains a million rows, we would send a million queries to the database. This
problem is known in the literature as query avalanche |GRS10].

20

However, this problem disappears if we are able to merge our subqueries
together. After a step of reduction, the query would become:

Project(fun(z)—{r:Filter(fun(z)—z : teamid = x - teamid | From(D, "team"))} |
From(D, "employee"))

which can be completely translated to the language of D since the application
disappeared.

The good news is that our measure finds the normalization useful. We get
M(q) = Mp(q) =4 —3 =1 for the query before reduction since only Project is
not compatible, and M(q') = Mp(q') = 4 — 4 = 0 for the query after reduction,
thus marking the reduction as indeed useful.

Therefore, in some cases, the normalization allows us to evaluate queries very
efficiently by avoiding query avalanches altogether. Obviously, the normalization
would not be able to save us in every case, in particular if the two From target
different databases, or if the database does not support Project.

3.5.5 Heuristic-based normalization

A reduction might not have a positive impact right away on the translation, but
lead to a better query after more steps of reduction. As mentioned before, we
cannot just explore indefinitely every path of reduction, as this process might
not terminate. Therefore, to generate a more efficient translation while ensuring
termination, we create a heuristic-based normalization procedure which uses the
generic measure of Definition 3.16 as a guide through the reduction of a QIR
term.

To define our heuristic, we first define the set of possible reductions of a QIR
expressions:

Definition 3.17 (Set of possible reductions of a QIR expression). The set of
possible reductions of a QIR expression q, noted Reds (q), is defined as the
set of expressions ¢’ such as ¢ — ¢'.

Figure 3.2 describes our heuristic-based normalization in pseudo-code. It
applies all possible combinations of reduction steps to the term as long as its
measure decreases after a number of steps, called fuel (¢), fixed by heuristic.
This normalization always terminates, either because it has applied a sequence
of reductions to the QIR term and reached a normal form, or because it has run
out of fuel in every possible reduction path.

For instance, our query from Example 3.7:

Filter (fun(r)—(fun(z)—r - salary > x) (2500) | From(D, "employee"))

is reduced to a normal form for the normalization in only one step.

o1

function hnorm(q, ¢) {
if ¢ = 0 then return error else {
for each g’ in Reds(q) do {
if M(q’) < M(q) then return hnorm(q’, ¢ma.) else {
q’? <- hnorm(q’, ¢ —1)
if q’’ # error then return q’’

Figure 3.2 — Heuristic-based normalization

Now, if we consider a query for which the reduction does not terminate such
as:

Filter(fun(r)— (fun’(z)— f z) (2500) | From(D, "employee"))

The heuristic-based normalization would attempt a finite number of times
(the value of its fuel) to reduce the application in the configuration with no
improvement on the measure Mp(), therefore the normalization terminates and
returns the query after no reduction step.

Some practical choices impact the effectiveness of the heuristic such as choos-
ing which reduction rule to apply at each step (e.g., choosing those with more
arguments), or which maximum number of steps to use. Experiments for both
points can be found in [Ver16|, where a similar measure of good QIR terms as our
measure from Definition 3.15 is defined to create a heuristic-based normalization,
and where it is showed that the normalization represents a negligible fraction of
the execution time of the whole process compared to tasks such as parsing, or
exchanges on the network with databases. However, in that work, queries are
limited to one targeted database, and the definition of a compatible data opera-
tor application is based on syntactic considerations on the name and the shape
of the configurations of the data operator application.

There is one case where our measure makes the normalization apply reduc-
tions on fully translatable queries: because it is based on data operators, if an
expression does not have a data operator at its root, the measure may consider a
reduction useful even though it is unnecessary in the viewpoint of the translation
to database languages.

For instance, take the last query ¢ from Section 3.5.1:

(fun(a)—Join(fun(z,y)—x Xy, fun(z,y)—x - age < y - age | a, a))
(From(D, "people"))

22

and its reduction ¢

Join(fun(z,y)—z <y, fun(z, y)—z - age < y - age |
From(D, "people"), From(D, "people"))

M(q) = Mp(q) = 2 —1 = 1. Indeed, there are two operators Join and
From, and only From is compatible. As for Mp(q'), if Join is compatible, then
M(q") = Mp(q') = 3—3 = 0 thus making the reduction useful, but if Join is not
compatible, then M(q') = Mp(q¢') = 3—2 = 1 thus making the reduction useless.
This result does not depend on whether or not the database D can translate
the application. Indeed, if the database supports the application and Join, then
the entire query can be translated into the language of D without the help of
the normalization. However, the measure considers the reduction useful if the
database supports Join with no consideration for the application. Thankfully,
this specific case of false positive is not an issue in practice: even though some
databases may allow the creation of user-defined functions in their language, they
are much more efficient at handling UDF-free queries as we show in our results
in Chapter 7.

Additionally, our definition of compatible data operator application calls the
translation of expressions defined in the driver of the database on every opera-
tor, and to repeat this after every reduction step could become costly. But in
practice, using a cache mechanism makes these translations mostly trivial as our
experiments and those of Vernoux [Ver16| confirm. We show in Section 6.4 that
we can avoid these calls to translations altogether under some conditions.

23

o4

Chapter 4

QIR type system

Creating a type system for the QIR would be straightforward if it was not for
data operators and host language expressions since all of our other constructions
are well-known and type systems have already been designed for languages that
includes them [Chu40, Bar92, Oho95|. Host language expressions can contain any
type of expression, including any kind of side effects, which makes them difficult
to classify into types. Although it would be possible to type some class of host
language expressions that contain only some types of side effects [Wad95, NN99|,
we do not type host language expressions in this thesis. As for data operators,
as explained in Chapter 3, we made the choice to let the databases provide their
own operators. In other words, the behavior of a data operator depends on
the database executing it. Therefore, to create a type system for QIR, we have
to give a QIR expression a type that makes sense for a database. To achieve
this, we define specific type systems for databases which give a type to QIR
expressions that are compatible with the corresponding database, and a generic
type system which uses the specific type systems to type as much as possible
of QIR expressions for databases (other than MEM). This design also allows
for extensions to new databases by integrating new specific type systems to the
generic type system.

Which brings us to our most important reason to design a type system for
QIR, it tells us which query languages each subexpression should be translated
into: if an expression can be typed using a specific type system, then it can be
translated into the query language of the corresponding database. This property
is very useful to us since it gives BOLDR a way to know which database should
take care of which parts of the query. In particular, we put this information to
use in Chapter 6 for the translation from QIR into query languages.

Our second reason is to detect errors in QIR expressions before their evalu-
ation which is usually the main motivation for a type system in a programming
language. In our case, this early detection is very interesting since the evaluation
of a query comes with, in the worst-case scenario, the costs of optimizing, trans-
lating, sending the different subqueries to the databases, waiting for the different

35

subqueries to complete, translating and sending back the results to QIR, and
finally realize that there is an error at the execution of the remains of the query
in MEM. Detecting errors before the translation of queries into QIR allows us
to inform the programmer of the error immediately, even if the query originates
from a dynamically typed programming language.

A third reason is that it allows us to prove interesting properties on our eval-
uation of queries. In particular, we show in this chapter that the normalization
of Section 3.5 preserves the type of the QIR expression it is applied to, and that
its reduction always terminates on well-typed expressions that do not contain
recursive functions. Additionally, we discuss the possibility of detecting where
the normalization is guaranteed to be useful in Section 6.4.

In this chapter, we define a generic type system for QIR which gives a type
to any QIR expression. To achieve this, we also define specific type systems
for databases which give a type to QIR expressions that are compatible with the
corresponding database. We then define specific type systems for MEM and SQL,
and deduce useful properties for typeable QIR expressions.

4.1 QIR types

First, we define types for all the constructs of our QIR.

Definition 4.1 (Basic QIR types). A basic QIR type is a type B that rep-
resents basic data constructs: bool, int, string, ... We will note B the set
of basic QIR types.

Definition 4.2 (QIR types). A QIR type is a finite term of the following
grammar:

T B
T—T
T list

{L:T,...,1:T}

Definition 4.3 (Domain of a record type). The domain of a record type
R={ly:Ty,...,l, : T,} noted dom(R) is the set of its labels {ly,...,[,}.

QIR expressions either have a basic type such as bool or int, a — type that
represents function types, a list type, or a record type. For instance, the function
fun (z)—not = that takes a boolean and returns its negation should be given the
type bool — bool, and the type {id : int} list is the type of QIR expressions

26

that represent lists of records containing ezactly one field named id associated to
an expression of type int.

Notation 4.1. We use the following syntactic shortcuts:
o {l;:T;}i=1 ., stands for {l, : T3, ...,1, : T}

o I —TH — T3 stands for T — (TQ = T3)

Classically, — is right-associative which allows us, as explained in Section 3.1,
to talk about functions with multiple arguments easily. For instance, int —
int — int is equivalent to int — (int — int).

A very important feature of databases is flexible operations on records. When
a data operator is applied, it allows data to contain more information than needed.
For instance, consider this query in SQL:

SELECT e.name FROM employee

This query applies the Project operator on a table employee and for each row
returns a row containing only the name. However, a row from the table employee
may contain more than just the column name. We want to create a type system
that reflects this feature.

For instance, a record {id:1,name:"Maggie" } should be given the type
{id : int,name : string}, however we want to be able to apply this record
to Project{fun(r)—{id:r-id} | ...) which configuration could have the type
{id : int,name : string} — int, but its most natural type would be {id :
int} — int. Therefore, our type systems have to be able to talk about the
relation between these record types. One solution to this problem is to extend our
record types to polymorphic record types [Wan87, Rém89|. This type of solution
would give the expression fun(r)—r - id the type {id : int, p}, where p is a row
variable that represents the fact that the record type is extensible to more labels
and can be instantiated to the type {id : int}, or {id : int, name : string}, or
any other record type that contains at least the label d associated to the type
int. However, this solution complexifies the type system substantially. Instead,
we apply another solution which is to define a subtyping relation between our
types [Car84, Car88|.

a7

Definition 4.4 (Subtyping relation). The subtyping relation for QIR, noted
=, is defined as:

.BljBQiﬁBlng
OT1—>T2jT3—>T4iHT3jT1aHdngT4
® T1 list = T2 list iff Tl = T2

o {l; : T;}icin = {l; 5 Tj{}jzl_,m iff for all j € 1..m there exists 7 € 1..n
such that [; = I} and T; X T}

We say that a type T} is a subtype of a type Ty if T7 < T5, and that it is
a supertype of a type T3 if T3 < T7.

Definition 4.5 (Strict subtype). A QIR type T3 is a strict subtype of a QIR
type Ty, noted T < T5, if and only if 77 < T5 and T # Ts.

Our definition of the subtyping relation is standard. It is covariant in list
types and in the output type of function types, and contravariant in the input
type of function types.

A record type R, is a subtype of another record type R, if every label of Ry is
present in R, and if types associated to those labels in R; are themselves subtypes
of the ones in Ry. For example, we have {id : int, name : string} < {id : int},
and {id : int,rest : {name : string}} < {id : int,rest : {}}. The idea is that
we want to be able to give records their natural type, but also all of its supertypes.
For instance, we want to be able to give our example {id: 1, name: "Maggie" }
the type {id : int,name : string}, but also {id : int}, and even {}. This idea,
that comes from object-oriented programming, reflects the intuition that if some
expression is expected to be of a certain type, then any subtype should work as
well. Going back to our example fun(r)—r - id, we can now give this function
the type {id : int} — int, and use the subtyping relation on the argument to
make the application correct.

As usual, the subtyping relation is reflexive and transitive, properties that
will be useful later.

Property 4.1 (Reflexivity of the subtyping relation). "< T.

Proof. By induction on the structure of 7.]

28

Property 4.2 (Transitivity of the subtyping relation). If 1 < Ty and Ty <
T3 then T7 < Tj;.

Proof. By induction on the structure of T;:
o If T1 € B then T1 = T2 and TQ = T3.

o If ' =1 = 17 then Th, =T — T and T3 = T3 — Ty, and T < 17,
TV LTy, Ty < T3, TY < Ty, so by induction hypothesis 75 < 77 and
T/ < T3 which gives us 7] — T < T3 — T}

o If 77 = T7 list then 75, = Ty list and T3 = T} list, and 7] < T and
T < T3, so by induction hypothesis 7] < T3 which gives us 77 list <
T; list.

o If ' = {l; : Ti}iz1.n then Ty = {I’ - Tj}j—1 mm and Ty = {I} : T} }r=1.1,
and for all k € 1..[there exists j € 1..m such that [’ = [} and T} < T},
and for all j € 1..m there exists i € 1..n such that [; = l;- and T; < TJ’
Therefore, by induction hypothesis, for all £ € 1..] there exists i € 1..n
such that [; =[] and T; < T}

]

This completes our definition of QIR types. In the next section, we define our
QIR type systems.

4.2 QIR type systems

As explained earlier, BOLDR supports queries that target several databases at
once, and allows databases to propose their own data operators with their seman-
tics. Additionally, BOLDR has to be seamlessly extendable to new databases.
For these reasons, we require databases to define a type system that gives a
type to QIR expressions they support. This gives BOLDR information on which
expressions can be translated into the query language of a database, and in par-
ticular which data operators are supported by the database. We call these type
systems specific type systems.

Definition 4.6 (Specific type system). A specific type system of a database
D denoted by the judgment I' -p ¢ : T is a type system relation between a
QIR typing environment ', a QIR term ¢, and a QIR type T

Now that every database interfaced with BOLDR provides its type system for
QIR, we define a global type system that makes use of specific type systems. Its

29

goal is to type as much of the QIR expressions as possible using the specific type
systems of databases other than MEM to achieve our goal explained in Chapter 1
to execute as much of the queries in databases. We call this global type system
our generic QIR type system.

Definition 4.7 (Generic QIR type system). A QIR term ¢ has a type T for
the database D derivable from a QIR type environment I" in the generic QIR
type system, noted I' - ¢ : T, D. The set of inference rules used to derive this
judgment is:

Vg € €(q) L' qi:T5,D; T'kpq:T {D;} = {D, MEM}

Thkq:T,D D # MEM
['Fp From(D,):T FEvemg: T
D#MEM
'k From(D,):T,D I'tq:T7,MEM

We make two important design choices in our generic type system. First, the
only case in which we initiate the process of calling the specific type systems is
if we encounter a From operator. The rationale for this is that only this operator
designates a database as the only possible target of the query.

Our second design choice can be seen in the first rule of the generic type
system: we call the specific type system of a database D # MEM on an expression
only if its children have a type for D or MEM. Indeed, in that case, the only two
databases that could be the target database for the expression are D or MEM.
The default case, if the expression could not be entirely typed by the specific
type system of D, represented by the last rule, attempts to type the expression
using the specific type system for MEM that we describe later in this section.
The reason why we do not require all the children to have a type for D is that,
because of our first design choice explained earlier, a subexpression typed for
MEM does not necessarily imply that the whole expression cannot be typed for
other databases. In fact, most configurations of data operators are typed for
MEM. To illustrate this, recall Example 3.3 from Chapter 3:

Filter(fun(r)—r - id < 2500 | From(D, "employee"))

Using the first rule of our generic type system, the configuration fun(r)—r -
id < 2500 is typed for MEM, and the data argument From(D, "employee") is
typed for D. Finally, if the database supports Filter, the specific type system
of D can give a type to the entire expression, and thus the generic type system
can type the expression for D as desired.

Our generic type system can type queries targeting multiple databases. For

60

instance, recall the query of Example 3.10:

Join{fun(z,y)—z >y, fun(z,y)—true |
From(D, "employee"),From(D’, "tean"))

where D and D’ are two distinct databases that are not MEM. The generic type
system then types the two different data arguments for D and D', which means
the only applicable rule is then the last one which types the Join for MEM.

to complete the generic type system, we define a specific type system for

MEM.

Definition 4.8 (Specific MEM type system). The specific type system of
MEM noted Fygm is derived by the rules of Figure 4.1.

The specific type system of MEM is very broad, as all QIR expressions ex-
cept data operators can be evaluated in MEM. As seen in Section 3.4, the data
operators supported by MEM are Project, Filter, and Join.

We assume the existence of a function typeofC which gives the type of a
constant c. We also assume the existence of a function typeof0OP which returns
all the possible types for a basic operator. For instance, typeof0P(=) = {int —
int — bool, string — string — bool,...}.

The record concatenation is typed successfully only if applied to two records
which labels are strictly distinct, following the semantics of QIR. Thus, {x :
2,y : 3} > {x : true} is an invalid expression in QIR. This is the only way
to define a usable record concatenation with no loss of information which re-
spects the label names. There are other ways to define record concatenation, for
instance asymmetric record concatenation usually preferred by general-purpose
programming languages, which keeps the values of the second record in case
of conflict: {x : 2,y : 3} b {x : true} = {x : true,y : 3}. This type
of concatenation has the virtue of being more flexible for programming, but
the loss of information that ensues makes typing problematic when combined
with subtyping: {x : true} can be given the type {x : bool}, in which case
{x:2,y:3} < {x: true} is given the type {x : bool,y : int}, but {x : true}
can also be given the type {}, in which case {x : 2,y : 3} b {x : true} is
given the erroneous type {x : int,y : int}. Another type of record concatena-
tion provided by SQL keeps all the information in a record that may contain
multi-value labels: {x : 2,y : 3} < {x : true} = {x : 2,y : 3,x : true}, but
the information then becomes impossible to access since there is no way to know
which value to return on an access to the label x. Databases such as MySQL
automatically rename the conflicting labels so the information can be accessed:
{x:2,y:3} > {x:true} = {x; : 2,y : 3,%y : true}, but the query then has to
be aware of that specific renaming process.

Crucially, the specific type system of MEM always calls the generic type sys-
tem on the children in the premises of its rules, where _ denotes any database in

61

F,f3T1—>T2,£U:T1|_q3T2,_ Fl—quTl—>T27_ F"QQ:Tb_
' Fmem funf(x)—>q:T1 — T I'Fvem ¢1 g2 0 1o

e Thryemx: T

T € typeofOP(op) I'Fq :bool, D'k qg:T, D'l qg:T,

[Fmem ¢ typeofC(c) I' Fpem op:T I' Fmem ifql then g2 else q3: T
I'tg:T;,_ 1€l.n PEaq L TiYicim, — TFEa@ {l: T immytm, _
Pimem {Giai b, o {6 Titizim I'vem ¢ D<Uge {l: Titizin

Fl_qliT,_ Fl‘QQlTliSt,_ F}_qliTliSt,_ Fl‘QQITliSt,_

r l_MEM [] : T list r l_MEM g1 Qs T list r l_MEM q1 @qg - T list

]._‘l_(,I{,lT,},_ Fl_ql:TQIiSt,_ FFQQiTQ%TQIiSt—)Th_ Fl_q;giTl,_

I'Fyemqg-1:T I'Fmem qp as hit 2 g 2 q3: 11

qullTQ—)Tb_ Fl_qgiTgliSt,_ Fl_quT—>b001,_ FFQQ:TliSt,_
[’ Fvem Project{q | ¢2) : 17 list [Fyvem Filter{(q | o) : T list

Fi_qliTg—)T4—)T1,_ Fl‘QngliSt,_

FFqQZTg%TLL—)bOOl,_ F|_q4:T41ist,_ Fl_q:ThD T1'<T2

I' Fvem g T

I' Fmem Join{gi, q2 | g3, qu) = 11 list

Figure 4.1 — The specific type system of MEM

62

D including MEM. This allows the specific type system of MEM to type expres-
sions which children are typeable in other databases. For instance, as explained
earlier, in the query of Example 3.10, the Join operator has to be typed by the
specific type system of MEM since only MEM can perform the operation between
the two tables coming from different databases. However, MEM cannot type From
which is not a supported operator. Therefore, calling the generic type system on
the children allows MEM to let the specific type systems of D and D’ handle the
children:

I' Fp From(D, "employee") : T3 list I' Fp From(D’, "team") : T, list

['F From(D, "employee") : T3 list, D ['F From(D', "team") : Ty list, D’

Join(fun(z,y)—z >y, fun(z,y)—true |

0 Fuen From(D, "employee"), From(D’, "team"))

: Tl list

Join(fun(z,y)—z <y, fun(z, y)—true |

O From(D, "employee"), From(D’, "team"))

: Ty list, MEM

As we will see in Section 4.4 where we define a specific type system for SQL,
only the specific type system of MEM calls the generic type system. The specific
type systems of the database simply call themselves recursively as they do not
receive data from another source via the QIR. Therefore, this process of alternat-
ing between the generic type system and the specific type systems occurs only
if we have no other choice than to execute part of the query in the runtime of
MEM.

A subsumption rule is added to the specific type system of MEM to solve the
issue discussed above about the record types. Indeed, consider Example 4.1.

Example 4.1.

(fun(r)—r - id) {id: 1, name: "Maggie" }

This query is typed as:
0 Fmem fun(r)—r - id : {id : int} — int
0+ fun(r)—r-id: {id : int} — int, MEM

0 Fmem (fun(r)—r - id) {id:1,name: "Maggie" } : T

0 Fpem {id: 1, name: "Maggie" } : {id : int,name : string}
A= {id : int,name : string} < {id : int}

0 Fmem {id: 1, name: "Maggie" } : {id : int}

63

Additionally, the subsumption excludes the case where the supertype is equal
to the subtype to avoid infinite derivations, as one could apply the subsumption
rule on the same type as the premise since the subtyping relation is reflexive:

r3T T=T
— =
Fl_MEMQIT -

FI—MEMQZT

As usual, the subsumption rule is not syntax-directed. This is one of the
reasons why the specific type system of MEM is not algorithmic. As explained
in [Oho95] and as we will see in Chapter 5, it is possible to define an equivalent
type system for MEM that is algorithmic, in particular by removing the subsump-
tion rule. However, the type system presented in Definition 4.8 being easier to
understand and work with, we use this definition throughout the paper and prove
the equivalence in Chapter 5.

As another example, recall the query from Example 3.2:

Filter{fun(r)—r-id < 2| [{id: 1}, {id:2},{id:3}])

This query is typed as:

{r:{id:int}} tr-id <2 :bool, MEM

0 Fpem fun(r)—r-id < 2:{id : int} — bool OF [{id:1},...]: {id: int} list, MEM

0+ fun(r)—r-id <2:{id: int} — bool, MEM

0 Fmem Filter(fun(r)—r-id < 2| [{id:1},{id:2},{id:3}]) : {id : int} list

For the QIR type system to be consistent, we restrict specific type systems
to prevent them from conflicting with each other. For example, we can have
a database stating that a record cannot have lists as elements, but we cannot
have a database expect a list as first element for the record destructor. The only
exceptions being data operators, that can be freely typed by the databases.

Definition 4.9 (Specialization of a type inference judgment). A type infer-
ence judgment j = I' Fp q : T is a specialization of another type inference
gudgment j' =T"Fp ¢ : T or j' =1"F ¢ : T", D' noted j C j' if and only if:

1. T =T
2. q=¢
3. T<T

64

Definition 4.10 (Specialization of a type inference rule). A type inference
rule (A, c) is a specialization of another type inference rule (A’,c’) noted
(A, c) C (A,) if and only if, for any instance of the inference rules:

1. ¢eC ¢
2. Vi e A3jeAljC

Intuitively, an inference rule is a specialization if it does not contradict the
premises and conclusion of the other inference rule. For instance:

BeB
I'bp[]: B list

is a specialization of the empty list rule of the specific type system of MEM, but

r '_D q1 42 : bool

is not a specialization of the application rule of the specific type system of MEM.

Definition 4.11 (Target of a type inference rule). The target of a type in-
ference rule T'Fp q:T or 't q: T, D is q.

Definition 4.12 (Coherence of a specific type system). A specific type sys-
tem bp is coherent if for every type inference rule (A, ¢) of b-p, either ¢ targets
a data operator, or there exists a type inference rule (A’, ') of Fyem such that

(A,c) C (A,).

Property 4.3 (Coherence of the specific type systems). We assume that

all the specific type systems linked to QIR are coherent with the specific type
system for MEM.

In some cases, it could be possible and more efficient to migrate data from
one database to another. For instance, in our Example 3.10, if D has Join as a
compatible data operator and if the data in table "team" is transferable to D,
then we could transfer this information to D to have this database perform the
Join instead of MEM.

Another possibility of data transfer would be to use specific type systems on
QIR expressions that do not refer to data stored in databases. For instance, this
query:

Op <[1,2,3])

65

where op is an operator specific to the database D, cannot be successfully typed
by our generic type system as is, but it could be extended to send the data in
QIR form to the database D. We do not explore this possibility in this thesis, but
this could be done by transferring data from one database to QIR, and then from
QIR to the other database, or by adding migration operators to the supported
operators of a database that transfer data directly from one database to another
if that feature is supported by a database.

4.3 Type safety

We now have a fully functional type system for QIR. In this section, we make
use of this type system to prove interesting properties on the evaluation and
normalization of QIR expressions.

4.3.1 Progress and preservation of types

First, we want to prove that if a QIR expression is typed by the generic type
system with a type T, then the application of — to this QIR expression is also
typed by the generic type system with a type T. This property is especially
interesting to us, since the normalization bases itself on < . Therefore, this
property gives us the guarantee that the normalization preserves the type of the
QIR expression, thus guaranteeing that our normalization does not change the
semantics of a QIR expression. We proceed in a standard way by first proving
the substitution lemma.

Definition 4.13 (Substitution lemma for D). If ',z : T" + ¢ : T, D and
'tq :T,Dthen T+ qg{x/q}: T, D.

Classically, we assume that z is not bound by a function in ¢, using a-
conversion if need be. Since MEM can call any other type system using the
generic type system, our property being true for MEM requires the property
being true for the other specific type systems.

Lemma 4.1 (Substitution lemma for MEM). Let ¢ € Egzp and I' a QIR
typing environment. Suppose that for all D € D\ MEM, the substitution
lemma holds. Then, the substitution lemma holds for MEM.

Proof. If D # MEM, then the property is true by hypothesis. Suppose now
that D = MEM. We prove the property by induction on the derivation of
I,z : T Fyem ¢ : T, since it is the only possible step after I'sx : T + ¢ :
T,MEM. If the last rule used is the subsumption rule, then it is immediately

66

true by induction hypothesis, otherwise:

® = Ii:

If 21 = x, and so T" = T, then the property is true since x;{x/q¢'} = ¢
Otherwise, x1{x/q¢'} = x1, and so the property is obviously true.

e ¢ = fun’/(2))—q:

F,ZEIT/,fZTl —)Tg,l’l ZT1 "(]1 ZT27_

Iz : T Fyem funf(xl)—>q1 T — Ty

By induction hypothesis, we have I', f : T} — Ty, 2z : Th + qi{x/q'} :
Ty, . Therefore, we have I' - fun’(z,)—q {z/¢'} : T1 — To, MEM,
so by definition of the substitution: I' - (fun(z,)—q)){z/q¢'} : T\ —
T,, MEM.
® qg=aq g2
Pe:T'tq:Th =T, Tix:TFqg:T,
Doz T Fvem i g2 1o

By induction hypothesis, we have T' - ¢;{z/¢'} : Ty = T, and T I
@{z/q'} : Ty, . Therefore, we have I' = ¢1{z/q'} qo{x/q'} : To, MEM,
so by definition of the substitution: I' - (¢1 ¢2){z/q'} : Ty — T>, MEM.

e g=c, q=op, q =[] Immediate since q{x/q'} = q.

For all other cases, the lemma is true for the same argument as for ¢; ¢s, by
applying the induction hypothesis on every child expression. [

We can now state our type preservation theorem.
Definition 4.14 (Subject reduction for D). We have subject reduction for a

database D on a reduction relation R if I' - ¢ : T,D and ¢ R ¢ implies
I'tq¢ :T,D.

Theorem 4.1 (Subject reduction for MEM). Suppose that for all D € D\
MEM, we have subject reduction on — . Then, we have subject reduction for

MEM on — .

67

Proof. If D # MEM, then the property is true by hypothesis. Suppose now
that D = MEM. We prove the property by induction on the derivation of
I' Fvewm ¢ @ T, since it is the only possible step after I' - ¢ : T, MEM. We use
4.1 to denote Lemma 4.1, and P4.3 to denote Property 4.3.

e For all the (*-red*) and (dataop-*) rules, the property is immediately
true by applying the induction hypothesis and the hypothesis that we
have subject reduction for D %= MEM.

o (fun/(z)—=q) vy = {f — fun/(2)—=q, z — v} q:

F'E{f~— funf(a:)—>q1,:1: — votqr T,
Lof Ty — To,x T Fvem @1 2 1o

L4.1

P4.3 Fl_Ungh_
I'Fp funf(x)—>q1 T — Ty

I'Ffun/(z)—=q : T — Ty, D

I' Fmem (funf(x)—>q1) vy Th

We used the substitution lemma twice here: once for f and once for x.

The complete proof can be found in Appendix B, page 189.]

We can also show properties of safety on typeable QIR expressions this time
for the reduction relation — defined in Definition 3.9. We prove the properties
of progress and subject reduction basing ourselves on our proofs for — .

Theorem 4.2 (Progress). Let ¢ € Ey, and D a database language. If
0+ q: T,D and all data operators in q are translatable into a database
language, then either q is a QIR value, or 3¢'.q — ¢'.

Proof. By induction on typing derivations:

e If ¢ = x, then impossible since the rule

F,:E:TI—MEMLEZT

is not applicable since our environment is the empty set. And by Prop-
erty 4.3, any typing rule for variables in other specific type systems
cannot be applied either.

e If ¢ = fun®(z)—¢, ¢ is a value.

68

e If ¢ = q1 g, then either
— ¢ = fun”(z)—¢| and ¢, is a value, in which case rule (app-3)
applies;
— ¢1 = op and ¢ is a value, in which case rule (app-op) applies;
— or q; # fun”(z)—¢| or op, in which case ¢ is not a value by

typing and can be reduced by induction hypothesis.

o Ifg=o0{(q1, - qm | Gm+1,---,qn), then either

— all ¢; are values, in which case (ext-database) applies by hypothe-
sis;

— or at least one ¢; is not a value, in which case either rule (dataop-
conf) or (dataop-data) apply.

The complete proof can be found in Appendix B, page 192. O

We made an extra hypothesis in our theorem of progress: all data operators
present in a query must be translatable into a database language. This is coherent
with our first motivation of the chapter for a type system: if the type system of
a database can type an expression, then this expression should be translatable.
We will see in Section 4.4 how to construct such a type system for SQL.

Theorem 4.3 (Subject reduction). Let ¢ € Egpp and T’ a QIR typing envi-
ronment. Suppose that for all D € D\ MEM, we have subject reduction on
— . Then, we have subject reduction on — for all D € D.

Proof. Since evalP(e) and My(7,e) are not typeable by the generic type
system by Property 4.3, and since we have subject reduction for — , we have
subject reduction for — if 2 and vﬁ”(v) preserve types. O

4.3.2 Strong normalization

Lemma 3.1 and Theorem 4.1 guarantee that a term cannot get reduced into a
term that is neither reducible nor a normal form, and that the normalization
preserves types. The property we want to prove next is the strong normalization
of expressions successfully typed by our generic type system. A QIR expression is
strongly normalizing if any path of reduction of that expression using the relation
— terminates. Associated with our safety properties, the strong normalization
property gives us the guarantee that an expression typed in the generic type
system can be normalized, and that the process terminates.

69

However, we first have to restrict Eqpr to non-recursive functions. Indeed, if
recursive functions were allowed, then the strong normalization would not hold.
For instance, consider the following expression:

(fun’ (2)—f) 2
Using the (norm-app-5) rule of — , we would get:
(f 2){f/fun! (@)= f @, ©/2}

which is equivalent to:
(fun/(z)—f z) 2

Therefore, we have:
(fun’ (z)—f 2) 2 = (fun’(2)—=f z) 2

So the reduction of this expression does not terminate in this example, it is
not strongly normalizing. But the generic translation can type this expression:

0 FMeEM funf(x)—>f T :int — int 1] Fmem 2 : int

0 - fun’/(z)—f z : int — int, MEM 0 F2:int, MEM

0 Fymew (Funf (2)—f) 2 : int

O+ (funf(z)—f x) 2 : int, MEM

Thus, we do not have strong normalization with recursive functions. We do
not need to remove host language expressions since they are values for — and
are therefore not reduced. So even if a host language expression containing an
infinite loop were to appear in an expression, — would still terminate.

Notation 4.2 (Set of QIR expressions without recursive functions). We note
Ejrs the set Eqrn without recursive functions.

To prove this property of strong normalization on our restricted QIR, we
follow the method described in [Pie02|. First, we define a set of closed terms of
type T.

70

Definition 4.15. Let T be a QIR type, Ry is the set of closed terms ¢ € Eém
such that:

e There exists a QIR typing environment I" and a database language D
such that I' ¢ : T, D;

e g € R., c € Bif and only if ¢ is strongly normalizing;

q € Ry, 7, if and only if ¢ is strongly normalizing and if ¢ € Ry, —
94 € Rny;

q € Rpise if and only if ¢ is strongly normalizing;

q € Ry,.1y,_, , if and only if ¢ is strongly normalizing.

As explained in [Pie02], the idea of the proof is to show that every element of
every set Rr is strongly normalizing, then to prove that every well-typed expres-
sion of type T is an element of Rr. Note that the only destructor that involves
a substitution is still only the application. Therefore, only expressions with an
arrow type require an extra condition to ensure the evaluation is terminating.

Lemma 4.2. Let q € E}m. If ¢ € Ry then q is strongly normalizing.

Proof. Immediate by Definition 4.15.]

Lemma 4.3. Let g € Egp. If ¢ — ¢ and there exists a QIR typing environ-
ment I' and a database language D such that U\ q : T, D, then q € Ry if and
only if ¢ € Ry.

Proof. We prove the lemma by induction on the structure of the type 7.
First, note that it is immediate that if ¢ halts, then ¢ halts. If T £ T} — Ty,
it is immediate by definition of Rp. Otherwise, for the direction ¢ € Ry =
¢ € Rr, suppose that ¢ € Ry, and ¢; € Rp,. By definition, we have
qq € Ry, But ¢ 1 — ¢ q1, from which the induction hypothesis on type
T; gives us ¢’ ¢1 € Rp,. Since ¢ is arbitrary, the definition of Ry, 1, gives us
¢ € Ry, r1,. The argument for the direction ¢ € Ry < ¢’ € Ry is analogous,
since with subject reduction we have I' - ¢' : T, D.]

In QIR, functions are not the only expressions that can have a function type.
Therefore, we prove an additional lemma.

71

Lemma 4.4. Let v € Ejp, such as v is in normal form, v # fun®(z)—v,
and there exists a QIR typing environment I' and a database language D such
thatI'Fv:1Ty — ... =T, = T,D. Then, v € Ry, 1, -7-

Proof. By induction on n.

If n = 0, then the property is trivially true by Definition 4.15.

Assume the property true for n, let us prove it for n+1: Let ¢’ € Ry,. We
have ¢ —* ¢/, and, by Lemma 4.3, v" € Rp,. By Lemma 4.3 again, we have
v ¢ € Rrifandonlyifv v € Ry, and by induction hypothesis, we have v v €
Ry~ —1,—7,,,- Therefore, by Definition 4.15, v € Ry, 1 51704, O

Lemma 4.5. Let g € Ejpy and vy, ..., vy, € Vg be closed QIR values. If
there exists QIR typing environments I'y, ..., Iy, and database languages D,
Dy, ..., Dy such that 1 :Th,..., 2 T =q: T, D and Vj € 1. m.I'; Fv; :

T;,D; and v; € Ry, then ¢{x1/v1,...,Tm/vn} € Ry,

Proof. We note I' = {x; : T;};=1.». By induction on the derivation of I' -
q:T,D:

o If ¢ = x, then ¢ = z; and T" = T}, in which case the property is
obviously true as if v; € Ry, then z;{z;/v;} = v; € Ry;.

e If ¢ = fun(z)— ¢, then:
Dox:T Fyem g : T
P
['bp fun(z)—q : T —T"
I'Ffun(z)—q : 7" —T1",D

4.3

Let ¢ € Ry. By Lemma 4.2, we have ¢ —* v for some v. By
Lemma 4.3, v € Ry. By induction hypothesis, we have

af{zi/v1,. .. T/ VUm, x/v} € Ry, But,

(fun(x)—=q{zi/v1,. .., zm/vn}) (@) = af{xi/vi,. .. 20 /vm, x/v},
which by Lemma 4.3 gives us (fun(z)—q{z1/v1,...,2n/vn}) (¢) €
Rpn. Then, by definition of Ry _,pu, since ¢’ was chosen arbitrarily, we
have: (fun(z)—q){z1/v1,. .., Tm/Vm} € Ryr_spn.

72

e If ¢ = q1 qo, then:
r |_MEM q - 7 -=T7" T '_MEM qo - T
F"DQ1QQ5T/—>T//
F|_q1 QQZT/—)T,/,D

P4.3

By induction hypothesis, we have ¢;{x1/v1,...,Zm/vm} € Ry p» and
@{z1/v1,. .. 2/} € Ryr. And by definition of Ry, we have
(@1 @){71/v1s .o T /VUm} € Ryo.

e If ¢ = ¢, then T = typeofC(c) € B, in which case the property is obvi-
ously true as cis obviously strongly normalizing therefore ¢ € Ryypeotci(c)-

e If ¢ = op, true by Lemma 4.4.
o If ¢ = if ¢, then ¢, else g3, then:

I |_MEM q1 - bool T }_MEM q2 T T }_MEM qs : T
['+p ifg; thengoelseqs : T
' ifq, thengoelseqs : T, D

P4.3

By induction hypothesis, we have ¢;{x1/v1, ..., Zm/Vm} € Rooor,
e{zi/v1,. .. xm/vn} € Rp, and gs{z1/v1, ..., Tm/vm} € Ry. There-
fore, by Lemma 4.2, we have ¢;{z1/v1,...,Zm/vn} —* v for i € 1..3,
and so (if ¢, then ¢, else g3){z1/v1, ..., 2/ vy} —* if v] then v) else v}.
If v] = true or false, we have ifv] then v} else v —* v/, or v. But, by
Lemma 4.3, since ¢;{z1/v1,...,2n/vm} € Rr, we have v] € Ry for i €
2..3, and so by Lemma 4.3 again if ¢; then ¢ else ¢z {x1 /v, ...,z /vn} €
Rr. Otherwise, either T' 2 T} — T5, in which case the property is triv-
ially true by Definition 4.15, or T" = T} — T5, in which case the property
is true by Lemma 4.4.

The complete proof can be found in Appendix B, page 194. O

Theorem 4.4 (Strong normalization). Let ¢ € Eyp,. If there exists a QIR
typing environment I' and a database language D such that I' - q : T, D, then
q 15 strongly normalizing.

Proof. By Lemma 4.5, we have ¢ € Ryp. Therefore, by Lemma 4.2, we have
that ¢ is strongly normalizing. [

73

4.4 Specific type system for SQL

As stated in Chapter 1, QIR to SQL is an important translation as it allows
BOLDR to target relational databases and a non-negligible number of distributed
databases such as Hive or Cassandra. In this section, we create a specific type
system for SQL and prove the necessary safety properties.

We assume that the set of values for SQL only contains basic constants
(strings, numbers, booleans, ...) and tables. The set of expressions Egq_ is
the set of syntactically valid SQL queries [ISO16]. The supported operators we
consider are Filter, Project, Join, From, Group, Sort, Limit, and Exists.

We next describe the semantics of these operators for SQL. The semantics of
Filter, Project, and Join are described in Definition 3.11.
Group(fun(x)—{l;: ¢;}ic1.n, [| 1) partitions elements of [in groups using the
values they associate to the column names [; (¢; are not used). The second
configuration f of Group shares the same purpose as the configuration of Project,
that is it takes a record as argument and returns another record which will be
part of the final result. For instance:

Group(fun(z)—{teamid: true},
fun(z)—{teamid: x - teamid, n : count (z - id)} |
From(D, "employee"))

is the equivalent of the SQL query:

SELECT x.teamid AS teamid, count(x.id) AS n
FROM employee AS x
GROUP BY x.teamid

and groups employees by their teamid, and returns a table describing how many
employees there is in each group as shown in Figure 4.2.

id name salary | teamid teamid [n
1 Lily Pond 5200 2 T 5
2 | Daniel Rogers | 4700 1 5 1
3 | Olivia Sinclair | 6000 1

(a) Table Empl (b) Result of Group on teamid
a) Table Employee

Figure 4.2 — An example of Group

Sort(fun(z)—{l;: gi}tic1.n | [) sorts the rows of collection [by the values
they associate to the column names [; and using a natural comparison defined in
SQL. The ¢; expressions are expected to be booleans. They describe, for each
column name to use for sorting, whether or not the natural comparison should
be used in ascending order (e.g., increasing order for numbers, alphabetical order

74

for strings) or in descending order (e.g., decreasing order for numbers, reverse
alphabetical order for strings). For instance:

Sort(fun(z)—{teamid : false,name: true} | From(D, "employee"))

is the equivalent of the SQL query:
SELECT * FROM employee ORDER BY teamid DESC, name

which returns all rows from table employee sorted by its values in column teamid
in decreasing order (note the use of the SQL keyword DESC), then by its values
in column name in alphabetic order.

Finally, Limit(n | [} returns the n first rows of collection [, and Exists(l)
returns false if the collection [is empty, and true otherwise.

Technically, Sort and Limit are not part of the SQL standard, but they
are supported by most SQL databases and commonly used. Additionally, Limit
gives us the opportunity to show how to handle a case of an operator which
configuration is not a function, and Exists is an operator that returns a basic
type instead of a new collection.

Notation 4.3. We use R to denote types of the form {l: B,...,l: B} with
B e B.

Definition 4.16 (Specific SQL type system). The specific type system of
SQL is derived by the rules of Figure 4.3.

The type system of Definition 4.16 is designed to type all expressions that can
be reduced by the normalization into expressions translatable to SQL.

The SQL notation in From{(SQL,n) is used to represent any SQL database.

SQL relies on a flat data model: records can only contain values with base
types (flat records), and lists can only contain flat records (flat lists). Therefore,
the type system for SQL only types those kinds of data structures, in particular,
the data operators all take as data arguments and return flat lists.

Basic operators and conditional expressions are only valid for basic types in
SQL. In SQL, the configurations of Group and Sort are also expected to return
flat records.

Finally, notice there are two rules for Join. The second one gives a type to
the Join operation where the first configuration returns the record concatenation
between the records of the two tables, corresponding to a Join that returns
all fields from the two tables which is a common operation in SQL. However,
since SQL does not support record concatenation, we add a custom rule for this
particular case.

75

Df:Th—=T,x:Titsauq:To Thrsquqn:Th = To Thsal g Th
I' FsaL funf(x)—>q T — T I'FsaL g1 2 : T

F,.CL‘:TI—SQL.Z':T

By — ... — B, € typeof0P(op)

I'FsaL ¢: typeofC(c) ~ Fmem 0p: BL — ... — B,

['FsqL by :bool I'bFgqubs: B T'bFgqubs: B I'Fsauq:T; 1€1l.n
r l_SQL ifbl then bg else b3 - B r l_SQL {ll q; }i:1..n . {ZZ . E}i:L.n

r l_SC)L q - T T l_SQL qs T list T l_SQL q - Tlist T l_SQL qs : T list

r l_SQL q1 Qs T list r l_SQL a1 @ qa T list
Phsacg:{...,0:T,...} Tlksarq:i:Re— Ri T FsaLq: Ry list ['tFsqLn: string
lFgaug-l:T [' FsqL Project{q; | ¢2) : Ry list [' FsqL From(SQL,n) : R list

T |_SQL q - Rg — R4 — R1 T l_SQL qs : Rg list

I'FsaL qi : R —bool T'FsqL¢o: R list ['FsaL g2 0 B3 — Ry — bool T'ksqL qs: Ry list

I FgqL Filter{(q | ¢2) : R list

I' FsaL Join{qi, ¢z | g3, qu) : Ry list

I'FsaL q3 : {li : Ti}ier.m list
I'FsaL @ {li - Ti biemsr n list

' FsaL Join({fun(z, y) =2 <1y, q2 | ¢3,q4) : {li - Ti}icr.n list

I'FsaL g2 : {li : Ti}tier.m — {li - Titiem+1.n — bool

I }_SQL q - Rg — Rl I |_SOL qs R3 — R2 r |_SQ|_ qs : Rg list

' FsaqL Group{qi, ¢2 | g3) : Ry list

I'Fsauqn: R — R DI'FsqLqe: Ry list TI'kgqL g1 :int I' FsqL g2 @ R list
I FsaL Sort{q: | ¢2) : Ry list [' FsqL Limit{q | g2) : R list

I' FsaL ¢ : R list MFsarg: 177 T1 < Ty
I' FsaL EXiStS(Q) : bool I'tsaL q:Ts

Figure 4.3 — The specific type system of SQL

76

Let us now go through a few examples. Recall Example 3.3 from Chapter 3:
Filter(fun(r)—r - salary < 2500 | From(D, "employee"))

This query is typed as:

{z : {id: int}} FsqL 7 : {id : int}
{z:{id: int}} FgqL r - id : int
{z :{id : int}} FsqL 7 - id < 2500 : bool

{[E : {Zd : int}} FsaL 2500 : int A

0 FsaL Filter(fun(r)—r -id < 2500 | From(D, "employee")) : {id : int} list

() FsqL "employee" : string

A pum—
0 FsqL From(D, "employee") : {id : int} list

Note that the record type deduced by the type system in this derivation is {id :
int}, but any record type containing the association from id to int can be
deduced as well.

Recall the query from Example 3.12:

Project(fun(r)—(fun(z)—{result : x}) (r -id) |
Filter(fun(r)—r - id < 2500 | From(D, "employee")))

This query is typed as:

{r:{id:int},z : int} Fsq 2z : int

B = {r:{id:int}, x : int} Fgqu {result : x} : {result : int}

{r:{id: int}} FsqL fun(x)—{result : z} : int — {result : int}

{r:{id : int}} FsqL 7 : {id : int}
{r:{id : int}} FgqL 7 +id : int
{r:{id : int}} FsqL (fun(z)—{result : z}) (r - id) : {result : int}

0 FsaL fun(r)— (fun(z)—{result : x}) (r - id) : {id : int} — {result : int}

B

Filter(fun(r)—r - id < 2500 |

A
0 FsaL From(D, "employee"))

:{id : int} list

Project(fun(r)—(fun(z)—{result : x}) (r -id) |

Filter(fun(r)—r - id < 2500 | From(D, "employee"))) {result : int} list

0 FsaL

Next, we prove the Property 4.3 of coherence for our type system for SQL.

77

Lemma 4.6 (Coherence of the specific type system for SQL). The specific
type system for SQL is coherent with the specific type system for MEM.

Proof. By direct case analysis on the rules of the specific type system for

SQL. O

There is no difficulty in the proof of that property, since the only differences
between the two type systems are flat record types or basic types instead of any
types in some places, some missing rules, and some extra rules for data operators.

Finally, to complete the integration of SQL, we prove the substitution lemma
and subject reduction theorem for the specific SQL type system.

Lemma 4.7 (Substitution lemma for SQL). Let ¢ € Egp and T' a QIR
typing environment. If U,z : T'F q : T, SQL, then for all ¢ € Ezp such that
I'kq T, SQL, we have T+ g{x/q¢'} : T, SQL.

Proof. By induction on the derivation of I',x : T" FgqL ¢ : T, since it is the
only possible step after I,z : T" F ¢ : T, SQL. The arguments are the same
as for the proof of Lemma 4.1. O

Theorem 4.5 (Subject reduction for SQL). Let ¢ € Egpp and I' a QIR typing
environment. If ' q:T,SQL, and ¢ — ¢, then ' ¢ : T, SQL.

Proof. By induction on the derivation of I' FgqL ¢ : T, since it is the only

possible step after I' - ¢ : T, SQL. We use L4.1 to denote Lemma 4.1.

e For all the (*-red*) and (dataop-*) rules, either no typing rule applies,
or the property is immediately true by induction hypothesis.

o (funf(z)—q) va = {f — funf(2)—q, = — v }q:

[FsaL {f — funf(x)—>q1,x — votqr T

L4.1
Lof Ty = Th,x: T Fsal a2 T I'Fsauve: Ty

I }_SQL funf(x)—>q1 : T1 — T2

I Fsau (fun’ (z)—q1) vo 0 Ty

® op v — q: true supposing —90 preserves types.

78

o iftruethenv; else vy, — v;:

['FgqL true :bool I'Fgq v1: B I'tFsquve: B

[' Fgqu if true then v, else v, : B

o iffalsethen v, else vy — vy:

['FgqL false : bool TI'Fgquvi: B I'lFgqLuvs: B
I' bgqL iffalse then v, else v, : B

o {lizvi},_y o> {lizvi} iy, > {litvi },q .0 No typing rule.
e [| Qv < v: No typing rule.

e v@Q[] < v: No typing rule.

o (v1::v2) Quz — vy iz (vy Qug):

I'Fsquvi: T T'hsqLuvs:T list
I' FgqL v1 i wg o T list

[FsaL (v1:ivg) Qug : T list

r l_SQL V3 . T list

S0:
['FgqL ve: T list T'FgqLvs: T list
r }_SQL () @ Vs . T list
['FsqL vy i (vy @Qug) : T list

r l_SQL (O T

o {....l:v,... }-l—>w:

Phsac {.-,l:v,... }:{...,0:T,...}
FI—SQL{...,Z:U,...}~ZZT

e []as h:t? gy g3 — v3: No typing rule.
o vy:zvyas hit?qy: gz — qo (v,v]): No typing rule.

]

We now have a functional type system for QIR in which we can also type
queries targeting SQL databases. In the next chapter, we create typing algo-
rithms that are equivalent to our type systems but are also suitable for imple-
mentation.

79

80

Chapter 5

QIR type inference

QIR expressions do not include type annotations in their syntax since they orig-
inate from dynamically typed programming languages. Therefore, to give a type
to a QIR expression, BOLDR has to generate it. A well-known technique in stat-
ically typed programming languages is to use a type inference algorithm such as
the Hindley—Milner type inference algorithm [Mil78| which generates a type for
an expression of the lambda calculus.

In Chapter 4, we presented specific type systems which give a type to QIR ex-
pressions that are compatible with a database, and a generic type system for QIR
which makes use of specific type systems to give a type to a QIR expression that
targets one or more databases. The generic type system is perfectly useable as-is
as an algorithm since it simply applies specific type systems in a deterministic
way. However, the specific type systems defined in Chapter 4, useful for presen-
tation and formal developments, are not algorithmic. In particular, we cannot
directly use them to create a type inference algorithm for QIR expressions.

Indeed, if we recall the MEM type system of Definition 4.8, there are four
problematic rules which are the function rule; the basic operator rule; the empty
list rule; and the subsumption rule.

U,f:T —»Tyx:Tikq:Ty T € typeofOP(op)

I' FvEM funf(x)—>q Ty —= Ty DrEyvem op: T
Fl—MEMqZTl T, <15
FI—MEM[]:TliSt F}_MEMQITQ

The reasons why these rules are problematic are standard and explained
in [Pie02|. First, notice that 77 and T, are mentioned in the premise of the
function rule to type the body of the function. However, these types where not
generated by the type system. 77 and 75 appear out of nowhere, meaning that
the rule guesses T and T5, then merely checks that its guess was correct. This
is obviously not viable for an algorithm since the number of possible types is
infinite. The same problem appears in the empty list rule, for which the type

81

T is guessed. The basic operator rule picks a type in the set of possibly infinite
types returned by typeofOP. As for the subsumption rule, the issue is that it can
be applied to any QIR term. Therefore, at every step, a typing algorithm would
have to choose whether to use this rule or a syntax-directed rule.

The standard solution to creating a typing algorithm based on a type system
that can deduce infinitely many typing derivations for the same term is to use
type schemes. A type scheme uses polymorphic type variables to denote an infinite
number of similar types, called instances, which can be obtained by substituting
variables of the type scheme with types. This solution is used in ML, in which
the identity function is given the polymorphic type scheme Va.ao — .

To infer a type scheme for a term, we apply the technique of constraint solv-
ing [PRO5]: we define typing algorithms that return a unique type for an ex-
pression by generating type variables and accumulating type constraints on these
variables. Using type variables and constraints allow us to remove the subsump-
tion rule by shifting the use of subtyping to the constraint resolution, and to
generate type variables instead of guessing types.

However, our QIR also features record concatenation, which is notoriously
hard to type when combined with a subtyping relation. ML-style type schemes
are not expressive enough to describe the set of acceptable types for a calculus
supporting these features. Solutions exist in the literature, such as bounded
quantification [Pot98] for subtyping, and row variables [Rém89, Rém92]| for record
concatenation. Alternatively, we could also use semantic subtyping [CNXA15].

These approaches significantly complexify types and constraints, thus making
algorithms manipulating types more complex and less efficient. We choose a
more pragmatic solution based on two observations. First, the subtyping relation
introduced in Chapter 4 only exists to deal with record types. Second, our goal
is to precisely type expressions representing queries. We do not need to give an
exact type to all QIR terms. We only want types that give us enough information
to perform operations on queries such as normalization and translations. For
instance, the expression

fun(z,y)—r <y

is not an expression that we want to send to a database, and thus we do not have
much use for an exact type on this kind of QIR expressions.

Therefore, in this chapter, we define typing algorithms for the QIR following
the approach of Ohori [Oho95]. To that end, we first add type variables to QIR
types, then define constraints on types allowing us to restrict the set of valid
type substitutions from Definition 2.3 that can be applied to a type. We sepa-
rate our constraints in two categories: equality constraints between types, and
kind constraints on record types. This allows us to treat subtyping constraints
separately which simplifies our proofs and our constraint system. We extend the
kinds of [Oho95] to account for record concatenation. This solution is a good
compromise that keeps our typing algorithms simple but precise enough for our

82

needs. Note that, contrary to the QIR, the calculus used in [Oho95] is annotated
with types. Because of this, we diverge slightly from this approach in the de-
velopments of this chapter, since we start from untyped expressions of dynamic
programming languages, and thus we want to be able to manipulate untyped QIR
expressions. Our typing algorithms return a type and sets of constraints that re-
strain the possible types that can replace the type variables present in the type.
Finally, we prove our typing algorithms to be equivalent with the type systems
defined in Chapter 4, and define a constraint solving algorithm that generates a
valid substitution given sets of constraints generated by our typing algorithms.

5.1 Typing algorithms

First, we extend QIR types to type variables. We will use the notation T to
denote algorithmic types.

Definition 5.1 (QIR types for typing algorithm). An algorithmic QIR type
is a finite term of the following grammar:

T == B
| T—>T
| T list
| {l:T,...,0:T}
|

«

We use a classic ML-style annotation for type variables: o — int represents
the type of functions that for any type « returns a value of type int. A free
type variable is implicitly bound to a universal quantifier in a prenex form. For
instance, a — « list — « list is actually a syntactic shortcut for Voo : @ —
a list — « list.

Definition 5.2 (Set of type constraints). A set of type constraints C is a finite
set of equations between types noted {T; = T’}ic1.,. A type substitution o
satisfies a set of type constraints C = {T, =T),..., T, =T/} noted o0 =C
if T, =0T, forie l.n.

For instance:

e {«a+ int} satisfies {ov = int}

e {«a+ int} satisfies {int = int}

e {a+— int, o/ — int} satisfies {o = int, o’ = a}

83

e {a+ int,a’ — string} does not satisfy {a = int, o/ = a}

We now define a kind. Kinds allow us to give a description of a record type.

Definition 5.3 (Kind). A kind k is either:
o a record kind {{ly : Ty,..., L, : T}
e a record union kind (T, Ts)

e or a unwersal kind U

Definition 5.4 (Set of kind constraints). A set of kind constraints K is a

finite mapping between types noted {a; L ki}ic1.n- A type substitution o
satisfies a set of kind constraints K = {«; £ {li © T imin U {aw LS
k

(Ti1 Top) et U {@iw = Uiy moted o = K i
o oo, 0o{l;;:Tj;}foriel.n
o oTy1={lLi:Ti}lici.m
o oTyo={li:Titicmiin
o ooy ={l; : T;}icim

Thus, a record kind restricts substitutions of a type variable to record types
that are subtypes of the record type described by the kind, a record union kind

restricts substitutions to the record type that represents the concatenation of two
record types, and the universal kind does not add any restriction. For instance:

e {«+ int} satisfies {« aS U}

{a — {l:int}} satisfies {a = {{l: int}}}

{a — {l:int}} satisfies {« L U}

{a — {}} does not satisfy {« e {l:int}}

{a— {ly : int, 5 : string}} satisfies {« £ {{; : int}}}

{a+ {ly : int, 5 : bool}} satisfies {« £ ({l; : int,l : int}, {l5 : bool})}

84

Note that since a type constraint corresponds to an equality relation between
types, which is a symmetrical relation, the constraints « = T and T = « are
equivalent. In opposite, a kind constraint corresponds to a subtyping relation
between types, which is not symmetric. Thus, order matters in a kind constraint.

We can now give a definition of our typing algorithms. Similarly to Chapter 4,
specific typing algorithms give types to QIR expressions that are compatible with
corresponding databases, and the generic typing algorithm makes specific typing
algorithms work together.

Definition 5.5 (Specific typing algorithm). A specific typing algorithm for
a database D denoted by the judgment I' A ¢ : T, (C,K) is a type system
relation between a QIR typing environment I', a QIR term ¢, and a QIR type
T constrained by C and K.

The generic type system being already suitable for implementation, we can
define the QIR generic typing algorithm in a similar way as in Definition 4.7, but
we use the specific typing algorithms instead.

Definition 5.6 (QIR generic typing algorithm). A QIR term ¢ has a type
T for the database D derivable from a QIR type environment I' in the QIR
generic typing algorithm, noted I' 4 ¢ : T, (C,K),D. The set of inference
rules used to derive this judgment is:

Vg; € €(q).T g 1 T, (C,Ki),D; T "é q:T,(CK) {D;} = {D,MEM}

[Hgq:T,(CK),D o
[4 From(D,):T,(C,K) I'Hiema: T, (C,K)
D#MEM
[A From(D,) :T,(C,K),D I'4¢:T,(C,K),MEM

Now that we have a definition of generic and specific typing algorithms, we
can define specific typing algorithms for databases, starting with one for MEM.

5.2 Specific typing algorithm for MEM

In this section, we define a specific typing algorithm for MEM, and prove that it
is equivalent to the specific type system for MEM of Definition 4.8.

Definition 5.7 (Specific typing algorithm for MEM). The specific typing
algorithm of MEM noted Fygpm is derived by the rules of Figure 5.1.

85

ayand ag fresh T, f:op = ag, 20y F4q: T,(C,K),

Fe:THS - T
& vem T, (0, 0) I Hiey fun’ (2)—=q¢:a; = T,(CU{ae = T}, KU {ay XU ap = U})

DY q i T, (CLKy), THAYq: Ty, (CoKy), afresh

Iy St fC
D Hdem @1 @2 @, (CLUC,U{T, =Ty — a}, Ky UKy U {a X u}) viem ¢ : typeotC(c), (0, 0)

{ag,...,a,} =TV (typeofOP(op))

[Fjey 0p : polytypeof0P(op), (0, {ay LS U,...,0; k u})

r l_'A q1 - T17 (Cla K1)7 - r l_’A g2 T2, (CQ, KQ), o T }_'A qs : T3, (Cg,Kg), et and (6) fresh

CiUC,UC3U{a; =Ty, a1 =bool,as = To, a0 = T3},
K1UK2UK3U{O(1§U,OQ§U}

I Hjew if g1 then gy else gz = s, (

)

Fl_A q; ZTi,<CZ’,Ki>,_ ie 177,
e LG a by 4l Tidimim, (Ul G Ui K

Fl_’A qi Tl:(ClaKI)a_ Fl_‘A q2 TQ,(CQ,KQ),_ (6% fresh afresh

. k
T l_‘/,\%EM a1 > G2 O, (Cl U CQ, Kl U Kz U {Oé é (Tl, Tz)}) I l_JI\;IlEM [] el]-ISt7 (®7 {a = U})

Fl_'A q1 - T1,<Cl,K1)7_ Fl_A q2 T27(CQ,K2>7_ afresh

[Fjew @132 qo ¢ list, (C,UC, U{a =Ty, a list = Ty}, Ky UK, U {a X u})

F|_A q1 Th(Cl,Kl),_ Fl_'A qs TQ,(CQ,KQ),_ « fresh

I'Hey 1 @gs ¢ o list, (C; UC, U {a list = Ty, a list = T}, Ky UK, U {o = U})

Figure 5.1 — The specific typing algorithm for MEM (part 1 of 2)

86

['F4¢:T,(C,K), a,ayfresh

D hlem g1z as, (CU{ar = THEKU {on £ {1 : ao}}, a0 = U})

r }_'A q; : Tia ((C“KZ), o 1€1..3 aq and (0] fresh

Uz‘ (Cz U {Oél list = Tl,Oél — aq list — ap = TQ,OCQ = Tg},
UiKiU{al éU,OéQ éU}

Fl—“,\‘}lEMqlash::t?qg:qg,:ag,()
r I_'A q1 Tl, ((Cl,Kl), . r I_'A q2 Tg, (CQ,KQ), . and (0] fresh

Cl UC2 U {Tl =1 — Q9,07 list = TQ}’
K1UK2U{O(1 gU,Oég éU}

[ey Project{q: | ¢2) : ay list, (

FHAq T, (CLKy), THAq: Ty, (Cy,Ky), afresh

[Hjem Filter{q | ¢2) : « list, (C; UC, U{T; = o — bool, a list = To}, K; UKy U {« LU

DHAq Ty, (Ci,K;), i€1.4 oy, and ag fresh

I FHiem Join{qi, @2 | g3, qu) : a3 list, (U, C; U{T1 = a1 = aa = a3, Ta = oy — az — bool,
ay list = Ty, ap list = Ty}, U, K; U {ag = U, ap = U, a = U})

Figure 5.1 — The specific typing algorithm for MEM (part 2 of 2)

87

There are several points to discuss about this typing algorithm. First, notice
that the function rule, instead of guessing the argument and return types, gener-
ates two type variables to denote them. As a consequence, restrictions on types
in the premises have all disappeared, and have been replaced by type constraints.
This is because at any point in the premises the typing algorithm could (and
probably will) return a type variable, which forces us to handle all type restric-
tions using constraints. For instance, an access to a variable that is bound as a
function argument is always typed with a type variable in this type system.

Second, as expected, the only rules that add kind constraints are the record
concatenation and the record destructor rules. All other constraints are equality
constraints between types.

Third, our problems with the subsumption rule and the rules for the function
and for the empty list disappeared as desired. Indeed, the function rule generates
the two type variables that are used to type the function, the empty list rule gen-
erates the type of the elements of the list, and the subsumption rule disappeared
altogether.

Fourth, notice that we use a function called polytypeof0OP for basic operators.
This function takes a basic operator and returns a type that can contain type
variables which represent all of the types returned by typeofOP called on the
same operator. This is represented by the following property:

Property 5.1 (Coherence of polytypeofOP). Let op be a basic operator.
Then T' € typeof0P(op) iff there exists o such that o(polytypeof0P(op)) =
T with TV(T) = 0.

In other words, the types returned by typeof0OP for a basic operator are ex-
actly the possible types obtained by substituting all of the type variables present
in the type returned by polytypeofOP. For instance, polytypeof0P(=) = o —
a — bool. This solves our problem with the basic operators rule being non-
algorithmic in the specific type system for MEM.

Fifth, the subtyping relation does not appear anywhere in our typing algo-
rithm. Classically, rules for destructors such as the application or the list de-
structor would have a subtyping condition. For instance, for the application, we
would have a rule such as:

}_qllTl%TQ FQQT{ Tllel
Fq1qe: Ty

In our typing algorithm, we move all subtyping restrictions to type constraints,
or to kind constraints in the cases of record concatenation and record destruction.

As an example of how the typing algorithm for MEM works, recall Example 4.1
from Chapter 4:

(fun(r)—r - id) {id:1,name: "Maggie" }

88

Typing the function with the specific typing algorithm of MEM (omitting the
calls to the generic typing algorithm for presentation) gives us:

{r:ag} Hiem r: o, (0,0)

{r:ag} Hiem 7 id - oy, ({as = an}, {as £ {id : au}}, ay £ u})

0 ey fun(r)—r - id 1 ay — ay, ({az = az}, {ay LU, a5 = {id : aul}, ay £ u})

The typing algorithm gives this function the type as — a4 along with the
constraints that as is equal to ag, and that as can only be substituted to a record
type containing at least the association from the label ¢d to the type ay. In other
words, the type of this function after applying a type substitution that satisfies
all constraints generated by the typing algorithm can be {id : int} — int,
{id : bool} — bool, {id : int,name : string} — int, ...or any other function
type taking a record type containing an association for the label id and returning
the type associated to id in its argument type.

The application is then typed as:

0 Hjem {id : 1, name: "Maggie" } :
{id : int,name : string}, (0, 0)

0 Hjem (Fun(r)—r -id) {id:1,name: "Maggie" } :
ay, {ag — ay = {id : int,name : string} — a1, a3 = as},
(o U a0 £ U a5 = {{id : as}}, a0 = U0})

The type system gives this application the type o along with the extra con-
straint that the function type we obtained earlier is equal to the function type
{id : int,name : string} — «;. Combining the constraints, we get that the
type of the function must be {id : int, name : string} — int, and that the type
of the application must be int as expected. We will see later in this chapter how
to solve those constraints to generate the substitution that give us the correct
result.

As another example, recall the query from Example 3.2:

Filter{fun(r)—r-id < 2| [{id: 1}, {id:2},{id:3}])

Even though this example is quite simple, generating a type for this query
using the typing algorithm involves building a derivation of a respectable size.
Therefore, we proceed in several steps. Let us first type the configuration (omit-
ting the calls to the generic type system, universal kinds, and reducing the of the
data argument for presentation):

{r:aq} I—“,\‘A‘EM r:a,(0,0)
{r:oa} Hoy r-id - ag, ({as = ar}, {os = {{id : ag}}})

89

C:

b {r: o} Hen<: as — a4 — bool, (0, () ¢

{r:aq} I—“,\‘,}EMS reid: as, ({as = ag, a4 — a4 — bool = ag — az}, {as X {id : as}}})

B {r:a;} Fjey 2 @ int, (0, 0)

{r:ay} Fjey m-id <21 ay, ({as = a1, a4 — a4 — bool = ag — as,
_) k(.
A= az = int = ag}, {as = {{id : ag}}t})

0 I—“,\‘A‘EM fun(r)—r-id <2:0; — ag, {as = a1, a4 = a4 — bool = ag — ag,
. kK .
az = int — as}, {as = {id : agl}}

)

The constraints tell us that the configuration is a function which argument is
a record containing an association for label id by a5 = oy and ay = {id : ag}}.
Then by ay — a4 — bool = ag — a3 and oz = int — a9, we get that
ag = a4 = int and ay = bool. Therefore, according to the constraints, our
configuration should have type {id : int, ...} — bool, which is what we expected.

The entire query is then be typed as:

0 Hjem 1 int, (0, 0)
A 0 Fiem {id: 1} - {id : int}, (0,0)
D Fiw [{id:1}] : as list, ({as = {id : int}, a list = ay list},0)

@ l_Jl\é/}EM [] L Qg liSt, (@, @)

0 Fjey Filter{fun(r)—r-id < 2 | [{id:1}]) : oy list, (
CLUCy U {aq — g = a7 — bool, a7 list = ag list}, {as = {{id : ag}}})

These constraints restrict the argument type of the configuration to {id : int}
by az — bool = a; — aw, ay list = ag list, and ag = {id : int}, and tell us that
the query returns a list of type {id : int} list which is what we expected as well.
Note that, just like in the previous example, if the records had more fields then
the type in the equality constraint would have changed to ag = {id : int,...}
which would still have solutions along with the kind constraint since it only forces
the result type to be substituted to a record type containing the association label
1d to int.

One last example to illustrate record union kinds:

{z:ly:2}x{z:true})- -z

90

Typing it gives us:

O Fjem 1:int, (0,0) 0 Hjey 2 : int, (0,0) 0 Fjem true : bool, (0, 0)
OFgem {z:1,y:2} : {z:int,y : int},(0,0) 0 Fgew { z:true } : {z : bool}, (0, 0)

Dgem o Ly:2yxi{z:true } : ay, (0, { X ({x : int,y : int}, {z : bool})})

ey {z:ly:2}a{z:true }) -z : a3, ({ar = ay},
{an = ({z : int,y : int}, {z : bool}), s = {z : a3}, a3 = U})

These constraints restrict the result type to the type associated to the label x
in the record restricted by the record union kind of the types of the two records.

We now want to prove that the typing algorithm for MEM is equivalent to the
specific type system for MEM. This equivalence allows us to transfer the properties
of Chapter 4 for the specific type system for MEM to the typing algorithm for
MEM.

We first prove that if the typing algorithm for MEM applied on a QIR ex-
pression gives a type T and sets of constraints, then applying a type substitution
that satisfies the constraints to T should give us a type that is derivable in the
specific type system for MEM. In other words, there should be no way for the
typing algorithm to give to an expression a type that cannot be deduced by the
specific type system.

This property of soundness is crucial since it guarantees us that for any o
the specific type system can deduce the corresponding type. Therefore, all the
properties deduced in Chapter 4 are carried over to QIR expressions typed by
the typing algorithm.

Definition 5.8 (Soundness of a specific typing algorithm). A specific typing
algorithm 4 is sound if VI',q,0 : T FA ¢ : T,(CCK) ATV (6cT) =0 A0 |

k
CAoEK) = ol'bFpgq:oT.

Theorem 5.1 (Soundness of the typing algorithm for MEM). Let ¢ € Eyp
and T a QIR typing environment. Suppose that for all D € D\ MEM, -4 is
sound. Then, gy is sound.

Proof. By induction on the typing derivation of T' Fjzy ¢ : T, (C, K):
e I o Theyz:T,(0,0)

The property is immediately true since we have o',z : 6T Fpyem x @ 0T
which is true for any o.

91

T Hiey fun’ (2)—q: a0y = T,(CU{ay = T} KU {a; £ U, 0y = U})

Let o be a solution for CU{ay = T} and for KU{ay LU, 0p = U}, then
o is a solution for C and K and ocas = oT. Since we have I', f : a1 —
g,z - ay FA ¢ T,(C,K), , by induction hypothesis we get o, f :
ooy = oag,x ooy - q:ol, [sool,f:oay = oT,x: 001 Fpmem ¢ :
oT. Therefore, we have oI Fyem funf(x)—>q ooy — oT.

T Hiem @ CI23047(C1UC2U{T1:T2—>a},KluK2u{aéu})

Let o be a solution for C;UC,U{T; = Ts — a} and Ky UKy U{« ES U},
then o is a solution for C;, Cy, Ky, and Ky and 0Ty = 0Ty — oa.
Since we have T' F4 ¢, : T1,(C,Ky), and ' F4 ¢y @ Ty, (Cy, Ky),
by induction hypothesis we get o' F ¢, : 0T}, and o' F ¢o : 0T5,
so o't q : 015 — oa, . Therefore, we have oI' Fyem q1 2 : o

[Fjew ¢ typeofC(c), (0, 0)

The property is immediately true since we have
ol Fmem ¢ : typeofC(c) = otypeofC(c) for any o.

[Fjey ifgthengelseqs @ as, (CLUC, UC3 U {ag = Ti,aq =
bOOl,OéQ = TQ,CVQ = Tg},Kl U KQ U Kg U {0[1 i U7 (6] i U})

Let o be a solution for C; UCy U C3 U {a; = T1,1 = bool, g =
To, a0 = T3} and Ky UKy UKz U {oy X U, ay LS U}, then o is a
solution for C;, C,, Cs, Ky, K5, and K3 and oca; = oT; = bool,
ooy = 0Ty, oay = oT3. Since we have I' F4 ¢ : T, (C,Ky),
I 4 g To,(Cy,Ky), , and T' F4 g5 : T3,(C3,K3), , by induction
hypothesis we get o' - ¢ : 017, , o' gy : 015, , and o' F ¢3 :
ols, ,soocl'Fq :bool, ,ol'k q:0as, ,and o' F g3 : cas,
Therefore, we have ol' Fyem if ¢ then ¢, else g3 : cas.

r l_f\LAlEM g1 X g : o, ((Cl U CQ,Kl U K2 U {Oé é (Tl,Tg)})

Let o be a solution for C; UCy and Ky UKy U {a = (T1, Ts)}, then
o 18 a solution for (Cl, CQ, Kh and K27 and O'Tl = {lz . T;}izlnm,
0Ty = {l; : T icmatin, o = {l; : Ti}izi . Since we have T' F4 ¢ :
T1,(C,Ky), and T' F4 g : Ty, (Cy,Ky), , by induction hypothesis
we get o' F ¢ : 0Ty, and o' F gy : 0T, , so o' b ¢ : {l; :
T'Vietm, > 00 Fqo:{li : T/ }izms1.m, - Therefore, we have ol Fyeu
G > qo:{l; T/} o1 = 0.

PHiem g1 a2, (CU{an =THKU{x LS {1 asl}, s iU})

92

Let o be a solution for CU{a; = T} and KU {ay £ {l: al}, ag aS U},
then o is a solution for C and K and ca; = oT, ooy <X {l : cas},
so oa; = {...,l : oag,...}. Since we have I' F4 ¢ : T,(C,K), ,
by induction hypothesis we get o' - ¢ : 0T, ,sool'Fq: {...,l:
oag, ...}, . Therefore, we have o' Fyem g+ 1 : oas.

The complete proof can be found in Appendix B, page 197.]

We now want to prove that our typing algorithm is complete. Namely, if the
specific type system for MEM applied to a QIR expression returns a type 7', then
the corresponding typing algorithm returns a type T’ and constraints such that
there exists a type substitution satisfying the constraints that applied to T’ gives
T.

The completeness property gives us a measure of precision of our typing algo-
rithm, since the typing algorithm that does not type anything is sound, but not
very useful. The property of completeness shows that the typing algorithm gives
us the same properties than the type system on the same set of QIR expressions.

As explained at the beginning of this chapter, our types cannot express poly-
morphic record concatenation precisely. This loss in precision is not reflected in
our specific typing algorithm since our constraints are powerful enough to ex-
press those types, it is instead exposed in our algorithm of constraints resolution,
presented in Section 5.3.

Note that the order of the composition of type substitutions matters. For
instance, we have:

e {a+— int}o{d — string} = {a +— int, o/ — string}
e {a+— int}o{a > string} = {a — string}
e {/— int}o{ar o'} ={a— int, o’ — int}

This last example gives us a substitution that successfully replaces two type
variables with an actual type, but we have to be careful with the order of the
composition. Indeed, doing the composition the other way gives us:

{a— d'}o{d + int} = {a+— o,a' — int}
which does not replace o/
e {a— int,a/ — int}(a — o) = int — int
o {a—d,d/ —int}(a — o) =d — int

The completeness proof of the typing algorithm of MEM including the follow-
ing lemma involves the composition of type substitutions, but the problem shown

93

above appears only when a type variable in the domain of the second substitu-
tion appears in the image of the first substitution. However, our typing algorithm
always adds constraints that have fresh variables in their domains, which allows
the proofs to avoid the problem by composing substitutions in the correct order
which is that the substitution with fresh variables in its domain must be the
second substitution in the composition.

First, since we do not have any type annotation to guide us for the QIR
function, we need a preliminary property of coherence on all specific typing algo-
rithms.

Definition 5.9 (Coherence of a specific typing algorithm). If I, f : T; —
To,z:TiFAq:T,(C,K) then T, f : oy — a, 7 : ay b g : T, (C',K') with
oy and «p fresh variables, and for all o that satisfies C and K, 0/ = 0o{ay —
T, ay — To} satisfies C' and K" and oT = o'T".

Property 5.2 (Coherence of the specific typing algorithms). We assume that
all the specific typing algorithms linked to QIR are coherent.

Of course, we next prove the coherence of our specific typing algorithm for

MEM.

Lemma 5.1 (Coherence of the specific typing algorithm for MEM). The
specific typing algorithm for MEM is coherent.

Proof. By case analysison T, f : Ty — To, 2 : Ty Fjey ¢ T, (C, K). Since all
the premises accept any type, using type variables in I' would simply result in
replacing T and T, everywhere by a1 and as. So {ay — Ti,as — To} T =T,
{a1 = Ti,as = To}C' =C, and {ag — Ty, a9 — T} K =K. O]

We can now define the completeness of a specific typing algorithm, and prove
it for the typing algorithm of MEM.

Definition 5.10 (Completeness of a specific typing algorithm). A specific
typing algorithm 4 is complete if U -p ¢ : T = (T'FAq: T, (C,K)A (3o |
k

cECAcEKATT =T)).

Theorem 5.2 (Completeness of the typing algorithm of MEM). Let q € Ejpy
and T' a QIR typing environment. Suppose that for all D € D\ MEM, 3 is
complete. Then, ey is complete.

94

Proof. By induction on the typing derivation of I' Fyem g @ T

] F,ZL’ZT"MEM.I'ZT
Immediate since T, : T Fjey 7 : T, (0, 0) by taking o = 0.

o I' Fvem funf(a:)—>q T — Ty

We have I', f : 17 — Ty,x : 11 + q : T, . By induction hypothesis,
we get I'f : Ty — To,2: Ty FA ¢ : T/, (C,K), , and there exists o’
that satisfies C and K such that ¢’T" = T,. So by Property 5.2 T', f :
ar = ag, i FA g T (CKY), ,and 0 =o' o{ay — T1,ap = Ty}
satisfies C' and K’ and oT” = ¢/T' = T,. But then we have I’ gy
fun/(2)—=q: 01 = T, (C'U{ay = T}, K U {a; LU ap = U}), and
o satisfies C' U {ap = T"} and K' U {o LU oy = U}. And we have
0'(0(1 — T”) =T, = T,.

o I'Fvem ¢1 @2 : T

We have I' - ¢ : 177 — T, and I' - ¢ : Ty, . By induction
hypothesis, we get, for i € 1.2, I F* ¢; : T}, (C;,K;), , and there
exists o; that satisfies C; and K; such that 01T} =T — To, 0oT, = Ty.
But then we have I' Fiey @1 ¢2 : o, (C = C,UC, U {T) = Ty —
a}, K =K, UKy UA{a S U}). 0 = 010090 {a — Ty} satisfies Cy,
C,y, Ky, Ky, so o satisfies K and since « is fresh 0T, = 05T, = Ty and
oT) =0T, =T, = Ty =0T, = oa, so o satisfies C. And we have
o = T2.

o ' Fyem ¢ : typeofC(c)
Immediate since ' Fjey, ¢ : typeofC(c), (0,) by taking o = 0.

oI l_MEM ifq1 then qo else qs - T

We have I' = ¢; : bool, , I'F g : 7T, ,and I' F¢q3 : T, . By
induction hypothesis, we get, for i € 1.3, T F4 ¢ : T, (C;,Ky), _,
and there exists o; that satisfies C; and K; such that o;T] = bool,
09Ty =T, 03Ty = T. But then we have I' Fjz, if ¢; then ¢, else g3 :
a, (C=C,UCUC3U{a; = T),a; =bool,ay = Thap = T4} K =
K; UK UK3U{ x U, ay X U}). 0 = 0y0090030{a; > bool,ay — T}
satisfies C, C,, C3, Ky, Ky, and K3, so ¢ satisfies K and since oy and
ay are fresh oT] = 01T = bool = cay, 0Ty = 09Th, = T = cay,
oThy = 03T =T = oay, so o satisfies C. And we have cay =T.

o 'Fyem qa < qo : {li : T/ }icim

95

We have ' qq - {l; : T/ }iciom, _ and T'Fqo - {l; - T Vit 1om, - By
induction hypothesis, we get, for i € 1.2, T iy ¢ : T4, (Ci, K;), and
there exists o; that satisfies C; and K; such that o, T} = {l; : T/ }ic1.m,
oo Ty ={l; - T!}icmt1.n. But then we have I' l—“,\‘,l‘EM G g a,(ClU
Co, Ky UKy U{a £ (T, TYY. 0 = 1000 {a — {li + T/} icn)
satisfies C and K and since « is fresh o T) = o4 T} = {l; : T/}i=1.m and
oTh =0Ty ={l; : T/ }icni1.n- And we have oo = {l; : T/ }ic1 .

.FFMEMq°l:T

We have I' F ¢ : {.. : T,...}, . By induction hypothesis, we
get T F4 g @ T/ (K) = and there exists ¢’ that satisfies C and
K such that O‘/T/ ={.. T,...}. But then we have I' Fjizy ¢ -
l:a(C=CU{a = T’},K =K U{a = {l: all,as = UY).
og=0cof{ag— {....1:T,...},aq — T} satisfies C" and K’, and since
aisfresh o' =0T ={...,)1:T,..} ={...,l: 0as,...} = oay, so
since {...,l: oag,...} 2{l:0as}, o satisfies C and K. And we have
ooy = T.

The complete proof can be found in Appendix B, page 201. O

Crucially, our completeness theorem does not directly give us a substitution
to apply to the type returned by the generic typing algorithm applied to a QIR
expression. Indeed, our proof generates a substitution if it is already provided a
type, a type for the QIR expression is provided and the completeness builds the
corresponding substitution. For instance, consider the example:

Example 5.1.
fun(z)—{l:x -l orig:x }

can be given the types {l : int} — {l: int,orig : {l : int}}, or {l : bool} — {I:
bool,orig : {l : bool}}, or even {id : int,name : string} — {id : int,orig :
{id : int,name : string}} by the generic type system.

The generic typing algorithm gives us

{2 a3} Hjem 7 as, (0,0)

{x:as} Hiay 2+ 1 on, ({on = as}, {ar = {I: ax}}, a0 = U})

{7 a3} Hiem 7 = az, (0,0)

{v a3} Hiem {1z - Lorig:a} : {l: ag,orig : as}, ({an = as}, {oy £ {1 asl}, s £ u})
0 ey fun(x)—{l:2 - Lorig:x } : az — {l: ag, orig : as}, (

{ar = as}h, {1 = {1}, an = U, a3 = U})

96

If we follow the proof of completeness taking {l : int} — {l : int,orig :
{l : int}} as the type given by the specific type system, we get as expected the
final substitution {a; — {l : int}, ay +— int,as — {l : int}} which gives us
indeed the same type. An equivalent result is obtained if we replace {l : int} by
{l : bool} or {id : int, name : string}.

In the next section, we present an algorithm to generate a substitution directly
from the result of the generic typing algorithm to infer a type for a QIR expression
with no help from the specific type system.

5.3 Constraint resolution

The last missing piece of our type inference algorithm is the generation of a
solution for our sets of constraints. We adapt the unification algorithm of [Oho95].
We have additional rules: one to handle the record union kinds fully applied, three
to handle polymorphic record union kinds, and one to handle equality constraints
between list types.

Definition 5.11 (Unification algorithm). The unification of constraints C,
K, noted unify(C,K), applies the following rules on (C,K, @, () respecting
the order until none of them apply:

1. (CU{T =T}K,0,SK) = (C,K,0,SK)

(Cu{a=T}KU{a=U}0,SK) =
9 (0'C,0'K,0'000’,0'SKU {a £ U})

if o ¢ TV(T)

where ¢’ = {a— T}

(CU{on =}, KU{oq = {ls: Ty, ool : Ty 1 T 1 TOY
ay = Lt Tonsts ool s Ty B T L TV)Y, 0, SK) =
((CU{T =T/ ..., T, =T},

(KU {o = {ly: Ty, b T, T L IR,

o500 o'SKU{ar = {ly: Tu,. ol T U T L TORY
where o' = {a; — ay}

(CU{a={l: Tlictmnb, KU {a £ {l; : T{Bjm1.m},0,8K) =
('(CU{T; =T;|j€l.m}) oK,
4 oo o', 0'SKU{« £ {4 - T;-}}j:L.m})
if a g TV{li: Ti}ictmon)
where o' = {a— {l; : T; }ict.mom }

97

(CU{{li: Ti}icin=AlL : T;}ic1n}, K, 0, SK) =
(CU{T; =T;|ie€l.n},K, o, SK)

&

6. (CU{T; > Ty=T, = T,},K,0,SK) =
(CU{T, =T, Ty =T,},K, 0,SK)

7. (CU{T, list = T, list}, K, 0,SK) = (C U {T; = T2}, K, o, SK)

8a. (CLKU{a = ({li + To,ooiilm = Tonnl = Thoo 0l 0 T0b {lng
Tonatyeoosln s T, 0T 0TI} 0, SK) =
(0'C,0'K, 0’0 0 o', 0'SK U {a L ({ly = Ty, ol s T e T 1
T Almst s Toaty ool s T, 0T o1 TV
if Vi€ 1.n.a ¢ TV(T;) and Vj € 1.o.a ¢ TV(T")
where o' = {aw— {l; : Ty, .. Ly T, 10 T, .0 - TV}

8b. (C,KU {a = (aq,a2)},0,SK) = (0/C,0'K, 0’0 o o/, 0'SK U {a =
(o1, 0)}) where o/ = {a— {},a1 — {},aa — {}}

8c. (C,KU{a = (o, {l; : T:hic1n)},0,SK) = (0'C, 'K, 0’0 0 o', 0’SK U
{a = (&, {l;: Titic1.n)}) where o/ = {a— {l; : Tihictn, o — {}}

8d. (C,KU{« £ ({l; : Ti}iz1.m, &)}, 0,SK) = (6'C,0'K, 0’0 0 ', 6'SK U
{Oé é ({ll : Ti}izlnn, O/)}) where o' = {O[—> {ll : Ti}izlun, o — {}}

where SK is a set of solved kind constraints, and TV (T) is the set of type
variables in T. This gives a result (C', K/, g, SK). If C"' = (), then the algorithm
returns o, otherwise it returns an error.

Recall that T = «is equivalent to & = T, so rule 2 also applies on CU{T = «a}.

Rule 1 states that if we have a type constraint that is trivially true such as
int = int then we eliminate it. Rule 2 states that if a type variable « is linked
to a type T' by a type constraint and to a universal kind by a kind constraint,
then we apply the substitution of a to T'. Rule 3 states that if two type variables
are linked together by a type constraint and both are linked to a record kind by
kind constraints, then substitute one type variable by the other and create type
constraints between the types linked to the common labels. Rule 4 states that
if a type variable is linked to a record type by a type constraint and to a record
kind by a kind constraint, then substitute the type variable with the record type
and create type constraints between the types linked to the common labels. Rule
5 states that if we have a type constraint between two record types with the
same labels then create type constraints between the types linked to the labels.
Rule 6 states that if we have a type constraint between two function types, then
create type constraints between the argument types and the return types. Rule 7
states that if we have a type constraint between two list types, then create a type

98

constraint between the element types. Rule 8a states that if a type variable is
linked to a record union kind of record types, then we substitute the type variable
with the record type corresponding to the concatenation of two records that have
the corresponding types. Rules 8b, 8¢, and 8d handle polymorphic record union
kinds, and state that if a type variable « is linked to a record union kind of type
variables and record types, then we substitute those type variables to the empty
record type first, and then we substitute « to the record type corresponding to the
union. As explained at the beginning of this section, this is sufficient for us since
we do not need precise types for polymorphic record concatenation. These rules
are last in the priority list since we only want to lose precision as a last resort,
after we make sure no information on that record concatenation is available. For
instance, the expression

fun(z,y)—zr <y

is typed oy — a9 — « with a kind constraint « X (a1,) where v and avp are the
types given to the variables x and y respectively. Then, our unification algorithm
uses rule 8b to substitute a; and as to the type {}, and then rule 8a to substitute
a to the type {}. Thus, this expression is given the type {} — {} — {} which
is not the most general type, but is good enough for us since this QIR function
that is not applied to anything is not of much interest to a framework that aims
to send queries to databases.

Our rules 1 to 5 of our algorithm are exactly the same as the rules (T) to (V)
in [Oho95]. Our rule 6 is the same as their rule (IX). Our rule 7 is similar to rule
6. and does not bring any new difficulty for proving properties on our algorithm.
Their rules (VI) to (VIII) are absent as they do not apply to us. Only our rules
8a, 8b, 8c, and 8d dealing with record union kinds require extra work to prove
our unification algorithm correct.

We now go through a few examples (skipping SK for presentation). Recall
Example 4.1 from Chapter 4:

(fun(r)—r - id) {id:1,name: "Maggie" }
For which the typing algorithm for MEM gave us:

0 Hjem (Fun(r)—r - id) {id: 1, name: "Maggie" } :
ay, ({ag — a4 = {id : int,name : string} — a1, a3 = as},
{ar 2 U, a0 = U, 03 = {{id : au}}, g = U})

We can apply our unification algorithm to those constraints in order to gener-

ate a substitution to apply to the type a; returned by our typing algorithm.

unify({ay — a4 = {id : int,name : string} — oy, a3 = as}, {o LU ay =

99

U, o = {id : au}}, ay ES U}) gives us:

({ae = a4 = {id : int,name : string} — oy, a3 = s},
k k K o K
{1 =U,a0 = U a3 = {{id : au}}, g = U}, 0)

({ae = {id : int, name : string}, ay = oy, a3 = an},
fon £ 0,02 £ U 03 & {{id : agl}, a0 £ U},0)

({ay = a1, a3 = {id : int,name : string}},
=2 {on U005 = {id : aul} au E U},
{ag — {id : int,name : string}})

({as = {id : int,name : string}},
=2 oy = U a5 = {id : n }}},
{ag — {id : int, name : string}, as — a1})

({1 = int},

k
=4 {al = U}7
{ag — {id : int, name : string}, ay — ag,
as — {id : int,name : string}})

(0,

@7

{ag — {id : int,name : string}, ay — aq,
as — {id : int,name : string}, oy — int})

which gives us the type {...,a; — int}«a; = int as expected.
Our second example:

Filter(fun(r)—r-id < 2| [{id:1}, {id:2},{id:3}])
gave us the type and constraints:

0 Fjey Filter{(fun(r)—r-id < 2| [{id:1}]) : ay list, (
{as = a1,a4 = a4 — bool = ag — a3, a3 = int — an, a5 = {id : int},
Qasg list = Qg liSt,) — ag = ap — bool, ar list = o].ISt},

{ iU,OCQiU,O&ggU,O{4£U,OZ5i{{id:aﬁ}}7aﬁiU,O{7iU,

OégéU,OégéU}

100

for which unify(C, K) gives us:

({as = 1,4 = a4 — bool = g — a3, a3 = int — ag,ag = {id : int},
ag list = g list, a1 — @ = a7 — bool, a7 list = ag list},
k k k k k. k k

{1 =U,a0 =U,a3 =U, oy = U, 5 = {{id : s }}, 06 = U, a7 = U,

k k
Qs :U,Ckg :U},(b)

({as = a1,y = a4 — bool = g — int — ay, ag = {id : int},
Qasg list = Qg liSt, a1 — g = iy — bOOl, (674 list = o].ISt},
K K K K (. K K
=2 {1 =U,aa=U,aqy =U,a5 = {{id : ag}},a6 = U, a7 = U,
K K
ag = U7 Qg = U}7
{az — int — as})

({as = a1,a4 = a4 — bool = ag — int — o, {id : int} list = ay list,
a; — g = a7 — bool, oy list = {id : int} list},

{ LS U, g LS U, oy X U, as X {id : as}}, as X U, ay X U, ag X U},

{a3 — int — g, ag — {id : int}})

({as = a1, 4 = ag, g — bool = int — ap, {id : int} list = ag list,
a; — g = a7 — bool, oy list = {id : int} list},
{y X U, an X U, ay X U, as x {id : ag}}, as X U, ay X U, ag X U},
g — int — an, ag — {id : int
{ 3 s L8 { }})

({as = a1, a6 — bool = int — ay, {id : int} list = ay list,
a; — g = a7 — bool, oy list = {id : int} list},
Kk k K (. K k k

{on =U,00 =U,a5 = {id : as}}, a6 = U, a7 = U, g = U},

{as — int — an,ag — {id : int}, a4 — ag})

({as = a1, a6 = int,bool = ay, {id : int} list = ay list,
a1 — g = a7 — bool, oy list = {id : int} list},
{ LS U, ay X U, as X {id : ag}}, as X U, ay X U, ag X U},

{asz — int — g, ag — {id : int}, ay — ag})

({as = a1,bo0l = g, {id : int} list = ay list,

a3 — g = a7 — bool, oy list = {id : int} list},
{on LU0y U a5 = {{id : int}}, ar LU g = U},
{az — int — o, ag — {id : int}, a4 — int, ag — int})

101

({as = ay,{id : int} list = ay list,
041 — bool = a7 — bool 047 list = {id : int} list},

{ LU, a5 = {{zd int}}, a7 = £ U, = U},
{a3 — int — bool, ag +— {id : 1nt},a4 — int, o — int, ag — bool})

({as = g, {id : int} list = ay list,
a1 = a7,bool = bool, ay list = {id : int} list},
{al =U,a5 = {{zd int}}, a7 = U, o = U},
{a3 — int — bool,ag — {id : int}, oy — int, o — int, ay — bool})

({a5 = ay, {z’d int} list = ag list, a1 = a7, a7 list = {id : int} list},
{a1 =U, a5 = {{zd int}}, a7 = £ U, = U},
{as — int — bool, ag — {id : 1nt},a4 — int, o — int, ag — bool})

({a5 = a7, {id : int} list = 049 list, a; list = {id : int} list},

{a5 = {{id : int}}, a7 = £ U, o = U},

{az — int — bool,ag — {id : int}, oy — int, ag — int, ay — bool,
o1 —> 057})

({as = a7, {id : int} = ay, a7 list = {id : int} list},

{os = {{id : int}}, a7 = U, a9 = U},

{as — int — bool, ag — {id : int}, oy — int, o — int, ay — bool,
a1 — Oé7})

({as = a7, a7 list = {id : int} list},

{as = {{id : int}}, ar = U},
{a3 — int — bool,ag — {id : int}, oy — int, o — int, ay — bool,
ay — a7, a9 — {id : int}})

({as = a7, a7 = {id : int}},

{as = {{id : int}}, o7 = U},
{az — int — bool,ag — {id : int}, oy — int, ag — int, ay — bool,
g — a7, 9 — {id : int}})

({a5—{id int}},
{as = {{zd int}}},

{a3 — int — bool,ag — {id : int}, oy — int, o — int, ay — bool,
aj — {id : int}, g — {id : int}, ay — {id : int}})

102

({int = int},

0
2)
= {as — int — bool, ag — {id : int}, oy — int, ag — int, ay — bool,
ag — {id : int}, g — {id : int}, a7 — {id : int}, a5 — {id : int}})
(0,
=1 0.
{as — int — bool,ag — {id : int}, oy — int, o — int, ay — bool,

aj — {id : int}, g — {id : int}, a7 — {id : int}, a5 — {id : int}})
which gives us the type {...,a; — {id : int},...}a; = {id : int} as expected.
Finally, our last example:
{z:ly:2}x{z:true})- -z
was typed as:

Djem {z:ly:2}a{z:true }) -z : az, ({az = a1},
{an = ({z : int,y : int}, {z : bool}), s = {z : a3}, a3 = U})

for which unify(C, K) gives us:
({042 = 061}7

{an £ ({z : int,y : int}, {z : bool}), s = {z : az}}, a3 = U},)

({ag = {z : int,y : int, z : bool}},

a k k
=% {ag = {{w: agl}, a3 = U},
{a; — {x : int,y : int, z : bool}})

({&3 = int}7
=1 {a3 = U}>
{a; — {z :int,y : int, z : bool},ay — {z : int,y : int, z : bool}})

(0,9,

2
= {ay — {x : int,y : int, z : bool}, s — {z : int,y : int, 2 : bool}, a3 > int})

which gives us the type {..., a3 — int}as = int as expected.

Note that the type inference problem has been proven to be NP-complete for
the relational algebra [Van05, VABWO02| and for the Nested Relational Calcu-
lus [BVO7]. Thus, we know that our algorithm is NP.

We next give some definitions adapted from [Oho95| before proving the va-
lidity of our unification algorithm.

Definition 5.12 (Well-formed kind constraint). A kind constraint K is well-
formed if and only if TV (img(K)) C dom(K).

103

For instance, {ay LU ap & {l: aq}}} is well-formed, but {ay £ {1 : aq}}}
is not.

Definition 5.13 (Kinded substitution). A kinded substitution is a pair (K, o)
of a kind constraint K and a substitution o such that 7'V (c) C dom(K).

Definition 5.14 (Kind of a QIR type). A QIR type T has a kind k£ under K
k
if the judgment K = T : k is derivable from the following rules:

k
e KFT:Uif TV(T) C dom(K)

KU{a=k}ta:k

KU{o Sl Toeel T W b il Tasee b s T}

k
KE{ Ty, ol s Ty {0 T, s TR
TVl Ty,)l Ty, ... }) € dom(K)

k
KE{l Ty, b s T s ({0 Tad, {4 2 T}
Where {ll} U {l]} — {ll, ce e ,ln} and {lz} N {lj} - Q),
and if TV({ly : T1,..., 0, : Tp}) € dom(K)

Definition 5.15 (Respect of a kind constraint). A kinded substitution (K, o)
k
respects a kind constraint K’ if Vo € dom(K') K F oo : o(K'()).

Definition 5.16 (Unifier). A kinded substitution (K, o) is a unifier of a
pair of sets of constraints (C, K) if it respects K and if o satisfies C.

Definition 5.17 (Most general unifier). A kinded substitution (K, o) is a
most general unifier of a pair of sets of constraints (C, K) if it is a unifier of
(C, K) and if for any unifier (K", ¢’) of (C, K) there exists some substitution
o” such that (K", 0”) respects K’ and ¢’ = 0" 0 0.

104

We next prove that our unification algorithm terminates, and doing so it
returns a unifier or fails. Rule 8a, 8b, 8c, and 8d prevents our algorithm to
return a most general unifier as a direct consequence of our design choice to not
have precise types to express polymorphic record concatenation, but our property
of soundness is still valid on any substitution.

Theorem 5.3. The algorithm untfy(C,K) terminates.

Proof. Let N(C) be the number of type constructors in C. The measure of
the lexicographical pair (|[dom(K) |, N (C)) decreases with each rule. Indeed,
the domain of K strictly decreases in rules 2, 3, 4, 8a, 8b, 8c, and 8d, and it
stays the same while the number of type constructors in C strictly decreases
in rules 1, 5, 6, and 7. [

Theorem 5.4. The algorithm unt fy(C,K) computes a unifier for the set of
constraints C and K if one exists, and fails otherwise.

Proof. We follow the proof of Theorem 3.4.1 in [Oho95].

The main part of this proof is to show that if unify(C,K) returns a
substitution then it is a most general unifier for C and K.

It is easily verified that each transformation rule preserves the following
property on the result of its application to (C, K, o, SK):

(1) K and KU SK are well-formed kind constraints; 7V(C) C dom(K);
dom(K) N dom(SK) =); and dom(SK) = dom(o).

We establish that if property (1) holds for (C, K, o, SK), then each trans-
formation rule also preserves the following properties on its result:

(2) For any kinded substitution (K, 0q), if (Ko, 0g) respects K and oq
satisfies C U o, then (Ko, 0¢) respects SK.

(3) The set of unifiers of (K'USK', C'U¢”) is included in the set of unifiers
of (KUSK, CUo).

In [Oho95]|, property (3) states that the sets of unifier are equal, but this
property is false in our case because of the rules 6., 8a., 8b., 8c., and 8d.

As stated before, only our rules on record union kinds add a significant
difference to the algorithm presented in [Oho95|. Therefore, we refer the
reader to the cited paper for most of the proof, and we only discuss this
particular rule which is proven in a roughly similar way as for rule 2.

Rule 8a: (C,KU {a = ({ly: To, ool s Tl T 1 T3 (g
Tonaty ooyl T 0T 0 0 TV} 0, SK) =
(0'C,0'K, 0’0 0 o/, 0'SK U {a = ({ly : Ti,oo il @ Tonsli = T, 0
T A1 Tty ooy b s Ty s T 00 2 TED)

105

where o' = {a— {l; : Ty, L, T, 10T, .. 0 - TV}

Property (2). Let (Ko, 00) be a kinded substitution such that (Ko, oq)
respects 0'K and oy satisfies 0’'C U (0’0 0 ¢'). Then oy = o(, 0 ¢/, and 0],
satisfies CU 0. Since TV(T ={ly : Ty, ..., L, : T, 5« T7, ..., 10 - TV} CK,

k

then TV (o) C Ko and Ko F oga : ({l 2 Toyeoo gl 2 Ty 1y 2 T4, 000
T Almer @ Togty oyl 2 Tl 2 T 000000 2 T23). Therefore, (Ko, o09)
respects KU {o = ({ly + To,oooil 2 Tl 2 T 0 2 T {lnsy
Tty ooyl s T 1T o000 - T2). Then by property (2) of the premise
of the rule, (Ko, 0g) respects SK, and thus (K¢, 0g) respects o’ SKU{« ES ({4 :
To, ool s T T T st s Tty eyl s T 0 T
Toh}-

Property (3). Let o¢ be any substitution. If o satisfies 0'C U (0’0 o o)
then it satisfies C U 0. Let Ky be any kind assignment such that (Ko, 0o)
is a kinded substitution. Suppose oy satisfies 0'C U (0’0 o ¢’). Then since
oo = oy 0 0d, if (Ky,o0) respects o’K U 0'SK U {« 28 ({ly = Toyeoiyln
T, Uy o T U T st 2 Tty eeon b 2 T by 2 T 000 2 TV}
then it respects K U {« e ({l - Tyl s T O T T {l
Tots eyl o Ty o T 00000 - TV} USK. Thus, if (Ko, 0¢) is a unifier
for (KU o'SKU {ov = ({ly : Tuyoo iyl = Tl T T3 (s
Tontty ooyl Ty o T - TV} 6'CU (/0 0 ¢')) it is a unifier for
KU{a = ({l: T Tl T T s Tt ool
To, 0T U T/HYUSK,CU o).

Rule 8b, 8c, 8d: By the same arguments as for rule 8a.

We can then conclude the proof following [Oho95|. O

Without our rules for record concatenation however, our unification algorithm
returns a most general unifier.

Theorem 5.5. The algorithm un<fy(C, K) without rules 8a, 8b, 8c, and 8d
computes a most general unifier for the set of constraints C and K if one
exists, and fails otherwise.

Proof. Directly using the proof in [Oho95|. O

5.4 Specific typing algorithm for SQL

The specific type system for SQL is very similar to the specific type system for
MEM. The only non-algorithmic rules are the function rule; the basic operators
rule; and the subsumption rule. We can apply the same logic as for the specific
typing algorithm for MEM to solve the issues brought by these rules. However,

106

the rules of the specific type system for SQL also restrict the types of the premises
to relational types. For instance:

r l_SQL q - R —bool T l_SQL q2 - R list
I FsqL Filter(q | ¢2) : R list

This Filter rule for SQL requires the argument of the configuration to be of
flat record type, and the data argument to be of flat record list type.

to represent those constraints, we add two new types of kinds: a basic type
kind B which indicates that a type is a basic type, and a flat record kind R which
indicates that a type is a record type that contains only basic types. For instance,
the conditional rule is then written the exact same way as for MEM, but the kind
constraint on oy is written as o X B since ap represents the type of both branches
of the conditional expression and, in the type system of SQL, these expressions
must have a basic type:

F"'A q - Tl,(Cl,Kl),_ F}_‘A qo TQ,(CQ,KQ),_ Fl_'A qs : Tg,(Cg,Kg),_ aq and (e%)) fresh

ClLJCQUCgU{Oél :le@l :bOO].,OJQ :TQ,OZQ I—l—g}7
K1UK2UK3U{Q1§U,C¥2§B}

)

[Fjey if ¢ then g else g3 : as, (

Similarly, we can use the kind constraint « X R to write the Filter rule,
since « represents both the type of the argument type of the configuration and
the type of the elements of the data argument:

Fl_A a1 :Tla((cl)Kl)v_ Fl_A q2 :T27(C27K2)7_ a fresh

r l_JI\L/I\EM Filter<q1 | q2> e’ liSt, (Cl U CQ U {Tl = — bOOl, « list = TQ}, Kl U Kg U {Oé é R})

We can then add the following rules to our algorithm of unification of con-
straints:

(CU{a=B},KU{« k B}, 0, SK) =
9. (0'C,0'K, 0’0 00’,0'SKU {a LS B})

if o ¢ TV/(T)

where o' = {a — B}

(CU{a=R},KU{a =R},0 SK) =
op. (0'C,0'K 0’000’ 0'SKU {« LR}

if o ¢ TV(T)

where o' = {a— R}

This completes our design of typing algorithms for QIR. In the next chapter,
we show how to use our type systems to translate QIR expressions to query lan-
guages, to obtain formal guarantees on these translations, and to safely normalize
QIR queries.

107

108

Chapter 6

Type-oriented evaluation

In this chapter, we make use of the type systems defined in Chapter 4 and 5
for the translation and evaluation of queries. We use the information on queries
provided by those type systems to guide the normalization and the translation of
queries, as well as prove some useful properties in particular a safety guarantee
for the translation of QIR expressions into SQL.

6.1 Translation into database languages

As we saw in Section 3.3, every database must define a driver that allows it
to interface with QIR, and this driver includes a translation from QIR into the
database language. When the QIR expression to be translated is a query targeting
a single database, then the translation process is straightforward, as we simply
have to call the translation defined by the corresponding database driver. For
instance,

Filter(fun(r)—r - salary > 2500 | From(PostgreSQL, "employee"))

can be directly translated to

SELECT * FROM employee AS r WHERE r.salary > 2500

However, as explained in Section 3.4, a QIR expression might not be trans-
latable directly to one database expression. This can happen for a number of
reasons such as targeting several databases or using a feature unsupported by
the targeted database such as an unsupported operator. In this case, we have to
translate as much as we can into the languages of the targeted databases, and
leave the untranslatable parts to the MEM database. For instance, consider this
QIR query:

Join(fun(e,t)—e > t,fun(e,t)—e - teamid =t - teamid |
From(PostgreSQL, "employee"), From(HBase, "team"))

109

which applies the Join operator between the table "employee" stored in a Post-
greSQL database with the table "team" stored in a HBase database. The sim-
plest translation for this query is:

Join({fun (o, p)—{oid : oid, pname : p.name}, fun(o,p)—o - pid = p - pid |
evalPostoreSAL (SELECT % FROM EMPLOYEE), evalt®3¢(scan ’team’))

in which the two From subqueries are correctly translated to the respective lan-
guages of the targeted databases, then leaves the Join operation itself in QIR
form to be evaluated in MEM.

Similarly to this example, our translation must translate as much of the QIR
expressions as possible using the different database language translations avail-
able, and default to MEM if none of these translations succeed. Additionally, our
translation must be seamlessly extendable with new translations from database
drivers.

In this section, we define a generic translation from QIR to database expres-

sions by making use of the database drivers translations Exs that we call specific
translations. We also define a specific translation for SQL.

6.1.1 Specific and generic translations

Let us first define specific translations.

Definition 6.1 (Specific translation). The specific translation EXBD from

QIR into a database language D is defined by the judgment ¢ 2, ¢ where
q € Eqr, e € Ep U{Q}, and Q is an error.

This definition is similar to the definition of the translation from Definition 3.8,

adding the judgment ¢ 2 ¢ that we use to define specific translations with
inference rules. Next, we define the generic translation of QIR.

110

Definition 6.2 (Generic translation). The generic translation of QIR is de-
fined by the judgment ¢ ~» e where q,e € Eqr. The set of inference rules
used to derive this judgment are:

(direct)
I'-q:T,D q 2 e

D#AMEM

q ~ evalP(e)
(propagate)
Lkq:T,MEM ¢ ~ evalPi(e;) q; ~ evalM®M(e,) vip, 2 MEM
VEM py {Qz:} U {qJ:} = (q)
q ~ eval'™"(q{g;/eval®(e;),q;/€;}) {ai} N {g;} =0
(best-effort-direct)

Vg € €(q).qi ~ evalPi(e;) ¢ 2 e {D;} = {D,MEM}
D # MEM

q ~ evalP(e) e#Q
(best-effort-propagate)
g ~ evalPi(e;) ¢q; ~ evalM™M(e;) vip, £ MEM
{ait u{a} =9
q ~ evalMEM(glq; /evalPi(e;), q;/e;}) {atnie}=0

where the order of priority of application of the rules is from top to bottom.

The goal of the generic translation is to produce a QIR expression where as
many subterms as possible have been translated to native database queries. It
makes use of the eval? special operators, mentioned in the extended semantics
of QIR in Section 3.3, to mark a translated query for evaluation in a database D.

Rule (direct) states that given a QIR expression, if there exists a database D
distinct from MEM such that the expression can be typed for D by the generic
type system, then the generic translation returns the translation of the expression
by EXPP from the driver of D. In Section 6.2, we will show that our type system

for SQL gives us the guarantee that under some hypotheses the translation 2
will always succeed, in which case we can omit to check that e # 2 in this rule.
Rule (propagate) states that if the QIR expression could only be typed for MEM
by the generic type system, then the generic translation applies itself recursively
to all children of the QIR expression, thus marking their translations for evalua-
tion to the targeted databases and translation of the results back into QIR, then
it integrates them back in place of the children in the original expression. Finally,
the generic translation returns the translation of the new expression by EXPMEM,

These two rules can only be applied on typeable expressions. For non-typeable
expressions, the generic translation has to fallback on calling the translations ﬁ
without being entirely guided by types. Rule (best-effort-direct) calls the generic
translation on the children, then if they were all translated to be evaluated by
the same database D #= MEM or by MEM, it attempts to translate the entire

111

expression using %D. The downside of this rule is that it calls the transla-
tion for every child, and uses the results only to check there was no error, as
it then calls the translation on the entire expression without using the results.
Thankfully, if the translation %D is compositional, which as we will see in Sec-
tion 6.1.2 is possible even for SQL, it can implement a cache of its translations
to avoid translating the same expression more than once. If even this fails, then
rule (best-effort-propagate) applies the same treatment as (propagate) but with-
out the call to the type system. The difference between those two very similar
rules is that (propagate) can proceed with recursive calls with guaranteed success
thanks to the type system, while (best-effort-propagate) might fail on one of its
subexpressions.

We now go through a few examples. In our first query from the beginning of
the chapter:

Filter(fun(r)—r - salary > 2500 | From(PostgreSQL, "employee"))

the From is typed by our SQL type system as:

A) FsqL "employee" : string

T FsqL From(PostgreSQL, "employee") : {salary : int, ...} list

and the whole query as:

{r : {salary : int,...}} FsqL 7 * salary > 2500 : bool A

Filter(fun(r)—r - salary > 2500 |

0 FsaL From(PostgreSQL, "employee"))

: {salary : int, ...} list

Filter(fun(r)—r - salary > 2500 |

or From(PostgreSQL, "employee"))

: {salary : int, ...} list, SQL

Therefore, we can apply our (direct) rule:

(direct)
Filter(fun(r)—r - salary > 2500 |

0+ From(PostgreSQL, "employee")) {salary : int,...} list, SQL
ﬁ Filter(fun(r)—r - salary > 2500 |
s PostgreSQL PostgreSQL
g ~ eval (EX (From(PostgreSQL, "employee")))

As for our second query:

Join(fun(e,t)—e > t,fun(e,t)— = (e - teamid,t - teamid) |
From(PostgreSQL, "employee"), From(HBase, "team"))

112

it is typed by MEM and the Froms are typed by their targeted databases:

() - From(PostgreSQL, "employee") : {teamid : int, ...}, PostgreSQL
0 - From(HBase, "team") : {teamid : int,...}, HBase

Join({fun(e,t)—e > t,fun(e, t)— = (e - teamid,t - teamid) |

D Fuen From(PostgreSQL, "employee"), From(HBase, "team"))

:{...} list

Join(fun(e,t)—e < t,fun(e,t)— = (e - teamid,t - teamid) |

or From(PostgreSQL, "employee"), From(HBase, "team"))

. {...} list, MEM

Therefore, we can apply our (propagate) rule:

(propagate)
0 Join(fun(e,t)—e < t,fun(e,t)— = (e - teamid, t - teamid) |

From(PostgreSQL, "employee"), From(HBase, "team")) 4.} qist, MEM

From(PostgreSQL, "employee") ~ evalPOS‘greSQL(EXBPoStgreSQL(From(POStgreSQL, "employee")))
From(HBase, "team") ~- evalHBase(EXﬁHBase(From(HBase, "team'")))

Join(fun(e,t)—e > t,fun(e,t)— = (e - teamid, t - teamid) |
q ~ evalMEM(EXBMEM(evalpOStgreSOL(EXBP"Stg'eSQL(From(POStgl’eSQL, "employee"))),))
evalHBase(EXﬁHBase(From(HBase, "team"))))

which, as required, translates the Froms into the database languages that corre-
spond to their targeted database, and leaves the evaluation of Join to MEM.
Let us now see examples where the (best-effort) rules are used. For the (best-
effort) rules to be necessary, the query must be impossible to type even by MEM,
but it must also be translatable. Typically, queries that contain host language
expressions have to be translated using the (best-effort) rules. For instance:

Filter(fun(r)—Mpyion(7, €) | From(PostgreSQL, "employee"))

Because of Property 4.3, this query cannot be typed as it contains a host lan-
guage expression. However, if we assume that the targeted PostgreSQL database

can execute Python code (for instance using PL/Python [Pos|), then this query

ExﬁPostgreSQL‘

can be translated by Therefore, we can apply our (best-effort-

direct) rule:

(best-effort-direct)
From({PostgreSQL, "employee") ~ evalPost9eSAL(SELECT * FROM EMPLOYEE)

g < SELECT * FROM EMPLOYEE WHERE (SELECT EVAL (Mpyinon(7,€)))

q ~> evalP(SELECT * FROM EMPLOYEE WHERE (SELECT EVAL (Mpython(7,€))))

This query is therefore executed entirely by PostgreSQL as desired.

113

(best-effort-propagate) is used for the same kind of queries as (propagate),
but that cannot be typed. For instance, we can add a host language expression
to our (propagate) example:

Join(fun(e,t)—e > t,fun(e,t)—Mpynon(7, €) |
From(PostgreSQL, "employee"), From(HBase, "team"))

which makes the Join impossible to type, but executed in MEM using (best-
effort-propagate).

6.1.2 A specific translation for SQL

As an example of a specific translation, we document how to define a specific
translation for SQL.

Definition 6.3 (Specific translation for SQL). The specific translation

EXBSQL is defined by the judgment ¢ RS stating that a QIR expression ¢
can be translated to a SQL expression e. The derivation of this judgment is
given by the rules in Figure 6.1.

Data operators are translated to their SQL equivalent, for example Sort is
translated to an ORDER BY clause. Project returns e; FROM (ep) AS X since e;
is expected to be a record that translates to a SELECT clause, and basic SQL does
not support queries such as SELECT (SELECT name)FROM (...).

Constants are translated using the translation function VALSQ provided by
the driver of the SQL database. Conditional expressions are translated to the
corresponding CASE construct. Host language expressions are evaluated using a
function provided by BOLDR that calls the evaluator of the host language in the
database.

Although most of these rules look rather straightforward, they contain in-
teresting particularities that come from the fact that SQL is an interesting and
particular query language.

Applications are restricted to basic operators supported by SQL applied to
their exact expected number of arguments since SQL does not support currying.
Figure 6.1 shows examples for + and sum. Additionally, basic operators can only
appear in applications since they are not first-class expressions. For instance, it
is invalid to write SELECT + in SQL.

Notice how most rules with children ¢; translate them recursively to e; and
return constructions of the form (e;) AS X. There are two reasons for this. First,
we need the alias when we translate an operator. For instance, using the rule for
Filter, the query Filter(fun(r)—r-age < 30| ...) would be translated to

SELECT * FROM (...) AS R WHERE (R.age < 30)

114

(SQL-plus) (SQL-sum)

(SQL-var)
qisg'ei e; £ZQ 1€1.2 qsgl'e e #)

SQL
SELECT X.
v + (g1 go) 5% SELECT (e1) + (es) sumq > SELECT sum(e)

(SQL-cst)

¢ %% SELECT VALSAL(c)

(SQL-if)

q; S’\(’}‘->L € € 7é Q 1€1.3

if ¢, then g, else ¢ > SELECT CASE WHEN (e;) THEN (ey) ELSE (e3) END

(SQL-record)

q; S"\%L [% QN iel.n
SQL
{lz 1 q; }i=1..n ~~ SELECT (61) AS Ll s e e (en) AS Ln

(SQL-Icons)

o e e, e£Q i€1.2 THP fresh

G qa X ¢, UNION ALL (ey) AS TMP

(SQL-lconcat)

g e e #Q i€1.2 TMP, TMP2 fresh

q1 @ gy 2 SELECT * FROM (e;) AS TMP UNION ALL (ep) AS TMP2

(SQL-rdestr-cplx)

qsva»Le qgZx e#€ Rfresh
SQL

v+ 1 %% SELECT X.L
-1 %% SELECT R.L FROM (e) AS R

(SQL-rdestr-simpl)

Figure 6.1 — Translation from QIR to SQL (part 1 of 2)

115

(SQL-project)
SQL .
q; 3 e, e #Q 1€1.2

Project(fun(z)—q | ¢2) RS e; FROM (ey) AS X

(SQL-from)

From(D, "table") % SELECT * FROM table

(SQL-filter)
q; §%L €, €; 7é Q 1€1.2

Filter(fun(z)—q | g2) % SELECT * FROM (e») AS X WHERE (e;)

(SQL-join)
q; SS%L € € 7é Q 1€1.4

Join{fun(z,y)—q, fun(x,y)—q¢ | ¢3,q4) Q- e; FROM (e3) AS X, (eys) AS Y WHERE (ey)
(SQL-join-noproject)
q; S’\(’)‘->L € €; 7é QN i1€2.4

. saL SELECT * FROM (e3) AS X, (eq) AS Y
JOln(fun({Z}"y)—)Q: X y7fun(x7y)_>QQ | QS7Q4> ~ WHERE (62)

(SQL-group)

qis«%LeZ- qs«%l_e q’S«gLel 617&9 G#Q 6/759 1€ 1.n

Group(fun(z)—{/l;:¢; },_, ,.fun(z)—q | ¢) %2 ¢ FROM (¢/) AS X GROUP BY Ly, ..., L,

(SQL-sort)

i 5 e; e;=trueor false i€ l.n ¢, =DESCife; =false g e e #+Q

Sort(fun(z)—{li:q},_,, | ¢) > SELECT * FROM (¢) AS X ORDER BY Ly ¢}, ..., L, €,

(SQL-limit)
q; S’\(’%L € € 7é QO i1€1.2

Limit(q: | ¢») > SELECT * FROM (e») AS X LIMIT (e;)

(SQL-exists)
sqQL (SQL—hOSt—expr)
q~ e e#

SQL
SELECT BOLDR.EVAL(H
Exists(q) 5 SELECT EXISTS(e) n(re) = (My(y€))

Figure 6.1 — Translation from QIR to SQL (part 2 of 2)

116

which is the correct translation in SQL. But without the alias we get an error
since the variable R in the WHERE clause would then be undefined. The second
reason is that SQL imposes this syntax for compositional queries even if the alias
is not useful. For example:

SELECT * FROM (SELECT 1 AS id)

which could be a valid translation of {id:1}::[], is not a valid SQL query
because subqueries must have an alias, so a syntactically correct version of this
query would be

SELECT * FROM (SELECT 1 AS id) AS X

where X is here useless. This is not just true for this example, all of the TMP
variables in our rules are only there to respect the syntax of SQL. Another
syntactic issue of SQL is that only queries can be put in parentheses. Variables
and table names put in parentheses are syntactically incorrect. Therefore, we
duplicate some rules to account for the possibility that children could be variables
or table names. Thus, the (SQL-rdestr-simpl) rule deals with variables, and the
(SQL-rdestr-cplx) rule deals with all other cases. Additionally, it is not possible
to directly represent an empty list, record construction in SQL, or generic list
construction in SQL. However, for convenience, we create a (SQL-record) rule
that translates to the creation of a table with one row containing the record, as
well as a (SQL-Icons) rules that allows adding a record to a list. (SQL-Icons-
record) works using the same trick as (SQL-record) to create a list containing one
row, then applies the UNION ALL operation of SQL that concatenates two tables.

This operation is obviously also used for the translation of the list concatenation
in (SQL-Iconcat).

6.2 Type-safe SQL translation

In this section, we prove that a QIR expression typeable for SQL by the generic
type system can always be translated into SQL after normalization. First, we
isolate a subset of normal forms which are translatable into SQL.

117

Definition 6.4 (SQL-compatible normal forms). We define SQL-compatible
normal forms vsqL as the restriction of normal forms of Definition 3.12 pro-
duced by the following grammar:

s u= ru[] | ruas | s@s
Project(fun®(z)—r | s)
From(D, b)

|
|
| Filter(fun”(z)—b| s)

| Join(fun®(z,x)—r, fun®(z,z)—b | s, s)

| Join{fun®(x,y)—x <y, fun®(z,2)—b | s, s)
| Group(fun”(z)—r, fun®(z)—r | s)

| Sort(fun®(z)—r | s)

|

Limit(b | s)
b == ¢
| ifbthenbelsed
rou= x |zl
l:b,...,0:b
) Yoo)
| Exists(s)

Note that the second Join form requires the first configuration to have a pre-
cise form, although the variables £, x, and y can have any name, the configuration
has to be a function returning the record concatenation of the first variable to
the second one. Also, the Exists operator is included as a b form since it returns
a boolean and not a collection like the other data operators. Now, we prove that
if the generic type system returns a type for SQL given a QIR normal form, then
this normal form must have a specific syntactic form.

Lemma 6.1 (Relation between SQL types and syntactic forms). Let v be
a normal form of QIR and I' a QIR typing environment such that Vo €
dom(T").I'(x) = R, and ' - v : T, SQL, then:

o If "= PBthenv=5b

o If "= Rthenv=r

o If "= R list then v = s

o If =R — B then v = fun”(z)—b

e If 7= R — R then v = fun”(z)—r

If T =R — R — B then v = fun”(z)—fun”(z)—0b

118

e If =R — R — R then v = fun®(z)—fun®(z)—r
e f T=T — T then v = fun®(x)—v or v = op

e fT={l:T,....1:T}thenv=zorv={l:v,...,l:v}

Proof. The only valid rule for I' - v : T,SQL being the first one where
D = SQL, we have to prove the property for I FgqL v : T

We prove the property by structural induction on the typing derivation
of T' Fgqu v : T. 1If the last rule used is the subsumption rule, then it
is immediately true by induction hypothesis, otherwise we proceed by case
analysis on T"

Hypothesis 1 (H1). v is in normal form
Hypothesis 2 (H2). Vz € dom(I").I'(z) = R

Note: We only show the interesting cases here. The rest of the proof can be
found in Appendix B, page 205.

e If T'= B then

— If v = v; vy then by the typing rule of the application: I' FgqL v; :
Ty — Ty, so by induction hypothesis v; = fun”(z)—v; which is
impossible by Hypothesis H1, or v; = op, then by the typing rule
of operators: I' FgqL v2 : B, so by induction hypothesis v, = b so
v=opvy=0opb=>b

— Ifo=cthenv=5b

— If v = ifv,; then v, else vy then by the typing rule of the condi-
tional expression:
Vi € 1..3,1 FsqL v; : B;, so by induction hypothesis Vi € 1..3,v; =
b, so v = ifv; then v, else v; = if bthenbelseb = b

— If v = ¢/ -1 then by the typing rule of the record destructor:
I FsaL v @ {l; : Ti}iz1.n, so by induction hypothesis either v' =
{l:v,...,l:v}, which is impossible by Hypothesis H1, or v' = z,
thenv=2v.l=2-1=b

— If v = Exists(v’) then by the typing rule of Exists: T' FgqL v’ :
R list, so by induction hypothesis v/ = s, so v = Exists(v') =
Exists(s) =b

e If T'= R then

—fv=xthenv=r

119

— If v = v; vy then impossible since by the typing rule of the
application: I' Fgqu vy : T7 — 715, so by induction hypothe-
sis v; = fun®(x)—w3 which is impossible by Hypothesis H1, or
v1 = op, which is impossible as ' Fgq op: By —» ... - B, - B

—If v = {l;:v },_, , then by the typing rule of the record con-
structor Vi € 1.n,I' Fsqu v; : B;, so by induction hypothesis
Viel.n,u,=bsov={l:v} ={l:b,...,0:b}=r

— If v =’ - [then by the typing rule of the record destructor:
IbFgqu v i {li:T1,...,1,:T,}, so by induction hypothesis either
v' = {l:v,...,l:v}, which is impossible by Hypothesis H1, or
v' = x, but then by Hypothesis H2 ',z : T Fgq v/ =2 : T = R/,
so impossible since by the typing rule of the record destructor
'ksquv=2v-1:B

i=1l..n

e If T"= R list then

— If v = [] then impossible since [] cannot be typed

— If v = vy 1 vy then by the typing rule of the list constructor: I' FgqL
vy : R and T" FgqL v9 : R list, so by induction hypothesis v; = r
and v, = 5,50V =0V U =TS =S

— If v = vy @Quy then by the typing rule of the list concatenation:
I' FsqL v1 @ R list and I' FgqL vo : R list, so by induction hypoth-
esisvy =sand 1y =s,80v =0, Quy=5sQs=s

— If v = Project(v; | vy) then by the typing rule of Project:
I' Fsqr v1 : R = R and I' FgqL vy @ R’ list, so by induction
hypothesis v; = fun®(z)—r and v, = s, so v = Project(v; |
v9) = Project(fun®(z)—r | s) = s

— If v = From(D,v') then by the typing rule of From: T' tgq_
v : string = B, so by induction hypothesis v = b, so v =

From(D,v') = From(D,b) = s

— If v = Filter(uv; | vy) then by the typing rule of Filter:
I' FsaL v1 : RP — bool and I' FgqL ve : R’ list, so by induction
hypothesis v; = fun®(z)—b and ve = s, so v = Filter(v; | vy) =
Filter(fun®(z)—b|s) = s

— If v = Join(vy,vy | v3,vy) then by the typing rules of Join:
vy = fun(z,y)—>z <y or I'kgq v1 : R — R" — R, T FsaL
vy : R — R" — bool, I' Fgqu v3 : R list and T" FsqL vy :
R" list, so v; = fun”(z,z)—2 < = or by induction hypothesis
v; = fun(z, 2)—r, vo = fun®(z,z)—b, v3 = s and vy = s, s0

120

v = Join(vy, vy | v3,v4) = Join({fun®(z,z)—r, fun®(z,z)—0 |
$,8) =8

— If v = Group(vy, vy | v3) then by the typing rule of Group: I' FgqL
v : R" — R, I"FgqL v : R — R and T" Fgqu v3 : R” list, so
by induction hypothesis v; = fun®(z)—r, vy = fun®(z)—r and
V3 = 8, SO
v = Group(vy, vy | v3)
= Group(fun®(z)—r,fun”(z)—r|s) =s

— If v = Sort{v; | vy) then by the typing rule of Sort: I' FgqL
v : R — R and T" Fgqu vo : R list, so by induction hypoth-
esis v; = fun®(z)—r and v, = s, so v = Sort{v; | v) =
Sort(fun®(z)—r | s) = s

— If v = Limit(v; | vy) then by the typing rule of Limit: I' FgqL
v : int and I' FgqL vo : R list, so by induction hypothesis v; = b
and vy = s, so v = Limit{v; | vo) = Limit(b| s) = s

]

We have shown that well-typedness of a QIR normal form restricts its syntac-
tic form. We can then show that SQL-compatible normal forms can be translated
into SQL by our specific translation.

Lemma 6.2. Let v be a SQL-compatible normal form, then there erists a

. sQL
unique e € Egqr such that v ~~ e.

Proof. By induction on the structure of v. Note that the rules of Figure 6.1

used to derive the judgment ¢ 2 ¢ are syntax-directed (at most one rule
applies), and terminate since the premises are always applied on a strict
syntactic subexpression of the conclusion. Thus, since v is finite by definition
of a QIR term, the translation derivation is finite and unique. We use (IH)
to denote the induction hypothesis.

e If v =0 then

— If v = ¢ then:
(SQL-cst)

¢ % SELECT VALSOL(c)

121

— If v = if b; then b, else b3 then:

(SQL-if)
(IH)
e #£0 i€l.3

SQL
bi ~€

. saL
if b, then by else b; *> SELECT CASE WHEN (e;) THEN (e;) ELSE (es) END

— If v =x -1 then:
(SQL-tdestr-simpl)

(SQL-var)

SQL
r ~~ X

z-1 32 SELECT X.L

— Ifv=op (by,...,b,) then:

(SQL-plus) (SQL-sum)
(IH) (IH)
saL e, #0 ie1.2 saL e # Q)
b; ~~ e; b ~~ e

+ (q1,q2) 2 sELECT (e1) + (ex) sumyq °2 sELECT sum(e)
— If v = Exists(s) then:

(SQL-exists)

Exists(s) > SELECT EXISTS(e)

e If v =17 then

— If v = x then:
(SQL-var)

v 3% SELECT z.%

122

—Ifvo={l;:b;},_, , then:

(SQL-record)
(1H)
€; 7é QA iel.n

bi B €i
SQL
{li:b; },_, ,, ~> SELECT (e1) AS X1, ..., (ey) AS X,
o If v = s then:
— If v = r:: s then:
(SQL-lcons)
(IH) (IH) ‘
& 7 TMP fresh
saL sQL 1€1.2
r o~~~ e S ~ €9

SQL
r:tS ~» e; UNION ALL (ey) AS TMP
— If v = 51 @ s, then:

(SQL-lconcat)

(IH) e £ 0
sqQL 1€1..2

Si 7 €

TMP, TMP2 fresh

L
s1 @ 59 S~9-> SELECT * FROM (e;) AS TMP UNION ALL (ep) AS TMP2
— If v =Project(fun(x)—r | s) then:

(SQL-project)

(TH) (TH)
saL saL €; 7& Q 1€1.2
r o~oer S ~ €y

Project(fun(z)—r | s) 83 1 FROM (ep) AS X
— If ¢ = From(D, n) then:

(SQL-from)

saL
From(D, "table") ~5 SELECT * FROM table

123

— If g =Filter(fun(z)—b | s) then:

(SQL-filter)
(IH) (IH)

saL saL e, #Q 1€1.2
b~ e § ~> e

Filter(fun(z)—b | s) 83 SELECT * FROM (ey) AS X WHERE (ey)

— If ¢ = Join({fun(z, y)—r, fun(z, y)—b | s1, s2) then:

(SQL-join)
(IH) (1H) (1H) (IH)
saL saL saL saL e 7 i€l.d
r o~ € b~ eq S1 ~ e3 Sg ~ ey

. sqQL e; FROM (e3) AS X,
Join(fun(z,y)—r, fun(z,y)—b | s1,5) ~> (164) 1 Y3WHERE o

— If ¢ = Join({fun(z,y)—z >y, fun(x,y)—b | s1, sy) then:

(SQL-join-noproject)

(IH) (IH) (IH)
saL saL saL e 7 1€2.4

. sQL SELECT # FROM (e3) AS X,
Join(fun(z,y)—z <y, fun(z,y)—b | s1,s2) ~5 (e) AS Y WHERE3 (s

— If ¢ = Group(fun(z)—{l;:b; },_, ,,fun(z)—r | s) then:

(SQL-group)

(TH) (1H) (1H)
. / .
b»s«%Le rs«%Le ss«%Le a7 il el e78 ieln

saL e FROM (¢') AS X
Group(fun(z)—{/l;:b; },_, . fun(z)—r|s) *5 GROUP BY I, ..., I,

124

— If ¢ = Sort(fun(z)—{l;:b; },_, , | s) then:

(SQL-sort)
(IH) (IH)
e; = true or false .
) £ Q 1..
p. SQL saL e; = DESC if e; = false €7 e reln
i € S ~ e

Sort(fun(z)—{li:bi }._, . | s) sqL SELECT * FROM (e) AS X

ORDER BY I €,, ..., I, €,
— If ¢ =Limit(b | s) then:
(SQL-limit)
(1) (1)
s, s ;20 i€l.2

Lo SQL
Limit(b | s) A SELECT * FROM (e5) AS X LIMIT (e)

]

Finally, we can state our soundness of translation theorem and prove it as a
direct corollary of Lemmas 6.1 and 6.2.

Theorem 6.1 (Soundness of translation). Let v € Egpy such that v is in
normal form, and O = v : T,SQL where T = B or T = R or T = R list,
then v ~ evalS%(s).

Proof. By Lemma 6.1: v =bor v =r or v =s. Thus, by Lemma 6.2, we

obtain: v 5 s. The property is then true by the rule (direct) of the generic
translation. H

As desired, this theorem tells us that if the specific type system of SQL gave
a type that is compatible with SQL to a QIR normal form, then this normal form
is translatable to SQL. Combined with our theorems from Chapter 4, we get the
property that any QIR expression typed with the specific type system for SQL
can be fully normalized and then translated to SQL.

Corollary 6.1. Let g € Egzp such that 0+ q : T, SQL where T = B orT = R
or T = R list, then v | ¢ = *v, v is in normal form, and v ~ evalS%(s).

125

Proof. By Theorem 4.4, we have ¢ < *v and v is in normal form. By Theo-
rem 4.1 and Theorem 4.5, we have) = v : T, SQL. Therefore, by Theorem 6.1,
we have v ~ evalSA(s). O

6.3 Extension to scalar subqueries for SQL

SQL supports a particular feature called scalar subqueries. SQL allows the use
of tables (results of queries in particular) in expressions that expect a basic type.
Syntactically, this is a correct SQL query:

SELECT salary +
(SELECT bonus FROM team AS t WHERE t.teamid = e.teamid)
FROM employee AS e

If the subquery returns more than one row (or zero rows) or more than one
column then a runtime error is returned, otherwise SQL automatically extracts
the unique value returned by the subquery and uses it as the second argument of
the addition. This is not just limited to operations in an operator. For instance,
these two queries give the same result in SQL:

SELECT 1 AS id
SELECT (SELECT 1) AS id

since SQL automatically extracts the only value in the table created by SELECT

1. In order to represent this feature, we could add a type conversion rule stating
that if an expression could be typed as a flat list which records contain only one
association from a label to a basic type, then it can also be typed as that basic

type:
r |_SQL q . {l . B} list

FFSQL(]ZB

Adding this rule requires to modify Property 4.3 of coherence of a specific
type system to include type conversion rules as possible rules to add in a database
type system. The major problem with this rule is the integration to the typing
algorithm for SQL since it is not algorithmic and not obvious to integrate to our
constraint system. However, in SQL, the context always makes it clear whether or
not a query should be considered a scalar subquery or not, in particular because
SQL only allows flat records and tables composed of flat records, thus leaving
the latter as the only type of scalar subqueries possible. Thus, handling this type
conversion rule entails considering type constraints such as int = {l : int} list
to be trivially true. To do this, we need to modify the equality relation = between
types, so that a type {l : B} list representing scalar subqueries are equal to the
basic type B in the case of SQL.

126

The property of safety of translation of Corollary 6.1 still holds with the type
conversion rule with a small modification in Lemma 6.1: an expression which
is given a basic type can be an expression with a list type for which the type
conversion rule has been applied.

6.4 Type-oriented normalization

As explained at the end of Section 3.5, our normalization procedure is based on a
syntactic criterion on data operator applications which can lead to non-optimal
reductions, and relies on calling database translations to figure out if reductions
are useful or not which can be expensive with no guarantee of improving the
query.

We solve both of these issues using our typing relation of Definition 4.7: T" -
q :T,D. This typing relation gives us the database that should evaluate the root
of a QIR expression without having to call translations, as well as a guarantee
in the case of SQL that the normalization terminates and yields a translatable
query. Therefore, we can define a new type-oriented normalization that only uses
the normalization of Section 3.5 as a default case.

Definition 6.5 (Type-oriented normalization). The type-oriented normal-
ization first applies the relation — to an input QIR expression ¢ to obtain a

result ¢’. The relation & is derived by the following rules:
(tnorm-SQL)
'kq:T,SQL T =Bor Ror Rlist g—*v

',
q—v

(tnorm-MEM)
Tkq:T,MEM ¢ < ¢

(tnorm-default)

i}=¢ -
. / {a:}=¢(q) AN
¢ = {a— d}a

where (tnorm-SQL) and (tnorm-MEM) always have priority over (tnorm-

. . . H
default). Then, the type-oriented normalization returns ¢” where ¢’ — ¢”.

The relation < of Definition 6.5 states with rule (tnorm-SQL) that if the QIR
expression is typed for SQL by the generic type system with a type compatible
with SQL, then it applies the relation < of Definition 3.13 until reaching a
normal form. This is guaranteed by Corollary 6.1 to terminate and return a
normal form translatable into SQL. Rule (tnorm-MEM) states that if the QIR

expression is typed with MEM, then s calls itself recursively on all the children

127

of the QIR expression. This rule aims to find potential subexpressions that are
typed for SQL. Finally, rule (tnorm-default) returns the input expression itself
meaning that the typing relation did not give any relevant information for the
normalization of this expression. The type-oriented normalization first applies

F . . .
— to the input expression in order to make use of our Corollary 6.1 as much

as possible, then it applies the heuristic normalization g for the rest of the
expression. This type-oriented normalization can easily be extended to other
database languages. For instance, if a database D were to prove a similar property
to our Corollary 6.1 for SQL, then we could add a rule to Definition 6.5 such as:

I'q:T,D q<—*v

'_
q—v

In this chapter, we showed how to safely manipulate QIR expressions using our
type system for QIR. In the next chapter, we discuss our existing implementation
of BOLDR, as well as the results of our benchmarks and what these results imply.

128

Chapter 7

Implementation and experiments

In this chapter, we talk about the implementation of BOLDR, and the results of
our experiments. First, we illustrate how to translate a host language into QIR
using the programming language R as an example.

7.1 Translation from a host language to QIR

In this section, we describe how to interface a general-purpose programming
language with BOLDR by creating a driver for the programming language R as
an example of a host language. Proving any type of formal properties on the host
language is (unsurprisingly) out of scope. As explained in Chapter 1, our goal
is to allow programmers to write queries using the constructs of the language
they already master. Therefore, instead of extending the syntax of R, we extend
existing functionalities, in particular by overloading existing functions.
We abstract R as the following language:

Definition 7.1 (R expressions). The set Ex of expressions denoted by e and
values denoted by v of R are generated by the following grammars:

e == c|x|function(x,...,x){e} | e(e,...,e) | op
|x=-e]|eel|if (e) eelsee
v == c | function,(x,...,x){e} | c(v,...,v)

where x € |, and v € 2"*XV® is the environment of the closure.

Definition 7.1 only defines expressions that can be translated into QIR. Ex-
pressions of R not listed in the definition are translated to host language expres-
sions. R programs include first-class functions; side effects (= being the assign-
ment operator as well as the variable definition operator); sequences of expressions
separated by ; or a newline; and structured data types such as vectors and tables

129

with named columns called data frames. We recall that, in R, c is the basic
operator to create vectors, and data.frame is the basic operator to create data
frames. R variables are statically scoped in the way it is usually implemented in
dynamic languages (e.g., as in Python or JavaScript), in which identifiers that
are not in the current static scope are assumed to be global identifiers even if
they are undefined when the scope is created. For instance, the R program:

f = function (x) { x +y }; y=3; z = £(2);

is well-defined and stores 5 in z (but calling f before defining y yields an error).
We now highlight how data frames are manipulated in standard R. As men-
tioned in Chapter 1, the subset function filters a data frame:

13 subset(emp, sal >= minSalary * getRate("USD", cur), c(name))

This function returns the data frame given as first argument, filtered by the
predicate given as second argument, and restricted to the columns listed in the
third argument. Before resolving its second and third arguments, and for every
row of the first argument, subset binds the values of each column of the row to
a variable of the corresponding name. This is why in our example the variables
sal and name occur free: they represent columns of the data frame emp. For
instance:

employee = data.frame(
name=c("Lily Pond", "Daniel Rogers", "Olivia Sinclair"),
sal=c (5200, 4700, 6000)

)

subset (employee, sal > 5000, c(name))

applies a projection and a filter to the data frame employee and returns a data
frame containing name as its only column and two rows which values are "Lily
Pond" and "Olivia Sinclair".

The join between two data frames is implemented with the function merge.
For instance, the following example:

employee = data.frame(
name=c("Lily Pond", "Daniel Rogers", "Olivia Sinclair"),
sal=c (5200, 4700, 6000),
teamid=c(2, 1, 1)
)
team = data.frame(
teamid=c(1, 2),
teamname=c ("R&D", "Sales"),

130

bonus=c (500, 600)
)

merge (employee, team)

performs the Join operation described in Figure 1.3c.
To integrate R with BOLDR, we define two builtin functions:

e tableRef takes the name of a table and the name of the database the table
belongs to, and returns a reference to the table

e executeQuery takes a QIR expression, closes it by binding its free variables
to the translation into QIR of their value from the current R environment,
sends it to the QIR runtime for evaluation, and translates the results to R
values

We also extend the set of values Vg:
v =... | tableRef(v,...,v) | ¢y

where ¢, are QIR closure values representing queries associated with the R envi-
ronment ~ used at their definition.

The functions subset and merge are overloaded to call the translation REXP
on themselves if their first argument is a reference to a database table created by
tableRef, yielding a QIR term g to which the current scope is affixed, creating a
QIR closure g,. Free variables in ¢, that are not in dom(y) are global identifiers
whose bindings are to be resolved when g, is executed using executeQuery.

Even though we do not modify the parsing of R programs, we still want to
translate R closures to QIR functions. For instance, we want to translate the
following R program:

less2500 = function (x) { x <= 2500 }
t = tableRef ("employee", "PostgreSQL")
subset (t, less2500(sal))

into this QIR term:

(fun(less2500,t)—
Filter(fun(r)—(less2500) (r - sal) | t))
(fun(z)—az < 2500, From(D, employee))

which becomes, after normalization:
Filter(fun(r)—r - sal < 2500 | From(D, employee))

While it seems obvious from this example that the function 1ess2500 should
be translated to fun(xz)—z < 2500, it is not always sound to do so. Indeed,

131

a variable x can be soundly translated to a QIR variable z if it is not the sub-
ject of side effects, otherwise accesses to x must be nested inside host language
expressions Mz(, x) so that the correct value for x can be retrieved.

The set of modified variables can be approximated by the Mod function de-
fined as such:

Definition 7.2 (Approximation of modified variables). Let e € Er be an
expression and v an evaluation environment for R. The set Mod(v,e) of
modified variables in e ranged over by M is inductively defined as:

Mod(~,x) = {} ifx ¢ dom(y)
Mod(v,x = e) = {x}U Mod(v,e)
Mod(v, x) = {}if y(x) # function(...)...
Mod(~,x) = Mod(v' U~,é€)

if y(x) = function,(...)¢e
Mod(~, function(...)e) = Mod(y,e)
Mod(, c) = {}
Mod(v, e1;e2) = Mod(~y,e1) U Mod(v, ez)
Mod(~y,e(eq, ..., e,)) = Mod(y,e) U, Mod(v,e;)

The first five cases of the Mod function are the most interesting ones (the
others being only bureaucratic children calls). First, if a variable is used, but is
not in the current scope, it is not marked as modified. If the variable is being
assigned to, then it is added to the set of modified variables. If the variable
is bound in the current scope, to a value that is not closure, then it is also
marked as unmodified. However, if a variable is bound to a closure, then the
body of the latter is traversed, in an environment augmented with the closure
environment. Lastly, the body of anonymous functions are recursively explored to
collect modified variables. We can now tackle the translation from R expressions
to QIR terms.

Definition 7.3 (Translation from R to QIR). We define the judgment M, ~

e ¢, which means that given a set of modified variables M and an R
environment -, the R expression e can be translated to a QIR expression q.
The derivation of this judgment is given by the rules in Figure 7.1. We define

the translation REﬁ(% e) =q as Mod(v,e), v+ e U q.

Constants and identifiers are translated to QIR equivalents. Anonymous func-
tions are translated to anonymous QIR functions. More interesting is the trans-
lation of the builtin function subset. Its first two arguments are recursively
translated, but the second one requires some post-processing. Recall that in the

132

v d M Myted g

R It R
MoyFe~ m(c) M,y FEx -~z M~ F function(xy, . .., %) {e}&fun(ajl,...,xn)%q

t fresh
M,y e & G M,yE ey S ¢ {vi,...,ym} = FreeVariables(ey) \ dom(~y)
G =@/t -y, Ym/t - Ym}

M, v F subset(ey, €2, c(x1,...,%,)) 3 Project(fun(t)—{z;:t-x; } | Filter(fun(t)—q¢ | ¢1))

R R
Myber~q MykFe~ g MoAabe Sq ... Myke, S q,

R Join(fun(z,y)—z >y, R
M,y merge(eq, e3) ~ fun (a, b)—strue | g1, o) M,yEcler,...,en) ~ @, qn]

M,yf—eljﬁql M,vl—ean»qn ./\/l,vu{xl»—>61,...,an—>en}|—e~R=>q

M,y E (function(xy, ..., %,) {e})(e1, ..., €n) X (fun(z,...,2,)—q) (q1, -, qn)

MoyberSq 0 MAke, g,

R
M yFoper ... en~o0p(qi,. - qn)

R R
M,yler~q M\{xj,yU{x—=e}le~q

R X ¢ MOd(’y, 62>
M,y E (x=e1);e5 ~ (fun(z)—q) ¢

R R R R
MykFeii~q1 ... MoykFeim~qam M yFeni~ @ .. M,yFenm~ ¢um
X1:C<€1,1>"'7€1,m)7 R [{$1=Q1,17---7$n3%,1 }7
M~ - data.frame | ..., M
Xn:C(en,la'”aen,m) {$1:q1,m7'~~7xn:Qn,m}]

MoyberSq MAabeSqg Mykes g

R otherwise
H [|

Figure 7.1 — Translation from R to QIR terms

133

case of subset, the second argument e, contains free variables bound to column
names. We simulate this behavior by introducing a function whose argument is
a fresh name ¢ and replace all occurrences of a free variable x in the translation
by t - x. The last argument is expected to be a list of column names we use to
build a function to project over these names. The merge function is similarly
translated to a Join operator. The last interesting case is when a local variable
is defined in a sequence of expressions. If the variable is not modified in the sub-
sequent expression, then we translate this definition into a function application.
Expressions that are not handled are kept in host expression nodes to be evalu-
ated either locally, in a QIR term that is not shipped to a database, or remotely,
using the R runtime embedded in a database.

Now that we have defined the translation of expressions in a given scope, we
can easily define the translation of values from R into QIR. The translation of
constants, sequences and data frames is straightforward. The translation of a
closure function(xy,...,x,),{e} is simply the translation of the body wrapped
in a function: fun(xy,...,z,)—"EXP(v,e).

We now have everything we need to interface R and QIR. When executeQuery
is called on a QIR closure value ¢, we translate the values associated to its free
variables in the runtime environment to QIR values, and bind each of them to
corresponding QIR variables with applications of functions, yielding a new closed
QIR term that can be sent to QIR.

Let us illustrate the whole process on the introductory example of Chapter 1.

Evaluation of the query expression

When an expression recognized as a query is evaluated, it is translated into QIR
(using Definition 7.3). In the introductory example, the function call

16 richUSPeople = atLeast (2500, "USD")

triggers the evaluation of the function atLeast:

10 atLeast = function(minSalary, cur) {

11 # table employee has two columns: name, salary

12 emp = tableRef("employee", "PostgreSQL")

13 subset(emp, salary >= minSalary * getRate("USD", cur),
14 c(name))

15}

in which the function subset (Line 13) is evaluated with a table reference as first
argument, and is therefore translated to a QIR expression. richUSPeople is then

134

bound to the QIR closure value:

Project(fun(t)—{ name:t- name} |

Filter(fun(e)—e - sal > minSalary * (getRate ("USD", cur))) |
From(PostgreSQL, employee)))

{minSalary — 2500, getRate +— function,(rfrom,rto){...}, cur — "USD"}

Query execution

A QIR closure is executed using the function executeQuery. In our example,
this happens at Lines 18 and 19:

15 print (executeQuery (richUSPeople))
1o print(executeQuery(richEURPeople))

executeQuery then resolves each free variable by applying them to the trans-
lation into QIR of their value in the R environment:

(fun(getRate)—
(fun(minSalary, cur)—
Project(fun(t)—{ name:t- name} |
Filter(fun(e)— > (e - sal, * (minSalary, getRate ("USD", cur))) |
From(PostgreSQL, employee)))
)(2500, "USD")
)(fun(rfrom, rto)— .. .)

which will be normalized to:

Project(fun(t)—{ name:t- name} |
Filter(fun(e)— > (e - sal,2500) |
From(PostgreSQL, employee)))

then translated to SQL using EXﬁSQL as:

SELECT T.name AS name FROM (
SELECT * FROM (SELECT * FROM employee) AS E
WHERE E.sal >= 2500

) AS T

This query is sent to PostgreSQL, and the results are translated back into
QIR using POStgreSQLm, then to R using VALR.

135

7.2 Truffle

Truffle is an open-source framework allowing language developers to implement
abstract syntax tree (AST) interpreters with speculative runtime-specialization.
Language implementors typically write a parser for the target language that pro-
duces an AST composed of Truffle nodes. These nodes implement the basic
operations of the AST interpreter (control-flow, typed operation on primitive
types, object model operations such as method dispatch, etc.). A simple example
of a leaf node class for a literal number looks as shown in Example 7.1.

Example 7.1.

public class Number extends Node {
public final long number;

public Number (long number) {
this.number = number;

}

@0verride
public long executeLong(VirtualFrame frame) {
return this.number;

}

@0verride
public Object execute(VirtualFrame frame) {
return this.number;

}
@0verride
public String toString() {
return "" + this.number;
}
}

The node of Example 7.1 contains a Java long integer that stores the value
of the number, as well as methods to run the node. The framework ensures that
the right execute method will be called depending on the context of evaluation.

Nodes use the Truffle API to implement runtime specialization and inform
the Graal JIT compiler of various key optimization aspects, such as runtime
profiles on value, type, branches, or to implement runtime rewriting of the AST
on de-optimization path when a speculative optimization failed [WWW™13].

136

As explained in the introduction, the reasons why we use Truffle for the im-
plementation of BOLDR are:

1. Truffle languages compile expressions to abstract syntax trees which makes
the manipulation of expressions easier

2. Truffle expressions can be evaluated on any JVM, giving us a simple way
to evaluate host language expressions in databases

3. Several open-source Truffle languages are already implemented and ready
to be experimented on

7.3 Implementation

BOLDR consists of QIR, host languages, and databases. To evaluate our ap-
proach, we implemented the full stack, with R and SimpleLanguage as host lan-
guages and PostgreSQL, HBase and Hive as databases.

The code of our open-source prototype for BOLDR can be found at:

e https://gitlri.lri.fr/jlopez/qir for the QIR
e https://gitlri.lri.fr/jlopez/QueryR for the interfaced FastR

e https://gitlri.lri.fr/jlopez/qsl for the interfaced SimpleLanguage
and Truffle

e https://www.lri.fr/ lopez/phd/index_en.html for the main page of
the project

Table 7.1 gives the numbers of lines of Java code for each component to gauge
the relative development effort needed to interface a host language or a database
to BOLDR. All developments are done in Java using the Truffle framework.

Component lo.c. Remark
FastR / SimpleLanguage 173000 / 12000 not part of the framework
Detection of queries (in R and SL) 600 modification of built-ins/operators
R to QIR / SL to QIR 750 / 1000 the translation of Section 7.1
QIR 7000 nodes, types, normalization, translation, ...
QIR to SQL / HBase language 500 / 400 the translation 33) e
PostgreSQL / HBase / Hive binding 150 / 100 / 100 low-level interface

Table 7.1 — BOLDR components and their sizes in lines of code.

137

https://gitlri.lri.fr/jlopez/qir
https://gitlri.lri.fr/jlopez/QueryR
https://gitlri.lri.fr/jlopez/qsl
https://www.lri.fr/~lopez/phd/index_en.html

As expected, the bulk of our development lies in the QIR (its definition and
normalization) which is completely shared between all languages and database
back-ends. Compared to its 7500 l.o.c., the development cost of languages or
database drivers, including translations to and from QIR is modest (between 700
and 1000 Lo.c.).

From bottom to top, one can see that adding a non-trivial database back-
end to the framework is little work (500 l.o.c. for translating QIR into SQL and
another 150 to add some glue code in PostgreSQL using PL/Java [AB16]). Note
that to support any other Relational DBMS, only the glue code part has to be
changed. Indeed, our translation from QIR to SQL can be reused heavily, even
for languages of NoSQL databases such as Cassandra’s CQL, since CQL is very
similar to SQL. But, of course, supporting vendor specific extensions of SQL
would require to write an extended specific database translation. For HBase,
we translate QIR expressions to Java objects representing HBase queries using
the Java interface provided by HBase. The QIR part contains the definition of
QIR operators; the normalization procedure; the generic part of the translation to
databases; the type systems; and the in-memory evaluator. This amounts to a fair
7000 l.o.c. but is shared by all host languages and back-ends. Furthermore, any
improvement made on that component (e.g., in the normalization module or in
the runtime) benefits to all back-ends and host languages. As for the integration
with the host language, given a non-trivial language (FastR amounts to 173000
l.o.c. without counting the l.o.c. of the Truffle framework), extending its parser
and implementing the translation of Definition 7.3 takes about 1350 l.o.c. This
last number is roughly the same for SimpleLanguage in which we defined a syntax
for queries, and we expect it would be similar for other languages.

Even though our main focus is on Truffle-based languages, on which we have
full control over their interpreters, all our requirements are also met by the in-
trospection capabilities of modern dynamic languages. For instance, in R, the
environment function returns the environment affixed to a closure as a modifi-
able R value, the body function returns the body of a closure as a manipulable
abstract syntax tree, and the formals function returns the modifiable names of
the arguments of a function. Our implementation includes an experimental in-
terface to Python as a host language using the introspection capabilities of this
language.

Our implementation additionally includes an experimental driver for Spark
databases, with a translation from QIR to Scala.

7.3.1 QIR

QIR is implemented in Java using Truffle under GPL v2 licence. The QIR imple-
mentation is described by Figure 7.2. It is composed of the nodes representing
QIR expressions in package ast; drivers for databases as well as an interface for
host languages in package driver; a parser allowing to build QIR expressions di-

138

qir
+— ast

— (QIRNode. java

+— operator

- . . .

+— driver

— DBDriver. java

— QIRDriver. java

— .+ e

4 parser
+— QIRLanguage. java
+— QIRTypes.java

+— runtime

LfQIRContext.java

+— types
tQIRType.java

— typing
QIRGenericTypeSystem. java

QIRSpecificTypeSystem. java

— ntil

QIRAny. java
QIRException. java

Figure 7.2 — Overview of QIR implementation

139

rectly from a representation as a string in package parser; types and type systems
in package types and typing. The files QIRLanguage. java, QIRTypes. java,
and runtime/QIRContext.java are mandatory files for the definition of QIR as
a Truffle language, util/QIRAny. java is used as a placeholder for any possible
QIR expression, and util/QIRException.java is an exception thrown by the
components of QIR in case of error.

QIR nodes

QIR nodes are defined using the Truffle framework. Every QIR node inherits from
QIRNode. java. This includes QIR data operators, for instance Figure 7.3 shows
the implementation of Filter in QIR. A VirtualFrame is the Truffle version
of a host language evaluation environment. The executeGeneric method is
a method defined in all QIR nodes to evaluate them. Every definition of this
method in a QIR node is the implementation of a rule used to infer the relation
— from Definition 3.6, except for QIR nodes representing data operators in
which executeGeneric is the implementation of the data operator by MEM.
Technically, these implementations of data operators for MEM should not exist
since these operators should be translated into QIR expressions as shown in
Definition 3.11, but it is obviously more efficient in practice to directly implement
the operator in Java and in executeGeneric. Finally, the accept method defined
in every QIR node is part of an implementation of the Visitor design pattern
which we will use for various algorithms on QIR nodes including translations.
Such algorithms have to implement the IQIRVisitor interface, with T being the
return type of the algorithm.

Types and type systems

The package types contains objects defining QIR types. All QIR types inherit
from QIRType.java. The package typing contains the generic type system as
a class, as well as an abstract class as interface for specific type systems which
implements IQIRVisitor.

Our type systems use a subtyping relation instead of constraints for ease of
implementation. For instance, Figure 7.4 shows how the type system for SQL
returns a type for a conditional expression. The methods checkSubtype and
expectCommonType defined by the abstract class QIRSpecificTypeSystem. java
respectively throw an expression if the first argument is not a subtype of the
second argument, and if the two arguments do not share a common subtype. So
this method called on a QIR conditional expression if ¢; then ¢, else g3 checks
that the condition ¢; has a boolean type (Line 2), then checks that the "then"
expression ¢y has a basic type represented by the abstract class QIRConstantType
using the special value QIRConstantType.ANY which is a special type that is
considered a supertype to any basic type (Line 4), and finally returns the common

140

package qgir.ast.operator;

s

* {@link QIRFilter} represents the selection operation of relational
* algebra.
*/
public final class QIRFilter extends QIROperator {
/*%

* The filter function that takes a tuple and returns a value
* (typically a boolean) that describes whether or not the tuple
* should be kept in the result set.

*/

private final QIRNode filter;

/%%

* The next {@link QIROperator} in the tree.
*/

private final QIRNode child;

Q@0verride
public final QIRNode executeGeneric(final VirtualFrame frame) {
final QIRNode f = filter.executeGeneric(frame);
final QIRList input;
try {
input = child.executelist(frame);
} catch (UnexpectedResultException e) {
throw new QIRException("Expected list as input in QIRFilter");
}
return input.filter(e -> {
try {
return new QIRApply(null, f, e).executeBoolean(frame).isTrue();
} catch (UnexpectedResultException e2) {
throw new QIRException("Expected boolean as result of
configuration application in QIRFilter");

}
I3
}

@0verride
public final <T> T accept(final IQIRVisitor<T> visitor) {
return visitor.visit(this);

}
}

Figure 7.3 — Implementation of Filter in QIR

141

subtype of the two expressions ¢» and g3 if it exists (Line 5).

ipublic final QIRType visit(final QIRIf qirIf) {

> checkSubtype (qirIf.getCondition() .accept(tohccept),
QIRBooleanType.getInstance());

s final QIRType thenType = qirIf.getThenNode().accept(toAccept);

+ checkSubtype (thenType, QIRConstantType.ANY);

5 return expectCommonType(qirIf.getThenNode () .accept(tohAccept),
qirIf.getElseNode () .accept(toAccept));

o}

Figure 7.4 — The type system for SQL on a conditional expression

Additionally, our type systems implement the possibility to give more power-
ful constraints to our types. For instance, Figure 7.5 shows the method that infers
a type for the Project data operator of relational algebra. This method first uses
expectIfSubtype to check that the data argument of Project has a list type
given by the attribute anyListType (Line 2), then checks that the configuration
of Project has a function type that takes the type of an element of the data argu-
ment and returns the type expectedFormatterReturnType (Line 3), and finally
it returns a list type which elements have the return type of the configuration
(Line 4).

expectedFormatterReturnType restricts accepted QIR types for data oper-
ators. In the type system for MEM, expectedFormatterReturnType is set to
QIRAnyType, which is, similarly to QIRConstantType.ANY, a special type consid-
ered as a supertype of any other type:

public QIRType visit(final QIRProject qirProject) {
return visit(qirProject, QIRAnyType.getInstance());

iprotected QIRType visit(final QIRProject qirProject, final QIRType

expectedFormatterReturnType) {

> final QIRListType childType = expectIfSubtype(qirProject.getChild().
accept(toAccept), anyListType);

3 final QIRFunctionType formatterType = expectIfSubtype(qirProject.
getFormatter() .accept(toAccept), new QIRFunctionType(childType.
getElementType (), expectedFormatterReturnType));

4+ return new QIRListType(formatterType.getReturnType());

5}

Figure 7.5 — The type system for SQL on the Project data operator

142

But in the type system for SQL, the expected return type is a flat record,
a record that can only contain basic types. To achieve this, our implementa-
tion of a QIR record type gives the possibility to add a global restriction to
the types of elements of a QIR record type. So for the type inference for SQL,
expectedFormatterReturnType is the empty record type with a global restric-
tion set to the special value QIRConstantType.ANY:

@0verride
public final QIRType visit(final QIRProject girProject) {
return visit(qirProject,
QIRRecordType.anyRestrictedTo (QIRConstantType.ANY));

We also see here how the Visitor pattern and the dynamic dispatch of Java
allow us to factorize common code between algorithms.

As for anyListType, it would be set in the case of MEM to a list which
argument type is QIRAnyType, meaning that MEM accepts any type of list. SQL
would set the attribute to a list for which the type of elements is a record type
that can only contain basic types.

Drivers

Our implementation of BOLDR does not have a fixed definition of a host lan-
guage driver. It only has an interface QIRInterface. java that contains a run
function taking a QIR term as a query and returning a QIR term as results of
the evaluation of the query or throwing a QIRException in case of error. Less
naive ways to transmit information from database tables such as cursors [EN89]
are not yet supported.

However, database drivers have a fixed definition in our implementation in
the form of the following abstract functions present in a Java abstract class
DBDriver. java:

public abstract void openConnection(final String newConfigFile);
public abstract void closeConnection();

public abstract boolean isConnOpen();

public abstract QIRType type(final QIRNode query);

public abstract DBRepr translate(final QIRNode query);

public abstract QIRNode run(final DBRepr query);

openConnection, closeConnection, and isConnOpen are handling the con-
nection to the database. For instance, our implementation of a PostgreSQL driver

143

uses a JDBC driver to establish a connection to the database using the method
getConnection() from the class java.sql.DriverManager.

The function type gives a QIRType to a QIR expression. This function corre-
sponds to the specific type system defined in Definition 4.6 for the database. The
function translate takes a QIRNode and returns its translation into a represen-
tation that can be evaluated by the database. This function corresponds to the
specific translation defined in Definition 6.1 for the database. The return type
of translate is the parametric type DBRepr specified by the driver as the query
representation for the corresponding database. For instance, in the case of a SQL
database, DBRepr can simply be the type String since we can translate the query
to a SQL string as in Definition 6.3. Both of the functions type and translate
are algorithms that can implement IQIRVisitor as mentioned before.

Finally, the function run takes a query in the representation of DBRepr, sends
it to the database for evaluation, then retrieves the results and translates them
into QIR.

7.3.2 Interface to FastR

Our implementation of BOLDR interfaces with FastR, the implementation in
Truffle of the language R.

As already mentioned in Section 7.1, our implementation overrides the already
existing builtin functions $ and subset to work on queries. The integration is
not yet completely implemented, so a syntax for queries has also been added for
temporary use for other operators such as Group or for complex configurations.
So the query:

subset (emp, sal >= min_salary, c(emp_id, emp_name))

can also be written:

query.select (function (x) {
res = new.env()
res$empno = x$emp_id
res$ename = x$emp_name
res
1,
query.where(function (x) x$sal >= min_salary,
query.from(emp)))

The interface between FastR and QIR also retrieves values of free variables
using Truffle frames, then binds them using QIR applications of QIR functions
to the translation of values into QIR as intended.

144

Finally, the interface defines functions using Truffle in order to evaluate Truffle
closures. These functions are used inside databases to evaluate host language
expressions.

7.3.3 Host language expressions in databases

In order to evaluate a host language expression in Truffle inside databases, we
call the Java Virtual Machine present in the database, or if none exist natively
we find a way to interface one to the database.

PostgreSQL

PostgreSQL is a database written in C, that does not natively have access to
a JVM. To evaluate host language expressions in PostgreSQL, our implementa-
tion of BOLDR uses PL/Java|AB16| which interfaces PostgreSQL, allowing us
to import a jar file of our Truffle languages in PostgreSQL.

Hive

Hive is a software built on top of Hadoop which provides a SQL-like query lan-
guage compiled to MapReduce operations. Hive is written in Java, thus we can
directly use the intended way to call foreign Java functions from jar files [Hiv].

Syntax of host language expression application in practice

We get to a bit of a technical problem when a host language expression depends
on data stored in the database. Indeed, a function stored in a host language
expression can be difficult to represent as an object that a query language can
manipulate.

Let us take the example of PostgreSQL in which we want to execute R code.
We use the extension called PL/Java to execute FastR code in a PostgreSQL
database. This allows us to create a function that calls the runtime of R to
evaluate an R expression. For instance:

SELECT r.executeR(’2?)

However, if we use this function to evaluate an R function:

SELECT r.executeR(’function(x) x + 2?)

we get a result that cannot be easily recovered as a SQL value. Because of this,
r.execute returns an opaque object that represents the return value of the eval-
uation of the program in the R runtime. Unfortunately, we cannot directly apply
this opaque object to data present in tables. Thus, we create another function in

145

R that evaluates an R function with arguments, and interface it with PostgreSQL
using PL/Java by creating another SQL function named r.executeApply:

SELECT r.executeApply(r.executeR(’function (dol){
a = dol * 89.0 / 100.0
while (a > 1000.0) a = a * 89.0 / 100.0
a
}’), arrayl[r.translateToR(x.sal)]) AS salary,
Xx.name AS name,
x.id AS id
FROM public.employee AS x
WHERE NOT ((x.sal) < (2500.0))) AS x;

The function r.translateToR is another function created using PL/Java al-
lowing us to translate the arguments for r.executeApply. This translation makes
use of the automatic translation of PL/Java between SQL values and Java ob-
jects as a temporary solution, but in the future, it should rely on the translations
defined in BOLDR: from SQL to QIR, then from QIR to R.

7.4 Experiments

The test machine for our experiments is a PC with Ubuntu 16.04.2 LTS, kernel
4.4.0-83, with the latest master from the Truffle/Graal framework and Post-
greSQL 9.5, Hive 2.1.1, HBase 1.2.6, and Java 1.8, all with default parameters.
The results of our evaluation are reported in Figures 7.6, 7.7, 7.8, 7.9, and 7.10.
Queries labeled TPCH-n are SQL queries taken from the TPC-H performance
benchmark [TPC17|. These queries feature joins, nested queries, grouping, or-
dering, and various arithmetic subexpressions. Figures 7.6, 7.7, and 7.8 illustrate
how our approach fare against hand-written SQL queries. Figure 7.6 reports the
expected cost in disk page fetches as reported by the EXPLAIN ANALYZE com-
mands scaled on the cost of the queries in pure SQL, and Figure 7.7 reports
the execution time on a 1GB data set. In the legends of the figures, Pure SQL
represents the hand-written SQL queries, Pure SQL+UDFs represents the same
SQL queries where some subexpressions are expressed as function calls of stored
functions written in PL/SQL. BOLDR R represents the SQL queries generated
by BOLDR from equivalent R expressions, and BOLDR R-+UDFs represents the
same SQL queries as in SQL+UDFs generated by BOLDR from equivalent R
expressions with R UDFs. Lastly, for BOLDR R+M, we added untranslatable
subexpressions kept as host language nodes to impose a call to the database em-
bedded R runtime. The results show that we can successfully match the perfor-
mances of Pure SQL with BOLDR R, and that BOLDR outperforms PostgreSQL
in BOLDR R+UDFs against Pure SQL+UDFs. This last result comes from the

146

10

NECR B

om DOCH 0

§ NN g

0o

0o

Pure SQL

U0 Pure SQL with UDFs

BOLDR R

lIBOLDR R with UDFs

N DHDI EELC

T T T T T T
TPCH-1 TPCH-2 TPCH-3 TPCH-4 TPCH-5 TPCH-6

T T
TPCH-9 TPCIH-10

B

A

=R

Uo

o

Pure SQL

10 Pure SQL with UDFs

BOLDR R

IIBOLDR R with UDFs

WL I

T T T T T T T T
TPCH-11 TPCH-12 TPCH-13 TPCH-14 TPCH-15 TPCH-16 TPCH-18 TPCH-19

Figure 7.6 — Page fetches on TPC-H queries (scaled on the "Pure SQL" column)

147

16

14

12

10

10

0o

0o

Pure SQL

J0 Pure SQL with UDFs

BOLDR R

lIBOLDR R with UDFs

LN ssOn DDD. mlom DDDI DDD.

i

T T T T
TPCH-1 TPCH-2 TPCH-3 TPCH-4

T T
TPCH-5 TPCH-6

T T
TPCH-9 TPCH-10

00 Uo

Pure SQL

lo BOLDR R

10 Pure SQL with UDFs

IIBOLDR R with UDFs

Ll

N

0

Il

o0

i

T T T T T T
TPCH-11 TPCH-12 TPCH-13 TPCH-14 TPCH-15 TPCH-16

oo: evaluation took more than 5 minutes.

T T
TPCH-18 TPCH-19

Figure 7.7 — Time elapsed on TPC-H queries (in seconds)

148

102 ‘ ‘

i l0Pure SQL - UDFs | |

i m Il BOLDRR+H ||

100}]

100 - [DD D _ N

107"}]
102 T

T T T
TPCH-1 TPCH-3 TPCH-5 Example 1.5

Figure 7.8 — Time elapsed on TPCH queries with host language expressions

fact that PostgreSQL is not always able to inline function calls, even for simple
functions written in PL/SQL. In stark contrast, no overhead is introduced for
a SQL query generated from an R program, since the normalization is able to
inline function calls properly, yielding a query as efficient as a hand-written one.
As an example, the TPCH-15 query was written in BOLDR R+UDFs as:

supplier = tableRef ("supplier", "PostgreSQL", "pg.conf", "tpch")
revenue = tableRef("revenue", "PostgreSQL", "pg.conf", "tpch")
max_rev = function() max(subset(revenue, TRUE, c(total_revenue)))

q = subset(merge(supplier, revenue, function(x, y) x$s_suppkey ==
y$supplier_no),
total_revenue == max_rev(),
c(s_suppkey, s_name, s_address, s_phone, total_revenue)
) [order (s_suppkey),]

print (executeQuery(q))

BOLDR was able to inline this query, whereas the equivalent in Pure SQL+UDFs
could not be inlined by the optimizer of PostgreSQL.
Figure 7.8 illustrates the overhead of calling the host language evaluator from

149

60 (0 Hive o
l0Hive+R

50 | |

40 | |

30 - .

20 |- H H |

I I
1600 16000 78000 157000 316000 633000
Number of calls to R runtime

Figure 7.9 — Comparison on execution time (in seconds) for Hive queries with
and without host language expressions

getRate atleast PostgreSQL | HBase | Hive
PostgreSQL 0.34 147 | 1.17
HBase 1.44 1.33 | 2.07

Hive 0.74 1.78 | 0.66

Figure 7.10 — Comparison on execution time (in seconds) for Example 1.5 target-
ing two databases

150

PostgreSQL by comparing the cost of a non-inlined pure PL/SQL function with
the cost of the same function embedded in a host expression within the query.
While it incurs a high overhead, it remains reasonable even for expensive queries
(such as TPCH-1) compared to the cost of network delays that would happen
otherwise since host expressions represent expressions that are impossible to inline
or to translate into the database language.

Figure 7.9 illustrates the overhead of calling the host language evaluator from
Hive against a pure inlined Hive query. For instance:

SELECT rexecuteapply(’function(x, y) x+y’, array(p.pid, d.mid))
FROM PEOPLE p, DIRECTOR d WHERE p.pid < N

against

SELECT rexecuteapply(’function(x, y) x+y’, array(p.pid, d.mid))
FROM PEOPLE p, DIRECTOR d WHERE p.pid < N

The results are that the overhead of calling the R runtime is small compared
to the execution of the query in Map/Reduce for an input data inferior to 80000
rows. The cost of 315000 calls to the runtime of the R runtime is shown as
roughlt twice slower than the same query with no such calls. The cost of 633000
calls to the runtime of the R runtime is shown as two and a half times slower
than the same query with no such calls. These results show that, even using a
naive interface between the R runtime and Hive and a regular JVM, BOLDR
generates queries containing application code that are executable with decent
performances, especially compared to transferring data to the application side.

Figure 7.10 gives the performances of queries mixing two data sources be-
tween a PostgreSQL, a HBase, and a Hive database. We executed Example 1.5
and varied the data sources for the functions getRate and atLeast. In the cur-
rent implementation, a join between tables from different databases is performed
on the client side (see our future work in Section 8.3), therefore the queries in
which the two functions target the same database perform better, since they are
evaluated in a unique database implying less network delays and less work on the
client side.

151

152

Chapter 8

Conclusion

In this chapter, we first talk about work in the literature relevant to our work on
BOLDR. Next, we give a global conclusion to this document by summarizing its
contributions. Finally, we explore possible future developments for BOLDR.

8.1 Related work

The work in the literature closest to BOLDR is T-LINQ [CLW13] which sub-
sumes previous work on LINQ and Links and gives a comprehensive practical
theory of language integrated queries. In particular, it gives the strongest results
to date for a language-integrated queries framework. Among their contributions
stand out: (i) a quotation language (a A-calculus with list comprehensions) used
to express queries in a host language, (i) a normalization procedure ensuring
that the translation of a query cannot cause a query avalanche, (iii) a type sys-
tem which guarantees that well-typed queries can be normalized, (iv) a general
recipe to implement language-integrated queries and (v) a practical implementa-
tion that outperforms Microsoft’s LINQ. Some parts of our work are strikingly
similar: our intermediate representation is a A-calculus using reduction as a nor-
malization procedure. However, our work diverges radically from their approach
because we target a different kind of host languages. T-LINQ works on the pure
aspects of the host language, with quotation and anti-quotation support and
a type-system, although the implementations of LINQ), including P-LINQ pre-
sented in [CLW13|, make a best effort to handle a larger set of host language
expressions in queries. Also, T-LINQ only supports one (type of) database per
query and a limited set of operators (essentially, selection, projection, and join,
expressed as comprehensions). While definitely possible, extending T-LINQ with
other operators (e.g., “group by”) or other data models (e.g., graph databases)
seems challenging since their normalization procedure hard-codes in several places
the semantics of SQL. The host languages we target do not lend themselves as
easily to formal treatment, as they are highly dynamic, untyped, and impure

153

programming languages. We designed BOLDR to be target databases agnostic,
and to be easily extendable to support new languages and databases. We also
endeavored to lessen the work of driver implementors (adding support for a new
language or database) through the use of embedded host language expressions,
which take advantage of the capability of modern databases to execute foreign
code. This contrasts with LINQ where adding new back-ends is known to be a
difficult task [Einll|. Lastly, we obtained formal results corresponding to those
of T/P-LINQ by interfacing a specific SQL type system to our framework.

In order to detect queries in regular code, T-LINQ uses a system of quotations
that syntactically delimits queries, and anti-quotations used as an escape envi-
ronment in queries in order to refer to F# constructs. This syntactic technique
has the advantage of making the detection of queries trivial, and therefore it is
very commonly used |Kis14, SPJ03], but it does not offer a seamless integration
into the programming language.

In the footsteps of T-LINQ, Suzuki et al. [KSK16| define a language-integrated
query framework for which both the query language and the translation rules to
SQL are safely user-extensible. In [KK17|, a denotational approach is taken to
create a language-integrated query framework that supports sound ORDER BY and
LIMIT operations.

Links [CLWYO07] is a programming language that generates type-safe SQL
queries in the context of creating Web applications in one single language. The
type system of Links ensures that well-typed queries can be translated to SQL
queries [LC12|.

Ur/Web [Chl10] is a domain-specific language for the creation of Web appli-
cations. It relies on the programming language Ur and its type inference engine
to type-check metaprograms that generate programs to build HTML documents
and SQL queries.

SML# [OU11] is a version of Standard ML that seamlessly integrate SQL. In
this language, a legal SQL expression is a polymorphically typed first-class citizen
that can be freely combined with any features of Standard ML, including high-
order functions, data type definition, and its module system. SQL expressions
are then sent to a database server to be evaluated.

Efforts have been made to extend the Scala programming language [GIS10] to
the expression of queries using the syntax of LINQ and the native Scala syntax for
comprehensions [PJW07] and taking advantage of the strong static type system
to analyse the type safety of queries at compile-time. Libraries such as Quill [Qui]
and Slick [Sli] provide access to databases and language-integrated queries.

QIR is not the first intermediate language of its kind. While LINQ proposes
the most used intermediate query representation, recent work by |[OPV14| intro-
duced SQL++, an intermediary query representation whose goal is to subsume
SQL and NoSQL. In this work, a carefully chosen set of operators is shown to
be sufficient to express relational queries as well as NoSQL queries (e.g., queries
over JSON databases). Each operator supports configuration options to account

154

for the subtle differences in semantics for distinct query languages and data mod-
els (treatment of the special value NULL, semantics of basic operators such as
equality, ...). In opposite, we chose to let the database expose the operators it
supports in a driver.

While the sets of operators of QIR and of SQL++ are roughly the same, their
design and use is quite different. In particular, QIR is designed as a calculus,
allowing us to supplement the semantics of our operators with arbitrary functions
and to perform high-level optimizations through guided partial evaluation while
SQL++ lacks such flexibility.

[GRS10] present an alternative compilation scheme for LINQ, where SQL and
XML queries are compiled into an intermediate table algebra expression that can
be efficiently executed in any modern relational database. While this algebra
supports diverse querying primitives, it is designed to specifically target SQL
databases, making it unfit for other back-ends.

dotConnect [dot] uses ADO.NET, an object-relational mapping framework for
the .NET framework, to give access to data sources for .NET languages. It also
provides an interface with the LINQ framework.

UnityJDBC |Uni| is a solution that can evaluate queries written in SQL tar-
geting several databases at the same time. UnityJDBC supports any data source
accessible with a JDBC interface, as well as other databases such as Cassandra
and MongoDB.

Our current implementation of BOLDR is at an early stage and, as such, it
suffers several shortcomings. Some are already addressed in existing literature.
First, our treatment of effects is rather crude. Local side effects, such as updat-
ing mutable references scoped inside a query, work as expected while observable
effects, such as reading from a file on host machine memory, is unspecified be-
havior. The work of [CW11| shows how client-side effects can be re-ordered and
split apart from queries. Third, at the moment, when two subqueries target dif-
ferent databases, their aggregation is done in the QIR runtime. [CLF15] present
a language which allows manipulation of data coming from different sources, ab-
stracting their nature and localization. A drawback of their work is the limitation
in the set of expressions that can be handled. Our use of arbitrary host expres-
sions would allow us to circumvent this problem. Fourth, we do not use the table
schemas provided by databases. These would allow us to detect more errors in
queries before their translation.

An alternative to modifying the semantics of operators in the language and
adding explicit query evaluation functions such as executeQuery of Chapter 7
to express and evaluate queries in already existing programming languages is to
identify parts of code that should be considered as queries using imperative code
extraction [ERBS16], transparent persistence [WCO07| or synthesis [CSLM13]. Ad-
ditionally, it is possible to reduce the latency of applications by sending queries
to databases before the results are needed, this is called query result prefetching.
Recent techniques [RS12| allows applications to apply query result prefetching

155

efficiently and in a way that is transparent to programmers.

8.2 Conclusion

In this thesis, we studied how to create, translate and evaluate queries safely and
efficiently, through a language-integrated framework.

QIR. We defined an intermediate representation of queries as a language called
QIR, which allowed us to apply a database-agnostic optimization called normal-
wzation in order to merge subqueries together by reducing application code that
glues them together.

Type systems. We defined a type system for QIR allowing data operators to
be typed according to the semantics of the particular targeted database. This
was achieved by creating a modular generic type system that can be extended
with specific type systems created by databases typing QIR expressions that
are compatible with the query language of the database. We used those type
systems to prove safety properties on the evaluation of QIR expressions and on
the normalization. We also defined a specific type system for SQL.

Typing algorithms. We defined typing algorithms suitable for implementation
that we prove to be equivalent to our type systems. These typing algorithms
generate a type that contains type variables along with constraints on types.
These constraints are resolved by our unification algorithm which generates a
substitution of type variables to be applied to the type generated by the typing
algorithm. We also proved that this typing algorithm terminates and returns
substitutions that indeed solve the constraints given as input.

Typed evaluation. We defined how to translate a QIR expression into a
database language expression, and showcased this by defining a translation from
QIR to SQL. We also showed that a term typed by our specific type system for
SQL is guaranteed to be translatable to SQL by our translation. Additionally,
we define a normalization based that makes use of our type systems to detect if
reducing a QIR expression is guaranteed to terminate.

Implementation. We implemented BOLDR, with support for several host lan-
guages and databases. We experimented on our framework and showed that,
for most queries, BOLDR generates queries as efficient as hand-written queries
in SQL, and it can handle queries between different databases and containing
application logic with decent performances.

We have shown with BOLDR that it is possible to create a language-integrated
framework allowing application programmers to write queries in the language
they are experts in, without having to be expert in the query language or data
model of the targeted databases. We additionally showed it is possible to guar-
antee some safety of execution of these queries, and all of this without sacrificing
performances.

156

8.3 Future work

First, we want to create more host language and database drivers to link more
components to BOLDR. Our experiments on Python call for interfacing more
languages that are not implemented using Truffle. On the other side of the
framework, there are many field-specific database languages the framework could
interface with. For instance, the query language Cypher [FGG™18] created for
the database Neodj is designed for graph databases. Integrating these languages
is crucial in order to allow BOLDR to query specialized databases efficiently.
Additionally, it would be interesting to explore how to interface a statically typed
programming language to BOLDR, in particular to study how to make our generic
type system work with the type system of the language. Intuitively, our type
system being standard, it should be possible to transfer information from the
type system of the language to the type system of QIR.

Currently, queries targeting more than one data source are partially executed
in the host language runtime. We plan to determine when such queries could
be executed efficiently in one of the targeted data sources instead. For instance,
as explained in Chapter 4, in a join between two distinct data sources, it could
be more efficient to transfer data from one data source to the other data source
which could then complete the join. This requires a study on how to guarantee
such an optimization would really be efficient, likely based on the quantity of
information to be transferred.

Similarly, a whole new range of optimization possibilities could be exploited
if databases could evaluate QIR code. Indeed, if that were possible, then more
queries that are not translatable in the query language of the database could be
evaluated in the database. For instance, consider the following query:

Join(fun(z,y)—z Xy, fun(z,y)—x.teamid=y.teamid |
From("Employee”, Cassandra), From(”Team”, Cassandra))

Since Join is not supported by the database Cassandra, BOLDR performs the
Join in-memory after sending queries to Cassandra to fetch the data from the
two tables. However, if Cassandra could evaluate QIR code, then we would be
able to send the entire query to the database, and evaluate the Join there, in the
embedded QIR runtime. The key difference here is that instead of fetching the
data from the two tables, it is the result of the operation that is sent to the ap-
plication side. Thus, just like for data transfer between databases, the usefulness
of this optimization depends on the query: performing it would be useful if the
result of the operation in QIR yields significantly less data to be transferred, since
network delays would then be greatly reduced. Our implementation of QIR being
written in Java (using Truffle), evaluating QIR code in a database is absolutely
feasible, and we will explore this possibility in the near future.

Our type system tells us where every subexpression of a query should be
evaluated. By adding security constraints, it would be possible to ask the generic

157

type system to ensure that there is no transfer of sensitive data from the database
to a client by making sure operators manipulating this sensitive data are never
typed for MEM.

Our typing algorithms currently deduce the type of the data present in a table
using type constraints. Some databases such as relational databases give types to
their tables. BOLDR could use this information to have an additional verification
of the validity of queries.

ORMs and LINQ can always type queries since they target statically typed
programming languages. BOLDR cannot do the same since its queries might
contain code from dynamically typed languages, and we do not plan to statically
type Python. In order to extend the type system of QIR to some host language
expressions, we could use a recent technique called gradual typing [ST06| which
mixes static and dynamic typing in the same language. For instance, mypy [MyP]
allows to freely mix between static and dynamic typing in Python. This would
allow us to extend our type system to host language expressions containing stat-
ically typed code, and therefore give guarantees even on QIR expressions that
contain host language code.

Our developments on BOLDR use data operators from relational algebra.
Unfortunately, these operators are not directly adaptable for operations in graph
or map-reduce databases. Of course, those databases can interface their specific
operators to the framework. However, having to use the specific operators for
each database makes queries written in host languages dependant to the tar-
geted databases, which goes against our goal of allowing programmers to write
queries without being experts in the data models and languages of their targeted
databases. Therefore, a future line of improvement for BOLDR is the definition
of more generic data operators that would allow programmers to write queries in
the same way no matter which databases they target.

The translations from QIR to databases are directly written in Java in our
implementation. A possible improvement would be the creation of a domain-
specific language to define translations from QIR into database languages, leaving
the implementation details to the language itself, with the associated gains of
speed, clarity, and concision. A starting point for this extension named DCDL
for Database Capabilities Description Language can be found in [Lop16]. DCDL
bases itself on macro tree transducers [CDGT07, BD13] to define sequences of
translation rules.

Our implementation of the default database MEM that evaluates QIR expres-
sions is rather naive. We could achieve better performances, for instance, by
compiling our QIR expressions into LLVM code. The runtime Weld [PTS*17,
PTNT18] has shown that it is possible to increase the performances of data-
oriented programs considerably by compiling into multi-threaded LLVM code.

Finally, our integration of host languages in databases in our experiments is
not optimized. First, our databases use standard JVMs to evaluate code. As
explained in Chapter 7, we could improve our performances using Graal, a JVM

158

designed to execute Truffle code efficiently. Second, our implementation currently
stores the code of the program in a host language expression as a string. Work
is underway to allow the serialization of arbitrary Truffle ASTs, which would
make BOLDR able to store those ASTs in host language expressions instead,
thus avoiding to parse the program in the database.

159

160

Appendices

161

Annexe A

Résumé étendu

A.1 Contexte

Le stockage, I'accés, et la manipulation de données sont des opérations vitales
et critiques dans la plupart des applications. Les applications Web, statistiques,
I'intelligence artificielle, 'Internet des objets, tous doivent accéder a une grande
quantité d’information stockée dans des sources de données hétérogenes.

Les applications sont écrites dans des langages de programmation généralistes
souvent choisis en fonction de leur compatibilité avec un domaine spécifique (par
exemple, R ou Python pour I'analyse statistique ou la fouille de données, JavaS-
cript pour la programmation Web). Ces langages de programmation sont sou-
vent impératifs, ce qui signifie que les utilisateurs de ces langages doivent décrire
comment accéder a la mémoire de l'ordinateur et la manipuler. Pour cela, les
utilisateurs écrivent des séquences d’expressions, et chacune de ces expressions
modifient ’état du programme.

Les données, elles, sont stockées dans des bases de données gérées par des sys-
téemes de gestion de bases de données (SGBD). Ces systémes gérent le stockage,
I’accés optimisé aux données en utilisant un langage de requétes, la tolérance aux
pannes, la modularité et la confidentialité des données, et plus encore. Une ex-
pression d’un langage de requétes, appelée requéte, décrit les données demandées
au lieu de détailler comment y accéder, laissant au SGBD le soin de choisir la
meilleure facon de procéder.

Pour accéder aux données stockées dans une base de données, une applica-
tion envoie une requéte a la base dans son langage de requétes. Souvent, une
application orientée données contient des composants qui jouent le role d’inter-
face entre I'application et les différentes bases de données cibles. Par exemple,
une technique récente appelée polyglot persistence consiste a séparer les données
nécessaires aux différents composants d’une application dans différents types de
bases de données. Cela permet de tirer avantage des capacités des différentes bases
de données o elles sont les plus efficaces. La Figure A.1 montre un exemple d’une

163

e-commerce

application
A
User session User accounts Inventory
Shopping cart Logs Financial data

| |
S

Key-value database Document database RDBMS

R

FIGURE A.1 — Exemple d’application utilisant différents types de bases de données

telle application.

Cette thése est une étude dont le but est de créer une solution permettant
aux développeurs d’applications d’écrire des requétes stires et efficaces sans avoir
besoin d’étre des experts dans les modéles de données et les langages de requétes
des bases de données ciblées.

Nous donnons ici un apercu des langages de requétes des bases de données, des
langages de programmation utilisés dans le développement d’applications, et les
solutions existantes pour interfacer ces deux mondes ainsi que les problémes ren-
contrés. Ensuite, nous décrivons une nouvelle solution sous la forme d’un nouveau
framework de requétes intégrées au langage appelée BOLDR.

A.2 SQL

SQL (Structured Query Language) est le langage de requétes le plus populaire.
C’est un langage dédié (ou domain-specific language en anglais) basé sur 1’algébre
relationnelle.

164

A.2.1 Algébre relationnelle

[’algébre relationnelle créée par Edgar F. Codd [Cod70|, définit des opérations sur
des données représentées comme des ensembles de n-uplets dans lesquels chaque
élément correspond a un attribut dénoté par un nom. Les bases de données re-
lationnelles appellent ces constructions des tables, composées de lignes et de co-
lonnes. La Figure A.2 montre des exemples de tables.

id name salary | teamid :

- teamid | teamname | bonus
1 Lily Pond 5200 2

- 1 R&D 500
2 | Daniel Rogers 4700 1 5 Salos 600
3 | Olivia Sinclair | 6000 1

Table T
(a) Table Employee (b) Table Team

FIGURE A.2 — Un exemple de données organisées en tables

La plupart des langages de requétes des bases de données sont basés sur
’algébre relationnelle [AHV95]. Les opérations les plus basiques de Palgébre rela-
tionnelle sont la projection, qui restreint les n-uplets a un ensemble d’attributs; la
sélection (ou restriction), qui ne conserve que les n-uplets satisfaisant une condi-
tion ; et la jointure, qui renvoie ’ensemble des combinaisons de n-uplets provenant
de deux tables dont les valeurs sont égales sur leurs attributs communs. La Fi-
gure A.3 montre des exemples d’applications de ces opérations sur des tables. La
Figure A.3a montre la projection de la table People sur les attributs firstname
et lastname, la Figure A.3b montre la sélection des n-uplets de la table People
pour lesquels la valeur de I'attribut zipcode est 13000, et la Figure A.3c montre
le résultat de la jointure entre les tables People et Team.

name salary - :
Tily Pond 5900 id name salary | teamid
. 1 Lily Pond 5200 2
Daniel Rogers | 4700 3 [Olivia Sinclai 6000 1
Olivia Sinclair | 6000 A et

b) Sélecti Empl
(a) Projection sur Employee (b) Sélection sur Employee

id name salary | teamname | bonus
1 Lily Pond 5200 Sales 600
2 | Daniel Rogers | 4700 Sales 600
3 | Olivia Sinclair | 6000 R&D 500

(¢) Jointure entre Employee et Team

FIGURE A.3 — Exemple d’applications de I'algébre relationnelle

165

A.2.2 Exprimer des requétes en SQL

SQL permet d’utiliser les opérations de I’algébre relationnelle dans un langage de
programmation déclaratif. Au lieu de décrire étape par étape comment le calcul
doit étre fait pour obtenir le résultat désiré, la programmation en SQL consiste a
décrire le résultat voulu. Pour cela, la syntaxe de SQL est faite pour se rapprocher

d’un langage naturel. Par exemple, la projection de la Figure A.3a peut étre écrite
en SQL ainsi :

SELECT name, salary FROM Employee

ou SELECT représente la projection, et FROM représente 'opération sur les données
From qui renvoie le contenu d’une table a partir de son nom.
La sélection de la Figure A.3b peut étre écrite :

SELECT * FROM Employee WHERE salary > 5000

ol * signifie toutes les colonnes. Enfin, la jointure de la Figure A.3c peut étre
écrite :

SELECT * FROM Employee NATURAL JOIN Team

ou encore :

SELECT * FROM Employee, Team WHERE Employee.deptno = Team.deptno

Comme le montre cette derniére requéte, les noms des tables peuvent étre
utilisés comme les noms de la ligne courante de la table correspondante. Cela
permet de lever 'ambigiiité sur quelle n-uplet doit étre accédé pour la valeur
de la colonne. De plus, SQL permet la création d’alias pour donner un nom
temporaire aux tables avec le mot-clé AS. Par exemple, notre derniére requéte
peut s’écrire :

SELECT * FROM Employee AS e, Team AS t WHERE e.deptno = t.deptno

Dans ce cas, les alias ne sont pas nécessaires puisque les noms de tables per-
mettent déja de distinguer les lignes, mais ils sont requis dans certaines requétes
comme les jointures entre une table et elle-méme, ou pour donner un nom au
résultat d’une sous-requéte :

SELECT * FROM Employee e,
(SELECT 1 AS teamid, °’R&D’ AS teamname, 500 AS bonus UNION ALL
SELECT 2 AS teamid, ’Sales’ AS teamname, 600 AS bonus) AS t
WHERE e.deptno = t.deptno

166

Dans cette derniére requéte, la sous-requéte UNION ALL crée la table anonyme
suivante :

teamid | teamname | bonus
1 R&D 500
2 Sales 600

qui est ensuite lié au nom t en utilisant un alias, et ce nom est alors utilisé dans
la clause WHERE pour faire référence a la table.

La syntaxe simple de SQL est I'une des raisons de sa popularité, et de sa
place comme le plus utilisé des langages de requétes. La plupart des bases de
données sont compatibles avec SQL, méme celles qui n’ont pas un modéle de
données directement adapté pour 'algébre relationnelle. Par conséquent, SQL
est un langage de base de données indispensable pour 'étude de solutions dont
le but est de permettre aux programmeurs d’envoyer des requétes aux bases de
données.

A.3 Langages de programmation applicatifs

La majorité des applications orientées données sont écrites dans des langages
de programmation impératifs. Python est utilisé en particulier pour les applica-
tions Web et I'apprentissage automatique. C’est un langage de programmation
trés populaire de part sa syntaxe simple et ses trés nombreuses bibliothéques
spécifiques a différents domaines, notamment pour 'apprentissage automatique,
les algorithmes généraux, et les statistiques. JavaScript est trés largement utilisé
dans les applications Web. R est un langage créé pour les applications statistiques
et d’analyse de données. Java est un langage de programmation généraliste trés
utilisé proposant de nombreuses bibliothéques pour le développement Web, I'ap-
prentissage automatique, le traitement de textes, et plus encore.

Contrairement a la programmation déclarative des langages comme SQL,
la programmation impérative demande aux programmeurs de décrire étape par
étape la maniére dont la machine doit générer le résultat voulu. Par exemple,
lopération de sélection dans un langage impératif serait écrite de cette maniére
en Python :

filteredTable = []
for employee in employees:
if (employeel[’salary’] > 5000):
filteredTable.append(employee)

Cependant, les langages de programmation modernes ont fait un effort pour im-
plémenter certains aspects de la programmation fonctionnelle, permettant de
rendre les applications orientées données moins techniquement détaillées, et écrites

167

de facon plus déclarative. Par exemple, il est possible d’écrire notre exemple en
Python en utilisant des listes en compréhension [Kuhl1] :

[employee for employee in employees if employee[’salary’] > 5000]

Les programmes applicatifs peuvent utiliser des fonctionnalités impératives
et fonctionnelles, et souvent un peu des deux. Cependant, la plupart des lan-
gages d’application sont d’abord impératifs, et en particulier, ils sont souvent
plus efficaces a évaluer du code impératif.

De plus, la plupart des langages d’application (Python, R, Ruby, JavaScript,
...) sont typés dynamiquement, ce qui signifie que la siireté du typage est vérifiée
a I'exécution. Par exemple, un programme comme

(function (x) { return x; })(2, 3)

qui applique la fonction identité & deux arguments serait reconnu comme une
erreur a son exécution (ou il le devrait, mais JavaScript ignore simplement le
second argument dans ce cas ...).

A.4 Requétes depuis des langages d’application

Comme expliqué plus tot, la plupart des applications sont écrites dans des lan-
gages de programmation généralistes. Ces langages n’ont pas de moyen natif
d’envoyer des requétes a des bases de données, et la vaste majorité d’entre eux
sont des langages impératifs, dont la syntaxe est trés différente des langages de
requétes. De nombreuses solutions existent pour permettre aux programmeurs
d’envoyer des requétes aux bases de données depuis leurs langages de program-
mation. Dans cette section, nous décrivons des solutions existantes, et discutons
leurs avantages et inconvénients.

A.4.1 JDBC

Java Database Connectivity (JDBC) [Corl6| est une interface de programmation
applicative (API) qui fournit au langage de programmation Java un accés aux
sources de données, incluant les bases de données.

L’Exemple A.1 est un exemple d’utilisation de JDBC dans un programme
Java pour récupérer des données stockées dans une base.

168

Example A.1.

final Connection conn = ...
final Statement stmt = conn.createStatement();
final String query =
"SELECT id, name, salary FROM employee WHERE salary > 2500";
ResultSet rs = stmt.executeQuery();
while (rs.next()) {
System.out.println(rs.getInt("ID") + "
+ rs.getString ("NAME") + " " + rs.getFloat ("SALARY"));
}

Dans cet exemple, le programme récupére l'identifiant, le nom, et le salaire des
employés dont le salaire est plus grand que 2500 provenant d’une table employee
stockée dans une base de données.

Avec JDBC, l'utilisateur doit d’abord créer un objet Connection en utilisant
des identifiants valides pour obtenir ’accés a une base cible, puis créer un objet
Statement depuis I'objet de connexion pour envoyer une requéte. Cette requéte
est écrite sous forme de chaine de caractéres dans le langage de requétes de la
base (SQL dans ’exemple). Les résultats sont représentés par un objet ResultSet
contenant un curseur qui commence au début de ’ensemble résultat. ResultSet
fournit une méthode next () qui déplace le curseur sur la ligne suivante, et des
méthodes d’acces telles que getInt () qui renvoie la valeur d'un attribut dont le
nom est donné en argument dans la ligne courante pointée par le curseur. Par
exemple, rs.getInt ("ID") accede a l’entier stocké dans la colonne nommeée "ID"
dans la ligne courante de I’ensemble des résultats rs.

Bien que JDBC soit populaire et simple d’utilisation pour des programmeurs
experts dans le langage de requétes de leur base cible, ce type de solution trés
courant a de nombreux défauts :

e Les programmeurs doivent maitriser les langages de requétes de toutes les
bases de données ciblées.

e L’intégration de logique d’application est trés limitée car la traduction d’ex-
pressions du langage d’application vers le langage d’une base de données
est restreint aux valeurs de bases (chaines de caractéres, entiers, ...), ce qui
force les programmeurs a décomposer des requétes complexes en requétes
plus simples & envoyer aux bases de données, et & combiner les résultats
dans l'application, ce qui entraine plus de travail pour les programmeurs,
de la duplication de code, et des performances potentiellement désastreuses.

e Les erreurs dans les requétes, mémes syntaxiques, sont seulement détectées a
I’exécution car les outils des langages de programmation comme les systémes

169

de types ne peuvent pas détecter d’erreurs dans des requétes écrites dans
des chaines de caractéres.

e Une attention toute particuliére doit étre apportée aux entrées utilisateur
intégrées aux requétes pour éviter les attaques par injection de code [HVO06].

e Des conversions de type doivent étre utilisées pour traduire des valeurs de
la base de données vers le langage d’application (avec JDBC, cela se fait en
utilisant des méthodes comme getInt).

e Changer une base de données cible pour une autre base avec un langage de
requéte différent implique la réécriture de toutes les requétes de I'applica-
tion.

e D’un point de vue d’ingénierie, cette solution demande le développement
d’une nouvelle interface pour chaque connexion entre un langage d’applica-
tion et une base de données. Cela explique la multiplication et la diversité
des solutions, méme dans un seul langage d’application.

Cet ensemble de problémes est connu dans la litérature sous le nom d’impedance
mismatch entre la base de données et le langage d’applications [CM84]. D’autres
solutions ont été proposées pour résoudre ces difficultés.

A.4.2 ORMs

Les mappings objet-relationel (en anglais Object-Relational Mappers ou ORMs) et
les équivalents comme les mappings objet-document (en anglais Object-Document
Mappers ou ODMs) sont des patrons de conception permettant de traduire et
manipuler des données entre des systémes de types incompatible dans des lan-
gages de programmation orientés objet. En représentant la source de données par
un objet, ces patrons de conception permettent de s’abstraire de la source de
données et de manipuler I'information directement dans le langage de program-
mation. Parmi ces ORMs, on trouve par exemple Hibernate [KBAT09] pour Java,
ActiveRecord [ct17] pour Ruby, Doctrine [WV10| pour PHP (qui est également
un ODM), ou encore Django [KMHO07| pour Python.

Bien que la plupart de ces bibliothéques se basent sur des requétes écritent
dans des chaines de caractéres en SQL ou dans des langages cousins tels que les
OQLs (HQL, DQL, JPQL, ...) [ASL89], des efforts ont été fait pour améliorer
I'intégration des requétes dans le langage d’application. Par exemple, au lieu
d’écrire des requétes dans des chaines de caractéres, Criteria pour Hibernate
permet a l'utilisateur de créer un objet CriteriaQuery sur lequel des opérations
telles que des sélections peuvent étre appliquées en utilisant des méthodes de
I'objet. En utilisant Criteria et Hibernate, ’Exemple A.1 peut étre écrit dans le
langage Java comme montré par I’'Exemple A.2.

170

Example A.2.

Session session = HibernateUtil.getHibernateSession();
CriteriaBuilder cb = session.getCriteriaBuilder();
CriteriaQuery<Employee> cr = cb.createQuery(Employee.class);
Root<Item> r = cr.from(Employee.class);
cr.multiselect(r.get("id"), r.get("name"), r.get("salary"))
.where(cb.gt(r.get("salary"), 2500));

Query<Employee> query = session.createQuery(cr);
List<Employee> results = query.getResultList();

La requéte est créée en utilisant des expressions de haut niveau, et elle n’est
donc pas liée a un langage de requétes particulier comme SQL, et sa syntaxe est
vérifiée en utilisant le systéme de types du langage. Cependant, cette solution
est toujours verbeuse ; elle implique la création d’une nouvelle bibliothéque pour
chaque lien entre un langage et une base de données; et son expressivité est for-
tement restreinte. De plus, cette solution demande au programmeur de dupliquer
les schémas des tables de la base de données dans l'application sous forme de
classes.

A.4.3 LINQ

Une considérable avancée dans le domaine est le framework LIN@ |Mic| de Mi-
crosoft, un composant du framework .NET qui donne a ses langages la possibilité
d’envoyer des requétes. LINQ définit des requétes comme un concept de premiére
classe dans les langages .NET, ce qui permet aux programmeurs de définir des
requétes destinées a des bases de données écrites dans la syntaxe de leur langage.
L’Exemple A.3 est 1’équivalent de I’'Exemple A.1 écrit dans le langage C# en
utilisant LINQ.

Example A.3.

var results =

from e in db.Employee

where e.salary > 2500

select new { id = e.id, name = e.name, salary = e.salary };
foreach (var e in results) {

Console.WriteLine(e.id + " " + e.name + " " + e.salary);

}

Bien que LINQ ajoute de nouvelles constructions syntaxiques pour la créa-
tion de requétes comme les mots-clés from, where, et select, les expressions se

171

Python) . Oracle
(\\
R Cassandra
JavaScript 3 MongoDB
Python \ / Oracle
R Inlf:gﬁgiga;e <> Cassandra
JavaScript / MongoDB

FIGURE A.4 — Bénéfices a haut niveau d’une représentation intermédiaire

trouvant dans les requétes sont des expressions natives de C#. Par exemple, 'ex-
pression new {. ..} utilisée dans ’Exemple A.3 est le moyen natif en C# de créer
un objet anonyme. En plus de cette syntaxe de requétes, LINQ expose également
une maniére orientée objet d’exprimer une requéte. Par exemple, la requéte de
I’Exemple A.3 peut étre écrite :

db.Employee
.Where(e => e.salary > 2500)
.Select(e => new { id = e.id, name = e.name, salary = e.salary })

ol x => e représente une fonction anonyme de paramétre x et de corps e.

Les requétes exprimées en utilisant LIN(Q sont donc intégrées au langage de
programmation et siires du point de vue du typage. De plus, I'utilisation du
framework .NET et d'un langage intermédiaire permet & un langage de program-
mation ou a une base de données de s’interfacer avec LIN(Q) indépendamment.

172

En effet, comme le montre la Figure A.4, au lieu de créer une interface entre
chaque langage d’application, ou langage hote, et chaque base de données, cette
approche ne demande aux langages de programmation et aux bases de données
que de s’interfacer avec le langage intermédiaire. Par conséquent, les implémen-
teurs de langages de programmation et de bases de données ont seulement besoin
de maitriser leur langage et le langage intermédiaire pour s’interfacer avec le
framework.

Cependant, toutes les requétes ne peuvent pas étre exécutées in LINQ, car
seulement le code qui peut étre traduit dans le langage intermédiaire de LINQ est
accepté. Par conséquent, I’expressivité des requétes est limitée dans ce framework.
Par exemple, les requétes en LINQ ne peuvent pas inclure des fonctions définies
par lutilisateur arbitraires (fonctions définies en utilisant la syntaxe du langage
de programmation, en anglais user-defined functions ou UDFs). Par exemple,
I’'Exemple A.4 renvoie une erreur a l'exécution car LINQ échoue a traduire la
fonction dolToEuro dans un équivalent dans le langage de la base de données.
Cela n’est pas limité aux fonctions définies par 'utilisateur : toute expression qui
ne peut pas étre traduite est rejetée. C’est la responsabilité de I'implémenteur
du LINQ provider, la partie de I'architecture de LINQ qui traduit les expressions
C+## vers des expressions d’un langage de requétes, de gérer autant d’expressions
du langage hote que possible. LINQ offre peu d’aide a ce sujet et cette traduction
est un point problématique majeur pour s’interfacer avec LINQ [Einl1].

Example A.4.

Func<float, float> dolToEuro = x => x * 0.88f;
db.Employee
.Where(e => e.salary > dolToEuro(2500));

Il existe deux moyens de contourner ce probléme, et aucun n’est satisfaisant.
Une solution est de répliquer manuellement la définition de dolToEuro dans la
base de données, en tant que procédure stockée. Cette solution est particuliére-
ment attrayante maintenant que les bases de données s’efforcent d’intégrer les
langages d’application : Oracle R Enterprise [Orad|, et PL/R [PL/a| pour R;
PL/Python [Pos|, Amazon Redshift [Ama|, Hive [Apab]|, et SPARK [Apac| pour
Python ; ou MongoDB [Mon] et CQL de Cassandra [Apad| pour JavaScript. Ce-
pendant, cela implique la duplication de code exécutant de la logique d’appli-
cation du c6té de la base de donnée, ce qui cause d’important problémes de
maintenance, surtout pour les requétes ciblant plus d’une base de données. Pire,
une telle fonction pourrait méme ne pas étre traduisible du coté de la base de don-
nées, car elle pourrait utiliser des fonctionnalités non-supportées par la base, ou
avoir besoin d’accéder a des valeurs présentes dans ’environnement d’exécution
du langage d’application que le programmeur aurait alors a envoyer explicite-
ment & la fonction & I’exécution, alourdissant sa définition avec des paramétres

173

supplémentaires.

Une autre solution est de récupérer les données dans I'application, puis d’ap-
pliquer les opérations. Cette solution semble étre préférée des développeurs, car
elle est syntaxiquement trés simple avec LINQ :

Func<float, float> dolToEuro = x => x * 0.88f;
db.Employee

.AsEnumerable ()

.Where(e => e.salary > dolToEuro(2500));

Ce programme est exécutable avec LINQ. Mais cette addition de 'appel a
la méthode AsEnumerable() qui parait innocente cache de gros problémes de
performance : les données sont transférées dans I'environnement d’exécution du
langage d’application par la méthode Enumerable.AsEnumerable (), ce qui pour-
rait résulter dans de trés mauvaises performances a cause des retards causés par
le transfert des données sur le réseau, et dans des erreurs de mémoire insuffisante.
De plus, les opérations sur les données sont alors exécutées dans ’application, et
donc n’utilisent pas les capacités d’optimisation fournies par les bases de don-
nées (par exemple en utilisant les index). Le méme probléme apparait avec les
requétes entre différentes bases de données, puisque la solution en LINQ serait
également d’exécuter ces requétes coté application a 'aide d’appels explicites a
AsEnumerable().

Une solution pratique & ce probléme est apporté par T-LINQ [CLW13|, qui
donnent des bases théoriques aux requétes intégrées au langage en se basant sur
des quotations de code et une normalisation des requétes. Cette solution permet
I'utilisation de fonctions définies par I'utilisateur dans des requétes tant qu’il est
possible de les traduire et de les intégrer directement dans les requétes. Cepen-
dant, T-LINQ est restreint au modéle de données de SQL, ainsi qu’a une poignée
d’opérations sur les données. Des implémentations existent dans de vrais langages
comme C# qui font de leur mieux pour normaliser des requétes contenant des
fonctionnalités qui ne sont pas gérées par T-LINQ.

A.4.4 Apache Calcite

Apache Calcite [BCRHT18] est un framework de compilation de requétes qui per-
met la manipulation de requétes de maniére indépendante des sources de données
et des optimisations personnalisées sur des requétes qui peuvent cibler différents
types de bases de données. Calcite fournit aux implémenteurs de bases de données
un framework unifié, incluant le support de langages de requétes comme SQL, et
des optimisations de requétes. De plus, Calcite accepte des requétes ciblant des
sources de données hétérogenes en utilisant une abstraction relationnelle unifiée,
et en choisissant les plans les plus efficaces pour ’évaluation des requétes, en
particulier en utilisant la migration de données pour exécuter des requétes en-

174

tierement dans les bases de données si possible. Calcite prend en entrée du SQL
et du JDBC, et est donc limité dans I'expressivité des requétes. Une syntaxe de
requétes intégrées au langage similaire & LINQ existe pour le langage de pro-
grammation Java, mais ce travail est préliminaire et ne gére pour 'instant que
les aspects syntaxiques.

A.4.5 Autres interfaces

Dans le langage R, RODBC permet aux programmeurs d’envoyer des requétes
SQL aux bases de données d’'une maniére similaire & JDBC. Dplyr est une biblio-
théque de manipulation de données pour R. SparkR fournit une interface pour
Apache Spark. En Python, de nombreuses bibliothéques comme pyodbc ou PyS-
park donne accés a des bases de données, et NumPy permet la manipulation de
grandes quantités de données.

Toutes ces interfaces sont similaires aux autres solutions présentées dans cette
section, et partagent les mémes problémes. Plus de solutions encore sont décrites
en Section 8.1.

A.5 Une nouvelle solution : BOLDR

Comme montré dans la Section A.4, les solutions existantes pour les applications
orientées données ont toutes leur lot de problémes. De plus, une application peut
avoir besoin d’utiliser plusieurs de ces solutions pour accéder a différentes bases de
données. Tl faut une solution qui permet aux programmeurs d’écrire des requétes
dans leur langage de programmation, pouvant utiliser un maximum de fonction-
nalités du langage, avec une interface unifiée permettant d’accéder a toutes les
bases de données.

Dans cette thése, nous créons une nouvelle solution appelée BOLDR, (Breaking
boundaries Of Language and Data Representations), un framework de requétes
intégrées aux langages permettant aux développeurs d’application d’écrire des re-
quétes siires, complexes, efficaces, et indépendantes des sources de données, dans
le langage de programmation de leur choix.

A.5.1 Fonctionnalités

La Figure 1.5 donne une comparaison des fonctionnalités des différentes solutions.
Dans un framework moderne de requétes intégrées au langage, il nous faut toutes
les fonctionnalités listées dans cette figure. Les requétes doivent pouvoir : étre
exprimées dans le langage de 'application ; contenir de la logique d’application
complexe; cibler plusieurs bases de données en méme temps; et étre vérifiées
comme stires avant exécution.

175

Fonctionnalités | BOLDR [T-LINQ | LINQ | Calcite | ORMs | JDBC

Création, envoi, et résultats de requétes v v v v v v
Requétes intégrées au langage v v v v v X
UDFs dans les requétes v v X X X X

Export de Ienvironnement d’exécution v v /X x®) X X X
Différentes sources du méme modéle 4 v /X X v X X
Différents modéles de données v X v v X v
Plusieurs interfaces disponibles v X v v v v
Exécution d’UDF dans la base v v /XG)XG) X X X
Fusion et normalisation de requétes v v X X X X
Requétes ciblant plus d’une base v X X v X X
Détection d’erreurs avant I'exécution v v v v v X
Bases théoriques v v X X X X

. Pour les UDFs inlinées

~——

(1). Pour les types de base (2). Pas dans la méme requéte (3

FIGURE A.5 — Fonctionnalités des différentes solutions

Tout comme LINQ, BOLDR utilise une représentation intermédiaire de re-
quétes appelée QIR pour Query Intermediate Representation. En plus des atouts
apportés par le fait d’avoir des interfaces indépendantes pour chaque langage hote
et chaque base de données, QIR réécrit les requétes pour les rendre plus simple
a traduire vers les langages de bases de données.

BOLDR n’applique pas d’optimisations de plans de requétes. De maniére gé-
nérale, BOLDR optimise les requétes QIR pour bénéficier autant que possible des
optimisations fournies par les bases de données en utilisant I'information inutili-
sable par ces bases, et donc ne se substitue pas a leurs moteurs d’optimisation.
Le but recherché est de générer des requétes pouvant étre les plus optimisées
possible par les bases de données.

QIR permet & BOLDR de réaliser de la vérification de types sur les requétes
permettant de détecter des erreurs avant l’exécution. Par exemple, examinons
cette requéte écrite en R et utilisant BOLDR :

ct
1

tableRef ("people", "PostgreSQL")
query.filter(function (x) x$name > 5000, t)

£
I

Notez que le nom est comparé a un entier. Cette requéte qui cible une base
PostgreSQL est correcte syntaxiquement, mais renvoie une erreur a ’exécution
a cause de cette comparaison incorrecte. En appliquant une vérification de types
sur les requétes QIR, BOLDR peut détecter 'erreur avant méme que la requéte
soit traduite dans des langages de requétes, et donc évite d’envoyer une requéte
invalide a la base de données par le réseau avec son lot de problémes de perfor-
mances.

De plus, BOLDR donne des garanties sur ses processus de manipulation de

176

requétes, comme la terminaison de ses phases d’optimisation, et qu’une requéte
bien typée peut étre traduite dans des langages de requétes.

BOLDR définit les interfaces entre un langage hote et le framework, ainsi
qu’entre un langage de base de données et le framework. BOLDR n’est pas lié¢ a
une combinaison particuliére de bases de données et de langages de programma-
tion, et permet de cibler plusieurs bases a la fois. Par exemple, cette requéte :

tl = tableRef ("people", "PostgreSQL")
t2 = tableRef("team", "HBase")
q = query.join(function (t1, t2) tl.teamid = t2.teamid, t1, t2)

est parfaitement valide avec BOLDR et réalise I'opération de jointure de 1’al-
gebre relationnelle sur deux tables provenant de différentes bases de données,
sans avoir a importer explicitement les données dans ’environnement d’exécu-
tion de 'application. Comme décrit plus tot, BOLDR traduit automatiquement
les sous-requétes dans les différents langages de requétes des différentes bases
cibles, les envoie dans les bases en question, récupére les résultats et les traduits
en retour vers le langage d’application.

Le framework permet également I'utilisation d’expressions arbitraires du lan-
gage hote dans les requétes. Par conséquent, notre Exemple A.4 en LINQ qui
posait probléme :

Func<float, float> dolToEuro = x => x * 0.88f;
db.Employee.Where(e => e.salary > dolToEuro(2500));

est également valide avec BOLDR. Le framework traduit la fonction & l'intérieur
méme de la requéte si cela est possible et efficace, ou la conserve comme une
fonction de langage d’application qui devra étre évaluée plus tard dans la base
de données ou dans 'application elle-méme. Dans tous les cas, cette requéte est
évaluée avec succés. Ce procédé est entiérement automatisé, les programmeurs
n’ont pas a migrer leur code d’application vers les bases de données.

A.5.2 Description détaillée

Le déroulement général de I’évaluation de requétes avec BOLDR est décrit dans
la Figure A.6. Durant lexécution (1) d'un programme hote, les requétes sont
traduites en QIR puis évaluées par QIR (2). Ces deux étapes n’ont pas a étre
contigués. Souvent, les requétes sont traduites a leur création, mais évaluées seule-
ment quand le programme a besoin des résultats. Le systéme d’évaluation de QIR
prend alors le relais et essaie de typer les requétes QIR. S’il réussit, il normalise (3)
les termes QIR pour les défragmenter en utilisant une stratégie qui est garantie
de réussir. Cette étape est essentielle pour permettre aux traductions vers les
langages de bases de données de fonctionner de maniére optimale. Si le typage

177

Host Language (L)

QIR

» QIR +L Term

/

Host Language (L)
program Embedded L o

L

Translation Type system syntactic . evaluation
Syntactic
@ Ymae o e
el © typed @ normalization o
/ normalization !
typed _| QIR (normalized) + | Database query
+ L Term

g @ L evaluation V
Databa_se
() Typesystem o syntactic () Syntactic evaluation

+ translation translation
@Translation tolL l
typed QIR+L+database |
L value = e Translation | Database
to QIR value
--------------------- @ sttetttmeeacto->» QIR evaluation < J
/ QIR value k J
----- » Application code evaluation typed Typed path (safe) o syntactic Syntactic path (may fail)

FIGURE A.6 — Evaluation d’un programme avec BOLDR

échoue, une stratégie basée sur la structure syntaxique des expressions QIR est
utilisée pour la normalisation (4) qui pourrait échouer. Les termes QIR sont en-
suite typés de nouveau (5) pour obtenir des informations utiles a la traduction
sur ’endroit ou les sous-requétes doivent étre exécutées, mais aussi pour détecter
des erreurs avant exécution et obtenir d’autres propriétés formelles intéressantes.
Si cela réussit, BOLDR traduit les termes QIR dans de nouveaux termes QIR
qui contiennent des requétes écrites dans des langages de bases de données (par
exemple SQL) en utilisant une stratégie de traduction également garantie de réus-
sir. Sinon, une fois encore, c’est une stratégie syntaxique qui est utilisée (6) et qui
pourrait échouer. Ensuite, les différentes parties de ces termes sont évaluées ol
elles doivent I’étre, soit dans I’application (7) ou dans une base de données (8). Les
expressions du langage hote se trouvant dans ces termes sont évaluées soit par le
systéme d’évaluation du langage hote qui a appelé le QIR (9), ou dans le systéme
d’évaluation intégré dans une base de données cible . Les résultats sont alors

traduits de la base de données vers QIR @, puis de QIR vers le langage hote @
L’Exemple A.5 illustre les aspects clés de BOLDR.

178

Example A.5.

1 # Taux de change entre rfrom et rto

> getRate = function(rfrom, rto) {

3 # La table change a trois colonnes: cfrom, cto, rate

4+ change = tableRef("change", "PostgreSQL")

5 if (rfrom == rto) 1

¢ else subset(change, cfrom == rfrom && cto == rto, c(rate))
© ¥

8

o # Employees gagnant au moins min dans la monnaie cur

o atLeast = function(min, cur) {

11 # La table employee a deux colonnes: name, salary

12 emp = tableRef ("employee", "PostgreSQL")

13 subset(emp, salary >= min * getRate("USD", cur), c(name))
14 }

15

16 richUSPeople = atLeast(2500, "USD")

17 richEURPeople = atLeast (2500, "EUR")

s print (executeQuery(richUSPeople))

o print(executeQuery(richEURPeople))

-

-

Notre Exemple A.5 est un programme R standard avec deux exceptions : la
fonction tableRef qui renvoie une référence vers une table d’une source externe;
et la fonction executeQuery qui évalue une requéte. Pour rappel, en R, la fonction
¢ crée un vecteur, la fonction subset filtre une table en utilisant un prédicat,
et optionnellement ne conserve que les colonnes spécifiées. La premiére fonction
getRate prend le code de deux monnaies et envoie une requéte en utilisant subset
pour obtenir leur taux de change. La seconde fonction atLeast prend un salaire
minimum et un code de monnaie et récupére les noms des employés gagnant au
moins le salaire minimum. Puisque le salaire est stocké en dollars dans la base de
données, la fonction getRate est utilisée pour faire la conversion.

Avec BOLDR, subset est surchargée pour fabriquer une requéte QIR si elle
est appliquée sur une référence de source externe. I.’évaluation du premier appel
a la fonction atLeast (atLeast (2500, "USD") a la Ligne 16) a pour résultat la
création d’une requéte obtenue par traduction de ’expression R vers QIR. Quand
executeQuery est appelée sur la requéte, alors (7) les valeurs de ’environnement
d’exécution liées aux variables libres de la requéte sont traduites en QIR, puis
lites & ces variables dans la requéte, créant ainsi une requéte QIR close; (ii) la
requéte est mormalisée, procédé qui, en particulier, remplace les variables liées
par leurs valeurs; (iiz) la requéte normalisée est traduite vers le langage de base
de données cible (ici SQL); et (iv) la requéte résultante est évaluée dans la base

179

de données et les résultats sont récupérés. Aprés normalisation et traduction, la
requéte générée pour I'exécution de richUSPeople est :

SELECT name FROM employee WHERE sal >= 2500 * 1

ce qui est optimal, dans le sens ot une seule requéte SQL est générée. Le code
généré pour richEURPeople est également optimal grace a la combinaison entre
la construction paresseuse de la requéte et la normalisation :

SELECT name FROM employee WHERE sal >= 2500 x*
(SELECT rate FROM change WHERE rfrom = "USD" AND rto = "EUR")

Dans ce cas, BOLDR combine les sous-requétes ensemble pour créer des requétes
moins nombreuses et plus larges, bénéficiant ainsi des optimisations des bases
de données autant que possible et évitant le phénomeéne d*“avalanche de requé-
tes” [GRS10].

Les fonctions définies par I'utilisateur qui ne peuvent pas étre traduites sont
également supportées par BOLDR. Par exemple, regardons I'Exemple A.6.

Example A.6.

getRate = function(rfrom, rto) {
print (rto)
change = tableRef("change", "PostgreSQL")
if (rfrom == rto) 1
else subset(change, cfrom == rfrom && cto == rto, c(rate))

}

Cette version de la fonction getRate appelle la fonction print qui ne peut
pas étre traduite en QIR, donc BOLDR génére la requéte suivante :

SELECT name FROM employee
WHERE sal >= 2500 * R.eval("@...", array("USD", "EUR"))

ot la chaine de caractéres "@..." est une référence a une cloture pour getRate.

M¢élanger différentes sources de données est supporté, mais moins efficacement.
Par exemple, nous pourrions faire référence a une table d’une base HBase [Apaa)
dans la fonction getRate. BOLDR serait toujours capable d’évaluer la requéte en
envoyant une sous-requéte aux deux bases HBase et PostgreSQL, et en exécutant
dans 'application ce qui ne peut pas étre traduit.

180

A.5.3 Implémentation

Notre implémentation de BOLDR utilise Truffle [WWW*13, Wim14], un frame-
work développé par Oracle Labs pour implémenter des langages de programma-
tion. Truffle permet aux développeurs de langages d’implémenter des interpré-
teurs d’arbres de syntaxe abstraite (AST) avec de I'évaluation spéculative. Les
implémenteurs de langages écrivent généralement un parseur pour le langage ci-
blé qui produit un AST composé de neuds Truffle. Ces noeuds implémentent les
opérations basiques de l'interpréteur (flot de contrdle, opérations typées sur les
types primitifs, opérations du modéle objet comme le dispatch multiple, ...), et
utilisent I’API Truffle pour implémenter de la spécialisation a ’exécution et in-
former le compilateur JI'T des différents aspects d’optimisation, comme les profils
d’exécution sur les valeurs, types, branches, ou pour implémenter de la réécriture
a I'exécution de ’AST sur les chemins de dé-optimisation quand une optimisation
spéculative a échoué.

Plusieurs fonctionnalités rendent Truffle attirant pour BOLDR. D’abord, les
implémentations de langages en Truffle doivent compiler dans un arbre de syn-
taxe abstraite exécutable que BOLDR peut manipuler directement, ce qui, en
particulier, fournit un moyen simple de traduire des requétes en QIR. Ensuite,
les langages implémentés avec Truffle peuvent étre exécutés dans n’importe quelle
machine virtuelle Java (en anglais, Java Virtual Machine ou JVM), bien que de
meilleures performances peuvent étre obtenues quand la machine virtuelle utilise
le compilateur JIT Graal [DWM14], ce qui rend leur intégration comme langage
externe trés simple dans les bases de données écrites en Java (comme Cassan-
dra, HBase, ...), et relativement simple dans les autres comme PostgreSQL.
Par conséquent, cela nous donne la possibilité d’évaluer dans les bases de don-
nées n’importe quelle expression provenant de tout langage hote implémenté par
Truffle. Enfin, plusieurs langages de programmation sont déja implémentés, avec
des degrés variables de maturité, en utilisant le framework, comme Zippy pour
Python |Orae| ; JRuby pour Ruby [Orac|; FastR pour R |[Oraa] ; ou Graal.js pour
JavaScript [Orabl, et le travail réalisé pour un langage Truffle peut facilement
étre réutilisé dans ces implémentations.

Notre implémentation supporte les bases de données PostgreSQ)L, HBase et
Hive, ainsi que FastR, 'implémentation du langage R utilisant Truffle, et Sim-
pleLanguage d’Oracle, un langage dynamique expérimental dont la syntaxe et les
fonctionnalités sont inspirées par JavaScript (typé dynamiquement, orienté pro-
totype avec des fonctions de haut niveau et un systéme de types avec seulement
trois types primitifs : nombre, chaine de caractéres et booléen). SimpleLanguage
est développé par Oracle Labs pour montrer les fonctionnalités de Truffle. Une
description détaillée de notre implémentation se trouve au Chapitre 7.

181

A.6 Contributions

Cette thése étudie la conception d'un framework de requétes intégrées au langage
avec une définition formelle ainsi qu'une implémentation de BOLDR et de ses
différents composants. Le Chapitre 2 définit des notations et définitions utilisées
dans tout le document, et le Chapitre 8 conclut en discutant les possibles exten-
sions et améliorations. Les chapitres de cette thése correspondent aux différentes
parties du framework illustrées en Figure A.6 et sont décrits dans les sous-sections
suivantes.

A.6.1 Représentation intermédiaire de requétes (QIR)
Chapitre 3, pages 27-53

Le point central de BOLDR est sa représentation intermédiaire de requétes ap-
pelée QIR. Comme expliqué plus tot, une requéte est d’abord traduite dans cette
représentation avant d’étre traduite en requéte pour bases de données. Dans ce
chapitre, nous définissons le langage et sa sémantique (7)9), dont la sémantique
des opérateurs de données implémentés dans les bases de données; une base de
données par défaut qui implémente d’important opérateurs de données pour sup-
porter des requétes qui ne peuvent pas étre entiérement traduite dans les langages
des bases ; et I’optimisation appliquée sur les requétes avant traduction appelée la
normalisation de QIR (4) qui transforme une requéte pour la rendre plus simple 2
traduire vers un langage de base de données. En effet, notre exemple d’application
d’une fonction définie par l'utilisateur :

Func<float, float> dolToEuro = x => x *x 0.88f;
db.Employee.Where(e => e.salary > dolToEuro(2500));

n’est pas une expression qui peut étre traduite telle quelle vers la plupart des lan-
gages de bases de données. En effet, ces langages ne sont généralement pas faits
pour la définition et ’application de fonctions définies par 'utilisateur. En parti-
culier, le langage SQL standard ne supporte pas cette fonctionnalité (bien qu’il
soit possible de définir des procédures dont les corps sont strictement limités a des
requétes). Certaines bases de données supportent des extensions d’SQL (PL/SQL
d’Oracle [PL/b], T-SQL de Microsoft [T-S|, ...) qui permettent la définition et
Papplication de fonctions définies par 'utilisateur, mais cette fonctionnalité n’est
pas trés optimisée. Par conséquent, traduire cette requéte directement résulterait
soit en une erreur, forcant QIR a gérer la plupart de ’évaluation, ou en une re-
quéte inefficace. Pour ces raisons, nous voulons appliquer dolToEuro dans le QIR
avant la traduction pour générer une requéte efficace. De plus, nous définissons
des drivers dont le role est d’interfacer QIR a un langage hote ou a une base de
données en fournissant des fonctions de traduction depuis et vers le QIR. Pour
résumer, les contributions de ce chapitre sont :

182

e Une syntaxe et une sémantique pour QIR
e Une relation de réduction pour les expressions de base de QIR

e Une relation de réduction pour le QIR complet utilisant les interfaces vers
les langages hotes et les bases de données

e Une base de données par défaut incluant des implémentations par défaut
de certains opérateurs de données

e Une procédure de normalisation garantie de terminer mais sans autres pro-
priétés formelles

A.6.2 Systéme de types pour QIR
Chapitre 4, pages 55-79

L’évaluation de requétes implique un échange d’informations avec les bases de
données. Ce procédé peut étre trés coiiteux, en fonction de la quantité de don-
nées, a cause du temps de calcul et de transfert par le réseau. Par conséquent,
éviter d’envoyer des requétes aux bases de données quand ce n’est pas nécessaire,
en particulier quand les requétes présentent des erreurs, est un gain de perfor-
mance majeur. Les systémes de types sont un moyen efficace et classique de
détecter a I'avance les erreurs dans les programmes. Cependant, puisque BOLDR
cible principalement des langages hotes dynamiques, les expressions traduites vers
QIR ne sont pas typées. Il est donc logique de définir un systéme de types fort
pour le QIR pour détecter autant d’erreurs que possible avant I'exécution plutot
que de compter sur la détection d’erreurs des bases de données. De plus, BOLDR
supporte les requétes ciblant plusieurs bases de données, et des sémantiques dif-
férentes pour les opérateurs de données selon la base de données qui les évaluent.
Supporter ces fonctionnalités demande d’étre capable d’établir dans quelle base
chaque sous-expression d’une requéte doit étre évaluée.

Dans ce chapitre, nous définissons un systéme de types pour QIR @)®) appelé
le systéme de types générique. Notre systéme de types générique est extensible
avec des systémes de types fournis par les bases de données. Ceux-ci, appelés
systémes de types spécifique, permettent aux implémenteurs de bases de données
de décrire quelles expressions elles supportent. A cause du nombre inconnu de
bases de données interfacées avec BOLDR, et parce que les requétes pourraient
cibler plusieurs bases en méme temps, ce modéle de processus générique faisant
travailler ensemble des composants spécifiques fournis par les bases est fréquent
dans cette thése. Pour montrer comment la base de données peut fournir un
systéme de types spécifique, ce chapitre définit également un systéme de types
pour SQL, ainsi qu’un systéme de types pour notre base de données par défaut,
et nous prouvons des propriétés de sireté d’exécution obtenues a l'aide de nos
systémes de types.

183

A.6.3 Inférence de types pour QIR
Chapitre 5, pages 81-107

Les systémes de types du Chapitre 4 sont faits pour faciliter les développements
formels et pour la présentation. Cependant, ces systémes ne sont pas algorith-
miques, et ne sont donc pas directement utilisables pour une implémentation.

Dans ce chapitre, nous créons des algorithmes de typages 3)%) en utilisant
la résolution de contraintes de types, et prouvons que nos algorithmes de typage
sont équivalents aux systémes de types du Chapitre 4. Nous définissons également
un algorithme de résolution de contraintes, et nous prouvons qu’il résout les
contraintes générées par nos algorithmes de typage.

A.6.4 Evaluation orientée par les types
Chapitre 6, pages 109-128

Dans ce chapitre, nous utilisons nos systémes de types pour définir une traduc-
tion d’expressions QIR vers des langages de bases de données. Tout comme pour
notre systéme de types, notre traduction de QIR vers les langages de bases de
données est composée de traductions spécifiques fournies par les bases de données,
et d'une traduction générique qui utilise ces traductions spécifiques. Notre tra-
duction utilise également notre systéme de types pour traduire autant de requétes
que possible dans les langages de bases de données, et laisser le reste pour évalua-
tion dans notre base par défaut. Nous définissons une traduction syntaxique (6)
qui se déclenche si le systéme de types échoue. De plus, nous définissons une
traduction pour SQL et montrons que si notre systéme de types parvient a typer
une expression QIR en utilisant notre systéme de types pour SQL alors cette
expression est traduisible en SQL avec notre traduction. Enfin, nous définissons
une normalisation orientée par les types (3.

A.6.5 Implémentation et expériences
Chapitre 7, pages 129-151

Dans ce chapitre, nous créons une interface entre le langage de programmation
R et BOLDR en définissant une traduction de R vers QIR (2). Nous décrivons
également notre prototype d’implémentation de BOLDR et présentons nos ré-
sultats qui montrent que BOLDR est capable de gérer efficacement la plupart
des requétes contenant des fonctions définies par I'utilisateur, obtenant donc des
résultats au moins aussi bons que des requétes écrites manuellement, et évalue
des requétes entre différentes bases de données ainsi que des requétes contenant
des expressions intraduisibles avec des performances convenables.

184

Publications

La syntaxe et la sémantique de QIR décrites dans le Chapitre 3, ainsi que certaines
parties des Chapitres 4, 6, et 7 sont présentés dans [BCD'18].

185

186

Appendix B

Full proofs

Lemma 3.1. Let g € Egrz. Either ¢ is in normal form, or 3¢’.¢ < ¢'.

/

Proof. By case analysis on g:

e If ¢ = x, then ¢ is in normal form.

o If ¢ = fun”(z)—q, then either

¢1 is in normal form, in which case ¢ is in normal form;

or g1 <= ¢y, in which case rule (norm-fun-red) applies.

o If ¢ = ¢1 ¢o, then either

¢ = fun®(z)—qs and ¢ is in normal form and pure, in which
case rule (norm-app-f3) applies;

¢ = fun®(z)—v and ¢, are in normal form and g, is not pure, in
which case ¢ is a normal form;

¢1 = op and ¢y are in normal form, in which case rule (app-op)
applies;

or 1 Z fun®(x)—wv or op and ¢ are in normal form, in which

case ¢ is in normal form;

or either ¢; or ¢y is not in normal form, in which case rules (app-
redl) or (app-red2) apply.

e If ¢ = ¢, then ¢ is in normal form.

e If ¢ = op, then ¢ is in normal form.

187

o If ¢ = if ¢ then ¢, else g3, then either

— ¢1 = true, in which case rule (app-true) applies;
— or ¢ = false, in which case rule (app-false) applies;

— or ¢q; # true or false is in normal form, in which case ¢ is in
normal form;

— or ¢ is not in normal form, in which case (if-red) applies.
o Ifg={li:q; },_, , then either

— all ¢; are in normal form, in which case ¢ is in normal form;

— or at least one ¢; is not in normal form, in which case rule (rec-red)
applies.

o If ¢ = ¢1 I @9, then either

—qg={l:v,...,l:v}and g ={l:v,...,l:v } are in normal form,
in which case rule (rconcat-rec) applies;

— or ¢; and ¢ are in normal form and either ¢; # {l:v,...,l:v}
or go Z {l:v,...,l:v}, in which case ¢ is in normal form;

— or either ¢; or go are not in normal form in which case either rule
(rconcat-redl) or (rconcat-red2) apply.

e If ¢ =[], then ¢ is in normal form.
o If ¢ = q :: qo, then either

— ¢1 and g9 are in normal form, in which case ¢ is in normal form;
— or either ¢; or ¢ are not in normal form in which case either rule

(Icons-red1) or (Icons-red2) apply.

o If ¢ = g1 Qqy, then either

— ¢ =[] and ¢ are in normal form, in which case rule (Iconcat-
lempty) applies;

— or ¢; and ¢o = [] are in normal form, in which case rule (lconcat-
rempty) applies;

— ¢1 = v and ¢ are in normal form, in which case rule (Iconcat-
lcons) applies;

— or ¢q; and ¢y are in normal form and ¢; Z [| or v v and ¢u Z [],
in which case ¢ is in normal form;

188

— or either ¢; or ¢ are not in normal form in which case either rule
(Iconcat-red1) or (lconcat-red2) apply.

o If ¢ = ¢ -, then either
—qg={...,l:v,... } is in normal form, in which case rule (rdestr-
rec) applies;

—orq# {...,l:v,... } is in normal form, in which case ¢ is in
normal form;

— or ¢ is not in normal form, in which case rule (rdestr-red) applies.
o If g=¢q, as h::t 7 q5 : g3, then either

— ¢1 = [], in which case rule (ldestr-empty) applies;
— or q; = vy :: v}, in which case rule (ldestr-nonempty) applies;

— or q; #Z [] or vy :: 0] is in normal form, in which case ¢ is in normal
form;

— or ¢ is not in normal form, in which case rule (Idestr-red) applies.

e lfg=o{(q1, - qm | Gms1,---,qn), then either

— all ¢; are in normal form, in which case ¢ is in normal form;

— or at least one ¢; is not in normal form, in which case either rule
(dataop-conf) or (dataop-data) apply.

[

Theorem 4.1 (Subject reduction for MEM). Suppose that for all D € D\
MEM, we have subject reduction on < . Then, we have subject reduction
for MEM on — .

Proof. If D # MEM, then the property is true by hypothesis. Suppose now
that D = MEM. We prove the property by induction on the derivation of
I' Fvewm ¢ @ T, since it is the only possible step after I' - ¢ : T, MEM. We use
4.1 to denote Lemma 4.1, and P4.3 to denote Property 4.3.

e For all the (*-red*) and (dataop-*) rules, the property is immediately

true by applying the induction hypothesis and the hypothesis that we
have subject reduction for D %= MEM.

189

o (fun’(2)—q) vo — {f = fun’/(z)—q, z — v}

F'E{f— funf(x)—>q1,x — va by = T,
Lo f Ty — To,x T Fvem @1 2 T

L4.1

P43 F|_U2:T17_
I'Fp funf(x)—>q1 T — Ty

' funf(x)—>q1 Ty — 15, D

I' Fmem (funf(x)—ﬂh) vy Th
We used the substitution lemma twice here: once for f and once for x.
® op v — ¢: true ensuring —9 preserves types.

e iftruethen ¢ else ¢y — ¢:

['Ftrue:bool, I'Fq:T, Tlkqg:T,
I' Fpmewm iftruethen g, else ¢y : T

e iffalsethen ¢ else o — ¢o:

['Ffalse:bool, T'Fq:T, TFq:T,
I' Fpewm iffalsethen ¢ else - T

® ¢ X g2 — {li : Uz’}iel..n where q; = {li : Ui}iel..m and gp = {li : Ui}iEmH..ni

I'Faq {li : T%}iel‘.rrw _ I'kFag: {li : Ti}iemﬂ..m
I'Fvem 1 D02 {li 2 Tiierm

e [|Qu— v
CE[]:7, Tkov:T,

FFMEM[]@U:T

e VA[] — v
'to:T, TH[]:T,_

FFMEMU@[]:T

190

o (v::v2) Qug — vy iz (vy Qug):
'kFyem v : T T Epem ve T list
I'bFpvgivg : T list o I'Fowg: T list,
I'Fwvy vy T list, D
[Fyem (v1 3 09) Qug : T list

so:
[Fyem vz : T list T Fyev vs 2 T list
F'kFo T, I'pvyQus: T list
I'-vy@Qug: T list, D
[Fyem vg i (ve Qug) @ T list

P4.3

o {....l:v,... }l—w

CE{...;l:v,... {0 T, ..},
F}_MEm{...,liv,...}°liT

e [Jashut? q:q3— g

Fl_[]ITQ].iSt,_ FI_QQITQ%TQIiSt—)Tl,_ FF(]giTl,_
Chvem [as he:t 2 go 2 g3 : 1

e vyivpas hut 7 gyt g3 — qo (v1,0)):
I'Fvem v : 1o T Eyem vy T list
I'E wpao) o Ty list
['Fopo] o Ty list,

P4.3

gives us:

Fl_'l)l:ZUiITQliSt,_ F'_q2:T2—>T2].iSt_>T1,_ F"Q3IT1,_

IFvemviivp as het 2 g q3: 1Y

191

SO.
F"QQZTQ%TQIiSt—)Th_ F"’UllTQ,_
L'E qgu Ty list - T} [- Ty list,
Fl‘QQ’UliTQ liSt—>T1,_

I' Fyem g2 (vr,v)) = 1)

Theorem 4.2 (Progress). Let ¢ € Eqz, and D a database language. If
) & q: T,D and all data operators in ¢ are translatable into a database
language, then either ¢ is a QIR value, or 3¢’.q — ¢'.

Proof. By induction on typing derivations:

e If ¢ = x, then impossible since the rule

F,$:T|—MEMJZ2T

is not applicable since our environment is the empty set. And by Prop-
erty 4.3, any typing rule for variables in other specific type systems
cannot be applied either.

e If ¢ = fun®(z)—¢, ¢ is a value.
o If ¢ = ¢q1 qo, then either

— ¢ = fun®(z)—¢] and ¢ is a value, in which case rule (app-3)
applies;

— ¢1 = op and ¢y is a value, in which case rule (app-op) applies;

—or ¢u # fun®(x)—q| or op, in which case ¢; is not a value by
typing and can be reduced by induction hypothesis.

o If ¢ = ¢, then ¢ is a value.
e If ¢ = op, then ¢ is a value.
o If ¢ = if ¢, then ¢, else ¢3, then either

— ¢1 = true, in which case rule (app-true) applies;

— or ¢q; = false, in which case rule (app-false) applies;

192

— or q; # true or false, in which case ¢; is not a value by typing
and can be reduced by induction hypothesis.

o Ifg={l;:q;},_, ,, then either

— all ¢; are values, in which case ¢ is a value;

— or at least one g; is not a value, in which case rule (rec-red) applies.
o If ¢ = q1 D @o, then either

—q = {l:v,...;l:v} and ¢ = {l:v,...,l:v} are values, in
which case rule (rconcat-rec) applies;

— or either ¢ #Z {l:v,...,l:v} or o Z {l:v,...,l:v}, in which
case either ¢; or ¢o are not values by typing and can be reduced
by induction hypothesis.

e If =[], then ¢ is a value.
o If ¢ = q :: qo, then either

— ¢1 and g9 are values, in which case ¢ is a value;

— or either ¢; or ¢o are not a value by typing and can be reduced by
induction hypothesis.

o If g = q; Qqso, then either

— ¢1 =[] and ¢ is a value, in which case rule (Iconcat-lempty) ap-

plies;

— or ¢ is a value and ¢ = [], in which case rule (Iconcat-rempty)
applies;

— ¢ = v:v and ¢ is a value, in which case rule (lconcat-lcons)
applies;

— or either ¢; or ¢» are not a value by typing and can be reduced by
induction hypothesis.

o If g =¢q -1, then either

—qg={...,l:v,... }, in which case rule (rdestr-rec) applies;

—orq#{...,l:v,... }isnot a value by typing and can be reduced
by induction hypothesis.

o If g=¢q; as h::t 7 q5 ¢ g3, then either

193

— ¢1 = [], in which case rule (ldestr-empty) applies;
— or q; = vy vy, in which case rule (ldestr-nonempty) applies;
— or 1 # [] or vy ::], in which case ¢; is not a value by typing and

can be reduced by induction hypothesis.

e Ifg=o0{(q1, - qm | Gm+1,---,qn), then either
— all ¢; are values, in which case (ext-database) applies by hypothe-
sis;

— or at least one ¢; is not a value, in which case either rule (dataop-
conf) or (dataop-data) apply.

[
Lemma 4.5. Let ¢ € Egg and vy, ..., v,, € Vg be closed QIR values. If
there exists QIR typing environments I'y, ..., I',, and database languages D,

Dy, ..., Dy such that oy : T', ..., 2y, : T, Fq: T, D and Vj € 1. m.I'; Fv; :
T;,D; and v; € Ry, then g{x1/v1,..., 2 /vm} € Ry

Proof. We note I' = {x; : T;};=1. - By induction on the derivation of I' -
q:T,D:

o If ¢ = 2, then ¢ = z; and T' = T}, in which case the property is
obviously true as if v; € Ry, then z;{z;/v;} = v; € Ry,.

e If ¢ = fun(z)—q, then:
F,ZE . T/ I_MEM qi T”
P
I'kp fun(z)—q : 70— T"
I'Ffun(z)—q : 17" —=1",D

4.3

Let ¢ € Ry. By Lemma 4.2, we have ¢ —* v for some v. By
Lemma 4.3, v € Ry+. By induction hypothesis, we have

a{z1/v1, ... Tm/Vm, x/v} € Ryn. But,

(fun(z)—q {1 /v, ..., 2m/vm}) () =% a{zi/v1,. .., Tm/0m, x/v},
which by Lemma 4.3 gives us (fun(z)—qi{z1/v1,...,2n/vn}) (¢) €
Rpn. Then, by definition of Rz, since ¢ was chosen arbitrarily, we
have: (fun(z)—q){z1/v1,.. ., Tm/Vm} € Rypn.

194

e If ¢ = q1 qo, then:
r |_MEM q - 7 -=T7" T '_MEM qo - T
F"DQ1QQ5T/—>T//
F|_q1 QQZT/—)T,/,D

P4.3

By induction hypothesis, we have ¢;{x1/v1,...,Zm/vm} € Ry p» and
@{z1/v1,. .. 2/} € Ryr. And by definition of Ry, we have
(@1 @){71/v1s .o T /VUm} € Ryo.

e If ¢ = ¢, then T = typeofC(c) € B, in which case the property is obvi-
ously true as cis obviously strongly normalizing therefore ¢ € Ryypeotci(c)-

e If ¢ = op, true by Lemma 4.4.
o If ¢ = if ¢, then ¢, else g3, then:

I |_MEM q1 - bool T |_MEM q2 T T }_MEM qs : T

P4.3
['+p ifg; thengoelseqs : T

' ifq, thengoelseqs : T, D

By induction hypothesis, we have ¢;{x1/v1, ..., Zm/Vm} € Rooor,
e{zi/v1,. .. xm/vn} € Rp, and gs{z1/v1, ..., Tm/vm} € Ry. There-
fore, by Lemma 4.2, we have ¢;{z1/v1,...,Zm/vn} —* v for i € 1..3,
and so (if ¢, then ¢, else g3){z1/v1, ..., 2/ vy} —* if v] then v) else v}.
If v] = true or false, we have ifv] then v} else v —* v/, or v. But, by
Lemma 4.3, since ¢;{z1/v1,...,2n/vm} € Rr, we have v] € Ry for i €
2..3, and so by Lemma 4.3 again if ¢; then ¢ else ¢z {x1 /v, ...,z /vn} €
Rr. Otherwise, either T' 2 T} — T5, in which case the property is triv-
ially true by Definition 4.15, or T" = T} — T5, in which case the property
is true by Lemma 4.4.

o Ifg={li:q;},_, , then:
I'Fyvem g :T; 1€1.n
Ubp {lizgiticy i 4l Titicin
IE{latioy, Al Titicin, D

P4.3

By induction hypothesis, we have ¢;{z1/v1,...,2%m/vm} € Ry, for i €
1..n. So, by definition of Ry,.7,y,_, .., we have
{l% ‘4 }izl..n{xl/vh s 7$W/UM} € R{li5Ti}i:1..n'

195

If g = q1 X} ¢, then:
I' Fvem @1 : {li : Tz‘}z‘eL.mF FMEM @2 ¢ {li : Tz}i6m+1..n
F'kp g {li : Ti}ierm
'Fq<iq:{l: T;}ici.n, D

P4.3

By induction hypothesis, we have ¢i{z1/v1,...,Zn/vn} € Ru,mticr .
and ga{z1/v1,. .., Tm/Um} € Rty icmsrne S0, by definition of Ry,.7vy,_
we have (q1 DA @){z1/v1,. .., Tm/Vm} € Ruytyics

1.n?

If g =[], then T"=T" list, in which case the property is obviously true
as [] is obviously strongly normalizing therefore [| € Ryvss.

If g = q :: qo, then:
r l_MEM q - T T |_MEM q2 T’ list
IL'bEpogrige: T list
I'Eqrige: T list, D

P4.3

By induction hypothesis, we have ¢{x1/v1,...,Zm/vm} € Ry and
@{z1/v1,. . TV} € Rrniss. So, by definition of Rpiise, we have
(12 @){x1 /v, T /U } € Rynist.

If g = q1 @Q gy, then:
r l_MEM q1 T list I l_MEM q2 T’ list
r l_D a1 @QZ 2T list
I'Eq Qg : T list, D

P4.3

By induction hypothesis, we have ¢1{x1/v1,...,Zmn/Um} € Ry st and
@{z1/v1,. . T/} € Rrniss. So, by definition of Rpiist, we have
<QI Q@ Q2){x1/v17 cee ,l’m/’Um} c RT’list'

If g =q - [, then:
FI—MEMqlt{...,l:T,...}
'Fpgi-l:T
'q-1:7T,D

P4.3

By induction hypothesis, we have ¢ {z1/v1, ..., %p/Vn} € Ry 11,3, 50
a{z1/v1, . Om) — V).

196

Ifo =4...,01:v,... }, by induction hypothesis on the typing deriva-
tion of the record, we have v € Rpr. But v} -l — wv. Therefore, by
Lemma 4.3, (¢1 «){z1/v1, ..., 2m/vm} € Ryy.

Otherwise, either T' # T7 — Ts, in which case the property is trivially
true by Definition 4.15, or T' =T} — T5, in which case the property is
true by Lemma 4.4.

o Ifg=¢q as h::t? gy : q3, then:

r l_MEM q - T2 list T l_MEM qo : T2 — T2 list — Tl T l_MEM qs : Tl

P4.3
I'Fpgias ha:t?qy:qz:T)
I'Fq as h::t?q:q3:Ty,D
By induction hypothesis, we have ¢1{x1/v1,...,Zm/Um} € Rr, 1ist,
QQ{SC1/U1, cee 713m/Um} € Ry, st , and Q3{$1/017 e ;SUm/Um} c
Rrp,. Therefore, by Lemma 4.2, we have ¢;{xi/vi,...,zpn/vn} —*

v for i € 1.3, and so (q1 as h::t ? g 2 gs){x1/v1,. .., Tm/Um} —F
vy as hit 7 0h vl

If v =[], we have v} as h::t ? v} : v —* vi. But, by Lemma 4.3,

since gz{x1/v1,...,Tm/vm} € Ry, we have vy € Rp. Therefore, by
Lemma 4.3 again, ¢; as h::t ? o : @3{z1/v1,..., 20/ vm} € Ryy.

If v] = v/, we have v] as h:t ? v) ¢ vy —=* v} (v,0'), and by induc-
tion hypothesis on the typing derivation of the list, we have v € Ry,
and v' € Rpyjist- Then, by definition of Ry, .7, nist—1y, V5 (v,0") € Ry,
Therefore, by Lemma 4.3, ¢ as h:t 7 go 2 gs{x1/v1,...,Tpm/Um} €
Rrp,.

Otherwise, either T} # T3 — T}, in which case the property is trivially
true by Definition 4.15, or T} = T3 — T}, in which case the property is
true by Lemma 4.4.

o lfg=o0{(q1, - qm | Gm+1,---,qn), then ¢{z1/v1, ..., 20/ 00} —*

o{vy, ..., v, | v, 1,...,v,), so by Lemma 4.3, we have to prove that
o{U1, .. s Um | Uty -y 0n) € Rp. ET # Ty — Ty it is obviously true,
otherwise if T'= T7 — Ty then it is true by Lemma 4.4 as o{v}, ..., v., |
Vrpi1s-- -, Uy) is a value.

[

Theorem 5.1 (Soundness of the typing algorithm for MEM). Let ¢ € Eqrg
and I' a QIR typing environment. Suppose that for all D € D\ MEM, 4 is

197

sound. Then, Fjzy, is sound.

Proof. By induction on the typing derivation of T' Higy ¢ : T, (C,K):

Doz Thgeyz: T,(0,0)

The property is immediately true since we have o',z : 6T Fpem x @ 0T
which is true for any o.

I Hiew fun’(z2)—q¢: 01 = T, (CU{a = TLKU{y £ U, an LS U})

Let o be a solution for CU {as = T} and for KU {o Loy £

U}, then o is a solution for C and K and cas = oT. Since we have
D,f :a; = ag,z:a; F4 ¢ : T,(C,K), , by induction hypothesis we
get o', f : ooy — oag,x : ooy - q: 0T, ,sool,f:o0ay = 0T, x :
ooy Fmem ¢ @ oT. Therefore we have o' Fyem funf(x)—>q ooy — oT.

THAy @1 ga: o, (CLUC,U{Ty =Ty = a}, K UK, U {a = U})

Let o be a solution for C;UC,U{T; = Ts — a} and Ky UKy U{« X U},
then o is a solution for C;, Cs, K;, and Ky and ¢T; = Ty — oca.
Since we have I' I_'A q Tl, (Cl,K1>, . and I' l_‘A q2 Tg, (C27K2)7)
by induction hypothesis we get o' - ¢ : 011, and o' ¢ : 015,
sool'Fq : 0Ty — oo, . Therefore we have o' Fpyem q1 @2 @ oa.

[Fjem ¢ : typeofC(c), (0, 0)

The property is immediately true since we have
ol Fmem ¢ : typeofC(c) = otypeofC(c) for any o.

k k
[Fjem 0p : polytypeof0P(op), (0, {1 = U, ..., o, = U})
The property is immediately true since we have

o' Fvem op @ T = o(polytypeofOP(op)) using Property 5.1 since
TV (c(polytypeofQP(op))) = 0.

r |_JI\L/I‘EM ifql thenq2 GISGQ3 . CYQ,(Cl U (Cg U (Cg U {Ckl = Tl,Ckl =
bOOl,OéQ = Tg,OéQ = Tg},Kl U Kg U Kg U {Oél i U, (6] i U})

Let o be a solution for C; UCy UC3 U {a; = T1,1 = bool, g =
TQ,O[Q = Tg} and Kl U KQ U Kg U {Oél é U,O./Q é U}, then o is a
solution for C;, C,, Cj, Ky, K5, and K3 and ocay = oT; = bool,
ooy = 0Ty, 0oy = 0T3. Since we have I' F* ¢ : Ty, (C,Ky),
I 4 gy To, (Cy,Ky), , and T' FA g3 : T3,(C3,K3), , by induction
hypothesis we get o' - ¢, : 017, , o' g : 015, , and o' F ¢3 :

198

ols, ,soocl'tFq :bool, ,ol'F q:0ay, ,and o' F g3 : ocag,
Therefore we have ol Fyem if ¢; then ¢; else g3 : 0.

U bdem {02 @ Yomr o 4l Tidizin, (U G UL K9

Let o be a solution for | J;, C; and for |J;_, K;, then o is a solution
for C; and K; for i € 1.n. For i € 1..n, since we have I' 4 ¢, :
T;,(C;,K;), , by induction hypothesis we get o' b ¢; : 0T}, . There-
fore we have o' Fpem { Lz qi Yoy, {6t 0 5 izt

T Hiey @i X ga: o, (CLUCo, Ky UKy U {a = (T4, Ta)})

. K
1 = s 5
Let o be a solution for C; UCy and K; UKy U {a = (T, T2)}, then

o is a solution for Cy, Co, K;, and Ky, and oTy = {l; : T.}iz1.m,
0Ty = {l; : T icmatin, o = {l; : Ti}i—i . Since we have I' 4 ¢ :
T.,(C,Ky), and I' F gy : Ty, (Cy,Ky), , by induction hypothesis
we get o' F qp : 0Ty, and o' - qo : 0Ty, , so o' F q1 = {l; :
T'Vetim, > 0l Fqo:{li : T/} icms1.m, - Therefore, we have ol Fyem
@ X g {li T }imy = o0,

T Haoy [o dist, (0, {a = U})

The property is immediately true since we have o' Fyem [] @ T list =
oT list which is true for any o.

I l_VI\LIIlEM q1:2Qo liSt, (C1U(C2U{a = Tl,Oé list = T2},K1UK2U{OC é
u})
Let ¢ be a solution for C; U Cy U {a = Ty, list = Ty} and K; U

Ko U{a £ U}, then o is a solution for Cy, Cy, Ky, Ky, and o = 0Ty,
oa list = 0T, Since we have I' F4 ¢y @ Ty, (C,K;), and T A
q2 : To,(Cy,Ky), , by induction hypothesis we get o' & ¢y : 0T},
and o' + g : 015, ,sool'F ¢ : oa, , and o' - ¢2 : o« list, .
Therefore we have o' Fyem ¢1 :: @2 : o« list.

I l_VI\LIIlEM q1 @QQ e liSt, ((Cl U(CQ U{Oé list = Tl, o list = T2}7K1 UK2 U
{a =}

Let o be a solution for C; U Cy U {a list = T, list = Ty} and
K; UKy U{a LS U}, then o is a solution for C;, Co, K;, and Ky, and
oa list = 0T, oa list = 0Ty, Since we have T' 4 ¢, : Ty, (C1,Ky),
and I' F4 g5 : Ty, (Cy,Ky), , by induction hypothesis we get o' I ¢ :

oly, and o' - gy : 015, ,s0 ol' - q; : o list, , and o' I ¢ :
oa list, . Therefore we have o' Fyem ¢1 @ ¢o : o« list.

199

o Tiem ¢+ 12 a2, (CU{ay =T} KU{oy ES {1 asl}, s iU})

Let o be a solution for CU{a; = T} and KU {«, £ {l: al}, s ES U},
then o is a solution for C and K and ooy = 0T, ooy = {l : cas},
so oa; = {...,l : oag,...}. Since we have I' F4 ¢ : T,(C,K), ,
by induction hypothesis we get oI' F ¢ : 0T, ,sool' Fq: {...,l:
oag, ...}, . Therefore we have ol byem ¢ -1 : oas.

o [l_JI\L}IEM g1 as hat? g2 ¢ Q3 : Oéz,((Cl U(CQU(CQ;U{OQ list = Tl,Oél —
(671 list — Oy = T2,0é2 = Tg},Kl UKQ UKg U {a1 é U, as é U})
Let o be a solution for C;UC,UC3U{a list = Ty, 0 — o list — ap =
Ty, 0 = T3} and Ky UK, UK3 U {og X U, oy X U}, then o is a solution
for (Cl, CQ, Cg, Kl, K27 and Kg and o0 list = O'Tl, o0l — 01 list —
ooy = 0Ty, 0y = oT3. Since we have I' F4 ¢, : T, (C,Ky),
r I_'A q2 TQ, (C27K2)7_, and T I_'A qs T3, (Cg,Kg),_, by induction
hypothesis we get o' - q; : 011, , o' g : 015, , and o' F ¢3 :
ol3, ,soo0l'Fq :0aq list, |, o't g : oy — ooy list — oay,
and o' F g3 : 0as, . Therefore we have o' Fyem q1 as hit 7 qo ¢ g3 :
oQ.

oI l_JI\LIIlEM PI'OjGCt(C]l | C]Q) e liSt, (Cl U C2 U {Oél — Qg = Tl, a1 list =
Tg},Kl U K2 U {a1 é U, (0] é U})
Let o be a solution for C; U Cy U {a; — ay = Ty,aq list = Ty}
and K; UKy U {ay X U, oy LS U}, then o is a solution for C;, C,,
K;, and K,, and ca; — cas = 0T ooy list = 0Ty, Since we have
I q Ty, (CL,Ky), and T' FA gy @ Ty, (Cy,Ky), , by induction
hypothesis we get o' F ¢, : 0Ty, and o' - ¢ : 015, , so ol' -
q1 : oo — oag, , and o' F ¢ : ooy list, . Therefore we have
ol Fmem Project(q | ¢2) : oy list.

o I Hiey Filter{q | ¢2) : a list, (C; UCy U {a — bool = Ty, list =
T}, Ky UKy U {a = U})
Let o be a solution for C; UCy U {av — bool = Ty, list = Ty} and

KUK U{« X U}, then o is a solution for Cy, Cy, Ky, and Ky, and ocav —
bool = 0Ty, oa list = 0T,. Since we have I' H* ¢ : Ty, (C1,K;),
and I' 4 ¢o : Ty, (Cy,Ky), , by induction hypothesis we get ol I ¢ :
oly, and o't qy: 015, ,soo0l'tFq :0ca— bool, ,and o't ¢ :
oa list, . Therefore we have o' Fyem Filter(q | ¢2) : o« list.

200

I Fjem Join{qi, g2 | g3, qa) : a3 list, (C; U Cy U C3 U CyU

o {ay = ay—a3=Ti,a1 = as = bool = Ty, oy list = T,
s list = T, 1, K, UKy UKs UK U {og £ U, a0 = U, a3 = U})
Let o be a solution for Cl UCQUCgUC4U {Oél — Qg — i3 = Tl,Oél —
a9 — bool = Tg,Oél list = T3,0ég list = T4} and K; UKy U Kg UKsU
{a; X U, s LS U, ag X U}, then o is a solution for Cy, C,, Cj, Cy,
K, Ky, K3, and K4, and cay — cas — cag = 0Ty, ooy — cay —
bool = 0Ty, ooy list = oT3, ooy list = oT4. Since we have I' H4
qi Tl, (Cl,K1>,) F }_'A qs T2, (CQ,KQ), . F l_'A qs T3, (Cg,K3), .
I F4 g4 @ T4, (Cy,Ky), , by induction hypothesis we get o' - ¢ :
oly, , o'l q 015 , ol q3: ol3, , o' - qq : 0Ty, , so
o't q : ooy = oy — oaz, , o' = @ : oy — oas — bool, |
ol'F q3 : oaq list, , and o' - g4 : oas list, . Therefore we have
ol Fyvem Join{qi, @2 | g3, qu) : oo list.

Theorem 5.2 (Completeness of the typing algorithm of MEM). Let ¢ € Eq
and I' a QIR typing environment. Suppose that for all D € D\ MEM, 4 is
complete. Then, iy, is complete.

Proof. By induction on the typing derivation of I' Fyem g @ T

e 'z :Thryemax:T
Immediate since T,z : T Hjgy z : T, (0, 0) by taking o = 0.

o I' Fvem funf(x)—n] T — Ty

We have I', f : 17 — To,x : 11 + q : T, . By induction hypothesis,
we get I'f : Ty = To,2: Ty FA ¢ : T/, (C,K), , and there exists o’
that satisfies C and K such that ¢'T" = Ty. So by Property 5.2 T, f :
ay = g,z FA g T (CK'), ,and o =o' o{a; — Ty, a0 = Ta}
satisfies C' and K’ and oT” = ¢'T' = T,. But then we have I l—“,\jl‘EM
fun’(z)—=q: oy — T, (C'U{ay = T"}, K U {ay LU = U}), and
o satisfies C' U {ap = T"} and K' U {o LU, oy = U}. And we have
O'(Cll — T//) = T1 — Tg.

o I'Fvem ¢1 2 : T

We have I' - ¢ : T7 — T, and I' - ¢ : T7, . By induction
hypothesis, we get, for i € 1.2, T F* ¢ : T}, (C;,K;), , and there
exists o; that satisfies C; and K; such that 01T} =Ty — To, 05T, = T.

201

But then we have I' Hjey @1 @2 © @, (C = C,UC, U{T) =T, —
abh, K = Ky UKy U {a ES U}). 0 = 010090 {a — Ty} satisfies Cy,
Cy, Ky, Ky, so o satisfies K and since « is fresh 0T, = 02T, = T; and
oT) =0T =T, = Ty = 0T, = oa, so o satisfies C. And we have
oo = Ty.

I Fmem ¢ : typeofC(c)
Immediate since I' Fiey ¢ @ typeofC(e), (B, 0) by taking o = 0.

T I_MEM op T

Immediate since . .
[Fjem op : polytypeofOP(op), (0, {a; = U,...,a, = U}) by Prop-
erty 5.1.

I' Fpmem if g then o else s - T

We have ' - ¢ : bool, . I'F ¢ : 7T, ,and ' F ¢q3 : T, . By
induction hypothesis, we get, for i € 1.3, T F* ¢; : T, (C;,K,), _,
and there exists o; that satisfies C; and K; such that o, T} = bool,
09Ty = T, 03T = T. But then we have T’ Fjgy if ¢ then ¢, else gs :
s, (C=C,UCUC3U{a; =T],a1 =bool,ay = Th,ap = T4}, K =
K; UK UK3 U{ g LS U, ay LS U}). 0 = 010090030{ay — bool,ay +— T}
satisfies C, C,, C3, Ky, Ky, and K3, so o satisfies K and since a; and
ay are fresh oT) = 0y T] = bool = oay, 0T, = 09T, = T = ocay,
0Ty = 03Ty =T = 0w, so o satisfies C. And we have ooy =T.

I' Fmem {li $q; }izlun : {li : Tz‘}z‘:l..n

For : € 1.n, we have I' - ¢; : T;, . By induction hypothesis, we get,
fori € 1.n, T F4 ¢ : T}, (C;,K;), , and there exists o; that satisfies
C; such that o; T, = T,. But then we have T' Fjey {li:q Yo
{lz . T;}izlun, (U?:l Civ U?:l Kz), and 010...0 Un{li . T;}Zzln = {lz .
Ti}i:l..n-

[Fvem ¢ < g2 {li T bimim

We have I' - ¢ : {li : Ti’/}z‘:l..m, _and 'k gy : {li : Tz‘”}z‘:mﬂ..m _. By
induction hypothesis, we get, for i € 1.2, I Mgy ¢ : T, (C;, K,), and
there exists o; that satisfies C; and K; such that oy T} = {l; : T/ }iz1.m,
oo Th = {l; : T/}icms1.m- But then we have T' iy @1 X 2 @ a, (C U
Co, Ky UKy Ufa = (T, TYY). 0 = g1 oog0{a — {li : T/} icin}
satisfies C and K and since « is fresh o T} = o, T} = {l; : T/ };=1.» and
O'T,Q = O'QT/Q = {lz . T;,}i:erl..n- And we have car = {ll : T;l}izlnn.

202

OFI_MEm[]iTliSt

Immediate since T' ey, [] @ o list, (0, {« £ U}) by taking o = {a —
T}

o I'yvem q1::q9 : T list

Wehave ' F¢q; : T, and I' gy : T list, . By induction hypothesis,
we get, for i € 1.2, I' F4 ¢; : T4, (C;,K;), _, and there exists o; that
satisfies C; and K; such that o4 T] = T, 02T, = T list. But then we
have T' Higy @132 q2 @ a list, (C = C,UC,U{a = T, a list = T,}, K =
K; UKy U A{« X U}). 0 = 010050 {a — T} satisfies C;, Co, Ky,
and Ky, so o satisfies K and since « is fresh oT) = o4 T) = T = o«
and 0Ty = 09T, = T list = o« list, so o satisfies C. And we have
oa list =T list.

o I'Fyem g1 @qo - T list

We have I' F ¢, : T list, and I' F ¢, : T list, . By induction
hypothesis, we get, for i € 1.2, I' 4 ¢; : T}, (C;,K;), , and there
exists o; that satisfies C; and K; such that oy T] = T list, oo T, = T list.
But then we have I' l—“,\‘,llEM ¢ Qg @ alist, (C = C UCy U {a list =
Talist =T,LK=K UK, U{a £U}). 0 =010050{a— T}
satisfies Cy, Co, Ky, and Ky, so o satisfies K and since « is fresh T} =
o1T) = T list = o« list and 0T, = 0,T, = T list = oa list, so o
satisfies C. And we have o« list = T list.

.FI—MEM(]'ZZT

We have T q .. : T,...}, . By induction hypothesis, we
get I F4 ¢ @ T/, (C, K) _, and there exists o’ that satisfies C and
K such that U’T’ = .. T,...}. But then we have I' Fjzy ¢ -

l:as(C=CU{q = T’},K = K U{ar = {l : au}}, 00 = U}).
o=0co{ag—{...,[:T,...},as — T} satisfies C" and K’, and since
aisfresh o' =0T ={...,)0:T,..} ={...,l: 0ag,...} = 0ay, so
since {...,l:0ay,...} X{l: 0w}, o satisfies C and K. And we have
oas = T.

e 'Fyvemqi as het ? gt g3: T}
We have I' = ¢y @ Ty list, , I'F ¢ : Ty, — Ty list — T3, , and
I' - ¢ : Ty, . By induction hypothesis, we get, for i € 1.3, T F4 ¢; :
T, (C;,K;), , and there exists o; that satisfies C; and K; such that
O'1T/1 =T,].iSt, O'QT/2 =Ty = Ty list — T17 and O'3Té =T;. But then
we have I' Hey @1 @s b2t ? g 2 g3 @ g, (C = C,UC,UC3U{a; list =

203

T’l,ozl — list — Qg = T/Q,Oég = Té},K =K UKQUK?,U{OQ é

U, s LS U}). 0 = 010090030 {a; — Ty, ay — T} satisfies C;, Ca,
Cs, Ki, Ky, and K3, so o satisfies K and since o7 and as are fresh
O'Tll = O'lTll =T, list =0y].iSt7 O'T/2 = O'QT/2 =Ty > Ty list - T =
oag — oaq list = oag, 0Ty = 03T = Ty = oag, so o satisfies C. And
we have ooy = T;.

I Fyem Project(q | go) : Ty list

We have I' ¢, : T5, — T, and I' F ¢ : T3 list, . By induction
hypothesis, we get, fori € 1.2, T 4 ¢; : T/, (C;,K;), _, and there exists
o; that satisfies C; and K; such that o1 T) = Ty — Ty, 05T, = T, list.
But then we have T' Hjgy Project(q | ¢2) : ay list, (C = C; UCy U
{Oél — Qg = Tll,Oél list = T/Q},K = Kl UKQ U {Oél é U, as i U}) o =
ogr0090 {1 — To, e — T1} satisfies Cy, Co, Ky, and Ky, so o satisfies
K and since a; and ap are fresh oT) =01 T) =Ty = Ty = 0oy — oay
and 0T, = 09T, = T, list = ooy list, so o satisfies C. And we have
oog list = T, list.

I Fuem Filter(q | ¢2) : T list

We have I' - ¢ : T — bool, and I' - ¢ : T list, . By induction
hypothesis, we get, fori € 1.2, T F* ¢; : T}, (C;, K;), _, and there exists
o; that satisfies C; and K; such that oy T) = T — bool, oo T, =T list.
But then we have T' Fjzy Filter{q | ¢2) : a list, (C = C,UC,U{a —
bool = T}, list = T,}, K = Ky UKy U{« £ U}). 0 = oj0090{a+— T}
satisfies C;, Cq, Ky, and Ky, so o satisfies K and since « is fresh 0T} =
01T =T — bool = ca — bool and 0T, = 05T, = T list = o« list,
so o satisfies C. And we have oo list = T list.

I' Fmem Join{gi, ¢z | g3, qa) = 11 list

We have ' ¢y : T35 - Ty — Ty, ,I'F g : 15 — Ty — bool,
I'+gq3:T3list, , and I' - ¢4 : Ty list, . By induction hypothesis,
we get, for i € 1.4, I 4 ¢; : T4, (C;,K;), _, and there exists o; that
satisfies C; and K; such that o4 T) = T3 — T4 — Ty, 09T, = T3 —
T4 — bool, 03T5 = Ty list, 04T) = T, list. But then we have I' l—“,\‘,}EM
Join{q1,q2 | q3,qs) : a3 list,(C = C,UC, UC3UC, U {ey — agy —
a3 = Tll,Oél — g — bool = T/Q,Oél list = Tg,OZQ list = Til},K =
K1UK2UK3UK4U{O[1 é U, as é U, as é U}) o= 01002003004O{a1 —
T3,0é2 — T4,C¥3 — Tl} satisfies (Cl, Cg, (C3, (C4 Kl, Kg, K3 and K4,
so o satisfies K and since oy, ay and a3 are fresh oT) = o4 T} =
T3—>T4—>T1:O'Oé1%0'042—>0'043,O'T/2:O'2T/2:T3%T4—>
bool = oy — oo — bool, o1 = o3T4 = T3 list = 0oy list, and

204

oT) = 04T, = T4 list = oay list, so o satisfies C. And we have
oQ3 list = T1 list.

]

Lemma 6.1 (Relation between SQL types and syntactic forms). Let v be
a normal form of QIR and I' a QIR typing environment such that Vo €
dom(T").I'(x) = R, and T' - v : T, SQL, then:

o If "= DB thenv=5b

o fT"=Rthenv=r

o [f T'=R list thenv =s

e If =R — B then v = fun”(z)—b

e If 7= R — R then v = fun”(z)—r

e If =R — R — B then v = fun”(z)—fun”(z)—0b
e If T=R— R — R then v = fun”(z)—fun”(z)—r
o If =T — T then v = fun”(z)—v or v = op

e IfT={l:T,...;0: T} thenv=zxorv={l:v,...,l:0}

Proof. The only valid rule for I' + v : T,SQL being the first one where
D = SQL, we have to prove the property for I" FgqL v : T

We prove the property by structural induction on the typing derivation
of I' Fgqu v : T. 1If the last rule used is the subsumption rule, then it
is immediately true by induction hypothesis, otherwise we proceed by case
analysis on 1"

Hypothesis 1 (H1). v is in normal form
Hypothesis 2 (H2). Vo € dom(I").I'(z) = R

e If T'= B then

— If v = x then impossible since I'yx : T Fgqu © : T = R by
Hypothesis H2

— If v = fun’/(2)—v' then impossible since T' Fgq. fun’(z)—v' :
T1 — TQ

205

If v = vy vy then by the typing rule of the application: I' FgqL vy :
Ty — T, so by induction hypothesis v; = fun®(z)—wvs which is
impossible by Hypothesis H1, or v; = op, then by the typing rule
of operators: I' FgqL v2 : B, so by induction hypothesis v5 = b so
v=opuvy=0pb=>b

If v=cthenv=0>

If v = op then impossible since I' FgqL op: By — ...+ B, > B

If v = ifv; then v, else v then by the typing rule of the condi-
tional expression:

Vi € 1..3,1" FsqL v; : B;, so by induction hypothesis Vi € 1..3,v; =
b, so v = ifv; then v, elsev; = if bthenbelseb = b

If v={l;:v; },_, , then impossible since

Dhsan {lizvi by {li s Titizim

If v =[] then impossible since I Fgq []| : T list

If v = vy :: vy then impossible since I' FgqL vy i vy @ T list

If v = v; Quy then impossible since I' FgqL v1 @y : T list

If v = v -1 then by the typing rule of the record destructor:
I FsaL v : {l; : Ti}iz1.n, S0 by induction hypothesis either v' =
{l:v,...,0l:v}, which is impossible by Hypothesis H1, or v' = z,
thenv=v.l=z-1=b

If v =Project(v; | va) then impossible since

I' FsqL Project(v; | vg) : R list

If v = From(D, v') then impossible since

[FsaL From(D,v') : R list

If v = Filter(v; | vy) then impossible since

I' FgqL Filter(vy | vo) : R list

If v = Join(vy, vy | v3,v4) then impossible since

I FsaL Join{uy, vg | v3,v4) : R list

If v = Group(vy, vy | v3) then impossible since

I FsaL Group(vy, ve | v3) @ R list

If v = Sort(v; | vo) then impossible since

I FsaL Sort{vy | vo) : R list

If v =Limit(v; | v3) then impossible since
[FsqL Limit(vy | vo) : R list

206

— If v = Exists(v’) then by the typing rule of Exists: I' FgqL v’ :
R list, so by induction hypothesis v/ = s, so v = Exists(v') =

Exists(s) =b
e If "= R then

—Ifv=xthenv=r

— If v = fun’ (2)—’ then impossible since
I' FsaL funf(x)—w’ T =Ty

— If v = v; vy then impossible since by the typing rule of the
application: I' Fgqu vy : T7 — 715, so by induction hypothe-
sis v1 = fun®(x)—w3 which is impossible by Hypothesis H1, or
v1 = op, which is impossible as ' FgqL op: By — ... =& B, — B

— If v = ¢ then impossible since I' FgqL ¢ : typeof(c) = B

— If v = op then impossible since I' Fgq . op: By —» ... —» B, > B

— If v = ifv; then v, else v3 then impossible since
I' FsqL if v; then vy elsevs @ B

—If v = {l;:v },_, , then by the typing rule of the record con-
structor Vi € 1.n,I' Fsqu v; : B;, so by induction hypothesis
Viel.n,u,=bs0v={l:v} ={l:b,...,0:b}=r

— If v = [] then impossible since [| cannot be typed

i=1l..n

— If v = vy 12 vy then impossible since I' Fgq v1 12 v : R list

— If v = v1 Quy then impossible since I' FgqL v1 Q vy : R list

— If v =9’ -1 then by the typing rule of the record destructor:
IbFgqu v/ i {li:T1,...,1,:T,}, so by induction hypothesis either
v' = {l:v,...,l:v}, which is impossible by Hypothesis H1, or
v' = x, but then by Hypothesis H2 ',z : T kgqu v/ =2 : T = R,
so impossible since by the typing rule of the record destructor
FFSQLU:U,-ZZB

— If v = Project(v; | vy) then impossible since
I FsaL Project(v; | ve) : R list

— If v = From(D, v’) then impossible since
I' FgqL From(D,v') : R list

— If v = Filter(v; | v2) then impossible since
[FsqL Filter(v | vg) : R list

— If v = Join(vy, vy | v3,v4) then impossible since
I FsaL Join{uy, vy | v3,v4) : R list

207

If v = Group(vy, vy | v3) then impossible since
I FgqL Group(vy,vs | v3) : R list

If v = Sort(v; | v9) then impossible since
I' FsqL Sort{v; | ve) : R list

If v =Limit(v; | vo) then impossible since
I'tsq Limit <U1 | U2> - R list

If v = Exists(v’) then impossible since I' FgqL Exists(v) : B

= R list then

If v = x then impossible since I'yx : T Fgqu =z : T' = R by
Hypothesis H2

If v = fun’(2)—v’ then impossible since

I' Fsau funf(x)—m/ T = Ty

If v = vy vy then impossible for the same argument as for T'= R
If v = ¢ then impossible since I' FgqL ¢ : typeof(c) = B

If v = op then impossible since I' FgqL op : By — ... =+ B, —» B

If v = ifv; then v, else v3 then impossible since
I' FsqL ifv; then vy elsewvs @ B

If v={l;:v; },_, , then impossible since
Dhsan {lizvi byt {li s Titizim
If v = [] then impossible since [] cannot be typed

If v = vy :: vy then by the typing rule of the list constructor: I' FgqL
vy : R and T" FgqL v9 : R list, so by induction hypothesis v; = r
and v = 5,50V =V U =TS =S

If v = vy @uy then by the typing rule of the list concatenation:
I' FsqL v1 : R list and I' FgqL vo : R list, so by induction hypoth-
esisvi =sand vy =s,80v =0, Quy=sQs=s

If v =o' - [then impossible for the same argument as for T = R

If v = Project(v; | vy) then by the typing rule of Project:
I' Fsau v1 : R — R and T’ FgqL vy : R’ list, so by induction
hypothesis v; = fun®(z)—r and vy, = s, so v = Project(v; |
v9) = Project(fun®(z)—r | s) = s

If v = From(D,v') then by the typing rule of From: T' FgqL
v : string = B, so by induction hypothesis v = b, so v =
From(D,v') = From(D,b) = s

208

— If v = Filter(uv; | v3) then by the typing rule of Filter:
I' FsqL v1 : R© — bool and I' bFgqL vy : R’ list, so by induction
hypothesis v; = fun®(x)—b and vy = s, so v = Filter(v; | vy) =
Filter(fun®(z)—b | s) =s

— If v = Join(vy,ve | wv3,vs4) then by the typing rules of Join:
v; = fun(z,y)—>z <y or ' FgqL v : R — R" — R, T FsaL
vg : R — R’ — bool, I' FgqL v3 : R list and I' FgqL v4 :
R" list, so v; = fun®(z,z)—x < = or by induction hypothesis
v; = fun®(z, z)—r, vo = fun®(x,z)—b, v3 = s and vy = s, s0
v = Join(vy, vy | v3,v4) = Join(fun®(z,z)—r, fun®(z,z)—b |
$,8) =S

— If v = Group(vy, vy | v3) then by the typing rule of Group: I' FsqL
v : R" — R, T'bgqL 1o : R — R and I FgqL v3 : R” list, so
by induction hypothesis v; = fun®(z)—r, v, = fun®(z)—r and
V3 = 8, SO
v = Group(vy, vy | v3)
= Group(fun®(z)—r,fun”(z)—r|s) = s

— If v = Sort(v; | vy) then by the typing rule of Sort: I' FgqL
v : R — R and I' FgqL v2 : R list, so by induction hypoth-
esis v; = fun®(x)—r and vy = s, so v = Sort(v; | v) =
Sort{fun®(x)—r | s) = s

— If v = Limit(v; | vo) then by the typing rule of Limit: T' FgqL
vy : int and ' FgqL vy : R list, so by induction hypothesis v; = b
and vy = s, s0 v = Limit(v; | vo) =Limit(b| s) =s

— If v = Exists(v’) then impossible since I' Fgq Exists(v’) : B
o If =R — B then
— If v = x then impossible since I'yx : T FgqL z : T = R by
Hypothesis H2

— If v = fun’(z)— then by typing rule of the function: T,z :
R FsaL v : B, so by induction hypothesis v/ = b, so v = fun’ (z)—=v' =
fun®(z)—b

— If v = vy vy then impossible for the same argument as for T'= R
— If v = ¢ then impossible since I' FgqL ¢ : typeof(c) = B
— If v = op then impossible since I' gq . op: By —» ... -4 B, —» B

— If v = ifv; then v, else v3 then impossible since
I' FsqL ifv; then vy elsewvs @ B

209

— Ifv={l;:v; },_, , then impossible since
I' FsaL {li LU }izl,,n : {li : Ti}izl..n
— If v = [] then impossible since [] cannot be typed
— If v = vy :: vy then impossible since I' FgqL v1 it vo : R list
— If v = v1 Quy then impossible since I' FgqL v1 Quy : R list
— If v =’ - [then impossible for the same argument as for T'= R

— If v = Project(v; | v9) then impossible since
I' FgqL Project(vy | v2) @ R list

— If v = From(D, v’) then impossible since
I' FgqL From(D,v') : R list

— If v = Filter(v; | vy) then impossible since
[FsqL Filter(v; | vg) : R list

— If v = Join(vy, v | v3,v4) then impossible since
I' FsaL JOil’l(Ul,Ug | 113,1)4> - R list

— If v = Group(vy, vy | v3) then impossible since
I FsaL Group(vy, ve | v3) @ R list

— If v = Sort(v; | v2) then impossible since
[FsaL Sort(v; | v2) : R list

— If v = Limit(v; | v2) then impossible since
r }_SQL Limit <’U1 | ’Z)2> - R list

— If v = Exists(v’) then impossible since I' FgqL Exists(v') : B
o f =R — R then

— If v = fun’ ()=’ then by typing rule of the function:
Iz : R FsqL v : R, so by induction hypothesis v = r, so v =
fun®(z)—v = fun®(z)—r

— all other cases are impossible for the same arguments as for T' =
R— B

o If =R — R— B then

— If v = fun’(z)—' then by typing rule of the function: T,z :
RbsqL v : R — B, so by induction hypothesis v' = fun®(x)—b,
so v = fun”(z)—v = fun”(z,2)—b

— all other cases are impossible for the same arguments as for T' =
R— B

o I TT=R— R— R then

210

— If v = fun/(z)— then by typing rule of the function: T,z :
RbFsaL v : R — R, so by induction hypothesis v = fun®(z)—r,
so v = fun”(z)—v' = fun®(z, z)—r

— all other cases are impossible for the same arguments as for 7' =
R— B
° IfTETl — T, then

— If v = fun”(z)—v’ or v = op then the property is true
— all other cases are impossible for the same arguments as for T' =
R— B
o fT={l,:Th,...,0l,:T,}

— If v = x then the property is true

— If v = fun’ (2)—’ then impossible since
r l_SQL funf(x)—w’ T =T

— If v = vy vy then impossible for the same argument as for T'= R
— If v = ¢ then impossible since I' FgqL ¢ : typeof(c) = B
— If v = op then impossible since I' Fgq op: By —» ... > B, =& B

— If v = ifv; then v, else v3 then impossible since
I' FsqL ifv; then vy elsewvs @ B

—Ho={lL:v}
— If v = [] then impossible since [] cannot be typed

—1_, then the property is true

— If v = vy :: vy then impossible since I' FgqL v ::vo : R list

— If v = v1 @uy then impossible since I' FgqL v1 Quy : R list

— If v =’ - [then impossible for the same argument as for T'= R

— If v = Project(v; | v9) then impossible since
I' FgqL Project(vy | v2) @ R list

— If v = From(D, v’) then impossible since
I' FsqL From(D,v') : R list

— If v = Filter(v; | v2) then impossible since
['FsqL Filter(v; | vo) : R list

— If v = Join(vy, vy | v3,v4) then impossible since
[FsaL Join{vy, vy | vs,v4) : R list

— If v = Group(vy, vy | v3) then impossible since
I FsaL Group(vy, ve | v3) @ R list

211

— If v = Sort(v; | v9) then impossible since
I' FgqL Sort(v; | ve) : R list

— If v = Limit(v; | ve) then impossible since
I FsqL Limit(vy | va) : R list

— If v = Exists(v') then impossible since ' Fgq Exists(v') : B

212

Bibliography

[AB16]

[Acz77]

[AHV95]

[Ama]

[Apaal

|Apabl]

[Apac]

|Apad]

|ASL89)

[Bar92]

Tada AB. PL/Java add-on module. https://github.com/tada/
pljava, 2016.

Peter Aczel. An introduction to inductive definitions. In Jon Bar-
wise, editor, Handbook of Mathematical Logic, volume 90 of Studies
in Logic and the Foundations of Mathematics, pages 739-782. Else-
vier, 1977.

Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foun-
dations of Databases: The Logical Level. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

Python Language Support for UDFs. http://docs.aws.amazon.
com/redshift/latest/dg/udf-python-language-support.html.

Apache HBase. https://hbase.apache.org/.

Hive Manual - MapReduce scripts. https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+Transform.

PySpark documentation - pyspark.sql.functions. http://spark.
apache.org/docs/1.6.2/api/python/pyspark.sql.html.

User Defined Functions in Cassandra 3.0. http://www.datastax.
com/dev/blog/user-defined-functions-in-cassandra-3-0.

A. M. Alashqur, S. Y. W. Su, and H. Lam. OQL: a query language
for manipulating object-oriented databases. In Proceedings of the
15th international conference on Very Large Data Bases (VLDB),
pages 433-442, New York, NY, USA, 1989. ACM.

H. P. Barendregt. Handbook of logic in computer science (vol. 2).
chapter Lambda Calculi with Types, pages 117-309. Oxford Uni-
versity Press, Inc., New York, NY, USA, 1992.

213

https://github.com/tada/pljava
https://github.com/tada/pljava
http://docs.aws.amazon.com/redshift/latest/dg/udf-python-language-support.html
http://docs.aws.amazon.com/redshift/latest/dg/udf-python-language-support.html
https://hbase.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform
http://spark.apache.org/docs/1.6.2/api/python/pyspark.sql.html
http://spark.apache.org/docs/1.6.2/api/python/pyspark.sql.html
http://www.datastax.com/dev/blog/user-defined-functions-in-cassandra-3-0
http://www.datastax.com/dev/blog/user-defined-functions-in-cassandra-3-0

[BCD+18]

[BCRH* 18]

[BD13]

[BVO7]

[Car84|

[Car88|

[CDGH07]

[ChI10]

[Chu40]

[CLF15]

Véronique Benzaken, Giuseppe Castagna, Laurent Daynés, Julien
Lopez, Kim Nguyen, and Romain Vernoux. Language-integrated
queries: A boldr approach. In Companion Proceedings of the The
Web Conference 2018, WWW 18, pages 711-719, Republic and
Canton of Geneva, Switzerland, 2018. International World Wide
Web Conferences Steering Committee.

Edmon Begoli, Jestis Camacho-Rodriguez, Julian Hyde, Michael J.
Mior, and Daniel Lemire. Apache calcite: A foundational framework
for optimized query processing over heterogeneous data sources. In
Proceedings of the 2018 International Conference on Management
of Data, SIGMOD 18, pages 221-230, New York, NY, USA, 2018.
ACM.

Patrick Bahr and Laurence E. Day. Programming macro tree trans-
ducers. In Proceedings of the 9th ACM SIGPLAN workshop on
Generic programming, pages 61-72, New York, NY, USA, 2013.
ACM.

Jan Van den Bussche and Stijn Vansummeren. Polymorphic type
inference for the named nested relational calculus. ACM Trans.
Comput. Logic, 9(1), December 2007.

Luca Cardelli. A semantics of multiple inheritance. In Proc. Of the

International Symposium on Semantics of Data Types, pages 51-67,
New York, NY, USA, 1984. Springer-Verlag New York, Inc.

L. Cardelli. Structural subtyping and the notion of power type.
In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 88, pages 70-79,
New York, NY, USA, 1988. ACM.

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacque-
mard, Denis Lugiez, Christof Loding, Sophie Tison, and Marc
Tommasi. Tree Automata Techniques and Applications. http:
//tata.gforge.inria.fr/, 2007.

Adam Chlipala. Ur: Statically-typed metaprogramming with type-
level record computation. volume 45, pages 122—-133, 06 2010.

Alonzo Church. A formulation of the simple theory of types. J.
Symbolic Logic, 5(2):56-68, 06 1940.

Joao Costa Seco, Hugo Lourenco, and Paulo Ferreira. A Common
Data Manipulation Language for Nested Data in Heterogeneous En-
vironments. In Proceedings of the 15th Symposium on Database

214

http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/

[CLW13]

[CLWYO07]

[CM84]

|CNXAT15)

[Cod70]

[Corl6|

[CSLM13)

[ct17]

[CW11]

[dot]
[DWM14]

Programming Languages, DBPL 2015, pages 11-20, New York, NY,
USA, 2015. ACM.

J. Cheney, S. Lindley, and P. Wadler. A Practical Theory of
Language-Integrated Query. In International Conference on Func-
tional Programming (ICFP) 2013, pages 403-416, New York, NY,
USA, 2013. ACM.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: web programming without tiers. In In FMCO 2006, vol-
ume 4709 of LNCS, pages 266—296, 2007.

G. Copeland and D. Maier. Making Smalltalk a Database System.
SIGMOD Rec., 14(2):316-325, June 1984.

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate.
Polymorphic functions with set-theoretic types: Part 2: Local type
inference and type reconstruction. In Proceedings of the 42Nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
grammang Languages, POPL 15, pages 289-302, New York, NY,
USA, 2015. ACM.

E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377-387, June 1970.

Oracle Corporation. Java JDBC API. http://docs.oracle.com/
javase/8/docs/technotes/guides/jdbc/, 2016.

A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-
backed applications with query synthesis. In Hans-Juergen Boehm
and Cormac Flanagan, editors, Programming Language Design and
Implementation (PLDI) ’13, Seattle, WA, USA, June 16-19, 2013,
pages 3-14, New York, NY, USA, 2013. ACM.

Rails core team. Active Record - Ruby on Rails. http://guides.
rubyonrails.org/active_record_basics.html, 2017.

William R. Cook and Ben Wiedermann. Remote Batch Invoca-
tion for SQL Databases. In Database Programming Languages -
DBPL 2011, 13th International Symposium, Seattle, Washington,
USA, August 29, 2011. Proceedings, 2011.

dotconnect. https://www.devart.com/dotconnect/.

Gilles Duboscq, Thomas Wiirthinger, and Hanspeter M&ssenbock.
Speculation without regret: reducing deoptimization meta-data in

215

http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
http://guides.rubyonrails.org/active_record_basics.html
http://guides.rubyonrails.org/active_record_basics.html
https://www.devart.com/dotconnect/

[Ein11]

[ENS9|

|[ERBS16]

[FGG*18]

[GIS10]

[GRS10|

[Hiv]

[HVOO06]

[1SO16]

the Graal compiler. In 2014 International Conference on Principles
and Practices of Programming on the Java Platform Virtual Ma-
chines, Languages and Tools, PPPJ ’1/, Cracow, Poland, September
23-26, 2014, pages 187-193, Trier, Germany, 2014. dblp.

O. Eini. The Pain of Implementing LINQ Providers. Commun.
ACM, 54(8):55-61, August 2011.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. Benjamin-Cummings Publishing Co., Inc., Red-
wood City, CA, USA, 1989.

V. Emani, K. Ramachandra, S. Bhattacharya, and S. Sudarshan.
Extracting Equivalent SQL from Imperative Code in Database Ap-
plications. In SIGMOD ’16 Proceedings of the 2016 International
Conference on Management of Data, pages 1781-1796, New York,
NY, USA, 2016. ACM.

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Ryd-
berg, Petra Selmer, and Andrés Taylor. Cypher: An evolving query
language for property graphs. In Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD 18, pages
1433-1445, New York, NY, USA, 2018. ACM.

Miguel GGarcia, Anastasia [zmaylova, and Sibylle Schupp. Extending
Scala with Database Query Capability. Journal of Object Technol-
ogy, 9(4):45-68, 2010.

Torsten Grust, Jan Rittinger, and Tom Schreiber. Avalanche-
Safe LINQ Compilation. Proceedings of Very Large Data Bases
(PVLDB), 3(1):162-172, 2010.

Hive Language Manual. https://cwiki.apache.
org/confluence/display/Hive/LanguageManual+DDL#
LanguageManualDDL-CreateFunction.

William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A Clas-
sification of SQL-Injection Attacks and Countermeasures. In Pro-

ceedings of the International Symposium on Secure Software Engi-
neering, Washington D.C., USA, March 2006.

[SO. ISO/IEC 9075-2:2016, Information technology-Database
languages—SQL—Part 2: Foundation (SQL/Foundation), 2016.

216

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateFunction
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateFunction
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateFunction

[JSF12]

[KBAT09]

[Kis14]

[KK17]

[KMHO7]

[KSK16]

[Kuhl11]

[LC12]

[LGOY]

[Lop16]

[Mic|

[Mil78]

P J Sadalage and M Fowler. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. 01 2012.

Gavin King, Christian Bauer, Max Rydahl Andersen, Emmanuel
Bernard, and Steve Ebersole. HIBERNATE - Relational Persistence
for Idiomatic Java. https://docs.jboss.org/hibernate/orm/3.
3/reference/en-US/pdf/hibernate_reference.pdf, 2009.

Oleg Kiselyov. The Design and Implementation of BER MetaO-
Caml. In Michael Codish and Eijiro Sumii, editors, Functional and
Logic Programming, pages 86-102, Cham, 06 2014. Springer Inter-
national Publishing.

Oleg Kiselyov and Tatsuya Katsushima. Sound and efficient
language-integrated query. In Bor-Yuh Evan Chang, editor, Pro-
gramming Languages and Systems, pages 364-383, Cham, 11 2017.
Springer International Publishing.

Jacob Kaplan-Moss and Adrian Holovaty. The Definitive Guide to
Django: Web Development Done Right. Apress, December 2007.

Oleg Kiselyov, Kenichi Suzuki, and Yukiyoshi Kameyama. Finally,
safely-extensible and efficient language-integrated query. 01 2016.

D. Kuhlman. A python book: Beginning python, advanced python,
and python exercises. section 3.4.2.4, pages 180-182. PLATYPUS
GLOBAL MEDIA, 2011.

Sam Lindley and James Cheney. Row-based effect types for database
integration. In Proceedings of the 8th ACM SIGPLAN Workshop
on Types in Language Design and Implementation, TLDI "12, pages
91-102, New York, NY, USA, 2012. ACM.

Xavier Leroy and Hervé Grall. Coinductive big-step operational
semantics. Information and Computation, 207(2):284 — 304, 2009.
Special issue on Structural Operational Semantics (SOS).

J. Lopez. Master’s thesis - Breaking the wall between general-
purpose languages and databases. https://www.lri.fr/“lopez/
docs/mpri_report.pdf, January 2016.

LINQ (Language-Integrated Query). https://msdn.microsoft.
com/en-us/library/bb397926.aspx.

Robin Milner. A theory of type polymorphism in programming. In
Journal of Computer and System Sciences. Elsevier, 1978.

217

https://docs.jboss.org/hibernate/orm/3.3/reference/en-US/pdf/hibernate_reference.pdf
https://docs.jboss.org/hibernate/orm/3.3/reference/en-US/pdf/hibernate_reference.pdf
https://www.lri.fr/~lopez/docs/mpri_report.pdf
https://www.lri.fr/~lopez/docs/mpri_report.pdf
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx

[Mon]

[MyP]

[NN9Y]

[Oho95]

[OPV14]

[Oraal
[Orab]
[Orac]

[Orad]

[Orae|

|OU11]

[Pie02]

[PIW07]

[PL/a]

[PL/b]

[Pos]

MongoDB User Manual - Server-side JavaScript. https://docs.
mongodb. com/manual/core/server-side-javascript/.

Mypy - an experimental optional static type checker for Python.
http://mypy-1lang.org/about.html.

Flemming Nielson and Hanne Riis Nielson. Type and effect systems.
In Correct System Design, 1999.

Atsushi Ohori. A polymorphic record calculus and its compilation.
ACM Trans. Program. Lang. Syst., 17(6):844-895, November 1995.

K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL-++
Semi-structured Data Model and Query Language: A Capabilities
Survey of SQL-on-Hadoop, NoSQL and NewSQL Databases. CoRR,
abs/1405.3631, 2014.

FastR. https://github.com/graalvm/fastr.
Grall.js. https://www.youtube.com/watch?v=0Uo3BFMwQFo.
JRuby. https://github.com/jruby/jruby.

Oracle R Enterprise. http://www.oracle.com/technetwork/
database/database-technologies/r.

ZipPy. https://github.com/securesystemslab/zippy.

Atsushi Ohori and Katsuhiro Ueno. Making standard ml a practical
database programming language. SIGPLAN Not., 46(9):307-319,
September 2011.

Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 1st edition, 2002.

S. Peyton Jones and P. Wadler. Comprehensive comprehensions. In
Haskell °07 Proceedings of the ACM SIGPLAN workshop on Haskell
workshop, pages 61-72. ACM, 2007.

PL/R Project. http://www.joeconway.com/plr.html.

Oracle Database 18c¢ PL/SQL. https://www.oracle.com/
technetwork/database/features/plsql/index.html.

PL/Python - Python Procedural Language. https://www.
postgresql.org/docs/current/plpython.html.

218

https://docs.mongodb.com/manual/core/server-side-javascript/
https://docs.mongodb.com/manual/core/server-side-javascript/
http://mypy-lang.org/about.html
https://github.com/graalvm/fastr
https://www.youtube.com/watch?v=OUo3BFMwQFo
https://github.com/jruby/jruby
http://www.oracle.com/technetwork/database/database-technologies/r
http://www.oracle.com/technetwork/database/database-technologies/r
https://github.com/securesystemslab/zippy
http://www.joeconway.com/plr.html
https://www.oracle.com/technetwork/database/features/plsql/index.html
https://www.oracle.com/technetwork/database/features/plsql/index.html
https://www.postgresql.org/docs/current/plpython.html
https://www.postgresql.org/docs/current/plpython.html

[Pot9s)

[PRO5]

[PTN*18]

[PTST17]

[Qui

[Rém8Y]

[Rém92]

[Rey99|

[RS12]

B

Francois Pottier. Synthése de types en présence de sous-typage: de
la théorie a la pratique. PhD thesis, Université Paris 7, July 1998.

Francois Pottier and Didier Rémy. The essence of ML type inference.
In Benjamin C. Pierce, editor, Advanced Topics in Types and Pro-
gramming Languages, chapter 10, pages 389-489. MIT Press, 2005.
A draft extended version is also available.

Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimajan Negi, Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk, Saman Amarasinghe, Samuel Madden,
and Matei Zaharia. Evaluating end-to-end optimization for data an-
alytics applications in weld. Proceedings of Very Large Data Bases
(PVLDB) Endowment, 11(9):1002-1015, May 2018.

Shoumik Palkar, James J. Thomas, Anil Shanbhag, Malte
Schwarzkopf, Saman P. Amarasinghe, and Matei Zaharia. A com-
mon runtime for high performance data analysis. In CIDR 2017,
8th Biennial Conference on Innovative Data Systems Research,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.
www.cidrdb.org, 2017.

Compile-time queries with quill. https://scalac.io/quill-compile-
time-queries/.

D. Rémy. Type checking records and variants in a natural extension
of ml. In Proceedings of the 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 89, pages
77-88, New York, NY, USA, 1989. ACM.

Didier Rémy. Typing record concatenation for free. In Proceedings
of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’92, pages 166—176, New York, NY,
USA, 1992. ACM.

John C. Reynolds. Theories of Programming Languages. Cambridge
University Press, New York, NY, USA, 1999.

K. Ramachandra and S. Sudarshan. Holistic optimization by
prefetching query results. In SIGMOD ’12 Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data,
pages 133-144, New York, NY, USA, 2012. ACM.

Functional relational mapping for scala.
http: / /slick.lightbend.com/.

219

http://cristal.inria.fr/attapl/

[SPJ03]

[STO6]

[T-5]

[TPC17|

|Uni
[Van03|

[VABW02)

[Ver16|

[Wad95]

[Wan87|

[WC07]

[Wim14]

Tim Sheard and Simon Peyton Jones. Template meta-programming
for haskell. Proceedings of the 2002 ACM SIGPLAN Haskell Work-
shop, 37, 01 2003.

J. G. Siek and W. Taha. Gradual Typing for Functional Lan-
guages. In Proceedings, Scheme and Functional Programming Work-
shop 2006, pages 81-92, Chicago, USA, 2006. University of Chicago
TR-2006-06.

Transact-SQL Reference (Database Engine). https://docs.
microsoft.com/en-us/sql/t-sql/language-reference?view=
sql-server-2017.

TPC. The TPC-H benchmark. http://www.tpc.org/tpch/, 2017.
Unityjdbc. http://www.unityjdbc.com/.

Stijn Vansummeren. On the complexity of deciding typability in the
relational algebra. Acta Informatica, 41(6):367-381, May 2005.

Jan Van den Bussche and Emmanuel Waller. Polymorphic type
inference for the relational algebra. J. Comput. Syst. Sci., 64(3):694—
718, May 2002.

Romain Vernoux. Design of an intermediate representation for query
languages. CoRR, abs/1607.04197, 2016.

Philip Wadler. Monads for functional programming. In Advanced
Functional Programming, First International Spring School on Ad-
vanced Functional Programming Techniques-Tutorial Text, pages
24-52, Berlin, Heidelberg, 1995. Springer-Verlag.

Mitchell Wand. Complete type inference for simple objects. In Pro-
ceedings of the 2nd IEEE Symposium on Logic in Computer Science,
pages 3744, Ithaca, New York, 1987. IEEE.

Ben Wiedermann and William R. Cook. Extracting queries by
static analysis of transparent persistence. In Martin Hofmann
0001 and Matthias Felleisen, editors, Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2007, Nice, France, January 17-19, 2007, pages 199—
210, New York, NY, USA, 2007. ACM.

C. Wimmer. One VM to Rule Them All. http://lafo.ssw.
uni-linz.ac.at/papers/2014_SPLASH_OneVMToRuleThemAll.
pdf, October 2014.

220

https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-2017
http://www.tpc.org/tpch/
http://www.unityjdbc.com/
http://lafo.ssw.uni-linz.ac.at/papers/2014_SPLASH_OneVMToRuleThemAll.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2014_SPLASH_OneVMToRuleThemAll.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2014_SPLASH_OneVMToRuleThemAll.pdf

[WV10]

[WWW+13]

Jonathan H. Wage and Konsta Vesterinen. Doctrine ORM for PHP.
Sensio SA, March 2010.

T. Wiirthinger, C. Wimmer, A. W6, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM to
Rule Them All. In Onward! 2013 Proceedings of the 2013 ACM
international symposium on New ideas, new paradigms, and reflec-
tions on programming and software, pages 187-204, New York, NY,
USA, 2013. ACM.

221

universite

PARIS-SACLAY

Titre : Au-dela des frontiéres entre langages de programmation et bases de données

Mots clés : Requétes intégrées au langage, bases de données, langages centrés données

Résumé : Plusieurs classes de solutions per-
mettent d’exprimer des requétes dans des lan-
gages de programmation: les interfaces spéci-
fiques telles que JDBC, les mappings objet-
relationnel ou object-relational mapping en
anglais (ORMs) comme Hibernate, et les fra-
meworks de requétes intégrées au langage
comme le framework LINQ de Microsoft. Ce-
pendant, la plupart de ces solutions ne per-
mettent pas d’écrire des requétes visant plu-
sieurs bases de données en méme temps, et
aucune ne permet 'utilisation de logique d’ap-
plication complexe dans des requétes aux
bases de données.

Cette thése présente un nouveau framework
de requétes intégrées au langage nommé
BOLDR qui permet d’écrire des requétes dans
des langages de programmation généralistes
et qui contiennent de la logique d’applica-
tion, et de les évaluer dans des bases de don-
nées hétérogénes. Dans ce framework, les re-
quétes d’une application sont traduites vers

une représentation intermédiaire de requétes.
Puis, elles sont typées en utilisant un sys-
teme de type extensible par les bases de
données pour détecter dans quel langage de
données chaque sous-expression doit étre tra-
duite. Cette phase de typage permet égale-
ment de détecter certaines erreurs avant 1’exé-
cution. Ensuite, les requétes sont réécrites
pour éviter le phénoméne "d’avalanche de re-
quétes" et pour profiter au maximum des ca-
pacités d’optimisation des bases de données.
Enfin, les requétes sont envoyées aux bases
de données ciblées pour évaluation et les ré-
sultats obtenus sont convertis dans le langage
de programmation de I'application. Nos ex-
périences montrent que les techniques implé-
mentées dans ce framework sont applicables
pour de véritables applications centrées don-
nées, et permettent de gérer efficacement un
vaste champ de requétes intégrées a des lan-
gages de programmation généralistes.

Title: Breaking boundaries between programming languages and databases

Keywords: Language-integrated queries, databases, data-centric languages

Abstract: Several classes of solutions
allow programming languages to express
queries: specific APIs such as JDBC, Object-
Relational Mappings (ORMs) such as Hiber-
nate, and language-integrated query frame-
works such as Microsoft’s LINQ. However,
most of these solutions do not allow for effi-
cient cross-databases queries, and none allow
the use of complex application logic from the
programming language in queries.

This thesis studies the design of a new
language-integrated query framework called
BOLDR that allows the evaluation in
databases of queries written in general-
purpose programming languages contain-
ing application logic, and targeting several
databases following different data models.

In this framework, application queries are
translated to an intermediate representation.
Then, they are typed with a type system ex-
tensible by databases in order to detect which
database language each subexpression should
be translated to. This type system also al-
lows us to detect a class of errors before ex-
ecution. Next, they are rewritten in order to
avoid query avalanches and make the most out
of database optimizations. Finally, queries
are sent for evaluation to the corresponding
databases and the results are converted back
to the application. Our experiments show
that the techniques we implemented are ap-
plicable to real-world database applications,
successfully handling a variety of language-
integrated queries with good performances.

	Introduction
	Context
	SQL
	Relational algebra
	Expressing queries in SQL

	Application programming languages
	Sending queries from application languages
	JDBC
	ORMs
	LINQ
	Apache Calcite
	Other interfaces

	A new solution: BOLDR
	Features
	Detailed description
	Implementation

	Contributions
	Query Intermediate Representation
	QIR type system
	QIR type inference
	Type-oriented evaluation
	Implementation and experiments

	Definitions
	Basic notations
	Languages
	Inference systems

	Query Intermediate Representation
	Syntax
	Basic semantics
	Extended semantics
	A default database language: MEM
	QIR normalization
	Motivation
	Reduction relation for the normalization
	A measure for good queries
	Generic measure
	Heuristic-based normalization

	QIR type system
	QIR types
	QIR type systems
	Type safety
	Progress and preservation of types
	Strong normalization

	Specific type system for SQL

	QIR type inference
	Typing algorithms
	Specific typing algorithm for MEM
	Constraint resolution
	Specific typing algorithm for SQL

	Type-oriented evaluation
	Translation into database languages
	Specific and generic translations
	A specific translation for SQL

	Type-safe SQL translation
	Extension to scalar subqueries for SQL
	Type-oriented normalization

	Implementation and experiments
	Translation from a host language to QIR
	Truffle
	Implementation
	QIR
	Interface to FastR
	Host language expressions in databases

	Experiments

	Conclusion
	Related work
	Conclusion
	Future work

	Appendices
	Résumé étendu
	Contexte
	SQL
	Algèbre relationnelle
	Exprimer des requêtes en SQL

	Langages de programmation applicatifs
	Requêtes depuis des langages d'application
	JDBC
	ORMs
	LINQ
	Apache Calcite
	Autres interfaces

	Une nouvelle solution : BOLDR
	Fonctionnalités
	Description détaillée
	Implémentation

	Contributions
	Représentation intermédiaire de requêtes (QIR)
	Système de types pour QIR
	Inférence de types pour QIR
	Évaluation orientée par les types
	Implémentation et expériences

	Full proofs
	Bibliography

